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Abstract

We investigate variational properties of integral functionals defined on spaces of measures satisfying

a general PDE constraint. The study of these properties is motivated by the following three problems:

existence of solutions, optimality conditions of variational solutions, and regularity of optimal design

problems. After the introduction, each chapter of this dissertation corresponds to one of the topics

listed above.

The first chapter is introductory, we state the main results of this work and discuss how their

different subjects relate to each other. In this chapter we also discuss the historical background in

which our work originated.

The second chapter, on the study of existence, focuses in providing sufficient and necessary con-

ditions for the weak* lower semicontinuity of a general class of integral functionals defined for PDE

constrained spaces of measures. We provide a characterization based on recent developments on the

structure of PDE-constrained measures and their relation to a convexity class (quasiconvexity); our

methods rely on blow-up techniques, rigidity arguments, and the study of generalized Young mea-

sures.

The second chapter is dedicated to the analysis and derivation of saddle-point conditions of mini-

mizers of convex integral functionals defined on spaces of PDE-constrained measures (even in higher

generality than in the first chapter). The analysis is carried out by means of convex analysis and

duality methods.

Lastly, the fourth chapter discusses the regularity properties of a general model in optimal design.

Our variational model involves a Dirichlet energy term (defined for a general class of elliptic opera-

tors) and a perimeter term (often associated to the design). In this work, we use Gamma-convergence

techniques and derive a monotonicity formula to show a standard lower bound on the density of the

perimeter of optimal designs. The conclusion of the results then follows from standard geometric

measure theory arguments.



In memoriam
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To my dear family
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1 Introduction

Three of the Hilbert’s famous “Mathematische Probleme”, problems 19th, 20th, and 23rd, discuss

the study of existence, uniqueness, and regularity properties of solutions to variational problems.1

Hilbert’s questions cemented the foundations of the modern variational theory of integral functionals

which was widely developed throughout the 20th century and continue to raise interest until today.

While the better part of the research conducted in this period has been devoted to integrals defined

on gradients — this comprises the pioneering work of Morrey [56] on the theory of existence, and

the methods of De Giorgi [27] and Nash [64] which constitute a beautiful answer to Hilbert’s 20th

problem on the regularity of solutions, the evident variety of applications in different areas of physics,

mathematics, economy, biology and other engineering-related sciences have provided continual mo-

tivation to study differential structures other than the gradient structure. In this general setting, Murat

and Tartar [59–61, 73, 74] introduced the theory of compensated compactness which develops in the

context of A -free fields.

This dissertation focuses in a similar setting, the variational theory of integral functionals defined

on functions (or measures) satisfying a general PDE constraint; here, of course, by variational theory

we mean existence, conditions of optimality, and regularity of variational solutions.

Due to the amount of material to be presented in this work, we shall postpone precise definitions

and complete versions of the results to the next chapters.

1.1 Calculus of Variations in the A -free setting

Since its inception, a good part of the variational theory of the calculus of variations has focused in

the understanding of functionals of the the form

u 7→
ˆ

Ω

f (x,∇u(x)) dx, where u belongs to a class of functions U .

The systematic study of variational integrals defined on gradients, with a few exceptions, has been

successfully developed over the past centuries. Nowadays we have established methods and charac-

terizations — depending on the behavior of integrand f and the class U — which predict the exis-

tence of a minimizers, which frequently possess higher regularity properties than the ones originally

prescribed by U .

In spite of the seemingly well-developed integral theory defined on gradients, we know less when

1Originally, presented by D. Hilbert in the International Congress of Mathematicians which took place in Paris, 1900.
Later translated and published in the english language in [40]
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1 Introduction

it comes to understanding the integral theory for more general PDE structures. We briefly recall that

for a sufficiently regular vector field v : Ω⊂ Rd → Rd ,

curlv = 0 ⇔ v = ∇u for some u : Ω→ R,

where

curlv :=
(

∂v j

∂xi
− ∂vi

∂x j

)
i j
= 0, 1≤ i, j ≤ d.

The need for a well-established variational theory in a more general setting is motivated by the wide

variety of physical models arising from more general linear PDE constraints than curlv = 0. This is

the case in continuum mechanics, electromagnetism, linear elasticity, linear plate theory models, and

various low-volume fraction optimal design problems, just to name a few.

From a variational viewpoint, a sufficiently general and physically relevant problem is the mini-

mization of integral functionals of the form

v 7→ I f [v] ≡
ˆ

Ω

f (x,v(x)) dx, defined in a class of functions U , (1.1)

whose elements v : Ω⊂ Rd → RN satisfy a PDE constraint of the type

A v = ∑
|α|≤k

Aα∂
αv = 0, in the sense of distributions. (1.2)

Here, we assume that A satisfies Murat’s constant rank property — its principal symbol has constant

rank as a linear operator when evaluated in Sd−1.

In this thesis we address the questions of existence, optimality and regularity in the setting (1.1)-

(1.2) as follows:

Chapter 1. We gather and discuss new developments on the existence theory of the minimization

of (1.1) under the PDE constraint (1.2) for the unsolved case when f : Ω→ [0,∞) has uniform

linear growth. We focus on the lower semicontinuity properties of I f and provide a characteri-

zation of its relaxation on a subspace of measures where (1.1)-(1.2) is a well-posed problem.

Chapter 2. We study the sufficient and necessary optimality conditions for minimizers of (1.1)-(1.2)

when f has linear-growth and is convex in its second argument. Our techniques involve convex

analysis and duality methods.

Chapter 3. We study a general class of optimal design problems — including a perimeter penaliza-

tion — which are related to the minimization of (1.1)-(1.2) when f is a “double-well energy”

with quadratic growth. Our results extend well-known partial regularity results for the optimal

structures of linear conductivity models to models involving general elliptic systems.

8



1.2 Theory of existence

1.2 Theory of existence

Let Ω ⊂ Rd be an open set and let f : Ω→ [0,∞) be a continuous integrand with linear growth at

infinity, that is, there exists a positive real number M such that M−1|A| ≤ f (x,A)≤M(1+ |A|) for all

(x,A) ∈Ω×RN . We focus on the following variational problem:

Minimize I f in the space kerA :=
{

v ∈ L1(Ω;RN) : A v = 0
}
.

This minimization problem is, in general, not well-posed in the sense that minimizers might fail

to exist. Concretely, existence by the direct method relies on finding a suitable topology on kerA

for which minimizing sequences are compact and the functional I f is lower semicontinuous.2 In a

nutshell, one aims to find a minimizing sequence (v j) ⊂ kerA which converges (in some topology

τ) to a limit v∞ ∈ kerA , to subsequently apply the lower semicontinuity of I f (also with respect to τ)

from which it follows that v∞ is a minimizer.

The task of choosing the aforementioned topology can be thought of as a competition between the

compactness and continuity properties. The vital point is that, in our setting, kerA might fail to be

closed for the relevant pre-compact topologies, which in the content of the discussion above means

that the candidate minimizer v∞ might not belong to the admissible class kerA . To better portray the

difficulties arising from the application of the direct method over L1 spaces, let us take a minimizing

sequence (v j), i.e., such that

I f [v j] → inf
{ˆ

Ω

f (x,v(x)) dx : v ∈ kerA
}
.

Compactness by relaxation: Under standard coercivity conditions on the integrand (e.g., f (A) ≥
M−1|A|), it is easy to check that sup j ‖v j‖L1(Ω) < ∞. However, since L1 spaces are not reflexive,

the sequence (v j) might fail to be pre-compact for the weak L1 topology — unless, of course, the se-

quence (|v j|) is equi-integrable. For this reason we cannot expect that v j ⇀ v for some v∈ L1(Ω;RN).

The usual solution is to extend I f to a (lower semicontinuous) functional I f defined on a larger class

U where minimizing sequences are compact — thus, minimizers can be extracted from minimiz-

ing sequences. This procedure is known as relaxation. A priori, and in this general setting, there

might not be a unique way to relax the problem. In this case it suffices to ignore the differential con-

straint. We observe that minimizing sequences (v j) are compact when considering each v j as a signed

vector-valued measure via the embedding L1(Ω;RN)
c
↪→M (Ω;RN)∼= (C0(Ω;RN))∗ : v 7→ vL d Ω.

Henceforth, the relaxed minimization problem reads

Minimize I f among Radon measures in kerM A :=
{

µ ∈M (Ω;RN) : A µ = 0
}
.

2While the classical theory concerned mostly the discrimination of (already existing) extremal solutions, the so-called
direct methods introduced by Hilbert, Lebesgue, and Tonelli provided a new way to study the coveted existence of
solutions.
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1 Introduction

It turns out, as will be motivated in the next subsection, that the extended functional I f takes the form

I f [µ] ≡
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµ

d|µs|
(x)
)

d|µs|(x), µ ∈ kerM A ,

where, here and in what follows,

f ∞(x,A) := lim
x′→x
A′→A
t→∞

f (x′, tA′)
t

, x ∈Ω,A ∈ RN ,

is the strong recession function of f , and where for a Radon measure µ , we write µ = µaL d +

µs to denote its Lebesgue–Radon–Nikodým decomposition with respect to L d , the d-dimensional

Lebesgue measure.

Lower semicontinuity: If I f is lower semicontinuous on weak* convergent A -free sequences of

measures, then I f [µ]≤ lim j→∞ I f [v j dL d ] = inf I f for every weak* limit µ of a minimizing sequence

(v j), whence it follows that µ is a solution of the relaxed minimization problem. This will, however,

fail for general integrands; we shall dedicate the rest of this section to further analysis on the lower

semicontinuity properties of I f .

While the lack of weak-compactness on L1-bounded sets corresponds to the concentration of mea-

sure, the lower semicontinuity of I f extends to the scenarios where both concentration and oscillation

effects might occur.

Problem 1. Is there a generic characterization of the integrand f : Ω×RN → [0,∞), that depends

solely on the operator A , and which is equivalent to the sequential weak* lower semicontinuity of

I f when restricted to A -free sequences of measures? That is, can we characterize those integrands

f : Ω×RN → R for which

lim
j→∞

I f [µ j]≥ I f [µ],

for all µ j,µ ∈M (Ω;RN) such that µ j
∗
⇀ µ and A µ j = 0.

1.2.1 The relaxation and the Young measure approach

In several minimization problems it has been observed that optimal designs tend to develop fine oscil-

lations. With the aim of quantifying oscillation effects of weakly convergent sequences in Lp spaces,

L. C. Young introduced the so-called Young measures [76–78].3 In this framework one speaks about

Young measures generated by weakly convergent sequences. Later, the theory of Young measures

was extended to the framework of generalized Young measures [3, 32], which was introduced to

capture both oscillation and concentration effects.

Basically, a (generalized) Young measure generated by a uniformly bounded sequence (v j) ⊂

3Young measures were first introduced under the name of generalized curves.
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1.2 Theory of existence

L1(Ω;RN) is a triple ν = (νx,λν ,ν
∞
x )x∈Ω

where for each x ∈Ω,

νx ∈ P(RN) is a probability measure on RN ,

λν ∈ M+(Ω) is a positive Radon measure on Ω,

ν
∞
x ∈ P(SN−1) is a probability measure on SN−1,

and for which the limit representation (in the form a pairing)

ˆ
Ω

f (x,v j) dx→
〈〈

f ,ν
〉〉

:=
ˆ

Ω

(ˆ
RN

f (x,A) dνx(A)
)

︸ ︷︷ ︸
oscillatory effects

dx+
ˆ

Ω

(ˆ
SN−1

f ∞(x,A) dν
∞
x (A)

)
︸ ︷︷ ︸

concentration of measure

dλν(x),

holds for all continuous f : Ω×RN → R such that the strong recession function f ∞ exists and is also

continuous.

Moreover, there is a natural way to identify a Radon measure with an elementary Young measure

by letting

µ 7→ δ [µ] =

(
δµa(x), |µs|,δ dµ

d|µs| (x)

)
.

Formal derivation of I f . It turns out, as one could already deduce in the form of an ansatz, that the

weak* lower semicontinuity of the relaxation of I f is directly related to the weak* lower semiconti-

nuity properties of the functional

I f [µ] ≡
〈〈

f ,δ [µ]
〉〉

=

ˆ
Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµ

d|µs|
(x)
)

d|µs|(x), µ ∈ kerM A .

Let us turn back once again to a weak* convergent sequence (v j) ⊂ kerA , v jL d Ω
∗
⇀ µ . By an

additional compactness argument on the space of Young measures, we may further assume without

loss of generality that (v j) generates a Young measure ν ∈Y(Ω;RN). In particular I f [v j] →
〈〈

f ,ν
〉〉

,

so that Problem 1 reduces to following problem:

Problem 2. Characterize those continuous integrands f : Ω×RN → [0,∞), with continuous reces-

sion function f ∞, for which the inequality

〈〈
f ,ν
〉〉
≥
〈〈

f ,δ [µ]
〉〉

holds for all (generalized) Young measures ν satisfying the following properties:

1. there exists a sequence (v j)⊂ kerA which generates the Young measure ν , and

2. the barycenter of ν , defined as [ν ] := w∗-lim j v j, coincides with the measure µ ∈M (Ω;RN).

Actually, since lower semicontinuity is a local property, it is possible to further split the inequality

above into a more precise form by requiring the following Jensen-type inequalities to hold:

11



1 Introduction

1. at regular points,

f
(〈

idRN ,νx
〉
+
〈
idRN ,ν∞

x
〉 dλν

dL d (x)︸ ︷︷ ︸
= dµ

dL d (x)

)
≤
〈

f (x, q),νx
〉
+
〈

f ∞(x, q),ν∞
x
〉 dλν

dL d (x), (1.3)

2. and, at singular points,

f ∞
(〈

idRN ,ν∞
x
〉︸ ︷︷ ︸

= dµ

dλ s
ν
(x)

)
≤
〈

f ∞(x, q),ν∞
x
〉
. (1.4)

for all Young measures ν which are generated by A -free sequences.

1.2.2 A weak notion of convexity

The formal derivation carried out in the lines above tells us that the lower semicontinuity of integral

functionals in the A -free setting, where both oscillation and concentration of measure is allowed,

entails a weak form of convexity on the integrand f (x, q).
By Jensen’s definition of convexity, which states that a function h : RN → R is convex if

ˆ
Ω

h(A) dκ(A)≥ f (A0)

for all probability measures κ ∈P(Ω;RN) with center of mass
´

Ω
A dκ = A0, it would seem reason-

able to expect I f to be weak* lower semicontinuous (in the sense of measures, on kerM A ) if and

only if

f (x, q) is convex for all x ∈Ω.

However, this first guess is somehow misleading. The subtlety here is the additional differential

rigidity which A -free sequences possess. Such questions were first considered by Murat and Tar-

tar [59–61, 73, 74] in their Compensated compactness treatise, which, a grosso modo, states that

oscillation effects may be significantly amortized by the rigidity of a differential constraint. In some

sense, one expects f (x, q) to be convex along directions where A -free sequences may oscillate and/or

concentrate, and remain non-convex along all other directions. Therefore, the characterization of the

functionals I f which are weak* lower semicontinuous passes through a certain weaker notion of “A -

quasiconvexity” of f (x, q) and f ∞(x, q) (compare Jensen’s classical definition of convexity with the

less restrictive inequalities (1.3)-(1.4)).

In the next lines we briefly discuss the notion A -quasiconvexity, its origins, and its role as the

natural answer to Problems 1 and 2.
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1.2 Theory of existence

The case of gradients

Almost 70 years ago, due to the great success of the direct method, mathematicians dedicated their

efforts to investigate certain integrals of the form

u 7→
ˆ

Ω

f (∇u) dx, where u : Ω→ Rm is a Lipschitz function,

and their lower semicontinuity properties under the uniform convergence of Lipschitz functions

(weak* convergence in W1,∞(Ω;Rm)). The first successful attempt to establish necessary and suf-

ficient conditions for the lower semicontinuity of such functionals was proposed by Morrey [56]

through what he defined as a “quasi-convexity” condition on the behavior of f . Specifically, under

standard p-growth assumptions, Morrey showed that f is quasiconvex if and only if

ˆ
Ω

f (∇u) dx≤ liminf
j→∞

ˆ
Ω

f (∇u j) dx

for all weakly convergent sequences

u j ⇀ u in W1,p(Ω;Rm), such that (|∇u j|p) is equi-integrable.45

Here, we say that a function f : RN → R is quasiconvex if for every A ∈Mm×d ,

f (A)≤
ˆ

Q
f (A+∇ϕ(y)) dy for all ϕ ∈W1,∞

0 (Q;Rm),

where Q stands for the d-dimensional unit cube.6

This characterization covers the theory of existence for integrals defined on gradients under stan-

dard p-growth (with p > 1); see also [12] for the case of higher-order gradients. However, as we have

already discussed, it is far from satisfactory for a number of applications which involve the space

BV(Ω;Rm) of functions with bounded variation.7 Understanding the concentration effects of L1-

bounded sequences of gradients took a considerably longer time. It was not until the early 90’s that

Ambrosio & Dal Maso [5], and Fonseca & Müller [38] showed that Morrey’s quasiconvexity con-

dition would remain a necessary and sufficient condition for the lower semicontinuity of the relaxed

4The sequence (|∇u j|p) j is said to be equi-integrable if for every ε > 0 there exists δ > 0 such that

sup
j

(ˆ
Ω∩E
|∇u j|p dx

)
≤ ε, for all E ⊂Ω Borel with L d(E)≤ δ ;

this is, in turn, a way to prevent concentration of measure in weak* limits of (|∇u j|p).
5Acerbi and Fusco [1] showed that the equi-integrability of (|∇u j|p) can be dropped from the assumptions.
6Kinderlehrer and Pedregal [41] would show, almost 40 years after Morrey’s pioneering work, that the quasiconvexity of

f (x, q), in the super-linear case p > 1, is equivalent to the Jensen inequality (1.3) on gradient Young measures (Young
measures generated by sequences of gradients).

7The space of functions with bounded variation BV(Ω;Rm) is the space of integrable functions whose distributional
derivative is an Md×N -valued Radon measure, i.e., BV(Ω;Rm) :=

{
u ∈ L1(Ω;Rm) : Du ∈M (Ω;Md×m)

}
.
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1 Introduction

functional

u 7→
ˆ

Ω

f (∇u(x)) dx+
ˆ

Ω

f ∞

(
dDsu

d|Dsu|
(x)
)

d|Dsu|(x)︸ ︷︷ ︸
surface energy

,

with respect to the weak* convergence in BV(Ω;Rm); see also [51] for the case of unsigned inte-

grands.

The A -free setting

The study of Lp-weak lower semicontinuity of I f in the A -free framework (1.1)-(1.2), which corre-

sponds to the absence of concentration effects, is in and of itself a mathematically interesting subject

that requires a deeper understanding of the oscillatory behavior of Lp-weakly convergent A -free se-

quences. It was mostly developed in [39], where the decisive quasiconvexity would be replaced by its

natural generalization to A -free fields, the so-called A -quasiconvexity.

Let us recall from [25, 39] that a Borel function f : RN → R is called A -quasiconvex if the Jensen

type inequality

f (A)≤
ˆ

Q
f (A+w(y)) dy (1.5)

holds for all A ∈ RN and every Q-periodic w ∈ C∞(Q;RN) with

A w = 0 and
ˆ

Q
w(y) dy = 0.

Specifically, Theorems 3.6 and 3.7 in [39] provide the following characterization:

Theorem 1.1 (Fonseca & Müller ’99). Let 1≤ p<∞ and let f : Ω×RN→ [0,∞) be a Carathéodory

function. Further assume that f has p-growth at infinity. Then,

ˆ
Ω

f (x,v(x)) dx ≤ liminf
j→∞

ˆ
Ω

f (x,v j(x)) dx

for every sequence (vn)⊂ Lp(Ω;RN) such that v j ⇀ v in Lp(Ω;RN) and A v j→ 0 in W−k,p(Ω;RN),

if and only if f (x, q) is A k-quasiconvex for every x ∈Ω.8

In a similar fashion to the case of gradients, the above characterization renders a complete answer

to the existence problem of (1.1)-(1.2) in the case 1 < p < ∞ (a similar but not identical charac-

terization holds for p = ∞). Regarding the case when p = 1 (with respect to the weak* topology

of measures), substantial advances in the lower semicontinuity and relaxation theory were achieved

under the additional assumption that A is a first-order partial differential operator:

Theorem 1.2 (Baı́a, Chermisi, Matı́as & Santos ’13). Let A be a first-order and homogeneous

partial differential operator and let f : RN → R be an A -quasiconvex and Lipschitz continuous

integrand. Let (µ j) ⊂M (Ω;RN) be such that µ j
∗
⇀ µ ∈M (Ω;RN), A µ j → 0 in W−1,q

loc (Ω) for

8Here, A k := ∑|α|≤k Aα ∂ α is the principal part of A

14



1.2 Theory of existence

some q ∈ (1,d/(d−1)) and |µ j|
∗
⇀ Λ ∈M (Ω) with Λ(∂Ω) = 0. Then

I f [µ]≤ liminf
j→∞

I f [µ j].

Unfortunately, it is not clear whether similar techniques the ones applied in the proof of the theorem

above can be extended to operators of higher order.

New ideas: The case of symmetric gradients

Since the late seventies, there has been a lot of attention paid to linear elasticity models, which involve

the minimization of functionals of the form

u 7→
ˆ

Ω

f (x,E u(x)) dx, u ∈W1,1(Ω), (1.6)

where

E :=
1
2
(∇u+∇uT )

is the symmetrized gradient (or deformation tensor) of u.

The space BD(Ω) of functions of bounded deformation, introduced by Pierre-Marie Suquet [70]

(see also [53, 71]), is the space containing the integrable Rd-fields whose distributional symmetrized

derivative

Eu :=
1
2
(Du+DuT )

is a finite Radon measure, that is,

BD(Ω) =
{

u ∈ L1(Ω;Rd) : Eu ∈M (Ω;Md×d
sym )

}
.

Since Eu is a Radon measure, we may split Eu as

Eu =
dEu
dL d +Esu,

corresponding to its Lebesgue–Radon–Nikodým decomposition.

In particular, attention was given to the study of lower semicontinuity and relaxation properties of

functionals defined on BD(Ω). As opposed to gradients, symmetrized gradients are associated to a

double curl constraint, that is,

µ ∈M (Ω;Md×d
sym ) with curlcurl µ = 0 ⇔ Eu = µ for some u ∈ BD(Ω) (locally),

where curlcurl is defined as the distributional second-order partial differential operator

curlcurl µ :=

(
d

∑
i=1

∂ikµi j +∂i jµik−∂ jkµii−∂iiµ jk

)
jk

, 1≤ j,k ≤ d.

Since curlcurl is a second-order operator, neither the lower semicontinuity nor the relaxation results

for functionals of the form (1.6) could be addressed by means of Theorem 1.2 or similar techniques.

15
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However, through recent developments in the use of rigidity properties and the setting of generalized

Young measures, Rindler [67] was able to give the following characterization:

Theorem 1.3 (Rindler ’11). Let f : Ω×Md×d
sym → [0,∞) be a Carathéodory and symmetric qua-

siconvex integrand.9 Further assume that | f (x,A)| ≤ M(1+ |A|) for some M > 0 and all x ∈ Ω,

A ∈ Md×d
sym , and that the strong recession function f ∞(x,A) exists for all x ∈ Ω,A ∈ Md×d

sym and is

(jointly) continuous in Ω×Md×d
sym .

Then, the functional

I f [u] :=
ˆ

Ω

f
(

x,
dEu
dL d (x)

)
dx+

ˆ
Ω

f ∞

(
x,

dEsu
d|Esu|

(x)
)

d|Esu|(x), u ∈ BD(Ω),

is sequentially lower semicontinuous with respect to the weak* convergence in BD(Ω).

1.2.3 The characterization for operators of arbitrary order

Our results concern PDE constraints A µ = 0 where A satisfies Murat’s constant rank condition (see

[61]), which as seen in the previous discussion, is a long standing assumption in lower semicontinuity

results. More precisely, we assume that the principal symbol of A ,

A(ξ ) := ∑
|α|=k

ξ
αAα ,

has constant rank as a linear operator in Lin(RN ;Rn), for all ξ ∈ Sd−1. Associated to the principal

symbol, we also define the wave cone of A as

ΛA :=
⋃

ξ∈Sd−1

kerA(ξ ).

With these considerations in mind, we are able to show a lower semicontinuity result and a relax-

ation result of integral functionals with linear growth assumptions in the A -free setting:

Theorem 1.4 (A.-R., De Philippis & Rindler ’17). Let f : Ω×RN → [0,∞) be a continuous inte-

grand. Assume that f has linear growth at infinity and is Lipschitz in its second argument, uniformly

in x. Further assume that there exists a modulus of continuity ω such that

| f (x,A)− f (y,A)| ≤ ω(|x− y|)(1+ |A|) for all x,y ∈Ω, A ∈ RN , (1.7)

and that the strong recession function

f ∞(x,A) exists for all (x,A) ∈Ω× span ΛA .

9In our setting, (curlcurl)-quasiconvex.
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1.2 Theory of existence

Then, the functional

I f [µ] :=
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x)

is sequentially weak* lower semicontinuous for measures on the space kerM A if and only if f (x, q)
is A k-quasiconvex for every x ∈Ω.10

Moreover, we are able to show the following relaxation result on asymptotically A -free sequences

under the additional assumption that A is a homogeneous partial differential operator:

Theorem 1.5 (A.-R., De Philippis & Rindler ’17). Let f : Ω×RN → [0,∞) be a continuous inte-

grand. Assume that f has linear growth at infinity, that is uniformly Lipschitz in its second argument,

and is such that there exists a modulus of continuity ω as in (1.7). Further we assume that A is a

homogeneous partial differential operator and that the strong recession function

f ∞(x,A) exists for all (x,A) ∈Ω× spanΛA .

Then, for the functional

G [u] :=
ˆ

Ω

f (x,u(x)) dx, u ∈ L1(Ω;RN),

the (sequentially) weak* lower semicontinuous envelope

G [µ] := inf
{

liminf
j→∞

G [u j] : u j L
d ∗
⇀ µ and A u j→ 0 in W−k,q

}
,

for some q ∈ (1,d/(d−1)), is given by

G [µ] =

ˆ
Ω

QA f
(

x,
dµ

d|µ|
(x)
)

dx+
ˆ

Ω

(QA f )#
(

x,
dµs

d|µs|
(x)
)

d|µs|(x),

where QA f (x, q) denotes the A -quasiconvex envelope of f (x, q) with respect to the second argument

and (QA f )# is the upper recession function of QA f .1112

10In spite that f ∞ may be defined only in the product space Ω× span ΛA , the functional I f remains to be well-defined.
This owes to a recent development in the structure of A -free measures by De Philippis & Rindler [29] which states that

dµ

d|µ|
(x) ∈ ΛA for |µs|-a.e. x ∈Ω,

whenever A µ = 0 in Ω; in the case of gradients (A = curl) this result was first shown by Alberti [2] and is commonly
known as the Rank-one Theorem which essentially states that the singular part of the distributional derivative of a
function of bounded variation has rank equal to one.

11For a continuous integrand h : RN → R, the A -quasiconvex envelope of h at A ∈ RN is defined as

QA h(A) := inf
{ˆ

Q
f (A+w(y) dy : w ∈ C∞

per(Q;RN),A w = 0,
ˆ

Q
w dy = 0

}
;

which, for homogeneous operators A , turns out to be the largest A -quasiconvex function below h.
12For a Borel integrand g : Ω×RN →R with linear growth at infinity, one may consider a notion of recession function that
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Remark 1.6 (Pure constraint). The asymptotically A -free constraint A v j → 0 appears as the

natural convergence associated to the constraint A k
µ = 0. This follows by observing that the range

q ∈ (1,d/(d−1)) corresponds to the embedding kerM A
c
↪→W−k,q(Ω;RN). However, it is possible

reach a similar characterization of the relaxation of I f with respect to the pure constraint

A µ = 0

by requiring Ω to be a strictly star-shaped domain (see, e.g., [58], where such a geometrical assump-

tion on the domain was made to address a homogenization problem).

The next table summarizes some of the most substantial advances (some of which have been already

discussed) in the study of lower semicontinuity properties of non-convex integrals in the A -free

setting:

Operator Growth Author(s) Characterization

A = curl (gradients)
p > 1

Morrey ’66; f (x, q) quasiconvex
Acerbi & Fusco ’84 f (x, q) quasiconvex

p = 1
Ambrosio & Dal Maso ’92; f ( q) quasiconvex
Fonseca & Müller ’93 f (x, q) quasiconvex

A homogeneous,
p > 1 Fonseca & Müller ’99 f (x, q) A k-quasiconvexof constant rank

A = curlcurl
p = 1

Barroso, Fonseca & Toader ’00
f (x, q) sym. quasiconvex

(symmetric gradients) (SBD)
A homogeneous,

p = 1
Fonseca, Leoni & Müller ’04

f (x, q) A -quasiconvex
of constant rank (lower bound on abs. cont. part)
A = curlcurl

p = 1 Rindler ’11 (BD) f (x, q) sym. quasiconvex
(symmetric gradients)

A of constant rank p = 1

Baı́a, Cherimisi, Matı́as
f ( q) A -quasiconvex

& Santos ’13 (A hom. first-order)
Arroyo-Rabasa, De Philippis

f (x, q) A k-quasiconvex& Rindler ’17 (arbitrary order)

An immediate consequence of the theorem above is the following relaxation in BD which does not

impose any additional condition on the symmetric-quasiconvex envelope of the integrand (compare

with Theorem 1.3):

Corollary 1.7 (BD-relaxation). Let f : Ω×Md×d
sym → [0,∞) be a continuous integrand that has

linear growth at infinity and is such that there exists a modulus of continuity ω as in (1.7). Further

is weaker in the sense that it always exists. One such weaker form, the upper recession function, is defined by

g#(x,A) := limsup
x′→x
A′→A
t→∞

g(x′, tA′)
t

, (x,A) ∈Ω×RN .
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1.3 Optimality conditions

assume that the strong recession function

f ∞(x,A) exists for all (x,A) ∈Ω×Md×d
sym .

Let us consider the functional

G [u] :=
ˆ

Ω

f
(

x,
dEu
dL d (x)

)
dx,

defined for u ∈ LD(Ω) := {u ∈ BD(Ω) : Esu = 0}.
Then, the lower semicontinuous envelope of G [u] with respect to weak*-convergence in BD(Ω), is

given by the functional

G [u] :=
ˆ

Ω

SQ f
(

x,
dE u
L d (x)

)
dx+

ˆ
Ω

(SQ f )#
(

x,
dEsu

d|Esu|
(x)
)

d|Esu|(x), u ∈ BD(Ω),

where SQ f denotes the symmetric-quasiconvex envelope of f with respect to the second argument.

1.3 Optimality conditions

We continue the analysis of variational properties of PDE constrained integrals with linear growth,

in Chapter 3 we focus on the necessary and sufficient conditions for solutions of (1.1)-(1.2) under

additional convexity assumptions.

To motivate our discussion, let us briefly recall some well-known facts about the minimization

of convex integrals with superlinear growth defined on gradients (we refer the reader to [33] and

references therein for an introduction to convex analysis methods).

Let p > 1 and let f ∈ C2(Md×m) be a convex integrand with standard p-growth assumptions

M−1(1+ |A|p)≤ | f (A)| ≤M(1+ |A|p), |D f (A)| ≤M′|A|p−1, for all A ∈Md×m.

The minimization of the functional

u 7→
ˆ

Ω

f (∇u) dx, u ∈W1,p
0 (Ω;Rm) (1.8)

is a well-posed problem in the sense that there exists at least one minimizer u ∈W1,p
0 (Ω;Rm). Fur-

thermore, due to the growth conditions, it is possible to show that a necessary and sufficient condition

for ũ to be a minimizer of (1.8) is that ũ (weakly) solves the correspondent Euler–Lagrange equation

−div(D f (∇u)) = 0 in Ω,

that is, ˆ
Ω

D f (∇ũ) ·∇ϕ dx = 0 for all ϕ ∈W1,p′
0 (Ω;Rm). (1.9)

Using standard convex analysis methods and duality arguments one may further derive the so-called
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saddle-point condition

f (∇ũ)+ f ∗(τ̃) = 〈τ̃,∇ũ〉Lp′×Lp , (1.10)

which holds for every div-free maximizer τ̃ ∈ Lp′(Ω;Md×N) of the dual functional

τ 7→ −
ˆ

Ω

f ∗(τ) dx, divτ = 0.13 (1.11)

Similarly to (1.9), (1.10) is also a necessary and sufficient condition for the extremality of ũ (and

τ̃). For similar reasons to the ones discussed in earlier sections, the case p = 1 presents two main

difficulties:

1. In general, the existence of a minimizer ũ ∈W1,1
0 (Ω;Rm) of (1.8) is not guaranteed.

2. The relaxation in BV(Ω;Rm) of (1.8), which is defined by the functional

F [u] =
ˆ

Ω

f (∇u) dx+
ˆ

Ω

f #
(

dDsu
d|Dsu|

)
d|Dsu|(x)+

ˆ
∂Ω

f (u⊗ν∂Ω) dH d−1(x)︸ ︷︷ ︸
boundary term

,

is a well-posed minimization problem in BV(Ω). However, the derivation of saddle-point con-

ditions as in (1.10), in this case, is directly linked to the duality pairing 〈 q, q〉BV∗,BV. The lack of

reflexivity of BV spaces and the complexity of the dual of BV(Ω) presents several difficulties

in establishing saddle-point conditions.

In spite of these difficulties, Beck and Schmidt [15] were able to characterize the saddle-point

conditions in terms of a generalized duality paring J q, qKW−1,1,BV (introduced earlier in [7]). The

following theorem is a version of their main result.

Theorem 1.8 (Beck & Schmidt ’15). Let f : Ω×Md×m→ [0,∞) be a continuous integrand. Assume

that f has linear growth at infinity and assume that the strong recession function f ∞ : Md×m → R
exists and that f (x, q) : Md×m→ R is a convex function for all x ∈ Ω. Then, for u ∈ BV(Ω,Rm) and

τ ∈ L∞
div(Ω,Md×N) we have the following equivalence: u is a generalized minimizer of (1.8) and τ a

solution of (1.11), if and only if the relation

f (x,∇u(x))+ f ∗(x,τ(x)) = τ(x) ·∇u(x) holds for L d-a.e. x ∈Ω,

and, simultaneously, Du (the distributional derivative of u) satisfies

f ∞

(
x,

dDsu
d|Dsu|

(x)
)
=

Jτ,DuK
d|Dsu|

(x) for |Dsu|-a.e. x in Ω,

13The Fenchel transform of a function h : RN → R is the lower semicontinuous and convex function h∗ : RN → R defined
by the rule

h∗(z∗) := sup
z∈RN

{
z∗ · z−h(z)

}
.

For an integrand f : Ω×RN → R, and in a possible abuse of notation, we shall simply write f ∗ : Ω×RN to denote its
Fenchel transform with respect to the second argument, this is f ∗(x,A)≡ ( f (x, q))∗(A).
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1.3 Optimality conditions

where Jτ,DuK is the uniquely determined Radon measure on Ω such that

ˆ
Ω

ϕ dJτ,DuK =−
ˆ

Ω

τ · (u⊗∇ϕ) dx, holds for all ϕ ∈ C∞
c (Rm).

1.3.1 Duality for more general PDE constraints

Motivated by the ansatz that similar saddle-point conditions to the ones established in Theorem 1.8

should hold for minimization problems concerning PDE constraints A v = 0 more general than

curlv = 0. We investigate the natural extension of saddle-point conditions to the A -free setting in a

slightly different setting than (1.1)-(1.2).

Throughout Chapter 3 we shall assume that f : Ω×RN→R is convex in the second argument. We

consider the minimization problem (also termed as the primal problem):

minimize I f [u] among functions in the affine space u0 +kerA . (P)

Instead of W1,1, we shall work with the A -Sobolev space of Ω defined as

WA ,1 :=
{

u ∈ L1(Ω;RN) : A u ∈ L1(Ω;Rn)
}
.

Since WA ,1(Ω) is a dense subspace of L1(Ω;RN), we may consider the (possibly unbounded) linear

operator A : WA ,1 ⊂ L1(Ω;RN)→ L1(Ω;Rn) and its dual A ∗ : D(A ∗)⊂ L∞(Ω;Rn)→ L∞(Ω;RN).

With these considerations in mind, we also define the dual problem:

maximize w 7→
ˆ

Ω

w∗ ·A u0 dx−
ˆ

Ω

f ∗(x,w∗) dx, among fields w∗ in D(A ∗). (P∗)

The derivation of the optimality conditions (or saddle-point conditions) of problems (P) and (P∗) is

based on the introduction of the set-valued pairing J q, qK : kerM A ×D(A ∗)→M (Ω) defined as

Jµ,A ∗w∗K :=
{

λ ∈M (Ω) : (un)⊂L1(Ω;RN)kerA ,

un→ µ area-strictly in Ω, and (un ·A ∗w∗)L d ∗
⇀ λ in M (Ω)

}
.

Here, we say that a sequence of measures area-strictly converges to a measure µ ∈M (Ω;RN) if

µn
∗
⇀ µ and 〈µn 〉(Ω)→ 〈µ 〉(Ω) where

〈µ 〉(Ω) :=
ˆ

Ω

√
1+
(

dµ

dL d

)2

dx+ |µ|(Ω).

Remark 1.9 (BV-generalized pairing). For A = curl, our notion of (set-valued) generalized pair-

ing can be identified with the well-defined Radon measure defined by J q, qKW−1,1×BV, introduced in [7].
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Generalized saddle-point conditions

By means of this generalized pairing we show the intrinsic relation between generalized minimizers

of (P) and maximizers of (P∗) also known as the saddle-point conditions:

Theorem 1.10 (A.-R. ’16). Let f : Ω×RN → [0,∞) be a continuous integrand with linear growth

at infinity such that f (x, q) is convex for all x ∈ Ω. Further assume that there exists a modulus of

continuity ω such that

| f (x,z)− f (y,z)| ≤ ω(|x− y|)(1+ |z|) for all x,y ∈Ω, z ∈ RN .

Then the following conditions are equivalent:

(i) µ is a generalized solution of problem (P) and w∗ is a solution of (P∗),

(ii) The generalized pairing Jµ,A ∗w∗K is the singleton containing the measure

λ :=
(

dµ

dL d ·A
∗w∗

)
L d

Ω + f ∞

( q , dµ

d|µs|

)
|µs|,

and in particular
dλ

d|µs|
(x) = f ∞

(
x,

dµ

d|µs|

)
for |µs|-a.e. x ∈Ω.

Moreover,

dλ

dL d (x) =
dµ

dL d (x) ·A
∗w∗(x)

= f
(

x,
dµ

dL d (x)
)
+ f ∗(x,A ∗w∗(x))

for L d-a.e. in x ∈Ω.

Corollary 1.11 (Interior saddle-point conditions in BD). Let f : Ω×Md×d
sym → R be as in the

assumptions of Theorem 1.10. Then the (interior) saddle-point conditions associated to the mini-

mization problem

u 7→
ˆ

Ω

f (x,E u(x)) dx+
ˆ

Ω

f ∞

(
x,

dEsu
d|Esu|

(x)
)

d|Esu|(x), u ∈ BD(Ω;RN),

are given by the equations

f (x,E u(x))+ f ∗(x,σ∗(x)) = E u(x) ·σ∗(x) = dλ

dL d (x), for L d-a.e. x ∈Ω,

and

f ∞

(
x,

dEsu
d|Esu|

(x)
)
=

dλ

d|µs|
(x), for |µs|-a.e. x ∈Ω.

Here, σ∗ ∈ L∞(Ω;Md×d
sym ) is a div-free symmetric tensor with Tr(σ∗ · νΩ) = 0 that maximizes the
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functional

w∗ 7→ −
ˆ

Ω

f ∗(x,w∗) dx, w∗ ∈ L∞
div(Ω;Md×d

sym ),

and λ is the uniquely defined Radon measure in M (Ω) such that

ˆ
Ω

ϕ dλ =−1
2

ˆ
Ω

σ
∗ · (u⊗∇ϕ +∇ϕ⊗u) dx holds for all ϕ ∈ C∞

c (Ω).

Remark 1.12 (Saddle-point conditions in BV). By setting A = curl, Theorem 1.10 re-proves a

variant of Theorem 1.8.

1.4 Regularity: Optimal design problems with a perimeter term

In mathematics and materials science the notion of optimal design refers to a subarea of optimal con-

trol where the set of controls describe the geometries or possible compositions of a body or structure.

We focus on the following general setting of the two-material optimal design problems for linear

models: we look for local saddle-points of the variational problem

min
A

sup
u

J(A,u). (odp)

Here,

J(A,u) :=
ˆ

Ω

Fu dx−
ˆ

Ω∩A
σ1 A u ·A u dx−

ˆ
Ω∩Ac

σ2 A u ·A u dx︸ ︷︷ ︸
:= D(A,u) “bulk energy”

+γL d(A∩Ω)︸ ︷︷ ︸
volume term

+Per(A;Ω)︸ ︷︷ ︸
surface term

,

defined on pairs (A,u) where the design A ⊂ Rd is prescribed by a Borel set, u : Ω ⊂ Rd → RN is

the potential function, A is an elliptic operator whose properties will be specified later together with

some examples, the design materials are represented by symmetric positive definite tensors σ1,σ2,

and F : Ω→ RN is the source field associated to the Optimal Design problem.

The perimeter term Per(A;Ω) — equivalent to H d−1(∂A∩Ω) on smooth sets A⊂Rd — prevents

highly oscillating pattern formations of designs. To highlight the role of the perimeter let us recall the

ideas of Kohn and Strang [45–47] which link the notions of optimal design to the ones of relaxation.

In the absence of a surface term, one can reformulate (odp) as an integral minimization which absorbs

the designs A into a double-well potential (see Fig. 1.1)

τ 7→
ˆ

Ω

W (τ) dx, W (τ) := min
{

W1(τ) := σ
−1
1 τ · τ + γ,W2(τ) := σ

−1
2 τ · τ

}
,

where the candidate fields τ : Ω⊂ Rd → RN satisfy the affine PDE constraint

A ∗
τ = F,

for some linear PDE operator A ∗ — that represents the L2 adjoint of A . As was emphasized in

earlier sections, minimizers might develop fine patterns due to the non-convexity of W which lead to
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R

RN

W2 W1

QA ∗W

Figure 1.1: The dotted line sketches the graph of the relaxed integrand QA ∗W in the regions where it
does not coincide with the non-convex integrand W = min{W1,W2}.

the study of the relaxed functional

τ 7→
ˆ

Ω

QA ∗W (τ) dx, A ∗
τ = F.

However, since the surface term is present, relaxation is unnecessary due to the high energy cost

imposed on fine mixtures of the design.

The lower semicontinuity of perimeter functional (see [6, 34]) and the theory of compensated com-

pactness developed by Murat and Tartar (see [62, 63]) provide the necessary compactness and lower

semicontinuity properties to show existence of solutions via the direct method. A more interesting

and non-trivial problem is to establish the regularity of saddle-points of (odp) to which we will devote

our attention:

Problem 3. Let (A,u) be a saddle-point of (odp). Does the pair (A,u) possesses higher regularity

properties than the ones prescribed by being an admissible design? Here, we shall understand the

regularity of A as the differentiability properties of ∂A when it is seen as a (d − 1)-dimensional

manifold, and the regularity of u as its integrability and differentiability properties.

1.4.1 The role of almost perimeter minimizers

The variational properties of a set A ⊂ Rd , which belongs to a minimizing pair (A,u) of (odp), can

be reformulated in a way that resembles those of perimeter minimizers (described below). Indeed, a

simple comparison argument and rearrangement of the energy terms yield

Per(A;Ω)≤ Per(E;Ω)+
(

sup
u

D(E, q)− sup
u

D(A, q))+ γ
∣∣L d(E ∩Ω) −L d(A∩Ω)

∣∣,
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1.4 Regularity: Optimal design problems with a perimeter term

for all measurable E ⊂ RN such that E∆A ⊂⊂ Ω. Thus, the set A weakly minimizes the perimeter

functional Per( q;Ω) in the sense that for every x ∈ K ⊂⊂ Ω there exists a modulus of continuity

ωK : [0,∞)→ [0,∞) for which

Per(A∩Br(x);Ω)≤ Per(U ∩Br(x);Ω)+ωK(r).

Moreover, ωK can be explicitly defined (up to a term of order rd) as

ωK(r) := inf
{∣∣∣sup

u
J(A, q)− sup

u
J(E, q)∣∣∣ : (E∆A)⊂⊂ Br(x) and x ∈ K

}
.

Having hitherto taken for granted the notion of perimeter, let us now discuss it in more detail along

with the attendant regularity properties associated to minimization of perimeter.

The area of an open d-dimensional C1-hypersurface M ⊂ Rd in Ω is defined as

AreaΩ(M) :=
ˆ

U∩ϕ−1(Ω)

√
1+ |ϕ|2 dx = H d−1(M∩Ω),

where ϕ : U ⊂Rd→M is the C1-chart that parametrizes it. Stationary “points” of the area functional

are called minimal surfaces, which in particular are solutions of the area Euler-Lagrange Equation

−div

(
∇ϕ√

1+ |∇ϕ|2

)
= 0. (1.12)

If M is a minimal surface parametrized by a Lipschitz map ϕ , it is not hard to see that equation (1.12)

is an elliptic PDE to which we can apply standard regularity methods which show that M is an analytic

hypersurface.

The topological boundary of a sufficiently regular set A⊂ Rd can be (locally) regarded as an open

hypersurface. Hence, by the divergence theorem,

ˆ
∂A∩Ω

ϕ ·ν∂A dH d−1 =

ˆ
Ω∩A

divϕ dx =−
ˆ

Ω

ϕ · d(∇1A), for all ϕ ∈ C1
c(Ω;Rd),

where ∇1A is the distributional derivative of the indicator function 1A. On sufficiently regular sets

A⊂ Rd , the area functional over the manifold M = ∂A has the alternative representation

AreaΩ(∂A) = |D1A|(Ω) := sup
{ˆ

A∩Ω

divϕ dx : ϕ ∈ C1
c(Ω;Rd),‖ϕ‖∞ ≤ 1

}
,

which coincides with the norm of ∇1A in (Cb(Ω))∗ — the total variation of the distributional deriva-

tive of 1A in Ω. This motivates the definition of the perimeter of a set:

Per(A;Ω) := |D1A|(Ω), A⊂ Rd Borel set.

