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Summary

The self-assembly of biomolecules into supra-molecular structures is an important principle

underlying cellular organization. These structures define spatial environments for diverse

biological processes. In particular, at the cytoplasmic periphery of the plasma membrane

(PM) a rich variety of supra-molecular structures are found, relying on lipid-lipid, lipid-

protein and protein-protein interactions. Examples include protein-lipid nano-clusters,

membrane scaffolds or membrane-membrane contact points. Investigation of such fragile

structures is challenging and requires minimally invasive methods. In this work, modern

fluorescence microscopy techniques were applied in combination with physical unroofing

of cells. This allows for imaging at high signal-to-noise ratio and access to the cytoplasmic

leaflet of the basal PM, while preserving the integrity of the supra-molecular structures.

This study provides a detailed analysis of two exemplary supra-molecular structures:

the syntaxin cluster and ER-PM membrane contact sites (MCSs).

Syntaxin, a transmembrane protein important for synaptic vesicle exocytosis, can be

found in local accumulations of presumably 75 molecules within a diameter of 50 - 60 nm.

In this work, the impact of cytoplasmic protein-protein interactions on the inner archi-

tecture of the cluster was studied. Analysis by high resolution microcopy revealed overall

conserved physical dimensions of protein clusters even if major parts of the cytosolic pro-

tein domains were deleted or the transmembrane region was exchanged for a lipid anchor.

Mobility measurements revealed that the N-terminal part of the SNARE motif conveys

attraction into the clustered state. Deletion of this protein domain entailed the loosening

of clusters as indicated by packing sensitive probes. From these results, it is postulated

that there is a basic clustering reaction mediated by general attractive forces acting on the

TM segment. For the formation of tight intermolecular packing, however, specific protein

domains are necessary.

As a second example, ER-PM membrane contact sites (MCS) were chosen. It has been

debated whether lipids are able to spontaneously move between two opposing membranes.

For analyzing lipid transfer at the contact sites, metabolic labeling of the membrane lipid

phosphatidylcholine (PC) in combination with "click chemistry” was applied. This success-
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fully enabled the visualization of the lipid dynamics, but did not provide an indication for

spontaneous lipid transfer (SLT) between the opposing membranes. Similar observations

were made for cholesterol. It can be concluded that MCSs do not per se constitute hot

spots for SLT of PC and cholesterol. This renders the here developed preparation method

attractive for the study of protein-mediated lipid transfer in absence of other lipid transfer

mechanisms such as SLT or vesicular transfer.

This work was laid out to characterize two multifaceted supra-molecular structures

at the cytoplasmic periphery of the PM. In this context, experimental strategies were

developed to probe features of the supra-molecular structures. The here presented results

give detailed insights into very specific aspects of these structures. Future investigation

could focus on unraveling further aspects of the inner architecture of nano-clusters or

clarify the role of proteins associated with lipid transfer at ER-PM MCSs.



1 Introduction

All processes of life are defined by interactions between organic macromolecules. Their

precursors derived 4 billion years ago from organic monomers by an important principle:

the physical delimitation of the reaction space. Proposed boundary models in this context

are the primordial soup (Oparin 1924), pyrite surfaces (Wächtershäuser 1988) or metal-

sulfide-walled compartments (Martin et al. 2003). Despite context related differences,

all those concepts stress the importance of high reactant concentration and their close

proximity for the emergence of organic macromolecules.

Cells developed their own boundary for structural autonomy from the inorganic sur-

rounding. The separation into closed compartments allows for competition and thus devel-

opment by evolution. Furthermore, it protects molecules from the inorganic environment

and enables regulation of biochemical reactions. Despite large variability in components,

the overall structure confining the cell interior is similar amongst all living cells. Intrigu-

ingly, it is not a compact solid but a thin fluid layer, therefore called plasma membrane

(PM).

In smaller dimensions, the aforementioned delimitation principle continues within the

PM and its surroundings. The components, lipids and proteins, interact in complex net-

works to build up supra-molecular structures. Analogous to the example above they enable

spatial separation of components for the generation of specific micro-environments. These

sub-compartments meet important physiological functions such as signal transduction or

cargo transfer.

1.1 Cellular membranes

Separation from the environment is an important feature of membranes. However, if its

function was exclusively limited to this boundary property, cells would be plain reaction

compartments with a stagnating number of reacting partners. This would ultimately result

in the convergence of chemical potentials arresting all reactions.

Instead, cellular membranes are highly flexible structures with the ability to exchange,

import or export material. Inherently, membranes are semi-permeable: uncharged mole-

13



1 Introduction

cules can diffuse through membranes the easier the less polar and the smaller they are. For

charged or larger molecules, transport across membranes is protein-mediated. It can be

either passive along a concentration gradient or active and thus energy-dependent. The

active transport of ions, for instance, enables the establishment of ion gradients across

membranes, which in turn can be used for the synthesis of high energy bonds. This

fundamental conversion principle between chemical and electrical energy is used by all

known living cells.

Additional to the active or passive exchange of molecules, cellular membranes also func-

tion as communicators between inside and outside. They receive signals, translate and

transmit them. In this way, cells can readily sense and adapt to environmental changes.

In multicellular organisms, intercellular communication ensures effective collaboration and

is essential for survival.

Prokaryotes, archaea and bacteria, possess only the cell surrounding PMs. Eukaryotes

on the other hand exhibit a multitude of other intracellular membranes. They compart-

mentalize the interior of cells into additional physical spaces with specialized functions:

the organelles (see figure 1.1).

Figure 1.1: Cellular membranes compartmentalize reaction spaces within cells. A
Schematic illustration of an animal cell. Specialized functions can be attributed to each of the
organelles: the nucleus harbors and manages the majority of genetic material; the ER, a complex
membrane enclosed compartment that spreads throughout the cell in a net-like structure, func-
tions in e.g. lipid synthesis, Ca2+ homeostasis, protein synthesis, modification, quality control,
and transport; the cellular energy current, ATP, is generated in the mitochondria; the Golgi appa-
ratus is important for the vesicular transport of material and the establishment of lysosomes, the
location of degradation and recycling of molecules; oxidative reactions for degradation are mainly
processed in peroxisomes. (Image slightly modified from Campbell et al. 2001). B Electron micro-
graph of a ER-PM membrane contact site in HeLa cells. Image from Orci et al. 2009. C Schematic
illustration of cellular membrane arrangement of hydrophobic core built up by hydrophobic lipid
and protein parts and the hydrophilic periphery.
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1.2 Basic structural principles of membranes

Commonly, biological textbooks present organelles as isolated structures surrounded by

the cytoplasm. In this way, the visual presentation might be less cluttered, but it is far

from being complete. Instead, organelles are connected to each other at highly abundant

membrane contact sites (MCS) (see figure 1.1). The yeast strain saccharomyces cerevisiae,

for example, contains more than 1000 MCS between PM and endoplasmic reticulum (ER)

per cell (Pichler et al. 2001). In general, MCS are stabilized by tethering proteins. Most

of these are integral membrane proteins of either of the interacting membranes that can

bind to proteins or lipids of the other membrane. Depending on the length of the tethers,

the two compartmental membranes exhibit close proximity of less than 30 nm (Helle et al.

2013).

1.2 Basic structural principles of membranes

As mentioned above, supra-molecular structures of the PM depend on a complex network

of interactions. The general framework in which they occur underlies the basic physical

principle of the hydrophobic effect that leads to the assembly of the building blocks, lipids

and proteins.

1.2.1 Hydrophobic effect

The overall stability of cellular membranes can be assigned to the hydrophobic effect,

which describes the tendency for hydrophobic and hydrophilic substances to separate from

each other. With its dipolar structure, water is the predominant hydrophilic substance

of cells. Water molecules assemble in solution to build up a network of dipole-dipole

interactions. Hydrophobic molecules exhibiting mainly nonpolar and uncharged moieties

therefore disturb the water network and force the water molecules to rearrange (Chandler

2005). To diminish the involved energy costs, the interface area between hydrophobic

domains and hydrophilic solvent has to be minimized. Therefore, hydrophobic molecules

tend to assemble to higher order structures such as membranes. Accordingly, the reverse

reaction, desorption of hydrophobic molecules into the hydrophilic solvent, is restrained,

which prevents the disassembly and stabilizes membranes.

Nonetheless, biological membranes have to remodel constantly to adapt to the environ-

ment, for cargo transport, cell division, intercellular communication etc. These processes

are always accompanied by transition states that increase the hydrophobic-hydrophilic

interface temporally (Jahn et al. 2003). Therefore, specific micro-environments have to be

created to counteract the stabilizing forces, often with the expense of energy.
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1 Introduction

1.2.2 Components of cellular membranes

In the context of cellular membranes, the cytosol and extracellular space constitute the

hydrophilic solvent, whereas hydrophobic lipid and protein parts separate and assemble.

However, none of the cellular membrane components are purely hydrophobic but are cha-

racterized by an amphiphilic structure. The following section gives a short introduction

of those amphiphilic building blocks, lipids and proteins.

Three major membrane lipid classes

There are three major classes of membrane lipids that build up cellular membranes: the

glycerophospholipids (GPLs), sphingolipids (SLs) and sterols (see figure 1.2). The GPLs

are the most abundant lipid group in eukaryotes. They are based on a glycerol backbone

linked on two positions to hydrophobic carbon chains. These chains originate from fatty

acids and can vary in their length and the amount of double bonds (degree of saturation).

The major fatty acids in eukaryotic GPLs can vary from 16 to 20 carbon atoms in length

and contain either none, one, two or four double bonds (Keenan et al. 1970). Chain length

Figure 1.2: Three major lipid classes of cellular membranes. Schematic illustration of repre-
sentatives of the three membrane lipid classes: left, glycerophospholipids (GPL): 1-hexadecanoyl-2-
(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (phosphatidylcholine, PC(16:0/18:1)); middle sph-
ingolipids (SL): N-(tetracosenoyl)-sphinganine-1-phosphocholine (sphingomyelin, SM(18:0/24:1));
right sterols: cholest-5-en-3β-ol (cholesterol); Lipid structures from LIPID MAPS Structure
Database (http://www.lipidmaps.org/)(Sud et al. 2007). Fatty acid chains in GPL and SL can
vary in length and degree of saturation which influences physical properties of cellular membranes
such as fluidity and order similarly to the content of cholesterol.
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and saturation directly affect properties of the membrane: the longer and more saturated

the chains are, the better chains can align. This higher order leads to stronger interactions

among the lipids and increases rigidity of the membrane.

The different GPLs are defined by their headgroups, which are linked to the remaining

hydroxyl group of the glycerol backbone by a phosphate ester. The most common head-

groups are choline, serine, glycerol, inositol, and ethanolamine. Headgroups influence the

charge of the lipid with phosphatidylcholine (PC) and phosphatidylethanolamine (PE)

being zwitterionic and phosphatidylglycerol (PG), phosphatidylserine (PS) and phos-

phatidylinositol (PI) being anionic. The hydroxyl groups of the inositol in PI can be

phosphorylated at different positions yielding mono-, di-, or triphosphates.

SLs are structurally similar to GPLs with two hydrophobic fatty acid chains and a

hydrophilic head group attached to a backbone, in this case the amino acid L-serine. A

choline headgroup is attached to yield sphingomyelin (SM) . In contrast to GPLs, SLs tend

to contain more saturated and longer fatty acids. Additionally, SLs can be glycosylated for

the formation of complex glycosphingolipids, which are mainly found in the outer leaflet

of the PM.

The third class of membrane lipids is the sterols with cholesterol as the most prominent

representative in mammalian cells. The synthesis is catalyzed in the cytosol and at the

cytoplasmic face of the ER membrane leading to the inflexible four carbon rings forming

the sterol backbone. Cholesterol is mainly apolar with the exception of one hydroxyl group

at the C3 carbon atom, which can form hydrogen bonds.

Modular combination of the diverse GPLs, SLs and sterols enable cells to obtain cellular

membranes of different basic physical properties. The PM, for example, contains a high

amount of sterols and sphingolipids, which leads to an increased stability and makes it

less permeable. On the contrary, the ER harbors less sterols and a higher amount of

GPLs with cis-unsaturated acyl chains resulting in looser packing and thinner membranes

(Schneiter et al. 1999, Meer et al. 2008).

Further, the asymmetric distribution of particular lipids alters the specific fingerprint

of membrane surfaces through altered surface charges or specialized lipid functions.

Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) for example occurs mainly at the inner

leaflet of the PM (Di Paolo et al. 2006) where it functions as a recruitment site of specialized

protein binding domains (see section 1.3.2.1).
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Membrane proteins

Proteins are important structural and functional components of cellular membranes. In

fact, 8% of all human proteins were found to reside in the PM (Uhlén et al. 2015) and

around 50% of the PM mass results from membrane proteins (Alberts et al. 2002). Mem-

brane proteins are commonly differentiated in peripheral or integral proteins (figure 1.3).

Integral membrane proteins are partly embedded into the core of the membrane. Hy-

drophobic interactions with lipids thereby stabilize the transmembrane (TM) protein parts.

In addition, electrostatic interactions of charged protein moieties flanking the TM regions

with charged lipid head groups further retain the proteins inside the membrane. Embed-

ding can be achieved by a single or multiple helices that traverse the membrane. Another

possibility is the formation of a hairpin structure, which enters and leaves the membrane

at the same side or a beta-barrel that creates a membrane pore. Initially, the majority

of integral PM proteins are synthesized at and inserted into the ER membrane. Protein

modifications like glycosylation or formation of disulfide groups are processed in the ER

or the Golgi before vesicular trafficking to the PM.

In contrast, peripheral proteins associate with headgroups of lipids or other proteins in

the membrane. Thus, they are not in direct contact with the hydrophobic core and their

protein parts can only face the side of the membrane to which they are attached to.

Some peripheral and integral membrane proteins are linked covalently to a fatty acid

Figure 1.3: Membrane embedding and association of proteins. Diagrammatic view on
different possibilities for proteins to be part of membranes; (a-d) integral membrane proteins
exhibit direct contact of protein domains with the hydrophobic lipid core of the membrane with
(a) one TM helix (single span), (b) multiple TM helices (multi span), (c) a barrel structure
of β-sheets, (d) protein domains that are only embedded into one layer of the membrane. (e)
Peripheral and integral proteins can be anchored to the membrane via fatty acid or prenyl groups
at the intracellular leaflet of the PM. (f) Glycolipid attached to the C-terminus of certain proteins
anchors them to the extracellular leaflet (GPI-anchor). (g) Peripheral membrane proteins bind to
other membrane-anchored proteins or lipid headgroups without direct contact of protein domains
with the hydrophobic core. (Illustration modified from Alberts et al. 2002).
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chain or a prenyl group, further anchoring the proteins at the membrane. A special case

of membrane anchoring is the glycosylphosphatidylinositol (GPI) anchor, which is post-

translationally attached in the ER to proteins with a specific motif. GPI-anchored proteins

are found at the extracellular leaflet of the PM.

1.3 Macroscopic zones of the PM

When considered from a rather macroscopic view, the PM can be dissected into three

different zones: i) a carbohydrate-rich outer periphery, ii) the core build up by hydrophobic

lipid and protein moieties and iii) a fringe region with the cytoplasm.

The outer periphery meets diverse demands in cell-cell and cell-matrix communica-

tion. An important structural element in these processes is the glycocalyx at the cell

surface, which consists of a vast number of oligosaccharide chains linked to membrane

proteins or lipids (Kleene et al. 2004). This complex meshwork is, for example, important

for neuronal cell development and regeneration (Kleene et al. 2004), or can function in

mechano-transduction in endothelial cells (Florian et al. 2003).

Hydrophobic lipid and protein parts build up the hydrophobic core of the PM separating

the hydrophilic extra- and intracellular environment (see section 1.2.1). The core acts as

a permeability barrier for charged and large molecules, therefore allowing regulated cargo

transport across the PM.

The cytoplasmic zone of the PM is a highly occupied and busy area: signals approach

from the outside and are processed and transmitted, cargo is transported via endo- or

exocytosis, the structure of the PM is remodeled by interactions with the cytoskeleton,

membrane channels are opened or closed, etc. The majority of these processes are im-

plemented by supra-molecular structures, wherein multiple proteins and lipids interact

to form specific micro-environments such as for example signaling platforms. Diverse

interactions among the components contribute to the formation and stability of supra-

molecular structures. Lipid phase separation, lipid wetting of embedded protein parts and

hydrophobic mismatch are segregation principles mostly attributed to the hydrophobic

core (see figure 1.4). Interactions between lipid headgroups and protein residues (see fig-

ure 1.5) amongst proteins in the hydrophilic surrounding (see figure 1.6) are located at

the cytoplasmic interface of the PM. In the next sections, the hydrophobic core and the

cytoplasmic periphery will be dissected for interactions localized in the respective zone.
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1.3.1 The hydrophobic core

The components within the hydrophobic core are not distributed homogeneously. In-

stead, they interact with each other leading to local changes in physical properties of

the membrane such as fluidity or thickness (figure 1.4). Formation and stabilization of

supra-molecular assemblies are thereby promoted.

Figure 1.4: Segregation principles within the hydrophobic core of the PM. Components
within the hydrophobic membrane core interact with each other and thus promote the formation
and stabilization of supra-molecular assemblies at the cytoplasmic periphery of the PM. (a) Lipids
can assemble due to their order parameters into lipid phases. (b) Protein domains in direct
contact with the hydrophobic core are surrounded by annual lipids. Sharing lipid annuli can
lead to capillary condensation. (c) Protein and lipid parts influence the thickness of membranes.
Hydrophobic mismatch is an important sorting mechanism for proteins. (d) Proteins and lipids
can exhibit specific interactions.

Lipid phases

One of the most studied organization principles in bilayers are the lipid phases. The term

refers to the ability to organize the bilayer into lateral domains as revealed decades ago

in simple lipid systems (Engelman et al. 1972). The idea that lipid phases are important

for physiological functions arose from the observation that glycoproteins are sorted in the

Golgi apparatus along with newly synthesized SLs before they are delivered to the epithe-

lial PM in polarized cells (Simons et al. 1988). So-called lipid rafts of SM and cholesterol

formed in the Golgi have been suggested to attract certain proteins, thus directing their

co-segregation and transport (Simons et al. 1997).

When considering pure lipid systems, the lipid bilayer can be classified into three phases

according to their order parameter and the lateral mobility: solid ordered (high order, low

mobility), liquid-disordered (low order, high mobility), and liquid-ordered (high order, low

mobility) (Meer et al. 2008). Transition between phases is fluent and occurs, for instance,

upon temperature change (Ipsen et al. 1987).

In particular, structure and shape of the lipid species influence phase properties (see

section 1.2.2). For example, SLs often contain long and saturated acyl chains and therefore

assembles at higher order (D. A. Brown et al. 2000). In contrast, a bilayer composed of
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unsaturated PC appears in a liquid-disordered phase (McMullen et al. 1994). Sterols,

being smaller and more compact and rigid as the acyl chains, have a divergent effect

on bilayers: On the one hand, they disturb the tight packing of, for example, SM and

on the other hand they are able to compensate for packing defects between unsaturated

acyl chains. This leads to a decrease of membrane fluidity, increased membrane thickness

(Almeida et al. 2005) and the assembly of liquid ordered phases, which still provides high

lateral mobility of the lipids (Meer et al. 2008).

Studies performed in artificial bilayer systems with lipid mixtures related to the lipid

composition of PM were able to visualize the segregation into domains with fluorescence

microscopy (Veatch et al. 2003, Kaiser et al. 2009, Dietrich et al. 2001). In live cells,

SM and GPI-anchored proteins, putative lipid raft-associated proteins, were shown to

be trapped in complexes in the PM (Eggeling et al. 2009). Those cholesterol-dependent

complexes have been described to be short lived (up to 20 ms) and smaller than 20 nm in

diameter (Eggeling et al. 2009) and thus differ vastly from the phases observed in artificial

membranes. This questions the transferability of the studies on lipid phases in artificial

lipid systems to biological membranes but, at the same time, stresses the influence of

lipid phases on the formation of micro-domains inside cellular membranes. In fact, such

phases were shown to be important for the formation of signaling platforms at the PM.

For example, the human chemokine receptors partition into specific lipid domains upon

binding of ligands where they come into close proximity with G proteins and activate them

for further signal processing (Jiao et al. 2005).

Protein embedding into the hydrophobic core

Certainly, there is an influence of lipid assemblies on segregation of proteins as explained

in the previous section. However, at the same time hydrophobic protein domains influence

lipid behavior and thereby modulate membrane organization.

When protein domains are embedded into lipidic bilayers, the lipid molecules have

to adapt structurally to the hydrophobic protein surface for a close contact in order to

preserve the integrity of the membrane. Lipids in direct proximity to the protein are

therefore less structured and are restricted in their movement (Brotherus et al. 1981).

These so-called shell lipids are not rigid but readily exchange with the bulk lipids outside

the shell (D. Marsh et al. 1998). Entropic effects promote the tendency to share lipid

annuli. Capillary condensation effects thereby lead to joining forces between proteins and

facilitate the formation and stabilization of protein accumulations within the membrane

(Gil et al. 1998).
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Consequently, proteins represent obstacles for lipid diffusion and thus reduce mobility

of the adjacent lipids. Moreover, the insertion of proteins in membranes can lead to

local disturbance of lipid order as demonstrated by enhanced capability of transbilayer

movement upon insertion of certain peptides into model membranes (Kol et al. 2003).

From the examination of synaptic vesicles, it is known that the occupancy of pro-

teins inside the membrane can reach more than 105 TM regions per µm2 membrane area

(Takamori et al. 2006). In red blood cells, the percentage of the protein-occupied area

within the PM was determined to be more than 20 % (Dupuy et al. 2008). These numbers

imply that a large portion of membrane lipids is influenced by proteins in the PM, which

in turn affects protein segregation.

Thickness of the core region and hydrophobic mismatch

The thickness of the membrane core is modulated by the chain length of the lipid car-

bon chains and their outstretch due to the degree of saturation. In artificial lipid bi-

layers, cholesterol is able to increase membrane diameter (Wilkins et al. 1971) whereas

in biological membranes, TM protein domains were suggested to be the more prominent

regulator of membrane thickness (Mitra et al. 2004). In either case, TM segments of

proteins usually match in length with the bilayer, because a positive or negative length

difference, the hydrophobic mismatch, would lead to energetically disfavored increase in

hydrophobic-hydrophilic interfaces (see section 1.2.1). The matching is achieved either by

the restructuration of the membrane or the TM protein domain (Jesus et al. 2013) or by

differential sorting of TM domains to different cellular membranes of appropriate thickness

(Munro 1995). Hydrophobic mismatch is an important factor promoting the interaction

between TM segments (Schmidt et al. 2008) and regulating, for instance, the specificity

of interaction within protein clusters (Milovanovic et al. 2015).

Specific lipid-protein interactions

The forces described in the previous sections are throughout collective properties of bilay-

ers that stabilize or promote the formation of supra-molecular assemblies in the PM. In

addition, there are specific interactions between lipids and proteins that lead to the for-

mation of higher order assemblies. For example, a direct and highly specific interaction of

the TM protein p24 with SM was discovered involving the headgroup and the backbone of

the lipid (Contreras et al. 2012). Binding of the lipid was shown to promote dimerization

of p24 and thus the lipid was suggested to be a cofactor in the conversion of an inactive

protein monomer to an active supra-molecular assembly (Contreras et al. 2012).
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1.3.2 The cytoplasmic zone

When refocusing from the hydrophobic core further towards the cytosol, one approaches

its interface with the hydrophilic periphery of the PM. Further complex interactions take

place in this region to define the specific micro-environments of supra-molecular structures.

Such interactions involve the recognition of specific lipid headgroups for the recruitment

of soluble proteins or proteins integral to other cellular membranes. Furthermore, electro-

static interactions with lipids or among proteins, as well as other protein-protein inter-

actions lead to higher order assemblies. In most cases, the different interaction types

mutually depend on each other, challenging their investigation.

1.3.2.1 Lipid-protein interactions

Lipid-mediated protein recruitment

Specific lipids at the cytoplasmic periphery of the PM create platforms for the recruitment

of proteins from the cytosol (see figure 1.5). In this way, interaction partners come in close

proximity, which enables efficient reaction and allows for refined regulation.

One prominent example for such a specific lipid is the major phosphoinositide in mam-

malian cells, PI(4,5)P2 (see section 1.2.2). For example, phospholipases C (PLC) are

recruited to the PM via their PI(4,5)P2 binding pleckstrin homology (PH) domains upon

activation by signal cascades (Ferguson et al. 1995). The proximity to the PM enables

the PLC to hydrolyze their target PI(4,5)P2 into diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (IP3). While the latter opens calcium channels in the ER, the former in

turn acts as an additional recruiter of protein kinase C to the cytoplasmic periphery of

the PM. This lipid-promoted binding entails the recruitment of further scaffolding pro-

Figure 1.5: Lipid-protein interactions at the cytoplasmic periphery of the PM. Spe-
cific lipids such as e.g. PI(4,5)P2 (depicted in blue) act as recruiter for cytosolic proteins (a) or
membrane-embedded proteins from other cellular membranes such as the ER or vesicles (b). (c)
Negatively charged lipids such as PI(4,5)P2 interact with positively charged protein residues. This
electrostatic interaction can promote e.g. the assembly of proteins to clusters (Bogaart et al. 2011).
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teins (Mochly-Rosen et al. 1991), which again bind other signaling enzymes generating an

intricate network of interactions at the cytoplasmic periphery of the PM.

Lipid-mediated membrane recruitment

Another lipid-mediated protein recruitment at the cytoplasmic periphery of the PM goes

even beyond the described PI(4,5)P2/PLC interaction: If the protein containing the lipid

binding motif is anchored in another membrane, such as the ER, the recruitment mediates

spatial proximity of the two membranes, which leads to the formation of a MCS (figure

1.5). One example for such supra-molecular structures is the ER-PM MCS.

First described in an electron microscopy study of muscle cells in 1957 (Porter et al.

1957), ER-PM MCS were neglected for a long time due to the lack of reliable methods for

purification or observation. In recent years, however, they regained attention and their

influence in lipid transfer is currently of high interest (Giordano et al. 2013, Saheki et al.

2016, Yu et al. 2016).

All of the identified tethering proteins, the human extended synaptotagmins, the Ist2

(corresponding to human TMEM16A-J), the VAP (vesicle-associated membrane protein-

associated) proteins and the exclusively in mammals identified junctophilins are integral

ER membrane proteins (Henne et al. 2015). They interact with lipids at the PM by mul-

tiple lipid recognition protein domains. Extended syntaptotagmins, for example, contain

lipid-binding C2 and SMP domains (Schulz et al. 2004, Toulmay et al. 2012) and bind

PI(4,5)P2 in a calcium-dependent manner (Giordano et al. 2013). Ist2/TMEM16 likewise

interacts with PI(4,5)P2 via a polybasic protein domain (Fischer et al. 2009). Juncto-

philins contain a not fully investigated basic MORN (membrane occupation and recogni-

tion nexus) domain, that has been proposed to bind PI(3,4,5)P3 (Bennett et al. 2013), a

lipid that is, similar to PI(4,5)P2, nearly exclusively found in the PM (Meer et al. 2008).

Electrostatic lipid - protein interactions

Just as the described specific interactions, also electrostatic lipid-protein interactions play

a pivotal role in the organization of the cytoplasmic PM periphery (see figure 1.5). The

most important lipids in this context are the phosphoinositides and PS. The net charge

of PI(4,5)P2, for instance, ranges from -3 to -5 depending on the pH and interactions

with surrounding molecules (McLaughlin et al. 2002). Thus, it is able to electrostatically

interact with positively charged protein residues proximal to the lipid headgroups.

The involvement of electrostatic lipid-protein interactions in micro-domain formation

was demonstrated using syntaxin 1A clustering as an example (Bogaart et al. 2011).
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Syntaxin 1A traverses the PM with a single TM domain linked to the cytoplasmic protein

part by a polybasic amino acid stretch 260KARRKK265 (pbs). In the study of Bogaart

et al. 2011, PI(4,5)P2 formed cluster phases with a peptide corresponding to the pbs-TM

domain dependent on the positive amino acids in giant lamellar vesicles. Additionally, high

resolution microscopy revealed the formation of PI(4,5)P2 domains in the PM of cells with

similar size of syntaxin1A cluster, which were sensitive to PI(4,5)P2 cleavage. In summary,

it has been concluded that electrostatic lipid-protein interactions were sufficient for micro-

domain formation. However, as suggested by Khuong et al. 2013, the more negative lipid

PI(3,4,5)P3 could be the relevant charge counterpart in the process of syntaxin 1A micro-

domain formation.

The supra-molecular structures of syntaxin 1A and phosphoinositides were reported to

serve as docking platforms for neurotransmitter-containing vesicles at the synaptic cleft

(Honigmann et al. 2013). Those vesicles are docked to the PM and fuse upon arrival

of an action potential. The cytoplasmic periphery of the PM plays an important role

in spatial and temporal regulation of this process, whereat SNARE protein interactions

convey specificity and are the basic molecular engine for the fusion reaction (Jahn et

al. 2012). Such protein-protein interactions at the cytoplasmic periphery of the PM are

subject of the next chapter.

1.3.2.2 Protein-protein interactions

In general, protein-protein interactions (PPIs) can be classified into i) homomeric or

heteromeric, ii) strong and weak, and iii) permanent or transient, whereby transitions

between the interaction types are fluent (Nooren et al. 2003).

PPIs at the cytoplasmic fringe of the PM underlie the same principles as interactions in

the cytosol with two major differences: i) PPIs, even if the interacting protein domains are

located in the cytosol, often involve interactions within the hydrophobic core of the PM

either with lipids or between TM domains of integral membrane proteins. ii) Interactions

at the PM are spatially restricted to the 2D environment of the membrane. Integral

as well as peripheral membrane proteins are mobile but manifold slower compared to

cytosolic proteins (M. McCloskey et al. 1984, Kumar et al. 2010) and move only laterally.

Additionally, the PM is highly packed with proteins (see section 1.3.1), which causes

constant physical contact to multiple putative interaction partners.

Importantly, not only does membrane structure affect PPIs but PPIs in turn also im-

pinge on the structure of the membrane. This complicates the analysis of cause and effect
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of the interactions. In the following, PPI functions at the cytoplasmic periphery of the

PM are introduced exemplary to provide insight into supra-molecular protein complexes

(see figure 1.6).

Figure 1.6: Protein-protein interactions at the cytoplasmic periphery of the PM.
(a) Small ions such as calcium promote protein clustering via electrostatic charge bridges. (b)
Membrane-embedded proteins can recruit soluble proteins via specific interaction domains. (c)
PM proteins interact with integral proteins of other membranes such as the ER or vesicles e.g.
for opening of calcium channels in the PM (depicted by black arrow). (d) Connections with the
cytoskeleton allow for membrane remodeling and influence the organization of lipids and proteins
within the membrane. (e) The combination of membrane-embedded proteins and adaptor proteins
can lead to membrane deformation important for e.g. vesicle budding.

