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Abstract

In recent years the GW/BSE approach as a sophisticated many-body method gained con-

siderable attention for ab-initio calculations of a range of properties in finite and infinite

systems. For instance, several benchmarks exist for ionization potentials, electron affinities,

(band) gaps, and electronically excited states demonstrating an overall good performance

of the GW/BSE approach at a computational cost comparable to time-dependent density

functional theory (TD-DFT) which is a widely applied method in quantum chemistry. The

GW/BSE method outperforms TD-DFT for accurate description of charge-transfer states

due to explicit capture of non-local electron-hole interaction mediated by the screened

Coulomb potential W (r, r
′
, ω). Furthermore, dynamical correlation is properly described

through explicit frequency dependency of W (r, r
′
, ω). Long-range dispersion effects are

accounted for by infinite summation of non-local electron correlation contributions; the

so-called ring diagrams within the random-phase approximation (RPA). Therefore, the

GW/BSE method provides a reliable theoretical tool with a satisfactory prediction power

for electronic and optical properties of materials at different phases, and hence is consis-

tently used in this thesis for different types of problems.

In the first part of this thesis, the effect of electron-electron correlation, electron-phonon

coupling and vertex corrections on the electronic band structure of ice and liquid water

within the many-body Green’s function formalism (the GW method) is investigated. Fur-

thermore, within the same methodology and based on the Bethe-Salpeter equation (BSE)

linear optical absorption spectra of antiferromagnetic zinc ferrite, water and ammonia in

the condensed phase are calculated and analyzed in detail. Here, the electron-hole correla-

tion which is responsible for the observed red-shift of absorption peaks and spectral weight

redistributions is explicitly taken into account. The electron-hole effects are also of extreme

importance for the non-linear absorption spectrum of liquid water (two-photon spectrum)

in combination with quasi-particle (QP) effects.

The good performance of the GW/BSE methodology is also shown on large donor-acceptor-

type molecules, demonstrating its reliability for finite systems where the screening effects are

much lower than in periodic systems and a correct description of the long-range behaviour
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of the exchange-correlation functional is essential. In order to enhance the predictive power

of the GW/BSE theory for molecular systems starting from self-interaction free orbitals,

a many-body based screening mixing scheme is introduced which remarkably improves the

agreement of calculated excitation energies with reference data.

In the second part, non-adiabatic excited-state dynamics of condensed water is studied.

A combination of ab-initio Born-Oppenheimer molecular dynamics and time-dependent

density functional theory is applied. The complex proton dynamics is investigated by large-

scale excited-state calculations. It is found that instantaneous concerted hops of protons

to the neighboring water molecules (Grotthuss mechanism) are highly unlikely. Further-

more, the solvated electron formed upon proton transfer in the excited state is not fully

localized within a cavity-like environment as a consequence of attractive interaction with

the surrounding water molecules.
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Chapter 1

Introduction

Nowadays, ab-initio calculation of material’s properties is of paramount importance in or-

der to gain a deeper understanding of the physical properties in many-body ensembles. A

wealth of advanced theoretical methods for the calculation of electronic, electron-phonon,

(non)-linear optical properties, and quantum dynamics in excited states of large molecules

and condensed phase is presently available.

The main subject of this thesis is the accurate ab-initio calculation of many-body effects

such as electron-electron (e-e), electron-phonon (e-ph), and electron-hole (e-h) interaction.

A reliable assessment of the impact of e-e, e-ph, and e-h effects on the electron levels (one-

particle levels) is of utmost importance since they considerably renormalize the fundamental

gap, upon which optical properties are based. Hence, an accurate quantification of the in-

volved effects is required to be able to reliably put the puzzle of many-body contributions

together and to build up the whole picture in an ab-initio manner. This goal is achieved

by means of the ab-initio Green’s function formalism which takes into account many-body

effects. This unique methodology provides access to static properties such as single-particle

excitations observed in photo-emission spectra as well as the 2-particle excitations determin-

ing optical spectra. Furthermore, within the Green’s function methodology, it is possible

to account for non-linear phenomena, such as high harmonic generations and two-photon

absorption spectra, resulting in fundamentally different spectral weight distributions rel-

ative to the corresponding linear spectra due to different selection rules. The impact of

correlation approximations on the non-linear spectrum is assessed in this thesis.

Traditionally the GW/BSE approach has been applied to solids. In order to obtain biased-

free spectra for finite systems, the many-body scheme is reformulated from the plane waves

to localized basis set representation. This basis set change allows to circumvent the supercell

approach, and to investigate spectra of large molecular systems without being hampered

by artificial interaction of periodic images, as encountered in the plane wave formalism.
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Dynamic properties of excited states are studied using time-dependent density functional

theory (TD-DFT) combined with DFT Born-Oppenheimer molecular dynamics. TD-DFT

is in comparison to Green’s functions a lower cost method, and hence very appealing for

analysing quantum dynamics of large systems in excited states. As an example, the quan-

tum dynamics of liquid water in its excited states is investigated, showing an unusual

ultra-fast proton transfer.

The work is organized as follows:

Chapter 2 presents an overview of the theoretical methods used in this thesis.

In Chapter 3, the importance of electron-hole correlation effects, the so-called excitonic ef-

fects, is demonstrated which is of importance for a realistic distribution of spectral weights.

Further, ab-initio calculations of dynamic electron-phonon coupling effects on the band gap

of ice and liquid water are presented and discussed. The impact of GW correlation on the

band gap is calculated and analyzed. Chapter 4 deals with non-linear absorption spec-

trum of liquid water. The importance of GW self-consistency and excitonic effects on the

non-linear spectrum is shown.

In Chapter 5 a reformulation of the Bethe-Salpeter equation from plane waves to localized

basis sets is presented for molecular systems. The predictive power of the GW/BSE formal-

ism in large charge-transfer molecular systems is demonstrated. Furthermore, in order to

avoid self-interaction errors and to considerably reduce the computational cost a screening

mixing GW/BSE ansatz is presented. Chapter 6 concerns with quantum excited-state

dynamics of liquid water, and the corresponding excited-state chemical processes based on

time-dependent density functional theory. The work is closed in Chapter 7 by a summary

and an outlook for future research in the many-body field.
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Chapter 2

Theoretical methods

2.1 Introduction

In the beginning of the 20th century with the advent of quantum mechanics the laws to

exactly describe the way particles interacting in a many-particle ensemble were established

at microscopic level through the electronic time-independent Schrödinger equation.

[ N∑
i

(
− 1

2
∇2
i + Vext(ri)

)
+

1

2

N∑
i 6=j

v(|ri − rj|)
]
Ψ(r1, . . . , rN) = EΨ(r1, . . . , rN) (2.1)

The Eq. (2.1) describes the correlated movement of N electrons in an external static poten-

tial Vext created by the presence of N nuclei with the assumption that the electrons move

much faster, and hence at much shorter time scales than the nucleus, and can instantly

adjust to a change of the nuclear configuration (adiabaticity principle). This leads to de-

coupling of the electronic and nuclear wave functions (known as the Born-Oppenheimer

(BO) approximation [1]) and hence to a major simplification. Therefore, Eq. (2.1) is an

eigenvalue equation providing the spectrum of eigenvalues (Ei) of an electronic system at

fixed ionic positions R = R1, . . . ,RNatom . This approximation is only valid if the adiabatic

states are not degenerated. In case of degeneracy, non-adiabatic effects (Jahn-Teller ef-

fects [2]) have to be taken into account.

Even within the BO approximation, Eq. (2.1) still poses a major challenge, as due to

presence of the Coloumb interaction v, the complexity of the solution of the Schrödinger

equation (2.1) is massive. In case of absence of the Coulomb interaction, the Schrödinger

equation reduces to a set of N independent one-electron equations. Therefore, since the

many-body wave function, Ψ(r1, . . . , rN), is a function of 3N variables, where N is of the

order of the Avogadro’s number in solids, an exact solution to the many-body Eq. (2.1) is

impossible, and indeed finding approximations to Eq. (2.1) is the only way to get out of
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2.2. Hartree-Fock Theory

this immense complexity.

The first crude approximation is to consider the electrons, moving in a periodic potential

(generated by the ions) in a solid, to be independent particles. This assumption led to

the concept of energy bands εnk and Bloch states [3], ψnk(r) = unk(r) expikr; which are

solutions of the single-particle Schrödinger equation :(
− 1

2
∇2 + Vext(r)

)
ψnk(r) = εnkψnk(r) (2.2)

where Vext(r) and unk(r) have the same spatial periodicity. Based on this assumption, there

have been some major successes, such as providing a first description of the low-temperature

limit of the metallic resistance, a first explanation of the different Hall coefficients and a

first classification of metal and insulators of solids at low temperatures [4]. However, as of

any other models in solid state physics, this one-particle Bloch band structure theory suffers

from its too simple physical structure, leading, for instance, to a rough electron-counting in

distinguishing metals and insulators or to improper capturing of the electronic localization

for a more realistic description of an insulator.

2.2 Hartree-Fock Theory

The next level of approximation to Eq. (2.1) to better describe many electron-electron

interactions is the Hartree-Fock approximation [5,6] in which one considers the electrons as

independent but the classical Coulomb and exchange effects are taken into account. How-

ever, in the HF approximation correlation effects are neglected.

In Hartree-Fock (HF) theory the many-body wave function is given as a single Slater de-

terminant

Ψ(r1, . . . , rN) =
∑
P

sgn(P )
N∏
i=1

ψi(rP (i)) (2.3)

The HF equations determine the set of one-particle orbitals ψi that minimizes the total

energy of the system :[
− 1

2
∇2 + Vext(r)

]
ψi(r) + VH(r)ψi(r) +

∫
dr
′
Vx(r, r

′
)ψi(r

′
) = Eiψi(r) (2.4)

where Hartree and exchange potential are given by :

VH(r) =
∑
j

∫
dr
′
ψ∗j (r

′
)

1

|r− r′|
ψi(r

′
) (2.5)
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2.3. Density Functional Theory

∫
dr
′
Vx(r, r

′
)ψi(r

′
) = −

∑
j

δσiσj

∫
dr
′
ψ∗j (r

′
)

1

|r− r′|
ψj(r)ψi(r

′
) (2.6)

In essence, HF theory describes an independent electron moving in a mean-field potential

created by the other electrons. The Hartree potential VH in Eq. (2.5) is the classic Coulomb

interaction between the electrons, and Vx in Eq. (2.6) is the non-local exchange potential

reflecting the quantum nature of the underlying electronic system as a consequence of

the Pauli exclusion principle. Although the HF-approximation performs reasonable for

atomic total energies or molecular equilibrium geometries, the lack of correlation effects has

dramatic consequences on the accurate or even qualitative prediction of system properties.

2.3 Density Functional Theory

For a more realistic modelling of the behavior of electrons in solids the quality of the

approximations has to be improved. One way is to map the original wave function based

equation (Schrödinger equation) onto a single-particle equation which allows for a better

approximation of the many-body effects. This starts from the general Hamiltonian

H = T + V +HCoul (2.7)

in which T is the kinetic energy functional, V specifies the external potential and HCoul

describes the Coulomb interaction.

The mapping from the highly correlated many-body Schrödinger equation onto a one-

particle equation is key to be able to develop a computationally tractable method. The

theoretical framework was given in 1964 by P. Hohenberg und W. Kohn [7] in their seminal

paper, where they presented the basic principles of the density functional theory (DFT) in

which three fundamental theorems are stated :

1) The ground-state expectation value of any observable is a unique functional of the exact

ground-state density n :

〈Ψ[n]|Ô|Ψ[n]〉 = Ô[n] (2.8)

And from the knowledge of the ground-state density the external potential Vext of the

system is determined by the inverse map of the product of A and B :

A : V → Ψ (2.9)

B : Ψ→ n (2.10)

(AB)−1 : n(r)→ V (r) (2.11)
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2.3. Density Functional Theory

and hence the entire Hamiltonian (2.7), once the kinetic energy and the Coulomb interac-

tion are specified.

2) The ground-state energy E0 of N electrons system is found by minimizing the energy

functional with respect to the density.

EVext [n] ≡ 〈Ψ[n]|T + Vext +Hcoul|Ψ[n]〉 (2.12)

E[n] has the property that

E0 < EVext [n] (2.13)

with

E0 = EV0 [n0] (2.14)

Thus, the minimization of the energy functional EV [n] leads to the exact ground-state den-

sity of an interacting N -electron system.

3) The mapping (2.11) is independent of the Vext of the particular system and consequently

the Hohenberg-Kohn functional FHK [n] is a universal functional given as :

FHK [n] = 〈Ψ[n]|T +Hcoul|Ψ[n]〉 (2.15)

in

E[n] = FHK [n] +

∫
drVext(r)n(r) (2.16)

The three statements of invertibility, variationality and universality are at the heart of the

DFT formulation; however still some efforts are necessary for its practical realization.

The KS equation

In order to implement the ideas of Hohenberg and Kohn in a practical form, Kohn and

Sham (KS) suggested an alternative efficient strategy [8] in which one considers an auxiliary

system of N non-interacting particles subjected to an effective external potential, VKS, with

the property that it yields the same density as the real interacting system. Defining the

energy functional :

E[n] = T [n] + U [n] +

∫
V (r)n(r)d3r (2.17)

with T as kinetic and U as nuclear attraction, and further differentiating Eq. (2.17) with

7



2.3. Density Functional Theory

respect to the non-interacting Kohn-Sham density nks:

VKS(r) = Vext(r) + VH(r) + Vxc[nks(r)] (2.18)

One obtains the definition for the effective single-particle potential VKS in terms of the

external potential Vext, the Hartree potential VH :

VH(r) =

∫
dr
′
v(|r− r

′ |)n(r
′
) (2.19)

and the exchange-correlation potential Vxc :

Vxc(r) =
δExc
δn(r)

(2.20)

According to the second Hohenberg-Kohn statement, the variation of the energy functional

is performed in terms of the single-particle Kohn-Sham orbitals φi under orthogonality

constraint :
δ

δφi

[
E −

N∑
k,l

εkl(

∫
drφ∗k(r)φk(r)− δkl)

]
= 0 (2.21)

resulting in the Kohn-Sham equations :[
− 1

2
∇2
i + VKS[n](r)

]
φi(r) = εiφi(r) (2.22)

whose solutions give the density of the N electron system :

n(r) =
N∑
i

|φi(r)|2 (2.23)

Therefore, in order to obtain a practical and computationally tractable formulation of the

quantum physics of the many-electron system, the solution of the many-body Schrödinger

equation (2.1) is elegantly converted into a set of self-consistent one-particle Schrödinger-

like equations with the effective single-particle potential VKS.
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2.3. Density Functional Theory

2.3.1 Approximations to the exchange-correlation functional

LOCAL DENSITY APPROXIMATION (LDA)

In the Kohn-Sham formulation of DFT the whole complexity of the many-body system is

downfolded into Vxc. However, the exact form of the exchange-correlation potential in Eq.

(2.20) is not known. The most simple formulation of Exc is the local-density approximation

(LDA)

ELDA
xc [n] =

∫
drn(r)εHEGxc (n(r)) (2.24)

As can be seen from the Eq. (2.24), the true interacting density is approximated via the

local homogeneous electron gas (HEG) density. εHEGxc is composed of

εHEGxc = εHEGx + εHEGc (2.25)

with εHEGx being the exchange and εHEGc the correlation energy density.

The εHEGx is an analytic function of n [9] :

εHEGx = −3

4

[
3n

π

]1/3

(2.26)

whereas the correlation part can be calculated approximately using many-body perturba-

tion theory [10] or via Quantum Monte Carlo methods [11]. Despite the locality of the

density, LDA provides surprisingly good results. This accuracy follows from error cancel-

lations in the approximation of the exchange and correlation terms (LDA overestimates

exchange and underestimates correlation [12]) and further from the fact that LDA satisfies

the sum rules for the exchange-correlation hole nxc [13, 14].

GRADIENT CORRECTED APPROXIMATION (GGA)

In order to account for the spatial variation of the density (or in other words for density

inhomogeneities), one goes a step forward and generalizes LDA to the so called generalized-

gradient approximation (GGA) [15]. Within the GGA scheme, εxc from Eq. (2.24) becomes

a function of the density and its gradients, with some free parameters that are obtained

either from sum rules or fitting to experiments.

EGGA
xc [n] =

∫
d3rεxc(n(r),

−→
∇n(r))n(r) (2.27)

The GGA-type functionals are widely used in chemistry as they improve for instance the

dissociation energies over LDA and give a good description of hydrogen bonding [16]. How-
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2.3. Density Functional Theory

ever, a systematic improvement relative to LDA was not found. In particular, both LDA

and GGA functionals suffer from self interaction error, as the Vxc does not exactly cancel

the Hartree potential, or in other words the electron in the effective potential interact with

all electrons instead of all the other electrons.

META GGA - HYBRIDS - DOUBLE HYBRID APPROXIMATIONS

A more sophisticated approximation to Vxc is denoted as meta GGA which additionally

includes the second derivative of the density

EMGGA
xc [n] =

∫
d3rεxc(n(r),

−→
∇n(r), τs(r))n(r) (2.28)

with τs(r) defined as :

τs(r) =
1

2

occ∑
i

|∇φi(r)|2 (2.29)

The TPSS functional [17] is an example of such kind of meta-GGA functional which per-

forms well for molecules in gas-phase and for determination of hydrogen bonded structures.

Another popular approximation to Vxc are hybrid functionals where a fraction of Hartree-

Fock exchange is added to the GGA exchange functional :

EHY BRID
xc = EGGA

x + α(EHF
x − EGGA

x ) + EGGA
c (2.30)

For instance the PBE0 functional [18,19] which is frequently applied in physics and chem-

istry is constructed by a GGA type functional (PBE) with a HF exchange fraction of 25%.

This type of functionals results in much better description of band gaps relative to GGAs

due to better error cancellations between HF-exchange and GGA correlation effects.

The most accurate approximation of Vxc is represented by the double hybrid functionals in

which a combination of HF exchange fraction, GGA exchange-correlation potentials and

many-body correlation from the second order perturbation theory is taken into account,

leading to an even better description of electronic properties at the expense of higher com-

plexity and computational cost. The double hybrid scheme is given by

ED−HY BRID
xc = EGGA

x + α(EHF
x − EGGA

x ) + bEGGA
c + cEPT2

c (2.31)

where EPT2
c is the second-order correlation energy.

10



2.3. Density Functional Theory

2.3.2 The Bloch-Theorem and plane wave basis

Beside a proper choice for the exchange-correlation potential, one also needs a proper

representation for the Kohn-Sham orbitals φi in a finite basis set for practical reasons. To

this end, one takes advantage of the Bloch-Theorem φ(r) = u(r) exp(ikr) with u(r) as

lattice periodic function with the property : u(r) = u(r + R) and R as the Bravais lattice

vector

R = n1a1 + n2a2 + n3a3 (2.32)

with a as lattice vectors and n as integers.

The Bloch wave function can be expanded in terms of plane waves :

φnk(r) =
1√
NkΩc)

∑
G

unk(G) expi(k+G)r (2.33)

with

unk(G) =
1

Ωc

∫
Ωc

dr exp−iGr unk(r) (2.34)

G is a reciprocal lattice vector while k is a general vector in reciprocal space. From Eq.

(2.33) it is obvious that the quality of the KS wave function (represented by plane waves)

depends solely on the number of G vectors which are controlled by a single parameter, i.e.,

the kinetic energy cutoff Ecut :
(k + G)2

2
< Ecut (2.35)

Thus, systematic improvement of the wave function can be easily achieved by increasing

Ecut. Further, the local one particle density n(r) in DFT is given as :

n(r) =
∑
n

∫
Ωk

dkf(εF − εnk)φ∗nk(r)φnk(r) (2.36)

with εF Fermi energy and Fermi-distribution f , assuring the inclusion of only occupied states

in the sum over the bands. The k integration in Eq. (2.36) is further replaced by a finite

sum over special k points in the irreducible Brillouin zone (IBZ). Such special k points can

be generated using the recipe presented by Monkhorst and Pack [20]. Plugging the Bloch

representation of the KS wavefunctions in Eq. (2.33) into Eq. (2.36), one explicitly obtains

the density of the system n(r) in terms of plane waves :

n(r) =
∑
n

IBZ∑
k

∑
GG′

ωkf(εF − εnk)u∗nk(G)unk(G
′
) expi(G−G

′
)r (2.37)

where ωk determines the weights of the special k points in irreducible BZ. The density in

Eq. (2.37) represents the whole electronic density of the system. However, in order to
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be able to efficiently use the plane wave basis set, one typically adopts a pseudopoten-

tial approximation (PPA). In the PPA, the electronic system is divided into the core and

valence regions with interaction between the separated parts. Because the core electrons

do not take part in chemical bonding, the frozen-core approximation can be used. This

allows to massively reduce both the number of electrons in the system and the G vectors

(needed for convergence of the wave function and density). Throughout this work, ab-initio

norm-conserving pseudopotentials [21] are employed to mimic the core effect on the va-

lence electrons. There are many ways to construct such ab-initio pseudopotentials, see for

instance in Refs. [22,23]. Finally, the ground-state electronic energy is given by :

E0 = −1

2

∑
i

∫
drφ∗i (r)∇2φi(r) +

1

2

∫
drdr

′ n(r)n(r
′
)

|r− r′|
+

+

∫
drVext(r)n(r) + Exc[n]

(2.38)

For the total energy, Etot, one further needs to account for the constant Coulomb repulsion

term in Eq. (2.38) between the ions.

DFT is an extremely successful theory for the description of material properties; however

since it is a pure ground-state theory, it can capture neither the correct band structures

nor the excited states (excitons) of the many-electron systems. Instead, the correct theory

for the band structures (single-particle excitations) and optical properties (2-particle ex-

citations) relies upon the Green’s-function formalism which is introduced in detail in the

next section.

12



2.4. Green’s Function Formalism

2.4 Green’s Function Formalism

In a single-particle reformulation of an interacting many-body system such as DFT, all

particles are moving in a mean-field potential independent of the motion of the others,

characterized by a set of discrete delta functions in the spectral function. Since DFT as a

ground-state theory is unable to describe charged excitations and excitonic effects due to

lack of capture of first and higher order particle effects, an effective many-body perturbation

methodology within the framework of Green’s function formalism was developed. In this

approach, a new highly complex quantity, denoted as self-energy Σ(r, r′, ω) (an object

similar to the exchange-correlation functional of DFT but non-local in space, frequency

dependent and non-hermitian) is introduced which contains in principle exactly the many-

body physics, such as exchange, correlation, and most importantly screening effects in

an exact diagrammatic fashion. This means that the amount of information available in

Σ(r, r′, ω) is immense but fortunately a full evaluation of the self-energy is not mandatory for

charged and excited-state properties for the vast majority of materials. Extracting only the

most relevant information from Σ(r, r′, ω) provides results in quite satisfactory to excellent

agreement with experimental data. To demonstrate this, the theory of Green’s functions is

presented in depth based on second quantization formulation, and equations for evaluation

of the Green’s functions aimed at obtaining quasi-particle (QP) energies are derived which

are interpreted as corrections to the Kohn-Sham DFT energies. The corrected energies are

the basis for calculation of optical absorption spectra of finite and periodic systems.

2.4.1 The GW Theory

The GW methodology is based on the idea of treating electronic correlation not in form

of summation of configuration interactions but describing it in the language of Feynman

diagrams. These diagrams are the building blocks of the self-energy Σ(r, r′, ω) which repre-

sents a non-hermitian, non-local and frequency dependent object acting as a sophisticated

many-body mean-field potential in an N -particle interacting system. The evaluation of this

quantity is important for the theoretical description of band structures and optical proper-

ties of both molecular systems and condensed phase at many-body level. The fact that Σ

contains in principle the full information about an N -particle interacting system hampers

its explicit calculation. Therefore approximations to the self-energy are unavoidable. For-

tunately, even the simplest approximation to Σ, namely, the product of a Green’s function

G and a dynamically screened interaction W, (Σ = GW ) provides remarkably accurate re-

sults for the electronic band gaps, ionization potentials, and electron affinity. Furthermore,

the performance of the GW method is highly superior to DFT and Hybrid-DFT.

The core question related to many-body problems is how to solve an ensemble of N inter-
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2.4. Green’s Function Formalism

acting particles. Since up to now it is impossible to solve the Schrödinger equation (SE) for

an N -interacting particle system (N-IPS), an approximative N -particle solution to the SE

has to be found. The most effective route is to reduce the N-IPS to an effective problem

of a few weakly (or even non-) interacting particles. This leads to the concept of quasi-

particles (QPs) or elementary excitations. Once a quasi-particle Hamiltonian containing

the self-energy as its most important ingredient is set up, one obtains the QP-eigenstates

and eigenenergies through a diagonalization scheme. The obtained quasi-particle states are

then approximative N -particle solutions to the N -interacting particle SE. These mostly

uncorrelated QPs are known as charged excitation, realized through a change of number of

particles to N +1 or N −1. Furthermore, weak interactions of QPs implicate their peculiar

property of exhibiting complex energies, given as poles of the one-particle Green’s function

(GF) in the complex plane. The imaginary part of the GF pole represents the lifetime of

the particles, and the real part gives the energy of the single-particle excitations.

GFs such as retarded, advanced, temperature dependent, N -particle, equilibrium or non-

equilibrium are extensively used in the applications of many-body perturbation theory

(MBPT) [24]. Due to the complex internal mathematical structure (coupled chains of N -

particle GFs) a direct access to the photon-mediated excited states for N -electron system

as in time-dependent density functional theory (TD-DFT) is not possible, and thus, the

quasi-particle states and energies corresponding to N + 1 and N − 1 electron system have

to be first calculated as an intermediate step for subsequent optical response calculations.

To achieve this, one defines one-particle Green’s function as the time-ordered product of the

creation and annihilation field operators Ψ(x, t) and Ψ(x, t)† acting on the fully interacting

N -particle ground-state of an electronic system, representing the quantum amplitude of an

injected particle into the N-IPS at (x′, t′) that propagates to (x, t), if t > t′; corresponding

to a N + 1 system, or propagation of a hole forward in time from (x, t) to (x′, t′) , if t < t′;

corresponding to a N − 1 system.

G(x, t;x′, t′) = −i 〈N |T{Ψ(x, t)Ψ†(x′, t′)}|N〉 (2.39)

This mathematical object embodies basically all many-body interactions, a test particle

through its path into the N -particle system ”acts and feels” [24].

In Eq. 2.39 the one-electron quantum amplitude or the one-electron GF is presented in the

Heisenberg representation through time-dependent field operators ψ(x, t), x symbolising

space (r) and spin (σ) coordinates, and T ensures time ordering of the operators. From

the one-particle GF a series of one-particle system properties such as electronic and spin
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densities or total energy is deducible. For instance, the local charge density n is directly

extractable through performing the integration and taking the infinitesimal imaginary time

limit (τ) of the propagation (2.39), as shown in Eq. (2.40)

n(r, t) = −i lim
{τ→0+}

∫
G(x, t;x, t+ τ)dt (2.40)

or the ground-state total energy of the system is given by the Galitskii-Migdal Equation

(2.41):

E0 =

∫
dx lim
{x→x′}

lim
{τ→0+}

[
∂

∂t
− ih(x)]G(x, t;x′, t+ τ) (2.41)

with

h(x) = −1

2
∇2 + Vext(x) (2.42)

as the one-particle Hamiltonian.

Now in order to obtain a practical expression for the GF an equation of motion for the

Green’s function (eom-GF) is necessary. The eom-GF is strongly coupled to the Heisenberg

equation of motion (2.43) for the field operators.

i
∂Ψ(x, t)

∂t
= [Ψ, H] (2.43)

with H = T + W + V (Hamilton operator) given as the sum of kinetic, external potential

and Coulomb interaction formulated in second quantization :

T = −1

2

∫
drΨ†(r)∇2Ψ(r) (2.44)

W =

∫
drΨ†(r)Vext(r)Ψ(r) (2.45)

V =
1

2

∫
drdr′Ψ†(r)Ψ†(r′)v(r− r′)Ψ(r′)Ψ(r) (2.46)

From Eq. (2.43) the equation of motion for the GF is derived as :

[i
∂

∂t
− h(x)]G(x, t;x′, t′) + i

∫
dx′′v(x′, x′′) 〈N |T{Ψ†(x′′, t)Ψ(x′′, t)Ψ(x, t)Ψ†(x′, t)}|N〉

= δ(x, x′)δ(t, t′)

(2.47)

The second term of Eq. (2.47) (l.h.s) involves a 2-particle GF. Its physical interpretation is

that if an electron is injected into the system, it creates and annihilates bound electron-hole

pairs along its path. From Eq. (2.47) is obvious that the one-particle GF couples to the

2-particle GF. The time evolution or the equation of motion (EOM) of the 2-particle GF
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Figure 2.1: Schematic representation of the potential felt by an extra particle at r0 which
induces an external potential δVext in a polarizable medium, which on its turn, induces
charge variations δρind. The latter works back on the introduced point charge. The straight
arrows labeled E represent the interaction due to classical electric field. The wiggly line
represents the polarizability. Figure adopted from Ref. [25].

again couples to the 3-particle GF which again creates or annihilates further electron-hole

pairs from the electron-hole pairs of the 2-particle GF. Therefore, the EOM of GF generates

an infinite cascade of higher order GFs in the following connected way :

G1 → G2 , G2 → G3 , G3 → G4 , . . .

Since such a set of chained equations for each particle order of GF is practically non-solvable,

the EOMs have to be truncated at an order. The mathematical structure of Eq. (2.47)

shows that an injected extra electron in a N -electron system polarizes its surroundings by

change of the electronic density, as shown in Fig. 2.1.

Now, based on Schwinger’s trick [26] the same polarization (induced by propagation of an

extra electron) can be mimicked using a time-dependent external perturbation potential

Vpert which will be set to 0 at the end of the derivation of an equation for the one-particle

GF which will be decoupled from the (higher order) n-particle GFs. Thus, the chain of

evolution equations for GFs in (2.47) is then properly truncated, and hence the evaluation

of the one-particle GF is massively facilitated, since it no longer depends on the information

from higher order GFs.

From now on for the sake of simplicity, the notation of G(x, t, σ;x′, t′, σ′) is changed to

G(1, 2) with 1 and 2 respresenting the space, time and spin degrees of freedom.
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It can be shown that the variation of G with respect to Vpert is :

δG(1, 2)

δVpert(3)
= G(1, 2)G(3, 3+)−G2(1, 3, 2, 3+) (2.48)

By plugging Eq. (2.48) into (2.47), one finds :

[i
∂

∂t1
− h(1) + i

∫
d3v(1, 3)G(3, 3+)]G(1, 2) = δ(1, 2) + i

∫
d3v(1+, 3)

δG(1, 2)

δVpert(3)
(2.49)

According to Eq. (2.40) : −iG(3, 3+) = n(3), one hence identifies the third term of Eq.

(2.49) from l.h.s as the classical Hartree potential :

−i
∫
d3v(1, 3)G(3, 3+) = VH(1) (2.50)

Thus, upon perturbation Vpert one obtains a classical Hartree term, and a second purely

quantum contribution which is related to the δG(1,2)
δVpert(3)

term of (2.49). This quantum term can

be further reformulated as the product of the self-energy and one-particle Green’s function:

i

∫
d3v(1+, 3)

δG(1, 2)

δVpert(3)
=

∫
d3Σ(1, 3)G(3, 2) (2.51)

In this way a 2-particle GF, as appearing in Eq. (2.47) is decomposed in (2.51) into the

product of 2 one-particle objects, namely Σ and G. The self-energy Σ(1, 3) is an effective

non-local and frequency dependent (dynamical) potential which an injected electron ’feels’.

The unique property of Σ is that it accounts for higher-order particle effects (electron-hole

pairs) as a single-particle object, because the self-energy is a functional of the Green’s func-

tion (Σ[G(1, 2)]).

By introducing the Hartree potential VH and the self-energy Σ, Eq. (2.49) can now be

presented in one-particle form, as follows :

[i
∂

∂t1
− h(1) + VH(1)]G(1, 2) = δ(1, 2) +

∫
d3Σ(1, 3)G(3, 2) (2.52)

By setting Σ = 0, one finds the equation of motion for a Hartree Green’s function :

[i
∂

∂t1
− h(1) + VH(1)]GH(1, 2) = δ(1, 2) (2.53)

with GH being a non-interacting (independent particle) propagation. Now, the combination

of Eqs. (2.53) and (2.52) results in :

Σ(1, 2) = G−1
H (1, 2)−G−1(1, 2) (2.54)
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Therefore, the self-energy is a renormalization term, describing the difference between an

independent particle propagating freely through the system, and a particle interacting with

the other electrons, and polarizing its surroundings.

Equation (2.54) can be rewritten as a non-linear integral Dyson equation, connecting a

non-interacting GH with a fully interacting G :

G(1, 2) = GH(1, 2) +

∫
d34GH(1, 2)Σ(3, 4)G(4, 2) (2.55)

Eq. (2.55) is an equation in a tractable form which is used for evaluation of the Green’s

function. However, for practical purposes an explicit expression for Σ is needed.

This is obtained by solving Eq. (2.51) with respect to Σ :

Σ(1, 2) = i

∫
d34 v(1+, 3)

δG(1, 4)

δVpert(3)
G−1(4, 2) (2.56)

and because :
δG(1, 2)

δVpert(3)
= −

∫
d45G(1, 4)

δG−1(4, 5)

δVpert(3)
G(5, 2) (2.57)

from Eq. (2.56) one gets :

Σ(1, 2) = −i
∫
d34 v(1+, 3)G(1, 4)

δG−1(4, 2)

δVpert(3)
(2.58)

with

Γ(1, 2, 3) = −δG
−1(1, 2)

δVpert(3)
(2.59)

as reducible vertex Γ. Finally, Eq. (2.58) gets the form :

Σ(1, 2) = −i
∫
d34 v(1+, 3)G(1, 4)Γ(4, 2, 3) (2.60)

and is used for the calculation of the self-energy.

Furthermore, by use of Dyson equation (2.54), the chain rule for the self-energy

δΣ(1, 2)

δVpert(3)
=

∫
d45

δΣ(1, 2)

δG(4, 5)

δG(4, 5)

δVpert(3)
(2.61)

(2.57), and the definition (2.59), the final equation for the reducible vertex Γ is obtained :

Γ(1, 2, 3) = δ(1, 3)δ(1, 2) +

∫
d4567 [−iv(1, 4)δ(1, 4)δ(1, 2)δ(4, 5) +

δΣ(1, 2)

δG(4, 5)
]

G(4, 6)Γ(6, 7, 3)G(7, 5)

(2.62)
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The vertex function Γ accounts for all changes that an injected electron induces to all other

particles which in turn ’adjust’ self-consistently the potential that the injected particle

’feels’. In other words, Γ captures polarization and relaxation processes which are created

by an additional particle in an electronic many-body system.

So far, integro-differential equations are derived for the Green’s function represented through

the Dyson equation. Furthermore, the self-energy Σ is given as the product of the bare

Coulomb potential v, the Green’s function G and the vertex function Γ, which itself is ob-

tained from a 4-point Dyson-like equation (2.62). The equations for G, Σ, and Γ are corners

of a Pentagon known as Hedin-Pentagon which is solved in a self-consistent manner.

Now, in order to reduce the mathematical and most importantly computational complexity

of computing G, one introduces various kinds of approximations. The simplest one is to

neglect higher-order corrections to the self-energy. By assuming Γ(1, 2, 3) = δ(1, 3)δ(1, 2),

the following simple approximation is obtained for the self-energy :

Σ(1, 2) = iG(1, 2)v(1+, 2) (2.63)

This assumption corresponds to the Hartree-Fock approximation, and reduces the total self-

energy to the Fock exchange self-energy operator Σx. However, Hartree-Fock self-energy

includes no correlation effects, and is ill-defined regarding an expansion in orders of v as

shown for the homogeneous electron gas [27]. Instead, Lars Hedin’s revolutionary idea [43]

was to screen the non-local bare Coulomb interaction v by the inverse of the microscopic

dielectric function ε. Thus, an order by order expansion of the self-energy is now possible

and carried out in terms of screened potential W :

W (1, 2) =

∫
d3 ε−1(1, 3)v(3, 2) (2.64)

in order to prevent divergencies in the expansion series, as otherwise induced by v.

