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Abstract

As the hydrogen and helium created shortly after the Big Bang is gradually processed into heavier
elements by successive generations of stars, the overall metal content of the Universe increases. Metal-
poor stars which, owing to their low mass, evolve slowly and have ages comparable to the age of the
Universe are thus relics of the earliest stellar generations, and recent decades have seen dedicated efforts
to discover these stars in ever greater numbers. An unexpected outcome of these efforts is the discovery
that a large fraction of these stars are rich in carbon compared to the Sun.

These carbon-enhanced metal-poor (CEMP) stars are a chemically diverse population, and this work
concerns the evolution of CEMP stars rich in elements produced by slow neutron capture nucleosynthesis
(CEMP-s stars), which are believed to have originated from accreting chemically enriched material from
a binary companion in a thermally pulsing asymptotic giant branch (AGB) stage. As such, CEMP-s stars
are commonly used to test models of metal-poor AGB stars, an important contributor to the chemical
evolution of the Universe.

The evolution of CEMP-s stars is modelled from the zero-age main sequence through the accretion
phase and up to the end of the red giant branch with an updated version of the stars stellar evolution
code. Particular attention is paid to the evolution of the surface chemical composition of CEMP-s stars,
which is shown to be modified following mass transfer as a result of the competition between various
mixing processes taking place within these stars. The mixing processes considered here in detail are
thermohaline convection, atomic diffusion, and rotational mixing. Thermohaline convection dilutes the
transferred material by rapidly (compared to the main sequence lifetime) mixing it with the material
originally present in the star. As a result, the accreted material is diluted by a factor from two to more
than ten depending mostly on how much mass is accreted. Atomic diffusion, and radiative forces in
particular, accelerate different chemical elements discriminately and tend to make the surface layers of
CEMP-s stars poor in carbon but rich in other metals like iron. This is at odds with observations and
suggests that some other process is actively counteracting atomic diffusion. It is then demonstrated that
this other process could be the turbulent mixing arising in rotating CEMP-s stars. At surface rotation
velocities consistent with those observed, atomic diffusion is found to have little effect on the chemical
composition of the surface of CEMP-s stars as a result.

It is also found that the amount of mass that can be accreted by the progenitors of CEMP-s and
related stars may be limited by the angular momentum content of the transferred material. In particular,
explaining the most chemically enriched stars, which have likely accreted the most mass, may require that
the material loses most of its angular momentum during the accretion. The rotation velocities observed in
CEMP-s stars are also suggestive of angular momentum loss, either during the accretion or the evolution
following mass transfer.
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CHAPTER 1

Introduction

Carbon-enhanced metal-poor stars are some of the oldest stars in the local Universe. The carbon-
enhanced metal-poor stars rich in chemical elements produced by slow neutron capture nucleosynthesis
are believed to originate from mass transfer in stellar binary systems. These are the stars whose evolution
this thesis is concerned with. Because of their age and origin, these stars allow us to probe a wide range
of astrophysical topics. Among them are the evolution of low-mass stars, the chemical evolution of
our Galaxy, the evolution and interaction of binary stars, neutron capture nucleosynthesis of the first
asymptotic giant branch stars, and physical mechanisms leading to chemical mixing in stars.

1.1 Evolution of low-mass stars

Stars are massive balls of gas held together by gravity that sustain themselves by nuclear fusion reactions.
Stars form when giant molecular gas clouds, consisting mostly of hydrogen and helium, become unstable
and undergo gravitational collapse. Many different fragments of these giant gas clouds locally contract
until the temperature and density in the cores of these fragments rises sufficiently to ignite nuclear fusion
of hydrogen. At that moment a star is born, and many (hundreds of) thousands of stars can form out of a
single molecular cloud.

The fusion of hydrogen liberates energy and establishes an equilibrium between the gravitational force,
which tends to compress the star, and pressure gradient forces, which tend to expand it. The subsequent
evolution of a star is a constant struggle to maintain this equilibrium. The outcome of this struggle
depends crucially on the mass of the star. Single stars more massive than about eight solar masses end
their lives as core collapse supernovae and are typically referred to as massive stars. This thesis instead
concerns the evolution of stars of lower mass, which are much more numerous and longer-lived, and
we begin by reviewing the basic stages of their evolution. The following applies, with some caveats, to
single stars with masses between about a half and eight solar masses (at solar-like chemical composition).

1.1.1 From the zero-age main sequence to the asymptotic giant branch

When the central temperature and density of the contracting object reach values sufficient for hydrogen
fusion, the star is said to have reached the zero-age main sequence (ZAMS). Thus begins the longest
phase of the evolution (lasting about 90% of the total lifetime) known as the main sequence, during which
the surface temperature and the brightness of the star change relatively little. Hence, in a diagram of
luminosity versus effective temperature (the Hertzsprung-Russell diagram; Fig. 1.1) most stars lie along
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Figure 1.1: The Hertzsprung-Russell diagram of about 17000 stars observed by the Hipparcos satellite (ESA, 1997).
The diagonal strip running from the bottom right (less massive stars) to the top left (more massive stars) is the
main sequence. The stars to the upper right of the main sequence are red giants. The over-density of stars close to
log L/L� = 2 and Teff = 5000 K is the horizontal branch. The position of the Sun is marked by the yellow star.

this (main) sequence. On the main sequence the star is supported by the energy released from converting
its hydrogen into helium. There are two main channels by which this conversion happens.

In the lowest mass stars (M . 1.5 M�) the helium production occurs mainly via the proton-proton (pp)
chains. These are series of reactions initiated by the fusion of two protons (1H):

1H + 1H → 2H + e+ + νe
2H + 1H → 3He + γ

3He + 3He → 4He + 1H + 1H. (1.1)

In this ppI chain the first two steps have to occur twice to produce one 4He nucleus out of four protons.
Alternatively, the 3He nucleus can also fuse with a 4He nucleus to yield 7Be:

3He + 4He → 7Be + γ, (1.2)

which opens up two alternative branches along which the burning can proceed. These are the ppII:

7Be + e− → 7Li + νe
7Li + 1H → 4He + 4He, (1.3)

2



1.1 Evolution of low-mass stars

and the ppIII chains:

7Be + 1H → 8B + γ
8B → 8Be + e+ + νe

8Be → 4He + 4He. (1.4)

The energies released in the different chains range from 19.6 MeV (ppIII) to 26.5 MeV (ppI) per helium
nucleus as a result of the different fractions of energy carried away by neutrinos. As the mass of the star
(and thus its central temperature) is increased, the contribution of the ppI chain declines and that of the
ppIII chain increases.

In stars more massive than about 1.5 M� the central temperatures reach high enough values (T &
20 MK) that another channel takes over the helium production. This is the CNO cycle, which can also
have branchings. The CNO-I (or CN) cycle is made up by this chain of reactions:

12C + 1H → 13N + γ
13N → 13C + e+ + νe

13C + 1H → 14N + γ
14N + 1H → 15O + γ

15O → 15N + e+ + νe
15N + 1H → 12C + 4He. (1.5)

Once every thousand reactions or so the last reaction can instead produce 16O, which starts starts the
CNO-II (or ON) cycle:

15N + 1H → 16O + γ
16O + 1H → 17F + γ

17F → 17O + e+ + νe
17O + 1H → 14N + 4He. (1.6)

Some CNO processing will also occur in lower mass stars in which the main energy source is one of
the pp chains. In fact, the conversion of 12C into 14N occurs at lower temperatures than the fusion of
two protons. The slowest of the reactions is 14N(1H, γ)15O. This means that in an equilibrium, where the
production rate of each nucleus equals its destruction, the abundance of 14N must be larger than that of
12C and 16O. Note that the CNO nuclei play the role of catalysts in these reactions: their total number is
not changed during the CNO cycle.

The main sequence ends when the star exhausts the hydrogen supply (comprising about 70% by mass
originally) in its central regions. The lack of energy release means that gravity takes over, so the central
regions contract and heat up. This enables nuclear burning to transition to a shell surrounding the centre.
As this shell converts hydrogen into helium, it moves outward in mass, leaving behind a helium core.1

While the layers below the burning shell continue contracting, the layers above the shell expand and
become convective. The star becomes cool and luminous as it moves up the red giant branch (RGB;
Fig. 1.2a). Meanwhile, the outer convective region gradually moves inwards in mass, bringing helium-

1 This applies to stars like the Sun, in which the energy from the central regions is carried away by radiation. Stars slightly
more massive than the Sun instead have convective cores in which material is efficiently mixed. At the end of their main
sequence evolution such stars already have distinct helium cores. Nevertheless, in these stars too the burning transitions to a
shell around this hydrogen-exhausted core.

3



Chapter 1 Introduction

and nitrogen-enriched material to the surface of the star during a phase known as first dredge-up (FDU;
Fig. 1.2b). FDU stops when the envelope is forced outwards by the advancing burning shell.

The next lightest element available for burning is helium. But because of the short lifetime of the
8Be nucleus, the next stable and accessible isotope is 12C. The production of carbon from helium thus
requires two reactions to occur in rapid succession:

4He + 4He � 8Be
8Be + 4He → 12C + γ. (1.7)

This so-called 3α reaction requires very high temperatures (T ' 80 MK), and the hydrogen-free core
needs to grow sufficiently massive (Mc ' 0.48 M�) to attain them. Until that point the star continues
climbing the RGB.

The RGB terminates when the 3α reaction begins converting helium into carbon in the core. In stars
with initial mass M & 2.3 M� this is a rather seamless transition. But in lower mass stars the core
is largely degenerate at the onset of helium burning. The temperature increases but the core does not
expand, because the pressure of a degenerate electron gas does not depend on temperature. This leads to
a runaway increase in the burning rate in an event known as a core helium flash. This finally lifts the
degeneracy, and the core expands and cools, which reduces the temperature (and thus luminosity) of the
hydrogen burning shell. The star as a whole contracts and settles onto the horizontal branch (Fig. 1.2a).

During the horizontal branch evolution, much of the produced carbon is further processed into oxygen
via

12C + 4He → 16O + γ. (1.8)

Once helium is exhausted in the core, the star consists of an inert CO core surrounded by a layer of almost
pure helium, and a hydrogen-rich envelope on top of it. Nuclear burning proceeds in a helium shell
around the CO core and in a hydrogen shell around the helium core (Fig. 1.3). Transition to shell-burning
again forces the outer layers to expand, and the star once more becomes a cool giant (Fig. 1.2a). This is
known as the asymptotic giant branch stage, for which a more detailed introduction is warranted owing
to its particular significance to carbon-enhanced metal-poor stars.

1.1.2 The asymptotic giant branch and thermal pulses

Early on during the asymptotic giant branch (AGB) evolution the helium shell provides most of the
total luminosity. However, as the helium shell burns through its fuel, it becomes thinner and eventually
experiences what is known as the thin-shell instability (Schwarzschild and Härm, 1965; Yoon, Langer
and van der Sluys, 2004). As a result of this instability, the helium shell expands but heats up in the
process. This increases the burning rate in the shell, which further raises the temperature. The result is a
thermonuclear runaway.

In what is known as a thermal pulse, the sudden large energy release drives a convection zone
throughout much of the intershell (Fig. 1.4). The energy released during a thermal pulse (with luminosity
momentarily reaching log LHe/L� ' 4–9, depending on stellar mass and pulse number; Stancliffe, Tout
and Pols, 2004) does not reach the surface of the star but instead goes into expanding the intershell and
the layers above it. This expansion reduces the temperature in the hydrogen shell sufficiently for it to
shut down. It also expands the helium shell sufficiently for it to no longer be subject to the thin-shell
instability. The temperature in the helium shell drops (and hence the energy generation within it), and the
intershell convection zone disappears. Helium burning proceeds quiescently under radiative conditions.

4
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Figure 1.2: (a) The evolution of a star with a mass of one solar mass and solar-like chemical composition in the
Hertzsprung-Russell diagram. Evolution from the zero-age main sequence (ZAMS) to the end of the red giant
branch (RGB) is in black, and the evolution following the core helium flash is in grey. (b) The internal evolution
from the ZAMS to the end of the RGB. The model number serves as a proxy for the age of the star. Mass coordinate
of zero (one) corresponds to the centre (surface) of the star. The red hatched region shows layers that are convective.
The orange line shows the hydrogen burning shell, and the shaded region below it shows the growth of the helium
core. The four ticks along the bottom x axis correspond to the four red dots in panel (a) and mark, in order, the main
sequence turn-off (maximum effective temperature), the beginning of first dredge-up, the end of first dredge-up,
and the end of the RGB. The empty and filled stars indicate, respectively, the horizontal branch and the onset of
thermal pulses.
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Figure 1.3: Schematic structure of an asymptotic giant branch star. From the centre outwards, the star consists of an
inert carbon-oxygen core, a helium burning shell, a layer of mostly helium (intershell), a hydrogen burning shell,
and a convective envelope consisting of mostly hydrogen. The approximate extent of the intershell convection zone
(ISCZ) during a thermal pulse and the depth of the envelope during third dredge-up (TDU) are also sketched.
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Figure 1.4: Schematic illustration of the evolution of a star during the thermally pulsing asymptotic giant branch
(TP-AGB) stage. The star alternates between predominantly hydrogen and helium shell burning phases. The
ignition of the helium shell triggers an intershell convection zone that efficiently mixes the intershell region.
The extinguishing of the hydrogen shell allows the convective envelope to penetrate inwards in mass, leading to
dredge-up of the intershell material. At the deepest point reached by the envelope partial mixing of protons into the
radiative region results in the creation of a “13C pocket” (see Sect. 1.1.5).
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1.1 Evolution of low-mass stars

The cooling resulting from the expansion during a thermal pulse also increases the opacity near the
base of the convective envelope, which causes the envelope to move inwards in mass. If the envelope
moves into a region that was homogenised during the thermal pulse by the intershell convection zone,
helium-burning products (chiefly carbon) are brought to the surface of the star. This mixing episode is
known as third dredge-up (TDU).

Following a thermal pulse the star contracts, which heats up the intershell and reignites the hydrogen
shell. The luminosity of the star is then provided almost entirely by the hydrogen shell, which leaves
its ashes, i.e. helium, on top of the intershell. The hydrogen shell, due to its much greater luminosity
(log LH/LHe & 3), now burns through its material faster than the helium shell. As burning proceeds and
the intershell becomes more massive, it and the helium shell at its base get increasingly compressed.
Eventually, the helium shell again undergoes the thin-shell instability, triggering the next thermal pulse.
This sequence of alternating shell-burning episodes is the thermally pulsing AGB (TP-AGB) stage (Iben
and Renzini, 1983; Herwig, 2005; Karakas and Lattanzio, 2014).

During most of the TP-AGB stage (the interpulse phases) the luminosity is provided by the hydrogen
shell. The helium-burning phases are comparatively short (about 100 yr versus about 104 yr; Karakas
and Lattanzio, 2014), but they get more energetic and frequent with time (Straniero, Chieffi, Limongi
et al., 1997; Stancliffe et al., 2004; Weiss and Ferguson, 2009).

1.1.3 Mass loss and termination of the AGB evolution

The TP-AGB stage cannot continue indefinitely. The helium-exhausted core will collapse into a neutron
star once it reaches the Chandrasekhar mass (Ritossa, García-Berro and Iben, 1999; Doherty, Gil-Pons,
Siess et al., 2015). But this may happen only in the most massive AGB stars (initial M & 8 M�), if at all.
Normally, the evolution is terminated much earlier by mass loss.

Early on during the AGB evolution the mass-loss rates are fairly low (Ṁ . 10−8 M� yr−1). But as the
stars become cooler and more luminous, their mass-loss rates increase by many orders of magnitude
(Vassiliadis and Wood, 1993). While mass loss from cool stars is a poorly understood phenomenon and
its description usually relies on empirical relations (Willson, 2000), dust formation in the increasingly
cool and extended atmospheres of AGB stars is believed to play a crucial role. Dust absorbs radiation
very effectively, and the mass-loss rates increase because the gas is dragged along with the dust away
from the star.

Dust-driven mass loss depends on the molecular species in the atmosphere. Particularly, the ratio
between carbon and oxygen atoms plays a crucial role because the kind of molecular species present
(and thus the opacity) changes as the C/O ratio crosses unity. The reason is the high binding energy
of the CO molecule (Marigo, 2002), which means that either all of the carbon (C/O < 1) or all of the
oxygen (C/O > 1) will be locked up in carbon monoxide. The remaining carbon or oxygen can go on to
form other molecules (e.g. CN, C2 and CH when C/O > 1). Stars begin their lives as oxygen-rich, i.e.
C/O < 1. But with each TDU the carbon abundance in the envelope increases (at least in AGB stars with
initial masses below about 4 M�). Once C/O exceeds unity, the chemistry of the atmosphere becomes
carbon-dominated, which leads to a reduction in the effective temperature by about 300 K (Marigo, 2002).
Since the mass-loss rates are very temperature sensitive (empirically Ṁ ∝ T−6.5

eff
; Wachter, Schröder,

Winters et al., 2002; van Loon, Cioni, Zijlstra et al., 2005), such a change accelerates the mass-loss rates
up to almost 10−4 M� yr−1 (Vassiliadis and Wood, 1993; Ramstedt and Olofsson, 2014). At such high
rates the stars lose the remaining envelope after a few thermal pulses (some tens of thousands of years),
exposing the hydrogen exhausted core (van Winckel, 2003). Having lost the envelope, the stars become
white dwarfs within a few (tens of) thousands of years (Miller Bertolami, 2016).

The remnant masses are typically M < 1 M� (Catalán, Isern, García-Berro et al., 2008; Salaris,
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Serenelli, Weiss et al., 2009). Most of the difference between the remnant and initial masses (which
can be multiple solar masses) is returned to the interstellar medium during the TP-AGB stage via slow
(vw ' 5–20 km s−1; Vassiliadis and Wood, 1993; Goldman, van Loon, Zijlstra et al., 2017) wind mass
loss. From this material, which has likely undergone substantial nuclear processing (Sect. 1.1.5), the next
generation of stars can form (Sect. 1.1.6).

1.1.4 Neutron capture nucleosynthesis

Stars support themselves against gravity by releasing energy via nuclear fusion reactions involving
multiple charged particles. When a fuel is exhausted, gravity temporarily takes over until the central
regions contract and heat up sufficiently to enable the ignition of the ashes of the previous burning stage.
So far the fusion of successively heavier nuclei up to oxygen has been described. In massive stars still
heavier nuclei are fused, until their cores consist of iron. Proceeding further is impossible, because the
binding energy per nucleon peaks around 56Fe, which means that further fusion reactions require a net
input of energy. The star can no longer resist gravity, and the outcome is gravitational collapse.

Production of the chemical elements located beyond iron in the periodic table occurs by a different
kind of nucleosynthesis – neutron capture. Neutron capture nucleosynthesis operates as follows. An
element (Z, A) with atomic number Z and mass number A captures a neutron, which increases its mass
number by one:

(Z, A) + n0 → (Z, A + 1) + γ. (1.9)

At some point (say, after capturing k neutrons) the resulting nucleus is unstable and can undergo β-decay:

(Z, A + k)→ (Z + 1, A + k) + e− + ν̄e. (1.10)

The element (Z + 1, A + k) can go on to capture neutrons and eventually decay to element with atomic
number Z + 2, and so on.

Whether the unstable isotope (Z, A+k) actually decays depends crucially on the availability of neutrons.
When the density of neutrons is low, β decays can generally occur before the isotope encounters another
neutron. On the other hand, when the neutron density is sufficiently high, the isotope may capture another
neutron before it decays, and then another, and so on until a point where the binding energy of the next
neutron is negative (thus reaching a limit known as the neutron drip line), at which point the then very
neutron-rich isotope must β-decay (Meyer, 1994). In either case, dependence on temperature is low,
because neutrons are electrically neutral and thus there is no Coulomb barrier to overcome.

The case of low neutron densities, where the timescales of β decays are typically shorter than those
of neutron captures, is known as the slow (or s-) process nucleosynthesis. The case of high neutron
densities, where nucleosynthesis proceeds near the neutron drip line, is known as the rapid (or r-) process
nucleosynthesis. In more quantitative terms, the s-process takes place at neutron number densities around
107 cm−3 (Busso, Gallino and Wasserburg, 1999), whereas the r-process requires densities in excess
of 1020 cm−3 (Wehmeyer, Pignatari and Thielemann, 2015). The distribution of elements in the solar
system bears the signature of both processes (Seeger, Fowler and Clayton, 1965; Anders and Grevesse,
1989). Some elements are almost exclusively created in the s-process (such as barium, lead, strontium),
whereas others (such as europium, platinum, gold) are produced in the r-process (Arlandini, Käppeler,
Wisshak et al., 1999). Given the very different conditions of the s- and r-processes, the main production
sites of these elements are likely different, although they are yet to be fully localised. The high neutron
densities of the r-process imply violent conditions, and core-collapse supernovae (Woosley, Wilson,
Mathews et al., 1994; Takahashi, Witti and Janka, 1994; Fryer, Herwig, Hungerford et al., 2006; Winteler,
Käppeli, Perego et al., 2012) and mergers of neutron stars (Eichler, Livio, Piran et al., 1989; Freiburghaus,
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Rosswog and Thielemann, 1999; Korobkin, Rosswog, Arcones et al., 2012) have been proposed as
possible sites for the r-process. The s-process is believed to mainly take place in AGB stars during the
thermally pulsing phase (Gallino, Busso, Picchio et al., 1988; Gallino, Arlandini, Busso et al., 1998;
Käppeler, Gallino, Bisterzo et al., 2011).

1.1.5 Neutron capture nucleosynthesis in AGB stars

As illustrated in Sect. 1.1.2, repeated episodes of TDU should enrich the convective envelope of TP-
AGB stars in material subjected to nuclear processing during hydrogen and helium burning. This is
mainly helium and carbon, but (some isotopes of) other elements like fluorine, sodium, and neon are
also expected to be produced in energetically less important reactions (Stancliffe and Glebbeek, 2008;
Karakas, 2010). Beyond these light elements, AGB stars are also believed to be responsible for much
of the s-process content of the Universe (Arlandini et al., 1999; Travaglio, Galli, Gallino et al., 1999;
Travaglio, Gallino, Arnone et al., 2004; Nomoto, Kobayashi and Tominaga, 2013; Bisterzo, Travaglio,
Gallino et al., 2014).

The first direct evidence of neutron capture nucleosynthesis occurring in AGB stars was the detection
of technetium by Merrill (1952) in some evolved giants. Technetium (Z = 43) has no stable isotopes.
The isotope produced during the s-process (99Tc) has a half-life of about 0.2 Myr, which is much shorter
than the main sequence lifetime, and hence any initial abundance of technetium would have long since
disappeared. This means that the element must have been synthesised relatively recently by the star itself.
At the same time, the decay time is much longer than the interpulse period, so any technetium produced
deep inside the star and brought up to the surface during a TDU can be expected to be still detectable.

Producing neutron capture elements such as technetium requires neutrons. Free neutrons decay into
protons in about fifteen minutes and thus are generally not present in stars. Therefore, some reaction has
to take place in AGB stars that releases them. In the context of the s-process, two such reactions have
been identified (Cameron, 1955; Cameron, 1960). These are

13C + 4He→ 16O + n0, (1.11)

22Ne + 4He→ 25Mg + n0. (1.12)

The high temperatures needed for an efficient activation of the 22Ne reaction (T > 300 MK) largely
limit its relevance to massive AGB stars (M & 4 M�), as well as massive stars during helium and
carbon burning (Couch, Schmiedekamp and Arnett, 1974; Lamb, Howard, Truran et al., 1977; Raiteri,
Gallino, Busso et al., 1993). Moreover, in TP-AGB stars it only activates during a thermal pulse, so the
neutron exposures are low, and only lighter s-process elements like strontium and zirconium (Z ' 40)
are produced in abundance. The 13C source is believed to operate in lower mass AGB stars (M . 4 M�)
and produce neutrons for most of the interpulse period. Hence, although the neutron density is lower,
the time-integrated neutron fluxes are larger (Busso, Gallino, Lambert et al., 2001), which allows the
s-process to proceed all the way up to nuclei like lead and bismuth (Z ' 80).

13C is produced via 12C(1H, γ)13N(β+)13C. The intershell is rich in 12C, but devoid of protons. Some
13C is produced in the hydrogen burning shell, but any neutrons released there by burning 13C would just
be captured by 14N, which has a much greater abundance and a very large neutron capture cross-section.
Hence, what one requires to produce the heavy elements is that there are some protons present in the
intershell, but not enough for the CN cycle to proceed to equilibrium. These protons are believed to mix
into the intershell at the end of TDU (“partial mixing”, Fig. 1.4) but how to achieve this self-consistently
and produce large quantities of s-process elements is an unsolved problem (Herwig, 2000; Herwig,
Langer and Lugaro, 2003; Piersanti, Cristallo and Straniero, 2013; Denissenkov and Tout, 2003). Current
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predictions of the resulting s-process output rely on artificial insertion of a small number of protons in
a model after a TDU, which results in a “13C pocket” at the deepest point reached by the convective
envelope during TDU (Fig. 1.4; Busso et al., 2001; Straniero, Cristallo and Gallino, 2009; Karakas, 2010;
Bisterzo, Gallino, Straniero et al., 2010; Bisterzo et al., 2014). During a thermal pulse, the intershell
convection zone engulfs the region where the pocket is (or was) located, and the s-process elements
can then be dredged to the surface during the next TDU episode. Naturally, the expected yields of the
s-process elements depend somewhat on the structure and mass of the pocket.

1.1.6 Stellar metallicity, metal-poor stars and Galactic chemical evolution

Other than the initial mass, the metallicity (or chemical composition in general) of a star is the other
major factor that hugely influences its evolution. The chemical composition of a star determines the
opacity of stellar material, and thus also the structure of the star. It can determine which nucleosynthesis
processes operate. As an extreme example, note the catalytic nature of the CNO nuclei in the CNO cycle
– in hydrogen fusion via the CNO cycle the total number of CNO nuclei does not change. In the nearly
metal-free first stars hydrogen burning thus must have occurred via the pp chains in stars of all masses
because of the absence of CNO nuclei. Mass loss and internal transport processes also depend on the
chemical composition.

There are two quantities that are often referred to as the metallicity of the star. To theorists, the
metallicity of a star usually means the fraction of total mass made up by elements other than hydrogen
(X) and helium (Y):

Z = 1 − X − Y. (1.13)

According to standard cosmology, the Universe was initially nearly free of metals (Z ≈ 0), consisting
of only hydrogen (X ≈ 0.75) and helium (Y ≈ 0.25; Cyburt, Fields, Olive et al., 2016). For observers,
using spectroscopic methods, measuring the total metallicity Z is impossible. For one, spectroscopy only
probes the region of the star where the escaping radiation is formed. This is the photosphere of the star.
Moreover, many abundant elements, including helium, are very difficult to measure. As a result, even
the total metal content of the Sun is rather uncertain with older studies finding Z ≈ 0.02 (Anders and
Grevesse, 1989; Grevesse and Sauval, 1998) and newer studies arguing for Z ≈ 0.014 (Lodders, 2003;
Asplund, Grevesse, Sauval et al., 2009; Scott, Grevesse, Asplund et al., 2015b; Scott, Asplund, Grevesse
et al., 2015a; Grevesse, Scott, Asplund et al., 2015).

Observers thus use iron as a proxy of the total metallicity. This element is responsible for a large
number of spectral lines, making its abundance relatively easy to measure, and its abundance in young
stars should reflect the initial, presumably homogeneous, composition of the star. The other definition of
metallicity of a star is thus a measure of its surface iron content compared to the Sun:

[Fe/H] = log
(

NFe

NH

)
− log

(
NFe

NH

)
�

, (1.14)

where N is the number fraction of the element. For stars on the zero-age main sequence the two
metallicities are related by

[Fe/H] = log
(Z

X

)
− log

(Z
X

)
�
≈ log (Z/Z�) . (1.15)
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The bracket notation is used to express the abundances of other elements as well:

[A/B] = log
(

NA

NB

)
− log

(
NA

NB

)
�

. (1.16)

By definition, all [A/B] of the Sun are 0. Stars with [Fe/H] < 0 are deficient in metals and stars
with [Fe/H] < −1 are usually referred to as metal-poor. Elements with [A/Fe] > 0 are enhanced or
over-abundant. Elements with [A/Fe] < 0 are under-abundant.

As noted, the Universe was initially nearly metal-free. The formation of the first stars irrevocably
changed this, and over time more and more of the primordial hydrogen is converted into heavier elements
by successive generations of stars. This astrated material is then returned back to the interstellar medium
from which the next generation of slightly more metal-rich stars form. Due to their age, surviving
metal-poor stars allow a wide range of astrophysically important questions to be investigated, like the
nature of the first stars, the formation and chemical evolution history of the Galaxy, the production of
light elements (Li, Be) shortly after the Big Bang, and stellar nucleosynthesis at low metallicity (this is
by no means an exhaustive list, see Beers and Christlieb, 2005; Frebel and Norris, 2015, and references
therein).

1.2 Binary stars

The majority of stars are members of multiple star systems (Duquennoy and Mayor, 1991; Raghavan,
McAlister, Henry et al., 2010). In the simplest (and probably most common) case of binary stars, two
gravitationally bound stars (or their remnants) orbit their common centre of mass. Interactions between
the components of such binary systems are (partially) responsible for a diverse range of astrophysical
phenomena (De Marco and Izzard, 2017; Eggleton, 2006), such as symbiotic binaries (Belczyński,
Mikołajewska, Munari et al., 2000; Mikołajewska, 2012), cataclysmic variables (Warner, 2003; Bode
and Evans, 2012), algols and other semi-detached systems (Budding, Erdem, Çiçek et al., 2004), X-ray
binaries (Podsiadlowski, Rappaport and Pfahl, 2002; Liu, van Paradijs and van den Heuvel, 2006; Lewin
and van der Klis, 2006), blue stragglers (Bailyn, 1995), Type Ia supernovae (Maoz, Mannucci and
Nelemans, 2014), gamma-ray bursts (Berger, 2014), and the newly discovered gravitational wave signals
(Abbott, Abbott, Abbott et al., 2016b; Abbott, Abbott, Abbott et al., 2016a; Abbott, Abbott, Abbott et al.,
2017), to name a few.

A prototypical example of an interaction between the components of a binary system is mass transfer.
Mass transfer can occur in one of several ways depending on the internal structure of the stars and the
orbital configuration. To understand how mass transfer comes about, it is helpful to introduce the concept
of the Roche potential. In a frame co-rotating with the binary system one can write this potential as

Φ(x, y) = Φg(x, y) + Φc(x, y) = −
1

1 + q

 q√(
x − 1

1+q

)2
+ y2

+
1√(

x +
q

1+q

)2
+ y2

− 1
2

(
x2 + y2

)
, (1.17)

where Φg and Φc are the gravitational and centrifugal parts of the potential, respectively, and q ≤ 1 is the
mass ratio of the two stars.2 Figure 1.5 shows the potential in a system with q = 0.5. Two potential wells
centred on the x axis delineate regions around the stars where their gravitational influence dominates,
and the potential is large and negative. The potential is also large and negative at large distances from the

2 The potential has been normalised such that the orbital separation a, the gravitational constant G, and the total mass of the
two stars all equal unity.
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Figure 1.5: The Roche potential in a binary system with q = 0.5 and a = 1 (arbitrary units). With the barycentre at
the origin, the stars are located at {x, y} = {−1/3, 0} and {2/3, 0}. The five Lagrange points are indicated as Li and
the Roche surface corresponding to Φ(x, y) = Φ(L1) is shown by the dashed red line.

barycentre, where the centrifugal term dominates. The five points indicated as Li are the Lagrange points.
They correspond to locations where ∇Φ = 0.

The significance of the Lagrange points follows from the fact that the acceleration of a test particle
placed in a potential field Φ is given by −∇Φ. As shown in Fig. 1.5, the first three Lagrange points lie
on the x axis (y = 0). The potential along this axis is shown in Fig. 1.6, from which one sees that a
particle co-rotating with the system and located between L1 and L3 (L2) will experience an acceleration
towards, and eventually be accreted by, the more (less) massive star, while a particle located beyond L2
or L3 will drift away from the system. It can be shown that L1, L2 and L3 are unconditionally unstable –
small perturbations in the position of a particle will grow over time – while L4 and L5 are only stable for
q . 0.04, and are thus more relevant for star-planet systems.

1.2.1 Roche lobe overflow

The L1 point has particular significance in binary star physics. During the course of their evolution stars
usually become bigger (even if their mass remains unchanged), filling up more of their potential wells. If
the surface of the star reaches Φ(x, y) = Φ(L1), the star is said to fill its Roche lobe (the equipotential
with Φ(x, y) = Φ(L1) is indicated in Fig. 1.5 with a dashed line). Further expansion causes mass to flow
through the L1 point to the companion star (Fig. 1.6b). This type of mass transfer is known as Roche
lobe overflow (RLOF).

When a star fills its Roche lobe and begins to lose mass, the Roche potential of the system changes,
and thus so does the size of the Roche lobe (RL) of the mass-losing star. At the same time, the radius
of the star (R) also changes. Depending on how Ṙ compares to ṘL, RLOF can be stable (Ṙ ≤ ṘL) or
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Figure 1.6: (a) The Roche potential at y = 0 in a system with q = 0.5 and a = 1 with the gravitational and
centrifugal contributions shown separately. The shaded regions schematically show the extent to which two stars
occupy their potential wells in a detached binary; (b) Roche lobe overflow: if a star expands beyond its Roche
lobe, material at its surface flows through the L1 Lagrange point to the other star; (c) wind Roche lobe overflow: if
a slow and dense wind is accelerated beyond the Roche lobe of the star, material flows through the L1 Lagrange
point to the other star even though the star itself is within its Roche lobe.
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unstable (Ṙ > ṘL).3 In the latter case, the radius of the star does not shrink enough in response to mass
loss for the star to remain within RL (if ṘL < 0), or the star expands faster than its Roche lobe (if ṘL > 0),
and an ever increasing fraction of the stellar material is no longer bound to the mass-losing star. If the
mass-accreting star cannot accommodate all of this extra material, the stars enter a common envelope
phase: two stars orbiting within a shared envelope of material.

Whether mass transfer will be stable or unstable depends on the mass ratio of the two stars, as well as
on their internal structure. Generally, when no mass is lost from the system, mass transfer from the more
massive component to the less massive component reduces the separation between the components. The
size of the donor’s Roche lobe thus decreases. At the same time, if a substantial fraction of the outer
part of the star is convective, losing mass makes the star expand (Paczyński, 1965). In binaries where
the star overflowing its Roche lobe is a more massive red giant or an AGB star, mass transfer tends to
be unstable and the stars enter a common envelope phase. The physics of common envelope evolution
is still poorly understood (Ivanova, Justham, Chen et al., 2013), but it is believed that even if the stars
succeed in ejecting the envelope prior to merging, the mass-accreting component will have accreted little
to no mass (Ricker and Taam, 2008).

1.2.2 Wind mass transfer

Roche lobe overflow is not the only means of mass transfer. In wider binaries, where the stars remain
within their Roche lobes at all times, mass transfer may still occur via a stellar wind. The problem of
wind accretion was first studied by Hoyle and Lyttleton (1939) and Bondi and Hoyle (1944). In their
model the accreting star is assumed to move through a homogeneous gas cloud at a constant relative
velocity vrel (for a review, see Edgar, 2004). While only material within the radius R of the star is swept
up directly, more material is accreted indirectly because of the gravitational influence of the star (Fig. 1.7).
The impact radius within which material is accreted is given by

ζ =
2GM2

v2
rel

, (1.18)

and the amount of mass accreted depends on the density of the wind ρw:

Ṁ2 = πζ2vrelρw =
4πG2M2

2ρw

v3
rel

, (1.19)

with M2 the mass of the star. The case of spherically symmetric accretion was considered by Bondi
(1952) and resulted in a very similar expression for the accretion rate. The overall problem has thus come
to be known as Bondi-Hoyle-Lyttleton (BHL) accretion.

