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1. INTRODUCTION 

Granulation processes for solid oral dosage forms have been widely used as an intermediate 

process step in the pharmaceutical industry. The advantages of a granulation process are 

improved granule attributes such as flowability, compressibility, tabletability and less 

segregation of the active pharmaceutical ingredient (API) and excipients, which contributes to 

a better accuracy of metering, content uniformity and followed by a higher final product 

quality [1]. The purpose of this technique is to agglomerate excipients with the API and to 

obtain a desired product quality of e.g. tablets or capsules. Whenever this method is applied, 

the quality of the final product is controlled by resulting attributes of granules, which are 

influenced by the process parameters of the granulation technique. Wet and dry granulation 

techniques represent the main techniques. During wet granulation, using binder solution to 

build liquid bridges based on capillary and viscous force between particles, causes 

agglomeration. In contrast, dry granulation is characterised by using mechanical force to 

facilitate interparticulate bond formation. In comparison to wet granulation, dry granulation 

provides the following advantages: 

• suitable for water- or heat-sensitive APIs, 

• simple to operate due to integrated process control mechanism [2],  

• minimal energy consumption,  

• increased bulk density of the product,  

• feasible for implementation in a continuous manufacturing process [1,3]. 

Most commonly applied dry granulation method is roller compaction. The granulation unit is 

equipped with two counter-rotating rolls, whereby a screw system (auger) conveys powder 

into a compaction zone between these rolls. By applying a specific compaction force, a 

compact is formed. An integrated mill afterwards grinds the formed ribbon, to obtain granules 

for downstream processing, e.g. tableting. The main disadvantage of roller compaction is the 

loss of tensile strength of tablets that are produced based on the granules in comparison to 

tablets based on unprocessed material, caused by previously consumed plasticity (work 

hardening phenomena), particle size enlargement of the granules and lubrication effects by 

added lubricant [4–10]. Furthermore, in the pharmaceutical industry the change from small 

development batches to commercial batches requires a transfer from a small scale to a larger 

scale (scale up) to satisfy market demands. However, scaling up roller compaction processes 

is still not fully understood, identifying the factors that finally determine reproducible tablet 

quality remains to be accomplished. Investigating these factors, comprising material attributes 
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and the impact of the scale on the final drug product quality will be shown in the course of 

this thesis. 

2. OBJECTIVES 

The objective of this thesis was to investigate the effect of different roller compactor scales 

over the whole process chain on the quality attributes of intermediate- and final products, i.e. 

tablets, in order to develop a reliable scale up strategy.  

At first two commonly used formulations for a roller compaction process with different 

properties, containing different fractions of Microcrystalline cellulose (MCC) and pre-

agglomerated −Lactosemonohydrate (LAC), will be characterised to understand their impact 

on the quality attributes for downstream processing (i.e. tableting). Furthermore, a comparison 

of analytical techniques for the critical quality attribute solid fraction of a ribbon was 

performed to find an appropriate method for this thesis. Based on these experiments, both 

formulations were compacted, using equal process parameters at both scales to identify and 

separate differences caused by material attributes (formulation) and scale. This was expected 

to result in a profound new view on the scalability of a roller compaction process. Afterwards 

a scale approach was proposed balancing the difference between various scales to achieve the 

same quality attributes of a tablet, whereby the controversially discussed topic of the impact 

of the solid fraction of ribbons, particle size distribution and porosity of granules on tablet’s 

quality attributes was assessed. In this aspect, the influence of the solid fraction of the ribbon 

was investigated in a more detailed view between scales using a newly developed near 

infrared spectroscopy method. Moreover, solid fraction was an important impact factor, which 

reinforced the development of theoretical models to predict the solid fraction for powder 

mixtures based on single component compression analysis. 
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Table 1 Overview objectives 

Chapter Objective Summary 

4.1 
Characterisation of material attributes and method evaluation for the measurement of 

the solid fraction of ribbons 
 

4.2 

Investigation of the impact of formulation attributes and different scales on 

intermediate products ribbon, granules and tablets at different scales at same process 

settings 

4.2.5 

4.3 
Scale Model approach to balance observed differences between scales at adapted 

process settings 
4.3.4 

4.4 
Determination of the solid fraction distribution of ribbons along the roll width 

between two scales via near infrared reflectance 
4.4.5 

4.5 
Prediction of the solid fraction of tablets from powder mixtures based on single 

component compression analysis 
4.5.3 

 

This thesis is structured in five chapters. The first three chapters (chapter: 4.1, 4.2, 4.3) 

contain the impact of material attributes of two formulations and correlated differences caused 

by the scale of the roller compactor. Three main quality attributes will be investigated: (1) 

solid fraction of ribbons, (2) attributes of granules and (3) tablets. Finally, the solid fraction 

between scale will be determined more detailed (4.4), followed by comparing three theoretical 

models (4.5) to predict the solid fraction of mixtures for tablets. 
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3. THEORETICAL ASPECTS AND MODEL DEVELOPMENT 

3.1 ROLLER COMPACTION 

Three main process areas can be distinguished for a roller compactor (see Figure 1): 

1. Conveying system -> Powder 

2. Compaction zone -> Ribbon 

3. Milling system -> Granules 

A powder blend is conveyed by an agitator, feed auger and tamp auger (force-feed system) 

between counter-rotating rolls into the compaction zone. Depending on the manufacturer, 

various orientations of the conveying system are used [3].  

 

Figure 1 Schematic drawing – Roller compactor  

The compaction zone is divided into a slip, nip region and release region [1]. Initially, in the 

slip region particle rearrangement and de-aeration occurs, followed by an increasing specific 

compaction force in the course along the nip region, where the velocity of the particles 

becomes equal to the rotating rolls [11,12]. Different surfaces of the rolls (e.g. knurled, 

smooth) improve the friction between rolls and powder, which ease the dragging of powder 

into the nip region. Powder densification occurs in this region. Particle deformation (plastic 

deformation) and particle fragmentation takes place, whereby new bonds occur between 

particles, caused by more contact points and newly formed surfaces. Maximum pressure is 

achieved on the powder right before the minimal gap between the two rolls [1]. A seal system 

(cheek plates or rim rolls) encloses the compaction zone to prevent side seal leakage of the 
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powder. A ribbon is being released from the compaction zone to the milling system. Here, the 

released ribbon is sheared and sliced against a sieve mesh by an oscillating granulator to 

obtain granule particles. 

Two roller compactors were used for this thesis: A MiniPactor® and a M1075-GMP-

Polygran®. Both machines are products of the company Gerteis (Gerteis Machinen + 

Processengineering AG, Switzerland). The roller compactors are characterised by an inclined 

conveying system with a feed auger and tamp auger (see Figure 1). These machines provide 

an automatic gap control system, whereby the feed of the augers is automatically adjusted if 

the gap exceeds the defined value, which results in a constant powder supply and thus to a 

low fluctuation of the gap. The ratio of the feed/tamp auger can be set as process parameter. 

Samples of the ribbons are taken after achieving steady state conditions for the gap. Both 

machines were equipped with cheek plates as side seal system. Details of the used process 

parameter for each experiment are provided in 6.1.1. Figure 2 gives an overview of all design 

aspects and process parameters for a roller compaction process. 

  

Figure 2 Design aspects and process parameters of a roller compactor 

All construction aspects between both machines are equal, except for the roll width. The 

MiniPactor® (small scale) has a roll width of 25 mm, in contrast to the M1075-GMP-

Polygran® (large scale), which has a roll width of 50 mm and thus increases the throughput. 

M1075-GMP-Polygran® will be referred to as MacroPactor® in this thesis.  
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3.2 POWDER COMPACTION AND SOLID FRACTION THEORY 

3.2.1 Powder compaction - Definitions 

Single solid dosage forms are mostly prepared by compressing powder to tablets. Applying 

pressure on powder causes a volume reduction, whereby bondings are formed by plastic 

deformation, particle fragmentation, resulting in new available surfaces for bondings, and a 

formed compact is obtained (e.g. ribbon, tablet). The compact can be characterised measuring 

their tensile strength (TS) and solid fraction (SF). 

Solid fraction (SF) is the possible volume reduction related to its true density (lowest possible 

volume), and represents how dense a compact is compressed. 

𝑆𝑜𝑙𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝜌𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝜌𝑇𝑟𝑢𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
=

𝑚

𝑉𝑃
𝑚

𝑉𝑚𝑖𝑛

   Eq. (1) 

m = mass of powder/tablet [g]; Vp = volume at applied pressure [cm³]; Vmin = minimal volume [cm³] 

Solid fraction is a quality attribute of ribbons manufactured by a roller compaction (see 3.2.2) 

and tablets. The solid fraction of a tablet is a critical quality attribute (CQA) as it correlates to 

disintegration and dissolution [13–15] (i.e. faster dissolution and disintegration with lower 

solid fraction). The reason is that a low SF combined with a high porosity facilitates liquid 

penetration into tablets (Porosity () = 1- solid fraction). 

The second attribute of a compact is the tensile strength (TS), which is determined by 

measuring the required radial force to break the compact, whereby the geometry of the 

compact is considered for calculation (generalised breaking force) [16]. TS as parameter of 

mechanical strength of tablets has a major relevance for tablets during downstream processing 

due to mechanical impact during coating, transportation and packaging [17]. 
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Figure 3 Definitions – Tabletability, Compressibility and Compactibility 

Measurements of the tensile strength and solid fraction allow characterising materials and 

granules with regard to their tabletability, compressibility and compactibility (see Figure 3). 

Compressibility plots enable a view on the consolidation process of the material under 

pressure. Mathematical equations can be applied for compressibility plots to get a deeper 

insight into the physical behaviour of the densification process (e.g. Heckel, Kawakita, see 

6.2.1.5). Tabletability shows the mechanical strength dependent on pressure, and 

compactibility is a combination of both values as the tensile strength is depicted on a certain 

degree of densification. 

3.2.2 Solid fraction of the ribbon as critical quality attribute for roller compaction 

In respect to the regulatory guidance of the ICH Q8 (R2) Pharmaceutical development [18] 

application of Quality-by-Design (QbD) approach means to understand the process in depth, 

which enables to “built in” quality into the product by a process design space. Based on this, 

intermediate critical material attributes (iCMA), critical process parameters (CPP) and critical 

quality attributes (CQA) are examined during the development of a drug product. These three 

aspects define the control strategy of a drug product. For roller compaction the solid fraction 

of ribbon is a key intermediate critical quality attribute [5,8], as it shows an impact on particle 

size distribution (PSD) [5,19–24], porosity of granules [25] and the tensile strength of tablets 

[5–7,9,26]. Different process parameters like the speed of the conveying system, roll speed, 

gap width and specific compaction force have an impact on these quality attributes [20]. 
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As an example, a short dwell time of the ribbon is caused by a low speed of the rolls or 

conveying system and results to a low solid fraction [21,27–29]. In contrast, a high solid 

fraction is obtained by an increased specific compaction force or a lower gap width [5]. A 

control strategy for a roller compaction process contains these process parameters, but the 

resulting solid fraction of a ribbon reflects a combination of all process parameters together. 

Hence, it is not surprising that various authors have investigated the solid fraction in depth. 

Studies reported determining the solid fraction comprise different analytical techniques: 

• X-ray µCT [30],  

• ultra sonics [31],  

• geometrical method [32],  

• modified geometrical method [27,33], 

• throughput [5,26,27,34]  

• GeoPycnometer [8,17,35],  

• mercury porosimetry [22],  

• light transmission [36],  

• oil absorption [22,37],  

• throughput method [5,26,27,34],  

• buoyancy method [33],  

• near infrared reflectance [32,38], 

• near infrared reflectance – chemical imaging [21,22] 

It was demonstrated that a non-uniform solid fraction distribution of the ribbon along the roll 

width occurs [21,30,31,36]. Two design aspects of the roller compactor are identified to cause 

this effect: Conveying and side seal system. A periodical sinusoidal solid fraction distribution 

is obtained due to the feeding pressure of the last flight of the tamp auger [39]. Different side 

seal systems are used: cheek plates and rim rolls. Rim rolls led to a higher solid fraction at the 

edges [27], whereby a higher solid fraction at the centre was obtained using cheek plates [40], 

which can be diminished by internal powder lubrication [41]. 

In contrast, only a few authors measured and investigated the effect of different scales on the 

solid fraction. Unfortunately, the few reports on scale were controversial. Alleso et al. (2016) 

[37] stated that the scale has no impact on the solid fraction of the ribbon. In contrast to that, 

Shi et al. (2016) [42] and Ana Pérez Gago et al. (2017) [43] recognized a scale dependent 

influence. Unfortunately, neither the solid fraction distribution nor a potentially resulting 

impact on the granule and tablet quality were discussed or published. 
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3.2.3 Reduced tabletability caused by particle size enlargement effect, lubricant, 

porosity and work hardening effect 

Potential reasons are described in literature, explaining the main disadvantage of roller 

compaction process, namely the loss of tensile strength (tabletability), comprise four main 

reasons:  

• work hardening phenomena, 

• particle size enlargement effect,  

• porosity of granules,  

• added amount of Magnesium stearate to the granules,  

The term of work-hardening was first introduced by Malkowska et al. (1983) [44] who 

compressed excipients, milled and re-tableted the obtained granules. They observed a loss of 

tensile strength compared to the unprocessed excipients. It was stated that work-hardening 

means “resistance to deformation” of material, which can be described as a partial loss of 

their ability to build a new network of bonds. The probability of building bonds increases with 

a higher contact area between particles, which is dependent on the specific surface of particles 

and thus to the particle size distribution (PSD) [45]. As a coarser granule size occurs after 

roller compaction, which has a reduced specific surface, various authors tried to distinguish if 

the work-hardening or the particle size enlargement would affect the loss of tensile strength 

after roller compaction. 

Sun et al. (2006) [46] tableted a small and a coarse lubricated sieve fraction of 

Microcrystalline cellulose (MCC) after multiple compaction cycles and observed within one 

sieve fraction a decrease of the specific surface area, whereby the coarser sieve fraction 

provided always a lower tensile strength. They concluded that the particle size enlargement 

effect caused the loss of tensile strength. In contrast, Herting et al. (2008) [47] used 

unlubricated sieve cuts of MCC and stated that the loss of tensile strength is impacted due to 

an effect of both work-hardening and particle size enlargement. Wu et al. (2007) [48] 

determined that the particle size enlargement effect can be considered as negligible by using 

brittle components, as these components consolidate under an extensive fracturing during 

tableting into smaller particles with a higher specific surface. Compared to brittle 

components, He et al. (2007) [49] showed that MCC (plastic consolidation) is more sensitive 

towards addition of Magnesium stearate (MGST) regarding loss of tensile strength. Mosig et 

al. (2015) [10] tried to investigate these effects: particle size enlargement, work hardening and 

added lubricant for a plastic (MCC) and brittle ( − Lactosemonohydrate = LAC) 

components. They confirmed the study of He et al. (2007) [49] as they detected that the loss 
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of tensile strength after roller compaction of MCC was enhanced due to lubrication. 

Additionally, an effect of work-hardening and particle size enlargement was verified. 

Furthermore, no loss of tensile strength for LAC could be observed either by lubrication, 

particle size enlargement or after roller compaction, due to the brittle fracturing behaviour, 

which results into smaller particles with new unlubricated surfaces. Nordstrom et al. (2015) 

[25] proposed an interesting new aspect. Highly porous granules disintegrate into their 

primary particles during tableting, which diminishes the impact of the granule size on the loss 

of tensile strength. Thus, the granule porosity is an important factor, which has an impact on 

granules’ attributes. Recently, Sun et al. (2016) [50] published a mini review on this topic, 

where they concluded that all factors have to be considered for a roller compaction process. 
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3.3 PREDICTION OF SOLID FRACTION BASED ON COMPRESSION 

ANALYSIS FOR TABLETS 

The solid fraction is commonly understood as an important aspect of formulation design as it 

directly influences tensile strength, disintegration of tablets, dissolution time of tablets, drug 

product stability [13,14,51,52] and serves as scale up characteristic [53]. Thereby, it can be 

considered as critical quality attribute (CQA) [15].  

Hence, predicting of the solid fraction based on single compression analysis of commonly 

used excipients would be highly beneficial for development purposes. The prediction may 

serve as a systematic guidance for the formulator to select appropriate excipients depending 

on the active pharmaceutical ingredient to build quality into the drug product according to the 

Quality by Design approach. 

Compression analysis of pharmaceutical powders has been reported by various authors [54–

60]. The most frequently used compression models are Heckel [61] and Kawakita [62], which 

provide a physical interpretation of the volume reduction process of powders dependent on 

the applied pressure. The Heckel model for pharmaceutical powders is derived from 

compression experiments of metal powders and assumes that the consolidation (plastic 

deformation) follows first-order kinetics, which results in the Heckel equation Eq. (2), where 

 is the porosity of the compact and k the reciprocate of the Yield pressure.  

− ln( ) =  𝑘 ∗ 𝑃 + 𝐴   Eq. (2) 

 = porosity; k = slope Heckel; 𝑃 = compression pressure; A = intercept 

A linear course of the Heckel plot at increasing pressure indicates plastic deformation. 

However, in contrast to metal powders, pharmaceutical powders display additionally to plastic 

deformability, particle rearrangement and/or elastic deformation, which leads to deviations 

from the linear course of plastic deformation behaviour (see 6.2.1.5.1). In this context the 

Heckel plot shows a curvature in the lower pressure region [54]. Duberg et al. (1986) decided 

to divide the Heckel plot into 3 phases for pharmaceutical powders to reach a better 

applicability of the Heckel equation: particle rearrangement or fracturing, elastic or plastic 

deformation and decompression. Consequently, no single Heckel equation will be able to 

describe the compressibility of pharmaceutical powders appropriately for the entire range of 

the applied compression pressure. As for implementing, a prediction model for solid fraction 

for the widest possible range of compression pressure requires a model, which parameters 

describe the compression behaviour of the respective pressure range, the Heckel equation was 

excluded for this study. In contrast to the Heckel model, the Kawakita Eq. (3) equation 
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assumes that particles under compression pressure (P) are in an equilibrium and the product of 

the pressure term and volume term is constant [57].  

𝑃

𝐶
=

𝑃

𝑎
+  

1

𝑎𝑏
   Eq. (3) 

C = degree of volume reduction; P = compression pressure [MPa]; a = Kawakita constant; b = Kawakita 

constant 

Consequently, a linear course is obtained when plotting P/C vs. compression pressure, where 

C is the degree of volume reduction. The Kawakita parameters a and b-1 are determined by 

linear regression and likely to deliver appropriate results over the whole compression 

pressure. Promising results were found using the Kawakita equation to predict the 

compressibility of a tablet successfully [58,64,65]. Another potential model is the percolation 

model. Usually employed to elucidate the governing property of a material in a powder 

mixture dependent on its volume fraction, it can also be applied to describe a property, 

dependent on the fracture or extent of a process parameter. In this case, the tablet property of 

interest would be the solid fraction while the process parameter would be the compression 

pressure. A successful implementation of this concept has been demonstrated by various 

authors [66–70]. A sudden property change of a tablet will only be observed if the particle 

rearrangement is completed and an infinite cluster can be formed [66]. This sudden change 

(percolation threshold) is not considered by the simplification of the compressibility by the 

Kawakita equation. Therefore, percolation theory was applied for predicting the solid fraction 

as a function of the compression pressure. This adapted model has the potential to improve 

predictions for the solid fraction of a ternary mixture compared to Kawakita.  

3.3.1 Theoretical considerations Percolation, Kawakita and exponential model - 

Mathematical model development 

Two theoretical models Percolation and Kawakita will be evaluated for model application. An 

exponential model is added to elucidate whether the two-parametrised models with theoretical 

background are superior in terms of predictability of solid fraction compared to a model 

without parametrised variables. 

3.3.1.1 Percolation 

In the course of the percolation theory Eq. (4), tableting of powder is considered as forming 

site- and bond clusters in a lattice [66]. After particle rearrangement an infinite cluster is 

formed throughout the whole tablet, and the particles cannot disintegrate into their primary 

particles again [66]. Before this percolation threshold is reached, the voids of the powder bed 
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are filled by particle rearrangement. The percolation threshold is typically between the tapped 

density and the bulk density, where a first compact is formed and the interparticulate bonding 

starts, so that isolated clusters (finite clusters) are combined to form an infinite cluster 

throughout the tablet, which corresponds to a massive property change in the system.  

Basic formula of percolation phenomena: 

𝑋 =  𝑆 ∗ (𝑝 − 𝑝𝑐)𝑞 [66]   Eq. (4) 

Percolation formula for tensile strength: 

𝜎𝑡

𝜎𝑡𝑚𝑎𝑥
=  𝑆 ∗ (𝑝 − 𝑝𝑐)𝑞 [69] Eq. (5) 

X = system property; S = proportional constant or scaling factor; 𝑝  = site occupation or bond probability; 

 𝑝
𝑐

= critical concentration or percolation threshold; 𝑞  = critical exponent; 𝜎𝑡 = tensile strength [N/mm²]; 

𝜎𝑡𝑚𝑎𝑥= maximal tensile strength [N/mm²] 

In theory, the basic power law is only valid near the percolation threshold in a lattice [66]. 

Kuentz & Leuenberger found that it is possible to use the percolation theory for a broader 

range regarding modified Young’s modulus and tensile strength [68,69,71] . Different authors 

evaluated the applicability of the percolation theory for tensile strength by considering the 

system property X as tensile strength, 𝑝  as relative density (or solid fraction), and 𝑞  as 

fractural exponent of the tablet [66–69]. They defined the percolation threshold (𝑝𝑐) as a 

minimum of solid fraction which leads to a mechanical strength or as a “critical volume 

fraction in a continuum percolation” [69]. The value found for the percolation threshold was 

between the relative bulk density and the tapped density for the excipients [69]. The 

theoretical value of the critical exponent 𝑞 can be calculated by applying the Bethe lattice 

approximation or mean field theory. For mechanical strength it is defined as constant with a 

value of 2.7 [67]. Some authors found that 𝑞 can differ from theoretical values for tensile 

strength in a binary system [67–69]. Related to this knowledge, 𝑞 was defined as variable 

parameter to predict the solid fraction referring to it as compressibility exponent (q) 

throughout the manuscript. The solid fraction (SF) is normalised by the highest detected value 

for SF (𝑆𝐹𝑚𝑎𝑥), which leads to: 

  
𝑆𝐹

𝑆𝐹𝑚𝑎𝑥
=  𝑆 ∗ (𝑥𝑝 − 𝑝𝑐)

𝑞
    Eq. (6) 

SF = solid fraction; 𝑆𝐹𝑚𝑎𝑥  = measured maximal solid fraction; S = scaling factor; xp = compression pressure 

[MPa]; 𝑝𝑐= Percolation threshold; 𝑞 = compressibility exponent 

Eq. (6) was used for fitting the model variables S,  𝑝𝑐 and 𝑞 using the measured SF and 𝑆𝐹𝑚𝑎𝑥 

values. 
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3.3.1.2 Kawakita 

The Kawakita equation [72] Eq. (7) is based on the volume reduction of powder (𝐶) under 

compression pressure. 𝐶 is defined as the degree of volume reduction (engineering strain) at 

applied pressure 𝑃. 𝑉0 is the initial in-die volume of the powder, and 𝑉𝑃 is the volume of the 

powder at applied pressure. 

𝐶 =  
𝑉0−𝑉𝑃

𝑉0
=  

𝑎∗𝑏∗𝑃

1+𝑏∗𝑃
   Eq. (7) 

 𝑎 and 𝑏 are Kawakita compression parameters which can be determined by linear regression 

using the linearized form of Eq. (8) [73,74], 

𝑃

𝐶
=

𝑃

𝑎
+  

1

𝑎𝑏
   Eq. (8) 

𝑎 represents the maximal strain or degree of compression at maximal pressure (𝐶𝑚𝑎𝑥). The 

inverted 𝑏-1 (1/𝑏) describes the pressure to reach 𝑎/2, which can be correlated to the plasticity 

(Yield pressure, Heckel) and initial compressibility of single ductile granules [74] or can be 

seen more simplified as deformation capacity [75]. The parameters a and b were determined 

by applying linear regression on a plot of P/SF vs. P. Kawakita’s 𝑎 is equal to 1/slope and 𝑏-1 

is equal to slope multiplied with y-intercept. Considering the determination of 𝐶 and therefore 

the initial volume (𝑉0) can have an important influence on the results [76,77]. There are three 

methods described for the determination of 𝑉0. The first is to measure 𝑉0 between 1-2 MPa 

[77] or at the lowest measurable pressure. The second is to define 𝑉0 based on bulk density 

which delivers better results compared to the first method [78]. The third is to determine 

initial density using nonlinear regression with three parameters [77,79]. These estimate are 

highly dependent on the method of determination (process and user) and hence, prone to 

errors. Thus, the resulting Kawakita parameters are difficult to compare between various 

research laboratories. 