Furthermore, the screened potential W is related to the polarization P , which is again

connected to the vertex Γ. Therefore, one encounters here a set of inter-connected equations.

By introducing screening (2.64), the screened form of Hedin-Eqs. is obtained :

Σ(1, 2) = i

∫
d34G(1, 4)W (3, 1+)Γirred(4, 2, 3) (2.65)

G(1, 2) = GH(1, 2) +

∫
d34GH(1, 3)Σ(3, 4)G(4, 2) (2.66)

Γirred(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γirred(6, 7, 3) (2.67)
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Figure 2.2: Hedin-pentagon gives a self-consistent solution to the many-electron system
through five inter-connected fundamental ingredients. Thus, N -particle complexity is re-
duced to one-particle simplicity.

Pirred(1, 2) = −i
∫
d34G(2, 3)G(4, 2)Γirred(3, 4, 1) (2.68)

W (1, 2) = v(1, 2) +

∫
d34 v(1, 3)Pirred(3, 4)W (4, 2) (2.69)

These equations describe exactly the physics of many-electron systems upon injection of an

additional electron (charge excitation) self-consistently, as illustrated in Fig. 2.2.

An important point is that in the screened form of Hedin-Eqs. (2.65-2.69), the reducible

Γred is replaced by the irreducible vertex Γirred, since the total classical potential Vtot =

Vpert + VHartree now replaces the perturbation potential Vpert giving :

Γirred(1, 2, 3) = −δG
−1(1, 2)

δVtot
= δ(1, 3)δ(1, 2) +

δΣ(1, 2)

δVtot
(2.70)

Pirred(1, 2) =
δn(1)

δVtot(2)
(2.71)

From (2.70) one sees, that the irreducible vertex Γirred describes the variation of the self-

energy with respect to the change of total classical potential. However, the effect of ir-

reducible Γirred is smaller than that of the reducible one because in Γred the variation of

the self-energy is performed with respect to the Vpert. By contrast, the induced Hartree

potential in the total classical potential Vtot counteracts the time-dependent external per-

turbing potential Vpert and hence the change of the potential in Γirred becomes smaller with
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respect to Vtot. In other words, the neglect of variation of the self-energy potential in (2.70)

with respect to Vtot, is a better approximation than with respect to Vpert, since Vtot < Vpert.

Following this, the irreducible polarizability (2.71) describes the change of the electronic

density with respect to the change of Vtot, and accounts for polarization of a fully interacting

system, as can be seen in (2.68). Now, if the vertex function or equivalently higher-order

effects such as interactions in the electron-hole pairs are simplified by setting :

Γirred(1, 2, 3) = δ(1, 2)δ(1, 3) (2.72)

in both Pirred and Σ, one ends up with the famous GW approximation to the self-energy,

as introduced by Hedin [43] :

Σ(1, 2) = iG(1, 2)W (1+, 2) (2.73)

which contains polarization and dynamical effects explicitly through W in contrast to (2.63)

where the self-energy is static, and hence no relaxation of the system is permitted once an

extra electron is injected to the system. The Eq. (2.73) is the best paradigm for a different

and unique way of capturing electronic correlation (static and dynamic) in many-body

systems through screening of the non-local bare Coulomb interaction v(1, 2) in contrast to

the wave function-based methods where electronic correlation is described through sums

of n-particle excited Slater determinants on top of the HF reference state. Therefore,

one of the advantages of many-body methodology is simplifying the general evaluation of

correlation in terms of dynamically screened interaction W . For a visual understanding of

many-body interactions contained in the self-energy (2.73), the schematic representations of

Hartree, exchange and correlation interactions based on Feynman diagrams are illustrated

in Ref. [24].
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2.4.2 GW self-energy approximations

The many-body perturbation theory as a high-level theory encapsulates in principle all the

physics of a many-particle system. The complex formalism makes an understanding of the

physical principles difficult. Therefore, a reduction of the amount of information contained

in the self-energy by means of approximations is a necessary step in order to be able to

gain an idea of the underlying fundamental interactions. In the following, an overview is

presented of the frequently applied approximations to the self-energy, and ways of how to

improve accuracy or to massively speed up calculations.

Hartree-Fock self-energy

By setting Σ = 0, one receives the known Hartree approximation, while the Hartree-Fock

approximation is reproduced by replacing the dynamically screened interaction W (1, 2) by

the static electron-electron interaction v(1, 2) :

Σx = iv(1, 2)G(1, 2) (2.74)

with Σx as Hartree-Fock self-energy. From (2.73) it can be seen that the GW approxi-

mation is nothing else but a dynamically screened version of the HF theory, allowing a

many-electron system to respond, and thus relax upon an external perturbation potential

(beyond Koopmans theorem). The Hartree-Fock self-energy causes massive overestimation

of the electronic band gap of materials due to too strong exchange effects. Thus, finding

a more reasonable approximation is mandatory to reach a better level of agreement with

experimental data.

COHSEX self-energy

The Coulomb-hole screened exchange (COHSEX) approach is a very delicate approximation

to the self-energy Σ due to reduction of computational complexity to a large degree. It

is static (no frequency sampling) and summation over empty bands is eliminated. The

COHSEX self-energy is composed of quantum and classical terms. The first one is the

screened exchange term :

ΣSEX(1, 2) = −G(1, 2)W (1, 2, ω = 0) = −
∑
i

φi(1)φi(2)W (1, 2, ω = 0) (2.75)

This is identical to (2.74), except v is replaced by W , which decreases HF-exchange effects

by taking into account polarization (exchange damping). The screened exchange term ac-

counts for the Pauli principle, and thus the fermionic nature of electrons. The sum in (2.75)

for the Green’s function represented by KS-wave functions φi runs only over the occupied
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bands, which is the massive benefit of this approximation. However, unoccupied bands are

only eliminated in the Green’s function and have to be taken into account in the calculation

of polarization function explicitly.

The second part of COHSEX is the Coulomb hole term :

ΣCOH(1, 2) =
1

2
δ1,2Wp(1, 2, ω = 0) (2.76)

with Wp = W − V as a local and static polarization. The Coulomb hole term is a classical

term, representing a shift in energy due to instantaneous polarization, once an electron is

added or removed. Approximations (2.75) and (2.76) can be used to either solve Eqs.(2.65-

2.69) for the self-energy fully iteratively or in a non-self consistent manner within the COH-

SEX approximation.

An interesting aspect of COHSEX is that it is capable of describing band structures of

different structural phases of electronically correlated materials properly, for instance, in

the case of VO2, where LDA or GGA’s are not able to capture the true nature of the band

structure of low temperature anti-ferromagnetic monoclinic phase of VO2, which incorrectly

predict a metallic band structure. By contrast, it’s been shown by Gatti [29] that the full

self-consistent COHSEX scheme captures the correct band structure of both high and low

temperature phases of VO2 through successive update of the KS-wave functions. Therefore,

COHSEX is capable of restoring the true character of the band structure and is further

a good starting point for more accurate calculations targeting dynamical correlations in

solids.

single-shot GW

Based on the fundamental set of equations (2.65- 2.69) in the GW approximation, one solves

the Hedin-Pentagon for a dynamical self-energy in a one-shot manner. Strinati, Mattausch

and Hanke [30], Hybertsen and Louie [31,32] and Godby, Schlutier and Sham [33,34], used

the best possible initial guess for G and W from mean field theories, such as LDA, or semi-

local functionals, and performed only one cycle of the self-consistent Hedin-Equations. This

approach is known as one-shot GW or G0W0, which is frequently used for the calculation of

band structure of various materials with remarkable success. After performing a single-shot

of Hedin-Pentagon, the QP energies for band structures of semi-conductors and insulators

are calculated within the GW-approximation as first-order corrections to the Kohn-Sham

energies. Through linearization of the self-energy around the KS-energies, one obtains a
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perturbative expression for QP energies :

εQPn = εKSn + Z 〈ψn|(Σ(εKS)− V KS
xc )|ψn〉 (2.77)

with Z as the renormalization factor ranging from 0 to 1, describing the correlation grade in

materials. Values close to 1 indicate an electronically less correlated system, meaning that

a simple QP description of the many-electron system is justified to properly account for

charged excitations. Furthermore, as obvious from (2.77) the quality of the results heavily

depends on the starting point. Usually, as mentioned above, G0W0 is started from the local

or semi-local DFT reference orbitals (LDA,GGA), leading to a considerable improvement of

band gaps compared to DFT-hybrid functionals, for instance. Hence, the G0W0 approach

is way superior to all DFT-hybrid functionals in terms of accuracy. However, it is computa-

tionally costly due to explicit frequency sampling of the dielectric matrix ε(ω), inversion of

a potentially large ε(ω) matrix, and summation over empty bands at each frequency point.

Nevertheless, the computational load is affordable on today’s computers.

The dependency of G0W0 results on the choice of starting wave functions is an issue;

however it is considerably reduced by iterating the Hedin-Pentagon multiple times, instead

of running only one iteration. This is discussed in the following.

multi-shot GW’s

To further increase the accuracy, a partial self-consistent scheme is employed, as systemat-

ically applied for the first time by Kresse et al. [35] on a number of semi-conductors and

insulators with promising results. Partial self-consistency of Hedin-Eqs. means performing

a full self-consistent cycle in G but keeping the dynamical screened interaction W at the

mean-field level. This scheme is known as GW0, and proved to be a promising approach

for accurate prediction of the band gaps of a wide range of solids [35], probably due to

fortuitous systematic error cancellations [37].

Further iteration both in G and W leads to the fully self-consistent scheme which is from

computational point of view the most time consuming GW variant. Within the fully self-

consistent GW scheme band widths and gaps are typically overestimated in comparison to

experimental references. The overestimation is due to underscreening of W (ω) caused by

spectral weight transfer from the QP peak to the satellite part of the spectral function, as

illustrated in Fig. 2.3. This is a direct consequence of inclusion of Z factor in the Green’s

function (G = Zi/(ω− εi− Γ)), constructing the polarization function (P = −iGG) which

is then wrongly attenuated by a factor of Z2 upon each iteration. The weight transfer is

enhanced upon self-consistency resulting in too strong W (ω), and finally overestimation of
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Figure 2.3: Typical features of a diagonal spectral function Aii in the GW theory are
shown, namely, a QP peak and a satellite at lower energies. The spectral weight Z under
the QP peak determines the validity of the QP approximation. For Z far from 1 the QP
approximation should be abandoned. In the case of non-interacting electrons the spectral
function has no broadening and is characterized by a delta peak. Figure adopted from
Ref. [25].

band widths and gaps. The extreme case is HF where there is no screening in W (ω) causing

massive overestimation of the gaps. One way to solve the underscreening of W (ω) is to

include vertex corrections Γ in Σ = GW Γ and in the screening P . However, until now there

is no convenient way of how to treat vertex corrections in both Σ and P simultaneously and

properly. However, an approximation using test charges was introduced by Kresse [36].

Plasmon Pole Approximation

The dynamic character of W imposes a cumbersome computational burden. In order to

reduce the computational load related to frequency dependency of the dielectric function

ε(ω), one proceeds with the single pole approximation, provided the dielectric function is not

too structured. This allows to practically skip the computationally most demanding part of

the GW calculations, as otherwise for each frequency point of the dielectric function ε(ω),

an inversion of a quite large matrix and a summation over a large number of empty bands

have to be performed. However, in the Plasmon Pole approximation (PPA), inversion and

summation are carried out only at two frequencies, namely, at zero and plasma frequency

according to the following fit scheme :

ε−1

GG′
(q, ω) = δGG′ +

Ω2
GG′

ω2(q)− (ω̃GG′ − iη)2
(2.78)
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where Ω(q) and ω̃(GG
′
) are the two fit parameters.

The small parameter η in the denominator ensures the correct time-ordering.

The justification for PPA is that the general behavior of the dielectric function ε−1(ω) can

exhibit a single pole character which can simply be approximated by a model dielectric

function at zero and an imaginary frequency according to the Godby-Needs [37] or Hy-

bertsen and Louie [32] PP schemes. Furthermore, Eq. (2.78) allows to calculate ε−1(ω)

everywhere in the complex plane analytically.

The critical point of PPA is that if results depend on the imaginary frequency, PPA is

no longer adequate, and an explicit frequency sampling of the dielectric function is indeed

unavoidable. This is the consequence of many poles or poles lower than the electronic band

gap appearing in ε−1(ω), leading to a breakdown of the PP approximation.
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2.4.3 The Bethe-Salpeter Equation (BSE)

The so far derived single-particle picture in GW is adequate for description of photo-

emission spectra; however in case of optical excitation, one has to go beyond this one-particle

scheme. The adequate picture for the optical (neutral) excitations involves propagation of

a correlated quasi-electron and quasi-hole (electron-hole pair or exciton).

In the MBPT framework, this correlated motion of quasi-particles is described by the 2-

particle Green’s function L which is generally defined as the functional derivative with

respect to a non-local perturbation :

L(1, 2, 3, 4) = −i δG(1, 2)

δVpert(3, 4)
(2.79)

Equation (2.79) can be rewritten as :

L(1, 2, 3, 4) = −i
∫
d56G(1, 5)

G−1(5, 6)

δVpert(3, 4)
G(6, 2) (2.80)

Using the Dyson equation

G−1(5, 6) = G−1
H (5, 6)− Vpert(5, 6)− Σ(5, 6) (2.81)

for G(5, 6), the equation of motion for the fully interacting propagator L is obtained :

L(1, 2, 3, 4) = i

∫
d56G(1, 5)

[
− δ(3, 5)δ(4, 6)+

−δ[VH(5)δ(5, 6) + Σ(5, 6)]

δVpert(3, 4)

]
G(6, 2)

(2.82)

Then, using the functional chain rule δΣ/δVpert = (δΣ/δG)(δG/δVpert), one obtains :

L(1, 2, 3, 4) = −iG(1, 3)G(4, 2) +−i
∫
d5678G(1, 5)G(6, 2)

δ[VH(5)δ(5, 6) + Σ(5, 6)]

δG(7, 8)
L(7, 8, 3, 4)

(2.83)

with L0(1, 2, 3, 4) = −iG(1, 3)G(4, 2) describing the free propagation of an electron and a

hole that do not interact. Consequently, one arrives at the final expression for the Bethe-

Salpeter equation :
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L(1, 2, 3, 4) = L0(1, 2, 3, 4) +

∫
d5678L0(1, 2, 5, 6)[

v(5, 7)δ(5, 6)δ(7, 8) + Ξ(5, 6, 7, 8)

]
L(7, 8, 3, 4)

(2.84)

where Ξ is the four-point non-local many-body kernel given as :

Ξ(5, 6, 7, 8) = i
δΣ(5, 6)

δG(7, 8)
(2.85)

The kernel explicitly captures the exchange and correlation effects of the 2-interacting

quasi-particles propagating in time and space, or in other words, the kernel links the non-

interacting with the fully interacting propagation. Furthermore, a connection between L

and the reducible vertex Γred(1, 2, 3) = − δG−1(1,2)
δVpert(3)

can be established for a local perturbation

potential Vpert(3) in the definition (2.79) of L :

L(1, 2, 3, 3+) = −i δG(1, 2)

δVpert(3)
= i

∫
d45G(1, 4)

δG−1

δVpert(3)
G(5, 2) =

= −i
∫
d45G(1, 4)Γred(4, 5, 3)G(5, 2)

(2.86)

This means that L is indeed a vertex correction, if one would have run a second iteration

in Hedin-Pentagon, and avoid setting Γ to unity. Finally, the two-point response function

χ as measured in spectroscopy experiments reads as :

χ(1, 2) =
δn(1)

δVpert(2)
(2.87)

Reformulation of BSE

The Bethe-Salpeter equation (2.84) in the above form is very cumbersome to solve due to

the high complexity of the non-local four-point kernel. Therefore, several approximations

facilitating the practical work are introduced. The standard approximation to the kernel is

the GW self-energy. Consequently, the kernel Ξ becomes :

Ξ(5, 6, 7, 8) = i
δΣ(5, 6)

δG(7, 8)
= −δ[G(5, 6)W (5, 6)]

δG(7, 8)
(2.88)

Taking the functional derivative with respect to G, one gets two terms : W and GδW/δG;

the former describes the dynamically screened interaction and the latter captures the change

of the dynamically screened interaction with respect to G. GδW/δG is a second-order

term, and can be safely neglected. With this approximation, the Bethe-Salpeter equation
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simplifies to :

L(1, 2, 3, 4) = L0(1, 2, 3, 4) + +

∫
d5678L0(1, 2, 5, 6)[

v(5, 7)δ(5, 6)δ(7, 8)−W (5, 6)δ(5, 7)δ(6, 8)

]
L(7, 8, 3, 4)

(2.89)

Thus, as a result, one obtains a non-linear equation of motion which connects the free L0

with the fully interacting 2-particle L through the non-local kernel which consists of two

terms: The first one is the unscreened exchange term v which is repulsive in nature. The

second one accounts for the screened Coulomb electron-hole interaction W and is attractive

in nature. To further reduce the complexity and computational cost of Eq. (2.89), a static

screened interaction is assumed : 1
2π
W (r1, r2, ω = 0)δ(t1 − t2).

This approximation is justified by the fact that in semi-conductors the dynamic effects in

W and G tend to cancel [39,40], and hence they are often neglected in both W and G.

Equation (2.89) is then projected onto the transition space which is spanned by either

quasi-particle or Kohn-Sham wave functions φv and φc. The transfer of L into transition

space follows from the fact that for each excitation only a limited number of electron-hole

pairs contributes, and hence the sum in the transformation (2.90) is finite.

χ(1, 2, 3, 4, ω) =
∑
n1..n4

φ∗n1
(1)φn2(2)φ∗n3

(3)φn4(4)χ(n1,n2),(n3,n4) (2.90)

In this way and after some algebra, an effective 2-particle Hamiltonian H is obtained from

which information about the excitonic eigenenergies and eigenstates can be gained.∑
n3n4

H2p
(n1n2),(n3n4)A

n3n4
λ = EλA

n1n2
λ (2.91)

In other words, in transition space the Bethe-Salpeter equation is converted to a Schrödinger-

like equation with H given as :

H2p
(n1n2),(n3n4) = (εn2 − εn1)δn1n3δn2n4 + (fn2 − fn1)(v(n1n2),(n3n4) −W(n1n2),(n3n4)) (2.92)

The exchange v and correlation W in the product basis φv φc read as :

v(vc),(v′c′ ) = 2

∫
dr1dr2φ

∗
v(r1)φc(r1)v(|r1 − r2|)φv′ (r2)φ∗

c′
(r2) (2.93)

W(vc),(v′c′ ) =

∫
dr1dr2φ

∗
v(r1)φv′ (r1)W (r1, r2, ω = 0)φc(r2)φ∗

c′
(r2) (2.94)

The factor 2 in exchange (2.93) comes from spin degeneracy. The v corresponds to dipole

interaction between valence-conduction charge fluctuations, whereas W accounts for direct
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(screened) interaction between valence and conduction charge densities.

Now, in order to gain access to eigenenergies and eigenstates of the effective 2-particle

Hamiltonian, Eq. (2.91) has to be diagonalized. However, since the diagonalization can

become time consuming, depending on the dimension of the matrix, there are much more

efficient methods, such as the Haydock recursive algorithm [41–43] or k-point interpolation

procedures [44] allowing for a fast calculation of the absorption spectra.

Once the excitonic Hamiltonian is diagonalized, the optical absorption intensities can be

calculated from :

ε2(ω) = lim
q→0

8π

q2

∑
λ

∣∣∣∣∑
vc

Avcλ 〈v| exp−iqr |c〉
∣∣∣∣2δ(ω − Eλ) (2.95)

For simplicity, only the resonant contributions (v → c) in (2.95) are taken into account.

A comparison of Eq. (2.95) with Fermi’s Golden rule formula

ε2(ω) =
8π2

Ωω2

∑
ij

∣∣∣∣ 〈Ψj|ê.v|Ψi〉
∣∣∣∣2δ(Ej − Ei − ω) (2.96)

reveals important implications of the BS equation :

1) Inclusion of excitonic effects in (2.95) results in Eλ which is in general different than the

independent-particle difference energies Ec − Ev in (2.96).

2) The eigenstates of the effective Hamiltonian Avcλ , the so-called coupling coefficients, mix

the independent-particle transitions |v〉 → |c〉.
3) The Bethe-Salpeter equation reduces to the usual independent-particle picture (RPA),

if the electron-hole interaction is neglected.
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Chapter 3

Linear absorption spectra of condensed

phases, GW self-consistency and

electron-phonon coupling

In this chapter, applications of the many-body perturbation methods described in chapter

2 on disordered systems, liquid water and ammonia are presented. Important implications

from many-body effects on the absorption spectra are revealed, explaining non-trivial fea-

tures such as massive spectral weight redistributions and blue-shift of the peaks from gas

to liquid phase. The impact and importance of electron-hole correlations on the spectra

of open-shell spinel zinc ferrite solid are shown. Further, the effects of electron-phonon

coupling and GW self-consistency on the band gap of liquid water is studied.

3.1 Red and blue-shift of liquid H2O excited states

Abstract

The optical absorption spectrum of liquid H2O is calculated in the energy range of 5–20 eV

to probe the nature of water’s excited states by means of many-body perturbation theory.

The main features of recent inelastic X-ray measurements [1] are well reproduced, such as a

bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum

at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic

effects impacting the structures of the spectrum in the low- and high-energy regimes and

also by single-particle effects at high energies. The exciton density of the low-energy states,

in particular of S1, is highly anisotropic and localized mostly on one water molecule. The

S1 state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied

crystal orbital) transition and of intra-molecular type, showing a localized valence character.

In the higher excited states, a significant change in the character of the electronically
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excited states occurs, shown by emergence of multiple peaks at 7.9 eV in the quasi-particle

(QP) transition profile and in the delocalized exciton density, spread over several water

molecules. The exciton delocalization of excited states at 7.9 eV causes a blue-shift of

the first absorption band with respect to the S1 state of the water monomer. However,

due to reduction of the electronic band gap from gas to liquid phase as a consequence of

enhanced screening upon condensation, the localized S1 state of liquid water is red-shifted

with respect to the S1 state of the water monomer. For higher excitations near the vertical

ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction

band electron picture. Furthermore, the occurring red and blue shifts of the excited states

are independent of the coupling of resonant and anti-resonant contributions to the spectrum.

Introduction

The optical spectra of ice and liquid water have been studied extensively, both experimen-

tally [1, 1, 2, 4–7] and theoretically [9–11,13,21,23]. The absorption spectrum of hexagonal

ice (ice Ih) at 80 K shows seven peaks between 8 and 25 eV [6], at 8.65 eV, 10.4 eV, 12.4

eV, 14.5 eV, 17.9 eV, 19.8 eV, and 24.7 eV. An experimentally determined absorption spec-

trum of liquid water was later obtained based on inelastic X-ray scattering measurement [1]

which avoids a number of shortcomings of the usual UV spectroscopy such as surface reflec-

tions and use of vacuum. The general features of the optical absorption spectrum of both

ice Ih and liquid water are rather similar with the main differences being the peak positions.

In both condensed phases, solid and liquid, a significant blue-shift of the S1 state of molec-

ular water (7.46 eV [14]) toward higher energies is observed. The blue-shift concerns the

shift of the maximum of the first absorption band of liquid water with respect to molecular

water’s S1, while the absorption onset of liquid water, i.e. the first excited state with non-

zero oscillator strength (the so-called Urbach tail [15]) lies at an energy below the molecular

water’s S1 state and thus it is red-shifted.

The occurring blue-shift from gas to liquid-phase has been explained by several approaches,

such as electrostatic, the hydrogen bond network, Ry and molecular excitonic effects [2].

Hermann et al. [10] explained the blue-shift by purely electrostatic effects by embedding

a water monomer in a finite point charge array, with excitation energies of 8.2, 10.5 and

13.9 eV for liquid water, in good agreement with experiment, but with an unsatisfactory

distribution of spectral weights due to neglect of many-body effects and limitations of the

applied theoretical approach.

In a further study, Tavernelli used real time-dependent density-functional theory (RTD-

DFT) to calculate the optical absorption of liquid water [11]. He was indeed able to
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qualitatively reproduce the measured optical absorption spectrum and energy-dependent

dielectric function. However, the RTD-DFT spectrum has some deficiencies, such as an

underestimation of the first absorption band by more than 1 eV, appearance of multiple

peaks near 10 eV and a sharp dip at 18 eV. The shortcomings can be traced back to the use

of the semi-local BLYP GGA functional. The deficiencies of TD-DFT based on adiabatic

local density approximation (ALDA) for the calculation of optical spectra of liquid water

were discussed by Garbuio et al. [12]. They compared DFT gaps with those obtained

with the Green’s function approach (GW) where electron-electron interaction is explicitly

taken into account and found a remarkable improvement of GW gaps over DFT ones. The

GW/BSE ansatz considerably changed the energy positions and the shape of the TDDFT-

ALDA spectrum.

However, still the energy of the first main peak is underestimated by more than 1 eV in Ref.

[12], and the mid- to high-energy part of the calculated spectrum lacks accuracy. Therefore,

the aim of the present study is to accurately calculate the optical absorption spectrum of

liquid water over a wide energy range, and extract the significance of the related effects,

underlying specific features of the spectrum. Furthermore, the nature of the electronically

excited states is analysed in terms of energy dependent quasi-particle (QP) transition profile

and exciton localization. By accurate calculation of excited-state energies, QP transition

spectrum as well as the degree of exciton localization, the mechanism behind the red- and

blue-shift of water’s excited states upon condensation is revealed.

After analysis of the water spectrum, the validity of the approximations used so far in the

literature for calculation of electronic and optical properties of liquid water is assessed to

explain discrepancies and to show that the shifts of the excited states are independent of the

coupling effects in the BSE. The GW/BSE as a state-of-the-art methodology is employed

without further approximations.

Technical details

In order to obtain a reasonable description of the structure of liquid water within periodic

boundary conditions, a large supercell has to be considered to obtain statistically represen-

tative results and thus reducing numerical noise [16]. While large simulation boxes with

thousands of atoms are accessible for modern ab initio MD techniques, many-body pertur-

bation theory (MBPT) calculations are out of reach for large water boxes (128 or 256 water

molecules) due to unfavorable scaling with system size. The present simulations of liquid

water were therefore restricted to supercells containing 8, 27 and 64 water molecules in cubic

boxes of side length 6.2091, 9.3137, and 12.4183 Å, respectively, corresponding to densities

of ρ ≈ 1.0 g/cm3. The smaller 8-water molecule box was sampled by a relatively dense
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k-point grid of 36 points in the irreducible Brillouin zone (IBZ), while 8 special k-points

were used for the 27- and 64-water molecule boxes. Results obtained from the different

water box sizes (8, 27, 64) are employed to investigate the importance of long-range order

and artificial periodic boundary conditions on the spectra.

Careful equilibration of the liquid water structure is of utmost importance for the reliability

of the calculated spectra, since the structure strongly impacts the peak positions and spec-

tral structures. To this aim, periodic ab-initio BOMD simulations were performed in NVT

ensemble at 300 K using the Quickstep module of CP2k [14] adopting the Nosé-Hoover

thermostat, with the PBE density functional [16] which was shown to give a good account

of hydrogen bonding [9]. Goedecker-Teter-Hutter (GTH) pseudopotentials were used for

the core-electron description and the Grimme D3 correction [15] was used to account for

dispersion interactions. Wave functions were expanded in an optimized Gaussian polar-

ized double-zeta split-valence (OPT-DZVP) basis set, whereas the electronic density was

represented using an auxiliary plane-wave basis, and a density cutoff of 400 Ry. 30 water

configurations were randomly selected from 15 ps production run for the water ensemble.

For each configuration a DFT-PBE calculation using QUANTUM ESPRESSO [11] with a

cutoff of 100 Ry was performed. On top of the PBE wavefunctions, a full-frequency depen-

dent G0W0 calculation was carried out. Excitation energies and spectra were computed in

the regime of vanishing momentum transfer q → 0 using YAMBO [12].

Accurate calculation of the electronic structure and hence the electronic band gap of liq-

uid water within the framework of the GW formalism is of utmost importance serving as

the basis of subsequent spectroscopic calculations. The experimental reference is 8.7±0.5

eV [23]. Our calculated electronic band gap averaged over 30 configurations of liquid water

at G0W0 level is 8.58 eV for the 8-water molecule box and 8.71 eV for the 27-water molecule

box, both at the Γ-point. The obtained values are rather similar and within the experimen-

tal range which indicates that disorder effects are short-range in nature. Furthermore, the

electronic band gap determines to a large extent (besides excitonic effects) the location of

the energies of the electronically excited states, as the difference of single-particle energies

directly enter the BS matrix. Therefore, a good agreement of the calculated electronic band

gap with experiment is a necessary prerequisite for accurate spectra calculations.

In the GW calculations for the 8- and 27-water box, 200 (32 occupied) and 600 (112

occupied) bands were considered, respectively and sampled to integrate the frequency-

dependent dielectric function ε(G,G
′
, ω) at 30 frequencies to capture dynamical effects.

Furthermore, 50 and 5 Ry for the exchange and correlation part of the self energy were

used, respectively. Regarding BSE calculations, 91 transition bands (68 unoccupied) were
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Figure 3.1: Liquid water structures for the 8-,27-, and 64-box used in this study.

considered in the case of the 8-water box, and 228 bands (144 unoccupied) were taken into

account for the 27-water box. A sufficiently large number of transition bands is crucial

to resolve the relative intensities, in particular for higher-lying excited states up to 20 eV.

Furthermore, all optical calculations were performed in the adiabatic limit (static kernel)

and within the Tamm-Dancoff approximation (TDA). Liquid water structures are shown

in Fig. 3.1. Convergence tests are provided in Appendix A.

Results and discussion

In Figs. 3.2 and 3.3 the optical absorption spectra of water for 8- and 27-molecule boxes

obtained at G0W0-BSE level are shown. The calculated spectra are compared with in-

elastic X-ray scattering (IXS) measurements [1] which are considered as the most accurate

reference available. The G0W0-BSE-spectra of all 30 selected configurations show simi-

lar features (Fig. 3.2). The averaged spectrum (black line) for the 27-molecule box has the

lowest excited state (S1) at 5.7 eV, a bound excitonic state at 7.9 eV (exp. 8.1 eV [1]),

a shoulder at 9.4 eV (exp. 9.6 eV [24]), a global absorption maximum at 13.9 eV (exp.

14.1 eV [1]) and a second broad shoulder at around 18.4 eV (exp. 18.5 eV [1]). Beyond

18.4 eV the intensity monotonically decreases to zero. As can be seen in Fig. 3.3 the spec-

trum of the 8-water molecule box is not size-converged. However, the essential features are

similar to those of the 27-box. The first absorption band is shifted upwards by about 0.1

eV, the global maximum is stretched by 0.5 eV, and for higher-lying excitations a shift of

up to 1.2 eV in the larger cell is observed. The agreement with the measured spectrum

is considerably improved with the larger supercell containing 27 molecules. The observed

blue-shift of the main features of the calculated absorption spectrum of the 27-water box

with respect to the 8-water box is mainly due to reduction of finite size errors introduced

by the periodic boundary conditions. An important question is whether the present results

are converged regarding the cell size, as GW/BSE calculations for a 64-water box in the 20
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Figure 3.2: G0W0-BSE absorption spectra for 30 configurations of the 27-molecule box; A
Gaussian broadening of the calculated peaks with a half-width of 0.3 eV has been applied.
The calculated spectra are compared to IXS measurements [1].
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Figure 3.3: G0W0-BSE absorption spectra averaged over 30 configurations for 8- and 27-
molecule boxes. The calculated spectra are compared to IXS measurements [1].
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Figure 3.4: Comparison of the first absorption band calculated for the 27- and 64-cells for
one configuration.

eV energy range are presently not possible due to drastically increased computational cost

as the GW/BSE parameters have to be scaled up considerably for all water trajectories, i.e.

a large number of pseudo potential (PP) projectors (depending on the number of atoms)

for non-local PP contributions in the computation of dipole matrices should be calculated

explicitly, and a 2x2x2 Brillouin zone k-grid sampling is still mandatory for convergence of

quasi-particle energies and optical spectra in the 64-cell water. For even more robust re-

sults, larger boxes such as 125 or 216-water ensembles would be required but are impossible

to treat with the present computer resources.

The position of the first excitonic absorption band located at 7.9 eV is strongly dependent

on the GW band gap [4, 5, 25, 26] and electron-hole correlation effects (BSE). GW/BSE

contributions are not affected by long-range but mostly by local screening effects, showing

the importance of nearest and next nearest water molecules on the electronic and optical

structure. This supports the assumption that a larger box, containing for instance 216

molecules, has a minor effect on the band gap and excitonic contributions. Consequently,

the position of the first absorption band is hardly altered. To prove this, the quasi-particle

band gap of the 64-water ensemble was calculated for a few samples. The obtained band

gap of 8.75 eV is very similar to that of the 27-water box of 8.71 eV. If one considers the

result obtained for the 64-water box as more precise, it is possible to infer that the posi-

tion of the first absorption band with respect to the box size is converged. As shown in

Fig. 3.4 the location and the magnitude of the first main peak in the 27 and 64-water cells

coincide. However, the absorption band of the 64-water cell is broadened. This broadening

stems from periodic boundary conditions (PBC) artifacts in the 27-water box. It should

be noted that boxes 8 and 27 used in this work are employed for demonstration of changes
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trum are presented. The GW effects from the independent-particle spectrum (blue line),
and electron-hole contributions from the difference of TDA-BSE and IP-GW (black line)
are illustrated.

over the entire range of energy up to 20 eV with respect to an enhanced environment, and

to exhibit a decent cell-size convergence regarding low-, mid- and at least partially in the

high-energy area of the spectrum. The positions of excited states are changed by about

0.5 eV in the mid-, and by 1.2 eV in the high-energy range, once a larger 27-water box is

taken, due to decrease of PBC artifacts. The low-energy part of the spectrum in the 27- and

64-water boxes is nearly insensitive to the box size beside of a small broadening, providing

a strong evidence for the local nature of the electronic band gap and electron-hole contri-

butions. In Fig. 3.5 excitonic and independent particle GW contributions to the spectrum

are illustrated. The independent-particle GW spectrum (IP-GW) mainly represents a rigid

blue-shift of the IP-DFT spectrum consistent with the increased electronic band gap. By

contrast, the excitonic effects introduced by the attractive part of the BSE kernel leads to

a red-shift. They have a large contribution to the first absorption band as well as to the

high-energy regime of the spectrum. Exchange contributions of the BSE kernel have no

major impact on the shape of the IP-G0W0 spectrum, beside of a very small blue-shift of

about 0.04 eV, and a decrease of spectral weights. Exchange contributions are quite small

over the full energy-range. They are responsible for some of the features in the high-energy

regime, such as the second shoulder, mixed by G0W0 and BSE correlation effects. The

Fig. 3.5 illustrates the importance of exciton correlation (attractive part of BS kernel) in

formation of the first absorption band.
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Table 3.1: S1 excitation, first absorption band (AB) and exciton binding energies (BE) (in
eV) of water are provided in gas and liquid phase based on IP-G0W0, IP-GnW0 with 5
self-consistent iterations and BSE. The exciton BE is calculated as GnW0@BSE subtracted
from IP-GnW0. Previous works are also given for comparison. The experimental water
monomer S1 energy refers to the adiabatic excitation energy.

