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Abstract 
Protein homeostasis describes the cellular balance between protein synthesis, function 

and degradation. The stress inducible co-chaperone BAG3 is a key factor in proteostasis 

in particular under mechanical stress. In cooperation with the actin binding protein 

Synaptopodin 2 (SYNPO2), BAG3 is a central element of filamin (an actin crosslinking 

protein) homeostasis in muscle cells. Here BAG3 is involved in the degradation of 

defective filamin via chaperone assisted selective autophagy (CASA) as well as in the 

induction of filamin transcription via the Hippo pathway. SYNPO2 can directly bind to the 

WW-domain of BAG3 and is enabled to recruit complexes mediating the formation of 

autophagosomes via its N-terminal PDZ-domain. 

SYNPO2 belongs to the SYNPO family of actin binding proteins. Four isoforms of 

SYNPO2 exist of which three contain an N-terminal PDZ-domain, whereas all four 

isoforms have a centrally located proline-rich motif (PPXY-motif). SYNPO2 was identified 

to interact with BAG3 via its PPXY-motif in a peptde screen for novel binding partners of 

the BAG3 WW-domain. Another SYNPO family member, Synaptopodin (SYNPO), was 

also identified in this peptide screen. SYNPO has three isoforms of which all contain two 

subsequent PPXY-motifs. Furthermore, SYNPO has been described to interact with the 

PDZ-domain containing protein MAGI-1 (Membrane Associated Guanylate Kinase 

Inverted 1). 

In this work SYNPO could be confirmed as novel BAG3 binding partner. Because 

SYNPO2 is not expressed ubiquitously in all cell types, it should be clarified whether 

SYNPO, together with BAG3, is similarly involved in autophagic protein degradation as 

shown for SYNPO2. In HeLa cells, which do not express SYNPO2, SYNPO turnover was 

monitored in the context of inhibition of the proteasome or autophagy. In contrast to 

SYNPO2, which is rapidly degraded via autophagy upon inhibition of the proteasome or 

mechanical stress, SYNPO protein levels remained stable upon inhibiton of the 

proteasome or autophagy. Furthermore, no association of SYNPO with autophagic 

marker proteins such as LC3 or p62 could be observed in HeLa cells. These findings 

imply that SYNPO functions differently from SYNPO2 under the chosen experimental 

conditions. Challenging the cells with increased cellular stress to enhance the induction 

of BAG3 mediated degradation could potentially have a different effect on SYNPO 

turnover. Thus similar functions of SYNPO and SYNPO2 in protein degradation can not 

be excluded. 
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Immunofluorescent staining of SYNPO in HeLa cells reveals a punctate pattern. These 

SYNPO punctae are largely increased in size upon overexpression of the largest of the 

three SYNPO isoforms: SYNPOc. These SYNPOc punctae often show small pointed 

protrusions and sometimes appear as ring like structures. Furthermore, BAG3 is 

recruited to these SYNPOc punctae in immunofluorescence experiments. For elucidation 

of the molecular functions of SYNPO punctae and the role of SYNPO – BAG3 

interaction, immunofluorescent co-staining experiments with several marker proteins for 

e.g. aggresomes, the cytoskeleton, lysosomes or endosomes were conducted. A co-

localization of SYNPOc punctae with the early endosome marker EEA1 (early endosome 

antigen 1) could be observed pointing to a potential involvement of SYNPO in 

endosomal transport or processing. In addition new binding partners of SYNPO could be 

identified via immunoprecipitation followed by mass spectrometry, one of them being the 

actin associated protein Annexin A2 (ANXA2). These findings further underscore a 

potential involvement of SYNPO in endosomal transport, as ANXA2 has been previously 

described to play a role in endosomal trafficking. The exact mechanism of SYNPO 

involvement in endosomal transport, and how BAG3 might contribute to this process, 

remains to be a topic for further investigation. 

Besides confirming SYNPO as a novel binding partner of BAG3, this work provides 

fundamental information on SYNPO behavior in HeLa cells. The nature of BAG3 – 

SYNPO interaction could be further characterized and new interaction partners of 

SYNPO could be identified. In addition, this work provides first experimental data linking 

SYNPO, possibly together with BAG3, to endosomes, shedding light in potential 

molecular functions of SYNPO in HeLa cells. 
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1. Introduction 
 

1.1 Protein homeostasis 

Specificity and accuracy are essential for every cell and the organism it is part of. 

Depending on the context, cells need to grow, divide, migrate, polarize or even die to 

ensure an organism’s viability. To do so, cells are equipped with an intricate network of 

signaling pathways which allow a cell to constantly adapt to its ever changing 

surroundings. In the transduction of such signals, proteins are the key players. The entity 

of all proteins of a cell is called its proteome and comprises a vast amount of different 

proteins each having (a) specific function(s). Proteins can interact with each other, react 

to changes in and outside of the cell, bind to cellular membranes and much more. 

Importantly, all these interactions are either highly specific or tightly controlled and 

depend on the three dimensional structure and charge of the respective proteins. Minor 

defects in protein conformation can already result in a loss of its function or its 

aggregation with other proteins. Here molecular chaperones come into play. They are a 

group of enzymes, with various cofactors, aiding in protein folding, function in protein 

quality control and ultimately can direct proteins to be degraded whenever the correct 

native protein structure cannot be attained. The constant effort of a cell to maintain the 

balance between protein synthesis, function and degradation is called protein 

homeostasis, or proteostasis (figure 1.1). 
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Figure 1.1: Overview proteostasis. Chaperones assist in folding of newly synthesized 
or unfolded proteins. Under pathophysiological conditions unfolded proteins may 
aggregate. To prevent aggregation, irreversibly damaged or unfolded proteins need to be 
degraded. Degrading chaperone-complexes assist in degradation of client proteins by 
either the proteasomal or the lysosomal / autophagy pathway. 

 

Protein misfolding can have many reasons such as mutations in their genetic code or 

cellular stress e.g. nutrient deprivation, oxidative stress or mechanical force. Misfolding 

leads to exposition of hydrophobic residues within the amino acid sequence of the 

protein, which are hidden inside of the protein when folded in its correct tertiary structure. 

Thus it is essential that protein folding is tightly and thoroughly controlled, as an 

accumulation of misfolded proteins may lead to the formation of potentially toxic 

aggregates. Many severe diseases are associated with protein aggregation such as 

Huntington’s disease or Alzheimer’s disease (reviewed by Bates et al. 2015 and Kumar 

et al. 2015). Aggregate formation however is not necessarily irreversible. Usually 

misfolded proteins are detected by chaperones, which help unfolded proteins to fold 

correctly or mark them for degradation through the attachment of one or many ubiquitin 

moieties, eventually leading to their degradation via the ubiquitin-proteasome pathway. 

For the degradation of larger protein compounds including aggregates or even entire 

cellular organelles, like mitochondria, another pathway exists, namely the autophagic-

lysosomal pathway (Glick et al. 2010). The lysosome provides an acidic pH and an array 
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of proteases, which specifically cleave target proteins into small peptides leading to their 

degradation. 

Three types of autophagy have been defined, being macro-autophagy, micro-autophagy 

and chaperone-mediated autophagy. In micro-autophagy the lysosome directly takes up 

cytosolic components for degradation by invagination of its membrane (Li et al. 2012). In 

chaperone-mediated autophagy the client protein is bound by chaperones and their 

respective cofactors for direct deliverance to the lysosome without preceding formation 

of an autophagosome. These chaperone-client complexes are recognized by lysosomal 

surface receptors and translocated across the lysosomal membrane to be degraded 

inside (Cuervo and Wong 2014). The only type of autophagy that involves an 

intermediate step is macro-autophagy. Here cargo is delivered to the lysosome through a 

double-membrane vesicle, called the autophagosome, which ultimately fuses with a 

lysosome (Feng et al. 2014) (figure 1.2). 

 

 

Figure 1.2: Formation of Autophagosomes. Macro-autophagy involves multiple steps 
ultimately resulting in the autolysosome in which intracellular substrates are degraded. 
First a phagophore begins to form at the phagophore assembly site (PAS). The 
phagophore membrane continuously expands and thereby engulfs its substrates leading 
to a mature autophagosome. The autophagosome then fuses with a lysosome which 
provides acidic hydrolases and proteases to generate an autolysosome capable of 
degrading its content (Figure is modified and taken from Behl (2016)).  

 

Recent findings also show an involvement of chaperones and their cofactors in the 

macro-autophagy pathway, where they initiate or facilitate autophagosome formation. 

This supports the hypothesis that autophagy is a highly selective process, rather than a 

random uptake of cytosolic components (Arndt et al. 2010, Crippa et al. 2010, Carra et 

al. 2008).  
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1.2 HSP70 and the BAG family 
A major, and well characterized, family of chaperones is the HSP70 family (heat shock 

protein 70 kDa). It comprises constitutively expressed HSP70, termed HSC70 and 

stress-inducible forms (Murphy 2013). In general, one can regard HSP70 as a small 

machine driven by hydrolysis of ATP. This reaction is possible due to the N-terminally 

located ATPase domain of HSP70 which is coupled to the C-terminal peptide-binding 

domain, consisting of an α-helical lid and a β-sandwich subdomain. Unfolded proteins 

are recognized via their hydrophobic residues by the β-sandwich. Peptides can stably be 

bound by HSP70 through hydrolysis of ATP to ADP, leading to a conformational change 

in the β-sandwich and closure of the α-helical lid (Rüdiger et al. 1997). The hydrolysis of 

ATP and therefore stable substrate binding is supported by HSP40 (heat shock protein 

40 kDa) which accelerates the reaction. HSP40 belongs to a family of co-chaperones 

which, besides enhancing HSP70 function, can also deliver unfolded protein substrates 

to HSP70 (Fan et al. 2003). Substrate release from HSP70 is catalyzed by nucleotide 

exchange factors exchanging ADP for ATP and thereby promote opening of the α-helical 

lid of HSP70 (reviewed by Hartl et al. 2011, Mayer 2010). 

For the selectivity of chaperone function their cofactors or co-chaperones play an 

important role as they facilitate recognition and release of client proteins, recruitment of 

ubiquitin ligases, substrate delivery to the autophagic machinery and many more 

processes (Caplan 2003, Edkins 2015, Arndt et al. 2010). Among the vast variety of thus 

far identified co-chaperones is the Bcl-2 associated athanogene 3 (BAG3). 

BAG3 is one of six proteins, which constitute the human BAG family. BAG1 was the first 

family member to be identified in 1995 as a Bcl-2 (B-Cell lymphoma 2) binding protein. It 

could be shown that BAG1 has an anti-apoptotic effect, especially in combination with 

Bcl-2. This anti-apoptotic function of BAG1 also gave rise to its name as the term 

“athano” is derived from the Greek word “athanos” which means anti-death (Takayama 

et al. 1995). Another four members of the BAG family (BAG 2 – 5) were identified shortly 

afterwards by a yeast two-hybrid screen with the ATPase domain of HSC/HSP70 as bait. 

The conserved binding domain responsible for the interaction of BAG family members 

with the HSC/HSP70 ATPase domain was termed BAG domain and is shared by all 

members of the BAG family (Takayama et al. 1999) (figure 1.3). Only two years later it 

could be shown, that BAG1 promotes release of substrate from HSP70 by binding to the 

ATPase domain via its BAG domain (Sondermann et al. 2001). Therefore BAG family 

members act as nucleotide exchange factors assisting HSC/HSP70 in substrate release, 

making BAG family members co-chaperones. 
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Figure 1.3: The BAG protein family. Schematic representation of the human family of 
BAG proteins. Each member has a C-terminally located BAG domain and differing 
domains and motifs throughout their N-termini and central sequence. UBL – ubiquitin-like 
domain, WW – WW-domain, IPV – IPV (Ile-Pro-Val) motif, PXXP – proline rich region. 
Data shown in this figure was obtained from the UniProt database 
(http://www.uniprot.org). 

 

 

1.3 The co-chaperone BAG3 
In this work, focus was laid on the BAG family member 3 (BAG3). Two isoforms have 

been reported for BAG3, which can be detected by Western Blot at roughly 80 and 40 

kDa (Rosati et al. 2011, Bruno et al. 2008). BAG3 expression could be shown in various 

tissues under cellular stress conditions, whereas BAG3 is constitutively expressed in 

skeletal muscle, the heart and cancer cells (Homma et al. 2006). Interestingly BAG3 

expression is induced under cellular stress such as oxidative stress, HIV-1 infection or 

mechanical stress (Bonelli et al. 2004, Rosati et al. 2007 and 2009, Ulbricht et al. 2015). 

Like all BAG family members also BAG3 can interact with Bcl-2 via its BAG domain and 

acts as an anti-apoptotic protein (Lee et al. 1999). Furthermore BAG3 contains various 

other motifs and domains for protein-protein interactions such as an N-terminally located 

WW-domain, two IPV (Ile-Pro-Val) motifs and a centrally located proline rich (PXXP) 

repeat region, completed by a C-terminal LEAD motif for Caspase 9 cleavage (Merabova 

et al. 2015, Fuchs et al. 2010, Chen et al. 2013, Virador et al. 2009) (figure 1.4). Being 

equipped with these diverse domains and motifs, BAG3 shows high potential to be 

involved in various cellular pathways. This potential has been proven true by linkage of 

BAG3 to biological processes ranging from apoptosis, cytoskeleton arrangement, cell 
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adhesion and migration, to developmental processes, protein folding and autophagy 

(Lee et al. 1999, Iwasaki et al. 2007 and 2010, Shi et al. 2016, Choi et al. 2006, De 

Marco et al. 2011, Behl 2016, Arndt et al. 2010, Gamerdinger et al. 2011).  

 

 

Figure 1.4: The human co-chaperone BAG3. BAG3 comprises various domains and 
motifs for protein-protein interaction being an N-terminal WW-domain with the capability 
of interaction with proteins like SYNPO2 or AMOTL1. Two IPV motifs for interaction with 
the small heat shock protein HSPB8, two RSQS motifs in close proximity for interaction 
with 14-3-3 (here indicated by only one light green line), a proline rich region which 
mediates binding to the motor protein dynein and a C-terminal BAG-domain for 
interaction with HSP70/HSC70 and Bcl-2. Additional protein binding partners of BAG3 
are given below each domain / motif. Data obtained from the UniProt database 
(http://www.uniprot.org). 

 

 

1.4 BAG3 in cancer 
Many studies describe BAG3 to play a role in various types of cancer. In non-small cell 

lung cancer BAG3 is described to promote resistance to apoptosis (Zhang et al. 2012). 

This anti-apoptotic activity of BAG3 in tumors has also been reported for other types of 

tumors like thyroid carcinomas (Chiappetta et al. 2006), neuroblastoma cells (Gentilella 

et al. 2008), colon cancer (Aaron et al. 2009), kidney cancer (Wang et al. 2009) and 

pancreatic cancer (Liao et al. 2001). In hepatocellular carcinomas increased BAG3 levels 

can inhibit cellular proliferation via an interaction with glucose-6-phosphate 

dehydrogenase, a pentose phosphate pathway enzyme (Kong et al. 2016). Through the 

function as a co-chaperone of HSP70, BAG3 is involved in many additional cancer cell 

signaling pathways. For example the transcription factor nuclear factor κB (NF-κB) 

signaling, an essential pathway for cellular survival, or the cell cycle regulator p21 

(Colvin et al. 2014). The many roles of BAG3 in tumor development and progression 

make it a potential target for cancer therapy. A small molecule inhibitor, YM-1, which 

disrupts the HSP70-BAG3 complex has been identified and successfully used in mice to 
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suppress tumor growth (Colvin et al. 2014). Furthermore JG-98, an allosteric inhibitor of 

the HSP70-BAG3 protein interaction, was tested in xenograft models revealing elevated 

p21 levels and limited tumor growth (Li et al. 2015). 

1.5 BAG3 knockout mice and myopathies 
In the model organism Drosophila melanogaster only one BAG family protein is 

expressed called Starvin. Homozygous mutant alleles of Starvin lead to an early death of 

Drosophila larvae during the first larval instar. This is due to their inability to take up food 

resulting in the lack of body size increase and death by starvation (Coulson et al. 2005, 

Arndt et al. 2010). Flies with a heterozygous knockout for Starvin reach adulthood, but 

develop a progressive myopathy (Arndt et al. 2010). This could also be shown in BAG3 

deficient homozygous knockout mice which develop normally, but postnatally develop a 

severe myopathy and die by 4 weeks of age (Homma et al. 2006). Together this 

indicates that BAG3 / Starvin is not essential for muscle development during 

embryogenesis but crucial for postnatal skeletal muscle homeostasis (Coulson et al. 

2005, Arndt et al. 2010). BAG3 knockout mice generated with the cre-LoxP system by 

Youn et al. (2008) also showed growth retardation and death by three weeks of age. 

Furthermore, it was shown that the mice showed hypoglycemia, a reduction of white 

blood cells, splenocytes and thymocytes and a reduction of weight of the thymus and 

spleen (Youn et al. 2008).  

In humans several mutations of the BAG3 gene are described in myopathies 

predominantly affecting the heart (dilated cardiomyopathy) eventually resulting in heart 

failure (Norton et al. 2011, Villard et al. 2011, Franaszczyk et al. 2014). Patients with a 

point mutation in the BAG3 gene which leads to an amino acid substitution of proline 209 

to leucine (BAGP209L) show a combination of cardiomyopathy and myofibrillar myopathy 

with very early onset in childhood. On cellular level BAGP209L patients show disintegration 

of Z-discs and myofibrils with additional aggregation of BAG3 and other Z-disc proteins 

like desmin or filamin (Kostera-Pruszczyk et al. 2015, Selcen et al. 2009). 

Together this leads to the conclusion that BAG3 is important for postnatal growth and 

survival, with a considerable effect on food uptake and muscle function. 
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1.6 BAG3 in protein homeostasis 
Through its interaction with HSP70, BAG3 is directly involved in protein homeostasis. 