Therefore, a modified approach to determine 𝑉0  was chosen, where 𝑉0  should only be 

material-dependent and particle size dependence is negligible. Similarly, to the Heckel 

approach, the reference volume was the lowest possible volume, i.e. the volume at maximum 

density or true density. Subsequently, 𝐶 was related to solid fraction and 𝑉0 changed to Vmin, 

which was measured by Helium-pycnometry, an easy and reliable determination method. The 

values of Vmin and VP are defined in Eq. (9) and Eq. (10) :  
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𝜌𝑇𝑅𝑈𝐸 =
𝑚

𝑉𝑚𝑖𝑛
;  𝑉𝑚𝑖𝑛 =

𝑚

𝜌𝑇𝑅𝑈𝐸
   Eq. (9) 

𝜌𝐴𝑃𝑃 =
𝑚

𝑉𝑃
 ; 𝑉𝑃 =

𝑚

𝜌𝐴𝑃𝑃
     Eq. (10) 

𝜌𝑇𝑅𝑈𝐸  = true density [g/cm³]; 𝜌𝐴𝑃𝑃 = apparent density [g/cm³]; m = mass of tablet [g] 

where 𝑉𝑃  represents the volume of the powder at applied pressure, and 𝜌𝐴𝑃𝑃  is the 

corresponding apparent density in Eq. (10). As 𝑉𝑚𝑖𝑛 is always smaller than 𝑉𝑃, 𝐶 is derived 

as: 

𝐶 =  
𝑉𝑚𝑖𝑛

𝑉𝑃
   Eq. (11) 

If Eq. (9) is combined with Eq. (10):  

 
𝑉𝑚𝑖𝑛

𝑉𝑃
=

𝑚

𝜌𝑇𝑅𝑈𝐸
𝑚

𝜌𝐴𝑃𝑃

    or   
𝑉𝑚𝑖𝑛

𝑉𝑃
=

𝜌𝐴𝑃𝑃

𝜌𝑇𝑅𝑈𝐸
  Eq. (12) 

Considering Eq. (12) and Eq. (1) leads to: 

 𝐶 = 𝑆𝐹 =
𝜌𝐴𝑃𝑃

𝜌𝑇𝑅𝑈𝐸
=  

𝑎∗𝑏∗𝑃

1+𝑏∗𝑃
  Eq. (13) 

Where SF is the solid fraction. 

Thus, the modified Kawakita parameter a can be considered as the maximum solid fraction at 

an examined compression pressure range that is achievable for an excipient by tableting. 

Therefore, the following modified Kawakita formula is proposed and used: 

𝑃

𝑆𝐹
=

𝑃

𝑎
+  

1

𝑎𝑏
  Eq. (14)  

3.3.1.3 Exponential 

In addition to the prediction of solid fraction by the modified Kawakita model and the 

Percolation model, a simple exponential function Eq. (15) was used to predict the solid 

fraction without a mechanistic model behind it, i.e. the variable d, f and g are adapted, non-

parametrised variables. 

𝑆𝐹 = 𝑑 + 𝑓 ∗ 𝑒(𝑔∗𝑃)   Eq. (15) 

The variables 𝑑, 𝑓 and 𝑔 were fitted by linear regression using a compressibility plot (solid 

fraction vs. compression pressure [MPa]).  

3.3.1.4 Additive rule 

Ramaswamy et al. (1970) demonstrated that the volume of a mixture follows an additive rule 

of the volume of single components, under the condition that the single components have the 

same particle size [80].  
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𝑆𝑜𝑙𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑀𝑖𝑥𝑡𝑢𝑟𝑒 = 𝑥𝑀𝐶𝐶 ∗ (𝑀𝑜𝑑𝑒𝑙) + 𝑥𝐿𝐴𝐶 ∗ (𝑀𝑜𝑑𝑒𝑙) +  𝑥𝐶𝐴𝑅𝐵 ∗ (𝑀𝑜𝑑𝑒𝑙)  Eq. (16) 

𝑥𝐸𝑥𝑐𝑖𝑝𝑖𝑒𝑛𝑡  = weight fraction (% w/w) of excipient in mixture 

This hypothesis was applied by various authors to predict the porosity, percolation threshold, 

or tensile strength of mixtures [75,79,81–83] and was shown to be adequate for excipients 

with different particle size. This approach was applied for all three models to predict the solid 

fraction, where 𝑥𝐸𝑥𝑐𝑖𝑝𝑖𝑒𝑛𝑡 is the weight fraction (% w/w) of the respective single excipient of 

the mixture. Magnesium stearate was not included in the calculations as it was used as 

lubricant at a constant level for both, the single excipients and the mixtures. It was necessary 

to determine the true densities of the materials to apply the calculation of the solid fraction 

according to Eq. (1) and to calculate the true densities of the mixtures    Eq. (17). 

For the mixtures the true density was calculated by the weight fraction of MCC, LAC and 

Sodium carboxymethylcellulose(CARB) divided by 99.5, as described by Gupta et al. (2005) 

[84], to reduce the number of input parameters for the models. 

ρ
𝑇𝑅𝑈𝐸𝑀𝑖𝑥𝑡𝑢𝑟𝑒

=
𝑥𝑀𝐶𝐶

99.5
∗ (𝜌𝑇𝑅𝑈𝐸 𝑀𝐶𝐶) +

𝑥𝐿𝐴𝐶

99.5
∗ (𝜌𝑇𝑅𝑈𝐸 𝐿𝐴𝐶) +  

𝑥𝐶𝐴𝑅𝐵

99.5
∗ (𝜌𝑇𝑅𝑈𝐸 𝐶𝐴𝑅𝐵)     Eq. (17) 

𝜌𝑇𝑅𝑈𝐸= true density [g/cm³]; 𝑥𝐸𝑥𝑐𝑖𝑝𝑖𝑒𝑛𝑡  = weight fraction (% w/w) of excipient in mixture 

 

  



MATERIAL ATTRIBUTES AND METHOD COMPARISON FOR SOLID FRACTION 

MEASUREMENTS OF RIBBONS 

19 

4. RESULTS & DISCUSSION 

4.1 MATERIAL ATTRIBUTES AND METHOD COMPARISON FOR SOLID 

FRACTION MEASUREMENTS OF RIBBONS 

4.1.1 Material attributes of raw materials and blends 

In order to understand the results of a roller compaction process, it is necessary to characterise 

the excipients and blends with respect to their attributes (see 4.1.1.1) and compression 

behaviour (compressibility, tabletability and compactibility, see 3.2.1).  

4.1.1.1 Raw material properties 

Table 2 Material attributes - Raw materials and blends 

Composition 

 

True 

density 

[g/cm³] 

Bulk 

density 

[g/ml³] 

Tapped 

density 

[g/ml] 

Hausner 

ratio  

(2500 taps) 

Particle size 

distribution d50 

Microcrystalline cellulose 1.5565 0.21 0.27 1.32 87 

−Lactose-monohydrate 1.5417 0.63 0.79 1.27 157 

Sodium carboxymethylcellulose 1.5934 0.50 0.71 1.38 61 

MCC 2:1 LAC 1.5472 0.48 0.58 1.23 103  

MCC 1:1 LAC 1.5447 0.52 0.63 1.23 110  

Metformin hydrochloride 1.3559 - - - - 

MET 21 1.5066 0.50 0.62 1.23 98 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; MET 21 = Metformin with drug load 21 % 

For all excipients and blends (MCC 2:1 LAC, MCC 1:1 LAC) their true density, bulk/tapped 

density, particle size distribution (d50) were characterised. In Table 2, an overview of the 

material attributes is provided. 
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4.1.1.2 Compression analysis 

In literature, there are a several methods described for the analysis of the powder densification 

process to define the properties of the material [60–63,85–88]. Compressibility, tabletability 

and compactibility plots were considered in this thesis (see 3.2.1). All single components 

(LAC, MCC, CARB) and blends (MCC 2:1 LAC, MCC 1:1 LAC) were tableted by a single 

punch tablet press (FlexiTab). Despite the knowledge that MGST can influence the 

compression behaviour [89], 0.5 % MGST was added to the excipients to guarantee same 

process conditions compared to the lubricated blends processed by a roller compactor.  

4.1.1.2.1 Compressibility 

An incremental displacement transducer system traced the displacement of the punches during 

compression in order to obtain force displacement data in the range of 0 – 235 MPa.  

 

Figure 4 Compressibility – “In- die” measurement excipients and blends, 

CARB = Sodium carboxymethylcellulose, 

LAC =  − Lactosemonohydrate, MCC = Microcrystalline cellulose – 

Image section: Compression pressure 20 – 70 MPa, Exceedance of 

LAC’s solid fraction by MCC’s solid fraction at 66 MPa 
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Consequently, the solid fraction of the tablet was plotted against the compression pressure 

(see Figure 4). LAC achieved a higher solid fraction at a low compression pressure compared 

to MCC. LAC consisted of spherically pre-agglomerated particles and had a higher bulk 

density of 0.63 g/cm³ (working/starting density) compared to the density of 0.21 g/cm³ of 

MCC. The compression behaviour between LAC and MCC is different. LAC has a brittle 

compression behaviour [90,91]. In contrast, MCC consolidates by plastic deformation under 

pressure [60], explaining the steeper slope of the compressibility plot and exceeded LAC’s 

solid fraction at around 0.77 ( 66 MPa). CARB also undergoes plastic consolidation, but 

compared to MCC to a lower extent. The short decrease of compression pressure at 22 MPa 

(1.7 kN) was attributed to the switching threshold from pneumatic to hydraulic pressure of the 

FlexiTab. Considering the compressibility of both blends, MCC 1:1 LAC had a higher solid 

fraction at lower compression pressure compared to MCC 2:1 LAC, which is attributed to the 

high fraction of LAC. At around 0.74 SF ( 66 MPa) MCC 2:1 LAC exceeded the solid 

fraction of MCC 1:1 LAC, indicating a higher impact of the plastic consolidation of MCC. 

The course of the solid fraction plot versus compression pressure of all mixtures was in 

agreement with the sum of the properties of the single components in relation to their fraction 

within the mixture. This finding is consistent with results published by various authors 

[58,80,92,93] who have shown that the volume reduction of a blend (eq. solid fraction) 

follows an additive rule of the volume reduction of single excipients in a blend (see 3.3.1.4). 

4.1.1.2.1.1 Compressibility equation  – Heckel  

Yield pressure (Heckel) determination was done in a pressure range between 20 MPa – 

120 MPa for unprocessed material as this range corresponds to a solid fraction of the blends 

between 0.60 – 0.80, which represents an expected range for a solid fraction of a ribbon at dry 

granulation [17]. A low Yield pressure illustrates a good plastic consolidation, which is 

defined as a low resistance against material deformation.  

LAC showed the highest Yield pressure of 188.68 MPa compared to all other investigated 

excipients and blends. This was attributed to the brittle deformation behaviour of LAC [90,91]. 

In contrast, MCC showed the lowest Yield pressure of 86.21 MPa, which was caused by the 

good plastic consolidation. The Yield pressure of the blends (107.53 MPa MCC 2:1 LAC, 

119.05 MPa MCC 1:1 LAC) increased with a higher fraction of the brittle LAC [56,93]. 

Determined values are consistent with literature [54,56], knowing the limitation that Heckel 

plots are difficult to compare between various research laboratories [54]. All correlation 

coefficients were above 0.98. Assuming that particle rearrangement is not fully completed at 
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20 MPa and that normal operating range for a Heckel plot is  50 MPa [63,93,94], the fitting 

result were adequate. 

 

 

Figure 5 Heckel plot – “In-die” measurement excipients and blends, CARB = 

Sodium carboxymethylcellulose , LAC =  − Lactosemonohydrate, 

MCC = Microcrystalline cellulose - Image section: Pressure range for 

Yield pressure determination (linear regression)  

Table 3 Results Heckel – Excipients and blends 

 MCC LAC CARB MCC 2:1 LAC MCC 1:1 LAC 

Slope 0.0116 0.0053 0.0079 0.0093 0.0084 

Py (1/slope) 86.21 188.68 126.58 107.53 119.05 

R² 0.9863 0.9855 0.9988 0.9877 0.9867 

Py = Yield pressure Heckel; R2 = coefficient of correlation; MCC = Microcrystalline cellulose; 

LAC =  − Lactosemonohydrate; CARB = Sodium carboxymethylcellulose  
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4.1.1.2.2 Tabletability  

In Figure 6 the course of the tensile strength depending on compression pressure for each 

excipient and blend is shown. The tensile strength increased with rising compression pressure. 

At low compression pressure, determination of the tensile strength of LAC was not possible 

using an automatic tablet tester because the resulting tablets were too fragile.  

 

Figure 6 Tabletability – Excipients and blends, mean (n = 6), error bars 

(standard deviation of mean), CARB = Sodium 

carboxymethylcellulose, LAC =  − Lactosemonohydrate, 

MCC = Microcrystalline cellulose 

The maximal of tensile strength decreased in the order MCC > CARB > LAC, which was a 

result of the compression behaviour of good plastic consolidation (MCC, CARB) and brittle 

fracturing (LAC) during compression. The plastic flow of MCC and CARB resulted in strong 

bonds and consequently led to a higher tensile strength. LAC showed a nearly linear increase 

of the tensile strength [95], however at overall a low tensile strength level. Considering the 
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blends, tensile strength decreased with a higher fraction of LAC. These differences were 

persistent over the whole range of compression pressure. 

4.1.1.2.3 Compactibility 

A good compactibility represents a high tensile strength at a low degree of solid fraction. 

MCC achieved the highest tensile strength at a comparable solid fraction ( 0.90) followed by 

MCC 2:1 LAC > MCC 1:1 LAC > LAC. CARB achieved only a maximal solid fraction of 

about 0.83, which however was sufficient to achieve a good tensile strength (see Figure 7).  

 

Figure 7 Compactibility – Excipients and blends, mean (n = 6), error bars 

(standard deviation of mean), CARB = Sodium 

carboxymethylcellulose, LAC =  − Lactosemonohydrate, 

MCC = Microcrystalline cellulose 

Considering the course of the blends, it is obvious that MCC 2:1 LAC always showed a 

higher tensile strength at a similar solid fraction compared to MCC 1:1 LAC. In other words 

MCC 2:1 LAC needed less pressure (eq. solid fraction) to reach a higher tensile strength [96] 

because of the higher proportion of MCC and its good plastic consolidation under pressure. 
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4.1.1.2.4 Summary 

In summary, a high plastic deformation under pressure resulted in a good tabletability and 

high compactibility. MCC showed the highest values over the whole range of investigated 

compression pressures. A higher fraction of LAC in a mixture resulted in a lower tabletability 

and compactibility. Considering the compressibility plot, LAC reached a higher solid fraction 

than MCC at a low compression pressure. Heckel Yield pressure results confirmed the course 

of the compressibility plots. 

Table 4 Summary - Compression analysis excipients and blends – Descending order of 

maximal achievable tabletability and compactibility 

Composition Py Tabletability Compactibility 

Microcrystalline cellulose 86.21 
 

 

 

Sodium carboxymethylcellulose 126.58 

MCC 2:1 LAC 107.53 

MCC 1:1 LAC 119.05 

−Lactose-monohydrate 188.68 

Py = Yield pressure Heckel; MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 
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4.1.2 Comparison of throughput, mercury porosimetry and GeoPycnometry 

method to determine the solid fraction of ribbons 

As a first step, it is important to identify an appropriate method to analyse the ribbons. 

Different methods have been described by authors for the determination of solid fraction for a 

ribbon (see 3.2.2). A few techniques were compared. These methods can be distinguished by 

the determination of the “in-gap” solid fraction within the gap during compaction, (three 

throughput methods) and “out of gap” solid fraction, after the ribbon is released (throughput + 

height measurement, GeoPycnometry, mercury porosimetry) (see 6.2.2). All samples were 

produced within one roller compactor (MacroPactor) at 2, 4, 6 and 8 kN/cm (MCC 2:1 LAC).  

In gap methods - Three “in-gap” methods [5,26,27] were compared. As depicted in Figure 8, 

solid fraction increased up to 6 kN/cm. Comparing the “in-gap” methods of Herting et al. 

(2007) [26], Gamble et al. (2010) [5] and Peter (2010) [27] differences could not be noticed 

(see Figure 8).  

 

Figure 8 “In-gap” solid fraction ribbon – Mean (n = 5), error bars (standard 

deviation of mean) – Comparison of three approaches to calculate the 

solid fraction of ribbons by weighing the granule throughput 
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The volume calculation of the ribbon was based on the equation of Herting et al. (2007) [26]. 

An extension of this equation was done by Gamble et al. (2010) [5] who took the voids of the 

knurled surface of the rolls also into account. Peter (2010) [27] did a correction by 

multiplying the circumference by half of the gap. Considering these three equations (see 

6.2.2.1) the calculated volume was fixed and defined by the geometry of roller compactor and 

process settings (gap width). Thus, only the produced mass of granules per minute (g/min) 

could have an impact on the results. Small relative standard deviations for the solid fraction 

between 0.72 – 2.44 % were obtained. Higher specific compaction forces result in higher solid 

fraction and higher tensile strength of the ribbons [17,23]. As a result, the ribbons require 

more time to get milled by the granulator [97,98]. Throughput per minute dropped, and 

therefore the calculated solid fraction was reduced, too (Figure 8, see equations 6.2.2.1). This 

effect was most pronounced for the specific compaction force of 8 kN/cm. 
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Out of gap methods - The “out of gap” porosity was measured by the proposed approach of 

Nkansah et al. (2008) [34], by GeoPycnometry and mercury porosimetry. Three methods were 

compared. In order to consider the elastic relaxation of the ribbons, measurements were done 

48h following compaction. For Nkansah et al. (2008) [34] mean height of the ribbons was 

measured five times by a micrometer screw. In the range of 2-4 kN/cm, differences could not 

be identified between these methods. At 6 kN/cm the solid fraction of Nkansah et al. (2008) 

[34] was lower than the others. The difference increased to 0.08 for ribbons at 8 kN/cm (see 

Figure 9). 

 

Figure 9 “Out of gap” solid fraction ribbon – Mean, error bars (standard 

deviation of mean), methods: GeoPycnometer (n = 5), Mercury 

porosimetry (n = 3), Nkansah et al. (2008) [34] (n = 5)  

A higher residence time of the ribbons in the granulator caused a decrease in solid fraction for 

the obtained ribbons. The observed maximal relative standard deviation were smaller for 

mercury porosimetry (0.78 – 1.75 %) and for the GeoPycnometry (0.29 – 0.42 %) compared 

to Nkansah’s approach (0.72 – 2.44 %). The differences between the GeoPycnometry and 

mercury porosimetry were in a range between -0.61 and 1.21 %. A significant difference 
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(p  0.05) between both methods was not observed (see APPENDIX 8.2.1 T-Test). Hence, 

there is neither a systematic nor significant deviation between GeoPycnometry and mercury 

porosimetry. In summary the “in-gap” solid fraction did not include the elastic recovery as 

only the gap setting of the roller compactor is a variable for the calculation (see 6.2.2.1). 

Therefore, higher values were delivered for the solid fraction compared to the “out of gap” 

solid fraction (see Figure 10). The throughput methods (“in-gap” & “out of gap”) delivered 

reasonable results at lower specific compaction force, but they were prone to errors at higher 

specific compaction forces.  

 

Figure 10 MacroPactor – Comparison of analytical methods for solid fraction of 

ribbon, mean, error bars (standard deviation of mean) 

Due to the low maximal relative standard deviation and robustness of the measurement, the 

mercury porosimetry and GeoPycnometry are the analytical methods of choice. Considering 

sample preparation, only small pieces (2* 25 mm * 10 mm) can be analysed by mercury 

porosimetry, because of the small volume of sample chamber of the Dilatometer compared to 

the GeoPycnometry (6 * 25 mm * 30 mm), which will give a more representative result. 

Analysis time is around 1 h for mercury porosimetry compared to 15 - 20 min of the 
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GeoPycnometry. Hence, for both reasons the GeoPycnometry was the analytical method for 

determination of ribbon’s solid fraction in this thesis.  
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4.2 COMPARISON OF TWO ROLLER COMPACTORS OF DIFFERENT 

SCALE AT SAME PROCESS SETTINGS 

Two formulations MCC 2:1 LAC and MCC 1:1 LAC were compacted at four specific 

compaction levels (2, 4, 6, 8 kN/cm) at different scales, while process parameters were kept 

identical (see Table 13). The main difference between these roller compactors was the roll 

width (25 mm MiniPactor, 50 mm MacroPactor). Solid fraction of the ribbons, attributes of 

granules and tablets were examined in particular regarding following two aspects: 

1. Impact of the formulation  (MCC 2:1 LAC, MCC 1:1 LAC)  

2. Influence of different scales (MacroPactor, MiniPactor) 

4.2.1 Formulation impact on the solid fraction within one scale 

MacroPactor - Solid fraction increased with increasing specific compaction force [99]. The 

solid fraction range increased from 0.62 to 0.82 for applied force of 2 kN/cm to 8 kN/cm. 

  

Figure 11 Solid fraction ribbon – MacroPactor, mean (n = 5), error bars 

(standard deviation of mean) 
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This solid fraction was in agreement with previously published normal operating range for a 

roller compaction process [17]. The relative standard deviation of means was small (0.30 % – 

1.05 %, see Figure 11). A T-test indicated significant difference (p  0.05) between these two 

formulations (see APPENDIX 8.2.2). A higher fraction of LAC led to a higher solid fraction 

of the ribbon, which was consistent with findings of various authors [4,23].  

Compression behaviour of the spherically shaped pre-agglomerated LAC particles indicated a 

higher solid fraction. LAC had higher bulk and tapped density (0.63 g/ml³, 0.79 g/ml³) 

compared to MCC (0.21 g/ml³, 0.27 g/ml³). Additionally, LAC needed less pressure for 

particle rearrangement because of the brittle compression behaviour [90,91], which is 

characterised by the fracturing of pre-agglomerated primary particles under pressure. A higher 

fraction of LAC causes a consolidation to a higher solid fraction [4]. This behaviour was 

confirmed by “In-die” tableting measurements of single components previously (see 4.1.1.2, 

Figure 4). The compaction process of a tablet press and a roller compactor is not precisely 

comparable because the roller compactor has a longer dwell time according to Hilden et al. 

(2011) [100]. But a higher fraction of LAC caused the formulation of MCC 1:1 LAC to reach 

a higher solid fraction compared to MCC 2:1 LAC up to a compression pressure of 66 MPa 

for “In-die” tableting (see 4.1.1.2, Figure 4). Exceeding that pressure MCC 2:1 LAC will 

result in higher solid fractions. Initially, the solid fraction of LAC was higher at low 

compression pressure, which was reflected by a high bulk and tapped density. Considering the 

course of the profiles in Figure 11, the differences decreased from 0.022 to 0.005 between 

both formulations from low to high specific compaction force. A higher fraction of MCC 

induces a stronger increase of the solid fraction by plastic consolidation [101], which took 

place at higher specific compaction forces and compensated the initial lower solid fraction of 

formulation MCC 2:1 LAC. A comparable behaviour was observed for unprocessed blends by 

“In-die” tableting (see 4.1.1.2, Figure 4). 
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MiniPactor – MiniPactor showed similar results for the ribbons compared to the 

MacroPactor for both formulations. An equal impact of the formulation attributes on the 

resulting solid fraction of ribbons was observed (Figure 12). T-test indicated significant 

difference (p  0.05) (see APPENDIX 8.2.2). Relative standard deviation 0.59 % - 3.90 % 

was higher compared to the MacroPactor. A explanation could be a lower steady state powder 

supply into the gap for the small scale, which led to a higher relative standard deviation. 

However, the relative standard deviation was still in an acceptable range. Difference between 

formulations decreased from 0.039 to 0.008 (2 kN/cm to 8 kN/cm).  

 

Figure 12 Solid fraction ribbon – MiniPactor, mean (n = 5), error bars (standard 

deviation of mean) 
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4.2.2 Comparison of the solid fraction between different scales 

Comparing the solid fraction of ribbons at two different scales for each formulation, a 

difference between both scales was observed, despite identical process parameters were 

chosen (see Figure 13).  