Electrostatics in protein clustering

Returning to the subject of electrostatics in membrane organization, ions are able to

promote oligomerization of proteins similar to charged lipids. Calcium is one of the most

important ions in this context. Its concentration in the cytosol is in the 100 nm range

(Brini et al. 1995), but upon calcium channel opening the local concentrations at the

cytoplasmic fringe of the PM can temporary exceed this value to values in the µm range

(Rizzuto et al. 2006). This was shown to be sufficient for membrane protein interaction

and the promotion of clustering for a variety of different membrane proteins (Zilly et al.

2011). Importantly, the calcium-dependent formation of those micro-domains is not due to

specific calcium interaction sites within the proteins but purely mediated by electrostatics.

This distinction is exemplified by a study reporting on biphasic protein clustering in

the interaction of the SNARE protein SNAP25 with calcium (Batoulis et al. 2016). Salt-

bridges of calcium with negatively charged aspartate and glutamate residues are proposed

to compensate the repulsion of negative charges among the proteins and therefore stabi-

lize the formation of protein cluster at low calcium concentrations, whereas high calcium
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concentration disband the bridging behavior due to overcharging (Batoulis et al. 2016).

Interestingly, similar biphasic clustering behavior has been observed in the lipid-mediated

sequestering of the syntaxin pbs-TM-peptide in giant membrane vesicles (GUV) used in

the study of (Bogaart et al. 2011, see section 1.3.2.1), where sequestering was diminished

at high PI(4,5)P2 concentrations.

Protein recruitment via specific protein domains

Specific protein-protein interactions between membrane-embedded and soluble proteins

play a pivotal role in the complex interaction networks of supra-molecular structures.

These interactions are analogous to the previously explained protein recruitment of lipids.

Similarly, they involve protein domains that specifically recognize their interaction partner.

Scr-homology (SH2) domains are classical examples of such a protein domain. Speci-

ficity for binding to membrane proteins is mediated by the recognition of C-terminal

phosphotyrosine (pTyr) residues (Pawson et al. 2000). For example, the epidermal growth

factor receptor (EGFR) contains several such pTyr sites in its activated state. Upon

binding of a peptide ligand to the extracellular protein part, the receptor undergoes struc-

tural rearrangements and dimerizes. The thereby activated tyrosine kinase domain at the

intracellular side of the PM catalyzes the phosphorylation of tyrosine residues at adja-

cent EGFRs. The binding of SH2 domain-containing proteins initiates the formation of a

complicated network of more than 100 interacting molecules at the cytoplasmic periphery

of the membrane for signal conveyance into the cytosol (Morandell et al. 2008). Protein

interactions as the ones described are therefore integral parts of sophisticated networks

in which even small changes can lead to severe phenotypes such as tumor development in

case of the EGFR.

Protein-mediated ion channel activation

The previous sections introduced protein interactions within the PM, as well as between

PM-embedded and soluble proteins. Interacting proteins of supra-molecular structures at

the cytoplasmic periphery of the PM can also be anchored to different cellular membranes.

This is for example important in ER-PM MCS-mediated store-operated calcium entry

(SOCE). In this process, the integral ER protein STIM1 senses low calcium level in the

ER, oligomerizes and translocates to MCS between the PM and the ER (Liou et al. 2007).

STIM1 interaction with the pore forming protein ORAI1 in the PM opens calcium release-

activated channels (CRAC) at the PM (Stathopulos et al. 2013) leading to local calcium

influx (Wu et al. 2006).
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Several layers of regulation contribute to the complexity of SOCE: for example, the

oligomeric state of ORA1 assemblies at the PM defines ion specificity of the channel with

the tetramer being specific for calcium (Thompson et al. 2013). Furthermore, SOCE

is highly susceptible to changes in the STIM1:ORAI1 stoichiometry (Hoover et al. 2011).

Trapping of the channels is thereby achieved by only two STIM1 molecules, full activation,

however, requires eight STIM1s (Hoover et al. 2011). Mutations in the STIM1 consensus

glycosylation site promote formation of STIM1 oligomers, which results in overactivation

of ORAI1 channels and their subsequent degradation (Kilch et al. 2013). Such increased

SOCE leads to severe pathological symptoms involving platelet defects and skeletal my-

opathies (Lacruz et al. 2015). Additionally, there are a variety of other possible regulations

via lipid-protein interactions such as the suggested downregulation of SOCE by the specific

binding of ORAI1 to cholesterol within the PM (Derler et al. 2016).

Although the connections between the different regulating mechanisms are unknown,

the example of SOCE again demonstrates the necessity of fine orchestration in supra-

molecular assemblies like the ER-PM MCS.

Interaction of the PM with the cytoskeleton

Another layer of complexity at the cytoplasmic periphery of the PM is added by its

connection with the cellular cytoskeleton. Many types of supra-molecular actin-based

structures, as well as microtubuli and intermediate filaments interact tightly with the PM

to control membrane tension, global cell shape and volume (Doherty et al. 2008).

In smaller dimensions, cytoskeleton-PM interactions also influence the organization of

PM components. For example, the direct coupling of a membrane protein to actin fila-

ments results in the formation of protein clusters (Gowrishankar et al. 2012). In addition,

already existing supra-molecular protein assemblies are actively redistributed within the

PM through the action of cytoskeleton elements, as demonstrated in the context of T cell

receptor signaling (Varma et al. 2006).

However, the interaction of PM components with the cytoskeleton is bidirectional as

exemplified by a study of Banjade et al. 2014, wherein the authors present protein cluster as

the nucleation sites of actin filaments. This demonstrates the complexity of interactions at

the cytoplasmic periphery of the PM. Open questions in this area of research are therefore

difficult to tackle, since on the one hand slight changes in membrane organization or on the

other hand minimal disintegration of the cytoskeleton meshwork could mutually influence

each other leading to unintended restructuring of cytoskeleton-PM interactions.
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Protein-induced remodeling of the membrane

Previous chapters introduced the various interactions at the cytoplasmic periphery of the

PM that determine the micro-environments of supra-molecular structures. Conversely,

the latter are able to influence the structure of the PM as illustrated in, for example,

clathrin-mediated endocytosis (CME).

CME is important for the uptake of specific cargo proteins in and at the PM and their

subsequent transport to other cellular destinations. This cellular process requires multiple

cargo adaptors, accessory proteins and membrane remodeler being orchestrated in a supra-

molecular network. In a first step, adaptor proteins are recruited to the cytoplasmic

periphery of the PM. They interact with their respective PM-localized cargo proteins

initiating clathrin binding and polymerization to a clathrin cage (Kirchhausen 2000). At

this stage, the membrane forms a vesicle but is still connected to the PM. The GTPase

dynamin surrounds the neck of the vesicle and triggers fission whereupon the clathrin cage

dissociates.

It is highly debated how the described membrane curvature is generated during forma-

tion of vesicles. Intrinsically, lipid bilayers exhibit high elasticity. Therefore, shaping of

membranes requires active mechanisms (McMahon et al. 2015). In context of CME, the

insertion of Epsin1 at the cytoplasmic leaflet of the PM causes curvature by increasing

the occupied area in the leaflet (Ford et al. 2002). However, mere crowding of Epsin1

without the insertion capacity already bends the lipid bilayer in artificial lipid vesicles

(Stachowiak et al. 2012). Furthermore, Epsin1 was shown to interact with actin likely

creating mechanical forces that pull the vesicular membrane away from the PM (Messa

et al. 2014).

Overall, monitoring the formation of vesicles appears to be technically elusive due to the

complex network of necessary adaptor proteins and mechanical forces. Cell free systems

closely related to the natural environment were established to tackle this problem (Wu

et al. 2012) and were e.g. applied to unravel a regulatory mechanism for the size of

internalized membrane fragments during endocytosis (Wu et al. 2010).

1.3.3 Challenges for studying the cytoplasmic PM periphery

As expounded in the last chapter, the cytoplasmic zone of the PM is a highly crowded

place. Multiple cellular processes are implemented by supra-molecular assemblies, such

as signal processing into the cytosol, modulation of cell shape and motility, exo- and en-

docytosis and the connection to other organelles. Interactions within the supra-molecular
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Figure 1.7: Complex network of interactions influence the cytoplasmic periphery of the
PM. Interactions within the hydrophobic core of the PM (see figure 1.4), lipid-protein interactions
at the cytoplasmic periphery (see figure 1.5) and protein-protein interactions (see figure 1.6) build
up a complex network of supra-molecular structures at the cytoplasmic periphery of the PM. Their
mutual dependency challenges the technical approach and call for integrative experimental systems.

structures are complex and always require multiple layers of the introduced interactions,

which mutually depend on each other (figure 1.7).

Those mutual dependencies challenge the investigation of the cytoplasmic periphery of

the PM both on the technical level as well as on the level of interpreting the findings.

The major difficulties are hereby the combination of hydrophobic and hydrophilic envi-

ronments, the impeded accessibility in contrast to the outer periphery of the PM and the

“crosstalk” between the PM and the remainder of the cell.

The first attempts to study proteins and lipids at the inner side of the PM were con-

ducted in red blood cells. Unlike other eukaryotic cells, they lack organelles or a nucleus.

Thus, their PM can be easily isolated without contaminations of other intracellular mem-

branes (Alberts et al. 2002). Homogenization and resealing of the resulting "ghosts" gen-

erates a population of vesicles where the inner leaflet points to the outside (Steck et al.

1970). This opens up the possibility to access the inner surface of the PM and to inves-

tigate orientation and arrangement of PM proteins (Steck 1974). It further lead to the

recognition that lipids are asymmetrically distributed among the two membrane leaflets

(Kahlenberg et al. 1974).

Detergent-based solubilization of PM components

Necessary prerequisite for proteins to be embedded in the hydrophobic core of the mem-

brane is the exposure of hydrophobic amino acids to the lipid interface. Purification and

structural analysis of membrane proteins and their complexes therefore often involve the

usage of detergents. Those amphiphilic molecules can provide a membrane mimicking

environment and prevent hydrophobic protein parts from aggregation. Membrane solubi-

lization with the detergent Triton X-100 at 4◦C followed by density gradient centrifugation

extracts detergent-resistant membrane (DRM) parts. These DRMs were found to be en-
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riched in SM and cholesterol and were closely connected with membrane rafts for a long

time (see section 1.3.1). Proteins associated to DRMs were claimed to partition in lipid

rafts in intact cells. However, detergents themselves are in principle able to induce ordered

and detergent-resistant domains in lipid bilayers and that behavior could be confounded

with natural partitioning of the PM (Heerklotz 2002). Comparative analysis of raft par-

titioning in giant lipid vesicles and DRM revealed that only a third of the investigated

proteins partitioned into the ordered lipid phase in vesicles, whereas they separated en-

tirely into the DRMs upon TritonX-100 solubilization (Kahya et al. 2005). Therefore, the

application of detergents cannot be seen as an appropriate and reliable method to extract

sub-partitions of the PM.

Mechanical PM extraction

To prevent the usage of detergents, several PM purification protocols based on mechan-

ical forces have been established. Most of those protocols rely on mechanical cell dis-

ruption and subsequent differential centrifugation to separate the PM from intracellular

membranes according to their respective density. However, such membrane purification

protocols achieve accessibility to the inner part of the PM at the expense of PM integrity.

The extracted components can be analyzed and interactions with covalent or strong inter-

acting partners can be detected. However, it is challenging to investigate supra-molecular

structures that are held together by weak and transient interactions or that are susceptible

to membrane curvature and integrity.

Cell unroofing for PM extraction

An option for the detergent free extraction of the PM that partly preserves membrane

integrity is the sheeting technique (see figure 1.8). With this technique a short ultrasound

pulse is applied to adherent cells, which decapitates cells and therefore causes the physical

abrasion of cytoplasmic structures (Heuser 2000). The resulting planar membrane sheets,

henceforth referred to as PM sheets, offer accessibility to the cytoplasmic as well as to the

extracellular periphery of the PM. The preparation is simple and applicable to a large set

of cells with the prerequisite of cell attachment to a surface suitable for imaging.

Cell unroofing ceases exchange of the PM and the cytosol and thereby simplifies the

experimental system. The technique has been applied for the investigation of supra-

molecular structures at the cytoplasmic periphery of the PM. Namely, it was used to

resemble formation of clathrin-coated pits (Moore et al. 1987), which lead to the conclusion

that there are limited pit assembly sites on the PM and that the assembly is independent
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Figure 1.8: Cell unroofing for PM extraction. Illustration of cell unroofing technique. A short
ultrasound pulse is applied to adherent cells, which removes major parts of cytosolic structures as
well as the apical membrane. The resulting planar PM sheets offer accessibility to the cytoplasmic
periphery of the PM and allow for high signal-to-noise imaging in epifluorescence microscopy.
Lower panel: Cells (left) and PM sheets (right) stained with a fluorescent membrane marker.

of ATP. A similar experimental system of PM sheets was used to identify the involvement

of tubular endocytic intermediates in endocytosis (Wu et al. 2010) (see section 1.3.2.2).

Furthermore, PM sheets in combination with high resolution microscopy were used to

quantitatively describe a protein cluster in terms of physical dimensions and molecule

number (Sieber et al. 2007).

Microscopic examination of the PM

Most of the supra-molecular structures at the cytoplasmic side of the PM involve sensitive

lipid-lipid or lipid-protein interactions. To investigate the structures and the underlying

processes, the experimental system needs to contain necessary interaction partners in the

cytoplasmic periphery and in the hydrophobic core of the membrane. Thus, application

of microscopic methods increasingly gained ground in this field, because it enables the

preservation of the natural surroundings and at the same time provides important spatial

as well as temporal resolution.

The major difficulty in the investigation of the PM and its proximal environment by

fluorescence microscopy is the intracellular fluorescence that conceals fluorescent signals

from structures at the PM. To overcome these obstacles, several microscopic methods have

been developed additional to the aforementioned mechanical PM dissection.
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For example in confocal microscopy, a pinhole in front of the detector diminishes out-of-

focus light which results in the detection limited to light from the focal spot. Thereby, the

restricted detection of a planar section of about 500 nm to 1 µm thickness allows for spatial

selection. Total internal reflection fluorescence (TIRF) microscopy permits even smaller

depth discrimination, which, in contrast to confocal microscopy, occurs through selective

illumination. Total reflection of a laser on the oil-water interface generates an evanescent

wave that protrudes only about 100 nm into the cytosol and selectively excites fluorophores

at the basal PM (Steyer et al. 2001). TIRF microscopy was used, for instance, for the

first recording of single synaptic vesicles in docking and fusion with the PM (Zenisek et al.

2000).

High-resolution imaging

Despite the improvement concerning out-of-focus light, confocal and TIRF- microscopy

are still subjected to the diffraction limited resolution, which depends on the numerical

aperture of the system and the wavelength of imaging. In standard setups of fluorescence

microscopes, this limit usually exceeds 200 nm. However, some of the supra-molecular

structures of the PM are smaller and thus appear in a blurry fluorescence spot lacking

detailed structural information on the distribution of their components. To overcome

the diffraction limit, high resolution microscopy techniques were developed mainly in the

last two decades such as photo-activated localization microscopy (PALM), stochastic opti-

cal reconstruction microscopy (STORM) and stimulated emission depletion (STED) mir-

coscopy.

PALM/STORM resorts to stochastic detection of individual fluorophores in sequential

imaging frames. From each image the localization of single signals can be calculated by

the point spread function. Superimposition of these localization maps reveals images at 2

- 25 nm resolution (Betzig et al. 2006).

In STED, stimulated depletion is used to transfer molecules in a non-fluorescent state

by a donut-shaped laser of high intensity (see figure 1.9). This de-excitation laser superim-

poses the excitation laser leaving only the fluorescence from the center of the spot. With

this technique, resolution of less than 40 nm can be achieved in recent setups (Vicidomini

et al. 2011).

Both methods were implemented successfully in the investigation of supra-molecular

structures at the PM periphery. A high-speed version of PALM (hsPALM), for example,

was used to characterize the PM distribution of the T cell receptor clusters in relation to

those of an adaptor protein important for signal transduction (Lillemeier et al. 2010). A
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Figure 1.9: STED microscopy. A Schematic illustration of STED principle. The STED beam
(depicted in orange) de-excites fluorophores via stimulated emission. A phase modulator generates
the doughnut-shaped form of the STED laser, which superimposes the diffraction-limited excitation
spot (depicted in blue). This confines the fluorescence emission to the center of the doughnut, which
is narrower than the excitation spot. Image modified from Willig et al. 2006. B Comparison of
images obtained in confocal (left) and STED (right) mode of a clathrin immunostaining on fixed
PM sheets from mouse embryonic fibroblasts (kindly provided by Martina van Uelft).

spatial resolution of roughly 25 nm enabled to observe that previously separated clusters of

T cell receptor and the adaptor protein merge upon activation. Further, the combination

of STED and fluorescence correlation spectroscopy has proven useful in the investigation

of lipid dynamics within the natural surroundings of the PM (Eggeling et al. 2009). In-

triguingly, this technique is able to distinguish strong and specific lipid-protein interactions

(see section 1.3.1) from lipid phase-mediated interactions (see section 1.3.1) in live cells

(Mueller et al. 2011).

Tackling supra-molecular structures at the PM periphery

In conclusion, the investigation of the cytoplasmic periphery of the PM is challenging due

to the combination of hydrophilic and hydrophobic environments and the lack of direct

accessibility.

Biochemical extraction methods of the PM are helpful for the quantification of explicit

components or the identification and analysis of strong and/or permanent interactions.
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Similarly, artificial lipid systems such as liposomes or supported lipid bilayers can be used

to reconstitute and examine specific interactions. These simplified experimental systems

have been proven particularly useful in the discovery of lipid phases (section 1.3.1).

However, supra-molecular structures are often mediated by a complex network of in-

teractions involving weak and transient protein-protein, lipid-lipid and protein-lipid in-

teractions. Complexes therefore tend to disintegrate upon isolation. Furthermore, the

single components show differential needs in purification due to different proportions of

hydrophobic and hydrophilic domains. Even more important in this context is the mutual

dependency of interactions as pictured in section 1.3.2.

Experimental approaches such as the above displayed microscopy methods and the

sheeting technique bear the potential to overcome these obstacles since they are able

to capture the natural cellular environment. In addition, they provide sufficient spatial

and temporal resolution for the direct visualization as well as open up the possibility to

investigate anatomy and function of supra-molecular structures in the cytoplasmic peri-

phery of the PM.
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2 Aim of the study

The cytoplasmic periphery of the PM is a zone of utmost importance for all cells. Com-

munication with the surrounding or metabolic maintenance are only few examples of the

diverse biological processes implemented in this cellular region. The distinct functions

are thereby fulfilled in specific microenvironments that are created by the formation of

supra-molecular structures. Their organization is accomplished by a complex network of

interactions of lipids and proteins that rely on an intact membrane environment. The

investigation of this cellular region thus appears technically challenging and demands the

integration of hydrophobic and hydrophilic surroundings.

In this study I aimed to explore PM sheets in combination with modern imaging and

lipid labeling techniques to obtain a better understanding of supra-molecular structures

at the cytoplasmic periphery of the PM in terms of i) structural and ii) functional aspects.

i) The first aim of the study was to investigate the influence of cytoplasmic protein-protein

interactions on the inner architecture of a membrane protein cluster using the syntaxin

cluster as an example.

ii) For the functional characterization of a supra-molecular structure I chose a more com-

plex assembly integrating lipid-protein and protein-protein interactions between two dif-

ferent cellular membranes: ER-PM membrane contact sites.
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3 Materials and Methods

3.1 Materials

Standard chemicals and reagents used in this study were purchased from Carl Roth (Karl-

sruhe, Germany), Sigma Aldrich (Hamburg, Germany), AppliChem (Darmstadt, Ger-

many), Merck (Darmstadt, Germany), Thermo Fisher Scientific, formerly Life Technolo-

gies, (Waltham, USA) unless stated otherwise. All consumables for cell culture were

obtained from Sarstedt (Nümbrecht, Germany), other consumables were from Carl Roth

(Karlsruhe, Germany), VWR (Darmstadt, Germany), Labomedic (Bonn, Germany), Ep-

pendorf (Hamburg, Germany), or Bio-Rad (Munich, Germany). Glass coverslips for mi-

croscopy were purchased from Marienfeld (Lauda-Königshofen, Germany). Cell culture

media and reagents were obtained from PAN Biotech (Aidenbach, Germany) and Biochrom

(Berlin, Germany).

3.1.1 Technical devices

3.1.1.1 Appliances

Table 3.1: Appliances

Instrument Name/Manufacturer Application

Microplate
reader

Infinite® 200 PRO multimode
microplate reader (Tecan, Maennedorf,
Switzerland)

determination of protein con-
centration by bicinchoninic
acid assay (BCA)

Imaging system Odyssey® CLx Imaging System
(LI-COR Inc., Lincoln, USA)

western blot imaging

Thermocyclers TPersonal and TProfessional basic
gradient(Biometra, Goettingen,
Germany)

polymerase chain reaction
(PCR)

Spectrophotometer NanoDrop2000 (Thermo Fisher
Scientific, Waltham, USA)

DNA concentration measure-
ments

Bright-field
microscope

Inverted microscope ECLIPSE TS100,
CFI60 Infinity Optical System (Nikon,
Tokyo, Japan)

cell culture
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3.1.1.2 Microscopes

Epifluorescence/total internal reflection fluorescence (TIRF) microscopes: For epi-

fluorescence microscopy, an inverted Olympus IX81-ZDC fluorescence microscope with a

60x 1.49 NA or a 10x 0.4 NA apochromat objective (Olympus) was used with additional

magnification (1.6x and 2x or 4x). A MT20E illumination system (Olympus) with a 150 W

xenon lamp and the filter sets DAPI HC (F36-500), EGFP HC (F36-525), TRITC HC

(F36-503) and Cy5 ET (F46-009) (AHF Analysentechnik, Tuebingen, Germany) were used

for fluorescence excitation and detection. For imaging, a 16 bit EMCCD camera (ImagEM

C9100-13, Hamamatsu Photonics, Hamamatsu, Japan) with 512 x 512 pixels (16 µm x

16 µm pixel size) was coupled with the microscope. For imaging in TIRF mode, a 488

nm Argon-Laser (LAS/488/20, Olympus) in combination with a CMR-U-MTIR-488-HC

filter set (Olympus) was used. The microscope was controlled via the CellR® (Olympus)

software.

Additionally, an Axio Observer D1 epifluorescence microscope (Zeiss, Jena, Germany)

was used, equipped with a Plan-Apochromat 100x/NA 1.4 oil immersion objective (Zeiss),

a N XBO 75 (75 W xenon arc lamp) (Zeiss), a 12 bit CCD Seniscam QE camera with

1376 × 1040 pixels (6.45 µm x 6.45 µm pixel size) (PCO, Kelheim, Germany). Following

filter sets were used for imaging: UV filter set (F11-000), EGFP HC filter set (F36-525),

TRITC HC filter set (F36-525), Cy5 HC filter set (F36-523) (AHF Analysentechnik). For

operation of the microscope the CamWare software (PCO) was employed.

Confocal laser scanning microscope: For confocal microscopy, an inverted Olympus

FluoView™ FV1000 (Olympus) was employed. The microscope was equipped with an oil

immersion objective UPlanSApo 60x NA 1.35 (Olympus), 405, 488 and 543 nm lasers and

a climate chamber (Evotec, Hamburg, Germany). The microscope was controlled by the

Fluoview 3.0 software (Olympus).

Stimulated emission depletion (STED) microscopes: STED microscopy was performed

partly on a TCS SP8 gated-STED microscope (Leica, Mannheim, Germany) equipped with

a 100x 1.4 NA oil immersion objective, a pulsed white-light laser for fluorescence excitation

and a 592 nm continuous wave (CW) laser for STED and hybrid detectors (HyD) (Leica).

The microscope is located at the Light Microscopy Facility of the German Centre for

Neurodegenerative Diseases (DZNE) in Bonn.

Further STED microscopy was performed on an easy3D STED microscope (Abberior

Instruments, Göttingen, Germany) equipped with an UPlanSApo 100x/NA 1.4 oil immer-
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sion objective (Olympus), a UPlanApo 60x/NA 1.2 water immersion objective (Olympus),

pulsed excitation lasers (485 nm, 518 nm, 561 nm, 640 nm; Abberior Instruments), a pulsed

775 nm STED laser (MPBC, Montreal, Canada), filter sets (500 - 520 nm, 532 - 558 nm,

580 - 630 nm, 650 - 720 nm; Abberior Instruments), and single photon counting modules

as detectors (Excelitas, Waltham, USA). The microscope was controlled by the Imspector

software (Abberior Instruments).

3.1.2 Buffers and solutions

All buffers were prepared with fully desalinated or deionised water and autoclaved or
sterile filtered when necessary.

Table 3.2: Buffers and solutions

Name Composition/Preparation

Phosphate buffered saline
(PBS)

137 mm NaCl, 2.7 mm KCl, 1.76 mm KH2PO4, 10 mm
Na2HPO4, pH 7.4

Sonication buffer 20 mm HEPES-KOH, 120 mm potassium glutamate, 20 mm
potassium acetate and 10 mm EGTA, pH 7.2

HEPES/KCl 140 mm KCl, 20 mm HEPES-KOH, pH 7.2
HEPES/KCl/EGTA 140 mm KCl, 20 mm HEPES-KOH, 10 mm EGTA, pH 7.2
Ringer solution for FRAP 130 mm NaCl, 4 mm KCl, 1 mm CaCl2, 1 mm MgCl2, 48 mm

D(+)glucose, 10 mm HEPES-NaOH, pH 7.4.
Ringer solution for TG
stimulation

155 mm NaCl, 4.5 mm KCl, 2 mm CaCl2, 1 mm MgCl2, 10 mm
D(+)glucose, 5 mm HEPES-NaOH, pH 7.4. For a calcium
free Ringer solution, CaCl2 was exchanged for MgCl2 yield-
ing 3 mm MgCl2 in total.

Tris-Acetat-EDTA (TAE)
buffer

40 mm Tris, 1 mm EDTA and 0.11% (v/v) acetic acid

Poly-L-Lysine (PLL) stock
solution (20x)

2 mg/mL PLL (Sigma Aldrich, # P1524) in ddH2O

4xLaemmli 8% (w/v) SDS, 40% (w/v) glycerol, 0.008% (w/v) bromophe-
nol blue, 0.25 m Tris HCl, pH 6.8; shortly before usage 20%
(v/v) β-mercaptoethanol was added to gain complete 4x so-
lution.

Sodium dodecyl sulfate
(SDS) running buffer

25 mm Tris, 0.1 % (w/v) SDS, 192 mm glycin

Towbin buffer 25 mm Tris, 192 mm glycine, 20% (v/v) methanol
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Table 3.2 – Continued from previous page

Name Composition/Preparation

Paraformaldehyde (PFA)
solution

For a PFA stock solution, water was heated to 55 ◦C. Then
the appropriate amount of PFA was added for a 16% (w/v)
solution and stirred with addition of a few drops of a 1 m
NaOH until the solution became clear. Aliquots of this so-
lution were kept at -20◦C for a medium-term storage. For
the fixation of cells and PM sheets, the stock solution was
diluted with water and 10x PBS to gain a 4% PFA in 1x
PBS.

3.1.3 Culture media and reagents

Table 3.3: Culture media and reagents

Medium/Reagent Composition/Supplier

HepG2 growth medium MEM Eagle (PAN Biotech, # P04-08509) supplemented
with 10% (v/v) fetal calf serum (FCS) (Biochrom,
# S0615), 2 mm stable glutamine (PAN Biotech, #
P04-82100) and 1% (v/v) penicillin/streptomycin (PAN
Biotech, # P06-07100)

PC12 growth medium DMEM (PAN Biotech, # P04-03550) supplemented with
5% (v/v) FCS, 10% (v/v) horse serum (Biochrom, # S9135)
and 1% (v/v) penicillin/streptomycin

Jurkat growth medium RPMI 1640 (Invitrogen, # 21875091) supplemented with
10% (v/v) FCS and 1% (v/v) penicillin/streptomycin

Dulbecco‘s PBS (DPBS) Dulbecco‘s PBS without Ca2+ and Mg2+ (PAN Biotech, #
P04-36500)

Trypsin Trypsin (0,05 %) with 0,02 % EDTA in PBS, without Ca2+

and Mg2+ (PAN Biotech, # P10-0231SP)
LB medium 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, purchased

as complete powder from Carl Roth (Karlsruhe, Germany),
for plates medium was supplemented with 2 % (w/v) agar-
agar

3.1.4 Cell lines

HepG2 cells: HepG2 cells are human liver hepatocellular cells isolated from a hepatoblas-

toma. For this study they were purchased from CLS, Eppelheim, Germany, (# 300198).

Cells were passaged every three to four days and used for experiments until a maximum

passage number of 30.
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PC12 cells: PC12 cells are rat pheochromocytoma cells obtained by radiation of adrenal

gland cells. Cells were a kind gift of Rolf Heumann, Ruhr University Bochum and are

similar to clone 251 described in Heumann et al. 1983. Every three to four days, cells were

passaged and used for experiments until a maximum passage number of 30.

Jurkat cells: Human leukemic T cell lymphoblast cell line Jurkat E6.1 was obtained from

ECACC Generel Collection (# 88042803). Suspension cell culture was diluted to 2 x 105

cells per mL every three to four days and used until a maximum passage number of 35.

