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Abstract

In the past fifteen years ultracold atoms confined to optical lattices, which are artificial crystals of light,
have proven to be powerful tools in the study of strongly correlated many-body systems widely known
from a condensed matter context. The detailed knowledge, high tunability and control of microscopic
parameters has enabled the creation and control of highly non-trivial quantum systems for which a direct
comparison of model calculations to experimental measurements is now possible. In order to gain precise
information on the properties of ultracold gases in optical lattices, many powerful methods have been
developed. In particular spectroscopic methods have enabled to probe different characteristic excitations.
However, many fascinating properties of strongly interacting quantum many-body systems are not yet
fully characterized. Therefore, this thesis explores further possibilities of lattice modulation spectroscopy
which is a time-periodic modulation of the optical lattice amplitude. We theoretically investigate the
response of different (mostly one-dimensional) cold atom systems to a lattice modulation by means of
the time-dependent density matrix renormalization group method and different analytical approximations.
In addition to the normal lattice modulation, we consider a superlattice modulation scheme where the
lattice amplitude is modulated in a dimerized fashion, coupling to a certain class of excitations in the
system. The lattice modulation spectroscopy is a versatile probe which we use to study different situations
relevant for experimental applications. We show that a detection of signatures of the exotic bond order
wave phase is feasible in a system of interacting fermions on a one-dimensional optical lattice with
staggered energy offset. Moreover, we demonstrate that a temperature measurement of fermions confined
to an optical lattice is possible as well as a determination of the interaction strength of bosonic atoms
confined to a one-dimensional optical lattice. In addition, various excitations in all these systems are
investigated in detail.
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Zusammenfassung

In den letzten fünfzehn Jahren haben sich ultrakalte Gase in optischen Gittern, künstlichen Gittern
aus Licht, als wirksame Plattform zur Untersuchung stark korrelierter Vielteilchensysteme, oftmals
aus der Festkörperphysik bekannt, erwiesen. Die genaue Kenntnis, Einstellbarkeit und Kontrolle der
mikroskopischen Parameter hat es ermöglicht nicht-triviale Quantensysteme zu erschaffen und zu kontrol-
lieren wodurch ein direkter Vergleich von Modellrechnungen und experimentellen Messungen möglich
ist. Um Informationen über die Eigenschaften ultrakalter Gase in optischen Gittern zu erhalten, wurden
eine Vielzahl passender Messmethoden entwickelt. Insbesondere spektroskopische Methoden geben
Aufschluss über unterschiedliche charakteristische Anregungen im System. Jedoch sind noch immer
viele spannende Eigenschaften stark wechselwirkender Quantenvielteilchensysteme nicht vollständig
charakterisiert. Daher werden in dieser Arbeit neue Anwendungsmöglichkeiten der Amplitudenmod-
ulationsspektroskopie, einer periodischen Modulation der Lichtgitteramplitude, entwickelt. Wir un-
tersuchen die Wirkung der Amplitudenmodulation auf unterschiedliche (meist eindimensionale) kalte
Atom Systeme mit Hilfe der zeitabhängigen Dichtematrix-Renormierungsgruppe und unterschiedlicher
analytischer Methoden. Insbesondere untersuchen wir eine Supergitter-Modulation, bei der die Git-
teramplitude auf dimerisierte Art und Weise moduliert wird und somit an eine bestimmte Klasse von
Anregungen im System koppelt. Die Modulationsspektroskopie ist eine vielfältig anwendbare Methode
und wir untersuchen verschiedene Situationen, die auch relevant für experimentelle Anwendungen sind.
Zum einen zeigen wir, dass man Charakteristika der exotischen Bond-Order Welle in einem System
wechselwirkender Fermionen im eindimensionalen Gitter mit alternierendem Potential nachweisen kann.
Zum anderen zeigen wir, wie die Temperatur von Fermionen im optischen Gitter bestimmt werden
kann, sowie die Wechselwirkungsstärke von bosonischen Teilchen im eindimensionalen Gitterpotential.
Außerdem werden diverse Anregungen in allen diesen Systemen im Detail untersucht.
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CHAPTER 1

Introduction

Understanding interacting quantum many-body systems is one outstanding challenge of modern quantum
physics. In principle, these can be any systems composed of three to a very large number of interact-
ing particles. Particularly interesting physics happens when the individual particles’ behavior triggers
emergent collective phenomena. Inspiring examples are the intriguing properties of strongly correlated
condensed matter systems such as high-temperature superconductivity whose microscopic origin is
an unresolved question up to today. Due to their complexity, many of these systems push the limits
of high-performance computers and sophisticated experimental tools. Exact numerical simulations of
systems consisting of numerous particles are very limited, even on today’s most powerful supercomputers.
Advances in experimental and theoretical tools are required to further approach the intricate properties of
many-body systems and to provide us with new insights on long-standing challenges which may also
reveal surprising results.

During the past few decades, remarkable progress in the control and manipulation of atomic gases
has profoundly influenced our understanding of quantum many-body physics. As a start, the increased
control of atomic motion became possible by the application of laser light to cool and trap atoms which
was awarded with the Nobel prize in physics in 1997 [1–3]. A major breakthrough towards creating
and controlling quantum mechanical systems was the experimental realization of Bose-Einstein con-
densation [4–6] with ultracold atomic gases. This is one of the most intriguing phenomena predicted
by quantum statistical mechanics where a macroscopic number of bosonic atoms collectively occupies
the lowest energy state. Its realization in an atomic vapor, which was awarded with the Nobel prize in
physics in 2001 [7, 8], presents a macroscopic piece of quantum matter that is well-defined and flexibly
controllable. In the early days, research mainly focused on the properties of these condensates such as
for example matter wave coherence [9, 10]. Nowadays, bosonic and fermionic species are routinely
cooled into the so-called quantum degenerate regime where the physical characteristics are determined
by quantum mechanical laws. In the case of fermions [11], this means that (almost) each single-particle
state is occupied with one fermionic particle up to the so-called Fermi sea.

In recent years, a strong interest has developed in the study of ultracold atoms trapped in optical
lattices which is more in line with situations encountered in condensed matter physics. A crystal of light
is imposed on top of the atomic cloud in order to trap the atoms in periodic potentials. The light field
acts as a conservative trapping potential for the atoms and almost arbitrary potential landscapes can be
created that are highly controllable by varying external field parameters, even in a time-dependent way.
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Chapter 1 Introduction

Ultracold atoms in periodic potentials constitute a powerful platform to realize strongly correlated states
as the suppression of tunneling between neighboring potential wells effectively enhances interactions.
The created systems are clean, simple and extremely versatile due to extensive control over, for instance,
geometry, dimension, interactions and disorder. As a consequence one can engineer tunable quantum
systems to study specific physical phenomena at interest. This is a major advantage compared to real
crystals where one has to naturally deal with the interplay of different physical aspects due to, for
example, defects or lattice vibrations. In a pioneering experiment, the authors of Ref. [12] loaded bosonic
particles into an optical cubic lattice, implementing a strongly correlated many-body system described by
the Bose-Hubbard model [13]. The authors succeeded in observing signatures of the underlying phase
transition from a localized interaction-driven Mott insulating state to a delocalized superfluid state. In the
case of fermionic particles, a degenerate gas in an optical lattice described by the Fermi-Hubbard model
was realized soon after [14] and the Fermi surface was imaged, followed by the realization of a Mott
insulating state [15, 16]. More recently, the investigation of magnetically ordered phases has come within
reach as relevant spin correlations were observed [17–19]. Ultracold atoms in optical lattices provide a
whole toolbox for engineering various Hubbard-type models in its cleanest form, for which the effective
parameters can be derived from microscopic principles. There are numerous theoretical proposals to
mimic various condensed matter systems and the number of experiments in the strongly correlated
regime has been growing significantly. Notably, the quantum gas approach to many-body physics takes
a many-body model as its starting point that can be realized experimentally. This is fundamentally
different to condensed matter physics where experimentally observed phenomena trigger the search for a
theoretical description. This corresponds to the concept of quantum simulation which can be seen as an
implementation of Feynman’s pioneering ideas for using one well-controlled quantum system to simulate
another [20].

A field of special interest is the study of one-dimensional systems where the role of quantum fluc-
tuations and quantum correlations is particularly important and dominates the system’s behavior leading
to physical properties that are drastically different from the ’normal’ physics in three dimensions. Interac-
tions play a very special role as hard-core particles in one dimension cannot pass each other, picture for
example beads on a string, which leads to a collective behavior of the excitations. One-dimensional mod-
els were for a long time regarded as mathematical curiosities with little use for the real three-dimensional
world. In the context of cold atomic gases quasi one-dimensional systems can be created by confining
the motion of particles to one direction in space [21]. In the case of a degenerate gas which is usually
produced in a three-dimensional geometry, one can realize quasi one-dimensional systems by making
the trap very anisotropic. In an optical lattice, the tunnel barrier can be increased to suppress tunneling
along certain directions and thus create one-dimensional geometries. In the past fifteen years there has
been a variety of experimental studies of one-dimensional systems in the cold atom context which are
in many cases well described by mathematical ’toy-models’. In return, this stimulated more theoretical
investigations, leading to a fascinating interplay of theory and experiment. For example the transition
from a superfluid state to a Mott insulating state in one dimension was investigated [22–25] and also
the crossover regime to three dimensions. From the theory side, exact solutions in one dimension can
be obtained using the Bethe-ansatz method [26]. However, this method is difficult to use to extract
observables and it is limited to a few models such that alternative techniques are required. There are
powerful approximate methods such as bosonization [27] which describes low-energy properties of
one-dimensional systems. A major breakthrough has come with the development of effective numerical
techniques, in particular the time-dependent density matrix renormalization group method [28, 29] which
describes finite size and non-equilibrium situations well and enables a direct comparison to experiments
in many cases.
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Different experimental techniques have been developed to explore the characteristics of ultracold atoms
in optical lattices. Among the available probes are most prevalent spectroscopic methods which quite
generally rely on the interaction between light and matter. In the context of cold atoms powerful spec-
troscopic methods are radio frequency, Raman, Bragg or lattice modulation spectroscopy [30, 31]. For
instance, these probes give access to single-particle, density or kinetic energy spectral functions encoding
information on the underlying many-body state. In lattice modulation spectroscopy the amplitude of the
light potential periodically oscillates in time such that excitations in the system are created whenever
the modulation frequency corresponds to the energy of an available excitation. Monitoring the energy
absorbed by the system, typically by a measurement of the induced heating [22] or the double occu-
pancy [15] in the case of bosons and fermions respectively, yields information on the initial many-body
state.

Taking this as a starting point, we can formulate the main objective of this thesis: to explore fur-
ther the possibilities of lattice modulation spectroscopy in order to gain information on both, fermionic
and bosonic systems confined to optical lattices. We focus mainly on the study of one-dimensional
systems using the time-dependent density matrix renormalization group method to simulate the response
of the system to a modulation of the lattice amplitude. We compare the obtained results to different
analytical approximations and make close connection to available experimental setups. Notably, we
introduce a ’novel’ lattice modulation scheme which we call superlattice modulation spectroscopy and
which is of dimerized geometry in the sense that while the lattice amplitude on one lattice site is increased
by the modulation it is decreased on the neighboring lattice site. This modulation scheme transfers a
finite momentum to the system and thus couples to a certain class of excitations. Our approach it twofold.
On the one hand, our theoretical simulations can be used to determine unknown parameters from the
experiment, for example temperature or interaction strength. On the other hand, we can identify suitable
observables in order to investigate unexplored physical phenomena such as the exotic bond order wave
phase. This opens up an avenue for future experimental investigations.

In the following we shortly motivate the different situations studied in this thesis.

Detection of bond order In chapter 4 we study the excitation spectrum of the one-dimensional ionic
Fermi-Hubbard model as a response to superlattice modulation spectroscopy. The ionic Fermi-Hubbard
model describes repulsively interacting fermionic particles on a lattice with alternating energy offset on
neighboring sites. There are two competing energy scales, interactions and staggered energy offset, which
both induce insulating behavior when taken separately. At dominating interactions, the system is Mott
insulating where strong interactions prevent particles to pass each other. At dominating energy offset,
the system is band insulating characterized by filled single-particle energy bands. If interactions and
staggered energy offset are of comparable strength, these two energy scales compete and the additional
kinetic energy term gains in influence. The ionic Hubbard model was originally introduced to describe
the physics near the arising insulator-insulator transition in organic charge-transfer solids [32–34].
In fact, the competition gives rise to increased charge fluctuations, leading to the emergence of an
intermediate exotic phase in one dimension: the so-called bond order wave phase [35] characterized by
a spontaneous dimerization of the hopping and separated by two quantum phase transitions from the
Mott and band insulating phases. Despite strong theoretical evidence, detecting the bond order wave
phase and experimentally characterizing its neighboring phase transitions remains to be done. Ultracold
fermionic gases provide an appealing novel possibility to detect this state as the ionic Hubbard model was
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Chapter 1 Introduction

recently realized with fermionic atoms confined to an optical superlattice potential [36]. We investigate
the possibilities of superlattice amplitude modulation spectroscopy to probe the phase diagram of the
ionic Hubbard model. We find that it reveals features of both phase transitions, signaling the presence of
the bond order wave phase, and that it provides valuable insights into the excitation spectra of the band
and Mott insulating phases.

Thermometry A major challenge in fermionic lattice experiments is further cooling in order to probe
interesting regimes such as antiferromagnetic order or unconventional superfluidity [37]. In the first
case relevant correlations have recently been detected [17–19]. In addition, cooling is accompanied by
the need of an accurate thermometer as the temperature is one of the important macroscopic control
parameters, in particular for mapping out the Fermi-Hubbard phase diagram as a function of temperature.
However, in cold gases temperature is intrinsically difficult to control as the system is not coupled to a
reservoir. In particular the temperature determination in the lattice at low temperatures remains a delicate
issue. Various schemes to measure the temperature of fermionic particles inside the optical lattice have
been proposed and partly been experimentally tested [38] but all methods have their limitations and
most cannot be extended into the low-temperature regime of interest. Motivated by the lack of suitable
thermometry schemes we investigate the possibilities of thermometry by means of lattice modulation
spectroscopy in chapter 5. We study the temperature-dependent atom excitation rate to higher Bloch
bands and demonstrate that it shows clear signatures of the temperature-dependent Fermi distribution in
the lowest band of the equilibrium system. Establishing a close relation to typical experiments we verify
the measurability of temperature in one and two dimensions by a simple detection scheme.

Lattice calibration In chapter 6 we investigate the excitation spectrum of the one-dimensional Bose-
Hubbard model as a response to superlattice modulation spectroscopy. At constant integer filling per
site, the Bose-Hubbard model exhibits a quantum phase transition at a critical interaction strength from
a strongly interacting Mott insulator, where particles localize on individual lattice sites, to a weakly
interacting superfluid, where particles are delocalized over the entire lattice. At non-integer filling
the system remains superfluid at arbitrary interaction strength. Particular of one dimension is that the
single-particle correlations in the superfluid decay algebraically in contrast to higher dimensions where
the single-particle correlations are finite and constant at arbitrary distances. This is known as long
range order. On the one hand, we gain insights into the broad excitation spectrum of the superfluid
phase by the superlattice modulation spectroscopy. On the other hand, in the Mott insulating region
particle-hole excitation pairs are created on top of the commensurately filled background. We find that
these excitations are confined to a narrow region in energy in contrast to the normal lattice modulation
where the bandwidth of excitations is much larger [22, 39]. We demonstrate that the spectral response
may serve as a precise calibration of the interaction strength in experimental setups.

This thesis is outlined as follows. In chapter 2, the physics of cold atomic gases confined to optical
lattices, its theoretical description in terms of Hubbard models, and the lattice modulation spectroscopy
are introduced. In chapter 3 we introduce the theoretical methods used throughout this thesis to describe
the superlattice modulation spectroscopy, that are the time-dependent matrix renormalization group
method, linear response theory and bosonization. Chapters 4, 5, and 6 give a detailed account of the study
of the three situations shortly outlined above. Finally, a summary of the main results and an outlook are
given in chapter 7.
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CHAPTER 2

Ultracold atoms in optical lattices

In this chapter the basic principles of ultracold bosonic and fermionic gases confined to optical lattices are
introduced and the underlying physics of the systems relevant for this work is discussed. Starting from
a short historical perspective (Sec. 2.1), we explain the realization of optical (super)lattices (Sec. 2.2)
and their theoretical description in terms of Hubbard models (Sec. 2.3). The quantum phase transition
from a superfluid to a Mott insulating state in the one-dimensional Bose-Hubbard model is discussed
(Sec. 2.4). Then, the main features of the Fermi-Hubbard phase diagram and the one-dimensional ionic
Fermi-Hubbard model are examined (Sec. 2.5). Finally, we introduce lattice modulation spectroscopy
(Sec. 2.6) which has proven to be a powerful tool for the investigation of ultracold atoms in optical
lattices and which we apply to different equilibrium systems throughout this work. We consider two
different configurations, the commonly used normal lattice modulation spectroscopy and a dimerized
configuration which we call superlattice modulation spectroscopy.

2.1 From weakly interacting gases to strongly correlated systems

In 1925 A. Einstein predicted [40] that below a critical temperature a macroscopic number of bosons
would occupy the lowest-lying single-particle state. His prediction was based on the statistics introduced
by S. N. Bose for the ideal gas [41]. An experimental realization was made possible by achievements
in the field of laser cooling [42] and evaporative cooling [43] which enables one to cool a dilute cloud
of atoms to ultralow temperatures in the nano Kelvin regime. The first experimental realizations of
Bose-Einstein condensation in ultracold weakly-interacting gases were accomplished in 1995 [4–6] for
different atomic species. The collective occupation of the lowest energy state allows for the study of
quantum phenomena on a macroscopic scale. The investigation of the effect of particle statistics and
interactions becomes accessible in a controlled way. Prominent examples are the interference of two
overlapping condensates after the release from a double well potential [9] or the observation of long
range phase coherence [10]. In a dilute gas, the kinetic energy of the atoms is typically much larger than
the interaction energy between particles. However, strongly correlated many body systems have also
become accessible with the realization of strong and tunable interactions. The effective interparticle
scattering length can be directly tuned by means of a Feshbach resonance [44, 45]. However, with
increasing interactions inelastic losses increase due to three-body collisions which limits the life-time of
the cloud. Another possibility is to load atoms into an optical lattice where the suppression of tunneling
leads to an effective enhancement of interactions [12, 46]. It was proposed [13] and experimentally
realized [12] to observe the quantum phase transition from a superfluid to a Mott insulator by loading a
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Chapter 2 Ultracold atoms in optical lattices

Bose-Einstein condensate into an optical lattice and by increasing the lattice depth across a critical value.
Other interesting experiments include the realization of a (Tonks-Girardeau) hard-core Bose gas in one
dimension [47, 48] or the observation of Bloch oscillations in an optical lattice [49]. A broad selection of
interesting phenomena occurring in strongly correlated bosonic systems can be found in Ref. [21] and
the dynamics are discussed in Ref. [50].
In the case of fermions the Pauli exclusion principle prevents two fermionic particles to occupy the
same single-particle state. At ultralow temperatures a gradual crossover from the non-degenerate gas
(with decreasing temperatures) to the degenerate gas characterized by an (almost) filled Fermi sea occurs
where (almost) all single-particle states up to the Fermi surface are occupied. The first degenerate Fermi
gas [11] was realized in 1999 and the strongly-interacting regime is accessible by means of Feshbach
resonances [51, 52]. This allows, for example, to investigate the crossover from a molecular Bose-Einstein
condensate to a superfluid gas of weakly bound Cooper pairs when tuning the scattering length from
repulsive to attractive [53]. The first Fermi gas in a three-dimensional optical lattice was characterized in
2005 [14]. The existence of a Fermi surface and the appearance of a band insulator were observed. Soon
after, experimentalists succeeded in observing the fermionic Mott insulator [15, 16]. Other interesting
examples include the measurement of the equation of state of fermionic particles in an optical lattice [54],
or the creation of tunable Dirac points [55] where two energy bands intersect linearly and particles behave
as quasi relativistic Dirac fermions. Several experiments with ultracold fermions in optical lattices are
discussed in Ref. [56]. One of the remaining challenges is a further reduction in temperature to probe
regimes where interesting physics, such as unconventional superfluidity [37] or antiferromagnetic order,
occur. In the latter case, relevant correlations were recently observed in experiment [17–19].

2.2 Trapping of neutral atoms in optical lattices

In this section we outline how periodic trapping potentials for neutral atoms can be created. First, in
Sec. 2.2.1, we introduce the optical dipole interaction between atoms and a light field which is the basic
physical mechanism to create a periodic lattice potential for neutral atoms. We then discuss the creation
of periodic structures and comment on the emerging band structure in Sec. 2.2.2.

2.2.1 Optical dipole force

The interaction of the light-induced dipole moment of neutral atoms with the laser light field has
two effects [57, 58]. On the one hand, the interaction shifts the atomic energy levels (ac-Stark shift)
which constitutes a conservative trapping potential for the neutral atoms proportional to the laser light
intensity. On the other hand, photon scattering in cycles of absorption and subsequent spontaneous re-
emission creates a dissipative contribution due to the momentum transfer of the photons. This dissipative
contribution can be used for laser cooling [42]. If the detuning of the light field from the atomic resonance
is large, the number of optical excitations is low, such that the dissipative force is negligible compared to
the conservative optical dipole force and a conservative trapping potential can be created.

Dressed atom picture Here, we review the derivation of the optical dipole potential by a quantum
mechanical treatment [58]. However, the same results can be found from a classical oscillator model [57].
The unperturbed system is given by the Hamiltonian of the quantized light field HL = ~ωL(a†a + 1/2)
(a(†) is the annihilation (creation) operator of the laser photons) and of the two-level atom HA = ~ω0|e〉〈e|
with |e〉 the excited state with energy Ee = ~ω0 and |g〉 the ground state with energy Eg = 0. Here, we
only discuss the two-level atom. In reality, in the case of multi-level atoms all excited states should be
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2.2 Trapping of neutral atoms in optical lattices

taken into account. However, in most experiments (performed with alkali atoms) the fine structure is not
resolved for large enough detuning and one can use the two-level result [57].

Figure 2.1: (a) The decoupled energy levels of a two-level atom with energy splitting ~ω0 between ground |g〉 and
excited state |e〉 in a quantized light field with frequency ωL where N denotes the number of photons in the light
field. The detuning is given by δL = ωL − ω0 and in this figure we show the case δL < 0. (b) For small detuning,
states such as |g,N + 1〉 and |e,N〉 are near in energy, separated by ~|δL| (left sketch in (b)). Two such states get
coupled by the atom-light interaction and the upper and lower level shift up and down in energy, respectively (right
sketch in (b)).

The eigenstates of the unperturbed systems have to be labeled by the atomic quantum number g or e
and by the number of photons N in the light field which shifts the bare atomic energy by N~ωL, see
Fig. 2.1(a). If the detuning |δL| � ω0, δL = ωL − ω0, only two levels such as for example |g,N + 1〉 and
|e,N〉 are close in energy, indicated by a dashed box in Fig. 2.1(a) in the decoupled picture. In Fig. 2.1(b)
those states are grouped into ’copies’ of two uncoupled states, each with energy difference ~|δL| between
these two states which is much smaller than the gap ~ωL to the next ’copy’. For δL > 0, |g,N + 1〉 is
above |e,N〉 in energy, and vice versa for δL < 0. Only such two levels are coupled by the atom-light
interaction which is given by Hint = −~d ~E where ~d = e~r is the atomic dipole moment and ~E is the laser
field operator. The resulting shift in the energy levels (see Fig. 2.1(b)) can be determined within second
order non-degenerate perturbation theory,

∆E(g,N+1),(e,N) = ±
|〈e,N |~d|g,N + 1〉|2

~δL
|E|2

= ±
3πc2

2ω3
0

Γ

δL
I, (2.1)

where + and − correspond to the states |g,N +1〉 and |e,N〉 respectively. It was used that the laser intensity
is given by I = 2ε0c|E|2 and the on-resonant damping rate Γ = (ω3

0/3πε0~c3)|〈e,N |~d|g,N + 1〉|2 [57]. The
atom is mostly in the ground state such that the light shift of the ground state results in an effective dipole
potential Vdipole = ∆E(g,N). Atoms are attracted to the nodes or anti-nodes of the laser intensity profile
for blue detuned (ωL > ω0) or red-detuned (ωL < ω0) laser light respectively. Consequently, spatially
modulated light fields lead to space-dependent trapping potentials for neutral atoms.

2.2.2 Periodic potentials

Optical lattices A periodic optical lattice potential can be created by superimposing counterpropagat-
ing laser beams and the standing wave interference pattern yields a periodic potential. By superimposing
laser beams in one-, two- or three spatial directions one obtains stacks of two-dimensional pancakes,
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Chapter 2 Ultracold atoms in optical lattices

arrays of one-dimensional tubes or point-like confinement of the atoms respectively. For example, a
simple cubic lattice potential can be created by orthogonally superimposing three retro-reflected laser
beams with polarizations between the three standing waves that are mutually orthogonal [21]. In the
center of the trap, for distances much smaller than the beam waist, the potential can be approximated by
the sum of a homogeneous lattice,

V0(~x) = V0,x sin2(kLx) + V0,y sin2(kLy) + V0,z sin2(kLz), (2.2)

and an additional external harmonic confinement created by the Gaussian intensity profile of the beam
pairs,

Vtrap(~x) =
m
2

(
ω2

xx2 + ω2
yy

2 + ω2
z z2

)
. (2.3)

The potential depth V0,i, i = x, y, z, of the optical lattice (V0,i = V0 in the isotropic case, i.e. cubic
lattice) can be experimentally adjusted by tuning the laser intensity. The mass of the atoms is given by m
and ωi are the effective trapping frequencies of the external confinement. The lattice spacing is given
by a = λ/2 = π/kL where λ is the laser wave length and kL = 2π/λ the wave number. In this work we
mainly consider one-dimensional lattice systems described by the above potential along one direction.
Such systems can be approximately realized by suppressing tunneling in two directions, i.e. strongly
increasing the lattice depth V0,i along two directions, which results in quasi one-dimensional arrays of
lattices. Note, that this is intrinsically different from a one-dimensional laser setup, i.e. superimposing
two counterpropagating laser beams, where atoms can move freely within the two-dimensional pancake-
shaped potentials that are created orthogonal to the laser beams. The strength of the lattice potential is
typically measured in units of the recoil energy Er = (~kL)2/2m. The recoil energy is the kinetic energy
of an atom with mass m and momentum ~kL of a single lattice photon. Deep lattices V0 >> Er can be
approximated by decoupled harmonic wells V0(~x − ~x j) ≈ (m/2)ω2

0(~x − ~x j)2 at each lattice site ~x j with
level spacing

~ω0 = 2Er
√

V0/Er. (2.4)

Each well supports a number of vibrational levels. In principle, many different lattice geometries can be
created by different intersection angles and/or controlling the relative phases between the beams [59].

Optical superlattices Throughout this work we also consider another lattice geometry in one dimen-
sion called a superlattice which is an array of double well potentials. It can be created by superimposing
two standing waves created by laser beams of different wavelength λL and λ′L that differ by a factor of
two. In principle, one can create all kind of periodicities [60] by changing the ratio λL/λ

′
L but here we

only treat the double well case as for example realized in Refs. [61–63]. Generally, the one-dimensional
optical superlattice potential can be written as

V0(x) = V1 sin2(kLx + φ) + V2 sin2(2kLx + 2φ + θ), (2.5)

where kL = 2π/λL is the wave number of one of the laser beams and V1, V2 are the potential strengths.
The lattice has the period a = λL/2 which is the size of one double well potential. The phase φ is an
arbitrary shift of the whole potential whereas θ can be tuned, together with the ratio V2/V1, to modify
the shape of the potential. The condition for having exactly two minima within one double well is
V2 > 0.5V1 [64]. In the following we illustrate the creation of different kinds of double well potentials by
discussing three distinct cases for the choice of θ which are displayed in Fig. 2.2. For θ = nπ (n ∈ Z) the
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2.2 Trapping of neutral atoms in optical lattices

lattice is site-inversion symmetric, the wells alternate in potential depth but the bond height is constant
throughout the system, see Fig. 2.2(a). For θ = π/2 + nπ the lattice is bond-inversion symmetric, all wells
have the same potential depth but alternate in bond height, see Fig. 2.2(b). Finally, for θ = π/4 the lattice
has no inversion symmetry centers. Both, potential depth and bond height alternate, see Fig. 2.2(c). By
site- and bond-inversion we mean that the (infinite) system is identical when mirrored at a site or a bond
respectively.
In Ch. 4 of this work we study the site-inversion symmetric kind of superlattice to realize the ionic
Hubbard model with fermionic particles. The ionic Hubbard model will be discussed below in Sec. 2.5.

Figure 2.2: The one-dimensional optical superlattice given by Eq. (2.5) for V2 = 2V1 and three different values
of the phase difference θ. (a) For θ = 0 (φ = π/4) the potential depth alternates and the lattice has site-inversion
symmetry. (b) For θ = π/2 (φ = 0) the bond height alternates and the lattice has bond-inversion symmetry. The
inequivalent sites within one unit cell are labeled A and B. (c) For θ = π/4 (φ = π/8), both, potential depth and
bond height alternate and there is no inversion symmetry center.

Band structure The presence of a periodic potential leads to the emergence of an energy band
structure which can be determined using Bloch’s theorem for a single particle in a periodic potential.
It states [65] that the solution of the (single-particle) Schrödinger equation for any periodic potential
can be written as a product of a plane wave exp(ikx) and a lattice-periodic Bloch factor unk(x). The
Bloch function is given by Ψnk(x) = exp(ikx)unk(x) where the lattice-periodic Bloch factor unk(x) has
periodicity a (size of the unit cell) of the underlying lattice with L sites. The energy bands are denoted
n and k = 2πm/(La), m = −L/2,−L/2 + 1, ..., L/2 − 1, is the quasimomentum within the first Brillouin
zone [−π/a, π/a[ which defines the periodicity of the reciprocal lattice. The single-particle Schrödinger
equation

(
p̂2/2m + V0(x)

)
Ψnk(x) = En(k)Ψnk(x) becomes(
~2

2m
(k2 − 2ik∂x + ∂2

x) + V0(x)
)

unk(x) = En(k)unk(x), (2.6)

where the potential V0(x) and unk(x) both have periodicity a. The energy bands are obtained by solving
one equation for each k in the first Brillouin zone of the reciprocal lattice. One can also express a in terms
of the laser wave length λ, a = λ/2, such that the first Brillouin zone becomes [−kL, kL[. The obtained
spectrum is shown in Fig. 2.3 comparing zero lattice depth to a finite value.
For V0(x) = 0 one recovers the parabolic dispersion of the free particle. For finite V0(x) gapped energy
bands develop which are k-dependent with the periodicity of the reciprocal lattice 2π/a = 2kL. With
increasing lattice depth the bandwidth decreases while the band gap increases. For sufficiently deep
lattices, the first band gap corresponds to the level spacing of the harmonic oscillator approximation (2.4).
For a simple cubic lattice like the one given by Eq. (2.2) which is separable, the three-dimensional Bloch
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Chapter 2 Ultracold atoms in optical lattices

function factorizes Ψn~k(~x) = Ψnxkx(x)Ψnyky(y)Ψnzkz(z) neglecting the coupling to other Bloch bands and
the overlap of different sites, with quasimomentum ~k = (kx, ky, kz), position vector ~x = (x, y, z) and band
index n = (nx, ny, nz). It is thus sufficient to solve the one-dimensional case. In three dimensions, the
energy bands are then given by En(~k) = Enx(kx) + Eny(ky) + Enz(kz).

Figure 2.3: The band structure En(k) within the first Brillouin zone for a particle in a one-dimensional homogeneous
lattice V0(x) = V0 sin2(x) obtained by solving Eq. (2.6) for a system of L = 100 sites. For a lattice depth V0 = 0
(blue symbols +) one recovers the parabolic dispersion of a free particle whereas for V0 = 10Er (orange symbols x)
the spectrum is gapped.

2.3 Theoretical description: Hubbard models

From the theory side ultracold fermionic or bosonic atoms in optical lattices can be described by
various types of Hubbard like models [13, 21] which are originally known from condensed matter
physics. In cold atomic setups, Hubbard models may be realized in its cleanest form in a wide range of
parameters with extensive control over system parameters, dimension and geometry by external fields.
The intriguing interplay of quantum kinetic processes and local interactions can be investigated and
theoretical predictions may be tested in a controlled way. Some examples have been given in Sec. 2.1
and can be found in Ref. [21] and references therein.
In this section, we first derive the Bose- and Fermi-Hubbard models from the Hamiltonian operator of
bosonic and fermionic atoms in an optical lattice potential. We discuss the different terms describing
the kinetic, potential and interaction energy and finally we consider the case of an optical superlattice
potential.
We illustrate the derivation considering fermionic particles with two different internal states. The
derivation for ’spinless’ bosonic particles is analogous, merely dropping the spin index and using bosonic
instead of fermionic single-particle operators, i.e. taking care of the proper commutation relations. The
Hamiltonian for interacting fermionic atoms with two different spin states in an optical lattice with
external confinement is given by

H =
∑
σ

∫
d3x Ψ†σ

(
~x
) {−~2

2m
∇2 + V0(~x) + Vtrap(~x)

}
Ψσ

(
~x
)

+
1
2

∑
σ

∫
d3xdx′3 Ψ†σ

(
~x
)
Ψ
†

σ̄

(
~x′

)
V(~x − ~x′)Ψσ̄

(
~x′

)
Ψσ

(
~x
)
, (2.7)
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where Ψ
(†)
σ

(
~x
)

denotes a fermionic annihilation (creation) operator for particles of mass m with two
different internal states σ =↑ or σ =↓; σ̄ denotes the opposite spin configuration with respect to σ.
The first term describes the kinetic energy contribution and the influence of the lattice potential V0(~x)
and an additional confinement potential Vtrap(~x) given by Eqs. (2.2) and (2.3), respectively. The second
term describes the interaction between particles. The full interatomic scattering potential is complicated.
However, it is typically short-ranged [21] and at low temperatures, the thermal de Broglie wave length
(the wave length associated with a massive particle) is much larger than the effective extension of the
interaction potential. Consequently, the details of the interaction potential are not resolved and play a
minor role. The only relevant process is the low energy (or long wavelength) s-wave scattering. This
corresponds to the lowest angular momentum scattering state in the relative motion. This scattering
state is symmetric such that s-wave scattering is prohibited for identical fermions as they require a total
antisymmetric wave function. However, different spin species can scatter if the spin wave function is
antisymmetric. In the case of bosons, identical particles can scatter as they require a total symmetric wave
function. The interaction potential is well approximated by an isotropic short-ranged pseudopotential
V(~x − ~x′) = gδ(~x − ~x′), g = 4πaS ~/m which is governed by the s-wave scattering length aS [66]. This
approximation is valid in a wide range of situations in dilute atomic gases provided that longer range
interactions do not contribute, such as for example the dipole-dipole interaction in dipolar gases [21].
The interaction is repulsive for as > 0 and attractive for as < 0 and the scattering length can be tuned by
means of a Feshbach resonance [21].
If the energies involved in the system dynamics, i.e. recoil energy Er, on-site interaction strength g and
temperature T are small compared to the band gap, the motion of the atoms is confined to the lowest
energy band. This is typically the case for sufficiently deep lattices at low temperature where the band gap
is approximately given by the harmonic oscillator levels (2.4). The associated single-particle eigenstates
are the Bloch waves Ψn~kσ(~x) (cf. Sec. 2.2.2) which are completely delocalized and carry an additional
spin index in the case of fermions. It is more convenient to work in the orthonormal basis of Wannier
functions [67, 68],

wnσ(~x − ~x j) =
1
√

N
·
∑
~k

e−i~k~x jΨn~kσ(~x), (2.8)

∫
d3x w∗nσ(~x − ~x j)wn′σ′(~x − ~x j′) = Nδn,n′δσ,σ′δ j, j′ , (2.9)

where N is the normalization constant, ~x j denotes the lattice site j and the sum runs over all quasimomenta
~k in the first Brillouin zone. We can neglect the band index n if the atoms remain in the lowest vibrational
level as explained above and we will drop the band index from now on. For increasing lattice depth, the
Wannier functions become more strongly localized such that the overlap between neighboring lattice
sites decreases which supports localization of particles. The field operators can be expanded in the basis
of Wannier functions,

Ψσ(~x) =
∑

j

c j,σwσ(~x − ~x j), (2.10)

where c j,σ is the fermionic annihilation operator at site j satisfying fermionic commutation relations and
we dropped the band index n. In the case of bosonic atoms the fermionic operator c j,σ has to be replaced
by the bosonic annihilation operator b j without spin index and satisfying bosonic commutation relations.
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Inserting this expansion (2.10) into Eq. (2.7) yields,

H =
∑
σ


∑
j,~d

J
j,~d

c†
j+~d,σ

c
j,σ

+
∑

j

ε j c†j,σc j,σ +
1
2

∑
j, j′, j′′, j′′′

U j, j′, j′′, j′′′c
†

j,σc†j′,σ̄c j′′,σ̄c j′′′,σ

 (2.11)

where ~d denotes the distance in x, y and z direction from a site j at position ~x j to a site j′ at position
~x j′ = ~x j + ~d. The tunneling amplitude J j,~d, the on-site potential ε j and the interaction strength U j, j′, j′′, j′′′

are given by

J j,~d =

∫
d3x w∗σ(~x − ~x j)

(
−~2

2m
∇2 + V0(~x) + Vtrap(~x)

)
wσ(x − (~x j + ~d)), ~d , (0, 0, 0)(2.12)

ε j =

∫
d3x w∗σ(~x − ~x j)

(
−~2

2m
∇2 + V0(~x) + Vtrap(~x)

)
wσ(~x − ~x j), (2.13)

U j, j′, j′′, j′′′ = g

∫
d3x w∗σ(~x − ~x j)w∗σ̄(~x − ~x j′)wσ̄(~x − ~x j′′)wσ(~x − ~x j′′′), (2.14)

if Vtrap(~x) varies slowly with respect to the lattice potential V0(~x). The nearest-neighbor interaction
strength (compared to the on-site interaction strength) and the next-nearest-neighbor tunneling amplitude
(compared to the nearest-neighbor tunneling amplitude) are typically two orders of magnitude smaller
and can be neglected [13]. Consequently, the main contribution to the on-site interaction (2.14) is given
by j = j′ = j′′ = j′′′ and the main contribution to the tunneling amplitude (2.12) is given by |d| = 1. This
is often called the tight-binding approximation. In the following we discuss in more detail the different
terms of Eq. (2.11) and possible simplifications.

The trapping potential In typical experimental setups the trapping potential varies slowly with respect
to the periodicity of the lattice potential such that its contribution to the Hamiltonian can be approximated
by an on-site contribution∫

d3x w∗σ(~x − ~x j)Vtrap(~x)wσ(~x − (~x j + ~d)) ≈ Vtrap(~x j)δ~d,0 := εtrap, j (2.15)

where we used the orthonormality relation (2.9) of the Wannier functions. For the cubic lattice, where
V0(~x) is the same at each lattice site, the contributions from the remaining terms in Eq. (2.13) give a
constant offset,

ε0 =

∫
d3x w∗σ(~x − ~x j)

(
−~2

2m
∇2 + V0(~x)

)
wσ(~x − ~x j). (2.16)

Consequently, ε j (2.13) simplifies to ε j ≈ ε0 + εtrap, j. The constant energy offset ε0 can be neglected if
the particle number is conserved. For working in the grand canonical ensemble one needs to subtract the
chemical potential µ, ε j → ε j − µ, which acts as a Lagrangian multiplier in the Hamiltonian and controls
the number of particles in the ground state of the system. Recently also homogeneous trapping potentials
were realized [69–71] where the on-site contribution does no longer contribute.

The nearest-neighbor tunneling rate The tunneling amplitude can be expressed in terms of the
eigenenergies of the system by transferring the tunneling matrix element (2.12) back into the Bloch basis
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representation. Inserting Eq. (2.8) into Eq. (2.12) one obtains

J j,~d =

∫
d3x w∗σ(~x − ~x j)

(
−~2

2m
∇2 + V0(~x)

)
wσ(~x − (~x j + ~d))

=
1
N

∫
d3x

∑
~k,~p

ei~x j(~k−~p)e−i~p~dΨ∗
~k,σ

(~x)
(
−~2

2m
∇2 + V0(~x)

)
Ψ~p,σ(~x)

=
∑
~k,~p

ei~x j(~k−~p)e−i~p~dδ~k,~pE(~k) (2.17)

=
∑
~k

E(~k)e−i~k~d. (2.18)

The tunneling matrix element can thus be determined from a numerical band structure calculation (cf.
Sec. 2.2.2). The main contribution for |d| = 1 in the cubic lattice is denoted J j,|d|=1 = −J < 0 and can be
explicitly calculated for V0 � Er [72],

J(V0) =
4
√
π

Er

(
V0

Er

)3/4

e−2
√

V0/Er , (2.19)

which decays exponentially when the lattice depth V0 is increased. In the homogeneous non-interacting
case E(~k) = −2J

(
cos(kxx) + cos

(
kyy

)
+ cos(kzz)

)
in three dimensions such that J is simply related to the

bandwidth by Emax − Emin = 12J. Generally, in arbitrary dimensions Emax − Emin = 2zJ where z is the
number of nearest neighbors.