For binary systems the accretion rate can be more conveniently expressed as a function of the mass-loss
rate of the primary, if the wind is assumed to be spherically symmetric (Boffin and Jorissen, 1988):

Ṁ2 = −

(GM2

a

)2 (
1

1 + [vorb/vw]2

) 3
2 Ṁ1

v4
w
, (1.20)

with M1 the mass of the donor star and vorb =
√

G(M1 + M2)/a = 2πa/Porb for an orbital period Porb. The
accretion rate is predicted to be very sensitive to the wind velocity vw. However, when the wind velocity
becomes comparable to the orbital velocity of the accretor, the applicability of the BHL prescription

3 A dot over a symbol denotes the time derivative of the respective quantity.
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Figure 1.7: Sketch of Bondi-Hoyle-Lyttleton accretion by an object with radius R moving with a velocity vrel with
respect to a homogeneous medium with density ρw. While only material within R is directly accreted, material
within the impact radius ζ (light shaded region) is accreted along the accretion column (dark shaded region) because
of gravitational focusing. Adapted from Edgar (2004).

becomes questionable, as the flow around the accreting star will certainly not look like that sketched in
Fig. 1.7. In particular, as the star moves in its orbit, material attempting to accrete will be deflected by
the Coriolis force and gain angular momentum. In such cases one can only use the BHL accretion rate to
get a rough idea of the expected accretion rates.

Recently another mode of mass transfer, wind Roche lobe overflow (WRLOF), has been discovered
in multi-dimensional simulations (Mohamed and Podsiadlowski, 2007; Mohamed and Podsiadlowski,
2012; Podsiadlowski and Mohamed, 2007). This is an intermediate mode of mass transfer, applicable
to stars with dense dust-accelerated winds, such as AGB stars near the end of their lives (Abate, Pols,
Izzard et al., 2013). In this case, the star is ejecting material with slow speeds, and the acceleration of the
wind happens only once the ejected material is cool enough that it can form dust. This dust formation
radius rd can be several radii from the surface of the star. When rd > RL, the ejected material can flow to
the companion through the L1 point, even though the donor itself is within its Roche lobe (Fig. 1.6c).
WRLOF can increase the accretion efficiency in systems with R < RL < rd by orders of magnitude (Abate
et al., 2013).

1.2.3 Chemical pollution and origin of carbon-enriched stars

If the chemical composition of the wind is different from that of the surface of the accretor, the surface
composition of the accretor will be altered. This can be expected to happen when a main sequence star
accretes material from a TP-AGB donor, which should be enriched in helium, carbon, and a range of
heavy elements produced by the s-process. After the TP-AGB star evolves to become a white dwarf, the
binary consists of a white dwarf and, in most cases, a main sequence star whose surface composition
should reflect the composition of the accreted material (Fig. 1.8).

The first stars that were proposed to be an example of this scenario are the so-called barium (Ba)
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AGB MS

MSMS

WD C-rich

Figure 1.8: Sketch of the evolution of a binary system leading to the formation of a carbon-enriched star. The more
massive of the two stars evolves faster and eventually becomes a TP-AGB star. Towards the end of its life the
star experiences large mass loss via a stellar wind, some of which is accreted by the companion. After the AGB
stage terminates, the binary consists of a white dwarf and a main sequence star whose surface has been enriched in
carbon and other elements produced by the TP-AGB star.
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and CH stars. Barium stars are giants of spectral types G and K that, compared to normal giants, show
anomalously strong lines of barium and some molecular species of carbon (Bidelman and Keenan,
1951). The spectra of CH stars also showcase prominent bands of carbon molecules, the CH molecule in
particular, as well as strong lines of strontium and barium (Keenan, 1942; Bond, 1974). Members of this
class span the subgiant and giant branches. In general, the heavy element abundances of both Ba and CH
stars are indicative of the s-process (Vanture, 1992; Smith, Coleman and Lambert, 1993; Busso, Lambert,
Beglio et al., 1995).

Surface enrichment in carbon and s-process elements in low-mass stars is not expected prior to the
TP-AGB stage. Attempts to explain the surface chemistry as resulting from internal processes occurring
within the star (Warner, 1965; Bond, 1974; Paczynski and Tremaine, 1977) thus ultimately proved
unsatisfactory for such relatively unevolved stars (Scalo, 1976; Smith and Demarque, 1980; Luck and
Bond, 1991). That these stars originate from binary mass transfer was first suggested by McClure,
Fletcher and Nemec (1980) who monitored the radial velocity variations of Ba stars over the course of
about a year. Unless the orbital plane is exactly perpendicular to the line of sight, the spectrum of a star
is periodically red- and blueshifted with respect to the observer as the star orbits the centre of mass of
the system. From observing such periodic shifts McClure et al. (1980) concluded that all Ba stars may
be in binaries with an unseen low-mass companion (see also McClure, 1983), compared to less than
a half for normal giants (Harris and McClure, 1983). They also suggested that CH stars too may have
binary companions, and presented preliminary evidence in favour of this suggestion soon after (McClure,
1984). Continued radial velocity monitoring over the following decades has put these conclusions on
much firmer grounds, and it is now well established that Ba and CH stars have faint companions with
masses of about 0.6 M� at orbital separations of an astronomical unit or more (McClure and Woodsworth,
1990; Jorissen, Van Eck, Mayor et al., 1998; Jorissen, Van Eck, Van Winckel et al., 2016). In some closer
and younger systems the companions (white dwarfs) have even been directly detected (Böhm-Vitense,
Carpenter, Robinson et al., 2000). Ba-rich dwarfs, the putative progenitors of classical Ba stars, have
also now been found (North and Lanz, 1991; North, Berthet and Lanz, 1994; Edvardsson, Andersen,
Gustafsson et al., 1993) and fit the hypothesis of mass accretion from a now-extinct AGB star (North,
Jorissen and Mayor, 2000; Gray, McGahee, Griffin et al., 2011).

1.2.4 Carbon-enhanced metal-poor stars

The barium and CH stars form the same way, but they belong to different populations. CH stars are
older, less massive and more metal-poor on average than barium stars (De Marco and Izzard, 2017).
Carbon-enhanced metal-poor (CEMP) stars, not unlike Ba and CH stars, are relatively unevolved stars
whose atmospheres show large over-abundances of carbon. These stars were discovered in surprisingly
large numbers once large scale surveys focused on discovering the most metal-poor ([Fe/H] < −2) and
oldest stars in our Galaxy were underway (Beers, Preston and Shectman, 1985; Beers, Preston and
Shectman, 1992; Christlieb, Green, Wisotzki et al., 2001).

High-resolution spectroscopic follow-up studies then revealed that CEMP stars ([C/Fe] & 1; Beers and
Christlieb, 2005; Aoki, Beers, Christlieb et al., 2007; Masseron, Johnson, Plez et al., 2010) are actually a
mixed bag of objects, which has prompted the introduction of several sub-classes in the CEMP family
based on their heavy (neutron capture) element abundance patterns. For example, Masseron et al. (2010)
propose:4

• CEMP-s: [Ba/Fe] > 1 and [Ba/Eu] > 0;

4 Other authors use somewhat different limits (cf. Beers and Christlieb, 2005; Allen, Ryan, Rossi et al., 2012) but the same
four classes.
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• CEMP-r: [Ba/Eu] < 0;

• CEMP-r/s: [Eu/Fe] > 1 and [Ba/Eu] > 0;

• CEMP-no: [Ba/Fe] < 1.

Stars in the CEMP-no sub-class do not display large enhancements in neutron capture elements.
Unlike the Ba and and CH stars, which make up no more than a couple of percent of normal (sub)giants

(MacConnell, Frye and Upgren, 1972; Scalo and Miller, 1979; Luck and Bond, 1991), CEMP stars
are much more prevalent among metal-poor stars. Multiple authors have investigated the metallicity
dependence of the frequency of the CEMP star phenomenon, and a consistent finding is that the prevalence
of CEMP stars increases towards lower metallicities. For example, below [Fe/H] = −2 about 15–20%
of all stars are CEMP stars, but this fraction rises to about 30–40% below [Fe/H] = −3 (Carollo, Beers,
Bovy et al., 2012; Lee, Beers, Masseron et al., 2013; Norris, Yong, Bessell et al., 2013; Yong, Norris,
Bessell et al., 2013), and below [Fe/H] = −4 the majority of stars are carbon-enhanced (Placco, Frebel,
Beers et al., 2014).

The relative fractions of the different sub-classes too change with metallicity. At metallicities of
[Fe/H] < −3 nearly all CEMP stars belong to the -no or -r subclasses (Norris et al., 2013; Spite, Caffau,
Bonifacio et al., 2013; Frebel and Norris, 2015). At higher metallicities the -s and -r/s subclasses are
predominant, and so the majority of all CEMP stars are enriched in elements associated with the s-process
(Aoki et al., 2007) because of the rarity of stars with [Fe/H] < −3.

This dissimilar metallicity dependence, in addition to the fact that the s- and r- processes require very
different conditions to operate (Sect. 1.1.4), indicates that the CEMP-no, CEMP-r and CEMP-s stars
likely have very different formation channels. The binary characteristics of CEMP stars too betray their
different origins. The binary frequency among CEMP stars without s-process enrichment is about the
same as that for carbon-normal metal-poor stars (about 15–20%; Starkenburg, Shetrone, McConnachie
et al., 2014; Hansen, Andersen, Nordström et al., 2016a; Carney, Latham, Stefanik et al., 2003), and the
chemical enrichment of these stars is suspected to be due to local pollution events in the early Universe,
such as the first rapidly rotating massive stars (Meynet, Ekström and Maeder, 2006; Hirschi, 2007;
Maeder, Meynet and Chiappini, 2015) and faint supernovae (Umeda and Nomoto, 2003; Nomoto et al.,
2013). Meanwhile, the overwhelming majority, if not all, s-process-rich CEMP stars are members of
binary systems (Lucatello, Tsangarides, Beers et al., 2005b; Starkenburg et al., 2014; Hansen, Andersen,
Nordström et al., 2016b) with orbital periods typically between a few hundred and a few thousand days.

The origin of CEMP-r/s stars is currently unclear. On one hand they are found in similar numbers to
CEMP-s stars (Masseron et al., 2010; Suda, Katsuta, Yamada et al., 2008; Suda, Yamada, Katsuta et al.,
2011; Abate, Stancliffe and Liu, 2016) and are probably members of binary systems as well (Hansen
et al., 2016b). But explaining their richness in both elements that are associated with the s- and the r-
processes is very difficult under currently proposed formation scenarios, which usually involve multiple
and, for the most part, independent pollution episodes (Abate et al., 2016). In fact, the abundance pattern
of most of these stars can be well fit with an i-process, with neutron densities intermediate between the s-
and r- processes (n ∼ 1015 cm−3, Cowan and Rose, 1977), so a more appropriate name for this subclass
may be CEMP-i (Hampel, Stancliffe, Lugaro et al., 2016). But whether TP-AGB stars can routinely
generate the necessary neutron densities for the i-process to operate remains to be determined.

In any case, it is thus the CEMP stars with s-process enrichment (CEMP-s and possibly CEMP-
r/s) that are the lower-metallicity counterparts to CH and Ba stars (Lucatello et al., 2005b; Jorissen
et al., 2016), and with which this thesis is concerned. CEMP-s stars offer us a way to indirectly
study the nucleosynthesis of their long-extinct companions, low-metallicity TP-AGB stars with masses
M & 0.9 M�, which have undoubtedly played a key role in the chemical evolution of the Universe,
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particularly in the dissemination of carbon and elements with primarily s-process isotopes such as
barium, lead, yttrium, strontium, zirconium, and lanthanum among many others (Travaglio et al., 1999;
Travaglio, Gallino, Busso et al., 2001; Roederer, Cowan, Karakas et al., 2010; Kobayashi, Karakas and
Umeda, 2011; Bisterzo et al., 2014). By observing the surviving CEMP-s stars, we can try to infer the
nucleosynthesis output of their TP-AGB companions, provided we understand their evolution following
mass accretion.

1.3 Evolution following mass transfer

This thesis is principally concerned with the evolution of CEMP stars with s-process enrichment following
mass transfer and investigating the fate of the accreted material. One of the key questions is under what
circumstances the surface composition of these stars can be trusted to reflect the composition of the
accreted material.

The accreted material will mix within the outer convection zone of the star, if there is one. But the
surface convection zone of many CEMP star progenitors (low metallicity stars with M . 0.8 M�) is very
small (containing less than a hundredth of a solar mass), and thus it is sometimes supposed that no mixing
of the accreted material occurs prior to first dredge-up. The surface composition of the star would then
directly reflect the composition of the accreted material (e.g. Sivarani, Bonifacio, Molaro et al., 2004;
Lucatello, Gratton, Beers et al., 2005a), and only when the star transitions to the RGB and develops a
large convective envelope would the accreted material be homogeneously diluted by the comparatively
pristine material of the CEMP star. However, owing to the different chemical composition and angular
momentum content of the accreted material, various instabilities can be expected to set in long before
first dredge-up.

1.3.1 Thermohaline mixing

The accreted material will be considerably enriched in helium, carbon, and other heavy elements as a
result of the advanced nucleosynthesis occurring in AGB stars. This material is, in a sense, heavier than
the material at the surface of the star prior to mass accretion. In particular, the mean molecular weight µ
of the material comprising the accreted layers will be higher than that of the layers below. While such a
situation can be convectively stable, it is secularly unstable, which means that mixing can still occur but
over longer timescales.

The situation of having a higher mean molecular weight material on top of material with lower
molecular weight is unstable because the diffusivity of heat in astrophysical fluids is greater than that
of chemicals. Thus, for example, a blob of material displaced from the accreted layer into the pristine
layer below will reach thermal equilibrium with its surroundings prior to reaching chemical equilibrium
(Fig. 1.9). Then, owing to its higher molecular weight, it will find itself denser than its surroundings and
sink deeper. There, it will again find itself denser after reaching thermal equilibrium and sink farther,
until it finally loses the excess molecular weight. The situation is analogous for blobs displaced upwards,
since they will find themselves less dense than their surroundings and buoyancy will make them rise.

This form of mixing is known as thermohaline or fingering convection, and was first described as
occurring in oceans where salinity plays the role of the molecular weight (Stern, 1960; Kunze, 2003).
When warm salty water finds itself on top of cold and less salty water, fingering convection can set in.
Such a configuration can be realised in warm climates when there is little precipitation: the evaporation
of water leaves behind an increased concentration of salt in the warm surface waters.

The first to apply this process to the stellar context were Ulrich (1972) and Kippenhahn, Ruschenplatt
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Figure 1.9: Illustration of thermohaline mixing following mass accretion. The original material of the star (blue)
and the accreted layer (red) will have different molecular weights µi. A blob of material displaced from the
accreted layer into the pristine layer will reach thermal equilibrium with its surroundings prior to reaching chemical
equilibrium. Because of its higher mean molecular weight, it will keep sinking until it dissolves. Adapted from
Garaud (2014).

and Thomas (1980). These first formulations of the theory contain a free parameter that effectively
characterises the shape of the fingers and thus determines the rate and extent of the mixing. Ulrich
(1972) estimated the structures to be finger-like (deriving a length-to-diameter ratio of about seven,
Denissenkov, 2010), similar to the oceanic case, whereas Kippenhahn et al. (1980) argued that the mixing
elements will lose their identity much sooner, and thus be more blob-like (with a length-to-diameter
ratio of around unity). Recently, multidimensional hydrodynamical simulations have tried to address this
uncertainty (Denissenkov, 2010; Traxler, Garaud and Stellmach, 2011; Brown, Garaud and Stellmach,
2013; Zemskova, Garaud, Deal et al., 2014). While these simulations are still far from the stellar regimes
in terms of the fluid conditions, they agree that the structure of the mixing elements is probably more
blob-like.

The ways in which thermohaline mixing could be relevant to stars (e.g. burning of 3He, accretion of
material with a higher molecular weight, and off-centre onset of the 3α reaction in low-mass stars prior to
core helium flash) were recognised already by Ulrich (1972) but then seemingly forgotten for many years
until a revival in the interest of thermohaline mixing was sparked by Eggleton, Dearborn and Lattanzio
(2006). The importance of thermohaline mixing to the secondaries in binary systems hosting a TP-AGB
primary was recognised by Stancliffe, Glebbeek, Izzard et al. (2007), who computed model sequences
for different combinations of primary and secondary masses and amount of mass transferred. They found
that nearly all of the accretor can be mixed if a sufficient amount of high-µ material is accreted. In other
words, the material accreted by the star is substantially diluted shortly after mass transfer, so that the
surface of the accreting star is no longer composed solely of the material ejected by the AGB star, even
before the star evolves off the main sequence.

1.3.2 Rotation and mixing

All stars rotate, even if very slowly. For single stars this is a legacy of their formation. As a fragment of a
molecular gas cloud collapses, some of its angular momentum will be conserved by the newly formed
star, resulting in a non-zero rotation rate on the zero-age main sequence. In fact, the rotation rate should
typically be an appreciable fraction of the critical (maximum possible) rotation rate (at critical rotation the
centrifugal acceleration on a fluid element at the surface of the star balances the gravitational acceleration,
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and the material is no longer bound to the star). The low-mass metal-poor progenitors of CEMP-s stars,
however, rotate rather slowly, with equatorial velocities rarely higher than about 5 km s−1 (Lucatello and
Gratton, 2003; Cortés, Silva, Recio-Blanco et al., 2009), which is well below their critical velocities of
about 300 km s−1. This suggests that these stars have lost most of their angular momentum during their
main sequence evolution, similar to their counterparts at solar metallicity (Kraft, 1967; Kawaler, 1988).

The wind material accreted by the progenitors of CEMP-s stars could instead possess substantial angular
momentum. In particular, wind mass transfer from a giant with slow winds to a low-mass companion
has been extensively modelled in 3D simulations (Theuns, Boffin and Jorissen, 1996; Mastrodemos
and Morris, 1998; de Val-Borro, Karovska and Sasselov, 2009; Huarte-Espinosa, Carroll-Nellenback,
Nordhaus et al., 2013; Chen, Frank, Blackman et al., 2017; Liu, Stancliffe, Abate et al., 2017). What such
simulations typically find is that the material gains enough specific angular momentum while falling to
the secondary that an accretion disk forms around it. Accretion onto the secondary should then proceed
via the disk. The angular momentum of the accreted material should thus be rather high, and the accreting
star should rotate more and more rapidly as it grows in mass.

Such spin-up can limit the amount of mass that a star can accrete. Particularly, if enough material
possessing high specific angular momentum is added to the star, the star should eventually be spun up
to critical rotation. Even if the star is able to rapidly redistribute the angular momentum internally, the
amount of mass it can accrete from a disk can be as little as a couple of percent of its own mass before it
reaches critical rotation and can accrete no more (Packet, 1981).

Since the accreted material deposits additional angular momentum near the surface of the star, newly
formed CEMP-s stars are likely to rotate differentially, which means that the angular rotation velocity Ω

varies with depth within the star. Under such circumstances rotating stellar layers are especially prone
to various instabilities that can redistribute the angular momentum content within the star and trigger
mixing of chemical elements in the process. Given the potentially large velocity contrast between the
original surface and the accreted material, the shear instability could be of particular importance.

In a very basic analysis concerning stability against shear one considers two neighbouring fluid
elements at slightly different distances r0 and r0 + δr travelling with respective velocities v0 and v0 + δv

in a fluid with density ρ (Fig. 1.10; Chandrasekhar, 1961; Maeder, 2009). If, as a result of some turbulent
displacement, the two elements are exchanged and homogenised, such that their velocities become v0 + δv

2 ,
work must be done to change their potential energy by δW = gδρδr, where δρ is the density excess of the
fluid elements over their surroundings after the displacement. In the adiabatic case the energy available
to do this work is the kinetic energy difference between the initial and final states:

δK =
1
2
ρ
[
v2

0 + (v0 + δv)2
]
− ρ

(
v0 +

δv

2

)2
=

1
4
ρ (δv)2 . (1.21)

The shear instability can set in if this energy is greater than the work needed to overcome the restoring
force (gravity), i.e. δK > δW. Thus, the medium will be stable when

Ri =
g

ρ

dρ / dr

(dv / dr)2 =
g

ρ

dρ / dr

(dΩ / d ln r)2 >
1
4

= Ric. (1.22)

This is known as the Richardson criterion, and Ri (Ric) is the (critical) Richardson number. Naturally,
the shear instability is more likely to arise for large differential rotation. Equation (1.22) was derived
ignoring thermal exchange between the elements and their surroundings. But when thermal effects are
considered, an instability can arise even for Ri & Ric, giving rise to secular (as opposed to dynamical)
shear that operates on a longer (thermal) timescale.

Another important transport process arises in rotating stars. Its origin can be sketched by considering
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Figure 1.10: Illustration of the shear instability. Two fluid elements at different distances from the centre of the star
travel at slightly different velocities. If the work required to equalize their momenta is less than the kinetic energy
difference between the elements, the medium is unstable to shear.

the radiative flux in a uniformly rotating (i.e. Ω is constant everywhere) star in hydrostatic equilibrium:

F = −k∇T = −k
dT
dP
∇P = −k

dT
dP

ρgeff = K∇Ψ. (1.23)

Here k is the thermal conductivity, T is temperature, P is pressure, geff = g + gc is the effective gravity
(i.e. gravitational acceleration corrected for centrifugal acceleration so that |geff| ≤ |g|), and Ψ is the total
potential (∇Ψ = −geff). Energy conservation requires that in radiative equilibrium the divergence of the
flux be zero in the absence of energy generation:

∇ · F = ∇K∇Ψ +K∇ · (∇Ψ) =
dK
dΨ

(∇Ψ)2 +K∆Ψ

=
dK
dΨ

(∇Ψ)2 +K
(
4πGρ − 2Ω2

)
= 0, (1.24)

where use has been made of the Poisson equation (∆Ψ = 4πGρ − 2Ω2). However, Eq. (1.24) cannot
generally hold in a rotating star – since the effective gravity is larger near the poles (gc → 0) than at the
equator (gc → Ω2r), on surfaces of constant Ψ all the terms are constant except for the term involving
(∇Ψ)2. This implies a local breakdown of radiative equilibrium, which was first pointed out by von Zeipel
(1924). While on average ∇ · F must vanish on an equipotential (in the absence of energy generation),
local breakdown of radiative equilibrium implies that too much energy is carried away by radiation
from some regions of the star, while not enough energy is carried away from others. Some regions thus
cool down, while others heat up. To maintain a stationary state, large scale meridional flows must arise.
These flows, known as meridional, Eddington-Sweet or Eddington-Vogt circulation (Eddington, 1925;
Vogt, 1925; Sweet, 1950), slowly advect entropy, angular momentum, and contribute to the transport of
chemical species (Fig. 1.11).
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1.3 Evolution following mass transfer

Figure 1.11: To maintain thermal equilibrium, large scale meridional currents must arise in a rotating star. With the
star rotating around the z axis as indicated, the flow rises along the poles and descends along the equator leading to
a net inward transport of angular momentum when the circulation velocity is positive (left) and vice versa when the
circulation velocity is negative (right).

1.3.3 Atomic diffusion

The instabilities expected to arise from accretion of material should interact with a process that to
some extent must operate in all low-mass metal-poor stars: atomic (or microscopic) diffusion. Atomic
diffusion leads to a separation of the chemical species of the medium when the particles of some species i
experience a net force Fi with respect to the particles of all other species. In stars this can occur in stable
(radiative) layers that are not mixed as a result of some other process. To first order atomic diffusion can
be described with a characteristic velocity

wi = −Di

(
1
Xi

∂Xi

∂r
−

Fi

kBT

)
, (1.25)

where Di is the diffusion coefficient, Xi is the mass fraction (abundance) of the species, and kB is the
Boltzmann constant. The net forces result from gradients in one or more of several quantities, such as
pressure or temperature.

Pressure diffusion leads to gravitational settling of elements more massive than the mean molecular
weight of the stellar plasma (through most of the evolution, this means all elements other than hydrogen).
Likewise, thermal diffusion also separates hydrogen from heavier elements. What this means is that in
a main sequence star heavier elements will tend to sink deeper into the star towards the centre, while
the surface layers become increasingly hydrogen rich. These processes are opposed, to some extent, by
concentration diffusion, the first term in Eq. (1.25), which attempts to erase any abundance gradients.

The importance of atomic diffusion has been demonstrated in multiple contexts. For example, the
agreement between stellar models and helioseismic inferences of the interior structure of the Sun improved
considerably once the models included atomic diffusion (Christensen-Dalsgaard, Proffitt and Thompson,
1993; Richard, Vauclair, Charbonnel et al., 1996; Christensen-Dalsgaard, 2002). Inclusion of diffusion in
models of low-metallicity dwarfs brought their ages into better agreement with expectations based on
the age of the Universe (Chaboyer, Deliyannis, Demarque et al., 1992; VandenBerg, Richard, Michaud
et al., 2002). The purity of the atmosphere of many white dwarfs (either pure hydrogen or helium) is also
believed to result from their large surface gravities leading to rapid gravitational settling (Muchmore,
1984; Dupuis, Fontaine, Pelletier et al., 1992).
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Figure 1.12: Schematic illustration of radiative levitation. The atoms of the stellar plasma in a net outward radiation
field experience different levels of acceleration depending primarily on their abundance (number) and contribution
to the opacity of the medium (size).

The possible importance of atomic diffusion for CEMP-s stars was raised by Thompson, Ivans,
Bisterzo et al. (2008). They correctly argued that the combined action of gravitational settling and
thermal diffusion should succeed in establishing a µ-gradient throughout the star. This µ-gradient might
then present a sufficient barrier to thermohaline mixing, such that its importance would be significantly
reduced. This hypothesis was investigated by Stancliffe and Glebbeek (2008), who concluded that the
µ-barrier established by atomic diffusion is too small to have a significant influence on thermohaline
mixing, as long as the accreted layer is not very small (∆M . 10−3 M�).

At the same time, Stancliffe and Glebbeek (2008) found that in the absence of other mixing processes
atomic diffusion is expected to influence the evolution of CEMP-s stars in a manner similar to regular low-
mass stars, i.e. by reducing their lifetimes and leading to surface abundance anomalies. This complicates
the interpretation of their surface abundances in the context of TP-AGB nucleosynthesis. Given the
importance of gravitational settling and thermal diffusion, Stancliffe and Glebbeek (2008) suggested that
radiative forces might also have to be accounted for.

Radiative forces are a consequence of energy transport by radiation. The energy in a main sequence star
is produced in the central regions, slowly transported outwards, and radiated away from the surface. This
transport is slow because the stellar material is opaque to radiation – the photons produced by nuclear
reactions in the central regions are scattered, absorbed and re-emitted countless numbers of times by the
ions in the plasma before they emerge from the star. During these interactions the photons impart (some
of) their momentum to the ions. Since the net flux of photons in a star is directed outwards, the ions are
accelerated in a direction opposite to gravity. When the acceleration exceeds the gravity, the element as a
whole can be transported upwards towards the surface until a level where the radiative acceleration is
roughly compensated by the gravity. This process is thus commonly referred to as radiative levitation
(Fig. 1.12).

Radiative levitation is believed to at least partially cause the surface abundance anomalies of stars
somewhat more massive than the Sun (M ' 1.5–3 M�), such as the AmFm stars that display strong
metallic lines and the HgMn stars which display large over-abundances of mercury and manganese
(Turcotte, Richer and Michaud, 1998; Richer, Michaud and Turcotte, 2000). Part of the reason why
radiative forces are able to modify the surface abundances of these stars is that outside of their core
these stars are almost fully radiative up to their surface, in contrast to lower mass stars that have surface
convection zones. Interestingly, these convection zones are very thin in lower metallicity stars, even at
masses as low as M ' 0.8 M�, which suggests that radiative levitation might be similarly important.
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1.4 Outline of this thesis

This thesis focuses on modelling the evolution of CEMP-s stars under the assumption that they form
when a low-mass star accretes material from a binary companion which is in the thermally pulsing AGB
stage.

The tool to use for modelling the evolution of stars is a stellar evolution code. Chapters 2 and 3
describe the code used here, with particular emphasis on the code development resulting as part of this
research. Chapters 4, 5, and 6 describe the scientific results of this work, and are largely reproductions
of peer-reviewed published articles. In particular, in Chapter 4 the consequences of atomic diffusion
and radiative levitation on the evolution of CEMP-s stars and their surface abundances are investigated
(Matrozis and Stancliffe, 2016), while Chapters 5 and 6 concern rotation. Chapter 5 expands on the
previous chapter by accounting for rotational mixing (Matrozis and Stancliffe, 2017). In Chapter 6 the
chemical aspects, as well as the post-mass-transfer evolution, are set aside to investigate the following
question: how much mass and angular momentum can the progenitors of carbon-enriched stars accrete
(Matrozis, Abate and Stancliffe, 2017)? Finally, in Chapter 7 the results obtained during this work are
summarised prior to highlighting possible future avenues of research.
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CHAPTER 2

Modelling the structural evolution of stars

In this and the next chapter the methods used to tackle the evolution of carbon-enhanced metal-poor stars
are described. The principal tool employed in this thesis is a stellar evolution code, a piece of software
that solves the equations of stellar structure and evolution. The code used here is commonly referred
to as stars. Since its introduction in a series of papers by Peter Eggleton (Eggleton, 1971; Eggleton,
1972; Eggleton, Faulkner and Flannery, 1973), the code has spawned multiple offshoots and undergone
many updates by various authors (e.g. Pols, Tout, Eggleton et al., 1995; Glebbeek, Pols and Hurley,
2008; Stancliffe and Eldridge, 2009; Potter, Tout and Eldridge, 2012b). The version of the code built
upon here is available at http://www.ast.cam.ac.uk/~stars/index.htm. Many of the processes
detailed here, such as simulating the accretion of mass of a different chemical composition and angular
momentum, radiative levitation, and stellar rotation and rotational mixing are not present in the public
version. They are described in more detail here.

2.1 Equations governing the evolution of a star1

As mentioned in the introduction, a star is a massive ball of gas held together by gravity. Since such
objects can be closely approximated to be spherical (at least in the non-rotating case), a star can be taken
to consist of spherical shells (Fig. 2.1), which means the equations of stellar structure can be written with
respect to only one spatial coordinate. The independent coordinates are then the time t and either the
radial distance r from the centre of the star (Eulerian formulation) or the corresponding mass coordinate
m (i.e. enclosed mass; Lagrangian formulation).

The equations of stellar structure express the conservation of various quantities a closed system must
have. These are the conservation of mass, momentum, and energy, with an additional equation describing
energy transport.

2.1.1 Equations of stellar structure

The mass of the shell in Fig. 2.1 at some time t0 can be written as dm = 4πr2ρ(r) dr, where ρ is the
density in the shell. This immediately leads to the equation for conservation of mass:

∂m
∂r

= 4πr2ρ, (2.1)

1 This section briefly summarises relevant material from any textbook on stellar structure and evolution, such as that of
Kippenhahn, Weigert and Weiss (2012).
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Figure 2.1: Schematic illustration of a shell of stellar matter between coordinates r and r + dr in a spherically
symmetric star. Over the distance dr various quantities change by amounts of, e.g. dm = me − mi, dP = Pe − Pi,
dT = Te − Ti, dl = le − li. g indicates the direction of gravitational acceleration.

The second equation expresses the conservation of linear momentum. A global acceleration r̈ of a stellar
layer will result if the gravitational force g dm with acceleration g = Gm/r2 is not balanced by the
pressure gradient force ∂P

∂r dr 4πr2:
∂2r
∂t2 = −

Gm
r2 −

1
ρ

∂P
∂r
. (2.2)

In all our models we assume hydrostatic equilibrium (r̈ = 0). This is a good approximation for our
purposes since a star will readjust to any perturbation from hydrostatic equilibrium on the dynamical
timescale (a star that is not about to explode or collapse, that is, but we do not deal with such stars here),
which is much shorter than any timescales of interest in this study (e.g. the dynamical timescale of the
Sun is about 25 minutes). The second equation of stellar structure thus becomes:

∂P
∂r

= −ρg. (2.3)

Conservation of energy requires that the energy generated (or consumed) by the shell dl equals the energy
generation rate per unit mass ε times the mass dm of the shell, which gives the third equation of stellar
structure:

∂l
∂r

= 4πr2ρε. (2.4)

The final equation of stellar structure is that of energy transport (Sect. 2.1.3). In the interiors of stars the
radiative transport of energy can be well described in the diffusion approximation because the mean-free-
path of photons is very small (of the order of centimetres) compared to the size of the star. The energy
transport equation can then be written as

∂T
∂r

= −
3

16πac
κρl

r2T 3 , (2.5)

where T is temperature, a is the radiation density constant, c is the speed of light, and κ is the opacity of
the stellar matter (Sect. 2.1.4).

2.1.2 Lagrangian formulation

It is more convenient to consider m as the independent variable instead of r because then the movement
of a shell over time is accounted for implicitly. Applying the chain rule ∂m = ∂r

∂r
∂m to m and using Eq.

(2.1), the conservation of mass can be expressed as

∂r
∂m

=
1

4πr2ρ
. (2.6)
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Applying the same rule to the other equations gives

∂P
∂m

= −
g

4πr2 = −
Gm
4πr4 , (2.7)

∂l
∂m

= ε, (2.8)

∂T
∂m

= −
3

64π2ac
κl

r4T 3 . (2.9)

In Eq. (2.8) ε consists of multiple terms owing to, e.g. nuclear energy generation, gravitational expansion
or contraction, and neutrino emission. Equations (2.6)-(2.9) determine the structure of a star of a given
composition at a given time. To follow the evolution of a star over time, the changes in its chemical
composition as a result of nuclear reactions and mixing of the stellar matter need to be tracked. This
discussion is deferred until Chapter 3.

The equations of stellar structure and evolution need to be supplemented by an equation of state that
relates the density to the other thermodynamic quantities and the composition, i.e. a relation ρ = ρ(P,T, Xi)
has to be specified, where Xi is the mass fraction of species i. The energy generation terms encapsulated
in ε and the opacity need to be similarly expressed, i.e. ε = ε(P,T, Xi) and κ = κ(P,T, Xi).

In the case of rotating stars an additional equation needs to be introduced describing the internal
evolution of specific angular momentum. Furthermore, Eqs. (2.7) and (2.9) need to be modified, and the
interpretation of some of the variables changes. These complications are described in Sect. 2.2.

2.1.3 Radiative and convective energy transport

Equation (2.9) can be written with the help of Eq. (2.7) as

∂T
∂m

=
T
P
∂ ln T
∂ ln P

∂P
∂m

= −
Gm
4πr4

T
P
∇, (2.10)

where we have defined ∇ = ∂ ln T
∂ ln P , a quantity that describes the variation of temperature with depth

measured in terms of pressure. The value of ∇ depends on the convective stability of the medium. In
convectively stable (radiative) regions

∇ = ∇rad =
3

16πacG
κlP
mT 4 . (2.11)

∇rad is the temperature gradient required for radiation (and conduction, when κ is appropriately defined,
see Sect. 2.1.4) to be able to carry all of the energy flux. If the actual temperature gradient (∇) is smaller
than ∇rad, only a part of the energy flux,

Frad =
4acG

3
mT 4

κPr2∇, (2.12)

can be transported by radiation. The rest needs to be carried by convection. When convection is efficient,
the temperature gradient tends to the adiabatic value

∇ → ∇ad =

(
∂ ln T
∂ ln P

)
s

=
Pδ

TρcP
, (2.13)
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where s is the specific entropy, δ = − (∂ ln ρ/∂ ln T )P,µ, and cP is the specific heat capacity at constant
pressure. A region is dynamically stable against convection when

∇rad < ∇ad. (2.14)

This is known as the Schwarzschild criterion. Properly evaluating ∇ when ∇rad > ∇ad requires a theory
of convection, which is a notoriously difficult problem. In the stellar context convection is typically
modelled using the mixing length theory (MLT; Böhm-Vitense, 1958).

The basic picture of MLT envisions convective motions to consist of single-sized macroscopic blobs of
material. Buoyancy forces make blobs hotter than their surroundings rise while blobs cooler than their
surroundings sink. Such motions result in a net energy flux Fconv, which carries a fraction of the total
energy flux given by

Fconv + Frad =
4acG

3
mT 4

κPr2∇rad. (2.15)

The blobs travel some distance ` (a mixing length) before dissolving in the surroundings. This distance is
taken to be some multiple αMLT of the local pressure scale height HP. Hence,

` = αMLTHP (2.16)

with
HP = −

dr
d ln P

=
P
gρ
. (2.17)

Estimates of the velocity of the blobs, their temperature excess, and the convective flux in terms of
temperature gradients yield additional equations to Eqs. (2.12) and (2.15). The resulting system of
equations can be reduced to a single cubic equation, the sole real root of which gives ∇.