S1 (gas phase) S1 (liq. phase) First AB (liq. phase)

IP-G0W0 12.5 8.7 8.7
G0W0@BSE 7.2 5.7 7.9
Exciton BE 5.3 3.0 0.8

G0W0@BSE — — 7.0 (Garbuio [12])
EOM-CCSD 7.71 (Chipman [21]) — —
Exp. 7.4 [14] 5.7 [1] 8.1 [1]

Concerning the high energy regime, GW effects start dominating, however, BSE correlation

is still of importance as it contributes significantly to the rise of the global maximum at 13.9

eV. The first absorption band is built up entirely upon electron-hole correlation effects (at-

tractive part the of BSE kernel). The first shoulder mainly stems from the BSE correlation

accompanied by the GW and small BSE exchange effects. The global maximum is equally

due to GW and BSE correlation contributions. The second shoulder is mostly based on

GW effects with contributions from negative correlation and exchange contributions of the

BSE kernel.

Having verified the significance of various contributions to the liquid water spectrum, now

condensation effects on water optical properties are discussed. As outlined in the introduc-

tion of this work, the blue-shift of the first absorption band of the water spectrum from gas

(7.46 eV) to liquid phase (8.1 eV) of about 0.6 eV has been explained in the previous works

based on different approaches. The IP-G0W0 spectrum which accounts for electrostatics,

exchange and correlation effects (environmental effects) in a non-self-consistent manner,

induces a blue-shift on the entire spectrum in comparison to the IP-DFT spectrum. This

repulsion or Ry effect (destabilization of the excited state through overlap of diffuse s-wave

functions of the surrounding solvent molecules with the excited state) is partially compen-

sated by excitonic effects (pair effects) from BSE, resulting in a red-shift. The excitonic

effects are much larger in the gas phase than in liquid phase due to smaller screening, as

shown in Fig. 3.6 for the IP-G0W0 spectrum of the water monomer. Therefore, the amount

of screening contained in G0W0 and BSE gives rise to the observed total shift on the ab-
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sorption band from gaseous to liquid phase, as it decreases the electronic band gap of the

water monomer from 12.5 eV to 8.7 eV in liquid water in the G0W0 method. The enhanced

screening in the condensed phase delocalizes the exciton associated with the first absorption

allowing for an effective interaction of the electron-hole pair with the surrounding water sol-

vent shells. Thus, a mixture of reduction of the G0W0 band gap due to enhanced screening

and excitonic effects in condensed phase results in the total red-shift of the S1 excitation

energy of liquid water from 8.7 eV to 5.7 eV (Urbach tail) in the BSE spectrum relative to

the IP-G0W0 spectrum This effect (the exciton binding energy (BE)) is much larger in the

isolated water molecule. The S1 energy decreases from 12.5 (IP-G0W0) to 7.2 eV (BSE).

The electronic band gaps, excited state energies as well as exciton binding energies are

compiled in Table 3.1 for molecular and liquid water.

The excitonic red-shift is about 3 eV in case of liquid water and 5.3 eV for the isolated water

molecule. Despite these large excitonic contributions for isolated water, its S1 energy is not

lower than the onset of liquid water’s optical gap. This is due to the larger G0W0 band

gap of the water monomer of 12.5 eV. This suggests that the red-shift of the S1 energy and

blue-shift of the first absorption band of liquid water relative to the S1 energy of the water

monomer depends on a counterbalance of the G0W0 and excitonic effects, in other words

the decrease of the electronic band gap (-3.8 eV) is much larger than the decrease of the

exciton binding energy from gas to liquid phase (-2.3 eV). Therefore, the first absorption

band of liquid water is blue-shifted due to decreased exciton binding energy allowing for

an enhanced and efficient interaction of the bound electron-hole pair with the surrounding

water molecules through the self-energy. On the contrary, the S1 state of liquid water (Ur-

bach tail) is red-shifted with respect to the S1 state of the water monomer, despite having

a lower exciton binding energy than S1 of the water monomer. This is due to the reduction

of electronic band gap of liquid water as a result of enhanced inter-molecular interactions

(screening) upon condensation.

To give an illustration of the blue-shift of liquid water, energetic composition (transition

profile) of liquid water excited states is investigated. The electronic transition profiles of

selected excited states for one water configuration are presented in Fig. 3.7. The contribu-

tions shown in Fig. 3.7 represent the energy-dependent amplitudes of quasi-particles (QP)

transitions to the associated excited state, providing information about the character of

the excited states. The weights of inter-band QP transitions show that mainly one QP

transition (HOCO-LUCO) contributes to the excitonic state S1 at 7.3 eV, 5-6 QP tran-

sitions from a wide energy range between 9 and 12 eV participate in S12 at 7.9 eV (the

first maximum), and several QP transitions in form of one broad single Lorentzian peak in

the range of 11–13 eV contribute to S752 at 10.6 eV (the third maximum). The transition
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Figure 3.6: The net blue-shift of the first absorption band of water from gas to liquid
phase of about 0.7 eV due to the counterbalance of single-particle (repulsive) and excitonic
effects (attractive) is illustrated. The spectra of water in gaseous and liquid phase without
excitonic effects are shifted by up to 7 eV and 3 eV to higher energies, respectively.

profile indicates that the blue-shift of the first absorption band is strongly connected to the

change of the character of the excited states following emergence of multiple QP peaks at

7.9 eV.

The change of the character of the excited states is further visualized by the exciton density

distribution. Visualization of the exciton density distribution is of particular interest, as it

describes the degree of localization of the excited states in dependence of photon energy.

As shown in Fig. 3.8 a highly anisotropic and – in particular for the S1 state at 7.3 eV

– localized exciton distribution on a single water molecule, upon excitation is observed.

Localization of the exciton density of the S1 state, essentially within one water molecule,

shows that the excitation is mainly of intra-molecular type, with localized valence charac-

ter containing some small additional Ry contributions. The S12 state at 7.9 eV is more

delocalized with an exciton binding energy of 0.8 eV. The higher-lying excited states are

even more delocalized, in line with the picture of quasi-free conduction band electrons. The

exciton density distribution from S1 to S752 delocalizes upon increase of excitation energy.

Thus, the blue shift of the first absorption band indeed reflects a change of nature of the

excited state in terms of delocalizing exciton distribution, with a character changing from

valence to Ry to a fully free electronic state.

It should be noted that the S1 state of liquid water for the selected water configuration
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Figure 3.7: The amplitudes of quasi-particle energies to the excitonic states S1, S12 and S752

for a selected configuration of the 27-water box are shown. The change of the character of
the excited states is apparent as the number of peaks changes upon increase of excitation
energy. For S1, mainly a sharp narrow peak followed by smaller peaks from higher energy
regimes is emerged. In case of S12, a collection of peaks distributed over a relatively wide
energy range (9-12 eV) is observed. This is a significant change in the transition profile
and hence the character of S12 in comparison to S1. At energies near the vertical ioniza-
tion energy of liquid water, a single broad peak is observed, indicating at approximately
homogeneous exciton density distribution over nearly all water molecules in S752.

Figure 3.8: Exciton density distribution of liquid water (27-water box) at 7.3 (S1), 7.9 (S12)
and 10.6 eV (S752) for a selected configuration. The S1 state of liquid water for the selected
water configuration is higher than that of the S1 state of the water monomer due to the
chosen water snap-shot. The localization of distributions decreases toward higher energies.
The hole is fixed on the oxygen atom indicated by the white sphere near the center of the
box.
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is higher than that of the S1 state of the water monomer. This is because of the chosen

water snap-shot. The S1 state for other water configurations was calculated and found to

be clearly at lower energies than the S1 state of the water monomer.

Discussion

The results of Garbuio [12] based on the same MBPT as applied in the present study show

substantial deviation from experimental and the present results. In particular, the first

absorption band is more than 1 eV off the experimentally measured band and an artificial

double peak located between 8.4-8.7 eV appeares which is not observed experimentally. In

the following the reliability of approximations made in the previous study concerning energy

positions and intensities of the excited states is checked in order to explain the discrepancies.

1) As previously mentioned, the present calculations of water are based on Born-Oppenheimer

ab-initio molecular dynamics simulation for the configuration sampling. A good simulation

is of importance as the electronic distribution extremely depends on the structures. Fur-

thermore, Grimme D3 dispersion correction is applied as non-local electron correlation is

of high relevance impacting water structures and hence the spectral features. The effect

of intra-molecular geometry was analysed in a previous study of water electronic struc-

ture [25]. The structural aspects of water such as variation of OH bond length was found

to be significant for the band gap. Upon decrease of OH length from 1.0 in SPC/E to 0.957

Å in TIP3P and TIP4P empirical force field potentials, an increase in gap of 0.5 eV has

been observed [25]. However, since in the present study Garbuio’s water band gap of 8.4

eV can be reproduced in the non-self consistent variant of GW (G0W0), it is justified to

assume that the overall structural effects are not decisive for the present discrepancies.

2) In this study nuclear quantum effects (NQEs) are neglected. Spura et al. [31] performed

path integral molecular dynamics (PIMD) on PBE-D3 water structures and found only

slight changes of OH bond lengths and H-O-H angles. The slight change of the water struc-

ture upon performance of PIMD support the assumption that NQEs on the electronic band

gap are small.

Furthermore, Pham et al. [25] simulated liquid water (64 box) at 390 K in order to recover

the experimental structures of liquid water, and hence to capture NQE. They calculated

the electronic band gap with many-body perturbation theory. The G0W0-PBE band gap is

8.1 eV, however with 0.3 eV total convergence error, neglect of dispersion effects, neglect

of non-local pseudo-potential contributions (increasing the gap by about 0.2 eV), sampling

of the BZ by the Γ-point only as well as use of a different GW implementation. Summing

up the mentioned contributions and reduction of convergence error would result in a gap
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which is quite close to the present gap of 8.4 eV in the G0W0 approach, indicating a small

NQE on the gap. In contrast, in the study of Del ben et al. [32] NQEs cause a sizeable

electronic shift by -0.6 eV at DFT-hybrid level. However, the effect of dynamic correlation

at G0W0 level and GW self-consistency (adding further non-local dynamic electron corre-

lation contributions) on the 0.6 eV reduction of the gap were not taken into account.

In this regard, Shishkin and Kresse [41] have shown for insulators that scGW increases

the gap. Thus, the increase of the gap by self-consistency and decrease of the gap by NQE

cancel each other to some extent leading to a net fundamental gap which is equivalent to the

gap calculated at G0W0 level of theory on top of PBE-D3 structures. Since it is possible to

reproduce the experimental electronic band gap of 8.7 eV with the non-self-consistent GW

approach on the PBE-D3 structures, it is safe to further calculate the optical absorption

spectrum on top of the G0W0@PBE-D3 QP energies. It should be noted that the main

effect of reduction or increase of the gap is a red- or blue-shift of the entire spectrum, and

has no major impact on the optical weights and hence intensities.

3) In Garbuio’s study a constant screening is used in BSE for all configurations to reduce

computational cost. According to our result, the low-energy part of the spectrum is rela-

tively insensitive to the use of a constant screening. A red-shift of about 0.1 eV as well as

a moderate increase of the intensity of the first absorption band are the main differences.

For the mid-range (8.5−10.5 eV) peak magnitudes are increased, and the positions of the

peaks are moderately stretched. Regarding higher-energy areas, the spectral features are

affected significantly. As illustrated in Fig. 3.9 the global maximum is red-shifted by 1.5

eV, once a screening calculated for a configuration was applied to another one. Thus at

high energies, a constant screening induces a compression on the spectrum, and therefore,

it should not be applied for mid- and higher-lying excited states as possible modifications

of the spectrum over the full energy range depend on the explicit structure of the screening

of the individual configurations. Due to the increase of intensities in the range of 5-14

eV a constant screening assignment is an error source for emergence and artificially huge

intensity of the peaks. The recommendation is to avoid this approximation, in particular

for higher-energy regimes.

4) To account for dynamical effects Garbuio used the plasmon pole approximation (PPA).

The quality of PPA is checked for one water configuration. The G0W0@PBE approach based

on PPA leads to a band gap of 8.3 eV. However, a full frequency-dependent G0W0@PBE

results in a 8.8 eV gap. As shown in Fig. 3.10, the PPA based G0W0-BSE method is ca-

pable of describing the features of the standard frequency-dependent G0W0-BSE spectrum.
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Figure 3.9: BSE spectrum with constant screening approximation versus BSE with own
screening for one configuration.
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This 0.5 eV shift of the spectrum to higher energies in Fig. 3.10 is a direct reflection of

the increased electronic band gap. Thus, for an accurate calculation of excited states an

explicit sampling of dynamical correlation is mandatory. PPA is therefore undoubtedly

the main error source explaining the present discrepancy between our and Garbuio’s re-

sult. It should be emphasized that the general features of the spectrum obtained from full

frequency-dependent sampling over the full energy range is nearly one to one reproduced

using PPA, which means that PPA is applicable for water with the exception of a constant

blue-shift of 0.5 eV. This result is in contrast to the finding of Vinson et al. [34] where the

authors present a stretching of the spectrum of about 1 eV in the mid energy range based

on many pole self-energy (MPSE) approximation.

5) The impact of a finite simulation cell on energy positions is minor for the energetically

low lying states but considerably large for higher lying excited states, as QP energies are

subject to finite size effects. The insensitivity of the position of the first absorption band

regarding size of the box is investigated by GW/BSE calculation on an even larger 64-water

box for one configuration. As shown in Fig. 3.4, no position change concerning the first

absorption band is observed, confirming that the 27-water box is a reasonable model for

low- and to a large degree for high-energy regimes.

6) The neglect of the commutator of the non-local pseudo potential Vnl with the position

operator r in the optical limit in the course of calculation of dipole matrices in BSE enhances

the intensities over the entire range of energy, and in particular for the first absorption band

giving rise to a very intense peak, as illustrated in Fig. 3.11. Furthermore, a blue shift of

0.2 eV for all energy regimes is observed, once non-local pseudo potential contributions are

excluded. Therefore, for optical properties explicit calculation of the commutator [Vnl, r] is

of importance to obtain the correct spectral weight distributions.

7) Regarding the higher-energy regime, the missing weight in Tavernelli’s work [11] at 18.6

eV due to the use of a semi-local exchange-correlation functional is restored using an ad-

vanced non-local BS kernel. Furthermore, a pronounced artificial peak at around 21 eV

arises. At this energy area the experimental spectrum has a monotonically decreasing be-

havior which is correctly reproduced in our study.

8) In the work of Hermann et al. [10] the water spectrum is described purely through elec-

trostatic effects by embedding a water monomer in a dynamic array of dipole fields. Due to

the use of a fit parameter for adjustment of the magnitude of the electrostatic dipole field,

Hermann obtained transitions at correct energies but with totally unsatisfactory spectral

weight distributions (for instance, the global maximum has the lowest weight of all peaks).
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Figure 3.11: Non-local part of the pseudo-potential excluded versus included in the GnW0-
BSE optical spectra for a 27-water box. Exclusion of non-local parts induces an intense
first absorption peak, accompanied by a blue-shift of 0.2 eV.

Furthermore, this concept of embedding a water monomer in an electrostatic environment

offers no reliable and comprehensive information about the nature, character, localization

and importance of specific contributions such as single-particle and electron-hole effects in

build up of excited states due to lack of explicit inclusion of many-body effects. This simple

model calculation was however used to explain the water blue-shift from gas to solid phase.

According to the present results, the shift and the correct spectral weights distribution are

a product of the interplay of electron-electron and electron-hole interactions.

9) The coupling effect on the optical spectrum obtained with BSE calculations is investi-

gated by going beyond the frequently applied Tamm-Dancoff approximation (TDA). It was

shown that in case of finite systems coupling of resonant and anti-resonant parts of the BS

matrix result in dramatic modification of the spectrum [35]. Since liquid water is at the

same time a molecular and extended system, it is of particular interest to check the validity

of the TDA. As shown in Fig. 3.12. coupling effects do not impact the BSE spectrum, and

thus the occurring red- and blue-shift of the excited state in the condensed phase are fully

independent of the coupling effects. This once again confirms that the TDA is a reliable

approximation for periodic systems.

The above analysis shows that only a proper capture of the frequency-dependent dynamical

effects, environmental interaction (by the many-body self-energy), individually calculated

screening, finite size and structural effects provide significantly less biased results for the

water optical spectrum over a wide range of energy up to 20 eV. As demonstrated above,

accurate calculation of single-particle energies with an individually calculated screening in
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Figure 3.12: The liquid water spectrum is over wide energy range insensitive to the coupling
effects of BSE.

G0W0@BSE on the 27-water cell improves the location of the first absorption band by up

to 0.9 eV to 7.9 eV (exp. IXS: 8.15 eV) with respect to the Garbuio’s result of 7.0 eV.

Moreover, the shift of the first absorption band to 7.9 eV decreases its exciton binding

energy from 1.4 eV in Garbuio’s work to 0.8 eV in this study.

Conclusions

The calculated electronic structure of liquid water, employing the GW methodology and

periodic boundary conditions, is nearly insensitive to the cell size. Therefore, it is concluded

that disorder effects are short-range in nature and that the electronic structure is influenced

mostly by nearest or next-nearest water neighbors. The essential features of the spectrum

are also reproduced with a small 8-water molecule cell. The changes of the peaks from 8-

to 27-water molecule cell by 0.1, 0.5 and 1.2 eV stems from structure effects due to periodic

boundary conditions. The small changes regarding the location of the first absorption band

between 8-, 27- and 64-molecule cells indicate that size-convergence is reached with a decent

accuracy.

The liquid water spectrum is massively affected by excitonic effects, in particular in the

low- and mid-energy area. Higher lying excited states are more subject to single-particle

than excitonic effects. It is further observed that condensation leads to a splitting of the

monomer S1 state, containing excited states lower than the water monomer S1 energy and

those lying at higher energies due to many-body effects.
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3.1. Red and blue-shift of liquid H2O excited states

The degree of localization and anisotropy of the exciton density distribution decreases with

increasing excitation energy. The lowest excited state is essentially localized on a single wa-

ter molecule, exhibiting an intra-molecular valence character. Upon increase of excitation

energy a change of the character to Ryization occurs, responsible for the observed blue-shift

of the first absorption band. Furthermore, these character changes of the excited states are

fully independent of coupling contributions in the Bethe-Salpeter matrix.
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3.2. Large many-body effects in liquid NH3 spectrum

3.2 Large many-body effects in liquid NH3 spectrum

Abstract

In the following, the absorption spectrum of liquid ammonia is calculated up to 13 eV

using again the many-body perturbation approach applied in the previous section. The

electronic band gap of liquid NH3 (exp. Γ→Γ : 7.8 - 8.0 eV [1]) is perfectly described

by the energy-only self-consistent approach GnWn (7.99 eV), both in the Green’s function

G and the dynamically screened interaction W . The same ansatz as in chapter 3.1, i.e.

the non-self-consistent G0W0 method leads to a considerable underestimation of the exper-

imental gap by up to 1.7 eV for liquid ammonia. This can be traced backed to the possible

inaccurate description of liquid ammonia structures by the PBE + D3 method in the molec-

ular dynamics simulation or screening effects which depend on the electronic distribution.

However, the latter is likely the correct answer based on the many-body calculations on

the experimental crystalline ammonia. In order to counter band gap underestimation in

liquid ammonia by the G0W0 approach, a self-consistent eigenvalue scheme GnWn is now

employed to be able to reproduce the experimental band gap. With respect to the NH3

optical properties, the entire spectrum, in particular the low-lying first absorption band,

is extremely affected by electron-hole interactions, leading to a fundamental redistribution

of spectral weights of the independent-particle spectrum. Three well separated but broad

main peaks are identified at 7.0, 9.8 and 11.8 eV with steadily increasing intensities in ex-

cellent agreement with the experimental data [1]. Furthermore, a large net blue-shift of the

first absorption peak of about 1.4 eV is observed from gaseous to liquid phase as a direct

consequence of many-body effects, which lead to a delocalization of the associated liquid

ammonia absorption band exciton and to an increase of the repulsion effects imposed by

the surrounding solvent shells. The spectrum is insensitive to the coupling of resonant and

anti-resonant contributions as also found for liquid water.

Introduction

As mentioned in the previous section, accurate ab-initio calculation of quasi-particle and

optical excitation energies is of utmost importance to reliably predict the absolute position

of the excited states. Since the G0W0 and GnW0 on top of the PBE orbital energies and

wave functions considerably underestimates the QP-gap of liquid NH3 due to screening

effects, the full energy-only self-consistent GnWn method is employed to further decrease

the initial screening or in other words to increase the exchange effects. This ansatz improves

the description of the QP-gap which is now in excellent agreement with the experimental

gap, as shown in the following.
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3.2. Large many-body effects in liquid NH3 spectrum

Technical details

A cubic box of side length of 10.3391 Å containing 27 NH3 molecules (108 atoms in the unit

cell) is used. Under periodic boundary conditions by using the CP2k program package [14]

a Born-Oppenheimer molecular dynamics simulation of 15 ps productive run is performed

after having equilibrated the ammonia box for 5 ps. The molecular dynamics simulation

is based on the same PBE-D3 method as used for water. The simulation is performed in

the NVT ensemble at 193 K at a density of 0.6903 g/cm3. A cutoff of 400 Ry is used for

the density whereas the electronic wave function is expanded by atom-centered optimized

double zeta with polarization quality basis set (ODZVPP). Due to the disordered nature of

the system, 30 independent configurations are selected over which results are averaged. For

each snapshot a ground-state calculation with 14 special k-points in the irreducible Brillouin

zone (IBZ), and a cutoff of 100 Ry is carried out using QUANTUM ESPRESSO [11]. The

effect of core electrons is treated by norm-conserving Troullier-Martins pseudo-potentials

[18]. BSE calculations are performed in the regime of vanishing momentum transfer q →
0 using YAMBO [12]. The GnWn method is run on top of the Kohn-Sham (KS) orbital

energies and wave functions for each independent configuration. The dielectric function

is further sampled by 30 frequency points. The screening is calculated individually for

each snapshot with 512 bands in the polarization and Green’s function. A cutoff of 50

and 8 Ry for the exchange and correlation part of the self-energy is set, respectively, to

converge the QP-energies within 0.02-0.03 eV accuracy. In the optical response calculations

(BSE) 181 transition bands are considered with 81 occupied and 100 unoccupied bands for

accurate spectral weight distributions and hence reliable relative intensities. In the case of

molecular NH3, a box of side length of 30 Bohr is used, and further the Coulomb cutoff

technique by Varsano et al [18] is applied to avoid artificial screening of the periodic images

of the isolated NH3 molecule. For the polarization and Green’s function 750 bands with

a dielectric matrix cutoff of 2500 G vectors, and 150000 exchange components are used.

The dynamical character of the dielectric function is sampled by 100 frequency points. Due

to extreme dependency of the position of the first absorption peak of the molecular NH3

(S1) on the number of transition bands in the BSE, a large number of transition bands

is mandatory. Convergence is reached with 500 transition bands with an accuracy of 0.02

eV for the S1 energy. All BSE calculations are performed in the static adiabatic limit and

within the Tamm-Dancoff approximation (TDA). The S1 state of the NH3 monomer is

negligibly affected by the TDA.

Results and discussion

In Table 3.2 an overview of the applied methods for calculations of the electronic band gap

is given. As expected, the PBE functional is not able to capture the many-body physics
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3.2. Large many-body effects in liquid NH3 spectrum

Table 3.2: The averaged electronic band gap of liquid ammonia is given for the 27-box in
eV at the PBE, G0W0, GnW0, GnWn as well as the experimental gap of amorphous solid
ammonia [1] which is an alternative experimental reference for liquid ammonia due to lack
of experimental data.

Fundamental band gap of liquid NH3 Γ→Γ
PBE 3.52

G0W0@PBE 6.32
GnW0@PBE 6.67
GnWn@PBE 7.99
Experiment 7.8–8.0 [1]

properly (fundamental band gap : 3.52 eV), and hence massively underestimates the ex-

perimental gap. The non-self consistent GW variant (G0W0) with an explicit frequency

sampling of the dielectric function on top of the PBE reference wave functions and energies

opens up the gap to 6.32 eV. However, the G0W0@PBE gap still underestimates the ex-

perimental gap of 7.8 eV considerably. The underestimation of the PBE and G0W0@PBE

gap might be due to inaccurate description of liquid ammonia structures (bond lengths

and angles) by the PBE + D3 method in the molecular dynamics simulation. However,

G0W0@PBE calculation on the crystalline ammonia based on the experimental structure

(due to lack of experimental references for liquid ammonia) showed a band gap of 7.02 eV,

and much smaller than the experimental gap of the amorphous solid ammonia (8.0 eV).

It should be noted that the experimental gap of the ordered crystalline phase should be

larger than the amorphous solid ammonia due to absence of disorder effects, and hence fur-

ther decreasing of the accuracy of the G0W0@PBE method is expected. This observation

strongly suggests that screening effects in liquid ammonia are different than in liquid water,

even if the number of the electrons are equal. The difference in the impact of screening

effects is due to a distinct electronic distribution in both systems. The underestimation

of the electronic gap consequently gives rise to underestimated excitation energies. Thus,

in order to improve the gap, the partial self-consistent GnW0 is applied, where the initial

screening is fixed at the mean-field level. The GnW0 increases the gap only by 0.35 eV, and

hence still the underestimation is large. This can be further improved by performing full

energy-only self-consistent GnWn method to decrease the effect of the PBE-screening. As

compiled in Table 3.2 a converged gap of 7.99 eV is obtained after 5 iterations.

In Fig. 3.13 the density of states (DOS) of liquid NH3 is illustrated including perturba-

tively corrected QP energies within the GW approximation. The QP corrections result

in an increase of the splitting of unoccupied and occupied bands with the valence band

top being less affected, both with respect to position and magnitude. The DOS of liquid

57



3.2. Large many-body effects in liquid NH3 spectrum

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-20 -15 -10 -5  0  5  10  15  20

D
O

S
 i
n

 a
.u

.

Energy [eV]

PBE
PBE-GnWn

Figure 3.13: Density of states (DOS) of liquid ammonia based on PBE and GnWn@PBE
level of theory.

NH3 consists of highly localized occupied bands while the unoccupied states are delocal-

ized. The magnitude of the occupied GnWn@PBE DOS is slightly reduced due to changes

in QP-energies but also slightly broadened with respect to its PBE pendant, while it is

nearly identical for unoccupied DOS between PBE and GnWn@PBE, however, the latter is

significantly upshifted. In Fig. 3.14 the calculated optical absorption spectra are presented

and compared to an experimental spectrum of amorphous solid ammonia [1] due to lack

of experimental data for liquid ammonia. It however represents a reasonable alternative

experimental reference for liquid ammonia due to its disordered structure.

The spectrum consists of three well separated broad bands. The first main peak is located

at 7.0 eV, followed by peaks at 9.8 and 11.8 eV with increasing intensities. Interestingly,

the correct asymmetry of the first main peak is fully captured by BSE. The IP-GnWn spec-

trum which is equivalent to a photo-electron spectrum fully misses the first main band due

to lack of excitonic effects. However, once the electron-hole interaction is introduced, the

IP-GnWn spectrum gets red-shifted with a fundamental redistribution of spectral weights.

The peak at 7.0 eV is a bound excitonic peak lying below the electronic gap with an exciton

binding energy of 1.0 eV, indicating that the exciton associated with the first absorption

band is not tightly bound, and to some extent distributed over the nearest and next nearest

NH3 molecules, with which it then effectively interacts. This repulsive interaction with the

surrounding NH3 molecules leads to a net blue-shift of the first main peak of about 1.4 eV

with respect to the S1 energy of the isolated NH3 molecule at 5.6 eV as shown in Fig. 3.15.

The experimental 0-0 transition of the isolated NH3 molecule is 5.7 eV.
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3.2. Large many-body effects in liquid NH3 spectrum

The blue-shift in liquid ammonia is larger by about 0.7 eV in comparison to the previ-

ously studied blue-shift in liquid water from gaseous (GW+BSE : 7.2 eV) to liquid phase

(GW+BSE : 7.9 eV) [25] although the hydrogen bond is weaker in liquid NH3, indicat-

ing that approaches explaining the shift based on hydrogen bond network effects [21] are

at least incomplete. From the many-body perspective the occurring blue-shift is a direct

consequence of an interplay between Pauli repulsion and excitonic effects. It can be ex-

plained in terms of enhanced overlap of the excitonic (excited) state with diffuse s-wave

functions of the surrounding NH3 molecules. An overlap without excitonic effects leads to

the IP-GnWn spectrum, however, the destabilization of the excited state following overlap-

ping with Rydberg wave functions is partially counterbalanced by electron-hole correlation

effects resulting in a net blue-shift of 1.4 eV. Therefore, correlated motion of electron and

hole (e-h) while interacting with its surrounding is key for an explanation of the observed

net blue-shift of the main first band. In other words, the 1.4 eV blue-shift is due to the more

extended electron distribution in liquid than gas-phase ammonia, which leads to a reduced

e-h binding energy. As can be seen in Fig. 3.16, the electronic density of the first absorp-

tion band considerably delocalizes over the nearest and next nearest ammonia molecules

to effectively overlap with the diffuse states of the surrounding molecules. In case of zero

e-h binding energy, the electron freely moves around and interacts with solvent spheres

giving rise to the IP-GnWn spectrum which is a reflection of the full Pauli exchange effects.

Furthermore, beside of the blue-shift in the low energy part of the spectrum, many-body

effects are of importance over the full energy range as with respect to the higher energy

regimes excitonic effects are decisive for building up important features of the liquid NH3

spectrum (peaks at 9.8 and 11.8 eV) together with single-particle effects which are increas-

ingly contributing upon increasing energy.

A further important property of liquid NH3 is the frequency-dependent dielectric constant

obtained from the real part of the macroscopic dielectric function. This quantity shown in

Fig. 3.17. describes the response of the electronic degree of freedom of the solvent spheres

to photo-excitation or in other words a fast electronic response to external perturbation.

The static dielectric constant sets on at about 1.4 and peaks at 6.9 and 9.5 eV. Therefore,

liquid NH3 is quite responsive in the energy range of 6-10 eV to photo-excitation, however ε1

considerably decreases at higher energy regimes. From the many-body point of view, liquid

ammonia is similar to liquid water [23, 25]. In both systems strong excitonic effects play

a decisive role for the appearance of typical features in the optical and electronic response

spectrum. Regarding coupling effects in the Bethe-Salpeter transition matrix, it was shown

in the previous section for liquid water that mixing of resonant and anti-resonant electron-

hole pairs leaves the spectrum unaffected over the full energy range. The same result is

also obtained for liquid NH3. Thus, in contrast to molecular systems [23] where pair and
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3.2. Large many-body effects in liquid NH3 spectrum

Figure 3.16: Exciton density distribution for the first absorption band (AB) edge at 7.0
eV (left), and the second peak at 10.21 eV (right) for a selected configuration. At the
first AB the electronic density is delocalized over the nearest and next nearest ammonia
molecules, while at the second peak (at an energy higher than the direct electronic band
gap) it is fully delocalized over the whole system, in agreement with the free conduction
band electron picture. The hole is indicated by the yellow sphere placed on an N atom.
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Figure 3.17: The real part of the macroscopic dielectric function of liquid ammonia. The
ε1 function has two responsive peaks at 6.9 and 9.5 eV, showing that liquid NH3 is most
sensitive to photo-excitations at energies lower than the electronic band gap.

anti-pair mixing can dramatically reshape spectra, causing exciton-plasmonic excitations,

for hydrogen bonded extended molecular systems such a behaviour is absent.

Conclusions

The many-body perturbation methods were applied to gain a deeper understanding of the

electronic, optical and electronic response structure of liquid NH3. In order to obtain an

accurate electronic band gap, capturing of exchange and screening effects are of high im-

portance. This was done by performing a frequency-dependent energy-only self-consistent

GnWn on top of the PBE orbital energies and wave functions resulting in an excellent agree-

ment with the experimental gap due to optimal modification of the initial PBE screening.

The GnWn ansatz was used because the G0W0@PBE method considerably underestimated

the band gap of liquid NH3 in contrary to liquid water based on PBE + D3 structures,

leading to underestimation of excitation energies.

Further, it was found that exchange effects at single-particle level are stronger in liquid

NH3 than in liquid water, due to a larger blue-shift of the first absorption band relative

to the S1 energy of the molecular NH3 of about 1.4 eV, which is two times larger than in

liquid water. The NH3 BSE spectrum consists of an excitonic broad band at 7.0 eV with

an asymmetrical weight distribution, followed by further broad and slightly more intense

absorption bands.
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3.3. Spectrum of open-shell spinel zinc ferrite

3.3 Spectrum of open-shell spinel zinc ferrite

Abstract

In this section the optical properties and electronic response spectrum of the spinel zinc

ferrite Zn2Fe4O8 as an example of a crystalline system are studied, and in particular the

impact of many-body effects on the absorption spectrum are shown using the same many-

body perturbation approach as before. The excitonic effects remarkably redistribute the

spectral weights causing a red-shift of 1.6 eV of the maximum of the independent particle

G0W0 (IP-G0W0) towards electron-hole interaction affected spectrum. The excitation spec-

trum of zinc ferrite exhibits a low-lying doubly degenerated bound dark exciton at 1.84 eV

with a fully symmetric excited-state density, and a narrow optical gap setting on at 1.93

eV. The electronic transitions and exciton density distributions giving insights to the na-

ture of excitations are further analysed. The dielectric response of Zn2Fe4O8 is calculated,

showing a particular sensitivity to excitations higher than the electronic band gap, however

at high-energy regime it abruptly becomes passive to the incoming electro-magnetic wave

and propagates to the negative regions.

Spinel ferrites are magnetic materials being used in spintronics [1, 2], in the area of the

electrochemical energy storage (batteries and electrochemical capacitors) and photocatal-

ysis [3–5]. The ferrites photoelectrochemical (PEC) activities originate from i) a narrow

optical band gap (< 2.2 eV), which allows for an efficient visible light harvesting of the solar

spectrum, ii) multiple oxidation states stabilized by the spinel structure with the individ-

ual transition metals of known catalytic properties. Further, as the constituting transition

metals are abundant and low cost they are promising candidates for large-scale PEC ap-

plications. Spinel ferrites are ternary transition metals oxides with the general formula

Figure 3.18: Cubic structure of the spinel zinc ferrite.
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X2Fe4O8, where X (X = Zn, Ga, Cr, etc) and Fe are divalent and trivalent metal cations,

respectively. The oxygen anions are arranged in a cubic closed-packed lattice and the

cations Zn and Fe are located at two different crystallographic subsites, namely, the tetra-

hedral (A) and octahedral (B) sites. The crystal structure of the zinc ferrite is illustrated

in Fig. 3.18. Fe exhibits a high-spin d5 configuration, giving rise to an antiferromagnetic

ground-state of Zn2Fe4O8.

Technical details

DFT ground-state calculations are conducted for the experimental structure [7] based on the

PBE formalism of the generalized gradient approximation (GGA) [8] using the QUANTUM

ESPRESSO package [11]. Wave functions are expanded in plane waves with a cutoff of

80 Ry. A 4x4x4 Γ-centered k-grid is adopted to accurately converge quasi-particle (QP)

energies and absorption spectrum. Standard norm-conserving Troullier-Martins pseudo-

potentials [18] are used to treat core electrons. On top of the ground-state reference wave

functions, a one-shot full frequency-dependent G0W0 calculation is carried out with 30

frequency points to properly sample the dynamical character of the dielectric function.

The exchange and correlation parts of the self-energy are described by a cutoff of 50 and 8

Ry, respectively, with 300 bands included in the Green’s function. For the optical response

calculations 300 bands are used for the static polarization function and further 18 occupied

and 18 unoccupied bands in the transition space are taken into account to accurately resolve

spectral weight distributions and hence relative intensities over 10 eV energy range. The

BSE calculations are performed in the limit of adiabatic (static) kernel within the Tamm-

Dancoff approximation (TDA) using YAMBO [12].