Of course, every Lipschitz surface M is locally the topological boundary of a set A of finite perimeter

and, in this case, AreaΩ(M) = AreaΩ(∂A) = Per(A;Ω). However, the geometry of a set of finite
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perimeter might be rather complicated. For instance, the boundary of a set of finite perimeter might

not admit local parametrizations of any kind. In this case, the equality AreaΩ(∂A) = Per(A;Ω) is

more likely to fail. For this reason De Giorgi introduced the notion of reduced boundary of a set, a

(d−1)-dimensional Hausdorff subset ∂ ∗A of the topological boundary with the property that

Per(A;Ω) = H d−1(Ω∩∂
∗A). (1.13)

In spite of the increase in the complexity of admissible geometries, one can still study certain

partial regularity properties of sets with minimal perimeter, that is, sets A⊂ Rd such that

Per(A;Ω)≤ Per(E;Ω), for all E ⊂ Rd such that (E∆A)⊂⊂Ω.

De Giorgi showed in [28] that being a perimeter minimizer is a sufficiently rigid property to guarantee

∂ ∗A∩Ω to be an analytic hypersurface. Miranda [55], on the other hand, showed that the difference

between topological and reduced boundaries — also known as singular set — of perimeter minimizers

is small, namely that

H d−1(Ω∩ (∂A\∂
∗A)) = 0.

Further developments due to Simon and Federer refined this result to the extent that H s(Ω∩ (∂A \
∂ ∗A)) = 0 for all s < 8. Thus, establishing that in low dimensions perimeter minimizers are analytic.

A simple scaling argument dictates that perimeter minimizers are stable under blow-up methods.

This fact further suggests that the aforementioned regularity results should extend to weaker min-

imality assumptions, which was later shown by Tamanini [72] in the setting of almost perimeter

minimizers. A set A⊂Rd is an almost perimeter minimizer in Ω if there exist α ∈ (0,1/2] and a local

positive constant c such that

Per(A;Ω)≤ Per(E;Ω)+ crd−1+2α︸ ︷︷ ︸
vanishing term
after blow-up

,

for all E ⊂Rd with E∆A⊂⊂ Br(x)⊂Ω. He showed that if A⊂Rd is an almost perimeter minimizer,

then

(Ω∩∂
∗A) is a C1,α -hypersurface and H s(Ω∩ (∂A\∂

∗A)) = 0 for all s > 8.

This raises the following question:

Problem 4. If (A,u) is a minimizer pair of (odp) with A⊂Rd , is A an almost perimeter minimizer?

Observe that it is enough to show that ωK(r) = o(rd−1+2α) for some α ∈ (0,1/2].

1.4.2 Regularity of optimal designs: history of the problem

Optimal design problems in linear electrical conductivity models have been considered by Kohn and

Strang [45–47], and Murat and Tartar [63]; the success of homogenization and relaxation techniques

led to groundbreaking advances in the understanding of pattern formations of optimal structures.

However, optimal design problems with a perimeter penalization, like the one we shall consider, were
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1.4 Regularity: Optimal design problems with a perimeter term

first developed by Ambrosio and Buttazzo [4] and Lin [52]. An exposition of their model and its

regularity properties is provided below.

The linear conductivity equations

An open and bounded set Ω ⊂ Rd represents a container that is occupied by two materials with

uniform conductivities 0 < β < α < ∞. The material with conductivity α is distributed along a

measurable set A⊂Ω with a prescribed volume fraction 0 < λ < L d(Ω); the remaining part (Ω\A)

is occupied by a material with conductivity β . The overall conductivity in the container can be written

as

σA(x) = 1A(x)α +(1−1A(x))β

The materials are assumed to be linear and perfectly bonded, meaning that both the electric potential

and the normal electrical current are continuous across the interface. The model is completed by

adding a source term F ∈ L∞(Ω) and assuming (for simplicity) Dirichlet boundary conditions on ∂Ω.

The state equation associated to the model reads

−div(σA∇uA) = F in Ω

uA = 0 on ∂Ω,

where the function uA : Ω→ R models the electrical potential associated to the design A. The energy

dissipated in Ω is captured by the functional

ˆ
Ω

FuA dx.

The optimal design consists of finding designs with minimal combined dissipated and surface energies

(among designs with prescribed volume λ ). The precise mathematical variational principle being the

minimization

inf
{

J(A) : A⊂Ω is a measurable set and L d(A) = λ

}
,

where

J(A) =
ˆ

Ω

f uA dx+Per(A;Ω).

In order to handle the volume constraint one considers the introduction of a Lagrange multiplier γ ∈R
giving rise to the following final variant:

inf
{

J(A)+ γL d(A) : A is a measurable subset of Ω

}
. (1.14)

Theorem 1.13 (Ambrosio & Buttazzo ’93). Let A ⊂ Ω be an optimal design of the minimization

problem (1.14). Then, A is essentially relatively open in the sense that there exists an optimal set

Ã⊂Ω which is relatively open in Ω, satisfies that L d(A∆Ã) = 0, and is such that ∂ Ã = ∂ ∗Ã.

Up to minor considerations regarding the boundary conditions, the regularity is due to Lin [52]:
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Theorem 1.14 (Lin ’93). Let A ⊂ Ω be an optimal and relatively open profile of the minimization

problem (1.14). Then the singular set Σ := (∂A \ ∂ ∗A)∩Ω is a relatively closed subset of ∂A with

H d−1(Σ) = 0. Moreover, there exists β ∈ (0,1) depending solely on the dimension d such that

∂
∗A is an open C1,β -hypersurface in Ω,

and uA is Lipschitz in Ω\Σ.

To see how this model fits in our setting simply set the tensors σ1 = α idRd , σ2 = β idRd , and the

operator A u = ∇u to be the gradient operator on scalar valued functions (accordingly the adjoint

A ∗
τ =−divτ is the divergence operator on Rd-valued fields). Since the dissipated energy

´
Ω

FuA is

equivalent to

max
{ˆ

Ω

2Fu dx−
ˆ

Ω

σA∇u ·∇u dx : u ∈W1,2
0 (Ω)

}
,

the minimization of A 7→ J(A) is indeed a min-max problem by considering over the additional vari-

able u ∈W1,2
0 (Ω).

Given a minimizer A of (1.14), Theorem 1.14 provides an answer to Problem 3 by establishing

that, up to modifying A in a set of vanishing H d−1-measure, the reduced boundary ∂ ∗A is an open

C1,β -hypersurface in Ω and ∇uA = τ ∈ L∞
loc(Ω\Σ).

1.4.3 General elliptic systems

There are similar models following more complicated systems of elliptic equations than the conduc-

tivity equations, for example, linear plate theory and linear elasticity models among their respective

equivalent formulations. The task of extending the (partial) regularity results from the conductivity

setting to more general systems of equations is not trivial. Mainly because the aforementioned results

rely on a monotonicity decay property of harmonic maps (essentially, it is possible to reduce the con-

ductivity equations to the Dirichlet equations). This monotonicity, however, fails for general elliptic

systems.

Example 1.15 (Linear plate theory). Let ω :=Ω× [−h,h] be the reference configuration of a (thin)

plate with cross section Ω ⊂ R2 and thickness 2h. Here, Ω is a C1 open and bounded set with outer

normal n(x). The elastic properties of the plate are described by the two-phase fourth-order tensor

σA(x) := 1A(x)σ1 +(1−1A(x))σ2, σ1,σ2 ∈M2×2×2×2
sym .
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FF F

Ω

∂A

σ1 in A

σ2 in Ω\A

Figure 1.2: The design of a thin plate Ω made up of two materials with elastic moduli σ1,σ2 is deter-
mined by a design-set A. The vertical deflection uA is as a consequence of subjecting the
plate to the vertical load F .

The equations which describe the vertical displacement uA : Ω→ R of ω under a load F ∈ L∞(Ω)

are given by the fourth-order system

div(div(σA∇
2uA)) = F in Ω

uA = ∂nuA = 0 on ∂Ω,

where ∇2uA is the Hessian matrix of uA.

Example 1.16 (Linear elasticity). Let Ω ⊂ R3 be an elastic body with deformation properties de-

fined by a two-phase design tensor

σA(x) := 1A(x)σ1 +(1−1A(x))σ2, σ1,σ2 ∈M3×3×3×3
sym .

The linear equations associated to the deformation of Ω by an external force-field F ∈ L∞(Ω;R3) read

−div(σAE uA) = f in Ω

uA = 0 on ∂Ω,

where uA : Ω→ R3 is the resulting deformation potential and E uA :=
(
∇u+(∇u)T

)
/2 is the sym-

metrized gradient of uA.

Operators of gradient form

Our results concern the setting of general elliptic systems among which linear plate theory and linear

elasticity models are included. The role of the operators u 7→ ∇u,u 7→ ∇ku, or u 7→ E u in different

models is reduced to a single model by introducing a class of operators A , the class of operators of

gradient form.

The defining properties of this class are the following:

Ellipticity. We say that a kth-order homogeneous operator A is elliptic if its principal symbol is
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injective for all frequencies in Fourier space, i.e., its principal symbol A has the property that

kerA(ξ ) = {0} ⊂ RN , for all ξ ∈ Sd−1. (1.15)

Compactness. We shall work within a class of operators A where a Poincaré-type inequality holds.

In other words, we assume that there exists cΩ > 0 such that

‖u‖L2(Ω) ≤ cΩ‖A u‖L2(Ω) for all u ∈Wk,2
0 (Ω;RN). (1.16)

Exactness. We will further assume that there exists an homogeneous partial differential operator B

such that

A u = v ⇔ B v = 0, (1.17)

for all v ∈ C∞
c (ω;Rn) and every simply connected ω ⊂ Rd .

We term the class of operators for which (1.15)-(1.17) hold, operators of gradient form.

It turns out that, restricted to square-integrable functions, operators in this class inherit similar

properties to those of gradients, hence the name. For instance, classical Cacciopolli inequalities can

be extended to general Cacciopolli inequalities for elliptic operators. Thus, one might systematically

develop a similar regularity theory than the one available for gradients: higher integrability estimates,

reverse Hölder estimates, etc.

Partial regularity for models prescribed by operators of gradient form

Let Ω⊂ Rd be a Lipschitz bounded set. Let

A = ∑
|α|=k

Aα∂
α , Aα ∈ Lin(RN ;Rn),

be a kth-order operator of gradient form. Let σ1,σ2 ∈ Sym(RdNk ⊗RdNk
) be two (possibly non-

ordered) tensors with the property that

1
M
|P|2 ≤ σiP ·P≤M|P|2 for all P ∈ RdNk

; i = 1,2.

We consider the Optimal Design problem of finding the (locally) minimizing configurations A ⊂ Rd

of the energy

J(A) =
ˆ

Ω

FuA dx+Per(A;Ω), (1.18)

where uA ∈W2,k
0 (Ω;RN) is the unique solution to the elliptic system

A ∗(σA A u) = F in Ω, in the sense of distributions, (1.19)
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1.4 Regularity: Optimal design problems with a perimeter term

for some F ∈ L∞(Ω;RdNk
). In this context we show, under mild assumptions on the regularizing

properties of local solutions of the related relaxed problem:

minimize u 7→
ˆ

Ω

QB f (A u) dx, defined on a subclass of L2(Ω;RN),

that a local minimizer A is, up to a lower dimensional closed set, a C1-hypersurface:

Theorem 1.17 (A.-R. ’16). Let A be a local (minimizer) point of (1.18)-(1.19) in Ω. Then there

exists a positive constant η ∈ (0,1] depending only on the dimension d such that, for the singular set

Σ = ∂Ω\∂ ∗A,

H d−1(Σ∩Ω) = 0, and ∂
∗A is an open C1,η/2-hypersurface in Ω.

Moreover if A is a first-order partial differential operator, then A uA ∈ C0,η/8
loc (Ω \Σ); the trace of

A uA exists on either side of ∂ ∗A.
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2 Lower semicontinuity and relaxation of

linear-growth integral functionals

This chapter contains the results obtained in the research paper:

Lower semicontinuity and relaxation of linear-growth integral
functionals under PDE constraints

Abstract

We show general lower semicontinuity and relaxation theorems for linear-growth integral func-

tionals defined on vector measures that satisfy linear PDE side constraints (of arbitrary order).

These results generalize several known lower semicontinuity and relaxation theorems for BV,

BD, and for more general first-order linear PDE side constrains. Our proofs are based on recent

progress in the understanding of singularities of measure solutions to linear PDE’s and of the

generalized convexity notions corresponding to these PDE constraints.

See:

A. Arroyo-Rabasa, G. De Philippis, F. Rindler, Lower semicontinuity and relaxation of linear-growth

integral functionals under PDE constraints, ArXiv e-prints: 1701.02230 (2017)

2.1 Introduction

The theory of linear-growth integral functionals defined on vector-valued measures satisfying PDE

constraints is central to many questions of the calculus of variations. In particular, their relaxation and

lower semicontinuity properties have attracted a lot of attention, see for instance [2, 5, 14–16, 20, 28].

In the present work we unify and extend a large number of these results by proving general lower

semicontinuity and relaxation theorems for such functionals. Our proofs are based on recent advances

in the understanding of the singularities that may occur in measures satisfying (under-determined)

linear PDEs.
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Concretely, let Ω⊂Rd be an open and bounded subset with L d(∂Ω) = 0 and consider for a finite

vector Radon measure µ ∈M (Ω;RN) on Ω with values in RN the functional

F #[µ] :=
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f #
(

x,
dµs

d|µs|
(x)
)

d|µs|(x). (2.1)

Here, f : Ω×RN → R is a Borel integrand that has linear growth at infinity, i.e.,

| f (x,A)| ≤M(1+ |A|) for all (x,A) ∈Ω×RN ,

whereby the (generalized) recession function

f #(x,A) := limsup
x′→x
A′→A
t→∞

f (x′, tA′)
t

, (x,A) ∈Ω×RN ,

takes only finite values. Furthermore, on the candidate measures µ ∈M (Ω;RN) we impose the

k’th-order linear PDE side constraint

A µ := ∑
|α|≤k

Aα∂
α

µ = 0 in the sense of distributions.

The coefficient matrices Aα ∈ Rn×N are assumed to be constant and we write ∂ α = ∂
α1
1 . . .∂ αd

d for

every multi-index α = (α1, . . . ,αd) ∈ (N∪{0})d with |α| := |α1|+ · · ·+ |αd | ≤ k. We call measures

µ ∈M (Ω;RN) with A µ = 0 in the sense of distributions A -free.

We will also assume that A satisfies Murat’s constant rank condition (see [16, 26]), that is, there

exists r ∈ N such that

rank(kerAk(ξ )) = r for all ξ ∈ Sd−1, (2.2)

where

Ak(ξ ) := (2πi)k
∑
|α|=k

ξ
αAα , ξ

α = ξ
α1
1 · · ·ξ

αd
d ,

is the principal symbol of A . We also recall the notion of wave cone associated to A , which plays

a fundamental role in the study of A -free fields and first originated in the theory of compensated

compactness [12, 24–26, 30, 31].

Definition 2.1. Let A be k’th-order linear PDE operator as above. The wave cone associated to A

is the set

ΛA :=
⋃
|ξ |=1

kerAk(ξ ) ⊂ RN .

Note that the wave cone contains those amplitudes along which it is possible to construct highly

oscillating A -free fields. More precisely if A is homogeneous, i.e., A = ∑|α|=k Aα∂ α , then P0 ∈ΛA

if and only if there exists ξ 6= 0 such that

A (P0 h(x ·ξ )) = 0 for all h ∈ Ck(R).
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Our first main theorem concerns the case when f is A k-quasiconvex in its second argument, where

A k := ∑
|α|=k

Aα∂
α

is the principal part of A . Recall from [16] that a Borel function h : RN→R is called A k-quasiconvex

if

h(A)≤
ˆ

Q
h(A+w(y)) dy

for all A ∈ RN and all Q-periodic w ∈ C∞(Q;RN) such that A k w = 0 and
´

Q w dy = 0, where Q :=

(−1/2,1/2)d is the unit cube in Rd .

In order to state our first result, we shall first introduce the notion of strong recession function of

f , which for (x,A) ∈Ω×RN is defined as

f ∞(x,A) := lim
x′→x
A′→A
t→∞

f (x′, tA′)
t

, (x,A) ∈Ω×RN , (2.3)

provided the limit exists.

Theorem 2.2 (lower semicontinuity). Let f : Ω×RN → [0,∞) be a continuous integrand. Assume

that f has linear growth at infinity and is Lipschitz in its second argument and that f (x, q) is A k-

quasiconvex for all x ∈Ω. Further assume that either

(i) f ∞ exists in Ω×RN , or

(ii) f ∞ exists in Ω× spanΛA , and there exists a modulus of continuity ω : [0,∞)→ [0,∞) (increas-

ing, continuous, ω(0) = 0) such that

| f (x,A)− f (y,A)| ≤ ω(|x− y|)(1+ |A|) for all x,y ∈Ω, A ∈ RN . (2.4)

Then, the functional

F [µ] :=
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x)

is sequentially weakly* lower semicontinuous on the space

M (Ω;RN)∩kerA :=
{

µ ∈M (Ω;RN) : A µ = 0
}
.

Note that according to (2.6) below, F [µ] is well defined for µ ∈M (Ω;RN)∩ kerA since the

strong recession function is computed only at amplitudes that belong to spanΛA .

The A k-quasiconvexity of f (x, q) is not only a sufficient, but also a necessary condition for the

sequential weak* lower semicontinuity of F on M (Ω;RN)∩kerA . In the case of first-order partial

differential operator, the proof of the necessity can be found in [16]; the proof in the general case

follows by verbatim repeating the same arguments.
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Remark 2.3 (asymptotic A -free sequences). The conclusion of Theorem 2.2 extends to sequences

that are only asymptotically A -free, that is,

F [µ] ≤ liminf
j→∞

F [µ j]

for all sequences (µ j)⊂M (Ω;RN) such that

µ j
∗
⇀ µ in M (Ω;RN) and A µ j→ 0 in W−k,q(Ω;Rn)

for some 1 < q < d/(d−1) if f (x, q) is A k-quasiconvex for all x ∈Ω.

Notice that f ∞ in (2.3) is a limit and, contrary to f #, it may fail to exist for A ∈ (spanΛA ) \ΛA

(for A ∈ ΛA the existence of f ∞(x,A) follows from the A k-quasiconvexity, see Corollary 2.31). If

we remove the assumption that f ∞ exists for points in the subspace generated by the wave cone ΛA ,

we still have the following partial lower semicontinuity result (cf. [14]).

Theorem 2.4 (partial lower semicontinuity). Let f : Ω×RN → [0,∞) be a continuous integrand

such that f (x, q) is A k-quasiconvex for all x ∈ Ω. Assume that f has linear growth at infinity and

is Lipschitz in its second argument, uniformly in x. Further, suppose that there exists a modulus of

continuity ω as in (3.2). Then,

ˆ
Ω

f
(

x,
dµ

dL d (x)
)

dx≤ liminf
j→∞

F #[µ j]

for all sequences µ j
∗
⇀ µ in M (Ω;RN) such that A µ j→ 0 in W−k,q(Ω;RN). Here,

F #[µ] :=
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f #
(

x,
dµs

d|µs|
(x)
)

d|µs|(x),

and 1 < q < d/(d−1).

Remark 2.5. As special cases of Theorem 2.2 we get, among others, the following well-known

results:

(i) For A = curl, one obtains BV-lower semicontinuity results in the spirit of Ambrosio–Dal

Maso [2] and Fonseca–Müller [15].

(ii) For A = curlcurl, where

curlcurl µ :=
( d

∑
i=1

∂ikµ
j

i +∂i jµ
k
i −∂ jkµ

i
i −∂iiµ

k
j

)
j,k=1,...,d

is the second order operator expressing the Saint-Venant compatibility conditions (see [16, Ex-

ample 3.10(e)]), we re-prove the lower semicontinuity and relaxation theorem in the space of

functions of bounded deformation (BD) from [28].

(iii) For first-order operators A , a similar result was proved in [5].
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2.1 Introduction

(iv) Earlier work in this direction is in [14, 16], but there the singular (concentration) part of the

functional was not considered.

If we dispense with the assumption of A k-quasiconvexity on the integrand, we have the following

two relaxation results:

Theorem 2.6 (relaxation). Let f : Ω×RN → [0,∞) be a continuous integrand that is Lipschitz in

its second argument, uniformly in x. Assume also that f has linear growth at infinity (in its second

argument) and is such that there exists a modulus of continuity ω as in (3.2). Further, suppose that

A is a homogeneous PDE operator and that the strong recession function

f ∞(x,A) exists for all (x,A) ∈Ω× spanΛA .

Then, for the functional

G [u] :=
ˆ

Ω

f (x,u(x)) dx, u ∈ L1(Ω;RN),

the (sequentially) weakly* lower semicontinuous envelope of G , defined to be

G [µ] := inf
{

liminf
j→∞

G [u j] : (u j)⊂ L1(Ω;RN), u j L
d ∗
⇀ µ in M (Ω;RN)

and A u j→ 0 in W−k,q
}
,

where µ ∈M (Ω;RN)∩kerA and 1 < q < d/(d−1), is given by

G [µ] =

ˆ
Ω

QA f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

(QA f )#
(

x,
dµs

d|µs|
(x)
)

d|µs|(x).

Here, QA f (x, q) denotes the A -quasiconvex envelope of f (x, q) with respect to the second argument

(see Definition 2.28 below).

If we want to relax in the space M (Ω;RN)∩kerA we need to assume that L1(Ω;RN)∩kerA is

dense in M (Ω;RN)∩kerA with respect to a finer topology than the natural weak* topology (in this

context also see [4]).

Theorem 2.7. Let f : Ω×RN → [0,∞) be a continuous integrand that is Lipschitz in its second

argument, uniformly in x. Assume also that f has linear growth at infinity (in its second argument)

and is such that there exists a modulus of continuity ω as in (3.2). Further, suppose that A is a

homogeneous PDE operator, that the strong recession function

f ∞(x,A) exists for all (x,A) ∈Ω× spanΛA ,

and that for all µ ∈M (Ω;RN)∩kerA there exists a sequence (u j)⊂ L1(Ω;RN)∩kerA such that

u j L
d ∗
⇀ µ in M (Ω;RN) and 〈u j L

d 〉(Ω)→ 〈µ 〉(Ω), (2.5)
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

where 〈 q〉 is the area functional defined in (2.8). Then, for the functional

G [u] :=
ˆ

Ω

f (x,u(x)) dx, u ∈ L1(Ω;RN)∩kerA ,

the weakly* lower semicontinuous envelope of G , defined to be

G [µ] := inf
{

liminf
j→∞

G [u j] : (u j)⊂ L1(Ω;RN)∩kerA , u j L
d ∗
⇀ µ in M (Ω;RN)

}
,

is given by

G [µ] =

ˆ
Ω

QA f
(

x,
dµ

d L d (x)
)

dx+
ˆ

Ω

(QA f )#
(

x,
dµs

d|µs|
(x)
)

d|µs|(x).

Remark 2.8 (density assumptions). Condition (2.5) is automatically fulfilled in the following

cases:

(i) For A = curl, the approximation property (for general domains) is proved in the appendix

of [19] (also see Lemma B.1 of [8] for Lipschitz domains). The same argument further shows

the area-strict approximation property in the BD-case (also see Lemma 2.2 in [7] for a result

which covers the strict convergence).

(ii) If Ω is a strictly star-shaped domain, i.e., there exists x0 ∈Ω such that

(Ω− x0)⊂ t(Ω− x0) for all t > 1,

then (2.5) holds for every homogeneous operator A . Indeed, for t > 1 we can consider the

dilation of µ defined on t(Ω− x0) and then mollify it at a sufficiently small scale. We refer for

instance to [23] for details.

As a consequence of Theorem 2.7 and of Remark 2.8 we explicitly state the following corollary,

which extends the lower semicontinuity result of [28] into a full relaxation result. The only other

relaxation result in this direction, albeit for special functions of bounded deformation, seems to be

in [7], other results in this area are discussed in [28] and the references therein.

Corollary 2.9. Let f : Ω×Rd×d
sym → [0,∞) be a continuous integrand, uniformly Lipschitz in the

second argument, with linear growth at infinity, and such that there exists a modulus of continuity ω

as in (3.2). Further, suppose that the strong recession function

f ∞(x,A) exists for all (x,A) ∈Ω×Rd×d
sym .

Consider the functional

G [u] :=
ˆ

Ω

f (x,E u(x)) dx,

defined for u ∈ LD(Ω) := {u ∈ BD(Ω) : Esu = 0}, where Eu := (Du+DuT )/2 ∈M (Ω;Rd×d
sym ) is
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2.1 Introduction

the symmetrized distributional derivative of u ∈ BD(Ω) and where

Eu = E uL d
Ω+

dEsu
d|Esu|

|Esu|

is its Radon–Nikodým decomposition with respect to L d .

Then, the lower semicontinuous envelope of G with respect to weak*-convergence in BD(Ω) is

given by the functional

G [u] :=
ˆ

Ω

SQ f (x,E u(x)) dx+
ˆ

Ω

(SQ f )#
(

x,
dEsu

d|Esu|
(x)
)

d|Esu|(x),

where SQ f denotes the symmetric-quasiconvex envelope of f with respect to the second argument

(i.e., the curlcurl-quasiconvex envelope of f (x, q) in the sense of Definition 2.28).

Our proofs are based on new tools to study singularities in PDE-constrained measures. Concretely,

we exploit the recent developments on the structure of A -free measures obtained in [11]. We remark

that the study of the singular part – up to now the most complicated argument in the proof – now only

requires a fairly straightforward (classical) convexity argument. More precisely, the main theorem

of [18] establishes that the restriction of f # to the linear space spanned by the wave cone is in fact

convex at all points of ΛA (in the sense that a supporting hyperplane exists). Moreover, by [11],

dµs

d|µs|
(x) ∈ ΛA for |µs|-a.e. x ∈Ω. (2.6)

Thus, combining these two assertions, we gain classical convexity for f # at singular points, which

can be exploited via the theory of generalized Young measures developed in [1, 13, 19].

Remark 2.10 (different notions of recession function). Note that both in Theorem 2.2 and The-

orem 2.6 the existence of the strong recession function f ∞ is assumed, in contrast with the results

in [2, 5, 15] where this is not imposed.

The need for this assumption comes from the use of Young measure techniques which seem to

be better suited to deal with the singular part of the measure, as we already discussed above. In the

aforementioned references a direct blow up approach is instead performed and this allows to deal

directly with the functional in (2.1). The blow-up techniques, however, rely strongly on the fact that

A is a homogeneous first-order operator. Indeed, it is not hard to check that for all “elementary”

A -free measures of the form

µ = P0λ , where P0 ∈ ΛA , λ ∈M+(Rd),

the scalar measure λ is necessarily translation invariant along orthogonal directions to the character-

istic set

Ξ(P0) :=
{

ξ ∈ Rd : P0 ∈ kerA(ξ )
}
,

which turns out to be a subspace of Rd whenever A is a first-order operator. The subspace structure
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

and the aforementioned translation invariance is then used to perform homogenization-type argu-

ments. Due to the lack of linearity of the map

ξ 7→ Ak(ξ ) for k > 1,

the structure of elementary A -free measures for general operators is more complicated and not yet

fully understood (see however [10, 28] for the case A = curlcurl). This prevents, at the moment,

the use of a “pure” blow-up techniques and forces us to pass through the combination of the results

of [11, 18] with the Young measure approach.

This paper is organized as follows: First, in Section 2.2, we introduce all the necessary notation and

prove auxiliary results. Then, in Section 2.3, we establish the central Jensen-type inequalities, which

immediately yield the proof of Theorems 2.2 and 2.4 in Section 2.4. The proofs of Theorems 2.6

and 2.7 are given in Section 2.5.

Acknowledgments

A. A.-R. is supported by a scholarship from the Hausdorff Center of Mathematics and the University

of Bonn through a DFG grant; the research conducted in this paper forms part of the first author’s

Ph.D. thesis at the University of Bonn. G. D. P. is supported by the MIUR SIR-grant “Geometric

Variational Problems” (RBSI14RVEZ). F. R. acknowledges the support from an EPSRC Research

Fellowship on “Singularities in Nonlinear PDEs” (EP/L018934/1).

2.2 Notation and preliminaries

We write M (Ω;RN) and Mloc(Ω;RN) to denote the spaces of bounded Radon measures and Radon

measures on Ω⊂RN , which are the duals of C0(Ω;RN) and Cc(Ω;RN) respectively. Here, C0(Ω;RN)

is the completion of Cc(Ω;RN) with respect to the ‖ q‖∞ norm, and, in the second case, Cc(Ω;RN) is

understood as the nested union of Banach spaces of the form C0(Km) where Km ↗ Ω and each Km

is a compact subset of Rd . The set of probability measures over a locally compact space X shall be

denoted by

M 1(X) :=
{

µ ∈M (X) : µ is a positive measure, and |µ|(X) = 1
}
.

We will often make use of the following metrizability principles:

1. Bounded sets of M (Ω;RN) are metrizable in the sense that there exists a metric d which

induces the weak* topology, that is,

sup
j∈N
|µ j|(Ω)< ∞ and d(µ j,µ)→ 0 ⇔ µ j

∗
⇀ µ in M (Ω;RN).

2. There exists a complete and separable metric d on Mloc(Ω;RN). Moreover, convergence with

respect to this metric coincides with the weak* convergence of Radon measures (see Remark
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2.2 Notation and preliminaries

14.15 in [21]).

We write the Radon–Nikodým decomposition of a measure µ ∈M (Ω;RN) as

µ =
dµ

dL d L d
Ω+µ

s, (2.7)

where dµ

dL d ∈ L1(Ω;RN) and µs ∈M (Ω;RN) is singular with respect to L d .

2.2.1 Integrands and Young measures

For f ∈ C(Ω×RN) define the transformation

(S f )(x, Â) := (1−|Â|) f
(

x,
Â

1−|Â|

)
, (x, Â) ∈Ω×BN ,

where BN denotes the open unit ball in RN . Then, S f ∈ C(Ω×BN). We set

E(Ω;RN) :=
{

f ∈ C(Ω×RN) : S f extends to C(Ω×BN)
}
.

In particular, all f ∈ E(Ω;RN) have linear growth at infinity, i.e., there exists a positive constant M

such that | f (x,A)| ≤M(1+ |A|) for all x ∈Ω and all A ∈ RN . With the norm

‖ f‖E(Ω;RN) := ‖S f‖∞, f ∈ E(Ω;RN),

the space E(Ω;RN) turns out to be a Banach space. Also, by definition, for each f ∈ E(Ω;RN) the

limit

f ∞(x,A) := lim
x′→x
A′→A
t→∞

f (x′, tA′)
t

, (x,A) ∈Ω×RN ,

exists and defines a positively 1-homogeneous function called the strong recession function of f .

Even if one drops the dependence on x, the recession function h∞ might not exist for h ∈ C(RN).

Instead, one can always define the upper and lower recession functions

f #(x,A) := limsup
x′→x
A′→A
t→∞

f (x′, tA′)
t

,

f#(x,A) := liminf
x′→x
A′→A
t→∞

f (x′, tA′)
t

,

which again turn out to be positively 1-homogeneous. If f is x-uniformly Lipschitz continuous in the

A-variable and there exists a modulus of continuity ω : [0,∞)→ [0,∞) (increasing, continuous, and

ω(0) = 0) such that

| f (x,A)− f (y,A)| ≤ ω(|x− y|)(1+ |A|), x,y ∈Ω, A ∈ RN ,
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

then the definitions of f ∞, f #, and f# simplify to

f ∞(x,A) := lim
t→∞

f (x, tA)
t

,

f #(x,A) := limsup
t→∞

f (x, tA)
t

,

f#(x,A) := liminf
t→∞

f (x, tA)
t

.

A natural action of E(Ω;RN) on the space M (Ω;RN) is given by

µ 7→
ˆ

Ω

f
(

x,
dµ

dL N (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).

In particular, for f (x,A) =
√

1+ |A|2 ∈ E(Ω;RN), for which f ∞(A) = |A|, we define the area func-

tional

〈µ 〉(Ω) :=
ˆ

Ω

√
1+
∣∣∣ dµ

dL N

∣∣∣2 dx+ |µs|(Ω), µ ∈M (Ω;RN). (2.8)

In addition to the well-known weak* convergence of measures, we say that a sequence (µ j) con-

verges area-strictly to µ in M (Ω;RN) if

µ j
∗
⇀ µ in M (Ω;RN) and 〈µ j 〉(Ω)→ 〈µ 〉(Ω).

This notion of convergence turns out to be stronger than the conventional strict convergence of

measures, which means that

µ j
∗
⇀ µ in M (Ω;RN) and |µ j|(Ω)→ |µ|(Ω).

Indeed, the area-strict convergence, as opposed to the usual strict convergence, prohibits one-dimensional

oscillations. The meaning of area-strict convergence becomes clear when considering the following

version of Reshetnyak’s continuity theorem, which entails that the topology generated by area-strict

convergence is the coarsest topology under which the natural action of E(Ω;RN) on M (Ω;RN) is

continuous.

Theorem 2.11 (Theorem 5 in [20]). For every integrand f ∈ E(Ω;RN), the functional

µ 7→
ˆ

Ω

f
(

x,
dµ

dL N (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x),

is area-strictly continuous on M (Ω;RN).

Remark 2.12. Notice that if µ ∈M (Rd ;RN), then µε → µ area-strictly, where µε is the mollifi-

cation of µ with a family of standard convolution kernels, µε := µ ∗ρε and ρε(x) := ε−dρ(x/ε) for

ρ ∈ C∞
c (B1) positive and even function satisfying

´
ρ dx = 1.

Generalized Young measures form a set of dual objects to the integrands in E(Ω;RN). We recall
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2.2 Notation and preliminaries

briefly some aspects of this theory, which was introduced by DiPerna and Majda in [13] and later

extended in [1, 19].

Definition 2.13 (generalized Young measure). A generalized Young measure, parameterized by an

open set Ω⊂ Rd , and with values in RN , is a triple ν = (νx,λν ,ν
∞
x ), where

(i) (νx)x∈Ω ⊂M 1(RN) is a parameterized family of probability measures on RN ,

(ii) λν ∈M+(Ω) is a positive finite Radon measure on Ω, and

(iii) (ν∞
x )x∈Ω

⊂M 1(SN−1) is a parametrized family of probability measures on the unit sphere

SN−1.

Additionally, we require that

(iv) the map x 7→ νx is weakly* measurable with respect to L d ,

(v) the map x 7→ ν∞
x is weakly* measurable with respect to λν , and

(vi) x 7→
〈
| q|,νx

〉
∈ L1(Ω).

The set of all such Young measures is denoted by Y(Ω;RN).

Similarly we say that ν ∈ Yloc(Ω;RN) if ν ∈ Y(E;RN) for all E b Ω.

Here, weak* measurability means that the functions x 7→
〈

f (x, q),νx
〉

(respectively x 7→
〈

f ∞(x, q),ν∞
x
〉
)

are Lebesgue measurable (respectively λν -measurable) for all Carathéodory integrands f : Ω×RN→
R (measurable in their first argument and continuous in their second argument).

For an integrand f ∈ E(Ω;RN) and a Young measure ν ∈ Y(Ω;RN), we define the duality paring

between f and ν as follows:

〈〈
f ,ν
〉〉

:=
ˆ

Ω

〈
f (x, q),νx

〉
dx+

ˆ
Ω

〈
f ∞(x, q),ν∞

x
〉

dλν(x).

In many cases it will be sufficient to work with functions f ∈ E(Ω;RN) that are Lipschitz continu-

ous. The following density lemma can be found in [19, Lemma 3].

Lemma 2.14. There exists a countable set of functions { fm} = {ϕm⊗ hm ∈ C(Ω)×C(RN) : m ∈
N} ⊂ E(Ω;RN) such that for two Young measures ν1,ν2 ∈ Y(Ω;RN) the implication

〈〈 fm,ν1〉〉= 〈〈 fm,ν2〉〉 ∀m ∈ N =⇒ ν1 = ν2

holds. Moreover, all the hm can be chosen to be Lipschitz continuous.

Since Y(Ω;RN) is contained in the dual space of E(Ω;RN) via the duality pairing 〈〈 q, q〉〉, we say

that a sequence of Young measures (ν j)⊂Y(Ω;RN) converges weakly* to ν ∈Y(Ω;RN), in symbols

ν j
∗
⇁ ν , if 〈〈

f ,ν j
〉〉
→
〈〈

f ,ν
〉〉

for all f ∈ E(Ω;RN).
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Fundamental for all Young measure theory is the following compactness result, see [19, Section

3.1] for a proof.

Lemma 2.15 (compactness). Let (ν j)⊂ Y(Ω;RN) be a sequence of Young measures satisfying

(i) the functions x 7→
〈
| · |,ν j

〉
are uniformly bounded in L1(Ω),

(ii) sup j λν j(Ω)< ∞.

Then, there exists a subsequence (not relabeled) and ν ∈ Y(Ω;RN) such that ν j
∗
⇁ ν in Y(Ω;RN).

The Radon–Nikodým decomposition (2.7) induces a natural embedding of M (Ω;RN) into Y(Ω;RN)

via the identification µ 7→ δ [µ], where

(δ [µ])x := δ dµ

dL d (x)
, λδ [µ] := |µs|, (δ [µ])∞

x := δ dµs
d|µs| (x)

.

In this sense, we say that the sequence of measures (µ j) generates the Young measure ν if δ [µh]
∗
⇁ ν

in Y(Ω;RN); we write

µ j
Y→ ν .

The barycenter of a Young measure ν ∈ Y(Ω;RN) is defined as the measure

[ν ] :=
〈
id,νx

〉
L d

Ω+
〈
id,ν∞

x
〉

λν ∈M (Ω;RN).

Using the notation above it is clear that for (µ j)⊂M (Ω;RN) it holds that µ j
∗
⇀ [ν ], as measures on

Ω, if µ j
Y→ ν .

Remark 2.16. For a sequence (µ j) ⊂M (Ω;RN) that area-strictly converges to some limit µ ∈
M (Ω;RN), it is relatively easy to characterize the (unique) Young measure it generates. Indeed, an

immediate consequence of the Separation Lemma 2.14 and Theorem 2.11 is that

µ j→ µ area-strictly in Ω ⇐⇒ µ j
Y→ δ [µ] ∈ Y(Ω;RN).

Young measures generated by means of periodic homogenization can be easily computed, see

Lemma A.1 in [6].

Lemma 2.17 (oscillation measures). Let 1 ≤ p < ∞ and let w ∈ Lp
loc(R

d ;RN) be a Q-periodic

function and let m ∈ N. Define the (Q/m)-periodic functions wm(x) := w(mx). Then,

wm ⇀ w(x) :=
ˆ

Q
w(y) dy

in Lp
loc(R

d ;RN).

In particular, the sequence (wm) ⊂ L1
loc(Rd ;RN) generates the homogeneous (local) Young mea-

sure ν = (δw,0, q) ∈ Yloc(Rd ;RN) (since λν is the zero measure, the ν∞
x component can be occupied
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by any parameterized family of probability measures in M 1(SN−1)), where

〈h,δw〉 :=
ˆ

Q
h(w(y)) dy for all h ∈ C(Rd) with linear growth at infinity.

In some cases it will be necessary to determine the smallest linear space containing the support of

a Young measure. With this aim in mind, we state the following version of Theorem 2.5 in [1]:

Lemma 2.18. Let (u j) be a sequence in L1(Ω;RN) generating a Young measure ν ∈ Y(Ω;RN) and

let V be a subspace of RN such that u j(x) ∈V for L d-a.e. x ∈Ω. Then,

(i) suppνx ⊂V for L d-a.e. x ∈Ω,

(ii) suppν∞
x ⊂V ∩SN−1 for λν -a.e. x ∈Ω.

Finally, we have the following approximation lemma, see [1, Lemma 2.3] for a proof.

Lemma 2.19. Let f : Ω×RN → R be an upper semicontinuous integrand with linear growth at

infinity. Then, there exists a decreasing sequence ( fm)⊂ E(Ω;RN) such that

inf
m∈N

fm = lim
m→∞

fm = f , inf
m∈N

f ∞
m = lim

m→∞
f ∞
m = f # (pointwise).

Furthermore, the linear growth constants of the fm’s can be chosen to be bounded by the linear growth

constant of f .

By approximation, we thus get:

Corollary 2.20. Let f : Ω×RN → R be an upper semicontinuous Borel integrand. Then the func-

tional

ν 7→
ˆ

Ω

〈 f (x, q),νx〉 dx+
ˆ

Ω

〈 f #(x, q),ν∞
x 〉 dλν(x)

is sequentially weakly* upper semicontinuous on Y(Ω;RN).

Similarly, if f : Ω×RN → R is a lower semicontinuous Borel integrand, then the functional

ν 7→
ˆ

Ω

〈 f (x, q),νx〉 dx+
ˆ

Ω

〈 f#(x, q),ν∞
x 〉 dλν(x)

is sequentially weakly* lower semicontinuous on Y(Ω;RN).

2.2.2 Tangent measures

In this section we recall the notion of tangent measures, as introduced by Preiss [27] (with the excep-

tion that we always include the zero measure as a tangent measure).

Let µ ∈M (Ω;RN) and consider the map T (x0,r)(x) := (x−x0)/r, which blows up Br(x0), the open

ball around x0 ∈Ω with radius r > 0, into the open unit ball B1. The push-forward of µ under T (x0,r)

is given by the measure

T (x0,r)
# µ(B) := µ(x0 + rB), B⊂ r−1(Ω− x0) a Borel set.
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

We say that ν is a tangent measure to µ at a point x0 ∈ Rd if there exist sequences rm > 0, cm > 0

with rm ↓ 0 such that

cmT (x0,rm)
# µ

∗
⇀ ν in Mloc(Rd ;RN).

The set of all such tangent measures is denoted by Tan(µ,x0) and the sequence cmT (x0,rm)
# µ is called a

blow-up sequence. Using the canonical zero extension that maps the space M (Ω;RN) into the space

M (Rd ;RN) we may use most of the results contained in the general theory for tangent measures

when dealing with tangent measures defined on smaller domains.

Since we will frequently restrict tangent measures to the d-dimensional unit cube Q :=(−1/2,1/2)d ,

we set

TanQ(µ,x0) :=
{

σ Q : σ ∈ Tan(µ,x0)
}
.

One can show (see Remark 14.4 in [21]) that for any non-zero σ ∈ Tan(µ,x0) it is always possible

to choose the scaling constants cm > 0 in the blow-up sequence to be

cm := cµ(x0 + rmU)−1

for any open and bounded set U ⊂ Rd containing the origin and with the property that σ(U)> 0, for

some positive constant c = c(U) (this may involve passing to a subsequence).

A special property of tangent measures is that at |µ|-almost every x0 ∈ Rd it holds that

σ = w*- lim
m→∞

cmT (x0,rm)
# µ ⇐⇒ |σ |= w*- lim

m→∞
cmT (x0,rm)

# |µ|, (2.9)

where the (local*) weak* limits are to be understood in the spaces Mloc(Rd ;RN) and M+
loc(R

d),

respectively. A proof of this fact can be found in Theorem 2.44 of [3]. In particular, this implies

Tan(µ,x0) =
dµ

d|µ|
(x0) ·Tan(|µ|,x0).

If µ,λ ∈M+
loc(R

d) are two Radon measures with the property that µ� λ , i.e., that µ is absolutely

continuous with respect to λ , then (see Lemma 14.6 of [21])

Tan(µ,x0) = Tan(λ ,x0) for µ-almost every x0 ∈ Rd , (2.10)

and in particular if f ∈ L1
loc(Rd ,λ ;RN), i.e., f is is λ -integrable,

Tan( f λ ,x0) = f (x0) ·Tan(λ ,x0) for λ -a.e. x0 ∈ Rd .

On the other hand, at every x0 ∈ supp µ such that

lim
r↓0

µ(Br(x0)\E)
µ(Br(x0))

= 0
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for some Borel set E ⊂ Rd , it holds that

Tan(µ,x0) = Tan(µ E,x0).

A simple consequence of (2.10) is

Tan(|µ|,x0) = Tan
(
L d ,x0

)
for

d|µ|
dL d L d-a.e. x0 ∈ Rd .

This implies

Tan(µ,x0) =

{
α

dµ

dL d (x0)L
d : α ∈ [0,∞)

}
for L d-a.e. x0 ∈ Rd . (2.11)

We shall refer to such points as regular points of µ (as any blow-up measure is a multiple of the

d-dimensional Lebesgue measure). Furthermore, for every regular point x0 there exists a sequence

rm ↓ 0 and a positive constant c such that

cr−d
m (T (x0,rm)

# µ)
∗
⇀

dµ

dL d (x0)L
d in Mloc(Rd ;RN).

2.2.3 Rigidity results

As discussed in the introduction, for a linear operator A := ∑|α|≤k Aα∂ α , the wave cone

ΛA :=
⋃
|ξ |=1

kerAk(ξ ) ⊂ RN

contains those amplitudes along which is possible to have “one-directional” oscillations or concen-

trations, or equivalently, it contains the amplitudes along which the system loses its ellipticity.

The main result of [11] asserts that the polar vector of the singular part of an A -free measure µ

necessarily has to lie in ΛA :

Theorem 2.21. Let Ω⊂Rd be an open set and let µ ∈M (Ω;RN) be an A -free Radon measure on

Ω with values in RN , i.e.,

A µ = 0 in the sense of distributions.

Then,
dµ

d|µ|
(x) ∈ ΛA for |µs|-a.e. x ∈Ω.

Remark 2.22. The proof of this result does not require A to satisfy Murat’s constant rank condi-

tion (2.2). However, for the present work, this requirement cannot be dispensed with in the following

decomposition by Fonseca and Müller [16, Lemma 2.14], where it is needed for the Fourier projection

arguments.

Lemma 2.23 (projection). Let A be a homogeneous differential operator satisfying the constant
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

rank property (2.2). Then, for every 1 < p < ∞, there exists a linear projection operator

P : Lp
per(Q;RN)→ Lp

per(Q;RN)

and a positive constant cp > 0 such that

A (Pu) = 0,
ˆ

Q
Pu dy = 0, ‖u−Pu‖Lp(Q) ≤ cp‖A u‖W−k,p

per (Q)
,

for every u ∈ Lp
per(Q;RN) with

´
Q u dy = 0.

