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Abstract

The comparison of digital models and their analysis are a basic technique of geo-
metric shape processing with a variety of applications. For example the domain
knowledge contained in the growing number of easily obtainable digital models
can be used to simplify reoccurring tasks such as modelling of shapes. Furthermore,
the increasingly sophisticated methods to digitize physical objects transfers any
progress in the analysis of digital models onto the analysis of real objects, which has
a variety of applications, such as medical examinations, medical and agricultural
research and infrastructure maintenance.

While global shape properties, like volume and surface area, are simple to com-
pare they contain only limited information. Therefore one is often interested in local
differences, for example where and how a plant grew between successive scans,
which contain much more information. Sadly computation of local differences
is much more involved, as it requires knowledge of which points on the shapes
correspond to each other. A possible representation of this knowledge is the corre-
spondence map, which maps point of one shape onto another. The following article
thesis (cumulative dissertation) discusses several recent publications of the author
for the creation of correspondence maps. The following topics are discussed:

• Geodesic distances between points, i.e. distances along the surface, are funda-
mental for several shape processing tasks as well as several shape matching
techniques. Chapter 3 introduces and analyses fast but accurate bounds for
geodesic distances of arbitrary points.

• When building a shape space on a set of shapes, misaligned correspondences
lead to points moving along the surfaces and finally to a larger shape space.
Chapter 4 shows that this also works the other way around. That is good
correspondences are obtain by optimizing them to generate a compact shape
space.

• Representing a correspondence map with a “functional map” has a variety
of advantages. Chapter 5 shows that representing the correspondence map
as an alignment of Green’s functions of the Laplace operator has similar
advantages, but is much less dependent on the number of eigenvectors used
for the computations.
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• Quadratic assignment problems were recently shown to reliably yield sparse
correspondences, while not depending on any additional information than the
shapes. Chapter 6 compares state-of-the-art convex relaxations of graphics
and vision with methods from discrete optimization on typical quadratic
assignment problems emerging in shape matching.
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Zusammenfassung

Das Vergleichen von digitalen Modellen und deren Analyse sind grundlegende
Techniken der Computer Grafik mit vielfältigen Anwendungen. Zum Beispiel sind
Informationen aus der Analyse der immer vielzähligeren, leicht erhältlichen, di-
gitalen Modelle nutzbar um wiederkehrende Aufgaben wie das Modellieren zu
vereinfachen. Darüber hinaus transferieren immer ausgefeiltere Methoden zur
Digitalisierung physikalischer Objekte jeden Fortschritt bei der Analyse digitaler
Modelle in einen Fortschritt bei der Analyse realer Objekte, welche eine Vielzahl von
Anwendungen hat, wie zum Beispiel medizinische Untersuchungen, medizinischen
und agrikulturelle Forschung und die Aufrechterhaltung von Infrastruktur.

Globale Eigenschaften, wie Volumen und Oberfläche, können leicht verglichen
werden, enthalten aber auch nur beschränkte Information. Viel öfter ist man deshalb
an lokalen Unterschieden interessiert, wie etwa an welcher Stelle und auf welche Art
eine Pflanze zwischen zwei Vermessungen wuchs. Lokale Unterschiede enthalten
sehr viel mehr Information, sind jedoch auch sehr viel schwieriger zu Berechnen.
Und zwar benötigt die Berechnung lokaler Unterschiede das Wissen, welche Punkte
der verschiedenen Formen einander entsprechen. Eine mögliche Darstellung dieses
Wissens ist die Korrespondenzabbildung, die jeden Punkt der einen Form auf
die andere abbildet. Die vorliegende kumulative Dissertation beschreibt mehrere
Veröffentlichungen des Autors zur Erstellung von Korrespondenzabbildungen. Die
folgenden Themen werden diskutiert:

• Geodätische Abstände zwischen Punkten, d.h. die Abstände entlang der
Oberfläche, sind grundlegend zur Formenverarbeitung als auch für einige
Techniken zur Korrespondenzenbestimmung zwischen zwei Flächen. Kapi-
tel 3 stellt eine schnelle und trotzdem genaue Approximation geodätischer
Abstände vor und analysiert diese.