The value of αMLT is a free parameter in the mixing length theory. It is typically calibrated by requiring
that a model with M = 1 M� has R = 1 R� and L = 1 L� at the solar age, which yields values of αMLT
around two (Stancliffe, Fossati, Passy et al., 2016). All models presented in this thesis have αMLT = 2.

2.1.4 Opacity of stellar matter

The opacity κ appearing first in Eq. (2.5) characterises the transparency of stellar material to energy
transport. A large opacity implies that energy transport is inefficient. For example, as indicated by Eq.
(2.12), for radiation to carry a certain amount of energy, a larger temperature gradient is required in
regions of higher opacity.

The opacity of material is generally frequency dependent, so the value of κ appearing in Eq. (2.5) must
be some proper average over frequency. The radiation flux inside the star can be well approximated as
that from a black-body radiator with temperature T . The energy density of such radiation is given by

Uν(T ) =
4π
c

Bν(T ) =
8πh
c3

ν3

exp (hν/kBT ) − 1
, (2.18)

where h is the Planck constant, kB is the Boltzmann constant, and Bν is the intensity of radiation.
The radiation flux in the frequency range [ν, ν + dν] in the diffusion approximation can be written as
Fν = −Dν

∂Uν

∂r , where

Dν =
1
3

c`γ =
1
3

c
κνρ

(2.19)

is the diffusion coefficient for radiation, `γ is the mean free path of photons, and κν is the absorption
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2.1 Equations governing the evolution of a star

cross-section per unit mass, i.e. the opacity of the material in the frequency range [ν, ν + dν]. Integrated
over all frequencies, the monochromatic radiation flux has to equal the total radiative flux:

Frad =

∫
Fν dν = −

1
3

c
ρ

∫
1
κν

∂Uν

∂r
dν = −

4π
3ρ

∂T
∂r

∫
1
κν

∂Bν
∂T

dν . (2.20)

Replacing ∂T/∂r by Eq. (2.5) and Frad by l/
(
4πr2

)
and simplifying gives

1
κ

=
π

acT 3

∫
1
κν

∂Bν
∂T

dν =
1
κR
. (2.21)

κR is known as the Rosseland mean opacity.
Combining Eqs. (2.20) and (2.21), one can write

Frad = −
4acT 3

3ρκR

∂T
∂r
. (2.22)

Collisions of particles caused by their random thermal motion can also contribute to energy transport,
particularly in dense, degenerate matter, such as the helium cores of low-mass post-main-sequence stars.
This conductive energy flux can be written in analogy with the radiative flux as

Fcond = −
4acT 3

3ρκcond

∂T
∂r
. (2.23)

The total flux is thus

Frad + Fcond = −
4acT 3

3ρκtot

∂T
∂r

(2.24)

with
1
κtot

=
1
κR

+
1

κcond
. (2.25)

Independent opacities thus add harmonically instead of algebraically (κtot , κR + κcond), which illustrates
why opacity is a measure of the transparency of material to energy transport. It is the opacity given by
Eq. (2.25) that is to be used in the stellar structure equations.

2.1.5 Numerical implementation

Non-Lagrangian mesh In a typical stellar evolution code the equations of stellar structure given by
Eqs. (2.6)-(2.8), and (2.10) are discretised in the range 0 ≤ m ≤ M (where M is the total mass of the star)
at a few hundreds to a few thousands of meshpoints. Regions where various quantities change rapidly
(with respect to the mass coordinate) are assigned more meshpoints, whereas regions where quantities
change slowly can be less well resolved. As a model is evolved, meshpoints are inserted or removed as
necessary.

In the stars code the number of meshpoints K is instead fixed at the beginning of a simulation.
These meshpoints are then redistributed during a simulation such that more meshpoints are moved to
regions where a higher resolution is required from regions where the requirements are not as high. The
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Chapter 2 Modelling the structural evolution of stars

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

0.02 −0.05 1018 0.45 2 × 104 0.5 0.15 1015 1099 0.1 5 × 105/1.0

Table 2.1: Typical values of the mesh spacing function coefficients, assuming the physical quantities in Eq. (2.26)
are in cgs units. The value of c11 depends on whether the term concerns T or log P. For stars without a convective
envelope c10 = 0, and a different set of constants is normally used during the AGB phase.

distribution of the meshpoints is decided by a mesh spacing function given by

Q(m, r,T, P) = ln
(

c1

c1 + (m/M)2/3

)
+ c2 ln

(
r2

c3
+ 1

)
+ c4 ln

(
T

T + c5

)
+ ln

[
Pc6

(
P + c8

P + c9

)c7
]

+ c10

(
tanh

(
y − ybce

c11

)
− 1

)
, (2.26)

where c1 . . . c11 are suitably chosen constants (Table 2.1).2 The last term was introduced during this
thesis to increase the resolution at the base of the convective envelope in low-mass stars: y here stands
for either T or log P and ybce is the corresponding value at the base of the envelope.

The meshpoints are distributed at equal intervals of Q, which requires solving an additional equation:

∂m
∂k

=
dQ
dk

(
dQ
dm

)−1

= C

(
∂Q
∂m

+
∂Q
∂r

∂r
∂m

+
∂Q
∂T

∂T
∂m

+
∂Q
∂P

∂P
∂m

)−1

(2.27)

where k is meshpoint number and C is a constant whose value depends on the total number of meshpoints,
the mesh spacing function coefficients, and time. The stellar structure equations for quantities r, P,T, l
then become

∂

∂m
→

∂

∂k
=

∂

∂m
∂m
∂k
, (2.28)

and time derivatives become
∂

∂t
→

d
dt

=
∂

∂t
+

∂

∂m
∂m
∂t
. (2.29)

The stars code is thus unusual among stellar evolution codes in that it is not Lagrangian. The original
intent behind this approach was that generally fewer meshpoints are required to resolve a stellar model
adequately, which speeds up calculations, particularly during phases in which thin shell-burning sources
are present (Eggleton, 1971). About 1000 meshpoints are more than sufficient for most applications
(as in, increasing the number of meshpoints does not change the results), even for AGB modelling.
Discretisation of the equations gives a linear system of equations, which is solved using a Henyey scheme
(Henyey, Wilets, Böhm et al., 1959; Henyey, Forbes and Gould, 1964; Kippenhahn et al., 2012).

Time stepping The stars code uses an adaptive timestep. After a model has converged, the changes
δxk

i in all the variables i at each meshpoint k from the previous model are summed up to get

∆ =
∑

i

∑
k

∣∣∣δxk
i

∣∣∣ . (2.30)

2 Choosing “suitable” values is a rather arcane and dark art. To the author’s disappointment, all attempts to find “better” values
of c1 . . . c9 have proved largely unfruitful.
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2.1 Equations governing the evolution of a star

To set the value of the next timestep, this quantity is compared to a pre-defined value ∆0 so that the next
timestep is

δt = δtprev ×
∆0

∆

K
K0
. (2.31)

Larger ∆0 allows the code to use larger timesteps. The factor K/K0 makes sure that changing the number
of meshpoints does not change the timestep for a given value of ∆0. To avoid large changes in the timestep
from model to model, δt is limited to not differ from δtprev too much (more than 15%, by default).

Simulating mass accretion The mass transfer process in real binary systems is a complicated process
that depends on the structure of the two stars and the orbital separation and eccentricity. While the stars
code is capable of modelling the two stars simultaneously,3 and the time-dependent transfer of material
between them under different assumptions for the mass (and angular momentum) transfer efficiency,
a simpler approach is employed here. To increase the mass of the star, one uses the surface boundary
condition

dM
dt

= Ṁa, (2.32)

where Ṁa is some constant. Since this will add new material to the star, one also needs to consider the
surface boundary condition for chemical composition. To simply increase the mass of the model without
changing the composition (e.g. to generate a series of models of different masses at a given evolutionary
stage), one uses

XK
i − XK−1

i = 0 (2.33)

for all species i (meshpoint K denotes the surface). To simulate the accretion of material of a different
composition, one can instead use

XK
i − Xa

i = 0, (2.34)

where Xa
i is the mass fraction of species i in the accreted material. The composition gradient between

the material originally present in the star and the accreted material resulting from a direct application of
Eq. (2.34) is often so steep that the code has convergence issues. To aid convergence, instead of Xa

i one
typically uses 1

2 (XK
i + Xa

i ), so the surface reaches XK
i ≈ Xa

i over a few models. This implies that the mass
of the region with altered composition is actually slightly smaller than the amount by which the mass
of the model is increased. However, since the initial timestep during accretion is small (δt ∼ yr), this
inconsistency is inconsequential.

The values of Xa
i are pre-defined. They are set here according to the average ejecta compositions of the

AGB models of Lugaro, Karakas, Stancliffe et al. (2012). In other words, Xa
i equals δMi/δM, the total

amount of element i lost compared to the total amount of mass lost by their AGB models. AGB models
of different initial masses lose different amounts of mass (δM) of different composition (δMi). Hence,
by choosing an appropriate set of Xa

i , accretion of material from different AGB stars can be simulated
without modelling the two stars simultaneously. This allows us to focus only on the subsequent evolution
of the accreting star.

This approach also allows us to create a regular grid of models in terms of mass accreted, which we
denote by ∆M. Different values of ∆M can be taken to approximate different orbital separations: larger
values of ∆M imply larger mass accretion efficiencies, which should be characteristic of more tightly
bound binary systems. However, for convenience the mass accretion rate is set to Ṁa = 10−6 M� yr−1

in all models presented in Chapters 4 and 5. This choice is inherited from Stancliffe, Glebbeek, Izzard

3 In fact, modelling stellar binaries is built in at the very core of the stars code: in single star mode the companion is simply
treated as a point mass at an extremely large distance.
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Figure 2.2: Mass accretion efficiency and rates in a system with M1 = 1 M� and M2 = 0.7 M� assuming BHL-like
accretion. The dashed lines correspond to Ṁ1 = 3 × 10−5 M� yr−1 for two different wind velocities. The shaded
area shows (on the right y-axis) Ṁa when Ṁ1 = (2–4) × 10−5 M� yr−1.

et al. (2007) and Stancliffe and Glebbeek (2008), who estimated this value based on the BHL rate given
by Eq. (1.20). Figure 2.2 shows an example system with M1 = 1 M�, M2 = 0.7 M�. At a = 10 au,∣∣∣Ṁa/Ṁ1

∣∣∣ varies between 0.035 and 0.1 for wind velocities between 15 and 10 km s−1 (dashed lines). At
a = 5 au the accretion efficiencies are between 0.085 and 0.19. The corresponding mass accretion rates
are close to 10−6 M� yr−1 or greater, assuming mass-loss rates of Ṁ1 ' (2–4) × 10−5 M� yr−1 on the
AGB (Vassiliadis and Wood, 1993; Ramstedt and Olofsson, 2014).

2.2 Rotating stars

The problem of stellar rotation is at least two-dimensional because of the centrifugal force, which makes
the gravity in a rotating star depend not only on the radial coordinate, but also on the angle θ from the
rotation axis (Fig. 2.3):

geff =

(
−

Gm
r(θ)2 + Ω2r(θ) sin2 θ

)
er +

(
Ω2r(θ) sin θ cos θ

)
eθ, (2.35)

where Ω is the angular velocity.
Nevertheless, rotating stars can still be reasonably well modelled with a one-dimensional stellar evolu-

tion code, provided some modifications to the stellar structure equations are made. These modifications
are described in Meynet and Maeder (1997) and generalise those described by Kippenhahn and Thomas
(1970) and Endal and Sofia (1976). The following subsections summarise relevant material from the
textbook of Maeder (2009).

2.2.1 Shellular rotation

Generally, Ω can depend on both r and θ. However, it was argued by Zahn (1992) that any horizontal shear
would induce strong anisotropic turbulence because of the low viscosity of stellar material. By anisotropic,
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2.2 Rotating stars

Figure 2.3: The two-dimensional nature of rotation. The radius of a non-rotating star is everywhere the same
(R(θ) = Rpol = Req) and the gravity geff points towards the centre, but in a rotating star both R and geff depend on
the angle from the rotation axis θ because of the centrifugal acceleration.

he distinguished the r and θ directions: turbulence is free to develop only in the θ (horizontal) direction.
Such turbulence would enforce Ω(r, θ) ≈ Ω(P). This insight allowed Meynet and Maeder (1997) to
adapt the earlier work of Kippenhahn and Thomas (1970) and Endal and Sofia (1976) and formulate
the equations of stellar structure on isobars, which generally no longer coincide with equipotentials. In
particular, the isobaric surfaces are given by constant values of

Ψ = −
Gm

r
−

1
2

Ω2r2 sin2 θ. (2.36)

In cases with Ω(r, θ) = const these are also equipotential surfaces because then ~∇Ψ =
(
∂Ψ
∂r ,

1
r
∂Ψ
∂θ , 0

)
= −geff

(see Eq. (2.35)). But generally,

∂Ψ

∂r
=

Gm
r2 −Ω2r sin2 θ − r2 sin2 θΩ

∂Ω

∂r
, (2.37)

1
r
∂Ψ

∂θ
= −Ω2r sin θ cos θ − r2 sin2 θΩ

1
r
∂Ω

∂θ
(2.38)

and hence
geff = −~∇Ψ − r2 sin2 θΩ~∇Ω =

1
ρ
~∇P, (2.39)

where the second equality expresses hydrostatic equilibrium.
Formulated on isobars, the equations of stellar structure largely remain the same, but the interpretation

of some of the physical variables changes. In particular, for an isobaric surface with area SP enclosing
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volume VP one can define the radius rP of a sphere of the same volume:

rP =

(
3VP

4π

) 1
3

. (2.40)

This is the radial coordinate to be used in rotating stars with shellular rotation. Geometrically, it
corresponds roughly to r(θ0) = r(54.7◦) where sin2 θ0 = 2/3. Other quantities q represent their averages
on an isobar, formally defined according to

〈q〉 =
1

SP

∫
q dsP , (2.41)

where dsP is a surface element of the isobar.

2.2.2 Modifications to stellar structure equations

By introducing α = |∂Ω/∂Ψ| such that ∇Ω = −α∇Ψ, one can write the modulus of geff as

geff =
(
1 − r(θ)2 sin2 θΩα

) ∂Ψ

∂rP
, (2.42)

which gives for the equation of hydrostatic equilibrium

∂P
∂rP

= −ρgeff = −ρ
(
1 − r(θ)2 sin2 θΩα

) ∂Ψ

∂rP
. (2.43)

If the mass enclosed by an isobaric surface is mP, then dmP =
∫
ρ drP dsP = dΨ

∫
ρ (∂rP/∂Ψ) dsP. With

the above two equations and Eq. (2.41) this becomes

∂P
∂mP

= −
1

〈g−1
eff
〉SP

. (2.44)

If we define

fP =

4πr2
P

SP

 1(
GmP/r2

P

)
〈g−1

eff
〉
, (2.45)

we get the equation of hydrostatic equilibrium in shellular rotation (cf. Eq. (2.7)):

∂P
∂mP

= −
GmP

4πr4
P

fP. (2.46)

The continuity equation also remains similar to its non-rotating form,

∂rP

∂mP
=

1
4πr2

Pρ̄
, (2.47)

if one uses the density in the volume element between neighbouring isobars ρ̄ (approximately equal to
the average density on an isobar, although formally not the same). To this measure of density, one can
assign a temperature T̄ via the equation of state. If the energy generation rates and opacities are then
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evaluated at this pair of ρ̄ and T̄ to yield ε̄ and κ̄tot, Eq. (2.8) becomes

∂lP

∂mP
= ε̄, (2.48)

and from Eqs. (2.10) and (2.46) the energy transport equation becomes

∂T̄
∂mP

= −
GmP

4πr4
P

T̄
P

fP∇̄. (2.49)

In convective regions ∇̄ ≈ ∇̄ad (Eq. (2.13)). In radiative regions we have, via Eqs. (2.24), (2.43) and
(2.44),

Frad + Fcond =
lP

SP
= −

4acT̄ 3

3κ̄
∂T̄
∂mP

geff〈g
−1
eff 〉SP. (2.50)

From here we get via Eq. (2.11) that

∂T̄
∂mP

= −
GmP

4πr4
P

T̄
P
∇̄rad

4πr2
P

SP

2
1

〈geff〉〈g
−1
eff
〉

 , (2.51)

where geff has been replaced by 〈geff〉. To retain the form of Eq. (2.49), we require in radiative regions
∇̄ =

fT
fP
∇̄rad, which defines the second deformation parameter:

fT =

4πr2
P

SP

2
1

〈geff〉〈g
−1
eff
〉
. (2.52)

Thus the equations of stellar structure of stars with shellular rotation profiles remain the same as those
for their non-rotating counterparts, except for the deformation parameters fP and fT , which tend to unity
as the rotation rate goes to zero.

2.2.3 The surface of the star and critical rotation

The surface of a star is given by Ψ = const. Since at the pole θ = 0, Ψ = −GM/Rpol, and from Eq. (2.36)
we have that the surface is given by the isobar

GM
R(θ)

+
1
2

Ω2R(θ)2 sin2 θ =
GM
Rpol

. (2.53)

Unless our star is to have mountains, this surface must also be an equipotential.4

When the centrifugal acceleration equals the gravitational acceleration, the star is said to be at critical
rotation. This happens first at the equator, where the centrifugal acceleration is largest (sin θ = 1). The
radial component of geff disappears when

Ω = Ωc =

√
GM
R3

eq,c
, (2.54)

4 To be precise, the surface is indeed an equipotential but not exactly an isobar. Rigorously, owing to Eq. (2.39) the equation
should have another (comparatively small) term on the left-hand side (Maeder, 2009). However, Eq. (2.53) still applies to the
outermost isobar, as well as any isobar within the star when M, R and Rpol are replaced by the local values (mP, r and rpol,
respectively).
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where Req,c is the equatorial radius at critical rotation. Inserting this into the surface equation above gives

Req,c =
3
2

Rpol,c. (2.55)

Hence, at critical rotation the equatorial radius is 1.5 times as large as the polar radius. It is the equatorial
radius that changes substantially as the rotation rate is increased. The polar radius stays approximately
constant (Ekström, Meynet, Maeder et al., 2008), i.e. Rpol,c ≈ Rpol. Introducing x = R/Rpol and ω = Ω/Ωc
into Eq. (2.53) we get (Georgy, Meynet and Maeder, 2011)

4x3ω2 sin2 θ − 27x + 27 = 0. (2.56)

For a given ω ∈ [0, 1] the equation has three roots, the only physical one of which relates the isobaric
radius RP to the polar radius Rpol. At critical rotation

RP,c ≈ 1.15Rpol,c. (2.57)

As the effective gravity disappears when Ω2
cReq = GM/R2

eq, at the isobaric radius, where sin2 θ = 2/3, we
have instead

2
3Ω2

cRP

GM/R2
P

=
2
3

(
RP,c

Req,c

)3

≈
2
3

(
1.15
1.5

)3

≈ 0.3, (2.58)

and hence in terms of the isobaric radius the critical rotation rate is given by

Ωc ≈

√
0.45

GM
R3

P,c

. (2.59)

2.2.4 Transport of angular momentum

The internal transport of specific angular momentum j = Ωr2
P is in general governed by an advection-

diffusion equation that expresses the internal conservation of angular momentum:

∂ j
∂t

=
1

5ρ̄r2
P

∂

∂rP

(
ρ̄r2

P jU
)

+
1
ρ̄r2

P

∂

∂rP

(
ρ̄r4

P (Drot + Dconv)
∂Ω

∂rP

)
, (2.60)

where Drot = Drot(rP) is the diffusion coefficient for diffusive transport in radiative zones, Dconv =

Dconv(rP) is the diffusion coefficient in convective zones (Sect. 3.2.1), and U = U(rP) accounts for
advective transport. The meridional circulation velocity U arises as a result of the local breakdown of
radiative equilibrium (Sect. 1.3.2). Its evaluation is very complicated and involves spatial derivatives of
Ω of up to third order, making the equation fourth order in space (Zahn, 1992; Maeder and Zahn, 1998).
In an attempt to capture this complexity at lower spatial order, Potter et al. (2012b), on whose work
the current implementation of rotation in the stars code is based on (Sect. 2.2.6), introduced additional
constants in the evaluation of U that have to be calibrated against observations or other models, which
makes the approach rather ad-hoc.

Alternatively, the meridional circulation can also be modelled as a diffusive process associated with a
diffusion coefficient that enters Drot. This reduces Eq. (2.60) to a diffusion equation:

∂ j
∂t

=
∂

∂mP

(
Drotr2

P
∂Ω

∂mP

)
, (2.61)
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with Drot =
(
4πr2

Pρ̄
)2

(Drot + Dconv). This approach to modelling the internal transport of angular
momentum has a long tradition and is adopted in many actively used stellar evolution codes (e.g.
Pinsonneault, Kawaler, Sofia et al., 1989; Heger, Langer and Woosley, 2000; Yoon and Langer, 2004;
Paxton, Cantiello, Arras et al., 2013).

2.2.5 Diffusion coefficients

The diffusive approach to modelling the internal evolution of angular momentum is also adopted in this
work, and this section gives the terms entering Eq. (2.61) via Drot. The medium in a rotating star is subject
to a host of instabilities that can result in angular momentum redistribution. Two of the more important
transport processes, meridional (Eddington-Sweet) circulation and shear (dynamical and secular) mixing,
were already mentioned in Sect. 1.3.2. Following Heger et al. (2000), the stars code also accounts for
the GSF (Goldreich and Schubert, 1967; Fricke, 1968) and Solberg-Høiland instabilities (Wasiutynski,
1946).

In most cases, the diffusion coefficients associated with each instability are expressed as a product of
some characteristic velocity v and a typical length-scale (typically the scale height Hv of the corresponding
velocity). For example, the diffusion coefficient associated with the Eddington-Sweet circulation is written
as DES = Hv,ESvES. The separate diffusion coefficients are then summed up to get the total diffusion
coefficient Drot (Heger et al., 2000):

Drot = DES + DSSI + DDSI + DGSF + DSH. (2.62)

The velocities corresponding to the Eddington-Sweet circulation (Kippenhahn, 1974), the secular shear
instability (Endal and Sofia, 1978), and the GSF instability (Endal and Sofia, 1978) are, respectively,5

vES = max
{
|ve| −

∣∣∣vµ∣∣∣ , 0} , (2.63)

vSSI =

√√(
µp + µr

)
ρRec

(
r
∂Ω

∂r

)
, (2.64)

vGSF = max
{∣∣∣∣∣∣2HT

H j

∂ ln Ω

∂ ln r
ve

∣∣∣∣∣∣ − ∣∣∣vµ∣∣∣ , 0} (2.65)

with

ve =
2∇ad

δ (∇ad − ∇rad)
Ω2r5

(Gm)2

(
εnuc + εν −

l
m
−

3l
8πr3ρ

)
, (2.66)

vµ =
HPr (l − mεν)

Gm2

ϕ
δ∇µ

(∇rad − ∇ad)
. (2.67)

In these equations, µp and µr are the plasma and radiation viscosity coefficients (Schatzman, 1977; Maeder,
2009); Rec is the critical Reynolds number; HT and H j are the temperature and angular momentum scale
heights; εnuc and εν are the energy generation rates due to nuclear reactions and neutrino losses (εν < 0);
δ = − (∂ ln ρ/∂ ln T )P,µ; ϕ = (∂ ln ρ/∂ ln µ)P,T and ∇µ is defined in analogy with ∇rad as the variation of
the mean molecular weight with depth:

∇µ =
∂ ln µ
∂ ln P

. (2.68)

5 Henceforth the subscripts and over-bars are generally omitted for simplicity.
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As sketched in Sect. 1.3.2, the Richardson number has to exceed a certain value for the medium to be
dynamically stable against shear, i.e. Ri > Ric = 1/4. This can be more conveniently expressed as

Ri = N2
(
r
∂Ω

∂r

)−2

> Ric, (2.69)

where
N2 = N2

T + N2
µ =

geffδ

HP
(∇ad − ∇rad) +

geffϕ

HP
∇µ (2.70)

is the Brunt-Väisälä frequency. Medium with N2 < 0 is unstable to convection according to the Ledoux
criterion. In chemically homogeneous regions the condition N2 < 0 reduces to the Schwarzschild
criterion given by Eq. (2.14). The diffusion coefficient associated with the dynamical shear instability is
taken to be

DDSI =
H2

P

τdyn
min

[
1, (1 −min {Ri/Ric, 1})2

]
, (2.71)

where τdyn =
√

r3/ (Gm) is the local dynamical timescale, and the term in the brackets gradually turns
on the instability in the range 0 < Ri < Ric. The secular shear instability sets in if Ri > Ric but

max

Rec

8

(
µp + µr

)
κTρ

N2
T ,N

2
µ


(
r
∂Ω

∂r

)−2

< Ric. (2.72)

The thermal diffusivity κT is given by Eq. (3.6).
There is no condition for stability against meridional circulation other than Ω(r) = 0. In other words,

meridional currents will arise in a rotating star (Eq. (2.66)). For the GSF instability to set in, it is sufficient
to violate ∂Ω/∂z = 0, where z is the vertical coordinate parallel to the rotation axis. This is always
the case in shellular rotation, so we expect the medium to be GSF-unstable as long as there is some
differential rotation (Eq. (2.65)). Nevertheless, the transport of angular momentum resulting from both of
these instabilities is inhibited in chemically inhomogeneous regions (Mestel, 1953; Pinsonneault et al.,
1989). This effect is modelled by the so-called µ-current velocity vµ in Eqs. (2.63) and (2.65), following
Kippenhahn (1974). However, various observational constraints indicate that applying vµ as given by Eq.
(2.67) tends to inhibit the transport too much. Thus, the effectiveness of µ-gradients is artificially reduced
by replacing ∇µ with fµ∇µ (Pinsonneault et al., 1989). By default, fµ = 0.05 (Heger et al., 2000).

Finally, the Solberg-Høiland instability leads to mixing on the dynamical timescale if

RSH = N2 +
1
r3

∂ j2

∂r
< 0. (2.73)

Thus, a region in a star will be stabilised against convection if j locally increases outwards and destabilised
if j locally decreases outwards. The associated diffusion coefficient is taken to be

DSH =
H2

P

τdyn

(
rRSH

geff

)2

. (2.74)

2.2.6 Numerical implementation

The implementation follows closely that of Adrian Potter, who was kind enough to share the version of
the stars code described in Potter et al. (2012b) and Potter, Tout and Brott (2012a) and his PhD thesis
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2.2 Rotating stars

(Potter, 2012).
The main approximation, compared to what is described above, is that the density is assumed to be

uniform on isobars, i.e. ρ̄ = 〈ρ〉 = ρ. This approximation is based on the assumption that the horizontal
(θ-direction) turbulence is strong enough to make density variations on isobars negligible (Zahn, 1992).

Isobaric surfaces The surface element of a spherical surface can be written as ds = r2 sin θ dθ dϕ,
where ϕ is the longitude such that ϕ̇ = Ω and

∫
dϕ = 2π. The surface element of an isobaric surface is

instead (Maeder, 2009)

dsP =
r(θ)2 sin θ

cos ε
dθ dϕ , (2.75)

where ε is the angle between −geff and er in Fig. 2.3. With the effective gravity written in terms of ω and
x (Sect. 2.2.3) as

geff =
Gm
r2

pol

√(
−

1
x2 +

8
27
ω2x sin2 θ

)2

+

(
8
27
ω2x sin θ cos θ

)2

, (2.76)

the angle ε is given by the cosine theorem:

cos ε = −
geff · er

|geff| |er |
=

1
x2 −

8
27ω

2x sin2 θ√(
− 1

x2 + 8
27ω

2x sin2 θ
)2

+
(

8
27ω

2x sin θ cos θ
)2
. (2.77)

x and ω are obtained by solving Eq. (2.56) using the Newton-Raphson method. In the current version
of the code the integral in Eq. (2.41) is first evaluated using the trapezium rule, dividing the integration
domain into a few segments of δθ. Then Romberg’s method (Romberg, 1955) is used, which combines
halving the size of δθ with Richardson extrapolation (Richardson, 1911) to converge to a given precision.
The number of segments required to reach a specified precision is much smaller than without Romberg’s
method. However, the models presented in this thesis were computed with an earlier version of the code,
in which the integral of Eq. (2.41) is replaced with a sum, with the quantities evaluated at forty angles
θi ∈ [0, π], as in Potter et al. (2012b).

Angular momentum accretion Angular momentum accretion is treated in the same way as accretion
of non-standard chemical composition (Sect. 2.1.5). The mass added in a timestep is assigned specific
angular momentum ja so that adding a mass ∆M to a model results in adding angular momentum
∆J = ja∆M. To implement this, the surface boundary condition is modified from

ΩK −ΩK−1 = 0, (2.78)

which in absence of mass loss or gain prevents angular momentum loss or gain at the surface, to

jK − ja = 0. (2.79)

As for Xa
i , this boundary condition is softened by using 1

2 ( jK + ja) instead of ja.
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CHAPTER 3

Modelling the chemical evolution of stars

The chemical structure of the star changes with time as a result of nuclear burning and internal transport
of material by different mechanisms. Formally this is expressed by an advection-diffusion equation:

∂Xi

∂t
= Ri +

∂

∂m

(
Dmix,i

∂Xi

∂m

)
−

∂

∂m
(WiXi) , (3.1)

where Xi is the mass fraction of species i, Ri accounts for its nuclear production/destruction, Dmix,i =(
4πr2ρ

)2
Dmix,i, andWi = 4πr2ρwi. This chapter principally describes the evaluation of the transport

terms entering Eq. (3.1). The diffusion coefficient Dmix,i is developed in Sect. 3.2 and the velocity wi in
Sect. 3.3.

3.1 Chemical species and nuclear network

By default, the stars code solves Eq. (3.1) for seven chemical species: 1H, 3He, 4He, 12C, 14N, 16O, 20Ne.
Three others – 24Mg, 28Si and 56Fe – are included in the computation of, e.g. the mean molecular weight
of the medium, but no equations corresponding to their abundances are solved. Their abundances thus
remain fixed at all times. We have added equations for these three species, such that their abundances can
change as a result of mixing processes (nuclear conversion of these species does not occur in unevolved
low-mass stars).

In astronomical parlance the total abundance of “metals” is

Z =
∑

i,H,He

Xi. (3.2)

However, in stellar evolution codes the size of the network is limited. Therefore, the sum of the mass
fractions of the metals included in the network will be smaller than the desired Z = 1 − XH − XHe when
the abundances are set to some physical scale (such as the Sun). A typical solution is to add the remainder
(in the stars case this is about δZ ≈ 0.05Z) to one of the more massive species, but then the abundance
of that element is no longer representative of any physical scale. To avoid this, we have introduced an
extra pseudo-species in the code whose abundance is set to δZ. This pseudo-species is assigned the
properties (atomic and mass numbers) of one of the existing species (by default 28Si), but its abundance
remains fixed at all times throughout the star. In this way, the pseudo-species contributes to the density
and molecular weight, but allows the abundances of all real elements to remain consistent.
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Reaction chain Q value (MeV)
1H + 1H→ 2H + 1H→ 3He 6.936
3He + 3He→ 4He + 1H + 1H 12.860
4He + 3He→ 7Be→ 7Li + 1H→ 4He + 4He 19.796
4He + 3He→ 7Be + 1H→ 8B→ 8Be→ 4He + 4He 18.774
12C + 1H→ 13N→ 13C + 1H→ 14N 11.715
14N + 1H→ 15O→ 15N + 1H→ 12C + 4He 15.017
14N + 1H→ 15O→ 15N + 1H→ 16O 22.179
16O + 1H→ 17F→ 17O + 1H→ 14N + 4He 5.573
4He + 4He + 4He→ 12C 7.275

Table 3.1: Nuclear reaction chains relevant for evolution of low-mass stars up to core helium flash and the associated
energy release.

The species from 1H to 24Mg are part of a nuclear reaction network, meaning they can be converted
into other species as a result of nuclear reactions. All the models computed during this research were
terminated at the tip of the red giant branch. The relevant nuclear reactions up to that point of evolution
are those making up the pp chains and the CNO cycle. Some of the nuclei involved in these reaction
chains, e.g. 2H and 13C are not followed by the stars code. These minor nuclei are assumed by the code
to be in equilibrium with their progenitor nuclei. For example, the pp chain is assumed to convert three
protons directly into 3He at the rate at which 1H is converted into 2H. The energy release, however, takes
into account all the stages. Table 3.1 summarises the reaction chains in the code relevant for evolution up
to the core helium flash. Most of the individual reaction rates are from Caughlan and Fowler (1988).

3.2 Diffusive mixing

3.2.1 Convection

Regions with ∇rad > ∇ad are unstable to convection. Convective mixing is modelled as a diffusive process
with a diffusion coefficient

Dconv =
1
3
v`, (3.3)

where v is given by the mixing length theory and ` by Eq. (2.16). For convergence reasons, near
the boundaries of convective regions the diffusion coefficient is reduced and behaves like Dconv ∼

(∇rad − ∇ad)2 (Eggleton, 1972). A harmonic mean between this modified coefficient and the one given by
MLT ensures a smooth transition between the two coefficients.

3.2.2 Thermohaline mixing

The regime of thermohaline mixing (Sect. 1.3.1) corresponds formally to 0 ≤ R ≡ (R0−1)
(κT /κµ−1) ≤ 1 (Brown,

Garaud and Stellmach, 2013), where κT and κµ are the thermal and compositional diffusivities, and

R0 =
∇rad − ∇ad

ϕ
δ∇µ

. (3.4)

Outside the regime of thermohaline mixing the fluid is stable if R > 1 (R0 > κT/κµ > 1) and unstable to
regular convection if R < 0 (R0 < 1). The mixing is modelled as a diffusion process, and the formulation
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used here comes from Denissenkov (2010) who derives

Dµ = C

(
κT − κµR0

)
(R0 − 1)

, (3.5)

where C ≈ 5 is a factor deriving from geometrical considerations. The corresponding effective finger
length-to-diameter ratio is about 0.5, similar to that derived by Kippenhahn, Ruschenplatt and Thomas
(1980).1 The diffusivities are

κT =
4acT 3

3κtotρ2cP
, (3.6)

κµ = 1.84 × 10−17 T 5/2

ρ
(1 + 7XH) cm2 s−1. (3.7)

3.2.3 Rotational mixing

The rate and extent of angular momentum transport is determined by the diffusion coefficient Drot
described in Sect. (2.2.5). Transport of chemical species by meridional currents should introduce
horizontal µ-gradients. However, according to the work of Zahn (1992), horizontal turbulence works to
rapidly smear out these gradients (Maeder, 1999; Mathis, Palacios and Zahn, 2004), severely limiting the
transport of chemicals to a slow diffusive process (Chaboyer and Zahn, 1992; Maeder and Zahn, 1998).
Chaboyer and Zahn (1992) derive that the rate of chemical transport by meridional circulation and shears
is thus only about 1/30 that of the transport of angular momentum. Observed surface abundances of
stars also indicate that mixing of chemicals cannot be very efficient. As in Pinsonneault, Kawaler, Sofia
et al. (1989) and Heger, Langer and Woosley (2000), we thus reduce the rotational mixing diffusion
coefficient and use fcDrot = fc (DES + DSSI + DDSI + DGSF + DSH) for chemical mixing with fc = 1/30
(Heger et al., 2000).

3.2.4 Total mixing coefficient

To summarise, the full diffusion coefficient Dmix,i entering Eq. (3.1) viaDmix,i is given by

Dmix,i = Dconv + Dµ + Di + fcDrot, (3.8)

where Di is the concentration diffusion coefficient (Paquette, Pelletier, Fontaine et al., 1986). In convective
regions Dmix,i ≈ Dconv, whereas in radiative regions Dconv = 0 and Dmix,i = Dµ + Di + fcDrot.

3.3 Atomic diffusion

The advective term on the right-hand-side of Eq. (3.1) was introduced into the stars code by Stancliffe
and Glebbeek (2008) based on the earlier work of Pelletier, Fontaine, Wesemael et al. (1986), Paquette
et al. (1986) and Proffitt and Michaud (1991). After briefly describing their implementation in Sect. 3.3.1,
we describe how radiative forces have been accounted for as part of the framework in Sect. 3.3.2.