Remark 2.24. Here, Wk,p
per(Q) (1 < p < ∞) denotes the space of Wk,p(Q)-maps, which can be Q-

periodically extended to a Wk,p
loc(R

d)-map; the space W−k,q
per (Q) with 1/p+ 1/q = 1 is its dual. Note

that the dual norm is equivalent to ∥∥∥∥F−1
[

û(ξ )
(1+ |ξ |2)k/2

]∥∥∥∥
Lq(Q)

,

where û(ξ ), ξ ∈ Zd , denotes the Fourier coefficients on torus and F−1 is the inverse Fourier trans-

form. In the case
´

Q u dx = 0 (hence û(0) = 0), this norm is also equivalent to the norm∥∥∥∥F−1
[

û(ξ )
|ξ |k

]∥∥∥∥
Lq(Q)

since the Fourier multipliers (1+ |ξ |2)−k/2 and |ξ |−k are comparable (by the Mihlin multiplier theo-

rem) for all ξ with |ξ | ≥ 1.

Proof. The proof given in [16] technically applies only to first-order differential operators. However,

the result can be extended to operators of any degree, as long as they are homogeneous. We shortly

recall how this is done in the next lines.

By definition,

rankAk(ξ ) = rankA(ξ ) = r for all ξ ∈ Sd−1. (2.12)

For each ξ ∈ Rd we write P(ξ ) : RN → RN to denote the orthogonal projection onto kerA(ξ ), and

by Q(ξ ) we denote the left inverse of A(ξ ).

It follows from the positive homogeneity of A that P : RN \ {0} → RN ⊗RN is 0-homogeneous.

Moreover, (idRN −P(ξ )) = Q(λξ )A(λξ ) = λ kQ(λξ )A(ξ ) and hence Q : RN \ {0} → RN ⊗RN is

homogeneous of degree −k. In light of (2.12), both maps are smooth (see Proposition 2.7 in [16]).

Since the map ξ 7→ P(ξ ) os homogeneous of degree 0 and is infinitely differentiable in SN−1, by

Proposition 2.13 in [16], the map defined on C∞
per(Q;RN) by

Pu(w) := ∑
ξ∈Zd\{0}

P(ξ )i jû j(ξ )e2πiξ ·w,

where {û(ξ )}Zd are the Fourier coefficients of u ∈ Lp(Q;RN), extends to a (p, p)-Fourier multiplier
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P on Lp(Q;RN) for all 1 < p < ∞.

Since P(ξ ) is a projection, so it is P:

(P ◦P)u = ∑
ξ∈Zd\{0}

(P(ξ )◦P(ξ ))û(ξ )e2πiξ ·w

= ∑
ξ∈Zd\{0}

P(ξ )û(ξ )e2πiλ ·w = Pu.

Moreover,
̂(A (Pu))(ξ ) = A(ξ )(̂Pu)(ξ ) = A(ξ )[P(ξ )û(ξ )] = 0

for all ξ ∈ Zd \{0}. Since (̂Pu)(0) = 0, we get

ˆ
Q

Pu dy = 0, and A (Pu) = 0.

Finally, let u ∈ C∞
per(Q;RN). We use that A and Q are k-homogeneous and (−k)-homogeneous,

respectivel, to show that

û(ξ )−P̂u(ξ ) = (idRN −P(ξ ))û(ξ )

=Q(ξ )A(ξ )û(ξ ) =Q
(

ξ

|ξ |

)
1
|ξ |k

A(ξ )û(ξ ),

for all ξ ∈ Zd \{0}, and therefore, via the Mihlin multiplier theorem and Remark 2.24, that

‖u−Pu‖Lp
per(Q) ≤ cp‖A u‖W−k,p

per (Q)

for all u ∈ C∞
per(Q;RN) with

´
Q u dy = 0; the general case follows by approximation.

Lemma 2.23 implies that every Q-periodic u∈ Lp(Q;RN) with 1 < p < ∞ and mean value zero can

be decomposed as the sum

u = v+w, v = Pu,

where

A v = 0 and ‖w‖Lp(Q) ≤ cp‖A u‖W−k,p
per (Q)

.

A crucial issue in lower semicontinuity problems is the understanding of oscillation and concentra-

tion effects in weakly (weakly*) convergent sequences. In our setting, we are interested in sequences

of asymptotically A -free measures generating what we naturally term A -free Young measures. The

study of general A -free Young measures can be reduced to understanding oscillations in the class

of periodic A -free fields. This is expressed in the next lemma, which is a variant of Proposition 3.1

in [14] for higher-order operators (see also Lemma 2.20 in [5]).

Lemma 2.25 (periodic generators). Let A be an homogeneous linear partial differential operator
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

satisfying the constant rank property (2.2). Let (u j),(v j)⊂ L1(Q;RN) be sequences such that

u j− v j
∗
⇀ 0 in M (Q;RN) and |u j|+ |v j|

∗
⇀ Λ in M+(Q)

with Λ(∂Q) = 0 and

A (u j− v j)→ 0 in W−k,q(Q;Rn) for some 1 < q < d/(d−1).

Let f : RN → R be a Lipschitz function and assume that the sequence (u j) generates the Young

measure ν ∈ Y(Q;RN). Then, there exists another sequence (z j)⊂ C∞
per(Q;RN) such that

A z j = 0,
ˆ

Q
z j = 0, z j

∗
⇀ 0 in M (Q;RN),

and (up to taking a subsequence of the v j’s) the sequence (v j + z j) also generates the Young measure

ν , i.e.,

(v j + z j)
Y→ ν in Y(Q;RN).

Moreover,

lim
j→∞

ˆ
Q

f (u j) dx = lim
j→∞

ˆ
Q

f (v j + z j) dx.

Note that the sequence (z j) may depend on the choice of f (since 1
Ω
⊗ f is not necessarily in

E(Ω;RN)).

Proof. Consider a family of cut-off functions ψm ∈ C∞
c (Q; [0,1]) with ψm ≡ 1 in the set

{y ∈ Q : dist(y,∂Q)> 1/m}

and define

wm
j := (u j− v j)ψm ∈ Cc(Q;RN).

Since ψm ∈ C∞
c (Q), it also holds that

wm
j
∗
⇀ 0 in M (Q;RN) as j→ ∞, for every m ∈ N.

Furthermore,

A wm
j = A (u j− v j)ψm + ∑

|α|=k,
1≤|β |≤k

cαβ Aα∂
α−β (u j− v j)∂

β
ψm (2.13)

where cαβ ∈N. The convergence u j−v j
∗
⇀ 0 and the compact embedding M (Q;RN)

c
↪→W−1,q(Q;RN)

entail, via (2.13), the strong convergence

A wm
j → 0 in W−k,q(Q;Rn) as j→ ∞. (2.14)

Let, for ε > 0, ρε := ρ(x/ε) where ρ ∈C∞
c (B1) is an even mollifier. For every m∈N, let (ε( j,m)) j
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be a sequence with ε( j,m) ↓ 0 as j→ ∞ such that for ŵm
j := wm

j ∗ρε( j,m) it holds that

‖wm
j − ŵm

j ‖L1(Q) ≤
1
j
.

Fix ϕ ∈Wk,q(Q;Rn)∩Cc(Q;Rn) and fix m ∈ N. Then, for j ∈ N sufficiently large, it holds that

|
〈
A ŵm

j ,ϕ
〉
|= |

〈
A wm

j ,ϕ ∗ρε( j,m)

〉
|

≤ ‖A wm
j ‖W−k,q(Q)‖ϕ ∗ρε( j,m)‖Wk,q(Q)

≤ ‖A wm
j ‖W−k,q(Q)‖ϕ‖Wk,q(Q).

The case when ϕ belongs to Wk,q
0 (Q;Rn) follows by approximation. Hence, from (2.14) we obtain

that

‖A ŵm
j ‖W−k,q(Q)→ 0 as j→ ∞, for every m ∈ N. (2.15)

The second step consists of applying the projection of Lemma 2.23 to the mollified functions ŵm
j .

Define w̃m
j := ŵm

j −
´

Q ŵm
j dx (by a slight abuse of notation, we also denote by w̃m

j its Q-periodic

extension to Rd) and zm
j := Pw̃m

j . It follows from Lemma 2.23 that

lim
j→∞
‖ŵm

j − zm
j ‖L1

per(Q) ≤ lim
j→∞
‖w̃m

j − zm
j ‖Lq

per(Q)+ lim
j→∞

∣∣∣∣ˆ
Q

ŵm
j dy

∣∣∣∣
≤ cq · lim

j→∞
‖A ŵm

j ‖W−k,q
per (Q)

+ lim
j→∞

∣∣∣∣ˆ
Q

wm
j dy

∣∣∣∣
= 0, (2.16)

where in the first inequality we have exploited that L d(Q) = 1, and for the last inequality we have

used the equality of the norms

‖u‖W−k,p
per (Q)

= ‖u‖W−k,p(Q),

which holds for functions u ∈ C∞
per(Q;Rd) with u = 0 on ∂Q and all 1 < p < ∞, together with (2.15).

Fix ϕ ⊗ g ∈ C(Q)×W1,∞(RN) with ϕ ⊗ g ∈ E(Q;RN). Using the Lipschitz continuity of g, we

have that
ˆ

Q
ϕ g(u j) dy =

ˆ
Q

ϕ g(u j− v j + v j) dy

≥
ˆ

Q
ϕ g(ŵm

j + v j) dy−‖ϕ‖∞ ·Lip(g) ·
ˆ

Q
|1−ψm|(|u j|+ |v j|) dy

−‖ϕ‖∞ ·Lip(g) · ‖wm
j − ŵm

j ‖L1(Q)

≥
ˆ

Q
ϕ g(zm

j + v j) dy−‖ϕ‖∞ ·Lip(g) ·
(ˆ

Q
|1−ψm|(|u j|+ |v j|) dy

+‖wm
j − ŵm

j ‖L1(Q)+‖ŵm
j − zm

j ‖L1(Q)

)
.
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

By taking the limit as j→ ∞ in the previous inequality we obtain, by (2.16), the lower bound

lim
j→∞

ˆ
Q

ϕ g(u j) dy≥ limsup
j→∞

ˆ
Q

ϕ g(zm
j + v j) dy

−‖ϕ‖∞ ·Lip(g) ·Λ
(
Q\Q(m−1)/m

)
for all m ∈ N, (2.17)

where Qr := rQ for r > 0. By the same argument one gets

lim
j→∞

ˆ
Q

ϕ g(u j) dy≤ liminf
j→∞

ˆ
Q

ϕ g(zm
j + v j) dy

+‖ϕ‖∞ ·Lip(g) ·Λ
(
Q\Q(m−1)/m

)
for all m ∈ N. (2.18)

Combining (2.17), (2.18) and using that Λ(∂Q) = 0, we first let j→ ∞ and then m→ ∞ to obtain

limsup
m→∞

limsup
j→∞

ˆ
Q

ϕ g(zm
j + v j) dy≤ lim

j→∞

ˆ
Q

ϕ g(u j) dy

≤ liminf
m→∞

liminf
j→∞

ˆ
Q

ϕ g(zm
j + v j) dy.

Let {gh}∞
h=0 where g0 :=1Q⊗ f and {ϕh⊗gh}h∈N is the family of integrands appearing in Lemma 2.14.

By a diagonalization argument on zm
j we may find a sequence (z j)⊂ C∞

per(Q;RN)∩kerA such that

ˆ
Q

z j dy = 0 for all j ∈ N, z j
∗
⇀ 0 in M (Q;RN),

and, for all h ∈ N0,

lim
j→∞

ˆ
Q

ϕh gh(u j) dy = lim
j→∞

ˆ
Q

ϕh gh(z j + v j) dy. (2.19)

Since (z j + v j) is uniformly bounded in L1(Q;RN), by Lemma 2.15 we may find a subsequence

(z j(i)+ v j(i))
Y→ ν̃ ∈ Y(Q;RN). In particular, since gm ∈ E(Ω;RN) for all h ∈ N,

lim
i→∞

ˆ
Q

ϕh gh(z j(i)+ v j(i)) =
〈〈

ϕh⊗gh, ν̃
〉〉
.

By combining with (2.19) we obtain

lim
j→∞

ˆ
Q

f (u j) dy = lim
j→∞

ˆ
Q

f (z j(i)+ v j(i)) dy,

and

〈〈
ϕm⊗gm, ν̃

〉〉
=
〈〈

ϕm⊗gm,ν
〉〉
,

where ν is the Young measure generated by u j. Lemma 2.14 now gives ν = ν̃ .
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2.2.4 Scaling properties of A -free measures

If A is a homogeneous operator, then

A [T (x0,r)
# µ] = 0 on (x0−Ω)/r,

for all A -free measures µ ∈M (Ω;RN). In general, the re-scaled measure T (x0,r)
# µ is a (T r

∗ A )-free

measure in (x0−Ω)/r, where T r
∗ A is the operator defined by

T r
∗ A :=

k

∑
h=0

rk−h A h,

where k is the degree of the operator A and

A h := ∑
|α|=h

Aα∂
α , for h = 0, . . . ,k.

Notice that, with this convention, (T r
∗ A )k = A k.

In the sequel it will be often convenient to work with weak* convergent sequences whose elements

are (T r
∗ A )-free measures; mostly due to a blow-up techniques. The following two results will be

useful.

Proposition 2.26 (high-order oscillations I). Let rm ↓ 0 be a sequence of positive numbers and let

(µm) be a sequence of A -free measures in M (Ω;RN) with the following property: there are positive

constants cm such that

γm := cmT (x0,rm)
# µm

∗
⇀ γ in Mloc(Rd ;RN). (2.20)

Then,

A k(cmT (x0,rm)
# µ j)→ 0 in W−k,q(Ω) for all 1 < q < d/(d−1).

Proof. Fix r > 0. The (T r
∗ A )-freeness of each T (x0,r)

# µ j yields

A k(T (x0,r)
# µ j) =−

k−1

∑
h=0

A h(rk−hT (x0,r)
# µ j), (2.21)

both sides interpreted in the sense of distributions. This implies that

rk−h
m cmT (x0,rm)

# µm
∗
⇀ 0 in Mloc(Rd ;RN), for every h = 0, . . . ,k−1;

in turn, the compact embedding Mloc(Rd ;RN)
c
↪→W−1,q

loc (Rd ;RN) entails the strong convergence

rk−h
m cmT (x0,rm)

# µm→ 0 in W−1,q
loc (Rd ;RN) for every h = 0, . . . ,k−1.

Hence,

A h(rk−h
m cmT (x0,r)

# µm)→ 0 locally in W−k,q(Rd ;RN) (2.22)

for every h = 0, . . . ,k−1. The assertion then follows from (2.21) and (2.22).
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Corollary 2.27 (high-order oscillations II). Let (γm) be any blow-up sequence of an A -free mea-

sure µ ∈M (Ω;RN), i.e.,

γm = cmT (x0,rm)
# µ

∗
⇀ γ in Mloc(Rd ;RN),

for some x0 ∈Ω, rm ↓ 0, cm > 0, and γ ∈ Tan(µ,x0). Then,

A k
γm→ 0 locally in W−k,q(Rd ;RN).

2.2.5 Fourier coefficients of A k-free sequences

We shall denote the subspace generated by the wave cone ΛA by

VA := spanΛA ⊂ RN .

Using Fourier series, it is relatively easy to understand the rigidity of A k-free periodic fields. To

fix ideas, let u be a Q-periodic field in L2
per(Rd ;RN)∩ kerA k with mean value zero (or equivalently

û(0) = 0). Applying the Fourier transform to A k u = 0, we find that

0 = F (A k u)(ξ ) = Ak(ξ )û(ξ ) for all ξ ∈ Zd .

Hence, û(ξ ) ∈ kerCAk(ξ ) for every ξ ∈ Zd (here, Ak(ξ ) is understood as a complex-valued tensor).

In particular, {
û(ξ ) : ξ ∈ Zd }⊂ CΛA .

Since u is a real vector-valued function, it immediately follows that

u ∈ L2
per(Q;VA ). (2.23)

Using a density argument one can show that, up to a constant term, also functions in L1
per(Q;RN)∩

kerA k take values only in VA . The relevance of this observation will be used later in conjunction

with Lemma 2.25 in Lemma 2.38.

2.2.6 A -quasiconvexity

We state some well-known and some more recent results regarding the properties of A -quasiconvex

integrands. This notion was first introduced by Morrey [22] in the case of curl-free vector fields,

where it is known as quasiconvexity, and later extended by Dacorogna [9] and Fonseca–Müller [16]

to general linear PDE-constraints.

A Borel function h : RN → R is called A -quasiconvex if

h(A)≤
ˆ

Q
h(A+w(y)) dy
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for all A ∈ RN and all Q-periodic w ∈ C∞(Rd ;RN) such that

A w = 0 and
ˆ

Q
w dx = 0.

For functions h that are not A -quasiconvex one may define the largest A -quasiconvex function

below h.

Definition 2.28 (A -quasiconvex envelope). Given a Borel function h : RN → R we define the A -

quasiconvex envelope of h at A ∈ RN as

(QA h)(A) := inf
{ˆ

Q
h(A+w(y)) dy : w ∈ C∞

per(Q;RN)∩kerA ,

ˆ
Q

w dy = 0
}
.

For a map f : Ω×RN → R we write QA f (x,A) for (QA f (x, q))(A) by a slight abuse of notation.

We recall from [16] that the A -quasiconvex envelope of an upper semicontinuous function is A -

quasiconvex and that it is actually the largest A -quasiconvex function below h.

Lemma 2.29. If h : RN → [0,∞) is upper semicontinuous, then QA h is upper semi-continuous and

A -quasiconvex. Furthermore, QA h is the largest A -quasiconvex function below h.

2.2.7 D-convexity

Let D be a balanced cone in RN , i.e., we assume that tA ∈ D for all A ∈ D and every t ∈ R. A

real-valued function h : RN → R is said to be D-convex provided its restrictions to all line segments

in RN with directions in D are convex. Here, D will always be the wave cone ΛA for the linear PDE

operator A .

Lemma 2.30. Let h : RN → [0,∞) be an integrand with linear growth at infinity. Further, suppose

that h is A k-quasiconvex. Then, h is ΛA -convex.

Proof. Let ξ ∈ Sd−1 and let A1,A2 ∈ Rd with P := A1−A2 ∈ kerAk(ξ ). We claim that

h(θA1 +(1−θ)A2)≤ θh(A1)+(1−θ)h(A2), for all θ ∈ (0,1).

Fix such a θ and consider the one-dimensional 1-periodic function

χ(s) := (1−θ)1[0,θ)(s)−θ1[θ ,1)(s), s ∈ R,

which has zero mean value. Fix ε ∈min{θ/2,(1−θ)/2} so that the mollified function χε := χ ∗ρε

has the following properties:

∣∣{s : χε = 1−θ
}∣∣≥ θ −2ε,

∣∣{s : χε =−θ
}∣∣≥ (1−θ)−2ε.
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Define the sequence of Q-periodic functions

uε := Pχε(y ·ξ ).

By construction, this is a C∞
per(Q;RN) function, it has zero mean value in Q, and since P ∈ kerA(ξ ),

it is easy to check that

A k uε =
dkχε

dsk (y ·ξ ) Ak(ξ )P = 0 in the sense of distributions.

Hence, by the definition of A k-quasiconvexity and our choice of ε , we have

h(θA1 +(1−θ)A2)≤
ˆ

Q
h(θA1 +(1−θ)A2 +uε) dy

≤ (θ −2ε)h(A1)+((1−θ)−2ε)h(A2)

+M(1+ |A1|+ |A2|+ |P|)4ε

Letting ε ↓ 0 in the previous inequality yields the claim.

The following is an immediate consequence of Lemmas 2.29 and 2.30.

Corollary 2.31. If h : RN → [0,∞) is upper semicontinuous, then (QA k h)# is an A k-quasiconvex

and ΛA -convex function.

To continue our discussion we define the notion of convexity at a point. Let h : RN →R be a Borel

function. We recall that Jensen’s definition of convexity states that h is convex if and only if

f
(ˆ

RN
A dν(A)

)
≤
ˆ
RN

h(A) dν(A) (2.24)

for all probability measures ν ∈M 1(RN).

A Borel function h : RN → R is said to be convex at a point A0 ∈ RN if (2.24) holds for for all

probability measures ν with barycenter A0, that is, every ν ∈M 1(RN) with
´
RN A dν = A0.

Returning to the convexity properties of A k-quasiconvex functions, it was recently shown by

Kirchheim and Kristensen [17, 18] that A k-quasiconvex and positively 1-homogeneous integrands

are actually convex at points of ΛA as long as

spanΛA = RN . (2.25)

In fact, their result is valid in the more general framework of D-convexity:

Theorem 2.32 (Theorem 1.1 of [18]). Let D be a balanced cone of directions in RN such that D

spans RN . If h : RN → R is D-convex and positively 1-homogeneous, then h is convex at each point

of D .

Condition (2.25) holds in several applications, for example in the space of gradients (A = curl) or
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the space of divergence-free fields (A = div). However, it does not necessarily hold in our framework

as is evidenced by the operator

A := A0∆ =
d

∑
i=1

A0∂ii,

where A0 ∈ Lin(RN ;Rn) with kerA0 6= RN .

Nevertheless, for our purposes it will be sufficient to use the convexity of f #|VA (x, q) in ΛA , which

is a direct consequence of Theorem 2.32.

Remark 2.33 (automatic convexity). Summing up, in the following we will often make use of the

implications from Lemma 2.29, Corollary 2.31 and Theorem 2.32: If f : Ω×RN →R is an integrand

with linear growth at infinity, then

f (x, q) is A k-quasiconvex and u.s.c. =⇒


f (x, q) is ΛA -convex in RN and

f #|VA (x, q) is convex in ΛA

,

f upper semicontinuous =⇒


QA k f (x, q) is ΛA -convex in RN and

(QA k f )#|VA (x, q) is convex in ΛA

.

2.2.8 Localization principles for Young measures

We state two general localization principles for Young measures, one at regular points and another

one at singular points. These are A -free versions of the localization principles developed for gradient

Young measures and BD-Young measures in [28, 29].

Definition 2.34 (A -free Young measure). We say that a Young measure ν ∈ Y(Ω;RN) is an A -

free Young measure in Ω, in symbols ν ∈ YA (Ω;RN), if and only if there exists a sequence (µ j) ⊂
M (Ω;RN) with A µ j→ 0 in W−k,q for some 1 < q < d/(d−1), and such that µ j

Y→ ν in Y(Ω;RN).

Proposition 2.35. Let ν ∈YA (Ω;RN) be an A -free Young measure. Then for L d-a.e. x0 ∈Ω there

exists a regular tangent A k-free Young measure σ ∈ YA k(Q;RN) to ν at x0, that is, σ is generated

by a sequence of asymptotically A k-free measures and

[σ ] ∈ TanQ([ν ],x0), σy = νx0 a.e.,

λσ =
dλν

dL d (x0)L
d ∈ TanQ(λν ,x0), σ

∞
y = ν

∞
x0

λσ -a.e.

Moreover, there exists a sequence (w j)⊂ C∞
per(Q;RN) ∩kerA such that w jL d Y→ σ in Y(Q;RN).

Proposition 2.36. Let ν ∈ YA (Ω;RN) be an A -free Young measure. Then there exists a set S ⊂Ω

with λ s
ν(Ω \ S) = 0 such that for all x0 ∈ S there exists a non-zero singular tangent A k-free Young

measure σ ∈ YA k(Q;RN) to ν at x0, that is, σ is generated by a sequence of asymptotically A k-free
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

measures and

[σ ] ∈ TanQ([ν ],x0), σy = δ0 a.e.,

λσ ∈ TanQ(λ
s
ν ,x0), λσ (Q) = 1, λσ (∂Q) = 0, σ

∞
y = ν

∞
x0

λσ -a.e.

Proof sketches for the last two results can be found in the appendix.

2.3 Jensen’s inequalities

In this section we establish generalized Jensen inequalities, which can be understood as a local man-

ifestation of lower semicontinuity. The proof of Theorem 2.2, under Assumption (i), which reads

f ∞(x,A) := lim
t→∞

f (x, tA)
t

exists for all (x,A) ∈Ω×RN ,

will easily follow from Propositions 2.37 and 2.39, by the very same argument used in the proof

of (2.32) below.

On the other hand, to prove the Theorem 2.2 under the weaker Assumption (ii),

f ∞(x,A) := lim
t→∞

f (x, tA)
t

exists for all (x,A) ∈Ω× spanΛA ,

requires to perform a direct blow-up argument for what concerns the regular part of µ and only

Proposition 2.39 is used in the proof.

2.3.1 Jensen’s inequality at regular points

We first consider regular points.

Proposition 2.37. Let ν ∈ YA (Ω;RN) be an A -free Young measure. Then, for L d-almost every

x0 ∈Ω it holds that

h
(〈

id,νx0

〉
+
〈
id,ν∞

x0

〉 dλν

dL d (x0)

)
≤
〈
h,νx0

〉
+
〈
h#,ν∞

x0

〉 dλν

dL d (x0),

for all upper semicontinuous and A k-quasiconvex h : RN → [0,∞) with linear growth at infinity.

Proof. We make use of Lemma 2.19 to get a collection {hm} ⊂ E(Ω;RN) such that hm ↓ h, h∞
m ↓ h#

pointwise in Ω and Ω respectively, all hm are Lipschitz continuous and have uniformly bounded linear

growth constants. Fix x0 ∈Ω such that there exists a regular tangent measure σ ∈YA k(Q;RN) of ν at

x0 as in Proposition 2.35, which is possible for L d-a.e. x0 ∈Ω. The localization principle for regular

points tells us that [σ ] = A0L d with

A0 :=
〈
id,νx0

〉
+
〈
id,ν∞

x0

〉 dλν

dL d (x0) ∈ RN ,
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2.3 Jensen’s inequalities

and that we might find a sequence z j ∈ C∞
per(Q;RN)∩kerA k with

´
Q z j dy = 0 and satisfying

(A0 + z j)L
d Y→ σ in Y(Q;RN). (2.26)

Fix m ∈ N. We use the fact that
´

Q z j dy = 0, (2.70) and the A k-quasiconvexity of h, to get for

every m ∈ N that

〈
hm,νx0

〉
+
〈
h∞

m,ν
∞
x0

〉 dλν

dL d (x0) =
1
|Qr|

〈〈
1Q⊗hm,σ

〉〉
= lim

j→∞
−
ˆ

Q
hm(A0 + z j(y)) dy

≥ limsup
j→∞

−
ˆ

Q
h(A0 + z j(y)) dy

≥ h(A0).

The result follows by letting m→ ∞ in the previous inequality and using the monotone convergence

theorem.

2.3.2 Jensen’s inequality at singular points

The strategy for singular points differs from the regular case as one cannot simply use the definition

of A k-quasiconvexity. The latter difficulty arises because the tangent measure at a singular point may

not be a multiple of the d-dimensional Lebesgue measure.

In order to circumvent this obstacle, we will first show that the support of the singular part of

the Young measures ν∞ at singular points is contained in the subspace VA of RN (see Lemma 2.38

below). Based on this, we invoke Theorem 2.32, which states that an A k-quasiconvex and positively

1-homogeneous function is actually convex at points in ΛA when restricted to VA . Then, the Jensen

inequality for A -free Young measures at singular points follows.

Lemma 2.38. Let σ ∈ YA k(Q;RN) be an A k-free Young measure with λσ (∂Q) = 0. Assume also

that

[σ ] ∈M (Q;VA ).

Then,

suppσ
∞
x ⊂VA ∩SN−1 for λσ -a.e. x ∈ Q.

Proof. By definition, we may find a sequence (µ j) ⊂M (Q;RN) with A µ j → 0 in W−k,q(Q) for

some q ∈ (1,d/(d− 1)), and such that (µ j) generates the Young measure σ . Notice that, since A k

is a homogeneous operator and Q is a strictly star-shaped domain, we may re-scale and mollify each

µ j into some u j ∈ L2(Q;RN) with the following property: the sequence (u j) also generates σ and

A u j→ 0 in W−k,q(Q). In particular,

u jL
d ∗
⇀ [σ ] in M (Q;RN).
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

On the other hand, A k([σ ]) = 0 and for every 0 < r < 1 the measure T (0,r)
# [σ ] is still an A k-free

measure on Q. Thus, letting r ↑ 1 and mollifying the measure T (0,r)
# [σ ] on a sufficiently small scale

(with respect to 1− r) we might find a sequence (v j)⊂ L2(Q;VA )∩kerA k such that

v jL
d ∗
⇀ [σ ] in M (Q;RN).

Hence,

u jL
d− v jL

d ∗
⇀ 0 in M (Q;RN), |u jL

d |+ |v jL
d | ∗⇀ Λ in M+(Q)

and Λ(∂Q) = 0. Here, we have used that λσ (∂Q) = 0.

We are now in position to apply Lemma 2.25 to the sequences (u j), (v j). There exists (possibly

passing to a subsequence in the v j’s) a sequence z j ∈ C∞
per(Q;RN)∩kerA k with z jL d ∗

⇀ 0 and such

that

v jL
d + z jL

d Y→ σ in M (Q;RN).

Recall from observation (2.23) that z j ∈ L2
per(Q;VA ) for every j ∈ N. Therefore,

(v j + z j) ∈ L2(Q;VA ) for all j ∈ N.

We conclude with an application of Lemma 2.18 (ii) to the sequence (v j + z j), which yields

suppσ
∞
x ⊂VA ∩SN−1 for λσ -a.e. x ∈ Q.

This finishes the proof.

Proposition 2.39. Let ν ∈ YA (Ω;RN) be an A -free Young measure. Then for λ s
ν -almost every

x0 ∈Ω it holds that

g
(〈

id,ν∞
x0

〉)
≤
〈
g,ν∞

x0

〉
for all ΛA -convex and positively 1-homogeneous functions g : RN → R.

Proof. Step 1: Characterization of the support of A -free Young measures. Let S be the set given by

Proposition 2.36, which has full λ s
ν -measure. Further, also the set

S′ :=
{

x ∈Ω :
〈
id,ν∞

x
〉
∈ ΛA

}
⊂Ω

has full λ s
ν -measure: Observe first that

[ν ]s =
〈
id,ν∞

x
〉

λ
s
ν(dx).

Since [ν ] is A -free, we thus infer from Theorem 2.21 that 〈id,ν∞
x 〉 ∈ ΛA for |[ν ]s|-a.e. x ∈Ω. On the

other hand, 〈id,ν∞
x 〉 = 0 ∈ ΛA for λ ∗ν -a.e. x ∈ Ω, where λ ∗ν is the singular part of λ s

ν with respect to

|[ν ]s|. This shows that S′ has full λ s
ν -measure.

Fix x0 ∈ S∩ S′ (which remains of full λ s
ν -measure in Ω). Let σ ∈ YA k(Q;RN) be the non-zero

singular tangent Young measure to ν at x0 given by Proposition 2.36 which according to the same
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2.3 Jensen’s inequalities

proposition verifies that λσ (Q) = 1 and λ (∂Q) = 0. On the one hand, since x0 ∈ S, it holds that

σy = δ0 L d-a.e. and σ
∞
y = ν

∞
x0

λσ -a.e.

On the other hand, we use the fact that x0 ∈ S′ to get

〈
id,ν∞

x0

〉
∈ ΛA and [σ ] =

〈
id,ν∞

x0

〉
λσ ∈M (Q;VA ). (2.27)

Note that, by (2.27), all the hypotheses of Lemma 2.38 are satisfied for σ . Thus,

suppν
∞
x0
= suppσ

∞
y ⊂VA for λσ -a.e. y ∈ Q.

This equality and the fact that λσ (Q)> 0 (recall that σ is a non-zero singular measure) yield

suppν
∞
x0
⊂VA for λ

s
ν -a.e. x0 ∈Ω. (2.28)

Step 2: Convexity of g on ΛA . The Kirchheim–Kristensen Theorem 2.32 states that the restriction

g|VA : VA ⊂ RN → R is a convex function at points A0 ∈ ΛA . In other words, for every probability

measure κ ∈P(RN) with 〈id,κ〉 ∈ ΛA and suppκ ⊂VA , the Jensen inequality

g
(ˆ

RN
A dκ(A)

)
≤
ˆ
RN

g(A) dκ(A)

holds. Hence, because of (2.27) and (2.28), it follows that

g
(〈

id,ν∞
x0

〉)
≤
〈
g,ν∞

x0

〉
.

This proves the assertion.

The following simple corollary will be important in the proof of Theorem 2.6.

Corollary 2.40. Let h : RN→R be an upper semicontinuous integrand with linear growth at infinity

and let ν ∈YA (Ω;RN) be an A -free Young measure. Then for L d-almost every x0 ∈Ω it holds that

QA k h
(〈

id,νx0

〉
+
〈
id,ν∞

x0

〉 dλν

dL d (x0)

)
≤
〈
h,νx0

〉
+
〈
h#,ν∞

x0

〉 dλν

dL d (x0).

Moreover, for λ s
ν -a.e. x0 ∈Ω it holds that

(QA k h)#(〈id,ν∞
x0

〉)
≤
〈
h#,ν∞

x0

〉
Proof. The proof follows by combining Propositions 2.37 and 2.39, Lemma 2.29, Corollary 2.31 and

the trivial inequalities QA k h ≤ h, (QA k h)# ≤ h#.
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

2.4 Proof of Theorems 2.2 and 2.4

Proof of Theorem 2.2. We will prove Theorem 2.2 in full generality, which means that we consider

asymptotically A -free sequences in the W−k,q-norm for some q ∈ (1,d/(d−1)); see Remark 2.3.

Proof under Assumption (i). Let µ j be a sequence in M (Ω;RN) weakly* converging to a limit µ

and assume furthermore that A µ j→ 0 in W−k,q(Ω;RN) for some q ∈ (1,d/(d−1)). Up to passing

to a subsequence, we might also assume that

liminf
j→∞

F [µ j] = lim
j→∞

F [µ j]

and that µ j
Y→ ν for some A -free Young measure ν ∈ YA (Ω;RN). Using the continuity of f and

representation of Corollary 2.20 we get

F [µ j] =
〈〈

f ,δ [µ j]
〉〉
→
〈〈

f ,ν
〉〉

as j→ ∞.

The positivity of f further lets us discard possible concentration of mass on ∂Ω,

lim
j→∞

F [µ j] =

ˆ
Ω

〈
f (x, q),νx

〉
dx+

ˆ
Ω

〈
f ∞(x, q),ν∞

x
〉

dλν(x)

≥
ˆ

Ω

(〈
f (x, q),νx

〉
+
〈

f ∞(x, q),ν∞
x
〉 dλν

dL d (x)
)

dx

+

ˆ
Ω

〈
f ∞(x, q),ν∞

x
〉

dλ
s
ν(x).

(2.29)

By assumption, f (x, q) ∈ C(RN) has linear growth at infinity. Hence we might apply Proposi-

tion 2.37 to get

f (x, q)(〈id,νx
〉
+
〈
id,ν∞

x
〉 dλν

dL d (x)
)
≤
〈

f (x, q),νx
〉
+
〈

f (x, q)#,ν∞
x
〉 dλν

dL d (x)

for L d-a.e. x ∈Ω. Likewise, we apply Proposition 2.39 to the functions f (x, q)# to obtain (recall that

under the present assumptions f ∞ = f #)

f (x, q)∞
(〈

id,ν∞
x
〉)
≤
〈

f (x, q)∞,ν∞
x
〉

at λ s
ν -a.e. x ∈Ω. Plugging these two Jensen-type inequalities into (2.29) yields

lim
j→∞

F [µ j]≥
ˆ

Ω

f (x, q)(〈id,νx
〉
+
〈
id,ν∞

x
〉 dλν

dL d (x)
)

dx

+

ˆ
Ω

f ∞(x, q)(〈idRN ,ν∞
x
〉)

dλ
s
ν(x).

(2.30)

Finally, since µ j
Y→ ν , it must hold that

〈
id,νx

〉
+
〈
id,ν∞

x
〉 dλν

dL d (x) =
dµ

dL d (x) for L d-a.e. x ∈ Ω, and
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〈
idRN ,ν∞

x
〉
λ

s
ν = µ

s ⇒ dµs

d|µs|
(x) =

〈
idRN ,ν∞

x
〉∣∣〈idRN ,ν∞

x
〉∣∣ for λ

s
ν -a.e. x ∈Ω.

We can use this representation and the fact that f ∞(x, q) is positively 1-homogeneous in the right hand

side of (2.30) to conclude

lim
j→∞

F [µ j]≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx

+

ˆ
Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d
(∣∣〈idRN ,ν∞

x
〉∣∣λ s

ν

)
(x)

=

ˆ
Ω

f
(

x,
dµ

dL d (x)
)

dx

+

ˆ
Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x) = F [µ].

This proves the claim under Assumption (i).

Proof under Assumption (ii). For a measure µ ∈M (Ω;RN), consider the functional

F #[µ;B] :=
ˆ

B
f
(

x,
dµ

dL d (x)
)

dx+
ˆ

B
f #
(

x,
dµs

d|µs|
(x)
)

d|µs|(x),

defined for any Borel subset B⊂Ω.

Let µ j be a sequence in M (Ω;RN) weakly* converging to a limit µ and assume furthermore that

A µ j→ 0 in W−k,q(Ω;RN) for some q ∈ (1,d/(d−1)). Define λ j ∈M+(Ω) via

λ j(B) := F #[µ j;B] for every Borel B⊂Ω.

We may find a (not relabeled) subsequence and positive measures λ ,Λ ∈M+(Ω) such that

λ j
∗
⇀ λ , |µ j|

∗
⇀ Λ in M+(Ω).

We claim that

dλ

dL d (x0)≥ f
(

x0,
dµ

dL d (x0)

)
for L d-a.e. x0 ∈Ω, (2.31)

dλ

d|µs|
(x0)≥ f #

(
x0,

dµs

d|µs|
(x0)

)
for |µs|-a.e. x0 ∈Ω. (2.32)

Notice that, if (2.31) and (2.32) hold, then the assertion of the theorem immediately follows. Indeed,

there exists a positive Radon measure Λ∗ ∈M+(Ω) (singular to the measure L d + |µs|) such that

λ =
dλ

dL d L d +
dλ

d|µs|
|µs|+Λ

∗.
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Using the Radon-Nikodým theorem, we then obtain that

liminf
j→∞

F #[µ j] = liminf
j→∞

λ j(Ω)

≥ λ (Ω)

≥
ˆ

Ω

dλ

dL d dx+
ˆ

Ω

dλ

d|µs|
d|µs|

≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f #
(

x,
dµs

d|µs|
(x)
)

d|µs|

= F #[µ].

(2.33)

With (2.31), (2.32), which are proved below, the result under Assumption (ii) follows.

This completes the proof of Theorem 2.2.

The following lemma will be used in the proof of (2.31).

Lemma 2.41. Let x0 ∈Ω and R > 0 be such that Q2R(x0)⊂Ω. Then, for every h ∈N, there exists a

sequence
(
uh

j
)
⊂ L2(Rd ;RN) such that

uh
j → µ j area-strictly in M (QR(x0);RN) as h→ ∞, and

‖A k uh
j −A k

µ j‖W−k,q(QR(x0))→ 0.
(2.34)

Proof. Let {ρε}ε>0 be a family of standard smooth mollifiers. The sequence defined by

uh
j :=

(
µ j Q3R/2(x0)

)
∗ρ1/h ∈ C∞(Q2R(x0);RN)

satisfies all the conclusion properties as a consequence of the properties of mollification and Re-

mark 2.12

Proof of (2.31). We employ the classical blow-up method to organize the proof. We know from

Lebesgue’s differentiation theorem and (2.11) that the following properties hold for L d-almost every

x0 in Ω:

dλ

dL d (x0) = lim
r↓0

λ (Qr(x0))

rd < ∞, lim
r↓0

|µs|(Qr(x0))

rd < ∞,

lim
r↓0

1
rd

ˆ
Qr(x0)

∣∣∣∣ dµ

dL d (y)−
dµ

dL d (x0)

∣∣∣∣ dy = 0,

lim
r↓0

1
rd

ˆ
Qr

∣∣∣∣ dΛ

dL d (y)−
dΛ

dL d (x0)

∣∣∣∣ dy = 0,

and

Tan(µ,x0) =

{
α · dµ

dL d (x0)L
d : α ∈ R+∪{0}

}
. (2.35)
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2.4 Proof of Theorems 2.2 and 2.4

Let x0 ∈Ω be a point where the properties above are satisfied. Since Ω is an open set, there exists a

positive number R such that Q2R(x0) ⊂Ω. From Lemma 2.41, we infer that for almost every r ∈ (0,R),
it holds that

w*-lim
j→∞

w*-lim
h→∞

[
uh

j(x0 + ry)L d
y
]
= w*-lim

j→∞
w*-lim

h→∞

r−dT (x0,r)
# [uh

jL
d ]

= w*-lim
j→∞

r−dT (x0,r)
# µ j

= r−dT (x0,r)
# µ, (2.36)

where the weak* convergence is to be understood in M (Q;RN). Thus, choosing a sequence r ↓ 0

with λ j(∂Qr(x0)) = 0 and Λ(∂Qr(x0)) = 0, we get that

dλ

dL d (x0) = lim
r→0

lim
j→∞

λ j(Qr(x0))

rd

= lim
r→0

lim
j→∞

F #[µ j;Qr(x0)]

rd

≥ lim
r→0

lim
j→∞

limsup
h→∞

F #[uh
jL

d ;Qr(x0)]

rd

= lim
r→0

lim
j→∞

limsup
h→∞

ˆ
Q

f
(
x0 + ry,uh

j(x0 + ry)
)

dy,

where we used Corollary 2.20 and Remark 2.16 for the “≥” estimate.

We may use a suitable diagonalization procedure to find

ur := uh( j(r))
j(r) and γr := r−dT (x0,r)

# [ur L
d ]

verifying the following properties:

1. since y 7→ uh
j(x0 + ry) is the density of the measure r−dT (x0,r)

# [uh
jL

d ] with respect to L d ,

dλ

dL d (x0)≥ lim
r→0

ˆ
Q

f
(

x0 + ry,
dγr

dL d (y)
)

dy

≥ lim
r→0

ˆ
Q

f
(

x0,
dγr

dL d (y)
)

dy

− lim
r→0

[
ω(r)

(
|Ω|+

∥∥∥ dγr

dL d (y)
∥∥∥

L1(Ω)

)] (2.37)

2. Through a diagonalization argument we may select j = j(r) and h = h( j) in (2.36) to guarantee

that

γr− r−dT (x0,r)
# µ

∗
⇀ 0 in Mloc(Rd ;RN). (2.38)
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Recall from Section 2.2.2 that (at regular points) there exists a positive constant c such that

cr−dT (x0,r)
# µ

∗
⇀

dµ

dL d (x0)L
d in Mloc(Rd ;RN),

In fact, since ∣∣∣∣r−dT (x0,r)
# µ(Q)− dµ

dL d (x0)

∣∣∣∣= ∣∣∣∣µ(Qr(x0))

rd − dµ

dL d (x0)

∣∣∣∣
≤ −
ˆ

Qr(x0)

∣∣∣∣ dµ

dL d (x)−
dµ

dL d (x0)

∣∣∣∣ dx

+
|µs|(Qr(x0))|

rd

= or(1),

where or(1)→ 0 as r ↓ 0. Therefore, the constant c must be equal to 1.

Therefore, up to taking a further subsequence r ↓ 0, we may assume that r−dT (x0,r)
# µ is a blow-up

sequence of µ and

w*-lim
r↓0

γr = w*-lim
r↓0

r−dT (x0,r)
# µ =

dµ

L d (x0)L
d in Mloc(Rd ;RN).

The next step is to verify that γr is asymptotically A k-free, or equivalently that A k
γr → 0 in

W−k,q(Q). This is a simple consequence of Proposition 2.26 applied to the sequence

γr = crT
(x0,r)

# [urL
d ]
∗
⇀

dµ

L d (x0)L
d in Mloc(Rd ;RN),

with coefficients cr := r−d .

In particular

γr−
dµ

dL d (x0)L
d ∗
⇀ 0 in M (Q;RN), and

A k
(

γr−
dµ

dL d (x0)L
d
)
→ 0 in W−k,q(Q;RN).

We are now in a position to apply Lemma 2.25 to the sequence γr and the Lipschitz function f (x0, q),
whence there exists a sequence (zr)⊂ C∞

per(Q;RN) such that

A zr = 0,
ˆ

Q
zr = 0, zr

∗
⇀ 0 in M (Q;RN),

and (up to taking a subsequence)

lim
r→0

ˆ
Q

f
(

x0,
dγr

dL d (y)
)

dy = lim
r→0

ˆ
Q

f
(

x0,
dµ

dL d (x0)+ zr(y)
)

dy.

Returning to the calculations in (2.37), we use the properties of the sequence (zr) and the A k-
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2.4 Proof of Theorems 2.2 and 2.4

quasiconvexity of f (x0, q) to obtain the desired lower bound:

dλ

dL d (x0)≥ lim
r→0

ˆ
Q

f
(

x0,
dµ

dL d (x0)+ zr(y)
)

− lim
r→0

[
ω(r)

(
|Ω|+

∥∥∥ dµ

dL d (x0)+ zr

∥∥∥
L1(Ω)

)]
≥ f
(

x0,
dµ

dL d (x0)

)
. (2.39)

This proves (2.31).

Remark 2.42. If the assumption that f (x, q) is A k-quasiconvex is dropped, one can still show that

dλ

dL d (x0)≥ QA k f
(

x0,
dµ

dL d (x0)

)
.

Indeed, the A k-quasiconvexity of f (x, q) has only been used in the last inequality of (2.39) where one

can first use the inequality f (x, q)≥ QA k f (x, q) to get

ˆ
Q

f
(

x0,
dµ

dL d (x0)+ zr(y)
)
≥
ˆ

Q
QA k f

(
x0,

dµ

dL d (x0)+ zr(y)
)
.

The assertion then follows by using the A k-quasiconvexity of QA k f (x, q).

Proof of (2.32). Passing to a subsequence if necessary, we may assume that

µ j
Y→ ν for some ν ∈ YA (Ω;RN).

