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Abstract

Field theories in Physics and in particular their quantization have been
a continuous source of mathematical challenge during decades. The La-
grangian formalism point of view is to start by a Lagrangian: a function
on the fields (sections of a smooth fiber bundle) and on the derivatives of
the fields, valued in densities of the base manifold. We then arrive at La-
grangian field theories. The work by Deligne and Freed [24] is a very good
exposition to this formalism. The key property is that the Lagrangian de-
pends only on finitely many derivatives of the fields, i.e., on a finite jet
bundle. Fixing a finite jet degree is not a convenient solution since all the
usual machinery in differential geometry does not leave the jet degree in-
variant (differentiation, for example).

The book by Anderson on the infinite jet bundle [2] is the most exhaus-
tive example of the theory necessary to include all jet degrees. The work
by Anderson is still very inspirational, and new results keep on being pub-
lished to extend his work and bring it to both a more modern mathematical
language, but also closer to the physical motivations of field theories. The
works of Giineysu and Pflaum [34] and Khavkine and Schreiber [42] are
good examples for this current development.

The approach on this thesis is to talk about the infinite jet bundle as a
pro-finite dimensional smooth manifold and, similarly, to view forms on it as
ind-differential forms. This idea, already present in the work of Blohmann
[8], has been explored in some depth. Part I of the thesis introduces the
relevant notions to talk about the infinite jet bundle as a pro-finite smooth
manifold. Part II focuses on comparing this approach to others, including
different topological and Fréchet structures on the infinite jet bundle.

The Lagrangian, nevertheless, is not a form on the infinite jet bundle,
but a local form on the space of fields and the base manifold. The adjec-
tive “local” roughly means that the corresponding structure on the space of
fields times the base manifolds has been pulled back from the correspond-
ing infinite jet bundle. This is the way the theory is studied by Deligne
and Freed [24]. Updating their work to fit into the language of ind- and
pro-categories has been a motivation and a source of results for the present
thesis. Part IV is a review of results related to the bicomplex of local forms
and Lagrangian field theories based on that categorical approach. At that
point we do not only follow Deligne and Freed but also Zuckerman’s paper
[82]. Later in Chapter 13 we review Noether’s second theorem (from her
paper [64]) using the bicomplex of local forms.

Local forms are one of the pieces coming from a category which is in
many ways similar to that of smooth manifolds. A category in which objects



are spaces of smooth sections times the base manifold and whose objects
are maps descending to a finite jet bundle: local maps. As a matter of fact,
it is important to be a bit less strict and also to consider maps between
pairs in which the base manifolds are not the same (think for example of
restricting a set of solutions of a differential equation to its boundary, or
extending the boundary data to solutions of the equation in the whole man-
ifold). The resulting category, called the category of insular manifolds is
defined in Part III.

The adjective insular suggest that locality is not enough. The Cartan
distribution, extensively treated in the Russian literature on Lagrangian
field theories (for example Vinogradov [79]), plays a fundamental role in
defining that category. The corresponding notions of tangent bundles, vec-
tor fields and differential forms in the insular world are studied in Part IV;
while that of Lie groups, Lie algebras, and L.-algebras are presented in
Part V. Finally, Part VI focuses on multisymplectic structures in the insu-
lar manifold category.

The language of ind- and pro-categories is particularly well suited for the
problems in Lagrangian field theory. A categorical approach to local maps
and forms is not only natural, but also lacking in the analysis of similar
problems as in the paper of Giineysu and Pflaum [34] or when talking about
pseudogroups as in the PhD thesis of Yudilevich [81]. Moreover, other ap-
proaches to quantum field theories, such as that of topological quantum
field theories are based on categories and functors. In order to be able to
relate all those different approaches, it was necessary to go in the direction
of creating the category of insular manifolds.

Deformation quantization has been one of the most relevant tools to the
study of field theories in the past decades. From the paper of Kontsevich
[48] to the work of Costello and Gwilliam [22]|, we can see how producing
Lo-algebras out of a field theory is the first step towards having a defor-
mation functor and towards considering deformation quantization of field
theories. The ind/pro-categorical approach is also helpful when talking
about L.-algebras, since the different characterizations of an L..-algebra
in the finite dimensional world also hold in pro-finite dimensional mani-
folds. Chapter 14 focuses in defining L.-algebras in this world and Part
VI defines the L-algebra of local observables on a field theory. This Lo.-
algebra has the virtue to depend only on the cohomology of the Lagrangian.
Moreover, the brackets are naturally antisymmetric and multilinear, with-
out the need of introducing dual fields, ghosts, or any other extra fields to
resolve any kind of symmetries. This is an advantage in comparison with
the similar structures coming out of the BV-BRST formulation of field the-
ories, such as the one by Costello and Gwilliam.

Rogers in his PhD thesis [69], shows that given any finite dimensional
multisymplectic manifold, one gets an L,-algebra structure on its Hamil-
tonian forms. That results also holds in the category of insular manifolds.
As a matter of fact, the Loo-algebra of local observables is the L.-algebra
of Hamiltonian forms coming from certain local pre-multisymplectic form.
The generalization of Rogers’ result to our setting and the study of the
relation of the L..-algebra of local observables to other Lie algebra-like
structures often used in field theories can be found in Part VI.
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That local pre-multisymplectic form, called the Poincaré-Cartan form
associated to a Lagrangian, comes from the cohomological study of the
Lagrangian in the variational bicomplex (which was done by Zuckerman).
That form has been studied for certain field theories by Gotay, Isenberg,
Marsden, Montgomery, Sniatycki, and Yasskin (usually known as GiMmsy)
[33] or by de Leén, Martin de Diego, and Santamaria-Merino [23]. Both
studies seem to disregard the fact that the form comes from the study of
the variational bicomplex and focus only in finding such forms explicitly in
local coordinates for various examples of field theories. The study presented
in Part VI can be thought of as a coordinate free, cohomological version of
the work of GiMmsy, de Leon, Martin de Diego, and Santamaria-Merino
which holds for every finite jet degree.

Finally, this thesis opens new directions for further research. The study
of Lie pseudogroups, using similar techniques to the ones developed here
such as the category of insular manifolds, could bring potentially very in-
teresting results. Lie pseudogroups have been proven to model correctly
symmetries in field theories and a theory of reduction is available in that
context. Yudilevich’s work brings some light into this problem. Following
with reduction, multisymplectic reduction via Hamiltonian moment maps
(as Defined in Part VI) is a natural way of using the Poincaré-Cartan form
to get rid of the symmetries in field theories in order to get well-posedness
for the equations of motion. The work of Blohmann and Weinstein follows
this idea. And last but not least: quantization. Once the L.,-algebra of
local observables has been defined it is natural to consider deformation func-
tors induced by it. It is very relevant to mention that the Maurer-Cartan
elements of the L.-algebra here presented are trivial for degree reasons.
Modifying the L. -algebra to allow higher Hamiltonian multi-vector fields
(such as the ones in N.L.D. [55]) but most importantly, Hamiltonian 0-
vector fields (functions such that fw = da for some «) will help solving
this problem. As a matter of fact, the quantization of such Maurer-Cartan
elements seems to be related to the second quantization operators derived
from the fields. Comparing those deformation functors with the ones from
Costello and Gwilliam, and more generally comparing the L..-algebra of
local observables with others available in the literature (see for example the
work of Schiavina [16]) are potential applications of the work here presented.
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The Variational Bicomplex: an
ind- /pro-categorical approach

In the framework of Lagrangian field theory the space of fields is given by sections of a
smooth fiber bundle over a smooth manifold M. This is, we have 7: E — M a smooth
fiber bundle and its set of smooth sections is denoted by € := I'*°(M, E). Typically,
the action depends on the field and a finite number of derivatives of the field. This is
expressed in our setting by requiring the Lagrangian to factor through some finite jet
bundle of E. The theory deals with insertion of vector fields, de Rham differentials and
similar differential geometry tools. Some of these operators applied to the Lagrangian
change the degree of the jet bundle that the resulting object factors through. This is
why it is not possible to fix a finite jet degree, but it is necessary to work with the
infinite jet bundle J*F.

There are various ways to work with the infinite jet bundle. The approach in this
thesis is to use ind- a pro-categories. In this way, the infinite jet bundle is the pro-finite
smooth manifold given by the sequence of finite dimensional jet bundles. Moreover,
smooth functions, differential forms, or derivations are to be considered as part of an
ind-algebra or to be ind-derivations, respectively.

This first part represents the starting point of the thesis. It defines and states
some of the main constructions and results about the variational bicomplex in the
ind- /pro-categorical language. The up short is that all the usual formulas (known as
Cartan calculus) hold in the infinite dimensional setting provided we work with ind-
/pro-structures. It also present some comparison results relating Fréchet smooth maps
and pro-finite smooth maps. This is a first step into dealing with the Fréchet structures
on the space of fields versus the local structure.

The main result besides the development of the ind-/pro-language for the varia-
tional bicomplex is about jet prolongations. Jet prolonged pro-smooth maps are a
particular kind of maps between two infinite jet bundles that can be recovered from a
single map between two associated finite jet bundles. In Section [2:2] we extend the class
of pro-smooth maps that admit a unique jet prolongation to include maps covering a
submersion which can vary from section to section.

This part is designed to provide a reference for an ind-/pro-categorical approach
to the infinite jet bundle. It gives a general overview of the basics of the variational
bicomplex, restating some results in this other language. It also proves the existence
of pro-smooth jet prolongations for a larger class of maps than the ones studied so
far. Throughout the Part, we compare pro-smooth manifolds to the non-equivalent
notion with the same name recently published by Gineysu and Pflaum . The main
references in this part are Anderson ,@], Chetverikov ,@, and Saunders .



Chapter 1

The infinite jet bundle

The infinite jet bundle is to be thought of as a projective limit of the finite dimensional
jet bundles. Since this limit does not exist in the category of smooth finite dimensional
manifolds, the most natural way to deal with it is to consider the associated category
of pro-smooth manifolds (where these limits are added formally).

This chapter defines the finite and the infinite jet bundles associated to a smooth
fiber bundle using the language of ind- and pro-categories. We explore this approach
further by showing that the set of pro-finite smooth maps from J*FE to R can be
given the structure of a an ind-algebra (formal colimit of algebras): this leads to the
definition of the ind-algebra of smooth functions on the infinite jet bundle.

The first two sections consist of definitions taken from different sources in the liter-
ature and of examples of pro-smooth maps. The most prominent example is related to
the study of pullbacks in pro-smooth manifolds, where we show that the fiber product
of two infinite jet bundles is isomorphic to the infinite jet bundle of the fiber product
(Proposition |1.2.6]).

Section focuses on the comparison of the pro-smooth approach to the Fréchet
manifold approach followed by other authors. The infinite jet bundle is a Fréchet man-
ifold. We specialize a result by Dodson-Galanis-Vassiliou to show that Fréchet spaces
of certain kind are sequential pro-finite normed vector spaces. Similarly for the mor-
phisms: morphisms of pro-finite spaces are morphisms of the corresponding Fréchet
spaces, also called smooth. Pro-smooth maps are actually smooth.

The main references in this chapter are Dodson-Galanis-Vassiliou , Saunders
, and SGA 4.1, exposé i ,@

1.1 Jet bundles

In this section we introduce ind- and pro-categories, fizing our approach to work with
infinite jet bundles. Finite jet bundles are defined, as well as the pro-smooth infinite
jet bundle together with all the structure maps. The main references here are Saunders

and SGA 4.1, exposé i ,@]

We consider a fiber bundle in the category of smooth manifolds 7: £ — M. We
denote the set of smooth sections of 7 by & = I'*°(M, E). We are interested in classes of
local sections in the following sense: two sections around a certain point are equivalent
if their partial derivatives agree up to a finite degree. We need a formal definition,



1.1. Jet bundles

extracted from Saunders [71].

Definition 1.1.1 (Space of k-jets of local sections). Given a fiber bundle 7: E — M
and an integer k we say that two local sections of 7 around a point x € M have the
same k-jet at x if their partial derivatives up to order k agree at z, in some chart
around z. J¥E denotes the set of such equivalent classes of local sections around .

We denote the class [(p,7)]x also by j¥p. Observe that the definition does not
depend on the coordinate chart chosen (this is clear for £ = 1 using the chain rule, and
for the general statement see Saunders |71, Lemma 6.2.1]). Observe also, that ¢ and
¢’ have the same k-th jet at z if and only if T(p) TFM = TH(¢') TFM where T*¢
is the iterated tangent map:

TFe =T(T(---Tg)---): T(T(---TM)---) = T(T(---TE)---).

Definition/Proposition 1.1.2 (Bundle of k-jets of local sections). Given a fiber
bundle 7: E — M and an integer k we denote the set J*E = {jkp € JFM: 2 € M}.
It is a smooth bundle over E and hence over M.

m: JVE — M
Js(e) — .

The previous definition/proposition follows again Saunders [71]. Given a global
section, we can evaluate its k-th jet:

¥ ex M — J'E
(0, 2) — b (p).

Remark 1.1.3. The bundle of k-jets is defined not only for global but for local sections.
Given an open subset of U of M, any local section ¢ € (U, E |-1{7) defines an
element in J¥E. This induces a map j*(U): &(U) — J*E. In some cases local sections
cannot be extended to global ones. In other words, sometimes j* is not surjective.
When the sheaf € is soft, j* is surjective. (A sheaf of sections is soft when it is possible
to extend local sections defined over closed subsets to global ones).

The space of O-jets is just E and j° is the evaluation map. The space of sections
I'*°(M, J*E) will be denoted by J*€. There are canonical projections between different
jet bundles:

mt: JVE — J'E for k> 1
Jx (@) — u (@)

These maps are smooth fiber bundles, sequences of affine bundle projections 77,’:+1

(see Saunders [71]). All the bundle maps are compatible with the family of projections
{mt}. From one side 7} o 7¥: JIE — J'E, also m o7l = m;: J'IE — M and 7F o ji =
j*: €x M — J¥E. This is summarized in the following commutative diagram in which
i=2k>1:

JIE—" M

Example 1.1.4. The identity id: M — M is a trivial fiber bundle over M with typical
fiber the singleton (it is the trivial vector bundle of dimension 0). Any local section
@: U — M is such that id o ¢ = ¢ = idy. This means that there is only one section
of the bundle and it is globally defined: the identity. The space of k-th jets is simply
M~ {(d,z): z € M} /~ . In this way J¥M = M and 7r,lc = m, = id for every k and [.
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Definition [1.1.2] can be extended to the case where the partial derivatives of two
sections agree at any order. In that case, the sections are said to have the same oco-jet.
The limit of the sequence

E=JE+— J'E+— J?E+— J3E+— --.

does not exist in the category of smooth fiber bundles in general.

Our chosen way to get around this is to work with the ind- and pro-categories
associated to a category (we follow the description given in the monograph SGA 4.1,
exposé i, [3]).

Definition 1.1.5 (Ind-category). Let C be a category. The ind-category given by C
which will be denoted by Ind(C) has as objects X: J — C functors, where J is an
essentially small filtered category. Morphisms between two of objects X : J — C and
Y : J — C are given by

Hom X,Y) :=limcolim Hom¢(X;,Y;).
ma(c)(X,Y) lim colir c(X:,Y;)

We want to emphasize that there is no essentially small filtered category fixed in
the construction. Every ind-object is a functor from an, every time possibly different,
essentially small filtered category J.

Definition 1.1.6 (Pro-category). Let C be a category. We define the pro-category
given by C by Pro(C) = (Ind(C°?))°".

To be precise, objects in Pro(C) are functors X : J — C, where J is an essentially
small cofiltered category. Morphisms between two of objects X:J - Cand Y:J — C
are given by

Homp,o(c) (X, Y) := Elgg C?gjm Home¢ (X;,Y)).

At this point we are only going to use pro-categories, but later when talking about
algebras of functions we will need ind-categories as well.

When the category C is Mfld, that is finite dimensional manifolds, we talk about
pro-finite dimensional manifolds, or pro-smooth manifolds for short. Giineysu and
Pflaum [34] also use the term pro-finite dimensional manifold but with a different mean-
ing. First of all, they only consider objects indexed by N. But even when restricted to
the same objects, the morphisms are not the same. Morphisms of pro-smooth manifolds
between their pro-finite dimensional manifolds are called local in their work. We will
explain what they call morphisms of pro-finite dimensional manifolds in the following
section.

We are ready to consider the collection of co-jets as the pro-object given by the
sequence of finite jet bundles, (J*E,7!) in the category of smooth manifolds Mfld
(this follows Blohmann [8]):

Definition 1.1.7 (J°FE). Given a fiber bundle 7: E — M, the space of co-jets of
m is the pro-object in the category of finite dimensional smooth manifolds given by
E=J°F «+ J'E + J?E < ---. We denote it by J*E.

