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Summary 

The coagulation Factor XIII is a key player in hemostasis that is responsible 

for the last step of the coagulation cascade in which it covalently cross-links 

preformed fibrin clots to make them resistant to premature fibrinolysis. The plasma 

circulating FXIII zymogen is a heterotetrameric complex comprising two catalytic A 

(FXIIIA2) and two protective carrier B-Subunits (FXIIIB2) which are synthesized and 

secreted into the plasma as homo-dimers from various cell types like monocytes/ 

macrophages, megakaryocytes, and platelets for the A subunit and hepatocytes for 

the B subunit. Deficiency of FXIII results in a bleeding predisposition for the individual 

carrying it. This deficiency can have congenital or acquired origins. The inherited 

form of FXIII deficiency can be classified into two types based on severity of 

symptoms: severe and mild FXIII deficiency. While the homozygous inherited form of 

this deficiency caused by F13A1 (OMIM #613225) (FXIIIA subunit) or FXIIIB (OMIM 

#613235) (FXIIIB subunit) gene mutations is rare (1 in 2-4 million), the milder 

heterozygous form is more frequent. Only recently, focus has shifted to the 

mild/heterozygous form of this deficiency that is associated with mild or even an 

asymptomatic phenotype (unless the affected individual is exposed to some kind of a 

trauma for e.g. peri-operative settings, accident etc.). Recent investigations from our 

group in the past five years have shown that inherited mild heterozygous deficiency 

does have clinical relevance. Identification of heterozygous FXIII deficient patients 

and extended causality determining research on the related mutations is crucial since 

the risk of provoked bleeding events (surgery, tooth extraction, trauma) in 

heterozygous patients can be minimized through early detection. In the last five 

years, our group has reported 23 mutations from patients with mild FXIII deficiency. 

Sixteen of these mutations were identified in the F13A1 and seven in the F13B gene. 

In the present study we have performed a comprehensive investigation on the 

causality of these reported missense mutations using parallel in silico and in vitro 

approaches to structurally and functionally characterize their underlying 

pathophysiology. The in vitro methods have been complemented by in silico 

strategies in which modeling of protein subunits/domains/mutations and 

simulation/docking based approaches have been applied to explain the in vitro 

findings. Our analysis shows that these mutations can act on different aspects of 

FXIII activation and regulation based on the structure functional impact of the 

particular mutation. 
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1.1 Part 1: Blood coagulation with special focus on the structure and 

function of factor XIII (FXIII)  

 

Blood coagulation 

 

The coagulation of blood is a highly conserved physiological response to 

prevent blood loss from injured or damaged vessels involving a complex regulated 

activation cascade of many proteins circulating in an inactive mode in the blood1. The 

generation of a haemostatic plug is a highly regulated process mainly to prevent 

unrestricted intravascular clotting. Most of the proteins of the coagulation cascade 

are serine proteases2 reaching their activation through proteolytic cleavage when 

triggered, for example by vascular damage. For the conversion of fibrinogen (factor I 

[FI]) to fibrin (FIa), the transformation of prothrombin (FII) to thrombin (FIIa) is the 

central necessary process. The formation of stable, stiff and resistant blood clots 

resulting from polymerisation of fibrin occurs via two major steps:  

A) The primary (cellular) haemostasis includes the formation of a loose 

primary haemostatic thrombotic clot accompanied by vessel constriction, platelet 

adhesion, aggregation and activation 3,4. These primarily cellular reactions lead to a 

change in the polarity of the membrane surface to a negative charge that in turn 

induces the activation of the plasma blood coagulation factors 5.  

B) During the secondary (plasmatic) haemostasis a more stable and resistant 

fibrin clot is formed out of the primary platelet plug 3,4. The secondary haemostasis is 

activated either by the intrinsic or the extrinsic pathway.  
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Normally, an intact endothelium layer exposes factors like nitric oxide (NO), ecto-

ADPase, prostacyclin (PGI2), heparin sulfate, thrombomodulin and TFPI having 

anticoagulant and anti-inflammatory functions to prevent thrombus formation and 

maintain blood fluidity 6.  

The primary haemostasis is initiated in case of injury: blood vessels get 

damaged, the endothelium breaks and the collagen layer in the subendothelium 

comes in contact with circulating platelets to initiate their adhesion, aggregation and 

activation. Collagen, which is located directly below the endothelium, binds to the 

platelets directly with its specific glycoprotein (GP)Ia/IIa (α2ȕ1) and GPVI surface 

receptor complex7. Indirectly, platelets are bound via bridging of von Willebrand 

factor (vWF). Therefore, the vWF connects platelet surface GPIb/IX/V receptors and 

collagen fibrils 8,9. Von Willebrand factor is a multimeric glycoprotein synthesized, 

located in weibel palade bodies and secreted by platelets and endothelial cells  10,11. 

Platelet adhesion to collagen over the GPVI receptor activates the platelets in the 

extracellular matrix of the injury site and subsequently leads to thrombin and fibrin 

formation 12. After collagen binding, activated platelets release different factors like 

vWF, serotonin, ADP, thromboxane A2 and platelet-activating factor (PAF) stored in 

their α-granules to initiate activation of further platelets 13–16. These agonists trigger 

several signalling pathways to increase the intracellular Ca2+ concentration 17. High 

Ca2+ levels are necessary for platelet shape change and degranulation and for further 

activation of integrin α2ȕ3 and finally to increase blood coagulation cascade to form a 

fibrin clot 18–20. Integrin α2ȕ3 is an important bridging factor for platelet aggregation 

via interaction with fibrinogen 18–20. 
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Figure 1: Platelet adhesion to collagen and fibrinogen and granula storage of 

platelets. 

Fibrin formation is part of the secondary haemostasis which either is started by the 

contact activation pathway (intrinsic pathway) or primary tissue factor way (extrinsic 

pathway) both ending in a common pathway activating factor X, factor XIII, thrombin 

and fibrin. The two pathways are composed of different coagulation factors: mostly 

serine proteases, glycoproteins (FV/ FVIII) or a transglutaminase (FXIII) which 

circulate as zymogens in the plasma and get proteolytically activated to finally 

generate and covalently cross-link fibrin 4. 

The extrinsic pathway (Tissue Factor (TF) pathway) is initiated if there is a 

tissue injury with blood vessel damage leading to release of the tissue factor from 

tissue cells like fibroblasts and leukocytes. The TF a integral cell surface protein is 

part of an enzyme complex acting as the positive regulator for the extrinsic pathway. 

The other subunit of this enzyme complex is the blood coagulation factor FVII 21 

having catalytic function. Therefor FVII is anchored by TF to the cell surface acting 
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together in complex (TF:FVII) in activation of blood coagulation . This triggers a 

coagulation cascade involving a series of different reactions to activate or deactivate 

enzymes near the surface of activated platelets. This finally leads to the activation of 

thrombin for blood clotting. In the presence of Calcium, the contact with tissue factor 

(TF) starts the activation of zymogen FVII, which itself is activated by thrombin, FXIa, 

FXIIa and FXa. Activated FVII activates FIX 6 and FX 21. FXa and its cofactor FVa 

form a prothrombinase complex to generate thrombin out of prothrombin 22. With the 

generation of the serine protease thrombin the common pathway starts. 

The intrinsic pathway plays a minor role in blood coagulation only in vitro more 

related to the inflammatory system showing in vivo no contribution to haemostasis 

23,24. The smaller physiological importance is supported by the fact that no severe 

bleeding occurs in case of severe Factor XII deficiency 24.  Recent publications with 

murine models in FXII deficient mice found unstable formed thrombi and discovered 

its central role in venous and arterial thrombosis 24. Activation of the intrinsic pathway 

is forced in case of contact with negatively charged surfaces (non-physiological 

substances like glass or kaolin) by the heavy chain of FXII (Hageman factor) 22. FXII 

starts activation of prekallikrein (PK) and high-molecular weight kininogen (HMWK) 

25,26.The formation of a primary complex composed out of HMWK, prekallikrein and 

FXII is important to start the complex cascade for activation of thrombin 22,27. 

Additionally, FXIIa activates FXI into FXIa, while FXIa converts FIX. FIXa forms a 

tenase complex with FVIIIa to finally stimulate FX to FXa. Thrombin is important to 

activate further factors of blood clotting like FV, FVIII, FXI, Fibrin and FXIII. The 

coagulation contact pathway is linked to the inflammatory system over activation of 

kallikrein which activates HMWK to release bradykinin. The small peptid bradykinin 

binds to the kinin B2 receptor on endothelial cells resulting in activation of 

inflammation like chemotaxis of neutrophils, vasodilation and increased permeability 
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of vascular system (Smith 2016). Next to the function in inflammation 2 found 

contribution to fibrinolysis, angiogenesis and part of inhibition of thrombin-induced 

platelet activation. 

Finally, a complex called prothrombinase activator complex is formed out of FVa, 

FVIIIa, FXa, Ca2+ and phospolipids to cleave prothrombin to thrombin 28. Thrombin 

cleaves fibrinogen into soluble fibrin monomers that polymerize to form a primary 

clot. For this, thrombin converts FXIII to FXIIIa and activates FVIII and FV 29. 

Additionally, it stimulates further platelets via protease activating receptor 1 and 4 

(PAR1/PAR4) to further mobilize the coagulation cascade 30. In the presence of 

thrombomodulin, direct activation of its inhibitor protein C appears to regulate 

thrombin generation 31. Vitamin K dependent protein C additionally inactivates both 

FVIIIa and FVa in presence of cofactor protein S 32,33. Further regulation of 

coagulation occurs in different positions of the cascade. For example, inhibition of the 

TF/VIIa complex occurs via the TF inhibitor 34, antithrombin III inhibits both thrombin 

and FIXa. The fibrinolytic system is an important regulator to prevent unfunctional clot 

formation by downregulation of the thrombin generation and clot dissolving by 

plasmin.  

In the final step of blood coagulation, the produced Fibrin is further stabilized 

and covalently cross-linked by thrombin-cleaved FXIIIa, which will be in the focus of 

this thesis. The understanding of pathogenic disease-causing mutations is important 

to understand coagulation, its enzymatic reactions and its molecular mechanism in 

more detail. 
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Figure 2: Overview of the coagulation cascade (secondary hemostasis). 

The extrinsic pathway is triggered by contact of blood coagulation factor VII (FVII) 

with the membrane glycoprotein tissue factor (TF), while the intrinsic pathway is a 

result of contact with negatively charged surfaces like activated platelets. Both, the 

extrinsic and the intrinsic pathways result in a tenase complex including activated 

FVIIIa and FIXa, which are necessary for activating FX. Activated FXa and Va build 

up the prothrombinase complex important for thrombin generation. Thrombin 

generated Fibrin monomers polymerize to a soluble clot. Thrombin activated FXIIIa 

introduces covalent cross-links to the preformed primary clot. During the fibrin 

formation the fibrinolytic pathway is activated by tissue plasminogen activator (t-PA) 

binding to fibrin. The t-PA is necessary to activate Plasmin which degrades the fibrin 

clot. 
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Historical view on FXIII 

 

Factor XIII is a key player in the coagulation pathway since it covalently cross-links 

preformed fibrin clots to form a more stable, stiff and resistant clot at the last step of 

the blood coagulation cascade. Barkan and Gaspar in 1923 made the first 

observation that fibrin clots become insoluble in weak bases in the presence of 

Calcium 35. In 1944, Robbins, while studying purified fibrinogen from plasma, 

recognized that besides Calcium some other serum factor is needed to form this 

insoluble fibrin clot 36. The two Hungarian researchers Laki and Lorand finally were 

the first to describe this factor, which is responsible for the fibrin clot insolubility 

observed in urea solution 37–39. They characterized and named it the fibrin stabilizing 

factor that was thermo-labile and non-dialyzable. After Duckert et al. 40 reported a 

patient suffering from bleeding diathesis in 1960, the clinical relevance of the fibrin 

stabilization factor became more evident. The lack of this fibrin stabilization factor 

was found to result in a severe bleeding phenotype 40. In 1961, Leowy 41–45 purified 

this plasma component and Buluk 46 suggested a reaction sequence for this new 

factor. Soon the International Committee on Blood Clotting Factors acknowledged the 

fibrin-stabilizing factor as a clotting factor and termed it factor XIII in 1963 47. Between 

1986 and 1990, more important steps in FXIII research followed: the elucidation of 

the complete cDNA sequence of human placental FXIII-A by Takahashi et al. 48 and 

for the B subunit of factor XIII 49,50 by Grundmann in 1986 51. 

In 1994, the first three dimensional molecular structure for the homodimeric inactive 

A-Subunit was identified by the group of Yee et al. 1994 52.  Recently, the first crystal 

structure of the non proteolytically activated FXIII (FXIIIa°) in complex with an inhibitor 

was reported 53. So far, there is no structure for the filamentous B-Subunit dimer 
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accessible. Since 1961, more than 606 articles have been published, including case 

reports and reviews about FXIII deficiency, revealing a considerable interest in FXIII 

clinical research 54.  

Classification of FXIII deficiency 

 

Coagulation factor XIII (FXIII) is a member of the transglutaminase (TGs; EC 

2.3.2.13) family which consist of 9 zymogens (TG1 to TG7, TG9 and one protein 4.2 

lacking catalytic activity), each sharing a similar structure of 4 domains (catalytic 

core, ß-sandwich, ß-barrel 1&2 domains) in a compact conformation 55. The most 

conserved sequential homologies between the different TGs can be found in the 

middle region between amino acids 180 and 500 56. While the N-terminal region 

shows moderate similarity, the most outstanding differences can be found in the C-

terminal region 56. TGs cross-link peptide chains by ε (Ȗ-glutamyl)-lysyl bonds. All 

TGs are monomers, except for FXIIIa, which appears as a homo-dimer 56. Out of all 

TG´s, FXIII is the only TG which carries an activation peptide to protect the catalytic 

triad. A proteolytic cleavage in front of the ß-sandwich was found to be part of the 

protein-activation of TG-157, similar to the situation in FXIII. So far, three-dimensional 

structures of the three human TGs FXIII-A2
52, TG-258 and TG-359 have been 

resolved. X-ray crystallographic analysis of the orthorhombic52 and monoclinic60 

forms revealed the same structure for the inactive FXIIIA subunit dimer. Recently, the 

first high-resolution crystal structure (1.98 Å) of an active state of FXIII was published 

53. 

Genetic background and Structure for both of the FXIII Subunits 

 

FXIII-A Subunit 
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The gene for the alpha chain (F13A) was found to appear earliest in sea 

lamprey, fishes and tetrapod’s 61. The gene coding for the subunit A is located on the 

short arm of chromosome 6 (p24-p25) 62 and consists of 160 kilobases (kb) including 

15 exons and 14 introns 62,63. The DNA coding for the human FXIII-A protein (F13A1 

gene) is transcribed into a 3.9-kb mRNA. The mRNA is divided into an 84-bp 5´-

untranslated region, a 2.2-kb open reading frame and a 1.6-kb 3´-untranslated 

region. The mature non glycosylated FXIII-A subunit protein reaches 732 amino acids 

including an initiator methionine (http://www.uniprot.org/uniprot/P00488) and is 1.15 

times bigger than the FXIII-B protein reaching a molecular mass of 83 kDa 64. Quite 

often the N-terminal methionine residue is acetylated or removed by Met-

aminopeptidases 65. The initiating methionine in the FXIII-A protein is followed by 

serine. The methionine is found to be removed and the serine is N-acetylated 65. N-

acetylated proteins are known to be catabolized by the proteasome pathway in the 

cytosol if protein folding is incorrect 65. The protein harbours 9 cysteine residues, 

including the active site cysteine in the catalytic trait, Cys314. The FXIII-A dimer 

protein does not possess a hydrophobic leader sequence 66 indicating that the 

protein is not secreted in a constitutive pathway. FXIIIA is known to show PDI activity, 

but the responsible cysteine has not been not detected yet 67. The deactivated 

protein is built up by 4 main structural domains: ß-sandwich from exon II-IV [38-

184AS], the catalytic core containing exon IV-XII [185-515], ß-barrel 1 containing 

exons XII-XIII [516-628] and ß-barrel 2 with exons XIII-XV [629-731]. The N-terminal 

activation peptide (AP-FXIII) of exon II (amino acid 1-37) is cleaved off by thrombin 

68. Next to the cleavage site Arg37 another thrombin cleavage site at Lys513-Ser514 

is found in the FXIII-A subunit 69. Thrombin cleavage on the second site leads to the 

release of a 51 kDa (Gly38-Lys513) fibrin binding domain 70 hindering FXIIIa function. 
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Close Ca2+ binding sites protect the subunit from this secondary hydrolysis by 

thrombin 52. 

The catalytic triad, which is completely buried by AP-FXIII, is composed of three 

amino acid residues Cys314, His373 and Asp396. The ß-sandwich and barrel 1 (516-

628) & 2 (629-731) domains are built up by ß-sheets with only a few helical structural 

elements 56. The core domain contains ß-sheets as well as helices and can be further 

divided into NH2- (189-332) and COOH-terminal (333-515) subdomains 71. The two 

central core domains of the FXIII-A subunit monomers are surrounded by six ß-

sheets in the dimeric structure. In the core domain are two non-proline cis-peptide 

bonds 60 which were observed in the human TG-2 58 and TG-3 59, too. Overall, the 

solvent excluded surface of the FXIII-A is negatively charged, except for the thrombin 

cleavage site Arg37 residue which is positively charged. It is still unknown, in which 

way the two monomeric A-subunits are linked together. Mutational expression studies 

found that the residue Arg260 forms a salt bridge with Asp404 of the opposite 

monomer implying a function in binding of the two monomers 72. Aside from Arg260, 

another residue, Tyr283 73, is highly conserved among the TGs and also playing a 

role in dimer formation73. 
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Figure 3: Illustrating the FXIII-A Subunit gene and the protein structure. 

 

Catalytic triad 

The Cys314, His373 and Asp396 are part of the catalytic triad of the cysteine 

protease which catalyses the interchain peptide bond formation between the 

glutamine and lysine side chains of two substrates 52. Therefore the NH group of the 

indole side chain of the highly conserved Trp279 (shown to be involved in TG 

reaction by TG-2 74 and Cys314) forms an oxyanion hole 75. The catalytic cysteine 

residue Cys314 is completely buried by AP-FXIII, because a salt-bridge from the side 

chain of Arg11 in AP-FXIII reaches to the opposite subunit and a second side chain 

of Asp343 of the core domain blocks the access to the Cys314 for substrates 56. The 

entrance to the active site is also blocked by strong hydrogen bonds between the Oη 

atom of the Tyr560, which is located on a loop of the ȕ-barrel 1 domain, and SȖ atom 

of Cys314 residues 53,56. This H-bond is important to prevent early TG reaction by 

blocking the SȖ atom of Cys314 residue from binding to the Gln side chain carbonyl 
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carbon of the potential substrate 56,75.  The  highly conserved Trp279 76 is found to 

prevent the substrate from reaching Cys314, if the protein appears in its inactive form 

56.  
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Figure 4: The catalytic core domain of the Factor XIII-A subunit. 

 

Ca2+-binding sites 

Ca2+-binding is necessary for the activation of FXIII. Therefore, Ca2+ binds FXIII-A 

with high affinity (Kd = 0.1 mM) 1, but also additional low affinity binding sites are 

found. Ca2+-binding on the FXIII-A subunit directly or through water bridging is 

located at the carboxylated groups of Asp438, Glu485, Glu490 side chains and the 

carbonyl O-atom of Asn436 and the backbone carbonyl O-atom of Ala457 69,77, which 

create a Ca2+ binding pocket56. Direct Ca2+ binding happens by Ala457, Glu485 and 

Glu490 56,69,77(74/75/172). Ca2+ binding to the catalytic core was found to be involved 

in the conversion from inactive FXIII to the active state. Therefore one Ca2+-ion 

interacts with the Ca2+ binding site 1 via Ala457 in the inactive state 53. During the 

activation process the Ca2+- ion substitutes the bound water molecules on the other 

coordination sites with binding to Asn436, Glu485 and Glu490 which is necessary to 

move a loop and α helix forming a more compact Ca2+ surrounding environment 53. 

During activation process, the second Ca2+- binding site leads to the formation of a 

hydrophobic pocket next to the catalytic triad mainly through Ca2+ binding to Asp367 
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and Asp351 53. Next to the pocket formation, which is important for  guiding the 

substrate to the catalytic core, the Ca2+ binding on site 2 further supports the 

development of the catalytic triad by binding Ca2+ to the Asp343 residue bringing 

His342 and Glu401 in proximity 53.  

 

Figure 5: Calcium binding sites necessary on the non-activated and activated 

FXIIIa. 

Activation Peptide and Thrombin cleavage site  

FXIII-AP  

The AP-FXIII is located to the A-Subunit in a special way that it is covering the ß-

sandwich and part of the core domain of one A-Subunit monomer 78.  The N-terminus 

of the bound AP-FXIII overlaps with the barrel 1 domain of the other A-Subunit 

monomer 78. The close interaction between the FXIIIA molecule environment and the 

AP concerning 17 H-bonds is necessary to bury the active site cysteine (Cys314). 

The interaction of the AP with both monomers of the A-Subunit includes 13 hydrogen 

bonds  (Asn17-Arg107, Asn17-Tyr108, Asn17-Leu249, Asn18-Arg252, Asn20-

Lys156, Ala21-Asp243, Glu23-Arg174 (2H-bonds), Asp24-Arg158, Pro27-Arg171, 

Thr28-Arg171, Glu30-Val169, and Gln32-Tyr167) with residues from one monomer 

and 4 hydrogen bonds (Gly10-Thr561, Arg11-Asp343 (2 H-bonds), and Arg11-
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Pro399) with the other monomer, while three further hydrogen bonds (Ser19-Ala21, 

Ser19- Ala22, and Gln32-Gly33) are formed within the AP itself 78. The salt bridge 

between Asp343 and Arg11´ (AP-FXIII) of the opposing monomer keeps the AP-FXIII 

in a position that covers the active site along with another amino acid, the Tyr560 of 

barrel 1. It buries the cavity in which the amino acids residues play a key role in the 

activation process. A small change in this complex binding process, which involves 

binding between FXIII and FXIII-AP and interaction between FXIII-AP and Thrombin, 

can have a fatal effect on the substrate cleavage process.  

Thrombin binding for FXIII-AP cleavage  

For activation of heterotetrameric pFXIII, proteolytic cleavage of the N-terminal 

AP-FXIII via the serine protease thrombin is necessary. The AP-FXIII is located on 

the flexible loop on the surface of the molecule promoting its release into cell plasma 

after cleavage. Arg37 and Gln38 are sticking out from the loop region for better 

accessibility of thrombin catalytic triad  (Asp102, His57 and Ser195) 79. Thrombin, 

which is composed of two ß-barrel domains, carries the cleavage site consensus 

sequence LTPRGVRL 80, which is critical for FXIIIA-AP cleavage carrying 

VVPRGVNP as cleavage site sequence. The region P(4) to P(1) region 

[nomenclature for the substrate: The thrombin hydrolysis site is marked as P1-P1´, 

the amino acids on the left side of the cleavage site are labelled as P2 to P4 and the 

amino acids on the right side are named as P2´, P3´ and so on 81] is known to be 

very critical for the FXIII-A binding to the thrombin surface. Cleavage of the AP-FXIII 

involves the burying of the consensus substrate P1 Arg side chain deep into the S1 

pocket of thrombin, allowing proximity of the sessile bond to the nucleophilic thrombin 

Ser195 residue 82. This is aided by contacts formed by the positively charged Arg 

residue side chains with residues in the thrombin catalytic cavity that bear a strong 
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negative electrostatic potential 83. In the thrombin cleft, the hydrophobic interaction 

takes place down to the guadinine group which forms a two pronged salt bridge with 

Asp189 at the base of the pocket 82. The P4 (hydrophobic/ aromatic) interacts with 

the aryl binding pocket (S4) of thrombin 82. The insertion loops can interact directly 

with the substrate peptide, with the 60-loop helping form the S2/ S4 sites and the Ȗ-

loop forming contacts with the P´side 82. The loops are necessary for the thrombin 

specificity restricting the access to the active site cleft 82. Thrombin is known to bind 

amino acids 33 to 37 (P4-P1) of FXIII-AP by hydrogen bonds with W60, L99, I174, 

W296, S195 and E217 84,85. W215  is the key residue for effective binding and 

hydrolysis of FXIII-AP by supporting the binding of main chain backbone residues 

V34 and V35 of FXIII-AP 84. The other key supporting residue for the thrombin ligand 

E217 builds hydrogen bonds between P5 (G) and P4 (L) to E217 84. The L99 helps to 

align the FXIII-AP substrate into the active cleft for more effective hydrolysis 84. The 

backbone of the Val residue (P3/ P4) of the V34 position is located above the 

thrombin W215 residue and the Proline at the P2 residue interacts with thrombin L99, 

Y60a and W60d. The hydrophobic bond between P2 to L99 is necessary for an 

appropriate binding and catalysis of thrombin substrates. L34 of the FXIII-AP appears 

to be interacting with thrombin L99 through the side chain and thrombin W215 

through the main chain.  

 

FXIII-B2 Subunit 

The B subunit gene composed of 28 kb length is mapped on the long arm of 

chromosome 1 (q31-q32.1) 49,86 and consists of 12 exons and 11 introns coding for a 

2.2 kb mRNA. Evolutionary, the beta-chain (F13B) appears to be present in cave fish 

(Astyanax mexicanus) and medaka (Oryzias latipes) 61. The flexible, thin and linear 

641 amino acid long glycoprotein (proved by electron microscopy 87) has a molecular 
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mass of ~80 kDa. It is build up by 10 GP-1 structures called sushi domains of about 

60 amino acids. Each of them is held together by two conserved disulphide bonds 

between the first and third cysteine and the second and the fourth cysteine 56. The 

structure is similar to more than 50 other proteins, mostly belonging to the 

complement system, like Factor H, which is also composed out of complement 

control proteins (CCP) 88. Evolutionary exon shuffling and gene duplication is 

responsible for the high degree of homology of the sushi domains building up Factor 

XIII-B protein 89,90.  

Exon I encodes for a 20 amino acid leader sequence necessary for the classical 

secretion 91,92 and is cleaved off during the export process. Exon II-XI code for the 10 

single sushi domains and exon XII codes for the 3´-untranslated COOH-terminal 

region. The transcription is regulated by the HNF1α and HNF4α transcription factors 

93,94. So far there is no crystal structure detected, but via the technique of electron 

microscopy the FXIII-B protein was described as a thin, kinked strand and flexible 

protein.  

N-glycosylation of the protein appears at the amino acid Asn142 in the third sushi 

domain and Asn525 which is located in the ninth sushi domain 95,96. Gel filtration 

analysis reveals that probably the first sushi domain is part of binding to the A-subunit 

in heterotetramer formation 97 and the fourth/ ninth sushi domains function in dimer 

assembly of the B-subunit 98.  

The carrier protein has no enzymatic function and is part of the FXIII-A subunit in the 

plasma. It is supposed to stabilize and prevent non-proteolytic activation of plasma 

FXIII with high Ca2+ levels 99 and therefore increasing half-life of the FXIII-A protein 

25. It has been found recently that FXIII-B is participating in the formation of a ternary 
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complex between FXIII zymogen, fibrinogen, and activator thrombin and is especially 

involved in binding the pFXIII-A2B2 to the fibrinogen Ȗ-chain over its D-domain100. 

 

Figure 6:  Illustrates the Factor XIII-B subunit gene and its possible protein 

structure.  

 

Synthesis and secretion of both FXIII-A and FXIII-B Subunits 

  

FXIII is located in the body in two forms, one is the intracellular dimer called 

cellular FXIII (cFXIII) and the other form is the heterotetrameric plasma FXIII (pFXIII). 

The function and activation of pFXIII is well studied, but less understood for the 

cFXIII, consisting of only two A-Subunits. Plasma-circulating FXIII (pFXIII) appears as 

a 320 kDa heterotetramer (FXIIIA2B2) composed of two catalytic A and two carrier/ 

protective B Subunits, held together by non-covalent interaction (FXIIIA2B2). Half of 

the FXIII in the body is cFXIII 101,102 synthesized in platelets and functioning mostly in 
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wound healing, bone development and tissue remodelling like cytoskeleton 

remodelling during platelet activation 55,103,104. Missing the B-subunit and not in 

proximity to  thrombin, the intracellular FXIII can only be activated non-proteolytically 

(without cleavage of the activation peptide) by high intracellular, non-physiological 

Ca2+ concentration (50-200mM) 105–107. By the presence of the FXIII-B subunit, pFXIII 

is prevented from non-proteolytic activation in the plasma and needs thrombin as an 

activator 99.  

Cellular FXIII (cFXIII) 

The cFXIII is expressed in cells of the bone marrow origin like chondrocyte, 

chondrocytes/ osteoblast/osteocyte lineages 108,109, megakaryocytes/platelets 

103,110,111 and their precursor cells and synthesized in the cytoplasm of monocytes/ 

macrophages 103. Macrophages from different tissues like alveolar, dendritic, tumor or 

lymph node derived express cFXIIIA 112,113. The cFXIII synthesis happens only during 

the differentiation step from monocytes to macrophages where it appears in the 

nucleus 114. Additionally, cFXIII was found to be located in podosomes or other 

membrane structures of the macrophages 114.  

Platelets contain huge amount of cFXIII 101,102,115, reaching FXIII-A2 concentration 

150-fold higher in platelet cytoplasm 101,102 than compared to plasma 112.  The 

average cFXIII content of a single platelet is found to be 60+/-10 fg (3% of total 

platelet proteins) 116,.  The secretion mechanism of cFXIII out of  platelets remains 

elusive  114. Recently, Mitchel et al 2014 117 found that platelet cFXIII is released on 

the activated platelet surface in the form of protruding caps 117. They showed under 

flow that activated platelets secrete the whole cytoplasmatic pool of cFXIII-A  on the 

platelet surface where it cross-links α2-antiplasmin (a fibrinolytic inhibitor) to fibrin to 

increase fibrinolytic resistance of the thrombi 117. However, several questions 
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regarding the exact mechanism of translocation of cFXIII to the outer surface 

membrane in platelets and other cFXIII containing cells remain open.  

Another source of cFXIII are placenta/ uterus 118,119, and tear drops 120,121 . Placenta 

122 and uterine 123 cFXIII come from monocyte-derived tissue macrophages origin 122. 

The amount of cFXIII in tears is 3 times lower than in plasma 124. Regulation 

mechanisms of cFXIII are found to be different in different body fluids 124.  

Plasma FXIII  (pFXIII): 

Another question that has not been answered yet concerns the origin of secreted 

plasma FXIIIA subunit. FXIII-A2 appears in the plasma fully complexed with the FXIII-

B2 subunit, while only a small amount i.e. <1% circulates in free functional non-

complexed form 97. Studies have shown that the main source of FXIII-A subunit for 

pFXIII are cells of bone marrow origin 125,126 like monocytes/ macrophages or 

platelets. In two transgenic mouse models, where mice showed thrombocytopenia 

plasma levels, the amount of pFXIII was not significantly reduced 114,117. Therefore, 

Cordell et al. (2010)114 suggested that instead of platelets maybe cells of monocyte 

lineage are the main source of pFXIII-A. Supported by the fact that patients who 

undergo bone marrow removal during autologous peripheral blood stem cell 

transplantation have reduced platelets with over 90 % decrease 127,  but pFXIII levels 

fall off only ~25%127, these data implicate that platelets are not the only source for 

pFXIII.  

In embryos, FXIII-A is already synthesized in mesenchymal histiocytes and liver cells 

before bone marrow development starts 128. Recently, Griffin et al 2015 129 identified 

the cells that maintain the plasma pool by creating a MpP-/- (thrombopoietin receptor 

knockout) thrombocytopenic murine model out of a floxed mouse in coding exon 7 of 

the F13A1 gene crossed with mice transgenic for Pf4-Cre-recombinase 
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(thrombopoietic deletion) or Cd11b-Cre-recombinase (myeloid deletion) 129, the 

research group found a 40% decrease of pFXIII-A activity in Cd11b mice and 85% 

decrease of pFXIII-A activity and a lack of platelets in Pf4 mice. MpI mice showed 

normal pFXIII activity 129. In combination with results from a human stem cell study 

they found the possibility that a unique Pf4-dependent and MpI-independent 

progenitor cell is the major source of the plasma pool 129. Another source of pFXIII-A 

are hepatocytes which have been reported to express low levels of the pFXIII-A 

subunit 113,127,130.  

All the current findings show that FXIII-A, which is present in pFXIII, is predominantly 

synthesized in human stem cells of bone marrow origin. Still, the question of the 

origin of pFXIII-A cannot be answered fully and also the secretory mechanism 

remains unanswered. 