1 We have since updated the stars code, providing the option to also model thermohaline mixing according to the parameter-free
model of Brown et al. (2013). The results are rather similar among the three prescriptions (i.e. Kippenhahn et al., 1980;
Denissenkov, 2010; Brown et al., 2013) in the context of mass accretion from an AGB donor.
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3.3.1 The diffusion velocity

The expression for the diffusion velocity wi = Wi/
(
4πr2ρ

)
entering Eq. (3.1) is based on the kinetic

theory of gases (Burgers, 1969; Chapman and Cowling, 1970) and consists of three terms (Talon, 2008):

wi =
Di

kBT

[
g (µ − µi) + kBαT,i

∂T
∂r

+ µigr,i

]
. (3.9)

Here Di and αT,i are the atomic and thermal diffusion coefficients, both taken from Paquette et al. (1986),
and g and gr,i are the gravitational and radiative accelerations. The mean molecular weight µ of the
plasma is given by

µ =

(∑ Xi

mi

[
1 + Z̄i

])−1

, (3.10)

and the molecular weights µi of the constituent elements with atomic masses mi are µi = mi/
(
1 + Z̄i

)
.

The effective charges of the elements are given by

Z̄i =

Zi∑
j=0

jNi, j, (3.11)

where Ni, j is the number fraction of ions of element i in the ionisation stage j ( j = 0 corresponds to the
neutral state; by definition, 0 ≤ Z̄i ≤ Zi and

∑
j Ni, j = 1).

The first term in Eq. (3.9) accounts for pressure diffusion and expresses the fact that elements heavier
than the mean molecular weight of the plasma experience an excess gravitational force g (µi − µ), as a
result of which they tend to gradually sink with respect to the lighter elements. This is commonly referred
to as gravitational settling. In a main sequence star only hydrogen is lighter than the mean molecular
weight. Gravitational settling thus leads to an increasingly hydrogen-rich surface as all other elements
settle deeper into the star. The second term in Eq. (3.9) accounts for temperature diffusion, which causes
a similar effect. These two processes are opposed by concentration diffusion, which is already included
in Eq. (3.1) via Eq. (3.8). The fundamental theory describing these types of diffusion is given in Burgers
(1969) and Chapman and Cowling (1970). The third term in Eq. (3.9) has been added as part of this
research as an extension of the work of Stancliffe and Glebbeek (2008). This term accounts for radiative
forces selectively accelerating the elements in the plasma against gravity (Sect. 3.3.2).

The stars treatment of element diffusion is appropriate for trace elements, meaning ni � nb for some
background species b. We take hydrogen to be the background at all times. For hydrogen itself the
diffusion velocity is obtained from imposing mass conservation: XHwH = −

∑
i,H Xiwi. Diffusion in

regions where hydrogen is not dominant is ignored. In the models presented here this only concerns the
hydrogen-exhausted core that develops near the end of the main sequence, and should have no effect on
the evolution of surface abundances.

3.3.2 Radiative accelerations

To estimate the magnitude of the radiative accelerations gr,i in Eq. (3.9), we consider a mixture of different
elements in a radiation field as sketched in Fig. 1.12. The momentum flux in the frequency range between
ν and ν + dν associated with a radiation flux Fν is 1

cFν dν. If the particles of element i with mass mi

absorb some of this flux with a cross-section si(ν), the change in their momentum can be written as
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si(ν) 1
cFν dν. The total change in the momentum of the particles, i.e. the force acting on them, is then

Fr,i = migr,i =
1
c

∫ ∞

0
si(ν)Fν dν . (3.12)

With (see Eq. (2.18)) ∫ ∞

0

∂Bν
∂T

dν =
acT 3

π
=
∂B
∂T

, (3.13)

the monochromatic flux of Eq. (2.20) can be expressed in terms of the total flux:

Fν = −
4acT 3

3ρ
∂T
∂r

1
κν

(∂Bν/∂T )
(∂B/∂T )

=
κR

κν

(∂Bν/∂T )
(∂B/∂T )

Frad. (3.14)

Inserting this into Eq. (3.12) gives for the radiative acceleration of element i:

gr,i =
m̄
mi

κRFrad

c

∫ ∞

0

si(ν)
σν

(∂Bν/∂T )
(∂B/∂T )

dν , (3.15)

where σν is the total radiative cross-section given by σν = κνm̄ for an average atomic mass m̄ = ρ/n. The
ratio si(ν)/σν = fi(ν) is the fraction contributed by element i to the total cross-section at frequency ν, i.e.
σν ≈

∑
N js j(ν), where N j is the number fraction of element j. Further defining

γi ≡

∫ ∞

0
fi(ν)

(∂Bν/∂T )
(∂B/∂T )

dν (3.16)

finally gives

gr,i =
m̄
mi

κRl
4πr2c

γi. (3.17)

According to Eqs. (3.15) and (3.17), radiative accelerations will be important in strong radiation fields
(large l) and for elements able to capture more of the radiation (large fi), which will depend on what
other elements are present in the mixture. These relations make intuitive sense. Another important
dependence, that of composition, is revealed when the ratio of cross-sections is expressed in terms of
opacities (si(ν) = κi(ν)ρ/ni = κi(ν)mi/Xi) to give

gr,i =
κRFrad

Xic

∫ ∞

0

κi(ν)
κν

(∂Bν/∂T )
(∂B/∂T )

dν . (3.18)

Hence, the greater the abundance Xi of the element, the lower the acceleration. This again makes intuitive
sense – all the particles of a given element compete for the same fixed amount of photons.

3.3.3 Atomic processes and absorption cross-sections

The quantity fi(ν) in Eq. (3.16) is what makes evaluating gr,i computationally challenging (see Seaton,
1997). That is because evaluating the absorption cross-sections si(ν) requires knowledge of the absorption
probabilities of the elements at all wavelengths, which, in turn, depend on the electronic structure of the
elements at all ionisation stages and the thermal conditions of the plasma. Furthermore, a photon of a
given frequency may be absorbed by an ion of element i, lifting one of its electrons to a higher energy
state (bound-bound or bb interaction), but ionise an ion j′ of a different element i′. In this bound-free (bf)
case, some of the momentum is imparted to ion j′ + 1, while the rest is carried away by the liberated
electron. The photon can also take part in a three body interaction with an ion and an electron (free-free
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Type Interaction Momentum

bound-bound (bb) [i, j, k] + hν→ [i, j, k′] imparted to ion
bound-free (bf) [i, j, k] + hν→ [i, j + 1, k] + e shared by ion in the next ionisation

stage and electron
free-free (ff) [i, j, k] + hν + e→ [i, j, k] + e redistributed between ion and

electron

Table 3.2: Summary of atomic processes between ions and photons. [i, j, k] is a shorthand for element i in ionisation
stage j in excitation stage k.

or ff interaction), redistributing the momenta between the interacting particles (Table 3.2). Generally,
each chemical element in a mixture will be distributed over multiple ionisation stages (depending on
the temperature and density of the plasma), so deriving the average acceleration of an element requires
taking all of these processes into account.

With these considerations we can write that the cross-section for momentum absorption si(ν) for the
element i is its radiative cross-section for absorption σi(ν), corrected for the fraction of momentum
carried away by electrons:

si(ν) = σi(ν) − σe
i (ν). (3.19)

Meanwhile, the total monochromatic absorption cross-section is generally given by

σν =
∑

i

Niσi(ν) + σs(ν, ne), (3.20)

where σs(ν, ne) is the cross-section for scattering of photons, which depends on the number density of
electrons ne. More explicitly,

σ(ν) =
∑

i

Zi∑
j=0

∞∑
k=0

Ni, j,kσi, j,k(ν) + σs(ν, ne), (3.21)

where indices i, j, k correspond to element, ionisation stage, and excitation stage, respectively, and Zi is
the atomic number of element i. The total quantity fi(ν) can finally be expressed as

fi(ν) =
σi(ν) − σe

i (ν)∑
j N jσ j(ν) + σs(ν, ne)

. (3.22)

3.3.4 Monochromatic data

Evaluation of the radiative accelerations requires knowledge ofσi(ν), σe
i (ν), andσs(ν) for all temperatures

and densities of interest. The atomic data used here are those made available as part of the Opacity
Project (OP; Seaton, 1997; Badnell, Bautista, Butler et al., 2005; Seaton, 2007). The Opacity Project
(version 3.32) provides the monochromatic cross-sections σi(ν) and corrections σe

i (ν) for 17 chemical
elements (H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe, Ni), which include all of the
elements in the stars network.

The data are tabulated on a (log T, log ne) grid in the temperature range log T = 3.5–8.0 with a spacing
of ∆ log T = 0.025. The ne range depends on temperature and has a spacing of ∆ log ne = 0.25. At

2 http://cdsweb.u-strasbg.fr/topbase/TheOP.html
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3.3 Atomic diffusion

each grid point (about 1500 in total), the monochromatic data are tabulated at 104 frequency points (see
Appendix A for details). The memory requirement for storing all of the monochromatic data is about 1
GB.

Photon scattering in most of the temperature and density range is dominated by free electrons. The
cross-section σs(ν, ne) is thus normally proportional to the Thomson cross-section for electrons:

σs(ν, ne) = σs(ne) =

(ne

n

)
σe

T =

(ne

n

) (8π
3

) (
e2

mec2

)2

, (3.23)

where e is the elementary charge. Some frequency-dependent modifications are made at low temperatures
(Rayleigh scattering by hydrogen and helium) and at high temperatures and densities (Boercker, 1987;
Seaton, 1997).

3.3.5 Numerical implementation

The OP data come bundled with OPserver (Mendoza, Seaton, Buerger et al., 2007), a Fortran module that
is intended to facilitate the computation of opacities and radiative accelerations from OP data in stellar
evolution calculations. While the OPserver module contains routines with slightly different strategies
for computing κR and γi, the strategy for computing κR at some specified temperature T0, density ρ0 and
composition X0 generally involves computing κR on the entire (log T, log ne) grid, interpolating the data
to a (log T, log ρ) grid, and computing derivatives with respect to T and ρ prior to interpolating to (T0, ρ0).
The strategy for computing γi is similar, except the acceleration of only one element in the mixture can
be computed at a time, and derivatives with respect to the abundance of that element are computed.

This strategy, in particular the computation of γi, was found to be very costly for stellar evolution
calculations. A conceptually straight-forward alternative would be to take the local properties of
the plasma (temperature, density, composition), compute the opacities and accelerations from the
monochromatic data on neighbouring (log T, log ne) gridpoints, and interpolate to the desired temperature
and density. This approach was found to be computationally prohibitive, at least with the numerical
routines packaged with OPserver, and was not pursued fully.

In the end we settled for a heavily modified version of the OPserver strategy that is sketched in Fig. 3.1.
The idea is to compute and save the values of κR and γi on the entire (log T, log ne) grid for each new
chemical composition that is encountered during the evolution (optionally, γi can be computed only on
a fraction of the full grid). Subsequently, only interpolation to the required temperature and density is
required when the corresponding composition is encountered.3 The number of computationally expensive
steps (the computation of new tables, which takes about a second per table on a 2.2 Ghz AMD processor)
is thus reduced at the expense of storing thousands of tables in memory (about 2000 tables per 1 GB of
memory when the full temperature range is used). Since computing the models described in Chapter 4,
the computation of new tables has been parallelised with OpenMP4, which, when using up to n ≈ 20
threads, allows a speed-up of close to n.

Since the derivatives with respect to composition are no longer calculated, a new table has to be
computed every time the composition changes as a result of nuclear burning or chemical mixing. At the
same time, since computing the tables takes a lot of time, one would like to compute them as rarely as
possible. The question then becomes what amount of change in composition warrants the computation of
a new table. The answer may depend on the intended application. For modelling the abundance changes

3 The models presented in Chapter 4 were computed with an earlier version of the code where an intermediate step was made:
the (log T, log ne) grid was first interpolated to a (log T, log ρ) grid.

4 http://www.openmp.org/
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Figure 3.1: Schematic illustration of the computational strategy for computing the opacity κR and radiative
accelerations γi from the Opacity Project data during stellar evolution calculations.

arising from atomic diffusion in CEMP-s stars, we found it sufficient to introduce the following criteria
for using a previously computed table – absolute deviation in the hydrogen abundance ∆XH,0, and relative
deviations in the metal abundances rZ,0. Interpolation in a previously computed table (with abundances
X′i ) is made when

1. deviation in the hydrogen abundance is below ∆XH,0, i.e. |XH − X′H| ≤ ∆XH,0;

2. for all metals with an abundance above Z0 the relative deviation is below rZ,0, i.e. |Xi−X′i |/Xi ≤ rZ,0
for all metals with Xi > Z0.

When no table is found that satisfies both conditions, a new table of opacities and accelerations is
computed and saved for later use. The models described in Chapter 4 were computed with thresholds
∆XH,0 = 5 × 10−4, rZ,0 = 0.05, and Z0 = 10−5Z. Figure 3.2 shows that lowering the thresholds would
result in a negligible effect in a M = 0.825, Z = 10−4 model, in which the effects of diffusion are large.

Conductive opacities The conductive contribution to κtot is not available from the OP data. In the
models described in Chapter 4 we gradually switch over to the tabulated OPAL-based opacities (Iglesias
and Rogers, 1996; Eldridge and Tout, 2004) between log T = 7.1–7.3, as these include the conductive
opacities of Hubbard and Lampe (1969) and Canuto (1970). Subsequently, we have coupled the stars
code to the code of Cassisi, Potekhin, Pietrinferni et al. (2007)5 to obtain the conductive opacities
independently. This allows using the OP opacities up to their temperature limit of log T = 8 also in
partially degenerate regions. There are some noticeable differences in the central conditions of a model as
a result (Fig. 3.3), but the differences in the evolution of surface abundances are nevertheless negligible
(Fig. 3.4).

5 http://www.ioffe.ru/astro/conduct
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CHAPTER 4

Radiative levitation in CEMP-s stars

Material from this chapter is published as:

E. Matrozis and R. J. Stancliffe (2016), Radiative levitation in carbon-enhanced metal-poor
stars with s-process enrichment, A&A 592 A29, arXiv: 1605.02791 [astro-ph.SR].

In this chapter the effects of atomic diffusion (including radiative levitation) on the evolution of s-
process-rich carbon-enhanced metal-poor (CEMP-s) stars are explored. As described in the introduction
(Sect. 1.2.4), these stars are believed to form when a low-mass (M . 0.8 M�) metal-poor ([Fe/H] . −2)
star accretes material from a thermally pulsing asymptotic giant branch (AGB) companion. The surface
abundances of CEMP-s stars are thus commonly used to constrain the nucleosynthesis occurring in
low-metallicity AGB stars (e.g. Lucatello, Gratton, Beers et al., 2005a; Stancliffe, Glebbeek, Izzard et al.,
2007; Stancliffe and Glebbeek, 2008; Bisterzo, Gallino, Straniero et al., 2012; Abate, Pols, Izzard et al.,
2015a).

A comparison of AGB nucleosynthesis models with abundances of CEMP-s stars is straightforward
only if the accreted material remains on the surface of the star. This will certainly not be the case once it
evolves off the main sequence and develops a deep convective envelope. But as demonstrated by Stancliffe
et al. (2007), this is also unlikely on the main sequence because the higher mean molecular weight
of the accreted material should trigger thermohaline mixing (Ulrich, 1972; Kippenhahn, Ruschenplatt
and Thomas, 1980, Sect. 1.3.1). Furthermore, gravitational settling of heavier elements (Sect. 1.3.3)
could modify both the extent of this mixing and the subsequent evolution of the secondary (Stancliffe
and Glebbeek, 2008; Thompson, Ivans, Bisterzo et al., 2008; Stancliffe, 2009). If the overall effect
is to dilute the accreted material by uniformly mixing it throughout some portion of the secondary, a
comparison between AGB nucleosynthesis models and abundances of CEMP-s stars is still possible
provided this amount of dilution can be estimated (e.g. as attempted by Bisterzo, Gallino, Straniero
et al., 2011; Bisterzo et al., 2012). However, the rather impartial (leading to similar dilution of all
elements) process of settling will be counteracted by the highly selective process of radiative levitation
(Sect. 1.3.3). Metal-poor stars with masses around 0.8 M� have very shallow convective envelopes and,
in absence of any counteracting processes, large abundance anomalies can result (e.g. Richard, Michaud
and Richer, 2002a; Richard, Michaud, Richer et al., 2002b). If radiative levitation is important during the
post-mass-transfer evolution of CEMP-s stars, the interpretation of their abundances in the context of
AGB nucleosynthesis gets considerably more complicated.

In this chapter grids of CEMP-s stellar models corresponding to different combinations of the initial
primary (AGB star) mass M1, accreted mass ∆M, and initial secondary mass M2,i (or, equivalently, final
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Model tmt
(Gyr)

Mass fraction Mass fraction ×10−6 Abundance
µ

H 4He 3He C N O Ne Mg Si Fe [Fe/H] [C/Fe]

ZAMS . . . 0.75770 0.24217 30.30 17.72 5.190 42.95 9.390 5.300 4.980 9.680 −2.14 0.00 0.5934
Composition of AGB ejecta

0.90 M� 9.10 0.73302 0.26222 235.8 3680 135.1 217.5 457.0 12.77 4.943 8.895 −2.16 2.35 0.6046
1.00 M� 6.30 0.74907 0.24956 261.4 933.0 21.47 92.47 37.29 5.395 4.913 8.910 −2.17 1.76 0.5972
1.25 M� 3.06 0.71670 0.27604 228.9 6032 42.42 305.3 620.9 14.96 4.976 8.869 −2.15 2.57 0.6122
1.50 M� 1.80 0.69878 0.28562 203.7 12840 56.60 590.2 1854 40.11 5.121 8.821 −2.14 2.90 0.6212

Table 4.1: Chemical composition of the secondaries on the zero-age main sequence (ZAMS; abundance distribution
from Asplund, Grevesse, Sauval et al., 2009, scaled to Z = 10−4) and of the ejecta from the AGB models of
Lugaro, Karakas, Stancliffe et al. (2012). The second column lists the age when accretion of the corresponding
composition begins (tmt). The last column gives the mean molecular weight (µ) of the composition. Mass fractions
of all elements other than helium are sums over their isotopes.

CEMP-s star mass M2,f) are presented. These models are the first CEMP-s stellar models that consider
the effects of radiative levitation. The focus is primarily on the evolution of carbon and iron surface
abundances. Abundances of s-process elements are not modelled. However, levitation is expected to
have a much greater impact on iron than on carbon (Gonzalez, LeBlanc, Artru et al., 1995; Seaton,
1997; Seaton, 2007). These two elements can therefore be used to constrain the overall importance of
radiative levitation for CEMP-s stars. Qualitatively, our conclusions should apply to elements beyond
iron, including those produced by the s-process.

4.1 Methods

The models presented in this chapter are produced with the version of the stars stellar evolution code
described in Chapters 2 and 3. To summarise the parts most relevant to this chapter, the mass fraction Xi

of each chemical species i is governed by the advection-diffusion equation (3.1):

∂Xi

∂t
= Ri +

∂

∂m

(
Dmix,i

∂Xi

∂m

)
−

∂

∂m
(WiXi) , (4.1)

where Dmix,i =
(
4πr2ρ

)2
Dmix,i and Wi = 4πr2ρwi. The diffusive part of the equation accounts for

convective mixing (Sect. 3.2.1), thermohaline mixing (Sect. 3.2.2), and concentration diffusion. The
advective part accounts for atomic diffusion and is described in detail in Sect. 3.3. In particular, the
diffusion velocity wi of each element i is given by Eq. (3.9):

wi =
Di

kBT

[
g (µ − µi) + kBαT,i

∂T
∂r

+ µigr,i

]
, (4.2)

with the radiative accelerations calculated according to Eq. (3.17):

gr,i =
m̄
mi

κRl
4πr2c

γi. (4.3)

Accretion of mass is simulated as described in Sect. 2.1.5. The composition of the accreted material is
set to the average composition of the ejecta from the models of Lugaro, Karakas, Stancliffe et al. (2012).
These yields together with the zero-age main sequence (ZAMS) abundances (Asplund, Grevesse, Sauval
et al., 2009) are given in Table 4.1.
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4.2 Results

4.1.1 Grid selection

We consider those systems that are the most probable in the synthetic populations computed by Abate,
Pols, Stancliffe et al. (2015c). According to their work, typical masses are M1 ' 0.9–1.25 M�, M2,f '

0.8–0.9 M�, and ∆M ' 0.05–0.2 M�. These accreted masses and final masses of the secondaries are
larger than considered in a related earlier study by Stancliffe and Glebbeek (2008). Therefore, we also
consider some systems with smaller ∆M values, namely 0.001 and 0.01 M�.

In summary, we evolve stellar models with initial masses of 0.60, 0.65, 0.70, 0.75, and 0.80 M�
and metallicity Z = 10−4 ([Fe/H] = −2.14) starting from the pre-main-sequence. At the ages listed in
Table 4.1, somewhere between 0.001 and 0.2 M� of material of the corresponding composition is added
to the models at a rate of 10−6 M� yr−1 yielding CEMP-s stellar models with masses between 0.8 and
0.95 M�. These models are evolved up to the core helium flash or an age of 16 Gyr, whichever comes
first.

4.2 Results

Two sets of models were initially evolved: in one set only thermohaline mixing, gravitational settling,
thermal diffusion, and concentration diffusion were active; in the other, radiative levitation was also
included. Table 4.2 lists some properties of these systems, including the [C/Fe] ratio at the surface at key
points of the evolution: after thermohaline mixing, at the point where the convective envelope is smallest
in mass (near the main sequence turn-off), and after first dredge-up.

4.2.1 An illustrative model sequence

To understand how the evolution of surface abundances is influenced by the different physical processes
included in our simulations, let us consider a particular model sequence in detail. Figures 4.1 and 4.2
illustrate the case of a secondary with an initial mass of 0.75 M� that accretes 0.05 M� of material from
a 1.25 M� primary. Multiple stages of evolution can be distinguished.

Prior to mass transfer the secondary slowly evolves as a 0.75 M� main sequence star (the part of the
evolution labelled ‘1’ in Fig. 4.1). During this stage gravitational settling dominates and the abundance
of every element other than hydrogen decreases at the surface.

At t = 3.06 Gyr mass transfer begins and the surface composition quickly becomes equal to that of
the accreted material (‘2’). During the accretion the star becomes hotter and more luminous. This is
common for many system configurations. In some models the effective temperature and luminosity can
reach values as high as 9500 K and 30 L�, respectively. But once accretion stops (‘3’), both luminosity
and temperature rapidly drop, resulting in loops in the Hertzsprung-Russell diagram (HRD) as the star
settles back on the main sequence. Generally, these loops are more characteristic of secondaries with
larger initial masses (see also discussion in Sects. 5.2.1 and 6.2).

Shortly after accretion stops the accreted material starts to mix with the original material of the
secondary as a result of the thermohaline instability (‘4’). As shown by Fig. 4.2a, some of the interior is
already mixed by the time the surface abundances change. The mixing takes only a few hundred million
years (about 150 Myr in this case) and is over before the star has settled back on the main sequence (‘5’).
Ultimately, the surface carbon abundance is reduced by about 0.8 dex (regardless of radiative levitation),
whereas the iron abundance is barely affected because it is virtually the same in the original and accreted
compositions.

Over the rest of the post-mass-transfer main sequence lifetime the abundances are again modified by
atomic diffusion (‘6’). At first gravitational settling prevails over radiative levitation and the surface
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Figure 4.1: Evolution in the HRD and of the surface abundances of a M2,i = 0.75 M� secondary accreting
∆M = 0.05 M� of material from a M1 = 1.25 M� primary. The numerical labels highlight specific parts of the
evolution discussed in the text. The model sequences with and without radiative levitation overlap at this scale of
the HRD.
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Figure 4.2: Evolution of interior abundances in a M2,i = 0.75 M� secondary accreting ∆M = 0.05 M� of material
from a M1 = 1.25 M� primary. The profiles correspond to a few of the stages indicated in Fig. 4.1: before
mass transfer (‘1’, solid); before thermohaline mixing (‘4’, long-dashed); after thermohaline mixing (‘5’, dotted);
post-mass-transfer main sequence (‘6’, dot-dashed); minimum of convective envelope mass (‘7’, dot-dot-dashed);
during first dredge-up (‘9’, short-dashed). The vertical lines indicate the position of the base of the convective
envelope at the respective time. The interior profiles of carbon with and without levitation nearly coincide and only
the case with levitation is shown.
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Table 4.2: Results from simulations including atomic diffusion. The columns list the initial mass of the secondary
(M2,i); accreted mass (∆M); whether levitation was included (gr?); the deepest mass coordinate reached by thermo-
haline mixing (mthm); [C/Fe] after thermohaline mixing ends; the age (t), luminosity (L), effective temperature
(Teff), surface gravity (g), envelope mass (Menv), metallicity ([Fe/H]), and [C/Fe] when the envelope mass reaches a
minimum; [C/Fe] after first dredge-up. The table is sectioned according to the initial primary mass, M1.

M2,i ∆M gr? mthm
[C/Fe]
post-th.mix.

At the time when envelope mass is smallest [C/Fe]b

post-FDUt (Gyr) log(L/L�) Teff log g Menv [Fe/H]a [C/Fe]a

M1 = 0.9 M�
0.700 0.100 no 0.411 1.88 15.84 0.4461 6366 4.06 2.79(−5) −2.54 1.82 . . .

yes 0.410 1.88 15.83 0.4462 6365 4.06 2.90(−5) −2.25 1.56 . . .
0.750 0.050 no 0.526 1.77 14.02 0.4573 6400 4.06 1.59(−5) −2.61 1.71 . . .

yes 0.525 1.78 14.00 0.4544 6402 4.06 1.69(−5) −2.13 1.27 1.38
0.800 0.001 no 0.797 1.85 11.94 0.4986 6471 4.04 3.36(−6) −3.05 1.86 . . .

yes 0.797 1.83 11.93 0.4959 6465 4.04 3.98(−6) −1.60 0.46 0.15
0.800* 0.010 no 0.760 1.76 11.79 0.4922 6464 4.05 5.28(−6) −2.82 1.73 . . .

yes 0.760 1.75 11.80 0.4930 6457 4.05 6.04(−6) −1.73 0.67 0.72
0.750 0.100 no 0.462 1.91 13.24 0.5482 6581 4.05 3.94(−7) −5.32 2.72 . . .

yes 0.461 1.91 13.25 0.5490 6555 4.04 4.66(−7) −0.63 −1.67 . . .
0.800 0.050 no 0.576 1.84 11.50 0.5567 6647 4.05 1.44(−7) −7.71 3.95 . . .

yes 0.578 1.76 11.48 0.5522 6616 4.05 1.56(−7) −0.35 −2.60 1.34
0.700 0.200 no 0.361 2.06 12.76† 0.4587 6798 4.22 5.97(−8) −inf inf . . .

yes 0.360 2.05 12.99† 0.4907 6781 4.18 4.14(−8) −0.44 −3.90 . . .
0.800 0.100 no 0.515 2.06 10.13† 0.4557 6858 4.23 2.91(−8) −inf inf . . .

yes 0.518 1.49 10.54† 0.5170 6874 4.18 1.03(−8) −0.42 −3.17 . . .
M1 = 1.0 M�

0.600 0.200 no 0.342 1.55 16.00‡ 0.4132 6495 4.13 4.03(−6) −3.05 1.50 . . .
yes 0.341 1.55 16.00‡ 0.4120 6486 4.13 4.80(−6) −1.84 0.38 . . .

0.700 0.100 no 0.477 1.44 14.66 0.4815 6489 4.06 2.21(−6) −3.44 1.48 . . .
yes 0.479 1.44 14.67 0.4854 6476 4.05 2.66(−6) −1.48 −0.37 1.11

0.750 0.050 no 0.602 1.36 13.45 0.4875 6498 4.06 1.82(−6) −3.56 1.45 . . .
yes 0.601 1.36 13.43 0.4871 6488 4.06 2.16(−6) −1.37 −0.62 0.83

0.800 0.001 no 0.797 1.28 11.93 0.4992 6531 4.06 9.59(−7) −4.11 1.56 . . .
yes 0.797 1.28 11.92 0.4987 6515 4.05 1.18(−6) −1.10 −1.25 0.03

0.800 0.010 no 0.778 1.34 11.73 0.5113 6558 4.06 5.99(−7) −4.69 1.85 . . .
yes 0.777 1.33 11.73 0.5109 6540 4.05 7.05(−7) −0.85 −1.74 0.31

0.650 0.200 no 0.380 1.56 13.16† 0.4455 6764 4.20 7.90(−8) −inf inf . . .
yes 0.382 1.58 13.51† 0.5007 6759 4.14 3.76(−8) −0.42 −4.47 . . .

0.750 0.100 no 0.528 1.48 11.33† 0.4298 6776 4.21 7.68(−8) −inf inf . . .
yes 0.528 1.48 11.78† 0.5005 6783 4.15 2.78(−8) −0.42 −4.82 . . .

0.800* 0.050 no 0.655 1.42 10.32† 0.4584 6812 4.20 3.87(−8) −inf inf . . .
yes 0.654 1.39 10.31† 0.4566 6781 4.19 4.25(−8) −0.44 −4.46 . . .

0.700 0.200 no 0.427 1.62 9.88† 0.3482 6879 4.35 5.60(−8) −inf inf . . .
yes 0.428 1.58 10.35† 0.3998 6918 4.31 1.68(−8) −0.56 −7.12 . . .

M1 = 1.25 M�
0.600 0.200 no 0.158 2.21 14.35 0.4497 6302 4.04 6.44(−5) −2.46 2.15 2.04

yes 0.156 2.21 14.34 0.4487 6302 4.04 6.63(−5) −2.34 2.04 2.04
0.700* 0.100 no 0.263 1.94 13.31 0.4596 6358 4.05 2.42(−5) −2.60 1.87 1.80

yes 0.264 1.95 13.28 0.4534 6359 4.05 2.59(−5) −2.26 1.57 1.80
0.750 0.050 no 0.370 1.78 12.68 0.4628 6400 4.06 1.19(−5) −2.74 1.71 . . .

yes 0.370 1.78 12.66 0.4598 6397 4.06 1.32(−5) −2.11 1.12 1.58
0.800 0.001 no 0.796 1.90 11.90 0.4925 6457 4.04 3.56(−6) −3.15 1.88 . . .

yes 0.796 1.90 11.89 0.4914 6449 4.04 4.40(−6) −1.69 0.50 . . .
0.800 0.010 no 0.600 1.52 11.58 0.5006 6507 4.05 1.46(−6) −3.74 1.64 . . .

yes 0.600 1.51 11.57 0.4979 6495 4.05 1.88(−6) −1.30 −0.62 0.92
0.650 0.200 no 0.149 2.12 11.65 0.5482 6513 4.03 1.13(−6) −3.96 2.32 . . .

yes 0.150 2.12 11.62 0.5426 6501 4.03 1.47(−6) −1.17 −0.29 . . .
0.750 0.100 no 0.309 1.96 10.90 0.5598 6589 4.04 3.02(−7) −6.13 3.10 . . .

yes 0.308 1.97 10.88 0.5578 6561 4.03 3.60(−7) −0.56 −1.98 1.78
0.800 0.050 no 0.419 1.81 10.28 0.5552 6662 4.06 1.15(−7) −inf inf . . .

yes 0.421 1.81 10.30 0.5597 6625 4.05 1.27(−7) −0.36 −3.19 . . .
M1 = 1.5 M�

0.600 0.200 no 0.000 2.37 12.70 0.2746 6166 4.18 1.12(−3) −2.29 2.35 2.28

60



4.2 Results

Table 4.2: continued.

M2,i ∆M gr? mthm
[C/Fe]
post-th.mix.

At the time when envelope mass is smallest [C/Fe]b

post-FDUt (Gyr) log(L/L�) Teff log g Menv [Fe/H]a [C/Fe]a

yes 0.000 2.40 12.72 0.2751 6166 4.18 1.13(−3) −2.28 2.34 2.28
0.800 0.010 no 0.495 1.67 11.56 0.4913 6449 4.05 4.15(−6) −3.11 1.64 1.22

yes 0.493 1.67 11.54 0.4886 6445 4.05 5.01(−6) −1.73 0.35 1.22
0.650 0.200 no 0.000 2.37 10.44 0.3817 6307 4.14 1.30(−4) −2.41 2.32 2.25

yes 0.000 2.38 10.42 0.3804 6305 4.14 1.34(−4) −2.35 2.28 2.25
no accretion

0.750 . . . no . . . . . . 15.06 0.3914 6345 4.08 2.59(−5) −2.63 −0.09 . . .
yes . . . . . . 15.06 0.3901 6345 4.09 2.75(−5) −2.33 −0.24 . . .

0.800 . . . no . . . . . . 11.93 0.4951 6580 4.07 4.48(−7) −5.38 0.73 . . .
yes . . . . . . 11.94 0.4961 6558 4.07 5.27(−7) −0.80 −3.33 −0.02

0.850 . . . no . . . . . . 8.35† 0.3818 6819 4.27 6.75(−8) −inf inf . . .
yes . . . . . . 8.51† 0.4027 6814 4.25 5.28(−8) −1.07 −4.25 . . .

Notes. All masses are in solar masses; other quantities are in cgs units unless indicated otherwise. Values of Menv are given in the format
n(m) = n × 10m for concision. (a) An ‘inf’ indicates that one of the mass fractions is below 10−12. (b) Most of the models stop earlier.
(∗) Systems (with levitation) used in resolution tests (see Section 4.4). (†) Models stop before reaching the minimum of Menv. The listed
values are from the last converged model. (‡) Models reach t = 16 Gyr before reaching the minimum of Menv. The listed values are for the
final model.

becomes increasingly hydrogen-rich as all heavier elements settle out of the surface convection zone.
As the star nears the main sequence turn-off, this convection zone becomes ever more superficial and
radiative effects become increasingly important (Fig. 4.2b). Once an element’s radiative velocity at the
base of the convection zone exceeds its settling velocity, the surface abundance of this element increases.
This is typically the case with iron. In contrast, if an element’s settling velocity is always greater than its
radiative velocity, the surface abundance of this element continues to decrease (although less so than in
the case when radiative effects are ignored). This is always the case with helium and usually with carbon
as well. The behaviour of other elements is not readily predicted because of the non-monotonic shape of
the radiative accelerations (as a function of temperature) and the outward movement of the base of the
envelope (decreasing temperature at the base). Therefore, the abundance of most elements alternates
between increasing at those times when its radiative velocity exceeds its settling velocity and decreasing
at others (e.g. see figure 2 of Richard et al., 2002b, or Fig. 3.2).

Eventually, the abundance anomalies, i.e. their values relative to those after thermohaline mixing, reach
their maxima (‘7’). At this stage the difference between the two sets of models is greatest – compared to
the abundances after thermohaline mixing, in models without levitation the abundances of all elements
are reduced (dotted lines in Fig. 4.1b), whereas in models with levitation this is not always the case (solid
lines in Fig. 4.1b; in both cases only carbon and iron are shown for clarity) and readily levitated elements
can be over-abundant. The anomalies are maximal shortly after the turn-off when the convective envelope
is smallest (Fig. 4.2).1 This occurs at the same time in models with and without levitation.

Next, as the convective envelope grows in mass, the material in it is mixed with that of the immediately
adjacent, previously radiative layers. In models without diffusion no change in surface abundances would
occur until the envelope reached depths where CN cycling had occurred (i.e. at first dredge-up). With
diffusion, however, the composition of the envelope is different from that of the radiative layers below,
and therefore the effect of the deepening of the envelope is to first undo all the work done by diffusion
(‘8’; cf. Fig. 1.2). When the envelope mass has reached a few thousandths of a solar mass, all surface
evidence of atomic diffusion has been erased and the abundances are similar to those after thermohaline
mixing (‘9’).

1 In fact, the convective envelope has already slightly grown in mass. For a short time the diffusion timescale is shorter than the
evolutionary timescale.
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First dredge-up homogenises the composition in the layers above a mass coordinate of 0.3–0.35 M�
(0.34 M� in this case). What effect this has on the surface abundances depends on how this depth
compares to the depth of thermohaline mixing (mthm = 0.37 M� in this case). If thermohaline mixing
is not as deep as the maximum depth reached by the envelope at FDU, the accreted material is further
diluted with the original material of the secondary. Otherwise, most abundances do not change. However,
some of the accreted carbon will then have been converted into nitrogen. As shown by Stancliffe et al.
(2007), during late FDU (which ends at around log L ≈ 1.5; ‘10’) this nitrogen is dredged up to the
surface.