The term space in the previous definition is used in a vague way. From now on,
pro-smooth manifolds will sometimes be called spaces to make the reading lighter.
Observe that this is partially justified by the fact that the forgetful functor from Mfld
to Top induces a forgetful functor from Pro(Mfld) to Pro(Top). As a matter of fact,
given any functor F': C — C’, we get induced functors Pro(F): Pro(C) — Pro(C’)
and Pro(F): Ind(C’) — Ind(C). In the case in which the functor F is contravariant
we have instead Pro(F): Pro(C) — Ind(C’) and Pro(F): Ind(C’) — Pro(C).
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Remark 1.1.8. Informally, we can think of ind- and pro-categories as an extension
of the original ones where we have added some of the missing limits and colimits
respectively; and we have done it accordingly to the properties of limits and colimits
with respect to morphisms. We only add filtered colimits and cofiltered limits and
define the morphisms the same way they will be defined in the category of presheaves.
Recall that a filtered colimit is a colimit over a diagram from a filtered category, for
example a sequential colimit:

AO — A1 — A2 — Ag <. — “colim ”Az'
i€EN

Consider the case in which two such colimits colirjn A; and colign Bj do exist in
ic j€

the category C. If the functor C — Ind(C) is fully-faithful and if the elements of
C are compact in Ind(C) (i.e. mapping out of elements of C commutes with filtered
colimits), the morphims between the colimits in C are as follows

Homc¢ (A, B) = Homg(colim A;, colim Bj)
i€d J€d

= Jim Homg (4;, colim Bj)
i€J J€d

= lim colim Homc (4;, Bj)
i€J jEd
= lim colim Home (A4;, Bj).
i€l jed
All the previous assumptions are satisfied if the filtered category indexing the dia-
gram is essentially small (SGA 4.1, exposé i, [3] and Mac Lane [58| are good references
at this point). This is one way of remembering the formula for the morphisms be-
tween pro-objects. Another way is to compute the morphisms as pre-sheaves. Given
A:J — C, consider the pre-sheaf A := colirjn y(A;) where y denotes the Yoneda em-
1€

bedding. Do the same for B. Now we can repeat the calculation above in pre-sheaves
to see that the morphisms of ind-objects are actually calculated in pre-sheaves

Homgycor (2, E) = Homg4cor (cqlirjn y(Ay), E)
1€
= liHjl Homgcor (y(A4;), E)
S

i B4

= lim colim Homc (4;, B;)
i€d  jed
=S Homlm(c)(A, B).
The statement here is that the map from Ind(C) — Set€” is fully faithful.

In Appendix [A7T] we give a brief summary of the key computations to work with
morphisms of pro-objects. But, the fact that 7r§“, 7, and j* behave well with respect

to {nL} allows us to define the corresponding maps from or to J*E. Observe what
the spaces of morphisms to which they belong are:

Homp,omaa)(JE, J'E) = c%leirl\rll Hompipa(J*E, J'E) = cc])gleirﬁrll ¢ (JEE, J'E),
Hompomaa)(JE, M) = C(])Cleigl Homaa(J¥E, M) = c%leigl ¢>°(J*E, M) and

Homp,o(pr) (€ X M, J®E) := Ilcierrll\l Homp (& x M, JFE).

Observe that &€ x M is not a finite dimensional smooth manifold, but rather a
Fréchet manifold (this will be further discussed in Part IT). Until then we can think of
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the maps appearing in the last line to be morphisms of pro-sets and of sets instead.
Fr denotes the category of Fréchet manifolds.
The following maps are examples of pro-finite smooth maps: 7., 7o, and j>.

al . J°E — J'E,
Moot J°E — M and
jCEX M — JFE.

These are given by the colimits associated to id: J'E — J'E, 1 =my: J°E=FE — M
and the limit of the family of maps {j*: € x M — J¥E}cn respectively.

Observe that we could have equally defined J*°FE in the pro-category of smooth
bundles over M instead of on the one of smooth manifolds and later construct the map
Tso- This does not matter at this point, but it gives more flexibility to construct maps
between infinite jet bundles that do not cover a smooth map between the bases. We
will explore this idea further in the following sections.

We have a commutative diagram involving all the maps related to J°°FE which is
basically the one we had for J'E, J*E and J'E in which we replace i by co. The
following commutative diagram expresses all the information stated in the previous
paragraphs (i > k > [). The diagram takes place in Pro(Fr).

J*®FE

gk ™ Ty
J'E M
:
T

Ex M ——— J'E ——
1.2 Pro-smooth maps between infinite jet bundles

A\

1
k
J'E

This section provides explicit formulas for pro-finite smooth maps between infinite jet
bundles. It focuses on the definition of the ind-algebra of smooth functions, showing
that the set of pro-smooth functions on J*E can be given the structure of an ind-
algebra. We work with different examples, including how infinite jet bundles behave
with respect to fiber products. Then we show that J®(E Xy F) =2 J*E Xy J®F. The
main reference in this section is Saunders .

Given two smooth fiber bundles 7: £ — M and p: F — N we are going to give
a better insight into the pro-finite smooth maps between J*°FE and J>*°F'. For details
we refer to Appendix [A71] Let

~ecH *E,J*F) = lim colim H "E,J'F).
f € OmPro(C)(J ) ) lleHNl Cgelén OmC(J oo )
This means that we have a limit of smooth maps f': J*WE — J'F satisfying
certain compatibility relations, summarized in the diagram below being commutative
for all [ € N:

fiH
Jk(l—i—l)E Jl+1F

k(1)

1
T(141) Pita

JEO R ;l, JF
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Observe that we have implicitly assumed that we can take k as a function to be non-
decreasing, see Appendix for more details. If that were not the case, for instance
k(1) > k(I + 1), we can always take k'(I) := k(I + 1) and f":=p} , o fi*1.

We can summarize all the information in the following diagram (for convenience
k(0) is simply denoted by k):

JoR 1 jeop
kD Phe
fl
JOp —— 5 J'F

k
Thk(l) P?

fU

JFE F

The map f°° could have been represented by any other family {fl} for a different
k. In that case, the two families represent the same f°° if for every I the following
diagram commutes (we assume k(l) > k(1)):

JFOE AN JF

-
k(1) f
T (1)

JHOE

Let us look at examples of maps of this kind, in particular when one of the two
bundles is the trivial bundle M — M.
Example 1.1.4] continued. Consider the trivial bundle M — M. We are going to
show that J°°M is isomorphic to M (considered as the pro-object M : {x} — C send-
ing *x to M). Let f: M — J°°M be the morphism in the pro-category given by
fl=id: M — J'M = M and let g: J°M — M be given by ¢t} =id: J°M — M.

From one side go f: M — M is given by (go f){*} = ¢%0 f{*} =id: M — M. This
shows that g o f is the identity on M.

From the other side f o g: J®M — J*M is given by (fog)! = fl*log! =id as a
map from M = JOM to J'M. This represents the same maps as id: J®M — JXM
because the following diagram (trivially) commutes:

JM~M— L JipmeMm

T=id

Example 1.2.1. Let E = M = M and f*: J*°M — J>*F be a map in the pro-
category of smooth finite dimensional manifolds. In this case, the function k£ can be
chosen to be identically 0 (we can just take the composition with id = 7%,). f> is just
a family of maps f': M — J'F such that the following family of diagrams (for each [)
commute:
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In other words,

Hompro(c) (1M, J*F) 2 Hompo(c) (M, JF) = lim Homg (M, J'F).

This is conquered just by using the isomorphism between M and J*° M explained in
the previous example. Pro-smooth sections of m.,: J°E — M are of this kind.

Example 1.2.2. In the other direction, let F = N "=" N and f*°: J*E — J*°F >~ N
be a map in the pro-category of smooth finite dimensional manifolds. In this case, the
function k can be chosen to be constant k = k(0). f°° is given just by a single map
fO: J*E — N, where all the other maps f! are just f° again. In other words, using
that J°N = N:

Hompyo(c) (J B, J*N) 2 Hompyo(c) (J*E, N) := colim Homc(J*E, N).
€

We can apply the previous example to the case in which N =R.

oo _ . k
Homp,o(c)(J*E,R) = cgg}n Homc (J"E,R).

We would like to call this €°°(J*°E) but observe there is another approach to
define such a thing which actually endows ¥°°(J*°FE) with a richer structure: for
every natural number k, we denote by €>°(J*E) the algebra of smooth functions of
JFE. If k> 1, 7t J*E — J'E induces a map (7})*: ¢°(J'E) — €°°(J*E): this
is the pullback of 7rfC or simply pre-composition with 7r,l€. Following Blohmann [§] we
have:

Definition 1.2.3 (¢°°(J*°FE)). Given a fiber bundle 7: E — M, the space of smooth
functions on J*°FE is defined as the ind-object in the category of algebras given by the
diagram

¢>(E) = 6*(J°E) — ¢>(J'E) — €< (J’E) — ¢>(J°E) — --- .

Observe that this is an immediate consequence of the comment about applying
contravariant functors to pro- and ind-categories made before Remark The limit
exists in the category of algebras but the interesting feature is that we want to consider
ind-algebra maps instead. Observe that the multiplication is an ind-finite map. We will
comment this in further detail when talking about derivations and ind-finite derivations
of this algebra.

Remark 1.2.4. A pro-smooth function on J*°FE has globally bounded jet degree. By
this we mean that it only depends globally on J*FE for some finite k. It is also possible
to talk about locally bounded pro-smooth functions: in order to do so we consider
J*®FE as the projective limit in topological spaces of {J*E} (this will be done in Part
IT). A map from J>*°E to R is said to have locally bounded jet degree if for all y € J*FE
there exists an open neighborhood of x such that the restriction of the map to that
neighborhood depends on a finite jet bundle. This is precisely the way in which the
algebra of smooth functions on J*°FE is defined by Giineysu and Pflaum [34], where
they, unfortunately, call J>°F with this smooth structure a pro-finite dimensional
manifold. That contradicts the language of ind- /pro-categories, but it is an interesting
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concept on its own. As a matter of fact, as we will see in the following Chapter, their
morphisms are smooth maps with the standard Fréchet structure on the projective
limit,.

We finish this section with a different example, which does not involve the trivial
bundle of M over itself. In this case we want to show that two infinite jet bundles
are isomorphic. This result will be used when talking about local Lie algebra or group
actions in Lagrangian field theories.

Example 1.2.5. Consider two smooth fiber bundles over M the same base manifold:
m: E— M and p: F — F. We can construct the fiber product bundle E x j; F' which
is given by the following pullback:

ExyF—— F

[

E—"— M

In the case the bundles were vector bundles, this is called the Whitney sum of the
bundles. But the situation is more general. Still, the fiber at each point is given by
the products of the fibers.

The space of sections '™ (M, E x 3 F') is simply € x F. In the case of vector bundles,
this fact is usually written as T(M,E & F) = &€ & F. The finite jet bundles are of a
very specific kind: J*(E x; F) = J*E x5 J¥F, the isomorphism between the two is
the one induced by the map (€ x F)(U) — E(U) x F(U) for every U open in M. We
denote this isomorphism by

sp: JHE xa F) = JHE) xap JE(F).

We can also take the pullback of J>°E and J°°F in the category of pro-finite smooth
manifolds:

JPE xp JOF —— J®°F

e

J®F Toe M

J®FE X J®F is the pro-object given by the functor N x N — C sending (k,1)
to JFE x,; J'F. To be precise about why is this the pullback, consider a morphism
in the index category (k,1) — (k',I'). We get induced maps from J*E — J¥ E to
J'F — JVF which also give maps J*E x; J'F — J¥ E x5 JUF:

JEE Xy J'F — ; JUE
S ﬂ_k L 1
ot \)X/Iu " ’ \ ’
JVE xy J'F J'F
JkE \k, j P
Tk
J¥ M T M

It is straight-forward to verify that this object is indeed the pullback of the corre-
sponding diagram for the infinite jet bundles.
The content of this example is to prove the following Proposition:

10
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Proposition 1.2.6. Given two smooth fiber bundles E, F — M, one has in the cate-
gory of pro-finite dimensional smooth manifolds that J°(E X F) = J®FE Xy J®F.

Proof. We consider two maps

frJPE xp JPF — J®(E xp F) and
g: JX(Exy F) — J¥E xy J®F.

The first one is given by
fFo=st i JFE xy JVF — JM(E x o F).

Observe that here we are implicitly using final functors to calculate the colimit in A(N)
instead of in N x N (we have avoided to talk about final functors for simplicity). (A
denotes the diagonal map.)

The second one is

9= (Max(iot) X Prnas(i ) © Smax(iy: SV (E xar F) = JUE s J'F.

Now we can verify that these maps actually are compatible with the structures of
J¥E x5 J¥F and J®(E x  F).

Let us look at the composition f o g: J®(E xp F) — J*(E x5 F). This map
is given by (fog)f = fFogh* = s, osy: JHE xy F) — J¥(E xpr F), which is
precisely the identity on J*(E x5 F).

On the other direction, go f: J®(E) x p J®(F) — J°(E) x p J°(F) is given by

(g o f)k:’l = gk,l © fmax(k:,l) = (ﬂ—r];ax(k,l) x pinax(k,l)) © Smax(k,l) © sr;;x(k,l)

k 1
= 7Tmax(k,l) x pmax(k,l)
We need to see that this map represents the identity on J*°(E) x5 J*(F). But it

is enough to look at the following diagram:

Jmax(k,l) (E) X M Jmax(k,l) (F)

k 1
\W}max(k,”

‘n—r’;ax(k,l) X mex(k,z) Jk(E) X M JZ(F)

/

JFE(E) xar JYF)

This shows that J°°(E x s F) is isomorphic to J*E x5 J*F. |

1.3 Fréchet manifold structure on J*F

Another common approach taken when working with the infinite jet bundle is to con-
sider a Fréchet manifold structure on it (this is done by Saunders , for instance).
In this section we show that pro-finite smooth maps are Fréchet-smooth and give a com-
parison between some Fréchet spaces and pro-finite normed spaces. In particular, we
study the infinite jet bundle as a Fréchet manifold and state the smoothness of the struc-
ture maps. The principal references in this chapter are Saunders and Schaefer .

11
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In short, a Fréchet space is a vector space V equipped with a Hausdorff topology
coming from a countable family of seminorms {| - |,}nen. For details we refer to
Appendix

Since our first example of Fréchet structures is going to be a sequential (indexed by
N) projective limit of finite dimensional normed spaces (J*°E) we will focus on that
case. The following results are inspired on the ones found in the book by Dodson,
Galanis, and Vassiliou in [25]:

Lemma 1.3.1. Sequential pro-finite dimensional normed spaces are Fréchet.

Proof. Consider V the projective limit of {f}: V, = Viu}nmen, n>m, denote by
fZ the associated map from V to V,, for each n € N. V is a vector space and the maps
{f2 }nen are linear. Given any n € N, the norm | - |,, on V,, induces a seminorm on V
via |- |n =] |n o f7. Explicitly:

1. [v|p =% (W)|n =0forallveV.

2. [vtwl, = [fXwrw)|n = [fE(0) + [ (w)]n < [fE0) |0+ fX(W)]n = |v]n+|w]n
for all v and w in V.

3. la-vln =[f%(@ - v)|n =la- fX () = lal - [f&(v)]n = |a] - [v], for all v € V and
all a € R.

The corresponding locally convex topological vector space with respect to that family of
seminorms is metrizable (see Proposition or Schaefer [72]) and it is also Hausdorff
since

v=0<= fL(v)=0¥n e N <<= |f(v)], =0Vn € N <= |v|, =0Vn € N.

The vector space V is hence a locally convex topological space which is Hausdorff
and metrizable. Finite dimensional vector spaces are complete and projective limits of
topological vector spaces which are complete are complete (this is done for instance by
Schaefer [72, p. II 5.3]). This proves the claim. [ |

Example 1.3.2. R* as the sequential limit of all the normed vector spaces R" is a
Fréchet space.

A more general result is also proven in more detail by Schaefer |72, p. II 5.4].
Inspecting that proof we can get some insight into the converse of this statement:
which Fréchet spaces are sequential pro-finite dimensional normed spaces.

Corollary 1.3.3. A Fréchet space (V,{| - |n}nen) such that V/ker| |, 18 finite di-

mensional for any n € N is isomorphic to a sequential pro-finite dimensional normed
space.

Proof. Let (V,{| - |.}nen) be such a Fréchet space and consider for every n € N
a complement V;, of ker| - |, in V. They are finite dimensional by assumption. The
seminorm | - |, on V gives rise to a norm on V" for every n.

The following step is to consider a reordering of the subspaces so that the norms
are compatible. In order to do that consider W' := V! and W"*! the vector space
generated by W™ U V" for higher n. Define a norm on W"*! inductively to be |- |/,
in W N V"t and |- |,41 in the complementary subspace. The change in the norm
happens in a finite dimensional vector space, and hence the topology on V with respect
to the W™’s agrees with the one induced by the V™’s. Under this conditions, we can
form W the Fréchet space colimit of the sequence of the W™ as in Lemma [T.3.1]

12
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The claim is that W and V' are isomorphic. The map V' — W sending v to each of
its projections is linear and injective since V' was Hausdorff. The proof that it is also
surjective follows from the aforementioned result from Schaefer [72, p. II 5.4] that we
have included as Theorem [A72.6]in the appendices. [ |

Fréchet spaces have the advantage that one can talk about smooth maps between
them (see Appendix [A.2). For our purposes it is enough to understand how smooth
maps to and from R> work. We have the following helpful results by Saunders [71].

Lemma 1.3.4 (Saunders |71, Lemma 7.1.8]). Let U C V be an open subset of a Fréchet
space. f: U — R is smooth if and only if prgn o f: U — R™ is smooth for all n € N.

Lemma 1.3.5 (Saunders, [71]). A map f: R>® — R is smooth if at every point only a
finite number of its partial derivatives do not vanish.