The on-site interaction strength The main contribution (on-site contribution) to the interaction
strength (2.14) becomes

U j, j′, j′′, j′′′,σ ≈ U j = g

∫
d3x |w∗σ(~x − ~x j)|4. (2.20)

This integral can be evaluated numerically and for cubic lattices U j ≡ U. For fermionic atoms the
interaction term becomes

U
2

∑
σ

∑
j

c†j,σc†j,σ̄c j,σ̄c j,σ =
U
2

∑
σ

∑
j

n j,σn j,σ̄ = U
∑

j

n j,↑n j,↓, (2.21)

where again σ̄ denotes the spin opposite with respect to σ and the fermionic anticommutation relation
{c j,σ, c

†

j′,σ′} = δ j, j′δσ,σ′ was used. In contrast, for bosons one obtains

U
2

∑
j

b†jb
†

jb jb j =
U
2

∑
j

n j(n j − 1), (2.22)

where the bosonic commutation relation was used [b j, b
†

j′] = δ j, j′ . An analytical approximation can be
obtained for V0 � Er [72] by approximating the Wannier functions by the Gaussian ground state in the
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local oscillator approximation which yields,

U(V0) =

√
8
π

kasEr

(
V0

Er

)3/4

. (2.23)

This expression is an increasing function in V0/Er in contrast to the hopping amplitude which decays
exponentially. The ratio U/J increases exponentially and can thus be continuously tuned over a wide
range of parameters in experiments by changing the lattice potential strength.

Finally, one obtains the Fermi- and Bose-Hubbard Hamiltonians in the tight-binding approximation,

HFH = −J
∑
〈 j, j′〉,σ

c†j,σc j′,σ + U
∑

j

n j,↑n j,↓ +
∑
j,σ

(ε j − µ)n j,σ, (2.24)

HBH = −J
∑
〈 j, j′〉

b†jb j′ +
U
2

∑
j

n j(n j − 1) +
∑

j

(ε j − µ)n j, (2.25)

respectively, where 〈 j, j′〉 denotes the sum over nearest neighbors. In one dimension we will use the
notation c†j,σc j′,σ →

(
c†j,σc j+1,σ + H.c.

)
and replace the sum over nearest neighbors (

∑
〈 j, j′〉) by the sum

over j (
∑

j), and similar for the bosonic operators.

Tight-binding for optical superlattices Analogous to the above derivation, one can find a tight-
binding description of the optical superlattice potential (2.5) by expanding the field operators in a basis
of functions that are localized on each minimum of the periodic potential. However, this basis is not
generally given by the Wannier functions defined in Eq. (2.8) as they can extend over both minima of
a double well. Instead, one can construct a set of generalized Wannier functions that are maximally
localized on each minimum from a linear combination of Bloch eigenstates in different bands [64, 73,
74]. The generalized Wannier functions also satisfy the orthonormality relation (2.9). Only considering
nearest-neighbor tunneling processes, the tight-binding Hamiltonian for fermionic particles in one
dimension becomes

H = −
∑

j,σ

(
J1c†j,A,σc j,B,σ + J2c†j+1,A,σc j,B,σ + H.c.

)
+

∑
ν

(
Uν

∑
j n j,ν,↑n j,ν,↓

)
+

∑
ν

∑
j

(
ε j,ν − µ

)
n j,ν,σ, (2.26)

where ν = A, B denotes the inequivalent sites in the unit cell (cf. Fig. 2.2(b)), J1 is the nearest-neighbor
tunneling matrix element for a bond with an A-site to the left and a B-site to the right and J2 is the
nearest-neighbor tunneling matrix element for a bond with a B-site to the left and an A-site to the right. In
the case θ = nπ, J1 ≡ J2 [64], which is shown in Fig. 2.2(a), and in the case θ = π/2 + nπ, UA ≡ UB [64],
which is shown in Fig 2.2(b). For V2 � V1 one can approximately assume UA = UB [60].

2.4 Bosonic atoms in optical lattices

In this section we discuss the phase diagram of the Bose-Hubbard model (2.25). Its characteristic
features are qualitatively similar in all spatial dimensions although strong quantum fluctuations in low
dimensions lead to considerable quantitative differences [75]. In this section, we focus on general aspects
and comment on the one-dimensional case in particular. The phase diagram of the three-dimensional
Bose-Hubbard model is shown in Fig. 2.4(b). In the (µ, J)-plane there are Mott insulating regions at fixed
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commensurate (integer) filling n̄ = N/L where N is the number of particles and L is the number of lattice
sites. These so-called Mott lobes are surrounded by the superfluid phase. The Mott lobes only exist at
integer filling and are characterized by zero compressibility κ = ∂n/∂µ = 0 (where n is the density) and
gapped excitations. In the superfluid, the system is compressible and has a gapless excitation spectrum.
At incommensurate filling, the system is always superfluid and the incommensurate-commensurate phase
transition (at the side of the lobes) is driven by density fluctuations and accompanied by a change in
particle number. The phase transition at fixed commensurate filling (at the tip of the lobe) is driven by
quantum fluctuations. Even in one dimension, the model is not exactly solvable but the phase diagram is
well understood [76–78]. In one dimension, the Mott insulating regions become pointy at the tip of the
lobe and the tips bend down.

Figure 2.4: (a) Schematic drawing of the phase diagram of the Bose-Hubbard model and the corresponding ground
state configurations at integer filling, here n̄ = 1, as a function of U. A quantum phase transition from a superfluid
(SF) where the particles are delocalized over the entire lattice to a Mott insulator (MI) where particles are localized
on each lattice site occurs at the critical value (U/J)c. (b) Schematic drawing of the Bose-Hubbard phase diagram
in three dimensions in the (µ, J)-plane. The shaded pink regions mark the Mott lobes at different fillings. The white
region corresponds to the superfluid phase. The dashed lines indicated fixed integer filling n̄ which enter the Mott
lobes at the tip of the lobe.

The phase diagram at commensurate filling is shown in Fig 2.4(a) as a function of the interaction strength,
together with a sketch of the corresponding ground state configurations. The quantum phase transition
from a Mott insulator to a superfluid occurs at a critical value (U/J)c. This phase transition is driven by
the competition of the kinetic energy which tends to delocalize particles over the entire lattice and the
repulsive interaction which disfavors having more than one particle per site. In one dimension, this phase
transition occurs at a critical value of (U/J)c ∼ 3.4 [75] (for a filling n̄ = 1) and is of Kosterlitz-Thouless
type. This means that it is accompanied by an exponentially slow closing of the Mott insulating gap which
makes it difficult to determine the critical point. The two phases can be distinguished by the behavior
of the single-particle correlations 〈b†jb j+d〉. In the Mott insulating region the single-particle correlations
decay exponentially whereas they decay algebraically in the superfluid region in one-dimension. This
is in contrast to higher dimensions where true long range order occurs in the superfluid, i.e. 〈b†jb j+d〉

finite and constant for d → ∞. In order to understand the nature of the superfluid and the Mott insulating
phases, it is instructive to consider the two limiting cases U = 0 or J = 0, respectively.

In the limit U = 0 the many-body ground state is simply given by an ideal Bose-Einstein condens-
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ate where all N atoms occupy the lowest momentum (k = 0) Bloch state of the lowest band,

|GS 〉U=0 =
1
√

N!

(
b†k=0

)N
|0〉 =

1
√

N!

 1
√

L

∑
j

b†j


N

|0〉, (2.27)

where |0〉 denotes the vacuum and b†k =
(
1/
√

L
)∑

j exp(ika j)b†j creates a particle in momentum state
k. This state is delocalized over the entire lattice of size L. The ground state energy is given by
E0 = −2NJ. There is large local particle number fluctuations obeying the Poissonian distribution
〈n j〉 = N/L = 〈n2

j〉 − 〈n j〉
2. The momentum distribution is given by a zero momentum peak of weight N,

〈nk〉 = Nδk,0. The low energy excitation spectrum is continuous for L→ ∞. This state is well described
by a macroscopic wave function with long-range phase coherence throughout the lattice. For finite but
small interactions U the momentum distribution peak stays macroscopically occupied but the weight
decreases < N and the local number fluctuations remain large. The single-particle dispersion is linear at
low energies and becomes particle-like at higher energies.

In the atomic limit J = 0 the ground state wave function at commensurate filling consists of local-
ized wave functions where each lattice site is occupied by 〈n j〉 = n̄ particles,

|GS 〉J=0 =

L∏
j=1

1
√

n̄

(
b†j

)n̄
|0〉. (2.28)

The ground state energy is given by E0 = 0. Local density fluctuations become energetically costly
and are suppressed, 〈n2

j〉 − 〈n j〉
2 = 0. The momentum distribution is constant for all momenta 〈nk〉 = n̄.

The lowest excited states are localized defects consisting of one doubly occupied and one empty site
on top of a commensurately filled background. The energy needed to create such an excitation is the
on-site interaction U which is called the Mott gap. This state cannot be described by a macroscopic wave
function and phase coherence is lost. For finite but small J the many-body ground state is no longer
given by the simple product state (2.28) but the particles remain localized as long as the gain J in kinetic
energy due to the hopping is smaller than U.

Signatures of the superfluid to Mott insulator transition in optical lattices were first observed in a
three-dimensional optical lattice [12]. The phase coherence of the wave function was probed by ob-
serving the interference pattern in a time-of-flight absorption image which reflects the momentum
distribution of the particles trapped in the lattice [21]. In the superfluid regime, particles occupying the
lowest Bloch state will expand according to its momentum distribution k = 0, 2kL, ... (multiples of the
reciprocal lattice vector). This results in a series of interference maxima at multiples of the reciprocal
lattice vector after time-of-flight. For increasing lattice depth, the strength of the higher order interference
peaks increases due to the tighter localization of the wave function. Upon further increasing the lattice
depth, at a critical value, the interference peaks vanish which the authors of Ref. [12] attribute to the
onset of the Mott insulating phase where all quasimomenta k contribute and phase coherence is lost.
The authors verify that phase coherence can be restored by reversing the process. Additionally, they
probe the excitation spectrum of the two phases by applying a potential gradient and thus ’tilting’ the
lattice. At strong interactions, the authors observe two distinct excitation peaks at energies ∼ U and ∼ 2U
as expected in the Mott insulator and in general for strong interactions, whereas the superfluid phase
displays a broad continuous excitation spectrum. Soon after, the superfluid to Mott insulator transition
was also investigated in a quasi one-dimensional system by lattice modulation spectroscopy [22]. The
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periodic modulation of the lattice height transfers energy to the system which can be estimated by the
increased broadening of the central momentum peak in a time-of-flight measurement. The authors of
Ref. [22] probed the excitation spectrum for different U/J. The superfluid is characterized by a broad
spectrum, whereas at strong interactions two peaks at ~ω = U and 2U appear in the one-dimensional
system.

2.5 Fermionic atoms in optical lattices

Ultracold fermions in optical lattices are of particular interest due to their close analogy to electrons in
solids for which the Fermi-Hubbard (2.24) model was originally introduced [79]. In many metals, the
Coulomb interaction between the electrons is screened on the order of the lattice spacing [65] which
justifies the replacement of the long-range Coulomb interaction by a local interaction U. However, in
metals the screening length may vary and a derivation of an exact model Hamiltonian from first principles
is often difficult due to the complex and imperfect structure of materials. In contrast, cold fermionic
gases in optical lattices provide a clean realization of the Fermi-Hubbard model in a wide range of
parameters [37]. The underlying physics is diverse and intriguing quantum phenomena occur due to the
intricate interplay of interactions, delocalization, fermionic statistics and the spin degree of freedom,
reaching from liquids to Mott insulators, from long-range antiferromagnetic order to paired superfluids.
In this section, we give a short introduction to the repulsive Hubbard model for a three-dimensional
optical lattice at half-filling (spin-balanced) and shortly comment on the one-dimensional case. For a
more complete treatment of the various possible phases and different experimental examples see Refs. [30,
56] and references therein. Finally, we explain in detail the properties of the ionic Fermi-Hubbard model
in one dimension.

2.5.1 Repulsive Fermi-Hubbard model

The phase diagram of the three-dimensional cubic lattice at half-filling (homogeneous system) is shown
in Fig. 2.5. At moderate temperatures with increasing interaction (U/J) the system crosses over from a
metallic Fermi liquid where atoms delocalize to minimize their kinetic energy to an incompressible Mott
insulator where atoms localize due to the dominating on-site interaction, i.e. the lowest excitations are
localized defects of excitation energy ∼ U. At lower temperatures (below the Néel temperature kBTN)
antiferromagnetic long-range order occurs. At weak repulsion, where density fluctuations are large in the
liquid phase, spin ordering and the opening of a charge gap are connected and occur simultaneously at
the transition to the antiferromagnet. At strong interactions in the Mott insulator for temperatures below
the Mott gap, density fluctuations are frozen and only spin degrees of freedom are active. Spin-ordering
occurs as a low-energy instability at temperatures below the antiferromagnetic superexchange coupling
∼ 4J2/U.
In the one-dimensional system antiferromagnetic long-range order is prohibited by the Mermin-Wagner
theorem [80]. At zero temperature and half-filling, the system is a critical Mott insulator for any repulsive
interaction [81] with algebraically decaying antiferromagnetic correlations. Away from half-filling, the
low energy properties of the homogeneous system can be described by a Luttinger liquid [27] which
predicts the phenomenon of spin-charge separation. A consequence of this is a complete separation
of the dynamics of spin and density waves into two sound-like branches of different velocities. This
phenomenon was observed using t-DMRG [82].
Fermi Hubbard systems are of relevance for Ch. 5 where we discuss the possibilities of thermometry by
means of lattice modulation spectroscopy.
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Figure 2.5: Schematic drawing of the repulsive Fermi-Hubbard phase diagram for the three-dimensional cubic
lattice at half-filling. At moderate temperature a crossover from a Fermi liquid phase (L) to a Mott insulating
phase (MI) takes place. The dotted line indicates the gap ∼ U when entering the incompressible Mott insulator.
Long-range antiferromagnetic order (pink shaded region) occurs below the the Néel temperature kBTN (dark
pink line). At strong interactions below the Mott gap, where charge fluctuations are frozen, the transition to the
antiferromagnet occurs as a low-energy instability at temperatures below the antiferromagnetic superexchange
coupling ∼ 4J2/U (dash-dotted line).

2.5.2 Ionic Fermi-Hubbard model in one dimension

The one-dimensional ionic Fermi-Hubbard model is given by the Fermi-Hubbard model (2.24) with
an alternating energy offset ε j = (−1) j(∆/2). Denoting inequivalent sites of energy ±∆/2 by A and B,
respectively, it becomes

H = HK + HV , (2.29)

HK = −J
L/2∑

l=1,σ

(
c†lBσ clAσ + c†lBσ cl+1Aσ + H.c.

)
, (2.30)

V = U
L/2∑
l=1

(nlA↑nlA↓ + nlB↑nlB↓) +
∆

2

L/2∑
l=1,σ

(nlAσ − nlBσ), (2.31)

where c(†)
lAσ and c(†)

lBσ are the fermionic annihilation (creation) operator acting on sites of type A and B and
l ∈ [1, L/2] is the double well index, L is the number of lattice sites and σ ∈ {↑, ↓} is the spin index. The
schematic phase diagram at half-filling is shown in Fig. 2.6(a), together with a sketch of the ground state
configurations (b) and the corresponding elementary excitations (c). For ∆ � U the system is a band
insulator where each low energy site is doubly occupied with equal spin and charge gaps that correspond
to transferring one particle to a high energy site at an energy cost ∼ (∆ − U). For ∆ � U the system is a
critical Mott insulator where each site is singly-occupied with gapless spin excitations but finite charge
gap (creation of one doubly occupied site costing ∼ (U ± ∆)).
It is instructive to consider some limiting cases before discussing the full phase diagram at half-filling. In
the atomic limit J = 0, for ∆ > U doubly occupied B-sites and empty A-sites minimize the ground state
energy E0 = (L/2)(U − ∆). For ∆ < U it is most favorable to singly occupy each site, E0 = 0. At ∆ = U
both configurations become degenerate and a first order transition occurs.
For finite J the situation is more complex. For ∆ = 0 the Hamiltonian corresponds to the standard Hubbard
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model in one dimension discussed above which is known to be Mott insulating for all U > 0 [81]. For
U = 0 the ionic model becomes diagonal in quasimomentum space. The ground state is a genuine
band insulator with equal charge and spin gaps determined by ∆. At finite and strong interactions
(U − ∆) � J the ionic Hubbard model maps to an isotropic Heisenberg chain with exchange interaction
JXY = JZ = (4J2/U)1/[1 − (∆/U)2] [83] and gapless spin excitations but clearly this description breaks
down near ∆ ∼ U.

Figure 2.6: (a) Phase diagram of the one-dimensional ionic Hubbard model at half-filling at fixed ∆ and J as
a function of U. The charge and spin gaps are denoted ∆c and ∆s respectively and the order parameter 〈B̂〉 is
only finite in the intermediate bond order wave phase. (b) Schematic drawing of the ground states of the band
insulator phase, bond order wave phase and Mott insulator phase from left to right. In the band insulator phase
(left) all B-sites are doubly occupied while all A-sites are empty. In the bond order wave (middle) there is two
degenerate ground states (at infinite system size) with dimers forming on either even or odd bonds, here one of
these configurations is sketched. In the Mott insulator (right) each site is singly occupied. (c) Schematic drawing
of the first gapped excited state. In the naive picture, in the band insulator (left) one doublon on a B-site is broken
while one particle hops to a neighboring A site. This charge excitation requires an energy ∼ (∆ − U). Within
the bond order wave (middle) soliton-antisoliton pairs are created at an energy ∼ ∆s which can be interpreted as
domain walls between the two different degenerate ground states. In the naive picture, the lowest charge excitation
in the Mott insulator (right) corresponds to the hopping of one particle from an A-site to a B-site which means
that a doublon is created on a B-site while an A-site is left empty. This requires an energy ∼ (U − ∆). Note that
the opposite process (hopping from a B-site to an an A-site) creates excitations at ∼ (U + ∆) and that there are
also gapless spin excitations. (d) The bond order parameter normalized by the number of bonds |〈B̂〉|/(L − 1) at
fixed ∆ = 50J for different system sizes calculated from DMRG keeping up to 400 states. The dashed vertical lines
mark the position of the maximum of the derivative located at Uc1 ∼ 51.2J, 51.26J, 51.28J, 51.3J for system sizes
L = 64, 96, 128, 192, respectively. Figure adapted from Ref. [84]. Inset: Derivative of the bond order parameter
with respect to U. The first maximum approximately corresponds to the Ising critical point which is marked by the
dashed vertical lines.

In fact, the band insulator and Mott insulator are separated by a narrow exotic phase, the so-called
bond order wave phase which occurs when Hubbard on-site interaction U and ionic energy offset ∆ are
comparable (cf.Fig. 2.6(a)). The occurrence of the bond order wave phase was first predicted in Ref. [35]
based on field-theoretical arguments in the weak coupling regime. It is characterized by a spontaneous
dimerization of the kinetic energy. The the associated bond order wave order parameter |〈B̂〉|, with

B̂ =

L/2∑
l=1,σ

(
c†lAσclBσ − c†lBσcl+1Aσ + H.c.

)
, (2.32)
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acquires a finite value. The phase transition from the band insulator to the bond order wave is of Ising
type, accompanied by the closing of the charge gap at the critical point. The ground state in the bond
order wave is two-fold degenerate in the infinite system with dimers forming on either even or odd
bonds which breaks the discrete site-inversion symmetry of the Hamiltonian. Both, charge and spin gap
are finite. The spin gap closes at the phase transition from the bond order wave to the Mott insulator
which is of Kosterlitz-Thouless type. The bond order wave order parameter is shown in Fig. 2.6(d) at
∆ = 50J as a function of U for finite systems obtained from static DMRG calculations keeping up to 400
states. It displays a steep increase at a certain value of U which indicates the Ising phase transition. The
transition point in the finite system can be approximated as the first maximum of the derivative of the
order parameter with respect to U, shown in the inset of Fig. 2.6(d). At the Kosterlitz-Thouless phase
transition from the bond order wave to the Mott insulator the spin gap closes exponentially slow which
makes it hard to locate this phase transition in a finite system which is reflected in the slow decay of the
bond order parameter across a wide range of U-values.
Using static DMRG calculations keeping up to 160 states we study the density profile throughout the
phase diagram. We confirm that the local density imbalance 〈nB − nA〉 crosses over from a value 2 deep
in the band insulator to a very small but finite value in the Mott insulator, see Fig. 2.7(b). Bond order is
expected to occur in the crossover region. Additionally, we study the unit cell density 〈nB + nA〉l in the
band insulator and Mott insulator as well as within the bond order wave phase and at Ising criticality, see
Fig. 2.7(a). In the first three cases, it is approximately 2 throughout the bulk as expected with slightly
enhanced boundary effects in the bond order wave phase compared to the two other cases. At Ising
criticality a strong asymmetry occurs due to boundary effects likely caused by the correlations length
exceeding the system size at Ising criticality.

Figure 2.7: (a) The unit cell density 〈nB + nA〉l at fixed ∆ = 50J for a system size L = 64. It is approximately 2
throughout the bulk of the lattice. Enhanced boundary effects occur at Ising criticality U = 51.2J. In this case, the
system length matters as the correlation length diverges. We confirm that the asymmetry is due to boundary effects
by a comparison to L = 192, Uc1 = 51.3J in the inset, for which the strength of the asymmetry decreases. Note,
that the asymmetry depends on the AB configuration at the boundary. We checked that the asymmetry is mirrored
when A and B sites are exchanged. (b) The density imbalance 〈nB − nA〉 on the central bond as a function of U at
fixed ∆ = 50J for a system size L = 64. It evolves from a value ∼ 2 in the band insulator U � ∆ to a small but
finite value in the Mott insulator U � ∆. The colored markers in (b) correspond the the U-values considered in (a).

The ionic Hubbard model was originally introduced [32, 85, 86] for the description of charge transfer
interactions in aromatic donor (D) -acceptor (A) crystals where donors and acceptors alternate along quasi
one-dimensional stacks. The lowest electronic excitation is an electron transfer DA → D+A−. These
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materials are either nominally neutral ...DADADA... or nominally ionic ...D+A−D+A−D+A−... and a
neutral-to-ionic phase transition was believed to be of first order. It was first observed it tetrathiafulvalene-
chloranil driven by a change in pressure [33] or temperature [34, 87] and it was, against expectation,
found to occur continuously across a large temperature range where both neutral and ionic molecules
coexist. The ionic Hubbard model gained further interest as it was investigated to explain the origin of
ferroelectricity in transition metal oxides [88, 89].
After the authors of Ref. [35] suggested the two-transition scenario explained above (consisting of an
Ising and a Kosterlitz-Thouless transition, cf. Fig. 2.6), numerous numerical work was carried out,
trying to confirm this scenario. Despite the initial controversy the complete picture strongly supports
the two-transition scenario which was found to persist even at strong coupling (see below). Exact
diagonalization calculations were used to determine the closing of spin and charge gaps. The authors of
Ref. [90] fail to resolve two different transition points, whereas the authors of Ref. [91] show that the
spin and charge transition separate and that the bond order wave phase survives at strong coupling. The
phase boundaries were calculated in Ref. [92], confirming the two-transition scenario at weak and strong
coupling. In a quantum Monte Carlo study [93], the authors confirm the first phase transition to be of
Ising type. However, the authors fail to observe the second phase transition and conclude that the Mott
insulator only exists at infinite interactions. The exact bond ordered ground state at strong coupling is
determined in the extended ionic Hubbard model and shown to survive in the purely ionic model [94].
Its elementary excitations are solitons separating one ground state configuration from the other [95] (cf.
Fig. 2.6(c)). Different studies on the behavior of charge and spin gaps, the bond order parameter and
static susceptibilities were carried out using DMRG [96–100] identifying one [97, 99] or two transition
points [96, 98, 100]. In Ref. [100], the authors thoroughly extract the thermodynamic critical exponents
verifying that the first transition belongs to the Ising universality class and find typical infinite-order
transition signatures at the second transition point.
Far less attention has so far been paid to the excitations across the phase diagram. The one- and two-
particle low energy dispersions and the quasiparticle spectrum were studied [101–104] in the three
phases. The gaps determined in the band insulator [101] are identified to be in accordance with DMRG
results [100]. At a critical value of the interaction strength a macroscopic number of excitations in the
band insulator is found to condense [102], identified with the formation of the bond order wave phase.
Both, spin and charge excitations contribute to the low-energy spectrum at similar energies [103] showing
that spin and charge degrees of freedom are closely intertwined.
Despite the elaborate theoretical picture which points to the existence of the bond order wave, a detailed
experimental study of the excitation spectrum in the ionic Hubbard model is still missing and the bond
order wave still evades detection.
New appealing perspectives arise in the context of ultracold atoms in optical lattices that provide a clean
and highly tunable realization of the ionic Hubbard model by fermionic atoms confined to an optical
superlattice (cf. Sec. 2.2.2). The ionic Hubbard model was recently realized with fermionic atoms
trapped in a superlattice potential [36]. In Ch. 4 we study of the excitation spectrum of the ionic Hubbard
model in all phases by means of superlattice modulation spectroscopy. In particular, we analyze the
excitation spectrum in the vicinity of the phase transitions and find that the superlattice modulation
reveals signatures of both phase transitions.

2.6 Lattice amplitude modulation spectroscopy

Many powerful tools were developed to gain precise information on the properties of ultracold gases in
optical lattices in order to tackle the intricate physics of many-body systems. Spectroscopic methods
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such as radio frequency, Raman, Bragg and lattice modulation spectroscopy serve to probe characteristic
excitations of correlated systems and are able to measure, for instance, single-particle or density spectral
functions [21, 105, 106]. In lattice modulation spectroscopy the amplitude of the light potential is
periodically modulated in time such that excitations in the system are created whenever the modulation
frequency corresponds to the energy of an available excitation. Details on possible lattice modulation
setups and their theoretical description are given below. First, we give an overview on previous work
using lattice modulation spectroscopy.

Lattice modulation spectroscopy was first introduced for bosonic systems [22] to study the excita-
tion spectrum and therewith characterize the transition from the superfluid to Mott insulating state in the
one-dimensional system and the one- to three-dimensional crossover. The energy deposited in the system
after a modulation of the lattice depth was estimated from the broadening of the central momentum
peak in a time-of-flight measurement. The superfluid phase is characterized by a broad spectrum. At
strong interactions two excitation peaks occur at energies ∼ U and ∼ 2U and the second peak is negli-
gible at integer filling in the Mott insulator [107]. A more detailed study of the superfluid spectrum in
three dimensions [108] followed. The observed broad superfluid spectrum (particularly broad in one
dimension) could not be explained within standard Bogoliubov theory [109]. Other theoretical schemes
were then considered, applying a linear response treatment [39, 110–112] or beyond, considering weak
interactions using the Gross-Pitaevski equation [113] and carrying out a time-dependent simulation using
t-DMRG [107]. Later, lattice modulation spectroscopy was suggested to reveal the gapped (amplitude)
Higg’s mode in the superfluid phase of the two-dimensional system [114, 115] near the transition to the
Mott insulator and in Ref. [116] the authors report on the observation of such a gapped mode where the
excitation energy is extracted from an increase in temperature observed in a single-atom-resolved detec-
tion. Furthermore, lattice modulation spectroscopy was suggested to obtain momentum -and frequency
resolved spectral information about the excitations from time-of-flight measurements [117] and it was for
example applied to the study of disordered lattices [118, 119] or spinor bosonic system with spin-orbit
coupling [120].
In the case of fermionic atoms, a precise study of the excitation spectrum by the broadening of the
momentum distribution in time-of-flight is not possible because the momentum distribution only de-
pends on temperature by a smearing of the Fermi surface such that a very high momentum resolution
is necessary to reliably extract the deposited energy. However, the double occupancy as a response to
lattice modulation was suggested to measure the pairing gap in the superfluid state or the spin order-
ing in the Mott insulating state [121], followed by further detailed theoretical studies on the induced
double occupancy [122–129]. In experiment, the fermionic Mott insulator [15], nearest-neighbor correla-
tions [130] and the decay of doublon excitations [131] were probed using lattice modulation spectroscopy.
It also serves to map out higher Bloch bands in a quasimomentum-resolved fashion [132] and to study
interband dynamics [133]. Recently, charge density wave order in the two-dimensional ionic Hubbard
model on a honeycomb lattice was studied using lattice modulation spectroscopy along one direction [36].

In this work, we employ lattice amplitude modulation to study the excitation spectrum of different
fermionic and bosonic setups. We consider three different kinds of modulation along one direction which
are sketched in Fig. 2.8. On the one hand, we consider the typical setup (Fig. 2.8(a)) used in most
experiments and corresponding to the examples discussed above. We call this normal or standard lattice
amplitude modulation. Furthermore, we consider lattice amplitude modulations of dimerized geometry,
i.e. while the height of one bond increases, the height of the neighboring bond decreases. We refer to this
kind of modulations as superlattice modulation and apply it to both, a ’normal’ optical lattice and an
optical superlattice.
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Figure 2.8: Sketch of the different lattice amplitude modulation setups discussed in the main text. The lattice
amplitude is modulated between the two configurations indicated by dotted and dash-dotted lines around the
equilibrium configuration (solid line). In (a) the standard lattice amplitude modulation is shown. In (b) and (c) we
sketch superlattice amplitude modulation of an optical superlattice and a ’normal’ lattice respectively.

Normal (standard) lattice amplitude modulation A periodic modulation of the lattice height
V0 → V0 + δV(t) with δV(t) ∼ sin(ωt) leads to a time-dependent potential of the form

Va(x, t) = V0(x) + δV(t) sin2(kLx), (2.33)

V0(x) = V0 sin2(kLx). (2.34)

The modulation in time is sketched in Fig. 2.8(a). For a small modulation amplitude this leads to a modu-
lation of the hopping amplitude and the on-site interaction strength in the tight-binding description [111].
However, as the tunneling (2.19) is exponentially dependent on the height of the optical lattice while
the on-site interaction strength (2.23) has a much weaker dependence, the primary contribution of this
perturbation is to modulate the hopping parameter J(t) = J + A sin(ωt) with small amplitude A and
frequency ω and the modulation of the on-site interaction strength can be neglected in the large U/J
limit [123]. We refer to this kind of modulation as normal or standard lattice amplitude modulation. This
modulation is applied to fermionic particles in an optical lattice in Ch. 5 in order to extract information
of the initial filling of the lowest band and determine the temperature of the system.

Superlattice modulation of an optical superlattice In the case of an optical superlattice (cf.
Sec. 2.2.2), a dimerized modulation can be achieved by time-dependently tuning the dephasing between
the two laser waves constituting the optical superlattice. Consider an optical superlattice given by
Eq. (2.5). For simplicity we can set φ = 0 in Eq. (2.5) as this is a shift of the whole potential.
Adding a small time-dependent phase difference δν(t) ∼ sin(ωt), the potential is given by
Vb(x, t) = V1 sin2(kLx + δν(t)) + V2 sin2(2kLx + θ). For small δν(t) the potential becomes (in lowest order
in δν(t))

Vb(x, t) = V0(x) + δV(t) sin(2kLx), (2.35)

V0(x) = V1 sin2(kLx) + V2 sin2(2kLx + θ), (2.36)

where δV(t) ∼ δν(t). The time-dependence of the modulation is sketched in Fig. 2.8(b). The potential
offset does not change in time whereas the lattice height is modulated in a dimerized fashion such that,
in tight-binding, this approximately translates into a dimerized modulation of the hopping amplitude
J j(t) ≈ J + A(−1) j sin(ωt) with small amplitude A and frequency ω where j denotes the lattice site. We
employ this type of modulation in Ch. 4 in order to study the excitations in the one-dimensional ionic
Fermi-Hubbard model.
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Superlattice modulation of a ’normal’ lattice One can also realize a dimerized modulation of
a ’normal’ lattice. By ’normal’ lattice we mean an equilibrium potential of simple sin2- or cos2-
configuration. A possible implementation is to create a ’normal’ lattice from superimposing several laser
standing waves of different wavelength. The phases and amplitudes have to be chosen such that the
resulting superlattice reduces to a simple sin2- or cos2-configuration. For example, one could use the
following configuration,

V0(x) = −V0
(
V1 sin2(kLx −Ω) + V2 sin2(kLx) + V1 sin2(kLx + Ω)

)
+ V0 sin2(2kLx + θ). (2.37)

For θ = π/2, V1 = J1(1.288), V2 = J0(1.288) where Jn(β) is the first kind Bessel function and
Ω = 114π/300 the resulting lattice has a configuration ∼ cos2(2kLx) like a ’normal’ lattice and is shown
in Fig. 2.8(c) (solid line). A small time-dependent modulation Ω→ Ω + δΩ(t) yields (in lowest order in
δΩ(t))

Vc(x, t) = V0(x) + δV(t) cos(2kLx), (2.38)

where δV(t) ∼ δΩ(t) and V0(x) is given by Eq. (2.37). This corresponds to a modulation of dimerized
geometry which is sketched in Fig. 2.8(c). Alternatively, if the equilibrium lattice has sin2-configuration,
the perturbation is proportional to a sin-function. Again, the potential offset does not change in time
such that in tight-binding this also approximately translates into a dimerized modulation of the hopping
amplitude as introduced above, J j(t) ≈ J + A(−1) j sin(ωt). We employ this type of modulation in Ch. 6
in order to study the excitations in the one-dimensional Bose-Hubbard model.
To avoid confusion, note, that in this example the equilibrium configuration and the modulation have an
argument 2kLx. This results from the chosen example (2.37). The essential point is that the equilibrium
lattice (given by sin2- or cos2- configuration) and the modulation (given by a cos- or sin- configuration
respectively) have the same argument such that the modulation doubles the period of the equilibrium
setup. We can simply use V0(x) = sin2(kLx) and δV(x) ∼ sin(kLx) for calculations and we do so for
a determination of the transition matrix elements from the initial to an excited state by superlattice
modulation for the non-interaction Fermi-Hubbard model in Bloch basis in Sec.5.5.

The lattice modulation spectroscopy can be theoretically described by adding, to the equilibrium Hamilto-
nian H0, a time-dependent perturbation,

Hpert(t) = A sin(ωt)Ô, (2.39)

with small amplitude A and frequency ω where

ÔN =

L−1∑
j=1

(
c†j,σc j+1,σ + H.c.

)
, (2.40)

in the case of the normal lattice modulation, and

ÔS =

L−1∑
j=1

(−1) j
(
c†j,σc j+1,σ + H.c.

)
(2.41)

in the case of the superlattice modulation. In Eqs. (2.40) and (2.41), c(†)
j,σ denotes the fermionic annihilation

(creation) operator which removes (creates) a particle at site j with spin σ. In the case of bosonic particles,
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2.6 Lattice amplitude modulation spectroscopy

one just needs to replace c(†)
j,σ by the bosonic operators b(†)

j .

Introducing the Fourier transform c†j,σ = (1/
√

L)
∑

k exp(ia jk)ck,σ Eqs. (2.40) and (2.41) become ÔN =

2
∑

k cos(ak)c†k,σck,σ and ÔS = 2i
∑

k sin(ak)c†k+π/a,σck,σ respectively, where k = 2πm/L, m = 1, . . . , L.
Evidently the normal lattice modulation conserves quasimomentum while the superlattice modulation
transfers momentum π to the lattice which is an important difference.
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CHAPTER 3

Methods

In this chapter we introduce the theoretical methods used in this work to study the excitations created in
bosonic and fermionic optical lattice systems by a periodic modulation of the lattice amplitude. Quite
generally, highly sophisticated methods are required for the description of quantum many-body systems
due to their complexity as, for example, the Hilbert space typically grows exponentially in the system
size. Here, we focus on well-established methods suited for the study of one-dimensional systems which
are mainly studied in this work.
First, we introduce the time-dependent density matrix renormalization group method in terms of matrix
product states in Sec. 3.1. The density matrix renormalization group method is a powerful numerical
technique for the simulation of static and dynamic properties of low-dimensional strongly-correlated
quantum systems. The extension of this method to time-dependent phenomena enables us to compute the
quasi-exact time evolution of the fermionic or bosonic systems in lattice shaking setups. The number of
excitations created through the modulation is assessed by monitoring the absorbed energy which gives
a good estimate of the energy absorbed in experimental setups. The time evolution of the energy can
be related to the averaged energy absorption rate obtained within a linear response treatment which we
introduce in Sec. 3.2. Linear response is a common method to probe the response of various physical
properties to an external time-dependent perturbation, such as a modulation of the lattice amplitude, by
an expansion of the perturbing Hamiltonian in lowest order. Within this approximation, observables only
depend on correlation functions of the system in equilibrium. Here, we introduce the general concept of
linear response and derive the formulas describing the energy absorption as a response to the perturbation.
Finally, we introduce bosonization in Sec. 3.3 which is a low-energy field-theoretical description for
one-dimensional systems where all operators are expressed in terms of collective excitations. It is well
suited to describe the low-energy (long wavelength) physics of these systems exactly and enables one
to obtain the response of the system to a modulation of the lattice amplitude within a linear response
treatment. Bosonization calculations are not part of this thesis but a basic understanding of the main
concept is of importance as we compare to calculations obtained in a collaboration.

3.1 Matrix product states

The density matrix renormalization group method (DMRG) is a highly reliable and versatile numerical
method to determine the static and dynamic quantities of one-dimensional strongly correlated systems to
a high precision. It was originally introduced by S. R. White [28, 134] for the study of static properties of
one-dimensional systems. It is nowadays a well-established method and in this thesis we use its extension
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to the study of time-dependent phenomena [135–137] known as time-dependent DMRG (t-DMRG). In
quantum many-body systems the dimension of the full Hilbert space is typically too large to be treated
exactly. The main idea of DMRG is to describe the quantum system, using a reduced effective Hilbert
space. The algorithm iteratively and variationally reduces the degrees of freedom to the most important
region of the Hilbert space at each iteration.
In this section an overview over the basic concepts is provided using a representation in terms of matrix
product states (MPS) [29]. In Sec. 3.1.1, the definition and important characteristics of a quantum state
in the MPS representation are given. Subsequently, the main points of the ground state calculation in
DMRG are conveyed in Sec. 3.1.2 and finally the time evolution is introduced in Sec. 3.1.3. Here we
stay within the framework of one-dimensional, zero temperature situations but the method can also been
extended, for instance, to finite temperature or higher-dimensional systems and has been applied to
various kinds of systems, for example spin chains or Hubbard type models [29, 138–140].

3.1.1 Basic ideas

Generally, any quantum state on a lattice with sites j = 1, . . . , L can be written as

|Ψ〉 =
∑

σ1,...,σL

c(σ1,...,σL)|σ1, . . . , σL〉, (3.1)

where {|σ j〉} is the local basis of dimension d at each site j and |σ1, . . . , σL〉 = |σ1〉 ⊗ . . . ⊗ |σL〉 ≡ |~σ〉 is
the tensor product of the local basis. The scalar (complex) coefficients c(σ1,...,σL) may be seen as entries of
a vector ~c that has dL components. In this section we will show how the coefficients can be decomposed
into a product of local matrices M resulting in a so-called matrix product state. Before outlining the
construction let us state the final form. An MPS is generally given by

|Ψ〉 =
∑

σ1,...,σL

Mσ1 Mσ2 . . . MσL |σ1, . . . , σL〉, (3.2)

where Mσ1 is a collection of row vectors, MσL is a collection of column vectors and all other Mσ j are
collections of matrices. The matrix product results in a scalar due to the vectorial nature of the first and
the last matrix.
The basic tool needed to obtain the MPS representation is the so-called singular value decomposition
(SVD) known from linear algebra which guarantees that an arbitrary rectangular matrix M of dimension
(m × n) can be decomposed as

M = US V†, (3.3)

where U and V are unitary matrices with U of dimension (m ×min(m, n)) and V† of dimension
(min(m, n) × n). The matrix S is a diagonal matrix and of dimension (min(m, n) ×min(m, n)) with
non-negative entries S aa :=

√
λa ≥ 0 which are called singular values. The number of non-zero singular

values
√
λa > 0 of M is denoted the rank r of M.