For each j ∈ N set ν j := δ [µ j] ∈ Y(Ω;RN), the elementary Young measure corresponding to µ j, so

that ν j
∗
⇁ ν in Y(Ω;RN). Define the functional

F#[σ ;B] :=
ˆ

B

〈
f (x, q),σx

〉
dx+

ˆ
B

〈
f#(x, q),σ∞

x
〉

dλν(x), σ ∈ Y(Ω;RN),

where B ⊂ Ω is an open set. Observe that, as a functional defined on Y(Ω;RN), F# is sequentially

weakly* lower semicontinuous (see Corollary 2.20). We use Assumption (ii), which is equivalent to

f #(x, q)≡ f#(x, q) on VA ,

and the fact, proved in (2.28), that

suppν
∞
x ⊂VA for λ

s
ν -a.e. x ∈Ω,
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

to get (recall f ≥ 0)

liminf
j→∞

F #[µ j;B]≥ liminf
j→∞

F#[ν j;B]

≥F#[ν ;B]

≥
ˆ

B

(〈
f (x, q),νx

〉
+
〈

f#(x, q),ν∞
x
〉 dλν

dL d (x)
)

dx

+

ˆ
B

〈
f#(x, q),ν∞

x
〉

dλ
s
ν(x)

≥
ˆ

B

〈
f #(x, q),ν∞

x
〉

dλ
s
ν(x). (2.40)

Recall that, for every x ∈ Ω, the function f (x, q) is A k-quasiconvex and hence the function f #(x, q)
is ΛA -convex and positively 1-homogeneous. An application of the Jensen-type inequality from

Proposition 2.39 to the last line yields

liminf
j→∞

F [µ j;B]≥
ˆ

B
f #(x,〈id,ν∞

x
〉)

dλ
s
ν(x).

Thus, also taking into account |µs|= |〈id,ν∞
x 〉|λ s

ν and f #(x,〈id,ν∞
x 〉) = f #(x,0) = 0 for λ ∗ν -a.e. x∈Ω,

where λ ∗ν is the singular part of λ s
ν with respect to |µs|, we get

λ (B)≥
ˆ

B
f #
(

x,
dµs

d|µs|
(x)
)

d|µs|(x),

for all open sets B ⊂ Ω with λ s
ν(∂B) = 0. Therefore, by the Besicovitch differentiation theorem and

using the modulus of continuity of f in its first argument we get

dλ

d|µs|
(x0)≥ f #

(
x0,

dµs

d|µs|
(x0)

)
for |µs|-a.e. x0 ∈Ω.

This proves (2.32).

Remark 2.43 (recession functions). The only part of the proof where we use the existence of

f ∞(x,A), for x ∈Ω and A ∈VA , is in showing that

F#[ν ;B]≥
ˆ

B

(〈
f (x, q),νx

〉
+
〈

f#(x, q),ν∞
x
〉 dλν

dL d (x)
)

dx

+

ˆ
B

〈
f #(x, q),ν∞

x
〉

dλ
s
ν(x)

The need of such an estimate comes from the fact that, in general, we do not know if f# is a ΛA -

convex function.

Remark 2.44. If we drop the assumption that f (x, q) is A k-quasiconvex for every x ∈ Ω, we can
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2.5 Proof of Theorems 2.6 and 2.7

still show that
ˆ

Ω

QA k f
(

x,
dµ

dL d (x)
)

dx

+

ˆ
Ω

(QA k f )#
(

x,
dµs

d|µs|
(x)
)

d|µs|(x)≤ liminf
j→∞

F [µ j]

for every sequence µ j
∗
⇀ µ in M (Ω;RN) such that A µ j → 0 in W−k,q(Ω). The proof of this fact

follows directly from Remark 2.42, the last line of (2.40) together with the modulus of continuity of

f in its first argument (for the Besicovitch differentiation arguments), and Corollary 2.40. Observe

that one does not require the existence of (QA k f )∞ in Ω× spanΛA .

Proof of Theorem 2.4. Note that in the proof of (2.31) we did not use that f ∞ exists in Ω× spanΛA .

By the very same argument as in (2.33), is easy to check that Theorem 2.4 is an immediate conse-

quence of (2.31).

2.5 Proof of Theorems 2.6 and 2.7

We use standard machinery to show the relaxation theorems. Recall that, for Theorems 2.6 and 2.7,

we assume that A is a homogeneous partial differential operator.

2.5.1 Proof of Theorem 2.6

We divide the proof of Theorem 2.6 into three steps. First, we prove that any A -free measure may

be area-strictly approximated by A -free absolutely continuous measures. Next, we prove the upper

bound on absolutely continuous measures, from which the general upper bound follows by approxi-

mation. We conclude by observing that the proposed upper bound is weakly* lower semicontinuous

as a corollary of Theorem 2.2.

Step 1. The lower bound. The lower bound G ≥ G∗, where

G∗[µ] :=
ˆ

Ω

QA f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

(QA f )#
(

x,
dµs

d|µs|
(x)
)

d|µs|(x),

is a direct consequence of Remark 2.44 and the fact that A is a homogeneous partial differential

operator (A = A k).

Step 2. An area-strictly converging recovery sequence. Let µ ∈M (Ω;RN)∩kerA . We will show

that there exists a sequence (u j)⊂ L1(Ω;RN) for which

u jL
d ∗
⇀ µ in M (Ω;RN), 〈u jL

d 〉(Ω)→ 〈µ 〉(Ω),

and A u j→ 0 in W−k,q(Ω).
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Let {ϕi}i∈N ⊂ C∞
c (Ω) be a locally finite partition of unity of Ω. Set

µ(i) := µϕi ∈M (Ω;RN),

and

µ
a
(i) := µ

a
ϕi µ

s
(i) := µ

s
ϕi.

where, as usual,

µ
a =

dµ

dL d L d and µ
s = µ−µ

a.

Note that, with a slight abuse of notation,∥∥∥∥ j

∑
i=1

µ
a
(i)−µ

a
∥∥∥∥

L1(Ω)

→ 0 as j→ ∞.

Furthermore, for fixed i,

(µ(i) ∗ρε)L
d ∗
⇀ µ(i), |µ(i) ∗ρε |(Ω)≤ |µ(i)|(Ω) =

ˆ
Ω

ϕi d|µ|, (2.41)

and

µ
a
(i) ∗ρε → µ

a
(i) in L1(Ω) as ε → 0.

Moreover,

A (µ(i) ∗ρε)→A µ(i) in W−k,q(Ω) as ε → 0.

Fix j ∈ N. From (2.41) and the convergence above we might find a sequence εi( j) ↓ 0 such that

the measures µi, j := µ(i) ∗ρεi( j) and µa
i, j := µa

(i) ∗ρεi( j) verify

d(µi, jL
d ,µ(i))≤

1
2i j

,

‖µa
i, j−µ

a
(i)‖L1(Ω) ≤

1
2i j

,

‖µi, j−µ(i)‖W−k,q(Ω) ≤
1

2i j
,

where d is the metric inducing the weak* convergence on bounded sets of M (Ω;RN) (the existence

of the metric d is a standard result for the duals of separable Banach spaces). Define the integrable

functions

u j :=
∞

∑
i=1

µi, j, ua
j :=

∞

∑
i=1

µ
a
i, j.

We get

d(u jL
d ,µ)≤

∞

∑
i=1

d(µi, jL
d ,µ(i))≤

∞

∑
i=1

1
2i j

=
1
j
,
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2.5 Proof of Theorems 2.6 and 2.7

and in a similar way

‖µa
j −µ

a‖L1(Ω) ≤
1
j
,

‖A µ j‖W−k,q(Ω) ≤
1
j
,

where we use that µ is A -free in the second inequality. Observe that (2.41) and that fact that {ϕi}i∈N

is a partition of unity imply

ˆ
Ω

|u j| dx≤
∞

∑
i=1

ˆ
Ω

ϕi d|µ| ≤ |µ|(Ω). (2.42)

Therefore ‖u j‖L1(Ω) is uniformly bounded and hence

u jL
d ∗
⇀ µ in M (Ω;RN), (2.43)∥∥ua
j −µ

a
∥∥

L1(Ω)
→ 0, (2.44)

‖A u j‖W−k,q(Ω)→ 0, (2.45)

as j→ ∞. Moreover, the convexity of z 7→ |z| and (2.42) imply the strict convergence

|u j L d |(Ω)→ |µ|(Ω). (2.46)

Thanks to (2.43) and (2.45), to conclude it suffices to show that

lim
j→∞
〈u jL

d 〉(Ω) = 〈µ 〉(Ω). (2.47)

Exploiting (2.43), (2.44), (2.46), we get

ˆ
Ω

|u j−ua
j | dx→ |µs|(Ω) as j→ ∞. (2.48)

By the inequality
√

1+ |z|2 ≤
√

1+ |z−w|2 + |w| (for z,w ∈ RN), we get

〈u jL
d 〉(Ω)≤ 〈ua

jL
d 〉(Ω)+

ˆ
Ω

|u j−ua
j | dx.

Hence, again by (2.44) and (2.48)

limsup
j→∞

〈u jL
d 〉(Ω)≤ 〈µ 〉(Ω). (2.49)

On the other hand, by the weak* convergence u jL d ∗
⇀ µ and the convexity of z 7→

√
1+ |z|2 ,

liminf
j→∞

〈u jL
d 〉(Ω)≥ 〈µ 〉(Ω).

Thus, together with (2.49), (2.47) follows, concluding the proof of the claim.
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Step 3.a. Upper bound on absolutely continuous fields. Let us now turn to the derivation of the

upper bound for G [u] = G [uL d ] where u ∈ L1(Ω;RN)∩ kerA . For now let us assume additionally

the following strengthening of (3.2):

f (x,A)− f (y,A)≤ ω(|x− y|)(1+ f (y,A)) for all x,y ∈Ω, A ∈ RN . (2.50)

It holds that QA k f (x, q) is still uniformly Lipschitz in the second variable and

QA f (x,A)≤ QA f (y,A)+ω(|x− y|)(1+ |A|) (2.51)

for every x,y ∈ Ω and A ∈ RN with a new modulus of continuity (still denoted by ω), which incor-

porates another multiplicative constant in comparison to the original ω . Indeed, fix x,y ∈ Ω, ε > 0,

and A ∈ RN . Let w ∈ C∞
per(Q;RN)∩ kerA be a function with zero mean in Q such that (recall that

QA f (x,A) := QA f (x, q)(A))
ˆ

Q
f (y,A+w(z)) dz≤ QA f (y,A)+ ε.

By assumption, we get

ˆ
Q

f (x,A+w(z)) dz≤
ˆ

Q
f (y,A+w(z)) dz

+ω(|x− y|)
(

1+
ˆ

Q
f (y,A+w(z)) dz

)
≤ QA f (y,A)+ ε

+ω(|x− y|)
(
1+QA f (y,A)+ ε

)
.

Thus,

QA f (x,A)≤ QA f (x,A)+ ε +ω(|x− y|)(1+QA f (y,A)+ ε).

The linear growth at infinity of f , which is inherited by QA f , gives

QA f (x,A)≤ QA f (y,A)+ω(|x− y|)(1+M(1+ |A|))+ ε(1+ω(|x− y|)).

We may now let ε ↓ 0 in the previous inequality to obtain

QA f (x,A)≤ QA f (y,A)+ω(|x− y|)(M+1)(1+ |A|).

This proves (2.51) provided that (2.50) holds.

Fix m∈N and consider a partition of Rd of cubes of side length 1/m. Let {Qm
i }

L(m)
i=1 be the maximal

collection of those cubes with centers {xm
i }

L(m)
i=1 that are compactly contained in Ω. By a version of

Besicovitch’s Covering Theorem we have

L d(Ω) =
L(m)

∑
i=1

L d(Qh
i )+om(1),
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2.5 Proof of Theorems 2.6 and 2.7

where om(1)→ 0 as m→ ∞.

We may approximate u strongly in L1 by functions zm ∈ L1(Ω;RN) that are piecewise constant on

the mesh {Qm
i }

L(m)
i=1 (as m→ ∞). More specifically, we may find functions zm ∈ L1(Ω;RN) such that

zm = 0 on Ω\
⋃

i Qm
i ,

zm = zm
i ∈ RN on Qm

i and ‖u− zm‖L1(Ω) = om(1). (2.52)

Additionally, for every m ∈ N, we may find functions wm
i ∈ C∞

per(Q;RN)∩ kerA with the following

properties ˆ
Q

f (xm
i ,z

m
i +wm

i (y)) dy≤ QA f (xm
i ,z

m
i )+

1
m
,

ˆ
Q

wm
i dy = 0. (2.53)

Fix m ∈ N and let ϕm ∈ C∞
c (Q; [0,1]) be a function such that

L(m)

∑
i=1
‖1−ϕm‖L1(Q)‖wm

i ‖L1(Q) =
1
m
, (2.54)

We define the functions

vm
j :=

L(m)

∑
i=1

ϕm(m(x− xm
i )) ·wm

i ( jm(x− xm
i )) x ∈Ω, j ∈ N.

By Lemma 2.17, the sequence (vm
j ) generates the Young measure

ν
m = (νm

x ,0, q) ∈ Y(Ω;RN),

where for each x ∈Ω, νm
x is the probability measure defined by duality trough

〈
h,νm

x
〉

:=
L(m)

∑
i=1

1Qm
i
(x)
ˆ

Q
h(ϕm(m(x− xm

i )) ·wm
i (y)) dy,

on functions h ∈ C(RN) with linear growth.

The central point of this construction is that wm
i has zero mean value, that is,

´
Q wm

i dy = 0, whence

it follows that

vm
j L d ∗

⇀
L(m)

∑
i=1

ˆ
Q

ϕm(m(x− xm
i ))w

m
i (y) dy = 0 in M (Ω;RN), (2.55)

as j→ ∞. Recall that by construction, A wm
i = 0 on Q, Hence, using that A is homogeneous we get

A [wm
i ( jm( q− xm

i ))] = 0 in the sense of distributions on Qm
i .
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Thus, for some coefficients cα,β ∈ N, using the short-hand notation ψm(y) := ϕm(my) yields

A vm
j =

L(m)

∑
i=1

(
A [wm

i ( jm( q− xm
i ))]ψm( q− xm

i )

+ ∑
|α|=k,

1≤|β |≤k

cαβ Aα∂
α−β [wm

i ( jm( q− xm
i ))]∂

β [ψm( q− xm
i )]

)

= ∑
|α|=k,

1≤|β |≤k

(L(m)

∑
i=1

cαβ ∂
α−β [wm

i ( jm( q− xm
i ))]∂

β [ψm( q− xm
i )]

)
,

in the sense of distributions on Ω. Applying Lemma 2.17 to the sequence (wm
i ( jm( q−xm

i ))) j on each

cube Qm
i we get

L(m)

∑
i=1

1Qm
i
·wm

i ( jm( q− xm
i ))⇀

L(m)

∑
i=1

1Qm
i
· −
ˆ

Qm
i

wm
i (m(y− xm

i )) dy

=
L(m)

∑
i=1

1Qm
i
·
ˆ

Q
wm

i (y) dy = 0.

Hence, (2.55) and the compact embedding L1(Ω;RN)
c
↪→W−1,q(Ω;RN) yield

A vm
j = ∑

|α|=k,
1≤|β |≤k

(L(m)

∑
i=1

cαβ ∂
α−β [wm

i ( jm( q− xm
i ))]∂

β [ψm( q− xm
i )]

)
→ 0

strongly in W−k,q(Ω;RN), as j→ ∞.

For later use we record:

Remark 2.45. By construction, for every m, j ∈N, the function vm
j is compactly supported in Ω. Up

to re-scaling, we may thus assume without loss of generality that Ω⊂ Q and subsequently make use

of Lemma 2.25 on the j-indexed sequence (ṽm
j ) with m fixed, where ṽm

j is the zero extension of vm
j to

Q, to find another sequence (V m
j ) ⊂ L1(Ω;RN)∩ kerA generating the same Young measure νm (as

j→ ∞).

In the next calculation we use the Lipschitz continuity of QA f (x, q) in the second variable, equa-

tion (2.52) and the fact that the sequence (vm
j ) generates the Young measure νm as j goes to infinity,

to get

lim
j→∞

G [u+ vm
j ] = lim

j→∞
G [zm + vm

j ]+om(1)

=
L(m)

∑
i=1

ˆ
Qm

i

ˆ
Q

f
(
x,zm

i +ϕm(m(x− xm
i )) ·wm

i (y)
)

dy dx+om(1). (2.56)

By a change of variables we can estimate the integrand times md = L d(Qm
i )
−1 on the last line on
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2.5 Proof of Theorems 2.6 and 2.7

each cube of the mesh:

−
ˆ

Qm
i

ˆ
Q

f
(
x,zm

i +ϕm(m(x− xm
i )) ·wm

i (y)
)

dy dx

=

ˆ
Q

ˆ
Q

f
(
xm

i +m−1x,zm
i +ϕm(x) ·wm

i (y)
)

dy dx

≤
ˆ

Q

ˆ
Q

f
(
xm

i +m−1x,zm
i +wm

i (y)
)

dy dx+Lip( f )‖1−ϕm‖L1(Q)‖wm
i ‖L1(Q)

= −
ˆ

Qm
i

ˆ
Q

f (x,zm
i +wm

i (y)) dy dx+Lip( f )‖1−ϕm‖L1(Q)‖wm
i ‖L1(Q)

:= Im
i + IIm

i . (2.57)

Using the modulus of continuity of f from (2.50), (2.53) (twice), and QA f ≤ f , we get

Im
i ≤ −
ˆ

Qm
i

ˆ
Q

f (xm
i ,z

m
i +wm

i (y)) dy dx+ω(m−1)

(
1+
ˆ

Q
f (xm

i ,z
m
i +wm

i (y)) dy
)

≤ QA f (xm
i ,z

m
i )+ω(m−1)(1+ f (xm

i ,z
m
i ))+om(1). (2.58)

Additionally, by (2.54)
L(m)

∑
i=1

L d(Qm
i )IIm

i = om(1). (2.59)

Returning to (2.56), we can employ (2.51), (2.57), (2.58) and (2.59) to further estimate

lim
j→∞

G [u+ vm
j ]

≤
L(m)

∑
i=1

{ˆ
Qm

i

QA f (xm
i ,z

m
i ) dx+ω(m−1)

(ˆ
Qm

i

1+ f (xm
i ,z

m
i ) dx

)}
+om(1)

≤
L(m)

∑
i=1

{ˆ
Qm

i

QA f (xm
i ,z

m
i ) dx+Cω(m−1)

(ˆ
Qm

i

1+ |zm
i | dx

)}
+om(1)

≤
L(m)

∑
i=1

{ˆ
Qm

i

QA f (x,zm
i ) dx+C̃ω(m−1)

(ˆ
Qm

i

1+ |zm
i | dx

)}
+om(1)

≤
ˆ

Ω

QA f (x,zm) dx+C̃ω(m−1)
(
‖1+ |zm|‖L1(Ω)

)
+om(1)

=

ˆ
Ω

QA f (x,u) dx+om(1),

where om(1) may change from line to line. Here, we have used the (inherited) Lipschitz continuity of

QA f (x, q) in the second variable and the fact that ‖u− zm‖L1(Ω) = om(1) to pass to the last equality.

Hence

G [u]≤ inf
m>0

lim
j→∞

G [u+ vm
j ]≤
ˆ

Ω

QA f (x,u) dx. (2.60)

Step 3.b. The upper bound. Fix µ ∈M (Ω;RN)∩ kerA . By Step 2 we may find a sequence

(u j) ⊂ L1(Ω;RN) that area-strictly converges to µ ∈M (Ω;RN) with A u j → 0 in W−k,q. Hence,
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

by (2.60), Remark 2.16 and Corollary 2.20,

G [µ]≤ liminf
j→∞

G [u j]

≤ limsup
j→∞

〈〈
QA f (x, q),δ [u jL

d ]
〉〉

≤
ˆ

Ω

〈
QA f (x, q),δ [µ]x〉 dx+

ˆ
Ω

〈
(QA f (x, q))#,δ [µ]∞x

〉
dλδ [µ](x)

=

ˆ
Ω

QA f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

(QA f )#
(

x,
dµs

d|µs|
(x)
)

d|µs|(x)

= G∗[µ].

Step 4. General continuity condition. It remains to show the upper bound in the case where we only

have (3.2) instead of (2.50). As in the previous step, it suffices to show the upper bound on absolutely

continuous fields. We let, for fixed ε > 0,

f ε(x,A) := f (x,A)+ ε|A|,

which is an integrand satisfying (2.50). Denote the corresponding functionals with f ε in place of f

by G ε ,G ε
∗ ,G

ε . Then, by the argument in Steps 1–3,

G ε
∗ = G ε .

We claim that

QA k f ε ↓ QA k f pointwise in Ω×RN . (2.61)

To see this first notice that ε 7→ QA k f ε(x,A) is monotone decreasing for all x ∈Ω, A ∈ RN , and

QA k f + ε| q| ≤ QA k f ε ≤ f + ε| q|,
which is a simple consequence of Jensen’s classical inequality for | q|. It follows that the limit

g(x,A) := inf
ε>0

QA k f ε(x,A) = lim
ε↓0

QA k f ε(x,A)

defines an upper semicontinuous function g : Ω×RN → R with bounds

QA k f ≤ g≤ f .

Furthermore, by the monotone convergence theorem, it is easy to check that g is A k-quasiconvex,

whereby g = QA k f (see Corollary 2.29).

Let us now return to the proof of the upper bound on absolutely continuous fields. By construction,

G ≤ G ε = G ε
∗ . (2.62)
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2.6 Apendix

The monotone convergence theorem and (2.61) yield

G [u]≤ G∗[uL d ] for all u ∈ L1(Ω;RN)∩kerA ,

after letting ε ↓ 0 in (2.62).

The general upper bound then follows in a similar way to the proof under the assumtion (2.50).

This finishes the proof.

2.5.2 Proof of Theorem 2.7

The proof works the same as the proof of Theorem 2.6 with the following additional comments:

Step 1. The lower bound. Since restricting to A -free sequences is a particular case of the more

general convergence A un→ 0 in the space W−k,q(Ω;RN), we can still apply Step 2 in the proof of

Theorem 2.6 to prove that G∗ ≤ G , where for µ ∈M (Ω;RN)∩kerA ,

G∗[µ] :=
ˆ

Ω

QA f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

(QA f )#
(

x,
dµs

d|µs|
(x)
)

d|µs|(x).

Step 2. An A -free strictly convergent recovery sequence. In this case, this forms part of the

assumptions.

Step 3.a. Upper bound on absolutely continuous A -free fields. An immediate consequence of

Remark 2.45 is that one may assume, without loss of generality, that the recovery sequence for the

upper bound lies in kerA . Thus, the upper bound on absolutely continuous fields in the constrained

setting also holds.

Step 3.b. The upper bound (assuming (2.50)). The proof is the same as in the proof of Theorem 2.2.

Step 4. General continuity condition. Since assumption (2.50) is a structural property (coercivity)

of the integrand and the arguments do not depend on the underlying space of measures, the argument

remains the same as in the proof of Theorem 2.6.

2.6 Apendix

2.6.1 Proof sketches of the localization principles

Sketch of the proof of Proposition 2.35: In the following we adapt the main steps in proof of the

localization principle at regular points which is contained in Proposition 1 of [29]. The statement on

the existence of a A -free and periodic generating sequence is proved in detail.

Let µ j ∈M (Ω;RN) be the sequence of asymptotically A -free measures which generates ν . In the

following steps, for an open Ω′ ⊂ Rd , we will often identify a measure µ ∈M (Ω′;RN) with its zero

extension in Mloc(Rd ;RN), and the same for a Young measure σ ∈ Y(Ω′;RN) and its zero extension

in Yloc(Rd ;RN).

1. The first step consists on showing that, for every r > 0, there exists a subsequence of j’s (the
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choice of subsequence might depend on r) such that

r−dT (x0,r)
# µ j

Y→ σ
(r) in Yloc(Rd ;RN). (2.63)

Moreover, for L d-a.e. x0 ∈Ω, one can show that a uniform bound

sup
r

〈〈
1K⊗| q|,σ (r)〉〉< ∞ for every K b Rd (2.64)

holds; thus, by Lemma 2.15, there exists a sequence of positive numbers rm ↓ 0 and a Young

measure σ for which

σ
(rm) ∗⇁ σ in Yloc(Rd ;RN).

2. The second step concerns the quantitative properties of the Young measures σ (rm) with re-

spect to the Young measure ν : for an arbitrary measure measure γ ∈M (Ω;RN), the Radon-

Nykodým differentiation theorem yields

r−dT (x0,r)
# γ =

dγ

dL d (x0 + r q)L d +
dγ

d|γs|
(x0 + r q)r−dT (x0,r)

# |γs|.

Consider σ (r) as an element of Y(Q;RN). Fix ϕ⊗h∈C(Q)×W1,∞(RN). Using simple change

of variables, we get

〈〈
ϕ⊗h,σ (r)〉〉= lim

j→∞

(ˆ
Q

ϕ(y) ·h
(

dµ j

dL d (x0 + ry)
)

dy

+

ˆ
Q

ϕ(y) ·h∞

(
dµ j

d|µs
j |
(x0 + ry)

)
d(r−dT (x0,r)

# |µs
j |)(y)

)
= r−d lim

j→∞

(ˆ
Qr(x0)

ϕ ◦T (x0,r)(x) ·h
(

dµ j

dL d (x)
)

dx

+

ˆ
Qr(x0)

ϕ ◦T (x0,r)(x) ·h∞

(
dµ j

d|µs
j |

x
)

d|µs
j |(x)

)
= r−d〈〈

ϕ ◦T (x0,r)⊗h,ν
〉〉
.

(2.65)

3. In the third step we let r = rm in (2.65) and quantify its values as m→ ∞. This will allow us to

characterize σ in terms of ν .

Let {gl := ϕl⊗hl} ⊂ C(Q)×W1,∞(RN) be the dense subset of E(Q;RN) provided by Lemma

2.14 and further assume that x0 verifies the following properties: x0 is a Lebesgue point of the

functions

x 7→
〈
hl,νx

〉
+
〈
h∞

l ,ν
∞
x
〉 dλν

dL d (x), for all l ∈ N, (2.66)

and x0 is a regular point of the measure λν , that is,

dλ s
ν

dL d (x0) = lim
r↓0

λ s
ν(Qr(x0))

rd = 0. (2.67)
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2.6 Apendix

Consider σ as an element of Y(Q;RN). Setting r = rm in (2.65) and letting m→ ∞ we get

〈〈
gl,σ

〉〉
= lim

m→∞
r−d〈〈

ϕl ◦T (x0,rm)⊗hl,ν
〉〉

= lim
m→∞

(
−
ˆ

Qrm (x0)
ϕl

(
x− x0

rm

)[〈
hl,νx

〉
+
〈
h∞

l ,ν
∞
x
〉 dλν

dL
(x)
]

dy

+
1
rd

ˆ
Qrm (x0)

ϕl

(
x− x0

rm

)〈
h∞

l ,ν
∞
x
〉

dλ
s
ν(x)

)
=

ˆ
Q

〈
gl(y, q),νx0

〉
dy+
ˆ

Q

〈
g∞

l (y, q),ν∞
x0

〉 dλν

dL
(x0) d(y).

Here, we have used (2.66) and the Dominated Convergence Theorem to pass to the limit in the

first summand, and with the help of (2.67), we used that

ˆ
Qr(x0)

ϕl

(
x− x0

r

)〈
h∞

l ,ν
∞
x
〉

dλ
s
ν(x)≤ ‖ϕ‖∞ ·Lip(hl) ·λ s

ν(Qr(x0)) = o(rd)

to neglect the second summand in the limiting process.

Since the set {gl} separates Y(Q;RN), Lemma 2.14 tells us that σy = νx0 ,σ
∞
y = ν∞

x0
,λσ =

dλν

dL d (x0)L d for L da-e. y ∈ Q, and that λ s
σ is the zero measure in M (Q); as desired.

4. We use a diagonalization principle (where j is the fast index with respect to m) to find a subse-

quence (µ j(m)) such that

γm := r−d
m T (x0,rm)

# µ j(m)
Y→ σ in Yloc(Rd ;RN). (2.68)

5. Up to this point, the localization principle presented in Proposition 1 of [29] has been adapted

to Young measures without imposing any differential constraint.

Here we additionally require σ to be an A k-free Young measure; this is achieved by showing

that (γm) is asymptotically A k-free (on bounded subsets of Rd): it follows from (2.68) and

Theorem 2.11, that for every open ω b Rd there exists a positive constant cω such that

r−d
m T (x0,rm)

# |µ j(m)|(ω) ≤Cω

whenever m is sufficiently large. Therefore, the assertion

A k
γm→ 0 in W−k,q

loc ,

is an immediate consequence of Proposition 2.26 applied to the sequence of measures with

elements µm = µ j(m) and the constants cm := r−d
m .

6. So far we have shown that [σ ] = A0L d with

A0 :=
〈
id,νx0

〉
+
〈
id,ν∞

x0

〉 dλν

dL d (x0) ∈ RN ,
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

and that σ is generated by a sequence (µ j) ⊂M (Q;RN) satsifying A k
µ j → 0. Note that

without loss of generality we may assume that the µ j’s are of the form u jL d where u j ∈
L1(Q;RN). Indeed, since

γr := T (0,r)
# µ j→ µ j area strictly in Mloc(Rd ;RN),

‖A k(γr−µ j)‖W−k,q
loc (Rd)

→ 0 (as r ↑ 1),

and

γr ∗ρε → γr area strictly in Mloc(Rd ;RN),

‖A k(γr− γr ∗ρε)‖W−k,q
loc (Rd)

→ 0 (as ε ↓ 0),

we might use a diagonalization argument (relying on the weak*-metrizability of bounded sub-

sets of E(Q;RN)∗, and Remarks 2.12 and 2.16), where ε appears as the faster index with respect

to r, to find a sequence with elements u j := γr j ∗ρεr j
such that

u jL
d Y→ σ ∈ Yloc(Rd ;RN) and A k u j→ 0 in W−k,q

loc (Rd). (2.69)

Using (2.9), we get

|u j|L d ∗
⇀ |[σ ]| = |A0|L d in Mloc(Rd).

Hence, |u j|L d ∗
⇀ Λ in M (Q) with Λ(∂Q) = 0. We are un position to apply Lemma 2.25 to the

sequences (u j) and (v j := A0) to find a sequence z j ∈ C∞
per(Q;RN)∩ kerA k with

´
Q z j dy = 0

and such that (up to taking a subsequence)

w jL
d := (A0 + z j)L

d Y→ σ in Y(Q;RN). (2.70)

Since the properties of x0 that were involved in Steps 1-3 are valid at L d-a.e. x0 ∈ Ω, the sought

localization principle at regular points is proved.

Sketch of the proof of Proposition 2.36: The proof of the localization at singular points resembles

the one for regular points, with a few exceptions:

1. In this step, we chose cr(x0) := |µs|(Qr(x0))
−1 (instead of r−d) so that

cr(x0)T
(x0,r)

# µ j
Y→ σ

(r) in Yloc(Rd ;RN).

Moreover, at λ s
ν -a.e. x0 ∈Ω, it is possible to show that

sup
r>0

〈〈
1K⊗| q|,σ (r)〉〉< ∞ for every K b Rd . (2.71)

By compactness of Yloc(Rd ;RN), see Lemma 2.15, there exists a sequence of positive numbers
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2.6 Apendix

rm ↓ 0 and a Young measure σ for which

σ
(rm) ∗⇁ σ in Yloc(Rd ;RN).

Moreover, by Preiss’ existence result for non-zero tangent measures [27], we may assume that

σ and hence λσ are non-zero.

2. The calculations of the second step, for the constant cr(x0), is

〈〈
ϕ⊗h,σ (r)〉〉= lim

j→∞

(ˆ
Q

ϕ(y) ·h
(

cr(x0)rd dµ j

dL d (x0 + ry)
)

dy

+

ˆ
Q

ϕ(y) ·h∞

(
cr(x0)rd dµ j

d|µs
j |
(x0 + ry)

)
d(r−dT (x0,r)

# |µs
j |)(y)

)
= r−d lim

j→∞

(ˆ
Qr(x0)

ϕ ◦T (x0,r)(x) ·h
(

cr(x0)rd dµ j

dL d (x)
)

dx

+

ˆ
Qr(x0)

ϕ ◦T (x0,r)(x) ·h∞

(
cr(x0)rd dµ j

d|µs
j |
(x)
)

d|µs
j |(x)

)
= r−d〈〈

ϕ ◦T (x0,r)⊗h(cr(x0)rd q),ν〉〉. (2.72)

3. The assumptions of the third step are substituted by assuming that x0 is a λ s
ν -Lebesgue point of

the functions

x 7→
〈
| q|,ν∞

x
〉
,
{

x 7→
〈
h∞

l ,ν
∞
x
〉}

for all l ∈ N. (2.73)

We further require that

lim
r↓0

rd

λ s
ν(Qr(x0))

= lim
r↓0

cr(x0)rd = 0 (2.74)

and we define S :=
{

x0 ∈Ω : (2.73) and (2.74) hold
}

which is a set of full λ s
ν -measure in Ω.

Fix x0 ∈ S. Setting r = rm in (2.72) and letting m→ ∞ in this case gives

〈〈
1Q⊗| q|,σ〉〉= lim

m→∞

〈〈
1Q⊗| q|,σ (rm)

〉〉
= lim

m→∞
cm(x0)

(ˆ
Qrm (x0)

[〈
| q|,νx

〉
+
〈
| q|,ν∞

x
〉 dλν

dL
(x)
]

dx

+

ˆ
Qrm (x0)

〈
| q|,ν∞

x
〉

dλ
s
ν(x)

)
=
〈
| q|,ν∞

x0

〉
lim

m→∞

(ˆ
Q

d(cm(x0)T
(x0,rm)

# λ
s
ν)(y)

)
=

ˆ
Q

〈
| q|,ν∞

x0

〉
dγ(y), for some γ ∈ Tan(λ s

ν ,x0),

where, in passing to the third equality we have used that x0 ∈ S. From the equality above we

deduce that σy = δ0 for L d-a.e. y ∈ Q.
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2 Lower semicontinuity and relaxation of linear-growth integral functionals

Testing, this time with gl , we obtain by (2.73) and a similar argument to one above, that

〈〈
gl,σ

〉〉
=

ˆ
Q

ϕl(y)
〈
h∞

l ,ν
∞
x0

〉
dγ(y),

from which we deduce that σ∞
y = ν∞

x0
and λσ ∈ Tan(λ s

ν ,x0).

4. The arguments of Step 4 remain unchanged except that this time one gets

γm := cmT (x0,rm)
# µ j(m)

Y→ σ in Y(Q,RN);

5. and similarly for Step 5.

(6’) Differently from the case at regular points, we want to additionally show λσ (Q) = 1 and

λσ (∂Q) = 0. There exists 0 < ε < 1 such that λσ (∂Qε). Up to taking r′ = εr (as well as

r′m = rmε in the arguments of Steps 1-4 above we may assume without loss of generality that

λσ (∂Q) = 0 and λ (Q) = 1.

This proves the localization principle at singular points.

82



Bibliography
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sous une hypothèse de rang constant, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 8 (1981), no. 1, 69–102.

[27] D. Preiss, Geometry of measures in Rn: distribution, rectifiability, and densities, Ann. Math.

125 (1987), no. 3, 537–643.

[28] F. Rindler, Lower semicontinuity for integral functionals in the space of functions of bounded

deformation via rigidity and Young measures, Arch. Ration. Mech. Anal. 202 (2011), no. 1,

63–113.

84



BIBLIOGRAPHY

[29] , Lower semicontinuity and Young measures in BV without Alberti’s rank-one theorem,

Adv. Calc. Var. 5 (2012), no. 2, 127–159.

[30] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlin-

ear Anal. Mech. Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston,

Mass.-London, 1979, pp. 136–212.

[31] , The compensated compactness method applied to systems of conservation laws, Syst.

nonlinear Partial Differ. equations (Oxford, 1982), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,

vol. 111, Reidel, Dordrecht, 1983, pp. 263–285.

85





3 Relaxation and optimization of convex

integrands with linear growth

This chapter contains the results obtained in the research paper:

Relaxation and optimization for linear-growth convex integral
functionals under PDE constraints

Abstract

We give necessary and sufficient conditions for the minimality of generalized minimizers of

linear-growth integral functionals of the form

F [u] =
ˆ

Ω

f (x,u(x)) dx, u : Ω⊂ Rd → RN

where u is an integrable function satisfying a general PDE constraint. Our analysis is based on

two ideas: a relaxation argument into a subspace of the space of bounded vector-valued Radon

measures M (Ω;RN), and the introduction of a set-valued pairing in M (Ω;RN)×L∞(Ω;RN).

By these means we are able to show an intrinsic relation between minimizers of the relaxed

problem and maximizers of its dual formulation also known as the saddle-point conditions. In

particular, our results can be applied to relaxation and minimization problems in BV, BD and

divergence-free spaces.

See:

A. Arroyo-Rabasa, Relaxation and optimization for linear-growth convex integral functionals under

PDE constraints, to appear in J. Funct. Anal., 2017 (pre-print: https://arxiv.org/abs/1603.01310)

3.1 Introduction

Let Ω be an open and bounded subset of Rd with L d(∂Ω) = 0. The aim of this work is to establish

sufficient and necessary conditions, in the sense of convex duality, for a vector-valued Radon measure
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3 Relaxation and optimization of convex integrands with linear growth

µ to be a generalized minimizer of an integral functional of the form

F [u] :=
ˆ

Ω

f (x,u(x))dx,

defined on functions u : Ω→ RN satisfying a linear PDE constraint of the form

A u = τ, in the sense of distributions on Ω.

Here, A : M (Ω;RN)→D ′(Ω;Rn) is a continuous linear partial differential operator defined on the

space of bounded vector-valued Radon measures.

As part of our main assumptions, f : Ω×RN → [0,∞) is a continuous and convex integrand, that

is, f (x, q) is convex for every x ∈ Ω. We further assume that f satisfies the following standard linear

growth assumptions: there exists a positive constant M such that

| f (x,z)| ≤M(1+ |z|), for all (x,z) ∈Ω×RN . (3.1)

Throughout the paper, we shall consider the linear partial differential operator A as a linear (pos-

sibly unbounded) operator A : WA ,1(Ω)⊂ L1(Ω;RN)→ L1(Ω;Rn), where

WA ,p(Ω) :=
{

u ∈ Lp(Ω;RN) : A u ∈ Lp(Ω;Rn)
}
, 1≤ p≤ ∞,

is the A -Sobolev space of p-integrable functions on Ω. In this way, A is densely defined and closed

(in the sense of the graph) on L1(Ω;RN). Whenever we write kerA (and ImA ), we will refer to the

kernel (and image) of A : WA ,1(Ω) ⊂ L1(Ω;RN)→ L1(Ω;Rn). In a possible abuse of notation, we

will still denote by µ 7→A µ the operator which is originally defined for measures µ ∈M (Ω;RN).

The following examples comprise a general class of linear partial differential operators of the form

A : M (Ω;RN)→D ′(Ω;Rn) which are continuous:

Example 3.1 (Operators in divergence form). Let k be a positive integer. Consider the operator in

divergence-form which assigns, for every µ ∈M (Ω;RN), the distribution

A µ = ∑
|α|≤k

∂
α(Aα µ), where Aα ∈ C(Ω;Mn×N).

Here, we have defined ∂ α := ∂
α1
1 · · ·∂

αd
d and |α| := |α1|+ · · ·+ |αd | for every multi-index α =

(α1, . . . ,αd) ∈ (N∪{0})d . Since the coefficients Aα(x) are continuous in Ω, each term Aα µ is again

a Radon measure and hence the linear operator A : M (Ω;RN)→ D ′(Ω;Rn) is well-defined and

continuous.

Example 3.2. Alternatively, one might consider operators of the form

A µ = ∑
|α|≤k

Aα∂
α

µ, Aα ∈ C|α|(Ω;RN),
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where each “∂ α µ” is the α-partial distributional derivative of µ . Observe that, even though this is

not an operator in divergence form, the regularity of the coefficients guarantees that each summand

Aα∂ α µ is again a distribution.

3.1.1 Main results

Let u0 ∈WA ,1(Ω). In this paper we deal with the affine PDE constraint

τ0 := A u0 = A u.

Let us consider the z-variable Fenchel conjugate f ∗ : Ω×RN → R of f , which is given by the

formula

f ∗(x,z∗) := sup
z∈RN

{
z∗ · z− f (x,z)

}
, z∗ ∈ RN .1

One way to derive optimality conditions for our constrained problem is to study the relations between

the primal problem

minimize
{

u 7→
ˆ

Ω

g(x,u) dx
}

in the affine space u0 +kerA , (P)

and the dual problem

maximize
{

w∗ 7→R[w∗] :=
〈
w∗,u0

〉
−
ˆ

Ω

f ∗(x,w∗) dx
}

in (kerA )⊥. (P∗)

Here, (kerA )⊥ =
{

w∗ ∈ L∞(Ω;RN) : 〈w∗,u〉= 0 for all u ∈ kerA
}

. Using the duality of A and

A ∗ it is elementary to check that

F [u+u0]≥R[w∗], for every u ∈ kerA and w∗ ∈ (kerA )⊥,

An immediate observation is that the infimum in (P) is greater or equal than the supremum in (P∗).

Convex duality is particularly useful when these two extremal quantities agree since it leads to a

saddle-point condition between minimizers of the primal problem and maximizers of the dual prob-

lem (we refer the reader to [14] for an extensive introduction on this topic). Actually, a simple

consequence of the Fenchel–Rockafellar Theorem (see, e.g., [8, Thm. 1.12]) asserts there is in fact

no gap between these two problems:

Theorem 3.3. The problems (P) and (P∗) are dual of each other and the infimum in problem (P)

agrees with the supremum in problem (P∗), i.e.,

inf
A u=τ0

F [u] = sup
w∗∈(kerA )⊥

R[w∗].

Moreover, the supremum in the right hand side is in fact a maximum, which is equivalent to problem

(P∗) having at least one solution.

1 For the sake of simplicity, we depart from the standard notation ( f (x, q))∗ for the z-variable Fenchel transform

89



3 Relaxation and optimization of convex integrands with linear growth

If a classical minimizer u ∈ L1(Ω;RN) of (P) exists and w∗ is a solution of (P∗), then the pairing

〈w∗,u〉 is a saddle-point of these two variational problems. This constitutive relation between u and w∗

can be derived by variational methods and is expressed by the following pointwise characterization:

f (x,u(x))+ f ∗(x,w∗(x)) = u(x) ·w∗(x) for L d-a.e. x ∈Ω.

Under standard coercivity assumptions (for example if M−1(|z|− 1) ≤ f (x,z) for all (x,z) ∈ Ω×
RN), the infimum of problem (P) is finite and minimizing sequences are L1-uniformly bounded. It

is also well-known (see [5, 7, 14, 15, 25]) that if f is sufficiently regular, the convexity of f (x, q) is a

sufficient condition to ensure the L1-weak sequential lower semicontinuity of F , i.e.,

liminf
j→∞

F [u j]≥F [u], whenever u j ⇀ u in L1(Ω;RN).

However, due to the lack of weak-compactness of L1-bounded sets, we can only hope for compactness

in a space of measures, that is,

u j L
d ∗
⇀ µ ∈M (Ω;RN).

This entails the need to relax the functional F in the space of measures.

We say that µ ∈M (Ω;RN) is an A -free measure if A µ = 0 in the sense of distributions on Ω,

the space of A -free measures will be denoted by kerM A .

In order to prove the main relaxation result (see Theorem 3.4 below), we will restrict our analysis to

operators for which kerA ⊂ kerM A is densely contained with respect to the area-strict convergence

of measures (see Definition 3.9):

Assumption A1. Let µ ∈M (Ω;RN) be an A -free measure. Then, there exists a sequence (u j) ⊂
L1(Ω;RN)∩kerA such that u jL d area-strict converges to µ in Ω.

Theorem 3.4 (Relaxation). Let f : Ω×RN → [0,∞) be a continuous integrand with linear growth

at infinity as in (3.1), and such that f (x, q) is convex for all x ∈ Ω. Further assume that Assumption

A1 holds and that there exists a modulus of continuity ω such that

| f (x,z)− f (y,z)| ≤ ω(|x− y|)(1+ |z|) for all x,y ∈Ω, z ∈ RN . (3.2)

Then the weak* lower semicontinuous envelope

F [µ] :=
{

liminf
j →∞

F [u j] : u j ∈ u0 +kerA and u jL
d ∗
⇀ µ

}
,

of the functional

F [u] :=
ˆ

Ω

f (x,u(x))dx, u ∈ u0 +kerA ,

is given by the functional

µ 7→
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x),
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defined for measures in the affine space u0+kerM A . Here, µ = dµ

dL d L d +µs is the Radon–Nikodým

decomposition of µ with respect to L d and

f ∞(x,z) := lim
x′→x
z′→z
t→∞

f (x′, tz′)
t

(x,z) ∈Ω×RN

is the recession function of f .

Extending the differential constraint to M (Ω;RN), the relaxed functional F gives rise to the re-

laxed problem

minimize F in the affine space u0 +kerM A , (P)

for which is possible to guarantee the existence of minimizers.

Since a (generalized) minimizer µ may not be absolutely continuous with respect to L d , it is not

clear in which sense can “µ ·w∗” be considered a saddle-point of (P) and (P∗). To circumvent the

lack of a duality relation in (kerM A ,(kerA )⊥) we introduce a set-valued pairing as follows:

Jµ,w∗K :=
{

λ ∈M (Ω) : (u j)⊂ u0 +kerA ,

u j→ µ area-strictly in Ω, and (u j ·w∗)L d ∗
⇀ λ in M (Ω)

}
.

We stress that, though our notion of generalized paring is that of a set-valued pairing, it reduces to

a set containing a single Radon measure if stronger regularity assumptions are posed on its arguments

µ or w∗. It should also be noticed that the earlier definitions by Anzellotti [2] for the (BV,L1 ∩
div-free) duality, and Kohn and Temam [17, 18] in BD with respect to its dual space, both exploit the

potential structure of gradients and deformation tensors; this structure is in general not available for

the constraint µ ∈ kerM A .

As we will see, it turns out that every λ ∈ Jµ,w∗K is absolutely continuous with respect to |µ|. Even

more, its absolutely continuous part with respect to L d is fully determined by µ and w∗ through the

relation
dλ

dL d (x) =
dµ

dL d (x) ·w
∗(x) for L d-a.e. x ∈Ω.

This means that, at least formally, elements λ in Jµ,w∗K can be regarded as classical pairings up to

a defect singular measure λ s ⊥L d . In fact, λ s carries the (generalized) saddle-point conditions as

illustrated in our main result:

Theorem 3.5 (Conditions for optimality). Let f : Ω×RN→ [0,∞) be a continuous integrand with

linear growth at infinity as in (3.1) and that f (x, q) is convex for all x ∈ Ω. Further suppose that

Assumption A1 holds and that there exists a modulus of continuity ω such that

| f (x,z)− f (y,z)| ≤ ω(|x− y|)(1+ |z|) for all x,y ∈Ω, z ∈ RN .