• Beim lernen eines Formenraumes führen falsche Korrespondenzen zu einem
wandern der Punkte entlang der Oberfläche und schließlich zu einem größen
Formenraum. Kapitel 4 zeigt, dass das auch umgekehrt funktioniert. Das
man also gute Korrespondenzen erhält, wenn man sie darauf optimiert einen
möglichst kompakten Formenraum zu erzeugen.
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• Die Darstellung der Korrespondenzabbildung als eine „funktionale Abbil-
dung“ hat verschiedene Vorteile. Kapitel 5 zeigt, dass die Darstellung als
Abbildung der Green’s Funktionen ähnliche Vorteile bringt, dass dabei die Be-
rechnung jedoch viel weniger von der Anzahl der Eigenvektoren der Laplace
Basis abhängt.

• Kürzlich wurde gezeigt dass quadratische Zuweisungsprobleme zuverlässig
„dünne“ Korrespondenzen erzeugen können ohne dabei auf Zusatzinforma-
tionen angewiesen zu sein. Kapitel 6 vergleicht aktuelle konvex Relaxierungen
des quadratischen Zuweisungsproblems der Computer Grafik und des Ma-
schinellen Sehen mit etablierten Relaxierungen der Diskreten Optimierung.
Dabei werden insbesondere quadratischen Zuweisungsprobleme untersucht,
wie sie bei der Korrespondenzberechnung entstehen.
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Notations

Symbol Explanation

ℝ real numbers
ℝ+

0 /ℝ+ non-negative/positive real numbers
ℕ natural numbers
𝜕𝑢𝑓 (𝑢) partial derivative of the function 𝑓 (𝑢) by 𝑢
𝑓∣

𝑉
restriction of a function 𝑓 ∶ 𝑈 → 𝑊 onto a subset
𝑉 ⊂ 𝑈

image(𝑓 ) image of the map 𝑓
min, max minimum/maximum
arg min, arg max argument of minimum/maximum
𝜕𝒰 boundary of the set 𝒰
int(𝒰) ∶ = 𝒰 𝜕𝒰 interior of the set 𝒰

𝐚, 𝐛, 𝐜, ⋯ ∈ ℝ𝑛 vectors
𝐚 < 𝐛, 𝐚 ≤ 𝐛 component-wise less, less or equal
𝐚𝑇 transposed vector
⟨𝐚, 𝐛⟩ ∶= 𝐚𝑇𝐛 inner-product on vectors
𝐚 × 𝐛 cross-product for 𝐚, 𝐛 ∈ ℝ3

‖𝐚‖1, ‖𝐚‖2 one/two norm
000/111 ∈ ℝ𝑛 vector of zeros/ones of suitable dimension

𝐀, 𝐁, 𝐂, ⋯ ∈ ℝ𝑛×𝑚 matrices
𝐀𝑇 transposed matrix
Id identity matrix
rank(𝐀) rank of 𝐀
tr(𝐀) trace of 𝐀
‖𝐀‖𝐹 Frobenius norm
⟨𝐀, 𝐁⟩ ∶= tr(𝐀𝑇𝐁) inner-product on matrices

ℳ, 𝒩 shapes, i.e. smooth, compact manifolds embedded in
ℝ3
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Symbol Explanation

ℒ2(ℳ) Hilbert space of square integrable, real-valued
functions on ℳ

grad 𝑓 Gradient of 𝑓 ∈ ℒ2(ℳ)
div 𝑋 Divergence of vector field 𝑋
Δ∶ ℒ2(ℳ) → ℒ2(ℳ) Laplace-Beltrami operator
⟨𝑓 , 𝑔⟩ scalar product on ℒ2(ℳ) (𝑓 , 𝑔 ∈ ℒ2(ℳ))
⟨Δ𝑓 , 𝑔⟩ Dirichlet energy (𝑓 , 𝑔 ∈ ℒ2(ℳ))
𝛿𝑝 delta-distribution
𝜙1, 𝜙2, ⋯ ∈ ℒ2(ℳ) eigenvectors of Δ
𝜆1, 𝜆2, ⋯ ∈ ℝ eigenvalues of Δ