 

Figure 13 Comparison solid fraction ribbon - MacroPactor/MiniPactor – 

MCC 2:1 LAC/MCC 1:1 LAC, mean (n = 5), error bars (standard 

deviation of mean) 

The deviation between the two scales was between 18.18 % to 9.27 %, the lowest difference 

occurred at highest specific compaction force of 8 kN/cm. A T-Test confirmed a significant 

difference (p  0.05) of the solid fraction between both scales (see APPENDIX 8.2.2). In 

literature, only limited information is available about direct comparisons of two different 

scales with the same formulation at same process settings. Alleso et al. (2016) [37] used only 

MCC and obtained no difference for four of five batches. They concluded that the solid 

fraction of ribbons at different scales is equal. Shi et al. (2016) [42] recognized a higher solid 

fraction for the ribbons that were produced at a larger scale, which is in accordance to Figure 
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13. Recently, Ana Pérez Gago et al. (2017) [43] published that dependent on the used 

formulation, a different scale can impact the solid fraction. A clear explanation for this 

difference was however, not provided. Thus, a contradictory picture exists in literature and no 

author has shown the effect of scale on granules and likewise on resulting tablets. In 

conclusion, a combined analysis of the granules (4.2.3) and tablets (4.2.4) is still missing to 

better understand the influence of the observed difference at different scales.  

4.2.3 Particle size distribution of granules 

4.2.3.1 Impact of formulation attributes on particle size distribution within one scale 

MacroPactor - It is common understanding that an increased specific compaction force (eq. 

solid fraction) results in coarser granules [19–22]. Results of the d50 of the granules can be 

seen in Figure 14. 

 

Figure 14 d50 granules – MacroPactor – MCC 2:1 LAC/MCC 1:1 LAC, mean 

(n = 3), error bars (standard deviation of mean)  
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The d50 of MCC 2:1 LAC increased from 83 µm to 133 µm and the bulk density from 

0.51 g/cm³ to 0.56 g/cm³ for specific compaction force of 2 kN/cm to 8 kN/cm, which 

reflected a densification of the formulation.  

Considering Figure 15, the fraction of fine particles ( 63 µm) increased up to 6 kN/cm, 

compared to the unprocessed blend (0 kN/cm). Fracturing of pre-agglomerated particles of 

LAC under pressure causes smaller particles with a higher surface in respect to unprocessed 

LAC [19,23,102]. The higher surface can also be considered as an increased bonding 

capacity. 

  

Figure 15 PSD granules – MacroPactor - MCC 2:1 LAC, triangle (mean, n = 3), 

error bars (standard deviation of mean), colour indicates different 

specific compaction forces [kN/cm] 

The effect of disintegration into fine particles by pre-agglomerated particles and brittle 

fracturing was reduced at a higher solid fraction of the ribbon caused by an increased impact 

of the plastically consolidated MCC. LAC particles can fill the voids between fibrous MCC 

particles [4] to build a ribbon to resist the shear stress of the milling process of the granulator 

(see Figure 15).  
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The d50 of the particle size distribution (PSD) of the formulation MCC 1:1 LAC increased 

from 79 µm to 210 µm and the bulk density increased from 0.53 g/cm³ to 0.59 g/cm³. At a 

same specific compaction force, it would be expected, that the higher fraction of the MCC in 

formulation MCC 2:1 LAC would result in a stronger ribbon characterised by a higher tensile 

strength compared to MCC 1:1 LAC (see 4.1.1.2.2). Hence, a higher d50  occurs [23], but this 

was not be observed for 8 kN/cm (see Figure 14).  

 

Figure 16 Side seal leakage of unprocessed material above cheek plates – 

MacroPactor – MCC 2:1 LAC at 8 kN/cm 

A leakage at the side seal system was observed for MCC 2:1 LAC at 8 kN/cm. Unprocessed, 

smaller material slipped above the compaction zone (see Figure 16). With a higher amount of 

smaller particles the d50 of MCC 2:1 LAC was reduced. This explained the lower d50 of 

133 µm for MCC 2:1 LAC compared to 210 µm for formulation MCC 1:1 LAC at 8 kN/cm. 

Furthermore, no increase of the d50 could be observed between 6 kN/cm and 8 kN/cm (see 

Figure 14). Hence, MiniPactor results will be more representative for a reliable formulation 

comparison for PSD of granules within one scale as no side seal leakage was observed. 
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MiniPactor – An increased d50 of the granules was obtained at rising specific compaction 

force. MCC 2:1 LAC showed a strong increase of the d50 from 88 µm to 136 µm compared to 

MCC 1:1 LAC (70 µm to 105 µm, see Figure 17). Same process parameters resulted in a 

higher d50 for MCC 2:1 LAC. This was caused by the higher amount of MCC, which is 

correlated with a higher plastic deformation, resulting in a higher tensile strength (see Figure 

6), to resist the destructive load of the milling process of the granulator. LAC needed a higher 

pressure (e.g. degree of consolidation) to gain the same level of tensile strength (see Figure 6). 

Therefore, a higher d50 was obtained for MCC 2:1 LAC at the same specific compaction force 

compared to MCC 1:1 LAC.  

 

Figure 17 d50 granules – MiniPactor – MCC 2:1 LAC/MCC 1:1 LAC, mean (n = 

3), error bars (standard deviation of mean) 

Brittle behaviour and destruction of the fine pre-agglomerated LAC particles showed a lower 

d50 at low specific compaction force compared to unprocessed blends. The d50 of the 

unprocessed blends have been firstly exceeded after a specific compaction force of about 

6 kN/cm (see Figure 17). Bulk density increased from 0.47 g/cm³ to 0.56 g/cm³ (2 kN/cm – 
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8 kN/cm, MCC 2:1 LAC) and from 0.50 g/cm³ to 0.60 g/cm³ (2 kN/cm – 8 kN/cm, MCC 1:1 

LAC) with rising solid fraction, which indicated a densification of both formulations. 

Comparing both formulations, a higher fraction of fine particles were found for MCC 1:1 

LAC compared to MCC 2:1 LAC (see Figure 18,  63 µm). Although the formulation MCC 

1:1 LAC reached a higher solid fraction of the ribbon within one scale (see Figure 13).  

 

Figure 18 PSD granules– MiniPactor at 2, 4, 6 and 8 kN/cm – 

MCC 2:1 LAC/MCC 1:1 LAC, triangle (mean, n = 3), error bars 

(standard deviation of mean) 

The formulation MCC 2:1 LAC had a higher ribbon compactibility (see 4.1.1.2.2), resulting 

in a higher tensile strength of the ribbon [23], which enhanced the resistance against the shear 

stress of the granulator, and resulted in a lower fraction of fine particles. 

A higher solid fraction of the ribbon (MCC 1:1 LAC, see Figure 12) does not lead to a coarser 

particle size if two different formulations are compared at identical process parameters within 

one scale. Especially, if one contains a higher fraction of a brittle component (e.g. LAC). The 

bonding strength between particles is essential for the PSD as it enhances the resistance 

against the granulator and reduces the spall of small particles during granulation. MCC 1:1 
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LAC showed lower bonding strength (e.g. compactibility, see Figure 7), resulting in a higher 

amount of finer particles, compared to MCC 2:1 LAC. 

4.2.3.2 Comparison of particle size distribution between different scales dependent on 

same formulation 

MCC 2:1 LAC - PSD of granules at different scales showed only small differences. At low 

specific compaction forces (2 kN/cm, 4 kN/cm) a similar d50 was found, compared to 6 kN/cm 

or 8 kN/cm (see Figure 14, Figure 17), whereby 8 kN/cm can be excluded for evaluation, 

because a side seal leakage of fine particles was observed for the MacroPactor (see Figure 

16). A detailed view on the PSD showed only a small difference between the small and the 

large scale (see Figure 19). A higher fraction of coarse granules was found at 6 kN/cm for the 

MacroPactor. A higher solid fraction of the ribbon at the MacroPactor resulted in a similar 

PSD of the granules at low solid fraction.  

 

Figure 19 PSD granules - MacroPactor/MiniPactor at 2, 4, 6 and 8 kN/cm - 

MCC 2:1 LAC, mean (n = 3), error bars (standard deviation of mean)  
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MCC 1:1 LAC - Different results were found for the formulation MCC 1:1 LAC. Differences 

of the PSD at different scales were more distinctive at high specific compaction forces. The 

d50 was comparable (see Figure 14, Figure 17) at low specific compaction forces (2 kN/cm, 4 

kN/cm). A higher d50 was achieved for the MacroPactor at 6 kN/cm and 8 kN/cm compared to 

the MiniPactor. 

 

Figure 20 PSD granules – MacroPactor/MiniPactor at 2, 4, 6 and 8 kN/cm - 

MCC 1:1 LAC, triangle (mean, n = 3), error bars (standard deviation 

of mean) 

A difference was noticeable for the fraction of fine particles between both scales (see Figure 

20). The fraction of fine particles was smaller for the granules of the MacroPactor. This effect 

was more pronounced for formulation MCC 1:1 LAC compared to MCC 2:1 LAC (see Figure 

19, Figure 20), because a lower fraction of MCC reduced the compactibility of the 

formulation to resist the shear stress of the granulator. This reduced compactibility was 

enhanced due to the increased amount of brittle LAC (see 4.1.1.2.3). The effect of a higher 

amount of LAC in the formulation, resulting in finer granules within one scale was previously 

mentioned (see 4.2.3.1). However, the impact of a higher solid fraction of the ribbon at a 
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larger scale (MacroPactor, see Figure 13) on the PSD was even more pronounced for a 

formulation with a lower compactibility (MCC 1:1 LAC). Thus, the higher solid fraction of 

the MacroPactor caused coarser granules compared to the MiniPactor.  

4.2.3.3 Impact of the milling process at different scales 

A comparison of the milling step at both scales was done to prove if the solid fraction of the 

ribbon would be the only impacting factor for the previously observed differences of PSD. 

Blends of both formulations were tableted at different target solid fractions (MCC 1:1 LAC  

0.64, 0.79; MCC 2:1 LAC 0.62, 0.77; see Table 25) to compare the milling process between 

scales.  

 

Figure 21 Comparison milling process scale – Granulator MacroPactor 

One batch with the same solid fraction contained 2000 tablets, equally divided between the 

two roller compactors to be milled in the granulator. Eight granules were analysed. During 

tableting (FlexiTab®) the die wall was lubricated automatically by a press chamber coating 

system [103] after every ten tablets to reduce the friction between powder and die wall and to 

achieve a homogenous density distribution of the tablets [104]. The geometry of 20 tablets of 

each batch was determined by an automatic tablet tester to calculate the observed solid 

fraction (see APPENDIX 8.1.2).  
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Table 5 d50 milled tablets – MacroPactor/MiniPactor – MCC 2:1 LAC/MCC 1:1 LAC 

Formulation 
Target 

solid fraction 

MacroPactor 

d50 [µm]  SD  

MiniPactor 

d50 [µm]  SD  

MCC 2:1 LAC 

0.62 99  5 100  2 

0.77 163  7 164  10 

MCC 1:1 LAC 

0.64 86  0 88  2 

0.79 139  7 146  3 

n = 3; d50 = Median particle dimension; SD = Standard deviation of mean 

No significant differences of the d50 (p  0.05) between both scales were observed (see Table 

5, see T-Test APPENDIX 8.2.2). A detailed examination of the PSD plot confirmed the 

impression. The milling process between the two scales had no significant impact on the 

particle size distribution of granules (see Figure 22). 

 

Figure 22 PSD milled tablets of 0.62, 0.64, 0.77 and 0.79 solid fraction - 

MiniPactor/MacroPactor – MCC 2:1 LAC/MCC 1:1 LAC, mean 

(n = 3), error bars (standard deviation of mean) 
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Thus, it can be concluded that milling a product (e.g. tablets) with the same solid fraction at 

different scale resulted in an equal PSD. Consequently, the previously demonstrated different 

PSD of the granules was the result of the diverse solid fraction of the ribbon at different scales 

(see Figure 19, Figure 20). This is in agreement with literature; authors have identified the 

solid fraction of the ribbon as key quality attribute for downstream processing 

[4,5,8,17,26,99]. Now, for the first time, differences of the PSD between two different scales 

applying identical process parameters were demonstrated. 

In summary, it can be concluded that a high solid fraction (eq. specific compaction force) 

provided coarser granules (see Figure 14, Figure 17) in connection with a low amount of fine 

particles. A larger scale (MacroPactor) achieved a higher solid fraction compared to the 

smaller scale (MiniPactor) for both formulations at same process settings (Figure 13). 

Differences of the PSD of the granules between scales were more distinctive at high values 

( 0.70) of the solid fractions. This was in particular seen for the formulation with a high 

amount of the brittle LAC, because formulation MCC 1:1 LAC had a lower compactibility 

than MCC 2:1 LAC (see 4.1.1.2.3). That enhanced the effect of a lower solid fraction of the 

ribbons on PSD for the smaller scale. In terms of the PSD of the resulting granules, MCC 1:1 

LAC showed a higher susceptibility to different solid fraction caused by various roller 

compactors. 
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4.2.4 Influence of granules on tablet attributes 

All granules and unprocessed blends were tableted with equal process parameters. In Figure 

23 (MacroPactor) and Figure 24 (MiniPactor) the tensile strength of tablets vs. compression 

pressure of each scales and for both formulations is plotted.  

4.2.4.1 Tabletability of formulations within one scale 

 

Figure 23 Tabletability – MacroPactor - MCC 2:1 LAC/MCC 1:1 LAC, mean 

(n = 50), error bars (standard deviation of mean), colour indicates 

different specific compaction force [kN/cm] 

MacroPactor & MiniPactor - One way ANOVA with post hoc Bonferroni analyses was 

performed to evaluate the impact of the specific compaction force on the tensile strength. A 

significant difference  (p  0.05) was identified for all test samples. 

(except 14 of 140 showed no difference; for details see APPENDIX 8.2.2). At an increasing 

specific compaction force a decrease of the tensile strength could be found for all 

formulations independent of scale. The observed loss of tabletability with increasing specific 
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compaction force after dry granulation is in agreement with various authors [4–7,9]. The loss 

of tabletability is attributed to various reasons like work hardening [7,9,44,105,106], granule 

size enlargement [46,47], an enhanced effect resulting from adding MGST to the granules 

[48,49] and a different granule porosity [25]. Work hardening means that plastic deformable 

excipients, which were loaded by pressure before, partially lost their ability to undergo plastic 

deformation to build a network of bonds. In addition, building a coherent network like a tablet 

is influenced by the ability to undergo bonds, which is correlated to the surface area of 

individual particles [45]. This surface is affected by particle size and particle surface covered 

by MGST on the particle. Brittle and porous excipients/granules tend to fracture during the 

tableting process into smaller particles, creating new surfaces. These surfaces are not covered 

by MGST and have larger specific surfaces (smaller particles) to build new contact points 

[56], resulting in stronger bonds compared to unfractured coarse granules, which are covered 

by a MGST layer. 

 

Figure 24 Tabletability – MiniPactor - MCC 2:1 LAC/MCC 1:1 LAC, mean (n = 

50), error bars (standard deviation of mean), colour indicates different 

specific compaction forces [kN/cm] 
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MCC 2:1 LAC reached a higher tensile strength in comparison to MCC 1:1 LAC at both 

scales (see Figure 23, Figure 24) because of the higher fraction of MCC, which showed a 

better tabletability and compactibility compared to LAC (see 4.1.1.2).  

The loss of tabletability with increasing specific compaction force is more pronounced for 

MCC 2:1 LAC as the ability of MCC to undergo plastic deformation again, decreases with 

rising specific compaction force (work hardening) [44,46]. This effect enhances by internal 

lubrication, whereby the surfaces are covered with a layer of MGST [49]. Additionally, a 

filming or coating of the MCC particles by MGST can be observed, whereby the whole 

surfaces are covered by MGST, if high concentration of MGST and long blending duration 

were chosen. Filming or coating of the whole particles can be excluded for these results as 

only a total amount 1 % MGST and a low blending time was used (see Table 15, Table 21). In 

contrast, LAC shows insensitivity towards MGST [10] and only a negligible loss of tensile 

strength (low work hardening) compared to unprocessed LAC (0 kN/cm) after dry 

granulation, which is caused by the ability of fracturing into smaller particles with a higher 

specific surface [90,107].  

Various authors [4,10,108,109] have shown a nearly linear increase of the tensile strength for 

LAC after roller compaction over a range of compression pressure. Only a minor influence of 

the specific compaction force of a roller compactor on the loss of tensile strength was found, 

which was independent of particle size enlargement (lower surface area). In other words, a 

high fraction of LAC (brittle) results in a higher reworkability of the formulation. MCC 1:1 

LAC showed a linear course of the tensile strength at increased specific compaction forces 

compared to low specific compaction forces (see Figure 23, Figure 24), which can be 

correlated to a higher impact of the linear consolidation of the brittle LAC after dry 

granulation, because less plastic consolidation of the MCC was available (work hardening). 
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A good illustration of the reworkability of a formulation is the reworkability index, firstly 

introduced by Herting et al. (2007) [26]. He compared the achieved tensile strength of tablets 

of unprocessed material (0 kN/cm) with the tensile strength of granules at the same 

compression pressure after dry granulation. Based on a modification of this approach it is 

possible to compare the reworkability over the whole compression pressure range (see 

6.2.3.1.1, Eq. (33)). 

 

Figure 25 Reworkability index tablets –MacroPactor – 

MCC 2:1 LAC/MCC 1:1 LAC, TSratio = tensile strength of tablets of 

compacted blend in proportion to unprocessed blend Eq. (33), mean 

(n = 350), error bars (standard deviation of mean) 

The reworkability decreased with a higher specific compaction force for both formulations 

(see Figure 25). The differences of the reworkability between both formulations at the same 

specific compaction force increased from 11.7 % (2 kN/cm) to 14.0 % (8 kN/cm). 8 kN/cm 

has to be carefully considered because of the side leakage (see Figure 16). However, the 

TSratio showed that the formulation MCC 1:1 LAC had a higher reworkability within the same 

scale because of intense fracturing during tableting, insensitivity to MGST, lower susceptible 
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to the specific compaction force (work hardening) and insensitivity to the particle size 

enlargement effect. (MiniPactor results can be found in the APPENDIX 8.1.2) 

4.2.4.2 Tabletability between different scales 

MCC 2:1 LAC - Distinct differences of the tabletability between both scales were found. In 

Figure 26 and Figure 27 a comparison of the tabletability between both scales for the same 

specific compaction force is depicted (2 and 4 kN/cm, 6 and 8 kN/cm). 

 

Figure 26 Tabletability – MacroPactor/MiniPactor at specific compaction force 

of 2 and 4 kN/cm – MCC 2:1 LAC, mean (n = 50), error bars 

(standard deviation of mean), scattered lines indicate 10 % 

differences to the mean tensile strength of the MacroPactor 

A pre-evaluation showed a relative standard deviation of tensile strength at a distinct 

compression pressure in the range of 6.72 % (298 MPa) up to 10.00 % (60 MPa) (see 

APPENDIX 8.2.2). This was attributed to the relative standard deviation of the compression 

pressure at the rotary tablet press (relative standard deviation (RSD)  5 %). Hence, it was 

defined that the mean tensile strength of different scales has to be in range of 10 % of the 
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reference to achieve comparable tabletability. Statistical evaluation (T-test) showed 

significant differences (p  0.05) between the tablets based on the MacroPactor and 

MiniPactor for all values within one specific compaction force except for compression 

pressure of 60 MPa at 6 kN/cm and 8 kN/cm (see APPENDIX 8.1.2). At 2, 4 and 6 kN/cm the 

MiniPactor’s granules achieved a higher tensile strength compared to the MacroPactor 

exceeding the +10 % limit. A smaller difference between the two scales was found for the 

specific compaction force 8 kN/cm, but still near +10 %. This was caused by side leakage of 

unprocessed material, whereby smaller uncompacted material slipped above the side seal 

system, as mentioned at 4.2.3, and induced a higher tensile strength of the tablets for the 

MacroPactor.  

 

Figure 27 Tabletability – MacroPactor/MiniPactor at specific compaction force 

of 6 and 8 kN/cm – MCC 2:1 LAC, mean (n = 50), error bars 

(standard deviation of mean), scattered lines indicate 10 % 

differences to the mean tensile strength of the MacroPactor 

Granules of a roller compaction process have a higher resistance against consolidation during 

tableting in comparison to unprocessed material [44]. To illustrate this, the Heckel plot is the 
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most commonly applied technique [106] (see Yield pressure 4.1.1.2.1.1). “In-die” tableting 

was performed to measure the Yield pressure of the granules. 

Table 6 Heckel - Yield pressure granules - MiniPactor/MacroPactor - MCC 2:1 LAC 

Yield 

pressure 

Py 

(1/slope) 

 0 kN/cm 2 kN/cm 4 kN/cm 6 kN/cm 8 kN/cm 

MacroPactor 174.21 176.31 182.45 187.34 186.82 

MiniPactor 174.21 177.79 181.09 184.53 185.80 

Difference 0 -1.48 1.36 2.81 1.32 

n = 3; Py = Yield Pressure Heckel 

Results showed that the Yield pressure increased with rising specific compaction force for 

both scales. Differences of the Yield pressure between scales were very small ( 2 %). It is 

well known that the determination of the Heckel plot is prone to errors in respect to PSD, 

surface of the particles and internal lubrication for granules. Granules had a different PSD and 

were lubricated using MGST. For these reasons, the results of the Heckel plot have to be 

considered carefully [106]. He et al. (2007) also recognized only a small increase of the Yield 

pressure for dry granulated MCC at increased specific compaction force because of internal 

lubrication, which can disguise the obviously effect of work hardening indicated by the Yield 

pressure. For these granules, analysis by Heckel plot is not the method of choice to investigate 

the work hardening effect. 
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TSratio gave better insights into the tabletability of both scales compared to Yield pressure. 

Reworkability was higher for the granules of the MiniPactor for all specific compaction forces 

and showed a higher reworkability. Differences decreased from 16.0 % (2 kN/cm) to 4.6 % 

(8 kN/cm) at higher specific compaction forces, which can be positive correlated with the 

observed decreased difference of the solid fraction of ribbons between both scales with rising 

specific compaction force (see 4.2.2, Figure 13). 

  

Figure 28 Reworkability index tablets - MiniPactor/MacroPactor – MCC 2:1 

LAC, TSratio = tensile strength of tablets of compacted blend in 

proportion to unprocessed blend Eq. (33), mean (n = 350), error bars 

(standard deviation of mean) 

Particle size distribution of the granules is one main factor, which can influence the tensile 

strength of tablets. Smaller particles have a greater specific surface  to build more interparticle 

bonds which can result in a higher tensile strength [45,90]. The differences of particle size 

distribution between both scales at same specific compaction force were low (Figure 14, 

Figure 17). The d50 showed only small differences and the part of fine particles ( 63 µm) 
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were similar. Thus, the influence of particle size distribution on the tensile strength was 

negligible.  

The distinguished difference between these granules was the production scale, i.e. compactor 

size, which resulted in a different solid fraction of the ribbon. A higher solid fraction at the 

MacroPactor was obtained (> 10 %), followed by 10 % lower tensile strength of the tablets 

compared to the MiniPactor. A higher solid fraction reflects a higher consolidation and thus a 

higher consumption of plastic deformation, which will not be available for tableting (work 

hardening effect) again. Roller compaction of formulation MCC 2:1 LAC at different scales 

led to a different quality of the tablets although a comparable particle size distribution of the 

granules was achieved. 
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MCC 1:1 LAC - Different results were obtained for formulation MCC 1:1 LAC. In Figure 29 

tensile strength vs. compression pressure is plotted for four different specific compaction 

forces. Considering Figure 29, a relevant difference of the tensile strength of the tablets 

between both scales could not be observed.  

 

Figure 29 Tabletability – MacroPactor/MiniPactor at specific compaction force 

of 2, 4, 6 and 8 kN/cm – MCC 1:1 LAC, mean (n = 50), error bars 

(standard deviation of mean), scattered lines indicate 10 % 

differences to the mean tensile strength of the MacroPactor 

Statistical examination (T-Test) of the tensile strength of tablets at the same compression 

pressure between the two scales showed significant differences (p  0.05) for 16 values of 28 

(see APPENDIX 8.2.2). However, important to note is that T-Test will detect a significant 

difference between both scales when difference of only  5 % will be obtained, assuming a 

comparable variance for both samples and previously chosen sample size of n = 50. In 

particular, a high compression pressure resulted in a low RSD of the tensile strength (see 

exemplary power calculation for 5 % difference APPENDIX 8.2.2). As mentioned above, 

10 % difference of tensile strength was defined as acceptable range, so that a relevant 
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difference for low compression pressure would be identified with a power of 0.94. Only two 

out of 28 values differed with more than 10 % from the reference i.e. MacroPactor (2 kN/cm 

139 MPa, 4 kN/cm 100 MPa). Comparing Figure 26, Figure 27 (MCC 2:1 LAC) and Figure 

29 (MCC 1:1 LAC), a more linear course of the tabletability plot was found for MCC 1:1 

LAC, which can be correlated to the linear increase of the tabletability of the brittle LAC. 

