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Abstract

In this thesis, a novel discrete approximation of the curvature tensor on Riemannian manifolds is derived, effi-
cient methods to interpolate and extrapolate images in the context of the time discrete metamorphosis model are
analyzed, and an a posteriori error estimator for the binary Mumford–Shah model is examined.

Departing from the variational time discretization on (possibly infinite-dimensional) Riemannian manifolds
originally proposed by Rumpf and Wirth, in which a consistent time discrete approximation of geodesic curves,
the logarithm, the exponential map and parallel transport is analyzed, we construct the discrete curvature tensor and
prove its convergence under certain smoothness assumptions. To this end, several time discrete parallel transports
are applied to suitably rescaled tangent vectors, where each parallel transport is computed using Schild’s ladder.
The associated convergence proof essentially relies on multiple Taylor expansions incorporating symmetry and
scaling relations. In several numerical examples we validate this approach for surfaces.

The by now classical flow of diffeomorphism approach allows the transport of image intensities along paths
in time, which are characterized by diffeomorphisms, and the brightness of each image particle is assumed to
be constant along each trajectory. As an extension, the metamorphosis model proposed by Trouvé, Younes and
coworkers allows for intensity variations of the image particles along the paths, which is reflected by an additional
penalization term appearing in the energy functional that quantifies the squared weak material derivative. Taking
into account the aforementioned time discretization, we propose a time discrete metamorphosis model in which
the associated time discrete path energy consists of the sum of squared L2-mismatch functionals of successive
square-integrable image intensity functions and a regularization functional for pairwise deformations. Our main
contributions are the existence proof of time discrete geodesic curves in the context of this model, which are
defined as minimizers of the time discrete path energy, and the proof of the Mosco-convergence of a suitable
interpolation of the time discrete to the time continuous path energy with respect to the L2-topology. Using
an alternating update scheme as well as a multilinear finite element respectively cubic spline discretization for
the images and deformations allows to efficiently compute time discrete geodesic curves. In several numerical
examples we demonstrate that time discrete geodesics can be robustly computed for gray-scale and color images.

Taking into account the time discretization of the metamorphosis model we define the discrete exponential
map in the space of images, which allows image extrapolation of arbitrary length for given weakly differentiable
initial images and variations. To this end, starting from a suitable reformulation of the Euler–Lagrange equations
characterizing the one-step extrapolation a fixed point iteration is employed to establish the existence of critical
points of the Euler–Lagrange equations provided that the initial variation is small in L2. In combination with an
implicit function type argument requiring H1-closeness of the initial variation one can prove the local existence
as well as the local uniqueness of the discrete exponential map. The numerical algorithm for the one-step extrap-
olation is based on a slightly modified fixed point iteration using a spatial Galerkin scheme to obtain the optimal
deformation associated with the unknown image, from which the unknown image itself can be recovered. To prove
the applicability of the proposed method we compute the extrapolated image path for real image data.

A common tool to segment images and shapes into multiple regions was developed by Mumford and Shah.
The starting point to derive a posteriori error estimates for the binary Mumford–Shah model, which is obtained by
restricting the original model to two regions, is a uniformly convex and non-constrained relaxation of the binary
model following the work by Chambolle and Berkels. In particular, minimizers of the binary model can be exactly
recovered from minimizers of the relaxed model via thresholding. Then, applying duality techniques proposed
by Repin and Bartels allows deriving a consistent functional a posteriori error estimate for the relaxed model.
Afterwards, an a posteriori error estimate for the original binary model can be computed incorporating a suitable
cut-out argument in combination with the functional error estimate. To calculate minimizers of the relaxed model
on an adaptive mesh described by a quadtree structure, we employ a primal-dual as well as a purely dual algorithm.
The quality of the error estimator is analyzed for different gray-scale input images.
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Chapter 1

Introduction

IN this thesis, we develop a novel time discrete approximation of the curvature tensor for Hilbert manifolds
and prove its convergence. Furthermore, a time discrete analog of the metamorphosis model is introduced,
which allows the interpolation and extrapolation in the space of images endowed with a Riemannian structure.

Finally, an efficient a posteriori error estimator for the binary Mumford–Shah model is proposed.

The structure of this thesis is as follows:

In Chapter 2, the foundations of Riemannian geometry on (possibly infinite-dimensional) Riemannian mani-
folds – with a special focus on geodesic curves, the logarithm, the exponential map and the parallel transport – are
briefly presented, and we give a short survey of different approaches to model shape spaces. Afterwards, we re-
view the variational time discretization of these concepts for certain Hilbert manifolds and state the corresponding
convergence theorems following the work by Rumpf and Wirth [RW13, RW15]. The variational time discretiza-
tion forms the basis of a novel discretization approach for the Riemann curvature tensor on Hilbert manifolds,
whose proof is the core of this chapter. In detail, starting from the very definition of the Riemann curvature tensor
via covariant derivatives, we approximate the iterated covariant derivative ∇w∇vη via discrete parallel transports
along three sides of a geodesic parallelogram, where two sides scale quadratically and one linearly in the time step
size τ . As an outcome, the discrete curvature tensor converges to its continuous counterpart w.r.t. the topology
of the ambient space with a convergence rate of order τ . The associated convergence proof essentially relies on
Taylor expansions of the optimality conditions by exploiting symmetry as well as scaling properties of the paths
involved. Several numerical examples demonstrate the efficiency of this approach.

In Chapter 3, the metamorphosis model developed in [MY01, TY05a, TY05b] is introduced, in which the space
of images is endowed with a Riemannian structure extending the flow of diffeomorphism approach. In detail, given
two square-integrable image functions one aims at minimizing the path energy depending on the flow joining these
images, which measures the contribution due to the transport of each image particle as well as the image intensity
variation along the flow. In this context, energy minimizing flows determine (continuous) geodesics representing
minimizers of the path energy. Picking up the ideas of the aforementioned time discretization, we propose a
novel time discretization for the metamorphosis model and prove the existence of discrete geodesic curves defined
as minimizers of the discrete path energy. Furthermore, we establish the Mosco-convergence of a suitable time
interpolated discrete path energy to the continuous path energy of the metamorphosis model w.r.t. the L2-topology,
which in particular proves the existence of minimizers of the continuous model. Finally, discrete geodesic curves
for two different discretization approaches – a nonconforming finite element as well as a conforming finite element
respectively cubic spline approach – are computed for gray-scale and color images. This chapter is an extended
version of [BER15] (joint work with Benjamin Berkels and Martin Rumpf).

Taking into account the time discrete metamorphosis model, we develop and prove the existence of a discrete
exponential map in the space of images in Chapter 4, which in particular allows the image extrapolation for a
given weakly differentiable input image and a weakly differentiable initial image variation, which is assumed to be
sufficiently small in L2. To this end, departing from the Euler–Lagrange equations of the one-step extrapolation,
the existence of critical points of the Euler–Lagrange equations is established via a fixed point argument. By
combining this result with an implicit function type argument, which additionally requires the smallness of the
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2 1 Introduction

initial variation inH1, one can rigorously establish local uniqueness and existence of the discrete exponential map.
A slightly modified version of the aforementioned fixed point iteration is employed for the actual computation
of the discrete exponential map. In several applications to real image data we demonstrate the stability of the
proposed methods. This chapter is an extended version of [ERS17a] and [ERS17b] (joint work with Martin Rumpf
and Florian Schäfer).

In Chapter 5, we briefly recall the prominent Mumford–Shah model for image segmentation [MS85, MS89],
its basic properties and numerical strategies to compute minimizers. Afterwards, we concentrate on the binary
model, which can be deduced from the full model by restricting to only two regions. The main goal in this
chapter is the derivation of a reliable a posteriori error estimator for the binary model. To this end, we exploit
the fact that a minimizer of the binary model can be exactly retrieved from a minimizer of the convex relaxed
model via thresholding (cf . [Cha05, Ber09]), and derive a functional a posteriori error estimator for the relaxed
model using duality techniques and the uniform convexity of the data term following the work by Repin and
Bartels (cf . [Rep00, Rep12, Bar15]). Then, the a posteriori error estimator for the original binary model relies
on a cut-out argument for the non-properly identified phases (i.e. the neighborhood of the interfaces) combined
with the functional error estimator. We propose a finite difference and two finite element discretizations, and the
minimizer of the convex relaxed model is computed using a step size controlled primal-dual as well as a purely
dual algorithm. Both error estimators are investigated in several numerical examples. Many results in this chapter
have been published in [BER17] (joint work with Benjamin Berkels and Martin Rumpf).

Besides the aforementioned publications I also contributed to the publications [ERS+15] and [BBE+17] that
are briefly summarized on page 87.

1.1 Preliminaries

In this section, we recall some general definitions, function spaces and their basic properties used throughout this
thesis. An overview of the notation is given in Appendix B and an index can be found at the end of this thesis. Let
us begin with some general remarks:

- The symbol C frequently indicates a generic finite positive constant.

- Depending on the context, 1 denotes either the identity mapping or the identity matrix.

- The Einstein summation convention is employed at some places.

- The symbol “:” denotes the sum over all pairwise products of two tensors, e.g. A : B = tr(ATB) for two
matrices A,B ∈ Rn,n.

- We denote the variational derivative of a functional J at a point A in a direction B by ∂AJ [A](B), i.e.

∂AJ [A](B) =
d

dε
J [A+ εB]

∣∣
ε=0

.

- In this thesis, the gradient ∇, the divergence div and all higher order derivatives Dm are always evaluated
w.r.t. the spatial variables if not otherwise specified.

Before introducing some function spaces, we briefly recall different regularity properties of domains:

Definition 1.1.1 (Geometric properties of domains (cf . [AF03])). Let Ω ⊂ Rn be any bounded, non-empty and
open set with boundary ∂Ω.

(i.) The domain Ω has a Lipschitz boundary if for each x ∈ ∂Ω there exists a neighborhood U = U(x) of x and
a Lipschitz function f : Rn−1 → R such that

Ω ∩ U(x) = { y = (y1, . . . , yn) ∈ U(x) : yn > f(y1, . . . , yn−1) } .



1.1 Preliminaries 3

(ii.) Let ^(x, y) denote the angle between x, y ∈ Rn. A finite cone associated with the triple (v, ρ, κ) ∈ Rn ×
R+ × (0, π2 ] is the set

C(v, ρ, κ) = {x ∈ Rn : x = 0 or 0 < |x| < ρ ,^(x, v) ≤ κ } .

The domain Ω satisfies the cone condition if there exists a finite cone C(v, ρ, κ) such that each x ∈ ∂Ω is
the vertex of a cone which is contained in Ω and congruent to C(v, ρ, κ).

(iii.) The domain is strongly Lipschitz if Ω is a Lipschitz domain that satisfies the cone condition.

We set ∂βf = ∂β1
x1
· · · ∂βnxn f and |β| =

∑n
i=1 βi for a multi-index β = (β1, . . . , βn) ∈ Nn . For k ∈ N we use

standard notation for the Banach space of continuous or continuously differentiable functions Ck(Ω) on a compact
set Ω ⊂ Rn, which is endowed with the norm ‖ · ‖Ck(Ω) and the seminorm | · |Ck(Ω) given by

‖f‖C0(Ω) = sup
x∈Ω

|f(x)| , ‖f‖Ck(Ω) =
∑
|β|≤k

‖∂βf‖C0(Ω) , |f |Ck(Ω) =
∑
|β|=k

‖∂βf‖C0(Ω) .

The spaceCk(Ω) endowed with the metric d(f, g) =
∑
i∈N 2−i

‖f−g‖
Ck(Ki)

1+‖f−g‖
Ck(Ki)

for a domain Ω ⊂ Rn is a complete

metric space, where Ki ⊂ Ω are compact sets such that Ki ⊂ Ki+1, Ω =
⋃
i∈NKi and for all x ∈ Ω there exists

i ∈ N and r > 0 such thatBr(x)∩Ω ⊂ Ki. Moreover, we set C∞(Ω) =
⋂
k≥0 C

k(Ω). In addition, for k ∈ N and
α ∈ (0, 1] the space of Hölder continuously differentiable functions Ck,α(Ω) is a Banach space when equipped
with the norm ‖ · ‖Ck,α(Ω), and we denote by | · |Ck,α(Ω) the associated seminorm, i.e.

|f |Ck,α(Ω) =
∑
|β|=k

sup
{
|∂βf(x)−∂βf(y)|

|x−y|α : x, y ∈ Ω , x 6= y
}
, ‖f‖Ck,α(Ω) = ‖f‖Ck(Ω) + |f |Ck,α(Ω) .

Let us agree to set Ck,0(Ω) = Ck(Ω) for any k ∈ N. Finally, the subscript c always indicates compactly supported
continuous or differentiable functions.

We use standard notation for Lebesgue and Sobolev spaces on a Lipschitz domain Ω (see [AF03] for details),
i.e. Lp(Ω) and Wm,p(Ω) for m ∈ N and p ∈ [1,∞]. In particular, we set Hm(Ω) = Wm,2(Ω). For any
f, g ∈ Hm(Ω), m ≥ 1, we define

Dmf ·Dmg =

n∑
i1,...,im=1

∂mf

∂xi1 · · · ∂xim
· ∂mg

∂xi1 · · · ∂xim
, |Dmf | = (Dmf ·Dmf)

1
2 .

The associated norms are denoted by ‖ · ‖Lp(Ω), ‖ · ‖Wm,p(Ω) and ‖ · ‖Hm(Ω) = ‖ · ‖Wm,2(Ω), respectively, and
the seminorms in Wm,p(Ω) and Hm(Ω) are referred to as | · |Wm,p(Ω) and | · |Hm(Ω). In detail, the definitions of
the (semi-)norms read as

‖f‖Lp(Ω) =

(∫
Ω

|f |p dx

) 1
p

for 1 ≤ p <∞ , ‖f‖L∞(Ω) = inf
N⊂Ω:|N |=0

sup
x∈Ω\N

|f(x)| ,

|f |Wm,p(Ω) = ‖Dmf‖Lp(Ω) , ‖f‖Wm,p(Ω) =

 m∑
j=0

|f |pW j,p(Ω)

 1
p

for 1 ≤ p <∞ ,

‖f‖Wm,∞(Ω) = max
0≤l≤m

‖Dlf‖L∞(Ω) .

Furthermore, Hm
0 (Ω) is the closure of C∞c (Ω) w.r.t. the norm ‖ · ‖Hm(Ω), and we set W 0,p(Ω) = Lp(Ω). Finally,

we denote the dual space of Hm
0 (Ω) by H−m(Ω).

The space H(div,Ω) is defined as (the operator div is understood in the weak sense)

H(div,Ω) =
{
q ∈ L2(Ω,Rn) : divq ∈ L2(Ω)

}
and is endowed with the norm ‖q‖2H(div,Ω) = ‖q‖2L2(Ω) + ‖divq‖2L2(Ω). Moreover, we set HN (div,Ω) =

H(div,Ω) ∩ {q · n = 0 on ∂Ω}, where n denotes the outer normal on ∂Ω and q · n has to be understood in
the sense of traces of Sobolev functions.

The subsequent two fundamental inequalities are of vital importance throughout this thesis.



4 1 Introduction

Theorem 1.1.2 (Gagliardo–Nirenberg interpolation inequality). Let Ω ⊂ Rn be a bounded domain satisfying the
cone condition. If f ∈ L2(Ω) and Dmf ∈ L2(Ω), then there exist constants CGN,1 = CGN,1(Ω,m, n) > 0 and
CGN,2 = CGN,2(Ω,m, n) > 0 such that for every j ∈ {1, . . . ,m− 1}

|f |Hj(Ω) ≤ CGN,1|f |
j
m

Hm(Ω)‖f‖
1− j

m

L2(Ω) + CGN,2‖f‖L2(Ω) ≤ CGN,1|f |Hm(Ω) + (CGN,1 + CGN,2)‖f‖L2(Ω) .

Proof. See [Nir66].

Theorem 1.1.3 (Korn’s inequality). Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. For f ∈ H1
0 (Ω)

there exists a constant CKorn = CKorn(Ω, n) > 0 satisfying

C−1
Korn‖f‖H1(Ω) ≤ ‖(Df)sym‖L2(Ω) ≤ CKorn‖f‖H1(Ω) .

Proof. See [Cia88, Section 6.3] and the references therein.

Let us conclude this section with the central embedding theorem for Sobolev and Hölder functions that we will
frequently refer to:

Theorem 1.1.4 (Embedding theorem for Sobolev and Hölder functions). Let Ω ⊂ Rn be a nonempty, open and
bounded Lipschitz domain.

(i.) If m1,m2 ∈ N and p1, p2 ∈ [1,∞) satisfy

m1 −
n

p1
≥ m2 −

n

p2
, m1 ≥ m2 , (1.1)

then a continuous embedding Wm1,p1(Ω) ↪→Wm2,p2(Ω) exists and for all f ∈Wm1,p1(Ω) one obtains

‖f‖Wm2,p2 (Ω) ≤ C(Ω, n,m1,m2, p1, p2)‖f‖Wm1,p1 (Ω) .

If both inequalities in (1.1) are strict, then the embedding is compact.

(ii.) If m ∈ N+ and p ∈ [1,∞) are given such that

m− n

p
≥ k + α for any α ∈ (0, 1) , k ∈ N (1.2)

holds true, then a continuous embedding Wm,p(Ω) ↪→ Ck,α(Ω) exists such that for all f ∈ Wm,p(Ω) a
representative f̃ of f exists with f̃(x) = f(x) for a.e. x ∈ Ω and

‖f̃‖Ck,α(Ω) ≤ C(Ω, n,m, p, k, α)‖f̃‖Wm,p(Ω) .

If the inequality (1.2) is strict, then the embedding Wm,p(Ω) ↪→ Ck,α(Ω) is additionally compact.

Proof. See [AF03, Alt06].



Chapter 2

Foundations of the Variational Time
Discretization and the Discrete Curvature
Tensor

THIS chapter is divided into four parts: in Section 2.1, we present a short survey of concepts from Rieman-
nian geometry, to which we will frequently refer to in later sections. Here, we assume that the Riemannian
manifolds are modeled on general (possibly infinite-dimensional) Banach or Hilbert spaces. This gener-

alization poses no conceptual difficulties, but many definitions and results in the finite-dimensional case cease to
be true in the infinite-dimensional setting. In Section 2.2, the variational time discretization of geodesic calculus
developed by Rumpf and Wirth is briefly introduced and related to the concept of shape spaces. Furthermore, the
time discrete equivalents of the geodesic curve, the logarithm, the exponential map, and the parallel transport in
the Riemannian sense are presented along with the corresponding consistency statements. We will pick up the
concepts of the geodesic curve, the exponential map and the parallel transport in the time discrete setting in the
context of the time discrete metamorphosis model in Chapter 3 and Chapter 4. Afterwards, in Section 2.3 we
propose a novel discrete equivalent of the (Riemann) curvature tensor, which relies on multiple applications of
the time discrete parallel transport to suitably rescaled vector fields, and prove the convergence to its continuous
counterpart. Finally, we will comment on the applicability of the discrete curvature tensor to general shape spaces
in Section 2.4.

2.1 Differentiable and Riemannian Manifolds on Hilbert Spaces
In this section, we briefly introduce the concept of a topological/differentiable/Riemannian manifold modeled on
a (possibly infinite-dimensional) Banach or Hilbert space. Many definitions and theorems in the case of finite-
dimensional manifolds (in particular those involving a finite basis of the tangent space) cease to be true for general
Banach and Hilbert manifolds, that is why we present this survey of some general concepts in Riemannian geom-
etry for general (possibly infinite-dimensional) manifolds. All definitions and results in this section are based on
[Lan95, Kli95, Sak96, War83].

Differentiable and Riemannian manifolds, tangent spaces and the covariant derivative. Before discussing
differentiable manifolds, we recall the concept of a topological manifold:1

Definition 2.1.1 (Topological manifold). Let E be a (possibly infinite-dimensional) Banach or Hilbert space and
M be a topological space.

(i.) M is metrizable if a metric onM exists that induces the topology ofM.

(ii.) If a countable base for the open sets ofM exists, thenM is separable.

1There are several different definitions of (topological) manifolds in the literature, which differ in terms of the properties of the manifold.

5



6 2 Foundations of the Variational Time Discretization and the Discrete Curvature Tensor

(iii.) If every point inM admits an open neighborhood which is homeomorphic to E, thenM is said to be locally
homeomorphic to E.

(iv.) A topological manifold with the model space E is a separable and metrizable space that is locally homeo-
morphic to E.

If E is a Banach space, Hilbert space or E = Rn, respectively, then we refer to M as a Banach, Hilbert or
n-dimensional manifold, respectively. If the transition mappings, i.e. the overlap mappings of arbitrary charts, are
diffeomorphic, then one obtains a differentiable manifold:

Definition 2.1.2 (Differentiable manifold). LetM be a topological manifold.

(i.) Let (Mi)i∈I be an open covering ofM. If for eachMi, i ∈ I , a homeomorphism φi :Mi → Ui onto an
open set Ui ⊂ E exists, then (Mi, φi)i∈I is a family of charts.

(ii.) A Ck-differentiable atlas (k ≥ 1) is a family of charts (Mi, φi)i∈I such that

φj ◦ φ−1
i : φi(Mi ∩Mj)→ φj(Mi ∩Mj)

is a Ck-diffeomorphism for each pair of indices i, j ∈ I . Two differentiable atlases are equivalent if the
union of theses atlases is a differentiable atlas.

(iii.) A Ck-differentiable structure is an equivalence class of Ck-differentiable atlases. A Ck-differentiable man-
ifold is a topological manifold endowed with a Ck-differentiable structure.

Notation 2.1.3. For the rest of this thesis, if not otherwise stated, we always assume that k is sufficiently large
(possibly k =∞) and omit the order of smoothness.

Having introduced the concept of a differentiable manifold, we now define the tangent space, the tangent bundle
and the tangential for differentiable manifolds. Our starting point are open sets in a generic Banach space:

Definition 2.1.4. Let E,F be Banach spaces, U ⊂ E, V ⊂ F open and u ∈ U . Furthermore, we denote the
canonical projections onto the corresponding components by pr1 : U ×E→ U and by pr2 : U ×E→ E.

(i.) The tangent space TuU of U at u is given by TuU = {(u,X) : X ∈ E} with a vector space structure
induced by pr2.

(ii.) Let TU =
⋃
u∈U TuU . Then τU = pr1 : TU → U is the tangent bundle of U , TU is the total tangent space

of U and τU its projection.

(iii.) Let F : U → V be differentiable. The tangential TF of F is given by

TF : TU → TV , (u,X)→ (F (u), DF (u)X) .

Next, we extend the definitions of the tangent space and the tangent bundle to general differentiable manifolds:

Definition 2.1.5. LetM be a differentiable manifold modeled on a Hilbert space E, y ∈ M, and let (M1, φ1)
and (M2, φ2) be two charts covering y with φi(Mi) = Ui ⊂ E for i = 1, 2.

(i.) The space Tφ1(y)U1 is a representative of the tangent space of M at y w.r.t. the chart (M1, φ1). We call
Xφ1(y) the principal part of (φ1(y), Xφ1(y)) ∈ Tφ1(y)U1. Furthermore, ω1 = (φ1(y), Xφ1(y)) ∈ Tφ1(y)U1

and ω2 = (φ2(y), Xφ2(y)) ∈ Tφ2(y)U2 represent the same tangent vector of the manifold M at y if
Tφ1(y)(φ2 ◦ φ−1

1 )ω1 = ω2, where Tφ1(y)(φ2 ◦ φ−1
1 ) is the linear isomorphism

Tφ1(y)(φ2 ◦ φ−1
1 ) : Tφ1(y)U1 → Tφ2(y)U2 .

Then, a tangent vector of M at y is defined as the equivalence class of all its representatives (given by
all charts covering y) and the tangent space TyM is the vector space of all tangent vectors at y, which is
isomorphic to E with isomorphism given by Tyφ1 : TyM→ Tφ1(y)U1.
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(ii.) Let TM =
⋃
y∈M TyM. The map τM : TM→M, which assigns to any ω ∈ TyM the base point y, is

called the tangent bundle ofM.

(iii.) The differential Dφ1 of φ1 at y is the map pr2 ◦ Tyφ1.

(iv.) A bundle is a projection τ : Z → M from a set Z (representing the total space of the bundle) to M
(frequently referred to as the base space of the bundle), and a section of this bundle is a differentiable map
τ̃ :M→ Z such that τ ◦ τ̃ = 1M.

(v.) A vector field X is a section of the tangent bundle τM : TM→M, i.e.

TM

M M

τM
X

1M

commutes. We denote by X(M) the set of all smooth vector fields and by F(M) the set of all smooth
scalar-valued functions onM. For X ∈ X(M) and f ∈ F(M) we set X(f) = {M 3 p 7→ Df(p)X(p)}.

Proposition 2.1.6 (Tangential of a mapping between manifolds). LetM andM′ be differentiable manifolds with
atlases (Mi, φi)i∈I and (M′j , φ′j)j∈J , respectively. A mapping F :M→M′ is differentiable if

φ′j ◦ F ◦
(
φi
∣∣
Mi∩F−1(M′j)

)−1

: φi(Mi ∩ F−1(M′j))→ φ′j(M′j)

is differentiable for all (i, j) ∈ I × J . In this case, the tangential TyF : TyM → TF (y)M′ of F at y ∈ M is
given by

Tφi(y)(φ
′
j ◦ F ◦ φ−1

i ) : Tφi(y)Mi → Tφ′j(F (y))M′j

for (i, j) ∈ I × J , which is independent of the choice of the local charts. Then, the tangential TF : TM→ TM′
of F is the differentiable mapping that commutes with the projections, i.e.

TM TM′

M M′

TF

τM τM′

F

is commutative.

Proof. See [Kli95, Section 1.1-1.4].

Definition 2.1.7. LetM and M̃ be differentiable manifolds and F :M→ M̃ be a differentiable mapping.

(i.) F is an immersion at y ∈M if TyF is injective and a closed mapping (i.e. closed sets are mapped to closed
sets). If this holds true for all points y ∈M, then F is said to be an immersion.

(ii.) F is an embedding if F is an immersion and F :M→ F (M) is homeomorphic, where F (M) is endowed
with the induced topology.

(iii.) A subset N ⊂ M is called a submanifold ofM if N admits the structure of a differentiable manifold such
that the inclusion map is an embedding.

Let us conclude this section with the formal definition of a Riemannian manifold and some basic concepts. To
define a Riemannian metric, we first introduce the concept of a tensor bundle:
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Definition 2.1.8. Let E1, . . . ,Es,F be Banach spaces. We denote by L(E1, . . . ,Es; F) the set of all s-linear
mappings

E1 ×E2 × · · · ×Es → F

for s ≥ 1. The bundle of s-fold covariant tensors over a differentiable manifoldM is defined by

τs : T 0
sM = L(TM, . . . , TM︸ ︷︷ ︸

s

;R×M)→M .

The space of s-fold covariant and symmetric tensors consists of all T ∈ T 0
sM such that

T (ωσ(1), ωσ(2), . . . , ωσ(s)) = T (ω1, ω2, . . . , ωs) ∀ω1, ω2, . . . , ωs ∈ TM

for all permutations σ : {1, . . . , s} → {1, . . . , s}. By restricting τs to the space of all s-fold covariant and
symmetric tensors one obtains the bundle σs : SsM→M of s-fold covariant symmetric tensors.

A Riemannian manifold is a differentiable manifold with a distinct metric, this metric is a section of the bundle
σ2 : S2M→M and is positive definite:

Definition 2.1.9 (Riemannian manifold). LetM be a differentiable manifold modeled on a Hilbert space E with
inner product ( · , · )E. A Riemannian metric g : M → S2M onM is a section of the bundle σ2 : S2M →M
such that gy(X,X) ≥ C(X,X)E for a positive constant C depending on g, all y ∈ M and all X ∈ TyM. The
pair (M, g) is called a Riemannian manifold.

Every differentiable manifold can be given the structure of a Riemannian manifold:

Theorem 2.1.10. On every differentiable manifold there exists a Riemannian metric.

Proof. See [Kli95, Theorem 1.8.5].

Most of the subsequent concepts in Riemannian geometry can be characterized in terms of the covariant deriva-
tive. Moreover, the proof of the consistency of the discrete Riemann curvature tensor is based on a convergence
analysis of the iterated discrete covariant derivative. Below, we provide a common definition for the covariant
derivative, although the starting point of this convergence analysis for the Riemann curvature tensor emerges from
an equivalent characterization:2

Definition 2.1.11. A (linear) connection on a differentiable manifoldM is a mapping

∇ : X(M)× X(M)→ X(M) , (X,Y ) 7→ ∇XY

such that

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y ,

∇X(f1Y1 + f2Y2) = f1∇XY1 +X(f1)Y1 + f2∇XY2 +X(f2)Y2 ,

for all X,X1, X2, Y, Y1, Y2 ∈ X(M) and f1, f2 ∈ F(M). We refer to ∇XY as the covariant derivative of Y
w.r.t. X .

On every Riemannian manifold there is one distinct covariant derivative – called the Levi–Civita derivative –
which is of vital importance for further applications. As a preparation, we recall the definitions of the Lie bracket,
the torsion-freeness and the Riemannian property of a covariant derivative:

Definition 2.1.12. Let (M, g) be a Riemannian manifold with a covariant derivative∇.

(i.) The Lie bracket is given by

[ · , · ] : X(M)× X(M)→ X(M) , [X,Y ](f) = X(Y (f))− Y (X(f))

for two vector fields X,Y ∈ X(M) and all f ∈ F(M). Note that the Lie bracket is R-bilinear, antisym-
metric and satisfies the Jacobi identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0 ∀X,Y, Z ∈ X(M) .
2Note that Definition 2.1.11 does not cover the most general case.
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(ii.) The connection∇ onM is torsion-free if

∇XY −∇YX = [X,Y ] ∀X,Y ∈ X(M) .

(iii.) The covariant derivative∇ is Riemannian if

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) ∀X,Y, Z ∈ X(M) .

Theorem 2.1.13. Let (M, g) be a Riemannian manifold. Then there exists a unique covariant derivative which is
Riemannian and torsion-free. This covariant derivative is called Levi–Civita derivative.

Proof. See [Kli95, Theorem 1.8.11] and [Lan95, Theorem 4.1 in VIII, §4].

Notation 2.1.14. For the rest of this chapter,∇XY always refers to the Levi–Civita derivative.

Geodesic curves, logarithm, exponential map and parallel transport. In what follows, we will successively
introduce the concepts of geodesic curves, the Riemannian logarithm, the Riemannian exponential map and parallel
transport for Riemannian manifolds modeled on Hilbert spaces. Again, all subsequent definitions and theorems are
rigorously stated for general Hilbert manifolds, and we remark that some finite-dimensional relations cease to hold
in the general setting. Hereinafter, we tacitly assume that (M, g) is a sufficiently smooth Riemannian manifold.

Definition 2.1.15. A smooth curve y : [0, 1] → M is a geodesic path or a geodesic if ∇ẏ(t)ẏ(t) = 0 for all
t ∈ [0, 1].

In what follows, we list some fundamental properties of geodesic curves:

Proposition 2.1.16 (Properties of geodesic curves). Let (M, g) be a Riemannian manifold.

(i.) For every X ∈ TM there exists a (maximal) open interval I(X) 3 0 such that yX : I(X) → M is the
unique geodesic curve satisfying yX(0) = τMX and ẏX(0) = X . Moreover, for c > 0 one can show
ycX(t) = yX(ct) and I(cX) = c−1I(X).

(ii.) There exists an open neighborhood T̃M⊂ TM ofM, which is considered as a submanifold of TM, such
that for every X ∈ T̃M the geodesic curve yX(t) is uniquely defined for all |t| < 2.

Proof. See [Kli95, Section 1.6] and [Lan95, Chapter VIII].

Taking into account Proposition 2.1.16 (ii.) one can infer that the map X 7→ yX(1) is locally well-defined
on T̃M, which we refer to as the exponential map:

Definition 2.1.17. With the notation of Proposition 2.1.16, the exponential map is defined as

exp : T̃M→M, X 7→ yX(1) . (2.1)

The restriction exp
∣∣
T̃M∩TyM

for y ∈M is denoted by expy , and the corresponding inverse function

logy = (expy)−1 :M→ TyM

is called logarithm. The set T̃M∩ TyM is often referred to as the domain of definition of expy .

Definition 2.1.18. Let (y(t))t∈[0,1] ⊂ M be a smooth path inM. The path length and the path energy are given
by

L[(y(t))t∈[0,1]] =

∫ 1

0

√
gy(t)(ẏ(t), ẏ(t)) dt , (2.2)

E [(y(t))t∈[0,1]] =

∫ 1

0

gy(t)(ẏ(t), ẏ(t)) dt , (2.3)

respectively. Moreover, for yA, yB ∈M the (Riemannian) distance dist :M×M→ R w.r.t. yA and yB is given
by

dist(yA, yB) = inf {L(y(t)) : y : [0, 1]→M piecewise smooth, y(0) = yA, y(1) = yB } .
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Remark 2.1.19. (i.) By using the Cauchy–Schwarz inequality we can infer (L[(y(t))t∈[0,1]])
2 ≤ E [(y(t))t∈[0,1]]

with equality if and only if gy(t)(ẏ(t), ẏ(t)) is constant.

(ii.) Note that dist defines a metric onM and the topology onM coincides with the topology induced from dist
(see [Kli95, Theorem 1.9.5]).

A crucial question concerns the size of the set T̃M, which turns out to be related to the completeness of the
manifold considered as a metric space provided that the manifold is finite-dimensional.

Theorem 2.1.20 (Hopf–Rinow). A manifold M is said to be geodesically complete at a point y ∈ M if the
exponential map is defined on the entire tangent space TyM, and geodesically complete if this holds true for
all points in the manifold. Moreover, the manifold M is metrically complete if the metric space (M,dist) is
complete. If the model space of M is finite-dimensional, then M is metrically complete if and only if M is
geodesically complete.

Proof. See [Kli95, Theorem 2.1.3] and [Lan95, Chapter VIII].

One of the most fundamental tasks in Riemannian geometry is the calculation of the shortest path in a Rie-
mannian manifoldM joining two points yA, yB ∈ M. It turns out that any shortest path locally coincides with a
geodesic curve and is therefore often called minimizing or shortest geodesic curve.

Theorem 2.1.21. With the notation of Proposition 2.1.16 and Definition 2.1.17, the exponential map (2.1) is
differentiable and for every y ∈M there exists η = η(y) > 0 such that for all ε ∈ (0, η)

expy
∣∣
Bε(0)

: Bε(0)→ expy(Bε(0))

is a diffeomorphism. Moreover, for any yA, yB ∈ expy(Bε(0)) this diffeomorphism has the following properties:

(i.) There exists a unique geodesic curve yyA,yB joining yA and yB such that L[(yyA,yB (t))t∈[0,1]] < 2η.

(ii.) The mapping
y · , · : expy(Bε(0))× expy(Bε(0))→M , (yA, yB) 7→ yyA,yB

is continuous.

(iii.) Any geodesic curve ỹ : [0, 1] → M such that ỹ(0) = yA, ỹ(1) = yB and L[(ỹ(t))t∈[0,1]] < 2η satisfies
L[(ỹ(t))t∈[0,1]] = dist(yA, yB) and is a shortest geodesic.

Proof. See [Kli95, Sections 1.8-1.9].

Finally, the parallel transport along a (not necessarily geodesic) path in the manifold is a concept of transferring
tangent vectors along the path and ensuring that they “stay parallel w.r.t. the metric”, which later enables the transfer
of geometric data along a specified path. The precise statements read as follows:

Definition 2.1.22. A smooth vector field X ∈ X(M) is called parallel w.r.t. a smooth curve y : I →M, I ⊂ R
open interval, if∇ẏ(t)X = 0 for all t ∈ I .

Proposition 2.1.23. Let I ⊂ R be an open interval, t0, t1 ∈ I , and y : I → M be a smooth curve. Then for
every X0 ∈ Ty(t0)M there exists a unique parallel vector field X ∈ X(M) along y such that X(t0) = X0 and
X(t) ∈ Ty(t)M for t ∈ I , and the mapping

Py(t0)→y(t1) : Ty(t0)M→ Ty(t1)M , X0 7→ X(t1)

is a linear and isometric isomorphism, which is called parallel transport.

Proof. See [Kli95, Sections 1.6-1.8].
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2.2 Time Discrete Geodesic Calculus

In this section, following [RW13, RW15] a variational time discretization of geodesic calculus is introduced, which
works for finite- and infinite-dimensional manifolds under certain conditions to be presented below. In particular,
this approach allows to rigorously define discrete analogs of geodesics, the logarithm, the exponential map and the
parallel transport. The convergence of each object to its continuous counterpart was proven in [RW15]. We will
pick up these concepts to define the discrete Riemann curvature tensor in the time discrete setting (see Section 2.3)
as well as discrete geodesic curves, the discrete exponential map and the discrete parallel transport in the space of
images in the context of the metamorphosis model (see Chapter 3 and Chapter 4).

2.2.1 Shape Spaces and Related Work

One central object of investigation in this thesis is the shape space, which lacks an all-encompassing definition.
Intuitively, a shape can be seen as the structure of a geometric object (cf . [DZ11]) or – loosely speaking –

“[...] what is left when the differences which can be attributed to translations, rotations, and dilatations
have been quotiented out.” (see [Ken84, p. 82])

Kendall [Ken84] defined the shape space of size l in Rn as the quotient space (((Rn)l−1)\{0})/ ∼, l ≥ 2, with ∼
referring to the equivalence class in the group generated by rotations and dilatations, where {0} is excluded to avoid
collapsed shapes. One can think of this space as the equivalence class of a set of vertices x1, . . . , xl of a polygon
in Rn undergoing rotations and dilatations. The prevailing definition of a shape space in this thesis is due to Rumpf
and Wirth [RW11], who consider a shape as the boundary of a domain in a Euclidean space. This shape admits
the physical interpretation as a deformable object (cf . Section 3.3 for more details on the physical background). In
the context of the metamorphosis model (cf . Chapter 3 and Chapter 4) and the binary Mumford–Shah model (cf .
Chapter 5) we additionally consider both gray-value and color images as shapes. For other common definitions we
refer to the books [DZ11, You10] and the references therein.

During the past decades tools from Riemannian geometry had an increasing influence on shape analysis and
imaging. In what follows, we briefly discuss some publications in which methods from Riemannian geometry
enter into the analysis of certain shape spaces.

Younes et al. [YMSM08] introduced a novel Riemannian metric on the space of closed curves as a shape
space in the complex plane, which is defined as the space of C∞(S1,C)-immersions with a fixed rotation number.
In particular, this construction allows the explicit computation of geodesic curves. Such an explicit formula to
compute geodesics is also implied by a geometric-type Sobolev metric in the space of planar curves proposed by
Sundaramoorthi et al. [SMSY11], which intrinsically favors smooth transitions along the geodesic path. Unfortu-
nately, these explicit formulas are only available for limited geometric settings.

Younes [You98] viewed each shape in the space of planar curves as an elastic object and defined a Riemannian
metric on this space using the group action of an infinite-dimensional Lie group. It turns out that computing
minimizing geodesic paths on this shape space amounts to calculating paths with minimal length in the associated
group. Klassen et al. [KSMJ04] established an ODE-time discretization scheme to compute geodesic curves on
a (pre-)shape space of closed immersed planar curves, which is prone to get stuck in local minima and lacks a
symmetry property of the resulting distance. Schmidt et al. [SCC06] improved the aforementioned ansatz in terms
of stability and computation time using variational methods to minimize the length functional, which is capable
of properly interpolating curves with kinks or rough interfaces along the geodesic path and induces a symmetric
distance. On a similar shape space, Michor and Mumford [MM06] elaborately studied the seemingly natural metric
gA,c(h, k) =

∫
S1(1 + Aκ2

c)〈h, k〉|c′|dx for a planar curve c with non-vanishing curvature κc, a constant A > 0
and normal vector fields h, k. Interestingly, in the case A = 0 the induced Riemannian distance always vanishes.
In a subsequent paper [MM07], Michor and Mumford characterized the geodesic equation as the Hamiltonian
flow w.r.t. the first fundamental form. Furthermore, they examined several Sobolev-type metrics in the space of
immersions which guarantee the conservation of distinct quantities such as the momentum. Fuchs et al. [FJSY09]
introduced an elastic energy evaluated at velocity fields on the shape space of smooth embeddings Sl → Rl modulo
diffeomorphic reparameterizations, l ∈ {1, 2}, which coincides with the spatial integral of (3.26) to be motivated
in the next chapter and – as opposed to the previous approaches – incorporates the entire object and not only its
boundary.
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In this and the two subsequent chapters, we will study the variational time discretization for geodesic calcu-
lus from the viewpoint of shape spaces, which in particular allows geodesic interpolation and extrapolation of
shapes and proved to be stable as well as efficient in several numerical applications to be discussed below. The
Γ-convergence as well as the convergence of stationary points for a certain class of time discrete functionals was
rigorously proven by Müller and Ortiz [MO04] under the viewpoint of discrete dynamics. In particular, the dis-
crete Lagrangian appearing in this context can be approximated using numerical quadrature schemes in such a
way that the convergence properties remain valid, which nicely fits into the framework of variational integrators
[LMOW04]. In the same spirit, Ober-Blöbaum et al. [OBJM11] examined dynamical systems underlying the (dis-
crete) Lagrange–d’Alembert principle from an optimal control point of view, and exploited a time discretization to
numerically solve the resulting ODEs. Wirth et al. [WBRS11] incorporated a viscous flow perspective on shape
spaces to compute minimizing geodesics joining two- as well as three-dimensional shapes, in which each shape is
characterized by a level set representation. From the viewpoint of elasticity theory, Rumpf and Wirth performed a
shape averaging [RW09b] and a covariance analysis [RW09a] in the space of shapes considered as the contours of
domains in Rn. In a series of papers, Heeren et al. applied the time discrete geodesic calculus to the space of shells
in the context of geodesic interpolation [HRWW12], geodesic extrapolation and parallel transport [HRS+14], and
Riemannian splines [HRS+16].

2.2.2 Foundations of the Variational Time Discretization
In all applications involving the variational time discretization on Hilbert manifolds, we restrict to the subsequent
functional analytic setting:

Assumption 2.2.1. The manifold M is path-connected and the closure of an open subset of a separable and

reflexive Banach space V, where V is compactly embedded into a Banach space Y, i.e.M ⊂ V
cmpct.
↪−−−−→ Y. If

∂M 6= ∅, then ∂M is assumed to be sufficiently smooth.

Henceforth, we tacitly assume that all manifolds satisfy the Assumption 2.2.1 and we identify the tangent
space TyM, y ∈M, with the Banach space V. Furthermore, we endowMwith the metric g :M×V ×V→ R,
which turnsM into a Riemannian manifold (M, g), and assume

(H1) g is uniformly bounded and V-coercive, i.e.

c∗ ‖v‖2V ≤ gy(v, v) ≤ C∗ ‖v‖2V ∀v ∈ V , y ∈M ,

for fixed constants 0 < c∗ < C∗ <∞. In addition, g is continuous in the sense

|gy(v, v)− gỹ(v, v)| ≤ β(‖y − ỹ‖Y) ‖v‖2V ∀v ∈ V , y, ỹ ∈M ,

where β is a strictly increasing, continuous function with β(0) = 0.

Although these assumptions exclude several classes of Riemannian manifolds, we emphasize that smooth n-
dimensional manifolds (n <∞) satisfy the Assumption 2.2.1 and Hypothesis (H1) by choosing V = Y = Rn and
gy(v, w) = vTDX(y)TDX(y)w for a parametrization X. As a further application, Rumpf and Wirth discussed
the space of viscous rods in the context of this framework (cf . [RW15, Section 7.2] based on [LDR95, FJMM03]).

Hypothesis (H1) already suffices to guarantee the existence and local uniqueness of minimizing geodesic paths
in the manifoldM, which additionally exhibit certain regularity properties.

Theorem 2.2.2 (Existence and uniqueness of continuous geodesics). For a Riemannian manifold (M, g) satis-
fying the Assumption (H1) and g ∈ C2(M; V′ ⊗ V′), the energy (2.3) is lower semicontinuous w.r.t. the weak
convergence in W 1,2((0, 1),M). Furthermore, for yA, yB ∈ M there exists a classical geodesic connecting yA
and yB , i.e. a minimizer of E in the space of all paths (y(t))t∈[0,1] ∈ W 1,2((0, 1),M) with y(0) = yA and
y(1) = yB . In particular, y is Hölder continuous w.r.t. the V-norm. Finally, geodesics are locally unique, i.e.
given yA ∈ M̊ there is a small constant δ > 0 depending on yA such that for all yB ∈ M with ‖yA − yB‖V < δ
the shortest classical geodesic between yA and yB is unique.

Proof. See [RW15, Theorem 4.1 and 4.2].
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To formulate the time discretization, we first have to ensure the existence of a functionalW : M×M → R
that locally approximates the squared Riemannian distance up to higher order terms.

(H2) There exists a weakly lower semicontinuous functionalW :M×M→ R and constants ε, C > 0 such that
if dist(y, ỹ) ≤ ε, then

|W[y, ỹ]− dist2(y, ỹ)| ≤ Cdist3(y, ỹ)

for all y, ỹ ∈ M. W is coercive in the senseW[y, ỹ] ≥ γ(dist(y, ỹ)) for a strictly increasing, continuous
function γ with γ(0) = 0 and limt→∞ γ(t) =∞.

Note that we did neither assume symmetry nor any regularity ofW . However, for some theorems (especially for
the consistency results) the subsequent regularity properties are additionally required:

(H3) The metric g is C2(Y,V′ ⊗V′)-smooth.

(H4) The energyW is C4(M×M,R)-smooth with bounded derivatives.

Let y : [0, 1] → M be a smooth path on the manifold, K ≥ 1 and (y0, . . . , yK) ∈ MK+1 be points on the
manifold obtained by sampling the path y at the times tk = k

K , k = 0, . . . ,K, i.e. yk = y(tk). Taking into account
Hypothesis (H2), we can approximate lower bounds for the path length and path energy of (y(t))t∈[0,1] as follows:

L[(y(t))t∈[0,1]] ≥
K∑
k=1

dist(yk−1, yk) ≈
K∑
k=1

√
W(yk−1, yk) , (2.4)

E [(y(t))t∈[0,1]] ≥ K
K∑
k=1

dist2(yk−1, yk) ≈ K
K∑
k=1

W(yk−1, yk) . (2.5)

To deduce the inequality appearing in (2.5) one can employ Jensen’s inequality. The lower bounds (2.4) and (2.5)
motivate the definition of the discrete path length and discrete path energy:

Definition 2.2.3 (Discrete length and energy). Let (M, g) be a Riemannian manifold. A discrete (K+1)-path for
K ≥ 1 is a (K+1)-tuple (y0, . . . , yK) ∈MK+1. The discrete path length and the discrete path energy associated
with this path are defined as

LK [(y0, . . . , yK)] =

K∑
k=1

√
W[yk−1, yk] , (2.6)

EK [(y0, . . . , yK)] = K

K∑
k=1

W[yk−1, yk] . (2.7)

The definition of the discrete geodesic curve and all derived concepts rely on the minimization of (2.7) rather
than on the minimization of (2.6), we will comment on this below.

2.2.3 Geodesic Curves, Logarithm, Exponential Map and Parallel Transport in the Time
Discrete Setting

In the forthcoming paragraphs, we will successively introduce geodesics, the logarithm, the exponential map and
the parallel transport in the time discrete case and present related results.

Notation 2.2.4. We will frequently use the notation

W,α1···αr [x, y] = ∂α1 · · · ∂αrW[x, y] ,

for αl ∈ {1, 2}, l ∈ {1, . . . , r} and r ≥ 1. For instance, the first order variational derivatives w.r.t. the direction
ψ ∈ V are given by

W,1[x, y](ψ) = d
dtW[x+ tψ, y]

∣∣
t=0

, W,2[x, y](ψ) = d
dtW[x, y + tψ]

∣∣
t=0

,

the generalization to higher order derivatives is obvious.
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Let us recall some consistency conditions and symmetry relations of W , which are of vital importance in
several convergence proofs shown below.

Lemma 2.2.5. Let ζ, η, θ ∈ V and y ∈ M̊. Under the Assumptions (H1)-(H4), the following identities hold true:

W[y, y] = 0 , (2.8)
W,1[y, y](ζ) =W,2[y, y](ζ) = 0 , (2.9)

W,22[y, y](ζ, η) = 2gy(ζ, η) . (2.10)

Furthermore, one obtains the subsequent symmetry relations

W,11[y, y](ζ, η) = −W,12[y, y](ζ, η) = −W,21[y, y](ζ, η) =W,22[y, y](ζ, η) , (2.11)

W,221[y, y](ζ, η, θ) +W,222[y, y](ζ, η, θ) =W,111[y, y](ζ, η, θ) +W,112[y, y](ζ, η, θ)

=−W,121[y, y](ζ, η, θ)−W,122[y, y](ζ, η, θ) = −W,211[y, y](ζ, η, θ)−W,212[y, y](ζ, η, θ) .
(2.12)

Proof. Apart from (2.12), all assertions are presented in [RW15, Lemma 4.6]. By differentiating (2.11) one can
straightforwardly show (2.12).

Discrete geodesic curves. Time discrete geodesic curves are defined as minimizing (K + 1)-paths w.r.t. the
discrete path energy for fixed end points:

Definition 2.2.6. A (time) discrete geodesic of lengthK+1 is a discrete (K+1)-path (y0, . . . , yK) that minimizes
the discrete path energy (2.7) for fixed end points y0, yK ∈M.

The counterpart of Theorem 2.2.2 for discrete geodesic curves is the following:

Theorem 2.2.7 (Existence and local uniqueness of discrete geodesics). Let yA, yB ∈ M and K ≥ 2 be fixed.
Under the Assumption (H1) there exists a discrete geodesic path (y0, . . . , yK) ∈ MK+1 which minimizes the
discrete path energy EK w.r.t. all discrete (K+1)-paths (ỹ0, . . . , ỹK) ∈MK+1 with boundary conditions ỹ0 = yA
and ỹK = yB . If in addition (H2) holds true andW is twice Fréchet differentiable onM×M, then there exists
ε > 0 such that there exists a unique discrete geodesic (y0, . . . , yK) ∈ MK+1 with y0 = yA and yK = ỹ for all
ỹ ∈M with ‖yA − ỹ‖V < ε.

Proof. See [RW15, Theorem 4.3 and Theorem 4.7].

The points of a discrete geodesic curve of length K + 1 are approximately equidistributed, i.e. the maximum
of the Riemannian distance of two adjacent points is roughly proportional to the length τ = 1

K of the time interval
and the Riemannian distance of the endpoints.

Theorem 2.2.8. Assuming (H1) and (H2), there exists ε > 0 such that if dist(yA, yB) <
√
Kε for all K, then

discrete geodesics satisfy

dist(yk−1, yk) ≤ C dist(yA, yB)

K

for all k = 1, . . . ,K and a constant C solely depending on dist(yA, yB).

Proof. See [RW15, Theorem 4.5].

Remark 2.2.9. A well-known result in the time continuous setting states that minimizing the path length (2.2) is
equivalent to minimizing the path energy (2.3) (cf . Section 2.1). However, in the time discrete setting minimizers
of the discrete path length (2.6) are in general not related to discrete geodesics, i.e. minimizers of the discrete path
energy (2.7). As an example, consider a manifoldM ⊂ V and two points yA, yB ∈ M, which are close w.r.t.
the norm induced by V, but relatively far apart w.r.t. the Riemannian distance on M. In this case, a minimizer
of the path length is likely to “jump” through the ambient space V and is therefore not expected to approximate
time continuous geodesics properly. However, when minimizing the path energy for K sufficiently large the
approximate equidistribution of the sample points guarantees the Γ-convergence of EK to E (see Subsection 3.5.1
for a definition of Γ-convergence) and the uniform convergence of a subsequence of discrete geodesics to the time
continuous geodesic curve, the precise statement is given in the subsequent theorem.
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Theorem 2.2.10. Under the Assumptions (H1) and (H2), EK Γ-converges w.r.t. the L2((0, 1),Y)-topology to
E . Moreover, any sequence of minimizers of EK has a subsequence which converges to a minimizer of the path
energy E in C0([0, 1],Y).

Proof. See [RW15, Theorem 4.8 and Corollary 4.9].

Discrete logarithm. In the preceding section, we have defined the Riemannian logarithm as the initial variation
of a geodesic y joining two points yA, yB ∈ M. The observation logyA yB = ẏ(0) ≈ K(y( 1

K ) − y(0)), K ≥ 1,
motivates the definition of the discrete logarithm as the difference of the first sample points of a time discrete
geodesic curve with end points yA and yB :

Definition 2.2.11. Let K ≥ 1 and let (y0, . . . , yK) be the unique discrete geodesic of length K + 1 such that
y0 = yA and yK = yB . Then the discrete logarithm is defined as

LOGK
yA(yB) = y1 − y0 .

The convergence of the discrete logarithm is established in the next theorem.

Theorem 2.2.12 (Convergence of the discrete logarithm, local uniqueness of LOG2). Assume that (H1)-(H4) hold
true. Let yA, yB ∈ M̊ be points in the manifold such that both the continuous and the discrete geodesic curve
joining yA and yB are unique and the continuous geodesic is contained in M̊. Then

K(LOGK
yA(yB))→ logyA yB

w.r.t. the weak topology in V and the strong topology in Y as K →∞. Moreover, there exists ε > 0 such that for
all 0 < δ ≤ ε, y0 ∈ M̊ and

y2 ∈ Bδ(y0) = { y ∈ V : ‖y − y0‖V < δ } ⊂ M

the functional Bδ(y0) 3 ỹ 7→ E2[(y0, ỹ, y2)] is strictly convex with a bounded coercive Hessian on Bδ(y0) and
LOG2

y0
(y2) is unique.

Proof. See [RW15, Theorem 5.1 and Lemma 5.3].

Discrete exponential map. Before defining the discrete exponential map, let us consider two points yA, yB ∈ M̊
with y : [0, 1] → M̊ being the unique geodesic such that y(0) = yA and y(1) = yB . The definition of the
(continuous) exponential map readily implies

expyA( kK v) = y( kK ) (2.13)

for v = ẏ(0) ∈ TyAM and for all 0 ≤ k ≤ K, and the subsequent recursive definition can be immediately derived
from (2.13)

y( kK ) = expyA( kK v) = expy((k−2)/K)(2vk−1) for vk−1 = logy((k−2)/K) y(k−1
K ) and k ∈ {2, . . . ,K} .

Incorporating the variational time discretization and replacing continuous objects by their discrete counterparts,
we arrive at the following definition of the discrete exponential map:

Definition 2.2.13. Let y0 ∈ M̊ and let ξ ∈ V be sufficiently small such that y0 +ξ ∈ M̊. The discrete exponential
map yk = EXPky0

(ξ) is recursively defined as follows:

y1 = (LOG1
y0

)−1(ξ) = y0 + ξ , y2 = (LOG2
y0

)−1(ξ) ,

yk = EXP2
yk−2

(ξk−1) with ξk−1 = LOG1
yk−2

yk−1 = yk−1 − yk−2 for k ≥ 2 .
(2.14)

Here, yk = EXP2
yk−2

(ξk−1), k ≥ 2, if the triple (yk−2, yk−1, yk) ∈M3 satisfies

yk−1 = argmin
ỹ∈M

(W[yk−2, ỹ] +W[ỹ, yk]) . (2.15)
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Remark 2.2.14. (i.) The smallness assumption for ξ ∈ V is required to guarantee the invertibility of the discrete
logarithm (see Theorem 2.2.12).

(ii.) The discrete exponential map can recover a discrete geodesic curve provided that the initial point as well as
the initial variation are known and the geodesic is unique. To be precise, if for K ≥ 2 the path (y0, . . . , yK)
is the unique discrete geodesic curve joining y0 and yK , then EXPky0

(y1 − y0) = yk for 0 ≤ k ≤ K. In
other words, the definition of the exponential map does not depend on the number of time steps K since if
(y0, . . . , yK) is a discrete geodesic, then (y0, . . . , yk) with k ≤ K is also a discrete geodesic.

(iii.) Definition 2.2.13 demonstrates that the discrete exponential map can be computed of arbitrary length via an
iterative application of the one-step extrapolation map EXP2. The local existence of a unique minimizer in
(2.15) follows from Theorem 2.2.15 below (cf . Figure 2.1).

y0

y1
y2

y3

y4 . . . yK−2
yK−1

yK

ξ1
ξ2

ξ3 ξ4
ξK−1 ξK

Figure 2.1: Schematic drawing of EXPky0
(ξ1), k = 1, . . . ,K, input data is highlighted in red.

As in the case of the discrete logarithm, the rescaled discrete exponential map converges to its continuous
counterpart, which is the content of the next theorem.

Theorem 2.2.15 ((Local) existence and convergence of EXPK). We assume that (H1)-(H4) hold true.

(i.) Then there exists ε > 0 such that for all 0 < δ ≤ ε and all y0 ∈ M̊ such that B3δ(y0) ⊂ M the discrete
exponential map EXP2

y0
(v) exists for any v ∈ V with ‖v‖V < δ.

(ii.) Let y : [0, 1]→ M̊ be a smooth geodesic. For K sufficiently large EXPKy(0)(
ẏ(0)
K ) exists and for τ = 1

K one
obtains ∥∥∥y(1)− EXPKy(0)

(
ẏ(0)
K

)∥∥∥
V

= O(τ) .

Proof. See [RW15, Lemma 5.6 and Theorem 5.10].

Discrete parallel transport. Let us conclude this section with the definition of the discrete parallel transport
along a (not necessarily geodesic) discrete (K + 1)-path (y0, . . . , yK) ∈ M̊K+1, K ≥ 2, which is, for instance,
obtained by sampling from a smooth path y : [0, 1] → M̊, i.e. yk = y( kK ). The definition of the discrete
parallel transport relies on a discrete parallelogram construction called Schild’s ladder (cf . [KMN00]) and is used
to transport a tangent vector ξk−1 ∈ V attached at the point yk−1 to a tangent vector ξk ∈ V attached at the
point yk, the precise definition reads as follows:

Definition 2.2.16. Let K ≥ 2, y = (y0, . . . , yK) ∈ M̊K+1 such that yk − yk−1 is sufficiently small for k =
1, . . . ,K. Then the discrete parallel transport of a sufficiently small tangent vector ξ0 ∈ V along the (K+1)-path
y is defined for k = 1, . . . ,K via the iteration

ypk−1 = yk−1 + ξk−1 ,

yck = ypk−1 + LOG2
ypk−1

(yk) ,

ypk = EXP2
yk−1

(yck − yk−1) ,

ξk = ypk − yk .

(2.16)

In this case, ξk = Pyk,...,y0
ξ0 is the transported vector attached to yk.

Remark 2.2.17. We highlight the subsequent observations w.r.t. the discrete parallel transport.

(i.) The smallness assumptions in Definition 2.2.16 are required for the well-posedness of the discrete logarithm
and the exponential map as in the preceding paragraphs.
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(ii.) It is clear from the definition that

PyK ,...,y0PỹL,...,ỹ0 = PyK ,...,y1,ỹL,...,ỹ0

for two discrete paths (y0, . . . , yK) ∈ M̊K+1 and (ỹ0, . . . , ỹL) ∈ M̊L+1 such that y0 = ỹL. Furthermore,
ifW is in addition symmetric, we have P−1

yK ,...,y0
= Py0,...,yK .

(iii.) Figure 2.2 depicts two steps of the discrete parallel transport via Schild’s ladder along the discrete (K + 1)-
path (y0, . . . , yK). Starting from the tangent vector ξk−1 attached at the point yk−1, the projected point ypk−1

is obtained via vector addition. Afterwards, the midpoint yck of the discrete geodesic parallelogram is re-
trieved using a 3-point geodesic interpolation of ypk−1 and yk (dotted gray line). In the third step, the end
point ypk of the transported vector ξk is computed using the one-step extrapolation EXP2 with yk−1 as base
point and yck − yk−1 as initial variation (gray solid line), and the transported vector is given as the difference
of ypk and yk. This procedure can be iterated to obtain a parallel transport of arbitrary length provided that
the smallness assumptions are kept.

yk−2

yk−1

yk

yk+1
yk+2

ypk−1

ypk

ypk+1

yck

yck+1

ξk−1

ξk

ξk+1

Figure 2.2: Parallel transport along (y0, . . . , yK) of a tangent vector ξk attached to yk using Schild’s ladder.

(iv.) The starting point of the convergence proofs of the discrete parallel transport and the curvature tensor (to be
shown in the forthcoming section) are the Euler–Lagrange equations for the discrete parallel transport in the
kth step:

W,2[yk−1 + ξk−1, y
c
k] +W,1[yck, yk] = 0 ,

W,2[yk−1, y
c
k] +W,1[yck, yk + ξk] = 0 .

(2.17)

These equations coincide with the Euler–Lagrange equations for the inverse discrete parallel transport P−1

applied to a 2-path.

The discrete parallel transport converges to the continuous parallel transport if we divide the initial vector
by K, transport this modified vector along {yk = y( kK )}0≤k≤K , and multiply the transported vector in the final
step by K.

Theorem 2.2.18 (Existence and convergence of PyK ,...,y0 ). Assume that (H1)-(H4) hold true, let K ∈ N, τ = 1
K ,

y : [0, 1]→ M̊ be a smooth path and ξ : [0, 1]→ V be a parallel vector field along y.

(i.) If yk = y(kτ), then the discrete parallel transport satisfies∥∥∥KPyK ,...,y0( ξ(0)
K )− ξ(1)

∥∥∥
V

= O(τ) .

(ii.) If for ε > 0 all yk ∈ M̊ satisfy ‖yk − y(kτ)‖V ≤ ε, k = 0, . . . ,K, then∥∥∥KPyK ,...,y0( ξ(0)
K )− ξ(1)

∥∥∥
V

= O(τ + ε) .



18 2 Foundations of the Variational Time Discretization and the Discrete Curvature Tensor

Proof. See [RW15, Theorem 5.11 and Corollary 5.12].

The assertion in (i.) ensures the convergence of the discrete parallel transport along a (K + 1)-path consisting
of sampled points. If these sample points are slightly perturbed, the additional error directly enters into the total
error of the discrete parallel transport as an additional summand (cf . (ii.)). One central idea in the convergence
proof of the discrete curvature tensor is that the choice ε = O(τ) does not result in any additional error of lower
order.

2.3 Discrete Approximation of the Riemann Curvature Tensor
In this section, we will propose a novel discrete version of the Riemann curvature tensor based on multiple appli-
cations of the time discrete parallel transport. The consistency of this approach is proven under the hypotheses of
the preceding section as well as additional smoothness assumptions.

2.3.1 Related Work
In what follows, we will briefly present some pioneering numerical approximation schemes for several different
notions of curvature. We remark that due to the various different approaches to be found in the literature this survey
is by far not exhaustive.

One of the earliest approaches to numerically estimate the curvature tensor at the vertices of a polyhedral
approximation of a surface was proposed by Taubin [Tau95]. In detail, this ansatz exclusively works for embedded
two-dimensional manifolds in R3 and relies on the observation that the directional curvature function corresponds
to a quadratic form, which can be estimated with linear complexity and from which the curvature tensor can be
retrieved.

Starting from the triangulation of a two-dimensional manifold embedded in R3, Meyer et al. [MDSB02] defined
discrete operators representing, for instance, the mean and the Gaussian curvature by spatial averaging of suitably
rescaled geometric quantities. Using a mixed finite element/finite volume discretization of the mesh as well as a
Voronoi decomposition principal curvatures can be robustly estimated.

Cohen–Steiner and Morvan [CSM03] proposed an integral approximation of the curvature tensor on smooth
or polyhedral surfaces taking into account normal cycles, and proved its linear convergence if the polyhedral
triangulation is Delaunay.

Hildebrandt et al. [HPW06] showed that if a sequence of polyhedral surfaces isometrically embedded in R3

converges to a differentiable manifoldM w.r.t. the Hausdorff distance, then the convergence of the normal field
is equivalent to the convergence of the metric tensor, which itself is equivalent to the convergence of the surface
area. In addition, under suitable assumptions they established the convergence of geodesic curves and the mean
curvature functionals on discrete surfaces to their limiting counterparts onM.