Assuming the wave function (3.1) to be normalized, the typical procedure to construct a MPS is to
reshape the dL state vector components c(σ1,...,σL) into a matrix and to successively apply the SVD on the
connecting bond index between two sites. We demonstrate this in the following, exemplary starting ’from
the left’. In a first step, the components c(σ1,...,σL) are reshaped into a matrix Ψσ1,(σ2...σL) of dimension
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(d × dL−1),

c(σ1,...,σL) = Ψσ1,(σ2...σL) =

r1∑
a1=1

Uσ1,a1S a1,a1(V†)a1,(σ2...σL), (3.4)

which was decomposed by a SVD with bond dimension r1 = min(d, dL−1). This can be rewritten
as Uσ1,a1S a1,a1(V†)a1,(σ2...σL) = Aσ1

a1 Ψ(a1σ2),(σ3...σL). In order to do so one needs to reshape the product
S a1,a1(V†)a1,(σ2...σL) into a vector component c(a1,σ2,...,σL) and then again into a matrix Ψ(a1σ2),(σ3...σL) (of
dimension (r1d × dL−1)). At the same time the matrix U has to be reshaped into a collection of row
vectors Aσ1 with entries Aσ1

a1 = Uσ1,a1 . The matrix Ψ(a1σ2),(σ3...σL) can again be decomposed by the SVD
and reshaped as above. Successively repeating this procedure leads to,

c(σ1,...,σL) =

r1∑
a1=1

Aσ1
a1

Ψ(a1σ2),(σ3...σL)

=

r1∑
a1=1

r2∑
a2=1

Aσ1
a1

U(a1σ2),a2S a2,a2(V†)a2,(σ3...σL)

=

r1∑
a1=1

r2∑
a2=1

Aσ1
a1

Aσ2
a1,a2

Ψ(a2σ3),(σ4...σL)

...

=
∑

a1...aL−1

Aσ1
a1

Aσ2
a1,a2

Aσ3
a2,a3 . . . A

σL−1
aL−2,aL−1

AσL
aL−1

= Aσ1 Aσ2 . . . AσL , (3.5)

where Aσ1 is a collection of row vectors, AσL is a collection of column vectors and all other Aσ j are
collections of matrices of dimension (r j−1, r j) and with entries Aσ j

a j−1,a j = U(a j−1σ j),a j . This gives the MPS
form of the states,

|Ψ〉 =
∑
~σ

Aσ1 Aσ2 . . . AσL |~σ〉, (3.6)

which is called left-canonical due to the normalization of the A matrices given by∑
σ j

Aσ j†Aσ j = I. (3.7)

Each scalar coefficient is now the product of A matrices with maximal dimensions
(1 × d), (d × d2), . . . , (dL/2−1 × dL/2), (dL/2 × dL/2−1), . . . , (d × 1) from site 1 to site L for an even number
of sites. Evidently, the matrix dimensions grow exponentially such that in calculations it is usually
impossible to carry out the exact decomposition.
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Analogously one can start decomposing the wave function (3.1) ’from the right’,

c(σ1,...,σL) = Ψ(σ1...σL−1),σL =
∑
aL−1

U(σ1...σL−1),aL−1S aL−1,aL−1(V†)aL−1,σL

=
∑
aL−1

Ψ(σ1...σL−2),(σL−1aL−1)BσL
aL−1

...

=
∑

a1,...,aL−1

Bσ1
a1

Bσ2
a1,a2

. . . BσL−1
aL−2,aL−1

BσL
aL−1

,

= Bσ1 Bσ2 . . . BσL , (3.8)

where BσL
aL−1 is a collection of column vectors, Bσ1

a1 is a collection of row vectors and all other Bσ j
a j−1,a j are

collections of matrices of dimension (r j−1, r j). The B matrices are normalized as∑
σ j

Bσ j Bσ j† = I (3.9)

and the resulting MPS is called right-canonical.
A so-called mixed canonical MPS can be obtained by decomposing from both sites,

c(σ1,...,σL) = Aσ1 . . . AσlS Bσl+1 . . . BσL . (3.10)

All matrices A on sites 1 . . . l are left-normalized and all matrices B on sites l+1 . . . L are right-normalized.
The matrix S contains the singular values on the link (l, l + 1) given by the components S al,al =

√
λal .

Note, if one starts from an arbitrary wave function which is not normalized, one can analogously carry
out the left- or right-normalization procedure. The obtained canonical form then contains an additional
scalar factor which is the norm of the MPS.
Defining |al〉A =

∑
σ1...σl

(Aσ1 ...Aσl)(1,al) |σ1, . . . , σl〉 and |al〉B =
∑
σl+1...σL

(Bσl+1 . . . BσL)(al,1) |σl+1, . . . , σL〉,
the mixed canonical MPS (3.10) can be rewritten as

|Ψ〉 =

r∑
al=1

√
λal |al〉A ⊗ |al〉B, (3.11)

which is equivalent to the so-called Schmidt-decomposition of a system of length L into subsystems A
(sites 1 . . . l) and B (sites l + 1 . . . L). The states |al〉A form an orthonormal basis of A and the states |al〉B

form an orthonormal basis of B. The rank of S , r = min(n,m), is the bond dimension at the bond (l, l + 1)
where n and m are the dimension of Aσl and Bσl+1 . The idea is now, to truncate S to dimension D < r (at
each bond), i.e., choose the state |Ψ̃〉 =

∑D
al=1

√
λal |a〉A ⊗ |a〉B with λ1 ≥ λ2 ≥ . . . and of fixed Schmidt

rank D < r, which best approximates |Ψ〉. This is a good approximation if the ordered singular values
decay fast (it becomes exact for D ≥ r) and the quality of the truncation can be quantified by the norm

∥∥∥|Ψ〉 − |Ψ̃〉∥∥∥2
= 〈Ψ|Ψ〉 + 〈Ψ̃|Ψ̃〉 − 〈Ψ|Ψ̃〉 − 〈Ψ̃|Ψ〉 = 1 −

D∑
al=1

λal , (3.12)

which gives the truncation error (sum of discarded singular values). The maximal bond dimension of
a local matrix Mσ j

a j−1,a j is now fixed to D and the system becomes numerically manageable in contrast
to dealing with the full Hilbert space. This approximation typically works well for weakly entangled
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systems which can be seen from the von Neumann entanglement entropy. It is given by the non-zero
part of the eigenvalue spectrum of the reduced density matrices ρA = TrBρ (or ρB = TrAρ) of the two
subsystems,

S vN = −TrρA ln ρA = −
∑
α

λα ln λα. (3.13)

If the state |Ψ〉 can be decomposed into a product state between the two subsystems A and B, there is only
one non-zero singular value λ1 = 1 and thus S vN = 0. S vN is maximal if all λα are equal and it is small
if the eigenvalues λα decay quickly. The ground states of one-dimensional systems with short-ranged
interactions and a finite excitation gap are weakly entangled as conjectured by the so-called area laws
which predict that the entanglement entropy of such systems is proportional to the interface between two
subsystems which is constant in one dimension [29]. This explains the success of DMRG in such systems.
For non-gapped systems, there is logarithmic contributions in the system size such that the entanglement
entropy grows with system size but such system can still be treated with more numerical effort.

Matrix product operators Analogously to matrix product states, one can construct matrix product
operators,

Ô =
∑

σ1...σLσ
′
1...σ

′
L

c(σ1...σL),(σ′1...σ
′
L)|~σ〉〈~σ

′| =
∑
~σ,~σ′

Wσ1,σ
′
1 . . .WσL,σ

′
L |~σ〉〈~σ′|, (3.14)

where Wσ,σ′ are matrices that now have two physical indices for outgoing and ingoing states. The first

and last matrix are indexed W
σ1,σ

′
1

b1
and W

σL,σ
′
L

bL
, and the intermediate matrices are indexed W

σ j,σ
′
j

b j−1,b j
for

j , 1, L. One can apply a matrix product operator to an MPS as,

Ô|Ψ〉 =

∑
~σ,~σ′

Wσ1,σ
′
1 . . .WσL,σ

′
L |~σ〉〈~σ′|


∑
~σ′′

Mσ′′1 . . . Mσ′′L |~σ′′〉


=

∑
~σ,~σ′

Wσ1,σ
′
1 . . .WσL,σ

′
L Mσ′1 . . . Mσ′L |~σ〉

=
∑
~σ

∑
~σ′1

Wσ1,σ
′
1 Mσ′1


∑
~σ′2

Wσ2,σ
′
2 Mσ′2

 . . . |~σ〉
=

∑
~σ

Nσ1 Nσ2 . . .NσL |~σ〉, (3.15)

where Nσ j

(b j−1,a′j−1),(b j,a′j)
=

∑
σ′j

W
σ j,σ

′
j

b j−1,b j
M
σ′j
a′j−1,a

′
j
is a matrix. The resulting state is also a matrix product state

but of grown bond dimension.

3.1.2 Ground state calculation

In order to find the ground state of some Hamiltonian Ĥ one needs to find the quantum state |Ψ〉 of bond
dimension D that minimizes the energy

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

. (3.16)
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This problem is difficult to solve for the full product of matrices but it can be done iteratively by keeping
the matrices constant on all sites, but on one site l or on two sites (l, l + 1) and optimizing only these
matrix entries, Mσl

al−1al or Mσlσl+1
al−1al+1 = Mσl

al−1al M
σl+1
alal+1 , respectively. The algorithm consists of sweeping

trough the lattice and successively optimizing locally until the ground state energy converges. In the case
of the one-site optimization problem the bond dimensions stay fixed and the algorithm often gets stuck in
local energy minima. Here, the two-site optimization is used, where an enlarged Ansatz space (growing
bond dimension with subsequent truncation) renders the algorithm more robust against the danger of
getting stuck in a local minimum. Essentially, for a mixed MPS with orthogonality center at site l or l + 1,
one needs to extremize (two-site optimization)

∂

∂Mσlσl+1∗
al−1al+1

(
〈Ψ|Ĥ|Ψ〉 − λ〈Ψ|Ψ〉

)
= 0, (3.17)

where |Ψ〉 will be the desired ground state and λ the ground state energy. This leads to an effective
eigenvalue problem for the two-site matrix of interest Mσlσl+1

al−1al+1 ,

Heffν − λν = 0. (3.18)

The eigenvector νσlσl+1al−1al+1 to the lowest eigenvalue will be reshaped into the two-site matrix M̃σlσl+1
al−1al+1

which replaces the previous Mσlσl+1
al−1al+1 and the lowest eigenvalue λ0 gives the ground state energy estimate.

In the subsequent SVD, the matrices on site l and l + 1 need to be compressed to bond dimension D as
they now have grown bond dimension dD. The updated state yields a variationally ’better’ MPS. Starting
from an initial guess for |Ψ〉 one sweeps through the lattice (repeatedly from site 1 to L − 1 and back
from site L to 2) while repeatedly solving the eigenvalue problem and updating the MPS as explained
above until the ground state energy converges. Here, we use a combination of infinite-system DMRG
and finite-system DMRG [134, 139] with open boundary conditions to find the ground state. It consists
of first applying the build-up by the infinite-system algorithm: building up the system by increasing the
system size while the bond dimension D of the MPS stays fixed until reaching the final system size L.
The obtained state is taken as the initial guess for |Ψ〉. Then, the chosen basis is optimized by sweeping
through the system as explained above (finite-system DMRG).

3.1.3 Time evolution

For the time evolution of a quantum state |Ψ(t)〉 one applies the time evolution operator exp
(
−iĤt

)
to

the quantum state |Ψ〉. For a system with only nearest-neighbor interactions, the Hamiltonian Ĥ can be
decomposed as

Ĥ =
∑

j

ĥ j = Ĥodd + Ĥeven, (3.19)

where ĥ j acts on sites j and j + 1 (it contains the interaction between these two sites). One can group
odd bonds Ĥodd =

∑
jodd ĥ j and even bonds Ĥeven =

∑
jeven ĥ j separately. The bond Hamiltonians do not

commute in general, [ĥ j, ĥ j+1] , 0, but even or odd bonds commute amongst each other, respectively.
The second-order Suzuki-Trotter decomposition is given by

e−iĤτ = e−iĤodd
τ
2 e−iĤevenτe−iĤodd

τ
2 + (τ3), (3.20)
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where τ = t/N is the discretized time step with N the number of time steps and t the total time. The expo-
nentials factorize into exp

(
−iĤoddτ/2

)
=

∏
j,odd exp

(
−iĥ jτ/2

)
and exp

(
−iĤevenτ

)
=

∏
j,even exp

(
−iĥ jτ

)
as even or odd bonds commute amongst each other. Each factor then acts onto a single bond and can
be successively applied to adjacent sites of the MPS together with a truncation after each application
(as the MPS has grown) which results in a sweep, for example ’right-left-right’, for each time step.
The error of the Trotter decomposition of nth order is given by τn+1 which scales, after N = t/τ time
steps, as τ2t (for the second order decomposition) which is linear in time. For decreasing τ this error
decreases. At the same time, the reduction of τ increases the number of applications of the single-bond
operators exp

(
−iĥ jτ

)
such that the number of the subsequent truncations increases (if the total time stays

fixed), thus increasing the truncation error. Consequently, both control parameters, matrix dimension
D and Suzuki-Trotter time step τ need to be chosen carefully in order to avoid an increased error when
decreasing the time step.

In the present thesis, we use t-DMRG to determine the time evolution of fermionic and bosonic particles
confined to one-dimensional optical lattice geometries and subjected to a time-periodic lattice amp-
litude modulation, i.e. we time evolve the full time-dependent problem Ĥ0 + Ĥpert(t) where H0 is the
Hamiltonian of the equilibrium system and Hpert(t) is the time-dependent perturbation introduced by
a modulation of the lattice amplitude given by Eq. (2.39). We consider open boundary conditions and
an even number of sites. We constrain our study to the quantum number sector with particle number
N = N↑ + N↓ = L and magnetization S z = N↑ − N↓ = 0 for fermions. In the case of bosons, one has an
additional control parameter which is the maximum allowed number of bosons per site which we denote
by σ. For bosons we consider N = L in most cases and N < L in some cases. The t-DMRG codes used
for the time evolution of bosonic and fermionic systems are based on codes developed by Corinna Kollath.
In the present work they are adapted to simulate the lattice amplitude modulation by a modulation of the
hopping parameter (cf. Sec. 2.6). We consider the global energy of the full time-dependent problem,

E(t) =
〈Ψ(t)|H(t)|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

, (3.21)

as our observable. In lattice shaking setups, the system absorbs energy (in first order) whenever the
modulation frequency ~ω corresponds to the energy of an available excitation in the system. Close to
resonance, the time evolution of the energy typically shows an initial quadratic rise, then becomes linear
in time at intermediate (and sufficiently large) times and eventually saturates at longer times. The slope
of the linear region can be identified with the energy absorption rate which we will compare to analytical
results obtained within a linear response treatment introduced in the following Sec. 3.2.
In Chapter 4 we determine the time evolution of the ionic Fermi-Hubbard model in a wide range of
parameters subjected to a lattice amplitude modulation of superlattice geometry. In Chapter 6 we
determine the time evolution of the Bose-Hubbard model in both, the Mott insulating and superfluid
phases, subjected to a lattice amplitude modulation of superlattice geometry.
The chosen control parameters D, τ and σ (in the case of bosons) depend on the physical situation and
are adjusted accordingly by monitoring the error on E(t) at the final considered time upon variation of
each of the control parameters separately. The chosen control parameter sets will be given throughout
this thesis for each considered situation and the error analysis is explained in detail in appendix A.
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3.2 Linear response theory

In the study of quantum many-body systems one is often confronted with the ambitious task of measuring
and computing observables. A common method to probe such systems is to apply a small time-dependent
perturbation and study the response of the system. For example, one can exert a small voltage or magnetic
field and study the response of the conductance or magnetization, respectively. Instead of considering the
full time-dependent system which is typically very difficult to solve, for sufficiently small perturbations,
one can expand observables in the perturbing Hamiltonian. In lowest order, observables depend uniquely
on ground state correlation functions, which can be computed more easily in many cases. This is known
as linear response [141, 142]. On the one hand, it enables one to probe various physical properties of the
equilibrium system by adding a slight perturbation. On the other hand, one can determine the response
to arbitrary time- and space-dependent perturbations if one knows how to determine the equilibrium
correlation functions.
Throughout this work linear response theory will be repeatedly used to study the energy absorption of
optical lattice systems as a response to lattice amplitude modulation. It has been shown a reliable tool in
the description of these kind of setups [107] where it applies to the intermediate linear region of the time
evolution of the energy.
In this section we first present the main linear response formulas in Sec. 3.2.1. Then, in Sec. 3.2.2, we
outline the description of energy absorption as a response to a perturbation Hpert(t) = A sin(ωt)Ô (2.39)
which corresponds to the situation present in lattice shaking experiments (cf. Sec. 2.6).

3.2.1 General aspects

Consider an equilibrium system which is described by a generic Hamiltonian H0 which does not contain
an explicit time-dependence. The time-dependent perturbation can be written as

Hpert(t) =

∫
d~r h(~r, t)O(~r), (3.22)

where h(~r, t) is the external field which acts locally and is coupled to a local operator O(~r). The full
Hamiltonian is then given by H(t) = H0 + Hpert(t) and is usually very difficult to solve exactly. One
chooses 〈O(~r)〉0 = 0 where 〈·〉0 denotes the expectation value with respect to H0 in absence of the
perturbation. The aim is to calculate the expectation value of some physical observable A( ~r, t) at point
~r and time t with respect to the full time-dependent Hamiltonian H(t). The idea is to relate it to the
properties of H0 by expanding the perturbation in powers of the small amplitude h. Also choosing
〈A(~r)〉0 = 0, in lowest order (linear response) one finds

〈A(~r)〉t =

∫
d~r′

∫ t

−∞

dt′h(~r′, t′)χ(~r,~r′, t, t′), (3.23)

with the complex susceptibility

χ(~r,~r′, t, t′) := −
i
~
θ(t − t′)〈

[
A(~r, t),O(~r′, t′)

]
〉0, (3.24)

where the operators are given in the Heisenberg representation A(~r, t) = eiH0tA(~r)e−iH0t and similar for
O(~r′, t′). The complex susceptibility measures the way the system responds to the perturbation and it
only depends on the equilibrium system H0. The θ-function ensures causality as a measure at time t can
only depend on the perturbation at earlier times, i.e. the correlation function (3.24) is only non-zero for
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3.2 Linear response theory

t > t′. Translational invariance in space and the fact that χ is an equilibrium quantity which only depends
on the time difference of operators, implies χ(~r,~r′, t, t′) = χ(~r − ~r′, t − t′). Thus, one can compute the
double Fourier transform,

〈A(~q, ω)〉 = FT
(
〈A(~r)〉t

)
= FT

(∫
d~r′

∫ t

−∞

dt′h(~r′, t′)χ(~r − ~r′, t − t′)
)

= FT

(∫
d~r′

∫ ∞

−∞

dt′h(~r′, t′)χ(~r − ~r′, t − t′)
)

= FT ((h ∗ χ) (r, t)) = FT
(
h(~r, t)

)
FT

(
χ(~r, t)

)
= χ(~q, ω)h(~q, ω),

χ(~q, ω) =

∫
d~r

∫ +∞

−∞

dte−i(~q~r−ωt)χ(~r, t) = −
i
~

∫
d~r

∫ +∞

0
dte−i(~q~r−ωt) 〈[A(~r, t),O(0, 0)

]〉
0 , (3.25)

where one extends the integral to t → +∞ as it is zero for all t′ > t and the convolution in one dimension
is defined as ( f ∗g)(x) =

∫ ∞
−∞

f (τ)g(x−τ)dτ ( f , g : R→ C) with the property FT ( f ∗g) = FT ( f )FT (g).
Convergence of the integral for t → ∞ is ensured by replacing ω→ ω + iδ. This corresponds to adding
an infinitesimal positive imaginary part to the frequency where δ is an infinitesimal positive number.

3.2.2 Energy absorption

Under the influence of a time-dependent external potential, some energy is absorbed by the system, in
contrast to the unperturbed system where energy is conserved. The observable of interest is the change in
energy dE(t)/dt = 〈dH(t)/dt〉 = 〈dHpert(t)/dt〉. Consider a sinusoidal perturbation as present in typical
lattice shaking setups with Hpert(t) = A sin(ωt)Ô given by Eq. (2.39) for which

dE(t)
dt

= Aω cos(ωt)〈Ô〉t =
A2

4i
ω

(
eiωt + e−iωt

) ∫ t

−∞

(
eiωt′ − e−iωt′

)
χ(t − t′)dt′, (3.26)

with χ(t − t′) = −(i/~) θ(t − t′)
〈[

Ô(t − t′)), Ô(0)
]〉

0
as the perturbation is space-independent. Note that

the upper bound of the integral t can be replaced by +∞ as the integral is zero for any t′ > t and the
lower bound −∞ can be replaced by t0, the time at which the perturbation is switched on, and one can
set t0 = 0. Averaging over one period T = 2π/ω of the sinusoidal perturbation and assuming positive
frequencies, one obtains the averaged rate of dissipation

dE(t)
dt

(ω) =
1
T

∫ T

0
dt

dE
dt

= −
ω

2
A2Imχ(ω). (3.27)

The dissipation in the system brought by the perturbation is controlled by the imaginary part of the
complex susceptibility which describes the response to this perturbation. This relation is known as
the fluctuation-dissipation theorem. In many cases, it is more conveniently expressed in terms of the
eigenstates |n〉 of H0. In order to do so one first re-expresses χ as

χ(t) = −
i
~
θ(t) 〈[ Ô(t), Ô(0)]〉0 = −

i
~

1
Z0
θ(t)Tr

(
e−βH0

[
Ô(t), Ô(0)

])
, (3.28)

using 〈A〉t = Tr
[
ρ0A

]
where Tr [·] denotes the trace of an operator and ρ0 is the density matrix of the

time-independent system. The density matrix ρ0 is given by a superposition state where each level |n〉with
energy En (corresponding to the eigenstates of H0) is occupied with a probability given by the Boltzmann
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factor ρ =
∑

n(exp(−βEn)/Z0)|n〉〈n| = exp(−βH0)/Z0. Here, β = 1/(kBT ) is the inverse temperature
with kB the Boltzmann constant and Z0 =

∑
n exp(−βEn) = Tr

[
exp(βH0)

]
is the partition function of the

equilibrium system which ensures normalization. Repeatedly inserting the identity I =
∑

n |n〉〈n| and
rewriting yields

χ(t) = −
i
~

1
Z0
θ(t)

∑
n,m

ei(En−Em)t/~
∣∣∣∣〈n

∣∣∣Ô∣∣∣ m〉∣∣∣∣2 (
e−βEn − e−βEm

)
. (3.29)

Taking the Fourier transform and taking the imaginary part of Eq. (3.29) and inserting it into Eq. (3.27),
one obtains

dE
dt

(ω) = ω
|A|2

2Z0

(
1 − eβ~ω

)∑
n,m

∣∣∣∣〈n
∣∣∣Ô∣∣∣ m〉∣∣∣∣2 e−βEn

η

η2 + (~ω − (Em − En))2

= ω
π|A|2

2Z0

(
1 − eβ~ω

)∑
n,m

∣∣∣∣〈n
∣∣∣Ô∣∣∣ m〉∣∣∣∣2 e−βEnδ (~ω − (Em − En)) , (3.30)

where we used the definition of Dirac’s δ-function by a sequence Lorentz-functions, δ(x) = limη→0+δη(x),
δη(x) = (η/π)/(η2 + x2). This formula is known as the spectral representation and has an intuitive
interpretation. A transition between an initial state |n〉 and an excited state |m〉 can occur when the
energy difference Em − En between the two states is equal to the energy ~ω provided by the modulation
with frequency ω. The energy conservation is ensured by the δ-function and the initial occupation is
determined by the weight exp(−βEn). The probability of the transition is proportional to the square of the

transition matrix element coupling the two states by the perturbation ∼
∣∣∣∣〈n

∣∣∣Ô∣∣∣ m〉∣∣∣∣2. At zero temperature,
the energy absorption rate becomes

dE
dt

(ω) = ω
π|A|2

2

∑
m

∣∣∣∣〈0
∣∣∣Ô∣∣∣ m〉∣∣∣∣2 δ (~ω − (Em − E0)) , (3.31)

where |0〉 is the ground state of H0 with ground state energy E0. For a finite system one can again replace
the δ-function by a sequence Lorentz-functions.
Alternatively, one can integrate the energy absorption rate (3.26), also expressing it in terms of the
eigenstates, to obtain E(t) − E0 =

∫ t
0 dt′(dE(t′)/dt′). The dominant contribution to the time evolution of

the absorbed energy is then given by

E(t) − E0 ≈
ω|A|2

4~

∑
m

|〈0|Ô|m〉|2
sin2 ((Em − E0 − ~ω)t/(2~))

((Em − E0 − ~ω)/(2~))2 , (3.32)

where ’anti-resonant’ and fast oscillating terms are neglected. For t → ∞ [142], one can use the definition
of Dirac’s delta function by a sequence of sinc-functions, δ(x) = limη→0+δη(x),
δη(x) = (η/π) sin2(x/η)/x2, with η := 1/t → 0 and x = (Em − E0 − ~ω)/(2~) such that the oscillating
term in Eq. (3.32) becomes

sin2 ((Em − E0 − ~ω)t/(2~))
((Em − E0 − ~ω)/(2~))2 → πtδ ((Em − E0 − ~ω)/(2~))

= 2π~tδ (Em − E0 − ~ω) (3.33)
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which linearly rises in time. Note that the same result can be obtained by integrating the averaged
rate (3.31).

In all projects constituting this thesis we obtain analytical results for the energy absorption as a re-
sponse to a modulation of the lattice amplitude by means of the linear response treatment given by
Eqs. (3.27), (3.30) and (3.32). The remaining difficulty in this approach lies in determining the eigen-
states and eigenenergies of the many-body problem which can be an ambitious task in general. However,
in certain physical situations where the exact states are unknown, good approximations can be found by
means of, for example, perturbation theory or effective Hamiltonians. In Ch. 4 we derive an effective
model describing the charge fluctuations in the lowest band of charge excitations in the ionic Fermi-
Hubbard model by superlattice modulation spectroscopy for which we can determine the eigenstates in
the band and Mott-insulating limits. In the bond order wave phase and in the vicinity of the two bordering
phase transitions as well as in the Mott insulator, the low energy excitations can be described by linear
response within bosonization introduced in the following section. In Ch. 5 we study non-interacting fermi-
ons in an optical lattice for which the states are determined by the occupation of the single-particle Bloch
states (which depends on the Fermi function). The Bloch functions and corresponding eigenenergies
can be determined by a numerical band structure calculation. Finally, in Ch. 6 the linear response in the
Mott insulator will be obtained by means of degenerate perturbation theory in the lowest lying excitations.

When conducting experiments or t-DMRG simulations, the modulation amplitude must be adequately
chosen as it determines the duration of the time interval over which the linear regime takes place. The
intermediate linear region is required to be large enough to obtain a reliable fit of the energy absorption
rate. In other words, the amplitude needs to be chosen sufficiently large to obtain a measurable signal, but
also small enough for the response to remain in the linear regime long enough and not saturate at short
times. In the past, modulation spectroscopy experiments [15, 36] were used successfully, fulfilling these
requirements. Throughout this thesis, in each case using t-DMRG we choose the modulation amplitude
accordingly and a detailed discussion is given in App. B.

3.3 Bosonization

Bosonization is a field theoretical method in one dimension which is well suited to describe the low-
energy properties of interacting systems and extract universal features. The basic idea is to re-express
operators in terms of collective excitations which are dominant in interacting one-dimensional systems
and thus constitute a good basis. The collective excitations have Bose-like statistics, since they are mainly
density excitations, from which originates the term bosonization but it can be applied to both, bosonic
and fermionic systems.
In this section, we outline the derivation of the main bosonization formulas in a phenomenological
approach [27, 143] which gives an intuitive physical interpretation of most of the results. The derivation
of precise formulas, which is essentially exact, is based on a linearization of the spectrum close to the
Fermi surface and is not treated here, see Ref. [27] for details. We start by considering spinless bosons
in Sec. 3.3.1 and extend the discussion to spinless fermions. Then, the effects of spin and an additional
periodic lattice potential will be subsequently added. Finally, the ionic Hubbard model in bosonization
and the nature of the occurring phase transitions are discussed in Sec. 3.3.2.
In Chapter 4, we study the low-energy excitations in the one-dimensional ionic Hubbard model as a
response to superlattice modulation, comparing t-DMRG to bosonization. The bosonization calculations
were obtained in collaboration with Roberta Citro (Università degli Studi di Salerno) and Edmond
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Orignac (ENS de Lyon). This section serves to give a brief introduction in order to lay a foundation for
the interpretation of the bosonization results in comparison to our numerical results.

3.3.1 Basic ideas

Bosonization for spinless particles One can start from the simple Hamiltonian

H =
~2

2m

∫
dx

(
∇Ψ†(x)

) (
∇Ψ(x)

)
+
g

2

∫
dxdx′δ(x − x′)ρ(x)ρ(x′) (3.34)

where Ψ(†) (x) denotes a bosonic annihilation (creation) operator for particles of mass m, ρ(x) is the
density operator and g is the interaction strength. The first step in order to express everything in terms of
collective excitations is to introduce a continuous labeling field φl(x) which varies smoothly at the scale
of the interparticle distance and which labels the particles in an unambiguous way, for example from
left to right, with φl(x j) = 2π j at the position of the j-th particle. The perfect crystalline solution with
average density ρ0 is clearly given by the linear field 2πρ0x. Defining a relative field which describes
deviations from this perfect solution, φl(x) = 2πρ0x − 2φ(x), the density operator can be expressed as

ρ(x) =
∑

j

δ(x − x̂ j) = |∇φl(x)|
∑

j

δ (φl(x) − 2π j) =

(
ρ0 −

1
π
∇φ(x)

)∑
p

eip2(πρ0 x−φ(x)). (3.35)

The p = 0 component of the sum corresponds to a compression or dilatation of the lattice which means
that φ(x) is the displacement of the particle from a perfect lattice. One can now write the bosonic
single-particle operator in terms of collective variables,

Ψ
†

B(x) =
√
ρ(x)e−iθ(x) =

√
ρ0 −

1
π
∇φ(x)

∑
p

ei2p(πρ0 x−φ(x))e−iθ(x), (3.36)

where θ(x) can be interpreted as the superfluid phase of the system. The two phases φ(x) and θ(x) are ca-
nonically conjugate which reflects the quantum fluctuations of the system. They fulfill

[
φ(x), (1/π)∇θ(x′)

]
=

iδ(x − x′) and thus Π(x) = (1/π)∇θ(x) is the momentum conjugate to φ(x).
One can now re-express the Hamiltonian in terms of collective variables. Assuming that the com-
pression or dilatation of the lattice is much smaller than ρ0, which ensures that the ’lattice’ is not
too soft and which is typically satisfied for repulsive bosons, and removing all oscillating terms from
the density as they will vanish in the integration, the kinetic term (first term in Eq. (3.34)) becomes(
∇Ψ(x)†

) (
∇Ψ(x)

)
≈ ρ0 (∇θ)2 +

(
∇2φ

)2
/(4π2ρ0). Again dropping oscillating terms, the interaction

term (second term in Eq. (3.34)) becomes (ρ(x))2 ≈ ρ2
0 + (∇φ)2 /π2 − 2ρ0∇φ/π where the first term

(constant energy offset) can be dropped and the last term can be absorbed in a chemical potential
term ∼

∫
dxµρ(x). Thus, the interaction term is quadratic and much easier to solve in contrast

to the single-particle basis where this term is quartic in the operators. The Hamiltonian becomes

H =
∫

dx
{
(~2ρ0/(2m)) (∇θ(x))2 + (g/2π2) (∇φ(x))2 + ~2

(
∇2φ(x)

)2
/(8π2ρ0m)

}
. Decomposing φ(x) in

Fourier modes ∼ eikx, one gets (∇φ(x))2 ∼ k2φ and
(
∇2φ(x)

)2
∼ k4φ. The second term is negligible in the

low energy limit k → 0 and one obtains the bosonized Hamiltonian

H =
1

2π

∫
dx

{
(~uK) (∇θ(x))2 +

~u
K

(∇φ(x))2
}

(3.37)
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which only depends on the two parameters u and K that depend on the microscopic parameters such as
for example the interaction parameter g. The parameter u describes the velocity of sound excitations and
K is dimensionless. This Hamiltonian for free and massless bosonic excitations describes the asymptotic
(long distance, large time) properties of the complex interacting system provided that the exact u and
K are used. This is known as the Luttinger liquid description [144]. An important result is that the
parameter K controls the power law decay of the dominating correlation functions. These correlation
functions reflect the one-dimensional character of the system under study. Real long range order cannot
occur but quasi-long range order can be attributed to the slowest decaying correlation function. The
single-particle and density correlation functions are given by [143]

〈
Ψ(x)Ψ†(0)

〉
= ρoA1 (α/x)1/(2K)

and 〈(ρ(x) − ρ0) (ρ(0) − ρ0)〉 = −K/(2π2x2) + ρ2
0A2 (α/x)2K + . . . respectively where A1 and A2 are non-

universal amplitudes that depend on the precise microscopic model and α is a short-distance cutoff which
is typically of the order of the lattice spacing below which the low-energy effective theory is not valid.
Evidently, for large K the system is dominated by single-particle correlations and can essentially be seen
as superfluid. In contrast, for small K the system is dominated by density correlations and can be seen as
a crystal of bosons.
In the case of fermions, the density formula (3.35) is the same but the single-particle operators have to
anticommute which is fulfilled by the following expression for the fermionic single-particle operators

Ψ
†

F(x) = Ψ
†

B(x)eiφl(x)/2 =

√
ρ0 −

1
π
∇φ(x)

∑
p

ei(2p+1)(πρ0 x−φ(x))e−iθ(x). (3.38)

The excitations of the collective field are still described by Eq.(3.37). More rigorously, one has to consider
right (positive momenta) and left (negative momenta) moving particles near the Fermi surface and the
different possible scattering processes amongst them which contribute to the interaction term. However,
for spinless fermions the Hamiltonian remains quadratic and the only change is that the parameters
u and K get modified. There is clearly a connection between bosons and fermions in one dimension,
however, the single-particle correlations are very different. For example, the momentum distribution
which is the Fourier transform of the equal-time single-particle correlation shows a power law divergence
n(k) ∼ k1/2K−1 for bosons in contrast to fermions where the momentum distribution is very similar to the
free-particle step function with a drop at kF . The momentum distribution displays a singularity instead of
a sharp drop at kF , n(k) ∼ 1/2 + sign(kF − k)|k − kF |

(K+1/K)/2−1.

Particles with spin If now, the fermionic particles carry a spin, one can introduce boson representation
for both spin species

(
φ↑, θ↑

)
and

(
φ↓, θ↓

)
from which one can construct new bosonic fields, the charge

φc =
(
φ↑ + φ↓

)
/
√

2 and spin φs =
(
φ↑ − φ↓

)
/
√

2 fields and similar for the θ-fields. The resulting low-
energy effective Hamiltonian is given by H = H0

c + Hs where H0
c is given by the free Hamiltonian (3.37)

such that the charge sector is described by a Luttinger liquid but with different parameters uc and Kc.
The spin sector is described by the sine-Gordon-Hamiltonian Hs = H0

s + 2g1⊥/(2πα)2
∫

dx cos
(√

8φs(x)
)

where H0
s is given by the free Hamiltonian (3.37) again with different parameters us, Ks. The additional

perturbation of amplitude g1⊥ in the spin term stems from the back scattering of particles with opposite
spin H1⊥ =

∫
dxg1⊥

∑
σ Ψ

†

L,σΨ
†

R,σ̄ΨL,σ̄ΨR,σ where the indices L and R denote left -or right moving
particles respectively and Ψ(x) = ΨL(x) + ΨR(x). All other scattering processes are absorbed in the
quadratic terms. The charge and spin degrees of freedom are completely decoupled which is known as
spin-charge separation and implies that single-particle excitations that would carry both, charge and spin,
cannot persist [27, 82].
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Influence of a periodic lattice In the presence of a lattice potential, additional interaction processes
are possible as the momentum is only conserved modulo the reciprocal lattice vector. The particles can
transfer momentum to the lattice. At half-filling so-called Umklapp processes occur which lead to an
additional charge term of amplitude g3 in the Hamiltonian, Hc = H0

c + 2g3/(2πα)2
∫

dx cos
(√

8φc(x)
)
,

with the spin part of the Hamiltonian unchanged.

3.3.2 Ionic Fermi-Hubbard model

In the presence of an ionic lattice, charge and spin degrees of freedom get coupled. Taking the continuum
limit and using the bosonization representation discussed above, the low-energy effective description of
the ionic Hubbard model given by Eq. (2.29) becomes [35],

H =

∫
dx
2π

[
~ucKc(πΠc)2 +

~uc

Kc
(∂xφc)2

]
+

2g3

(2πα)2

∫
dx cos

(√
8φc

)
+

∫
dx
2π

[
~usKs (πΠs)2 +

~us

Ks
(∂xφs)2

]
+

2g1⊥

(2πα)2

∫
dx cos

(√
8φs

)
+

∆

2πα

∫
dx cos

(√
2φc

)
cos

(√
2φs

)
, (3.39)

where the first and second lines are the charge and spin Hamiltonians introduced above, perturbed by
Umklapp processes and back scattering, respectively. The last term couples the charge and spin sectors
due to the ionicity of the lattice where ∆ is the staggered energy offset between neighboring sites from
Eq. (2.29).
The ground state phase diagram was discussed in Sec. 2.5 (cf. Fig. 2.6(a)). Here, we again discuss the
different phases in the context of the bosonized Hamiltonian. Taking the continuum limit and using the
bosonization representation discussed above, the bond order parameter (2.32) takes the form

B̂ =
A

α

∫ aL

0
dx

[
sin

(√
2φc

)
cos

(√
2φs

)]
, (3.40)

whereA is a non-universal dimensionless constant which depends on the parameters of the ionic Hubbard
model.
The fluctuations in the fields (quadratic terms) in the Hamiltonian (3.39) compete with the cos-terms
that would like to lock the field in one of their minima. In the band insulator, both charge sector and
spin sector are gapped, and the classical ground state energy is minimized by locking the fields in the
expectation values 〈φc〉 = π/

√
2 and 〈φs〉 = 0. At the transition to the bond order wave, the charge gap

closes while the spin remains gapped (〈φs〉 = 0). In the intermediate bond order wave phase the charge
gap reopens and the charge field expectation value is now 〈φc〉 = π/

√
8. In this phase, the bond order

wave parameter (3.40) acquires a non-zero expectation value. At the transition from the band insulator to
the bond order wave, the effective Hamiltonian describing the physics at energies well below the spin gap
is the two-frequency sine-Gordon model [145],

Heff =

∫
dx
2π

[
~ucKc (πΠc)2 +

~uc

Kc
(∂xφc)2

]
+

2g3

(2πα)2

∫
dx cos

(√
8φc

)
+

∆
〈
cos
√

2φs
〉

2πα

∫
dx cos

(√
2φc

)
. (3.41)
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which is known to exhibit a transition in the Ising universality class [35, 145–147].
To gain a more intuitive understanding of the existence of the Ising phase transition [148], one can
inspect the profile of the potential part given by integrand of the second and third term in Eq. (3.41),
U(φc) = (8g3)/(2πα)2

(
(1/4) cos

(√
8φc

)
+ X cos

(√
2φc

))
with X =

(
∆

〈
cos
√

2φs
〉

2πα
)
/(8g3). It is

shown in Fig. 3.1 for different X. For X = 0 the potential reduces to the periodic potential of the
single-frequency sine-Gordon model. For X , 0 the periodicity is doubled. For 0 < X < 1 the potential
is split in a sequence of double well potentials with a local structure ∼ Aφ2

c + Bφ4
c (A < 0, B > 0). At

X = 1 each double well transforms to a potential ∼ φ4
c (A = 0) which, in the Ginzburg-Landau sense, is

a signature of Ising criticality. At X > 1 it remains one potential well. Note, that this is only valid for
g3 > 0.

Figure 3.1: Sketch of the potential profile of the two-frequency sine-Gordon model (3.41) in the charge sector for
different values of the parameter X (see main text). For 0 < X < 1 the potential displays a sequence of double wells
that transform to one potential well at X = 1 which indicates Ising criticality.

In the Mott insulator, only the charge sector is gapped with 〈φc〉 = π/
√

8 while the spin sector is gapless.
The transition between the Mott insulator and the bond order wave takes place in the spin sector and
belongs to the Kosterlitz-Thouless universality class [149–151].

In Ch. 4 we investigate the spectral response in the vicinity of the two phase transitions bordering
the bond order wave phase which enables us to probe the onset of bond order at the Ising critical point
and to find signatures of the low-energy spin excitations in the bond order wave phase. Moreover,
the low-energy spectrum in the Mott insulator is probed. We compare the bosonization results to our
t-DMRG calculations and find good agreement. Details of the bosonization calculations, obtained in
collaboration [84], are given in appendix C.
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CHAPTER 4

Superlattice modulation spectroscopy of
ultracold fermions in optical superlattices:
Study of the excitation spectrum of the
one-dimensional ionic Fermi-Hubbard model

In this chapter we study the excitation spectrum of the one-dimensional ionic Fermi-Hubbard model
as a response to a lattice amplitude modulation of superlattice geometry. The ionic Fermi-Hubbard
model (2.29) was introduced in Sec. 2.5.2. It is given by the Fermi-Hubbard model with an additional
staggered energy offset. At dominating energy offset, the system is band insulating with finite spin and
charge gaps. At dominating on-site interaction strength, the system is Mott insulating with finite charge
but zero spin gap. When energy offset and on-site interaction strength are of comparable strength, these
two energy scales compete and the smaller kinetic energy term gains of importance. In this region of the
phase diagram an intermediate bond order wave (BOW) phase occurs characterized by a spontaneous
dimerization of the hopping [35]. A more detailed discussion of the ground state phase diagram at
half-filling was given in Sec. 2.5.2 (cf. Fig. 2.6). In cold atom setups, the ionic Fermi-Hubbard model
can be realized by fermionic particles confined to an optical superlattice [36].