At this point we can include the definition of a smooth manifold with charts in
Fréchet spaces. (See for instance Schaefer [72])

Definition 1.3.6 (Fréchet manifold). A Hausdorff topological space M is a Fréchet
manifold if it is provided with an atlas of homeomorphisms to open sets of a Fréchet
space V such that the transition functions are smooth in the sense of Definition

We fix a smooth fiber bundle 7: E — M. The associated infinite jet bundle J*FE
is from the topological point of view a fiber bundle over M whose fiber is a projective
limit of vector spaces. Choosing Riemannian structures on the finite jets, we can see
that the fiber is a sequential projective limit of finite dimensional normed vector spaces,
and hence a Fréchet space. It is then natural to think that J°°FE could be given the
structure of a Fréchet manifold, perhaps with values in R* as in Example We
follow Saunders to introduce the Fréchet manifold structure on the infinite jet bundle:

Definition 1.3.7. Let £ — M be a smooth fiber bundle, let {U,}.ca be a cover
of E by trivial coordinate charts and consider the induced cover on J*FE given by

{(=%) - (Ua)}aea. If we choose coordinate systems on each J* E which are compatible

with the projections 7rlk (as it will be done in Definition [2.1.6), then the induced maps

use: (ﬂgo)_l (U,) — R are coordinates in J*FE.

That set of trivializations define a smooth structure on J®E.

Proposition 1.3.8 (Saunders |71, Proposition 7.2.4]). The infinite jet bundle with
the maps introduced in Definition (1.3.7, (JOOE, {u: (Wgo)fl (Ug) — ROO}QGA>, is a
Fréchet manifold.

There is a statement about the topologies in Proposition [1.3.8| which we would like
to make explicit: the charts u2°: (7720)_1 (Ua) — R> are homeomorphisms, and hence
the Fréchet manifold topology on J*®E coincides with the limit topology. This can be

seen in the following diagram which commutes for every finite k:

u>®

(%) (Ua) ———— R

k k
{ﬂ-m l/ua

(Wg)—l (U,) RAim(J* E)

Prodim(Jk B)

The bottom map is a coordinate chart for J*E. Observe that the topology on J®E is
the sequential limit of the J*E on the left; on the other side, the topology on R™ is
the sequential limit of the R4™(7*E) a5 a consequence of Lemma

Using Lemmas and we get to the following corollary, which is a well
know fact in the study of infinite jet bundles.

13
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Corollary 1.3.9. Let J*FE and J®F be the infinite jet bundles of some smooth fiber
bundles. Any pro-finite smooth morphism f: J*°FE — J*F is Fréchet smooth.

Observe that R can be regarded as an infinite jet bundle. In that case, we know
that pro-smooth maps from J*F to R descend to a map from a finite jet bundle.
On the other hand, smooth maps from J>*°F to R descend locally to maps from finite
jet bundles (this follows from Lemma [I.3.5). In this way we see that the converse of
the previous corollary does not hold in general. We will have to wait until we get a
partial converse result to this one (see Corollary . Smooth functions on J*FE
are precisely the maps considered by Giineysu and Pflaum [34], that we have already
discussed in Remark Khavkine and Schreiber work with a smaller category than
that of Fréchet spaces where these maps live: the category of locally pro-manifolds.
That terminology is very clarifying. (See for example their work [42].)

Proof. A map f: J®E — J°°F is smooth if and only if it is smooth when
trivialized, for any trivializing chart. We pick any of them:

R J*®E J*®F R>

By Lemma [1.3.4] such a map is smooth if and only if it is smooth after any projection
to R™. The way J°°F is constructed, this is equivalent to the following composition to
be smooth for all [ € N:

R® —— J®E —— J®F ——— R*®

JF Rdim(ﬂF)

Since by assumption f is a pro-finite smooth map we can complete the diagram on the
lower row:

R J*XFE JPF ——— R*®
Rdim(J*® E) Jk(L)E JJF Rdim(J' F)

Now, the map R® — REm('F) ig smooth if and only if it is smooth on each compo-
nent of the map, and those by Lemma [1.3.5 are smooth if at every point only finitely
many partial derivatives do not vanish at every point. In this case we have an even
stronger result. All the components of the map at all points depend only on finitely
many entries (the dim(J*(") E) first ones), so that the original map f is smooth. W

Using the descriptions of smooth maps involving R* (Lemmas and [1.3.5) it
is possible to prove that all the structure maps involving the infinite jet bundle are
smooth. The following results can be found in the book by Saunders |71] (results 7.2.5
to 7.2.9):

Proposition 1.3.10 (Saunders [71]). Let 7: E — M be a smooth fiber bundle with
associated jet bundles J*E for all k € NU{oo} (the manifold structure on J*E is the
one in Proposition . Then the following statements hold:

o 7k . JXE — JFE is a smooth fiber bundle for each k € N.
® T: J®E — M is a smooth fiber bundle.

o ®p: M — J®E is smooth for every ¢ smooth section ¢ of m.

14



Chapter 2

The Cartan Distribution

The pro-finite smooth structure on infinite jet bundles gives plenty of flexibility to
construct the usual tools in differential geometry. We have already seen in the last
chapter how to define the ind-algebra of pro-smooth functions and now it is the turn
of ind-differential forms and vector fields.

We will be able to talk about pullbacks, insertion of vector fields in ind-differential
forms, Lie derivatives, bracket of vector fields, and so on. The fundamental relations
between these terms, usually known as Cartan calculus, also holds in this setting.

The ind-/pro-categorical approach has the advantage that calculations are easier
than in the Fréchet manifold setting. This is so because we have conditions to insure
that all structures descend to the corresponding ones in a finite jet degree. But an-
other advantage is that often obscure and complicated results known for the infinite
jet bundle can be stated in a more concrete manner using the ind-/pro-categorical
approach. An example of this is is Proposition in Section which states that
ind-derivations of ¥°°(J°°E) are in one to one correspondence with pro-smooth sec-
tions of the pro-finite tangent bundle T(J*E) — J*E.

The infinite jet bundle has been studied independently of the ind-/pro-categorical
approach, and almost everything that can be said about it has already been published.
In this chapter we have wanted to compile the relevant results and notations for the
rest of the document. But, most importantly, we have presented them as an ind-/pro-
categorical way of defining vector fields and differential forms on the infinite jet bundle.

The Cartan distribution is an intuitive geometric feature on infinite jet bundles.
The image of the infinite jet prolongations of local sections of a bundle (j*¢(U)) de-
fine a local distribution on the infinite jet bundle known as the Cartan distribution.
The first useful consequence of the study of the Cartan distribution is that it allows
us to split the ind-complex of differential forms into a vertical and a horizontal part
giving rise to the variational bicomplex. This bicomplex (studied by Anderson in
great detail) is the key underlying structure underneath the complex of local forms,
central in Lagrangian field theory.

The associated co-distribution (the annihilator of the Cartan distribution) is usu-
ally called the contact ideal. Maps and vector fields preserving the contact ideal have
special features: they are jet prolongations of their lowest representatives J*E — F
(where F' = T'E in the case of vector fields). We first review the known results con-
cerning jet prolongations along a diffeomorphism: their existence (here as Proposition
originally by Saunders ) and their factorization properties (here Proposition

15
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2.2.3] by Chetverikov [18]). Vector fields preserving the contact ideal split into a verti-
cal and a horizontal component called evolutionary and total (here Proposition [2.3.9]
by Anderson [2]).

The original work in this chapter is concentrated in the study of a more general
class of maps that admit pro-finite smooth prolongations. Maps in that class give rise
to unique jet prolongations that preserve the contact ideal. These maps are not only
pro-smooth but also smooth. These will be an important tool when talking about
insular maps and Lagrangian field theories.

The main references in this chapter are Anderson ,@/, Chetverikov ,@/, and Saun-

ders [71].

2.1 Differential forms on J*FE

In this section we continue introducing ind-/pro-structures related to the infinite jet
bundle. We introduce the pro-finite tangent bundle of the infinite jet bundle and the
ind-complex of differential forms on it. This complex splits into a horizontal and a ver-
tical part, giving rise to a bicomplex called the variational bicomplex. We give explicit
coordinate expressions for the horizontal and vertical differentials. We also introduce
the Cartan distribution, a very intuitive geometric feature of the infinite jet bundles
which is important in future results. In particular, since pullbacks of ind-differential
forms are well defined, we use the Cartan distribution to prove a result related to pull-
back of sections in the infinite jet bundle. This section is a recollection of definitions

that provide a basis for the rest of the thesis. The main references are Anderson [@;
Dodson, Galanis, and Vassiliou ; and Chetverikov ,@/

The tangent space at a point of the infinite jet bundle can be defined in different
equivalent ways. We will begin with the pro-smooth definition.

Definition 2.1.1. [Tangent bundle of the infinite jet bundle] Let E — M be a smooth
fiber bundle. Let x € J*°E be a point in the associated infinite jet bundle. T} (J*FE) is
defined as the pro-object in the category of vector spaces given by {(Tx (J*E, Tm})}.
The tangent bundle T(J*E) = U, ¢ jop Ix(J>FE) is a pro-finite smooth manifold

modeled on {(T'J*E,T})}. The base-point projection map
prJooE: T(JOOE) — JOOE
is pro-smooth and can be represented by {prlyep = pryip}, -

The infinite jet bundle is a Fréchet manifold and as such it has an associated Fréchet
tangent bundle. T(J®E) := ¢*(R,J*E) /_ where ¢ ~ ¢ if and only if ¢(0) = &(0)
and D(poc)(0,1) = D(po¢)(0,1) for all ¢ chart around ¢(0), where D is the Gateaux
derivative as in Definition [A.2.8] This is the approach followed by Dodson, Galanis,
and Vassiliou [25]. The tangent space at a point y € J°E is then the subset given by
the curves passing through x at time zero. It can be given the structure of a Fréchet
space with finite dimensional cokernels of the seminorms (and hence a sequential pro-
finite dimensional normed spaces by Corollary . It is not difficult to convince
oneself that this space is actually the same as T} J*°E as in Definition [2.1.1} a proof of
such fact can be found in the book by Dodson, Galanis, and Vassiliou, roposition
3.2.2].

Moreover, we can also talk about derivations at x € J*°FE of the algebra of pro-
smooth functions on J*FE. Anderson shows that that approach is also equivalent
to Definition 2.1.1] Global derivations are not the correct way of approaching vector
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Chapter 2. The Cartan Distribution

fields on the infinite jet bundle. We should consider ind-derivations instead. We will
define vector fields only a bit later (see in Chapter , since the theory is a bit more
involved than the dual of ind-differential forms on J>*FE.

Definition 2.1.2 (The ind-complex of differential forms, Q*(J*°FE,d)). Given a fiber
bundle 7: E — M, the space of differential forms on J*°F is defined as the ind-object
in the category of differential complexes given by the diagram

Q*(E) = Q*(J°E) = Q*(J'E) = Q*(J?E) = - - .
It is denoted by Q°*(J*E).

Observe that since Q*(J*°FE) is an ind-object, ind-morphisms from R to Q°*(J>®E)

can be thought as elements of Q®(J*FE). Those are given precisely by some w* €
QJFE).
Remark 2.1.3. Once again, we want to refer to the work of Giineysu and Pflaum [34]
as in Remark They consider locally bounded jet degrees, both for referring to
the smooth locally ringed structure on T'(J*°E) and for differential forms on it. They
refer to the ind-differential forms as local forms.

Remark 2.1.4. Ind-differential complexes are not only ind-vector spaces but the differ-
ential also plays a role. In this case, it allows us to define exterior differentiation of forms
in all jet degrees. At every finite jet-bundle we have d; = d: Q*(J'E) — Q*+1(J'E).
This can be interpreted as a morphism of ind-graded vector spaces d: Q*(J>*FE) —
Q¢ (J°E) given by {d;};cn. This map squares to zero in the sense that given any w in
Q°*(J®E) (that is, a map R — Q°*(J>®FE) or equivalently w;, € Q*(J*E)) the ind-form
d o d(w) is the zero form.

The tensor product of two differential complexes (Q1,d1) and (Q2,ds) is again a
differential complex with differential d(a; ® ag) := di (o) @ ag + (=1)1“ oy @ dy(a2).
We can hence talk about the ind-differential complex Q®(J>*°E) ® Q*(J*>° E) which will
be indexed by N x N,

Proposition 2.1.5. The ind-differential forms Q®(J>®°E) are equipped with an ind-
morphism A: Q*(JCFE) @ Q*(J®E) — Q*(J®E) called the wedge product, given by
the maps {A;: Q*(J*E) @ Q*(J'E) — Q*(Jma= RO E)} o ). Those are defined using

pullbacks: Akg = Ao ((Fzzaaz(hl))* Q (ﬂ_lmaz(k,l))*)'

Observe that this in particular means that the differential d is a derivation of the
product. In other words, when applied to two ind-differential forms o7 and as we have
that d(aq A an) = dy(a1) Aag + (—=1)!*1lag Ady(az). Again we are to understand this
as applied to R-points of Q°*(J*E).

Recall that elements of Q®(J>°E) are given by some w* € Q*(J*E). We distinguish
between order and degree of a differential form w € Q(J*°FE). The smallest &k such that
w can be represented by w* € Q*(J*E) is called the order of w. The form is of degree
p if it is an element of the ind-object

QF(J®E) = QP(E) — QP(J'E) — -

The exterior derivative has order zero and degree +1.

Once again we want to point out that this definition is compatible with other equiv-
alent ones: forms in Fréchet manifolds or sections of the limit of (AP(J*E))*. This can
be found in the books by Anderson [2] and Dodson, Galanis, and Vassiliou |25]. Since
we focus on the pro/ind-categorical approach, we will stop talking about these com-
parisons in general, unless something remarkable happens. Using those equivalences,
wy, is a multilinear totally antisymmetric function on T, J*E where w € Q°*(J*FE)
and x € J*E.
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2.1. Differential forms on J>°F

We are going to use local coordinates in the infinite jet bundle to be able to talk
about the splitting of the differential into a horizontal and a vertical direction. What
follows can be found in the book by Anderson, [2].

Given a smooth fiber bundle 7: E — M, the associated finite jet bundles are
smooth bundles over M. We fix a chart around a point in E: (z!,... 2™ ul,... u")
where (z!,...,2™) are coordinates on the base M and (u!,...,u") are coordinates on

the fiber. We interpret those as maps in €*°(FE).

Definition 2.1.6 (Anderson [2]). On J*¥E a system of coordinates is given by (z;, u¢)
where ¢ runs from 1 to m, o runs from 1 to n and [ runs over all multi-indices of length
at most k with values between 1 and m:

z'(j* (¢, ) := a'(z) and

(4 o
u (o0 = T2

x

All those functions are smooth in a certain neighborhood of (¢, z) € &€ x M and
they are also well defined in J*E, by definition of the finite jet space. Even more, they
locally determine j*(p,2). This is because j*(p,z) = j*($,7) if and only if z = T
(which happens only if z*(z) = 2*(Z) for all i) and 0/!p(z) = M1G(z) for all multi-

¢ o) | _ 91 (u0g)
oz - ozT

indices of length at most k& (which happens if an only i for
x

all o and all multi-indices of length at most k).
Observe that the maps {z;} and {u%} are compatible with the projections {r!}.
Fix k > I, I of length at most [, 7, and «:

2’ om (5 (¢, 7)) = 2'(*(p,2)) = 2"(2) = " (5" (¢, x)) and

l(y> o
uf o (G (p.2)) = ug (0, 0) = T PO (¥, ).

x

In these coordinates the horizontal subspace is spanned by the coordinates x*. We
could then define the horizontal differential by differentiating with respect to these
coordinates. But observe that taking the derivative of a function with respect to z’
should heuristically be done by taking into consideration that each of the functions u¢
also depends on .

Definition 2.1.7 (dy and dy). Given an ind-smooth function f € €*°(J*FE), the
horizontal differential of f is defined using the one forms {dz'}:

Of . Ll--ln! Of
9 T T ous

« i
u7 ;dz’,

duf =

where k£ = |I| and [; is the number of occurrences of j in I. The horizontal differential
extends to all forms as a derivation of the wedge product. The vertical differential is
defined as the difference between the other two: dy :=d — dg.

We would like to introduce some new notation. Anderson uses [2]| the operators

so that dy f = 2Lda’ + u 0L fda'. Denoting

o (2.1)

K3

9 | o
D’L' = % +UI,

18



Chapter 2. The Cartan Distribution

With this notation we have [l

dgf = D;fdd
dvf = 0Lfdyus. (2.2)

Moreover dg o %, = w o dy where djs is the de Rham differential on M. The
local forms dyuf = duf — uf ;dz" generate a differential ideal C. Using the definitions

we can see that in particular dga* = da* and dpg(uf) = uf ;dz’. This suggest that the
horizontal and vertical differentials respect the contact ideal. As a matter of fact, any
ind-differential form splits into vertical and horizontal parts. First we need to define
vertical vectors:

Definition 2.1.8 (Vertical vector). Considering o : J*°E — M as a fiber bundle
(even a pro-smooth fiber bundle) we define V(J*®E) := ker(T'm). To be precise, at
X € JFFE,

Vy(J®E) :={X, € \J®E: Tm,(Trh X)) =0 € Ty ()M for all k}.