In [KSNS07], Kalogerakis et al. approximated the second fundamental form of a possibly noisy surface using
M-estimation, which amounts to an efficient data fitting approach using the method of iteratively reweighted least
square. Here, the surface is either represented by polygon meshes or by point clouds.

Hildebrandt and Polthier [HP11] introduced generalized shape operators for smooth and polyhedral surfaces
as linear operators on Sobolev spaces and provided error estimates to approximate the generalized shape operator
on smooth surfaces by polyhedral surfaces, from which several geometric quantities can be recovered.

Starting from a weak formulation of the Ricci curvature, Fritz [Fri13] employed a surface finite element method
to approximate the Ricci curvature on isometrically embedded hypersurfacesM and proved that the rate of con-
vergence is 2

3 and 1
3 w.r.t. the L2(M)- and H1(M)-norm, respectively.

In earlier approaches to compute the discrete curvature tensor, we also tried a curvature approximation origi-
nating from the work of Wald [Wal35], where the Gaussian curvature of a surface is locally approximated using
properly scaled quadruples. This approach proved to be numerically unstable and no obvious extension to more
general manifolds exists. A further attempt to consistently define the discrete curvature tensor has been based on
the well-known Ambrose–Singer Theorem [AS53] and its extension to the infinite-dimensional setting (cf . for in-
stance [Mag04]). However, this approach turned out not to be numerically feasible since the time discrete parallel
transport along a closed loop as required by the Ambrose–Singer Theorem relies on a very accurate approximation
of the parallel transport resulting in large computation time and is very prone to numerical errors.
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2.3.2 Discrete Riemann Curvature Tensor
This subsection is devoted to the construction of the discrete curvature tensor via the discrete parallel transport,
and the central convergence theorem for the discrete curvature tensor is presented.

We begin with the definition of the curvature tensor:3

Definition 2.3.1. Let (M, g) be a Riemannian manifold modeled on a Hilbert space. The Riemann curvature
tensor is defined as

R : X(M)×X(M)×X(M)→ X(M) , R(ζ, η)θ = ∇ζ∇ηθ−∇η∇ζθ−∇[ζ,η]θ ∀ζ, η, θ ∈ X(M) . (2.18)

We refer to the literature at the beginning of this chapter for properties and further results of the curvature
tensor.

For the rest of this chapter, we tacitly assume that the functional analytic setting presented in Assumption 2.2.1
holds true. The starting point of the discrete curvature tensor is the definition of the discrete connection:

Definition 2.3.2. Let y ∈ M̊ and let ξ ∈ V be sufficiently small. The discrete connection associated with the
discrete vector field determined by the vectors η0, η1 ∈ V, which are attached to y respectively y+ ξ, is defined as

∇ξ(η0, η1) = P−1
y+ξ,yη1 − η0 .

The subsequent result states that the discrete connection approximates the covariant derivative with first order.

Theorem 2.3.3. Let τ > 0, y ∈ M̊, ξ ∈ V and η : M̊ → V be a smooth vector field. We define

∇τ
ξη(y) =

1

τ2
∇τξ(τη(y), τη(y + τξ)) =

1

τ2

(
P−1
y+τξ,yτη(y + τξ)− τη(y)

)
. (2.19)

Then under the Hypotheses (H1)-(H4) we have for any y ∈ M̊∥∥∇τ
ξη(y)−∇ξη(y)

∥∥
V

= O(τ) .

Proof. See [RW15, Theorem 5.13].

Interestingly, the proof of this theorem is mainly based on the corresponding convergence proof of the discrete
parallel transport and the identity

∇ξη(y) =
Pθ(τ)→yη(θ(τ))− η(y)

τ
+O(τ ‖ξ‖V) , (2.20)

where θ is a geodesic with θ(0) = y and θ̇(0) = ξ. We will exploit this identity several times in the subsequent
convergence proof.

Let (M, g) be a Riemannian manifold satisfying Assumption 2.2.1 and η : M̊ → V be smooth vector field.
For a fixed element y ∈ M̊ and fixed tangent vectors v, w ∈ V we set

h : B2τ02(0)×B2τ0(0)→ M̊ , (s, t) 7→ expy(sv + tw) ,

where we assume that τ0 > 0 is chosen sufficiently small. In particular, sv + tw for (s, t) ∈ B2τ02(0)× B2τ0(0)
is supposed to lie in the domain of definition of expy . For the rest of this chapter we always assume that the time
step τ > 0 is smaller than τ0. Finally, we define

h̃τ : B2τ02(0)→ M̊ , s 7→ exph(0,τ)(sv) .

Note that h(0, τ) = h̃τ (0). Below, we will use h and h̃τ to characterize the continuous paths along which the
tangent vectors are transported.

In what follows, we will derive the discrete curvature tensor Rτ (v, w)η associated with R(v, w)η by approxi-
mating each summand in (2.18) separately. To this end, we first employ the characterization (2.20) to approximate

3There is a minor subtlety regarding this definition, for details we refer to [Kli95, Proposition 1.4.14 and Proposition 1.5.4].
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the iterated covariant derivative ∇w∇vη and use a quadratic as well as a linear scaling for the inner and outer
covariant derivative, respectively, which yields

∇vη(y) =
Ph(τ2,0)→yη(h(τ2, 0))− η(y)

τ2
+O(τ2) ,

∇w∇vη(y) =
Ph(0,τ)→y

(
Ph̃τ (τ2)→h̃τ (0)η(h̃τ (τ2))− η(h̃τ (0))

)
τ3

−
Ph(τ2,0)→yη(h(τ2, 0))− η(y)

τ3
+O(τ) , (2.21)

where we omit the dependency on the tangent vectors in the remainder term. One can verify that in general a
smaller scaling factor w.r.t. the inner covariant derivative is necessary to ensure the convergence in (2.21). These
different scaling factors are incorporated in the following discrete approximation of the iterated covariant deriva-
tive ∇w∇vη

∇τ
w∇

τ2

v η(y) =
1

τ2

(
P−1
yτw,y

1

τ3

(
P−1
yτv,w,y

τ
w
τ2η(yτv,w)− τ2η(yτw)

))
− 1

τ5

(
P−1
yτv ,y

τ2η(yτv )− τ2η(y)
)
, (2.22)

which readily follows from (cf . (2.19))

∇τ2

v η(y) =
1

τ4

(
P−1
y+τ2v,yτ

2η(y + τ2v)− τ2η(y)
)
,

∇τ
w∇

τ2

v η(y) =
1

τ2

(
P−1
y+τw,yτ∇

τ2

v η(y + τw)− τ∇τ2

v η(y)
)
,

where we use the notation

yτv = y + τ2v , yτw = y + τw , yτv,w = yτw + τ2v .

Note that for the proposed approximation in (2.22) only three inverse discrete parallel transport steps – each along a
2-path – are required, which implies that the computation time is roughly independent of the choice of τ . Figure 2.3
depicts the continuous (red) and discrete (blue) paths associated with all parallel transports involved.

M

τw

τ2v
τ2v

y

yτv

yτw

yτv,w

h(0, τ) = h̃τ (0)

h(τ2, 0)
h̃τ (τ2)

Figure 2.3: Scheme of the continuous and discrete paths involved in the continuous (red) and discrete (blue)
approximations of the iterated covariant derivatives.

To prove the convergence of the curvature tensor, the following additional smoothness assumptions w.r.t. the
metric and the energy are required:

(H3’) The metric g is C3(Y,V′ ⊗V′)-smooth.
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(H4’) The energyW is C5(M×M,R)-smooth with bounded derivatives.

The central convergence theorem reads as follows.

Theorem 2.3.4. Assume that (H1), (H2), (H3’) and (H4’) are valid. Let v, w ∈ V, y ∈ M̊ and η : M̊ → V be a
smooth vector field. Then there exists τ0 > 0 such that for all τ ∈ (0, τ0)∥∥∥∇τ

w∇
τ2

v η(y)−∇w∇vη(y)
∥∥∥

V
= O(τ) . (2.23)

Taking into account the previous steps, we finally arrive at the following definition and convergence result.

Theorem 2.3.5. Under the assumptions of Theorem 2.3.4, the discrete curvature tensor is defined as

(Rτ (v, w)η)(y) = ∇τ
v∇

τ2

w η(y)−∇τ
w∇

τ2

v η(y) ,

and this approximation converges with first order to (R(v, w)η)(y), i.e.

‖(Rτ (v, w)η)(y)− (R(v, w)η)(y)‖V = O(τ) .

Proof. This proof follows immediately from Theorem 2.3.4 by noting that the Lie bracket vanishes on constant
vector fields.

The remainder of this section is devoted to the convergence analysis of the iterated discrete covariant deriva-
tives.

Proof of Theorem 2.3.4. Let us recall the representations of the continuous and discrete second order covariant
derivatives (cf . (2.21) and (2.22)):

∇w∇vη(y) =
Ph(0,τ)→y

(
Ph̃τ (τ2)→h̃τ (0)η(h̃τ (τ2))− η(h̃τ (0))

)
τ3

−
Ph(τ2,0)→yη(h(τ2, 0))− η(y)

τ3
+O(τ) ,

∇τ
w∇

τ2

v η(y) = 1
τ2

(
P−1
yτw,y

1
τ3

(
P−1
yτv,w,y

τ
w
τ2η(yτv,w)− τ2η(yτw)

)
− 1

τ3

(
P−1
yτv ,y

τ2η(yτv )− τ2η(y)
))

.

To facilitate the subsequent presentation, we introduce the following auxiliary variables:

ζτI = Ph̃τ (τ2)→h̃τ (0)τ
2η(h̃τ (τ2)) , ξτI = P−1

yτv,w,y
τ
w
τ2η(yτv,w) ,

ζτII = 1
τ3 (ζτI − τ2η(h(0, τ))) , ξτII = 1

τ3

(
P−1
yτv,w,y

τ
w
τ2η(yτv,w)− τ2η(yτw)

)
= 1

τ3

(
ξτI − τ2η(yτw)

)
,

ζτIII = Ph(0,τ)→yζ
τ
II , ξτIII = P−1

yτw,y
ξτII ,

ζτIV = Ph(τ2,0)→yτ
2η(h(τ2, 0)) , ξτIV = P−1

yτv ,y
τ2η(yτv ) ,

ζτV = 1
τ3 (ζτIV − τ2η(y)) , ξτV = 1

τ3

(
P−1
yτv ,y

τ2η(yτv )− τ2η(y)
)

= 1
τ3

(
ξτIV − τ2η(y)

)
.

We denote by Adisc
τ , Bdisc

τ and Cdisc
τ the discrete paths from yτv,w to yτw, from yτw to y, and from yτv to y, respectively

(cf . Figure 2.3). The centers of the geodesic parallelograms in Schild’s ladder associated with these discrete paths
are referred to as ycA, ycB and ycC , respectively. We will see that the relations ζτi ≈ ξτi for i ∈ {I, II, III, IV,V} hold
true, which will be examined in detail below. With these definitions at hand, the continuous and discrete iterated
covariant derivatives have the form

∇w∇vη(y) = 1
τ2 (ζτIII − ζτV) +O(τ) , ∇τ

w∇
τ2

v η(y) = 1
τ2 (ξτIII − ξτV) . (2.24)

The proof consists of three steps:
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(i.) Derivation of the optimality conditions emerging from Schild’s ladder for each discrete parallel transport.

Starting from the Euler–Lagrange equations (2.17) for the discrete parallel transport, we use a Taylor ex-
pansion to derive optimality conditions for each of the three parallel transports involved in the construction
of the iterated covariant derivatives. Furthermore, we show that the remainder terms are of lower order and
are therefore negligible. As already pointed out in Remark 2.2.17 (iv.), the Euler–Lagrange equations for
the one-step discrete parallel transport and the corresponding discrete inverse transport coincide, which will
tacitly be employed in this step.

(ii.) Derivation of the continuous optimality conditions.

Taking into account the definition of the parallel transport via the covariant derivative and Christoffel opera-
tors, we compute optimality conditions that relate distinct ζτi for i ∈ {I, II, III, IV,V}. A key ingredient in
this step is the smoothness of the (continuous) paths and the vector field.

(iii.) Convergence of the iterated covariant derivatives.

In this step, we compare relevant distinct expressions appearing in the preceding steps and show that all
quantities involved are of higher order w.r.t. τ , which implies that

W,22[yτw, y
τ
w](ζτIII − ξτIII, ψ) +W,22[y, y](ξτV − ζτV, ψ) = O(τ3) (2.25)

and thus implies the convergence statement (2.23) in combination with (2.24). Besides scaling relations we
make use of the symmetry relations (2.12).

We highlight that in the first and second step the current proof shares some similarities with the convergence
proof for the discrete parallel transport shown in [RW15, Theorem 5.11]. However, we emphasize that the conver-
gence for the curvature tensor is not implied by the convergence result of the discrete parallel transport. Instead, in
the forthcoming proof a more involved estimation of the resulting remainder terms is required.

ad (i.): Derivation of the optimality conditions emerging from Schild’s ladder for each discrete parallel transport.

The optimality conditions for a one-step discrete parallel transport of the vector ξ̃1 ∈ V attached to ỹ1 ∈ M̊
to a vector ξ̃2 ∈ V attached to ỹ2 ∈ M̊ with ỹc ∈ M̊ denoting the midpoint of the geodesic parallelogram
read as (cf . Remark 2.2.17 (iv.))

W,2[ỹ1 + ξ̃1, ỹ
c](ψ) +W,1[ỹc, ỹ2](ψ) = 0 , (2.26)

W,2[ỹ1, ỹ
c](ψ) +W,1[ỹc, ỹ2 + ξ̃2](ψ) = 0 (2.27)

for any ψ ∈ V. Again, we assume ỹ1 − ỹ2, ξ̃1 and ξ̃2 to be sufficiently small in V. A Taylor expansion of
W[ỹ1 + ξ̃1, ỹ

c] w.r.t. the base point ỹ ∈ M̊ yields

W[ỹ1 + ξ̃1, ỹ
c] =W[ỹ, ỹ] +W,1[ỹ, ỹ](ỹ1 + ξ̃1 − ỹ) +W,2[ỹ, ỹ](ỹc − ỹ)

+

∫ 1

0

(1− s)
(
W,11[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ)

+ 2W,12[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ)
:::::::::::::::::::::::::::::::::::::::::::::::::::

+W,22[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ)
)

ds .

Note that (2.8) and (2.9) imply thatW[ỹ, ỹ] = W,1[ỹ, ỹ](ỹ1 + ξ̃1 − ỹ) = W,2[ỹ, ỹ](ỹc − ỹ) = 0. To keep
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track of each term, we underline related expressions with the same line style. Thus,

W,2[ỹ1 + ξ̃1, ỹ
c](ψ)

=

∫ 1

0

(1− s)
(
W,112[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, sψ)

+ 2W,12[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ψ)
:::::::::::::::::::::::::::::::::::::::::::::::

+ 2W,122[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, sψ)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

+ 2W,22[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹc − ỹ, ψ)

+W,222[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, sψ)
)

ds

=−W,22[ỹ, ỹ](ỹ1 + ξ̃1 − ỹ, ψ)
:::::::::::::::::::::

+W,22[ỹ, ỹ](ỹc − ỹ, ψ)

+

∫ 1

0

∫ 1

0

s(1− s)
(
W,112[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, ψ)

+ 2W,112[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, ψ)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+ 2W,122[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+ 2W,122[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)
::::::::::::::::::::::::::::::::::::::::::::::::::::::

+ 2W,122[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)

+ 2W,222[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+W,222[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)
)

dr ds . (2.28)

In detail, the first equality follows by a straightforward derivation. Moreover, to infer the second identity,
we employ the fundamental theorem of calculus, (2.11) and the relation

∫ 1

0
(1− s) ds = 1

2 . For instance,∫ 1

0

(1− s)2W,12[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ψ)
:::::::::::::::::::::::::::::::::::::::::::::::

ds−W,12[ỹ, ỹ](ỹ1 + ξ̃1 − ỹ, ψ)
:::::::::::::::::::::

=

∫ 1

0

∫ 1

0

s(1− s)
(

2W,112[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, ψ)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+ 2W,122[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::

)
dr ds .

In exactly the same manner as above, we consider the following Taylor expansion ofW[ỹc, ỹ2] w.r.t. ỹ

W[ỹc, ỹ2] =

∫ 1

0

(1− s)
(
W,11[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ỹc − ỹ, ỹc − ỹ)

+ 2W,12[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ỹc − ỹ, ỹ2 − ỹ)

+W,22[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ỹ2 − ỹ, ỹ2 − ỹ)
)

ds ,

and proceed as in (2.28) to reformulateW,1[ỹc, ỹ2](ψ). To sum up, (2.26) is equivalent to

0 =−W,22[ỹ, ỹ](ỹ1 + ξ̃1 − ỹ, ψ) +W,22[ỹ, ỹ](ỹc − ỹ, ψ) +W22[ỹ, ỹ](ỹc − ỹ, ψ)−W,22[ỹ, ỹ](ỹ2 − ỹ, ψ)

+

∫ 1

0

∫ 1

0

s(1− s)
(
W,112[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, ψ)

+ 2W,112[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, ψ)
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+ 2W,122[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)

+ 2W,122[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)

+ 2W,122[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)

+ 2W,222[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+W,222[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+ 2W,111[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+ 2W,112[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 − ỹ)](ỹc − ỹ, ψ, ỹ2 − ỹ)

+W,111[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+ 2W,112[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 − ỹ)](ỹc − ỹ, ψ, ỹ2 − ỹ)

+ 2W,122[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 − ỹ)](ψ, ỹ2 − ỹ, ỹ2 − ỹ)

+ 2W,112[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ỹc − ỹ, ψ, ỹ2 − ỹ)

+W,122[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ψ, ỹ2 − ỹ, ỹ2 − ỹ)
)

dr ds . (2.29)

Likewise, we expand (2.27) in the same way as (2.26) (by replacing ỹ1 + ξ̃1 and ỹ2 by ỹ1 and ỹ2 + ξ̃2,
respectively), and subtract the resulting equation from (2.29), which yields

0 =W,22[ỹ, ỹ](ξ̃2 − ξ̃1, ψ)

+

∫ 1

0

∫ 1

0

s(1− s)
(
W,112[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, ψ)

+ 2W,112[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹ1 + ξ̃1 − ỹ, ψ)

+ 4W,122[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)

+ 2W,122[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 + ξ̃1 − ỹ, ỹc − ỹ, ψ)

+ 2W,222[ỹ + rs(ỹ1 + ξ̃1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+W,222[ỹ + s(ỹ1 + ξ̃1 − ỹ), ỹ + s(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+ 2W,111[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+ 4W,112[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 − ỹ)](ỹc − ỹ, ψ, ỹ2 − ỹ)

+W,111[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

+ 2W,122[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 − ỹ)](ψ, ỹ2 − ỹ, ỹ2 − ỹ)

+ 2W,112[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ỹc − ỹ, ψ, ỹ2 − ỹ)

+W,122[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 − ỹ)](ψ, ỹ2 − ỹ, ỹ2 − ỹ)

−W,112[ỹ + s(ỹ1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 − ỹ, ỹ1 − ỹ, ψ)

− 2W,112[ỹ + rs(ỹ1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 − ỹ, ỹ1 − ỹ, ψ)

− 4W,122[ỹ + rs(ỹ1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹ1 − ỹ, ỹc − ỹ, ψ)

− 2W,122[ỹ + s(ỹ1 − ỹ), ỹ + s(ỹc − ỹ)](ỹ1 − ỹ, ỹc − ỹ, ψ)

− 2W,222[ỹ + rs(ỹ1 − ỹ), ỹ + rs(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

−W,222[ỹ + s(ỹ1 − ỹ), ỹ + s(ỹc − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

− 2W,111[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 + ξ̃2 − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

− 4W,112[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 + ξ̃2 − ỹ)](ỹc − ỹ, ψ, ỹ2 + ξ̃2 − ỹ)

−W,111[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 + ξ̃2 − ỹ)](ỹc − ỹ, ỹc − ỹ, ψ)

− 2W,122[ỹ + rs(ỹc − ỹ), ỹ + rs(ỹ2 + ξ̃2 − ỹ)](ψ, ỹ2 + ξ̃2 − ỹ, ỹ2 + ξ̃2 − ỹ)

− 2W,112[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 + ξ̃2 − ỹ)](ỹc − ỹ, ψ, ỹ2 + ξ̃2 − ỹ)

−W,122[ỹ + s(ỹc − ỹ), ỹ + s(ỹ2 + ξ̃2 − ỹ)](ψ, ỹ2 + ξ̃2 − ỹ, ỹ2 + ξ̃2 − ỹ)
)

dr ds . (2.30)
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In what follows, we will apply (2.30) three times to describe the inverse parallel transports appearing in the
definitions of ξτI , ξτIII and ξτIV along the discrete paths Adisc

τ , Bdisc
τ and Cdisc

τ , respectively (cf . Figure 2.3).
To this end, we choose ỹ, ỹc, ỹ1, ξ̃1, ỹ2 and ξ̃2 for each of the paths as follows:

ỹ ỹc ỹ1 ξ̃1 ỹ2 ξ̃2

Adisc
τ yτw ycA yτw ξτI yτv,w τ2η(yτv,w)

Bdisc
τ yτw ycB y ξτIII yτw ξτII

Cdisc
τ y ycC y ξτIV yτv τ2η(yτv )

Table 2.1: Particular choice of the variables for the discrete paths.

We highlight the particular choice of the base points ỹ of the Taylor expansion, all other variables are already
determined by the construction of the iterated discrete covariant derivative.

Below, we will derive simplified expressions of (2.30) incorporating the choices in Table 2.1. All details are
solely presented for the discrete path Adisc

τ since the line of arguments for the remaining paths is analogous.
By inserting the particular choice for path Adisc

τ one obtains after some straightforward transformations

0 =W,22[yτw, y
τ
w](τ2η(yτv,w)− ξτI , ψ)

+

∫ 1

0

∫ 1

0

s(1− s)
(
W,112[yτw + sξτI , y

τ
w + s(ycA − yτw)](ξτI , ξ

τ
I , ψ)

+ 2W,112[yτw + rsξτI , y
τ
w + rs(ycA − yτw)](ξτI , ξ

τ
I , ψ)

+ 4W,122[yτw + rsξτI , y
τ
w + rs(ycA − yτw)](ξτI , y

c
A − yτw, ψ)

+ 2W,122[yτw + sξτI , y
τ
w + s(ycA − yτw)](ξτI , y

c
A − yτw, ψ)

+ 2W,222[yτw + rsξτI , y
τ
w + rs(ycA − yτw)](ycA − yτw, ycA − yτw, ψ)

+W,222[yτw + sξτI , y
τ
w + s(ycA − yτw)](ycA − yτw, ycA − yτw, ψ)

+ 2W,111[yτw + rs(ycA − yτw), yτw + rsτ2v](ycA − yτw, ycA − yτw, ψ)

+ 4W,112[yτw + rs(ycA − yτw), yτw + rsτ2v](ycA − yτw, ψ, τ2v)

+W,111[yτw + s(ycA − yτw), yτw + sτ2v](ycA − yτw, ycA − yτw, ψ)

+ 2W,122[yτw + rs(ycA − yτw), yτw + rsτ2v](ψ, τ2v, τ2v)

+ 2W,112[yτw + s(ycA − yτw), yτw + sτ2v](ycA − yτw, ψ, τ2v)

+W,122[yτw + s(ycA − yτw), yτw + sτ2v](ψ, τ2v, τ2v)

− 2W,222[yτw, y
τ
w + rs(ycA − yτw)](ycA − yτw, ycA − yτw, ψ)

−W,222[yτw, y
τ
w + s(ycA − yτw)](ycA − yτw, ycA − yτw, ψ)

− 2W,111[yτw + rs(ycA − yτw), yτw + rs(τ2v + τ2η(yτv,w))](ycA − yτw, ycA − yτw, ψ)

− 4W,112[yτw + rs(ycA − yτw), yτw + rs(τ2v + τ2η(yτv,w))](ycA − yτw, ψ, τ2v + τ2η(yτv,w))

−W,111[yτw + s(ycA − yτw), yτw + s(τ2v + τ2η(yτv,w))](ycA − yτw, ycA − yτw, ψ)

− 2W,122[yτw + rs(ycA − yτw), yτw + rs(τ2v + τ2η(yτv,w))](ψ, τ2v + τ2η(yτv,w), τ2v + τ2η(yτv,w))

− 2W,112[yτw + s(ycA − yτw), yτw + s(τ2v + τ2η(yτv,w))](ycA − yτw, ψ, τ2v + τ2η(yτv,w))

−W,122[yτw + s(ycA − yτw), yτw + s(τ2v + τ2η(yτv,w))](ψ, τ2v + τ2η(yτv,w), τ2v + τ2η(yτv,w))
)

dr ds .

(2.31)

Let us for the moment assume that all energies appearing in (2.31) can be evaluated at (yτw, y
τ
w) resulting in
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an error of order τ6, which follows from the estimates (to be verified below)∥∥τ2η(yτv,w)
∥∥

V
= O(τ2) , (2.32)

‖ycA − yτw‖V = O(τ2) , (2.33)

‖ξτI ‖V = O(τ2) . (2.34)

For instance, one obtains the following estimate for the first integrand appearing in (2.31)∣∣∣∣∫ 1

0

∫ 1

0

s(1− s) (W,112[yτw + sξτI , y
τ
w + s(ycA − yτw)](ξτI , ξ

τ
I , ψ)−W,112[yτw, y

τ
w](ξτI , ξ

τ
I , ψ)) dr ds

∣∣∣∣
= O

(
(‖ξτI ‖V + ‖ycA − yτw‖V) ‖ξτI ‖

2
V ‖ψ‖V

)
= O(τ6) .

Here and in all further equations, to increase readability we solely state the order of convergence in the
remainder (using the O-notation) and omit the explicit dependency on the variables involved.

Then, by using
∫ 1

0
s(1− s) ds = 1

6 we deduce from (2.31) the relation

O(τ6) =W,22[yτw, y
τ
w](τ2η(yτv,w)− ξτI , ψ) + 1

2W,112[yτw, y
τ
w](ξτI , ξ

τ
I , ψ)

+W,122[yτw, y
τ
w](ξτI , y

c
A − yτw, ψ)−W,112[yτw, y

τ
w](ycA − yτw, ψ, τ2η(yτv,w))

−W,122[yτw, y
τ
w](ψ, τ2v, τ2η(yτv,w))− 1

2W,122[yτw, y
τ
w](ψ, τ2η(yτv,w), τ2η(yτv,w)) . (2.35)

Due to the smoothness of the vector field η we can immediately infer (2.32). The estimate (2.33) is a
consequence of

‖ycA − yτw‖V = O
(∥∥yτv,w + τ2η(yτv,w)− yτw

∥∥
V

)
= O

(∥∥τ2v + τ2η(yτv,w)
∥∥

V

)
= O(τ2) .

Finally, the proof of (2.34) is based on an error propagation formula derived in the convergence proof of
the discrete parallel transport (cf . [RW15]) tailored to our specific construction. At first, we remark that the
relation yτv,w = yτw + τ2v, the smoothness of h as well as Taylor expansions imply∥∥∥yτv,w − h̃τ (τ2)

∥∥∥
V
≤ ‖yτw − h(0, τ)‖V +

∥∥∥h(0, τ) + τ2v − h̃τ (τ2)
∥∥∥

V
= O(τ2) ,

and ‖e0‖V = O(τ2) with e0 := η(yτv,w) − η(h̃τ (τ2)). By setting e1 := 1
τ2 (ξτI − ζτI ) we can deduce by

taking into account [RW15, (6.22)] and the subsequent reasoning that ‖e1‖V = O(1). Since the parallel
transport associated with a Riemannian covariant derivative is an isometry (cf . [Sak96, Chapter II]), one
obtains ‖ζτI ‖V = O(τ2), which readily implies (2.34). Alternatively, one can infer (2.34) using (2.29) with
the variables given in Table 2.1.

Likewise, starting from (2.30), choosing the variables associated with the discrete path Bdisc
τ according to

Table 2.1 and following the same line of arguments as above taking into account the estimates

‖ξτII‖V = O(τ) , (2.36)
‖ycB − yτw‖V = O(τ) , (2.37)

‖ξτIII‖V = O(τ) , (2.38)

we finally obtain

O(τ3) =W,22[yτw, y
τ
w](ξτII − ξτIII, ψ) + 1

2W,112[yτw, y
τ
w](ξτIII, ξ

τ
III, ψ)

−W,112[yτw, y
τ
w](τw, ξτIII, ψ) +W,122[yτw, y

τ
w](ξτIII, y

c
B − yτw, ψ)

−W,112[yτw, y
τ
w](ycB − yτw, ψ, ξτII)− 1

2W,122[yτw, y
τ
w](ψ, ξτII, ξ

τ
II) . (2.39)

Next, we solely prove (2.36) since the proofs of (2.37) and (2.38) are similar to (2.33) and (2.34), respec-
tively. To this end, we first note that all summands involving third derivatives ofW on the right-hand side of
(2.35) are of order τ4 due to (2.32)-(2.34), which implies

W,22[yτw, y
τ
w](τ2η(yτv,w)− ξτI , ψ) = O(τ4) .
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Thus, incorporating the Hypotheses (H1) and (H4’) shows that
∥∥τ2η(yτv,w)− ξτI

∥∥
V

= O(τ4) due to

c∗ ‖v‖V ≤ gỹ
(
v, v
‖v‖V

)
≤ sup
ψ∈V,‖ψ‖V=1

gỹ(v, ψ) = sup
ψ∈V,‖ψ‖V=1

1
2W,22[ỹ, ỹ](v, ψ) (2.40)

for arbitrary v ∈ V and ỹ ∈ M̊. We will frequently employ (2.40) below. Hence,

‖ξτII‖V ≤
1
τ3 (
∥∥ξτI − τ2η(yτv,w)

∥∥
V

+
∥∥τ2η(yτv,w)− τ2η(yτw)

∥∥
V

) = O(τ) .

By adding 1
τ3 (2.35) and (2.39) and recalling the definitions of ξτI and ξτII we conclude (only the second

derivatives of the energy are modified)

O(τ3) =W,22[yτw, y
τ
w](−ξτIII, ψ) + 1

2W,112[yτw, y
τ
w](ξτIII, ξ

τ
III, ψ)

−W,112[yτw, y
τ
w](τw, ξτIII, ψ) +W,122[yτw, y

τ
w](ξτIII, y

c
B − yτw, ψ)

−W,112[yτw, y
τ
w](ycB − yτw, ψ, ξτII)− 1

2W,122[yτw, y
τ
w](ψ, ξτII, ξ

τ
II)

+
1

τ3

(
W,22[yτw, y

τ
w](τ2η(yτv,w)− τ2η(yτw)) + 1

2W,112[yτw, y
τ
w](ξτI , ξ

τ
I , ψ)

+W,122[yτw, y
τ
w](ξτI , y

c
A − yτw, ψ)−W,112[yτw, y

τ
w](ycA − yτw, ψ, τ2η(yτv,w))

−W,122[yτw, y
τ
w](ψ, τ2v, τ2η(yτv,w))− 1

2W,122[yτw, y
τ
w](ψ, τ2η(yτv,w), τ2η(yτv,w))

)
.

(2.41)

Finally, the analogous equation to (2.35) and (2.39) for the discrete path Cdisc
τ with variables chosen in

accordance with Table 2.1 reads as

O(τ6) =W,22[y, y](τ2η(yτv )− ξτIV, ψ) + 1
2W,112[y, y](ξτIV, ξ

τ
IV, ψ)

+W,122[y, y](ξτIV, y
c
C − y, ψ)−W,112[y, y](ycC − y, ψ, τ2η(yτv ))

−W,122[y, y](ψ, τ2v, τ2η(yτv ))− 1
2W,122[y, y](ψ, τ2η(yτv ), τ2η(yτv )) . (2.42)

This equation immediately follows from the estimates∥∥τ2η(yτv )
∥∥

V
= O(τ2) , ‖ycC − y‖V = O(τ2) , ‖ξτIV‖V = O(τ2) , (2.43)

which can be proven in the same manner as (2.32)-(2.34).

ad (ii.): Derivation of the continuous optimality conditions.

Let z : [0, 1] → M̊ be a smooth path and ζ : M̊ → V be a smooth parallel vector field along z. We recall
that ζ is parallel along z if

0 = gz(t)(∇z(t)ζ(t), ψ) = gz(t)(ζ̇(t), ψ) + gz(t)(Γ(ż(t), ζ(t)), ψ) (2.44)

for all ψ ∈ V and all t ∈ [0, 1]. Here, the Christoffel operator Γ : V ×V→ V is implicitly defined as

gz(t)(Γ(φ, χ), ψ) = 1
2

(
(Dzgz(t))(χ)(ψ, φ) + (Dzgz(t))(φ)(ψ, χ)− (Dzgz(t))(ψ)(φ, χ)

)
(2.45)

for all φ, χ, ψ ∈ V. By combining (2.44) and (2.45) and using (2.10) we obtain

0 =W,22[z(t), z(t)](ζ̇(t), ψ) +
1

2

(
(W,221[z(t), z(t)] +W,222[z(t), z(t)])(ψ, ż(t), ζ(t))

+ (W,221[z(t), z(t)] +W,222[z(t), z(t)])(ψ, ζ(t), ż(t))

− ((W,221[z(t), z(t)] +W,222[z(t), z(t)])(ż(t), ζ(t), ψ))
)

=W,22[z(t), z(t)](ζ̇(t), ψ) +
1

2

(
W,222[z(t), z(t)](ζ(t), ż(t), ψ) +W,122[z(t), z(t)](ζ(t), ż(t), ψ)

+W,122[z(t), z(t)](ż(t), ζ(t), ψ)−W,122[z(t), z(t)](ψ, ζ(t), ż(t))
)
.

(2.46)
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Hence, by evaluating (2.46) at t = 0 and t = 1 and adding both equations one obtains

0 =
1

2

(
W,22[z(0), z(0)](ζ̇(0), ψ) +W,22[z(1), z(1)](ζ̇(1), ψ)

)
+

1

4

(
W,222[z(0), z(0)](ζ(0), ż(0), ψ) +W,222[z(1), z(1)](ζ(1), ż(1), ψ)

+W,122[z(0), z(0)](ζ(0), ż(0), ψ) +W,122[z(1), z(1)](ζ(1), ż(1), ψ)

+W,122[z(0), z(0)](ż(0), ζ(0), ψ) +W,122[z(1), z(1)](ż(1), ζ(1), ψ)

−W,122[z(0), z(0)](ψ, ζ(0), ż(0))−W,122[z(1), z(1)](ψ, ζ(1), ż(1))
)
. (2.47)

In what follows, we will apply (2.47) to each of the three paths

zτA(s) = h̃τ (sτ2) ,

zτB(s) = h(0, sτ) ,

zτC(s) = h(sτ2, 0)

for s ∈ [0, 1], which can be regarded as the continuous counterparts of the discrete paths Adisc
τ , Bdisc

τ

and Cdisc
τ , respectively (cf . Figure 2.3). As in the previous step, we will focus on the derivation of optimality

conditions for the path zτA since the remaining optimality conditions can be inferred in exactly the same
manner.

Let ρτA ∈ C2(B2τ2(0),V) be the parallel vector field along B2τ2(0) 3 s 7→ h̃τ (s) such that ρτA(τ2) =

η(h̃τ (τ2)). Clearly, ζτA(s) = τ2ρτA(sτ2) is a parallel vector field along zτA, and the subsequent relations
immediately follow from the definitions and Taylor expansions

żτA(0) = τ2v , sup
s∈[0,1]

‖żτA(s)‖V = O(τ2) ,

‖zτA(1)− zτA(0)‖V = O(τ2) , ‖żτA(1)− żτA(0)‖V = O(τ4) . (2.48)

Here, we used g ∈ C3(Y,V′ ⊗V′) (cf . (H3’)), which implies h ∈ C2(B2τ02(0)×B2τ0(0)) and {(t, τ) 7→
h̃τ (t)} ∈ C2(B2τ02(0) × B2τ0(0)) (cf . [Lan95, Chapter IV]). To derive the first estimate in (2.48) we
additionally employ the fact that the derivative of the exponential map at the origin is the identity, i.e.
D exp(0) = 1. Moreover, the smoothness of the vector field combined with the regularity of h as well as h̃τ

and Taylor expansions leads to the estimates (cf . [Lan95, Chapter VIII] and [Kli95, Section 1.6 and 1.7])

sup
s∈[0,1]

‖ζτA(s)‖V = O(τ2) , sup
s∈[0,1]

∥∥∥ζ̇τA(s)
∥∥∥

V
= O(τ4) ,

sup
s∈[0,1]

∥∥∥ζ̈τA(s)
∥∥∥

V
= O(τ6) , ‖ζτA(1)− ζτA(0)‖V = O(τ4) . (2.49)

Hence, applying (2.47) to ζ = ζτA and z = zτA and taking into account (2.48) and (2.49) yields

0 =
1

2

(
W,22[zτA(0), zτA(0)](ζ̇τA(0), ψ) +W,22[zτA(1), zτA(1)](ζ̇τA(1), ψ)

)
+

1

4

(
W,222[zτA(0), zτA(0)](ζτA(0), żτA(0), ψ) +W,222[zτA(1), zτA(1)](ζτA(1), żτA(1), ψ)

+W,122[zτA(0), zτA(0)](ζτA(0), żτA(0), ψ) +W,122[zτA(1), zτA(1)](ζτA(1), żτA(1), ψ)

+W,122[zτA(0), zτA(0)](, ζτA(0), ψ) +W,122[zτA(1), zτA(1)](żτA(1), ζτA(1), ψ)

−W,122[zτA(0), zτA(0)](ψ, ζτA(0), żτA(0))−W,122[zτA(1), zτA(1)](ψ, ζτA(1), żτA(1))
)

=W,22[zτA(0), zτA(0)](τ2η(zτA(1))− ζτI , ψ)

+
1

2

(
W,222[zτA(0), zτA(0)](τ2η(zτA(1)), τ2v, ψ) +W,122[zτA(0), zτA(0)](τ2η(zτA(1)), τ2v, ψ)

+W,122[zτA(0), zτA(0)](τ2v, τ2η(zτA(1)), ψ)−W,122[zτA(0), zτA(0)](ψ, τ2η(zτA(1)), τ2v)
)

+O(τ6) .

(2.50)
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In detail, the transformation of the first line follows from

1

2

(
W,22[zτA(0), zτA(0)](ζ̇τA(0), ψ) +W,22[zτA(1), zτA(1)](ζ̇τA(1), ψ)

)
=

1

2

(
W,22[zτA(0), zτA(0)](ζ̇τA(0), ψ) +W,22[zτA(0), zτA(0)](ζ̇τA(1), ψ)

)
+O(τ6)

=
1

2
W,22[zτA(0), zτA(0)](ζ̇τA(0) + ζ̇τA(1), ψ) +O(τ6) =W,22[zτA(0), zτA(0)](ζτA(0)− ζτA(1), ψ) +O(τ6) ,

where we have used the estimate ζτA(0) − ζτA(1) = 1
2 (ζ̇τA(0) + ζ̇τA(1)) + O(τ6), which can be proven by

adding two Taylor expansions w.r.t. 0 and 1, respectively. The remaining transformations can be deduced
from multiple Taylor expansions using (2.48) and (2.49).

Likewise, we define ρτB ∈ C2(B2τ (0),V) as the parallel vector field alongB2τ (0) 3 s 7→ h(0, s) satisfying
ρτB(τ) = ρτA(0) and set ζτB(s) = τρτB(s), which is a parallel vector field along zτB . The analogous estimate
of (2.50) for zτB is given by

O(τ3) =W,22[zτB(1), zτB(1)](ζτII − ζτIII, ψ)

+
1

2

(
W,222[zτB(1), zτB(1)](ζτB(0), τw, ψ) +W,122[zτB(1), zτB(1)](ζτB(0), τw, ψ)

+W,122[zτB(1), zτB(1)](τw, ζτB(0), ψ)−W,122[zτB(1), zτB(1)](ψ, ζτB(0), τw)
)
, (2.51)

where the subsequent estimates were employed:

żτB(0) = τw , sup
s∈[0,1]

‖żτB(s)‖V = O(τ) , ‖zτB(1)− zτB(0)‖V = O(τ) ,

‖żτB(1)− żτB(0)‖V = O(τ2) , sup
s∈[0,1]

‖ζτB(s)‖V = O(τ) , sup
s∈[0,1]

∥∥∥ζ̇τB(s)
∥∥∥

V
= O(τ2) ,

sup
s∈[0,1]

∥∥∥ζ̈τB(s)
∥∥∥

V
= O(τ3) , ‖ζτB(1)− ζτB(0)‖V = O(τ2) .

We merely remark that ζτB smoothly depends on the initial data ρτB(τ) = ρτA(0), which itself smoothly
depends on the vector field and h and thus already justifies the aforementioned estimates involving ζτB .

Hence, by adding 1
τ3 (2.50) and (2.51) one gets by taking into account the definitions of ζτI , ζτII, z

τ
A and zτB

O(τ3) =W,22[zτB(1), zτB(1)](−ζτIII, ψ)

+
1

2

(
W,222[zτB(1), zτB(1)](ζτB(0), τw, ψ) +W,122[zτB(1), zτB(1)](ζτB(0), τw, ψ)

+W,122[zτB(1), zτB(1)](τw, ζτB(0), ψ)−W,122[zτB(1), zτB(1)](ψ, ζτB(0), τw)
)

+
1

τ3

(
W,22[zτB(1), zτB(1)](τ2η(zτA(1))− τ2η(zτB(1)), ψ)

+
1

2

(
W,222[zτB(1), zτB(1)](τ2η(zτA(1)), τ2v, ψ) +W,122[zτB(1), zτB(1)](τ2η(zτA(1)), τ2v, ψ)

+W,122[zτB(1), zτB(1)](τ2v, τ2η(zτA(1)), ψ)−W,122[zτB(1), zτB(1)](ψ, τ2η(zτA(1)), τ2v)
))

.

(2.52)

We will see below that by subtracting the discrete counterpart (2.41) all summands involving third derivatives
of the energy are of order τ3 and therefore negligible.

Finally, consider the parallel vector field ρτC ∈ C2(B2τ2(0),V) along B2τ2(0) 3 s 7→ h(s, 0) such that
ρτC(τ2) = η(h(τ2, 0)). As before, ζτC(s) = τ2ρτC(sτ2) is parallel along zτC , and (2.47) implies in this case

O(τ6) =W,22[y, y](τ2η(zτC(1))− ζτIV, ψ)

+
1

2

(
W,222[y, y](τ2η(zτC(1)), τ2v, ψ) +W,122[y, y](τ2η(zτC(1)), τ2v, ψ)

+W,122[y, y](τ2v, τ2η(zτC(1)), ψ)−W,122[y, y](ψ, τ2η(zτC(1)), τ2v)
)
. (2.53)
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The corresponding auxiliary relations that were used to infer (2.53) read as

żτC(0) = τ2v , sup
s∈[0,1]

‖żτC(s)‖V = O(τ2) , ‖zτB(1)− zτB(0)‖V = O(τ2) ,

‖żτC(1)− żτC(0)‖V = O(τ4) , sup
s∈[0,1]

‖ζτC(s)‖V = O(τ2) , sup
s∈[0,1]

∥∥∥ζ̇τC(s)
∥∥∥

V
= O(τ4) ,

sup
s∈[0,1]

∥∥∥ζ̈τC(s)
∥∥∥

V
= O(τ6) , ‖ζτC(1)− ζτC(0)‖V = O(τ4) .

ad (iii.): Convergence of the iterated covariant derivatives.

In this step, we will relate the discrete optimality conditions to their continuous counterparts to prove the
convergence of the discrete curvature tensor.

To estimate the second term in (2.25) and thus ‖ξτV − ζτV‖V, we subtract (2.53) from (2.42) and divide by τ3,
which results in

O(τ3) =W,22[y, y](ζτV − ξτV, ψ) +
1

τ3

(
1
2W,112[y, y](ξτIV, ξ

τ
IV, ψ)

+W,122[y, y](ξτIV, y
c
C − y, ψ)−W,112[y, y](ycC − y, ψ, τ2η(yτv ))

−W,122[y, y](ψ, τ2v, τ2η(yτv ))− 1
2W,122[y, y](ψ, τ2η(yτv ), τ2η(yτv ))

+W,22[y, y](τ2η(yτv )− τ2η(zτC(1)), ψ)

− 1
2W,222[y, y](τ2η(zτC(1)), τ2v, ψ)− 1

2W,122[y, y](τ2η(zτC(1)), τ2v, ψ)

− 1
2W,122[y, y](τ2v, τ2η(zτC(1)), ψ) + 1

2W,122[y, y](ψ, τ2η(zτC(1)), τ2v)
)
.

To simplify this expression, we will use the subsequent relations∥∥τ2η(zτC(1))− τ2η(yτv )
∥∥

V
= O(τ6) , (2.54)∥∥ξτIV − τ2η(yτv )

∥∥
V

= O(τ4) . (2.55)

The estimate (2.54) can be shown via a Taylor expansion, and (2.42) in combination with (2.43) implies
(2.55). Thus, taking into account (2.54) and (2.55) as well as Young’s Theorem yields4

O(τ3) =W,22[y, y](ζτV − ξτV, ψ) +
1

τ3

(
1
2W,211[y, y](ψ, τ2η(yτv ), τ2η(yτv ))
::::::::::::::::::::::::::::

+W,212[y, y](ψ, τ2η(yτv ), ycC − y)
::::::::::::::::::::::::::

−W,121[y, y](ψ, τ2η(yτv ), ycC − y)
::::::::::::::::::::::::::

− 1
2W,122[y, y](ψ, τ2η(yτv ), τ2η(yτv ))
::::::::::::::::::::::::::::

− 1
2W,122[y, y](ψ, τ2η(yτv ), τ2v)

− 1
2W,222[y, y](ψ, τ2η(yτv ), τ2v)− 1

2W,212[y, y](ψ, τ2η(yτv ), τ2v)

− 1
2W,221[y, y](ψ, τ2η(yτv ), τ2v)

)
=W,22[y, y](ζτV − ξτV, ψ)

+
1

τ3

((
W,121[y, y]−W,212[y, y]

)
(ψ, τ2η(yτv ), 1

2τ
2η(yτv )− (ycC − y))

:::::::::::::::::::::::::::::::::::::::::::::::::::

+
(
W,121[y, y]−W,212[y, y]

)
(ψ, τ2η(yτv ), 1

2τ
2v)
)
. (2.56)

For the second equality we employed the identitiesW,211[y, y] −W,122[y, y] = W,121[y, y] −W,212[y, y]
(
:::::
waved

:::::
terms) and−W,221[y, y]−W,222[y, y] =W,121[y, y]+W,122[y, y] (dashed terms) (cf . (2.12)). Now,

the central insight to estimate the equation above stems from the relation∥∥ 1
2τ

2η(yτv )− (ycC − (y + 1
2τ

2v))
∥∥

V
= O(τ4) (2.57)

4As before, we underline related terms in the same line style.
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to be verified below. Intuitively, (2.57) states that the vector ycC−(y+ 1
2τ

2v) attached at the midpoint y+ 1
2τ

2v
of the discrete path Cdisc

τ allows an approximation of the scaled vector 1
2τ

2η(yτv ) of fourth order. Combining
the trivial estimate

∥∥τ2η(yτv )
∥∥

V
= O(τ2) with (2.56) one can immediately deduceW,22[y, y](ζτV−ξτV, ψ) =

O(τ3) and thus ‖ζτV − ξτV‖V = O(τ3).

To prove (2.57), we expand (2.27) in an analogous manner to (2.29) with the variables taken from Table 2.1
for the discrete path Cdisc

τ , which results after some straightforward transformations in

O(τ4) =W,22[y, y](ycC − y, ψ) +W22[y, y](ycC − y, ψ)−W,22[y, y](yτv + τ2η(yτv )− y, ψ)

= −2W,22[y, y]( 1
2τ

2η(yτv )− (ycC − (y + 1
2τ

2v)), ψ) .

We still have to show that the first summand in (2.25) is of order τ3, which readily implies ‖ξτIII − ζτIII‖V =
O(τ3). To this end, we subtract (2.52) from (2.41) and evaluate all energies at the point (yτw, y

τ
w) causing an

error of order τ3, the result is as follows

O(τ3) =W,22[yτw, y
τ
w](ζτIII − ξτIII, ψ) + 1

2W,112[yτw, y
τ
w](ξτIII, ξ

τ
III, ψ)

−W,112[yτw, y
τ
w](τw, ξτIII, ψ) +W,122[yτw, y

τ
w](ξτIII, y

c
B − yτw, ψ)

−W,112[yτw, y
τ
w](ycB − yτw, ψ, ξτII)− 1

2W,122[yτw, y
τ
w](ψ, ξτII, ξ

τ
II)

+
1

τ3

(
W,22[yτw, y

τ
w](τ2η(yτv,w)− τ2η(yτw)) + 1

2W,112[yτw, y
τ
w](ξτI , ξ

τ
I , ψ)

+W,122[yτw, y
τ
w](ξτI , y

c
A − yτw, ψ)−W,112[yτw, y

τ
w](ycA − yτw, ψ, τ2η(yτv,w))

−W,122[yτw, y
τ
w](ψ, τ2v, τ2η(yτv,w))− 1

2W,122[yτw, y
τ
w](ψ, τ2η(yτv,w), τ2η(yτv,w))

)
+

1

2

(
−W,222[yτw, y

τ
w](ζτB(0), τw, ψ)−W,122[yτw, y

τ
w](ζτB(0), τw, ψ)

−W,122[yτw, y
τ
w](τw, ζτB(0), ψ) +W,122[yτw, y

τ
w](ψ, ζτB(0), τw)

)
+

1

τ3

(
−W,22[yτw, y

τ
w](τ2η(zτA(1))− τ2η(zτB(1)), ψ)

+
1

2

(
−W,222[yτw, y

τ
w](τ2η(zτA(1)), τ2v, ψ)−W,122[yτw, y

τ
w](τ2η(zτA(1)), τ2v, ψ)

−W,122[yτw, y
τ
w](τ2v, τ2η(zτA(1)), ψ) +W,122[yτw, y

τ
w](ψ, τ2η(zτA(1)), τ2v)

))
. (2.58)

Following the same line of arguments as above, one can infer that all summands in (2.58) apart from the first
are of order τ3, which proves thatW,22[yτw, y

τ
w](ζτIII − ξτIII, ψ) = O(τ3) and thus ‖ζτIII − ξτIII‖V = O(τ3).

The theorem follows from (2.24) and (2.25).

This concludes the proof of the convergence of the discrete curvature tensor.

2.3.3 Numerical Results
In this subsection, we will examine the approximation error of the discrete curvature tensor in the case of smooth
two-dimensional manifolds embedded in R3, namely the sphere S2 and the torus T2.

Before discussing the discrete approximation, let us very briefly derive an explicit formula for the curvature
tensor for a finite-dimensional Riemannian manifold (M, g) (this exposition is based on [Sak96, Kli95]). For a
fixed basis ( ∂

∂y1
, . . . , ∂

∂yn
) of the tangent space TyM, let ξ, η, ν ∈ X(M) be smooth vector fields with ξ = ξi ∂

∂yi
,

η = ηi ∂
∂yi

and ν = νi ∂
∂yi

.5 The Christoffel symbols of the second kind are defined as

Γki,j = 1
2g
kl(gli,j + glj,i − gij,l) ,

where gij = g( ∂
∂yi

, ∂
∂yj

), gij,l = ∂lgij , and gij denotes the (i, j)-component of the inverse of the matrix gij . In
this case, the covariant derivative can be computed as follows

∇ξη = (ξiηjΓki,j + ξi∂iη
k) ∂
∂yk

.

5We will frequently use the Einstein summation convention.
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By iterating this formula we obtain a representation for the second order covariant derivative, i.e.

∇ν∇ξη = (νl(ξiηjΓmi,j + ξi∂iη
m)Γkl,m + νl∂l(ξ

iηmΓki,m + ξi∂iη
k)) ∂

∂yk
.

Since [ξ, ν] = (ξi∂iν
j−νi∂iξj) ∂

∂yj
, one can easily derive a formula for the curvature tensor R(ξ, ν)η = ∇ξ∇νη−

∇ν∇ξη − ∇[ξ,ν]η in terms of the coefficients of the vector fields and the Christoffel symbols. We recall that the
sectional curvature for a two-dimensional subspace σ of the tangent space TyM with basis (ξ, η) is defined as

Kσ(ξ, η) =
g(R(ξ, η)η, ξ)

g(ξ, ξ)g(η, η)− g(ξ, η)2
,

which coincides with the Gaussian curvature for two-dimensional embedded manifolds.
The parameterizations of the sphere S2 and the torus T2 (with 0 < r < R) that we will consider in all further

computations are given in Table 2.2 along with the metric tensors and non-vanishing Christoffel symbols, where
we assumed the parameterizations X to be injective (by possibly shrinking the domains if required). Throughout
this subsection, we choose r = 1 and R = 2. Clearly, V and Y coincide with R2 and are endowed with the
standard Euclidean norm.

Sphere S2 Torus T2

parameterization X((y1, y2))

 r sin y1 cos y2

r sin y1 sin y2

r cos y1


 (R+ r cos y2) cos y1

(R+ r cos y2) sin y1

r sin y2


metric tensor g((y1, y2))

(
r2 0

0 (r sin y1)2

) (
(R+ r cos y2)2 0

0 r2

)

non-vanishing Christoffel symbols Γki,j
Γ1

2,2 = − sin y1 cos y1, Γ1
1,2 = Γ1

2,1 = − r sin y2

R+r cos y2
,

Γ2
1,2 = Γ2

2,1 = cot y1 Γ2
1,1 = (R+r cos y2) sin y2

r

Table 2.2: Parameterizations, metric tensor and (non-vanishing) Christoffel symbols of the sphere and the torus.

The numerical approximation of the Riemann curvature tensor essentially amounts to computing parallel trans-
ports using Schild’s ladder taking into account the energy W as an approximation of the corresponding metric
(cf . (H2)). In all examples, we either consider the particular energy

W[y, ỹ] = |X(ỹ)−X(y)|2 , (2.59)

which quantifies the elastic energy in a spring joining the points y and ỹ measured in the topology of the space R3,
or

W[y, ỹ] = gy(ỹ − y, ỹ − y) , (2.60)

which can be regarded as a non-symmetric approximation of the metric g. The relation (2.10) justifies that both
energies are indeed suitable approximations of the metric g.

To compute the discrete geodesic of length 3 in order to retrieve the midpoint of the geodesic parallelogram,
an unconstrained trust region solver (cf . [CGT00, Algorithm 6.1.1]) is employed to minimize

M̊ 3 ỹ 7→ W[ypk−1, ỹ] +W[ỹ, yk]

in the second step of the construction (2.16). Furthermore, the calculation of the one-step extrapolation (third
step in (2.16)) is based on an unconstrained Newton minimization with an Armijo step size control applied to the
functional

M̊ 3 ỹ 7→ W,2[yk−1, y
c
k] +W,1[yck, ỹ] .

Both optimizations are stopped if the V-norm of two consecutive iterates is below 10−20.
Figure 2.4 depicts four log-log-plots relating ‖Rτ (v, w)η(y)− R(v, w)η(y)‖V to τ , where we use the smooth

vector field η((y1, y2)) = (−2 sin(y1) + y2,−4y2)T . It turns out that in all settings the discrete curvature tensor
is capable of approximating the curvature tensor with an error of order τ for sufficiently small τ . However, the
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quantity of the error significantly depends on the setting. Moreover, it is revealed that the energy (2.59) outperforms
the energy (2.60) in terms of the approximation error in all situations considered. We emphasize that the linear
order of convergence cannot be observed for larger time steps τ since many convergence results involved in the
numerical approximation of the curvature tensor are purely local. On the other hand, our method fails for very
small time steps due to the insufficient precision of floats of type long double (with 18 significant decimal
digits) resulting from the large scaling factors appearing in (2.22), which can be easily remedied using an arbitrary
precision arithmetic at the expense of additional computation time.

The first drawing in Figure 2.5 depicts the exact sectional (or Gaussian) curvature of the torus. Furthermore,
the second and third drawing show the local approximation error |Kσ(e1, e2)−Kτ

σ(e1, e2)| for τ = 5 · 10−2 and
τ = 5 · 10−3, respectively. Here, Kτ

σ(e1, e2) denotes the discrete sectional curvature given by

Kτ
σ(e1, e2) =

2W,22[y, y](Rτ (e1, e2)e2, e1)

W,22[y, y](e1, e1)W,22[y, y](e2, e2)−W,22[y, y](e1, e2)2

and e1, e2 denote the unit vectors in V. As a result, the maximum local error roughly decreases with a rate of
order τ as expected (cf . Theorem 2.3.5) and the approximation error significantly varies depending on y2.

2.4 Conclusion and Outlook
In this chapter, we have developed a novel discrete approximation of the Riemann curvature tensor incorporating
constructions of the time discrete geodesic calculus and provided a rigorous convergence analysis. So far, we
solely analyzed the convergence properties for smooth embedded hypersurfaces numerically, but we are aiming at
extending this construction to more general manifolds, shape spaces or subdivision surfaces. A key prerequisite
for the applicability to these more general settings is the existence of a sufficiently smooth metric and vector field.

One of the main advantages of the proposed construction of the discrete curvature tensor clearly arises from
its versatility since we do neither restrict to n-dimensional manifolds for a fixed n ∈ N nor to the measurement
of a specific notion of curvature like Gaussian or Ricci as required in many other approaches. Instead, our pro-
posed method is capable of computing the curvature tensor on infinite-dimensional Hilbert manifolds provided
that the functional analytic Assumption 2.2.1 holds true, which significantly enlarges the variety of possible ap-
plications. Furthermore, we highlight that the computation time for the discrete curvature tensor at a given point
in the manifold is (approximately) independent of the time step τ and thus of the precision. For instance, the
computation time for each of the examples shown in Figure 2.5 containing 12.500 data points was less than one
second (CPU: 3.40 GHz, four parallel threads).

The major drawback of the entire construction stems from the smoothness assumptions w.r.t. the metric, the
energy and the vector field (cf . (H3’) and (H4’)), which limit the scope of potential applications. However, some
numerical examples indicate that these smoothness assumptions can be slightly weakened. A further drawback
emerges from the strong requirements w.r.t. the precision of the floating point arithmetic, which can be easily
remedied by passing to an arbitrary precision arithmetic at the expense of additional computation time.

Finally, let us remark that there are strong theoretical as well as numerical evidences that Rτ (v, w)η is capable
of approximating R(v, w)η even if v and w are smooth non-constant vector fields.
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Figure 2.4: The values of ‖Rτ (v, w)η(y)− R(v, w)η(y)‖V in relation to τ for four different settings using
η((y1, y2)) = (−2 sin(y1) + y2,−4y2)T and the energies (2.59) (blue, •) and (2.60) (red, �) are displayed.
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Figure 2.5: The color coded sectional curvature of the torus (first image) as well as the local approximation error
|Kσ(e1, e2)−Kτ

σ(e1, e2)| for τ = 5 · 10−2 (second image) and τ = 5 · 10−3 (third image) using the energy (2.59)
are shown.
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Chapter 3

Time Discrete Geodesic Curves in the
Space of Images

IN this chapter, the space of images is considered as a Riemannian manifold from the perspective of the meta-
morphosis approach originally proposed by Miller, Trouvé and Younes [MY01, TY05a, TY05b]. The meta-
morphosis model (as a special kind of image morphing) is an extension of the flow of diffeomorphism model,

in which each image particle is transported along a flow determined by a diffeomorphism and the underlying metric
solely measures the Eulerian velocity associated with the flow. As an extension, the metamorphosis model allows
the variation of image intensities along trajectories of the flow, which is reflected by a squared material derivative
in the energy functional.

The particular contribution of this chapter is the development of a variational time discretization of the path
energy in the metamorphosis model and the study of its convergence behavior. Here, we focus on the analysis of
time discrete geodesic paths defined as minimizers of the discrete path energy (2.7), in which each pairwise energy
functional W is composed of regularization terms for the deformations resulting from registration problems and
a squared L2-penalization of the image variation of consecutive images. The existence of time discrete geodesic
paths can be proven for bounded input images and a local existence result is established for square-integrable input
images. The Mosco-convergence of a suitable time interpolation of the discrete path energy to the continuous
metamorphosis energy functional is presented for square-integrable image paths, which in particular implies an
alternative existence result for geodesics in the continuous case. Two different spatial discretization schemes – a
nonconforming scheme based on finite elements as well as a conforming spatial discretization incorporating cubic
splines respectively bilinear finite elements to model the discrete deformations and images – are introduced and an
alternating algorithm is derived to approximate discrete geodesics numerically. In the final section, several com-
putational results demonstrate the robustness and efficiency of the proposed discretization schemes to approximate
time discrete geodesic curves. This chapter is a significantly extended version of the publication [BER15] (joint
work with Benjamin Berkels and Martin Rumpf).

The structure of this chapter is as follows: A short survey of the flow of diffeomorphism approach and the time
continuous metamorphosis model as well as an overview of related work are contained in Section 3.1. Picking up
the ideas of the variational time discretization presented in Section 2.2, we define the time discrete metamorphosis
model in Section 3.2. A physical motivation for the particular choice of the time continuous and time discrete path
energies is contained in Section 3.3. The proof of the existence of time discrete geodesic curves as minimizers
of the time discrete path energy is deferred to Section 3.4. In Section 3.5, the Mosco-convergence is proven for a
suitable time interpolation of the time discrete path energy to its continuous counterpart. Two spatial discretization
schemes and an alternating update algorithm for the computation of time discrete geodesic curves are proposed
in Section 3.6. Qualitative and quantitative properties of this algorithm are analyzed in Section 3.7 for several
applications to artificial and real test data. Finally, we briefly comment on three extensions of the time discrete
metamorphosis model, namely Bézier curve in the space of images, applications to medical data using a GPU
acceleration, and image extrapolation using the discrete exponential map in the space of images (cf . Section 3.8).

37
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3.1 Review of the Metamorphosis Model and Related Work

3.1.1 Flow of Diffeomorphism Model
In this subsection, we will introduce the flow of diffeomorphism model (cf . [Arn66, AK98, DGM98, BMTY05,
JM00, MTY02]) which can be viewed as a primary stage of the metamorphosis model to be introduced in Sub-
section 3.1.2. Heuristically, for two input images or shapes one tries to compute an energetically optimal family
of diffeomorphisms that transports each particle smoothly from the start image at time t = 0 to the end image at
time t = 1, where the energy solely depends on the velocity field associated with the family of diffeomorphisms.
The resulting flow thus defines a one-to-one correspondence to the image intensity values for each sample point
t ∈ [0, 1], which is also known as image warping.

For the rest of this chapter, we assume Ω ⊂ Rn for n ∈ {2, 3} to be a bounded and strongly Lipschitz domain.
In this setting, a one-parameter group or family of diffeomorphisms is a smooth map ψ : [0, 1]×Ω→ Ω such that
for all s, t ∈ [0, 1] with s+ t ∈ [0, 1] and x ∈ Ω the map ψ(s, · ) is diffeomorphic and ψ(s, ψ(t, x)) = ψ(s+ t, x).
Arnold [Arn66, AK98] combined this family of diffeomorphisms approach with Lie group methods to describe the
temporal evolution of fluids. In what follows, we are aiming at applying analogous methods to two fixed image
intensity functions uA, uB ∈ L2(Ω). In particular, we will study the temporal change of the image intensities
u(t) = uA ◦ ψ−1(t, · ) along the family of diffeomorphisms ψ : [0, 1]× Ω→ Ω that minimizes the path energy

E [ψ] =

∫ 1

0

gψt(ψ̇t, ψ̇t) dt ,

where ψt(x) = ψ(t, x) and ψ̇t(x) = ∂tψ(t, x). Here, the associated metric gψt is given by

gψt(ψ̇t, ψ̇t) =

∫
Ω

L[v(t, x), v(t, x)] dx

with v(t, x) = ψ̇t ◦ ψ−1
t (x) representing the Eulerian velocity of the underlying flow and L defining a quadratic

form corresponding to a higher order elliptic operator to be specified below. Dupuis et al. [DGM98, Section 2]
proved that any mapping ψ : [0, 1]×Ω→ Ω is a family of diffeomorphisms if ψ(0) = ψA and ψ(1) = ψB for fixed
diffeomorphisms ψA, ψB : Ω → Ω, the metric gψt is H3(Ω)-coercive and E [ψ] < ∞. Moreover, any minimizing
sequence of paths has a uniformly converging subsequence and the limiting minimizing path ψ and its associated
velocity field v satisfy ψ̇t(x) = v(t, ψ(t, x)) for every t ∈ [0, 1] and x ∈ Ω (cf . [DGM98, Theorem 3.1]).