Results and discussion

In Table 3.3 the DFT, QP indirect, direct and optical band gaps of Zn2Fe4O8 are compiled.

The single-shot frequency-dependent G0W0 provides a very slight correction to the PBE

electronic gaps. According to Table 3.3, zinc ferrite is an indirect antiferromagnetic insula-

tor based on PBE. The indirect nature of the electronic gap is maintained upon many-body

corrections. Furthermore, an optical gap of 1.93 eV is obtained in excellent agreement with

the experimental references.

In order to further characterize the nature of the electronic transitions in the excitation

spectrum, in Fig. 3.19 orbital resolved total density of states (T-DOS) at Γ-point is com-

puted. As illustrated the top valence bands mostly consist of O 2p orbitals while the low

lying unoccupied bands mainly stem from the O 2p and Fe 3d-orbitals, indicating that
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Table 3.3: The PBE, QP electronic (in)direct band gaps and BSE optical gap of Zn2Fe4O8

with the experimentally measured gaps are listed. All gaps are in eV.

PBE-indirect/direct gap G0W0-indirect/direct gap BSE-Optical gap

1.97/2.07 2.02/2.15 1.93

Experimental gaps : 1.91, 1.902, 1.923, 1.934
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Figure 3.19: PBE total DOS at Γ-point. Only most relevant orbital contributions to the
T-DOS are colored.

most of the energetically low-lying transitions have strong p-d or hybridized p-p and p-d

character. The occupied Fe and Zn 3d-orbitals are located at much deeper energies, and

are not relevant for transitions.

In Fig. 3.20 the calculated absorption spectrum of zinc ferrite is presented. The excitonic

effects are rather large, and a red-shift of about 1.6 eV of the global maximum of the

independent particle G0W0 (IP-G0W0) towards fully interacting spectrum with a remark-

able spectral weight redistribution upon excitonic effects is observed. Furthermore, the

Zn2Fe4O8 spectrum possesses a doubly degenerated bound dark exciton at 1.84 eV, and an

optical gap setting on at 1.93 eV. The spectrum shows a relatively rich pattern of excitations

with the main peaks located at 2.84 (P1), 3.48 (P2), 4.41 (P3), 6.19 (P4), and 7.29 (P5) eV.

To gain more information about the nature of transitions, the QP transition profile (QPTP)

and the electronic density distribution are analysed for the dark exciton (S1) and P1, P2,
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Figure 3.20: BSE and IP spectra of the spinel zinc ferrite are shown. The black vertical line
specifies the position of the indirect gap. A red-shift of about 1.6 eV from the maximum of
the IP to the BSE spectrum and a considerable spectral weight redistribution are induced
upon exciton effects.

P3, P4, and P5 peaks located at different energy ranges up to 7.6 eV. As shown in Fig. 3.21

for the dark state S1 a single narrow QP peak arises at 2.15 eV with a fully symmetric

excited-state density, describing a forbidden Γ-point pure highest occupied crystal orbital

(HOCO) to lowest unoccupied crystal orbital (LUCO) O intra-atomic p-p and Fe d-d (cen-

tral Fe atom) transitions. Furthermore, the dark state represents mainly a spin up-spin

up transition. The P1 peak exhibits in the transition profile a single sharp narrow QP

peak at 3.16 eV (Fig. 3.21) related to an enhanced symmetric density distribution at four

O atoms connected to the central Fe atom (Fig. 3.22), originating from a HOCO – LUCO

inter-atomic O-O p-p transition at a non-Γ point. The P2 shows again a single sharp QP

peak at 3.79 eV with a distinct symmetric electronic density topology relative to P1, aris-

ing upon a Γ-point HOCO - 4 – LUCO transition with an inter-atomic O-O P-P character.

The P3 QPTP at 4.76 eV is less narrow and mainly consists of non-gamma point HOCO

– LUCO and HOCO – LUCO + 1 transitions with an excited-state density concentrated

more on the upper-half of the unit cell (non-symmetric distribution) on the O and Fe atoms,

showing a hybrid inter-atomic p-p and p-d character. The P4 QP peak at 6.43 eV is much

more broadened, reflecting multi-band transitions at many k-points including the Γ-point,

each of which contributing with small to large weights to the excitonic state. The P4 state

maintains a large density concentration in the upper-half of the unit cell (non-symmetric

distribution), with delocalizations between O and Fe atoms, exhibiting a strong mixed inter
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Figure 3.21: QP transition profile of the dark exciton and five intense representative peaks
(P1-P5). S1 gives rise to a forbidden Γ-point Fe intra-atomic d-d transition. P1 and P2
consist of sharp peaks with dominant single band transition at a single k-point, whereas P4
and P5 show multi-band character at many k-points. P3 is a single k-point double band
pure spin down-down transition, while all the other peaks (P1,P2,P4,P5) are mainly spin
up-spin up transitions.

p-d and p-p character. The P5 QP peak at 7.61 eV gives rise to a delocalized excitonic

state with multi-band transitions at many non-gamma k-points. As illustrated in Fig. 3.22,

the P5 density is distributed over O, O-Fe and Fe atoms, forming a mixed inter-atomic p-p

and inter-atomic p-d character. Interestingly, the density of S1, P1, and P2 give rise to a

symmetric distribution, whereas P3, P4, and P5 densities represent a shift of charge to a

particular part of the unit cell.

One further important property of the spinel is the instantaneous frequency-dependent

dielectric response upon external perturbation which is given as the real part of the macro-

scopic dielectric function. This is presented in Fig. 3.23 and describes how the electronic

degrees of freedom of the anti-ferromagnetic system responds to photo-excitations. As can

be seen, the static dielectric constant given as ε1(ω = 0) sets on at 2.5 and increases to the

high magnitude peaks at 4.3 and 5.4 eV. It is therefore most responsive to photo-excitations

higher than the electronic band gap. At higher energies it however rapidly drops and be-

comes considerably passive to excitations. At about 6.2 eV a sign change occurs, and ε1

propagates to the negative regions, meaning electrons act in a repulsive way to the incoming

electro-magnetic wave.
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Figure 3.22: FULL (spin up and down) excited-state electronic density of the dark exciton
at 1.84 eV (Γ-point transition), P1 at 2.84 eV, P2 at 3.48 eV, P3 at 4.41, P4 at 6.19 eV,
and P5 at 7.29 eV.
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Figure 3.23: Dielectric response function of the spinel zinc ferrite is presented. It shows
high sensitivity to the excitations higher than the indirect electronic gap (black arrow). ε1
however rapidly decreases above 6 eV.
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Conclusions

In this section the GW/BSE method was applied to compute the optical properties and

dielectric response spectrum of the spinel zinc ferrite. It was shown that the upper valence

bands mainly consist of O 2p-orbitals, whereas low-lying conduction bands are combinations

of O 2p- and Fe 3d-orbitals. As demonstrated, many-body effects are extremely important

for the occuring red-shift compared to the independent-particle spectrum and a realistic

redistribution of the spectral weights towards low- and mid-range energy area. A doubly

degenerated dark exciton was found showing a fully symmetrically distributed excited-state

density stemming from intra-atomic p-p and intra-atomic d-d transitions at Γ-point. The

P1 and P2 peaks are of single band inter-atomic (O-O) p-p character, while the higher ly-

ing excitation peaks (P4 and P5) are multi-band inter-atomic p-p/p-d transitions at many

k-points. The P3 peak is a double band single non-gamma point transition.

The dielectric function goes through three phases: a responsive, a passive (ε1 less than

1), and a repulsive area. ε1 is highly responsive to photo-excitations between 3 - 6 eV, after

which it abruptly drops into negative regions.
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3.4 Electron-phonon coupling

Abstract

In this section, the impact of dynamic electron-phonon (el-ph) effects on the electronic

band gap of ice and liquid water is investigated by accounting for frequency-dependent

Fan contributions in the el-ph mediated self-energy within the many-body perturbation

theory (MBPT). It is found that the dynamic el-ph coupling effects significantly reduce

the static el-ph band gap correction of crystalline ice from -2.46 eV to -0.23 eV in contrast

to the result of Monserrat et al. [1]. This is of particular importance as otherwise the

static el-ph gap correction would considerably reduce the electronic band gap, leading

to strong underestimation of optical excitation energies and deteriorating the agreement

with the experimental references. By contrast, the static el-ph gap correction of liquid

water is moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap

correction to -0.19 eV. Further, the diverse sensitivity of ice and liquid water to the GW

self-consistency is determined and it is shown that the energy-only self-consistent approach

(GnWn) exhibits large implicit vertex character in comparison to the Quasi-Particle Self-

Consistent (QSGW) approach, for which an explicit calculation of vertex corrections is

necessary for good agreement with experiment.

Introduction

In recent years, effects arising from electron-phonon (el-ph) coupling attracted much inter-

est, as nuclear vibrations coupled with the electronic degrees of freedom were found to have

a great impact on the electronic structure, and in particular on the band gap of a range

of materials [2–5] and even further on the build up of excitons in phonon-mediated optical

excitations in semi-conductors [6, 7].

Recently, el-ph coupling effects in hydrogen-rich molecular crystals such as ice and NH3

were subject to a first principles investigation by Monserrat et al. [1]. They found that the

commonly used Allen-Heine-Cardona (AHC) theory is insufficient in capturing the strength

of el-ph coupling, and hence going beyond the AHC theory is a mandatory step for accurate

description of zero point effects. Monserrat et al. started both from

Eg = 〈φ(q)|Eg(q)|φ(q)〉 (3.1)

and

Eg = E(0) +
∑
n,k

a2
nk 〈φ(q)|q2

nk|φ(q)〉+O(q4) (3.2)
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3.4. Electron-phonon coupling

to calculate vibrational effects. Here Eg is the electronic band gap expanded around the

equilibrium position in terms of harmonic vibrational mode amplitudes qnk, k is the vibra-

tional Brillouin zone wave vector and n is the branch index. Further, a2
nk are the diagonal

quadratic expansion coefficients.

The Eq. (3.1) is exact, whereas the Eq. (3.2) is perturbative and represents the quadratic

contribution to gap correction and hence is equivalent to the AHC theory. Now, in order to

account for higher-order terms, Eq. (3.1) was sampled by Monserrat using a Monte Carlo

approach, resulting in large static el-ph band gap corrections of -1.0 eV in NH3 to -1.52 eV

in H2O.

However, since these corrections lead to massive band gap reductions, the optical absorp-

tion spectra of the investigated molecular crystals which build upon previously calculated

quasi-particle (QP) energies inevitably suffer a red-shift to much lower excitation energies.

Low-lying intense excitation peaks in case of ice for instance, were however never observed

experimentally [see section 3.1]. Consequently, in order to be able to reproduce the exper-

imental first intense peak of hexagonal ice (ice-Ih) which lies at 8.65 eV [8] an electronic

band gap of about 9.7 eV is necessary as otherwise the first absorption band would be un-

derestimated by 1.52 eV if the static el-ph gap correction of ice as calculated by Monserrat

were taken into account. The same red-shift of the optical peaks as a result of inaccurate

computation of el-ph effects can also be observed on ammonia absorption peaks [9], if the

large static el-ph gap correction of -1.01 eV is considered. This means that a key term is

still missing in order to reduce the large static el-ph gap corrections, and hence improving

the agreement with experiment.

To clarify this non-trivial issue, one goes beyond the AHC theory and identifies the missing

term with the dynamic electron-phonon contribution by including the extremely important

dynamic structure of the Fan term in the el-ph mediated self-energy within the many-body

Green’s function formalism.

A direct comparison to optical peak positions is justified, even if the exciton-phonon cou-

pling is not included explicitly in our study, since dynamic el-ph massively reduces the

static band gap correction. Possible effects of phonon modes mediated exciton build up

(the so-called coherent contributions in the BSE or exciton-phonon interaction neglected

here) which lead to a blue-shift of optical peak positions must be rather small, as otherwise

the peak positions will be blue-shifted to much higher excitation energies, in disagreement

with experimental references.
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In the following ab-initio many-body perturbation theory (MBPT) electron-phonon cal-

culations are performed on ice and liquid water including dynamic effects to demonstrate

its massive impact on the static el-ph gap correction. Phonon mode contributions to the

gap are analysed by inspecting the corresponding Eliashberg spectral functions.

For a deeper theoretical understanding of the applied methodology the reader may con-

sult references [10–12].

Theoretical background

In the following a very short overview of the theory of electron-phonon coupling within

the MBPT framework is provided. In this many-body description the el-ph interaction is

treated perturbatively and its corresponding el-ph Green’s function contains a static term

called Debye-Waller (DW) (a second-order term in nuclear displacement) and a dynamic

term known as Fan (a first-order term in nuclear displacement), which build up the el-ph

interacting Green’s function

Gn(ω, T ) = [ω − εn − ΣDW
n (T )− ΣFan

n (ω, T )]−1 (3.3)

The poles of (3.3) directly correspond to the QP excitations. Eq. (3.3) contains εn as the

ground-state Kohn-Sham (KS) frozen atom eigenenergies, obtained from plane wave DFT.

The ΣDW (T ) term is the temperature-dependent Debye-Waller contribution

ΣDW
n (T ) = −1

2

∑
n′λ

Λλ
nn′

N
[
2Nλ(T ) + 1

εn − εn′
] (3.4)

and the ΣFan
n (ω, T ) term is the frequency- and temperature-dependent Fan contribution

ΣFan
n (ω, T ) =

∑
n′λ

|gλ
nn′
|2

N

[
Nλ(T ) + 1− fn′
iω − εn′ − ωλ

− Nλ(T )− fn′
iω − εn′ + ωλ

]
(3.5)

where Nλ and fn′ represent the Bose-Einstein and Fermi-Dirac distribution functions, while

ωλ and N are the phonon frequencies and number of q-points in the Brillouin zone. Fur-

ther, gλnn′ are the electron-phonon matrix elements, representing the scattering probability

amplitude of an electron with emission or absorption of phonons which is given by

gλnn′ =
∑
sα

(2Msωλ)
− 1

2 eiqτs 〈n′|∂Vscf (r)
∂Rsα

|n〉 ζα(λ|s) (3.6)

where Ms is the atomic mass, τs is the position of the atomic displacement in the unit

cell, ζα(λ) are the components of the phonon polarization vectors, and Vscf (r) is the self-
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consistent DFT ionic potential.

By linearising the frequency dependency of the Fan self-energy around the KS energies,

one arrives at the final perturbative temperature-dependent expression for the el-ph medi-

ated QP energies

En(T ) ≈ εn + Zn(T )[ΣDW
n (T ) + ΣFan

n (εn, T )] (3.7)

which contains the temperature-dependent renormalization factor Zn(T ) = [1−∂ΣFan
n (ω,T )
∂ω

|ω=εn ]−1.

Technical details

The ice geometry is taken from the HIRSCH-I model [13] and liquid water configurations

are obtained for 8 and 27 water boxes from ab-initio Born-Oppenheimer Molecular Dynam-

ics (BOMD) using CP2K [14]. After an initial equilibration of 10 ps, a 30 ps productive

MD at 300 K is run with the PBE functional and Grimme D3 dispersion correction [15].

On top of the structures, ground-state calculations are conducted using the PBE [16] func-

tional as implemented in QUANTUM ESPRESSO [11]. Core electrons are simulated by

norm-conserving Troullier-Martins pseudo-potentials [18]. A kinetic cutoff of 60 (240) and

70 (280) Ry is chosen to represent the wave functions (densities) in terms of plane waves

for ice and liquid water, respectively, with a tight convergence criterion of 1.0E-14 Ry. In

order to properly sample the Brillouin zone a Γ-centered k-grid of 4x4x4 is used. On top of

the ground-state energies and wave functions, electron-phonon calculations are performed

with a tight convergence criterion of 1.0E-12 Ry for ice 36 and liquid water 72 phonon

branches within the density functional perturbation theory (DFPT). The electron-phonon

matrix elements are calculated for 50 and 25 randomly generated q-points for ice and liquid

water, respectively, to reach a faster convergence with respect to the number of vibrational

Brillouin zone q-points.

The el-ph self-energy calculations are performed with 106 random q-points for the random

integration method in order to boost the convergence and 200 bands using YAMBO [12].

Convergence is further checked with 300 bands showing no notable impact. Self-consistency

is again performed by YAMBO and vertex calculations are carried out using ABINIT [20,21]

with non-local parts of pseudo-potential accounted for in the calculation of dipole matrices

in GW. The vertex calculations are performed for the 8-water box due to the local nature

of the vertex correction, and as it will be shown the obtained value is very comparable to

the result reported in literature.

Further, to avoid finite size effects and having comparable results, the larger 27-box is
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used instead of the 8-water box in the GW calculations, for which a kinetic energy cutoff

of 100 and 400 Ry is used for the wave functions and densities, respectively. The GW and

vertex results are averaged over only 5 water snapshots, since the main focus is on relative

effects, such as dynamical versus static el-ph coupling, self- versus non-self-consistency and

vertex effects, and not on absolute values.

Results and discussion

In Table I the results of the static and dynamic approaches to electron-phonon coupling

effects on the electronic band gap of ice and liquid water at Γ-point are shown. As can

be seen, the el-ph gap corrections of ice based on static corrections from the Debye-Waller

contributions result in a gap reduction of -2.48 eV. However, dynamical effects arising from

the Fan contributions massively reduce the gap correction to -0.23 eV.

For liquid water the static DW gap reduction is interestingly only -0.32 eV (much smaller

than in ice) and dynamical effects slightly further reduce the static gap correction to -0.19

eV. The small static el-ph gap correction of liquid water is directly related to its disordered

structure, and hence the coupling of lattice vibrations with the electronic degrees of freedom

is much less effective than in ice.

Furthermore, an important numerical G-damping parameter dependency for gap correc-

tions on the Green’s function damping is observed having a great impact on the absolute

position of the valence band energy correction (VBEC), while absolute conduction band

energy correction (CBEC) is largely insensitive to damping effects as shown in Table 3.4.

Such a dramatic numerical effect was shown to increase the lifetimes of Quasi-Particles

of copper by 50% [22]. This calls for a careful convergence check with respect to the G-

damping parameter in the Fan and Debye-Waller self-energies in future studies.

Interestingly, the el-ph gap correction of ice based on DW contributions is much larger than

the Monserrat gap correction based on Monte Carlo sampling of Eq. (3.1), indicating that

the higher-order terms (non-quadratic contributions) in Eq. (3.1) indeed reduce the DW

gap corrections from -2.46 eV to -1.52 eV. However dynamic Fan el-ph effects massively

further reduce the static DW corrections, and exactly this massive reduction of the static

band gap correction explains why the intense peaks in the optical absorption spectrum of

ice are not underestimated by 1.52 eV for instance.

Now, in order to determine the importance of each energy-dependent vibrations contribut-

ing to the gap correction, phonon modes are further analysed by calculating and inspecting
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the generalized Eliashberg spectral function (ESF) given by

g2Fn(ω) =
∑
λn′

[
|gλnn′ |2

εn − εn′
− 1

2

Λλ
nn′

εn − εn′

]
δ(ω − ωλ) (3.8)

which is further connected to the gap correction ∆En(T ) by

∆En(T ) =

∫
dωg2Fn(ω)[2Nλ(ω, T ) + 1] (3.9)

where Nλ(ω, T ) is the Bose-Einstein distribution, ωλ are the phonon frequencies, gλnn′ and

Λλ
nn′ are the first and second order electron-phonon matrix elements which are directly

linked to the Fan and DW contributions.

An extremely important aspect of Eq. (3.8) is its sign which is determined by its denomina-

tor, describing emission or absorption of phonons after scattering of an electron. Typically,

the ESF (3.8) in semi-conductors is positive at the valence band maximum (VBM) and

negative at the conduction band minimum (CBM), causing the usual observed reduction

of the band gap upon el-ph scattering effects. Hence, ESF is an insightful tool helping to

further gain access to the details of build up of el-ph mediated gap corrections.

In Fig. 3.24 the dynamic ESFs of ice for the VBM and CBM states are shown. Phonon

contributions are observed over a large energy scale up to 450 meV. In particular, for the

VB state low frequency modes are dominant, whereas for the CB state intense peaks appear

at much higher energies around 400-450 meV.

Interestingly, the VB ESF is not an entirely positive function, and particularly at low-energy

regime multiple sign changes occur. For the CB ESF, the function is not negative over the

full energy range exhibiting positive contributions in the high-energy regime (425 meV).

Thus, the ESF of ice for both VB and CB states shows anomalous regions. The VB anomaly

region is responsible for the negligible energy correction to the Kohn-Sham VB state due

to nearly full compensation of all phonon mode contributions. By contrast, although the

ESF of the CB state also exhibits an anomaly region at high energies, however the overall

compensation is not that effective as for the VB states, because the high-frequency positive

contributions at 425 meV are much less weighted by the Bose-Einstein distribution function

and hence nearly the whole gap correction stems from the negative contributions of lower

CB modes distributed up to 200 meV.

In Fig. 3.25 the dynamic ESFs for liquid water are shown. Low-energy modes are dom-
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3.4. Electron-phonon coupling

inant for the VB states, while for the CB states phonon mode contributions are quite

distributed over wide energy regimes. Again for the VB state a sign change occurs at about

25 meV, leading to negative contributions which are much more weighted than the other

high-frequency modes. This gives rise to nearly full compensation of positive and negative

contributions to the VB energy correction. By contrast, for the CB states, no sign change

is observed up to 300 meV and hence contributions are negative in nature causing the gap

reduction.
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Figure 3.24: The dynamic Eliashberg spectral functions of ice at Γ-point for the valence
and conduction band (VB,CB) are shown. For the VB state low frequency modes are
dominant; however positive and negative contributions cancel each other, while for the CB
state, the phonon modes are distributed up to 450 meV, and compensation of negative and
positive contributions is much less effective, since the high frequency positive contributions
are much less weighted by the Bose-Einstein distribution function, and hence larger el-ph
correction to the CB states is obtained.
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Figure 3.25: The dynamic Eliashberg spectral functions of liquid water box at Γ-point for
the valence and conduction band (VB,CB) are shown. A full compensation of positive
and negative areas below the black line (DW+Fan contributions) can be seen, and hence
nearly no contribution to the VB correction, while for the CB states negative contributions
distributed over wide energy ranges are dominant and responsible for the CB el-ph energy
correction.
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3.4. Electron-phonon coupling

Table 3.4: Static and dynamic el-ph mediated band gap corrections at Γ-point for ice at
0 K and liquid water at 300 K. The Green’s function damping parameter, absolute valence
and conduction band energy corrections (VBEC and CBEC) and el-ph band correction are
given in eV. Furthermore, a fine frequency grid of 0.001 eV is used for accurate integrations.
Parenthesis indicates sign change of energy corrections depending on damping parameter.

Static el-ph approach on ice (DW + Fan)

G-damping VBEC CBEC ∆E(T = 0K)
0.1 0.8159 -0.2586 -1.0745
0.01 1.1420 -0.2595 -1.4015
0.001 1.5470 -0.2590 -1.8060
0.0001 2.2190 -0.2595 -2.4785
1.0E-05 2.2206 -0.2590 -2.4796
1.0E-06 2.2100 -0.2593 -2.4693

Dynamical el-ph approach on ice (DW + Fan)

G-damping VBEC CBEC ∆E(T = 0K)
0.1 0.2700 -0.2346 -0.5046
0.01 0.0016(-) -0.2346 -0.2330
0.001 0.0089 -0.2348 -0.2437
0.0001 0.0040 -0.2345 -0.2385
1.0E-05 0.0012(-) -0.2343 -0.2331
1.0E-06 0.0016(-) -0.2345 -0.2329

Static el-ph approach on water (DW + Fan)

G-damping VBEC CBEC ∆E(T = 300K)
0.1 1.1220 -0.6566 -1.7786
0.01 2.0750 -0.7090 -2.7840
0.001 2.0940 -0.7157 -2.8097
0.0001 1.8070 -0.7086 -2.5156
1.0E-05 0.6107 -0.7260 -1.3367
1.0E-06 0.3299(-) -0.7147 -0.3848
1.0E-07 0.3900(-) -0.7103 -0.3203
1.0E-08 0.3840(-) -0.7093 -0.3253

Dynamical el-ph approach on water (DW + Fan)
G-damping VBEC CBEC ∆E(T = 300K)
0.1 0.1266 -0.2901 -0.4167
0.01 0.0434 -0.2667 -0.3101
0.001 0.0075(-) -0.2282 -0.2207
0.0001 0.0009(-) -0.1935 -0.1926
1.0E-05 0.0003(-) -0.1920 -0.1917
1.0E-06 0.0008 -0.1916 -0.1924
1.0E-07 0.0008 -0.1900 -0.1908
1.0E-08 0.0008 -0.1923 -0.1916
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Table 3.5: An overview of the effects on the electronic band gap of ice and liquid water with
respect to energy update in G and W in combination with approximated vertex corrections
via the local static kernel fxc is given. Calculations are performed on a 4x4x4 Γ-centered
k-grid with 20 frequencies, 10 Ry energy cutoff for the dielectric matrix, 300 bands and
n=8 iterations in the Hedin self-consistent Pentagon for ice, and on a 2x2x2 k-grid with 20
frequencies, 8 Ry dielectric cutoff, 400 bands and n=8 for the 27-water box. The given ice
gap reference value was measured for hexagonal ice. All numbers are given in eV.

Ice (HIRSCH-I) Liquid H2O

PBE 5.79 5.25
G0W0 8.81 8.21
GnWn(Energy-only) 10.76 9.77
fxc -0.93 -0.85
NQE —— -0.7 [32]
el-ph -0.23 -0.19
exp. 9.7 [33] 8.7 [34]

3.5 GW self-consistency and vertex effects

In this section, electron-electron many-body contributions to the electronic band gap are

analysed in a self-consistent manner. In particular, the effect of vertec corrections approx-

imated by exchange-correlation kernel fxc is shown. The electronic band gap of ice and

liquid water was in recent years subject to high level many-body calculations in its non-self

consistent G0W0 implementation [23–25] (see section 3.1).

As shown in Table 3.5. the G0W0 method considerably increases the Kohn-Sham DFT gap

of ice from 5.79 to 8.81 eV. Energy-update in G and W further increases the gap by about

2 eV. The effect of wave function update in G and W is a -4 meV reduction of the gap, and

hence negligible. In contrary to the self-consistency (SC) effects, the vertex correction fxc

reduces the gap by -0.93 eV, and hence SC effect is nearly halved by strong vertex effects.

However, the GnWn approach can be regarded as an already vertex-corrected approach in

an implicit manner, since in this approach the errors associated with the neglect of the

off-diagonal elements in the self-energy Σ, the Green’s function G and update of the wave

functions (or in other words neglect of FULL sc-GW effects) are cancelled out by the errors

associated with the neglect of higher-order diagrams in the self-energy and polarizability

P to a high degree. Therefore, the vertex mediated gap reduction of -0.93 eV within the

fxc approximation causes a vertex double counting problem, if it is added to an approach

which already intrinsically contains vertex effects. Other self-consistent approaches such as

Quasi-Particle Self-Consistent [35] (QSGW) may also have to some degrees vertex-corrected

character, but probably to a lesser extent than GnWn, since QSGW and fully self-consistent
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GW (sc-GW) produce nearly the same results for large band gap insulators.

The implicit vertex character of QSGW stems from the fact that the Z factor is can-

celled out in order to avoid spectral weight transfer to the incoherent part of the Green’s

function (effective vertex simulation) [35]. The fxc approximation combined with QSGW

was applied by Shishkin et al. [36] to a number of semi-conductors and insulators producing

promising results; however the success of QSGW + fxc approximation also relies to some

extent on simplifications and hence error compensations, as for instance in QSGW the

Quasi-Particle-approximation is used and vertex corrections are not included in the self-

energy. Grüneis et al. [37] included second-order exchange diagrams for the vertex function

in the self-energy (to reduce self-interaction and restore the antisymmetry of the many-body

electron wave function), resulting in an increase of the band gaps of semi-conductors and

insulators with respect to the experimental references, worsening the agreement. Further,

inclusion of vertex corrections in the self-energy and W with a dynamic or static W can

cause either a reduction or an increase of the gaps, respectively.

Unfortunately due to immense complexity of the vertex contributions there is no definite

answer to the question of how to treat vertices properly. What can be said unambiguously

is that the present local fxc approximation to the vertex function in W results in a large

vertex mediated band gap correction, and consequently to a large decrease of the gap, if it

is added to the energy-only GnWn approach which through fortuitous error compensations

already accounts for vertex effects.

In the case of liquid water, self-consistency effects cause a gap increase of about 1.6 eV,

which is smaller than for ice. Moreover, the self-consistent vertex contributions within the

fxc approximation lead to gap reduction by -0.85 eV, and therefore the self-consistency

effect is nearly halved by fxc. Now the inclusion of nuclear quantum effects (NQEs) con-

siderably reduces the gap by up to -0.7 eV [32], which in summary would lead to a band

gap of 8.22 eV, almost 0.5 eV smaller than the experimental value.

The energy-only self-consistent liquid water gap of 9.77 eV on classical water structures

is not consistent with the result of Chen et al. [32] of 10.5 eV, obtained with QSGW.

The large discrepancy of about 0.7 eV between the two methods is indicative that GnWn

contains implicitly much more vertex character than QSGW. Therefore, addition of fxc to

GnWn simply overcounts the vertex effect. Consequently, the fxc should be added to a

self-consistent approach which either has no or less vertex character to avoid biased results.

As a final point regarding vertex corrections, it is mentioned that the present vertex result

of -0.85 eV on the 8-water box is comparable to the result of Chen [32] of -0.9 eV for a
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32-water box.

Recently, Kutepov [38, 39] presented a fully diagrammatic (in principle exact) approach

avoiding the Quasi-Particle approximation in the Green’s function, and most importantly

the problem of vertex double counting. In his approach Hedin’s equations are solved exactly

and self-consistently, with inclusion of vertex corrections both in the self-energy and W ,

together with full capture of frequency dependency of the dynamical screened interaction

W , obtaining promising results for the band gaps of a number of semi-conductors and in-

sulators without relying on error compensations.

There are also other important effects impacting the gap which are briefly mentioned.

In the case of liquid water finite size and nuclear quantum effects (NQEs) are neglected in

DFT-based simulations, as this study is primarily concerned with the intrinsic many-body

electron-phonon and electron-electron effects. However, it was shown in Chapter 3 that

finite size effects are negligible based on a comparison between the gap of 27- and 64-water

box. Hence the convergence is reached using a 27-water box [25]. This strongly indicates

that the electronic band gap of water is rather a local quantity, and its renormalization with

respect to the size of the box stems mostly from the nearst and next nearst water molecules.

Regarding NQE, Del Ben et al. [40] based on the approximated (accelerated) Path-Integral

Molecular Dynamics (PIMD) on top of hybrid density functional, estimated the effect of

proton delocalization to -0.6 eV decrease in the electronic band gap. A similar result, i.e.

a gap reduction by -0.7 eV, also based on boosted PIMD but on top of G0W0 was found

by Chen et al. However, comparison of our G0W0 calculations on the 27-water box based

on the structures obtained from ab-initio BOMD at 300 K and 390 K (simulating the ex-

perimental structure of liquid water at 300 K; the so-called temperature trick [24]) show a

gap reduction of only -0.2 eV. This indicates that the thermal effects can not fully account

for quantum fluctuations by a simple temperature increase in molecular dynamics.

Further, the impact of NQE is starting point energy or in other words starting point ex-

change dependent, as NQE increases in 0.1 eV steps from Kohn-Sham PBE to hybrid-DFT

(PBE0) to GW (i.e. a gap correction by -0.5, -0.6, -0.7 eV, as found by Del Ben and Chen).

The NQE of ice-Ih is presently not known; however a zero-point correction of about -0.7 to

-1.0 eV with the full energly-only self-consistent scheme would produce an experimentally

consistent band gap. It should be mentioned that the self-consistency and vertex effects

are independent of NQE, and hence these effects are solely intrinsic.

To summarize the contributing effects to the band gap : if one ignores the contributions of

fxc for the vertex function in order to avoid vertex double counting, and subtract the nuclear
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quantum and electron-phonon effects from the GnWn gap, one ends up with a final liquid

water band gap of 8.9 eV in good quantitative agreement with the experimental gap of 8.7

eV. Therefore, the GnWn approach makes explicit calculation of vertex correction in the

self-energy and W unnecessary. This could be of enormous importance for computational

efficiency when calculating large liquid boxes.

Conclusions

The importance of dynamic effects arising from Fan self-energy was shown for the accurate

calculation of the el-ph mediated gap correction in ice with implications to other hydrogen-

rich molecular systems. Assessment of dynamical effects is of particular importance as

otherwise static el-ph gap corrections are overestimated for ice, and consequently the cor-

responding peaks in the optical absorption spectra building upon the el-ph mediated QP

energies suffer a tremendous artificial red-shift. Furthermore, for liquid water static el-ph

effects lead to considerably smaller gap corrections, and further inclusion of dynamical ef-

fects only slightly reduce the gap correction. This is because of ineffective electron-lattice

vibration coupling due to disordered structure of water. Furthermore, in both systems the

phonon modes of the CB states up to 200 meV are the driving force for el-ph gap reduction.

Further checks on solid ammonia and on molecular systems (not shown here) revealed

that the dynamical structure of the self-energy indeed has a strong impact on the static

el-ph band gap corrections, hence the presented result on crystalline ice gap is general in

nature. Also Antonius et al [4] found a large impact of dynamic el-ph coupling by -50% on

the gap of LiF and MgO, indicating that frequency dependency of the self-energy should

not be neglected even in solids.

It was further demonstrated that the energy-only self-consistency in G and W (as expected)

increases the G0W0 gap of ice and water by 2 eV and 1.6 eV, respectively. Furthermore,

the approximated vertex correction by fxc in W for the GnWn approach causes a vertex

double counting problem leading to an overestimation of gap reduction.
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Chapter 4

Non-linear optics from a real-time

ab-initio many-body approach

Introduction

The ab-initio Green’s function theory presented in Chapter 2 proved to be a powerful and re-

liable method for calculations of linear response optical properties beyond the independent-

particle approximation (IPA). The ab-initio Green’s function approach accounts for impor-

tant many-body effects, such as single-particle and excitonic effects through the self-energy

and its derivative with respect to the Green’s function. However, in contrast to the linear

response Green’s function theory, the inclusion of many-body effects for non-linear optical

susceptibilities in the frequency-domain turns out to be an extremely difficult and chal-

lenging task, as the complexity of the corresponding non-linear expressions grows with

increasing perturbation order. In order to reduce computational complexity introduced by

higher-order non-linear expressions, a time-domain based approach is used [2–8], instead of

operating in the usual frequency-domain (like in the standard GW/BSE approach discussed

in Chapters 3).

In this time-domain approach the non-linear susceptibility is obtained from the dynamical

polarization P of the system which is expanded in powers of the external field ε :

P = χ(1)ε1 + χ(2)ε2 + χ(3)ε3 + . . . (4.1)

This domain transformation enormously simplifies the complexity allowing for an efficient

calculation of non-linear optical spectra because of the following major advantages : (i)

Crucial many-body effects can be easily taken into account by adding the corresponding

operator to the effective Hamiltonian. (ii) The time-domain approach is not perturbative,

meaning that the non-linear susceptibilities can be calculated on any external field order

without increasing the computational cost.
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However, one major problem still remains for both frequency and real-time based ap-

proaches. That is the correct definition of the position operator (length gauge) within

the Born-von-Kàrmàn periodic boundary condition (PBC) for calculation of dipole matrix

elements between the periodic part of the Bloch functions. A correct definition of the po-

sition operator within PBC was introduced by means of the geometric Berry phase in the

modern theory of polarization [8]. This definition is used in the following.