The FXIII-B Subunit is only expressed by hepatocytes 131, also supported by following 

liver transplantation where the phenotype of the recipient FXIII-B changed to that of 

the donor phenotype for the B-Subunit 126. Almost 50% of FXIII-B Subunit is found in 

non complexed free form in the plasma 132. 

recombinant FXIII (rFXIII): 

In all vertebrates investigated so far FXIII-A has been found to be expressed. 

Production of recombinant FXIII-A2 (rFXIII-A2) which is similar to cellular FXIII-A2 was 

done in Escherichia coli 133, Saccharomyces cerevisiae 134,135, Schizosacharomyces 

pombe 136, tobacco plant cells and whole tobacco plants 137.  
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Figure 7:  Proteolytic and non-proteolytic of cellular and plasma FXIII. 

Activation of FXIII 

 

There are two ways of activating Factor XIII: the proteolytic and the non-

proteolytic activation 138.  

Cellular FXIII: Non-proteolytic activation 

Homodimeric cellular FXIII requires high Ca2+ concentration 138 for activation. The 

Ca2+ levels >50mM fully activates rFXIIIA 138. The process is fully reversible and the 

enzyme can undergo a new activation round 99. cFXIII can be activated with thrombin 

and Ca2+ like pFXIII in extracellular conditions 71, which is not the normal way of 

activation for cFXIII. Cleavage by Calpain, a Ca 2+ activated cysteine protease in 

platelets 139, was also detected for cFXIII.  

Plasma FXIII: Heterotetramerformation and Proteolytic activation 

In human plasma, FXIIIA2B2 circulates as a tight bound heterotetramer with a binding 

constant of 10-10 M 97 and an amount of 14-28 mg/l 116. A minor fraction - 

approximately 1% of free non-complexed FXIII-A2 - exist 97 next to ~50% free FXIII-B 

non-complexed form. pFXIII appears bound to fibrinogen (Kd~10-8 M) independent of 
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Ca2+ 140,141 and reaches its full functional active state only if Ca2+, thrombin and 

fibrinogen are present 97. For the heterotetramer formation, probably the first sushi 

domain is responsible for the binding of the FXIII-B to the FXIII-A subunit 97, while the 

fourth and ninth Sushi domain participate in the FXIII-B homodimer assembly. The 

other domains responsible for the heterotetramer assembly still remain unclear 97,98.  

Proteolytic cleavage by thrombin of FXIII-AP is enhanced in the presence of fibrin 140. 

Therefore, the FXIII-A2B2 is bound via FXIII-B2 to non-cross-linked fibrin polymers on 

the Ȗ-chain of the D-domain of fibrinogen in the plasma 107.The conformational 

change leads to the exposure of the catalytic triad. Thrombin cleaves off the 37th 

residue N-terminal AP-FXIII of FXIII-A2 Subunit by hydrolysing the Arg37-Gly38 

peptide bound only in the presence of Ca2+ and fibrin. The AP-FXIII dissociates from 

the molecule and appears in the plasma 142. Plasma dimeric FXIII-A2 reaches its full 

activity even if only one of the two activation peptides is cleaved off 143. The 

proteolytic cleavage weakens the strong covalent binding between the two FXIII 

Subunits 68,144. Upon high affinity Ca2+ binding to the A subunits, the B subunit dimer 

dissociates and the enzyme undergoes conformational change to an active 

conformation FXIII-A2* form 145,146. Binding of Ca2+ ions on one of the A subunits is 

sufficient to dissociate the subunits and activate the released FXIII-A dimer 143,145. 

This process finally leads to the exposure of the catalytic triad important to reach 

substrate access 56,147.  

The FXIII-A2 undergoes a remarkable strutural transition when converting from the 

zymogenic to its activated conformation. This involves the movement of the ß-barrel 

domains to reach the open active conformation 56 which is a very complex process 

and not fully understood up to now.  
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The process of FXIII activation is accelerated by Fibrin acting as a cofactor 148.  

Important for the fibrin enhanced factor XIII activation are some surface residues of 

thrombin (His66, Tyr71 and Asn74) within exosite 1 which serves as a binding site for 

fibrin 149. Another binding partner on these particular residues is thrombomodulin 

which serves as a cofactor-enhanced activator of protein C 150 but inhibits the fibrin 

enhanced factor XIII activation 149. 

FXIII: Alternative activation  

It has earlier been shown that next to Calcium activation both plasma and cellular 

FXIII also get cleaved by a human neutrophile elastase (HNE) which cleaves 

preferably valine and induces a limited cleavage of FXIII-A resulting in reaching 

52.5% and 67.4% of thrombin-activated FXIII 151. The preferable cleavage site for the 

HNE was identified in the middle of the flexible loop the V39-N40 as primary 

cleavage-site 151. A few other proteases like Trypsin 64,152, batroxobin marajoensis 153, 

thrombocytin 154 and activated factor X 155 are also found to activate pFXIII in the 

presence of Ca2+ the potential cleavage sites are not identified yet. Only the mannan-

binding lectin associated serine protease 1 (MASP1) which is involved in the 

complement system and possesses thrombin-like activity and cleaves FXIII-A at 

same position Arg37-Gly38 but slower 156.   

 

Activated FXIIIa* cross-linking 

 

The activated transglutaminase FXIII cross-links its substrates via an acyl transfer 

reaction in two steps 55,56,74. Therefore it forms covalent ε-(-Ȗ-glutamyl) lysine cross-

links between the Ȗ-carboxy-amine group of a glutamine (amine acceptor) and the ε-

amino group of a lysine residue presenting the amine donor. The catalytic process of 
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protein cross-linking involves three main types of reactions the transamidation, 

esterification and hydrolysis 55.  

 

FIRST STEP - ACYLATION 

The reaction starts with the recognition of protein bound glutamine residues of the 

potential substrate (amine acceptor protein) and its catalysed thioester bond with the 

active site cysteine Cys314 of the FXIIIA2
*. This is followed up by forming an 

oxyanion intermediate utilizing the side chain of Trp279 and the release of ammonia 

from the glutamine as the acyl-enzyme intermediate is formed 55,112.  

SECOND STEP - DEACYLATION STEP 

In the second part the created enzyme-glutamine substrate complex is bound to a 

primary amine (transamidation) which is a lysine ε-amino group of the second 

substrate, a polyamine or another primary amine 55,56,112. Because the thioester 

intermediate is highly reactive there is rapid formation of the isopeptide bond. If a 

substrate primary amine group is present the acyl group is transferred to the acyl 

acceptor amine through a second oxyanion intermediate. The amine becomes 

attached to the Ȗ-glutamyl residue via peptide bond (isopeptide) and the active-site 

cysteine becomes deacylated 157.  

If there are no primary amines in the active-site pocket, the enzyme substrate 

complex will react with water (hydrolysis) releasing the enzyme and converting 

glutamine to glutamic acid. In the absence of a substrate amine deamidation of the 

substrate glutamine residue happens. If an ε-amino group of a peptide-bound lysine 

residue is the acyl acceptor primary amine for the reaction a ε(Ȗglutamyl) lysyl is 

formed and the two peptide bonds become cross-linked 55,71,74.  
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Figure 7:  Cross-linking of two substrates by activated FXIII 

 

Inhibition/inactivation of activated FXIII 

 

Interestingly once cross linking of 40% of fibrin Ȗ-chains occurs the effect of fibrin on 

FXIII-A2 activation is lost giving fibrin cross-linking down regulation function for FXIII-

A activation 1,140. Additionally down regulation of activated factor XIII by 

polymorphonuclear granulocyte proteases 158 and recently discovered plasmin within 

the fibrin clot 159 was also observed. Another inhibitor is thrombomodulin which 

competitively decrease the effect of fibrin on factor XIII activation 160.  
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FXIII and its substrates  

FXIII main substrate Fibrinogen/ Fibrin  

Fibrinogen is an essential blood coagulation factor in the last step of the 

extrinsic blood coagulation pathway by building up the basic network of the blood 

clots to prevent blood loss and promote wound healing. It is the most abundant 

coagulation factor in the plasma reaching average concentration of 2-4mg/ml. The 

genes for the coagulation factor I FGA, FGB and FGG are clustered on chromosome 

4q32.1 coding for the 3 chains Aα, Bß and Ȗ which build up the molecule. The 340 

kDa large glycoprotein FGG consists of six-chain Aα2, Bß2- and Ȗ2 covalently bound 

by 29 disulfide bonds 161. Two molecules build up the two outer D domains and one 

central E domain were the N-terminus of each chain coiled-coil contributes to 

constitute the central E domain 162,163. The assembly of the trinodular structured 

molecule takes place in the endoplasmatic reticulum. The protein is finally secreted 

by hepatic parenchymal cells into the plasma. Synthesized Fibrinogen molecules are 

elongated 45 nm structures 162 which get converted during the clotting process to 

fibrin by serine protease thrombin cleavage of the two short N-terminal 

fibrinopeptides (FP)A and FPB from the Aα and Bß-chains on the central E domain 

164. After thrombin cleavage of the short fibrinopeptides A and B Fibrinogen converts 

into fibrin. Thrombin-mediated cleavage of fibrinogen initiates fibrin protofibril 

formation 164,165. Polymerisation and formation of double stranded fibrin protofibrils 

and finally there lateral aggregation for fiber formation throught the αC interactions 166 

is followed. Fibrin fibres branchpoints are formed by three fibers at a node leading to 

a trimolecular or tetramolecular joints strengthened by FXIIIa cross-linking 160. Next to 

its role in branch-point formation FXIIIa is covalent cross-linking the fibrin aC-region 
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which increases the fibrin clot structure and support aC-aC interactions 167,168. 

Therefore FXIII cross linking leads to reducing the space between the laterally 

protofibrils and leads to reduced average of fiber diameter 168.  

FXIII and Fibrin 

FXIII circulates bound to fibrinogen in the plasma showing a Kd of ~10-8 mol L-1 140. 

The presence of fibrin enhances the activation of pFXIII by ~100-fold 56,169. FXIII-B 

Subunit binding to Fibrin gamma chain is important for the optimal orientation of 

pFXIII to thrombin for the proteolysis of FXIII-A 107,170. A complex fibrin clot is created 

by lateral aggregation and formation of trimolecular and tetramolecular branch points 

connected by FXIIIa induced cross-links between fibrin Ȗ- and α -chains 168. The Ȗ-

dimer formation is more rapid intermolecular bond formation appearing in the first 5-

10 min during clot formation between Ȗ406 lysine of one Ȗ-chain and Ȗ398/399 

glutamine residue of another –chain 168,170,171 performing first clot rigidity and 

maximum clot stiffness 172. Cross-linking between α-chains glutamine and lysine 

residues appears with a slower rate 170 reaching better clot stability and rigidity by 

thicker fibers 160,167. Less impact in fibrin fiber strength show Ȗ-α-cross-links 173. 

Different glutamine residues of the α –chain have been detected like Gln221, Gln237, 

Gln328 and Gln366  170,173,174 and also a number of lysine donor sites Lys556, 

Lys539, Lys508, Lys580, Lys418, Lys448, Lys601, Lys606, Lys427, Lys429, Lys208, 

Lys224 and Lys219  which were detected by their ability to incorporate N-terminal 

peptide of α2-antiplasmin and other plasma proteins 173,175. The combinations of 

Gln223 and Lys508 or Lys539, between Gln237 and Lys418, Lys508, Lys539 or 

Lys556, between Gln366 and Lys539, and between Gln563 and either Lys539 or 

Lys601 are cross-linking sites 176. Next to Ȗ-Ȗ and α-α, smaller amounts of α-Ȗ-chain 

heterodimers and Ȗ-chain trimers and tetramers are also found in fibrin clots 157,177. 
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The cross-linking process increases the stiffness of the clot and reduces the network 

stretch of  thrombus 168.  

Next to its function in the blood clotting process, Fibrinogen is also known to be an 

acute phase protein which is why it is not surprising that fibrinogen disorders can lead 

to thrombotic problems as well 178.  

Further substrates 

FXIII is a highly pleiotrophic enzyme with a variety of substrates belonging to different 

body systems like blood coagulation, immune response (complement activation and 

inflammatory response), wound healing, cell adhesion, extracellular matrix 

organization (plasma proteins, bone and cartilage 179,180), angiogenesis, proteolysis, 

adipogenesis 181 and pregnancy in females 182.  

Next to the main primary substrates Fibrin and α2-PI (α2 plasmin inhibitor) 147 other 

substrates in plasma were recently detected 182 and 48 of these were confirmed to 

get incorporated into the fibrin clot 182 having functions like complement activation, 

inflammatory and immune response.  

Twenty three of these substrates of FXIII are well characterized and listed already in 

the TRANSDAB database. These include several extracellular and intracellular 

proteins like myosin 183, actin 109, vinculin 184, filamin 185  fibronectin 174, vitronectin, 

collagen, Factor V 186, von Willebrand Factor 187, thrombospondin, PAI, and TAFI 

(thrombin activatable fibrinolysis inhibitor) which are well studied and play important 

roles in cytoskeletal remodelling during platelet adhesion, aggregation and 

contraction 117,188. 
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Consensus sequence  

No consensus sequence has been identified yet for marking FXIII substrates. Only 

the glutamine and the surrounding hydrophobic residues seem to be important for 

substrate binding and recognition 173. N-terminal to the reactive Gln residues on 

position 1 and 2 a higher frequency of acidic residues (Glu and Asp) was recently 

recognized 182 and for the position 4-12 a higher frequency of basic residues (Arg, 

Lys and His) was reported 182. Reactive Gln residues can occur on a helix, strand or 

turn but for most of the proteins (61%) they are present on a loop 182.  

Substrates influencing the blood clot structure  

Formation of a stable and stiff thrombus involves apart from covalent fibrin 

dimer, the cross-linking of several other potential substrates like the glycoprotein 

Factor V (FV) 186,189 and thrombospondin-1 released by activated platelets 190 . These 

are found to be cross-linked to the fibrin α chain increasing the density of the fibrin 

clot 191. Another glycoprotein Fibronectin is also cross-linked to the fibrin α-chain to 

produce a more dense clots with smaller pores 174 and has roles in cell adhesion, 

migration and tissue repair 192. Collagen type I, II, III, V are found to be cross-linked 

by FXIIIa to fibronectin also playing an important role in thrombus formation and 

wound healing process 193. Another substrate cross-linked by FXIII is the multimeric 

plasma glycoprotein vWF which is synthesized and stored in α-granules of platelets 

and endothelial weibel-palade bodies functioning as a carrier/ protector of Factor VIII 

from early degradation and functions in the early platelet adhesion to subendothelial 

collagen on injury-site  194,195. 

Activation of Thrombus formation through platelets is mainly activated by collagen 

(type I and V) and thrombin 173. COAT (collagen- and thrombin activated) platelet 

formation occur only in the presence of α granule secretion, exposure of 
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phospatidylserine, GPIIb/IIIa receptor activation and FXIII-A activation 173. Next to the 

cross-linking of these secreted surface proteins from α granules (FV, vWF, 

fibrinogen, fibronectin, α2-antiplasmin and thrombospondin) 173 to fibrin, the 

transglutaminase additionally cross-links these proteins to serotonin 196,197. These 

surface protein serotonin complexes are further cross-linked to fibrinogen and 

thrombospondin. Fibrinogen and FV are bound to the platelet GPIIb/IIIa receptor 

followed by thrombospondin binding.  Finally the serotonin surface protein complexes 

are cross-linked via serotonin-binding sites to fibrinogen and thrombospondin 

performing a complex protein network 197. 

Substrates influencing fibrinolysis of the clot 

The cross-linking of fibrinolysis inhibitors is important for protecting the clot from 

plasmin-mediated lysis. Therefore further prolongation of lysis is achieved through 

cross-links between Gln2 within the α2-antiplasmin and the Lys303 of the fibrin α chain 

198. Modulation of clot lysis is found to be influenced by TAFI, vitronectin and α2-

macroglobulin 173. FXIIIa cross-links the pro-carboxypeptidase TAFI to fibrin through 

the reactive glutamine sites Gln2, Gln5 located within the activation peptide of TAFI 

and also Gln292 199 to Lys212, Lys77 and Lys79 of the fibrin α chain 188. These steps are 

necessary for localizing TAFI to the sites of thrombus formation 173. Another 

fibrinolysis and proteolysis inhibitor of the preformed thrombus is PAI-2 (Plasmin 

activator inhibitor) which is cross-linked to fibrin α-chain 200,201 .  

Vitronectin produced in megakaryocytes and platelets α-granules is found to form 

homodimers in the presence of FXIII 202. Incorporation of vitronectin into fibrin clots is 

mediated by FXIII cross-linking 203 but the fibrin bound vitronectin also binds PAI and 

therefore prevent fibrinolysis 173,203. The glycoprotein α2-Macroglobulin, which is also 

a inhibitor of fibrinolysis 204 is another substrate of FXIII 173.  
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Substrates influencing the extracellular matrix formation  

Myosin, Actin, Vinculin and Filamin are important cytoskeleton proteins functioning 

during clot retraction in the change of the plasma membrane shape in platelets to 

form filopodia. Stabilizing the platelet cytoskeleton proteins by cross-linking is an 

important factor for later clot retraction and fibrinogen binding to the platelets 183.  

Platelet activation and aggregation is essential for binding cFXIII to platelet actin and 

its further translocation to the platelet periphery 185. On the platelet periphery cFXIII is 

cross-linking next to actin other cytoskeleton proteins like vinculin and filamin to 

perform high-molecular complexes 109,184,185.  

FXIII function in cross-linking of receptors  

The angiotensin type 1 receptor (AT1R) is a G-protein-coupled receptor of the renin-

angiotensinogen system functioning to regulate blood pressure 205. Binding of its 

ligand AngII (AngiotensinII) and increased Ca2+ levels leads to dimerization and 

cFXIII promoted covalent cross-linking in the cytoplasmic tail domains of the receptor 

206.  

FXIII is also interacting with the vascular endothelial growth factor receptor 2 

(VEGFR2) and the integrin αVȕ3 having pro-angiogenic function 207–209.  

 

FXIII as a biomarker 

 
Recently FXIII-A was detected as a novel prognostic marker for heart healing after 

acute myocardial infarction (MI) 210.  

Higher expression of cFXIII-A in malignant monocytes is used as an intracellular 

marker for detection and differentiation of acute and chronic myelomonocytic and 
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monocytic leukemias from acute B cell leukemia were it is normally found to be 

absent in the lymphocytes and their precursors 211.  

Immunohistochemical FXIII-A detection is used for diagnosis of dermatological 

pathologies like eczematous dermatitis, psoriasis or for example in aids associated 

cutaneous Kaposi´s sarcomas 212,213 or to differentiate macrophages from dendritic 

cells 214. 
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1.2 Part II: Clinical presentation of severe and mild FXIII deficiency  

 

Clinical picture of the deficiency 

Deficiency of Factor XIII leading to insufficient fibrin cross-linking with the 

consequence of late de novo bleeding occur with a frequency of 6 % from all rare 

bleeding disorders 215 . The FXIII bleeding diathesis is either acquired or inherited.  

Severe inherited FXIII deficiency is a rare bleeding disorder caused by homozygous 

or complex heterozygous mutations (both alleles affected) in F13A1 or F13B genes  

and affecting one out of 2-4 million people 216. Mild FXIII deficiency which is 

symptomatic only on provocation/trauma is a more frequent form (suspected 

prevalence: 1 out of 1000 in the German caucasian population) of inherited FXIII 

deficiency resulting from isolated (only one allele affected) heterozygous mutations in 

F13A1 or F13B genes  217.  

Acquired FXIII deficiency 

Acquired FXIII deficiency is mainly caused by hyperconsumption, hyposynthesises or 

rare by autoantibody development causing a more mild (plasma FXIII levels between 

30-70%) up to severe phenotype (below 30%) 218. Decreased production of FXIII-B 

(Hepatitis or acute liver failure) or increased consumption of FXIII subunits as cause 

of primary diseases like leukaemia, inflammatory bowel disease (crohn´s disease or 

ulcerative colitis), Henoch schoenlein purpura, systemic lupus erythematosus, 

disseminated intravascular coagulation, pulmonary embolism, liver disease, sepsis, 

stroke, surgery, trauma are related with more mild decrease requiring rarely 

replacement therapy 219,220. Another reason for acquired FXIII deficiency next to 

primary diseases could also be the treatment itself like recently reported for patients 

suffering from rheumatoid arthritis treated with anti-interleukin-6-receptor monoclonal 

antibody (tocilizumab) resulting in impaired synthesis of FXIII-A and B-Subunit 221.  
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More severe is the development of autoantibodies (mostly IgG) 220 against FXIII-A 

(most) and FXIII-B (rare) subunits with neutralizing or non-neutralizing effect which 

was reported in 83 cases worldwide 218,222,223 mostly found in elderly patients around 

70 years 223. A third of cases having autoantibodies had systemic lupus 

erythematosus (SLE) as primary disease 24.  

Inherited severe FXIII deficiency 

Inherited severe FXIII deficiency is found more frequent in families with 

consanguineous marriages from South Asia especially in Middle Eastern countries 

like Iran/southwest Afghanistan and the Indian subcontinent  225,226.  People of all 

races and sexes are equally affected. Non consanguineous detected patients show a 

higher incidence for combined compound heterozygous mutations 25,227. Congenital 

FXIII deficiency affecting 1 in 2 million 228 belonging to an autosomal recessive trait is 

associated with defects in both the FXIII-A and FXIII-B genes 25. The severe form of 

the disease comes mostly from homozygous or compound heterozygous mutations 

were the mild form is related to heterozygous mutations.  

Most of the missense mutations are found in the FXIII-A1 gene leading to a more 

severe phenotype then defects affecting the FXIII-B protein showing a moderate up 

to mild phenotype with reduced plasma levels of both subunits. FXIII-A deficient 

patients show a reduced total amount of FXIII-B in the plasma while the 

concentration of free B subunits remains constant. The inherited FXIII-A deficiency 

leads either to a quantitative Type I defect resulting in decreased unstable protein 

synthesis or to a qualitative (type II deficiency) functional defect with normal or mild 

decreased antigen levels but a dysfunctional protein. The type I deficiency lacks not 

only of the FXIII-A subunit in plasma, platelets and monocytes in females it’s also 

missing in the placenta 229.  
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Homozygous FXIII deficiency 

The severe congenital deficiency is characterized by critical life threatening bleeding 

events. Intracranial bleeding is the leading cause of death in FXIII deficiency. 

Congenital FXIII deficiency manifests itself immediately after birth in the form of 

umbilical stump bleeding that is detected in 80% of the cases 228.  This deficiency is 

characterized by a wide variety of bleeding phenotypes like epistaxis 226,230, 

subcutaneous bleeding, muscle haematoma, haemarthrosis, intracerebral bleeding 

(34%), mucosal tract bleeding mostly in the oral cavity (lips, tongue and gum) and 

intraperitoneal bleeding231.  In women symptoms like menorrhagia and bleeding at 

the time of ovulation (20%), recurrent pregnancy loss are the common cause of 

habitual spontaneous abortion  227,228. Lifelong bleeding tendency and abnormal 

wound healing (29%) probably caused by defective angiogenesis and fibrinolytic 

system are the result of a lack of FXIII-A protein 162.   

Heterozygous FXIII deficiency  

Mild FXIII deficiency has come to the fore only in the past few years, since this 

deficiency is difficult to detect owing to it’s primarily asymptomatic phenotype. 

However the high risk of bleeding complication in case of a surgery or trauma in mild 

FXIII deficiency presents a realistic clinical danger. Additionally, the potentially high 

incidence of mild FXIII deficiency for the German population i.e. 1 out of 1000 

individuals, implicates a high number of undiagnosed carriers that presents a clinical 

challenge to clinicians across the globe. Isolated heterozygous mutations act in a 

variable way on the FXIII enzyme activity and stability resulting in a wide range of 

phenotype from severe clinical symptoms up to an asymptomatic phenotype because 

of its pleiotropic nature 217,232 
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Heterozygous deficiency is defined by FXIII activity levels between 30 – 60% that is 

considered enough to prevent spontaneous bleeding, but can cause a delayed 

bleeding diathesis in carriers when provoked. Some carriers show bleeding 

symptoms or wound healing problems in spite of nearly normal FXIII activity while 

others with lower FXIII activity are asymptomatic making this deficiency even more 

difficult to detect and phenotypically perplexing. Heterozygous Females suffer from 

menorrhagia, postpartum haemorrhage and face difficulties in in vitro fertilization if 

not treated with factor concentrates 26,233. The functional impact of the heterozygous 

mutations are often explained by the the heterotetrameric nature of the FXIII protein. 

One allele carrying a mutation or polymorphism can influence the phenotype of the 

protein in a dominant/ semi-dominant manner if this mutation can impact the hetero-

merization process negatively.   

The range of FXIII activity of standard normal plasma pools is very high showing 

normal activity between 60-250% which is influenced by age, sex, smoker or non-

smoker. Levels below 60% are observed in mild or severe FXIII deficiency.  An 

associative classification was recently developed on the measured FXIII activity and 

clinical symptoms i.e. 

1) Mild deficiency characterised through FXIII activity levels > 30% showing 

mostly an asymptomatic phenotype 

 

2) Moderate deficiency with FXIII activity levels < 30% showing mild bleeding 

symptoms which can be provoked or spontaneous 

 

3) Severe FXIII deficiency with undetectable FXIII activity is associated with 

severe spontaneous bleeding diathesis 
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Another study for the European Network of Rare Bleeding Disorders 231 classified 

bleeding of FXIII deficiency in three grades. Therefore grade 3 stands for 

spontaneous major bleeding like umbilical cord bleeding, gastrointestinal or 

intramuscular bleeds which they found for 48.5% of their patients. Only 6.1 % of 

patients showed minor spontaneous bleeding events like oral epistaxis, cavity 

bleeding or menorrhagia which is classified as grade 2. Grade 1 bleeding which 

appears after provocation like surgery, trauma or drug induced was also found in 

small minority of the patients (6,1%). The rest of the patients were asymptomatic 

39,3%  showing a mean activity level of 31 U/dl (10.83-51.31U/dl) 231.  

Diagnosis 

FXIII deficiency is hard to detect because normal standard global coagulation tests 

like the prothrombin time (PT) or activated partial thromboplastin time (aPTT) are not 

influenced by FXIII deficiency. Special specific tests are required to diagnose the 

FXIII deficiency. The qualitative clot solubility tests which is used since detection of 

the first FXIII deficiency case in 1960 but which unfortunately can only detect the 

severe FXIII deficiency can be only used if activity values are nearly zero 25.  

Newly developed quantitative functional tests are used to determine the FXIII activity 

which is abnormal if the patient carry a defect in the FXIII-A subunit or the FXIII-A 

protein is non-functional.  Therefore the chromogenic assay which determines FXIIIa 

activity indirectly by measuring ammonia (during a FXIII specific transglutaminase-

NADH coupled reaction) release is used in most of the laboratories but is not 

accurate in the low ranges (activity below 20%) if compared with the incorporation 

assay which is more fitted to the natural function of FXIII. The incorporation assay is 

a functional test used to measure the FXIII activity through incorporation of a 

biotinylated amine substrate [5-(biotinamido) pentylamine] into fibrinogen which is 
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immobilized on a microtiter plate. Recalcification and the addition of thrombin serve 

to activate the zymogenic FXIII. The incorporated amine is labelled with a 

streptavidin-enzyme and coupled with an chromogenic substrate to detect the colour 

change or the amount of ammonia release is detected. Both detection methods are 

proportional to the transglutaminase reaction rate which indicates the activity. 

To examine if the low activity is owing to A or B subunit deficiency the ELISA based 

measurement of FXIII-A2, FXIII-B2 or FXIIIA2B2 antigen is recommended. According 

to the ISTH joint SSC committee rules for the diagnosis of FXIII deficiency the 

standard protocol involves first to measure the FXIII activity. If FXIII activity is less an 

Elisa to detect antigen of FXIII heterotetramer has to be followed. Screening the lack 

of the individual subunits in order to identify the type of deficiency is the last step 

before genetic gene screening (F13A1 or F13B genes) of the individual subunit can 

be done.   

Treatment 

FXIII deficiency whether congenital or acquired, needs next to a good detection 

system adequate and quick treatment because of the high risk for fatal bleeding 

diathesis in case of intracranial haemorrhage or massive joint bleeding. Primary 

prophylaxis (10-20 U/kg FXIII once per month) to prevent severe bleeding 

complications for FXIII deficient patients especially for patients with levels below 1 

U/dL is recommended 250,251. Factor replacement therapy is necessary for women 

suffering from congenital FXIII deficiency if pregnancy is a wish 26. 

In general physicians follow the hypothesis that >10% of FXIII activity of the normal 

population is enough to prevent spontaneous severe bleeding episodes and 

therefore prophylaxis is not recommended. Still,10% of the patients with levels above 

10% have a risk of cutaneous bleeding diathesis 250,251. Provoked bleeding in case of 
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trauma or surgery might occur or pregnancy is planned and therefore higher levels of 

FXIII activity are needed.  

Patients suffering of FXIII-A2 deficiency are recently treated with recombinant FXIII-

A2 (rFXIII-A2) which is produced in yeast Saccharomyces cerevisiae and therefore 

free of human or mammalian contamination originally developed by ZymoGenetics 

but recently aquired by Novo Nordisk (Novo Nordisk A/S, Copenhagen, Denmark) in 

2004 251,252. In the best case the free rFXIII-A2 binds in the plasma to the free FXIII-B2 

to form a heterotetramer showing half-life of approximately 10-14 days similar to 

native heterotetramer FXIII. rFXIII-A2 is not suitable for Patients suffering from FXIII-B 

deficiency having short FXIII half-life times of because of lacking the B-Subunit 251,253.  

rFXIII are a more safe and efficient option containing no human/ mammalian product 

then treating with plasma-derived sources of FXIII from fresh frozen plasma, 

cryoprecipitate or plasma-derived, virally inactivated FXIII concentrates which show a 

high risk for allergic reaction and infection (Hepatitis, HIV or other pathogens). No 

development of neutralizing alloantibodies or worse threatening complications came 

out in three trials detecting the pharmacokinetics of the product 54,253. For bleeding 

prophylaxis of FXIII-A deficient patients a dosing of 35 IU/kg of rFXIII-A2 independent 

of age and gender is suggested 54,251,253.   

 

FXIII Mutation Profile and Protein misfolding  

Mutations changing the amino acid sequence can lead to remarkable effects on 

protein stability. Several point mutations in genes coding for coagulation proteins 

have been found to reduce their stability and therefore their function 234. The function 

of proteins is related to its stability which can be measured by the change in folding 
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energy i.e. ΔΔG of the protein structure 61,234. Disease causing mutations destabilize 

the protein structure depending on the type of amino acid substitution, although some  

may also stabilize the protein structure 61. Most of the missense mutations reported 

so far destabilize the protein and lead to loss of function because of protein 

instability.  

Worldwide over 500 cases of severe FXIII deficiency have been reported since Webb 

et al. published in 1992 the first genetic mutation causing FXIII deficiency 86. The 

majority of the mutations found to cause congenital severe FXIII deficiency are 

localized in the F13A1 gene leading to a Type-I defect while the B subunit deficiency 

results mostly in a mild bleeding phenotype 235. 

Only one well known polymorphism, the Val34Leu, has been reported from F13A1 

gene which leads to a Type 2 FXIII deficiency i.e.  impaired enzyme function in spite 

of normal antigen levels. This polymorphism (Val34Leu) in the activation peptide 

increases the activation rate of FXIII-A 3.2-fold faster 236 because of more efficient 

thrombin cleavage but leading to abnormal clot formation. The opposite effect was 

found for the peptide model rFXIII V34A variant located on the same position 

resulting in decreased activation rates 85,236,237. Out of 200 patients from a pilot study 

in Bonn 23 novel heterozygous missense mutations (16 in the F13A1) and 7 in the 

F13B were detected in the mild form of FXIII deficiency. This suggested that in this 

form of FXIII deficiency a higher proportion of mutations existed in the FXIII B subunit 

gene  217,235,238,239. 

Out of 112 reported mutations so far the majority (96 %) are located in the F13A1 

gene. Most of the mutations are of the missense type followed by splice site and 

deletions.  
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Polymorphism in the FXIII-A gene 

Racial variations in the FXIII-A subunit gene have been listed for the Asian, 

Caucasians and African populations in the International HapMap project 

(www.hapmap.org). Out of 5 F13A1 nucleotide variations, only the V34L (c.103G>T, 

rs5985) polymorphism was characterized and described further, especially in regard 

of the risk of coronary artery disease (CAD)240,241. The variant was found to have a 

protective effect against venous thromboembolism 242 and myocardial infarction 243 by 

increasing the rate of FXIII activation. The Leu34 allele was found to decrease the 

risk for CAD only in patients with an elevated fibrinogen concentration241 followed by 

meta-analysis showing an overall protective effect against CAD 242,243.  