Finally, after the luminosity bump (‘11’) 3He-burning reduces the mean molecular weight above the
hydrogen burning shell. Thus, a µ-inversion, which is magnified by the settling of 4He (Michaud, Richer
and Richard, 2010), develops between the shell and the receding convective envelope – a situation again
unstable to thermohaline mixing. This alters the surface abundance of nitrogen by 0.1 dex at most. The
much greater carbon abundance remains essentially unchanged. The abundance change after the bump is
much smaller than found by Stancliffe, Church, Angelou et al. (2009) because the thermohaline mixing
coefficient in this work is about 103 times smaller.

This model sequence illustrates the role each physical process plays in all models with atomic diffusion.
We see that diffusion modifies the surface composition on the main sequence both before and after mass
transfer. This modification is greatest around the turn-off, when the convective envelope is shallowest
(point ‘7’ in Figs. 4.1 and 4.2). We now turn to discussing the expected abundance changes for all
CEMP-s stars in this evolutionary stage.

4.2.2 Abundance anomalies near the main sequence turn-off

During the main sequence the mass of the convective envelope, Menv, of a low-mass star decreases.
Therefore, the timescale for atomic diffusion, which is proportional to roughly the square root of Menv
(Michaud, 1977), also decreases. In nearly all of our CEMP-s models the envelope mass reaches a
minimum of less than 10−4 M� around the turn-off. The corresponding timescales are short enough
compared to the nuclear timescale for atomic diffusion to notably modify the surface composition.
Figure 4.3 summarises the extent of the abundance variations in our models with diffusion (Table 4.2).
Specifically, the figure shows the [Fe/H], [C/H], and [C/Fe] abundances at the time when the convective
envelope mass reaches the minimum in each of the CEMP-s models. In models with envelope masses
always above about 2 × 10−5 M� the effect remains relatively minor – abundances are decreased by up to
a factor of two from their values after thermohaline mixing. But in models with even smaller Menv at the
turn-off abundances are modified by a factor of ten or more, and radiative levitation becomes important
(Fig. 4.3a). The model discussed in Sect. 4.2.1 is close to this limit – its envelope mass has a minimum
of about 1.2 × 10−5 M�. At this minimum its [C/Fe] is 1.71 when levitation is ignored versus 1.12 when
it is included (in both cases down from 1.78 after thermohaline mixing), and [Fe/H] is −2.74 and −2.11,
respectively.

The results from many simulations plotted in Figs. 4.3a and 4.3c form two sequences corresponding to
model sets with and without levitation. As shown by the solid lines, to a decent approximation we can
interpret these sequences as describing the abundance evolution in a single simulation as the envelope
mass changes. For example, as the envelope mass decreases from 10−5 to 10−6 M�, [C/Fe] decreases
by about two orders of magnitude in models with levitation because while carbon continues to settle,
iron is levitated. On the other hand, in models without levitation [C/Fe] does not change because both
elements settle at similar rates (Figs. 4.3a and 4.3b). At still smaller envelope masses, [C/Fe] increases
because of the low degree of ionisation of iron at the base of the envelope. The small mean charge of iron
gives a large diffusion coefficient because of the approximately D ∼ Z̄−2 dependence (Paquette, Pelletier,
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Figure 4.3: Symbols show [Fe/H] (a), [C/H] (b), and [C/Fe] (c) in each of the CEMP-s models at the point where
the mass of the convective envelope is smallest, i.e. just before first dredge-up. Models with and without radiative
levitation are plotted with black and grey symbols, respectively. All values for envelope masses below 10−7 M�
denote upper or lower limits. The [Fe/H] plot also shows the metallicity evolution in a 0.8 M� model sequence with
no accretion (solid lines). Similarly, the [C/Fe] plot shows the evolution in a model corresponding to M1 = 1.25 M�,
M2,i = 0.8 M�, and ∆M = 0.05 M�. Both sequences without levitation stop during the first dredge-up. The criterion
for being classified as a carbon-enhanced metal-poor star ([C/Fe] ≥ 1.0) is from Beers and Christlieb (2005).
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Fontaine et al., 1986) and, consequently, a large settling velocity.
Figure 4.3 shows that for given post-thermohaline-mixing abundances the abundance evolution prior to

FDU can be parametrized as a function of only Menv. But once FDU starts and the envelope deepens, a
kind of hysteresis is seen in that the abundances at a given Menv are not the same as they were prior to
FDU. This is because diffusion has modified the radiative layers below the envelope in the meantime.

Carbon-enhanced metal-poor stars are distinguished from other metal-poor stars based on their [C/Fe]
value. Assuming that atomic diffusion is correctly predicted and no additional mixing processes operate
in the radiative regions below the envelope, Fig. 4.3c implies that they must have envelope masses larger
than 10−5 M�. Otherwise, they would not be classified as carbon-enhanced. While models without
levitation do not have such a limit, the metallicity rapidly decreases below this value because of settling –
at Menv ≈ 10−6 M� the surface [Fe/H] ≈ −4, which is much lower than typical of CEMP-s stars.

For a given combination of AGB and CEMP-s star masses (M1 and M2,f , respectively) the convective
envelope is deeper in models with larger accreted mass. For example, a 0.8 M� CEMP-s star with an
initial mass of 0.6 M� retains a more massive envelope than one with an initial mass of 0.7 M�. This
is due to the higher average opacity of these stars (more metal-rich stars maintain thicker convective
envelopes for the same reason). The difference in Menv can be a factor of 2–10 (depending on M1, M2,f ,
and the range of M2,i) which can lead to substantially different abundances when the envelopes are small
(Fig. 4.3).

As can be seen from Fig. 4.3 and Table 4.2, diffusion is extremely efficient in many of our models,
leading to unrealistic abundance anomalies (e.g. [C/Fe] < −1 or [C/Fe] > 4). In most of our more
massive CEMP-s models (M2,f ≥ 0.85 M�) diffusion is so efficient that our code is incapable of handling
the steep abundance gradients developing at the base of the envelope and we are forced to stop the
computations before the main sequence turn-off. Such massive CEMP-s stars are nevertheless probable
according to population synthesis calculations (Abate et al., 2015c) and would help explain the properties
of some CEMP-s RR Lyrae stars (Stancliffe, Kennedy, Lau et al., 2013), so we would like to explore their
connection to observations. Therefore, we proceed by assuming that diffusion, and possibly thermohaline
mixing, is inhibited throughout these stars for one reason or another (leaving open the nature and cause
of the underlying mechanism for now) and evolve two sets of model sequences without atomic diffusion:
one set with thermohaline mixing and one without. The results from these simulations are summarised in
Table 4.3.

These models have some key differences in global properties and surface abundances from the model
sequences with atomic diffusion. First, the surface abundances do not change prior to mass transfer. More
importantly, after thermohaline mixing has reached equilibrium no further abundance changes occur until
FDU (i.e. between the stages labelled ‘5’ and ‘9’ in Fig. 4.1). The importance of FDU still depends on
the depth of thermohaline mixing, as in models with diffusion. In models without thermohaline mixing
the surface abundances do not change until FDU during which the accreted material is invariably diluted
by mixing throughout most of the star (down to a mass coordinate of 0.3–0.35 M�).

In agreement with previous studies, models with diffusion are younger (by a few percent) at a
given evolutionary stage and have lower effective temperatures at the turn-off than models without
diffusion, primarily because of the gravitational settling of helium throughout the star (e.g. Castellani and
degl’Innocenti, 1999; VandenBerg, Richard, Michaud et al., 2002; Bressan, Marigo, Girardi et al., 2012).
Our non-accreting models with diffusion are about 150 K cooler than models without diffusion (compare
Table 4.2 and 4.3). Among our CEMP-s models, those with thermohaline mixing but without diffusion
are generally between 100 to 300 K hotter than models without both. The latter, in which the accreted
material remains unmixed on the surface, are cooler because of the high opacity of the outer layers owing
to the metal-richness of the accreted material.
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Table 4.3: Results from simulations without atomic diffusion. Columns have the same meaning as in Table 4.2
except for the third column (Dµ?) which here indicates whether thermohaline mixing is included.

M2,i ∆M Dµ? mthm
a [C/Fe]a

post-th.mix.
At the time when envelope mass is smallest [C/Fe]b

post-FDUt (Gyr) log(L/L�) Teff log g Menv [Fe/H] [C/Fe]

M1 = 0.9 M�
0.700 0.200 no . . . . . . 13.98 0.6032 6719 4.05 1.59(−6) −2.16 2.35 1.89

yes 0.329 1.91 13.93 0.6405 6990 4.08 1.37(−8) −2.14 1.91 1.83
0.800 0.100 no . . . . . . 11.29 0.6136 6734 4.05 1.15(−6) −2.16 2.35 1.58

yes 0.461 1.72 11.23 0.6221 7079 4.12 6.39(−9) −2.14 1.72 1.59
0.750 0.200 no . . . . . . 12.20 0.6829 7019 4.07 1.07(−8) −2.16 2.35 1.85

yes 0.372 1.91 12.05 0.6799 7359 4.16 2.84(−10) −2.14 1.91 1.82
M1 = 1.0 M�

0.650 0.200 no . . . . . . 14.18 0.5809 6841 4.08 1.59(−7) −2.17 1.76 1.34
yes 0.343 1.39 14.14 0.5877 6928 4.10 3.49(−8) −2.15 1.39 1.32

0.750 0.100 no . . . . . . 12.39 0.5819 6836 4.08 1.73(−7) −2.17 1.76 1.05
yes 0.455 1.21 12.35 0.5838 6953 4.11 2.53(−8) −2.15 1.21 1.06

0.800 0.050 no . . . . . . 11.17 0.5820 6849 4.08 1.38(−7) −2.17 1.76 0.78
yes 0.543 1.02 11.16 0.5861 6979 4.11 1.73(−8) −2.14 1.01 0.79

0.700 0.200 no . . . . . . 12.04 0.6436 7198 4.13 6.53(−10) −2.17 1.76 1.30
yes 0.381 1.39 11.98 0.6391 7291 4.16 3.65(−10) −2.15 1.39 1.30

0.800 0.100 no . . . . . . 10.31 0.6459 7190 4.13 6.91(−10) −2.17 1.76 1.01
yes 0.511 1.20 10.24 0.6369 7321 4.17 3.14(−10) −2.15 1.20 1.02

0.850 0.050 no . . . . . . 9.17 0.6493 7193 4.12 6.71(−10) −2.17 1.76 0.74
yes 0.593 1.02 9.10 0.6384 7350 4.17 2.74(−10) −2.14 1.02 0.75

0.750 0.200 no . . . . . . 10.20 0.6613 7544 4.22 1.52(−10) −2.17 1.76 1.27
yes 0.433 1.38 10.13 0.6538 7631 4.25 1.21(−10) −2.15 1.38 1.27

M1 = 1.25 M�
0.700 0.200 no . . . . . . 10.18 0.6008 6677 4.04 3.31(−6) −2.15 2.57 . . .

yes 0.194 2.03 10.08 0.6829 6963 4.03 2.76(−9) −2.14 2.03 1.94
0.800 0.100 no . . . . . . 9.24 0.6103 6688 4.04 2.67(−6) −2.15 2.57 . . .

yes 0.324 1.83 9.02 0.6225 7091 4.13 6.12(−9) −2.14 1.82 1.75
no accretion

0.750 . . . no . . . . . . 15.44 0.4033 6509 4.12 2.31(−5) −2.14 0.00 . . .
0.800 . . . no . . . . . . 12.17 0.5013 6741 4.11 1.16(−6) −2.14 0.00 −0.01
0.850 . . . no . . . . . . 9.75 0.5897 7047 4.12 7.61(−9) −2.14 0.00 −0.03

Notes. Values of Menv are given in the format n(m) = n × 10m for concision. (a) Undefined for models without thermohaline mixing. (b)

Some of the models stop earlier.

4.2.3 Thermohaline mixing

The fraction of the star mixed by thermohaline convection, which we shall call the thermohaline mixing
efficiency, essentially depends on the mean molecular weight of the accreted material and its total mass
compared to the final mass of the star. The more helium- and metal-rich the accreted material, the greater
its molecular weight compared to the initial composition, and the greater the portion of the star that
gets mixed. From the last column of Table 4.1 we therefore expect that, for a given amount of accreted
material, thermohaline mixing should be most efficient when that material comes from a primary of
1.5 M� and least efficient when it comes from a primary of 1.0 M�, which is indeed the case (Fig. 4.4).

Furthermore, the greater the amount of the high-µ material, the deeper the mixing must be for the
µ-gradient to be removed. If an amount ∆M of AGB ejecta with a mean molecular weight µa is mixed
with M2,f −∆M −mthm of the unpolluted material with a molecular weight µi (< µa) before the µ-gradient
is removed, a mixed region M2,f − mthm with molecular weight µf results (Fig. 4.5). Equating the states
before and after mixing, one gets that the removal of the µ-gradient implies a linear relationship between
the accreted-to-final mass ratio and mixing efficiency. Indeed, a linear relationship is a reasonable
approximation in the range 0.05 . ∆M/M2,f . 0.2 of accreted-to-final mass ratios. However, higher and
lower ratios of ∆M/M2,f require special consideration.

First, a high ∆M/M2,f corresponds to a case where a lot of mass is transferred to a low-mass star, which
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accreted mass and final mass for different primaries. Black and grey symbols correspond to models with and
without diffusion, respectively. Each symbol represents a unique combination of M1, M2,f , and ∆M.

implies that the mass transfer takes place when the secondary is still nearly on the ZAMS. Two outcomes
are possible. If the accreted material has a sufficiently high molecular weight compared to the molecular
weight throughout the star, thermohaline mixing affects the whole star, and the composition is nearly
homogenised. For example, this occurs when a 0.65 M� secondary accretes 0.2 M� of material from
a 1.5 M� primary. On the other hand, if the accreted material has a lower molecular weight than some
central region of the star, increasing the accreted mass will not lead to a much deeper mixing because of
the steepness of the µ-gradient near the centre. The mixing efficiency can therefore decrease for higher
∆M/M2,f (although at this point almost all of the star will be mixed, anyway).

Second, in models with diffusion low accreted-to-final mass ratios lead to relatively inefficient thermo-
haline mixing. Contrary to models without diffusion, where the molecular weight is constant outside of
nuclear burning regions, in these models there is a stabilising µ-gradient throughout the star owing to
gravitational settling. This presents a “µ-barrier” to thermohaline mixing that must be overcome for mix-
ing to happen (Thompson et al., 2008). If only a tiny amount of material is accreted (∆M . 0.001 M�),
thermohaline mixing can be almost completely inhibited (left bottom corner of Fig. 4.4). Nevertheless,
even in these cases the surface carbon content is depleted by a factor of two or more because the mass of
the mixed region, M2,f − mthm, is always greater than ∆M.

For ∆M > 0.01 M� the µ-barrier is largely overwhelmed. However, the mixing is nevertheless slightly
less efficient than in models without diffusion even for large amounts of accretion. Similar conclusions
were reached by Stancliffe and Glebbeek (2008). Overall, the surface carbon abundance is typically
reduced by somewhere between 0.3 to 1 dex depending on the relative amount of the accreted material
and its molecular weight. Since radiative levitation has almost no influence on the molecular weight
profile deep in the star, it has almost no influence on the efficiency of thermohaline mixing.

4.3 Comparison with observations

We have presented four sets of models of CEMP-s stars. Two of the sets comprise models with
thermohaline mixing and atomic diffusion (one set with, one without radiative levitation). The other
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Figure 4.5: Schematic illustration of the mean molecular weight distribution in a star before (a) and after (b)
thermohaline mixing. The shaded area around mthm and below indicates a region in which the mean molecular
weight has been raised as a result of nuclear processing.

two sets comprise models without diffusion (one set with, one without thermohaline mixing). We now
compare the four sets of models with observations of CEMP stars.

The largest data set of Galactic metal-poor stellar spectra currently available is that from the Sloan
Digital Sky Survey (SDSS; e.g. York, Adelman, Anderson et al., 2000; Ahn, Alexandroff, Allende Prieto
et al., 2012; Ahn, Alexandroff, Allende Prieto et al., 2014) and its sub-survey, the Sloan Extension for
Galactic Understanding and Exploration (SEGUE; Yanny, Rockosi, Newberg et al., 2009). Lee, Beers,
Masseron et al. (2013) used the spectra collected by SDSS/SEGUE to derive the stellar parameters and
carbon abundances ([C/Fe]) in close to 250 000 stars, around 10 000 of which have [Fe/H] < −2. We
now use this homogeneous metal-poor sample (Lee et al., 2013, priv. comm.) to compare the observed
carbon abundances with our models.

Comparing the observed [C/Fe] abundances with models must be done with care. Use of a fixed
metallicity ([Fe/H]) range might not be adequate because of the diffusion of iron (Figs. 4.6a and 4.6b).
Only the 0.8 M� models with levitation generally predict [Fe/H] to remain within a factor of about two of
the initial value ([Fe/H] = −2.14) throughout the evolution, whereas the models without levitation have
[Fe/H] . −2.5 near the turn-off. Meanwhile, most of the 0.85 M� models have [Fe/H] < −3 (without
levitation) or [Fe/H] & −1 (with levitation).

It is safer to first consider [C/H] because the largest [C/H] values should be close to 0.5 dex, independent
of metallicity. In the metallicity range typical of CEMP-s stars (−2.5 ≤ [Fe/H] ≤ −2.0), this is indeed the
case for subgiants (log g . 3.7) but very few turn-off stars (log g ≈ 4) seem to have [C/H] > 0 (Figs. 4.6c
and 4.6d). Is this difference in the maximum [C/H] values between the two groups in the observational
data (∆[C/H] ≈ 0.5) evidence of gravitational settling of carbon in CEMP stars? And does the similar
0.5 dex difference seen in the [C/Fe] data (Figs. 4.6e and 4.6f) then imply that iron is levitated just enough
that its abundance stays roughly constant throughout the evolution? This seems rather unlikely because
then the carbon-normal population should plausibly also have lower [C/H] (and [C/Fe]) values near the
turn-off which is not the case. On the contrary, the observations suggest that the carbon abundance in
carbon-normal metal-poor stars is increasing on the main sequence until they reach the turn-off. This is
exactly the opposite behaviour that atomic diffusion predicts! Moreover, there is no obvious candidate
for a physical process that could cause the surface carbon abundance to increase on the main sequence.

The carbon-normal metal-poor stars listed in the Stellar Abundances for Galactic Archeology database
(SAGA; Suda, Katsuta, Yamada et al., 2008; Suda, Yamada, Katsuta et al., 2011) do not seem to show
a similar behaviour of increasing carbon abundance on the main sequence (C. Abate, priv. comm.),
although the relatively small number statistics (23 stars with −2.5 ≤ [Fe/H] ≤ −2.0, [C/Fe] < 1 and
log g > 4.0) and the heterogeneity of the data could perhaps hide such a trend. Unfortunately, whether
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Figure 4.6: Evolution of [Fe/H] (upper panels), [C/H] (middle panels) and [C/Fe] (lower panels) in CEMP-s models
of 0.8 M� (left panels) and 0.85 M� (right panels) with diffusion. Thick lines are models with radiative levitation,
whereas thin lines are those without. Empty circles mark an age of 10 Gyr and filled circles mark an age of 13.8 Gyr,
i.e. the part of the track between the circles covers the expected age range of CEMP-s stars. The small, grey circles
show the metal-poor stars observed in the Sloan Digital Sky Survey in the metallicity range −2.5 ≤ [Fe/H] ≤ −2.0
(Lee, Beers, Masseron et al., 2013).
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there is a real difference in the upper [C/H] and [C/Fe] values between turn-off stars and subgiants
remains unclear.

Most of the models are at odds with the Lee et al. (2013) data, regardless of whether the abundance
differences between turn-off stars and subgiants are caused by atomic diffusion. For example, while some
of the 0.8 M� models predict abundances that are consistent with the observations, they only do so at
very late times, i.e. at ages exceeding the age of the Universe (13.8 Gyr; Hinshaw, Larson, Komatsu et al.
2013). At earlier times stars with low-mass AGB companions (which thus accreted mass later) and/or
with low initial masses (which were thus less evolved at the point of mass transfer) are still relatively
unevolved. They should be observable as carbon-rich low-luminosity (log g & 4.1) objects. But such
objects are conspicuous by their absence in the Lee et al. (2013) results (at all metallicities; their figure 6).
Since there are plenty of carbon-normal low-luminosity stars in the data, it is difficult to imagine how
this could be a selection effect, particularly since a few carbon-rich dwarfs have been found in the SDSS
data in detailed abundance studies (Aoki, Beers, Sivarani et al., 2008; Behara, Bonifacio, Ludwig et al.,
2010).2 By contrast, the 0.85 M� CEMP-s models are sufficiently evolved but diffusion is so efficient
that unrealistic abundances (e.g. [C/Fe] < −0.5 with levitation or [C/Fe] > 3.5 without levitation) are
predicted in nearly all such stars around the turn-off (Fig. 4.6f). Clearly, in these more massive CEMP-s
stars some physical process must be countering atomic diffusion, at least near their surface.

The disagreement between observations and models concerning the existence of low-luminosity carbon-
rich stars has little to do with atomic diffusion – even if we identify a process that neatly counteracts
diffusion near the surface, models will still predict many carbon-rich unevolved objects. In fact, if this
process were to counteract diffusion throughout the star, the tension with observations would increase
because diffusion starves the core of fuel and accelerates the evolution, making the star spend less time
on the main sequence. Perhaps, the SDSS sample indicates that the mass ratio (q ≡ M2,i/M1) in CEMP-s
progenitor systems is biased towards unity, contrary to the common assumption of a flat distribution. If q
is close to one, the mass transfer occurs relatively late, giving the secondary more time to evolve before it
becomes a CEMP-s star.

Overall, models without diffusion are better able to envelop the observational data (Fig. 4.7). For
example, CEMP-s models that have accreted less carbon-rich material (here coming from 1 M� primaries)
have [C/Fe] < 1.5 with [C/Fe] increasing with accreted mass. Models that have accreted more carbon-
rich material (from primaries with masses 1.25 M�, 1.5 M�) can have [C/Fe] & 2 throughout evolution.
Models with thermohaline mixing seem to be preferred because no sharp change in [C/Fe] at FDU is
evident from the data, although there seem to be relatively fewer highly enriched (e.g. [C/Fe] > 2) stars
after first dredge-up (log g < 3). Lower mass models (M2,f ≈ 0.8 M�) without diffusion would predict
similar abundance evolution (Stancliffe et al., 2007; Stancliffe and Glebbeek, 2008). However, most
of them, coming from systems with relatively low-mass AGB companions compared to earlier works,
would be consistent with the data only for t > 13.8 Gyr.

Last, there are some objects with [C/Fe] & 2.5 whose surface gravities (log g . 3) imply that they
are close to the end of FDU if not past it. How might we explain such objects, assuming that they were
polluted by an AGB companion? Since carbon is not produced in the star, it is hard to imagine how
the surface carbon abundance could be above the one in the accreted material. This limits the possible
primaries to those that are able to produce at least this much carbon. From the models of Lugaro et al.
(2012) these are AGB stars with 1.25 . M1/M� . 3. Lower mass AGB stars do not produce enough
carbon; and higher mass stars convert the carbon into nitrogen in the lower part of their convective

2 Two examples are the CEMP-no (or -r) star SDSS0036-10 ([Fe/H] = −2.4, log g = 4.5, [C/Fe] = 2.3, [Ba/Fe] = 0.3) and
the CEMP-s (or -r/s) star SDSS2047+10 ([Fe/H] = −2.1, log g = 4.5, [C/Fe] = 2.0, [Ba/Fe] = 1.5) from Aoki et al. (2008).
Behara et al. (2010) present the CEMP-r/s star SDSSJ0912+0216 ([Fe/H] = −2.5, log g = 4.5, [C/Fe] ≈ 1.5, [Ba/Fe] = 1.5,
[Eu/Fe] = 1.2), which may, however, be more evolved with log g ≈ 4.0 (Aoki, Beers, Lee et al., 2013).
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Figure 4.7: Similar to Figs. 4.6e and 4.6f, but here the lines correspond to CEMP-s models of 0.9 M� without
diffusion. Thick lines are models with thermohaline mixing, whereas thin lines are those without.

envelope (a process known as hot-bottom-burning). Moreover, a large amount of mass must be transferred
because the combined carbon reduction from thermohaline mixing and FDU can only be about 0.5 dex at
most (the maximum [C/Fe] given by the AGB models of Lugaro et al., 2012, is about +3.2). This implies
an accreted-to-initial mass ratio, ∆M/M2,i, between about 0.25, if all the mixing occurs during FDU
(where the envelope mass grows to about 0.5 M�), and 0.5, if thermohaline mixing is efficient (as it will
be in the absence of some inhibitory process because of how unevolved the progenitor of the CEMP-s
star must be). The respective accreted-to-final mass ratios, ∆M/M2,f, are between 0.2 and 0.35. Hence,
the progenitor systems of the most carbon-rich evolved stars must be small mass-ratio binaries in which a
lot of mass has been transferred to the secondary. It may be difficult to account for such stars without also
predicting too many low-luminosity carbon-rich stars from cases where less mass has been transferred.

4.4 Discussion

The results presented in this chapter may lead one to wonder whether the abundance anomalies predicted
by our diffusion models are overestimated. We have run multiple tests to address this concern. First,
we have tried to reproduce the results of Richard et al. (2002b). In particular, we have compared the
abundance evolution in a M = 0.8 M� model with an initial composition taken from their table 1
(Z = 1.7 × 10−4; [Fe/H] = −2.31). We get good agreement in terms of the temperature and luminosity at
the turn-off although our model is longer-lived by about 0.5 Gyr. The abundance anomalies from settling
and/or levitation of He, C, N, and Fe agree within 0.1 dex. For other elements the abundances differ
by 0.3–0.4 dex. Given that in our model the convective envelope mass is smaller by about a factor of
two throughout most of the evolution (the minimum size of the convective envelope in our model is
only about 3.7 × 10−6 M� whereas Richard et al. (2002b) get about 2.5 × 10−5 M�), these differences
are plausible. Judging from their figure 2, a smaller envelope mass in their model would lead to greater
over-abundances of O, Ne, and Mg, and a smaller over-abundance of Si. All of these changes would
reduce the discrepancies between their model and ours.

Second, we have tested whether the large abundance anomalies predicted by our models stem specific-
ally from our simplified treatment of diffusion. For this purpose we have ported into our code the relevant
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parts from the code used by Hu, Glebbeek, Thoul et al. (2010, priv. comm.)3 and run a M = 0.8 M�,
Z = 10−4 diffusive model without radiative levitation (with the ZAMS chemical composition from
Table 4.1). In this model diffusion reduces the helium and metal abundances in the envelope on much
shorter timescales. The same M = 0.8 M� model run with the MESA code (Paxton, Bildsten, Dotter
et al., 2011; Paxton, Marchant, Schwab et al., 2015) yields similar results, which is reassuring given that
the treatment of diffusion is based on the work of Burgers (1969) and Thoul, Bahcall and Loeb (1994) in
both MESA and Hu et al. (2010). The abundances in the MESA model are depleted to a much greater
degree: 5 dex for helium (compared to our 2.5 dex) and 5–6 dex (3–4 dex) for metals, even though the
envelope masses are in a good agreement (the minimum envelope mass is 4.5 × 10−7 M� in stars and
6.0 × 10−7 M� in MESA). The conclusion from all three of these tests is the same – if anything, the
diffusion models presented here underestimate the amount of diffusion that we would get from a more
rigorous treatment.

We have performed spatial resolution tests in three systems (denoted by an asterisk in Table 4.2) by
varying the default number of meshpoints (999) by a factor of two. All models give consistent results
(within a couple of percent) in terms of the global properties, depth of thermohaline mixing, abundance
anomalies after turn-off, and post-FDU abundances. The size of the convective envelope at minimum is
consistent within ten percent. We thus conclude that the models are sufficiently resolved.

Our approach of interpolating the opacities and accelerations from tables computed in real time
necessitates the introduction of some numerical parameters. These parameters control mainly the amount
by which some species has to change to warrant the computation of a new table. As discussed in
Sect. 3.3.5, we have made sure that our results do not depend on the choice of these parameters, i.e. the
tables are computed often enough (Fig. 3.2). The use of tabulated opacities above log T = 7.3 similarly
has virtually no effect on any of our results (Fig. 3.4).

The size of the convective envelope throughout the evolution depends somewhat on the choice of the
mixing length parameter (Sect. 2.1.3) with larger values resulting in more massive envelopes. Our value,
αMLT = 2.0, is based on a calibration between the radius, effective temperature, and luminosity of a
Z = 0.0142, M = 1 M� diffusive model with OP opacities at an age of 4.56 Gyr and the Sun. Stars of
masses, metallicities, and evolutionary stages different from the Sun should have other values of αMLT
(e.g. Trampedach, Stein, Christensen-Dalsgaard et al., 2014) but meaningful quantitative predictions are
virtually impossible. In a 0.8 M�, Z = 10−4 model increasing or decreasing αMLT by 5% accordingly
changes the envelope mass by about 50%, which, given that Menv < 10−6 M�, translates into substantial
changes in the surface abundances (Fig. 4.3). Since theoretical models suggest that at lower metallicities
one should use lower αMLT values (at least for −0.6 < [Fe/H] < +0.3; Bonaca, Tanner, Basu et al., 2012),
it is unlikely that we have overestimated the importance of diffusion by underestimating the value of
αMLT.

4.4.1 Missing mixing processes

The strong abundance anomalies predicted by diffusive models are not observed in CEMP stars. This
suggests that in real stars atomic diffusion is inhibited by some physical process that we have not included
in our models. In the next chapter we investigate whether rotational mixing could be the culprit. For now,
we examine a simple test case and add a “turbulent” diffusion term to Dmix,i in Eq. (3.8) as proposed by
Richer, Michaud and Turcotte (2000) and Richard, Michaud and Richer (2005):

3 In their code the full set of Burgers flow equations (Burgers, 1969) is solved, and their treatment of diffusion is thus valid for
arbitrary compositions.
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DT = D0DHe (T0)
[

ρ

ρ (T0)

]−3

. (4.4)

This type of parametrization extends the surface mixing region down to where the local temperature
is somewhat larger than T0. Richard et al. (2005) find that observations of lithium abundances in
population II stars require log T0 ≈ 6.0. Similar values have been found to reproduce the small systematic
abundance differences between turn-off and giant stars in old globular clusters (Korn, Grundahl, Richard
et al., 2006; Nordlander, Korn, Richard et al., 2012; Gruyters, Nordlander and Korn, 2014). Nevertheless,
the ad-hoc nature of this prescription should be kept in mind. With this prescription we can primarily
constrain the depth to which some form of mixing must occur to reconcile the models with observations,
but not the physical processes responsible for this mixing.

We test the effect of turbulent diffusion on the evolution of a 0.75 M� star accreting 0.1 M� of material
from a 1 M� primary. While in the absence of turbulence the resulting 0.85 M� model shows extremely
large abundance anomalies ([Fe/H] > −0.5 with levitation and [Fe/H] < −9.2 without levitation),
turbulence with D0 = 400 (as used by Richard et al., 2005) and log T0 = 6.0 completely negates them
(Fig. 4.8). Even much smaller turbulent diffusion coefficients (e.g. D0 = 1) suffice to erase the anomalies.
Indeed, the key parameter here is T0 – as long as the mixing region remains large enough (log T0 & 5.5
or Menv & 10−4 M�), atomic diffusion is strongly suppressed. In terms of global properties, models with
more pervasive turbulence are hotter and therefore more closely resemble models without diffusion. This
can be seen from comparing the turbulent models with the model with thermohaline mixing only (solid
grey line) in Fig. 4.8c.

Figure 4.8 also shows that while the turbulent diffusion prescription of Richard et al. (2005) can inhibit
diffusion in the outer layers of a star, it has almost no influence on thermohaline mixing. This is not to
say, however, that some form of turbulence (e.g. rotationally driven horizontal turbulence; Denissenkov
and Pinsonneault, 2008a) could not inhibit thermohaline mixing as well. We return to this question in the
next chapter (Sect. 5.3.2) when considering models with rotational mixing.

4.4.2 Mass loss

So far we have ignored mass loss. Simple estimates imply that it may be too important to neglect. With
a mass-loss rate comparable to the current solar value, 2–3 × 10−14 M� yr−1 (Wang, 1998), a star will
lose more than 10−4 M� over the roughly 1010 years it spends on the main sequence. This is a very large
amount compared to the envelope masses of our models (Fig. 4.3) and could greatly interfere with atomic
diffusion.

In the absence of mass loss the convective envelope of a star moves outwards in mass until the beginning
of FDU. But when mass loss erodes the surface, this outward movement is halted and eventually reversed
while the star is still on the main sequence. As the envelope now moves inwards, the surface abundances
reflect the composition of the progressively deeper layers that get exposed. Qualitatively, if the mass-loss
rate is sufficiently high, the removal of the outer layers is so fast that diffusion has not had enough time to
modify the newly exposed layers and only small abundance anomalies can develop (Swenson, 1995). On
the other hand, mass-loss rates below some limit must be negligible and have essentially no effect on the
surface abundances.

We now estimate what mass-loss rates are necessary to prevent the development of abundance anomalies
and what mass-loss rates are negligible. For simplicity, we use Reimers (1975) mass-loss formula with
different factors η:
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Figure 4.8: Effect of turbulence on the evolution of carbon (a) and iron (b) mass fractions, and the HRD (c) of
a 0.75 M� star accreting 0.1 M� of material from a 1 M� primary. Large abundance variations are expected
after accretion in absence of turbulence (black and red dashes). Inclusion of turbulence as in Eq. (4.4) erases
all abundance signatures of atomic diffusion on the post-mass-transfer main sequence (dark blue) even for small
turbulent diffusion coefficients (orange). Only when the temperature parameter is reduced to log T0 . 5.5 do the
abundance variations start to reappear (light blue and magenta). The thermohaline-mixing-only model (solid grey)
is hotter than the models with turbulence because in the latter diffusion still modifies the layers with T & T0 and
thermohaline mixing is not as deep. For clarity, the HRD only shows the post-mass-transfer part of the evolutionary
tracks.
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Ṁ = −4 × 10−13η
LR
M

(LR
M

)−1

�
M� yr−1. (4.5)

Here we only consider metal-poor 0.8 M� and 0.85 M� models without accretion. We find that if η & 0.1,
the effects of atomic diffusion are almost entirely erased in both models (Figs. 4.9 and 4.10). This
translates to mass-loss rates of a few times 10−14–10−13 M� yr−1 throughout the main sequence. In
contrast, when the mass-loss rate falls below about 10−16 M� yr−1, the abundance evolution proceeds
as in models without mass loss. Intermediate mass-loss rates result in less extreme but non-negligible
abundance variations. Note that the lost material is assumed to have the same composition as the surface
at that time. Depending on the mass-loss rate and mechanism, some elements may be lost more readily
than others, leading to more complicated abundance variations (e.g. Michaud, Dupuis, Fontaine et al.,
1987; Vick, Michaud, Richer et al., 2010).

Is it reasonable to expect somewhat super-solar mass-loss rates from CEMP-s stars on the main
sequence? That is difficult to say. The form of mass loss in these stars would presumably be the same as
in solar-like main sequence stars – as magnetised winds originating in a hot corona (e.g. Suzuki, 2007;
Cranmer and Saar, 2011). While mass-loss rates in these stars are too small to be directly observable,
indirect measurements based on the interaction of the wind with the interstellar medium yield values
within about an order of magnitude of the solar mass-loss rate (Wood, Müller, Zank et al., 2002; Wood,
Müller, Zank et al., 2005). Various theoretical models also normally predict mass-loss rates in this range
(e.g. Holzwarth and Jardine, 2007; Cranmer and Saar, 2011; Johnstone, Güdel, Brott et al., 2015). While
most of these models concern stars with near solar metallicity, to first order the mass-loss rates are not
expected to depend on metallicity.