Like all BAG family members it acts as a nucleotide exchange factor aiding in substrate 

release from HSP70 (Sondermann et al. 2001, Arndt et al. 2010). In addition to this, 

several studies show an involvement of BAG3 in selective macro-autophagy pathways, 

where it assists substrate selection. BAG3 directly links HSP70 to these selective macro-

autophagy pathways and has also been shown to be able to recruit autophagic adaptor 

proteins to sites of phagophore assembly (Ulbricht et al. 2013, Kathage et al. 2017) A 

peptide screen for BAG3 interaction partners which specifically bind to its WW-domain 

resulted in the identification of Synaptopodin 2 (SYNPO2) (PhD thesis Ulbricht 2013). It 

could be shown, that interaction of BAG3 with SYNPO2 is important for autophagosome 

formation during tension-induced chaperone assisted selective autophagy (CASA) in 

muscle cells (Arndt et al. 2010, Ulbricht et al. 2013 and 2015). Here, unfolded / damaged 

filamin, a cytoskeletal protein responsible for cross-linking of actin filaments in the 

cytoskeleton and at the Z-disk of striated muscle, is specifically recognized by a complex 

consisting of HSP70, HSPB8 and BAG3 (Nakamura et al. 2011, Ulbricht et al. 2013). 

HSP70 recruits the ubiquitin ligase CHIP which, together with the ubiquitin conjugating 

enzyme 4/5, mediates poly-ubiquitination of filamin and thereby labels it for degradation 

via the autophagic pathway (Arndt et al. 2010, Murata et al. 2001). With the help of its N-

terminal PDZ-domain, SYNPO2 is able to interact with the membrane tethering proteins 

VPS18 and VPS16 (Vacuole Protein Sorting 18 and 16), key components of membrane 

tethering complexes responsible for recognition and interaction of two independent 

membranes (Chia and Gleeson, 2014). Furthermore the SNARE-protein (soluble NSF 

attachment receptors) Syntaxin 7, a catalysator of membrane fusion (Mullock et al. 2000) 

was identified to be in a complex with SYNPO2. Interaction of BAG3 with SYNPO2 

therefore enables recruitment of a complex mediating the formation of autophagosomes 

to the CASA machinery (Ulbricht et al. 2013).  

The specific recognition and degradation of filamin is important since filamin functions as 

a cross-linking agent of actin and is under extra- and intracellular strain. This strain 

causes a partial, reversible unfolding of filamin. However, unfolded filamin is prone to 

aggregation which leads to loss of its ability to refold to its native conformation. 

Cytoskeletal maintenance therefore requires a constant degradation and replacement of 

irreversibly unfolded filamin which involves BAG3 as described above. Intriguingly, BAG3 

does not only mediate the specific disposal of damaged filamin, but also is involved in 

stimulating filamin transcription. Via its WW-domain BAG3 can interact with LATS1 

(Large Tumor Suppressor Kinase 1) and AMOTL1 (Angiomotin Like 1) (Ulbricht et al. 
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2013), which are inhibitors of the transcription factors YAP (Yes Associated Protein 1) 

and TAZ (WW Domain Containing Transcription Regulator 1 (WWTR1)) of the Hippo 

signaling pathway (reviewed by Salah and Aqeilan, 2011 and Wang et al. 2017). By 

BAG3 binding to LATS1 and AMOTL1 respectively, YAP and TAZ are released and can 

translocate into the nucleus to initiate, next to many other target genes, filamin 

transcription (Dupont et al. 2011, Ulbricht et al. 2013) (figure 1.5). 

 

Figure1.5: BAG3 in chaperone assisted selective autophagy (CASA) and filamin 
transcription. Overview of specific filamin degradation in muscle cells mediated by 
BAG3 in complex with HSC70, HSPB8, CHIP and SYNPO2. Unfolded filamin is 
recognized by the CASA machinery and delivered to the autophagosome via BAG3 – 
SYNPO2 and ubiquitin – p62 interaction. On the left side involvement of BAG3 in 
YAP/TAZ activation is depicted. BAG3 binds to the YAP/TAZ inhibitors LATS1/2 and 
AMOTL1/2 via its WW-domain and thereby releases YAP/TAZ for translocation to the 
nucleus where they act as transcription factors for filamin and other proteins. Figure was 
modified and taken from Ulbricht et al. 2013. 

 

It has been long known that under cellular stress, like nutrient deprivation, mechanical 

strain or oxidative stress, autophagy is employed for recycling of nutrients and other 
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cellular components to ensure survival (reviewed by Bento et al. 2016, Navarro-Yepes et 

al. 2014, Ulbricht et al. 2013). Interestingly, BAG3 expression is up-regulated under 

acute cellular stress, in aged cells or by the inhibition of the proteasome (Gamerdinger et 

al. 2009). Under physiological conditions BAG-family member dependent degradation of 

proteins is mediated by BAG1 and HSP70 which guide client proteins to the ubiquitin-

proteasomal-pathway (Lüders et al. 2000). Pathophysiological conditions however give 

rise to an increased cellular level of BAG3 protein, thereby turning on BAG3-mediated 

selective autophagy. This mechanism also referred to as the “BAG1 – BAG3 Switch” 

allows a cell to adapt to and react to cellular stress (Gamerdinger et al. 2009). BAG3 has 

been reported to sequester ubiquitinated proteasomal clients to cytoplasmic punctae 

upon proteasome inhibition. These punctae can be co-labeled for LC3, a marker for 

autophagosomes (Minoia et al. 2014). Furthermore BAG3 is actively involved in the 

formation of perinuclear compartments called aggresomes (Gamerdinger et al. 2011). 

Aggresomes can be referred to as a kind of collecting point for proteins marked for 

degradation by autophagy (reviewed by Kopito, 2000). Aggresome targeting of client 

proteins is achieved by an interaction of BAG3 with the microtubule-motor protein 

dynein, thereby selectively directing HSP70 bound substrates to the motor and 

subsequently to the aggresome (Gamerdinger et al. 2011). An example for this BAG3 

mediated transport is mutated SOD1 (Superoxide Dismutase 1), a protein linked to 

amyotrophic-lateral-sklerosis (ALS) and an established HSP70 substrate (Wang et al 

2009). SOD1 is specifically directed to aggresomes through BAG3 mediated coupling of 

SOD1 to the dynein motor (Gamerdinger et al. 2011). In support of these findings 

isoforms of 14-3-3 protein, which have been previously described to play a role in 

aggresome formation (Waelter et al. 2001, Omi et al. 2008, Wang et al. 2009), were 

shown to act as adaptor for dynein – BAG3 interaction and to recruit motor cargo for 

transport to the aggresome (Xu et al. 2013). 

 

 

1.7 The actin cytoskeleton 
Also important for cellular integrity is the cytoskeleton. It generally consists of three main 

components which are actin-filaments, microtubules and intermediate filaments. 

Together they are responsible for many essential functions of the cell such as spatial 

organization of cellular content, connecting the cell to the extracellular matrix and 

generation of force to enable cellular movement and changes of shape (reviewed by 
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Fletcher and Mullis, 2010). Next to these fundamental processes, the actin cytoskeleton 

has been described in many important cellular functions such as endocytosis (Morel et 

al. 2009), autophagy (Mi et al. 2015, reviewed by Coutts and La Thangue, 2016) and 

intracellular transport (reviewed by Khaitlina, 2014). Therefore, it is not surprising that 

actin is a highly conserved protein and one of the most abundantly expressed proteins in 

eukaryotic cells (reviewed by Dominguez and Holmes, 2011). Via dynamic remodeling 

and the interplay of the actin cytoskeleton with an ever growing number of actin-binding 

proteins (ABPs) the diverse and highly complex cellular activities mentioned above can 

be accomplished. Actin exists in two forms namely the monomeric / globular G-actin and 

the filamentous F-actin. Being an ATPase, actin can switch between its two forms in an 

ATP dependent manner, tightly regulated by ABPs. As indicated by their respective 

names, G-actin is monomeric and not incorporated into actin filaments, whereas F-actin 

is the major component of actin filaments. Generally actin filaments are asymmetric with 

a barbed end (or + end), which is the growing site of an actin filament and the pointed 

end (or – end) of the filament at which de-polymerization occurs. Continuous 

polymerization and de-polymerization is referred to as actin treadmiling (reviewed by 

Carlier and Shekhar, 2017). In addition to treadmilling, generation and maintenance of 

an intact and dynamic actin cytoskeleton requires constant nucleation of new filaments, 

branching, crosslinking, severing and capping, mediated with the help of ABPs. Some of 

the most important actin regulating ABPs are the Rho family GTPases Rho, Rac and 

Cdc42. They control the assembly of stress fibers (Rho), lamellipodia (Rac) and filopodia 

(Cdc42), in response to extra – and intracellular signals (Asanuma et al. 2006, Krugman 

et al. 2001, reviewed by Raftopoulou and Hall, 2004). Lamellipodia consist of highly 

branched actin filaments at the leading edge of a migrating cell. Via actin treadmilling, 

force is generated to move the cell forward. Filopodia are cellular protrusions reaching 

beyond the leading edge, sensing the environment whereas stress fibers span the cell 

and link it to the extracellular matrix via focal adhesions and adherens junctions 

(reviewed by Le Clainche and Carlier, 2008). It becomes apparent, that dynamic actin 

cytoskeleton rearrangement is essential for cellular function. But how is actin 

polymerization initiated? Actin filament polymerization occurs in three phases: 

nucleation, elongation and steady state. Formins mediate de novo nucleation of 

unbranched actin filaments such as stress fibers and filopodia by promoting the 

interaction between two actin monomers (reviewed by Lee and Dominguez, 2010). For 

nucleation of actin monomers from existing filaments the Arp2/3 (actin related proteins 

2/3) complex comes into play as an inductor of branched actin filaments like lamellipodia 

(Wu et al. 2012, Rogers et al. 2003, Mejillano et al. 2004). Nucleation is followed by 

elongation of the actin filament by incorporation of G-actin into the filament via ATP 
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hydrolysis. This is facilitated by ABPs such as profilin which can bind directly to the FH1 

domain of formins (Romero et al. 2004). The steady state of actin filament polymerization 

describes the state of actin treadmilling described above in which new G-actin is 

integrated at the barbed end and F-actin dissociates from the pointed end of the actin 

filament. In their review, Fletcher and Mullins (2010) nicely compare cytoskeletal building 

blocks to the popular toy LEGO, as both consist of multiple copies of key pieces which 

can be put together to form larger structures which can be disassembled and 

reassembled for specific function according to cellular needs. 

A role of BAG3 in cellular migration and adhesion could be established as homozygous 

BAG3 deficient mouse embryonic fibroblasts show delayed filopodia and focal adhesion 

formation and reduced motility (Iwasaki et al. 2007). In muscle cells BAG3 has been 

shown to interact with and stabilize the actin capping protein CapZ in order to maintain 

myofibrillar integrity (Hishiya et al. 2010). In striated muscles the BAG3 interacting 

protein SYNPO2 localizes together with BAG3 at Z-disks which are actin anchoring 

structures. Through CASA, BAG3 and SYNPO2 are involved in Z-disk maintenance via 

filamin degradation (as described above) (Ulbricht et al. 2013). A common feature of the 

SYNPO family proteins is their ability to bind to actin, this includes the family member 

and novel BAG3 interactor Synaptopodin (SYNPO), which will be discussed in the 

following chapter. 

 

 

1.8 The actin-binding protein Synaptopodin (SYNPO) 
SYNPO2 which was, as mentioned above, identified to bind to BAG3 in CASA, belongs 

to the SYNPO family of proteins defined by sequence homology and their ability to bind 

to actin (Chalovich abd Schroeter 2010). The peptide screen for interaction partners of 

the BAG3 WW-domain which lead to the identification of SYNPO2 as binding partner of 

BAG3 also detected SYNPO as a possible BAG3 WW-domain interactor (PhD thesis 

Ulbricht 2013, unpublished data). The SYNPO family comprises at least four members 

being Synaptopodin (SYNPO), SYNPO2 (also termed Myopodin), SYNPO2-like protein 

and Fesselin (Weins et al. 2001, Schroeter et al. 2008). SYNPO, the founding member 

and eponym of the SYNPO family, was first identified in 1991 as a protein of 44 kDa in 

size, which is expressed in podocytes of rat kidney glomeruli (Mundel et al. 1991). Later 

on it was shown that the originally identified 44 kDa SYNPO is a proteolytic fragment of 

full length SYNPO, which can be detected in Western Blot experiments at 100 kDa (rat 
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forebrain) or 110 kDa (rat kidney) (Mundel et al. 1997). Furthermore SYNPO was shown 

to localize in punctae, which co-localize with the actin cytoskeleton in 

immunofluorescence experiments, and was also detected in focal contacts (Mundel et al. 

1997). SYNPO is involved in the bundling and elongation of actin filaments by interaction 

with the actin crosslinker α-actinin and is therefore a dual actin / α-actinin binding protein 

(Kremerskothen et al. 2005). Knockout of SYNPO in murine podocytes results in a 

significant delay in reformation of actin stress fibers after treatment with the actin 

depolymerizing agent cytochalasin D (Asanuma et al. 2005). Actin stress fibers are 

specific for non-muscle cells and are composed of actin and non-muscle myosin II. In 

addition they interact with various crosslinkers such as α-actinin-4. They are important 

for cell adhesion, morphogenesis, migration and mechanotransduction as they can 

produce force by movement of myosin II motor domains along the actin filaments (figure 

1.6) (reviewed by Tojkander et al. 2012). 

 

Figure 1.6: Schematic representation of stress fibers and their orientation and 
components. Four types of stress fibers are distinguished from each other by their 
cellular localization, orientation, composition and association with focal adhesions. The 
most important components of actin stress fibers are α-actinin and non-muscle myosin II 
as indicated in red and blue. Figure is taken from Tojkander et al. (2012). 

 

Besides other functions mentioned above, stress fibers are associated with wound 

healing. It could be shown that SYNPO expression is up-regulated under laminar shear 

stress in endothelial cells and that SYNPO plays a role in endothelial wound healing. It is 

hypothesized that SYNPO participates in wound healing because of its ability to remodel 
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the actin cytoskeleton, which promotes cellular migration and wound closure (Mun et al. 

2014). The effect of SYNPO on cellular migration has also been described by Asanuma 

et al. (2006), who could show that podocyte migration is impaired upon gene disruption 

of SYNPO. Furthermore, they were able to link SYNPO to RhoA in stress fiber formation. 

RhoA belongs to the Rho family of small GTPases and promotes stress fiber formation in 

vivo (reviewed by Ridley, 1997). The role of SYNPO in stress fiber formation is to block 

(by competitive binding) Smurf-1-mediated ubiquitylation of RhoA and thereby preventing 

its degradation via the proteasome (Asanuma et al. 2006). This shows that SYNPO is 

not only a component of stress fibers but also a modulator of their formation. In 

podocytes, SYNPO has been shown to interact with 14-3-3β and 14-3-3η, chaperone-

like phospho-serine / thereonine-binding proteins, in a phosphorylation dependent 

manner. 14-3-3β interaction protects SYNPO from Cathepsin-L mediated cleavage and 

thereby preserves SYNPO induced stress fiber formation (Faul et al. 2008). 

Homozygous knockout mice for SYNPO have been reported to lack spine apparatuses in 

excitatory neurons and show deficits in spatial learning (Deller et al. 2003). Together 

these data indicate various roles of SYNPO in cytoskeletal integrity and neuronal 

function and give first hints on an involvement of SYNPO in mechanotransduction. 

 

 

1.9 Aim of the work 
The precise regulation of chaperone assisted selective autophagy is crucial for protein 

homeostasis and muscular maintenance. Together with SYNPO2, the co-chaperone 

BAG3 is indispensable for the degradation and synthesis of filamin under mechanical 

strain (Ulbricht et al. 2013).  

This work was conducted in order to identify and characterize further components 

interacting with BAG3 and their potential involvement in CASA. Here the actin binding 

protein SYNPO, identified in the same peptide screen which originally identified SYNPO2 

as BAG3 binding partner, was chosen as a prominent candidate protein for BAG3 

interaction and CASA function. With its bundling and elongation activity of actin 

filaments, its ability to bind to α-actinin, the PDZ-domain containing protein MAGI-1 and 

its association with actin stress fiber formation (Kreemerskothen et al. 2005, Yanagida-

Asanuma et al. 2007, Faul et al. 2008), SYNPO displays characteristics similar to those 

described for SYNPO2 in muscle cells (Linnemann et al. 2010, Ulbricht et al. 2013). It 
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was of interest whether SYNPO carries out similar functions as SYNPO2 in cells which 

do not express SYNPO2. 