For the rest of this chapter, we consider the following specific choice of L:

L[v(t, x), v(t, x)] =
λ

2
(tr(ε[v(t, x)]))2 + µtr(ε[v(t, x)]2) + γ|Dmv(t, x)|2 , (3.1)

where ε[v] = (∇v)sym = 1
2 (∇v +∇vT ) denotes the symmetric part of the gradient, m > 1 + n

2 and λ, µ, γ > 0.
The fact that a rotational flow does not lead to any friction is reflected by the sole dependency on the symmetric part
of the gradient ε[v] in the lower order terms of L since velocity fields associated with infinitesimal rotations have
skew-symmetric gradients. In other words, this model is invariant under rigid body motions which are generated
by motion fields v with spatially constant, skew-symmetric gradient, for which ε[v] = 0 and Dmv = 0. The
spatially integrated terms

∫
Ω

(tr(ε[v(t, x)]))2 dx and
∫

Ω
tr(ε[v(t, x)]2) dx roughly quantify the average change of

volume and length induced by v, respectively (cf . [Cia88]). By combining Korn’s inequality (cf . Theorem 1.1.3)
applied to the lower order terms in L with the classical Gagliardo–Nirenberg inequality (cf . Theorem 1.1.2) one
can immediately infer the H3-coercivity of gψt for the elliptic operator (3.1), which implies that any mapping
ψ : [0, 1]× Ω→ Ω with finite path energy such that ψ(0, · ) and ψ(1, · ) are diffeomorphic is actually a family of
diffeomorphisms. For a physical motivation of the particular choice of L we refer to Section 3.3.

3.1.2 Time Continuous Metamorphosis Model
In the flow of diffeomorphism approach, it is assumed that each image particle moves along the motion paths
induced by the family of diffeomorphisms without any change of the intensity. The metamorphosis approach pro-
posed by Miller and Younes [MY01], Trouvé and Younes [TY05b, TY05a] allows in addition for image intensity
variations along these motion paths. In this case, the metric of the metamorphosis model additionally incorporates
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the material derivative D
∂tu = u̇+∇u ·v of the image path u, which quantifies the temporal change of the intensity

of the image particle, as a penalization term with penalization parameter δ > 0. Intuitively, the metamorphosis
model combines image warping with blending in an energetically optimal way.

Before discussing the metamorphosis model in its full generality, let us define preliminary versions of the
metric and the induced path energy in the metamorphosis model as follows:

gu(u̇, u̇) = min
v∈Hm(Ω)∩H1

0 (Ω)

∫
Ω

L[v, v] +
1

δ
(u̇+∇u · v)2 dx , (3.2)

E [u] =

∫ 1

0

gu(u̇(t), u̇(t)) dt . (3.3)

The term L[v, v] appearing in (3.2) (using the particular choice of the elliptic operator specified in (3.1)) quantifies
the cost of the underlying transport, whereas the expression 1

δ (D∂tu)2 penalizes the variation of the image intensity
along the trajectories. However, these definitions are not appropriate for at least two reasons:

(P1) Due to u̇ = D
∂tu − ∇u · v it becomes apparent that the same temporal change u̇ in the image intensity can

be implied by different motion fields v and different associated material derivatives D
∂tu.

(P2) The classical definition of the material derivative present in the metric (3.2) requires image paths that are dif-
ferentiable in time and in space. Commonly, image paths do not exhibit any classical smoothness properties,
that is why g is not well-defined.

To remedy these issues and to rigorously define the metric (3.2) as well as the path energy (3.3), we will employ a
local construction proposed by Trouvé and Younes [TY05a], in which a nonlinear geometric structure on the space
of images L2(Ω) := L2(Ω,R) is developed. In detail, the starting point of this nonlinear geometric structure is the
definition of the equivalence class ∼ of pairs (v, D∂tu) as tangent vectors in the space of images. Here, two pairs

(v, D∂tu) and (ṽ, D̃∂tu) are equivalent if and only if they imply the same temporal change u̇. Hence, to evaluate the
metric on such tangent vectors one has to minimize over all elements of this equivalence class.

In what follows, we will present a simplified version of this approach by Trouvé and Younes tailored to our
specific setting. Throughout this chapter, we assume that Ω ⊂ Rn, n ∈ {2, 3}, is a bounded and strongly Lipschitz
domain, and γ, δ, λ, µ > 0 are fixed parameters. We denote by B = Hm(Ω,Rn) ∩H1

0 (Ω,Rn), m > 1 + n
2 , the

space of motion fields and refer to L2(Ω,R) as the space of weak material derivatives. Furthermore, we endow the
space W = B × L2(Ω,R) with the norm ‖w‖W = ‖v‖Hm(Ω) + ‖z‖L2(Ω) for w = (v, z) ∈ W . By considering
a suitable quotient space of W we can rigorously define the tangent space for any u ∈ L2(Ω) and thus solve the
issue addressed in (P1):

Definition 3.1.1 (Tangent space of an image). For an image u ∈ L2(Ω), we define the nonlinear structure

Nu =

{
w = (v, z) ∈W :

∫
Ω

zη + udiv(ηv) dx = 0 ∀η ∈ C∞c (Ω)

}
.

The tangent space at u is defined as TuL2(Ω) = {u} × W/Nu and elements in this tangent space, which are
in the same equivalence class, are denoted by γ = (u, (v, z)). The space TuL2(Ω) is endowed with the norm
‖γ‖ = inf{‖w‖W : γ = (u,w)}. The associated tangent bundle is given by

TL2(Ω) =
⋃

u∈L2(Ω)

TuL
2(Ω) ,

and the canonical projection onto the image manifold is defined as π : TL2(Ω)→ L2(Ω), TuL2(Ω) 3 (u,w) 7→ u.

Next, we define the weak material derivative for an image path and introduce the concepts of differentiable and
regular curves in the space of images (cf . [TY05a]):

Definition 3.1.2. Let u ∈ L2([0, 1], L2(Ω)) be an image curve and v ∈ L2([0, 1],B) a velocity field.
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(i.) A function z ∈ L2([0, 1], L2(Ω)) is the weak material derivative associated with the image path u and the
velocity field v if ∫ 1

0

∫
Ω

ηz dxdt = −
∫ 1

0

∫
Ω

(∂tη + div(vη))udxdt (3.4)

for all η ∈ C∞c ([0, 1]× Ω).

(ii.) The image curve u is said to be continuously differentiable (denoted by u ∈ C1([0, 1], L2(Ω))) if u ∈
C0([0, 1], L2(Ω)) (using the standard L2(Ω)-topology), a curve w = (v, z) ∈ C0([0, 1],W ) exists such that
for any η ∈ C∞c (Ω) the mapping t 7→

∫
Ω
u(t)η dx is continuously differentiable and

d

dt

(∫
Ω

u(t)η dx

)
=

∫
Ω

z(t)η + u(t)div(ηv(t)) dx . (3.5)

The function z is the weak material derivative of the curve {t 7→ γ(t) = (u(t), (v(t), z(t)))} ∈ TL2(Ω) if
(3.5) holds true for all t ∈ [0, 1].

(iii.) The image curve u is defined to be regular in the space of images (denoted by u ∈ H1([0, 1], L2(Ω))) if
u ∈ C0([0, 1], L2(Ω)), a measurable path γ : [0, 1] → TL2(Ω) with π(γ(t)) = u(t), t ∈ [0, 1], exists such
that

∫ 1

0
‖γt‖2 dt <∞ and

−
∫ 1

0

∫
Ω

u∂tη dx dt =

∫ 1

0

∫
Ω

zη + udiv(ηv) dxdt (3.6)

for all η ∈ C∞c ([0, 1]× Ω).

It turns out that the continuous differentiability of an image curve implies its regularity.

Proposition 3.1.3. Every continuously differentiable curve in the space of images is regular, i.e.

C1([0, 1], L2(Ω)) ⊂ H1([0, 1], L2(Ω)) .

Proof. See [TY05a, Proposition 4].

Based on these preliminaries we can now provide the rigorous definition of the path energy for the metamor-
phosis model, which does not suffer from the problems addressed in (P1) and (P2).

Definition 3.1.4 (Path energy for the (time continuous) metamorphosis model). The path energy for the metamor-
phosis model evaluated at a regular image curve u ∈ H1([0, 1], L2(Ω)) is

E [u] =

∫ 1

0

inf
(v,z)∈Tu(t)L2(Ω)

∫
Ω

L[v, v] +
1

δ
z2 dxdt . (3.7)

Here, L is the quadratic form defined in (3.1).

Note that the elliptic operator L[v, v] is coercive on B, which is a direct consequence of Korn’s inequality 1.1.3,
and the underlying manifold lacks a Hilbert structure.

Definition 3.1.5 (Geodesic curve in the space of images). Let uA, uB ∈ L2(Ω) be arbitrary input images. A
regular curve u ∈ H1([0, 1], L2(Ω)) with u(0) = uA and u(1) = uB such that

E [u] = inf
{
E [ũ] : ũ ∈ H1([0, 1], L2(Ω)), ũ(0) = uA, ũ(1) = uB

}
(3.8)

is called a geodesic curve in the space of images.

A crucial property of the time continuous metamorphosis model is the existence of geodesic curves for arbitrary
square-integrable input images uA and uB .
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Theorem 3.1.6 (Existence of geodesic curves). For arbitrary images uA, uB ∈ L2(Ω) there exists a minimizing
regular curve for the path energy E , i.e. a curve u ∈ H1([0, 1], L2(Ω)) satisfying (3.8). Moreover, the infimum
in (3.7) is attained for all t ∈ [0, 1], i.e. there exists a minimizing curve (v(t), z(t)) ∈ Tu(t)L

2(Ω).

Proof. The existence of a geodesic path follows from [TY05a, Theorem 6] by noting that B compactly embeds
into C1,α

c (Ω) for α < m− 1− n
2 , and the addendum follows from Theorem 3.1.8.

This embedding property of B also guarantees the existence of a global flow associated with each motion field:

Theorem 3.1.7. Let v ∈ L2([0, 1],B). Then there exists a global flow ψ ∈ H1([0, 1],B) such that ψ(0, x) = x
and

ψ(t, x) =

∫ t

0

v(s, ψ(s, x)) ds+ x

for a.e. x ∈ Ω and all t ∈ [0, 1]. In particular, ψ(t, · ) is a homeomorphism for all t ∈ [0, 1].

Proof. See [DGM98, TY05a, Tro95].

In the proof of the Mosco-convergence, we will frequently use the subsequent equivalent formulation of reg-
ular curves that allows to express the image u(t, · ) in terms of the deformed initial image u(0, ψt,0( · )) and a
contribution of the weak material derivative at deformed positions (cf . (3.9)):

Theorem 3.1.8. An image curve u is regular (i.e. u ∈ H1([0, 1], L2(Ω))) if and only if there exists w = (v, z) ∈
L2([0, 1],W ) such that

u(t, x) = u(0, ψt,0(x)) +

∫ t

0

z(s, ψt,s(x)) ds , (3.9)

where ψ is the global flow associated with v (see Theorem 3.1.7) and ψt,s = ψ(s, ψ−1(t, · )) for s, t ∈ [0, 1].

Proof. See [TY05a, Theorem 2 and Lemma 6].

Notation 3.1.9. Let k ∈ N and α ∈ [0, 1]. The norms for f ∈ C0([0, 1], Ck,α(Ω)) and g ∈ L∞([0, 1], Ck,a(Ω))
are given by

‖f‖C0([0,1],Ck,α(Ω)) = sup
t∈[0,1]

‖f(t, · )‖Ck,α(Ω) ,

‖g‖L∞([0,1],Ck,α(Ω)) = inf
N⊂[0,1]:|N |=0

sup
t∈[0,1]\N

‖g(t, · )‖Ck,α(Ω) .

The next theorem provides a uniform bound for the global flow ψ in C1,α(Ω) with an upper bound solely
depending on the norm of the associated motion field:

Theorem 3.1.10. Let v ∈ L1([0, 1],B) with global flow ψ and α ∈ [0,m− 1− n
2 ). Then

‖ψ‖C0([0,1],C1,α(Ω)) ≤ C̃ exp

(
C

∫ 1

0

‖v(s, · )‖C1,α(Ω) ds

)
, (3.10)

‖ψ−1‖C0([0,1],C1,α(Ω)) ≤ C̃ exp

(
C

∫ 1

0

‖v(s, · )‖C1,α(Ω) ds

)
. (3.11)

If α > 0, the constant C̃ additionally depends on
∫ 1

0
‖∇v(s, · )‖C0,α(Ω) ds.

Proof. The first inequality (3.10) follows from [TY05a, Lemma 7] and relies on Gronwall’s inequality when con-
sidering the C0([0, 1], C1(Ω))-norm on the left-hand side and the Hm(Ω)-norm in the exponent on the right-hand
side. We remark that the generalization to the C1,α(Ω)-norm in the exponent only requires minor modifications.
In what follows, we will only sketch the proof of (3.10) when employing the C0([0, 1], C1,α(Ω))-norm on the
left-hand side.
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Let i ∈ {1, . . . , n}, t ∈ (0, 1) and x, y ∈ Ω. Taking into account the aforementioned result we can assume
‖ψ‖C0([0,1],C1(Ω)) ≤ C(v) = C exp

(
C
∫ 1

0
‖v(s, · )‖C1,α(Ω) ds

)
. Then, a nonrigorous computation yields∣∣ d

dt |∂iψ(t, x)− ∂iψ(t, y)|
∣∣ ≤ |∇v(t, ψ(t, x)) · ∂iψ(t, x)−∇v(t, ψ(t, y)) · ∂iψ(t, y)|

≤ |∇v(t, ψ(t, x))−∇v(t, ψ(t, y))| |∂iψ(t, x)|+ |∇v(t, ψ(t, y))| |∂iψ(t, x)− ∂iψ(t, y)|

≤ C‖∇v(t, · )‖C0,α(Ω)‖ψ‖
1+α

C0([0,1],C1(Ω))
|x− y|α + ‖∇v(t, · )‖C0(Ω)|∂iψ(t, x)− ∂iψ(t, y)|

≤ C(v)1+α‖∇v(t, · )‖C0,α(Ω)|x− y|
α + ‖∇v(t, · )‖C0(Ω)|∂iψ(t, x)− ∂iψ(t, y)| .

Here, ∂i refers to the ith spatial partial derivative. Thus,

d

dt

(
exp

(
−
∫ t

0

‖∇v(s, · )‖C0(Ω) ds

)
|∂iψ(t, x)− ∂iψ(t, y)|

)
≤ C(v)1+α‖∇v(t, · )‖C0,α(Ω) exp

(
−
∫ t

0

‖∇v(s, · )‖C0(Ω) ds

)
|x− y|α

≤ C(v)1+α‖∇v(t, · )‖C0,α(Ω)|x− y|
α . (3.12)

The integration of both sides of (3.12) w.r.t. t yields

exp

(
−
∫ t

0

‖∇v(s, · )‖C0(Ω) ds

)
|∂iψ(t, x)− ∂iψ(t, y)|

≤ |∂iψ(0, x)− ∂iψ(0, y)|︸ ︷︷ ︸
=0

+C(v)1+α

∫ 1

0

‖∇v(t, · )‖C0,α(Ω) dt|x− y|α ,

which readily implies (3.10). This proof can be further generalized to C0([0, 1], Ck,α(Ω))-norms provided that
m is sufficiently large. Moreover, the inequality (3.11) follows from (3.10) by noting that ψ−1(t, · ) is the flow
associated with the (backward) motion field −v(1− t, · ).

The mapping that associates with each motion field the corresponding global flow is weakly continuous in the
following sense:

Theorem 3.1.11. The mapping L2([0, 1],B)→ C1([0, 1]×Ω,Rn) that associates with each Eulerian motion field
v ∈ L2([0, 1],B) the corresponding global flow ψ ∈ C1([0, 1] × Ω,Rn) is continuous w.r.t. the weak topology
in L2([0, 1],B) and the L∞([0, 1], C0(Ω))-topology in C1([0, 1]× Ω,Rn).

Proof. See [TY05a, Theorem 9].

3.1.3 Related Work
Let us conclude this section with an overview of the literature for the flow of diffeomorphism and the metamor-
phosis model. Moreover, we will present some related publications dealing with numerical methods for optimal
transport that are to some extent related to the metamorphosis approach. A comprehensive overview of these topics
is given in the excellent books by Younes [You10] and Santambrogio [San15] as well as in the review article by
Miller, Trouvé and Younes [MTY15], for a historic account we additionally refer to [MTY02].

Flow of diffeomorphism. The flow of diffeomorphism approach alongside the large deformation diffeomorphic
metric mapping (LDDMM) framework were initiated by Christensen et al. [CRM96], Dupuis et al. [DGM98]
and Trouvé [Tro95, Tro98], and proved to be powerful tools to rigorously examine the diffeomorphic change of
coordinates ψ(1, · ) such that uA ◦ ψ−1(1, · ) = uB for two images uA, uB . The associated variational problem
leads to the prototype image matching functional

inf

{∫ 1

0

‖v(t, · )‖V dx+ dist(uA ◦ ψ−1(1, · ), uB) : ∂tψ(t, · ) = v(t, ψ(t, · )) ∀t ∈ [0, 1], ψ(0, · ) = 1

}
,
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where ‖ · ‖V is a suitable norm in the space of velocity fields and dist is a distance in the space of images,
which might coincide with the discrete metric (in the topological sense). Trouvé [Tro95, Tro98] constructed a
distance in the space of deformations by exploiting Lie group methods, where deformations are viewed as ac-
tions of an infinitesimal transformation group on images. In [JM00], Joshi and Miller applied this framework to
(inexact and exact) landmark matching, where landmarks are sets of labeled points in a Euclidean space. Beg et
al. [BMTY05] studied Euler–Lagrange equations for minimizing vector fields in the LDDMM framework and pro-
posed an efficient algorithm incorporating a gradient descent scheme and a semi-Lagrangian method to integrate
the velocity fields. Miller et al. [MTY06] proved the conservation of the initial momentum in Lagrangian coordi-
nates associated with a geodesic in the LDDMM framework, which allows for geodesic generation via shooting.
Younes [You07] used Jacobi fields in the flow of diffeomorphism approach to derive gradient descent methods for
the path energy. In [HZN09], Hart et al. examined an optimal control perspective of the LDDMM model which
possesses a natural extension to image manifolds. Vialard and Santambrogio [VS09] investigated the flow of diffeo-
morphism approach for images in the space of functions of bounded variation. Vialard et al. [VRRC12, VRRH12]
studied methods from optimal control theory to accurately estimate the initial momentum and established a rela-
tion to the Hamiltonian formulation of the geodesic flow. Furthermore, they used the associated Karcher mean to
compute intrinsic means of medical images. One of the earliest applications of this approach to medical data was
proposed in [BMTY02], where the diffeomorphisms represent deformations of anatomic reference structures.

Metamorphosis model. As already mentioned earlier, the metamorphosis model can be regarded as a generaliza-
tion of the aforementioned flow of diffeomorphism model, in which deformable templates (in our case the images)
are additionally allowed to vary in time. Miller and Younes [MY01] introduced a left-invariant distance on the
set of registered objects defined as the product space of a transformation group and the family of images, which
allows variations of the image intensities in addition to changes of the geometry. Trouvé and Younes [TY05b]
rigorously introduced the metamorphosis metric in the space of images and analyzed the geodesic equation for this
metric as well as the temporal evolution of the velocity field and the material derivative. In [TY05a], Trouvé and
Younes examined the local geometry of the resulting Riemannian manifold and proved the existence of geodesic
curves for square-integrable images and the (local) existence as well as the uniqueness of solutions to the initial
value problem for the geodesic equation in the case of weakly differentiable images. Holm et al. [HTY09] studied
a Lagrangian formulation for the metamorphosis model and proved existence for both the boundary value and
the initial value problem in the case of measure-valued images. Based on the previous approach, Richardson and
Younes [RY16] proposed a robust shooting method for images contained in a reproducing kernel Hilbert space.
Charon et al. [CCT16] generalized the metamorphosis model to functional shapes representing scalar-valued sig-
nals such as curves or finite-dimensional submanifolds. Hong et al. [HJS+12] proposed a metamorphosis regres-
sion model and developed a shooting method to reliably recover initial momenta. Richardson and Younes [RY13]
extended the metamorphosis framework to discrete measures and provided a rigorous analysis of singularities that
can be generated along the geodesic path.

Optimal transport. The metamorphosis model shares certain similarities with optimal transport, in which image
intensity functions are frequently considered as probability measures. One of the most prominent approaches to
tackle the optimal transport problem numerically is due to Benamou and Brenier [BB00], who proposed a flow
reformulation of the Kantorovich problem using methods from continuum mechanics, where the mass preserv-
ing condition is encoded in the continuity equation. Based on these ideas, Papadakis et al. [PPO14] proposed a
staggered grid discretization for the fluid mechanics formulation by Benamou and Brenier and employed proximal
splitting algorithms to solve the resulting optimization problem numerically. Furthermore, they approximated an
optimal transport problem on a Riemannian manifold using spatially varying weights. In [MRSS15], Maas et al.
introduced a variational time discretization in the context of the Benamou–Brenier optimal transport formulation,
which shares several similarities with the time discrete metamorphosis model to be presented below, in particular
w.r.t. the rough structure of the time discrete energy functional, the spatial discretization and the numerical opti-
mization method. Fitschen et al. [FLS16] proposed two variational models to numerically characterize the optimal
transport of RGB images, where the first model relies on Papadakis’ approach to treat the continuity equation as
a constraint and the second problem penalizes the continuity equation following roughly the ansatz by Maas and
coworkers. Peyré [Pey15] examined a novel scheme to approximate gradient flows associated with the Wasser-
stein metric numerically taking into account an entropy regularization, in which the resulting convex optimization
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problem involves the Kullback–Leibler divergence. Zhang et al. [ZYHT07] minimize the Monge–Kantorovich
functional over all mass preserving mappings using an improved gradient descent method, which allows, for in-
stance, image morphing of color images.

3.2 Variational Time Discretization of the Metamorphosis Model

The aim of this section is the rigorous definition of the discrete analog of the (time continuous) path energy (3.7)
in the metamorphosis model based on the variational time discretization approach presented in Section 2.2. After-
wards, we will discuss two distinct energy density functions that will also be employed in the numerical simula-
tions.

3.2.1 Variational Time Discretization of the Path Energy

As in the (time) continuous metamorphosis model, we suppose that γ, δ > 0,m > 1+ n
2 , and Ω ⊂ Rn, n ∈ {2, 3},

is a bounded and strongly Lipschitz domain throughout the rest of this chapter. Then, the (time) discrete pairwise
energy for two images u, ũ ∈ I is given by

W[u, ũ] = min
φ∈A

{
WD[u, ũ, φ] =

∫
Ω

W(Dφ) + γ|Dmφ|2 +
1

δ
(ũ ◦ φ− u)2 dx

}
. (3.13)

Here, A is the set of admissible deformations defined as

A = {φ ∈ Hm(Ω,Ω) : det(Dφ) > 0 a.e. in Ω , φ = 1 on ∂Ω } . (3.14)

Furthermore, I is the space of images, which is either the space of square-integrable or essentially bounded func-
tions (for details see Section 3.4), and W is an energy density function. We refer to the function φ − 1 as the
displacement associated with φ ∈ A. In the subsequent sections it will become apparent that the assumptions
w.r.t. W to prove the existence of time discrete geodesic curves and the Mosco-convergence vary depending on the
image space I. We collect all potential assumptions in the following list:

(W1) W : Rn,n → R+
0 , W ∈ C4(GL+(n)) is polyconvex and

W(1) = 0 , DW(1) = 0 ,

(W2) W(A) ≥ β0(det(A))−s − β1 for β0, β1 > 0, s > n − 1 and every invertible matrix A with det(A) > 0,
W(A) =∞ for det(A) ≤ 0,

(W3) the following consistency assumption with respect to the differential operator L holds true:

1

2
D2W(1)(A,A) =

λ

2
(trA)2 + µtr

(
(Asym)

2
)
∀A ∈ Rn,n , (3.15)

(W4) W(A) ≥ CW,1|Asym−1|2 if |A−1| < rW, W(A) ≥ CW,2 if |A−1| ≥ rW for CW,1, CW,2, rW > 0 and
all A ∈ GL+(n).

Remark 3.2.1. (i.) The first condition in (W4) can be replaced by W(A) ≥ CW,1|A−1|2 without any substantial
effect on the theory to be presented below.

(ii.) For the definition of polyconvexity and for a motivation of the special structure (3.15) of the Hessian of the
energy density we refer to Subsection 3.2.2 and Section 3.3. We merely note that the particular form of the
Hessian is required to guarantee the consistency of W with the quadratic form L.

(iii.) The variational problem (3.13) is a special instance of an elastic registration (see [BK89, FM04]).
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In Section 3.4, we will prove that the discrete energy W is well-defined in the sense that the minimum in (3.13)
is actually attained for any images u, ũ ∈ L∞(Ω) provided that (W1) and (W2) are valid. In this case, the
minimizing deformation φ ∈ A is a homeomorphism, but not necessarily a diffeomorphism. On the other hand,
if u, ũ ∈ L2(Ω) are sufficiently close in L2(Ω) and (W1) as well as (W4) are satisfied, then the existence of a
minimizing deformation φ ∈ A in (3.13) can be established and φ is a C1(Ω)-diffeomorphism. In other words, no
interpenetration of matter can occur in a deformation field φ that belongs to A.

Departing from the discrete pairwise energy functional W , one can define for any discrete (K + 1)-path
u = (u0, . . . , uK) ∈ IK+1, K ≥ 1, the discrete path energy and discrete geodesics in the same way as in
Definition 2.2.6 for general Hilbert manifolds:

Definition 3.2.2 (Discrete path energy and discrete geodesics in the metamorphosis model). Let u0 = uA, uK =
uB ∈ I and K ≥ 1. The discrete path energy EK for a discrete (K + 1)-path u = (u0, . . . , uK) ∈ IK+1 is
defined as

EK [u] := K

K∑
k=1

W[uk−1, uk] . (3.16)

A discrete geodesic for the images uA and uB is a discrete (K + 1)-path that minimizes EK over all discrete
curves u = (uA, û, uB) ∈ IK+1 with û = (u1, . . . , uK−1) ∈ IK−1. Furthermore, for u ∈ IK+1 and Φ =
(φ1, . . . , φK) ∈ AK we set

ED
K [u,Φ] := K

K∑
k=1

WD[uk−1, uk, φk] . (3.17)

Remark 3.2.3. (i.) Due to (W1) and (W3), the Taylor expansion of the first summand in (3.13) has the form∫
Ω

W(Dφ) dx =

∫
Ω

λ

2
(tr(Dφ− 1)sym)2 + µtr

(
((Dφ− 1)sym)

2
)

dx+O
(
‖Dφ− 1‖3L3(Ω)

)
. (3.18)

Thus, the first two summands of the energy on the right-hand side of (3.13) approximately scale quadratically
for small displacements φ− 1. This already motivates the coefficient K in front of the discrete path energy
since we expect the displacements to scale linearly in the time step τ = 1

K . For a rigorous justification, we
refer to the proof of Theorem 3.5.6.

(ii.) When minimizing the discrete path energy, two opposing effects can be observed: the first two terms ap-
proximately quantify the deviation of each minimizing deformation φ1, . . . , φK from the identity, whereas
the last term measures the intensity variation of successive images uk−1 and uk contained in the minimizing
discrete path u = (u0, u1, . . . , uK) along the discrete transport path

(x, φ1(x), (φ2 ◦ φ1)(x), . . . , (φK ◦ · · · ◦ φ1)(x))

and thereby forces each deformation to properly transport image features resulting in non-constant displace-
ments.

(iii.) The reverse path (uK , uK−1, . . . , u0) of a minimizing path u = (u0, u1, . . . , uK) is in general no minimizer
of EK with boundary data u0 = uB and uK = uA.

Let us briefly recall the notions of polyconvexity and quasiconvexity as well as their relation to the weak lower
semicontinuity of functionals tailored to our specific functional for n = 3, from which the case n = 2 easily
follows. This exposition is based on [Dac08].

Definition 3.2.4. (i.) A function f : R3,3 → R is polyconvex if there exists a convex function F : R3,3×R3,3×
R→ R such that f(A) = F (A, cof(A),det(A)) for every A ∈ R3,3.

(ii.) A Borel measurable and locally bounded function f : R3,3 → R is quasiconvex if for all bounded and open
sets Ω′ ⊂ R3, all A ∈ R3,3 and all g ∈W 1,∞

0 (Ω′,R3) the following inequality holds true:

f(A) ≤ −
∫

Ω′
f(A+Dg) dx .
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Proposition 3.2.5. Let f : R3,3 → R. Then

f convex ⇒ f polyconvex ⇒ f quasiconvex .

Proof. See [Dac08, Theorem 5.3].

The most important reason to introduce these notions of convexity originates from the weak lower semiconti-
nuity of quasiconvex functionals. We highlight that under suitable assumptions the weak lower semicontinuity of
a functional is actually equivalent to the quasiconvexity of the integrand.

Proposition 3.2.6. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary, 1 ≤ p < ∞ and f : R3,3 → R
be a quasiconvex and L3-a.e. continuous function. Set I(g) =

∫
Ω
f(Dg) dx for g ∈ W 1,p(Ω,R3). Then I is

(sequentially) lower semicontinuous in W 1,p(Ω,R3), i.e. for every sequence {gk}k∈N ⊂ W 1,p(Ω,R3) such that
gk ⇀ g in W 1,p(Ω,R3) the inequality

lim inf
k→∞

I(gk) ≥ I(g)

holds true.

Proof. See [Dac08, Theorem 8.11].

3.2.2 Two Examples of Energy Density Functions
In this subsection, we introduce two particular energy density functions that will be used in the numerical appli-
cations (cf . Section 3.6): an energy density representing an Ogden-type material as well as a simplified energy
density, which is numerically beneficial but does neither comply with (W2) nor with (W3).

The Ogden-type material. In this paragraph, we briefly introduce an Ogden-type material which is compatible
with the Assumptions (W1)-(W4).

One can show (cf . [Cia88, Theorem 4.8-1]) that no convex function Ŵ : GL+(n) → R exists such that
Ŵ(A) → ∞ as det(A) ↘ 0 (sometimes referred to as compression response), which in particular implies that
there is no convex energy density function satisfying (W2). Clearly, polyconvex functions can satisfy the axiom of
compression response, e.g. Ŵ(A) = det(A)−s for s > 0.

A class of energy density functions which is particularly well suited for our applications are Ogden-type mate-
rials, which are hyperelastic materials with a stored energy function of the form (cf . [Cia88, Section 4.9/4.10])

Ŵ(A) =

M∑
i=1

aitr(A
TA)

αi
2 +

N∑
j=1

tr(cof(ATA))
βj
2 + Γ(det(A))

for n = 3 with ai > 0, αi, βj ≥ 1 (1 ≤ i ≤ M , 1 ≤ j ≤ N ) and Γ : R+ → R a convex function such that
limx↘0 Γ(x) = ∞. In the case n = 2, we consider in the numerical examples to be shown in Section 3.7 the
following particular choice of an energy density representing an Ogden-type material:

W(A) = a1

(
tr(ATA)

)q
+ a2(det(A))r + a3(det(A))−s + a4 (3.19)

for A ∈ R2,2, parameters q, r ≥ 1 and s > n− 1, and coefficients

a1 =
2−qµ

q
, a2 =

λ+ µ− µq − µs
r2 + rs

,

a3 =
λ+ µ− µq + µr

rs+ s2
, a4 =

µ
(
q2 − rs− q(1 + r − s)

)
− λq

qrs
.

It is possible to choose for given λ, µ > 0 the parameters q, r, s such that the coefficients a1, a2 and a3 are positive,
which ensures the polyconvexity of W. We highlight that this particular W is isotropic, homogeneous, polyconvex
and frame indifferent (cf . Subsection 3.3.1). In particular, for such a choice of parameters the Assumptions (W1)-
(W4) are satisfied and the third term appearing in (3.19) ensures the required response of the energy on strong
compression.
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The simplified energy density. As a second choice of an energy density function W, we consider a quadratic
penalization of the displacements, i.e.

W(A) = |A− 1|2 , (3.20)

which is associated with the quadratic formL[v, v] = Dv : Dv+γ∆v·∆v. This energy density is termed simplified
energy density since it does neither comply with (W2) nor with (W3). Nevertheless, an optimal deformation for the
pairwise energy induced by the energy density (3.20) exists (see Theorem 3.4.11 below with minor modifications).
This very basic model represents a simple thin plate spline regularization (see [MF03]).

3.3 Review of the Physical Background

This section is devoted to the elucidation of the physical background of the energies involved in the time continuous
as well as the time discrete metamorphosis model. We recall that the energy in the flow of diffeomorphism ap-
proach, which coincides with the contribution of the regularization terms in the (time continuous) metamorphosis
model, is given by

ψ 7→
∫ 1

0

∫
Ω

λ

2
(tr(ε[v(t, x)]))2 + µtr(ε[v(t, x)]2) + γ|Dmv(t, x)|2 dxdt (3.21)

for v(t, x) = ψ̇t ◦ ψ−1
t (x) and ε[v] = (∇v)sym. Likewise, by taking into account (3.18) and neglecting the

remainder one can express the regularization terms for the pairwise deformations contributing to the path energy
of the time discrete metamorphosis model as follows

ẼK [Φ] = K

K∑
k=1

∫
Ω

λ

2
(tr(Dφk − 1)sym)2 + µtr

(
((Dφk − 1)sym)

2
)

+ γ|Dmφk|2 dx (3.22)

for Φ ∈ AK . Despite the seemingly similar shape of both energies there exist various fundamental conceptual
differences from a physical perspective that we will focus on below. To this end, recall that in this thesis shapes are
viewed as boundaries of geometric objects (represented by domains) in the ambient (Euclidean) space (cf . Sub-
section 2.2.1). Following [RW11], the shape space inherent in the flow of diffeomorphism or the time continuous
metamorphosis model is path-based, in which each shape represents a viscous fluid object, and the energy (3.21)
quantifies the dissipation in a multipolar viscous fluid. Vice versa, each shape in the time discrete metamorphosis
model can be interpreted as an elastic object of a state-based shape space, where the path energy (3.22) is the
stored energy function of a hyperelastic material. Heuristically, both perspectives, that we will elaborate on in the
next subsections, are connected by Rayleigh’s paradigm [Ray45], which states that to derive an energy penalizing
viscous dissipation from an elastic energy one has to exchange strains of the elastic material by strain rates of the
viscous fluid. Moreover, in the special case of the metamorphosis energy, both perspectives are consistent in the
limit K → ∞ due to the Mosco-convergence to be presented in Section 3.5. The structure of this section is as
follows: in Subsection 3.3.1 and Subsection 3.3.2 we will briefly review fundamental facts of elasticity theory and
fluid mechanics to an extent required for the comparison of both perspectives (see Subsection 3.3.3).

3.3.1 Foundations of Elasticity Theory

In this subsection, we briefly recall some fundamental concepts from elasticity theory to motivate the shape of the
energy (3.22), the references for this subsection are [Cia88, MH83]. The following exposition is tailored to n = 3
with small modifications for n = 2.

Let D ⊂ R3 be a bounded domain with smooth boundary, which we refer to as the reference configuration
since it is assumed not to be subjected to any form of deformation. A deformation in the sense of elasticity theory
is a smooth and injective (apart from the boundary) orientation-preserving vector field φ : D → R3. By deforming
the reference configuration D with the deformation φ we obtain the deformed configuration Dφ = φ(D). One
of the most fundamental results in continuum mechanics is the Euler–Cauchy stress principle, which asserts that
if the reference configuration is subjected to applied body forces fφ ∈ L2(Dφ,Rn) or applied surface forces
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gφ ∈ L2(∂Dφ,Rn), then a vector field tφ : Dφ × Sn−1 → Rn (known as Cauchy stress vector) exists such that
for any open subdomain D̃ ⊂ Dφ with smooth boundary the following equations hold true:

tφ(xφ,nφ) = gφ(xφ) for all xφ ∈ ∂D̃ ∩ ∂Dφ ,∫
D̃

fφ dxφ +

∫
∂D̃

tφ(xφ, ñφ) daφ = 0 , (3.23)∫
D̃

xφ × fφ dxφ +

∫
∂D̃

xφ × tφ(xφ, ñφ) daφ = 0 , (3.24)

where dxφ = det(∇φ) dx and daφ = |cof(∇φ)n|dHn−1 denote the volume and area element in the deformed
configuration, respectively. Furthermore, nφ respectively ñφ are the outer normals of ∂D̃ ∩ ∂Dφ and ∂D̃. The
equations (3.23) and (3.24) are the axioms of force balance and momentum balance, respectively. Now, a funda-
mental theorem by Cauchy guarantees the existence of a symmetric tensor field Tφ : Dφ → Rn,n (called Cauchy
stress tensor) such that

tφ(xφ, a) = Tφ(xφ)a , −div(Tφ(x̂φ)) = fφ(x̂φ) , Tφ(x̃φ)nφ = gφ(x̃φ)

for all xφ ∈ Dφ, x̂φ ∈ Dφ, x̃φ ∈ ∂Dφ and a ∈ S2, where nφ denotes the unit outer normal of ∂Dφ. The
associated tensor in the reference configuration is the first Piola–Kirchhoff stress tensor defined as T(x) =
Tφ(φ(x))cof(∇φ(x)) for all x ∈ D.

The constitutive equation of an elastic material states that there exist response functions T̂ and T̂D associated
with T and Tφ such that one of the equivalent relations

T(x) = T̂(x,∇φ(x)) , Tφ(φ(x)) = T̂D(x,∇φ(x))

holds true for any x ∈ D and for any deformation φ, which means that the deformations only affect the stress ten-
sors via their gradients. The elastic material satisfies the axiom of frame-invariance if the equality T̂D(x,OA) =

OT̂D(x,A)OT is valid, and the elastic material is said to be isotropic if T̂D(x,AO) = T̂D(x,A) for all x ∈ D,
A ∈ GL+(n) and O ∈ SO(n). Furthermore, the material is homogeneous if the response function is indepen-
dent of the position in the reference configuration, i.e. Tφ(φ(x)) = T̂D(∇φ(x)), and the reference configura-
tion of a material is referred to as a natural state if the response function vanishes in undeformed regimes, i.e.
T̂(x,1) = T̂D(x,1) = 0 for all x ∈ D. Likewise, these properties can be equivalently expressed in terms of the
second Piola–Kirchhoff stress tensor Σ(x) = ∇φ−1(x)T(x) with corresponding elastic response function Σ̂, i.e.
Σ(x) = Σ̂(x,∇φ(x)) for all x ∈ D.

According to the Rivlin–Ericksen representation theorem (cf . [RE55]) the response function of an isotropic
material with frame-invariance of the observer admits the particular representation

Σ̂(x,∇φ(x)) = c0(x, ιC)1+ c1(x, ιC)C + c2(x, ιC)C2 ,

where C = ∇φT∇φ is the associated right Cauchy–Green strain tensor, c0, c1 and c2 are scalar-valued func-
tions depending on the principal invariants ιC = (tr(C), cof(C),det(C)) of C. As a direct consequence of this
representation theorem, the response function of the second Piola–Kirchhoff stress tensor for a frame-invariant,
homogeneous and isotropic material, whose reference configuration is a natural state, has the particular form

Σ̂(A) = Σ̃(E) = λtr(E)1 + 2µE + o(E) (3.25)

for all A ∈ GL+(n) and E ∈ Rn,n such that ATA = 1 + 2E, where λ and µ are called Lamé constants. An
elastic material is a Saint Venant–Kirchhoff material if the remainder in (3.25) vanishes for all E.

Furthermore, hyperelastic materials are elastic materials for which there exists a sufficiently smooth function
Ŵ : D×GL+(n)→ R (stored energy function) such that T̂(x,A) = ∂Ŵ(x,A)

∂A for all x ∈ D and allA ∈ GL+(n).
One can show that the Saint Venant–Kirchhoff material is hyperelastic with stored energy density function given
by

Ŵ(A) = W̃(E) =
λ

2
tr(E)2 + µtr(E2)

for all A ∈ GL+(n) and E ∈ Rn,n such that ATA = 1 + 2E, which already motivates the particular expression
for the Hypothesis (W3) and thus the lower order terms in (3.22).
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3.3.2 Some Fundamental Concepts in Fluid Mechanics

In this subsection, we very briefly clarify some notions in fluid mechanics in order to motivate the shape of the
energy (3.21) (see [Bat99, MOHR13, CM90, MWS06, RW11] and the references therein for further details).

The dissipation is a measure of the rate at which any form of internal energy (in most cases kinetic energy
and potential energy due to gravitational body forces) is (irreversibly) converted into thermal energy. Moreover,
the viscosity of a fluid quantifies the resistance of the fluid to shear if the fluid is subjected to external motion. In
detail, assume that a fluid is enclosed between a stationary and a uniformly moving plate of infinite size such that
the velocities of the fluid and the plates coincide at the interfaces (see Figure 3.1). We denote by τ(x) the tangential
shear stress of any infinitesimally small volume element of the fluid as depicted by the magnifying lens. Then the
viscosity η(x) of a homogeneous fluid is defined as the ratio of the shear stress and the tangential velocity gradient
∂
∂x2

vtangent(x), i.e. η(x) = τ(x)( ∂
∂x2

vtangent(x))−1 for x = (x1, x2).

τ

τ

fluid

vtangent

vtangent(x2)

x1

x2

stationary plate

moving plate

τ

τ

fluid

vtangent

vtangent(x2)

x1

x2

stationary plate

moving plate

Figure 3.1: Flow between parallel plates to illustrate viscosity, figure adapted from [HB67].

A Newtonian fluid is a fluid with a viscosity that is spatially constant and thus results in a stress tensor that
linearly depends on the velocity gradient. One can verify that the stress tensor of an isotropic Newtonian fluid is
λtr(ε[v])1 + 2µε[v] with v denoting the velocity, ε[v] = (∇v)sym and λ, µ are Lamé constants as before. Here,
only the symmetric components of the velocity gradient affect the stress tensor because the antisymmetric parts
generate infinitesimal rotations and are therefore ruled out. Moreover, in the case of an incompressible fluid the
first summand vanishes due to tr(ε[v]) = divv = 0. Since the stress tensor coincides with the first variation of the
local rate of (viscous) dissipation, this rate is given by

diss[v] = λ
2 (tr(ε[v]))2 + µtr((ε[v])2) (3.26)

for isotropic Newtonian fluids, and the associated path-dependent total dissipation along the velocity field is char-
acterized as

Diss[v] =

∫ 1

0

∫
Ω

diss[v(t, x)] dx dt .

Heuristically, the dissipation can be viewed as an infinitesimal indicator for (internal) energy since infinitesimal
displacements inside the fluid result in stresses caused by friction, which are instantaneously absorbed by dissi-
pation. Nečas and Šilhavý [NŠ91] (based on earlier work by Green and Rivlin [GR64b, GR64a]) observed that
in many fluid dynamic applications it is more appropriate to model the stress of a fluid as a function additionally
involving higher order derivatives of the velocity field, that is why they derived constitutive equations for multi-
polar viscous fluids, in which higher order derivatives of the velocity field are added to the usual second order
stress tensor. In our case, the multipolarity is mathematically reflected by the additional integrand γ|Dmv(t, x)|2
appearing in the energy (3.21). We observe that the associated induced metric reads as

g(v, ṽ) =

∫
Ω

λ
2 (tr(ε[v]))(tr(ε[ṽ])) + µtr(ε[v]ε[ṽ]) + γDmv : Dmṽ dx . (3.27)

To sum up, the energy (3.21) admits the physical interpretation as a dissipation density in a multipolar viscous
fluid.
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3.3.3 Path- and State-Based Shape Spaces
In the previous subsections we derived the particular energies (3.21) and (3.22) from a physical point of view. In
this subsection, we will contrast path- with state-based shape spaces in more detail, the main reference for this
subsection is [RW11].

As we have already defined at the beginning of this section, shapes in the path-based shape space should be
considered as viscous fluid objects occupying a certain subdomain of Ω, where one can assume void outside this
subdomain without restriction. Any path in this shape space determines the shape at any time t ∈ [0, 1], and
the path energy corresponding to two shapes at different time points is clearly path-dependent. Moreover, the
metric (3.27) induces a Riemannian distance which is actually a metric. Indeed, if v is a minimizing velocity field
associated with the Riemannian distance of two shapes (e.g. images) uA and uB , then a minimizing velocity field
associated with the Riemannian distance of uB and uA is obtained by the inversion v(t) y −v(1− t).

In contrast, in state-based shape spaces one regards shapes as elastic objects – potentially encompassed by
a relatively soft material for theoretical reasons – subjected to elastic deformations, and a discrete path in such a
shape space (cf . Definition 2.2.3) solely determines each shape at the discrete time points k

K , k ∈ {0, . . . ,K}. This
in particular implies that the induced path energy (3.22) only incorporates the shape structures at these discrete time
points and ignores all other points. Furthermore, this energy is in general not symmetric (i.e. ẼK [(φ1, . . . , φK)] 6=
ẼK [(φK , . . . , φ1)]), albeit one could pass to the symmetrized energy 1

2 (ẼK [(φ1, . . . , φK)] + ẼK [(φK , . . . , φ1)]).
Finally, by restricting, for instance, to the case K = 1 one can define the following dissimilarity measure in the
flow of diffeomorphism approach dist(uA, uB) = minφ∈A:φ(uA)=uB Ẽ1[φ], where we tacitly assume that the
minimizer is actually attained and finite. Unfortunately, this dissimilarity measure is in general not expected to
satisfy a triangle inequality and thus does not induce a canonical Riemannian distance.

Interestingly, both energies (3.21) and (3.22) solely depend on derivatives of the velocity field and the defor-
mations, respectively, which is immediate from the very definitions of viscous dissipation and elasticity.

3.4 Existence of Time Discrete Geodesics
In what follows, we will prove the existence of discrete geodesic curves u = (u0, u1, . . . , uK) ∈ IK+1 for fixed
K ≥ 2 and fixed end points u0 = uA ∈ I and uK = uB ∈ I (see Theorem 3.4.11). To this end, we will first
verify in Proposition 3.4.2 the well-posedness ofW , i.e. for two images u, ũ ∈ I a minimizing deformation φ ∈ A
of the variational problem (3.13) exists. Then, we will show in Proposition 3.4.8 that there exists a unique vector
û ∈ IK−1 minimizing

IK−1 3 ũ 7→ ED
K [(uA, ũ, uB),Φ]

for given end points uA, uB ∈ I and a given vector of deformations Φ ∈ AK . Finally, the combination of both
propositions yields the existence theorem for time discrete geodesics.

Throughout this subsection, there are two different settings present to ensure the existence of minimizing
images or deformations:

(i.) If the image space I coincides with the space of essentially bounded functions L∞(Ω), then the input
images need not satisfy any additional assumptions, but the minimizing deformations are in general only
homeomorphic and not necessarily diffeomorphic.

(ii.) In the case I = L2(Ω), we either have to impose the L2(Ω)-closeness of the input images or the strict
positivity of the determinants of all deformation gradients, which immediately implies that all minimizing
deformations are indeed C1(Ω)-diffeomorphisms.

The homeomorphism and diffeomorphism properties are consequences of the following theorem:

Theorem 3.4.1 (Global invertibility of smooth and Sobolev functions). Let Ω ⊂ Rn be strongly Lipschitz and
bounded.

(i.) Let f̂ ∈ C0(Ω,Rn) be injective. If f ∈ C0(Ω,Rn) ∩ C1(Ω,Rn) satisfies

det(Df(x)) > 0 , f(y) = f̂(y)

for all x ∈ Ω and all y ∈ ∂Ω, then f : Ω→ f(Ω) is a homeomorphism, f : Ω→ f(Ω) is a diffeomorphism
and f̂(Ω) = f(Ω) as well as f̂(Ω) = f(Ω) hold true.
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(ii.) Let f̂ ∈ C0(Ω,Rn) be injective in Ω and f ∈ W 1,q(Ω,Rn), q > n, be a function such that f
∣∣
∂Ω

= f̂
∣∣∣
∂Ω

and det(Df(x)) > 0 for a.e. x ∈ Ω. Then f̂(Ω) = f(Ω) and |{x ∈ f(Ω) : #(f−1(x)) > 1}| = 0.
Moreover, if f̂(Ω) is strongly Lipschitz and∫

Ω

|(Df)−1|q det(Df) dx <∞

holds true, then f : Ω→ f(Ω) is a homeomorphism, f−1 ∈W 1,q(f(Ω)) and∫
f(Ω)

∣∣∂i(f−1)j
∣∣q dy ≤

∫
Ω

|cof(Df)j,i|q(det(Df))1−q dx for all 1 ≤ i, j ≤ n .

Finally, the change of variables formula∫
Ω′
g ◦ f det(Df) dx =

∫
f(Ω′)

g dy (3.28)

is valid for any measurable set Ω′ ⊂ Ω and any measurable function g : Rn → R provided that one of the
integrals in (3.28) exists.

Proof. (i.) is due to [Cia88, Theorem 5.5-2] and (ii.) was shown in [Bal81, Theorem 1 and Theorem 2].

Let us begin with the proof of the well-posedness ofW .

Proposition 3.4.2 (Well-posedness ofW). Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded and strongly Lipschitz domain.

(i.) Let u, ũ ∈ I := L∞(Ω). Under the assumptions (W1) and (W2), there exists a minimizing deformation
φ ∈ A of the variational problem (3.13), i.e.W[u, ũ] =WD[u, ũ, φ], and φ : Ω→ Ω is a homeomorphism.

(ii.) Let u ∈ I := L2(Ω). Under the assumptions (W1) and (W4), there exists a constant CW > 0 depending on
Ω, m, n, γ, δ, CW,1, CW,2 and rW such that for every

ũ ∈
{
v ∈ L2(Ω) : ‖v − u‖L2(Ω) < CW

}
there exists a minimizing deformation φ ∈ A of (3.13) and φ is a C1(Ω,Ω)-diffeomorphism.

Proof. The proof employs the direct method in the calculus of variations (see [Dac08]).

ad (i.): For fixed u, ũ ∈ L∞(Ω), let {φj}j∈N ⊂ A be a minimizing sequence for φ 7→ WD[u, ũ, φ] that converges
to W = infφ∈AWD[u, ũ, φ]. Using (W1) and 1 ∈ A we can assume without restriction

0 ≤W ≤ WD[u, ũ, φj ] ≤W :=WD[u, ũ,1] = 1
δ ‖ũ− u‖

2
L2(Ω) <∞ ∀j ∈ N . (3.29)

Thus, taking into account the boundedness of Ω we can deduce that {φj}j∈N is uniformly bounded in L2(Ω),
and due to |φj |2Hm(Ω) ≤

W
γ we can infer the uniform boundedness of the minimizing sequence w.r.t. the

Hm(Ω)-seminorm. Then, the Gagliardo–Nirenberg inequality for bounded domains (see Theorem 1.1.2)
implies the uniform boundedness of this minimizing sequence in Hm(Ω). Since Hm(Ω,Ω) is reflexive,
there exists a weakly convergent subsequence (again denoted by φj) such that φj ⇀ φ in Hm(Ω), and by
using the Sobolev Embedding Theorem 1.1.4 as well as the Arzelà–Ascoli Theorem we can additionally
infer that for a subsequence (labeled in the same way) φj → φ in C1,α(Ω) for α ∈ (0,m − 1 − n

2 ) holds
true.

Claim: All deformations φj as well as the limiting deformation φ belong to A and are homeomorphisms.

For sufficiently small ε > 0 set Sε = {x ∈ Ω : det(Dφ) ≤ ε}. Then,

β0ε
−s|Sε| ≤ β0

∫
Sε

(det(Dφ))−s dx

≤
∫
Sε

W(Dφ) dx+ β1|Ω| ≤ lim inf
j→∞

∫
Sε

W(Dφj) dx+ β1|Ω| ≤W + β1|Ω| .



52 3 Time Discrete Geodesic Curves in the Space of Images

For the first inequality we used the definition of the set Sε, the second inequality follows from (W2), the
third inequality can be deduced from (W1) in combination with Proposition 3.2.6, and the final inequality is
a direct consequence of the estimate (3.29). Hence,

|Sε| ≤
(W + β1|Ω|)εs

β0
, (3.30)

which shows |S0| = 0 and thus det(Dφ) > 0 Ln-a.e. in Ω as well as φ ∈ A. Due to (W2) and A−1 =
cof(A)T

det(A) for A ∈ GL(n) we can additionally infer for q = s+ 1 > n that∫
Ω

|(Dφ)−1|q det(Dφ) dx =

∫
Ω

|cof(Dφ)T |q det(Dφ)−s dx

≤ C‖φ‖q(n−1)

C1(Ω)

∫
Ω

W (Dφ) + β1

β0
dx <∞ . (3.31)

Here, we used the uniform boundedness of Dφ and therefore cof(Dφ) in C0(Ω) due to Theorem 1.1.4.
By taking into account φ ∈ Hm(Ω) as well as φ ∈ W 1,q(Ω), which again follows from Theorem 1.1.4,
Theorem 3.4.1 (ii.) implies that the deformation φ is actually homeomorphic and the W 1,q(Ω)-seminorm of
the inverse deformation φ−1 is bounded from above by the qth root of the last expression in (3.31). Likewise,
by an analogous reasoning taking into account supj∈N ‖φj‖

q(n−1)

C1(Ω)
≤ C we can infer that {φj}j∈N are also

homeomorphisms and |(φj)−1|qW 1,q(Ω) can be uniformly controlled using the corresponding version of the
right-hand side of (3.31) as an upper bound. This proves the claim.

Claim: The mismatch functional ‖ũ ◦ φj − u‖L2(Ω) converges to ‖ũ ◦ φ− u‖L2(Ω) as j →∞.

By using the uniform boundedness of the mismatch functionals we estimate∣∣∣∣∫
Ω

(ũ ◦ φj − u)2 − (ũ ◦ φ− u)2 dx

∣∣∣∣
≤
∫

Ω

(|ũ ◦ φj − u|+ |ũ ◦ φ− u|)|ũ ◦ φj − ũ ◦ φ|dx

≤
(
‖ũ ◦ φj − u‖L2(Ω) + ‖ũ ◦ φ− u‖L2(Ω)

)
‖ũ ◦ φj − ũ ◦ φ‖L2(Ω)

≤ 2
√
δW‖ũ ◦ φj − ũ ◦ φ‖L2(Ω) .

To estimate the last expression on the right-hand side, we approximate ũ in L2(Ω) by a sequence of smooth
functions {ũi}i∈N ⊂ C∞(Ω) such that ‖ũ− ũi‖L2(Ω) ≤ 2−i and ‖ũi‖L∞(Ω) ≤ C‖ũ‖L∞(Ω), and by passing
to a subsequence (also denoted by ũi) we can assume that ũi converges to ũ for a.e. x ∈ Ω. Then,

‖ũ◦φj − ũ◦φ‖L2(Ω) ≤ ‖ũ◦φj − ũi ◦φj‖L2(Ω) +‖ũi ◦φj − ũi ◦φ‖L2(Ω) +‖ũi ◦φ− ũ◦φ‖L2(Ω) . (3.32)

Let ε > 0 be sufficiently small and set Sε,j = {x ∈ Ω : det(Dφj) < ε}. Using the same line of arguments
as in the derivation of (3.30) we deduce that a continuous function ω : R+

0 → R+
0 exists such that ω(0) = 0

and |Sε,j | ≤ ω(ε) for all j ∈ N. Next, we will derive an upper bound for the first summand on the right-hand
side of (3.32). To this end, we employ the transformation formula, the homeomorphism property of φj as
well as the Cauchy–Schwarz inequality in the following way:

‖ũ ◦ φj − ũi ◦ φj‖2L2(Ω) =

∫
Ω

(ũ− ũi)2 det(D(φj)−1) dx =

∫
Ω

(ũ− ũi)2 1

det((Dφj) ◦ (φj)−1)
dx

≤ ‖ũ− ũi‖2L∞(Ω)

∫
φj(Sε,j)

1

det((Dφj) ◦ (φj)−1)
dx+

1

ε

∫
Ω\φj(Sε,j)

(ũ− ũi)2 dx

≤ ‖ũ− ũi‖2L∞(Ω)|φ
j(Sε,j)|

1
2 ‖(det((Dφj) ◦ (φj)−1))−1‖L2(Ω) +

1

ε

∫
Ω

(ũ− ũi)2 dx . (3.33)

Below, we will estimate the Lebesgue measure of φj(Sε,j). To this end, we apply the Besicovitch Covering
Theorem (see [Bog07, Corollary 5.8.3]) to cover the open set Sε,j by an at most countable collection of
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nonempty and open balls {Bk}k∈N ⊂ Sε,j with radii {rk}k∈N such that Bk ∩ Bl = ∅ for k 6= l and
|Sε,j\Bε,j | = 0 for Bε,j =

⋃
k∈NBk. The following result is due to [HK14]: let f ∈ W 1,p(Ω) with p > n

and B ⊂ Ω a ball with radius rB . Then |f(B)| ≤ Cr
n(1−np )

B |f |nHp(B). Hence, since {φj}j∈N ⊂ W 1,q(Ω)
we can deduce

|φj(Sε,j)| = |φj(Bε,j)| =
∑
k∈N
|φj(Bk)| ≤

∑
k∈N

Cr
n(1−nq )

k |φj |nHq(Bk)

≤ C

(∑
k∈N

rnk

)1−nq (∑
k∈N
|φj |qHq(Bk)

)n
q

≤ C

(∑
k∈N

rnk

)1−nq

|φj |nHq(Ω) (3.34)

≤ Cω(ε)1−nq . (3.35)

The first inequality in (3.34) is due to Hölder’s inequality with parameters (1 − n
q )−1 and q

n . Since all
deformations are uniformly bounded w.r.t. the W 1,q(Ω)-seminorm one can readily obtain (3.35). Alterna-
tively, an upper bound for the Lebesgue measure of the set φj(Sε,j) could have been derived by exploiting
the C1,α(Ω)-regularity of the deformations using standard techniques. However, in the proof of Proposi-
tion 3.4.8 one additionally requires an upper bound of the Lebesgue measure of the preimage set φ−1(S) for
a measurable set S ∈ Ω, which readily follows from (3.35). Since the inverse deformations in general only
exhibit a W 1,p(Ω)-regularity for p > n, the standard result is not applicable.

Finally, to estimate the L2-norm of the determinant of the inverse deformations appearing in (3.33) we
proceed as follows:

‖(det((Dφj) ◦ (φj)−1))−1‖2L2(Ω) =

∫
Ω

1

det(Dφj)
dx (3.36)

≤
∫

Ω

(det(Dφj))−s + 1 dx ≤
∫

Ω

W(Dφj) + β1

β0
+ 1 dx ≤ W + β1|Ω|

β0
+ |Ω| =: C(Ω,W) . (3.37)

To derive (3.36) we employ the transformation formula, and the estimates in (3.37) rely on (W2) noting that
s > n− 1 (recall that we always assume n ≥ 2). By combining (3.33), (3.35) and (3.37) we finally achieve

‖ũ ◦ φj − ũi ◦ φj‖2L2(Ω) ≤ C
√
C(Ω,W)‖ũ− ũi‖2L∞(Ω)ω(ε)

1
2 (1−np ) +

1

ε

∫
Ω

(ũ− ũi)2 dx .

Thus, by first choosing ε > 0 sufficiently small and then passing to the limit i→∞ we have proven that the
first summand on the right-hand side of (3.32) converges to 0 independently of j. Likewise, by an analogous
reasoning we can immediately infer that the last term also converges to 0. Finally, for fixed i and ε the middle
term in (3.32) vanishes for j →∞ due to the smoothness of ũi and the convergence of φj to φ in C1,α(Ω).
This proves the claim.

Let us conclude the proof of the lower semicontinuity of the discrete energy along the sequence φj . To this
end, for ε > 0 we choose j0 ∈ N such that

WD[u, ũ, φj ] ≤ WD[u, ũ, φj0 ] ≤W + ε ,∣∣∣∣∫
Ω

(ũ ◦ φj − u)2 − (ũ ◦ φ− u)2 dx

∣∣∣∣ ≤ ε
for all j ≥ j0. By using (W1), Proposition 3.2.6 and Fatou’s lemma, we can infer

W =WD[u, ũ, φ] =

∫
Ω

W(Dφ) + γ|Dmφ|2 +
1

δ
(ũ ◦ φ− u)2 dx

≤ lim inf
j→∞

∫
Ω

W(Dφj) + γ|Dmφj |2 +
1

δ
(ũ ◦ φj − u)2 dx+

ε

δ
≤W + ε+

ε

δ
,

which implies (i.).

ad (ii.): The proof of (ii.) is based on the following lemma:
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Lemma 3.4.3. Under the assumptions (W1) and (W4), there exists a continuous and monotonously increas-
ing function θ : R+

0 → R+
0 with θ(0) = 0 – solely depending on Ω, m, n, γ, CW,1, CW,2 and rW – such

that
‖φ− 1‖Hm(Ω) ≤ θ

(
WD[u, ũ, φ]

)
for all u, ũ ∈ L2(Ω) and all φ ∈ A. Furthermore, θ(x) ≤ C(x+ x2)

1
2 for a constant C > 0.

Proof. Set W = WD[u, ũ, φ]. The Gagliardo–Nirenberg interpolation inequality (cf . Theorem 1.1.2) im-
plies

‖φ− 1‖Hm(Ω) ≤ C(‖φ− 1‖L2(Ω) + |φ− 1|Hm(Ω)) . (3.38)

The Hm(Ω)-seminorm of the displacement can be controlled as follows:

|φ− 1|Hm(Ω) ≤ |φ|Hm(Ω) ≤
√
W
γ , (3.39)

which follows from the definition ofWD. Since φ ∈ Hm(Ω,Ω), this already shows for α ∈ (0,m− 1− n
2 )

‖φ− 1‖C1,α(Ω) ≤ C‖φ− 1‖Hm(Ω) ≤ C + C
√
W . (3.40)

To control the lower order term appearing on the right-hand side of the estimate (3.38), we first define the
set Ω′ = {x ∈ Ω : |Dφ(x)− 1| < rW}. Then, by using (W1) and (W4) we obtain

|Ω\Ω′|CW,2 ≤
∫

Ω

W(Dφ) dx ≤ W ,

which implies |Ω\Ω′| ≤ W
CW,2

. Hence, by taking into account the embedding Hm(Ω) ↪→ C1(Ω) as well as
(3.40) one can deduce∫

Ω

|(Dφ)sym − 1|2 dx =

∫
Ω′
|(Dφ)sym − 1|2 dx+

∫
Ω\Ω′

|(Dφ)sym − 1|2 dx

≤
∫

Ω

W(Dφ)

CW,1
dx+ |Ω\Ω′|

(
C + C

√
W
)2

≤ W
CW,1

+
W
CW,2

(
C + CW

)
.

(3.41)

By applying Korn’s inequality 1.1.3 one can deduce that the left-hand side of (3.41) is an upper bound for
‖φ− 1‖2L2(Ω). Thus, the lemma follows by combining (3.38), (3.39) and (3.41).

In what follows, we solely highlight the differences to the proof of (i.). Let {φj}j∈N ⊂ Hm(Ω) be a
minimizing sequence such that φj ⇀ φ in Hm(Ω) and φj → φ in C1,α(Ω) for α ∈ (0,m − 1 − n

2 ) (see
(i.)). Then, Lemma 3.4.3, (3.29) and Hm(Ω) ↪→ C1(Ω) imply

‖φj − 1‖C1(Ω) ≤ C‖φ
j − 1‖Hm(Ω) ≤ Cθ(WD[u, ũ, φj ]) ≤ Cθ(W) ,

where W = 1
δ ‖ũ− u‖

2
L2(Ω) ≤

C2
W
δ . Thus, by choosing CW sufficiently small we can assume

‖ det(Dφj)− 1‖L∞(Ω) ≤ Cdet (3.42)

for a constant Cdet ∈ (0, 1) and all j sufficiently large. By combining (3.42) and Theorem 3.4.1 (i.) one can
immediately deduce that the limiting deformation φ belongs to A and is C1(Ω)-diffeomorphic.