Horizontal forms will be the ones annihilated by horizontal vectors and vertical
forms the ones spanned by C. The definitions are the following:

Definition 2.1.9 (Horizontal and vertical forms). Given natural numbers p, r, and s
we define (p, s)-horizontal forms to be:

0 (E) =
{we P(JCE) : wy(Xq, -, Xp_st1,—) = 0VX; € T, J°FE verticalVx in J*E}.

On the other hand, (p, r)-vertical forms are defined as:
W (J®E) i={w e P(J®E): w=a; A+ Ao, Aw where oy, -+, € C}.

(p, 1)-horizontal forms are simply called horizontal. And (p, p)-vertical forms, ver-
tical. With this notation we can clearly see that dgQ%°*(J®E) C Q2 (J>*E) and
A" (J®E) C QUFYT(J®E). Tt is also immediate to see that the horizontal differ-
ential of horizontal forms is again horizontal. But there is much more to it:

Definition 2.1.10 (Variational bicomplex [2]). Let E — M be a smooth fiber bundle
and let J°°FE denote its infinite jet bundle. The variational bicomplex associated to
E— Mis (Q"*(J*®FE),dy,dy) where

QP (J®E) = QT (I E) N QYT (JE).

The total space of the variational bicomplex is that of Q(J*°FE). A form w in
Q*(J*FE) is of bidegree (r,s) if and only if it is locally a finite sum of forms of the
type:

Ii,...,I, a1 o i1 1s
Wo iy Avugt A Adyugt Ndztt N Ndate
Iyd :
where each w_'"'r . . is an element of €°°(JE).
L1yeeeyQprillyennyls

The following observations can be made about the variational bicomplex:

Tterated partial differentials are elements of the symmetric algebra generated by the partial dif-
ferentials. There are two ways of considering the symmetric algebra as invariants or coinvariants
of the symmetric action on the tensor algebra generated by them. The appearance of the factorial
coefficients is due to mixing these two choices. We have decided to not fix the convention used by
Anderson so that the two equations in have the same structure. They both use D; and 8% which
avoid fractions.
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2.1. Differential forms on J>°F

e The exterior derivative splits between the two differentials and they anticommute:
d=dy +dy, d%{:O, d%/ =0and dyody = —dy ody.

e Using all the previous equations and the fact that dy (ug) = u?,idxi we can write:
dH(dHl'l) = 0, dv(dH.%‘l) = O, dv(dvu?) =0 but dv(dHu?) = dv’u?’idl‘i.

e For a diagram describing the bicomplex we refer to Part IV where we study the
pullback of this complex via j*° on € x M.

e The cohomology of this complex has been extensively studied. In terms of bounds
of the jet degree, the locally finite bounded case was studied by Takens [77], the
globally finite order by Bauderon [7] and Anderson [2]|. For a non-bounded version
(something more general than the variational bicomplex) we refer to the paper
by Giachetta, Mangiarotti and Sardanashvily [32].

e In Part[[V]we will explore some of the results of the cohomology of the variational
bicomplex. We will focus in the study of the interior Euler operator which is one
of the main tools in the study of that cohomology.

As a matter of fact, for most of what is done in this thesis, the relevant complex is
not that of ind-differential forms on J*° FE, but that of M-twisted forms. Loosely speak-
ing, we want vertical forms valued in densities on M rather than valued in differential
forms on M. We refer to Appendix for the details.

2.1.1 The contact ideal

There is an extra ingredient involved into the definition of the variational bicomplex
that we have avoided to talk about so far for simplicity of the argument. Nevertheless,
it is an essential piece into understanding what is special about the infinite jet bundle
in comparison to other pro-finite smooth manifolds. This elephant in the room is no
other than the Cartan distribution.

Jet bundles (finite or infinite) come naturally equipped with a local foliation and
a distribution. We know that every point xy € J*E can be represented by 7., for
some local section ¢ € E(U) of m: E — M containing xq € U, U open. Using the
map j*(U) defined in Chapter 1, we get j*¢: U — J¥E. We can then consider
*o(U) := {jkp: x € U} c JFE. The union of all such sets defines a local foliation
on J*E which is called the local Cartan foliation. The associated distribution is called
the Cartan distribution:

Definition 2.1.11 (Cartan Distribution, Chetverikov [18]). Given a smooth fiber bun-
dle 7: E — M and x € J*E (k finite), the k-th Cartan distribution at y is defined to
be

Cy = U Ti*¢ (Tru0U) -

j::(lx) pe (Wy,i+1 ) -1 (X)

The oco-Cartan distribution at x € J*E, C° is given by the pro-object indexed by
the limit of the finite distributions.

Observe that the fact that Tj%¢ is well defined in the previous equation is due to
the fact that we know the (k+1)-th jet of ¢ at 7 () and jets where equivalence classes
of iterated tangent maps.

Remark 2.1.12. Tt is important to observe that the term “distribution” here is used in
a more general setting that usual. C’; is not a linear subspace of T}J *E but rather
a union of linear subspaces. This can be easily illustrated in the following example.
Consider the trivial one dimensional vector bundle over R, R x R — R, whose space
of sections is simple smooth functions on R. C&_’y) is the whole tangent space without
the vertical axis.
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Chapter 2. The Cartan Distribution

The Cartan distribution has various interesting applications and has been studied
in the Russian literature in depth (see Vinogradov [79] for example). We would like to
start by pointing out some applications related to differential forms in the infinite jet
bundle.

Any pro-smooth map f*: J*FE — J*F can pull-back differential forms using
representatives. Let {f'} represent f and w; represent the form w in Q*(J*F). Then
(fH*w; € Q(J*VE) is a differential form which represents up to isomorphism a unique
differential form (f°°)*w in Q°(J*°E) independently of all the representatives chosen.

Definition/Proposition 2.1.13 (Contact ideal, Anderson [2]). Given a smooth fiber
bundle 7: E — M, the contact ideal C C Q°*(J°°F) is given by forms vanishing along
the local Cartan foliation:

C={w e Q*(J®E): (j%¢)'w=0¢eQ*U)V(p,U) local section of 7}.

To be precise, if w is of order k and it is represented by wy € Q*(J¥E), by (1%¢)*w
we mean the differential form represented by (j¥¢)*wy. The condition that it equals
zero is independent of the choice of the representative wy. The contact ideal can also
be defined for J*E for finite k in the same way. We adopt the notation C(J*E) in case
it is necessary to distinguish between different k’s or different E’s.

The contact ideal is sometimes called the Cartan co-distribution. It is clear that it
is a differentiable ideal in Q°*(J*°E). Observe that we have used the same letter C to
denote the contact ideal and the ideal generated by dyw’. This is not a coincidence,
both ideals agree and that is the content of the Proposition above (for a proof, see
Anderson |2]):

«
(0 dvuf = (79)" (duf + ') = 2502 g

The contact ideal has very interesting features on its own. In order to point out one
of the basic results related to the contact ideal we need to introduce the prolongation
of sections. This uses once again the maps j*(U) defined in Chapter 1: given any local

— (uf; 0 ¢) da’ =0.

section ¢ € (U) we can construct a local section j¥¢ € T>(U, J'E ‘Wk—l((])) for all &

(even k = oo taking the corresponding colimit). The map sending ¢ to j*¢ is nothing
else but the induced map j* on &(U):

FEU) — FEU) =TI E [ )
o (o]

Any prolonged section is called a holonomic section. We focus on the case k = co.
Not all sections = of J°E — M are prolongations of sections ¢ of E — M. As a
matter of fact, those are precisely the ones that pull back the contact ideal to zero:

Lemma 2.1.14 (Anderson [2]). Let E — M be a smooth fiber bundle with associated
infinite jet bundle J®E. A local section Z of moo: J°E — M is holonomic (that is, it
is the infinite prolongation of a local section ¢ of E — M) if and only if Z*C = 0.

The proof is clear but illuminating. (£)*(dyu$) = 0 if and only if %
for all indices, so that = can be constructed inductively from u; o =. Now defining
¢ =Y o= it is clear that = = j*¢. The proof also works when considering smooth
sections instead of pro-smooth sections since it relies on the coordinates and those are
the same due to Proposition |1.3.8

— (6] o
=Uuri°=

Pro-smooth maps preserving the contact ideal are extremely interesting. Intuitively,
a map preserving the contact ideal, i.e. the Cartan co-distribution also preserves
the Cartan distribution and the local Cartan foliation. That means it sends infinite
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2.2. Jet prolongations

prolongations of sections to infinite prolongations of sections. This seems tremendously
natural and one could decide to study maps f*: J*FE — J>*F that preserve the
contact ideal. This has been done extensively in the Russian literature and it is also
covered in the book by Anderson [2]. We develop this intuition in detail in the following
sections.

2.2 Jet prolongations

Maps between finite jet bundles induce, under certain assumptions, pro-finite maps
between the corresponding infinite jet bundles. We first review the known results con-
cerning jet prolongations including the factorization theorem of Chetverikov that asserts
that any pro-finite smooth function factors through 8 maps which are jet prolongations.
The original work in this chapter is concentrated in the study of a more general class of
maps that admit pro-finite smooth prolongations. Maps in that class give rise to unique
jet prolongations that preserve the contact ideal. The starting points of this section are
the texts of Chetverikov (18] and Saunders [71].

Infinite jet prolongations are pro-smooth maps f* = j fO where all higher f!>!
are obtained from fC. In the literature (Kock [44], Anderson [2]|, Saunders [71]) jet
prolongations are always studied in the setting in which all maps are vector bundles
over a diffeomorphism. In this section we have extended the set of such maps for
which infinite jet prolongations exist to include maps between pairs in which the base
manifolds are not the same. The motivation to do so is physical, we would like to
include restrictions of a set of solutions of a differential equation to their boundaries,
or conversely, extending the boundary data to solutions of the equation in the whole
manifold.

As a motivation for jet prolongations, we begin by describing jet prolongations in
an easy case, that is treated by Anderson [2] and Saunders [71]. Consider a bundle
map over a diffeomorphism 7: M — M:

fO
E——F

M

M—"T-M

Given any local section of F, ¢p: U C M — E we can construct a local section of F'
simply by following 7=! and then f°: thus we have a map €& — F given by ¢ — fCo
(it is a section because po flopor ! =70mopor =107 =idy).

Using the chain rule and the inverse function theorem, we can see that in order to
know the I-th jet of f®opor~! at 7(x) it is enough to know the I-th jet of o at x for
all (p,x) € &€x M.

We can hence define the Lie-jet prolongation:

it JE — JF
[(p.2)] +— [(fPopor™h r(z))]
Explicitly for the first derivatives, taking local coordinates {z'} in M and {u®} in
E as in Definition :
or| \ "
ac. <6x x)(i,j) .

d(f0opor)
oxt

The prefix Lie here comes from the Russian school in which such maps are called

Lie-transformations (see Chetverikov [18] for example).

. (‘37’{1
ozt

T

_ o

T oue

_of

T ou~

. 88004
oxJ
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oI

7(z) () w(z)
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Chapter 2. The Cartan Distribution

By staring at the previous construction it is obvious that there are three natural
ways of generalizing this result:

1. The first one is to consider maps f°: J*E — F rather than £ — F. This is done
by Kock [44] and it is also used by Saunders [71] without explicitly stating any
result. One has to deal with holonomic jets since J!(J*E) # JEHE.

2. But we do not need 7 to be a diffeomorphism. It is enough that 7 is a submersion
and instead of 771 we take any local section around 7(z) passing through z. The
trick with the derivatives and the inverse function theorem still applies.

3. We also do not need f° to be a bundle map over 7. We only need that for a fixed
¢, f®0j*p: U — F is a bundle map over 7, := po f°o j*¢ (which is true) and
that 7, is a submersion.

First of all, we finish the literature review by introducing holonomic jets and the
result by Kock about jet prolongations which was mentioned in the previous enumer-
ation.

If we can replace E by J*E in all the formulas above, we only need to change 7 by
7, and to do some adjustments. Observe that the map we get so far using the same
procedure, goes from J!(J*E) to J'F. We want to start from J"E instead (for some
value of n). The spaces J'(J*E) and J**'E are not the same. A dimension count
shows that the first is larger than the second. If the dimension of M is m > 1 and the
rank of E is e, by looking at the local coordinates, we see that for k =1 = 1 the rank
of the first bundle is e(m + 1)? while for the other it is e(m + 1) ™2 (this is so because
partial derivatives commute). We conclude that J!(J!E) is strictly larger than J2E.

But still, J*¥*!E sits inside of J!(J*E), via the following map:

ur: JFHME  —  JYJFE)
(e, )k — [P, 2)-

We have denoted the equivalence classes in J**!(—) and J!(—) by [~]s4; and [-];
respectively in order to avoid confusion. As we said earlier j*¢ is a section of J*E
so that we can take its equivalence class in J!(J¥E). This map is well defined and it
is a bundle map (see Saunders |71, p. 5.2.1]). The elements in ¢; x(J*T'E) are called
holonomic jets.

We can use the maps ¢; ;, to interpret the jet prolongation of a map J¥E — F not
as a map J'(J*E) — J'F but rather as a more convenient map J**'E — J'F. Now
it is clear that if we apply ¢;; and later the jet prolongation along 7 we get a new jet
prolongation fitting our new situation. This notion includes the previous one.

Given f°: J*E — F abundle map covering a diffeomorphism 7 and [ a non-negative
integer, we define the holonomic-jet prolongation of f° as:

Lo JHE —  J'F
[(0,2)] +— [(fos por! 7(2))]
Proposition 2.2.1. Let n: E — M and p: FF — M be two smooth fiber bundles.
Any f: J*E — F bundle map covering a diffeomorphism 7 induces a smooth and pro-

smooth bundle map j>*° f: J°E — J*F covering T in the category of pro-finite smooth
manifolds.

00 0
gop 2L geop

:

T

M——-M
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2.2. Jet prolongations

Saunders |71}, Proposition 7.2.10] proves that holonomic-jet prolongation are smooth.
The previous proposition simply says that holonomic-jet prolongations are pro-smooth
(as a consequence of their definition above). We simply need to apply Corollary
to conclude that the map is also smooth without using the result of Saunders.

Holonomic-jet prolongations of bundle maps covering the identity will be extremely
common in the theory. Thus, we want to give an explicit formula for the prolongations
(define Dy, ... ;, = D;, --- D;_, recall the meaning of D; as in Equation :

s

G = (f%i=2'
(joofo)a = (fo)a
G = Di(G=f%)a =Dr(f%)a. (2.3)

As a matter of fact, Lie- and holonomic-jet prolonged maps give a great understand-
ing of pro-smooth maps preserving the contact ideal. We mention here the classical
result by Chetverikov about bundle maps over a diffeomorphism. Generalizations to a
more abstract setting are possible.

Definition 2.2.2 (C-transformation, Chetverikov [18]). Consider two smooth fiber
bundles over the same base manifold m: By — M and 7: EFs — M. A map
f: J®E; — J®FE, is called a C-transformation if

1. f is a diffeomorphism and
2. f preserves the contact ideal: f*(C(J>°E3)) C C(J*®E}).

Chetverikov actually defines C-transformations as continuous maps preserving the
algebra of pro-smooth functions. He then argues that these maps are pro-smooth. This
is indeed the case: continuous maps are pro-continuous since Top has all limits. Each
representative f': JFOE — J'E preserves the algebra of smooth functions of those
finite dimensional manifolds, hence it is smooth. That shows that the original map is
indeed pro-smooth.

The main result [18] by Chetverikov is that C-transformations factorize locally as
jet prolongations:

Theorem 2.2.3 (Chetverikov [18, Theorem 2|). Given f: J*E; — J*E; a C-
transformation and x € J¥E generic (for some notion of generic points). There
exist U; C J®E;, for i € {1,2} open neighborhoods of x and f(x) respectively; there
exist g2°: U; — J®F; for i € {1,2} and f>: J®°F, — J*Fy such that:

e [ factors through the other maps, that is, the following diagram commutes

Flo,

Uy U,

gi’°J ng°°
-

Jop L gop,

e g is a Lie-prolongation of ¢°: E; — F; both for i =1 and i = 2.

f° is a holonomic-prolongation of fO: JEF| — F.

g3°, g5° and f°° are pro-smooth.

o The set of generic points is an open everywhere dense set in J*FE;.
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Chapter 2. The Cartan Distribution

The second to last item is unnecessary since it follows from the previous ones and
Proposition [2.2.1

We finish this section with an example of jet prolongations that relates the maps
that we already know with this new technique.

Example 2.2.4. Let 7: £ — M be a fiber bundle. We can think of it as a bundle
map from (F, ) to (M,id) over the identity.

E——> M

b

M9y

We can take the k-th jet prolongation of m to get a map j*r: J*E — J*M = M
sending [(p,x)] to [(id,z)] = {x}. We have recovered the bundle projection, so that
jkr =mp: JFE — M.

If we fix a local section, we can interpret it as a bundle map over the identity again.

%2}
U—")

A

ULU

Its k-th jet prolongation is a map j¥¢: U — J¥E sending x = [(id, z)] to [(¢, z)] € J*E.
It is obvious that m; (j¥¢) = idy so that j*¢ is a local section of J*E. We have
recovered the map j*: E(U) — J*&(U) which we defined before.