Figure 4.1: Schematic drawing of the superlattice modulation of an optical superlattice corresponding to the ionic
Hubbard model. The unit cell of the equilibrium lattice (gray solid line) consists of two inequivalent sites, denoted
A and B, separated in energy by an offset ∆ (∆ corresponds to the staggered energy offset in the ionic Hubbard
model given by Eq. (2.29)). The optical lattice is modulated in time with frequency ω in a dimerized fashion, that
means between the two configurations indicated by dashed blue and dash-dotted orange lines around the ionic
equilibrium lattice.

Detecting the bond order wave and its neighboring phase transitions remains to be done. An important
challenge is to identify a suitable observable. Directly measuring the order parameter is difficult as this
would require a measurement of the staggered kinetic energy. A promising approach to characterize
the phase transitions is to study the response of the system to a perturbation. However, this requires
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the development of a probe which directly couples to the order parameter in contrast to available tech-
niques. We apply a superlattice amplitude modulation as sketched in Fig. 4.1 (cf. Sec. 2.6 where we
discuss different lattice amplitude modulation setups). Notably, the perturbing operator ÔS (2.41) which
describes the superlattice modulation is equivalent to the bond order parameter B̂ (2.32) which acquires
a finite value in the BOW phase. Consequently, the superlattice modulation directly couples to the
order parameter of the BOW phase which allows for the detection of signatures of the BOW phase.
Moreover, valuable insights into the excitation spectra in the band- and Mott insulating limits are obtained.

Throughout this chapter we denote the perturbing operator associated with the superlattice modula-
tion ÔS in the band and Mott insulating phases and in the absence of interaction. When discussing the
bond order wave and its neighboring phase transitions we denote the perturbing operator B̂(≡ ÔS ) in
order to emphasize its close relation to the BOW order parameter.
This chapter is organized as follows. First, in in Sec. 4.1, we analytically study the non-interacting model
which is exactly solvable. In all other sections we consider the presence of a finite interaction. In Sec. 4.2
we derive an effective model, using a Schrieffer-Wolff transformation for the excited states, which enables
us to analytically describe the gapped excitation spectra in the band and Mott insulating limits. This
section is quite technical. It focuses on the derivation of the effective model and the identification of a
suitable basis in the band and Mott insulating limits in order to diagonalize the corresponding eigenprob-
lem. No results for the energy absorption rate are given in this section and it may be skipped if one is
only interested in the discussion of the results. In the remaining sections we study the energy absorption
rate using t-DMRG1 and we compare to different analytical approximations. In Sec. 4.3, we investigate
the excitation spectrum in the band insulating phase. We start by presenting the results obtained for
the energy absorption rate in t-DMRG comparing to the effective model in Sec. 4.3.1. We study the
energy absorption rate deep in the band insulator at ∆ � U where excitations are created near ∼ (∆ −U),
and we investigate how the structure and location of the observed absorption rate evolve for increasing
interaction strength U (at fixed ∆). We analyze the time-dependence of the absorbed energy in Sec. 4.3.2
and we study the structure of the transition matrix elements in Sec. 4.3.3. Then, in Sec. 4.4 we investigate
the BOW and its neighboring phase transitions in the region ∆ ∼ U. We demonstrate, using t-DMRG and
bosonization techniques, that superlattice amplitude modulation spectroscopy reveals features of both
the Ising (Sec. 4.4.1) and Kosterlitz-Thouless (Sec. 4.4.2) transitions signaling the presence of the BOW
phase in contrast to the normal lattice amplitude modulation which fails to couple to the order parameter.
In Sec. 4.5 we study the excitation spectrum in the Mott insulator at ∆ < U. We investigate the spin
excitation spectrum in Sec. 4.5.1 and the charge excitation spectrum where excitations are naively created
near ∼ (U ± ∆) in Sec. 4.5.2. Finally, we make connection to realistic experimental systems in Sec. 4.6,
considering suitable parameter ranges and discussing the influence of finite temperatures or the presence
of an external harmonic trapping potential.
The main results of this chapter are published in Ref. [84] and a more detailed account of the results is in
preparation [152].

4.1 Absence of interaction

At zero interaction U = 0 (but finite ∆) the ionic Hubbard model becomes diagonal in quasimomentum
space and the ground state is given by a genuine band insulator with equal spin and charge gaps. Each low

1 In all analytical calculations we consider a lattice of A-B configuration as sketched in Fig. 4.1 and given by Eq. (2.29). In
t-DMRG we have implemented a lattice of B-A configuration which is a redefinition of the lattice but this has no effect on the
time evolution of energy which is a global observable.
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energy site is doubly occupied while all other sites are empty. The response to normal and superlattice
amplitude modulation can be calculated exactly, giving an intuitive picture of the excitations created
which is instructive as it gives a good flavor of the situation at weak but finite interactions ∆ � U. The
non-interacting model is given by Eq. (2.29) with U = 0. One can pass to quasimomentum space by
using the Fourier transform

clAσ =

√
2
L

∑
q

eiql2acqAσ, (4.1)

and likewise for clBσ where 2a is the size of the unit cell and q = 2πm/aL, m = −L/4 + 1, ..., L/4, is the
quasimomentum in the first Brillouin zone (BZ) ] − π/2a, π/2a]. Using

∑L/2
l=1 e2ial(q−q′) = (L/2) × δq,q′ ,

one obtains

H =
∑
q,σ

(
c†qAσ c†qBσ

)
Fq

(
cqAσ

cqBσ

)
, (4.2)

where

Fq =

 ∆/2 −J
(
1 + e−2iqa

)
−J

(
1 + e2iqa

)
−∆/2

 . (4.3)

The Hamiltonian can now be diagonalized,

H =
∑
q,σ

(
α†q,σ β†q,σ

)
DFq

(
αq,σ

βq,σ

)
=

∑
q,σ

Eq

(
β†q,σβq,σ − α

†
q,σαq,σ

)
, (4.4)

where

DFq = S †FqS =

(
−Eq 0

0 Eq

)
,

(
αq,σ

βq,σ

)
= S †

(
cqAσ

cqBσ

)
. (4.5)

The transformation S is given by

S =

− (
∆ − 2Eq

) / (
N1(J, q)2J(1 + e2iaq)

)
−

(
∆ + 2Eq

) / (
N2(J, q)2J(1 + e2iaq)

)
1
/
N1(J, q) 1

/
N2(J, q)

 , (4.6)

with

N1(J, q)2 = 1 +
(∆ − 2Eq)2

8J2(1 + cos(2qa))
, and N2(J, q)2 = 1 +

(∆ + 2Eq)2

8J2(1 + cos(2qa))
. (4.7)

There are two energy bands ±Eq given by

Eq =
1
2

√
∆2 + 8J2(1 + cos(2qa)), (4.8)

which are separated by an energy difference δEq = 2Eq and shown in Fig. 4.2(a).
The new operators β(†)

q,σ and α(†)
q,σ annihilate (create) a quasiparticle in the upper or lower band respectively

with quasimomentum q and spin σ. The energy difference is minimum at the BZ border, i.e. the gap is
given by δEq=π/2a = ∆, and it is maximum in the center of the BZ, δEq=0 =

√
∆2 + 16J2. In the ground
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state at half-filling the lower band is completely filled whereas the upper band is completely empty such
that the system is band insulating with equal charge and spin gaps given by ∆. The ground state is given
by

|BI〉U=0 =
∏

q∈BZ,σ

α†q,σ|0〉, (4.9)

where |0〉 denotes the vacuum of quasiparticles.

Figure 4.2: (a) Sketch of the band structure of the ionic Hubbard model at zero interaction. (b) The transition
matrix element squared at ∆ = 50J and zero interaction as a response to superlattice modulation (blue solid line)
and to normal lattice amplitude modulation (dash-dotted orange line).

The perturbing operator ÔS (2.41) corresponding to the superlattice modulation analogously transforms
as

ÔS =
∑
q,σ

2iEq tan(qa)
JN1(J, q)N2(J, q)

(
α†q,σβq,σ − H.c.

)
. (4.10)

As the ground state |BI〉U=0 (4.9) is known, the complex susceptibility (3.24) within linear response can
be straightforwardly calculated as

χ(t) = −
i
~
θ(t)

〈[
ÔS (t)), ÔS (0)

]〉
0

= −
i
~
θ(t)

∑
q

8 sin2(qa)
(
e−2iEqt/~ − e2iEqt/~

)
, (4.11)

where we used the Heisenberg representation ÔS (t) = exp
(
iĤt/~

)
ÔS exp

(
−iĤt/~

)
which can be ex-

pressed in terms of the time-dependence of the annihilation operators as

αq,σ(t) = eiEqt/~αq,σ, βq,σ(t) = e−iEqt/~βq,σ, (4.12)

obtained from Heisenberg’s equation of motion. We obtain the imaginary part of the complex susceptibil-
ity at positive frequencies

Imχ(ω) = −8
∑

q

sin2(qa)
η

η2 + (~ω − 2Eq)2 = −8π
∑

q

sin2(qa)δ(~ω − 2Eq), (4.13)

which determines the averaged energy absorption rate dE/dt ∼ −ωImχ(ω) (3.27). Note that the spin
index has transformed into a simple factor 2. The obtained energy absorption rate is shown in Fig. 4.3(a).
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It shows enhanced absorption at the possible minimum excitation energy ~ωmin = ∆ corresponding to the
BZ edge q = π/2a. It decays across the resonant region and it is very small at the possible maximum
excitation energy ~ωmax =

√
∆2 + 16J2 which corresponds to the BZ center q = 0. This behavior

corresponds to the behavior of the transition matrix element squared ∼ sin2(qa) being zero in the BZ
zone center and finite at the BZ zone border, see Fig. 4.2(b).

Figure 4.3: The energy absorption rate at ∆ = 50J and zero interaction and for an amplitude of the modulation
A = 0.001J (a) as a response to superlattice amplitude modulation and (b) as a response to normal lattice amplitude
modulation. The averaged rate (blue solid line) for a broadening η = 0.005J is shown in comparison to the
continuum limit result (orange dashed line) and the first order expansion (purple dashed line) at the location of
the infinite system size divergence. Vertical dashed lines indicated the gap δEmin

q = ∆ = 50J and the maximum
possible excitation energy δEmax

q =
√

∆2 + 16J2 = 50.16J. Inset: The first order expansion ∼ (J/(~ω − ∆))1/2 or

∼
(
J/(δEmax

q − ~ω)
)1/2

respectively, behaves like the continuum limit result near the divergence. Farther away from
the divergence it decays with an exponent > 1/2.

We take the continuum limit L→ ∞ by replacing
∑

q → (La)/(2π)
∫ π/2a
−π/2a dq and using∫

dq f (q)δ(g(q)) =
∑

i f (qi)/|g′(qi)| where the sums runs over all zeros qi of g(q) within the first Brillouin
zone. This yields

1
L

dE
dt

=
ω

2
|A|2

(~ω)(∆2 + 16J2 − (~ω)2)

16J4

√
1 −

(
(~ω)2−∆2−8J2

8J2

)2
, (4.14)

which is also shown in Fig. 4.3(a). An expansion around the divergence at ~ωmin = ∆ yields

~

L|A|2
dE
dt

= Ã
1

√
~ω − ∆

+ B̃
√
~ω − ∆ + O(~ω − ∆)3/2 (4.15)

with Ã = ∆
√

2∆/J, B̃ = −
√

∆(∆2 − 28J2)/(8
√

2J3). The lowest order expansion is also shown in
Fig. 4.3(a) and it coincides well with the full continuum limit result near the divergence. Away from the
divergence, the full result decays faster, i.e. ∼ (~ω − ∆)−α with α > 1/2.
We now compare to the case of a normal lattice amplitude modulation. The perturbing operator ÔN (2.40)
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corresponding to the normal amplitude modulation analogously transforms to

ÔN =
∑
q,σ

4J cos2(qa)
Eq

(
α†q,σαq,σ − β

†
q,σβq,σ

)
+

∆ cos qa
Eq

(
β†q,σαq,σ + H.c.

)
. (4.16)

Similar to the superlattice case, we determine the imaginary part of the complex susceptibility at positive
frequencies which we find to be

Imχ(ω) = −2π
∑

q

∆2 cos2(qa)
E2

q
δ(~ω − 2Eq) = −2

∑
q

∆2 cos2(qa)
E2

q

η

η2 + (~ω − 2Eq)2 . (4.17)

The probability of transferring a particle from the lower band to the upper band by the normal lattice
perturbation is proportional to ∆2 cos2(qa)/E2

q which is approximately ∼ cos2(qa) for ∆ >> J. It is
maximum in the BZ zone center (corresponding to maximum excitation energy) and zero at the BZ zone
boundary (minimum energy), see Fig. 4.2(b). Accordingly, the response peaks at maximum excitation
energy corresponding to the BZ center and is very small at the minimum energy corresponding to the BZ
zone boundary, see Fig. 4.3(b). This behavior is opposite to the superlattice modulation case. Taking the
continuum limit yields

1
L

dE
dt

=
ω

2
|A|2

∆2

2J2~ω

√
(~ω)2 − ∆2

16J2 − (~ω)2 + ∆2 , (4.18)

which is also shown in Fig. 4.3(b). Again, expanding around the divergence which is now located at
~ωmin =

√
∆2 − 16J2, yields

~

LA2

dE
dt
≈ Ã

1√
−

(
~ω −

√
∆2 − 16J2

) , (4.19)

in lowest order, with Ã = ∆2/[
√

2J(∆2 + 16J2)1/4]. Again, this coincides well with the full continuum
limit result near the divergence, see Fig. 4.3(b).

4.2 Derivation of an effective Hamiltonian for J � |U − ∆|, ∆

At finite interaction, the ionic Hubbard model can no longer be solved exactly. In this section we derive
an effective model in the limit J � |U −∆|,∆ which enables us to analytically describe the gapped part of
the energy absorption spectrum as a response to superlattice modulation. Starting with a short motivation,
we then derive the Hamiltonian which is general in the considered limit. We then consider the band
and Mott insulating limits in Secs. 4.2.1 and 4.2.2 respectively where the effective model applies to the
gapped spectra. We define a suitable basis in order to diagonalize the corresponding Hamiltonian matrix.
This section is rather technical. We derive the effective model and characterize its eigenspectrum but
no results for the energy absorption rate are given. A discussion of the obtained energy absorption rate
follows in the subsequent sections 4.3 and 4.5.2 in direct comparison to our t-DMRG calculations for
the band and Mott insulators respectively.

First order hopping processes change the system’s energy by |δE| = ∆, |∆ − U |, (∆ + U) depending
on the initial occupation of a given state. For J � |∆ − U |,∆ (this also implies J � ∆ + U) the
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Hamiltonian naturally divides the Hilbert space into different sectors that are separated by the energies
|δE| and coupled by an energy J � |δE|. This is the case in the band insulating limit ∆ � U and in
the Mott insulating limit ∆ � U at large ∆ � J. If we are interested in the low-energy dynamics in
a sector at fixed δE, we can include the couplings to other sectors perturbatively. This will serve us
to describe the fluctuations in the lowest band of charge excitations by superlattice modulation. The
effective Hamiltonian can be obtained by employing a unitary transformation and the matrix elements
of the effective Hamiltonian will be given by ∼ J2/|δE|. A prominent example is the Schrieffer-Wolff
transformation which was originally introduced to derive the Kondo Hamiltonian from the Anderson
Hamiltonian [153]. An application of relevance in the context of ultracold fermions in optical lattices is
the derivation of the Heisenberg model from the Hubbard model [154].
Within the basis of the lowest band of excitations the effective Hamiltonian can be diagonalized numeric-
ally and the bandwidth of the eigensystem describes the width of the lowest charge excitation peak in the
energy absorption rate within linear response. The transition matrix elements from the ground state to
the lowest band of excitations by superlattice modulation determine the shape of the peak. In the band
insulating limit, where the perfect ground state consists of doubly occupied B-sites and empty A-sites,
the lowest band of excitations is located around energies ∼ (∆ − U) and naively corresponds to breaking
one doublon on a B-site and transferring one particle to a neighboring A-site (cf. Fig. 2.6(c)). In the
Mott insulating limit, where the groundstate consists of one particle per site, the lowest band of charge
excitations is located around energies ∼ (U − ∆) and naively corresponds to the creation of one doublon
on a B-site and one hole on an A-site (cf. Fig. 2.6(c)).

A suitable procedure to obtain the unitary transformation which we follow is presented in Ref. [155].
The main steps, applied to the ionic Hubbard model, are given in the following. We separate the kinetic
part HK (2.30) into terms that either change (by one) or conserve the number of doubly occupied sites on
A-sites and/or B-sites,

HK = (A00 + B00) + (A+− + B−+) + (A+0 + B−0) + (A0− + B0+), (4.20)

where the notation XmAmB is such that a fermion hops onto a site X = A or B with mA and mB the change
in the number of doublons on A and B-sites by one and (+ = 1), (− = −1), with

A00 = B†00 = −J
∑
lσ

(hlAσ̄ c†lAσ clBσ hlBσ̄ + hl+1Aσ̄ c†l+1Aσ clBσ hlBσ̄), (4.21)

A+0 = B†
−0 = −J

∑
lσ

(nlAσ̄ c†lAσ clBσ hlBσ̄ + nl+1Aσ̄ c†l+1Aσ clBσ hlBσ̄), (4.22)

A0− = B†0+
= −J

∑
lσ

(hlAσ̄ c†lAσ clBσ nlBσ̄ + hl+1Aσ̄ c†l+1Aσ clBσ nlBσ̄), (4.23)

A+− = B†−+ = −J
∑
lσ

(nlAσ̄ c†lAσ clBσ nlBσ̄ + nl+1Aσ̄ c†l+1Aσ clBσ nlBσ̄), (4.24)

where hl,σ = 1− nl,σ and with A†mAmB = BmBmA and σ̄ denotes the opposite spin configuration with respect
to σ. We seek a unitary transformation that eliminates all processes which couple different sectors
separated by the energies δE, i.e. we need to conserve the number of doubly occupied sites as well as the
number of singly occupied sites on both, A- and B-sites. None of the XmAmB conserves both such that all
terms of HK have to be eliminated. Generally, the unitary transformation S is given by

H′ = eiS He−iS = H +
[iS ,H]

1!
+

[iS , [iS ,H]]
2!

+ . . . . (4.25)
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We construct S such that it fulfills i[S ,V] = −HK where V (2.31) is the interaction and potential
part of the ionic Hamiltonian and, using

[
V, BmAmB

]
= ∆ (U/∆ (mA + mB) − 1) BmAmB and

[
V, AmAmB

]
=

∆ (U/∆ (mA + mB) + 1) AmAmB , we obtain

iS =
1
∆

(
(A+− − B−+) +

1
U−

(A0− − B0+) +
1

U+

(A+0 − B−0) + (A00 − B00)
)
, (4.26)

with U− = 1 − U/∆ and U+ = 1 + U/∆. Consequently, to first order in the J2/|δE|, the effective
Hamiltonian becomes

Heff = V +
1
∆

([A00, B00] + [A+−, B−+] +
1

U−
[A0−, B0+] +

1
U+

[A+0, B−0]). (4.27)

It conserves separately the number of doublons on sites A and B as well as the number of singly occupied
A- and B-sites. We consider Heff in the basis of the lowest band of excitations in order to describe the
low-energy charge physics in this sector.
In the band insulating limit it turns out to be a powerful tool as it succeeds in precisely describing the
location, width and shape of the excitation spectrum which is discussed in Sec. 4.3. In the Mott insulating
limit it correctly captures the main features such as location and approximate width which is discussed in
Sec. 4.5.

4.2.1 Application to the band insulating limit

In this section, we consider the effect of Heff (4.27) on the lowest band of excitations by superlattice
modulation in the band insulator. We assume a genuine band insulator, i.e. the ground state is given by,

|BI〉 =

 L/2∏
n=1

c†nB↑ c†nB↓

 |0〉, (4.28)

where all B-sites are doubly occupied and all A-sites are empty, |0〉 denotes the vacuum. In first order,
superlattice modulation of the lattice, i.e. the application of ÔS (2.41) onto |BI〉, breaks doublons on
B-sites by transferring one particle to a neighboring A-site at an energy difference (∆ − U) with respect
to the ground state. The corresponding (first) band of excitations is composed of linear combinations of
all states that consist of a background of (L/2 − 1) doubly occupied (empty) B(A)-sites and two fermions
of opposite spin on an arbitrary B-site and A-site. We choose open boundary conditions and define the
2(L/2)2-degenerate basis of this energy sector as

|l, A, σ; d, B, σ̄〉 =

 l−1∏
n=1

c†nB↑ c†nB↓

 c†lAσ

l+d−1∏
m=l

c†mB↑ c†mB↓

 c†l+dBσ̄

 L/2∏
r=l+d+1

c†rB↑ c†rB↓

 |0〉, (4.29)

where the singly occupied A-site at position l occurs before the singly occupied B-site at position l + d,
l ∈ (1, L/2) and d ∈ (0, L/2 − l), and

|l, B, σ; d, A, σ̄〉 =

 l−1∏
n=1

c†nB↑ c†nB↓

 c†lBσ

 l+d−1∏
m=l+1

c†mB↑ c†mB↓

 c†l+dAσ̄

 L/2∏
r=l+d

c†rB↑ c†rB↓

 |0〉, (4.30)

where the singly occupied B-site at position l occurs before the singly occupied A-site at position l + d,
l ∈ (1, L/2 − 1) and d ∈ (1, L/2 − l). An application of Heff (4.27) to the above continuum of states

50



4.2 Derivation of an effective Hamiltonian for J � |U − ∆|,∆

virtually couples to other energy sectors separated by an energy δE = ∆,±(∆ −U), (∆ + U) from the first
band of excitations. The action of each term of Heff onto the continuum of states is described in detail in
the following and the different sectors and processes are visualized in Fig. 4.4(a).

Figure 4.4: (a) Sketch of the general scheme of the effective model acting on the lowest band of excitation in the
band insulator (BI). The different energy sectors (pink horizontal bars) contributing to the effective model are
displayed together with the energy differences δE with respect to the lowest band of excitations (indicated by black
vertical double arrows). The four-site lattices next to the bands show a possible basis state (on four sites) of each
subspace. The double arrows indicate the different virtual processes contributing to the effective Hamiltonian.
One possible process is sketched in more detail in (b). The sketch corresponds the term (1/(∆U−))A0−B0+ in the
effective Hamiltonian (4.27). First (1), the application of B0+ to the lowest band of excitations transfers the system
to the band insulating ground state. The subsequent (2) application of A0− transfers the system back from the
ground state to the first band of excitations. The energy corresponding to this process is ∼ J2/|∆U−| = J2/|∆ − U |.

• δE =∼ −(∆ − U): The term (1/(∆U−))A0−B0+ virtually couples to the band insulating ground state.
As an example this process is sketched in Fig.4.4(b).

• δE =∼ (∆ − U): The term −(1/(∆U−))B0+A0− virtually couples to the next (second) band of
excitations which consists of a background of (L/2 − 2) doubly occupied (empty) B(A)-sites and
four fermions (two of each spin) on two arbitrary B-sites and two arbitrary A-sites.

• δE =∼ ∆: The terms −(1/∆)B00A00 and −(1/∆)B−+A+− virtually couple to the third band of
excitations which consists of two classes of states.

The term −(1/∆)B00A00 couples to states that consist of a background of (L/2 − 1) doubly
occupied B-sites and two fermions of opposite spin on arbitrary A-sites.

The term −(1/∆)B−+A+− couples to states that consist of a background of (L/2 − 2) doubly
occupied B-sites, two fermions of opposite spin on two arbitrary B-sites and one doubly occupied
A-site.

• δE =∼ (∆ + U): The term −(1/(∆U+))B−0A+0 virtually couples to the fourth band of excitations
which consists of one doubly occupied A-site and a background of (L/2 − 1) doubly occupied
B-sites

• The terms (1/∆)A00B00, (1/∆)A+−B−+ and (1/(∆U+))A+0B−0 give zero.
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The renormalized ground state energy within the effective model becomes

E0,eff = 〈BI|Heff|BI〉 =
L
2

(U − ∆) −
J2

∆ − U
2(L − 1), (4.31)

where the first term corresponds to the ground state energy of H0 (2.29). We numerically diagonalize
Heff (4.27) within the basis consisting of the closed subset of states given by Eqs. (4.29) and (4.30)
and obtain 2(L/2)2 eigenstates |α〉 with corresponding eigenvalues εα. The obtained band structure is
displayed in Fig. 4.5(a). We find that the bandwidth is approximately constant with system size L for
sufficiently large systems, see Fig. 4.5(b).

Figure 4.5: (a) Band structure of the effective model at ∆ = 50J for a system size L = 64 and different U.
Inset: Zoom into the band structure, showing the first few eigenvalues. The lowest (and highest) eigenvalues
are very discrete in energy compared to the bulk. (b) The system size dependence of the bandwidth at ∆ = 50J,
U = 10J, 25J. The bandwidth is approximately constant with system size for large L.

We find that the bandwidth scales approximately as J2/(∆ − U) (see Fig. 4.6(a)) which matches our
expectations as the term of amplitude ∼ J2/(∆−U) is the dominating term in Heff as ∆−U < ∆ < ∆ + U
in the band insulator. Furthermore, we find that the lowest eigenvalue min(εα) − E0,eff − (∆ − U) scales
approximately as

(
J2/(∆ − U) − J2/∆

)
(see Fig. 4.6(b)) and the largest eigenvalue max(εα)−E0,eff−(∆−U)

scales approximately as
(
J2/(∆ − U) − J2/(4∆)

)
(see Fig. 4.6(c)). We expect further corrections, possibly

in 1/L.

Figure 4.6: The bandwidth (a) as well as the minimum (b) and maximum (c) eigenvalue for a system size L = 64
for different ∆ > U, U/J = 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, ∆/J = 30, 40, 50, 60, 70, 80, 90, 100.

Within the obtained eigensystem we can calculate the transition matrix elements |〈BI|ÔS |α〉|
2 where ÔS

is the perturbing operator (2.41) and deduce analytical expressions of the absorbed energy and the energy
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absorption rate within linear response theory using Eqs. (3.32) and (3.31) (cf. Sec. 3.2.2), respectively,
where the ground state is given by the band insulating ground state |BI〉 (4.28) and the sum over the
many-body state |m〉 runs over all eigenstates |α〉 of the effective model and Em = εα. We study energy
absorption in comparison to our numerical t-DMRG results in Sec. 4.3.1 and we find excellent agreement.
In particular, the effective model serves to explain finite size effects observed in the energy absorption
and a thorough study of the transition matrix elements enables us to connect the different features in the
response to the different processes between energy sectors.

4.2.2 Application to the Mott insulating limit

In this section, we consider the effect of Heff (4.27) on the lowest band of charge excitations by superlattice
modulation in the Mott insulator. The ground and excited states are intrinsically different to the band
insulating case but the concept is the same and less details will be given here. In the Mott insulating
ground state each site is occupied by one particle. Here, we assume a classical antiferromagnetic ground
state,

|AFM〉 = | ↑↓↑↓ ... ↑↓〉 =

 L/2∏
n=1

c†nA↑ c†nB↓

 |0〉. (4.32)

In reality, this is clearly not the quantum mechanical ground state as quantum fluctuations lead to
a reduction of the staggered magnetization and this effect is is particularly strong in one dimension.
However, we use this state as a first approximation here since it turns out to yield reasonable results
for the energy absorption rate as a response to superlattice modulation despite the crudeness of the
approximation. In this case, superlattice modulation of the lattice in first order creates a doublon on a
B-site (A-site) and a hole on a neighboring A-site (B-site) at an energy difference U − ∆ (U + ∆) with
respect to the ground state. We comment on the validity of this approximations in Sec. 4.5.2 when we
discuss the results of the effective model. We only study the subspace located at an energy difference
(U − ∆) (one can consider the subspace at energy difference (U + ∆) analogously). The corresponding
(first) band of charge excitations is composed of linear combinations of all states that consist of a doublon
on a B-site and a hole on an A-site with an antiferromagnetic background (the spin configuration of the
antiferromagnetic background is considered the same as in the ground state). We again choose open
boundary conditions and define the (L/2)2-degenerate basis of this energy sector as

|l, A, 0; d, B,D〉 =

 l−1∏
n=1

c†nA↑c
†

nB↓

 c†lB↑

 l+d−1∏
m=l+1

c†mA↓c
†

mB↑

 c†l+dA↓

(
c†l+dB↑c

†

l+dB↓

)  L/2∏
r=l+d+1

c†rA↑c
†

rB↓

 |0〉,(4.33)

where the hole comes first with l ∈ (1, L/2) and d ∈ (1, L/2 − l), and for d = 0,

|l, A, 0; d = 0, B,D〉 =

 l−1∏
n=1

c†nA↑ c†nB↓

 (
c†lB↑c

†

lB↓

)  L/2∏
r=l+1

c†rA↑ c†rB↓

 |0〉, (4.34)

and,

|l, B,D; d, A, 0〉 =

 l−1∏
n=1

c†nA↑c
†

nB↓

 c†lA↑
(
c†lB↑c

†

lB↓

)  l+d−1∏
m=l+1

c†mA↓c
†

mB↑

 c†l+dB↓

 L/2∏
r=l+d+1

c†rA↑c
†

rB↓

 |0〉, (4.35)
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if the doublon comes first with l ∈ (1, L/2 − 1) and d ∈ (1, L/2 − l). Here, an application of Heff (4.27)
to the above continuum of states virtually couples to other energy sectors separated by an energy
δE = ∆,±(U − ∆), (∆ + U) from the first band of excitations. Note, that the energy gaps are the same as
in the band insulating case but the state vectors are different and therefore also the action of Heff onto the
continuum of states. The different processes are in detail described in the following and the different
sectors and processes are visualized in Fig. 4.7(a).

Figure 4.7: (a) Sketch of the general scheme of the effective model acting on the lowest band of excitation in the
Mott insulator (MI). The different energy sectors (pink horizontal bars) contributing to the effective model are
displayed together with the energy differences δE with respect to the lowest band of excitations (indicated by black
vertical double arrows). The four-site lattices next to the bands show a possible basis state (on four sites) of each
subspace. The double arrows indicate the different virtual processes contributing to the effective Hamiltonian.
One possible process is sketched in more detail in (b). The sketch corresponds the term (1/(∆U−))B0+A0− in the
effective Hamiltonian (4.27). First (1), the application of A0− to the lowest band of excitations transfers the system
to the antiferromagnetic ground state. The subsequent (2) application of B0+ transfers the system back from the
ground state to the first band of excitations. The energy corresponding to this process is ∼ J2/|∆U−| = J2/|∆ − U |.

• δE =∼ −(U − ∆): The term −(1/(∆U−))B0+A0− virtually couples to the antiferromagnetic ground
state. As an example this process is sketched in Fig.4.7(b).

• δE =∼ (U − ∆): The term (1/(∆U−))A0−B0+ virtually couples to the next (second) band of excita-
tions which consists of two doublons on B-sites and two holes on A-sites with an antiferromagnetic
background.

• δE =∼ ∆: The terms −(1/∆)B00A00 and −(1/∆)B−+A+− virtually couple to the third band of
excitations which consists of two classes of states.

The term −(1/∆)B00A00 couples to states that consist of one doublon on a B-site and one hole
on a B-site with an antiferromagnetic background.

The term −(1/∆)B−+A+− couples to states that consist of one doublon on an A-site and one
hole on an A-site with an antiferromagnetic background.

• δE =∼ (∆ + U): The term −(1/(∆U+))B−0A+0 virtually couples to the fourth band of excitations
which consists of one doublon on a B-site, one doublon on an A-site, one hole on a B-site and one
hole on an A-site with an antiferromagnetic background.

• The terms (1/∆)A00B00, (1/∆)A+−B−+ and (1/(∆U+))A+0B−0 give zero.
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The renormalized ground state energy becomes

E0,eff = 〈GS |Heff|GS 〉 = −J2 (L − 1)
(

1
U − ∆

+
1

U + ∆

)
. (4.36)

In this case, numerical diagonalization of Heff (4.27) within the closed subset of states given by
Eqs. (4.33), (4.34) and (4.35) yields (L/2)2 eigenstates |α〉 with corresponding eigenvalues εα. We
again find that the bandwidth is approximately constant with system size L for sufficiently large sys-
tems but the scaling behavior differs from the band insulating case. We find that the bandwidth scales
approximately as J2/(U − ∆) + J2/∆ which matches our expectations as either the term of amplitude
∼ J2/(U − ∆) is the dominating term in Heff if U − ∆ < ∆ or the term of amplitude ∼ J2/∆ is the
dominating term in Heff if U − ∆ > ∆. Both cases are possible in the Mott insulating limit. The lowest
eigenvalue min(εα) − E0,eff − (U − ∆) scales approximately as

(
−J2/2(∆ + U) + J2/∆

)
and the largest

eigenvalue max(εα) − E0,eff − (U − ∆) scales approximately as
(
J2/2(∆ + U) + J2/(U − ∆)

)
. As in the

band insulating case, we can study the energy absorption (3.31) and the time evolution of energy (3.32)
within linear response. In Sec. 4.5.2 we study energy absorption in comparison to our numerical t-DMRG
results which enables us to describe the main features of the observed response in some parameter ranges
and a study of the transition matrix elements gives insight into the role of the different contributing
processes.

4.3 Band insulating limit

In this section we study the energy absorption as a response to superlattice amplitude modulation on
the band insulating side of the phase diagram. At fixed ∆ = 50J we numerically determine the energy
absorption within t-DMRG and compare to analytical results obtained within the effective model (cf.
Sec. 4.2). In Sec. 4.3.1 we analyze the energy absorption rate deep in the band insulator ∆ � U and for
increasing U approaching the phase transition to the BOW phase. We find excellent agreement between
t-DMRG and the effective model for ∆ � U which persists for increasing interactions until the effective
model ceases to describe well the results obtained using t-DMRG near the phase transition to the BOW
phase at ∆ ∼ U. We confirm that the charge gap closes when approaching the quantum phase transition.
In Sec. 4.3.2 we then investigate in more detail the time evolution of the energy which enables us to
identify finite-size effects while in Sec. 4.3.2 we analyze the structure of the transition matrix elements
allowing us to explain the different observed features in the energy absorption rate.

In t-DMRG we study systems of sizes up to L = 64. In order to obtain sufficient accuracy in the
absorbed energy E(t) we keep a matrix dimension of D = 120. We conduct an error analysis by increas-
ing the matrix dimension to 160 states. In the Trotter-Suzuki time evolution we set Jτ = 0.001~ and we
use Jτ = 0.0005~ to perform the error analysis. We determine the maximal uncertainties in the energy
absorption rate due to the matrix dimension, the time step and the variation of the fit range (see App. A
for details). The error bars are provided in the figures.

4.3.1 Energy absorption

On resonance, a linear rise in time of the absorbed energy E(t)−E0 is observed which is superimposed by
a low frequency oscillation ωobs. We extract the slope m, which we identify with the energy absorption
rate, and ωobs from a fit of the absorbed energy. Details of the time evolution of the energy and on the
fitting procedure are given below in Sec. 4.3.2. In the mean time, we discuss the results obtained for the
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energy absorption rate and for ωobs.

First we discuss the results obtained using t-DMRG. Fig. 4.8(a) shows the energy absorption rate
as a response to the superlattice modulation as a function of the modulation frequency deep in the
band insulator at U = 10J for system sizes L = 32 and L = 64 . Sizable energy absorption occurs
near ~ω ≈ (∆ − U) = 40J which corresponds to the naive expectation of breaking a doublon on a low
energy site and transferring one particle to the neighboring high energy site. The absorption peak is
very sharp and has a small width ∼ 0.2J. A strong rise occurs at its left boundary corresponding to
the divergence at the lower excitation band edge seen in the non-interacting model (cf. Sec. 4.1). The
absorption decreases across the resonant region to very small values at its right boundary. To the right
of the peak, the absorption rate approximately behaves proportional to ∼ (J/(~ω − (∆ − U)))α with an
exponent α > 1/2 (see inset of Fig. 4.8(a)). This is also in accordance with the behavior found in the
non-interacting model where, away from the divergence, the rate similarly decays with an exponent
> 1/2. The comparison of the two system sizes shows that finite size effects are negligible in most parts
of the resonant region except at the left boundary where deviations occur. In the next Sec. 4.3.2 we
analyze further these deviations in the time-dependence of the energy absorption and confirm that they
originate from finite size effects.
The energy absorption as a response to the normal lattice modulation is also shown in Fig. 4.8(a). Compar-
ing the energy absorption rate as a response to superlattice modulation and normal lattice modulation, we
find that the width overlaps fully in the two cases. For the normal lattice modulation enhanced absorption
occurs at the right boundary of the resonant region in contrast to the superlattice modulation. This
enhancement corresponds to the divergence at the upper excitation band edge seen in the non-interacting
model for the normal lattice modulation.

Figure 4.8: The energy absorption rate (a) and ~ωobs (b) in t-DMRG at ∆ = 50J, U = 10J and for an amplitude
of the modulation A = 0.001J. The response to superlattice modulation for system sizes L = 64 (blue diamonds)
and L = 32 (green circles) is shown in comparison to the response to normal lattice amplitude modulation for a
system size L = 64 (violet squares). Vertical dashed lines indicate the bandwidth of the effective model. Inset:
The energy absorption rate near the left edge of resonance decays with an exponent > 1/2 as may be seen from a
comparison to ∼ (J/(~ω − (∆ − U)))1/2 (black dashed line) which corresponds to the behavior of the divergence in
the non-interacting case.

Let us now discuss the extracted frequency ωobs. It is shown in Fig. 4.8(b) at U = 10 obtained from
t-DMRG for different system sizes L = 32 and L = 64. For the superlattice modulation, the observed
frequency becomes very small and minimum at the left boundary of the response where maximum
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absorption occurs. The deviations between the different system sizes observed in the absorption rate (see
above) do not occur in ωobs. This is a consequence of the fitting procedure which fails to provide reliable
values for the slope at strong absorption whereas the obtained values for the frequency ωobs are much
better. This is discussed in more detail in the following section 4.3.2. For the normal lattice modulation
the minimum of ωobs occurs at the right boundary at which maximum absorption occurs for the normal
lattice modulation.

Now, we discuss the results obtained within the effective model (cf. Sec. 4.2). Within the effect-
ive model there is two routes to obtain the energy absorption rate. Similar to our t-DMRG study, we
can extract the energy absorption rate and ωobs from a fit of the time evolution of energy. Using the
eigensystem of the effective model obtained in Sec. 4.2.1 the time evolution of energy is given by
Eq. (3.32). Alternatively, we can determine the averaged rate given by Eq. (3.31) within linear response,
also using the eigensystem of the effective model. We replace the δ-function by a Lorentz-function with
finite broadening η (cf. Sec. 3.2). The obtained energy absorption rates in comparison to the t-DMRG
result are shown in Fig. 4.9 for two different interaction strengths U = 10J (a) and U = 35J (b). We
find excellent agreement across the resonant region except at the left boundary where deviations occur
due to the finite size of the system. These deviations are discussed in more detail below in Sec. 4.3.2.
The width of the resonance is given by the lowest band of excitations within the effective model which is
approximately proportional to J2/(∆−U) (cf. Fig. 4.6(a)). The strong enhancement in the response at the
left boundary corresponds to the behavior of the transition matrix elements squared |〈BI|ÔS |α〉|

2 within
the effective model. The different features of the transition matrix element squared will be discussed
in detail below in Sec. 4.3.3 (see also Fig. 4.15). A comparison of the extracted frequency within the
effective model and t-DMRG at U = 10J and U = 35J is shown in the insets of Figs. 4.9(a) and (b)
respectively and yields very good agreement. We conclude, that the location, width and shape of the peak
deep in the band insulator are well described by the effective model.

Figure 4.9: The energy absorption rate (main plots) and ~ωobs (insets) within the effective model and t-DMRG
at ∆ = 50J, U = 10J (a) and U = 35J (b) and for an amplitude of the modulation A = 0.001J and A = 0.0005J,
respectively. The response to superlattice modulation for a system size L = 64 within t-DMRG (blue squares) is
shown in comparison to the effective model. We compare the absorption rate extracted from the time evolution of
energy within the effective model (orange diamonds) and the averaged rate (orange solid line) for a broadening
η = 0.003J and η = 0.01J, respectively. At ~ω = 40.02J and ~ω = 15.16J, respectively, the result for the effective
model at L = 352 (orange circle) is displayed which illustrates the strong finite size effects present at the left edge
of the resonant region. Vertical dashed lines indicate the bandwidth of the effective model.
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Let us now discuss the observations for increasing U. For increasing U the location of the absorption
peak shifts to smaller values of ~ω approaching zero energy when ∆ ∼ U while the resonant region
broadens, see Fig. 4.10(a). Both effects are expected. The shift is related to the decreasing charge gap
while the width increases due to the increase of the bandwidth of the lowest band of excitations within
the effective model ∼ J2/(∆ − U) (cf. Fig. 4.6(a)).