Claim: The matching functional ‖ũ ◦ φj − u‖L2(Ω) converges to ‖ũ ◦ φ− u‖L2(Ω) as j →∞.

As in the proof of (i.), we approximate ũ by smooth functions and use the decomposition (3.32). It essentially
remains to verify the convergence of ‖ũ ◦φj − ũi ◦φj‖L2(Ω) to 0 for i→∞ and all j. To this end, we apply
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the transformation formula and by taking into account (3.42) and the diffeomorphism property of φj we can
infer for any j sufficiently large

‖ũ ◦ φj − ũi ◦ φj‖2L2(Ω) ≤ ‖det(D(φj)−1)‖L∞(Ω)‖ũ− ũi‖2L2(Ω) ≤
1

1− Cdet
‖ũ− ũi‖2L2(Ω) .

The convergence proof for ‖ũ ◦ φ− ũi ◦ φ‖L2(Ω) is nearly identical, which proves this claim.

The proof of the lower semicontinuity of the discrete energy along the sequence φj proceeds in exactly the
same way as the corresponding proof in (i.), which implies (ii.).

This proves the proposition.

Remark 3.4.4. Proposition 3.4.2 guarantees the existence of an admissible vector of deformations Φ ∈ AK such
that ED

K [u,Φ] = EK [u] provided that each pair of images (uk, uk+1) contained in u = (u0, . . . , uK) ∈ IK+1

satisfies the assumptions of this proposition. If the images u0, . . . , uK are additionally weakly differentiable, the
corresponding system of Euler–Lagrange equations for φk is given by∫

Ω

DW(Dφk) : Dψ + 2γDmφk : Dmψ +
2

δ
(uk ◦ φk − uk−1)(∇uk ◦ φk) · ψ dx = 0

for all 1 ≤ k ≤ K and all test deformations ψ ∈ Hm(Ω,Ω), which is a system of nonlinear partial differential
equations of order 2m.

Before we discuss the existence of discrete geodesics, we first present a partial result, which can be regarded
as a counterpart of Proposition 3.4.2 because it establishes the existence of an energy minimizing vector of im-
ages u for a given vector of deformations Φ. The proof of this partial existence result relies on some fundamental
properties of irreducibly diagonally dominant matrices (see [HJ90, Chapter 6]) to be presented below.

Definition 3.4.5 (Irreducible matrix). A matrix A ∈ Rn,n, n ≥ 2, is said to be reducible if a permutation matrix
P ∈ Rn,n as well as an integer r ∈ {1, . . . , n− 1} exists such that

PTAP =

[
A1 A2

N A3

]
for matrices A1 ∈ Rr,r, A2 ∈ Rr,n−r, A3 ∈ Rn−r,n−r, and the null matrix N ∈ Rn−r,r. A not reducible matrix
is irreducible.

Definition 3.4.6 (Irreducibly diagonally dominant matrix). A matrix A = (Ai,j)1≤i,j≤n ∈ Rn,n, n ≥ 2, is
irreducibly diagonally dominant if A is irreducible and

|Ai,i| ≥
n∑

j=1,j 6=i

|Ai,j | for all 1 ≤ i ≤ n ,

where a strict inequality holds true for at least one row index.

Proposition 3.4.7. Every irreducibly diagonally dominant matrix A ∈ Rn,n is invertible.

Proof. See [HJ90, Corollary 6.2.27].

Proposition 3.4.8. Let K ≥ 2 and assume that (W1) is valid. Furthermore, we fix the vector of deformations
Φ = (φ1, . . . , φK) ∈ AK .

(i.) Let uA, uB ∈ I := L∞(Ω). Then, there exists a unique vector of images u = (u0, . . . , uK) ∈ (L∞(Ω))K+1

with u0 = uA and uK = uB such that

ED
K [u,Φ] = inf

{
ED
K [(uA, û, uB),Φ] : û ∈ IK−1

}
. (3.43)

Moreover, each inner image uk, 1 ≤ k ≤ K − 1, is uniformly bounded in L∞(Ω) by a constant solely
depending on ‖uA‖L∞(Ω) and ‖uB‖L∞(Ω).
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(ii.) Let uA, uB ∈ I := L2(Ω) and

min
k∈{1,...,K}

inf
x∈Ω

det(Dφk(x)) ≥ Cdet (3.44)

for a constant Cdet > 0. Then the unique minimizer u = (u0, . . . , uK) ∈ (L2(Ω))K+1 with u0 = uA and
uK = uB of the variational problem (3.43) is attained.

Proof. We define for x ∈ Ω the discrete transport path X(x) = (X0(x), . . . , XK(x))T ∈ ΩK+1 via X0(x) = x
and Xk(x) = φk(Xk−1(x)) for k ∈ {1, . . . ,K}, and note that the diffeomorphic discrete transport path describes
the temporal evolution of the image particle x.

ad (i.): Consider the minimizing sequence ûj = (uj1, . . . , u
j
K−1) ∈ (L2(Ω))K−1 for the energy

IK−1 3 v̂ 7→ ED
K [(uA, v̂, uB),Φ]

such that

0 ≤ inf
ũ∈(L2(Ω))K−1

ED
K [(uA, ũ, uB),Φ] ≤ ED

K [(uA, û
j , uB),Φ]

≤ ED
K [(uA, (uA, . . . , uA), uB),Φ] =: ED

K .

The upper bound ED
K is finite since

ED
K = K

K∑
k=1

∫
Ω

W(Dφk) + γ|Dmφk|2 dx

+
K

δ

(
K−1∑
k=1

‖uA ◦ φk − uA‖2L2(Ω) + ‖uB ◦ φK − uA‖2L2(Ω)

)

≤ CK
K∑
k=1

(
‖W(Dφk)‖L∞(Ω) + ‖φk‖2Hm(Ω)

)
+ CK2(‖uA‖L∞(Ω) + ‖uB‖L∞(Ω))

2 <∞ .

Next, we prove that each image uk is uniformly bounded in L∞(Ω). The definition of the set A as well as
the proof of Proposition 3.4.2 imply that each deformation φk ∈ Hm(Ω) ↪→ C1(Ω) is a homeomorphism
with φk, φ−1

k ∈ W 1,q(Ω), q > n, and |φk(N)| = 0 as well as |φ−1
k (N)| = 0 for all Lebesgue null sets

N ⊂ Ω using an analogous reasoning as in (3.35). Hence, one can verify by comparison arguments that for
the optimal images uk the inequality

|uk(x)| ≤ gk(x) = max{|uA ◦ φ−1
1 ◦ · · · ◦ φ

−1
k (x)|, |uB ◦ φK ◦ · · · ◦ φk+1(x)|}

must hold true for a.e. x ∈ Ω and for all k ∈ {1, . . . ,K − 1}. Since ‖gk‖L∞(Ω) < ∞ for all k considered,
we can replace each image ujk in the minimizing sequence by max{min{ujk(x), gk(x)},−gk(x)}, which
possibly reduces the energy, and infer the uniform boundedness of ûj in (L∞(Ω))K−1. Thus, there exists
a weakly convergent subsequence in (L2(Ω))K−1 with weak limit û ∈ (L2(Ω))K−1. Next, we derive
the Euler–Lagrange equations for the inner images, which – as a byproduct – lead to an update formula
for these inner images for fixed deformations that will later be employed in the optimization algorithm.
By applying the transformation formula to the sum of consecutive matching functionals one can infer for
k ∈ {1, . . . ,K − 1}∫

Ω

(uk ◦ φk − uk−1)2 + (uk+1 ◦ φk+1 − uk)2 dx =

∫
Ω

(uk − uk−1 ◦ φ−1
k )2

det(Dφk) ◦ φ−1
k

+ (uk+1 ◦ φk+1 − uk)2 dx .

Note that this functional is strictly convex in uk. Thus, the Euler–Lagrange equation ∂ukE
D
K [u,Φ](v) = 0

for u = (uA, û, uB), k ∈ {1, . . . ,K − 1} and any v ∈ L∞(Ω) results in the pointwise condition

uk − uk−1 ◦ φ−1
k

(detDφk) ◦ φ−1
k

+ uk − uk+1 ◦ φk+1 = 0 a.e. in Ω ,
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which is equivalent to

uk(x) =
uk+1 ◦ φk+1(x) + (uk−1 ◦ φ−1

k (x))((detDφk)−1 ◦ φ−1
k (x))

1 + (detDφk)−1 ◦ φ−1
k (x)

(3.45)

for a.e. x ∈ Ω. All equations of the form (3.45) can be rewritten as the following block tridiagonal linear
system of equations, in which evaluations of the images at deformed positions are combined with evaluations
at non-deformed positions:

A[Φ](x)U(û,Φ)(x) = R[Φ](x) for a.e. x ∈ Ω . (3.46)

In this case, U(û,Φ) is the vector of intensity values

U(û,Φ)(x) = (u1(X1(x)), u2(X2(x)), . . . , uK−1(XK−1(x)))T ∈ RK−1 , (3.47)

A[Φ](x) ∈ RK−1,K−1 is a tridiagonal matrix with

(A[Φ](x))k,k+1 = − 1

1 + (detDφk)−1 ◦ φ−1
k (Xk(x))

= − 1

1 + (detDφk)−1(Xk−1(x))
,

(A[Φ](x))k,k = 1 ,

(A[Φ](x))k,k−1 = −
(detDφk)−1 ◦ φ−1

k (Xk(x))

1 + (detDφk)−1 ◦ φ−1
k (Xk(x))

= − (detDφk)−1(Xk−1(x))

1 + (detDφk)−1(Xk−1(x))
,

and R[Φ](x) ∈ RK−1 is given by

R[Φ](x) =

(
uA(x)(detDφ1)−1(x)

1 + (detDφ1)−1(x)
, 0 , . . . , 0 ,

uB(XK(x))

1 + (detDφK−1)−1(XK−2(x))

)T
.

Since det(Dφk(x)) > 0 for k = 1, . . . ,K and a.e. x ∈ Ω, we can infer that A[Φ](x) is irreducibly diago-
nally dominant for a.e. x ∈ Ω, which already proves the invertibility of this matrix using Proposition 3.4.7.
To sum up, for a.e. x ∈ Ω there exists a unique solution U(û,Φ)(x) to (3.46).

ad (ii.): If I = L2(Ω), we only have to show EK = ED
K [(uA, (uA, . . . , uA), uB),Φ] <∞ and the uniform bound-

edness of the minimizing sequence in (L2(Ω))K−1, the rest of the proof is analogous to the proof of (i.).
The boundedness of EK follows from

ED
K = K

(
K∑
k=1

∫
Ω

W(Dφk) + γ|Dmφk|2 dx

)

+
K

δ

(
K−1∑
k=1

‖uA ◦ φk − uA‖2L2(Ω) + ‖uB ◦ φK − uA‖2L2(Ω)

)

≤ CK
K∑
k=1

(
‖W(Dφk)‖L∞(Ω) + ‖φk‖2Hm(Ω)

)
+ CK2

(
(1 + C

− 1
2

det )‖uA‖L2(Ω) + C
− 1

2

det ‖uB‖L2(Ω)

)2

,

where we used the transformation formula in combination with (3.44). Furthermore, by taking into account
(3.44), we can infer

‖ujk‖L2(Ω) ≤ ‖ujk+1 ◦ φk+1 − ujk‖L2(Ω) + ‖ujk+1 ◦ φk+1‖L2(Ω) ≤
√

δEK
K + C

− 1
2

det ‖u
j
k+1‖L2(Ω) .

Thus, an induction argument (starting from k = K − 1) shows that ûj = (uj1, . . . , u
j
K−1) is uniformly

bounded in (L2(Ω))K−1 independently of j.

This proves the proposition.
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Remark 3.4.9 (Inherited regularity). If uA, uB ∈ C0,α(Ω) for α ∈ (0,m− 1− n
2 ), then the proof of Proposition

3.4.8 also shows that û ∈ (C0,α(Ω))K−1.

Remark 3.4.10. The intensity values along the discrete transport path X(x) depend in a unique way on the values
at the two end points x and XK(x). Furthermore, each image intensity value uk(Xk(x)) is a weighted average of
the intensities uA(x) and uB(XK(x)), where the weights reflect the compression and expansion associated with
the deformations along the discrete transport paths.

As announced above, the existence of discrete geodesics can be deduced by combining Proposition 3.4.2 and
Proposition 3.4.8.

Theorem 3.4.11 (Existence of discrete geodesics). Let K ≥ 2.

(i.) Let uA, uB ∈ I := L∞(Ω) and assume that (W1) and (W2) hold true. Then there exists û ∈ (L∞(Ω))K−1

such that
EK [(uA, û, uB)] = inf

v̂∈(L∞(Ω))K−1
EK [(uA, v̂, uB)]

and the associated minimizing deformations are homeomorphic.

(ii.) Let uA ∈ I := L2(Ω). If (W1) and (W4) are valid, then a constant CE > 0 exists, which is independent
of K, such that for every

uB ∈
{
v ∈ L2(Ω) : ‖v − uA‖L2(Ω) < CE

√
K
}

(3.48)

a minimizer û ∈ (L2(Ω))K−1 of

EK [(uA, û, uB)] = inf
v̂∈(L2(Ω))K−1

EK [(uA, v̂, uB)]

exists and the minimizing deformations are diffeomorphic.

Proof. Let ūk = k
KuB + (1− k

K )uA ∈ L2(Ω) be a convex combination of the input images for k ∈ {0, . . . ,K}.
We first note that

EK := ED
K [(ū0, ū1, . . . , ūK), (1, . . . ,1)] =

1

δ
‖uB − uA‖2L2(Ω) (3.49)

is a finite upper bound of the energy.

ad (i.): Let {(ûj ,Φj) = ((uj1, . . . , u
j
K−1), (φj1, . . . , φ

j
K))}j∈N ⊂ (L2(Ω))K−1×AK be a minimizing sequence for

the energy
(L2(Ω))K−1 ×AK 3 (v̂,Φ) 7→ ED

K [(uA, v̂, uB),Φ]

with finite upper bound EK . Since each deformation φjk is contained in Hm(Ω,Ω) and satisfies the co-
ercivity estimate |φjk|2Hm(Ω) ≤

EK
γ , the Gagliardo–Nirenberg inequality (see Theorem 1.1.2) implies that

all deformations {φjk} are uniformly bounded in Hm(Ω) for all k = 1, . . . ,K and all j. Moreover, by
replacing ûj with the (unique) minimizer of

(L2(Ω))K−1 3 û 7→ ED
K [(uA, û, uB),Φj ] ,

which possibly reduces the energy (see Proposition (3.4.8) (i.)), we can assume that ûj is uniformly bounded
in (L∞(Ω))K−1 independently of j. By passing to subsequences (labeled in the same way) we can addi-
tionally assume that ûj ⇀ û = (u1, . . . , uK−1) weakly in (L2(Ω))K−1, Φj ⇀ Φ = (φ1, . . . , φK)
weakly in (Hm(Ω))K and Φj → Φ in (C1,α(Ω))K due to the embedding Hm(Ω) ↪→ C1,α(Ω) for
0 < α < m − 1 − n

2 . By taking into account Proposition 3.4.2 it is clear that det(Dφjk) > 0 a.e. in Ω,
φjk ∈ A and φjk are homeomorphisms for k = 1, . . . ,K and all j ∈ N, the same assertions apply to the
limiting deformations {φk}1≤k≤K .

Claim:
K∑
k=1

∫
Ω

(uk ◦ φk − uk−1)2 dx ≤ lim inf
j→∞

K∑
k=1

∫
Ω

(ujk ◦ φ
j
k − u

j
k−1)2 dx .
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To prove the claim, we define for x ∈ Ω the discrete transport paths (cf . the proof of Proposition 3.4.8) as
follows:

Xj(x) = (Xj
0(x), . . . , Xj

K(x))T s.t. Xj
0(x) = x ,Xj

k(x) = φjk(Xj
k−1(x)) for k ∈ {1, . . . ,K} ,

the limiting transport path X is defined analogously. Taking into account the optimality of ûj and (3.46) we
can infer due to the uniqueness of this image vector

ujk(Xj
k(x)) = ((A[Φj ]−1R[Φj ])(x))k for a.e. x ∈ Ω . (3.50)

Choose ε > 0. Let Sε ⊂ Ω be an open set such that |Sε| < ε and for all j sufficiently large and k ∈
{1, . . . ,K}

det(Dφjk(Xj
k−1(x))) > cε , det(A[Φj ](x)) > cε ∀x ∈ Ω\Sε (3.51)

for a constant cε > 0 (depending on ε) holds true. Indeed, this is clearly possible due to the strong con-
vergence of Φj to Φ in (C1,α(Ω))K , (3.30) and the irreducible diagonal dominance of A[Φj ](x) for a.e.
x ∈ Ω. Hence, (A[Φj ])−1 converges uniformly to (A[Φ])−1 in Ω\Sε. Moreover, following the same
line of arguments as in the proof of Proposition 3.4.2 (cf . (3.32)) one can deduce that uB(Xj

K) converges
to uB(XK) in L2(Ω\Sε). By incorporating Proposition 3.4.8 and (3.50) this already implies the conver-
gence of R[Φj ] to R[Φ] in (L2(Ω\Sε))K−1 and thus the convergence of ujk(Xj

k) to uk(Xk) in L2(Ω\Sε)
for k ∈ {1, . . . ,K − 1}. Since the Lebesgue measure of the set Sε can be chosen arbitrarily small and
{ûj}j∈N ⊂ (L∞(Ω))K−1, we can even infer the L2-convergence of ujk(Xj

k) to uk(Xk) on the entire do-
main Ω. Hence,∣∣∣∣∫

Ω

(ujk)2 − u2
k dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(ujk(Xj
k))2 det(DXj

k)− (uk(Xk))2 det(DXk) dx

∣∣∣∣
≤
∣∣∣∣∫

Ω

(
(ujk(Xj

k))2 − (uk(Xk))2
)

det(DXj
k) dx

∣∣∣∣+

∣∣∣∣∫
Ω

(uk(Xj
k))2(det(DXj

k)− det(DXk)) dx

∣∣∣∣ ,
which vanishes for j → ∞. We recall that the weak convergence in L2(Ω) and the convergence of
the L2(Ω)-norms already imply the (strong) L2(Ω)-convergence (see [AF03]), which shows ûj → û
in (L2(Ω))K−1. Now, the claim readily follows from the strong convergence of the deformations and the
images in C1,α(Ω) and L2(Ω), respectively, following an analogous line of arguments as above. We omit
further details.

Finally, because φ 7→
∫

Ω
W(Dφ) +γ|Dmφ|2 dx is weakly lower semicontinuous along the sequence φjk for

each k due to (W1) and Proposition 3.2.6, we obtain

EK [uA, û, uB ] = ED
K [(uA, û, uB),Φ] ≤ lim inf

j→∞
ED
K [(uA, û

j , uB),Φj ] = lim inf
j→∞

EK [uA, û
j , uB ] .

This proves (i.).

ad (ii.): As before, consider a minimizing sequence {(ûj ,Φj)}j∈N ⊂ (L2(Ω))K−1 × AK for the discrete path
energy (û,Φ) 7→ ED

K [(uA, û, uB),Φ] with finite upper bound EK = 1
δ ‖uB −uA‖

2
L2(Ω) (see (3.49)). Then,

sup
j∈N

max
k∈{1,...,K}

WD[ujk−1, u
j
k, φ

j
k] ≤ sup

j∈N

1

K
ED
K [(uA, û

j , uB),Φj ] ≤ 1

Kδ
‖uB − uA‖2L2(Ω) ≤

CE

δ

for a constant CE > 0 to be specified below. By taking into account Lemma 3.4.3 as well as the embedding
Hm(Ω) ↪→ C1(Ω) we can conclude

inf
j≥j0

min
k∈{1,...,K}

inf
x∈Ω

det(Dφjk(x)) > Cdet (3.52)

for a constant Cdet > 0 and j0 ∈ N sufficiently large provided that uB is sufficiently close to uA, which
is guaranteed by suitably adapting CE. Proposition 3.4.2 (ii.) guarantees the existence of an optimal defor-
mation vector Φj associated with ûj . Next, we replace the vector ûj by the unique optimal inner vector
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of images associated with Φj (that we also denote by ûj), which possibly reduces the energy (see Propo-
sition 3.4.8). In what follows, we solely comment on the lower semicontinuity of the matching functional
along the minimizing sequence, the rest of the proof of (ii.) proceeds in nearly the same way as the proof of
(i.).

Claim:
K∑
k=1

∫
Ω

(uk ◦ φk − uk−1)2 dx ≤ lim inf
j→∞

K∑
k=1

∫
Ω

(ujk ◦ φ
j
k − u

j
k−1)2 dx .

The proof of the claim is nearly identical to the corresponding proof in (i.) since due to (3.52) we can
conclude that (3.51) is satisfied for all x ∈ Ω and all j sufficiently large provided that cε > 0 is appropri-
ately chosen. Furthermore, uB(Xj

K) converges to uB(XK) in L2(Ω), which follows by the same line of
arguments as in the proof of Proposition 3.4.2 (ii.). We omit further details.

This proves the theorem.

3.5 Convergence of Discrete Geodesic Paths
The main result of this section is the proof of the Mosco-convergence of a suitable interpolation of the time discrete
metamorphosis functional (3.16) to the continuous functional (3.7).

To this end, the definition and some basic properties of Γ-convergence and Mosco-convergence are briefly
presented (Subsection 3.5.1). Afterwards, we rigorously define the time interpolation EK of the time discrete
functional EK and give the precise statement of the Mosco-convergence for the metamorphosis model, which
suffices to establish the existence of a minimizer of the continuous metamorphosis model in an alternative way
(Subsection 3.5.2). The proof of the Mosco-convergence is postponed to the final Subsection 3.5.3.

3.5.1 Foundations of Γ- and Mosco-convergence
Γ-convergence can be regarded as a notion of convergence for variational problems, which is particularly designed
to establish the convergence of minimizers. In this subsection, we introduce the concepts of Γ- and Mosco-
convergence in the case of metric spaces and present a few basic properties. The references for this short exposition
are [DM93, Bra06, Mos69].

Definition 3.5.1 (Γ- and Mosco-convergence in metric spaces). Let (X, d) be a metric space and let {Jk}k∈N
and J be functionals mapping from X to R. Then, the sequence Jk is said to Γ-converge to J w.r.t. the topology
induced by d if the following conditions are satisfied:

(i.) for every x ∈ X and for every sequence {xk}k∈N ⊂ X , that converges to x in X , the lim inf-inequality

J [x] ≤ lim inf
k→∞

Jk[xk]

holds true, and

(ii.) for every x ∈ X there exists a sequence {xk}k∈N ⊂ X (recovery sequence) converging to x in X such that

J [x] = lim
k→∞

Jk[xk] .

If instead of (i.) the weaker condition

(i.’) for every x ∈ X and for every sequence {xk}k∈N ⊂ X , that weakly converges to x in X , one has

J [x] ≤ lim inf
k→∞

Jk[xk]

holds true, then Jk is said to converge to J in the sense of Mosco.
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Definition 3.5.2. A subsetK ⊂ X of a metric space (X, d) is countably compact if every sequence {xk}k∈N ⊂ K
has at least one cluster point x ∈ K. A sequence of functionals {Jk}k∈N, Jk : X → R, is equi-coercive on X if
for every t ∈ R there exists a closed countably compact set K ⊂ X such that for all k ∈ N

{x ∈ X : Jk[x] ≤ t } ⊂ K .

A more practical characterization of equi-coercivity is phrased in the following proposition:

Proposition 3.5.3. Let (X, d) be a metric space. A sequence {Jk : X → R}k∈N is equi-coercive if and only if
there exists a coercive and lower semicontinuous functional J̃ : X → R such that Jk ≥ J̃ for all k ∈ N.

Proof. See [DM93, Proposition 7.7].

The following theorem relates the infimum of the approximate functionals Jk to the minimum of the limiting
functional J :

Theorem 3.5.4. Let (X, d) be a metric space. Suppose that {Jk : X → R}k∈N is a sequence of equi-coercive
functionals that Γ-converges to J : X → R in X . Then J is coercive and

min
x∈X

J [x] = lim
k→∞

inf
x∈X

Jk[x] .

Proof. See [DM93, Theorem 7.8].

A nice characterization of Mosco-convergence exists if the sequence of functionals {Jk}k∈N as well as the
limiting functional J are proper, convex and lower-semicontinuous. In this case, the Mosco-convergence of Jk
to J is equivalent to the pointwise convergence of the Moreau–Yosida envelopes of Jk to the Moreau–Yosida
envelope of J , which was proven in the case of Hilbert spaces by Attouch [Att84] and in the case of Hadamard
spaces by Bačák et al. [BMS17].

3.5.2 Mosco-convergence of the Time Discrete Metamorphosis Model
In what follows, we will introduce a natural temporal extension EK of the discrete variational model EK (see
(3.16)) and prove the Mosco-convergence to the limiting functional E (cf . (3.7)). One key observation of the proof
stems from the fact that the sum of the spatial integrals of K(uk ◦ φk − uk−1) corresponds to the time discrete
material derivative along the discrete motion path and converges to the weak material derivative z. Furthermore,
as a consequence of the Assumption (W3) we will see that the properly rescaled and spatially integrated energy
density W converges to the integrated first two summands of L (see (3.1)) reflecting the dissipation density in a
Newtonian fluid.

Before presenting the rigorous definition of the time interpolation of EK (cf . (3.55)), we introduce some basic
definitions in a preliminary step. For fixed K ≥ 2 the time step size is defined as τ = 1

K and the image uKk in the
vector of images uK = (uK0 , . . . , u

K
K) ∈ (L2(Ω))K+1 is associated with each time step tKk = kτ , k ∈ {0, . . . ,K}.

Let us for the time being assume that a vector ΦK = (φK1 , . . . , φ
K
K) ∈ AK of optimal deformations exists, i.e.

ΦK ∈ argminΦ̃∈AK ED
K [uK , Φ̃]. The existence of such a deformation vector was verified in Theorem 3.4.11

provided that uK0 and uKK are sufficiently close in L2(Ω) and K is sufficiently large (cf . (3.48)). For k = 1, . . . ,K
we define the (discrete) transport map as

yKk (t, x) = x+ (t− tKk−1)K(φKk (x)− x) for t ∈ [tKk−1, t
K
k ] and all x ∈ Ω . (3.53)

Note that yKk (tKk−1, x) = x and yKk (tKk , x) = φKk (x) at the end points of each time interval [tKk−1, t
K
k ]. We denote

by vKk = K(φKk − 1) the discrete motion field associated with yKk . If we assume

max
k∈{1,...,K}

‖DφKk − 1‖C0(Ω) < 1 ,

then [Cia88, Theorem 5.5-1] guarantees det(DyKk (t, x)) > 0 for all x ∈ Ω and t ∈ [tKk−1, t
K
k ] (note thatDyKk (t, x)

denotes the spatial derivative). Hence, by employing Theorem 3.4.1 (i.) we can infer that yKk (t, · ) is invertible
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yKk yKk+1
x φKk (x)

φKk+1(φKk (x))

t

tKk−1 tKk tKk+1

Figure 3.2: Schematic drawing of the trajectory of the point x ∈ Ω on the time interval tKk−1 to tKk+1.

with inverse xKk (t, · ). Intuitively, xKk (t, x̃) for t ∈ [tKk−1, t
K
k ] retraces the point x̃ ∈ Ω at time t to the base point

x ∈ Ω at time tKk−1 along the corresponding trajectory of the discrete motion path (see Figure 3.2).
For fixed K, uK and ΦK we define the image interpolation UK [uK ,ΦK ] ∈ L2((0, 1)×Ω) for t ∈ [tKk−1, t

K
k ]

as follows:

UK [uK ,ΦK ](t, x) = uKk−1(xKk (t, x)) +K(t− tKk−1)(uKk ◦ φKk − uKk−1)(xKk (t, x)) . (3.54)

To motivate this interpolation operator, we consider a point x ∈ Ω at time t = tKk−1. Then, UK [uK ,ΦK ] describes
a linear blending between the images uKk−1(x) = UK [uK ,ΦK ](tKk−1, x) and uKk (x) = UK [uK ,ΦK ](tk, x) along
the affine transport path {(t, yKk (t, x)) : t ∈ [tKk−1, t

K
k ]} on the interval [tKk−1, t

K
k ].

Remark 3.5.5. We note that the invertibility of yKk (t, · ) is guaranteed for K sufficiently large since it will become
apparent during the proof of the Mosco-convergence that any deformation φKk converges to the identity inC1,α(Ω),
which already ensures the invertibility due to Theorem 3.4.1 (i.).

Based on this interpolation, a straightforward extension EK : L2((0, 1) × Ω) → [0,∞] of the discrete path
energy ED

K is given by

EK [u] =


ED
K [uK ,ΦK ] , if u = UK [uK ,ΦK ] with uK ∈ (L2(Ω))K+1

and ΦK ∈ argminΦ̃∈AK ED
K [uK , Φ̃] ,

+∞ , else .

(3.55)

The next theorem is one of the main results of this chapter, the proof is postponed to Subsection 3.5.3.

Theorem 3.5.6 (Mosco-convergence in the metamorphosis model). Under the Assumptions (W1), (W3) and (W4),
the time discrete path energy EK converges to E in sense of Mosco w.r.t. the L2(Ω)-topology, i.e.

(i.) for every sequence {uK}K∈N ⊂ L2((0, 1)× Ω) with uK ⇀ u (weakly) in L2((0, 1)× Ω) the estimate

lim inf
K→∞

EK [uK ] ≥ E [u]

holds true,

(ii.) for every u ∈ L2((0, 1) × Ω) there exists a recovery sequence {uK}K∈N ⊂ L2((0, 1) × Ω) with uK → u
(strongly) in L2((0, 1)× Ω) such that the estimate

lim sup
K→∞

EK [uK ] ≤ E [u]

is valid.

This theorem implies the convergence of discrete geodesic paths. In particular, a minimizer of the time contin-
uous path energy exists:



3.5 Convergence of Discrete Geodesic Paths 63

Theorem 3.5.7 (Convergence of discrete geodesic paths). Let uA, uB ∈ L2(Ω) and suppose that (W1), (W3) and
(W4) hold true, and for everyK ∈ N let uK be a minimizer of EK subject to uK(0) = uA and uK(1) = uB . Then,
a subsequence of {uK}K∈N converges weakly in L2((0, 1) × Ω) to a minimizer of the continuous path energy E
as K →∞, and the associated sequence of discrete energies converges to the minimal continuous path energy.

Proof. See Subsection 3.5.3.

Remark 3.5.8. In Remark 3.4.9 we have noted that for a fixed K ∈ N the regularity of the input images uA
and uB transfers to all inner images uk, k = 1, . . . ,K − 1, in the time discrete metamorphosis model. For the
continuous model, the analogous statement is as follows: the Hölder-regularity of the input images uA and uB (up
to the Hölder-exponent α) inherits to the continuous solution u(t, · ) of the metamorphosis model for all t ∈ (0, 1).
The proof is based on the observation that any minimizer u ∈ L2((0, 1) × Ω) of the continuous path energy with
uA = u(0, · ) ∈ L2(Ω) and uB = u(1, · ) ∈ L2(Ω) allows the representation

u(t, · ) = u(0, ψ−1(t, · )) +

(
z

∫ t

0

(det(Dψ(s, · )))−1 ds

)
◦ ψ(t, · )−1 ,

where z ∈ L2(Ω) is the weak material derivative and ψ the underlying diffeomorphic flow (cf . Theorem 3.1.7).
By evaluating this expression at t = 1 we obtain

z = (u(1, ψ(1, · ))− u(0))

(∫ 1

0

(det(Dψ(s, · )))−1 ds

)−1

.

Hence, z is as regular as uA and uB (up to the Hölder-exponent α) and the same holds true for u(t, · ) for all
t ∈ [0, 1].

3.5.3 Proof of the Mosco-convergence and of Related Theorems

Proof of Theorem 3.5.6. We will verify both inequalities required for the Mosco-convergence (see Definition 3.5.1)
separately.

liminf-estimate. Let us at first briefly outline the structure of the proof of the lim inf-inequality to facilitate
reading.

(i.) Reconstruction of the flow and the weak material derivative. Any sequence of images uK ∈ L2((0, 1)×Ω)
with uniformly bounded path energy admits the representation uK = UK [uK ,ΦK ] for a discrete (K + 1)-
path uK = (uK0 , . . . , u

K
K) ∈ (L2(Ω))K+1 and an associated vector of optimal matching deformations ΦK =

(φK1 , . . . , φ
K
K) ∈ AK due to the definition of EK . For any such sequence of images, one can rigorously define

a discrete weak material derivative as well as an induced motion field. Furthermore, we will prove that the
mismatch energy term coincides with the weak material derivative in the limit.

(ii.) Weak lower semicontinuity of the path energy. Here, we will prove a weak lower semicontinuity result
required for the lim inf-inequality, which essentially follows from the Taylor expansion of the energy den-
sity function W (cf . (W3)), and establish a priori bounds for the sequence of motion fields and material
derivatives.

(iii.) Identification of the limit of the material derivatives as the material derivative for the limiting image se-
quence. In this step, we will demonstrate that each pair of weak limits of the velocity fields and the material
derivatives is indeed an instance of a tangent vector of the limiting image. To this end, a certain flow for-
mulation in Lagrangian coordinates of the image sequence is investigated. A crucial ingredient of this step
is the weak convergence of uK(t, · ) to u(t, · ) in L2(Ω) for every t ∈ [0, 1], which results from a trace
theorem type argument.
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ad (i.): Reconstruction of the flow and the weak material derivative.

Let {uK}K∈N ⊂ L2((0, 1)×Ω) be any sequence of image paths that converges weakly in L2((0, 1)×Ω) to
an image curve u ∈ L2((0, 1)×Ω). To exclude the trivial case lim infK→∞ EK [uK ] =∞, we may assume
that

EK [uK ] ≤ E <∞ for all K ∈ N . (3.56)

Thus, due to the definition of EK we can immediately infer that uK = UK [uK ,ΦK ] for a vector of images
uK = (uK0 , . . . , u

K
K) ∈ (L2(Ω))K+1 and an associated vector of deformations ΦK = (φK1 , . . . , φ

K
K) ∈

AK . Each deformation φKk solves the pairwise matching problemWD[uKk−1, u
K
k , · ] (cf . (3.13)) and is not

necessarily unique. Set tKk = k
K for k = 1, . . . ,K. As above, the transport map is given by yKk (t, x) =

x + (t − tKk−1)K(φKk (x) − x) for t ∈ [tKk−1, t
K
k ] and all x ∈ Ω. Furthermore, we associate with each

transport path yKk the discrete velocity field vKk = K(φKk − 1) as well as the map xKk (t, · ) as the spatial
inverse of yKk (t, · ) representing a pullback, which will turn out to exist for any K sufficiently large (see
below).

Due to the definition of EK we can infer

K∑
k=1

WD[uKk−1, u
K
k , φ

K
k ] ≤ E

K
, (3.57)

and by combining this estimate with Lemma 3.4.3 and the usual embedding Hm(Ω) ↪→ C1,α(Ω), 0 < α <
m− 1− n

2 , we obtain

max
k∈{1,...,K}

‖φKk − 1‖C1,α(Ω) ≤ C max
k∈{1,...,K}

‖φKk − 1‖Hm(Ω) ≤ Cθ(EK−1) . (3.58)

Hence, by choosing K large enough we may assume that maxk∈{1,...,K} ‖det(DφKk )−1‖C0(Ω) ≤ Cdet for
a constant Cdet ∈ (0, 1), which guarantees that all deformations considered are indeed C1(Ω)-diffeomor-
phisms due to Theorem 3.4.1 (i.) and – as we pointed out in Subsection 3.5.2 – the inverse transport paths xKk
are well-defined in this situation.

In what follows, we will examine affine transport paths which intersect the base point xKk (t, y) at time
t = tKk−1 and thus have the motion velocity

ṽKk (t, y) = K(φKk − 1)(xKk (t, y)) (3.59)

for all t ∈ [tKk−1, t
K
k ). Globally, we set ṽK(t, y) = ṽKk (t, y) for t ∈ [tKk−1, t

K
k ). Note that ṽK(t, x) = 0

for all x ∈ ∂Ω and all t ∈ (0, 1), which is related to the assumption that the continuous velocity field v
in the metamorphosis model has vanishing trace. Recall that UK can be viewed as the piecewise affine
reconstruction of uK along straight line segments from x to φKk (x). Hence, the classical material derivative
of uK evaluated along the transport path yK(t, x) coincides with the deformed mismatch termK(uKk ◦φKk −
uKk−1)(xKk (t, y)) for all t ∈ (tKk−1, t

K
k ) and all x ∈ Ω, i.e.

zK(t, y) :=
d

ds
uK(t+ s, y + sṽKk (t, y))

∣∣
s=0

= K(uKk ◦ φKk − uKk−1)(xKk (t, y)) , (3.60)

which is clear since s 7→ xKk (t + s, y + sṽKk (t, y)) is constant for s sufficiently small. Since each defor-
mation φKk , k ∈ {1, . . . ,K}, is a C1(Ω)-diffeomorphism, zK fulfills the equation for the weak material
derivative (3.4), i.e. ∫

Ω

∫ 1

0

zKψ dtdx = −
∫

Ω

∫ 1

0

(∂tψ + div(ṽKψ))uK dtdx (3.61)

for all ψ ∈ H1
0 ((0, 1)× Ω).

Claim: The discrete weak material derivative coincides with the sum over all pairwise matching functionals
in the limit K →∞, i.e.

lim
K→∞

∫
Ω

∫ 1

0

(zK)2 dtdx = lim
K→∞

K

K∑
k=1

∫
Ω

(uKk ◦ φKk − uKk−1)2 dx . (3.62)
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By combining the transformation formula with (3.60) we obtain∫
Ω

∫ 1

0

(zK)2 dtdx =

K∑
k=1

∫
Ω

∫ tKk

tKk−1

K2
((
uKk ◦ φKk − uKk−1

)
(xKk (t, x))

)2
dtdx

=

K∑
k=1

∫
Ω

∫ tKk

tKk−1

K2
((
uKk ◦ φk − uKk−1

)
(x)
)2

det(DyKk (t, x)) dtdx . (3.63)

Here, DyKk (t, x) = 1 + K(t − tKk−1)(DφKk (x) − 1). The uniform boundedness of the energy straightfor-
wardly shows

K∑
k=1

∫
Ω

K(uKk ◦ φKk − uKk−1)2 dx ≤ δE . (3.64)

Moreover, the embedding Hm(Ω) ↪→ C1(Ω), the closeness of each deformation to the identity in C1(Ω)
(cf . (3.58)) as well as the Taylor expansion det(1 +A) = 1 + tr(A) +O(|A|2) imply

‖ det
(
1+K( · − tKk−1)(DφKk − 1)

)
− 1‖L∞((tKk−1,t

K
k )×Ω) ≤ C‖φKk − 1‖C1(Ω) . (3.65)

Thus, taking into account (3.64) as well as (3.65) we can estimate the difference of the right-hand sides of
(3.62) and (3.63) as follows:∣∣∣∣∣

K∑
k=1

K2

(∫
Ω

∫ tKk

tKk−1

((
uKk ◦ φk − uKk−1

)
(x)
)2

det(DyKk (t, x))−
((
uKk ◦ φKk − uKk−1

)
(x)
)2

dtdx

)∣∣∣∣∣
≤ CδE max

k∈{1,...,K}
‖φKk − 1‖C1(Ω) ≤ CδEθ(EK

−1) .

For the last inequality we employed (3.58), from which the claim follows.

ad (ii.): Weak lower semicontinuity of the path energy.

In what follows, we will prove the weak lower semicontinuity of the path energy along the sequence
{uK}K∈N. The previous claim (3.62) and the uniform bound of the energy (3.64) directly show that the weak
material derivatives {zK}K∈N are uniformly bounded in L2((0, 1)×Ω) independently ofK. Thus, there ex-
ists a subsequence (labeled in the same way) which converges weakly in L2((0, 1)×Ω) to z ∈ L2((0, 1)×Ω)
as K → ∞. By the lower semicontinuity of the L2(Ω)-norm w.r.t. weak convergence and the aforemen-
tioned claim one achieves∫

Ω

∫ 1

0

z2 dtdx ≤ lim inf
K→∞

∫
Ω

∫ 1

0

(zK)2 dtdx = lim inf
K→∞

K

K∑
k=1

∫
Ω

(uKk ◦ φKk − uKk−1)2 dx . (3.66)

It remains to verify that there exists a velocity field v ∈ L2((0, 1),B) (recall B = Hm(Ω,Rn)∩H1
0 (Ω,Rn))

such that (v, z) ∈ TuL2 and∫ 1

0

∫
Ω

L[v, v] dx dt ≤ lim inf
K→∞

K

K∑
k=1

∫
Ω

W(DφKk ) + γ|DmφKk |2 dx . (3.67)

The second order Taylor expansion around tKk−1 of the function t 7→ W(1 + (t − tKk−1)DvKk ) evaluated at
t = tKk yields

W(DφKk ) = W(1) +
1

K
DW(1)(DvKk ) +

1

2K2
D2W(1)(DvKk , Dv

K
k ) +O(K−3|DvKk |3)

=
1

K2

(
λ

2

(
tr(ε[vKk ])

)2
+ µtr(ε[vKk ]2)

)
+O(K−3|DvKk |3) .
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Here, the lower order terms vanish due to (W1) and the last equality follows from (W3). Recall that ε[vKk ]
refers to the symmetric part of the gradient of the discrete velocity field vKk = K(φKk − 1). Then,

K

K∑
k=1

∫
Ω

W(DφKk ) + γ|DmφKk |2 dx

≤ 1

K

K∑
k=1

∫
Ω

λ

2
(tr(ε[vKk ]))2 + µtr(ε[vKk ]2) + γ|DmvKk |2 dx+ C

K∑
k=1

K

∫
Ω

K−3|DvKk |3 dx ,

and the last term is of order K−
1
2 . To see this, we apply Lemma 3.4.3, (3.57), (3.58) and the uniform bound

of the energy to deduce

K

K∑
k=1

∫
Ω

K−3|DvKk |3 dx ≤ CK max
k=1,...,K

‖φKk − 1‖C1(Ω)

K∑
k=1

‖φKk − 1‖2Hm(Ω)

≤ CKθ(EK−1)

K∑
k=1

θ(WD[uKk−1, u
K
k , φ

K
k ])2 ≤ CK 1

2

K∑
k=1

WD[uKk−1, u
K
k , φ

K
k ] ≤ CEK− 1

2 .

To prove (3.67), we globally define vK ∈ L2((0, 1) × Ω) as vK(t, · ) = vKk for t ∈ [tKk−1, t
K
k ). Taking

into account (3.58) we can assume for all K large enough that maxk∈{1,...,K} ‖DφKk − 1‖C0(Ω) < rW (see
(W4)). Then, vK is uniformly bounded in L2((0, 1),B) due to the estimates∫ 1

0

∫
Ω

|vK |2 dxdt ≤ C
K∑
k=1

∫ tKk

tKk−1

∫
Ω

K2|(DφKk )sym − 1|2 dx dt ≤ CK
K∑
k=1

∫
Ω

W(DφKk )

CW,1
dx ≤ CE

CW,1
,

∫ 1

0

∫
Ω

|DmvK |2 dxdt =

K∑
k=1

∫ tKk

tKk−1

∫
Ω

K2|Dm(φKk − 1)|2 dx dt =

K∑
k=1

K

∫
Ω

|DmφKk |2 dx ≤ E
γ

and the Gagliardo–Nirenberg inequality 1.1.2. For the estimates in the first line we incorporated the Poincaré
inequality, Korn’s inequality 1.1.3 and (W4). Thus, by passing to a subsequence (again labeled in the same
way) we can deduce vK ⇀ v ∈ L2((0, 1),B) for K → ∞. Finally, a standard weak lower semicontinuity
argument (cf . Proposition 3.2.6 and [Dac08]) implies

lim inf
K→∞

K

K∑
k=1

∫
Ω

W(DφKk ) + γ|DmφKk |2 dx

= lim inf
K→∞

1

K

K∑
k=1

∫
Ω

λ

2
(trε[vKk ])2 + µtr(ε[vKk ]2) + γ|DmvKk |2 dx

= lim inf
K→∞

∫ 1

0

∫
Ω

λ

2
(trε[vK ])2 + µtr(ε[vK ]2) + γ|DmvK |2 dxdt

≥
∫ 1

0

∫
Ω

λ

2
(trε[v])2 + µtr(ε[v]2) + γ|Dmv|2 dxdt ,

which proves the weak lower semicontinuity of the path energy along the sequence {uK}K∈N.

ad (iii.): Identification of the limit of the material derivatives as the material derivative for the limiting image se-
quence.

In what follows, we will verify that we can pass to the limit in (3.61) for K → ∞. In particular, we will
prove that v is actually the weak limit of ṽK inL2((0, 1)×Ω) and z is the weak material derivative associated
with the image path u and the velocity field v, i.e. the tuple (u, v, z) fulfills (3.6) and (v, z) ∈ TuL

2(Ω).
The main difficulty when passing to the limit in (3.61) arises from the proof of the weak continuity of the
mapping (u, v) 7→ udiv(vη). To circumvent this problem, our starting point is the equivalent reformulation
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of regular curves as stated in Theorem 3.1.8. To this end, let us denote by ψK ∈ L2([0, 1], C1,α(Ω)) the
global flow induced by the motion field ṽK as characterized in Theorem 3.1.7, i.e.

ψ̇K(t, x) = ṽK(t, ψK(t, x)) . (3.68)

Due to (3.60) we can deduce that (uK , ṽK , zK) obeys

uK(t, x) = uK(0, ψKt,0(x)) +

∫ t

0

zK(s, ψKt,s(x)) ds (3.69)

for x ∈ Ω and t ∈ [0, 1], where ψKt,s = ψK(s, (ψK)−1(t, · )) represents the relative global flow from time t
to time s. In detail, to justify (3.69) we observe that the intensity of an image particle at time t = r ∈ [0, 1]
which is located at x ∈ Ω at time t = 0, can be recovered via

uK(r, ψ(r, x)) = uK(0, x) +

∫ r

0

zK(s, ψK(s, x)) ds ,

where we employed (3.68). Thus, the general assertion (3.69) follows by a change of variables.

It remains to verify the assertions in the following claim since (3.70) and Theorem 3.1.8 imply that u is a
regular image curve that in particular satisfies (3.6) as was to be proven.

Claim: The representation formula

u(t, x) = u(0, ψt,0(x)) +

∫ t

0

z(s, ψt,s(x)) ds (3.70)

for the limiting image curve u, the limiting motion field v ∈ L2((0, 1),B) and the limiting weak material
derivative z ∈ L2((0, 1), L2(Ω)) holds true. Here, ψ denotes the global flow associated with v, i.e.

ψ̇(t, · ) = v(t, ψ(t, · )) , (3.71)

and ψt,s = ψ(s, ψ−1(t, · )) for s, t ∈ [0, 1] is the relative global flow associated with ψ.

We will first prove the strong convergence of ψK to ψ, where the limiting global flow ψ satisfies (3.71).
Clearly,

‖yKk (t, · )‖C1,α(Ω) ≤ C(1 + ‖φKk − 1‖C1,α(Ω))

for t ∈ [tKk−1, t
K
k ). Recall that φKk ∈ C1,α(Ω), 0 < α < m − 1 − n

2 , due to the embedding Hm(Ω) ↪→
C1,α(Ω). Furthermore, one can deduce for the spatial inverse xKk (t, · ) of yKk (t, · ) that ‖xKk (t, · )‖C1,α(Ω) ≤
C holds true forK sufficiently large. Indeed, this follows from (3.58) by noting thatDyKk (t, x) = 1+K(t−
tKk−1)(DφKk (x) − 1) is arbitrarily close to the identity in C0,α(Ω) for K sufficiently large. The following
estimate for the C1,α2

(Ω)-norm of the concatenation of two functions f ∈ C1,α(Ω) and g ∈ C1,α(Ω,Ω)
can be shown by straightforward arguments:

‖f ◦ g‖C1,α2 (Ω) ≤ ‖f‖C0(Ω) + |f |C1(Ω)|g|C1(Ω) + |f |C1,α(Ω)|g|
α
C0,α(Ω)

|g|C1(Ω) + C|f |C1(Ω)|g|C1,α(Ω) .

(3.72)
Hence, (3.58), (3.72) and the aforementioned estimates yield

‖ṽKk (t, · )‖C1,α2 (Ω) ≤ C‖v
K
k (t, · )‖C1,α(Ω) . (3.73)

Thus, the uniform boundedness of {vK}K∈N inL2((0, 1),B) and the embeddingHm(Ω) ↪→ C1,α(Ω) imply
that {ṽK}K∈N is uniformly bounded in L2((0, 1), C1,α2

(Ω)), and by using Theorem 3.1.10, we can infer
that {ψK}K∈N is uniformly bounded in C0((0, 1), C1,α2

(Ω)). Hence, for s, t ∈ [0, 1] we obtain

‖ψK(t, · )− ψK(s, · )‖C1,α2 (Ω) ≤ C
∣∣∣∣∫ t

s

‖vK(r, · )‖C1,α(Ω) dr

∣∣∣∣
≤ C|t− s| 12

∣∣∣∣∫ 1

0

‖vK(r, · )‖2
C1,α(Ω)

dr

∣∣∣∣
1
2

≤ C|t− s| 12 , (3.74)
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where we employed (3.68) and (3.73). Thus, {ψK}K∈N is uniformly bounded in C0, 12 ([0, 1], C1,α2

(Ω)) and
a subsequence of {ψK}K∈N (as usual labeled in the same way) converges strongly in C0,β([0, 1], C1,β(Ω))
to ψ ∈ C0,β([0, 1], C1,β(Ω)) for some β ∈ (0,min{ 1

2 , α
2}) as K → ∞. We claim that ψ is the global

flow associated with v and satisfies (3.71) as well as ψ ∈ C0, 12 ([0, 1], C1,α(Ω)). Indeed, taking into account
Theorem 3.1.7 as well as Theorem 3.1.11 shows that ψ is actually the global flow induced by v, the addi-
tional regularity properties follow from Theorem 3.1.10 and an analogous reasoning as in (3.74). Moreover,
{(ψK)−1}K∈N is uniformly bounded in C0, 12 ([0, 1], C1,α(Ω)) due to Theorem 3.1.10.

Let x ∈ Ω, t ≥ 0 and τ > 0 such that t+ τ ≤ 1. A direct application of (3.69) yields

uK(t+ τ, ψK(t+ τ, x))− uK(t, ψK(t, x))

= uK(0, ψKt+τ,0(ψK(t+ τ, x))) +

∫ t+τ

0

zK(s, ψKt+τ,s(ψ
K(t+ τ, x))) ds

− uK(0, ψKt,0(ψK(t, x)))−
∫ t

0

zK(s, ψKt,s(ψ
K(t, x))) ds

=

∫ t+τ

t

zK(s, ψK(s, x)) ds

by taking into account ψKt,s(ψ
K(t, x)) = ψK(s, x). Thus, by using Jensen’s inequality, the uniform bound-

edness of {(ψK)−1}K∈N in C0, 12 ([0, 1], C1,α(Ω)), and the uniform boundedness of the weak material
derivatives {zK}K∈N in L2((0, 1), L2(Ω)), which is due to (3.56) and (3.66), we obtain∫

Ω

(
uK(t+ τ, ψK(t+ τ, x))− uK(t, ψK(t, x))

)2
dx ≤

∫
Ω

(∫ t+τ

t

zK(s, ψK(s, x)) ds

)2

dx

≤ τ‖ det(D((ψK)−1))‖L∞((0,1)×Ω)

∫
Ω

∫ t+τ

t

(zK)2 dsdx ≤ Cτ , (3.75)

which also holds true for (u, v, z).

By multiplying (3.69) with a test function η ∈ C∞c (Ω) and integrating w.r.t. Ω we obtain for any t ∈ [0, 1]

0 =

∫
Ω

uK(t, x)η(x) dx−
∫

Ω

uK(0, ψKt,0(x))η(x) dx−
∫ t

0

∫
Ω

zK(s, ψKt,s(x))η(x) dxds

=

∫
Ω

uK(t, x)η(x) dx−
∫

Ω

uK(0, y)η((ψKt,0)−1(y)) det(D(ψKt,0)−1) dy

−
∫ t

0

∫
Ω

zK(s, y)η((ψKt,s)
−1(y)) det(D(ψKt,s)

−1) dy ds . (3.76)

In the next claim we will show that for a subsequence of {uK}K∈N (again labeled in the same way)
uK(t, · ) ⇀ u(t, · ) weakly in L2(Ω) for all t ∈ [0, 1]. Hence, by additionally taking into account the
strong convergence results for (ψK)−1(t, · ) and ψK deduced above we can pass to the limit in (3.76) and
get

0 =

∫
Ω

u(t, x)η(x) dx−
∫

Ω

u(0, y)η((ψt,0)−1(y)) det(D(ψt,0)−1) dy

−
∫ t

0

∫
Ω

z(s, y)η((ψt,s)
−1(y)) det(D(ψt,s)

−1) dy ds

=

∫
Ω

u(t, x)η(x) dx−
∫

Ω

u(0, ψt,0(x))η(x) dx−
∫ t

0

∫
Ω

z(s, ψt,s(x))η(x) dx ds .

Since η was chosen arbitrarily, the fundamental lemma in the calculus of variations guarantees that u and z
fulfill (3.70) for a.e. x ∈ Ω and t ∈ [0, 1]. Finally, Theorem 3.1.8 implies (3.6), which was to be proven.

Claim: There exists a subsequence of uK (again denoted by {uK}K∈N) such that uK(t, · ) ⇀ u(t, · )
weakly in L2(Ω) for all t ∈ [0, 1].
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Let η ∈ C∞c (Ω) be an arbitrary test function. For t ∈ [0, 1] and τ > 0 sufficiently small we consider the
interval I ⊂ [0, 1] with t ∈ I and |I| ≤ τ . Then,∫

Ω

(uK(t, x)− u(t, x))η(x) dx

= −
∫
I

∫
Ω

(uK(t, x)− uK(s, x))η(x) dxds+−
∫
I

∫
Ω

(u(s, x)− u(t, x))η(x) dxds

+−
∫
I

∫
Ω

(uK(s, x)− u(s, x))η(x) dxds . (3.77)

The weak convergence of uK ⇀ u in L2((0, 1)× Ω) implies that the last integral on the right-hand side of
(3.77) vanishes as K →∞. Let

η̃K(t, y) = η(ψK(t, y)) det(DψK(t, y)) , η̃(t, y) = η(ψ(t, y)) det(Dψ(t, y)) .

The first integral on the right-hand side of (3.77) can be restated as follows:

−
∫
I

∫
Ω

(uK(t, x)− uK(s, x))η(x) dx ds

= −
∫
I

∫
Ω

uK(t, ψK(t, y))η̃K(t, y)− uK(s, ψK(s, y))η̃K(s, y) dy ds

= −
∫
I

∫
Ω

(uK(t, ψK(t, y))− uK(s, ψK(s, y)))η̃K(t, y) dy ds

+−
∫
I

∫
Ω

uK(s, ψK(s, y))
(
η̃K(t, y)− η̃K(s, y)

)
dy ds . (3.78)

By taking into account (3.75) the first integral on the right-hand side of (3.78) can be estimated as follows:∣∣∣∣−∫
I

∫
Ω

(uK(t, ψK(t, y))− uK(s, ψK(s, y)))η̃K(t, y) dy ds

∣∣∣∣
≤ sup

s∈I
‖uK(t, ψK(t, · ))− uK(s, ψK(s, · ))‖L2(Ω)‖η̃K(t, · )‖L2(Ω) ≤ Cτ

1
2 ‖η̃K(t, · )‖L2(Ω) ,

which vanishes for τ → 0. The second integral on the right-hand side of (3.78) vanishes due to the bound-
edness of uK and the smoothness of η̃K and ψK as τ → 0. Analogous estimates apply to the remaining
expression in (3.77), in this case uK , η̃K and ψK are replaced by u, η̃, and ψ, respectively. This proves the
claim.

limsup-estimate. The proof of the lim sup-estimate consists of the following steps:

(i.) Construction of the recovery sequence. The recovery sequence is constructed based on a local time averaging
of the underlying motion field and not – as one might expect – on a (time-averaged) interpolation of the given
image path u ∈ L2((0, 1)×Ω). Starting from the thus obtained discrete motion fields, we can construct the
associated discrete global flow and the discrete deformations, from which the images can be recovered by
sampling the representation formula (3.9) at discrete time points tKk = k

K .

(ii.) Proof of the lim sup-inequality. To prove the lim sup-inequality, we exploit the convexity of the elliptic op-
erator L and use a Taylor expansion of the energy density function W. In particular, the special construction
of the discrete motion fields allows the application of Jensen’s inequality to establish the lim sup-inequality
for the terms involving the elliptic operator.

(iii.) Convergence of the discrete image sequence uK to u in L2((0, 1)×Ω). The verification of the convergence
of the recovery sequence {uK}K∈N to u in L2((0, 1) × Ω) relies on the strong convergence of the discrete
global flow and the discrete deformations to the limiting flow and the identity, respectively.
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ad (i.): Construction of the recovery sequence.

Without any restriction, we consider an image curve u ∈ L2((0, 1) × Ω) with finite energy and denote
the associated velocity field and weak material derivative by v ∈ L2((0, 1),B) and z ∈ L2((0, 1) × Ω),
respectively, i.e.

E [u] =

∫ 1

0

∫
Ω

L[v, v] +
1

δ
z2 dxdt <∞ .

The construction of the recovery sequence {uK}K∈N forK ∈ N essentially relies on a proper approximation
of the discrete velocity fields vK , which are assumed to be piecewise constant on each interval [tKk−1, t

K
k ) for

tKk = k
K . To this end, we define vK

∣∣
[tKk−1,t

K
k )

as the local average of v in time w.r.t. the interval [tKk−1, t
K
k ),

i.e.

vK(t, x) = vKk (x) := −
∫ tKk

tKk−1

v(s, x) ds (3.79)

for k = 1, . . . ,K, all t ∈ [tKk−1, t
K
k ) and all x ∈ Ω. By a standard argument (cf . for instance [FL07]) one can

infer that vK converges to v in L2((0, 1),B). Next, we set φKk = 1 + K−1vKk and ΦK = (φK1 , . . . , φ
K
K),

and we observe that

max
k∈{1,...,K}

‖φKk − 1‖C1(Ω) = max
k∈{1,...,K}

K−1

∥∥∥∥∥−
∫ tKk

tKk−1

v(s, · ) ds

∥∥∥∥∥
C1(Ω)

≤ max
k∈{1,...,K}

CK−1−
∫ tKk

tKk−1

‖v(s, · )‖Hm(Ω) ds ≤ CK− 1
2

(∫ 1

0

‖v(s, · )‖2Hm(Ω) ds

) 1
2

. (3.80)

Hence, choosing K sufficiently large implies maxk=1,...,K ‖DφKk − 1‖C0(Ω) < 1, which ensures φKk ∈ A
and guarantees the existence of the spatial inverse xKk of time discrete transport map yKk defined as

yKk (t, x) = x+ (t− tKk−1)K(φKk (x)− x) (3.81)

for k = 1, . . . ,K and t ∈ [tKk−1, t
K
k ) (cf . (3.53)). In particular, we can define ṽK in the same manner as

in the proof of the lim inf-estimate (cf . (3.59)). The global flow ψK , which is associated with ṽK , is then
given as

ψ̇K(t, x) = ṽK(t, ψK(t, x))

with ψK(0, x) = x for x ∈ Ω and t ∈ [0, 1]. Moreover, the induced relative deformation from time t
to time s is ψKt,s = ψK(s, (ψK)−1(t, · )), which allows the alternative characterization φKk = ψK

tKk−1,t
K
k

of

the deformations. We can verify by using Theorem 3.1.7, Theorem 3.1.10 and (3.74) that ψK is uniformly
bounded in C0, 12 ([0, 1], C1,α(Ω)) for 0 < α < m− 1− n

2 .

Having defined the discrete flow, we can employ the representation formula (3.9) to recover the approximate
discrete image path uK = (uK0 , . . . , u

K
K) ∈ (L2(Ω))K+1, i.e.

uKk (x) = u(0, ψKtKk ,0
(x)) +

∫ tKk

0

z(s, ψKtKk ,s
(x)) ds (3.82)

for k = 0, . . . ,K. Finally, the time interpolated image path (cf . (3.54)) can be retrieved via

uK = UK [uK ,ΦK ] with ΦK = (φK1 , . . . , φ
K
K) ∈ argmin

Φ̃∈AK
ED
K [u, Φ̃] (3.83)

for K ∈ N.

ad (ii.): Proof of the lim sup-inequality.

In what follows, we will verify the lim sup-estimate, i.e.

lim sup
K→∞

EK [uK ] ≤ E [u] . (3.84)
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Taking into account (3.55) and (3.83) we can deduce

EK [uK ] = ED
K [uK ,ΦK ] ≤ ED

K [uK ,ΦK ] = K

K∑
k=1

∫
Ω

W(DφKk )+γ|DmφKk |2 +
1

δ
(uKk ◦φKk −uKk−1)2 dx .

The relations (ψKt,s)
−1 = ψKs,t and ψK

tKk−1,t
K
k−1

= 1, the estimate (3.80) for K sufficiently large as well as the

uniform boundedness of ψK in C0, 12 ([0, 1], C1,α(Ω)) imply via a Taylor expansion

max
k∈{1,...,K}

sup
s∈[tKk−1,t

K
k )

∥∥∥1− det(D(ψKtKk−1,s
)−1)

∥∥∥
C0(Ω)

≤ max
k∈{1,...,K}

sup
s∈[tKk−1,t

K
k )

∥∥∥∥∥∥
det(DψK

tKk−1,t
K
k−1

)− det(DψK
tKk−1,s

)

det(DψK
tKk−1,s

)

∥∥∥∥∥∥
C0(Ω)

≤ CK− 1
2 . (3.85)

Hence, for any k ∈ {1, . . . ,K} we can deduce

∫
Ω

(uKk ◦ φKk − uKk−1)2 dx =

∫
Ω

(∫ tKk

tKk−1

z(s, ψKtKk−1,s
(x)) ds

)2

dx (3.86)

≤ 1

K

∫ tKk

tKk−1

∫
Ω

z2(s, x) det(D(ψKtKk−1,s
)−1)(x) dx ds (3.87)

≤ 1

K

(
1 + CK−

1
2

)∫ tKk

tKk−1

∫
Ω

z2(s, x) dx ds . (3.88)

Here, the equality in (3.86) is due to the relation (3.82) incorporating the identity ψK
tKk ,s
◦ φk = ψK

tKk−1,s
,

(3.87) follows from Jensen’s inequality and the transformation formula, and the inequality in (3.88) can be
inferred from (3.85). Furthermore, a Taylor expansion of the energy density around 1, (W1) as well as the
consistency assumption (W3) result in∫

Ω

W(DφKk ) + γ|DmφKk |2 dx

≤
∫

Ω

1

2K2
D2W(1)(DvKk , Dv

K
k ) +

γ

K2
|DmvKk |2 dx+ C

∫
Ω

1

K3
|DvKk |3 dx

=
1

K2

∫
Ω

L[vKk , v
K
k ] dx+

C

K3

∫
Ω

|DvKk |3 dx . (3.89)

By combining (3.79) with Jensen’s inequality one obtains∫
Ω

L[vKk , v
K
k ] dx

=

∫
Ω

λ

2

(
tr

(
ε

[
−
∫ tKk

tKk−1

v(s, x) ds

]))2

+ µtr

ε[−∫ tKk

tKk−1

v(s, x) ds

]2
+ γ

∣∣∣∣∣Dm−
∫ tKk

tKk−1

v(s, x) ds

∣∣∣∣∣
2

dx

≤ K
∫

Ω

∫ tKk

tKk−1

L[v, v] dtdx . (3.90)

To derive an upper bound for the remainder of the Taylor expansion in (3.89) we estimate as follows:

‖vKk ‖2C1(Ω)
≤ C

K∑
l=1

‖vKl ‖2Hm(Ω) ≤ C
K∑
l=1

−
∫ tKl

tKl−1

‖v(t, · )‖2Hm(Ω) dt ≤ CK
∫ 1

0

‖v(t, · )‖2Hm(Ω) dt ≤ CK .
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Here, we used Theorem 1.1.4, Jensen’s inequality and v ∈ L2((0, 1),B). Hence,

max
k=1,...,K

‖vKk ‖C1(Ω) ≤ CK
1
2 ,

which yields – again in combination with Jensen’s inequality – the estimate

K∑
k=1

∫
Ω

|DvKk |3 dx ≤ max
k=1,...,K

‖vKk ‖C1(Ω)

K∑
l=1

∫
Ω

∣∣∣∣∣−
∫ tKl

tKl−1

Dv(t, x) dt

∣∣∣∣∣
2

dx

≤ CK 1
2K

K∑
l=1

∫
Ω

∫ tKl

tKl−1

|Dv(t, x)|2 dtdx ≤ CK 3
2 . (3.91)

Altogether, by taking into account the estimates (3.88), (3.89), (3.90) and (3.91) we conclude

EK [uK ] ≤ ED
K [uK ,ΦK ] = K

K∑
k=1

∫
Ω

W(DφKk ) + γ|DmφKk |2 +
1

δ
(uKk ◦ φKk − uKk−1)2 dx

≤
K∑
k=1

(∫ tKk

tKk−1

∫
Ω

L[vKk , v
K
k ] +

C

K
|DvKk |3 +

1

δ

(
1 + CK−

1
2

)
z2(t, x) dxdt

)

≤
∫ 1

0

∫
Ω

L[v, v] +
1

δ
z2(t, x) dx dt+ CK−

1
2 +

C

δ
K−

1
2 = E [u] +O(K−

1
2 ) ,

which readily implies (3.84).

ad (iii.): Convergence of the discrete image sequence uK to u in L2((0, 1)× Ω).