2.2.1 General case

Following the observations made when treating Lie-jet prolongations, we can consider
the following more general case:

Definition 2.2.5 (Jet prolongation). Let 7: E — M and p: F — N be two smooth
fiber bundles. Let f: J¥E — F be a map such that:

1. For all local section ¢ € (U) the map 7, := po foj¥p: U — N is a submersion.

For each y € j*(U) we take a local section s,, of 7, passing through 7 (). Consider s
a family of such s,. We define the set theoretic infinite jet prolongation of f associated
to s to be the map j5° f represented for each ! non-negative integer by

jtf: JIME —  J'F
[ 2)] = [(foifposyTp(2))]

Remark 2.2.6. The map j.f is not smooth a priori, hence even if they commute with
the bundle maps 7§ and p}’, the map j°f is not pro-smooth.

A way of solving this difficulty is the following. Since 7, is a submersion for every
¢, one can show that J*E — N is also a submersion. Taking families of sections of
this map instead simplifies the calculations to show that j!f is smooth. But as soon
as we want this sections to define sections of the 7, via m;, we notice that we need s to
preserve the local Cartan foliation. This approach is explored in what follows.

Nevertheless, there is another way to work this problem out and it is to choose
families of sections encoded in a pro-smooth map ¢ = s: J®°E — J>°(M x N) where
M x N is viewed as the trivial bundle over N. In this way the pro-smoothness of j > f
is ensured.

25



2.2. Jet prolongations

Another question related to jet prolongations is how unique j$° f actually is. Con-
sider a pro-finite smooth map f°° between infinite jet bundles:

oo

Jop 1 jop

kD Phe
fl
JEO R J'F
7r1’3(1,) P?
f()

JVE ———— F

If 9 is under the assumptions of Theorem we can construct the oo-jet pro-
longation of fO: E — F. We have not discussed if such a map j°f° covering fO is
unique or even whether or not f = j%° f9 for some choice of sections.

This question is answered for Lie-jet prolongations (i.e. prolongations of bundle
maps f: E — F along a diffeomorphism) by Anderson |2, Proposition 1.6]). The key
observation is that the map j° fO, the Lie-jet prolongation of f° is the only one map
covering fO if it preserves the Cartan co-distribution. Translating this fact to the full
generality of jet prolongations given by Definition [2.2.5]is possible.

Proposition 2.2.7. Let 7: E — M and p: F' — N be two smooth fiber bundles. Let
f°: J®°E — F be a pro-smooth map such that:

1. For every local section ¢ € E(U) the map 7, = poc © [ 0j®p: U = N is a
submersion.

2. fH(C(J=F)) C C(J®E).

Given {f'} a representative of f>, infinite jet prolongations of fO: JEE — F in the
sense of Deﬁnitionm exist, they are pro-smooth and f = jf° for every choice
of sections s. That is:

feJMHE —  JF
Jop j,?ifoojkw(x)(f%jkwosx)-

Proof. Fix {f'} a representative of f>. Let ¢ € £(U) be a local section of 7.
Since fOomk = p% o f°° we have that
Tp 7= poo 0 [F 0 j¥p=po floml 0 j®p=po flojrp

is a submersion and thus fO is in the hypothesis of Definition [2.2.5] Hence, infinite
jet prolongations of f© do exist. Fix x € (j*¢) (U) and take s, a local section of 7,
around V' C N passing through 7 ().

j;)ofo(x) :]ggfoogkap(woo(x))(foOJkSDOSX) (24)

We can construct the map f*° o j*®¢pos,: V = JF. It is a pro-smooth section
of poo since

poo © ([ 0j™posy) = (poo o [T 0jTp) 0 sy =Tp o8 =idy.

We are going to pullback to V' C N a form w in C(J*®F).
(f03%po0sy) w=(s)" 0 (1%p) o (f*°)'w=0
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Chapter 2. The Cartan Distribution

This is so because since f>° preserves the contact ideal, (f°°)*w is in C(J*°F) and
hence, by definition (j°¢)*(f*°)*w = 0.
Applying Lemma [2.1.14] we get that there exists ¢, € F(V) such that

[ 0jTpos, =7%y. (2.5)
By further composing with p%_ on both sides of the equation we get:
fPogtpos =1y, (2.6)

and hence j° fO(x) = [(¥x poo © f(X))]-
On the other hand,

00 =170 i%¢ (sx(psc 0 (X)) = 57Uy (Poc © f7(X))- (2.7)
Comparing equations and we get that jo°f° = f°° and in particular that
3> £9 is pro-smooth. |

Remark 2.2.8. In the notation of the proof, different choices of s, give rise to different
by, but their infinite jets at p(f>°(x)) agree.

Even though the proof uses the local Cartan foliation, we do not know a priori if f*°
preserves the foliation, that is, if f>j*p(U) =, 7<% (V) for every local section.

There are particularly well behaved choices of s, where we can actually show that
f° preserves the local Cartan foliation. Take zg € U and sqg := Sjgop local section at
V passing through z¢. Forall x € sj;;%,(V) define s, := so. It is a section of 7, and it
passes through the relevant point. By the previous procedure sy defines a local section
o in F(V). In that case f°j®p(s0(V)) = j°(¥s,)(V) and by repeating the process
for every point in U we get that (shrinking U if necessary) f>j*p(U) = U, i®¢a(V),
i.e. f°° preserves the local Cartan foliation.

We can get a final conclusion that serves as a partial converse of Proposition [1.3.9

Corollary 2.2.9. Let m: E — M and p: F' — N be two smooth fiber bundles. Let
f: J®°E — J*°F be a smooth map such that:

1. For all local section ¢ € E(U) the map 7, = pos © [P 0j%¢p: U — N is a
submersion.

2. f*(C(J*F)) C C(J®E).
3. It covers a smooth map f°: J*E — F.

Then f°° is pro-smooth.

Proof. The proof of Proposition only uses the fact that f°° is pro-smooth
when referring to Lemma[2.1.14] We have remarked after the statement of that Lemma
that it also holds when f°° is smooth. Otherwise, in order to apply Proposition [2.2.
we only need the extra condition that > covers f'. We can thus apply that Proposi-
tion to get the desired result. |

2.3 Vector Fields on J>*FE

The next and last piece of information related to the infinite jet bundle is about vector
fields. There is a correspondence between pro-smooth sections of the tangent bundle
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2.3. Vector Fields on J*°F

and ind-derivations of the space of smooth functions: those are called vector fields.
The usual formulas known as Cartan calculus apply to the infinite jet bundle. Vector
fields preserving the contact ideal are once again prolongable and they actually split
into a vertical and a horizontal component called evolutionary and total. This section
provides a translation into the ind/pro-categorical language of the results about gener-
alized vector fields by Anderson [2] and Olver [65].

Recall from the previous chapter that the tangent bundle of the infinite jet bundle,
T(J*E) = U, ey p Ix(J*E) is a pro-smooth manifold modeled on {(T(J*E), T7})}
and that the base-point projection map pr e p: T(J*®E) — J*®FE is pro-smooth and
can be represented by {prf]wE = prJlE}. We can talk about pro-smooth sections of
that pro-smooth fiber bundle, those do deserve to be called vector fields on J>E:

Definition 2.3.1 (Vector field on the infinite jet bundle). Given a smooth fiber bundle
m: E — M, a vector field on J*FE is a pro-smooth map X: J*°E — T(J*FE) such
that prjep o X =idjeg.

Since vector fields are pro-finite smooth maps, they are represented by families of
maps {X': J*OE — T(J'E)} such that:

e They are compatible, i.e. Tl o X! = X! o w,’jgf;%

o They are sections, i.e. prjipo X' =m .

l
JFOE — X T(JE)

|7r;f,(,) |T7r?
0

JE—X  TE

This is the definition of a compatible generalized vector field given by Anderson |2].
A vector field which is representable by {X'} where k(I) is taken minimum is said to
be of order (k(0),k(1),...). Glineysu and Pflaum [34] call such vector fields local.

A different approach is to view vector fields as derivations of the algebra of pro-
smooth functions €°°(J>°E). Following the ind/pro-categorical spirit, we should con-
sider ind-derivations. Let us be precise about this:

The product in €*°(J*°E) is an ind-endomorphism of €°°(J>°E). For every (I, k) €
N x N the map

(anax(z,k))* ‘oo (Jmax(lk) ) (errjlax(l,k))*: CKOO(JZE) X %OOO(JkE) - (gm(]max(l’k)E)

represents the product -: €°(J®°FE) x €°°(J>®FE) — €>*°(J>®E) since it commutes
with all the structure maps {(m} )*}.

Definition 2.3.2 (Ind-derivation). An ind-linear map D: € (J*FE) — €>*(J>*F)
such that D(f -g) = D(f)-g+ f - D(g) for all f and g in €>°(J*FE) is called an
ind-derivation.

Observe that all ind-derivations are derivations of the algebra product, but not the
other way around. This is so, because ind-derivations are ind-morphisms and hence
given an in-derivation D, for every | € N there exists k() € N such that D can be
represented by maps D;:

G®(J®E) —2 s ¢=(J*E)
(”l“’)ﬂ 0y
G (JIE) — 2 g (JHO R
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Chapter 2. The Cartan Distribution

In that case D is said to have order (k(0),%(1),...). Not all derivations are of this
kind. Anderson shows [2, Proposition 1.3] that, in the case in which M and E are
compact, all derivations are ind-derivations.

Using this new interpretation of Anderson’s result in terms of ind-derivations,
Proposition 1.5 in the book by Anderson, [2] now becomes the interesting (and trivial)
result:

Proposition 2.3.3 (Anderson, |2, Proposition 1.5]). Let X be a vector field on J*FE
of order (k(0),k(1),...) and f be a pro-smooth function represented by f;: J'E — R.
X (f) is defined to be the pro-smooth function on J®E represented by X'(f;): J*OE —
R (where X'(f;) is the projection to the fiber of T'f; o X!). The associated map
X: €°(J®E) - €°(J®E) is an ind-derivation of the pro-smooth algebra of func-
tions of order (k(0),k(1),...).

Conversely, given D an ind-derivation of €°°(J°FE) there exists a unique vector
field X such that X=D.

Giineysu and Pflaum also notice |34, Theorem 3.2.6] this result, but they are more
interested in the derivations of the algebra of smooth functions with locally bounded
jet degree as in Definition

We denote the Lie algebra of vector fields on J*FE by (X(J*FE),[—,—]), where

[X,Y] is the unique vector field such that [X,/?] =[X,Y].

Remark 2.3.4. It is very important to remark that we do not take the most general of
the possible definitions of vector fields, but the one that allows as the most flexibility to
work with. This also happens to be the one coming from the ind-/pro-object approach.

The next step is to consider insertion and Lie derivation of vector fields on ind-
differential forms: From now on, all the definitions and results are taken from Anderson
[2]. Our only input is to write all formulas in a more appropriate coordinate system.

Definition 2.3.5 (Insertion, action and Lie derivative). Let 7: E — M be a smooth
fiber bundle. Let w be a differential form of degree p and order [ in Q*(J*°E) and let
w; € QP(J'E) be a representative of w. Let X be a vector field of order (k(0), k(1),...).
Let f be a pro-smooth function on J*F.

e The insertion of X into w, denoted by ¢ xw is the differential form of degree p—1
and order k(I) represented by ¢xiwj.

e X(f) is defined to be pro-smooth function vx (df) = X (f).

e The Lie derivative of w along X, denoted by £ xw is defined to be the degree p

form: Lxyw(Xq,...,X,) = X(w(X1,...,Xp)) — (—D'w([X, X;], X1,..., Xp)-

9

The total derivative d, the insertion operators and the Lie derivatives are all
graded endomorphisms of Q°(J*°FE) (as ind-differential complexes). All such ind-
endomorphisms form a Lie algebra with bracket [f, g] := fog — (=1)/I9lgo f, since
composition and addition of ind-endomorphisms are well behaved. From all the fi-
nite dimensional pieces of Q2°*(J*°E) we see that the commutation relations known as
Cartan calculus also hold in the infinite jet bundle:

Proposition 2.3.6 (Cartan calculus). The total derivative d, the insertion operators
tx and the Lie derivatives Lx (for each vector field X ) form a closed subalgebra of
the Lie algebra of graded endomorphisms of Q*(J°E) with only the following non-zero
commutators:

o Lxw=1xdw+dixw=[d,tx].

° [Lx, LX/} = L[X,X’]'
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2.3. Vector Fields on J*°F

L] [Lx,LXI] = L[X,X’]'

Proof. The first, and most important of the items is proven by Anderson |2, Propo-
sition 1.16]. For the other two statements, we have found no reference in the literature
for the infinite jet bundle. Nevertheless, the second statement clearly follows from
the definition of the insertion operator in terms of the insertion of a vector filed on a
form on a finite dimensional manifold (Definition and the corresponding formula
for finite dimensional manifolds (for instance Cannas da Silva |11, p. 18.3]). For the
third point, we simply use the two previous statements and the graded Jacobi iden-
tity or refer again to the finite dimensional case (again Cannas da Silva 11}, p. 18.3]). B

Remark 2.3.7 (Local coordinates). The vector field X is given in local coordinated by
X = Xig% + X/9! where X; and X[ are pro-smooth functions on J>*E. Observe
that these coordinates are the dual ones to dz* and duf, but we are interested in
finding coordinates dual to dyz' and dyu§ instead. In that case we can see that
t_o_dyu§ = —uf,; which is clearly non-zero. Nevertheless, the dual vector fields to dz*
ozt ’
and du$ are D; and 97 (this is already hinted in equation [2.2)): the only non-trivial
equation to verify is
tp,dyuf = fu% + u?l =0.

Using these coordinates, we can write X = X;D; + X210.. Now we have to know

what is the relation between the local functions X; and )Z'O{ and X; and X/. Since the
insertion operator is linear over local functions we have:

X; = L%, 2, 4 X1} dx’ = uxdr) = 1x,p,1x191d2’ = Xj.
o5+ X0k
Now for the vertical components:

v J J
Xp = L)?i%Jrﬁ?;aéd“g = uxdu = ix,p,+xzordu = ijuig‘ +Xp.
J
Reorganizing these equations we have that
X, = X

J
X o= XD Xug, (2.8)
J

These coordinates without tildes will be called variational coordinates to suggest that
they are dual to the variational bicomplex coordinates. We can use the variational
coordinates to, using Equation express the action of a pro-smooth vector field on
a pro-smooth function:

X(f) = uxdf = XiDif + XL0Lf. (2.9)
We need a different definition of “preserving the contact ideal” for a vector field
since the usual one fails. Recall that we can represent a vector field in the following
way:
XOO
JXE ——— T(J®E)
7\";0([) TTK"LX)

l
JOE 2 T(JIE)

k
Th(l) Ty

0
JE—X . TE

30



Chapter 2. The Cartan Distribution

T(J®°E) is not J>°F for any other F, but it is a different kind of pro-object.
Nevertheless, now that we know how the Lie derivative is defined, we can consider
vector fields X such that £xC C C. This is the correct notion of Cartan-preserving
vector field. The property that X can be recovered from X° for such vector fields
still holds. The proof can be found in the books by Anderson [2] or Olver [65].

Proposition 2.3.8. Let m: E — M be a smooth fiber bundle over M. If X € X(J*FE)
preserves the contact ideal in the sense that LxC C C then X is the jet prolongation of
X0. JFOE — TE, denoted pr(X°). Conversely, X is the unique vector field covering
X° and preserving the contact ideal.

In local coordinates, if X° = X;D; + X,04, then prX =: X0 + E|I|;1 prX1ol and
the formula for the extra components is:

prX! = Dr(X,). (2.10)

Observe that the two equations for a prolongation are very similar. For a holonomic-
jet prolongation we had that (> f°)! = D;(f%), (equation and for a prolongation
of a vector field we have prX! = D;(X,) (equation . It is important to keep in
mind that the meaning if the indices is different in each case. In the prolongation of
a map (j>f°)L denotes the coordinate in u$, while in the prolongation of a vector
field prX. means the component of pr X with respect to the change of basis given by
equation If we were to express equation in the standard coordinates (the dual
to dz’ and du$) we would get the following formula (which is the one Anderson proves
2)): ) o i

prX} = Di(Xo —ul X;) +uf,; X;. (2.11)

From our choice of coordinates, it is clear that a vector field preserving the contact
ideal splits into two non-interacting parts:

X = (XiDy) + (Dr(Xa)0L) -

The first part is horizontal (usually called total) and the second one vertical (usually
called evolutionary). This is an alternative proof to the following fact that can be
found in the article of Ibragimov and Robert Anderson [39, Theorem 4]. The result
also appears in book by Ian Anderson [2, Proposition 1.20], but with weaker hypothesis.

Proposition 2.3.9 (Ibragimov and Anderson |39, Theorem 4]). Every vector field X €
X(J°F) preserving the contact ideal is decomposable. This means, X = pr(§) + tot(v)
where v = (og)s X i= Too 0 X and £ = (X — tot(v))".

We want to give explicit definitions of evolutionary and total vector fields for the
purpose of future references (we follow the presentation from Anderson [2]|, but Olver
does the same [65]):

Definition 2.3.10 (Evolutionary and total vector fields). Let 7: E — M be a smooth
fiber bundle. Let VE :=ker T'r C T'E denote the subbundle of vertical vectors in T'E.

A pro-smooth map ¢: J®E — VE such that pry o & = 72 gives rise to a unique
contact ideal preserving vector field pr(§) € X(J°°E). All such vector fields are called
evolutionary.