In addition, SYNPO in general was subject for further molecular characterization, as 

there is not much known about SYNPO beyond its roles in podocytes and in neuronal 

context. 
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2. Materials and Methods 

 

2.1 Material 
 

2.1.1 Appliances 

Appliance      Supplier 
Autoclave      Tuttnauer Systec 

Biofuge fresco      Heraeus 

Biofuge pico      Heraeus 

Blot-system (mighty small transfer)   Amersham 

Cooling centrifuge 5415R    Eppendorf 

Cooling centrifuge 5810R    Eppendorf 

Developing machine CURIX 60   AGFA 

Electrophoresis Power supply   Amersham 

Electrophoresis-system HE33   Hoefer 

Extraction system     HLC Biotech 

Freezer (-80°C)     Forma Scientific 
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Freezer (-20°C)     Liebherr / Siemens 

Fridge       Siemens 

Gel-documentation-system Gel Doc   Biorad 

Heating block      Eppendorf 

Ice machine MF22     Scotsman 

Incubator      Heraeus / Binder 

Laminar flow hood     Nalge Nunc Industries 

Light microscope ID03    Zeiss 

LSM Axiovert 100M     Zeiss 

Magnetic stirrer MR2002    Heildolph 

Mastercycler      Eppendorf 

Mastercycler epgradient S    Eppendorf 

Microwave      Bosch 

Milli-Q-Plus Water purifier    Millipore 

pH-meter      Mettler Toledo 

Photometer      Eppendorf 

Pipettes      Eppendorf 

qPCR-Cycler CFX96 Touch    Biorad 

Rotating wheel     Renner 

SDS-Page-system (mighty small II)   Amersham 

Rocking platform     Stuart 

Scale       KernKB 

Special accuracy scale SI-234   Denver Instruments 

Tabletop centrifuge 400R    Heraeus 

Thermo-block      HLC Biotech QBT 

Thermocycler T3000     Biometra 

Thermo-shaker     Medline Scientific 

Ultrasonicator UP100H    Hielscher Ultrasound Technology 

Vortex-Genie 2     Scientific Industries 

Waterbath A100     Lauda 
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2.1.2 Consumables 

Material      Supplier 
Cell culture dishes     Sarstedt 

Common laboratory demand    Faust, Meckenheim 

Fuji X-Ray Film Super RX    Fuji 

Reaction tubes     Eppendorf 

Plasticware      Roth 

 

2.1.3 Kits, enzymes and standards 

Kit       Supplier 
CalPhos-Transfection Kit    Clonetech 

ECL Blot detection      Thermo Fisher Scientific 

iScript cDNA Synthesis Kit    Biorad 

JetPRIME Transfection Kit    Peqlab 

NucleoBond® Xtra Maxi    Macherey-Nagel 

NucleoSpin® Gel and PCR Clean-up  Macherey-Nagel 

NucleoSpin® Plasmid    Macherey-Nagel 

SsoFastTM EvaGreen® Supermix   Biorad 

 

Standard      Supplier 
Gene Ruler DNA Ladder Mix 1 kb   Fermentas 

Prestained Protein Standard Plus   Biorad 

 

Enzyme      Supplier 
Alkaline Phosphatase     Thermo Scientific 

Complete Protease-Inhibitor Cocktail  Roche 

KOD-Polymerase      Millipore 

Lambda Protein Phosphatase   New England Biolabs 

PCR nucleotide mix     Roche 

Restrictionendonucleases    Fermentas 
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RNase A      Segentic 

T4-DNA-Ligase     Thermo Scientific 

 

2.1.4 Chemicals 

Chemical      Supplier 
2-Propanol (Isopropanol)    Roth 

Acetic acid      Roth 

Acrylamide (30%)/bis-Acrylamide   Roth 

Agar       Roth 

Agarose      Roth 

Ampicillin      Roth 

ATP (adenosine triphosphate)   Sigma Aldrich 

Bacto-Yeast extract     Roth 

Bacto-Trypton      Roth 

Bafilomycin A1     LC Labs 

CaCl2 (Calciumchloride)    Roth 

Coomassie Brilliant Blue R250   Sigma Aldrich 

DMSO (Dimethylsulfoxide)    Roth 

DTT (Dithiothreitol)     Sigma Aldrich 

EDTA (Ethylenediaminetetraacetate)  Roth 

Ethanol (absolute)     Roth 

Glucose      Roth 

Glutamine      Life Technology 

Glycerine      Roth 

Glycine      Roth 

HCl        Roth 

HEPES      Roth 

Imidazole      Roth 

K2HPO4      Roth 

Kanamycine      Roth 

KCl       Roth 
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KH2PO4      Roth 

KOH       Roth 

Mercaptoethanole     Roth 

Methanol      Roth 

MG132      Peptanova 

MgCl2       Roth 

MgSO4       Roth 

MOPS       Roth 

MOWIOL®      Calbiochem 

Na2HPO4      Roth 

NaCl       Roth 

NaOH       Roth 

Nonidet p-40      Sigma Aldrich 

Penicillin      Life Technology 

Ponceau S      Roth 

Protein-G sepharose     GE Healthcare 

Puromycine      Calbiochem 

SDS       Roth 

Streptomycin      Life Technology 

TCA       Roth 

TEMED      Roth 

Tris       Roth 

Triton X100      Roth 

Tween-20      Sigma Aldrich 

 

2.1.5 Antibodies 

2.1.5.1 Primary Antibodies 

Antigen    Species   Supplier 
β-actin     mouse    Abcam 

BAG3     rabbit    Proteintech 

EEA1     goat    Santa Cruz 
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FLAG (M2)    mouse    Sigma Aldrich 

γ-Tubulin    goat    Santa Cruz 

LAMP1    mouse    Abcam 

S6-P     rabbit    New England Biolabs 

SYNPO    rabbit    Synaptic Systems 

SYNPO2    rabbit    Prof. Fürst / Uni Bonn 

Ubiquitin (FK2)   mouse    Biomol 

 

2.1.5.2 Secondary Antibodies 

Antigen    Species   Supplier 

Clean Blot    diverse   Thermo Scientific 

Goat IgG + PO   rabbit    Sigma Aldrich 

Goat IgG Alexa Fluor 488  donkey   Abcam 

Mouse IgG    /    Santa Cruz 

Mouse IgG Alexa Fluor 488 nm goat    Invitrogen 

Mouse IgG + PO   goat    Sigma Aldrich 

Rabbit IgG    /    Santa Cruz 

Rabbit IgG Alexa Fluor 488 nm goat    Invitrogen 

Rabbit IgG Alexa Fluor 546 nm goat    Invitrogen 

Rabbit IgG Alexa Fluor 633 nm goat    Invitrogen 

Rabbit IgG + PO   goat    Sigma Aldrich 

True Blot    rat    Rockland 

 

2.1.6 Plasmids 

Plasmid     Comment 
pcDNA 3.1(+)     Expression of proteins in mammalian cells 
w/o t      tag. Under control of a viral promoter. 

pcDNA-BAG3     AG Höhfeld 

pCMV-Tag2B-empty Expression of proteins in mammalian cells 
with N-terminal FLAG-tag. Under control of a 
CMV-promoter (Invitrogen). 
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pCMV-Tag2b-ANXA2    Cloned from human cDNA transcript 

pCMV-Tag2B-BAG3    AG Höhfeld 

pCMV-Tag2B-BAG3-WAWA   AG Höhfeld 

pCMV-Tag2b-SYNPOc   Cloned from human cDNA transcript 

pCMV-Tag2b-SYNPOb   Cloned from human cDNA transcript 

pCMV-Tag2b-SYNPOc-PAAY1st Cloned from pCMV-Tag2b-SYNPOc with 
specific primers containing the desired 
mutations. 

pCMV-Tag2b-SYNPOc-PAAY2nd Cloned from pCMV-Tag2b-SYNPOc with 
specific primers containing the desired 
mutations. 

pCMV-Tag2b-SYNPOc-PPXYdouble Cloned from pCMV-Tag2b-SYNPOc with 
specific primers containing the desired 
mutations. 

pCMV-Tag2b-Vim    Cloned from human cDNA transcript 

pTraffic-LC3      AG Höhfeld 

pTraffic-p62     AG Höhfeld 

pEGFP-BAG3     AG Höhfeld 

pEYFP-Vim     AG Höhfeld 

2.1.7 Oligonucleotides 

Oligonucleotide Sequence (5’à3’) 
Annexin-FW-BamHI  CGCTTTGGATCCATGTCTACTGTTCACGAAATCC 

Annexin2-Rev-XhoI  CGCTTTCTCGAGTCAGTCATCTCCACCACACAG 

qPCR B2M FW  GTGATCTTTCTGGTGCTTGTC 

qPCR B2M RV  AAGTTGGGCTTCCCATTCTC 

qPCR GAPDH FW  GAGAAACCTGCCAAGTATGATGAC 

qPCR GAPDH RV  ATCGAAGGTGGAAGAGTGGG 

SY-Long-FW-HindIII  GCGTTTAAGCTTATGCTGGGTCCTCACCTCCCAC 

SY-Long-Rev-XhoI  GCAAGCCTCGAGTTACTTGAAGCAGAAGGAAGGCTTC 

SY-Long-qPCR-Hu-FW ACACCGCAGCTGCCCAAAGC 

SY-Long-qPCR-Hu-RV TGAAGAGCTGGACGCCACGG 

SYNPO-qPCR-Hu-FW CGTGGAGAAGCCCAAGGTGACC 

SYNPO-qPCR-Hu-RV GCTCCCTTCCCAGAGGCCTC 
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SYNPO-PT610AA-FW ACTTCACTGCACCCGCCGCCTACACTGAGACC 

SYNPO-PT610AA-RV GGTCTCAGTGTAGGCGGCGGGTGCAGTGAAGT 

SYNPO-PS629AA-FW CTGGGTGAGGTCTCCTGCCGCATATTCTGTCCTGTA 

SYNPO-PS629AA-RV TACAGGACAGAATATGCGGCAGGAGACCTCACCCAG 

Vimentin-FW-BamHI  GCGTTTGGATCCATGTCCACCAGGTCCGTGTC 

Vimentin-Rev-HindIII  GCAAGCAAGCTTTTATTCAAGGTCATCGTGATGC 

 

2.1.8 siRNA 

Gene   siRNA   Species  Supplier 

BAG3   Hs_BAG3_5   human   Qiagen 

BAG3   Hs_BAG3_6   human   Qiagen 

SYNPO  GS11346 for SYNPO  human   Qiagen 

 

2.1.9 Bacterial strains, mammalian cell lines 

Strain / Cell line  Comment 
E. Coli TG1   Stratagene 

A7r5    embryonal smooth muscle cells from aorta (rattus 
norvegicus) 

Hek-293   embryonic kidney cells (homo sapiens) 

HeLa    Cervical cancer cells (homo sapiens) 

MEF    Embryonic fibroblasts (mus musculus) 

SH-SY5Y   Neuroblasts from neural tissue (homo sapiens) 
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2.2 Methods 
 

2.2.1 Handling of the prokaryote E. Coli 
 

2.2.1.1 Cultivation 

LB.Medium (with Amp/Kan):  1 % Bacto-Trypton 

      0,5 Bacto-Yeast extract 

      0,5 % Nacl 

      pH7,5  à autoclave 

(1:10000 Amp [200 mg/ml] / Kan [50 mg/ml]) 

LB-Agar (mit Amp/Kan):  1 % Bacto-Trypton 

      0,5 Bacto-Yeast extract 

      0,5 % NaCl 

      1,5 % Bacro-Agar 

      pH7,5  à autoclave 

(1:10000 Amp [200 mg/ml] / Kan [50 mg/ml]) 

 

In this work Escherichia Coli (E. coli) was used as an amplification system for cloned 

plasmids. For this purpose E. coli were transformed by heat shock and incubated 

overnight on LB-agar plates containing either ampicillin or kanamycin for positive 

selection of bacteria carrying the desired plasmid. This was followed by overnight 

incubation at 37°C of a positively transformed single E. coli colony in 3 to 5 mL of 

antibiotic containing LB medium at 200 rpm. The obtained cells were centrifuged and 

further processed in plasmid isolation. 

 

2.2.1.2 Competent cells 

For successful transformation of bacteria via heat shock they need to be “made 

competent” for receiving DNA. This was done by inoculating LB-medium with the E. coli 

strain TG1 and over night incubation at 37°C and 130 rpm. 1 mL of the overnight culture 
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was used for inoculation of 100 mL LB-medium containing ampicillin. This was incubated 

at 37°C and 130 rpm until an optical denisity of 0.5 (measured at 600 nm (OD600)) was 

reached. The bacteria were then centrifuged for 10 min at 4000 rpm and 4°C after which 

the supernatant was discarded. The remaining pellet was re-suspended in ice cold 80 

mM CaCl2-solution which induces the chemical competence. After that the bacteria were 

incubated for 30 min on ice, followed by centrifugation for 10 min at 4°C and 4000 rpm. 

The supernatant was discarded again and the pellet re-suspended in 100 mM CaCl2-

solution containing 20% glycerin. For storage aliquots of 100 µL were frozen at -80°C. 

 

2.2.1.3 Transformation of E. coli via heat shock 

Competent bacteria (see above) are capable of taking up plasmids from their 

environment. For this 12 µL of a ligation or 0.5 µg purified plasmid is pipetted on 100 µL 

competent TG1 cells and incubated for 30 min on ice. This was followed by a 50 sec 

heat shock at 42°C with subsequent addition of 1 mL LB-medium. The transformed 

bacteria were incubated for 1 h at 37°C and roughly 350 rpm. For positive selection the 

bacterial suspension was plated on LB-agar plates containing either ampicillin or 

kanamycin and incubated over night at 37°C. Successfully transformed cells were now 

able to create colonies by cell division. These plasmid containing colonies were then 

further amplified with subsequent purification of the plasmid DNA. 

 

2.2.2 Handling of eukaryotic cell lines 

 

2.2.2.1 Cultivation 

 Cell Culture Medium A7r5:  Dulbecco’s Modified Eagle Medium 

 10 % FCS 

100 IU/mL Penicillin 

100 IU/mL Streptomycin 

4 mM L-Glutamine 

 

 Cell Culture Medium Hek-293: Dulbecco’s Modified Eagle Medium 

10 % FCS 
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100 IU/mL Penicillin 

100 IU/mL Streptomycin 

2 mM L-Glutamine 

Pyruvate 

Non-essential amino acids 

 

 Cell Culture Medium HeLa:  Dulbecco’s Modified Eagle Medium 

10 % FCS 

100 IU/mL Penicillin 

100 IU/mL Streptomycin 

 

 Cell Culture Medium MEF:  Dulbecco’s Modified Eagle Medium 

10 % FCS 

100 IU/mL Penicillin 

100 IU/mL Streptomycin 

 

 Cell Culture Medium SH-SY5Y: Dulbecco’s Modified Eagle Medium 

15 % FCS 

100 IU/mL Penicillin 

100 IU/mL Streptomycin 

2 mM L-Glutamine  

Pyruvate 

Non-essential amino acids 

 

PBS:     

137 mM NaCl 

2.7 mM KCl 

8 mM Na2HPO4 

1.4 mM KH2PO4 

pH 7.4   à autoclave 

 

Trypsin-Solution:   0.05 % Trypsin / EDTA 
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All cell lines were cultivated at 37°C, 5% CO2 content and 95 % humidity. Before 

reaching confluence, cells were split into new cell culture dishes. Here culturing medium 

was discarded and cells were washed with PBS once, followed by the addition of 1 mL 

Trypsin-Solution. The following incubation times at 37°C were applied until cells were 

successfully detached from the surface of the cell culture plate: A7r5 – 5-10 min; Hek-

293 – 5 min; HeLa – 3 min; MEF – 3 min and SH-SY5Y – 10 min. The detached cell 

suspension was resuspended in the respective pre-warmed medium and split in the 

following ratios: A7r5 – 1:3; Hek-293 – 1:6; HeLa – 1:10; MEF – 1:10 and SY5Y – 1:5. 

 

2.2.2.2 Transfection of HeLa cells with Calcium Phosphate 

 2x HBS:   1.6 g NaCl 

     0.74 g KCl 

     0.0027 g Na2HPO4 

     0.2 g Glucose 

     1.19 g HEPES 

     pH 7.05 

     ad 100 mL with aqua bidest. à sterile filtration 

 CaCl2-Solution:  2.5 M CaCl2   à sterile filtration 

 

The cells were split one day before transfection so that a ~ 40 – 60 % confluence was 

reached. Cell culture medium was exchanged with fresh medium prior to transfection. 

For transfection of cells grown in 10 cm cell culture dishes the following transfection 

reaction was prepared: 

     20 µg Plasmid-DNA 

     86.8 µL CaCl2-Solution 

     ad. 700 µL H2O 

 

Plasmid-DNA was first diluted in the respective volume of sterile H2O and shortly 

vortexed after the addition of the CaCl2-solution. Whilst slightly vortexing the same 

volume (700 µL for 10 cm dishes) 2x HBS was added drop by drop to the prepared 

Plasmid-DNA containing solution. This was followed by a 5 min incubation at RT for the 

development of calcium phosphate precipitates. The reaction mix was then pipetted drop 
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by drop onto the prepared cells. After incubation of the transfected cells for 8 h, cell 

culture medium containing the transfection reaction mix was discarded, cells were 

washed once with PBS and fresh, pre-warmed culturing medium was given onto the 

cells. After 48 h incubation cells were harvested for following experiments. For the 

transfection of cells cultured in cell culture dishes of differing volumes, the transfection 

reaction mix is adjusted to the growth area of the respective dish. 

2.2.2.3 Liposome mediated transfection of HeLa cells 

For transfection of HeLa cells with siRNA or Plasmid-DNA the JetPrime-Kit from Peqlab 

was used. Here cells were split the day before transfection to grow to a confluence of 

about 25 – 40 %. Cells were transfected according to the manufacturers’ protocol with 4 

µg DNA (10 cm dishes) or 100 – 200 pmol siRNA (6 cm dishes). Medium was replaced 

by fresh, pre-warmed cell culture medium after 8 h. After 48 h incubation time cells were 

either re-transfected with siRNA or harvested for further use. 

 

2.2.2.4 Treatment of HeLa cells with inhibitors 

For the inhibition of the proteasome or autophagy, HeLa cells were treated with the 

following inhibitors at a confluence of 80 % for 16 h overnight, followed by harvest of the 

cells for experimental use. 

   MG132:  final concentration: 10 µM 

   Bafilomycin A1: final concentration: 200 nM 

   E64d:   final concentration: 20 µM 

 

 

 

2.2.3 Methods in molecular biology 

 

2.2.3.1 Plasmid preparation (MAXI/Mini) 

For purifying plasmid-DNA from E. coli, the NucleoSpin® Plasmid Kit from Macherey-

Nagel (bacterial culture volume of 3 – 4 mL) or the NucleoBond® Xtra Maxi Kit also from 
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Macherey-Nagel (bacterial culture volume of 300 mL) were used. Plasmid preparation 

was performed according to the instructions given by the manufacturers. 

 

2.2.3.2 Polymerase Chain Reaction (PCR) 

Polymerase Chain Reaction (PCR) is used to specifically amplify nucleotide sequences. 