It solely remains to verify that uK → u in L2((0, 1)× Ω) (cf . (3.82) for the definition of uK).

Since {ψK}K∈N is uniformly bounded in C0, 12 ([0, 1], C1,α(Ω)), we can extract a subsequence (not rela-
beled) such that ψK converges to ψ in C0,β([0, 1], C1,α(Ω)) for β < 1

2 and α ∈ (0,m − 1 − n
2 ). We will

tacitly restrict all further considerations to this subsequence. Taking into account Theorem 3.1.10 one can
infer

‖ψKt, · − ψt, · ‖C0([0,1],C1(Ω)) → 0 , ‖(ψKt, · )−1 − (ψt, · )
−1‖C0([0,1],C1(Ω)) → 0 (3.92)

for t ∈ [0, 1] as K →∞.

Claim: For every t ∈ [0, 1]

‖z( · , ψKt, · ( · ))− z( · , ψt, · ( · ))‖L2((0,1)×Ω) → 0 , (3.93)

‖u(0, ψKt,0( · ))− u(0, ψt,0( · ))‖L2(Ω) → 0 (3.94)

as K →∞. Moreover,

UK [uK ,ΦK ]→ u in L2((0, 1)× Ω) as K →∞ . (3.95)

We will only prove the weak convergence in L2((0, 1)×Ω) as well as the convergence of the L2((0, 1)×Ω)-
norms of z( · , ψKt, · ( · )) to z( · , ψt, · ( · )), which is equivalent to (3.93). To this end, choose η ∈ C∞c ((0, 1)×
Ω). Then, using the transformation formula we can deduce∫ 1

0

∫
Ω

z(s, ψKt,s(x))η(s, x)− z(s, ψt,s(x))η(s, x) dxds

=

∫ 1

0

∫
Ω

z(s, y)
(
η(s, (ψKt,s)

−1(y)) det(D(ψKt,s)
−1(y))− η(s, (ψt,s)

−1(y)) det(D(ψt,s)
−1(y))

)
dy ds ,
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which vanishes due to (3.92) as K →∞. By an analogous reasoning one gets∣∣∣∣∫ 1

0

∫
Ω

z2(s, ψKt,s(x))− z2(s, ψt,s(x)) dx ds

∣∣∣∣
≤
∫ 1

0

∫
Ω

z2(s, y)
∣∣det(D(ψKt,s)

−1(y))− det(D(ψt,s)
−1(y))

∣∣ dy ds→ 0

as K → ∞, which straightforwardly implies (3.93). By following the same line of arguments as above the
assertion (3.94) can be proven. Finally, the addendum (3.95) can be deduced from (3.82) and Theorem 3.1.8
using the convergence results (3.93) and (3.94).

Claim: The interpolated image curves associated with ΦK and ΦK (see (3.83)) asymptotically coincide,
i.e.

UK [uK ,ΦK ]− uK → 0 in L2((0, 1)× Ω)

as K →∞. Recall that uK = UK [uK ,ΦK ] with ΦK = (φK1 , . . . , φ
K
K) (cf . (3.83)).

Using the estimates (3.58) and (3.80) one can infer

max
k∈{1,...,K}

max
{
‖φKk − 1‖C1(Ω), ‖φKk − 1‖C1(Ω)

}
≤ CK− 1

2 . (3.96)

Let yKk be the discrete transport path associated with ΦK (cf . (3.81)) and let us denote by xKk its spatial
inverse. Thus, ∫ 1

0

∫
Ω

(
UK [uK ,ΦK ]− UK [uK ,ΦK ]

)2

dxdt

≤ C
K∑
k=1

∫ tKk

tKk−1

∫
Ω

(
uKk−1(xKk (t, x))− uKk−1(xKk (t, x))

)2

+
(
uKk ◦ φKk (xKk (t, x))− uKk ◦ φKk (xKk (t, x))

)2

dx dt , (3.97)

where we exploited the estimate K(t − tKk−1) ≤ 1 for all t ∈ [tKk−1, t
K
k ]. In what follows, we will solely

prove the convergence of the first integral on the right-hand side of (3.97) to 0 since the corresponding proof
for the second integral is analogous (with minor modifications). To this end, we proceed in a similar way
as in the approximation argument (3.32) i.e. we choose approximating sequences {ũj}j∈N ⊂ C∞(Ω) and
{z̃j}j∈N ⊂ C∞([0, 1]× Ω) such that

‖ũj −u(0, · )‖L2(Ω) → 0 , ‖Dũj‖C0(Ω) ≤ Cj , ‖z̃j − z‖L2((0,1)×Ω) → 0 , ‖Dz̃j‖C0([0,1]×Ω) ≤ Cj .

Let us define smooth approximations ũK,jk of uKk as follows

ũK,jk (x) = ũj(ψKtKk ,0
(x)) +

∫ tKk

0

z̃j(s, ψKtKk ,s
(x)) ds .

Thus, by taking into account the uniform convergence of ψK to ψ in C0,β([0, 1], C1,α(Ω)), (3.82) as well
as Theorem 3.1.10 one can deduce that supK∈N maxk=1,...,K ‖ũK,jk − uKk ‖L2(Ω) → 0 as j →∞ and

‖DũK,jk ‖C0(Ω) ≤
(
‖Dũj‖C0(Ω) + ‖Dz̃j‖C0([0,1]×Ω)

)
‖DψK‖C0([0,1]×Ω)‖D(ψK)−1‖C0([0,1]×Ω)

≤ C
(
‖Dũj‖C0(Ω) + ‖Dz̃j‖C0([0,1]×Ω)

)
≤ Cj . (3.98)
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Next, we employ the particular choice j = j(K) = min{l ∈ N : l ≥ K 1
4 } and achieve

K∑
k=1

∫ tKk

tKk−1

∫
Ω

(
uKk−1(xKk (t, x))− uKk−1(xKk (t, x))

)2

dx dt

≤ C
K∑
k=1

∫ tKk

tKk−1

∫
Ω

(
uKk−1(xKk (t, x))− ũK,j(K)

k−1 (xKk (t, x))
)2

+
(
ũ
K,j(K)
k−1 (xKk (t, x))− ũK,j(K)

k−1 (xKk (t, x))
)2

+
(
ũ
K,j(K)
k−1 (xKk (t, x))− uKk−1(xKk (t, x))

)2

dxdt . (3.99)

Thus, the first integral on the right-hand side of (3.99) can be bounded by using the transformation formula
and (3.96) in the following way:

K∑
k=1

∫ tKk

tKk−1

∫
Ω

(
uKk−1(xKk (t, x))− ũK,j(K)

k−1 (xKk (t, x))
)2

dx dt

=

K∑
k=1

∫ tKk

tKk−1

∫
Ω

(
uKk−1(x)− ũK,j(K)

k−1 (x)
)2

det(DyKk (t, x)) dx dt

≤ C max
k=1,...,K

‖uKk−1 − ũ
K,j(K)
k−1 ‖2L2(Ω)(1 +K−

1
2 ) ,

which vanishes as K → ∞. Likewise, a similar bound holds true for the last integral in (3.99). Finally, to
estimate the middle integral appearing on the right-hand side of (3.99) we proceed as follows:

K∑
k=1

∫ tKk

tKk−1

∫
Ω

(
ũ
K,j(K)
k−1 (xKk (t, x))− ũK,j(K)

k−1 (xKk (t, x))
)2

dxdt

≤ C max
k=1,...,K

‖DũK,j(K)
k ‖2

C0(Ω)
max

l=1,...,K
‖xKl − xKl ‖

2
C0([tKl−1,t

K
l ]×Ω)

≤ CK− 1
2 ,

where we incorporated (3.96) and (3.98). Here, the estimate

max
l=1,...,K

‖xKl − xKl ‖
2
C0([tKl−1,t

K
l ]×Ω)

≤ CK−1

can be derived from a Taylor approximation using (3.96) as well as the uniform boundedness of the defor-
mations and their inverse functions in C1(Ω). This proves the claim.

Altogether, uK converges (strongly) to u in L2((0, 1) × Ω), which concludes the proof of the lim sup-
estimate.

This finishes the proof of the Mosco-convergence of EK to E .

Proof of Theorem 3.5.7. The proof is standard in Γ-convergence theory and is closely linked to Theorem 3.5.4. As
a first step, by using (3.49) we can assume that the discrete energy EK [uK ] is a priori bounded by 1

δ ‖uB−uA‖
2
L2(Ω).

Thus, following the same line of arguments as in the proof of the lim inf-inequality of Theorem 3.5.6 we can
immediately infer that zK is uniformly bounded in L2((0, 1) × Ω) (see (3.60) for the definition of zK), and a
subsequence of the flow ψK associated with ṽK (cf . (3.68)) converges strongly in C1,α(Ω). Hence, incorporating
(3.69) and the Cauchy–Schwarz inequality one can conclude that

‖uKk ‖2L2(Ω) ≤ C(‖uA‖2L2(Ω) + k
K ‖z

K‖2L2((0,1)×Ω))

is valid for the minimizer uK = UK [(uK1 , . . . , u
K
K),ΦK ] of EK , where ΦK ∈ AK are the optimal deformations.

Thus, {uK}K∈N is uniformly bounded in L∞((0, 1), L2(Ω)) and a subsequence (not relabeled) converges weakly
to u ∈ L2((0, 1)× Ω) in L2((0, 1)× Ω).

Let us assume that there is an image path ũ ∈ L2((0, 1)× Ω) such that

E [ũ] < E [u] . (3.100)
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Then, using the lim sup-estimate of Theorem 3.5.6 there exists a sequence {ũK}K∈N ⊂ L2((0, 1)×Ω) satisfying
lim supK→∞ EK [ũK ] ≤ E [ũ]. Summing up, we obtain the inequalities

E [u] ≤ lim inf
K→∞

EK [uK ] ≤ lim sup
K→∞

EK [ũK ] ≤ E [ũ] ,

which contradicts (3.100). Hence, uminimizes the continuous path energy over all admissible image paths. Finally,
the discrete path energies converge to the limiting path energy along the subsequence, i.e. limK→∞ EK [uK ] =
E [u], which again follows from Theorem 3.5.6.

3.6 Spatial Discretization
In this section, we will present two different spatial discretization schemes for the time discrete metamorphosis
model, which mainly differ in the discrete function spaces for the deformations. In detail, we propose a noncon-
forming finite element based discretization to model the deformations and images (see Subsection 3.6.1), and a
conforming discretization, where the discrete function spaces for the deformations and the images are the space of
cubic B-splines and the space of multilinear finite elements, respectively (see Subsection 3.6.2). For convenience,
we restrict the following presentation to the case n = 2 and Ω = [0, 1]2, the generalization to more general settings
is straightforward.

3.6.1 Nonconforming Finite Element Based Spatial Discretization
On the computational domain Ω = [0, 1]2, we consider the regular mesh Th with mesh size h = 2−M for a constant
M ∈ N. The mesh Th is composed of quadratic cells Cl, l ∈ ICVh , where ICVh represents the index set of all cells.
Furthermore, we denote by Vh the finite element space of piecewise bilinear and globally continuous functions
on Th (cf . [BS08]), and by {Θi}i∈INVh the associated set of basis functions, where INVh is the index set of all grid

nodes xi such that Θi(xj) = δi,j for all i, j ∈ INVh . For l ∈ ICVh we denote by Θl
α the basis function in the cell Cl

with local index α ∈ {0, 1, 2, 3}, and by I(l, α) the global index corresponding to the local index α in the cell Cl,
i.e. ΘI(l,α) = Θl

α. Finally, Ih refers to the nodal interpolation operator on the finite element space Vh.
In both spatial discretization schemes to be derived, we choose the aforementioned space Vh as the discrete

function space for the images, i.e. Uk ∈ Vh with Uk : Ω → R for k = 0, . . . ,K. The input images are recovered
by a nodal interpolation, i.e. U0 = UA = IhuA and UK = UB = IhuB , and – without any restriction – are
assumed to be in the range [0, 1].

In this discretization scheme, the deformations Φk : Ω → Ω, k = 1, . . . ,K, are modeled on the discrete
function space Dh = {Φ ∈ V2

h : Φ = 1 on ∂Ω} on the grid Th. In the applications, it is frequently appropriate
to ensure that deformations are not restricted too much by this Dirichlet boundary condition. Thus, instead of
imposing the Dirichlet boundary condition directly, we enlarge the computational domain and extend the image
intensities with a constant (black) value.

Notation 3.6.1. For a finite element function V in Vh or Dh, we denote by V̄ = (V (xi))i∈INVh
the corresponding

vector of nodal values with i representing the index in the underlying set of nodes. We note that there exists a
one-to-one correspondence between any finite element function V and the associated vector of nodal values V̄ .

Furthermore, we define the fully discrete counterpart EK,h of the time discrete path energy EK as follows

EK,h[(U0, . . . , UK)] = min
Φk∈Dh,
k=1,...,K

ED
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)] .

The energy ED
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)] is the discrete counterpart of ED

K (cf . (3.17)) and is computed by
approximating the integrals appearing in the definition of ED

K by the Simpson quadrature rule on each cell. In
detail, the standard 3-point Simpson quadrature rule for n = 1 is extended to the two-dimensional finite element
space with 9 points by exploiting the tensor product structure. For l ∈ ICVh and q ∈ {0, . . . , 8}, we denote by
xlq and ωlq the qth quadrature point and the corresponding quadrature weight in the cell Cl, respectively. Let us
emphasize that due to the evaluation of image intensities at deformed positions an exact integration with standard
quadrature rules is in general not possible. Nevertheless, we observed in our numerical experiments that the
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Simpson quadrature rule is capable of reliably computing integrals and – compared to lower order quadrature rules
– avoids blurring effects in the neighborhood of interfaces of the images.

Since the regularity requirement for the deformations imposes m > 1 + n
2 = 2, the higher order measure

for friction |φ|2Hm(Ω) appearing in the path energy has to be replaced by a suitable approximation in the solely
H1(Ω)-conforming bilinear finite element space Vh. Therefore, we restrict to even m in this discretization scheme
and replace the integrand |Dmv|2 by |∆m

2 v|2 in the quadratic form (3.1) and correspondingly |φk|2Hm(Ω) by
‖∆m

2 φk‖2L2(Ω) in the energy (3.17). Inspired by the weak formulation of Poisson’s equation, we set ∆
m
2 V =

(M−1
h Sh)

m
2 V̄ for any V ∈ Vh, where Mh and Sh are the mass matrix and the stiffness matrix, respectively, i.e.

(Mh)i,j =
∑
l∈ICVh

8∑
q=0

ωlqΘ
i(xlq)Θ

j(xlq) , (Sh)i,j =
∑
l∈ICVh

8∑
q=0

ωlq∇Θi(xlq) · ∇Θj(xlq)

for i, j ∈ INVh . To sum up, the fully discrete path energy reads as

ED
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)]

= K

K∑
k=1

( ∑
l∈ICVh

8∑
q=0

ωlqW(DΦk(xlq)) + γ
∑

c∈{1,2}

Mh(M−1
h Sh)

m
2 Φ̄ck · (M−1

h Sh)
m
2 Φ̄ck

+
1

δ

∑
l∈ICVh

8∑
q=0

ωlq
(
Uk ◦ Φk(xlq)− Uk−1(xlq)

)2 )
, (3.101)

where Φ̄ck refers to the cth component of Φ̄k.

In what follows, we will develop a minimization algorithm for the computation of a discrete geodesic curve
joining two given images U0 and UK for fixed K ≥ 2, which incorporates an alternating update of the images and
the deformations (see Algorithm 1). The update scheme for the discrete images requires the solution of a linear
system in each step, the optimal deformations are computed via a gradient descent.

Computation of the minimizing images (U0, . . . , UK) of ED
K,h for a fixed vector of deformations. In this

paragraph, we will study the numerical minimization of the fully discrete path energy ED
K,h w.r.t. the image vector

for fixed deformations, i.e. we are concerned with the minimization problem

min
{

ED
K,h[(U0,U, UK), (Φ1, . . . ,ΦK)] : U = (U1, . . . , UK−1) ∈ VK−1

h

}
for fixed Φ = (Φ1, . . . ,ΦK) ∈ DKh and fixed U0, UK ∈ Vh. It will become apparent that for a fixed vector of
spatially discrete deformations Φ̄ = (Φ̄1, . . . , Φ̄K) the optimal nodal vector of images Ū = (Ū1, . . . , ŪK−1) can
be recovered from a linear system of equations.

For deformations Φ,Ψ ∈ Dh the entries of the weighted mass matrix Mh[Φ,Ψ] = (Mh[Φ,Ψ]i,j)i,j∈INVh
are

given by

Mh[Φ,Ψ]i,j =
∑
l∈ICVh

8∑
q=0

ωlq(Θ
i ◦ Φ)(xlq)(Θ

j ◦Ψ)(xlq) ,

where the basis functions of Vh are evaluated at the deformed quadrature point xlq determined by Φ and Ψ, re-
spectively, and the aforementioned Simpson quadrature rule is employed. The entries of Mh[Φ,Ψ] are computed
via a cell-wise assembly. In detail, Mh[Φ,Ψ] is initialized as the zero matrix. Afterwards, for all l ∈ ICVh and all
q ∈ {0, . . . , 8} one identifies the cells Ci, Cj with Φ(xlq) ∈ Ci and Ψ(xlq) ∈ Cj , respectively, and for all pairs of
local indices (β, β′) with β, β′ ∈ {0, 1, 2, 3} the expression

ωlq(Θ
i
β ◦ Φ)(xlq)(Θ

j
β′ ◦Ψ)(xlq)



3.6 Spatial Discretization 77

is added to Mh[Φ,Ψ]I(i,β),I(j,β′). Then, the mismatch term appearing in the discrete path energy ED
K,h can be

reformulated as follows:

K

δ

K∑
k=1

∑
l∈ICVh

8∑
q=0

ωlq(Uk ◦ Φk(xlq)− Uk−1(xlq))
2

=
K

δ

K∑
k=1

(
Mh[Φk,Φk]Ūk · Ūk − 2Mh[Φk,1]Ūk−1 · Ūk + Mh[1,1]Ūk−1 · Ūk−1

)
.

The first order condition of ED
K,h w.r.t. each nodal image vector Ūk then yields

∂ŪkE
D
K,h =

2K

δ

(
(Mh[Φk,Φk] + Mh[1,1]) Ūk −Mh[Φk,1]Ūk−1 −Mh[Φk+1,1]T Ūk+1

)
= 0 (3.102)

for k ∈ {1, . . . ,K − 1}. Thus, by collecting all equations we can deduce that a necessary condition for Ū to be a
minimizer of ED

K,h is that Ū solves the block tridiagonal system of linear equations

A[Φ]Ū = R[Φ] , (3.103)

where A[Φ] is composed of (K − 1)× (K − 1) matrix blocks A[Φ]k,k′ ∈ RI
N
Vh
×INVh for k, k′ ∈ {1, . . . ,K − 1}

and R[Φ] consists of K − 1 vector blocks R[Φ]k ∈ RI
N
Vh . In this case, the matrix A[Φ] is given by

A[Φ]k,k−1 = −Mh[Φk,1] , A[Φ]k,k = Mh[Φk,Φk] + Mh[1,1] , A[Φ]k,k+1 = −Mh[Φk+1,1]T ,

and the right-hand side has the form

R[Φ]1 = Mh[Φ1,1]ŪA , R[Φ]2 = R[Φ]3 = . . . = R[Φ]K−2 = 0 , R[Φ]K−1 = Mh[ΦK ,1]T ŪB .

Since
∑
l∈ICVh

∑8
q=0 ω

l
q(Uk◦Φk(xlq)−Uk−1(xlq))

2 is convex inUk as a quadratic function of convex combinations

of components of Uk and strictly convex in Uk−1, the energy VK−1
h 3 Ũ 7→ ED

K,h[(U0, Ũ, UK),Φ] turns out to
be strictly convex. Thus, there is a unique minimizer U = U[Φ] for a fixed vector of deformations Φ, which
implies that the matrix A[Φ] is invertible and the unique minimizer is determined by (3.103). Numerically, this
system of linear equations is solved with a conjugate gradient method with a diagonal preconditioning (cf . line 11
of Algorithm 1).

We remark that in the semi-Lagrangian approach for the flow of diffeomorphisms model, a similar computa-
tion as performed in (3.102) appears in the context of the single matching penalty w.r.t. a given end image (cf .
[BMTY05]).

Computation of the minimizing deformations (Φ1, . . . ,ΦK) of ED
K,h for a fixed vector of images. In this

paragraph, we will derive an optimization scheme to compute the minimizing deformations Φ = (Φ1, . . . ,ΦK) ∈
Dh of the energy

DKh 3 Φ̃ 7→ ED
K,h[U, Φ̃] (3.104)

for a fixed vector of images U ∈ VK+1
h . We highlight that the elastic registrations performed in this step are

appropriate for parallel computing since the deformations are independent of each other and every deformation
can thus be updated separately.

Now, to minimize (3.104) w.r.t. Φk we employ a Fletcher–Reeves nonlinear conjugate gradient descent scheme
with an Armijo step size control incorporating a regularized H1(Ω)-metric (cf . [SYM07]). The variation of the
energy ED

K,h w.r.t. Φk in the direction Ψ ∈ {Φ ∈ V2
h : Φ = 0 on ∂Ω} is given by

∂ΦkE
D
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)](Ψ)

= K

K∑
k=1

( ∑
l∈ICVh

8∑
q=0

ωlqDW(DΦk(xlq)) : DΨ(xlq) + 2γ
∑

c∈{1,2}

Mh(M−1
h Sh)

m
2 Φ̄ck · (M−1

h Sh)
m
2 Ψ̄c

+
2

δ

∑
l∈ICVh

8∑
q=0

ωlq(Uk ◦ Φk(xlq)− Uk−1(xlq))((∇Uk ◦ Φk(xlq)) ·Ψ(xlq))
)
. (3.105)
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In the numerical applications to real image data, this gradient descent approach often gets stuck in local minima
which significantly differ from the global minimum. To circumvent this problem, the following multilevel approach
is employed: the input image are restricted to a uniform and regular coarse mesh with mesh size h = 2−Minit with
Minit < M (in our case Minit = 3) and the optimal deformations on this coarse mesh are computed using the
aforementioned gradient descent scheme. Afterwards, both the images and the optimal deformations are pro-
longated to a finer mesh with mesh size h = 2−Minit−1 via a bilinear interpolation and the gradient descent is
performed using the prolongated optimal deformations from the coarser mesh as initial values. This scheme is
iterated until the level of the mesh coincides with M .

Algorithm 1: Alternating gradient descent scheme to compute the time discrete geodesic path.
Data: input images UA and UB , J ∈ N such that K = 2J , mesh size h, variance σ2 for smoothing
Result: approximate minimizer (UA = UJ0 , U

J
1 , . . . , U

J
K = UB) of EK

1 smooth U0
0 = UA and U0

1 = UB with Gaussian filter with variance σ2;
2 for j = 1 to J do
3 K = 2j ;
4 U j2k = U j−1

k for k = 0, 1, . . . , K
2

;
5 for k = 0 to K

2
− 1 do

6 calculate Φ ∈ argminΦ̃∈Dh ED
1,h[(U j2k, U

j
2k+2), Φ̃] via multilevel approach;

7 U j2k+1 = U j2k+2 ◦ (1+ 0.5(Φ− 1));

8 repeat
9 Uj,old = (U j1 , . . . , U

j
K−1);

10 compute Φj = (Φj1, . . . ,Φ
j
K) ∈ argminΦ∈DK

h
ED
K,h[(UA,U

j,old, UB),Φ] via multilevel approach;

11 update Uj = (U j1 , . . . , U
j
K−1) via Ūj = A[Φj ]−1R[Φj ];

12 until ‖Uj,old −Uj‖L2(Ω) ≤ THRESHOLD;

The alternating update algorithm. In the proposed minimization algorithm, the aforementioned steps are es-
sentially alternated. However, if the input images significantly differ, the elastic registration can get stuck in local
minima or does not terminate within a reasonable time despite the multilevel ansatz. Thus, to further improve the
robustness of the alternating algorithm, we alter the algorithm in two ways:

1. We employ a cascadic approach starting with a coarse time discretization (K = 2) and then successively add
further time steps tKk by increasing K. To be precise, in each step of this approach we minimize the discrete
path energy ED

Kold
w.r.t. the images and deformations for a given length Kold, where the outmost images of

the sequence (U0, . . . , UKold
) coincide with the input images. Afterwards, we perform a prolongation to the

next finer level by inserting a new image between each pair of consecutive images leading toKnew = 2Kold.
These new images are initialized with the middle image of the warp described by the optimal deformation
of the adjacent pair of images. This cascadic approach is terminated if K = Knew (cf . lines 4 to 7 in
Algorithm 1).

2. Furthermore, we apply a Gaussian filter with variance σ2 = 5
4h in the case of color images and σ2 = 5

8h in
the case of gray-scale images to the input images in a pre-processing step to damp noise.

The resulting alternating minimization algorithm is summarized in Algorithm 1, which is stopped if the L2(Ω)-
norm of two consecutive iterates of the image vector is below a certain threshold value.

3.6.2 Conforming Spatial Discretization with Finite Elements and Cubic Splines
In what follows, we will propose a conforming spatial discretization incorporating a finite element based ansatz
space for the image intensity functions and a cubic spline discretization for the deformations on a coarser grid.
The discretization of the discrete exponential map for the time discrete metamorphosis model is also based on this
discretization scheme (see Section 4.3).

The images are again discretized using the aforementioned space Vh of bilinear finite element functions on the
regular and quadratic mesh Th with mesh size h = 2−M .
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Since we are aiming at a conforming discretization (for small m), we model the displacements Φ − 1 on the
C2(Ω)- and H3(Ω)-conforming space SH of cubic B-splines (recall that we require m > 1 + n

2 = 2) on the
regular and quadratic mesh T̃H with mesh size H = 2−N for N < M (in all computations shown in this chapter
we set M = N + 1), which accommodates the fact that deformations are expected to have fewer details than
the associated images. To construct the basis functions for SH , we first consider the basis functions for the one-
dimensional space of scalar-valued cubic B-splines. There are three different types of basis functions (see Figure
3.3): boundary basis functions (red), basis functions adjacent to the boundary (blue) and interior basis functions
(black). The basis functions for SH are defined as a tensor product of the one-dimensional basis functions, and
to impose the Dirichlet boundary condition Φ = 1 on ∂Ω, we explicitly remove the boundary basis functions.
Finally, the deformation space DH is given as the shifted vector-valued space 1+ S2

H .

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Illustration of the basis functions for the space of cubic splines for n = 1 and h = 0.2.

Instead of the Simpson quadrature rule we employ a Gaussian quadrature of order 5 on both meshes, which
proved to be more stable in the numerical applications. Let ICSH be the index set of all cells in the mesh T̃H . For
l ∈ ICSH , we denote by x̃lq and ω̃lq the qth quadrature point and the corresponding quadrature weight in the cell C̃l
associated with the coarse mesh T̃H for the deformations, respectively.

To update the images, we proceed in nearly the same way as in the nonconforming discretization scheme, the
only difference stems from the replacement of the Simpson by the Gaussian quadrature rule.

The update step for the deformations is again based on the Fletcher–Reeves gradient descent. However, since
Vh andDH are modeled on different meshes, we have to adapt (3.101) and (3.105). Despite the requirementm > 2
we use m = 2 since the deformations are intrinsically H3(Ω)-regular.

Then, the discrete path energy is given as

ED
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)]

= K

K∑
k=1

( ∑
l∈ICSH

∑
q

ω̃lq

(
W(DΦk(x̃lq)) + γ|D2Φk(x̃lq)|2

)
+

1

δ

∑
l∈ICVh

∑
q

ωlq
(
Uk ◦ Φk(xlq)− Uk−1(xlq)

)2 )
.

We highlight the different quadrature schemes for the regularization and the mismatch terms. Moreover, the
associated variation in the direction Ψ ∈ {Φ ∈ S2

H : Φ = 0 on ∂Ω} turns out to be

∂ΦkE
D
K,h[(U0, . . . , UK), (Φ1, . . . ,ΦK)](Ψ)

= K

K∑
k=1

( ∑
l∈ICSH

∑
q

ω̃lq

(
DW(DΦk(x̃lq)) : (DΨ(x̃lq)) + 2γ(D2Φk(x̃lq)) : (D2Ψ(x̃lq))

)
+

2

δ

∑
l∈ICVh

∑
q

ωlq(Uk ◦ Φk(xlq)− Uk−1(xlq))((∇Uk ◦ Φk(xlq)) ·Ψ(xlq))
)
.
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Note that the quadrature on the fine mesh is only employed if evaluations of the image intensities are involved.
Based on this modified energy, the multilevel Fletcher–Reeves gradient descent is used to perform the elastic
registration, where in each multilevel step the difference of the levels of Th and T̃H is exactly 1. To enhance
the stability of the resulting alternating algorithm, the same cascadic prolongation approach as well as the same
Gaussian filter as in the nonconforming discretization are used (see Algorithm 1, note that Dh has to be replaced
by DH ).

3.7 Numerical Results
In this section, we will present several numerical results for the computation of discrete geodesic curves in the time
discrete metamorphosis model. All results are calculated with Algorithm 1 using either the nonconforming finite
element scheme or the conforming mixed finite element and cubic B-spline based approach. Most of the results
are computed using the simplified energy density (3.20) instead of the theoretically justified Ogden-type density
(3.19) since the simplified energy density gives results of comparable visual quality with less computational effort
due to the quadratic structure of the regularization term of the deformation energy compared to the complicated
nonlinear structure of the Ogden density. The parameter THRESHOLD (see Algorithm 1) is set to 10−6 in all
results. Many results of this chapter have already been published in [BER15].

Results obtained with the nonconforming discretization. In the nonconforming discretization, we choosem =
4, which results in the (approximate) biharmonic higher order regularization term γ‖∆2Φ‖2L2(Ω) in the path energy.

Figure 3.4 depicts a discrete geodesic path obtained with the nonconforming discretization scheme, where the
input images are different slices of a 3D magnetic resonance tomography of a human brain with a resolution of
257×257. In the first row, the Ogden energy density (3.19) is employed with parametersK = 4, δ = 10−2, λ = 1,
µ = 1

2 , q = r = 3
2 , s = 1

2 and γ = 10−4. Note that this particular choice ignores the theoretical requirement s > 1
(cf . (W2)), but proves to be more stable. The remaining results are computed using the simplified model (3.20)
with parameters γ = 10−3, δ = 10−1 and K = 4 in the second row and K = 16 in the third to fifth row. By a
visual comparison of the first two rows, it turns out that the diameter of the brain slice in the second rows roughly
expands linearly, whereas the Ogden-type material induces a stronger enlargement for small k.

Figure 3.5 shows a geodesic path between two faces from female portrait paintings1 of size 257×257 computed
with the simplified energy density using the nonconforming discretization scheme with parameters γ = 10−3 and
δ = 10−2. The contributions of the regularization and the mismatch term appearing in ED

2 [(Uk−1, Uk),Φk] for
k = 1, . . . ,K are plotted in Figure 3.6. Note that the method seems to prefer an approximate equidistribution of
each contribution as well as the total path energy in time.

The next example (Figure 3.7 to Figure 3.10) demonstrates the applicability of the proposed algorithm to the
computation of time discrete geodesic paths in the space of color images. Here, both input images are self-portraits
by van Gogh2 painted in 1889 (see Figure 3.7). Again, we restrict to the simplified energy density with parameters
γ = 10−3 and δ = 10−2 and the nonconforming discretization scheme, and highlight that the algorithm is not
limited to this setting. We take into account a straightforward generalization of the model for scalar-/gray-valued
images to vector-valued image maps corresponding to the RGB color space, where the only required modification
of the method is that |Uk+1 ◦ Φk+1 − Uk|2 is now the Euclidean norm of the (extended) color vector. One can
even enhance the model with further channels, e.g. these channels could represent segmented regions of the images
which one would like to ensure to be properly matched by transport and not by blending of intensities. A direct
computation of the discrete geodesic curve between the original self-portraits URGBA and ŨRGBB with a resolution
of 513× 513 failed since the background colors of both self-portraits differ considerably in the RGB color space.
Hence, we adjusted the background color of ŨB and used the resulting image URGBB (see Figure 3.7) for all
further computations. Moreover, since the color values of the clothing and the region around the ear are close
to the background color w.r.t. the RGB distance, we had to add a fourth (segmentation) channel (cf . USA and USB
in Figure 3.7) to ensure their proper matching. The time discrete geodesic path for the van Gogh self-portraits

1first painting by A. Kauffmann (public domain, see http://commons.wikimedia.org/wiki/File:Angelika_
Kauffmann_-_Self_Portrait_-_1784.jpg), second painting by R. Peale (GFDL, see http://en.wikipedia.org/
wiki/File:Mary_Denison.jpg)

2both paintings by V. van Gogh (public domain, http://upload.wikimedia.org/wikipedia/commons/7/71/Vincent_
Willem_van_Gogh_102.jpg, http://en.wikipedia.org/wiki/File:SelbstPortrait_VG2.jpg)
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K = 4,

using (3.19)

with δ = 10−2,

λ = 1, µ = 1
2

,

q = r = 3
2

,

s = 1
2

, γ = 10−4

K = 4,

using (3.20) with

γ = 10−3,

δ = 10−1

K = 16,

using (3.20) with

γ = 10−3,

δ = 10−1

Figure 3.4: Discrete geodesic curve in the metamorphosis model for two slices of an MRI data set of a human
brain (data courtesy of H. Urbach, Neuroradiology, University Hospital Bonn) computed with the nonconforming
scheme. The Ogden energy density (first row, K = 4) is compared to the simplified energy density (with K = 4
in the second row, with K = 16 in the third to fifth row).

along with the temporal change of the fourth channel is shown in Figure 3.9 for K = 8. Figure 3.8 depicts the
pullback URGBB ◦ Φ along the path Φ = ΦK ◦ ΦK−1 ◦ . . . ◦ Φ1 corresponding to the geodesic curve in Figure
3.9. In the last figure of this example (see Figure 3.10), we present the discrete motion fields K(Φk − 1) (first
row), the accumulated weak material derivative Zk = K

∑k
l=1(Ul ◦ Φl − Ul−1) ◦Xl−1 using the notation (3.47)

for k = 1, . . . , 8 (second row) and the pullback sequence U8 ◦ Φ8 · · ·Φl for l = 8, . . . , 1 (third row) along the
discrete geodesic path. Here, the color wheel on the lower left in the first row indicates both the direction (hue)
and the magnitude (color intensity) of the discrete velocities K(Φk − 1). We emphasize that the motion field is
not constant in time.

The final result obtained with the nonconforming approach and the simplified energy density with parameters
γ = 10−3 and δ = 0.05 is devoted to the MRI tomography scan of a human head of size 1293. The isosurfaces of
the input data UA and UB , the side contour plot of UA and the position of a particular slice are depicted in the first
row of Figure 3.11. In the second row, the temporal evolution of this slice along the discrete geodesic path with
K = 3 is shown. We remark that longer sequences and data sets with higher resolution in 3D are not suitable for
the proposed methods due to the long computation time and excessive memory usage.
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K = 4,

using (3.20) with

γ = 10−3,

δ = 10−2

K = 16,

using (3.20) with

γ = 10−3,

δ = 10−2

Figure 3.5: Discrete geodesic curve between two faces from female portrait paintings using the nonconforming
discretization.

Results obtained with the conforming discretization. In this paragraph, we will present numerical results
computed with the conforming discretization scheme using the simplified energy density (3.20) with parameters
γ = 10−3 and δ = 10−2.

We recomputed the long geodesic curve for the female portrait paintings from Figure 3.5 using the conforming
scheme, the results are depicted in Figure 3.12. A direct visual comparison shows that the results of both dis-
cretization approaches are (nearly) indistinguishable, the energy contributions emerging from the regularization
and the mismatch term also approximately coincide with the corresponding results plotted in Figure 3.6. In fur-
ther numerical experiments, we could only observe minor visual differences of both discretization approaches for
small K and significantly different input images.

As a final example, we present the geodesic curve joining the images of two cars (see Figure 3.13), the initial
contours of both cars are retraced to illustrate the motion. It becomes apparent that the proposed scheme is capable
of properly rotating and translating objects.
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Figure 3.6: Energy contributions of the regularization functional
∫

Ω
W(DΦk)+γ|∆2Φk|2 dx (red) and the match-

ing functional 1
δ

∫
Ω

(Uk ◦Φk −Uk−1)2 dx (green) for the discrete geodesic path in Figure 3.5 for K = 4 (left) and
K = 16 (right).

URGBA USA ŨRGBB URGBB USB

Figure 3.7: Original van Gogh self-portraits URGBA , ŨRGBB and the modulated input image URGBB along with the
associated fourth channel segmentations USA and USB .

Figure 3.8: Pullback URGBB ◦ ΦK ◦ · · · ◦ Φ1 of URGBB along the discrete transport path (left) and visualization of
the motion field associated with the outmost images of the sequence (middle and right) for van Gogh self-portraits.
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U0 U1 U2

U3 U4 U5

U6 U7 U8

US0 US1 US2 US3 US4 US5 US6 US7 US8

Figure 3.9: Discrete geodesic curve between two van Gogh self-portraits using the energy density (3.20) and the
nonconforming discretization scheme for K = 8, γ = 10−3 and δ = 10−2 including the fourth (segmentation)
channel (bottom row).
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Figure 3.10: Discrete motion fields K(Φk − 1) (first row), accumulated weak material derivative Zk for k =
1, . . . , 8 (second row) and pullback sequence U8 ◦ Φ8 · · ·Φl for l = 8, . . . , 1 (third row).

Figure 3.11: First row: isosurfaces of the input data UA and UB (first and second image), contour side view of UA
(third image) and the location of a particular slice (fourth image). Second row: temporal evolution of this slice
along the time discrete geodesic sequence (nonconforming scheme with γ = 10−3, δ = 0.05 and K = 3).
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K = 16,

using (3.20) with

γ = 10−3,

δ = 10−2

Figure 3.12: Discrete geodesic curve between two faces from female portrait paintings using the conforming
discretization with the simplified energy density.

U0 U2 U4

U6 U8 U10

U12 U14 U16

Figure 3.13: Discrete geodesic curve between two cars (conforming discretization with parameters γ = 10−3 and
δ = 10−2 and K = 16), the initial contours of the cars are retraced.
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3.8 Extensions, Conclusion and Outlook
The variational time discretization of the metamorphosis model is the starting point of several successive publica-
tions:

– In [ERS+15] (joint work with Martin Rumpf, Stefan Simon, Kirsten Stahn and Benedikt Wirth), Bézier
curves in the space of images are computed using a Riemannian version of de Casteljau’s algorithm. The
existence and stability of spatially continuous Bézier curves are proven using (3.9), the high regularity of the
deformations and the Mosco-convergence. Furthermore, the analogous proof for spatially discrete Bézier
curves relies on the preceding existence theorems for the time discrete metamorphosis model. Compared to
the geodesic interpolation between several input images (referred to as control points), a spatially discrete
Bézier curves between these control points admits a visually higher smoothness in time and the global impact
of features of the control images. Figure 3.14 depicts a piecewise geodesic interpolation (second row) of
three human faces (first row) as control points as well as the associated quadratic Bézier curve (third row).

1
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A 1 2 3 B 5 6 7 C

A 1 2 3 4 5 6 7 C

Figure 3.14: Piecewise discrete geodesic (middle) and quadratic Bézier curve (bottom) between human faces
(K = 8, δ = 7.5 · 10−3, γ = 10−3).

– In [BBE+17] (joint work with Benjamin Berkels, Michael Buchner, Martin Rumpf and Steffen Schmitz–
Valckenberg), the conforming discretization with the simplified energy density is employed to compute a
discrete geodesic curve for data acquired with an optical coherence tomography of a human eye suffering
from age-related macular degeneration in the years 2012 to 2015. To this end, the piecewise geodesic
interpolation of consecutive years is compared to the geodesic curve between the data sets of 2012 and
2015 (see Figure 3.15). Since the time-critical step in the computation of geodesics is the solution to the
registration subproblem, the energy and gradient assembly are implemented on the graphics card to speed
up the computation time. In detail, elements in the mesh are identified with a thread on the GPU, and for the
assembly of the discrete energy a reduction scheme is employed to perform the numerical quadrature.

– The Riemannian exponential map in the time discrete metamorphosis model is rigorously developed and
analyzed in Chapter 4 ([ERS17a] and [ERS17b], joint work with Martin Rumpf and Florian Schäfer). De-
parting from the variational characterization of the one-step extrapolation (cf . (2.15)), whose existence and
uniqueness follow from a suitable combination of a fixed point iteration and an implicit function type argu-
ment, the geodesic curve can be retrieved from the initial image and initial image variation by an iterative
application of the one-step extrapolation as shown in Figure 2.1. The numerical optimization scheme relies
on a slightly modified fixed point iteration and proves to be efficient.

In this chapter, we have proposed a time discretization of the time continuous metamorphosis model introduced
by Trouvé, Younes and coworkers. We were able to prove the existence of time discrete geodesic curves and the
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Figure 3.15: First row: piecewise geodesic interpolation for four consecutive years of a human eye for K =
27 (input data in red boxes). Second to fourth row: geodesic interpolation between the years 2012 and 2015
(K = 27 in each interpolation step), associated discrete velocity fields K(Φk − 1) and intensity modulations
K(Uk ◦ Φk − Uk−1).

Mosco-convergence of a suitable extension of the time discrete path energy to the time continuous metamorphosis
energy functional. Two different discretizations of the fully discrete path energy were employed for an alternating
minimization algorithm to compute discrete geodesic curves for numerous gray-scale and color images. However,
there are some limitations related to the numerical optimization: the alternating algorithm suffers from a computa-
tion time ranging from a few minutes to several hours (in particular in the case of a 3D data set) and a high memory
usage, which restricts the number of parallel threads for the registration subproblem. We experimentally exploited
a trust region based solver for the registrations, which resulted in a moderate speedup at the expense of an even
higher memory usage, but this solver was capable of significantly decreasing the approximation error related to
the computation of the deformations. A further possible improvement could rely on duality techniques in PDE
constrained optimization to derive a simultaneous optimization scheme for the images and deformations.



Chapter 4

Time Discrete Exponential Map in the
Space of Images

IN this chapter, we will rigorously define and analyze the discrete exponential map for the time discrete meta-
morphosis model in order to compute extrapolated image paths of arbitrary length, which in particular allows
to (approximately) recover time discrete geodesics if solely the first two images along the sequence are given.

To this end, in a first step we establish the (local) existence and (local) uniqueness of the one-step extrapolation.
In detail, we derive suitable reformulations of the Euler–Lagrange equations associated with the one-step extrap-
olation and employ Banach’s fixed point theorem to prove the existence of critical points of the Euler–Lagrange
equations provided that the input images are weakly differentiable and L2-close. If the input images are in addition
close inH1, then an implicit function type argument implies the local existence and uniqueness of the extrapolation
for a single time step. Then, taking into account the iterative characterization of the general discrete exponential
map (cf . (2.14)) allows the computation of extrapolated paths of arbitrary length. In all numerical applications,
the discretization is based on a spatial Galerkin discretization with cubic B-splines on coarse meshes for the dis-
crete deformations and bilinear and globally continuous finite elements on fine meshes for the image intensities.
The minimizing discrete deformation for the registration of the second input image and the unknown extrapolated
image in the one-step extrapolation is computed using a fixed point iteration. Afterwards, the optimal extrapo-
lated image can be recovered from a pointwise condition emerging from the Euler–Lagrange equations. Several
numerical examples underline the efficiency and stability of the proposed method to real image data.

This chapter is an extended version of the publications [ERS17a] and [ERS17b] (joint work with Martin Rumpf
and Florian Schäfer). We refer to Subsection 3.1.3 for an overview of related work.

The structure of this chapter is as follows: In Section 4.1, we propose a slightly modified time discrete meta-
morphosis model, which essentially differs from the corresponding model presented in the previous chapter in
terms of the boundary conditions for the deformations. Afterwards, the Euler–Lagrange equations for a single
time step of the discrete exponential map are derived. In Section 4.2, the local existence and local uniqueness of
this discrete exponential map are proven based on a suitable combination of Banach’s fixed point theorem and the
implicit function theorem. An efficient fixed point algorithm to compute the unknown deformation as well as an
update formula for the unknown image intensity for the one-step extrapolation are proposed in Section 4.3. Finally,
numerical results for different input data are presented in Section 4.4.

4.1 Time Discrete Exponential Map

In this section, we will adapt the iterative definition of the time discrete exponential map (cf . (2.14)) to the time dis-
crete metamorphosis model as introduced in Chapter 3. To this end, we will slightly modify the time discretization
of the metamorphosis model proposed in Section 3.2 and derive the Euler–Lagrange equations for the exponential
map (see Subsection 4.1.1). In Subsection 4.1.2, we will state two reformulations of the Euler–Lagrange equations
for the one-step extrapolation, on which the fixed point iterations used in the existence theorem for the discrete
exponential map and in the numerical optimization are based.

89
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4.1.1 Variational Time Discretization in the Context of the Discrete Exponential Map
In what follows, we will point out the (minor) differences to the variational time discretization introduced in
Chapter 3. As before, we assume that Ω ⊂ Rn, n ∈ {2, 3}, is a bounded and strongly Lipschitz domain, and for
γ, δ > 0 we define for arbitrary images u, ũ ∈ L2(Ω) the discrete matching energy (cf . (3.13))

W[u, ũ] = min
φ∈A

{
WD[u, ũ, φ] =

∫
Ω

W(Dφ) + γ|Dmφ|2 +
1

δ
(ũ ◦ φ− u)2 dx

}
. (4.1)

Contrary to the preceding chapter, m must satisfy m > 2 + n
2 and is assumed to be even. The set of admissible

deformations is defined as

A = {φ ∈ Hm(Ω,Ω) : det(Dφ) > 0 a.e. in Ω, φ− 1 ∈ Hm
0 (Ω,Ω) } ,

where the weaker boundary condition φ = 1 on ∂Ω is replaced by φ − 1 ∈ Hm
0 (Ω,Ω) (cf . (3.14)). With these

altered boundary conditions the equality∫
Ω

|∆m
2 ψ|2 dx =

∫
Ω

|Dmψ|2 dx (4.2)

for all ψ ∈ Hm
0 (Ω,Ω) and even m ≥ 2 holds true (cf . [GGS10, Section 2.2]). For instance, using integration by

parts we obtain for m = 2∫
Ω

|∆ψ|2 dx =

∫
Ω

n∑
i,j=1

∂2
i ψ · ∂2

jψ dx =

∫
Ω

n∑
i,j=1

∂i∂jψ · ∂i∂jψ dx =

∫
Ω

|D2ψ|2 dx .

Recall that the polyharmonic operator is inductively defined by ∆lf = ∆(∆l−1f) for f ∈ H2l(Ω) with l ≥ 2.
This stronger boundary condition is required for both a regularity result (cf . Proposition 4.1.2) and a higher order
control of the deformations (cf . (4.14)). Throughout this chapter, the energy density W is assumed to satisfy
(W1) and (W4), which implies that the minimum in (4.1) is actually attained by slightly modifying the proof of
Proposition 3.4.2 provided that u and ũ are sufficiently close in L2(Ω).

Next, we define the discrete exponential map in the context of the time discrete metamorphosis model based on
the construction in [RW15] and derive the associated Euler–Lagrange equations. The construction of the discrete
exponential map is based on the recursive scheme (2.14) visualized in Figure 2.1. For fixed input images u0 and
u1 we refer to u0 as the base point and to ζ1 = u1 − u0 as the initial variation of the image u0, which can be
interpreted as the discrete counterpart of the infinitesimal variation in the continuous case.

Let us for the time being assume that (u0, u1, . . . , uK) for K ≥ 2 is the unique geodesic curve between u0

and uK (for the discussion of uniqueness see below). The discrete exponential map is then defined as

EXPku0
(ζ1) := uk

for k = 0, . . . ,K. Since we are assuming uniqueness of the geodesic curve, the definition of EXPku0
(ζ1) does

not depend on the number of time steps K because (u0, u1, . . . , uL) for any L ≤ K is also a geodesic. Follow-
ing (2.14), the sequence (EXPku0

(ζ1))k≥1 can be iteratively defined as

EXPku0
(ζ1) = uk = EXP2

uk−2
(ζk−1)

for k ≥ 2, where ζk−1 = uk−1 − uk−2 represents the variation in the current step. For the sake of completeness,
we define EXP0

u0
(ζ1) = u0 and EXP1

u0
(ζ1) = u1 = u0 + ζ1. Thus, it essentially remains to compute EXP2

for a given input image uk−2 and an image variation ζk−1 = uk−1 − uk−2 (see Figure 2.1). There are two major
restrictions regarding the input images u0 and u1:

1. In the existence and uniqueness result for the discrete exponential map (cf . Section 4.2), H1(Ω)-regularity
of the input images is required, which results from the appearance of weak derivatives of the images in the
Euler–Lagrange equations for EXP2 w.r.t. the deformations (see (4.6) and (4.7)). The H1(Ω)-regularity
property is inherited along the discrete extrapolated path, i.e. EXPku0

(u1 − u0) ∈ H1(Ω) for any k ≥ 1
provided that u0, u1 ∈ H1(Ω) (cf . Section 3.4). The weak differentiability of the input data is also a crucial
requirement in the initial value problem for the geodesic equation in the continuous metamorphosis model
(cf . [TY05a, Theorem 7]).
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2. The initial variation ζ1 = u1−u0 is assumed to be sufficiently small in L2(Ω) to guarantee the convergence
of the fixed point iteration. Recall that this requirement also naturally arose in the context of the time discrete
exponential map on Hilbert manifolds (cf . Subsection 2.2.3). The smallness of the variations uk−1 − uk−2

for k ≤ K and fixed K is inherited along the geodesic path, i.e. the L2(Ω)-norm of ζk can be controlled in
terms of theL2(Ω)-norm of the initial variation ζ1. In particular, EXPku0

( · ) is well-posed for any sufficiently
small initial variation ζ1 and k ≤ K.

Henceforth, we assume u0, u1 ∈ H1(Ω) with small initial variation ζ1 = u1 − u0 in L2(Ω) and define uk =
EXP2

uk−2
(ζk−1) ∈ H1(Ω), where we tacitly assume uniqueness (cf . Theorem 4.2.2). Moreover, due to the

iterative scheme (2.14), we may restrict our presentation to the computation of u2 = EXP2
u0

(ζ1). To compute u2,
we employ the variational formulation given in (2.15), i.e. the equation

u1 = argmin
u∈H1(Ω)

W[u0, u] +W[u, u2] = argmin
u∈H1(Ω)

min
φ1,φ2∈A

WD[u0, u, φ1] +WD[u, u2, φ2] (4.3)

must hold true.

4.1.2 Euler–Lagrange Equations of the Time Discrete Exponential Map
In this subsection, we will derive the Euler–Lagrange equations for (4.3) and reformulate the Euler–Lagrange
equation w.r.t. φ2, on which the fixed point iterations to be considered in later sections will be based.

Given u0, u1 ∈ H1(Ω), the first order optimality conditions for (4.3) for u2 ∈ H1(Ω) and φ1, φ2 ∈ A read as

∂u1(WD[u0, u1, φ1] +WD[u1, u2, φ2])(v) = 0 ,

∂φ1
WD[u0, u1, φ1](ψ) = 0 ,

∂φ2
WD[u1, u2, φ2](ψ) = 0

(4.4)

for all v ∈ H1(Ω) and all ψ ∈ Hm
0 (Ω) for m > 2 + n

2 . The system (4.4) is equivalent to∫
Ω

(u1 ◦ φ1 − u0)v ◦ φ1 − (u2 ◦ φ2 − u1)v dx = 0 , (4.5)∫
Ω

DW(Dφ1) : Dψ + 2γ∆
m
2 φ1 ·∆

m
2 ψ +

2

δ
(u1 ◦ φ1 − u0)(∇u1 ◦ φ1) · ψ dx = 0 , (4.6)∫

Ω

DW(Dφ2) : Dψ + 2γ∆
m
2 φ2 ·∆

m
2 ψ +

2

δ
(u2 ◦ φ2 − u1)(∇u2 ◦ φ2) · ψ dx = 0 . (4.7)

The existence theorem as well as the numerical algorithm are based on fixed point iterations emerging from (4.7)
to compute the unknown function φ2. However, the equation in this form is not feasible for a fixed point scheme
since it additionally depends on the unknown image u2. Thus, in Lemma 4.1.1 we will reformulate (4.7) in two
ways to circumvent this dependency. Additionally, derivatives of the image intensity functions no longer appear
in the second reformulation (4.9). The first reformulation (4.8) will be employed in the existence proof for the
time discrete exponential map, whereas the second reformulation (4.9) will be utilized in a modified and spatially
discrete fixed point iteration in the numerical optimization.

Lemma 4.1.1 (Reformulation of the Euler–Lagrange equation for φ2). Let u0, u1, u2 ∈ H1(Ω) such that (cf.
Proposition 3.4.2)

‖u1 − u0‖L2(Ω), ‖u2 − u1‖L2(Ω) ≤ CW ,

m > 2 + n
2 , m even, and assume that (4.5) and (4.6) hold true.

(i.) Then (4.7) is equivalent to∫
Ω

2γ∆
m
2 φ2 ·∆

m
2 ψ +DW(Dφ2) : Dψ +

2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ2)−1ψ) ◦ φ1

+
1

δ

(u1 ◦ φ1 − u0)2

det(Dφ1)

(
(Dφ2)−T : (D2φ2(Dφ2)−1ψ)− (Dφ2)−T : Dψ

)
◦ φ1 dx = 0

(4.8)

for all ψ ∈ Hm
0 (Ω).
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(ii.) Under the additional assumptions ∂Ω ∈ C2m and u0, u1, u2 ∈ L∞(Ω) ∩ H1(Ω), the equation (4.7) is
equivalent to∫

Ω

2γ∆
m
2 φ2 ·∆

m
2 ψ +DW(Dφ2) : Dψ dx

=

∫
Ω

2γ∆
m
2 φ1 ·∆

m
2 (((Dφ2)−1ψ) ◦ φ1) +DW(Dφ1) : D(((Dφ2)−1ψ) ◦ φ1)

− 1

δ

(u1 ◦ φ1 − u0)2

det(Dφ1)

(
(Dφ2)−T : (D2φ2(Dφ2)−1ψ)− (Dφ2)−T : Dψ

)
◦ φ1 dx .

(4.9)

Here, the notation (D2φ2(Dφ2)−1ψ)jk =
∑n
i,l=1 ∂j∂kφ

i
2(Dφ2)−1

il ψl is used.

Proof. We recall that φ1, φ2 ∈ A are diffeomorphisms due to Proposition 3.4.2.

ad (i.): The transformation formula applied to the energyWD yields

WD[u1, u2, φ2] =

∫
Ω

W(Dφ2) + γ|∆m
2 φ2|2 +

1

δ

(u2 − u1 ◦ φ−1
2 )2

det(Dφ2) ◦ φ−1
2

dx .

Hence, the variation ∂φ2WD[u1, u2, φ2](ψ) reads as∫
Ω

DW(Dφ2) : Dψ + 2γ∆
m
2 φ2 ·∆

m
2 ψ +

2

δ
(u2 − u1 ◦ φ−1

2 )
(∇u1 · (Dφ2)−1ψ) ◦ φ−1

2

det(Dφ2) ◦ φ−1
2

+
1

δ

(u2 − u1 ◦ φ−1
2 )2

(det(Dφ2))2 ◦ φ−1
2

(
cof(Dφ2) : (D2φ2(Dφ2)−1ψ)− cof(Dφ2) : Dψ

)
◦ φ−1

2 dx = 0

for any ψ ∈ Hm
0 (Ω). Here, we used the identities ∂φ2φ

−1
2 (ψ) = −((Dφ2)−1ψ) ◦ φ−1

2 , which immediately
follows by differentiating ε 7→ (φ2 + εψ)◦ (φ2 + εψ)−1 = 1 at ε = 0, and ∂A det(A)(B) = cof(A) : B for
A ∈ GL(n) and B ∈ Rn,n with cof(A) = det(A)A−T . By applying the transformation formula w.r.t. φ2

once again one obtains∫
Ω

DW(Dφ2) : Dψ + 2γ∆
m
2 φ2 ·∆

m
2 ψ +

2

δ
(u2 ◦ φ2 − u1)∇u1 · (Dφ2)−1ψ

+
1

δ

(u2 ◦ φ2 − u1)2

det(Dφ2)

(
cof(Dφ2) : (D2φ2(Dφ2)−1ψ)− cof(Dφ2) : Dψ

)
dx = 0 . (4.10)

The optimality condition (4.5) implies the pointwise condition

u2 ◦ φ2(x)− u1(x) =
u1(x)− u0 ◦ φ−1

1 (x)

det(Dφ1) ◦ φ−1
1 (x)

(4.11)

for a.e. x ∈ Ω, which is used along with the transformation formula w.r.t. φ1 to remove the dependency of
the function u2 in (4.10) as follows:∫

Ω

DW(Dφ2) : Dψ + 2γ∆
m
2 φ2 ·∆

m
2 ψ +

2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ2)−1ψ) ◦ φ1

+
1

δ

(u1 ◦ φ1 − u0)2

det(Dφ1)

(
cof(Dφ2) : (D2φ2(Dφ2)−1ψ)− cof(Dφ2) : Dψ

det(Dφ2)

)
◦ φ1 dx = 0 .

The identity cof(A) = det(A)A−T for A ∈ GL(n) implies (i.).

ad (ii.): The proof of (ii.) follows by inserting the test function ζ := ((Dφ2)−1ψ) ◦ φ1 into (4.6). To justify this,
we employ Proposition 1.1.4, Proposition 4.1.2 and the classical differential calculus for Sobolev func-
tions [AF03] to deduce φ1, φ2 ∈ H2m(Ω), which implies φ1, φ2 ∈ Cm+1(Ω) and thus ζ ∈ Hm

0 (Ω). By
inserting ζ into (4.6) we get

−
∫

Ω

2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ2)−1ψ) ◦ φ1 dx

=

∫
Ω

2γ∆
m
2 φ1 ·∆

m
2 (((Dφ2)−1ψ) ◦ φ1) +DW(Dφ1) : D(((Dφ2)−1ψ) ◦ φ1) dx .

By adding the above equation to (4.8) we have proven (ii.).
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This concludes the proof of the lemma.

The following regularity result is solely required for the justification of the particular choice of the test function
in the proof of Lemma 4.1.1 (ii.).

Proposition 4.1.2. Let m− n
2 > 2 and ∂Ω ∈ C2m. Furthermore, let u0, u1, u2 ∈ L∞(Ω) ∩H1(Ω) and suppose

that φ1, φ2 ∈ A satisfy (4.6) and (4.7), respectively. Then φ1, φ2 ∈ A ∩H2m(Ω).

Proof. We only prove the proposition for φ2, for φ1 one proceeds analogously. Let w = φ2 − 1 ∈ Hm
0 (Ω) be the

displacement associated with φ2. Using integration by parts of (4.7) we obtain∫
Ω

∆
m
2 w ·∆m

2 ψ dx = −
∫

Ω

1
γδ (u2 ◦ φ2 − u1)((∇u2 ◦ φ2) · ψ) + 1

2γDW(Dφ2) : Dψ dx

=−
∫

Ω

1
γδ (u2 ◦ φ2 − u1)((∇u2 ◦ φ2) · ψ)− 1

2γdiv(DW(Dφ2)) · ψ dx =

∫
Ω

f · ψ dx

for f = − 1
γδ (u2 ◦ φ2 − u1)(∇u2 ◦ φ2) + 1

2γdiv(DW(Dφ2)) ∈ L2(Ω,Rn) and all test functions ψ ∈ Hm
0 (Ω).

The assertion of this proposition follows from the general L2(Ω)-regularity theory for polyharmonic equations as
presented in [GGS10, Chapter 2].

4.2 Local Existence and Uniqueness of the Time Discrete Exponential
Map

In this section, we will prove local existence and local uniqueness of the one-step extrapolation EXP2.
In Theorem 4.2.1, we prove the existence of a solution vector (u2, φ1, φ2) to the system of equations (4.5),

(4.6) and (4.7) for given input images u0 and u1, which are assumed to be H1(Ω)-regular and sufficiently close
inL2(Ω). The existence of the minimizing deformation φ1 is immediate due to Proposition 3.4.2. In the subsequent
step, we apply Banach’s fixed point theorem to (4.8) to prove the existence of a minimizing diffeomorphism φ2.
Finally, the optimal image intensity u2 is computed by employing (4.11) as follows

u2 =

(
u1 − u0 ◦ φ−1

1

det(Dφ1) ◦ φ−1
1

)
◦ φ−1

2 + u1 ◦ φ−1
2 . (4.12)

We will frequently refer to the first summand of (4.12) as the intensity modulation along the geodesic, the second
summand quantifies the contribution due to the transport. We highlight that in general this theorem does not imply
the uniqueness of the discrete geodesic path (u0, u1, u2) for given images u0 and u1.

The uniqueness property of the discrete exponential map is studied in Theorem 4.2.2 under the stronger as-
sumption that u0 and u1 are sufficiently close in H1(Ω). The proof is based on an implicit function theorem
argument, which also implies the local existence of the discrete exponential map in an alternative way.

Theorem 4.2.1 (Existence of solutions to the Euler–Lagrange equations). Let m − n
2 > 2, u0 ∈ H1(Ω) and

assume that (W1) and (W4) hold true. Then there are constants Cu, cu > 0 such that for every

u1 ∈
{
u ∈ H1(Ω) : |u|H1(Ω) ≤ Cu, ‖u− u0‖L2(Ω) ≤ cu

}
there exists a solution (u2, φ1, φ2) ∈ H1(Ω)×A×A to (4.5), (4.6) and (4.7). In particular, u2 solves the defining
system of equations for EXP2

u0
(u1 − u0).

Proof. The proof is separated into five steps:

(i.) Uniform control of the initial displacement and the initial mismatch.

Taking into account Proposition 3.4.2, the minimizing deformation φ1 ∈ argminφ∈AWD[u0, u1, φ] exists
provided that cu < CW , which we assume hereafter. As a consequence of the optimality of φ1 and (W1)
one can infer

WD[u0, u1, φ1] ≤ WD[u0, u1,1] =
1

δ
‖u1 − u0‖2L2(Ω) . (4.13)
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Hence, the relation φ1 − 1 ∈ Hm
0 (Ω) as well as (4.2) and (4.13) imply∫

Ω

γ|Dm(φ1 − 1)|2 dx =

∫
Ω

γ|∆m
2 (φ1 − 1)|2 dx =

∫
Ω

γ|∆m
2 φ1|2 dx ≤ 1

δ
‖u1 − u0‖2L2(Ω) ≤

c2u
δ
.