LAC showed a higher impact on the consolidation behaviour with an increased amount in the 

formulation (MCC 1:1 LAC). Yield pressure measurements were done but did not allow any 

implication, as mentioned above (see APPENDIX 8.1.2). 

TSratio of MCC 1:1 LAC showed only a small difference between both scales (max. 3.9 %, 

2 kN/cm) compared to MCC 2:1 LAC (max. 16 %, 2 kN/cm, see Figure 28), which confirmed 

the impression based on the trend observed in the tabletability plots. The differences between 

both scales were low and decreased with rising specific compaction force. 

 

Figure 30 Reworkability index tablets - MacroPactor/MiniPactor– 

MCC 1:1 LAC, TSratio = tensile strength of tablets of compacted blend 

in proportion to unprocessed blend Eq. (33), mean (n = 350), error 

bars (standard deviation of mean) 
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The tensile strength of the tablets of formulation MCC 1:1 LAC is comparable. Regarding the 

influence of the particle size on tensile strength, granules of the larger scale exhibited a 

similar d50 at low specific compaction forces and a higher d50 at 6 kN/cm and 8 kN/cm 

(see Figure 20). Usually it would be expected that the granules of the MiniPactor reaches a 

higher tensile strength caused by a smaller PSD, but the high fraction of brittle LAC decreases 

the influence of the particle size enlargement effect on tensile strength [107], because the 

granules will fracture into smaller particles or even primary particles. This effect was even 

more pronounced at higher specific compaction forces (see Figure 30), as the impact of the 

brittle LAC increased at high specific compaction forces compared to plastic MCC. Wu et al. 

(2007) dry granulated different single brittle excipients, tableted different sieve fraction of the 

granules and stated that the granule size had a negligible influence for the tabletability of 

brittle granules. A lower amount of MCC (MCC 1:1 LAC) reduced the effect of work 

hardening (lower reworkability), followed by a smaller decrease of the tensile strength (TSratio 

67.1 %, at 8 kN/cm) caused by specific compaction force compared to MCC 2:1 LAC (TSratio 

53.3 %, at 8 kN/cm, see Figure 25). This was enhanced as LAC shows less sensitivity towards 

MGST than MCC [49].  

The obtained difference in solid fraction of ribbons at same process conditions for the large 

scale (> 9 %, see Figure 13) influenced the particle size distribution of granules for the 

formulation MCC 1:1 LAC. The expected particle size enlargement effect on tensile strength 

was levelled through fracturing of LAC and the lower fraction of MCC in an acceptable range 

of 10 % tensile strength between scales. Tabletability of formulation MCC 1:1 LAC at both 

scales can be considered as equal. Despite a shift in PSD between Macro- and MiniPactor for 

formulation MCC 1:1 LAC, no difference in tabletability between the two scales could be 

observed. Obviously, the brittle character of LAC governs the consolidation and bonding 

properties under compression, making the formulation less susceptible towards work 

hardening and lubricant sensitivity 
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4.2.5 Summary 

Two formulations (MCC 2:1 LAC, MCC 1:1 LAC) were dry granulated at two scales (50 mm 

roll width MacroPactor, 25 mm roll width MiniPactor) with equal process parameters. A 

higher solid fraction of the ribbons was obtained for both formulations at the MacroPactor. 

Solid fraction of the ribbons influenced the particle size of the granules in a different way. 

Same particle size distribution of granules was achieved for the predominantly plastic 

deforming formulation MCC 2:1 LAC, whereby coarser granules were the result for the 

predominantly brittle deforming formulation MCC 1:1 LAC at higher specific compaction 

force (MacroPactor, 6 kN/cm, 8 kN/cm). Granules of the MacroPactor resulted in a lower 

tensile strength of tablets compared to granules of the MiniPactor for formulation MCC 2:1 

LAC.  
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Figure 31 Summary - Impact of formulation and scale, obtained differences of 

intermediate products: solid fraction of ribbons, particle size of 

granules and tensile strength of tablets caused by larger scale 

(MacroPactor) compared to smaller scale (MiniPactor), equal sign = 

equal, arrow up/down = higher/lower, MCC = Microcrystalline 

cellulose, LAC = α - Lactosemonohydrate 
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Thus, the influence of the higher solid fraction corresponded directly to the tensile strength of 

the tablets, because of the high amount of MCC, which is mainly influenced by specific 

compaction force (work hardening) and sensitivity towards MGST. Only small differences of 

the tensile strength between both scales were observed for formulation MCC 1:1 LAC, 

although particle size distribution differed. This was driven by the impact of the brittle LAC, 

which resulted in negligible susceptibility towards specific compaction force (work 

hardening), MGST and particle size enlargement effect in respect to tensile strength of tablets. 

The second formulation MCC 1:1 LAC showed a higher robustness towards scalability. The 

impact of a different solid fraction at different scales on the tablet quality will be increased 

due to a higher amount of MCC in the formulation (work hardening effect). 

Differences between the two scales in downstream processing (solid fraction, granules, 

tablets) have not been described before in literature. It can be concluded that using the same 

process settings for identically constructed roller compactors of different scale will not 

necessarily lead to the same quality of tablets, because the quality is formulation and scale 

dependent. The solid fraction of the ribbon was confirmed as an essential quality aspect in 

respect of a successful scale up. Differences of the solid fraction between scales were 

observed in this chapter and will be further investigated and explained in the following 

chapters. 
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4.3 ADAPTED PROCESS SETTINGS OF DIFFERENT SCALES TO 

ACHIEVE SIMILAR PRODUCT QUALITY 

Formulation MCC 2:1 LAC was dry granulated using the MiniPactor at various specific 

compaction forces to achieve the target solid fractions of the MacroPactor, in order to reduce 

the difference between scales with respect to the tensile strength of tablets (see 4.2). 

Throughout this manuscript, the results of the adapted process parameter at the MiniPactor are 

called Scale Model. 

4.3.1 Achieving the same solid fraction of ribbon by using adapted process 

parameter settings 

Data of the previously measured solid fraction of the Macro- and MiniPactor at four specific 

compaction forces were used to determine the specific compaction forces (see Figure 13), 

which were required to achieve equal solid fraction for the MiniPactor. For this purpose, 

specific compaction forces were plotted versus solid fractions of the ribbons. Existing data of 

the solid fractions of the MiniPactor were fitted by a polynomial equation to obtain the 

required specific compaction forces (Scale Model).  
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Figure 32 Scale Model approach – Adapting specific compaction force of 

MiniPactor to achieve target solid fraction of ribbon (MacroPactor) by 

polynomic fitting, mean (n = 5), error bars (standard deviation of 

mean) 

Target solid fractions of the MacroPactor were set in this correlation function to predict the 

required specific compaction force at the MiniPactor (4.1, 7.0, 9.6 and 11.4 kN/cm, see Figure 

32). The predicted specific compaction forces were used for processing. Subsequently, the 

solid fraction of the ribbons was measured to verify the proposed Scale Model. Adapted 

specific compaction forces for the Scale Model are reported as 2, 4, 6 and 8 kN/cm. 

53.923x²-39.03+7.578 

R²= 0.9995 
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Figure 33 Solid fraction ribbon – Results Scale Model (adapted process 

parameter settings) and MiniPactor (equal process parameters), mean 

(n = 5), error bars (standard deviation of mean), scattered lines 

indicate  5 % range to the target solid fraction (MacroPactor), SF = 

Solid fraction 

Results of the solid fraction are depicted in Figure 33. T-test (p  0.05) results showed 

differences between three of four solid fractions between target solid fraction and the solid 

fraction of the Scale Model (see APPENDIX 8.2.3). Only the solid fraction for the specific 

compaction force of 7.0 kN/cm (0.7086 SF) showed no difference to the target solid fraction. 

However, the differences between both scales (applying adapted process parameter settings) 

were only -0.12 % to 4.39 %, compared to 10.20 % to 17.90 % by using equal process 

parameter settings (see Figure 13). All solid fractions of the ribbons were in a  5 % range to 

the target solid fraction. Results on downstream processing and an evaluation of this strategy 

for different scales will be discussed in the next sections. Based on previous findings, it can 

be assumed that the solid fraction is the most influential factor on downstream processing 
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(see 4.2) and therefore that a similar granule and tablet quality will be achieved at a 

comparable solid fraction of the ribbon at different scales. 

4.3.2 Particle size distribution and porosity of granules 

PSD - Application of the Scale Model resulted in a higher d50 for the whole range of 

investigated specific compaction forces (see Figure 34), which is in accordance to results in 

4.2.3.2 where identical force settings resulted in a similar PSD at a lower SF for granules 

produced with the MiniPactor. T-test (p  0.05) confirmed a difference between all granules 

at same solid fraction (see APPENDIX 8.2.3). 

 

Figure 34 d50 granules - MacroPactor/MiniPactor/Scale Model, mean (n = 3), 

error bars (standard deviation of mean)  

As mentioned above, higher specific compaction forces resulted in coarser granules at the 

same roller compactor. Analysing the PSD confirmed that coarser granules were obtained for 

the Scale Model (see Figure 35). Comparing all scales, a lower amount of fine particles was 

found for the Scale Model (see Figure 35). The impact of the milling process of the granulator 

on PSD between both scales could be demonstrated to be negligible (see 4.2.3.3). A potential 
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impact factor and explanation between scales can be the solid fraction distribution of the 

ribbon along the roll width, which will be discussed in the next section (see 4.4). 

 

Figure 35 PSD granules– MacroPactor/MiniPactor/Scale Model at specific 

compaction force of 2, 4, 6 and 8 kN/cm, triangle (mean, n = 3), error 

bars (standard deviation of mean) 

Porosity & Appearance – Measurements of the intragranular porosity by mercury 

porosimetry enable a deeper insight of differences between these granules. Other authors have 

shown that the particle size influences the measurement [110,111]. Therefore, sieve fractions 

of the granules were used (90, 180, 250 µm) in order to avoid measuring the interparticular 

voids (bimodal pore size distribution, see Figure 66), and to ensure a good comparability 

between granules of MacroPactor, MiniPactor and Scale Model. Unprocessed blend of 

MCC 2:1 LAC had a d50 of 103 µm. Sieve fractions of 180 µm and 250 µm will define 

agglomerated particles and 90 µm the fine particles. All granules were sieved and separated. 

Cumulative sum of the intruded mercury volume over a pore range of 0.4 – 1.8 µm (see 

6.2.1.4) was used as porosity index. A linear decrease of the porosity was observed at 

increased solid fraction of the ribbons (see Figure 36, left plot). Solid fraction of ribbon 
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directly correlated with the porosity of granules in a linear coherence. Linear regression 

showed a good correlation coefficient (R2) of 0.8950. Granules generated by the MacroPactor 

(SF = 0.8102, 8 kN/cm) were excluded for linear regression, due to the aforementioned side 

seal leakage. For this reason unprocessed material slipped above the compaction zone (see 

Figure 16), which resulted in a higher porosity (grey circles, left plot).  

 

Figure 36 Granule porosity – MCC 2:1 LAC - Left plot: Cumulative sum 

relative intruded mercury volume [mm³/g] (pore radius range 0.4 -

1.8 µm) vs. solid fraction ribbon – Right plot: Cumulative sum 

relative intruded mercury volume [mm³/g] (pore radius range 0.4 -

1.8 µm) vs. sieve fraction of 90, 180, 250 µm, grey circles = excluded 

for linear regression (MaroPactor at 8 kN/cm see 4.2.3.1) 

Herting et al. (2008) have shown a decrease of the surface area of a dry granulated MCC sieve 

fraction with increased specific compaction force, which was correlated to a lower porosity. 

Nordstrom et al. (2015) have demonstrated a decrease of the porosity of re-tableted milled 

tablets of MCC for a granule sieve fraction of 500 – 710 µm with increasing compression 

pressure, but both did not evaluate the relation between the porosity of granules and the solid 
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fraction of ribbons. This evaluation of a decreasing porosity for granules with increasing solid 

fraction seems to be more appropriate for dry granulated granules, because a negative linear 

correlation was determined (see Figure 36, left plot). A high solid fraction correlated to a low 

porosity of granules. It was assumed that a coarser sieve fraction of 250 µm would be strained 

with a higher load of pressure at the same specific compaction force compared to a fine sieve 

fraction of 90 µm. The reason is that more particles were agglomerated under pressure and 

this results in a denser granule with lower porosity. Comparing the porosity of the sieve 

fraction 90, 180, 250 µm within the MacroPactor, MiniPactor or Scale Model at 2, 4, 6 or 

8 kN/cm, no tendency of the porosity could be observed (see Figure 36, right plot). This can 

be attributed to the influence of the complex milling process by the granulator, whereby the 

particles are mainly sheared and sliced of the ribbons against the sieve mesh [112,113]. 
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Figure 37 Appearance of particles at 4 kN/cm - Sieve fractions 90, 180, 250 µm 

of MacroPactor/MiniPactor/Scale Model 

Particle morphology of the three sieve fractions within one specific compaction force and 

scale was visually inspected by microscopy (see Figure 37). The larger sieve fractions of 

180 µm and 250 µm appeared rougher as they contained particles of a higher degree of 

agglomeration compared to the smaller sieve fraction of 90 µm. Considering the particle 

morphology, no differences between the MacroPactor, MiniPactor and Scale Model granules` 

sieve fractions were observed (see Figure 37). 

  

Scale Model 

MiniPactor 

MacroPactor  
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A comparison of the porosity of the sieve fractions between different scales is depicted in 

Figure 38. For better illustration, the porosity of granules were normalized to the reference 

value (MacroPactor) for each sieve fraction; Porosities of the MiniPactor and Scale Model 

were subtracted from this reference value (see Figure 38). A positive value indicates a lower 

porosity and negative value a higher porosity compared to the MacroPactor. 

 

Figure 38 Granule porosity – Residual values cumulative sum relative intruded 

mercury volume [mm³/g] (pore radius range 0.4 -1.8 µm) to target 

granule porosity (MacroPactor) - Sieve fraction of 90, 180, 250 µm 

Compared to the MacroPactor, the MiniPactor showed a lower solid fraction of the ribbon and 

the Scale Model achieved a similar solid fraction. The solid fraction of the ribbon can be 

correlated with the porosity of the granules. Granules of the MiniPactor led to higher 

porosities, in particular at the specific compaction force of 4 kN/cm and 6 kN/cm, whereby 

the porosities of the Scale Model were always closer to the reference value i.e. MacroPactor 

(see Figure 38). The specific compaction force at 2 kN/cm had a minor influence on the 

differences on the porosities of the granules, because the impact of the solid fraction of the 

ribbon was less. The first weak bonding between the particles occurred at a low solid fraction. 

Higher porosity 

Lower porosity 

Reference line 

(MacroPactor) 
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Considering all specific compaction forces, a small tendency of the granules of the Scale 

Model to lower porosities compared to the MacroPactor were observed. A different result was 

obtained for the 8 kN/cm, for which the Scale Model showed a difference to the reference 

value, while the MiniPactor had a similar porosity, which was caused by the slipped 

uncompacted material of the MacroPactor at 8 kN/cm (see 4.2.3.1). It can be concluded that a 

same solid fraction of the ribbon (MacroPactor & Scale Model) led to similar porosity of the 

granules. Therefore, the next step was to investigate how the different particle size 

distributions and a similar porosity will affect the tabletability and compressibility of the 

granules. 
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4.3.3 Tabletability and compressibility influenced by material attributes of 

granules and ribbons 

Same process conditions were applied for tableting of the granules of the Scale Model 

compared to the granules of the MacroPactor and MiniPactor. No practical relevant difference 

between the tensile strength of MacroPactor and Scale Model was observed (< 10 %). T-Test 

between MacroPactor and Scale Model showed a significant difference (p  0.05) for most 

tablets (see APPENDIX 8.2.3). An example calculation for the power of the T-Test indicated 

that the T-Test would detect a  5 % difference of the tensile strength as significant with a 

power up to 0.97 (see APPENDIX 8.2.3).  

 

Figure 39 Tabletability –MacroPactor/MiniPactor/Scale Model at specific 

compaction force of 2, 4, 6 and 8 kN/cm, mean (n = 50), error bars 

(standard deviation of mean), scattered lines indicate 10 % 

differences to the mean tensile strength of the MacroPactor 

A pre-evaluation showed a relative standard deviation of 10 % for the tensile strength within 

one compression pressure for the same scale (see 4.2.4). Hence, a  10 % deviation of the 
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tensile strength is an acceptable range between two scales and the difference between 

MacroPactor and Scale Model is negligible. Considering the tabletability of granules of the 

Scale Model, these showed same tensile strength for the 2 kN/cm, 4 kN/cm and 6 kN/cm (see 

Figure 39). The resulting tensile strength was in a very good accordance and had a tensile 

strength lower than the desired acceptable deviation of  10 % to tablets of the MacroPactor 

(see 4.2.4). The achieved tensile strength of the applied 8 kN/cm was lower (see explanation 

4.2.3 & 4.2.4).  

Obviously, the coarser granules of the Scale Model (particle size enlargement effect) had a 

minor impact on the tensile strength and did not lead to a lower tensile strength of the tablets. 

The agglomerated particles i.e. granules collapsed into smaller particles during tableting. 

The particle size enlargement effect caused by an initial coarser PSD of the Scale Model 

becomes negligible. The impact of coarser granules will only gain more influence if the 

granule strength is increased, which will prevent a fracturing of agglomerated particles 

[25,50]. Nordstrom et al. (2015) [25] have shown that the porosity of the dry granulated 

granules of MCC essentially influenced the tensile strength of tablets. Dry granulated granules 

with a high porosity will collapse into smaller particles during compression to tablets 

followed by a closer “intergranular void structure of a tablet” (e.g. solid fraction) [25] and an 

increased tensile strength. Additionally, the fracturing of granules into smaller particles can be 

enhanced if the mixture contains a brittle component [10,48] (see Figure 25). Effects like the 

porosity of granules and the more pronounced fracturing caused by the amount of brittle LAC 

in the formulation, diminished the effect of the coarser granules for the Scale Model. A 

confirmation of a low impact of the PSD on the tensile strength for this formulation (MCC 2:1 

LAC) was observed for the MiniPactor granules. A similar PSD was found compared to the 

MacroPactor granules, which resulted in a higher tensile strength of the tablets for the 

MiniPactor (see Figure 39), reflecting the achieved lower solid fraction of the ribbon (see 

Figure 33) and the higher porosity of the granules i.e. fracturing tendency (see Figure 36). 
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The behaviour of the fracturing and densification process of granules can be evaluated by 

considering a compressibility plot. A different fracturing behaviour under pressure will result 

in a different microstructure (e.g. solid fraction) of the tablet at the same compression 

pressure level. Thereby, granules with a high fracturing or consolidation tendency will be 

more compressible. This will lead to a higher solid fraction at the same compression pressure 

compared to granules, which will be more “resistant to deformation of tableting” (work 

hardening) [50]. 

 

Figure 40 Compressibility –MacroPactor/MiniPactor/Scale Model at 2, 4, 6 and 

8 kN/cm, mean (n = 50), error bars (standard deviation of mean) 

The compressibility plot of the tablets indicated that the MiniPactor achieved a higher solid 

fraction for all investigated compression pressures (see Figure 40). This was caused by the 

higher porosity and fracturing tendency of the granules of the MiniPactor. The granules of the 

Scale Model demonstrated a similar compressibility compared to the MacroPactor. The 

compressibility plot confirmed that the initial coarser granules of the Scale Model had no 

influence on the compressibility and proved that the porosity of the granules levelled the 

granule size enlargement effect (lower bonding surface). The MacroPactor granules of 
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8 kN/cm confirmed this assumption as they gained a higher compressibility, which was 

caused due to a higher amount of unprocessed material with a higher porosity (see Figure 16). 

 

Figure 41 Reworkability index tablets –MiniPactor/MacroPactor/Scale Model, 

TSratio = tensile strength of tablets of compacted blend in proportion to 

unprocessed blend Eq. (33), mean (n = 350), error bars (standard 

deviation of mean) 

Tensile strength of the tablets of the Scale Model was in good accordance with the tensile 

strength of the MacroPactor (see Figure 41). The proposed Scale Model resulted in a 

successful scale up regarding tabletability and compressibility. However, it needs to be further 

investigated why different ribbon solid fraction was obtained at identical process parameter at 

two scales (see 4.4). 
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4.3.4 Summary 

It was demonstrated that same process settings at two different scales for a roller compaction 

process did not result in an equal tensile strength of the tablets. Therefore, a new approach 

was proposed (Scale Model) to first predict and then adapt the specific compaction force of 

the smaller scale (MiniPactor) to achieve the same target solid fraction of the ribbons of the 

larger scale (MacroPactor).  

Ribbons were produced with the desired target solid fraction in a range of  5 % in 

comparison to ribbons produced with the MacroPactor. 
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Figure 42 Summary – Impact of scale for formulation MCC 2:1 LAC 

(MCC = Microcrystalline cellulose, LAC = α –Lactosemonohydrate), 

differences of intermediate products: solid fraction of ribbons, particle 

size of granules, porosity of granules and tensile strength of tablets of 

the small scale (MiniPactor) at equal process parameters and adapted 

specific compaction force (Scale Model) compared to target 

intermediate quality attributes of the large scale (MacroPactor), 

equal sign = equal, arrow up/down = higher/lower 
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The resulting tensile strength of the tablets of the Scale Model was well in accordance with 

the target tensile strength of the tablets of the MacroPactor. The porosity of the granules 

demonstrated a negative linear correlation with increased solid fraction of the ribbon. 

Although the same solid fraction between both scales was achieved (MacroPactor, Scale 

Model), the resulting PSD distribution of the granules was different. The roll width is one 

impact factor, resulting in a different solid fraction distribution along the ribbon width, which 

will be investigated in the next section (see 4.4). However, the effect of granule size 

enlargement (lower bonding surface, Scale Model) was negligible as a similar granule 

porosity was achieved compared to the granules of the MacroPactor, which caused an equal 

“resistant to deformation of tableting” [50] (work hardening), a comparable fracturing 

behaviour (see Figure 40) and indicated a similar granule strength [25]. The impact of the 

fracturing tendency of the granules as an important factor for the tensile strength was proved 

in the previous chapter 4.2 for formulation MCC 1:1 LAC. It is common knowledge that a 

coarser granule size distribution (lower bonding surface, Scale Model) leads to a different 

compressibility and tensile strength, because of a lower surface area of the particles compared 

to finer particles. In contrast, this was not shown for this formulation (MCC 2:1 LAC) and 

process parameters as it was demonstrated that the resulted coarser particle size distribution of 

the adapted process parameters led to a similar tensile strength of the tablets. 

A simplified summary of the effects and results for formulation MCC 2:1 LAC MiniPactor 

compared to the MacroPactor is provided in Figure 42. The Scale Model approach 

demonstrated a practicable solution to achieve a successful scale up during process 

development for a predominantly plastic deforming formulation. Nevertheless, a higher 

specific compaction force at the small scale (MiniPactor) was required to achieve the same 

solid fraction compared to the larger scale (MacroPactor). This aspect will be in investigated 

in the next chapter with a newly developed analysis method to better characterise the ribbons. 
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4.4 INVESTIGATION OF SOLID FRACTION DISTRIBUTION ALONG THE 

ROLL WIDTH BETWEEN DIFFERENT SCALES VIA NIR AT-LINE 

In the previous chapters it was demonstrated that ribbons produced with either the MiniPactor 

or the MacroPactor applying identical process parameters showed different solid fraction. 

These obtained difference will be investigated with a near infrared reflectance method to 

characterise the solid fraction of ribbons along the roll width. Different authors have reported 

about a solid fraction distribution along the roll width within one scale [33,40,114–118]. This 

solid fraction distribution will be investigated with an NIR method between scales 

(MacroPactor, MiniPactor). NIR measurement allows measuring smaller parts of the ribbon in 

comparison to the GeoPycnometer method; this method was limited by the sample size (three 

pieces of 8 mm* 8 mm, see 6.2.2.3). Furthermore, applying the at-line NIR analysis results in 

a relevant time saving. Afterwards the previously proposed approach for a scale up will be 

evaluated by NIR in respect to the solid fraction. A formulation containing 21 % Metformin 

(w/w) with MCC 2:1 LAC will be used as model active pharmaceutical ingredient (API).  
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4.4.1 Method evaluation to determine solid fraction along the roll width by 

GeoPycnometer and NIR 

As reference method for the NIR spectra (see Figure 43) the solid fraction was analysed using 

a GeoPycnometer. It was a prerequisite to measure small pieces of the ribbon with the 

reference method, because the NIR probe acquires a small area on the ribbon of about 

0.5 cm².  