In any case, if the mass-loss rates of CEMP-s dwarfs are at least a few times 10−15 M� yr−1 throughout
their evolution, mass loss should at least moderate the effects of atomic diffusion, which would help
explain why turn-off stars with extreme abundance anomalies are not observed.

4.5 Conclusions

Our simulations with atomic diffusion indicate that CEMP-s stars should show large surface abundance
variations on the main sequence, particularly as they approach the turn-off. This is because they have
very shallow convective envelopes (Menv . 10−4 M� throughout most of the evolution and perhaps as
little as 10−8 M� near the turn-off) and, therefore, short diffusion timescales. In stars whose envelope
masses fall below about 10−5 M� (which happens in most of our models, including nearly all those with
M > 0.8 M�) the abundances should vary by a factor of about ten. This factor rapidly increases with
decreasing envelope mass resulting in unrealistic abundances (Fig. 4.3). But even though our treatment
of diffusion is not as detailed as in some other works, we do not find evidence that the surface abundance
variations predicted by our models are exaggerated.

Radiative levitation has only a minor influence on carbon but a large one on iron. Whereas in diffusive
models without levitation the metallicity ([Fe/H]) of the star decreases until first dredge-up, in models
with levitation the metallicity can increase as the star evolves along the main sequence. Consequently,
models with levitation predict reduced carbon abundances ([C/Fe]) around the turn-off. This implies a
systematic difference between the [C/Fe] values of stars near the turn-off and those at the beginning of
FDU. Unfortunately, whether there is any such difference is difficult to establish even from the largest
homogeneous sample of observational data (from SDSS; Lee et al., 2013). Any such difference, however,
would clearly be smaller than predicted by most of our models (Fig. 4.6). And while some of the 0.8 M�
models do predict only a small variation in [C/Fe], at ages typical of metal-poor Halo stars most of them
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Figure 4.9: Envelope mass and abundance evolution in metal-poor 0.8 M� models with different Reimers-type
mass-loss rates. The values in the parentheses are the mass-loss rates (in M� yr−1) at log L ≈ 0; the average
mass-loss rate during the main sequence is about 50% higher as a result of the mass, radius, and luminosity scaling
in Reimers’ law.
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Figure 4.10: As Fig. 4.9 but for 0.85 M� models.
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are still relatively unevolved and should be visible as carbon-rich low-luminosity objects. Very few such
objects have been observed.

Although they too would predict many low-luminosity carbon-rich stars, models without atomic
diffusion are generally much more successful at covering the range of observations (Fig. 4.7). We
thus conclude that atomic diffusion cannot be acting alone near the surface convection zone of real
CEMP-s stars and needs to be largely counteracted by some other physical process(es). The most extreme
abundance variations (corresponding to stars with the smallest envelopes) could be moderated by mass
loss as weak as 10−15 M� yr−1. In fact, a mass-loss rate of a few times the current solar value sustained
throughout the evolution could on its own prevent substantial abundance anomalies from developing
(Figs. 4.9 and 4.10). Otherwise, some additional internal mixing is required to inhibit atomic diffusion
down to depths where the temperature exceeds about 106 K (about 10−4 M� from the surface; Fig. 4.8).
In the next chapter we investigate the question on how to inhibit atomic diffusion further by including
angular momentum accretion in the models.
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CHAPTER 5

Rotational mixing in CEMP-s stars

Material from this chapter is published as:

E. Matrozis and R. J. Stancliffe (2017), Rotational mixing in carbon-enhanced metal-poor
stars with s-process enrichment, A&A 606 A55, arXiv: 1707.09434 [astro-ph.SR].

A quantitative summary of the models presented in this chapter (mainly the stellar properties and surface abundances
at key points of the evolution) is published in electronic form at the Strasbourg astronomical Data Center (http:
//cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A55).

In Chapter 4 we found that some physical mechanism must counter atomic diffusion (gravitational settling
and radiative levitation) in CEMP-s stars, otherwise it leads to surface abundance anomalies clearly
inconsistent with observations. One possibility to inhibit atomic diffusion and bring the models more in
line with observations was found to be some additional mixing operating in these stars following mass
transfer.

The cause of this extra mixing was left unspecified. But rotational mixing is a promising candidate,
since the accreted material should carry with it some angular momentum. In fact, the angular momentum
content may be so high that an interesting question is how the accreting star can deal with it and accrete
more than a few hundredths of a solar mass of material. This issue is deferred until Chapter 6. In this
chapter we simply assume that the newly accreted layers of CEMP-s stars, which can have masses
up to some tenths of a solar mass, are spinning more rapidly than their interiors. We then follow the
post-mass-transfer evolution of these stars, in particular noting the evolution of their surface abundances
as a result of rotational mixing, combined with atomic diffusion and thermohaline mixing.

5.1 Methods

All the models presented in this chapter are again produced with the stars code (Chapters 2 and 3).
Briefly, the mass fraction Xi of each chemical species i is governed by the advection-diffusion equation
(3.1):

∂Xi

∂t
= Ri +

∂

∂m

(
Dmix,i

∂Xi

∂m

)
−

∂

∂m
(WiXi) , (5.1)

whereDmix,i =
(
4πr2ρ

)2
Dmix,i andWi = 4πr2ρwi. The total diffusion coefficient Dmix,i is given by the

sum of the individual mixing coefficients (Eq. (3.8)):

Dmix,i = Dconv + Dµ + Di + fcDrot. (5.2)
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Chapter 5 Rotational mixing in CEMP-s stars

The modifications to the code necessary for modelling rotating stars are described in Sects. 2.2 and 3.2.3.
In particular, the internal evolution of the angular momentum j = Ωr2

P is governed by Eq. (2.61):

∂ j
∂t

=
∂

∂mP

(
Drotr2

P
∂Ω

∂mP

)
, (5.3)

where rP is the radial coordinate of the isobar enclosing mass mP (see Sects. 2.2.1 and 2.2.2). The
diffusion coefficient enteringDrot =

(
4πr2

Pρ̄
)2

(Drot + Dconv) in radiative zones is given by Eq. (2.62):

Drot = DES + DSSI + DDSI + DGSF + DSH. (5.4)

The evaluation of the individual terms is described in Sect. 2.2.5.
The treatment of mass and angular momentum accretion is described in Sects. 2.1.5 and 2.2.6. The

mass accretion rate is again set to 10−6 M� yr−1. The composition on the ZAMS and that of the added
material is given in Table 4.1.

We adopt the same grid of initial primary (AGB) masses M1, initial secondary masses M2,i, and
accreted masses ∆M as in Chapter 4 (Sect. 4.1.1). In addition, for each combination of M1, M2,i and ∆M
we have one more dimension: the specific angular momentum ja of the added material. We investigate ten
values of ja in the range (0.001–1) × 1018 cm2 s−1. While the specific angular momentum of the accreted
material in real systems is likely closer to the higher end of these values (Sect. 5.3.1 and Chapter 6), this
range can be interpreted as representing different degrees of angular momentum loss during accretion
and is suitable to produce CEMP-s models with surface rotation velocities between vrot . 0.5 km s−1

(i.e. nearly stationary) and vrot & 300 km s−1 (close to critical rotation), once they have settled on the
post-mass-transfer main sequence. On the ZAMS the models are uniformly rotating with a surface
rotation velocity vrot ' 0.3 km s−1.

The two adjustable parameters in our adopted prescription for rotational mixing, fc and fµ (which
determine the contribution of the rotationally induced instabilities to chemical transport and the sensitivity
of rotational mixing to mean molecular weight gradients, respectively; Sects. 3.2.3 and 2.2.5) are by
default set to fc = 1/30 and fµ = 0.05 following Heger, Langer and Woosley (2000). The influence of
these parameters is examined in Sect. 5.3.3.

To save a considerable amount of computational time, we use the OPAL-based (Iglesias and Rogers,
1996) opacity tables of Eldridge and Tout (2004) and ignore radiative levitation in this chapter. As shown
in Chapter 4, this is perfectly sufficient to get a handle on the importance of atomic diffusion in a given
model (e.g. Fig. 4.3).

5.2 Results

As in Sect. 4.2, we begin the discussion of the results by considering in depth the evolution of a system
characterised by M1 = 1.25 M�, M2,i = 0.75 M�, and ∆M = 0.05 M�, first under the influence
of rotational mixing alone (Sect. 5.2.1), and then together with diffusion and thermohaline mixing
(Sect. 5.2.2). The general features of the calculations are summarised in Sect. 5.2.3.

5.2.1 Models with rotational mixing only

Figure 5.1 shows the Hertzsprung-Russel diagram (HRD) and the evolution of the rotation velocity of
the secondary of this system when the accreted material is assigned different values of specific angular
momentum. In all systems with M1 = 1.25 M� the mass transfer is assumed to start at t = 3.06 Gyr. This
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point is identified by the circle numbered ‘1’ in the figure. The M2,i = 0.75 M� secondary at this age
is still early on in its main sequence with a central hydrogen mass fraction of XH,c = 0.59 (down from
the ZAMS value of 0.758). Once mass transfer starts, the tracks corresponding to different values of ja
separate.

The accretion rate of Ṁ2 = 10−6 M� yr−1 is high enough that the accretion timescale τ ' M2/Ṁ2 is
always much shorter (by a factor of ten or more) than the thermal timescale of any CEMP star progenitor.
Accreting material (part of the track between ‘1’ and ‘2’ in Fig. 5.1a) at this rate therefore drives the star
out of thermal equilibrium to higher luminosity and effective temperature. Once accretion ends (‘2’), the
star attempts to return to equilibrium, becoming fainter and cooler in the process.

While returning to thermal equilibrium, the stars spin up for a time, both in absolute terms and as a
fraction of the critical velocity (Figs. 5.1b,c). For the highest values of specific angular momentum the
stars may reach critical rotation at some point, as in the ja = 7 × 1017 cm2 s−1 case in this system (yellow
line). Since our primary interest in this chapter is the long-term evolution after relaxation, we do not
attempt to model this brief (δt ' τKH) phase accurately, assuming that it is not very important for the
subsequent evolution.1 Instead, we simply limit the centrifugal acceleration, and the resulting structural
deformation, while the star is formally rotating at super-critical velocities (dashed portion of the line).
After relaxation, this particular model never exceeds Ω/Ωc ' 0.8.

Various aspects of the evolution of the star after it settles back on the main sequence (‘3’) depend on
the angular momentum accreted. First, owing to the extra support against gravity from the centrifugal
force, rotating stars are normally cooler and less luminous than non-rotating stars – they resemble
non-rotating stars of lower mass (Sackmann, 1970). Here this effect is largely compensated for by the
unusual chemical structure. The non-rotating model is fairly cool (Teff ' 6550 K at turn-off, same as the
ja = 1015 cm2 s−1 track and about 200 K less than a regular 0.8 M� star at Z = 10−4) because of the high
metallicity of the accreted material. Making the star rotate leads to dilution of this material by rotational
mixing (Fig. 5.2), and the corresponding change in the opacity actually makes the star hotter (although
not more luminous) at turn-off (‘4’) than in the non-rotating case.2 Only for very rapid rotation rates
(Ω/Ωc & 0.5 or vrot > 100 km s−1), when rotational mixing does not lead to significant further changes
in the structure of the star, do the mechanical effects shift the track back to cooler temperatures. The
resulting spread in turn-off temperatures between all models of this system is only about 100 K.

Second, the internal transport of angular momentum leads to different initial rotational evolution for
rapid rotators. Normally, the surface value of Ω/Ωc somewhat increases during the main sequence
evolution of low-mass stars. This is a consequence of their slight expansion, which reduces the critical
rotation velocity (Ωc ∝ R−3/2, Eq. (2.59)). Here, in the rapid rotators, Ω/Ωc and vrot first decrease because
the accreted momentum is transported inwards. After reaching a minimum, Ω/Ωc then increases for the
rest of the main sequence. All models reach a maximum in the rotation rate somewhere between the
turn-off (‘4’) and the beginning of first dredge-up (FDU; ‘5’).

Figure 5.3 shows the internal evolution of the rotational velocity profile in the star between the
beginning of mass transfer and the end of FDU, and Figs. 5.4 and 5.5 show the internal profiles of the
specific angular momentum, angular rotation velocity, and carbon and nitrogen abundances near the
main sequence turn-off for the different values of ja. Naturally, accreting more angular momentum leads
to deeper and faster transport of angular momentum. By the time the star reaches the turn-off in the
ja = 7 × 1016 cm2 s−1 (vrot ' 20 km s−1) case, the angular momentum is mixed to about the half-way

1 Presumably the star must shed the super-critical layers as it contracts. Unless the material is re-accreted later, the star then
ends up with a slightly lower mass. In this particular case, losing about 0.004 M� of material during the contraction suffices
to keep the star below critical rotation. This amount of mass loss has only a small effect on the subsequent evolution.

2 To elaborate, models with rotation are indeed slightly cooler and less luminous early on in the post-mass-transfer main
sequence. But by the time they reach turn-off, most of them are hotter as a result of the mixing.
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Figure 5.1: Evolution of a M2,i = 0.75 M� secondary accreting ∆M = 0.05 M� of material from a primary with
initial mass M1 = 1.25 M�. Tracks distinguish different specific angular momentum of the accreted material. The
numbers on top of the ja = 2 × 1017 cm2 s−1 track mark the beginning of mass transfer (‘1’), end of mass transfer
(‘2’), return to the main sequence (‘3’), main sequence turn-off (‘4’), beginning of first dredge-up (‘5’), end of first
dredge-up (‘6’). The dashed part of the ja = 7 × 1017 cm2 s−1 track marks the phase of the evolution where the star
is formally above critical rotation (see text).
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(b) Evolution of nitrogen

Figure 5.2: As Fig. 5.1 but showing the evolution of the carbon and nitrogen surface mass fractions.

point in the star by mass. For the highest values of ja (vrot & 100 km s−1) nearly all of the star is mixed
by then.

The mixing of angular momentum and of chemical elements does not occur to the same depth (cf.
Figs. 5.4a and 5.5a). For example, in the lowest angular momentum case that shows a change in the
surface abundances on the main sequence, ja = 7 × 1016 cm2 s−1 (Fig. 5.2), the chemical elements have
been partially mixed down to a mass coordinate of m ' 0.6 M� by the time the star has reached the
turn-off. Meanwhile, the angular momentum has been transported about twice as deep. This is a direct
consequence of the choice of fc, the fraction of total angular momentum diffusion coefficient applied to
chemical transport, in Eq. (5.2). Had we chosen fc = 1, the depth of chemical and angular momentum
transport would coincide. Instead, the timescale for chemical transport is much longer than that for
angular momentum transport, and thus angular momentum has been transported to a greater depth at a
given time. We return to the influence of fc and fµ in Sect. 5.3.3.

Which of the different processes dominates the transport of angular momentum? The answer changes
over time (Fig. 5.6). At first, a steep Ω-gradient is present at the interface between the accreted layer and
the original surface of the star. This induces shear mixing, which dominates the initial transport with
some contribution from the GSF instability. But the transport also smears out the Ω-gradient, quenching
the shear instability. For a while, the GSF instability is responsible for the continuing inward transport
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Figure 5.3: Evolution of angular rotation velocity profiles for three different values of ja. The dashed black
profile corresponds to just before mass transfer (‘1’) and subsequent profiles, plotted in alternating line types of
progressively lighter colours, correspond to end of mass transfer (‘2’), return to thermal equilibrium (‘3’), main
sequence (between ‘3’ and ‘4’), before first dredge-up (‘5’) and after first dredge-up (‘6’). The last two profiles
demonstrate the spin-up of the core after the main sequence. Note the different y scales.
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Figure 5.4: Distribution of specific angular momentum and angular velocity near the end of the main sequence in
the rotating models shown in Fig. 5.1.

of angular momentum, until eventually much of the Ω-gradient is removed, and mixing proceeds over
longer timescales by the Eddington-Sweet circulation (which is the only term in Eq. (5.4) that depends
on Ω and not its gradient, see Sect. 2.2.5). Some Ω-gradients always remain (e.g. Fig. 5.3), but these
are either too small to contribute to further mixing and/or the mixing is inhibited by molecular weight
gradients. Given the rapid removal of the Ω-gradients, Eddington-Sweet circulation is responsible for
most of the chemical mixing.

Once first dredge-up starts (‘5’), the tracks again converge, and the evolution up the red giant branch
(RGB) is similar in all cases. This is largely the result of FDU erasing most of the differences in the
chemical structure between the model sequences. Furthermore, the accreted angular momentum is
insufficient to result in large rotation rates (with respect to the critical rate) of any part of a giant because
of its much larger moment of inertia.

Overall, below ja . 2 × 1016 cm2 s−1 (turn-off velocity of about 10 km s−1) the evolution of the
CEMP star in this system is essentially unaffected by the rotation. This is because both the centrifugal
acceleration is too small to substantially lower the effective gravity, and the contrast between the accreted
layer and the region below is too small to trigger significant chemical mixing of the two (although
there is some angular momentum mixing; Fig. 5.4a). For higher values of ja the timescale for chemical
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Figure 5.5: Distribution of abundances near the end of the main sequence in the rotating models shown in Fig. 5.1.

transport is finally short enough, compared to the nuclear timescale, that chemical dilution of the accreted
material can occur before FDU (Fig. 5.2), which, as explained above, also shifts the track in the HRD.
Naturally, the greater ja, the more extensive and rapid the mixing. For the highest values of ja mixing is
deep enough that FDU no longer plays a significant role in diluting the accreted material. However, if
rotational mixing on the main sequence is extensive enough to bring the accreted carbon down to regions
where it can be burnt, FDU can bring the produced nitrogen, visible in Fig. 5.5b around m ' 0.3 M�,
to the surface. In the two most rapidly rotating models, the nitrogen abundance after FDU (‘6’) is thus
higher than in all others (Fig. 5.2b).

The evolution further up the giant branch is not very eventful in these models. No further abundance
changes occur once FDU is over. The contracting core spins up and the expanding envelope slows
down – the surface velocities decrease to vrot . 10 km s−1. There thus develops a large and ever-
increasing contrast between the rotation rate of the core and the envelope (Fig. 5.3). This is not consistent
with asteroseismic measurements of red giant core rotation rates (Mosser, Goupil, Belkacem et al.,
2012; Deheuvels, Doğan, Goupil et al., 2014), which find much greater coupling between the core
and the envelope. This coupling is thought to come about as a result of magnetic fields (Spruit, 2002;
Suijs, Langer, Poelarends et al., 2008) and/or gravity waves (Talon and Charbonnel, 2003; Talon and
Charbonnel, 2008; Fuller, Lecoanet, Cantiello et al., 2014), neither of which we have modelled at this
time. In terms of surface abundances, these processes seem more likely to manifest by altering the
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Figure 5.6: Individual contributions of the most important rotational instabilities to the total angular momentum
transport coefficient in the ja = 5 × 1017 cm2 s−1 (vrot ' 100 km s−1) case at four instances: (a) shortly after mass
transfer ends (‘2’); (b) near return to equilibrium (‘3’); (c) main sequence (between ‘3’ and ‘4’); (d) main sequence
turn-off (‘4’). Initially, large Ω-gradients favour the shear and GSF instabilities. Later on, when the Ω-gradients are
erased, the overall transport is dominated by the Eddington-Sweet (ES) circulation. The lines show the angular
velocity (dash-dotted) and the carbon abundance (dashed) profiles at the corresponding times.

importance of rotational mixing than leading to mixing directly (Talon and Charbonnel, 2005; Maeder
and Meynet, 2005; Eggenberger, Meynet, Maeder et al., 2010), an effect that to some extent we probe by
considering different rotation rates.

5.2.2 Models with atomic diffusion and thermohaline mixing

Atomic diffusion will tend to modify the surface abundances following mass transfer. In Chapter 4 we
saw how, in absence of other mixing processes, in most CEMP-s stars the carbon should settle out of
the surface convection zone, while the surface abundance of iron should increase as a result of radiative
levitation. Near the main sequence turn-off, before the convective envelope begins to move inwards
in mass, the resulting abundances (e.g. [C/H] < −1 and [Fe/H] > −1 so that [C/Fe] < 0) can be very
different from those of the accreted material ([C/H] ' 0 and [Fe/H] ' −2 so that [C/Fe] & 2; Fig. 4.3).

However, atomic diffusion will be counteracted by rotational mixing. As a result of this competition,
abundance variations on the main sequence are expected in models of all rotation rates (Fig. 5.7a). At the
lowest rotation velocities atomic diffusion dominates, modifying the surface abundances of metals until
the convective envelope mass begins to increase shortly after the turn-off. But even a model rotating at
less than a kilometre per second shows a slightly reduced effect compared to the non-rotating case. As
one considers higher rotation rates, atomic diffusion near the surface is more and more inhibited up to the
ja = 2 × 1016 cm2 s−1 case (in this system corresponding to a turn-off velocity of vrot ' 9 km s−1), where
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Figure 5.7: Evolution and abundances of a M2,i = 0.75 M� secondary accreting ∆M = 0.05 M� of material from
a M1 = 1.25 M� primary for different values of specific angular momentum of accreted material (with atomic
diffusion).

the abundance variations are smallest, and the surface abundances remain within 15% of the accreted
composition. In non-diffusing models this is the highest ja case in which there is practically no change in
the abundances prior to first dredge-up (Fig. 5.2). As ja is increased still further, rotational mixing takes
over, and the models look more and more like in the purely rotating case in terms of surface abundances.

The competition between diffusion and rotational mixing also has an effect on the global properties of
the star. It has been shown (e.g. VandenBerg, Richard, Michaud et al., 2002; Bressan, Marigo, Girardi
et al., 2012) that non-rotating models without atomic diffusion are longer-lived and hotter throughout the
main sequence evolution than models with diffusion. This holds also for models of CEMP-s stars. But,
because of partial inhibition of atomic diffusion, accreting even a small amount of angular momentum
makes a model more like a non-diffusing one and thus hotter throughout the main sequence than a model
with diffusion only (Fig. 5.7b). When the angular momentum accreted is sufficient to cause rotational
mixing directly ( ja & 7 × 1016 cm2 s−1), the models become still hotter. Since the surface abundance
anomalies are actually smaller than in the non-rotating case, this must be due to inhibition of diffusion
deeper in the star. Eventually, the mechanical effects from rotation take over such that the models with
highest rotation rates are again cooler.

88



5.2 Results

−0.5 0.0 0.5 1.0 1.5 2.0

logL/L⊙

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

C
a
rb

o
n
 m

a
ss

 f
ra

ct
io

n
no rotation
j=1× 1015

j=2× 1015

j=4× 1015

j=1× 1016

j=2× 1016

j=7× 1016

j=2× 1017

j=5× 1017

j=7× 1017

(a) Evolution of carbon

−0.5 0.0 0.5 1.0 1.5 2.0

logL/L⊙

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
it

ro
g
e
n
 m

a
ss

 f
ra

ct
io

n
 ×

10
−5

(b) Evolution of nitrogen

5800590060006100620063006400650066006700

Teff (K)

−0.2

0.0

0.2

0.4

0.6

0.8

lo
gL

/L
⊙

(c) Hertzsprung-Russell diagram

Figure 5.8: As Fig. 5.7 but with thermohaline mixing.

89



Chapter 5 Rotational mixing in CEMP-s stars

Thermohaline mixing, when modelled as an independent process (see Sect. 5.3.2), always dominates
over diffusion and rotational mixing. In this system thermohaline mixing rapidly reduces the carbon
abundance by a factor of about six (between log L ' 0.2 and −0.1; Fig. 5.8a). Once thermohaline mixing
has levelled the inverse µ-gradient, diffusion modifies the surface abundances still further in the slowly
rotating models. In the rapidly rotating models the subsequent abundance evolution depends on the
depth of thermohaline mixing. When this depth is at least comparable to that of rotational mixing (such
as in this system, where thermohaline mixing proceeds down to a mass coordinate of m ' 0.39 M�),
the chief role of rotational mixing is to inhibit atomic diffusion – it does not lead to significant further
abundance changes before FDU. In systems where thermohaline mixing is not as deep (because of a
smaller µ-gradient), rotational mixing can lead to further dilution of the accreted material.

A slight increase in the surface nitrogen abundance following FDU is found in this system even
without rotation (Fig. 5.8b). This nitrogen has been produced from the accreted carbon transported
deep into the star by thermohaline mixing (Stancliffe, Glebbeek, Izzard et al., 2007). Rotational mixing
replenishes the carbon at these depths after thermohaline mixing has shut off so that more nitrogen can
be produced, boosting the amount of nitrogen that is brought to the surface during FDU. Thermohaline
mixing can once again activate following the RGB luminosity bump because of the 3He(3He, 2p)4He
reaction, which reduces the mean molecular weight just above the hydrogen burning shell (Eggleton,
Dearborn and Lattanzio, 2006; Stancliffe, Church, Angelou et al., 2009). A further increase in surface
nitrogen abundance follows, but normally by no more than a factor of two because of the low value of
the thermohaline mixing coefficient (Denissenkov, 2010).

The mechanical effects are visible earlier and more clearly in models with thermohaline mixing, because
most of the chemical mixing is caused by the thermohaline instability. Since this makes rotational mixing
of chemical composition largely superfluous, only the mechanical effects from rotation remain. The
spread in temperature around the main sequence turn-off is smaller than in models without thermohaline
mixing (about 100 K versus 220 K, respectively; cf. Figs. 5.8c and 5.7b).

5.2.3 Abundance anomalies near the main sequence turn-off

We now attempt to characterise how the surface composition changes (from the composition of the
accreted material) in all of our simulations collectively. We refer to these changes as abundance anomalies.
In models where atomic diffusion dominates, the abundance anomalies are usually largest around the
main sequence turn-off, which is thus a convenient point of reference for comparing different systems
(Sect. 4.2.2). In models without diffusion, or when diffusion is inhibited, the abundances of most elements
instead change monotonically throughout the main sequence and beyond, as the accreted material gets
more and more diluted (Fig. 5.2; this is not true for elements like nitrogen that can undergo further
nuclear processing). Since a similar point of reference in these models thus cannot be identified, we
adopt the same point, the main sequence turn-off, for convenience.

In the system discussed above, accretion of material with specific angular momentum ja . 2 ×
1016 cm2 s−1 has little influence on the evolution following mass transfer, if atomic diffusion is ignored.
Figure 5.9 shows that this is the case in other systems (with different values of M2,i and ∆M) as well.
It is the specific angular momentum (instead of, for example, the total angular momentum accreted)
that is decisive in determining whether material will mix, because material with higher specific angular
momentum establishes a greater gradient in the angular velocity, which aids the shear instability.

In the same system, accretion of material with specific angular momentum ja = 2 × 1016 cm2 s−1

results in a turn-off velocity of about 10 km s−1. In systems with other combinations of M2,i, ∆M and M1
the turn-off velocity can be anywhere between vrot ' 1–30 km s−1 (increasing with ∆M), with the range
of possible turn-off velocities increasing with ja (Fig. 5.10). That is because the rotation velocity of the

90



5.2 Results

1015 1016 1017 1018

Specific angular momentum accreted (cm2 s−1)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

[C
/H

]

∆M = 0.001

∆M = 0.01

∆M = 0.05

∆M = 0.1

∆M = 0.2

∆M = 0.3
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Figure 5.10: Rotation velocities at main sequence turn-off (‘4’) resulting from accretion of material of different
specific angular momentum in all simulations with rotational mixing only. The critical velocity at turn-off is
between about 280 and 300 km s−1 in the vast majority of cases.

star following mass accretion reflects the total angular momentum accreted. It does not constrain the
amount of mass accreted, because the same amount of angular momentum can be obtained by accreting a
small amount of material with high specific angular momentum, or a large amount of material with low
specific angular momentum.

The rotation velocity is therefore not very informative of the amount of rotational mixing expected,
which is unfortunate given that the rotation velocity is an observable quantity. A rotation rate of, for
example, 50 km s−1 could correspond to a carbon dilution of more than a dex if ∆M is small (. 0.01 M�)
or negligible dilution if ∆M is large (& 0.2 M�; Fig. 5.11). The rotation velocity does, however, serve as

91



Chapter 5 Rotational mixing in CEMP-s stars

0 50 100 150 200 250 300

Rotation velocity at turn-off (km s−1)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

[C
/H

]

∆M = 0.001

∆M = 0.01

∆M = 0.05

∆M = 0.1

∆M = 0.2

∆M = 0.3
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a good indicator of whether atomic diffusion should be important (Fig. 5.12). If one compares models
with rotation alone (black symbols) to those with rotation and diffusion (orange symbols), one sees that
only below vrot ' 1 km s−1 does atomic diffusion lead to abundance anomalies of a dex or more. The
amount of dilution of carbon drops below a factor of two above rotation velocities of a mere 2–3 km s−1

and basically disappears above 5 km s−1. The most severe change in abundances in models with such
rotation velocities results from thermohaline mixing (blue symbols), which typically reduces [C/H] by a
factor of three or more, depending on the mass accreted and the molecular weight of the accreted material
(Stancliffe et al., 2007, Sect. 4.2.3).

For the largest values of specific angular momentum ( ja & 7 × 1017 cm2 s−1) abundance differences
between models with and without thermohaline mixing also disappear. This is because, when rotational
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mixing is rapid enough, it can dilute the material to a similar extent as thermohaline mixing, and the
abundances near the turn-off end up being similar (cf. Figs. 5.2a and 5.8a). Nevertheless, thermohaline
mixing is still by far the more rapid of the two mixing processes and responsible for most of the dilution
when ∆M & 0.01 M� (as in the high- ja cases in Fig. 5.8).

Overall then, in models with rotational mixing only, it is the specific angular momentum of the accreted
material, and not the rotation velocity or the total angular momentum accreted, that best predicts whether
rotational instabilities will directly lead to chemical mixing. For a given progenitor system (combination
of M1, M2,i), the dilution on the main sequence is determined almost entirely by the specific angular
momentum of the accreted material if more than a couple of hundredths of a solar mass are accreted. The
rotation velocity, while not a reliable indicator of the importance of rotational mixing, does reflect the
importance of atomic diffusion – large abundance anomalies above rotation velocities of a few km s−1

are not expected. Thermohaline mixing is responsible for most of the abundance changes occurring on
the main sequence after mass transfer, unless very little mass is accreted (of the order of 10−3 M�).

5.3 Discussion

Building on the models presented in Chapter 4, we have presented here models of the evolution of a
large number of CEMP-s stars originating from a range of putative progenitor systems, for the first time
considering in detail the accretion and internal transport of angular momentum by these stars. We now
discuss the applicability of the models to real CEMP-s stars (Sect. 5.3.1) and then turn to the abundance
evolution predicted by the models in context of observations (Sect. 5.3.2). We end with an examination
of the importance of the free parameters inherent in our adopted prescription for angular momentum
evolution (Sect. 5.3.3).

5.3.1 Angular momentum content of real CEMP-s stars

We know of no CEMP-s stars rotating at a substantial fraction of their critical velocity. Indeed, typical
velocities of CEMP dwarfs seem to be in the 5–15 km s−1 range (Masseron, Johnson, Lucatello et al.,
2012). These velocities are probably higher than the typical velocities of old Halo dwarfs (by a factor of
about two; Lucatello and Gratton, 2003; Cortés, Silva, Recio-Blanco et al., 2009), which supports the
idea of angular momentum accretion by these stars. Even so, these velocities are quite low (no more than
a few percent of the critical velocity), which indicates that either the stars lose angular momentum after
mass transfer, or they accrete little of it to begin with. There are issues with both possibilities.

If a substantial amount of mass is to be accreted, accreting a small amount of angular momentum
requires that the specific angular momentum of the accreted material is low, notably much below the
Keplerian value of jK =

√
GMR ' 2 × 1018 cm2 s−1 (Fig. 5.10). But multi-dimensional hydrodynamic

simulations of representative progenitor systems routinely predict accretion disk formation (e.g. Theuns,
Boffin and Jorissen, 1996; Huarte-Espinosa, Carroll-Nellenback, Nordhaus et al., 2013; Chen, Frank,
Blackman et al., 2017) or otherwise find the specific angular momentum of the material flowing around
the accretor to be close to jK (Liu, Stancliffe, Abate et al., 2017). Although these simulations neglect
physical processes that likely play an important role in regulating the angular momentum accreted by
the star (particularly magnetic fields; Armitage and Clarke, 1996; Matt and Pudritz, 2005a; Matt and
Pudritz, 2005b), the angular momentum would have to effectively be wrong by two orders of magnitude
to reconcile the simulations with the observations.3

3 We return to the problem of accreting substantial amounts of mass in Chapter 6.
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Alternatively, the stars may have rotated rapidly shortly after mass transfer, but lost much of the
accreted angular momentum subsequently. Given that their interior structure (a radiative interior with a
surface convective envelope) is qualitatively similar to solar-like stars, one might expect that CEMP stars
too lose angular momentum by magnetised winds (Weber and Davis, 1967; Mestel and Spruit, 1987). At
solar metallicity this magnetic braking is found to cause the gradual spin-down of stars up to masses of
M ' 1.4 M� on timescales of about 0.1–1 Gyr (e.g. Skumanich, 1972; Kawaler, 1987; Meibom, Barnes,
Latham et al., 2011; Meibom, Barnes, Platais et al., 2015; Bouvier, Matt, Mohanty et al., 2014). If
magnetic braking operates similarly in CEMP stars, they should have had a fair amount of time to spin
down, as even the youngest CEMP stars are probably at least a gigayear old.4

The magnetised winds are believed to be powered by a dynamo sustained by the interaction between
differential rotation near the base of the envelope and convection (Brandenburg and Subramanian, 2005;
Charbonneau, 2010). The successful operation of the dynamo thus depends on the properties of the
surface convection zone. As a prerequisite, one has to exist, and the progressively longer spin-down
timescales of stars in the 1.1 . M/M� . 1.4 range is attributed to the gradual thinning of the surface
convection zone (Kraft, 1967; Kawaler, 1987), after the disappearance of which no braking occurs.
We find that by various measures that could be relevant for the efficiency of the dynamo (e.g. Noyes,
Hartmann, Baliunas et al., 1984; Schrijver, 1993) – the mass contained (10−5 . Menv/M� . 10−3), the
convective turn-over timescale (1 . τconv(d) . 10), the fractional radius (0.05 . Renv/R . 0.2) and
volume (0.15 . Venv/V . 0.5) – the convective envelopes of Z = 10−4 models with M ' 0.75–0.85 M�
resemble those of Z = 0.02 models with M ' 1.15–1.4 M� throughout much of the main sequence. The
envelopes of CEMP stars are still more sizeable because of the increased metallicity (Z). It thus seems
plausible that CEMP stars too could sustain a dynamo and undergo magnetic braking, although possibly
on fairly long (gigayear) timescales.

Assuming CEMP stars do undergo magnetic braking, what are the consequences for their evolution?
Obviously, one consequence is that their surface rotational velocity decreases over time, but what about
the internal transport of angular momentum and chemical elements? To gain some insight into this
question, we return to the illustrative case of Sect. 5.2.1 with ja = 5 × 1017 cm2 s−1. We restart the model
sequence from the end of mass transfer (labelled ‘2’ in Fig. 5.1), this time including angular momentum
loss following Kawaler (1988):

dJ
dt

= −K
(

R/R�
M/M�

) 1
2

Ω min(Ω,Ωsat)2. (5.5)

Ωsat is the surface angular velocity, above which angular momentum loss is found to saturate in rapidly
rotating solar-like stars (Chaboyer, Demarque and Pinsonneault, 1995a), here taken to be 10Ω� (Amard,
Palacios, Charbonnel et al., 2016), and K = 2.5 × 1047 (g cm2 s) is a calibrating constant, chosen to
reproduce the solar rotation rate at the solar age.

The default M2,f = 0.8 M� model rotates at a velocity of vrot ' 100 km s−1 throughout the post-mass-
transfer main sequence (Fig. 5.1c). Such rapid rotation implies a large torque according to Eq. (5.5). Its
application to the relatively thin envelope (0.004 M� shortly after mass transfer) of the star results in
a very rapid spin-down: 50 Myr after the end of mass transfer the surface rotation velocity has fallen
to vrot < 10 km s−1 and after about a gigayear it levels off to vrot ' 4 km s−1 (Fig. 5.13a). After that the
angular momentum of the envelope no longer changes appreciably, as the angular momentum loss is
balanced by the outward transport from the radiative core. In other words, the angular momentum is then
extracted from the core (Pinsonneault, Deliyannis and Demarque, 1991; Epstein and Pinsonneault, 2014).