To better understand this ab-initio real-time approach, in the following the fundamental

equations are presented, and further the non-linear two-photon absorption spectrum of

liquid water is shown, demonstrating the reliability of the real-time approach in predicting

the experimental two-photon spectrum, and hence in general the non-linear phenomena.

4.1 Theoretical background

In the time-domain approach, a set of coupled one-particle effective time-dependent Schrödinger

equations is solved :

i~
d

dt
|vmk〉 =

(
Hsys
k + iε . ∂k

)
|vmk〉 (4.2)

where |vmk〉 is the periodic part of the time-dependent Bloch functions, determining the sys-

tem polarization, Hsys
k stands for the system Hamiltonian, and ε . ∂k describes the coupling

with the external field ε in the dipole approximation. This coupling is gauge invariant and

takes the form of a k-derivative ∂k, since Born-von-Kàrmàn periodic boundary conditions

are imposed.

By integrating Eq. (4.2), and from |vmk〉, the time-dependent polarization of the system

P|| along the lattice vector a is calculated as:

P|| = −
ef |a|
2πΩc

= log

Nk−1∏
i=k

detS(k, k + q) (4.3)

where S(k, k + q) is the overlap matrix between the valence states |vnk〉 and |vmk+q〉, Ωc is

the unit cell volume, f is the spin degeneracy, Nk is the number of k points along the po-

larization direction, and q = 2π/(Nka). In Eq. (4.2) the system Hamiltonian incorporates

different levels of approximation such as the following:

1) The independent-particle approximation:

H IP
k ≡ HKS

k (4.4)

where HKS
k is the unperturbed KS Hamiltonian.

93



4.1. Theoretical background

2) The QP approximation:

HQP
k ≡ HKS

k + ∆Hk (4.5)

where a scissor operator shift ∆Hk is added to the KS Hamiltonian, estimated from the

many-body perturbation theory in order to account for QP effects.

3) The full GW+BSE approximation:

HGW+BSE
k ≡ HKS

k + ∆Hk + Vh(r)[∆ρ] + ΣSEX [∆γ] (4.6)

where Vh(r) is the time-dependent Hartree term as a functional of density variation:

∆ρ ≡ ρ(r; t)− ρ(r; t = 0) (4.7)

The Hartree term describes the local-field effects arising from inhomogenities in crystal

densities. ΣSEX term is the screened exchange self-energy and accounts for the electron-

hole effects (as known from the BSE in chapters 2 and 3). It is a functional of the variation

of the density matrix induced by the external field ε. ∆γ is given as:

∆γ ≡ γ(r, r
′
; t)− γ(r, r

′
; t = 0) (4.8)

The terms beyond the KS Hamiltonian describe correlation effects impacting the non-linear

spectra. It should be noted that in the limit of small perturbation Eq. (4.6) reproduces

the standard GW + BSE optical absorption spectra. A schematic representation of the

workflow of non-linear calculations is illustrated in Fig. 4.1 for a visual understanding.
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Figure 4.1: A real-time flowchart for ab-initio non-linear optical susceptibilities of periodic
systems is shown. First, KS-DFT and QP energies are calculated. Then the effective
one-particle Schrödinger equation is integrated in the time intervall [Ω1,Ω2] for a small
time step ∆t to obtain the eigenvectors. Then, the overlap matrix S is constructed which
further corresponds to polarization P (t). The non-linear properties are then obtained in
post-processing by Fourier-transformation of P (t). Figure adopted from Ref. [8].
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4.2 Two-photon absorption spectrum of liquid H2O

Abstract

The two-photon absorption spectrum of liquid water is calculated using an ab-initio many-

body real-time approach. Correlation effects, such as single-particle and excitonic effects

are included, with the latter showing notable impact both on the structure and the peak

positions of the two-photon spectrum. A broad absorption band at 10.0 eV is obtained, in

excellent agreement with the experimental reference [1].

Introduction

The two-photon absorption (TPA) was first predicted by Göppert-Mayer in 1931 in her

doctoral thesis. Thirty years later by invention of the laser the first experimental confir-

mation of the TPA was reported when two-photon-excited fluorescence was detected in a

europium-doped crystal [13,14].

TPA is a non-linear phenomenon which is related to the imaginary part of the third-order

non-linear susceptibility. TPA follows different selection rules than one-photon absorption

(1-PA). This stems from the fact that photons have spin of ±1, therefore, one-photon ab-

sorption involves an electron changing its molecular orbital by an angular momentum of ±1,

while two-photon absorption requires a change of +2, 0, or -2, because of the involvement

of two simultaneously incoming photons each of which with spin ±1.

Since TPA is a third-order optical process and hence quite weak, a very high laser field

intensity is required in order to realize a much faster increase of the strength of the interac-

tion with the electric field of the light than in the linear process. Here for liquid water, the

field intensity is set to 100000 kWL/m2 in the calculations to simulate the experimental

condition, and a monochromatic light with an energy of 6.2 eV is chosen to calculate the

non-linear response.

Technical details

In the following the two-photon absorption spectrum of liquid water is calculated both at

independent-particle with QP-energies and excitonic level. A ground-state calculation is

performed with a density cutoff of 400 Ry using QUANTUM ESPRESSO [11], and the QP-

energies are calculated within the frequency-dependent Green’s function formalism using

YAMBO [12]. In order to integrate Eq. (4.2), a polarization simulation is run for a time

interval of 60 fs using the numerical approach described in Refs. [9, 10], with a time step

of ∆t = 0.01 fs which guarantees numerically stable and sufficiently accurate simulations.
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Figure 4.2: The calculated two-photon absorption spectra of liquid water (27-water box)
based on the IP + G0W0, IP + GnWn, G0W0 + BSE, and GnWn + BSE methods are
shown. A broad main peak at about 10 eV (fully consistent with the experimental reference
(black tile)) followed by a shoulder at about 12 eV is observed based on the GnWn + BSE
method. 64 (un)occupied bands are used as transition bands to achieve convergence for
spectral weights.

A dephasing of 0.4 eV is used to simulate the experimental finite broadening. Simulation

of time-dependent polarization is performed using LUMEN [8] which is a subprogram of

YAMBO.

Correlation effects on non-linear spectrum

The effect of correlation on the TPA spectrum of water is analysed. The correlation terms

included in the calculation of the TPA spectrum of water are listed as follows:

i) IPA + QP; ii) IPA + QP + BSE (excitonic effects)

The TPA spectra of the 27-water system averaged over only 5 configurations are shown

in Fig. 4.2 within the independent-particle approximation with QP-energies, and screened

exchange effects or equivalently excitonic effects (BSE). As can be seen, the IP@G0W0 and

IP@GnWn methods overestimate the experimental broad band at 10.0 eV by 0.4 and 1.4

eV, respectively. Only if the excitonic effects are explicitly taken into account in combina-

tion with update of QP-energies in G and W , a quantitative agreement is reached with the

experimental reference measured by Elles et al. [1] at 10.0 eV (the experimental spectrum

was measured only between 8 and 10 eV). This underlines the fact that as for the linear
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spectrum of water where excitonic correlations (coupled motion of electron-hole pairs) are

of extreme importance for a quantitative description of the spectrum, such a two-particle

correlation is important for the 3-order excitation (TPA) as well, altering weight distribu-

tions and peak positions.

An interesting point is that unlike the linear spectrum of liquid water where BSE on top of

the G0W0 QP-energies was sufficient to quantitatively describe the experimental spectrum,

for the non-linear spectrum, update of the QP energies (GnWn) is inevitable for an accurate

agreement with experiment, since the BSE@ G0W0 method underestimates the experimen-

tal absorption band by about 1 eV. The averaged band gap calculated for this set of five

water snapshots is 8.5 eV, and update of the QP energies results in a gap of 9.69 eV. This

gap increase of almost 1.2 eV is reflected in the non-linear spectrum as a rigid blue-shift

of the spectrum, improving considerably the agreement with the experimental reference in

combination with excitonic effects.

This change of ansatz from G0W0 to GnWn for QP-energies in case of liquid water might

be traced back to different selection rules required for non-linear spectra, i.e. excited states

contributing to the broad absorption band at 10.0 eV have different character than those

contributing in the first absorption band of the linear spectrum at 8.1 eV. In other words,

in the two-photon spectroscopy higher lying states are excited.

Conclusions

The non-linear two-photon absorption spectrum of liquid water was calculated using an ab-

initio many-body real-time approach which includes the single-particle and excitonic effects

through addition of the corresponding Hamiltonians. In TPA the absorption band at 10.0

eV is blue-shifted by 1.9 eV compared to the absorption band of the linear spectrum at 8.1

eV. This shift is attributed to different states at different energies which are excited during

two-photon excitation.

It was shown that the IP approximation with QP corrections overshoots the experimental

absorption band. Inclusion of screened exchange or excitonic effects with update of QP-

energies (BSE@GnWn) improves the spectrum remarkably compared to BSE@G0W0 spec-

trum, in which the absorption band is underestimated by about 1 eV. The TPA spectrum

is considerably affected by higher-order correlation (excitonic) effects and hence they have

to be explicitly taken into account in order to reach a quantitative agreement with exteri-

mental references. Therefore, the importance of excitonic effects are not only constrained

to the linear spectra but also to non-linear phenomena, altering weight distributions and

peak positions.
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Chapter 5

GW/BSE with localized basis sets

In this chapter, it will be shown how the so far applied many-body equations (GW and

BSE) translate, if finite basis sets are used.

The reason for the basis set change from the delocalized plane wave to the localized atom-

centered basis functions follows from the fact that for finite systems artificial interactions

with their periodic images become increasingly a problem. This hinders to calculate the

electronic and optical properties of atoms, molecules and clusters. The issue of artificial

interactions can not be solved by simply increasing the size of the simulation box, as the

electrostatic potental is long-range in nature, and the undesired effect increases with system

size.

Furthermore, such periodic box calculations with large amount of vacuum require a high

energy cutoff, i.e. a large number of G vectors, rendering the computations intractable,

even for small molecular systems. Beside this, parallel to the increase of box volume, the

GW and BSE parameters, such as number of unoccupied bands, cutoff of the dielectric ma-

trix, exchange components and unoccupied bands (due to increase of the number of empty

states upon increasing the volume) have to be accordingly scaled up, restricting massively

the range of applicability of GW/BSE theory due to very slow convergence.

Therefore, the only way to get rid of such plane wave related shortcomings is to represent

the self-consistent quantum field equations (Hedin equations) in terms of localized basis

functions [1].
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5.1 Theoretical background

5.1.1 Gaussian basis set

In both Hartree-Fock and Kohn-Sham theory one starts with a ground-state calculation

which gives access to the electronic structure of the system. To do so, one has to first find

a proper basis set representation for the wave functions. A good ansatz is to expand the

electronic wave function as linear combinations of atomic orbitals φµ :

ϕσn(r) =
∑
µ

Cσ
µnφµ(r) (5.1)

with φµ represented by linear combinations of Gaussian orbitals or ”contracted Gaussians”

given by :

φµ(r) = xlxlny lnz
∑
b

cbe
−αbr

2

(5.2)

Now in order to calculate the wavefunction’s coefficients Cσ introduced in Eq. (5.1), one

has to solve the non-linear Roothaan-Hall equations :

HσCσ = SCσεσ (5.3)

where S is the basis function overlap matrix :

Sµν =

∫
drφµ(r)φν(r) (5.4)

and H is the spin-dependent Hamiltonian, describing formally all interactions in the many-

body ensemble

Hσ
µν = Tµν + (Vext)µν + Jµν − αKσ

µν − (α− 1)(V σ
x )µν + (V σ

c )µν (5.5)

with the kinetic energy :

Tµν = −1

2

∫
dr lim

r′→r
φµ(r)∇2

r′
φν(r

′
) (5.6)

the external potential energy term :

(Vext)µν = −
∑
a

∫
drφµ(r)

Za
|r−Ra|

φν(r) (5.7)
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with Za, Ra and r as the charge and the position of the nuclei, and the electrons. Further,

the classical electrostatic interaction Jµν reads as :

Jµν =
∑
λτ

(µν|λτ)
∑
σ

P σ
λτ (5.8)

where P is the density matrix, constructed out of the coefficients of the expanded wave

functions :

P σ
µν =

∑
n

fσnC
σ
µnC

σ
νn (5.9)

with fσn as the occupation number, as well as the electron-electron repulsion integral in

Mulliken notation :

(µν|λτ) =

∫ ∫
drdr

′
φµ(r)φν(r)

1

|r− r′ |
φλ(r

′
)φτ (r

′
) (5.10)

The exchange interactions Kσ
µν

Kσ
µν =

∑
λτ

P σ
λτ (µλ|τν) (5.11)

And finally the exchange and correlation potentials Vx,c (in the case of DFT hybrid methods

[1]):

(V σ
x,c)µν = 〈µ| vx,c[nσ(r),∇rn

σ(r)] |ν〉 (5.12)

with the density and density gradient obtained from :

nσ(r) =
∑
µν

P σ
µνφµ(r)φν(r) (5.13)

∇rn
σ(r) =

∑
µν

P σ
µν∇r[φµ(r)φν(r)] (5.14)

The evaluation of the repulsion molecular integrals (written in Mulliken notation) is done

by using recursion formulas [2] as implemented e.g. in the libint library [3].

Furthermore, the integration in the exchange-correlation potential (Eq. 5.12) is performed

numerically by partitioning the space in smooth regions around each atom using Becke [4]

or SSF schemes [5] and then discretizing the space around each atom by a radial and an-

gular mesh [6, 7].

Finally, due to the non-linear nature of the eigenvalue equation (Eq. 5.3) (dependence

of the terms J , K, Vxc on the density matrix), the Roothaan-Hall equations are solved
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self-consistently to obtain the one-electron wave functions and energies.

Auxiliary basis set

The appearance of 4-center molecular integrals in Hartree and exchange terms poses a

great deal of difficulty in terms of computational efficiency and memory consummation for

evaluation of the molecular integrals. Therefore, auxiliary basis sets have been proposed

[8–10] to massively reduce the costs. This technique, also known as the resolution-of-the-

identity, replaces the 4-center molecular integrals in terms of the product of 2- and 3 center

integrals, as

(µν|λτ) ≈
∑
PQ

(µν|P )(P |Q)−1(Q|λτ) (5.15)

where the 3-center integrals read

(µν|P ) =

∫ ∫
drdr

′
φµ(r)φν(r)

1

|r− r′ |
φP (r

′
) (5.16)

and the 2-center integrals are

(P |Q) =

∫ ∫
drdr

′
φP (r)

1

|r− r′|
φQ(r

′
) (5.17)

The capital letters P and Q are the auxiliary basis indexes.

Due to the approximative nature of this technique, good auxiliary basis sets are required.

The basis sets proposed by Weigend [10] are of high accuracy for the evaluation of the

Hartree J and Fock exchange term K, and are frequently used in quantum chemistry,

known as ”RI-JK” approximation.

5.1.2 Polarizability in product basis

One of the most important ingredient in many-body perturbation theory is the dynamically

screened interaction W which appears in self-energy both within the random phase approx-

imation (RPA) and in BSE. In order to evaluate W , one needs to start from polarization.

As outlined in chapter 2 polarization in many-body perturbation theory is described by

the 4-point Green’s function equation. This non-linear equation is transformed into matrix

form in transition space [1] spanned by occupied and unoccupied orbitals (product basis) :(
A B

−B −A

)(
Xs

Y s

)
=

(
Xs

Y s

)
Ωs (5.18)

where Ωs are the neutral excitation energies and (Xs,Y s) are the corresponding eigenvectors
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The Eq. (5.18) is a general formulation of neutral excitations and includes all the related

theories such as RPA, TD-HF, TD-DFT and BSE, with the only difference being in the

specific expression of the matrix elements in A and B. The blocks specified as A and B

read :

Ajbσ
′

iaσ = (εσa − εσi )δijδabδσσ′ + (iaσ|jbσ′) + Ξjbσ
′

iaσ (5.19)

Bjbσ
′

iaσ = (iaσ|bjσ′) + Ξbjσ
′

iaσ (5.20)

where the operator Ξ stands for the kernel. In case of RPA, Ξ = 0. The integrals in Eq.

(5.19 and 5.20) are defined as :

(iaσ|jbσ′) =

∫ ∫
drdr

′
ϕσi (r)ϕσa(r)

1

|r− r′|
ϕσ
′

j (r
′
)ϕσ

′

b (r
′
) (5.21)

for which the resolution-of-the-identity approximation is used.

After some algebra [11], the Eq. (5.18) can be cast into a more compact form :

CZs = ZsΩ2
s (5.22)

where C = (A − B)1/2(A + B)(A − B)1/2 is a symmetric matrix with now the half of the

dimension of the initial equation. Further, from the knowledge of the eigenvector Zs, one

can recover Xs and Y s as :

Xs =
1

2

[
Ω−1/2
s (A−B)1/2 + Ω1/2

s (A−B)1/2

]
Zs (5.23)

Y s =
1

2

[
Ω−1/2
s (A−B)1/2 − Ω1/2

s (A−B)1/2

]
Zs (5.24)

Now, with the eigenvalues Ωs and the eigenvectors (Xs,Y s) obtained through diagonal-

ization of Eq. (5.22), the matrix multiplications in Eqs. (5.23 and 5.24), the spectral

representation of the polarizability and the screened Coulomb interaction, one arrives at

the final expression for W :

W opσ
′

mnσ = (mnσ|opσ′) +
∑
s

wsmnσw
s
opσ′

(
1

ω − Ωs + iη
− 1

ω + Ωs − iη

)
(5.25)

where the residues wsmnσ are defined as :

wsmnσ =
∑
iaσ′

(mnσ|iaσ′)(Xs
iaσ′

+ Y s
iaσ′

) (5.26)
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The first term on the r.h.s. of the Eq. (5.25) is the Fock exchange term, and the second

term refers to the dynamic correlation part.

5.1.3 GW self-energy

Based on the spectral decomposition of W (Eq. (5.25)) and the residuum theorem, the

GW self-energy can be calculated analytically, meaning that it is computed exactly at each

frequency point. The correlation part of the self-energy Σc (diagonal components) reads as

Σσ
c,nn =

∑
is

wsniσw
s
niσ

ω − εσi + Ωs − iη
+
∑
ms

wsnmσw
s
nmσ

ω − εσm + Ωs − iη
(5.27)

with the convention that index a runs over unoccupied orbitals and i runs over occupied

orbitals. Hedin’s static approximation to GW; ”Coulomb-hole plus screened exchange”

(COHSEX) as introduced in Chapter 2, can now be deduced from Eq. (5.27) by considering

the limit of Ωs � |ω − εσm| :

Σσ
c,nn = 2

∑
is

wsniσw
s
niσ

Ωs

−
∑
ms

wsnmσw
s
nmσ

Ωs

(5.28)

The first term in Eq. (5.28) is the screened exchange (a quantum contribution), whereas

the second one is the Coulomb hole which is a pure classical term, inducing a rigid energy

shift.

5.1.4 Excitation energies from BSE

Regarding optical excitations, BSE is a particular case of the polarizability equation written

in Eqs. (5.18,5.19,5.20). In the standard static BSE, the kernel Ξ reduces to

Ξjbσ
′

iaσ = −δσσ′W abσ
′

ijσ (ω = 0) (5.29)

with W (ω = 0) as the RPA screened Coulomb interaction evaluated at ω = 0. Because

W (ω = 0) is already calculated in the GW part, it can be reused for the BSE kernel Ξ by

plugging (5.25) into (5.29) :

Ξjbσ
′

iaσ = −δσσ′
[
(ijσ|abσ)− 2

∑
s

wsijσw
s
abσ

Ωs

]
(5.30)

After build up of the BS matrix and its diagonalization, one obtains the excitation energies

which can be directly compared with experiment. For instance, the photo-absorption cross
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section tensor σxx′ (ω) [73] is given as :

σxx′ (ω) = −4πω

c

∑
s

f sxf
s
x′

(
1

ω − Ωs + iη
− 1

ω + Ωs + iη

)
(5.31)

with the oscillator strength f sx :

f sx =
∑
iaσ

〈iσ|x̂|aσ〉 (Xs
iaσ + Y s

iaσ) (5.32)

The symbol x̂ is the position operator along the x direction in space.

In the limit of a complete basis set, the sum of the oscillator strengths equals the number

of electrons in the system (Reiche-Kuhne sum rule [11]).

After this practical introduction into the formulation of the GW/BSE theory within local-

ized basis set, in the following some crucial applications and performance of the methodology

are presented on large molecular systems with some thousands auxiliary basis functions,

and it is shown how this methodology manages to correctly predict excitation energies with

high accuracy in a fully parameter-free manner.
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5.2 GW/BSE approach on the vertical S1 energy of large

charge transfer compounds

Abstract

In this section, many-body perturbation theory is applied on large charge-transfer (CT)

complexes to assess its performance on the S1 excitation energy. Since the S1 energy of

CT compounds is strongly dependent on the Hartree-Fock exchange fraction in the ref-

erence density functional [1], MBPT opens an alternative way for reliable predictions to

hybrid TD-DFT. By starting from a (semi-)local reference functional and performing an

update of the Kohn-Sham (KS) energies in the Green’s function G while keeping dynamical

screened interaction W (ω) frozen to the mean-field level, it is possible to obtain accurate

S1 energies at slightly higher computational cost in comparison to TD-DFT. However, this

energy-only updating mechanism in G fails if the initial guess contains a fraction or 100%

HF exchange, and hence considerably inaccurate S1 energies are obtained. Furthermore,

eigenvalue updating both in G and W (ω) leads to overestimation of the S1 energy due to

enhanced underscreening of W (ω), independent of the (hybrid-)DFT starting orbitals. A

full energy-update on top of HF orbitals, even further overestimates the S1 energy. An addi-

tional update of KS wave functions within the Quasi-Particle Self-Consistent GW (QSGW)

deteriorates results. This is in contrast to the good results obtained from QSGW for pe-

riodic systems. For the sake of transferability, data of small critical non-charge transfer

systems are presented in the last part, confirming the outcomes of the CT-systems.

Introduction

The high relevance of donor-acceptor compounds for applications in organic photonics and

electronics requires theoretical methods with reliable prediction power for charge-transfer

(CT) excitation energies. Time-dependent density functional theory (TD-DFT) [17, 18] is

the most widely used theoretical tool for prediction of excited-state properties from small to

large molecules. However the calculated transition energies of CT compounds are heavily

dependent on the fraction of HF exchange in the underlying density functional. Therefore

a theoretical method is required that does not contain the HF exchange component as ad-

justable parameter. In recent years, MBPT [1–4,19] attracted much interest for calculation

of finite systems electronic and optical properties such as total energy, ionization potentials,

electron affinity and excitation energies [5–12,12,13,25,26]. It was shown that MBPT with

update of molecular orbital energies (known as eigenvalue self-consistency) diminishes the

aforementioned functional dependency in organic systems to a large degree [15]. Further-

more, this approach does not require correction concerning the long-range behavior of the

TD-DFT exchange functional, avoiding incorporation of further parameters as in range-
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separated density functionals.

Concerning CT-systems, Faber et al. [14] demonstrated the potential capabilities of GW/BSE

in targeting CT states in form of energy-only update of KS energies for small molecules,

leading to a remarkable improvement of excitation energies and correct level alignment.

In this chapter, the reliability and predictive power of the GW/BSE formalism is studied

in depth with respect to energy and wave function update both in the Green’s function G

and dynamically screened interaction W (ω) for large and critical CT complexes for which

sophisticated TD-DFT functionals such as CAM-B3LYP and LC-BLYP miserably fail to

predict correct S1 energies. Possible effects of self-consistency on the HOMO-LUMO gap

and S1 energy in dependence of reference starting points with and without HF-exchange

contribution are investigated. For the sake of transferability of results, the same method

within the same self-consistency variants is also applied on selected small molecules, water,

ammonia, hydrogen fluoride, phosphine and hydrogen sulfide, as their S1 energies show

quite large dependency on the amount of HF exchange.

This study involves thermally activated delayed fluorescence (TADF) materials as schemat-

ically depicted in Fig. 5.1 : 4,5-di (9H-carbazol-9-yl) phthalonitrile (2CzPN), phenoxazine-

2,4,6-triphenyl-1,3,5-triazine (PXZ-TRZ), and 2’,7’-bis (di-p-tolylamino)-9,9’-spirobifluorene-

2,7-dicarbonitrile (Spiro-CN). The TADF materials as emitters for fluorescence-based or-

ganic light-emitting diodes continue to attract interest because of their high exciton produc-

tion efficiency which is normally limited in simple fluorescent molecules [23,24]. TADFs are

known CT-systems with spatially separated highest occupied molecular orbital (HOMO)

and lowest unoccupied molecular orbital (LUMO). The S1 state energy of these compounds

calculated with TD-DFT shows a large dependency on the percentage of HF exchange [1].

The goal is to let GW/BSE find in an automatic and self-regulative manner the proper

amount of HF exchange to predict the correct S1 excitation energy from both HF exchange

free (LDA, PBE) and containing (PBE0, HF) starting points.

Technical details

All many-body calculations are performed using MOLGW [29, 30] on top of B3LYP [28]

optimized structures taken from Ref. 24. Results are given with respect to three starting

density functionals, namely LDA, PBE [29], PBE0 [30] and exact HF with aug-cc-pVDZ

basis sets [33] using the resolution of identity (RI) [31, 32] and frozen core approximation.

Basis set dependency of the excitation energy (S1) investigated for 2CzPN using aug-cc-

pVDZ and aug-cc-pVTZ basis sets shows a small increase of S1 energy of about 0.01 eV (Fig.

5.12 ), indicating that GW/BSE is not highly sensitive to the choice of basis set, as also
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Figure 5.1: HOMO and LUMO PBE orbitals of the TADF systems from up to down :
2CzPN, PXZ-TRZ and Spiro-CN.
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verified by Jacquemin et al. [15] for a large set of organic molecules with an average absolute

deviation of 0.017 eV between aug-cc-pVDZ and aug-cc-pVTZ. By applying the frozen core

approximation, the S1 energy is decreased by about 0.01 eV with respect to an all-electron

calculation in the case of 2CzPN. Therefore, semi-core and valence electrons are sufficient

to be taken into account, together with 300 virtual orbitals in G and W to guarantee

the convergence of HOMO-LUMO gaps within 50 meV accuracy. Furthermore, the pole

structure of the screened interaction W is captured by spectral representation, giving rise

to an analytic computation of the G0W0 self-energy at any frequency. The Quasi-Particle

equation is diagonalized exactly, and thus the usual perturbative treatment of QP energies

is avoided in order to reach a high level of accuracy. Concerning self-consistency, update of

the wave function is performed only for 2CzPN due to extremely high computational load.

Furthermore, the S1 energy is calculated in the limit of adiabatic (static) kernel for the

full Bethe-Salpeter matrix in the transition space, meaning that resonant and anti-resonant

contributions are mixed. The results of the small molecules are compared with equation of

motion coupled cluster singles and doubles (EOM-CCSD) using PSI4 [34].

Results and discussion

I. 2CzPN

The accuracy of the predicted S1 energy strongly depends on an accurate calculation of the

HOMO-LUMO gap [15,26]. As shown in Table 5.1, plain LDA severely underestimates the

gap (2.08 eV compared to the QSGW result 7.18 eV and the reference value of GnW0@PBE

(6.02 eV)). The non-iterative scheme of GW (G0W0) corrects the gap to 5.82 eV leading

to a S1 excitation energy of 2.84 eV (Table 5.2 and Fig. 5.2), with an acceptable error of

-0.35 eV with respect to the experimental reference (3.19 eV). However, with energy-update

in G while keeping W fixed to LDA, HOMO-LUMO gap is further improved and the S1

energy is now in much better agreement with the experimental data. The S1 state based

on BSE@GnW0@LDA is mainly a HOMO → LUMO transition with an amplitude of 0.69,

consistent with TD-DFT. Energy-update both in G and W makes the gap and the S1

energy largely independent of the (hybrid-)DFT starting points. However, the S1 energy

obtained from the full eigenvalue self-consistency on top of (hybrid-)DFT is considerably

overestimated due to underscreening of W . This overestimation at molecular level is consis-

tent with the results of Kresse et al. [35] for periodic systems, where electronic band gaps of

semiconductors are overestimated upon self-consistency in the Green’s function and W (ω).

Probably the most interesting reference point in view of a critical assessment of different

GW variants is HF, as it contains 100% exact exchange. The emerging question is whether

GW is able to regulate the exchange by screening through update of KS energies to a proper
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Table 5.1: HOMO-LUMO gaps of 2CzPN in eV obtained for different starting functionals
and self-consistency levels in GW.

method@ LDA PBE PBE0 HF

DFT/HF 2.08 2.12 3.70 8.74
G0W0 (n=0) 5.82 4.93 6.13 7.33
GnW0 (n=5) 5.97 6.02 6.37 7.26
GnWn (n=5) 6.51 6.55 6.61 7.09

QSGW 7.18 — — 7.17

Table 5.2: S1 excitation energies of 2CzPN in eV with aug-cc-pVDZ basis set. TD-DFT
results (1) are from Ref. 1.

BSE@ G0W0@LDA GnW0@LDA GnWn@LDA
S1 2.84 3.19 3.73

BSE@ G0W0@PBE GnW0@PBE GnWn@PBE
S1 2.14 3.23 3.77

BSE@ G0W0@PBE0 GnW0@PBE0 GnWn@PBE0
S1 3.28 3.52 3.77

BSE@ G0W0@HF GnW0@HF GnWn@HF
S1 4.40 4.33 4.14

TD-DFT@ CAM-B3LYP1 LC-BLYP1 LC-wPBE1

S1 3.68 4.35 4.23
TD-DFT@ PBE01 HSE061 EXP.1

S1 2.99 2.86 3.19
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Figure 5.2: S1 Vertical transition energy of 2CzPN in eV. The black line represents the
experimental reference [1].

amount suitable for CT description or not. As can be seen from Table 5.1, G0W0@HF dra-

matically overestimates the QP gap relative to GnW0@LDA, and performing eigenvalue

self-consistency (GnW0@HF and GnWn@HF) reduces the G0W0@HF QP gap only by 0.24

eV. Thus, the HF reference deteriorates the performance of the GnW0 and GnWn schemes,

and the updating mechanism is not capable of lowering HF starting point dependency. In

comparison to LDA, the increase of the QP gap from GnWn@LDA (6.51 eV) to GnWn@HF

(7.09 eV) is due to incorporated exchange, as for both, the screening is treated at the same

updating level. Further, as upon photo-excitation orbitals are relaxed, the effect of full self-

consistency is investigated, i.e. update of energies and wave functions both in G and W

within the Quasi-Particle Self-Consistent method (QSGW) to address possible inadequacies

incorporated by HF reference orbitals. According to Table 5.1, even an additional orbital

update fails to improve the (GnW0,GnWn)@HF results, and only a very small correction is

obtained. Performing QSGW on top of LDA again yields an overestimated QP gap with

respect to GnW0@PBE, very similar to QSGW@HF. This shows that QSGW is fully in-

dependent of the starting point. Interestingly GnWn@HF (7.09 eV) and QSGW (7.17 eV)

nearly give the same QP gaps. This suggests that HF and QSGW orbitals largely overlap,

and only a minor orbital modification is obtained with QSGW.
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The overestimated QSGW QP gap with respect to the GnW0@PBE method is however a

surprising finding as for periodic systems the deficiencies of the traditional self-consistent

GW (sc-GW) are eliminated by introduction of a new kind of self-consistency (QSGW) [36],

as otherwise sc-GW leads to underscreening of W (ω) in solids and hence to overestimation

of a range of quantities due to spectral weight transfer to the incoherent part of the Green’s

function [37]. Therefore, QSGW restores the typical behaviour of sc-GW observed for solids

in CT molecular systems. This further deteriorates the accuracy of excitation energies as

subsequent optical response calculations strongly depend on QP gaps.

As can be seen from the calculated S1 energies compiled in Table 5.2, results in excel-

lent agreement with the experimental data are obtained from BSE@G0W0@PBE0 and

BSE@GnW0@(LDA,PBE) strategies. By contrast, BSE@GnWn@HF overestimates the S1

energy by about 1 eV. This means that the incorporated exchange in the underlying HF

orbitals can not be properly damped, neither by energy nor by wave function update in G

and W to obtain a QP gap similar to GnW0@LDA.

II. PXZ-TRZ

For PXZ-TRZ results concerning QP gaps and S1 energies are compiled in Tables 5.3 and

5.4. Again G0W0 improves the DFT HOMO-LUMO gap, and energy-update in G on top of

(semi-)local functionals opens the gap further to give a good basis for the subsequent BSE

calculations. Furthermore, a full eigenvalue self-consistency largely decreases the (hybrid-

)DFT dependency of QP gap and S1 energy. However, GnWn@(LDA,PBE,PBE0,HF) con-

sistently overestimate the GnW0@LDA QP gap and consequently the S1 energy.

The exchange effect in PXZ-TRZ shown by the difference between GnWn@LDA (5.66 eV)

and GnWn@HF (6.44 eV) QP gaps is about 0.8 eV, much larger than 2CzPN, both re-

sults leading to overestimated S1 energies. Again best S1 predictions are obtained from

BSE@G0W0@PBE0 and BSE@GnW0@(LDA,PBE). The S1 state based on BSE@GnW0@LDA

mainly consists of HOMO→ LUMO and HOMO→ LUMO + 2 transitions with amplitudes

of 0.66 and 0.16, respectively.
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Table 5.3: HOMO-LUMO gap of PXZ-TRZ in eV obtained for different starting functionals
and self-consistency levels in GW.

Method@ LDA PBE PBE0 HF

DFT/HF 1.20 1.27 2.94 7.94
G0W0 (n=0) 4.53 4.62 5.31 6.64
GnW0 (n=5) 5.09 5.15 5.53 6.56
GnWn (n=5) 5.66 5.71 5.81 6.44

Table 5.4: S1 excitation energies of PXZ-TRZ in eV with aug-cc-pVDZ basis set. TD-DFT
results (1) are from Ref. 1.

BSE@ G0W0@LDA GnW0@LDA GnWn@LDA
S1 2.13 2.66 3.26

BSE@ G0W0@PBE GnW0@PBE GnWn@PBE
S1 2.21 2.73 3.30

BSE@ G0W0@PBE0 GnW0@PBE0 GnWn@PBE0
S1 2.80 3.03 3.28

BSE@ G0W0@HF GnW0@HF GnWn@HF
S1 4.06 3.97 3.83

TD-DFT@ CAM-B3LYP1 LC-BLYP1 LC-wPBE1

S1 3.31 4.26 4.07
TD-DFT@ PBE01 HSE061 EXP.1

S1 2.31 2.09 2.73
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Figure 5.3: S1 Vertical transition energy of PXZ-PRZ in eV. The black line represents the
experimental reference [1].

III. Spiro-CN

For Spiro-CN (99 atoms), as compiled in Table 5.5, the energy-update in G does not result in

a further gap opening as G0W0@LDA and GnW0@LDA yield identical gaps. However, even

if the partial energy update has no effect on the QP gap in comparison to the non-iterative

GW, it still can change the level alignment and the number of contributing single-particle

orbitals to the excited state and thus modifying its character. The orbital composition of

S1 based on BSE@G0W0@LDA consists of HOMO→ LUMO + 3 and HOMO - 1→ LUMO

+ 6, with the transition weights of 0.67 and 0.16, respectively. However, the character of

S1 changes to HOMO → LUMO transition with an amplitude weight of 0.7 upon energy-

update in G (BSE@GnW0@LDA).

Starting from the HF reference, neither partial nor full eigenvalue self-consistency can re-

store the true nature of S1 which is a HOMO → LUMO charge transfer state, as pre-

dicted by the (advanced) TD-DFT functionals. The CT state of Spiro-CN based on

BSE@(G0W0,GnW0,GnWn)@HF is shifted from S1 towards higher lying singlet states. It

should be pointed out, that HOMO→ LUMO transition amplitudes obtained from GW/BSE

methodology on TADF systems are decreased relative to TD-DFT.
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Table 5.5: HOMO-LUMO gap of Spiro-CN in eV obtained for different starting functionals
and self-consistency levels in GW.