Figure 4.10: (a) The energy absorption rate at ∆ = 50J, for a system size L = 64 and an amplitude of the modulation
A = 0.005J for different interactions U . ∆. For increasing U the position of the absorption peak shifts closer
towards zero which indicates the closing of the charge gap. (b) The position of the maximum of the absorption
rate peak (orange filled diamonds) and the position of the minimum of the observed oscillation frequency ~ωobs
(blue open squares) correspond approximately to the charge gap for ∆ > U, here ∆ = 50J, L = 64. The position
of the lower band edge within the effective model (purple filled circles) is shown in comparison. Note that for
U ≥ 50J we have no data points for the frequency ωobs as the time evolution of the energy no longer shows this
additional modulation with frequency ωobs. Inset: Close to the transition U ∼ ∆ deviations in t-DMRG from the
naive expectation ∆ − U (dashed line) and from the effective model occur (which limits the validity of the effective
model near the transition).

In Fig. 4.10(b) we show the locations of the maximum of the absorption peak (orange filled diamonds)
and the minimum of ωobs (blue open squares), which agree well, as a function of U. The location is
approximately proportional to (∆ − U) for ∆ >> U. We identify this with the charge gap and confirm
that it closes when approaching ∆ ∼ U. In the range of validity of the effective model, this location
corresponds to the lower band edge in the effective model which is also shown in the figure (purple filled
circles). The effective model is valid for a wide range of U < ∆ but fails when approaching the Ising
critical point which is illustrated in the figure where a sizable deviation of the lower band edge of the
effective model from the observed location of the absorption peak maximum or the minimum ωobs occurs
approximately for U & 45J. Note that for U ≥ 50J we have no data points for the frequency ωobs as
the time evolution of the energy no longer shows this additional modulation with frequency ωobs. The
observed time evolution for U ≥ 50J shows a linear increase modulated by the modulation frequency
ω similar to the time evolution at Ising criticality. The energy absorption rate near the phase transition
to the BOW for U ≥ 50J but still below the Ising critical point is discussed in more detail in Sec. 4.4.1
where we analyze energy absorption at the Ising critical point and in its vicinity.
Additionally, for increasing U a ’dip’ emerges to the right of the divergence for U & 25J. As an example,
we carry out a more detailed analysis of the response at increased U for U = 35J (and at A = 0.0005J)
which is shown in Fig. 4.9(b). At this interaction strength, the result obtained using t-DMRG is still well
described by the result obtained from the effective model by a fit of the time evolution of energy (3.32).
In contrast, the averaged rate fails (3.31) to capture the additional ’dip’ which is possibly washed out due
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to the finite broadening η of the Lorentz-function. The occurrence of the ’dip’ can be explained within the
effective model where the ’dip’ similarly appears in the transition matrix elements squared. The origin of
the ’dip’ will be discussed in detail below in Sec. 4.3.3.

4.3.2 Time-dependence of the absorbed energy

In this subsection we discuss in detail the time-dependence of the energy absorption E(t) − E0. We give
details on the fitting procedure and discuss the observed finite size effects.
As an example, the time evolution of the energy at U = 10J for different perturbing frequencies across
the resonant region is shown in Fig. 4.11 in t-DMRG (orange dots) and within the effective model (purple
line). A strong increase in energy occurs in a narrow region ~ω & (∆ − U) where the total energy of
the system shows an overall linear dependence in time as in (a) and (b). An additional oscillation of
amplitude Ã and small frequency ωobs � ω occurs. Off-resonance (c), only small amounts of energy are
absorbed on average. The modulation of the energy with the perturbation frequency ω in t-DMRG, see
inset in (b), is negligible in the overall behavior. We observe that energy absorption becomes maximal
near the left boundary of the resonant region ~ω = 40.02J (a) and ωobs becomes minimal. For increasing
~ω (b,c) energy absorption decreases whereas ωobs increases. Deviations between t-DMRG and the
effective model occur at late times (see for example Fig. 4.11(b)).

Figure 4.11: The time evolution of the energy as a function of time at ∆ = 50J, U = 10J for a system size L = 64
and an amplitude of the modulation A = 0.001J in t-DMRG (orange dots, connecting lines are a guides to the
eye) compared to the effective model (purple solid line) for different frequencies ~ω of the perturbation across the
resonant region. We show frequencies ~ω = 40.02J (a) at the left edge of the resonant region, ~ω = 40.15J (b)
within the resonant region and ~ω = 40.3J (c) off resonance. The inset of (b) shows a zoom where an oscillation
with perturbation frequency ω is visible in t-DMRG. The y-axis label is the same in (a)-(c) but the scale changes as
absorption decreases considerably from (a) to (c).

We extract the slope m, which we identify with the energy absorption rate, from a fit of

E(t) − E0 = mt + offset + Ã cos(ωobst + ϕ) (4.37)

with fit parameters slope m, y-intercept offset, amplitude Ã, frequency ωobs and phase ϕ of the superim-
posed oscillation. Fit ranges have to be chosen carefully to obtain reliable fits, taking into account the
validity of linear response, and they may vary for each perturbing frequency. The fitting region has to be
chosen within the intermediate linear region (after an initial quadratic rise and before saturation occurs)
which is observed in typical lattice shaking setups. The extent of the linear region depends on the choice
of the amplitude of the modulation A (cf. Sec. 3.2.2).
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Figure 4.12: The absorbed energy as a function of time at ∆ = 50J, for a system size L = 64 in t-DMRG
for different amplitudes of the modulation A. (a) The time evolution of the energy at U = 10J, ~ω = 40.15J
and A = 0.002J, 0.001J, 0.0005J. (b) The time evolution of the energy at U = 35J, ~ω = 15.41J and
A = 0.001J, 0.0005J, 0.0003J.

In summary, the amplitude A has to be chosen large enough to obtain a detectable signal but small enough
to stay within the linear response regime for large enough times in order to obtain reliable fits, i.e. the
absorbed energy should not saturate at short times. For U = 10J we choose an amplitude A = 0.001J
and for U > 10J we choose an amplitude A = 0.0005J. The choice is illustrated for one frequency
within the resonant region at U = 10J and U = 35J in Figs. 4.12(a) and (b) respectively where we show
(E(t) − E0)/A2 for different amplitudes of the modulation. We find that the time evolution of energy is
not very sensitive to the choice of A and we are well within the linear response regime. In reality, we
have verified the choice for many more frequencies. The chosen fit ranges vary for different perturbing
frequencies ω as the time scales present change (for example the frequency ωobs) and the fit ranges have
to be adapted accordingly. For all frequencies, the typical linear time-dependence is observed for times
> 50~/J. It is sufficiently large and saturation does not occur within in the considered time interval. To
reliably extract the absorption from a fit, we consider times up to ∼ 300~/J near maximum absorption
(see Fig. 4.13(a)). Further away from resonance as shown in Fig. 4.13(b), using shorter time intervals, for
example up to 150~/J, is often adequate and can also be used off-resonance, see Fig. 4.13(c).

Figure 4.13: The absorbed energy as a function of time at ∆ = 50J, U = 10J for a system size L = 64 and
an amplitude of the modulation A = 0.001J in t-DMRG (orange dots, connecting lines are a guides to the eye)
compared to the obtained fit (dashed green line) for different frequencies ~ω of the perturbation across the resonant
region. Vertical dashed lines indicated the chosen fit range. We show frequencies ~ω = 40.02J (a) at the left edge
of the resonant region, ~ω = 40.15J (b) within the resonant region and ~ω = 40.3J (c) off resonance. The y-axis
label is the same in (a)-(c) but the scale changes as absorption decreases considerably from (a) to (c).
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We now discuss the finite size effects. A reliable fit of the t-DMRG data becomes difficult near maximum
absorption where ωobs → 0. In the considered time interval less that one period of this oscillation is
observed, see Fig. 4.13(a). The frequency ωobs can still be extracted well but a reliable determination
of the slope is very difficult. This leads to very large error bars when conducting the error analysis, see
for example the error bars on the energy absorption rate in Figs. 4.9(a) and (b). In contrast, within the
effective model we can easily access much longer times which are beyond the reach of numerical accuracy.
We consider longer times as an example, again for U = 10J and U = 35J, at the the left boundary of
the resonant region (maximum absorption) at ~ω ≈ min(εα) − E0 ≈ 40.02J, 15.16J respectively. The
absorbed energy (within the effective model) for different system sizes L = 64−352 is shown in Fig. 4.14.
We ascertain that for a system size L = 64 (blue dotted lines in the main plot and in the inset) no linear
rise occurs but oscillations of very small frequency ωobs (and very large period) exist. In t-DMRG we
only observe part of the initial rise of this oscillation, see for example Fig. 4.13(a). Consequently, the
finite slope which we obtain from a fit in t-DMRG is incorrect. At this frequency corresponding to the left
boundary of the response, the physics is similar to that of a two-level system yielding Rabi oscillations in
time. Within the effective model we find a strong enhancement in the transition matrix element squared at
the left boundary which will be discussed in the following section 4.3.3 (see also Fig. 4.15). Furthermore,
the eigensystem is very discrete near the left boundary for the smaller considered system sizes, e.g.
L = 64 (see also following section and Fig. 4.16(b)). Due to the discreteness of the finite size system
only few transitions are promoted. Consequently, only few states couple and linear response is not valid
here. Note, that the two-level picture is in accordance with our observation that ωobs becomes minimum
at maximal absorption (where the transition matrix elements are strongest) as the Rabi frequency of a
two-level system becomes minimum on resonance (zero detuning).

Figure 4.14: The absorbed energy as a function of time at ∆ = 50J at the left edge of the resonant region in the
effective model for different system sizes and long times beyond the reach of t-DMRG. (a) The time evolution of
the energy at U = 10J, ~ω = 40.02J, A = 0.001J. The inset shows even longer times for L = 64. (b) The time
evolution of the energy at U = 35J, ~ω = 15.16J, A = 0.0005J.

For increasing system sizes the density of states increases and eventually linear response is recovered for
L = 352 (orange dashed line in Fig. 4.14) as expected in the continuum limit. We extract the absorption
rate at maximum absorption from the L = 352 curve which gives a more reliable result for the energy
absorption rate than the result extracted from the L = 64 curve. In Figs. 4.9(a) and (b) this additional
point is indicated by an orange circular marker. We find very strong absorption which hints at the infinite
system size behavior expected to reflect the divergence observed in the non-interacting case. One needs
to keep in mind, in particular for experimental realizations, that a quantitative result for the absorption
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rate will be difficult to obtain from any smaller system size. However, let us point out that if one is only
interested in the qualitative result that strong absorption occurs here, the small system sizes are sufficient.

4.3.3 Transition matrix elements

In this subsection we study in more detail the square of the transition matrix elements |〈BI|ÔS |α〉|
2 from

the band insulating ground state |BI〉 (4.28) to the eigenstates |α〉 of the effective model within the lowest
band of excitations given by Eqs. (4.29) and (4.30) which we determined in Sec. 4.2.1. This enables us
to interpret the different features of the response in terms of the different processes contributing to the
effective model.

Figure 4.15: The transition matrix element squared |〈BI|ÔS |α〉|
2 by superlattice modulation at ∆ = 50J for a system

size L = 256 at different interactions (a) U = 10J, (b) U = 20J, (c) U = 35J. Note that the vertical axis is cropped
as the matrix elements become very large when approaching (εα −min(εα))/bandwidth=0 such that the substructure
is not visible on the full range. The full vertical range near (εα −min(εα))/bandwidth=0 is shown in the inset of (c)
in comparison to ∼ 1/ ((εα −min(εα))/bandwidth)1/2 (black dashed line). The inset in (a) shows a comparison to
the system size L = 64 where not all of the substructures are resolved.

Let us first discuss the full transition matrix element. In Fig. 4.15 the transition matrix element squared
for a system size L = 256 is shown as a function of the shifted eigenenergy εα−min(εα) normalized by the
bandwidth for different U = 10J, 20J, 35J (a-c). For all U the transition matrix element squared shows a
strong rise at the left boundary, with the maximum transition matrix element squared corresponding to the
lowest eigenvalue. The transition matrix element then quickly decays reflecting the behavior of the peak
observed in the energy absorption rate (cf. Fig. 4.9). The transition matrix element squared near the left
boundary decays with an exponent > 1/2, see inset of Fig. 4.15(c), in accordance with our findings for
the absorption rate (cf. inset of Fig. 4.8(a)). To the right of the peak a broad substructure emerges which
mainly consists of two superimposed ’lobes’ and becomes very small at the right boundary, similar to the
observed energy absorption rate. For small U an additional peak appears to the right of the maximum
of the first ’lobe’. This additional peak is strong for U = 10 (a) and still visible for U = 20 (b) and has
essentially disappeared for U = 35 (c). At U = 10J for the smaller system size L = 64J the additional
peak is not resolved, see inset of Fig. 4.15(a), which explains why we do not observe an additional peak
in the energy absorption rate studied for L = 64 (cf. Fig. 4.8(a)). In addition, to the right of the strong
peak (at the left boundary of the resonant region) but to the left of the first ’lobe’ of the substructure, a
’dip’ appears in the square of the transition matrix element. For small U, deep in the band insulator, the
maximum of the first ’lobe’ is located near the strong peak at the boundary, such that the ’dip’ essentially
disappears in the strong enhancement at the left boundary. For increasing U the location of the ’lobe’
maximum and the ’dip’ shift to the right such that the ’dip’ becomes distinctly visible (even at small
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system sizes) which explains our observation of the ’dip’ in the energy absorption rate for increasing U
(cf. the absorption rate for U = 35J in Fig. 4.9(a)).
Studying different system sizes, we find that the ’dip’ becomes more pronounced for increasing system
sizes, see Fig. 4.16(a), and the ’dip’ corresponds to a ’kink’ in the band structure, see Fig. 4.16(b).

Figure 4.16: (a) Zoom into the transition matrix elements as a function of perturbation frequency at ∆ = 50J and
U = 35J for different system sizes. The zoom contains the observed ’dip’ which becomes more pronounced for
increasing system sizes. (b) Zoom into the eigenspectrum at ∆ = 50J and U = 35J for different system sizes.
The first 70 eigenvalues are shown. The ’kink’ in the spectrum corresponds to the ’dip’ in the transition matrix
elements.

We can attribute the different features of the matrix elements to the different virtual processes contributing
to the effective model. All these processes were explained in detail in Sec. 4.2.1 (cf. Fig. 4.4). The
influence of the single contributions onto the structure of the transition matrix elements can be analyzed
by diagonalizing the effective model considering only these contributions, i.e. all terms in the Hamiltonian
that stem from the other processes are set to zero. The resulting eigensystem is then used to determine
the transition matrix elements. Let us first analyze those processes that couple to the two bands closest
in energy to the lowest band of excitations, that is the ground state and the second band of excitations
separated by an energy ∓(∆ − U) from the lowest band of excitations respectively. The transition matrix
element squared resulting from uniquely coupling to the ground state is shown in Fig. 4.17(a). This
process clearly leads to the strong enhancement at the left boundary but no substructure occurs. The
transition matrix element squared resulting from uniquely coupling to the second band of excitations
is shown in Fig. 4.17(b). Here, no enhancement at the boundary occurs but a substructure which is
somewhat similar to the two ’lobes’ occurring in the full result. A hybridization of these processes,
considering both types of processes in the diagonalization, is shown in Fig. 4.17(c) and contains the main
features of the full result. It displays the strong increase at the left boundary as well as the substructure
consisting of two ’lobes’. Consequently, the terms in the Hamiltonian (4.27) proportional to 1/|∆ − U |
dominate the response which is well justified as ∆ − U < ∆ < ∆ + U.
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Figure 4.17: Single contributions of the effective Hamiltonian to the transition matrix element squared by super-
lattice modulation for a system size L = 256 and arbitrary ∆ and U. (a) Uniquely coupling via the ground state
separated by an energy U − ∆ from the first band of excitations. (b) Uniquely coupling via the second band of
excitations separated by an energy ∆ − U from the first band of excitations. (c) Hybridization of processes in (a)
and (b) which captures most of the features present in the full description (cf. Fig. 4.15). Note that the vertical axis
is cropped for a better view of the substructures since the matrix elements become very large at the left boundary
in (a) and (c)

However, this contribution is independent of the choice of U and ∆ and further contributions are needed
to obtain the U-dependence observed in the full result. Considering only those processes that couple to
the third band of excitations at an energy ∆ from the first band of excitations, we find a strong increase
at the right boundary, see Fig. 4.18(a). This feature does not survive in the full result as the terms of
amplitude 1/∆ contribute much more weakly to the Hamiltonian. A hybridization of the processes of
amplitude 1/∆ with the two types of processes of amplitude 1/|∆ − U | is shown in Figs. 4.18(b) and (c)
for U = 35J and U = 10J respectively. The ’lobe’ structure is now different for the two U but does not
yet reflect the full result. For example, the additional peak at U = 10J is still missing. All contributions
are of relevance to reproduce the full response although those processes of amplitude 1/(∆ + U) that
couple to the fourth band of excitations are much weaker.

Figure 4.18: Single contributions of the effective Hamiltonian to the transition matrix element squared by superlat-
tice modulation for a system size L = 256. (a) Uniquely coupling via the third band of excitations separated by
an energy ∆ from the first band of excitations, arbitrary ∆. (b-c) Hybridization with processes from Fig. 4.17(c)
at ∆ = 50J, U = 35J (b) and U = 10J (c) which deforms the substructure from Fig. 4.17(c) and becomes more
similar to the full description in Fig. 4.15. As processes with different energy spacing hybridize, the transition
matrix element now depends on ∆ and U. Note that the vertical axis is cropped for a better view of the substructures
since the matrix elements become very large at the boundaries.
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4.4 Signals of bond order

In this section we study the energy absorption rate as a response to superlattice modulation spectroscopy
at ∆ ∼ U in the bond order wave phase and in the vicinity of the phase transitions separating it from the
band and Mott insulating phases. We study the response of the system at Ising criticality in Sec. 4.4.1
and within the bond order wave phase in Sec. 4.4.2 using t-DMRG and bosonization and show that
the superlattice modulation spectroscopy reveals features of both phase transitions. We discuss how a
divergence in the response function at the Ising critical point signals the onset of bond order and how the
presence of soliton-antisoliton excitations within the BOW phase can be probed.
In t-DMRG we study systems of sizes up to L = 192. In order to obtain sufficient accuracy in the
absorbed energy E(t) we keep a matrix dimension of D = 120 within the bond order wave at L = 64,
D = 160 within the bond order wave at L = 128 and at Ising criticality for all L. We conduct an error
analysis by increasing the matrix dimension from 120 to 160 states (160 to 240). In the Trotter-Suzuki
time evolution we set Jτ = 0.001~ and we use Jτ = 0.0005~ to perform the error analysis. We determine
the maximal uncertainties in the energy absorption rate due to the matrix dimension, the time step and
the variation of the fit range (see App. A for details). The error bars are provided in the figures.
We compare to bosonization calculations obtained in a collaboration [84]. The derivations of the main
formulas are sketched in appendix C.

4.4.1 Ising criticality

Using t-DMRG we time evolve systems of different sizes L = 64, 96, 128, 192 at the Ising critical point
for a range of modulation frequencies and extract the energy absorption rate from a fit of the slope (see
App. B.1.1 for details). To identify the interaction values U approximately corresponding to the Ising
critical point (U/J)c1, we find for each system size the location of the maximum of the derivative of the
order parameter, ∂|〈B̂〉|/∂U, shown in the inset of Fig. 2.6(d). The energy absorption rate for the different
system sizes is shown in Fig. 4.19(a) for two different amplitudes of the modulation A = 0.001J and
A = 0.0005J. We find distinct absorption peaks located at very small perturbation frequencies which
shift closer to the origin for increasing system sizes while the peak amplitude increases. The observed
peaks for the two modulation amplitudes A do not agree in peak amplitude due to saturation effects. The
time evolution of energy saturates at early times for the larger modulation amplitude A = 0.001J such
that we underestimate the absorbed energy when extracting the absorption rate from a fit of the time
evolution of energy, see App. B.1.1 for details.
In bosonization, see App. C, the imaginary part of the complex susceptibility as a response to the
superlattice modulation for a finite system is found to be

Imχ(ω) ∼
(aL
α

)7/4 ∞∑
n=0

Γ
(
n + 1

8

)
Γ (n + 1)


2

× δ (~ω − ~Ω(n)) , (4.38)

where a is the lattice spacing, L is the number of lattice sites and α is the short distance cutoff, typically
of the order of the lattice spacing. The response displays a series of peaks n occurring at

~Ω(n) = 4π
~uc

aL

(
n +

1
16

)
(4.39)

where uc is the sound velocity of the low-energy charge excitations. The spectral weight of Eq. (4.38)
scales as ω−7/4. Consequently, the spectral weight of the absorption rate dE/dt ∼ ωImχ(ω) scales
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as ω−3/4. This signals the divergence expected for the infinite system dE/dt ∼ Lω−3/4 which can be
extracted by taking the limit ω � uc/(aL). At frequencies lower than the spin gap, the charge fluctuations
dominate causing the divergence as the system tends to order.

Figure 4.19: (a) The n = 1 peak of the energy absorption rate at Ising criticality Uc1 for fixed ∆ = 50J for system
sizes L = 64, 96, 128, 192 and amplitudes A = 0.001J (open symbols) and A = 0.0005J (filled symbols). The
Gaussian fits (dashed and solid lines) are guides to the eye. The Gaussian fits approximate the δ-function with
finite broadening and the maxima are fixed to λ(~ω/J)−3/4 with λ chosen to agree with the L = 128 peak. Vertical
bars indicated the predicted peak position where the L = 128, A = 0.0005J peak was chosen to determine the
velocity of charge excitations. Figure adapted from Ref. [84]. (b) The energy absorption rate for L = 64 at Ising
criticality Uc1 = 51.2J and amplitude A = 0.001J as a response to superlattice modulation (green squares) and to
normal lattice modulation (pink diamonds) where no excitations are created.

At low energies (~ω/J < 0.15) our t-DMRG results are in good agreement with the predictions from
bosonization. The peaks’ height follows well the predicted (~ω/J)−3/4 divergence, see Fig. 4.19(a). We
identify our t-DMRG absorption peaks with the n = 1 peak. In contrast, the n = 0 peaks are expected
at energies ~ω ∼ (π~uc)/(4aL) which are too low in frequency to be resolved by our numerics. In our
t-DMRG study (and also in experiments), these peaks acquire a finite width due to, for example, the
finite perturbation time which limits the frequency resolution. We estimate the peak position by fitting to
the t-DMRG data for the amplitude A = 0.0005J a Gaussian approximating the δ-function with a finite
broadening. However, any distribution approximating the δ-function in the limit of small widths would
equally work. The obtained peak positions ~ωpeak from a fit of the peaks for the different system sizes
are given in table 4.1. From each position we extract the sound velocity of charge excitations uc using
Eq. (4.39) which are also listed in table 4.1. Note, that the A = 0.0005J data is more suitable to extract
the sound velocity than the A = 0.001J data due to saturation effects, see App. B.1.1. The different
extracted sound velocities have values typical for lattice systems.

Table 4.1: Estimated position ~ωpeak of the n = 1 peak at Ising criticality for an amplitude of the modulation
A = 0.0005J and the extracted sound velocity of charge excitations uc.

L ~ωpeak/J ~uc/(aJ)
64 0.187 ± 0.005 0.89 ± 0.03
96 0.127 ± 0.005 0.91 ± 0.04
128 0.098 ± 0.005 0.94 ± 0.05
192 0.069 ± 0.005 1.0 ± 0.08
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In principle, the largest L should give the best estimate but due to enhanced saturation effects occurring
in the time-dependence of the absorbed energy for L = 192, see App. B.1.1, we choose the result for
L = 128 as our best estimate. The extracted sound velocity is ~uc/(aJ) = 0.94 ± 0.05 and the values
extracted for the other system sizes agree within the error bars. Even the extracted value for L = 64
is still reasonable even though the peak is already appearing at large frequencies where bosonization
is expected to break down. We use the sound velocity extracted from the L = 128 peak to predict the
expected (within bosonization) position of the peaks for the other L. The predicted peak positions are
indicated in Fig. 4.19(a) by shaded regions and agree well with the peaks obtained using t-DMRG. We
attribute the disagreement in the peak position and height for L = 64 to the breakdown of bosonization
in the energy range where the corresponding n = 1 peak appears. The asymmetry of the n = 1 peak at
L = 192 and A = 0.001J is due to saturation effects in the numerics, see app. B.1.1.
We stress that the normal lattice modulation fails to detect the existence of the Ising phase transition.
Within bosonization, the energy absorption rate does not present a divergence at the Ising transition as
this modulation scheme does not couple to the bond order wave. We confirm using t-DMRG that no
energy is absorbed. The vanishing absorption rate is shown in comparison to the superlattice modulation
peak in Fig. 4.19(b).

Figure 4.20: The energy absorption rate at ∆ = 50J for a system size L = 64 and for an amplitude of the modulation
A = 0.001J at Ising criticality Uc1 = 51.2J and slightly below at U = 51.1J, 51.15J (a) and slightly above
U = 51.25J, 51.3J, 51.35J (b). Solid lines are guides to the eye and vertical dashed lines indicate the spin gap.
The spin gap is obtained from static DMRG calculations keeping up to 240 states. More details on the calculation
of the spin gap are given in the next section 4.4.2. Figures adapted from Ref. [84].

Slightly above and slightly below Ising criticality the charge gap reopens. In Fig. 4.20(a), we show the
energy absorption rate at Uc1 compared to the absorption rates for two interaction values slightly below
criticality. For increasing U, the peaks shift to lower energies and their respective width decreases. This
behavior indicates the closing of the charge gap as the absorption peaks are located at energies clearly
below the spin gap (indicated by vertical dashed lines in the figure). Furthermore, the increasing spectral
weight when approaching the Ising transition signals the expected divergence. In Fig. 4.20(b), we show
the energy absorption rate at Uc1 compared to the rates at three interactions slightly above criticality. For
increasing interactions U = 51.25 and 51.3J, the large peak slowly shifts to larger frequencies, i.e. the
charge gap reopens. At U = 51.35J which approximately corresponds to the maximum of the bond order
parameter (cf. Fig.2.6(d)) the structure of the spectrum changes. The charge gap shifts to even larger
frequencies while a peak arises near the spin gap. We attribute this additional peak to soliton-antisoliton
excitations occurring at multiples of the spin gap near the Kosterlitz-Thouless transition and which will
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be discussed in depth in the next section 4.4.2. Such excitations can already contribute to the spectrum in
the bond order wave phase when the system is probed to the right of the maximum of the order parameter.

Another route to test the bosonization prediction is to consider multiple n peaks for the same sys-
tem size. In Fig. 4.21 we show the energy absorption rate for a system size L = 192 extended to larger
frequencies where the n = 2 and n = 3 peaks are expected. The expected positions are determined from
the sound velocity uc obtained from the n = 1 peak at L = 192 and are indicated by shaded regions in
the figure. Absorption occurs in the expected locations but the absorption at the the expected location
of the n = 2 peak is very weak compared to the other peaks and the (~ω/J)−3/4 behavior cannot be
recovered. Furthermore, an additional rather strong peak occurs between the expected n = 2 and n = 3
peak which may originate from a hybridization of the different charge modes (different n). We attribute
these discrepancies to the breakdown of bosonization at these energies corresponding to higher n peaks.
Consequently, several system sizes have to be considered for an unambiguous detection of the predicted
scaling behavior.

Figure 4.21: The energy absorption rate as a response to superlattice modulation at ∆ = 50J for a system size
L = 192 at Ising criticality Uc1 = 51.3J for amplitudes of the modulation A = 0.001J (blue squares) and
A = 0.0005J (orange diamonds). Solid lines are guides to the eye and vertical bars indicate the predicted peak
positions for different n. The dashed lines indicates the expected λ(~ω/J)−3/4 behavior with λ fixed to agree with
the L = 192, A = 0.0005J peak.

4.4.2 Bond order wave phase

The Kosterlitz-Thouless (KT) transition is hard to pinpoint in a finite system since the bond order
parameter decays slowly (cf. Fig. 2.6(d)). In the BOW to the left of the KT transition a gapped response
followed by a sharp increase in the energy absorption rate is predicted within bosonization (see App. C),

Imχ(ω) ∼
1
J

√(
~ω

2M

)2

− 1 , (4.40)

where the onset of absorption is located at twice the mass M (minimum energy) of a soliton (2M equals
the spin gap), corresponding to the creation of a soliton-antisoliton pair. In the bond order wave phase
the ground state is doubly degenerate. Singlets form on either odd or even bonds. The superlattice
modulation spectroscopy, i.e. the application of the operator B̂ (3.40), can only induce transitions from
the singlet ground state to excited states within the same spin sector. The lowest available state is a pair
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of solitons (domain walls) of opposite spins giving a threshold of twice the soliton mass.
Using t-DMRG we exploit the region to the left of the KT transition within the bond order wave. We
time evolve systems of different sizes L = 64, 128 at U = 52 for a range of modulation frequencies
and we extract the energy absorption rate from a fit of the slope (see App. B.1.2). In Fig. 4.22(b) the
energy absorption rate is shown for the two system sizes. We observe distinct excitation peaks that are
located at multiples of the spin gap as predicted by bosonization. The spin gap is obtained from static
DMRG calculations in different S z = N↑ − N↓ sectors keeping up to 240 states and we define the spin
gap as ∆s = E0(N = N↑ + N↓ = L, S z = 2) − E0(N = N↑ + N↓ = L, S z = 0). For U = 52J we find
∆s ≈ 0.049J for L = 64 and ∆s ≈ 0.024J for L = 128 converged in the matrix dimension to the given
accuracy. For L = 64 we observe a sharp onset of energy absorption near once and twice the spin gap.
For L = 128 we observe a sharp peak at twice the spin gap. The peak expected at once the spin gap is
below the reach of our numerics for L = 128 due to the small frequencies at which the spin gap is located.
The spin gap as a function of U is shown in Fig. 4.22(a). It decreases slowly across the region where
the KT transition is expected. In an infinite system the spin gap closes at the KT transition which we
cannot observe in our finite system. Approaching the KT transition from the bond order wave side, the
soliton mass becomes smaller and smaller until the gap closes at the transition and a low energy feature
arises on the Mott-insulating side, associated with spin excitations. These low energy excitations will be
discussed in the following section 4.5. Consequently, the superlattice modulation succeeds in signaling
the vicinity of the KT quantum critical point. Note, that the normal lattice modulation does not couple to
the soliton-antisoliton excitation, see Fig. 4.22(b).

Figure 4.22: (a) The spin gap as a function of U at fixed ∆ = 50J for system sizes L = 64 and L = 128. (b) The
energy absorption rate at ∆ = 50J within the bond order wave phase at U = 52J as a response to superlattice
modulation for different system sizes L = 64 with A = 0.005J (blue squares) and L = 128 with A = 0.001J (orange
diamonds). Enhanced absorption occurs at once and twice the spin gap (vertical dashed lines) which corresponds
to the creation of soliton-antisoliton pairs (see main text). Note that for L = 128, frequencies corresponding to
once the spin gap are beyond the reach (too small) of our numerics. We compare to the normal lattice modulation
for L = 64 with A = 0.005J (purple circles) where no excitations are created. Solid lines are guides to the eye.

4.5 Mott insulating limit

In this section we study the energy absorption rate as a response to superlattice modulation spectroscopy
on the Mott insulating side of the phase diagram at two values of ∆ = 50J and ∆ = 10J and for different
interaction strengths U. We study both, low-energy spin excitations as well as gapped charge excitations
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using t-DMRG in Secs. 4.5.1 and 4.5.2 respectively. We find a broad low-energy spectrum in accordance
with the expectations for an isotropic Heisenberg chain and with bosonization predictions. At higher
frequencies, we find distinct charge excitation peaks which can be partly interpreted in terms of the
effective model (cf. Sec 4.2).
In t-DMRG we study systems of size L = 64. In order to obtain sufficient accuracy in the absorbed energy
E(t) we keep a matrix dimension of D = 120 at ∆ = 50J and of D = 160 at ∆ = 10J. We conduct an error
analysis by increasing the matrix dimension to 160 states (or 240 respectively) . In the Trotter-Suzuki
time evolution we set Jτ = 0.001~ and we use Jτ = 0.0005~ to perform the error analysis. We determine
the maximal uncertainties in the energy absorption rate due to the matrix dimension, the time step and
the variation of the fit range (see App. A for details). The error bars are provided in the figures.

4.5.1 Spin excitations

At ∆ = 50J we time evolve the system for different U � ∆ and a range of modulation frequencies
at small energies ~ω . 1J. We extract the energy absorption rate from a fit of the slope of the time
evolution of the energy (see App. B.1.3). The energy absorption rate is shown in Fig. 4.23(a) for two
different interaction strengths. We find a broad excitation spectrum at low energies whose width and
height decrease with increasing interaction strength.
In bosonization, see App. C, the low energy spectrum is predicted to be constant for infinite system
sizes. For finite systems, peaks with equal weight are expected which blend into a constant spectrum for
L→ ∞. This spectrum is bounded by a low-energy cutoff and its amplitude is predicted to decrease with
increasing U. We do not resolve the peaks in our t-DMRG but our observations of decreasing width and
height with increasing U corroborate the bosonization predictions.

Figure 4.23: (a) The energy absorption rate in t-DMRG for a system size L = 64 at ∆ = 50J for an an amplitude of
the modulation A = 0.005J on the Mott insulating side of the Kosterlitz-Thouless transition, U = 59J and U = 70J.
Dashed vertical lines indicate the bandwidth. (b) Width of the low-energy band of spin excitations in the Mott
insulator, extracted from the width of the energy absorption rate, as a function of the effective spin coupling JXY for
∆ < U (∆ = 50J, L = 64, A = 0.005J). The dashed line is a linear fit to the data. Figures adapted from Ref. [84].

For J � (U −∆) the ionic Hubbard model can be mapped to an isotropic Heisenberg chain with exchange
interaction JXY = JZ = (4J2)/[U(1 − (∆/U)2)] [83] which exhibits low energy excitations within a band
of width proportional to JXY . We extract the width of the low-energy spectrum from the cutoff at the right
boundary of the observed (broad) spectrum in t-DMRG, indicated by dashed vertical lines in Fig. 4.23(a).
In Fig. 4.23(b) the extracted width for several U values is shown as a function of JXY . We find that
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the width of the absorption spectrum increases linearly with the strength of the Heisenberg exchange
interaction JXY which confirms the spin nature of the excitations.

4.5.2 Charge excitations

At higher frequencies gapped charge excitations are expected at ~ω ∼ (U ± ∆) corresponding to the
creation of a doublon-hole pair where the doublon (hole) is either located on a high energy site (low
energy site) or vice versa. We time evolve the system at ∆ = 10J and for different interaction strengths U
and we extract the energy absorption rate from a fit of the slope (see App. B.1.3). The full spectrum for
U = 40J and U = 50J is shown in Fig. 4.24(a) and (b) respectively. We observe three distinct excitation
peaks at high energies near ~ω ∼ (U − ∆), U, (U + ∆) with a narrow width. The (U ± ∆) peaks are
asymmetric while the U peak is approximately symmetric. The (U − ∆) peak shows a strong rise at
the right boundary that decreases to very small values near the left boundary while the (U + ∆) peak
exhibits a strong rise near the left boundary and decreases to very small values near the right boundary.
The smaller peak at U possibly stems from two-site hopping processes which is in accordance with the
reduced amplitude compared to the other two peaks. Note that we observe a similar low energy spectrum
as for ∆ = 50J in the previous section, see inset of Fig. 4.24(a).

Figure 4.24: The energy absorption rate in t-DMRG for a system size L = 64 at ∆ = 10J for an an amplitude of
the modulation A = 0.0005J on the Mott insulating site of the Kosterlitz-Thouless transition for U = 40J (a) and
U = 50J (b). Vertical dashed lines indicate the energies (U − ∆), U, (U + ∆) at which, naively, an excitation is
expected. The inset of (a) shows the low energy spectrum for A = 0.005J. The inset of (b) shows a comparison to
the averaged rate within the effective model for a broadening η = 0.03J.

Figure 4.25: The energy absorption peak located near (U−∆) in t-DMRG (filled symbols) compared to the averaged
rate within the effective model (solid line) for a finite broadening η = 0.04J (L = 64, ∆ = 10J, A = 0.0005J). The
inset shows a close up of the peaks for U = 15J and U = 20J.

We study in more detail the excitation peak located near (U − ∆). In Fig. 4.25 it is shown at ∆ = 10J
for interactions decreasing from U = 50J deep in the Mott insulator to an interaction strength U = 15J
closer to the phase transition to the bond order wave. For decreasing interaction, the absorption peak
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moves to smaller frequencies as the charge gap decreases. The peak height decreases while the width
increases but the structure (strong enhancement at the right boundary) of the peak remains the same. We
compare to the averaged energy absorption rate (3.31) obtained within the effective model (cf. Sec. 4.2.2)
where we replace the δ-function in Eq. (3.31) by a Lorentz function with broadening η. The averaged
rate is also shown in Fig. 4.25. It agrees well with our t-DMRG at U ∼ 30J − 50J (U − ∆ > ∆) except
for the peak height in the maximum which is underestimated by the effective model. However, the
height of the peak within the effective model depends considerably on the choice of the finite broadening
η of the Lorentz function. Here, the broadening is chosen such that we obtain a smooth curve. As a
consequence the resonant feature at the right boundary of the peak is not resolved and the peak height is
underestimated. For a decreased broadening the resonant feature can be better resolved but the curve is
then no longer smooth. Separate narrow Lorentz peaks are then visible which makes it hard to compare
to the overall behavior. For smaller U, the effective model captures well the width of the absorption
peak but the structure of the peak changes while the structure of the t-DMRG peak remains the same. At
U = 20J (U − ∆ = ∆) the averaged rate becomes symmetric and at U = 15J (U − ∆ < ∆) the symmetry
is inversed and the maximum occurs near the left boundary.

Transition matrix elements In order to gain insights into the origin of the observed structure of the
energy absorption rate within the effective model, we study the structure of the square of the transition
matrix elements |〈AFM|ÔS |α〉|

2 from an antiferromagnetic ground state |AFM〉 to the lowest band of
excitations |α〉 within the effective model. In particular, we investigate the effect of the single processes
contributing to the effective model, similar to our study in the band insulator (cf. Sec. 4.3.3).

Figure 4.26: The transition matrix elements by superlattice modulation at ∆ = 10J for a system size L = 64 at
different interactions. At U = 15J (a) for which U −∆ < ∆ the main weight is located in the left half of the resonant
region. At U = 20J (b) for which U − ∆ = ∆ the weight is distributed across both halves of the resonant region and
at U = 50J (c) for which U − ∆ > ∆ the main weight is located near the right boundary of the resonant region.

Let us first consider the full transition matrix element. It is shown in Fig. 4.26 at ∆ = 10J for the three
cases U = 15J, (U − ∆) < ∆ (a), U = 20J, (U − ∆) = ∆ (b) and U = 50J, (U − ∆) > ∆ (c). The main
structure consists of a weak amplitude background on top of which two ’lobes’ of larger amplitude occur.
At (U − ∆) = ∆ (b) the structure is somewhat symmetric with one ’lobe’ tilted to the left and the other to
the right. This reflects the symmetric shape of the averaged energy absorption rate at U = 20J. In the two
other cases, the structure becomes asymmetric. For (U −∆) < ∆ (a), the left ’lobe’ increases in amplitude
and its maximum shifts further to the left half of the resonant region, corresponding to the increase in
absorption at the left boundary of the averaged energy absorption rate at U = 15J. For (U − ∆) > ∆ (c)
the maxima of both ’lobes’ shift to the right half of the resonant region. One of the lobes increases further
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4.5 Mott insulating limit

in amplitude and its maximum shifts closer to the right boundary corresponding to the increase in the
averaged energy absorption rate at the right boundary of the response within the effective model.
We now analyze the single processes contributing to the effective model. The different processes are
explained in Sec. 4.2.2 and sketched in Fig. 4.4. Let us first consider only processes coupling from the
first band of excitations to the ground state or to the second band of excitations at an energy difference
∓(U−∆) respectively. The resulting transition matrix element squared is shown in Fig. 4.27(a). It displays
an enhancement at the left boundary of the resonant region. This reflects the symmetry of the matrix
element for (U − ∆) < ∆ which is in accordance with the processes of amplitude 1/|U − ∆| dominating
the Hamiltonian at (U − ∆) < ∆ < (U + ∆). Let us now consider only processes coupling from the first
band of excitations to the third band of excitations at an energy difference ∆. The resulting transition
matrix element squared is shown in Fig. 4.27(b). It displays an enhancement at the right boundary of the
resonant region. This reflects the symmetry of the matrix element for (U −∆) > ∆ which is in accordance
with the processes of amplitude 1/∆ dominating the Hamiltonian at (U + ∆) > (U − ∆) > ∆.