𝒮𝑛 real, symmetric 𝑛 × 𝑛 matrices
𝒮𝑛

+ real, positive semidefinite, symmetric 𝑛 × 𝑛 matrices
𝐀 ≽ 𝐁 ∶ ⟺ 𝐀 − 𝐁 ∈ 𝒮𝑛

+ Loewner order for 𝐀, 𝐁 ∈ 𝒮𝑛

𝑆𝑛 Symmetric group of 𝑛-element permutations

[𝐀] ∈ ℝ𝑛2 Row-wise unrolling of matrix 𝐀 ∈ ℝ𝑛×𝑛

𝐘𝑝𝑞,𝑟𝑠 short for 𝐘(𝑝−1)⋅𝑛+𝑞,(𝑟−1)⋅𝑛+𝑠 where 𝐘 ∈ ℝ𝑛𝑚×𝑛𝑚

(1-based indices)
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1 Introduction

Today digital shapes are more widespread than they used to be and their prevalence
is likely to grow further as applications of digital shapes mature. There is a growing
availability of low cost acquisition hardware, such as the Microsoft Kinect as well
as mobile phone accessories [EOR17; MF17]. On the other hand, there is a growing
need of digital shapes from the maturing of 3d-printing, augmented reality and
virtual reality (e.g. Oculus Rift, Microsoft HoloLense) as well as from the digitaliza-
tion of whole industries, such as the film industry. A growing prevalence of digital
shapes poses several opportunities for research.

For example, there is a growing need for digital shapes, but modelling shapes
still is more cumbersome than it has to be. Instead of taking the prior knowledge of
existing and steadily growing shape databases into account, modelling is too often
seen as an isolated activity. Why can’t the computer learn from the existing shapes
how to support the designers?

As 3d scanning technologies matured and the creation of digital representations
of physical objects becomes more affordable and feasible physical objects are another
source of digital shapes. Automating the analysis of real world objects through their
digital representation will have a large influence in many practical applications. For
example, medical devices could report conspicuous organs and visualize where
and how they differ from a healthy one. Or biologists can grow plants of differing
genomes and under different environmental conditions to determine the effect of
the genome and the environment on growth. The large effort required to analyze
digital shapes is currently the major obstacle for larger setups.

What all those examples so far have in common is that once we know which
regions on the shapes correspond the tasks become much simpler. Figure 1.1 depicts
some illustrative, simple problems, which fall into this category as well:

• Interpolate between two or more shapes preserving some structure, such as
intrinsic distances (a).

• Transfer of deformations between shapes, i.e. solve the shape analogy (b):

cat1 ↔ cat2 ∼ dog1 ↔ ?

1



?
a) interpolation b) analogies c) determine outliers d) sampling shapes

Figure 1.1.: Several example applications of dense correspondences.

• Determine outliers in a set of shapes, i.e. the red shape in (c) is different from
the other shapes (c).

• Generalize from the shapes of a shape ensemble to randomly create similar
ones (d).

All these examples have in common that they can be solved once the points on
the different surfaces have been brought in relationship with each other. For each
point on each shape we have to know if and where it is located on the other shapes.
Mathematically this idea is expressed by the correspondence map, which maps points
from one shape onto another. A good, global correspondence map is characterized
by the following conditions:

• semantically meaningful regions are assigned to each other

• the neighborhood structure is preserved, i.e. the map is continuous

• the map is bijective, i.e. it is well-defined for each source points and each
target point is mapped to

• the map exhibits little stretch, which can be defined in terms of changes
induced on the metric

The correspondence map can be discretized into point-to-point correspondences,
i.e. tuples of corresponding points on the source and target shapes. Sparse correspon-
dences assign only a few key source points onto to target and are often a first step
for the calculation of dense correspondences, which correlate a dense set of points on
the source shape. Figure 1.2 shows examples of sparse and dense correspondence.

While humans are especially good finding correspondences, their calculation
is harder than it might at first appear. Firstly computers lack the semantic knowl-
edge of humans to compute sparse correspondences, secondly calculation of bi-
jective maps between surfaces is known to be difficult from research on bijective
parametrizations - especially if a common measures of stretch is to be minimized.

The past decade brought significant progress to isometric shape matching, so that
today isometric and almost isometric shapes, i.e. shapes in different poses such as in

2



Figure 1.2.: Examples of sparse (left) and dense (right) correspondences.