4 The youngest Halo stars are about 10 Gyr old, while the lifetime of the lowest-mass star that undergoes third dredge-up
during the AGB stage at Z = 10−4 is about a gigayear less (Stancliffe and Glebbeek, 2008; Karakas, 2010).
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Figure 5.13: Influence of magnetic braking on the M1 = 1.25 M�, M2,i = 0.75 M�, ∆M = 0.05 M� model with
ja = 5 × 1017 cm2 s−1 and rotational mixing only. Out of the models without braking, on the main sequence the
ja = 1×1016 cm2 s−1 model is the one most similar in terms of surface rotation velocity, and the ja = 7×1016 cm2 s−1

model is the one most similar in terms of surface abundances.

The surface rotational velocity of the model with magnetic braking during the main sequence is most
similar to that with ja = 1016 cm2 s−1 and no braking. But the internal angular momentum evolution
is not very different from the default model with ja = 5 × 1017 cm2 s−1 because the accreted layer is
much larger than the convective envelope. The instabilities at the base of this accreted layer thus still
occur, although the continuous removal of angular momentum does reduce the depth to which angular
momentum has been transported at a given time (Fig. 5.14). Still, the angular momentum content in
the model with braking remains larger than in the ja = 1016 cm2 s−1 model without braking, and this is
reflected by its more rapid rotation during post-main-sequence evolution.

Since the transport of chemical species occurs over a longer timescale, it is more affected by the
angular momentum loss at the surface. The depth to which elements are mixed is much smaller in
the case with braking (m ' 0.45 M� instead of m < 0.3 M� at turn-off; Fig. 5.14b), and the surface
abundance evolution on the main sequence is closer to the ja = 7×1016 cm2 s−1 case, which has a surface
rotational velocity of only vrot ' 20 km s−1 (Fig. 5.13). Internally, however, the abundance profiles are
very smeared out in the model with braking. This results in a prolonged first dredge-up, compared to the
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Figure 5.14: Internal evolution of the model from Fig. 5.13 with and without magnetic braking. The sets of profiles
correspond to very similar ages in both cases, and later times are plotted in progressively lighter shades.

ja = 7 × 1016 cm2 s−1 case.
For this system then, including magnetic braking in the case with ja = 5 × 1017 cm2 s−1 gives a surface

rotational velocity similar to the ja = 1016 cm2 s−1 case, and surface abundance evolution similar to the
ja = 7 × 1016 cm2 s−1 case. The former can be expected to remain true if magnetic braking would be
applied to a model with a different value of ja > 1016 cm2 s−1, or to some extent even a different system
(i.e. combination of M1, M2,i, ∆M) altogether. The reason is that the surface velocity after the envelope
has spun down largely depends on the constant K in Eq. (5.5). But the non-braking model with the most
similar evolution of surface abundances would however change (to a case somewhere between that which
gives the most similar rotation velocity, and that from which we start). But generally, magnetic braking
is expected to reduce the surface abundance anomalies stemming from rotational mixing. For example,
all the points in Fig. 5.11 would shift towards lower velocities and to higher [C/H], the shift in velocity
being more important for models with ∆M & 0.05 M�, and the shift in [C/H] dominating for models with
∆M . 0.01 M�.
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5.3.2 Comparison with observations

In Sect. 4.3 we saw that atomic diffusion should lead to very large abundance anomalies (e.g. [C/Fe] < −1)
near the main sequence turn-off, a result clearly at odds with observational data (Fig. 4.6). Here
we again juxtapose some of our model sequences with the measured carbon abundances ([C/H]) of
CEMP stars from the Sloan Digital Sky Survey (SDSS; Lee, Beers, Masseron et al., 2013), the largest
homogeneous data set of carbon abundances in metal-poor stars. We restrict the comparison to models
with vrot . 100 km s−1 at turn-off. While this limit considerably exceeds the highest observed velocities
of CEMP stars, these rapidly rotating models serve to illustrate the effect of rotational mixing in systems
other than the one discussed so far, and can be taken to mimic the surface chemical evolution of initially
still more rapidly rotating models with magnetic braking.

We also restrict the comparison to models with atomic diffusion. We can easily see when diffusion,
or more accurately gravitational settling and thermal diffusion, becomes important by considering the
[C/H] abundance evolution in models with different rotation velocities. In all cases in Fig. 5.15 we see
that the hallmark pattern of atomic diffusion – continuous decrease of heavy element abundances until
the turn-off (log g ' 4 in these stars) followed by a reversal as the convective envelope moves inwards –
is severely disrupted, compared to the non-rotating case, already at vrot ' 0.7 km s−1. For vrot ' 2 km s−1

the variation of [C/H] over the main sequence is below 0.3 dex. This is what we already concluded in
Sect. 5.2.3 (Fig. 5.12). In these models we have ignored radiative levitation, which can drastically alter
the relative abundances of metals (e.g. the [C/Fe] ratio). But as we saw in Chapter 4, levitation will
only be important together with the other microscopic diffusion processes, that is, in the slowly rotating
models (vrot . 2 km s−1).

If rotational mixing is indeed responsible for inhibiting atomic diffusion in metal-poor stars, the lack of
stars with [C/H] < −2.5 between −2.5 < [Fe/H] < −2 seems to require that all stars rotate, even if very
slowly (vrot & 0.5 km s−1). Otherwise we should observe some carbon-depleted stars around the main
sequence turn-off. Whether there are stars that rotate still slower seems unclear. Spectroscopically such
low velocities are difficult to disentangle from other line broadening mechanisms (Valenti and Fischer,
2005), and photometric missions are currently restricted to rotation rates above about the same limit
(Prot . 100 d; Affer, Micela, Favata et al., 2012; McQuillan, Mazeh and Aigrain, 2014).

Whether thermohaline mixing should activate in rotating stars is a matter of debate. Following
Cantiello and Langer (2010) and Charbonnel and Lagarde (2010), we have treated the thermohaline and
rotational instabilities independently, neglecting their possible interaction (although, they still influence
each other by changing the structure of the stellar models). Thus modelled, thermohaline mixing results
in a relatively immediate and substantial (∆[C/H] > 0.3) reduction of [C/H] following mass transfer.
Therefore, large quantities (∆M > 0.2 M�) of high molecular weight material are required to reproduce
the largest observed carbon enhancements. Also, mixing proceeds to slightly greater depths in more
rapidly rotating models. In models with ∆M & 0.05 M� the depth of thermohaline mixing generally
exceeds the maximum depth reached by the convective envelope at the end of first dredge-up. In these
models there is thus little to no change in [C/H] during FDU (but [N/H] can increase substantially; see
Stancliffe et al., 2007).

However, many authors (Denissenkov and Pinsonneault, 2008a; Vauclair and Théado, 2012; Maeder,
Meynet, Lagarde et al., 2013) have argued that the strong horizontal turbulence expected in rotating stars
(Zahn, 1992) should at least curtail thermohaline mixing, if not outright suppress it (but see Medrano,
Garaud and Stellmach, 2014). If so, it might be more appropriate to exclude thermohaline mixing. But it
is worth noting that the µ-inversion on the red giant branch, on which much of the cited discussion is
focused, is much smaller than established by accretion of material (∆µ/µ ∝ 10−4 versus ∆µ/µ & 0.01)
and develops gradually as a result of 3He-burning instead of instantaneously, so complete suppression of
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Figure 5.15: Evolution of [C/H] in CEMP-s star models of different initial and accreted masses (given in solar
masses in the top right corner of each panel) with rotational mixing, gravitational settling, and thermohaline mixing.
The three sets of lines correspond to different AGB donor masses (marked on the left). The colour intensity
indicates the specific angular momentum of accreted material. From brightest to darkest, the lines correspond to
ja = 0 (no rotation), 0.02, 0.04, 0.2, 0.7, 2.0 (×1017 cm2 s−1). The corresponding rotation velocities are listed in the
bottom right corner of each panel (to reduce crowding not all ja cases are shown in every panel). The solid part of
each line delimits ages between 10 and 13.8 Gyr (for panel (a) computations were stopped at t = 16 Gyr). The
points are CEMP stars ([C/Fe] ≥ 0.9; Masseron, Johnson, Plez et al., 2010) from SDSS with −2.5 ≤ [Fe/H] ≤ −2.0
(Lee, Beers, Masseron et al., 2013).
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Figure 5.16: As Fig. 5.15 but without thermohaline mixing.

thermohaline mixing seems less likely in CEMP-s stars. Given this theoretical uncertainty, in Fig. 5.16
we also show models without thermohaline mixing.

At rotation velocities typical of CEMP stars (vrot ' 5–10 km s−1) these models look very similar
to previously published models with only convective mixing (Stancliffe et al., 2007; Stancliffe and
Glebbeek, 2008). That is, no significant changes in surface abundances occur in these models before
FDU dilutes the accreted material. Before that point, rotational mixing prevents atomic diffusion but does
not cause any significant dilution of the accreted material by itself (unless very little mass is accreted as
in Figs. 5.16c and 5.16d). Based on the SDSS data, it is difficult to ascertain whether models with or
without thermohaline mixing ought to be preferred. Some dilution of the accreted material around FDU
may be required (e.g. few stars have [C/H] & 0 beyond log g ' 3; see also Denissenkov and Pinsonneault,
2008b), but without any thermohaline mixing the dilution is too large unless ∆M commonly exceeds
0.2 M�.

There is a conspicuous lack of unevolved (log g & 4.2) CEMP stars in the SDSS data, particularly
ones with [C/Fe] & 1.5. As discussed in detail in Sect. 4.3, this dearth cannot be explained as an
effect of (inhibited) atomic diffusion. Unsurprisingly then, the models with rotational mixing also
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predict the existence of stars with log g & 4.2 and [C/Fe] > 1. In particular, lower-mass CEMP-s stars
(M2,f . 0.8 M�) and most CEMP-s stars with low-mass AGB companions (M1 . 1 M�) should populate
this region, assuming the ages of these stars are between 10 and 13.8 Gyr (solid sections of the lines in
Figs. 5.15 and 5.16). Since a similar scarcity of CEMP dwarfs is not evident from high-resolution studies
(e.g. as compiled in the SAGA database; Suda, Katsuta, Yamada et al., 2008; Suda, Yamada, Katsuta
et al., 2011; Suda, Hidaka, Aoki et al., 2017), we do not believe the issue rests with the models.

5.3.3 Influence of the rotational mixing parameters

The diffusion coefficients in Eq. (5.4) have been derived making use of order-of-magnitude estimates
of some of the length- and timescales involved, and are thus rather uncertain. The rotational mixing
parameters, fc and fµ, have been introduced to somewhat correct for this (Pinsonneault, Kawaler, Sofia
et al., 1989; Heger et al., 2000). These efficiency parameters are typically calibrated against observed
surface chemical enrichment of rapidly rotating massive stars (e.g. Yoon, Langer and Norman, 2006;
Brott, de Mink, Cantiello et al., 2011) or the destruction of fragile elements in the Sun and other stars
(Pinsonneault et al., 1989; Chaboyer, Demarque and Pinsonneault, 1995b; Fliegner, Langer and Venn,
1996; Venn, Brooks, Lambert et al., 2002), and our default values (Heger et al., 2000) fall in their typically
adopted ranges: 0.01 . fc . 0.1 and 0 . fµ . 0.2.

In effect, fc simply sets the timescale for the chemical transport compared to angular momentum
transport. Therefore, increasing fc increases the rate and extent of chemical mixing. But the influence of
fµ, which sets the sensitivity of the rotational instabilities to molecular weight gradients, is more subtle.
Since the various instabilities depend on µ-gradients in different ways (Sect. 2.2.5), changing fµ alters
their relative importance in different regions of the star and over time. Normally stars build up positive
molecular weight gradients in their interiors as they evolve, i.e. ∇µ > 0. Accretion of AGB ejecta instead
forms a negative ∇µ in the transition region between the original and accreted material. In that region
shear instabilities are more likely to set in as a result, independently of fµ.5 But in the central regions,
where ∇µ > 0, increasing fµ stabilises the medium against shear. For the Eddington-Sweet circulation
and the GSF instability µ-gradients are always considered inhibiting (Eqs. (2.63) and (2.65)), so only the
absolute value of ∇µ matters. Reducing fµ thus always helps these transport processes, while increasing
fµ suppresses them. Overall then, increasing fµ will reduce the extent of both angular momentum and
chemical transport.

To glean the importance of the rotational mixing parameters in our CEMP star models, we have
experimented with changing one of them at a time. For fµ = 0.05 we have run additional models with
fc = 0.01 or fc = 0.1, and for fc = 1/30 models with fµ = 0 or fµ = 1. We restrict ourselves to M1 = 1
and 1.25 M� and the following pairs of M2,i,∆M: (0.65, 0.2), (0.7, 0.1), (0.8, 0.01), (0.8, 0.05).

Figures 5.17 and 5.18 show the effect fc and fµ have on the internal evolution of a CEMP star model
characterised by M1 = 1.25 M�, M2,i = 0.8 M�, ∆M = 0.05 M�, and ja = 5× 1017 cm2 s−1. As expected,
while fc has almost no effect on the angular momentum evolution within the star (Fig. 5.17a), the extent
and rate of chemical mixing correlates with fc (Fig. 5.17b). Meanwhile, variation of fµ affects the
transport of both angular momentum and material (Fig. 5.18). At fµ = 1 the transport of both is reduced,
and by the end of the main sequence less of the star is mixed than in the default case.

The case with fµ = 0 is theoretically the most interesting one. Since the µ-gradients do not interfere
with the transport, the extent of mixing depends primarily on its timescale. When it is sufficiently short
compared to the evolutionary timescale, as is the case here, the angular momentum can be transported all

5 Strictly, as can be seen from Eq. (2.69), increasing fµ when ∇µ < 0 does make the dynamical shear instability more likely.
However, we find the secular shear instability, which is favoured for any ∇µ < 0 regardless of fµ (Eq. (2.72)), to set in far
more often.
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Figure 5.17: Internal profiles for different values of the rotational mixing parameter fc in the system with M1 =

1.25 M�, M2,i = 0.8 M�, ∆M = 0.05 M�, ja = 5 × 1017 cm2 s−1. The sets of profiles correspond to ages of about
3.06005 (darkest), 3.1, 4.5, and 11 Gyr (brightest) in both cases. Models with rotational mixing only.

101



Chapter 5 Rotational mixing in CEMP-s stars

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mass coordinate m/M⊙

10-7

10-6

10-5

10-4

10-3

R
o
ta
ti
o
n
 v
e
lo
ci
ty
 Ω
 (
s−

1
)

(a) Evolution of internal rotation profile

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mass coordinate m/M⊙

10-8

10-7

10-6

10-5

10-4

10-3

10-2

C
a
rb
o
n
 m

a
ss
 f
ra
ct
io
n

fµ =0.05

fµ =0.0

fµ =1.0

fµ =0.05

fµ =0.0

fµ =1.0

(b) Evolution of internal carbon profile

Figure 5.18: As Fig. 5.17, but for the rotational mixing parameter fµ.

the way to the centre of the star. In this particular case, starting from about a gigayear after mass transfer,
the central regions rotate about a factor of a hundred faster than in the default model. This allows mixing
of additional hydrogen into the burning regions and extends the main sequence lifetime by about 0.7 Gyr.
Not only are such models longer lived (Fig. 5.19a), they also evolve considerably hotter because of their
larger helium content, reaching much higher surface temperatures at turn-off (Teff > 7000 K; Fig. 5.19b).
Such temperatures are not measured in CEMP stars, so rotational mixing in these stars cannot be efficient
enough to cause substantial chemical mixing of the central regions. Observations would thus seem to
rule out models with fµ = 0, but perhaps CEMP stars never acquire enough angular momentum, or lose it
too rapidly, to allow for extensive rotational mixing in the first place (Sect. 5.3.1).

The internal evolution is naturally reflected by the surface abundances, as Figs. 5.19c and 5.19d
demonstrate. In terms of surface abundances there is thus somewhat of a degeneracy between the specific
angular momentum assigned to the accreted material and fc (and fµ to a lesser extent). For example,
models with fc = 0.1 resemble models with fc = 1/30 and higher ja. While this ambiguity is difficult
to disentangle on a case-by-case basis, it does not influence some of the broader conclusions reached
in previous sections. For example, in models with diffusion substantial abundance anomalies are still
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Figure 5.19: Effect of changing the values of the rotational mixing parameters fµ (panels a-c) and fc (d) in the
system with M1 = 1.25 M�, M2,i = 0.8 M�, ∆M = 0.05 M�. Models with rotational mixing only.

expected only at rotational velocities vrot . 2 km s−1 even in the two unfavourable cases with fc = 0.01
and fµ = 1.0 (cf. Figs. 5.12 and 5.20).

Thus there are no strong constraints on fc in the range [0.01, 0.1]. Outside of this range we expect that
at least from the lower end fc could be constrained (assuming that rotational mixing is indeed responsible
for suppressing atomic diffusion). Eventually, for fc � 0.01, the chemical transport due to rotational
instabilities must become so slow that atomic diffusion would be expected to dominate the surface
abundance evolution of CEMP stars, at odds with observations. Overall, because of the many steps
involved in creating CEMP-s stars (nucleosynthesis in the AGB donor, mass and angular momentum
accretion, and subsequent mixing of the accreted material), they could offer only loose constraints on fc
(and fµ), which would in any case be consistent with more stringent constraints from other types of stars.

5.4 Conclusions

In this chapter we have investigated what effect angular momentum accretion has on the chemical
evolution of CEMP-s stars. The angular momentum deposited in the outer layers of the stars triggers
rotational instabilities that induce mixing of angular momentum and the stellar material. This rotational
mixing modifies the internal chemical structure of the stars in addition to the other physical processes
(atomic diffusion and thermohaline mixing).

The relevance of each of the processes included in the models to different CEMP-s stars can be broadly
summarised as follows. In the slowest rotating (vrot . 1 km s−1) massive (M2,f & 0.85 M�) stars the
greatest abundance changes are caused by atomic diffusion near the main sequence turn-off (log L ' 0.5;

103



Chapter 5 Rotational mixing in CEMP-s stars

0 5 10 15 20 25 30

Rotation velocity at turn-off (km s−1)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

[C
/H

]

∆M ≤ 0.01

0.05 ≤ ∆M ≤ 0.1

∆M ≥ 0.2

rotational mixing only
with diffusion
with diffusion and thermohaline mixing

rotational mixing only
with diffusion
with diffusion and thermohaline mixing

(a) fµ = 1.0

0 5 10 15 20 25 30

Rotation velocity at turn-off (km s−1)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

[C
/H

]

∆M ≤ 0.01

0.05 ≤ ∆M ≤ 0.1

∆M ≥ 0.2

rotational mixing only
with diffusion
with diffusion and thermohaline mixing

rotational mixing only
with diffusion
with diffusion and thermohaline mixing

(b) fc = 0.01

Figure 5.20: As Fig. 5.12 but with different values of fc and fµ.
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log g ' 4). Depending on the amount of mass accreted (and also the mean molecular weight of the
accreted material), either first dredge-up (occurring during 3.5 & log g & 3) or thermohaline mixing
(log g ' 4.5) is more important in stars with moderate rotation velocities (vrot . 20 km s−1), and also
less massive CEMP-s stars (M2,f . 0.8 M�). Rotational mixing could be important for (internally)
more rapidly rotating stars, but only if thermohaline mixing is somehow rendered ineffective, or the
accreted mass is only of the order of 10−3 M�. Then rotational mixing could lead to similar abundances
as thermohaline mixing but gradually, over timescales comparable to the main sequence lifetime.

Importantly, even in models with the lowest rotation velocities (vrot . 1 km s−1) rotational mixing is
able to severely inhibit atomic diffusion, compared to non-rotating models. It thus seems to offer a natural
solution to the problem posed by atomic diffusion. However, while rotational mixing probably cannot be
neglected in models of CEMP-s stars, accretion of angular momentum might present new challenges to
the formation of CEMP-s stars, as we will see in the next chapter.
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CHAPTER 6

On the angular momentum content of the
accreted material

Material from this chapter is published as:

E. Matrozis, C. Abate and R. J. Stancliffe (2017), How much mass and angular momentum
can the progenitors of carbon-enriched stars accrete?, A&A 606 A137, arXiv: 1707.08224
[astro-ph.SR].

In the previous chapter we saw that rotational mixing provides a plausible answer as to why atomic
diffusion does not lead to large surface abundance anomalies in CEMP-s (and perhaps metal-poor in
general) stars. However, there the ratio of angular momentum to mass accreted, i.e. the specific angular
momentum of the accreted material, was treated as a free parameter spanning three orders of magnitude,
whereas its range could be much more restricted in real systems.

In studies on the origin of CEMP-s stars and their more metal-rich counterparts (barium and CH
stars) it is common to consider only the mass of the AGB star and the orbital parameters of the system
(separation and eccentricity) as the key factors in determining how much mass is transferred onto the
lower-mass main sequence companion (e.g. Han, Eggleton, Podsiadlowski et al., 1995; Pols, Karakas,
Lattanzio et al., 2003; Abate, Pols, Izzard et al., 2013). The angular momentum of the accreted material,
which should spin up the accreting star, is usually neglected. However, it seems plausible that, if the
accreted material has enough angular momentum to spin the accreting star up to critical rotation, no
further accretion can take place before the star either loses the excess angular momentum, or somehow
redistributes it in its interior. Packet (1981) estimated analytically that a star needs to accrete only about
ten percent of its own mass before it reaches critical rotation. However, the properties of many observed
barium (Ba) and CEMP-s stars are hard to explain unless they have accreted over 30% of their initial
mass (e.g. Miszalski, Boffin, Jones et al., 2013; Abate, Pols, Izzard et al., 2015a; Abate, Pols, Karakas
et al., 2015b).

Dedicated multi-dimensional simulations are required to answer the question of how much angular
momentum is accreted by the progenitors of carbon-enriched stars. In this chapter we instead investigate
a simpler problem, namely, how much angular momentum can these stars accrete before they reach
critical rotation. While we do not treat the physics of the accretion process in detail, we consider different
accretion rates and values of the specific angular momentum of the accreted material. We thus attempt to
deduce if (and what amount of) angular momentum loss is necessary to allow accreting enough mass
to explain the chemical abundances of observed CEMP-s and Ba stars. While the focus is mainly on
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Chapter 6 On the angular momentum content of the accreted material

the favourable case of instantaneous redistribution of angular momentum throughout the star, such that
uniform rotation is enforced at all times, the effect of a more realistic treatment of angular momentum
redistribution based on the diffusion approximation is also demonstrated.

6.1 Methods

The models presented in this chapter are produced with the stars code described in Chapters 2 and 3.
The modifications necessary for modelling rotating stars are described in Sect. 2.2. In this chapter we
focus on the mass accretion stage (Sect. 2.1.5). Briefly, mass accretion is modelled by simply increasing
the mass M of a model at a particular rate Ṁ. The added mass is assigned specific angular momentum ja,
so that addition of mass ∆M results in the addition of total angular momentum ∆J = ja∆M (Sect. 2.2.6).
To find the upper limit of ∆M for a given value of ja, we set the ZAMS rotation velocity to be small
(Ω < 0.01Ωc), so that the initial angular momentum is negligible. The mass is added until Ω reaches Ωc
anywhere in the model (usually the surface). Unlike in the previous chapters, the added mass is set to
have the same composition as the surface at all times by using the surface boundary conditions given
by Eq. (2.33), i.e. the surface composition changes that result from accretion of material are ignored.
While this makes some difference to the angular momentum that a star can accrete (Sect. 6.2), none of
the conclusions depend on this simplification. The critical rotation velocity throughout the star is given
by Eq. (2.59):

Ωc(rP) ≈

√
0.45

GmP

r3
P,c

, (6.1)

where rP,c is the radius rP of an isobar (see Sects. 2.2.1 and 2.2.2) at critical rotation.
The added angular momentum is instantaneously distributed throughout the star so that uniform

rotation results. This gives a plausible upper limit to the amount of material with ja that a star can accrete
(Packet, 1981). In addition, in some models we follow the internal transport of angular momentum as
described in Sects. 2.2.4 and 2.2.5. In these models the specific angular momentum evolves according to
Eq. (2.61):

∂ j
∂t

=
∂

∂mP

(
Drotr2

P
∂Ω

∂mP

)
. (6.2)

The models are characterised by the following set of parameters: metallicity Z, initial primary mass
MAGB (which here only sets the age at the onset of mass transfer and limits the maximum mass that
can be accreted by the secondary to the total amount lost by the primary), initial secondary mass M,
mass accretion rate Ṁ, and specific angular momentum of accreted material ja. We restrict ourselves
to Z = 10−4 and M ' 0.6–0.825 M� for CEMP stars (Abate et al., 2015a; Abate, Pols, Stancliffe et al.,
2015c), and Z = 0.008 and M ' 1.0–2.5 M� for Ba stars (e.g. McClure and Woodsworth, 1990; Pols
et al., 2003; Izzard, Dermine and Church, 2010). The mass accretion rate and specific angular momentum
are varied between Ṁ ' 10−8–10−5 M� yr−1 and ja = (0.2–3) × 1018 cm2 s−1. The upper limit of Ṁ
is close to typical mass-loss rates of the donor stars near the end of their lives (Vassiliadis and Wood,
1993; van Loon, Cioni, Zijlstra et al., 2005; Ramstedt and Olofsson, 2014), and the upper limit for ja is
comparable to the Keplerian value jK =

√
GMR ' (2–5) × 1018 cm2 s−1 of the different progenitors. At

all times we prevent ja from exceeding jK.
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Figure 6.1: Mass accreted before critical rotation is reached (relative to initial mass) by uniformly rotating CEMP-s
star progenitors for different values of the specific angular momentum of accreted material ja: (a) effect of different
mass accretion rates in the MAGB = 1 M� case); (b) effect of different primary masses (age at the onset of mass
transfer) in the Ṁ = 10−8 M� yr−1 case. The case of ja = 2×1017 cm2 s−1, Ṁ = 10−8 M� yr−1 is not shown because
in all models ∆M exceeds 0.35 M� (dash-dotted line), at which point the computations were stopped.

6.2 Results

A summary of all calculations of the amount of mass progenitors of carbon-enriched stars can accrete
prior to reaching critical rotation is given in Table 6.1. We now highlight the main features of the models.

Figure 6.1 shows the amount of mass CEMP-s star progenitors of different masses can add before
reaching critical rotation. This amount is a complicated function of the initial structure of the star, the
angular momentum of the added material, and the rate at which the material is added. Much of this
complexity is an outcome of the response of the star as it gains mass. Thus one crucial parameter is the
ratio between the mass accretion timescale τṀ = M/Ṁ (here varied between about 105 and 108 years)
and the thermal adjustment (Kelvin-Helmholtz) timescale τKH of the star (between about 106 and close
to 108 years for the different progenitors). Generally when τṀ � τKH the star is able to stay close to
thermal equilibrium, and its global properties change slowly. The star evolves as if replaced at every
instant by a slightly more massive and more rapidly rotating star. In this case ∆M depends almost entirely
on the angular momentum of the added material alone (this is more clearly seen in Fig. 6.1b, where
Ṁ = 10−8 M� yr−1 and τṀ > τKH in all cases).

When τṀ . τKH, the star is driven out of thermal equilibrium, forcing its outer layers to expand while
the inner regions are compressed. In this case seemingly minor differences in the initial structure can
lead to large differences in the response of the star to mass addition. In particular, the response is related
to the convective stability of its outer layers. As long as there is a substantial convective outer region,
the star slowly expands and heats up as mass is added. But if in the process of gaining mass convection
becomes inefficient and the convective region disappears, the star experiences a brief phase of rapid
expansion, during which very little mass (and angular momentum) is accreted (Fig. 6.2). As the star
continues gaining mass, the expansion gradually slows down and the surface layers begin to cool. In stars
that initially have a more massive convective region this phase plays a larger role in bringing the star
closer to critical rotation, but it also occurs later (Figs. 6.3 and 6.4). The result can be a minimum in the
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Figure 6.2: Evolution of the mass distribution in a uniformly rotating model with an initial mass of 0.675 M� when
adding matter with ja = 2 × 1017 cm2 s−1 at a rate of Ṁ = 10−6 M� yr−1. The light-blue lines show the radius
variation with mass in six models from just prior to mass addition to near critical rotation (∆M ' 0.125 M�). The
black sections of the profiles indicate convective regions. The upper (dark-blue) envelope shows the evolution of
the surface radius during mass addition.
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Figure 6.3: Evolution of the radius in uniformly rotating models of the indicated initial masses when adding matter
with ja = 2 × 1017 cm2 s−1 at a rate of Ṁ = 10−6 M� yr−1. The markers indicate every 10% in Ω/Ωc with the last
marker indicating Ω = Ωc. Prior to mass addition the stars have a small outer convective region, which is more
massive in less massive stars. The disappearance of this region is followed by a rapid expansion phase, after which
the stars are closer to critical rotation. The line corresponding to the M = 0.675 M� case is the same as the upper
envelope in Fig. 6.2.

∆M(M) relation, as is the case, for example, at M ' 0.675 M� when ja = 2 × 1017 cm2 s−1 (Fig. 6.1a).
The evolution of accreting Ba star progenitors is often simpler. Owing to their higher mass, the thermal

timescale of such stars is about a factor of ten smaller than that of CEMP-s star progenitors. They are
thus closer to thermal equilibrium during mass accretion. Furthermore, except in the lowest mass cases
(M ' 1 M�), these stars never have substantial convective envelopes. The disappearance of the convective
region and the rapid expansion phase, as observed in the CEMP star case, therefore does not happen in
most of these models. Instead the critical rotation rate is reached more gradually, and there is a smaller
dependence on Ṁ (Fig. 6.5).

Packet (1981) presents analytical estimates of the amount of mass a star can accrete when ja = jK. For
an initially non-rotating star he finds approximately
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Figure 6.4: Evolution of the surface rotation velocity (starting from Ω/Ωc ≈ 0) of uniformly rotating CEMP-s star
progenitors of different initial masses when adding mass with ja = 5 × 1017 cm2 s−1. The colour coding shows
that the disappearance of the convective envelope is accompanied by a rapid expansion phase, during which Ω/Ωc
increases.

∆M ' 2
( √

1 + k2 − 1
)

M, (6.3)

where k2 = I/MR2, the square of the normalised gyration radius, characterises the distribution of
mass inside a star with moment of inertia I (a smaller value of k2 corresponds to a steeper, more
centrally concentrated mass distribution). While for CEMP-s star progenitors k2 ' 0.06–0.12, for Ba
star progenitors k2 . 0.05. Thus the value given by Eq. (6.3) is similar for both sets of progenitors
(approximately 0.07–0.09 M�). Our computed ∆M values in the ja = jK case are also similar for the two
sets, but they are about a factor of two smaller than given by Eq. (6.3). The difference arises because
the response of the star to mass addition (for example, its change in R and k2) is not taken into account
by Packet (1981). In particular, k2 decreases during accretion when the outer layers expand (Fig. 6.2),
which implies a lower value of ∆M. Moreover, ∆M shows considerable variation with Ṁ (more so in the
CEMP-s star case; Table 6.1) because the response of the star depends on the rate at which mass is added.

The distribution of mass in the progenitors of carbon-enriched stars changes during their evolution
such that k2 decreases (the stars become more centrally concentrated). As a consequence, the amount
of angular momentum the stars can accommodate also decreases over time. Therefore, somewhat more
material can be transferred in systems hosting a more massive donor star in which mass transfer occurs
earlier (Fig. 6.1b). But note that we have ignored the composition of the transferred material. Accretion
of material with a different composition will alter the opacity, and hence the structure, of the outer layers.
The composition will thus also play a role in the response of the star to mass accretion and the amount of
mass needed to reach critical rotation. Test models indicate that taking the composition into account can

111



Chapter 6 On the angular momentum content of the accreted material

Initial mass M (M⊙ )

Ω
/Ω

c

0.2

0.4

0.6

0.8

1.0
(a)
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Figure 6.5: The evolution of the surface rotation velocity (starting from Ω/Ωc ≈ 0) of uniformly rotating Ba star
progenitors of different initial masses when adding mass with ja = 1 × 1018 cm2 s−1. Except for the M = 1 M�
case, the outer regions of Ba star progenitors remain radiative at all times.

alter ∆M by some ten percent.
What is the minimum specific angular momentum that material must have such that accreting it can

spin the star up to critical rotation? More explicitly, what is 〈 j〉 when going from J0 = I0Ω0 = 0 to
J = IΩc = 〈 j〉∆M for large ∆M? Ignoring the change in R and k2 we can crudely estimate that

〈 j〉 ' k2R2
(
1 +

M
∆M

) √
G (M + ∆M) /R3. (6.4)

For large ∆M (say ∆M ' M) 〈 j〉 ' 3k2 jK, which for typical values of k2 gives 〈 j〉 & 0.3 jK '
(5–7) × 1017 cm2 s−1 (CEMP stars) and 〈 j〉 & 0.1 jK ' (5–8) × 1017 cm2 s−1 (Ba stars). These values are
a bit high (Figs. 6.1, 6.6), but give a reasonable estimate when the assumption of a constant radius is
closer to being satisfied (e.g. at low accretion rates when thermal equilibrium is maintained). However,
models that do swell up can reach critical rotation for even lower values of ja (Fig. 6.1a).

When the redistribution of angular momentum is not instantaneous, the angular momentum is rapidly
distributed only in some outer part of the star (e.g. the convective envelope, when present) instead of
throughout, and differential rotation results. One might then expect that generally much less mass is
necessary to spin the star up to critical rotation. This is true for ja close to jK (having ja = jK by
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Figure 6.6: Mass accreted before critical rotation is reached (relative to initial mass) by uniformly rotating Ba
star progenitors for different values of the specific angular momentum of accreted material. For progenitors
with M ≥ 1.75 M� addition of material with ja ≤ 5 × 1017 cm2 s−1 does not result in critical rotation even for
∆M > 2 M�.

definition sets the surface to Ω = Ωc). However, when ja is substantially smaller than jK, sometimes
even more mass can be added than in the uniformly rotating case (cf. Figs. 6.1a and 6.7). For example, a
M = 0.7 M� CEMP star progenitor rotating uniformly can only add about 0.05 M� of material (when
Ṁ = 10−6 M� yr−1) with ja = 5 × 1017 cm2 s−1 ' 0.25 jK before reaching critical rotation. But in the
differentially rotating case even after adding 0.35 M� no part of the star has reached Ω = Ωc. Figure 6.8
illustrates why this is the case. When Ω/Ωc reaches unity at the surface in the uniformly rotating case,
most of the interior of the star still has Ω/Ωc � 1 (solid black line). If more angular momentum could
be stored in the interior, the surface could be prevented from reaching Ωc. This is what happens in the
differentially rotating case where more of the angular momentum is stored in the outer 0.1 M� of material
at the corresponding time (compare the red lines). By the time 0.35 M� of material have been added
(0.35 Myr after the onset of mass accretion) the angular momentum has been transported down to a mass
coordinate of m ' 0.3 M�, and Ω/Ωc > 0.1 in the outer 0.5 M�.

6.3 Discussion

We have stopped the computations and recorded the accreted mass ∆M at the point when the model
reaches critical rotation. But this ∆M is subject to change if critical rotation is reached when the star is
out of thermal equilibrium. Once accretion stops, the star will attempt to regain equilibrium. Whether the
star will tend to spin up or down with respect to the critical rate as it evolves towards equilibrium can
be reasonably predicted by comparing ∆M with ∆MTE, the value of ∆M in the case closest to thermal
equilibrium (case with the lowest Ṁ).

Models with ∆M < ∆MTE usually experience a phase in which very little mass and angular momentum
are accreted while R and Ω/Ωc increase rapidly (Fig. 6.3). After accretion these stars tend to contract
and spin down with respect to the critical rate. After moving away from critical rotation, they could in
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CEMP-s star progenitors for different values of the specific angular momentum of accreted material. Here
Ṁ = 10−6 M� yr−1. The models were stopped at ∆M = 0.35 M� (dash-dotted line) if critical rotation had not been
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Figure 6.8: The cumulative angular momentum and Ω/Ωc in a M = 0.7 M� model that has added about 0.055 M�
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enough to bring it to critical rotation, whereas in the differentially rotating model enough of the angular momentum
has been transported to layers deeper in the star (between m ' 0.65–0.75 M�) to prevent the surface from rotating
critically.
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principle go on to accrete more material (up to about ∆MTE−∆M such that ∆Mfinal ' ∆MTE). Conversely,
in cases where ∆M > ∆MTE, the stars tend to expand and spin up with respect to the critical rate. Since
this is not possible, they must somehow lose angular momentum to return to equilibrium. This could
happen by mass shedding (Meynet, Ekström and Maeder, 2006; Krtička, Owocki and Meynet, 2011) so
that some of the accreted material is, at least temporarily, lost.