Figure 4.27: (a) The transition matrix element squared when only considering processes coupling via the ground
state or the second band of excitations at an energy δE = (∆ − U), (U − ∆) respectively. The matrix element is
independent of the choice of U, ∆ and enhanced values occur at the left boundary of the resonant region. (b) The
transition matrix element squared when only considering processes coupling via the third band of excitations at an
energy δE = ∆. The matrix element is independent of the choice of U, ∆ and enhanced values occur at the right
boundary of the resonant region.

Let us finally comment on the validity of the effective model. Although the bandwidth is correctly
captured, it fails to reproduce the symmetry of our t-DMRG results for (U − ∆) ≤ ∆. We attribute
this discrepancy to the presence of quantum fluctuations which lead to additional processes that we did
not take into account. To gain a first insight into the validity of our approximation we check that the
assumption of a Mott insulating ground state is justified for the considered parameters. We verify that the
double occupancy is small and that antiferromagnetic correlations can be observed at all considered U,
see App. D. However, the assumption of a classical antiferromagnetic ground state neglects quantum
fluctuations which are particularly strong in one dimension such that the classical antiferromagnet is only
a crude approximation of the real ground state. Including the correct ground state into our calculations for
the effective model would bring additional complications. It is not pursued further here as we understand
the main features of the observed response.
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Chapter 4 Superlattice modulation spectroscopy of ultracold fermions in optical superlattices: Study of
the excitation spectrum of the one-dimensional ionic Fermi-Hubbard model

4.6 Connection to experiment and conclusion

In this chapter we studied the excitation spectrum of the one-dimensional ionic Hubbard model as a
response to the superlattice modulation spectroscopy across the entire phase diagram, covering the
band and Mott insulating limits as well as the intermediate bond order wave phase and its bordering
phase transitions. We showed, using t-DMRG and an effective model, that this modulation provides
detailed insights into the gapped excitation spectra in the band and Mott insulating phases as well as the
low-energy spin excitation spectrum in the Mott insulator. Moreover, we demonstrate, using t-DMRG
and bosonization techniques, that the superlattice modulation spectroscopy reveals features of both the
Ising and Kosterlitz-Thouless transitions signaling the presence of the bond order wave phase. This
approach could provide a first experimental glimpse into a phase that has so far evaded detection in the
solid state context.
In order to reinforce the applicability of our superlattice modulation scheme as an experimental proposal
to detect the bond order wave phase, in the following, we address experimentally relevant issues. We
address the question of how an inhomogeneous potential usually present in experiments would influence
the energy absorption in the different phases and we discuss the effects of finite temperatures at which
experiments are performed. Furthermore, we comment on suitable experimental parameter ranges of the
ionic Hubbard model.

Figure 4.28: Influence of a weak harmonic trapping potential on the unit cell density 〈nlB + nlA〉 (a) and the local
bond order parameter b̂l = 〈−c†lAσclBσ + c†lAσcl+1Bσ + H.c.〉 (b) with unit cell index l = 1, ..., L/2 − 1 in the bond
order wave phase for a system size L = 64 at fixed ∆ = 50J for different U/J = 51.2, 51.6, 52 at Ising criticality
and across the bond order wave phase. We compare the homogeneous system (open symbols) to the trapped system
(filled symbols) with weak site-symmetric trapping potential V( j − L/2)2 of strength V = 0.0002J. (a) The unit
cell density is robust to a weak trapping potential away from Ising criticality where the system is gapped. At the
Ising critical point the charge gap closes and makes the system sensitive to small variations of the potential. (b)
The local bond order parameter is slightly affected by a weak trap, also away from Ising criticality, however we
find that the global bond order parameter |〈B̂〉|/(L − 1) (inset) is robust to a weak trap away from Ising criticality.

The band insulator and bond order wave phases, where both charge and spin degrees of freedom are
gapped, are robust against temperature and small trapping effects. Both phases should be accessible in
experiments if one takes care of adiabatically reaching the desired parameter space. In order to verify
the robustness of these two phases to the presence of a trapping potential, we performed static DMRG
calculations taking a weak harmonic (site-symmetric) trapping potential into account. We find that the
band insulator is very robust to the presence of a trap as expected. Within the bond order wave (away
from Ising criticality) we find that the unit cell density 〈nA + nB〉, shown in Fig. 4.28(a), is very robust to
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the presence of the trap and the local bond order order parameter, shown in Fig. 4.28(b), survives in the
presence of a trap, acquiring only a slight asymmetry. Furthermore, the global bond order parameter is
practically unchanged away from Ising criticality, see inset of Fig. 4.28(b). At the Ising critical point
the system is much more sensitive to external influences due to the closing of the charge gap. At Ising
criticality, see Fig. 4.28(a), the unit cell density is modified considerably by the presence of the trap
compared to the homogeneous system, in contrast to within the bond order wave. Note that the unit cell
density in the homogeneous system at Ising criticality is already asymmetric due to boundary effects
which was discussed in Sec. 2.5.2 (cf. Fig. 2.7(a)). The local bond order parameter at Ising criticality
acquires a larger asymmetry in the presence of the trap than within the bond order wave phase. In fact, at
Ising criticality a homogeneous trapping potential as realized in Refs. [69–71] would be advantageous to
unambiguously detect the scaling behavior we identified in this chapter.
The effect of a finite temperature present in experiment needs to be discussed in the Mott insulating
phase and at the Ising critical point where the gap closes. It would be desirable to conduct experiments at
temperatures below the exchange interaction of the order ∼ J2/(∆ + U), the lowest temperature scale for
spin and charge fluctuations. This is a similar scale as for the antiferromagnetic phase (∼ J2/U) in the
repulsive Fermi Hubbard model. Cold fermionic experiments are currently working on reaching these
temperature scales and the experimental observation of relevant correlations was recently reported [17–
19].
Let us now comment on suitable parameters ranges of the ionic Hubbard model for the detection
of the bond order wave. The ionic Hubbard model was experimentally realized for a wide range of
parameters [36], for example, ∆ could be tuned between 0J and 40J. In our case, it is important to choose
parameters such that the bond order wave phase is robust and has a finite extension, preferably as large as
possible, such that both phase transitions can be resolved in U. It has been shown that the extent of the
bond order wave phase and the strength of the bond order parameter both increase with increasing ∆ [98].
Therefore, using a large value for ∆ would be beneficial. However, at the same time, the temperature
should be below ∼ J2/(∆ + U) in order to obtain robust results at the Ising critical point as explained
above. As this temperature bound decreases with increasing ∆ and U, experimentally, one needs to
find an acceptable compromise between these two requirements. Moreover, the strength of the applied
superlattice modulation should be chosen a small fraction of the hopping amplitude (∼ 0.05% − 0.5%) in
order to obtain results within the linear response regime (cf. App. B)
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CHAPTER 5

Thermometry of ultracold fermions in optical
lattices by modulation spectroscopy

In this chapter we present a scheme to directly measure the temperature of a fermionic gas confined to an
optical lattice by means of modulation spectroscopy.
In fermionic lattice experiments one important macroscopic control parameter is the thermal energy which
is intrinsically difficult to control due to the fact that the system is not coupled to a reservoir. A major
challenge in the quantum simulation of the Fermi Hubbard model is a further reduction in temperature in
order to realize interesting phases, for example long range antiferromagnetic order or unconventional
superfluidity [37]. This is accompanied by the need of accurate temperature measurements, in particular
when pursuing the goal to map out the equilibrium Fermi-Hubbard phase diagram as a function of
temperature. However, experimentalists still lack reliable thermometry methods at low temperatures.
In the absence of an optical lattice potential, for the harmonically trapped gas in the weakly interacting
regime, the temperature can be extracted from the integrated density profile imaged after a time-of-flight
expansion which reflects the temperature-dependent momentum distribution of the particles trapped in
the harmonic potential [53]. This is more difficult at strong interactions as the expansion is no longer
ballistic but the temperature can be extracted from the ’tail’ of the distribution in many cases. However,
this becomes inaccurate at very low temperatures of a few percent of the recoil energy. Typically, the
temperature is measured before and after ramping into the optical lattice. Assuming entropy conservation
during the loading process, one can determine the temperature in the lattice from the initial entropy. This
is markedly limited by non-adiabatic heating processes caused by the ramping of the lattice or by light
scattering. Furthermore, it cannot be used for in-lattice cooling schemes. Thus, the development of
in-lattice thermometry techniques is of relevance. Different possible schemes to directly measure the
temperature of fermionic particles in the optical lattice have been proposed and tested in experiments. All
these methods have their limitations and most cannot be extended into the low-energy regime of interest.
Ref. [38] gives an overview on some of the thermometry schemes available for bosonic and fermionic
particles. Here, we shortly summarize the most important thermometry setups for fermionic particles.
For instance, the temperature can be extracted from the double occupancy [156, 157] which is sensitive to
thermal fluctuations for temperatures on the order or above the on-site interaction strength. The authors of
Ref. [158] suggest a temperature measurement based on the fluctuation-dissipation theorem and spatially
resolved density-density correlations. This requires in-situ resolution in the measurement which has
only recently been achieved [159–162]. It was suggested to use Raman spectroscopy, transferring the
atoms to a third hyperfine state, such that the Raman signal depends on the temperature-dependent Fermi
factor [163], or to use off-resonant light diffraction from atoms in the lattice as a thermometer since the
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scattered intensity carries information on density-density fluctuations [164]. Later on, it was suggested to
study the temperature-dependent fluctuations in the momentum distribution as a response to an artificial
gauge field [165]. Moreover, the temperature of fermions in an anisotropic three-dimensional lattice has
been extracted from a measurement of the nearest-neighbor spin correlator [166] and by spin-sensitive
Bragg scattering of light [167].
Taking this background as a starting point we suggest lattice modulation spectroscopy as a possible
thermometer for non-interacting fermionic particles confined to an optical lattice which is easy to
implement in experiment and works particularly well for temperatures below the Néel temperature
where antiferromagnetic ordering is expected to occur in contrast to the above methods which mostly
fail in this temperature regime. Here, we present a thermometry setup based on the normal lattice
modulation spectroscopy (cf. Sec. 2.6). In Sec. 5.1 we develop a multiple band tight-binding description
for the considered setup, non-interacting fermionic particles in an optical lattice. This section is rather
technical, no results will be given. The obtained tight-binding model will be used for all calculations
in the subsequent sections. In Sec. 5.2 we explain in detail the detection scheme, a measurement of
the number of excited atoms by means of the adiabatic band mapping technique and how this relates
to the atom excitation rate within linear response theory. We then study the atom excitation rate as a
response to a time-dependent modulation of the lattice amplitude for the one-dimensional homogeneous
system in Sec. 5.3 and for the trapped system in one and two dimensions in Sec. 5.4. We show that the
response reflects a clear signature of the Fermi distribution of the equilibrium system and we discuss the
possibilities of thermometry considering realistic experimental parameters. In Sec. 5.5 we compare the
results for the normal lattice modulation scheme to the superlattice modulation spectroscopy, another
suitable setup for thermometry, which was investigated in the author’s master thesis [168, 169]. Note that
in the figures in Secs. 5.1 and 5.2 we will directly show the comparison to the superlattice modulation
although the results will not be discussed before Sec. 5.5. In Sec. 5.6 we summarize and comment on the
applicability of our scheme to systems of interest. The results of this chapter are published in Ref. [169].
More recently, by means of in-situ measurements, it has been demonstrated that the temperature can be
determined from the equation of state which relates the temperature to the in-situ density profile [17,
54, 170, 171] or by a reconstruction of the local entropy from occupation probabilities [162]. At lower
temperatures on the order of or below the hopping parameter, the temperature can be extracted from the
spin structure factor [18, 19] or the nearest-neighbor spin correlations [17, 19]. However, away from
half-filling numerical simulations are challenging such that adequate thermometry methods remain an
important open question in some parameter ranges.

5.1 Two-band tight-binding model

In this section we introduce a multiple band tight-binding description which is a convenient description to
study the response of the system to lattice amplitude modulation. We consider non-interacting fermionic
atoms confined to the three-dimensional periodic potential V0(~x) (2.2) in the absence of an additional
external trapping potential. We assume the lattice to be sufficiently deep such that the lowest Bloch
bands are well separated. We compute the eigenfunctions which are the Bloch functions along the
different directions xi = x, y, z corresponding to i = 1, 2, 3. We denote the Bloch functions φ

kxi
αxi

(xi)
with corresponding eigenvalues Eαxi

(kxi) where αxi denotes the band index and the quasimomentum kxi

lies within the first Brillouin zone ] − kL, kL]. For details see Sec. 2.2.2 where we outline how to obtain
the Bloch spectrum from the single-particle Schrödinger equation. The full spectrum in three dimensions
is given by Eα(~k) = Eαx(kx) + Eαy(ky) + Eαz(kz) as we consider non-interacting fermions for which
the potential is separable. The index α ≡ {αx, αy, αz} labels the band. Note, that the Bloch functions

78



5.1 Two-band tight-binding model

factorize φ~kα(~x) = φkx
αx(x)φky

αy(y)φkz
αz(z) in the tight-binding approximation, neglecting the coupling to other

Bloch bands and the overlap of different sites. The unperturbed Hamiltonian (2.7) (for Vtrap = 0 and
V(~x − ~x′) = 0) in Bloch basis is then given by

H0 ≈
∑
α,~k,σ

(
Eα(~k) − µ

)
c†
α~kσ

c
α~kσ

, (5.1)

where c(†)
α~kσ

are the fermionic annihilation (creation) operators and where we include a chemical potential
µ which controls the particle number.
We apply normal lattice amplitude modulation along one direction x. We assume that initially only the
lowest band α = 1 ≡ {αx = 1, αy = 1, αz = 1} is occupied and we consider excitations to a higher Bloch
band α′ = {α′x > 1, α′y = 1, α′z = 1}. We count the bands starting from one, that means the lowest band
α = 1 is called the first band. Referring to the bands of excitations we also start counting from one. This
means that the first band of excitations corresponds to the second band α′ = 2 and the second band of
excitations corresponds to the third band α′ = 3. The basic idea is that the frequency-resolved atom
excitation rate to higher Bloch bands will reflect the Fermi factor as it will depend on the temperature-
dependent filling of the lowest band. The atom excitation rate will be investigated for the homogeneous
and the trapped system in Secs. 5.3 and 5.4. From a measurement of the atom excitation rate to higher
Bloch bands, the temperature can be extracted. A suitable detection scheme will be discussed in Sec. 5.2.

In the mean time, we construct the perturbing term (2.39) (added to the Hamiltonian by the lattice
modulation) in Bloch Basis representation. In order to construct the perturbing operator ÔN in Bloch
basis representation, we need to determine the transition matrix elements from the initial state to the final
state by the perturbing potential δV(x) = sin2(kLx) (cf. Sec. 2.6 where we derive the time-dependence of
the modulated potential). Thus, the transition matrix elements of interest are given by

M(α=1,~k)→(α′,~k′) =
1

Ωx

∫ xmax

xmin

dx φk′x∗
α′x

(x)δV(x)φkx
αx=1(x)

∏
i,1

δα′xi ,αxi =1 δk′xi ,kxi
, (5.2)

where Ωx = (L − 1)a is the system size in x-direction with L the number of lattice sites and a the lattice
spacing, xmin = −(L/2 − 1)a and xmax = La/2. We used that the Bloch functions are orthonormal,

i.e. (1/Ωxi)
∫ xi,max

xi,min
dxi φ

k′xi
∗

α′xi
(xi)φ

kxi
αxi

(xi) = δα′xi ,αxi
δk′xi ,kxi

such that the contributions along y and z direction

reduce to δ-functions. We insert the perturbing potential δV(x) = sin2(kLx) and find that the perturbation,
to a good approximation, only couples momenta ~k and ~k′ ≈ ~k. This is illustrated in Fig. 5.1(a) where
the transition probability to the first band of excitations α′x = 2 as a function of kx and k′x is shown. All
other matrix elements for ∆~k , 0 are strongly suppressed. Quasimomentum is approximately conserved.
This is in accordance with the common lowest band tight-binding approximation which conserves
quasimomentum as may be seen from a Fourier transform of the operator ÔN (2.40) in the lowest band
tight-binding description, ÔN = 2

∑
kx,σ cos(ak)c†kxσ

ckxσ
. We approximate

M(α=1,~k)→(α′,~k′) = Mα′x(kx, k′x)
∏
i,1

δk′xi ,kxi
≈ Mα′x(kx)δ~k,~k′ , (5.3)

such that in the multiple band tight-binding approximation the perturbing operator becomes

ÔN =
∑
~k,σ

M
α′x

(kx)
(
c†
α′~kσ

c
α=1~kσ

+ H.c.
)
. (5.4)
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The transition probability |Mα′x(kx)|2 for exciting atoms from the lowest band to the band α′x = 2 or
α′x = 3 with zero momentum transfer ∆kx = 0 is shown in Fig. 5.1(b). Excitations to the first excited
band α′x = 2 (blue solid line) are prohibited at the center kx = 0 and the border kx = kL of the Brillouin
zone due to the symmetry of the Bloch functions. The maximum probability lies in between coinciding
with the region of interest around the Fermi surface of a half-filled lowest band. This is advantageous as
the temperature dependence of the Fermi surface will be captured by the response (atom excitation rate)
of the system to lattice modulation spectroscopy. Additionally, the amplitude is sufficiently strong such
that the atom excitation rate is strong enough to obtain a detectable signal at small perturbing amplitudes
and reasonable perturbing times. We comment on the detectability in more detail, giving numbers for an
experimental example (in the presence of an external trap) in Sec. 5.4.

Figure 5.1: (a) The transition matrix elements squared |Mα′x=2(kx, k′x)|2 for exciting atoms at quasimomentum
kx from the lowest band α = 1 to the first excited band {α′x = 2, αy = 1, αz = 1} for all k′x by normal lattice
amplitude modulation. The only non-zero elements correspond to k′x = kx. Inset: The transition matrix elements
squared |Mα′x=3(kx, k′x)|2 for exciting atoms at quasimomentum kx from the lowest band α = 1 to the second excited
band {α′x = 3, αy = 1, αz = 1} for all k′x by superlattice modulation spectroscopy. In the case of the superlattice
modulation, the only non-zero elements correspond to ∆kx = kL. This case will be discussed in Sec. 5.5. (b) The
transition probability |Mα′x (kx)|2 for exciting atoms to the first (blue solid line) α′x = 2 and the second excited (blue
dashed line) α′x = 3 band at quasimomentum k′x = kx by normal lattice modulation and for exciting atoms to the
second excited band (orange dash-dotted line) α′x = 3 at quasimomentum k′x = kx + kL by superlattice modulation.
In (a) and (b) we consider a lattice depth V0 = 7Er in x-direction. Figures adapted from Ref. [169].

In contrast, excitations to the second excited band α′ = 3 (blue dashed line) are non-zero for all quasimo-
menta kx and the amplitude is about three times larger, also see Fig. 5.1(b). The transition probability
|M3(kx)|2 is maximum at kx = 0 and kx = kL such that the response at the corresponding frequencies will
be dominated by these contributions if considering the full range of excitations. Consequently, it is more
favorable to use excitations to α′ = 2 for a temperature measurement at intermediate lattice heights.
Let us remark, that the increase of transition amplitude with increasing α′ from 2 to 3 is in agreement with
the harmonic oscillator approximation for deep lattices. In this case, the lattice wells almost decouple and
each well can be approximated by a harmonic oscillator (cf. Sec. 2.2.2). The modulation spectroscopy
then corresponds to a frequency modulation of the quantum harmonic oscillator, ω̃HO = ωHO(1 + ρ),
where ρ is a small parameter. This modulation couples to the second excited band, but transitions to
the first excited band are prohibited by symmetry. We confirm that the transition probability to the first
excited band |M2(kx)|2 decreases for increasing lattice depths in accordance with the harmonic oscillator
approximation.
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5.2 Detection scheme

In this section we suggest a simple measurement scheme of the energy absorbed by the system as
a response to the lattice amplitude modulation which enables one to measure the excitation rate
quasimomentum-resolved and thus reflecting the temperature-dependence of the Fermi factor.
In bosonic systems, energy absorption imprints a characteristic signal in time-of-flight absorption images
after sudden switch-off. The energy absorbed by the system is typically estimated from the broadening of
the central peak of the momentum distribution. From this, precise information on the excitation spectrum
can be obtained [21] (cf. Sec. 2.6). Moreover, it was demonstrated that a comparison of time-of-flight
absorption images to Quantum Monte Carlo simulations for strongly interacting Bose gases on a lattice
can be used as a direct thermometer [172] which enabled the experimental determination of the finite
temperature phase diagram for bosonic superfluids in an optical lattice. Determining the energy absorbed
by fermionic systems from the momentum distribution in time-of-flight images is much harder than for
bosons. The momentum distribution is step-like due to fermionic statistics and not as sensitive to heating.
It only depends on temperature by a smearing of the Fermi surface such that very high momentum
resolution is necessary in order to extract the temperature. The concept considered here relies on the
excitation to higher Bloch bands by means of modulation spectroscopy combined with the adiabatic band
mapping technique.

Figure 5.2: The three lowest Bloch bands of a homogeneous optical lattice along x-direction (blue solid lines).
In the case of the normal lattice modulation the perturbing frequency (solid arrows) is chosen such that atoms
are transferred from the lowest band αx = 1 to the first excited band α′x = 2 with conserved quasimomentum kx.
In the case of the superlattice modulation the perturbing frequency (dashed arrows) is chosen such that atoms
are transferred from the lowest band αx = 1 at quasimomentum kx to the second excited excited band α′x = 3 at
quasimomentum kx + kL which is equivalent to exciting to the shifted band Eαx=3(kx + kL) (orange dashed line) at
same quasimomentum kx. The shifted band Eαx=2(kx + kL) is also depicted by an orange dashed line. The minimal
and maximal value of the possible excitation energies are related to the initial filling of the lowest band indicated
by a thicker line, that corresponds to quarter-filling at zero temperature in this figure. The minimum possible
excitation energy at zero temperature is indicated by the arrows. The band structure calculation was done for a
lattice depth V0 = 7Er along the x-direction.

We consider lattice modulation frequencies such that excitations from the lowest band αx = 1 to the
first excited band α′x = 2 are created. Possible excitations are sketched in Fig. 5.2. The transition
probability is non-zero for conserved quasimomentum ∆kx ≈ 0 such that excitations occur vertically
in quasimomentum space. As the second band is inverted and stretched (in energy) compared to the
lowest band, exactly one quasimomentum pair ±kx is on resonance for each excitation energy ~ω. Thus,
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a quasimomentum-resolved excitation is guaranteed and can be detected by a measurement of the
transferred band occupation 〈nα

′
x

ω (t)〉 to the excited band α′x without the necessity of quasimomentum
resolution within the band
Possible excitations strongly depend on the initial filling of the lowest band. For example, in Fig. 5.2 the
vertical arrows indicate the transition frequency corresponding to the largest occupied momentum pair
(the initial occupation is indicated by the thick line which covers a fraction of the lowest band) which
gives a lower bound for the possible excitation frequencies. At finite temperatures, the filling (occupation
of single-particle states) of the lowest band is determined by the Fermi function which depends on
temperature. Consequently, the response (atom excitation rate) is quasimomentum-resolved and reflects
the temperature dependence of the occupation of the lowest band. We sometimes refer to this temperature
dependence as Fermi dependence. Additionally, as the band of excitations is inverted and broader (in
energy) compared to the lowest band, the Fermi dependence of the response will be magnified in energy
space, i.e. the Fermi dependence is ’stretched’ with respect to the initial Fermi distribution in the lowest
band. Consequently, the required frequency resolution needed in experiment to resolve the Fermi tail is
considerably reduced. Note that band inversion itself leads to a stretching of the Fermi distribution by a
factor 2 which is strongly enhanced by the increased bandwidth of the excited band.
This is experimentally appealing because a measurement of the transferred band occupation amounts
to merely counting the particles appearing in higher Brillouin zones in adiabatic band mapping [173].
The basic idea of this technique is to ramp down the lattice adiabatically such that quasimomentum
is conserved in contrast to a sudden switch-off. Adiabatic means slow compared to the vibrational
frequencies in the lattice but fast enough such that the population of the energy bands does not change
during ramp down. Each state with quasimomentum k is finally mapped onto a free particle state with
momentum k when the lattice is completely switched off. A particle in the nth energy band is mapped
onto the nth momentum interval of the free particle. In a time-of-flight absorption image particles from
the nth energy band appear in the nth Brillouin zone. Thus, applying adiabatic band mapping after a
certain duration t of the perturbation gives access to the transferred band occupation 〈nα

′
x

ω (t)〉. Here,
quasimomentum resolution in the measurement is not required as the excited quasimomenta are fixed by
the perturbation frequency (cf. Fig. 5.2). A multiplication of the transferred band occupation with the
perturbing frequency yields the absorbed energy E(t) − E0 = ~ω〈nα

′
x

ω (t)〉 . In the linear response regime
(cf. Sec. 3.2) we expect a linear increase in time of the absorbed energy and similarly of the transferred
band occupation. Within linear response theory, the slope of the transferred band occupation can be
related to the atom excitation rate which can be obtained from the energy absorption rate dE/dt (3.30)
and is given by

1
|A|2

∂t〈nα
′

ω 〉 =
1

2~
π

Z0

(
1 − e−β~ω

)∑
n,m

∣∣∣〈m|ÔN |n〉
∣∣∣2 e−βEnδ (~ω − (Em − En)) , (5.5)

where Z0 =
∑

n exp(−βEn) is the partition function, β = 1/(kBT ) is the inverse temperature, |n〉 and |m〉
are eigenstates of the unperturbed system H0 (5.1) with corresponding eigenenergies En and Em and
the perturbing part of the Hamiltonian it given by ÔN (5.4). The application of linear response to the
considered situation of non-interacting fermions might seem counter-intuitive at a first sight because exact
momentum resolution of the sinusoidal perturbation would lead to a resonant coupling of two discrete
levels and induce clean Rabi-oscillations. However, in a typical experimental setup due to the presence
of an additional trapping potential, weak interactions and a finite perturbation time, a group of states
is excited by the perturbation which yields a linear rise in energy for sufficiently large times. One can
verify the applicability of linear response theory using a time-dependent density-matrix renormalization
group study. This was done considering an example case including a harmonic trapping potential or
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nearest-neighbor interactions in Ref. [168].

5.3 Homogeneous system in one dimension

In this section, we consider the simplest case consisting of homogeneous one-dimensional tubes of
atoms in an optical lattice oriented along the x direction. The perturbing operator (5.4) acting on the one-
dimensional system becomes ÔN =

∑
kx,σ M

α′x
(kx)

(
c†
α′xkxσ

c
αx=1kxσ

+ H.c.
)

such that the atom excitation
rate (5.5) becomes

1
|A|2

∂t〈nα
′

ω 〉 =
1

2~
π

Z0

(
1 − e−β~ω

)∑
n,m

∣∣∣∣∣∣∣∣
〈
m
∣∣∣∣∑

kx,σ

M
α′x

(kx)
(
c†
α′xkxσ

c
αx=1kxσ

+ c†
αx=1kxσ

c
α′xkxσ

) ∣∣∣∣n〉
∣∣∣∣∣∣∣∣
2

×e−βEnδ (~ω − (Em − En)) . (5.6)

The momentum-selectivity of the perturbation fixes the possible configurations of |n〉 and |m〉 which give
non-zero expectation value at a certain kx-value and a certain σ-value. We can thus drop the sum

∑
kx,σ

keeping in mind that the sum over the states
∑

n,m contains all possible configurations of kx and σ at
which an excitation can occur. We denote this sum as

∑
n(kx,σ),m(kx,σ). Assuming that initially only the

lowest band is occupied, the resonance condition becomes Em − En = Eα′x(kx) − Eαx=1(kx) and we can
neglect the second term since c†

αx=1kxσ
c
α′xkxσ

|n〉 gives zero. We obtain

1
|A|2

∂t〈nα
′

ω 〉 =
1

2~
π

Z0

(
1 − e−β~ω

) ∑
n(kx,σ),m(kx,σ)

∣∣∣∣Mα′x
(kx)

∣∣∣∣2 ∣∣∣∣〈m|c†α′xkxσ
c
αx=1kxσ

|n〉
∣∣∣∣2

×e−β(En−µN)δ
(
~ω − (Eα′x(kx) − Eαx=1(kx))

)
=

1
2~

π

Z0

(
1 − e−β~ω

) ∑
n(kx,σ),m(kx,σ)

∣∣∣∣Mα′x
(kx)

∣∣∣∣2 〈n|c†αx=1kxσ
c
α′xkxσ

|m〉〈m|c†
α′xkxσ

c
αx=1kxσ

|n〉

×e−β(En−µN)δ
(
~ω − (Eα′x(kx) − Eαx=1(kx))

)
=

π

2~

(
1 − e−β~ω

) ∑
n(kx,σ)

∣∣∣∣Mα′x
(kx)

∣∣∣∣2 〈n|c†αx=1kxσ
c
α′xkxσ

c†
α′xkxσ

c
αx=1kxσ

|n〉

×
e−β(En−µN)

Z0
δ
(
~ω −

(
Eα′x(kx) − Eαx=1(kx)

))
=

π

2~

(
1 − e−β~ω

)∑
kx,σ

∣∣∣∣Mα′x
(kx)

∣∣∣∣2 f
(
Eαx=1(kx) − µ

) (
1 − f

(
Eα′x(kx) − µ

))
× δ

(
~ω −

(
Eα′x(kx) − Eαx=1(kx)

))
, (5.7)

where the sum runs over all kx in the first Brillouin zone and with the Fermi factor
f (E − µ) = 1/(1 + exp((E − µ)/kBT )). Using ~ω = Eα′x(kx) − Eαx=1(kx) we find(

1 − e−β~ω
)

f
(
Eαx=1(kx) − µ

) (
1 − f

(
Eα′x(kx) − µ

))
= f

(
Eαx=1(kx) − µ

)
− f

(
Eα′x(kx) − µ

)
, (5.8)
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and Eq. (5.7) becomes

1
|A|2

∂t〈nα
′

ω 〉 =
π

2~

∑
kx,σ

∣∣∣∣Mα′x
(kx)

∣∣∣∣2 [
f
(
Eαx=1(kx) − µ

)
− f

(
Eα′x(kx) − µ

)]
× δ

(
~ω −

(
Eα′x(kx) − Eαx=1(kx)

))
=

π

~

∑
kx

∣∣∣∣Mα′x
(kx)

∣∣∣∣2 [
f
(
Eαx=1(kx) − µ

)
− f

(
Eα′x(kx) − µ

)]
× δ

(
~ω −

(
Eα′x(kx) − Eαx=1(kx)

))
(5.9)

The second term can be neglected as we assume that initially only single-particle states in the lowest
band are occupied. Taking the continuum limit

∑
kx → (L/2kL)

∫ kL

−kL
dkx we obtain

1
|A|2

∂t〈n
α′x
ω 〉

1D =
πL
~kL

∫ kL

0
dkx |Mα′x(kx)|2 f

(
Eαx=1(kx) − µ)

)
δ
(
~ω −

(
Eα′x(kx) − Eαx=1(kx)

))
. (5.10)

This expression strongly depends on temperature through the Fermi function. As a realistic example we
consider 40K-atoms trapped in an optical lattice created from a laser wave of wave length λ = 1064nm
for the band structure calculation and we conveniently express all energies in units of the atomic recoil
energy Er = h2/2mλ2. These parameters are used throughout the remainder of this chapter. Temperatures
are expressed in units of the nearest-neighbor tunneling amplitude J of the atoms in the lowest band of
the one-dimensional optical lattice J = (Eαx=1,max − Eαx=1,min)/4 ≈ 0.04Er.

Figure 5.3: The atom excitation rate of the one-dimensional homogeneous system by normal lattice amplitude
modulation to the first band of excitations α′x = 2 for a half-filled (a) and quarter-filled (b) lowest band at
temperatures kBT=0J, 0.5J, 1J and 1.5J. Figures adapted from Ref. [169].

In Fig. 5.3 we show the atom excitation rate to the first excited band α′x = 2 for different temperatures
at half- and quarter-filling of the lowest band in (a) and (b) respectively. At zero temperature, all states
up to the Fermi energy are filled whereas all states above the Fermi energy are empty. Consequently,
the minimal possible excitation energy corresponds to the excitation energy of an atom located at the
Fermi surface (cf. Fig. 5.2). Smaller energies correspond to states located above the Fermi surface which
are empty and the zero-temperature response vanishes. At higher excitation energies the response is
finite as atoms below the Fermi surface can be addressed. The maximal excitation energy possible in
this setup is always given by the energy needed to excite an atom with quasimomentum kx = 0. At finite
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temperatures the atoms get thermally excited around the Fermi surface such that the step-like nature of
the response at zero temperature softens around the Fermi step according to the Fermi function. Now,
the possible excitations depend on the Fermi distribution in the lowest band. There is no longer a sharp
frequency cutoff in the response but the Fermi dependence of the occupation is reflected in the response
as a function of excitation energy. We study temperatures kBT=0.5J, 1J and 1.5J. For both fillings the
temperature dependence of the response is clearly visible. The position of the Fermi tail depends on the
filling due to the dependence of the the excitation energy ~ω on the quasimomentum kx. The Fermi tail
shifts to smaller energies for larger fillings as the center of the Fermi function is shifted to larger kx. At
higher temperatures the Fermi step smears out more which results in a broadening of the low frequency
tail, in particular at low fillings. The possible broadening is limited by the upper band edge, limiting the
resolution at high temperatures. Moreover, the Fermi tail is broadened in energy due to the increased
bandwidth of the first excited band with respect to the lowest band. The different response functions can
be clearly distinguished for the displayed temperatures in Fig. 5.3.

5.4 Trapped system

In this section we consider the response of the system in the presence of an external harmonic trapping
potential as given by Eq. (2.3) which is present in typical experimental setups. In the presence of a
trapping potential, the filling varies when moving through the trap. Consequently, we need to consider the
effect of a trapping potential on the full response as the response strongly depends on the filling. We treat
the trap within the local density approximation (LDA) which considers the external potential as a spatially
varying chemical potential. We start by introducing the LDA in Sec. 5.4.1. We then apply it to obtain the
atom excitation rate of the harmonically trapped system. We study the one-dimensional trapped system
in Sec. 5.4.2 and we then extend our study to higher-dimensional trapped systems modulated along one
direction in Sec. 5.4.3. In particular, we consider relevant experimental parameters in order to quantify
the required frequency resolution in experiment.

5.4.1 Local density approximation

In the LDA [174], a d-dimensional trapping potential of the general form V(~x) = Vtrap(|~x|/a)γ (with
exponent γ), where ~x is the position vector in d dimensions, a is the lattice spacing and Vtrap is the
strength of the external confinement, is absorbed into the chemical potential. The chemical potential then
depends on space as

µ(x j) = µ0 − Vtrap

(
|x j|

a

)γ
, (5.11)

where x j denotes the d-dimensional position vector labeling each lattice site and µ0 is the chemical
potential in the center of the trap. Within the LDA any observable of the trapped system A(x j) can be
related to the observable of the homogeneous system Ah(µ) as A(x j) = Ah(µ(x j)). Consequently, different
phases may coexist in the trap as the local density changes in space. The LDA can be used to a good
degree of accuracy in many cases [175] but results are poor for narrow traps where the potential varies
rapidly on the scale of the lattice spacing or near a phase transition due to proximity effects. Particles
from one phase may leak into the neighboring phase such that there is no clean phase boundary between
spatially separated different phases which is neglected in the LDA. This can be incorporated by numerical
calculations.
In the LDA, the total particle number in the trap is obtained by summing the space-dependent local
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occupancy n j over the whole system. In the continuum limit one obtains

N =
∑

j

n j ≈
Ωd−1

ad

∫
dx xd−1nh(x) =

(
D

Vtrap

)d/γ
Ωd−1

γ

∫ µ̄0

−∞

dµ̄(µ̄0 − µ̄)
d
γ−1nh(µ̄), (5.12)

where nh(x) is the density in the homogeneous system and Ωd−1 is the surface of a sphere in d dimensions,
for example Ω0 = 2, Ω1 = 2π and Ω2 = 4π, and the dimensionless chemical potential is given by µ̄ = µ/D
where D is the half-bandwidth. In the Fermi-Hubbard model, D = zJ where z is the number of nearest
neighbors. One defines the dimensionless characteristic density

ρ = N
(
Vtrap

D

)d/γ

=
Ωd−1

γ

∫ µ̄0

−∞

dµ̄(µ̄0 − µ̄)
d
γ−1nh(µ̄), (5.13)

which does not depend on the strength of the confining potential as may be seen from the right hand side
of the equation. Thus, the characteristic density can be used to describe experimental systems regardless
of the particular realization of the trap. It can be experimentally controlled by either changing the total
number of particles N or by reducing the half-bandwidth D through increasing the lattice depth. Finally,
one obtains mean values Ā (in the trap) of local observables A j as,

Ā =
1
N

∑
j

A j =
Ωd−1

ργ

∫ µ̄0

−∞

dµ̄(µ̄0 − µ̄)
d
γ−1Ah(µ̄), (5.14)

which evidently only depend on the characteristic density ρ and on the chemical potential µ0 in the center
of the trap. All local quantities on the central site and all global quantities depend only on ρ as µ0 itself
only depends on ρ. Note that as an important consequence, the state diagram of the trapped system
uniquely depends on the effective density ρ instead of on the particle number N and the trapping Vtrap
separately. For a fixed particle number, ρ changes upon variation of trapping strength Vtrap or variation of
lattice depth (corresponding to a variation of D). In contrast, the density of the homogeneous system is
determined by the number of particles N present in the system and stays unchanged if the lattice depth is
varied for a given particle number N.
We apply the LDA to obtain the atom excitation rate of the harmonically trapped system in one and
two dimensions in the following sections. The harmonic confinement with γ = 2 is usually a good
approximation of the trapping potential at the position of the atomic cloud. In Sec. 5.4.2 we also compare
the LDA results to exact calculations, which supports the validity of the used approximation in this case.

5.4.2 Trapped system in one dimension

In this subsection we consider the one-dimensional system now subjected to an additional harmonic
confinement. The mean atom excitation rate of the trapped system is obtained within LDA using
Eq. (5.14) by summing the response of the homogeneous system per lattice site ∂t〈n

α′x
ω 〉

1D/(|A|2L) over
all chemical potential present in the trap. We normalize by the number of atoms and obtain

∂t〈n
α′x
ω 〉

1D

|A|2
=

1
NL|A|2

√
2J

Vtrap

∫ µ0

−∞

dµ̄
∂t〈n

α′x
ω 〉

1D

√
µ̄0 − µ̄

(5.15)

with µ̄ = µ/2J and Vtrap = (m/2)ω2
t,xa2 as d = 1 and γ = 2 and where the chemical potential in the

trap center µ0 is determined by the particle number N. The chemical potential µ0 is obtained by an
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interpolation of Eq. (5.12) since the total particle number N is known in experiments. In order to
make connection to experiment we consider the example case introduced in Sec. 5.3 (40K-atoms, lattice
laser wave length λ = 1064nm) with an additional trapping potential given by the trapping frequency
ωt,x = 2π × 24.5Hz= 5.6 × 10−3Er. We consider a typical initial atom number N = 60 at temperatures
kBT = 0.5J, 1J and 1.5J. The resulting atom excitation rate (5.15) is shown in Fig. 5.4(a). Error bars
correspond to 5% uncertainty on the initial atom number N = 60 ± 3. The overall result resembles the
homogeneous case (cf. Fig. 5.3) with a clear temperature dependence. However, the Fermi tail is less
distinct as we sum over different fillings present in the trap.

Figure 5.4: The atom excitation rate to the first excited band α′x = 2 of the one-dimensional system by normal lattice
modulation, in the presence of a harmonic trapping potential and for temperatures kBT = 0J, 0.5J, 1J and 1.5J. (a)
The atom excitation rate obtained within LDA for an initial atom number N = 60 with error bars corresponding
to 5% uncertainty on the initial atom number N = 60 ± 3. The vertical dashed line indicates ~ω = 3.7Er for
which we determine the number of excited atoms (see main text). (b) The atom excitation rate obtained from
exact diagonalization (markers) compared to the results obtained within LDA (solid lines). Figures adapted from
Ref. [169].