3.1.5 Antibodies

3.1.5.1 Primary antibodies

Table 3.4: Primary antibodies, IF: immunofluorescence; WB: western blot

Target Host species Supplier/ Catalogue
number

Application/
(dilution)

Syntaxin 1A
(HPC1)

mouse Sigma, # S0664 IF (1:200)

Myc-tag mouse ThermoFisherScientific,
# MA1-21316

IF (1:200 - 1:400)
WB (1:1000)

Clathrin goat Santa Cruz, # sc-6579 IF (1:200)
Caveolin rabbit abcam, # ab2910 IF (1:200)
Pan-
cadherin

mouse Santa Cruz, # sc-59876 WB (1:1000)

GRP78 rabbit abcam, # 21685 WB (1:1000)
GFP rabbit abcam, # ab290 IF (1:200)

WB (1:1000)
RFP rabbit Rockland, # 600-401-379 WB (1:1000)
Transferrin
receptor

rabbit Abcam, # ab84036 WB (1:1000)
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3.1.5.2 Secondary antibodies

Table 3.5: Secondary antibodies, IF: immunofluorescence; WB: western blot

Target
species

Host
species

Coupled
fluorophore

Supplier/ Catalogue
number

Application/
(dilution)

goat rabbit CF™647 Biotium, # 20049 IF (1:200)
rabbit goat Alexa Fluor®647 ThermoFisherScientific,

# A21245
IF (1:200)

mouse goat Alexa Fluor®488 ThermoFisherScientific,
# A11001

IF (1:200)

mouse goat Atto647N Sigma, # 50185 IF (1:200)
mouse goat Alexa Fluor®647 ThermoFisherScientific,

# A-21235
IF (1:200)

rabbit goat IRDye®800CW LI-COR, # 926-32211 WB (1:10000)-
(1:15000)

mouse goat IRDye®800CW LI-COR, # 926-32210 WB (1:5000)-
(1:8000)

3.1.6 Plasmids

Table 3.6: Plasmids

Name Origin Plasmid backbone
/ Tag

Comment

pmEGFP-N1 Clontech, Mountain
View, USA;
GenBank No.:
U55761

pEGFP-N1 /
C-terminal EGFP

EGFP carries a mutation to
abolish GFP dimerization
(Zacharias et al. 2002);
from Sieber et al. 2006

RFP-Sec61β kindly provided by
Lars Kürschner
(Kuerschner et al.
2005)

pmRFP /
N-terminal RFP

integral ER protein used
for identification of ER on
PM sheets

PH-GFP Addgene, No.:
21179, Stauffer et al.
1998

pEGFP-C1 /
N-terminal GFP

PH domain of PLCdelta for
PI(4,5)2 binding

YFP-STIM1 kindly provided by
Barbara Niemeyer
(Kilch et al. 2013)

pEXP1 /
N-terminal YFP

mRFP-GL-GPI kindly provided by
Lars Kürschner

pmRFP / mRFP N-terminal signal sequence
of rabbit lactase phlorizin
hydrolase, C-terminal
N-glycosylation site and
GPI attachment signal
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Table 3.6 – Continued from previous page

Name Origin Plasmid backbone
/ Tag

Comment

GFP-SNAP25 Halemani et al. 2010 pmEGFP-C1 /
N-terminal mEGFP

rat SNAP-25B
(NP112253.1)

BoNT/C1/LC-
GFP

Raj Halemani pmEGFP-N1 /
C-terminal mEGFP

light chain of botulinum
neurotoxin C1 from Zilly
et al. 2006

pDL208
(AUP1-3myc)

kindly provided by
AG Thiele
(Lohmann 2013)

pcDNA 3.1Hygro(+) /
C-terminal triple myc
tag

used for cloning of syntaxin
with C-terminal triple myc
tag

VAMP8-
mCherry

kindly provided by
Jens Rettig
(Marshall et al.
2015)

pC1-EGFP /
C-terminal mCherry

used for cloning of
VAMP8-GFP

syntaxin-GFP from Sieber et al.
2006

pmEGFP-N1
/ C-terminal mEGFP

corresponding to
Sx1A-GFP in Sieber et al.
2006

syx-∆Cyt-GFP from Sieber et al.
2006

pmEGFP-N1 /
C-terminal mCherry

corresponding to
TMR-GFP in Sieber et al.
2006

myc-syntaxin from Sieber et al.
2007

pBob5.1 (Schütz et al.
2005) / N-terminal
myc tag

IPP-CaaX kindly provided by
Silvio Rizzoli, from
Malecz et al. 2000

pcDNA3.1 /
N-terminal mRFP

used for cloning of
syntaxin-Caax and
syx-∆S-CaaX

syx-∆S-GFP E. Merklinger pmEGFP-N1 /
C-terminal mEGFP

syntaxin 1A-(1-192 +
218-288) with C-terminal
linker LVPRARDPPVAT
as in Sieber et al. 2006

syntaxin-myc E. Merklinger pDL208 / C-terminal
triple myc tag

syntaxin 1A-(1-288) with
C-terminal linker LV
PRARDPPVATSRG

syx-∆S-myc E. Merklinger pDL208 / C-terminal
triple myc tag

syntaxin 1A-(1-192 +
218-288) with C-terminal
linker
LVPRARDPPVATSRG

syx-∆Cyt-myc E. Merklinger pDL208 / C-terminal
triple myc tag

syntaxin 1A-(1-28 +
259-288) with C-terminal
linker
LVPRARDPPVATSRG
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Table 3.6 – Continued from previous page

Name Origin Plasmid backbone
/ Tag

Comment

syntaxin-myc-
IRES

E. Merklinger pmEGFP-N1 /
C-terminal triple myc
tag

syntaxin 1A-(1-288) with
C-terminal linker LV
PRARDPPVATSRG

syx-∆S-myc-
IRES

E. Merklinger pmEGFP-N1 /
C-terminal triple myc
tag

syntaxin 1A-(1-192 +
218-288) with C-terminal
linker
LVPRARDPPVATSRG

syx-∆Cyt-myc-
IRES

E. Merklinger pmEGFP-N1 /
C-terminal triple myc
tag

syntaxin 1A-(1-28 +
259-288) with C-terminal
linker
LVPRARDPPVATSRG

myc-syntaxin-
CaaX

E. Merklinger pcDNA3.1
(IPP-CaaX) /
N-terminal myc tag

syntaxin1A-(1-258)-
AAAKSKTKCVIM

myc-syx-∆S-
CaaX

E. Merklinger pcDNA3.1
(IPP-CaaX) /
N-terminal myc tag

syntaxin 1A-(1-192 + 218-
258)-AAAKSKTKCVIM

VAMP8-GFP E. Merklinger pmEGFP-N1 /
C-terminal mEGFP

3.1.7 Kits

Kits were used according to the manufacturer’s instructions.

NucleoSpin Gel and PCR clean-up® Macherey und Nagel, Düren, Germany, # 740609

NucleoSpin Plasmid® Macherey und Nagel, # 740588

NucleoBond Xtra Midi® Macherey und Nagel, # 740410

PierceTM BCA Protein Assay Kit Thermo Fisher Scientific, # 23225

NeonTM Transfection System 100 µL Kit Thermo Fisher Scientific, # MPK10096
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3.1.8 Software

All instruments (see table 3.1) were controlled by the software provided by the manufac-
turer. Other software used is listed in table 3.7.

Table 3.7: Software

Software Supplier Application

CorelDraw X4 Corel preparation of figures and
illustrations

ImageJ (MBF and Fiji
bundle)

developed by Wayne Rasband
(NIH)

image analysis

MSExcel Microsoft corporation data analysis and organi-
zation

SigmaPLot 11.0 Systat software GmbH data plotting
OriginPro 8G OriginLab data analysis and organi-

zation
ApE developed by Wayne Davis DNA sequence editor
MiKTeX2.9 developed by Christian Schenk typesetting
Texmaker developed by Pascal Brachet

and Joel Amblard
typesetting

3.2 Methods

All experiments were carried out at room temperature, unless stated otherwise.

3.2.1 Cloning

Cloning was performed following the standard methods described in Sambrook et al. 2001.

Enzymes for cloning were purchased from NEB, Ipswich (MA), USA and were used with

the accompanied buffers and according to the manufacturer’s instructions. DNA ampli-

fication via polymerase chain reaction (PCR) was performed with a Q5® High-Fidelity

DNA polymerase (NEB, # M0491S). Plasmids used as templates for cloning PCR or as

target vectors after amplification are listed in table 3.6. Primers for PCR were designed

manually and purchased from MWG-Biotech, Ebersberg, Germany. The optimal anneal-

ing temperatures for PCR reaction was calculated using the NEB Tm calculator tool (1).

By default, plasmids were dephosphorylated after restriction digest using an antarctic

phosphatase (NEB, # M0289S) prior to ligation with T4 ligase (NEB, # M0202T).
1http://tmcalculator.neb.com/
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E.coli XL10-Gold® (Stratagene, San Diego, USA, # 200314) were transformed with

ligated plasmids for plasmid amplification. Bacteria were selectively grown in LB medium

containing the antibiotics kanamycin or carbenicilin (analogue of ampicilin) depending on

the antibiotic resistance encoded by the inserted plasmid. Kanamycin or carbenicilin were

used at a concentration of 50 µg/mL or 100 µg/mL, respectively, for liquid LB cultures

and plates.

Screening for successful cloning was performed by colony PCR employing an OneTaq®

DNA polymerase. Alternatively, a restriction digestion of purified plasmids was performed.

All constructs were finally verified by sequencing (GATC, Konstanz, Germany).

All syntaxin constructs are based on the sequence of rat syntaxin 1A (NP_446240.2).

For obtaining syx-∆S (syntaxin 1A-(1-192 + 218-288)) either for C-terminal GFP or triple-

myc tagging, a two-step fusion PCR was performed. For deletion of the part correspond-

ing to the n-SNARE domain, an overlapping primer pair was designed containing 10

bases before and 11 bases behind the requested deletion. Sequences of those two primers

are CGAAGCAGGCCATGGCCATGC (forward syx-∆S) and GCATGGCCATGGCCT-

GCTTCG (reverse syx-∆S). In the first PCR step, two parts of syntaxin were amplified

using either of two fusion primers in combination with appropriate forward or reverse

primers carrying specific restriction sites. PCR reactions were subjected to agarose gel

electrophoresis, the two syntaxin parts were extracted from the gel and a mixture of both

was used as a template for the second joining PCR step.

For generating syx-∆S-GFP, syntaxin-GFP (see table 3.6) was used as a template in the

first step of the two-step fusion PCR. After the second joining PCR step, the restriction

sites NheI and NotI were used for insertion of the PCR product into the backbone of the

expression vector pmEGFP-N1 (see table 3.6).

For the myc-tag syntaxin variants, syntaxin-GFP and syx-∆Cyt-GFP were used as

templates. Both constructs contain the C-terminal linker LVPRARDPPVATSRG (Sieber

et al. 2006), which was crucial for staining of the C-terminal myc tag (data not shown).

Amplification was performed as a single step PCR for syntaxin and syx-∆Cyt and as a

two-step fusion PCR (see above) for syx-∆S, generating PCR products with HindIII and

XbaI restriction sites for insertion into the vector. As a target vector pDL208 was used (see

table 3.6), from which AUP1 was cut out beforehand using HindIII and XbaI restriction

sites.

For the IRES fusion constructs, three parts were inserted via PCR into the pmEGFP-

N1 vector, where the mEGFP was cut out beforehand: (i) the syntaxin variants with
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a C-terminal linker and triple myc tag, (ii) an internal ribosome entry site (IRES2) of

the encephalomyocarditis virus and (iii) a mRFP, N-terminally tagged with the signal

sequence of rabbit lactase phlorizin hydrolase, and C-terminally fused to a consensus N-

glycosylation site and a GPI attachment signal of LFA-3 (based on a mRFP-GL-GPI (see

table 3.6). For insertion into the vector, the following restriction sites were used: EcoRI

and XhoI for syntaxin constructs, SpeI for IRES, and SpeI and NotI for the mRFP-GL-

GPI.

VAMP8-GFP was obtained by subcloning. To this end, VAMP8 was cut out from

the vector VAMP8-mCherry (see table 3.6) using NheI and KpnI restriction sites and

subsequently inserted into a pmEGFP-N1 (see table 3.6).

For myc-syntaxin-CaaX (MEQKLISEEDLNS- syntaxin1A-(1-258)-AAAKSKTKCVIM

and syx-∆S-CaaX (MEQKLISEEDLNS-syntaxin 1A-(1-192 + 218-258)-AAAKSKTKCVIM

myc-syntaxin (see table 3.6) was used as a template for PCR (single step for syntaxin-CaaX

and fusion PCR for syx-∆S-CaaX). Restriction sites NheI and NotI were used to insert

the PCR product into the target vector IPP-CaaX (see table 3.6), from which the mRFP

tagged synaptojanin was cut out beforehand using NheI and NotI restriction enzymes.

3.2.2 Cell culture

All general cell culture procedures and transfections were performed under a sterile Lam-

inarFlow cell culture hood (BDK, Sonnenbühl, Germany). Cells were cultivated at 37 ◦C

and 5% CO2 in a cell incubator (Binder, Tuttlingen, Germany).

3.2.2.1 General cell culture procedures

Thawing: Cryostocks of cells were instantly transferred into a 37 ◦C waterbath, thawed

for 2 min and resuspended in pre-warmed cell specific medium. The cell suspension was

centrifuged for 3 min at 200 g. The supernatant was discarded and the cell pellet resus-

pended in pre-warmed medium. Cells were transferred to a cell culture flask and were

used for experiments two to four passages after thawing.

Freezing: For cryo-conservation of cells, cell suspensions were adjusted to 107 cells per

mL freezing medium (70% (v/v) medium, 20% (v/v) FCS, 10% (v/v) dimethylsulfoxid

(DMSO)). Aliquots of 1 mL cell suspension per cryo vial were transferred to a cryo-freezing

container for slow reduction of temperature below −70 ◦C before storage in a liquid nitro-

gen tank.
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Passaging: Adherent cells (HepG2 and PC12) were cultivated to a maximal confluency

of 80% and passaged every 3 to 4 days. To do so, cells were briefly washed with PBS and

incubated with trypsin for 3 - 5 min at 37 ◦C. To stop the protease activity, cell specific

growth medium was added and the cell suspension of the detached cells was centrifuged

for 3 min at 200 g. The supernatant was removed and cells were resuspended in the

appropriate medium. Afterwards, cells were either counted for transfection (see below)

or seeding to coverslips (see below) using a Neubauer chamber, or directly transferred to

a new cell culture flask for further cultivation. For passaging of Jurkat cells, cells were

counted and an appropriate amount of cells was transferred into a new flask to gain a

concentration of 2 x 105 cells per mL.

3.2.2.2 Cleaning and coating of coverslips

For microscopy, cells were settled onto glass coverslips with a thickness of "0" (0.085 to

0.115 mm) or "1" (0.13 to 0.16 mm) for epifluorescence, TIRF and confocal microscopy.

For STED microscopy, high precision coverslips (thickness "1.5H", 0.170 mm ± 0.005 mm)

were used. For cleaning, the coverslips were consecutively incubated with agitation in 1 m

HCl, in 1 m NaOH and in 100% ethanol for 1 h each. In between the incubation steps,

coverslips were washed thoroughly in fully deionised water. After the last incubation step,

ethanol was discarded and the coverslips were sterilized and dried at 180 ◦C. For coating,

the coverslips were incubated for 30 min with 500 µL PLL solution per coverslip. The

solution was removed, the coverslips were dried and subsequently sterilized by exposure

to UV light for 20 min. Typically, 2 - 4 x 105 HepG2 cells, 5 x 105 PC12 cells and 1 x 106

Jurkat cells were settled onto one coverslip.

3.2.2.3 Transfection and transduction

The Neon® electroporation system was used for transfection of HepG2 cells according to

the instructions of the manufacturer. In brief, the cells were detached from the culture

flasks, counted and centrifuged. For each transfection, 1.5 - 3 x 106 cells were resus-

pended in 125 µL buffer R (ThermoFisherScientific) and mixed with 1 - 10 µg plasmid

DNA. Subsequent transfection was conducted using a single 50 ms pulse at 1200 V. Trans-

fected cells were transferred into antibiotics-free medium and cultivated for 24 h before

the experiment. For visualization of ER on PM sheets, HepG2 cells were transduced with

CellLight® ER-RFP, BacMam 2.0 (ThermoFisherScientifc formerly Life Technologies #

C10591) according to the manufacturer´s instructions, adding 20 particles per cell for 16 h.
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3.2.2.4 Cell lysis

During cell lysis all centrifugation steps were performed at 4 ◦C, all other steps on ice,

if not stated otherwise. Transfected cells were rinsed three times with ice-cold DPBS.

Then cells were carefully scraped off the bottom of the cell culture flask in ice-cold DPBS.

The cell suspension was centrifuged for 3 min at 200 g, the cell pellet was resupended

in RIPA buffer (Santa Cruz, # sc-24948) and incubated for 30 min at 4 ◦C. During this

incubation, the cell containing solution was vortexed every 5 min for 10 s. Then, the lysate

was incubated for another 5 min in an ultrasound bath followed by a centrifugation step

for 15 min at 1.4 x 104 g. The supernatant was transferred to a new vial and its protein

concentration was determined by BCA assay as triplicates in comparison to a standard

curve obtained from different albumin concentrations in RIPA buffer. Samples were mixed

with Laemmli buffer, boiled for 10 min at 95 ◦C and stored at −20 ◦C.

3.2.3 SDS-PAGE and western blot

Gels for SDS-polyacrylamide gel electrophoresis (PAGE) were either casted with a stacking

and running gel containing 4% acrylamid / 0.11% bisacrylamid and 12% acrylamid / 0.32%

bisacrylamid, respectively. Alternatively, gradient gels (4–20% Mini-PROTEAN® TGX™,

Bio-Rad, Hercules, USA; # 4561094) were used. Samples in Laemmli buffer were loaded

to the gel with 15 to 20 µg of total protein per lane. The gel was run in SDS running

buffer for 20 min at 70 V and for additional 60 - 80 min at 110 V.

For transfer of proteins from the gel to a nitrocellulose membrane (Carl Roth, # HP40.1),

a wet electroblotting system (BioRad) was employed. The transfer was performed in cold

Towbin buffer at 100 V for 1 h. Afterwards, the membrane was rinsed with PBS and

blocked for 1 h in Odyssey Blocking Buffer ( LI-COR Inc., # P/N 927-4000) 1:1 diluted

with PBS. For staining of membranes with two different first antibodies, the membrane

was cut prior to blocking. First antibody incubation was done over night at 4 ◦C in

Odyssey Blocking Buffer with PBS/0.1% Tween20 (PBS-T) (1:1). The membrane was

then washed four times for 5 min with PBS-T followed by incubation with the secondary

antibody in Odyssey Blocking Buffer with PBS-T (1:1) for 1 h at RT. Finally, membranes

were washed again four times with PBS-T for 5 min and three times with PBS for reduction

of detergent concentration before imaging with the Odyssey imager at 150 dots per inch

(dpi). The analysis of western blot images was performed using the "gel analyzer" option

in ImageJ. Peak areas for each signal were related to the corresponding peak area of the

loading control in the same lane.
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3.2.4 PM sheets

3.2.4.1 Preparation of PM sheets

Coverslips with adhered cells were rinsed shortly with PBS and then transferred into

ice-cold sonication buffer. The tip of a sonifier (Sonopuls HD 2070, Bandelin, Berlin,

Germany) was placed into the solution and above the center of the coverslip at a distance

of approximately 5 mm. A 100 ms pulse was applied at an intensity empirically determined

for each cell line. PM sheets were either used in native condition or were directly fixed

with 4% PFA in PBS for 30 - 45 min followed by quenching of the fixative with 50 mm

NH4Cl in PBS for 15 min.

3.2.4.2 Treatments of PM sheets

Phospholipase: Treatment with 0.25 U/mL phosphatidylcholine-specific phospholipase

C (PC-PLC) from Clostridium perfringens (EC 3.1.4.3) (Sigma-Aldrich, # P7633) was

performed on PM sheets from metabolically labeled cells in a buffer containing 250 mm

Tris-HCl and 50 mm CaCl2 (pH 7.2) for 1 h at 37 ◦C. After treatment, PM sheets were

washed three times with PBS prior to cycloaddition.

HPαCD: For pPC transfer assay, freshly prepared sheets from metabolically labeled cells

were incubated with 50 mm (2-hydroxypropyl)-α-cyclodextrin (HPαCD)(Sigma-Aldrich, #

390690) in sonication buffer for 30 min at 37 ◦C. Afterwards, PM sheets were washed two

times with sonication buffer and once with PBS prior to cycloaddition reaction.

Cholesterol-MβCD: For loading with cholesterol, cells overexpressing RFP-Sec61β were

sonicated and the PM sheets were incubated with 1.5 mm of a cholesterol-methyl-β-

cyclodextrin (MβCD)(Sigma-Aldrich, # P4555)-complex in sonication buffer or only soni-

cation buffer as a control for 10 min at 37 ◦C followed by three washing steps with sonication

buffer. The Cholesterol-MβCD complex was obtained essentially as described in Klein et

al. 1995. In brief, sonication buffer containing 10 mm MβCD was heated to 80 ◦C. Then

25 mm cholesterol solution in ethanol was added under vigorous stirring. This yielded a

ratio of approximately 25 mg cholesterol per gram MβCD. Afterwards, the solution was

sonicated for 15 min at 40 ◦C and subsequently centrifuged for 30 min at 20000 g. The

supernatant was used for cholesterol loading of PM sheets.

Calcium: For treatment with calcium (figure 4.5), PM sheets from cells overexpressing

myc-tagged syntaxin variants were prepared in ice-cold HEPES/KCl/EGTA buffer, briefly
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washed with HEPES/KCl buffer and incubated for 10 min at 37 ◦C with 10 mm CaCl2
in HEPES/KCl or with HEPES/KCl/EGTA as a control. Afterwards, PM sheets were

directly fixed with 4% PFA and stained for the myc tag.

3.2.5 Staining and labeling for fluorescence microscopy

3.2.5.1 Immunostaining

Cells or PM sheets were fixed with 4% PFA in PBS for 30-45 min followed by quenching of

the fixative with 50 mm NH4Cl in PBS for 15 min. Samples were washed twice with PBS

and blocked with 3% BSA in PBS for 1-2 h. Incubation with the first antibody (1st AB)

and secondary antibody (2nd AB) was performed in 3% BSA in PBS. Incubation times are

summarized in table 3.8. Both antibody incubation steps were followed by three washing

steps with PBS for 5 min. Samples were either directly imaged or stored over night at 4 ◦C

in PBS prior to imaging. In the case of 2D STED, samples were embedded with ProLong®

Gold antifade mountant (ThermoFisherScientific, # P10144) on microscopy slides, sealed

with colorless nail polish and stored at 4 ◦C.

Table 3.8: Immunostainings; o/n : over night; AB: antibody

Antibody Experiment/Figure Incubation
time 1st AB

Incubation
time 2nd
AB

2nd AB
conjugate

α-myc-tag BoNT/C1/LC
coexpression / figure 4.6

1.5 h at RT 1 h at RT Atto-647N

α-myc-tag comparative Epi-Western
/ figure 4.10

o/n at 4◦C 1.5 h at RT Alexa-488

α-myc-tag pulsed STED / figures
4.2 and 4.3

o/n at 4◦C 2 h at RT Atto-647N

α-myc-tag CW-STED / figure 4.2 24 h at 4◦C o/n at 4◦C Alexa-488
α-myc-tag calcium induced

clustering/ figure 4.5
1 h at RT 1 h at RT Alexa-488

α-caveolin/
α-clathrin

co-staining with
BP-pPC/ v 4.17

1 h at RT 1 h at RT Alexa-647

α-myc-tag/
α-GFP

3D STED/ figure 4.8 2 h at RT 1 h at RT Atto-647N
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3.2.5.2 Metabolic labeling of PC and cycloaddition reaction

For visualization of PC, a metabolic labeling strategy was employed as described previously

(Jao et al. 2009). To this end, cells were fed with 0.5 mm propargyl-choline (pC) in cell

specific medium containing 10% delipidated FCS (kind gift from AG Thiele) instead of

normal FCS or HS for 8-12 h or 14 h followed by chasing with normal medium for 4 h for

TIRF imaging (figure 4.16, panel A). pC was a kind gift of C. Thiele and synthesized as

described in Jao et al. 2009.

For the copper-catalyzed azide-alkyne cycloaddition of the propargyl groups and azide-

linked fluorophores, a reaction mix containing 625 µm TBTA (Tris[(1-benzyl-1H-1,2,3-

triazol-4-yl) methyl] amine) (Sigma-Aldrich, # 678937), 500 µm Tetrakis (acetonitrile)

copper(I) tetrafluoroborate (Sigma-Aldrich, # 677892) and 100 µm azido-sulfo-Bodipy (see

below) or 2 µm azido-coupled Atto647N (ATTO-Tec, Germany, # AD647N-101) was pre-

pared in PBS buffer directly before the reaction. The PM sheets or cells on coverslips

were incubated with 40 µL per coverslip of the reaction mix in a humid reaction cham-

ber protected from light. Incubation lasted for 30 min at RT, except for the experiment

presented in figure 4.16, panel B, where the incubation was performed for 10 min on ice.

After the reaction, coverslips were washed three times with PBS.

The azido-coupled Atto647N showed elevated background staining of unlabeled cellular

membranes. To prevent this unspecific labeling, samples were blocked with 5% peptone

and 5% BSA in PBS followed by a brief wash with 3% BSA in PBS prior to cycloaddition

with azido-Atto647N. This was not necessary in case of the azido-sulfo-Bodipy.

The azido-sulfo-Bodipy (i.e. 8-(5-Azidopentyl)-4,4-difluor-1,3,5,7-tetramethyl-4-bora-

3a,4a-diaza-s-indacene-2,6-disulfonic acid disodium salt) was kindly provided by C. Thiele

and synthesized as described in Hofmann et al. 2014.

3.2.5.3 Labeling with membrane dyes and lipid probes

TMA-DPH: For visualization of membranes, the supernatant of a saturated 1-(4-Tri-

methyl-ammoniumphenyl) - 6 - Phenyl - 1,3,5-Hexatriene p-Toluenesulfonate (TMA-DPH)

(ThermoFisher Scientific, # T204) solution was used directly in 1:10 (v/v) dilution in the

imaging solution. TMA-DPH is a membrane dye, which only fluoresces upon incorporation

into the PM. It was used to ensure integrity of PM sheets and as a reference staining for

image analysis.
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CellMask™ and R18: CellMask™ (ThermoFisher Scientific, formerly LifeTechnologies,

# C10046) and R18 (Octadecyl Rhodamine B Chloride) (ThermoFisher Scientific, for-

merly MolecularProbes, # O-246) are general membrane dyes. For staining, CellMask™

was incubated with PM sheets at a concentration of 5 µg/mL in PBS for 5 min before

fixation and three washing steps with PBS. R18 was added to already fixed PM sheets

after cycloaddition at a concentration of 1.46 µg/mL (2 µm) for 15 min followed by three

washing steps with PBS.

Lactadherin: For staining of PS, PM sheets were incubated with 80 nm FITC-labeled

bovine lactadherin (HTI, # BLAC 1200) in PBS for 15 min after the cycloaddition reaction

followed by three washing steps with PBS.

Filipin: Cholesterol labeling was achieved by incubation of PM sheets with 80 µg/mL

Filipin III from Streptomyces filipinensis (Sigma-Aldrich, # F4767) in PBS for 45 min

followed by three washing steps with PBS.

FAST DiO™: For a membrane reference staining for pulsed 2D STED microscopy, PM

sheets were incubated after immunostaining with 0.3 µm FAST DiO™ (ThermoFisher Sci-

entific, # D-3898) in PBS for 10 min followed by three washing steps for 5 min with PBS

prior to embedding.

3.2.6 Botulinum toxin co-expression

HepG2 cells were co-transfected with syntaxin-myc or syx-∆S-myc and the light chain

of botulinum neurotoxin C1 (C-terminally fused to GFP (BoNT/C1/LC-GFP)). For pre-

venting cell death (observed in preliminary experiments for high concentrations of the

protease), BoNT/C1/LC-GFP plasmid was used at a 10-fold lower concentration (w/v)

compared to the syntaxin constructs. Single syntaxin-myc and syx-∆S-myc transfections

were used as controls.

One day after transfection, cells were fixed and underwent immunostaining for the myc

tag (see table 3.8 and section 3.2.5.1). Cells were imaged (Olympus IX81-ZDC, 60x ob-

jective) in PBS with TMA-DPH in the blue (TMA-DPH), green (GFP) and the far-red

(Atto647N) channel. For analysis, cell footprints were traced in the far-red channel. The

resulting regions of interest (ROIs) were used to measure size of the footprints and the

average fluorescence in the green and far-red channel for each cell. Fluorescence inten-

sities were background corrected. For identification of BoNT/C1/LC-GFP cotransfected
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cells, a threshold of autofluorescence was determined in single transfected cells without

BoNT/C1/LC-GFP. Cells from double transfection with lower values in the GFP channel

were not included in the further analysis. Averaged fluorescence intensities in the far-

red channel (myc immunostaining) were normalized to the averaged syntaxin-myc single

transfection condition. Since cell footprint size decreased in all conditions compared to

the syntaxin-myc single transfection, the intensity of the myc-signal was multiplied by the

respective average footprint size.

3.2.7 Comparative epifluorescence-western blot experiment

For a comparison of epifluorescence and western blot signals of different syntaxin con-

structs, HepG2 cells were split after transfection with syntaxin-myc, syx-∆S-myc or syx-

∆Cyt-myc into two fractions: 2.75 x 106 cells were transferred into a cell culture flask for

western blot and 2.5 x 105 cells were seeded to two coverslips for microscopy. After 24 h

cells for western blot were lysed (see section 3.2.2.4) and subjected to SDS-PAGE and

western blot (see section 3.2.3). Cells for microscopy were fixed and immunostained as

described in section 3.2.5.1 and table 3.8.

Immunostained cells were imaged in PBS buffer containing TMA-DPH on the Olym-

pus IX81-ZDC using the 60x objective. For determination of transfection efficiency, cells

were selected in the TMA-DPH channel and imaged in both, TMA-DPH and green (im-

munostaining), channels. Cells were classified as transfected when background corrected

intensity was higher than the average intensity of untransfected cells. From the resulting

transfection efficiencies a factor was calculated. Western blot signals (determined as de-

scribed in section 3.2.3; with 3 – 4 technical replications for each independent experiment)

were multiplied by this factor before normalization to the syntaxin-myc value.

Additional images of randomly chosen transfected cells were obtained to ensure a suf-

ficient number of cells for the analysis of epifluorescence intensity. For analysis, ROIs

were placed at the cell periphery in the TMA-DPH channel, transferred to the green (im-

munostaining) channel, measured and background corrected. From equally stained and

analyzed non-transfected cells the average fluorescence intensity was determined and set

as a threshold for unspecific signal (resulting from autofluorescence and from unspecific

binding of antibodies). Only values higher than this threshold were averaged per con-

struct and normalized to the value of syntaxin-myc. The normalized values from three

independent experiments were averaged. For the calculation of epifluorescence/western

blot ratios, western blot signals of each individual experiment were corrected for different
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subcellular localization of the constructs as determined by pH quenching. The ratio was

calculated for each individual experiment and then averaged.

3.2.8 pH-quenching of GFP

Subcellular distribution of GFP-tagged syntaxin constructs was analyzed by pH quench-

ing. To this end, HepG2 cells were transfected with syntaxin-GFP, syx-∆S-GFP, syx-

∆Cyt-GFP, GFP-SNAP25 as a control for intracellular PM-localized GFP. Additionally,

VAMP8-GFP was used as control for a partially lysosomal and endosomal localized pro-

tein with lumenal GFP. Prior to imaging, cells were treated 24 h after transfection with

0.2 µm bafilomycin A1 from Streptomyces griseus (Sigma-Aldrich, # B1793, in DMSO) or

with an equal volume of DMSO as a control for 45 min. The treatment was performed in

HepG2 growth medium.

Bafilomycin A1 specifically inhibits vacuolar H+-ATPases and thus degrades intracel-

lular pH gradients. VAMP8-GFP signal was monitored over time directly after drug

treatment. This revealed that for dequenching of GFP signals in acidic compartments the

optimal incubation time is 45 min (data not shown).

Solutions for imaging were phosphate buffer (30.5 mm NaCl, 81 mm Na2HPO4, 19 mm

NaH2PO4) at pH 7.4, and a solution containing 30.5 mm NaCl, 8 mm Na2HPO4, 92 mm

NaH2PO4 adjusted to pH 4.3 by adding HCl. Cells were imaged on the Olympus IX81-

ZDC employing the 10x objective. The same cells were subsequently imaged at pH 7.4

and pH 4.3. In between the imaging steps, coverslips were briefly washed three times and

incubated for 2 min with the solution at pH 4.3.