Figure 1.1a and Figure 1.2, can be reliably matched[Ovs+12; Kov+15; Mar+16a] and
that even partial matching[Rod+15; NFS15] is possible. This can not be said of near-
isometric shapes, i.e. shapes where the metric allows a global alignment but is far
from isometric such as in Figure 1.1b-d, where the computation of correspondences
is much more difficult and progress was naturally slower. This is unfortunate
as applications on near-isometric shapes would be especially interesting. In the
following article thesis (cumulative dissertation) I present my findings to advance
the state-of-the-art in near-isometric shape matching.

1.1. Publications
This article thesis (cumulative dissertation) contains the following first author
publications:

• Oliver Burghard et al. “Compact Part-Based Shape Spaces for Dense Corre-
spondences”. In: arXiv:1311.7535 (2013)

• Oliver Burghard and Reinhard Klein. “Simple, Robust, Constant-Time Bounds
on Surface Geodesic Distances using Point Landmarks”. In: Vision, Modeling
& Visualization. 2015

• Oliver Burghard, Alexander Dieckmann, and Reinhard Klein. “Embedding
shapes with Green’s functions for global shape matching”. In: Computers &
Graphics (2017)

• Oliver Burghard and Reinhard Klein. “Efficient Lifted Relaxations of the
Quadratic Assignment Problem”. In: Vision, Modeling & Visualization. 2017

While working on the thesis the following second author publications were
created:

• Alexander Berner et al. A Morphable Part Model for Shape Manipulation. eng.
Research Report MPI-I-2011-4-005. Saarbrücken: Max-Planck-Institut für
Informatik, 2011
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• Z Lähner et al. “SHREC’16: Matching of deformable shapes with topological
noise”. In: Proc. 3DOR 2.8 (2016), p. 11

1.2. Contributions and outline
This introduction motivates the need for correspondences, presents the contri-
butions of the covered publications and relates them to the previous methods.
Chapter 2 presents the theoretical foundations of shape matching and covers ex-
trinsic and intrinsic shape alignment, functional maps and sparse correspondence
generation with assignment problems. The next chapters present the contributions
of the thesis:

• Geodesic distances on surfaces are an important tool in geometric shape pro-
cessing used for example to prune correspondences [Hua+08a], formulate lin-
ear and quadratic assignment problems [Ves+17], average points via geodesic
Karcher means[Pan+13] and cluster point with geodesic k-means[KSC07;
FA07; AM08].
In chapter 3 we introduce and analyze novel lower and upper bounds on
geodesic distances. Derived from the triangle inequality they are simple to
implement, quick to compute, continuous and have a small absolute error.
The lower bound has a bounded relative error as well.

• The principle of minimum description length was successfully used to opti-
mize correspondences in shape ensembles [KT98; Dav+02b].
In chapter 4 we apply this principle to the morphable-part model of Berner
et al. [Ber+11]. Our approach allows matching shapes of different topology
and has much fewer artifacts from part-wise rotations. Furthermore, our
part-wise models and the loose coupling of the part shape spaces generalizes
better from few examples than holistic models. We further add a bi-Laplacian
regularizer [Yeh+11] to correct for the sampling bias caused by the entropy
minimization. Minimizing a twice differentiable cost function with a quasi-
Newton method allows us to compute much larger models than the previous
methods. Given sufficient prior correspondences our evaluation shows that
the method delivers high quality correspondences especially well suited for
building shape spaces.

• Solving for a point-wise functional map is equivalent to the computation of an
alignment of dual-delta-distributions as noted in chapter 5 and section 2.4.3.
Such an alignment requires 𝐿2 distances on (dual-)delta-distributions, which
are not well-defined. Previous works circumvents this problems by projecting
(dual-)delta-distributions onto the first 𝑘 eigenvectors of the Laplace operator,
after which distances are defined, but strongly depend on 𝑘.
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Chapter 5 explores the representation of point-wise maps as an alignment
of Green’s functions of the Laplace operator instead. Such an alignment is
well-defined and it’s calculation over the first 𝑘 Laplace eigenvectors converges
quickly as 𝑘 grows. The Green’s alignment and the pullback functional map
are connected by a linear relation, which allows us to transfer functional
constraints and operator commutativity into our setting and to use the Green’s
alignment as a drop-in replacement of the pullback functional map.
Furthermore, we show how to include conformality into the functional setting
by additional functional constraints. Finally, we observe that Green’s functions
change little under near-isometric, conformal maps, which can exploited
by future work to construct conformal maps between shapes of arbitrary
topology.