Method@ LDA PBE PBE0 HF

DFT/HF 1.17 1.22 2.71 7.35
G0W0 (n=0) 4.73 4.46 4.99 6.15
GnW0 (n=5) 4.73 4.78 5.17 6.07
GnWn (n=5) 5.24 5.28 5.42 5.96

Table 5.6: S1 excitation energies of Spiro-CN in eV using aug-cc-pVDZ basis set. TD-DFT
results (1) are from Ref. 1.

BSE@ G0W0@LDA GnW0@LDA GnWn@LDA
S1 2.37 2.65 3.16

BSE@ G0W0@PBE GnW0@PBE GnWn@PBE
S1 2.37 2.70 3.22

BSE@ G0W0@PBE0 GnW0@PBE0 GnWn@PBE0
S1 2.86 3.04 3.28

BSE@ G0W0@HF GnW0@HF GnWn@HF
S1 3.86 3.80 3.68

TD-DFT@ CAM-B3LYP1 LC-BLYP1 LC-wPBE1

S1 3.30 4.06 4.00
TD-DFT@ PBE01 HSE061 EXP.1

S1 2.21 2.01 2.69

Furthermore, the slight difference of about 0.05 eV in GnW0@LDA and GnW0@PBE QP

gaps is directly reflected in the difference of the corresponding S1 excitation energies of about

0.05 eV. Thus, this once again shows the importance of accurate calculation of QP energies.

A further interesting fact for the TADF systems discussed so far is that if the reference

starting functional is a (hybrid-)DFT, the S1 energy keeps increasing, whereas if it is HF, S1

energy decreases upon self-consistency. This is related to the fact that the initial screening

of HF is zero, and gets enhanced upon energy updating, whereas LDA screening is too

large, and gets weakened upon energy updating.
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Figure 5.4: Vertical transition energies of Spiro-CN in eV. The black line represents the
experimental reference [1].

Transferability

So far it is observed that the S1 excitation energy does depend on the underlying start-

ing point, as shown in the case of LDA and HF for TADF systems. To further check the

transferability of results, the same methodology is applied on small non-charge transfer

molecules to study S1 initial point dependency. Results for water, ammonia, hydrogen flu-

oride and phosphine are compiled in Table 5.7. For this set of molecules, deviations of S1

energies obtained from the full eigenvalue self-consistency between LDA and HF are up to

1.2 eV. Neither partial nor full eigenvalue self-consistency is capable of restoring orbital

independency. Independent of the type of the molecules under study (CT or non-CT),

one indeed observes a LDA and HF dependency of S1 energy within all GW flavors with a

system-dependent magnitude.

Furthermore, with respect to the reference method EOM-CCSD, the neutral excitation en-

ergies obtained with BSE@GnWn@(LDA,HF) are either under- or overestimated by about

0.5 eV, showing that the GW/BSE methodology fails to accurately predict the S1 energy

due to improper capturing of the screening structure at the various level of many-body

approximations. Even starting from G0W0@PBE0 which was a perfect strategy for TADF

systems is no remedy to address the S1 inaccuracy. Therefore, none of the presented strate-

119



5.2. GW/BSE approach on the vertical S1 energy of large charge transfer compounds

gies in Table 5.7 is capable of targeting the S1 energy, and hence performance of the various

variants of GW is found to be system-dependent.

Concerning updating of energies and orbitals both in G and W , as compiled in Table 5.8,

the first ionization potential (IP) is computed within QSGW, extracted simply as the neg-

ative of HOMO energy for eleven test molecules for which experimental data are available,

and further show the effect of larger and more flexible basis sets on IPs. This set of small

molecules was previously calculated by Kaplan and coworkers [38] with def2-TZVPP basis

sets.

In the present calculations the correlation consistent aug-cc-pVQZ basis sets were used,

starting from the same reference geometries. The different basis set leads to a mean abso-

lute error (MAE) of 0.17 eV relative to Kaplan’s data. With respect to the experimental

data, QSGW IPs observed again performs unsatisfactorily with a MAE of 0.41 eV as for

CT-systems. Further increase of the number of basis functions in the basis set still results

in slight changes. Therefore, in particular for small molecular systems, it is recommended

to use a large basis set for more precise results, as also found by Kaplan et al. Further,

the similarity of QSGW and GnWn@(LDA,HF) IPs results indicate only a slight modi-

fication of orbitals in QSGW, and hence orbital-update can be safely neglected for IPs.

Furthermore, based on QSGW IPs results, a strong evidence is observed for systematic

underscreening of W within the QSGW methodology in both non-CT and CT systems, in-

dependent of the starting point. The experimental IPs are best reproduced with a MAE of

0.14 eV using the GnW0@LDA strategy, while GnWn@(LDA,HF) and QSGW consistently

overestimate the experimental references, and do not represent an alternative for CCSD(T).

This perfectly underpins the transferability of the results obtained for the TADF systems,

where GnW0@LDA provided accurate QP gaps and S1 excitation energies. Interestingly,

full eigenvalue update makes IPs to a large degree independent of both (hybrid-) DFT and

HF starting points. By contrast, the full eigenvalue self-consistent QP gap discrepancy be-

tween (hybrid-)DFT and HF observed for the TADF systems stems mainly from the change

of absolute position of HOMO energy, whereas LUMO energies remain nearly unchanged

upon full eigenvalue self-consistency.

In summary, update of screening not necessarily leads to accurate IPs, QP gaps and exci-

tation energies, as it gives rise to underscreening of W in GnWn@(LDA,HF) and QSGW,

which is most probably a direct consequence of the RPA approximation to the polarization

function. It was shown by Shishkin and Kresse [16] that accounting for explicit vertex cor-

rections in the polarization function (beyond RPA) leads to a damping of the overestimated

sc-GW QP band gaps of semiconductors due to cancellation effects. However, the effectivity
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Table 5.7: S1 energies in eV calculated with aug-cc-pVQZ basis sets. Full eigenvalue self-
consistency largely diminishes initial (hybrid-)DFT orbital dependency, while S1 energy
still depends on HF orbitals, as for CT-systems, with a system-dependent magnitude.

H2O
EOM-CCSD(S1) 7.68

BSE@ G0W0@LDA GnW0@LDA GnWn@LDA
S1 5.78 6.58 7.14

BSE@ G0W0@PBE0 GnW0@PBE0 GnWn@PBE0
S1 6.40 6.76 7.09

BSE@ G0W0@HF GnW0@HF GnWn@HF
S1 8.27 8.23 8.18

NH3

EOM-CCSD(S1) 6.67
BSE@ G0W0@LDA GnW0@LDA GnWn@LDA

S1 5.07 5.78 6.21
BSE@ G0W0@PBE0 GnW0@PBE0 GnWn@PBE0

S1 5.66 5.97 6.23
BSE@ G0W0@HF GnW0@HF GnWn@HF

S1 7.27 7.25 7.22

HF
EOM-CCSD(S1) 10.51

BSE@ G0W0@LDA GnW0@LDA GnWn@LDA
S1 8.15 9.07 9.73

BSE@ G0W0@PBE0 GnW0@PBE0 GnWn@PBE0
S1 8.85 9.28 9.67

BSE@ G0W0@HF GnW0@HF GnWn@HF
S1 11.03 10.97 10.88

PH3

EOM-CCSD(S1) 6.23
BSE@ G0W0@LDA GnW0@LDA GnWn@LDA

S1 4.95 5.32 5.65
BSE@ G0W0@PBE0 GnW0@PBE0 GnWn@PBE0

S1 5.34 5.52 5.69
BSE@ G0W0@HF GnW0@HF GnWn@HF

S1 6.81 6.83 6.82
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Table 5.8: Ionization potentials of a set of small molecules. Performance of QSGW based
on aug-cc-pVQZ and def2-TZVPP basis sets is shown. For the sake of comparison, IPs
results with respect to partial and full eigenvalue self-consistency are also given. All results
are in eV. The superscripts (1) is from Ref. 40 with def2-TZVPP, (2) is this work with
aug-cc-PVQZ, and (3) is from Ref. 38 with def2-TZVPP. Experimental values are taken
from Ref. 38.

GnW0@LDA GnWn@LDA GnW0@HF GnWn@HF

H2 16.20 16.54 16.39 16.41
H2O 12.73 13.19 13.08 13.04
NH3 10.93 11.29 11.39 11.37
CH4 14.43 14.71 14.87 14.86
LiH 7.98 8.45 8.25 8.25
BF 11.00 11.22 11.48 11.48
N2 15.56 15.99 17.18 17.16
Na2 5.00 5.05 4.99 4.99
Li2 5.33 5.45 5.36 5.37

CO2 13.84 14.22 14.38 14.33
F2 15.68 16.25 16.11 16.03

GnW0@PBE0 GnWn@PBE0 GnW0@HSE06 GnWn@HSE06

H2 16.26 16.41 16.23 16.41
H2O 12.76 13.03 12.69 13.02
NH3 11.01 11.22 10.96 11.21
CH4 14.50 14.67 14.47 14.67
LiH 8.02 8.29 7.94 8.28
BF 11.13 11.24 11.09 11.24
N2 15.69 15.97 15.64 15.96
Na2 5.01 5.03 5.00 5.04
Li2 5.36 5.40 5.32 5.41

CO2 13.86 14.11 13.82 14.11
F2 15.64 16.00 15.59 15.99

∆CCSD(T)1 QSGW2 QSGW3 EXP.

H2 16.21 16.42 16.04 15.42
H2O 12.61 13.11 12.95 12.62
NH3 10.85 11.27 11.11 10.85
CH4 14.36 14.69 14.46 14.35
LiH 7.93 8.22 7.98 7.90
BF 11.14 11.30 11.17 11.00
N2 15.54 15.98 15.86 15.58
Na2 4.92 5.02 4.99 4.89
Li2 5.20 5.35 5.30 5.11

CO2 13.67 14.15 14.06 13.78
F2 15.46 16.23 15.91 15.70
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of compensation effects in molecular systems remains an issue for further investigations.

Conclusions

For the CT-systems many-body perturbation theory is a reliable alternative for TD-DFT,

however with some limitations which need to be taken into account. Upon update of orbital

energies in G while freezing W to the mean-field level, accurate S1 energies are obtained for

all the TADF systems independent from the content of HF exchange in the DFT-functional

as GW automatically is able to properly screen HF exchange upon energy updating in G.

This is a big advantage, as TD-DFT results strongly depend on the HF fraction. However,

this kind of partial self-regulation mechanism of GW is activated, when starting from a

(semi)-local reference functional. If the initial guess contains 100% exact HF exchange, a

deterioration of the accuracy of S1 energies upon partial self-consistent GW was observed.

Further, a full eigenvalue self-consistent GW on top of the (hybrid-)DFT starting points

gives rise to considerably overestimated S1 energies due to underscreening of W . In case of

GnWn@HF W screening gets moderately weaker, however the S1 energies are still overesti-

mated. This shows that the accuracy of this approach is very much (hybrid-)DFT and HF

initial guess dependent within all GW flavors.

With respect to additional wave function updating, QSGW deteriorates the QP gap rela-

tive to GnW0@LDA, however this is related to the underscreening of W and not to orbital

updating. Further, for the sake of transferability, application of MBPT on S1 energies of

small non-CT systems clearly demonstrated the limitation of GW/BSE in terms of starting

point dependency (DFT vs. HF) and accuracy. Application of QSGW on IPs showed that

it considerably lacks accuracy. Furthermore, similar QSGW and GnWn@(LDA,HF) IPs

suggest that update of wave function is of minor importance.

The recommended procedure for TADF or similar CT complexes is to start from a hybrid

functional with a single-shot GW or from a (semi-)local functional with energy-only updat-

ing in G while keeping W fixed to the mean-field starting guess.

As a final statement, it is pointed out that the partial self-consistent GW scheme on top

of GGA performs much better than the standalone long-range corrected DFT functionals

such as CAM-B3LYP, LC-BLYP which are generally considered to be ideally suited for

non-local excitations such as charge-transfer excitations.
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5.3. Visible and charge-transfer states of a large PBI-macrocycle complex

5.3 Visible and charge-transfer states of a large PBI-macrocycle

complex

Abstract

As pointed out in the previous section, reliable calculation of excited states of charge-

transfer (CT) compounds poses a major challenge to ab-initio methods, as the frequently

employed TD-DFT method massively relies on the underlying density functional, result-

ing in heavily HF exchange-dependent excited state energies. Instead the many-body

perturbation approach is applied to address the encountered unreliabilities and inconsis-

tencies of not optimally tuned (standard) TD-DFT regarding excited-state CT phenom-

ena, and results are presented concerning accurate vertical transition energies and correct

energetic ordering of the CT and the first visible singlet state of a recently synthesized

perylenebisimide-macrocycle complex. This is a large-scale application of quantum many-

body perturbation approach on a technologically relevant CT-system, demonstrating the

system size-independence of the high quality of many-body theory derived excitation en-

ergies. Furthermore, it is shown that an optimal tuning of the ωB97X hybrid functional

can well reproduce the many-body results, making TD-DFT a suitable choice but at the

expense of introduction of a range-separation parameter which needs to be optimally tuned.

Introduction

TD-DFT [17,18] as the most widely employed theoretical method for calculation of excited-

state phenomena is in general not well suited for CT-systems due to massive reliance of

its prediction power on the choice of the density functional, and hence on the amount of

incorporated HF exact exchange in the starting reference orbitals. Therefore, it is desirable

to perform calculations without such dependence. To this end, by using the many-body

perturbation approach described in the previous chapters [1–3, 6, 7, 10–16, 19, 26] on top of

LDA orbitals, one aims at accurate computation of singlet excited-state energies, the correct

energy ordering of the first bright S and dark CT state, and their separation energy, as the

relative energies of CT and S states determine the quantum efficiency of the photovoltaic

devices. The challenging compound under study is a recently synthesized donor-acceptor

hybrid macrocycle complex [17], as shown in Fig. 5.5 consisting of perylenebisimide (PBI)

units as electron accepting building block and a central phenylene-bithiophene macrocycle

as donor. The CT character of the hybrid PBI-macrocycle (294 atoms) was verified ex-

perimentally, as it showed no fluorescence upon de-excitation as a consequence of a rapid

electron transfer from the PBI to the macrocycle, representing a non-radiative pathway

towards the ground-state.
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5.3. Visible and charge-transfer states of a large PBI-macrocycle complex

Figure 5.5: Spatially separated LDA highest occupied (up) and lowest unoccupied (down)
molecular orbitals of the hybrid macrocycle complex consisting of 294 H, C, N, O, and S
atoms.

Technical details

For computation of excited states up to 11 eV a Gaussian basis set implementation of the

GW/BSE approach is employed using MOLGW [29, 30] with cc-pVDZ basis sets [33] and

resolution of identity [31, 32] starting from the B3LYP optimized structure. It was shown

by Jacquemin et al. [15] for a large set of medium-sized molecules that the GW and TD-

DFT methods are largely insensitive to the choice of basis set, as also verified here for the

large hybrid CT complex using SVP and TZVP basis sets with an error of 50 meV for the

first ten excitation energies (Fig. 5.12). Using a more flexible basis set (TZVP) improves

the excitation energies only slightly. Nevertheless, all TD-DFT calculations are performed

using TZVP basis sets; however due to massive increase in computational load and memory

usage, the smaller cc-PVDZ basis set is used for GW/BSE calculations. As shown in the

last section GW/BSE is only weakly basis set dependent when applied to large molecular

systems such as TADF, 2CzPn and PXZ-TRZ. It is noted that the cc-PVDZ basis set used

in GW/BSE gives rise to 11752 auxiliary basis functions (ABF) which is a remarkably

large number, while cc-PVTZ leads to 18226 ABFs, making GW/BSE calculations de-

facto intractable. As both the Green’s function G and dynamically screened interaction

W depend on the virtual orbitals, the virtual space is extended to 500 unoccupied orbitals

to ensure convergence of the QP HOMO-LUMO (H-L) gap within 1 meV accuracy. As

soon as the QP gap converges, no more change in excitation energies is observed. In
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5.3. Visible and charge-transfer states of a large PBI-macrocycle complex

Table 5.9: QP HOMO-LUMO gap convergence of the complex in eV in dependence of the
number of virtual orbitals based on GnW0@LDA (n=5).

Number of virtual orbitals : 300 400 500 600

GnW0@LDA 3.73 3.58 3.55 3.55

Table 5.9 the convergence of QP H-L gap with respect to the number of truncated virtual

orbitals is presented. As can be seen, convergence is reached at 500 orbitals, proving

that the dependency of GW/BSE on virtual orbitals is not critical, and rather moderate.
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Figure 5.6: Basis set dependency of the first
10 singlet excited states using SVP and TZVP
basis sets for CAM-B3LYP TD-DFT. The lines
are only guides to the eye.

As a further simplification deeper-lying

core electrons are excluded (frozen core

approximation) leaving excited-state en-

ergies unaffected within 0.02 eV as ob-

served in medium-size TADF molecules of

the previous section.

The self-energy is calculated analytically

through the spectral representation of W

and the residuum theorem, avoiding nu-

merical errors arising from improper cap-

turing of the frequency dependency of

the self-energy. Furthermore, the Quasi-

Particle equation is diagonalized exactly,

and thus the usual perturbative treatment

of QP energies is avoided in order to reach

an even higher level of accuracy, as accurate excited state energies massively rely upon ac-

curate relative QP energies.

BSE calculations are performed in the limit of adiabatic static kernel with mixing of res-

onant and anti-resonant contributions to the absorption spectrum, and thus avoiding the

frequently employed Tamm-Dancoff approximation (TDA) which neglects important cou-

pling of electron-hole pairs [23]. The TD-DFT calculations are carried out in solution

(dichloromethane) represented by the PCM [24] using Gaussian09 [25].
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Results and discussions

In Fig. 5.7 the performance of TD-DFT based on common GGAs, hybrid, (tuned) range-

separated hybrid functionals, and quantum many-body perturbation approach is examined

for the calculation of the lowest excitation energies. As expected, a strong dependence of

the energetic order of the CT state and the lowest singlet state (S) with large oscillator

strength from the kernel is observed.

As can be seen in Fig. 5.7, the GGA kernels strongly underestimate the CT state but give

reasonable agreement with the experimental S energy (first peak in Fig. 5.8). Global hybrid

functionals and short-range screened HSE06 [26,27] moderately reduce the CT-S difference

and provide good agreement for the absolute S position. According to BHLYP [28] with

50% HF-exchange, the energetic difference between CT and S states is small; however, it

overestimates the experimental excitation energy.

It was shown by Chai and Head-Gordon [20] that functionals with an asymptotically correct

potential are essential for a correct prediction of charge transfer with TD-DFT. Stein et

al. [21, 32] have shown that this is not a sufficient condition for a quantitative prediction,

but such prediction can be obtained if the range-separation parameter in a range-separated

hybrid functional is tuned from first principles based on the ionization potential theorem.

Their method has since been used successfully for the quantitative prediction of a vari-

ety of full and partial charge transfer energies [33–36]. To test the consistency of tuned

range-separated functionals, in particular the performance of TD-ωB97X on the macro-

cycle complex is studied. As expected and shown in Fig. 5.7, the results of TD-ωB97X

are parameter-dependent. Starting from the standard range-separation parameter µ = 0.3

Bohr−1 the excitation energies are inaccurate but the energy ordering is consistent with

CAM-B3LYP [29]. An optimal tuning of the range-separation parameter to µ = 0.1 Bohr−1

considerably improves the accuracy of the S energy toward the experimental reference [17]

compared to the larger separation values (µ = 0.3 , 0.2) and CAM-B3LYP. Interestingly,

state ordering remains consistent for all separation values.

Concerning many-body approaches, the non-self consistent variant (G0W0) predicts the

same energy ordering as range-separated functionals, giving a first visible S state at 1.81

eV (carrying large oscillator strength) but with a relatively large error of about 0.5 eV to

the experimental S energy and a CT state at 1.99 eV with a small energy difference to the S

state. However, the partial self-consistent variant (GnW0) further improves the excitation

energies upon updating of KS energies, giving again a visible S state located at 2.31 eV and

a nearby HOMO-LUMO CT state at 2.45 eV carrying a very small oscillator strength with

a tiny energy separation of 0.14 eV to the S state. These outcomes are consistent with the
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previously published results in the literature on performance of GW/BSE on CT state of

small molecular systems [27,37–39]

A full eigenvalue self-consistency both in G and W (GnWn) was not performed due to high

computational cost; however it is very likely that GnWn overestimates the excitation ener-

gies due to underscreening of W, as also found by Shishkin and Kresse for the band gap of

a large number of semi-conductors [41]. Thus, the typical behavior of G0W0 and GnW0 in

solids is observed in the large CT-system.

Concerning energy ordering, since the (tuned) range-separated functionals, the non- and

partially self-consistent GW/BSE yield consistent results, it is then likely that the visible

state (S1) has a lower energy than the HOMO-LUMO CT state.

The presented results again demonstrate that the many-body perturbation theory approach

is highly reliable in describing non-local CT phenomena, given the fact that the LDA func-

tional is the worst possible starting point. Apparently due to an effective error compensa-

tion. LDA orbitals turned out to be a much better starting point than HF orbitals [42].

In Fig. 5.8 the calculated absorption spectrum in gas-phase based on many-body approach

is presented. The first peak (S1) lies at 2.31 eV which is in remarkable agreement with

the experimentally visible S1 state at 2.33 eV in solution [17]. This shows that the S1

state is nearly insensitive to the environmental effects, as further checked with TD-CAM-

B3LYP due to lack of GW/BSE combined with the polarization continuum model (PCM)

in MOLGW. The change of the S energy introduced by the solvent effects was only 0.07 eV.

The peaks located at 2.52, 2.68 and 2.88 eV in the experimental spectrum are highly likely

vibronic in nature. This was checked by a TD-CAM-B3LYP calculation with and without

solvent effects, showing the vibronic origin of the corresponding states. By contrast, the

first peak at 2.31 eV and the double peaks at 3.19 and 3.57 eV in the calculated spectrum

are vertical states.

The key to the high accuracy of the many-body approach for the singlet and CT states is

to find in the following important facts : 1) the long-range Coulomb interaction is correctly

captured, avoiding artificial intruder states, 2) the initial LDA molecular orbital energies

are properly updated upon the one-particle self-consistent scheme [43]. 3) dynamical effects

(correlation) are accounted for through frequency dependency of self-energy giving rise to

correct state ordering. 4) Even though the self-energy is approximated by the product

of G and W , it however is capable of capturing the essential part of many-body physics
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of the system. 5) effective capture of vertex corrections in the polarization function by

GnW0 due to a fortunate effect cancellation. 6) appropriate treatment of excitonic effects

(electron-hole interactions) by a spatially non-local four-point kernel.

Conclusions

It is shown that many-body treatment of excited states including CT state as a non-local

excitation, is indeed an improvement over TD-DFT as it correctly reproduces the excita-

tion energies and level alignment of a large CT complex. The TD-ω-B97X method with

asymptotic correction and tuned range-separation parameter is also able to quantitatively

describe the S1 state but at the expense of parameter tuning. The separation parameter

ω can be either obtained in a semi-empirical way or from ab-initio computation based on

ionization potential.

The GW/BSE approach also suffers from problems, such as underscreening of W upon full

eigenvalue self-consistency, leading to overestimation of excitation energies or the depen-

dence from the initial orbitals.
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5.4 A many-body based screening ansatz for improvement

of excitation energies

Abstract

A simple many-body based screening mixing strategy is proposed to enhance the perfor-

mance of the BSE approach for prediction of excitation energies of molecular systems.

This strategy enables to closely reproduce results of highly correlated equation of motion

coupled cluster singles and doubles (EOM-CCSD) through optimal exploitation of can-

cellation effects. Wave function and one-particle energies are obtained from Hartree-Fock

(HF), and the screening is calculated with the LDA based random phase approximation

(RPA), denoted as W0-RPA@LDA with W0 as the dynamically screened interaction which

is built upon LDA wave functions and energies. This W0-RPA@LDA screening is used as

an initial screening for calculation of QP energies in the framework of G0W0@HF. The W0-

RPA@LDA screening is further injected into the BSE. By applying such an approach on a

set of 22 molecules for which the traditional GW/BSE approaches fail, a good agreement

with respect to EOM-CCSD references is observed. The reason for the observed good ac-

curacy of this mixing ansatz (scheme A) lies in an optimal damping of HF exchange effects

through the strong W0-RPA@LDA screening, leading to substantial decrease of typically

overestimated HF electronic gap, and hence to better excitation energies. Furthermore, a

second multi-screening ansatz (scheme B) is presented which is similar to scheme A with

the exception that now the W0-RPA@HF screening is used in the BSE in order to improve

the overestimated excitation energies of carbonyl sulfide (COS) and disilane (Si2H6). The

reason for improvement of the excitation energies in scheme B lies in the fact that W0-

RPA@HF screening is less effective (and weaker than W0-RPA@LDA) which gives rise to

stronger electron-hole effects in the BSE.

Introduction

As shown in the previous sections, application of GW/BSE on small molecular systems,

like molecular water or ammonia demonstrated its consistent failure to predict the correct

excitation energies regardless of the diverse strategies applied so far, such as full eigenvalue

self-consistency (ev-SC) in G and GW on top of DFT or HF initial orbitals [22,25]. Now in

order to enhance the accuracy of the GW/BSE approach, a simple straightforward screening

mixing scheme is proposed which considerably enhances the low quality of the excitation

energies obtained from the standard GW/BSE strategies in a fully ab-initio manner with-

out any empirical parameters.

To show the improved accuracy of the mixing scheme, results concerning the first five
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vertical single excitation energies (S1-S5) of 20 molecules are presented. The choice of

this particular set of molecules was motivated by the fact that the standard GW/BSE

method fails to predict the excitation energies of these systems. The consistency and

robustness of the proposed screening procedures are checked on the excited states of two

large biological systems for which recent EOM-CCSD calculations became possible due to

massive algorithmic improvements [24].

5.4.1 Screening mixing

In order to enhance the performance of GW/BSE, it is of utmost importance to adequately

increase the screening quality, as the entire theoretical building block of the many-body

perturbation approach is based upon screening. To this end, two mixing schemes are pro-

posed which involve the following steps :

Scheme A:

1) A W0-RPA screening based on LDA wave functions and energies (denoted as W0-

RPA@LDA) is generated. 2) The W0-RPA@LDA screening is further used as an initial

screening guess for W0 in G0W0@HF to obtain Hartree-Fock based G0W0 QP energies be-

ing now affected by W0-RPA@LDA screening. 3) The W0-RPA@LDA screening from step

1 is injected into the BSE and at the same time the G0W0@HF QP energies are read from

step 2 to proceed further with computation of excitation energies by solving the BS equation.

Because excitation energies strongly depend on accurate relative QP energies [26, 27], this

screening modified scheme gives rise to a reduced QP HOMO-LUMO gap serving as an im-

portant intermediate step enabling prediction of excitation energies with considerably better

accuracy. This scheme is denoted as BSE@G0W0@HF/LDA (scheme A), as G0W0@LDA

screening is injected into the G0W0@HF as initial screening and later into the BSE. The

flowchart of scheme A is shown in Fig. 5.9.

Scheme B:

It is exactly proceeded as in the steps 1) and 2) of scheme A, except in the step 3) a

new calculation is run to obtain the W0-RPA@HF screening which is then injected into the

BSE and with the G0W0@HF QP energies of step 2 of scheme A. In other words, in the

BSE part of scheme B, the W0-RPA@HF screening is used instead of the W0-RPA@LDA

screening. The flowchart of scheme B is shown in Fig. 5.10.
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Figure 5.9: The flowchart of scheme A is presented. The G0W0@HF QP energies and BSE
are both affected by W0-RPA@LDA screening.

Figure 5.10: The flowchart of scheme B is presented. The W0-RPA@LDA screening is
injected into G0W0@HF to obtain the QP energies affected by the W0-RPA@LDA screening,
whereas W0-RPA@HF screening is injected into the BSE to enhance the electron-hole effect
(excitonic red-shift).
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Technical details

The many-body calculations are performed using MOLGW [29,30] with frozen core approx-

imation and the resolution-of-the-identity [31, 32]. Depending on computational feasibility

whenever possible a flexible basis set (aug-cc-pVQZ) [33] is used for the EOM-CCSD and

GW/BSE calculations. Furthermore, as the Green’s function G and dynamically screened

interaction W strongly depend on the virtual orbitals, hence all unoccupied orbitals are

taken into account to fully ensure convergence of HOMO-LUMO QP gaps. As before,

the self-energy is calculated analytically through the spectral representation of W and the

residuum theorem. BSE calculations are performed in the limit of adiabatic static ker-

nel with mixing of resonant and anti-resonant contributions. Further all coupled cluster

calculations (EOM-CCSD) are performed using PSI4 [34].

5.4.2 Improved excitation energies

In Appendix B the results of full eigenvalue self-consistent scheme starting from HF orbitals

are presented along with the screening mixed ansatz of scheme A and EOM-CCSD for com-

parison. As can be seen, the standard method (BSE@GnWn@HF) overestimates the singlet

transition energies over the entire set of molecular systems by 0.2-0.6 eV on average, which

is large given the fact that the molecules are small and simple; however scheme A consid-

erably improves the excitation energies over a large range of energies for each molecule,

giving a satisfactory accuracy as presented in Fig 5.11. This underpins the finding that

W0-RPA@LDA screening used as initial screening for W in G0W0@HF optimally damps

and regulates the HF exchange effect on the QP energies. The standard GnWn@HF, as

expected, overestimates the HOMO-LUMO gaps (and hence the transition energies) due to

underscreening of W upon molecular energy updating.

For extreme cases, a better agreement to the EOM-CCSD excitation energies can be ob-

tained if one uses W0-RPA@LDA screening for W0 in G0W0@HF, but (in a new calculation)

W0-RPA@HF screening in the BSE (scheme B). The reason for the better agreement is that

the W0-RPA@HF screening is weaker than W0-RPA@LDA screening, and hence excitonic

effects are more effective, leading to a larger red-shift of excitation energies. This multi-

screening injection scheme is only an improvement if the scheme A still overestimates the

vertical energies, and hence by injection of W0-RPA@HF screening in the BSE, it is then

possible to achieve a further improvement in the BSE, and hence excitation energies.

For carbonyl sulfide (COS) and disilane (Si2H6) which have a large mean absolute er-

ror of excitation energies, the effect of injection of W0-RPA@LDA screening in GW and

W0-RPA@HF screening in the BSE is shown in Table 5.10, leading to a further considerable
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Figure 5.11: Average absolute error (over 5 singlet states) relative to EOM-CCSD for 20 ref-
erence molecules is given. Using W0-RPA@LDA screening as initial screening for G0W0@HF
considerably reduces the average absolute error over the entire set of molecules, in some
cases such as water pentamer and ammonia monomer errors are massively decreased. In
extreme cases such as Si2H6 and COS the error of scheme A is still considerable.

reduction of the absolute errors, and consequently to much better vertical transition ener-

gies. Similar results can also be obtained for other molecules with large excitation energy

errors. Therefore, the scheme B is best suited for the cases where the standard GW/BSE

approach extremely overestimates the excitation energies due to lack of a proper screening

description. This is for instance the case for COS and Si2H6.

5.4.3 Consistency and theoretical justification

The success of this ansatz is based on the fact that the traditional eigenvalue self-consistent

GW based on HF orbitals (denoted as GnWn@HF with n as the iteration number) overes-

timates the HOMO-LUMO QP gap and consequently the excitation energies. This over-

estimation is diminished by overscreening nature of the LDA functional in the presented

schemes A and B. Therefore, the obtained improvement from this screening mixing pro-

cedure is systematic because of the general overestimation of the QP gap by GnWn@HF

approach.

Regarding the screening itself, the choice of the LDA functional is justified by the fact

that its overscreening character is stronger than that of other functionals; however other
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Table 5.10: Screening mixing effects for scheme A and scheme B for the five lowest excited
states of COS and Si2H6.

BSE@ : GnWn@HF Scheme A Scheme B EOM-CCSD

COS (aug-cc-pVQZ)

S1 (1A2) 6.26 6.14 5.83 5.76
S2 (1A1) 6.51 6.38 6.09 5.83
S3 (2A2) 6.51 6.38 6.09 5.83
S4 (1B1) 8.19 7.93 7.84 7.53
S5 (1B2) 8.19 7.93 7.84 7.53

mean absolute error 0.64 0.45 0.24

Si2H6 (aug-cc-pVTZ)

S1 (1Ag) 8.21 7.84 7.74 7.63
S2 (1Au) 8.24 8.07 7.67 7.61
S3 (1Bu) 8.24 8.07 7.67 7.61
S4 (2Bu) 8.63 8.27 8.15 7.98
S5 (2Ag) 8.88 8.56 8.39 8.23

mean absolute error 0.62 0.35 0.11
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Figure 5.12: Basis set effect on the mean absolute errors. The absolute errors increase upon
basis set increase; however the relative absolute error nearly converges with aug-cc-pVTZ
and aug-cc-pVQZ.

functionals with a good overscreening grade can also be used.

Furthermore, this ansatz has no straightforward theoretical justification and relies purely

on cancellation effects; however one could connect the screening character of the LDA

functional with the terms from higher-order correlation diagrams (vertex terms), in the

exact theory. This is an important connection since the vertex terms in the screened

interaction W are computationally very time-consuming even for the smallest molecules,

and the present schemes (A and B) provide indeed a good alternative way of calculating

these higher-order correlation terms in a very simple and straightforward fashion.

5.4.4 Basis set effect

In this subsection, the basis effects are investigated on the mean absolute error accuracy

of BF and COS molecules of the standard GW/BSE approach and scheme A. As shown

in Fig. 5.12 the errors increase with increasing flexibility of the basis sets, and a basis set

convergence is obtained with aug-cc-pVQZ basis set. However, the relative mean absolute

error is nearly converged even for the less flexible aug-cc-pVTZ basis sets. Nevertheless,

the aug-cc-pVQZ basis sets were used whenever the EOM-CCSD calculations were still

computationally tractable.
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Table 5.11: HOMO-LUMO gaps of COS and Si2H6 at different levels of theory in eV. 10
iterations in the self-consistent Hedin-Pentagon (n=10) were performed to ensure conver-
gence of the QP gaps.

HF G0W0@HF GnWn@HF Scheme A

COS (aug-cc-pVQZ)

HOMO-LUMO QP gap 12.604 12.635 12.617 12.274

Si2H6 (aug-cc-pVTZ)

HOMO-LUMO QP gap 11.930 11.784 11.775 11.328

5.4.5 Renormalization effect in GW and BSE

In this subsection, the impact of screening in each calculation part (GW and BSE) is

outlined. As shown in Table 5.11, the W0-RPA@LDA screening reduces the QP gaps.

This is demonstrated by injecting of W0-RPA@LDA screening in G0W0@HF, renormalizing

considerably the HOMO-LUMO gap of COS and Si2H6 by 0.330 and 0.602 eV from HF,

respectively. By contrast, Wn-RPA@HF screening only moderately and hence insufficiently

damps the HOMO-LUMO HF gap, showing that W0-RPA@LDA is much stronger than Wn-

RPA@HF screening. Furthermore, in the BSE, one can either inject the W0-RPA@LDA

(scheme A) or W0-RPA@HF screening (scheme B) in the BSE.