For analysis, cells footprints were traced manually. Intensity in the resulting ROIs was

measured and corrected for background fluorescence. Intensity values at pH 4.3 were re-

lated to the intensity at pH 7.4 for every cell and averaged per condition and construct.

Cells were categorized into three classes: i) cells of normal size and regular shape (com-

parable to non-transfected cells), ii) smaller cells with spiky membrane extensions and

iii) very small and rounded cells. Generally, class ii) and iii) cells showed higher overall

as well as intracellular GFP signal. Class iii) cells occurred most often in syntaxin-GFP

expressing cells followed by syx-∆Cyt-GFP and syx-∆S-GFP. For the calculation of sub-

cellular distribution, all cell types were included into the analysis. The average values were

calculated for each day and construct and averaged among the independent experiments.
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3.2.9 3D STED

Subcellular distribution of myc- and GFP-tagged syntaxin variants was tested by 3D

STED. To this end, transfected HepG2 cells underwent immunostaining with antibodies

raised against the respective tag (GFP or myc)(see table 3.8). The classical protocol (see

section 3.2.5.1) was slightly adapted in that after fixative quenching the coverslips were

washed 3 times with HBSS (Hanks balanced salt solution, Gibco, ThermoFisher Scientific,

# 14025092) before being incubated with 100 µg/mL concanavalin A conjugated to Alexa

Fluor® 594 (ThermoFisher Scientific, # C11253) in HBSS for 30 min. Afterwards, cells

were permeabilized with 0.5% Triton-X100 in PBS for 10 min and from there all solutions

contained 0.05% Triton-X100. After the last washing step cells were washed with PBS

twice and samples were stored over night at 4 ◦C prior to imaging.

Imaging was performed in PBS with the easy3D STED microscope (Abberior Instru-

ments) using the water immersion objective. Samples were screened for transfected cells in

the epifluorescence mode of the microscope. Cells were then recorded in confocal mode in

x,y for an overview image (110 x 110 µm, pixel size 300 nm) of concanavalin and antibody

staining. The overview image was divided horizontally into 10 sections with a distance

of 10 µm, which were imaged in concanavalin and antibody channel in x,z employing 3D

STED modus of the microscope (100%) and 200 mW STED laser deexcitation power. Pixel

size for those vertical dissections were 50 nm in x and 96.3 nm in z.

For STED images, 6% Alexa-594 bleed-trough was found in single stains (ConcanavalinA-

Alexa594 only), which was subtracted from all STED (Atto647) images.

For analysis, the cell membrane was traced by a ROI in the concanavalinA image in each

slice of one cell. This ROI was expanded by 5 pixels yielding an inner ROI delineating the

cytosol and an outer ROI delineating the cell and the ROI between inner and outer ROI

tracing the PM. ROIs were then transferred to the corresponding STED images of the

antibody staining. The integral of the fluorescence signal was measured in all ROIs (PM,

cytosol and whole cell) and was summed up for the slices of one cell. Averaged values of

non transfected control cells were subtracted for background correction and the values for

PM and cytosol were related to the total fluorescence signal of the respective cell.

3.2.10 Fluorescence recovery after photobleaching (FRAP)

For measurement of protein mobility within the PM, FRAP was employed. Live HepG2

cells in Ringer solution or freshly prepared native PM sheets in sonication buffer were

imaged at 37 ◦C using the Olympus Fluoview 1000 laser scanning microscope (see section
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3.1.1.2) for no more than 40 min per cell sample and 25 min per PM sheet sample. Pixel

size was adjusted to 414 nm and samples were recorded at 1 Hz. 10 frames were recorded

before the bleaching step in a 12 x 12 pixel ROI (Rbleach) for 500 ms with full intensity

of the 488 nm and 405 nm lasers . The sample was monitored for another 200 frames

post-bleach.

For analysis, additional 12 x 12 pixel ROIs were placed next to the cell or PM sheet for

determining the background fluorescence (RBG). Another ROI was set in an unbleached

region of the cell or PM sheet (Rcontrol) and was used to identify out-of-focus drift or

cell movement. To do so, fluorescence intensity in RBG was subtracted from Rcontrol for

each frame. The pre-bleach intensity was averaged for all 10 frames and compared to the

averaged intensity in the last three frames. If the difference in intensity was bigger than

± 15%, the cell or PM sheet was not included in the further analysis.

Intensity in the Rbleach was likewise corrected for background fluorescence and post-

bleach frames were normalized to the averaged pre-bleach intensity. The resulting nor-

malized values were plotted against the time and averaged for each experiment. Average

traces were fitted to a hyperbolic function (see equation 3.1) with a fixed offset (y0) to

obtain the half time of recovery (t1/2) and the maximal recovery (Recmax).

y(t) = y0 + Recmax ∗ t
t1/2 + t

(3.1)

To determine the effect of pre-bleach intensity on the half time of recovery, the traces

of individual cells or PM sheets were fitted. Fits with a lower R2 than 0.7 were excluded

and the remaining half times were plotted against the background corrected intensity of

the pre-bleach frames.

3.2.11 Fluorescence loss after photobleaching (FLAP) and analysis

In order to probe for BP-pPC transfer from the ER to the PM, a FLAP experiment was

performed. To this end, HepG2 cells were fed with pC as described in section 3.2.5.2. PM

sheets obtained from these cells underwent cycloaddition with azido-sulfo-Bodipy and were

subsequently imaged at 37 ◦C using the Olympus Fluoview 1000 laser scanning microscope

(see section 3.1.1.2) with the pixel size adjusted to 207 nm. A bleaching ROI was defined

covering one half of a sheet prior to the recording. Then a pre-bleach frame was recorded

followed by a bleaching step in the defined ROI at full laser intensity of the 405 nm and

488 nm laser immediately followed by a post-bleach frame. Another post-bleach recording
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was made after 20 min.

For analysis, spot intensities were analyzed from PM sheets that were not bleached as

a control and bleached PM sheets on the non-bleached half of the sheet. An adjacent

spot in the uniform PM layer was chosen for each ER spot and the measured intensities

of all spots were background corrected. Values from each uniform layer spot were then

subtracted from the values of the respective ER spot. The change in intensity between

pre- and the post-bleach picture after 20 min was calculated for control and FRAP spots.

For each of three independent experiments 80-180 spots from 6-14 sheets were analyzed.

3.2.12 STED microscopy and analysis

For CW-STED high resolution imaging the TCS-SP8 gated-STED microscope (see section

3.1.1.2) was used. Pixel size was adjusted to 20 nm and images were recorded at 200 Hz

with excitation at 488 nm employing the white-light laser at 20% power and depletion at

592 nm with a CW-STED beam at 50% intensity and time-gating between 1 and 6.5 ns.

Pulsed STED high resolution imaging was performed using the Abberior Instruments

easy-3D STED module (see section 3.1.1.2). To check for membrane integrity, FAST

DiO membrane stain was imaged exciting at 488 nm and detection at 500-520 nm and

532-558 nm. From the antibody staining (Atto-647N) images were obtained exciting at

640 nm and detecting at 650-720 nm either without depletion (confocal image) or in STED

mode using the pulsed 775 nm laser at 350 or 450 mW with time-gating between 1.25 and

8 ns. Pixel size was adjusted to 20 nm.

For analysis of spots, a custom ImageJ macro was used (developed by Dr. Jan-Gero

Schloetel): Identification of spots was achieved by the ImageJ "Find Maxima" function

in difference of Gaussians (DOG)- filtered STED images within a squared ROI (180 x

180 pixel for CW-STED images, 130 x 130 pixel for pulsed STED images for figure 4.2

and 55 x 55 pixel for figure 4.3). Circular ROIs with a 5 pixel diameter were placed at

the identified spot positions on raw STED images. Spots with low mean intensities (100

arbitrary units (a.u.) for CW-STED or 4 a.u. for pulsed STED) were excluded from the

analysis. Following parameters were extracted from the raw STED images: number of

spots, mean intensity of the spot ROI, the spot size based on a Gaussian fit of a line

scan in a 15 x 3 pixel ROI (either horizontal or vertical depending on fit quality) and

the nearest neighbor distance based on the centre of the spot ROIs. Number of spots,

spot intensities and spot sizes were averaged for each PM sheet. For number of spots

and spot intensity all spots were included, whereas for mean size only spots with suitable
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Gaussian fit quality (R2 ≥ 0.9) were included assuring a well-centered peak, reasonable

offset and peak height. For figure 4.2 spots were additionally filtered for at least 5-6 pixels

nearest neighbor distance for FWHM analysis. For calculation of average spot sizes in

figure 4.3, panel C, PM sheets were excluded when the density of spots was too high for

reliable separation of single clusters. Spot parameters were averaged for each PM sheet

and compared to the background-corrected mean intensity of the PM sheets in the confocal

channel.

For CW-STED, values from three independent experiments with a total of 38-39 sheets

(2924-3185 spots) per condition for cluster size and 39-49 sheets (4678-9385 spots) for

cluster counts and intensities were included. For pulsed STED for figure 4.2, plots show

values from three independent experiments with a total of 22-45 sheets (1336-2010 spots)

per condition for cluster size and 33-48 sheets (2407-6054 spots) for cluster counts and

intensities. For pulsed STED for figure 4.3 a total of 13-24 sheets (243-606 spots) per

condition for cluster size and 13-24 sheets (562-1142 spots) for cluster counts and intensities

were analyzed.

3.2.13 Total internal reflection fluorescence (TIRF) microscopy and analysis

The Olympus IX81-ZDC (see section 3.1.1.2) was used for imaging in TIRF mode. Prior

to imaging, the incident angle of the 488 nm laser was adjusted in that it was totally

reflected at the interface between the glass and the sample and created an evanescent

wave for excitation. The angle was maintained for all conditions of one independent

experiment.

For TIRF imaging of BP-pPC at the cytosolic periphery of the PM (figure 4.16, panel

A), metabolically labeled cells (see section 3.2.5.2) were fixed for 45 min 4% PFA in PBS,

quenched with 50 mm NH4Cl in PBS, followed by the cycloaddition reaction (section

3.2.5.2) and TIRF imaging in PBS.

For monitoring YFP-STIM1 signal in intact cells (see figure 4.20), transfected cells were

recorded in TIRF mode essentially as described previously (Wu et al. 2006). In brief, cells

were rinsed twice with Ringer solution for with calcium, then the solution was exchanged

for either Ringer solution without calcium containing 1 µm thapsigargin (TG)(Enzo Life

Science,# BML-PE 180-0001) in DMSO (stimulation), or for Ringer solution with calcium

and DMSO only (control). Directly after buffer exchange, a reference image was obtained

in epifluorescence mode. Cells were subsequently recorded in TIRF mode every 15 s for

about 5 min. For analysis, three ROIs were placed in the area covered by one cell in the
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reference epifluorescence image and then transferred to the TIRF frames. Fluorescence

intensity was measured in each frame, background corrected and related to the intensity

of the first TIRF frame. Values of each frame of one condition were averaged. 5 - 8 cells

were recorded per independent experiment.

3.2.14 Trypsin treatment and ER spot tracking

Treatment with 0.5 mg/mL trypsin in PBS (PAA, # L11-004) was performed on non-fixed

PM sheets after cycloaddition reaction (see section 3.2.5.2) either for 45 min or directly

on the microscope. Trypsin pre-incubated with 0.5 mg/mL trypsin inhibitor type II-O

(Sigma-Aldrich, # T9253) was used in both cases as a negative control. For tracking, PM

sheets were monitored every 10 s for 200 s in PBS before treatment. Afterwards, solutions

were exchanged for trypsin-containing solution or control solution, incubated for 1 min

and monitored for another 900 seconds during treatment.

For analysis, performed by Dr. Jan-Gero Schloetel, lateral image drift was corrected

employing the Image Stabilizer plugin for ImageJ (2). Upon focus drift, up to 5 frames

after treatment had to be deleted. Spots were tracked manually using the ImageJ plugin

MTrackJ (Meijering et al. 2012). For all spots within an 50 x 50 pixel ROI that were

traceable for minimally 20 frames before and after treatment, calculation of mean-square

displacement (MSD) was performed essentially as described previously (Qian et al. 1991,

Kusumi et al. 1993). MSD plots were averaged for each condition (trypsin and control) and

diffusion coefficients (D) were calculated from linear regression (instrumental weighting

using MSD variance) according to equation 3.2.

MSD = 4D∆t (3.2)

For monitoring fluorescence intensity of spots during tracking, the image series was

convoluted after drift correction with a normalized 3x3 pixel kernel (1,1,1/1,1,1/1,1,1).

Using the MTrackJ plugin raw intensities were measured in a 1x1 pixel ROI (effectively

revealing the mean spot intensity within a 3x3 pixel ROI). Background fluorescence was

measured in a 10x10 pixel ROI outside of the PM sheet and subtracted from the spot

intensities. Spot intensities of every single spot were averaged over all frames that did not

show focus drift or spot collision yielding a track average. The spot intensity in each frame

was normalized to this track average and the deviation (in %) from the track average was
2www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html
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averaged for the spots observed for each frame in one condition followed by averaging over

3 independent experiments.

3.2.15 Image analysis

Microscopy images were analyzed with the program ImageJ. Images are shown at arbitrary

scaling unless specified otherwise.

Average fluorescence intensity: For determining average fluorescence intensity, ROIs

were placed next to the PM sheets or cells. The fluorescence intensity averaged over the

pixels of this ROI was subtracted from the average fluorescence intensity of the pixels in

the cell/PM sheet ROI.

Correlation coefficient: Images of two channels were aligned either manually or using

tetraspeck microspheres (ThermoFisher Scientific, formerly Invitrogen, # T7284) as a

spatial reference. Pixel-wise Pearson correlation coefficient (PCC) between fluorescence

intensities in defined ROIs was determined employing the ImageJ plugin Intensity Corre-

lation Analysis (Li et al. 2004).

Overlap on single spot level: Circular ROIs were centered on randomly selected indi-

vidual spots in one channel and then transferred to the other channel. Spots were rated

as overlapping when the location of the spot center did not differ by more than one pixel.

Correction for random overlap was performed on mirrored images as described previously

(Lang et al. 2002). For each individual experiment 10 - 25 spots per PM sheet (10 - 22

PM sheets in total) were analyzed.

Relative standard deviation: The standard deviation of fluorescence intensity in a ROI

was divided by the background corrected intensity of the same ROI to obtain the relative

standard deviation.

Signal fraction of spots: The total PM sheet area (traced manually) and the area of the

spots (segmented by a local threshold) were segmented for each PM sheet. The segmented

spot areas were excluded from the total sheet area yielding the area of homogeneously

distributed signal. The mean fluorescence intensities of the total PM sheet area and the

homogeneous signal area were multiplied with the number of pixels defining the PM sheet.

The difference between these integrated intensities reflects the signal arising from spots
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and its percentage of the total integrated intensity was calculated for 10 - 14 PM sheets

for each of three independent experiments.

Spot intensity above background: Circular ROIs were centered on randomly selected

individual spots. The same ROIs were placed on the uniform layer of the PM sheet in the

vicinity of the spot. Mean fluorescence intensities of all ROIs were background corrected

and the intensity increase of the spots above background was calculated as a percentage of

the uniform background intensity. 20 spots were analyzed per PM sheet. Values of 5 - 20

PM sheets were averaged followed by averaging over the three independent experiments.
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In this study, two different supra-molecular structures at the cytoplasmic periphery of the

PM were investigated.

The first part (4.1) focuses on the influence of cytoplasmic protein domains on the in-

ner architecture of the syntaxin protein cluster.

The second part (4.2) describes the preparation of ER-PM membrane contact sites (MCS)

for the study of spontaneous lipid transfer (SLT).

4.1 Inner architecture of the syntaxin 1A protein cluster

The supra-molecular syntaxin 1A cluster is deemed to be an exemplary research object for

the investigation of the clustering phenomenon in general. Multiple layers of interaction

within the PM and at the periphery were proposed to contribute to syntaxin 1A cluster-

ing such as electrostatic interaction with charged lipids (section 1.3.2.1) or hydrophobic

mismatch (section 1.3.1), whereas also interactions between cytoplasmic protein domains

were suggested to mediate clustering (Sieber et al. 2006). The implication of cytoplasmic

protein domains for inner architecture of the syntaxin1A cluster is subject of the following

section.

Syntaxin1A, in the following referred to as syntaxin, is a single span PM protein extend-

ing its major part into the cytosol. This cytoplasmic domain consists of the large globular

Habc domain, the SNARE motif (SM) and a polybasic stretch (pbs) close to the trans-

membrane region (tmr) (figure 4.1). To test for the impact of protein interactions in the

cytoplasmic domain of syntaxin on cluster architecture, two different variants based on rat

syntaxin1A were employed in the following (figure 4.1): In one variant the N-terminal half

of the SNARE motif (n-SM) is deleted from aminoacid 192 to 218. The second construct

lacks the entire cytosplasmic domain except for the N-terminal peptide and the pbs. A

triple myc tag or a GFP variant (mEGFP) was fused via a linker to the C-terminus of syn-

taxin and the variants, therefore pointing to the outside of the cell. In the further course
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Figure 4.1: Syntaxin1A domain structure and variants. Upper panel: schematic illustration
of syntaxin1A domain structure: syntaxin consists of a N-terminal peptide (NTP, grey), a large
globular domain (Habc, dark grey) attached via a linker region (black) to a SNARE motif, that is
divided into an N- and a C-terminal part (n-SM and c-SM in light and dark blue, respectively). The
following polybasic stretch (pbs, light orange) precedes the transmembrane region (tmr, orange).
Lower panel: illustration of the tagged syntaxin construct and variants lacking either only n-SM
(syx-∆S), or Habc, SM and small parts of the pbs (syx-∆Cyt). For detection, a monomeric variant
of GFP or a triple myc tag were fused to the C-terminus via a short linker. Botulinum neurotoxin
C1 (BoNT/C1) cleavage site is indicated by an arrow. In myc-syx-CaaX and myc-syx-∆S-CaaX
constructs, pbs and tmr region are exchanged for a CaaX box from K-Ras (Malecz et al. 2000)
(yellow) for anchoring in the PM via a prenyl anchor (grey line) and a single myc tag was linked
N-terminal for detection.

of the work the constructs are referred to as syntaxin, syx-∆S and syx-∆Cyt, respectively.

Additionally, syntaxin and syx-∆S were further modified by replacing the tmr and pbs

by a C-terminal CaaX box and the adjacent poly basic region of K-Ras (Malecz et al.

2000), which mediates anchoring to the PM via prenylation. These constructs, termed

syntaxin-CaaX and syx-∆S-CaaX, respectively, were tagged N-terminally with a single

myc tag (figure 4.1).

Following issues were addressed for the characterization of cluster architecture depend-

ing on the cytoplasmic protein domain: i) lateral PM distribution, ii) packing density

within the cluster, and iii) lateral mobility in the PM
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4.1.1 Influence of cytoplasmic protein domains on lateral organization of syntaxin

clusters

Syntaxin is organized in protein clusters at the inner periphery of the PM (Lang et al.

2001). Those cluster are, with sizes ranging between 50 - 60 nm (Sieber et al. 2007), smaller

than the diffraction limited resolution. Therefore, high resolution STED microscopy was

employed to investigate the lateral organization of syntaxin and its variants syx-∆S and

syx-∆Cyt (section 4.1.1.1) as well as variants lacking the TM domain (section 4.1.1.2).

4.1.1.1 Lateral organization of syntaxin and the variants syx-∆S and syx-∆Cyt

HepG2 cells were transfected transiently with the myc-tagged constructs. Using this non-

neuronal cell line offers the advantage of observing the proteins without the influence of

endogenous syntaxin. One day after transfection cells were subjected to a short ultrasound

pulse to generate PM sheets. The basic features of a PM like fluidity and composition

are preserved in this cell free preparation and permits accessibility to the inner leaflet (see

section 1.3.3, and 3.2.4.1). To ensure equal staining conditions among the constructs, the

myc tag was attached to the C-terminus (see figure 4.1). In this way, the tags face similar

surroundings and distance to the PM and staining should be independent of the large

alteration of domain structure at the cytoplasmic periphery of the PM.

In order to visualize syntaxin clusters, a classical immunostaining with first and secon-

dary antibody was employed (3.2.5.1). The first antibody used was raised either against

the myc tag or the N-terminal part of syntaxin, called HPC-1, when indicated. While

the myc tag antibody detects all constructs, the HPC-1 antibody is only able to stain

syntaxin-myc and syx-∆S-myc, but not syx-∆Cyt-myc. The myc tag is located at the

outside of the cell. Accordingly, the antibody has to diffuse underneath the sheet into the

interspace between membrane and coverslip. The adherence of the sheet to the surface

hinders antibody diffusion resulting in a staining gradient from the periphery towards

the sheet center, as depicted in figure 4.2, panel A. Further analysis of protein clusters,

indicated by local enrichment of antibody signal, was performed at the periphery of the

sheet.

STED microscopy outperforms standard confocal microscopy in terms of resolution (sec-

tion 1.3.3) as illustrated in figure 4.2, panel A. In contrast to the confocal image (left),

where clear separation of the single spots was difficult, the STED image (middle/right)

provided sharp spot boundaries and clearly separated clusters of less than 100 nm size.

As depicted in figure 4.2, panel B, syntaxin-myc formed homogenous clusters, predomi-
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Figure 4.2: Lateral organization dependent on cytoplasmic protein domains probed by
super-resolution microscopy. A PM sheets with overexpressed and immunostained syntaxin-
myc in confocal (left image) and STED mode (middle and right image). Note the staining gradient
for myc due to antibody diffusion underneath the membranes. ROIs for analysis were placed at
the membrane peripheries (white square; magnified in the right image). B STED images from the
different syntaxin variants as indicated, stained for the myc tag. Images were selected for similar
average intensities (respective values are given in a.u.). C FWHM as a measure for cluster size,
measured by line scan analysis, number of clusters per area and intensity of clusters were plotted
against the average image intensity of the confocal image. D Cluster size of syntaxin-myc and
syx-∆S-myc at variable conditions. For analysis, only low intensities in overlapping ranges were
considered. As indicated, samples were either stained at the extracellular C-terminus for the myc
tag or with an antibody raised against the intracellular N-terminus. Imaging and analysis was
performed by Dr. Jan-Gero Schlötel.
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nantly with round shape. This was likewise the case for syx-∆S-myc and syx-∆Cyt-myc,

although occasionally both exhibited elongated structures. This phenomenon was found

most often in syx-∆Cyt and occurred more likely in sheets with higher intensity.

For analysis, three parameters were extracted from the obtained images: i) cluster size

expressed by the full width at half maximum (FWHM), ii) number of clusters per µm2

membrane area, and iii) cluster intensity as a measure for antibody occupancy of each

cluster (figure 4.2, panel C). For a detailed description of the analysis please see 3.2.12.

These parameters were plotted against the average sheet intensity as a rough measure for

the concentration of syntaxin in the membrane.

The number of clusters depended strictly on the average sheet intensity for all three

constructs. In contrast, cluster size and cluster intensity only slightly increased upon

elevated protein concentrations, suggesting that the clusters are limited in their capacity

to expand laterally, which is in line with previous studies (Sieber et al. 2006).

When focusing on a lower intensity range syntaxin-myc and syx-∆S-myc cluster size

appeared independent of sheet intensity (figure 4.2, panel D). In this range syx-∆S-myc

clusters were slightly enlarged. This small difference remained, no matter if the constructs

were detected at the extracellular C-terminus or the intracellular N-terminus, independent

of the secondary antibody used or the microscopical settings. The absolute size, however,

differed mainly according to the power of the depletion laser. Therefore, it can be deduced

that obtaining absolute cluster sizes is not feasible with this setup, while comparative

measurements are reliable.

In summary, the constructs exhibit similar lateral distributions with a slight tendency

towards larger clusters for syx-∆S and syx-∆Cyt over syntaxin-myc. However, the most

considerable difference among the constructs are the staining intensities: while syntaxin-

myc staining appears rather low, syx-∆S-myc and syx-∆Cyt-myc intensities distribute over

a broad range. Accordingly, their average intensity highly exceeds the average intensity

of the full-length construct.

4.1.1.2 Lateral organization of syntaxin and the variants syx-CaaX and syx-∆S-CaaX

The question arose whether cytoplasmic protein interactions between syntaxin molecules

were sufficient for the cluster formation independent of the TM region. To this end syn-

taxin was compared to the two prenyl anchored constructs lacking the tmr and pbs do-

mains (see syx-CaaX and syx-∆S-CaaX in figure 4.1). For reasons of comparability, all

constructs were tagged N-terminally with a single myc tag. The technical implementation
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Figure 4.3:Transmembrane domain independent lateral organization of syntaxin probed
by super-resolution microscopy. A PM sheets from cells expressing the different myc tagged
syntaxin variants as indicated, stained for the myc tag and imaged with a pulsed STED at 450 mW
depletion laser intensity. Images were selected for similar average intensities. B FWHM as a
measure for cluster size, measured by line scan analysis (left), number of clusters per area (middle)
and intensity of clusters (right) were plotted against the average sheet intensity of the confocal
image. C Data from B, left plot, were filtered additionally for sheets for which separation of single
spots was reliable. Black (myc-syntaxin), grey (myc-syx-CaaX) and blue (myc-syx-∆S-CaaX) lines
indicate the average cluster size. B and C Each data point represents averaged spot values of one
PM sheet. Plots include values from two independent experiments.
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matched the previous experiment (4.1.1.1) and the same parameters were extracted from

the obtained high resolution images as described before.

It becomes apparent from figure 4.3, panel A, that all three constructs, myc-syntaxin,

myc-syx-CaaX and myc-syx-∆-CaaX showed the same staining pattern when observed at

similar average sheet intensities. Clusters distributed homogeneously on the PM sheet,

were well separated and predominantly of round shape. Cluster size of all constructs

increased slightly with the overall intensity of the respective sheet (figure 4.3, panel B),

though there was no correlation in lower intensity ranges for syntaxin (figure 4.3, panel C).

This matches the previous results for C-terminally tagged syntaxin-myc and syx-∆S-myc

(section 4.1.1.1). In contrast, syx-CaaX and syx-∆S-CaaX cluster sizes appeared more

susceptible to their overall concentration in the sheets even at low ranges, suggesting an

involvement of the TM domain in the limitation of cluster size. Thus, it is not surprising

that the average cluster size was slightly increased in the CaaX variants in comparison

to the full-length construct. Deletion of the TM region seemed to overrule the slight

difference between syntaxin and syx-∆S in terms of average cluster size (compare figure

4.3 and figure 4.2). Therefore, it could be inferred that, additionally to the cytoplasmic

protein domains, the TM region affects cluster size.

Similar to previous results, the number of spots strictly depended on the average sheet

intensity for all constructs. At high expression levels, however, the spot number per

µm2 reached saturation. This is probably due to technical limitation in separating single

clusters in these intensity ranges.

As explained in the previous section, the cluster intensity provides information on the

antibody occupancy of each cluster. No difference between the constructs was found in

this context (figure 4.3, panel B, right plot). A slight increase of cluster intensity with the

average sheet intensity could be observed for all constructs, which indicates an increase

of molecule number in single clusters upon elevation of total protein concentration in the

sheet. From this experiment it can be concluded that syntaxin is able to form clusters

independent of the TM region and that those clusters exhibit similar properties compared

to the full-length syntaxin clusters but slightly differ in their limitation of cluster size.

4.1.2 Influence of the cytoplasmic domain on packing density of the syntaxin cluster

Protein clusters are characterized by the local enrichment of a certain protein in the PM.

The first quantitative study of the syntaxin cluster calculated roughly 75 molecules on an

average cluster area of 2.4 x 10−3 µm2 (Sieber et al. 2007). In order to achieve such high
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local concentration within the cluster, the proteins have to be packed densely. Therefore,

the question arose, if cytoplasmic domains of syntaxin participate in the formation of those

close intermolecular distances.

To address this question, I employed antibody labeling as a molecular sensor for cluster

packing density. If epitopes are located in close distance of a few nanometers, binding of

an antibody to its epitope can be hindered sterically by another antibody binding to an

adjacent epitope (see illustration in figure 4.4). Such close proximities occur particularly

Figure 4.4: Relation of cluster packing density and antibody labeling. Pictogram illus-
trating different packing densities of syntaxin clusters. At high cluster density (left) the antibody
cannot access all epitopes. Accessibility of epitopes is elevated at low cluster density (right).

in protein clusters in native PMs as corroborated by the data on syntaxin: assuming equal

distribution of proteins within the cluster, the maximal intermolecular distance ranges be-

tween 6 - 7 nm (Sieber et al. 2007). This value is lower than the average distance between

the two epitope recognition sites in a common IgG1 antibody (Zhang et al. 2015). There-

fore, high packing density of epitopes leads to substoichiometric binding of the antibody

and thus reduced staining intensity.

4.1.2.1 Testing of antibodies as molecular sensors for packing density in the current

experimental system

To set the experimental framework, I first tested whether an antibody is capable of sensing

differences in packing density in the system used. To this end, I used calcium to increase

cluster density as described previously (Zilly et al. 2011, Batoulis et al. 2016) (see section

1.3.2.2) and monitored the response of the antibody signal. To do so, HepG2 cells were
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Figure 4.5: Antibody labeling as a molecular sensor of cluster density. A PM sheets
from cells expressing syntaxin-myc, syx-∆S-myc or syx-∆Cyt-myc as indicated. Freshly prepared
sheets were incubated with buffer containing EGTA as a control (upper panel) or 10 mm CaCl2
(lower panel) for 10 min at 37 ◦C, fixed and stained for the myc tag. Images of the same construct
are shown at equal scaling. Scaling between the different constructs is arbitrary. B Fluorescence
intensity was quantified and the calcium condition was related to the respective control condition
for each construct (9-25 sheets per independent experiment and condition, n = 3 ± s.e.m.).

transfected with syntaxin-myc, syx-∆S-myc or syx-∆Cyt-myc. Freshly prepared sheets of

these cells were incubated with calcium containing solution or buffer supplemented with

EGTA as a control, fixed and immunostained for the myc tag. Epifluorescence micrographs

of representative sheets are depicted in figure 4.5, panel A.

Quantification of the fluorescence antibody signal revealed a calcium mediated decrease

to 49% for syntaxin-myc, 69% for syx-∆S-myc and nearly no change for syx-∆Cyt-myc

when compared to the respective control conditions. The gradation in calcium sensitivity

in the order syntaxin-myc<syx-∆S-myc<syx-∆Cyt-myc possibly results from the consecu-

tive degrease in overall negative charge from -19 to -15 to -6 for syntaxin-myc, syx-∆S-myc

and syx-∆Cyt-myc, respectively. This finding is in line with previously noticed charge de-

pendence of the calcium effect (Zilly et al. 2011) and endorses the applicability of the

antibody as a molecular sensor for cluster density in the current experimental system.

4.1.2.2 Influence of BoNT/C1-LC cleavage on extracellular myc accessibility of

syntaxin

If the aforementioned packing density is indeed influenced by cytoplasmic domains of

syntaxin, their depletion should affect intermolecular distances within the protein cluster.