 

Figure 43 Schematic drawing - Process flow development NIR method 

An appropriate and reproducible analytical method applying the GeoPycnometer will only be 

achieved if the sample size (ribbon) fills 20 % of the whole vessel volume (DryFlo® + ribbon 

volume). A pre-evaluation showed that a lower limit of the reference method was reached by 

analysing at least three cut pieces of 8 mm* 8 mm from the respective ribbon. Reference 

method for NIR was performed with a vessel of 12.7 mm diameter and a plunger force of 

28 N. Sample volume in the vessel was always about 20 %. Ribbons were taken after gap 

settings reached steady state conditions (see 3.1). A small grid was scratched on the ribbon to 

identify the sample squares. Spectra of the squares were acquired by NIR. Afterwards, the 

ribbon was cut and separated into centre and edges (front, back) to also analyse the same 

ribbon with the GeoPycnometer. Spectra of three squares were correlated to one reference 

value for calibration purpose. A schematic flow process is depicted in Figure 43. 
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4.4.1.1 GeoPycnometer as reference method – Solid fraction along the roll width 

A sample ribbon of 6 kN/cm (MiniPactor) was measured with the GeoPycnometer to evaluate 

whether differences occur along the roll width. A distance-weighted least square fitting was 

performed between measured samples of a ribbon (GeoPyc) in order to illustrate the 

difference between measured points.  

 

Figure 44 Evaluation solid fraction distribution of ribbon along roll width 

measured by GeoPycnometer– Exemplary ribbon produced with 

6 kN/cm, black circles = reference value by GeoPycnometer, colour 

indicates different solid fractions 

Figure 44 indicates a decrease of the solid fraction from the centre to the edges of the ribbon. 

This finding is in agreement with literature, as various authors have demonstrated a higher 

solid fraction at the centre of the ribbon for a cheek plate side seal system 

[21,30,31,36,40,41,115]. A non-uniform distribution of the solid fraction along the roll width 

is caused by the side seal system [33,115]. Using cheek plates will lead to friction force 

between powder and plates, whereby the powder entry into the gap is reduced at the edges. 

This side seal friction force counteracts the friction force between rolls and powder [116]. 

Therefore, a heterogeneous solid fraction can be observed. Reference method 

(GeoPycnometer) detected differences along the roll width and was appropriate for the 

purpose of an NIR method development. 

Solid fraction 



INVESTIGATION OF SOLID FRACTION DISTRIBUTION ALONG THE ROLL WIDTH 

BETWEEN DIFFERENT SCALES VIA NIR AT-LINE 

78 

4.4.1.2 NIR spectra of a ribbon along the roll width 

Multiple exemplary NIR spectra of a ribbon compacted at 6 kN/cm are depicted in Figure 45. 

A difference between locations of the ribbon was detected by the NIR, which were indicated 

by a baseline shift of the spectra. This is consistent with the literature. Various authors 

observed a higher absorption of NIR spectra with an increased pressure for tablets (i.e. 

increased solid fraction) [119–121] and ribbons [32,38,122]. 

 

Figure 45 NIR spectra of a ribbon at 6 kN/cm – Front = blue, middle = red, 

back = green 

A higher absorption was positively correlated to a high solid fraction caused by less 

reflectance of the radiation in diffuse reflectance mode (see 6.2.2.4). Applying the above-

mentioned NIR methodology differences along the roll width could be identified. Hence, this 

technique was considered as suitable technique to identify differences between scales. 
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4.4.1.2.1 Factors influencing the spectra of the ribbon 

The overall target when developing a new analytical method is to ensure high accuracy, 

precision and robustness. It is essential to investigate different factors impacting these 

characteristics and how a proper measurement setup or data pre-process techniques reduce 

this interference [123]. Measurement setups were evaluated to ensure these characteristics. 

Different factors were considered and evaluated to find a reliable setup: 

1. Sample condition (time after processing, damaged surface ) 

2. Measuring setup (distance probe to sample, angle probe to sample, light in the room) 

3. Software setup (resolution of scans) 

All measurements were done applying the NIR diffuse reflectance mode at a wavenumber 

range of 12.000 – 4.000 cm-1. 

4.4.1.2.1.1 Sample condition 

All samples were stored for 48h at 0 – 65 % relative humidity and 19 - 25°C in respect to their 

elastic recovery after roller compaction. The smooth side of the ribbon was analysed as it was 

easier to scratch the grid on the ribbon. Surface of the ribbon can be irregular or damaged 

during processing, e.g. caused by powder adhesion on surface of the rolls or abrupt 

segmentations of the ribbon. 

 

Figure 46 Absorption ribbon surface – Blue = damaged, red = normal  
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A ribbon sample was damaged for illustration by a knife to simulate a different surface. The 

square was measured before and after this manipulation. A higher absorption of the damaged 

surface could be observed because of the irregular shape of the surface, which enhanced the 

scattering [124], so that less radiation reached the detector and resulted in an offset (see 

Figure 46). Derogation of this offset can be obtained with data pre-processing techniques (see 

6.2.2.4.2). First derivation levelled the observed baseline shift and will contribute to a reliable 

NIR-method (see Figure 47). 

 

 

Figure 47 Surface: First derivation – Blue = damaged, red = normal 
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4.4.1.2.1.2 Measuring setup 

Distance - Different distances of 0, 3, 6 and 12 mm from the probe to the sample were 

evaluated. Calibrated metal blocks clamped between the probe to adjust the position.  

 

 

Figure 48 Distance probe to sample – Red = 0 mm, blue = 3 mm, green = 6 mm, 

pink = 12 mm 

Ten spectra of the same sample were acquired for each distance. A higher absorption with 

increased distance and a rising variation within the same distance between the 10 spectra were 

obtained (see Figure 48). A higher distance led to less detection of the radiation by the 

detector and resulted in a higher absorption.  
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Considering the first derivation of the spectra, a noisy signal could be observed with increased 

distance to the sample caused by a higher detection of stray light (see Figure 49). The distance 

of 0 mm was chosen as the best distance to the sample, which showed less variability between 

different spectra and a low noise signal. The zero position was defined as the longest part of 

the probe touching the sample. 

 

Figure 49 Distance probe to sample: First derivation  - Red = 0 mm, blue = 

3 mm, green = 6 mm, pink = 12 mm 
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Angle –Two angles of probe to the sample were evaluated. The probe had a bevel of 20°. 

Therefore, a 70° and 90° angle were examined. At 70° the whole surface of the probe was in 

contact with the sample. Ten re-adjustments of the zero position probe to sample within one 

angle were done. As depicted in Figure 50, an angle of 70° led to a higher variability within 

one setup. At an angle of 70° the laser beam of the probe was no longer apparent. This made 

it more difficult to adjust the position and find the same position on the sample square. Based 

on this a 90° angle was set as measuring setup.  

 

Figure 50 Angle probe to sample – Red = 70°, blue = 90° 

  

90° 

70° 
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Light – The light of the room may influence the absorption level. An evaluation with light 

and without light did not show any impact on the absorption. All spectra coincided. As it was 

easier to recognize the laser beam of the probe without light in the room and adjust the 

position on the ribbon, it was decided to use no light in the room. First derivation showed no 

difference between both (not shown). 

 

Figure 51 Light – Pink = off, blue = on  
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4.4.1.2.1.3 Software setup resolution 

As a next step the software setup was evaluated. Different resolutions lead to a smoothing of 

the spectra over 8, 16 or 32 wavenumbers. Thus, a higher resolution indicates a higher 

smoothing and more information about the spectra gets lost. Figure 52 shows the first 

derivation of ten spectra for every resolution. A low resolution of 8 led to a noisy signal 

especially at higher wavenumbers. A resolution of 32 diminished too much spectral 

information. A resolution of 16 was chosen as software setup. The number of scans did not 

show any impact on the spectral information, a number of 64 scans was used. 

 

Figure 52 Resolution: First derivation - Red = 8, blue = 16, pink = 32 
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4.4.1.2.1.4 Specificity – Impact of composition on NIR spectra – Definition 

spectral range 

NIR spectra can be used to derive chemical information. In particular by spectra peaks, which 

are representing characteristic chemical bonds of the used formulation (see 6.2.2.4). An 

adaption of the spectral range is necessary dependent on the formulation. It was a prerequisite 

for the measurement of the solid fraction (physical property) by NIR to diminish this impact 

in order to develop a reliable method, which is independent of the fraction of API or 

excipient. NIR spectra of the pure API, excipients and blend were acquired to evaluate an 

appropriate spectral range for the physical property of the ribbon. 

 

Figure 53 Spectra components and blend - Black = Metformin hydrochloride, 

green =  − Lactosemonohydrate, red = blend, blue = Sodium 

carboxymethylcellulose, pink = Microcrystalline cellulose 

Different peaks occurred depending on the chemical structure of the components (see Figure 

53). Specific peak maxima were observed for Metformin (combination band 5000 – 4000 cm-

1, first overtone band about 6570 cm-1, second overtone band about 9596 cm-1) [125] and 

water (combination band about 5200 cm-1, overtone band about 7000 cm-1) [126] (see 

APPENDIX 8.1.3). Based on these results, an appreciable spectral range above 9597 cm-1 will 

be evaluated for method development. At this spectral range, the impact of the composition 

showed less impact compared to a range of lower wavenumbers. 
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4.4.1.2.1.5 Summary 

A summary of the evaluated NIR settings is depicted in Table 7. Using the first derivation of 

the spectra will reduce the impact of the measuring setup and sample condition. 

Table 7 Summary - Evaluation NIR setup 

Factor Setup Defined 

Sample condition 

Storage time 
48 h (relative humidity 0-65 %, 

temperature 19-25°C) 

Ribbon surface Smooth 

Measuring setup 

Distance probe to sample 0 mm 

Angle probe to sample 90° 

Ambient light Off 

Software setup 

Resolution 16 

Scans 32 

Spectral range No influence of composition above 9597 cm-1 
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4.4.2 Development of an at-line NIR method for solid fraction measurements of 

ribbons 

4.4.2.1 Principal component analysis (PCA) – Verify spectral range 

Multivariate data analysis was applied to describe the variance of the spectra over the range of 

wavenumbers (11941 cm-1 – 9665 cm-1). Evaluation of an appropriate spectral range  can be 

done by principal component analysis (PCA) (see 6.2.2.4.1). PCA verifies if the observed 

variance of the spectra can be distinguishing the solid fractions. A vast amount of data is 

compressed to principal components representing the variance of the spectra.  

  

Figure 54 Principal component analysis – Ribbon at 6 kN/cm – Spectral range 

above 9597 cm-1, location on the ribbon: front = blue, middle = red, 

back = green 

Principal component 1 showed promising result as spectra were clustered by solid fraction. A 

distinction can be made by front, back and centre of the ribbon. The second principal 

component did not account for any difference between solid fractions. Principal component 

two was equally distributed over the spectra. Defined spectral range was appropriate to 

acquire a bigger sample size and to proceed with internal (cross validation) and external 

validation (test set). 
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4.4.2.2 Calibration data set – NIR method development 

The calibration data set consisted of ribbons of the MiniPactor compacted at 4, 6, 8 and 10 

kN/cm. In literature various authors correlated the slope of a linear regression over the whole 

spectral range [29,32,38,127] in order to determine the observed baseline shift (see 4.4.1.2) 

with increasing solid fraction. As investigated, various factors will have an impact on this 

baseline shift (e.g. distance probe to sample, see 4.4.1.2.1). First derivation allows to level 

these baseline shifts resulting in a higher accuracy, precision and robustness. Therefore, the 

first derivation was used for all spectra (see 4.4.1.2.1).  
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4.4.2.3 Results - Internal validation – Cross validation 

Full cross validation of the calibration data set was performed by multivariate statistical 

method of partial least square analysis (PLS) (see 6.2.2.4.1). Each sample was removed from 

the full data set and predicted based on the regression results for the remaining samples (leave 

one out method).  

 

Figure 55 Results internal validation – 

Predicted vs. observed solid fraction ribbon, colour indicates different 

solid fraction ranges 

A good correlation between predicted and observed values was found (see Figure 55). The 

correlation coefficient was 0.8680. Five principal components were necessary to reach this 

correlation coefficient (rank, PLS). Compared to the PCA, more principal components were 

necessary to describe this bigger data set. Furthermore, the root mean square error of cross 

validation and bias were low, which indicated a reliable model (see Table 8).  
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Table 8 Summary – Results internal validation 

No. of calibration spectra included 699 

Calibration range [Solid fraction] 0.5853 – 0.8066 

Reference measurements [GeoPycnometer] 233 

Data pre-processing technique 1st derivation 

Seleceted wavenumber range 11941 cm-1 – 9658 cm-1 

Coefficient of correlation (R2) 0.8680 

Root mean square error of cross validation 

(RMSECV) 
0.0188 

Rank (PLS-factor) 5 

Residual prediction deviation (RPD) 2.81 

Bias -0.0000366 
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4.4.2.4 Results - External validation – Test set validation 

Unknown ribbon samples of 4, 6, 8 and 10 kN/cm were taken to evaluate the performance of 

the developed method. Additionally, three drug loads (DL) of 15 %, 21 % (target drug load) 

and 27 % were embedded in validation set to prove independence of the drug load. 

 

Figure 56 Results external validation – Left plot: Predicted vs. observed solid 

fraction ribbon, colour indicates different solid fraction ranges of the 

ribbon – Right plot: Predicted vs. observed solid fraction ribbon, 

colour indicates different drug loads (%) for Metformin 

Results of external validation were well in agreement with cross validation results. Similar 

correlation coefficients (0.8611, 0.8680) and a low root mean square error of prediction and 

bias could be found. (see Figure 56, left plot, Table 9). For the investigated drug loads of the 

ribbon an impact on the accuracy of predicted solid fraction over the investigated range of 

solid fractions was not found (see Figure 56, right plot). Predicted solid fractions were evenly 

distributed around the observed solid fractions (GeoPycnometer). No trend in the residuals 

could be identified for the different drug loads (see Figure 56, right plot). Validation results 

confirmed that predictions of the solid fraction of unknown samples were successful. An 
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appropriate method was developed to further proceed with a scale up approach and to 

investigate the distribution of the solid fraction along roll width at different scales.  

Table 9 Summary  - Results external validation 

No. of dosage strengths 21 %, 15 %, 27 % 

No. of validation spectra included 216 

Calibration range [Solid fraction] 0.5853 – 0.8066 

Reference measurements [GeoPycnometer] 72 

Data pre-processing technique 1st derivation 

Seleceted wavenumber range 11941 cm-1 – 9658 cm-1 

Coefficient of correlation (R2) 0.8611 

Root mean square error of prediction 

(RMSEP) 
0.0189 

Rank (PLS-factor) 5 

Residual prediction deviation (RPD) 2.68 

Bias -0.00425 
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4.4.3 Scale up approach – Comparison of solid fractions of ribbons of a Metformin 

formulation at two scales 

The blend was compacted with the MiniPactor and MacroPactor at 4, 6, 8 and 10 kN/cm. 

Results of the solid fraction measurements are shown in Figure 57 (GeoPycnometer). 

Differences of the solid fraction of the ribbon were obtained between the two scales. 

MacroPactor achieved a higher solid fraction compared to the MiniPactor (Figure 57, left 

plot). These results were consistent with the results presented in previous chapters (see 4.2, 

4.3). 

 

Figure 57 Comparison solid fraction ribbon MacroPactor/MiniPactor/Scale up - 

Left plot: solid fraction ribbon vs. specific compaction force - Right 

plot: specific compaction force vs. solid fraction ribbon, mean (n = 5), 

error bars (standard deviation of mean), DL = drug load, Met = 

Metformin  

T-Test indicated differences (p  0.05) in SF between the MacroPactor and MiniPactor at all 

specific compaction forces (see APPENDIX 8.2.4). Solid fraction at 6 kN/cm of the 

Polynomic fitting 

99.926*x^2 

-106.38*x+30.353 

R²= 0.9989 
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MiniPactor was defined as target solid fraction (0.7063) for a scale up (MacroPactor), which 

would be an appropriate value for the solid fraction of a ribbon to gain an acceptable product 

quality [17]. A polynomic fitting was done (see Figure 57, right plot), as previously described 

in chapter 4.3, to adapt the specific compaction force of the MacroPactor, and to achieve the 

target solid fraction of the MiniPactor. The polynomic equation allowed calculating the 

required specific compaction force at the MacroPactor by employing the target solid fraction 

of 0.7063 (MiniPactor, see Figure 57, right plot). Solid fraction of the adapted specific 

compaction force of 5.1 kN/cm (MacroPactor, black triangle) was 0.7040 and showed only a 

difference of -0.3 % to the target solid fraction. Ribbons were taken for NIR measurements. 
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4.4.4 Solid fraction distribution along the roll width between different scales by 

NIR 

Independent samples of all specific compaction forces were analysed applying the NIR 

method. In Figure 58 the average solid fraction along the ribbon width for each scale at 

different specific compaction forces is shown. A polynomic fitting was done to illustrate the 

differences between the ribbons produced at two scales, where 0 cm represents the middle of 

the ribbon. 

 

Figure 58 Mean solid fraction along ribbon width at compaction forces of 4, 6, 8 

and 10 kN/cm, Scale up 5.1 kN/cm, mean (n = 12), error bars 

(standard deviation of mean), ribbon length 9.20 cm 

Solid fraction increased from the edges to the centre from about 0.61 to 0.70 (+15 %) for both 

scales due to cheek plates effects (see 4.4.1.1) [21,30,31,36,40,41,115]. Ribbons of the 

MacroPactor obtained a narrow solid fraction distribution along the roll width because the 

impact of the cheek plates became lower with a larger distance to the edges (see 4.4.1.1). The 

ribbons produced with the MacroPactor had a larger area with a high solid fraction, which 

explains the higher “total” solid fraction measured by the GeoPycnometer for the ribbons of 
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the MacroPactor. This was previously observed with equal process parameters for both scales 

(see 4.2.2). For process development purposes, it is interesting to note that the standard 

deviation of the solid fraction increased with increasing specific compaction force (see Figure 

58). At a higher specific compaction force, a higher amount of powder has to be dragged into 

the compaction zone by the tamp auger in order to reach steady state conditions at a gap of 

e.g. 3 mm. This can only be realized if the speed of the tamp auger is increased. Therefore, the 

impact of the periodical rotation by the tamp auger is enhanced, which is followed by a more 

diverse solid fraction along the ribbon length compared to lower specific compaction forces.  

 

Figure 59 Solid fraction distribution ribbon (MacroPactor 6 kN/cm) -

 Left plot: solid fraction along ribbon length (contour plot, fit type 

= distance weighted least square), triangle measurement points of NIR 

- Right plot: solid fraction distribution of ribbon along ribbon width, 

triangle measurement points of NIR, circle (mean, n = 12), error bars 

(standard deviation of mean) 

A sinusoidal periodical course of the solid fraction along the ribbon length, attributed to the 

periodically screw rotation of the tamp auger [29,36,39], could be exemplary shown for a 

ribbon of the MacroPactor (see Figure 59).  
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Additionally, the results of solid fraction distribution explained the lower observed tensile 

strength of tablets by the MacroPactor compared to the MiniPactor (see 4.2.4.2). A high solid 

fraction will lead to higher consumption of plastic deformation, lower porosity of granules 

and thus to a lower tensile strength of tablets (see 4.3.4). Considering the scale up approach, 

the sample showed an equal “total” solid fraction compared to the MiniPactor (see Figure 57). 

This comparable solid fraction will result in similar granule and tablet properties (see 4.3.2 & 

4.3.3). A lower solid fraction can be obtained by adapting the specific compaction force 

(Scale up 5.1 kN/cm) to counteract the different solid fraction distribution along the roll width 

between two scales. Thus, adapting the specific compaction force by measurements of the 

“total” solid fraction (GeoPycnometer) is a suitable scale up strategy for a roller compaction 

process. A uniform distribution of the solid fraction at different scales would be preferable, 

but due to construction issues like roll width and side seal system, difficult to gain.  
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4.4.5 Summary 

In previous chapters a different solid fraction of the ribbon at equal process parameters at 

different scales was obtained. A more efficient NIR method was developed to measure the 

solid fraction of ribbons along the roll width, as the GeoPycnometer method was limited by 

sample size. A new formulation with a model API Metformin was used. Various factors were 

investigated, which have a potential impact on the reliability of the NIR method. Sample 

conditions, measuring setup and API content. Afterwards internal validation and external 

validation was performed with independent samples, which illustrated a good correlation 

coefficient R2  0.86 to the reference method. It was possible to predict the solid fraction of 

unknown samples by acquiring the NIR spectra comprising reduction of analysis time. 

The developed NIR method allowed measuring the solid fraction distribution along the full 

roll width. A difference between the solid fraction of the ribbons based on different scales was 

found. MacroPactor showed a larger area with a high solid fraction along the roll width 

compared to the MiniPactor. The effect of the cheek plates (lower solid fraction at the edges), 

decreased with increased distance to the cheek plates ( 1 cm, see Figure 58), which was 

especially the case for the MacroPactor with a broader roll width. This leads to a higher 

“total” solid fraction of the ribbons produced by the large scale compared to a small scale at 

equal process parameters. These results explained different quality attributes of granules and 

tensile strength of the tablets impacted by the solid fraction of ribbons, which were observed 

in previous chapters at equal process parameters. The proposed scale up approach showed that 

the differences of resulting granules and tablets between scales can be balanced through 

adaption of the specific compaction force. Furthermore, this approach can be used in the 

pharmaceutical industry during process development from small development batches to 

commercial batches to satisfy market demands. 
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4.5 MODEL DEVELOPMENT – PREDICTING SOLID FRACTION OF A 

TABLET 

Previous chapters have shown that compression behaviour of mixtures (solid fraction vs. 

compression) have an impact on roller compaction process. Thus, it would be beneficial to 

predict the compression behaviour of mixtures based on compression analysis of single 

excipients to support decision guidance for formulation development purposes. 

The predictive power of the Percolation theory, the Kawakita model, and a simple exponential 

model were systematically evaluated for different direct compression formulations. Four 

mixtures were compressed over a wide pressure range at various fractions of microcrystalline 

cellulose (MCC) and pre-agglomerated lactose monohydrate (LAC). Formulations contained 

different amounts of MCC and LAC in range of 72 % to 24 % (see Table 17). First, all models 

were applied to single components and thereafter an additive rule was used (see 3.3.1.4), for 

predicting the solid fraction of the mixtures, reflecting the composition of the formulation. 

Finally, the prediction and the observed solid fractions of the compressed mixtures were 

compared to evaluate the suitability of the models (see Figure 60). 

 

Figure 60 Process flow - Prediction solid fraction of tablets 
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4.5.1 Application of models – Excipients 

4.5.1.1 Input data for model application 

A low number of input values are a prerequisite to ease applicability of a model. Thus, solid 

fraction after compression and true density measurements (see Table 2) of MCC, LAC and 

CARB were used as input parameters. Forty-two tablets were compacted between 50 MPa – 

350 MPa for each excipient. The tablets were weighed directly after ejection with an 

analytical balance. The diameter and the height of each tablet were determined by an 

automatic tablet tester to enable calculation of the solid fraction according to Eq. (34) and Eq. 

(35). Tablets only consisting of LAC compressed at a compression pressure of 50 MPa were 

too weak for being measured in the tablet tester. Results of the compressibility are depicted in 

Figure 61. 

 

Figure 61 Excipients - Solid fraction vs. compression pressure [MPa], mean 

(n= 6), error bars (standard deviation of mean) 
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True densities of mixtures were calculated according to    Eq. (17). Results can be seen in 

Table 10. 

Table 10 Calculated true density mixtures 

Mixture #1 

MCC 3:1 LAC 

Mixture #2 

MCC 2:1 LAC 

Mixture #3 

MCC 1:1 LAC 

Mixture #4 

MCC 1:3 LAC 

1.5540 [g/cm3] 1.5527 [g/cm3] 1.5504 [g/cm3] 1.5468 [g/cm3] 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 

4.5.1.2 Percolation 

The different parameters in the model can be interpreted with regard to compressibility. The 

maximum achievable value of SF/SFmax is limited by the value of SFmax and cannot exceed the 

value of 1 (see Figure 62).  

 

Figure 62 Excipients - Percolation SF/SFmax vs. compression pressure 



MODEL DEVELOPMENT – PREDICTING SOLID FRACTION OF A TABLET 

104 

SFmax of MCC and LAC had a similar value which caused a similar value of 𝑆 [128] although 

they had a different course of their compressibility graph. In contrast to the plastic deformable 

materials MCC and CARB, LAC reached a plateau of SF exceeding a compression pressure 

of 300 MPa, while MCC and CARB reached that plateau at pressure values of about 

200 MPa. This behaviour is due to the brittle deformation characteristics of LAC [129] which 

resulted in lower compressibility compared to plastic deformation, the course seemed to be 

steadily increasing which could be a consequence of the pre-agglomerated LAC and induces a 

brittle fracture (see Figure 61).  