5.4.6 Size extensivity

An interesting point is how the quality of excitation energies of the screening mixed

GW/BSE (scheme A) behaves upon increase of the number of identical molecules in a clus-

ter. As presented in Table B.1 and Fig. 5.13, the mean absolute error of G0W0@HF/LDA

relative to EOM-CCSD remains largely unaffected upon cluster size increase, and hence the

quality of the excitation energies based on the present screening ansatz does not degrade

for larger clusters. This is a good sign for the applicability of this ansatz on larger systems

for which wave function based methods are out of reach.

5.4.7 Screening effect on the BSE absorption spectra

The effect of W0-RPA@LDA screening in scheme A on the absorption spectra of water

monomer and dimer is calculated over large energy regimes. As can be seen in Fig. 5.14

injection of W0-RPA@LDA screening as in G0W0@HF results in a consistent red-shift of the
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Figure 5.13: Size extensivity of the accuracy of the screening mixed GW/BSE (scheme
A) versus BSE@GnWn@HF and EOM-CCSD is shown. Upon cluster size increase, the
accuracy of the first excitation energy S1 (optical gap) does not degrade.

entire water spectrum due to a consistent HOMO-LUMO QP gap reduction, leading to an

optimal damping of HF exchange effect in all energy ranges. This is also observed for larger

water clusters (pentamer and hexamer) and other smaller molecular systems. Furthermore,

the intensities of the BSE spectra are moderately reduced; however the spectral weight

distributions remain unaffected in all energy scales.

5.4.8 Application to large biological molecules

In this subsection, the many-body screening ansatz is applied on selected large molecular

systems for which both experimental and recent EOM-CCSD (bt-PNO-EOMEA-CCSD)

results [24] are available. The large systems are biological molecular species, namely, 11-

cis-retinal protonated Schiff base (with 156 electrons and 2202 auxiliary basis functions

(ABF)) and Chloropyll A (with 340 electrons and 4262 ABFs). The optimized molecular

geometries were obtained from Ref. 24. Here different variants of the GW/BSE methodol-

ogy are compared to demonstrate the screening effects and exhibit the consistency of the

screening injected results in comparison to the available experimental and most importantly

to the wave function based theoretical data. For both species aug-cc-pVDZ basis sets are

used with 400 virtual orbitals in G and W to ensure convergence of the excited-state ener-

gies within 50 meV accuracy.

As can be seen from Table 5.12, in the case of retinal the S1 energies of bt-PNO-EOMEA-

CCSD and scheme A are close, whereas for the S2 energy the deviation is larger. As of
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towards lower energies.
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Table 5.12: Excitation energies of the first two singlet states in eV based on
BSE@G0W0@HF, BSE@GnWn@HF, scheme A, and EOM-CCSD. Calculations were per-
formed with aug-cc-pVDZ basis sets.

BSE@ : G0W0@HF GnWn@HF Scheme A EOM-CCSD1 EXP2

11-cis-Retinal

S1 (1A) 2.42 2.23 1.86 1.80 2.03
S2 (2A) 3.79 3.57 2.80 3.30 3.18

Chloropyll A

S1 (1A) 2.18 2.01 1.98 1.70 1.9
S2 (2A) 2.76 2.55 2.33 2.37 —

BSE@GnWn@HF, the excitations energies are consistently overestimated which can be con-

sistently reduced using W0-RPA@LDA screening within scheme A.

In the case of chloropyll A, BSE@G0W0@HF overestimates the experimental S1 energy by

about 0.3 eV; however full update of the orbital energies in G and W (BSE@GnWn@HF)

improves the agreement. W0-RPA@LDA screening enhances the agreement only slightly.

However, with respect to the S2 energy, scheme A transition energy is in good agreement

with bt-PNO-EOMEA-CCSD, whereas BSE@G0W0@HF and BSE@GnWn@HF consider-

ably overestimate the S2 energy.

It must be noted that for larger systems EOM-CCSD and iterative GW schemes be-

come computationally intractable. Therefore, the presented non-iterative screening mixed

GW/BSE approaches (schemes A and B) provides a reliable alternative for computing

excited-state energies with a good accuracy at much lower cost from an exact self-interaction

free reference state (HF).
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5.4.9 Conclusions

It was shown that through injection of W0-RPA@LDA screening to G0W0@HF, one can

optimally reduce the overestimated HF and HF based QP gaps resulting in a consistent

and robust enhancement of the quality of excitation energies, since BSE@G0W0@HF and

BSE@GnWn@HF approach consistently overestimate the excitation energies. In extreme

cases such as COS and Si2H6, where the mean absolute error was large, it is possible to

enhance the performance by injecting W0-RPA@LDA screening into G0W0@HF in GW part

to obtain adequate QP energies and in the subsequent BSE step, W0-RPA@HF screening

is injected in the BS equation (scheme B) in order to increase the effect of excitonic red-shift.

The accuracy of screening mixed GW/BSE theory is consistent both in the low and high

energy regimes. Furthermore, within this screening scheme, introduction of any kind of

parameter as usually encountered for instance in the advanced TD-DFT is strictly avoided.

The screening mixing schemes A and B are -in particular with respect to large molecules-

computationally efficient, as they avoid update of W through molecular orbital energies

through the iterative self-consistent Hedin-Pentagon.

As a final important remark, the applicability and consistency of the proposed mixing

approach strongly relies on cancellation effects between HF exchange and overscreening

character of the LDA functional which are crucial for systematic improvement of excitation

energies. In general the calculations should be performed based on scheme A. For criti-

cal cases where excitation energies show large deviations from the experimental reference,

scheme B should be considered.
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Chapter 6

Ab-initio non-adiabatic excited-state

dynamics

In this chapter, the complex quantum dynamics of protons in the low-lying excited states of

liquid water is investigated. To this end, for a better understanding of the underlying theo-

retical methods a short review of the basic principles of ab-initio excited-state dynamics and

non-adiabatic couplings (NACs) is presented for studying time evolution of photo-excited

phenomena in chemical systems. Accordingly, the algorithmic procedures for excited-state

time evolution and NACs are derived and described. For further detailed information, in

particular with respect to derivation of the equations, the reader is encouraged to consult

the references [1–6].

6.1 Born-Oppenheimer approximation and non-adiabatic

couplings

One generally starts with a Hamiltonian that describes the physics of the system. The

electronic Hamiltonian is defined as :

Ĥe = V̂NN + T̂e + V̂Ne + V̂ee (6.1)

where V̂NN denotes the nuclear-nuclear repulsion, T̂e is the kinetic energy of the electrons,

V̂Ne denotes the attraction between nuclei and electrons, and V̂ee is the electron-electron

repulsion. Using Eq. (6.1) the time-independent Schrödinger eigenvalue problem reads as :

Ĥe(R, r)Φi(R, r) = Vi(R)Φi(R, r) (6.2)

whose solutions give the adiabatic electronic states Φi(R, r) and the eigenvalues Vi(R).

Here, R and r refer to the entire set of the nuclear and electronic coordinates, respec-
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6.1. Born-Oppenheimer approximation and non-adiabatic couplings

tively. By taking the nuclear kinetic degrees of freedom into account, one defines the total

Hamiltonian of the many-body system as :

Ĥ = T̂N + V̂NN + T̂e + V̂Ne + V̂ee (6.3)

upon which the time-independent eigenfunction of the many-body ensemble reads as :

Ψ(R, r) =
∑
i

Φi(R, r)χi(R) (6.4)

In Eq. (6.4) the total wave function is now separated and expanded in terms of a sum of

products of the electronic Φi(R, r) and nuclear eigenfunctions χi(R). This separation and

expansion is justified because i) the electronic and nuclear degrees of freedom are nearly

independent due to much smaller mass of the electrons relative to nuclear masses or in

other words the electrons instantly adjust to the change of nuclear coordinates, and ii) the

adiabatic states Φi(R, r) form a a complete orthogonal basis set, allowing for an expansion

of the total wave function.

Now by plugging Eq. (6.4) into the Schrödinger equation of the total system :

Ĥ(R, r)Ψ(R, r) = EΨ(R, r) (6.5)

and further multiplying by Φ∗j from the left and integrating over the electronic coordinates,

one obtains an equation :

[T̂N + Vj(R)]χj(R)−
∑
i

Λ̂jiχi(R) = Eχj(R) (6.6)

which can be used to determine the coefficients of χi(R) in the BO expansion [4].

The important aspect of Eq. (6.6) is that the dynamical correlation between the electronic

and nuclear motion is now downfolded into the non-adiabatic coupling term :

Λ̂ji = δjiT̂N − 〈Φj(R)|T̂N |Φi(R)〉 (6.7)

This can be further reformulated by using the usual expression for the kinetic nuclear

operator T̂N = − 1
2M
∇2

R, and the average nuclear mass M :

Λ̂ji =
1

2M
[2dji.∇R +Gji] (6.8)

with the first derivative non-adiabatic coupling vector dji defined as :

dji(R) = 〈Φj(R)|∇RΦi(R)〉 (6.9)
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6.1. Born-Oppenheimer approximation and non-adiabatic couplings

and the second derivative scalar non-adiabatic coupling term Gji given as :

Gji(R) = 〈Φj(R)|∇2
RΦi(R)〉 (6.10)

Now, if one simplifies Eq. (6.6) by setting Λ to zero, one obtains the original BO-adiabatic

equation :

[T̂N + V̂ (R)]χ(R) = Eχ(R) (6.11)

The validity of the BO adiabatic approximation can be checked by Eq. (6.8), since Λ is

inversely proportional to the nuclear mass M , meaning the larger the mass, the smaller the

non-adiabatic coupling, justifying the Λ = 0.

Semiclassical Non-Adiabatic Molecular Dynamics

Now, in order to be able to describe the evolution of the chemical system on an excited

surface, one solves the time-dependent Schrödinger equation :

ĤΨ(R, r, t) = i
∂

∂t
Ψ(R, r, t) (6.12)

However, due to high complexity of the full quantum solution of the system because of

explicit correlation between all the particles, one has to apply classical or semiclassical ap-

proximations to be able to efficiently describe the evolution in time.

In the classical molecular dynamics (MD) the nuclear degrees of freedom (DOF) are propa-

gated in time using Newton’s equation of motion. The shortcoming of the classical approach

is that bond breaking or chemical reactions are not captured by this description as the elec-

tronic DOFs are completely ignored. A much better alternative, in particular with respect

to time evolution of chemical reactions, is the semi-classical approximation where the total

system is divided into a classical and quantum part. The classical part represents the slow

DOFs, whereas the quantum part stands for the fast electronic DOFs.

One possibility for realization of such an ansatz is the Ehrenfest method with two central

equations :

F = MR̈ = −∇R 〈ψ|Ĥe|ψ〉 (6.13)

i
∂

∂t
Ψ(r, t) = ĤeΨ(r, t) (6.14)

with the first equation describes the nuclei propagation and the second equation treats

the electronic motion. However, the Ehrenfest method evolves the electronic DOFs into

superposition of adiabatic states :

156



6.1. Born-Oppenheimer approximation and non-adiabatic couplings

χ(R, r, t) =
∑
k

Ck(t)Φk(R, r) (6.15)

leading to unrealistic description of chemical reactions as unphysical nuclear forces are

obtained and hence incorrect trajectories are calculated. This problem is remedied by

recovering the BO approximation and propagating the system only in one adiabatic state

Φk. With this solution one might have a good description for a variety of systems, however

the non-adiabatic effects are still neglected.

Tully Surface Hopping

To adress this issue, the surface hopping (SH) method was developed. In SH, the slow

DOFs are always propagated on a pure adiabatic potential energy surface (PES), and at

the same time non-adiabatic effects are accounted for by allowing transitions between the

adiabatic states.

In order to obtain the SH equations, the ansatz (6.15) is substituted into the time-dependent

Schrödinger equation and with further manipulations [7], one arrives at a first-order differ-

ential equation for the expansion coefficients :

iĊk(t) =

Nadia∑
j=0

Cj(t)[Vkj − iṘ · dkj] (6.16)

with the sum truncated at Nadia adiabatic states. Furthermore, Vkj is given as the adia-

batic matrix element 〈Φk|Ĥ|Φj〉 whose diagonal elements represent the excitation energies

ωi. The excitation energies are derived from time-independent KS DFT methods, like

∆SCF or the restricted open shell KS (ROKS) approach [8]. However, these methods are

very approximative and restricted in performance due to assumptions that are in general

difficult to justify [9,10]. Therefore, in this work, instead time-dependent density functional

theory (TD-DFT) was employed which is a more appropriate ansatz for obtaining excita-

tion energies.

Equation (6.16) describes the evolution of the system under influence of the non-adiabatic

couplings as previously defined in Eq. (6.9). An interesting feature of Eq. (6.16) is that

only the first derivative of the coupling vectors enter the equation and the second derivative

scalar couplings as in Eq. (6.10) are avoided. This follows from the fact that the coefficients

Ci(t) only depend on time and not on nuclear coordinates in contrast to the χ(R, t) in the

BO expansion.

Now, with the equality σkj = Ṙ · dkj = 〈Φk| ∂∂tΦj〉, the NAC term in Eq. (6.16) can be
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directly approximated by finite differences :

σij|t+∆/2 =
1

2∆
[〈Φk(r; R(t))|Φj(r; R(t+ ∆))〉 − 〈Φk(r; R(t+ ∆))|Φj(r; R(t))〉] (6.17)

The coupling σij is computed at time steps t and t+ ∆ for the adiabatic states Φk and Φj.

Once the time-dependent coefficients and NACs are calculated, one proceeds further with

the SH formula developed by Tully [11] to compute probability transitions :

gk,j(t,∆) = max

(
0,−2

∫ t+∆

t

dτ
<Cj(τ)C∗k(τ)(Ṙ · dkj)(τ)

Cj(τ)C∗k(τ)

)
(6.18)

Eq. (6.18) is based on the fewest switches criterion between the electronic adiabatic states,

i.e. a way to minimize the number of the surface hops by maintaining correct statistical

distribution of the trajectories. According to (6.18), at each time step the probability is

evaluated and compared to a random number chosen from the interval θ ∈ [0, 1] by a Monte

Carlo algorithm. If θ > gk,j the system switches from adiabatic state k to j, and the forces

are evaluated for the new electronic state until another surface hop occurs.

Now, with the theoretical formulation of non-adiabatic excited-state (NAESD) dynamics

at hand, the next section describes the application of NAESD on a liquid water model

consisting of a 64-molecule box, in order to unravel the highly non-trivial proton dynamics

in excited states.
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6.2 Ultra-fast non-Grotthuss proton dynamics in the first

excited state of liquid H2O

Abstract

In this section, ultra-fast proton transfer (PT) is studied in the first singlet (S1) state of

liquid water (absorption onset) through excited-state dynamics by means of time-dependent

density functional theory (TD-DFT) and ab-initio Born-Oppenheimer molecular dynamics

(BOMD). It is found that after the initial excitation, a proton transfer occurs in S1 in form

of a rapid jump to a neighboring water molecule. There, the proton either may rest for a

relatively long period of time (as a consequence of a defect in the hydrogen bond network

(HBN)) followed by back and forth hops to its neighboring water molecule or it further

moves to the next water molecule accompanied by back and forth movements. In this way

the proton may become delocalized over a long water wire branch, followed again by back

and forth jumps or short localization on a water molecule for some fs. As a result, the

mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete.

Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated

electron. The spatial extent of the ejected solvated electron is mainly localized within

one solvent shell with overlappings on the nearest neighbor water molecules and diffuse

tails extending beyond the first solvent sphere. During the entire ultra short excited-state

dynamics the remaining OH radical from the initially excited water molecule exhibits an

extremely low mobility and is non-reactive.

6.2.1 Introduction

By the advent of femtosecond chemistry real-time tracking of ultra-fast processes in excited

states of chemical systems became accessible, allowing for exploring a rich scientific area of

unprecedented chemical and physical importance. In this regard, one of the most intensively

studied systems in almost every aspect is liquid water; however its excited-state dynamics

has been much less matter of theoretical investigations. The experimental measurements

confirm the occurrence of non-trivial excited-state processes at low and high energies for

which theoretical data based on fully quantum mechanical treatment is still lacking. There-

fore, in order to deepen the understanding, a qualitative but insightful theoretical investi-

gation of excited-state processes is performed using combined ab-initio techniques.

The vertical transition energy of bulk liquid water from valence to conduction band contin-

uum is reported at 11.1 eV at ambient temperature [12,13], meaning that at this energy and

above, the initially produced non-thermal conduction band electron and the valence band
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hole are formed by a direct photo-ionization process, such as the intermediate reaction:

H2O + nhν → eCB + H2O+ (6.19)

followed by further relaxation of the highly unstable H2O+, and hence a proton transfer to

a nearby water molecule according to :

H2O+ + H2O→ OH + H3O+ (6.20)

resulting in a thermalized hydrated electron, a hydronium cation and a hydroxyl radical.

However, the most striking point from excitation perspective is that such above-band-gap

processes with exactly the same final net products have also been observed experimentally

at energies far below the electronic band gap, extending to the optical absorption band edge

of water [14–16], indicating that below-band gap processes are possible through an explicit

involvement of solvent nuclear motions [17], as otherwise low-energy processes would have

not been energetically feasible. Currently two mechanisms are debated as the most rele-

vant candidates for below-band gap excitations, namely, proton-coupled electron transfer

(PCET) and hot hydrogen atom (HHA) mechanism [18–20,22,23].

PCET involves a proton transfer to a neighboring water molecule, as well as the injection

of an electron into a preformed solvent trap, stabilizing the excess charge, i.e. :

2 H2O + nhν → H2O∗ + H2O→ e−aq + H3O+ + OH (6.21)

while in HHA process, due to the dissociative character of the excited states of water

[22, 24], a translationally hot hydrogen atom according to : H2O∗ → H (hot) + OH with

a high kinetic energy is ejected which subsequently collides with a water molecule from its

surrounding, leading to formation of a hydrated electron, hydronium cation and hydroxyl

radical, i.e. :

H2O∗ → Hhot + OH
H2O−−→ e−aq + H3O+ + OH (6.22)

Both low-energy pathways (representing indirect ionisations) need a significant change of

water solvent network to produce the hydrated electron, serving as an important criterion

for the feasibility of the reactions. In both reactions (PCET or HHA) the same net products

are generated but on different pathways. Now, in order to find out which one of the reaction

candidates (PCET or HHA) is the most probable one, low-energy excited-state ultra-fast
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dynamics of liquid water is analysed in its first excited singlet state by means of a TD-DFT

approach combined with ab-initio Born-Oppenheimer Molecular Dynamics (BOMD) [25–29]

under periodic boundary conditions (PBC) using plane waves. Employing state-of-the-art

excited-state TD-DFT-BO dynamics paves the way to gain a deeper understanding of the

excited-state processes in condensed water and a fully parameter-free verification of the

spatial extension of spin density of the solvated electron formation, known as the ”mother

of all spin centers in chemistry” [18].

Technical Details

Imposing PBC is of utmost importance to avoid undesirable surface effects. Furthermore, a

plane wave description of the electronic wave function and density is used to ensure basis set

independence of the wave function and hence a reliable description of the solvated electron

spatial extension in the liquid, as for instance use of a localized basis set would artificially

localize the solvated electron in a particular region of the simulation cell.

Resolving the spatial extent of the solvated electron is of importance as it represents a long-

standing problem which has been a matter of controversial debates in literature [30–34].

Therefore, a full quantum mechanical treatment of the underlying physico-chemical problem

is an important step to verify the possibility of an extension of the spin density beyond the

first solvent shell after being ejected and thermalized. To achieve this, excited-state dynam-

ics simulations are performed using the PBE exchange-correlation functional on top of 30

snapshots of the 64-water box (see section 3.1) obtained from a 40 ps BOMD ground-state

productive run at 300 K, after equilibration for 10 ps. Both the ground- and excited-state

dynamics are performed in an NVT ensemble with Nosé-Hoover thermostat. The electronic

wave function and density are expanded in plane waves using cutoffs of 100 and 400 Ry,

respectively. A convergence criterion of 10−8 Ry is used for the wave function optimization,

ground- and excited-state run. For both the ground- and excited-state run an integration

time step of 0.5 fs is chosen. Core electrons are taken into account by norm-conserving

Troullier-Martins pseudo-potentials [35].

In the next step, the 64-water box (with a side length of 12.4 Å) is simulated in the S1 state

and analysed for 116 femtoseconds, before hopping back to the ground-state occurs. The

S1 energy is at about 5 eV, far lower than the electronic band gap 8.7 eV [36–38] (these

values differ from those obtained in chapter 3 due to the use of the PBE functional). The

ground- and excited-state dynamics are performed using CPMD [39].

In order to show the relaxation dynamics upon surface hoppings and the rest times from

higher to lower states, Born-Oppenheimer non-adiabatic excited-state dynamics simulations
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are performed for the smaller 8- and 27-water boxes (with side lengths of 6.21 and 9.31 Å)

because of extremely high computational costs for calculations of non-adiabatic couplings

for the larger 64-water box. The 8- and 27-water box snapshots are also obtained from BO

ground-state molecular dynamics simulation run with the same setup as above.

6.2.2 Proton transfer and solvated electron

First the non-adiabatic excited-state dynamics of the 8-water box starting from 3 different

initial configurations is analysed.

In Fig. 6.1 the non-adiabatic dynamics of water starting from S10 (a state which lies nearly

1 eV above S1) for PBE [40] and PBE0 [41] functionals is presented. Consecutive fast

hoppings from S10 to S1 are observed within a few femtoseconds, but with a relatively long

rest of the system in S1 of about 100 to 500 fs before relaxation to S0 is achieved. Varia-

tion of the rest time of S1 depends on the initial configurations and more importantly on

the functional. The hybrid approach (PBE0) enhances the S1 rest lifetime, whereas PBE

relaxes the system from S1 to the ground-state S0 in a shorter time; however both function-

als lead to similar results, such as fast initial consecutive relaxations and a relatively long

period of rest time in S1 and hence an ultra-fast transfer of the proton to a neighboring

molecule. This underlines the fact that proton transfer is independent of the description

of the exchange-correlation potential, and the observed complex dynamics of the photo-

generated proton indeed stems from the intrinsic physics of the system.

A further important consequence of the rapid transition to S1 shown in Fig. 6.1 is that

explicit calculation of non-adiabatic couplings (NACs) at each molecular dynamics step is

not necessary. That is particularly important for the larger 64- water box, as explicit com-

putation of the couplings is computationally intractable. Therefore, because the system

remains on S1 for about 150 fs on average (PBE approach), explicit calculation of NACs

is omitted in the following calculations of excited-state dynamics in S1 for the larger and

more realistic 64-water system for about 150 fs.

It should be noted that the 8-water box can not be considered as a perfect model for liquid

water. Therefore, non-adiabatic molecular dynamics based on the PBE approach are also

performed for the 27-water box. Very similar results are obtained (not shown in the Figure)

in comparison to the 8-water box.

Based on the present results of the excited-state dynamics simulations the following possi-

bilities can occur :
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Figure 6.1: Non-adiabatic dynamics of the 8-water box for 3 independent initial configura-
tions from S10 to S0 (ground-state) using PBE in the upper and PBE0 in the lower panel.
The consecutive hoppings to lower states were found through explicit ab-initio computation
of non-adiabatic couplings at each step of excited-state dynamics and tracked by the thick
black line (representing the total energy of the running state). The black line describes how
state hopping from higher to lower states at what times occurs. The other colors describes
the dynamics in the corresponding excited states if hopping is not taken into account. The
first yellow line describes the ground-state dynamics (S0). Depending on the initial snap-
shots the rest time of the excited-state dynamics on S1 varies between 100-250 fs for the
PBE and 300-500 fs for the PBE0 functional, respectively.
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1) upon excitation of a single water molecule (surrounded by a solvent shell) a fast proton

transfer to a nearby water molecule occurs within 12 fs followed by a localization (on that

molecule) of about 53 fs, after which a full PT to a third water molecule is accomplished

(76 fs) on which the proton becomes delocalized over a water wire for a very short period

of time (92 fs), and again localizes on the third water molecule, followed by short delocal-

izations on a nearby lying forth water molecule (128 fs) (See Fig. 6.2).

2) after the initial excitation an instantaneous PT from the first to a second and from the

second to a third water molecule occurs within less than 11 fs in a Grotthuss-like fash-

ion. Once the proton reaches the third molecule, it becomes delocalized over the second

and third molecule for a short time, after which it again becomes localized on the third

molecule. However, due to a creation of a water chain, it delocalizes over 4 water molecules

for a short time (56 fs). After this massive delocalization, it again localizes on the third

molecule, from which consecutive hops to a fourth and fifth molecule occur (114 fs) (See

Fig. 6.3).

3) after a rapid PT to the neighboring water molecule (8 fs), the proton rests there for

a relatively long period of time of about 106 fs, followed by forward and backward hops

between a second and third molecule, until finally a full PT to the third molecule is accom-

plished (191 fs), from which it can further jump to the neighboring molecules (See Fig. 6.4).

4) breaking of both O-H bonds followed by fast recombination. Thus, after the initial ex-

citation, a solvated oxygen atom can be formed which again rapidly recombines with its

protons, after which a discrete PT follows as described above.

5) successive jumps of the proton over the hydrogen bonded molecules with almost no delay

along a suddenly formed water chain in a Grotthuss-like fashion. These direct instantaneous

jumps require however formation of a specific hydrogen bond network (HBN) with nearly no

defects, enhancing the probability of a fast proton propagation along the water chain. This

possibility was however not observed in the configurations that were studied. Nevertheless,

it can not be ruled out, since such a unique formation of a water chain is not entirely

impossible; however a Grotthuss dynamics in S1 seems to be not likely.

Generally speaking, the proton seeks for the best available water chain to perform hoppings.

If such a chain is not present, the proton rests on the molecule until a surrounding molecule

or an accidentally created water chain provides the possibility for a PT. However, the PT is

not necessarily performed along one specific water chain. According to the present observa-

tion of the proton dynamics, such a PT can occur along different water chains. Therefore,

the proton dynamics is massively dependent on the complexity of the HBN and therefore
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Figure 6.2: Upon excitation of a single water molecule (surrounded by a solvent shell) a
fast proton transfer to a nearby water molecule occurrs (12 fs) (as indicated by a yellow
sphere; representing the hydronium (H3O+)) followed by a localization on the molecule of
about 53 fs, after which a full PT to a third water molecule is accomplished (76 fs) on
which it becomes delocalized over a water chain for a very short period of time (92 fs),
and again localizes on a third water molecule, followed by short delocalizations on a nearby
lying forth water molecule (128 fs).
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Figure 6.3: After the initial excitation an instantaneous PT from the first to the second and
from the second to the third water molecule occurs within less than 11 fs in a Grotthuss-like
fashion. Once the proton reaches the third molecule, after a while it becomes delocalized
over the second and third molecule for a short time, after which it again becomes localized
on the third molecule. However, due to sudden creation of a water wire, it delocalizes
over 4 water molecules along a water wire for a short time (56 fs). After this massive
delocalization, it again localizes on the third molecule, from which consecutive hops to a
fourth and fifth molecules occur (114 fs).
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Figure 6.4: After a rapid PT to the neighboring water molecule (8 fs), the proton rests
there for a relatively long period of time of about 106 fs, followed by forward and backward
hops between the second and third molecule, until finally a full PT to a third molecule is
accomplished (191 fs), from which it can further jump to a neighboring molecule.
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Figure 6.5: Visualization of a possible final trajectory of PT along a water chain marked by
the black points on the oxygen atoms (red). The orientation of the water molecules toward
each other is key for the type of PT, being either trapped on a molecule or becoming
delocalized on a chain or rather fast proton transfers accompanied by back and forth hops.

on the solvation structure.

It is interesting to note that a similar type of proton transfer was also observed in the

ground-state (S0) of charged liquid water (adding an excess proton to the simulation box)

by Hassanali et al. [21] on much larger timescales (ps) than in the present study (fs). Fur-

thermore, it was shown by Hassanali that for an even larger box (128-water system) the

observed complex proton dynamics is fully independent of the size of the box, and hence

not artificial.

One further important aspect of the dynamics is the separation length between the initially

excited and the last water molecule of the chain (the farest lying water molecule) which

was measured experimentally and found to be 0.7±0.2 nm [22].

In the 30 water configurations the largest separation length (a possible path is shown in

Fig. 6.5) in the S1 excited-state runs was about 0.71 nm, in good agreement with the ex-

perimental data. Simultaneously, as the proton is transferred, the hydroxyl anion (OH)− is

in a highly destabilized state, and consequently an electron is ejected to the solvent, leading

to formation of a solvated electron and a hydroxyl radical (OH). The OH radical remains

nearly rigid with extremely low diffusion during the entire proton transfer process. It also

later exhibits no reactivity to the surrounding water molecules.

It should be mentioned that VandeVondele and Sprik [42] found that GGA functionals (such
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as the one used for the production runs) are unable to correctly describe the OH radical in

water due to the inherent self-interaction error. However, the OH radical and its solvation

structure in water is irrelevant for the qualitative study of proton transfer in water, as the

species (OH radical, H3O+, and e−) are fully independent. For instance it was shown that

the geminate recombination dynamics of the mentioned species can be perfectly described

within the independent particle model by Monte Carlo methods [23].

Concerning the solvated electron density (calculated as doublet state for a 64-water box

with an extra electron within the unrestricted KS formalism) again the self-interaction error

leads to some delocalization of the spin density. However, as shown in Fig. 6.6, the solvated

electron is to a large extent localized in a particular region of space (far from the remaining

OH radical which is indicated by the yellow color) within the first solvent shell with some

notable overlappings with the nearby water molecules and delocalizing tails extending the

first and second solvent sphere. Therefore, the spatial extent of the solvated electron based

on the PBE functional is a superposition of three densities; a localized part within a cavity,

which contains the largest part of the total spin density, an enhanced density area on the

neighboring water molecules, and a delocalizing density (in form of diffuse tails) which is

the smaller part and distributed anisotropically mostly within the second and (to a lesser

extent) third solvent sphere. The delocalization beyond the cavity is likely an artifact of

the GGA functional. Moreover, artifacts resulting from periodic boundary conditions may

give further error to the spin density distribution, in particular leading to artificial delocal-

ization of the solvated electron.

However, the overall spin density distribution for the snapshot in Fig. 6.6 is in good agree-

ment with the finding of Uhlig et al [34], where the authors also used a GGA-type functional

for the open-shell solvated electron, combined with the QM/MM approach to mitigate PBC

artifacts. In their paper, a detailed analysis of the radial distribution function of the spin

density on the surrounding water molecules is given. The observed enhanced density on the

nearby water molecules points at sizable overlap of electron density with the surrounding

water molecules. This complex picture of spin distribution indicates at a mixed repulsive

and attractive interaction between the solvated electron and the solvent shell. Consequently,

the true spin distribution is highly sensitive to the details and interplay of repulsive and

attractive interactions which can not be perfectly captured by density functional theory

(DFT) due to its approximative nature.

One electron pseudo-potential (PP) cluster model calculations deliver no clear results for

the solvated electron [30–32] since depending on the parameters in the construction of

the electron-water pseudo-potential, the excess charge shows either a fully localized or an
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Figure 6.6: Spin density of the solvated electron (shown in blue) in the 64-water box at
maximum propagation distance of the proton (after 115 fs) from the OH radical indicated by
the yellow color in the box. The localized density coordinated to six water molecules can be
seen in bottom left and in the background (periodic boundary conditions). The overlapping
density on the water molecules around the localized part is obvious. The diffuse tails appear
most in the upper half of the box.

enhanced delocalized behaviour, respectively, due to extreme sensitivity of interaction of

solvated electron with water solvent and vice versa.

The separation length (also known as ejection length) between the OH radical (marked by

the yellow color in the box) and the solvated electron (dominant blue) for the snapshot

in Fig. 6.6 was found to be 0.86 nm (by direct distance measurement from the OH rad-

ical to the center of the solvated charge in the cavity) which is in good agreement with

the experimentally measured OH – solvated electron distance of about 1 nm at ambient

conditions [23]. Similar distances were also found for other snapshots.

6.2.3 Conclusions

By excited-state molecular dynamics simulations in the first singlet state of water it was

found that a discrete proton transfer occurs. The propagation of the proton consists of

multiple back and forth transitions with the possibility of becoming delocalized over several

neighboring water molecules or being trapped by a water molecule for a relatively long
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period of time due to a defected HBN. A pure Grotthuss mechanism for PT was not

observed; however, it can not be ruled out, since a suddenly created water chain may

provide an energetically favored defect free pathway for instantaneous consecutive hops to

the neighboring water molecules. Simultaneously to PT, an excess charge is ejected from

the hydroxyl (OH) to the liquid which becomes predominantly localized in a cavity-like

environment with some delocalized parts beyond the first and second solvent sphere as a

consequence of functional artifacts. The observed dynamics in S1 strongly demonstrates

the validity of PCET reaction (3), at least at an excitation energy of about 5 eV.
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Chapter 7

Summary and outlook

In this work, many-body perturbation theory within the Green’s function formalism was

applied to assess many-body effects in finite and periodic systems. In particular, the im-

pact of electron-phonon coupling, GW self-consistency and higher-order correlation effects

were calculated and discussed. Furthermore, it turned out that inclusion of excitonic ef-

fects or in other words inclusion of correlated motion of electron-hole pairs is of paramount

importance to guarantee agreement with experimental spectra since such effects massively

redistribute the spectral weights of the independent-particle spectra towards lower energies

for both linear and non-linear spectra.

After it was shown that the GW approximation to the electron self-energy yields accu-

rate band structures and that the Bethe-Salpeter equation describes excited states of solids

accurately, the same methodology was applied on finite systems with localized basis sets.

The results showed that GW/BSE theory is capable of accurate prediction of excited-state

energies of large molecules with no empirical parameter involved. This was in particular

shown for large charge-transfer molecules for which even advanced TD-DFT approaches

fail to accurately predict the excitation energies due to the lack of the correct 1
r

Coulom-

bic attraction between the separated charges of the excited electron and hole. By con-

trast, this shortcoming is cured in the GW/BSE formalism through correct capturing of

electron-hole interaction by means of a dynamically screened potential W . Therefore, this

many-body method is extremely reliable when it comes to search for technologically rele-

vant CT-molecules for light harvesting.

For small molecules however the GW/BSE accuracy considerably decreases. To solve this

issue, a screening mixing ansatz was proposed in two different variants to considerably

improve the BSE excitation energies. Furthermore, the proposed schemes in which one cir-

cumvents update of screening, can be extremely beneficial for calculation of excited-state

properties of large molecules, as they decrease computational costs considerably. Further-
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more, the schemes A and B are fully self-interaction free as HF orbitals are used as starting

point. This is particularly important for those molecules with a more localized electronic

structure for which DFT produces large self-interaction errors.

In the last part of this work, the results of a computational study of the ultrafast proton

transfer dynamics in the first singlet excited state of liquid water are reported. The proton

release and its short-time dynamics upon a 5 eV excitation were analysed by performing

excited-state DFT-based molecular dynamics simulations. Two sets of simulations were

performed. In the first one, a simulation box composed by only 8-water molecules was used

to calculate non-adiabatic couplings between all states within S10 and S0 to assess the decay

time. It was found that after ultra-fast successive decays, the system remains in the S1 state

for considerably longer times, depending on the exchange-correlation functional. Based on

this finding, a second set of short time scale simulations on S1 was performed on much

larger (and realistic) simulation boxes. From each of these second series an S1 dynamics

simulation was started. These simulations revealed a complex dissociation dynamics, with

the proton often following a non-Grotthuss mechanism, as it carried out multiple back and

forth movements or a long localization on a particular water molecule as a consequence of

hydrogen bond defects, or even delocalization over several water molecules. Upon the pro-

ton transfer, an electron is injected into the liquid, it was found that the hydrated electron

is mostly localized within a cavity-like environment with some enhanced densities on the

surrounding water molecules, indicating at highly complex electron-solvent interaction.