A PCR generally consist of three phases which are repeated for about 30 times to 

exponentially amplify the desired genetic sequence. The four phases of a PCR are the 

following: DNA denaturation at 95°C, annealing of oligonucleotide primers to the 

template sequence (temperature is dependent on the primer pair used) and elongation of 

the aligned oligonucleotides by the DNA polymerase (temperature for elongation 

depends on the polymerase used). Here DNA sequences for cloning were amplified 

using the KOD DNA polymerase with proofreading function. The following reaction mix 

for optimal performance of the polymerase was applied (all reagents were pipetted on 

ice): 

  DNA-template:   1 µg 

  dNTP-solution each 10 mM:  2 µL 

  5’ oligonucleotide:   20 pm 

  3’ oligonucleotide:   20 pm 

  5x KOD Buffer:   10 µL 

  DMSO:    1 µL 

  KOD-Polymerase:   1 µL 

  Aqua bidest:    ad 50 µL 

 

The following thermal cycler program was used for amplification of the template DNA: 

 

1. initial denaturation:  95°C  3 min. 

 2. denaturation:  95°C  45 sec. 

3. annealing:   40-65°C 45 sec. 

4. elongation:   72°C  1-2 min. 

5. repeat step 2 – 4 for 30 times 

6. final elongation:  72°C  10 min. 

7. cooling:   4°C  infinite 
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2.2.3.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is an electrophoretic method for the separation of DNA 

fragments of differing lengths. DNA fragments are separated due to their negative 

charge and their size, as smaller pieces of DNA can migrate faster through the porous 

gel towards the anode than larger ones. Visualization of the DNA is enabled by the DNA 

intercalating dye SYBR® Safe DNA gel stain by InvitrogenTM, which is detectable under 

ultraviolet light. The agarose gel was cast using 1 % agarose in 1x TAE Buffer. The 

suspension was boiled until the agarose was completely resolved and poured into the 

casting chamber with the addition of 1 µL SYBR® Safe DNA gel stain. DNA samples 

were mixed with 6x sample buffer obtained from Thermo Scientific prior to loading to the 

gel. The DNA size marker 1kb GeneRulerTM DNA Ladder Mix from Thermo Scientific was 

used and agarose gels were run via application of 120 V for about 50 min. 

 

2.2.3.4 Restriction digest 

In order to clone a genetic sequence into a plasmid, insert DNA and plasmid need to be 

digested with the same restriction endonucleases. These enzymes create DNA 

overhangs which facilitate annealing of the insert DNA with the plasmid. By using two 

different restriction endonucleases on insert and plasmid, the right orientation of the 

insert in the finished plasmid is ensured. Cutting sites for the restriction endonucleases 

were integrated into the insert DNA via the oligonucleotides used in the PCR reaction to 

amplify the desired insert DNA. The digest of insert DNA and plasmid DNA was 

performed using the FastDigest restriction enzymes from Fermentas according to the 

protocol given by the manufacturer. The restriction digest reaction of plasmid DNA was 

additionally supplied with alkaline phosphatase which prevents religation of the plasmid 

DNA to itself. After the restriction digest, the obtained DNA fragments were purified via 

agarose gel extraction and their DNA concentration was measured with the 

NanoPhotometer®. 

 

2.2.3.5 Agarose Gel Extraction 

In order to extract DNA fragments previously separated by agarose gel electrophoresis 

for further processing, the agarose gel containing the separated samples was laid on a 
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UV-light table to visualize DNA. Desired DNA fragments were cut from the gel and 

transferred to reaction tubes followed by dissolving of the gel and purification of the DNA 

with the help of the NucleoSpin® Gel and PCR Clean-up Kit by Macherey-Nagel 

according to the manufacturers’ instructions. 

 

2.2.3.6 Ligation 

After digesting insert DNA and the plasmid backbone with the respective restriction 

enzymes, the generated fragments were ligated. For optimal ligation conditions, the ratio 

of insert to plasmid molar mass was 3:1. For exact calculation of the required amount of 

insert and plasmid DNA the following formula was applied: insert mass in ng = 3 x ( bp 

insert / bp plasmid ) x vector mass in ng. Next to the addition of insert and plasmid DNA, 

ligation reactions were supplied with T4-Ligase-Buffer and T4-Ligase obtained from 

Thermo Scientific according to the manufacturers protocol. Ligation reactions were 

pipetted on ice and incubated overnight at 16°C and slight shaking. After incubation, 12 

µL of the ligation reaction were given onto competent TG1 E. coli for transformation as 

described above. 

 

2.2.3.7 DNA Sequencing 

Sequence analysis of all cloned DNA constructs was performed by the company GATC 

Biotech AG. 

 

2.2.3.8 Quantitative real-time PCR (q-PCR) 

For quantification of protein transcripts via qRT-PCR, RNA was isolated from HeLa cells 

using the InviTrap® Spin Universal RNA Mini Kit from Stratec. With the 

NanoPhotometer® isolated RNA was analyzed for purity and the obtained concentration 

was determined. To prepare cDNA from RNA the iScript cDNA Synthesis-Kit from 

BioRad was used according to the manufacturers’ instructions. Here 0.5 µg of RNA were 

used per sample. For amplification and detection of PCR products during q-PCR the 

DNA intercalting dye EvaGreen-Kit was used according to the guidelines given by the 

manufacturer. As reference genes B2M and GAPDH were used. The qPCR was 

performed as follows: 
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cDNA-Synthesis: 

Reagent    Amount 

Isolated RNA    0.5 µg 

5’ Oligonucleotide   20 pm 

3’ Oligonucleotide   20 pm 

10 x iScript-Buffer   2 µL 

iScript-Polymerase   1 µL 

A. bidest    Ad 20 µL 

à cDNA was synthesized at 42°C for 45 min 

 

qPCR: 

Reagent    Amount 

cDNA     1 µL 

H2O     6.5 µL 

5’ Oligonucleotide   5 pm 

3’ oligonucleotide   5 pm 

EvaGreen Dye   6.5 µL 

A. bidest    15 µL 

 

 

qPCR programm: 

Phase     Temp.  Time 

1. Initial denaturation   97°C  3 min 

2. Denaturation   94°C  45 sec 

3. Annealing    68°C  30 sec 

4. Elongation    72°C  2 min 

5. Repeat phase 1. – 5 for 30 x 

6. Final elongation   72°C  7 min 

7. Denaturation   97°C  3 min 

8. Cooling     4°C  infinite 
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2.2.4 Methods in protein biochemistry 

 

2.2.4.1 Generation of crude extracts 

 Lysis buffer RIPA (+SDS):  25 mM Tris, pH 8 

      150 mM NaCl 

      0.1 % SDS 

      0.5 % Sodiumdeoxycholate 

      1 % Nonidet P-40 

      10 % Glycerol 

      2 mM EDTA 

      1 x “Complete” Protease inhibitor cocktail 

 SDS sample buffer (3x):  0.2 M Tris/HCl, pH 6.8 

      6 % SDS 

      30 % Glycerol 

      0.03 % Bromophenol blue 

      15 % β-Mercaptoethanol 

 

For analysis of cellular protein composition cells needed to be harvested and lysed. Cells 

were washed with PBS once prior to harvest. Cells were rubbed of the cell culture dish 

and suspended in PBS for transfer into a reaction tube. The cell suspension was 

centrifuged at 3500 rpm for 3 min and the supernatant was discarded. Depending on the 

cell pellet size, cells were resuspended in an appropriate amount of RIPA lysis buffer 

(ranging from 20 – 80 µL per cell pellet). The resuspended cells were incubated for 20 

min on ice to ensure sufficient lysis and centrifuged for 1 min at 10.000 rpm at 4°C to 

pellet residual cellular complexes. The supernatant containing the proteins for analysis 

was transferred into a new reaction tube and protein concentration was determined via 

Bradford test. Extracted protein solutions were adjusted to a working concentration of 4 

mg/mL via the addition of lysis buffer and three times concentrated SDS-sample buffer. 

For treatment with lambda phosphatase crude extracts were generated as described 

above. Lambda phosphatase was however added prior to adjustment of protein 
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concentration via the addition of 3x SDS-sample buffer. A detailed description of the 

lambda phosphatase assay is described below. 

 

2.2.4.2 Lambda Phosphatase assay 

For de-phosphorylation of proteins the lambda phosphatase from New England Biolabs 

was used. Here crude extracts were diluted with RIPA lysis buffer without the protease 

inhibitor cocktail to a working concentration of 6 µg / µL. 40 µL of crude extract were 

incubated with 5 µ L 10x Phosphatase Buffer, 5 µ L MnCl2 (10 mM) and 300 units 

lambda-phosphatase, for 30 min at 30°C. The reaction was stopped by the addition of 25 

µL 3x SDS-sample buffer with subsequent boiling of samples at 95°C for 5 min. Samples 

were analyzed via SDS-Gel electrophoresis and Western Blot. 

 

2.2.4.3 Discontinuous SDS-Page 

  running buffer:  25 mM Tris 

      190 mM Glycin 

      1 % SDS 

 

 Separation Gel:  

Gel concentration   7.5 %  10 %  12.5 %  15 % 

1.5 M Tris/HCl, pH 8.8:  1.52 mL 1.52 mL 1.52 mL 1.52 mL 

30 % Acrylamide (0.8 % BisAa.) 1.51 mL 20 mL  2.52 mL 3.02 mL 

dH2O     2.89 mL 24 mL  1.87 mL 1.37 mL 

10 % SDS    89 µL  89 µL  89 µL  89 µL 

10 % APS    39 µL  39 µL  39 µL  39 µL 

TEMED    4 µL  4 µL  4 µL  4 µL 

 

 Stacking Gel: 

1 M Tris/HCl, pH 6.5     400 µL 

30 % Acrylamide (0.8 % BisAa.)   266 µL 

dH2O       882 µL 

10 % SDS      48 µL 
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10 % APS      16 µL 

TEMED      1.6 µL 

 

SDS-Page (Sodium Dodecyl Sulfate Polyacrylamide gel electrophoresis) is an 

electrophoretic method to separate and visualize protein monomers according to their 

molecular weight. Proteins are denatured by heat in the presence of sodium dodecyl 

sulfate (SDS) which attaches to the resulting protein monomers, supplying them with a 

negative charge. Thereby the characteristic charge of each protein is overlayed. Once 

loaded to an SDS containing polyacrylamide gel the negatively charged protein 

monomers migrate through the gel by applying electricity. Their speed of migration is 

given by the molecular weight of the individual protein monomers. 30 – 50 µg of total 

protein per lane were loaded on SDS-Page gels and run at 20 mA for about 1.5 hours. 

Acrylamide percentage of the respective gel used and running time were dependent on 

the molecular weight of the protein to be analyzed. 

 

2.2.4.4 Coomassie staining 

  Coomassie solution:  50 % Methanol 

      10 % Acidic acid 

      0.125 % Coomassie Brillant Blue R 250 

  Destaining solution:  50 % Methanol 

      10 % Acidic acid 

 

For unspecific staining of proteins separated on an SDS-Page gel Coomassie Brillant 

Blue G-250 was used. The gel was incubated overnight in Coomassie solution at room 

temperature on a rocking platform. Background stain was removed via incubation of the 

gel in destaining solution twice for 30 min until only the stained protein bands were 

visible. 
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2.2.4.5 Western Blot 

 Transfer Buffer:   20 mM Tris 

      144 mM Glycine 

      20 % Methanol 

      0.01 % SDS 

TBST-Buffer:    20 mM Tris/HCl pH 7.6 

     137 mM NaCl 

     0.006 % Triton X-100 

Ponceau S solution:   5 % Albumin Fraction V/TBST 

      0.1 % Ponceau S 

5 % Acidic acid 

Blocking solution:   2% skim milk powder in TBST buffer 

 

The principle of Western Blots is based upon the transfer of proteins from a 

polyacrylamide gel onto a nitrocellulose membrane in an electric field. On this membrane 

the proteins of interest can be visualized with the help of protein specific antibodies. For 

the transfer an SDS-Page gel was placed onto a nitrocellulose membrane and 

embedded in WhatmanTM paper and sponges on each side. Blots were placed into a 

transfer buffer containing chamber and run at 300 mA for 90 min. The procedure was 

followed by staining of the nitrocellulose membrane with Panceau S solution to assess 

blotting efficiency. Membranes were washed with dH2O to remove the Panceau S stain 

and incubated for 30 min in 2 % skim milk containing TBST-Buffer (blocking solution) at 

room temperature. 

 

2.2.4.6 Immunodetection 

After blocking of the nitrocellulose membrane obtained from Western Blot (see above), 

primary antibody, specific for the protein to be analyzed, was added to the membrane. 

Antibodies used were previously diluted in blocking solution in a ratio of 1:250 up to 

1:2000, depending on the antibody used. The membrane was incubated with the primary 

antibody at 4°C overnight on a rocking platform. This was followed by three washing 

steps with TBST to remove residual primary antibody unbound to the membrane. After 

washing, the secondary, peroxidase coupled antibody was given onto the membrane at 

a 1:10000 dilution for 1 h at room temperature. The secondary antibody which was 
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applied was dependent on the species the primary antibody is derived from. After three 

additional TBST washing steps the bound antibodies were detected via a peroxidase 

mediated chemoluminescence reaction. This was achieved by the use of ECL-solution 

applied according to the instructions given by the manufacturer. In a dark room X-ray 

films were laid on top of the membrane for exposure of differing lengths (depending on 

the efficacy of the primary antibody and abundance of the protein to be detected). X-ray 

films were developed in an automated developing machine. 

 

2.2.4.7 Bradford protein assay 

For determination of protein concentration the Bradford protein assay was applied. With 

Coomassie Brilliant Blue G-250 proteins from complexes which can be measured in a 

photometer. Under normal conditions Coomassie Brilliant Blue G-250 has an absorption 

maximum at 470 nm. In complex with proteins this absorption maximum is shifted to 595 

nm which can be used as basis for measurement. Prior to measurement of protein 

sample concentration, the photometer was calibrated with a γ-Globuline standard. For 

the measurement 1 µL of protein sample was given to 1 mL Bradford solution and mixed 

thoroughly. After 10 min incubation at room temperature the Bradford-sample mix was 

given into a plastic cuvette for measurement. 1 mL of Bradford-solution was taken as 

blank. 

 

2.2.4.8 TCA protein precipitation 

For concnetration of protein samples they were precipitated using trichloroacetic acid 

(TCA). Samples were treated with a final TCA concentration of 12.5 % and incubated for 

at least 1 h on ice, followed by 30 min centrifugation at 20.000 g and 4°C. The TCA 

containing supernatant was completely removed from the sample and the precipitated 

protein pellet was resusupended in SDS sample buffer. If necessary, acidic pH was 

neutralized via the addition of 1 – 2 µL 1 M Tris pH 9.0 prior to boiling the sample at 95°C 

for 5 min. 
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2.2.4.9 Immunoprecipitation 

 RIPA Lysis buffer (without SDS):  25 mM Tris, pH 8.0 

       150 mM NaCl 

       0.5 % Sodiumdeoxycholate 

       1 % Nonidet P-40 

       10 % Glycerol 

       2 mM EDTA 

       1 x “Complete” Protease inhibitor 
cocktail 

 MOPS/KCl washing buffer:   20 mM MOPS, pH 7.2 

       100 mM KCl 

 Elution buffer:    0.1 M Glycine / HCl, pH 3.5 

 

Immunoprecipitation is used for isolation of protein complexes bound to a protein of 

interest. 4 x 10 cm cell culture dishes of HeLa cells were harvested and lysed with RIPA 

lysis buffer (without SDS) for 30 min on ice. After that, crude extracts were shortly 

ultrasonicated (2 x 10 sec) followed by 20 min centrifugation at 16.000 g and 4°C. The 

supernatant containing the proteins was diluted to a working concentration of 8 µg / µL 

with MOPS/KCl buffer. For immunoprecipitation of overexpressed proteins containing a 

FLAG-tag M2 sepharose was used, to which the FLAG.tag can bind directly. For 

immunoprecipitation under endogenous conditions protein-G sepharose, together with a 

specific antibody for the protein to be analyzed was used. Here the antibody heavy chain 

can bind to the protein-G covered beads. M2 sepharose and protein-G sepharose were 

equilibrated with 3 RIPA washing steps before usage in immunoprecipitation. Protein 

extracts for analysis were incubated with M2 sepharose or protein-G sepharose and 

antibody for 3 h at 4°C on a rotating wheel. After incubation the samples were washed 3 

x with 1 mL RIPA washing buffer (without SDS) and 3 x with 1 mL MOPS/KCl buffer. 

Then bound protein complexes were eluted from the sepharose beads via the addition of 

1 mL elution buffer and 12 min incubation on ice. The eluted protein complexes were 

precipitated by the addition of TCA as described above. Isolated protein complexes were 

analyzed via SDS-Page and Western Blot. 
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2.2.4.10 Mass Spectrometry 

For identification of novel interaction partners of SYNPO mass spectrometry via MALDI-

TOF (matrix assisited laser desorption ionization – time of flight) was performed by the 

Proteomics Facility of the Center for Molecular Medicine Cologne (http://cecad.uni-

koeln.de/Services.274.0.html). For sample preparation an immunoprecipitation 

experiment was performed as described above with an additional elution step using ATP. 

Obtained protein complexes were separated using a 12.5 % acrylamide gel in SDS-Page 

followed by Coomassie staining of the gel. Prominent bands visualized via Coomassie 

staining were cut from the gel, transferred into a reaction tube and sent to Cologne. 

Peptide data obtained from mass spectrometry was aligned to the UniProt database. 

 

 

 

2.2.5 Methods in Cell biology 

 

2.2.5.1 Immunofluorescence 

PBS:    137 mM NaCl 

2.7 mM KCl 

8 mM Na2HPO4 

1.4 mM KH2PO4 

pH 7.4 

 

 Quenching-Solution   50 mM NH4Cl 

 Blocking Solution   3 % BSA in PBS 

 

HeLa cells were seeded out in 24 well plates equipped with round glass cover slips. For 

immunofluorescent staining cells were washed twice with PBS and fixed with 4 % 

paraformaldehyde in PBS for 12 min at room temperature. After three washing steps with 

PBS cells were permeabilzed via addition of 0.2 % Triton-X 100 in PBS for 12 min at 

room temperature. After additional three washing steps quenching-solution was applied 

for 30 min only for cells that were used for EEA1 staining. For all other antibodies used 
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for staining, cells were directly blocked with blocking solution for 1 h after washing with 

PBS. Antibodies were diluted according to manufacturers’ guidelines in blocking solution 

and cells were incubated with the respective antibody for at least 1 h at room 

temperature. For EEA1 staining the antibody solution was incubated with the cells in a 

humidity chamber at 4°C overnight. Incubation with the primary antibody was followed by 

three subsequent PBS washing steps before the secondary antibody could be applied. 