A pro-smooth map v: J*E — T'M such that pr,; ov = 7, defines via the formula
(m)sv := Twov: J®E — TE which gives rise to a unique contact ideal preserving
vector field which annihilates all vertical forms tot(v) € X(J*°E). All such vector fields
are called total.

A vector field X € X(J*FE) is called decomposable if it is the sum of an evolutionary
and a total vector field.
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2.3. Vector Fields on J*°F

Observe that (7).v := Tw o v has coordinates ui% + ufr;0¢,. That means that
with respect to the variational coordinates (7).v = v;D; alone, since ((7).v), =
ufv; —udy; = 0. As an example tot(%) = D,. For evolutionary vector fields X; =0

so that )N(é = X1

We want to finish this section with some remarks about the Lie bracket of contact-
ideal preserving vector fields and their behavior with respect to the splitting into ver-
tical and horizontal parts. A coordinate free version of these results can be found in
the book by Anderson |2, Proposition 1.21]:

Proposition 2.3.11. The bracket of two contact-ideal preserving vector fields preserves
again the contact ideal. The bracket of two evolutionary ones is again evolutionary and
the bracket between two total ones is again total. In local coordinates:

(X,Y], = X;D;Y;+ X0y, -Y;D;X; - YIoLX;
(X,Y], = XY+ Xjo5Y,-YiX,—Y]ojX,
[X7 Y]i = DI[X7 Y]a

[tot(X), tot(Y)]; = X;D;Y; —Y;D;X;

[ev(X),en(Y)], = X703Ya —Yi0iXa

[ev(X), ev(Y)],, = Dilev(X),en(Y)],

We want to point out that the Lie bracket of an evolutionary vector field and a
total vector field is not total, contrary to what one could interpret from one of the
items in the aforementioned Proposition in Anderson’s book. We want to be explicit
about this, since it is a general source of confusion:

[tot(X),ev(Y)], = -YIolX,
[tot(X),ev(Y)], = X;Y.!
[tot(X),ev(Y)]L = Drltot(X),ev(Y)],

Proof. Let X and Y be two vector fields preserving the contact ideal. Using
Cartan calculus (Proposition [2.3.6)

L[X)y]C = [Lx,ﬁy]c = Lx(LyC) — Ly(fzxc) C C.

The computation in local coordinates of the bracket uses simply equation [2.9| and the
Cartan calculus. Finally, we adjust D; X, by X! using the equation for the prolonga-
tion from Proposition [2.3.8 |

At this point Anderson also explains how the insertion of evolutionary vector fields
behaves with respect to the Lie algebra from Proposition (Cartan calculus). At
this moment, this is not necessary and we refer the reader to Section where we
discuss the matter for the bicomplex of local forms.
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Local maps and smooth maps
involving &€ X M
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Local maps and smooth maps
involving &€ X M

In Lagrangian field theory, the objects are products of the kind & x M where € is the
space of smooth sections of a fiber bundle over M. There is a category having these
as objects: the category of local manifolds. A morphism between two local manifolds
is required to cover a pro-smooth map between the associated infinite jet bundles. By
pulling back the ind-algebra of functions to the infinite jet bundle we are able to talk
about local functions. Local maps respect the space of local functions.

The approach to maps in Lagrangian field theory is that they should descend to
a map between pro-finite dimensional manifolds. There are other angles to it: both
J*F and & x M can be given topological and even smooth structures. Asking for con-
tinuous or smooth maps between the infinite jet bundles instead of pro-finite smooth
maps is possible. Yet another possibility: we could work with continuous or smooth
maps directly on € x M instead of working with local maps.

From the topological perspective, J>°F is a topological space with respect to the
limit topology. Pro-finite smooth maps are continuous with respect to that topol-
ogy. In the same direction, & x M can be topologized in several ways including the
compact-open topology or the Whitney ¢ *°-topology. Jet evaluations are continuous
with respect to the Whitney € °°-topology and open with respect to the compact-open
topology. For local maps of easy kinds, such as fy X idp;: € X M — F x M, we can
prove that they are also continuous.

J°FE and € are infinite dimensional manifolds modeled on Fréchet spaces. Jet eval-
uations are always smooth. In general, there is no stronger or weaker notion among
smooth maps and local maps. The topologies on € coming from the Fréchet manifold
structures are finer than the previous ones, so that some of the topological results still
hold in this setting.

This explores local, topological and smooth structures on & and & x M. It focuses in
the comparison between continuous and smooth maps and pro-smooth and local maps.
In particular it shows that for some topologies, jet evaluations are open, and hence
a larger category of local manifolds can be defined. It also shows that under certain
assumptions, local maps are smooth. The references in this part are Blohmann [@;
Hamilton @; and Kriegl and Michor .
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Chapter 3

Local maps and functions

3.1 Locality

In this section we define the algebra of local functions on € x M and local maps between
EX M and F x N. We show that the pullback of a smooth function along a local maps
is again local. We give some insight into the theory of local maps, pointing out that
the jet evaluations are not surjective and that the next natural step into the theory is
to study topological structures on € x M. We follow the ideas from Deligne and Freed

and Blohmann ,@

We fix a smooth fiber bundle 7: E — M with space of sections €. In field theory,
one views the Lagrangian, the Euler-Lagrange term or the conserved currents as maps
on € and variations of € valued in forms on M. Moreover, it is said that they depend
on finitely many derivatives of the field and of the variations. It is then suggested
that we do not work with Q°*(& x M), nor with Q°*(J>*FE), but with the pullback of
Q°*(J>*FE) by j*°. The first, and easiest, step is to take the pullback of a pro-smooth
functions:

Definition 3.1.1 (Local function). Given a fiber bundle 7: E — M, the space
CR(E x M) := (j°)" (€°°(J®FE)) C Homget(E x M,R) is called the space of local
smooth functions, or simply local functions, on € x M.

A map f: € x M — R is local if and only if it descends to a finite jet; that is

if there exists a k € N and a map fi: J*E — R such that the following diagram
commutes:

The concept of locality in field theory has been used extensively in the literature
but it has not been investigated much on their own. The previous Definition is inspired
in a similar one by Deligne and Freed , although they consider directly M-twisted
local forms (we have decided to treat the M-twisted case later since we need some
more results in order to prove basic properties about M-twisted local functions).

Proposition 3.1.2. €22(& x M) is a sub-algebra of Homget(E x M, R).

loc

Proof. The proof relies on the fact that €°°(J>°FE) is an ind-algebra. In other
words if f and g are local functions, being the pullback of f*° and ¢°° respectively.
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3.1. Locality

Then f+g, f-gand tf (t € R) are the pullbacks of [+ ¢>, f°°-¢*> and tf>° respec-
tively. The algebra commutation relations follow from those on Homget(E x M, R).
To be precise, we can take representatives f = (j%)* fx, g = (\)*qi, k > 1 for k,1 € N,
fx € €°°(J*E) and g, € €<(J'E). Now let g := g, o 7k, we have that g = (j*)*gx
and g+ f = (G)* (fu + 9r), 9 f = (G")*(fr - gr) and tf = (%)t fi. u

We now consider 7: E — M and p: F — N two smooth fiber bundles over
possibly different base manifolds. The associated spaces of smooth sections are denoted
by & and JF respectively. As we have mentioned, the relevant algebras of functions on
&€ x M and F x N are the local ones (Definition . Not every map between & x M
and F x N induces a map from €52 (F x N) to 622(E x M), but the ones descending
to a map between the corresponding infinite jet bundles do. The following definition
can be found in the work of Blohmann [§].

Definition 3.1.3 (Local map). A map f: € x M — F x N is local if it descends to a
pro-finite smooth map between the associated infinite jet bundles.

SXML»S"XN

= s

J¥E ——— J*F

The diagram takes place in the category of sets since € is only a set so far. The
map between the infinite jet bundles is required to be a morphism in the category of
pro-finite dimensional smooth manifolds.

Example 3.1.4. Consider two smooth fiber bundles over the same manifold £ — M
and FF — M. Given a bundle map over the identity f: E — F we can consider
the infinite jet prolongation of such map j*f: J*°E — J°°F which is simply given
by [(p,x)] = [(f o ¢, z)] (it is indeed a Lie-jet prolongation and it is pro-smooth by
Proposition . The induced map f. x idp: € x M — F x M given by (¢, z) —
(f o p,x) is clearly local.

We want to point out that the maps as in the previous example are very special:
they are products. In principle, given a local map f: € x M — F x N we do not
necessarily have a splitting into a product fy X fy but we can only talk about the
components f = (f, fn) where fg: EXxM — Fand fn: €x M — N. This is also the
case when the base manifold is the same. Local maps in which fy;—xn = pr,, are called
local maps covering the identity and local maps in which f = fg x id,; are called local
maps along the identity. The maps in the previous example are local maps along the
identity. In Part III we will inspect with further detail local maps along the identity
and give precise definitions.

Looking back at Definition [3.1.3] we can compose two squares and get another
square of the same kind. This induces a category structure on local maps between the
product spaces. The category structure is simply pulled back from the one on pro-finite
smooth manifolds.

Definition 3.1.5 (Category of local manifolds). We define the category of local mani-
folds IMfld with objects given by products € x M, where € denotes the space of smooth
sections of some smooth fiber bundle £ — M. Morphisms are given by local maps in
the sense of Definition B.1.3
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Chapter 3. Local maps and functions

Ex M Fx N gx P
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J*XE JXF J*G
£ 9%

Example 3.1.6. Given any smooth manifold M we can view it as a bundle over
a point M — {x}. Its space of sections I'({x}, M) is isomorphic to M and all the
tangent bundles are again isomorphic to M: J*M 22 M for all k. Given a smooth map
f: M — N we can view it as a map M = I'({*}, M) x {*} = N Z T'({x},N) x {x}
which is trivially local. As a matter of fact, all the local maps M — N come in this
way:

f=fr0

We have shown that Mfld — IMfld is a fully faithful functor.

Lemma 3.1.7. Given a smooth fiber bundle E — M, local functions are in one to one
correspondence to local maps € x M — R.

Proof. We view R as a line bundle over a point as in Example Since J'IR= R
for all I, a local map from & x M to R is indexed with constant k: k(I) = k(0) for all
[. Tt is hence equivalent to a local function:

exM—L LR

jkk(l)‘ hidk =

JVE—— R
fk

Following this point of view, pullbacks of local functions are well defined in the
category of local maps:

Definition/Proposition 3.1.8. Given a local function g € 622(F x N) and a local
map f: &€ x M — F x N, the pullback map: f*(g) := go f € Homget(E x M,R) is
again local.

The proof follows from Lemma [3.1.7 and the fact that IMfld is a category.

3.1.1 Jet evaluations are not surjective

At this point we could follow the flow of definitions and results for the pro-smooth
manifold J°°F and have a verbatim discussion about € x M. This will include dis-
cussing the Cartan distribution, local forms, local vector fields and smooth structures
on & x M. We will not do this in this order this time around.
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3.1. Locality

For instance, we are ready to introduce local analogues of the tangent and the
cotangent bundles in IMfld as well as talking about sections of those bundles to get
local vector fields, local 1-forms, and even local higher forms. This amounts simply to
give a definition of the tangent motivated to what happens at the level of the infinite
jets. We refer to Chapters [10.2] and [10.3]

Nevertheless we want to point out that there is a fundamental difference between
pro-smooth maps f>°: J*FE — J°°F and the local analogues f: € x M — F x N: the
general lack of surjectivity of j*: &€ x M — J>®E. Even if (f, f>) is a local map, and
f°° preserves the Cartan distribution, it is unrealistic to think that there is a unique
map f°: J*E — F covered by & x M — F x N from which we can recover f. There
is simply too much space outside of j*(& x M) in J*E in some cases (think of the two
extrema: if € is soft, all jet evaluations are surjective but if £ — M has no global
sections j%(& x M) = ().

What we could do is to try to replace J*E by j*(& x M), thus avoiding the problem.
But observe that 7°°(€ x M) is in principle not a pro-smooth manifold since we do
not know whether or not j*(& x M) is a smooth manifold. As a matter of fact, the
jet evaluations are open maps with respect to some topologies on & x M. Hence,
j°(& x M) is indeed a pro-smooth manifold and we can talk about maps f factoring
in the following way:

JPEX M) —— j®(F x M)

We should deal with this problem even before we try to develop a theory of Cartan
preserving local maps (as it will be done in Chapter [7)). This brings us to study first
the topological structures and then the smooth (Fréchet) structures on & x M. The
comparison between local maps and smooth maps in that context is not so simple as
in the J*FE case and it will involve the Cartan-preserving property.
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Chapter 4

Topologies on € X M

We have identified in the previous section a relevant category in Lagrangian field the-
ory: that of local manifolds. Its objects are given by € x M where € is the space of
smooth section of a smooth fiber bundle over M; and its morphisms are local maps.
Local maps are defined using finite and infinite jet evaluations.

& x M can be topologized in different ways. From our point of view the interesting
topologies are those in which the jet evaluations are continuous or open. Pro-smooth
maps are continuous and then, under certain assumptions we can prove that local maps
are also continuous with respect to some of those valuable topologies on &€ x M. To
be precise, that result holds for the Whitney € *°-topology (WO°-) and the CO>°-
topologies.

Among the topologies here studied, we also have the compact-open (CO-) topology,
which is useful since jet evaluations are open with respect to this topology. The same
goes for the Whitney-open (WO-) topology. This solves the problem pointed out at
the end of the previous section that the lack of surjectivity of the jet evaluations poses
to the theory of local manifolds.

This chapter introduces several topologies on € X M and studies whether the jet
evaluations are continuous or open with respect to them. It also shows that local maps
along a continuous surjection are continuous with respect to the CO*°- and WO>-
topologies. The main references in this chapter are Kriegl and Michor and Whitney

[80].

4.1 Whitney's extension theorem

In this section we provide a version in terms of local maps of a very relevant theorem
in this for this chapter: Whitney’s extension theorem. The main reference is Whitney

m .

There is a very relevant result in the literature that we will be using extensively
in this chapter: Whitney’s extension theorem. In short, it states that given a smooth
function in a compact subset of R™, it can be extended to a smooth function in the
whole of R™.

Theorem 4.1.1 (Whitney’s extension theorem, Whitney ) A smooth function of

class k € NU {oco} in the sense of Whitney on K C R™ compact is a collection of
continuous functions { fr: K — R} < (where I is a multi-index in {1, ..., n}) such
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that for every m < k, the remainders

RPa) = file) = S G- )’

|JI<m—|1] ~~
defined for all |I| < m and all z,y € K satisfy that

RPwa)
z,y€K,|z—y|—0 |SC — y|m7|I| '

Any smooth function of class k € N in the sense of Whitney on K C R™ can
be extended as a €*-smooth function on R™. This means that there exists a smooth
function f € €%(R™) such that for any multi-index I, |I| < k we have that

orf

oxl |K

We will apply a version of Whitney’s extension theorem in our setting of multi-
valued jets:

=/

i

Corollary 4.1.2. Let w: E — M be a smooth fiber bundle. Consider a smooth section
o € & =T%(M,E) and any jet x € J®FE such that 7% (x) lies in a trivializing
neighborhood of (7 (x)) in E. Then there exists a smooth section ¢, € & with the
jet x at oo (x) and coinciding with ¢ outside a compact neighborhood of 7o (X)-

Proof. Counsider a coordinate system trivializing 7 around (z,p(z)) where x de-
notes oo (x). In the image of the chart for , which can be taken equal to R™ and to be
centered around z, we consider a compact annulus A around 0 and we call K := AU{0}
which is a compact subset of R™. Now, given any direction in the fiber R® (which is
trivial using the coordinate system) we can consider the smooth function in the sense
of Whitney (Theorem given by the Taylor coefficients of ¢ in A and x in 0 (after
the trivialization and the restriction to that given direction and using the fact x can ac-
tually be realized in that neighborhood by assumption). These functions satisfy indeed
the conditions since A is disjoint from {0} and ¢ is smooth in A. Applying Whitney’s
extension theorem we get a smooth function from R" to R® which can be glued
to ¢ since they agree on A to form a smooth section ¢, € € with x as infinite jet at = . W

4.2 CO- and WO-topologies

This section introduces 3 topologies on € x M and studies whether the finite jet evalu-
ations are continuous or open with respect to these topologies. For the first one, the jet
evaluations are continuous, but only open in the case in which &€ is soft. For the other
two, the products with the compact-open- and Whitney-open- (CO- and WO-) topolo-
gies on &, the finite jet evaluations are always open. This leads us to the definition of
a new category of local maps. As a reference for the topologies on & we follow Kriegl
and Michor [51]].

We fix a smooth fiber bundle £ — M with space of smooth sections €. Recall
that the main point of this chapter is to compare continuous maps to local maps. The
first step is to understand the topology on J*°E and compare pro-finite smooth maps
to continuous maps. J°°F is a topological space with respect to the projective limit
topology, that is, the one that makes each of the maps 7% : J°E — J*E continuous.
Using that pro-finite smooth maps are smooth from Corollary we can state the
following result:
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Chapter 4. Topologies on € x M

Lemma 4.2.1. Pro-finite smooth maps J°E — J°F are continuous with respect to
the projective limit topologies on the infinite jet bundles.

In the other direction, there are clearly continuous maps which are not pro-finite
smooth. As an example of such a map consider simply R 2 J*>° (R — {x}) — R given
by a continuous but not smooth function such as the absolute value.