In order to test for this hypothesis, I deployed the light chain of botulinum toxin C1

from clostridium botulinum, hereinafter referred to as BoNT/C1-LC. BoNT/C1-LC is a
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highly specific syntaxin1A protease, that cleaves the protein at the C-terminal end of the

SNARE motif (figure 4.1, the black arrow indicates the cleavage site). To study the effect of

BoNT/C1-LC on the clustering of syntaxin, GFP tagged BoNT/C1-LC was co-expressed

in HepG2 cells with syntaxin-myc or syx-∆S-myc. As a control, cells solely transfected

with syntaxin-myc or syx-∆S-myc were used. Cells were immunostained against the myc

tag and the intensity of the staining was measured in epifluorescence micrographs

Overseeing the images, cells double transfected with BoNT/C1-LC-GFP and syntaxin-

myc appeared to be smaller compared to the other conditions. Analysis of the cell footprint

area confirmed this observation (figure 4.6, panel C). In comparison to the single syntaxin-

Figure 4.6:Myc accessibility upon intracellular cleavage of syntaxin. Cells were transfected
with syntaxin-myc or syx-∆S-myc alone (A), or cotransfected with with syntaxin-myc or syx-∆S-
myc and the light chain of botulinum neurotoxin C1 (BoNT/C1-LC) fused to GFP (B). Fixed
cells were stained for myc and imaged for quantification of myc (left images in A and B) and
GFP-intensity (right images in A and B). Images are shown at the same scaling in the respective
channel. C Area of cell footprints (traced in the myc images) related to syntaxin-myc single
transfection. D Antibody staining intensities, quantified from cell footprints, were related to
syntaxin-myc single transfection. While BoNT/C1-LC did not influence the size of syx-∆S cells,
it resulted in approximately 25% smaller footprints of syntaxin-myc cells (see plot C) indicating
that these cells concentrate their fluorescence on a smaller membrane area. As this effect may lead
to an overestimation of the BoNT/C1-LC induced staining increase, intensities are multiplied by
the respective footprint-size. C/D Values are given as means ± s.e.m. from three independent
experiments (22 - 45 cells per independent experiment and condition).
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4.1 Inner architecture of the syntaxin 1A protein cluster

myc transfection the decrease in footprint area was about 25% for syntaxin-myc/BoNT

double transfected cells, while there was no difference between single syx-∆S-myc and

syx-∆S-myc/BoNT transfected cells. One possible explanation for the decrease in cell

size for syntaxin-myc/BoNT double transfected cells could be cellular stress linked to

the overexpression of large amounts of protein. Such decrease in cell size accompanies a

decrease in membrane surface. The number of proteins per membrane area would therefore

raise causing higher antibody intensities. To correct for a possible influence of cell size,

the measured antibody intensities of the four different conditions were corrected for the

respective average footprint area of the cells. It should be noted here, that using the cells

footprint is limited in its ability to reflect cell size. However, since there was no observable

change in cell height between the conditions, the actual cell size might even be less affected

than suggested by the change in footprint.

In single transfected cells the syx-∆S-myc signal exceeded the syntaxin-myc signal ap-

proximately 3-fold, as observed similarly in previous experiments (see e.g. section 4.1.1.1).

Upon co-expression with BoNT/C1-LC-GFP the staining intensity of syntaxin-myc in-

creased by 43%. However, when BoNT/C1 was present, syx-∆S-myc signal was even

diminished by 10% related to the single transfection. Since syx-∆S-myc contains the nec-

essary protease interaction motif as well as the cleavage site (Schiavo et al. 1995), it should

be equivalently susceptible to BoNT/C1 co-expression. The decrease in syx-∆S-myc signal

could be caused by the cellular stress resulting from the simultaneous overexpression of

two proteins. Therefore, increase of antibody staining of syntaxin-myc hints to elevated

accessibility to the myc epitope upon cleavage of cytoplasmic protein parts.

4.1.2.3 Comparative analysis of packing density in syntaxin, syx-∆S and syx-∆Cyt

clusters

As covered by the last sections, the intensity of an antibody signal is influenced by the

accessibility of epitopes. More precisely, the signal is reduced at higher protein packing

within the cluster (see section 4.1.2.1). In general, the intensity of an immunostaining (Ix)

is proportional to the total amount of the protein of interest (Ntotal) and the accessibility

of the epitopes (faccess) (see equation 4.1).

Ix ∼ Ntotal ∗ faccess

x = micr (epifluorescence microscopy) or wb (western blot)
(4.1)
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If the intensity determined in epifluorescence microscopy (Imicr) is determined at the

PM and Ntotal in whole cells, a correction factor for the subcellular distribution (fsort)

has to be included to dissect for the contribution of PM localized proteins. Accordingly,

comparison of relative packing densities requires information on i) the amount of protein

of interest, ii) the subcellular distribution, and iii) the antibody staining intensity in the

intact PM (see equation 4.2 with kmicr being the proportionality factor for epifluorescence

microscopy).

faccess = kmicr ∗ Imicr

Ntotal ∗ fsort
(4.2)

Subcellular localization of syntaxin variants

In order to address the aforementioned amount of the myc tagged syntaxin variants in the

PM, knowledge of their subcellular distribution was required to determine fsort (see eq.

4.1). Two approaches were applied: i) pH quenching of GFP and ii) 3D STED analysis.

pH quenching of GFP: GFP is known to decrease reversibly in fluorescence intensity

at pH lower than 6. The used variant EGFP, in particular, drops to lower than 10%

fluorescence at pH 4.3 (Patterson et al. 1997). In the syntaxin constructs introduced

in section 4.1 and figure 4.1, GFP is fused to the C-terminus of syntaxin, facing the

extracellular periphery of the PM. This enables to quantify the intracellular GFP content

simply by lowering the pH of the cell surrounding buffer and measuring the remaining

fluorescence. Live HepG2 cells expressing either of the constructs syntaxin-GFP, syx-∆S-

GFP or syx-∆Cyt-GFP were monitored by sequential imaging at pH 7.4 and pH 4.3 (figure

4.7). The fluorescence intensity at pH 4.3 was compared to the respective value at pH 7.4

(see section 3.2.8 for details on the analysis). GFP-SNAP25 was employed as a control

for PM localized intracellular GFP signal.

Acidic intracellular compartments such as lysosomes could potentially conceal GFP

fluorescence of mis-targeted proteins. To avoid this, the pH gradient was degraded by

bafilomycin (see section 3.2.8). VAMP8-GFP served as a control for a predominantly

intracellular SNARE protein with a GFP tag facing the lumen of acidic cell compartments.

As depicted in figure 4.7, the GFP-SNAP25 signal was nearly unaffected by pH drop

and bafilomycin treatment, as expected. The slight reduction by 14% for control and 18%

for the bafilomycin condition could be due to bleaching effects or occasional cell disrup-
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Figure 4.7: Subcellular distribution of syntaxin, syx-∆S and syx-∆Cyt - pH quenching.
Fraction of the expressed proteins in intracellular compartments by pH quenching of the extracellu-
lar and pH sensitive GFP (Patterson et al. 1997). Cells were either treated for 45 min with 0.2 µm
bafilomycin to degrade intracellular pH gradients (B) or not (A). Two control constructs were
used: GFP-SNAP25 (GFP localized to cytoplasmic periphery of the PM) and VAMP8-GFP (lyso-
somal and endosomal localized SNARE protein with luminal GFP). A/B HepG2 cells expressing
the constructs as indicated were imaged consecutively at pH 7.4 (upper panel) and pH 4.3 (lower
panel) with a 10x objective for large focal depth. Images of one construct are shown at the same
scaling. C For analysis, cell imprints were traced, average fluorescence intensity was measured and
the values at pH 4.3 were related to the starting condition at pH 7.4 for each cell. Values are given
as means ± s.e.m. (n = 3 independent experiments with 16 - 38 cells per independent experiment).

tion. VAMP8-GFP, in contrast, was sensitive to pH drop and exhibited a bafilomycin

sensitive pool indicating that VAMP8 is partly localized to the PM but for the most part

to intracellular compartments. The intracellular signal of syntaxin increased from 30% to

41% upon bafilomycin treatment accompanied by the appearance of spotty fluorescence
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in the cytosol, which is typical for lysosomal signal. Thus, a substantial pool of syntaxin

is localized in intracellular compartments in HepG2 cells either through mistargeting or

in the course of protein degradation. Similarly, the syx-∆Cyt-GFP showed an intracel-

lular protein pool of 37% without bafilomycin treatment, which was mainly localized in

net-like structures around the nucleus pointing towards ER retention. In line with this

finding, the signal did only change marginally upon bafilomycin treatment. Syx-∆S-GFP

contained with 25% the lowest intracellular pool, which was likewise only slightly sensitive

to bafilomycin.

In summary, the majority of syntaxin and its variants are targeted to the PM in HepG2

cells. However, syxtaxin and syx-∆Cyt yielded approximately 1.5-fold relative intracellular

signals compared to syx-∆S. Mistargeting to bafilomycin sensitive compartments seemed

to be mediated by the intact SNARE motif, while the strong overexpression of syx-∆Cyt

might be the cause for the observed ER retention.

Microscopic dissection: Additionally to the GFP quenching approach the subcellular

distribution of the syntaxin variants was analyzed by STED microscopy (figure 4.8). To

this end HepG2 cells were transfected with GFP- or myc-tagged syntaxin variants and the

aforementioned VAMP8 as a control for an intracellular SNARE protein. Cells were fixed,

permeabilized and immunostained for GFP or the myc tag. X,Z-scans were obtained every

10 µm with a confocal laser scanning microscope in STED mode, yielding a series of X,Z-

sections. As a measure for the intracellular signal the integral of cytoplasmic fluorescence

in all slices was related to the total fluorescence (figure 4.8).

For the GFP tagged variants of syntaxin, trends similar to the previous experiment

could be observed: Syntaxin-GFP and syx-∆Cyt-GFP displayed nearly equal intracellu-

lar signals, while the variant lacking the N-terminal half of the SNARE motif, syx-∆S-

GFP, exhibited slightly higher preference for the PM. VAMP8-GFP was nearly equally

distributed between PM and intracellular structures.

The pattern of intracellular distribution appeared slightly different in the myc tagged

constructs: Syntaxin-myc yielded the highest localization at the PM. The proportion of

intracellular signal for syx-∆S-myc was slightly higher, however, the largest intracellular

fraction could be observed for the syx-∆Cyt-myc. Note here a strong increase in absolute

signals of syx-∆Cyt-myc over syxntaxin-myc, which could be responsible for the enhanced

intracellular fraction.

When comparing the GFP tagged constructs, the differences among the constructs are

less pronounced in contrast to the pH quenching experiment. This particularly applies for
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Figure 4.8: Subcellular distribution of syntaxin, syx-∆S and syx-∆Cyt - analyzed with
3D STED. Fraction of myc or GFP tagged syntaxin variants in intracellular compartments by
imaging with 3D STED. Cells were fixed and permeabilized prior to immunostaining with an
antibody raised against the respective tag (GFP or myc). PM was labeled with concanavalin A
(conjugated to Alexa-594). A Cells stained for the GFP tag, imaged in x/y for overview in confocal
mode of the microscope (insets) and sliced in x/z every 10 µm for vertical dissection in STED mode
(using 200 mW depletion laser intensity and 100% 3D STED mode). B Integral of fluorescence was
summed up for all slices of one cell in ROIs tracing the whole cell or tracing the cytosol. Values of
non transfected cells were subtracted and the values of the cytosol were related to the whole cell
value for each cell. Cells for each construct were averaged for each independent experiment. Values
are given as mean ± s.e.m. (n = 2-3 independent experiments with 7 - 26 cells per condition and
experiment). Parts of sample preparation, data acquisition or analysis were conducted by Jerome
Finke, Nora Karnowski and Dr. Jan-Gero Schlötel.

the control VAMP8, for which there was approximately a 20% difference in intracellular

signal between pH quenching and the 3DSTED imaging. Following issues probably evoked

these differences: Firstly, sample size is much smaller in confocal imaging compared to

the pH quenching experiment and the insensitivity of STED requires the selection of

high expressing cells for imaging. Secondly, the flat appearance of HepG2 cells impedes

the separation of PM and intracellular fluorescence even when applying high resolution

imaging. Nevertheless, the results presented here confirm the pH quenching experiment, in
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principle, suggesting the prevailing localization of all syntaxin constructs at the PM with

slight differences in manifestation among the different variants. For later quantification of

the protein amount in the PM, the values of the GFP quenching approach were used due

to the apparent higher accuracy in comparison to the 3D STED approach.

Direct relation of the antibody staining intensity to the expression level in intact PMs

For comparison of the cluster packing density between the three different syntaxin variants

I attempted to access the antibody staining in native PMs (Imicr, see eq. 4.2) simulta-

neously with the protein amount (Ntotal, see eq. 4.2) by using a bicistronic expression

system.

For this purpose the sequence of an internal ribosomal entry site 2 (IRES2) was placed

between the sequence coding for the myc tagged variants of syntaxin upstream and a

mRFP linked to glycosylphosphatidylinositol (GPI)- anchor as a reporter gene down-

stream. The obtained constructs are transcribed as one mRNA. From this mRNA the

sequence upstream of IRES is translated in a normal 5′-cap-dependent manner, whereas

the specific secondary structure of the IRES sequence conveys translation initiation for

the downstream sequence. Therefore, the signal of the reporter should, in theory, correlate

with the expression level of the myc-tagged syntaxin variants and give a measure of Ntotal.

To check for this technical prerequisite, protein amounts of syntaxin constructs and

the reporter were quantitatively analyzed by western blot (figure 4.9). HepG2 cells were

transfected with the IRES containing constructs and lysates from these cells were prepared

after 24 h and subjected to SDS-PAGE followed by western blot.

As shown in figure 4.9, panel A, the height of the protein bands detected by the myc tag

antibody matched roughly the expected size of the overexpressed syntaxin variants. syx-

∆S-myc is slightly lighter than the full lentgh syntaxin-myc, expressed by lower running

height. As expected, syx-∆Cyt-myc shows the lowest running height, since it lacks almost

the entire intracellular domain.

Decoration with an RFP antibody revealed multiple bands for all three constructs. Dif-

ferent stages of GPI anchor processing during biogenesis in the ER and Golgi might con-

tribute to the bands obtained at about 35 kDa, 32 kDa and 29 kDa. However, degradation

of the reporter protein cannot be excluded here. Intensity distribution of the single bands

differed among the constructs: In syntaxin the 32 kDa band predominated in contrast to

the pattern of syx-∆S and syx-∆Cyt with the major band at 35 kDa. Since maturation of

the reporter protein is irrelevant for mere comparison of upstream and downstream protein
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Figure 4.9:Western blot of myc tagged constructs and an IRES linked reporter protein.
AWestern blot from lysates of cells transfected with a bicistronic vector containing the sequence for
the syntaxin variant as indicated (syntaxin-myc, syx-∆S-myc or syx-∆Cyt-myc) and the reporter
protein RFP, fused to a GPI attachment signal linked via an IRES2 sequence for translation from
one mRNA. Mt: mock transfected cells; LC: loading control (transferrin receptor). Each lysate
was loaded twice per gel, resulting in two identically loaded halves. Blots were cut after blotting as
indicated for incubation with either myc tag, RFP or transferrin receptor antibody. B The RFP
and the myc signals were quantified including all antibody specific bands, normalized to the LC
and related to the values for RFP or myc of syntaxin-myc. Values are shown as mean ± s.e.m. (n
= 3).

ratios, all RFP bands were included in the quantification and the values were related to

the myc signal (figure 4.9, panel B).

In order to be able to use GPI linked RFP as a reporter for Ntotal, it is mandatory that

its signal in the western blot correlates linearly with the corresponding myc signal. How-

ever, when syx-∆S and syx-∆Cyt signals for myc and RFP were normalized to syntaxin

the increase in myc signal did not entail an increase of RFP signal. In syx-∆Cyt samples

the signal of the reporter was even diminished despite high protein content of syx-∆Cyt.

Apparently, the theoretical considerations about ratio of reporter and upstream protein

of interest do not hold true in our experimental system. Possible reason could be the pro-

nounced overexpression of syx-∆Cyt saturating protein translation. The IRES approach

therefore seems to be unsuitable to correct quantitatively for differences in expression level

and thus impede the direct relation of Imicr and Ntotal via epifluorescence microscopy.
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Comparison of epitope accessibility depending on cytoplasmic syntaxin domains

IRES was not applicable to determine Imicr and Ntotal directly by microscopy for compar-

ing cluster packing density in syntaxin-myc, syx-∆S-myc and syx-∆Cyt-myc. Therefore,

I turned to a comparative study of microscopy and western blot. Formally, protein signal

in the latter follows a similar principle as described by equation 4.1 in section 4.1.2.3.

However, the influence of detergents and reducing agents in a non-native SDS-PAGE pre-

ceding the western blot disassembles protein clusters. Hence, faccess should be similar

among the different constructs. Furthermore, using whole cell lysates renders the factor

fsort unnecessary. The western blot therefore allows for comparative access of Ntotal for

the different constructs.

For the experiment HepG2 cells overexpressing syntaxin-myc, syx-∆S-myc or syc-∆S-

myc were split into two fractions: one was used for immunostaining with a myc tag

antibody and the appropriate fluorescently labeled secondary antibody to access Imicr.

The other fraction was lysed and subjected to SDS-PAGE followed by western blot analysis

for determination of relative Ntotal. Figure 4.10, panel A, shows cells expressing the three

different constructs imaged with focus on the basal membrane of the cells. As illustrated,

Imicr increased substantially in the order syntaxin-myc, syx-∆S-myc and syx-∆Cyt-myc.

The intensity distribution among the constructs slightly differed in the corresponding

western blots. In the particular experiment shown in 4.10, panel B, the strongest sig-

nal arose from the syx-∆S-myc followed by syntaxin-myc and syx-∆Cyt-myc. However,

this order changed between the independent repetitions of the experiment despite identi-

cal conduction. This inconsistency is also expressed by the large standard errors of the

quantitative analysis of Ntotal represented in figure 4.10, panel C.

Comparing the quantitative analysis of microscopy (Imicr) and western blot (Ntotal) a

stepwise increase in relative signal from syntaxin to syx-∆S to syx-∆Cyt can be observed.

However, the increase is more pronounced in the packing sensitive microscopy than in the

packing insensitive western blot.

For comparing faccess (see equation 4.2) as a measure for cluster packing density, the

relative signal of Imicr was divided by Ntotal, which was corrected for different intracellular

distributions according to section 4.1.2.3 (figure 4.10, panel D). When syntaxin ratio is

set to 1, syx-∆S and syx-∆Cyt obtain elevated ratios of 3.9 and 3.2, respectively. This

result suggests, that the accessibility of the syx-∆S-myc and syx-∆Cyt-myc epitope is

similarly elevated in comparison to syntaxin-myc. Possible explanation for this observation

is increased intermolecular distances within protein clusters of the two constructs that
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lack parts of the cytoplasmic domain. However, this result has to be treated with caution

because of the high variability within one construct. A detailed discussion on this matter

is provided in section 5.1.1.

Figure 4.10:Comparative analysis of antibody labeling in intact PM versus western blot.
Cells are transfected with the constructs as indicated and split into two fractions for microscopy
and western blot. A For microscopy, fixed cells underwent immunostaining for the myc-tag (lower
panels; shown applying the ‘fire‘ lookup table). The membrane dye TMA-DPH was used for iden-
tification and selection of cells (upper panel). Per independent experiment and condition 70 – 220
cells were imaged for estimating the transfection efficiency. From these cells, and additionally im-
aged transfected cells, the myc-staining intensity (Imicr) was quantified (27-119 cells per construct
and per individual experiment). B Equal amounts of total protein were analysed by SDS-PAGE
and western blotting, using GRP78 or pan-cadherin as loading controls (LC). Myc-band inten-
sities were quantified and normalized to the respective loading control. In addition, values were
corrected for the differences in transfection efficiencies to obtain Ntotal. C Imicr and Ntotal rela-
tive to syntaxin-myc, averaged from three independent experiments. D For each day, the ratio of
Imicr and Ntotal, which was corrected for the membrane resident fraction as determined in section
4.1.2.3, was calculated and averaged. Values are shown as mean ± s.e.m. (n = 3).
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4.1.3 Lateral mobility of syntaxin in the PM of non neuronal cells - implication of

the cytoplasmic domain

Due to the uncertainties described in the previous section, an alternative approach was ap-

plied to substantiate the role of the cytoplasmic domain in syntaxin clustering. Therefore,

I moved to a dynamic experimental setup by determining the lateral mobility of syntaxin,

syx-∆S and syx-∆S-Cyt quantitatively.

4.1.3.1 Mobility of syntaxin, syx-∆S and syx-∆S-Cyt in HepG2 cells

The link between clustering and mobility of syntaxin in PC12 cells had been drawn in

previous studies (Sieber et al. 2007). The authors proposed that the mobility of free

molecules deteriorated when molecular interactions attracted them into the clustered state.

However, in PC12 cells interaction with SNAP25 or endogenous syntaxin could likewise

contribute to the mobility restriction.

Therefore, the aim of the following experiment was to dissect the impact of the cy-

toplasmic domain explicitly. To do so, syntaxin mobility was studied in HepG2 cells, a

cellular system of non-neuronal origin lacking potentially interacting endogenous syntaxin

1A and SNAP25. The diffusion of syntaxin molecules was monitored by means of fluores-

cence recovery after photobleaching (FRAP) in live cells. Since tracing proteins in FRAP

requires fluorescent labeling, the GFP tagged syntaxin variants were used for transfection

of HepG2 cells. The visualization of syntaxin-GFP, syx-∆S–GFP or syx-∆Cyt-GFP in

live cells by a confocal laser scanning microscope is displayed in the left image of figure

4.11, panel A. The pinhole of the laser scanning microscope allows to spatially confine the

signal to a specific focal plane, in this case the basal PM.

The GFP fluorescence was bleached within a small region of the PM and the fluorescence

was recorded at 1 Hz for about 3 min. Lateral diffusion of GFP tagged proteins lead to

mixing of bleached and non-bleached molecules resulting in an increase of fluorescence in

the bleached ROI (see 4.11, panel A). The increase of fluorescence intensity was followed

over time and the resulting recovery traces for each construct were averaged and fitted

with a hyperbolic function to determine the half time of recovery t1/2 (4.11, panel B) (see

3.2.10 for details on the analysis). t1/2 is a key measure for the mobility of the protein

and thus constitutes a suitable parameter for the quantitative comparison of the different

constructs.

As depicted in 4.11, panel C, the constructs displayed a step wise increase in mobility

from syntaxin-GFP with t1/2=11.8 s, to syx-∆S-GFP with t1/2=7.6 s, to syx-∆Cyt with
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t1/2=5.8 s. The maximal fluorescence recovery in the bleached region, indicating the frac-

tion of mobile proteins, increased from syntaxin-GFP to syx-∆S-GFP to syx-∆Cyt-GFP.

To rule out that the increased mobility of syx-∆S and syx-∆Cyt merely resulted from

higher expression levels of those proteins, recovery half times on single cell level were com-

pared as to their intensity (figure 4.11, panel D). Strikingly, only syntaxin-GFP displayed

a slight tendency to reduced mobility with rising protein level, while syx-∆S and syx-∆Cyt

were unaffected.

Figure 4.11: The intact SNARE motif is involved in mobility restriction of syntaxin in
non-neuronal cells. Analysis of fluorescence recovery after photobleaching of syntaxin-GFP and
the deletion constructs syx-∆S-GFP and syx-∆Cyt-GFP in live cells. A Live cells expressing the
indicated constructs are imaged by confocal microscopy at the basal membrane. For analysis of
cells with similar intensities, bright syx-∆S-GFP and syx-∆Cyt-GFP cells were not selected for
imaging. In a squared region of interest (ROI) fluorescence was bleached (compare pre-bleach and
post-bleach images). Recovery of fluorescence was monitored at an imaging frequency of 1 Hz.
Images are shown at the same scalings. B Averaged recovery traces from several cells imaged for
one experiment fitted with a hyperbola function (solid line). For clarified view, only every second
data point is displayed in the figure. Values are given as mean ± s.d. C Half times of recovery
obtained by fitting hyperbola functions to traces as shown in B. Values are given as mean ± s.e.m.
(n = 3 independent experiments with each 8 - 18 cells per construct). D For all experiments, half
times of recovery were also determined for individual cells and plotted against their pre-bleach
intensity (5 - 13 cells per construct).
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As reported in section 4.1.2.3 about 20-40% of the visible GFP is located in intracellular

structures. Such intracellular fluorescence cannot be excluded entirely in the microscopic

setup used. Thus, it is formally possible that the measured differences in mobility of

syntaxin-GFP, syx-∆S-GFP and syx-∆Cyt-GFP are influenced by the intracellular GFP

pools. To exclude this, the experiment was repeated on PM sheets.

4.1.3.2 Mobility of syntaxin, syx-∆S and syx-∆S-Cyt in HepG2 PM sheets

To determine the mobility of syntaxin, syx-∆S and syx-∆S-Cyt in PM sheets, FRAP

measurements were carried out as described in 4.1.3.1 except for sheet preparation being

conducted shortly before imaging. Figure 4.12, panel A presents exemplary pictures of

sheets at the indicated time points of the measurement showing the recovery of fluorescence

in the bleached area. As depicted in 4.12, panel B, the recovery traces are similar to the

ones obtained in intact cells but with clearer difference among the constructs. With a

maximal recovery of about 47% syntaxin-GFP comprised the highest immobile fraction,

followed by syx-∆S-GFP with 26% and syx-∆Cyt-GFP with 12%.

Similar step wise reduction of t1/2 could be observed in the order syntaxin-GFP >

syx-∆S-GFP > syx-∆Cyt-GFP when comparing with the values of intact cells (section

4.1.3.1). In absolute terms however, t1/2 was increased. Particularly, the t1/2 of syntaxin-

GFP almost doubled to t1/2=26.7 s. Slight changes were measured for syx-∆S-GFP to

t1/2=10.8 s, whereas t1/2 of syx-∆Cyt-GFP remained with 6.7 s nearly unchanged. As

for intact cells, only t1/2 of syntaxin-GFP shows slight tendency to rise with increasing

fluorescence intensity, whereas syx-∆S and syx-∆S-Cyt were unaffected.

One reason for the prolonged recovery half times of syntaxin-GFP in PM sheets could

be the formation of cis-SNARE complexes. These complexes are inactive SNARE aggrega-

tions and were previously linked to aging effects of sheets (Lang et al. 2002). Along these

lines, half times of recovery of syntaxin-GFP within one freshly prepared sample were

plotted for the acquisition sequence, which is an indirect measure for the age of the sheet.

Note here, that maximal observation time of one sample with freshly prepared sheets was

about 25 min. As depicted in 4.12, panel E, recovery half times did not rise generally with

the acquisition sequence. Average recovery half time between the first and second acqui-

sition slightly increased, which is in line with a previous study reporting on the formation

of a small pool of cis-SNARE complexes within the first minutes after sheeting (Bar-On

et al. 2008). However, this pool is not large enough to entirely account for the difference

between the constructs.
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Figure 4.12: The intact SNARE motif is involved in mobility restriction of syntaxin in
PM sheets of non-neuronal cells. Analysis of fluorescence recovery after photobleaching of
syntaxin-GFP and the deletion constructs syx-∆S-GFP and syx-∆Cyt-GFP in freshly prepared
sheets. A Sheets of cells expressing the indicated constructs are imaged by confocal microscopy. For
analysis of cells with similar intensities, bright syx-∆S-GFP and syx-∆Cyt-GFP sheets were not
selected for imaging. In a squared region of interest (ROI) fluorescence was bleached (compare pre-
bleach and post-bleach images). Recovery of fluorescence was monitored at an imaging frequence
of 1 Hz. Images are shown at the same scalings. B Averaged recovery traces from several cells
imaged for one experiment fitted with a hyperbola function (solid line). For clarified view only
every second data point is displayed in the figure. Values are given as mean ± s.d. C Half times
of recovery obtained by fitting hyperbola functions to traces as shown in B. Values are given as
mean ± s.e.m. (n = 3 independent experiments with each 9 - 17 PM sheets per construct). D
For all experiments, half times of recovery were also determined for individual sheets and plotted
versus the pre-bleach intensity (24 - 34 PM sheets per construct). E Half times of recovery of
syntaxin-GFP in individual sheets were plotted against their respective imaging sequence. Mean
recovery half times ± s.d. are indicated.
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In conclusion, the mobility of syntaxin-GFP is reduced compared to syx-∆S and syx-

∆Cyt independently of interactions with SNAP25. Taken together, these findings indicate

that interactions among the cytoplasmic protein domains of syntaxin, in particular the N-

terminal SNARE motif, are responsible for stronger attraction into the protein cluster.
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4.2 Spontaneous lipid transfer at ER-PM MCS

4.2 Spontaneous lipid transfer (SLT) at ER-PM membrane contact sites
(MCS)

MCS are highly abundant among cellular membranes and are involved in essential cellular

functions such as lipid and protein transport and intra- as well as intercellular commu-

nication. The tight connections between cellular membranes constitute experimentally

challenging structures. It is possible to isolate membrane material containing contact

sites using, for example, fractionation via density gradients. However, isolation protocols

are time consuming and require large amounts of starting material. Moreover, the purity

of the preparation poses a major difficulty, since most organelles exhibit multiple contacts

with different organelles. Therefore, it is difficult to distinguish between the different or-

ganellar membranes after the isolation and to examine them separately. In particular the

ER establishes direct physical contacts with all other cellular membranes including the

PM. Apart from these concerns, supra-molecular structures, like MCS, depend on diverse

lipid-lipid, lipid-protein and protein-protein interactions at the same time (see section

1.3). Preferred preparations thus demand the maintenance of most possible features of

the native system as highlighted in section 1.3.3.

In this study, a novel preparation of ER-PM MCS with tightly tethered ER to the

intact PM was developed. The visualization of PC and the lipid composition of ER and

PM bilayers regarding PC, cholesterol, PI(4,5)P2 and PS was examined. Further, it was

analyzed if the system contains functional ER and is of physiological relevance. Protease

treatment was used to gain information on the stability of the ER tethers. Finally, the

system was applied to probe for spontaneous lipid transfer (SLT) of the two different

highly abundant membrane lipids, cholesterol and PC.

4.2.1 ER-PM MCS preparation

The intension of the novel approach described here was to remove the bulk of the ER while

maintaining tight connection between PM and ER by keeping the tethering complexes and

a small piece of ER intact. For that purpose, I made use of the cell unroofing technique.

As explained in section 1.3.3 this preparation preserves the basic properties of a PM

concerning composition and curvature.

4.2.1.1 Visualization of ER on PM sheets

In order to visualize the ER, HepG2 cells were transfected with either of two different

fluorescently tagged ER marker proteins, termed ER-RFP or RFP-Sec61β. ER-RFP refers
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Figure 4.13:Visualization of ER in whole cells and on PM sheets. A Epifluorescence images
of HepG2 cells overexpressing the ER marker proteins ER-RFP or RFP-Sec61β as indicated. B
PM sheets of the same cells as in A with TMA-DPH used for PM staining (left images). Note
the spotty fluorescence of the ER marker remnants on the PM sheets (right images). Figure and
legend modified from Merklinger et al. 2016.

to a RFP fused to the signal sequence of calreticulin and the ER retention signal KDEL.