Then the following conditions are equivalent:
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3 Relaxation and optimization of convex integrands with linear growth

(i) µ is a generalized solution of problem (P), and w∗ is a solution of (P∗).

(ii) The generalized pairing Jµ,w∗K is the singleton containing the measure

λ :=
(

dµ

dL d ·w
∗
)

L d
Ω + f ∞

( q , dµ

d|µs|

)
|µs|;

in particular
dλ

d|µs|
(x) = f ∞

(
x,

dµ

d|µs|

)
for |µs|-a.e. x ∈Ω.

Moreover, the classical saddle-point conditions

dλ

dL d (x) =
dµ

dL d (x) ·w
∗(x)

= f
(

x,
dµ

dL d (x)
)
+ f ∗(x,w∗(x))

hold at L d-a.e. in x ∈Ω.

The paper is organized as follows: Firstly, in Section 3.2 we give a short account of the properties of

integral functionals defined on measures and their relation to area-strict convergence. The remainder

of the Section recalls some facts of convex duality and the commutativity of the supremum on integral

functionals for PCU-stable families of measurable functions. In Section 3.3 we rigorously derive the

dual variational formulation of (P) by means of classical convex analysis arguments. Section 3.4 is

devoted to the characterization of the relaxed problem (P). In Section 3.5, we study the properties

of pairing Jµ,w∗K, from which the proof of Theorem 3.5 easily follows; applications of our results to

BV, BD and other spaces are further discussed throughout the paper. Lastly, in Section 3.6, we apply

our results to derive the saddle-point relations of a low-volume fraction model in optimal design.
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3.2 Preliminaries

3.2.1 Notation

We shall work in Ω⊂ Rd , an open and bounded domain.

By Lp
µ(Ω;RN) we denote the subset of Lµ(Ω;RN) of µ-measurable functions on Ω with values in

RN which are p-integrable with respect to a given positive measure µ; we will simply write Lp
µ(Ω)

instead of Lp
µ(Ω;R), and Lp(Ω;RN) instead of Lp

L d (Ω;RN)), where L d stands for the d-dimensional

Lebesgue measure.
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In the course of this work we confine ourselves to the use of bounded Radon measures, therefore we

will use the notation M (Ω;RN) ∼= (C0(Ω;RN))∗ to denote the space of RN-valued Radon measures

on Ω with finite mass. Similarly to Lp, we will simply write M (Ω) instead of M (Ω;R). For an

arbitrary measure µ ∈M (Ω;RN) we will often write dµ

dL d L d + µs to denote its Radon-Nikodým

decomposition with respect to L d .

We shall write x · y to denote the inner product between two vectors x,y ∈ RN . For function and

measure spaces, we reserve the notation 〈 q, q〉 to represent the standard pairing between the space and

its dual; where no confusion can arise, we shall not emphasize the position of its arguments.

3.2.2 Integrands, lower semicontinuity, and area-strict convergence

We recall some well-known and other recent results concerning integrands and recession functions.

Following [1] and more recently [20], we define E(Ω;RN) as the class of continuous functions

f : Ω×RN → RN such that the transformation

(S f )(x,z) := (1−|z|) f
(

x,
z

1−|z|

)
for (x,z) ∈Ω×BN ,

where BN is unit open ball in RN , can be extended to the space C(Ω×Bd) by some continuous

function f̃ . In particular, for every f ∈ E(Ω;RN), there exists a positive constant M > 0 such that

| f (x,z)| ≤M(1+ |z|) for all (x,z) ∈Ω×RN ,

and

f̃ (x,z) =

(S f )(x,z) if |z|< 1,

f ∞(x,z) if |z|= 1;

where the limit

f ∞(x,z) := lim
x′→x
z′→z
t→∞

f (x′, tz)
t

(x,z) ∈Ω×RN ,

exists and defines a positively 1-homogeneous function.

Lemma 3.6 (Recession functions I). If f : Ω×RN → R is a continuous convex integrand with

linear growth at infinity with a modulus of continuity ω as in (3.2), then f ∈ E(Ω;RN). Moreover, the

recession function f ∞ exists, is continuous and has the simplified representation

f ∞(x,z) = lim
t→∞

f (x, tz)
t

, for all (x,z) ∈Ω×RN .

Proof. First, we show that f (x, q) is Lipschitz with Lip( f (x, q))≤M (independently of x). Fix x ∈Ω,

by the convexity assumption we know that f (x, q) ∈W1,∞
loc (R

N). Therefore,

∇z f (x,z) ∈ ∂z f (x,z) for L N-almost every z ∈ RN .

Again, by convexity, p∗ ∈ ∂z f (x,z) if and only if f ∗(p∗) = z · p∗− f (z) ∈R. Thus, f ∗(∇z f (x,z)) ∈R
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3 Relaxation and optimization of convex integrands with linear growth

for L N-almost every z ∈ RN . It is easy to check — using the linear growth assumption on f — that{
p∗ ∈ RN : f ∗(p∗)< ∞

}
⊂M ·BN , whence we deduce that

‖∇z f (x, q)‖L∞ ≤M.

The arbitrariness in the choice of x and the continuity of f imply that f (x, q) is x-uniformly Lipschitz.

Together with (3.2), this implies that

f ∞(x,z) = lim
t→∞

f (x, tz)
t

for all (x,z) ∈Ω×RN ,

whenever any of the these limits exist. To see that the right hand side above exists in Ω×RN we

simply observe that

f (x, tz)
t

=
f (x, tz)− f (x,0)

t
+O(t−1) := Ix,z(t)+O(t−1), (3.3)

where, by the convexity of f , the functions Ix,z(t)≤M are monotone (in t) for all (x,z) ∈Ω×RN .

Finally, to prove that f ∈ E(Ω;RN), we are left to show that f̃ is continuous at all (x,z) ∈Ω×∂BN

(this, because f ∈ C(Ω×RN)). Using the modulus of continuity in (3.2) it is easy to show that f ∞ is

continuous on Ω×∂BN , therefore it suffices to show that

lim
x′→x

|z′|↑1,z′→z

f̃ (x′,z′) = f ∞(x,z) for all x ∈Ω.

Using (3.2) and setting t(z′) := 1
1−|z′| (which tends to ∞ as |z′| ↑ 1) in the definition of S f , the argument

boils down to the uniqueness of the limit in (3.3) on sequences (t j) such that t j→ ∞.

We collect some continuity properties of the class E(Ω;RN) and recession functions in the follow-

ing lemmas. The first one is a lower semicontinuity result for convex integrands from [1] (see also [15]

for the case f (x,z) = f (z)). The second is a continuity result, originally proved by Rešetnjak in the

case of 1-homogeneous functions [24], but generalized to lower semicontinuous integrands with lin-

ear growth.

Lemma 3.7. Let Ω ⊂ Rd be an open and bounded set with L d(∂Ω) = 0. Let f (x,z) : Ω×Rd →
(−∞,∞] be a lower semicontinuous integrand, convex with respect to z, and verifying:

exists M > 0 such that f (x,z)≥−M(|z| +1).

Then, for every sequence (u j)⊂ L1(Ω;RN) such that u jL d ∗
⇀ µ in M (Ω;RN), one has that

liminf
j→∞

ˆ
Ω

f (x,u j(x)) dx≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).

Before embarking on the proof, let us show by an easy example that the boundary term is necessary
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due to possible concentration of measure at ∂Ω.

Example 3.8. Let d = N = n = 1, set Ω = (0,1) and consider the integrand f (x,z) = z (accordingly

f ∞(x,z) = z). Consider the uniformly L1-bounded sequence of functions (u j) where

u j(x) :=− jχ(0,1/ j)(x), j ∈ N.

It is easy to check that u jL 1 ∗
⇀ 0 in M (Ω), however, since

´
Ω

f (u j) = −1 for all j ∈ N it follows

that

−1 = liminf
j→∞

ˆ
Ω

f (u j)<

ˆ
Ω

f (0)dx = 0.

Hence, the lower semicontinuity fails.

Proof of Lemma 3.7. The proof of this lemma should, in practice, follow from the theory developed

in [1]. However, due to small imprecisions in their presentation, we have decided to slightly modify

the presentation of the proof.

First, let us recall that under the established assumptions, the conclusions of Theorem 5.1 and

Remark 5.2 in [1] yield

liminf
j→∞

ˆ
Ω

f (x,u j(x)) dx≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).
(3.4)

Their conclusion is correct as long as there is no concentration of measure at the boundary ∂Ω, or,

as long as f ≥ 0 (since then only loss of energy can be accounted on the right hand side limit); see

Example 3.8 above. In general, lower semicontinuity might fail for integrands which are unbounded

from below (in fact, if f is not x-dependent, the conclusion of Lemma 3.7 holds if and only if f ∞ ≥ 0,

see e.g., Theorem 5.21 in [15]).

In spite of this imprecision, (3.4) holds as long as (|u j|) does not concentrate on the boundary ∂Ω.

Our proof will follow from this argument.

Up to taking a subsequence, we may assume without loss of generality that

A0 := liminf
j→∞

ˆ
Ω

f (x,u j(x)) dx = lim
j→∞

ˆ
Ω

f (x,u j(x)) dx.

Let BR be a ball containing Ω. For a measure µ (or function) defined on a smaller domain than BR,

we denote by µ̃ its natural extension by the zero measure into M (BR;RN). In this way ũ jL d ∗
⇀ µ̃

on BR. Set also f̃ := χΩ(x) f (x,z)− χBR\ΩM(1+ |z|). Notice that since Ω is bounded and f̃ (x,z) ≥
−M(1+ |z|), the assumptions of the lemma still hold for f̃ and BR. Also, since Ω⊂ BR, the sequence
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|ũ j|L d does not concentrate on ∂BR. Hence, (3.4) gives

A0 = liminf
j→∞

ˆ
BR

f̃ (x, ũ j(x)) dx≥
ˆ

BR

f̃
(

x,
dµ̃

dL d (x)
)

dx+
ˆ

BR

( f̃ )∞

(
x,

dµ̃s

d|µ̃s|
(x)
)

d|µ̃s|(x)

≥
ˆ

Ω

f̃
(

x,
dµ̃

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµ̃s

d|µ̃s|
(x)
)

d|µ̃s|(x)

≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).

Here, we have used that f̃ ≡ f and f̃ ∞ ≡ f ∞, on Ω and Ω respectively (the latter follows directly from

the definition of recession function and the fact that f (x,z) ≥ −M(1+ |z|)). We have also used that

L d(Ω) = 0 to ensure that ˆ
∂Ω

f̃
(

x,
dµ

dL d (x)
)

dx = 0.

We introduce the following short notation for the (generalized) area functional

〈µ〉(B) :=
ˆ

B

√
1+
∣∣∣∣ dµ

dL d (x)
∣∣∣∣2 dx+ |µs|(B), (3.5)

defined on Borel sets B⊂ Rd .

Definition 3.9 (Area-strict convergence). We say that a sequence of vector-valued Radon measures

µ j area-strict converges to a measure µ (in Ω) if and only if

(i) µ j
∗
⇀ µ weak* in M (Ω;RN), and

(ii) 〈µ j 〉(Ω)→ 〈µ 〉(Ω),

for 〈 q〉 the (generalized) area functional defined in (3.5).

Let us recall from [20] that the notion of area-strict convergence is stronger than the strict conver-

gence of measures which is obtained by replacing (ii) above with the total-variation continuity

(ii’) |µ j|(Ω)→ |µ|(Ω).

This notion of convergence turns out to be stronger than the usual strict convergence as the latter

allows one-dimensional oscillations. The motivation behind the definition of area-strict convergence

is that one can formulate the following generalized version of Rešetnjak’s Continuity Theorem (see,

e.g., [20, Theorem 5]):

96



3.2 Preliminaries

Theorem 3.10. The functional

µ 7→
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x)

is area-strict continuous in M (Ω;RN) for every integrand f ∈ E(Ω;RN).

Remark 3.11. It can be easily seen that area-strict convergence is a sharp condition for the con-

tinuity of integral functionals defined on measures by taking f (x,z) :=
√

1+ |z|2 ∈ E(Ω;RN) and

observing that f ∞(x,z) = |z|.

The push-forward of a measure with respect to a Borel function ϕ is defined as follows. Let

ϕ : Ω→ Ω′ be a Borel function, we define the push-forward measure ϕ∗µ through the assignment

ϕ∗µ := µ ◦ϕ−1. This translates into the following change of variables formula: for a map g : Ω′→
RN , it holds that ˆ

Ω′
g d(ϕ∗µ) =

ˆ
Ω

g◦ϕ dµ,

provided these integrals are well-defined.

Remark 3.12 (Density assumption). There are some operators for which the density Assumption

A1 holds:

(i) The minimization and relaxation on BV-spaces or when A = curl (for simply connected do-

mains) is proved in Lemma 1 of [19] where no regularity assumption is imposed on ∂Ω.

The same argument further shows the area-strict approximation property in the BD-case (or

A = curlcurl); see also Lemma 2.2 in [3] for a result which covers the strict convergence.

(ii) Let A : M (Ω;Rn)→D ′(Ω;Rn) be a kth-order homogeneous partial differential operator with

constant coefficients

A µ = ∑
|α| =k

Aα∂
α

µ, Aα ∈Mn×N .

Further assume that Ω is a strictly star-shaped domain, i.e., there exists x0 ∈Ω such that

(Ω− x0)⊂ t(Ω− x0), ∀ t > 1.

To prove that A1 holds let ϕ t : Ω→ {t(Ω− x0) + x0} : x 7→ t(x− x0) + x0 and consider the

parametrized family of push-forward measures (ϕ t
∗µ)t>1. First, notice that Ω⊂ t(Ω−x0)+x0.

Hence, due to the homogeneity of A , each ϕ t
∗ is an A -free measure on an open set containing

Ω. Second, it is relatively easy to check that ϕ t
∗µ area-strictly converges to µ as t ↓ 1. The

last step consists on mollifying each ϕ t
∗µ by a sufficiently small parameter δ (t) ↓ 0 with the

property that

〈ϕ t
∗µ ∗ρδ 〉(Ω) = 〈ϕ t

∗µ 〉(Ω)+O(1− t), and A (ϕ t
∗µ ∗ρδ ) = 0 on Ω.

Here, ρδ (x) := ρ(x/δ )δ−d where ρ ∈ C∞(B1) is a standard mollifier.
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3 Relaxation and optimization of convex integrands with linear growth

The conclusion follows by letting t ↓ 1 in the estimate above.

We refer the reader to [21] where such a geometrical assumption is made to address a homog-

enization problem in the case A = curl.

3.2.3 PCU-stability

Next, we recall some facts on the commutativity of the supremum of integral functionals valued on

a certain family F of measurable functions. The definitions and results gathered here can be found

in [7, Theorem 1] and [26, Proposition 1.14].

Definition 3.13. Let L0(Ω;RN) be the space of RN-valued measurable functions. A set F of

L0(Ω;RN) is said to be PCU-stable if for any continuous partition of unity (α0, ...,αm) such that

α1, ...,αm ∈ Cc(Ω), for every u1, ...,um in F , the sum ∑
m
i=1 αiui belongs to F .

Theorem 3.14. For any subset F of L0(Ω;RN) there exists a smallest closed-valued measurable

multifunction Γ such that for all u∈F , u(x)∈Γ(x) µ-a.e. (as smallest refers to inclusion). Moreover,

there exists a sequence (u j) in F such that Γ(x) =
{

u j(x) : j ∈ N
}

for µ-a.e. x ∈Ω.

We say that Γ is the essential infimum of the multifunctions

x 7→
{

u(x) : u ∈F
}
,

in symbols

Γ( q) = esssup
{

u( q) : u ∈F
}

Theorem 3.15. Let j : Ω×RN→ (−∞,∞] be a normal convex integrand.2 Denote by J the functional

u 7→
ˆ

Ω

j(x,u(x)) dx, for all u ∈ L0(Ω,RN).3

Let F be a PCU-stable family in L0(Ω,RN). Assume furthermore that J is proper within F , i.e.,

there exists u0 ∈F such that J(u0) ∈ R. Then,

inf
u∈F

J(u) =
ˆ

Ω

inf
z∈Γ(x)

j(x,z) dx,

and

inf
z∈Γ(x)

j( q,z) = esssup
{

j( q,u) : u ∈F ,J(u)<+∞
}
.

3.3 The dual problem

We recall some facts of the theory of convex functions. We follow closely those ideas from [14, Ch.

III]. Along this chapter, X and Y will be two topological vector spaces placed in duality with their

2A normal integrand f : Ω×RN → (−∞,∞] is a measurable function which is also lower semicontinuous in its second
variable

3As usual we define
´

Ω
j(x,u(x)) dx = ∞, as soon as

´
Ω
( j(x,u(x)))+ = ∞.
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3.3 The dual problem

duals X∗ and Y ∗ by the pairing 〈 q, q〉X∗×X (analogously for Y and Y ∗). The subscript notation will be

dropped as it is understood that the correspondent pairing apply only on their respective domains. For

a continuous function F : X → (−∞,∞], we define a lower semi-continuous, and convex function by

letting

F∗(u∗) := sup
X

{
〈u,u∗〉−F(u)

}
, u∗ ∈ X∗.

This function is known as the conjugate function of F . We will be concerned with the minimization

problem

minimize F in X , (p)

which we term as the primal problem.

The dual problem

Let Φ∗ : X∗→ R be the conjugate of Φ. We define the dual problem of (p) as

maximize
{

p∗ 7→ −Φ
∗(p∗)

}
in X∗. (p∗)

Some of the results of this section are stated under weaker assumptions than the ones previously

established in the introduction; however, the results in subsequent sections do require stronger these

properties (for a discussion on the sharpness of our assumptions on the integrand f we refer the reader

to [1, 7, 15] and references therein).

In this section we study the dual formulation (P∗) of (P) in the duality (L∞,L1). Our main goal is

to prove Theorem 3.3 which states not only that (P) and (P∗) are in duality but that there is no gap

between them. The idea is to gather the concepts of the last section to characterize the dual problem

(P∗) as an integral functional in L∞(Ω;Rn).

For an (measurable) integrand g : Ω×RN → (−∞,∞], we will write Ig to denote the functional that

assigns

u 7→
ˆ

Ω

g(x,u(x)) dx, u ∈ L(Ω;RN).

Following standard notation we denote, for a Banach space X and a subset U ⊂ X , the U-indicator

function χU : X → R defined by the functional

χU(u) :=

0 if u ∈U

∞ if x ∈ X \U
,

which is lower semicontinuous on ‖ q‖X -closed subsets U ⊂ X . If V is a linear subspace of X , the

Fenchel transform of the indicator function χV is given by another indicator function, namely

(χV )
∗ = χV⊥ ,

where V⊥ :=
{

x∗ ∈ X∗ :
〈
x∗,x

〉
= 0 ∀x ∈V

}
is the orthogonal space to V .
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3 Relaxation and optimization of convex integrands with linear growth

It will often be convenient to re-write the minimization problem (P) as

minimize
{

u 7→ I f (u+u0) + χkerA (u)
}

in L1(Ω;RN). (P)

Lemma 3.16. Let f : Ω×RN → R be a continuous and convex integrand with linear growth at

infinity. Then the Fenchel conjugate of the functional I f : L1(Ω;RN)→ R, is given by the integral

functional

u∗ 7→ I f ∗(w∗),

defined on functions w∗ ∈ L∞(Ω;RN). In particular,

(I f (u0 + q))∗(w∗) = I f (w∗)−
〈
w∗,u0

〉
.

Proof. We argue as follows.

Step 1. We point out that L1(Ω;RN) is a PCU-stable family.

Step 2. Since f has linear growth, I f −〈w∗, q〉 is proper in L1(Ω;RN).

Step 3. We fix w∗ ∈ L∞(Ω;RN) (here, w∗ ∈ L∞(Ω;RN) is the representative such that w∗(x) ∈ RN for

all x ∈ Rd) and apply Theorem 3.15 to F = L1(Ω;RN) and to

j(x,z) = f (x,z)−w∗(x) · z,

which remains a convex normal integrand, to find out that

(I f )
∗(w∗) =− inf

u∈L1(Ω;RN)

ˆ
Ω

j(x,u(x)) dx =−
ˆ

Ω

inf
z∈Γ(x)

j(x,z) dx,

where Γ( q) = esssup
{

u( q) : u ∈ L1(Ω;RN)
}
= RN . Since infz∈RN j(x,z) is nothing else than

− f ∗(x,w∗(x)) for a.e. x ∈Ω, it follows that

(I f )
∗(w∗) = I f ∗(w∗).4

The last observation follows from the translation property of the Fenchel transform:

(F(x0 + q))∗(x∗) = F∗(x∗)−
〈
x∗,x0

〉
.

Proof of Theorem 3.3. We want to show that if f : Ω×RN→R is a continuous and convex integrand

with linear growth at infinity. Then, the dual problem of (P) reads:

maximize R in the space L∞(Ω;Rn), (P∗)

4Due to the linear-growth assumptions on f , its Fenchel transform is bounded from below. More specifically, f ∗(x,z∗)≥
− f (x,0)≥−M for all (x,z∗) ∈Ω×RN , whence the integral I f ∗ is well-defined.
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3.3 The dual problem

where R : L∞(Ω;Rn)→ R is the functional defined as

R[w∗] :=−Φ
∗(w∗) =

〈w∗,u0〉− I f ∗(w∗) if w∗ ∈ (kerA )⊥

−∞ otherwise
.

To show this, we recall the useful well-known duality characterization due to Fenchel and Rock-

afellar (see, e.g., [8, Theorem 1.12 and Example 4]):

Theorem 3.17 (Fenchel & Rockafellar). Let X be a Banach space and let Φ, Ψ : X → (−∞,∞] be

two convex functions. Assume that there is some u0 ∈
{

u ∈ X : |Φ(x)|, |Ψ(x)| < ∞
}

such that Φ is

continuous at u0. Then

inf
u∈E
{Φ(u)+Ψ(u)}= sup

w∗∈E∗
{−Φ

∗(−w∗)−Ψ
∗(w∗)}

= max
w∗∈E∗

{−Φ
∗(−w∗)−Ψ

∗(w∗)}.

The functional I f : L1(Ω;RN)→R is convex and continuous (recall that f is x-uniformly Lipschitz

in its second argument). On the other hand, the indicator function χkerA : L1(Ω,RN)→ (−∞,∞] is

also a convex functional (kerA is a closed linear subspace of L1(Ω;RN)). Hence, we may apply the

results from the theorem above to Φ = I f (u0 + q) and Ψ = χkerA to get

inf
u∈kerA

I f (u) = max
w∗∈L∞(Ω;Rn)

{−(I f (u0 + q)∗(−w∗)− (χkerA )∗(w∗)}.

By Lemma 3.16 we might further use that−(I f (u0+ q))∗(w∗) = 〈w∗,u0
〉
− I f ∗(w∗), whence we obtain

the sought equality

inf
u∈kerA

I f = max
w∗∈L∞(Ω;RN)

R[w∗] = max
w∗∈(kerA )⊥

〈
w∗,u0

〉
− I f ∗ .

Notice that the existence of at least one solution of (P∗) is guaranteed by Theorem 3.17.

Corollary 3.18 (Operators with closed range). Let f : Ω×RN → R as in the assumptions of The-

orem 3.3. Assume furthermore that ImA is closed with respect to the L1 topology — or equivalently,

that ImA ∗ is closed with respect to the L∞ topology. 5 Then, the dual problem (P∗) reads

maximize R in ImA ∗.

Proof. The proof is an immediate consequence of the identity (see, e. g., [8, Remark 17])

(kerA )⊥ = ImA ∗ .

Example 3.19. The next examples (of operators with closed range) are related to low-volume frac-

5See, e.g., Remark 17 and Theorem 2.19 in [8]
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3 Relaxation and optimization of convex integrands with linear growth

tion optimal design problems in linear conductivity, linear elasticity, and linear plate theory models.

Let Ω⊂ Rd be a simply connected Lipschitz domain.

1. Divergence-free fields. Let A = div : M (Ω;Md×m)→D ′(Ω;Rd) be the divergence operator

(divu)i := ∑
j

∂ jui j, 1≤ i, j ≤ d.

It is fairly straightforward that the adjoint of A : Wdiv,1(Ω)→ L1(Ω;Rm) is the gradient opera-

tor A ∗ : W1,∞
0 (Ω;Rm)→ L∞(Ω;Rd×m) : w∗ 7→∇w∗. Furthermore, due to Poincaré’s inequality,

ImA ∗ =
{

∇v : v ∈ W1,∞
0 (Ω;Rm)

}
is closed with respect to the L∞ topology and hence

ImA ∗ = (ImA )⊥.

2. Double divergence-free fields. Consider A = div2 : M (Ω;Md×d
sym )→D ′(Ω) defined as

div2U :=
d

∑
i, j=1

∂i j Ui j.

In this case, the adjoint of A : Wdiv2,1(Ω)→L1(Ω;R) is the operator A ∗ : W2,∞
0 (Ω)→L∞(Ω;Md×d

sym ) :

U∗ 7→ ∇2U∗, where ∇2U∗ is the Hessian of U∗ given by

(∇2U∗)i j :=
(

∂ 2U∗

∂xi∂x j

)
i j
, 1≤ i, j ≤ d.

Due to a similar argument as in (1), ImA ∗ =
{

∇2v : v ∈W2,∞
0 (Ω)

}
is closed with respect to

the L∞ topology.

3. Symmetric divergence-free fields. Let A = div : M (Ω;Md×d
sym )→D ′(Ω;Rd). This time the ad-

joint of A : Wdiv,1(Ω)→L1(Ω;Rd) is the symmetric gradient A ∗ : W1,∞
0 (Ω;Rd)→L∞(Ω;Md×d

sym ) :

w∗ 7→ (∇w∗+(∇w∗)T )/2 whose range ImA ∗ is closed with respect to the L∞ topology — this

follows from Korn’s inequality and the classical Sobolev embedding.

Corollary 3.20 (Operators with a potential structure). Let f : Ω×RN→R as in the assumptions

of Theorem 3.3. Further assume that kerA = ImB, for some densely defined and closed linear

partial differential operator B : D(B∗) ⊂ L1(Ω;Rl)→ L1(Ω;RN). Then, the dual problem P∗

reads

maximize R in kerB∗.

Proof. Since B is densely defined and closed (in the sense of the graph), it holds that kerB∗ =

(ImB)⊥ (see, e.g., [8]). Hence, using the exactness of ImB = kerA ,

kerB∗ = (ImB)⊥ = (kerA )⊥.

The sought assertion then follows from Theorem 3.3.
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3.3 The dual problem

Example 3.21 (Gradients). Assume that Ω is a simply connected Lipschitz domain with outer

normal vector νΩ(y) defined at H d−1-a.e. y ∈ ∂Ω. The results of Corollary 3.20 apply to the mini-

mization of problems of the form

v 7→
ˆ

Ω

f (x,∇v(x)) dx, v ∈W1,1(Ω).

Consider the curl and gradient operators defined on measures by

A µ = curl µ = (∂kµi j−∂ jµik)i jk, 1≤ j,k ≤ d,1≤ i≤ m, µ ∈M (Ω;Rm×d),

and

B µ = gradµ = (∂ jµ
i)i j, 1≤ i≤ m,1≤ j ≤ d, µ ∈M (Ω;Rm).

Since Ω is simply connected, it holds that

kerA =
{

u ∈ L1(Ω;Mm×d) : curlu = 0
}

=
{

∇v : v ∈W1,1(Ω;Rm)
}

= ImB.

Since Ω is a Lipschitz domain it is easy to show that

B∗w∗ =−divw∗ =−
( d

∑
i=1

∂ jw∗i j

)
i
, 1≤ i≤ m,

in the sense of distributions for any w∗ ∈ D(B∗), where

D(B∗) = Wdiv,∞
0 (Ω)

:=
{

w∗ ∈ L∞(Ω;Mm×d) : divw∗ ∈ L∞(Ω;Rm),Tw∗ = 0
}
,

Here, T : Wdiv,∞(Ω)→ L∞(∂Ω;Rm) is the unique continuous linear map such that

Tw∗ = (w∗ ·νΩ)|∂Ω for all w∗ ∈ C1(Ω;Mm×d).

It follows from Corollary 3.20 that

inf
v∈W1,1(Ω;Rm)

F [∇v] = max
w∗∈Wdiv,∞

0 (Ω)
R[w∗].

See [4] where a generalized pairing in BV(Ω)×Wdiv,∞(Ω) from [2] is used to derive the correspon-

dent saddle-point conditions.

In a similar fashion one may treat the minimization of integral functionals defined on higher-order

gradients, ∇kv = ∂ αv with |α| = k, by considering a generalized “curl operator” (see, e.g., Example

3.10 (d) in [16]).

103



3 Relaxation and optimization of convex integrands with linear growth

Example 3.22 (Linear elasticity). Similarly to the case of gradients, one can deal with the relax-

ation and optimization in BD(Ω) of problems of the form

v 7→
ˆ

Ω

f (x,Ev(x)) dx, v ∈ LD(Ω),

where, for v ∈ L1(Ω;Rd), Ev = (Dv+(Dv)T )/2 is the distributional symmetric derivative of v, and

LD(Ω) :=
{

v ∈ L1(Ω;Rd) : Ev ∈ L1(Ω;Md×d
sym )

}
.

In this case, for µ ∈M (Ω;Md×d
sym ),

A µ = curlcurl µ :=
( d

∑
i=1

∂ikui j +∂i juik−∂ jkuii−∂iiu jk

)
j,k=1,...,d

, 1≤ i≤ d,

is a second-order partial differential operator expressing the St. Venant compatibility conditions and

for µ ∈M (Ω;Rd),

B µ = Eµ =
1
2
(∂ jµi +∂iµ

j), 1≤ i, j ≤ d.

Once again, using that Ω is simply connected,

kerA =
{

u ∈ L1(Ω;Md×d
sym ) : curlcurlu = 0

}
=
{

Ev : v ∈ LD(Ω)
}

= ImB.

As direct consequence of Corollary 3.20 we get

inf
v∈LD(Ω)

F [Ev] = max
w∗∈Hdiv,∞

0 (Ω)
R[w∗],

where

Hdiv,∞
0 (Ω) :=

{
w∗ ∈ L∞(Ω;Md×d

sym ) : divw∗ = 0 in D ′(Ω;Rd), and Tw∗ = 0
}
.

See [17, 18] where saddle-point conditions in BD are established for Hencky plasticity models.

Remark 3.23 (Assumptions I). The results in the present section do not make use of Assumption

A1.

3.4 The relaxed problem

So far we have not discussed the optimality conditions for problem (P). In part, this owes to the

fact that (P) may not necessarily be well-posed. More precisely, due to the lack of compactness

of L1-bounded sets one must look into the so-called relaxation of the energy F . The latter has a

meaning by extending the basis space to a subspace of the bounded vector-valued Radon measures
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M (Ω;RN). It is well-known that the largest (below F ) lower semicontinuous functional with respect

to the weak*-convergence of measures is given by

F [µ] := inf
{

liminfF [u j] : u j
∗
⇀ µ,u j ∈ u0 +kerA

}
.

Under Assumption A1 it is relatively easy to verify that F is again an integral functional:

Proof of Theorem 3.4. Let µ ∈ u0 +kerM A . We divide the proof into three parts:

1. Lower bound. Let (u j) be a sequence in u0 +kerA with the property that

u jL
d ∗
⇀ µ, in M (Ω;RN).

We want to show that

liminf
j→∞

F [u j]≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x)

for all sequences (u j)⊂ kerA +u0 such that u jL d ∗
⇀ µ in M (Ω;RN).

Up to passing to a subsequence, we may assume that

A0 := liminf
j→∞

F [u j] = lim
j→∞

F [u j],

and u j
∗
⇀ µ in M (Ω;RN) for some measure µ in Ω with µ Ω≡ µ .

A simple consequence of Lemma 3.7, applied to (u j), is that

A0 ≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµ
s

d|µs|
(x)
)

d|µs|(x).

Using that µ ≡ µ on Ω, we further obtain

A0 ≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)
+

ˆ
Ω

f ∞

(
x,

dµ
s

d|µs|
(x)
)

d|µs|(x)

≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x),

where in the last inequality we have used strongly the fact that “ f ≥ 0” to neglect the possible con-

centration of measure at the boundary ∂Ω.

Thus, taking the infimum over all such sequences u j
∗
⇀ µ we get

F [µ] ≥
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).

This proves the lower bound.

2. Upper bound. We show that there exists a sequence (u j)⊂ u0+kerA with u jL d ∗
⇀ µ and such
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that

limsup
j→∞

F [u j]≤
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).

This time we will make use of A1 and Theorem 3.10. Indeed, since µ−u0 ∈ kerM A , we may find a

sequence (v j) ⊂ kerA that area-strict converges to µ − u0. Moreover, since area-strict convergence

is stable under translations, the sequence u j := u0 + v j also area-strict converges to µ .

A direct consequence of Theorem 3.10 is that

lim
j→∞

F [u j] =

ˆ
Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).

Therefore, plugging the sequence (u j) in the definition of F yields

F [µ] ≤
ˆ

Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x).

This proves the upper bound.

3. Conclusion. A combination of the lower and upper bounds yields that

F [µ] =

ˆ
Ω

f
(

x,
dµ

dL d (x)
)

dx+
ˆ

Ω

f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x),

for all µ ∈ u0 +kerM A .

Example 3.24 (Relaxation in BV). The space BV(Ω;Rm) of functions of bounded deformation is

the subspace of v ∈ L1(Ω;Rm) of functions whose distributional derivative Dv is (can be represented)

a finite Radon measure. That is,

BV(Ω;Rm) :=
{

v ∈ L1(Ω;Rm) : Dv ∈M (Ω;Mm×d)
}
.

On simply connected and Lipschitz domains Ω ⊂ Rd , we may apply this relaxation result to mini-

mization of problems of the form

v 7→F [∇v] :=
ˆ

Ω

f (x,∇v(x)) dx, v ∈W1,1(Ω;Rm).

Indeed, since Ω is simply connected then Remark 3.12 guarantees that

kerM A =
{

Dv : v ∈ BV(Ω;Rm)
}
,

and therefore Assumption A1 is automatically fulfilled for A = curl and hence Theorem 4 yields that

the lower semicontinuous envelope of F with respect to weak* convergence in BV(Ω;Rm) is given
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by

v 7→F [Dv] :=
ˆ

Ω

f (x,∇v(x))dx

+

ˆ
Ω

f ∞

(
x,

dDsv
d|Dsv|

(x)
)

d|Dsv|(x), v ∈ BV(Ω;Rm).

Here,

Dv = Dav+Dsv = ∇vL d +Dsv

is the Lebesgue–Radon–Nykodým decomposition of Dv.

Example 3.25 (Relaxation in BD). In the context of linear elasticity and the minimization of linear-

growth integral functionals, it is relevant to understand the space BD(Ω) of functions of bounded de-

formation which is conformed by functions v ∈ L1(Ω;Rd) whose distributional symmetrized deriva-

tive

Ev :=
1
2
(Dv+DvT )

is (or can be represented) a finite Radon measure. In other words,

BD(Ω) :=
{

v ∈ L1(Ω;Rd) : Ev ∈M (Ω;Md×d
sym )

}
;

and similarly to the case of gradients, we split

Ev = Eav+Esv = E vL d +Esv.

On simply connected domains Ω⊂ Rd it further holds (see Remark 3.12) that

kerM (curlcurl) =
{

Ev : v ∈ BD(Ω)
}
,

where curlcurl is the second-order operator defined in Example 3.22. Moreover, by Remark 3.12

Assumption A1 is fulfilled for A = curlcurl and therefore the lower semicontinuous envelope of the

functional

v 7→
ˆ

Ω

f (x,E v(x)) dx, v ∈ LD(Ω),

with respect to weak* convergence in BD(Ω) is given by

v 7→
ˆ

Ω

f (x,E v(x))dx

+

ˆ
Ω

f ∞

(
x,

dEsv
d|Esv|

(x)
)

d|Esv|(x), v ∈ BD(Ω).

We conclude this section with a few remarks on the possible concentration of measure at the bound-

ary.

Remark 3.26 (Concentration of measure at the boundary). (i) If one assumes that L d(∂Ω) =

0 then, only concentration of measure at ∂Ω might undermine the lower semicontinuity. Indeed,
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3 Relaxation and optimization of convex integrands with linear growth

in proving the lower bound we have used the positivity of f to disregard positive concentration of

measure at ∂Ω. For an arbitrary (A -free) sequence (u j) with u j
∗
⇀ µ in M (Ω;RN), it might not hold

that |µ|(∂Ω) = 0. Therefore, using the positivity of f (as in the proof of the lower bound) it may

occur that the limes inferior inequality is strict, namely that

liminf
j→∞

F [u j]> F [µ].

(ii) However, in terms of the relaxation, Assumption A1 — which can be understood as a density

assumption — guarantees that the space of A -free integrable sequences is sufficiently large to ensure

the equality in the limes inferior above is reached for some other sequence. In a way, A1 tells us that

for every µ ∈ kerM A there exists an A -free recovery sequence (u j) which does not concentrate on

∂Ω, this is,

|u j|L d ∗
⇀ Λ, in M (Ω) and Λ(∂Ω) = 0.

Notice also that the proof of the upper bound does not rely on the positivity of f .

(iii) If the positivity of f is dispensed with from in the assumptions, or equivalently if we consider

a general signed integrand f : Ω×RN → R, there is no hope for lower semicontinuity to hold. The

underlying idea is that while f is positive (or bounded from below) only mass can be gained at ∂Ω,

which in turn does not affect the lower bound. On the contrary, if f is unbounded from below,

the appearance of negative energy at ∂Ω might not be carried by the limit measure (compare with

Example 3.8).

Remark 3.27 (Existence of solutions). Under standard coercivity of the integrand, namely that

1
M
(|z|−1)≤ f (x,z) for all (x,z) ∈Ω×RN .

It is relatively easy to check by a diagonal argument that F is actually weak* lower semicontinuous

in u0 +kerM A :

Let µ j,µ ∈ u0 + kerM A be A -free measures such that µ j
∗
⇀ µ . For each j ∈ N let (u jm)m ⊂

u0 +kerA be a sequence of functions which area-strict converges (as measures) to µ j so that

∞ > M(L d(Ω)+ liminf
j →∞

|µ j|(Ω))≥ liminf
j→∞

F [µ j] = liminf
j→∞

(
lim

m→∞
F [u jm ]

)
.

It follows from the bound

F [u] ≥ 1
M

(
‖u‖L1(Ω)−L d(Ω)

)
,

that sup j,m ‖u jm‖L1(Ω) < ∞. Hence, we might extract a diagonal sequence verifying the following

properties:

um( j) := u jm
∗
⇀ µ ∈ u0 +kerM A and F [um( j)]+O( j) = F [µ j],

where O( j)→ 0 as j→∞. The sought lower semicontinuity is then an easy consequence of the lower
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3.5 The pairing Jµ,w∗K and the optimality conditions

bound inequality in the proof of Theorem 3.4,

liminf
j→∞

F [µ j] = liminf
j→∞

(
F [um( j)]+O( j)

)
≥F [µ].

Notice that the coercivity assumption on the integrand is crucial for the diagonal argument to work;

otherwise, we might not be able to guarantee the weak*-compactness of arbitrary diagonal sequences.

As soon as weak* lower semicontinuity of F is established, we observe (again by coercivity) that

minimizing sequences are weak*-bounded (and thus weak* pre-compact). The direct method can be

then applied to prove existence of solutions of (P).

3.5 The pairing Jµ,w∗K and the optimality conditions

The pointwise product (µ ·v∗) of two functions, µ ∈ u0 +kerA and v∗ ∈ (kerA )⊥, may be regarded

as the bounded Radon that takes the values

B 7→ 〈µ,v∗〉(B) :=
ˆ

B∩Ω

µ(x) · v∗(x) dx, B⊂ RN Borel set.

In general, if µ ∈ u0 + kerM A is only assumed to be vector-valued Radon measure, one cannot

simply give a notion to the inner product of µ and v∗ (even in the sense of distributions). However,

following the interests of our minimization problem, one may define the following generalized pairing

by setting

Jµ,v∗K :=
{

λ ∈M (Ω) : ∃ (u j)⊂ u0 +kerA such that

(u j · v∗)L d ∗
⇀ λ and (u jL

d) area-strict converges to µ

}
In this way, the set Jµ,w∗K contains information on the concentration effects of sequences of the form

(u j ·w∗).
The next lines are dedicated to derive the basic properties Jµ,w∗K.

Theorem 3.28. Let µ ∈ u0 +kerM A and let w∗ ∈ (kerA )⊥. Then

|λ |(ω)≤ |µ|(ω)‖w∗‖L∞(ω) for every Borel set ω ⊂Ω,

for all λ ∈ Jµ,w∗K.

Proof. Let λ ∈ Jµ,w∗K. By definition, there exists a sequence of functions (u j) ⊂ L1(Ω;RN) for

which the measures (u jL d) area-strict converge to µ and are such that (u j ·w∗)L d ∗
⇀ λ . Hence,

liminf
j→∞

|〈u j,w∗〉|(ω)≥ |λ |(ω), for every open set ω ⊂Ω. (3.6)

On the other hand, by Hölder’s inequality, we get the upper bound

|〈u j,w〉|(ω)≤ |u j|(ω)‖w‖L∞(ω), for every open set ω ⊂Ω, (3.7)
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3 Relaxation and optimization of convex integrands with linear growth

and every j ∈ N. Plugging (3.6) into (3.7) and taking the limit as j→ ∞ we get, by Theorem 3.10

(applied to f (z) = |z|), that

|λ |(ω)≤ |µ|(ω)‖w‖L∞(ω), for every open set ω ⊂Ω with |µ|(∂ω) = 0.

The assertion for general Borel sets follows by a density argument.

Corollary 3.29. Let µ ∈ u0 + kerM A and let w∗ ∈ (kerA )⊥. If λ ∈ Jµ,w∗K, then the Radon

measures λ and |λ | are absolutely continuous with respect to the measure |µ| in Ω. Moreover, an

application of the Radon-Nikodým differentiation theorem yields∥∥∥∥ dλ

d|µ|

∥∥∥∥
L∞

|µ|

≤
∥∥∥∥ d|λ |

d|µ|

∥∥∥∥
L∞

|µ|

≤ ‖w∗‖L∞ .

The following proposition plays a crucial role on proving the generalized saddle-point conditions;

it characterizes the absolutely continuous part of elements in Jµ,w∗K and gives an upper bound for

the density of its singular part.

Theorem 3.30. Let µ ∈ u0 +kerM A and w∗ ∈ (kerA )⊥. If λ ∈ Jµ,w∗K and R[w∗]>−∞, then

dλ

d|µs|
(x)≤ f ∞

(
x,

dµ

d|µs|
(x)
)
, for |µs|-a.e. x ∈Ω, (3.8)

and
dλ

dL d (x) =
dµ

dL d (x) ·w
∗(x), for L d-a.e. x ∈Ω. (3.9)

Proof. Let λ ∈ Jµ,w∗K. By definition we may find sequence (u j) ⊂ L1(Ω;RN) that area-strict con-

verges to µ in the sense of Radon measures, i.e., such that

u j L
d ∗
⇀ µ ∈M (Ω;RN), 〈u j L

d 〉(Ω)→ 〈µ 〉(Ω),

for which

(u j ·w∗)L d ∗
⇀ λ , in M (Ω;RN).

Let x0 ∈ (supp λ s)∩Ω be a point with the following properties:

dµs

d|µs|
(x0) =

dµ

d|µ|
(x0) = lim

r↓0

µ(Br(x0))

|µs|(Br(x0))
< ∞, (3.10)

lim
r↓0

´
Br(x0)

∣∣∣ dµ

dL d (x)
∣∣∣ dx

|µs|(Br(x0))
= 0, lim

r↓0

´
Br(x0)

dλ

dL d (x)dx

|µs|(Br(x0))
= 0 (3.11)

dλ

d|µs|
(x0) = lim

r↓0

λ (Br(x0))

|µs|(Br(x0))
< ∞. (3.12)

Using the principle

f ∞(x,z)≥ sup
{

z · z∗ : z∗ ∈ RN , f ∗(x,z∗)<+∞
}

110



3.5 The pairing Jµ,w∗K and the optimality conditions

and the assumption that | f ∗(x,w∗(x))| is essentially bounded by for L d a.e. x ∈Ω (here we use that

R[w∗]>−∞), we deduce the simple inequality

ˆ
Bs(x0)

f ∞(x,u j(x))dx≥
ˆ

Bs(x0)
u j ·w∗ dx, (3.13)

for every s ∈ (0,dist(x0,∂Ω)). We let j→ ∞ on both sides of the inequality to get

lim
j→∞

ˆ
Bs(x0)

f ∞(x,u j(x))dx≥ λ (Bs(x0)), for L 1-a.e. s ∈ (0,dist(x0,∂Ω)).

Recall that u j L d area-strict converges to µ and by construction f ∞ is positively 1-homogeneous in

its second argument. Hence, we may apply Theorem 3.10 to the limit in the left hand side of the

inequality to obtain

1
|µs|(Bs(x0))

ˆ
Bs(x0)

f ∞

(
x,

dµ

d|µ|
(x)
)

d|µ|(x)

≥ λ (Bs(x0))

|µs|(Bs(x0))
, for L 1-a.e. s ∈ (0,dist(x0,∂Ω)).

Using properties (3.10)-(3.12) we may let s ↓ 0 on the right hand side to deduce that

lim
s↓0

1
|µs|(Bs(x0))

ˆ
Bs(x0)

f ∞

(
x,

dµ

d|µ|
(x)
)

d|µ|(x)≥ dλ

d|µs|
(x0). (3.14)

Moreover, the modulus of continuity of f conveys a similar modulus of continuity for f ∞, namely

that

| f ∞(x,z)− f ∞(y,z)| ≤ ω(|x− y|)M|z|, for all x,y ∈Ω and every z ∈ RN .

Thus, the limit in the left hand side of (3.14) is bounded from above by

lim
s↓0

(
1

|µs|(Bs(x0))

ˆ
Bs(x0)

f ∞

(
x0,

dµ

d|µ|
(x)
)

d|µ|(x)+ω(s) ·M |µ|(Bs(x0))

|µs|(Bs(x0))

)
.

Using (3.10)-(3.12) and that f ∞ is Lipschitz on its second argument (which follows from the respec-

tive Lipschitz continuity of f ) we infer from the bound above and (3.14) that

f
(

x0,
dµ

d|µs|
(x0)

)
≥ dλ

d|µs|
(x0).