Another polymorphism, Pro564Leu, leads to lower FXIIIA antigen levels but 

increased enzymatic activity, while Tyr204Phe was found to have low antigen levels 

as well as lowered activity leading to recurrent pregnancy loss 227,244. Both the 

Pro654Leu as well as the Tyr204Phe polymorphism lead to a higher risk for nonfatal 

haemorrhagic stroke in young women (<45 years) 245.  

Polymorphism of FXIII-B gene 

Three major population-associated phenotypes were found to be characteristic for 

Europeans, Africans and Asian populations: FXIII-B*1, FXIII-B*2, FXIII-B*3. Board et 

al. was the first who reported a gene polymorphism of the F13B gene 246. One of the 

polymorphism the FXIII-B*2 is a His95Arg transversion located within the exon 3 247 

which is the major allele among black Africans with 72.5% (International Hapmap 

http://www.hapmap.org/
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Project available online: http://hapmap.ncbi.nlm.nih.gov/ (accessed on 15 October 

2014) but rare in white people (7,5%) and not found in Asien (International Hapmap 

Project). The polymorphism leads to a higher risk of venous thromboembolism 247 

and an increased risk of mortality after cerebral ischemia of arterial origin 248,249. 

Additional it was found to decrease the risk for nonfatal MI in postmenopausal 

women in case of homozygous expression 249.  

Another polymorphism was detected in the intronic region of the B-subunit at the 

position of intron K nt29756 C>G (IVS11+144, rs12134960) and found frequently in 

the Asian population (International Hapmap Project). 14,2% of white population are 

carrier of this polymorphism and Africans don’t show it at all (International Hapmap 

Project). The C to G exchange leads to a novel splice site acceptor site with a new 

splicing product exchanging the last 10 C-terminal located amino acids by 25 other 

amino acids. Therefore carriers show lower FXIII activity and lower antigen levels 241 

with significant protection against coronary atherosclerosis (CAS) and myocardial 

infarction (MI) 241.  
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1.3 Part III: Objectives and thesis outline  

 

Primary Objectives of this Thesis  

 

1.) To heterologously express FXIIIB subunit missense mutations detected in 

patients with mild FXIII deficiency and study their effect on the B subunits 

antigenic stability and secretion phenotype in order to establish their causality. 

 

2.) To model and simulate structures for the FXIIIB subunit sushi domains in order 

to predict the structural impact of FXIIIB subunit missense mutations and to 

correlate it with the expression data obtained from Objective 1. 

 

3.) To heterologously express FXIIIA subunit missense mutations detected in 

patients with mild FXIII deficiency and study the expression phenotype in order 

to establish causality as well as the impact of these mutations on the different 

functional aspects of FXIII. 

 

4.) To use in silico structural data from known crystal structures of FXIIIA subunit 

to understand the structural and functional correlations for the FXIIIA subunit 

missense mutations being expressed for Objective 3. 

Thesis outline 

This thesis outlines a study undertaken to develop a thorough understanding of the 

patho-molecular mechanisms underlying the functional impact of isolated 

heterozygous mutations that occur in the F13A1 and F13B genes and result in mild 

FXIII deficiency. While the severe form of FXIII deficiency (FXIII activity < 1%) is an 

extremely rare event/disease, the mild or moderate form of this deficiency 

characterized by isolated heterozygous mutations in F13A1 and F13B genes  and 
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FXIII activity levels of 30 – 60% is believed to affect a significantly larger proportion of 

the general population. Mild FXIII deficiency is hard to detect because the patients 

are often asymptomatic unless they are exposed to some kind of a physical trauma. 

This is also the reason why in spite to its anticipated high frequency (1 out of 1000 in 

Germany = 80,000 potential carriers) it has not been reported in literature so far. In 

addition, there exists no strict correlation between bleeding symptoms and activity/ 

antigen levels making it difficult to develop a clinical definition for this deficiency. 

However, the fact that this deficiency is associated with a primarily asymptomatic 

phenotype does not make it clinically irrelevant. A large number of patients suffering 

from this deficiency are at a significant risk of bleeding when exposed to physical 

trauma especially in such situations involving hemorrhagic shock. Hemorrhagic shock 

presents a dangerous clinical situation involving severe trauma. It is associated with 

high mortality and morbidity since it leads to inadequate blood perfusion to vital 

organs and tissues. Such conditions are collectively known as trauma-hemorrhagic 

shock (THS) which might lead to insufficient microcirculation, tissue hypoxia and 

finally organ damage. These patients also develop severe coagulation related issues 

due to the transient loss of vital coagulation and fibrinolytic proteins because of 

sudden blood loss and/or consumption. Therefore the pre-identification of such 

individuals (i.e. who carry the mild FXIII deficiency) is of prime importance in order to 

be able to “prevent” blood loss in such conditions. Since phenotypically diagnosis of 

this deficiency is not easy, identifying genotypes that correspond to this disorder will 

go a long way in diagnosing this disease. Also since detection of a genotype in such 

a disorder which often does not show a clinical phenotype is not enough (since there 

is no way of knowing from the clinical data that the genotype is causal), the 

characterisation of mutations corresponding to these genotypes is very important.  
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On these grounds the purpose of this study was to characterize 23 missense 

variants that had been detected in the F13A1 and F13B genes from patients with 

mild FXIII deficiency. These mutations had been detected and reported by 

Ivaskevicius and Biswas et. al. in a series of articles that have for the first time 

highlighted the concept of mild  FXIII deficiency and its clinical relevance235 239. 

These articles had several unique observations, one of them being that mutations in 

the F13B gene occur proportionately at a higher rate in mild FXIII deficiency than that 

observed in its severe form. Therefore, a significant part of this thesis deals with 

characterizing the B subunit missense mutations i.e. the first two articles submitted 

as part of this cumulative thesis. The third and last article describes the analysis done 

for the A subunit mutations. All this analysis was performed using a combined in vitro 

and in silico approach. 

 The first publication that has been included in this thesis sheds light on the 

structure of the B subunit. The structure of the FXIIB subunit has not been resolved 

so far crystallographically or by NMR. However, this protein shares significant 

homology with certain proteins from the complement system like complement Factor 

H and like CFH is entirely comprised of repetitive predominantly beta sheeted sushi 

domains. Since sushi domains have a highly conserved (3+2 beta sheet interrupted 

by disordered variable length loops) core structure and high resolution structures of 

many sushi domains including that of CFH exist in the protein structure database, we 

adopted a homology modelling approach in order to generate protein models for the 

10 sushi domains which form one monomer of the B subunit dimer. We used 

conserved structural disulphide bonded cysteines as guidepost residues in order to 

generate close spaced multiple alignments of template CFH sushi domain sequences 

and B subunit sushi domain sequences. Closer alignments were selected on the 

basis of a generated NJ (neighbourhood joining)-tree and fed into the Modeler 



50 

 

molecular modeling software to generate the models for the sushi domains. Later we 

analysed the structural positioning of the residues on which the 7 FXIIIB sububnit 

missense mutations had been reported, on these models. We found that many of 

these mutations were on residues that were surface exposed. However, the ones 

affecting the cysteines that are part of structural disulphide bonds were deep seated 

within the core of the sushi domains. In the same article we also expressed these 7 

missense mutations in HEK293t cells and determined their intracellular and 

extracellular antigenic levels at different time points. We observed that all these 7 

mutations showed different patterns of secretion.    

This work was then followed up by work that is included in the next article 

(Publication 2) that is part of this thesis. In this article, we performed heterologous 

expression of the same 7 missense mutations but in heterozygous form (i.e. co-

transfected with the wild type) in order to mimic their patient heterozygous status. We 

also performed confocal microscopy in order to determine if the differences in 

secretion pattern observed in the first article corresponded to a genuine secretion 

defect or not. Furthermore, we mixed expression products of these mutations with 

rFXIIIA (recombinant FXIIIA) subunit in order to study if these mutations influence the 

B subunit´s interaction with the A subunit. Structurally, we modelled these mutations 

on the sushi domain homology models generated, validated and published in the first 

article and simulated these domains in order to understand better the structural 

impact of these mutations. To summarize, from the second follow up article we could 

categorize these 7 mutations into ones that had a genuine secretion defect, ones that 

influenced interaction with the A subunit and the ones which had purely an affect on 

the antigenic stability.   
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In the third and last article from this cumulative thesis we have expressed and 

analysed 16 variants detected in the FXIIIA subunit gene (F13A1) in Cos-1 cell lines. 

Since the A subunit of FXIII is its catalytic part, the A subunit mutations expression 

phenotype had to analysed for several aspects. Therefore, apart from investigating 

the impact of these mutations on the antigenic stability and activity status, we 

analysed the expression phenotype for many other aspects like alpha-2-antiplasmin 

incorporation, non proteolytic activation, rate of activation and deactivation, rate of 

fibrin polymerization and clot thickness. In addition we also investigated the structural 

impact of these mutations by in silico modelling them on reported crystal structures of 

the zymogenic and activated forms of FXIIIA.  The overall picture to emerge from this 

analysis was that mutations in the F13A1 gene influence different aspects of FXIIIA 

subunit function and therefore can be categorized accordingly. These mutations 

could be categorized under those that influence thrombin cleavage of FXIIIA at the 

activation peptide region, influence incorporation of alpha-2-antiplasmin, and 

therefore affect alpha-2-antiplasmin/FXIII i.e. substrate enzyme interaction, influence 

rate of fibrin polymerization and therefore have an impact on FXIII/fibrinogen 

interaction, affect the rate of FXIII activation. Almost all mutations were found to 

finally influence clot thickness. 
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Publication 1 

Published in Human mutation as a Research article 

Title: In vitro secretion deficits are common among human coagulation factor 

XIII subunit B missense mutants:  Correlations with patient phenotypes and 

molecular models 

Authors: Arijit Biswas1†, Anne Thomas1†, Carville G. Bevans2†, Vytautas 

Ivaskevicius1, and Johannes Oldenburg1 

1Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53105 

Bonn, Germany;  

2Im Hermeshain 6, 60388 Frankfurt am Main, Germany 

    †
Equally contributing first author 

Abstract 

Coagulation factor XIII (FXIII) pro-enzyme circulates in plasma as a heterotetramer 

composed of two each of A and B subunits. Upon activation, the B subunits 

dissociate from the A subunit dimer which gains transglutaminase activity to cross-

link preformed fibrin clots increasing mechanical strength and resistance to 

degradation. The B subunits are thought to possess a carrier/protective function prior 

to FXIII activation. Mutations in either A or B subunits are associated with 

pathological patient phenotypes characterized by mild to severe bleeding. In vitro 

expression of FXIII B subunit (FXIIIB) missense variants in HEK293T cells revealed 

impaired secretion for all seven variants studied. To investigate the likely molecular 

environments of the missense residues, we created molecular models of individual 

FXIIIB Sushi domains using phylogenetically similar complement factor H (CFH) 

Sushi domain structural templates. Assessment of the local molecular environments 

for the models suggested surface or buried positions for each mutant residue and 

possible pathological mechanisms. The in vitro expression system and in silico 

analytical methods and models we developed can be used to further investigate the 

molecular basis of FXIIIB mutation pathologies. 
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gains transglutaminase activity to cross-link preformed

fibrin clots increasing mechanical strength and resis-

tance to degradation. The B subunits are thought to pos-

sess a carrier/protective function before FXIII activation.

Mutations in either A or B subunits are associated with

pathological patient phenotypes characterized by mild to

severe bleeding. In vitro expression of FXIII B subunit

(FXIIIB) missense variants in HEK293T cells revealed

impaired secretion for all seven variants studied. To in-

vestigate the likely molecular environments of the mis-

sense residues, we created molecular models of individ-

ual FXIIIB Sushi domains using phylogenetically similar

complement factor H Sushi domain structural templates.

Assessment of the local molecular environments for the

models suggested surface or buried positions for each mu-

tant residue and possible pathological mechanisms. The

in vitro expression system and in silico analytical methods

and models we developed can be used to further investigate

the molecular basis of FXIIIB mutation pathologies.
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Introduction

Coagulation factor XIII (FXIII) is a heterotetrameric pro-

tein complex composed of two A subunit (FXIIIA) and two B

subunit (FXIIIB) homodimers encoded by separate FXIIIA and

FXIIIB genes [Lorand et al., 1980]. FXIIIA is a transglutaminase en-

zyme responsible for covalently cross-linking fibrinogen and other

proteins involved in regulation of clot maintenance and, subse-

quently, fibrinolysis during wound healing. Thus, it has a primary

role in clot stabilization after the primary coagulation process is

completed. Contrastingly, FXIIIB has no enzymatic activity and is

thought to be a carrier protein that stabilizes FXIIIA dimers be-

fore activation in blood plasma, increasing their circulating half-life

[Souri et al., 2008b]. Deficiencies in FXIII activity arise through two

distinct pathological mechanisms. Acquired deficiencies are more

common than inherited genetic deficiencies and are caused by ei-

ther inhibitors (autoimmune antibodies) or systemic depletion of

FXIII by chronic inflammatory conditions [Ichinose, 2011]. Inher-

ited FXIII deficiency caused by FXIIIA (MIM #613225) or FXIIIB

(MIM #613235) gene mutations is a rare condition, currently es-

timated to affect approximately one in six million individuals, for

example, in the general German population. These mutations result

in a broad spectrum of bleeding pathologies, usually only discov-

ered incidentally in patients suffering traumas or undergoing surgi-

cal procedures [Peyvandi et al., 2012]. This suggests the number of

undiagnosed patients may be much higher than previously believed

[Biswas et al., 2011]. The broad implications for heritable FXIII defi-

ciencies on patient health have been highlighted in the literature and

notably include detrimental effects on wound healing (fibrinolysis)

[Muszbek et al., 2008], complications following myocardial infarc-

tion [Nahrendorf et al., 2006a, 2006b], thrombosis risk [Muszbek

et al., 2010], angiogenesis of significance to tumorigenesis and can-

cer [Dardik et al., 2005, 2006], and carrying pregnancy to term

[Inbal and Muszbek, 2003; Muszbek et al., 2011; Palumbo et al.,

2008; Vossen et al., 2011]. Until the 1980s, the research literature

in the field predominantly comprised descriptive reports of ho-

mozygous F13A1 (RefSeq NM 000129.3; MIM #134570) and F13B

(RefSeq NM 001994.2; MIM #134580) mutations with associated

severe patient pathological phenotypes [Biswas et al., 2011; Levy

and Greenberg, 2012]. Recently, the Project on Consensus Defini-

tions in Rare Bleeding Disorders suggested an associative classifica-

tion of FXIII deficiency severity based on measured FXIII activity

and clinical bleeding severity [Peyvandi et al., 2012]. Accordingly,

FXIII deficiency is described by the following three-tier classification

C© 2013 WILEY PERIODICALS, INC.



Table 1. Tabular Overview of Reported FXIIIB Missense Mutations

cDNA Protein Literature reference

F13B:c.73T>C FXIIIB:p.Cys5Arg Ivaskevicius et al. (2010)

F13B:c.302T>A FXIIIB:p.Ile81Asn Ivaskevicius et al. (2010)

F13B:c.406C>T FXIIIB:p.Leu116Phe Ivaskevicius et al. (2010)

F13B:c.709G>A FXIIIB:p.Val217Ile Ivaskevicius et al. (2010)

F13B:c.1007G>T FXIIIB:p.Cys316Phe Ivaskevicius et al. (2010)

F13B:c.1262T>A FXIIIB:p.Val401Glu Ivaskevicius et al. (2010)

F13B:c.1342C>T FXIIIB:p.Pro428Ser Ivaskevicius et al. (2010)

F13B:c.1349G>T FXIIIB:p.Cys430Phe Hashiguchi et al. (1995)

Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of
the ATG translation initiation codon in the reference sequence, according to journal
guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1. All protein
residue references are with regard to the processed prepropeptide, which begins with
Glu1 corresponding to the 21st residue of the translated, unprocessed pre–pro sequence
of FXIIIB.

system: (1) severe deficiency, undetectable FXIII activity associated

with spontaneous major bleeding; (2) moderate deficiency, <30%

FXIII activity associated with mild spontaneous or triggered bleed-

ing; (3) mild deficiency, >30% FXIII activity associated with a mostly

asymptomatic disease course. The majority of causative FXIII het-

erozygous or homozygous mutations affect the F13A1 gene [Biswas

et al., 2011], but seven different heterozygous F13B gene mutations

were recently discovered that are associated with heritable mild FXIII

deficiency [Ivaskevicius et al., 2010b]. Previously only five FXIIIB

mutations, including only one missense mutation, were reported.

To date, there have been several expression-based analytical stud-

ies for mutations associated with severe FXIII deficiency [Balogh

et al., 2000; Hettasch and Greenberg, 1994; Maeda et al., 2012;

Mikkola et al., 1997; Vysokovsky et al., 2006; Wang et al., 2011;

Zheng et al., 2011]. However, only one of these investigated a FXI-

IIB missense mutation that was at that time the only one known

and that causes mild-to-moderate FXIII deficiency [Hashiguchi and

Ichinose, 1995; Saito et al., 1990]. The current study investigates the

molecular basis for moderate and mild FXIII deficiencies arising

from seven additional FXIIIB missense mutations we previously

identified in patients with reported clinical phenotypes (see Ta-

ble 1 for a complete listing of known FXIIIB missense mutations)

[Ivaskevicius et al., 2010b]. Specifically, we used a parallel strategy

that included in silico comparative modeling of the human FXIIIB

Sushi domains, in order to explore possible pathological mecha-

nisms, and in vitro expression of the wild-type and mutant FXIIIB

variants in HEK 293T cells to assess their intracellular expression

and secretion levels.

Materials and Methods

Cloning and Site-Directed Mutagenesis

The human FXIIIB gene was cloned into the mammalian

expression vector pEZ-MO1 (Genecopia, Rockville, MD, USA)

according to the manufacturer’s recommendations. Site-directed

mutagenesis corresponding to the seven previously identified FXI-

IIB missense mutations (Table 1) was performed on the methy-

lated pEZ-MO1-FXIIIB Vector using the Gene Tailor site directed

mutagenesis kit (Invitrogen, Darmstadt, Germany) using primers

shown in Supp. Table S1. Nucleotide numbering reflects cDNA

numbering with +1 corresponding to the A of the ATG transla-

tion initiation codon in the reference sequence, according to jour-

nal guidelines (www.hgvs.org/mutnomen). The initiation codon is

codon 1. All protein residue references are with regard to the pro-

cessed prepropeptide, which begins with Glu1 corresponding to

the 21st residue of the translated, unprocessed pre–pro sequence of

FXIIIB.

Mutational Database Submissions

The eight previously reported F13B missense mutations have been

registered with the Factor 13 Registry Database (http://www.f13-

database.de/) and additionally updated to the Leiden Open Varia-

tion Database (LOVD version 2.0 Build 35; accessed on 11.06.2013

at http://www.lovd.nl/F13B).

Cell Culture, Transfection, and Protein Expression

FXIIIB variants were heterologously expressed in HEK 293T cells

(DSMZ German Collection of Microoganisms and Cell Cultures,

Braunschweig). The cells were cultured in 10 cm dishes with Dul-

becco’s Eagles Medium (DMEM Invitrogen) supplemented with

10% fetal bovine serum (Invitrogen), 1% penicillin–streptomycin

(Invitrogen), and 0.1% Fungizone (Invitrogen) at 37◦C in 5% CO2.

For transfection, 2.7 × 106 million cells were seeded into six-well

plates with DMEM (with FBS) without supplements and trans-

fected using Lipofectamin 2000 reagent (Invitrogen). Cotransfec-

tion of mutants was done at a 4:0.5 ratio with a pCMV-LacZ Vector

(Clontech, Heidelberg, Germany) containing the LacZ gene for nor-

malizing transfection efficiencies. All FXIIIB variant transfections

were performed in triplicate (n = 3) for each of three separate HEK

293T cell passages (N = 3).

After 4 hr, incubation medium was changed and supernatants

and lysed cells were collected after 12, 24, and 36 hr. The super-

natants were centrifuged at 14,000g to remove cell debris. Collected

cells were washed, lysed by incubation with 260 µl nondenaturing

lysis buffer (native M-PER Mammalian Protein Extraction Reagent

buffer; Thermo Scientific, Schwerte, Germany) containing 25 mM

bicine, pH 7.6, supplemented with 0.1 mM PMSF for 10 min and

centrifuged at 14,000g for 5 min at 4◦C. Both supernatants and cell

lysates were stored at –80◦C for further analysis.

FXIIIB Antigen Quantitation

FXIIIB antigen was quantified for culture supernatants and cell

lysates in cell lysis buffer using the Technozym FXIII-B:Ag Sub

ELISA kit (Technoclone GmbH, Vienna, Austria) according to the

manufacturer’s instructions. Standard assay detection limit was

0.95 µg/ml; lower antigen concentrations to 0.009 µg/ml (sensitiv-

ity) were determined according to the manufacturer’s dilution pro-

tocol. FXIIIB levels from normal pooled plasma and from high/low

controls from the kit were measured as controls.

Normalization of Intracellular and Secreted FXIIIB Variant
Levels for Transfection Efficiency

FXIIIB variant-transfected HEK 293T cells were cotransfected

with a β-galactosidase encoding reporter vector in order to nor-

malize transfection efficiencies among experiments. Equal aliquots

of cells from triplicate wells for each time point and for three

separate transfections of each FXIIIB variant (n = 3 replicates

for each of N = 3 transfections on different cell passages, total

nine samples) were pooled and frozen at –80◦C for later evalua-

tion of β-galactosidase expression by a standard colorimetric assay

(Thermo Fisher Scientific, Schwerte, Germany) according to the

HUMAN MUTATION, Vol. 34, No. 11, 1490–1500, 2013 1491



manufacturer’s directions. The β-galactosidase levels for each of the

FXIIIB variant transfections (Supp. Fig. S1) were divided by the

wild-type FXIIIB-transfected β-galactosidase level to yield normal-

ization constants for transfection efficiency. For each of three sep-

arate FXIIIB variant transfections (N = 3), the raw FXIIIB antigen

concentrations were divided by the respective transfection efficiency

normalization constants to yield the final normalized FXIIIB levels

for both intracellular and secreted samples.

Comparison of Mean Intracellular and Secreted FXIIIB
Variant Levels

From the intracellular FXIIIB variant expression and secretion

levels presented in Figure 1, relative mean normalized FXIIIB levels

for each of the mutant variants were calculated by dividing the

mean for each triplicate of bars for the variant time points by the

means of each triplicate of bars for the wild-type data. This yielded

the equivalent fractional value of intracellular or secreted FXIIIB

variant relative to the wild-type levels as shown in Figure 2 where a

value of 1.0 at each time point represents the wild-type FXIIIB level.

Statistical Analysis

All transfections were repeated in triplicate (n = 3) for three dif-

ferent passages (N = 3) of the same cell line (i.e., yielding three

independent mean ± SEM values; Fig. 1). Statistical differences in

expression levels were analyzed using one-way ANOVA with Fisher’s

ad hoc post-test (P < 0.05 considered significant) using Kaleida-

Graph 4.1.3 (Synergy Software, Reading, PA, USA).

Modeling of FXIIIB Sushi Domains and Assessment of
Predicted Local Protein Environments for FXIIIB
Missense Mutations

High-quality homology models of the ten FXIIIB Sushi domains

were constructed based on sequence similarity clustering with se-

quences for 13 available high-resolution Sushi domain structures

for the human CFH protein (RefSeq NM 000186.3, Supp. Table

S2). Template choices were determined by constructing a neighbor-

joining (NJ) tree for individual FXIIIB and CFH Sushi domain

sequences using the BLOSUM62 amino-acid substitution matrix

(Supp. Fig. S2) [Henikoff and Henikoff, 1992; Saitou and Nei,

1987]. Accordingly, a protein multiple sequence alignment (MSA)

for choosing optimal structural template/target pairs was created

using a NJ algorithm implemented by MAFFT (L-INS-i option

for small-scale accuracy-oriented alignment using a summation

of a weighted sum-of-pairs score as objective function and all-

to-all pairwise consistency scoring from local alignments) in the

Jalview 2.7 java-based MSA editor implementing the Java Bioinfo-

matics Analysis Web Services system (JABAWS) [Katoh and Toh,

2008; Waterhouse et al., 2009]. The resulting MSA was refined by

hand curation in order to achieve optimized close-spaced align-

ment (Supp. Fig. S3) (Supp. Methods). A phylogenetic NJ algo-

rithm was used to sort the sequences into a relationship tree where

sequences closest together share the highest sequence and structural

homology. Thus, for any FXIIIB Sushi domain target sequence, the

most appropriate structural template will correspond to the nearest

CFH Sushi domain sequence in the tree (Supp. Fig. S2, cf. FH20,

FXIIIB-S8 and FXIIIB-S10, for example). If the nearest CFH Sushi

domain has no known solved structure, the next-nearest available

structural template was chosen from the NJ tree (Table 2). In or-

der to independently validate our NJ method choices for best tar-

get/template matches, we calculated% sequence identities using the

European Bioinfomatics server implementation of ClustalW2 for

all target/template sequence pairs (Table 2) [Goujon et al., 2010;

Larkin et al., 2007]. Homology models were constructed using the

Modeller 9v7 software package (Supp. Methods). Ten models were

generated for each FXIIIB Sushi domain and the final model se-

lected with the lowest value of the calculated MODELLER objective

function. All-atom structure validation of final models (Table 3), as

well as for five previously published FXIIIB Sushi domain models

(Supp. Table S3) from Soares et al. (2005) for which the model-

ing template sequences are not available, was performed using the

MolProbity server at http://molprobity.biochem.duke.edu/ [Chen

et al., 2010]. Flipping of branched Asn, Gln, and His side-chain

rotamers by 180◦ was performed when improvements in stereo-

chemical parameters resulted for the FXIIIB Sushi domain models

(Table 3) [Word et al., 1999]. Molecular model coordinate files

for the FXIIIB Sushi domains were deposited in the Protein Model-

ing Database (http://mi.caspur.it/PMDB/) under accession numbers

PM0078467 through PM0078476 [Castrignano et al., 2006]. Tem-

plate appropriateness for 20 available models comprising 58 unique

FXIIIB Sushi domains collected from public databases [ModBase

(Pieper et al., 2011] and SWISS-MODEL Repository [Kiefer et al.,

2009]) was evaluated as calculated% sequence identity for each

aligned target/template sequence pair using ClustalW 2.0 as de-

scribed above or as evaluated on the PSI Protein Model Portal

at http://www.proteinmodelportal.org/query/uniprot/P05160 (ac-

cessed 22 October 2012; Supp. Table S4) [Arnold et al., 2009].

Results

Quantitation of Expression and Secretion for Wild-Type
FXIIIB and Missense Mutations Causing FXIIIB Deficiency
in Heterozygous Patients

We successfully expressed wild-type and seven FXIIIB missense

variants, identified from our previously reported FXIII deficiency

patient cohort [Ivaskevicius et al., 2010b], in HEK 293T cells and

measured intracellular and secreted FXIIIB protein concentrations

over 36 hr in 12 hr intervals (Fig. 1). In this in vitro system, intracel-

lular and secreted levels of FXIIIB variants were highly reproducible

at all time points for replicates (n = 3) of three separate transfections

(N = 3) performed on different cell passages.

Although we observed significant differences among levels for

only a minority (36 out of 144; 25%) of the repeated transfec-

tions (P < 0.05 for wild-type 24 hr I, 36 hr I&S; Cys5Arg 24 hr

S; Ile81Asn 24 hr S, 36 hr I&S; Leu116Phe 36 hr S; Val217Ile

36 hr S; Cys316Phe 12 hr I, 24 hr I&S, 36 hr S; Val401Glu

24 hr S, 36 hr I; Pro428Ser 24 hr S, 36 hr I&S; I, intracellular;

S, secreted), the intracellular or secreted levels for independent

transfections in each group of three were significantly different

(P < 0.05) from the levels at the neighboring time point(s) for

all results (Fig. 1). This strongly suggests that results from our

in vitro methods are statistically robust. With respect to intracel-

lular protein levels at all time points, we found three distinct phe-

notypes: p.Cys5Arg (F13Bc.73T>C), p.Val217Ile (F13Bc.709G>A),

and p.Cys316Phe (F13Bc.1007G>T) all exhibited lower than wild-

type levels (P < 0.05); Leu116Phe (F13Bc.406C>T), Val401Glu

(F13Bc.1262T>A), and Pro428Ser (F13Bc.1342C>T) all exhibited

levels similar to wild-type (P ≥ 0.05); Ile81Asn (F13Bc.302T>A)
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Figure 1. Time course of expressed and secreted levels of FXIIIB variants. For wild-type FXIIIB and seven missense mutation variants white, light
gray, and dark gray bars represent results from three separate transfections on different cell passages (N = 3). Error bars represent ±standard error
of the mean (±SEM) for triplicate parallel transfections of each variant (n = 3). Results indicated as 12, 24, 36 hr for 12, 24, 36 hr between transfection
and separate harvesting of cells and culture supernatants, respectively. “Intracellular” results are for FXIIIB concentrations measured in cleared
cell lysates (400 µl total volume); “secreted” results are for undiluted cell culture supernatants (2 ml total volume); all FXIIIB concentrations
determined by ELISA assay (see Materials and Methods for details) and reported in units of µg/ml. Comparisons between results for wild-type
FXIIIB and each missense variant are summarized by symbols appearing over the results bars: o, not significantly different; –, significantly lower
variant concentration relative to wild-type; +, significantly greater variant concentration relative to wild-type (statistical significances determined
by ANOVA with ad hoc Fisher’s post-test; P < 0.05 was considered as significantly different).
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Figure 2. Fractional intracellular and secreted FXIIIB variant protein levels relative to wild-type levels for each time point. Panel A: Intracellular
levels of FXIIIB variants expressed in HEK 293T cells at 12, 24, and 36 hr normalized for transfection efficiency by cotransfected LacZ reporter
and normalized to intracellular wild-type FXIIIB mean expression level at each time point. Panel B: Secreted levels of FXIIIB variants expressed in
HEK 293T cells at 12, 24, and 36 hr normalized for transfection efficiency by cotransfected LacZ reporter and normalized to wild-type FXIIIB mean
secreted level at each time point. All values shown are means for three replicate measurements of each of three separate transfections using cells
from different passages. A value of 1.0 on the ordinate axis represents intracellular or secreted levels equivalent to those for transfected wild-type
FXIIIB.

Table 2. Choices of FXIIIB Sushi Domain Homology Modeling Template Structures from the NJ Tree in Supp. Figure S1

Target Rank 1 template Rank 2 template Rank 3 template Applied template Resolution (Å) Literature reference

FXIIIB-S1 FH8–2UWN FH9 FH6–2W81 FH6–2W81 2.35 Schneider et al. (2009)

32.3 28.6 34.3

FXIIIB-S2 FH8–2UWN FH9 FH6–2W81 FH8–2UWN 2.35 Prosser et al. (2007)

40.0 25.4 26.2

FXIIIB-S3 FH8–2UWN FH9 FH6–2W81 FH8–2UWN 2.35 Prosser et al. (2007)

34.8 30.2 22.7

FXIIIB-S4 FH10 FH3–2RLQ FH1–2RLP FH3–2RLQ Solution NMR Hocking et al. (2008)

29.2 29.2 24.6 lowest energy

FXIIIB-S5 FH14 FH11 FH19–3OXU FH19–3OXU 2.10 Morgan et al. (2011)

39.4 31.3 28.1

FXIIIB-S6 FH14 FH11 FH19–3OXU FH19–3OXU 2.10 Morgan et al. (2011)

34.8 29.9 32.8

FXIIIB-S7 FH19–3OXU FH11 FH14 FH19–3OXU 2.10 Morgan et al. (2011)

42.2 32.8 34.4

FXIIIB-S8 FH20–3OXU FH2—2RLP FH7–2W81 FH20–3OXU 2.10 Morgan et al. (2011)

33.8 18.5 29.0

FXIIIB-S9 FH19–3OXU FH11 FH14 FH19–3OXU 2.10 Morgan et al. (2011)

43.8 31.8 27.3

FXIIIB-S10 FH20–3OXU FH2–2RLP FH7–2W81 FH20–3OXU 2.10 Morgan et al. (2011)

36.8 16.9 21.0

Symbol key: Under column “Target” FXIIIB-Sn (n = 1 through 10) indicates FXIIIB Sushi domain n; under columns “Rank 1 template,” “Rank 2 template,” “Rank 3 template,”
and “Applied template” FHn (n = 1 through 20) alone indicates factor H Sushi domain n for which no high-resolution structure has been reported, FHn-XXXX indicates factor
H Sushi domain n for which the highest quality X-ray crystallographic or solution NMR structure is four-digit alphanumeric PDB entry number XXXX (see Table 2 for actual
PDB entry numbers). Numbers below template ranking entries are % identity between target and template sequences as calculated using ClustalW2 on the EBI Web-based
server (http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalw2; accessed 14 October 2012). For template FH3–2RLQ the lowest energy NMR structure was chosen
as modeling template from among the ensemble structures included in PDB entry 2RLQ.

exhibited significantly higher than wild-type levels (P < 0.05). Plot-

ting the grande means for each variant at 12 hr shows that intracel-

lular levels of all seven FXIIIB variants are in the range 60%–100%

with respect to wild-type levels, but that variant intracellular levels

achieved a broader range of 0%–130% with respect to wild-type lev-

els by 36 hr (Fig. 2A). Notably, only for the Cys5Arg variant did the

intracellular level appear to be consistent with protein production

being a primary limiting factor associated with FXIIIB deficiency.