The interesting topologies on € x M from our point of view, are those in which
j*°: € x M — J°°F is continuous and in some cases open. The easiest way to achieve
this is to topologize € x M via the initial topology of the infinite jet evaluation, precisely
the one making that map continuous.

Definition 4.2.2 (j°°-topology). The initial topology on €x M via j*°: ExM — J*FE
is called the j*°-topology.

Clearly, the infinite jet and the finite jet evaluations are continuous with this topol-
ogy: j¥ =7k 0j®:&x M — J®FE — J*E for each k € N since the topology on
J°F is the initial topology with respect to all the finite jets. We have also wished for
these maps to be open under certain assumptions: these would be the space of smooth
sections being soft.

Lemma 4.2.3. If € is soft, 7°°: E x M — J®FE is an open map with respect to the
j%°-topology.

Lemma 4.2.4. 7% : J®E — JXE is an open map for each k € N.

Corollary 4.2.5. If € is soft, j*: € x M — J*E is an open map with respect to the
j°-topology for each k € N,

Proof of Corollary Assuming the two lemmas, 7%, is open from Lemma
and j°° is an open map in the case € is soft from Lemma Since the com-
position of open maps is open, j* = 7% o j°° is open for each k € N, ]

Lemma [4.2.3| is immediate: the fact that € is soft implies that j°° is surjective.
Any surjective map defining an initial topology is open. Let f: X — Y be a surjection
where X is topologized via the initial topology. All open sets in X are of the kind
f~Y(V) where V is openin Y. V = f(f~1(V)) since f is surjective, so that f is open.

Proof of Lemma [4.2.4f  We want to show that 7% : J°E — J*E is an open
map for each k € N. We fix such a k and U C J>*FE open. We will show that for each
x € U we can find an open neighborhood of 7% () in J*E fully contained in 7% (U).
We fix such an z. Since the topology on J°°E is the initial one with respect to all the
finite jets we are assured the existence of n € N, k; € N and U* C J* E open for each

i €{1,...,n} such that
x € (ﬂ (Wﬁé)fl (Uk)> cU.
i=1
We will construct V an open neighborhood of 7% () in 7% (U).
e Casen=1. Call | = k.

— If k <1 take V = 7f(U'), it is open since the map 7F is a fiber bundle (see
for example Saunders [71]).

(2) = 7t ol (@) € mf ol ((nhe) ™ (UY) = 7b (@) =V

o0 oo

8?‘

T

2') = y and hence
) C Tk U.

o0

Given 7!(y) with y € U! there is 2’ € U such that wl_(
7k (2') = 7 (nl(2')) = nFy so that 7% () € V = nF (U
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4.2. CO- and W O-topologies

~1 o . . .
(772) (UY), it is open since 7} is continuous. Now,

(Wfo)_l ° (ng)_l (uh) = (7?’50)_1 (V) so that its image

1 . . .
(V) = V since 7%, is surjective. Even more, because

—Ifk > 1 take V
—1
ze (xl)  (UY
% (z) € 7k (k)
(w’go)fl (V) = (Tréo)fl (UY) € U we get that V' C 7% (U). This shows the
result, in other words, 7% (z) € V C 7% U.

, -1
o (Casen > 1. Call [ :=max;¢;<pn ki, U := (Wf’) (U*+). In this case

n n n
B\~ prkiy ) N AN I 2 A '
x € <m (k) (U )) = (m (7%) (UZ)> = (L) (ﬂ UZ> cU
i=1 i=1 i=1

and we are reduced to the previous case where now U' = (N, U?) is open since
all 7le" are continuous and the intersection is finite.

Explicitly, we have constructed V open in J¥E such that 7% (x) € V C =& (U)
showing that 7*_ is open where

—1
my <ﬂ?_1 (Wzk) (U’“)> if £ <1 :=maxigign ki
V= »
(”lk)il <n?—1 (Wzk) (Uk)) it k> 1= maxiign ki-
[ |

The j°°-topology on € x M has great advantages as we have seen in the previous
results. On the other hand, it is not clear whether or not it is compatible with the
projections to the € and the M factors. On the one hand, & x M — M is continuous
with respect to the j>°-topology since it is the composition of two continuous maps j°
and m; it is even open if € is soft as a consequence of Corollary On the other
hand, there are different topologies on € that can be considered: for example those as
subspaces of €°(M, E). On ¢°(M, E) there are two interesting topologies sometimes
called weak and strong topologies on the space of smooth maps. The subspace topology
on & with respect to these topologies have some interesting features from our point of
view.

Definition 4.2.6 (CO-topology, following Kriegl and Michor [51]). Given two topolog-
ical spaces X and Y, the compact-open topology, weak- or CO-topology, on ¢°(X,Y)
is given by the sub-base {CO(K,V): K C X compact, V C Y open} where

COK,V):={fe%"(X,Y): f(K)CV}.

The compact-open topology on & = T'°(M, E) is the topology as a subspace of
€°(M, E). We denote CO¢ (K, V) := CO(K,V)NE.

Definition 4.2.7 (WO-topology, following Kriegl and Michor [51]). Given two topo-
logical spaces X and Y, the Whitney-open topology, strong- or WO-topology, on
¢°(X,Y) is given by the base {WO(V): V C Y open} where WO(V) := {f €
¢O(X,Y): f(X)Cc V]

The Whitney-open topology on &€ = I'*°(M, E) is the topology as a subspace of
€9(M, E). We denote WO¢ (V) :== WO(V)NE.

If X is compact, the two topologies agree, but in case it is not, the Whitney-open
topology is strictly finer than the compact-open one (this result can be found in the
book by Kriegl and Michor, [51]).

The compact-open topology on € is not compatible with the j*°-topology on & x M,
to be precise we have the following badly behaved properties:

42
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Proposition 4.2.8. Let E — M be a smooth fiber bundle with non-empty space of
smooth sections €. Then

1. pre: ExM — € is not continuous for the j°°- and the CO-topologies respectively.

2.4d: EX M — & x M is not continuous for the j°°-topology on the left and the
product topology with the CO-topology on the right.

3. id: EX M — € x M is not open for the j°°-topology on the left and the product
topology with the CO-topology on the right.

The results 2 and 3 in the above proposition say that the j°°-topology and the
product topology on € x M with respect to the CO-topology on € are not comparable.

Proof.

1. Consider K C M containing at least two points z and z’ in some trivializing open
set and V' C F not containing a whole connected component of the fiber along z’.
Take ¢ € CO¢ (K, V). Given any U C J>®E open such that (p,z) € (°°)71(U)
we can choose ¢’ with the same infinite jet at x as ¢, but with arbitrary value
at o/, even outside of V' (applying Whitney’s extension theorem in our setting,
Corollary [1.1.2). This shows that jS°¢’ € U but (¢, z) ¢ pre (COe(K,V)) since

@) ¢ V.

2. We can simply take CO¢ (K, V) C € such that prz'(CO¢(K,V)) is not open in
& X M in the j*°-topology and consider the open set COg(K,V) x M in the
product topology on the right. It is such that the preimage along the identity is
precisely prgl(C’Og (K, V)) which is not open in the j*°-topology.

3. Fix a point e in E such that there exists a global section passing through that
point. Given any neighborhoods of e and 7(e), we can find a local section passing
through e with arbitrarily high derivatives close enough to 7(e) taking values in
the given neighborhoods because of Whitney’s extension theorem in our setting
(Corollary £.1.2). This means that any open set in the product topology with
the C'O-topology on € x M contains elements with arbitrarily high jets close to
any given point. That shows that there are open sets for the j*°-topology which
are not open for the product with the CO-topology. |

The Whitney-open and the compact-open topology have, on the other side a very
interesting property: jet evaluations are open maps with respect to these topologies.
In some cases, it will be interesting to work with local maps defined on an open subset
W of &€ x M and to consider j°°(W) as a pro-finite smooth manifold. In the case in
which jet evaluations are open maps, j*(W) is an open submanifold of J*FE and thus
j°°(W) is indeed a pro-finite dimensional smooth manifold.

Proposition 4.2.9. Given a smooth fiber bundle E — M with smooth space of sections
&, the finite jet evaluations j*: Ex M — JFE are open with respect to the W O-topology
(and hence with respect to the CO-topology).

Proof. Given V C E open and U C M open, consider (¢,z) € WO (V) x U.
Consider a trivialization of the bundle around (z,¢(z)) which is fully contained in V'
(which is possible since ¢(z) € (M) C V). In that trivializing neighborhood we can
choose an open ball around the image of z which does not fill the image of the chart.
Now for any y in the ball, we can apply Whitney’s extension theorem in our setting
(Corollary to give rise to a smooth section ¢’ of E with any given k-th jet at y.
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4.3. CO®°°- and W O®°-topologies on &

This shows that j* is an open map. [ |

Proposition [.2.9 allows us to work with local maps defined on open subsets of
€ x M with respect to the product topology with the Whitney-open topology on € and
hence with respect to the compact-open topology as well.

Definition/Proposition 4.2.10 (Local map on an open subset). Let £ — M and
F — N be two smooth fiber bundles with spaces of smooth sections & and F endowed
with the Whitney-open topology. Let V and W be open subsets of € x M and F x N
respectively. A map f:VC Ex M — W C F x N is called local if it descends to a
pro-finite smooth map f*°: j°(V) — j<(W).

VeexM—sWcTFxN

Proof. The only necessary thing to check is that j°°(V) and j°°(W) are well de-
fined pro-finite dimensional manifolds. This is the case as a consequence of Proposition
4.2.9 ]

Definition 4.2.11 (Category of extended local manifolds). The category of extended
local manifolds elMfld has as objects Whitney-open open subsets of & x M where
E — M is a smooth fiber bundle with space of smooth sections £; and local maps in
the sense of Definition/Proposition as morphisms.

Remark 4.2.12. Observe that IMfld is a full subcategory of elMfld but not a faithful
one unless € is soft. This is not the end of the discussion about categories modeling
local maps: we will consider even a subcategory elMfld later when dealing with maps
preserving the Cartan distribution.

4.3 CO°- and WO®-topologies on &

In this section we introduce the CO> and WO -topologies on €. Local maps are con-
tinuous with respect to these topologies under certain hypothesis. The extra assumption
is that the map is a product where the second component is a continuous surjection,
namely f = f@ X fn: EXM — FX N and fn is continuous and surjective. The main
reference keeps being the book of Kriegl and Michor [51].

The j*°-topology on & x M, the compact Whitney-open and the compact-open
topologies on € are convenient to work with for our purposes as we have seen through
some results in previous section. On the other hand, they are not well behaved with
respect to the projection to the & factor (Proposition |4.2.8]).

Another point of view, the one followed in Kriegl and Michor [51], is that of con-
sidering initial topologies on & with respect to the infinite jet prolongation:

J*: & — E°M,J®E)
v — %,

where ¢°(M, J*E) is endowed with some topology.
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Definition 4.3.1 (CO®°- and WO®-topologies). The initial topologies on & with
respect to J°° coming from the compact-open- and the Whitney-open-topologies on
¢ (M, J>®E) are called the CO>- and the W O>-topologies respectively.

The topologies such that the evaluation ev: €°(M, J*FE) x M — J*FE is contin-
uous are interesting for us. In that way j*° =evo (J* xidp): € x M — J*E would
be continuous with respect to that new topology.

Proposition 4.3.2. Let X and Y be two topological spaces. If X is Hausdorff and
locally compact, then ev: €°(X,Y) x X — Y s continuous with respect to the CO-
topology and the W O-topologies on €°(X,Y).

Corollary 4.3.3. Let E — M be a smooth fiber bundle with space of sections E. Then
1. j*: & x M — J*E is continuous for each k € NU {oo}.
2. pre: EXM — € and pry,: € x M — M are continuous and open maps.

Both statements hold with respect to either the WO - or the CO>-topologies.

Proof of Proposition m Take V' C Y open and consider a pair (f,z) €
ev (V) C ¢°(X,Y) x X. Since f is continuous, f~(V) is an open neighborhood
of x in X (observe that f(x) = ev(f,x) € V). Since X is Hausdorff and locally
compact, there is an open neighborhood U of x in X with compact closure U fully
contained in f~!(V). That means that U C f~1(V) and thus f(U) C V, and further
f € CO(U,V). We claim that the open neighborhood CO(U,V) x U of (f,x) is fully
contained in ev=}(V). Given (f',2') € CO(U,V) x U, 2’ € U C U holds, so that
ev(f,2') = f'(2') € f/(U) C V. This shows ev is continuous with respect to the
CO-topology, but since the WO-topology is finer, it also shows that it is continuous
with respect to that other topology. |

Proof of Corollary The second statement is immediate since we are
working with the product topology on € x M. For the first statement, we only need
to show it for k = oo since all the other cases follow from it (j* = 7% o would
be the composition of two continuous maps). But, following the argument above,
j° =evo(J*® xidys). The first map is continuous since the CO* and WO are the
initial topologies with respect to J°°. The evaluation map is continuous by Lemma
since M is Hausdorff and locally compact (it is a smooth manifold). [ |

Observe that the fact that j>°: &€ x M — J*°FE is continuous amounts to say that
the j°°-topology is weaker than the product topology on & x M with respect to the
CO>- or the WO®-topologies on €. Actually the topology is strictly weaker as we will
see in the next result. This means that, by working with the CO>°- and the WO>°-
topologies, we might be loosing j* being open in the soft sheaf case.

Proposition 4.3.4. The j*°-topology is strictly weaker than the product topology on
& x M with the CO®°- or the WO>-topologies on E.

Proof. The proof is very similar to the one of Proposition [{:2.8] we need to replace
the open subset in £ with an open subset in J°°F not containing all the connected
component of the fiber at ' and apply Whitney’s extension theorem in our setting
(Corollary . That shows that there are open sets in the product with the CO*°-
topology (and hence on the one with the WO>-topology) which are not open in the
j°-topology. [ |

The C'O®°- and the W O>°-topologies are the convenient ones to compare local maps
and continuous maps. We fix two smooth fiber bundles 7: £ — M and p: F — N with
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corresponding spaces of smooth sections € and F. We are going to relate local maps
and continuous maps under certain assumptions. These assumptions will be satisfied
in some cases in our future study, but not in all of them. There are weaker assumptions
in which locality implies continuity, but we will explore them with more detail when
working on the smooth structure on €. In that case we will have a different result
stating local implies smooth, and thus continuous.

Theorem 4.3.5. Let f = f5 X fn: EX M — F x N be a local map such that fn
is continuous and surjective. Then fy X fn is continuous with respect to the WO -
topologies on € and F.

Proof. Consider W C F x N open and (p,z) € f~}(W) C & x M. We are
going to construct an open neighborhood of (¢, ) with respect to the WO>°-topology,
fully contained in f~*(W). There exists V open in J>°F and U open in N such that
(fo (@), fn(z)) € (J)"L(WO(V)) x U € 'W. Consider f*: J*E — J*°F such that
f descends to. By Lemma we know that f°° is continuous and hence (f>°)~1(V)
is open in J®E. We claim that V := (J*)~1 (WO ((f>)"*(V))) x f5'(U) is the
desired open neighborhood. Using the previous arguments and the fact that fy is
continuous it follows that V is indeed open.

First observe that ¢ € (J>)~" (WO ((f*)~*(V))) if and only if j]?i{@,)fg'(’(/)) %
for every 2’ € M. This follows from locality: v € (J>)~ (WO ((f>)~(V))) if and
only if for each 2/ € M, J>®¢(z') = j&v € (f>°)~1(V) , and now

Jo € (F2)THV) = fX(50) €V = jF o) fr () € V.

Since fr(p) € (J*)"H(WO(V)) we conclude that ¢ € (J*)~H (WO ((f>°)~1(V)))
and it is clear that x € f5'(U). So, indeed V is a neighborhood of (¢, ). It remains
to show that it is in the preimage of 'W.

(J) L (WO ((£°)7 1 (V) x fR'U) =V C fEHW) <= f(V) CW =
= f5 ((J=)E (WO ((f*)71(V)))) x In(fNH(U)) € W.

From one side it is true that fy o f&l(U) C U and from the other side, using the
description above for elements of (J°)~L(WO((f>*)~1)(V)) we see that since 1 is in
(J)LHWO(((f>*)~1(V))), we get that j¥f5(¢) C V using the surjectivity of fy.
This shows that f is a local map. ]

We want to emphasize that the previous proof does not intrinsically depend on
any features of the infinite jet bundles. The same arguments pulls through when the
situation is as follows: we consider always W O-topologies on the space of smooth
functions, & is topologized via G;Jl where gp: € x M — X and Gg: &€ — ¢°(M, X)
maps ¢ to the map sending x € M to gg(x,p), F is topologized similarly for some
map gr: F X N — Y and f descends to a continuous map f: X — Y commuting with
gr and gp. In that case f will also be continuous.

Back into our setting, relevant choices for gg and gp are finite jet bundles evalua-
tions such as j% and ji. In that case, the topology on € induced by the WO-topology
on ¢°(M, J*E) will be called the WOF-topology. (The same goes for the CO¥-topology
on €.) Observe that the WO>-topology is finer that any WO*-topologies on €.