The sought statement follows by observing that (3.10)-(3.12) hold simultaneously in Ω for |µs|-a.e.

x0 ∈Ω.

For the equality on Lebesgue points, let x0 ∈Ω be such that

lim
r↓0

|µs|(Br(x0))

rd = 0, (3.15)
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3 Relaxation and optimization of convex integrands with linear growth

lim
r↓0

1
rN

ˆ
Br(x0)

∣∣∣∣ dµ

dL d (x) −
dµ

dL d (x0)

∣∣∣∣ dx = 0, (3.16)

and
d( dµ

dL d ·w∗)
dL d (x0) =

dµ

dL d (x0) ·w∗(x0). (3.17)

Set

P0 :=
dµ

dL d (x0).

Then, by definition, for a.e. r ∈ (0,dist(x0,∂Ω)) it holds that∣∣∣∣λ (Br(x0))−
ˆ

Br(x0)
P0 ·w∗ dx

∣∣∣∣
= lim

n→∞

∣∣∣∣ˆ
Br(x0)

u j ·w∗ dx−
ˆ

Br(x0)
P0 ·w∗ dx

∣∣∣∣
≤ ‖w∗‖L∞ · lim

j→∞

ˆ
Br(x0)

|u j−P0| dx

≤ ‖w∗‖L∞ ·
(ˆ

Br(x0)

∣∣∣∣ dµ

dL d −P0

∣∣∣∣ dx

+ |µs|(Br(x0))

)
= o(rd),

where in the last step we have used that (u j−P0)L d area-strict converges to µ−P0L d . This follows

from Theorem 3.10 and the fact that ( f ( q−P0))
∞ = f ∞( q).

Essentially, this means that computing the Radon-Nikodým derivative of λ at x0 is equivalent to

calculate the correspondent derivative of the measure ( dµ

dL d ·w∗)L d at x0. Under this reasoning we

use (3.17) to calculate
dλ

dL d (x0) =
dµ

dL d (x0) ·w∗(x0).

Properties (3.15)-(3.17) hold simultaneously for L d-a.e. x0 ∈Ω from where (3.9) follows.

Remark 3.31. If w∗ is |µs|-measurable, then one can prove (by a similar argument to the one used

in the proof of (3.9)) that

dλ

d|µs|
(x0) =

dµ

d|µs|
(x0) ·w∗(x0), for |µs|-a.e. x0 ∈Ω.

For a sequence (u j) ⊂ L(Ω;RN) that area-strict converges to some µ ∈ kerM A it is automatic to

verify, by means of Theorem 3.10, that

f ( q,u j)L
d ∗
⇀ f

( q , dµ

dL d

)
L d

Ω+ f ∞

( q , dµs

d|µs|

)
d|µs| (3.18)

in M+(Ω). If one dispenses the assumption that (u j) area-strict converges µ and only assumes that

u j L d ∗
⇀ µ in M (Ω;RN) (or even the stronger strict convergence) the convergence (3.18) may not

hold as already observed in Remark 3.11. However, as the next proposition asserts, it does hold for

112



3.5 The pairing Jµ,w∗K and the optimality conditions

minimizing sequences if one assumes that the integrand is coercive.

Theorem 3.32 (Uniqueness and improved convergence). Let f : Ω×RN →R satisfy the assump-

tions of Theorem 3.4 and further assume that it is coercive , i.e.,

1
M

(1−|z|)≤ f (x,z) for all x ∈Ω,z ∈ RN .

Let (u j)⊂ u0+kerA be a minimizing sequence of problem (P) with u j L d ∗⇀ µ in M (Ω;RN). Then

µ is a generalized minimizer of (P) and the sequence of real-valued radon measures ( f ( q,u j)L d Ω)

weak* converges on Ω, in the sense of Radon measures, to the measure

f
( q , dµ

dL d

)
L d

Ω+ f ∞

( q , dµs

d|µs|

)
d|µs|.

Even more, if f (x, q) and f ∞(x, q) are strictly convex for all x ∈ Ω, then µ is the unique minimizer of

(P) and u j L d area-strict converges to µ in M (Ω;RN).

Remark 3.33. Recall that strict convexity for a positively 1-homogeneous function g : RN → R —

also called strictly convex on norms — is equivalent to the convexity of its unit ball, that is,

g(z1) = g(z2) = g(z1 + z2), for |z1|= |z2| = 1

implies

z1 = z2.

In general, strict convexity of a function g does not imply strict convexity of g∞ (see Remark 5.4

in [1]).

Proof. Set Λ j ∈M+(Ω) to be the real-valued Radon measure defined as

Λ j(B) :=
ˆ

B
f (x,u j(x))dx, for any open set B⊂Ω.

Since (u j) is a minimizing sequence, it is also L1-uniformly bounded (see Remark 3.27) and hence

sup
j∈N
|Λ j|(Ω)<+∞.

We may assume, up to taking a subsequence (not re-labeled), that there exist positive Radon measures

Λ,σ ∈M+(Ω) for which

Λ j
∗
⇀ Λ, and |u j|L d ∗

⇀ σ in M+(Ω).

We do the following observation: the conclusion of Lemma 3.7 also holds any arbitrary open set
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B⊂Ω with L d(∂B) = 0. Hence,

Λ(B) = lim
j→∞

Λ j(B)≥F (µ,B),

for every open subset B of Ω with Λ(∂B) = σ(∂B) = 0, and where we have set F (µ, q) to be the

Radon measure that takes the values

F (µ,B) :=
ˆ

B
f
(

x,
dµ

dL d (x)
)

dx+
ˆ

B
f ∞

(
x,

dµs

d|µs|
(x)
)

d|µs|(x),

on open sets B ⊂ Ω. Using a density argument of the class of open sets B with (L d + |σ |)(∂B) = 0

in the Borel σ -algebra B(Ω), we conclude that

Λ≥F (µ, q), in the sense of real-valued Radon measures. (3.19)

So far we have not used the fact that (u j) is a minimizing sequence. Recall that, by definition, this is

equivalent to

Λ j(Ω)→ Λ(Ω) = F (µ,Ω) = inf
u0+kerA

F .

The mass convergence above and (3.19) are sufficient conditions for Λ and F (µ, q) to represent the

same Radon measure in M (Ω), i.e.,

Λ = F (µ, q), in M (Ω).

Since the passing to a convergent subsequence was arbitrary, this proves

f ( q,u j)L
d ∗
⇀ f

( q , dµ

dL d

)
L d

Ω+ f ∞

( q , dµs

d|µs|

)
d|µs| in M+(Ω).

To see that for strictly convex integrands µ is the unique minimizer of (P), one simply uses the strict

convexity of f and f ∞, and the fact that kerM A is a convex space.

The improvement of convergence to area-strict relies on the theory of generalized Young measures.

Its proof is a direct consequence of Theorem 2.5 and Lemma in [1], and Definition 3.9.

Remark 3.34. The conclusions of Theorem 3.32 do not rely on Assumption A1. In return, it estab-

lishes that coercivity of the integrand is a sufficient condition to ensure the existence of at least one

minimizing sequence (u j) of (P) and at least one generalized solution µ (generated by (u j)) of (P).

Remark 3.35. The improved convergence for minimizing sequences of strictly convex integrands

plays no role in our characterization of the extremality conditions of problems (P) and (P∗). Never-

theless, we have decided to include as it is a standard result for applications in calculus of variations.

We prove our main result:

Proof of Theorem 3.5.
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Step 1. Jµ,w∗K 6= /0. Let µ ∈ u0+kerM A be a generalized solution of problem (P). Let (ũ j) to be

the sequence provided by Assumption A1 for which ũ jL d area-strict converges to µ−u0L d . Notice

that the sequence (u j) := (ũ j +u0) is a minimizing sequence of (P) which area-strict converges to µ

so that Jµ,w∗K is not the empty set.

Step 2. Necessity. Fix λ ∈ Jµ,w∗K. Let (u j)⊂ u0 +kerA be a sequence that area-strict converges

to µ and such that u j ·w∗L d generates λ . By Theorem 3.10 and the minimality of µ it also holds that

(u j) is a minimizing sequence for problem (P).

In return, Theorem 3.32 implies that the sequence of measures ( f ( q,u j)L d Ω) weak* converges

to the Radon measure

f
(

x,
dµ

dL d

)
L d

Ω + f ∞

( q , dµ

d|µs|

)
|µs|

in M+(Ω). Since f is convex (in its second argument) and lower semicontinuous, it must hold that

f ∗∗(x, q) = f (x, q), for L d-a.e. every x ∈Ω.

Hence,

( f ( q,u j)L
d)(B)≥

ˆ
B

u j ·w∗ dx−
ˆ

B
f ∗(x,w∗)dx, (3.20)

for every Borel subset B⊂Ω. Therefore, by Theorem 3.32 and (3.20) we get (by letting j→ ∞) that

f
( q, dµ

dL d

)
L d

Ω+ f ∞

( q, dµ

d|µs|

)
|µs|

≥ λ − f ∗(x,w∗)L d
Ω,

(3.21)

in the sense of measures. Also, by the equality in Proposition 3.3 we know that F [µ] = R[w∗] so

that (
f
( q, dµ

dL d

)
L d

Ω+ f ∞

( q, dµ

d|µs|

)
|µs|

)
(Ω)

= F [µ] = R[w∗]

= 〈w∗,u0〉−
(

f ∗( q,w∗)L d)(Ω)

=
(
λ − f ∗( q,w∗)L d)(Ω),

where in the last equality we used that λ (Ω) = 〈w∗,u0〉 for any λ ∈ Jµ,w∗K with µ ∈ u0 + kerM A

and v∗ ∈ (kerA )⊥. The inequality, as measures, in (3.21) and the equality of their total mass in the

last formula tells us that the measures in question must be agree as elements of M (Ω). In other

words,

f
( q, dµ

dL d

)
L d

Ω+ f ∞

( q, dµ

d|µs|

)
|µs|= λ − f ∗( q,w∗)L d

Ω,
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as measures in M (Ω). Finally, we recall the characterization from Theorem 3.30 so that

f
(

x,
dµ

dL d (x)
)
+ f ∗(x,w∗(x)) =

dµ

dL d (x) ·w
∗(x),

for L d-a.e. x ∈Ω, whence it follows that

dλ

d|µs|
(x) = f ∞

(
dµ

d|µs|
(x)
)

for |µs|-a.e. x ∈Ω.

The latter equalities fully characterize Jµ,w∗K by means of Corollary 3.29 and the Radon-Nikodým

Decomposition Theorem. In particular, Jµ,w∗K is the singleton{(
dµ

dL d ·w
∗
)

L d
Ω + f ∞

( q , dµ

d|µs|

)
|µs|
}
.

This proves that (i) implies (ii).

Step 3. Sufficiency. To show that (ii) implies (i) note that we always have infF ≥ supR (on their

respective domains). Hence, it suffices to show that

F [µ]≤R[w∗]. (3.22)

Indeed, the inequality above implies that µ solves problem (P) and w∗ solves (the relaxation of)

problem (P∗). To prove (3.22) let (u j)⊂ u0+kerA be the (area-strict convergent) recovery sequence

for µ in the proof Theorem 3.4 so that

f ( q,u j)L
d

Ω
∗
⇀ f

( q, dµ

dL d

)
L d

Ω+ f ∞

( q, dµ

d|µs|

)
|µs|.

By assumption

λ j := (u j ·w∗)L d ∗
⇀ λ :=

(
dµ

dL d ·w
∗
)

L d
Ω + f ∞

( q , dµ

d|µs|

)
|µs|

in M (Ω), and therefore using that λ j(Ω) = 〈w∗,u0〉 for all j ∈ N, we get that λ (Ω) = 〈w∗,u0〉. The

pointwise identities from (ii) then yield

R[w∗] =−
ˆ

Ω

f ∗(x,w∗) dx+λ (Ω)

=−
ˆ

Ω

f ∗(x,w∗) dx+
ˆ

Ω

dµ

dL d (x) ·w
∗(x) dx

+

ˆ
Ω

f ∞

(
x,

dµ

d|µs|
(x)
)

d|µs|(x)

= F [µ].

This proves (3.22).

Remark 3.36 (Optimality conditions II). In the case that there exists a solution w∗ of (P∗) with
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substantially better regularity than the one originally posed by being admissible to its variational

problem, say, for example, w∗ ∈ C(Ω;RN) or w∗ ∈ L∞

|µ|(Ω;Rn). Then, it is easy to verify (cf. Remark

3.31) that

f ∞

(
x,

dµs

d|µs|
(x0)

)
=

dµ

d|µs|
(x) ·w∗(x) for |µs|-a.e. x ∈Ω,

and

f
(

x,
dµ

dL d (x)
)
+ f ∗(x,w∗(x)) =

dµ

dL d (x) ·w
∗(x) for L d-a.e. in Ω,

are also equivalent to (i) and (ii) in Theorem 3.5.

Corollary 3.37 (BD(Ω)-optimization). Let Ω⊂Rd be an open, bounded, and simply connected set

and let f : Ω×RN → R satisfy the assumptions of Theorem 3.5. Then the following conditions are

equivalent:

(i) ṽ ∈ BD(Ω) is a minimizer of the functional

v 7→
ˆ

Ω

f (x,E v(x))dx

+

ˆ
Ω

f ∞

(
x,

dEsv
d|Esv|

(x)
)

d|Esv|(x), v ∈ BD(Ω),

and σ∗ ∈ L∞(Ω;Md×d
sym ) is a symmetric div-free tensor with Tr(σ∗ ·νΩ) = 0 that maximizes the

functional

w∗ 7→ −
ˆ

Ω

f ∗(x,w∗(x)) dx, w∗ ∈ Hdiv,∞
0 (Ω;Rd).

(ii) The measure

(E ṽ ·σ∗)L d
Ω + f ∞

( q , dEsṽ
d|Esṽ|

)
|Es|ṽ

coincides with λ ∈M (Ω), the measure uniquely determined by the property

ˆ
Ω

ϕ(x) dλ (x) =−1
2

ˆ
Ω

σ
∗(u⊗∇ϕ +∇ϕ⊗u) dx, for all ϕ ∈ Cc(Ω).

In particular,
dλ

d|Esṽ|
(x) = f ∞

(
x,

dEsṽ
d|Esṽ|

)
for |Esṽ|-a.e. x ∈Ω.

Moreover,

dλ

dL d (x) = E ṽ(x) ·σ∗(x)

= f (x,E ṽ(x))+ f ∗(x,σ∗(x))

for L d-a.e. in x ∈Ω.

A similar characterization holds for A = curl associated with the minimization on the space BV.
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3 Relaxation and optimization of convex integrands with linear growth

3.6 An application to low-volume fraction optimal design

The model

Consider the physical problem of thermal or electrical conductivity in a given (simply connected)

medium Ω ⊂ R2. The conductivity is represented by a positive definite matrix σA(x) oscillating be-

tween two constituent media depending on an indicator set A, in this case with different conductivities

α and β with α > β > 0. More precisely, for a given set A⊂ R2 we let

σA(x) = χA(x)α idR2×2 + (1−χA(x))β idR2×2 .

If we let τ ∈ L∞(Ω) be the derivative of the charge of the body, and we impose zero boundary condi-

tions (for simplicity), the model of the conductivity reads

−div(σA∇wA) = τ in Ω

u = 0 in ∂Ω,

where wA is the electric potential or temperature associated to the conductivity σA. The dissipated

thermal energy ˆ
Ω

τwA dx

provides a measure of the global conductivity in Ω. A common problem in optimal design is to

find the best conductive material at a low cost in the following sense: production costs or volume

constraints are handled by introucing a Lagrange multiplier γ > 0 on the expensive material α ,

Jα,β ,γ(A) :=
1
2

(ˆ
Ω

τwA dx+ γ

ˆ
Ω

χA dx
)
.

How can one mathematically treat the degenerate problem as α = ∞ (loss of uniform boundedness)?

In other words, what happens as we let α → ∞ and naturally its cost γ → ∞. This can be considered

as an attempt to model perfect isolators. A first step is to understand the meaningful scaling between

the parameters α and γ . An easy calculation (see [6]) shows that the only meaningful scaling, up to

multiplicative constants, occurs when γ ∼α . Without loss of generality let us fix β = 1 and γ =α−1.

We consider the problem

minimize Jα := Jα,1,α−1 among the class of Borel sets A⊂Ω. (pα )

In general this problem is not well-posed due to the highly oscillatory behavior of minimizing se-

quences (and the non-convex nature of the energy). However, according to Murat and Tartar [22, 23],

the optimality conditions of the relaxation (pα ) can also be interpreted as the Euler equations corre-

sponding to the minimization problem:

minimize Fα in the affine space
{

u ∈ L2(Ω;R2) : −divu = τ in Ω

}
.
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3.6 An application to low-volume fraction optimal design

Here,

Fα [u] :=
ˆ

Ω

Ψα(u(x)) dx

where, for α ∈ [1,∞],

Ψα(z) =


|z|2
2 if |z| ≤ 1

|z|− 1
2 if 1≤ |z|< α

|z|2
2α
− α−1

2 if α ≤ |z|

.

The limit problem and its connection to the elasto-plastic torsion problem

In general the proposed model can be considered for an arbitrary dimension Ω ⊂ Rd . The rigorous

mathematical tool to understand the governing behavior of the limit problem is Γ-convergence (we

refer the reader to [13] for a complete introduction to this topic). The Γ-limit of Fα under the side

constraint “−divu = τ” (with respect to the weak* convergence of measures), as (α,γ)→ (∞,∞)

with α ∼ γ , is given by F : M (Ω;Rd)→ R defined as

F [µ] :=


ˆ

Ω

Ψ

(
dµ

dL d

)
dx+ |µs|(Ω) if −div µ = τ

+∞ otherwise
,

where Ψ := Ψ∞. We define the problem

minimize F in M (Ω;Rd). (p)

Using the elements of Section 3.3 and Corollary 3.18 one can easily verify that the dual formulation

of (p) reads:

maximize R in W1,∞
0 (Ω), (p∗)

where

R[w∗] :=


〈
τ,w∗

〉
− 1

2

ˆ
Ω

|∇w∗|2 dx, if ‖∇w∗‖∞ ≤ 1

−∞ otherwise
.

The previous problem, also known as the elasto-plastic torsion problem, arises when a long elastic

bar with cross section Ω is twisted by an angle proportional to f . For a solution w∗, the set

E :=
{

x ∈Ω : |∇w∗(x)|< 1
}

is the set of points where the cross section still remains elastic, and the set

E ′ :=
{

x ∈Ω : |∇w∗(x)|= 1
}

is the set of points where the material has become plastic due to torsion. We refer to E as the elastic

set and to E ′ as the plastic set.
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3 Relaxation and optimization of convex integrands with linear growth

Saddle-point optimality conditions

The main reason to compute the Γ-limit for the dual problem lies in the relations given by Theo-

rem 3.5. Indeed, Ψ ∈ E(Ω;Rd) and Ψ∞ = |z|. Moreover, Theorem 3.3 (see also Example 3.19) states

that (p) and (p∗) are dual of each other and

inf
M (Ω;Rd)

F = max
W1,∞

0 (Ω)
R.

It has been shown by Brezis and Stampacchia [9] (see also [10–12]) that for a source term τ ∈ Lp,

there exists a unique solution w ∈W2,p(Ω) of problem (p∗).

Thence, a solution w∗ of (p∗) is such that ∇w∗ is |µ|-measurable for any µ ∈M (Ω;Rd) — indeed,

this follows from the Sobolev embedding. In particular, Remark 3.36 and Theorem 3.5 state that

every solution µ of (p) verifies the following properties:

1. The classical saddle-point optimality conditions

2µ
a(x) ·∇w∗(x) =

|µa(x)|2 + |∇w∗(x)|2 if |µa| < 1

2|µa(x)|−1+ |∇w∗(x)|2 if |µa| ≥ 1
,

at L d-a.e. x ∈Ω (here, we have used the short-hand notation µa := dµ

dL d ),

2. and, the singular optimality conditions

1 =

∣∣∣∣ dµs

d|µs|
(x)
∣∣∣∣= dµs

d|µs|
(x) ·∇w∗(x),

which hold at |µs|-a.e. x ∈Ω.

These equations are equivalent to the relations

µ = ∇w∗(x)L d
Ω on E,

µ = ∇w∗(x)|µ|, |µa| ≥ 1 on E ′.

If we set λ ∈M+(Ω) to be the positive measure such that λ E ≡ 0 and

λ E ′ = |µ|−L d ,

then the characterization of µ and ∇w∗ given above and the equation div µ = −τ yield (in the sense

of distributions)

−∆w∗−div
(

λ
∇w∗

|∇w∗|

)
= f . (3.23)

Conversely, if we can find a positive measure λ ∈M+(Ω) which vanishes on E and satisfies (3.23),

we may define

µ = ∇w∗(L d
Ω+λ ).
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3.6 An application to low-volume fraction optimal design

Clearly µ satisfies the optimality conditions (1) and (2), and by Theorem 3.5 it must be a solution of

(p).

Remark 3.38. The analysis of saddle-point conditions for the elasto-plastic torsion problem, and

in particular the derivation of (3.23), can also be found in [14, Section 3.4] under the additional

assumption that µ ∈ L2(Ω;Rd). Notice, however, that (p) is not coercive in L2(Ω;Rd) and therefore

an square-integrable solution might not exist.
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4 Optimal design problems for elliptic

operators

This chapter contains the results obtained in the research paper:

Regularity for free interface variational problems in a general class of
gradients

Abstract

We present a way to study a wide class of optimal design problems with a perimeter penalization.

More precisely, we address existence and regularity properties of saddle points of energies of the

form

(u,A) 7→
ˆ

Ω

2 f u dx −
ˆ

Ω∩A
σ1 A u ·A u dx −

ˆ
Ω\A

σ2 A u ·A u dx + Per(A;Ω),

where Ω is a bounded Lipschitz domain, A⊂Rd is a Borel set, u : Ω⊂Rd→Rm, A is an operator

of gradient form, and σ1,σ2 are two not necessarily well-ordered symmetric tensors. The class of

operators of gradient form includes scalar- and vector-valued gradients, symmetrized gradients,

and higher order gradients. Therefore, our results may be applied to a wide range of problems in

elasticity, conductivity or plasticity models.

In this context and under mild assumptions on f , we show for a solution (w,A), that the topo-

logical boundary of A∩Ω is locally a C1-hypersurface up to a closed set of zero H d−1-measure.

See:

A. Arroyo-Rabasa, Regularity for free interface variational problems in a general class of gradients,

Calc. Var. Partial Differential Equations, vol. 55(6), 154–197, 2017

Disclaimer. The notation of certain mathematical objects employed in this chapter might not agree

with the original notation presented in the published version. This, however, does not represent an

alteration of the intellectual presentation of the research paper cited above.
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4 Optimal design problems for elliptic operators

4.1 Introduction

The problem of finding optimal designs involving two materials goes back to the work of Hashin and

Shtrikman. In [20], the authors made the first successful attempt to derive the optimal bounds of a

composite material. It was later on, in the series of papers [22–24], that Kohn and Strang described the

connection between composite materials, the method of relaxation, and the homogenization theory

developed by Murat and Tartar [29, 30]. In the context of homogenization, better designs tend to

develop finer and finer geometries; a process which results in the creation of non-classical designs.

One way to avoid the mathematical abstract of infinitely fine mixtures is to add a cost on the interfacial

energy. In this regard, there is a large amount of optimal design problems that involve an interfacial

energy and a Dirichlet energy. The study of regularity properties in this setting has been mostly

devoted to problems where the Dirichlet energy is related to a scalar elliptic equation; see [6, 14,

18, 21, 25, 26], where partial C1-regularity on the interface is shown for an optimization problem

oriented to find dielectric materials of maximal conductivity. We shall study regularity properties

of similar problems in a rather general framework. Our results extend the aforementioned results to

linear elasticity and linear plate theory models.

Before turning to a precise mathematical statement of the problem let us first present the model in

linear plate theory that motivated our results. Let Ω = ω× [−h,h] be the reference configuration of a

plate of thickness 2h and cross section ω ⊂ R2. The linear equations governing a clamped plate Ω as

h tends to zero for the Kirchhoff model are∇ ·∇ ·
(
σ∇2u

)
= f in ω,

∂νu = u = 0 in ∂ω,
(4.1)

where u : ω → R represents the displacement of the plate with respect to a vertical load f ∈ L∞(ω),

and the design of the plate is described by a symmetric positive definite fourth-order tensor σ (up to

a cubic dependence on the constant h). Here, we denote the second gradient by

∇
2u :=

(
∂ 2u

∂xi∂x j

)
i j
, i, j = 1,2.

Consider the physical problem of a thin plate Ω made-up of two elastic materials. More precisely, for

a given set A⊂ ω ⊂ R2 we define the symmetric positive tensor

σA(x) := 1Aσ1 +(1−1A)σ2,

where σ1,σ2 ∈ Sym(R2×2,R2×2). In this way, to each Borel subset A ⊂ ω , there corresponds a

displacement uA : ω → R solving equation (4.1) with σ = σA. One measure of the rigidity of the

plate is the so-called compliance, i.e., the work done by the loading. The smaller the compliance,

the stiffer the plate is. A reasonable optimal design model consists in finding the most rigid design A
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4.1 Introduction

under the aforementioned costs. One seeks to minimize an energy of the form

A 7→
ˆ

ω

σA∇
2uA ·∇2uA dx + Per(A;ω), among Borel subsets A of R2.

Optimality conditions for a stiffest plate can be derived by taking local variations on the design. For

such analysis to be meaningful, one has to ensure first that the variational equations of optimality have

a suitable meaning in the interface. Hence, it is natural to ask for the maximal possible regularity of

∂A and ∇2uA.

We will introduce a more general setting where one can replace the second gradient ∇2 by an

operator A of gradient type (see Definition 4.6 and the subsequent examples in the next section for a

precise description of this class).

4.1.1 Statement of the problem

Let d ≥ 2, and let m,k be positive integers. We shall work in Ω⊂Rd ; a nonempty, open, and bounded

Lipschitz domain. We also fix a function f ∈ L∞(Ω;Rm) and let σ1 and σ2 be two positive definite

tensors in M(m×dk)×(m×dk)
sym satisfying a strong pointwise Gårding inequality: there exists a positive

constant M such that

1
M
|P|2 ≤ σi P ·P≤M|P|2 for all P ∈Mm×dk

, i ∈ {1,2}. (4.2)

For a fixed Borel set A⊂ Rd , define the two-point valued tensor

σA(x) := 1Aσ1 +1(Ω\A)σ2. (4.3)

We consider an operator A : L2 (Ω;Rm)→W−k,2(Ω;Mm×dk
) of gradient form (see Definition 4.6

in Section 4.2). As a consequence of the definition of operators of gradient form, the following

equation

A ∗(σA A u) = f in D ′(Ω;Rm), u ∈WA
0 (Ω)⊂Wk,2

0 (Ω;Rm), (4.4)

has a unique solution (cf. Theorem 4.1). We will refer to equation (4.4) as the state constraint and

we will denote by wA its unique solution.

It is a physically relevant question to ask which designs have the least dissipated energy. To this

end, consider the energy defined as

A 7→ E(A) :=
ˆ

Ω

f wA dx + Per(A;Ω) among Borel subsets A of Rd .1

We will be interested in the optimal design problem with Dirichlet boundary conditions on sets:

minimize
{

E(A) : A⊂ Rd is a Borel set, A∩Ω
c ≡ A0∩Ω

c
}
, 2 (4.5)

1Here, Per(A;Ω) = |µA|(Ω), where µA is the Gauss-Green measure of A; see Section 4.2.4.
2Due to the nature of the problem, we cannot replace Per(A;Ω) with Per(A;Ω) in E(A) because it possible that minimizing

sequences tend to accumulate perimeter in ∂Ω.
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4 Optimal design problems for elliptic operators

where A0 ⊂ Rd is a set of locally finite perimeter.

Most attention has been drawn to the case where designs are mixtures of two well-ordered ma-

terials. The presentation given here places no comparability hypotheses on σ1 and σ2. Instead, we

introduce a weaker condition on the decay of generalized minimizers of a double-well problem. Our

technique also holds under various constraints other than Dirichlet boundary conditions; in particular,

any additional cost that scales as O(rd−1+ε). For example, a constraint on the volume occupied by a

particular material (cf. [11, 14, 26]). Lastly, we remark that our technique is robust enough to treat

models involving the maximization of dissipated energy.

4.1.2 Main results and background of the problem

Existence of a minimizer of (4.5) can be established by standard methods. We are interested in prov-

ing that a solution pair (wA,A) enjoys better regularity properties than the ones needed for existence.

The notion of regularity for a set A will be understood as the local regularity of ∂A seen as a subman-

ifold of Rd , whereas the notion of regularity for wA will refer to its differentiability and integrability

properties.

It can be seen from the energy, that the deviation from being a perimeter minimizer for a solution A

of problem (4.5) is bounded by the dissipated energy. Therefore, one may not expect better regularity

properties for A than the ones for perimeter minimizers; and thus, one may only expect regularity up

to singular set (we refer the reader to [5, 13] for classic results, see also [14] for a partial regularity

result in a similar setting to ours).

Since a constrained problem may be difficult to treat, we will instead consider an equivalent vari-

ational unconstrained problem by introducing a multiplier as follows. Consider the saddle point

problem

inf
A⊂Ω

sup
u∈WA

0 (Ω)

IΩ(u,A), (P)

where

IΩ(u,A) :=
ˆ

Ω

2 f u dx −
ˆ

Ω

σA A u ·A u dx + Per(A;Ω).

Our first result shows the equivalence between problem (P) and the minimization problem (4.5) under

the state constraint (4.4):

Theorem 4.1 (existence). There exists a solution (w,A) of problem (P). Furthermore, there is a one

to one correspondence

(w,A) 7→ (wA,A)

between solutions to problem (P) and the minimization problem (4.5) under the state constraint (4.4).

We now turn to the question of regularity. Let us depict an outline of the key steps and results

obtained in this regard. The Morrey space Lp,λ (Ω;Rm) is the subspace of Lp(Ω;Rm) for which the

semi-norm

[u]pLp,λ (Ω)
:= sup

{
1
rλ

ˆ
Br(x)
|u|p dy : Br(x)⊂Ω

}
, 0 < λ ≤ d,
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is finite.

The first step in proving regularity for solutions (w,A) consists in proving a critical L2,d−1 lo-

cal estimate for A w. This estimate arises naturally since we expect a kind of balance between´
Br(x)

σA A w ·A w dy and the perimeter part Per(A;Br(x)) that scales as rd−1 in balls of radius r.

To do so, let us recall a related relaxed problem. As part of the assumptions on A there must

exist a constant rank, lth-order differential operator B : L2(Ω;Z)→W−l,2(Ω;Rn) with Ker(B) =

A [WA (Ω)]. 3 It has been shown by Fonseca and Müller [17], that a necessary and sufficient condi-

tion for the lower semi-continuity of integral energies with superlinear growth under a constant rank

differential constraint B v = 0 is the B-quasiconvexity of the integrand. In this context, the B-free

quasiconvex envelope of the double-well W (P) := min{σ1 P ·P, σ2 P ·P}, at a point P ∈ Z ⊂Mm×dk
,

is given by

QBW (P) := inf
{ˆ

[0,1]d
W (P+ v(y)) dy :

v ∈ C∞
per
(
[0,1]d ;Z

)
,B v = 0 and

ˆ
[0,1]d

v(y) dy = 0
}
.

The idea is to get an L2,d−1 estimate by transferring the regularizing effects from generalized mini-

mizers of the energy u 7→
´

B1
W (A u) onto our original problem. In order to achieve this, we use a

Γ-convergence argument with respect to a perturbation in the interfacial energy from which the next

result follows:

Theorem 4.2 (upper bound). Let (w,A) be a variational solution of problem (P). Assume that the

higher integrability condition

[A ũ]2L2,d−δ (B1/2)
≤ c‖A ũ‖2

L2(B1)
, for some δ ∈ [0,1) and some positive constant c, (Reg)

holds for local minimizers of the energy u 7→
´

B1
QBW (A u), where u ∈WA (Ω). Then, for every

compactly contained set K ⊂⊂Ω, there exists a positive constant ΛK such that

ˆ
Br(x)

σA A w ·A w dy + Per(A;Br(x))≤ ΛKrd−1, (4.6)

for all x ∈ K and every r ∈ (0,dist(K,∂Ω)).

Remark 4.3 (well-ordering assumption). If σ1,σ2 are well-ordered, say σ2−σ1 is positive defi-

nite, then QBW is precisely the quadratic form σ2 P ·P. Due to standard elliptic regularity results (cf.

Lemma 4.11), estimate (Reg) holds for δ = 0; therefore, assuming that the materials are well-ordered

is a sufficient condition for the higher integrability assumption (Reg) to hold.

Remark 4.4 (non-comparable materials). In dimensions d = 2,3 and restricted to the setting A =

∇, m = 1, condition (Reg) is strictly weaker than assuming the materials to be well-ordered. Indeed,

one can argue by a Moser type iteration as in [12] to lift the regularity of minimizers. For higher-order

3Here, WA (Ω) =
{

u ∈ L2(Ω;Rm) : A u ∈ L2(Ω;Mm×dk
)
}

is the A -Sobolev space of Ω.
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4 Optimal design problems for elliptic operators

gradients or in the case of systems it is not clear to us whether assumption (Reg) is equivalent to the

well-ordering of the materials.

The second step, consists of proving a discrete monotonicity for the excess of the Dirichlet energy

on balls under a low perimeter density assumption. More precisely, on the function that assigns

r 7→ 1
rd−1

ˆ
Br(x)
|A w|2 dx, x ∈ ∂A, r > 0.

The discrete monotonicity of the map above, together with the upper bound estimate (4.6), will allow

us to prove a local lower bound λK on the density of the perimeter:

Per(A;Br(x))
rd−1 ≥ λK for every x ∈ (K∩∂A), and every 0 < r ≤ rK . (LB)

As usual, the lower bound on the density of the perimeter is the cornerstone to prove regularity of

almost perimeter minimizers. In fact, once the estimate (LB) is proved we simply apply the excess

improvement results of [26, Sections 4 and 5] to obtain our main result:

Theorem 4.5 (partial regularity). Let (w,A) be a saddle point of problem (P) in Ω. Assume that

the operator PHu = A ∗(σH A u) is hypoelliptic and regularizing for the half-space problem (see

properties (4.60)-(4.61)), and that the higher integrability (Reg) holds. Then there exists a positive

constant η ∈ (0,1] depending only on N such that

H d−1((∂A\∂
∗A)∩Ω) = 0, and ∂

∗A is an open C1,η/2-hypersurface in Ω.

Moreover if A is a first-order partial differential operator, then A w ∈ C0,η/8
loc (Ω\ (∂A\∂ ∗A)); and

hence, the trace of A w exists on either side of ∂ ∗A.

Let us make a quick account of previous results. To our knowledge, only optimal design problems

modeling the maximal dissipation of energy have been treated.

In [6] Ambrosio and Buttazzo considered the case where A = ∇ is the gradient operator for scalar-

valued (m = 1) functions and where σ2 ≥ σ1 in the sense of quadratic forms. The authors proved

existence of solutions and showed that, up to choosing a good representative, the topological boundary

is the closure of the reduced boundary and H d−1(∂A\∂ ∗A) = 0. Soon after, Lin [26], and Kohn and

Lin [21] proved, in the same case, that ∂ ∗A is an open C1-hypersurface. From this point on, there have

been several contributions aiming to discuss the optimal regularity of the interface for this particular

case. In this regard and in dimension d = 2, Larsen [25] proved that connected components of A are

C1 away from the boundary. In arbitrary dimensions, Larsen’s argument cannot be further generalized

because it relies on the fact that convexity and positive curvature are equivalent in dimension d = 2.

During the time this project was developed, we have learned that Fusco and Julin [18] found a different

proof for the same results as stated in [26]; besides this, De Philippis and Figalli [14] recently obtained

an improvement on the dimension of the singular set (∂ ∗A\∂A).

The paper is organized as follows. In the beginning of Section 4.2 we fix notation and discuss some

facts of linear operators, Young measures and sets of finite perimeter. We also give the precise defini-
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tion of gradient type operators and include a compensated compactness result that will be employed

throughout the paper. In Section 4.3 we show the equivalence of the constrained problem (4.4)-(4.5)

and the unconstrained problem (P) (Theorem 4.1). In the first part of Section 4.4 we shortly discuss

how the higher integrability assumption (Reg) holds for various operators of gradient form. The rest

of the section is devoted to the proof of the upper bound (4.6). Section 4.5 is devoted to the proof of

the lower bound estimate (LB). Finally, in Section 4.6 we recall the flatness excess improvement [26]

from which Theorem 4.5 easily follows.

4.2 Notation and preliminaries

We will write Ω to represent a non-empty, open, bounded subset of Rd with Lipschitz boundary ∂Ω.

The use of capital letters A,B, . . . , will be reserved to denote Borel subsets of Rd and we will write

B(Ω) to denote the Borel σ -algebra in Ω.

The letters x,y will denote points in Ω; while z ∈ Rm and P ∈Mm×dk
will be reserved for Rm-

vectors and (m× dk)-matrices in Euclidean space. The Greek letters ε,δ ,ρ and γ shall be used for

general smallness or scaling constants. We follow Lin’s convention in [26], bounding constants will

be generally denoted by c1 ≥ c2 ≥ . . . , while smallness and decay constants will be usually denoted

by ε1 ≥ ε2 ≥ . . . , and θ1 ≥ θ2 ≥ . . . , respectively. Let us mention that in proving regularity results

one may often find it impractical to keep track of numerical constants due to the large amount of

parameters; to illustrate better their uses and dependencies we have included a glossary of constants

at the end of the paper.

It will often be useful to write a point x ∈ Rd = Rd−1×R as x = (x′,xd), in the same fashion we

will also write ∇ = (∇′,∂d) to decompose the gradient operator. The bilinear form Rq×Rq → R :

(x,y) 7→ x · y, where q is some positive integer, will stand for the standard inner product between two

points while we will use the notation |x| :=
√

x · x to represent the standard q-dimensional Euclidean

norm. To denote open balls centered at a point x with radius r we will simply write Br(x).

We keep the standard notation for Lp and Wl,p spaces. We write Cl
c(Ω;Rq) to denote the space of

functions with values in Rq and with continuous lth-order derivative, and its subspace of functions

compact support respectively. Similar notation stands for M (Ω;Rq), the space of bounded Radon

measures in Ω; and D(Ω;Rq), the space of smooth functions in Ω with compact support. For X

and Y Banach spaces, the standard pairing between X and Y will be denoted by 〈·, ·〉 : X ×Y → R :

(u,v) 7→ 〈u,v〉.

4.2.1 Operators of gradient form

We introduce an abstract class of linear differential operators A : L2(Ω;Rm)→W−k,2(Ω;Mm×dk
).

This class contains scalar- and vector-valued gradients, higher gradients, and symmetrized gradients

among its elements. The motivation behind it is that we may treat different models by employing a

general and neat abstract setting. At a first glance this framework may appear too sterile; however, this

definition is only meant to capture some of the essential regularity and rigidity properties of gradients.

Let A : L2(Ω;Rp)→W−k,2(Ω;Rq) be a k-th order homogeneous partial differential operator of
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the form

A = ∑
|α|=k

Aα∂
α , (4.7)

where Aα ∈ Lin(Rp;Rq), and ∂ α = ∂
α1
1 . . .∂ αd

d for every multi-index α = (α1, . . . ,αd) ∈ (N∪{0})d

with |α| := |α1|+ . . . |αd |. We define the A -Sobolev of Ω as

WA (Ω) :=
{

u ∈ L2(Ω;Rp) : A u ∈ L2(Ω;Rq)

}
endowed with the norm ‖u‖2

WA (Ω)
:= ‖u‖2

L2(Ω)
+ ‖A u‖2

L2(Ω)
. We also define the A -Sobolev space

with zero boundary values in ∂Ω by letting

WA
0 (Ω) := cl

{
C∞

c (Ω;Rp),‖ · ‖WA (Ω)

}
.

The principal symbol of A is the positively k-homogeneous map defined as

ξ 7→ A(ξ ) := ∑
|α|=k

ξ
αAα ∈ Lin(Rp,Rq), ξ ∈ Rd ,

where ξ α = ξ
α1
1 · · ·ξ

αd
d . One says that A has the constant rank property if there exists a positive

integer r such that

rank(A(ξ )) = r for all ξ ∈ Rd \{0}. (†)

Definition 4.6 (Operators of gradient form). Let A a homogeneous partial differential operator

as in (4.7) with p = m and q = m×dk. We say that A is an operator of gradient form if the following

properties hold:

1. Compactness: There exists a positive constant C(Ω) for which

‖ϕ‖2
Wk,2(Ω) ≤C(Ω)

(
‖ϕ ‖2

L2(Ω)+‖A ϕ‖2
L2(Ω)

)
(4.8)

for all ϕ ∈ C∞(Ω;Rm). Even more, for every u ∈WA (Ω) the following Poincaré inequality

holds:

inf
{
‖u− v‖2

Wk,2(Ω) : v ∈WA (Ω),A v = 0
}
≤C(Ω)‖A u‖2

L2(Ω). (4.9)

2. Exactness: There exists an l-th homogeneous partial differential operator

B := ∑
|α|=l

Bα∂
α , (4.10)

with coefficients Bα ∈ Lin(Z;Rn) for some positive integer n and a subspace Z of Mm×dk
, such

that for every open and simply connected subset ω ⊂Ω we have the property

{
A u : u ∈WA (ω)

}
=
{

v ∈ L2(ω;Z) : B v = 0 in D ′(ω;Rn)
}
.
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We write A ∗ to denote the L2-adjoint of A , which is given by

A ∗ := (−1)k
∑
|α|=k

AT
α∂

α .

Remark 4.7 (constant rank). Let A and B be two linear differential operators satisfying an ex-

actness property as in Definition 4.6. Then both operators A and B have the constant rank property

(†). This follows from the lower semi-continuity of the rank in any subspace of matrices.

Remark 4.8 (rigidity). The wave cone of an operator A of the form (4.7) which is defined as

ΛA :=
⋃
|ξ |=1

ker(A(ξ ))⊂ Rp,

contains the admissible amplitudes in Fourier space for which concentration and oscillation behavior

is allowed under the constraint A u = 0. As in the case of gradients, it can be seen from the compact-

ness assumption in Definition 4.6 that the wave cone ΛA of a gradient operator A is the zero space.

In particular, there exists a positive constant λ (depending only on the coefficients of A ) such that

|A(ξ )z|2 ≥ λ |ξ |2k|z|2 for all ξ ∈ Rd \{0} and all z ∈ Rp. (4.11)

Remark 4.9 (Poincaré inequality II). It follows from the definition of WA
0 (Ω) and the com-

pactness assumption of A that WA
0 (Ω) ⊂Wk,2

0 (Ω;Rm). In particular, ker(A )∩WA
0 (Ω) = {0} ⊂

L2(Ω;Rm) and A [WA
0 (Ω)] is closed in the L2 norm. Thus, by [10, Theorem 2.21], there exists a

constant4 C(Ω)

‖u‖2
L2(Ω) ≤C(Ω)‖A u‖2

L2(Ω) for all u ∈WA
0 (Ω). (4.12)

Elliptic regularity

Let A be an operator of gradient form as in Definition 4.6 and let σ ∈ L∞

(
Ω;M(m×dk)×(m×dk)

sym

)
be a

tensor of variable coefficients satisfying the strong pointwise Gårding inequality (see (4.2))

1
M
|P|2 ≤ σ(x)P ·P≤M|P|2 for almost every x ∈Ω and every P ∈Mm×dk

. (4.13)

If we define

Ai j
βα

:= (Aα)iβ , j for |α|= |β |= k, and 1≤ i, j ≤ d,

then we may write

A ϕ = A∇
k
ϕ for every ϕ ∈ Ck(Ω;Rm). (4.14)

It is easy to verify, using the compactness assumption of A , that C := (AT σ A) satisfies the weak

Gårding inequality

〈C ∇
k
ϕ,∇k

ϕ 〉 ≥
(

1
MC

)
‖∇k

ϕ‖2
L2(Ω)−

(
1
M

)
‖ϕ‖2

L2(Ω), (4.15)

4Possibly abusing the notation, we will denote by C(Ω) the Poincaré constants from Definition 4.6 and Remark 4.9.
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where C = C(Ω) the constant in the compactness assumption of Definition 4.6; for all smooth, Rd-

valued functions ϕ in Ω.

Lemma 4.10 (Caccioppoli inequality). Let σ ∈ L∞

(
Ω;M(m×dk)×(m×dk)

sym

)
satisfy the strong point-

wise Gårding inequality (4.13) and let w ∈WA (Ω) be a solution of the state equation

A ∗(σ A u) = 0 in D ′(Ω;Rm).

Then there exists a positive constant C depending only on M,N,σ and A such that

ˆ
Br(x)
|∇kw|2 dx ≤ C

(R− r)2k

ˆ
BR(x)
|w|2 dx for every Br(x) ⊂ BR(x)⊂Ω.

Proof. We may re-write A ∗(σ A u) as the elliptic operator in divergence form

(−1)k
∑∂

β (Ci j
βα

∂
αu j),

for coefficients C = (AT σA) satisfying a weak Gårding inequality as in (4.15). The assertion then

follows from Corollary 22 in [9].

Using Lemma 4.10 one can show, by classical methods, the following lemma on the regularizing

properties of elliptic operators with constant coefficients:

Lemma 4.11 (constant coefficients). Let A be an operator of gradient form and let σ0 ∈M(m×dk)×(m×dk)
sym

be a tensor satisfying the strong Gårding inequality (4.13). Then the operator

Lσ0u := A ∗(σ0 A u)

is hypoelliptic in the sense that if Ω is open and connected, and w ∈ L2(Ω;Rm), then

Lσ0w = 0 ⇒ w ∈ C∞
loc(Ω;Rm).

Furthermore, there exists a constant c = c(M,d)≥ 2d such that

1
ρd

ˆ
Bρ (x)
|∇ku|2 dx≤ c

rd

ˆ
Br(x)
|∇ku|2 dx for all 0 < ρ ≤ r

2
,

1
ρd

ˆ
Bρ (x)
|A u|2 dx≤ c

rd

ˆ
Br(x)
|A u|2 dx for all 0 < ρ ≤ r

2
,

for every Br(x)⊂Ω.