However, secreted levels of all seven FXIIIB variants associated with

FXIIIB deficiencies were significantly lower than wild-type secreted

levels at all time points except for the Leu116Phe variant, which

exhibited no significant difference from wild-type secretion at the

intermediate 24 hr time point (Fig. 2B). By the 36 hr end point of

the study, all mutant FXIIIB variants showed significantly lowered

secretion ranging 0%–80% that of wild-type FXIIIB.

Modeling of Individual FXIIIB Sushi Domains for
Assessment of Possible Underlying Molecular
Mechanisms for the Seven FXIIIB Mutations of this Study

In order to explore possible structural correlates among the seven

mutant FXIIIB variants that might suggest underlying pathological

mechanisms, we produced high-quality homology models of the

FXIIIB Sushi domains (Figs. 3 and 4). Accordingly, we identified

appropriate modeling templates by a bioinformatics approach in-

volving simultaneous alignment of 20 human CFH Sushi domain

template sequences to the 10 FXIIIB Sushi domain target sequences,

followed by calculation of a local-alignment NJ tree where the most

appropriate target/template pairs lie closest to each other among the

tree arborizations (Supp. Fig. S2). Because only 13 of the 20 CFH

Sushi domains have solved high-resolution structures in the NCBI
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Table 3. Validation Statistics Calculated Using the MolProbity Server for 10 FXIIIB Sushi Domain Models from the Present Study

FXIIIB subdomain Goal value S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Optimized side-chain flips – Q52 N11 H1, N11 N13, Q21, H34 N15, Q19 N17, N21 N13 N7, N12, Q38 – N15, N24

Poor rotamers <1% 4.84% 3.77% 0% 1.79% 0% 0% 0% 0% 0% 3.03%

Ramachandran outliers <0.2% 0% 1.72% 1.72% 0% 1.82% 0% 0% 1.52% 0% 1.45%

Ramachandran favored >98% 89.55% 93.10% 94.83% 100% 98.18% 100% 100% 95.45% 100% 94.20%

Cβ deviations >0.25Å 0 100% 1 2 1 0 0 0 1 0 0

Residues with bad bonds 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Residues with bad angles <0.1% 0% 0% 1.67% 0% 1.69% 0% 0% 2.94% 0% 1.41%

Number of serious steric overlaps 0 139.75 125.27 104.64 116.35 40.57 14.69 15.12 144.81 31.22 138.84

(>0.4 Å) per 1,000 atoms

Clash percentile 100% 0% 0% 30% 35% 8% 90% 90% 25% 77% 12%

MolProbity score Lower is better 3.69 3.44 2.84 2.72 2.09 1.67 1.68 2.94 1.98 3.36

Symbol key: “Sn” (n = 1 through 10) indicates the modeled structure for FXIIIB Sushi domain n; “FHn XXXX” (n = 1–5, 7, 8, 12, 13, 15, 16, 19, 20) indicates an available solved,
high-resolution structure for factor H Sushi domain n for which XXXX represents the PDB coordinate file used as structural template for homology modeling. Bold-face type
indicates protein structural parameters meeting or exceeding X-ray crystallographic standards.

Figure 3. Homology models of five FXIIIB Sushi domains showing localization of seven FXIIIB mutations from this study. Numbers below each
model indicate the FXIIIB Sushi domain identity. Models are represented as backbone ribbons with beta strands colored green (arrows pointing
from N- to C-terminus), four cysteines in each domain shown as van der Waals space-filling balls (sulfur, yellow; carbon, white; hydrogen, not
shown). Wild-type residue side-chains at positions of human mutations in this study are shown in magenta and labeled with the corresponding
primary sequence number and amino-acid substitution.

Protein databank (PDB), for cases where the first-choice templates

were not available, we chose 2nd or 3nd ranked modeling templates

from the NJ tree and cross-validated the choices by calculating%

sequence identities between the target/template pairs (Table 2).

Overall, the target/template sequence identities were 28.1%–43.8%

(mean 35.6%), all within the current de facto range for high-quality

homology modeling [Vitkup et al., 2001]. Stereochemical parameter

validation statistics assessed for the ten modeled FXIIIB Sushi do-

mains are of similar quality to those for the 13 solved human factor H

Sushi domain high-resolution structures (cf. Table 3 and Supp. Table

S3). The 10 FXIIIB Sushi domains could be best modeled using just

five different CFH template structures (Table 2, derived by nearest

neighbor analysis of Supp. Fig. S2). Leu116Phe is the only substitu-

tion predicted to result in a surface-exposed change of residue side-

chain, suggesting this mutation affects surface-mediated protein–

protein interactions instead of formation and correct packing of

the second FXIIIB Sushi domain fold (see structural and chemical

properties summarized in Supp. Table S5; see also Fig. 4). For the

six other missense variants, the respective side-chains are predicted

to be buried in the respective Sushi domain fold, suggesting these

mutations may affect protein folding and/or fold stability (Fig. 4).

Assessment of Previously Reported FXIIIB Sushi Domain
Homology Models

We conducted literature and database surveys and found 63 pre-

viously reported FXIIIB Sushi domain models constructed by com-

parative/homology modeling methods (Table 3, Supp. Tables S2

and S3). Five of the 10 individual FXIIIB Sushi domains (S2, S5,

and S6; Supp. Table S3) were previously modeled in an automated,

high-throughput study [Soares et al., 2005]. At the time of that

study, high-resolution structures were available for only three of

the CFH Sushi domains and for a total of only 13 additional Sushi

domain structures from more diverse proteins. Except for the three

CFH Sushi domains, none of the template structures were from the

Receptors of Complement Activation (RCA) gene cluster at chro-

mosomal locus 1q32 that includes CFH and FXIIIB, suggesting a

lack of appropriate modeling templates. The close proximity of the

CFH gene to five CFH-like protein-encoding genes and F13B at this

locus suggests that the respective genes may have arisen through

multiple duplications, as has been reported for other Sushi domain

proteins of the RCA cluster [Hourcade et al., 1990]. Additionally,

Soares et al. (2005) previously presented sequence clustering re-

sults in support of this duplication hypothesis that further support

our choice of CFH Sushi domain structures as FXIIIB modeling

templates. However, because the original template structures and

sequences are not available from this study, it was necessary to as-

sess their model qualities by calculated stereochemical parameters

from the MolProbity server instead of using % sequence identity

as an objective measure of target/template choice compared with

our models [Chen et al., 2010]. In all cases, the models from the

present study are significantly superior by stereochemical measures

(cf. Table 3 and Supp. Table S3).

Discussion

FXIIIB Subunit Missense Mutations

Two recent publications from our group describe investigation of

heterozygous Factor XIII deficiency through a broad patient screen-

ing approach [Ivaskevicius et al., 2010a, 2010b]. Accordingly, F13A1

and F13B genes were sequenced for a large group of patients with

suspected FXIII deficiency operationally defined by a FXIII activity

below the normal range of 65%–120% and/or a history of bleeding.
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Figure 4. Detailed views of predicted local molecular environments surrounding the seven FXIIIB mutations from Sushi domain homology
models generated in this study. Close-up, semi-transparent views of van der Waals space-filling models of homology modeled FXIIIB Sushi
domains showing positions of known human missense mutations from the present study (green shading represents predicted solvent-accessible
surface area for wild-type residues at mutation positions; Sushi domain number and wild-type residue identity and primary sequence number
indicated for each model view). Calculated positive (blue) and negative (red) surface charges are shown. Atom coloring scheme for ball-and-stick
backbone: tan, carbon; red, oxygen; blue, nitrogen; yellow, sulfur; hydrogens not shown; black, wild-type residue side-chain atoms at mutation
positions. Model size scaling is same for all models except S7-Pro428, which is rendered at smaller scale in order to show a larger intramolecular
environment adjacent to the mutation site.

1496 HUMAN MUTATION, Vol. 34, No. 11, 1490–1500, 2013



We reported a surprisingly large number (25) of heterozygotes for

FXIII deficiency among a pilot population of 150 patients selected

for genetic analysis [Ivaskevicius et al., 2010a, 2010b]. Interestingly,

mutational screening revealed seven novel FXIIIB missense muta-

tions, which have been characterized in the present study (see Supp.

Table S6 for patient phenotypes). To date, 53 FXIIIA and 20 FXIIIB

nonsynonymous gene polymorphisms that result in single amino-

acid substitutions have been described in the literature and indexed

on the Factor XIII Registry Database (http://www.F13-database.de)

[Biswas et al., 2011]. Of these, the majority are considered to be nat-

ural variants in various ethnic populations [Anwar and Miloszewski,

1999; Iwata et al., 2009; Komanasin et al., 2005]. However, only one

missense mutation had been reported for FXIIIB associated with a

severe FXIII deficiency [Ivaskevicius et al., 2010b; Saito et al., 1990].

An in vitro study found the FXIIIB:p.Cys430Phe (F13B:c.1349G>T)

mutant protein was chiefly retained in the ER and not properly

glycosylated, resulting in poor secretion compared with wild-type

FXIIIB when expressed in BHK cells [Hashiguchi and Ichinose,

1995].

In Vitro Expression Time Courses of Mutations Highlight
Secretion Deficits

In the present study, we characterized intracellular and secreted

levels of the remaining seven mild FXIII deficiency-associated vari-

ants expressed in HEK 293T cells. Our results, when normal-

ized for transfection efficiency differences using an exogenous β-

galactosidase-encoding control vector (Supp. Fig. S1), showed lower

than wild-type secretion levels for all seven variants at each of three

time points (Figs. 1 and 2B—12, 24, and 36 hr). These results suggest

a common underlying molecular mechanism for the corresponding

patient phenotypes generally characterized as having mild measured

deficits in plasma FXIII activity as well as in FXIIIA and FXIIIB anti-

gen levels (Supp. Table S6). Concerning the only other in vitro study

of a FXIIIB mutation, expression/secretion levels for the Cys430Phe

mutant were reported only at 24 hr by Hashiguchi and Ichinose

(1995). They concluded that reduced plasma level of the protec-

tive carrier subunit FXIIIB likely led to an overall reduction in the

amount of FXIIIB-bound FXIIIA and considerably reduced FXIII

activity and FXIIIA protein half-life in plasma [Hashiguchi and

Ichinose, 1995]. Besides measuring in vitro secreted levels of FXIIIB

variants from HEK 293T cells, we also measured the intracellular lev-

els of these proteins at 12 hr intervals up to 36 hr. We identified three

basic expression patterns for our system over the defined time course

(Fig. 2A): (1) Ile81Asn and Val401Glu maintained or exceeded in-

tracellular protein levels compared with wild-type FXIIIB over the

entire time course; (2) Leu116Phe and Val217Ile were present at

slightly attenuated intracellular levels, relative to wild-type FXIIIB,

over the entire time course; (3) Cys5Arg, Cys316Phe, and Pro428Ser

intracellular levels, compared with wild-type FXIIIB, were already

considerably attenuated at 12 hr and fell significantly throughout

the time course. The first expression pattern is consistent with ini-

tial accrual of wild-type levels of intracellular protein for Val401Glu,

whereas Ile81Asn accrues at elevated levels, relative to that of wild-

type, suggesting resistance to intracellular proteolysis and protein

turnover. Interestingly, both substitutions are nonconservative, re-

sulting in replacement of nonpolar residues by polar or charged

ones. The second expression pattern is suggestive of upregulated in-

tracellular turnover for the Leu116Phe and Val217Ile variants, both

of which represent conservative, hydrophobic substitutions. The

third expression pattern suggests a possible upregulation of the in-

tracellular unfolded protein response (UPR) degradation pathways

where conserved cysteine and proline residues are substituted. Con-

served cysteines participate in disulfide cross-links that are invariant

and well-characterized structural features buried in the cores of all

Sushi domains [Schmidt et al., 2008], and proline is an amino acid

that forms a unique structural kink in two highly conserved sites of

all Sushi domains [Komaromi et al., 2011]. Notably, substitutions

of both types of residues often result in structural instability and

significant protein backbone rearrangement associated with UPR

pathway upregulation. The Cys430Phe mutation previously studied

by Hashiguchi and Ichinose (1995) and both the Val401Glu and

Pro428Ser variants in the present study are located in the seventh

Sushi domain. The in vivo phenotype for the female proband with

compound heterozygous Cys430Phe/truncation variants of FXIIIB

was no detectable protein in plasma for this variant, whereas the true

heterozygous (wild-type/Cys430Phe) parents and children from the

same family bearing this mutation exhibited 34%–52% FXIIIB wild-

type levels. Taken together, these previous results suggest that low

or no Cys430Phe variant is secreted into the plasma. These in vivo

phenotypes are similar to those for Val401Glu and Pro428Ser where

FXIII activities of 44%–48% of normal were reported (Supp. Table

S6) [Ivaskevicius et al., 2010b]. Interestingly, the mean secretion

level for the former was not significantly different from that of wild-

type FXIIIB expressed in BHK cells (14.6 vs 34.6 µg/107 cells, mean

42% but P = 0.21) [Hashiguchi and Ichinose, 1995], whereas the se-

cretion levels for the two Sushi domain 7 mutations from this study

were significantly lower than wild-type FXIIIB when expressed in

HEK 293T cells (Val401Glu 41%, Pro428Ser 24%; both P < 0.0005

compared with wild-type).

Generation of FXIIIB Subunit Sushi Domain Homology
Models Based on Complement Factor H Sushi Domain
Templates

Currently, no high-resolution structural data for FXIIIB exist.

Therefore, in order to investigate molecular causalities for the seven

FXIIIB mutations, we constructed high-quality homology models

of the respective FXIIIB Sushi domains. Interestingly, the F13B

and CFH genes are located in close proximity to each other at the

Ch1q32 locus that is frequently referred to as the complement

factor H (CFH) or regulators of compliment activation (RCA) gene

cluster. At least 18 other genes encoding involved in the complement

system are also encoded at this locus with five CFH-related genes

(CFHR1–CFHR5) encoding proteins with multiple Sushi domains

between F13B and CFH [Abrera-Abeleda et al., 2006]. The CFHR

genes and splice-variants encode mature secretory proteins with

four to nine Sushi domains exhibiting 32%–100% sequence identity

with the CFH Sushi domains [Jozsi and Zipfel, 2008]. Interestingly,

all of these complement proteins share similarity in structure and

function to CFH Sushi domains 6–14 and 19–20 that include

heparin binding, binding specificity to Complement receptor 3

(C3) subdomains as well as to C-reactive protein, binding to

various pathogenic microbial surface proteins, and recognition and

binding to anionic lipids and cell-surface glycosaminoglycans [Jozsi

and Zipfel, 2008]. The genetic proximity of F13B in the RCA gene

cluster, together with previously published experimental evidence

that proteins encoded by the CFHR genes comprise Sushi domains

that are involved in binding of some of the same physiological

biomolecular targets as known to bind to CFH, suggests that FXIIIB

might also possess similar binding modalities. For example, our

primary sequence analysis indicates those FXIIIB Sushi domains

S1 to S10 share significant sequence homologies to CFH Sushi

domains 6, 8, 8, 3/10, 14, 14, 19, 20, 19, and 20, respectively
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(Supp. Table S4). Based on these Sushi domain correspondences,

FXIIIB S1–S3 appear to be homologous to the N-terminal Sushi

domains of the CFHR proteins, suggesting functionally similar

roles possibly including heparin binding as well as recognition

and binding of bacterial, viral, fungal, and obligate parasitic

pathogen surface proteins [Jozsi and Zipfel, 2008; Rodriguez de

Cordoba et al., 2004; Zipfel et al., 2002]. Recently, experimental

evidence implicated FXIIIB S1 and S2 in FXIIIB binding to the

unactivated FXIIIA2 dimer [Komaromi et al., 2011; Souri et al.,

2008a]. FXIIIB S4-S6 bear homology to CFH Sushi domains 10

and 14 that are known to bind heparin, C reactive protein, sialic

acid and Complement receptor 3 (C3) subdomains C3b and C3c

[Hageman et al., 2005; Jozsi and Zipfel, 2008]. The four C-terminal

FXIIIB Sushi domains (S7–S10) bear pronounced homology to

CFH Sushi domains 19 and 20, suggesting functional similarities

possibly including heparin and C3 binding, as well as cell surface

recognition and binding of anionic lipids and glycosaminoglycans

[Jozsi and Zipfel, 2008]. Interestingly, FXIIIB Sushi domains 4

and 9 were recently found to mediate FXIIIB2 dimer formation

in in vitro experiments [Souri et al., 2008a]. An exhaustive survey

of literature and homology modeling databases revealed that

five FXIIIB Sushi domains (S2, S5, S6, S7, S8; models available

at http://www.bionmr.chem.ed.ac.uk/bionmr/public_html/ccp-

models.html under accession number P05160) were modeled as a

result of one study in 2005 aimed at creating 135 modeled Sushi

domains and comparing surface features between these [Soares

et al., 2005]. However, although an algorithm similar to our

present NJ-tree method was developed and used for target/template

matching, many of the 135 homology models are of low quality due

to the automated, high through-put phylogenetic clustering analysis

employed, and lack of suitable template structures. Interestingly,

using this analysis, the authors resolved nine sequence-based

clusters by a dynamic hidden Markov model algorithm, suggesting

that their method found evidence for nine distinct Sushi domain

structural clusters comprising ∼70% from among an initial set

of 243 unique Sushi domain sequences from 48, mostly human,

Sushi domain proteins. However, only six of the nine clusters had

associated high-resolution structural coordinate files in the NCBI

Structure database. A further shortcoming of their method involved

using a combination of ClustalX, an unweighted pair-group method

using arithmetic averages (UPGMA) not intended for large MSA

construction, resulting in large numbers of opened alignment gaps.

As their alignment relied on only the four invariant Cys residues

and one highly conserved Tyr residue as structural “guideposts”

for MSA, the gaps created arbitrary target/template sequence

alignment errors that propagated as structural errors built using

Modeller. Our use of a larger number (13) of structurally conserved

“guideposts” for alignment, together with post-alignment manual

curation of the MSA to minimize opened gaps, yielded models of

comparatively higher quality as assessed by both visual inspection

and explicit calculation of protein stereochemical parameters.

Although both studies used comparable state-of-the-art Modeller

software for model building, we achieved an additional advantage

in modeling accuracy due to our discrete treatment of only single

Sushi domains. Database queries returned a total of 20 models of

FXIIIB single and multiple (two to five) contiguous Sushi domain

models comprising some 58 additional, unique single domain

models (Supp. Table S4). Notably, when we calculated% sequence

identity (%I) for the target/template pairs, we discovered a tendency

for better target/template choices among the models with only one

or two Sushi domains (Supp. Table S4). When we compared %I

together with template choices between these models and ours,

only four of the SWISS-MODEL generated models (Supp. Table

S4, ID numbers 4, 5, 7, 8) had target/template pairs similar to those

for our models. Specifically, ID numbers 4 and 5 are modeled on

the same templates chosen by our method (ID4, FXIIIB S9-S10,

and ID5, FXIIIB S7-S8, both modeled on CFH S19-S20), although

the target/template sequence alignments were as or only slightly

less optimal (average %I for both tandem Sushi domains S7-S8

and S9-S10 of 37%) as for our models (average %I of 38% for S7

and S8, 40.3% for S9 and S10) due to the automated alignment of

the tandem Sushi domains and connecting linker sequence. Also,

linked multi-Sushi domain templates tend to bias the geometry

and spatial constraints of the final models due to the fact that the

template structures often represent native bound protein–protein

complexes that are likely not relevant to the biological structure and

function of the targets. The automated SWISS-MODEL method

also matched our target/template assignments for FXIIIB S1/CFH

S6 (ID numbers 7 and 8, respectively), but resulted in the inferior

choice of FXIIIB S2/CFH S7 compared with our FXIIIB S2/CFH

S6 pairing. However, the 3rd (C-terminal) Sushi domain choice

for ID8 (FXIIIB S3/CFH S8) again matched our best template

choice, although both models suffer from template-imposed

tertiary structural constraints and lack of target/template sequence

alignment precision as for ID numbers 4 and 5. Other problems

arising from the automated methods included partial structures

due to short target or template sequences or misalignments (ID

numbers 1, 2), inferior template choices (IDs 3 and 6–20—the

majority of cases), overall low sequence identity (<25%) due to

poor alignment, poor template choice, or both (IDs 11–20), and

choice of non-Sushi domain template folds (C-terminal domains

for IDs 19, 20).

Predicted Structural Implications of the Mutations

Since Sushi domains have a highly conserved protein backbone

fold that comprises nearly equal numbers of amino acid residues

that have either surface accessible or buried side chains, we thought

it possible to ascertain if the positional locations of the mutations

correlate with a negative impact on protein folding or stability due

to structural mispacking (Figs. 3 and 4). Accordingly, we inspected

our Sushi domain models to ascertain for each mutated residue

the predicted position with respect to burial within the domain

core or surface exposure, differences in possible hydrogen bonding

between wild-type or mutant residues and neighboring residues,

and differences in volume and formal charge with respect to wild-

type and mutant residues at each position (Supp. Table S5). The

Cys5Arg substitution ablates one of the two conserved disulfide

bonds in Sushi domain 1, introduces a formal positive charge to-

gether with three possible hydrogen bond (H-bond) donor groups.

Each of these effects would tend to disrupt the overall structural fold

of Sushi domain 1. Experimental evidence has been reported that

this domain is important for binding to the FXIIIA2 dimer [Souri

et al., 2008a]. The substitutions Ile81Asn and Val217Phe are consid-

ered to be semiconservative from a physicochemical point of view.

However, molecular modeling analysis (Supp. Table S5) suggested

that these substitutions occur within the cores of the correspond-

ing folded Sushi domains 2 and 4, respectively. The second Sushi

domain 2 substitution is Leu116Phe, conservative with respect to

hydrophobicity, but nonconservative with respect to size. Notably,

only Leu116 in Sushi domain 2 is predicted to be a surface exposed

residue with its aliphatic side-chain fully solvent exposed. Sushi do-

main 2 has been reported to also interact with the FXIIIA2 dimer

[Komaromi et al., 2011]. All other mutant positions correspond to

residues that are substantially buried in the cores of the respective
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Sushi domains (Fig. 4). The fairly conservative substitution for the

Val217Phe mutant may affect protein fold and packing for Sushi

domain 4. Additionally, since Sushi domains 4 and 9 have been re-

ported to interact in stabilizing the FXIIIB2 dimer, this substitution

might affect the surface portion of Sushi domain 4 responsible for

binding Sushi domain 9 [Souri et al., 2008a]. The Cys316Phe sub-

stitution in Sushi domain 6 is expected to have a similar effect on

domain fold and stability as the Cys5Arg substitution in Sushi do-

main 1, although any specific interaction of this domain with other

FXIIIB or FXIIIA domains is currently unknown. The Val401Glu

and Pro428Ser substitutions are both nonconservative and located

in Sushi domain 7.

Functional Implications for FXIIIB Missense Mutations

There is experimental evidence that FXIIIB Sushi domains 1

and 2 are involved in binding to FXIIIA2, so mutations in these

two domains may affect FXIII tetramer formation and stability

[Komanasin et al., 2005; Souri et al., 2008a]. Similarly, FXIIIB Sushi

domains 4 and 9 have been shown to mediate FXIIIB dimerization,

so mutations in these domains might affect formation and stability

of FXIIIB dimers, thought to be in equilibrium with FXIII tetramers

in plasma.

Interestingly, however, the His95Arg nondisease phenotype poly-

morphism reported in FXIIIB Sushi domain 2 confirms that mis-

sense mutations do not necessarily have detrimental effects on the

properties of secreted FXIIIB variants, especially when the plasma

levels are found to be normal [Iwata et al., 2009]. Contrastingly, a

similar substitution in CFH Sushi domain 15 (His875Arg) is asso-

ciated with defective secretion for the mutant allele [Dragon-Durey

et al., 2004]. Furthermore, in all heterozygous CFH missense mu-

tation patients to date for which CFH antigen was measured, the

variant alleles apparently resulted in complete loss of secretion of

the mutant CFH protein (35%–50% of normal CFH antigen lev-

els) except for one case where secretion was found to be ∼100%,

but for which there was no measurable complement binding activ-

ity [Dragon-Durey et al., 2004]. Apparently, this single His to Arg

substitution was sufficient to completely eliminate protein binding

activity, in stark contrast to the apparent effect of FXIIIB:His95Arg,

which is secreted at normal levels and apparently binds FXIIIA2 nor-

mally with no apparent deficit for FXIII activity level [Iwata et al.,

2009].

In conclusion, we have shown that FXIIIB missense mutations

associated with patient mild bleeding tendencies exhibit a common

in vitro secretion deficit when expressed in HEK 293T cells. This

suggests that reduced in vivo FXIII activity might arise from either

pathologically low circulating levels of FXIIIB, altered interaction

with FXIIIA2 to form FXIII tetramers with reduced stability, or both

effects together. Additionally, we have developed molecular models

of the 10 FXIIIB Sushi domains, based on phylogenetic sequence

similarity to CFH Sushi domains with solved high-resolution struc-

tures, that will be useful in planning future hypothesis-driven inves-

tigation of FXIIIB structure/function relationships and molecular

mechanisms underlying FXIIIB missense mutation pathologies.
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Supp. Methods 

FXIIIB sequences for modeling 

For these sequences, the naturally occurring proximal and distal linkers were truncated to just 

after the C-terminal cysteine of the preceding Sushi domain and just before the N-terminal 

cysteine of the following Sushi domain.  

 

MSA construction details 

By hand curation, the number of columns containing opened gaps was minimized, while 

maintaining alignment of 13 highly conserved structural "guidepost" residues including four 

cysteines, three glycines, three aromatics (phenylalanines or tyrosines), two prolines and one 

tryptophan (Supp. Figure S3, astrices below sequences indicate guidepost residues in panel 

B).  Where guidepost residues were absent in specific sequences, the positions of variant 

residues at the corresponding guidepost positions was contextually determined by adjacent 

residue conservation among all sequences.  Notably, the aim of this type of MSA refinement 

is alternative to the aim of usual methods that are intended for building phylogenetic trees 

using inference models accurately reflecting evolutionary processes.  The chief aim of a 

close-spaced MSA is to optimally align conserved structural "guidepost" residues that define 

conserved topological features of the protein domain fold.  Accordingly, variable sequence 

stretches, which often represent solvent-accessible surface regions and variable-sized loops, 

are allowed to span and define clusters of multicolumn gaps in the MSA.  Thus, opening as 

few gaps (clusters) as possible is a primary driving principle in constructing a useful close-

spaced MSA for successful structural alignment of target and template sequences (Supp. 

Figure S3).  
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Set-up for Modeller files   

Input files included pairwise alignments of target and template sequences in PIR format and 

PDB-format atomic coordinate files for the following template structures: CFH Sushi domain 

6 (FH6) from PDB entry 2W81(2.35 Å resolution)(Schneider, et al., 2009), FH8 from 

2UWM(2.35 Å) (Prosser, et al., 2007), FH3 from 2RLQ(lowest energy structure of 29 

solution NMR models)(Hocking, et al., 2008), FH19 and FH20 from 3OXU()(Morgan, et al., 

2011).  Calculated stereochemical validation measures for 13 CFH Sushi domains with 

solved high-resolution structures are given in Supp. Table S2.  The single solution NMR 

template (2RLQ) used for modeling FXIIIB Sushi domain 4 in this study has stereochemical 

parameters that are comparable in quality to those of the X-ray structures used as templates.  

Individual CFH Sushi domain template files were created by manual editing/truncating the 

available PDB files for multiple Sushi domain structures and residues were renumbered using 

the pdbset command of the standard CCP4 macromolecular crystallography package (Evans, 

1992; Winn, et al., 2011). 

We refrained from further model optimization as it is not currently general practise to refine 

homology models when detailed experimental intramolecular structural constraints are not 

available (Punta, et al., 2007). 
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Supp. Figure S1.  Measured LacZ reporter values for transfection normalization. Pooled data 
for cotransfected LacZ gene assessed as expressed beta-galactosidase.  A LacZ-encoding 
vector was mixed with FXIIIB variant vectors at a constant proportion for measuring 
transfection efficiency.  Mean values and error bars are for pooled equal volume aliquots of 
cell lysates for n=9 samples (i.e., triplicates of each of three separate transfections) for each 
FXIIIB variant and time point.  ANOVA analysis with ad hoc Fisher's post-test revealed that 
mean values are not significantly different across all FXIIIB variant transfections at each of 
the three time points (i.e., comparing across all bars of the same color shading).  Also, for 
each FXIIIB variant, there is significant difference (p<0.05) between each time point except 
for Val401Glu and Pro428Ser transfections measured at 24 h and 36 h (indicated as 
horizontal lines above bars).  
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Supp. Figure S2.  Neighbor-joining tree from close-spaced MSA of FXIIIB 
and CFH Sushi domain sequences. Symbol key:  FHn (n=1 through 20) are 
template factor H Sushi domain sequences 1 through 20; FXIIIB-n (n=1 
though 10) are target FXIIIB Sushi domain sequences 1 through 10.  
Appropriate CFH Sushi domains for structural modeling templates are 
located topologically nearest to the FXIIIB Sushi domain target sequences; 
e.g., FH20 (13th branch from top of tree) is the best template structure for 
modeling both FXIIIB-S8 and FXIIIB-S10 which lie adjacent on the two 
next lower branches. 
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Supp. Figure S3.  Comparison of multiple sequence alignments optimized for guiding 
phylogenetic studies versus selecting target/template pairs for homology modeling. Panel A:  
A high-quality, single-pass MSA created by MAFFT using an accuracy-oriented L-INS-i 
algorithm for automated iterative refinement by local pairwise alignment.  This type of MSA 
is used as input data for building phylogenetic trees by inference models that accurately 
reflect evolutionary processes.  Panel B: A high-quality, MSA for choosing optimal structural 
taget/template pairs created by a low-stringency alignment algorithm followed by hand 
curation.  Astrices in panel B indicate 13 conserved structural "guidepost" positions.  The 
MSA in panel A has 35 columns with gaps, while the MSA in panel B has only 27 columns 
with gaps. 
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Supp. Table S1.  PCR primers for FXIIIB site-directed mutagenesis 

Cys5ArgF 5´-CTCTATGCAGAAGAGAAACCCCGTGGTTTTCCTCAT-3´ 

Cys5ArgR 5´-GGGTTTCTCTTCTGCATAGAGTTCTCCTGAG-3´ 

Ile81AsnF 5´-CCTGACCTGAGTAATGGTTACAACTCTGATGTAAAG-3´ 

Ile81AsnR 5´- GTAACCATTACTCAGGTCAGGCTTAGTGCAT-3´ 

Leu116PheF 5´- GATGAAGAAGTGGTTCAATGTTTCTCTGATGGATGG-3´ 

Leu116PheR 5´- ACATTGAACCACTTCTTCATCCTTCCCTCCA-3´ 

Val217IleF 5´- ACCTATGAAGAAGGAGATGTCATTCAGTTTTTCTGT-3´ 

Val217IleR 5´- GACATCTCCTTCTTCATAGGTTTGCTTTACA-3´ 

Cys316PheF 5´- GAAGGACAGGAGAAGGTAGCCTTTGAGGAACCACCC-3´ 

Cys316PheR 5´- GGCTACCTTCTCCTGTCCTTCAATGCATTTT-3´ 

Val401GluF 5´- AGCTATGCAACAGGATCCTCAGAGGAATATAGATGC-3´ 

Val401GluR 5´- TGAGGATCCTGTTGCATAGCTTGCCAATATC-3´ 

Pro428SerF 5´- CAAGGAAAATGGTCATCCCCATCTGTTTGCTTGGAA-3´ 

Pro428SerR 5´- TGGGGATGACCATTTTCCTTGTTCGCAACGA-3´ 

 



Biswas et al., Human Mutation  7 

Supp. Table S2. Stereochemical validation statistics for 13 solved high-resolution CFH Sushi domains 
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Supp. Table S3.  Stereochemical validation statistics for five FXIIIB Sushi domain models 

from Soares et al. (2005) 
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Supp. Table S4.  Assessment of FXIIIB single and multiple Sushi domain homology models from ModBase and SWISS-MODEL 

databases 
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Supp. Table S5.  Predicted physical and chemical properties of FXIIIB mutations from the 

present study homology modeling 

 

 

1Amino acid numbering according to Bottenus et al. 1990 for which residue 1 is equivalent to 
Glu21 of the translated full-length precursor.(Bottenus, et al., 1990)  2No H-bond donor o 
acceptor groups are predicted for wild-type residues at these positions. 3Only Leu116 is predicted 
to be a fully surface-exposed residue. 
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Supp. Table S6.  Patient data for carriers of the FXIIIB mutations investigated in the 

present study 

 

 

Symbol key:  GER, German origin; IND, Indian origin; MOZ, African (Mozambique) origin; 
red-shaded entries indicate lower than normal values (FXIII activity determined by a photometric 
assay(Fickenscher, et al., 1991) and, for one family, by an incorporation assay (Pefakit FXIII 
Incorporation Assay, Pentapharm Ltd, Basel, Switzerland); FXIIIA:Ag andFXIIIB:Ag 
determined in citrated plasma by ELISA using a polyclonal anti-FXIII tetramer antibody 
(Binding Site, Birmingham, England) for coating and polyclonal anti-subunit A or anti-subunit B 
antibodies (Diagnostica Stago, Asnières, France) for detection.(Ariens, et al., 1999) Antigen 
levels were expressed as a percentage relative to levels in normal pooled plasma.); n.d., not 
determined; 1No patients were reported to suffer gennerally impaired wound healing; 
2photometric assay (normal range 65-120%); 3normal range 70-120%; 4Patient B had one 
successful pregnancy wherein a Caesarean section was performed in the 37th week of gestation 
due to abnormal position of the fetus (breech presentation). The patient was perioperatively 
administered 2500 U (25 U/kg) FXIII concentrate; 5Patient supplemented with FXIII concentrate 
(2500 IU).   
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 Abstract 

The coagulation Factor XIII(FXIII) is a plasma circulating heterotetrameric 

protransglutaminase that acts at the end of the coagulation cascade by covalently 

crosslinking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order 

to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer 

composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric 

protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of 

two types: severe homozygous/compound heterozygous FXIII deficiency which 

results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is 

associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. 

Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII 

deficiency patients than in severe FXIII deficiency. We had recently reported 

secretion related defects for seven previously reported F13B missense mutations. In 

the present study we further analyze the underlying molecular pathological 

mechanisms as well as the heterozygous expression phenotype for these mutations 

using a combination of in vitro heterologous expression (in HEK293T cells) and 

confocal microscopy. In combination with the in vitro work we have also performed an 

in silico solvated molecular dynamic simulation study on previously reported FXIIIB 

subunit sushi domain homology models in order to predict the putative structure-

functional impact of these mutations.  We were able to categorize the mutations into 

the following functional groups that: a) affect antigenic stability as well as binding to 

FXIIIA subunit i.e. Cys5Arg, Cys316Phe and Pro428Ser b) affect binding to FXIIIA 
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subunit with little or no influence on antigenic stability i.e. Ile81Asn and Val401Gln c) 

influence neither aspects and are most likely causality linked polymorphisms or 

functional polymorphisms i.e. Leu116Phe and Val217Ile. The Cys5Arg mutation was 

the only mutation to show a direct secretion based defect since the mutated protein 

was observed to accumulate in the endoplasmic reticulum. 
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Abstract

The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric pro-

transglutaminase that acts at the end of the coagulation cascade by covalently

cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibi-

tors) in order to stabilize them against fibrinolysis. It circulates in the plasma

as a heterotetramer composed of two homomeric catalytic Factor XIIIA2

(FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit

(FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/

compound heterozygous FXIII deficiency which results in severe bleeding symp-

toms and mild heterozygous FXIII deficiency which is associated with mild

bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the

F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII defi-

ciency patients than in severe FXIII deficiency. We had recently reported secre-

tion-related defects for seven previously reported F13B missense mutations. In

the present study we further analyze the underlying molecular pathological

mechanisms as well as the heterozygous expression phenotype for these muta-

tions using a combination of in vitro heterologous expression (in HEK293T

cells) and confocal microscopy. In combination with the in vitro work we have

also performed an in silico solvated molecular dynamic simulation study on

previously reported FXIIIB subunit sushi domain homology models in order to

predict the putative structure-functional impact of these mutations. We were

able to categorize the mutations into the following functional groups that: (1)

affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg,

Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no

influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence

neither aspects and are most likely causality linked polymorphisms or func-

tional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation

was the only mutation to show a direct secretion-based defect since the

mutated protein was observed to accumulate in the endoplasmic reticulum.

Introduction

Factor XIII deficiency is a rare bleeding disorder that

results from the deficiency of coagulation FXIII, a hetero-

tetrameric protransglutaminase molecule that functions

by cross-linking preformed fibrin clots to provide them

mechanical stability and resistance to fibrinolysis (Lorand

et al. 1980). The plasma circulating FXIII is composed of

two catalytic FXIIIA2 subunits and two protective FXIIIB2
subunits. While the homozygous inherited form of this

deficiency caused by FXIIIA (OMIM #613225) or FXIIIB

(OMIM #613235) gene mutations is rare (1 in 4–6 mil-

lion), the milder heterozygous form is more frequent

(Biswas et al. 2011; Biswas et al. 2014a,b). Only

recently, focus has shifted to the mild/heterozygous form

of this deficiency that is associated with mild or even an

asymptomatic phenotype (unless the affected individual is

exposed to some kind of a trauma, for example, perioper-

ative settings, accident etc.). Four publications from our

group in the past 5 years have shown that inherited mild

or heterozygous deficiency does have clinical relevance

(Biswas et al. 2010; Ivaskevicius et al. 2010a,b; Biswas
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et al. 2014a,b). One key observation from these articles is

that the FXIIIB subunit mutations, which are rarely

reported in the severe homozygous form of FXIII defi-

ciency, occur at almost equal proportion when compared

with the frequency of FXIIIA subunit mutations in mild

heterozygous FXIII deficiency (Ivaskevicius et al. 2010b).

It is secreted as a homodimer into the plasma where it

associates with the FXIIIA2 subunit to form the FXIIIA2B2
heterotetramer (Radek et al. 1993). It is secreted in excess

of the FXIIIA2 subunit in the plasma. Therefore, there is

always free FXIIIB subunit aside from the complexed one

circulating in the plasma. Despite early achievements

investigating FXIIIB secondary structural elements and

structural domains (Ichinose et al. 1986), progress on

structure/function studies of this noncatalytic subunit

have been slow and there are no high-resolution x-ray-

based crystal/NMR structures for FXIIIB2 dimers, or for

the FXIIIA2-bound conformation in FXIIIA2B2 tetramers.

Based on gel filtration chromatographic data, the FXIIIB

subunit appears to form a physiological dimer (Souri

et al. 2008). High sequence homologies with proteins

from the complement system suggest that the monomeric

B subunit is composed of ten Sushi domains, each com-

prising ~60 amino acid residues and also designated in

the literature as complement control protein (CCP) mod-

ules, or as short consensus repeats (SCR) (Ichinose et al.

1986). Knowledge of the structural interfaces between

individual FXIIIB2 subunit dimers as well as for the inter-

molecular interfaces of the FXIIIA2B2 heterotetramer has

only recently started to emerge (Katona et al. 2014). The

sushi domain folds into a small and compact hydropho-

bic core enveloped by six b-strands which are stabilized

by two disulfide bridges on either end of this domain. All

sushi structures share the relative structural orientation of

the b-2 and b-4 strands. The other strands vary in topol-

ogy relative to this central conserved core especially at the

interdomain interfaces (Gaboriaud et al. 2000). There are

more than 25 high-resolution structures for this highly

conserved domain type and additional Sushi domain-con-

taining protein (Soares et al. 2005). In a recent article we

have reported homology-based models for all ten sushi

domains of the FXIIIB subunit based on the templates of

complement factor H (CFH) sushi domains (Biswas et al.

2013). We have so far reported 12 unique mutations in

the FXIIIB2 subunit from patients with heterozygous

(mild) FXIII deficiency of which seven were missense

mutations. In an earlier article using heterologous in vitro

expression we had shown that almost all reported FXIIIB

subunit missense mutations showed differences in secre-

tion rate, with the highest impact being observed for two

mutations affecting structural disulfide bonds and one

mutation involving a Proline428 residue (Biswas et al.

2013). However, a few questions remained unanswered

from this article which we have now attempted to answer

in our present study. These questions are: (1) Do the dif-

ferences in secretion rates correspond to a genuine secre-

tion defect, that is, is there intraorganellar accumulation/

aggregation or are they simply a reflection of the influ-

ence that the mutations have on the rate of biosynthesis

and folding? (2) Does the in vitro expression data of the

F13B mutations correlate with the heterozygous patient

phenotype? (3) Which mutations are most likely to affect

binding to the FXIIIA2 subunit without compromising

the antigenic stability of the FXIIIB2 subunit? (4) What

are the likely structure-functional correlations for these

mutations? In our present study we have used a combina-

tion of heterologous in vitro expression, confocal micros-

copy and molecular dynamic simulation (MD) on

homology-based models to address these questions.

Material and Methods

Cell culture, transfection, and protein
expression and quantification

Site-directed mutagenesis for the seven FXIIIB missense

mutations were performed on a mammalian expression

pEZ-MO1-FXIIIB vector using the Gene Tailor site-directed

mutagenesis kit (Life Technologies, Darmstadt, Germany).

The seven FXIIIB mutant variants [pEZ-MO1-FXIIIB-

p.Cys5Arg (F13Bc.73T>C), pEZ-M01-FXIIIB-p.Cys316Phe

(F13Bc.1007G>T), MO1-FXIIIB-p.Ile81Asn (F13Bc.302T>A),
MO1-FXIIIB-p.Leu116Phe (F13Bc.406C>T), MO1-FXIIIB-

p.Val217Ile (F13Bc.709G>A), MO1-FXIIIB-p.Val401Glu

(F13Bc.1262T>A), MO1-FXIIIB-p.Pro428Ser (F13Bc.

1342C>T)] were expressed in HEK 293T cells (DSMZ

[Institute of DSMZ-German Collection of Microorganisms

and Cell Cultures, Germany]) in homozygous and hetero-

zygous forms, that is, mutations or the wild type was

expressed alone (homozygous), mutations were cotrans-

fected with the wild type (heterozygous). Culturing of the

cells was done in 10 cm dishes with Dulbecco0s modified

Eagles medium (DMEM; Life Technologies) supplemented

with 10% fetal bovine serum (FBS; Life Technologies), 1%

penicillin-streptomycin (Life Technologies) and 0.1% Fun-

gizone (Life Technologies) at 37% in 5% CO2. For transfec-

tion 2.7 9 106 million cells were seeded out into 6-well

plates with DMEM (with FBS) without supplements and

transfected with wild-type and mutated DNA using

Lipofectamine 2000 reagent (Life Technologies). Co-

transfection of the variants was done at a 4:0.5 ratio with a

pCMV-LacZ Vector (Clontech, Saint-Germain-en-Lay,

France) containing the LacZ gene for normalizing the anti-

gen values. All samples (supernatant and lysed cells) were

collected 36 h after media change. The extracellular med-

ium was centrifuged at 14,000g to remove cell debris and

259ª 2015 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

A. Thomas et al. FXIII B Missense Mutations



the cells were washed with phosphate-buffered saline (PBS)

and lysed by incubation with 260 lL nondenaturing lysis

buffer “native M-PER Mammalian Protein Extraction

Reagent buffer” (Life Technologies, Darmstadt, Germany)

containing 25 mmol/L bicine pH 7.6 for 10 min incuba-

tion and centrifuged at 14,000g for 5 min at 4°C. Both
extracellular medium and cell lysates were stored at �80°C
for later analysis. Each transfection set was performed in

triplicate and repeated a minimum of three times(total

n > 9). Total FXIIIB2 and FXIIIA2B2 antigen levels were

evaluated for the expression supernatants using ELISA kits

(Technoclone, Vienna, Austria).

Confocal microscopy

For confocal microscopy 270000 HEK293T cells were

seeded on 12-mm Poly-D-Lysine coated coverslips (BD

Biosciences, Heidelberg, Germany) in 24-well cell culture

plates. The cells were transiently transfected with the

Wild-type pEZ-MO1-FXIIIB and the seven FXIIIB

mutant variants using Lipofectamine 2000 transfection

reagent (Life Technologies) following the recommenda-

tions of the manufacturer. After 24 h cells were washed

and fixed with 4% paraformaldehyde in PBS for 10 min

and at room temperature. After washing with PBS and

blocking (90% PBS azide [0.1% sodium azide], 10% FBS,

0.1% Triton-X100) incubation with 2.5 lg/mL primary

antibody diluted in PBS azide (1% FBS, 0.1% Triton-

X100) against the FXIIIB subunit (mouse monoclonal

IgG) and the cell compartments ER (IgG rabbit poly-

clonal anti-calnexin; Abcam, Cambridge, England) and

Golgi (rabbit anti-TGn46; Sigma, Hamburg, Germany)

was done. Signal detection was performed using an IgG

Alexa Fluor 488 IgG goat anti-mouse (Life technologies)

against the FXIIIB subunit and an IgG goat anti-rabbit

Alexa Flour 594 (Life technologies) against the ER and

Golgi compartment. After washing the treated cells and

Dapi (Life technologies) staining for nucleus visualization

the samples were embedded with VectaShield mounting

medium (Vector Laboratories, Peterborough, United

Kingdom) and stored at 4°C for visual imaging with the

Olympus Fluo View FV 1000 confocal microscope, Hamburg,

Germany.

Image analysis

Colocalization analysis was performed using plugins

embedded in the image visualization and analysis software

ImageJ 1.43m (Schneider et al. 2012). Analysis was per-

formed on a similar sized symmetrical region of interest

(ROI) selected for each dye. Background levels were sub-

tracted from each ROI before calculating the degree of

colocalization (to a range of one standard deviation).

Each colored image was split into the respective RGB

(red, green, blue) channels. The comparative degree of

colocalization for the wild-type and mutant variants was

calculated as mean Pearson’s and Mander0s R coefficients

on the red and green channels using the embedded colocal-

ization analysis plugin at default settings. The colocaliza-

tion highlighter plugin was used also with default setting

(50% threshold values for both channels) to further visual-

ize the co-localized pixels rendered as white. Since Pear-

son’s and Mander0s R coefficient showed good correlation

(Mander0s R was almost consistently higher than Pearson’s

correlation coefficient), therefore only Pearson’s correla-

tion coefficient was used for comparing relative degree of

colocalization between the mutant variants and wild-type

(Adler and Parmryd 2010). A minimum of n = 10 ROI0s

were evaluated for each pairwise comparison.

Expression and reconstitution study

Constant amount of the recombinant FXIIIA2 subunit

(Zedira, Darmstadt, Germany) (0.75 lg) was added to a

final volume of 200 lL of transfection product (wild type

as well as mutants), that is, the secreted medium for

reconstituting the heterotetramer. In the event of a signifi-

cant difference in the beta galactosidase reporter levels

between the particular mutant and wild type the mixing

volumes would have been altered to allow for differences

in transfection efficiency. Since this set of expression and

reconstitution showed no significant differences in beta

galactosidase reporter levels the mixing volumes were not

altered. Postincubation the mix was evaluated for

FXIIIA2B2 heterotetrameric antigen levels. The results are

normalized against total FXIIIB2 antigen levels previously

evaluated to give a representation of the respective vari-

ant’s ability to form a heterotetramer, which are compared

against the wild type. This ability we name as the compar-

ative tetramerization potential (CTP) or potential percent-

age (CTPP). It is calculated by the following formula:

CTP ¼ ðTotal FXIII-B antigen variant=

Total FXIII-A2B2antigen variantÞ=

ðTotal FXIII-B antigen wild type=
Total FXIII-A2B2wild typeÞCTPP ¼ CTP� 100

Proteasomal inhibition

Typical 36 h transfection and collection with the wild

type and different variants was performed as described

above. The only difference was that after 24 h of transfec-

tion 10 mmol/L Lactacystin (to a final concentration

10 lmol/L) was added to the cell medium. Therefore, the

cells were incubated with 10 lmol/L of Lactacystin for a
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period of 12 h. This analysis was done only one time in

triplicates.

Structural and sequence conservation
analysis

Two different types of multiple sequence alignments were

generated to evaluate the conservation of residues on which

the mutations have been reported and their neighboring resi-

dues. The first alignment was generated by aligning individ-

ual FXIIIB sushi domain sequences with its near homolog

CFH sushi domain amino acid sequences. Since elaborate

functional information exists for the CFH sushi domains,

this alignment helped us to functionally evaluate FXIIIB

sushi domains with respect to functional definitions for CFH

sushi domains (Perkins et al. 2012; Kopp et al. 2012). A

more elaborate multiple sequence alignment was generated

by first downloading sushi domain amino acid sequences of

50 mammalian proteins (Soares et al. 2005) and then align-

ing them with the ten FXIIIB sushi domain sequences in

order to look for overall sequence conservation and identity.

Alignment was done on Jalview 2.7 using MAFFT, L-insi-1

accuracy-based parameters (Waterhouse et al. 2009; Katoh

and Standley et al. 2013). In addition to sequence conserva-

tion analysis, structural conservation of the FXIIIB subunit

sushi domains was evaluated by submitting their homology-

based models individually to the PROBIS server (http://pro-

bis.cmm.ki.si/) (Konc and Janezic 2010a,b).

MD simulation analysis

Previously published homology-based models were used as

a primer for the MD simulation study (Biswas et al. 2013).

The previously generated models were first refined by a

short solvated refinement simulation run of 500 ps on

YASARA version 13.9.8 (Krieger et al. 2002). Individual

sushi domain models were housed in a simulation cell

2 9 7.5 Å larger than the model on each axis. The simula-

tion cell was filled with water to a density of 0.997 g/L. The

YASARA YAMBER03 force field derived originally from the

AMBER force field was imposed. Periodic boundary condi-

tions were used for the simulation run. The structure with

the lowest energy from the simulation run was used for fur-

ther study. Each of the refined sushi domain models (wild

type) on which the mutations occur were individually run

for a period of 25 ns with a different force field (AMBER03)

than the one used for model refining. The remaining simu-

lation protocol was similar to the one used for model refin-

ing. The same protocol was employed for a 25-ns run for

sushi domains on which the individual missense variants

were introduced and optimized for the best possible rotamer

(using SCRWL parameters) (Krivov et al. 2009). The simu-

lation trajectories were analyzed for DCCM (dynamic cross-

correlation matrices), C-alpha backbone RMSDs (root mean

square deviation), RMSF (root mean square fluctuation),

radius of gyration, surface electrostatic potential, accessible

surface area and other variable components. These analyses

were performed for the complete trajectory as well as for the

simulation-averaged structure. The simulation variables

were compared between the wild-type and mutated sushi

domains. All image rendering and structural analysis (of the

simulation trajectories as well as the simulation averaged

structures) was done using YASARA version 13.9.8 and

SWISS-PDB viewer (Guex et al. 2009). Difference in folding

free energies between mutant and wild-type structures were

calculated using the following web servers: Imut 2.0, SDM,

McSM, DUET, ERIS (Capriotti et al. 2005; Yin et al. 2007;

Worth et al. 2011; Pires et al. 2014a,b) and also with the

FOLDX plug in embedded in YASARA (Van Durme et al.

2011). The simulation averaged structures for both the wild

type and mutants were used as an input for these web serv-

ers as well as for FOLDX-based calculations. The PIPSA web

server (http://pipsa.eml.org/pipsa/) was used to calculate the

surface electrostatic potential distances between wild type

and mutated sushi domain (once again the simulation aver-

aged structures were used as an input) (Richter et al. 2008).

Results

Heterologous expression of FXIIIB subunit

variants in homozygous and heterozygous
forms

The results of heterologous expression of the FXIIIB subunit

wild type and mutations in homozygous form showed a pat-

tern that was published recently (Fig. 1) (Biswas et al. 2013).

Three of the mutations (Cys5Arg, Cys316Phe, and Pro428Ser)

showed quite low levels of secreted FXIIIB subunit (mean

levels ranging between 0.29 and 2.74 lg/mL) Another vari-

ant showed moderately reduced levels than the wild type

(Val401Glu; mean level 3.65 lg/mL), three other variants

(Ile81Asn, Leu116Phe, Val217Ile) showed levels close to that

of the wild type (4.82 lg/mL). The heterozygous coexpres-

sion with the wild type for all variants afforded some degree

of correction for the mutated expression phenotype. In fact

in some of the variants (Ile81Asn, Leu116Phe, Val217Ile,

Cys316Phe, and Val401Glu) the coexpressed phenotype

FXIIIB2 antigen levels (4.2–6.66 lg/mL) were quite similar

to the wild type (Fig. 1) except for Cys5Arg and Pro428Ser

which reached only 1.22–3.87 lg/mL FXIIIB antigen levels.

Confocal microscopy and Image analysis for

B subunit variants

The comparative degree of colocalization expressed as

Pearson and Mander0s R coefficient showed an interesting
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pattern with respect to one particular mutation, that is,

Cys5Arg. The Cys5Arg variant showed similar levels of

colocalization for ER (difference P = 0.96; Fig. 2A) but

very low levels of colocalization for Golgi (lowest amongst

all mutations; difference P < 0.001) (Fig. 2B). The degree

of colocalization was also quite low in both ER and Golgi

Figure 1. Transient homozygous/heterozygous

expression of the reported missense mutations.

This image represents comparative bar graph

representations for the mutant and wild-type

FXIIIB expression antigen values, homozygous

as well as heterozygous. The leftmost black bar

represents the wild type. Amongst the other

bars, the dark gray represent homozygous

mutant expression while the light represents

the heterozygous expression (cotransfection

with wild type). All values have already been

normalized for transfection efficiency with beta

galactosidase levels. The error bars represent

the standard deviation.

Figure 2. Confocal analysis and the degree of colocalization for wild-type and the reported missense mutations. A(1) Confocal images for

colocalization of our wild-type and mutant variant FXIIIB subunit protein with ER. In order to avoid any confusion only the two cysteine-based

mutations, Cys5Arg and Cys316Phe have been shown here. The images for all the missense mutations can be seen in Figure S3. Each

representative confocal image is split into four sections: green staining representing the FXIIIB subunit protein, red staining representing the ER,

yellow staining showing the colocalization of ER and FXIIIB subunit and finally white dots which also represents co-localization of ER and FXIIIB

subunit. A(2) Bar graph representing comparative degree of ER colocalization with ER for the wild-type and mutant variant FXIIIB subunit protein.

B(1) and B(2) is similar to A(1) and A(2), the main difference being that the red stain represents the Golgi network and the co-localization

overlays shown are for the FXIIIB subunit protein with the Golgi network.
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for the mutations Cys316Phe and Pro428Ser. Ile81Asn and

Val401Glu showed similar levels of colocalization in ER

and lower but only borderline significant levels of colocal-

ization in Golgi indicating that their secretion paths

follow similar fates as that of wild type. The Val217Ile

mutant shows significantly lower levels of colocalization

for both ER and Golgi (but not of the order of other high

impact mutations like Cys316Phe and Pro428Ser)

which might account for the slight difference in secreted

antigen levels for this mutant when compared with the

wild type.

Proteasome inhibition by Lactacystin

The inhibition of the proteasome by Lactacystin showed a

corrective effect for all mutations except Ile81Asn and

Val217Ile. The mutations Cys5Arg, Leu116Phe, Cys316Phe

and Pro428Ser show an increase in FXIIIB antigenic level

more than that observed for the wild type (0.56 lg/mL)

post-Lactacystin treatment (Fig. S1).

Expression and reconstitution study of the

FXIIIB subunit variants with recombinant

FXIIIA subunit

Reconstitution experimentation with recombinant FXIIIA

subunit showed a significant impact on binding to the

FXIIIA subunit and hence on heterotetramer assembly for

four FXIIIB subunit mutations (Ile81Asn, Val401Glu,

Cys316Phe, and Pro428Ser) (Fig. 3). The Cys5Arg variant

showed nondetectable levels of FXIIIA2B2 antigen and

therefore representative CTP or CTPP values were not

calculated. The highest calculated impact on heterotetr-

amer assembly was for the Cys316Phe mutation (only

~22% of the binding ability of wild type FXIIIB). Two

mutations (Leu116Phe and Val217Ile) showed CTP and

CTPP values similar to wild type indicating no effect on

heterotetramer assembly.

Structural and sequence conservation

analysis

Sequence alignment with CFH sushi domains as well as

with sushi domains from 50 different mammalian pro-

teins (containing sushi domains) suggest a number of

consistently conserved residues aside from the cysteines

which form the backbone structural disulfide bonds of

the sushi domains [Fig. 4A(1) and (2)]. Interestingly most

of these sequence conserved residues are hydrophobic

(Proline, Tryptophan) in character suggesting a role for

these residues either in binding/functional interactions or

maintaining the hydrophobic core of their respective

sushi domains. Structural alignment of the sushi domains

differs from their sequence alignment in certain segments.

We observed sequence conserved residues occurring in

regions of structural variability in the FXIIIB sushi

domains. This was quite frequent for the residues on the

variable length loops connecting the sushi domain beta

strands (Fig. 4B). The two reported cysteine missense

mutations occur in highly conserved structural cores of

their sushi domains and show practically no variability at

all (structurally as well as sequence identity based). The

Pro428 residue is also highly conserved. Only in the 13th

factor H sushi domain it is substituted by another resi-

due, which turns out to be a hydrophobically similar and

small Val residue [Fig. 4A(2)]. The Ile81 residue occurs

in a semiconserved sequence but a structurally variable

region of the FXIIIB subunit S2 sushi domain. The Ile

residue in the multiple sequence alignment with CFH

sushi domain varies on most occasions to a hydropho-

bically similar Val residue [Fig. 4A(2)]. Only in sushi

domains 14 of CFH we observe an Asn residue similar to

the reported mutation (Ile81Asn). However, sushi domain

14 has no designated role in protein–protein interactions

for CFH protein, therefore this sushi domain might be

functionally redundant (Perkins et al. 2011). In the larger

multiple alignment this residue is poorly conserved but

Figure 3. CTPP values representing FXIIIB-

binding ability. This image is a comparative bar

graph description of the wild type versus

mutant FXIIIB subunit CTPP (comparative

tetramerization potential percentage) values.

The calculations for CTTP have been explained

in the methods section. Since the CTTP values

are a comparative representation when the

wild type is considered to be 100%, therefore

no error bars are shown for this figure.
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B

A

Figure 4. Sequence and structural

conservation of sushi domains. A(1)

Conservation results for the multiple sequence

alignment of FXIIIB subunit sushi domains with

sushi domains from 50 mammalian sushi

domain-containing proteins. Owing to the

large size of the actual alignment, it is not

shown here. Only the conservation has been

shown here with two bar graphs. The upper

colored one depicts the degree of conservation

and the lower bars show the consensus. Taller

bars indicate higher sequence identity and also

conservation. A(2) Multiple sequence

alignment of FXIIIB subunit sushi domains with

sushi domains of the complement factor H.

The highly conserved residues are colored and

also listed at the bottom of the multiple

sequence alignment. The residues

corresponding to each mutation have been

marked at the position they occur in the

alignment. (B) Structural alignment results for

four sushi domains on which the mutations

Cys5Arg (S1; B1), Ile81Asn (S2; B2), Cys316Phe

(S6; B3) and Pro428Ser (S7; B4) occur.

Structural conservation is depicted in a color

gradient where blue represents lowest

conservation level and red the highest. The

variable length loops connecting the beta

strands, which show the highest structural

variability, are shown in blue shaded regions in

each domain.

264 ª 2015 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

FXIII B Missense Mutations A. Thomas et al.



most of the variant residues are also hydrophobic in char-

acter. The Leu116 residue is located in a highly conserved

sequence stretch (VQCLSDG) within which the Leu resi-

due is the most poorly conserved residue. Interestingly,

this residue varies between polar and nonpolar residues

almost consistently between the various sushi domains in

both the larger as well smaller (with CFH) multiple

sequence alignments. The Val217 residue is a highly con-

served residue and it aligns with the Val401 residue (on

which another mutation Val401Glu has been reported)

from sushi domain 7. The difference between the two

mutations is that one is to a hydrophobically similar Ile

residue and the other results in a negatively charged polar

Glu residue.

MD simulation analysis for FXIIIB subunit

sushi domain mutations on the FXIIIB

subunit sushi domain homology-based

models

A number of subtle as well as wide-ranging differences

were observed during the analysis of the simulation

trajectories/simulation averaged structures of individual

mutations modeled on their respective homology modeled

sushi domains. The Cys5Arg mutation showed deviation in

structure indicated by higher RMSD values than its wild-

type sushi domain 1 for the entire simulation time

(Fig. 5A). Simulation RMSF values showed wide differ-

ences in flexibility upon mutation on neighboring hydro-

phobic variable length loops (Fig. 5B). Differences in

cross-correlation maps were also observed especially in

areas of surface exposure for the sushi domain 1 (Fig. S2).

A number of hydrophobic patches were detected in the

simulation averaged structure for the Cys5Arg mutation

when compared with the wild type (Fig. 6A). Differences

in surface electrostatic potentials for the simulation aver-

aged structures (Fig. 6B) were observed for all mutations

except for Leu116Phe and Val217Ile (not shown here). In

fact the differences in calculated surface electrostatic

potential between the wild-type and the mutated domain

was the highest for the Cys5Arg mutation while the other

mutations also showed modest to high differences (Table

S1). The mutation to an Arg residue breaks the disulfide

bond but also results in the gain of hydrogen bonds with

Figure 5. Simulation RMSD and RMSF comparisons for wild-type and mutated sushi domains. (A) Changes in RMSD during the 25 ns simulation

for the mutated and wild-type sushi domains. Only the high impact mutations Cys5Arg, Cys316Phe, Pro428Ser that undergo significant changes

in RMSD during simulation and one Ile81Asn mutation with no observable difference in RMSD are illustrated here. The dark black patterns

represent wild-type RMSDs while the gray patterns represent the mutant RMSDs in each graph. (B) Observed RMSF per residue during simulation

for the mutated and wild-type sushi domains. Only the high impact mutations Cys5Arg, Cys316Phe, Pro428Ser and two other mutations Ile81Asn

and Val401Glu are shown here. The regions showing noticeable differences in RMSFs are shaded in gray. The red patterns represent the wild-

type RMSFs while the black pattern represents the mutated RMSFs in each graph. The RMSD and RMSF calculation for the simulation trajectories

were done on YASARA version 13.9.8. RMSD, root mean square deviation; RMSF, root mean square fluctuation.

265ª 2015 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

A. Thomas et al. FXIII B Missense Mutations



Met29 (Fig. 7B). The mutation also results in the gain of

accessible surface area for the mutated Arg residue side

chain instead of the completely buried wild-type Cys resi-

due (Table S2). Two other mutations, Cys316Phe and

Pro428Ser also show higher RMSD values when compared

with the wild type but not of the order of Cys5Arg

(Fig. 5A). The Cys316Phe mutation in particular behaves

close to the wild type for most of the simulation time.