Secondary antibodies were diluted 1:400 in blocking solution and incubated with the cells 

for 1 up to 4 h. Cells were again washed three times with PBS and shortly dipped in A. 

bidest to remove residual salts from PBS before mounting with MOWIOL®. Samples 

were left at a dark place at room temperature overnight for the mounting medium to dry 

before analysis with the microscope. 

 

 

2.2.6 Statistics 
Significance was calculated using the students T-Test in Excel. Each experiment was 

performed independently for at least three times (n). Western Blots were quantified using 

the software ImageJ. For immunofluorescence the LSM image browser was used. 

Strategies for cloning of plasmids were tested with the software GENtle. 
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3. Results 

 

3.1 SYNPO2 is not expressed in HeLa cells 
Previously published findings link BAG3 to the SYNPO family of proteins via an 

interaction of BAG3 with SYNPO2 in the context of mechanotransduction in muscle and 

immune cells (Ulbricht et al. 2013). Besides SYNPO2, a peptide screen consisting of 

proline-rich peptides, performed to identify novel interactors of the BAG3 WW-domain, 

also identified SYNPO as a binding partner of BAG3 (PhD thesis Ulbricht 2013, 

unpublished data). As SYNPO2 expression shows tissue specificity to muscle cells, the 

immune system, prostate, colon and small intestine (Lin et al. 2001), the closely related 

protein SYNPO was hypothesized to take on a comparable role to SYNPO2 function in 

CASA in cells that do not express SYNPO2. In order to find a cell line which lacks 

SYNPO2 but expresses SYNPO, crude extracts of five different cell lines were tested for 

SYNPO2 and SYNPO expression. As can be seen in figure 3.1 (A) SYNPO2 is 

expressed in A7r5 (Rattus norvegicus, smooth muscle) and SH-SY5Y (Homo sapiens, 

neuroblasts from neural tissue) cells lines. SYNPO expression can be detected in all cell 

lines tested namely A7r5, Hek-293 (Homo sapiens, embryonic kidney), HeLa (Homo 

sapiens, cervical cancer), MEF (Mus musculus, embryonic fibroblasts) and SH-SY5Y 

(figure 3.1 (B)). HeLa cells were chosen for the analysis of SYNPO in the context of 

CASA, as they do not express SYNPO2 but show SYNPO expression. 
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Figure 3.1: Expression of SYNPO2 and SYNPO in various cell lines of mammalian 
origin. SYNPO2 is detectable in A7r5 and SH-SY5Y cells (A) whereas SYNPO 
expression can be detected in crude extracts of all cell lines tested. The most prominent 
band detected by the antibody against SYNPO manifests itself at a size of 130 kDa. 40 
µg of protein were loaded for each lane. 

 

 

3.2 SYNPO is a novel interactor of BAG3 
SYNPO2 and SYNPO share a 35 % sequence homology using the Basic Local 

Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Additionally 

both proteins could be identified as interactors of the BAG3 WW-domain in a peptide 

screen (PhD thesis Ulbricht 2013, unpublished data), and both proteins contain at least 

one centrally located PPXY motif (Ulbricht et al. 2013) (figure 3.2). To test for a potential 

interaction of endogenously expressed BAG3 and SYNPO, co-immunoprecipitation 

experiments were performed using HeLa cells, showing that indeed BAG3 can co-

precipitate in a complex with the 130 kDa isoform(s) of SYNPO (SYNPOa/c) (figure 3.2). 
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Figure 3.2: SYNPO interacts with BAG3. SYNPO complexes were pulled down with an 
antibody specific for SYNPO. Western blot analysis shows the presence of BAG3 in 
these SYNPO complexes isolated from HeLa crude extracts. 32 µg protein were loaded 
of the extract (left lane). 1/3 of total eluate was loaded for the IgG controls and the 
specific IPs respectively. 

 

 

3.3 SYNPO in Homo sapiens 
The human gene for SYNPO is located on chromosome 5, q33.1, has a size of 58.140 

bp and comprises, depending on the isoform, three exons (two coding exons) and two 

introns. Three different genetic isoforms of SYNPO can be expressed, giving rise to 

three different isoforms of the translated protein (figure 3.3). The three isoforms of 

SYNPO are identical in their central sequence but differ in their respective N- or C-

termini and in their predicted molecular weights which lie at 74 kDa for the shortest 

SYNPO isoform: SYNPOb, 96 kDa for the intermediate isoform: SYNPOa and 99 kDa for 

the longest SYNPO isoform: SYNPOc. 

 

 

Figure 3.3: Schematic representation of the three isoforms of human SYNPO 
protein. Motifs and binding sites are marked in color. Furthermore the immunogen of the 
antibody used in this work is marked as a grey box. All three isoforms contain two 
subsequent PPXY motifs located in the center of the protein. Additionally two CatL 
cleavage sites (marked in green) and two binding sites for 14-3-3 protein can be found in 
each isoform. SYNPOc has an LPPPP motif at its N-terminus whereas SYNPOa. 
contains a C-terminally located LPPPP and PPXXF motif. 
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3.4 Analysis of SYNPO in HeLa cells 
A general overview of SYNPO expression in five different mammalian cell lines could 

already be seen in figure 3.1. A clear discrepancy in the size of the detected bands by 

the SYNPO antibody (prominent band at 130 kDa) and the predicted molecular weight 

between 74 to 99 kDa (figure 3.3) can be observed. In order to verify that the detected 

bands in figure 3.1 are indeed SYNPO isoforms, FLAG-Tag expression constructs have 

been cloned for overexpression of SYNPOb and SYNPOc. Overexpression of the short 

isoform of SYNPO could be detected at 100 kDa (figure 3.4 (A)). The distinctive band 

seen in figure 3.3 at approximately 130 kDa could be identified as SYNPOc as shown in 

figure 3.4 (B). A functional overexpression construct for SYNPOa could not be generated 

in the course of this work. This leaves the question of the molecular weight and migration 

behavior of SYNPOa in HeLa cells unanswered. Importantly, due to only slight 

differences in amino acid number between SYNPOa (903 aa) and SYNPOc (929 aa), it 

cannot be excluded, that SYNPOa might run at roughly the same height as SYNPOc 

(130 kDa) in an SDS-page gel. Therefore the 130 kDa SYNPO band is designated as 

SYNPOa/c if not stated otherwise. 

Next to SYNPO isoform characterization, the impact of SYNPOb / SYNPOc 

overexpression on the cellular concentration of BAG3 was investigated, revealing no 

changes in BAG3 protein levels for SYNPOb overexpression but a significant increase of 

BAG3 upon SYNPOc overexpression. 
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Figure 3.4: Overexpression of SYNPOb and SYNPOc. HeLa cells were transfected 
with the expression constructs pCMV2b-SYNPOb (A) and pCMV2b-SYNPOc (B) 
respectively and incubated for 48 h. Crude extracts were analyzed by Western blot, 
showing that SYNPOb appears at a size of 100 kDa (A) whereas SYNPOc runs slightly 
above 130 kDa (B). Overexpression of SYNPOb leaves detectable BAG3 unaffected (A) 
whereas BAG3 protein levels are increased upon overexpression of SYNPOc (B). Each 
lane was loaded with 40 µg of total protein. 

 

Furthermore, it was investigated whether depletion of the SYNPO isoforms by using 

specific siRNAs can abrogate the detected SYNPO signals at 130 and 100 kDa. This 

was indeed the case, confirming the specificity of the used antibody. It was also 

investigated whether this depletion of SYNPO affects BAG3 protein levels. As depicted 

in figure 3.5 simultaneous knockdown of SYNPO isoforms did not affect BAG3 protein 

levels. 
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Figure 3.5: Knockdown of SYNPO isoforms by specific siRNAs. HeLa cells were 
transfected with specific siRNA against SYNPO for 48 h prior to harvest. It can be 
observed that detectable SYNPO signals at 130 and 100 kDa are highly diminished, 
whereas BAG3 remains unchanged upon depletion of SYNPO in HeLa cells. 40 µg of 
protein were loaded for each lane. 

 

A previous report by Faul et al. (2008) shows that SYNPO contains two prominent CatL 

cleavage sites indicated in green in figure 3.2. Indeed the authors could show that 

SYNPO is cleaved by CatL in podocytes resulting in a 44 kDa SYNPO fragment. To test 

whether SYNPO is also cleaved by CatL in HeLa cells, E64d, a specific inhibitor of CatL 

was employed. Administration of E64d did not alter SYNPO protein levels in HeLa cells 

(quantified for SYNPOa/c) (figure 3.6). Furthermore it is of note that the 44 kDa SYNPO 

fragment resulting from proteolytic cleavage by CatL could not be detected in any 

experiments performed for this work. 
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Figure 3.6: SYNPO is not cleaved by CatL in HeLa cells. HeLa cells were treated with 
E64d for 16 h overnight prior to cell lysis. SYNPOa/c protein levels remain unaffected by 
E64d treatment visualized by the diagram. Weak signals for SYNPOb at approximately 
100 kDa and no band at 44 kDa could be observed (44 kDa is the expected cleavage 
product of SYNPO in podocytes (Faul et al. 2008)). 40 µ g of protein were loaded for 
each lane. 

 

 

3.5 SYNPOa/c shows an upward shift in Western blots 
upon proteasome inhibition 
Because SYNPO2 is degraded quickly via autophagy upon mechanical strain, it should 

be assessed whether inhibition of the proteasome (induction of autophagy), by MG132 

treatment, or the inhibition of the autophagy-lysosomal pathway (induction of 

proteasomal degradation of proteins), by BafA1 treatment, has any effect on SYNPO. As 

shown in figure 3.7 treatment of HeLa cells with the respective inhibitors does not show a 

significant change of SYNPOb levels (figure 3.7 A). For SYNPOa/c there is a shift in size 

upon proteasomal inhibition via MG132, which is quantified in the upper right (upper 

band) and lower right (lower band) panel (figure 3.7 B). In regards of degradation or 

stabilization the inhibitors do not show an effect on SYNPOa/c. 
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Figure 3.7: Inhibition of protein degradation pathways and shift in size of 
SYNPOa/c. HeLa cells were treated, for 16 h prior to harvest, with either DMSO as 
control, MG132 (proteasome inhibition) or BafA1 (inhibitor of autophagy). SYNPOb 
shows great variation in protein stability upon treatment with the respective inhibitors (A). 
SYNPOa/c protein neither gets stabilized nor degraded by the application of either of the 
two inhibitors. However a shift to a higher molecular weight band of SYNPOa/c can be 
observed when treating cells with MG132 or a combination of MG132 and BafA1 (B). 
Separate quantification of the two SYNPOa/c bands observed is shown in the two 
diagrams on the right. 40 µg of protein were loaded for each lane. 

 

 

3.6 SYNPOa/c is phosphorylated in vivo 
When regarding the long isoform of SYNPO in HeLa cells, two distinct bands can be 

observed at approximately 130 kDa in height, as shown above in figure 3.3. Additionally 

a shift to the upper band of SYNPOa/c can be induced by MG132 treatment of the cells 

(figure 3.7). This phenomenon gives rise to the question whether SYNPOa/c is post-

translationally modified and therefore shows a second band of slightly higher molecular 

weight in Western Blot experiments. To elucidate the nature of the upper SYNPOa/c 

band, a Lambda Protein Phosphatase (λPP) assay was performed. The data 

demonstrate that SYNPOa/c is phosphorylated in vivo (figure 3.8). Overnight treatment 

of HeLa cells with MG132 shows the previously observed effect of a shift of the 

SYNPOa/c band to a higher molecular weight with no effect on the total SYNPOa/c 

protein level (figure 3.7). λPP treatment efficiently diminished the upper band signal of 

SYNPOa/c also for the MG132 treated samples (figure 3.8). 
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Figure 3.8: 130 kDa SYNPOa/c is phosphorylated. HeLa cells were treated with 
DMSO or MG132 for 16 h prior to harvest. Crude extracts were subjected to incubation 
with Lambda Protein Phosphatase (λPP) for 0 min (control, t0) and 30 min (t30) at 30°C. 
S6-P, an antibody detecting solely the phosphorylated form of S6 protein serves as a 
control for protein dephosphorylation. The shift of the SYNPOa/c band upon MG132 
treatment can be clearly observed, whereas total protein amount remains constant, 
regardless of the treatment (left panel). Incubation with λPP attenuates the Western Blot 
signal for the phosphorylated form of SYNPOa/c, quantified in the upper right panel. λPP 
treatment has no effect on the amount of native, unphosphorylated SYNPOa/c 
(SYNPOa/c w/o p), (lower right panel). 40 µg of protein were loaded for each lane. 

 

 

3.7 BAG3 as an effector of SYNPO 
It was further assessed whether altered BAG3 protein expression has any impact on 

SYNPO protein levels. This was monitored by either overexpression or siRNA mediated 

knockdown of BAG3 in HeLa cells. Overexpression of BAG3 shows a stabilizing effect 

on SYNPO (figure 3.9 A), whereas BAG3 depletion has the no significant effect on 

SYNPO protein levels (figure 3.9 B). 
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Figure 3.9: SYNPOa/c protein levels upon alterations in BAG3 expression. (A) HeLa 
cells were transfected with pcDNA-BAG3 and the respective control plasmid pcDNA-
empty (48 h). A clear stabilization of SYNPOa/c protein can be observed when 
increasing BAG3 expression. (B) HeLa cells were transfected with siRNA against BAG3 
for 24 h, then a re-transfection was performed for additional 48 h. Depletion of BAG3 
shows a minor, but not significant, decrease in SYNPOa/c protein levels. 40 µg of protein 
were loaded for each lane. It is of note, that SYNPOb appears to be stabilized by BAG3 
overexpression as well (A) but was not quantified in the context of this work. 

 

 

3.8 BAG3 – SYNPOc interaction depends on BAG3 WW-
domain and SYNPOc PPXY motifs 
As could be established in the beginning endogenous BAG3 and SYNPOa/c can be co-

immunoprecipitated (figure 3.1). In order to confirm whether this interaction is mediated 

via an interaction of SYNPO PPXY-motifs with the WW-domain of BAG3 (as it is for 

BAG3 and SYNPO2 (Ulbricht et al. 2013)), mutant forms of SYNPOc and BAG3, 

equipped with a FLAG-Tag, were used. In detail, the BAG3 mutant used (pCMV2b-

BAG3-WAWA, W26A, W48A) contains a non-functional WW-domain. In addition three 

different SYNPOc mutants were employed. The first SYNPOc mutant has a double 

amino acid substitution in the first PPXY motif: P610A and T611A further designated as 

pCMV2b-SYNPOc-PAAY1st. The second mutant contains a double mutation within the 

second PPXY-motif of SYNPOc (P629A, S630A), titled pCMV2b-SYNPOc-PAAY2nd. The 

third and last SYNPOc mutant is a double mutant of both PPXY motifs simultaneously, 

pCMV2b-SYNPOc-PAAYdouble. It could be shown that the interaction of SYNPO and 

BAG3 is clearly dependent on a functional WW-domain of BAG3 and intact PPXY motifs 
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on the side of SYNPOc (figure 3.10). pCMV2b-SYNPOc-PAAY1st is still fully able to bind 

BAG3, as bound BAG3 amounts are comparable to the wildtype control. For pCMV2b-

SYNPOc-PAAY2nd binding of BAG3 is highly diminished whereas pCMV2b-SYNPOc-

PAAYdouble shows only very slight residual binding of BAG3 (figure 3.10 A). Vice versa it 

can be observed that SYNPO – BAG3 interaction is abrogated by employing FLAG-

BAG3-WAWA in an IP experiment. In addition it can be observed that overexpressed 

BAG3 wildtype is able to bind to SYNPOa/c w/o p, p-SYNPOa/c as well as to SYNPOb 

(figure 3.10). 

 

 

Figure 3.10: SYNPOc – BAG3 interaction is dependent on SYNPOc PPXY motifs 
and BAG3 WW-domain. HeLa cells were transfected with FLAG-tagged mutant forms of 
SYNPOc (A) or mutant BAG3 (B) for 48 h prior to harvest. Cell extracts were subjected 
to IP directed against the FLAG-epitope of the overexpressed constructs. Mutation of 
SYNPOc-PPXY motifs abrogates BAG3 binding to SYNPOc (A). Additionally SYNPOc – 
BAG3 interaction is abolished upon mutation of BAG3 WW-domain (B). Furthermore 
BAG3 wildtype shows binding to SYNPOa/c w/o p, p-SYNPOa/c and SYNPOb (B). 32 µg 
of protein was loaded per lane for all extract samples. 1/3 of the total eluate from the 
FLAG-IPs was applied per lane. 

 

Immunofluorescence experiments were performed to analyze the localization of SYNPO 

and the impact of BAG3 on this. Additionally, the binding of SYNPOc and BAG3 and the 

dependency on SYNPOc PPXY motifs should be confirmed using a different 

experimental approach. As expected co-localization of SYNPOc and BAG3 is no longer 

detectable when co-expressing pCMV2b-SYNPOc-PAAYdouble together with pEGFP-BAG3. 