The final ∆M thus depends on how the thermal relaxation timescale compares to the accretion timescale.
Given the large mass-loss rates near the end of the AGB phase (ṀAGB & 10−5 M� yr−1; van Loon et al.,
2005; Ramstedt and Olofsson, 2014), the mass accretion rate in real systems is likely closer to the higher
range of values investigated here (Ṁ ' 10−6...−5 M� yr−1, depending on separation, see estimate based on
Bondi-Hoyle-Lyttleton accretion in Sect. 2.1.5). Furthermore, this last stage, during which the AGB star
loses most of its envelope, lasts only a small fraction of the overall thermally pulsing AGB lifetime of
about 1 Myr (Vassiliadis and Wood, 1993; Marigo and Girardi, 2007) and is considerably shorter than
the thermal timescales of the prospective CEMP and Ba stars. It is thus difficult to envision how the
progenitors of carbon-enriched stars could maintain thermal equilibrium (and end up with ∆M ' ∆MTE)
as they are accreting mass from their AGB companion.

We have thus far not discussed the nature of mass transfer. Because Roche lobe overflow from an AGB
star will in most cases be unstable, most carbon-enriched stars probably form through wind accretion
or wind Roche lobe overflow (Mohamed and Podsiadlowski, 2007; Abate et al., 2013). The specific
angular momentum of accreted material in the canonical BHL accretion (Sect. 1.2.2) can be less than
a few percent of jK (Blondin and Raymer, 2012) and would impose no limit on the accreted mass.
But because of their slow wind velocities, wind accretion from an AGB star is very different from
the BHL case. As the slowly expanding material cools and falls towards the accretor, it gains angular
momentum from Coriolis forces. Once the angular momentum exceeds the local Keplerian value

√
GMr

(r > R), the material is expected to settle in a disk around the accretor (Eggleton, 2006). Both analytical
estimates (Soker and Rappaport, 2000; Perets and Kenyon, 2013) and numerical simulations (e.g. Theuns,
Boffin and Jorissen, 1996; Mastrodemos and Morris, 1998; de Val-Borro, Karovska and Sasselov, 2009;
Huarte-Espinosa, Carroll-Nellenback, Nordhaus et al., 2013; Chen, Frank, Blackman et al., 2017) suggest
that disk formation in typical progenitor systems should be common ( ja ' jK).1

If the mass accretion in real systems indeed occurs at high rates via a Keplerian disk, our results imply
that most CEMP-s (and Ba) star progenitors can gain only up to about ∆M ' 0.05 M� even if we assume
that the angular momentum is rapidly distributed throughout the star. This is a much smaller amount
than the vast majority of CEMP-s stars in the population synthesis calculations of Abate et al. (2015c),
who find that the median mass accreted is about 0.15 M� when angular momentum accretion is ignored.
Whether accounting for angular momentum accretion would present difficulties explaining the observed
fraction of CEMP stars (more than ten percent of all stars with [Fe/H] . −2 are carbon-enhanced;
Lucatello, Beers, Christlieb et al., 2006; Lee, Beers, Masseron et al., 2013; Placco, Frebel, Beers et al.,
2014) would require a careful accounting of the number of systems expected to be lost and gained as a
result of severely limiting the accreted masses. Most of the CEMP star progenitors in the simulations of
Abate et al. (2015c) have initial masses well below 0.8 M�. Stars with larger initial masses (M ' 0.8 M�)
rapidly evolve after accreting a large amount of mass and become white dwarfs. If such stars were not
able to gain as much mass, they might be around for long enough to still be observable as CEMP stars. At
the same time, some of the lower mass stars, if they were to gain less mass, would no longer be luminous
enough to be observable (Abate et al., 2015c). Hence, we can only conclude that angular momentum

1 Direct impact ( ja < jK) of the transferring material is unlikely because in all but the closest mass ratio binaries the accreting
star will be on the main sequence (North and Duquennoy, 1991; Böhm-Vitense, Carpenter, Robinson et al., 2000) and thus
well within its Roche lobe. This remains true even if the stars swell up as a result of the accretion.
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considerations suggest an initially more massive progenitor population of CEMP-s stars, compared to
that found by Abate et al. (2015c), but not whether CEMP-s stars should be more or less common.

We also saw in Chapter 5 that stars that accrete less than 0.05 M� can still remain CEMP-s stars
throughout their evolution (Figs. 5.15 and 5.16). However, the properties of individual Ba and CEMP
stars often point to much higher accreted masses. For example, Miszalski et al. (2013) require accreting
about 0.5 M� onto a M ' 1.5 M� (from a primary with initial mass MAGB = 1.8 M�), or 0.8 M� onto a
M ' 2 M� (MAGB = 3 M�) star to explain the surface abundances of the Ba star in the planetary nebula
Hen 2-39. Many of the CEMP-s stars considered by Abate et al. (2015a,b) are also best fit with accreted
masses in excess of 0.1 M�, given the current AGB nucleosynthesis model predictions (Karakas, 2010;
Lugaro, Karakas, Stancliffe et al., 2012).

In many cases the accreted masses needed to explain the surface chemistry of carbon-enriched stars
are a significant fraction of the total mass lost by the AGB star, so the accretor must have captured nearly
all of the material entering its Roche lobe. If the star can somehow deal with the angular momentum, this
is not implausible. As the inner part of the disk is accreted, the disk spreads outwards to compensate
the loss of angular momentum onto the accreting object (Pringle, 1981; Lodato, 2008). If a disk with
initial radius Rd spreads beyond the Roche lobe radius RL, the fraction of material lost that allows the
rest to fall to the central object is approximately

√
Rd/RL (Lin and Pringle, 1976). For disks initially well

inside the Roche lobe this is a negligible amount. Furthermore, once the disk spreads enough to approach
Rd ' RL, tides from the AGB donor (or its remnant) should efficiently transfer angular momentum from
the outer disk edge back to the orbit, with little to no mass lost from the Roche volume (Papaloizou and
Pringle, 1977; Schwarzenberg-Czerny and Rozyczka, 1988; Ichikawa and Osaki, 1994; Hameury and
Lasota, 2005).2

If the star is spun up to critical rotation in the process, it needs to lose angular momentum before
it can accrete more of the disk. This could be achieved by depositing the angular momentum back in
the disk. Popham and Narayan (1991) show that, once the star approaches critical rotation, outward
transport of angular momentum by shear stresses (J̇ ∝ Σν dΩ / dr, where Σ and ν are respectively the
surface density and viscosity of the disk) can dominate the inward transport by accretion (J̇ = Ṁ ja),
and thus angular momentum can even be removed from the accreting object as it gains mass, if there
is sufficient viscous coupling between the star and the disk. This coupling between the accreting star
and its disk could perhaps be magnetic in nature. For example, in T Tauri stars (pre-main-sequence stars
still surrounded by an accretion disk) the magnetic field of the central star anchors in the disk, which
then exerts a negative torque on the star, preventing it from reaching critical rotation (e.g. Armitage and
Clarke, 1996; Hartmann, Calvet, Gullbring et al., 1998; Matt and Pudritz, 2005b).

Also, some of the energy liberated during accretion could be used to drive strong winds from the
stellar surface. Ejecting a mere ten percent of the accreted mass could suffice to remove enough angular
momentum to prevent critical rotation (Matt and Pudritz, 2005a; Dervişoglu, Tout and Ibanoglu, 2010).
However, surface magnetic field strengths in excess of B ∼ 100–1000 G are required for this mechanism
or disk torques to be effective. While such fields are probably uncommon in the progenitors of carbon-
enriched stars, they could perhaps be generated during the accretion if a strong differential rotation results
(Dervişoglu et al., 2010).

Whatever the mechanism, according to the calculations presented here, for the accreted masses to
be large enough to satisfy the chemistry constraints (some tenths of a solar mass), ja must effectively
be below about 5 × 1017 cm2 s−1 (Figs. 6.1, 6.6), or about 10 and 25% of jK for Ba and CEMP stars,
respectively. Put differently, above 75% of the angular momentum supplied to the accretor by the disk

2 The tidal influence on the accretor itself should be negligible since the timescale for angular momentum transfer from the
accretor back to the orbit scales as τsync ∼ (R/a)−6 (Zahn, 1977), where a � R is the orbital separation.
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has to be removed on average.
Nevertheless, the newly born carbon-enriched stars should rotate fairly rapidly after the mass transfer

ends. Indeed, a few younger Ba-enriched stars with relatively rapid rotation velocities (tens of km s−1

or more) are known (e.g. Kellett, Bromage, Brown et al., 1995; Jeffries and Smalley, 1996; Vennes,
Christian and Thorstensen, 1998; Bond, Pollacco and Webbink, 2003; Miszalski, Boffin, Frew et al.,
2012), indicating that some angular momentum accretion has occurred. As noted before, carbon-enhanced
metal-poor dwarfs also rotate more rapidly on average than other metal-poor Halo stars (about 10 and
3 km s−1, respectively; Masseron, Johnson, Lucatello et al., 2012; Lucatello and Gratton, 2003), although
the difference is small, which likely points to further angular momentum loss following mass transfer.
Given the large amount of time elapsed since mass transfer took place, magnetic braking seems a plausible
candidate for allowing the stars to spin down, assuming it can work in stars with such small convective
envelopes (Sect. 5.3.1).

6.4 Conclusions

The specific angular momentum of the accreted material strongly affects the amount of mass that can be
added to the progenitors of carbon-enriched (i.e. Ba and CEMP) stars before they are spun up to critical
rotation. Material assumed to originate from a Keplerian accretion disk brings the stars to critical rotation
after only a few percent of their initial mass is added, even if the angular momentum is allowed to rapidly
redistribute throughout the star. If instead the specific angular momentum of the accreted material is a
few tenths of the Keplerian value or less, the angular momentum no longer limits the amount of mass
that can be added.

Taken at face value, these results have major implications for the progenitor systems of carbon-enriched
stars, as many likely do accrete matter through an accretion disk. The large accreted masses inferred
from observations of particular Ba and CEMP stars (in some instances comparable to the initial mass of
the progenitor) are at odds with these results. However, a way to reconcile them with the necessity of
substantial mass accretion would be to invoke some mechanism, such as viscous or magnetic coupling
to the accretion disk, that would allow the accreting star to transfer its spin angular momentum back to
the orbit with the help of tidal torques from the donor star. In this way the accretor could possibly avoid
critical rotation and accrete much more of the material entering its Roche lobe.
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Table 6.1: Mass accreted before critical rotation is reached (∆M) by the different models. The first five columns list
the initial mass of the secondary (M); its Kelvin-Helmholtz timescale before mass addition (τKH, Myr); its gyration
radius before mass addition (k2 = I/MR2); estimate of ∆M based on Packet (1981) (∆MP81); mass accretion rate
(Ṁ/10−6 M� yr−1). The remaining columns list pairs of specific angular momentum of the accreted material ( ja in
units of 1018 cm2 s−1) and the corresponding ∆M. The last pair in each row corresponds to ja = jK and the listed
value of ja is the Keplerian specific angular momentum at the surface prior to mass addition. The table is sectioned
according to the metallicity Z and initial primary mass MAGB (tmt is the age at which mass addition starts).

M τKH k2 ∆MP81 Ṁ ja ∆M ja ∆M ja ∆M ja ∆M ja ∆M ja ∆M

Z = 10−4; MAGB = 1.0 M�; tmt = 6.3 Gyr; uniform rotation
0.600 65.0 0.128 0.091 0.01 0.2 > 0.35 0.5 0.236 1.0 0.103 2.0 0.050 1.758 0.050 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.098 1.0 0.079 2.0 0.050 1.758 0.050 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.275 0.5 0.258 1.0 0.112 2.0 0.054 1.758 0.054 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.758 − . . . . . .
0.625 56.2 0.120 0.088 0.01 0.2 > 0.35 0.5 0.228 1.0 0.103 2.0 0.049 1.836 0.048 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.099 1.0 0.060 2.0 0.045 1.836 0.044 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.183 0.5 0.184 1.0 0.105 2.0 0.051 1.836 0.051 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.836 − . . . . . .
0.650 48.7 0.112 0.085 0.01 0.2 > 0.35 0.5 0.220 1.0 0.101 2.0 0.047 1.914 0.046 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.104 1.0 0.052 2.0 0.038 1.914 0.037 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.132 0.5 0.116 1.0 0.092 2.0 0.048 1.914 0.047 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 > 0.35 1.0 − 2.0 − 1.914 − . . . . . .
0.675 42.1 0.105 0.081 0.01 0.2 > 0.35 0.5 0.213 1.0 0.099 2.0 0.047 1.995 0.045 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.111 1.0 0.052 2.0 0.029 1.995 0.028 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.127 0.5 0.065 1.0 0.066 2.0 0.044 1.995 0.041 . . . . . .
. . . . . . . . . . . . 10.0 0.2 > 0.35 0.5 > 0.35 1.0 0.109 2.0 0.048 1.995 0.046 . . . . . .
0.700 36.5 0.097 0.077 0.01 0.2 > 0.35 0.5 0.206 1.0 0.096 2.0 0.047 2.080 0.042 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.123 1.0 0.054 2.0 0.028 2.080 0.024 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.135 0.5 0.056 1.0 0.035 2.0 0.034 2.080 0.033 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.297 0.5 0.236 1.0 0.099 2.0 0.046 2.080 0.042 . . . . . .
0.725 31.6 0.089 0.073 0.01 0.2 > 0.35 0.5 0.202 1.0 0.094 2.0 0.046 2.168 0.040 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.137 1.0 0.056 2.0 0.029 2.168 0.024 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.157 0.5 0.060 1.0 0.032 2.0 0.019 2.168 0.017 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.118 0.5 0.117 1.0 0.079 2.0 0.042 2.168 0.036 . . . . . .
0.750 27.3 0.082 0.068 0.01 0.2 > 0.35 0.5 0.199 1.0 0.091 2.0 0.045 2.262 0.037 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.152 1.0 0.060 2.0 0.030 2.262 0.023 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.184 0.5 0.066 1.0 0.035 2.0 0.020 2.262 0.015 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.051 0.5 0.037 1.0 0.039 2.0 0.032 2.262 0.028 . . . . . .
0.775 23.6 0.075 0.063 0.01 0.2 > 0.35 0.5 0.201 1.0 0.089 2.0 0.043 2.361 0.035 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.168 1.0 0.064 2.0 0.030 2.361 0.023 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.220 0.5 0.072 1.0 0.037 2.0 0.020 2.361 0.015 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.048 0.5 0.027 1.0 0.018 2.0 0.012 2.361 0.011 . . . . . .
0.800 20.2 0.067 0.058 0.01 0.2 > 0.35 0.5 0.210 1.0 0.087 2.0 0.042 2.466 0.033 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.183 1.0 0.068 2.0 0.032 2.466 0.023 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.269 0.5 0.078 1.0 0.040 2.0 0.022 2.466 0.015 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.053 0.5 0.029 1.0 0.019 2.0 0.011 2.466 0.008 . . . . . .
0.825 17.4 0.061 0.054 0.01 0.2 > 0.35 0.5 0.220 1.0 0.086 2.0 0.041 2.578 0.031 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.196 1.0 0.072 2.0 0.034 2.578 0.024 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 0.086 1.0 0.043 2.0 0.023 2.578 0.016 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.059 0.5 0.031 1.0 0.020 2.0 0.012 2.578 0.008 . . . . . .

Z = 10−4; MAGB = 1.5 M�; tmt = 1.8 Gyr; uniform rotation
0.600 72.2 0.135 0.098 0.01 0.2 > 0.35 0.5 0.247 1.0 0.109 2.0 0.054 1.736 0.054 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.113 1.0 0.089 2.0 0.054 1.736 0.054 . . . . . .
. . . . . . . . . . . . 1.0 0.2 − 0.5 0.330 1.0 0.120 2.0 0.058 1.736 0.058 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.736 − . . . . . .
0.625 63.5 0.128 0.095 0.01 0.2 > 0.35 0.5 0.242 1.0 0.110 2.0 0.052 1.809 0.052 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.104 1.0 0.072 2.0 0.050 1.809 0.050 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.229 0.5 0.228 1.0 0.116 2.0 0.055 1.809 0.055 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.809 − . . . . . .
0.650 56.1 0.122 0.093 0.01 0.2 > 0.35 0.5 0.238 1.0 0.110 2.0 0.051 1.881 0.051 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.108 1.0 0.055 2.0 0.045 1.881 0.044 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.164 0.5 0.160 1.0 0.108 2.0 0.053 1.881 0.052 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.881 − . . . . . .
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Table 6.1: continued.

M τKH k2 ∆MP81 Ṁ ja ∆M ja ∆M ja ∆M ja ∆M ja ∆M ja ∆M

0.675 49.6 0.115 0.091 0.01 0.2 > 0.35 0.5 0.235 1.0 0.109 2.0 0.051 1.954 0.049 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.117 1.0 0.055 2.0 0.037 1.954 0.036 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.142 0.5 0.102 1.0 0.092 2.0 0.051 1.954 0.049 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.954 − . . . . . .
0.700 44.1 0.109 0.088 0.01 0.2 > 0.35 0.5 0.232 1.0 0.109 2.0 0.052 2.028 0.048 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.130 1.0 0.057 2.0 0.031 2.028 0.028 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.152 0.5 0.066 1.0 0.064 2.0 0.047 2.028 0.044 . . . . . .
. . . . . . . . . . . . 10.0 0.2 > 0.35 0.5 0.349 1.0 0.121 2.0 0.053 2.028 0.049 . . . . . .
0.725 39.3 0.103 0.086 0.01 0.2 > 0.35 0.5 0.231 1.0 0.108 2.0 0.052 2.102 0.046 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.148 1.0 0.060 2.0 0.031 2.102 0.027 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.176 0.5 0.064 1.0 0.038 2.0 0.036 2.102 0.035 . . . . . .
. . . . . . . . . . . . 8.0 0.2 0.228 0.5 0.210 1.0 0.107 2.0 0.051 2.102 0.046 . . . . . .
0.750 35.2 0.098 0.083 0.01 0.2 > 0.35 0.5 0.233 1.0 0.108 2.0 0.052 2.178 0.045 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.168 1.0 0.064 2.0 0.032 2.178 0.026 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.215 0.5 0.069 1.0 0.037 2.0 0.022 2.178 0.020 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.142 0.5 0.143 1.0 0.093 2.0 0.048 2.178 0.042 . . . . . .
0.775 31.6 0.092 0.080 0.01 0.2 > 0.35 0.5 0.237 1.0 0.107 2.0 0.052 2.255 0.044 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.192 1.0 0.070 2.0 0.034 2.255 0.026 . . . . . .
. . . . . . . . . . . . 1.0 0.2 0.278 0.5 0.077 1.0 0.040 2.0 0.022 2.255 0.018 . . . . . .
. . . . . . . . . . . . 8.0 0.2 0.067 0.5 0.061 1.0 0.061 2.0 0.042 2.255 0.036 . . . . . .
0.800 28.4 0.087 0.077 0.01 0.2 > 0.35 0.5 0.251 1.0 0.107 2.0 0.052 2.334 0.042 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.220 1.0 0.076 2.0 0.036 2.334 0.027 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 0.085 1.0 0.044 2.0 0.024 2.334 0.018 . . . . . .
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 0.024 2.334 0.024 . . . . . .
0.825 25.6 0.082 0.075 0.01 0.2 > 0.35 0.5 0.271 1.0 0.108 2.0 0.052 2.412 0.041 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 0.247 1.0 0.082 2.0 0.038 2.412 0.027 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 0.093 1.0 0.048 2.0 0.026 2.412 0.019 . . . . . .
. . . . . . . . . . . . 10.0 0.2 0.059 0.5 0.033 1.0 0.021 2.0 0.014 2.412 0.011 . . . . . .

Z = 0.008; MAGB = 3.0 M�; tmt = 422 Myr; uniform rotation
1.000 25.27 0.075 0.082 0.01 0.2 > 2.0 0.5 0.275 1.0 0.136 2.0 0.070 3.0 0.045 2.954 0.045
. . . . . . . . . . . . 0.1 0.2 > 2.0 0.5 0.196 1.0 0.088 2.0 0.047 3.0 0.033 2.954 0.031
. . . . . . . . . . . . 1.0 0.2 0.255 0.5 0.086 1.0 0.046 2.0 0.029 3.0 0.029 2.954 0.029
. . . . . . . . . . . . 10.0 0.2 0.181 0.5 0.181 1.0 0.127 2.0 0.067 3.0 0.045 2.954 0.043
1.250 12.60 0.045 0.059 0.01 0.2 > 2.0 0.5 0.490 1.0 0.160 2.0 0.071 3.0 0.046 3.844 0.035
. . . . . . . . . . . . 0.1 0.2 > 2.0 0.5 0.410 1.0 0.139 2.0 0.062 3.0 0.041 3.844 0.030
. . . . . . . . . . . . 1.0 0.2 > 2.0 0.5 0.174 1.0 0.083 2.0 0.044 3.0 0.031 3.844 0.022
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 3.0 − 3.844 −

1.500 7.27 0.044 0.069 0.01 0.2 > 2.0 0.5 1.052 1.0 0.240 2.0 0.102 3.0 0.065 4.370 0.042
. . . . . . . . . . . . 0.1 0.2 > 2.0 0.5 1.041 1.0 0.225 2.0 0.094 3.0 0.060 4.370 0.039
. . . . . . . . . . . . 1.0 0.2 > 2.0 0.5 0.365 1.0 0.139 2.0 0.069 3.0 0.047 4.370 0.030
. . . . . . . . . . . . 10.0 0.2 0.286 0.5 − 1.0 0.069 2.0 − 3.0 − 4.370 −

1.735 4.63 0.044 0.080 0.01 0.2 > 2.0 0.5 > 2.0 1.0 0.338 2.0 0.137 3.0 0.087 4.954 0.049
. . . . . . . . . . . . 0.1 0.2 > 2.0 0.5 > 2.0 1.0 0.327 2.0 0.133 3.0 0.083 4.954 0.047
. . . . . . . . . . . . 1.0 0.2 > 2.0 0.5 > 2.0 1.0 0.218 2.0 0.100 3.0 0.066 4.954 0.038
. . . . . . . . . . . . 8.0 0.2 > 2.0 0.5 0.234 1.0 0.117 2.0 0.064 3.0 0.045 4.954 0.027
2.000 2.84 0.042 0.089 0.1 0.2 > 2.0 0.5 > 2.0 1.0 0.470 2.0 0.180 3.0 0.112 5.770 0.054
. . . . . . . . . . . . 1.0 0.2 > 2.0 0.5 > 2.0 1.0 0.358 2.0 0.143 3.0 0.092 5.770 0.045
. . . . . . . . . . . . 10.0 0.2 > 2.0 0.5 0.379 1.0 0.171 2.0 0.089 3.0 0.062 5.770 0.032
2.250 1.77 0.039 0.093 0.1 0.2 > 2.0 0.5 > 2.0 1.0 0.635 2.0 0.229 3.0 0.141 6.809 0.056
. . . . . . . . . . . . 1.0 0.2 > 2.0 0.5 > 2.0 1.0 0.535 2.0 0.191 3.0 0.120 6.809 0.049
. . . . . . . . . . . . 10.0 0.2 > 2.0 0.5 0.732 1.0 0.253 2.0 0.124 3.0 0.085 6.809 0.037
2.500 1.07 0.034 0.088 0.1 0.2 > 2.0 0.5 > 2.0 1.0 0.746 2.0 0.278 3.0 0.170 8.460 0.054
. . . . . . . . . . . . 1.0 0.2 > 2.0 0.5 > 2.0 1.0 0.728 2.0 0.246 3.0 0.149 8.460 0.048
. . . . . . . . . . . . 10.0 0.2 > 2.0 0.5 > 2.0 1.0 0.373 2.0 0.168 3.0 0.112 8.460 0.039

Z = 10−4; MAGB = 1.0 M�; tmt = 6.3 Gyr; differential rotation
0.600 65.0 0.128 0.091 0.01 0.2 > 0.35 0.5 > 0.35 1.0 − 2.0 − 1.758 − . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.004 2.0 0.004 1.758 0.004 . . . . . .
. . . . . . . . . . . . 1.0 0.2 − 0.5 0.160 0.7 0.072 1.0 0.001 2.0 − 1.758 0.001
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.758 − . . . . . .
0.625 56.2 0.120 0.088 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 − 1.836 − . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 0.000 1.836 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 0.056 1.0 0.005 2.0 0.005 1.836 0.005
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Table 6.1: continued.

M τKH k2 ∆MP81 Ṁ ja ∆M ja ∆M ja ∆M ja ∆M ja ∆M ja ∆M

. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.836 − . . . . . .
0.650 48.7 0.112 0.085 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 0.000 1.914 0.000 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 0.000 1.914 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 0.050 1.0 0.006 2.0 0.001 1.914 0.001
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.914 − . . . . . .
0.675 42.2 0.105 0.081 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 − 1.995 − . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 0.000 1.995 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 0.039 1.0 0.000 2.0 0.000 1.995 0.000
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 1.995 − . . . . . .
0.700 36.5 0.097 0.077 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 − 2.080 − . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 − 1.0 0.000 2.0 0.000 2.080 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 0.029 1.0 0.000 2.0 0.000 2.080 0.000
. . . . . . . . . . . . 10.0 0.2 − 0.5 − 1.0 − 2.0 − 2.080 − . . . . . .
0.725 31.6 0.089 0.073 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 − 2.168 − . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.000 2.0 0.000 2.168 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 > 0.35 1.0 0.000 2.0 0.000 2.168 0.000
. . . . . . . . . . . . 10.0 0.2 > 0.35 0.5 > 0.35 1.0 0.014 2.0 0.006 2.168 − . . . . . .
0.750 27.3 0.082 0.068 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.012 2.0 0.000 2.262 0.000 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.004 2.0 0.000 2.262 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 > 0.35 1.0 0.006 2.0 0.000 2.262 0.000
. . . . . . . . . . . . 10.0 0.2 > 0.35 0.5 > 0.35 1.0 0.009 2.0 0.004 2.262 − . . . . . .
0.775 23.6 0.075 0.063 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.015 2.0 0.000 2.361 0.000 . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.001 2.0 0.000 2.361 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 > 0.35 1.0 0.002 2.0 0.000 2.361 0.000
. . . . . . . . . . . . 10.0 0.2 > 0.35 0.5 > 0.35 1.0 0.004 2.0 0.000 2.361 − . . . . . .
0.800 20.2 0.067 0.059 0.01 0.2 > 0.35 0.5 > 0.35 1.0 0.015 2.0 0.000 2.466 − . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.001 2.0 0.000 2.466 0.000 . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 > 0.35 1.0 0.035 2.0 0.000 2.466 0.000
. . . . . . . . . . . . 10.0 0.2 > 0.35 0.5 > 0.35 1.0 0.001 2.0 0.000 2.466 − . . . . . .
0.825 17.4 0.061 0.054 0.01 0.2 > 0.35 0.5 > 0.35 1.0 − 2.0 0.000 2.578 − . . . . . .
. . . . . . . . . . . . 0.1 0.2 > 0.35 0.5 > 0.35 1.0 0.016 2.0 0.000 2.578 − . . . . . .
. . . . . . . . . . . . 1.0 0.2 > 0.35 0.5 > 0.35 0.7 > 0.35 1.0 0.038 2.0 0.000 2.578 0.000
. . . . . . . . . . . . 10.0 0.2 > 0.35 0.5 > 0.35 1.0 > 0.35 2.0 0.000 2.578 − . . . . . .

Notes. All masses are in solar masses. If critical rotation was not reached by then, the CEMP and Ba star progenitor models were stopped when,
respectively, 0.35 M� and 2 M� of material were accreted. A minus indicates failure of convergence. The values of tmt are from Lugaro et al. (2012)
and Pols, Schröder, Hurley et al. (1998) for stars of Z = 10−4 and Z = 0.008, respectively.
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CHAPTER 7

Summary and conclusions

In this thesis we have investigated the evolution of carbon-enhanced metal-poor stars that are believed to
originate from mass transfer in binaries with an asymptotic giant branch companion. In particular, we
have focused on the chemical evolution of these stars following mass transfer. To that end we have used
the stars stellar evolution code to compute grids of stellar models corresponding to different combinations
of the initial masses of the AGB (M1 = 0.9–1.5 M�) and CEMP-s (M2,i = 0.6–0.8 M�) stars and the
mass accreted by the CEMP-s star (∆M = 0.001–0.3 M�).

The effect of multiple physical processes on the evolution of CEMP-s stars has been considered. Some,
like thermohaline mixing and atomic diffusion, had already been investigated before in this context. We
have built upon the earlier work of Stancliffe, Glebbeek, Izzard et al. (2007) and Stancliffe and Glebbeek
(2008) by accounting for radiative forces in the stars prescription for atomic diffusion. We have shown
in Chapter 4 that many of the resulting models in which atomic diffusion is allowed to act unhindered
develop chemical abundance patterns on the main sequence that are clearly inconsistent with those
observed in real stars (e.g. vastly sub-solar ratios of carbon-to-iron abundances are predicted), which
indicates that some other physical process(es) must inhibit atomic diffusion to a large extent.

We then show in Chapter 5 that rotational mixing could well be responsible for this inhibition since
CEMP-s stars should naturally have some degree of rotation as a result of angular momentum accretion.
In particular, accretion of angular momentum likely establishes differential rotation in these stars which
favours mixing of angular momentum and chemical elements. Real CEMP-s stars appear to rotate at
rates that are sufficiently rapid to explain why atomic diffusion is severely inhibited, but not rapid enough
for the chemical mixing to substantially affect the structure or evolution of these stars in other ways.

However, as discussed in Chapter 6, the angular momentum of the accreted material is expected to be
fairly high, which could impose severe limitations on the amount of mass the star can accrete by spinning
it up to critical rotation. If so, a potential difficulty in explaining the origin of many CEMP-s stars arises:
how do they avoid accreting too much angular momentum? The answer may involve some sort of mass
loss concurrent with the mass accretion, or an interaction of the star with an accretion disk, but this issue
merits further study.

Main sequence CEMP-s stars have been supposed to be particularly suitable for testing models of
low-metallicity AGB stars because they are supposed to be simple: since there is hardly any outer
convection zone on the main sequence, the surface of CEMP-s dwarfs should largely consist of the
accreted material. We reemphasise that this is actually not what should be expected. In fact, many of the
physical processes investigated here are more manifest in main sequence stars. Are post-main-sequence
stars more easily interpretable? Perhaps, but one should still keep in mind that we always observe the
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integrated effect of the prior evolution. The further (in evolutionary terms) we move from the time of
mass transfer, the more other considerations come into play. For example, on the lower half of the red
giant branch the star is still undergoing first dredge-up. Unless the luminosity of the stars can be precisely
measured, the degree of mixing from first dredge-up is uncertain, and following FDU the abundances of
some elements (e.g. lithium and nitrogen; Stancliffe et al., 2007; Stancliffe, 2009) may have changed
as a result of nuclear processing. And further up the RGB at least some giants experience additional
mixing, the cause of which is still debated (e.g. Stancliffe, Church, Angelou et al., 2009; Denissenkov
and Merryfield, 2011).

7.1 Future directions

The most straightforward extension of the work presented here would be to explore more of the parameter
space. The combinations of M1, M2,i and ∆M were limited to those that are most probable according to
the population synthesis calculations of Abate, Pols, Stancliffe et al. (2015c). As a result, particularly the
range of M1 is limited, and extending the grid to include AGB stars with higher initial masses might be
of some interest. Also, detailed model sets applicable to the more massive (M > 1 M�) and metal-rich
([Fe/H] & −1) barium and CH stars appear not to be available at the moment. Such model sets could
be tested against blue straggler stars, stars in stellar clusters that are hotter and brighter than the most
massive stars still on the main sequence. Many blue stragglers are believed to have originated from mass
transfer (Geller and Mathieu, 2011), and some have been found to be Ba-rich, which suggests that they
have formed by accreting material from an AGB star (Milliman, Mathieu and Schuler, 2015).

We have assumed that all the physical processes considered here are essentially independent of one
another, and simply summed up the transport coefficients associated with them. The interaction of
the processes is only indirect, via modifying the structure of the star. Here this left some uncertainty
as to whether the growth of the thermohaline instability would be suppressed in rotating stars. This
question should be addressed in the future and an approach on how to integrate rotational instabilities
with thermohaline mixing has been put forth by Maeder, Meynet, Lagarde et al. (2013). They derive a
general quadratic equation whose solution yields a single transport coefficient. In its current formulation
their approach can only be applied when the meridional currents are modelled as an advective process,
but adapting it to the diffusive approach we have used should be possible.

The physical phenomena considered in this work are rather naturally expected to be relevant for
CEMP-s stars. But others could be important as well. One intriguing possibility is magnetic fields. We
have briefly discussed them as possible means of angular momentum loss, both during and following
mass transfer, but magnetic fields would also modify the internal transport of angular momentum and
chemical species (Spruit, 2002; Heger, Woosley and Spruit, 2005). Internal gravity waves generated on
the boundaries between convective and radiative regions could alter the transport in the interior as well
(Talon and Charbonnel, 2004; Talon and Charbonnel, 2005).

Finally, while the code development during this research was driven by the aim of modelling CEMP-s
stars, the potential applications of the updated code are certainly wider, and the code can be used to
investigate the various physical processes in other kinds of (binary) stars. For example, atomic diffusion
and radiative levitation is relevant for some types of chemically peculiar stars (e.g. slowly rotating A and
F stars; Richer, Michaud and Turcotte, 2000), as well as old low-mass stars and some subdwarf stars
(Hu, Glebbeek, Thoul et al., 2010). Thermohaline convection should be relevant whenever a star accretes
material from an evolved companion. And it is safe to say that all stars rotate. Rotation is particularly
important for the evolution of massive stars, strongly influencing their structure, chemical evolution, rate
of mass loss, and final fate (Maeder and Meynet, 2000; Langer, 2012).
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APPENDIX A

Opacity Project data

As described in Sect. 3.3.4, the Opacity Project provides the monochromatic absorption cross-sections
σi(ν) and corrections for momentum transfer to electrons σe

i (ν) on a temperature-electron density grid.
However, for practical reasons the frequency coordinate in the OP data is not ν but v. The two are related
via

v(u0) =

∫ ν0

0

(
∂Bν/∂T
∂B/∂T

)
dν =

∫ u0

0
bu du , (A.1)

bu =

(
15
4π4

)
u4e−u

(1 − e−u)2 , (A.2)

u =
hν

kBT
, (A.3)

where h and kB are the Planck and Boltzmann constants, T is temperature, and Bν is given by Eq. (2.18).
The Rosseland mean opacity and the γ factors can then be written as

1
κR

=

∫ ∞

0

1
κν

(
∂Bν/∂T
∂B/∂T

)
dν =

∫ ∞

0

1
κu

bu du =

∫ vmax

0

1
κu

dv , (A.4)

γi =

∫ ∞

0
fi(ν)

(∂Bν/∂T )
(∂B/∂T )

dν =

∫ ∞

0
fi(u)bu du =

∫ vmax

0
fi(u) dv , (A.5)

with vmax = v(u → ∞) = 1 and fi given by Eq. (3.22). Use of the v mesh allows for more accurate
integrations as more integration points are present in regions with large contributions to the integrals
(Fig. A.1; Badnell, Bautista, Butler et al., 2005).
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Figure A.1: The weighting function bu (black line) defined by Eq. (A.2) in the range 0 < u ≡ hν/kBT < 20.
The monochromatic data in the Opacity Project are tabulated at frequencies corresponding to equal intervals
of v (vertical lines), i.e. constant areas under the curve, instead of ν or u. This allows efficient sampling of the
monochromatic data in regions where the radiative flux is large, and fewer integration points are needed to obtain a
given accuracy in the opacities and accelerations.
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