All excipients showed similar percolation thresholds, where the percolation threshold of LAC 

was lower than the threshold of MCC. As the percolation threshold is defined as the pressure 

limit above which particle rearrangement has completed and an infinite cluster formed (see 

3.3.1.1), excipients of higher bulk or working density will need less pressure to settle, i.e. 

rearrange. The working density (bulk density) can be derived from 𝑉0-values at 1-2 MPa (see 

3.3.1.2 & 4.5.1.3) and were 0.9376 g/cm³ (𝑉0  = 0.2117 cm³) for LAC and 0.4996 g/cm³ 

( 𝑉0 =  0.3990 cm³) for MCC which explains the lower percolation threshold for the 

spherically shaped Tablettose 80® (LAC) particles in contrast to the fibrous Avicel PH 102® 

(MCC) particles. 

Table 11 Estimated parameters for the Percolation model 

Modell 

Parameter 
MCC LAC CARB 

𝑆𝐹

𝑆𝐹𝑚𝑎𝑥

=   𝑆 ∗ (𝑥𝑝 − 𝑝𝑐)
𝑞

 𝑜𝑟 𝑆𝐹 = 𝑆 ∗ (𝑥𝑝 − 𝑝𝑐)
𝑞

∗ 𝑆𝐹𝑚𝑎𝑥   

SFmax (measured) 0.9264 0.9242 0.8338 

 Estimate Estimate Estimate 

S 0.7248 0.7183 0.6778 

𝑝𝑐 48.7851 46.4764 48.3177 

q 0.05615 0.05565 0.07033 

R² 0.9753 0.9306 0.9715 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; CARB = Sodium carboxymethylcellulose; 

SF = Solid fraction; SFmax = Maximal solid fraction; S = Proportional constant; xp = Compression pressure 

[MPa]; pc = Percolation threshold; q = compressibility exponent; R2 = correlation coefficient 
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The compressibility exponent q provided a reasonable interpretation of the course of the 

graphs (see Figure 62) and relates to the steepness of the compressibility plot approximating 

𝑆𝐹𝑚𝑎𝑥  (maximal densification) over the whole range of the applied compression pressure. 

CARB showed the highest value and achieved the maximal densification already at 200 MPa, 

whereas MCC and LAC exhibited similar values of q, which was driven by the behaviour 

discussed earlier (particle shape) and can also be explained by considering Eq. (6), which 

caused normalisation through maximum measured solid fraction (SFmax). The coefficient of 

correlation was  0.9306 and showed good fitting results for the model (see Table 11). 

4.5.1.3 Kawakita 

According to the modification of Kawakita C (see 3.3.1.2), a proof for the new definition of 𝐶 

is exemplarily shown for microcrystalline cellulose in Figure 63 where C = V0 – VP/ V0 is 

correlated to solid fraction (SF). V0 was determined in-die for microcrystalline cellulose 

(n = 3) to be in a typical range of 1-2 MPa. The linear correlation between both definitions 

throughout the range of interest (for tableting & roller compaction) for solid fraction from 

0.72 - 0.91 was confirmed by the high coefficient of correlation (R2  0.9951) (see Figure 63). 

LAC and CARB showed similar behaviour resulting in correlation coefficients of 0.9954 and 

0.9928 respectively (see APPENDIX 8.1.4).  

 

Figure 63 “In-die” data MCC- Kawakita C vs. derived C equal to solid fraction 

Considering the applicability of the Kawakita model, the linearity of the plot P/SF vs 

compression pressure is a specified condition. For all excipients, good linearity was 
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demonstrated and therefore a high coefficient of correlation could be achieved (R²  0.9992) 

over the whole range of compression pressure (see Table 12, Figure 64).  

 

Figure 64 Kawakita - Excipients P/SF vs. compression pressure [MPa] 

This proves that it was possible to determine Vmin by a Helium-Pycnometer and to 

consequently use solid fraction as 𝐶 . Thus, the Kawakita parameter 𝑎  can be seen as 

maximum strain or by the definition of Eq. (8) as maximum achievable solid fraction. 

Kawakita 𝑎 decreased in the order of MCC > LAC > CARB, which was consistent with the 

observed values of SFmax determined for the Percolation model shown above (see Table 11), 

and emphasised that MCC was the most compressible excipient. Considering b-1, MCC 

showed the highest deformation capacity (low value), followed by LAC and CARB. 
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Table 12 Estimated parameters for the Kawakita model 

Modell 

Parameter 
MCC LAC CARB 

Kawakita a  0.9614 0.9522 0.8836 

Kawakita b.-1 17.0257 17.7252 24.7369 

Fitted 

Parameter 

MCC LAC CARB 

Estimate Estimate Estimate 

Slope 1.0401 1.0502 1.1317 

Intercept 16.3693 16.8779 21.8582 

R2 0.9992 0.9992 0.9992 

MCC = Microcrystalline cellulose; LAC =  − Lactose monohydrate; CARB = Sodium carboxymethylcellulose; 

R2 = correlation coefficient 

4.5.1.4 Exponential 

Results of parameter estimation of the exponential model showed a good coefficient of 

correlation R²  0.9282. For LAC the R² was quite low because LAC had a more linear course 

of the graph, as mentioned above (see Table 13). 

Table 13 Estimated parameters for the Exponential model 

Modell 

Parameter 

Estimate 

MCC LAC CARB 

d 0.9153 0.9342 0.8335 

f -0.5257 -0.1928 -0.5345 

g -0.0179 -0.0062 -0.0172 

R2 0.9916 0.9282 0.9960 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; CARB = Sodium carboxymethylcellulose; 

d, f, g = Exponential constants; R2 = correlation coefficient 
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4.5.2 Prediction of solid fraction – Mixtures 

All three models were applied to the excipients and then multiplied by their mass fraction 

according to the composition of the mixture to predict the solid fraction Eq. (16) (see 3.3.1.4). 

In order to compare the prediction with the observation, the mean value of six tablets was 

used. For MCC 1:3 LAC at 50 MPa no reasonable values could be determined because the 

tablets were too soft. 

 

Figure 65 Results models – Plot A: Predicted vs. observed solid fraction – 

Plot B: Sum least squares of model for each formulation and total sum 

least squares of the models – Plot C: Residuals vs. compression 

pressure range [MPa] 

For the exponential model a slight trend of overpredicting the solid fraction can be seen (see 

Figure 65A). However, according to this the results of the three models differ in terms of the 

observed values only in a range of -0.017 to 0.030, which is only a small difference for solid 

fraction. Considering the absolute residuals a relevant deviation over the compression 

pressure cannot be anticipated. The total sum of the least squares (see Figure 65B) follows the 

order Percolation < Kawakita < Exponential model, which demonstrates that the Percolation 

A B 

C 
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model yields the best prediction of the solid fraction for all mixtures. The exponential model 

has a stronger overprediction of the solid fraction, whereby the Percolation leads to a 

moderate underprediction (see Figure 65C). Verifying the model’s quality of prediction by 

subdividing the sum of least squares by mixtures, gives an enhanced ability for interpretation 

(see Figure 65B). For the mixtures #1 - #3, which had a higher fraction of MCC, the 

percolation model achieved a much more precise prediction than Kawakita or the Exponential 

model. A reason for the good prediction of the solid fraction by the percolation model can be 

that it also takes into account the maximum achievable solid fraction (SFmax), which provides 

a limit for the system. The poor prediction by the percolation model for the mixture #4 

MCC 1:3 LAC can be caused by the lower correlation coefficient 0.9306 for LAC (see Table 

11), whereas Kawakita has a correlation coefficient of 0.9992 (see Table 12). Nevertheless 

Mixture #4 has a rather untypical high load of LAC (72.37 %) for a tablet formulation. This 

could be an interesting point for further investigations to verify if the percolation model is 

also in good agreement for formulations, which have similar brittle compression behaviour 

like LAC. Despite this the Kawakita model gives the best coefficient of correlation (see Table 

12) for all excipients, it resulted in valuable predictions of all mixtures. Comparing 

predictions of solid fraction by Kawakita to recent papers, which focus on the prediction of 

porosity by Kawakita [75,79,81], residuals in a similar range from -0.39 % to 3.12 % 

compared to Busignies et al. (2012) were found , lower than 2.5 % [79], which is in a good 

agreement. Also Frenning et al. (2009) have shown that it is possible to predict the effective 

Kawakita parameters a and b-1 of spherical pellets out of single compression analyses. 

However, this reflects that it is possible to derive C as solid fraction (see 3.3.1.2), which is 

defined by measured Vmin and Vp, to get reasonable results for the prediction of solid fraction 

by Kawakita and to obtain a possible comparison between various research laboratories.  
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4.5.3 Summary 

A modified Kawakita model and the Percolation theory were successfully adapted for the 

compressibility plot to predict the solid fraction of four compositions using single 

compression analysis of the excipients. These two mechanistic models, were both compared 

with a statistical model based on a simple exponential function. Both theoretical models 

showed very good prediction of solid fraction. The Percolation model seems to be more 

suitable for a common composition of tablets in pharmaceutical industry, whereas Kawakita 

showed better results for mixtures which deform predominantly by brittle fragmentation. The 

limited input data set (tablet geometry/mass, true density) and common software for 

regression analysis, makes it easy to establish a more complex dataset for different excipients 

providing systematic guidance for the formulator. Further investigations are needed to 

consider mixtures with different active pharmaceutical ingredients and excipients with brittle 

fracture.  

In respect to roller compaction process, Percolation and Kawakita can provide an opportunity 

to predict the solid fraction of ribbons if an correlation between compression pressure at the 

tablet press and specific compaction force of the roller compactor will be established, which 

will reduce the number experiments at a roller compactor to find the right process settings for 

a specified formulation. 
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5. MATERIALS 

5.1 MATERIALS 

Table 14 Materials 

Name Trade name Supplier Batch # 

−Lactosemonohydrate (LAC) Tablettose 80® 

Meggle Wasserburg GmbH & Co. 

KG, Megglestraße 6-12, 83512 

Wasserburg am Inn, Germany  

203403 

200292 

203403 

Microcrystalline cellulose (MCC) Avicel® PH102 
FMC Biopolymer Co, 1735 Market 

St., Philadelphia, PA 19103, USA 

400994 

905814 

903926 

Sodium carboxymethylcellulose 

(CARB) 
AcDiSol® 

FMC Biopolymer Co, 1735 Market 

St., Philadelphia, PA 19103, USA 

401433 

408157 

802637 

Magnesium stearate 

(MGST) 
LIGAMED® 

Peter Greven GmbH & Co. KG, Peter-

Greven-Straße 20-30, 53902 Bad 

Münstereifel, Germany 

304668 

308990-1 

Metformin hydrochloride  (MET) 
Metformin 

hydrochloride 

Weifa AS, Gruvevn. 1, P.O. Box 98, 

NO-3791 Kragera, Norway 

401889 

Graphite powder DryFlo® 

Micromeritics Instrument 

Corporation, 4356 Communications 

Dr, Norcross, GA 30093, USA  

- 

 

−Lactosemonohydrate (LAC) is a commonly diluent in tablets. −Lactosemonohydrate 

occurs by a crystallisation of a supersaturated solution of lactose below 93°C [91]. A 

processed product is Tablettose 80®, whereby fine milled lactose particles agglomerate 

during a continous spray drying processs by water. The resulting agglomerates show 

increased flowability and increased tabletability, due to eased fracturing into smaller particles 

compared to single crystals of the size of the agglomerates. LAC is an excipient, which shows 

a typical brittle compression behaviour [90,91]. 

Microcrystalline cellulose (MCC) is a partially depolymerized cellulose derived from 

−cellulose wood pulps using sulfuric acid, followed by a washing step and a spray drying 
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process, which results in fibrous MCC particles [130]. MCC is one of the frequently used 

excipients as diluent and binder, because of its good plastic deformation under pressure [60].  

Sodium carboxymethylcellulose (CARB) is a cross-linked polymer of carboxymethylcellulose 

sodium used as disintegrant as it has a high water uptake ability combined with an high 

swelling property to provide a fast disintegration of the tablet.  

Magnesium stearate (MGST) is a lubricant to reduce the sticking or friction between stainless 

steel (e.g. rolls, punches) and powder. Metformin hydrochloride (MET) is an oral 

antihyperglycemic drug, used for type 2 diabetes. The API belongs to the biguanide class. 

Metformin has been used as model API in chapter 4.4. Different fractions of LAC and MCC 

were employed in this thesis. CARB and MGST were on constant levels (see 5.2).  
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5.2 FORMULATIONS 

5.2.1 Placebo composition - Chapter 4.1, 4.2 and 4.3 

Table 15 Placebo composition – Chapter 4.1, 4.2 and 4.3 

 MCC 2:1 LAC MCC 1:1 LAC 

Component Content % (w/w) Content % (w/w) 

Microcrystalline cellulose 64.0 48.0 

−Lactosemonohydrate 32.0 48.0 

Sodium carboxymethylcellulose 3.0 3.0 

Magnesium stearate 1.0 1.0 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 

5.2.2 API composition - Chapter 4.4 

Table 16 API composition (Metformin) – Chapter 4.4 

 
DL 21 % 

(Target DL) 
DL 27 %  DL 15 % 

Component Content % (w/w) Content % (w/w) Content % (w/w) 

Metformin hydrochloride 21.0 27.0 15.0 

Microcrystalline cellulose 50.0 46.0 54.0 

−Lactosemonohydrate 25.0 23.0 27.0 

Sodium 

carboxymethylcellulose 
3.0 3.0 3.0 

Magnesium stearate 1.0 1.0 1.0 

DL = Drug load 
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5.2.3 Placebo composition- Chapter 4.5 

Table 17 Placebo composition – Chapter 4.5 

Mixture 
#1 

MCC 3:1 LAC 

#2 

MCC 2:1 LAC 

#3 

MCC 1:1 LAC 

#4 

MCC 1:3 LAC 

Component Content % (w/w) Content % (w/w) Content % (w/w) Content % (w/w) 

Microcrystalline 

cellulose 
72.36 64.32 48.24 24.13 

−Lactosemonohydrate 24.12 32.16 48.24 72.37 

Sodium 

carboxymethylcellulose 
3.02 3.01 3.02 3.00 

Magnesium stearate 0.50 0.50 0.50 0.50 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 
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6. MANUFACTURING & ANALYTICAL METHODS  

6.1 MANUFACTURING AND TECHNOLOGIES 

Table 18 Overview experimental methods 

Chapter  Equipment Parameter Material attribute 

4.1  
Material 

characterisation  
- 

True density, Particle size distribution, 

Bulk/Tapped density, Tabletability, 

Compressibility, Compactibility  

4.1 MacroPactor 2, 4, 6, 8 kN/cm 

Solid fraction ribbon: 

Throughput method, Mercury porosimetry, 

GeoPycnometer (GeoPyc) 

4.2 
MacroPactor / 

MiniPactor 
2, 4, 6, 8 kN/cm 

Particle size distribution, Solid fraction ribbon, 

Tabletability, Compressibility 

4.3 MiniPactor 
4.1, 7.0, 9.6, 11.4 

kN/cm 

Solid fraction ribbon, Particle size distribution, 

Particle appearance, Porosity granules, 

Tabletability, Compressibility 

4.4 
MacroPactor / 

MiniPactor 

4, 5.1, 6, 8, 10 

kN/cm 

Solid fraction, Solid fraction distribution along 

roll width/ribbon length with near infrared 

reflectance 

0 FlexiTab 50 – 350 MPa Solid fraction tablet 

 



MANUFACTURING AND TECHNOLOGIES 

116 

Table 19 Manufacturing equipment 

Name Process Manufacturer 

Comil 196 U Pre-Screening Quadro Engineering Corp., Canada 

Handscreen Screening Kressner, Germany 

Tumbling blender Blending Servolift GmbH, Germany 

Turbula blender Blending 
Turbula type 2A, Willy A. Bachofen 

AG Maschinenfabrik, Germany 

MiniPactor Dry granulation 
Gerteis Maschinen + Process-

engineering, Switzerland 

M1075-GMP-Polygran® Walzenpresse  Dry granulation 
Gerteis Maschinen + Process-

engineering, Switzerland 

Fette 1200 Tableting Fette Compacting GmbH, Germany 

Fette 1200i Tableting Fette Compacting GmbH, Germany 

FlexiTab Tableting Röltgen GmbH & Co. KG, Germany 

 



MANUFACTURING AND TECHNOLOGIES 

117 

6.1.1 PREPARATION OF MIXTURES AND PROCESS FLOW CHARTS 

6.1.1.1 Mixture for roller compaction 

Table 20 Manufacturing flow chart: Mixture 

Step Equipment Materials  Operation 
In-process 

controls 

      

1.0 Screening mill Microcrystalline cellulose 

→ 

 
Pre-screening 

Bulk/tapped 

density, PSD 

   − Lactose monohydrate 

  Sodium carboxymethylcellulose 

  Metformin hydrochloride 

    ↓  

2.0 Freefall blender   Pre-blending  

    ↓  

    Pre-blend  

      

3.0 Handscreen Magnesium stearate  → Screening  

    ↓  

 Handmix 
Equal weight parts of Pre-blend (Step 

2.0) 
→ Hand mix  

    ↓  

    Hand screen-mix 0  

      

4.0 Freefall blender Pre-blend (Step 2.0) 

→ Blending  

  Handscreen-mix 0 (Step 3.0) 

    ↓  

    Dry-mix 

Bulk/tapped 

density, 

Hausner ratio, 

PSD 
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Table 21 Process parameters: Mixture 

Step Process step Description of manufacturing process Process parameter 

1.0 Pre-screening 

Microcrystalline cellulose, −Lactose monohydrate, 

Sodium carboxymethylcellulose and Metformin are 

prescreened with Comil 196U 

Mesh size : 1.016 [mm] 

Rotations: 630 [rpm] 

Sieve: rasp  

2.0 Pre-blending Pre-screened is blended in freefall container blender 

Time: 20:00 [min] 

Rotations: 10 [rpm] 

Bin: 1000L (190L 

Metformin) 

3.0 Screening 

Magnesium stearate is screened with a handscreen 

and then manually mixed with equal weight parts of 

Pre-blend 

Mesh size: 1.000 [mm] 

4.0 Blending 
Pre-blend and Handscreen-mix is blended in freefall 

container blender 

Time: 10:00 [min] 

Rotations: 10 [rpm] 

Bin: 1000L (190L 

Metformin) 

 

Table 22 Batch size: Mixture 

Composition Name Batch size [kg]  Total [kg]  

Placebo 

MCC 2:1 LAC 248.75 

497.5 

MCC 1:1 LAC 248.75 

Metformin 

MET 21 67.66 

73.66 27 % DL 3 

15 % DL 3 
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6.1.1.2 Chapter 4.2 and 4.3 

Table 23 Manufacturing flow chart: Chapter 4.2 and 4.3 

Step Equipment Materials  Operation 
In-process 

controls 

      

6.A Roller compactor Dry-mix (Step 4.0) → Dry compacting 
Solid fraction 

ribbon 

   

 

↓  

   Milling  

   ↓  

   Granules 
Bulk/tapped 

density, PSD 

      

7.A Handscreen Magnesium stearate  → Screening  

    ↓  

 Handmix 
Magnesium stearate with equal weight 

parts of granules (Step 6.A) 
→ Hand mix  

    ↓  

    Hand screen-mix A  

      

8.A Freefall blender 

Granules (Step 6.A) 

→ Final blending 

 

Handscreen-mix A (Step 7.A)  

    ↓  

    Final blend  

      

9.A Rotary tablet press Final blend (Step 8.A) → Tableting  

    ↓  

    Tablet cores 

Tensile 

strength, solid 

fraction 
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Table 24 Process parameters: Chapter 4.2 and 4.3 

Step Process step Description of manufacturing process Process parameter 

6.A 
Dry compacting & 

milling 

Dry-mix is compacted and the ribbons are directly 

milled by the roller compactor M1075-GMP-

Polygran® and MiniPactor® 

Ratio tamping auger/feeding 

auger: 160 [%] 

Roll speed: 2 [rpm] 

Automatic gap control: ON 

Gap size: 3 [mm] 

Granulator speed: 70 [rpm] 

Granulator angle: 360°/360° 

[cw/ccw] 

Sieve: 0.8 [mm], square 

Milling: Star rotor 

Chapter 4.2: 

Compaction force: 2, 4, 6, 8 

[kN/cm] 

Chapter 4.3 (Scale Model): 

Compaction force: 4.1, 7.0, 

9.6, 11.4 [kN/cm] 

7.A Screening 

Magnesium stearate is screened with a handscreen 

and then manually mixed with equal weight parts of 

granules 

Mesh size: 1.000 [mm] 

8.A Final blending 
Granules and handscreen-mix A are blended in 

freefall container blender 

Time: 10:00 [min] 

Rotations: 10 [rpm] 

Bin: 40L  

9.A Tableting 
Final blend is compressed into tablet cores with a 

rotary press 

Compression force: 3, 5, 7, 9, 

11, 13, 15 [kN], RSD 5 % 

Pre-compression force: 0 

[kN] 

Compression speed: 80.000 

[tbl/h] 

Punch size: 8 [mm], round 

convex punches, bevelled 

edges  

Target weight: 220 [mg] 
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Table 25 Batch size: Chapter 4.2 and 4.3 

Composition Name Batch size [kg]  Total [kg]  

Placebo 

MCC 2:1 LAC 10 (each kN/cm) 

240 MCC 1:1 LAC 10 (each kN/cm) 

Scale Model 10 (each kN/cm) 

 

Table 26 Manufacturing flow chart: Chapter 4.2: Comparison milling process 

Step Equipment Materials  Operation 
In-process 

controls 

      

6.B Single punch press Dry-mix (Step 4.0) → Tableting  

    ↓  

    Tablet cores Solid fraction 

      

7.B Roller compactor Tablet cores (Step 6.B) → Milling  

    ↓  

    Granules PSD 
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Table 27 Process parameters: Chapter 4.2: Comparison milling process 

Step Process step Description of manufacturing process Process parameter 

6.B Tableting 
Dry-mix is compressed into tablet cores with a single 

punch press 

Compression force: is 

defined by target SF 

Target SF : 

MCC 2:1 LAC : 0.62 (6.5 

kN), 0.77 (16.0 kN) 

MCC 1:1 LAC: 0.64 (6.7 

kN), 0.79 (18.0 kN) 

Punch size: 16 [mm], round 

and biplane 

Target weight: 600 [mg] 

Feeder: ON  

Automatic lubrication: press 

chamber coating system ON, 

every ten tablets 

7.B Milling 

Tablets are milled within one hour by roller 

compactor´s granulator M1075-GMP-Polygran® and 

MiniPactor® 

Granulator angle: 360°/360° 

[cw/ccw] 

Sieve: 0.8 [mm], square 

Milling: Star rotor 

Table 28 Batch size: Comparison milling process 

Composition Name Batch size [kg]  Total [kg]  

Placebo 

MCC 2:1 LAC 
1.2 (each SF, 2000 

tablets) 

4.8 

MCC 1:1 LAC 
1.2 (each SF, 2000 

tablets) 
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Table 29 Manufacturing flow chart: Chapter 4.3: Porosity granules 

Step Equipment Materials  Operation 
In-process 

controls 

      

6.C Sieving Granules (Step 6.A) → Sieving  

    ↓  

    
Sieve fractions granules 

(90µm, 180µm, 250µm) 

Mercury 

porosimetry  

Table 30 Process parameters: Chapter 4.3: Porosity granules 

Step Process step Description of manufacturing process Process parameter 

6.C Sieving Granules are separated by sieve analysis 

Time: 10 min 

Amplitude: 2 mm 

Interval time: 10 s 

Sieve fraction of 90µm, 

180µm, 250µm 
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6.1.1.3 Chapter 4.4 

Table 31 Manufacturing flow chart: Chapter 4.4 

Step Equipment Materials  Operation 
In-process 

controls 

      

6.D Roller compactor 
Dry-mix (Step 4.0) 

(Metformin composition) 
→ Dry compacting 

Solid fraction 

ribbon 

(GeoPyc, NIR) 

Table 32 Process Parameters Chapter 4.4 

Step Process step Description of manufacturing process Process parameter 

6.D 
Dry compacting & 

milling 

Dry-mix is dry compacted and the ribbons directly 

milled by the roller compactor M1075-GMP-

Polygran® and MiniPactor® 

Ratio tamping auger/fedding 

auger: 160 [%] 

Roll speed: 2 [rpm] 

Automatic gap control: ON 

Gap size: 3 [mm] 