Interestingly overexpressed SYNPOc wildtype as well as pCMV2b-SYNPOc-PAAYdouble 

localize into punctate structures (figure 3.11). This punctate pattern of SYNPO has been 

described previously (Mundel et al. 1997), however the molecular characteristics of 

these SYNPO punctae have thus far not been elucidated. Next to the loss of SYNPOc – 

BAG3 co-localization upon overexpression of pCMV2b-SYNPOc-PAAYdouble it is of 
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interest, that BAG3 overexpression alone (figure 3.11, left panel) is not sufficient to show 

a punctate pattern of BAG3 protein. Only in combination with SYNPOc overexpression 

does BAG3 co-localize to the SYNPOc punctae which suggests an active recruitment of 

BAG3 by SYNPOc to these punctae (figure 3.11 3rd panel). 

 

 

Figure 3.11: SYNPOc PPXY motifs are crucial for SYNPOc – BAG3 co-localization. 
HeLa cells were transfected with either pEGFP-empty, pEGFP-BAG3, pCMV2b-
SYNPOc or pCMV2b-SYNPOc-PAAYdouble for 48 h. SYNPOc – BAG3 co-localization is 
lost upon overexpression of pCMV2b-SYNPOc-PAAYdouble. SYNPOc wildtype as well as 
SYNPOc-PAAYdouble appear in punctate structures. White bars correspond to 20 µm. 

 

 

3.9 General assessment of SYNPOc punctae 
Accumulation of SYNPOc in dot-like structures directly evokes the question of the 

molecular character of these SYNPOc punctae. As described above the punctate pattern 

of SYNPO has been observed previously and could be shown to co-localize to actin 
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(Mundel at al. 1997). However further characteristics of these SYNPO punctae remain to 

be elucidated. Asanuma et al. (2005) describe SYNPO punctae in podocytes to be 

amorphous, cytoplasmic, phalloidin-positive aggregates. In HeLa cells (used in this work) 

overexpression of SYNPOc results in similar punctae morphology, however the punctae 

observed appear to be rather round with a large proportion of them showing small 

pointed protrusions (figure 3.12). 

 

 

Figure 3.12: SYNPOc punctae in HeLa cells. HeLa cells were transfected with pCMV-
empty (control) or pCMV-SYNPOc for 48 hours prior to immunostaining procedure. 
Endogenous SYNPO is evenly distributed throughout the cytoplasm in control cells 
forming few small punctae indicated by white arrows (1st panel from the left). Upon 
overexpression, SYNPOc accumulates in large punctae which are distributed throughout 
the cytoplasm (panels 2, 3 and 4) Many punctae show small pointed protrusions marked 
by white arrows (2nd panel). Some cells overexpressing SYNPOc show, next to SYNPOc 
punctae, thick stress fibers (3rd panel). Additionally ring like SYNPOc punctae can be 
frequently observed (4th panel). Bottom pictures represent a 5x magnification of the area 
marked by the white box in the upper panel. The white bars equal 20 µm. 

 

To shed light into the potential function of SYNPOc punctae, several markers of different 

cellular pathways and structures were employed. Markers for autophagy (p62 and LC3), 

lysosomes (LAMP-1), aggresomes (vimentin), ubiquitin (FK2) and the cytoskeleton (actin 

and tubulin) have been subjected to immunofluorescent staining of HeLa cells 

transfected with pCMV2b-SYNPOc as shown in figure 3.13. It can be seen, that the 

SYNPOc punctae show neither co-staining for p62, LC3, LAMP-1, vimentin (VIM), FK2 

nor tubulin. Staining of the actin cytoskeleton via phalloidin however confirms the 

previously described (Mundel et al. 1997) co-localization of F-actin with SYNPO punctae. 
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Figure 3.13: SYNPOc punctae in combination with various molecular markers. 
HeLa cells have been transfected with pCMV2b-SYNPOc and other plasmids as 
indicated above the respective panels for 48 h. SYNPOc punctae do not associate with 
p62 and LC3 (autophagy), LAMP-1 (lysosomes), vimentin (aggresomes), FK2 (ubiquitin) 
nor γ-tubulin. A co-localization of SYNPOc punctae can solely be observed with the actin 
cytoskeleton as shown in the right most panel. White bars equal 20 µm. 

 

In addition to immunofluorescence experiments (figure 3.13) co-immunoprecipitation was 

performed in order to confirm the previously described binding of SYNPO to actin. As 

expected β-actin co-precipitates with SYNPO as depicted in figure 3.14. 

 

 

Figure 3.14: IP of SYNPO validating its interaction with actin. SYNPO complexes 
were pulled down from HeLa cell crude extracts using a specific antibody against 
SYNPO. It can be seen that β-actin co-precipitates with SYNPO as shown by a specific 
band for β-actin in the Western blot. 32 µg protein were loaded of the extract (left lane). 
1/3 of total eluate was loaded for the IgG controls and the specific IP respectively. 
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3.10 SYNPOc punctae co-localize with the endosomal 
marker EEA1 
As shown above in figure 3.13, SYNPOc punctae fail to co-localize with molecular 

markers for autophagosomes, lysosomes, aggresomes and microtubule. As established 

in figure 3.12, SYNPOc punctae were observed to form ring like structures. Fratti et al. 

(2001) show that the endosomal marker Early Endosome Antigen 1 (EEA1) also appears 

in ring-like structures upon immunofluorescent staining in murine macrophages. 

Therefore EEA1 was tested for co-localization to SYNPOc punctae. As depicted in figure 

3.15 SYNPOc punctae co-localize with early endosomes under endogenous conditions 

(left panels) as well as upon overexpression of SYNPOc (right panels). 

 

Figure 3.15: SYNPO punctae co-localize with EEA1. HeLa cells have been 
transfected with pCMV-empty (panels 1-3) and pCMV-SYNPOc (panels 4-6). The 
endosomal marker protein EEA1 co-localizes with SYNPO punctae under endogenous 
conditions (panel 1-3) and upon overexpression of SYNPOc (panel 4-6). SYNPOc ring 
like structures are positive for EEA1. Lower panels represent a 5x magnification of the 
area marked by the white box. White bars equal 20 µm. 

 

 

3.11 Identification of novel SYNPO binding partners via 
mass spectrometry 
For further elucidation of the molecular function of SYNPO and in order to identify 

binding partners aiding the characterization of SYNPOc punctae, IP for SYNPO with 

subsequent peptide analysis via mass spectrometry was performed. Proteins which co-

precipitated with SYNPO were either eluted via addition of glycine buffer or incubation 

with ATP. Total eluates were separated via SDS-gel electrophoresis and stained by 
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Coomassie brilliant blue. Prominent bands, as depicted in figure 3.16 were cut from the 

gel and sent to analysis via mass spectrometry. Obtained peptide data was run against 

the protein database UniProt and a total of 100 potential binding partners of SYNPO 

could be identified. These have been further narrowed down by their score parameter 

and their relevance for cytoskeletal dynamics or connection to cellular vesicles or BAG3 

(table 3.1). 

 

Figure 3.16: SDS-gels of SYNPO IP for mass spectrometry. HeLa cell crude extract 
was subjected to IP of SYNPO. Elution was either performed by addition of glycine (left 
panel) or ATP (right panel). Red bars point out bands which were cut from the gel for 
analysis via mass spectrometry. For identification each band was assigned a number, 
also given in red, next to the bars.  
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Table 3.1: Potential SYNPO binding partners identified via mass spectrometry: 
From total data obtained by mass spectrometry this list of potential SYNPO binding 
partners was generated. Parameters were the protein score and a link to cytoskeletal 
functions / dynamics, cellular vesicles or BAG3. It is of note that roughly 25 % of the 
identified potential SYNPO binding partners are associated with mRNA processing 
according to literature (data not included in the table). 

Abbreviation Full name Score kDa band 
# 

Actb Actin, cytoplasmic 1 1017,5 42 5 
Actg1 Actin, cytoplasmic 2 872,35 42 5 
Aldoa Fructose-biphosphate aldolase A 303,95 39 6 
ANXA1 Annexin A1 516,38 39 7 
ANXA2 Annexin A2 792,4 39 7 
ANXA3 Annexin A3 298,87 36 7 
ANXA5 Annexin A5 588,34 36 7 
Capza1 F-actin-capping protein subunit alpha-1 174,6 33 6 
Capza2 F-actin-capping protein subunit alpha-2 149,21 33 7 
Chmp4b Charged multivesicular body protein 114,38 25 7 
Fscn1 Fascin 169,61 55 4 
Gapdh Glyceraldehyde-3-phosphate dehydrogenase 422,28 36 6 
Hspa8 Heat shock cognate 71 kDa protein 1043,03 71 1 
Hspa9 Stress-70 protein, mitochondrial 564,31 73 1 
Pdlim1 PDZ and LIM domain protein 1 351,92 36 6 
Tpm1 Tropomyosin alpha-1 chain 1551,2 33 7 
VIM Vimentin  1937,18 

 

54 4 
 

 

3.12 Validation of potential SYNPO binding partners 
obtained via mass spectrometry 
As expected, various components of the actin cytoskeleton were identified as potential 

binding partners of SYNPO in mass spectrometry (table 3.1). Especially Annexin A2 

(ANXA2) was of interest as it has been previously described to function in vesicle 

formation and autophagy (Moreau et al. 2015, Morozova et al. 2015). Surprisingly 

vimentin (VIM) was also identified as a putative binding partner of SYNPO by mass 

spectrometry (table 3.1) opposing the data obtained from immunofluorescence 

experiments shown above in figure 3.13 in which co-localization of SYNPOc with 

vimentin could not be observed. For clarification a FLAG-tagged overexpression 

construct of vimentin (pCMV2b-Vim) was generated and used in an IP directed against 

the FLAG-epitope of overexpressed vimentin. The same experiment was performed 

using an overexpression construct for Annexin A2 (pCMV2b-ANXA2). Both, Annexin A2 

and vimentin were able to co-precipitate SYNPOa/c. Additionally BAG3 could be 

detected in the precipitate of ANXA2 complexes (figure 3.17). 
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Figure 3.17: Annexin A2 and vimentin bind SYNPO. HeLa cells were transfected with 
either pCMV2b-ANXA2 or pCMV2b-VIM for 48 h. IP was directed against the FLAG-
epitope of the overexpressed proteins. Annexin A2 as well as vimentin are able to co-
precipitate SYNPO. Annexin A2 additionally co-precipitates BAG3. 32 µ g protein was 
loaded of the extract (left lanes). 1/3 of total eluate was loaded for the negative controls 
and the specific IPs respectively.
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4. Discussion 
The co-chaperone BAG3 has been shown to be involved in essential cellular processes 

such as apoptosis (Lee at al. 1999, Zhang et al. 2012), cell migration, actin cytoskeleton 

dynamics (Iwasaki et al. 2007), autophagy (Arndt et al. 2010, Ulbricht et al. 2013), 

proteostasis and transcriptional processes (Ulbricht et al. 2013). Being such a versatile 

protein, it will be important to elucidate the BAG3 interactome and its various functions 

depending on cell type and context. This is also of pathological relevance as mutations in 

the human BAG3 gene are associated with severe myopathies (Villard et al. 2011, 

Kostera-Pruszczyk et al. 2015). In this work the actin binding protein SYNPO could be 

identified as a novel binding partner of BAG3. Whereas the SYNPO family member 

SYNPO2 cooperates with BAG3 during autophagy in muscle and immune cells (Ulbricht 

et al. 2013), SYNPO does apparently not fulfill degradative functions in HeLa cells under 

the experimental conditions used. SYNPOc localizes to punctate, actin-containing 

assemblies to which BAG3 is recruited. It could be shown in HeLa cells that SYNPOc co-

localizes with early endosomes, implicating a possible involvement of SYNPOc in the 

transport or processing of endocytic vesicles. In addition, many new putative binding 

partners of the SYNPO – BAG3 complex could be identified in the context of this work, of 

which Annexin A2 could be shown to interact with BAG3 and SYNPO in vivo. Due to its 

role in endosomal transport (Mayran et al. 2003, Morel et al. 2009), identification of 

Annexin A2 supports the possible involvement of SYNPOc and BAG3 in endosomal 

transport or processing. 
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4.1 SYNPO, a novel BAG3 binding partner 
The actin binding protein SYNPO could be identified as a novel interactor of BAG3 in 

HeLa cells (figure 3.2). Thus far most of the published data concerning SYNPO is 

derived from experiments on kidney podocytes and neuronal cells (Mundel et al. 1991 

and 1997, Deller et al. 2003, Schiewek et al. 2004, Asanuma et al. 2006). For a more 

general assessment of SYNPO expression crude extracts derived from several human 

and murine cell lines were tested for the presence of SYNPO. In kidney podocytes 

Mundel et al. (1991 and 1997) observed a SYNPO band with the size of 110 kDa with an 

additional proteolytic fragment of 44 kDa. In extracts from rat forebrain SYNPO is 

detectable at 100 kDa (Mundel et al. 1997). In this work all cell lines tested show most 

prominent SYNPO bands at a size of approximately 130 kDa. Additionally a band at 100 

kDa can be observed for all five cell lines. Next to unique bands at various heights for the 

respective cell lines no band can be seen at 44 kDa (figure 3.1). This is surprising as one 

would expect a band at 110 kDa especially for the Hek-293 extract as this cell line is 

derived from human embryonic kidney cells. However, the cell extracts revealing a band 

at 110 kDa and the proteolytic cleavage product at 44 kDa described by Mundel et al. 

(1991 and 1997) are derived from kidney podocytes which is a highly specialized cell 

type exclusive to the glomeruli of the kidney (reviewed by Pavenstädt, 2000). This 

specialization might explain the difference in the detected bands for SYNPO, as 

podocyte SYNPO might undergo different posttranslational processing than in other cell 

types, or even more likely SYNPO isoforms may be differentially expressed depending 

on the cell type. Research of the NCBI and UniProt database 

(https://www.ncbi.nlm.nih.gov, http://www.uniprot.org/) revealed a total of three SYNPO 

isoforms, SYNPOc, SYNPOa and SYNPOb (figure 3.3). Overexpression constructs were 

cloned for SYNPOb and SYNPOc and transfected to HeLa cells, revealing that the band 

observed at 130 kDa corresponds to SYNPOc whereas SYNPOb was identified to be the 

band at 100 kDa (figure 3.4). The 110 kDa SYNPO band which seems to be podocyte 

specific is therefore most likely the SYNPOa isoform which is in compliance with the 

literature concerning the number of amino acids SYNPOa is composed of (Asanuma et 

al. 2005). In order to avoid confusion, it is of note that in many publications SYNPOa is 

referred to as SYNPO long. Migration behavior of SYNPO in HeLa cells differs from the 

predicted molecular mass by the Uniprot database, and cannot be directly compared to 

previously published data from podocytes (Mundel et al. 1997, Asanuma et al. 2005). 

Therefore it cannot be conclusively said that SYNPOa has a size of 110 kDa in HeLa 
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cells as it has in podocytes. SYNPOa is only 26 amino acids shorter than SYNPOc 

(figure 3.3) and therefore might also migrate at 130 kDa like SYNPOc in SDS-gels of 

HeLa crude extracts. Thus, the endogenous 130 kDa SYNPO band was designated as 

SYNPOa/c in this work. 

siRNA mediated knockdown of SYNPO in HeLa cells led to a loss of detectable signal for 

SYNPOa/c (130 kDa) and SYNPOb (100 kDa) (figure 3.5). In the context of the 

experiments to validate the observed SYNPO signals BAG3 protein was also analyzed. 

The siRNA mediated knockdown of SYNPO does not show any obvious effects on BAG3 

protein levels (figure 3.5). Additionally SYNPOb overexpression in HeLa cells renders 

detectable BAG3 protein levels unchanged in comparison to the control. However, there 

is a stabilization of BAG3 protein upon overexpression of SYNPOc (figure 3.4). Here it 

would be of interest whether this stabilization is due to an increase of BAG3 transcription, 

a stabilizing effect of SYNPOc on native BAG3 protein, or a consequence of an inhibitory 

effect of SYNPOc on BAG3 degradation. A transcriptional effect of SYNPOc on BAG3 

would be rather interesting in regards of a cellular stress response, as BAG3 is up-

regulated under cellular stress such as oxidative or mechanical stress (Bonelli et al. 

2004, Ulbricht et al. 2015). Upon administration of the proteasome inhibiting and 

autophagy inducing agent MG132, BAG3 is known to be up-regulated on the 

transcriptional level (Wang et al. 2008). A qPCR experiment with oligonucleotides 

specific for BAG3 gene products could give insight whether SYNPOc has an effect on 

BAG3 expression and thereby is a potential inducer of a cellular stress response via 

BAG3. 

Concerning SYNPO turnover in podocytes, it is cleaved by the lysosomal endopeptidase 

Cathepsin L (CatL). Binding to 14-3-3 protects SYNPO from this proteolytic cleavage 

(Faul et al. 2008). Treatment of HeLa cells with E64d, a specific inhibitor of CatL, did not 

show any effect on SYNPOc expression as shown in figure 3.6. Again no band at 44 kDa 

could be observed for the DMSO treated control and full length SYNPOa/c levels remain 

unchanged upon treatment with E64d. This shows that CatL mediated cleavage is likely 

to be a podocyte specific mechanism, which emphasizes, that expression and 

processing of SYNPO is highly dependent on the cell type or on the specific extracellular 

environment the cells have to face. Podocytes for example mark the outermost cover of 

the glomerular basement membrane, where they are constantly exposed to fluid shear 

stress and tensile forces arising from intravascular pressure (Vasmant et al. 1984; 

Suleiman et al. 2017). 
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To further analyze SYNPO degradation, HeLa cells were treated with either MG132, a 

proteasome inhibitor known to induce autophagy (Ding et al. 2007, Lan et al. 2014), 

BafA1 (an inhibitor of autophagy by prevention of autophagosome – lysosome fusion 

(Mauvezin et al. 2015) or with both inhibitors, followed by quantification of SYNPO 

protein via Western Blot (figure 3.7). Degradation, or a possible involvement of SYNPO 

in the proteasomal degradation pathway or autophagy would manifest itself in a 

stabilization of SYNPO upon inhibition of the respective pathway. After treatment with the 

inhibitors there is neither a stabilization nor a decrease in SYNPO protein levels 

observable (figure 3.7). Except when both inhibitors are applied SYNPOa/c levels are 

slightly diminished. This however might be due to extreme cellular stress evoked by the 

combination of both inhibitors which might induce apoptosis.  