• Recently there is growing usage of quadratic assignment problems (QAP)
to compute sparse correspondences between shapes, which they compute
without any prior information apart from the shapes. While posing a QAP
is often simple, solving it is NP-hard. Literature describes several convex
relaxations to approximate the solutions in polynomial time. Among the
tightest known are convex relaxations by semidefinite programs over the
lifted permutations.
Chapter 6 compares the feasible sets of several convex relaxations and shows
that the semi-definite relaxation of Zhao [Zha+98; PR09] is at least as accurate
as the ones recently used in graphics and vision. Interestingly dropping
the semi-definite constraint from the relaxation of Zhao results in a linear
program[FY83; AJ94], which provides slightly weaker bounds but is signif-
icant faster to solve for almost all instances of up to fifteen points. This is
despite already approximating the semi-definite programs with the recent
method from Wang [Wan+16], which often is a magnitude faster than the
MOSEK [Mos10] state-of-the-art interior-point solver.
Furthermore, we show that typical shape matching problems result in notably
“simple” QAP instances, in so far as all examined relaxations find the optimal
solution of all our shape matching instances. We also extend our results to
quadratic assignment matching (QAM), which is a generalization of the QAP
to partial permutations, by reducing any QAM into a QAP. Finally we show
that the product manifold filter [Ves+17] can be seen as a heuristic to solve
a shape matching QAP. This insight allows the automatic computation of
correspondences of several hundred points.

Chapter 7 presents a conclusion and an outlook onto future research directions.
Finally, appendix A present further results for the chapters 3 and 4 not contained
in the original publications.
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1.3. Relation of our publications to previous
results

Geodesic distances On triangle meshes exact geodesic distances from a single
point can be computed as on any triangle the squared distances are the minimum
of a finite number of quadratic functions [MMP87; CH90; XW09; Xu+15]. On a
triangle mesh with 𝑛 triangles the minimal computational complexity is 𝒪(𝑛2). The
early methods have either optimal average or optimal worst case complexity, while
the method of Xu [Xu+15] has both.

Several methods trade speed with precision. Fast marching methods [KS98]
exploit the Eikonal equation to approximate a geodesic distance field in 𝒪(𝑛 log 𝑛)
operations, while Crane et al. [CWW13] approximate it in 𝒪(𝑛) operations (ex-
cluding a one-time matrix factorization) by predicting the field’s gradients from
heat-diffusion.

Often applications do not require entire distances fields but only point-to-point
distances, which can be approximated even faster. For example point-to-point
distances are sufficient to prune correspondences [Hua+08a] in non-rigid shape
matching, to formulate linear and quadratic assignment problems [Ves+17], to
average points via geodesic Karcher means[Pan+13] and to cluster points with
geodesic k-means[KSC07; FA07; AM08].

In chapter 3 we present continuous constant time bounds on geodesic distances.
Xin et al. [XYH12] approximate point-to-point in constant time as well. They
precompute equally spaced landmark points, their pair-wise distances as well as
a coarse intrinsic Delaunay triangulation. They can predict distances from any
point within a triangle to any landmark point by projecting the quadrilateral of a
coarse triangle and another point into the plane. A second step generalizes this
approximation to arbitrary points. On the edges of the coarse triangulation their
distances are not continuous in comparison to our method. Their distances are not
a proper distance metric and they give no bounds on their approximation’s error.
Aflalo et al. [AK13] compute a Euclidean embedding, such that Euclidean distances
approximate geodesic distances. First they derive a compact representation of the
all-pair distances from a set of precomputed distance fields and a smoothness prior.
Then they create the embedding by generalizing multidimensional scaling to their
compact representation. A more detailed comparison of their method with ours is
in appendix A.1.

Extrinsic and intrinsic shape alignment Iterative closest points (ICP) method
alternates between determining corresponding points between aligned point sets
and aligning those point sets with the correspondences. First introduced to align
rigid shapes [RL01b], it was soon generalized to deformable shapes by replacing
the rigid alignment with non-rigid deformations [ACP03a; SP04; ARV07; Hua+08a;
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Yeh+11; Bur+13b; Yos+14]. Such an extrinsic shape alignment with a bi-Laplacian
regularizer [Yeh+11] is used by our optimization in chapter 4.