Thus, the norm equivalence of ‖ · ‖Hm(Ω) and | · |Hm(Ω) for the spaceHm
0 (Ω), which follows by an iterative

application of the Poincaré inequality (cf . [AF03, Corollary 6.31]), yields

‖φ1 − 1‖Hm(Ω) ≤ C‖u1 − u0‖L2(Ω) ≤ Ccu . (4.14)

Furthermore, taking into account (4.13) we can infer

‖u1 ◦ φ1 − u0‖L2(Ω) ≤
√
δWD[u0, u1, φ1] ≤

√
δWD[u0, u1,1] = ‖u1 − u0‖L2(Ω) ≤ cu . (4.15)

(ii.) Definition of the fixed point mapping F .

Before defining the fixed point mapping F : A → A we consider the operators T ,R : A → H−m(Ω) given
by

T [φ](ψ) =

∫
Ω

−DW(Dφ) : Dψ +D2W(1)(Dφ− 1, Dψ)− 2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ)−1ψ) ◦ φ1

− 1

δ

(u1 ◦ φ1 − u0)2

det(Dφ1)

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ)−T : Dψ

)
◦ φ1 dx , (4.16)

R[φ](ψ) =

∫
Ω

2γ∆
m
2 φ ·∆m

2 ψ +D2W(1)(Dφ− 1, Dψ) dx (4.17)

for all φ ∈ A and all ψ ∈ Hm
0 (Ω). Thus, the reformulation (4.8) of the Euler–Lagrange equation w.r.t. φ2

turns out to be equivalent to

T [φ2](ψ) = R[φ2](ψ) .

In step (iii.) we will show that the operator norm of the nonlinear operator T can be made arbitrarily small
for small quantities of Cu and cu, and in combination with the invertibility of the linear operatorR by means
of the Lax–Milgram theorem to be proven in (iv.) we can deduce that F = R−1 ◦T is actually a contraction
mapping for suitable values of Cu and cu. Thus, the fixed point iteration φ(i+1) = F [φ(i)] converges due to
Banach’s fixed point theorem to the optimal deformation φ2, which is characterized by φ2 = F [φ2].

(iii.) Lipschitz continuity of the nonlinear operator T .

For ε > 0 sufficiently small, we restrict the operator T to the domain

Bε(1) :=
{
φ : φ− 1 ∈ Hm

0 (Ω), ‖φ− 1‖Hm(Ω) < ε
}
.

In particular, depending on Cu and cu the parameter ε has to be chosen such that F is a self-map, the details
are deferred to step (v.).

A Taylor expansion applied to the first term of T gives

DW(Dφ) : Dψ = DW(1) : Dψ +D2W(1)(Dφ− 1, Dψ)

+

∫ 1

0

(1− ϑ)D3W(1+ ϑ(Dφ− 1))(Dφ− 1, Dφ− 1, Dψ) dϑ .

Thus, making use of W ∈ C4(GL+(n)), Hm(Ω) ↪→ C2(Ω), maxf∈Bε(1)D
jW(Df) ≤ C for j ∈ {3, 4}
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and DW(1) = 0 we obtain the following estimates for the first two terms of T :∣∣∣∣ ∫
Ω

−DW(Dφ) : Dψ +D2W(1)(Dφ− 1, Dψ) +DW(Dφ̃) : Dψ −D2W(1)(Dφ̃− 1, Dψ) dx

∣∣∣∣
≤
∣∣∣∣ ∫

Ω

∫ 1

0

(1− ϑ)
(
D3W(1+ ϑ(Dφ− 1))(Dφ− 1, Dφ− 1, Dψ)

−D3W(1+ ϑ(Dφ̃− 1))(Dφ̃− 1, Dφ̃− 1, Dψ)
)

dϑdx

∣∣∣∣
≤ C

(
‖φ− 1‖2Hm(Ω) + ‖φ− 1‖Hm(Ω) + ‖φ̃− 1‖Hm(Ω)

)
‖φ− φ̃‖C1(Ω)‖ψ‖Hm(Ω)

≤ C(ε2 + 2ε)‖φ− φ̃‖Hm(Ω)‖ψ‖Hm(Ω) ≤ Cε‖φ− φ̃‖Hm(Ω)‖ψ‖Hm(Ω)

for φ, φ̃ ∈ Bε(1). By decreasing cu and ε if necessary and using the embedding Hm(Ω) ↪→ C2(Ω) we may
assume

‖Dφ− 1‖C0(Ω) <
1
2 , ‖ det(Dφ)− 1‖C0(Ω) <

1
2 (4.18)

for all deformations φ to be considered in this proof, which are additionally C1(Ω)-diffeomorphisms in view
of Theorem 3.4.1 (i.). Using (4.18) we can straightforwardly verify

‖ det(Dφ−1)‖C0(Ω) ≤
(

1−‖ det(Dφ)−1‖C0(Ω)

)−1

< 2 , ‖cof(Dφ)‖C0(Ω) ≤ C , ‖(Dφ)−1‖C0(Ω) ≤ C .

Moreover, due to (Dφ)−1 = (det(Dφ))−1cof(Dφ)T the following control of the derivatives of the inverse
deformations holds true:

‖(Dφ)−1 − (Dφ̃)−1‖C0(Ω) = ‖(det(Dφ))−1cof(Dφ)T − (det(Dφ̃))−1cof(Dφ̃)T ‖C0(Ω)

≤
∥∥∥ (cof(Dφ))T

det(Dφ) det(Dφ̃)

∥∥∥
C0(Ω)

‖det(Dφ)− det(Dφ̃)‖C0(Ω)

+ ‖(det(Dφ̃))−1‖C0(Ω)‖cof(Dφ)T − cof(Dφ̃)T ‖C0(Ω)

≤ C‖φ− φ̃‖Hm(Ω) . (4.19)

By combining the estimates (4.15), (4.18) and (4.19) as well as the Cauchy–Schwarz inequality and the
transformation formula we can finally infer the following estimate for the third term of T :∣∣∣ ∫

Ω

(u1 ◦ φ1 − u0)(∇u1 ◦ φ1) · ((Dφ)−1ψ) ◦ φ1 − (u1 ◦ φ1 − u0)(∇u1 ◦ φ1) · ((Dφ̃)−1ψ) ◦ φ1 dx
∣∣∣

≤ C‖u1 ◦ φ1 − u0‖L2(Ω)|u1|H1(Ω)‖ det(D(φ−1
1 ))‖

1
2

C0(Ω)
‖(Dφ)−1 − (Dφ̃)−1‖C0(Ω)‖ψ‖C0(Ω)

≤ CCucu‖φ− φ̃‖Hm(Ω)‖ψ‖Hm(Ω) .

Likewise, for the fourth term of T we obtain by the transformation formula and by the usual embedding
Hm(Ω) ↪→ C2(Ω)∣∣∣∣ ∫

Ω

(u1 ◦ φ1 − u0)2

det(Dφ1)

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ̃)−T : (D2φ̃(Dφ̃)−1ψ)

− (Dφ)−T : Dψ + (Dφ̃)−T : Dψ
)
◦ φ1 dx

∣∣∣∣
≤ Cc2u‖(det(Dφ1))−1‖C0(Ω)

(
‖(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ̃)−T : (D2φ̃(Dφ̃)−1ψ)‖C0(Ω)

+ ‖(Dφ)−T : Dψ − (Dφ̃)−T : Dψ‖C0(Ω)

)
≤ Cc2u‖φ− φ̃‖Hm(Ω)‖ψ‖Hm(Ω) .

To conclude, for ‖u1 − u0‖L2(Ω) ≤ cu and |u1|H1(Ω) ≤ Cu the mapping T is indeed Lipschitz continuous
on the subset Bε(1) ⊂ A and the Lipschitz constant is bounded by C(Cucu + c2u + ε).
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(iv.) Invertibility of the linear operatorR.

To prove the invertibility ofR, let us first examine the bilinear form

R̃ : Hm
0 (Ω)×Hm

0 (Ω)→ R , R̃[ζ](ψ) 7→
∫

Ω

2γ∆
m
2 ζ ·∆m

2 ψ +D2W(1)(Dζ,Dψ) dx ,

which is clearly bounded in Hm
0 (Ω). Furthermore, R̃ is coercive since for any ψ ∈ Hm

0 (Ω) we obtain

‖ψ‖2Hm(Ω) ≤ C|ψ|
2
Hm(Ω) = C

∫
Ω

∆
m
2 ψ ·∆m

2 ψ dx (4.20)

due to (4.2) and the iterative application of the Poincaré inequality (cf . [AF03, Corollary 6.31]). Hence,
by the Lax–Milgram Theorem (cf . [GT92]) there exists for every z ∈ H−m(Ω) a unique ζ ∈ Hm

0 (Ω)

such that R̃[ζ](ψ) = z(ψ) and R̃[ · ]−1 : H−m(Ω) → Hm
0 (Ω) is a bounded operator. Finally, taking into

account the shiftR[φ] = R̃[φ− 1] we can infer thatR[ · ] is a bounded and invertible operator with inverse
R−1[z] = 1 + R̃−1[z].

(v.) Contraction property of the fixed point mapping F .

In this step, we will verify that F = R−1 ◦ T is indeed a contraction mapping, i.e. F is a self-map and
its operator norm is strictly less than 1. Taking into account the boundedness of R−1 and the Lipschitz-
continuity of T shown in the preceding steps we conclude

‖F [φ]−F [φ̃]‖Hm(Ω) ≤ C‖T [φ]− T [φ̃]‖H−m(Ω) ≤ C(Cucu + c2u + ε)‖φ− φ̃‖Hm(Ω) (4.21)

for φ, φ̃ ∈ Bε(1), which implies that F is contractive for sufficiently small Cu, cu and ε. It remains to
demonstrate that F is a self-map for a proper choice of Cu, cu and ε, i.e. F : Bε(1)→ Bε(1). To this end,
let

S[φ](ψ) =

∫
Ω

−DW(Dφ) : Dψ +D2W(1)(Dφ− 1, Dψ) dx

for all ψ ∈ Hm
0 (Ω) denote the first two summands of T . Using (W1) one can verify that R−1 ◦ S[1] = 1

and thus

‖F [1]− 1‖Hm(Ω) = ‖R−1 ◦ T [1]−R−1 ◦ S[1]‖Hm(Ω) ≤ C‖(T − S)[1]‖H−m(Ω) ≤ C(Cucu + c2u) .

Hence, for any φ ∈ Bε(1) one gets

‖F [φ]− 1‖Hm(Ω) ≤ ‖F [φ]−F [1]‖Hm(Ω) + ‖F [1]− 1‖Hm(Ω)

≤ C(Cucu + c2u + ε)‖φ− 1‖Hm(Ω) + C(Cucu + c2u) ≤ C(Cucu + c2u + ε)ε+ C(Cucu + c2u) . (4.22)

To sum up, one has to choose Cu > 0, cu ∈ (0, CW) and ε > 0 such that

– the conditions in (4.18) are satisfied for all φ ∈ Bε(1) and for the initial deformation φ1,

– F is contractive, i.e. C(Cucu + c2u + ε) < 1 (cf . (4.21)), and

– F : Bε(1)→ Bε(1) is a self-map, i.e. C(Cucu + c2u + ε)ε+ C(Cucu + c2u) < ε (see (4.22)),

are satisfied simultaneously, which allows the application of Banach’s fixed point theorem to prove the
existence of a unique deformation φ2 ∈ Bε(1) ⊂ A solving (4.8). Finally, the optimal image inten-
sity u2 associated with the deformation φ2 is uniquely characterized by (4.12). Thus, there exists a solution
(u2, φ1, φ2) ∈ H1(Ω) × A × A to (4.5), (4.6) and (4.7), and u2 as well as φ2 are unique for a given
deformation φ1.

This finishes the proof of the theorem.

In the subsequent theorem, the local uniqueness and local existence of the discrete exponential map are proven
for H1(Ω)-close input images.
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Theorem 4.2.2 (Local uniqueness and well-posedness of the discrete exponential map). Letm−n
2 > 2 and assume

that (W1) and (W4) are valid. Then for every fixed input image u0 ∈ H1(Ω) there exist neighborhoods U ⊂ H1(Ω)
of u0 and D ⊂ A of 1 such that for every u2 ∈ U there exists a unique solution (u1, φ1, φ2) ∈ U×D×D to the
equations (4.5)-(4.7). In particular, the discrete exponential map is locally well-posed and

u2 = EXP2
u0

(u1 − u0) .

Proof. The proof is based on the implicit function theorem applied to the functional

J : H1(Ω)×A×A → R , (u2, φ1, φ2) 7→ WD[u0, u1[u2, φ1, φ2], φ1] +WD[u1[u2, φ1, φ2], u2, φ2] ,

where u1[u2, φ1, φ2] denotes the optimal central image along the geodesic curve (u0, u1, u2) depending on u2,
φ1 and φ2 (we omit the dependence on the image u0). Here, we tacitly assume that U and D are sufficiently
small such that Proposition 3.4.8 (ii.) actually ensures the existence of a unique image u1[u2, φ1, φ2]. To derive
an explicit expression for u1[u2, φ1, φ2], we note that the sum of the two matching terms in J can be rewritten as
follows ∫

Ω

(u1[u2, φ1, φ2] ◦ φ1 − u0)2 + (u2 ◦ φ2 − u1[u2, φ1, φ2])2 dx

=

∫
Ω

(u1[u2, φ1, φ2] ◦ φ1 − u0)2 + (u2 ◦ φ2 ◦ φ1 − u1[u2, φ1, φ2] ◦ φ1)2 det(Dφ1) dx .

Thus, the optimal image intensity map u1[u2, φ1, φ2] is characterized pointwise a.e. in Ω by (cf . (4.11))

u1[u2, φ1, φ2] ◦ φ1 =
u0 + (u2 ◦ φ2 ◦ φ1) det(Dφ1)

1 + det(Dφ1)
,

which implies that J admits the explicit form

J [u2, φ1, φ2] =

∫
Ω

W(Dφ1) + γ|∆m
2 φ1|2 + W(Dφ2) + γ|∆m

2 φ2|2 +
h(Dφ1)

δ
(u2 ◦ φ2 ◦ φ1 − u0)2 dx

for h(A) = det(A)
1+det(A) . Moreover, let us introduce the functional

K : H1(Ω)×A×A → (Hm
0 (Ω)×Hm

0 (Ω))′ , (u2, φ1, φ2) 7→ ∂(φ1,φ2)J [u2, φ1, φ2] .

With these definitions at hand, the Euler–Lagrange equations (4.5)-(4.7) turn into the implicit equation

K[u2, φ1, φ2] = 0 . (4.23)

In what follows, we will employ the implicit function theorem for Banach spaces (cf . [Zei95, Chapter 4]) to prove
that for every u2 in a H1(Ω)-neighborhood of the input image u0 there exists unique deformations (φ1, φ2)[u2] ∈
A × A in a Hm(Ω)-neighborhood of (1,1) such that (4.23) is valid, which readily implies the claim. Thus, it
solely remains to verify that ∂(φ1,φ2)K[u0,1,1] = ∂2

(φ1,φ2)J [u0,1,1] is invertible with bounded inverse in order
to apply the implicit function theorem. To this end, to compute ∂2

(φ1,φ2)J [u2, φ1, φ2], we focus on the variation of

J̃ [u2, φ1, φ2] =

∫
Ω

h(Dφ1)(u2 ◦ φ2 ◦ φ1 − u0)2 dx ,

since the derivation of the other components of ∂2
(φ1,φ2)J [u2, φ1, φ2] is straightforward. The first derivatives of J̃

w.r.t. the deformations in the direction ψ ∈ Hm
0 (Ω) read as

∂φ1
J̃ [u2, φ1, φ2](ψ) =

∫
Ω

(u2 ◦ φ2 ◦ φ1 − u0)2Dh(Dφ1) : Dψ

+ 2h(Dφ1)(u2 ◦ φ2 ◦ φ1 − u0)∇(u2 ◦ φ2 ◦ φ1) · (Dφ1)−1ψ dx

=

∫
Ω

(u2 ◦ φ2 ◦ φ1 − u0)2Dh(Dφ1) : Dψ − (u2 ◦ φ2 ◦ φ1)2div
(
h(Dφ1)(Dφ1)−1ψ

)
+ 2(u2 ◦ φ2 ◦ φ1)div

(
u0h(Dφ1)(Dφ1)−1ψ

)
dx ,

∂φ2
J̃ [u2, φ1, φ2](ψ) =

∫
Ω

2h(Dφ1)(u2 ◦ φ2 ◦ φ1 − u0)∇(u2 ◦ φ2 ◦ φ1) · (D(φ2 ◦ φ1))−1(ψ ◦ φ1) dx

=

∫
Ω

2(u2 ◦ φ2 ◦ φ1)div
(
u0h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
− (u2 ◦ φ2 ◦ φ1)2div

(
h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
dx .
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Here, we used integration by parts alongside the following different versions of the chain rule:

(∇(u2 ◦ φ2 ◦ φ1))T = (∇(u2 ◦ φ2) ◦ φ1)TDφ1 ,

∇(u2 ◦ φ2 ◦ φ1)2 = 2(u2 ◦ φ2 ◦ φ1)∇(u2 ◦ φ2 ◦ φ1) ,

(∇(u2 ◦ φ2 ◦ φ1))T = (∇u2 ◦ (φ2 ◦ φ1))TD(φ2 ◦ φ1) .

Based on these reformulations the second order variational derivatives of J̃ are given by

∂2
φ1
J̃ [u2, φ1, φ2](ψ, ζ) =

∫
Ω

2(u2 ◦ φ2 ◦ φ1 − u0)∇(u2 ◦ φ2) ◦ φ1 · ζ(Dh(Dφ1) : Dψ)

+ (u2 ◦ φ2 ◦ φ1 − u0)2D2h(Dφ1)(Dψ,Dζ)

− 2(u2 ◦ φ2 ◦ φ1)∇(u2 ◦ φ2) ◦ φ1 · ζdiv
(
h(Dφ1)(Dφ1)−1ψ

)
− (u2 ◦ φ2 ◦ φ1)2div

(
∂φ1

(h(Dφ1)(Dφ1)−1)(ζ)ψ
)

+ 2∇(u2 ◦ φ2) ◦ φ1 · ζdiv
(
u0h(Dφ1)(Dφ1)−1ψ

)
+ 2(u2 ◦ φ2 ◦ φ1)div

(
u0∂φ1

(h(Dφ1)(Dφ1)−1)(ζ)ψ
)

dx ,

∂2
φ2
J̃ [u2, φ1, φ2](ψ, ζ) =

∫
Ω

2∇u2 ◦ (φ2 ◦ φ1) · (ζ ◦ φ1)div
(
u0h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
+ 2(u2 ◦ φ2 ◦ φ1)div

(
u0h(Dφ1)∂φ2((D(φ2 ◦ φ1))−1)(ζ)(ψ ◦ φ1)

)
− 2(u2 ◦ φ2 ◦ φ1)∇u2 ◦ (φ2 ◦ φ1) · (ζ ◦ φ1)·

div
(
h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
− (u2 ◦ φ2 ◦ φ1)2div

(
h(Dφ1)∂φ2

((D(φ2 ◦ φ1))−1)(ζ)(ψ ◦ φ1)
)

dx ,

∂φ1
∂φ2
J̃ [u2, φ1, φ2](ψ, ζ) =

∫
Ω

2∇(u2 ◦ φ2) ◦ φ1 · ψdiv
(
u0h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1)

)
+ 2(u2 ◦ φ2 ◦ φ1)div

(
u0∂φ1

(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))(ψ)
)

− 2(u2 ◦ φ2 ◦ φ1)∇(u2 ◦ φ2) ◦ φ1 · ψdiv
(
h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1)

)
− (u2 ◦ φ2 ◦ φ1)2div

(
∂φ1

(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))(ψ)
)

dx

for ψ, ζ ∈ Hm
0 (Ω). Evaluating the second order variational derivatives at the point (u0,1,1) and taking into

account the identity h(1) = 1
2 yields

∂2
φ1
J̃ [u0,1,1](ψ, ζ) =

∫
Ω

−u0∇u0 · ζdiv(ψ)− u2
0div(∂φ1

(h(Dφ1)(Dφ1)−1)|φ1=1(ζ)ψ)

+∇u0 · ζdiv(u0ψ) + 2u0div(u0∂φ1(h(Dφ1)(Dφ1)−1)|φ1=1(ζ)ψ) dx

=

∫
Ω

ζT∇u0∇uT0 ψ dx ,

∂2
φ2
J̃ [u0,1,1](ψ, ζ) =

∫
Ω

∇u0 · ζdiv(u0ψ) + u0div(u0∂φ2
((D(φ2 ◦ φ1))−1)|φ2=1(ζ)(ψ ◦ φ1))

− u0∇u0 · ζdiv(ψ)− 1
2u

2
0div(∂φ2((D(φ2 ◦ φ1))−1)|φ2=1(ζ)(ψ ◦ φ1)) dx

=

∫
Ω

ζT∇u0∇uT0 ψ dx ,

∂φ1
∂φ2
J̃ [u0,1,1](ψ, ζ) =

∫
Ω

∇u0 · ψdiv(u0ζ) + 2u0div(u0∂φ1
(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))|φ1=1(ψ))

− u0∇u0 · ψdiv(ζ)− u2
0div(∂φ1(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))|φ1=1(ψ)) dx

=

∫
Ω

ζT∇u0∇uT0 ψ dx .

In the computations above, we employed the identity∫
Ω

u2
0divv − 2u0div(u0v) dx =

∫
Ω

−∇u2
0 · v − 2u0div(u0v) dx

=

∫
Ω

−2∇u0 · (u0v)− 2u0div(u0v) dx =

∫
Ω

2u0div(u0v)− 2u0div(u0v) dx = 0
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for any vector field v ∈ H1
0 (Ω,Rn) several times, which is solely based on integration by parts.

To sum up, the second order variation of the functional J at the point (u0,1,1) has the form

∂2
(φ1,φ2)J [u0,1,1]((ψ1, ψ2), (ζ1, ζ2)) =

∫
Ω

2γ∆
m
2 ψ1 ·∆

m
2 ζ1 +D2W(1)(Dψ1, Dζ1) + 2γ∆

m
2 ψ2 ·∆

m
2 ζ2

+D2W(1)(Dψ2, Dζ2) +
1

δ
(ψ1 + ψ2)T∇u0∇uT0 (ζ1 + ζ2) dx .

By incorporating the estimate∣∣∣∣∫
Ω

(ψ1 + ψ2)T∇u0∇uT0 (ζ1 + ζ2) dx

∣∣∣∣ ≤ C‖u0‖2H1(Ω)‖(ψ1, ψ2)‖Hm(Ω)‖(ζ1, ζ2)‖Hm(Ω) ,

which follows from the embedding Hm(Ω) ↪→ C2(Ω), we can immediately deduce that ∂2
(φ1,φ2)J [u0,1,1] is

a continuous bilinear form on Hm
0 (Ω) × Hm

0 (Ω). Moreover, the coercivity of ∂2
(φ1,φ2)J readily follows from

the estimate (4.20) employed in the proof of the coercivity of R (cf . Theorem 4.2.1). Finally, the Lax–Milgram
Theorem (cf . [GT92]) guarantees the invertibility of ∂2

(φ1,φ2)J , which concludes the proof of this theorem.

4.3 Spatial Discretization and Fixed Point Algorithm

In this section, we will propose a spatial discretization scheme, which shares many similarities with the conforming
discretization presented in Subsection 3.6.2, and a fixed point algorithm based on Lemma 4.1.1 (ii.) to compute the
extrapolated path {uk = EXPku0

(u1−u0)}k≥0 for given images u0, u1 ∈ H1(Ω). Incorporating the scheme (2.14),
we may restrict our presentation to the calculation of u2 = EXP2

u0
(u1−u0). To this end, we first have to compute

the deformations φ1, φ2 ∈ A in a preceding step and exploit the pointwise condition (4.12) to retrieve the unknown
image u2.

To ease the presentation, we restrict ourselves to two-dimensional images on the computational domain Ω =
[0, 1]2 and the particular energy density W(A) = |A − 1|2 (cf . (3.20)), and emphasize that the generalization
to other settings is straightforward. Moreover, to simplify the numerical implementation we choose m = 2 de-
spite the theoretical requirement m > 2 + n

2 = 3, and highlight that this choice suffices to reliably solve the
Euler–Lagrange equations numerically since the regularity of the discrete function space for the deformations is
intrinsically determined. Altogether, the discrete energy used in all further numerical experiments in this chapter
is defined as

WD[u, ũ, φ] =

∫
Ω

|Dφ− 1|2 + γ|∆φ|2 +
1

δ
(ũ ◦ φ− u)2 dx (4.24)

for u, ũ ∈ H1(Ω) and φ ∈ A.
The algorithm for the computation of u2 = EXP2

u0
(u1 − u0) includes three steps:

1. The initial deformation φ1 ∈ A is computed using the Fletcher–Reeves multilevel gradient descent already
discussed in detail in Section 3.6.

2. To obtain the optimal deformation φ2 ∈ A, a spatially discrete fixed point iteration is used, which emerges
from the reformulation appearing in Lemma 4.1.1 (ii.). We recall that this reformulation requires bounded
and weakly differentiable input images, which are additionally close in L2(Ω), as well as a sufficiently
smooth domain boundary. However, since the computational domain is only Lipschitz we neglect this
smoothness requirement w.r.t. the boundary.

3. Finally, as in the existence proof for the discrete exponential map (cf . Theorem 4.2.1), the optimal image u2

is given by the spatially discrete analog of (4.12) resulting from the Euler–Lagrange equation (4.5).

Derivation of the fixed point operator. In what follows, we will discuss the fixed point iteration of step 2 in
detail. To this end, we define the nonlinear operator T̃ : A → H−m(Ω) as the counterpart of T (cf . (4.16)) for
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the second reformulation of Lemma 4.1.1, i.e. T̃ [φ2;u0, u1, φ1](ψ) = R[φ2](ψ) for all test functions ψ ∈ Hm
0 (Ω)

withR denoting the linear operator for the fixed point iteration used in Theorem 4.2.1, as follows

T̃ [φ;u0, u1, φ1](ψ) =

∫
Ω

2γ∆φ1 ·∆(((Dφ)−1ψ) ◦ φ1) + 2(Dφ1 − 1) : D(((Dφ)−1ψ) ◦ φ1)

− 1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ)−T : Dψ

)
◦ φ1 dx

=

∫
Ω

− 2γD∆φ1 : (D((Dφ)−1ψ) ◦ φ1)− 2∆φ1 · ((Dφ)−1ψ) ◦ φ1

− 1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ)−T : Dψ

)
◦ φ1 dx . (4.25)

To derive (4.25) we employed the identities ∂AW(A)(B) = 2(A − 1) : B and ∂2
AW(A)(B,C) = 2B : C for

A,B,C ∈ Rn,n, and used integration by parts to get the second equality. This ansatz is numerically beneficial
because it avoids the evaluation of gradients of image intensities – in contrast to the operator T . In detail, we
observed in the numerical experiments that the numerical quadrature scheme to approximate∫

Ω

(u1 ◦ φ1 − u0)(∇u1 · (Dφ)−1ψ) ◦ φ1 dx

appearing in the definition of T is highly inaccurate in a neighborhood of the interfaces of u1. However, despite
these improvements the numerical quadrature scheme for the first integrand in (4.25) is still inaccurate, that is why
we additionally rewrite this expression by making use of A : B = tr(ATB) as follows∫

Ω

D∆φ1 : D((Dφ)−1ψ) ◦ φ1) dx

=

∫
Ω

D∆φ1 : ((Dφ)−1 ◦ φ1)D(ψ ◦ φ1) +D∆φ1 : (D((Dφ)−1 ◦ φ1))(ψ ◦ φ1) dx

=

∫
Ω

((Dφ)−T ◦ φ1)D∆φ1 : D(ψ ◦ φ1) +D∆φ1 : (D((Dφ)−1 ◦ φ1))(ψ ◦ φ1) dx .

To sum up, the operator T̃ admits the representation

T̃ [φ;u0, u1, φ1](ψ)

=

∫
Ω

−2γ((Dφ)−T ◦ φ1)D∆φ1 : D(ψ ◦ φ1)− 2γD∆φ1 : (D((Dφ)−1 ◦ φ1))(ψ ◦ φ1)

− 2∆φ1 · ((Dφ)−1ψ) ◦ φ1 −
1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ)−T : Dψ

)
◦ φ1 dx

(4.26)

and the resulting fixed point iteration to compute φ2 ∈ A corresponding to (4.9) is given by

φ(j+1) = R−1 ◦ T̃ [φ(j);u0, u1, φ1] .

Spatial discretization scheme and fully discrete operators. As in the conforming discretization of the meta-
morphosis model (cf . Subsection 3.6.2), we use the space of bilinear and globally continuous scalar-valued finite
elements Vh on Th and the conforming space of vector-valued cubic B-splinesDH = 1+S2

H ⊂ C2(Ω,R2) on T̃H
to model the images and deformations, respectively. As before, Th and T̃H denote regular meshes on Ω composed
of quadratic cells with mesh sizes h = 2−M and H = 2−N for M = N + 1. Furthermore, we only impose the
Dirichlet boundary condition Φ = 1 on ∂Ω instead of the stronger boundary condition Φ − 1 ∈ H2

0 (Ω) for the
discrete deformations Φ ∈ DH since this choice proved to be sufficient to reliably compute proper deformations.
The initial discrete images are retrieved via a nodal interpolation in Vh, i.e. Ui = Ihui for i ∈ {0, 1}, and assumed
to be in the range [0, 1]. For further details we refer to Subsection 3.6.2.
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Throughout this discretization scheme, we apply a Gaussian quadrature of order 5 on both meshes. To fix the
notation, let us define ICVh and ICSH as the index sets of all cells in Th and T̃H , respectively. On each cell Cl in Th,

l ∈ ICVh , and each cell C̃l̃ in T̃H , l̃ ∈ ICSH , we denote by (ωlq,x
l
q) and (ω̃l̃q, x̃

l̃
q) the pair of the qth quadrature weight

and corresponding quadrature point, respectively. Moreover, INVh and INSH refer to the index sets of all grid nodes
xl and x̃l in Th and T̃H , respectively.

In a preparatory step, the initial deformation Φ1 ∈ argminΦ∈DH WD[U0, U1,Φ] is calculated using a Fletcher–
Reeves nonlinear conjugate gradient descent multilevel scheme with an Armijo step size control as described in
Subsection 3.6.2. When computing EXPkU0

(U1 − U0) for any k > 2 following the iterative scheme, this step is
omitted and the optimal deformation computed in the preceding fixed point iteration is used instead.

In what follows, we will define the spatially discrete counterparts of the energyWD as well as the operators T̃
andR involved in the fixed point iteration in order to compute the deformation Φ2 ∈ DH . Whenever the evaluation
of image intensities is required, the Gaussian quadrature on the fine mesh Th is incorporated for this integrand,
otherwise the Gaussian quadrature scheme on the coarse mesh T̃H is used. The fully discrete energy WD for
U, Ũ ∈ Vh and Φ ∈ DH is defined as (cf . (4.24))

WD[U, Ũ ,Φ] =
∑
l∈ICSH

∑
q

ω̃lq
(
|(DΦ− 1)(x̃lq)|2 + γ|∆Φ(x̃lq)|2

)
+

1

δ

∑
l∈ICVh

∑
q

ωlq

(
Ũ(Φ(xlq))− U(xlq)

)2

.

Likewise, the fully discrete counterparts of the operators T̃ (cf . (4.26)) and R (cf . (4.17)) are accordingly defined
as

T̃[Φ;U0, U1,Φ1](Ψ) =
∑
l∈ICSH

∑
q

ω̃lq

(
− 2γ((DΦ)−T ◦ Φ1(x̃lq))D∆Φ1(x̃lq) : D(Ψ ◦ Φ1(x̃lq))

− 2γD∆Φ1(x̃lq) : D((DΦ)−1 ◦ Φ1(x̃lq))(Ψ ◦ Φ1(x̃lq))

− 2∆Φ1(x̃lq) · ((DΦ)−1Ψ) ◦ Φ1(x̃lq)
)

−
∑
l∈ICVh

∑
q

ωlq
δ

(U1 ◦ Φ1(xlq)− U0(xlq))
2

detDΦ1(xlq)

·
(
(DΦ)−T : (D2Φ(DΦ)−1Ψ)− (DΦ)−T : DΨ

)
◦ Φ1(xlq) ,

R[Φ](Ψ) =
∑
l∈ICSH

∑
q

ω̃lq
(
2γ∆Φ(x̃lq) ·∆Ψ(x̃lq) + 2DΦ(x̃lq) : DΨ(x̃lq)

)
for Ψ ∈ {Φ ∈ S2

H : Φ = 0 on ∂Ω}. Hence, the spatially discrete fixed point iteration to compute Φ2 ∈ DH is

Φ(j+1) = R−1 ◦ T̃[Φ(j);U0, U1,Φ1] (4.27)

for all j ≥ 0 and initial data Φ(0) = 1. The application of R−1 requires the solution of the associated linear
system of equations, which is implemented using a preconditioned conjugate gradient descent with a diagonal
preconditioner. Now, the deformation Φ2 is computed using the fixed point iteration (4.27), which is stopped if the
L∞-difference of the deformations in two consecutive iterations is below the threshold value THRESHOLD =
10−12.

In the final step, the unknown image intensity U2 is calculated by evaluating the spatially discrete analog of the
update formula (4.12) at each node of Th, i.e. (cf . Notation 3.6.1)

Ū2 =

{
U2(xl) =

(
U1 − U0 ◦ Φ−1

1

det(DΦ1) ◦ Φ−1
1

)
◦ Φ−1

2 (xl) + U1 ◦ Φ−1
2 (xl)

}
l∈INVh

.

To compute the approximate inverse deformations Φ−1
i ∈ DH , i ∈ {1, 2}, all cells of the grid T̃H associated

with SH are traversed and the deformed positions Φi(ỹj) for all vertices ỹj , j ∈ {1, . . . , 4}, of the current element
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Φi(ỹ1)

Φi(ỹ2)

Φi(ỹ3)Φi(ỹ4)

x̃l

ỹ1 ỹ2

ỹ3ỹ4

Φ−1
i (x̃l)

Figure 4.1: Illustration of the computation of the approximate inverse deformation Φ−1
i (xl), i = 1, 2.

are computed. If a grid node x̃l, l ∈ INSH , lies within the quadrilateral generated by {Φi(ỹj)}j∈{1,...,4}, then
Φ−1
i (x̃l) is defined as the bilinear interpolation of the vertices {ỹj}j∈{1,...,4}. Furthermore, we explicitly ensure

the boundary condition Φ−1
i (x̃l) = x̃l for x̃l ∈ ∂Ω and l ∈ INSH (cf . Figure 4.1).

Anisotropic diffusion filtering. In our numerical experiments, we observed slight local oscillations, which
mainly result from the inexact evaluation of the expression U1 − U0 ◦ Φ−1

1 in the quadrature of the intensity
modulation. Since EXPkU0

(U1 − U0) for k > 2 is computed using the aforementioned iterative scheme, these
oscillations significantly amplify and propagate along the extrapolated path. Thus, to damp these oscillations and
at the same time preserve interfaces and small structures of the image, we apply in a post-processing step the
established anisotropic diffusion filtering proposed by Perona and Malik (see [PM90]) characterized by

∂tI − div
(

1
1+λ−2‖∇I‖2∇I

)
= 0

to the intensity modulation I = U1 − U0 ◦ Φ−1
1 for a weight parameter λ > 0. Note that in general no global

and smooth solutions to this partial differential equation exist (see [Wei98] for further details).1 In detail, this filter
is defined via one semi-implicit time step of the discrete anisotropic diffusion equation on Vh, i.e. we apply the
operator (Mh + τSh[I, λ])−1Mh to Ī , where Mh and Sh[I, λ] are the mass matrix and the anisotropic stiffness
matrix associated with the space Vh on Th, i.e.

(Mh)i,j =
∑
l∈ICVh

∑
q

ωlqΘ
i(xlq)Θ

j(xlq) , (Sh[I, λ])i,j =
∑
l∈ICVh

∑
q

ωlq
1 + λ−2‖∇I(xlq)‖2

∇Θi(xlq) · ∇Θj(xlq) .

Here, {Θi}i∈INVh are the basis functions associated with Vh, the indices i, j ∈ INVh refer of the nodes in Th,
τ > 0 is the time step size and λ is the gradient magnitude threshold parameter of the conductance functional
f 7→ 1

1+λ−2‖∇f‖2 .

All aforementioned steps are summarized in Algorithm 2.

4.4 Numerical Results
In this section, we present several numerical results of the discrete exponential map for artificial as well as real
image data in the fully discrete setting, where we employ the algorithm developed in Section 4.3 with parameters
γ = 10−4 and δ = 10−2. Moreover, we choose λ = 0.5 and τk = 0.8k−2 · 10−3 whenever the anisotropic
diffusion filtering is applied to the image Uk, where k refers to the index of the extrapolated sequence. This
exponentially decaying time step size prevents a loss of image features for larger k while at the same time reducing
the amplification of noise for the first images along the sequence. All results have been published in [ERS17a]
and [ERS17b].

1In the terminology of Weickert [Wei98], this filter is isotropic.
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Algorithm 2: The fixed point iteration to compute the extrapolated path.
Data: input images U0, U1 ∈ Vh, K ≥ 2, mesh size h, weight parameters τ, λ > 0 for smoothing
Result: discrete extrapolated curve {Uk = EXPkU0

(U1 − U0)}0≤k≤K
1 calculate Φ1 ∈ argminΦ̃∈DH WD[U0, U1, Φ̃];
2 for k = 2 to K do
3 Φ(0) = 1, j = 0;
4 repeat
5 j = j + 1;
6 Φ(j) = R−1 ◦ T̃[Φ(j−1);Uk−2, Uk−1,Φk−1];
7 until ‖Φ(j) − Φ(j−1)‖ ≤ THRESHOLD;
8 Φk = Φ(j);
9 I = Uk−1 − Uk−2 ◦ Φ−1

k−1;
10 Ī = (Mh + τSh[I, λ])−1MhĪ;

11 Ūk =

{(
I

det(DΦk−1)◦Φ−1
k−1

+ Uk−1

)
◦ Φ−1

k (xl)

}
l∈INVh

;

Let us first analyze the capability of the time discrete exponential map to translate, shade and rotate image
features. To this end, we consider an input image U0 consisting of three ellipses with different intensities and a
resolution of 257 × 257 (see Figure 4.2). Compared to U0, the upper left ellipse in U1 is slightly translated to the
bottom and simultaneously expanded, the upper right ellipse is rotated and the third one is also slightly translated
with some modulation of the shading. All input images are framed in red and we do not apply the anisotropic
diffusion filtering at all. The first row of Figure 4.2 depicts the extrapolated image sequence EXPkU0

(U1 − U0)
for the time steps k ∈ {0, 1, 2, 3, 6, 9}. The associated intensity modulations Ik = Uk ◦ Φk − Uk−1 as well as
velocity fields Vk = K(Φk − 1) are shown in the second and third row, respectively. Here, the leftmost color bar
in the second row shows the extremal values of the intensity modulations along the path, and the hue and color
intensities as indicated by the leftmost color wheel in the last row refer to the directions and local norms of the
velocity fields, respectively. One observes that the initial variation is properly transported along the image path, i.e.
the rotation, shading and translation of the ellipses are accurately detected and propagated while at the same time
the shape of the ellipses is approximately preserved. We highlight that the resulting underlying discrete velocity
fields significantly vary in time.

In all further numerical applications, the aforementioned anisotropic diffusion filtering is employed to damp
local oscillations and prevent their amplification.

In the application shown in Figure 4.3, we analyze to which extent the time discrete exponential map is capable
of recovering a time discrete geodesic curve from the first two images along the sequence. To this end, we again
consider the discrete geodesic sequence (Ũ0, . . . , Ũ16) of the female portraits (cf . Figure 3.12) obtained with the
conforming discretization approach proposed in Subsection 3.6.2 withM = 8 andN = 7, and framed input images
Ũ0 and Ũ16 (first row in Figure 4.3). The associated discrete exponential shooting (U0, . . . , U16) is visualized in
the second and third row for even time steps for K = 16, where the initial image U0 = Ũ0 as well as the initial
variation U1−U0 = Ũ1−Ũ0 are taken from the geodesic sequence. The corresponding temporally varying discrete
velocity fields and intensity modulations for distinct time steps are depicted in the last two rows. As a result, the
discrete exponential map is capable of retrieving the geodesic curve quite well for small k, whereas for large k the
images Uk and Ũk visibly differ. In general, theoretical considerations (cf . Theorem 2.2.15) as well as numerical
experiments indicate that smaller initial variations for the time discrete exponential map result in a more accurate
recovery of the associated time discrete geodesic curve.

Figure 4.4 depicts distinct images of a time discrete parallel transport (P0, . . . , P16) along the discrete geodesic
path (U0, . . . , U16) shown in Figure 3.12, where in the initial image P0 the eyes of the woman are darkened and
her hair on the left side of the image is extended. The computation of the time discrete parallel transport is based
on Schild’s ladder as presented in Definition 2.2.16. Here, to perform the interpolation and extrapolation required
in the second and third step of (2.16), we employ the geodesic interpolation and extrapolation for the time discrete
metamorphosis model presented in the previous and current chapter, respectively. Note that the modifications of
the initial image P0 representing the initial displacement vector are properly propagated along the sequence for
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U0 U1 U2 U3 U6 U9

−0.065 0 0.018

I1

V1

I2

V2

I3

V3

I6

V6

I9

V9

Figure 4.2: First row: The discrete exponential map EXPkU0
(U1 − U0) for k = 0, 1, 2, 3, 6, 9 for images showing

three ellipses (input images are framed in red). Second/third row: the associated intensity modulations Ik with a
scale encoding the extremal values and the discrete velocity fields Vk (the hue refers to the direction, the intensity
is proportional to the local norm of the velocity fields).

small time steps k, but the images Pk and Uk are almost indistinguishable for larger k.
Figure 4.5 (first and third row) depicts a picture detail of the discrete exponential map for the time steps

k ∈ {0, 1, 2, 4, 8, 16} applied to two pairs of photos of human faces with a resolution of 1025 × 1025 of the full
images, where the input pictures are consecutive photos of a series at 5 and 7 fps taken with a digital camera,
respectively. We observe that small initial variations result in a nonlinear deformation of the lips (first row) and of
the lips, the cheeks and the eyes (third row), respectively. Furthermore, the textures are reliably transported along
the sequence. The second and fourth row depict the color coded time varying velocity fields.

Figure 4.6 depicts the discrete exponential map for k ∈ {0, . . . , 7} for a pair of images of a dog with a
resolution of 1025 × 1025, where the input pictures are consecutive photos of a series with 7 fps taken with a
digital camera. The initial variation contains a slight rotation of the dog’s head and a small opening of its eyes,
which is accurately propagated along the sequence. Note that an exponential shooting for k > 7 collapses since
the resulting deformation Φ8 is no longer bijective and thus an interpenetration of matters occurs.
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Ũ0 Ũ4 Ũ8 Ũ12 Ũ16

U0 U1 U2 U4 U6

U8 U10 U12 U14 U16

V1 V5 V10 V16

I1 I5 I10 I16

−0.01 0 0.02

Figure 4.3: The first row depicts distinct images of the same discrete geodesic sequence already shown in Fig-
ure 3.12. The discrete exponential map for some time steps is shown in the second and third row, where the input
images U0 and U1 coincide with Ũ0 and Ũ1 from the geodesic sequence, respectively. In the last two rows, the
discrete velocity fields and intensity modulations are visualized for distinct time steps.
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P0 P1 P2 P4 P6

P8 P10 P12 P14 P16

Figure 4.4: Discrete parallel transport along the discrete path shown in Figure 3.12. Compared to the original input
image U0, a hair extension on the left side of the image P0 was performed and the eyes were darkened.

U0 U1 U2 U4 U8 U16

V1 V2 V4 V8 V16

U0 U1 U2 U4 U8 U16

V1 V2 V4 V8 V16

Figure 4.5: First/third row: picture details of EXPkU0
(U1 − U0) applied to two pairs of photos of human faces for

distinct time steps. Second/fourth row: the associated discrete velocity fields Vk.
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U0 U1 U2 U3

U4 U5 U6 U7

V1 V4 V7

Figure 4.6: First/second row: The discrete exponential map for time steps k ∈ {0, . . . , 7} with two photos of a dog
as initial data. Third row: the associated discrete velocity fields for distinct time steps.
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Chapter 5

A Posteriori Error Control for the Binary
Mumford–Shah Model

IN this chapter, we will develop an a posteriori error estimator for the binary Mumford–Shah model. Starting
from a uniformly convex relaxation of this model originally introduced by Chambolle [Cha05] and Berkels
[Ber09], which does not require any constraint in the minimization, we derive a consistent functional a poste-

riori error estimator to control the L2-difference of any approximate and the relaxed solution picking up the work
by Repin [Rep00, Rep12], where we incorporate a predual formulation of the relaxed model (cf . [HK04, Bar15]).
Afterwards, by using a cut-out argument a reliable a posteriori error estimator for the binary Mumford–Shah model
is derived, which is composed of a weighted sum of the functional estimator and the area of the preimage of an
expanded interface region. We present two primal-dual finite element schemes and a classical finite difference
discretization. To compute the solution to the relaxed model, a primal-dual algorithm with guaranteed first order
convergence (cf . [CP11]) as well as a dual gradient descent (cf . [Cha04]) are employed. The finite element dis-
cretization schemes are computed on an adaptive triangle mesh with hanging nodes, in which each element has a
canonical correspondence to a quadtree. The applicability of the proposed method is analyzed in several numerical
experiments to real image data.

Many results in this chapter have been published in [BER17] (joint work with Benjamin Berkels and Martin
Rumpf).

This chapter is organized as follows: In Section 5.1, we briefly recall the well-known image segmentation
functional by Mumford and Shah and provide a short survey of existence and regularity results as well as numer-
ical optimization methods. At the beginning of this section, the foundations of the space of functions of bounded
variation and some fundamental theorems in convex analysis are presented. In Section 5.2, we focus on the binary
Mumford–Shah model and its basic properties, and prove that by suitably thresholding the minimizer of a uni-
formly convex relaxed functional the minimizer of the binary Mumford–Shah functional can be exactly retrieved.
By combining the predual formulation of the relaxed functional with Repin’s primal-dual approach we derive a
functional a posteriori error estimator for the relaxed solution based on upper bounds of the duality gap (see Sec-
tion 5.3). Then, taking into account these functional estimates we use a cut-out argument to infer an a posteriori
estimator for the minimizer of the binary Mumford–Shah model. In addition, in a sensitivity analysis we exam-
ine the mutual influence of the binary minimizers and the intensity values (see Section 5.4). Two adaptive finite
element schemes and a finite difference scheme to discretize the relaxed functional are proposed in Section 5.5.
In Section 5.6, a primal-dual algorithm and a purely dual gradient descent to compute the relaxed minimizers are
discussed and the cell-wise a posteriori error estimator is defined. Finally, the efficiency and robustness of the
proposed error estimator are demonstrated for several images in Section 5.7.

109
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5.1 Review of the Mumford–Shah Model and Related Work
As a general model for (image) segmentation, Mumford and Shah [MS85, MS89] proposed to minimize the energy
functional

EMS[u,K] =

∫
Ω

α(u− u0)2 dx+

∫
Ω\K
|∇u|2 dx+ βHn−1(K) (5.1)

among all pairs (u,K) ∈ K = {K ⊂ Ω is closed and u ∈ H1(Ω\K)}. Here, α, β > 0 and u0 ∈ L∞(Ω, [0, 1]) is
the scalar-valued input image intensity on the bounded image domain Ω ⊂ Rn with Lipschitz boundary. The first
summand in (5.1) is the squaredL2(Ω)-norm representing a fidelity term, the squaredH1(Ω)-seminorm of u forces
the minimizer to be sufficiently smooth inside the connected components of Ω\K, and the last term penalizes the
size of the interface set K. Thus, the resulting minimizer (û, K̂) corresponds to an image segmentation with
a discontinuity set K̂ separating the image domain into regions, and û can be regarded as a piecewise smooth
version of u0.

There is a great variety of theoretical results related to this functional. In what follows, we will present a
non-exhaustive overview of various results regarding the existence of minimizers and the regularity of the set K̂
(see Subsection 5.1.3) as well as approximating functionals, numerical minimization methods associated with
the Mumford–Shah functional and further models for two-phase as well as multi-phase image segmentation (see
Subsection 5.1.4). Prior to this, a short survey of the space of bounded functions and distinct results from convex
analysis are presented to an extent required for later sections (see Subsection 5.1.1 and Subsection 5.1.2).

5.1.1 Functions of Bounded Variation
In what follows, we will recall the main properties of the spaces BV(Ω) and SBV(Ω). The latter turns out to be
the natural function space for the Mumford–Shah functional. Throughout this chapter, we assume that Ω ⊂ Rn is a
bounded domain with Lipschitz boundary. The main references for this section are [EG92, AFP00, Zie89, Amb89].

Definition 5.1.1. A function f ∈ L1(Ω) has bounded variation in Ω (notation: f ∈ BV(Ω)) if the total varia-
tion |Df |(Ω) is finite, i.e.

|Df |(Ω) := sup

{∫
Ω

fdivφdx : φ ∈ C1
c (Ω,Rn), ‖φ‖L∞(Ω) ≤ 1

}
<∞ .

Moreover, the norm in BV(Ω) is given as ‖f‖BV(Ω) = ‖f‖L1(Ω) + |Df |(Ω). An Ln(Ω)-measurable set Σ ⊂ Ω
has finite perimeter if |Dχ[Σ]|(Ω) <∞.

Theorem 5.1.2. For every function f ∈ BV(Ω) there exists a finite Rn-valued Radon measure Df such that∫
Ω

fdivφdx = −
∫

Ω

φ · dDf ∀φ ∈ C1
c (Ω,Rn) .

Proof. See [EG92, Chapter 5.1] and [AFP00, Chapter 3.1].

Definition 5.1.3. A sequence {fk}k∈N ⊂ BV(Ω) converges weakly-∗ in BV(Ω) (notation: fk
∗
⇀ f ) if there exists

a function f ∈ BV(Ω) such that fk → f in L1(Ω) and∫
Ω

φ · dDfk →
∫

Ω

φ · dDf ∀φ ∈ C0
c (Ω,Rn) .

Theorem 5.1.4 (Properties of BV functions). We list several fundamental properties of the space BV(Ω):

(i.) W 1,1(Ω) ( BV(Ω).

(ii.) BV(Ω) is not reflexive.

(iii.) The total variation is a seminorm and convex on the space L1(Ω).
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(iv.) Suppose that {fk}k∈N ⊂ BV(Ω) and fk → f in L1
loc(Ω) as k → ∞. Then the total variation is lower

semicontinuous w.r.t. this sequence, i.e. |Df |(Ω) ≤ lim infk→∞ |Dfk|(Ω).

(v.) Let f ∈ BV(Ω). Then there exists a sequence {fk}k∈N ⊂ BV(Ω) ∩ C∞(Ω) such that fk → f in L1(Ω)
and |Dfk|(Ω)→ |Df |(Ω) as k →∞. This property is called strict convergence in BV(Ω).

(vi.) Let {fk}k∈N ⊂ BV(Ω) be a sequence which is uniformly bounded in BV(Ω). Then there exist a subse-
quence {fkj}j∈N and f ∈ BV(Ω) such that fkj

∗
⇀ f in BV(Ω) as j →∞.

Proof. See [AFP00, Chapter 3.1] and [EG92, Chapter 5.1/5.2].

When minimizing the Mumford–Shah functional w.r.t. the set BV(Ω) the infimum is always 0 due to the
presence of the Cantor part in Df , that is why we have to restrict to the space SBV(Ω) of special functions with
bounded variation defined as the set of BV(Ω)-functions with vanishing Cantor part. The rigorous definition of
SBV(Ω) requires the following results as a preparatory step:

Definition and Lemma 5.1.5. Let f ∈ BV(Rn). The (upper and lower) approximate limits of f for x ∈ Rn are
defined as follows:

f+(x) = inf

{
t ∈ R : lim

r↘0

|Br(x) ∩ [f > t]|
rn

= 0

}
, f−(x) = sup

{
t ∈ R : lim

r↘0

|Br(x) ∩ [f < t]|
rn

= 0

}
.

(i.) The functions f− and f+ are Borel measurable and −∞ < f−(x) ≤ f+(x) < ∞ for Hn−1-a.e. x ∈ Rn.
If f+(x) = f−(x), then we call this limit the approximate limit (denoted by aplimy→x f(y)).

(ii.) The jump set Sf of f is the set where the approximate limits do not coincide, i.e.

Sf =
{
x ∈ Rn : f−(x) < f+(x)

}
.

(iii.) Let a ∈ Sn−1. For x ∈ Rn we define the half-spaces

H+
a (x) = { y ∈ Rn : a · (y − x) ≥ 0 } , H−a (x) = { y ∈ Rn : a · (y − x) ≤ 0 } .

Then forHn−1-a.e. x ∈ Sf there exists nf = nf (x) ∈ Sn−1 such that

lim
r↘0
−
∫
Br(x)∩H−nf (x)

|f − f+(x)|
n
n−1 dy = 0 , lim

r↘0
−
∫
Br(x)∩H+

nf
(x)

|f − f−(x)|
n
n−1 dy = 0 .

Proof. See [AFP00, Chapter 3.6] and [EG92, Chapter 5.9].

Then, any Radon measure Df associated with f ∈ BV(Ω) can be decomposed as follows:

Theorem 5.1.6. Let f ∈ BV(Ω). Then Df admits the decomposition Df = [Df ]ac + [Df ]J + [Df ]C into
Radon measures, where [Df ]ac represents the absolutely continuous and [Df ]J + [Df ]C the singular part of Df
w.r.t. the n-dimensional Lebesgue measure Ln. The approximate differential∇f is the density of [Df ]ac w.r.t. Ln.
Moreover, [Df ]J (the jump part) and [Df ]C (the Cantor part) are the restrictions of the singular part to Sf and
Ω\Sf , respectively. Finally,

[Df ]J
∣∣
Sf

= (f+ − f−)nf dHn−1
∣∣
Sf
.

Proof. See [AFP00, Chapter 3.6/3.7/3.9].

Definition 5.1.7. The space of special functions of bounded variation in Ω, which we denote by SBV(Ω), is given
by SBV(Ω) = {f ∈ BV(Ω) : [Df ]C = 0}. Moreover, we set

SBVloc(Ω) =
{
f ∈ L1(Ω) : f

∣∣
Ω′
∈ SBV(Ω′) for all Ω′ b Ω open

}
.

Finally, a function f : Ω→ Rm is a generalized special function of bounded variation (notation: f ∈ GSBV(Ω))
if φ ◦ f ∈ SBVloc(Ω) for every φ ∈ C1(Rm) such that ∇φ has compact support.
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The space SBV(Ω) can be regarded as the space of piecewise bounded W 1,1(Ω)-functions in view of the
following proposition:

Proposition 5.1.8. LetK ⊂ Ω ⊂ Rn be a closed set such thatHn−1(K) <∞ and let f ∈W 1,1(Ω\K)∩L∞(Ω).
Then f ∈ SBV(Ω) and Sf ⊂ K ∪N for aHn−1-null set N ⊂ Ω.

Proof. See [AFP00, Chapter 4.1].

The existence of minimizers of the Mumford–Shah functional essentially relies on the following compactness
theorem in SBV(Ω):

Theorem 5.1.9. Let φ : R+
0 → R+

0 be an increasing function such that limt→∞
φ(t)
t = ∞ and assume that

{fk}k∈N ⊂ SBV(Ω) ∩ L∞(Ω) fulfills

lim sup
k→∞

{
‖fk‖L∞(Ω) +

∫
Ω

φ(|∇fk|) dx+Hn−1(Sfk)

}
<∞ .

Then there exist a subsequence of {fk}k∈N (not relabeled) and a function f ∈ SBV(Ω) such that fk → f
in L1

loc(Ω),∇fk ⇀ ∇f in L1(Ω) and [Dfk]J → [Df ]J weakly as Radon measures.

Proof. See [Amb89].

As announced in the introduction, we will propose a uniformly convex relaxation of the binary Mumford–
Shah functional, where each minimizer of the binary functional can be exactly recovered from the corresponding
minimizer of the relaxed functional via thresholding. The key ingredient of this proof is the coarea formula in the
space BV(Ω):

Theorem 5.1.10 (Coarea formula in BV(Ω)). Let f ∈ BV(Ω). Then

|Df |(Ω) =

∫
R
|Dχ[f > t]|dt .

Proof. See [AFP00, Chapter 3.3].

5.1.2 Foundations of Convex Analysis
In what follows, we will recall some fundamental definitions and theorems from convex analysis to such an extent
required for the rest of this chapter. If not otherwise specified, we restrict all definitions and results to the real
Banach spaces V and W for convenience. We remark that many results shown below remain valid in the case of
locally convex real vector spaces. The relevant references for this subsection are [ET99, AF03, Roc97].

Definition 5.1.11. The subsequent list contains several fundamental definitions from convex analysis.

(i.) We denote by Γ(V) the set of all convex and lower semicontinuous functionals J : V → R ∪ {±∞}
with the additional property that J [v] = −∞ at any point v ∈ V already implies J ≡ −∞. Furthermore,
Γ0(V) ⊂ Γ(V) refers to the subset of all functionals with bounded range.

(ii.) The dual space V′ of V is defined as V′ = L(V,R), the associated duality pairing 〈 · , · 〉V′,V of V and V′

is given by 〈v′, v〉V′,V = v′(v) for v ∈ V and v′ ∈ V′.

(iii.) The Fenchel conjugate of a functional J : V→ R is defined as

J∗ : V′ → R , v′ 7→ sup
v∈V

(
〈v′, v〉V′,V − J [v]

)
.

(iv.) A functional J : V → R is subdifferentiable at the point v ∈ V if there exists a continuous affine func-
tional f : V → R fulfilling f ≤ J and f [v] = J [v]. The slope v′ ∈ V′ of f is commonly referred to as a
subgradient of J at the point v. We denote the set of all subgradients at v ∈ V by ∂J [v].
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(v.) The adjoint operator Λ∗ ∈ L(W′,V′) of Λ ∈ L(V,W) is defined as

〈w′,Λv〉W′,W = 〈Λ∗w′, v〉V′,V ∀v ∈ V ,∀w′ ∈W′ .

For later reference we list several basic properties of the aforementioned fundamental concepts.

Proposition 5.1.12. Let V and W be arbitrary Banach spaces.

(i.) A functional J : V→ R is subdifferentiable at v ∈ V with subgradient v′ ∈ V′ if and only if

J [v] + J∗[v′] = 〈v′, v〉V′,V .

(ii.) If J : V → R is Gâteaux differentiable at v ∈ V with Gâteaux derivative J ′[v], then J is subdifferentiable
at v and ∂J [v] = {J ′[v]}.

(iii.) Let J ∈ Γ(V), v ∈ V and v′ ∈ V′. Then v′ ∈ ∂J [v] if and only if v ∈ ∂J∗[v′].

(iv.) If J ∈ L(V,R) is convex, then ∂J [v] 6= ∅ for all v ∈ V.

(v.) The operator ∗ : L(V,W)→ L(W′,V′), Λ 7→ Λ∗, is an isometry, i.e. |||Λ||| = |||Λ∗|||.

Proof. See [ET99, Chapter 1] and [Roc97].

The functional a posteriori error estimator for the binary Mumford–Shah functional is essentially based on the
following theorem:

Theorem 5.1.13 (Duality Theorem). Let V and W be reflexive Banach spaces and Λ ∈ L(V,W). Assume that
F ∈ Γ0(V), G ∈ Γ0(W), E[v,Λv] = F [v] +G[Λv] for v ∈ V, and

(i.) there exists v ∈ V such that E[v,Λv] <∞ and W 3 w → E[v, w] is continuous at Λv,

(ii.) E is coercive on V, i.e. limv∈V,‖v‖V→∞E[v,Λv] = +∞.

Furthermore, we define the Primal Problem (P) and the associated Dual Problem (P∗) as follows:

inf
v∈V

{
E[v,Λv] = F [v] +G[Λv]

}
, (P)

sup
w′∈W′

{
− E∗[Λ∗w′,−w′] = −F ∗[−Λ∗w′]−G∗[w′]

}
. (P∗)

Then (P) and (P∗) have at least one solution v̄ ∈ V and w̄′ ∈W′, respectively, and

E[v̄,Λv̄] = inf P = supP∗ = −E∗[−Λ∗w̄′, w̄′] .

Finally, the solution admits the characterization (−Λ∗w̄′, w̄′) ∈ ∂E[v̄,Λv̄], which is equivalent to

−Λ∗w̄′ ∈ ∂F [v̄], w̄′ ∈ ∂G[Λv̄] .

Proof. See [ET99, Chapter 3].

The proximal mappings of functionals on Hilbert spaces play an important role when applying the primal-dual
algorithm in Section 5.6.

Definition 5.1.14. Let V be a Hilbert space with norm ‖ · ‖V. The proximal mapping proxτJ of J ∈ Γ(V) for
v ∈ V and a weight parameter τ > 0 reads as

proxτJ [v] = argmin
ṽ∈V

J [ṽ] + 1
2τ ‖v − ṽ‖

2
V .

Remark 5.1.15. Under suitable assumptions, the proximal mapping proxτJ of J ∈ Γ(V) coincides with the re-
solvent of the maximal monotone operator τ∂J and compromises between minimizing J and the squared distance
of v and the minimizer ṽ. For further details of this mapping we refer to the review article [CP16].



114 5 A Posteriori Error Control for the Binary Mumford–Shah Model

5.1.3 Existence of Minimizers and Regularity Properties of the Discontinuity Set
The proof of the existence of minimizers (û, K̂) ∈ K of (5.1) dates back to De Giorgi et al. [DGCL89] and
Ambrosio [Amb89]. The crucial step is to minimize the functional

ẼMS[u] =

∫
Ω

α(u− u0)2 + |∇u|2 dx+ βHn−1(Su) (5.2)

among all u ∈ SBV(Ω). A straight application of the direct method in the calculus of variations to prove the exis-
tence of minimizers for (5.1) fails sinceK 7→ Hn−1(K) is in general not lower semicontinuous w.r.t. the Hausdorff
metric. We remark that we have to restrict to the space SBV(Ω) since infu∈BV(Ω) ẼMS[u] = 0. Combining the
lower semicontinuity of the Mumford–Shah functional in SBV(Ω) w.r.t. the L1

loc(Ω)-topology (for details see
[Amb89, Section 4]) with the SBV(Ω)-Compactness Theorem 5.1.9 implies the existence of a minimizer of ẼMS.
Then, taking into account Proposition 5.1.8 we can infer that (u,K) ∈ K implies u ∈ SBV(Ω) and therefore

inf
(u,K)∈K

{
EMS[u,K] = ẼMS[u]

}
≥ inf
u∈SBV(Ω)

ẼMS[u] .

The reverse inequality is essentially a consequence of the approximate closedness of the singular set Sû with
û ∈ SBV(Ω) representing a minimizer of ẼMS. In detail, for x ∈ Ω\Sû we set ū(x) = aplimy→x û(y). Then
[DGCL89, Lemma 5.2] states that ū ∈ C1(Ω\Sû) andHn−1((Sû ∩Ω)\Sû) = 0. Hence, (ū, Sû ∩Ω) ∈ K and we
obtain

inf
(u,K)∈K

EMS[u,K] ≤ EMS[ū, Sû ∩ Ω] = ẼMS[û] ,

which proves the existence of minimizers for (5.1).
In their seminal publication Mumford and Shah [MS89] conjectured:

Conjecture 5.1.16. Let n = 2 and (û, K̂) ∈ K be a minimizer of (5.1). Then there exists a set L ⊂ Ω such that L
is composed of a finite number of C1,α-arcs andH1(K̂∆L) = 0.