In summary, these data demonstrate that SYNPO is stable in HeLa cells. It might be 

possible that degraded SYNPO is rapidly replaced by newly synthesized SYNPO. An 

experimental setup using the inhibitors MG132 and BafA1 in addition to an agent which 

inhibits protein translation (e.g. cyclohexamide) could give further insight into SYNPO 

turnover. 

Even though SYNPO levels remain stable upon MG132 treatment of HeLa cells, there is 

a prominent change in 130 kDa SYNPO (SYNPOa/c) upon MG132 treatment observable 

(figure 3.8). The lower band of the usual double band of 130 kDa SYNPO undergoes an 

upward shift resulting in enrichment of the upper SYNPO band. Since total amounts of 

detectable SYNPOa/c remain the same (figure 3.8) the lower band of SYNPOa/c is not 

degraded but changed in its size. Variations in migration behaviour are commonly a sign 

of post-translational modifications of a protein such as phosphorylation (Wegener et al. 

1984; Ishida et al. 2000), glycosylation (Nielsen et al. 2004) ubiquitination (Elsasser et al. 

2012) and others (Carruthers et al. 2015). Furthermore SYNPOb has been previously 

reported to be phosphorylated in vivo (Faul et al. 2008). To test whether 130 kDa 

SYNPO is also phosphorylated, HeLa cell crude extracts were subjected to lambda-

phosphatase treatment resulting in vast reduction of the upper 130 kDa SYNPO band in 

the DMSO treated control extract as well as in the MG132 treated one (figure 3.8). To 

assess the functionality of the phosphatase treatment a specific antibody against the 

phosphorylated form of the translational regulator S6 kinase 1 (S6) was used as a 

control. As for the upper band of 130 kDa SYNPO, phosphorylated S6 is largely reduced 

upon lambda-phosphatase treatment. Faul et al. (2008) identified two phosphorylation 

sites in human SYNPOb, T216 and S619. As SYNPOb shares its complete sequence 

with SYNPOa and SYNPOc (figure 3.3), SYNPOa and c contain the same potential 

phosphorylation sites. It would be of interest, whether SYNPOa and c are phosphorylated 
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at the same amino acids as SYNPOb (which would be T460 and S863 for SYNPOc 

respectively). Alanine substitution of the potential phosphor-acceptor sites of a SYNPOc 

overexpression construct would abrogate 130 kDa SYNPO phosphorylation if indeed the 

same amino acids as reported for SYNPOb are phosphorylated in SYNPOc. 

 

 

4.2 The interplay of BAG3 and SYNPO 
SYNPOa/c are the most abundantly expressed SYNPO isoforms in HeLa cells (figure 

3.3). Furthermore SYNPOa/c are the only SYNPO isoforms which co-precipitate with 

BAG3 under endogenous conditions (figure 3.1). Using an overexpression construct of 

BAG3 including a FLAG-Tag for immunoprecipitation experiments, SYNPOb can be 

observed to co-precipitate with BAG3, however to a far lesser extent than SYNPOa/c 

(figure 3.10). Additionally overexpression of SYNPOc did show a stabilizing effect on 

BAG3 (figure 3.4) and it could be shown that 130 kDa SYNPO (SYNPOa/c) is 

phosphorylated in vivo (figure 3.8). Hence, this work focussed on the further investigation 

of SYNPOc and its role as an interactor of BAG3.  

Overexpression of BAG3 in HeLa cells could stabilize SYNPOa/c protein levels (figure 

3.9, A). As described for overexpression of SYNPOc (see above) it remains unclear, 

whether this stabilization of SYNPOa/c occurs due to a translational effect or because 

BAG3 prevents SYNPOa/c degradation. As siRNA mediated knockdown of BAG3 did not 

show a significant reduction nor stabilization of SYNPOa/c protein levels (figure 3.9, B) a 

translational effect of BAG3 on SYNPOa/c seems to be favorable in this context. A qRT-

PCR experiment using specific oligonucleotides for SYNPOc mRNA would give insight 

into SYNPOc transcription upon BAG3 overexpression. Such an experiment was indeed 

performed, however primer design specific for SYNPOc mRNA and the other SYNPO 

isoforms turned out to be quite challenging as SYNPO contains, depending on the 

isoform, only one or two coding exons (data obtained from the ensemble database 

(http://www.ensembl.org)) limiting the possibilities to design oligonucleotides greatly. The 

oligonucleotides designed for this work failed to amplify the SYNPOc gene product and 

could therefore not be used. 
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4.3 BAG3 and SYNPO in CASA 
As established in figure 3.1 130 kDa SYNPO (SYNPOa/c) is a novel interactor of the co-

chaperone BAG3. The SYNPO family member SYNPO2 was previously shown to bind to 

the BAG3 WW-domain via its PPXY motif (Ulbricht et al. 2013). SYNPOc protein with 

mutant PPXY motifs was overexpressed in HeLa cells and used in immunoprecipitation 

experiments. The same was done for a WW-domain mutant of BAG3. Mutated SYNPOc 

(both PPXY motifs) as well as mutated BAG3 failed to co-precipitate BAG3 or SYNPO 

respectively, confirming that this interaction is mediated via the WW-domain of BAG3 

and SYNPO PPXY motifs (figure 3.10 and 3.11). Here the second of the two SYNPOc 

PPXY motifs seems to be of higher importance for binding BAG3 as mutation of only the 

first PPXY motif does not show any influence on BAG3 binding whereas mutation of only 

the second PPXY motif shows a vast reduction of co-precipitated BAG3. However only a 

double mutation of both PPXY motifs almost completely abrogates BAG3 binding (figure 

3.10). These data coincide with the peptide screen preformed for the identification of 

novel binding partners of the BAG3 WW-domain. Besides showing an interaction with 

SYNPO and SYNPO2 the peptide screen could narrow down the consensus binding 

motif of the BAG3 WW-domain to PP P/S Y (PhD thesis Ulbricht, 2013). The first PPXY 

motif of SYNPO contains the amino acids PPTY whereas the second motif consists of 

the amino acids PPSY. 

Previous studies have linked SYNPO2 to the BAG3 and HSC70 mediated autophagic 

degradation process of filamin in muscle and immune cells (CASA) (figure 1.5) (Ulbricht 

et al. 2013). Belonging to the same protein family and both having the ability to bind to 

BAG3, SYNPO might have similar functions as SYNPO2 in CASA but a different tissue 

specificity. However, as discussed above, treatment of HeLa cells with MG132 or BafA1 

did not show stabilization nor degradation of SYNPO (figure 3.7). This indicates that 

SYNPO behaves differently than SYNPO2, which is rapidly degraded after treatment of 

A7r5 cells with MG132 and roughly 4-fold stabilized by administration of BafA1 (Ulbricht 

et al. 2013). To further elucidate a potential link to autophagic degradation, 

immunofluorescent co-staining experiments were performed in HeLa cells using specific 

antibodies against p62 and LC3, which are both established markers for 

autophagosomes (Bjorkoy et al. 2009, Tanida et al. 2008), and LAMP1 a lysosomal 

marker (reviewed by Saftig and Klumperman, 2009; Eskelinen, 2006). If SYNPO were to 

be degraded via the autophagy lysosomal pathway a partial co-localization of SYNPO 

with these markers is expected. However all three marker proteins failed to show a co-

localization with SYNPOc punctae (figure 3.13). Together these data lead to the 

conclusion, that in regards of an involvement in CASA, SYNPO fails to conduct a similar 
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function in HeLa cells, under the experimental conditions used, as SYNPO2 does in 

muscle cells. However, as BAG3 expression is induced under cellular stress conditions, 

degradation pathways involving BAG3, like CASA, are also in dependency of cellular 

stress. For filamin degradation cellular stress is induced by mechanical strain (Ulbricht et 

al. 2013). Another protein which involves BAG3 for its degradation is the microtubule-

associated protein tau, which is primarily expressed in neurons. Tau is especially known 

for its pathological relevance in Alzheimer disease (Iqbal et al. 2010). Under stressful 

conditions, such as proteasome inhibition, BAG3 was shown to facilitate the clearance of 

soluble tau (Lei et al. 2015). In addition, BAG3 has been described to promote 

degradation of mutant huntingtin, associating BAG3 with polyQ diseases such as 

Huntington disease (Carra et al. 2008). Furthermore, Crippa et al. (2010) and 

Gamerdinger et al. (2011) describe BAG3 in degradation of amytrophic-lateral-sclerosis 

(ALS) linked mutant SOD1. It might be possible, that the chosen growth conditions for 

HeLa cells in this work do not create a cellular stress situation in which BAG3 mediated 

protein degradation is needed. Challenging of the cells by e.g. overexpressing polyQ 

constructs or starvation would generate a context in which BAG3 mediated degradation 

is “switched on”, possibly showing an effect on SYNPO behavior in HeLa cells. Here it 

would be of interest to compare SYNPO behavior to SYNPO2 in order to draw definite 

conclusions about a role of SYNPO – BAG3 interaction in autophagic degradation. 

An upstream involvement of SYNPO in CASA can also not be excluded. Due to its ability 

to bind to BAG3, SYNPO might be involved in recruitment of BAG3 to the actin 

cytoskeleton. Indeed, overexpression of SYNPOc in HeLa cells leads to the 

accumulation of BAG3 in almost the same punctate pattern as SYNPOc (figure 3.11) 

allowing for the postulation of a recruitment of BAG3 into those SYNPOc punctae and 

thereby to the actin cytoskeleton. The actin cytoskeleton has been shown to be critical for 

autophagosome formation. Upon actin depolymerization via for example cytochalasin D, 

autophagosome formation is inhibited, showing that the actin cytoskeleton is an 

important factor in autophagy (Aplin et al. 1992, Aguilera et al. 2012). It could be shown 

that actin filaments co-localize with early omegasomes prior to their association with LC3 

(Aguilera et al. 2012). Omegasomes are membrane protrusions that eventually develop 

into phagophors or isolation membranes (Axe et al. 2008). Even though the actin 

cytoskeleton is involved in the formation of autophagosomes beyond this initial step 

(reviewed by Kruppa et al. 2016), the early omegasome stage represents a possible 

timeframe in which BAG3 could be recruited by SYNPO. This is because the early 

omegasome is not yet associated with LC3, which is important because SYNPOc did not 
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co-localize with LC3 in immunofluorescence experiments (figure 3.13), making an 

involvement of SYNPO in later stages of autophagosome formation unlikely.  

 

 

4.4 SYNPO punctae: Hubs for actin polymerization? 

SYNPO has been repeatedly confirmed to be an actin binding protein (Mundel et al. 

1997, Kreemerskothen et al. 2005, Asanuma et al. 2005). Overexpression of SYNPOc in 

HeLa cells shows the previously in neuronal and kidney cells described punctate pattern 

of SYNPO in immunofluorescence experiments (figure 3.12) (Mundel et al. 1997, 

Asanuma et al. 2005). In this work a co-localization of SYNPOc punctae with phalloidin, a 

marker for the actin cytoskeleton could be observed (figure 3.13) in agreement with 

published data (Mundel et al. 1997, Asanuma et al 2005, Kremerskothen et al. 2005, 

Faul et al. 2008). In contrast to Asanuma et al. (2005) describing SYNPO punctae in 

podocytes as amorphous, cytoplasmic, phalloidin-positive aggregates, in this work 

SYNPOc punctae induced by overexpression of SYNPOc in HeLa cells appear to be 

round in shape with many of them showing small pointed protrusions rather resembling 

α-actinin-4 staining as shown by Asanuma et al. (2005) as sites of short branched actin 

filaments (figure 3.12). Furthermore, Asanuma et al. (2005) could show that co-

expression of SYNPOb and α-actinin-4 abrogates SYNPOb punctae and results in long 

parallel and unbranched actin bundles. This gives rise to the hypothesis that SYNPOc 

punctae might serve as a hub for actin polymerization in HeLa cells. This is supported by 

the ability of SYNPO to interact with BAG3. Findings by Fontanella et al. (2010) 

associate BAG3 with the eukaryotic chaperonin CCT / TRiC (cytosolic chaperonin 

containing TCP-1 / TCP-1 ring complex) suggesting a role of BAG3 in CCT substrate 

folding. This is of interest, because CCT is mandatory for the folding of actin und tubulin 

into their respective three dimensional structures (Sternlicht et al. 1993, Llorca et al. 

2000). Knockdown of CCT results in reduction of the availability of native G-actin, growth 

arrest and changes in cellular shape and motility due to alterations in tubulin and actin 

cytoskeleton integrity (Grantham et al. 2006). In the context of SYNPOc punctae and 

their potential role in actin polymerization, it might be possible that through the interaction 

of SYNPOc and BAG3, also CCT is recruited to the SYNPOc punctae creating a source 

of newly synthesized G-actin in close proximity to the polymerizing actin filaments. 

Furthermore CCT has been implicated not only in the folding of actin but also in 

regulating actin polymerization kinetics. Here CCT subunits have been shown to reduce 
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actin filament elongation in vitro suggesting a role of CCT subunits in quality control of 

the newly synthesized actin filament. However, it is more likely that CCT subunits protect 

the growing end of the actin filament as hydrophobic surfaces of the actin monomers 

building the filament are transiently exposed in the process of integration of new actin 

monomers for elongation (Grantham et al. 2002). Co-staining of SYNPOc and CCT in 

immunofluorescence experiments could give first hints on a possible connection of 

SYNPOc and BAG3 regulated actin dynamics with CCT. 

Upon overexpression of SYNPOc many rather large BAG3 positive SYNPOc punctae are 

detectable, which all might be possible sites for actin polymerization (figure 3.11). That 

few stress fibers are observable upon SYNPOc overexpression might be due to the 

excess of SYNPOc created by overexpression (figure 3.11, 3.12 and 3.13). As described 

by Asanuma et al. (2005) only co-expression of α-actinin-4 induced the formation of long 

parallel actin fibers in podocytes. Maybe the increased amount of SYNPOc can’t be 

compensated for by the endogenous α-actinin-4 levels, leaving sites of accumulated 

SYNPOc and BAG3 ready for actin polymerization but lacking an equal amount of 

required co-factors for this process. 

 

 

4.5 SYNPO interactors: hints for intracellular transport 
Via immunoprecipitation with subsequent SDS-Page, SYNPO protein complexes could 

be isolated for analysis via mass spectrometry. Many interesting potential SYNPO 

binding partners could be identified, of which many are actin cytoskeleton associated 

proteins (table 3.1). One of the binding partners identified is Annexin A2 (ANXA2). A 

FLAG-tagged overexpression construct of ANXA2 could successfully co-precipitate 130 

kDa SYNPOa/c in immunoprecipitation (figure 3.17), validating the results gained from 

mass spectrometry. Interestingly BAG3 could also be identified to co-precipitate in a 

complex with ANXA2 (figure 3.17). ANXA2 belongs to the large family (more than 160 

family members) of Annexins which are known to bind to phospholipids in a Ca2+ 

dependent manner (reviewed by Gerke and Moss, 2002). ANXA2 is specifically of 

interest as an interactor of the BAG3 – SYNPO complex as it has been described to be 

able to bind F-actin (Filipenko and Waisman, 2001). However it is reported, that ANXA2 

does not localize to stress fibers but is associated with the organization of membrane 

associated actin, especially in membrane regions enriched in sphingolipids and 

cholesterol, termed lipid rafts (Harder et al. 1997; Babiychuk and Draeger, 2000). 
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Furthermore ANXA2 is implicated in endosome biogenesis as it associates with early 

endosomal membranes and is involved in early-to-late endosomal transport via selective 

actin nucleation and polymerization (Emans et al. 1993; Mayran et al. 2003; Morel et al. 

2009). Indeed the actin cytoskeleton is, next to the microtubule cytoskeleton, a major 

player in intracellular transport of diverse cargo e.g. secretory vesicles, cellular 

organelles or protein complexes (reviewed by Ross et al. 2008). Transport is either 

mediated via polarized actin polymerization on the surface of organelles (e.g. 

micropinocytotic vesicles or pathogenic bacteria) propelling the respective cargo forward 

on so called actin comet tails (Theriot et al. 1992; Christien et al. 1999, Merrifield et al. 

2001; Orth et al. 2001). Or by motor protein dependent actin transport via proteins of the 

myosin family, which can move along actin filaments in an ATP dependent manner 

(reviewed by Hammer and Sellers (2011), Maravillas-Montero and Santos-Argumedo 

(2012)). Even more intriguingly, cargo transported on actin cytoskeletal tracks can be 

handed over to dynein or kinesin (which are the microtubule associated motor proteins) 

for further transport via the microtubule cytoskeleton and vice versa (Kural et al. 2007, 

Watanabe and Higuchi 2007). Additionally, the transported cargo can be switched from 

one actin filament to another at filament intersections (Snider et al. 2004). As SYNPO 

has been shown to be able to bind myosin II (Kannan et al. 2015) it might also be able to 

bind other myosin family members like myosin V, VI or X, which are associated with 

cargo transport (reviewed by Ross et al. 2008). 

BAG3 has also been reported to be involved in intracellular transport as a factor in 

aggresome formation via the microtubule cytoskeleton (Gamerdinger et al. 2011). 

Aggresomes are defined as microtubule-dependent, cytoplasmic inclusion bodies serving 

as a site for accumulation and sequestration of misfolded / aggregated proteins which 

can be cleared via autophagy (Johnston et al. 1998, García-Mata 1999). The 

intermediate filament protein vimentin (Herrmann and Aebi 2000) could be established as 

a marker for aggresomes as it forms a cage like structure around these perinuclear 

compartments whereas in the absence of an aggresome it is evenly distributed in the 

cytoplasm (Johnston et al. 1998). It is of note, that vimentin could also be identified as an 

interactor of SYNPO via mass spectrometry (table 3.1). Even though immunofluorescent 

staining did not show a co-localization of SYNPOc and vimentin (figure 3.13), the binding 

of the two proteins could be confirmed by immunoprecipitation (figure 3.17). 