Sec61β is an integral component of the ER membrane. Together with other Sec61 proteins

it builds up a complex for protein translocation at the ER.

As expected, overexpression of both proteins resulted in net-shaped staining patterns in

whole cells imaged with an epifluorescence microscope (figure 4.13, panel A). The signal

surrounded the nucleus and spread throughout the interior of the cell, which is typical

for an ER staining pattern. After the application of a short ultrasound pulse the upper

part of the cell was removed leaving an intact PM as displayed by the homogenous TMA-

DPH membrane staining (figure 4.13, panel B). The major part of the ER marker signal

was successfully eliminated during the sheeting process. However, some RFP signals of

ER-RFP as well as of RFP-Sec61β were scattered across the entire PM sheet displayed

as single spots. This observation indicates strong contact points between the ER and the

PM which remain intact even after the application of mechanical forces which removed

a substantial part of the ER. Alternatively, the spots represent ER fragments sticking

unspecifically to the PM.

4.2.1.2 PC as a marker lipid for the ER membrane

To further test whether the spots actually represented ER membranes, PC was chosen as

a marker lipid due to its about twofold enrichment in ER membranes when compared to
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the PM (Meer 2011).

A metabolic labeling strategy, developed by Jao et al. 2009, was employed to enable

visualization of PC. In brief, the specific cell medium was supplemented by propargyl

choline (pC). Choline transporters and the enzymes in the biosynthetic pathway of choline

lipids recognize the modified choline as a substrate and process it for the synthesis of

propargyl-PC (pPC; illustrated in figure 4.14, left panel) as well as propargyl-lyso-PC,

propargyl-ether-PC and propargyl-SM (Jao et al. 2009). In this way, the natural fatty

acid chain variation found in PC is preserved. The alkyne group of the pC enables a

copper catalyzed cycloaddition of an azide coupled fluorophore yielding a 1,2,3-triazol

product. For the first experiments, the dye azido-sulfo-Bodipy (azido-sBP) was used for

cycloaddition. The resulting fluorescent PC is illustrated in figure 4.14, right panel.

Figure 4.14: Chemical sketch of pPC and sBP-PC. pPC (left) resulting from metabolic label-
ing with propargyl choline (pC) differs from natural PC only in the alkyne group linked to tertiary
ammonium in the choline headgroup, but not in the fatty acid tail composition (R1 and R2)(Jao
et al. 2009. Copper catalyzed cycloaddition of the azido-sulfo-bodipy (azido-sBP) results in the
1,2,3-triazol containing fluorescent sBP-PC (right). Figure and legend modified from Merklinger
et al. 2016.

Of note, previous evaluation by thin layer chromatography revealed that the major frac-

tion of about 98% pC is incorporated into PC in the experimental system used in this study

(Spitta 2012). To further verify the specificity of PC labeling, PM sheets generated from

metabolically labeled HepG2 cells were treated with a phospholipase C (PC-LPC) from

Clostridium perfringensis (EC 3.1.4.3) prior to cycloaddition. This enzyme hydrolyses PC
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Figure 4.15: Specificity of metabolic PC labeling. A Epifluorescence images of PM sheets
from HepG2 cells labeled metabolically. Prior to cycloaddition of azido-sBP for PC visualization
sheets were incubated with the phospholipase C from Clostridium perfringens (EC 3.1.4.3) (PC-
PLC; lower panel) or with buffer as a control (upper panel). Buffer in both conditions contained
50 mM CaCl2 for suppression of SM hydrolyzing activity of the PC-PLC (Pastan et al. 1968),
which tended to reduce PC spots on the PM sheets when compared e.g. with figure 4.16, panel B,
left. B ROIs were placed on PM sheets in the TMA-DPH channel for unbiased analysis of average
fluorescence intensity of the PC signal. The average values for the PC-PLC condition were related
to the averaged control values for each individual experiment. Values are given as mean ± s.e.m.
(n = 3 individual experiments). Figure and legend modified from Merklinger et al. 2016

to 1,2-diacyl-sn-glycerol and choline. However, in principle it can also react with other

choline lipids such as sphingomyelin. In order to diminish the affinity of the hydrolase

to sphingomyelin, 50 mm CaCl2 was added to the incubation buffer (Pastan et al. 1968).

As presented in figure 4.15, PC-PLC treatment reduced the cycloaddition signal by more

than 90%, confirming that PC is the major lipid observed by metabolic labeling in this

current experimental system.

Returning to the assessment of PC as a marker lipid for the ER membrane, the cellular

localization of the PC signal in HepG2 cells was examined. To this end pC fed cells

were directly fixed with PFA. As PFA causes partial cell ruptures, internal membranes

become accessible to subsequent cycloaddition of the dye. Indeed, when imaged with an

epifluorescence microscope at the equatorial plane of the cell (figure 4.16, panel A), a

net-like structure could be observed similar to the RFP signal of the ER marker proteins

in figure 4.13. TIRF microscopy was employed to omit fluorescence from the cytosol and

gain a clearer picture of the cytoplasmic periphery of the PM. This technique allows for

the selective illumination of the PM and its surrounding within a layer of approximately

100 nm (Steyer et al. 2001) (see 1.3.3). As can be seen in figure 4.16, panel A, the pictures
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Figure 4.16: ER membranes visualized by the marker lipid PC. A Epifluorescence (left)
and TIRF image for selective illumination of the basal PM (right) of HepG2 cells labeled with
fluorescent PC. Fixation of cells allowed for intracellular PC labeling. B Fluorescent PC signal in
PM sheets from metabolically labeled cells. Cycloaddition of sBP was either performed on freshly
prepared PM sheets (left) or on intact cells for labeling only the outer leaflet at 4 ◦C (right). C/D
Overlap of ER marker and PC signal on PM sheets. PM sheets from metabolically labeled HepG2
cells expressing ER marker proteins ER-RFP (C) or RFP–Sec61β (D) were imaged for RFP (left
images) prior to cycloaddition and imaging of the fluorescent PC (middle images). Sheets were
aligned based on the TMA-DPH image (not shown). The overlayed images (right images) show a
high degree of colocalization despite small changes in sheet structure due to the incubation time
of about 1 h between the recordings. A-D Examples are shown from independent experiments (n
≥ 3). Figure and legend modified from Merklinger et al. 2016.

revealed a spotty staining pattern. When comparing this image to the epifluorescence

micrograph the intensity peaks near the PM seemed to be connected to the tubular network

that spreads throughout the cell.

To asses if these extensions of the ER membrane close to the PM could be retained in the

PM sheet preparation, metabolically labeled cells were sheeted prior to the cycloaddition.
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Remarkably, the PC-enriched membrane spots remained on the PM sheet (figure 4.16,

panel B)). To further confirm that these spots result from intracellular structures, the

cycloaddition was performed on live cells at 4 ◦C prior to sheeting. Under these conditions

the hydrophilic dye should not be able to permeate the PM and should only react with

alkyne groups at the outer leaflet of the PM. The resulting staining of the PM sheet

appeared uniform without any spotty structures (figure 4.16, panel B). Accordingly, the

PC enriched membrane fragments were a result of structures at the cytoplasmic side of

the PM.

To substantiate the relation of ER marker remnants and the PC enrichments on the PM

sheets, a double staining was performed (figure 4.16, C and D). To this end, HepG2 cells

were transfected with the ER marker proteins ER-RFP or RFP-Sec61β and additionally

fed with pC. RFP signal on the PM sheets was imaged in advance to exclude bleed-

through from the PC signal into the RFP channel and to avoid false positive results. The

coverslip was then removed from the microscope and membranes subsequently underwent

cycloaddition with azido-sBP. Priorly taken TMA-DPH images were used as a reference

to enable PC imaging of the same sheets during the second round of imaging. The shape

of PM sheets slightly changed between the two imaging steps as a consequence of the in-

between incubation time. Accordingly, perfect alignment between the RFP and PC images

could not be attained, preventing quantitative analysis of colocalization. Nevertheless,

nearly 100% of the ER-RFP and RFP-Sec61β spots had a corresponding spot in the PC

image. This strong overlap between the spots arising from the ER marker proteins and

the PC spots indicates that the PC spots indeed represent ER membranes.

Since PC is as well a general membrane marker, it is important to ask to what extent

the locally enriched PC signal may reflect membrane invaginations. To answer this ques-

tion, metabolically labeled HepG2 cells were sheeted, fixed and after the cycloaddition

reaction immunostained for clathrin or caveolin, markers for endocytic invaginations. Two

approaches were used to analyze the amount of colocalization between PC spots and either

caveolin or clathrin, the Pearson correlation coefficient (PCC) and a spot-wise colocaliza-

tion. The PCC is a common method to quantify interrelation between two variables. In

image analysis, it is used to analyze colocalization of fluorescence intensity peaks in two

different channels. The PCC ranges from -1 to 1, where 1 reflects perfect colocalization

and -1 perfect negative colocalization. In a second analysis, a spot wise overlap was ana-

lyzed. To this end spots in one channel were surrounded by a circular ROI and transferred

to the aligned second channel and overlapping spots were quantified (for detailed descrip-
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4.2 Spontaneous lipid transfer at ER-PM MCS

Figure 4.17: Overlay of clathrin and caveolin with PC spots. Epifluorescent micrographs
of HepG2 PM sheets with fluorescently labeled PC and immunostaining for clathrin (upper panel)
or caveolin (lower panel). Colocalization of PC and immunostaining was analyzed calculating
the Pearson correlation coefficient (PCC) (top value in the overlay image) or based on analysis
of individual PC spots (percentage of overlapping spots; indicated by the bottom values in the
overlay image). Values are given as mean ± s.e.m. (n = 3 independent experiments). Figure and
legend modified from Merklinger et al. 2016.

tion see 3.2.15). As depicted in figure 4.17, only 15% of the PC spots overlapped with

clathrin and 4% with caveolin, supported by the relatively low value for PCC of 0.2 and

0.14, respectively. Thus the large majority of spots do not arise from an increase in local

membrane area due to invaginations.

Taken together, these results suggest that pPC is a suitable marker lipid for the ER

membrane localized at the tight association between the PM and ER, that can be preserved

on the PM sheets.

4.2.1.3 Lipid composition of ER-PM contact sites

Preserving the lipid composition of the two compartments is of great interest when inves-

tigating lipid transfer at the contact sites. Assessing this issue in more detail, I stained

PM sheets with two general membrane dyes, R18 and CellMask and analyzed their cor-

relation with the PC signal. Both general membrane dyes exhibit amphiphilic structure

with a hydrophobic membrane anchor attached to a hydrophilic fluorescent dye. In prin-

ciple, they should be able to stain the ER membranes equally well. Interestingly, R18 and

CellMask showed only 30% and 63% spot-wise overlap with the PC signal, respectively

(figure 4.18, panel A). The spot intensity above background was measured to quantify the

enrichment of the dyes in the ER spots (figure 4.18, panel B). While a 150% increase over

the PM staining was observed for PC labeling, R18 and CellMask increased only to 10

and 16%, respectively. Thus, the used membrane dyes differ in their ability to stain the
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Figure 4.18: Overlap of ER spots with membrane dyes and markers for cholesterol,
PI(4,5)P2 and PS. A Counterstaining of PC spots with general membrane dyes. PM sheets
with fluorescent PC were stained with TMA-DPH (not displayed) and either R18 (upper panel) or
CellMask (lower panel). Images were analyzed for overlap by PCC (top value in overlay image)
and at the level of individual spots (lower value in overlay image). B For ER spots, identified in
the PC channel in PM sheets from A the increase of intensity over background was measured for
PC, R18 and CellMask. C-E Counterstaining of PC spots with specific lipid dyes for cholesterol
(C), PI(4,5)P2 (D) or PS (E). ER remnants in HepG2 PM sheets were either visualized by overex-
pression of RFP-Sec61β or by metabolic PC labeling followed by cycloaddition of azido-Atto647N.
Squares in lower right: magnified views from picture details indicated by small white boxes. Ar-
rows indicate overlapping spots. PCC values are given in the upper right corner in the lower panel.
C Cholesterol was stained with filipin (images from experiment shown in figure 4.25, panel A); D,
PI(4,5)P2 was labeled by co-expression of a PH domain of PLC1delta tagged with GFP (PH-GFP)
(Stauffer et al. 1998). E FITC-labeled lactadherin was used for PS staining on the PM sheets after
the cycloaddition reaction. All values are given as mean ± s.e.m. (n = 3 individual experiments
with each 24-44 PM sheets for A/B and 11-90 PM sheets for C-E). Figure and legend modified
from Merklinger et al. 2016.

ER membranes, indicating a potential difference in membrane properties of ER and PM.

The measured enrichment of PC in the ER membranes fits the common knowledge of

PC distribution between the ER and the PM (Meer et al. 2011, Zambrano et al. 1975),
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where there is about two times more PC in the ER. If the ER membrane spots were indeed

ER membranes, the difference in lipid distribution should also hold true for other lipids.

For a more specific evaluation, specific lipid probes were employed for three different lipids:

cholesterol and PI(4,5)P2 which mostly resides in the cytoplasmic leaflet of the PM (Watt

et al. 2002) and PS, which is partly present in ER due to its synthesis in this compartment

(Fairn et al. 2011).

PM sheets of HepG2 cells expressing RFP-Sec61β as an ER marker were stained with

filipin, an autofluorescent antibiotic from Streptomyces filipensis which binds specifically to

cholesterol (Elias et al. 1979). Epifluorescence imaging of the filipin revealed a homogenous

staining (figure 4.18, panel C, bottom). No notable increase of fluorescence at the sites of

ER signal could be observed. Accordingly, colocalization with the ER signal measured by

Pearson correlation coefficient yielded a low value of about 0.09.

In order to attain PI(4,5)P2 staining, the pleckstrin homology (PH) domain of phos-

pholipase C delta (PLCδ) fused to a GFP was cotransfected with RFP-Sec61β in HepG2

cells. The PH domain is known to bind highly specific to PIPs headgroups (see section

1.3.2.1) and thus provides a suitable tool for the targeting of PI(4,5)P2 (Lemmon et al.

2000). PH-GFP staining on PM sheets appeared less homogenously than the filipin stain-

ing. More precisely, the edges of sheets were speckled with PH-GFP accumulations while

the fluorescence in the center of the sheets was rather uniform (figure 4.18, panel D, bot-

tom). The fluorescent peaks did not correlate with the signal arising from the ER spots

as indicated by a low PCC of 0.02.

Lastly, a lactadherin probe was used to test for the PS content of the ER membranes.

The C2 domain of lactadherin specifically binds to PS (Yeung et al. 2008). In this

assay, sheets from metabolically labeled cells were subjected to cycloaddition with azido-

Atto647N for the visualization of PC, followed by staining with a FITC-labeled bovine

lactadherin. As expected, a homogeneous staining of the PM was observed interspersed

with spots of higher labeling density, which occasionally overlapped with the PC spots,

yielding a PCC of 0.34 (figure 4.18, panel E, bottom). In summary, no PI(4,5)P2 or

cholesterol could be detected in the ER spots, while there was a slight increase in fluores-

cence for PS at ER membrane patches. This result broadly complies with the known lipid

distribution between ER and PM.

Taken together, the results indicate that the lipid composition of the ER remnants

largely reflects the lipid composition of the ER and clearly differs from the PM. The next

section moves on to investigate the applicability and biological relevance of the preparation.
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4.2.2 Application and biological relevance of ER-PM contact preparation

So far, the preparation method of ER-PM contacts was tested only in HepG2 cells, a liver

epithelial cell line derived from a hepatocellular carcinoma. A more universal application

of the method, however, is preferable. Therefore, I tested the method for two additional

cell lines from different origins, PC12 cells and Jurkat cells. PC12 cells are rat pheochro-

mocytoma cells that are often used as a model for neuronal differentiation, secretion of

neurotransmitters or neurotoxicity. In contrast to the adherent cultures of HepG2 and

PC12 cells, Jurkat cells, human T lymphocytes, grow in suspension. For the experiment,

HepG2, PC12 and Jurkat were fed with pC. The next day all three cell lines were subjected

to an ultrasound pulse to obtain PM sheets. In the case of Jurkat cells, cells were adhered

to coverslips in Ringer solution before cell unroofing. Subsequent to the cycloaddition

reaction with azido-sBP, the PM sheets were imaged with an epifluorescence microscope.

In all three cell lines PC signal accumulated in spots on the homogeneous staining on the

PM (figure 4.19). Size and distribution of the PC spots appeared similar amongst HepG2

and PC12 cells with minor differences observed for the Jurkat cell line, where some of the

spots exhibited trapezoid shape. Thus, it can be inferred that the preparation method of

ER contacts on PM sheets is applicable to a diverse range of cells.

Figure 4.19: Application of ER-PM MCS preparation in different cell lines. Epifluo-
rescence images of PM sheets from HepG2, PC12 or Jurkat cells as indicated. Visualization of
ER remnants was achieved by metabolic PC labeling and cycloaddition on PM sheets as in 4.16.
Jurkat cells were incubated in Ringer solution prior to cell unroofing. Figure and legend modified
from Merklinger et al. 2016.

4.2.2.1 Functional ER-PM MCS

As pointed out in the previous sections, the contacts between ER and PM apparently resist

high mechanical forces during the sonication pulse. Furthermore, incubation times of fixed

samples up to five hours during immunostaining of clathrin and caveolin did not lead to

an apparent reduction of ER spots (figure 4.17). Together with the similar occurrence

in cell lines of different species and tissues, these findings are strong hints that ER spots
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on PM sheets represent actual ER-PM MCS and not dispersed membrane remnants. To

further substantiate this assumption I made use of a well documented phenomenon specific

for ER-PM MCS, the STIM1 recruitment to ER-PM MCS upon calcium release from

the ER. STIM1 is an integral protein of the ER membrane with the ability to sense

calcium concentration by a luminal EF hand Ca2+ binding site (Williams et al. 2001). As

explained in section 1.3.2.2, low calcium concentrations in response to cellular signaling or

exogenous drugs such as thapsigargin (TG), promote the oligomeric state of the protein

and subsequent migration towards the MCS with the PM to participate in the activation

of calcium channels in the PM.

Before turning to the PM sheet preparation, the biological process was monitored by

TIRF microscopy. Transient transfection of HepG2 cells with a YFP tagged STIM1 en-

abled the tracking of STIM1 in the subplasmalemmal area. In unstimulated cells the YFP

signal of STIM1 was hardly visible as an indistinct signal with some bright spots (figure

4.20, panel A). The intensity of YFP-STIM1 spots increased clearly after about 100 s after

TG treatment, but not in the control condition (figure 4.20, panel B and C). This result

matches previous studies (Wu et al. 2006) and confirms the suitability of the experimental

setup for observing ER-PM MCS using YFP-STIM1 as a marker.

If the observed ER spots on PM sheets were indeed authentic ER-PM MCS, they should

be likewise able to recruit YFP-STIM1. To test this hypothesis, YFP-STIM1 transfected

cells were labeled metabolically with pC and PM sheets were obtained after control or TG

treatment. Sheets of activated and control cells underwent cycloaddition with an azido-

Atto647N. The colocalization of PC and YFP-STIM1 was determined using the PCC, as

well as the manual point-wise colocalization (for description see 3.2.15). As depicted in

figure 4.20, panel D, a slight YFP-STIM1 fluorescence signal was already visible on the

PM sheets of the control condition. The spotty pattern was similar to the one observed

for the other ER marker proteins, RFP-Sec61β and ER-RFP (figure 4.13) and overlapped

with PC. The application of TG yielded a considerable increase of YFP-STIM1 signal on

the PM sheets (figure 4.20, panel D). More precisely, the YFP-STIM1 spots became larger

and brighter upon TG treatment. Interestingly, a high colocalization of about 74.1% (spot

wise) with a PCC of 0.68 was observed already in the control condition (figure 4.20 panel

E, upper lane) and increased sparsely to 87.1% (spot wise) with a PCC of 0.76 upon

TG treatment of the cells. Overall, significant portions of PC spots matched with YFP-

STIM1 spots. The most surprising aspect was that PC spots differed in their size after

incubation with TG in the YFP-STIM1 transfected cells, but not in the untransfected
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cells. Sometimes spots even created trapezoid shape and connected to each other on the

sheets. As this behavior was also observed for the PC labeled structures, this experiment

indicates that ER on PM sheets represents the proximal parts of the ER that are able to

recruit STIM1 in a calcium dependent manner. Thus, the preparation yields functionally

relevant ER-PM MCS.

Figure 4.20: STIM1 enrichment upon stimulation at PC spots on PM sheets. A HepG2
cells overexpressing YFP-STIM1 were treated with 1 µm thapsigargin (TG) (lower panel) or incu-
bated in buffer as a control (upper panel) as described previously (Wu et al. 2006). The fluorescence
was recorded every 15 s for about 5 min by TIRF imaging. Time after stimulation is indicated in
the example images. B Fluorescence intensity was quantified at each time point after stimulation
and the values were related to the intensity of the first image. Each individual experiment resulted
in averaged traces for control (closed circles) and TG stimulated cells (open circles), which were av-
eraged for the graph in B (5 - 8 cells per independent experiment, n = 3; values are shown as mean
± s.e.m.). C/D Metabolically labeled cells expressing YFP-STIM1 were treated as in A followed
by cell unroofing and fixation. pPC was visualized by cycloaddition of azido-Atto647N. D upper
panel: control condition; lower panel: TG stimulation; insets in left images: TMA-DPH staining
indicates integrity of the PM sheets. Images of YFP-STIM1 (left) are shown at same scaling.
For better visualization overlay images of YFP-STIM1 and fluorescent PC (right) are presented
at arbitrary scaling. Top values in the overlays indicate PCC and bottom values the spot wise
colocalization (31-61 sheets per independent experiment). C YFP-STIM1 intensity was analyzed
on PM sheets from D, averaged and related to the control condition. Values are given as mean ±
s.e.m. (n = 3; with 53–85 PM sheets per independent experiment). Stimulation induced increase
in YFP-STIM1 fluorescence in cells from A (after about 5 min) was plotted for comparison. Figure
and legend modified from Merklinger et al. 2016.
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4.2.2.2 Tethering of ER-PM MCS

A considerable amount of literature has been published on tethering between the PM and

the ER in recent years (section 1.3.2.1) and it is commonly accepted that interactions are

mostly mediated by integral ER proteins, which interact with lipids of the opposing PM

(Helle et al. 2013, see also section 1.3.2.1). In this context, I further tested if the pre-

pared ER-PM MCS on the sheets corroborate the known protein dependency by protease

treatment. To this end, PM sheets from metabolically labeled cells were generated and

PC was visualized via cycloaddition of azido-sBP. The PM sheets were either treated for

45 min with the serine endopeptidase trypsin or with a mixture of trypsin and trypsin

inhibitor (type II-O, see section 3.2.14) as a negative control. During the incubation time,

sheets rounded up slightly at the edges, but the staining intensity of PC in the uniform

background of the PM did not change (figure 4.21, panel A). Compared to the control con-

dition, the trypsin treatment strongly diminished the number of MCS (figure 4.21, panel

A). Even though a small population resided on the sheets even after 45 min of protein

digestion, the majority of ER-PM MCS were indeed susceptible to protein digestion. This

provides further evidence for the involvement of protein interactions in the formation of

ER-PM MCS.

Protease treatment for 45 min probably leads to an almost complete disintegration of

protein complexes surrounding and stabilizing the membrane as can be seen from the

transformation in shape of PM sheets during incubation with trypsin. For more refined

information on stability, the protease effect of detachment and disintegration of ER contact

sites was dissolved temporally. To this end trypsin or inhibited trypsin were applied to

the PM sheets stained for PC directly on the microscope and fluorescence was monitored

subsequently for several minutes (figure 4.21). Surprisingly, the spots started moving

laterally immediately after the application of trypsin, but not in the control condition.

This movement seemed to occur in random directions while it was restricted to the area

of the sheet. The mean square displacement (MSD), that describes the average distance

a particle travels in a defined time window, was calculated. The almost linear increase of

MSD with the time interval (figure 4.21, panel C) hints to a normal diffusion. Diffusion

constant could be calculated by linear regression of the averaged MSD plots yielding 8.56 x

10−4 µm2/s for trypsin treatment, while diffusion of the spots in the control condition was

negligible. The stability of the control PC spots was accompanied by similar fluorescence

intensities calculated over the tracking period (figure 4.21, panel D) indicating a persistent

PC gradient between ER and PM.
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Figure 4.21: Tethering of the ER contact sites mediated by proteins. Epifluorescence
microscopy of HepG2 PM sheets with fluorescent PC upon treatment with trypsin or trypsin in
presence of an inhibitor as a control. In A PM sheets were treated for 45 min prior to imaging. B
Treatments were performed directly on the microscope and images were acquired every 10 s after
an initial 1 min incubation time with the protease for 200 s after treatment. Left, Images 60 - 70 s
after treatment, insets displayed in magnified view in the middle image. Right, illustration of spot
tracks over 200 s observation. C The mean-square displacement (MSD) was calculated in increasing
time intervals from tracks of 141 - 143 spots on 3 - 5 PM sheets per condition and independent
experiment (n = 3; values given as mean ± s.e.m.). Linear regression yielded diffusion coefficients
of 8.56 x 10−4 µm2/s and 0.311 x 10−4 µm2/s for trypsin and control condition, respectively. D
Deviation of fluorescence intensity of PC spots in the control condition during the tracking (28
- 47 spots per independent experiment, n=3, values given as mean ± s.e.m.). Tracking analysis
was performed by Dr. Jan-Gero Schlötel. Parts of the figure and legend modified from Merklinger
et al. 2016.
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In summary, this experiment suggests that there are two different mechanisms how ER

contact sites are stabilized at the PM. One anchors the ER membrane vertically to the

PM. The second one, however, controls lateral movement of the anchored contact sites.

The latter protein mediated connection is more susceptible to trypsin while the former

needs harsh treatment for disruption.

4.2.3 Spontaneous lipid transfer at ER-PM MCS

Genes involved in the sophisticated network of lipid biosynthesis make up nearly 5% of all

cellular genes (Meer et al. 2008) and produce about 1000 different membrane lipid species

in mammalian cells (Coskun et al. 2011). However, most of the lipids are not synthesized

at their cellular destination but instead at the ER (Fagone et al. 2009). From their place

of synthesis they need to be transported to other locations. Lipid transfer in cells occurs

mainly via vesicular trafficking. Additionally, lipid transfer proteins (LTPs) can mediate

the exchange of lipids between cellular compartments.

Another possible mechanism for monomeric lipid exchange is the spontaneous lipid

transfer (SLT). In this process, a lipid desorbs from the membrane spontaneously, without

the specific interaction of a LTP, transfers through the aqueous milieu to another mem-

brane, where it inserts. SLT has been suggested for PC in experiments on lipid vesicles

at high concentration (Jones et al. 1989) and for phosphatidic acid between vesicles and

cells (Longmuir et al. 1989). One major obstacle for such mechanism is to overcome the

thermodynamic barrier for desorption of the lipid from the donor membrane, which could

in principle be facilitated by close proximity of donor and acceptor membranes either by a

transient collision or a permanent contact (Lev 2010, R. E. Brown 1992). Direct physical

contact between membranes could allow lipids to desorb from membranes and enter the

other membrane without changing the hydrophobicity of its surrounding. Therefore, the

question arose if at MCS such close proximity is given, sufficient for SLT to occur (Lev

2010).

The preparation of ER contact sites on PM sheets seems to be a suitable system to test

for SLT. Firstly, it provides close and highly stable contacts between the two membranes

(see 4.2.2.2). Secondly, the reservoir of ER lipids is defined and cannot be replenished by

cisternal ER membrane parts, which would complicate the analysis of SLT. Hence, the PC

gradient dissipation should be visible by a reduction in PC intensity over time, when PC

is transported from the ER membrane remnants to the PM.
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4.2.3.1 Spontaneous transfer of PC

I aimed to test for SLT of PC as a marker lipid, since a concentration gradient between

ER and the PM (see section 4.2.1.3) is observed and PC can be labeled metabolically

preserving its natural fatty acid distribution (see section 4.2.1.2).

Accelerated PC transfer along the concentration gradient

In a first step, I asked whether the ER/PM concentration gradient of PC could in principle

be attenuated and more importantly, if the system was sensitive enough to monitor such

diminishment of PC in the ER spots. To this end, I made use of the cyclodextrin HPαCD

as a catalyst for lipid transfer. In general, the surface of cyclodextrins is hydrophilic, but

they can build inclusion complexes with apolar substances within their hydrophobic cavity

(Zidovetzki et al. 2007). The cavity of HPαCD is rather small compared to other species of

cyclodextrins. Therefore, it is deemed to posses, albeit on a restricted basis, specificity for

phospholipids (Irie et al. 1992). Cyclodextrins are able to extract lipids from membranes

as well as insert them back in a concentration gradient-dependent manner (Christian et al.

1997).

In order to proof that HPαCD is capable of extracting and releasing pPC, PM donor

sheets from metabolically labeled cells were incubated with buffer containing HPαCD or

only buffer as a control. After 30 min the supernatant was removed from the donor sheets

and was added to acceptor sheets from unlabeled cells for another 30 min. These acceptor

sheets were washed and cycloaddition for the visualization of pPC was performed. Figure

4.22, panel A, displays acceptor sheets imaged with an epifluorescence microscope. The

sheets treated with the preincubated cyclodextrin exhibited a uniform PC staining of the

PM sheet. As expected, no fluorescent PC signal was noticed in the control condition.

Thus, HPαCD is capable of extracting as well as inserting pPC.

For analysis of the transfer between ER remnants and the PM, PM sheets of pPC

labeled cells were incubated for 30 min with HPαCD or only buffer as a control and

subsequently stained by cycloaddition of the dye. While the spots of fluorescent PC are

clearly distinguishable from the uniform background of the PM in the control condition,

the intensity difference between the two compartmental membranes is clearly reduced

upon HPαCD treatment (figure 4.22, panel B). This observation could be affirmed by

the analysis of spot intensity above background (analysis see section 3.2.15) revealing a

decrease of about 60% in the case of cyclodextrin treatment compared to the control

condition. The mean signal intensity of the sheets was not affected by cyclodextrin (figure
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Figure 4.22: The lipid carrier HPαCD mediates PC transfer at ER-PM MCS. A PM
sheets from metabolically labeled HepG2 cells were incubated with buffer containing 50 mm
hydroxypropyl-α-cyclodextrin (HPαCD) or buffer as a control. The supernatants from this incu-
bation were applied to PM sheets from unlabeled cells as a control for the pPC transfer capability
of HPαCD. After incubation for 30 min, cycloaddition was performed with a fluorescent dye (sBP)
for visualization of pPC. Large images show sBP-PC fluorescence, insets indicate the staining of
the same membranes with TMA-DPH at smaller magnification. Images are shown at same scaling.
Due to lower staining intensities, scaling largely differs from B. B Epifluorescence micrographs
of PM sheets from metabolically labeled HepG2 cells incubated for 30 min with buffer (control)
or buffer supplemented with 50 mm hydroxypropyl-α-cyclodextrin (HPαCD). Staining of pPC was
performed as in A. C Spot intensity above background was quantified for images in B. Note here,
that in comparison to figure 4.18 values are lower due to twofold larger ROIs for analysis. D Aver-
age fluorescence intensity from images in B. The fraction of the signal arising from spots was 12.4%
± 2.1 and 3.5% ± 2.1 without or with HPαCD, respectively (see section 3.2.15). Images within
one row are shown at same scaling. All values are given as mean ± s.e.m. (n = 3 independent
experiments) Figure and legend modified from Merklinger et al. 2016.