Deformable ICP methods can be further adopted to the matching of articulated
shapes by first embedding shapes such that Euclidean distances approximate in-
trinsic distances [JZ06; SY12; AK13; BGB14; RMC15]. Nevertheless, the above ICP
methods are local optimizations of the non-convexity ICP cost function and find a
local minimum only. They therefore depend on the initial, predefined correspon-
dences and on heuristics to prune correspondences.

The functional map framework [Ovs+12] presented in section 2.4 relaxes the point-
wise maps to the vector space of functional maps, so that solving for a functional map
from functional constraints becomes a convex problem. This successful approach
initiated a series of publications, for computing functional maps on shapes or shape
ensembles[Ngu+11b; COC15; RMC15; Kov+13; Kov+15; Ngu+11b; HWG14].

While functional maps help to infer some point-wise correspondences computing
a functional map equivalent to a point-wise map is equivalent to an alignment of
delta-distributions and can be solved in an ICP like manner. In contrast to the
alignment methods above, in the functional maps setting articulated shapes can be
aligned with a linear alignment, which is even orthogonal for area preserving maps.
On the downside distances on delta-distributions are defined only after projection
into a finite dimensional subspace. In chapter 5 we therefore explore replacing
delta-distributions by the Green’s functions of the Laplace operator, whose 𝐿2
distances are the well-defined biharmonic distances[LRF10b]. Our alignment of
Green’s functions can substitute functional maps in most applications as one can
be expressed as an affine function of the other. We are the first to explore this
alignment which also allows aligning articulated shapes with a linear function,
while being well-defined.

Furthermore, the relationship between Green’s functions and conformal maps ex-
plored in chapter 5 is based on the preservation of the Dirichlet energy by conformal
maps (section 2.2, [Rus+13a]).

Parameterization methods Another line of research parameterizes both shapes
onto a common domain to build the correspondence map [KS04b; APL14; APL15;
AL15; AL16; Kur+13; Kur+12; Lag+16]. For completeness, we summarize these
methods although our contributions do not depend on them nor are these tech-
niques required to understanding our contributions. A major advantage of these
methods is the computation of a bijective correspondence map simply by ensuring
that both parametrizations are bijective. Usually the parameterization is initially
guided by predefined point-to-point constraints and then optimized to minimize a
stretch functional from the source to the target shape. The non-convex stretch func-
tional is difficult to minimize so that some methods substitute it with a convex cost
function. In any case the final map strongly depends on the initial correspondences
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and is not assured to be a global minimum of the stretch functional.
Uniformization allows efficient computation and sampling of conformal maps,

which can locally be a good approximation of stretch minimizing maps. Sampling
a multitude of conformal maps, was used to determine point-to-point correspon-
dences [LF09b] and to construct a global map by a blending of local maps [KLF11a].

Ensemble optimization On a shape ensemble, which is a set of several similar
shapes, the registration task is to construct all pairwise correspondence maps, as
for example required for statistical shape processing [BV99a; ACP03b; Has+09b].
Good correspondences lead to shape spaces that generalize, i.e. produce other
likely shapes. Interestingly this works the other way around as well. Recreating
the data with a compact model is a machine learning heuristic [Ris78] to overcome
the bias-variance dilemma and to create models that generalize. And indeed,
good correspondences are obtain by optimizing them to generate a compact shape
space [HT94].

In computer vision and medical imaging compact multivariate normal distribu-
tions of point distributions were used for this purpose [Coo+95; KT98; Dav+02b;
EÅ03; TO03; Hei+05]. For manifolds with sphere topology these methods were
combined with a spherical parameterization [Dav+02a; Hei+05; Dav+10], which
additionally guarantees bijectivity. Cates et al. [Cat+06] extended the approach
to regularly sampled manifolds, removing topological restrictions and assuring a
uniform sampling by an elegant complementary entropy term.

Cycle consistency [Ngu+11a; Hua+12; Kim+12; Kez+15a] is another principle to
optimize correspondences in shape ensembles. Maps whose source and target
shapes match can be concatenated. Concatenating maps along a closed path, i.e. a
path whose first and last shapes match, must result in the identity map.