To the best of our knowledge, there are only partial answers to this conjecture, see for instance the publications
by Larsen [Lar96], David [Dav96] and Ambrosio and Pallara [AP97]. We highlight the partial result due to
Bonnet [Bon96], which essentially guarantees the regularity of the discontinuity set up to crack-tips.

Theorem 5.1.17. Let (û, K̂) ∈ K be a minimizer of (5.1). Any isolated and connected component of K̂ is a finite
union of C1-arcs, which additionally exhibit a C1,1-regularity away from crack-tips and can only merge through
triple junctions. In this case, a triple junction is a point where three arcs of K̂ intersect at an angle of 120°.

Bonnet also proved that a higher regularity of the input image implies a higher regularity of the discontinuity
set in the following sense:

Theorem 5.1.18. Under the assumptions of Theorem 5.1.17, if the input image has the property u0 ∈ Ck,α(Ω)
and the discontinuity set is a C1-arc in a neighborhood of any point in K̂, then this arc is actually Ck+2,α-regular
in this neighborhood.

For further details concerning the regularity of the discontinuity set such as Ahlfors-regularity and regularity
properties of the discontinuity set for almost-minimizers we refer to [Dav05] and the references therein.

5.1.4 Approximation Schemes, Numerical Minimization Methods and Extensions
Since the introduction of the Mumford–Shah functional more than 25 years ago, a great variety of different ap-
proaches has been investigated to (numerically) minimize the Mumford–Shah energy functional. One of the main
challenges related to this numerical optimization emerges from the right treatment of the free boundary K. Below,
we will concentrate on different approximation schemes for the Mumford–Shah energy functional as well as level
set methods as prototypes of optimization strategies. Furthermore, the piecewise constant Mumford–Shah model
along with its basic properties are briefly discussed. Finally, we conclude this subsection with an overview of other
segmentation functionals and extensions that are related to the methods studied below.
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Approximation methods employing Γ-convergence and related optimization algorithms. The approximation
of the energy functional (5.1) circumvents the challenging approximation of the Hausdorff measure of K by using
computationally more feasible functionals.

The probably most common Γ-convergence approximation scheme is due to Ambrosio and Tortorelli (see
[AT90, AT92]). In their approach, the set Su is implicitly characterized by an auxiliary scalar-valued function z,
also called phase field, which can be regarded as an approximate indicator function for the set Ω\Su. The precise
statement reads as follows (see [AT92]):

Theorem 5.1.19 (Ambrosio–Tortorelli approximation of the Mumford–Shah functional). Let Ω ⊂ Rn be a
bounded domain and Eε, E : (L2(Ω))2 → R be defined as

Eε[u, z] =


∫

Ω
α(u− u0)2 + z2|∇u|2 + β

(
ε|∇z|2 + (z−1)2

4ε

)
dx , if (u, z) ∈ (H1(Ω))2 s.t. 0 ≤ z ≤ 1 ,

+∞ , else ,

E [u, z] =

 ẼMS[u] , if u ∈ SBV(Ω) , z = 1 ,

+∞ , else .

Then Eε Γ-converges to E w.r.t. the (L2(Ω))2-topology. Moreover, there exist minimizers (uε, zε) of Eε such that a
subsequence of uε converges to some minimizer u ∈ SBV(Ω) of E in L2(Ω) as ε→ 0.

The last integrand in the definition of Eε is an approximation of the Hausdorff measure of Su and is composed
of a weighted sum of a gradient penalization term of the phase field and a single-well potential.

A simple optimization approach for Eε involves an alternating minimization w.r.t. u and z, where ε is usually
chosen to be of the order of the grid size. Since each subproblem is convex, efficient primal-dual methods can be
employed to compute the approximate solution (cf . for instance [CP11, BS15b]). The starting point of a second
common minimization strategy is the derivation of Euler–Lagrange equations for Eε in u and z, i.e.

2α(u− u0)− 2div(z2∇u) = 0 , 2z|∇u|2 − 2βε∆z +
β

2ε
(z − 1) = 0

in a weak sense, which are discretized using, for instance, finite differences. Afterwards, a time-dependent scheme
in u and a stationary semi-implicit fixed-point scheme in z are incorporated to compute minimizers (we refer to
[Sch11, Chapter 25] for details). Contrary to these alternating minimization schemes, Kee and Kim [KK14] ana-
lyzed different convex relaxations to replace the non-convex summand (u, z) 7→

∫
Ω
z2|∇u|2 dx in the Ambrosio–

Tortorelli functional, which allow for joint global optimization for the resulting convex problem. In [BKS03],
Brook et al. extended an Ambrosio–Tortorelli-type segmentation functional to color images. One major disad-
vantage when using the aforementioned Ambrosio–Tortorelli approximation for numerical optimization is the
dependency of the phase field parameter ε on α, β and the grid size h (see [Sch11, SC14] and the references
therein). To circumvent this problem, Bellettini and Coscia [BC94] introduced a functional Eε,h, which is a modi-
fication of Eε for affine finite element spaces Vh depending on ε and in addition on the mesh size h. By choosing
h = o(ε) and under some mild additional assumptions they established the Γ-convergence of Eε,h to E provided
that (uε,h, zε,h) ∈ V2

h. A further finite element based approximation of Eε is due to Bourdin [Bou99].
For n = 2, Chambolle and Dal Maso [CDM99] proposed an approximation which does not require any auxil-

iary function, and established its Γ-convergence to a variant of E . To this end, they restricted the function space for
the images to the affine finite element space Vh on a triangulation with additional constraints regarding the angles
of the elements. The approximating functional Ẽh associated with E is of the form (β = 1 for simplicity)

Ẽh[u] =


∫

Ω
α(u− u0)2 + 1

hf(h|∇u|2) dx , if u ∈ Vh ,

+∞ , if u ∈ L2(Ω)\Vh ,
(5.3)

for a non-decreasing function f : R+
0 → R+

0 satisfying certain growth conditions. Bourdin and Chambolle [BC00]
extended this approach by adding a triangulation dependent local averaging to the approximating functional, which
results in a numerically more stable computation of the approximate solutions compared to (5.3).
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Braides and Dal Maso [BDM97] proposed an approximation involving non-local integral functionals, and
proved the Γ-convergence w.r.t. the Lp(Ω)-topology of (β = 1 for simplicity, 1 ≤ p <∞)

Êε[u] =


∫

Ω
α(u− u0)2 + 1

εf
(
ε−
∫
Bε(x)∩Ω

|∇u(y)|2 dy
)

dx , if u ∈ Lp(Ω) ∩H1(Ω) ,

+∞ , if u ∈ Lp(Ω)\H1(Ω) ,

to the Mumford–Shah energy functional with f satisfying growth conditions similar to the ansatz by Chambolle
and Dal Maso.

The Γ-convergence approximation due to Grasmair et al. [GMS13] relies on the covering of the (expected)
discontinuity set by balls of radius ε. Here, the Hausdorff measure of this set is approximated by 2ε multiplied by
the number of balls. The main difficulty in this approach arises from the identification of the discontinuity set. The
crucial observation is that each component of the minimizer (û, K̂) of (5.1) is uniquely determined by the other
one. Then, a topological asymptotic expansion is employed to approximate K̂, which is based on the successive
enlargement of an initial approximate discontinuity set by those regions which result in the maximal decay of the
energy.

In [She05], Shen introduced a Γ-converging approximation for the piecewise constant Mumford–Shah segmen-
tation (see below), where the length term in the Mumford–Shah model is approximated via a phase field approach,
which shares some similarities with the classical work by Modica and Mortola [MM77].

Burger et al. [BEZ15] derived a second order approximation of the Mumford–Shah functional which is related
to a Cahn–Hilliard-type phase transition model originating from the work by Fonseca and Mantegazza [FM00].
The approximating functional is given by Ěε : (L1(Ω))2 → R,

Ěε[u, z] =


∫

Ω
α(u− u0)2 + z2|∇u|2 + β

2
√

2

(
(z−1)2

ε + ε3|D2z|2
)

dx , if (u, z) ∈ H1(Ω)×H2(Ω) ,

+∞ , else ,

and Γ-converges w.r.t. the strong (L1(Ω))2-topology to

Ě [u, z] =

 ẼMS[u] , if u ∈ GSBV(Ω) s.t. ∇u ∈ L2(Ω) ,Hn−1(Su) <∞ , z = 1 ,

+∞ , else .

The optimization algorithm for this approximation then exploits the quadratic structure of the subproblems when
using an alternating minimization scheme for a slightly altered version of Ěε. In numerical experiments, they
showed that the contours of the segmented regions look smoother and are less prone to noise compared to the
results computed with the aid of the classical Ambrosio–Tortorelli model.

Convex approximations of the Mumford–Shah functional and level set methods. The second major category
of minimization algorithms is based on convex approximations of (5.1). In their pioneering work, Alberti et
al. [ABDM03] proposed a functional lifting of the non-convex Mumford–Shah functional (5.2) defined on an
n-dimensional domain to a variational problem over characteristic functions of subgraphs in Rn+1, the crucial
observation is

ẼMS[u] = sup
φ=(φx,φt)∈C

∫
Ω×R

φ ·Dχ[u(x) > t] (5.4)

for the convex set of vector fields (in this context these vector fields are known as calibrations)

C =

{
(φx, φt) ∈ C0(Ω× R) :φt(x, t) ≥ |φ

x(x,t)|2
4 − α(t− u0)2,∣∣∣∣∣

∫ t

t

φx(x, s) dx

∣∣∣∣∣ ≤ β , ∀x ∈ Ω ,∀t, t, t ∈ R

}
.

Following Pock et al. [PCBC09, PCBC10], (5.4) can be converted into a convex optimization problem if we replace
Dχ[u(x) > t] by Dχ̃ with a function χ̃ ∈ BV(Ω× R) satisfying limt→−∞ χ̃(x, t) = 1 and limt→∞ χ̃(x, t) = 0,



5.1 Review of the Mumford–Shah Model and Related Work 117

the resulting functional reads as follows:

ÊMS[χ̃] = sup
φ=(φx,φt)∈C

∫
Ω×R

φ ·Dχ̃ . (5.5)

Since a coarea formula for the Mumford–Shah functional of the form ẼMS[u] =
∫ 1

0
ẼMS[χ[u > s]] ds does in

general not hold true, a minimizer χ̃∗ of ÊMS is simultaneously a minimizer of ẼMS if and only if χ̃∗ is binary,
which is also in general not true. However, since (5.5) allows a saddle-point formulation, efficient primal-dual
algorithms can be employed to compute approximate minimizers of (5.4).

A famous level set model for image segmentation was proposed by Chan and Vese [CV01a], which can be
regarded as a version of the by now classical active contours model of Caselles et al. [CKS97] and extends the
general level set approach proposed by Osher and Sethian [OS88]. In particular, this method is feasible to model
cusps and allows for changes of the topology. Starting from the two-phase segmentation functional

ECV[K, c1, c2] =

∫
inside(K)

λ1(u0−c1)2 dx+

∫
outside(K)

λ2(u0−c2)2 dx+λ3Hn−1(K)+λ4|inside(K)| , (5.6)

the associated level set formulation is given by

ECV[φ, c1, c2] =

∫
Ω

λ1(u0−c1)2H(φ)+λ2(u0−c2)2(1−H(φ)) dx+

∫
Ω

λ3|∇φ|dδ[φ = 0]+

∫
Ω

λ4H(φ) dx (5.7)

on a bounded domain Ω ⊂ R2 with input image u0 ∈ L∞(Ω, [0, 1]), weight parameters λi > 0, intensity val-
ues c1, c2 ∈ [0, 1], Dirac measure δ and Heaviside function H. The functional (5.6) represents a classical two-phase
segmentation model, which is composed of an L2(Ω)-fidelity term quantifying the mismatch in both regions as
well as a length and an area penalization term of the interface set K. The regions are exactly separated by the
discontinuity set K and each region consists of a finite number of connected components. Note that (5.6) is an
instance of the binary Mumford–Shah model (5.19) when setting λ1 = λ2 = 1

ν > 0, λ3 = 1 and λ4 = 0. In
the level set model (5.7), the segmentation regions are encoded as follows: x ∈ inside(K) if H(φ(x)) = 1 and
x ∈ outside(K) else. Then, one aims at minimizing (5.7) among all continuous functions φ : Ω→ R. If λ1 = λ2,
the optimal intensity values are characterized as the average of the input image in the associated regions, i.e.

c1[φ] =

∫
Ω
u0H(φ) dx∫

Ω
H(φ) dx

, c2[φ] =

∫
Ω
u0(1−H(φ)) dx∫
Ω

1−H(φ) dx
(5.8)

if the denominators do not vanish. To better handle (5.7) numerically, Chan and Vese regularized H and δ as
follows:

Hε(x) = 1
2

(
1 + 2

π arctan
(
x
ε

))
, δε(x) = H′ε(x)

for ε > 0. The numerical optimization relies on a finite difference discretization of the regularized energy func-
tional and an alternating update of the intensity values according to (5.8) and of φ. The latter update formula is
derived from a linearization of the associated Euler–Lagrange equation. In a subsequent publication, Chan and
Vese [CV01b] added a second level set function to tackle the problem of a four-phase segmentation, which can be
further extended for a segmentation into up to 2n regions by using n level set functions (see [VC02]). Tsai et al.
[TYW01] proposed a similar level set approach as Chan and Vese, the main difference is due to the hierarchical
method to capture multiple regions. We highlight two drawbacks of various level set based methods: crack-tips
can never form since level sets are closed regions and algorithms frequently get stuck in local minima.

Taking into account the level set formulation discussed above, Chan, Esedoḡlu and Nikolova [CEN06] derived
a thresholding result which is capable to find global minimizers of the binary Mumford–Shah model. In detail, the
starting point is the gradient descent of the regularized version of (5.7) w.r.t. φ (with λ1 = λ2 = 1

ν > 0, λ3 = 1
and λ4 = 0), which heuristically yields

∂tφ = H′ε(φ)
(

div
(
∇φ
|∇φ|

)
− 1

ν

(
(u0 − c1)2 − (u0 − c2)2

))
. (5.9)

When omitting the factor H′ε(φ), one can prove that (5.9) is actually the gradient flow associated with the energy

ECEN[φ, c1, c2] =

∫
Ω

|∇φ|+ 1
ν

(
(u0 − c1)2 − (u0 − c2)2

)
φdx . (5.10)
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Let φ be a global minimizer of BV(Ω, [0, 1]) 3 φ̃ 7→ ECEN[ · , c1, c2]. Then, a fundamental result states that for
fixed intensity values c1, c2 > 0 and for a.e. µ ∈ [0, 1) the function χ[φ > µ] ∈ BV(Ω, {0, 1}) is a minimizer of
the binary Mumford–Shah model

BV(Ω, {0, 1}) 3 χ 7→
∫

Ω

(u0−c1)2

ν χ+ (u0−c2)2

ν (1− χ) dx+ |Dχ|(Ω) .

We note that the proofs of this thresholding theorem and the thresholding argument shown in Proposition 5.2.3
both rely on the coarea formula (see Theorem 5.1.10). However, unlike the relaxed functional (5.22) used in
Proposition 5.2.3 the functional (5.10) is not uniformly convex in φ and the minimization is constrained to the
set BV(Ω, [0, 1]), which impedes the derivation of functional a posteriori error estimates for (5.10) using Repin’s
approach and increases the complexity in the numerical minimization (for further details see next sections).

Bresson et al. [BEV+07] proved that a variant of the thresholding result discussed above remains valid after
replacing the total variation in the constrained functional (5.10) by the weighted seminorm

∫
Ω
w|∇φ|dx for w ∈

L∞(Ω, [0, 1]). The resulting functional has the same set of minimizers as the convex unconstrained functional

BV(Ω) 3 φ 7→
∫

Ω

w|∇φ|+
(

(u0−c1)2

ν − (u0−c2)2

ν

)
φ+ κmax

{
0, 2

∣∣φ− 1
2

∣∣− 1
}

dx (5.11)

provided that κ > 1
2ν ‖(u0 − c1)2 − (u0 − c2)2‖L∞(Ω). By employing a Moreau–Yosida regularization of the

first as well as the last two summands separately, global minimizers of (5.11) can be efficiently calculated using
an alternating dual descent. Numerical experiments indicate that this model can significantly improve the quality
of the segmentation compared to classical level set approaches even if the contrast between meaningful objects is
low.

In most of the aforementioned models, the intensity values are assumed to be fixed and known a priori. To
overcome this restriction, Brown et al. [BCB11] developed a completely convex formulation of the Chan–Vese
functional (5.7) (with λ1 = λ2 = λ > 0, λ3 = 1 and λ4 = 0) incorporating techniques due to [BCB10, GBO12],
in which both the segmentation region and the intensity values are unknown. The central idea of this approach is
to represent the intensity values c1 and c2 as functions vi ∈ BV(Ω,R) with ∇vi = 0, i = 1, 2. To (numerically)
enforce these constraints, an augmented Lagrangian-type penalization algorithm is employed with penalization
functions pj(v1, v2) = rj

∫
Ω
|∇v1|+|∇v2|dx for a strictly increasing sequence of positive values rj with rj →∞

as j → ∞. Although the resulting energy functional is non-convex, it can be rewritten as a convex problem by
a functional lifting into a higher-dimensional space and – in combination with a thresholding – exact solutions to
the original problem can be retrieved in the limit. If the absolute difference of the energy functional evaluated at
the corresponding minima for consecutive values of rj is below a certain threshold value, then a subsequence of
this sequence of minimizers converges in L1(Ω) to an almost-minimizer of the original functional with optimal
intensity values.

The piecewise constant Mumford–Shah model. In what follows, we will list some crucial properties of the
piecewise constant Mumford–Shah model as presented in [MS89, MS95, Dav05], which can be seen as the gener-
alization of the binary model that we will focus on throughout this chapter.

The piecewise constant Mumford–Shah model aims at segmenting the image u0 ∈ L∞(Ω, [0, 1]) on the
bounded image domain Ω ⊂ R2 into a finite number of connected components (called regions) by minimizing
the functional

Ẽ[u,K] =

∫
Ω\K

1
ν (u− u0)2 dx+H1(K)

for ν > 0. Here, the regions are determined by the interface set K and u is assumed to be piecewise constant on
the connected components of Ω\K. Moreover, for a fixed set K the associated optimal function u coincides with
the average of u0 w.r.t. each region, i.e. u

∣∣
Ω′

= −
∫

Ω′
u0 dx for each connected component Ω′ ⊂ Ω\K. Therefore,

we simply write Ẽ[K] instead of Ẽ[u,K]. Before introducing fundamental properties of the piecewise constant
Mumford–Shah model, we give some basic definitions.

Definition 5.1.20. A segmentation is a union of a finite number of rectifiable curves. If a segmentation is composed
of a finite number of Jordan curves, where two curves only meet at their end points or on ∂Ω, and if each Jordan
curve separates two different regions, then this segmentation is 1-normal. A segmentation is 2-normal if the
energy Ẽ strictly increases if two connected components are merged by removing the corresponding curve.
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The most important properties of a 1-normal segmentation are phrased in the next theorem:

Theorem 5.1.21. Every 1-normal segmentationK can be decomposed into a finite union of Jordan curves meeting
only at a finite number of points. If a denotes the number of regions, b the number of edges and c the number of
crossing-points (i.e. those points where at least three Jordan curves have a common end point or where a Jordan
curve meets ∂Ω), then c ≤ 2(a− 1) and b ≤ 3(a− 1)− 2.

Proof. See [MS95, Section 5.2].

However, the proper set for the minimization of Ẽ is actually the set of 2-normal segmentations, which has the
following additional regularity properties:

Theorem 5.1.22. A minimizer of the variational problem

inf
{
Ẽ[K̃] : K̃ is a 2-normal segmentation

}
is attained and the Jordan curves composing this minimizer are C2 with curvature bounded by 8 osc(u0)

ν . Moreover,
either the Jordan curves meet at triple points under an angle of 120° or on the boundary ∂Ω under an angle of 90°
provided that the boundary is sufficiently smooth.

Proof. See [MS95, Section 5.3].

For further characteristics of the piecewise constant Mumford–Shah model, we refer to the literature at the
beginning of this paragraph and the references therein.

Further variational image segmentation models and extensions. Besides the Mumford–Shah segmentation
functional, there are plenty of other segmentation models available in computer graphics, e.g. histogram-based
thresholding, clustering techniques like K-means clustering, Markov random field based segmentation methods,
graph cut based algorithms or watershed segmentation. In what follows, we will briefly comment on some recent
variational segmentation models that are closely related to the methods presented above.

Given non-negative potentials g = (g1, . . . , gk) ∈ (L2(Ω))k, a common multilabel segmentation problem (also
known as the continuous Potts model) reads as

inf

{
k∑
i=1

(
1
2 |Dχ[Ei]|(Ω) +

∫
Ei

gi dx

)
:

k⋃
i=1

Ei = Ω, Ei ∩ Ej = ∅ for i 6= j

}
, (5.12)

which aims at finding a minimal partition of a domain Ω ⊂ Rn separated into Caccioppoli sets Ei such that
the sum of the perimeters of Ei and the integral of the related potentials w.r.t. Ei is minimal. The coefficient 1

2
takes into account that each interface is counted twice in the sum. Note that (5.12) is a specific instance of
the piecewise constant Mumford–Shah model when setting gi = 1

ν (u0 − ci)2 for fixed intensity values ci. An
application of standard BV(Ω)-compactness arguments shows that (5.12) actually attains a minimum, but the
numerical computation of this minimizer poses a challenging task. To overcome this problem, Chambolle et al.
[CCP12] proposed the following reformulation of (5.12):

inf

{
J [v] +

∫
Ω

v · g dx : v = (v1, . . . , vk) ∈ L2(Ω,Rk)

}
with J [v] =


1
2

∑k
i=1 |Dvi|(Ω) , if v ∈ B ,

+∞ , else ,
(5.13)

where B = {v ∈ BV(Ω, {0, 1}k) :
∑k
i=1 vi = 1 a.e. in Ω}. Since B and thus (5.13) are non-convex, one could

replace J by the convex and lower semicontinuous envelope J ∗∗ in (5.13) and minimize the resulting convex
functional instead. However, since in general no explicit formula for J ∗∗ can be derived, one can replace J ∗∗[v]
by J [v] =

∫
Ω
J̃(x,Dv) dx such that J̃ is non-negative, continuous and convex in the second argument, and J

satisfies J [v] ≤ J [v] for v ∈ L2(Ω,Rk) as well as J [v] = J [v] for v ∈ B. Hence, the convex relaxed minimal
partition problem has the form

inf

{
J [v] +

∫
Ω

v · g dx : v ∈ B
}

(5.14)
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for the constraint set B = {v ∈ BV(Ω, [0, 1]k) :
∑k
i=1 vi = 1 a.e. in Ω} representing a simplex. In many appli-

cations of interest, the minimizers of this variational problem are (nearly) optimal in the sense that the energies of
(5.12) and (5.14) (roughly) coincide. Furthermore, minimizers of (5.14) can be computed using efficient primal-
dual algorithms. In [ZGFN08], Zach et al. examined the variant of (5.13) in which B is replaced by B, and
employed a dual descent for the numerical optimization. A primal-dual characterization of the multilabel problem
is due to Bae et al. [BYT11], where

inf

{
k∑
i=1

(
1
2 |Dvi|(Ω) +

∫
Ω

givi dx

)
: v ∈ B

}
, (5.15)

sup

{∫
Ω

min
i=1,...,k

(
gi + 1

2divqi
)

dx : qi ∈ H1
0 (Ω,Rn), ‖qi‖L∞(Ω) ≤ 1

2 for i = 1, . . . , k

}
(5.16)

are the primal and dual problems, respectively. A crucial theorem then asserts that if for a.e. x ∈ Ω an index
i ∈ {1, . . . , k} exists such that gi(x) + divp∗i (x) < gj(x) + divp∗j (x) for all j 6= i with (u∗, p∗) being an optimal
primal-dual pair associated with (5.15) and (5.16), then u∗ is binary and thus a global minimum of (5.12). A
similar convex multilabel model was developed by Lellmann et al. [LKY+09].

Let us denote by ∇FD the discrete forward finite difference gradient and by u(x,y)
0 the locally averaged input

image with (x, y) ∈ ΩN = { 0
N , . . . ,

N
N }

2 for N ≥ 1. Strekalovskiy and Cremers [SC14] analyzed the convex
functional ∑

(x,y)∈ΩN

(u(x,y) − u(x,y)
0 )2 + min

{
ν|∇FDu(x,y)|2, λ

}
(5.17)

with a threshold parameter λ > 0 to compute a piecewise smooth segmentation. In particular, this model is
capable of computing real-time video cartooning in combination with a GPU acceleration. Chambolle [Cha95]
proved that a slightly altered version of (5.17) Γ-converges to a Mumford–Shah type functional, in which the
Hausdorff measure of K is replaced by a l1-penalization of the discontinuity set.

There is a great variety of further approaches to approximate the total variation numerically. Bartels [Bar16]
used the embedding BV(Ω)∩L∞(Ω) into a certain Besov space that nearly coincides with H

1
2 (Ω) to improve the

step-size restriction for BV(Ω)-functionals. Following Dobson and Vogel [DV97], the total variation regularization
can be smoothly approximated via

√
|∇u|2 + ε. In [FP03], the convergence of the L2-gradient flow of this smooth

approximation to the total variation flow in L2 is shown under strong regularity assumptions w.r.t. the solution.
One frequent issue occurring in variational problems involving total variation regularization results from the

formation of staircasing. Bredies et al. [BKP10] proposed to replace the standard total variation by the total
generalized variation TGV(Ω) defined as

TGVk
ξ (Ω)[u] = sup

{∫
Ω

udivkv dx : v ∈ Ckc (Ω,Symk(Rn)), ‖divlv‖L∞(Ω) ≤ ξl for l ∈ {0, . . . , k − 1}
}

(5.18)
with k ≥ 1, ξ = (ξ0, . . . , ξk−1) ∈ (R+)k and Symk(Rn) denoting the space of symmetric tensors of order k with
values in Rn. Note that (5.18) coincides with the usual BV(Ω)-seminorm provided that k = 1 and ξ0 = 1. For
suitable choices of k and ξ, one can observe that replacing the total variation by the total generalized variation in
various variational problems results in minimizers with sharp discontinuities while at the same time suppressing
staircasing effects.

5.2 Binary Mumford–Shah Model and Uniformly Convex Relaxation
In this section, we will examine the binary Mumford–Shah functional, which emerges from the general model (5.1)
by restricting to the non-convex function space

{u = c1χ+ c2(1− χ) : c1, c2 ∈ [0, 1], c1 6= c2, χ ∈ BV(Ω, {0, 1}) } ,

where Ω ⊂ Rn is a bounded Lipschitz domain. The associated energy E : BV(Ω, {0, 1}) → R can be rewritten
as follows:

E[χ] =

∫
Ω

θ1χ+ θ2(1− χ) dx+ |Dχ|(Ω) (5.19)
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with θi = 1
ν (ci − u0)2 for i = 1, 2 and a weight parameter ν > 0. With one exception, we assume the intensity

values c1 and c2 to be fixed. By optimizing E w.r.t. c1 and c2 one immediately obtains the optimal intensity values

c1[χ] =

(∫
Ω

χdx

)−1 ∫
Ω

χu0 dx , c2[χ] =

(∫
Ω

1− χdx

)−1 ∫
Ω

(1− χ)u0 dx (5.20)

provided that the denominators do not vanish.

Remark 5.2.1. We can assume θ1, θ2 ≥ c > 0 without restriction since (5.19) can be restated as

E[χ] =

∫
Ω

(θ1 − θ2)χdx+ |Dχ|(Ω) +

∫
Ω

θ2 dx , (5.21)

which means that a constant can be added to θ1 and θ2 without affecting the set of minimizers of E.

We remark thatE is commonly minimized w.r.t. the set BV(Ω)×[0, 1]2 of characteristic functions and intensity
values such that the minimizer (χ∗, c∗1, c

∗
2) satisfies c∗i = ci[χ

∗] for i = 1, 2. In Section 5.4, we will analyze
a bootstrap scheme that yields an a posteriori error theory for this full model with varying intensity values by
iteratively applying the a posteriori error estimator for fixed intensity values and an update of the intensity values
according to 5.20. However, as we will point out, this scheme fails in the numerical applications.

Uniformly convex relaxation of the binary Mumford–Shah model. In this paragraph, we will introduce a
uniformly convex relaxation of (5.19) and prove a thresholding theorem that can be employed to exactly retrieve
minimizers of the binary model from minimizers of the relaxed functional.

As outlined above, following [Ber09, Ber10] we consider the following convex relaxed functional of (5.19):

Erel[u] =

∫
Ω

u2θ1 + (1− u)2θ2 dx+ |Du|(Ω) , (5.22)

which is minimized over all u ∈ BV(Ω,R). Due to the quadratic growth in u every minimizer exhibits a tendency
towards 0 and 1. Note that we can assume θ1, θ2 ≥ c > 0 without restriction in view of Remark 5.2.1, which
implies the uniform convexity of (5.22). Furthermore, Erel coincides with E on the set BV(Ω, {0, 1}). We stress
that a significant advantage of this model compared to the functional (5.10) is that (5.22) has not to be constrained
to functions with range [0, 1], which poses a major drawback in the numerical optimization of the model due to
Chan, Esedoḡlu and Nikolova (see Subsection 5.1.4).

For the sake of completeness, we briefly present the existence proof of a minimizer of Erel (for a more detailed
exposition we refer to [AFP00]), which relies on the direct method in the calculus of variations:

Theorem 5.2.2 (Existence of a minimizer of Erel). Under the assumptions above, Erel has a unique minimizer u
such that u ∈ [0, 1].

Proof. Let {uk}k∈N ⊂ BV(Ω) be a minimizing sequence for Erel, i.e. Erel[uk] → inf ũ∈BV(Ω)E
rel[ũ] as k → ∞

and Erel[uk] ≤ Erel <∞ for a fixed constant Erel. Since

Erel[min{max{0, v}, 1}] ≤ Erel[v]

for all v ∈ BV(Ω), we can assume that {uk}k∈N is uniformly bounded in L∞(Ω, [0, 1]). Moreover, by taking
into account the estimate supk∈N |Duk|(Ω) ≤ Erel Theorem 5.1.4 (vi.) implies the existence of a subsequence
(not relabeled) that converges weakly-∗ in BV(Ω) to u ∈ BV(Ω, [0, 1]). Now, the existence of minimizers can
be inferred from the lower semicontinuity of the functional along the sequence. In detail, the total variation is
lower semicontinuous due to Theorem 5.1.4 (iv.), the analogous property for the data term can be shown by using
the L1(Ω)-convergence as well as the L∞(Ω)-boundedness along the sequence. Finally, the uniqueness of the
minimizer is implied by the strict convexity of Erel.

Next, we present the thresholding theorem for Erel, which allows to exactly retrieve a minimizer of the binary
Mumford–Shah functional and on which both the numerical optimization as well as the a posteriori error theory
rely. We highlight the analogy of Proposition 5.2.3 with the thresholding assertion for the model by Chan, Esedoḡlu
and Nikolova.
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Proposition 5.2.3 (Convex relaxation and thresholding (cf . [Ber09, Ber10])). Under the assumptions above, the
minimizer u ∈ BV(Ω) of Erel satisfies

χ[u > 0.5] ∈ argmin
χ̃∈BV(Ω,{0,1})

E[χ̃] . (5.23)

Remark 5.2.4. Proposition 5.2.3 is a version of a more general result (cf . [Cha05, CD09, Jal14]): Let Ψ : Ω ×
R → R be measurable, Ψ( · , t) ∈ L1(Ω) for a.e. t ∈ R, Ψ(x, · ) ∈ C1(R) be strictly convex for a.e. x ∈ Ω,
Ψ(x, t) ≥ c|t| − C and

EΨ[u] =

∫
Ω

Ψ(x, u) dx+ |Du|(Ω) .

Then, there exists a minimizer u ∈ argminũ∈BV(Ω)EΨ[ũ] and for all s ∈ R

χs := χ[u > s] ∈ argmin
χ∈BV(Ω,{0,1})

∫
Ω

∂tΨ(x, s)χdx+ |Dχ|(Ω) .

By setting
Ψ(x, t) = t2θ1(x) + (1− t)2θ2(x) (5.24)

and s = 1
2 , the assertion (5.23) follows due to ∂tΨ(x, 1

2 ) = θ1(x)− θ2(x) and (5.21).

Proof. For the sake of completeness, we sketch the proof for the relaxed model (5.22) with Ψ given by (5.24), the
general case readily follows. Due to Fubini’s Theorem one obtains∫

Ω

Ψ(x, u) dx = CΨ +

∫ 1

0

∫
Ω

∂tΨ(x, t)χ[u > t] dxdt (5.25)

for CΨ =
∫

Ω
Ψ(x, 0) dx and all u ∈ BV(Ω, [0, 1]). For s ∈ R we consider

χs ∈ argmin
χ∈BV(Ω,{0,1})

{
Erel
s [χ] =

∫
Ω

∂tΨ(x, s)χdx+ |Dχ|(Ω)

}
.

Using the coarea formula (see Theorem 5.1.10), (5.25) and the definition of χs one can conclude

Erel[u] =

∫
Ω

Ψ(x, u) dx+ |Du|(Ω) ≥ CΨ +

∫ 1

0

Erel
s [χs] ds .

The following monotonicity result is due to [ACC05]:
Claim: Let h1, h2 ∈ L1(Ω) be such that h1 < h2 a.e. in Ω and assume that

χi ∈ argmin
χ∈BV(Ω,{0,1})

∫
Ω

hiχdx+ |Dχ|(Ω)

for i ∈ {1, 2}. Then χ1 ≥ χ2 a.e. in Ω.
Set Σi = [χi = 1]. The optimality of χi implies∫

Ω

h1χ[Σ1] dx+ |Dχ[Σ1]|(Ω) ≤
∫

Ω

h1χ[Σ1 ∪ Σ2] dx+ |Dχ[Σ1 ∪ Σ2]|(Ω) ,∫
Ω

h2χ[Σ2] dx+ |Dχ[Σ2]|(Ω) ≤
∫

Ω

h2χ[Σ1 ∩ Σ2] dx+ |Dχ[Σ1 ∩ Σ2]|(Ω) .

Since |Dχ[Σ1 ∪ Σ2]| + |Dχ[Σ1 ∩ Σ2]| ≤ |Dχ[Σ1]| + |Dχ[Σ2]| (cf . [AFP00, Proposition 3.38]), by adding both
inequalities above we obtain∫

Ω

h1(χ[Σ1 ∪ Σ2]− χ[Σ1]) dx ≥
∫

Ω

h2(χ[Σ2]− χ[Σ1 ∩ Σ2]) dx ,
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which implies
∫

Ω
(h1 − h2)χ[Σ2\Σ1] dx ≥ 0. Now, taking into account h1 < h2 we deduce |Σ2\Σ1| = 0, which

proves the claim.
Since both θ1 and θ2 are strictly positive (see Remark 5.2.1), we obtain that s 7→ ∂tΨ(x, s) is strictly increasing

in s for a.e. x ∈ Ω. Let hi = ∂tΨ(x, si) for s1 < s2. Now, the claim above implies that χs1 ≥ χs2 a.e.
in Ω. Furthermore, the function u∗(x) = sup{s ∈ R : χs(x) = 1} is well-defined, Lebesgue measurable and
χ[u∗ > s] = χs. Then, using the coarea formula we get u∗ ∈ BV(Ω) and CΨ +

∫ 1

0
Erel
s [χ[u∗ > s]] ds = Erel[u∗].

Thus,

Erel[u] ≥ CΨ +

∫ 1

0

Erel
s [χ[u∗ > s]] ds = Erel[u∗] ≥ Erel[u] ,

which shows that all inequalities are actually equalities and the characteristic function χ[u > s] is a minimizer
of Erel

s for a.e. s ∈ [0, 1]. It remains to prove that this property holds true for the particular value s = 1
2 . To

this end, we consider a monotonously decreasing sequence {sn}n∈N ⊂ [ 1
2 , 1] such that χ[u > sn] is a minimizer

of Erel
sn and sn → 1

2 . For any χ̃ ∈ BV(Ω, {0, 1}) we can infer taking into account the dominated convergence
theorem, the weak-∗ convergence of χ[u > sn] to χ[u > 1

2 ] in BV(Ω) and the lower semicontinuity of the total
variation along this sequence (cf . Theorem 5.1.4 (iv.))

Erel
1
2

[χ̃] = lim inf
n→∞

Erel
sn [χ̃] ≥ lim inf

n→∞
Erel
sn [χ[u > sn]] ≥ Erel

1
2

[χ[u > 1
2 ]] .

We omit further details. This finishes the sketch of the proof.

A priori error estimate for a relaxed binary Mumford–Shah functional. We conclude this section with an
a priori error estimate for a minimizer of an ROF-type model (see [ROF92]), from which a minimizer of the
binary Mumford–Shah model can be exactly recovered via a suitable thresholding. In detail, we set Ψ(x, s) =
1
2 (s−(θ2(x)−θ1(x)))2. Following Remark 5.2.4, the superlevel set for the threshold value s = 0 of the minimizer
of the ROF model

ẼROF[v] =

∫
Ω

1
2 (v − (θ2 − θ1))2 dx+ |Dv|(Ω) (5.26)

for v ∈ BV(Ω) is a minimizer of
∫

Ω
(θ1 − θ2)χdx + |Dχ|(Ω) and therefore of E taking into account (5.21)

(cf . [Ber09]). In what follows, we will deriveL2(Ω)-a priori error bounds for a finite difference minimizer of ẼROF

for n = 2 by using techniques developed in [WL11]. To this end, let us first define generalized Lipschitz spaces:

Definition 5.2.5. For any p ≥ 1, the Lp(Ω)-modulus of smoothness for f ∈ Lp(Ω) is defined as

ω(f, t)Lp(Ω) = sup
s∈R2,|s|<t

(∫
[x,x+s]⊂Ω

|f(x+ s)− f(x)|p dx

) 1
p

.

Here, [x, x + s] = {λx+ (1− λ)(x+ s) : λ ∈ [0, 1]}. Then, for α > 0 the Lipschitz space Lip(α,Lp(Ω)) is
characterized by Lip(α,Lp(Ω)) = {f ∈ Lp(Ω) : |f |Lip(α,Lp(Ω)) <∞} with seminorm and norm given by

|f |Lip(α,Lp(Ω)) = sup
t>0

t−αω(f, t)Lp(Ω) , ‖f‖Lip(α,Lp(Ω)) = ‖f‖Lp(Ω) + |f |Lip(α,Lp(Ω)) , (5.27)

respectively.

For the verification that (5.27) actually defines a (semi-)norm as well as for further details we refer to [WL11].
Next, we restrict our presentation to the computational domain Ω = [0, 1]2 and define Ωh = {(i, j) ∈ Z2 :
0 ≤ i, j < N} as the corresponding discrete domain with mesh size h = N−1 for N ∈ N. Furthermore, we cover
the computational domain by the sets Ωh,ξ = {x ∈ Ω : hξi ≤ xi < h(ξi + 1) for i = 1, 2} for ξ ∈ {0, . . . N −
1}2. The piecewise constant injector Ih assigns to a discrete function vh : Ωh → R the function Ih[vh] ∈ L1(Ω)
defined as Ih[vh](x) = vh(ξ) if x ∈ Ωh,ξ. Vice versa, the piecewise constant projector Ph projects any v ∈ L1(Ω)
onto the space of discrete functions via Ph[v](ξ) = −

∫
Ωh,ξ

v dx for ξ ∈ {0, . . . N − 1}2. We define TVh[vh] =

1
4

∑
�,�∈{−,+} TV

(�,�)
h [vh] as the (isotropic) discrete total variation, where TV

(�,�)
h [vh] for �,� ∈ {−,+}

and a discrete function vh is given by

h
∑

(i,j)∈Ωh

√(
Exth[vh]((i, j)� (1, 0))− Exth[vh](i, j)

)2

+
(

Exth[vh]((i, j)� (0, 1))− Exth[vh](i, j)
)2

.
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Here, Exth : {Ωh → R} → {Z2 → R} denotes the extension operator that reflects a discrete function on each
boundary side. For instance, Exth[vh](i, j) = vh(2N − i− 1, j) if N ≤ i < 2N , 0 ≤ j < N . Finally, the discrete
analogon of ẼROF is given by

ẼROF,h[vh] = 1
2‖Ih[vh − Ph[θ2 − θ1]]‖2L2(Ω) + TVh[vh]

for any discrete function vh. With these preparations at hand, we can now state the central a priori theorem for
(5.26):

Theorem 5.2.6 (A priori error estimate for a relaxed binary Mumford–Shah model). Let Ω = [0, 1]2, α > 0,
h = N−1 for N ∈ N and assume that the input image satisfies u0 ∈ Lip(α,L2(Ω)) ∩ L∞(Ω, [0, 1]). For
minimizers ū and ūh of ẼROF and ẼROF,h, respectively, the a priori bound

‖Ih[ūh]− ū‖2L2(Ω) ≤ C
(c2 − c1)2

ν2

(
C + |u0|Lip(α,L2(Ω))

)2
h

α
1+α

with a constant C > 0 holds true. In particular, Ih[ūh]→ ū in L2(Ω) for h↘ 0.

Proof. The following assertion is proven in [WL11, Theorem 4.2]: for g ∈ Lip(α,L2(Ω)) the minimizers v̄ ∈
BV(Ω) and v̄h : Ωh → R of

v 7→ 1
2‖v − g‖

2
L2(Ω) + |Dv|(Ω) , vh 7→ 1

2‖Ih[vh − Ph[g]]‖2L2(Ω) + TVh[vh] ,

respectively, are related by

‖Ih[v̄h]− v̄‖2L2(Ω) ≤ C‖g‖
2
Lip(α,L2(Ω))h

α
1+α .

Next, we will prove

‖θ2 − θ1‖Lip(α,L2(Ω)) ≤ |c2−c1|ν

(
4 + 2|u0|Lip(α,L2(Ω))

)
, (5.28)

which readily implies the theorem by setting g = θ2 − θ1. Since |Ω| = 1, 0 ≤ c1, c2 ≤ 1 and u0 ∈ L∞(Ω, [0, 1])
one can infer

‖θ2 − θ1‖L2(Ω) ≤ 1
ν

(
2 |c2 − c1| ‖u0‖L2(Ω) + |c1 + c2| |c2 − c1|

)
≤ 4

ν |c2 − c1| .

Furthermore, a straightforward computation shows

ω(θ2 − θ1, t)L2(Ω) = sup
s∈R2,|s|<t

(∫
[x,x+s]⊂Ω

∣∣ 2
ν (c2 − c1)(u0(x+ s)− u0(x))

∣∣2 dx

) 1
2

,

which implies |θ2 − θ1|Lip(α,L2(Ω)) ≤ 2
ν |c2 − c1| |u0|Lip(α,L2(Ω)) and (5.28).

Remark 5.2.7. In principle, one could have developed the a posteriori theory for the binary Mumford–Shah func-
tional starting from the functional ẼROF instead of Erel, since the functional (5.26) complies with the same vital
prerequisites required for the a posteriori theory for (5.19) as the functional (5.22), e.g. the thresholding theorem or
the duality-based functional a posteriori error estimator (see below). However, unlike the minimizer of the relaxed
Mumford–Shah model (5.22), the L∞(Ω)-bound for the minimizer ū of ẼROF depends on the L∞(Ω)-bound
of the input image, the intensity values and ν, and thus requires a more involved cutoff argument to deduce the
counterpart of Theorem 5.4.1 for ẼROF. Explicitly, this upper bound reads as

‖ū‖L∞(Ω) ≤ 2
ν (1 + ‖u0‖L∞(Ω))|c2 − c1|

and is implied by a straightforward truncation argument.



5.3 Functional A Posteriori Error Estimates 125

5.3 Functional A Posteriori Error Estimates
In this section, we will derive a functional a posteriori estimate for the relaxed functional (5.22). To this end,
we employ a primal-dual error estimate originally proposed by Repin [Rep00, Rep12] and exploit the uniform
convexity of the relaxed binary Mumford–Shah functional. However, unlike many other approaches (see [Han05]
for an overview) the starting point is the predual functional Drel of Erel defined as (Drel)∗ = Erel.

There are several drawbacks when choosing Erel as the primal functional. Since, to the best of our knowledge,
no full characterization of the space BV′(Ω) as the dual space of BV(Ω) exists (see [DP98, Tor16] for partial
results), a derivation of an a posteriori error estimator for Erel would be challenging. In particular, the functional
error estimators incorporating Repin’s approach exclusively work for reflexive Banach spaces, and the computation
of the proximal mappings in BV′(Ω) in a closed form required for the duality-based algorithms does not appear
to be feasible. Moreover, the right choice of the discrete function space to properly model BV′(Ω) is numerically
demanding.

The predual formulation of variational problems in BV(Ω) already examined in the context of a generalized
ROF model by Hintermüller and Kunisch [HK04] overcomes all these problems. Bartels [Bar15] picked up this
predual formulation and inferred an explicitly computable a posteriori error estimate for the standard ROF model
using Repin’s abstract framework. We will roughly follow Bartels’ ansatz to derive a functional error estimator
associated with (5.22).

The predual formulation of the relaxed binary Mumford–Shah model. As pointed out above, the starting
point for the derivation of the functional a posteriori error estimate for the relaxed binary Mumford–Shah functional
is the following predual functional

Drel[q] = F [q] +G[Λq] (5.29)

for all q ∈ Q. Here, F : Q → R and G : V → R are the predual functionals corresponding to the total
variation and the data term, respectively, which are supposed to be proper, convex and lower semicontinuous. In
addition, V and Q are assumed to be reflexive Banach spaces and Λ ∈ L(Q,V). Throughout this chapter, we set
Q = HN (div,Ω) (see Section 1.1 for the definition), V = L2(Ω) ∼= (L2(Ω))′ and Λ = div, where Λ∗ = −∇
holds in the sense

(Λ∗v, q)L2(Ω) = (v,divq)L2(Ω) (5.30)

for all v ∈ V and all q ∈ Q. Then, we define F and G as follows (recall that the intensity values c1 and c2 are
fixed):

F [q] = I[B1(0)][q] =

{
0 , if |q| ≤ 1 a.e. ,
+∞ , else , G[v] =

∫
Ω

1
4v

2 + vθ2 − θ1θ2

θ1 + θ2
dx .

Proposition 5.3.1. Under the assumptions above, the relation (Drel)∗ = Erel is valid, i.e.

(Drel)∗[v] = G∗[v] + F ∗[−Λ∗v] =

∫
Ω

v2θ1 + (1− v)2θ2 dx+ |Dv|(Ω) = Erel[v] . (5.31)

Proof. Theorem 5.1.13 implies that (Drel)∗ admits the decomposition (Drel)∗[v] = G∗[v] + F ∗[−Λ∗v] and the
Fenchel conjugates of F and G can be separately computed. Thus, incorporating the denseness of C1

c (Ω) in
HN (div,Ω) w.r.t. ‖ · ‖H(div,Ω) as well as (5.30) one gets that for any v ∈ BV(Ω)

|Dv|(Ω) = sup
q∈Q,‖q‖∞≤1

∫
Ω

vdivq dx = sup
q∈Q

(
−
∫

Ω

vdivq dx− I[B1(0)][q]

)
= F ∗[−Λ∗v] .

To compute G∗, we first note that

G∗[v] = sup
w∈L2(Ω)

(
(v, w)L2(Ω) −G[w]

)
(5.32)

holds true for any v ∈ L2(Ω), where we employed the identification (L2(Ω,R))′ ∼= L2(Ω,R). By computing the
first variation w.r.t. w of the right-hand side of (5.32) in the direction w̃ ∈ L2(Ω) we get∫

Ω

vw̃ −
1
2ww̃ + w̃θ2

θ1 + θ2
dx = 0 ,



126 5 A Posteriori Error Control for the Binary Mumford–Shah Model

which implies that the supremum in (5.32) is attained for w = 2v(θ1 + θ2)−2θ2. By inserting this maximizer into
(5.32) one can infer that G is actually the predual functional of the data term G∗. This finishes the proof of this
proposition.

Functional a posteriori error estimate for the relaxed binary Mumford–Shah functional. In what follows,
we will derive a functional a posteriori error estimate for (5.22) by employing the fundamental relation given in
Proposition 5.3.1 as well as Repin’s abstract framework. We highlight that a crucial prerequisite to apply this
framework is the uniform convexity of G∗. To this end, let us briefly introduce two measures quantifying the
uniform convexity and the strict monotonicity of a functional J ∈ Γ0(X) on a generic Banach space X (cf .
[Rep00, Rep12, Bar15]).

Definition 5.3.2. Let X be a Banach space and J ∈ Γ0(X).

(i.) J is uniformly convex if there exists a functional ΦJ : X → R+
0 such that

J
[
x1+x2

2

]
+ ΦJ(x2 − x1) ≤ 1

2 (J [x1] + J [x2])

for all x1, x2 ∈ X , and ΦJ(x) = 0 if and only if x = 0.

(ii.) We denote by ΨJ : X → R+
0 a functional that satisfies

〈x′, x2 − x1〉X′,X + ΨJ(x2 − x1) ≤ J [x2]− J [x1] (5.33)

for all x1, x2 ∈ X and all x′ ∈ ∂J [x1].

J

x1 x2
x1+x2

2

J

x1 x2

Figure 5.1: Schematic drawing of ΦJ (red line, left) and ΨJ (blue line, right).

Remark 5.3.3. (i.) One can show via a Taylor expansion that the optimal functionals ΦJ and ΨJ associated with
J ∈ Γ0(X) ∩ C2(X) admit the representation

ΦJ(x) = 1
8λmin(D2J(x))|x|2 , ΨJ(x) = 1

2λmin(D2J(x))|x|2 ,

where λmin(D2J(x)) denotes the smallest eigenvalue of the Hessian of J at x.

(ii.) We observe that any ΨJ which satisfies (5.33) is bounded by the Bregman distance Ψ∗J (cf . [Bre67]), i.e.

ΨJ(x2 − x1) ≤ Ψ∗J(x1, x2) = sup
x′∈∂J[x1]

J [x2]− J [x1]− 〈x′, x2 − x1〉X′,X

for all x1, x2 ∈ X .

The central a posteriori error estimate to be presented in Theorem 5.3.4 relies on the subsequent relations that
directly emerge from the Duality Theorem 5.1.13:

Erel[u] = (Drel)∗[u] = −Drel[p] , (5.34)

Erel[v] = (Drel)∗[v] ≥ −Drel[q] (5.35)
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for all q ∈ Q and all v ∈ V . Here, p ∈ Q and u ∈ V are minimizers of Drel and Erel = (Drel)∗, respectively. Note
that (5.34) holds true if and only if −Λ∗u ∈ ∂F [p] and u ∈ ∂G[Λp]. The relation (5.35) is known as the weak
complementarity principle.

Theorem 5.3.4. Let u ∈ V be the minimizer of Erel for fixed intensity values c1 6= c2. Then, for any v ∈ V and
q ∈ Q a functional a posteriori error estimator for (5.22) is given by

‖u− v‖2L2(Ω) ≤ err2
u[v, q, c1, c2] :=

2ν

(c1 − c2)2
(Erel[v] +Drel[q]) . (5.36)

Proof. We first prove the following inequality (cf . [Bar15]):

ΦF∗(−Λ∗(v − u)) + ΦG∗(v − u) + ΨErel

(
v − u

2

)
≤ 1

2 (Erel[v] +Drel[q]) (5.37)

for all q ∈ Q and all v ∈ V . In fact, thanks to the definition of the uniform convexity one gets

ΦF∗(−Λ∗(v − u)) + ΦG∗(v − u)

≤ 1
2 (F ∗[−Λ∗v] +G∗[v] + F ∗[−Λ∗u] +G∗[u])−

(
F ∗
[
−Λ∗

u+ v

2

]
+G∗

[
u+ v

2

])
. (5.38)

Furthermore, by exploiting the monotonicity of Erel as well as 0 ∈ ∂Erel[u] due to the minimizing property of u
we can deduce

ΨErel

(
v − u

2

)
≤ F ∗

[
−Λ∗

u+ v

2

]
+G∗

[
u+ v

2

]
− (F ∗[−Λ∗u] +G∗[u]) . (5.39)

By adding (5.38) and (5.39) it follows that

ΦF∗(−Λ∗(v − u)) + ΦG∗(v − u) + ΨErel

(
v − u

2

)
≤ 1

2 (F ∗[−Λ∗v] +G∗[v])− 1
2 (F ∗[−Λ∗u] +G∗[u])

= 1
2 (Erel[v]− Erel[u]) ≤ 1

2 (Erel[v] +Drel[q]) .

The last inequality is an immediate consequence of the weak complementarity principle (5.35).
In the case of the binary Mumford–Shah model, a straightforward computation shows

ΦF∗ ≡ 0 , ΦG∗(v) =
1

4

∫
Ω

v2(θ1 + θ2) dx , ΨErel(v) =

∫
Ω

v2(θ1 + θ2) dx .

Hence, by applying (5.37) to this particular choice we obtain for all v ∈ V and all q ∈ Q∫
Ω

(u− v)2(θ1 + θ2) dx ≤ Erel[v] +Drel[q] .

Finally, Young’s inequality 1
2 (a− b)2 ≤ a2 + b2 with a = c1−u0 and b = c2−u0 yields 1

2ν (c1− c2)2 ≤ θ1 + θ2,
which implies the estimate (5.36).

We highlight that err2
u[v, q, c1, c2] is both reliable, i.e. err2

u[v, q, c1, c2] is always an upper bound for the real
error, and consistent, i.e. err2

u[v, q, c1, c2]→ 0 if v → u and q → pw.r.t. the corresponding Banach space topology.
A local error estimator, which is based on err2

u[v, q, c1, c2], will be discussed in Section 5.6.

5.4 A Posteriori Error Estimates for the Binary Mumford–Shah Model
In this section, we will derive an a posteriori error theory for the binary Mumford–Shah model with fixed intensity
values incorporating the functional a posteriori estimator for Erel (cf . Theorem 5.3.4) as well as the thresholding
result shown in Proposition 5.2.3. Afterwards, we will expand this estimator to the general binary Mumford–Shah
model with varying intensity values and we will discuss the limitations of this ansatz.
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A posteriori error estimator for E with fixed intensity values. In many numerical applications, one observes
that the minimizer u of the relaxed binary Mumford–Shah model (5.22) is approximately piecewise constant with
steep profiles at the interfaces. Moreover, the Lebesgue measure of the set [ 1

2 − η < u < 1
2 + η] for small η > 0

is negligible compared to the size of the domain due to the preference of u for the values 0 respectively 1 induced
by the particular structure of Erel. We will exploit these facts to derive an error estimator for the binary Mumford–
Shah functional E. In detail, one observes that for any approximate solution v ∈ BV(Ω) of Erel the following set
inclusion for the symmetric difference of [u > 1

2 ] and [v > 1
2 ] holds true:[

u > 1
2

]
∆
[
v > 1

2

]
⊆ [|u− v| > η] ∪ [ 1

2 − η ≤ v ≤
1
2 + η] . (5.40)

The Lebesgue measure of the first set on the right-hand side of (5.40) can be controlled by η−2err2
u[v, q, c1, c2].

Likewise, the Lebesgue measure of

Sv,η := [ 1
2 − η ≤ v ≤

1
2 + η]

as the set of non-properly identified regions is explicitly computable and expected to be small taking into account
the aforementioned experimental results. In this case, η is a weight parameter that needs to be optimized. The a
posteriori estimator for (5.19) then follows in combination with the thresholding (cf . Proposition 5.2.3), the precise
statement is as follows:

Theorem 5.4.1 (A posteriori error estimator for E). Let u ∈ BV(Ω, [0, 1]) be the minimizer of Erel for fixed
intensity values c1, c2 ∈ [0, 1], c1 6= c2. Then, the following a posteriori error bound for the minimizer χ = χ[u >
1
2 ] ∈ BV(Ω, {0, 1}) of the binary Mumford–Shah functional holds true:

∥∥χ− χ[v > 1
2 ]
∥∥
L1(Ω)

≤ errχ[v, q] := inf
η∈(0, 12 )

(
Ln(Sv,η) +

1

η2
err2

u[v, q, c1, c2]

)
(5.41)

for all v ∈ V and all q ∈ Q.

Proof. Choose η ∈ (0, 1
2 ). Then, by an inclusion argument one can infer[

u > 1
2

]
∆
[
v > 1

2

]
⊆ [|u− v| > η] ∪

[
1
2 − η ≤ v ≤

1
2 + η

]
= [|u− v| > η] ∪ Sv,η .

Hence, ∥∥χ− χ[v > 1
2 ]
∥∥
L1(Ω)

= Ln
([
u > 1

2

]
∆
[
v > 1

2

])
≤ Ln([|u− v| > η]) + Ln(Sv,η) . (5.42)

To derive (5.42), we used Proposition 5.2.3 and the simple fact that ‖χ[A] − χ[B]‖L1(Ω) = Ln(A∆B) for mea-
surable sets A,B ⊂ Ω. Taking into account Theorem 5.3.4 we can further estimate

Ln([|u− v| > η]) ≤
∫

[|u−v|>η]

(u− v)2

η2
dx ≤ 1

η2
err2

u[v, q, c1, c2] .

By taking the infimum w.r.t. η ∈ (0, 1
2 ) we have proven (5.41).

Remark 5.4.2. (i.) Note that the reliable a posteriori error estimator errχ merely requires a conforming space and
is not tailored to a specific finite element space. The estimator errχ is consistent if there exists η0 ∈ (0, 1

2 )
such that Ln(Sv,η) → 0 if v → u in L2(Ω) for all η ∈ (0, η0), which is implied by the consistency of the
functional a posteriori error estimator err2

u.

(ii.) We stress that the evaluation of (5.41) is not computationally expensive compared to the calculation of the
primal and the dual solution. In fact, to compute errχ a single computation of err2

u has to be performed,
followed by an optimization of η w.r.t. a discrete subset of (0, 1

2 ). Note that the computational complexity
to evaluate Ln(Sv,η) is in general negligible.
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A posteriori error estimator forE with varying intensity values. In what follows, we will propose a numerical
scheme to reliably compute an a posteriori error estimator in case of an alternating update of the approximate
solutions and the intensity values. To this end, in a first step we will examine the effect of an ε-perturbation of
the intensity values on the error estimator. In the second step, a sensitivity analysis is performed to estimate the
error emerging from the update of the intensity values. Finally, by combining both steps one could derive an a
posteriori error estimator incorporating the updated intensity values. Unfortunately, it will become apparent in the
numerical applications that this scheme is computationally not feasible since the decrease of the absolute value of
the perturbed error estimator is not sufficiently large. In this paragraph, we will tacitly assume that the optimal
binary minimizers are not constant to exclude trivial cases.

As a preparatory step, we will derive an a posteriori error estimate for the minimizer of the binary model with
intensity values c̃i ∈ [0, 1] for i = 1, 2, which are assumed to be in the intervals [ci − ε, ci + ε] ∩ [0, 1] around the
given intensity values ci ∈ [0, 1] for a fixed bandwidth parameter ε > 0. Here, the bandwidth parameter is chosen
such that both intervals do not overlap, i.e. |c1 − c2| > 2ε. We consider the functionals

Erel[v, c̃1, c̃2] =

∫
Ω

(c̃1−u0)2

ν v2 + (c̃2−u0)2

ν (1− v)2 dx+ |Dv|(Ω) , (5.43)

E[χ, c̃1, c̃2] =

∫
Ω

(c̃1−u0)2

ν χ+ (c̃2−u0)2

ν (1− χ) dx+ |Dχ|(Ω) (5.44)

for all v ∈ BV(Ω, [0, 1]) and all χ ∈ BV(Ω, {0, 1}). Furthermore, let u(c̃1,c̃2) ∈ BV(Ω, [0, 1]) and χ(c̃1,c̃2) =

χ[u(c̃1,c̃2) >
1
2 ] ∈ BV(Ω, {0, 1}) be minimizers of (5.43) and (5.44), respectively. Then, Theorem 5.3.4 and a

monotonicity argument imply

‖u(c̃1,c̃2) − v‖2L2(Ω) ≤ sup
{

err2
u[v, q, ĉ1, ĉ2] : ĉi ∈ Bε(ci), i ∈ {1, 2}

}
≤ err2,ε

u [v, q, c1, c2]

for all v ∈ V and all q ∈ Q, where err2,ε
u is the ε-perturbed a posteriori error estimator

err2,ε
u [v, q, c1, c2] :=

2ν

(|c1 − c2| − 2ε)2

(∫
Ω

v2θmax
1 + (1− v)2θmax

2 dx+ |Dv|(Ω)

+

∫
Ω

1
4 (divq)2

θmin
1 +θmin

2
+ max

{
(divq)θmax

2

θmin
1 +θmin

2
,

(divq)θmin
2

θmax
1 +θmax

2

}
− θmin

1 θmin
2

θmax
1 +θmax

2

)
dx .

Here, θmin
i (x) and θmax

i (x) are the minimal respectively maximal values of θi(x) for c̃i in Bε(ci) ∩ [0, 1], i.e.

θmin
i (x) = 1

ν min
c∈Bε(ci)∩[0,1]

(c− u0(x))2 , θmax
i (x) = 1

ν max
c∈Bε(ci)∩[0,1]

(c− u0(x))2

for i = 1, 2. Furthermore, by incorporating Theorem 5.4.1 the corresponding a posteriori error estimator for (5.44)
reads as

‖χ(c̃1,c̃2) − χ[v > 1
2 ]‖L1(Ω) ≤ errεχ[v, q, c1, c2] := inf

η∈(0, 12 )

(
Ln(Sv,η) + 1

η2 err2,ε
u [v, q, c1, c2]

)
.

In other words, errεχ[v, q, c1, c2] represents an a posteriori error bound for all binary minimizers of (5.44) associated
with the intensity values c̃i ∈ Bε(ci).

Next, we perform a sensitivity analysis to estimate the distance of the optimal intensity values ci = ci[χ(c̃1,c̃2)]

and ci[χ] (cf . (5.20)) associated with χ(c̃1,c̃2) and χ = χ[v > 1
2 ] for any v ∈ V and i = 1, 2, respectively. If we

further assume

min{‖χ‖L1(Ω), ‖1− χ‖L1(Ω)} > 0 , |c1 − c2| > 2ε , ci[χ] ∈ Bε(ci) ,
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then we obtain the following error estimates for the intensity parameters:

|c1[χ]− c1| ≤
‖(χ−χ(c̃1,c̃2))u0‖L1(Ω)

‖χ‖L1(Ω)
+
∣∣∣ 1
‖χ(c̃1,c̃2)‖L1(Ω)

− 1
‖χ‖L1(Ω)

∣∣∣ ‖χ(c̃1,c̃2)u0‖L1(Ω)

≤ 2‖χ(c̃1,c̃2)−χ‖L1(Ω)

‖χ‖L1(Ω)
≤ 2 errεχ[v,q,c1,c2]

‖χ‖L1(Ω)
, (5.45)

|c2[χ]− c2| ≤
2‖χ(c̃1,c̃2)−χ‖L1(Ω)

‖1−χ‖L1(Ω)
≤ 2 errεχ[v,q,c1,c2]

‖1−χ‖L1(Ω)
(5.46)

for q ∈ Q.

By combining the ε-perturbed error estimators for the primal and the dual solution with the sensitivity analysis
for the intensity values in an alternating update scheme one could derive reliable a posteriori error estimators for
(5.43) and (5.44) in the case of varying intensity values. Unfortunately, in the numerical experiments it becomes
apparent that the decrease of the ε-perturbed a posteriori error estimates err2,ε

u and errεχ is not sufficient to initiate
a bootstrap iteration to successively update the intensity values and simultaneously decrease the error quantities
on the right-hand sides of (5.45) and (5.46). In detail, in the best case for ‖χ‖L1(Ω) ≈ ‖1 − χ‖L1(Ω) ≈ 0.5 the
amplification factor 2 max{(‖χ‖L1(Ω))

−1, (‖1 − χ‖L1(Ω))
−1} appearing in (5.45) and (5.46) is roughly 4, but in

general this factor is unbounded. Hence, an essential prerequisite for the applicability of this scheme is a substantial
decline in the quantity of the ε-perturbed functional a posteriori error estimates in each iteration step compared to
this amplification factor, which could not be observed in the numerical applications. We refer to Section 5.7 for an
explicit evaluation of the sensitivity of a relaxed solution.