However, this mutation does show differences in RMSD

values from that of its wild-type sushi domain when

approaching the end of the stipulated simulation time,

indicating a slower and lower impact mutation than the

Cys5Arg mutation. The Pro428Ser mutation showed con-

sistently higher RMSD values than the wild type during

the entire simulation. The Cys316Phe and Pro428Ser muta-

tions showed a number of differences in the cross-correla-

tion maps (Fig. S2) indicating an impact on the correlated

motion and therefore relative orientation of individual res-

idues on the sushi domain surface. The mutation

Cys316Phe showed one small hydrophobic patch when

compared with the wild type (Fig. 6A; Table S3). This

hydrophobic patch is dominated by the mutated surface

exposed Phenylalanine (Phe316) which lies next to a

Lys362 residue which is also surface exposed in the

mutated sushi domain in comparison to its wild-type

domain where it is partially buried (Fig. 7E). This hydro-

phobic patch is a likely target for the ubiquitin system for

the clearance of this misfolded mutant variant by the pro-

teasomal degradation pathway (since ubiquitin attaches

itself to surface lysine residues) Mattiroli and Sixma et al.
2014. The Pro428Ser mutation shows conspicuous hydro-
phobic patches all over its sushi domain (Fig. 6A). The
mutated Ser428 residue seems to mimic the wild-type
Proresidue since there is no observable loss or gain of sur-
face accessible surface area or a distinct change in back-
bone secondary structure of the residue (Fig. 7C).
However, the interaction profile of the simulation averaged
structure shows that this mutation leads to the loss as well
as gain of several hydrogen bonds/salt bridges (Fig. 7D).
This might be principally responsible for altering the native
fold and exposing the observed hydrophobic patches. The
simulation run for the Val401Glu mutation does not show
remarkable changes in RMSD (Fig. 5A). The average
RMSDs though do show small differences between the wild
type and mutant (0.113 �A). The RMSF values for Pro428-
Ser and Cys316Phe mutations show small changes in flexi-
bility in regions spread across the sushi domains (Fig. 5B).
The mutations Ile81Asn and Val401Glu also show differ-
ences in RMSF values between the mutated and the wild-
type sushi domains suggesting influences on domain flexi-
bility. The other two mutations (Leu116Phe and Val217Ile)
do not show any remarkable differences in RMSD or
RMSF values (data not shown here). The free energy calcu-

lations made across different servers consensually suggest a
destabilizing influence for almost all mutations except for
Leu116Phe and Val217Ile (Table S4). Our simulation analy-
sis agrees best with the results obtained with the FoldX
tool, Eris and Imut 2.0 server in that the two Cys mutations
and one Pro mutation seem to have the highest impact on
domain stability. The Val401Glu mutation also had high de-
stabilizing free energy values across almost all free energy
evaluation servers tested in this study.

Discussion

The missense mutations investigated in our study have

been reported in heterozygous form in patients with mild

FXIII deficient phenotype. The occurrence of heterozy-

gous mutations is a phenomenon not uncommon to sushi

domain-containing proteins as was earlier observed by

Goodship (2006) and Dragon-Durey et al. (2004) in CFH

proteins. The heterozygous form of expression in our

study conclusively demonstrates that these mutations can

be classified into three major types: (1) Mutations which

show influence on antigenic stability (and therefore are

partially corrected for their phenotype when coexpressed

with the wild type) (2) Mutations which have no influ-

ence on antigenic stability and therefore their impact is

limited to interference in protein–protein interactions

(i.e., dimer/heteromer assembly) and (3) Mutations which

influence antigenic stability as well as binding interac-

tions. The two cysteine mutations, Cys316Phe and

Cys5Arg and the proline mutation, Pro428Ser clearly

belong to the first as well as last group. In our earlier

study we had observed differential rate/pattern of secre-

tion for almost all FXIIIB missense mutations investigated

(Biswas et al. 2013). In the current study, we have gone a

step further to look for intracellular accumulation fol-

lowed by possible downregulation of these mutations by

the unfolded protein response. Amongst the high impact

mutations, only Cys5Arg was observed to accumulate

within the ER following which the mutant protein is

cleared off by the unfolded protein response of the cell.

This was clearly demonstrated since on one hand almost

equivalent amount of protein was observed colocalized

with the ER for the mutated protein (when compared

with the wild type), almost none to nonsignificant

amounts of protein was observed in the Golgi indicating

an immediate response from the quality control system of

the cell. The structural analysis also demonstrated that

the mutation most likely results in structural destabiliza-

tion (high RMSDs) and strong hydrophobic patches on

the surface of the protein/domain which will elicit a

strong unfolded protein response. As a result almost no

protein is observed in the secreted medium for the

Cys5Arg mutation. The influence of the unfolded protein
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response on the mutated protein is further demonstrated

when upon inhibition of the proteasome (by Lactacystin)

we observe a correction of the expression phenotype. The

other two high impact mutations Cys316Phe and Pro428-

Ser do not seem to have an accumulative influence on the

respective variant proteins as no accumulation is seen in

either ER or Golgi. However, structural analysis does

show the presence of hydrophobic patches as well as a

destabilizing influence (high RMSDs) on their respective

domains. This is further supported by the fact that while

the mutated variants are observed in both Golgi and ER,

their amounts are significantly reduced. This suggests

that these mutations do elicit a weak unfolded protein

response (in comparison to Cys5Arg) which leads

to reduced protein secretion. The highest difference in

post-Lactacystin-induced antigenic values was observed

for Pro428Ser. While some antigen from all three of these

mutations (Cys5Arg, Cys316Phe, and Pro428Ser) does

get secreted into the medium, this variant protein is

still likely to be nonfunctional owing to altered surface

electrostatics which will prevent its association with

the FXIIIA2 subunit and therefore also influence

heterotetramer assembly. This is further demonstrated by

the low CTP values for the Pro428Ser and Cys316Phe

mutations (the Cys5Arg mutation was not evaluated as

explained before owing to very low antigenic values). The

high degree of structural and sequence conservation and

the in silico calculated folding energy values observed for

the wild-type residues corresponding to these three muta-

tions (Cys5Arg, Cys316Phe, and Pro428Ser) lend further

credence to the idea that these mutations primarily have

a destabilizing effect on the protein. Furthermore, our

confocal analysis confirms that amongst these three muta-

tions, Cys5Arg is the only true accumulative/secretion-

based defect resulting in ER accumulation and subsequent

degradation. Interestingly, although Cys5Arg and

Cy316Phe both break structural disulfide bonds their

detailed expression/confocal phenotype (one results in

accumulation/degradation while other shows no accumu-

lation/lower rate of degradation) is different. This dichot-

omy has been observed in cysteine mutations from the

sushi domains of CFH protein also. Saunders et al.

(2006) tabulated that amongst eight reported cysteine

substitutions which break structural disulfide bonds, six

Figure 6. Surface electrostatic potential and Hydrophobic patch representations of Sushi domains. (A) Surface electrostatic potential map for the

simulation averaged structures of wild-type sushi domains alongside the simulation-averaged structures of their corresponding mutated sushi

domains. The images have been generated on SWISS-PDB viewer. The surface electrostatic potential calculations were made using the Poisson-

Boltzmann method utilizing partial charges of atoms. The default dielectric constant of four for the protein and 80 for the solvent were used

during calculations. An ionic strength of 50 mmol/L was used during calculations. Red color denotes negative potential while blue denotes

positive potential. (B) Hydrophobic patches as determined with the SWISS-PDB viewer tool for simulation averaged structures of wild-type and

mutated sushi domains. Surface representations of the sushi domains are shown. Hydrophobic patches are colored blue while the rest of the

domain is colored red. The combined calculated areas of all hydrophobic patches for each sushi domain (in those detected) have been tabulated

in Table S2.
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resulted in the loss of stability/incorrect folding and

reduced antigen levels. The other two mutations,

p.Cys630Trp (c.1890T>G) and p.Cys1043Arg (c.3127T>C)

in the 11th and 17th sushi domains, respectively, showed

normal antigen levels. Therefore, we hypothesize that in

spite of forming structural disulfide bonds; cysteines in

FXIIIB subunit (and other sushi domain-containing pro-

teins) are likely to show strong functional diversity. The

mutations Ile81Asn and Val401Glu both show near

wild-type-like phenotype and slightly attenuated level

phenotype, respectively, in terms of secretion/confocal

phenotype. In silico analysis did not show any major

implications for these two mutations on the stability of

their respective sushi domains. What both mutations

clearly show are changes in the surface electrostatic poten-

tial for their respective domains. Previous literature sug-

gests that sushi domain interactions are primarily

electrostatic mediated and that sushi domains can be clas-

sified into functional groups on the basis of their surface

electrostatic properties (Soares et al. 2005). This coupled

with the fact that both show reduced CTPP values (when

compared with the wild type) suggests that these muta-

tions primarily influence binding to the FXIIIA2 subunit

and therefore FXIIIA2B2 heterotetramer assembly since

Figure 7. Close up views of the local molecular environment of reported missense mutations. (A–C) Depicts side-by-side local molecular

environments for the mutations Cys5Arg, Cys316Phe, Pro428Ser with their wild-type sushi domains. The backbone is presented in ribbon format.

Residue(s) of interest are depicted in stick format. Also depicted is the solvent accessible area (transparent red for the entire object and

transparent blue for the residue of interest). In (A) and (B) it is quite apparent that mutation results in significant gain of accessible surface area.

Also in (A) the mutated Arg residue is observed to form hydrogen bonds with Met 29. (C) Both the mutated Ser and the wild-type Proresidue

look similar in terms of accessible surface areas and the secondary structure. (D) Close up view of superimposed structures of the mutated (for

Cys316Phe) and wild-type S6 sushi domain. The backbones are depicted in ribbon format. The wild-type backbones as well as residues are

colored gray while the backbone of the mutated sushi domain is colored with respect to its secondary structure. The mutated Phe316 residue is

colored blue and the neighboring residue Lys362 is colored yellow in the mutated sushi domain. These residues are depicted as stick models in

both wild-type and mutated sushi domain structures. The mutated Phe316 is surface exposed as opposed to the Cys316, which is completely

buried. Also surface exposed is the Lys362 in the mutated structure while in the wild-type structure it is partially buried. (E) Superimposition of S7

wild-type sushi domain (green) and S7 mutated (for Pro428Ser) sushi domain (red) structures. Backbones are depicted as stick models. Hydrogen

bonds are shown as magenta dots. The hydrogen bonds lost or gained are shaded yellow and also labeled with the residues participating in the

particular bond. Structural alignments for (D) and (E) were done using the MUSTANG function embedded in YASARA.

268 ª 2015 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

FXIII B Missense Mutations A. Thomas et al.



native PAGE ruled out any impaired dimer formation

(data not shown; although a qualitative effect cannot be

ruled out). Previous literature suggests that sushi domain

interactions are primarily electrostatic mediated and that

sushi domains can be classified into functional groups on

the basis of their surface electrostatic properties (Soares

et al. 2005). The Val401Glu mutation might additionally

have a mild destabilizing effect in addition to influencing

binding to the FXIIIA subunit (as evidenced by differ-

ences in average RMSDs from the wild type, minor gain

of accessible surface area, radius of gyration over the wild

type and folding free energy calculations). The sushi

domain 2 of the FXIIIB subunit on which the Ile81Asn

mutation occurs has now been conclusively shown to par-

ticipate in interaction with the FXIIIA subunit (Katona

et al. 2014). The interface region for this sushi domain

shown in this study is proximal to our reported mutation.

Sushi domain 7, on which the Val401Glu mutation occurs

has so far showed no role in FXIIIA subunit interaction

or FXIIIB subunit dimerization (Souri et al. 2008). How-

ever, since the entire heterotetramer assembly is assumed

to be cooperative in nature the participation of other

domains has not been ruled out as yet. This mutation

results in the replacement of a highly sequence and struc-

turally conserved non polar residue with a negatively

charged Glu residue which explains for the difference in

the electrostatic potential surface observed for the

mutated sushi domain from the wild-type sushi domain.

This also explains the reduced CTPP values from our

study for the Val401Glu mutation which further confirms

its impact on heterotetramer assembly.

The remaining two mutations, Leu116Phe and Val217Ile

are observed to be pathologically neutral in terms of secre-

tion, structural and functional stability. No effect on

heterotetramer assembly was observed for these two

mutations. Low degree of sequence and structural conser-

vation further supports the neutral status of these two

mutations. Minor influences on the rate of biosynthesis still

cannot be ruled out for these two variant within the current

experimental set up. Even in the event of a minor influence,

these variants are most likely candidate functional poly-

morphisms rather than true causative mutations.

We have therefore using a host of functional, structural/

computational analysis successfully determined the under-

lying molecular mechanisms for the causality of seven

FXIIIB subunit variants which we had earlier reported in

heterozygous form from patients with mild FXIII defi-

ciency. We found that three of these mutations (Cys5Arg,

Cys316Phe, and Pro428Ser) cause antigenic instability as

well as reduced binding to FXIIIA subunit, two (Ile81Asn

and Val401Glu) cause impaired FXIIIA subunit binding

while maintaining antigenic stability. Only one mutation in

the entire lot (Cys5Arg) showed a true accumulative/secre-

tion-based defect while two (Leu116Phe and Val217Ile) oth-

ers seem to have neutral status.
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Figure S1. Proteasomal inhibition by lactacystin. The bar

graphs in this image represent the difference in FXIIIB

antigen values with and without lactacystin treatment

(Proteasome inhibition). The wild type is represented by

dark black bar while all the other mutations are repre-

sented by dark gray bars. A dotted black line marks the

difference in antigenic level (i.e., for the wild type) above
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which any observation would be considered an effect on

proteasome due to the mutation.

Figure S2. DCCM map for simulation trajectories. This

image depicts the DCCM (dynamic cross-correlation

matrices) map of each mutation’s simulation trajectory

compared with its wild-type sushi domain simulation tra-

jectory. The yellow regions show positive correlation

(proportional to its intensity) and the blue regions shows

negative correlation.

Figure S3. Confocal microscopy images for all variants.

This image shows the co-localization pattern for all

missense mutations with ER and Golgi in comparison

with the wild type. The image coding is the same as in

the main Figure 2.

Table S1. Surface electrostatic potential differences

between the mutant and wild-type sushi domains.

Table S2. Accessible surface area and radius of gyration

for simulation averaged wild-type and mutant structures.

Table S3. Exposed hydrophobic patches for each muta-

tion.

Table S4. Free energy changes calculated for each muta-

tion across various protein stability prediction servers.
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Figure S1. Proteasomal inhibition by lactacystin. The bar graphs in this 
image represent the difference in FXIIIB antigen values with and without 
lactacystin treatment (Proteasome inhibition). The wild type is represented by 
dark black bar while all the other mutations are represented by dark grey bars. A 
dotted black line marks the difference in antigenic level (i.e. for the wild type) 
above which any observation would be considered an effect on proteasome due 
to the mutation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S2. DCCM map for simulation trajectories. This image depicts the 
DCCM (dynamic cross correlation matrices) map of each mutation´s simulation 
trajectory compared with its wild type sushi domain simulation trajectory. The 
yellow regions show positive correlation (proportional to its intensity) and the blue 
regions shows negative correlation. 

 
 
 



 
Figure S3. Confocal microscopy images for all variants. This image shows the co-localization pattern for all 
missense mutations with ER and Golgi in comparison with the wild type. The image coding is the same as in the 
main Figure 2. 
 
 

 



Table S1. Surface electrostatic potential differences between the mutant and wild type sushi domains. 
Distance/difference values range from 0-2. Higher values represent larger differences/distances. 
 

Mutation vs Wild type Surface electrostatic 
potential 

difference/distance 
Cys5Arg vs S1 0.61482 

Ile81Asn vs S2 0.36878 

Leu116Phe vs S2 0.10232 

Val217Ile vs S4 0.11372 

Cys316Phe vs S6 0.24495 

Pro428Ser vs S7 0.48785 

Val401Glu vs S7 0.38471 

 
 
 
 
Table S2. Accessible surface area and radius of gyration for simulation averaged wild type and mutant structures. 
Abbreviations: WT: Wild type, ROG: Radius of gyration, MT: Mutant type, ASA: Accessible surface area. 

 

WT ASA(Å2)  ROG(Å) MT ASA(Å2) ROG(Å) MT ASA(Å2) ROG(Å) 
S1 4823.9 12.421 Cys5Arg 5172.92 12.545    

S2 3959.05 11.852 Ile81Asn 4007.93 12.075 Leu116Phe 4008 11.932 

S4 4155.98 12.089 Val217Ile 4162.06 12.124    

S6 3975.92 12.048 Cys316Phe 4164.9 12.263    

S7 3983.23 12.693 Val401Glu 4135.44 13.104 Pro428Ser 4427.03 12.157 

 
 
 
 



 
Table S3. Exposed hydrophobic patches for each mutation. 
 

Mutation Surface area(Å2) 

Cys5Arg 175 

Ile81Asn None 

Leu116Phe None 

Val217Ile None 

Cys316Phe 31 

Val401Glu None 

Pro428Ser 184 

 
 
 
 
Table S4. Free Energy changes calculated for each mutation across various protein stability prediction servers. 
Free energy values (��G) expressed as Kcal/mol. Interpretation for the FOLDX and ERIS server: ��G>0, mutation is destabilizing; 
for other servers: ��G<0 mutation is destabilizing 

 
Mutation SDM FoldX mCSM DUET Imutant 2.0 Eris 
Cys5Arg -0.88 15.61 -1.07 -0.769 -1.95 3.32 

Ile81Asn -3.54 1.78 -1.17 -1.165 0.92 3.92 

Leu116Phe 0.19 0.56 -1.332 -1.442 1.75 2.59 

Val217Ile 0.17 0.72 -0.486 -0.159 0.7 1.06 

Cys316Phe -0.56 9.12 -0.951 -1.139 -2.14 >10 

Val401Glu -3.04 1.07 -1.652 -1.816 -1.02 >10 

Pro428Ser -1.92 12.41 -1.749 -1.833 -3.22 5.17 
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ABSTRACT: Inherited defects of coagulation Factor XIII

(FXIII) can be categorized into severe and mild forms

based on their genotype and phenotype. Heterozygous mu-

tations occurring in F13A1 and F13B genes causing mild

FXIII deficiency have been reported only in the last few

years primarily because the mild FXIII deficiency patients

are often asymptomatic unless exposed to some kind of

a physical trauma. However, unlike mutations causing

severe FXIII deficiency, many of these mutations have

not been comprehensively characterized based on expres-

sion studies. In our current article, we have transiently

expressed 16 previously reported missense mutations de-

tected in the F13A1 gene of patients with mild FXIII

deficiency and analyzed their respective expression phe-

notype. Complimentary to expression analysis, we have

used in silico analysis to understand and explain some of

the in vitro findings. The expression phenotype has been

evaluated with a number of expression phenotype deter-

mining assays. We observe that the mutations influence

different aspects of FXIII function and can be function-

ally categorized on the basis of their expression phenotype.

We identified mutations which even in heterozygous form

would have strong impact on the functional status of the

protein (namely mutations p.Arg716Gly, p.Arg704Gln,

p.Gln602Lys, p.Leu530Pro, p.His343Tyr, p.Pro290Arg,

and p.Arg172Gln).
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Introduction

One of the key players in hemostasis is the plasma circulating Fac-

tor (F) XIII, a protransglutaminase that is responsible for the last

step of the coagulation cascade in which it covalently crosslinks pre-

formed fibrin clots to make them resistant to premature fibrinolysis

[Lorand et al., 1980]. The plasma FXIII zymogen is a heterote-

trameric complex comprising of two catalytic A (FXIIIA2) and two

protective carrier B-subunits (FXIIIB2), which are synthesized and

secreted into the plasma as homodimers from various cell types like

monocytes/macrophages, megakaryocytes, and platelets for the A

subunit and hepatocytes for the B subunit [Muszbek et al., 2011].

The FXIIIA2B2 complex has been suggested to be associated with

fibrinogen in plasma. The polymerized form of fibrinogen, fibrin is

also a known cofactor for the activation of FXIII. Structurally, each A

monomeric subunit is composed of an activation peptide (residues

1–38) and four distinct domains: beta-sandwich (residues 39–184),

central core (residues 185–516), barrel 1 (residues 517–628), and

barrel 2 regions (residues 629–732) [Komaromi et al., 2011]. The

monomeric B subunit on the other hand is composed of 10 tan-

dem repeats or glycoprotein-I (GP-I) structures designated as Sushi

domains, which are also observed in proteins of the complement sys-

tem [Ichinose et al., 1986]. The activation of plasmatic FXIIIA2B2 is

the combined effect of the proteolytic cleavage (by thrombin) of a

37 amino acid long N-terminal peptide, the activation peptide

(FXIII-AP), from the FXIIIA2-subunit and calcium binding to spe-

cific FXIIIA2 subunit calcium binding sites [Schroeder et al., 2007;

Komaromi et al., 2011; Stieler et al., 2013]. These two actions lead

to the dissociation of the FXIIIB2-subunits and conformational

changes in the zymogenic FXIII converting its closed structure to

a more open activated form, thereby exposing the active site to

substrate access [Komaromi et al., 2011; Stieler et al., 2013]. In ad-

dition, to mediating fibrin chain crosslinking, FXIII also crosslinks

fibrinolytic inhibitors such as α-2-antiplasmin into the fibrin clot.

Alpha-2-antiplasmin is a serine protease inhibitor (serpin), which

renders the fibrin clot less susceptible to fibrinolysis by inhibiting

plasmin within the clot [Fraser et al., 2011; van Giezen et al., 1993].

Therefore, the complete mechanism of FXIII activation and regula-

tion is a complex process mediated by a number of protein–protein

interactions and protein conformational changes. Defect in any of

these steps can lead to the complete disruption of regulated FXIII

activation and activity. FXIII deficiency can be of both acquired and

congenital origin (MIM# 613225 and MIM# 613235) [Biswas et al.,

2011; Biswas et al., 2014a]. The clinical manifestation of severe

congenital FXIII deficiency resulting from homozygous/complex

C© 2016 WILEY PERIODICALS, INC.



heterozygous defects usually in the F13A1 gene (RefSeq

NM 000129.3, MIM# 134570), have been described well in previ-

ous literature, the first case being reported by Duckert et al. (1960).

Reports of F13B gene (RefSeq NM 001994.2, MIM# 134580) muta-

tions in the severe form of this deficiency are rarer. This rare disorder

(severe FXIII deficiency) with a prevalence of approximately one in

2 million represents an autosomal inherited recessive congenital dis-

order leading to severe bleeding symptoms. Another form of this

deficiency is the isolated heterozygous congenital FXIII deficiency

(or mild FXIII deficiency) that is currently underreported; primar-

ily because the carriers are often asymptomatic and therefore the

symptoms become apparent only when the individual is exposed to

trauma [Biswas et al., 2014a]. Identification of heterozygous FXIII-

deficient patients and extended causality determining research on

the related mutations is crucial since the risk of provoked bleeding

events (surgery, tooth extraction, and trauma) in heterozygous pa-

tients can be minimized through early detection. The F13A1 gene

coding for the A subunit maps to the short arm of chromosome 6

(p24-25) and spans >160 kb of genomic DNA consisting of 15 exons

encoding a mature protein of 732 amino acids (�83 kDa) including

an initiator methionine [Ichinose et al., 1988]. No classical signal

sequence has been detected in the F13A1 gene and the mechanism

by which it might be secreted extracellularly is presently unknown.

Intracellularly FXIIIA subunit (c.FXIIIA) exists as a dimer unlike in

plasma where it associates with the B subunit to form a heterote-

tramer. The F13B gene is located on the long arm of chromosome

1 (q32-32.1) and contains 12 exons encoding the mature protein of

641 amino acids (�80 kDa) (Schwartz et al., 1973). The F13B gene

sequence contains a 20 amino acid long leader sequence indicative

of a classically secreted protein [Ichinose et al., 1986; Webb et al.,

1989]. The FXIIIB subunit is glycosylated at two glycosylation sites

[Chen et al., 2009].

In the last 5 years, our group has reported 23 mutations from

patients with mild FXIII deficiency [Ivaskevicius and Biswas et al.,

2010a; Ivaskevicius and Biswas et al., 2010b; Biswas et al., 2014b;

Ivaskevicius et al., 2012]. Sixteen of these mutations were identified

in the F13A1 and seven in the F13B gene. We have earlier studied and

characterized the F13B gene mutations [Biswas et al., 2013; Thomas

and Biswas et al., 2015]. In the present study, we have performed

a comprehensive investigation on the causality of 16 previously re-

ported FXIIIA subunit missense mutations [Ivaskevicius and Biswas

et al., 2010a; Biswas et al., 2014b] using parallel in silico and in

vitro approaches to structurally and functionally characterize their

underlying pathophysiology. The in vitro methods have been com-

plemented by in silico strategies in which modeling of mutations on

defined crystal structures and protein docking has been applied to

explain the in vitro findings. Our analysis shows that these muta-

tions can act on different aspects of FXIII activation and regulation

based on the structure functional impact of the particular mutation.

Material and Methods

Mutational Database Submissions

Protein and DNA sequence numbering has been done on the ba-

sis of the reference sequence: RefSeq NM 000129.3. All sequence

variant descriptions were cross-checked by the Mutalyzer pro-

gram (http://www.LOVD.nl/mutalyzer; accessed on 26.03.2016).

The F13A1 gene is composed of 732 amino acids including an ini-

tiator methionine. The amino acids are numbered starting with the

initiator methionine as +1. The 16 previously reported F13A1 mis-

sense mutations have been registered with the Factor 13 Registry

Database (http://www.f13-database.de/) and additionally under

submission to the Leiden Open Variation Database (LOVD version

3.0; http://www.lovd.nl/3.0/home; submission IDs: 0000089893-

0000089878 in increasing order of amino acid numbering).

Heterologous Expression of the Wild Type and Mutated
FXIIIA Subunit Variants in COS-1 Cell Lines

Site-directed mutagenesis was performed, on the mammalian

expression vector pDestTM26 Vector (Invitrogen, Darmstadt,

Germany), containing the human FXIIIA subunit cDNA us-

ing the Gene Tailor site-directed mutagenesis kit (Invitrogen),

for 16 previously reported F13A1 heterozygous gene mutations

(p.Arg38Pro, p.Arg38Gln, p.Pro167Leu, p.Tyr168Cys, p.Arg172Gln,

p.Pro290Arg, p.His343Tyr, p.Gln416Arg, p.Leu530Pro, p.Arg541Gln,

p.Gly593Ser, p.Gln602Lys, p.Arg612His, p.Asp669Gly, p.Arg704Gln,

and p.Arg716Gly) (Note: These mutations have been previously re-

ported with the old nomenclature, that is, the residue after the

initiator methionine which is a serine is regarded as +1) [Ivaskevi-

cius and Biswas et al., 2010a; Ivaskevicius and Biswas et al., 2010b;

Biswas et al., 2014b; Ivaskevicius et al., 2012]. All vector construct

clones were verified by complete cDNA sequencing to avoid mis-

incorporations within the expressed vector, that is, variants or the

wild type. Wild type and mutated FXIIIA subunit carrying mam-

malian expression vectors were heterologous expressed in COS-1

cells [DSMZ(Institute of DSMZ-German Collection of Microor-

ganism’s and Cell Cultures, Germany)], which had been cultured

in 10 cm dishes with DMEM (Invitrogen) supplemented with 10

% FBS (Invitrogen), 1% (v/v) penicillin–streptomycin (Invitro-

gen) and 0.1% fungizone (Invitrogen) at 37°C in 5% CO2. Dur-

ing transfection 70,000 cells/well were seeded into six-well plates

or 1.8 million cells in one 6 cm dish using DMEM (with FBS but

without supplements and phenol red). The mutated versions were

expressed in homozygous (alone) or heterozygous form (cotrans-

fected along with the wild type) using Lipofectamine 2000 (Invitro-

gen). Both forms of transfections were performed for wild type and

mutated forms with a reporter pCMV-LacZ vector (Clontech, Saint-

Germain-en-Laye, France) containing the LacZ gene for normalizing

the transfection at a 4:0.5 (homozygous; Expression vector: Reporter

vector) or 2:2:0.5 (heterozygous; Expression vector: Expression vec-

tor in heterozygous form: Reporter vector) ratio. Collection of the

supernatant and lysed cells was performed after 12, 24, and 36 hr.

Cells were lysed with 270 µl non-denaturing lysis buffer “native

M-PER Mammalian Protein Extraction Reagent buffer” (Thermo

Scientific, Darmstadt, Germany) containing 25 mM bicine pH 7.6

without supplement of protease inhibitors. Both supernatant and

cell lysates were stored at –80°C until further use. Since the FXIIIA

subunit lacks a leader sequence and a significantly higher amount

of the protein is found intracellularly when performing heterolo-

gous expressions, therefore we used the cell lysates for evaluating the

quality of the FXIIIA expression products and not the supernatant.

Where required (i.e., FXIII generation assay addressed later) cell

lysates were further concentrated using Amicon Ultra-4 Centrifu-

gal Filter Units with an Ultracel-50 membrane (Merck Millipore,

Darmstadt, Germany). Transfections were completed in triplicates

and repeated a minimum of three times. Further measurement of

activity and antigen levels for the expressed cell lysates were per-

formed with commercial kits (more details in the supplementary

methods).

Determination of FXIII Activity by Pentylamine
Incorporation

Cell lysates were also tested for FXIII activity with a modifica-

tion of a biotin-labeled pentylamine incorporation activity assay
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previously described by Philippou et al. [2003] (details given in

supplementary methods).

Determination of FXIII Activity by α2-Antiplamin
Incorporation

The rate ofα2-antiplasmin incorporation mediated by FXIII from

the expressed cell lysates was performed as previously described by

Smith et al. [2013] (details in supplementary methods).

Generation of Activated FXIII (FXIIIa) using Expressed Cell
Lysates

In order to determine the real-time FXIII activity (activation

and inhibition), the expressed cell lysates were spiked into FXIII-

deficient plasma (Haemochrom, Essen, Germany) and the FXI-

IIa (activated FXIII) generation assay was performed [Dodt et al.,

2013] (details in supplementary methods). The curve data were

evaluated according to a biexponential model with first order

absorption and elimination. Data were fitted to the equation:

C(t) = c∗ka/(ka – kb)∗(exp(–kb∗(t – tlag))–exp(–ka∗(t – tlag))) where:

ka—constant of absorption that describes the development of FXI-

IIa and kb—elimination constant. The parameters area under the

curve (AUC), peak FXIIIa concentration (CP), and time to peak

(TTP) were also evaluated.

Fibrin Crosslinking Monitored over SDS-PAGE

The effect of the mutations on FXIII-mediated fibrin crosslink-

ing SDS-PAGE were performed under reducing conditions on clots

generated by mixing the expressed cell lysates with deficient plasma

(details in supplementary methods).

Scanning Electron Microscopy of Fibrin Clots Generated
using FXIIIA Expressed Cell Lysates

To analyze the effect of the FXIIIA mutations on fibrin clot thick-

ness the expressed FXIIIA subunit cell lysates were mixed with de-

ficient plasma (in a 1:1 ratio), thrombin (0.2 U/ml) and CaCl2
(1 mM) and reactions were stopped after 60 min with 150 µl EDTA

(50 mM). Finally, the clots were subjected to scanning electron mi-

croscopy after an elaborate procedure of fixation (further details in

supplementary methods).

Molecular Modeling and in silico Analysis

In silico analysis was performed toward obtaining complimentary

evidence for the putative structural influence of the expressed mis-

sense mutations on (A) rate of activation and (B) interaction with

α-2-antiplasmin, fibrinogen, and thrombin. All structural analysis

and visual rendering was performed on the YASARA version 13.9.8

platform [Krieger and Vriend, 2014].

(A) Activation path modeling

Protein database (PDB) files for the crystal structures of the zy-

mogenic FXIIIA (Species: Homo sapiens, PDB ID: 1f13; 2.1 Å res-

olution) and activated FXIIIA (FXIIIAa) (Species: Homo sapiens,

PDB ID: 4kty; 1.98 Å resolution) were downloaded from the PDB

(www.rcsb.org; accessed on the 05.11.2014) [Stieler et al., 2013;

Weiss et al., 1998] and used as input files on the ANMpathway

server (http://anmpathway.lcrc.anl.gov/anmpathway.cgi; accessed

on 10.11.2014) [Das et al., 2014]. This server uses a coarse-grained

modeling approach to construct a two-state potential calculated by

combining two elastic network models representative of the exper-

imental structures representing the beginning and end points of

the simulation. Intermediate structures are extracted as snapshots

along continuous steepest descent pathways generated for the pro-

tein atomic coordinates during the transition from beginning to

end point structures. The input files (PDB files) were optimized

by first removing or modeling residues, which are not common

to either file. Only a single chain from each PDB file was used as

an input file. The output files (also in PDB format) are a series of

coarse-grained models that represent the macromolecular structure

of a specific transition point. No additional cut-offs were assigned

as the default mode applicable in the server was chosen for gen-

erating the intermediates. The transition pathway was analyzed to

identify residues, which show structural consistency or inconsis-

tency during the activation process. Experimental validation of any

conformational transition pathway is difficult because of the short

life of the transition intermediates; however, a limited amount of

experimental validation for this server has been demonstrated by

Das et al. [2014].