Granulator speed: 70 [rpm] 

Granulator angle: 360°/360° 

[cw/ccw] 

Sieve: 0.8 [mm], square 

Milling: Star rotor 

Specific compaction force:  

4, 6, 8, 10 [kN/cm] 

Scale up: 

Large scale: 5.1 [kN/cm] 

Table 33 Batch size: Chapter 4.4 

Composition Name Batch size [kg]  Total [kg]  

Placebo 

MET 21 5 (each kN/cm) 

51 27 % DL 3 

15 % DL 3 
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6.1.1.4 Chapter 4.5 

Table 34 Manufacturing flow chart: Chapter 4.5 

Step Equipment Materials  Operation 
In-process 

controls 

      

I Turbula blender Microcrystalline cellulose 

→ 

 
Blending     − Lactose monohydrate 

  Sodium carboxymethylcellulose 

    ↓  

    Pre-blend  

      

II Handscreen Magnesium stearate  → Screening  

    ↓  

 Handmix Equal weight parts of Pre-blend (Step I) → Hand mix  

    ↓  

    Hand screen-mix  

      

III Freefall blender Pre-blend (Step I) 

→ Blending  

  Handscreen-mix (Step II) 

    ↓  

    Dry-mix  

      

IV Single punch press Dry-mix (Step III) → Tableting  

    ↓  

    Tablet cores Solid fraction 
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Table 35 Process parameters: Chapter 4.5 

Step Process step Description of manufacturing process Process parameter 

I Pre-blending Material is blended in turbula blender 

Time: 03:00 [min] 

Rotations: 50 [rpm] 

Bin: 2L 

II Screening 

Magnesium stearate is screened with a handscreen 

and then manually mixed with equal weight parts of 

Pre-blend 

Mesh size: 1.000 [mm] 

III Blending 
Pre-blend and handscreen-mix is blended in a turbula 

blender 

Time: 05:00 [min] 

Rotations: 50 [rpm] 

Bin: 2L 

IV Tableting 
Dry-mix is compressed into tablet cores with a single 

punch press 

Compression force: 4, 8, 12, 

16, 20, 24, 28 [kN] 

Punch size: 10 [mm], round 

and biplane 

Target weight: 200 [mg] 

 

Table 36 Batch size: Chapter 4.5 

Composition Name Batch size [kg]  Total [kg]  

Placebo 

MCC 3:1 LAC 0.5 

2 

MCC 2:1 LAC 0.5 

MCC 1:1 LAC 0.5 

MCC 1:3 LAC 0.5 
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6.2 ANALYTICAL METHODS 

Table 37 Analytical equipment 

Name Sample Attribute Manufacturer 

AccuPyc II 
Raw material, Unprocessed 

blends 
True density 

Micromeritics Instrument 

Corporation, USA 

Stampf-Volumeter PT-TD1 

+ Engelsmann STAV II 
Raw material, granules Bulk/Tapped density 

Stampf-Volumeter PT-

TD1, Pharma Test 

Apparatebau GmbH, 

Germany 

Retsch AS 200 control Raw material, granules Particle size distribution Retsch GmbH, Germany 

Pascal 140-240/440 Granules, ribbons 
Porosity (mercury), Solid 

fraction  

Thermo Fisher Scientific, 

USA 

Keyence VHX 5000 (VH-

Z20R/Z20T) 
Granules Mircroscopy 

Keyence Deutschland 

GmbH, Germany 

GeoPycnometer 

(GeoPyc1360) 
Ribbons Solid fraction 

Micromeritics Instrument 

Corporation, USA 

Bruker Multi-Purpose 

Analyzer (MPA), Fourier 

Transform, 

Detector RT-InGaAs 

Ribbons Near infrared spectroscopy Bruker Optics, Germany 

Micrometer screw Ribbons Micrometer screw 
MIB – Messzeuge GmbH, 

Germany 

AT400 Tablets Weight 
Mettler-Toledo GmbH, 

Germany 

Erweka TBH 310 MD Tablets 
Geometry tablets, weight, 

breaking force 
Erweka GmbH, Germany 

FlexiTab 
Raw material, Unprocessed 

blends, granules 
Compression analysis 

Röltgen GmbH & Co. KG, 

Germany 

Erweka TBH 310 MD Tablets 
Geometry tablets, breaking 

force 
Erweka GmbH, Germany 

Kraemer UTS 12 F Tablets 
Geometry tablets, weight, 

breaking force 

Kraemer Elektronik 

GmbH, Germany 
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Table 38 Software and data processing 

Data Name 

In die data (Compressibility) Data Acquisition System DAQ4, Dr. M. Hucke 

General data evaluation and figures Spotfire Version 7.5.1.8, Tibco® Software Inc., USA 

Polynom fitting Excel, Microsoft® Office Professional Plus 2010 

Power calculation G*Power Statistical Power Analyses Version 3.1.9.2 

Contour plots and figures Statistica Version 12®, StatSoft GmbH, Germany 

T-Test, ANOVA Statistica Version 12®, StatSoft GmbH, Germany 

Spectra and near infrared reflectance method 

development 

OPUS version 7.2®, Bruker Optik GmbH, Germany 

Data fitting Chapter 4.5 OriginPro 8G®, OriginLab Corporation, USA 

6.2.1 Raw material and granules 

6.2.1.1 True density 

True density of all excipients and blends was measured by a helium gas pycnometer 

(AccuPyc II, Micromeritics Instrument Corporation, USA), the helium penetrated into the 

voids between particles or intragranular voids. The displaced volume determined solids’ 

volume. A blank measurement of the chamber was previously performed (9.2 cm³). 

Afterwards metal spheres calibrated the amount of displaced helium. Temperature was 

controlled to guarantee same analysis conditions. Fill pressure was set to 19.5 psig with an 

equilibration rate of 0.005 psig/min. 10 fill purges resulted in one mean value for the true 

density.  

6.2.1.2 Bulk/Tapped density 

Bulk and tapped density of powders and granules measured in a 250 ml cylinder (Engelsmann 

STAV II). A mass of 100 g was filled into the cylinder. The volume for the bulk density was 

determined. Afterwards taps of 10, 500, 1250, 2500 were used (Stampf-Volumeter PT-TD1) 

to determine the tapped volume. Bulk, tapped density and Hausner ratio were calculated 

according to United States Pharmacopeia (USP) [16]. 
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6.2.1.3 Particle size distribution 

Particle size distribution of powders and granules were performed in triplicate by sieve 

analysis. Sieve analyses was performed with a sieve tower, which comprised sieves of 63, 90, 

125, 180, 250, 355, 500, 630, 710 and 1000 µm mesh size. Analysis time was 10 min with an 

amplitude of 2 mm and an interval time of 10 seconds (Retsch AS 200 control). Retained 

mass on each sieve was determined by an analytical mass balance. Sample size was 100 g 

(n = 3). The total amount passed [%] of the sample was calculated for each sieve and plotted 

versus the mesh size for a detailed analyses. d50 represents the cumulative mean particle size 

calculated by Retsch AS 200 according to USP [16].  

6.2.1.4 Mercury porosimetry 

Mercury intrusion-porosimetry is the method of choice to measure the porosity of solids. 

Mercury is a non-wetting-liquid for the most solids because it has a high surface tension and a 

high contact angle of over 90° on solids [131]. Without an external pressure mercury cannot 

intrude into pores. Washburn (1921) [132] derived an equation, where he stated that a 

capillary has a cylindrical pore. The force of the capillary which prevents the intrusion of the 

liquid is dependent of the surface tension of the liquid, the angle of contact with the solid and 

the length of the area of contact between liquid and the surface of solid, which can be defined 

by 2*π*radius of the pore. 

𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 = 2 ∗  𝜋 ∗  𝑟 ∗  𝑦 ∗ 𝑐𝑜𝑠 (𝜃)  Eq. (18) 

The force required to enter the pore can be defined as: 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃 =  
𝐹

𝑎𝑟𝑒𝑎
   Eq. (19) 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹 = 𝜋 ∗  𝑟2 ∗  𝑃  Eq. (20) 

If are both in equilibrium Eq. (19) and Eq. (20)  

2 ∗  𝜋 ∗  𝑟 ∗  𝑦 ∗ 𝑐𝑜𝑠 (𝜃) =  𝜋 ∗  𝑟² ∗  𝑃   Eq. (21) 

This shows that pore radius is inversely proportional to the applied pressure 

𝑟 =  
−2∗𝑦∗𝑐𝑜𝑠(𝜃)

𝑃
   Eq. (22) 

r = radius, y = surface tension (liquid), cos (θ) = angle [°] of contact, F = Force, P = Pressure 

A capacitive sensor measured the intruded volume of mercury during increasing pressure, 

whereby the intruded volume of mercury per sample (relative volume mm³/g) correlates with 

pore size distribution.  
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑚3/𝑔)  =  
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑑 𝑚𝑒𝑟𝑐𝑢𝑟𝑦 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑚𝑚3)

𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 (𝑔)
   Eq. (23) 

Calculations were performed using Win-Pascal Software Vers. 1.05 with a contact angle of 

140° and a surface tension of 0.48 N/m. Low pressure porosimetry was performed with a 

Pascal 140 (0 – 400 kPa) and high pressure porosimetry with a Pascal 400 (max. 400 MPa). 

Pressure increased after the intruded mercury achieved an equilibration (0.08 – 0.32 kPa/sec). 

The dilatometer was first evacuated to 0.01 kPa (≈ 73540 µm) and then filled by mercury. 

Afterwards the pressure was increased to 400 MPa (≈ 1.8 nm). 

 

Figure 66 Mercury porosimetry of granule sieve fraction – Example 90 µm 

The granules were divided into sieve fraction of 90, 180 and 250 µm by sieve analyses. 

Sample size of the granules was about 0.2 g (n = 1). Two different pore size distributions 

could be observed over the whole range of radius (pressure range) for all sieve fraction, which 

can be attributed to intergranular pores between particles and intragranular pores of particles 

(Figure 66) [110,111]. Intergranular pores have been found at a higher radius and 

intragranular pores in the region of 0.4 µm – 1.8 µm. Thus cumulative sum of the relative 

volume (mm³/g) of the intruded mercury in low radius region was used to compare the 

porosity between the granules.  
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6.2.1.5 Compression analysis 

Excipients, blends and granules were tableted by a single punch press (FlexiTab). FlexiTab 

provides the possibility to adjust the dwell time, punch velocity and compression pressure 

independent of tablet height or mass. Bi-plan punches with a 10 mm diameter were used. Die 

filling was done manually with 300 mg of mass for “in-die” compressibility plots (n = 3) and 

200 mg for tabletability and compactibility plots. For “in-die” measurements, FlexiTab was 

equipped with a force displacement system containing an incremental position sensor and 

strain gauges. The force displacement system was corrected to account for an elastic 

deformation of the punch with 0.0033 mm/kN and an offset of 0.0148 mm. For details the 

reader is referred to Verena Maria Gläßer (2008). Data acquisition was done by DAQ4 

(Hucke Software, Solingen, Germany) and data transformation by Tibco Spotfire (Tibco 

Software Inc.). The switching threshold from pneumatic to hydraulic pressure was set to 

1.2 kN ( 15 MPa). Pressure range for “in-die” measurement was 0 – 235 MPa and for “out-

of-die” 50 – 350 MPa. Filling depth was constant at 8.5 mm. Tablets were weighed directly 

after ejection by analytical balance. “Out-of-die” tablets were determined directly after 

ejection by an automatic tablet tester to calculate the solid fraction (n = 6) and the tensile 

strength (n = 3). Compression settings are depicted in Table 39. 

Table 39 Process parameter – FlexiTab – Tableting profile 

Upper Punch (downwards) % of  

maximal Pressure 

Upper punch (upwards) % of  maximal 

Pressure 

20 % Dwell time 50ms 80 % 

20 %   

90 % 16,2 KN 80 % 

15 % 7,13 KN 100 % 

Switching threshold from pneumatic to hydraulic pressure 1.2 kN 
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6.2.1.5.1 Heckel equation determination 

Heckel equation is often used to classify materials by compression behaviour [56]. It is 

assumed that the densification process follows a first-order law. The course of the 

densification process is divided in three phases (Phase1: particle rearrangement, 

fragmentation; Phase 2: plastic 

deformation; Phase 3: elastic 

recovery, decompression) [63]. 

The Yield pressure is determined 

in phase 2 (plastic deformation) 

and indicates if a material 

undergoes plastic deformation 

(low Yield pressure equal to high 

compressibility). Calculating the 

Yield pressure is done by 

applying a linear regression 

model at a predefined pressure 

range to determine it by 1/slope. 

Resulting intercept A of the 

linear regression can be seen as 

index for particle rearrangement. 

Figure 67 Schematic Heckel plot [63] 

Heckel = ln(
1

1−𝑆𝑜𝑙𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
 𝑜𝑟 

1


)  = 𝑘 ∗ 𝑃 + 𝐴 [61]  Eq. (24) 

 Yield pressure (𝑃𝑦) =
1

𝑘
   Eq. (25) 

For linear regression a defined pressure range was chosen depending on a normal operating 

pressure (unprocessed materials 20 MPa – 120 MPa, granules 120 MPa – 160 MPa). 

6.2.2 Ribbon – Solid fraction 

6.2.2.1 Throughput method 

Different authors have described the calculation of the solid fraction of ribbons by weighing 

the throughput of the granules [5,26] or the weight of ribbons [27,34]. For comparison all 

described formulas were adapted by replacement of ribbon´s weight with granule´s weight 

(Peter (2010) [27], Nkansah et al. (2008) [34]).  
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For this purpose, the complete granule throughput was collected five times for 5 min over 

different time intervals after reaching constant gap (steady state).  

Herting et al. (2007) [26]:  

𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑖𝑏𝑏𝑜𝑛  = 𝜋 ∗  𝑑𝑟𝑜𝑙𝑙𝑠 ∗  𝑤𝑟𝑜𝑙𝑙𝑠  ∗  𝑣𝑟𝑜𝑙𝑙𝑠  ∗  𝑔𝑎𝑝 ∗  𝑡   Eq. (26) 

drolls = diameter rolls [cm], wrolls = width rolls [cm], vrolls = velocity rolls [rpm], gap= gap [cm], t = production 

time [min] 

Nkansah et al. (2008) [34] modified this formula by adding the surface of the rolls and 

substituted the gap by height measurements of the ribbons with a micrometer screw: 

𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑖𝑏𝑏𝑜𝑛 = 𝜋 ∗  𝑑𝑟𝑜𝑙𝑙𝑠 ∗  𝑤𝑟𝑜𝑙𝑙𝑠  ∗  𝑣𝑟𝑜𝑙𝑙𝑠  ∗  ℎ𝑒𝑖𝑔ℎ𝑡𝑟𝑖𝑏𝑏𝑜𝑛  ∗ 𝑡  𝑣𝑜𝑖𝑑𝑠𝑢𝑟𝑓𝑎𝑐𝑒   Eq. (27) 

voidssurface = knurled Gerteis®: 50 mm width 2.946 cm³, 25 mm width 1.473 cm³ 

Gamble et al. (2010) modified the formula of Herting for collecting the weight of granules: 

𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑖𝑏𝑏𝑜𝑛 ± (𝑣𝑜𝑖𝑑𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ∗ (𝜋 ∗  𝑑𝑟𝑜𝑙𝑙𝑠 ∗  𝑣𝑟𝑜𝑙𝑙𝑠  ∗  
𝑡

𝑔𝑎𝑝
))   Eq. (28) 

Peter (2010) [27]: 

𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑖𝑏𝑏𝑜𝑛 = (𝜋 ∗ (𝑑𝑟𝑜𝑙𝑙𝑠 +  
𝑔𝑎𝑝

2
)) ∗  𝑣𝑟𝑜𝑙𝑙𝑠 ∗ (𝑔𝑎𝑝 ∗ 𝑤𝑟𝑜𝑙𝑙𝑠)   Eq. (29) 

Solid fraction was calculated according to Eq. (30): 

𝑆𝑜𝑙𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑖𝑏𝑏𝑜𝑛= 

(𝑚𝑎𝑠𝑠𝑔𝑟𝑎𝑛𝑢𝑙𝑒𝑠 [𝑔]∗ 
𝑡

𝑣𝑜𝑙𝑢𝑚𝑒𝑟𝑖𝑏𝑏𝑜𝑛[𝑐𝑚3]
)

𝑡𝑟𝑢𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [
𝑔

𝑐𝑚3]
   Eq. (30) 

6.2.2.2 Mercury porosimetry 

Win-Pascal Software Vers. 1.05 was applied to calculate the volume of a ribbon with an 

contact angle of 140° and a surface tension of 0.48 N/m (see 6.2.1.4). Pressure increased till 

an equilibration of the intruded mercury was achieved (0.08 – 0.32 kPa/sec). The dilatometer 

was first evacuated to 0.01 kPa (≈ 73540 µm) and then filled by mercury. Afterwards the 

pressure increased to 0.150 MPa (pore radius ≈ 4.90µm), as a result only the cracks of the 

surface of the ribbons were filled and the mercury surrounded the surface of the ribbon. 

Differences between chamber volume and filled dilatometer with mercury and ribbon allowed 

to calculate the solid fraction of the ribbon (see Eq. (1)). Ribbons were cut into two pieces of 

25 mm width and 10 mm length to fit into the dilatometer (n = 3).  
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6.2.2.3 GeoPycnometer 

Solid fraction measurements were carried out using a GeoPycnometer 1360 which is based on 

the principle of volume displacement [17]. The principle, is that the irregularly shaped sample 

is surrounded by a graphite powder (Dry Flo) with good flowability. The result is the 

displaced volume by the sample ribbon, which allows calculating the solid fraction. 

 

Figure 68 GeoPyc1360® – Micromeritics Instrument Corporation 

Ribbons were measured in a rotating cylindrical vessel, whereby a plunger is pushed through 

the vessel and a densification takes place until a specified force is gained. The GeoPynometer 

calculated the volume increase by a comparison of step 2 and step 3 (see Figure 69). 

 

Figure 69 GeoPycnometry – Process of measurement 
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Afterwards the solid fraction of the ribbons is calculated by dividing the weight by the 

corresponding volume, which represents 𝜌𝐴𝑝𝑎𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (see Eq. (1)). Ribbons were cut into 

6 rectangular pieces of 25 mm* 30 mm (width / length) in order to fit into the sample cup 

(diameter 38.1 mm). Five samples, each containing 6 pieces, for each specific compaction 

force, were analysed in a measurement cycle of 6 with a plunger force of 38 N. This method 

was used throughout this thesis, except stated otherwise. 

6.2.2.4 Near infrared spectroscopy  

Infrared spectroscopy can be classified into near infrared, mid infrared and far infrared 

spectroscopy. Near infrared (NIR) spectroscopy is a nondestructive spectroscopic analytical 

technique. In a wavelength range of 800 nm to 2500 nm, corresponding to a wavenumber of 

about 4000 – 12500 cm-1, absorption of the electromagnetic radiation by molecules occurs.  

This absorption results in uptake of specific energy, which results to vibrations of chemical 

bonds due to overtones and combination vibrations of C-H, O-H and N-H functional groups 

[134–136]. Therefore, NIR spectroscopy is also called vibrational spectroscopy. Overtones 

vibrations can be described by the anharmonic oscillator model as a transition over multiple 

energy levels e.g. from ground stage to a second level occurs. Therefore, these vibrations are 

called overtones. In contrast to that, the harmonic oscillator model for fundamental vibrations 

is described as transition from one level to the next level [134–136]. Combination vibrations 

represent these sums of multiple fundamental vibrations in a NIR spectrum, which are more 

intense compared to overtones. The induced overtone and combination vibrations can overlap 

resulting in broad peaks in a NIR spectrum. Mathematical techniques (chemometrics) like 

multivariate data analysis, principal component analysis (PCA) and partial least square 

analysis (PLS) [137–139] are used to investigate chemical information or physical 

information. For both properties quantative models can be developed based on a correlation 

between concentration of the sample and proportional change of the NIR spectra. Various 

authors demonstrated a correlation between NIR spectra to an upcoming physical property 

change like particle size distribution of granules [20,38], hardness/porosity of tablets [119–

121] or solid fraction of ribbons [32,38,122,140]. Thus, NIR can be used to investigate the 

solid fraction distribution along the roll width between different scales. Process flow of NIR 

method development is depicted in Figure 70. 
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Figure 70 Process flow – NIR method development 

A Fourier-transform NIR spectrometer (Bruker Multi-Purpose Analyzer MPA) equipped with 

a fibre optic probe for measurements in diffuse reflection mode was used, which provides a 

high precision, accuracy of wavelength measurements and a high scan speed [135,136]. 

Treatment of acquired spectra was done with OPUS version 7.2.  
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Diffuse reflection is defined as the ratio of the radiation reflected (I) by the sample compared 

to the reflection of a reference surface (I0) (Reflection = I/I0, Absorption = -log (Reflection)) 

[134,141]. Reflection of the radiation decreases due to fewer boundaries between air and 

solids (high solid fraction). Thus, if the solid fraction is high the absorption will increase and 

less diffuse reflection is detected [142]. A schematic representation of the NIR radiation and 

corresponding reflection of the ribbons, characterised by a different solid fraction, is depicted 

in Figure 71.  

 

Figure 71 Schematic drawing - NIR and solid fraction 

6.2.2.4.1 Principal component analysis (PCA) and Partial least square analysis (PLS) 

Principal component analysis (PCA) allows extracting the relevant information out of the 

spectra and gives the opportunity to develop a broader overview of the spectra. Thus, plenty 

amount of data can be condensed [139,141]. Observed variables (original data) are converted 

to a three-dimensional space [139]. A linear regression is performed to describe the 

transformed data, which results into principal components or factors. The main effect, which 

explains the highest variance of the data, is defined as the first factor. Higher ranked factors 

explain less variance of the data. These factors are described in multi-dimensional factor 

space, which leads to a score system of coordinates and enables an interpretation of the 

observed variance of the spectra [134]. Partial least square (PLS) analysis allows quantifying 

the correlation between observed variance of spectra and the provided properties (reference 
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values) [134]. Thus, PCA represents an investigation of factors determining the variance 

between various spectra, whereby PLS allows correlating the variance of the different spectra 

to the observed reference values (e.g., the solid fraction). 

6.2.2.4.2 Data transformation 

Data pre-processing techniques for NIR spectra are applied for solid samples to minimize 

systematic variations caused by interfering light scattering (noisy signal), impact of measuring 

setups or sample conditions (see 4.4.1.2.1) [124]. A first derivation was used and calculated 

by Savitzky-Golay algorithm by using polynomial fitting over 9 smoothing steps (smoothing 

filter) [141].  
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6.2.3 Tablet 

The properties of tablets were measured 48h after production unless stated otherwise. 

Geometry and mass of the tablets were obtained by using an automatic tablet tester (Kraemer 

UTS 12 F) and an analytic balance ( 1 mg), respectively.  

6.2.3.1 Tensile strength 

Tensile strength considers the tablet dimensions and is the normalized breaking force 

independent of tablet shape. Calculations were done according to USP [16]. 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑇𝑆) =  
10∗𝐹

𝜋∗𝐷2
∗  [

2.84∗ℎ

𝐷
−

0.126∗ℎ

𝑊
+  

3.15∗𝑊

𝐷
+ 0.01]

−1

   Eq. (31) 

F = breaking force [N]; D = diameter [cm]; h = height [cm]; W = central cylinder thickness [cm] 

6.2.3.1.1 Reworkability index 

An adapted reworkability index was used, which was first introduced by Herting et al. (2007), 

to illustrate the loss of tensile strength after roller compaction: 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑟𝑎𝑡𝑖𝑜 =
𝑇𝑆𝑔𝑟𝑎𝑛𝑢𝑙𝑒

𝑇𝑆𝑝𝑜𝑤𝑑𝑒𝑟(0 𝑘𝑁/𝑐𝑚)
[26]  Eq. (32) 

Adaption for seven compression pressures: 

𝑇𝑆𝑟𝑎𝑡𝑖𝑜% =
1

𝑛
∑ = (𝑛

𝑖=1
𝑇𝑆𝑟𝑎𝑡𝑖𝑜 60𝑀𝑃𝑎+𝑇𝑆𝑟𝑎𝑡𝑖𝑜 100 𝑀𝑃𝑎…..+𝑇𝑆𝑟𝑎𝑡𝑖𝑜 300 𝑀𝑃𝑎

𝑛
) ∗ 100   Eq. (33) 

6.2.3.2 Solid fraction 

Solid fraction of tablets was calculated according to Eq. (34): 

𝑆𝑜𝑙𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝜌𝐴𝑃𝑃

𝜌𝑇𝑅𝑈𝐸
 =  

𝑚 [𝑔]

𝑉𝑃[𝑐𝑚3]

𝜌𝑇𝑅𝑈𝐸 [
𝑔

𝑐𝑚3]
   Eq. (34) 

Volume round biplane tablet: 

𝑉𝑃 = 𝜋 ∗ (
𝐷

4
)

2

∗ ℎ   Eq. (35) 

Volume round convex tablet: 

𝑉𝑃 = 2 ∗ [
1

3
∗ 𝜋 ∗ (ℎ𝑐)2 ∗ (3 ∗ 𝑐𝑟) − ℎ𝑐] + (𝜋 ∗ (

𝐷

4
)

2

∗ 𝑊)   Eq. (36) 

𝜌𝐴𝑃𝑃 = apparent density [g/cm³]; 𝜌𝑇𝑅𝑈𝐸  = true density [g/cm³] 

VP = volume at applied pressure [cm³]; D = diameter [cm]; h = height [cm]; m = mass [g]; hc = height calotte 

[cm]; cr = curvature radius; W = central cylinder thickness [cm] 

  

hc 

W 

cr 
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7. SUMMARY  

Granulation processes for solid oral dosage forms are commonly used in the pharmaceutical 

industry to enhance the quality of the final product, i.e. tablets. Today, roller compaction is 

one of the most common granulation techniques for solid oral dosage forms as it provides 

advantages like simple operation, due to integrated process control mechanisms, suitability for 

water- or heat-sensitive APIs and opportunity for an implementation in a continuous 

manufacturing process. Although roller compaction was intensively investigated, the impact 

of upscaling from a small to a larger roller compactor or vice versa is not fully understood.  