Examples

Next, we gather some well-known differential structures that fit into the definition of operators of

gradient form.
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(i) Gradients. Let A : L2(Ω;Rm)→W−1,2(Ω;Mm×d) : u 7→ (∂ jui) for 1 ≤ i ≤ m and 1 ≤ j ≤ d.

In this case

A j z = z⊗ e j for every z ∈ Rm.

Hence, WA (Ω) = W1,2(Ω;Rm) and the compactness property is a consequence of the classical

Poincaré inequality on Ω.

The exactness assumption is the result of the characterization of gradients via curl-free vector

fields.

Let B : L2(Ω;Mm×d)→W−1,2(Ω;Mm×(d×d)) be the curl operator

B v = (curl(vi))i := (∂lvir−∂rvil)ilr 1≤ i≤ m, 1≤ l,r ≤ d,

then condition (4.10) is fulfilled for B = ∑
d
j=1 B j∂ j with coefficients

(B j)ilr,pq = δip(δ jlδrq−δ jrδlq) 1≤ l,r,q≤ d, 1≤ i, p≤ m.

Observe that B v = 0 if and only if curl vi = 0, for every 1 ≤ i ≤ m; or equivalently, vi = ∇ui

for some function ui : Ω ⊂ Rd → R, for every 1 ≤ i ≤ m (as long as Ω is simply connected).

Hence, {
∇u : u ∈W1,2(ω;Rm)

}
=
{

v ∈ L2(ω;Mm×d) : B v = 0
}
,

textfor all Lipschitz, and simply connected ω ⊂⊂Ω.

(ii) Higher gradients. Let A : L2(Ω)→W−k,2(Ω;Rdk
) be the linear operator given by

u 7→ ∂
αu, where |α|= k.

Compactness is similar to the case of gradients.

We focus on the exactness condition: Let

Bk : L2(Ω;Sym(Rdk
))→W−1,2(Ω;Rdk+1

)

be the curl operator on symmetric functions defined by the coefficients

(Bk
j)pqβ2...βk,α1...αk :=

(
δ jpδα1q

k

∏
h=2

δαhβh−δ jqδα1 p

k

∏
h=2

δαhβh

)
,

where 1≤ p,q,βh,αh ≤ d, h ∈ {2, · · · ,k}.

We write

Bk v :=
d

∑
i=1

Bk
j ∂ jv, v : Ω⊂ Rd → Sym(Rdk

).

It easy to verify that Bk v = 0 if and only if

curl((vpα ′)p) = 0 for all |α ′|= k−1.
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If Ω is simply connected, then there exists a function uα ′ : Ω→ R such that vpα ′ = ∂puα ′ for

every |α ′| = k−1. Using the symmetry of v under the permutation of its coordinates one can

further deduce the existence of a function uk : Ω→ Sym(Rdk−1
) with

v = ∇uk and (uk)α ′ = uα ′ .

Moreover, Bk−1 uk = 0. By induction one obtains that

v = ∇
ku0 for some function u0 : Ω⊂ Rd → R.

(iii) Symmetrized gradients. Let E : L2(Ω;Rd)→W−1,2(Ω;Sym(Rd2
)) be the linear operator given

by

u 7→ E u :=
1
2
(∂ jui +∂iu j)i j, for 1≤ i, j ≤ d.

The compactness property is a direct consequence of Korn’s inequality. Consider the second-

order homogeneous differential operator B : L2(Ω;Sym(Rd2
))→W−2,2(Ω;Rd3

) defined in the

following way

B v = curl(curl(v)) =
(

∂ 2vi j

∂xi∂xl
+

∂ 2vil

∂xi∂x j
− ∂ 2vii

∂x j∂xl
−

∂ 2v jl

∂xi∂xi

)
1≤i, j,l≤d

.5

Then B v = 0, if and only if v = E u for some u ∈W1,2(Ω;Rd) = WE (Ω).

Remark 4.12. In the previous examples, we have omitted the characterization of higher gradients

of vector-valued functions; however, the ideas remain the same as in the examples (i) and (ii).

Remark 4.13 (two-dimensional elasticity). In dimension d = 2 and provided that Ω is simply

connected, the fourth-order equation for pure bending of a thin plate given by

∇ ·∇ · (D(x)∇2u(x)) = 0 for u ∈W 2,2(Ω)

is equivalent to the in-plane elasticity equation

∇ · (S(x)E w(x)) = 0 where w ∈W 1,2(Ω;R2),

for some tensor S such that D = (R⊥S−1 R⊥), and where R⊥ is the fourth-order tensor whose action

is to rotate a second-order tensor by 90◦ (see, e.g., [28, Chapter 2.3]). Furthermore,

S(x)E w(x) = R⊥∇
2u(x) and ∇ ·∇ · (R⊥E w(x)) = 0.

For this reason, when working with the linear equations for pure bending of a thin plate we may in-

distinctly use regularizing properties of any of the equations above in the portions where D is regular.

5Here, B is a second order operator expressing the Saint-Venant compatibility conditions.
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4.2.2 Compensated compactness

The following theorem is a generalized version of the well-known div-curl Lemma.

Lemma 4.14. Let A be a k-th order operator of gradient form and let {σh} ⊂ L2(Ω;Mm×dk ⊗
Mm×dk

) be a sequence of symmetric, strongly elliptic tensors as in (4.13). Assume also that {uh} ⊂
WA (Ω) and { fh} ⊂W−k,2(Ω;Rm) are sequences for which

A ∗(σh A uh) = fh in D ′(Ω;Rm), for every h ∈ N.

Further assume there exist a symmetric tensor σ ∈ L2(Ω;Mm×dk ⊗Mm×dk
), a function u ∈WA (Ω),

and f ∈W−k,2(Ω;Rm) for which

A uh ⇀ A u in L2(Ω;Mm×dk
), fh→ f in W−k,2(Ω;Rm),

and σh→ σ in L2(Ω;Mm×dk ⊗Mm×dk
).

Then,

A ∗(σ A u) = f in D ′(Ω;Rm),

σh A uh ·A uh→ σ A u ·A u in D ′(Ω).

In particular,

A uh→A u in L2
loc(Ω;Mm×dk

).

Proof. For simplicity we denote τh := σh A uh,τ := σ A u. It suffices to observe that τh ⇀ τ in L2 to

prove that

A ∗
τ = f in D ′(Ω;Rm).

The strong convergence on compact subsets of Ω requires a little bit more effort. Considering that

A is a k-th order linear differential operator, we may find constants cαβ with |α|+ |β | ≤ k, |β | ≥ 1

such that

A (uhϕ) = (A uh)ϕ + ∑
α,β

cαβ ∂
αuh∂

β
ϕ ∈ L2(Ω;Rm) ∀ ϕ ∈D(Ω),∀ h ∈ N.

Hence,

〈τh ·A uh,ϕ〉= 〈 fh,uhϕ〉−〈τh,∑
α,β

cαβ ∂
αuh∂

β
ϕ〉.

By the compactness assumption on A we may assume without loss of generality that uh ⇀ u in

Wk,2(Ω;Rm). Thus, passing to the limit we obtain

lim
h→∞

〈τh ·A uh,ϕ〉= 〈 f ,uϕ〉−〈τ,∑
α,β

cαβ ∂
αu∂

β
ϕ〉= 〈τ ·A u,ϕ〉,
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for every ϕ ∈D(Ω). One concludes that

σh A uh ·A uh→ σ A u ·A u in D ′(Ω). (4.16)

Fix ω ⊂⊂Ω and let 0≤ ϕ ∈D(Ω) with ϕ ≡ 1 on ω . Using the convergence in (4.16) and the uniform

ellipticity (4.2) of {σh}, one gets

lim
h→∞

‖A uh−A u‖L2(ω) ≤M · lim
h→∞

〈σh(A (uh−u)) ·A (uh−u),ϕ〉

≤M ·
(

lim
h→∞

〈σh A uh ·A uh,ϕ〉

− lim
h→∞

2〈σh A uh ·A u,ϕ〉+ 〈σh A u ·A u,ϕ〉
)

= 0.

4.2.3 Young measures and lower semi-continuity of integral energies

In this section B : L2(Ω;Z)→W−l,2(Ω;Rn) is assumed to be a an l-th order homogeneous partial

differential operator of the form

∑
α

Bα∂
α , Bα ∈ Lin(Z;Rn), with Z a linear subspace of Mm×dk

,

satisfying the constant rank condition (†).

Next, we recall some facts about B-quasiconvexity, lower semi-continuity and Young measures.

The results in this section hold for differential operators with coefficients Bα in arbitrary spaces

Lin(Rp;Rq) for p,q a pair of positive integers; however, we only present versions where the dimen-

sions match our current setting. We start by stating a version of the Fundamental theorem for Young

measures due to Ball [8].

Theorem 4.15 (Fundamental theorem for Young measures). Let Ω ⊂ Rd be a measurable set

with finite measure and let {v j} be a sequence of measurable functions v j : Ω→ Z. Then there exists

a subsequence {vh( j)} and a weak∗ measurable map µ : Ω→M (Z) with the following properties:

1. We denote µx := µ(x) for simplicity, then µx ≥ 0 in the sense of measures and |µx|(Z) ≤ 1 for

a.e. x ∈Ω.

2. If one additionally assumes that {vh( j)} is uniformly bounded in L1(Ω;Z), then |µx|(Z) = 1 for

a.e. x ∈Ω.

3. If F : Mm×dk → R is a Borel and lower semi-continuous function, and is also bounded from

below, then ˆ
Ω

〈µx,F〉 dx≤ liminf
j→∞

ˆ
Ω

F(vh( j)) dx.
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4. If {vh( j)} is uniformly bounded in L1(Ω;Z) and F : Mm×dk → R is a continuous function, and

bounded from below, then

ˆ
Ω

〈µx,F〉 dx = liminf
j→∞

ˆ
Ω

F(vh( j)) dx

if and only if {F ◦ vh( j)} is equi-integrable. In this case,

F ◦ vh( j) ⇀ 〈µx,F〉 in L1(Ω).

In the sense of Theorem 4.15, we say that the sequence {vh( j)} generates the Young measure µ .

The following proposition tells us that a uniformly bounded sequence in the Lp norm, which is

also sufficiently close to ker(B), may be approximated by a p-equi-integrable sequence in ker(B) in

a weaker Lq norm. We remark that this rigidity result is the only one where Murat’s constant rank

condition (†) is used.

Proposition 4.16 ( [17, Lemma 2.15]). Let 1 < p < ∞. Let {vh} be a bounded sequence in Lp(Ω;Z)

generating a Young measure µ , with vh ⇀ v in Lp(Ω;Z) and B vh→ 0 in W−l,p(Ω;Rn). Then there

exists a p-equi-integrable sequence {uh} in Lp(Ω;Z)∩ ker(B) that generates the same Young mea-

sure µ and is such that

ˆ
Ω

vh dx =
ˆ

Ω

uh dx, ‖vh−uh‖Lq(Ω)→ 0, for all 1≤ q < p.

Let F : Mm×dk → R be a lower semi-continuous function with 0 ≤ F(P) ≤ C(1+ |P|p) for some

positive constant C. The B-quasiconvex envelope of F at P ∈ Z ⊂Mm×dk
is defined as

QBF(P) := inf
{ˆ

[0,1]d
F(P+ v(y)) dy :

v ∈ C∞
per

(
[0,1]d ;Z

)
,B v = 0 and

ˆ
[0,1]d

v dy = 0
}
.

(4.17)

The most relevant feature of QBF is that, for p > 1, the lower semi-continuous envelope with respect

to the weak-Lp topology of the functional

v 7→
ˆ

Ω

F(v)dx, where v ∈ Lp(Ω;Z) and B v = 0, (4.18)

is given by the functional

v 7→
ˆ

Ω

QBF(v)dx, where v ∈ Lp(Ω;Z) and B v = 0.

If µ is a Young measure generated by a sequence {vh} in Lp(Ω;Z) such that B vh = 0 for every

h ∈ N, then we say that µ is a B-free Young measure.

We recall the following Jensen inequality for B-free Young measures [17, Theorem 4.1]:
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Theorem 4.17. Let 1 < p < ∞. Let µ be a B-free Young measure in Ω. Then for a.e. x ∈Ω and all

lower semi-continuous functions that satisfy |F(P)| ≤C(1+ |P|p) for some positive constant C and

all P ∈Mm×dk
, one has that

〈µx,F〉 ≥ QBF(〈µx, id〉).

4.2.4 Geometric measure theory and sets of finite perimeter

Most of the facts collected in this section can be found in [27] and [7]; however, some notions as the

slicing of sets of finite perimeter are presented there only in a formal way. For a better understanding

of such topics we refer the reader to [16].

Let A⊂Rd be a Borel set. The Gauss-Green measure µA of A is the derivative of the characteristic

function of A in the sense of distributions, i.e., µA := ∇(1A). We say that A is a set of locally finite

perimeter if and only if |µA| is a vector-valued Radon measure in Rd . We write A ∈ BVloc(Rd) to

express that A is a set of locally finite perimeter in Rd .

Let ω ⊂⊂ Rd be a Borel set. The perimeter in ω of a set A with locally finite perimeter is defined

as

Per(A,ω) := |µA|(ω).

The Radon-Nikodým differentiation theorem states that the set of points

∂
∗A :=

{
x ∈ Rd : lim

r↓0

Per(A;Br(x))
vol(B′1) · rd−1 = 1,

and
dµA

d|µA|
(x) exists and belongs to Sd−1

}
has full |µA|-measure in Rd ; this set is commonly known as the reduced boundary of A. We will also

use the notation

νA(x) :=
dµA

d|µA|
(x) x ∈ ∂

∗A;

the measure theoretic normal of A.

In general, for s ≥ 0, we will denote by H s the s-dimensional Hausdorff measure in Rd . The

following well-known theorem captures the structure of sets with finite perimeter in terms of the

measure H d−1:

Theorem 4.18 (De Giorgi’s Structure Theorem). Let A be a set of locally finite perimeter. Then

∂
∗A =

∞⋃
j=1

K j ∪N,

where

|µA|(N) = 0,

and K j is a compact subset of a C1-hypersurface S j for every j ∈ N. Furthermore, νA|S j is normal to

S j and

µA = νA H d−1x∂
∗A.
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From De Giorgi’s Structure Theorem it is clear that spt µA = ∂ ∗A. Actually, up to modifying A on

a set of zero measure, one has that ∂A = ∂ ∗A (see [27, Proposition 12.19]). From this point on, each

time we deal with a set A of finite perimeter, we will assume without loss of generality that

∂A = supp µA = ∂ ∗A. (4.19)

For a set of locally finite perimeter A, the deviation from being a perimeter minimizer in Ω at a

given scale r is quantified by the monotone function

DevΩ(A,r) := sup
{

Per(A;Br(x))−Per(E;Br(x)) : E∆A⊂⊂ Br(x)⊂Ω

}
.

The next result, due to Tamanini [33], states that a set of locally finite perimeter with small deviation

DevΩ at every scale is actually a C1-hypersurface up to a lower dimensional set.

Theorem 4.19. Let A ⊂ Rd be a set of locally finite perimeter and let c(x) be a locally bounded

function for which

DevΩ(A,r)≤ c(x)rd−1+2η for some η ∈ (0,1/2 ].

Then the reduced boundary in Ω, (∂ ∗A∩Ω), is an open C1,η -hypersurface and the singular set

Ω∩ (∂A\∂ ∗A) has at most Hausdorff dimension (d−8).

Slicing sets of finite perimeter

Given a Borel set E ⊂ Rd and a Lipschitz function g : Rd → R, we shall consider the level set slices

Et := E ∩
{

g = t
}
, t ∈ R.

For a set A ⊂ Rd of finite perimeter in Ω, the level set slice of the reduced boundary (∂ ∗A)t is

H d−2-rectifiable for almost every t ∈R. Furthermore, by the co-area formula, t 7→H d−2((∂ ∗A)t) ∈
L1

loc(R).
If the set {g = t} is a C1-manifold and t is such that H d−2((∂ ∗A)t)< ∞, we shall define the slice

of A in g−1{t} as

〈A,g, t〉 := H d−2x(∂ ∗A)t .

It turns out that, for g(x) = |x|, the level set slice At is locally diffeomorphic to a set of finite

perimeter in Rd−1. Even more,

H d−2 x∂
∗At = 〈A,g, t〉 for a.e. t > 0, and (4.20)

πgνA := (idRd−∇g⊗∇g)νA 6= 0 for H d−2-a.e. x ∈ (∂ ∗A)t . (4.21)

Here, ∂ ∗At is understood as the image, under local diffeomorphisms, of the reduced boundary of a

set of finite perimeter. These properties can be inferred from the classical slicing by hyperplanes, see

e.g., [27, Chapter 18.3].
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We also define the cone extension of a set E ⊂ R containing {0} by letting

DE :=
{

λx ∈ Rd : λ > 0, x ∈ E
}
.

For a.e. t > 0 and g(x) = |x|, the cone extension of At is a set of locally finite perimeter in Rd with

∂
∗DAt = D(∂ ∗A)t and Per(DAt ;Bρ) =

(
1

d−1

)
ρd−1

td−2 ·H
d−2((∂ ∗A)t). (4.22)

In order to attend different variational problems involving the minimization of perimeter, a well-

known technique is to modify a set A within balls Bt without modifying its Gauss-Green measure in

(Bt)
c.

For almost every t > 0, where 〈A,g, t 〉 is well-defined and (4.20)-(4.21) hold, we construct a cone-

like comparison set of A by setting

Ã := 1Bt DAt +1Ω\Bt A. (4.23)

Exploiting the basic properties of reduced boundaries, it follows by (4.20) that

µÃ = µDAt
xBt +µAx(Bt)

c; (4.24)

and, in particular,

Per(Ã;Br) = Per(D∂ ∗At ;Bt)+Per(A;(Bt)
c∩Br) for all r > t.

On the other hand, again by the co-area formula,

H d−1((∂ ∗A)t ∩{g = t}) = 0 for almost every t > 0.

Using the monotonicity of r 7→ Per(A;Br) and the general version of the co-area formula (see [16,

Theorem 3.2.22]) one can show that the derivative of r 7→ Per(A;Br) exists at almost every t > 0;

even more, up to a further null set it is given by

d
dr

∣∣∣∣
r=t

Per(A;Br) = |πtνA|−1H d−2((∂ ∗A)t)≥ 〈A,g, t〉(Rd). (4.25)

The previous estimate will play a crucial role in proving the lower bound (LB).

4.3 Existence of solutions: proof of Theorem 4.1

We show an equivalence between the constrained problem (4.5) and the unconstrained problem (P)

for which existence of solutions and regularity properties for minimizers are discussed in the present

and subsequent sections. We fix A : L2(Ω;Rm)→W−k,2(Ω;Mm×dk
) an operator of gradient from as

in Definition 4.6. We also fix A0 ⊂ Rd , a set of locally finite perimeter.
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Recall that, the minimization problem (4.5) under the state constraint (4.4) reads:

minimize
{ ˆ

Ω

f wA + Per(A;Ω) : A ∈ BVloc(Rd), A∩Ω
c ≡ A0∩Ω

c
}
, 6

where wA is the unique distributional solution to the state equation

A ∗(σA A u) = f , u ∈WA
0 (Ω).

On the other hand, the associated saddle point problem (P) reads:

inf

{
sup

u∈WA
0 (Ω)

IΩ(u,A) : A ∈ BVloc(Rd), A∩Ω
c ≡ A0∩Ω

c

}
, (P)

where

IΩ(u,A) :=
ˆ

Ω

2 f udx−
ˆ

Ω

σA A u ·A udx + Per(A;Ω).

Theorem 4.1 (existence). There exists a solution (w,A) of problem (P). Furthermore, there is a one

to one correspondence

(w,A) 7→ (wA,A)

between solutions to problem (P) and the minimization problem (4.5) under the constraint (4.4).

Proof. We employ the direct method. We begin by proving existence of solutions to problem (P). To

do so, we will first prove the following:

Claim: 1. For any set A⊂ Rd as in the assumptions, there exists wA ∈WA
0 (Ω) such that

0≤ IΩ(wA,A) = sup
u∈WA

0 (Ω)

IΩ(u,A)< ∞.

The tensor σA is a positive definite tensor and therefore the mapping

u 7→ IΩ(u,A) =
ˆ

Ω

2 f u−σA A u ·A udx+Per(A;Ω)

is strictly concave. Observe that supu∈WA
0 (Ω) IΩ(u,A) ≥ Per(A;Ω); indeed, we may take u ≡ 0 ∈

WA
0 (Ω). Hence,

sup
u∈WA

0 (Ω)

IΩ(u,A)≥ Per(A;Ω)≥ 0. (4.26)

Because of this, we may find a maximizing sequence {wh} in WA
0 (Ω), i.e.,

IΩ(wh,A)→ sup
u∈WA

0 (Ω)

IΩ(u,A), as h tends to infinity.

6As stated in Section 4.2.4, we write A ∈ BVloc(Rd) to express that A is a Borel set of locally finite perimeter in Rd .
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Even more, one has from (4.2) that

− 1
M
‖A wh‖2

L2(Ω) ≥−
ˆ

Ω

σA A wh ·A wh dx

and consequently from (4.26) and (4.12) one infers that

C(Ω)−1 · limsup
h→∞

1
M
‖wh‖2

L2(Ω) ≤ limsup
h→∞

1
M
‖A wh‖2

L2(Ω) ≤ 2‖ f‖L2(Ω) · limsup
h→∞

‖wh‖L2(Ω). (4.27)

A fast calculation shows that ‖wh‖L2(Ω) ≤ 2MC(Ω)‖ f‖L2(Ω); in return, (4.27) also implies that

limsup
h→∞

‖A wh‖2
L2(Ω) ≤ 4C(Ω)M2‖ f‖2

L2(Ω).

Hence, using again the compactness property of A , we may pass to a subsequence (which we will

not relabel) and find wA ∈WA
0 (Ω) with

wh→ wA in L2(Ω;Rm), A wh ⇀ A wA in L2(Ω;Mm×dk
).

The concavity of −σAz · z is a well-known sufficient condition for the upper semi-continuity of the

functional A u 7→ −
´

Ω
σA A u ·A u. Therefore,

sup
u∈WA

0 (Ω)

IΩ(u,A) = lim
h→∞

IΩ(wh,A)≤ IΩ(wA,A).

This proves the claim.

Now, we use Claim 1 to find a minimizing sequence {Ah} for A 7→ IΩ(wA,A). Since the uniform

bound (4.27) does not depend on A, we may again assume (up to a subsequence) that there exists

w̃ ∈WA
0 (Ω) such that

wAh → w̃ in L2(Ω;Rm), A wAh ⇀ A w̃ in L2(Ω;Mm×dk
), and A ∗(σAh A wAh) = f .

Even more, since {Ah} is minimizing, it must be that suph{Per(Ah;BR)}< ∞, for some ball BR prop-

erly containing Ω, and thus (for a further subsequence) there exists a set Ã ⊂ Rd of locally finite

perimeter with Ã∩Ωc ≡ A0∩Ωc and such that

1Ah → 1Ã in L1(BR), |µÃ|(BR)≤ liminf
h→∞

|µÃh
|(BR).

Therefore

Per(Ã;Ω) = |µÃ|(BR)−|µA0 |(BR \Ω)

≤ liminf
h→∞

|µAh |(BR)−|µA0 |(BR \Ω) = liminf
h→∞

Per(Ah;Ω)
(4.28)
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A consequence of Lemma 4.14 is that

A ∗(σÃ A w̃) = f in D ′(Ω;Rm), and
ˆ

Ω

σAh A wAh ·A wAh →
ˆ

Ω

σÃ A w̃ ·A w̃.7 (4.29)

By taking the limit as h goes to infinity we get from (4.28) and the convergence above that

min
A

sup
u∈WA

0 (Ω)

IΩ(u,A) = lim
h→∞

IΩ(wAh ,Ah)≥ IΩ(w̃, Ã) = IΩ(wÃ, Ã),

where the last equality is a consequence of the identity w̃ = wÃ which can be easily derived by using

the equation and the strict concavity of IΩ in the first variable. Thus, the pair (wÃ, Ã) is a solution to

problem (P).

The equivalence of problem (P) and problem (4.5) under the state constraint (4.4) follows easily

from (4.29), the strict concavity of IΩ(·,A), and a simple integration by parts argument.

4.4 The energy bound: proof of Theorem 4.2

Throughout this section and for the rest of the manuscript we fix A : L2(Ω;Rm)→W−k,2(Ω;Mm×dk
)

in the class of operators of gradient form. Accordingly, the notations Z and B shall denote the

subspace of Mm×dk
and the homogeneous operator associated to A (see Definition 4.6). We will also

write (w,A) to denote a particular solution of problem (P).

Consider the energy Jω : L2(Ω;Z)×B(Ω)→ R defined as

Jω(v,E) :=
ˆ

ω

σEv · v dy + Per(E;ω), for ω ⊂Ω an open set.

The goal of this section is to prove a local bound for the map x 7→ JBr(x)(A w,A). More precisely,

we aim to prove that for every compactly contained subset K of Ω there exists a positive number ΛK

such that

JBr(x)(A w,A)≤ ΛKrd−1 for all x ∈ K and every r ∈ (0,dist(K,∂Ω)). (4.30)

Our strategy will be the following. We first define a one-parameter family Jε of perturbations of JB1 in

the perimeter term. In Theorem 4.21 we show that, as the perimeter term vanishes, these perturbations

Γ-converge (with respect to the L2-weak topology) to the relaxation of the energy

w 7→
ˆ

Ω

W (A w)dx,

for which we will assume certain regularity properties (cf. property (Reg)). Then, using a com-

pensated compactness argument, we prove Theorem 4.2 (upper bound) by transferring the regularity

properties of the relaxed problem to our original problem.

7The convergence of the total energy is not covered by Lemma 4.14; however, this can be deduced using integration by
parts and the fact that wh has zero boundary values for every h ∈ N.
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Before moving forward, let us shortly discuss how the higher integrability property (Reg) stands

next to the standard assumption that the materials σ1 and σ2 are well-ordered.

4.4.1 A digression on the regularization assumption

As commented beforehand in the introduction, a key assumption in the proof of the upper bound

(4.30) is that generalized local minimizers of the energy

u 7→
ˆ

B1

W (A u)dy, where u ∈WA (B1),

possess improved decay estimates. More precisely, we require that local minimizers ũ of the func-

tional

u 7→
ˆ

B1

QBW (A u)dy, where u ∈WA (B1), (4.31)

possess a higher integrability estimate of the form

[A ũ]2L2,d−δ (B1/2)
≤ c‖A ũ‖2

L2(B1)
for some δ ∈ [0,1). (Reg)

Only then, we will be able to transfer a decay estimate of order ρd−1 to solutions of our original

problem.

Remark 4.20 (the case of gradients). In the case A = ∇, condition (Reg) boils down to regularity

above the critical C0,1/2 local regularity. More specifically,

1
rd−δ+2

ˆ
Br(x)
|w− (w)r,x|2 dy≤ [∇w]2L2,d−δ (B1/2)

≤ c‖∇w‖2
L2(B1)

for all Br(x)⊂ B1/2.

By Poincaré’s inequality and Campanato’s Theorem one can easily deduce (cf. [21]) that

w ∈ C0, 1
2+ε

loc (B1/2).

Let us give a short account of some cases where one may find (Reg) to be a natural assumption.

The well-ordered case

The notion of well-ordering in Materials Science is not only justified as the comparability of two

materials, one being at least better than the other. It has also been a consistent assumption when

dealing with optimization problems because it allows explicit calculations. See for example [3, 4, 20],

where the authors discuss how the well-ordering assumption plays a role in proving the optimal lower

bounds of an effective tensor made-up by two materials. If σ1 and σ2 are well-ordered, say σ2 ≥ σ1 as

quadratic forms, then W (P) = σ2P ·P. Hence, by Lemma 4.11, the desired higher integrability (Reg)

holds with δ = 0.
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The non-ordered case

Applications for this setting are mostly reserved for the scalar case (m = 1). In this particular case

one can ensure that QBW = W ∗∗, where W ∗∗ is the convex envelope of W . For example, one may

consider an optimal design problem involving the linear conductivity equations for two dielectric

materials which happen to be incomparable as quadratic forms. In this setting, it is not hard to see

that indeed QW = W ∗∗ and even that W ∗∗ ∈ C1,1(Rd ,R). In dimensions d = 2,3, one can employ a

Moser-iteration technique for the dual problem as the one developed in [12] to show better regularity

of minimizers of (4.31).

Regarding the case of systems, if no well-ordering of the materials is assumed, it is not clear to us

that (Reg) necessary holds (compare to [15, 32]).

4.4.2 Proof of Theorem 4.2

We define an ε-perturbation of v 7→
´

B1
σAv · v as follows. Consider the functional

(v,A) 7→ Jε(v,A) :=
ˆ

B1

σAv · vdy + ε
2 Per(A;B1), for ε ∈ [0,1]; J := J1. (4.32)

By a scaling argument one can easily check that

ε
2J(v,A) = Jε(εv,A). (4.33)

Furthermore,

v is a local minimizer of J( · ,A) if and only if εv is a local minimizer of Jε( · ,A). (4.34)

We also consider the following one-parameter family of functionals:

v 7→ Gε(v) :=


min

A∈B(B1)
Jε(v,A) if v ∈ L2(Ω;Z) and B v = 0,

∞ otherwise.
(4.35)

The next result characterizes the Γ-limit of these functionals as ε tends to zero.

Theorem 4.21. The Γ-limit of the functionals Gε , as ε tends to zero, and with respect to the weak-L2

topology is given by the functional

G(v) :=


ˆ

B1

QBW (v)dy if v ∈ L2(Ω;Z) and B v = 0,

∞ else.
(4.36)

Proof. We divide the proof into three steps. First, we will prove the following auxiliary lemma.

Lemma 4.22. Let ω ⊂ Rd be an open and bounded domain. Let p > 1 and let F : Mm×dk → [0,∞)
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be a continuous integrand with p-growth, i.e.,

0≤ F(P)≤C(1+ |P|p), P ∈Mm×dk
.

If v∈ Lp(ω;Z) and B v = 0, then there exists a p-equi-integrable recovery sequence {vh} ⊂ Lp(ω;Z)

for v such that

B vh = 0 and F(vh)⇀ QBF(v) in L1(ω).

Proof. Since v 7→
´

ω
QBF(v) is the lower semi-continuous envelope of v 7→

´
ω

F(v) (see (4.17)-

(4.18)) with respect to the weak-Lp topology, we may find a sequence {vh} with the following prop-

erties:

B vh = 0, vh
Lp

⇀ v,

and ˆ
ω

QBF(v)dx≥
ˆ

ω

F(vh)dx− 1
h
.

Passing to a subsequence if necessary, we may assume that the sequence {vh} generates a B-free

Young measure which we denote by µ . We then apply [17, Lemma 2.15] to find a p-equi-integrable

sequence {v′h} (with B vh = 0) generating the same Young measure µ . On the one hand, the Funda-

mental Theorem for Young measures (Theorem 4.15) and the fact that {vh} generates µ yield

liminf
h→∞

ˆ
ω

F(vh)dx≥
ˆ

ω

〈µx,F〉dx.

On the other hand, due to the same theorem and the equi-integrability of the sequence {|v′h|p} one

gets the convergence F(v′h)⇀ 〈µx,F〉 ∈ L1. In other words,

lim
h→∞

ˆ
ω

F(v′h)dx =
ˆ

ω

〈µx,F〉dx.

The three relations above yield

ˆ
ω

QBF(v)dx≥ limsup
h→∞

ˆ
ω

F(vh)≥
ˆ

ω

〈µx,F〉dx = lim
h→∞

ˆ
ω

F(v′h)dx≥
ˆ

ω

QBF(v)dx. (4.37)

We summon the characterization for B-free Young measures from Theorem 4.17 to observe that

〈µx,F〉 ≥ QBF(〈µx, id〉) = QBF(v(x)) a.e. x ∈ ω.

This inequality and (4.37) imply

〈µx,F〉= QBF(v(x)) a.e. x ∈ ω.

We conclude by recalling that F(v′h)⇀ 〈µx,F〉 in L1(ω).

The lower bound. Let v ∈ L2(B1;Z) and let {vε} be a sequence in L2(B1;Z) such that vε ⇀ v in
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L2(B1;Z). We want to prove that

liminf
ε↓0

Gε(vε)≥ G(v).

Notice that, we may reduce the proof to the case where B vε = 0 for every ε . From the inequality

σA ≥W ≥ QBW (as quadratic forms), we infer that

Jε(vε)≥
ˆ

B1

QBW (vε)dy.

Next, we recall that v 7→
´

B1
QBW (v) is lower semi-continuous in {v ∈ L2(Ω;Z) : B v = 0} with

respect to the weak-L2 topology. Hence,

liminf
ε↓0

Gε(vε)≥
ˆ

B1

QBW (v)dy.

This proves the lower bound inequality.

The upper bound. We fix v∈L2(B1;Z), we want to show that there exists a sequence {vε} in L2(B1;Z)

with vε ⇀ v in L2(B1;Z) and such that

limsup
ε↓0

Gε(vε)≤ G(v).

We may assume that B v = 0, for otherwise the inequality occurs trivially. Lemma 4.22 guarantees

the existence of a 2-equi-integrable sequence {vh}∞
h=1 for which

B vh = 0, vh ⇀ v in L2(B1;Z), and W (vh)⇀ QBW (v) in L1(B1). (4.38)

Next, we define an h-parametrized sequence of subsets of B1 in the following way:

Ah :=
{

x ∈ B1 : (σ1−σ2)vh · vh ≤ 0
}
.

Using the fact that smooth sets are dense in the broader class of subsets with respect to measure

convergence, we may take a smooth set A′h ⊂ B1 such that the following estimates hold for some

strictly monotone function L : N→ N (with limh→∞ L(h) = ∞):

|(A′h∆Ah)∩B1|= O(h−1), Per(A′h;B1)≤ L(h). (4.39)

Observe that, by the 2-equi-integrability of { vh}, one gets that

‖(σAh−σA′h
)vh · vh‖L2(B1) ≤M‖vh‖2

L2(Sh)
= O(h−1), where Sh := A′h∆Ah. (4.40)

The next step relies, essentially, on stretching the sequence {vh}. Define the ε-sequence

vε := vK(ε), ε ≤ 1
L(1)

,
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where K : R+→ N is the piecewise constant decreasing function defined as

K :=
∞

∑
h=1

h ·1Rh , Rh :=
(

1
L(h+1)

,
1

L(h)

]
.

Claim:

1. L◦K(ε)≤ ε−1, if ε ∈ (0,L(1)−1].

2. K(ε) = h, where h is such that ε ∈ Rh.

Proof. To prove (1), observe from the strict monotonicity of L that ∪∞
h=1Rh = (0,L(1)−1]. A simple

calculation gives

L(K(ε)) = L(
∞

∑
h=1

h ·1Rh(ε)) =
∞

∑
h=1

L(h) ·1Rh(ε) = L(h0) ·1Rh0
(ε)≤ 1

ε
, (4.41)

where h0 is such that ε ∈ Rh0 . The proof of (2) is an easy consequence of the definition of K and the

fact that {Rh} is a disjoint family of sets. Indeed, if ε ∈ Rh then K(ε) = h ·1Rh(ε) = h.

Since K is a decreasing function and K(R+) = N∪{0}, it remains true that

vK(ε) ⇀ v in L2(B1;Mm×dk
), as ε → 0.

We are now in position to calculate the limsup inequality:

Gε(vK(ε)) = min
A∈B(B1)

ˆ
B1

σAvK(ε) · vK(ε)+ ε
2 Per(A;B1)≤

ˆ
B1

σA′K(ε)
vK(ε) · vK(ε)+ ε

2 Per(A′K(ε);B1)

≤
ˆ

B1

σAK(ε)
vK(ε) · vK(ε)+O(K(ε)−1)+ ε

2L(K(ε))≤
ˆ

B1

W (vK(ε))+O(ε)+ ε.

Hence, by (4.38)

limsup
ε↓0

Gε(vε)≤ limsup
ε↓0

ˆ
B1

W (vK(ε)) = lim
h→∞

ˆ
B1

W (vh) =

ˆ
B1

QBW (v).

This proves the upper bound inequality.

Corollary 4.23. Let {wε} ⊂WA (B1) be a sequence of almost local minimizers of the sequence of

functionals

{u 7→ Gε(A u)}.

Assume that {A wε} is 2-equi-integrable in Bs for every s < 1. Assume also that there exists w ∈
WA (B1) such that

A wε ⇀ A w in L2(B1;Mm×dk
).
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Then,

QBW (A wε)⇀ QB(A w) in L1
loc(B1).

Moreover, w is a local minimizer of u 7→ G(A u).

Proof. The first step is to check that

QBW (A wε)⇀ QB(A w) in L1(Bs), for every s < 1. (4.42)

The sequence A wε generates (up to taking a subsequence) a B-free Young measure µ : B1→ Z so

that by Theorem 4.15, Theorem 4.17 and the local 2-equi-integrability assumption,

W (A w′ε)⇀ 〈µx,W 〉 ≥ QBW (A w) in L1
loc(B1). (4.43)

Fix s ∈ (0,1) and consider the rescaled functions

ws
ε

:=
wε(sy)

sk− 1
2
, ws :=

w(sy)

sk− 1
2
.

It is not hard to see that, because of the (almost) minimization properties of {wε}, the rescaled se-

quence {ws
ε} is also a sequence of almost local minimizers of the sequence of functionals {u 7→

G(A u)}.8 Moreover, A ws
ε ⇀ A ws in L2(B1;Z).

From the proof of the lower bound in Theorem 4.21, we may find a 2-equi-integrable recovery

sequence {v′ε} for v, i.e., such that v′ε ⇀ A ws and

lim
ε↓0

Gε(v′ε) = G(A ws).

Recall that, by the exactness assumption of A and B, there are functions w′ε ∈WA (B1) such that

v′ε = A w′ε for every ε > 0.

A recovery sequence with the same boundary values. The next step is to show that one may assume,

without loss of generality, that supp(w′ε −ws
ε)⊂⊂ B1.

We may further assume (without loss of generality) that {ws
ε} and {w′ε} are Wk,2-uniformly bounded,

and that ws
ε −w′ε ⇀ 0 in Wk,2(B1;Rm).

Define

ṽh,ε := A (ϕhw′ε +(1−ϕh)ws
ε) = ϕh A w′ε +(1−ϕh)A ws

ε +

g(h)︷ ︸︸ ︷
∑
|β |≥1

|α| +|β |=k

cαβ ∂
α(w′ε −ws

ε)∂
β

ϕh;

where, for every h ∈ N, ϕh ∈ C∞(B1; [0,1]) with ϕh ≡ 1 in B1−1/h. Since ‖g(h)‖L2(B1)→ 0 as ε → 0,

8This scaling has the property that sd−1J(A ws,As) = JBs(x)(A w,A).
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we infer that

limsup
ε↓0

‖ṽh,ε −A w′ε‖L2(B1) ≤ limsup
ε↓0

‖A w′ε‖L2(B1\B1−1/h)
+ limsup

ε↓0
‖A wε‖L2(B1\B1−1/h)

.

We now let h→ ∞ and use the 2-equi-integrability of {A ws
ε} and {A w′ε} to get

limsup
h→∞

limsup
ε↓0

‖ṽh,ε −A w′ε‖L2(B1) = 0.

Thus, we may find a diagonal sequence ṽε = ṽh(ε),ε = A w̃s
ε which is 2-equi-integrable, supp(ws

ε −
w̃ε)⊂⊂ B1, and such that

lim
ε↓0
‖A w′ε − A w̃ε‖L2(Bs) = O(ε).

In particular, the (almost) local minimizing property of {A ws
ε} gives

limsup
ε↓0

ˆ
B1

W (A ws
ε)≤ limsup

ε↓0
Gε(A ws

ε)≤ limsup
ε↓0

Gε(A w̃ε)≤ lim
ε↓0

Gε(A w′ε) = G(A ws).

Rescaling back, the inequality above yields

limsup
ε↓0

ˆ
Bs

W (A wε)≤
ˆ

Bs

QBW (A w),

which together with (4.43) proves (4.42).

Local minimizer of G. The second step is to show that w is a local minimizer of u 7→ G(A u). We

argue by contradiction: assume that w is not a local minimizer of u 7→ G(A u), then we would find

s ∈ (0,1) and η ∈ C∞
c (Bs;Rm) for which

G(A w)> G(A w+A η).

Again, using a re-scaling argument, this would imply that

G(A ws)> G(A ws +A η
s).

Similarly to the previous step, we can find a 2-equi-integrable recovery sequence {A (ϕs
ε +ηs)} of

(A ws +A ηs) with the property that supp(ϕs
ε −ws

ε)⊂⊂ B1, for every ε > 0. On the other hand, the

(almost) minimizing property of A ws
ε and (4.42) yield

G(A ws +A η
s)< G(A ws) = lim

ε↓0
Gε(A ws

ε)≤ lim
ε↓0

Gε(A ϕ
s
ε +A η

s) = G(A ws +A η
s),

which is a contradiction. This shows that w is a local minimizer of u 7→ G(A u).

Let us recall, for the proof of the next proposition, that the higher integrability assumption (Reg)
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on local minimizers ũ of u 7→ G(A u) reads:

[A ũ]2L2,d−δ (B1/2)
≤ c‖A ũ‖2

L2(B1), for some δ ∈ [0,1). (Reg)

Proposition 4.24. Let (w,A) be a saddle-point of problem (P). Assume that the higher integrability

condition (Reg) holds for local minimizers of u 7→ G(A u). Then, for every K ⊂⊂ Ω there exists

a positive constant C(K) > 1 and a smallness constant ρ ∈ (0,1/2) such that at least one of the

following properties

1. JBr(x)(A w,A)≤C(K)rd−1,

2. JBρr(x)(A w,A)≤ ρd−(1+δ )/2JBr(x)(A w,A),

holds for all x ∈ K and every r ∈ (0,dist(K,∂Ω)). Here,

JBr(x)(A u,A) =
ˆ

Br(x)
σA A u ·A u dy + Per(A;Br(x)),

Proof. Let (w,A) be a saddle-point of (P) and fix ρ ∈ (0,1) (to be specified later in the proof). We

argue by contradiction through a blow-up technique: Negation of the statement would allow us to find

a sequence {(xh,rh)} of points xh ∈ K and positive radii rh ↓ 0 for which

JBrh (xh)(A w,A)> hrd−1
h , and (4.44)

JBρrh (xh)(A w,A)> ρ
d−(1+δ )/2JBrh (xh)(A w,A). (4.45)

An equivalent variational problem. It will be convenient to work with a similar variational problem:

Consider the saddle-point problem

inf

{
sup

u∈WA
0 (Ω)

ĨΩ(A u,A) : A⊂ Rd Borel set, A∩Ω
c ≡ A0∩Ω

c

}
, (P̃)

where

ĨΩ(A u,A) :=
ˆ

Ω

2τA ·A u dx−
ˆ

Ω

σA A u ·A u dx+Per(A;Ω).

Here we recall the notation τA := σA A wA, where wA ∈WA
0 (Ω) is the unique maximizer of u 7→

IΩ(u,A). It follows immediately from the identity

ˆ
Ω

τA ·A u dx =
ˆ

Ω

f u dx u ∈WA
0 (Ω),

that saddle-points (w,A) of problem (P) are also saddle-points of (P̃) and vice versa; hence, in the

following we will make no distinction between saddle-points of (P) and (P̃). A special property of Ĩ

is that, locally, it is always positive on saddle-points (w,A) of (P). Indeed, in this case w = wA and

therefore

ĨBr(x)(A w,A) =
ˆ

Br(x)
σA A wA ·A wA +Per(A;Br(x)) = JBr(x)(A w,A), Br(x)⊂Ω. (4.46)
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A re-scaling argument. We re-scale and translate Br(x) into B1 by letting

Ar,x :=
A
r
− x, f r,x(y) := rk+ 1

2 f (ry− x)→ 0 in L∞(B1), and wr,x(y) :=
w(ry− x)

rk− 1
2

. (4.47)

A further normalization on the sequence takes place by setting

ε(h)2 := rd−1 · JBrh (xh)(A w,A)−1 = O(h−1),

and defining

Aε(h) := Arh,xh , fε(h) := ε(h) · f rh,xh , wε(h) := ε(h) ·wrh,xh , and τε(h) := σAε(h) A wε(h).

It is easy to check that the scaling rule (4.33), and the relations (4.45) and (4.46) imply

Jε(h)(A wε(h),Aε(h)) = 1, and (4.48)ˆ
Bρ

σAε(h) A wε(h) ·A wε(h)+ ε(h)2 Per(Aε(h);Bρ)> ρ
d−(1+δ )/2. (4.49)

In particular, due to the coercivity of σ1 and σ2, the norms ‖A wε(h)‖2
L2(B1)

are h-uniformly bounded

by M.

Local almost-minimizers of Gε(h). The next step is to show that {wε(h)} is O(ε)-close in L2 to a

sequence {w̃ε} of almost minimizers of {u 7→ Gε(h)(A u)}. Observe that wε(h) is the unique solution

to the equation

A ∗(σAε
A u) = fε(h), u ∈WA

wε(h)
(B1).

Let w̃ε(h) be the unique minimizer of u 7→ Jε(h)(A u,Aε(h)) – see (4.32) – in the affine space WA
wε(h)

(B1).

Thus, in particular, w̃ε(h) is the unique solution of the equation

A ∗(σAε(h) A u) = 0, u ∈WA
wε(h)

(B1).

A simple integration by parts, considering that w̃ε(h)−wε(h) ∈WA
0 (B1), gives the estimate

‖A wε(h)−A w̃ε(h)‖2
L2(B1)

≤C(B1) ·M2‖ fε(h)‖2
L2(B1)

= O(h−1), (4.50)

where C(B1) is the Poincaré constant from (4.12); and therefore ‖wε(h)− w̃ε(h)‖Wk,2
0 (B1)

= O(h−1).

Lastly, we use strongly the fact that (w,A) is a saddle-point of (P) to see that {(wε(h),Aε(h))} is also

a local saddle-point of the energy

(u,E) 7→ Ĩε(h)(A u,E) :=
ˆ

B1

2τE ·A u dy−
ˆ

B1

σE A u ·A u dy + ε(h)2 Per(E;B1).