(B) Interaction with α-2-antiplasmin, fibrinogen, and

thrombin

In order to investigate putative structural influences, our re-

ported missense mutations were analyzed in the context of in-

teraction with α-2-antiplasmin, fibrinogen, and thrombin. There-

fore, constrained all atom docking models were generated for

these interacting partners with zymogenic or activated FXIIIA sub-

unit. The human α-2-antiplasmin has no well-defined NMR or

X- ray crystal structure in the database and therefore a model

of the same was generated on the ITASSER threading server

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/ accessed on

22.11.2014) and the ab initio Quark server ((http://zhanglab.ccmb.

med.umich.edu/QUARK/; accessed on 24.11.2014) [Yang et al.,

2015; Xu et al., 2012]. In the case of fibrinogen, high-resolution

crystal structures for all three fibrinogen chains were available in

the protein structure database (Species: Homo sapiens, PDB ID:

3GHG; 2.9 Å resolution) [Kollman et al., 2009]. However, miss-

ing regions in the structure were modeled on the ab initio Quark

server ((http://zhanglab.ccmb.med.umich.edu/QUARK/; accessed

on 03.12.2014) and fitted onto the original structure before it was

used for docking purposes. Both α-2-antiplasmin and fibrinogen

chain structures were docked onto the activated FXIIIA (FXIII Aa)

crystal structure (Species: Homo Sapiens, PDB ID: 4kty; 1.8 Å resolu-

tion). For both modeling servers (threading: ITASSER and ab initio:

Quark), the amino acid sequence in fasta format of the relevant

protein/part of protein were the input files. The output files were in

PDB format. Both servers have repeatedly been validated and ranked

number one in CASP experimental competitions in their respective

sections (an annually organized competition for protein molecular

modeling) [Yang et al., 2015; Xu et al., 2012]. The input sequence

was combined with a guiding constraint for α-2-antiplasmin (the

murine α-2-antiplasmin crystal structure, i.e., PDB ID: 2r9y; 2.65 Å

resolution, Species: Mus musculus, was used) but for all ab initio pre-

dictions default settings of the server were used. Interaction between

thrombin and FXIIIA was investigated by docking the active throm-

bin heavy chain thrombin crystal structure (Species: Homo sapiens,

PDB ID: 1PPB; chain: et al.; 1.92 Å resolution) on a monomeric chain

of the zymogenic crystal structure of FXIII (Species: Homo Sapi-

ens, PDB ID: 1f13; 2.1 Å resolution). All dockings were performed
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on the cluspro server (http://cluspro.bu.edu/login.php; accessed

between 08.12.2014 and 24.12.2014) [Kozakov et al., 2010;

Kozakov et al., 2013] using PDB files of the corresponding inter-

acting proteins as input files. Specific guiding constraint residues as

was applicable for the specific interaction/dock were assigned on an

individual case basis (More comprehensive detailed explanation on

the docking and modeling can be found separately in the supple-

mentary methods section). Output files were also in PDB format

and were read and analyzed on the YASARA platform (specified

earlier). This docking server (Cluspro) has been repeated been vali-

dated and ranked first in the automated docking section of the CASP

experiments [Kozakov et al., 2013].

Results

Antigen and Activity Levels for the Expressed Mutations

The antigen and activity levels (Fig. 1) for the expressed mutations

with respect to that of the wild type can be arranged into four groups:

(I) severely decreased activity levels in spite of normal antigen lev-

els, which is now classified as group II functional defect, mutations

revealed no effect on either antigen or activity levels and most likely

represent putative polymorphisms (II), (III) mutations showed a

simultaneous but moderate reduction in antigen and activity levels,

and (IV) mutations have a severe impact on both antigen and activity

levels. The fourth group is the largest and comprises seven mutations

(p.Arg716Gly, p.Arg704Gln, p.Gln602Lys, p.Leu530Pro, p.His343Tyr,

p.Pro290Arg, and p.Arg172Gln) with severely decreased antigen lev-

els [<10 % (<1 µg/ml)] and non-detectable FXIIIA activity (<20%)

compared with wild type (mean antigen: 12.9 ± 3.4 µg/ml). Mildly

reduced antigen levels in the range of 31%–78% [absolute values

are presented in Fig. 1] of the wild type as well as similarly reduced

activity levels in the range of 38%–83 % of the wild type were ob-

served for 4 mutants (p.Arg541Gln, p.Tyr168Cys, p.Arg612His, and

p.Asp669Gly) belonging to the third group (Fig. 1). Two mutations,

p.Pro167Leu and p.Gln416Arg (second group) reached antigen and

activity levels close to that of wild type (antigen: 96.8% and 97.2%

of the wild type; activity 93.6% and 102% of the wild type), respec-

tively. Interestingly, another mutation p.Gly593Ser belonging to the

second group showed high activity levels (125% of the wild type).

Two substitutions at the thrombin cleavage site, p.Arg38Gln and

p.Arg38Pro lead to a functional group II defect [as per recent FXIII

deficiency classification; Kohler et al., 2011] with mildly decreased

to normal antigen levels (58% and 93%) but severely decreased

FXIII A activity, that is, <20 % with respect to the wild type (the first

group). The heterozygously coexpressed rFXIIIA levels (activity as

well antigen) for all mutations showed correction in their respective

expression phenotype. As expected, the correction was partial for

the mutations in groups I and IV (correction only for activity levels

for the first group) and absolute for the mutations belonging to in

groups II and III. However, the term “correction” applied here to

the simultaneous expression of wild type and mutant allele could

have different connotations, that is, the observed increase in expres-

sion levels might be a result of both alleles expressing in the same

cell or in different cells. We assume that in case of our transient

transfections the overall effect levels out in their mean values. This

might also explain the high standard deviations observed for some

of the transfection sets especially for the cotransfections. Western

blotting of neat cell lysates further confirmed and correlated with the

antigenic variation observed for all the expressed mutations (Supp.

Fig. S1). Although we do not know the exact prevalence of these

variants as yet, in our earlier reports we have screened for only 200

healthy controls (of German-caucasian ethnicity) for these variants

and these numbers might not be adequate.

All these variants were checked on the 1000 genome server

(http://browser.1000genomes.org/Homo_sapiens/Gene/Variation_

Gene/Table?db = core;g = ENSG00000124491;r = 6:6144318-

6321246#missense variant tablePanel; accessed on 05.02.2016).

Eight out of the 15 amino acids on which we have reported

variations existed in the 1000 genomes database. Amongst these

apart from p.Pro290Arg which showed a Thr substitution in

the database, all other seven substitutions were the same as

that observed in our study. The reported nucleotide substitu-

tion differed in all eight of the mutations in the 1000 genome

database. The minor allele frequency for all the substitutions was
<0.01 indicating a prevalence of less than 1% in the sequenced

genomes. None of the substitution was linked to any previously

reported clinical significance. The reference SNPs correspond-

ing to the variants observed in the 1000 genome database

are provided here: p.Arg172Gln (rs121913065), p.Pro290Arg

(rs201752338; p.Pro290Thr), p.Arg541Gln (rs367679357),

p.Gly593Ser (rs138754417), p.Arg612His (rs369187276),

p.Asp669Gly (rs375129902), p.Arg704Gln (rs267606787), and

p.Arg716Gly (rs147189258).

α-2-Antiplasmin Incorporation Assay

Four of the expressed mutants (p.Arg38Gln, p.Arg38Pro,

p.Arg172Gln, and p.His343Tyr) showed significantly impaired

α-2-antiplasmin crosslinking ability ranging between 6–19%

of the wild-type activity (Fig. 2). Moderately defective

α-2-antiplasmin cross-linking in the range between 40–

48% of the wild type was detected for four mutations

(p.Leu530Pro, p.Arg612His, p.Arg704Gln and p.Arg716Gly). Two

mutants p.Pro290Arg and p.Gln602Lys showed almost no de-

tectable α-2-antiplasmin crosslinking activity. Six mutations

(p.Pro167Leu, p.Tyr168Cys, p.Gln416Arg, p.Arg541Gln, p.Gly593Ser,

and p.Asp669Gly) showed α-2-antiplasmin cross linking

comparable to that of the wild type (between 80% and 120%).

FXIIIAa generation assay

In the case of seven (p.Arg172Gln, p.Pro290Arg, p.His343Tyr,

p.Leu530Pro, p.Gln602Lys, p.Arg704Gln, and p.Arg716Gly) out of

the 16 expressed mutants the FXIIIa generation assay curves could

not be plotted since the expression levels were below the detection

limit (despite concentration of the cell lysates). All other mutations

showed variable curves with respect to the wild type (Supp. Fig. S2).

Except for p.Arg38Pro, all mutations showed a typical bell-shaped

curvature during the time period of the generation assay (60 min)

with variation in the AUC, TTP, CP, the constant for FXIIIa gen-

eration (ka) and the FXIIIa elimination/ inactivation constant (kb).

Five mutations (p.Arg38Gln, p.Arg38Pro, p.Gln416Arg, p.Arg612His,

and p.Asp669Gly) showed a moderate to severe decrease in the

AUC values ranging between 8% and 34% of the wild-type AUC

(Fig. 3A). Interestingly three of the mutations p.Pro167Leu,

p.Tyr168Cys, and p.Arg541Gln showed higher AUC than the wild

type although the TTP was comparable (Fig. 3A and B). The ka

values for the p.Tyr168Cys mutation were almost double that of

the wild type but the kb was similar to wild type (Fig. 3A). Except

for p.Asp669Gly, these mutations had TTP values comparable to

that of the wild type (TTP 75% of wild-type TTP; Fig. 3B). The

kb for the p.Pro167Leu mutant was extremely high which reflects

a faster inactivation of FXIIIa (Fig. 3A). Only two mutations, that
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Figure 1. Antigen and activity levels for the expressed cell lysates. The figure illustrates the calculated mean antigen (µg/ml) and activity (in
%) levels for the homozygous and heterozygous expressed intracellular cell lysates from a minimum of triplicate set of transient transfections on
different cell passages [minimum n = 3 repeats; therefore number of values considered >9(3 × 3)]. The wild-type antigen/activity results are shown
in dark gray and the missense mutations in light gray shades. Error bars represents standard deviation for each variant over the complete set of
transfection. Intracellular antigen and activity results are from 36 hr post-transfection (further details see in Material and Methods). The P values
>0.5 are mentioned on top of the bar graphs, P values <0.05 are depicted with a “∗” sign.

Figure 2. The α-2-antiplasmin incorporation assay for expressed cell
lysates. Functional test results for the α-2-antiplasmin incorporation as-
say for the expressed intracellular cell lysates from transfected FXIIIA
variants. All results are depicted as % activity of recombinant FXIIIA2B2.
All values are means for three replicate measurements from one trans-
fection. Error bars represents standard deviation of the mean for the
triplicates of each variant (n = 3) from one transfection (n = 1). Wild-type
transfection values are represented in light gray and variants in dark
gray shades. The P values >0.5 are mentioned on top of the bar graphs,
P values <0.05 are depicted with a “∗” sign.

is, the p.Arg38Pro and p.Asp669Gly showed kb values far greater

than ka values and also higher than that observed for the wild type

(0.023 unit/sec) indicating a general tendency of faster inactivation

(Fig. 3B). The second substitution at the thrombin cleavage site

(p.Arg38Gln) did not show a higher rate of inactivation as observed

for the Pro variant (Fig. 3A).

Fibrin Crosslinking Analyses

Analysis of the γ - and α-chain crosslinking using SDS-PAGE

showed γ -chain dimers appearing between 5 and 10 min of

crosslinking in the majority of the lysates (Fig. 4). A defect in γ –

γ crosslinking was apparent for six out of 16 mutants. In three

of these mutations (p.Leu530Pro, p.Pro290Arg, and p.His343Tyr),

the effect was severe since no γ dimers were observed even after

60 min of crosslinking (Fig. 4). Three more mutations (p.Arg172Gln,

p.Gln602Lys, and p.Arg716Gly) showed a time shift in the appear-

ance of γ dimers indicating slower rate of γ dimerization (Fig. 4).

Three (p.Tyr168Cys, p.Pro167Leu, and p.Gln602Lys) of the 16 mu-

tants showed no α-chain crosslinking even after 60 min of crosslink-

ing reaction. In six mutants (p.Pro290Arg, p.Hi342Tyr, p.Arg172Gln,

p.Arg704Gln, p.Asp669Gly, and p.Arg716Gly), α-multimers were

formed at a slower rate (Fig. 4). The remaining mutations did

not show any major difference in the generation of γ dimers or

α-multimers.

Fibrin Clot Fiber Thickness using SEM

Clots generated by mixing expressed cellular lysates and FXIII-

deficient plasma showed a decrease in the clot thickness (µm) for

all mutations (range: 0.145–0.195 µm) when compared with the

wild-type FXIII (0.256 µm) (Fig. 5).
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Figure 3. FXIIIa (Activated Factor XIII) generation assay for expressed cell lysates. This graph depicts a comparison of two key variables, that
is, rate of activation and deactivation (ka—constant of absorption that describes the development of FXIIIa and kb—elimination constant) and the
time to peak (TTP) for the intracellularly expressed FXIIIA wild type and variants when evaluated with the FXIIIa (Activated Factor XIII) generation
assay. Panel A is the bar graph representation for the rate of activation and deactivation, whereas panel B represents a comparative bar graph
illustration of the TTP. The ka values are depicted in black and kb values in light gray shades. Panel B represents the TTP values for all variants
and the wild type calculated from the curves depicted in Supp. Figure S2. Wild-type values are represented in dark gray and variants in light gray
shades.

Thrombin Cleavage/Non-Proteolytic Activation

Non-proteolytic activation of the expressed recombinant FXIIIA

was probed using super physiological concentrations of calcium

(100 mM) in the pentylamine incorporation assay without throm-

bin. Amongst the 16 expressed mutations, only those mutations on

the activation peptide cleavage site (p.Arg38Pro and p.Arg38Gln) re-

sponded to high calcium levels shown in Figure 6, which restored

the specific activity of these two mutations similar to that of the

wild type. The other mutations showed no effect in the presence of

super physiological levels of calcium, indicating no effect for these

mutations on the activation peptide cleavage (Fig. 6). Five mu-

tations (p.Tyr168Cys, p.Arg541Gln, p.Gly593Ser, p.Arg612His, and

p.Asp668Lys) reached unusual high specific activity compared with

the wild type when the incorporation assay was performed us-

ing low levels of calcium in the presence of thrombin (Fig. 6). No

discordance between the antigen and activity levels was observed for

the same set of mutations when the photometric assay was used. In-

terestingly all these mutations belonged mostly to the second group

of mutations leading to mildly reduced antigen and activity levels.

Modeling of FXIII Complexes and the Activation Pathway

Zymogenic FXIII–thrombin complex

The zymogenic FXIII–thrombin complex showed an interface

comprising of a stretch of residues within the FXIII activation pep-

tide with the primary participants being the cleavage site residue

p.Arg38 and p.Gly39. Other participants were slightly distant from

the sessile bond, for example, p.Asn47 or p.Glu31 but still within

this particular stretch (Fig. 7A). The residues involved in the
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Figure 4. Fibrin crosslinking for the expressed cell lysate variants and wild type. The above figure shows the results of the functional test for
the expressed FXIIIA variants compared with wild type for their ability to perform α–α and γ –γ crosslinking. Clots generated from a mix of the
expressed cell lysates and deficient plasma was run on a 10% SDS-PAGE stained with Coomassie blue. Each panel in this figure represents a
variant or the wild type. Additionally recombinant FXIIIA and only the deficient plasma (negative control) were also tested on this gel. Each gel
shows five different lanes, which represent successively increasing times of crosslinking (from left to right: 0, 10, 30, 60, and 90 min). The respective
fibrin chains as well the dimers and multimers formed as a result of crosslinking are labeled for reference in the first gel for the recombinant FXIIIA.

interaction on thrombin were mostly those neighboring throm-

bin’s catalytic triad spatially. The interface residue interaction chart

for this interface is presented in Supp. Table S1.

Activated FXIIIA–α-2-antiplasmin complex

The interface activated FXIIIA residues in the activated FXIIIA–α-

2-antiplasmin complex were limited only to those from core domain.

Notably, the p.Trp280 residue which is believed to form an oxyanion

hole that stabilizes the enzyme substrate complex is one of the

participating residues (Fig. 7B). All mutations reported on the core

domain were proximal to the binding interface but none of them

were directly on the interface. The interface residue interaction chart

for this interface is presented in Supp. Table S2.

Activated FXIIIA–fibrinogen α and γ chain complexes

The activated FXIIIA–fibrinogen α and γ chain complexes gener-

ated using putative reactive glutamine residues as constraints suggest

four different orientations for the α and one orientation for the γ

chain (i.e., corresponding to the number of putative reactive glu-

tamine residues in these chains) (Fig. 7C; Supp. Table S3–S7). One
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Figure 5. SEM analysis for clots generated from the expressed cell lysates of variants and wild type. The above figure has been split into two
panels. The above panel represents scanning electron micrographs at 16,000× resolution for the clots generated from each of the variants, wild
type, and negative control. Each micrograph is depicted with two images representing the same clot. In gray color (left), the original SEM picture
is shown, which was converted to a colored binary image (right) with the BoneJ Plugin. The lower panel depicts the quantitative analysis of fiber
thickness calculated for the SEM micrographs shown in the upper panel. Calculation is based on the colored thickness map produced by the binary
image. The blue bars represent clots for the variants; light blue bars represent deficient plasma based clots, whereas the wild-type clot is shown
with a dark blue bar.

common dominating factor in the interactions observed in all these

interactions is the presence of residues belonging mainly to the core

domain and to a lesser extent to the β-sandwich domain in the

respective interfaces. Amongst all the reported mutated residues,

only the p.His343 and p.Pro290 residues from the core domain were

observed to be directly on any of the docking interfaces, that is, both

mutations on the p.Gln223 FXIIIA constrained dock with α fibrino-

gen chain (Fig. 7C; Supp. Table S3). Certain mutated residues in

the beta sandwich domain like the p.Pro167, p.Tyr168, and p.Arg172

were observed to be proximal to the docking interface for one of

the docks but not directly on the interface, that is, p.Gln237 FXIIIA

constrained dock with α fibrinogen chain (Fig. 7C; Supp. Table S4).

The p.Gln415 residue was also observed to be proximal to one of the

docking interfaces, that is, p.Gln328 FXIIIA constrained dock with

α-fibrinogen chain (Fig. 7C, Supp. Table S6). No participant inter-

action residues were observed from the β-barrel-1 and β-barrel-2
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Figure 6. Incorporation assay results for the expressed variants and
wild-type cell lysates. This bar graph represents the specific activity
levels for the variants and the wild type measured with incorporation
assay under low calcium/thrombin (black bars) and high calcium/no
thrombin (light gray bars) conditions.

domains of activated FXIIIA in any of the docks/orientations. The

interface residue interaction chart for all FXIIIA–fibrinogen inter-

faces is presented in Supp. Tables S3–S7.

Activation Pathway for FXIII

The contact map for the modeled activation pathway of FXIII

shows a number of residues heterogeneously distributed between

the N and C terminal domains of activated FXIIIA and its core

domain which were in close contact (<5 Å) during the process

of activation but not in contact post activation (>5 Å). Amongst

the reported mutated residues p.Leu530, p.Gln602, and p.Arg716

are the ones sharing this characteristic. Apart from these, some

mutated residues like p.His343 (stretch 331–342), p.Arg612 (stretch

608–619), were observed proximal to stretches of residues which lose

close contact upon activation (Supp. Fig. S3). Interestingly, with the

exception of p.His343, all these residues belong to the two β-barrel

domains.

Discussion

Although traditionally FXIII deficiency has not been classified

on the basis of severity but there have been literature based sug-

gestions that a “hemophilia” like distinction between mild, moder-

ate, and severe FXIII deficiency based on measured FXIII activity

and the degree of clinical bleeding might be possible [Peyvandi

et al., 2012]. This type of classification is in concordance with our

results which also reflect these differences in the expression phe-

notype of the evaluated missense mutations. It is also necessary

to stress that this type of classification observed in our in vitro

expression phenotype cannot automatically be translated into a

symptom-based clinical phenotype because many mild/moderate

FXIII-deficient patients are primarily asymptomatic unless they are

exposed to some kind of physical trauma. Notably, the differences

in the expression phenotype do not always perfectly correlate with

the observed clinical phenotype (Supp. Table S8) because of the

following reasons: (1) differences between the in vitro and in vivo

scenario, (2) clinically it has been observed that FXIII activity >

10 % is sufficient to prevent spontaneous bleeding, (3) the variant

reported might not be the real causative mutation and could just

be in linkage disequilibrium with the real mutation which might lie

in a region that was not screened for in earlier studies from which

these mutations are reported (i.e., deep intronic mutation, and so

on).

Activation Peptide Mutations (p.Arg38Pro and p.Arg38Gln)

As expected, p.Arg38Pro and p.Arg38Gln are not cleaved by throm-

bin in the presence of 1 mM calcium as observed before also [Ivaske-

vicius et al., 2012]. Their adverse influence on thrombin cleavage is

quite evident, precisely because a correction in their expression phe-

notype in non-proteolytic conditions (high calcium; no thrombin)

was possible (Fig. 6). Interestingly, these two substitutions also show

a mild effect on stability and inhibition of activated FXIIIAa, that

is, the substitution of the positively charged arginine residue to a

neutral charged glutamine leads to a mild effect on protein stability,

whereas the substitution with an imino-group, that is the non-polar

proline residue does not alter the antigen levels but influences the

rate of activated FXIIIAa inhibition. This can be expected because

both mutations are semi to non-conservative and likely to have a

structural effect on the protein as well. Interestingly both these mu-

tations showed close to normal γ -γ dimer generation (Fig. 4), but

that might be attributed to the high levels of calcium used for fibrin

clot generation.

ß-Sandwich Domain Mutations (p.Pro167Leu, p.Tyr168Cys,
and p.Arg172Gln)

The β-sandwich mutations p.Pro167Leu and p.Tyr168 showed

qualitative reduction in α-α crosslinking (Fig. 4) which could be

the consequence of impaired binding to fibrinogen. Our in silico

docking between the α-fibrin chain and activated FXIII showed

(Fig. 7B) that these two residues as well as p.Arg172 are proxi-

mal to the interaction sites for these two proteins. The mutant

p.Arg172Gln unlike p.Pro167Leu and p.Tyr168Cys leads to severely

decreased antigen and activity levels (Fig. 1), which is possibly

caused by a structural defect as a consequence of the loss of posi-

tive charge in this substitution. These three residues were also pre-

dicted previously to be part of putative interface between fibrin

and activated FXIII by Smith et al. [2013]. The clinical picture

(Supp. Table S8) for the patient’s carrying these three mutations

differ, that is, the patients with p.Tyr168Cys and p.Arg172Gln muta-

tions showed asymptomatic phenotypes, whereas the patient with

p.Pro167Leu suffered from bleeding after dental extraction. A plau-

sible explanation for the asymptomatic phenotype of p.Tyr168Cys

mutation/patient could be the low rate of elimination (Kb) of the

activated FXIII (Fig. 3B) while that for the p.Arg172Gln muta-

tion/patient could be that this patient was not exposed to any trauma

which is often the primary trigger for bleeding in a heterozygous

scenario.

Core Domain Mutations (p.Pro290Arg, p.His343Tyr, and
p.Gln416Arg)

Core domain mutations especially ones which critically influence

structure are expected to have a strong influence on protein stability

as well as activity owing to their proximity to the catalytic triad.

The p.Pro290Arg mutation is a highly non-conservative substitu-

tion from a rigid non-polar proline residue to a large polar positive

charged arginine which is likely to have a deleterious effect on the
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Figure 7. The in silico docking representations of various docking complexes. Panel A illustrates the in silico generated dock of activated
thrombin crystal structure on a monomer of the zymogenic FXIIIA crystal structure, whereas panel B depicts the in silico generated dock of the
human α-2-antiplasmin model on a monomer of the activated FXIIIA crystal structure. The protein backbone in panels A and B are presented in
ribbon format. Thrombin is colored blue and the zymogenic FXIIIA is colored green in panel A. Interface residues on FXIIIA have been depicted in
stick format. The catalytic Ser195 residue in thrombin also has been depicted in yellow colored stick format. Amongst the interface residues the
residues on which mutations have been reported in this study are colored magenta, the activation peptide cleavage site residues are colored red,
whereas the remaining residues are colored camel. The human α-2-antiplasmin model is colored blue and the activated FXIIIA is colored green in
panel B. The reactive Gln2 residue in the human α-2-antiplasmin model has been depicted in yellow colored stick format. Amongst the interface
residues, the residues on which mutations have been reported in this study are colored magenta, the FXIIIA catalytic triad residues are colored
red, whereas the remaining residues are colored camel in panel B. The panel C depicts the four models generated from the docking of partly
modeled fibrinogen α-chain on the activated FXIIIA crystal structure using reactive Gln residues on fibrinogen α-chain as guiding constraints.
The activated FXIIIA monomer is depicted in green ribbon format. The four fibrinogen α-chain orientations with respect to the activated FXIIIA
monomer are represented by the molecular surfaces in different colors (Gln223 orientation: camel, Gln237: yellow, Gln366: pink, Gln328: gray). The
FXIIIA catalytic triad is depicted in red ball format. The mutations reported in this study are represented by their accessible surfaces in blue color.

10 HUMAN MUTATION, Vol. 00, No. 0, 1–12, 2016



protein fold and therefore also on protein stability as is seen in our

activity and antigen values (Fig. 1) as well as other expression phe-

notype evaluations for this mutation. The mutation p.His343Tyr

involves the loss of charge as well as polarity. This residue has been

shown to be of critical importance since the p.His343/p.Glu402 hy-

drogen bonded duplet in activated FXIII structure guides the sub-

strate to the proximal catalytic triad [Stieler et al., 2013]. Another

group by Jang et al. [2015] described a mutation (although in com-

pound heterozygous state) on the p.His343residue (p.His343Gln)

leading to severe bleeding episodes. The mutation p.Gln416Arg is

the only core domain mutation which did not show a strong effect

on FXIII activity or antigen levels (Fig. 1) in most of the expression

based evaluations in spite of the mutation being a biochemically

non-conservative substitution. In fact it is the only core domain

mutation which shows no influence on α2-antiplasmin incorpo-

ration despite its relative proximity to the activated FXIIIA–α 2-

antiplasmin interface in the respective dock.

β-Barrel-1&2 Mutations (p.Arg541Gln, p.Gly593Ser,
p.Arg612His, p.Asp669Gly, p.Gln602Lys, p.Leu530Pro,
p.Arg704Gln, and p.Arg716Gly)

A large number of functional missense mutations were found

on the surface of the β-barrel-1 and β-barrel-2 domains. With

the present disclosure of the activated FXIII structure [Stieler et al.,

2013], it is clear that the transition of inactivated to an activated open

FXIIIA structure involves the movement of these two domains. Our

model of the activation path clearly shows that at least four of the

reported mutated residues, that is, p.Leu530, p.Gln602, p.Arg612,

and p.Arg716 are on regions of the protein that undergo criti-

cal conformational changes during activation (Supp. Fig. S3) and

therefore could influence the flexibility of these domains to adopt

an activated open structure. Three of these mutations (p.Leu530,

p.Gln602, and p.Arg716) show severe reduction in almost all ex-

pression phenotype evaluations (Fig. 1). The p.Arg612His shows a

moderate decrease in FXIII activity/antigen levels but also a delay

in activation (TTP) which might explain its putative influence on

the activation pathway (Figs. 1 and 3). Interestingly, the mutations

p.Leu530Pro, p.Arg704Gln, and p.Arg716Gly despite poor antigenic

stability showed comparatively (to their low antigen values) higher

values of α 2-antiplasmin incorporation (although much lower than

wild type) indicating relatively higher affinity of these variant for α2-

antiplasmin. The activated FXIIIA–α-2-antiplasmin complex dock

however does not suggest any direct influence of these residues at the

activated FXIIIA–α 2-antiplasmin interface although an allosteric

influence cannot be ruled out. Amongst the remaining mutations,

the severest expression phenotype was observed for p.Arg704Gln

which could be explained by the biochemically non conservative

nature of this substitution. Interestingly one missense mutation the

p.Gly593Ser substitution showed wild type like or at times a better

expression phenotype in certain evaluations (Fig. 1). It seems that

the mutation leads to a higher quantitative generation of activated

FXIIIA (ka and CP higher than wild type; Fig. 6) which is simi-

lar to the p.Val35Leu variant which gets activated more rapidly by

thrombin resulting in altered fibrin with reduced tensile strength

[Ariens et al., 2000].

One major aspect of our expression phenotype was that for all

missense mutations evaluated in this study irrespective of their ef-

fect on activity and antigen we observed a difference in fibrin clot

thickness when compared with the wild type. All mutations showed

reduced fiber thickness (shown in Fig. 5) which is surprising since

current literature suggests that FXIII contributes to thinner and

denser clots [Hethershaw et al., 2014; Kurniawan et al., 2014]. Since

from our SEM´s we are not able to comment on the density of the

clots that we analyzed, it might still be that the mutations result in

thinner but more perfuse clots which are less stiff and therefore more

prone to degradation. The other possibility might be that the image

analysis technique used by us (BoneJ) was originally developed and

validated for porous or spongy continua in trabecular research and

its use for fibrin clots might not have influenced the final outcome

adequately. The fact that even mutations which show normal ex-

pression phenotype have thinner clots suggests that there might be

other variables at play for the mutations which were not part of the

current experimental set up and therefore could not be evaluated.

One major variable that has not been touched upon in this study is

the influence of these mutations on the interaction between FXIIIA

and FXIIIB subunits. Since comprehensive structural information

on their respective interfaces is still awaited, future resolution of the

FXIIIA2B2 heterotetrameric structure will provide more insight in

the putative influences of these mutations. To finally conclude, we

have determined the causality of 16 missense mutations which had

previously been reported in heterozygous form from patients with

mild FXIII deficiency.
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FXIIIA Activity measurement on FXIIIA expressed cell lysates with a photometric Assay  

Determination of the FXIII activity for the expressed cell lysates was conducted with the 

Technochrom® FXIII Kit (Technoclone GmbH, Austria) according to the manufacturer’s 

instructions. The monitoring of the FXIII activity is based on the detection of ammonia release 

during activation process by spectrophotometric measurement. FXIIIA levels from normal 

pooled plasma were measured as a control. Samples above 300 % were diluted and recalculated.  

 
FXIIIA Activity measurement on FXIIIA expressed cell lysates with a pentylamine 

incorporation Assay  

FXIII Activity measurement based on amine incorporation was additionally performed with all 

the mutants at different time points (0, 10, and 20 mins).  For detection of the wild type and 

mutant FXIII activity an assay with fibrinogen (40 µg/ml) (Sigma Aldrich, Germany) coated 

microtiter plate was used.  Non-specific binding was prevented with 1 % BSA (bovine serum 

albumin, Roth, Germany) blocking buffer. 15 µl of each sample was mixed with 85 µl of an 

reaction mix containing 100 µM DTT (Dithiothreitol, Sigma Aldrich, Germany), 2,7 µM 5-

(biotinamido) pentylamine (BAPA, Fisher Scientific, Germany), 1 U/ml thrombin (Sigma 

Aldrich, Germany) and 1 mM CaCl2 (Roth, Germany). Detection of the FXIII activity was 

conducted using the streptavidin alkaline phosphatase (Sigma Aldrich, Germany) (2 µg/ml) 

conjugate, which binds to the incorporated BAPA and is proportional to the FXIII activity and 

was measured photometrical at 405 nm. Additionally, the mutants and wild type were measured 

with higher calcium concentrations of 100 mM without adding thrombin (to observe non 

proteolytic activation) into the reaction mix. For evaluation a standard curve was produced with 

different concentrations of the coagulation reference (Technoclone, Austria) at 2.5, 1.8, 0.18, 

0.04, and 0 Units dissolved in TBS (Tris-buffered Saline) (pH 8.3). 

 

FXIIIA antigen quantitation for FXIIIA expressed cell lysates 
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FXIIIA antigen was quantified for cell lysates in cell lysis buffer using the Technozym FXIII-

A:Ag Sub ELISA kit (Technoclone, Austria) according to the manufacturer’s instructions. The 

standard assay detection limit is 0.35 µg/ ml. FXIIIA levels from normal pooled plasma and from 

high/ low controls were measured as controls.  All FXIIIA variant protein concentrations are 

reported in µg/ ml.  

 

αααα-2-antiplasmin incorporation assay evaluated for FXIIIA expressing cell  

Fibrinogen coated microtiter plates were activated with thrombin and calcium to convert the 

fibrinogen to fibrin and a mixture of thrombin, calcium, DTT and α-2-antiplasmin before the 

expressed FXIIIA subunit cell lysates were introduced into the wells. The reaction was stopped 

over a time course of 50 mins with Ethylenediaminetetraacetic acid (EDTA) from Sigma 

(Germany). Detection of the cross-linked α 2-antiplasmin was done using anti-human α 2-

antiplasmin antibody. The measured OD for each of the samples was used to calculate the % 

activity relative to FXIIIA2B2
 (Fibrogammin, CSL Behring, Germany) which was also evaluated 

along with FXIIIA subnit expression lysates. Additionally the value for the negative control was 

subtracted from the final value for each of the mutants and the wild type. 