In conclusion, the GW/BSE formalism can be regarded as a highly appealing alternative

ab-initio approach to TD-DFT methods for calculation of static properties such as elec-

tronic, polaronic band structures, and excited states of large systems, as its approximated

self-energy potential gives rise to a much more realistic and most importantly parameter-

free quantification of many-body effects at much lower computational cost compared to

coupled cluster based methods. The TD-DFT combined with ab-initio Born-Oppenheimer

dynamics can be used for at least a semi-quantitative assessment of a range of complex

phenomena, giving a unique access to the non-trivial dynamical processes in large chemical

and biological systems.

Concerning the GW/BSE formalism unlike the TD-DFT methods there are still no gradi-

ents and Hessians for optimization and vibrational calculations, respectively. However this

would be desirable as the GW method gives a precise description of the electronic struc-

ture of systems. Exploring the performance of the presented many-body method regarding

geometrical and vibrational aspects of molecules and solids is an interesting future task.

Aspects like exciton-phonon, exciton-magnon and exciton-magnon-phonon coupling in mag-
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netic systems are further highly interesting subjects for future research, helping to gain a

detailed understanding of material properties. So, this many-body approach coupled with

other effects such as spin waves and lattice vibrations has the potential to provide a truly

reliable theoretical tool to engineering materials of potential application in (nano)electronic,

optoelectronic, catalysis and many other branches of science.
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Appendix A

Convergence tests of liquid water

A.1 Convergence of the electronic band gap

In the following the convergence of the electronic band gap of liquid water is presented with

respect to parameters : dielectric matrix cutoff, number of frequency points for sampling

of the dielectric function, number of bands in the polarization and Green’s function as

well as exchange cutoff of the self-energy for one water snapshot. As can be seen a decent

convergence can be reached for 400 bands, 50 Ry exchange cutoff, 5 Ry dielectric cutoff, 30

frequency points. Furthermore, for the 27-water box use of a 2x2x2 k-grid is mandatory to

be able to accurately converge the spectral signatures with respect to the BZ sampling.

Table A.1: Convergence of the electronic band gap in eV with respect to dielectric matrix
cutoff in Ry. Other parameters have been kept fixed at Bands = 400, Frequency = 30, and
Exchange cutoff = 50 Ry.

G0W0@PBE approach

ε(r, r′, ω) 3 5 7 9
QP gap (Γ− Γ) 9.03 8.83 8.79 8.78

Table A.2: Convergence of the electronic band gap in eV with respect to number of fre-
quency points to sample the dielectric function. Other parameters have been kept fixed at
Bands = 400, dielectric matrix cutoff = 5 Ry, and Exchange cutoff = 50 Ry.

G0W0@PBE approach

ε(r, r′, ω) 10 30 50 70
QP gap (Γ− Γ) 8.50 8.83 8.79 8.79

180



A.1. Convergence of the electronic band gap

Table A.3: Convergence of the electronic band gap in eV with respect to number of bands
in the polarization and the Green’s function. Other parameters have been kept fixed at
dielectric matrix cutoff = 5 Ry, Exchange cutoff = 50 Ry, and Frequency = 30.

G0W0@PBE approach

Bands 200 400 600 800
QP gap (Γ− Γ) 9.41 8.83 8.73 8.71

Table A.4: Convergence of the electronic band gap in eV with respect to exchnage cutoff
of the self energy in Ry. Other parameters have been kept fixed at Bands = 400, dielectric
matrix cutoff = 5 Ry and Frequency = 30.

G0W0@PBE approach

Exchange Cutoff 50 75 100 125
QP gap (Γ− Γ) 8.83 8.83 8.83 8.83

Table A.5: Convergence of the electronic band gap in eV with respect to damping (in eV)
in the Green’s function. Other parameters have been kept fixed at Bands = 400, dielectric
matrix cutoff = 5 Ry, Exchange cutoff = 50 Ry, and Frequency = 30.

G0W0@PBE approach

damping 0.1 0.01 0.001 0.0001
QP gap (Γ− Γ) 8.83 8.83 8.83 8.83
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Appendix B

GW/BSE with localized basis set

B.1 Visible and charge-transfer state of large synthesized

PBI-macrocycle complex

Below excitation energies of the large PBE-macrocycle molecule with solvent effect

(dichloromethane) for 20 excited states with SVP basis set using CAM-B3LYP are given :

Excitation energies and oscillator strengths with solvent effects :

Excited State 1: Singlet-A 2.6734 eV 463.77 nm f=2.8215

642 -> 652 0.48281

643 -> 651 0.49129

Excited State 2: Singlet-A 2.6813 eV 462.40 nm f=0.0017

642 -> 651 0.48420

643 -> 652 0.49268

Excited State 3: Singlet-A 3.1727 eV 390.78 nm f=0.0000

641 -> 657 -0.15123

644 -> 660 0.15449

649 -> 653 0.45595

650 -> 654 0.46045

Excited State 4: Singlet-A 3.2047 eV 386.88 nm f=0.0038

644 -> 652 -0.21391

650 -> 651 0.65793
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Excited State 5: Singlet-A 3.2050 eV 386.84 nm f=0.0000

644 -> 651 -0.21458

650 -> 652 0.65881

Excited State 6: Singlet-A 3.3363 eV 371.62 nm f=2.6496

641 -> 660 0.11299

644 -> 657 -0.14842

649 -> 654 0.43102

650 -> 653 0.48718

Excited State 7: Singlet-A 3.3510 eV 369.99 nm f=0.0013

641 -> 651 -0.16471

649 -> 652 0.68020

Excited State 8: Singlet-A 3.3515 eV 369.94 nm f=0.0000

641 -> 652 -0.16439

649 -> 651 0.67952

Excited State 9: Singlet-A 3.6878 eV 336.20 nm f=0.0001

645 -> 652 0.24270

646 -> 652 0.42501

647 -> 651 0.29111

648 -> 651 0.40951

Excited State 10: Singlet-A 3.6878 eV 336.20 nm f=0.0000

645 -> 651 0.24258

646 -> 651 0.42537

647 -> 652 0.29080

648 -> 652 0.40949

Excited State 11: Singlet-A 3.6956 eV 335.49 nm f=0.0003

645 -> 652 0.41654

646 -> 652 -0.23811

647 -> 651 0.41191

648 -> 651 -0.29166

Excited State 12: Singlet-A 3.6956 eV 335.49 nm f=0.0000
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645 -> 651 0.41693

646 -> 651 -0.23801

647 -> 652 0.41195

648 -> 652 -0.29137

Excited State 13: Singlet-A 3.7466 eV 330.92 nm f=1.6802

641 -> 653 -0.30681

644 -> 654 -0.29504

646 -> 653 0.11993

649 -> 657 0.36636

650 -> 660 -0.32074

Excited State 14: Singlet-A 3.8184 eV 324.70 nm f=0.0002

624 -> 651 -0.10785

624 -> 652 -0.11405

626 -> 651 -0.10264

626 -> 652 -0.10503

629 -> 651 0.22537

629 -> 652 0.33399

630 -> 651 0.38133

630 -> 652 0.18632

642 -> 661 -0.16379

643 -> 661 -0.16502

Excited State 15: Singlet-A 3.8184 eV 324.70 nm f=0.0005

623 -> 652 0.13063

625 -> 652 0.12086

629 -> 651 0.34484

629 -> 652 -0.24843

630 -> 651 -0.16540

630 -> 652 0.36674

642 -> 662 -0.16372

643 -> 662 0.16510

Excited State 16: Singlet-A 3.8314 eV 323.60 nm f=0.0000

641 -> 654 -0.20883

644 -> 653 -0.31937

645 -> 653 0.16645
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646 -> 654 0.19581

649 -> 660 -0.25431

650 -> 657 0.38452

Excited State 17: Singlet-A 3.8587 eV 321.31 nm f=0.0003

645 -> 660 -0.20311

646 -> 657 0.21316

647 -> 654 0.37797

648 -> 653 0.39821

Excited State 18: Singlet-A 3.8672 eV 320.61 nm f=0.2020

645 -> 657 0.20575

645 -> 665 0.10376

646 -> 660 -0.20691

647 -> 653 0.39739

648 -> 654 0.38393

Excited State 19: Singlet-A 3.8928 eV 318.50 nm f=0.9435

641 -> 653 0.10804

644 -> 654 0.12090

645 -> 654 0.37269

646 -> 653 0.38492

647 -> 660 -0.20578

648 -> 657 0.21234

648 -> 665 0.10478

650 -> 671 -0.10194

Excited State 20: Singlet-A 3.8974 eV 318.12 nm f=0.0002

644 -> 652 0.63568

650 -> 651 0.23891
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Below excitation energies of the large PBE-macrocycle molecule without solvent effect for

20 excited states with SVP basis set using CAM-B3LYP are given :

Excitation energies and oscillator strengths without solvent effects :

Excited State 1: Singlet-A 2.7091 eV 457.66 nm f=2.7046

641 -> 651 -0.16590

641 -> 652 -0.44707

642 -> 651 0.46985

642 -> 652 -0.15802

Excited State 2: Singlet-A 2.7246 eV 455.06 nm f=0.0019

641 -> 651 -0.17875

641 -> 652 0.46317

642 -> 651 0.44126

642 -> 652 0.18787

Excited State 3: Singlet-A 2.8349 eV 437.35 nm f=0.0243

644 -> 652 0.20258

650 -> 651 -0.19924

650 -> 652 0.62757

Excited State 4: Singlet-A 2.8351 eV 437.31 nm f=0.0071

644 -> 651 -0.20255

650 -> 651 0.62737

650 -> 652 0.19826

Excited State 5: Singlet-A 2.9635 eV 418.37 nm f=0.0001

643 -> 651 -0.15289

649 -> 651 0.63938

649 -> 652 -0.24032

Excited State 6: Singlet-A 2.9639 eV 418.31 nm f=0.0003

643 -> 652 0.15284

649 -> 651 0.24067

649 -> 652 0.63966
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Excited State 7: Singlet-A 3.1669 eV 391.51 nm f=0.0002

643 -> 659 0.15965

644 -> 662 0.15969

649 -> 653 -0.45715

650 -> 654 0.45740

Excited State 8: Singlet-A 3.3338 eV 371.90 nm f=0.0000

645 -> 651 0.21016

646 -> 651 0.46120

647 -> 651 -0.13172

648 -> 651 0.47106

Excited State 9: Singlet-A 3.3338 eV 371.90 nm f=0.0000

645 -> 652 0.16377

646 -> 652 -0.44821

647 -> 652 0.23540

648 -> 652 0.46147

Excited State 10: Singlet-A 3.3384 eV 371.38 nm f=0.0000

645 -> 652 0.44286

646 -> 652 0.15241

647 -> 652 0.46434

648 -> 652 -0.24653

Excited State 11: Singlet-A 3.3392 eV 371.29 nm f=0.0000

645 -> 651 -0.45803

646 -> 651 0.20019

647 -> 651 0.47534

648 -> 651 0.14169

Excited State 12: Singlet-A 3.4013 eV 364.52 nm f=2.2748

643 -> 662 -0.11553

644 -> 659 -0.14927

649 -> 654 -0.42974

650 -> 653 0.48635

Excited State 13: Singlet-A 3.5078 eV 353.46 nm f=0.0001

644 -> 651 0.64062
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650 -> 651 0.22698

Excited State 14: Singlet-A 3.5079 eV 353.44 nm f=0.0001

644 -> 652 0.64155

650 -> 652 -0.22706

Excited State 15: Singlet-A 3.6201 eV 342.49 nm f=0.0001

643 -> 651 0.23141

646 -> 651 -0.45847

648 -> 651 0.47539

Excited State 16: Singlet-A 3.6210 eV 342.40 nm f=0.0001

643 -> 652 0.23223

646 -> 652 0.48531

648 -> 652 0.44352

Excited State 17: Singlet-A 3.6304 eV 341.51 nm f=0.0000

644 -> 651 0.10384

645 -> 651 0.49058

647 -> 651 0.49213

Excited State 18: Singlet-A 3.6310 eV 341.46 nm f=0.0000

645 -> 652 0.52175

647 -> 652 -0.46140

Excited State 19: Singlet-A 3.6619 eV 338.58 nm f=0.0011

643 -> 652 0.62832

646 -> 652 -0.19363

648 -> 652 -0.15086

649 -> 652 -0.15739

Excited State 20: Singlet-A 3.6624 eV 338.54 nm f=0.0007

643 -> 651 0.62830

646 -> 651 0.18424

648 -> 651 -0.15901

649 -> 651 0.15703
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

B3LYP optimized structure of the PBI-macrocycle complex in xyz format.

294

hybrid PBI-macrocycle complex

H 7.873667 29.841346 3.473991

H -4.945039 7.886992 -7.184141

H 6.291816 30.357399 4.059982

H -5.819564 9.411053 -7.459124

H 6.149372 28.020301 3.194707

C 7.107084 29.650576 4.230069

H 8.512446 27.322980 3.650020

C -5.312659 8.803741 -6.712891

H -0.320769 11.659954 -5.244817

H -1.476075 12.958050 -5.623115

O -4.247897 9.602125 -6.221338

H -9.961478 1.948426 -4.812038

C 6.615843 28.205302 4.169053

H 9.415920 18.974910 0.785858

H 7.544370 29.879936 5.205747

O -2.337246 11.153641 -5.422081

H -11.584037 1.780991 -4.103877

H 6.762479 25.539554 3.378895

H 8.615071 16.769106 0.096799

C -1.317245 12.059435 -5.032101

C 7.724674 27.177233 4.399105

H 9.121693 24.830653 3.800664

C -3.432638 9.076440 -5.270323

O 9.605557 20.942508 2.268882

H 7.953367 14.991903 -0.429942

H -6.020712 8.543276 -5.919654

C -10.523909 1.605220 -3.937997

C -2.378041 9.931798 -4.830319

H 5.826159 28.056829 4.914159

C 8.733184 18.425573 1.420343

H -4.359977 7.175991 -5.049895

C 7.239042 25.727943 4.348412

H 7.122085 12.773269 -1.041215

C -3.557223 7.820589 -4.723482
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

H 8.195488 27.367348 5.371469

C 8.269220 17.166751 1.039542

O -10.388049 0.206394 -3.745448

H 7.286799 23.101847 3.613377

C -1.501960 9.485057 -3.868217

C 8.351857 24.701495 4.571014

H 9.665151 22.424201 3.824092

H -1.386268 12.310819 -3.969178

H -10.199285 2.167064 -3.056412

C 7.279740 14.491664 0.250849

H -0.707250 10.134250 -3.530463

C 8.844900 20.328444 2.996544

H -8.033854 1.513177 -3.601329

H -4.402393 5.015250 -4.347434

C -2.666345 7.343613 -3.733385

C 6.813799 13.228081 -0.109215

C 8.329877 18.990277 2.613264

C -9.147830 -0.295457 -3.509909

H 6.456693 25.581663 5.102465

C -1.612835 8.195844 -3.295325

C 7.837908 23.259190 4.546950

H -6.170472 2.761841 -3.239261

C -7.989901 0.444732 -3.449808

H -9.699705 -4.276811 -3.969667

O -10.279309 -2.355898 -3.395902

H 8.838507 24.911220 5.528685

C -3.680510 4.953091 -3.544663

C 7.393103 16.431940 1.832924

O 5.817403 10.667349 -0.736685

C -2.793255 6.020211 -3.176471

H -11.336904 -4.062364 -3.309748

C 8.953546 22.203282 4.616000

C -9.087867 -1.708635 -3.317972

C 6.901836 15.104205 1.441872

C -10.296572 -3.762269 -3.210193

N 8.422545 20.854702 4.230244

C -5.354850 2.056713 -3.157097

C -0.686081 7.728265 -2.295657
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

H 0.869494 9.310102 -2.115040

C -6.731037 -0.153005 -3.204582

C -3.475406 3.790497 -2.853958

H 11.494298 21.215340 5.153193

C -1.905676 5.620241 -2.174675

C 0.501152 8.350006 -1.780001

C 5.953175 12.534906 0.717312

C -4.063672 2.471306 -2.979502

H 7.129314 23.102780 5.361694

C -5.524383 0.631289 -3.123758

C 7.439892 18.285418 3.450087

C -7.872479 -2.307440 -3.079100

C -0.875998 6.462345 -1.737433

H 10.185985 23.164297 6.049922

C 5.480478 11.190794 0.306172

C 6.959285 16.997044 3.069154

C -6.670827 -1.563047 -3.012805

H -7.825695 -3.377569 -2.939056

H 2.369498 9.975375 -0.097035

C 9.727343 22.176913 5.942471

S -2.178078 3.976552 -1.660263

C 1.187890 7.590876 -0.874445

H -9.934930 -4.041930 -2.215903

C 6.010797 14.408054 2.313561

C -4.306574 -0.021102 -2.915722

C 10.830059 21.119391 6.019942

C 7.512912 20.210978 5.076329

S -2.967551 1.089567 -2.798697

C 5.538695 13.113524 1.937951

S 0.357466 6.057502 -0.575040

C 2.941427 9.089011 0.144852

C -5.400785 -2.194917 -2.758587

C 7.026370 18.869117 4.665513

C 2.463130 7.815525 -0.183833

C -4.246124 -1.409485 -2.743431

H 10.389699 20.118570 5.956804

H 13.412063 20.217792 6.550277

H -2.372306 -10.480169 -5.701030
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

N 4.610297 10.534896 1.196526

H 12.115959 22.207013 7.366490

H 9.037077 22.059405 6.778263

H -3.151030 -12.688267 -6.411527

C 6.063682 16.305282 3.938050

C 4.143019 9.213353 0.829052

H -5.851358 -4.338900 -2.361127

C -5.100227 -3.565647 -2.453193

H -3.849322 -14.436530 -6.983187

O 7.137094 20.728105 6.114004

C 5.576204 14.975578 3.549655

H -4.663090 -16.653983 -7.620592

C 11.654601 21.213962 7.305214

C 3.233937 6.710244 0.187383

H -11.941117 -22.395044 -10.027605

H 2.904639 5.726267 -0.116363

S -2.814543 -2.340177 -2.397162

O -2.144614 -8.540008 -4.150862

C 4.657682 12.407480 2.786982

C 12.742431 20.145235 7.415926

C 4.882919 8.106912 1.223573

C 6.153762 18.184814 5.486669

C -3.777829 -3.813188 -2.212692

C -2.993026 -11.073032 -5.042134

C -3.443762 -12.332147 -5.434930

C 4.427616 6.822438 0.905705

C 4.161707 11.058761 2.425171

C 5.682467 16.922837 5.125458

C -4.440625 -14.989823 -6.267872

H -9.969411 -21.242002 -8.861620

H 12.281013 19.151719 7.357394

H 5.787150 8.246969 1.801798

H 15.355293 19.225612 7.974473

C -4.897679 -16.252821 -6.643808

H -13.947416 -23.879055 -9.934921

H -4.422462 -6.459140 -2.728199

H 14.035369 21.227833 8.757130

H 10.983983 21.138579 8.169371
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

C 4.705638 14.240763 4.348879

C -3.072466 -5.036636 -1.814124

H 5.841380 18.643147 6.415360

O -5.870295 -18.791180 -7.310058

C -12.324109 -22.722118 -9.054442

C 5.131167 5.599897 1.310555

C -3.520328 -6.320132 -2.146494

C 4.251770 12.976552 3.976797

H -12.992192 -21.924748 -8.710410

C -2.842968 -9.215538 -3.423216

H -7.943753 -20.128167 -7.692236

C 13.568973 20.237902 8.699637

S 4.165203 4.132273 1.521653

H -12.491632 -24.820868 -9.609801

C -3.332344 -10.560622 -3.806578

H -1.558772 -3.944001 -0.774614

H 5.002671 16.427774 5.803983

C -13.122825 -24.012434 -9.230844

O 3.410084 10.423968 3.136346

C -1.881580 -4.926078 -1.091149

C -4.243695 -13.118029 -4.611174

C 14.646956 19.161615 8.805393

C -4.724913 -14.444132 -5.019572

C -10.355176 -21.571105 -7.889545

H 4.359870 14.641421 5.290252

C 6.456049 5.349361 1.533295

H 7.208483 6.118808 1.422228

H -11.025010 -20.774474 -7.545595

C -2.773260 -7.426346 -1.765768

C -5.655809 -17.011373 -5.775734

H -10.488704 -23.656984 -8.420468

C -6.122371 -18.356324 -6.199793

C -11.157592 -22.859840 -8.074597

H 14.210259 18.159234 8.788026

H 3.576844 12.423580 4.616818

C 5.599188 3.197726 1.848976

H -5.707284 -21.174926 -6.924868

H 12.899707 20.169313 9.564717
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

C -1.103775 -6.030917 -0.733032

C -8.397386 -20.411886 -6.741254

H 15.217386 19.256134 9.732407

N -3.231208 -8.745506 -2.152726

H -9.094117 -19.611643 -6.471648

C 6.756506 3.979388 1.841976

C -1.572356 -7.303060 -1.079936

S 0.991382 -4.265296 -0.327121

S 4.315945 0.700914 1.925836

H -13.549801 -24.347637 -8.281868

C -4.139705 -11.320157 -2.931063

H -8.531970 -22.514002 -7.250784

C -4.596495 -12.615755 -3.321860

C -9.190835 -21.711289 -6.906310

C 5.658717 1.809336 2.022620

H 11.284964 5.812824 1.218672

C 0.170376 -5.806156 -0.040399

C -5.522377 -15.202555 -4.111935

S 3.518170 -2.180862 0.770161

H -0.994220 -8.188505 -0.849600

H 9.187164 5.156149 1.980662

C -5.973670 -16.499284 -4.500545

C 8.028876 3.344848 2.076689

H -11.541381 -23.190456 -7.101815

N -6.855852 -19.106311 -5.273939

H -3.548671 -22.333281 -6.155794

C 2.229209 -4.673825 0.829081

C -6.151600 -21.430694 -5.962413

C 9.233457 4.086072 2.121154

C -7.318085 -20.482705 -5.648580

C 6.878589 1.154202 2.209167

C 5.412928 -0.682956 2.083529

C 0.863676 -6.570303 0.855845

C 3.255454 -3.830143 1.271227

H -6.586273 -22.428335 -6.072292

C -4.030599 -9.454422 -1.237157

C 4.823540 -2.001441 1.955946

C 8.088492 1.935046 2.269378
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

C -4.489551 -10.797705 -1.665523

H 0.501696 -7.535919 1.181836

H -9.578752 -22.029904 -5.931328

C 2.048246 -5.946217 1.375326

C 6.707281 -0.270905 2.241722

C 11.663437 5.534162 2.206968

C -5.406509 -13.369879 -2.420094

C -5.864347 -14.707591 -2.818011

H -4.590804 -20.507264 -4.786103

C 10.451142 3.484166 2.339614

H 12.706188 5.831526 2.287397

C 4.150267 -4.235730 2.264222

C -6.752977 -17.276417 -3.618768

C 5.036340 -3.168798 2.636016

H -1.355740 -23.414253 -5.387072

O 11.645526 4.128224 2.395850

C -5.068614 -21.487807 -4.883144

H 11.081582 6.051964 2.975854

C -7.225994 -18.629330 -4.004234

C -3.990305 -22.533177 -5.172335

C 9.349653 1.334060 2.493656

H 7.523127 -0.977557 2.306772

H -7.795535 -20.838184 -4.738233

O -4.319658 -8.974753 -0.159179

C 2.981229 -6.418390 2.366973

C 10.510495 2.071075 2.532477

H -4.455089 -23.523598 -5.246222

C 4.031494 -5.564583 2.809821

H 5.764078 -3.235427 3.433135

H 9.393227 0.265729 2.646007

C -5.275472 -11.544840 -0.812083

H 2.085389 -8.362918 2.588252

H 11.546266 -0.394016 2.061190

C -5.723667 -12.810992 -1.185747

H -2.418017 -21.581306 -4.045795

H 2.776555 -10.540438 3.004249

C 2.878511 -7.713174 2.928717

C -6.634594 -15.511314 -1.982974
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B.1. Visible and charge-transfer state of large synthesized PBI-macrocycle complex

O 11.753173 1.565946 2.746907

C -7.072793 -16.776684 -2.372692

C -2.881529 -22.572629 -4.119826

C -1.796914 -23.612286 -4.403586

O -7.904494 -19.299090 -3.245065

H -5.528971 -21.699022 -3.910760

C 4.928786 -6.046540 3.791656

H 5.729295 -5.400887 4.121468

H -2.256951 -24.604314 -4.474520

H -5.537318 -11.131521 0.152806

C 3.760451 -8.164520 3.883278

C 11.888552 0.166718 2.936799

H 7.399795 -6.766255 4.973961

H -6.336265 -13.355512 -0.481748

C 4.812514 -7.308080 4.327193

H -0.189418 -22.670693 -3.276539

H -6.909936 -15.166919 -0.996995

C 2.710390 -10.298857 4.069628

H -7.668750 -17.382518 -1.703171

H 12.951014 -0.012158 3.083267

O 3.727700 -9.391895 4.463999

H 0.065619 -24.389065 -3.581272

C -0.693204 -23.638600 -3.348188

H -3.323045 -22.771648 -3.135737

H 11.341242 -0.175126 3.820929

O 5.634147 -7.838626 5.270018

H 2.875508 -11.201957 4.652003

H 1.712956 -9.905862 4.289579

C 6.695560 -7.038879 5.766520

H -1.095671 -23.872103 -2.358806

H 7.208224 -7.650607 6.505186

H 6.323833 -6.129097 6.247965

196



B.2. A many-body based screening ansatz for improvement of excitation energies

B.2 A many-body based screening ansatz for improvement

of excitation energies

In the following the GW/BSE excitation energies of the first five lowest singlet states of 22

molecules are presented. The standard and the screening modified schemes are compared.

Wherever computationally possible a larger basis set is used in the EOM-CCSD calcula-

tions to avoid basis set error biased results.

As discussed in the main text, the modified scheme reduces the typical overestimation of the

HF based GW/BSE excitation energies through enhancement of the screening effects in the

QP energies (scheme A) and in the BS equation (scheme B). This screening enhancement

simulates the effect of vertex corrections in the dynamically screened interaction W .

This screening modified scheme can be extremely helpful in calculating excited states on

top of the HF reference state at much lower computational cost for large molecular systems

for which explicit computation of the vertex corrections is computationally intractable.

Furthermore, this scheme avoids the self-consistency in the traditional self-consistent GW

approaches.
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Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

H2O (monomer) (aug-cc-pVQZ)

S1 (1B1) 08.242 0.487 07.795 0.040 07.755
S2 (1A2) 09.920 0.414 09.446 0.059 09.506
S3 (1A1) 10.536 0.473 10.071 0.008 10.063
S4 (2B1) 10.922 0.238 10.420 0.263 10.684
S5 (2A1) 11.429 0.294 10.904 0.230 11.135

mean absolute error 0.381 0.120

H4O2 (dimer) (aug-cc-pVTZ)

S1 (1A
′′
) 07.937 0.360 7.490 0.087 07.577

S2 (1A
′
) 08.489 0.475 8.110 0.095 08.014

S3 (2A
′′
) 09.229 0.305 8.614 0.309 08.924

S4 (2A
′
) 09.906 0.271 9.325 0.309 09.634

S5 (3A
′′
) 10.080 0.258 9.576 0.245 09.821

mean absolute error 0.334 0.209

198



B
.2.

A
m

an
y
-b

o
d
y

b
ased

screen
in

g
an

satz
for

im
p
rovem

en
t

of
ex

citation
en

ergies

Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

H10O5 (pentamer) (aug-cc-pVDZ)

S1 (1A) 7.345 0.464 6.852 0.028 6.881
S2 (2A) 7.439 0.480 6.951 0.007 6.959
S3 (3A) 8.369 0.797 7.704 0.132 7.572
S4 (4A) 8.617 0.478 7.873 0.265 8.139
S5 (5A) 8.666 0.479 7.915 0.271 8.187

mean absolute error 0.540 0.141

H12O6 (hexamer) (cc-pVDZ)

S1 (1A) 09.292 0.273 08.885 0.133 09.019
S2 (2A) 09.549 0.151 09.082 0.316 09.398
S3 (3A) 09.902 0.324 09.455 0.122 09.578
S4 (4A) 09.965 0.292 09.545 0.126 09.672
S5 (5A) 10.520 0.505 09.816 0.198 10.015

mean absolute error 0.309 0.179
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Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

NH3 (monomer) (aug-cc-pVQZ)

S1 (1A
′
) 07.261 0.560 06.818 0.117 06.701

S2 (2A
′
) 08.714 0.475 08.255 0.016 08.239

S3 (1A
′′
) 08.714 0.475 08.255 0.016 08.239

S4 (3A
′
) 09.575 0.405 09.099 0.070 09.170

S5 (4A
′
) 10.193 0.347 09.696 0.149 09.846

mean absolute error 0.452 0.074

N2H6 (dimer) (aug-cc-pVTZ)

S1 (1A
′
) 6.914 0.469 6.495 0.050 6.445

S2 (2A
′
) 7.340 0.512 6.939 0.111 6.828

S3 (1A
′′
) 8.057 0.355 7.600 0.101 7.702

S4 (3A
′
) 8.230 0.415 7.686 0.128 7.815

S5 (4A
′
) 8.700 0.366 8.198 0.135 8.334

mean absolute error 0.423 0.105
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Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

H2 (aug-cc-pVQZ)

S1 (1B3u) 12.861 0.334 12.529 0.002 12.527
S2 (1 Ag) 13.258 0.294 12.917 0.046 12.964
S3 (1B1u) 14.125 0.316 13.785 0.023 13.809
S4 (1B2u) 14.125 0.316 13.785 0.023 13.809
S5 (2B3u) 15.434 0.171 15.080 0.182 15.263

mean absolute error 0.286 0.055

FURAN (aug-cc-pVTZ)

S1 (1A2) 6.422 0.299 6.171 0.048 6.123
S2 (1B2) 6.703 0.278 6.560 0.135 6.425
S3 (1B1) 6.929 0.264 6.687 0.022 6.665
S4 (2A2) 7.102 0.261 6.828 0.012 6.841
S5 (1A1) 7.404 0.630 7.167 0.393 6.774

mean absolute error 0.346 0.122
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Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

ETHYLENE (aug-cc-pVTZ)

S1 (1B2u) 7.697 0.229 7.442 0.025 7.468
S2 (1B1u) 8.253 0.152 8.092 0.008 8.101
S3 (1B1g) 8.341 0.225 8.093 0.022 8.116
S4 (1B3g) 8.410 0.224 8.130 0.055 8.186
S5 (1 Ag) 9.037 0.143 8.798 0.095 8.894

mean absolute error 0.194 0.041

ETHANE (aug-cc-pVTZ)

S1 (1Ag) 09.856 0.586 09.504 0.234 09.270
S2 (1Bg) 09.856 0.586 09.504 0.234 09.270
S3 (2Ag) 10.471 0.597 10.093 0.219 09.874
S4 (1Au) 10.564 0.540 10.226 0.202 10.024
S5 (1Bu) 10.564 0.540 10.226 0.202 10.024

mean absolute error 0.570 0.218

202



B
.2.

A
m

an
y
-b

o
d
y

b
ased

screen
in

g
an

satz
for

im
p
rovem

en
t

of
ex

citation
en

ergies

Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

CO2 (aug-cc-pVTZ)

S1 (1 Au) 08.738 0.131 08.544 0.325 08.870
S2 (2 Au) 09.010 0.065 08.780 0.164 08.945
S3 (1B2u) 09.010 0.065 08.780 0.164 08.945
S4 (1B1g) 09.487 0.618 09.118 0.249 08.869
S5 (1B3g) 09.490 0.621 09.118 0.249 08.869

mean absolute error 0.300 0.230

LiH (aug-cc-pVQZ)

S1 (1A1) 4.066 0.433 3.307 0.325 3.633
S2 (1B2) 5.103 0.496 4.448 0.158 4.607
S3 (1B1) 5.103 0.496 4.448 0.158 4.607
S4 (2A1) 6.214 0.324 5.610 0.279 5.890
S5 (3A1) 6.530 0.266 5.893 0.370 6.264

mean absolute error 0.403 0.258
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Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

PH3 (aug-cc-pVQZ)

S1 (1A) 6.833 0.592 6.543 0.302 6.241
S2 (2A) 7.310 0.671 7.123 0.484 6.639
S3 (3A) 7.310 0.671 7.123 0.484 6.639
S4 (4A) 8.165 0.356 7.837 0.028 7.809
S5 (5A) 8.165 0.356 7.837 0.028 7.809

mean absolute error 0.529 0.265

CH4 (aug-cc-pVQZ)

S1 (1A1) 11.217 0.567 10.859 0.209 10.650
S2 (1B1) 11.218 0.568 10.859 0.209 10.650
S3 (1B2) 11.218 0.568 10.859 0.209 10.650
S4 (2A1) 12.412 0.522 12.022 0.132 11.890
S5 (2B1) 12.412 0.522 12.022 0.132 11.890

mean absolute error 0.549 0.179
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Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

BF (aug-cc-pVQZ)

S1 (1A1) 7.022 0.561 6.814 0.353 6.461
S2 (1B1) 7.022 0.561 6.814 0.353 6.461
S3 (1B2) 8.789 0.406 8.323 0.059 8.383
S4 (2A1) 8.993 0.252 8.654 0.086 8.741
S5 (2B1) 9.220 0.098 8.781 0.340 9.122

mean absolute error 0.376 0.238

Vynil bromide (aug-cc-pVTZ)

S1 (1A
′′
) 6.563 0.346 6.314 0.097 6.217

S2 (1A
′

) 6.599 0.331 6.390 0.122 6.268
S3 (2A

′′
) 7.161 0.350 6.898 0.087 6.811

S4 (3A
′′
) 7.344 0.505 7.026 0.187 6.839

S5 (4A
′′
) 7.354 0.324 7.091 0.061 7.030

mean absolute error 0.371 0.111
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Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

Na2 (aug-cc-pVTZ)

S1 (1B1u) 2.190 0.325 1.894 0.029 1.865
S2 (1B2u) 2.815 0.342 2.744 0.271 2.473
S3 (1B3u) 2.815 0.342 2.744 0.271 2.473
S4 (1 Ag) 3.171 0.538 2.994 0.361 2.633
S5 (1B3g) 3.410 0.561 3.287 0.438 2.849

mean absolute error 0.422 0.274

Na4 (aug-cc-pVDZ)

S1 (1A) 1.030 0.097 0.792 0.140 0.933
S2 (2A) 1.715 0.297 1.579 0.161 1.418
S3 (3A) 2.066 0.258 1.843 0.035 1.808
S4 (4A) 2.360 0.460 2.165 0.265 1.900
S5 (5A) 2.429 0.424 2.354 0.349 2.005

mean absolute error 0.307 0.190

206



B
.2.

A
m

an
y
-b

o
d
y

b
ased

screen
in

g
an

satz
for

im
p
rovem

en
t

of
ex

citation
en

ergies

Standard Standard Scheme A Scheme A
BSE@ : GnWn@HF σ(GnWn@HF) G0W0@HF/LDA σ(G0W0@HF/LDA) EOM-CCSD

Si2H6 (aug-cc-pVTZ)

S1 (1Ag) 8.211 0.577 7.848 0.214 7.634
S2 (1Au) 8.244 0.626 8.078 0.460 7.618
S3 (1Bu) 8.244 0.626 8.078 0.460 7.618
S4 (2Bu) 8.635 0.651 8.271 0.287 7.984
S5 (2Ag) 8.885 0.654 8.568 0.337 8.231

mean absolute error 0.627 0.352

COS (aug-cc-pVQZ)

S1 (1A2) 6.264 0.499 6.144 0.379 5.765
S2 (1A1) 6.519 0.688 6.384 0.553 5.831
S3 (2A2) 6.519 0.688 6.384 0.553 5.831
S4 (1B1) 8.198 0.661 7.936 0.399 7.537
S5 (1B2) 8.199 0.662 7.936 0.399 7.537

mean absolute error 0.640 0.456
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