In the region of the Fermi tail, we estimate from the horizontal distance of the curves that a frequency
resolution ∆(~ω) ≈ ±0.025Er is required to resolve the Fermi tail and distinguish the curves of different
temperatures. In experiment, this corresponds to a perturbing time t = 2π/∆ω ≈ 9ms which is a typical
duration. Within the Fermi tail, at ~ω = 3.7J (indicated by a vertical dashed line in Fig. 5.4(a)) as an

example, we determine the mean number of atoms 〈nα
′
x

ω (t)〉 excited during the time t which corresponds
to the measured observable in experiment (cf. Sec. 5.2). From the Fig. 5.4(a) we extract the averaged
rate at ~ω = 3.7J which is related to the mean number of excited atoms by

〈nα
′
x

ω (t)〉 = N × ∂t〈n
α′x
ω 〉

dD × t (5.16)

in a d-dimensional system. For a sufficiently small amplitude of the modulation A = 0.05V0,x where

V0,x = 7Er, we obtain the mean number of excited atoms 〈nα
′
x=2

ω (t)〉 at ~ω = 3.7Er to lie between
3 and 7 for temperatures kBT = 0.5J − 1.5J. Considering ∼ 100 parallel one dimensional tubes of
roughly equal filling in experiment, this gives a number of exited atoms ∼ 300 − 700. The chosen
temperatures have a temperature difference ∆kBT = 0.5J (cf. Fig. 5.4(a)). Consequently, this temperature
difference corresponds to a difference in number of excited atoms of ∼ 150 which is measurable by
current experimental means.
In order to verify that the LDA approximation is justified, we have treated the trapping potential exactly in
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the one-dimensional case. The simulations are performed using exact diagonalization on the discretized
version of the single particle Hamiltonian in the presence of the lattice and the harmonic trap, based on a
code by Ameneh Sheikhan [169]. The space is discretized using ∆x = a/50 in x-direction considering
500 wells in the lattice. Using Eqs. (5.2) and (5.10) in the discrete form, the atom excitation rate from
the lowest band to the excited bands is calculated

M(αx=1,i)→(α′x,i′) = 〈vα′x,i′ |δVx|vαx,i〉, (5.17)

N
1
|A|2

∂t〈n
α′x
ω 〉

1D =
π

~

∑
i,i′

∣∣∣M(αx=1,i)→(α′x,i′)
∣∣∣2 f

(
Eαx=1(i) − µ)

)
×

1
√

2πw2
e−

1
2σ2

(
~ω−

(
Eα′x (i′)−Eαx=1(i)

))2

. (5.18)

The eigenenergy Eαx(i) and the eigenstate |vαx,i〉 for energy band αx are calculated from the exact
diagonalization and i labels different states in each band. The perturbing potential in the discrete form
is denoted δVx and the Dirac delta function is replaced by its Gaussian approximation with width
w ≈ 0.007Er. We compare the LDA results to the exact diagonalization results for the atom excitation
rate to the first excited band for temperatures kBT = 0J, 0.5J, 1J and 1.5J in Fig. 5.4(b). We find
excellent agreement which justifies the use of LDA.

5.4.3 Trapped system in higher dimensions

Our thermometry scheme is not limited to the one-dimensional system. We now consider the response of
the trapped system in higher dimensions, for example two-dimensional pancake-shaped lattice systems,
modulated along one direction x in space. The atom excitation rate in the d-dimensional homogeneous
lattice becomes

∂t〈nα
′

ω 〉
dD

|A|2
=
π

~

(
L

2kL

)d ∫
BZ

ddk |Mα′x(kx)|2 f
(
E1(~k) − µ)

)
δ
(
~ω −

(
Eα′x(kx) − Eαx=1(kx)

))
, (5.19)

where the integral runs over the first Brillouin zone in d dimensions. The resonance condition is set
by the change of the energy along x direction, Eα′x(kx) − Eαx=1(kx), as we only modulate along this
direction. Consequently, also the transition matrix elements depend only on kx. The difference to the
one-dimensional system occurs in the Fermi distribution of the equilibrium system which now depends
on the energy of the d-dimensional system Eα=1(~k). The signal in d dimensions remains kx-resolved.
However, at fixed kx different quasimomenta in the other directions contribute to the response. These
points have different locations in quasimomentum space with respect to the Fermi surface such that the
detected response is a superposition of different points in the Fermi distribution. We illustrate this for
the two-dimensional system at half-filling in the inset of Fig. 5.5. Consider an intermediate kx value
as indicated by the vertical line. All the ky along this line within the shaded region will contribute
to the response. However, a temperature dependence will only show up close to the Fermi surface
whereas the bulk dominantly contributes with a constant value to the response. As a consequence, the
temperature dependence in the atom excitation rate is less pronounced but thermometry is nonetheless
possible in two-dimensional systems requiring a better experimental frequency resolution than in the
one-dimensional case.
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Within LDA the atom excitation rate in the two-dimensional system becomes

∂t〈nα
′

ω 〉
2D

|A|2
=

π

NL2|A|2

 4J

Vtrap

 ∫ µ0

−∞

dµ̄ ∂t〈nα
′

ω 〉
2D(µ̄), (5.20)

where µ̄ = µ/4J and Vtrap = (m/2)
√
ω2

t,xω
2
t,ya

2. In this case, in order to make connection to experiment,
we consider the same example as in the previous section but we consider an initial atom number N = 4000
typical for two-dimensional systems and trapping frequencies ωt,x = 2π × 24.5Hz= 5.6 × 10−3Er and
ωt,y = 2π × 29.7Hz= 6.7 × 10−3Er. The corresponding atom excitation rate at temperatures kBT = 0.5J,
1J and 1.5J is shown in Fig. 5.5. Again, error bars correspond to 5% uncertainty on the initial atom
number N = 4000 ± 200. In the region of the Fermi tail, we estimate from the horizontal distance of the
curves that a frequency resolution ∆(~ω) ≈ ±0.01Er is required to resolve the Fermi tail and distinguish
the curves of different temperatures. In experiment, this corresponds to a perturbing time t ≈ 23ms
(which is a typical duration). Within the Fermi tail, at ~ω = 3.7J (indicated by a vertical dashed line in

Fig. 5.5) as an example, we determine the mean number of excited atoms 〈nα
′
x=2

ω (t)〉 using Eq. (5.16) for a
small amplitude of the modulation A = 0.02V0,x. We find the number of excited atoms to lie between 150
and 180 for temperatures kBT = 0.5J − 1.5J. This gives a difference in number of excited atoms of ∼ 10
between the chosen temperatures with temperature difference ∆kBT = 0.5J. This may be demanding to
measure but achievable with current experimental techniques.

Figure 5.5: The atom excitation rate to the first excited band α′x = 2 of the two-dimensional system by normal lattice
modulation along one direction, in the presence of a harmonic trapping potential. The rate was obtained within the
LDA and is shown at temperatures kBT = 0.5J, 1J and 1.5J with error bars corresponding to 5% uncertainty on
the initial atom number N = 4000 ± 200. The vertical dashed line indicate ~ω = 3.7Er for which we determine the
number of excited atoms (see main text). Inset: Sketch of the occupation of the first Brillouin zone of the square
lattice system. At zero temperature and half-filling all states below the Fermi surface are occupied (shaded region)
and all states above the Fermi surface are empty. The vertical black line indicates the different ky that contribute to
the response at a fixed kx. Figure adapted from Ref. [169].

Let us comment on the choice of the lattice modulation, that is the application along only one direction
in space. This is reasonable as an application of the perturbation along several directions does not help to
gain on resolution. The modulation decouples into the different directions such that it has the effect of
one-dimensional perturbations along the different directions. For example, a lattice modulation along
two directions decouples as δV(~x) = δV(x) + δV(y). In consequence, the total number of excited atoms is
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only enhanced by an overall factor 2 for an isotropic setup. There is no benefit from this factor as we are
limited in minimum time by frequency resolution.

5.5 Thermometry by superlattice modulation spectroscopy

In this section we summarize the results obtained in the case of the superlattice modulation spectroscopy
in an earlier work [168, 169] in order to compare to the results obtained in the previous sections for the
normal lattice modulation spectroscopy.
In the case of a superlattice amplitude modulation, the perturbing potential is given by δV(x) ≈ sin(kLx).
For details see Sec. 2.6 where we derive the perturbing potential for an example setup. For the equilibrium
lattice considered here, V0(x) ∼ sin2(kLx) in one dimension, the superlattice modulation amounts to a
perturbing potential δV(x) ≈ sin(kLx). As a consequence, the superlattice perturbation only couples
quasimomenta ~k and ~k′ ≈ ~k + (kL, 0, 0) to a good approximation. This means that quasimomentum
∆kx = kL along the x-direction is transferred to the lattice. All other matrix elements are strongly
suppressed (see inset of Fig. 5.1(a)). This is in accordance with the common lowest band tight-binding
approximation. In this case, the perturbing operator (2.41) associated with the superlattice modulation
adds quasimomentum π/a (= kL) to the lattice as may be seen from a Fourier transform of Eq. (2.41),
ÔS = 2i

∑
kx,σ sin(ak)c†kx+kLσ

ckxσ
. This is in contrast to the normal lattice modulation which conserves

quasimomentum (cf. Sec. 5.1). In the case of the superlattice modulation, excitations to the second
excited band are most suitable for thermometry in many cases in contrast to the normal lattice modulation
where we chose excitations to the first excited band. The reason is that the transition probability |M3(kx)|2

in the case of superlattice modulation shows a similar behavior as |M2(kx)|2 in the case of normal lattice
modulation which is shown in Fig. 5.1(b). This is due to the similar structure of the excitation bands
α′x = 2 for the normal modulation and α′x = 3 for the superlattice modulation due to a ’shift’ by kL

in the latter case. We explain this in more detail in the following. In Fig. 5.2 possible excitations by
the superlattice modulation (dashed arrows) are sketched in comparison to excitations by the normal
lattice modulation (solid arrows). In the case of superlattice modulation, the transition probability is
non-zero for a finite quasimomentum transfer of ∆kx ≈ kL such that excitations occur ’vertically’ in
quasimomentum space only if one ’shifts’ the excited bands in quasimomentum space by ∆kx = kL. The
situation for the ’shifted’ third band in the case of the superlattice modulation is then similar to the normal
lattice modulation considering excitations to the second band.
In the superlattice modulation case, the required experimental frequency resolution is further lowered
compared to the normal lattice modulation due to the larger width of the second excited band compared
to the first excited band. This is an advantage of the superlattice modulation spectroscopy, in particular
in the presence of a trap, where small temperature differences can be distinguished more precisely (see
below). For the superlattice modulation, the only changes in the averaged atom excitation rate given by
Eq. (5.19) are the resonance condition, which is now ~ω = Eα′x(kx + kL) − Eαx=1(kx) due to the finite
momentum transfer, and the matrix elements |Mα′x(kx)|2 (see above) and we consider excitations to the
second band of excitations α′x = 3. The response of the trapped system to the superlattice modulation
in one and two dimensions for temperatures kBT = 0.5J, 1J and 1.5J is shown in Fig. 5.6(a) and (b)
respectively. We observe better frequency resolution compared to the case of normal lattice modulation
(cf. Fig. 5.4) due to the enhanced width of the second excited band compared to the first excited band.
In one dimension, a broad frequency resolution ∆(~ω) ≈ ±0.15Er (as compared to ∆(~ω) ≈ ±0.025Er

in the case of the normal lattice modulation) is already sufficient in order to resolve the Fermi tail and
distinguish the curves of different temperature with temperature difference ∆kBT = 0.5J. In experiment,
this corresponds to a short perturbing time t ≈ 2.5ms for the chosen parameters (same parameters as
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for the normal lattice modulation). At an amplitude of the modulation A = 0.05V0,x, considering a
typical time of the modulation t = 10ms, and at ~ω = 7Er as an example (indicated by a dashed line
in Fig. 5.6(a)), we determine the mean number of excited atoms 〈nα′=3

ω (t)〉 using Eq. (5.16). We find
the number of excited atoms to lie between 2 and 6 for temperatures kBT = 0.5J − 1.5J. This means
that we excite a couple of hundreds of atoms when considering ∼ 100 parallel one-dimensional tubes of
approximately equal filling with an atom number difference of ∼ 150 between the different temperatures
with temperature difference ∆kBT = 0.5J which is detectable in experiments.
In two dimensions, the improved frequency resolution is a clear advantage compared to the normal lattice
modulation. We find that a frequency resolution ∆(~ω) ≈ ±0.025Er (as compared to ∆(~ω) ≈ ±0.01Er

in the case of the normal lattice modulation) is already sufficient in experiment which corresponds to
a perturbing time t ≈ 9ms. For an amplitude A = 0.05V0,x at ~ω = 7Er we excite mean atom numbers
〈nα′=3
ω (t)〉 between 300 and 400 for temperatures kBT = 0.5J − 1.5J with an atom number difference of

approximately 30 atoms between the curves with temperature difference ∆kBT = 0.5J which is easier to
detect in experiment than the smaller atom number difference in the case of the normal lattice modulation
(∼ 10 atoms).

Figure 5.6: The atom excitation rate by superlattice modulation along one direction to the second excited band
α′x = 3 in the presence of a harmonic trapping potential. The response is shown at temperatures kBT = 0.5J, 1J
and 1.5J with error bars corresponding to 5% uncertainty on the initial atom number N for the one-dimensional
system (a) with initial atom number N = 60 and for the two-dimensional system (b) with initial atom number
N = 4000. The vertical lines indicate ~ω = 7Er for which we determine the number of excited atoms (see main
text). Figures adapted from Ref. [169].

In this sense, the superlattice modulation is advantageous compared to the normal lattice modulation as
less frequency resolution is required to extract the temperature in experiment. However, the superlattice
modulation of the ’normal’ equilibrium lattice is more challenging to implement experimentally compared
to the standard amplitude modulation. For the superlattice modulation several laser beams have to be
superimposed as explained in Sec. 2.6. Consequently, if the frequency resolution obtained by the normal
lattice modulation is sufficient, the normal lattice modulation would be the preferred choice.

5.6 Conclusion

In this chapter we have investigated the temperature-dependent atom excitation rate to higher Bloch
bands of non-interacting fermions in an optical lattice as a response to a time-dependent modulation of
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the lattice amplitude. We demonstrated that it shows clear signatures of the Fermi distribution of the
equilibrium system, also in the presence of an external trapping potential. We explored the possibilities
of thermometry for different dimensionalities of the equilibrium system. We find that quasimomentum is
conserved by the normal lattice amplitude modulation (cf Fig. 5.1) and excitations to the first excited band
are most suitable for thermometry. In the case of a superlattice modulation, a finite quasimomentum kL is
transferred to the system and excitations to the second excited band are most suitable for thermometry.
We considered temperatures of a few percent of the hopping amplitude J and find that the response
shows a clear signature of the temperature-dependent Fermi factor in the lowest band for one- and
two-dimensional equilibrium systems for both modulation schemes. The Fermi dependence in the atom
excitation rate is strongly broadened in energy due to the much larger bandwidth of the higher bands
compared to the lowest band. This is beneficial as it strongly reduces the required experimental frequency
resolution such that the Fermi dependence can be resolved within typical durations of the perturbation.
We estimate the number of excited atoms which we find to be sufficiently large to be measured in
experiments.
We emphasize that the temperature dependence of the atom excitation rate becomes more pronounced
for decreasing temperatures and the applicability of our scheme covers the regime of interest where
antiferromagnetic ordering is expected to occur. In two dimensions, for which our thermometry scheme
is well suited, spin ordering at half-filling in the homogeneous system is expected at entropies per
particle below sN ∼ 0.4kB at intermediate interactions (U/J) ∼ 5 − 10 [176] and at smaller entropies for
weaker interactions. We relate temperature to entropy for the square homogeneous lattice at half-filling
of a typical system size L = 100 in each direction within the grand-canonical ensemble. An entropy
sN ∼ 0.4kB corresponds to a temperature kBT ∼ 0.3J where our thermometry scheme is well suited. Our
scheme also works at lower temperatures corresponding to lower required entropies for spin ordering at
weaker interactions. Consequently, our thermometry scheme is applicable in the regime of interest where
spin ordering is expected to occur in the homogeneous system. Note that homogeneous trapping potentials
were recently realized [69–71]. The assumption of a homogeneous system also give a first rough estimate
for the harmonically trapped system considering the Mott insulating regime at intermediate filling. In this
case the entropy is small and approximately constant across the central Mott plateau [177]. Furthermore,
the density is constant in the bulk, resembling a homogeneous system although some additional entropy
will be added to the liquid wings. Note that in a recent experiment in two dimensions temperatures
kBT ∼ 0.25J were reached [19] and relevant correlations were observed [17–19].
Here, we investigated the applicability of our thermometry scheme for non-interacting particles but we
believe it to be an important step in order to get also more complex systems under control by an adiabatic
connection (entropy conserving) to the interacting system. Although for some strongly correlated atomic
states, the assumption of an adiabatic process from the non-interacting atoms might not be suitable,
there are several phases which could adiabatically be connected to the non-interacting atoms in the
optical lattice that would be worth a thorough investigation. One example are weakly interacting Fermi
liquids in the optical lattice where the influence of temperature and interactions on the properties of the
quasiparticles, such as the effective mass or the life time of the quasiparticles, are not fully understood.
This would be worth a detailed experimental measurement in order to test theoretical predictions from the
microscopic model. In the solid state context, a direct measurement of the properties of quasiparticles is
possible by angle-resolved photoemission spectroscopy which gives access to the single-particle spectral
function [178]. However, a detailed comparison with theory remains difficult in solid states systems due
to the complexity of the underlying system. In cold atom systems, a measurement of the single-particle
spectral function is possible by momentum-resolved Raman or radio-frequency spectroscopy [31]. The
influence of the interactions can be directly probed due to the high tunability of interactions in cold
atom systems and due to the absence of other influences such as impurities or phonon-scattering. Some
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properties of the Fermi liquid have been probed for the harmonically trapped gas, for example the
quasiparticle dispersion and the effective mass have been studied in three- and two-dimensions [179,
180]. In the presence of an optical lattice potential, Raman spectroscopy has also been suggested to
investigate the momentum-resolved quasiparticle peak [163]. However, further experimental investigation
is required to connect better to the microscopic model and in particular to study the effect of temperature
and interactions on the properties of the quasiparticle excitations.
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CHAPTER 6

Superlattice modulation spectroscopy of
ultracold bosons in optical lattices

In this chapter we study the excitations in the one-dimensional Bose-Hubbard model (2.25) by means
of superlattice modulation spectroscopy at zero temperature using t-DMRG. We study both, the Mott
insulating phase as well as the superfluid phase, and we compare to analytical results. A detailed
discussion of the ground state phase diagram is given in Sec. 2.4 and a possible implementation of the
superlattice modulation is discussed in Sec. 2.6.
We begin with the derivation of a description of the Mott insulating regime at integer filling within
perturbation theory at strong interactions in Sec. 6.1. This enables us to obtain an analytical description
of the energy absorption rate in this regime. Sec. 6.1 is rather technical and can be skipped if one is
only interested in the results which are discussed in the subsequent section. In Sec. 6.2 we study the
energy absorption in the Mott insulator using t-DMRG and we compare to the perturbation theory result.
We discuss how, deep in the Mott insulator, a sharp spectral peak around ~ω ∼ U enables a precise
determination of the interaction parameter U in experimental setups. Moreover, we investigate the
energy absorption rate close to the phase transition to the superfluid phase where the spectral response is
broadened. In Sec. 6.3 we study the energy absorption rate using t-DMRG at weak interactions in the
superfluid regime, both at commensurate and incommensurate fillings, where we observe excitations at
low frequencies as well as a pronounced absorption peak at larger frequencies. Finally, we summarize
and conclude in Sec. 6.4. The main results of this chapter are going to be published [181].

6.1 Perturbation theory at U � J

In this section we determine the eigenstates and eigenenergies of the Bose-Hubbard model (2.25) to
lowest order in J/U within perturbation theory in the strong coupling regime. We consider the interaction
term HU as the unperturbed Hamiltonian and the kinetic term Hkin as a small perturbation. The obtained
spectrum gives an intuitive notion of the nature of excitations at strong interactions and enables us to
analytically obtain an approximate expression for the energy absorption rate in the Mott insulating regime
within linear response which will be discussed in Sec. 6.2 in comparison to t-DMRG calculations.
The Bose-Hubbard model is given by Eq. (2.25). Here, we use a slightly different definition of the
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interaction term such that the Bose-Hubbard model becomes,

H = Hkin + HU = −J
L−1∑
j=1

(b†jb j+1 + H.c.) +
U
2

L∑
j=1

(n j − n̄)2, (6.1)

where b(†)
j are the bosonic annihilation (creation) operators at site j and n j is the particle number operator,

U is the on-site interaction strength and J is the tunneling matrix element. We replaced the usual notation∑
j n j(n j − 1) →

∑
j(n j − n̄)2 which amounts to a shift in energy. We work at fixed particle number

N = Ln̄ where L is the number of lattice sites and we assume a Mott insulating ground state with n̄
bosons per site (commensurate filling). Locally, an excess particle (occupation n̄ + 1 at site j) and a
hole (occupation n̄ − 1 at site j′) now both have an energy U/2 with respect to the initial occupation n̄
in contrast to the usual notation (2.25) where the energy of an excess particle (hole) with respect to the
initial occupation depends on the filling. However, in both cases a particle-hole pair has energy U with
respect to the ground state.

Zero order The eigenstates of the unperturbed Hamiltonian HU at commensurate filling and fixed
particle number are given by Fock states with eigenenergies that are multiples of the on-site interaction
strength U. The ground state is given by

|0〉 = |n̄, n̄, ..., n̄〉, (6.2)

with eigenenergy E0 = 〈0|HU |0〉 = 0. The first excited state in the same particle number sector is created
by removing one particle from a site denoted m + d and putting it onto a different site m where d is the
distance to the right from the site with occupation n̄+1 to the site with occupation n̄−1. This corresponds
to the creation of a ’doublon-hole’ pair on top of the commensurately filled background which is sketched
in the inset of Fig. 6.1(b). The excited state is given by

|m, d〉 =
1

√
n̄(n̄ + 1)

am+da†m|0〉, (6.3)

with m = 1, . . . , L and d = 1, . . . , L − 1 such that the state is a L(L − 1) degenerate eigenstate of HU

with eigenenergy Em,d = 〈m, d|HU |m, d〉 = U. Note that we have periodic boundary conditions in m but
open boundary conditions in d because d = 1 is not connected with d = L − 1. The second excited state
corresponds to the creation of two ’doublon-hole’ pairs with eigenenergy 2U and the third excited state
with eigenenergy 3U is either given by three ’doublon-hole’ pairs or one site with occupation n̄ + 2 and
two sites with occupation n̄ − 1.

First order Switching on the kinetic part in the Hamiltonian, all states and eigenenergies get modified.
The first order correction to the ground state energy vanishes as 〈0|Hkin|0〉 = 0. The first order correction
to the ground state is given by

|Ψ1
0〉 =

∑
m,d

〈m, d|Hkin|0〉
E0 − Em,d

|m, d〉 =
J
U

√
n̄(n̄ + 1)

∑
m

(|m, 1〉 + |m, L − 1〉) , (6.4)

where we used 〈m, d|Hkin|0〉 = −J
√

n̄(n̄ + 1)
(
δd,1 + δd,L−1

)
. Other excited states do not contribute to the

sum as their overlap with Hkin|0〉 is zero. The modified ground state is then given by |Ψ0〉 ≈ |0〉 + |Ψ1
0〉 to

first order in J/U.
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The corrections to the first excited state have to be determined within degenerate perturbation theory [182].
The lowest order correction is obtained by identifying the unperturbed degenerate eigenstates and to
diagonalize the perturbation in this basis. This corresponds to determining the first-order energy shifts
that lift the degeneracy while the lowest order states are not modified. To obtain higher order corrections
one can use the formulas from non-degenerate perturbation theory but one has to exclude all contributions
from the corresponding degenerate subspace. Here, we are only interested in the lowest order correction.
Essentially, we need to diagonalize the matrix element

〈m, d|Hkin|m′, d′〉 = −J
[
(1 + n̄)

(
δm′,m+1δd′,d−1 + δm′,m−1δd′,d+1

)
+ n̄

(
δd′,d−1 + δd′,d+1

)
δm′,m

]
. (6.5)

Note that this expression is invariant for m → m + L due to periodic boundary conditions in m but in
d we have open boundary conditions (see above). The diagonalization of the above expression can be
achieved by a double Fourier transform in the m and d coordinates. The procedure is outlined in the
following. The Fourier transform of the m coordinate is given by

|K, d〉 =
1
√

L

L∑
m=1

eiKxm |m, d〉, (6.6)

with xm = am where a is the lattice spacing and K = 2πq/(La) with q = 1, ..., L. One obtains

〈K, d|Hkin|K′, d′〉 =
1
L

L∑
m,m′=1

e−i(Kxm−K′xm′ )〈m, d|Hkin|m′, d′〉

= −JδK,K′r(K)
(
eiθ(K)δd′,d−1 + e−iθ(K)δd′,d+1

)
, (6.7)

where r(K) =
√

(n̄ + 1)2 + n̄2 + 2n̄(n̄ + 1) cos(Ka) and θ(K) = (n̄ + 1) sin(Ka)/ [n̄ + (n̄ + 1) cos(Ka)].
The d-sector cannot be diagonalized by the ’standard’ Fourier transform because of the open boundary
conditions but a sine transform can be used,

|K, k〉 =

√
2
L

L−1∑
d=1

eidθ(K) sin(kxd)|K, d〉 =

√
2

L

L−1∑
d=1

L∑
m=1

eidθ(K) sin(kxd)eiKxm |m, d〉, (6.8)

where xd = da and k = πp/(aL) with p = 1, ..., L−1 and which is a good basis as 〈K, k|K′, k′〉 = δK,K′δk,k′ .
Finally, one can determine the matrix elements of Hkin in the new basis obtaining

〈K, k|Hkin|K′, k′〉 =
2
L

L−1∑
d,d′=1

e−idθ(K)eid′θ(K′) sin(kxd) sin
(
k′xd′

)
〈K, d|Hkin|K′, d′〉

= −2Jr(K) cos(ka)δK,K′δk,k′ , (6.9)

which is diagonal and gives the first order correction to the energy for K = K′ and k = k′. This correction
completely lifts the degeneracy of the first band of excitations centered around U except for a translational
invariance in K by 2π/a. One can identify K with the center of mass momentum of the ’doublon-hole’
pair created and k is related to its relative momentum. To first order, the lowest band of excitations is
consequently given by

EK,k = U − 2Jr(K) cos(ka). (6.10)
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The lowest band of excitations for different center of mass momenta K is shown in Fig. 6.1(a). The
maximum bandwidth W = 12J is obtained for zero center of mass momentum K = 0 whereas the
minimum bandwidth W = 4J is obtained for K = π. Excitations in the first case can be created by a
perturbation which conserves quasimomentum such that a ’doublon-hole’ pair is created with zero center
of mass momentum. This is the case for the normal lattice modulation which was considered in Ref. [39].
In order to create ’doublon-hole’ pairs with K = π, a finite momentum transfer π of the perturbation is
required. This is the case for the superlattice modulation such that excitations are created in a much
narrower energy region compared to the normal lattice modulation.

Energy absorption Let us now consider the effect of the superlattice modulation spectroscopy. The
energy absorption rate within linear response theory is given by Eq. (3.31). Our aim is to obtain a
frequency-resolved excitation peak expected to occur at frequencies corresponding to the lowest band of
excitations EK,k (6.10) such that we need to consider Em = EK,k and E0 = 0 for the resonance condition

δ (~ω − (Em − E0)) in Eq. (3.31). For the amplitude
∣∣∣∣〈0

∣∣∣ÔS
∣∣∣ m〉∣∣∣∣2 it is sufficient to only consider the

lowest order, that is |0〉 given by Eq. (6.2) and |m〉 = |K, k〉 given by Eq. (6.8)1.

Figure 6.1: (a) The lowest band of excitations in the Bose-Hubbard model in lowest order in J/U for different
center of mass momenta K = 0, π/a of the ’doublon-hole’ pair. In both cases, the energy band is centered around
U but has different bandwidth W = 12J, 4J respectively. (b) The energy absorption rate dE/dt as a response to the
normal lattice modulation (orange dashed line) and to the superlattice modulation (blue solid line). The width of
the excitation peak corresponds to the bandwidth of the lowest band of excitations for K = 0, π/a respectively.
Inset: Sketch of the excited state |m, d〉 in real space. One particle is added at position m while one particle is
removed at position m + d, i.e. a ’doublon-hole’ pair is created on top of a commensurately filled background.

For the superlattice modulation spectroscopy the perturbing operator ÔS is given by Eq. (2.41) and the
relevant matrix element becomes

〈K, k|ÔS |0〉 =
√

2n̄(n̄ + 1) sin(ka)ηpδKa,π, (6.11)

with ηp = (1 − (−1)p). The finite momentum transfer π of the superlattice modulation is encoded in the
Kronecker delta δKa,π. In the case of the momentum conserving normal lattice modulation the matrix

1 In principle, the matrix element to the considered order is given by |〈Ψ1|ÔS |Ψ0〉| where |Ψ0〉 = |0〉 + |Ψ1
0〉 + O(J2/U2) and

|Ψ1〉 = |K, k〉 − (J/U)
√

2n̄(n̄ + 1)ηp sin(ka)|0〉+ (J/U)
∑
α |α〉+O(J2/U2) where |α〉 are states in addition to the Fock state |0〉

that are directly coupled via the kinetic term to the states |K, k〉. However, we find that the transition matrix element squared
simplifies |〈Ψ1|Ôs|Ψ0〉|

2 = |〈K, k|ÔS |0〉|2 + O(J2/U2) such that it is sufficient to consider only the lowest order contribution.
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element depends on δK,0. The energy absorption rate normalized by the number of lattice sites becomes

1
L

dE(t)
dt

=
π

L
ω|A|2n̄(n̄ + 1)

L−1∑
p=1

η2
p sin2

( pπ
L

)
δ

(
~ω − U + 2J cos

( pπ
L

) )
. (6.12)

The sum
∑L−1

p=1 can be replaced by
∑L−1

p=0 since the contribution for p = 0 is zero. The continuum limit is
obtained using (1/L)

∑L−1
p=0 (1 − (−1)p)2 f ((pπ/L))→ (2/π)

∫ π

0 dk f (k) and we find

1
L

dE(t)
dt

=
ω|A|2n̄(n̄ + 1)

J

√
1 −

(
U − ~ω

2J

)2

. (6.13)

Absorption occurs in the region ~ω ∈ [U−2J,U +2J] as expected since this corresponds to the bandwidth
4J of the lowest band of excitations for a finite center of mass momentum K = π/a of the ’doublon-hole’
pair. The absorption peak is shown in Fig. 6.1(b). Its maximum occurs at

~ω0 = U

1 +

(
2J
U

)2 , (6.14)

which is slightly larger than U. In Fig. 6.1(b) we also compare to the absorption peak as a response
to the normal lattice modulation [39] which is broader in energy due to the enhanced bandwidth of
the ’doublon-hole’ pair created at K = 0 and more strongly asymmetric as the maximum occurs at
~ω0 = U

(
1 + ((2J(2n̄ + 1))/U)2

)
. Additionally, the signal is much weaker in the case of the normal

lattice modulation.

6.2 Excitations in the Mott insulating phase

In this section we study the energy absorption on the Mott insulating side of the phase diagram at integer
filling n̄ = 1, deep in the Mott insulator as well as close to the phase transition to the superfluid phase,
using t-DMRG and comparing to the analytical results obtained in the previous section.
In t-DMRG we study systems of sizes up to L = 96. In order to obtain sufficient accuracy in the absorbed
energy E(t) we keep a matrix dimension of D = 128 and a local dimension σ = 3 (σ = 7) for U ≥ 20J
(U ≤ 15J) and we conduct an error analysis by increasing the matrix dimension to 196 states and the
local dimension to 5 (9). In the Trotter-Suzuki time evolution we set Jτ = 0.01~ and we use Jτ = 0.005~
to perform the error analysis. We determine the maximal uncertainties in the energy absorption rate due
to the matrix dimension, the local dimension, the time step and the variation of the fit range (see App. A
for details). The error bars are provided in the figures.
We time evolve systems of size L = 40 for U ≥ 15J (L = 64 for U ≤ 10J) for a range of modulation
frequencies around ~ω ∼ U where particle-hole excitations are expected to form and we extract the
energy absorption rate from a fit of the slope (see App. B.2.1). We also consider different system sizes for
some example cases. Additionally, higher order excitations are expected at multiples of U corresponding
to multiply occupied sites or several particle-hole excitations. We do not study these here.
In Fig. 6.2(a) the energy absorption rate at strong interactions U = 15J − 60J is shown in comparison
to the analytical result (6.13). We observe strong energy absorption peaks approximately symmetric
and centered slightly to the right of U and of width ∼ 4J. By width we mean the full bandwidth at the
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bottom of the peak 2. The overall agreement with the analytical results is good and only small amounts
of energy are absorbed on average outside of the analytically predicted region ~ω ∈ [U − 2J,U + 2J].
Thus, the nature of excitations is well captured by the simple ’particle-hole’ picture in lowest order
perturbation theory. Slight deviations of the t-DMRG results compared to the analytical results occur in
the peak maximum, which is slightly enhanced and shifted to the right (in the t-DMRG), in the width,
which is slightly broader, and in the overall shape, which is ’flatter’ in the wings and the left wing lies
slightly below the predicted square-root-behavior. For decreasing interactions, the peak location shifts to
smaller frequencies as it is located around ~ω ∼ U. At the same time, the location of the maximum of
the t-DMRG peak shifts farther to the right with respect to U in accordance with the analytical prediction
where the peak position (6.14) also shifts farther away from U for decreasing interactions. However, the
shift in the t-DMRG is stronger which we attribute to higher-order corrections which would shift the
center of the band of excitations away from U. For decreasing interactions, the deviations in the left wing
also increase such that the peak becomes asymmetric at U ∼ 15J. In the inset a close-up of the U = 60J
peak is shown for two different system sizes. The maximum of the peak decreases for increasing system
sizes, approaching more the analytical prediction.

Figure 6.2: (a) The energy absorption rate for a system size L = 40 and for an amplitude of the modulation
A = 0.01J in the Mott insulator at strong interactions comparing t-DMRG (filled symbols) to the analytical
result (solid lines). For U = 60J the response to the normal lattice modulation is also shown (open symbols and
dash-dotted line) which is weaker in amplitude and broader in width. The inset shows different system sizes L = 40
(green left-pointed triangles) and L = 96 (pink right-pointed triangles) at U = 60 compared to the perturbation
theory result (solid line). The dashed vertical line indicates the position of the maximum within perturbation theory.
(b) The energy absorption rate for a system size L = 64 and for an amplitude of the modulation A = 0.01J in the
Mott insulator at intermediate interactions comparing t-DMRG (filled symbols, lines are guides to the eye) to the
analytical result (dotted lines). The inset shows different system sizes L = 32 (gray right-pointed triangles) and
L = 64 (orange left-pointed triangles) at U = 6.

The agreement may be further improved by taking into account higher orders in the perturbation theory.
Note that we found that a contribution from the first order correction in the states vanishes such that the
deviations must stem from higher order corrections in J/U. We do not investigate this further as we
understand well the main features and an improvement is not required for an experimental application:
In lattice shaking experiments, the position of the spectral response is sometimes used to determine
the on-site interaction strength U [183]. This is particularly useful, when the standard Bose-Hubbard
approximation, which uses the lowest band Wannier functions and a δ-interaction potential to calculate

2 The width is extracted from the t-DMRG data by defining the bounds as the mean between the frequency for which
dE/dt < 10−3 J2/~ and the neighboring frequency for which dE/dt > 10−3 J2/~.
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U, breaks down at, for instance, large interactions. We point out that our superlattice scheme provides
experimentalists with a more precise measurement scheme due to the reduced width compared to the
normal lattice modulation. A comparison to the normal lattice amplitude modulation is also shown in
Fig. 6.2(a) for U = 60J.
Let us now discuss intermediate interactions U = 4J − 10J approaching the phase transition to the
superfluid state located at Uc ≈ 3.4J [75]. The energy absorption rate is shown in Fig. 6.2(b) compared
to the perturbation theory result. For decreasing interactions, the spectral width increases while the
peak maximum shifts farther to the right with respect to U and also the location of the onset starts
deviating from the perturbation theory result. Moreover, the peak acquires an increased asymmetry for
decreasing interactions which we also see in the perturbation theory. However, near the phase transition
the deviations in t-DMRG from the perturbation theory are significantly strong which is in agreement with
an expected breakdown of perturbation theory. The left wing of the absorption peak shows a ’step-like’
profile which we attribute to finite-size effects as it smoothes out for increasing system sizes (see inset of
Fig. 6.2(b)).
The frequency dependence of the energy absorption peak covering the entire Mott insulating region
at strong and intermediate interactions is presented in Fig. 6.3 which displays the position of the peak
maximum and the width extracted from the t-DMRG compared to the perturbation theory result. The
position of the maximum near ~ω ∼ U and the width is well captured by the perturbation theory for
interactions U ≥ 15J presenting a reliable technique for the lattice depth calibration. For intermediate
interactions, 6J ≤ U < 15J, the location of the peak maximum deviates. However, the width of the peak
and the locations of the boundaries still reflect the width and the location of the analytical boundaries
such that it may still be applicable for a lattice depth calibration, even at these interactions which are
already close to the phase transition.

Figure 6.3: The position of the maximum and the width of the energy absorption rate as a function of interaction
energy U. We compare the position and width extracted from t-DMRG (squared markers and vertical error bars) to
the analytical result within perturbation theory (dashed line and gray shaded region). The width is extracted from
the t-DMRG data by defining the bounds as the mean between the frequency for which dE/dt < 10−3J2/~ and the
neighboring frequency for which dE/dt > 10−3J2/~.

6.3 Excitations in the superfluid phase

In this section we study the energy absorption as a response to superlattice amplitude modulation in the
superfluid region of the one-dimensional Bose-Hubbard model. At commensurate filling the system is
superfluid at weak interactions while it becomes Mott insulating at stronger interactions and the transition
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takes place at (U/J)c ∼ 3.4 for n̄ = 1 [75]. The Mott insulating case was discussed in the previous
section. At incommensurate filling, the system remains superfluid for all interaction strengths. Here we
concentrate on systems at weak interactions U . 3 at integer filling n̄ = 1 and at incommensurate fillings
n̄ < 1.

Figure 6.4: Sketch of the excitation spectrum of the Lieb-Liniger model. The Lieb I mode is sound-like at small
quasimomenta and becomes particle-like at larger quasimomenta. The Lieb II mode exhibits the same sound-like
behavior at small momenta but it is maximum at k = πn̄ and vanishes again at k = 2πn̄. The shaded area represents
the continuum of excitations bounded between the two modes in the continuum model.

The low-lying excitations of the weakly interacting Bose gas are generally sound-like corresponding to
fluctuations of the condensate phase [184]. One of the simplest models describing interacting bosons
in one dimension is the Lieb-Liniger model [185, 186] which assumes a δ-interaction potential and
describes particles in the continuum. The Lieb-Liniger model displays two distinct excitation modes,
the Lieb I and the Lieb II mode which are sketched in Fig. 6.4. The Lieb I mode is sound-like at small
quasimomenta and becomes particle-like at larger quasimomenta and corresponds to the single mode
well known from Bogoliubov theory for the weakly interacting Bose gas [184]. The Lieb I mode is often
simply called Bogoliubov mode. The additional Lieb II mode exhibits the same sound-like behavior at
small momenta where the dispersion relations of both modes have the same slope. However, the Lieb
II mode reaches a maximum at quasimomentum k = πn̄ and vanishes again at k = 2πn̄. The Lieb II
mode is often simply called Lieb mode. In the context of cold gases, the Lieb-Liniger spectrum was
investigated, for instance, by means of Bragg spectroscopy of ultracold bosons in the harmonic trap
confined to one dimension in space [187, 188] where a broad feature in the extracted dynamical structure
factor indicates contributions from both modes. The Bose-Hubbard model at weak interactions can also
be described by the Lieb-Liniger model when taking the continuum limit [189]. The validity of this
mapping is not completely general, however, the Lieb-Liniger model describes well some properties
of the Bose-Hubbard model in the superfluid regime in a wide range of parameters. For example, the
authors of Ref. [189] show that the sound velocity of an infinitesimally small density perturbation in
the one-dimensional Bose-Hubbard model is well described by the sound velocity predicted by the
Lieb-Liniger model for the parameter γ = (U/J)/(2n̄) . 10.
Choosing the parameters accordingly, we assume our system to be well described by the Lieb-Liniger
model and its excitation spectrum can be probed by the superlattice modulation. Notably, the superlattice
modulation introduces a finite momentum transfer π where, at n̄ = 1, the Lieb dispersion is maximal.
Within linear response, the resonance condition given by the δ-function in Eq. 3.31 would have a lower
bound (below which no energy is absorbed) given by this maximum in the Lieb spectrum. Consequently,
we expect to observe a gap in the excitation spectrum. At densities n̄ < 1, the maximum of the Lieb
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branch at πn̄ is located at a quasimomentum < π such that a transferred momentum π corresponds
to frequencies to the right of the maximum of the Lieb branch. Consequently, the gap value would
reduce. This is in contrast to the normal lattice modulation which is quasimomentum conserving, i.e. the
transferred momentum is zero, such that it would only couple to the low-frequency excitations in the
linear part of the spectrum near k = 0 at any density.
In the t-DMRG we study systems of size up to L = 128 and with densities n ∼ 0.55 − 1. In order to
obtain sufficient accuracy in the absorbed energy E(t) we keep a matrix dimension of D = 128 and a local
dimension σ = 7 and we conduct an error analysis by increasing the matrix dimension to 196 states and
the local dimension to 9. In the Trotter-Suzuki time evolution we set Jτ = 0.01~ and we use Jτ = 0.005~
to perform the error analysis. We determine the maximal uncertainties in the energy absorption rate due
to the matrix dimension, the local dimension, the time step and the variation of the fit range (see App. A
for details). The error bars are provided in the figures.