To account for this knowledge gap, in this thesis the effect of a scale up on the quality 

attributes of intermediate- and final products, was investigated. Therefore, the controversially 

discussed topic of reduced tabletability of roller compacted granules caused by work 

hardening phenomena, particle size enlargement effect, porosity of granules and lubricant 

sensitivity was investigated. Two formulations, one predominantly plastic deforming and the 

other predominantly brittle deforming, were used. Both had been previously characterised in 

respect to their compressibility, tabletability and compactibility and processed at both scales 

to differentiate between material and scale dependent effects on the intermediate- and final 

product. Finally, a successful scale up strategy was developed to achieve the same product 

quality for all scales. 

 

Solid fraction of the ribbons is well known as key intermediate critical quality attribute for 

downstream processing of a roller compaction process. Different established analytical 

methods were compared for the measurement of the solid fraction of ribbons. The 

GeoPycnometer method (volume displacement) turned out as the most reliable and most 

robust method.  

Subsequently, both formulations were dry granulated at both scales with equal process 

settings. A higher solid fraction of the ribbons was obtained for both formulations at the larger 

scale. For the predominantly plastic deforming formulation the particle size distribution of the 

granules was similar for both scales, resulting in a lower tensile strength of the tablets of the 

large scale, which was mainly impacted by the work hardening effect and sensitivity towards 

lubricant. The increased solid fraction of the ribbon produced by the large scale compared to 

the small scale correlated with a lower tensile strength of the tablets. In contrast, negligible 

differences of the tensile strength of the tablets between both scales were observed for the 

predominantly brittle deforming formulation, although the particle size distribution of the 
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granules differed at higher specific compaction forces of the large scale. This was driven by 

the impact of the brittle deforming component, which enhances the fracturing behaviour of 

the granules and resulted in a negligible susceptibility towards work hardening, lubricant and 

particle size enlargement effect. In conclusion, even though differences existed between 

ribbons produced at both scales, these could be balanced if the formulation contains a high 

proportion of a brittle component. This strategy will allow enhancing the robustness of the 

scalability of the process and the final product quality. 

Previously it was demonstrated that a different solid fraction of the ribbon resulted in a 

different tensile strength of the tablets between scales for the predominantly plastic 

formulation. This formulation however, is commonly used to counteract the main 

disadvantage of the roller compaction; the reduced tabletability of granules of tablets (loss of 

tensile strength). To account for this, a new approach (Scale Model) was developed for the 

predominantly plastic formulation to achieve the same solid fraction of the ribbon at both 

scales. Same solid fraction at both scales resulted in a same porosity of the granules, 

compressibility and tensile strength of the tablets, although a different particle size 

distribution of the granules was obtained. This demonstrated that the particle size distribution 

of granules should not to be considered as the main intermediate quality attribute to achieve a 

successful scale up for a roller compaction process, because the porosity and the 

compressibility of the granules defining the microstructure of a tablet during tableting and 

subsequently the resulting tensile strength of the tablets. The Scale Model approach 

demonstrated a practicable solution for the pharmaceutical industry to scale the process from 

small development batches to commercial batches and still achieve equal quality of the 

tablets. 

In order to investigate the observed higher solid fraction at the large scale at equal process 

settings for both scales a new analytical method via NIR was developed to measure the solid 

fraction distribution along the roll width. It was possible to predict the solid fraction of 

unknown samples by acquiring the NIR spectra comprising reduction of analysis time 

compared to the GeoPycnometer method, which measured the “total” solid fraction of the 

ribbon. The effect of the cheek plates (lower solid fraction at the edges) decreased with 

increased distance to the cheek plates, which was especially the case for the larger scale with 

a broader roll width. This led to a higher “total” solid fraction of the ribbons produced by the 

large scale compared to the small scale at equal process settings. These results explained the 

previously observed different quality attributes of intermediate- and final products. The 

proposed scale up approach showed that the differences of resulting granules and tablets 
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between scales can be balanced for a predominantly plastic deforming formulation through 

the adaption of the specific compaction force. Thus, adapting the specific compaction force by 

measurements of the “total” solid fraction (GeoPycnometer) is a suitable scale up strategy for 

a roller compaction process.  

Moreover, the solid fraction of a tablet (compressibility) was an important impact factor, 

which reinforced the development of theoretical models to predict the solid fraction for 

unknown powder mixtures based on single component compression analysis. A new 

theoretical developed Percolation and a modified Kawakita model were evaluated for model 

application. An exponential model was added to elucidate whether the two-parametrised 

models with theoretical background are superior in terms of predictability of solid fraction 

compared to a model without parametrised variables. Four mixtures were compressed over a 

wide pressure range at various fractions of a plastic and brittle deforming component. Based 

on single compression analysis of the pure excipients and application of these models, it was 

possible to predict the solid fraction of all mixtures. The Kawakita model showed overall 

superior prediction accuracy, whereas the Percolation model resulted in the best fit for 

mixtures containing the plastic deforming component in a range of 72%–48%. Both models 

were in good agreement at residuals below 3%. The prediction could serve as a systematic 

guidance for the formulator to select appropriate excipients depending on the active 

pharmaceutical ingredient to build quality into the drug product according to the Quality by 

Design approach.  

 

In summary, this thesis provides a new profound knowledge and an appropriate guidance for 

the scale up of a roller compaction process. An effect of a scale up of a roller compaction 

process on the quality attributes of intermediate- and final products was demonstrated. This 

effect can be balanced by applying the proposed scale up strategy or by diminishing the 

formulation susceptibility to scale dependent effects with an increased proportion of a 

predominantly brittle deforming component in the formulation.  
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8. APPENDIX 

8.1 ANALYTIC DATA 

8.1.1 CHAPTER 4.1 MATERIAL ATTRIBUTES AND METHOD 

COMPARISON FOR SOLID FRACTION MEASUREMENTS OF 

RIBBONS 

4.1.2 Formulation impact on the solid fraction within one scale 

Mean height ribbon (Nkansah et al. (2008), micrometer screw):  

Specific compaction force 

[kN/cm] 
Gap [mm] 

Mean height ribbon [mm] 

 SD 

2 3 3.585  0.027 

4 3 3.798  0.047 

6 3 3.790  0.047 

8 3 3.806  0.022 

SD = Standard deviation of mean 
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8.1.2 CHAPTER 4.2 COMPARISON OF TWO ROLLER COMPACTORS OF 

DIFFERENT SCALE AT SAME PROCESS  

4.2.3 Particle size distribution of granules 

Granule attributes (MacroPactor): 

Specific 

compaction 

force 

[kN/cm] 

MCC 2:1 LAC MCC 1:1 LAC 

d50 [µm] 

 SD 

n = 3 

 

Hausner 

ratio*US

P n = 1 

Bulk 

density 

[g/cm³] 

n = 1 

d50 [µm] 

 SD 

n = 3 

 

Hausner 

ratio*US

P n = 1 

Bulk 

density 

[g/cm³] 

n = 1 

0 
103.00  

0.00 
1.23 0.48 

110.00  

2.05 
1.23 0.52 

2 
83.17  

1.41 
1.29 0.51 

78.76 

 3.56 
1.27 0.53 

4 
97.80 

 0.82 
1.35 0.53 

81.51 

 2.95 
1.33 0.56 

6 
138.13 

 13.36 
1.32 0.54 

139.13 

 2.94 
1.31 0.58 

8 
132.75 

 11.95 
1.26 0.56 

210.17 

 2.45 
1.31 0.59 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; SD = Standard deviation of mean 

 

  



APPENDIX  

147 

Granule attributes (MiniPactor): 

Specific 

compaction 

force 

[kN/cm] 

MCC 2:1 LAC MCC 1:1 LAC 

d50 [µm] 

 SD 

n = 3 

 

Hausner 

ratio*US

P n = 1 

Bulk 

density 

[g/cm³] 

n = 1 

d50 [µm] 

 SD 

n = 3 

 

Hausner 

ratio*US

P n = 1 

Bulk 

density 

[g/cm³] 

0 
103.00  

0.00 
1.23 0.48 

110.00  

2.05 
1.23 0.52 

2 
87.56  

0.47 
1.27 0.47 

70.35 

 0.47 
1.37 0.50 

4 
98.25 

 0.00 
1.33 0.50 

73.04 

 0.82 
1.37 0.55 

6 
112.60 

 1.24 
1.31 0.54 

88.80 

 3.68 
1.35 0.59 

8 
136.38 

 2.45 
1.31 0.56 

105.35 

 0.00 
1.33 0.60 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; SD = Standard deviation of mean 

 

Tablets comparison milling process at two scale: Solid fraction tablets 

Formulation SF 
MacroPactor 

SF  SD n = 20 

MiniPactor 

SF  SD n = 20 

MCC 2:1 LAC 

0.62 0.6239  0.0032 0.6253  0.0042 

0.77 0.7748  0.0036 0.7759  0.0028 

MCC 1:1 LAC 

0.64 0.6370  0.0033 0.6367  0.0037 

0.79 0.7921  0.0016 0.7889  0.0030 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; SF = Solid fraction; SD = Standard 

deviation of mean 
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4.2.4 Influence of granules on tablet attributes 

Reworkability index tablets – MiniPactor – MCC 2:1 LAC/ MCC 1:1 LAC 

 

Reworkability index tablets –MiniPactor – MCC 2:1 LAC/MCC 1:1 LAC, TSratio = tensile strength of tablets of 

compacted blend in proportion to unprocessed blend Eq. (33), mean (n = 350), error bars (standard deviation of 

mean) 

 

Results Heckel -Yield pressure granules – MacroPactor/MiniPactor – MCC 1:1 LAC 

Yield 

pressure 

Py (1/slope) 

 0 kN/cm 2 kN/cm 4 kN/cm 6 kN/cm 8 kN/cm 

MacroPactor 189.68 197.90 201.12 208.36 211.87 

MiniPactor 189.68 197.18 200.73 206.72 212.57 

Difference 0 0.72 0.39 1.64 -0.70 

Py = Yield pressure Heckel  
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8.1.3 CHAPTER 4.4 INVESTIGATION OF SOLID FRACTION DISTRIBUTION 

ALONG THE ROLL WIDTH BETWEEN DIFFERENT SCALES VIA NIR 

AT-LINE 

4.4.1 Method evaluation to determine solid fraction along the roll width by GeoPycnometer 

and NIR 

Spectral bands NIR spectra:  

Content Chemical group Specified range 

Metformin[125] 

Primary amine NH2 - Combination 

bands 

5000 – 4762 cm-1, (2000 – 

2100 nm) 

Secondary amine NH - Overtone 

bands 

6570 cm-1 

(1522 nm), 

9597 cm-1, 

(1042 nm) 

Imid group C=NH – 

Overtone band 

5924 cm-1, 

(1688 nm) 

Water[126] 

Hydroxyl O–H – 

Combination bands 

5208 cm-1, 

(1920 nm) 

Hydroxyl O–H – 

Overtone band 

7040 cm-1 

(1420 nm) 
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8.1.4 MODEL DEVELOPMENT – PREDICTING SOLID FRACTION OF A 

TABLET 

4.5.1 Application of models – Excipients  

Correlation Kawakita C and new derived C solid fraction 

Material 
V0 [cm³] at 1-2 

MPa 

Correlation 

Kawakita C vs. 

Derived C solid 

fraction 

R2 

MCC 0.398955 0.4647 x + 0.2255 0.9951 

LAC 0.211695 0.9113 x + 0.4904 0.9954 

CARB 0.267273 0.7789 x + 0.2133 0.9928 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; CARB = Sodium carboxymethylcellulose;    

V0 = Initial volume [cm³]; C = Degree of volume reduction; R2 = Correlation coefficient 
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8.2 STATISTICAL TESTS 

8.2.1 CHAPTER 4.1 MATERIAL ATTRIBUTES AND METHOD 

COMPARISON FOR SOLID FRACTION MEASUREMENTS OF 

RIBBONS 

4.1.2 Comparison of throughput, mercury porosimetry and GeoPycnometry 

Comparison mercury porosimetry and GeoPycnometry – T-Test 

Specific compaction force [kN/cm] 

Mercury porosimetry (n = 3) vs. 

Geopycnometry (n = 5) 

T- Test α = 0.05 

p 

2 0.1471 

4 0.8437 

6 0.7130 

8 0.1614 
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8.2.2 CHAPTER 4.2 COMPARISON OF TWO ROLLER COMPACTORS OF 

DIFFERENT SCALE AT SAME PROCESS  

4.2.1 Formulation impact on the solid fraction within one scale 

Solid fraction comparison between formulations within one scale – T-Test 

Specific compaction force 

[kN/cm] 

MCC 2:1 LAC vs. MCC 

1:1 LAC 

MacroPactor 

T- Test α = 0.05 

p 

MCC 2:1 LAC vs. MCC 

1:1 LAC 

MiniPactor 

T- Test α = 0.05 

p 

2 0.000000 0.000075 

4 0.000000 0.000000 

6 0.000001 0.000000 

8 0.000001 0.000034 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 
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4.2.3 Particle size distribution of granules 

d50 granules – MacroPactor/MiniPactor- MCC 2:1 LAC/MCC 1:1 LAC- T-Test 

Formulation 

Specific 

compaction 

force [kN/cm] 

d50 [µm]  

SD n = 3 
T-test α = 0.05 

p 
MacroPactor MiniPactor 

MCC 2:1 LAC 

0 103.00  0.00 - 

2 83.17  1.41 87.56  0.47 0.0147 

4 97.80  0.82 98.25  0.00 1.0000 

6 138.13  13.36 112.60  1.25 0.0501 

8 132.75  11.95 136.38  2.45 0.7189 

MCC 1:1 LAC 

0 110.00  2.05 - 

2 78.76  3.56 70.35  0.47 0.0269 

4 81.51  2.95 73.04  0.82 0.0111 

6 139.13 2.94 88.80  3.68 0.0001 

8 210.17 2.45 105.35  0.00 0.0000 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; d50 = Median particle dimension; SD = 

Standard deviation of mean 

 

d50 granules of milled tablets – MacroPactor/MiniPactor- MCC 2:1 LAC/MCC 1:1 LAC- T-

Test 

Formulation 
Milled tablets 

(SF) 

MacroPactor 

d50 [µm]  SD 

n = 3 

MiniPactor 

d50 [µm]  SD n 

= 3 

T-Test  

α = 0.05 

p 

MCC 2:1 LAC 

0.62 99.16  4.96 99.55  1.89 0.9336 

0.77 163.16  7.41 163.98  10.27 0.9721 

MCC 1:1 LAC 

0.64 86.41  0.47 88.45  1.70 0.1347 

0.79 138.76  6.94 145.80  3.40 0.2696 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate; d50 = Median particle dimension; SD = 

Standard deviation of mean 
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4.2.4 Influence of granules on tablet  

Pre-validation sample size tablets (tensile strength) 

A Pre-validation of the tensile strength showed a relative standard deviation of maximum 

10 % within one compression pressure. Thus, differences of over 10 % of tensile strength 

were defined as relevant for scale up. Target was to detect these differences with a power of 

0.95 over the whole compression pressure range. Sample size 50 tablets for each compression 

pressure. (Pre-validation setup: MCC 2:1 LAC, 4 kN/cm) 

 

Compression 

pressure [MPa] 
59.68 99.47 139.26 179.05 218.84 258.63 298.42 

Tensile strength 

[N/mm²] 
0.39 0.94 1.53 2.03 2.47 2.88 3.02 

Standard deviation 

of mean 
0.0392 0.087 0.1389 0.1448 0.1482 0.1752 0.2033 

Relative standard-

deviation % 
10 9.3 9.09 7.14 6 6.09 6.72 

Detect differences if 

value = 

(+10 %) 

0.43 1.03 1.68 2.23 2.72 3.17 3.33 

Detect differences if 

value = 

(-10 %) 

0.35 0.84 1.37 1.82 2.22 2.59 2.72 

Calculated sample 

size to detect  

difference 10 % 

with a Power of 0.95 

(1-beta) alpha = 0.05 

52 52 48 30 22 22 26 

Determined sample 

size of 50 resulting 

Power for 10 % 

deviation 

0.94 0.95 0.96 1 1 1 1 
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One Way ANOVA within scale and compression pressure (equal to five means comparison 

with each other) 

All tests were passed (see column comment) 

A. Levenes’s test for homogeneity (α = 0.05)  

B. ANOVA univariate test of significance (α = 0.05) 

C. Post Hoc ANOVA Bonferroni (α = 0.05) 

MacroPactor 
Compression 

Pressure 
Comment 

0 

kN/cm 

2 

kN/cm 

4 

kN/cm 

6 

kN/cm 

8 

kN/cm 

 

MCC 2:1 LAC 

59.68  * * X X * 

99.47  * * * * * 

139.26  * * * * * 

179.05  * * * * * 

218.84  * * * X X 

258.63  * * * * * 

298.42  * * X X * 

MCC 1:1 LAC 

59.68  * * X * X 

99.47  * * * * * 

139.26  * * * * * 

179.05  * * * * * 

218.84 + * * * X X 

258.63 + * * * * * 

298.42  * * * X X 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 

* indicates significanct differences (p  0.05) 

X = no significant difference between values 

+ Levene’s test showed significance (eq. heteroscedasticity) 
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MiniPactor 
Compression 

Pressure 
Comment 

0 

kN/cm 

2 

kN/cm 

4 

kN/cm 

6 

kN/cm 

8 

kN/cm 

MCC 2:1 LAC 

59.68  * * * * * 

99.47 + * * * * * 

139.26  * * * * * 

179.05  * * * * * 

218.84  * * * * * 

258.63  * * * * * 

298.42  * * * * * 

MCC 1:1 LAC 

59.68  * * * X X 

99.47  * * * * * 

139.26  * * * * * 

179.05 + * * * * * 

218.84 + * * * * * 

258.63 + * * * * * 

298.42  * * * * * 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 

* indicates significant differences (p  0.05) 

X = no significant difference between values 

+ Levene’s test showed significance (eq. heteroscedasticity) 
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Tensile strength tablets - Impact scale - MacroPactor vs. MiniPactor – MCC 2:1 LAC/MCC 

1:1 LAC - T-Test 

Formulation 

Compression 

pressure 

[MPa] 

Tensile strength [N/mm²] n = 50 

T-test α = 0.05 

MacroPactor vs. MiniPactor 

Comment 2 kN/cm 4 kN/cm 6 kN/cm 8 kN/cm 

MCC 2:1 LAC 

59.68  * * X X 

99.47  * * * * <10 % 

139.26  * * * * 

179.05  * * * * 

218.84  * * * * <10 % 

258.63  * * * <10 % * 

298.42  * * *+ * <10 % 

MCC 1:1 LAC 

59.68  * <10 % X <10 % * <10 % +* <10 % 

99.47  * <10 % * X <10 % X <10 % 

139.26  +* * <10 % X <10 % * <10 % 

179.05  * <10 % * <10 % * <10 % +* <10 % 

218.84  X <10 % * <10 % X <10 % * <10 % 

258.63  X <10 % * <10 % X <10 % +* <10 % 

298.42  X <10 % X <10 % X <10 % X <10 % 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 

* = indicates significant differences (p  0.05) 

X = no significant difference between values 

+ = Levene’s test showed significance (eq. heteroscedasticity) 

<10 % = mean values difference smaller than 10 % 

  



APPENDIX 

158 

8.2.3 CHAPTER 4.3 ADAPTED PROCESS SETTINGS OF DIFFERENT 

SCALES TO ACHIEVE SIMILAR PRODUCT QUALITY 

4.3.1 Achieving the same solid fraction of ribbon by using adapted process parameter 

Solid fraction ribbons – MacroPactor/Scale Model – MCC 2:1 LAC – T-Test 

Specific compaction force [kN/cm] 

Target SF vs. MCC 2:1 LAC Scale Model 

T- Test α = 0.05 

p 

2 0.000000 

4 0.636793 

6 0.000000 

8 0.000000 

SF = Solid fraction; MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate 

 

4.3.2 Particle size distribution and porosity of granules 

d50 granules – MacroPactor/Scale Model- MCC 2:1 LAC - T-Test 

MacroPactor Scale Model 

T-Test α = 0.05 

p 

Specific 

compaction 

force kN/cm 

d50 [µm]  SD 

n = 3 

Specific 

compaction 

force [kN/cm] 

d50 [µm]  SD 

n = 3 

2 83  1 4.1 105  0 0.000033 

4 98  1 7.0 137  1 0.000005 

6 138  13 9.6 179  2 0.013335 

8 133  12 11.4 245  6 0.000294 

d50 = Median particle dimension; SD = Standard deviation of mean 
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4.3.3 Tabletability and compressibility influenced by material attributes of granules and 

ribbons 

Example calculation of detecting a 5 % difference with a sample size of n = 50 

Compression 

pressure [MPa] 
59.68 99.47 139.26 179.05 218.84 258.63 298.42 

Tensile strength 

[N/mm²] 
0.39 0.94 1.53 2.03 2.47 2.88 3.02 

Standard 

deviation of mean 
0.0392 0.087 0.1389 0.1448 0.1482 0.1752 0.2033 

Relative standard 

deviation % 
10 9.3 9.09 7.14 6 6.09 6.72 

Detect differences 

if value = 

(+5 %) 

0.41 0.98 1.6 2.13 2.59 3.02 3.18 

Detect differences 

if value =  

(-5 %) 

0.37 0.89 1.45 1.93 2.35 2.73 2.87 

Determined 

sample size of 50 

resulting Power 

for ±5 % deviation 

0.21 0.62 0.7 0.93 0.98 0.93 0.97 
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Tensile strength tablets - MacroPactor vs. Scale Model – MCC 2:1 LAC/MCC 1:1 LAC - T-

Test 

Formulation 

Compression 

pressure 

[MPa] 

Tensile strength [N/mm²] n = 50 

T-test α = 0.05 

MacroPactor vs. Scale Model 

Comment 2 kN/cm 4 kN/cm 6 kN/cm 8 kN/cm 

MCC 2:1 LAC 

59.68  * *<10 % * * 

99.47  *<10 % *<10 % * * 

139.26  *<10 % *<10 % * * 

179.05 + X<10 % *<10 % * * 

218.84  X<10 % *<10 % X<10 % * 

258.63  X<10 % *<10 % * * 

298.42  *<10 % *<10 % *<10 % * 

MCC = Microcrystalline cellulose; LAC =  − Lactosemonohydrate  

* = indicates significant differences (p  0.05) 

X = no significant difference between values 

+ = Levene’s test showed significance (eq. heteroscedasticity) 

<10 % = mean values difference smaller than 10 % 
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8.2.4 CHAPTER 4.4 INVESTIGATION OF SOLID FRACTION DISTRIBUTION 

ALONG THE ROLL WIDTH BETWEEN DIFFERENT SCALES VIA NIR 

4.4.3 Scale up approach – Comparison of solid fractions of ribbons of a Metformin 

formulation at two  

Solid fraction ribbons – MacroPactor/MiniPactor – T-Test 

Specific compaction force [kN/cm] 

MacroPactor MET 21 

vs. 

MiniPactor MET 21 

T- Test α = 0.05 

p 

2 0.000014 

4 0.001711 

6 0.000041 

8 0.000046 

MET 21 = Metformin drug load 21 % 
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