 

 

 

Activated FXIIIA (FXIIIAa) Activity measurement on FXIIIA expressed cell using a 

FXIIIAa generation assay  

For the measurement 25 µl of the diluted samples were mixed with 35 µl reagent solution 

containing 100 mM glycinmethylester in HBS (containing 1% human serum albumin), 2 mM 

fluorogenic FXIIIA substrate A101 (Zedira, Germany) in DMSO, recombinant TF Innovin (Dade 

Behring, Germany) diluted in phospholipids (from PTT reagent kit, Roche, Germany). The 



 
Thomas and Biswas et al                                    Molecular defects underlying FXIIIA missense mutations

  

 

reaction is started with 20 mM HBS containing 25 mM CaCl2 and the fluorescence is 

continuously measured during 1 h reflecting the FXIIIa generation. Since only one set of 

transfection was used to generate these results, therefore to avoid differences of transfection 

efficiency, only the transfection set showing non-significant differences in the reporter control 

between mutant and wild type expressed FXIIIA subunit cell lysates was used for this evaluation. 

 

Western Blotting of FXIIIA expressed cell lysates 

Western blotting was performed with 15 µl of expressed FXIIIA subunit cell lysates which were 

denatured in a 1:1 ratio with laemmli sample buffer (BioRad, Germany) and run on a 10 % tris-

glycine gel (BioRad, Germany) by 140 V for 95 min. After the protein transfer to a PVDF 

(polyvinylidene fluoride) membrane (Amersham Hybond-P GE Healthcare, Germany) detection 

of FXIIIA protein was done with 4 µg of a FXIIIA polyclonal IgG goat antibody (Santa Cruz 

Biotechnology, Germany) labeled with 2 µg of donkey anti goat IgG-HRP (Santa Cruz 

Biotechnology, Germany). ß-actin detection was used as an internal control and was performed 

using a mouse monoclonal anti-ß actin HRP coupled antibody (Abcam, England). Signal 

development was done with the BM Chemiluminescence kit (Roche, Germany).  

 

Fibrin clots run on a SDS PAGE 

A 1:1 solution for each cell lysates sample with FXIII deficient plasma was activated with 

thrombin (0.5 U) and calcium (50 mM) to form clots. The reaction was stopped at several time 

points (0 min, 10 min, 30 min, 60 min and 90 min) using 100 µl EDTA (50 mM). Furthermore, 

normal pooled plasma and rFXIIIA (recombinant FXIIIA, Zedira, Germany) (5 ng/ µl) mixed 

with FXIIIA deficient plasma were used. Clots were washed in 15 µl PBS and denatured with 15 

µl laemmli buffer (BioRad, Germany) for 8 min, 96°C. Samples were run on a 10 % tris-glycine-

gel under denaturing conditions with SDS for 95 min under 140 Volt. Protein staining on the gels 
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was performed with BioSafe Coomassie (Biorad, Germany). To avoid differences of transfection 

efficiency, only the transfection set showing non-significant differences in the reporter control 

between mutant and wild type expressed FXIIIA subunit cell lysates was used for this evaluation. 

 

Scanning electron microscopy and fibrin clot thickness evaluation of clots generated from 

FXIIIA expressed cell lysates 

Washed clots were fixed in 4 % glutaraldehyde (Sigma, Germany) and dehydration in a graded 

ethanol solution (20 %, 40 %, 60 %, 80 % and 99 %) followed. All clots were stored at 4°C in 

99 % ethanol till analysis was performed. Critical Point drying (CPD), sample mounting, gold 

coating and viewing of the specimens in the SEM was performed in a DPD 020 CP dryer 

(Balzers AG, Liechtenstein) using carbon dioxide as drying medium. The dry samples were 

mounted on conductive adhesive tabs and sputter-coated with a 30 nm gold layer, using a SCD 

040 sputter coater (Balzers AG, Liechtenstein). Scanning electron microscopy was done on a 

Cambridge S 200 Stereoscan (Cambridge, UK) microscope. Images were obtained at 4000X and 

16000X resolution. Quantitative analysis of fiber thickness for the expressed clot sample images 

was performed with the BoneJ plugin embedded in the Fiji (ImageJ) image visualization and 

analysis package. The original images with resolutions of 4000X and 16000X were first 

converted into a binary image using the BoneJ Plugin to generate a colored thickness map. 

Calculations of thickness were performed on the colored thickness map with uniform threshold 

ratio of 78/200 (adjusting the minimum and maximum threshold value) for all images.  

 

Modeling and docking analysis for FXIIIA and its interacting partners 

A) Interaction with αααα-2-antiplasmin 

A threaded model for human α -2-antiplasmin was generated on the ITASSER server 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/ accessed on 22.11.2014) using the murine α-
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2-antiplasmin (PDB ID: 2r9y; 2.65 Å resolution) as a guiding constraint. Since the murineα-2-

antiplasmin differs from the human α -2-antiplasmin in the N-terminal region (missing in 

Bovine) and because the N-terminal region carries the reactive glutamine for the human α-2-

antiplasmin, an ab initio based model of a 65 amino acid long N-terminal region of 2-antiplasmin 

was generated on the Quark ab initio server (http://zhanglab.ccmb.med.umich.edu/QUARK/; 

accessed on 27.11.2014). The generated model was used for docking analysis on the activated 

FXIII (FXIIIAa) structure using Q2 and Q4 residues of α-2-antiplasmin and the catalytic triad 

residues of FXIII as guiding constraints. All dockings were performed on the cluspro docking 

server (http://cluspro.bu.edu/login.php; accessed between 08.12.2014 and 24.12.2014). The best 

dock was determined to be the one with least distance between the Q2 residue of α -2-

antiplasmin for putative interactions between α -2-antiplasmin and activated FXIIIAa. The 

complete docked structure was subsequently recreated by joining the rest of human α -2-

antiplasmin model onto the docked 65 amino acid long N-terminal region of human α-2-

antiplasmin. Model joining was done by replacing the last two amino acid residues common to 

both models so as to keep the dihedral angles for the full model at the point of joining the same. 

The entire structure was energy minimized during a model refining solvated simulation lasting 

500 ps (using the YAMBER force field) to remove any bumps and stereo chemical clashes 

occurring as a result of model joining (Krieger et al, 2004). The model with the energetic 

minimum in the simulation trajectory was chosen as the final model and used for further analysis. 

 

B) Interaction with fibrinogen 

The fibrinogen crystal structure (PDB ID: 3GHG; 2.9 Å resolution) was used for studying 

interaction between activated FXIIIAa and fibrinogen. Missing parts of alpha and gamma chain 

residues in the crystal structure of fibrinogen which carry the reactive glutamines ab initio based 
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modeled on the Quark ab initio server (http://zhanglab.ccmb.med.umich.edu/QUARK/; accessed 

on 03.12.2014). These models were docked on the activated FXIII (FXIIIAa) structure using 

different known reactive glutamine donor residues as guiding restraints, one dock at a time. 

Docking was performed on the cluspro server (http://cluspro.bu.edu/login.php ; accessed between 

08.12.2014 and 24.12.2014).  The best dock was determined to be the one with least distance 

between the particular reactive donor glutamine used as a guiding restraint in that dock and the 

reactive Cys314 residue of the activated FXIII (FXIIIAa) structure. The complete docked 

structure was subsequently recreated by joining the rest of the chain structure taken from the 

PDB file: 3GHG (2.9 Å resolution) on the respective fibrinogen chain already docked on the 

activated FXIII (FXIIIAa) structure. Model joining was done by replacing the last two amino 

acid residues common to both models so as to keep the dihedral angles for the full model at the 

point of joining the same. The docked structure was further refined using a similar protocol as for 

the α-2-antiplasmin: activated FXIII (FXIIIAa) dock. 

 

C) Interaction with thrombin 

The active thrombin; FXIII complex was recreated by docking in order to analyze any position 

influences of one of our variants on this interaction. The active thrombin heavy chain structure 

(PDB ID: 1PPB; chain: H; 1.92 Å resolution) was used to dock on the monomeric chain 

zymogenic crystal structure of FXIII (PDB ID: 1f13; 2.1 Å resolution). The Arg37-Gly38 sessile 

bond is unresolved in the crystal structure of zymogenic FXIII (1f13). Therefore before docking 

the loop corresponding to this sessile bond was modeled on the Fread loop modeling server 

(http://opig.stats.ox.ac.uk/webapps/fread/php/ accessed on 05.12.2014) and joined to the 

zymogenic FXIII crystal structure.  Residues which are known to be important or participate in 

this interaction were used as guiding constraints for this docking. The best docked model was 

chosen on the basis of the least distance between the catalytic Ser195 residue of Thrombin and 
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the Arg37-Gly38 sessile bond. The docked structure was further refined using a similar protocol 

as for the α-2-antiplasmin: activated FXIII (FXIIIAa) dock. 
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Supplementary Tables and Images 
 
Table S1. Interaction chart for the thrombin-zymogenic FXIII dock. 
 

 
Zymogenic FXIII  Thrombin 

 

Atom 
Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Distance 
(in Å) 

1 221 OE2 GLU 31 B 945 NH1 ARG 97 H 2.71 
2 221 OE2 GLU 31 B 948 NH2 ARG 97 H 2.75 
3 224 N LEU 32 B 952 O ARG 97 H 2.98 
4 232 O LEU 32 B 434 OH TYR 60 H 2.62 
5 273 N ARG 38 B 1991 OE2 GLU 192 H 2.98 
6 282 NH1 ARG 38 B 1967 OD1 ASP 189 H 2.82 
7 282 NH1 ARG 38 B 1976 O ALA 190 H 2.6 
8 285 NH2 ARG 38 B 1967 OD1 ASP 189 H 2.82 
9 285 NH2 ARG 38 B 2257 O GLY 219 H 2.64 

10 285 NH2 ARG 38 B 2317 O LYS 224 H 2.8 
11 290 N GLY 39 B 1991 OE2 GLU 192 H 2.97 
12 313 O ASN 41 B 1761 NH2 ARG 178 H 2.64 
13 320 OE1 GLN 43 B 2312 NZ LYS 224 H 2.73 
14 321 NE2 GLN 43 B 1739 O SER 171 H 2.87 
15 332 OE1 GLU 44 B 2286 NH2 ARG 221 H 2.79 
16 362 OD1 ASN 47 B 1758 NH1 ARG 173 H 2.75 
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Table S2. Interaction chart for the α-2-antiplasmin-activated FXIII dock. 
 

 
FXIIIa´  α -2-antiplasmin 

 

Atom 
Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Distance 
(in Å) 

1 4186 NE1 TRP 280 A 10733 OE1 GLN 2 B 2.7 
2 4220 ND2 ASN 282 A 11130 O GLY 29 B 3.07 
3 5391 N ASN 360 A 15106 OG SER 280 B 2.73 
4 5428 ND2 ASN 362 A 15042 O LEU 276 B 2.73 
5 5493 NZ LYS 367 A 11446 O PHE 50 B 3.29 
6 5579 O TYR 373 A 10734 NE2 GLN 2 B 3.25 
7 5593 OH TYR 373 A 10716 OD1 ASN 1 B 2.53 
8 6111 OH TYR 408 A 12093 NH2 ARG 93 B 2.56 
9 6111 OH TYR 408 A 15772 NE2 GLN 319 B 2.94 

10 6666 O ALA 445 A 15068 N ASN 278 B 1.41 
11 6708 O THR 450 A 15075 ND2 ASN 278 B 3.08 
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Table S3. Interaction chart for the fibrinogen α-chain -activated FXIII dock based on the 
Glutamine 223 residue constraint. 
 

 
 

 FXIIIa´   Fibrinogen (α-chain 223 
Glutamine residue) 

 

Atom 
Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Distance 
(in Å) 

            
1. 2175 O GLY 229 A 9728 NZ LYS 208 D 3.12 
2. 2541 N ALA 269 A 11664 O SER 373 D 2.91 
3. 2568 O ASP 271 A 11329 N ARG 348 D 1.44 
4. 2578 N GLU 273 A 11262 O ASN 342 D 2.75 
5. 2587 O GLU 273 A 11668 OG SER 373 D 3.14 
6. 2609 O LEU 276 A 11690 N ARG 375 D 1.95 
7. 2610 N VAL 277 A 11646 O SER 371 D 2.15 
8. 2630 O SER 279 A 10024 NH1 ARG 239 D 1.90 
9. 2666 O ASN 282 A 12259 NZ LYS 413 D 2.54 
10. 2675 O ILE 283 A 12111 N ARG 406 D 2.46 
11. 2710 N GLY 287 A 12102 O THR 405 D 2.94 
12. 2710 N GLY 287 A 12105 OG1 THR 405 D 3.08 
13. 2714 O GLY 287 A 12105 OG1 THR 405 D 2.50 
14. 2715 N VAL 288 A 12172 OE1 GLU 408 D 2.01 
15. 2736 O PRO 290 A 9387 NZ LYS 183 D 1.96 
16. 2741 OG SER 291 A 9799 OD1 ASN 217 D 3.27 
17. 2741 OG SER 291 A 9830 N SER 220 D 3.04 
18. 2766 O TRP 293 A 9387 NZ LYS 183 D 3.08 
19. 2771 OG1 THR 294 A 9306 OH TYR 178 D 3.25 
20. 2805 O ASP 298 A 9604 NE ARG 197 D 3.28 
21. 2814 O ILE 299 A 9610 NH2 ARG 197 D 2.65 
22. 2886 OG SER 306 A 9607 NH1 ARG 197 D 2.86 
23. 2926 N ARG 311 A 11603 O HIS 368 D 2.59 
24. 2938 NH2 ARG 311 A 11556 O GLY 365 D 2.61 
25. 2938 NH2 ARG 311 A 11624 OG  S ER 369 D 2.27 
26. 2956 O TYR 312 A 12174 N   T YR 409 D 2.30 
27. 2968 OE1 GLN 314 A 9850 N LEU 222 D 2.29 
28. 2969 NE2 GLN 314 A 12179 O TYR 409 D 2.82 
29. 2978 SG CYS 315 A 12193 OH TYR 409 D 3.23 
30. 3254 O HIS 343 A 10079 NH1 ARG 244 D 1.96 
31. 3270 ND2 ASN 345 A 10066 OE1 GLU 243 D 3.24 
32. 3527 N ASN 372 A 9891 O VAL 225 D 2.36 
33. 3548 OH TYR 373 A 12193 OH TYR 409 D 3.14 
34. 3829 N ASN 403 A 11078 OE1 GLN 328 D 2.65 
35. 3857 N GLY 406 A 11003 O THR 322 D 2.11 
36. 3871 N TYR 408 A 11365 O SER 350 D 2.26 
37. 3881 OH TYR 408 A 11078 OE1 GLN 328 D 3.18 
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Table S4. Interaction chart for the fibrinogen α-chain -activated FXIII dock based on the 
glutamine 237 residue constraint. 
 

 FXIIIa´   Fibrinogen (α-chain 237 
Glutamine residue) 

 

Atom 
Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Distance 
(in Å) 

            
8. 574 N LYS 74 A 12149 OG1 THR 405 D 2.69 
9. 930 O VAL 105 A 11256 N GLY 339 D 2.40 
10. 939 O ILE 106 A 11345 OG SER 345 D 3.20 
11. 957 NH2 ARG 108 A 10923 OG SER 311 D 3.12 
12. 1419 O VAL 155 A 11734 N ARG 375 D 2.18 
13. 1432 NZ LYS 157 A 11585 O THR 364 D 2.92 
14. 1462 NH2 ARG 159 A 11684 OE2 GLU 370 D 2.28 
15. 1685 O THR 171 A 11696 N GLY 372 D 3.18 
16. 1708 O ILE 173 A 11714 N PHE 374 D 2.80 
17. 1708 O ILE 173 A 11752 NH1 ARG 375 D 2.97 
18. 2034 N GLY 216 A 9899 OD1 ASN 217 D 2.60 
19. 2039 N GLU 217 A 9340 O GLN 181 D 2.61 
20. 2067 O ASN 219 A 9138 N LEU 169 D 3.28 
21. 2063 ND2 ASN 219 A 9109 O ARG 167 D 3.26 
22. 2074 OD2 ASP 220 A 9038 SG CYS 161 D 2.70 
23. 2077 N ILE 221 A 9232 OD1 ASP 174 D 3.08 
24. 2093 NZ LYS 222 A 9038 SG CYS 161 D 2.97 
25. 2093 NZ LYS 222 A 9280 O ASP 177 D 2.21 
26. 2108 N ARG 214 A 9321 OE1 GLU 179 D 2.77 
27. 2215 OD1 ASP 233 A 12155 N ARG 406 D 2.36 
28. 2255 OG1 THR 238 A 12285 N LYS 413 D 3.06 
29. 2260 N CYS 239 A 12223 O TYR 409 D 1.94 
30. 2286 OH TYR 241 A 12762 OG SER 443 D 2.01 
31. 2307 N ASP 244 A 11777 O ASP 377 D 2.33 
32. 2345 OE1 GLN 247 A 10282 OG1 THR 256 D 2.93 
33. 2346 NE2 GLN 247 A 10277 O SER 255 D 2.50 
34. 2346 NE2 GLN 247 A 10764 O THR 299 D 2.87 
35. 2400 NH1 ARG 253 A 11777 O ASP 377 D 2.49 
36. 2403 NH2 ARG 253 A 11420 O ALA 351 D 2.82 
37. 2540 O ASN 268 A 10210 ND2 ASN 248 D 2.23 
38. 2574 OD1 ASP 272 A 10210 ND2 ASN 248 D 2.39 
39. 2863 NE ARG 304 A 11815 O GLY 380 D 3.05 
40. 2896 OE1 GLU 307  A 238 OG1 THR 251 D 2.52 
41. 2906 ND2 ASN 308 A 12769 O LYS 444 D 3.26 
42. 3035 O VAL 321 A 12237 OH TYR 409 D 2.41 
43. 3217 N PHE 340 A 9888 O PRO 215 D 2.10 
44. 3532 OD1 ASN 372 A 9938 N GLN 221 D 2.73 
45. 3563 O HIS 374 A 9655 NH1 ARG 199 D 2.03 
46. 3568 SG CYS 375 A 9658 NH2 ARG 199 D 3.28 
47. 4129 OE1 GLU 435 A 9622 NH2 ARG 197 D 2.78 
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48. 4374 NZ LYS 447 A 9635 OD1 ASP 198 D 2.35 
49. 4467 O ASP 457 A 9271 NZ LYS 176 D 2.58 
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Table S5. Interaction chart for the fibrinogen α-chain -activated FXIII dock based on the 
glutamine 366 residue constraint. 
 

 FXIIIa´   
Fibrinogen (α-chain 366 

Glutamine residue)  

Atom 
Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Distance 
(in Å) 

            
1. 3295 N VAL 218 A 16518 OG1 THR 393 D 2.72 
2. 3320 ND2 ASN 219 A 16511 O GLY 392 D 2.69 
3. 4260 OD2 ASP 281 A 15942 OG SER 350 D 2.19 
4. 4272 ND2 ASN 282 A 15319 O THR 301 D 3.05 
5. 4272 ND2 ASN 282 A 15979 O HIS 353 D 2.63 
6. 4296 N TYR 284 A 15942 OG SER 350 D 3.12 
7. 4316 O TYR 284 A 15553 OG SER 319 D 2.77 
8. 4313 OH TYR 284 A 15701 OG SER 332 D 3.09 
9. 4313 OH TYR 284 A 15822 NE1 TRP 341 D 3.00 
10. 4347 O TYR 286 A 15920 NH1 ARG 348 D 3.01 
11. 4348 N GLY 287 A 15553 OG SER 319 D 3.02 
12. 4778 SG CYS 315 A 15738 NH2 ARG 334 D 3.00 
13. 5621 N VAL 370 A 16092 O SER 361 D 3.04 
14. 5636 O VAL 370 A 16111 N THR 364 D 2.33 
15. 5636 O VAL 370 A 16125 N GLY 365 D 2.61 
16. 5695 O TYR 373 A 15735 NH1 ARG 334 D 2.60 
17. 6099 O PRO 400 A 15773 N THR 338 D 2.77 
18. 6815 O LYS 447 A 13160 N LYS 157 D 2.61 
19. 7127 NE2 GLN 469 A 18313 O PHE 514 D 2.39 
20. 7157 O GLY 471 A 18353 N MET 517 D 2.54 
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Table S6. Interaction chart for the fibrinogen α-chain -activated FXIII dock based on the 
glutamine 563 residue constraint. 
 

 
 

 FXIIIa´   Fibrinogen (α-chain 563 
Glutamine residue)  

Atom 
Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Distance 
(in Å) 

            
1. 2925 O VAL 310 A 14606 NZ LYS 556 D 2.09 
2. 2968 OE1 GLN 314 A 14520 N GLY 547 D 2.73 
3. 2978 SG CYS 315 A 14533 O ILE 548 D 1.60 
4. 3183 N THR 337 A 14337 O GLY 529 D 2.67 
5. 3191 O THR 337 A 14382 N ILE 534 D 2.92 
6. 3202 O ASN 338 A 14413 N THR 536 D 2.31 
7. 3197 OD1 ASN 338 A 14023 NZ LYS 508 D 3.20 
8. 3197 OD1 ASN 338 A 14401 N PHE 535 D 2.91 
9. 3198 ND2 ASN 338 A 14485 OG SER 543 D 3.31 
10. 3389 O GLU 357 A 10813 OG SER 275 D 2.80 
11. 3386 OE1 GLU 357 A 10839 N ASN 277 D 1.32 
12. 3398 O ASP 358 A 14871 OH TYR 582 D 2.91 
13. 3415 N VAL 361 A 14797 OG SER 575 D 1.49 
14. 3503 N VAL 370 A 14716 OG SER 567 D 2.01 
15. 3510 O VAL 370 A 14712 N SER 567 D 3.18 
16. 3551 O TYR 373 A 14501 N HIS 545 D 2.64 
17. 3552 N HIS 374 A 14369 O SER 532 D 3.18 
18. 3560 NE2 HIS 374 A 14646 OH TYR 560 D 2.94 
19. 3560 NE2 HIS 374 A 14646 OH TYR 560 D 2.94 
20. 3605 OE2 GLU 378 A 14331 N GLY 529 D 2.80 
21. 3779 OD1 ASP 397 A 14550 N PHE 551 D 2.01 
22. 3819 N GLU 402 A 14573 OG SER 553 D 2.34 
23. 3942 O VAL 415 A 14267 N THR 525 D 2.95 
24. 3961 N ILE 418 A 14275 OG1 THR 525 D 2.84 
25. 4104 O VAL 432 A 14325 NH1 ARG 528 D 1.65 
26. 4130 OE2 GLU 435 A 14509 NE2 HIS 545 D 3.06 
27. 4232 NZ LYS 446 A 10862 OG SER 278 D 2.99 
28. 4326 N ALA 458 A 13726 OD2 ASP 488 D 3.09 
29. 4332 N THR 459 A 13726 OD2 ASP 488 D 1.99 
30. 4388 O LEU 464 A 14382 N ILE 534 D 1.86 
31. 4398 N VAL 466 A 14337 O GLY 529 D 2.73 
32. 4587 N GLU 486 A 14004 O GLY 507 D 2.74 
33. 4597 N GLY 487 A 14035 OG1 THR 509 D 2.81 
34. 4634 N GLU 491 A 14046 O PHE 510 D 2.95 
35. 4669 O LEU 493 A 14147 N MET 517 D 2.13 
36. 4676 N LEU 495 A 14081 O GLY 512 D 2.83 
37. 4676 N LEU 495 A 14127 O SER 515 D 2.25 



 
Thomas and Biswas et al                                    Molecular defects underlying FXIIIA missense mutations

  

 

Table S7. Interaction chart for the fibrinogen γ-chain -activated FXIII dock based on the 
glutamine 398 residue constraint. 
 

 FXIIIa´   Fibrinogen (γ chain 398 
Glutamine residue) 

 

Atom 
Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Atom 
no. 

Atom 
name 

Res 
name 

Res 
no. Chain 

Distance 
(in Å) 

            
1. 2019 O PHE 214 A 12093 N   G LY 404 C 2.79 
2. 2030 OH TYR 215 A 11623 N   S ER 358 C 2.66 
3. 2124 O ARG 224 A 11962 ND2 ASN 390 C 2.73 
4. 2117 NH1 ARG 224 A 11805 O ARG 375 C 3.00 
5. 2120 NH2 ARG 224 A 11835 O TYR 377 C 2.82 
6. 2149 N SER 227 A 11784 OG1 THR 374 C 3.31 
7. 2153 OG SER 227 A 11784 OG1 THR 374 C 3.35 
8. 2153 OG SER 227 A 11795 NE ARG 375 C 2.17 
9. 2206 OE1 GLU 232 A 11005 N ASP 294 C 3.21 
10. 2600 O VAL 275 A 10660 NH1 ARG 256 C 2.65 
11. 2686 OH TYR 284 A 12026 N GLY 397 C 3.13 
12. 2709 O TYR 286 A 10646 N GLY 255 C 1.96 
13. 2714 O GLY 287 A 11533 OH TYR 348 C 2.20 
14. 2736 O PRO 290 A 11913 NZ LYS 385 C 2.87 
15. 2741 OG SER 291 A 11568 N GLY 352 C 3.26 
16. 2751 N TRP 293 A 11572 O GLY 352 C 3.24 
17. 2780 O GLY 295 A 11780 N THR 374 C 3.17 
18. 2797 N ASP 298 A 11741 O ALA 370 C 3.29 
19. 2806 N ILE 299 A 11766 O TRP 372 C 2.50 
20. 2839 OE1 GLU 302 A 11760 NE1 TRP 372 C 2.14 
21. 2932 NE ARG 311 A 10612 O ASP 252 C 3.01 
22. 2932 NE ARG 311 A 10617 OD1 ASP 252 C 3.23 
23. 2935 NH1 ARG 311 A 10650 O GLY 255 C 2.76 
24. 2938 NH2 ARG 311 A 10617 OD1 ASP 252 C 2.75 
25. 2974 N CYS 315 A 12146 OD2 ASP 410 C 2.07 
26. 3182 O VAL 336 A 12075 NE2 HIS 401 C 2.16 
27. 3191 O THR 337 A 12104 N LYS 406 C 1.75 
28. 3229 N SER 341 A 12128 O GLN 407 C 2.67 
29. 3551 O TYR 373 A 12067 N HIS 401 C 2.88 
30. 3552 N HIS 374 A 12116 O LYS 406 C 3.09 
31. 3563 O HIS 374 A 12088 N GLY 403 C 3.25 
32. 3557 ND1 HIS 374 A 12067 N HIS 401 C 2.63 
33. 3557 ND1 HIS 374 A 12134 O ALA 408 C 1.48 
34. 3568 SG CYS 375 A 11966 O ASN 390 C 2.29 
35. 3586 O TRP 376 A 12075 NE2 HIS 401 C 3.06 
36. 4398 N VAL 466 A 12092 O   G LY 403 C 3.06 
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Table S8. Summary of the patient’s genotype and phenotype. 

 
Patient ID/ 

Sex/ Age 

Genotype  
Affected 
domain 

Exon Phenotype  
Bleeding 

score 

 
FXIII 

% 

 
FXIII 

% 

Ag*: 
 FXIII A 

% 

Ag*: 
 FXIII B 

% 

U/M/5 Arg38Gln Activation 
peptide 

1 AS* - 29-35 18-38 85-121 81-120 

V/F/30 Arg38Pro Activation 
peptide 

1 Menorrhagia and 
a large 

haematoma after 
a caesarean 

section 

- 20 n.d.* 42 97 

A/F/22 Pro167Leu, 
c.500C>T 

Beta-
Sandwich 

4 Delayed 
bleeding after 
wisdom tooth 

extraction 

3 52-55 63 77 83 

B/F/29 Tyr168Cys, 
c.503>G 

Beta-
sandwich 

4 AS n.d. 57-70 n.d. n.d. n.d. 

C/F/30 Arg172Gln, 
c.515G>A 

Beta-
Sandwich 

4 No history of 
risk exposure 

(e.g. major 
trauma, surgery, 

etc.) 

0 45 n.d. n.d. n.d. 

D/M/10 Pro290Arg, 
c.869C>G 

Core 7 Subcutaneous 
shank hematoma 

due to trauma 

n.d. 46 n.d. n.d. n.d. 

E/M/37 His343Tyr, 
c.1027C>T 

Core 8 No bleeding after 
appendectomy, 

inguinal 
herniotomy, right 
hand surgery or 
arthroscopy of 

right knee 

-1 40 50 38 72 

F/F/36 Gln416Arg, 
c.1247A>G 

Core 10 Postpartum 
bleeding 

4 55-57 63 55 60 

G/F/41 Leu530Pro, 
c.1589T>C 

Barrel1 12 AS 0 67 n.d. n.d. n.d. 

H/F/32 Arg541Gln, 
c.1622G 

Barrel1 12 AS n.d. 50-61 n.d. n.d. n.d. 

I/F/28 Gly593Ser, 
c.1777G>A 

Barrel1 13 Postpartum 
bleeding 

n.d. 61 n.d. n.d. n.d. 
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*Abbreviations: AS: asymptomatic at presentation, n.d.: not done, Ag: antigen, %: percentage of 
normal pool plasma. &FXIII Behrichrom activity assay %FXIII Technoclone activity assay 

J/F/42 Gly593Ser, 
c.1777G>A 

Menorrhagia, 
postpartum 
bleeding, 

bleeding after 
dental extraction 

71 

K/F/35 Gly593Ser, 
c.1777G>A 

Bleeding after 
breast 

fibrioadenoma 
surgery 

60 

L/F/50 Gln602Lys, 
c.1804C>A 

Subcutaneous 
Haemorrhages 

1 38-40 n.d. n.d. n.d. 

M/F/32 Gln602Lys, 
c.1804C>A 

Barrel1 13 

Postpartum 
(massive blood 

loss) 

4 52-54 39 59 137 

N/M/59 Arg612His, 
c.1835G>A 

Postoperative 
bleeding due to 
facial trauma 

49 

O/M/27 Arg612His, 
c.1835G>A 

AS 43 

P/F/24 Arg612His, 
c.1835G>A 

Barrel1 13 

AS 

n.d. 

43 

n.d. n.d. n.d. 

Q/M/3 Asp669Gly, 
c.2006A>G 

Bleeding due to 
craniostenosis 

surgery, mucous 
and 

subcutaneous 
bleeds, impaired 
wound healing 

23-40 

R/F/22 Asp669Gly, 
c.2006A>G 

Barrel2 14 

AS 

n.d. 

n.d. 

n.d. n.d. n.d. 

S/F/20 Arg704Gln, 
c.2111G>A 

Barrel2 15 Delayed 
bleeding after 
wisdom tooth 

extraction 

3 58 63 61 73 

T/M/46 Arg716Gly, 
c.2146A>G 

Barrel2 15 - 0 50-55 n.d. n.d. n.d. 
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Figure S1. The western blotting image for all the expressed FXIIIA variants and controls.  Wild type FXIIIA, rFXIIIA and non-transfected cell 
lysates served as controls.  
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Figure S2. This figure shows the plotted curves for the variants with detection levels above the 
detection limit. Apart from the recombinant expressed variants, also depicted in this figure is the 
curve of FXIIIa generation in normal pool plasma. The area under the curve (AUC), time to peak 
(TTP) and concentration at peak (CP) for wild type as well as some variants has been calculated 
from these curves and some of these variables have been shown in Figure 3. 
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Figure S3. The modelled activation pathway for the FXIIIA subunit 
This image is split up into two panels. The right panel shows multiple coarse grained transition 
forms (the number of intermediate forms for the sake of clarity has been reduced from 463 to 
only 10) between the activated and zymogenic FXIIIA unit monomer. The activated and 
zymogenic FXIIIA unit monomer is coloured red and blue respectively. All intermediate forms 
are coloured yellow. The left panels also shows the multiple coarse grained transition forms in 
the background. As an example two sets of residues have been colour coded specifically in the 
activated and the zymogenic forms in order to depict the conformational transition occurring 
during this change. The colour coding goes as: 
Green: Residues close to the p.Lys222 residue in the zymogenic form. Red: The p.Lys222 
residue in the zymogenic form. Blue: Reported mutations from our study close to the p.Lys222 
residue in the zymogenic form. Yellow: Residues which were earlier close to the p.Lys222 
residue now their position in the activated form. Magenta: The p.Lys222 residue in the activated 
form. Purple: Reported mutations (from our study) which were earlier close to the Lys221 
residue now in the activated form.  
From the above description it is evident that the residues close to p.Lys222 residue in the 
zymogenic FXIIIA (more importantly the ones on which the mutations have been reported in this 
study i.e. p.Arg716Gly, p.Leu530Pro and p.Gln602Lys) move away (>5Å) in the activated 
FXIIIA following conformational changes. 
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