Moreover, by (4.33), (4.46) and (4.50) one has that

Ĩε(h)(A wε(h),Aε(h)) = Jε(h)(A wε(h),Aε(h)) = Jε(h)(A w̃ε(h),Aε(h))+O(h−1). (4.51)
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An immediate consequence of the two facts above is that {w̃ε(h)} is a sequence of local almost min-

imizers of the sequence of functionals {u 7→ Gε(h)(A u)}. The local (almost) minimizing properties

of the sequence {w̃ε(h)} – with respect to the functionals {u 7→Gε(h)(A u)} – are not affected by sub-

tracting A -free fields; hence, using the compactness assumption of A once more, we may assume

without loss of generality that suph ‖w̃ε(h)‖Wk,2(B1) < ∞. Upon passing to a further subsequence, we

may also assume that there exists w̃ ∈Wk,2(B1;Rm) such that

w̃ε(h) ⇀ w̃ in Wk,2(B1;Rm).

Equi-integrability of {A w̃ε(h)}. The last but one step is to show that {A w̃ε} is a 2-equi-integrable

sequence in Bs, for every s < 1.

Since σAε
is uniformly bounded, there exists τ̃ ∈L2(B1;Mm×dk

) such that (upon passing to a further

subsequence)

σAε(h)A w̃ε(h) =: τ̃ε(h) ⇀ τ̃ in L2(B1;Mm×dk
), A ∗

τ̃ε(h) = A ∗
τ̃ = 0. (4.52)

Let ϕ ∈D(B1) and fix ε > 0, integration by parts yields

〈τ̃ε(h) ·A w̃ε(h),ϕ〉=− ∑
|β |≥1

|α|+|β |=k

cαβ 〈τ̃ε(h),∂
α w̃ε(h)∂

β
ϕ〉 cα,β ∈ R.

Since the term in the right hand side of the equality depends only on ∇k−1w̃ε(h), the strong conver-

gence w̃ε → w̃ in Wk−1,2(B1;Rm) gives

lim
ε→0
〈τ̃ε(h) ·A w̃ε(h),ϕ〉=− ∑

|β |≥1
|α|+|β |=k

cαβ 〈τ̃,∂ α w̃∂
β

ϕ〉= 〈τ̃ ·A w̃,ϕ〉.

Therefore,

σAε(h) A w̃ε(h) ·A w̃ε(h) = τ̃ε(h) ·A w̃ε(h)
∗
⇀ τ̃ ·A w̃ ∈ L1(B1) weakly* in M+(B1).

The positivity of σAε
A w̃ε ·A w̃ε , the Dunford-Pettis Theorem and the convergence above imply that

the sequence

{σAε
A w̃ε ·A w̃ε} is equi-integrable in Bs; for every s < 1.

In turn, due to the uniform coerciveness and boundedness of {σAε
}, both sequences {A w̃ε} and {τ̃ε}

are 2-equi-integrable in Bs; for every s < 1.

The contradiction. We are in position to apply Proposition 4.23 to the sequence {w̃ε}, which in

particular implies

ε(h)2 Per(Aε(h);Bρ)→ 0,

σAε(h) A w̃ε(h) ·A w̃ε(h) ⇀ QBW (A w̃)≤M|A w̃|2, in L1
loc(B1),

(4.53)
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and that w is a local minimizer of u 7→G(A u). On the other hand, the higher integrability assumption

(Reg) tells us that

[A w̃]2L2,N−δ (B1/2)
≤ c‖A w̃‖2

L2(B1)
. (4.54)

We set the value of ρ ∈ (0,1/2) to be such that 2cM2ρ(1−δ )/2 ≤ 1. Taking the limit in (4.48) and

(4.49), using Fatou’s Lemma, (4.50), (4.51), (4.53) and (4.54), we get

1
M
‖A w̃‖2

L2(B1)
≤ lim

h→∞

Jε(h)(A w̃ε(h),Aε(h)) = 1

≤
(

1
ρd−(1+δ )/2

)
‖QBW (A w̃)‖L1(Bρ ) ≤

(
Mρ(1−δ )/2

ρd−δ

)
‖A w̃‖2

L2(Bρ )

≤Mρ
(1−δ )/2[A w̃]2L2,d−δ (B1/2)

≤ cMρ
(1−δ )/2‖A w̃‖2

L2(B1)

≤ 1
2M
‖A w̃‖2

L2(B1)
;

a contradiction.

Theorem 4.2 (upper bound). Let (w,A) be a variational solution of problem (P). Assume that the

higher integrability condition

[A ũ]2L2,d−δ (B1/2)
≤ c‖A ũ‖2

L2(B1)
, for some δ ∈ [0,1) and some positive constant c,

holds for local minimizers of the energy u 7→
´

B1
QBW (A u), where u ∈WA (B1). Then, for every

compactly contained set K ⊂⊂Ω, there exists a positive constant ΛK such that

ˆ
Br(x)

σA A w ·A w dy + Per(A;Br(x))≤ ΛKrd−1 ∀ x ∈ K,∀ r ∈ (0,dist(K,∂Ω)). (4.55)

Proof. Let x ∈ K, and set

ϕ(r,x) := JBr(x)(A w,A),

where we recall that

JBr(x)(A w,A) =
ˆ

Br(x)
σA A w ·A w dy + Per(A;Br(x))

Proposition 4.24 tells us that there exists a positive constant ρ ∈ (0,1/2) such that if Br(x)⊂Ω, then

ϕ(ρr,x)≤ ρ
d−(1+δ )/2

ϕ(r,x)+C(K)rd−1.

An application of the Iteration Lemma [19, Lem. 2.1, Ch. III] (stated below) to r∈ (0,min{1,dist(K,∂Ω}),
and α1 := d−(1+δ )/2>α2 := d−1 yields the existence of positive constants c= c(x), and r = r(K)

such that

ϕ(s,x)≤ csd−1 ∀ s ∈ (0,R(K)).

Notice that the constants c and r depend continuously on x ∈Ω. Hence, for any K ⊂⊂Ω we may find
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ΛK > 0 for which

JBr(x)(A w,A)≤ ΛKrd−1 ∀ x ∈ K, ∀ r ∈ (0,dist(K,∂Ω)).

Lemma 4.25 (Iteration Lemma). Assume that ϕ(ρ) is a non-negative, real-valued, non-decreasing

function defined on the (0,1) interval. Assume further that there exists a number τ ∈ (0,1) such that

for all r < 1 we have

ϕ(τr)≤ τ
α1ϕ(r)+Crα2

for some non-negative constant C, and positive exponents α1 > α2. Then there exists a positive

constant c = c(τ,α1,α2) such that for all 0≤ ρ ≤ r ≤ R we have

ϕ(ρ)≤ c
(

ρ

r

)α2
ϕ(r)+Cρ

α2 .

Corollary 4.26 (compactness of blow-up sequences). Let (w,A) be a variational solution of prob-

lem (P). Under the assumptions of the upper bound Theorem 4.2, there exists a positive constant CK

such that

[A w]2L2,d−1(K) ≤CK . (4.56)

Proof. The assertion follows directly from the Upper Bound Theorem and the coercivity of σ1 and

σ2.

4.5 The Lower Bound: proof of estimate (LB)

During this section we will write (w,A) to denote a solution of problem (P) under the assumptions of

Theorem 4.2. In light of the results obtained in the previous section we will assume, throughout the

rest of the paper, that for every compact set K ⊂⊂ Ω there exist positive constants CK , and ΛK such

that

Per(A;Br(x))≤ ΛKrd−1,

‖ A wx,r‖2
L2(B1)≤ [A w]2L2,d−1(K) ≤CK ,

for all x ∈ K and every r ∈ (0,dist(K,∂Ω)).

The main result of this section is a lower bound on the density of the perimeter in ∂ ∗A. In other

words, there exists a positive constant λK = λK(d,M) such that

Per(A;Br(x))≥ λKrd−1 for every 0 < r < dist(x,∂Ω). (LB)

There are two major consequences from estimate (LB). The first one (cf. Corollary 4.34) is that

the difference between the topological boundary of A and the reduced boundary of A is at most a set

of zero H d−1-measure. In other words, (∂A\∂ ∗A) = Σ where H d−1(Σ) = 0 (cf. [6, Theorem 2.2]).
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The second implication is that (LB) is a necessary assumption for the Height bound Lemma and the

Lipschitz approximation Lemma, which are essential tools to prove the flatness excess improvement

in the next section.

Throughout this section and the rest of the manuscript we will constantly use the following nota-

tions:

The scaled Dirichlet energy

D(w;x,r) :=
1

rd−1

ˆ
Br(x)
|A w|2 dy,

and the excess for γ-weighted energy

Eγ(w,A;x,r) := D(w;x,r)+
γ

rd−1 Per(A,Br(x)).

Granted that the spatial-, radius-, or (w,A)- dependence is clear, we will shorten the notations to the

only relevant variables, e.g., D(r) and Eγ(r). Recall that, up to translation and re-scaling, we may

assume

0 ∈ ∂
∗A∩K, and B1 ⊂ K +B9 ⊂Ω.

Bear also in mind that all the constants in this section are universal up to their dependence on ΛK and

CK .

We will proceed as follows. First we prove in Lemma 4.27 that if the density of the perimeter is

sufficiently small, one may regard the regularity properties of solutions as those ones for an elliptic

equation with constant coefficients. Then, in Lemma 4.28, we prove a lower bound on the decay of

the density of the perimeter in terms of D. Combining these results, we are able to show a discrete

monotonicity formula on the decay of Eγ .

The proof of the lower density bound (LB) follows easily from this discrete monotonicity formula,

De Giorgi’s Structure Theorem, and the upper bound Theorem of the previous section. Finally, we

prove that the difference between ∂A and ∂ ∗A is H d−1-negligible (Theorem 4.34) as a corollary of

the estimate (LB).

Lemma 4.27 (approximative solutions of the constant coefficient problem). For every θ1 ∈
(0,1/2), there exist positive constants9 c1(θ1,d,M) and ε1(θ1,d,M) such that either

ˆ
Bρ

|A w|2 dy≤ c1ρ
d‖ f‖2

L∞(B1)
,

or ˆ
Bρ

|A w|2 dy≤ 2cρ
N
ˆ

B1

|A w|2 dy for every ρ ∈ [θ1,1),

where c = c(d,M) is the constant from Lemma 4.11; whenever

Per(A;B1)≤ ε1.

9As it can be seen from the proof of Lemma 4.27, the constant c1 does not depend on K.
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Proof. Since c ≥ 2d , the result holds if we assume ρ ≥ 1/2, therefore we focus only on the case

where ρ ∈ (θ1,1/2). Fix θ1 ∈ (0,1/2]. We argue by contradiction: We would find a sequence of pairs

(wh,Ah) (locally solving (P) in B1 for a source function fh) and constants ρh ∈ [1/2,θ1], such that

δ
2
h :=
ˆ

Bρh

|A wh|2 dy > 2cρ
d
h

ˆ
B1

|A wh|2 dy, (4.57)

and simultaneously

ρ
d
h ·
‖ fh‖2

L∞(B1)

δ 2
h

≤ 1
h
, and Per(Ah;B1)≤

1
h
.

The estimate above yields δ
−1
h fh→ 0 in L2(B1;Rm). Also, since Per(Ah;B1)→ 0, the isoperimetric

inequality yields that either σAh → σ1 or σAh → σ2 in L2 as h tends to infinity. Let us assume that the

former convergence σAh → σ1 holds.

Let uh := δ
−1
h wh, for which

sup
h
‖A uh‖L2(B1) < ∞.

We use that wh is a (local) solution to (P) for Ah as indicator set and fh as source term, to see that

A ∗(σAh A uh) = δ
−1
h fh in B1.

Up to passing to a further subsequence, we may assume that uh ⇀ u in Wk,2(B1;Rm). We may then

apply the compensated compactness result from Lemma 4.14 to obtain that

A ∗(σ1 A u) = 0 in B1,

and

D(uh;s)→ D(u;s) where ρh→ s ∈ [θ1,1/2].

Hence, by (4.57) and Fatou’s Lemma one gets

2csdD(u;1)≤ lim
h→∞

cρ
d
h D(uh;1)≤ 1 = lim

h→∞

D(uh;ρh) = lim
h→∞

D(uh;s) = D(u;s).

This is a contradiction to Lemma 4.11 because u is a solution for the problem with constant coeffi-

cients σ1. The case when σAh → σ2 can be solved by similar arguments.

The next lemma is the principal ingredient in proving the (LB) estimate. It relies on a cone-like

comparison to show that the decay of the perimeter density is controlled by D(r)/r: The perimeter

density cannot blow-up at smaller scales, while for a fixed scale, the perimeter density is small.

Lemma 4.28 (universal comparison decay). There exists a positive constant10 c2 = c2(d,M) such

that
d
dr

∣∣∣∣
ρ=r

(
Per(A;Bρ)

ρd−1

)
≥−c2

D(r)
r

for a.e. r ∈ (0,1].

10The constant c2 is independent of the compact set K; indeed, this is the result of universal comparison estimates in Ω.

159



4 Optimal design problems for elliptic operators

Proof. For a.e. r ∈ (0,1) the slice 〈A,g,r〉, where g(x) = |x|, is well defined (see Section 4.2.4). Fix

one such r and let Ã be the cone-like comparison set to A as in (4.23). By minimality of (w,A) and a

duality argument, we get

ˆ
Br

σ
−1
A τA · τA dy+Per(A;Br)≤

ˆ
Br

σ
−1
Ã τA · τA dy+Per(Ã;Br)

for τA = σA A w. Hence,

Per(A;Br)≤ Per(Ã;Br)+M
ˆ

Br

|A wA|2 dy

≤ r
d−1

〈A,g,r〉(Rd)+M3rd−1D(r).
(4.58)

To reach the inequality in the last row we have used that the cone extension Ã is precisely built (cf.

(4.24)) so that the Green-Gauss measures µÃ and µA agree in (Br)
c; where, by (4.22),

Per(Ã;Bρ) =
1

(d−1)

(
ρd−1

rd−2

)
H d−2(∂ ∗A∩{g = r})≤ 1

(d−1)

(
ρd−1

rd−2

)
〈A,g,r〉(Rd)

for all 0< ρ ≤ r. We know from (4.25) that d
dρ

∣∣
r Per(A;Bρ)≥〈A,g,r〉(Rd) for a.e. r > 0. Since (4.58)

and the previous inequality are valid almost everywhere in (0,1), a combination of these arguments

yields
d
dr

∣∣∣∣
ρ=r

(
Per(A;Bρ)

ρd−1

)
≥−M3(d−1)

D(r)
r

for a.e. r ∈ (0,1).

The result follows for c2 := M3(d−1).

The following result is a discrete monotonicity for the weighted excess energy Eγ . We remark that,

in general, a monotonicity formula may not be expected in the case of systems.

Theorem 4.29 (Discrete monotonicity). There exist positive constants γ = γ(d,M), ε2 = ε2(γ,d)≤
vol(B′1) · γ/2, and θ2 = θ2(d,M) ∈ (0,1/2) such that

Eγ(θ2)≤ Eγ(1)+ c1(θ2)‖ f‖2
L∞(B1)

, whenever Eγ(1)≤ ε2. (4.59)

Proof. We fix γ and θ1 such that

γc2 max{c,c1(θ1)} ≤
1
4
, where 2θ1c≤ 1

2
.

Set θ2 := θ1. Recall that c2 is the constant from Lemma 4.28, and c is the constant of Lemma 4.11.

Let also ε2 = ε2(γ,ε1) be a positive constant with ε2 ≤min{γε1(θ2),γ ·vol(B′1)/2}. This implies

Per(A;B1)≤ ε1(θ2),
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which in turn gives for c1 = c1(θ2) (see Lemma 4.27)

Eγ(θ2)≤
γ

θ
d−1
2

Per(A;Bθ2)+2cθ2D(1)+ c1θ2‖ f‖2
L∞(B1)

.

Now, we apply Lemma 4.27 and Lemma 4.28 to s ∈ (θ2,1) to get

Eγ(θ2)≤
γ

θ
d−1
2

Per(A;Bθ2)+2cθ2D(1)+ c1θ2‖ f‖2
L∞(B1)

≤ γ Per(A;B1)+ γ

ˆ 1

θ2

− d
dr

∣∣∣
r=s

(
Per(A,Br)

rd−1

)
ds+

1
2

D(1)+ c1θ2‖ f‖2
L∞(B1)

≤ γ Per(A;B1)+ γc2

ˆ 1

θ1

D(s)
s

ds+
1
2

D(1)+ c1θ2‖ f‖2
L∞(B1)

≤ γ Per(A;B1)+2γcc2D(1)+ γc2c1‖ f‖2
L∞(B1)

+
1
2

D(1)+ c1θ2‖ f‖2
L∞(B1)

≤ γ Per(A;B1)+D(1)+ c1‖ f‖2
L∞(B1)

= Eγ(1)+ c1‖ f‖2
L∞(B1)

.

This proves the desired result.

Lemma 4.30. For every ε > 0, there exist positive constants θ0(d,M,K,ε)∈ (0,1/2) and κ(d,M,K,ε)>

0 such that

Eγ(θ0)≤ ε + c1‖ f‖2
L∞(B1)

;

whenever

Per(A;B1)≤ κ.

Proof. The result follows by taking θ0 such that 2cθ0CK ≤ ε/2 (recall that, D(s) ≤ CK for every

s ∈ (0,1)) and κ ≤min
{

εθ
d−1
0
2γ

,ε1(θ0)

}
and then simply applying Lemma 4.27.

Lemma 4.31. Let (w,A) be a saddle-point of (P) and let x ∈ K ⊂⊂ Ω. Then, for every ε > 0 there

exists a positive radius r0 = r0(d,M,K,‖ f‖L∞(B1),ε) for which

Eγ(w,A;x,r)≤ 2ε;

whenever r ≤ r0 and Per
(
A;B

θ
−1
0 r

)
≤ κ(ε) ·

( r
θ

)d−1.

Proof. Let r0 be a positive constant such that c1r2k+1
0 ‖ f‖2

L∞(B1)
≤ θ

2k+1
0 ε and let us set s := θ

−1
0 r.

Since

Per(Ax,s;B1) = s−(d−1) Per(A;Bs)≤ κ(ε),

it follows from the previous lemma and a rescaling argument that

Eγ(w,A;r) = Eγ(w,A;θ0s)≤ ε + c1‖ f s‖2
L∞(B1)

= ε + c1s2k+1‖ f‖2
L∞(B1)

≤ 2ε.
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4 Optimal design problems for elliptic operators

Theorem 4.32 (lower bound). Let (w,A) be a solution of problem (P) in Ω. Let K ⊂⊂ Ω be a

compact subset. Then, there exist positive constants λK and rK depending only on K, the dimension

N, the constant M in the assumption (4.2), and f such that

Per(A;Br(x))≥ λKrd−1, (LB)

for every r ∈ (0,rK) and every x ∈ ∂ ∗A∩K.

Proof. Let p(θ2) := ∑
∞
h=0 θ

(2k+1)h
2 ∈ R and define r1 ∈ (0,1) to be a positive constant for which

r2k+1
1 c1(θ2)p(θ)‖ f‖2

L∞(B1)
≤ ε2

4
.

We argue by contradiction. If the assertion does not hold, we would be able to find a point x ∈ ∂ ∗A

and a radius r ≤min{r0,r1} for which

Per
(
A;B r

θ0
(x)
)
≤
(

r
θ0

)d−1

κ(ε), ε :=
ε2

4
.

After translation, we may assume that x = 0. The fact that r ≤ r0 and Lemma 4.31 yield the estimate

Eγ(w,A;r)≤ 2ε ≤ ε2

2
;

in return, Lemma 4.29 and a rescaling argument give (recall that f r(y) = rk+ 1
2 f (ry))

Eγ(w,A;θ2r)≤ Eγ(wr,Ar;1)+ c1‖ f r‖2
L∞(B1)

≤ ε2

2
+ c1r2k+1‖ f‖2

L∞(B1)
≤ ε2.

A recursion of the same argument gives the estimate

Eγ(w,A;θ
j

2 r)≤ Eγ(w,A;r)+ c1r2k+1‖ f‖2
L∞(B1)

( j

∑
h=0

θ
(2k+1)h
2

)
≤ ε2.

Taking the limit as j→ ∞ we get

limsup
j→∞

Per(A;B
θ

j
2 r)

vol(B′1) · (θ
j

2 r)d−1
≤ limsup

j→∞

Eγ(w,A;θ
j

2 r)
vol(B′1) · γ

≤ ε2

vol(B′1) · γ
≤ 1

2
.

This a contradiction to the fact that x = 0 ∈ ∂ ∗A (cf. Section 4.2.4)

Corollary 4.33. Let (w,A) be a solution for problem (P) in Ω. Let K ⊂⊂ Ω be a compact subset.

Then, there exist positive constants λK and rK depending only on K, the dimension d, and f such that

Per(A;Br(x))≥ λKrd−1,

for every r ∈ (0,rK) and for every x ∈ ∂A∩K.
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4.6 Proof of Theorem 4.5

Proof. The property (LB) from the Lower Bound Theorem is a topologically closed property, i.e., it

extends to ∂ ∗A = supp µA = ∂A (cf. (4.19)).

Corollary 4.34. Under the same assumptions of Theorem 4.32, the following characterization for

the topological boundary of A holds:

∂A = ∂
∗A∪Σ, where H d−1(Σ) = 0.

Proof. An immediate consequence of the previous corollary is that H d−1x∂A� |µA| as measures in

Ω. The assertion follows by De Giorgi’s Structure Theorem.

4.6 Proof of Theorem 4.5

As we have established in the past section, we will assume that for every K ⊂⊂Ω there exist positive

constants λK ,CK such that D(w;x,r)≤CK and

Per(A,Br(x))≥ λKrd−1, ∀ x ∈ (∂A∩K),∀ r ∈ (0,dist(K,∂Ω)). (LB)

Half-space regularity. Throughout this section we shall work with the additional assumption for

solutions of the half-space problem: let H := { x ∈ Rd : xd > 0 } and let σH be the two-point valued

tensor defined in (4.3) for Ω = B1 (so that σH = σ1 in H ∩B1), then the operator

PHu := A ∗(σH A u)

is hypoelliptic in B1 \∂H in the sense that, if w ∈ L2(B1;Rm), then

PHw = 0 ⇒ w ∈ C∞(B+
r ;Rm)∪C∞(B−r ;Rm) for every 0 < r < 1.11 (4.60)

Furthermore, there exists a positive constant c∗ = c∗(d,M,A ) such that

1
ρd

ˆ
Bρ

|∇kw|2 dx≤ c∗
ˆ

B1

|∇kw|2 dx for all 0 < ρ ≤ 1
2
,

1
ρd

ˆ
Bρ

|A w|2 dx≤ c∗
ˆ

B1

|A w|2 dx for all 0 < ρ ≤ 1
2
,

sup
B+

ρ ∪B−ρ

|∇k+1w|2 ≤ c∗
ˆ

B1

|w|2 dx for all 0 < ρ ≤ 1
2
.

(4.61)

Remark 4.35 (half-space regularity in applications). For 1-st order operators of gradient form it

is relatively simple to show that such estimates as in (4.61) hold. This case includes gradients and

symmetrized gradients; while the linear plate equations may be also reduced to this case (cf. Remark

4.13).

A sketch of the proof is as follows: The first step is to observe that the tangential derivatives (i 6= d)

11The notation B±r stands for the upper and lower half ball of radius r: Br ∩H and Br ∩−H respectively.
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4 Optimal design problems for elliptic operators

∂iw of a solution w of PHu = 0 are also solutions of PHu = 0. The second step is to repeat recursively

the previous step and use the Caccioppoli inequality from Lemma 4.10 to estimate

ˆ
B1/2

|∂ αw|2 dx≤C(|α|)
ˆ

B1

|w|2 dx for arbitrary α with αd ≤ 1. (4.62)

The third step consists in using the ellipticity of Ad = A(ed)
12 (cf. Remark 4.8) and the equation to

express ∂ddw in terms of the rest of derivatives: The tensor (AT
d σ Ad) is invertible, this can be seen

from the inequality |A(ed)z|2 ≥ λ (A )|z|2 for every z ∈ Rd (cf. 4.8) and the fact that σH satisfies

Gårding’s strong inequality (4.2) with M−1. Hence, using that PHw = 0, we may write

∂ddw =−(AT
d σH Ad)

−1
∑

i j 6=dd
(AT

i σ1 A j)∂i jw in B+
1 , (4.63)

from which estimates for ∂ddw of the form (4.62) in the upper half ball easily follow (similarly for

the lower half ball). Further ∂d differentiation of the equation in B±1 and iteration of this procedure

together with the Sobolev embedding yield bounds as in (4.61).

For arbitrary higher-order gradients and other general elliptic systems one cannot rely on the same

method. However, the Schauder and Lp boundary regularity of such systems has been systematically

developed in [1, 2] through the so called complementing condition. In the case of strongly elliptic

systems (cf. (4.2) and (4.11)) this complementing condition is fulfilled, see [2, pp 43-44]; see also

[31] where a closely related natural notion of hypoellipticity of the half-space problem is assumed.

Flatness excess. Given a set A⊂ Rd of locally finite perimeter, the flatness excess of A at x for scale

r and with respect to the direction ν ∈ Sd−1, is defined as

e(A;x,r,ν) :=
1

rd−1

ˆ
C(x,r,ν)∩∂ ∗A

|νE(y)−ν |2

2
dH d−1(y).

Here, C(x,r,ν) denotes for the cylinder centered at x with height 2, that is parallel to ν , of radius r.

Intuitively, the flatness excess expresses for a set A, the deviation from being a hyperplane H at

a given scale r. Again, up to re-scaling, translating and rotating, it will be enough to work the case

x = 0,ν = ed , and r = 1. In this case, we will simply write e(A). The hyper-plane energy excess is

defined as

Hex(w,A;x,r,ν) := e(A;x,r,ν)+D(w,A;x,r),

and as long as its dependencies are understood we will simply write Hex(r) = e(r)+D(r).

The following result relies on the (LB) property, a proof can be found in [16, §5.3] or [27, Theorem

22.8].

Lemma 4.36 (Height bound). There exist positive constants c∗1 = c∗1(d) and ε∗1 = ε∗1 (d) with the

following property. If A⊂ Rd is a set of locally finite perimeter with the (LB) property,

0 ∈ ∂A and e(9)≤ ε
∗
1 ,

12Recall that, for a 1-st order operator as in (4.7), the coefficients Aα can be simply denoted by Ai with i = 1, . . . ,d.
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then

sup
{
|yd | : y ∈ B′1× [−1,1]∩∂A

}
≤ c∗1 · e(4)

1
2d−2 . (HB)

The next decay lemma is the half-space problem analog of Lemma 4.27. The proof is similar

except that it relies on the half-space regularity assumptions (4.60)-(4.61) (instead of the ones given

by Lemma 4.11), and the Height bound Lemma stated above.

Lemma 4.37 (approximative solutions of the half-space problem). Let (w,A) be a solution of

problem (P) in B1. Then, for every θ ∗1 ∈ (0,1/2) there exist positive constants c∗2(θ
∗
1 ,d,M) and

ε∗2 (θ
∗
1 ,d,M) such that either ˆ

Bρ

|A w|2 dx≤ c∗2ρ
d‖ f‖2

L∞(B1)
,

or ˆ
Bρ

|A w|2 dx≤ 2c∗ρN
ˆ

B1

|A w|2 dx for every ρ ∈ [θ1,1),

where c∗ = c∗(d,M) is the constant from the regularity condition (4.61); whenever

Per(A;B1)≤ ε
∗
2 .

Remark 4.38. Let δ ∈ (0,1). Then there exists κ∗ = κ∗(d,M,δ ) such that if e(1) ≤ κ∗, and

if one further assumes that the excess function r 7→ e(r) is monotone increasing, then the scaling

w(ry)/r(k−
1
2 ) and the Iteration Lemma 4.25 imply that

1
rd−δ

ˆ
Br

|A w|2 ≤Cδ

(
‖A w‖2

L2(B1)
+ c∗2‖ f ‖2

L∞(B1)
· r2k+δ

)
for every r ∈ (0,1/2),

for some positive constant Cδ =Cδ (d,M).

The next crucial result can be found in [26, Section 5]. We have decided not to include a proof be-

cause because the ideas remain the same: the estimate (LB), the Height bound Lemma, the Lipschitz

approximation Theorem, the estimates from Lemma 4.37 and the higher integrability for solutions to

elliptic equations.13

Lemma 4.39 (flatness excess improvement). Let (w,A) be a saddle point of problem (P) in Ω.

There exist positive constants η ∈ (0,1], c∗3, and ε3 depending only on K, the dimension d, the constant

M in (4.2), and ‖ f‖L∞ with the following properties: If (w,A) is a saddle point of problem (P) in B9,

and

Hex(9)≤ ε
∗
3 ,

then, for every r ∈ (0,9), there exists a direction ν(r) ∈ Sd−1 for which

|ν(r)− ed | ≤ c∗3 Hex(9) and Hex(r,ν(r))≤ c∗3rη Hex(9).

13L2∗(Ω)-integrability of A w, for some exponent 2∗ > 2, can be established by standard methods through the use of the
Caccioppoli inequality in Lemma 4.10.
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Theorem 4.5 (partial regularity). Let (w,A) be a saddle point of problem (P) in Ω. Assume that the

operator PHu = A ∗(σ A u) is hypoelliptic and regularizing as in (4.60)-(4.61), and that the higher

integrability condition

[A ũ]2L2,d−δ (B1/2)
≤ c‖A ũ‖2

L2(B1)
, for some δ ∈ [0,1),

holds for every local minimizer ũ of the energy u 7→
´

B1
QBW (A u), where u ∈WA (B1). Then there

exists a positive constant η ∈ (0,1] depending only on d such that

H d−1((∂A\∂
∗A)∩Ω) = 0, and ∂

∗A is an open C1,η/2-hypersurface in Ω.

Moreover if A is a first-order differential operator, then A w ∈ C0,η/8
loc (Ω \ (∂A \ ∂ ∗A)); and hence,

the trace of A w exists on either side of ∂ ∗A.

Proof. The reduced boundary is an open hypersurface. The first assertion H d−1((∂A\∂ ∗A)∩Ω) = 0

is a direct consequence of Corollary 4.34.

To see that ∂ ∗A is relatively open in ∂A we argue as follows: De Giorgi’s Structure Theorem

guarantees that for every x ∈ ∂ ∗A there exist r > 0 (sufficiently small) and ν ∈ Sd−1 such that

Hex(w,A;r,x,ν)≤ 1
2

ε
∗
3 , and µA(∂Br(x)) = 0.

The map y 7→ µA(Br(y)) = 0 is continuous at x, therefore we may find δ (x) ∈ (0,1) such that

Hex(w,A;r,y,ν)≤ ε
∗
3 for every y ∈ Bδ (x)∩∂A.

We may then apply Lemma 4.39 to get an estimate of the form

inf
ξ∈Sd−1

Hex(w,A;y,ρ,ξ )≤ c∗3ρ
η Hex(w,A;y,r,ν) for all y ∈ Bδ (x), and all ρ ∈ (0,r).

This and the first assertion of Lemma 4.39 imply that y ∈ ∂ ∗A for every y ∈ Bδ (x)∩ ∂A. Therefore,

the reduced boundary ∂ ∗A is a relatively open subset of the topological boundary ∂A.

We proceed to prove the regularity for ∂ ∗A. It follows from the last equation that

D(w;y,ρ)≤ inf
ξ∈Sd−1

Hex(w,A;y,ρ,ξ )≤ c∗3ε
∗
3 ρ

η ≤Cρ
η (4.64)

for every y ∈ Bδ (x), and every ρ ∈ (0,r), for some constant C =C(CBδ (x),ΛBδ (x),d,M).

Through a simple comparison, we observe from (4.64) and the property that (w,A) is a local saddle

point of problem (P) in Bδ (x), that

DevBδ (x)(A,ρ)≤ 2Mρ
d−1D(w;y,ρ)≤ 2MCρ

d−1+η , for all ρ ∈ (0,r) and every y ∈ Bδ (x).
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We conclude with an application of Tamanini’s Theorem 4.19:

∂A = ∂
∗A is a C1,η/2-hypersurface in Bδ (x).

The assertion follows by observing that the regularity of ∂ ∗A is a local property.

Jump conditions for the hyper-space problem. Let τ ∈ L2
loc(B1;Z)∩ (C∞(B+

ρ ;Z)∪C∞(B−ρ ;Z)) for

every ρ ∈ (0,1), assume furthermore that τ is a solution of the equation

A ∗
τ = 0 in B1.

Let η ∈ C∞
c (B

′
1;Rm) be an arbitrary test function and choose a function ϕ ∈ C∞

c (B1;Rm) with the

following property:

ϕ(y′,yd) =
yk−1

d
(k−1)!

η(y′) in a neighborhood of B′1.

Then, integration by parts and Green’s Theorem yield that

0 =

ˆ
B1

τ ·A ϕ dy =
ˆ

∂H∩B1

[A(ed)
T · τ] ·η dy′,

where [A(ed)
T · τ] = A(ed)

T · (τ+− τ−). Here, τ+ and τ− are the traces of τ in ∂H from B+
1 and B−1

respectively. Since η is arbitrary, a density argument shows that

[A(ed)
T · τ] = 0 in ∂H ∩B1, and hence A(ed)

T · τ ∈W1,2
loc(B1;Rm). (4.65)

Regularity of A w. From this point and until the end of the proof we further assume that A is a first-

order differential operator of gradient form; we may as well assume that ∂ ∗A is locally parametrized

by C1,η/2 functions.

Due to Campanato’s Theorem (C0,η/8'L2,d+(η/4) on Lipschitz domains), our goal is to show local

boundedness of the map

x 7→ sup
r≤1

{
1

rd+(η/4)

ˆ
Br(x)∩A

|A w− (A w)Br(x)∩A|2 dy
}

x ∈ (Ω\ (∂A\∂
∗A)); (4.66)

and a similar result for Ac instead of A.

Also, since Campanato estimates in the interior are a simple consequence of Lemma 4.11, we may

restrict our analysis to show only local boundedness at points x ∈ ∂ ∗A. We first prove the following

decay for solutions of the half-space:

Lemma 4.40. Let w̃ ∈WA (B1) be such that

A ∗(σH A w̃) = 0 in B1. (4.67)
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Then w̃ satisfies an estimate of the form

1
ρd+2

ˆ
Bρ

|RHw̃− (RHw̃)ρ |2 dy≤ c(N,σ1,σ2)

ˆ
B1

|RHw̃− (RHw̃)1|2 dy for all 0 < ρ ≤ 1, (4.68)

where we have defined

RAu :=
(
∇
′u,AT

d (σA A u)
)
, A⊂ B1 Borel.

Proof. Since for ρ ≥ 1/2 one can use c := 2−(d+2), we only focus on proving the estimate for ρ ∈
(0,1/2). It is easy to verify that A ∗(σH A (∂iw̃−λ )) = 0 in D ′(B1;Rm) for all λ ∈ Rm, and every

i = 1, . . . ,d−1. In particular, by (4.61) we know that

1
ρd+2

ˆ
Bρ

|∂iw̃− (∂iw̃)ρ |2 dy≤ C
ρd

ˆ
Bρ

|∇∂iw̃|2 dy≤ c∗C
ˆ

B1

|∂iw̃− (∂iw̃)1|2 dy, (4.69)

for every ρ ∈ (0,1/2), and every i = 1, . . . ,d− 1. Here, C = C(d) is the standard scaled Poincaré

constant for balls. Summation over i ∈ {1, . . . ,d−1} yields an estimate of the form (4.68) for ∇′w̃.

We are left to calculate the decay estimate for gH(w̃) := AT
d (σH A w̃) = A(ed) · (σH A w̃). By the

hypoellipticity assumption (4.60) and the jump condition (4.65), we infer that gH(w̃)∈W1,2
loc(B1;Rm).

Even more, by the same Poincaré’s inequality

1
ρd+2

ˆ
Bρ

|g(w̃)− (g(w̃))ρ |2 dy≤ C
ρN

ˆ
Bρ\∂H

|∇(g(w̃))|2 dy (4.70)

for every ρ ∈ (0,1/2). On the other hand, it follows from the equation in (B1 \ ∂H) and (4.63) that

one may write ∇g(w̃) in terms of ∇(∇′w̃) for almost every x∈ (Br \∂H). We may then find a constant

C′ =C′(σ1,σ2,A ) such that

|∇g(w̃(x))|2 ≤C′|∇(∇′w̃)(x)|2 for every x ∈ (Bρ \∂H).

Using the same calculation as in the derivation of (4.69), it follows from (4.70) that

1
ρd+2

ˆ
Bρ

|g(w̃)− (g(w̃))ρ |2 dy≤ c∗CC′
ˆ

B1

|∇′w̃− (∇′w̃)1|2 dy

≤ c∗CC′
ˆ

B1

|RHw̃− (RHw̃)1|2 dy,

for every ρ ∈ (0,1/2). The assertion follows by letting c(N,σ1,σ2) := c∗C max{1,C′}.

The next corollary can be inferred from (4.68) by following the strategy of Lin in [26, pp 166-167]:

Corollary 4.41. Let w̃ ∈WA (B2) solve the equation

A ∗(σA A u) = f in B2, with ‖w̃‖L2(B2) ≤ 1 and ‖ f‖L∞(B2) ≤ 1 , (4.71)

where A := { x ∈ B′2×R : xd > ϕ(x′) } for some function ϕ ∈ C1,η/2(B′2) with ϕ(0) = |∇ϕ|(0) = 0,
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and ‖ϕ‖C1,η/2(B′2)
≤ 1. Then there exist positive constants θ(d,σ1,σ2) ∈ (0,1/2), and C(d,σ1,σ2)

such that either
1

θ d+1

ˆ
Bθ

|RAw̃− (RAw̃)θ |2 dy≤
ˆ

B1

|RAw̃− (RAw̃)1|2 dy, (4.72)

or ˆ
Bθ

|RAw̃− (RAw̃)θ |2 dy≤C
(
‖ϕ ‖C1,η/2(B′1)

+‖ f‖2
L∞(B1)

)
. (4.73)

We are now in the position to prove (4.66). Let δ ∈ (0,η/2) and let (w,A) be solution of problem

(P). Since local regularity properties of the pair (w,A) are inherited to any (possibly rotated and

translated) re-scaled pair (wx,r,Ax,r) – as defined in (4.47), where in particular the source f x,r tends

to zero – with r ≤ dist(x,∂Ω), we may do the following assumptions without any loss of generality:

B4 ⊂ Ω and x = 0 ∈ ∂ ∗A, ∂A∗ is parametrized in B2 by a function ϕ ∈ C1,η/2(B′2) such that ϕ(0) =

|∇ϕ(0)| = 0, and ‖ϕ‖C1,η/2(B′2)
,‖ f‖L∞(B2) ≤ min{1,κ∗} where κ∗ = κ∗(δ ,d,M) is the constant of

Remark 4.38. Additionally, since (w,A) is a solution of problem (P), we know that

A ∗(σA A w) = f in B2, (4.74)

and

1
rd−δ

ˆ
Br

|A w|2 dy≤ Cδ

(
‖A w‖2

L2(B2)
+‖ f ‖2

L∞(B1)

)
for every r ∈ (0,1), (4.75)

where Cδ (d,M) is the constant from Remark 4.38.

Notice that the rescaled functions14 wr(y) := (w(ry)− vr(ry))/r1−(δ/2) and ϕr(y) := ϕ(ry)/r still

solve (4.74) for f r(y) := r1+(δ/2) f (ry) and Ar := A/r with ‖ϕr‖C1,η/2(B′2)
,

‖ f r‖L∞(B2) ≤min{1,κ∗}. In particular, by (4.75) and Poincaré’s inequality

‖wr‖2
L2(B1)

≤C(B1)‖A wr‖2
L2(B1)

<C :=C(B1)Cδ

(
‖A w‖2

L2(B2)
+1
)
.

Thus Recall also that ‖ϕr‖C1,η/2(B′1)
scales as rη/2‖ϕ‖C1,η/2(B′r)

and, in view of its definition, ‖ f r‖2
L∞(B1)

scales as r2+δ . In view of these properties, we are in position to apply Corollary 4.41 to wr/max{1,C1/2}:
We infer that either

1
θ d+1

ˆ
Bθ

|RAr wr− (RAr wr)θ |2 dy≤
ˆ

B1

|RAr wr− (RAr wr)1|2 dy, (4.76)

or ˆ
Bθ

|RAr wr− (RAr wr)θ |2 dy≤max{1,C} ·C(d,σ1,σ2)

(
‖ϕr‖C1,η/2(B′1)

+ r2+δ

)
, (4.77)

where θ = θ(d,σ1,σ2) ∈ (0,1/2) is the constant from Corollary 4.41.

It is not difficult to verify, with the aid of the Iteration Lemma 4.25, that re-scaling in (4.76) and

14Here, νr is the A -free corrector function for w in Br, see Definition 4.6.
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(4.77) conveys a decay of the form

1
rd+η/2−δ

ˆ
Br

|RA(w−νr)− (RA(w−νr))r|2 dy≤ c′ for all r ∈ (0,1), (4.78)

and some constant c′ = c′(δ ,d,σ1,σ2,‖A w‖L2(B2)).

The last step of the proof consists in showing that RA(w−νr) dominates ∇(w−νr). By the defini-

tion of RA, it is clear that |∇′(w−νr)(x)− (∇′(w−νr))Br∩A|2 ≤ |RA(w−νr)(x)− (RA(w−νr))Br∩A|2

for all x ∈ B1 and every r ∈ (0,1). We show a similar estimate for ∂d(w−νr):

The pointwise Gårding inequality (4.2) and (4.11) imply, in particular, that the tensor (A(ed)
T σ1 A(ed))=

(AT
d σ1Ad) ∈ Lin(Rm;Rm) is invertible (use, e.g., Lax-Milgram in Rm). Hence,

∂d(w−νr) =(AT
d σ1Ad)

−1
(

g(w−νr) −∑
j 6=d

(AT
d σ1 A j)∂ j(w−νr)

)
in B1∩A, (4.79)

from where we deduce that

1
rd+(η/2)−δ

ˆ
Br∩A
|∂d(w−νr)− (∂d(w−νr))Br∩A|2 dy≤

c′′

rd+(η/2)−δ

ˆ
Br∩A
|RA(w−νr)− (RA(w−νr))Br∩A|2 dy

for some constant c′′ = c′′(σ1)≥ 1 bounding the right hand side of (4.79) in terms of ∇′w and g(w).

By (4.45) and the estimate above we obtain

1
rd+(η/2)−δ

ˆ
Br∩A
|A w− (A (w))Br∩A|2 dy =

1
rd+(η/2)−δ

ˆ
Br∩A
|A (w−νr)− (A (w−νr))Br∩A|2 dy

≤ C(A )

rd+(η/2)−δ

ˆ
Br∩A
|∇(w−νr)− (∇(w−νr))Br∩A|2 dy

≤ c(d,σ1,σ2,‖A w‖L2(B2)) :=C(A ) · c′ · c′′,

for every r ∈ (0,1). The assertion follows by taking δ = η/4.

Notice that the dependence on ‖A w‖L2(B2) is local since we assumed B4 ⊂ Ω; this means that in

general we may not expect a uniform boundedness of the decay. Similar bounds for A replaced by Ac

can be derived by the same method.

Remark 4.42 (regularity I). In general, for a k-th order operator A of gradient form, the only

feature required to prove the regularity of ∇kw up to the boundary ∂ ∗A by the same methods as for

first-order operators of gradient form is to obtain an analog of Lemma 4.40 (and its Corollary 4.41)

for higher-order operators.
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More specifically, if w̃ ∈WA (B1) is a solution of the equation

A ∗(σH A u) = 0 in B1,

then w̃ satisfies an estimate of the form

1
ρd+2

ˆ
Bρ

|RHw̃− (RHw̃)ρ |2 dy≤ c(d,σ1,σ2)

ˆ
B1

|RHw̃− (RHw̃)1|2 dy for all 0 < ρ ≤ 1, (4.80)

where

RAu :=
(
∇
′u,A(ed)

T (σA A u)
)
, A⊂ B1.

Unfortunately, for 2k-order systems of elliptic equations (with k > 1) it is not clear to us whether

one can prove such decay estimates by standard methods. While a decay estimate for ∇k−1(∇′u) can

be shown by the very same method as the one in the proof of Theorem 4.5, the main problem centers

in proving a decay estimate for the term A(ed)
T (σ A u) ∈W1,2(B1) – cf. (4.65). Technically, the

issue is that one cannot use the equation on half-balls to describe ∂ (0,...,0,k)u in terms of ∇k−1(∇′u).

Remark 4.43 (regularity II - linear plate theory). In the particular case of models in linear plate

theory (A = ∇2,d = 2, and m = 1) it is possible to show a decay estimate as in (4.80) for solutions

w ∈W2,2
0 (B2) of the equation

∇ ·∇(σH∇
2u) = 0.

By Remark 4.13, there exists a field w ∈W 1,2(B2;R2) which turns out to be a solution of the

equation

∇ · (SH E w) = 0,

where S is a positive fourth-order symmetric tensor such that σH(x) = R⊥S−1
H (x)R⊥; furthermore,

R⊥E w = σH∇2u. Since A = ∇2, it is easy to verify that Aα = A(i, j) = ei⊗ e j for i, j ∈ {1,2}, a

simple calculation shows that

gH(u) := A(ed)
T (σH A u) = (σH∇

2u)22 = (R⊥E w)22 = ∂1w1;

and thus, since E is an operator of gradient form of order one, it follows form the proof of Theorem

4.5 that an estimate of the form (4.80) indeed holds for gH(u).
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4 Optimal design problems for elliptic operators

4.7 Glossary of constants

d spatial dimension

M coercivity and bounding constant for the tensors σ1 and σ2 (as quadratic forms)

K an arbitrary compact set in Ω

λK local upper bound constant

Other constants: groups of constants are numbered in non-increasing order, e.g., c∗1 ≥ c∗2 ≥ c∗3. The

following constants play an important role in our calculations:

Constant Dependence Description

θ1 arbitrary in (0,1/2) ratio constant

c1 θ1,d,M universal constant

ε1 θ1,d,M,θ1 smallness of perimeter density

c2 M universal constant

γ d,M universal constant

θ2 d,M universal constant

ε2 d,M smallness of excess energy

c∗1 λK ,d constant in the Height bound Lemma

θ ∗1 arbitrary in (0,1/2) ratio constant

c∗2 θ ∗1 ,d,M universal constant

ε∗2 θ ∗1 ,d,M smallness of flatness excess

c∗3 K,d,M, f flatness excess improvement scaling constant

ε∗3 K,d,M, f smallness of flatness excess
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son, Paris, 1983.

[21] H. Brezis and G. Stampacchia, Sur la régularité de la solution d’inéquations elliptiques, Bull.
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