4.22, panel D). This is important, since it confirms that the diminishment of spot intensity

does not result from mere uptake of pPC, but rather from redistribution of the lipid. The

results permit the conclusion that the concentration gradient indeed was diminished by

promoting desorption / absorption via HPαCD. Furthermore, it can be deduced that the

system is sensitive enough to resolve such a reaction.
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SLT of pPC

Knowing that the PC gradient is sufficient to drive lipid redistribution in the presence

of a carrier, I intended to test whether transfer is possible without a facilitator. In a

simple experimental setup, PM sheets from metabolically labeled cells were incubated at

37 ◦C for 1 or 2 h in buffer. After each of the time points fresh sheets from metabolically

labeled cells were prepared as a reference. All samples were stained by cycloaddition of

azido-sBP and imaged with an epifluorescence microscope (figure 4.23, panel A). Spot

to background intensity was analyzed as a measurement of PC gradient dissipation (for

analysis see section 3.2.15). Decrease in signal intensity over background would hereby

indicate lipid transfer from the ER to the PM, whereas a consistent value would indicate no

PC transfer. Surprisingly, the spot intensity over background raised during the incubation

(figure 4.23, panel B). This was due to a slight decrease in PM intensity in the incubated

samples when compared to the freshly prepared ones (figure 4.23, panel A). Phospholipase

mediated head group cleavage during the incubation may have caused specifically in the

PM the reduction of propargyl groups for cycloaddition. Albeit, it cannot be ruled out

entirely that LTPs moved lipids from the PM to the ER, SLT from the PM into the ER is

thermodynamically highly unlikely, because in this scenario lipid flux would have to occur

against the concentration gradient.

Figure 4.23: Probing loss of pPC from ER membranes after long incubations. A Epi-
fluorescence micrographs of PM sheets from metabolically labeled HepG2 cells that were either
freshly prepared or incubated in buffer for 1 h or 2 h (as indicated) at 37 ◦C prior to cycloaddition
for visualization of pPC. As a control, cells were sonicated and directly underwent cycloaddition.
PM sheets were imaged in sonication buffer. B Spot intensity above background was quantified for
the conditions depicted in A. Values are given as mean ± s.e.m. (n = 3 independent experiments).
Parts of figure and legend modified from Merklinger et al. 2016.
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SLT of sBP-PC

The previous experiment provided evidence for a lack of SLT of pPC at ER-PM contact

sites along the concentration gradient of the lipid. To solidify this finding, I turned to

the labeled lipid sBP-PC. Its charged fluorophore headgroup is more hydrophilic and thus

should even facilitate desorption from membranes compared to the non labeled pPC. For

testing the sBP-PCs ability to pass from the ER membrane to the PM, fluorescence loss

after photobleaching (FLAP) was employed. For this approach sheets were generated from

metabolically labeled cells and cycloaddition was performed to label pPC with azido-BP.

Instantly after labeling, sheets were imaged with a confocal laser scanning microscope.

Figure 4.24, panel A, upper image, shows the characteristic spotty pattern of the ER

contact sites on a uniform distributed PM signal.

The fluorescence on one half of the sheet was bleached using high laser intensity (figure

4.24, panel A, middle image). 20 min after bleaching, another picture of the respective

Figure 4.24: No evidence for SLT when
probed by FLAP. A Confocal images of
HepG2 PM sheets with fluorescent PC (sBP-
PC, as in 4.16). Fluorescence was bleached
in one half of the PM sheet (compare pre-
bleach image (upper) with post-bleach im-
age (middle)). The sheets were incubated
for 20 min for re-equilibration of the signal
and another image was taken (lower image).
Additionally, control sheets were imaged in
the same sequence without bleaching (not
shown). B Intensity of individual ER mem-
branes on the non-bleached half of the sheet
or on control sheets were measured in the
pre-bleach and the recovery image. Values
were corrected for changes in the uniform
background of the PM and the ratio between
pre-bleach and recovery was calculated. Val-
ues are given as mean ± s.e.m. (n = 3 in-
dependent experiments). Figure and legend
modified from Merklinger et al. 2016.
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sheet was taken (Figure 4.24, panel A, lower image). While the uniform background of

the PM recovered on the bleached site of the sheet, the spotty pattern did not. Only

occasionally spots regained fluorescence probably due to impaired self-quenching of the

dye (for further discussion see section 5.2.4). Turning to the spots on the non bleached

half, ratio between spot intensity in prebleach and postbleach images were calculated

(for analysis see 3.2.11)(figure 4.24, panel B). In the case of SLT along the concentration

gradient of sBP-PC, the absolute fluorescence signal in the ER spots should be diminished.

This is because fluorescent molecules move to the PM, resulting in a ratio below one.

Indeed, there was a marginal reduction of the ratio. However, this reduction was in the

same range as for control spots measured on non-bleached PM sheets, pointing to a minor

extend of bleaching rather than SLT.

Accordingly, the intensity of PC in ER membranes was not affected by the loss of

fluorescence in the PM. It can be deduced that there is no lipid exchange between the

PM and the ER at the contact site in this experimental setup, even upon augmented

hydrophilicity of the observed lipid.

4.2.3.2 Spontaneous transfer of cholesterol

Having investigated SLT of PC for potential SLT at the ER-PM MCS, a second lipid

class was examined, the sterols. In an experimental setup using artificial lipid vesicles,

cholesterol had been shown previously to exchange between lipid bilayers independent

from membrane fusion or transport proteins (Fugler et al. 1985). As mentioned in the

previous section, SLT depends on the concentration of the respective lipid in the donor

and acceptor membrane. Given the excess of cholesterol in the PM over the ER membrane,

SLT should be promoted from the PM to the ER. However, it is important to consider the

difference between absolute concentration and concentration of free lipid. SM is known

to reduce the amount of free cholesterol by complexing it (section 1.3.1). ER and PM

content of free cholesterol, relevant for SLT, could therefore be even similar (Baumann

et al. 2005). Thus, elevation of cholesterol level in the ER would lead to cholesterol flux

into the PM, if SLT was possible.

To test for this, sheets from RFP-Sec61β transfected cells were incubated with a chole-

sterol-MβCD complex for cholesterol loading of the membranes (see section 3.2.4.2) and

cholesterol was stained for 45 min using filipin. As depicted in figure 4.25, panel A, for the

control condition the characteristic spotty pattern of the ER contact sites was observed

in the RFP channel in contrast to the rather even filipin staining of the PM. Strikingly,
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Figure 4.25:Cholesterol loading of ER membranes. Epifluorescence images of PM sheets from
HepG2 cells expressing the ER marker RFP-Sec61β, incubated for 10 min at 37 ◦C with buffer (A)
or buffer containing 1.5 mm cholesterol-β-methyl-cyclodextrin complex (MβCD/CL) (Klein et al.
1995) (B). After the incubation cholesterol was stained with the autofluorescent filipin for 45 min
at RT. Upper panels, overview images of sheets; lower panel, magnified view of squares indicated in
the overview images. C ER membranes were identified based on the RFP signal and marked with
ROIs. The ROIs were transferred to the filipin channel, which occasionally required recentering
due to lateral shift between the two images. The spot intensity over background was calculated
in the filipin channel. Values are given as mean ± s.e.m. (n = 3 independent experiments). D
Spot intensity above background was plotted against the mean filipin staining intensity for the
MβCD/CL condition (normalized to the control) for each independent experiment. Figure and
legend modified from Merklinger et al. 2016.

in the MβCD condition the filipin staining was interspersed with spots corresponding to

the RFP signal of the ER marker protein. Intensity of spots above background in the

filipin channel, that overlapped with the Sec61β signal, increased clearly upon treatment

with cholesterol-MβCD (figure 4.25, panel C). This increase was independent from the

degree of PM cholesterol saturation as demonstrated from the comparison of spot intensity

above background and normalized cholesterol staining intensities in the single experiments

(figure 4.25, panel D). This is important, because high cholesterol loading of the PM could

diminish the capacity of the PM to complex cholesterol.

In summary, a cholesterol-MβCD complex can be used to load ER membranes at ER-

PM contact sites with cholesterol. Since the artificial cholesterol gradient is retained, there

is no evidence for SLT of cholesterol along the concentration gradient in this experimental

setup.
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In this study, structural and functional aspects of two supra-molecular structures were

investigated. Both structures, the syntaxin clusters and ER-PM MCS, rely on a sophisti-

cated network of interactions at the cytoplasmic periphery of the PM. The factors influ-

encing syntaxin clustering include the cholesterol content of the PM (Lang et al. 2001),

electrostatic interactions with phosphoinositides (section 1.3.2.1), hydrophobic mismatch

between TM domains (Milovanovic et al. 2015) and cytoplasmic protein-protein interac-

tions (Sieber et al. 2006, Sieber et al. 2007). Similarly, the ER-PM MCS structure relies

on protein-phosphoinositide interactions (section 1.3.2.1) and protein-protein assemblies

(section 1.3.2.2), that are susceptible to changes in their surrounding such as e.g. high

salt concentrations (section 4.2.1.2) or alteration of stoichiometry between the interacting

components (Derler et al. 2016).

Investigation of such structures requires minimally invasive methods. Therefore, fluo-

rescence microscopy in combination with the sheeting technique was chosen to examine

syntaxin cluster and ER-PM MCS. This approach enabled observation of both structures

with high signal-to-noise ratios (see for example figure 4.2 or figure 4.13). It further allowed

for the observation of protein (figure 4.11) and lipid dynamics (figure 4.22). Furthermore,

the physical dissection of the PM and its direct periphery by the sheeting technique made

it possible to co-isolate functional ER-PM MCS without the usage of bilayer disturbing

detergents thus preserving lipid contents of ER and PM (section 4.2.1.3). Importantly,

PM sheets were previously shown to maintain important PM features such as protein dy-

namics (Sieber et al. 2007). This was largely corroborated by comparative measurements

of syntaxin mobility in cells and PM sheets (section 4.1.3).

Despite some limitations such as the need for specific labeling or eliminating the dif-

ference between intra- and extracellular environments in the PM sheet preparation, the

methods used in this study allowed to assess important aspects of both structures, which

will be discussed in the following.
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5.1 Inner architecture of the supra-molecular syntaxin cluster at the
cytoplasmic periphery of the PM

Syntaxins segregate into clusters, protein-dense nano-domains that contain dozens of

molecules in a small patch of the membrane. The syntaxin cluster is not only a paradigm

to study protein clustering, but also represents a perfect example for the mutual de-

pendencies of hydrophobic and hydrophilic interactions (see section 1.3) that influence

supra-molecular structures at the cytoplasmic periphery of the PM. Within this scope,

the present work focused on the impact of cytoplasmic protein-protein interactions on the

architecture of syntaxin clusters.

5.1.1 Physical properties of syntaxin clusters

The assembly of proteins into clusters can principally be regarded as a type of higher

order protein structure. In contrast to defined protein complexes, however, clusters are

held together by short-lived transient interactions as revealed by the constant exchange

of clustered syntaxin molecules in the PM environment (Sieber et al. 2007 and section

4.1.3). This renders purification and subsequent structural analysis of clusters by e.g.

electron microscopy or crystallography to be inherently difficult. Nevertheless, to obtain

information on such structural level, the physical appearance in fluorescence microscopy,

size, shape and packing density are useful means for cluster characterization.

Determination of cluster size - a technical limitation in absolute size measurements

Dimensions of clusters were measured by super-resolution microscopy and revealed an

average size for full-length syntaxin clusters of about 70 - 80 nm (see section 4.1.1.1).

Prior studies reported a cluster size of 50 - 60 nm (Rickman et al. 2010, Sieber et al.

2007). This slight discrepancy can be explained by the general technical limitation in

obtaining absolute values on cluster size as will be outlined in the following.

Cluster size determination by high resolution microscopy can be divided into three tech-

nical steps: staining, image acquisition and analysis. The STED microscopy applied here

requires high staining intensities for proper image acquisition. For this reason, I chose a

standard labeling approach to stain the tagged proteins with a first and secondary anti-

body. One drawback of this method is that multivalent antibodies could potentially form

an "umbrella" around the cluster. Due to the large size of the antibodies (see figure 4.4),

the "umbrellas" are larger than the clusters themselves, thereby increasing actual cluster

sizes. To minimize or circumvent probe-induced enlargement the usage of nanobodies or
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cycloaddition of fluorophores to genetically encoded unnatural amino acids (Vreja et al.

2015) could be beneficial. However, this approach results in fewer fluorophores per epitope

and the resulting signal reduction may entail problems in image acquisition.

As mentioned in section 4.1.1.1, the absolute cluster size measured for myc-tagged syn-

taxin and syx-∆S decreased with higher deexcitation laser power (see figure 4.2). Resolu-

tion in the range of cluster sizes is a likely cause for this effect. On principle, the resolution

potential of the STED beam directly depends on the beam intensity (Klar et al. 2001).

On the other hand, the increased laser power was also accompanied by a general reduction

in signal intensity. This results in a higher signal offset and may conceal existing edge

regions of the cluster accounting for the observation of smaller clusters.

Another challenge is the analysis of the microscopy data. In this study, I employed

a widely used approach, which involves image segmentation, line scan analysis and sub-

sequent fitting with a Gaussian function to obtain the FWHM (see section 4.1.1). This

single object-based analysis is biased by the preferential inclusion of round clusters that are

clearly separated from other clusters. The method reaches its limits when clusters adopt

irregular elongated shapes or are in close proximity to each other as occasionally observed

in this study upon high overexpression of the constructs (section 4.1.1.1). Limitation to

round clusters could be evaded by the application of segmentation free methods that are

pixel-based (Hermann et al. 2014). However, such methods cannot obtain information on

the level of single clusters in contrast to the segmentation approach. Automated delin-

eation of cluster area by a combination of object-based segmentation and image restoration

(Paul et al. 2013, Rizk et al. 2014) may be useful to gather information on size independent

of shape on single cluster level.

Despite the described technical limitation, a robust tendency to bigger clusters in syx-∆S

could be observed when compared to the full length construct (see figure 4.2). Therefore,

even if absolute measurements depend on staining, analysis and the deexcitation energy,

relative differences between constructs are still detectable.

What defines and limits cluster size?

As outlined above, the deletion of cytoplasmic protein parts (syx-∆S) slightly increased

the cluster size, whereas cluster sizes did not depend on expression level (see figure 4.2).

This is in line with previous studies reporting on the limited sizes of protein clusters

(Sieber et al. 2006, Homsi et al. 2014). Interestingly, if syntaxin was anchored to the

PM via prenylation, instead of its natural TM domain, cluster size slightly increased with

expression level (see figure 4.3).
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This points to hydrophobic core interactions restraining cluster size. It could be ex-

plained by the non-linear increase of repulsive forces upon high local concentration of TM

domains. Embedding of proteins in membranes impinges on lipid behavior (see section

1.3.1) and can result in elastic membrane deformation. Accompanied high energetic costs

thus counteract cluster promoting forces (Weitz et al. 2013). Such effects should be par-

ticularly pronounced if the embedded protein parts exhibit low structural flexibility. For

syntaxin, a rigid helical structure beyond the SNARE motif into the hydrophobic core

of the membrane has been proposed (Stein et al. 2009). In fact, membrane deformation

upon crowding of the syntaxin TM domains has been observed in molecular dynamics

simulations (Bogaart et al. 2011). In contrast to the stiff TM domains, the lipidic prenyl

anchor might be less capable of transmitting bending force and therefore might allow for

higher order assemblies.

Alternatively, it could be argued that the lacking poly basic stretch (pbs) in the preny-

lated constructs abolishes size limitation. This is, however, less likely since the constructs

still contain clusters of positive amino acids in close proximity to the lipid headgroups.

These are capable to interact with negatively charged lipids at the PM such as PI(4,5)P2

(Heo et al. 2006) similarly to the pbs of syntaxin (Bogaart et al. 2011).

Attraction in conjunction with complete absence of repulsive forces would lead to the

formation of a single gigantic protein domain in the PM. Since this was not even observed

for the prenylated mutant of syntaxin even at high expression levels, it can be assumed that

further factors play a role in the separation into single clusters. Sterical hindrance of large

protein domains or accumulation of electrostatic charges could produce a repulsive force

increasing with the number of molecules per cluster. Future research could involve the

combination of prenyl-anchoring with step-wise deletion of cytoplasmic protein domains

to get further insight into the limitation of protein cluster size.

How is the shape of clusters influenced?

Another interesting observation was the occasional occurrence of elongated cluster struc-

tures. This phenomenon could be observed only for the constructs less attracted to the

clustered state, syx-∆S and syx-∆Cyt (see figure 4.2) and more often at higher concen-

trations of the respective proteins.

An explanation for this effect could be the destabilization of cluster boundaries. Elevated

distance between TM domains (see section 4.1.2.3) accompanied by the reduced attraction

into the clustered state (4.1.3) may decrease line tension of the cluster for syx-∆S and syx-

∆Cyt entailing the deformation. This hypothesis is based on theoretical calculations, in
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which shape alterations of phases were found to depend on a balance between line tension

and repulsive forces between the components (Seul et al. 1995).

Intriguingly, rising concentrations of the syntaxin constructs entailed coverage of large

and connected membrane areas spaced by protein free stripes. Similar patterns have

been observed previously when imaging general protein distribution in the PM (Lillemeier

et al. 2006, Saka et al. 2014). It is therefore tempting to speculate that upon stark

overexpression cluster fill up the PM restricted to the areas that are defined by a super-

ordinate organization pattern (Saka et al. 2014). The question remains whether these

enlarged areas still consist of separated single clusters at close proximities, or the clusters

merge to form large aggregates.

Addressing packing densities of supra-molecular structures in the PM

Despite its standing as the most detailed described protein cluster, little is known about

the actual packing of the syntaxin cluster. As to that, different scenarios were suggested:

i) the syntaxin molecules distribute evenly among the cluster area spaced by a distance of

a few nanometers (Sieber et al. 2007) or ii) TM and SNARE motifs are in direct contact

with the N-terminal Habc domains tilting outwards from the center of the cluster (Sieber

et al. 2007) or iii) there is a density gradient of syntaxin molecules towards the outer

cluster periphery (Bar-On et al. 2012).

Distinguishing between these different arrangements requires resolution in the range of

a few nanometers, which is technically not realizable as yet. However, even if it were

possible to accurately localize single molecules to 1 - 2 nm, all proteins would have to be

labeled with small probes that do not interfere with clustering.

An option for such a labeling is the application of non-conventional amino acids with

groups for cycloaddition of fluorescent dyes. While this labeling method interferes only

minimally with protein structure, it is highly unlikely that the efficiency of the cycloaddi-

tion reaction would reach 100% in the aqueous solution. The only method to obtain true

1:1 protein to fluorophore labeling is the usage of genetically encoded tags such as fluo-

rescent proteins, SNAP or CLIP tags. However, those might interfere with dense cluster

packing due to their large dimensions.

Due to these difficulties, I aimed for a different approach and developed a systematic

experimental assay to study packing density of clusters in native PMs by the application

of antibodies as packing sensors (see section 4.1.2.3). The results indicated an impact of

cytoplasmic protein-protein interactions on packing density (section 4.1.2). However, high

variability was observed between individual experiments (see figure 4.10) calling for the
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discussion about possible limitations and improvements of this approach.

The experimental approach used in this study involves a comparative quantification

of antibody labeling in the PM and the absolute amount of the protein of interest. As

described in section 4.1.2.3 the relation can be described according to equation 4.1.

Firstly, it has to be mentioned that the accessibility factor (faccess) could be formally

divided into two factors for first and secondary antibody, respectively. Those two factors

could in principle act antagonistic: sparse occupation with first antibody could facilitate

secondary antibody binding, while dense first antibody labeling on a cluster would impair

accessibility for secondary antibodies. Such an effect would obscure different packing

densities and could be circumvented by the usage of directly labeled first antibodies.

Secondly, the above mentioned equation is based on the assumption that the population

subset for determination of Imicr is identical to the population underlying Ntotal. However,

as occasionally observed for cells overexpressing GFP tagged syntaxin, there could be a

population of strongly overexpressing cells that are only loosely attached to the glass after

transfection. Those cells usually contain high amounts of overexpressed protein and could,

in theory, be washed off during antibody staining. In this case they would contribute to

Ntotal but not Imicr. Preliminary experiments suggest, however, that these high expressing

cells are present in both experimental parts, epifluorescence microscopy and western blot,

at similar proportions (personal communication with Sarah Holz and Thorsten Lang).

Thus, it is unlikely that these cells will substantially influence the experiment, although

it cannot be fully excluded.

Another challenge in this experimental approach is to precisely determine the subcel-

lular distribution (see fsort in equation 4.1) of syntaxin and its variants. In this study I

employed two different approaches, microscopical dissection by 3D-STED and pH quench-

ing of the GFP tag, the latter proved to be more reliable in view of the control proteins

(see section 4.1.2.3). However, the actual packing density experiment was conducted with

the myc tagged constructs and for a reference it has to be assumed that myc- and GFP

tagged proteins are sorted equally. In favor of this hypothesis, protein domains known

to determine sorting of tail-anchored proteins such as syntaxin (Bulbarelli et al. 2002,

X. Yang et al. 2006) are similar between the GFP and myc tagged constructs. Never-

theless, sorting was clearly affected by the expression level of the constructs (data not

shown). Therefore, slight changes in transfection efficiencies could have had a substantial

impact on the subcellular distributions and thus contribute to the large deviations in the

experiment (figure 4.10).
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In summary, two changes could further improve the reliability of the approach: Firstly,

the calculation could be simplified by circumventing fsort. To do so, staining of perme-

abilized cells for epifluorescence microscopy would directly include the intracellular signal,

rendering a correction unnecessary. In fact, preliminary data on such an experiment indeed

show less variation and confirm the results obtained in section 4.1.2.3 (personal communi-

cation with Sarah Holz and Thorsten Lang). Alternatively, a proximity based approach,

such as Foerster resonance energy transfer (FRET), could be helpful to obtain information

on packing density uncoupled from differential expression of the constructs.

5.1.2 Correlation between cluster packing density and attraction into the clustered

state

So far the discussion has focused on static physical properties of the clusters measured in

fixed samples. Tendencies to enlarged and less tightly packed clusters upon deletion of

cytoplasmic protein domains were observed. This begs the question as to whether those

characteristics correlate with dynamic properties of the proteins.

Cytoplasmic protein domains mediate attraction into the cluster

Evidence for enhanced clustering via the cytoplasmic protein domains is provided by the

different mobilities of the syntaxin variants (see figure 4.11 and figure 4.12). Diffusion

based analysis has been used widely as a measure for protein confinement in the PM

(Kusumi et al. 1993) linking diminished protein mobility to the clustering state of several

membrane proteins (Zilly et al. 2011, Schreiber et al. 2012) including syntaxin (Sieber et

al. 2007). The relationship between membrane diffusion and clustering could be explained

by a balance between the clustered and the free state of the proteins, where clustered

molecules are less mobile than the free population. Consequently, the larger the pool of

free molecules or the faster the molecules exchange from clustered into the free state, the

higher the mobility as it is determined by FRAP.

Based on these considerations, the full length syntaxin shows the highest clustered

fraction, while the two variants lacking cytoplasmic protein parts were less trapped in the

clustered state (see section 4.1.3). Note here, that syx-∆Cyt and syx-∆S behave very

similarly and the minor decrease in mobility of syx-∆S in comparison to syx-∆Cyt could

in principle be attributed to differences in physical size and/or shape of the proteins. This

small difference is surprising, since syx-∆Cyt lacks almost the entire cytoplasmic part of

syntaxin and therefore differs considerably from syx-∆S in terms of possible interaction

surface or steric hindrance. This finding is of conceptual importance, since it identifies the
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N-terminal part of the SNARE-motif of syntaxin as the major player in terms of mobility

restriction. This is in line with previous studies of Sieber et al. 2007 and the tendencies

observed for cluster density (see figure 4.10).

The experiments in the system used are interpreted in the light of homomeric interac-

tions of syntaxins. The putative interaction partner SNAP25 can be ruled out, because it

is not expressed in the cell type used (HepG2). Nevertheless, the results could be influ-

enced by other interactions of syntaxin. However, different motifs of syntaxin such as the

SNARE domain and the TM region are known to convey specificity for clustering (Sieber

et al. 2006, Milovanovic et al. 2015). This does not entirely exclude heterologous interac-

tions, but renders it less likely especially for the full length construct. On the other hand,

the slight tendency towards higher recovery half times at elevated syntaxin concentration

argues for homomeric interactions as the cause for decreased mobility (see figure 4.12).

Theoretic relation between attraction into the cluster and packing density

As laid out above, higher mobility in the PM (see section 4.1.3) correlates with a trend

towards enlarged intermolecular distance within the clusters (see section 4.1.2.3). A rela-

tion between attraction into the clustered state and cluster density has been addressed by

physical models on micro patterning of proteins in membranes. In this context, the bal-

ance between short-range attractive and long range repulsive forces were found to control

the number of proteins attracted to one cluster (Meilhac et al. 2011).

Of note, the number of proteins in these models is often referred to as "size" of the

cluster (Meilhac et al. 2011). This should not be confused with the size definition in this

thesis (see e.g. figure 4.2), which describes the physical dimension of the cluster.

According to the theoretical model of Meilhac et al. 2011 the reduction in attractive

forces, in this case via deleting the n-SNARE domain of syntaxin, would reduce the number

of molecules per cluster. Considering the slightly enlarged cluster area in those constructs

lacking the n-SNARE part (see section 4.1.1.1), intermolecular distances have to be in-

creased, further supporting the results obtained in section 4.1.2.3.

5.1.3 Putative mechanism of protein-protein interaction mediated cluster density

Although it proved difficult to obtain absolute figures, the antibody based approach in the

current study hints to elevated intermolecular distances within the clusters upon deletion

of cytoplasmic protein domains (see section 4.1.2.2 and 4.1.2.3). In principle, this could be

mediated by the loss of cluster specificity, mediated by the SNARE domain (Sieber et al.

2006). Thus, the deletion of these very parts could promote the formation of heteromeric
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clusters with other proteins (see above). Those proteins could act as spacers between the

syntaxins and thereby lead to elevated intermolecular distances.

A strong argument against this hypothesis is provided by the fact that increased inter-

molecular distances correlates with enhanced mobility in the PM (see section 4.1.3). Such

phenomenon points to the general reduction of intermolecular interaction within the clus-

ters. Therefore, it is more likely that the elevated distances are based rather on loosening

of the cluster than on the assembly into heteromeric clusters.

Clearly, the here conducted experiments cannot reveal a detailed molecular mechanism

for a dense packing mechanism. However, they allow for a few speculations on the question

as to how this finding could be explained on a molecular basis:

The most prominent structurally resolved complex with syntaxin is the four-helix SNARE

bundle that is important for the fusion of vesicles in neuronal exocytosis. In this com-

plex of SNAP25, synaptobrevin and syntaxin, the SNARE motifs form intertwined helices

in close contact, which are stabilized through several layers of interaction (Sutton et al.

1998). The N-terminal part of the SNARE motif was identified to initialize this contact

(Sørensen et al. 2006) and N to C terminal zippering of the helical SNARE motifs was

suggested to proceed beyond the SNARE motif into the PM (Stein et al. 2009).

Intriguingly, close physical contact of SNARE motifs is not restricted to the heteromeric

four-helical bundle, but can also occur between two SNARE domains of syntaxin (Misura

et al. 2001, in this study the SNARE motif is called "H3"). Such self-association to

tightly packed dimers as observed in Misura et al. 2001 highlights the feasibility of SNARE

interactions conveying homomeric assemblies of syntaxin. The dimers could constitute the

basic structural entity from which higher order oligomers are formed.

In respect of the current study, the N-terminus of the SNARE motif could initiate the

helical extension and therefore assure the tight packing within the cluster. Clearly, the

results obtained from in vitro studies of the four-helix bundle or the syntaxin SNARE

dimer are not entirely transferrable to the syntaxin cluster. The question remains why the

putatively similar interaction mechanism results in an assembly of maximal four helices

in vitro (Sutton et al. 1998) but clusters of roughly 75 molecules in the PM (Sieber et

al. 2007). Certainly, other clustering promoting forces have to be responsible for this

difference.
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5.1.4 Sketching an integrative view on syntaxin clustering factors

Syntaxin exhibits the propensity to cluster even without major cytoplasmic parts (see

syx-∆Cyt in figure 4.2). Stunningly, exactly those cytoplasmic protein domains are able

to cluster on their own without the TM domain and the polybasic stretch (see figure 4.3).

Therefore, clustering has to be mediated via different layers of interaction. This finding

is in line with previous studies reporting on the influence of several different factors for

syntaxin clustering residing in the hydrophobic core of the PM as well as in the cytoplasmic

periphery.

Certain interactions mediate qualitatively different clusters. An example is the SNARE

domain-mediated specificity for the attraction into either syntaxin 4 or syntaxin 1 clus-

ters (Sieber et al. 2006). In the same context, the here presented results point towards

the importance of specific protein-protein interactions for packing density of the protein

cluster.

Therefore, it could be speculated that there is a basic framework for clustering medi-

ated, for instance, by electrostatic interactions (Bogaart et al. 2011, Khuong et al. 2013),

hydrophobic mismatch (Milovanovic et al. 2015), the embedding in superimposed protein

networks (Saka et al. 2014) and confinement through cytoskeleton interactions (Lillemeier

et al. 2006, Kusumi et al. 2011).

Beyond this, there may be further mechanisms for the manifestation of specific clus-

ter characteristics such as composition or packing density. Protein-protein interactions

constitute perfect candidates for mediating such fine tuning, since they could be readily

regulated by e.g. binding of adaptor proteins or phosphorylation without the necessity to

amend overall membrane properties as, for instance, cholesterol or phosphoinositol con-

tent.