In the context of cellular transport, BAG3 mediates loading of misfolded cargo proteins to 

the microtubule motor protein dynein through a direct interaction. The dynein – BAG3 – 

cargo complex is then transported to the aggresome (Gamerdinger et al. 2011). BAG3 

mediated cargo loading is facilitated by 14-3-3 protein which recruits BAG3 – cargo 
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complexes to the motor (Xu et al. 2013). Additionally, BAG3 mediated aggresome 

targeting of the mutant protein SOD1 via dynein is an ubiquitin independent process 

(Gamerdinger et al. 2011) in contrast to the ubiquitin-dependent mechanisms of 

aggresome targeting via dynein and Histone Deacetylase 6 (HDAC6) (Kawaguchi et al. 

2003, Ouyang et al. 2012). 

Here a potential interplay of ANXA2 with SYNPO and BAG3 could come into play by 

mediating intracellular transport along actin filaments ultimately handing over cargo to the 

microtubule network via BAG3. Through the interaction of ANXA2 – BAG3 – SYNPO – 

myosin and the actin cytoskeleton a transport machinery for e.g. endosomes may be 

generated. Here ANXA2 could mediate binding to the endosomal membrane anchoring it 

to the actin cytoskeleton via SYNPO. SYNPO in turn binds to the myosin motor and 

recruits BAG3 into the complex. For further transport along the microtubule cytoskeleton 

BAG3 could potentially mediate the switch to the dynein motor as it can bind directly to it 

and thereby releasing SYNPO, as SYNPOc does not associate with microtubuli (figure 

3.13). ANXA2 possibly remains in the BAG3 – dynein complex to mediate continued 

binding to the transported endosome. 

Indeed a co-localization of SYNPOc punctae with the early endosome marker EEA1 

could be observed in immunofluorescence (figure 3.15), underscoring a potential 

involvement of SYNPO, BAG3 and ANXA2 in endosomal trafficking. An additional 

immunofluorescence experiment using a marker for late endosomal compartments like 

Rab7 (McCaffrey et al. 2001) could further confirm the hypothesis, that SYNPO is only 

involved in trafficking of early endosomes, whereas BAG3 mediates further transport to 

late endosomal compartments. Whether the co-localization of SYNPOc with early 

endosomes indeed serves the purpose of endosomal transport could be monitored via 

life cell imaging using fluorescently labeled dextran which is taken up by endosomes and 

can thus be monitored under the microscope in combination with overexpression of 

fluorescently labeled SYNPOc. Furthermore it has to be established whether SYNPO can 

interact with the myosin motors as it can with myosin II (Kannan et al. 2015) to make 

transport along the actin cytoskeleton possible. 

Another quite exciting hypothesis in the context of early endosome transport potentially 

mediated by an interplay of BAG3 – SYNPO – ANXA2 is the delivery of membranes for 

autophagosome formation via transport of ATG9A (autophagy related 9A) positive 

endosomes. Multiple compartments are thought to serve as a resource of membranes for 

autophagosome formation such as the endoplasmic reticulum, the Golgi, the plasma 

membrane, mitochondria or early and recycling endosomes. (Ylä-Anttila et al. 2009, Yen 
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et al. 2010, Hailey et al. 2010, Ravikumar et al. 2010, Longatti and Tooze 2012, Ge et al. 

2013) ANXA2 has been associated with sorting of the transmembrane protein ATG9A 

from endosomes. Here ATG9A is taken up from the plasma membrane by endocytosis 

and is delivered to the recycling endosome via early endosomal compartments in an 

ANXA2 dependent manner (Puri et al. 2013 and 2014, Moreau et al. 2015). Eventually, 

ATG9A containing vesicles are incorporated into the autophagosomal outer membrane 

(Yamamoto et al. 2012). Upon starvation induced autophagy ANXA2 levels were 

observed to be upregulated which resulted in an increase in ATG9A vesicle movement 

and an increase in autophagosome formation (Moreau et al. 2015). Via interacting with 

ANXA2 (figure 3.17) and SYNPO association to early endosomes (figure 3.15) the BAG3 

– SYNPO complex might also be involved in this process of ATG9A containing 

membrane delivivery to autophagic structures. 

The last interesting hypothesis which needs to be taken into account is endosomal 

movement by actin comet tails potentially generated by an interplay of SYNPO, BAG3 

and ANXA2. Here co-localization of SYNPOc to endosomes and the potential role of 

SYNPO and BAG3 as a hub for actin polymerization (as described above) come into play 

together with ANXA2. It has been described, that ANXA2 plays an essential role in actin-

based rocketing of macropinosomes, which are endosomal vesicles specific for the 

uptake of extracellular fluid (Merrifield et al. 2001). Co-transfection of fluorescently 

labeled SYNPOc with Lifeact, a marker to visualize F-actin (Riedl et al. 2008) and 

addition of fluorescent dextran would allow for monitoring of endosomal trafficking and its 

dependence on actin and SYNPOc. 

 

Another interactor of SYNPO identified via mass spectrometry is Tropomyosin 1 (TPM1) 

(Table 3.1). Tropomyosins make up a family which is involved in actin dynamics, cellular 

migration and suppression of tumorigenesis (Ono and Ono, 2002; Bryce et al. 2003; 

reviewed by Gunning et al. 2008). TPM1 is, next to other tropomyosins, necessary for 

stress fiber formation via a stabilizing function, whereas another tropomyosin family 

member, TPM4, has been described to recruit myosin II to stress fibers (Tojkander et al. 

2011). Furthermore it could be shown that SYNPO can rescue Tropomyosin deficiency in 

the model organism Drosophila melanogaster and human cancer cells (Wong et al. 

2012). This interaction of SYNPO with TPM1 indicates that SYNPO does not only 

mediate stress fiber formation in podocytes but also in epithelial cells. Whether BAG3 is 

also found in a complex with SYNPO and TPM1 as could be shown for ANXA2 (see 

above) remains to be analyzed. 
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3.6 BAG3 and SYNPO in mechanotransduction 

There are several reports revealing that BAG3 as well as SYNPO are mechanosensitive 

proteins (Ulbricht et al. 2013 and 2015, Mun et al. 2014, Kannan et al. 2015). This means 

they can be stimulated by, and are involved in the reaction to mechanic impulses, turning 

a mechanical signal into a biochemical one. Thus far many proteins have been identified 

to contribute to mechanotransduction, such as integrins which are components of focal 

adhesions connecting a cell to the extracellular matrix (ECM) (reviewed by Juliano et al. 

2004) or cadherins being essential for cell-cell contacts (adherens junctions) (reviewed 

by Meng and Takeichi, 2009) as well as myosin motors which are components of actin 

stress fibers (reviewed by Vincente-Manzanares et al. 2009) and many more (reviewed 

by Ingber, 2006). In the context of mechanotransduction BAG3 was not only shown to be 

essential for the degradation of denatured filamin upon tension induced mechanical 

strain (CASA) but is also involved in regulating transcription of new filamin via inhibition 

of Large Tumor Suppressor Kinase 1 (LATS1) and Angiomotin Like 1 (AMOTL1), which 

in turn release the Hippo pathway transcription factors Yes Associated Protein 1 (YAP) 

and WW Domain Containing Transcription Regulator 1 (WWTR1 or TAZ) for nuclear 

translocation (Ulbricht et al. 2013). Connecting BAG3 to the Hippo pathway is quite 

intriguing as it is one of the major signaling pathways associated with 

mechanotransduction (Dupont et al. 2011, Aragona et al. 2013). Next to its involvement 

in filamin turnover under mechanical stress, BAG3 has been described to be involved in 

cell migration and adhesion via interaction with the guanine nucleotide exchange factor 

PDZGEF2 (PDZ domain containing Guanine Nucleotide Exchange Factor 2) which 

induces activation of Rap1 (Iwasaki et al. 2010). All this suggests that BAG3 is a major 

player in mechanotransduction and potentially has additional roles in this complex 

cellular response to mechanic stimuli, besides its fundamental role in filamin turnover. 

SYNPO has first been implicated to be a mechanosensitive protein by its involvement in 

endothelial wound healing induced by laminar shear stress (Mun et al. 2014). 

Furthermore, SYNPO has been described to protect the small GTPase RhoA from 

degradation and thereby is involved in stress fiber formation (Asanuma et al. 2006). It 

can be reasoned that SYNPO is indirectly involved in YAP/TAZ signaling via RhoA, 

because RhoA and intact stress fibers are required to maintain nuclear YAP/TAZ 

localization in response to mechanical stress (Dupont et al. 2011). Additionally, recent 

work by Kannan et al. (2015) shows SYNPO to be an important factor in maturation of 

adherens junctions under mechanical stress. Here SYNPO is recruited to the maturing 

adherens junction, where in turn it is involved in the recruitment of α-actinin-4 and 
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Vinculin. While the molecular mechanism by which SYNPO is relocated to the developing 

junction remains to be elucidated, the authors could show that SYNPO and α-actinin-4 

accumulation can be experimentally induced by applying cyclic strain to the cells 

(Kannan et al. 2015). Recruitment of SYNPO to adherens junctions may potentially be 

mediated by the membrane associated protein MAGI-1 (Membrane Associated 

Guanylate Kinase Inverted 1), a junctional protein which can bind to SYNPO, β-catenin 

(a major component of adherens juctions) as well as α-actinin-4 (Dobrosotskaya and 

James 2000, Patrie et al. 2002, Stetak and Hajnal 2011). In addition to these findings 

associating SYNPO with adherens junctions, SYNPO was reported to bind to the junction 

stabilizing factor CD2 associated protein (CD2AP) (Schiwek et al. 2004, Huber et al. 

2006, Tang and Brieher, 2013). CD2AP is a scaffolding protein and a regulator of the 

actin cytoskeleton. Recent findings identify CD2AP as a linker protein of cellular junctions 

to the actin cytoskeleton (Welsch et al. 2001, Tang and Brieher 2013). These multiple 

interactions highly suggest a role of SYNPO in cellular adhesion under mechanical 

stress. Kannan et al. (2015) propose that SYNPO is able to establish a physical link 

between adherens junctions (via binding to α-actinin-4 and MAGI-1) and actin stress 

fibers potentially via CD2AP or myosin II, which could both be established as binding 

partners of SYNPO in vivo (Schiwek et al. 2004; Huber et al. 2006; Kannan et al. 2015). 

As mentioned above, SYNPO is involved in stress fiber formation via RhoA (Asanuma et 

al. 2006). Additionally it could be shown in podocytes, that binding of SYNPOb to 14-3-3β 

in a phosphorylation dependent manner protects it from proteolytic cleavage by CatL, 

which in turn maintains stress fiber formation and integrity via RhoA (Faul et al. 2008). 

Interestingly, Kannan et al. (2015) report an upward shift of SYNPO in Western blots 

upon administration of mechanical force to the cells which closely resembles the shift in 

size observed for SYNPOa/c upon MG132 treatment in this work. As proteolytic cleavage 

of SYNPOa/c by CatL could not be observed in HeLa cells (figure 3.6) MG132 induced 

phosphorylation of SYNPOa/c might resemble SYNPO modification upon mechanical 

stimuli. How proteasomal inhibition and mechanotransduction might be connected via 

phosphorylated SYNPO remains elusive. Few data linking the proteasome and the actin 

cytoskeleton are available. In dendritic spines association of the proteasome with the 

actin cytoskeleton could be shown. The authors suggest that this association is involved 

in spatial sequestration of the proteasome to allow for local remodeling of the protein 

composition (Bingol and Schuman, 2006). Furthermore, administration of MG132 to 

Saccharomyces cerevisiae was demonstrated to result in defects in cell morphology and 

actin organization (Haarer et al. 2011). However, this effect is not surprising, as many 

factors involved in cytoskeleton dynamics are degraded by the proteasome e.g. the actin 
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capping protein CapZ (Hishiya et al. 2010), RhoA (Asanuma et al. 2006), β-catenin 

(Aberle et al. 1997), or the small GTPase Rac1 in its GTP bound (active) state (Lynch et 

al. 2006). In regards of adherens junctions MG132 has been reported to be able to block 

cadherin (the main adhesion molecule in adherens junctions) endocytosis for 

degradation or recycling by a thus far unknown mechanism (Xiao et al. 2003, cadherin 

turnover reviewed by Nanes and Kowalczyk, 2012). As BAG3 is transcriptionally 

upregulated upon MG132 treatment (Wang et al. 2008) and has been implicated to be a 

regulator of cellular adhesion and migration (Iwasaki et al. 2007 and 2010), it might be 

involved in modulating adhesive strength via interaction with SYNPO. However data on 

BAG3 involvement in cellular adhesion and migration is limited to focal adhesions rather 

than adherens junctions and no direct co-localization of BAG3 with focal adhesion 

plaques could thus far be observed (Iwasaki et al. 2007). SYNPO however, has been 

observed to localize to sites of focal adhesions (Mundel et al. 1997, Asanuma et al. 

2006) which indicates that the SYNPOc punctae which are also positive for BAG3 (figure 

3.11) are unlikely to be sites of focal adhesion. Therefore it is plausible, that SYNPO 

needs to be released of its BAG3 bound state in order to localize to sites of maturing 

adherens junctions. Additionally, the phosphorylation of SYNPOa/c in HeLa cells 

observed in this work (figure 3.8) and the reported upward shift of SYNPO in MDCK cells 

by Kannan et al. (2015) might be functionally distinct from each other as SYNPO might 

conduct different roles in differing cell types. Furthermore, Kannan et al. (2015) did not 

further investigate the nature of the observed SYNPO upward shift. It might actually be 

an effect due to another post-translational modification other than phosphorylation. 

 

 

4.7 Outlook 
In this work, the broad interactome of BAG3 could be further expanded by SYNPO. 

Whereas the exact consequence of BAG3 – SYNPO interaction remains elusive, the 

many newly identified SYNPO binding partners give hints on possible scenarios like 

intracellular transport or mechanotransduction. Especially the prospect of an involvement 

in intracellular transport could be further underlined by showing that SYNPOc punctae 

co-localize with early endosomes. The molecular function behind this co-localization and 

whether BAG3 is involved as well remains to be established.  

The question of similar functions between SYNPO and SYNPO2 in the context of BAG3 

mediated protein degradation could not be completely answered. First data point to a 
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generally different role of SYNPO than SYNPO2. However follow-up experiments are 

needed, challenging the HeLa cells with stressful stimuli to further enhance BAG3 

mediated degradation. 

In addition, SYNPO could be further characterized on a molecular level, showing that in 

HeLa cells SYNPO is a stable protein under the chosen experimental conditions. 

Furthermore, SYNPO could be shown to be phosphorylated. It would be especially 

interesting to elucidate whether SYNPO – BAG3 interaction is disrupted by 

phosphorylation of SYNPO, providing a molecular switch for this interaction. Identification 

and mutation of SYNPO phosphorylation sites is indispensable in order to answer many 

open questions on the nature of SYNPO in epithelial cells and its role as an interactor of 

BAG3.  

Taken together, this work lays a fundament for the study of BAG3 – SYNPO interaction 

in epithelial cells, providing general information about SYNPO behavior in HeLa cells and 

giving ideas on how BAG3 and SYNPO might function together in the constant effort of a 

cell to adapt to its ever changing surroundings. 



List of Abbreviations                  79 
______________________________________________________________________ 

 

List of Abbreviations 
 
°C   Degree Centigrate 
µ   Micro 
aa   amino acid 
ABP   actin binding protein 
AMOTL1  Angiomotin Like 1 
Amp   Ampicillin 
ANXA2  Annexin A2 
BAG   Bcl-2 associated athanogene 
BSA   Bovine serum albumin 
CASA   chaperone assisted selective autophagy 
CCT   cytosolic chaperonin containing TCP-1 
CD2AP  CD2 associated protein 
DMSO   Dimethylsulfoxide 
DNA   Desoxyribonucleic acid 
dNTP   Desoxyribonucleoside triphosphate 
E. Coli   Escherichia Coli 
ECL   enhanced chemiluminescence 
EDTA   Ethylendiamine-N,N,N’,N’-Tetraacetate 
EEA1   Early endosome antigen 1 
EM   extracellular matrix 
et al.   et aliter 
exp.   exposure 
F-actin   filamentous actin 
g   Gramm 
g   gravitational constant 
G-actin  globular / monomeric actin 
GAPDH  Glycerine-aldehyde-3-phosphate-dehydrogenase 
h   hour 
HCl   acetic acid 
HDAC6  Histone Deacetylase 6 
HSP70   Heat Shock 70 kDa Protein 
HSPB8  Heat Shock Protein Family B member 8 
IF   Immunofluorescence 
IP   Immunoprecipitation 
kb   kilo bases 
kDa   kilo Dalton 
L   liter 
LATS1   Large Tumor Suppressor Kinase 1 
LB   Luria-Bertani-Medium 
LC3   Microtubule-associated protein 1A/1B-light chain 3 
M   Molar (mol/L) 
m   Milli 
MAGI-1  Membrane Associated Guanylate Kinase Inverted 1 
min   minute 
mRNA   messenger RNA 
n   nano 
OD   optical density 
p   pico 
p62   protein 62 kDa / Sequestosome 1 
PBS   phosphate buffered saline 
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PCR   polymerase chain reaction 
RNase   Ribonuclease 
RNA   Ribonucleic acid 
RT   room temperature 
SDS   sodium dodecyl sulfate 
sec   second 
SYNPO  Synaptopodin 
SYNPOc  long isoform of Synaptopodin 929 aa 
SYNPOb  short isoform of Synaptopodin 685 aa 
TAZ   WW Domain Containing Transcription Regulator 1 (WWTR1) 
TBS   Tris-bufferd saline 
TEMED  N,N,N’,N#-Tetramethylenediamine 
TRiC    TCP-1 ring complex) 
Tris   Tris (hydroxymethyl) aminomethane 
U   units 
UV   ultraviolet 
rpm   rounds per minute 
VIM   Vimentin 
YAP   Yes Associated Protein 1) 
w/o   without 
wt   wild type 
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