Corollary 4.3.6. Let f = fo9 X fn: EX M — F x N be a map such that fn is
continuous and surjective. If f descends to a smooth map f': J*E — J'F then fsx fn
is continuous with respect to the WO"-topology on & and the WO'-topology on F. It is
also continuous with respect to the WO -topology on & and the W O'-topology on F.
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Remark 4.3.7. In the case in which M is compact, the W O-topologies and the C'O-
topologies agree on the spaces ¢°(M,Y) for any topological space Y. In particular, un-
der the assumption M compact, local maps fy x fy —with fn a continuous surjection—
are continuous with respect to the CO*-topology.

We want to include a result that can be found in the book of Kriegl and Michor
[51] which is a particular case of Theorem due to Example

Proposition 4.3.8 (Kriegl and Michor [51]). Let E,F — M be two smooth fiber
bundles over the same manifold. If g: E — F is a smooth bundle morphism (over the
identity), then the push-forward g.: &€ — F is continuous with respect to the WO>-
topologies.

We want to finish this section, and hence this chapter, with some concluding re-
marks about the different topologies on &:

Remark 4.3.9. We will explore in the following chapters, smooth structures on €. The
topologies arising from those structures will be finer than the WO>-topology on €.
We will be able to show that under certain assumptions, more general than the ones
in Theorem that locality implies smoothness and thus continuity.

Remark 4.3.10. It is possible to explore the relations between the different topologies in
€ in a much more detailed way. That can be found certainly in the literature, showing
the following chain of topologies

CoO*1ccok cwor c wort! ¢ lim wokce— lim (€°(M,J*E),WO) c WO™
S €

In the case in which M is compact all the limits agree and so do the WOF- and
CO*-topologies for finite and infinite k.
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Chapter 5

Smoothness and locality on
EX M

The space of compactly supported smooth sections of a smooth vector bundle is a
Fréchet space. For a general smooth fiber bundle, the space of smooth sections (not
only the compactly supported ones, but all smooth sections) is a Fréchet manifold
modeled in Fréchet spaces of the previous kind with local transition maps.

The locally convex topology agrees with the WO -topology in the case of a com-
pact base. The topologies on £ coming from the Fréchet manifold structure in a general
fiber bundle are finer than the WO-topology.

Smooth maps involving the space of sections can be characterized in terms of smooth
maps involving only finite dimensional manifolds. The infinite jet evaluations are
smooth and hence continuous with respect to the locally convex topology.

The comparison between local maps and smooth maps cannot be done in full gen-
erality, since none of the two notions is weaker than the other. On the other hand
there is a stronger notion of locality, insularity, for which insular maps are smooth.

This chapter collects different Fréchet smooth structures on the space of smooth
sections of a smooth fiber bundle. It gives conditions under which maps involving such
spaces are smooth and, in particular, includes the proof that jet evaluations are smooth.
The chapter also addresses the topic of comparing local maps and smooth maps, stating
that insular maps are smooth. The references in this chapter are Hamilton ,@/ and
Kriegl and Michor .

5.1 Smooth structures on &

This section is a review about Fréchet manifold structures on €. It is explained in full
detail working from the easiest case of a vector bundle over a compact manifold to the
general case of a fiber bundle over a non-compact base. It includes remarks about the
comparison between the Fréchet manifold topology and the topologies investigated in
the previous chapter. Besides reviewing the main references, we prove that the charts
defining the Fréchet manifold structure on € are local. The main references in this
chapter are Hamilton ,@/ and Kriegl and Michor .

The space of smooth sections of a smooth vector bundle V' — M is a vector space
and hence we can ask ourselves whether or not it can be given the structure of a Fréchet
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Chapter 5. Smoothness and locality on € X M

space. In the case of a general smooth fiber bundle E — M, the strategy is to make
use of T'F to give local charts and induce a Fréchet manifold structure on €.

As in the study about the topological structure on &, the case in which the base
manifold is compact is easier, since many of the possible Fréchet structures on € agree.
The results about the Fréchet manifold structures on spaces of smooth sections of a
smooth bundle over a compact base is original to Hamilton [36] and it studied in full
generality by Kriegl and Michor [51]:

Definition/Proposition 5.1.1. Let V' — M be a smooth fiber bundle. Let {K,},en
be an exhaustion by compact sets of M, (it can be taken to be countable). For each
p, let {UP},ecar be a finite atlas of K, such that the closure of each open set is inside
some trivializing neighborhood for the bundle. Consider a Riemannian metric on M.
Then, the space of compactly supported sections of the bundle, V. is a Fréchet space
with seminorms {| - | ¢}p,qen defined by:

q
[6lp.q = Z max (Z |Dl<pg‘(sc)|> for all p € V,,

, eu? —
ag AP ae{l,.x..,rank(\/)} =0
where ¢¢ is the a-th component of the trivialization of ¢ using the charts indexed by a
and D* denotes the iterative total derivative of order i. The structure does not depend
on the compact exhaustion chosen nor on the Riemannian structure.

For the proof, we refer to the work of Kriegl and Michor [51, p. 30.4]. The only
subtlety is to observe that the topology is independent of the compact exhaustion cho-
sen, otherwise the proof follows from the aforementioned result.

Proof of the independence of the compact exhaustion. Consider two com-
pact exhaustions of M, {K},en and {K},en. Given any p € N there exists p’ € N
such that K, C K, so that if for some ¢ > 0 and some ¢,7 € V we have that

lo — Y|,y < € then |p — 4|, , < € and also holds. Hence v} - plea) showing
that the topology indexed by the K'’s is finer that the one indexed by the K’s. The
same argument exchanging the exhaustions shows the independence on the exhaustion
chosen. |

Remark 5.1.2. Kriegl and Michor [51] consider the more general case in which the fiber
is not finite dimensional. In that case, the space of smooth sections over a compact
base is not a locally convex space. They have to pass to the bornological topology (the
finest locally convex topology with the same bounded sets as the topology of the space
of sections).

In the case in which the fiber is finite dimensional that problem is no longer there
(see the original result by Hamilton [36]). They construct a convenient vector space
structure on the space of compactly supported smooth sections that is the one here
presented for our particular case. The only difference being that there is no need for
bornologification.

On top of that, they consider base spaces which might not be o-compact (as it is
the case of smooth manifolds), since they consider manifolds modeled in more general
vector spaces. This has as a consequence that the resulting space is actually Fréchet.

Still, this does not equip the total space of sections with a Fréchet structure. The
original result for the compact case, which replaces compactly supported sections with
sections, is due to Hamilton [36]. We mention it here as a corollary of the previous
proposition. For a more modern approach of the proof of this corollary than the one
by Hamilton we refer to Sharko [74].
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Corollary 5.1.3 (Hamilton, |36, p. I. 1.1.5]). Let V. — K be a smooth fiber bundle.
Let {Uy}aca be a finite atlas of K such that the closure of each open set is inside some
trivializing neighborhood for the bundle. Consider a Riemannian metric on K. The
space of sections V is a Fréchet space with seminorms {| - |q}qengiven by:

q
lolg = Z néz(%TX (Z ‘D%pé“(ac)‘) forall p €V,

zelU, —
€A et rank(V)} N0
The structure does not depend on the Riemannian metric.

Now we are ready to understand the Fréchet manifold structure on spaces of smooth
sections. For general fiber bundles, the space of sections is no longer a vector space,
hence it cannot be given the structure of a Fréchet space. It can, nevertheless, be given
the structure of a Fréchet manifold. For simplicity in the argument, consider £ — K
a smooth fiber bundle over a compact manifold. Fixing a Riemannian metric on F
we can choose e = (exp,prg): TE — E x E a local diffeomorphism around the zero

section of T'E and the diagonal on E x E. Denote it by e: V' 5 U. Given any section
@ € & we consider the pullback bundle p*TE over K. Define the following two sets:

U, o= {4 € & (p,4)(K) C U} and
Vo i={y eI (K,¢"TE): prygpoy(K) C V}.

pProgp oY

The two sets are open with respect to the WO-topologies on € and on I'** (K, p*TE)
respectively. Moreover, since the WO-topology is weaker than the WO°-topology
on I'°(K,¢*TFE), V, is also open with respect to the locally convex topology as a
consequence of Proposition The map

Afoz U, — Vg,

b= e (e (p(@), ¢(@))]- (5.1)

happens to be a homeomorphism (as we will see in Lemma [5.1.5), and it is used to
endow & with the structure of a Fréchet manifold.

Proposition 5.1.4 (Hamilton, [36, p. I. 4.1.2]). Let E — K be a smooth fiber bundle
over a compact manifold. The smooth space of sections € is a Fréchet manifold modeled
on T'°°(K,p*TE) for every ¢ € & with charts given by Ag, as in equation . The
structure is independent of the Riemannian metric chosen for E.

We refer to Hamilton [36] or to the more general version by Kriegl and Michor [51]
for the details, especially concerning the smoothness of the transition functions and
the independence on the Riemannian metric. Nevertheless, we want to say something
about the charts: Af, X idx are not only homeomorphisms, but also local maps. This
is very interesting from our point of view.
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Lemma 5.1.5. Let w: E — K be a smooth fiber bundle over a compact manifold. The
charts A; X idg as in equation are local and homeomorphisms.
Proof. A{ xidk descends to a map between the 0-jet spaces of both bundles:

A; X idK

U, x K Vo x K

.0 -0
J J

(inc, p o )

ExE—— o*TE

Observe that the map indeed covers the identity on K since on the lower row we
have the composition of e (a bundle map) with (inc, ¢ o 7) which is also a bundle map
over the identity.

We can use the prolongations of e o (inc, ¢ o 7) as in Definition to construct
a pro-finite smooth map between the infinite jet bundles that Af, x idx descends to,
showing that it is a local map:

A X idg
Uy, x K Vo X K
J=E 7% (e o (inc, p o m)) g0 ((p*TE)
eeem pwp o' TE

Since the map is local, it is continuous by Theorem The same arguments
apply to show that (A%)~' x idg is local and continuous. This only shows that the
charts are homeomorphisms with respect to the WO -topologies, but as we will see in
Proposition [5.1.11] those topologies agree with the locally convex ones, hence proving
the result. ]

In the general fiber case over a non-compact base, it is possible to use the same
technique as in Definition/Proposition to define a smooth manifold structure on
€. The first step is to refine the WO>-topology on € to include for all ¢ € € the set:

Uep ={tb € E&: (p,0)(M) CU and ¢ |ps K =¥ |0 ~ K for K C M compact}.

Fix a Riemannian metric on F and as before, and let e: V = U be the local
diffeomorphism around the zero section of TE and the diagonal on F x E. Given any
section ¢ € & we consider the pullback bundle p*TE over M. The charts A are
as in equation [5.1] the only difference from before is that we have to take compactly
supported sections instead of smooth sections in the pullback bundle. U, is then
homeomorphic to:

Veo i={y €T (M,p"TE): prpgoy(M) C V}.

Proposition 5.1.6 (Michor [60]). Let E — M be a smooth fiber bundle. The smooth
space of sections & is a Fréchet manifold modeled on T'° (M, o*TE) for every ¢ € &
with charts given by

o= [z (e (p(@),9(2)))] (5.2)



5.1. Smooth structures on &

The structure is independent of the Riemannian metric chosen for E.

Remark 5.1.7. Kriegl and Michor Theorem 42.1] consider the same charts, but
they define the topological structure a posteriori, via the trivializations. They use the
final topology with respect to all smooth curves in I'°(M, ¢*TE). As pointed out
in Remark in our case I'°(M, o*TE) is a Fréchet space, and hence the locally
convex topology coincides with the final topology with respect to all smooth curves
(see the book by Kriegl and Michor,[51] p. 4.11]).

It is clear that the arguments in the proof of Lemma [5.1.5] still hold in this more
general setting, we have:

Lemma 5.1.8. Let m: E — M be a smooth fiber bundle over. The charts AZ X idpy
from equation are local and homeomorphisms.

5.1.1 Locally convex topology on &

In order to compare the Fréchet manifold topology to the ones in Chapter [4 we need to
make a comment about the Fréchet manifold charts on J*°E. We have used a family
of charts on Definition but a different one will be more useful this time around:
one in which the seminorms on the target Fréchet space are similar to the ones in
Definition /Proposition for V.. This is exactly the approach by Kriegl and Michor

1.

Remark 5.1.9. Kriegl and Michor consider an atlas on J*°FE given by the family
{7 (Vo) }aea where {V,}aca is a cover of M by trivial neighborhoods. Each of the
7} (Va) are trivialized using charts to the space R™ & [Trenuioy Linfym (R™,R¢) given
by the Taylor series, where m is the dimension of M and e is the rank of E. That
space is a sequential pro-finite normed space, hence a Fréchet space by Lemma [1.3.1]
where the seminorms are given as follows (see Lewis for an explicit exposition of

this matter):

x| ma sup ( o
= X -
n .je{17...n}veRm,)|v‘:1 8(@). .. ,U)

) where x = [(¢,2)]

x

Making use of Lemma[l.3.4] one proves that the transition functions are smooth, hence
J°F is also a Fréchet space with respect to that atlas.

Lemma 5.1.10. The locally convex topologies coming from the seminorms in Remark

and in Definition [I.57 agree.

Proof. Consider a cover of E by trivial neighborhoods {U,}.c4 where each U, is
provided with a trivialization to 7(U,) x F for F the fiber of the bundle. Given such a
cover, we get a cover of M by trivial neighborhoods V, = 7(U,) as in Definition [1.3.7]
The induced covers on J*®E given by Definition with respect to the U,’s and by
Remark with respect to the V,’s are the same since

(%) (U.) = (%) (71 (Va)) = 7 (Vi) for all a € A.

Observe that the later topology was given by the charts u$° taking values in R* (and
the components were given by z¢, u®, u$). For any n € NU {0}, the fiber over 7(U,)
of that chart is precisely given by [[,cq0 .y Linfym(Rm,Re) and we could hence
consider that operator norm; showing that indeed in every chart the locally convex

topologies agree. [ |

With this result in hand, we are able to compare the locally convex topology on V
and the WO®-topology for the case of a compact base:
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Chapter 5. Smoothness and locality on € X M

Proposition 5.1.11. Let V — K be a smooth vector bundle over a compact manifold
K with space of smooth sections denoted by V. The locally convex topology on 'V from
Deﬁnition/Proposition agrees with the WO -topology (and hence with the CO>-
topology since K is compact).

We postpone the proof of this fact to the end of the section. First we want to gather
similar results for the other Fréchet structures developed for € in this section. First of
all, using the locality of the local charts, we can prove the analog of Proposition [5.1.11]
to fiber bundles over a compact base:

Corollary 5.1.12. Let E — K be a smooth fiber bundle over a compact manifold K
with space of smooth sections denoted by €. The locally convex topology on & from
Proposition agrees with the WO -topology (and hence with the CO> -topology
since K is compact).

Proof. For each ¢ € &, the charts Af, are local as seen in Lemma 5.1.5] in particu-
lar they are covered by a continuous map between the infinite jet bundles. This shows
that the CO®°-open sets in & are mapped to CO>-open sets in I'*° (K, o*TE). Those
are open with respect to the locally convex topology as seen in Proposition [5.1.11] and
are hence the open sets in the Fréchet manifold topology on €. |

In the non-compact base, the topology, by construction, is strictly larger than the
WO>-topology (this is pointed out by Kriegl and Michor [51]). This means that all
the structure maps out of &€ x M are still continuous: &€ x M — M, &€ x M — &,
EXM — J®E, and & x M — J*E for finite k are all continuous. On the other hand,
Proposition does not hold in the non-compact base generality. We finish this
section with the proof of that result in the case of a compact base and a vector bundle:

Proof of Proposition Let W C V be open with respect to the Fréchet
space topology on 'V from Definition /Proposition We are going to show that W is
open with respect to the WO>-topology on V (which agrees with the CO>-topology
since K is compact). In order to do so, we are going to find a WO -open neighborhood
of every point in W fully contained in W. We fix {U, }sc a finite cover of K by trivial
neighborhoods as in Definition /Proposition

Let ¢ € W, there exist I = (i,--- ,4|) a finite multi-index and & > 0 such that
¢ € Ul(p) € W where U!(¢) denotes the basic local neighborhood of ¢ with respect
to the seminorms from Definition /Proposition in the notation of Definition|A.2.2
Consider for every n < |I| the following set

= U U o o).

a€A zcU,

where af denotes the local basic neighborhood on J*°V around j°¢ given by the
Fréchet space structure on 7! (U,) defined in Remark [5.1.9] - Clearly, W™ is open with
respect to the topology 1nduced by that Fréchet manifold structure, and hence with
respect to the limit topology as a consequence of the comments after that remark and
after Definition Since [ is finite W := ﬂglzl W™ is also open with respect to the
limit topology on J*V.

Consider ¢ € (J®)™" (WO(W )) by a direct calculation, we will see that |p—1|, <
e for all n < |I]. Thus ¢ € (J®)" (WO(W)) C Ul(p) € W showing that W is open
with respect to the WO -topology on €. Explicitly

3

’Di@ - 1/’)3(55” < m
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foralla € A, z € U,, a € {1,...,rank(V)}, i € {0,--- ,n} and n < |I|. Using an
appropriate norm on the space of matrices (the same argument as in Remark [5.1.9)),
the previous result means that

Z |D' (¢ — 9)%(z)| < ﬁ Va € AVx € U,Va € {1,...,rank(V)}Vn < |1|;
i=0

n n
‘ g
th Dilo— ) & .