To assemble the pieces of this puzzle, further work has to be done. Experiments on this

matter should not only include outer cluster dimensions but should further concentrate

on the inner architecture of the cluster such as packing density. Of general interest could

be the implication of structure for clustering. From a more general perspective on the re-

lationship of secondary structure and homomeric protein assemblies, interactions between

helical protein domains allow for dense assembly with theoretically unlimited extensions

(J. A. Marsh et al. 2015). This correlation applies for soluble proteins and it would be

exciting to extend it to membrane embedded proteins. Future experiments could therefore

involve the insertion of helix breakers in the SNARE motif and the linker region with the

TM domain and subsequent testing of mobility or packing density.
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5.2 Functional aspects of a supra-molecular structure at the cytoplasmic
periphery of the PM - ER-PM MCS

Membrane contact sites between the PM and the ER are ubiquitously present in euka-

ryotic cells at high copy numbers (Helle et al. 2013). Despite their universal occurrence,

research on ER-PM MCS was neglected for decades due to technical difficulties limiting

the investigation of their composition and function. Recent technical innovations helped to

gain knowledge particularly with respect to the tethering architecture mediated by lipid-

protein and protein-protein interactions. However, there is still room for improvement.

The presence of putative lipid transfer proteins (LTP) that are able to bind to both

opposing membranes at MCS point towards an important involvement of MCS in vesicle

independent lipid transfer (Levine 2004, Prinz 2014). To address this issue, the present

study established a cell-free ER-PM MCS preparation, which enables the analysis of lipid

transfer allowing for differentiation between LTP-mediated and spontaneous lipid transfer

(SLT) at those sites.

5.2.1 Relevance of the ER-PM preparation

This study revealed that the sheeting technique can be applied to dissect ER-PM MCS

(section 4.2.1). Those sites were highly abundant on PM sheets of diverse cell lines (section

4.2.2), which is consistent with electron microscopy studies of ER-PM MCS (Pichler et al.

2001, Giordano et al. 2013).

Although the sheeting technique has been used for decades, remaining ER membranes

on PM sheets have not attracted attention before. One possible reason can be found

in the difficulty to visualize the ER fragments on PM sheets (Luis Spitta and Thorsten

Lang, personal communication). Presumably, when the bulk of the ER is removed, the

ER membranes partly reseal to prevent lipid perturbation at the edges. Detection of

luminal ER epitopes by antibodies could hence be restricted. Furthermore, the contact

sites of the ER are highly specialized micro-environments with a defined protein content

that likely differs from the rest of the peripheral ER (Shibata et al. 2010). This renders it

difficult to identify the MCS by immunostaining of general ER marker proteins. Thus, only

the overexpression of intrinsically fluorescent ER resident proteins, in case of this study

RFP-Sec61β and ER-RFP, or the staining of marker lipids by click-chemistry enabled the

detection of ER on the PM sheets (section 4.2.1.1).

In principle, it is conceivable that high mechanical forces of the sonication pulse produces

small fragments of the ER, which are pushed to the PM sheets. In this case, the preparation
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would consist of artificial ER remnants not related to physiological ER contact sites. There

are three major arguments, however, which contradict this hypothesis. First, the ER spot

pattern near the PM was also present in unsonicated cells (section 4.2.1.2). Second, the

stable attachment of ER to the PM was mediated by proteins (section 4.2.2.2). Finally,

the strongest evidence for functional ER-PM MCS is the translocation of the integral ER

membrane protein STIM1 into the ER spots on PM sheets upon ER calcium depletion

(section 4.2.2.1). Collectively, the data strongly argue in favor of the ER spots on the PM

sheets presenting actual MCS.

It should be noted, that at this point an increased distance between PM and ER in the

preparation compared to intact cells cannot be ruled out. However, the stability over long

times and the proteinaceous anchoring at the PM are in line with the finding that close

apposition of the two membranes is mainly mediated by tethering proteins (Manford et al.

2012) and thus do not support this notion. Quantitative and comparative analysis of EM

images in cells and on PM sheets could provide more information on this matter.

One major limitation of the established cell-free MCS dissection is the reduction in

cytoskeleton elements. While single elements, as e.g. actin stress fibers, partially remain

attached to the PM sheets, major anchoring points are lost during the preparation. The

tension necessary for remodeling and restructuration of the peripheral ER is lost. However,

this does presumably not change the micro-environment of the contact site itself, since

direct tethering of ER and PM is mediated by separate, specific protein-lipid interactions

(see section 1.3.2.1).

In summary, this study provides a detergent free technique for preparing bona fide ER-

PM MCS suitable for the investigation of lipid transfer at these sites. The removal of the

bulk of the ER as well as other intracellular structures enables fluorescence microscopy

with high signal-to-noise ratio. Consequently, nano-anatomical aspects of MCS diameter

and shape, for example by high resolution microscopy, can be investigated. Moreover,

the preparation could be used to perform protein composition analysis, e.g. by double

stainings, to identify MCS associated proteins.

5.2.2 Advantages and insights from the novel ER-PM MCS preparation

Before turning to the main issue of spontaneous lipid transfer, a few side issues should

be discussed to illustrate the potential of the preparation in further research on ER-PM

MCS.
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Definition and identification of ER-PM MCS

What is the exact definition of an ER-PM MCS? First and foremost, tethering via specific

proteins is a commonly accepted idea. There are several proteins identified that link the

two membranes together via lipid-protein or lipid-lipid interactions. However, a number of

proteins are yet to be identified. Second, the distance between ER and PM, measured by

EM, provides an option for MCS classification. Values ranging between 7 and 30 nm have

been proposed (Carrasco et al. 2011). However, obtaining accurate membrane distances

is difficult and largely depends on the methods used for the preparation of EM samples.

Moreover, extended peripheral ER sheets adjacent to the PM, which are distinct from

MCS, further complicate the analysis. Furthermore, the preparation and imaging of EM

samples is time consuming and expensive.

In contrast, the preparation used in this study offers a fast, simple and cheap identi-

fication method for ER-PM MCS that allows high throughput screening and statistical

analysis based on high numbers. According to the results presented in section 4.2, ER-PM

MCS could be defined as the parts of the peripheral ER, that (i) remain attached to the

PM after the application of a defined mechanical force for generation of PM sheets (section

4.2.1) and (ii) are tethered via proteins to the PM (section 4.2.2.2). This definition essen-

tially matches those proposed by others (Carrasco et al. 2011). Additionally, staining for

specific proteins could allow for fast discrimination of MCS subpopulations with different

compositions.

Structural aspects of SOCE at ER-PM MCS

One of the best established functions of ER-PM MCS is the store activated calcium release

(SOCE), which is the calcium depletion-induced opening of PM localized calcium channels.

The concomitant STIM1 relocation to the MCS was used in the current study to confirm

that the ER spots on PM sheets indeed are MCS (section 4.2.2.1). In this context, the

colocalization of STIM1 and PC spots was calculated, revealing a high overlap of 87%

upon activation with TG. PC spots nearly exclusively represent ER membranes (see figure

4.16), with the exception of a few vesicles (see figure 4.17), and the number of MCS did

not evidently increase after activation with TG (see figure 4.20). Thus, STIM1 appears

to be mainly recruited into preexisting contact sites, which are kept in place by other

tethering proteins.

This finding is in contrast to a study of Wu et al. 2006, who reported on a substantial

portion of new contact sites upon store depletion. The difference could be explained by the

different parameters used for the identification of the MCS: while Wu et al. 2006 measured
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the distance between ER and the PM by electron microscopy, this present study identified

MCS by the fluorescence signal of ER markers after generation of PM sheets. Interestingly,

TG treatment entailed the enlargement of the ER spots on the sheets without influencing

the number of spots (see figure 4.20). This matches the study of Orci et al. 2009 reporting

on the formation of cisternal ER stacks near the PM upon calcium depletion from the ER.

In any case, the present study corroborates the idea that in a resting cell state ER-PM

MCS are mediated by basic tethering proteins into which STIM1 is recruited upon calcium

depletion from the ER. Hence, it could be hypothesized that the extensive remodeling pro-

posed for the process of SOCE (Shen et al. 2011) mainly affects the morphology of the

MCS, but not its initial formation. Therefore, the system used in this study conceivably

reflects changes in the structure of the cortical ER with the advantage of simple identi-

fication of proteinaceous ER anchoring to the PM. The preparation can thus be used as

a tool to investigate structural remodeling of the ER in the cytoplasmic periphery of the

PM, for instance during SOCE.

Bidirectional tethering of the ER to the PM

The dissected ER contacts remained stable on the PM sheets even after long incubation

times up to three hours (see for example figure 4.17). Two factors were found to destabilize

them: exposure to high (50 mm) CaCl2 (section 4.2.1.2) and protein digestion with trypsin

(section 4.2.2.2).

A possible explanation for calcium sensitivity lies in the known features of tethering

proteins at MCS: As introduced in section 1.3.2.1 all of the so far identified tethering pro-

teins depend on interaction with negatively charged proteins at the PM such as PI(4,5)P2

(Henne et al. 2015). Calcium is known to interact with these lipids (Carvalho et al. 2008)

and to inhibit their recognition by specific protein domains (Bilkova et al. 2017). The

interference of high calcium concentrations with tethering of ER-PM MCS is therefore

not surprising. Further studies on this issue could involve calcium concentration series to

refine the picture of calcium dependent tethering and to dissect the interaction in greater

molecular detail.

Protein digestion by trypsin readily mobilized the ER-PM MCS on PM sheets and they

started moving laterally on the sheet (section 4.2.2.2). Only after long trypsin incubations

of 45 min ER spots completely detached from the PM sheets. This finding is unexpected

and suggests that there are two types of ER-PM anchoring: a focal attachment that

determines the direct binding and a second type that causes lateral stability and is more

susceptible to trypsin. Possible underlying candidates for the later type are elements of
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the cytoskeleton, that are known to restrain protein diffusion within membranes (Lenne

et al. 2006). Still, at this point we can only speculate about the nature of the lateral

tether. Analyzing colocalization of the ER spots and cytoskeleton markers or testing the

susceptibility of the contact sites to cytoskeletal drugs could help to develop a more refined

picture.

There are two possible scenarios that would allow for uncaged movement along the

membrane plane upon trypsin treatment. Firstly, it could be mediated by a lipid induced

haptotactic motion due to charge differences between the cytoplasmic leaflets of PM and

ER. This "surfing" of lipid vesicles was shown in a protein free environment on a supported

bilayer (Solon et al. 2006). The study revealed an exchange of lipids at the contact zone

between GUV and planar lipid bilayer, which is in contrast to our finding of a rather

stable PC spot intensity (section 4.2.2.2), rendering this mechanism unlikely. Secondly,

lateral movement could be possible via a protein anchor inserted into the PM. This is the

more likely scenario, since the final detachment of the PC spots was shown to depend on

protease activity.

To sum up, the dissection method for the production of ER-PM MCS developed in this

study offers a fast, cheap and simple approach to investigate diverse questions related to

structure and function of these supra-molecular assemblies.

5.2.3 Revisiting spontaneous lipid transfer at MCS

The major site of lipid biosynthesis is the ER. In order to supply other cellular membranes

with lipids there have to be efficient lipid export mechanisms such as vesicular transfer or

LTPs. The simplest way, however, for lipids to switch from one membrane to another is

spontaneous transfer, during which a lipid desorbs from the donor bilayer and transfers

through the aqueous surroundings followed by subsequent adsorption into the acceptor

bilayer, independent of carrier proteins. So far, SLT is considered a possible mechanism

of cellular lipid transport (Lev 2010, Lev 2012, Stiban et al. 2008, Somerharju 2015).

However, with some exceptions (Stiban et al. 2008, Kunze et al. 2009), the vast majority

of experimental evidence for SLT is derived from in vitro studies on artificial or partly

artificial membrane systems, mostly deprived of proteins (Jones et al. 1989, Longmuir et

al. 1989). Transfer half times of hours to days in these systems lead to the assumption that

SLT is physiologically irrelevant for cellular lipid transfer (Holthuis et al. 2014). However,

in vitro studies revealed that SLT is influenced by the donor-acceptor membrane distance
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(Jones et al. 1990), membrane curvature (Steck et al. 1988) and membrane composition

(Wimley et al. 1991) with the desorption of the lipid from the donor membrane being

the rate limiting step (McLean et al. 1981). This raises the question whether the long

transfer half times obtained in some artificial lipid systems are relevant for biological

micro-environments in which two opposed membranes are tightly attached to each other

such as MCS.

The first point to consider here is the distance between donor and acceptor membranes.

The closer the two membranes, the less the hydrophobic lipid surface is exposed to the

hydrophilic surrounding during the inter-membrane transfer step. Indeed, reducing the

distance between donor and acceptor membrane by occasional collision was shown to

accelerate PC transfer between liposomes (Jones et al. 1989) as well as phosphatidic acid

transfer between liposomes and cells (Longmuir et al. 1989). In experiments on PC transfer

the exchange half time was reduced by half if the vesicle concentration was 10 - fold

increased (Jones et al. 1989).

What is the situation at ER-PM MCS? On the one hand, the high occupancy of proteins

on the membrane periphery could prevent direct contact between the two opposed lipid

bilayers. Most of the up to now identified ER-PM tethers are large proteins (Henne et al.

2015) arguing against direct contact between the membranes. On the other hand, EM

images of the contacts seem to suggest the exact opposite (Orci et al. 2009, Fernández-

Busnadiego et al. 2015 and figure 1.1). The average distance at ER-PMMCS was proposed

to range between 7 and 30 nm (Carrasco et al. 2011), although exact measurement seem

to largely depend on the fixation or embedding method used for electron microscopy.

Therefore, in comparison to the in vitro data, it is still unclear whether the distance

between ER and PM at MCS may promote or rather diminish SLT.

Membrane curvature additionally influences SLT. Spontaneous cholesterol transfer, for

example, was shown to strongly depend on the curvature of the acceptor structure (Steck

et al. 1988) or inversely of the donor vesicle (Thomas et al. 1988). The high curvature may

disturb lipid packing thereby facilitating the rate limiting desorption step. Considering

the fact that some of the tethering proteins at ER-PM MCS insert with hairpin structures

into the ER (Giordano et al. 2013) an elevated curvature of the ER membrane is pro-

bable. Indeed, a recent cryo-electron tomography study on ER-PM MCS in COS-7 cells

(Fernández-Busnadiego et al. 2015) as well as a conventional EM study in HeLa cells (Orci

et al. 2009) occasionally observed such curved ER membranes at the predicted contact

sites. As a result, the desorption step for lipid transfer from the ER to the PM could be
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facilitated.

Another very influential difference between the artificial lipid systems previously used

to study SLT and native MCS are the protein domains within the hydrophobic core of

the native membranes (section 1.3.1). Again, two opposing scenarios are possible in this

context: Either protein-lipid interactions stabilize the bilayers and thus prohibit SLT,

or TM proteins perturb lipid bilayer structure and enhance SLT. Along these lines, the

insertion of specific TM peptides has been reported to induce otherwise restricted lipid

trans-bilayer movement in vesicles (Kol et al. 2003).

In summary, the ER-PM MCS, as well as other MCS, could on the one hand offer a

perfect micro-environment for SLT providing greatly enhanced transfer kinetics of lipids

compared to the in vitro studies. On the other hand, the possibility exists that SLT

is blocked for instance through protein shielding of donor and acceptor membrane. The

question of SLT at MCS is therefore highly relevant for the understanding of cell biological

processes and thus merits further investigation. In this context, PM sheets provide an

accessible native experimental system.

5.2.4 No evidence for SLT of PC and cholesterol

To address the question of SLT at ER-PM MCS, the preparation was used to investigate

whether PC or cholesterol would transfer spontaneously. In short, for neither of the two

lipids evidence for spontaneous trans-bilayer movement at the isolated ER-PM MCS was

observed.

Spontaneous transfer of PC

When pPC was labeled on PM sheets, the fluorescence intensity of the ER spots reflected

the expected natural concentration gradient of PC between the ER and PM (section

4.2.1.3). This concentration gradient did not dissipate when freshly prepared sheets were

incubated for up to 2 h (section 4.2.3.1) in line with the absence of SLT. Conversely,

the gradient even increased upon incubation. A possible explanation for this observation

could be the pPC transport against the concentration gradient. However, a more detailed

analysis revealed that this effect was primarily caused by a decrease in PM fluorescence,

which may be explained by PM resident phospholipases cleaving the propargyl head group

of pPC to which the label is attached. It cannot be excluded that phospholipase cleavage

proceeds faster than the SLT and therefore the gradient rather increases although PC

moves from the ER to the PM. In this scenario however, ER spots should also decrease in

fluorescence, which was not the case.
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Additional evidence for a lack of SLT stems from an experiment directly observing the

fluorescently labeled BP-PC on PM sheets. FLAP revealed a lateral movement of lipids

within the PM but no lipid flux along the PC gradient from the ER into the PM (section

4.2.3.1). This finding corroborates the above mentioned incubation experiment.

A related experiment was conducted in another study (Spitta 2012): The presumed

objects of research in this former study were PC platforms, which were later on identified

to represent ER-PM MCS (section 4.2.1.2). The author used the same metabolic labeling

for PC as in the here presented work. When single PC spots (ER-PM MCS) on PM sheets

were bleached, their fluorescence recovered within a few seconds. The majority of spots

recovered up to 30% of their original fluorescence and occasionally spots even reached full

recovery. The author hypothesized to observe a lipid exchange between the PM and the

PC platforms (ER-PM MCS). In contrast, recovery of the spots in the bleached area has

not been observed in this study (see figure 4.24). Further, it was not possible to reproduce

the findings of Spitta 2012 in a similarly conducted FRAP experiment (data not shown).

This discrepancy could be attributed to the following technical differences.

Firstly, a 10-fold higher azido-sBP concentration was used for cycloaddition to pPC in

the Spitta study. The concomitant higher labeling density may have lead to quenching

before and de-quenching after bleaching which could have been falsely interpreted as fluo-

rescence recovery. Additionally, the study of Spitta 2012 presumed the PC enrichments

to be integral parts of the PM and accordingly, the experiment was designed for a 2D

structure. Thus, some of the spots could largely extent into the periphery of the PM.

This reservoir would be bleached less efficiently and may thus cause some recovery. Fur-

thermore, the study of Spitta 2012 included around 70 spots in total, while the FLAP

approach enabled to obtain results from 80 - 180 spots for each of the three independent

experiments. Finally, it is important to consider another difference between the FRAP and

the FLAP approach: While FRAP is designed to detect lipid transfer from the PM back to

the ER, FLAP addresses the opposite transfer direction. Since SLT is expected to proceed

along the concentration gradient, FLAP is the more suitable approach for studying SLT

of PC.

When studying SLT it is also important to take temporal aspects into account. Formally,

it could be possible that SLT already takes place within the first few minutes after sheeting.

This would result in a readily equilibrated system from the beginning and exclude the study

of gradient neutralization. Although this hypothesis cannot be fully excluded, a strong

argument against it is provided by the experiment in section 4.2.3.1. Using the carrier
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HPαCD, lipid transfer from the ER is driven by the concentration gradient to the PM.

This positive control also shows that the sensitivity of the system is high enough to detect

fluorescence changes based on lipid transfer. From a methodological point of view using

HPαCD as a carrier might not be the optimal solution, since cyclodextrins are only partly

specific for the lipid type they take up (Zidovetzki et al. 2007). A more specific and less

invasive method could be the application of a PC specific lipid transfer protein such as

PC-TP (Wirtz et al. 1972). However, specificity was not crucial in this study and the

ability to process a desorption-adsorption cycle of pPC (see figure 4.22) identified HPαCD

as a suitable tool for the purpose of a positive control for lipid transfer between ER and

PM membranes.

Another important technical aspect to consider is the labeling of lipids. Most of the

organic dyes available for lipid labeling are only slightly smaller or even larger than the

lipids themselves. Therefore, lipid labeling with fluorophores always raises concerns about

their influence on lipid behavior (Sezgin et al. 2011). In the FLAP experiment a sBP was

linked to the propargyl head group of pPC before investigating SLT. Although the sBP

molecule is bulky in comparison to the PC backbone, it is unlikely to account for the lack

of lipid flux for the following reasons. Firstly, addition of the sBP increases the overall

hydrophilicity and thus the solubility of PC in the aqueous solvent (Maier et al. 2002). An

increased solubility, however, should facilitate rather than reduce SLT (see above, section

5.2.3) Secondly, the headgroup of phospholipids was shown to have less impact on SLT

than the hydrophobic fatty acid parts (Massey et al. 1982). By applying metabolic labeling

at the choline head group the natural fatty acid composition remains unaffected (Jao et

al. 2009). Instead of introducing a single lipid species, the major advantage of metabolic

labeling is the inclusion of all PC species that are naturally present in cellular membranes.

For these reasons, it is rather unlikely that the fluorescent headgroup prevents SLT of

sBP-PC.

While the absence of SLT was observed for pPC or sBP-PC, it cannot be excluded,

that other glycerophospholipids (GPLs) are able to move between the bilayers. In princi-

ple, there could be a hydrophobicity threshold that determines an energy barrier for lipid

desorption from the bilayer. In vitro experiments on vesicles showed a highly accelerated

transfer of lyso-GPLs in comparison to GPL with two fatty acids (McLean et al. 1984).

Additionally, the degree of saturation could induce local lipid perturbation, thus facili-

tating desorption of the lipid. As mentioned above the usage of metabolic head group

labeling provides the great advantage of considering all natural PC species with respect
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to their fatty acid distribution (Jao et al. 2009). Still, for a more comprehensive study

on the effect of hydrophobicity on SLT at contact sites, one possibility is to incorporate

GPLs of different fatty acid length and saturation into the PM and compare their ability

to transfer into the ER membranes.

Spontaneous cholesterol transfer

Cholesterol is capable to transfer spontaneously between artificial membrane vesicles

(Jones et al. 1990, McLean et al. 1981) and the transfer is accelerated if vesicles ex-

hibit high bilayer curvature (Thomas et al. 1988). Therefore, cholesterol seemed to be

an interesting lipid to probe for SLT in the ER-PM MCS preparation. When filipin was

used to stain cholesterol, the ER membranes were not detectable on the background of

the bright PM staining (section 4.2.3.2), which reflects the different cholesterol contents

of the two membranes (Meer et al. 2011).

The formation of complexes with SM was previously suggested to lower the effective

cholesterol concentration in the PM (Baumann et al. 2005) and can be considered as

a thermodynamic trap. Thus, the expected direction of spontaneous cholesterol flux in

cells is from the site of synthesis, the ER, to the PM. However, when ER membranes

were loaded in the cell-free system with detectable amounts of cholesterol, this artificially

established concentration gradient persisted. This was even the case when the overall

cholesterol concentration was depleted ruling out an artifact of overloading. This finding

further supports the idea that there is no spontaneous lipid movement at ER-PM MCS in

this experimental system.

A MβCD-cholesterol complex was used for cholesterol loading of the ER membranes.

It might be argued that the lack of cholesterol transfer is caused by a change in the over-

all lipid composition through the lipid carrier cyclodextrin. Particularly the exchange of

sphingomyelin could strongly effect the outcome of the experiment for the above mentioned

reason. However, the heptameric β-cyclodextrins are known to have a higher specificty

for cholesterol than for other lipids (Zidovetzki et al. 2007). In experiments on monolay-

ers using a similar concentration of 1.4 mm MβCD, for example, only 5% sphingomyelin

relative to cholesterol was extracted (Ohvo et al. 1996). Therefore, the MβCD-cholesterol

complex can be considered as a suitable tool for the purpose of this study.

It is important to keep in mind that filipin is not able to detect low cholesterol levels such

as the natural cholesterol content of a few percentage of total ER lipids (Radhakrishnan

et al. 2008)(see figure 4.25). This is of minor importance for the study presented here,

because the mere ability to load ER spots with cholesterol already argues against SLT.
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Still, for a more precise approach of cholesterol transfer, in particular when assessing LTP

mediated transfer, a more sensitive method for cholesterol detection is desirable. One

possibility may be the usage of alkyne cholesterol for visualization by cycloaddition of

reporter azides (Hofmann et al. 2014).

The data presented in this study are in contrast to a recent work on cholesterol move-

ment in Niemann-Pick disease (NPC) 1 and NPC 2 fibroblasts. The authors reported a

rapid exchange between the entire intracellular cholesterol pool and the PM, even if cells

were fixed with glutaraldehyde, which should prevent protein and vesicle mediated trans-

fer (Lange et al. 2012). A possible explanation for the high inter-membrane mobility of

cholesterol in Lange et al. 2012 is the special lipid composition of the NPC1/2 cell mem-

branes. These cells are known to accumulate high amounts of cholesterol and glycolipids

in their lysosomes and late endosomes (Bi et al. 2010). Moreover, the lipid transfer in

Lange et al. 2012 extends to the entire cell and does not differentiate between compart-

ments involved in the transport, while our study enables the precise investigation of lipid

transfer between ER and PM. Interestingly, fixation enhanced the mobility of cholesterol

in NPC1/2 cells (Lange et al. 2012). Although the authors show that the cells are not

permeable for cell viability dyes, it is formally possible that fixation changes membrane

properties such as tension or lipid order. This could further enhance the spontaneous

transfer of lipids through destabilization of membrane structure. Although I cannot ex-

clude that under certain circumstances, as for example the absence of functional NPC1

and NCP2 proteins, cholesterol exhibits high solubility, there is no evidence for a SLT at

normal cellular cholesterol levels at ER-PM MCS. In order to clarify the role of specific

proteins, further research could be undertaken on PM sheets of NPC1/2 cells to investigate

spontaneous cholesterol transfer.

5.2.5 Possible role for lipid transfer proteins

Several reports in the past decade suggested lipid transfer protein (LTP) mediated lipid

transport at MCS. Thus, the question arises why I observed no lipid transfer, independent

of SLT (section 4.2.3).

The answer to this question requires a more detailed response: Possible candidates for

LTPs at ER-PM MCS are the oxy-sterol-binding related proteins (ORPs) for cholesterol

and the extended synaptotagmins (E-Syt) for glycerophospholipids. Both protein classes

are located at MCS and are able to simultaneously bind to the ER and the PM (Schulz et

al. 2009, Giordano et al. 2013). For the yeast ORP homolog Osh4 the simultaneous binding

131



5 Discussion

of phosphoinosotides and sterols within a hydrophobic pocket of the protein stimulated

the idea of PI dependent sterol transfer from the ER to the PM (Saint-Jean et al. 2011).

Still, the exact role of ORPs in sterol transport is under debate and alternative functions

such as e.g. sensing of cholesterol levels and regulation of lipid pathways are discussed

(Beh et al. 2012). As to the E-Syts, two recent studies report on the ability to transport

glycerophospholipids in vitro (Yu et al. 2016, Saheki et al. 2016). Both studies highlight

the calcium dependence of the transport. However, the exact molecular mechanism and

regulation of E-Syt mediated lipid transfer at ER-PM MCS has been not fully elucidated

yet.

The lack of lipid transfer in our experimental system therefore supports the idea that

LTPs are highly regulated, presumably by cytosolic factors, which are missing in the

preparation. It further corroborates the concept that LTPs are only activated in specific

situations such as the accumulation of DAG upon activation of PLC (Saheki et al. 2016).

Further work is necessary to unravel the role of LTPs in lipid transfer at MCS. The

experimental system presented in our study can be used to study such mechanisms, since

it provides direct access to the site of action and allows for sensitive microscopic analysis

in the absence of SLT and vesicular trafficking.

5.3 Reduced dimensionality in supra-molecular structures

The supra-molecular structures addressed in this study are examples for higher order as-

semblies of molecules that physically separate particular environments (see section 1.3.2).

At the same time their components are in constant exchange with the surroundings. Such

structures are not restricted to the PM environment but are ubiquitously present in cells

(Hartwell et al. 1999). In principal, these supra-molecular assemblies can influence biolo-

gical processes in two ways: either they create reaction centers to accelerate and promote

processes or conversely they shield molecules from participating in particular reactions

(Adam et al. 1968, M. A. McCloskey et al. 1986). An example for the latter are complexes

of histones and DNA, in which the DNA is densely packed restricting for example access

of the transcription machinery. Reaction promoting structures are, for instance, ribo-

somes, composed of large assemblies of proteins, DNA and RNA working synergistically

for protein synthesis.

How can the two supra-molecular subjects of the present thesis be classified in this

context?

For the syntaxin clusters two different scenarios are conceivable: One the one hand,
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syntaxin clusters could represent reaction centers for vesicle docking and fusion (Lang

et al. 2001). This hypothesis is corroborated by the finding that PI(4,5)P2, which is

necessary for neuronal exocytosis (Milosevic et al. 2005), accumulates at syntaxin clusters

thereby priming exocytic sites (Aoyagi et al. 2005). Arguing with the timing of overlap

between syntaxin cluster formation and vesicle docking, Barg et al. 2010 report on the

formation of syntaxin accumulation after the docking of vesicles. This is in line with the

observation from super-resolution imaging that vesicles rather dock at PM areas of low

SNARE abundance (L. Yang et al. 2012).

One the other hand the clusters could, similar to the histone example above, with-

hold syntaxin molecules. Such "storage" would shield the proteins and thereby prevent

unwanted interactions of otherwise highly reactive SNARE motifs. This hypothesis is sup-

ported by previous reports on reduced SNARE reactivity within syntaxin clusters (Bar-On

et al. 2009). Another argument for the shielding function of the cluster micro-environment

can be extracted from the here addressed cluster density: at intermolecular distances bet-

ween syntaxin molecules of maximally about 6 - 7 nm (Sieber et al. 2007) accessibility for

interaction partners could be strongly reduced as shown in the present work for antibody

binding (see section 4.1.2). In principle, the shielding of syntaxin molecules within the

cluster could not only be a protective mechanism, but might be important to maintain

adequate amounts of reactive syntaxin in a reservoir to enable fast release when necessary

(Bar-On et al. 2009).

The ER-PM MCS seem to take over a two-sided function regarding their involvement

in lipid transfer: On the one hand they probably restrict the ability of lipids to transfer

between the two membranes spontaneously, as suggested in the present work. One reason

could be that the energetic costs for desorption of the lipids are too high despite high

curvature or close apposition of the membranes. A major factor in this context could be

high protein density in the inter-membrane cleft between ER and PM. Generally speaking,

prevention of SLT at ER-PM MCS might be essential for cellular functions. As described

in section 1.3 membrane peripheries are built up by sensitive lipid-lipid and protein-lipid

interactions that mutually depend on each other. The membrane lipid composition plays a

central role and needs to be tightly regulated. In case of SLT, it would be difficult for cells

to preserve lipid asymmetry against concentration gradients. Prevention of lipids leakage

at MCS could help to preserve lipid homeostasis and allow for more precise regulation of

lipid composition.

However, the putative lack of SLT does not establish ER-PM MCS as lipid transfer
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prohibiting environments per se. Quite the contrary, it could stress the importance of

regulated protein-mediated lipid transfer at those sites, which has been of high interest

recently (Saheki et al. 2016, Yu et al. 2016). For the formation of a lipid transfer promoting

micro-environment additional factors could be necessary, such as adaptor proteins, the

protein-regulated intermembrane spacing or curvature. Therefore, the MCS could act as a

regulatory gate that only allows specific lipids at a certain time to pass from one membrane

to another.

In conclusion, reduced dimensionality within the supra-molecular structures at the cyto-

plasmic periphery does not necessarily result in mere promotion or restriction of reactions

but rather allows for refined regulation of particular biological processes. The methods

developed in this work conserve the fragile supra-molecular assemblies within the native

membrane surroundings. Therefore, they may serve as a starting point for further analysis

of the enigmatic biological role of these structures and their molecular architecture.
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