Figure 6.5: (a) The energy absorption rate for a system size L = 64 and for an amplitude of the modulation
A = 0.01J (A = 0.05J) for ~ω ≥ 2J (~ω < 2J) at fixed density n̄ = 1 and different interaction strengths U (a) as
well as at fixed interaction strength U = 1J and different densities n̄ ≤ 1 (b). The inset in (a) shows the energy
absorption rate normalized by the system size L for different system sizes L = 64 (orange diamonds) and L = 96
(green left-pointed triangles) at U = 2J. Solid lines are guides to the eye.

In order to probe the gap in the Lieb mode by superlattice modulation, we time evolve the system for
L = 64 at different interaction strengths U and at different fillings n̄ for a range of modulation frequencies
ranging from very small frequencies to ~ω . 10J. For some parameters we also consider system sizes
L = 96, 128. We extract the energy absorption rate from a fit of the slope (see App. B.2.2). The observed
energy absorption spectrum at n̄ = 1 for different U is shown in Fig. 6.5(a) and the spectrum at U = 1J
for different n̄ is shown in Fig. 6.5(b). We observe a continuous but weak onset at low frequencies while at
larger frequencies a pronounced absorption peak develops. By continuous onset we mean that we observe
an increase in energy already at very small frequencies ~ω ∼ 0.5J. The extracted slope is very small and
only increases very slowly for increasing ~ω until the strong peak develops at ~ω & 3J. The location,
height and width of the peak depend on both, interaction strength and density. For increasing interactions
(at fixed density, see Fig. 6.5(a)), the height of the absorption peak increases and the maximum shifts to
larger frequencies. Likewise, the width broadens with the right bound being shifted to larger frequencies
while the onset of the peak (at the left side) shifts to slightly smaller frequencies. For increasing U the
peak develops a substructure. However, this substructure gets less pronounced for increasing system
sizes as may be seen from a comparison to L = 96 at U = 2J in the inset of Fig. 6.5(a). For decreasing
densities (at fixed interaction strength, see Fig. 6.5(b)), the height of the absorption peak decreases and
the maximum remains approximately at the same location. The width decreases with the right bound
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being shifted to smaller frequencies while the onset (at the left side) does not shift significantly.
For small ratios γ = (U/J)/2n, the onset of the absorption peak is related to the gap in the Lieb mode at
finite momenta. However, in many cases this is hard to observe due to the smooth behaviour of the matrix
elements [190]. In the Bose-Hubbard model, in contrast to the continuum model, the excitations above the
Lieb branch are not continuous but we expect a band structure similar to the cases studied in the previous
sections. The width of the observed peak is approximately given by the lowest band of excitations. We
identify possible reasons for the ’soft’ onset of the observed peak instead of a genuine gap predicted
by Lieb-Liniger theory. The transition probability (of a two-level system) as a response to a sinusoidal
perturbation depends on the strength and the finite duration of the perturbation [142]. A transition cannot
be resolved sharply in frequency as the transition probability acquires a finite frequency broadening due
to the finite excitation time such that the onset may appear ’soft’. Moreover, we may observe additional
higher-order processes at low frequencies which are not captured within linear response. Due to the
continuous onset, it is difficult to observe the reduction in the gap when n̄ decreases from n̄ = 1 to smaller
values.
In principle, the superlattice modulation could also couple to the Lieb spectrum where it is gapless and
sound-like near k = 2πn̄. This would be the case for densities n̄ ∼ 0.5 such that the sound-like regime
of the Lieb spectrum occurs near k ∼ π corresponding to the momentum provided by the superlattice
modulation. Here, we do not investigate this case.
These results have only recently been obtained and a more detailed analysis, numerically and analytically,
remains of interest in order to explain in more detail the rich structure of the excitation spectrum in the
superfluid that we observe using t-DMRG.

6.4 Conclusion

In this chapter we have investigated the excitation spectrum of the one-dimensional Bose-Hubbard model
at zero temperature as a response to the superlattice amplitude modulation in both, the Mott insulating
and the superfluid regime.
In the Mott insulator we find a sharp excitation peak around ~ω ∼ U corresponding to a particle-hole
excitation on top of the commensurately filled background. The observed peak is significantly stronger
and narrower compared to the normal lattice modulation which would enable a notably more precise
calibration of the interaction parameter U in experiment for which the normal lattice modulation is
sometimes used [183]. A comparison of theory and experiment would be particularly simple without
the need of numerical input as we find very good agreement with the analytical results deep in the Mott
insulator and even when approaching the phase transition to the superfluid state the observed peaks still
overlap considerably with the analytical prediction.
In the superfluid regime, we observe a distinct excitation peak that can be explained within the Lieb-
Liniger model. Its onset is related to the energy gap in the Lieb-Liniger spectrum at finite momenta to
which the superlattice amplitude modulation couples (as it provides a finite momentum transfer π). A
more detailed analysis of this spectrum, both numerically and analytically, remains of interest.
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CHAPTER 7

Conclusion and Outlook

In this thesis we explored the possibilities of lattice amplitude modulation spectroscopy, a time-periodic
modulation of the optical lattice amplitude, in order to more accurately characterize ultracold atoms
confined to optical lattices. Energy is absorbed by the system whenever the modulation frequency ω
corresponds to an available excitation in the system at energy ~ω. Hence, valuable insights into the
underlying many-body system can be obtained by monitoring the absorbed energy. Notably, we introduced
a ’novel’ lattice modulation scheme of dimerized geometry, which we named superlattice modulation,
in the sense that the amplitude of one well is increased while the amplitude of the neighboring well is
decreased. The superlattice modulation can be applied to optical (super)lattices by time-dependently
tuning the dephasing between the laser waves constituting the optical lattice. The superlattice modulation
transfers a finite momentum π to the optical lattice in contrast to the standard lattice amplitude modulation
which is momentum-conserving. We studied the effect of both modulation schemes on different (mostly
one-dimensional) systems of fermionic or bosonic atoms trapped in optical (super)lattices, theoretically
described by (ionic) Fermi- and Bose-Hubbard models. We applied a modulation of small amplitude and
studied the time evolution of the systems in the linear response regime by means of the time-dependent
density matrix renormalization group method. From the time evolution of the energy we extracted the
absorbed energy which we compared to different analytical approaches and made close connection to
experimentally relevant situations.
We found the (super)lattice modulation spectroscopy to be a flexible tool which is a valuable probe
in two different ways. On the one hand, we showed how the superlattice modulation can be used to
experimentally detect unknown phases. In particular, it was used to detect signatures of bond order in the
one-dimensional ionic Hubbard model which has so far evaded experimental detection. On the other
hand, we found the (super)lattice modulation to be useful in determining unknown macroscopic and
microscopic parameters in the experiment. Here we studied its applicability to extract the temperature of
fermionic atoms and the interaction strength of bosonic atoms confined to optical lattices.

Detection of bond order In Ch. 4 we studied the excitation spectrum of the one-dimensional ionic
Hubbard model as a response to the superlattice modulation. The ionic Hubbard model is given by the
Fermi-Hubbard model with an additional staggered energy offset. The phase diagram was predicted
to exhibit a so-called bond order wave phase [35], characterized by a spontaneous dimerization of the
hopping, in between a band and a Mott insulating phase. Ultracold fermions in optical lattices provide an
appealing novel avenue to detect this state. So far, a detection has been difficult, in particular, due to the
lack of a suitable observable. In this thesis, we suggest to use superlattice modulation spectroscopy as a
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probe since, due to its dimerized geometry, it would be a prominent candidate to directly couple to the
bond order parameter in contrast to the available probes. We demonstrated, using time-dependent matrix
renormalization group and bosonization techniques, that superlattice amplitude modulation spectroscopy
reveals signatures of both phase transitions, signaling the onset of the bond order wave phase. The ionic
Hubbard model was recently realized by fermionic atoms trapped in optical superlattices [36]. Thus, a
detection of bond order in cold atomic experiments has come within reach in view of the recent realization
of homogeneous trapping potentials [69–71] and temperatures below the exchange interaction [17–19].
This would permit the detection of the low-energy divergence in the excitations at the critical point
between band insulator and bond order wave. Furthermore, we gained detailed insights into the excitation
spectra in the band and Mott insulating phases. Deep in the band insulator we developed a thorough
understanding of the charge excitations within an effective model using a Schrieffer-Wolff transformation
for the excited states. Approaching the phase transition to the bond order wave phase, we could follow
the closing of the charge excitation gap. On the Mott insulating site, we confirmed the spin nature of the
low-energy excitations and also gained insights into the gapped charge excitation spectrum.

Thermometry An important control parameter in fermionic lattice experiments is the temperature
which is hard to determine accurately. Motivated by the lack of reliable thermometry schemes, we studied
in Ch. 5 the possibilities of thermometry for non-interacting fermionic atoms confined to optical lattices
in different dimensions by means of standard lattice modulation spectroscopy. We also compared to the
superlattice modulation spectroscopy investigated in an earlier work [168]. We showed how the atom
excitation rate to higher Bloch bands as a response to the lattice modulation exhibits a clear signature
of the temperature-dependent Fermi distribution of the particles in the lowest band. This temperature
dependence is broadened in energy space due to the increased bandwidth of the excited bands with
respect to the lowest band. Consequently, the required frequency resolution in experiment is reduced
which facilitates a measurement. A measurement of the atom excitation rate would be particularly simple
as it merely corresponds, due to the momentum-resolution of the excitation, to counting the particles
transferred to higher Bloch bands. The number of transferred particles can be easily measured by means of
the adiabatic band mapping technique without the necessity of momentum resolution in the measurement.
We found that the temperature dependence survives in the presence of an additional harmonic trapping
potential. We verified the measurability in experiment by estimating the number of excited particles
and the required frequency resolution. Overall, we concluded that a temperature measurement would
be possible in one- and two dimensional setups for both, the normal and the superlattice modulation.
The superlattice modulation is advantageous as it requires less frequency resolution in the experiment.
However, if the frequency resolution is sufficiently precise, the normal lattice modulation would be the
preferred choice as it is easier to implement experimentally. Notably, this thermometer would work best
in the low-temperature regime of interest where most other schemes fail [38].

Lattice calibration In Ch. 6 we studied the excitation spectrum of the one-dimensional Bose-Hubbard
model as a response to the superlattice amplitude modulation. At commensurate filling and strong interac-
tions, deep in the Mott insulating regime, we found that the superlattice modulation creates particle-hole
pairs at an energy which is approximately equal to the on-site interaction strength as naively expected.
We studied the spectrum using time-dependent density matrix renormalization group and a perturbative
approach in the strong-coupling regime. We found that the width of the absorption peak, which is given
by the bandwidth of the lowest band of excitations, is very narrow (and stronger in amplitude) compared
to the absorption spectrum as a response to the normal lattice modulation [39]. This narrow resonance is a
particularity of the superlattice modulation which transfers momentum π to the lattice. As a consequence,
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particle-hole pairs are created with center of mass momentum π and reduced bandwidth compared to
particle-hole pairs with zero center of mass momentum created by the normal lattice modulation. The
absorption spectrum as a response to lattice amplitude modulation can be used to determine the on-site
interaction strength in the experiment [183] such that our superlattice setup would enable a much more
precise calibration compared to the normal lattice modulation. Moreover, we investigated the absorption
spectrum in the superfluid regime at weak interactions and (in)commensurate fillings where we found a
pronounced peak at intermediate interactions related to the Lieb-Liniger [185, 186] spectrum at finite
momentum π.

In summary, we found the superlattice modulation spectroscopy to be a versatile tool in probing ultracold
atoms in optical lattices. Its dimerized geometry enables the detection of exotic quantum phases such
as the bond order wave phase in the one-dimensional ionic Hubbard model. Additionally, the finite
momentum transfer π to the lattice provides a useful measurement scheme to extract unknown parameters
in the experiment, giving more precise results than the normal lattice modulation in some cases. In the
future, further applications of the superlattice modulation to different kinds of setups may shed light on
open questions of quantum many-body physics. For example, it could be used to investigate the phase
diagram of the extended repulsive Fermi-Hubbard model, given by the repulsive Fermi-Hubbard model
with additional nearest-neighbor interactions. In this case, a bond order wave phase was predicted to exist
at weak and intermediate interactions, between a charge density wave at dominating nearest-neighbor
interactions and a spin density wave at dominating on-site interactions. This was theoretically studied,
for example, in Refs. [191, 192] and references therein. Detecting the bond order wave phase in this
model and characterizing the nature of its neighboring phase transitions remains to be done. At strong
interactions, the bond order wave is predicted to vanish accompanied by the merging of the two phase
transitions into one transition line. The vicinity of this so-called tricritical point is little understood and
would be worth a thorough investigation. The extended Bose-Hubbard model was recently realized with a
gas of strongly magnetic atoms in a three-dimensional optical lattice [193] where the long range character
of the dipolar interactions leads to a nearest-neighbor term in the tight-binding description. In principle,
the extended Fermi-Hubbard model should also be realizable by loading a dipolar Fermi gas, as for
example prepared in Ref. [194], into an optical lattice. Moreover, also bosonic particles trapped in optical
superlattices exhibit a rich phase diagram including Mott insulating states with fractional filling [75, 195]
and further insights into the excitation spectrum may be obtained by the superlattice modulation.

The dimerization of the superlattice modulation (−1) j = cos(π j) could be extended to introducing
an arbitrary momentum transfer K, i.e. replacing the dimerization by cos(aK j). This is promising as
a spectroscopic probe as it allows for the investigation of more complex lattice models and various
intriguing quantum phases. One example would be the Bose glass phase, a localized phase, predicted to
occur for bosonic particles trapped in disordered or quasi-periodic one-dimensional lattice potentials [60,
75]. The Bose glass phase occurs due to the interplay of disorder and interactions. Experimentally, this
can be realized by superimposing two laser waves of arbitrary wavelength where the ratio of the wave
numbers k2/k1 determines the periodicity. The phase diagram for the disordered and quasi-periodic
one-dimensional systems is qualitatively similar, displaying Bose glass, superfluid and Mott insulating
phases at commensurate filling. At incommensurate filling only the first two phases exist. The Bose
glass is similar to the Mott insulating phase in the sense that it is localized and insulating. In contrast,
the Bose glass is gapless and has a finite compressibility whereas the Mott insulator has a finite gap and
zero compressibility. In a pioneering experiment [118], the authors detected indications for the onset of
the Bose glass phase by means of modulation spectroscopy and time-of-flight coherence measurements.
They detected a region where both, Mott insulating gap and superfluid long range phase coherence
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vanish. However, an unambiguous characterization of the Bose glass phase was not possible, and remains
difficult until today [196, 197]. Despite its qualitative similarities in the overall phase diagram, disordered
and quasiperiodic setups were shown to respond notably different to a modulation of the lattice amp-
litude [119]. The excitation spectrum deserves more experimental and theoretical investigation. A lattice
amplitude modulation of cos(aK j)-geometry, corresponding to the geometry of the quasiperiodic lattice
if K = k2/k1, may couple to a certain class of excitations. This possibly provides further insights into the
properties of the Bose glass phase and the phase transitions to the superfluid and Mott insulating phases.

In this thesis, we considered small amplitude modulations probing the linear response regime and
thus gaining information on the equilibrium system. However, the superlattice modulation or its ex-
tension to arbitrary momenta could also be used to engineer out-of-equilibrium Floquet states [198].
The basic idea is to coherently manipulate an isolated system by periodic driving. The periodic driving
simulates the dynamics of an effective static Hamiltonian with potentially exciting and novel properties.
It is readily realized in cold atoms setups by lattice shaking, moving lattices or time-dependent external
fields [198] and leads to a modification of the tunneling matrix element. Prominent examples include the
study of dynamic localization [199], i.e. the suppression of the inter-well expansion, of a Bose-Einstein
condensate in an optical lattice, as well as the simulation of frustrated classical magnetism [200] or the
creation of artificial gauge fields [201]. The effect of the superlattice modulation, or its extension to other
momenta, at arbitrary frequency and strength are worth an investigation as this may potentially stabilize
novel phases.
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APPENDIX A

Numerical Convergence

In this appendix we give details on the error analysis of the energy absorption rate in t-DMRG. We extract
the energy absorption rate from a fit of the time evolution of the energy (see for example App. B) for a
given set of control parameters matrix dimension D, Suzuki-Trotter time step τ, and the local dimension
σ in the case of bosons. The fit range is chosen to cover a sufficiently large region located within the
linear regime. We use the Matlab environment [202] to obtain the fits.
Consider a given parameter set. We conduct an error analysis by increasing the matrix dimension D, by
reducing the Suzuki-Trotter time step τ, or by increasing the local dimension σ in the case of bosons. We
fit the time evolution of the energy with one of the control parameters changed and determine the change
in the energy absorption rate with respect to the original set of control parameters. In each case, this
defines an error as δ = xparam. varied − x where x is the fitted parameter for the initial control parameters
and xparam. varied is the fitted parameter with one of the control parameters changed.
Additionally, we vary the chosen fit region, either increasing the right fit bound or decreasing the left
fit bound. We ensure that the chosen modified fit range is still suitable. We fit the time evolution of the
energy with one of the fit bounds changed but original control parameters and determine the change in
the energy absorption rate with respect to the original choice of fit range. In each case, this defines an
error as δ = xfit bound varied − x where x is the fitted parameter for the initial fit range and xfit bound varied is
the fitted parameter with one of the fit bounds varied but original control parameters.
Furthermore, we consider the lower and upper confidence bounds on the fitted coefficients provided
by Matlab [202] and determine the change in the energy absorption rate as an error. The width of the
interval given by the lower and upper confidence bound indicates how uncertain one is about the fitted
coefficients and it is typically large if not enough data points are considered. The bounds are defined
with a level of certainty of 95%. Each bound defines an error as δ = xconf. bound − x where x is the fitted
parameter and xconf. bound is the lower or upper confidence bound.
The errors δ can be positive or negative. The maximum δ > 0 of the above errors defines the upper error
bar. The minimum δ < 0 defines the lower error bar. If no δ is positive (negative), the upper (lower) error
bar is set to zero. We do not observe a general pattern regarding which error dominates. This depends
strongly on the physical situation and varies even for neighboring points on the same curve. Note, that we
have verified for each situation at study that the ground state energy has converged to sufficient precision
before carrying out the time evolution of the energy.
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APPENDIX B

Time-dependence of the absorbed energy

In this appendix we comment on the time evolution of energy E(t) − E0 obtained using t-DMRG in the
different situations studied in this thesis.
In lattice shaking setups, the system absorbs energy whenever the modulation frequency ω corresponds
to the energy of an available excitation in the system. Close to resonance, the time evolution of the energy
typically shows an initial quadratic rise, then becomes linear in time at intermediate (and sufficiently
large) times and eventually saturates at longer times. We consider the linear regime of the absorbed
energy where the slope m, which we identify with the energy absorption, can be extracted from a fit of
the absorbed energy. However, the chosen fitting functions and the considered time intervals depend
on the situation at study. The extent of the linear region is related to the choice of the amplitude A of
the perturbation. The amplitude needs to be chosen sufficiently large to obtain a measurable signal, but
also small enough for the response to remain in the linear regime long enough (and not saturate at short
times).
In this appendix, we comment on both, the choice of the perturbing amplitude A and on the fitting
procedure in the different situations studied in this thesis. A detailed analysis of the time evolution of the
energy is important in order to verify the validity of linear response and extract reliable values for the
energy absorption rate.

B.1 Ionic Fermi-Hubbard model

In this section we discuss the time evolution of the energy as a response to superlattice amplitude
modulation in different parts of the phase diagram of the ionic Fermi-Hubbard model studied in Ch. 4 of
this thesis.

B.1.1 Ising criticality

As an example, in Fig. B.1 the time evolution of the energy (E(t) − E0)/A2 is shown at Ising criticality
for two different system sizes L = 96 and L = 192 within the n = 1 peak and for two different amplitudes
of the modulation. The typical linear increase is observed for times & 100~/J, modulated with the
perturbation frequency. We extract the energy absorption rate from a fit of

E(t) − E0 = mt + offset + h cos(ωt + θ) (B.1)
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with fit parameters slope m, y-intercept offset, amplitude h (h ≈ A in many cases), and phase θ of
the lattice modulation and with given frequency of the lattice modulation ω. The extracted energy
absorption rate is discussed in Sec. 4.4.1 in the main part of this thesis. Due to the small frequencies of
the modulation, only few periods of the modulation are accessible within numerical accuracy.

Figure B.1: The absorbed energy as a function of time in t-DMRG for ∆ = 50J at Ising criticality for different
amplitudes of the modulation A = 0.001J (blue squares) and A = 0.0005J (orange diamonds) for a system size
L = 96 at Uc1 = 51.26J and at ~ω = 0.13J (a) as well as for L = 192 at Uc1 = 51.3J and at ~ω = 0.075J (b). Solid
lines are guides to the eye. For A = 0.001J saturation effects are strong, in particular for L = 192 where the energy
saturates at times < 200~/J.

For the smaller amplitude A = 0.0005J we consider times up to & 300~/J. For the larger amplitude
A = 0.001J saturation sets in at earlier times as can be seen in Fig. B.1. For the linear response, we can
only consider times below saturation which leads to an increased uncertainty in the fits and we clearly
underestimate the energy absorption for A = 0.001J as can be seen from a comparison of the energy
absorption rate for the two amplitudes in Fig. 4.19(a). This justifies our choice of the A = 0.0005J
data for a quantitative determination of the critical velocity in the Sec. 4.4.1 (cf. table 4.1). The energy
saturates particularly early for the system size L = 192 where absorption is strongest. For this system
size the absorption occurs at the smallest considered modulation frequencies such that the number of
observed oscillations is particularly small. For the amplitude A = 0.001J, the fits become unreliable,
in particular around the maximum of the peak as the time evolution of the energy saturates early. This
explains the asymmetry of the peak (cf. Fig. 4.19(a)). In addition, for L = 192 absorption is particularly
strong in the center of the A = 0.0005J peak which, even at this small amplitude, leads to saturation at
early times at these frequencies. Consequently, we might slightly underestimate the peak height of the
L = 192, A = 0.0005J peak. This justifies our choice of the L = 128, A = 0.0005J peak to determine the
best estimate of the critical velocity uc (and from this the expected peak positions of the n = 1 peak for
the other system sizes) in Sec. 4.4.1.

B.1.2 Bond order wave phase

As an example, in Fig. B.2 the time evolution of the energy (E(t) − E0)/A2 is shown in the bond order
wave at U = 52J for the two system sizes at study L = 64, 128. We consider three different amplitudes of
the modulation. We choose a frequency ω = 0.05J. This frequency is located in the center of the peak at
once and twice the spin gap, for the two considered system sizes, respectively. The typical linear increase
is observed and only few periods of the oscillation are within the reach of numerical accuracy due to the
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small frequencies of the modulation, similar to the observation at Ising criticality. We extract the energy
absorption rate from a fit of Eq. (B.1). The extracted energy absorption rate is discussed in Sec. 4.4.2
in the main part of this thesis. Due to the large modulation period, time intervals up to ∼ 300~/J are
required to reliably extract the energy absorption rate.
Note, that the absorbed energy is very sensitive to the choice of A in this case. For L = 64 we compare
amplitudes A = 0.002J, 0.005J and 0.007J in Fig. B.2(a). For A = 0.002J, the absorption is very weak
for the time interval considered. The linear regime only sets in at late times such that much longer
times would be required to reliably extract the absorption rate. In contrast, for the larger values of A,
the linear regime appears at earlier times. Since for A = 0.007J saturation sets in early, we use the
amplitude A = 0.005J in order to extract the energy absorption rate. For L = 128 we compare amplitudes
A = 0.0008J, 0.001J, 0.002J in Fig. B.2(b). Here, the linear regime appears for all considered A.
Saturation occurs at A = 0.002J in contrast to the smaller system size L = 64 where the absorption is
very weak at this amplitude for L = 128. We use the amplitude A = 0.001J in order to extract the energy
absorption rate.

Figure B.2: The absorbed energy as a function of time at ∆ = 50J, U = 52J and ~ω = 0.05J for different system
sizes L = 64 (a) and L = 128 (b) and different amplitudes of the modulation. Solid lines are guides to the eye.

B.1.3 Mott insulator

Low-energy spectrum As an example, in Fig. B.3(a) the time evolution of the energy (E(t) − E0)/A2

is shown in the Mott insulator at ∆ = 50J and U = 59J for ~ω = 0.4J. We observe a linear rise in
energy modulated with the perturbation frequency over the entire considered time interval. Saturation is
expected to set in at later times. Again, we can extract the energy absorption rate from a fit of Eq. (B.1).
The extracted energy absorption rate is discussed in Sec. 4.5.1 in the main part of this thesis. We
consider times up to 200~/J. In Fig. B.3(a) we compare three different amplitudes of the modulation
A = 0.003J, 0.005J, 0.007J. No considerable difference is visible but at late times the A = 0.007J data
starts to slightly saturate and we conclude that A = 0.005J is a good choice for our study. The authors of
Ref. [124] reveal substructures in the spectrum of the homogeneous Hubbard model. First, a linear rise in
energy is observed but at later times the absorbed energy either saturates or increases further with an
increased slope. This leads to a comb-like structure in the absorption rate on top of a broad spectrum.
Similar substructures may arise here but are not resolved within the considered time scales and would
not affect our main results.
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Figure B.3: The absorbed energy as a function of time for different amplitudes of the modulation at ∆ = 50J,
U = 59J, ~ω = 0.4J (a) and at ∆ = 10J, U = 50J, ~ω = 40J (b). Solid lines are guides to the eye.

High energy spectrum As an example, the time evolution (E(t) − E0)/A2 in the U peak for ∆ = 10J,
U = 50J (cf. Fig. 4.24) at ~ω = 40J is shown in Fig. B.3(b) for different amplitudes of the modulation
A = 0.0004J, 0.0005J, 0.001J. In all peaks an amplitude A = 0.0005J is a good choice as we observe
a sufficiently large linear regime. Similar to the band insulating case (cf. Sec. 4.3.2), we observe a
superimposed oscillation of small frequency ωobs � ω on top of the typical linear rise in energy. In
the (U + ∆) peak we extract the slope from a fit of Eq. (4.37) as the energy absorption is strong and the
oscillation with modulation frequency is negligible, similar to the observation on the band insulating
side of the phase diagram (cf. Sec. 4.3.2). In the U and (U − ∆) peaks the oscillation with modulation
frequency is no longer negligible such that we extract the energy absorption rate from a fit of

E(t) − E0 = mt + offset + Ã cos(ωobst + ϕ) + h cos(ωt + θ) (B.2)

with fit parameters slope m, y-intercept offset, amplitude Ã, frequency ωobs and phase ϕ of the superim-
posed oscillation as well as amplitude h, and phase θ of the lattice modulation and with given frequency
of the lattice modulation ω. The extracted energy absorption rate is discussed in Sec. 4.5.2 in the main
part of this thesis.

B.2 Bose-Hubbard model

In this section we discuss the time evolution of the energy as a response to superlattice amplitude
modulation in the Mott insulating and superfluid phases of the Bose-Hubbard model studied in Ch. 6 of
this thesis.

B.2.1 Mott insulator

As an example, in Fig. B.4, the time evolution of the energy (E(t) − E0)/A2 at strong interactions U =

60J (a) and at intermediate interactions U = 6J (b) is shown for perturbing frequencies near the maximum
of the absorption. We consider different amplitudes of the modulation A = 0.05J, 0.01J, 0.005J. The
typical linear time-dependence, modulated by the perturbation frequency, is observed for times & 2~/J.
Saturation does not occur within the considered time interval and the linear time interval is sufficiently
large for all considered amplitudes. We consider an amplitude A = 0.01J and extract the energy
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absorption rate from a fit of Eq. (B.1). The extracted energy absorption rate is discussed in Sec. 6.2 in the
main part of this thesis. We consider times up to ∼ 4~/J at strong interactions and times up to ∼ 10~/J
at intermediate interactions. Examples of the fits are shown in the insets of Fig. B.4.

Figure B.4: The absorbed energy as a function of time at U = 60J, ~ω = 60J (a) and at U = 6J, ~ω = 8J (b) for
different amplitudes of the modulation A = 0.05J, 0.01J, 0.005J. Solid lines are guides to the eye and vertical
dashed lines indicate the chosen fit range. The inset shows the A = 0.01J data (orange dots) compared to the
obtained fit (black solid line).

B.2.2 Superfluid

As an example, in Fig. B.5, the time evolution of the energy (E(t) − E0)/A2 at an interaction strength
U = 1J is shown at low frequencies ~ω = 0.5J (a) and at larger frequencies ~ω = 4J (b). We consider
different amplitudes of the modulation A = 0.1J, 0.05J, 0.01J and A = 0.05J, 0.01J, 0.005J respectively.
For the smaller frequency we have chosen larger amplitudes as absorption is very weak. In both cases,
the typical linear time-dependence, modulated by the perturbation frequency, is observed already at short
times. Saturation does not occur within in the considered time interval and the linear time interval is
sufficiently large for all considered amplitudes.

Figure B.5: The absorbed energy as a function of time at U = 1J and at ~ω = 0.5J (a) and at ~ω = 4J (b) for
different amplitudes of the modulation. Solid lines are guides to the eye and vertical dashed lines indicate the
chosen fit range.

We consider an amplitude A = 0.05J for ~ω < 2J and A = 0.01J for ~ω ≥ 2J and extract the energy
absorption rate from a fit of Eq. (B.1). The extracted energy absorption rate is discussed in Sec. 6.3 in
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the main part of this thesis. The considered times are chosen such that sufficiently many periods of the
oscillation are covered. We chose to consider times up to ∼ 250~/J at ~ω < 1J, times up to ∼ 40~/J at
1J ≤ ~ω ≤ 2J and times up to ∼ 15~/J at ~ω > 2J.
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APPENDIX C

Energy absorption within bosonization

In this appendix we sketch the derivation of the bosonization results for the energy absorption rate
obtained in collaboration with Roberta Citro and Edmond Orignac [84]. We compare the bosonization
results to our t-DMRG results in Ch. 4.

C.1 At the Ising transition

At the transition between the band insulator and the bond order wave phase, the ionic Hubbard at low
energies is well described by an effective two-frequency sine-Gordon model (3.41). The transition falls
into the Ising universality class (see Sec. 3.3.2 for details). In the vicinity of this transition, most operators
of interest can be written in terms of the disorder parameter of the Ising model µ. Here, we want to
express the order parameter of the transition given by Eq. (3.40), B̂ ∼

∫ aL
0 dx

[
sin

(√
2φc

)
cos

(√
2φs

)]
,

in terms of µ. It was shown that sin
(√

2φc
)

is expressible in terms of the disorder parameter µ [148],

µ ∼ sin
(√

2φc
)
, while 〈cos

(√
2φs

)
〉 becomes a non-universal constant, C, which depends on the ratio of

the spin gap to the full bandwidth. Consequently, the bond order parameter becomes

B̂ =
AC

α

∫ aL

0
dx sin

(√
2φc

)
=
ACγ

α

∫ aL

0
dxµ, (C.1)

with γ a dimensionless constant. The spectroscopic response function (in the case of superlattice
modulation spectroscopy) is proportional to the imaginary part of the Fourier transform of the correlator

χ(τ) =
1
~
〈TτB̂(τ)B̂(0)〉, (C.2)

where Tτ is the time-ordering operator and τ the imaginary time. At the Ising transition, the correlator
becomes

χ(τ) =
aL
~

(
ACγ

α

)2 ∫ aL

0
dx 〈Tτµ(x, τ)µ(0, 0)〉. (C.3)
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For a finite system size L at criticality, the correlation function takes the form

〈Tτµ(x, τ)µ(0, 0)〉 =


(
πα
aL

)2

sin2
(
πx
aL

)
+ sinh2

(
πucτ
aL

)

1/8

, (C.4)

with scaling dimension 1/8, where uc is the sound velocity of charge excitations. This correlation function
can be conveniently rewritten as

χ(iωn) =
aL
~

(
ACγ

α

)2 ∫ ∞

0
dλ λ1/8−1 21/8

(
πα

aL

)1/4 ∫ aL

0
dx

∫ ∞

−∞

dτ eiωnτe−λ cosh(2π ucτ
aL )eλ cos(2π x

aL ),(C.5)

where λ is dimensionless. The integrals over x and τ are found in tables [203] and one obtains

χ(iωn) =
(aL)3

π~uc

(
ACγ

α

)2 (
πα

aL

)1/4
21/8

∫ +∞

0
dλ λ1/8−1I0(λ)K iaLω

2πuc
(λ), (C.6)

which can be expressed in closed form [204] leading to

χ(iωn) ∼
aL
~uc

(aL
α

)7/4
∣∣∣∣∣∣∣∣
Γ
(

1
16 + i aLωn

4πuc

)
Γ
(

15
16 + i aLωn

4πuc

)
∣∣∣∣∣∣∣∣
2

. (C.7)

Under analytic continuation, one finds

χ(ω + i0) ∼
aL
~ uc

(aL
α

)7/4 Γ
(

1
16 +

aL(ω+i0)
4πuc

)
Γ
(

1
16 −

aL(ω+i0)
4πuc

)
Γ
(

15
16 +

aL(ω+i0)
4πuc

)
Γ
(

15
16 −

aL(ω+i0)
4πuc

) . (C.8)

Poles occur every time the argument of one of the Euler gamma functions in the numerator is a non-
positive integer. Only considering positive energies, the poles are located at

ωm = 4π
uc

aL

(
m +

1
16

)
, (C.9)

with m ≥ 0 integer. One obtains the expression of χ(ω) from calculating the residues at these poles.
Taking the imaginary part, one finds Eq. (4.38),

Imχ(ω + i0) ∼
(aL
α

)7/4 ∞∑
m=0

Γ
(
m + 1

8

)
Γ (m + 1)


2

δ

(
~ω − 4π

~uc

aL

(
m +

1
16

))
. (C.10)

The energy absorption rate is proportional to ωImχ(ω) which we discuss in Sec. 4.4.1 in comparison to
our t-DMRG results. In order to extract the infinite system behavior, one can take the limit ω � uc/(aL)
and finds the absorption rate to be proportional to L ω−3/4.

C.2 Near the Kosterlitz-Thouless transition

At the Kosterlitz-Thouless transition (see Sec. 3.3.2 for details) the charge sector remains gapped while the
spin sector becomes critical. The bond order wave order parameter (3.40) can therefore be approximated
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by

B̂ '
A

α
〈sin

(√
2φc

)
〉

∫ aL

0
dx cos

(√
2φs

)
=
AD

α

∫ aL

0
dx cos

(√
2φs

)
, (C.11)

whereD is a non-universal constant.

In the bond order wave phase In the bond order wave phase, the spin modes are described by the
massive sine Gordon model such that the response function can be obtained by applying the form factor
expansion method [205–210]. In the proximity of the Kosterlitz-Thouless transition, Ks . 1, the only
excitations of the massive sine Gordon model are solitons and antisolitons. Therefore, in the continuum
limit, where the spin correlation length is much smaller than the system size (~us/∆s � aL), the response
function takes the form

Imχ(ω) = aL
(
AD

α

)2 ∑
n

(2π)2(1−n)

(n!)2

∫ n∏
j=1

dθ j+dθ j− |〈θ1+θ1− . . . θn+θn−| cos
(√

2φs
)
|0〉|2

× δ

~ω − ∆s

∑
j,r=±

cosh θ jr

 δ
 ∆s

~us

∑
j,r=±

sinh θ jr

 , (C.12)

where θ j+,− are the rapidities for a soliton (+) or an antisoliton (−), ∆s is the spin gap, and |0〉 is the
excitation vacuum. This expression predicts thresholds at frequencies 2n∆s where n is an integer. This
means an excitation is created each time the modulation frequency is large enough to generate n soliton-
antisoliton pairs. Near the lowest threshold, located at ~ω = 2∆s, the form factor is given by the following
expression [208, 211] as only a single soliton-antisoliton pair can be created,

〈θ+θ−| cos
√

2θs|0〉 =
i sinh

(
θ+−θ−

2

)
θ+ − θ− + iπ

exp

∫ +∞

0

dψ
ψ

e−ψ/2

cosh(ψ/2)

1 − coshψ
(
1 − θ+−θ−

iπ

)
2 sinhψ

 .(C.13)

Then, inserting this into the previous expression (C.12), one finds, for 2∆s < ~ω < 4∆s,

Imχ(ω) = aL
(
AD

α

)2
~us

∆2
s

√(
~ω
2∆s

)2
− 1 θ(~ω − 2∆s)

~ω
2∆s

[
π2 + 4

(
acosh ~ω2∆s

)2
]

× exp
[∫ +∞

0

dψ
ψ

e−ψ/2

cosh(ψ/2) sinhψ

(
1 − coshψ cos

(
2ψ
π

acosh
~ω

2∆s

))]
. (C.14)

As ~ω → 2∆s, one obtains Imχ(ω) to be proportional to
√

(~ω)2 − 4∆2
s corresponding to Eq. (4.40)

which we discuss in Sec. 4.4.2 in comparison to our t-DMRG results.

In the Mott insulator In the Mott insulator, the spin modes are gapless. Neglecting logarithmic
corrections, the correlation function takes the form

〈Tτ cos
√

2φs(x, τ) cos
√

2φs(0, 0)〉 =


(
πα
aL

)2

sin2
(
πx
aL

)
+ sinh2

(
πusτ
aL

)

1/2

, (C.15)
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with scaling dimension 1/2. In the infinite system, one finds Imχ(ω) to be proportional to the integral

I(ωn) =
aL
~α2

∫ +∞

−∞

dx
∫ +∞

−∞

dτ eiωnτ

(
α2

x2 + (us|τ|)2

) 1
2

=
aL
~α2

2πα
|ωn|

.

Analytic continuation is obtained by the substitution |ωn| → −i(ω + i0), leading to
Imχ(ω) ∼ (aL)/α × 1/(~ω). Consequently, the energy absorption rate dE/dt ∼ ωImχ(ω) is frequency-
independent. In the finite system one recovers a discrete expression

χ(iωn) ∼
1
~

πα

aL

∫ aL

0
dx

∫ ∞

−∞

dτeiωnτ

∫ ∞

0
dλ λ−1/2e−λ cosh(2π usτ

aL )eλ cos(2π x
aL ), (C.16)

similar to Eq. (C.5) such that it can be evaluated likewise and one obtains at positive frequencies

Imχ(ω) ∼
∞∑

m=0

Γ
(
m + 1

2

)
Γ (m + 1)


2

δ

(
~ω − 4π

~uc

aL

(
m +

1
2

))
. (C.17)

The scaling dimension 1/2 from Eq. (C.15) (instead of 1/8 at the Ising critical point (C.4)) appears in this
expression in both, the Γ-function and the δ-function. Eq. (C.17) displays a series of peaks n occurring at
~Ω(n) = 4π~uc/(aL) (n + 1/2) with constant spectral weight in the absorption rate dE/dt ∼ ωImχ(ω).
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APPENDIX D

Ground state of the ionic Fermi-Hubbard model
in the Mott insulating limit

In this appendix we study the double occupancy and spin correlations in the ground state of the ionic
Fermi-Hubbard model in the Mott insulating limit for all parameters considered in Sec. 4.5.2. We use
static DMRG keeping up to 160 states .
In Fig. D.1(a) we show the global double occupancy normalized by the number of lattice sites

∑
j〈n j↑n j↓〉/L

of the ground state as a function of (U − ∆). For all considered U, the double occupancy is small which
is required for Mott insulating behavior.

Figure D.1: (a) The global double occupancy normalized by the number of lattice sites
∑

j〈n j↑n j↓〉/L as a function
of (U − ∆) for U > ∆ for a system size L = 64. (b) The staggered spin correlator for a system size L = 64 at
the bulk site j = 32. In the Mott insulator at U > ∆, already at small (U − ∆) = 10J, we observe algebraic
decay of spin correlations. The dashed lines are fits Cd ∼ dα (there are several dashed lines on top of each other)
which yield α = −1 ± 0.02 for all considered cases with U > ∆ as expected for the one-dimensional isotropic
Heisenberg model [27]. Additionally, logarithmic corrections to the staggered spin correlator would be expected
Cd ∼ dα

√
ln(d) but a detection requires finite size scaling or very large system sizes [212].

Furthermore, we determine the staggered spin correlator

Cd = (−1)d 〈S z, jS z, j+d〉

=
(−1)d

4
×

(
〈n↑, jn↑, j+d〉 + 〈n↓, jn↓, j+d〉 − 〈n↑, jn↓, j+d〉 − 〈n↓, jn↑, j+d〉

)
(D.1)
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with d ∈ (1 − j, L − j), where we used S z = (1/2)(n↑ − n↓). The staggered spin correlator is shown in
Fig. D.1(b). We observe algebraic decay of the spin correlator for U − ∆ & 10J. This points to the
existence of long ranged antiferromagnetic correlations in the ground state. In Sec. 4.2.2 we assume an
antiferromagnetic ground state for the effective model.
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