5.5 Finite Element and Finite Difference Discretization

In this section, we will propose three different discretization schemes to compute the primal and the dual solution
associated with Erel. To this end, we first introduce an adaptive triangle mesh with hanging nodes, which allows a
canonical correspondence to a quadtree (n = 2) or octree (n = 3). Afterwards, two finite element discretization
schemes on this adaptive grid are presented, in which the primal functions are modeled as piecewise affine and
globally continuous finite element functions. Both schemes only differ in the discretization of the discrete gradient
operator Λh and accordingly in the choice of the discrete dual function spaces. Additionally, we adapt a widespread
finite difference scheme – originally proposed for the ROF model – to the relaxed binary Mumford–Shah model in
order to compare the quantities of the a posteriori error estimator of this established finite difference discretization
with the finite element schemes. Henceforth, to simplify the presentation we always assume Ω = [0, 1]2, the
generalization to domains with polygonal boundary in arbitrary dimensions readily follows.

Adaptive triangle grid with hanging nodes. In what follows, we will construct an adaptive triangle grid admit-
ting hanging nodes, which will be used in both finite element discretization schemes below.

As a first step, we describe the construction of an adaptive regular quadratic gridMh on the image domain Ω.
For this reason, let us recall that a quadtree T (for n = 3 an octree) is a tree structure where each node has either
four children (for n = 3, eight children) or is a leaf node. Then, each cell ofMh has a one-to-one correspondence
to a leaf of the quadtree T and is quadratic, which means that in each refinement of a cell ofMh this cell is divided
into four quadratic cells via an edge bisection. Furthermore, we ensure that the level of cells with a common
edge differs at most by one, which implies that on each edge not more than one hanging node can exist (in all
further considerations, we omit hanging nodes on the boundary). The advantage of this particular adaptive mesh
construction is the effective organization of the adaptivity due to the quadtree structure. Figure 5.2 depicts an
admissible (left) as well as an inadmissible (right) refinement. Finally, the associated adaptive triangle mesh Sh
is then obtained via a splitting of each quadratic cell into 2 triangles T (for n = 3 into 6 simplices) employing a
cross subdivision (see second drawing in Figure 5.2).

The function h assigns to each quadratic grid cell C ∈Mh its mesh size, i.e.

h(C ) = 2−l(C ) with l(C ) ∈ {Linit, . . . , Lfull} .
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Figure 5.2: Left: admissible refinement with level one transitions, hanging nodes are marked by blue points.
Middle: cross subdivision of the leftmost quadratic domain. Right: non-admissible refinement with level two
transitions, the corresponding edges are traced in red.

Here, Linit refers to the initial mesh size andLfull to the maximum resolution. Throughout this chapter we suppose,
if not otherwise specified, that the input image u0 is an element of V0 as the space of piecewise affine and globally
continuous finite elements on the uniform and regular gridMh,0 with mesh size 2−Lfull . Furthermore, we denote
by Nv the number of degrees of freedom in Mh, which coincides with the difference of the number of all grid
nodes and the number of hanging nodes.

(FE) Conforming finite element discretization on Sh. The finite element discretization scheme to be presented
below, which we denote by (FE), is an adaptation of a discretization for variational problems in BV(Ω) originally
proposed by Bartels [Bar15, Bar12]. On the aforementioned adaptive triangle grid Sh we introduce the conforming
discrete function spaces (cf . [BS08])

Vh =
{
vh ∈ C0(Ω) : vh

∣∣
T

is affine ∀T ∈ Sh
}
,

Qh =
{
qh ∈ V2

h : qh · n = 0 on ∂Ω
}

as discrete counterparts of V = L2(Ω) and Q = HN (div,Ω), respectively. The value of a discrete function
vh ∈ Vh or qh ∈ Qh at a hanging node coincides with the average of the function values at both adjacent degrees
of freedom. To accommodate the boundary condition in the spaceQh, the values at boundary nodes are altered after
each update in a postprocessing step if required. Furthermore, we set Nv = dimVh and Nq = dimQh = 2Nv .

Next, we define the discrete predual data term Gh : Vh → R and the discrete predual total variation Fh :
Qh → R as follows:

Fh[qh] = I[B1(0)][qh] , Gh[vh] =

∫
Ω

1
4v

2
h + vhθ2,h − θ1,hθ2,h

θ1,h + θ2,h
dx . (5.47)

Here, θi,h = Ih(θi) = Ih( 1
ν (ci − u0)2) for i = 1, 2 for an input image u0 ∈ V0, where Ih denotes the Lagrange

interpolation in the space Vh. We endow Vh with the usual L2(Ω)-product ( · , · )2 and Qh with the lumped mass
product

( · , · )h : Qh ×Qh → R , (qh, ph)h 7→
∫

Ω

Ih(qh · ph) dx ∀qh, ph ∈ Qh . (5.48)

The dual spaces of Vh andQh are identified in terms of these inner products via the Riesz representation theorem,
which yields

F ∗h [qh] =

∫
Ω

Ih(|qh|) dx , G∗h[vh] =

∫
Ω

v2
hθ1,h + (1− vh)2θ2,h dx . (5.49)

The proof that G∗h is the Fenchel conjugate of Gh is nearly identical to the proof of Proposition 5.3.1, the corre-
sponding assertion for F ∗h is a consequence of

F ∗h [qh] = sup
ph∈Qh

∫
Ω

Ih(qh ·ph) dx− I[B1(0)][ph] =

∫
Ω

Ih (qh · p̄h) dx− I[B1(0)][p̄h] =

∫
Ω

Ih(|qh|) dx (5.50)



132 5 A Posteriori Error Control for the Binary Mumford–Shah Model

for qh ∈ Qh, where the supremum is attained at p̄h ∈ Qh, which is given by p̄h(x) = qh(x)
|qh(x)| if qh(x) 6= 0 and

p̄h(x) = 0 else for any node x of the grid.
Let us denote by Ph the orthogonal L2-projection Ph : L2(Ω) → Vh. The discrete divergence Λh in the case

(FE) is defined as
Λh : Qh → Vh , qh 7→ Phdivqh ,

and the adjoint operator Λ∗h : Vh → Qh is implicitly characterized by the duality

(Λ∗hvh, qh)h = (vh,Phdivqh)2 (5.51)

for all vh ∈ Vh and all qh ∈ Qh. Bearing in mind the divergence theorem, we refer to the negative adjoint operator
−Λ∗h : Vh → Qh as the discrete gradient operator for the discretization (FE).

(FE’) Nonconforming finite element discretization with natural gradient operator on Sh. The subsequent
finite element approach (denoted by (FE’)) is motivated by the simple observation that the gradient of a globally
continuous and cell-wise affine finite element function on Sh is constant in the interior of the cells. Thus, the
discrete function spaces for the discretization (FE’) on the aforementioned adaptive triangle grid Sh are

Vh =
{
vh ∈ C0(Ω) : vh

∣∣
T

is affine ∀T ∈ Sh
}
,

Q̃h =
{
qh ∈ L∞(Ω,R2) : qh

∣∣
T
≡ const. ∀T ∈ Sh

}
.

Both spaces are endowed with the standard L2(Ω)-product adapted to the corresponding dimension and we set
Nv = dimVh and Nq = dim Q̃h. Obviously, Nq is twice the number of simplices in Sh. The functionals Fh, Gh
and G∗h are defined as in the discretization (FE) (see (5.47) and (5.49)). Due to the modification of Q̃h compared
to (FE) we get for the approach (FE’)

F ∗h [qh] =

∫
Ω

|qh|dx , (5.52)

the proof is similar to (5.50) with minor modifications.
Starting from the discrete gradient operator −Λ∗h : Vh → Q̃h, −Λ∗hvh = ∇vh for the discretization (FE’), we

can infer that the discrete divergence Λh : Q̃h → Vh is implicitly characterized by∫
Ω

Λhqhvh dx =

∫
Ω

qh · Λ∗hvh dx = −
∫

Ω

qh · ∇vh dx

for all vh ∈ Vh and all qh ∈ Q̃h. Again, to satisfy the boundary conditions for any qh ∈ Q̃h, we set the corre-
sponding boundary values of qh to 0 if required. In the special case of the computational domain Ω = [0, 1]2 on the
adaptive triangle grid Sh, we have to ensure that the first component of qh vanishes on the left and right boundary
side and the second component on the top and bottom boundary side. Since Q̃h is not contained in HN (div,Ω),
this discretization scheme is nonconforming. Hence, to compute the local error estimator a projection onto a
conforming finite element subspace of HN (div,Ω) has to be performed (for details see Section 5.6).

(FD) Finite difference scheme on a regular mesh. As a last discretization scheme, we present a finite difference
discretization (FD) following Chambolle [Cha04] to compare the quantities of the a posteriori error estimator of
the finite element approaches above with a more standard scheme in image processing like (FD).

Let N > 1 be the width and height of the input image measured in number of pixels. Then, we consider the
lattice ΓN = {1, . . . , N} × {1, . . . , N} with mesh size h = (N − 1)−1 and Nv = N2 nodes, which coincide
in this case with the degrees of freedom. Furthermore, we set Nq = 2Nv . Every discrete primal function Vh :
ΓN → R and discrete dual function Qh : ΓN → R2 then has a one-to-one correspondence (below we identify the
corresponding objects for simplicity) to a vector Vh ∈ RNv and Qh ∈ (R2)Nv ∼= RNq , respectively. If we replace
integration by summation, the discrete analogs of F and G are given by

Fh[Qh] = max
i=1,...,Nv

I[B1(0)][Qi
h] , Gh[Vh] =

Nv∑
i=1

(
1
4 (Vi

h)2 + Vi
hΘ

i
2,h −Θi

1,hΘ
i
2,h

Θi
1,h + Θi

2,h

)
.
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Here, the discrete functions Θj,h associated with the input image U0 ∈ RNv are given by Θi
j,h = 1

ν (cj − U i0)2

for 1 ≤ i ≤ Nv and j ∈ {1, 2}. If we endow the spaces RNv and (R2)Nv with the standard Euclidean product, a
similar proof as presented in the previous discretization schemes yields

F∗h[Qh] =

Nv∑
i=1

|Qi
h| , G∗h[Vh] =

Nv∑
i=1

(Vi
h)2Θi

1,h + (1−Vi
h)2Θi

2,h .

Finally, we employ the forward difference operator with periodic boundary conditions as the discrete gradient
operator −Λ∗h : {ΓN → R} → {ΓN → R2}, i.e.

(−Λ∗hVh)(i, j) =
1

h

 Vh((i mod N) + 1, j)−Vh(i, j)

Vh(i, (j mod N) + 1)−Vh(i, j)

 ,

for all 1 ≤ i, j ≤ N , the modulo operators guarantee the periodicity at each boundary side. Moreover, the
operator −Λ∗h is the negative adjoint of the operator Λh : {ΓN → R2} → {ΓN → R} representing the discrete
divergence in the case (FD). The latter operator coincides with the common backward difference quotient.

5.6 Duality-Based Algorithms and Adaptive Mesh Refinement
A standard and widespread strategy to adaptively approximate the numerical solution to a variational problem is
based on the loop depicted in Figure 5.3 (cf . [BNQ+09]), which consists of the four steps SOLVE, ESTIMATE,
MARK and REFINE.

SOLVE ESTIMATE MARK REFINE

Figure 5.3: Adaptive refinement scheme composed of a loop of four steps.

In this section, we will follow this scheme to compute minimizers of the binary Mumford–Shah model and
elaborate on each of the four steps. Concerning the first step (SOLVE), we apply a primal-dual algorithm with
first order convergence due to Chambolle and Pock [CP11] to each of the discretization schemes presented in
Section 5.5. As an alternative, a dual gradient descent for the scheme (FE) is derived in order to compare the
performance of both algorithms. In the subsequent paragraph, other common related duality-based algorithms are
briefly discussed. Afterwards, based on Theorem 5.3.4 we propose a local a posteriori error estimator, which is
applicable to all discretization schemes (ESTIMATE) and on which the marking rule of the cells in the adaptive
grid for the finite element schemes relies (MARK). In the final step, the refinement of a cell is performed via
a cross subdivision as already discussed in Section 5.5 (REFINE). Again, we restrict our presentation to the
computational domain Ω = [0, 1]2 for convenience.

Primal-dual algorithm with first order convergence. In this paragraph, we will elaborate on the computation of
discrete minimizers for the binary Mumford–Shah functional obtained with a primal-dual minimization algorithm
by Chambolle and Pock [CP11] for all discretization schemes presented in Section 5.5. The main benefits of this
particular algorithm are its versatility in the applications in the field of convex optimization and its fast guaranteed
convergence.

As a first step, we derive a reformulation of Fh and Gh as well as their Fenchel conjugates for the schemes
(FE) and (FE’) (see (5.47), (5.49) and (5.52)), which are defined on vectors rather than on finite element functions.
To this end, we identify each vh ∈ Vh, qh ∈ Qh and q̃h ∈ Q̃h with the vectors Vh ∈ RNv , Qh ∈ (R2)Nv and
Q̃h ∈ (R2)#Sh , respectively, in terms of

Vi
h = vh(Xi) ,


Qi
h = qh(Xi) , for (FE) ,

Q̃j
h = q̃h(Tj) , for (FE’) ,

(5.53)
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for all 1 ≤ i ≤ Nv and all 1 ≤ j ≤ #Sh with #Sh denoting the number of simplices in Sh. Here, Xi represents
the ith degree of freedom in the current adaptive mesh Sh, and q̃h(Tj) denotes the value of the piecewise constant
finite element function q̃h evaluated at the simplex Tj ∈ Sh. The functionals Fh, Gh, F∗h and G∗h operating on
these vectors are then defined by evaluating the corresponding functionals at the discrete spaces. For example,
Gh[Vh] := Gh[vh] for any vh ∈ Vh and Vh ∈ RNv related by (5.53).

Notation 5.6.1. To facilitate the presentation, we use the variableNq to denote the dimension of the predual spaces
for all discretizations, although its value differs depending on the discretization considered.

The matrix representations Mh ∈ RNv,Nv and M̃h ∈ RNq,Nq of the inner products in all discretization
schemes associated with the primal and dual discrete spaces, respectively, are given as follows:

(FE): MhVh ·Uh =

∫
Ω

uhvh dx , M̃hPh ·Qh =

∫
Ω

Ih(ph · qh) dx , (5.54a)

(FE’): MhVh ·Uh =

∫
Ω

uhvh dx , M̃hP̃h · Q̃h =

∫
Ω

p̃h · q̃h dx , (5.54b)

(FD): Mh = 1 , M̃h = 1 , (5.54c)

for all uh, vh ∈ Vh, all ph, qh ∈ Qh and all p̃h, q̃h ∈ Q̃h. Thus, Mh is the mass matrix for both of the approaches
(FE) and (FE’), and M̃h is the lumped mass matrix in the case (FE) and the diagonal mass matrix with entries
representing the volume of the associated element in the case (FE’). In the finite difference discretization, both Mh

and M̃h coincide with the identity matrix of the corresponding size since the inner product is simply the Euclidean
product.

Let Λh ∈ RNv,Nq and−Λ∗h ∈ RNq,Nv be the matrix representations of the discrete divergence and the discrete
gradient, respectively. The definition of the adjoint operator implies

MhΛhQh ·Vh = (Λhqh, vh) = ((qh,Λ
∗
hvh)) = M̃hQh ·Λ∗hVh

for all Vh ∈ RNv and all Qh ∈ RNq , where ( · , · ) and (( · , · )) denote the inner products on the discrete spaces Vh
andQh (respectively Q̃h). Since both Mh and M̃h are positive definite and symmetric matrices and thus invertible,
we get

Λ∗h = M̃h

−1
ΛT
hMh .

Note that Λ∗h = ΛT
h for the discretization (FD).

Summing up, by taking into account (5.29), (5.31) and (5.53) the discrete predual energy Drel
h : RNq → R

and the discrete energy Erel
h : RNv → R are given by

Drel
h [Qh] = Fh[Qh] + Gh[ΛhQh] , Erel

h [Vh] = F∗h[−Λ∗hVh] + G∗h[Vh] .

To apply the primal-dual algorithm, we have to compute the proximal mapping operators proxσFh
[Qh] and

proxτG∗h [Vh], where the corresponding inner products are given by (5.54a)-(5.54c). The results are collected in
the following proposition:

Proposition 5.6.2. Let σ, τ > 0.

(i.) The proximal mapping of the total variation is given by

(proxσFh
[Qh])i =

Qi
h

max{|Qi
h|, 1}

, (5.55)

where either 1 ≤ i ≤ Nv (for (FE) and (FD)) or 1 ≤ i ≤ #Sh (for (FE’)). Recall that – depending on the
finite element discretization – Qi

h ∈ R2 either refers to a nodal or a cell-wise evaluation of the dual solution
(cf. (5.53)).

(ii.) In the finite element discretization schemes, we define the weighted mass matrix for a weight wh ∈ Vh by

Mh[Wh]Uh ·Vh =

∫
Ω

whuhvh dx
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for all uh, vh ∈ Vh. Furthermore, Θi,h is related to θi,h = Ih(θi) via (5.53) for i ∈ {1, 2}. Then, the
proximal mapping of the data term reads as

proxτG∗h [Vh] = (Mh[1 + 2τ(Θ1,h + Θ2,h)])
−1

Mh (Vh + 2τΘ2,h) . (5.56)

(iii.) In the case of the finite difference discretization, the proximal mapping of the data term is as follows:

(proxτG∗h [Vh])i =
Vi
h + 2τΘi

2,h

1 + 2τ(Θi
1,h + Θi

2,h)
for 1 ≤ i ≤ Nv . (5.57)

Proof. We only prove (5.55) for (FD) and (5.56), the other cases follow with minor modifications. One obtains for
the discretization scheme (FD)

proxσFh
[Qh] = argmin

Ph∈RNv

{
|Qh −Ph|2 + 2σ max

i=1,...,Nv
I[B1(0)][Pi

h]

}
= argmin

Ph∈RNv

{
|Qh −Ph|2 : |Pi

h| ≤ 1 ∀i ∈ {1, . . . , Nv}
}
,

which readily implies (5.55).
Moreover, for any Vh ∈ RNv we get for (FE) and (FE’)

proxτG∗h [Vh] = argmin
uh∈Vh

‖uh − vh‖2L2(Ω) + 2τG∗h[uh] .

By taking the variation of the right-hand side w.r.t. uh in the direction ũh ∈ Vh we immediately obtain∫
Ω

ũh(uh − vh + 2τuhθ1,h + 2τ(uh − 1)θ2,h) dx = 0 .

Then, by rearranging all terms one gets (5.56). The proof of (5.57) is quite similar, we omit further details.

After these preparations, we can now apply the primal-dual Algorithm 3 (see [CP11, Algorithm 1]) to compute
approximations of the discrete primal solution Uh ∈ RNv and the discrete dual solution Ph ∈ RNq on a given
(adaptive) triangle mesh with fixed intensity values c1 and c2. Although this algorithm has guaranteed convergence
for all initial data (U0

h,P
0
h) ∈ RNv ×RNq , it turns out that by using the nodal interpolation of the primal and dual

solution of the preceding refinement step as an initialization a significant speed-up can be observed. In the first
refinement step, all vectors are initialized with the zero vector in the corresponding dimension. Moreover, using
diagonal preconditioning one could improve the convergence speed of Algorithm 3 without any further step size
control (see [Poc11]).

Algorithm 3: Primal-dual algorithm used to minimize Erel
h .

Data: proximal mappings proxσFh
and proxτG∗h , differential operator Λh, initial data (U0

h,P
0
h), step

sizes τ, σ > 0
Result: approximate primal/dual solution (Uh,Ph)

1 k = 0;
2 Ū0

h = U0
h;

3 repeat
4 k = k + 1;
5 Pk

h = proxσFh
[Pk−1

h − σΛ∗hŪ
k−1
h ];

6 Uk
h = proxτG∗h [Uk−1

h + τΛhP
k
h];

7 Ūk
h = 2Uk

h −Uk−1
h ;

8 until ‖Uk
h −Uk−1

h ‖∞ ≤ THRESHOLD;
9 Uh = Uk

h, Ph = Pk
h;
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Following [CP11, Theorem 1], the convergence of Algorithm 3 is guaranteed if

τσ |||Λh|||2 < 1 (5.58)

for fixed parameters σ > 0 and τ > 0. The subsequent lemma provides estimates for the quantity |||Λh||| for all
discretization schemes depending solely on the (minimal) mesh size.

Lemma 5.6.3. Let n = 2 and hmin = minC∈Sh h(C ). Then the operator norms can be estimated as follows:

(FE): |||Λh|||2 ≤ 96(3 + 2
√

2)h−2
min , (5.59a)

(FE’): |||Λh|||2 ≤ 48(3 + 2
√

2)h−2
min , (5.59b)

(FD): |||Λh|||2 ≤ 8h−2 . (5.59c)

Proof. The proof of (5.59b) relies on the inverse estimate for piecewise affine finite elements of the form

‖∇vh‖L2(C ) ≤
√

6H1(∂C )

|C |
‖vh‖L2(C )

for all C ∈ Sh and all vh ∈ Vh (see [ÖRW10]). Hence,

‖∇vh‖L2(Ω) =
∑

C∈Sh

‖∇vh‖L2(C ) ≤
∑

C∈Sh

(√
6H1(∂C )

|C |
‖vh‖L2(C )

)
≤ sup

C̃∈Sh

(√
6H1(∂C̃ )

|C̃ |

) ∑
C∈Sh

‖vh‖L2(C )

≤ sup
C̃∈Sh

(√
6(2 +

√
2)h(C̃ )

h(C̃ )2

2

) ∑
C∈Sh

‖vh‖L2(C ) ≤ 2
√

6(2 +
√

2)h−1
min‖vh‖L2(Ω) , (5.60)

and due to Proposition 5.1.12 (v.) we obtain

|||Λh|||2 = |||Λ∗h|||
2 ≤ (2

√
6(2 +

√
2)h−1

min)2 = 48(3 + 2
√

2)h−2
min ≈ 279.8h−2

min .

To prove (5.59a), we use the duality relation (5.51) as follows (for the definition of ‖ · ‖h see (5.48)):

|||Λh|||2 = |||Λ∗h|||
2

=

(
max

vh∈Vh,‖vh‖L2(Ω)=1
max

qh∈Qh,‖qh‖h=1

∫
Ω

Ih(Λ∗hvh · qh) dx

)2

=

(
max

vh∈Vh,‖vh‖L2(Ω)=1
max

qh∈Qh,‖qh‖h=1

∫
Ω

vhPhdivqh dx

)2

≤ max
vh∈Vh,‖vh‖L2(Ω)=1

‖vh‖2L2(Ω) max
qh∈Qh,‖qh‖h=1

‖Phdivqh‖2L2(Ω)

= max
qh∈Qh,
‖qh‖h=1

‖Phdivqh‖2L2(Ω) ≤ max
qh∈Qh,
‖qh‖h=1

‖divqh‖2L2(Ω) .

Recall that Qh = V2
h (up to boundary conditions) in the discretization (FE). Thus, the inverse estimate (5.60)

implies

max
qh∈Qh,
‖qh‖h=1

‖divqh‖2L2(Ω) ≤ 2 max
vh∈Vh,
‖vh‖h=1

‖∇vh‖2L2(Ω) ≤ 2 · 48(3 + 2
√

2)h−2
min max

vh∈Vh,
‖vh‖h=1

‖vh‖2L2(Ω) .

A convexity argument shows that ‖vh‖L2(Ω) ≤ ‖vh‖h for vh ∈ Vh with equality for constant vh, which implies

max
vh∈Vh,
‖vh‖h=1

‖vh‖2L2(Ω) = 1

and thus the estimate (5.59a). The proof of (5.59c) can be found in [Cha04].
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Since h and hmin are known prior to the execution of the algorithm, the parameters σ and τ can be chosen
according to Lemma 5.6.3 to satisfy the relation (5.58). The algorithm is executed until the maximum norm of
Uk
h−Uk−1

h is below the threshold value THRESHOLD = 10−8. Alternatively, one could have chosen a stopping
criterion that relies on the primal-dual gap Erel

h [Uk
h] + Drel

h [Pk
h], but this requires several additional evaluations

of both energies, which is computationally more costly.

Remark 5.6.4. (i.) Since G∗h is uniformly convex, one could have chosen the accelerated algorithm [CP11,
Algorithm 2], which is superior to Algorithm 3 in terms of the convergence rate (O(k−2) compared to
O(k−1)). However, since the step sizes σ and τ change in each iteration step of the accelerated algorithm,
the computation of proxτG∗h requires the inversion of a matrix depending on τ (cf . (5.56)) in all iteration
steps and thus results in a considerably longer computation time. In contrast, Algorithm 3 uses fixed step
sizes and thus the inverse of the sparse, symmetric and positive-definite matrix Mh[1 + 2τ(Θ1,h + Θ2,h)]
must be computed only once using a fast Cholesky decomposition (see [CDHR08]).

(ii.) We also implemented an alternating descent method for the Lagrangian following Bartels (see [Bar15, Al-
gorithm A’]) to compute minimizers of the relaxed binary Mumford–Shah model for the discretization (FE),
which was about 20% to 40% slower in terms of CPU time than Algorithm 3 to achieve the same stopping
condition.

Projected dual gradient descent. In this paragraph, we will derive a projected dual gradient descent for the
minimization of Erel using the discretization (FE) in order to compare the quality of the approximate solutions and
the required CPU time with the primal-dual algorithm. To this end, we modify a semi-implicit gradient descent
w.r.t. the dual variable originally proposed by Chambolle [Cha04] for the ROF model employing a finite difference
scheme. Henceforth, we refer to this algorithm as (FED), and we note that this algorithm can also be derived for
the discretizations (FE’) and (FD) with minor modifications.

Let TV[u] = |Du|(Ω) for u ∈ BV(Ω). The first order condition for Erel implies

κ := −(2uθ1 + 2(u− 1)θ2) ∈ ∂TV[u] .

Due to Proposition 5.1.12 (iii.) we can infer
u ∈ ∂TV∗[κ] , (5.61)

and by incorporating u = 2θ2−κ
2(θ1+θ2) one can deduce that (5.61) is the first order condition of the functional∫

Ω

1

4(θ1 + θ2)
(κ− 2θ2)

2
dx+ TV∗[κ] . (5.62)

In what follows, we are aiming at minimizing (5.62). To this end, we recall that TV∗[κ] = I[S][κ] for the set

S =
{

divf : f ∈ HN (div,Ω), ‖f‖L∞(Ω) ≤ 1
}
.

Due to the assumptions regarding θi we infer that w := (4(θ1 + θ2))−1 ∈ L∞(Ω,R>0) is almost everywhere
strictly positive, which allows us to define the weighted L2-space L2(Ω, w) endowed with the norm ‖f‖2L2(Ω,w) =∫

Ω
w|f |2 dx. Thus, we observe that the unique minimizer of (5.62) is given by κ = PS [2θ2], where PS denotes

the orthogonal projection onto the set S w.r.t. L2(Ω, w), i.e.

PS [f ] = argmin
g∈S

‖g − f‖2L2(Ω,w) . (5.63)

To compute κ = PS [2θ2], we alternatingly perform an unconstrained gradient descent for (5.63) and a projection
onto S. The update formula for the unconstrained dual descent is given by

pk+1 = pk − τ∇(w(divpk − 2θ2)) (5.64)

for the fixed mesh dependent step size τ = γhmin > 0 with γ = 0.05 and hmin = minC∈Mh
h(C ). Next, we want

to replace the differential operators in (5.64) by their counterparts in the scheme (FE). To this end, we multiply
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each term in (5.64) by a test function q ∈ Qh, apply
∫

Ω
Ih( · ) dx on both sides, and replace ∇ and div by −Λ∗h

and Λh as introduced in the discretization (FE), respectively. Hence, in combination with (5.51) we get∫
Ω

Ih(pk+1 · q) dx =

∫
Ω

Ih(pk · q) dx+ τ

∫
Ω

Ih(Λ∗h(w(Λhp
k − 2θ2)) · q) dx

=

∫
Ω

Ih(pk · q) dx+ τ

∫
Ω

(w(Λhp
k − 2θ2))Phdivq dx . (5.65)

Next, we rewrite (5.65) in matrix-vector notation, which is more appropriate for numerical applications. To this
end, we define the matrices Mh (lumped mass matrix) and Lj as follows:

MhVh · Ṽh =

∫
Ω

Ih(vh · ṽh) dx , LjVh · Ṽh =

∫
Ω

vh · ∂j ṽh dx

for j = 1, 2 and all vh, ṽh ∈ Vh. Furthermore, we set Wi
h = w(Xi), where we recall that Xi represents the ith

degree of freedom in the current adaptive mesh Sh. Then, (5.65) implies

[Pk+1
h ]j = [Pk

h]j + τM−1
h Lj(Wh(ΛhP

k
h − 2Θ2,h)) for j = 1, 2 , (5.66)

where [Pk
h]j refers to the jth component of Pk

h. Note that all matrices and vectors apart from Pk
h on the right-hand

side of (5.66) are fixed. We remark that the computation of M−1
h is fast due to its diagonal structure.

In the second step of the alternating update, the dual variable is projected onto the set S by clamping the dual
solution if necessary in the same manner as in (5.55).

The alternating update algorithm is stopped if the L∞(Ω)-distance of two successive iterates of the dual so-
lution is below the threshold value THRESHOLD = 10−8. The primal solution can then be retrieved via the
formula

u =
θ2 − PS [θ2]

θ1 + θ2
,

which easily follows from the definition of κ. We refer to [CM87] for a converge analysis of the resulting Algo-
rithm 4.

Algorithm 4: Projected dual descent for the discretization (FE).

Data: initial value P0
h, differential operator Λh, matrices Mh,Lj ,Wh, vectors Θ1,h,Θ2,h, step

size τ = γhmin

Result: approximate primal/dual solution (Uh,Ph)
1 k = 0;
2 repeat
3 k = k + 1;
4 [Pk

h]j = [Pk−1
h ]j + τM−1

h Lj(Wh(ΛhP
k−1
h − 2Θ2,h)) for j = 1, 2;

5 Pk
h =

(
(Pkh)i

max{|(Pkh)i|,1}

)
i=1,...Nv

;

6 until ‖Pk
h −Pk−1

h ‖∞ ≤ THRESHOLD;
7 Ph = Pk

h;

8 Uh =
(

Θi
2,h−(ΛhPh)i

Θi
1,h+Θi

2,h

)
i=1,...,Nv

;

Related duality-based algorithms in convex optimization. In the past decades, many algorithms to tackle the
prototype convex minimization problem

inf
u∈BV(Ω)

∫
Ω

G[u] dx+ |Du|(Ω) (5.67)

with G being convex, proper and lower semicontinuous were proposed. In what follows, we will list some recent
algorithms which are suitable for the minimization of (5.67) and of more general optimization problems as alter-
natives to the algorithms used in this thesis. Due to the great variety of different algorithms, this list is by far not
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exhaustive and we refer to the excellent review articles [BSS15, BP13, CCC+10, CP16] and the references therein
for further details.

As pointed out in [CP11, Section 4], Algorithm 3 possesses structural similarities with the established Douglas–
Rachford splitting algorithm as well as its most prominent variant, the alternating direction method of multipliers
(ADMM, cf . [BPC+10] and the references therein). Bredies and Sun [BS15a, BS15b] proposed a preconditioned
Douglas–Rachford algorithm that slightly outperforms Algorithm 3 in some numerical experiments. A further
common minimization algorithm for functionals of the form (5.67) with possibly non-smooth terms is the fast iter-
ative shrinkage-thresholding algorithm (FISTA), which has the convergence rate O(k−2) (see [BT09]). Goldstein
and Osher [GO09] developed a split Bregman method, where the functional G is replaced by its Bregman distance
and the optimization relies on a standard Bregman iteration. Finally, the inertial proximal algorithm for nonconvex
optimization (iPiano, cf . [OCBP14]) turns out to be an efficient instance of a forward-backward splitting algorithm
for functionals composed of a differentiable and a convex function.

A posteriori error estimator and refinement methods. So far, we mainly focused on the SOLVE step of
the adaptive refinement paradigm (cf . Figure 5.3), i.e. the computation of the primal solution Uh and the dual
solution Ph. Before proceeding to the ESTIMATE step, we have to postprocess the solution vector (uh, ph) ∈
Vh × Qh if required to remove local oscillations, which are likely to deteriorate the quality of the a posteriori
estimator (cf . the numerical results in [Bar15]). Moreover, a projection of the solution vectors onto conforming
spaces has to be performed if required in order to evaluate the a posteriori error estimator. The methods to calculate
the postprocessed solution vector (ūh, p̄h) significantly differ in all discretization schemes:

(FE)/(FED): Since this discretization scheme is conforming, no projection of the solution vector is required. However, we
observe (slight) local oscillations in both the primal and the dual solution, that is why we apply a smoothing
filter based on an implicit time step of the discrete heat equation. In detail, let Mh and Sh be the mass and
the stiffness matrix in the space of affine and globally continuous finite elements on the underlying adaptive
triangle mesh Sh. The postprocessed solution vector (ūh, p̄h) is obtained by applying the discrete operator
(Mh+ ιSh)−1Mh to uh and to each component of ph separately. Here, we choose ι = c ·h2

min, where hmin

denotes the minimal mesh size of the current adaptive grid, with c = 3 and c = 6 for the primal and the dual
solution, respectively, since we observed stronger oscillations in the dual solution.

(FE’): In this discretization, the dual space Q̃h is not HN (div,Ω)-conforming. Therefore, we employ an L2(Ω)-
projection of the dual solution ph onto the space V2

h of piecewise affine and globally continuous finite ele-
ments after the execution of the algorithm. The advantage of this discretization is the absence of oscillations
in the primal solution. However, the dual solution slightly oscillates, that is why we apply the aforementioned
smoothing filter based on the discrete heat equation. We experimentally observed that the best parameter
choice for this filter is ι = 0.75 · h0.9

a , where ha denotes the average cell size on the current adaptive mesh.

(FD): To evaluate the a posteriori error estimator in the finite difference context, we employ a bilinear nodal
interpolation of Uh and Ph to obtain the postprocessed solution vector (ūh, p̄h) ∈ V̂h × Q̂h, where

V̂h =
{
v̂h ∈ C0(Ω) : v̂h

∣∣
C is bilinear ∀C ∈ Mh,0

}
, Q̂h =

{
q̂h ∈ V̂2

h : q̂h · n = 0 on ∂Ω
}
,

andMh,0 denotes the regular mesh composed of quadratic elements with mesh size 2−Lfull (see page 131).
Furthermore, by using the bilinear interpolation once again we can assume u0 ∈ V̂h. In this discretization,
no smoothing filter is applied.

In all aforementioned schemes, the boundary values of the dual solution are altered in a further postprocessing
step if required to satisfy the boundary condition. In our experiments, we observed that the choice of smoothing
methods and parameters above outperforms other tested choices for the corresponding discretizations. Ultimately,
the discrete solution to the original problem (5.19) is given by χ̄h = χ[ūh >

1
2 ].

In what follows, we will comment on the remaining steps of the adaptive refinement paradigm:

Regarding the calculation of the (local) a posteriori error estimator in the ESTIMATE step, we define the local
error estimator for each pair of postprocessed primal-dual solution (ūh, p̄h) and each cell C0 of the full resolution
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image gridMh,0 as follows (see Theorem 5.3.4):

err2
u,C0

[ūh, p̄h] =
2ν

(c1 − c2)2

(∫
C0

ū2
hθ1,h + (1− ūh)2θ2,h + |∇ūh|

+
1
4 (divp̄h)2 + (divp̄h)θ2,h − θ1,hθ2,h

θ1,h + θ2,h
dx

)
.

Here, θi,h is set to Ih(θi) with Ih denoting the Lagrange interpolation on the corresponding discrete function
space associated with the primal solution. We compute err2

u,C0
by using a Gaussian quadrature of order 4 on the

simplices T0 composing the cell C0 ∈ Mh,0 for (FE), (FED) and (FE’), and a Gaussian quadrature of order 5
directly on the cell C0 for (FD). The resulting local error estimator for a cell C ∈ Mh as well as the global
estimator are given by

err2
u,C [ūh, p̄h] =

∑
C0⊂C

err2
u,C0

[ūh, p̄h] , err2
u[ūh, p̄h] =

∑
C∈Mh

err2
u,C [ūh, p̄h] ,

respectively. Note that err2
u,C [ūh, p̄h] is in general not an upper bound for the local error ‖u − ūh‖2L2(C ) of the

approximate solution ūh on the (adaptive) grid and the minimizer u of Erel. To obtain the associated error estima-
tor errχ for the binary model, we have to compute the optimal balance parameter ηoptimal (cf . Theorem 5.4.1). To
this end, we minimize

η 7→ |Sūh,η|+
1

η2
err2

u[ūh, p̄h]

w.r.t. the discrete set {0.005i : i ∈ 1, . . . , 99} ⊂ (0, 0.5).

In the finite element discretizations, we MARK those cells C ∈ Sh for refinement whose local error estimators
exceed a certain percentage of the largest local error estimator, i.e.

err2
u,C [ūh, p̄h] ≥ α max

C ′∈Sh
err2

u,C ′ [ūh, p̄h] ,

where α is a fixed threshold in (0, 1). In all computations, we choose α = 0.2. It turns out that this method is
prone to outliers, that is why we additionally sort all local estimators err2

u,C according to their size (starting with
the smallest) and mark the cells in the upper decile for refinement as well. Apart from the example involving the
Gaussian kernels (see below), we only refine those cells C fulfilling h(C ) > 2−Lfull to prevent cell sizes which
are below the cell size of the input images.

In the final step of the adaptive refinement paradigm (REFINE) for the schemes (FE), (FED) and (FE’), all
cells that were previously marked are refined using the cell subdivision procedure described in Section 5.5.

5.7 Numerical Results
In this section, we will present numerical results for the a posteriori error estimator of the Mumford–Shah func-
tional. In particular, we will investigate the behavior of the error estimator for four different input images1 shown
in Figure 5.4 along with the model parameters. Furthermore, we will experimentally verify the theoretical result
that small perturbations of the input image can lead to topology changes of the thresholded segmented image using
a checkerboard example (see Figure 5.10). In the final example (cf . Figure 5.11), the descent rate of the a posteriori
error estimator will be presented for 15 cycles of the adaptive refinement for an analytic function representing the
input image. All results in this section have been published in [BER17].

Since we assumed the intensity values to be constant, suitable approximations of the optimal values of c1 and c2
are computed using a 2-means clustering algorithm (Lloyd’s Algorithm) with initial values 1 and 0 (Algorithm 5,
cf . [Llo82]). In detail, in each iteration of Algorithm 5 the Voronoi sets Ck1 and Ck2 (cf . line 4) are computed,
which contain the indices of the pixelwise input data vector U0 that are closest to the current intensity values ck1
and ck2 , respectively. In the next iteration step (cf . line 5), the intensity values are updated by averaging U0 w.r.t.
the corresponding Voronoi set. The resulting fixed intensity values are given in Figure 5.4.

1Flower image: “Leucanthemum vulgare” by Derek Ramsey/Chanticleer Garden (desaturated from original), used under
CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Leucanthemum_vulgare_%27Filigran%27_Flower_
2200px.jpg. Cameraman image: copyright by Massachusetts Institute of Technology, used with explicit permission.
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image (a) (b) (c) (d)
resolution 2049× 2049 2049× 2049 2049× 2049 513× 513
c1 0.999772 0.893734 0.664404 0.602566
c2 1.99 · 10−4 0.030416 0.167763 0.092273
ν 5 · 10−3 5 · 10−3 10−3 5 · 10−3

Figure 5.4: Input images along with the corresponding image resolution (in pixels) and model parameters c1, c2
and ν.

Algorithm 5: 2-means clustering algorithm (Lloyd’s Algorithm).

Data: input image U0, initial intensity values c01 = 1 and c02 = 0
Result: approximate optimal intensity values c1 and c2

1 k = 0;
2 repeat
3 k = k + 1;

4 Cki =
{
j ∈ {1, . . . , Nv} : |U j0 − c

k−1
i | ≤ |U j0 − c

k−1
l | for l = 1, 2

}
for i = 1, 2;

5 cki = 1
#Cki

∑
j∈Cki

U j0 for i = 1, 2;

6 until max{|ck1 − ck−1
1 |, |ck2 − ck−1

2 |} ≤ 10−4;
7 c1 = ck1 , c2 = ck2 ;

The input image u0 ∈ V0 is obtained by a nodal interpolation of the pixelwise input data vector U0. For
the discretizations (FE), (FED) and (FE’), V0 denotes the space of affine and globally continuous finite element
functions on a uniform triangle mesh with mesh size h = 2−Lfull (Lfull = 9 for (d), Lfull = 11 else). For the
finite difference discretization (FD), we choose V0 as the space of bilinear finite element functions on a regular
and uniform mesh composed of quadratic cells with grid size h = 2−Lfull . The mesh prior to the first execution of
the algorithm is a uniform and regular mesh with mesh size h = 2−Linit on the computational domain Ω = [0, 1]2

(Linit = 3 for (d), Linit = 5 else).
In all computations, we use τ = 10−5 and σ = 5 · 10−5 (Algorithm 3) and γ = 0.05 for the dual gradient

descent (Algorithm 4). For all computations involving the input images (a)-(d), we perform 10 cycles of the
adaptive refinement loop (cf . Figure 5.3) as presented in the preceding sections. Since we stop the refinement
of a cell if its cell size coincides with the mesh size of the input image, we do in general not expect the error
estimators err2

u and errχ to converge to 0.
Table 5.1 lists the quantities of the (rescaled) primal and dual energies, the functional error estimator err2

u,
ηoptimal (the value of η corresponding to the optimal a posteriori error bound for given err2

u) as well as the esti-
mator errχ for the input images (a)-(d) after the 10th refinement step of the adaptive algorithm. In addition, the
corresponding values for the discretization (FD) on the full resolution grid of the input image are presented. In
Figure 5.5, the values of the a posteriori error estimators err2

u and errχ after each adaptive refinement loop for the
input images (a)-(d) and all proposed finite element discretization schemes are related to the number of degrees of
freedom in the current adaptive mesh in a log-log plot. We highlight the following observations:

– The scheme (FE) performs comparably to the discretization (FED), but slightly better than the scheme (FE’).

– In all finite element schemes, both err2
u and errχ decay monotonously and with roughly a constant slope.

However, errχ is approximately one order of magnitude larger than err2
u.

– After 7 iteration steps, there is hardly any decrease in the values of err2
u and errχ for image (a) because all
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(a) (b) (c) (d)

2ν
(c1−c2)2E[ūh]

(FE) 0.022422 0.078461 0.124137 0.203797
(FED) 0.022421 0.078632 0.124659 0.204353
(FE’) 0.022249 0.077981 0.122572 0.202494
(FD) 0.022493 0.078814 0.122777 0.205645

2ν
(c1−c2)2D[p̄h]

(FE) -0.021736 -0.075971 -0.117785 -0.183819
(FED) -0.021757 -0.075870 -0.117973 -0.181720
(FE’) -0.020973 -0.071333 -0.111234 -0.166114
(FD) -0.021520 -0.075455 -0.119865 -0.188600

err2
u

(FE) 6.86e-04 0.002490 0.006352 0.019978
(FED) 6.63e-04 0.002761 0.006686 0.022633
(FE’) 0.001276 0.006647 0.011338 0.036380
(FD) 9.73e-04 0.003359 0.002912 0.017045

ηoptimal

(FE) 0.39 0.3225 0.2825 0.3075
(FED) 0.385 0.325 0.2725 0.315
(FE’) 0.45 0.3675 0.31 0.3275
(FD) 0.4375 0.345 0.24 0.3025

errχ

(FE) 0.008847 0.038502 0.160912 0.373173
(FED) 0.008704 0.041019 0.167892 0.394317
(FE’) 0.009816 0.068514 0.227060 0.545201
(FD) 0.008223 0.0425225 0.109039 0.339256

Table 5.1: The table lists the rescaled energies evaluated at the discrete solution (ūh, p̄h), the error estimator err2
u

for the relaxed solution, the optimal threshold value ηoptimal and the resulting a posteriori estimator errχ for the
L1(Ω)-error associated with the characteristic function χ̄h = χ[ūh >

1
2 ] (after 10 cycles of the adaptive algorithm

for all finite element discretization schemes).

cells near the boundary of the circle are at the level of the input image grid and thus no further refinement
is allowed. In this artificial example, the best value of errχ among all examples with real image data is
achieved and the deviation ‖χ̄h − χ‖L1(Ω) of χ̄h = χ[ūh >

1
2 ] from the unknown minimizer χ after the last

iteration is at most 1%.

– The highest values of both error estimators can be observed for image (d). This results from the general
observation that input images with a higher resolution lead to smaller quantities of the a posteriori error
estimators since image features can be better captured on finer grids.

In the first row of Figure 5.6, the primal solutions for the flower image in the first to the fifth cycle of the
mesh refinement computed with the adaptive algorithm for the discretization (FE’) are depicted. The second row
visualizes the associated color coded adaptive grids with a color scale ranging from blue (coarsest cells) to green
(finest cells). One observes that the proposed method leads to significantly refined grid cells in the neighborhood
of the interfaces of the flower. Moreover, when looking at the deciles of the primal solution it turns out that
ūh(x) ∈ [0, 0.1]∪ [0.9, 1] for x ∈ Ω′ ⊂ Ω with |Ω

′|
|Ω| ≈ 0.9, i.e. the primal solutions are approximately binary up to

a negligible set. Recall that this observation was the starting point for the proof of Theorem 5.4.1.
In the first and third row of Figure 5.7, the primal solutions, both components of the dual solutions as well as

the thresholded solutions χ̄h = χ[ūh >
1
2 ] for the images (b) and (c) computed with the discretization (FE’) are

displayed. Furthermore, the first images in the second and fourth row depict the associated adaptive triangle meshes
after the 6th refinement step with black regions representing not refined cells. Again, finer cells are concentrated
near the interfaces of the moon and the flower, respectively. The adjacent images show color coded deciles of ūh
and thus explicitly encode the sets Sūh,η for η ∈ {0.1, 0.2, 0.3, 0.4}. Finally, the last images in the second and
fourth row contain the function plots of η 7→ L2(Sūh,η) and η 7→ errχ for η ∈ (0, 0.5). Here, η 7→ errχ refers to
a variation of the optimal balance parameter η in (5.41) and it turns out that this function possesses several local
extrema.

Figure 5.8 depicts the relaxed primal solutions ūh and the associated components of the dual solutions p̄h for



5.7 Numerical Results 143

10
-4

10
-3

10
-2

10
-1

10
0

10
3

10
4

10
5

degrees of freedom

10
-3

10
-2

10
-1

10
0

10
1

10
3

10
4

10
5

10
6

degrees of freedom

10
-3

10
-2

10
-1

10
0

10
1

10
3

10
4

10
5

10
6

degrees of freedom

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

10
5

degrees of freedom

(FE) (FED) (FE’)
err2

u � + N
errχ • × H

Figure 5.5: The values of err2
u and errχ are displayed in relation to the number of degrees of freedom in a log-log

plot for the images (a) (upper left), (b) (upper right), (c) (lower left) and (d) (lower right).

the input images (b) and (c) using the discretization schemes (FE) and (FD). We do not show the results for (FED)
for any image since they are (almost) indistinguishable from the results for (FE).

Moreover, the mesh in the 5th and 10th iteration, the relaxed solutions ūh, [p̄h]1 and [p̄h]2 as well as the
thresholded solution χ̄h after 10 cycles of the algorithm for the input image (d) using the discretization (FE’) are
depicted in Figure 5.9.

Finally, the proposed discretization schemes were compared in terms of the relative CPU time for the images (b)
and (d) in the last iteration. To enforce comparable conditions, the stopping criterion was set to ‖Pk

h−Pk−1
h ‖∞ <

10−6 and the primal and dual solution were initialized with constant values. In comparison with the discretization
scheme (FE), the scheme (FE’) required comparable CPU time (image (b): −6.7%, image (d): +6.5%), whereas
(FED) performed slower for larger images (image (b): +30.4%, image (d): −0.1%).

The minimizers of the full as well as the binary Mumford–Shah model are in general not unique. A standard
example for the non-uniqueness of both models is as follows (cf . [DS95]): let Ω = [0, 1]2, λ > 0 and u0(x, y) =
λχ[y > 1

2 ]. Then there exists a parameter λfull > 0 such that for λ = λfull the full Mumford–Shah model (5.1)
with α = β = 1 admits the minimizers u = u0 with the singular set Su = (0, 1) × { 1

2} and u(x, y) = ũ(y) with
ũ ∈ C1(0, 1). In the case of the binary model, the minimizers have the structure χ = χ[y > 1

2 ] or χ = const.
provided that λ = λbinary for a suitable choice of λbinary > 0. A further prominent counterexample for the
non-uniqueness emerges from input images with a checkerboard pattern or, in its simplest form, input images with
alternating intensities 0 and 1 on all quadrants (cf . upper left image in Figure 5.10). David [Dav05, Section A.5]
examined the latter case for the full Mumford–Shah model and argued that even very small perturbations located
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Figure 5.6: The sequence of solutions ūh (first row) and a color coding of the corresponding fineness of the adaptive
meshes (second row) at the 1st, 2nd, 3rd, 4th and 5th iteration of the adaptive algorithm applied to the input image
(c) and computed using the (FE’) discretization.

at the center of the image could lead to a topology change in the segmented solution (“butterfly effect”). In
Figure 5.10, the sensitivity of the adaptive scheme w.r.t. the topology of the segmentation is investigated. To this
end, we compute – using the scheme (FE) and 10 cycles of the adaptive scheme – the relaxed minimizers for
two versions of the simple checkerboard pattern with a resolution of 2049 × 2049, fixed intensity values c1 = 1,
c2 = 0 and a regularization parameter ν = 0.01. In the first version, the four pixels in the center are set to
black, in the second version these pixels are set to white. Although the relaxed solutions ūh associated with
both versions are nearly indistinguishable (see second column of Figure 5.10) since each ūh is approximately 1

2
in a neighborhood of the center (cf . third column), a change of the topology can be observed in the thresholded
solutions (see fourth column). This experimentally proves that the proposed algorithm is capable of properly
detecting topology changes. As a consequence of the non-uniqueness of the solutions and the sensitivity to small
perturbations of the input image, a neighborhood of the center is contained in the set of non-properly identified
phases Sūh,η even for small η. In particular, this results in a high local contribution of this neighborhood to the a
posteriori error estimate errχ.

Since subpixel refinement is prohibited, i.e. h(C ) ≥ 2−Lfull for every cell C ∈ Mh, the error estimators err2
u

and errχ have in general a strictly positive lower bound depending on the input image and the resolution, although
we expect both estimators to converge to 0 as h → 0. To further examine this asymptotic behavior, we apply
the aforementioned methods to an analytic function consisting of the superposition of two Gaussian kernels. To
this end, starting from an initial grid with a uniform mesh size h = 2−4, we project the analytic function after
each refinement step onto the uniform grid with mesh width hmin and evaluate the error estimators on the current
adaptive grid, which allows an unlimited refinement of each cell. The results are shown in Figure 5.11 with
parameters c1 = 0.495349, c2 = 0.056845 and ν = 5 · 10−3 using the discretizations (FE) and (FE’). One
observes that the quantities of the error estimators decay monotonically as expected. However, since the absolute
values of the slopes of the functions {#degrees of freedom 7→ err2

u} and {#degrees of freedom 7→ errχ} decline
for larger numbers of degrees of freedom, a further significant decrease of the error estimators requires a much
larger number of degrees of freedom at the expense of very long computation times.

In the final example, we analyze the applicability of the error estimator for varying intensity values (cf . p. 129).
Figure 5.12 depicts the function plot ε 7→ err2,ε

u [ūh, p̄h, c1, c2] with fixed primal ūh and dual solution p̄h obtained
with the discretization (FE) after the 10th iteration for the images (b) and (c). One observes that the ε-perturbed
error estimator for image (b) is less sensitive to small fluctuations in the intensity values compared to image (c) due
to a stronger variation of image intensities along the interfaces in image (b). However, in both examples it turns
out that the decrease of the functional a posteriori error estimator is not sufficient to compensate the amplification
factor appearing in the definition of the updated bandwidth parameter (see (5.45) and (5.46)), which demonstrates
that the a posteriori error estimator incorporating varying intensity values is not feasible for practical applications.
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5.8 Conclusion and Outlook
In this chapter, we have developed a novel a posteriori error estimator for the binary Mumford–Shah model em-
ploying duality techniques and a suitable cut-out argument. In various numerical examples the applicability of this
approach to real image data was demonstrated. The proposed method is capable of properly detecting interfacial
structures of the input images and allows to compute a visually convincing binary segmentation of the images
along with a substantial decrease in the number of degrees of freedom compared to the input image.

However, we essentially identified the following drawbacks of this approach: Although from a theoretical point
of view one would expect functional error estimates with an arbitrarily small value, we have never observed error
quantities – even in the case of analytic input data – substantially below 10−4 for the functional a posteriori error
estimator err2

u. Furthermore, the quantity of the a posteriori estimator errχ strongly depends on the measure of
the preimage set of a η-neighborhood of the threshold value 1

2 and thus on the interfacial structure of the input
image, which results in relatively large values of errχ for input images that, for instance, exhibit strong local
oscillations or noise. Moreover, although a theoretical scheme to derive error estimators for the binary model
with varying intensity values is available, this scheme fails in the numerical applications. Finally, let us remark
that the proposed method is restricted to the binary Mumford–Shah model and not suited for general multilabel
segmentation problems unless a convex approximation of these problems is available.
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Figure 5.7: The relaxed solutions ūh, [p̄h]1, [p̄h]2 and the resulting solutions χ̄h computed with the discretization
scheme (FE’) are shown after the 10th iteration of the adaptive scheme for the images (b) (first row) and (c)
(third row). In the second and fourth row, the adaptive grid (after the 6th refinement step), deciles of the discrete
solutions ūh encoded with different colors, and the functions η 7→ L2(Sūh,η) (red solid line) and η 7→ errχ (blue
dashed line) after the 10th refinement step are visualized.
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Figure 5.8: Relaxed solutions ūh, [p̄h]1, [p̄h]2 for the input images (b) (top row) and (c) (bottom row) using the
discretization schemes (FE) (left, after 10 cycles of the adaptive algorithm) and (FD) (right).

Figure 5.9: The mesh in the 5th and 10th iteration, the relaxed solutions ūh, [p̄h]1, [p̄h]2 and the thresholded
solution χ̄h for the input image (d) using the discretization (FE’) after 10 cycles of the algorithm.

Figure 5.10: The original input image with a resolution of 2049×2049 and the adaptive mesh after the 6th iteration
with white pixels in the center of the input image (first column). Second to fourth column: the relaxed solutions
ūh (with parameters c1 = 1, c2 = 0 and ν = 0.01), the decile plots and the thresholded solutions χ̄h for black
pixels (first row) and white pixels in the center (second row) along with the corresponding zoom of the centers
(with zoom factor 8) after the 10th iteration using the discretization (FE).
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Figure 5.11: First row: Input image u0 composed of the superposition of two Gaussian kernels, numerical solutions
ūh, [p̄h]1 and [p̄h]2 computed with the adaptive algorithm using the discretization scheme (FE’) after the 15th cycle.
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Figure 5.12: The function plot ε 7→ err2,ε
u for the images (b) (red solid line) and (c) (blue dashed line) using the
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Appendix B

Notation

General sets and related operations
N set of natural numbers, N = {0, 1, 2, . . .}
N+ set of positive natural numbers, N+ = {1, 2, 3, . . .}
Q set of rational numbers
R set of real numbers
R R = R ∪ {∞}
R+ set of strictly positive real numbers
R+

0 set of non-negative real numbers
C set of complex numbers
Br(a) open ball of radius r around a w.r.t. underlying topology
Br(a) closed ball of radius r around a w.r.t. underlying topology
[f > c] for a measurable function f : S → R, [f > c] = {x ∈ S : f(x) > c },

the same applies to [f ≥ c], [f = c], [f ≤ c] and [f < c]

Sc complement of the set S
χ[S] characteristic function of the set S, i.e. χ[S](x) = 1 if x ∈ S and χ[S](x) = 0 if x /∈ S
I[S] indicator function of the set S, i.e. I[S](x) =∞ if x ∈ S and I[S](x) = 0 if x /∈ S
S′ b S S′ is compactly contained in S
S∆S′ symmetric difference of S and S′

Measure and integration theory
n outer normal
#(S) cardinality of the set S
|S| = Ln(S) n-dimensional Lebesgue measure of S
Hn−1 (n− 1)-dimensional Hausdorff-measure
−
∫
S

−
∫
S
f dx = 1

|S|

∫
S
f dx

H Heaviside function, i.e. H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0

δ[S] Dirac measure of S
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Linear algebra
1 identity mapping or identity matrix (depending on the context)
AT transpose of the matrix A
Asym symmetric part of the matrix A, i.e. Asym = 1

2
(A+AT )

det determinant of matrix
tr trace of a matrix, i.e. tr(A) =

∑n
i=1 ai,i for A = (ai,j)1≤i,j≤n ∈ Rn,n

cof cofactor matrix, i.e. cof(A) = det(A)A−T

‖A‖F Frobenius norm of the matrix A, i.e. ‖A‖F =
√

trATA

GL(n) group of invertible matrices in Rn,n

GL+(n) group of invertible matrices in Rn,n with positive determinant
SL(n) group of invertible matrices in Rn,n with determinant 1

O(n) group of orthogonal matrices in Rn,n

SO(n) special orthogonal group, i.e. orthogonal matrices in Rn,n with determinant 1

a · b inner product of a, b ∈ Rn

a× b cross product of a, b ∈ R3

Function spaces and differential geometry
Ck(Ω) space of k times continuously differentiable functions
Ck,α(Ω) space of (k, α)-Hölder continuous functions
Lp(Ω) p-Lebesgue space on Ω with norm ‖ · ‖Lp(Ω), 1 ≤ p ≤ ∞
Wm,p(Ω) (m, p)-Sobolev space with norm ‖ · ‖Wm,p(Ω) and seminorm | · |Wm,p(Ω), 1 ≤ p ≤ ∞, m ∈ N
Hm(Ω) Hm(Ω) = Wm,2(Ω)

BV(Ω) space of functions with bounded variation
|Df |(Ω) seminorm in the space BV(Ω)

SBV(Ω) space of special functions with bounded variation
GSBV(Ω) space of generalized special functions with bounded variation
⇀ weak convergence w.r.t. the underlying topology
osc(f) oscillation of f , i.e. osc(f) = supx∈Ω f(x)− infx∈Ω f(x)

Ih Lagrange interpolation operator
X(M) the set of all smooth vector fields on a manifoldM
F(M) the set of all smooth scalar-valued functions on a manifoldM

Convex analysis
V′ dual space of the function space V

L(V,W) set of all bounded linear operators from V to W

〈v′, v〉V′,V duality pairing of v ∈ V and v′ ∈ V′

J∗ Fenchel-conjugate of J
∂J set of all subgradients of J
J ′ Gâteaux derivative of J
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2-means clustering, 140
Ck(Ω), 3
Ck,α(Ω), 3
H(div,Ω), 3
HN (div,Ω), 3
Γ-convergence, 60

lim inf-inequality, 60
equi-coercivity, 61
recovery sequence, 60

BV, 110
absolutely continuous part, 111
approximate differential, 111
approximate limit, 111
Cantor part, 111
coarea formula, 112
jump part, 111
jump set, 111
perimeter, 110
singular part, 111
strict convergence, 111
upper and lower approximate limits, 111
weak-∗ convergence, 110

GSBV, 111
Lip(α,Lp(Ω)), 123

Lp(Ω)-modulus of smoothness, 123
SBV, 111
TGV, 120

adjoint operator, 113
anisotropic diffusion filtering, 102
atlas

differentiable, 6
equivalence class, 6

body forces, 47
Bregman distance, 126
bundle, 7

base space, 7
total space, 7

calibrations, 116
Cauchy stress tensor, 48
Cauchy stress vector, 48
Cauchy–Green strain tensor, 48
chart, 6
Christoffel operator, 27
Christoffel symbol, 31

compression response, 46
cone

finite, 3
connection, 8

discrete, 19
convexity

uniform, 126
covariant derivative, 8

Riemannian, 9
crossing-point, 119
curvature tensor, 19

discrete, 21

deformed configuration, 47
diffeomorphisms

family of, 38
differential, 7
discrete divergence

(FD), 133
(FE’), 132
(FE), 132

discrete gradient
(FD), 133
(FE’), 132
(FE), 132

discrete transport path, 56
discretization scheme

(FD), 132
(FE’), 132
(FE), 131

displacement, 44
distance, 9
domain

cone condition, 3
Lipschitz boundary, 2
strongly Lipschitz, 3

domain of definition of expy , 9
dual space, 112
duality pairing, 112

elastic material, 48
elasticity theory

deformation, 47
embedding, 7
energy density

simplified, 47
error estimator
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binary Mumford–Shah, 128
consistent, 127
relaxed binary Mumford–Shah, 127
reliable, 127

Euler–Cauchy stress principle, 47
Eulerian velocity, 38
exponential map, 9

discrete, 15

Fenchel conjugate, 112
flow of diffeomorphism, 38

metric, 38
path energy, 38

fluid
dissipation, 49
incompressible, 49
local rate of dissipation, 49
multipolar, 49
Newtonian, 49
total dissipation, 49
viscosity, 49

force balance
axiom of, 48

geodesic, 9
discrete, 14
shortest, 10

immersion, 7

Jacobi identity, 8

Lamé constants, 48
large deformation diffeomorphic metric mapping, 42
Lebesgue space, 3
Levi–Civita derivative, 9
Lie bracket, 8
Lloyd’s Algorithm

see 2-means clustering, 140
locally homeomorphic, 6
logarithm, 9

discrete, 15

manifold
differentiable, 6
differentiable mapping, 7
geodesically complete, 10
metrically complete, 10
Riemannian, 8
tangential, 7
topological, 6

mass matrix, 76
weighted, 76

material
frame-invariance, 48
homogeneous, 48
hyperelastic, 48
isotropic, 48
natural state, 48

Saint Venant–Kirchhoff, 48
stored energy function, 48

matrix
irreducible, 55
irreducibly diagonally dominant, 55
reducible, 55

metamorphosis model
admissible deformations, 44
canonical projection, 39
continuously differentiable image curve, 40
discrete energy, 44
discrete geodesic, 45
discrete path energy, 45
energy density, 44
exponential map, 90
geodesic curve, 40
intensity modulation, 93
path energy, 40
regular image curve, 40
space of motion fields, 39
space of weak material derivatives, 39
tangent bundle, 39
tangent space, 39
transport contribution, 93
weak material derivative, 40

metric
Riemannian, 8

metrizable, 5
momentum balance

axiom of, 48
Mosco-convergence, 60
Mumford–Shah functional, 110

Ambrosio–Tortorelli approximation, 115
binary, 120
Braides-Dal Maso approximation, 116
Chambolle-Dal Maso approximation, 115
existence of minimizers, 114

Ogden material, 46

parallel transport, 10
discrete, 16

parallel vector field, 10
path

discrete, 13
discrete energy, 13
discrete length, 13
energy, 9
length, 9

Piola–Kirchhoff stress tensor
first, 48
second, 48

polyconvexity, 45
predual functional, 125
proximal mapping, 113

quasiconvexity, 45

Rayleigh’s paradigm, 47
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reference configuration, 47
registration

elastic, 44
response function, 48

section, 7
sectional curvature, 32
segmentation, 118

1-normal, 118
2-normal, 118
regions of, 118

separable, 5
set

countably compact, 61
shape space, 11

path-based, 47
state-based, 47

Sobolev space, 3
stiffness matrix, 76
structure

differentiable, 6
subdifferential, 112
subgradient, 112

submanifold, 7
surface forces, 47

tangent bundle, 6, 7
projection, 6
total tangent space, 6

tangent space, 6
principal part, 6
representative, 6

tangent vector, 6
tangential, 6
tensor

bundle, 8
symmetric, 8

Theorem
of Hopf–Rinow, 10
of Rivlin–Ericksen, 48

torsion-free, 9
total variation, 110

vector field, 7

weak complementarity principle, 127
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