In chapter 4 we introduce an ensemble optimization based on the entropy-based
approach of Kotcheff and Taylor [KT98]. While other methods use a single linear
shape space we model the shapes with the morphable-part model of Berner et
al.[Ber+11]. Our approach allows matching shapes of different topology, has much
fewer artifacts from part-wise rotations and generalizes from fewer examples. We
use a bi-Laplacian regularizer [Yeh+11] to avoid the sampling bias caused by the
entropy minimization and our quasi-Newton method allows to process much larger
models.

Assignment problems Linear assignment problems are one of the fundamen-
tal combinatorial optimization problems and are used in shape matching to find
one-to-one correspondences between aligned point sets[BMP02; Ves+17]. Linear
assignment problems are well understood and the Hungarian algorithm[PS13]
solves an instance of 𝑛 points in 𝒪(𝑛3) operations.
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Quadratic assignment problems are another important discrete optimization
problem that have been used to match features points in images and on shapes [LH05;
BBM05; FS06; SRS07; ADK13; Kez+15b]. While posing a quadratic assignment
problem is simple, approximating quadratic assignment problems to any precision
is NP-hard[SG76] and solving instances with as little as thirty points is typically not
considered practical. Since their introduction in 1957 by Koopmans[KB57] there
was much research on quadratic assignment problems well summarized in several
surveys[Bur+98; Loi+07; Cel13].

For example, given enough time, branch and bound methods[Gil62; Law63;
Ans03] traverse the solution space and prune subspaces in which the cost is larger
than the cost of the best currently known solution. One of the earliest methods
to estimate the minimal cost of a subspace is the Gilmore-Lawler bound[Gil62;
Law63], which is still used due to its fast computation. Due to the NP-hardness
many methods approximate quadratic assignment problems in polynomial time,
such as convex relaxations of the cost function, which estimate lower bounds of
the cost function as well as a solution. Various relaxations were proposed, such as
spectral relaxations[LH05; ADK13], relaxations as linear programs[HG98; Kar+99],
relaxations as mixed linear integer programs [KB78; FY83; AJ94], relaxations as
quadratic constraint quadratic programs[Luo+10] and relaxations as semidefinite
programs [GW95; LS91; Kar95; Zha+98; PR09]. The relaxations as semidefinite
programmings over the lifted permutation matrices using 𝒪(𝑛4) variables are
known for their tightness.

Recently there is also growing interest in convex relaxations with copositive
programs[PVZ15; Bur12; PR09; BMP12]. A matrix 𝐀 is copositive iff 𝐱𝑇𝐀𝐱 ≥ 0
for all 𝐱 ≥ 0. A copositive programs minimizes a linear objective under linear
constraints over the convex set of copositive matrices. Solving copositive programs
is itself NP-hard, but copositive programs can be approximated by semidefinite
programs up to any accuracy.

The variety of relaxations used in graphics, vision and discrete optimization is
the motivation of chapter 6 to compare the established convex relaxations of discrete
optimization[AJ94; Zha+98; PR09] to the tightest relaxations used in graphics and
vision [Kez+15b; Wan+16].

It additionally evaluates the approximation of fixed trace semidefinite programs
by a quasi-Newton minimization of the Lagrange dual[Wan+16], which often is an
order of magnitude faster than current interior-point solvers. By reducing quadratic
assignment matching, which generalizes the quadratic assignment problem to
partial permutations, to a quadratic assignment problem the results are transferred
onto quadratic assignment matching[SRS07; Kez+15b].

The product manifold filter[Ves+17] is a recent, very successful, iterative tech-
nique to improve correspondences by solving linear assignment problems. Chap-
ter 6 shows that the product manifold filter can be seen as a heuristic to minimize a
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quadratic assignment problem.
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2 Foundations

There is a large body of relevant research for the important problem of shape
matching. In the following we introduce a theoretical framework for our work
together with a review of relevant prior works.

2.1. Functional analysis on meshes
Unless stated otherwise we assume that ℳ is a compact, connected, differential 2-
manifold embedded into the ℝ3 with a differential function 𝐩∶ ℳ → ℝ3. Let 𝑓 be a
real-valued functions 𝑓 on ℳ, i.e. a function which maps ℳ onto ℝ, and 𝜙∶ (𝑢, 𝑣) ∈
𝑈 ↦ ℳ be a local parameterization over an open set 𝑈 ⊂ ℝ3. 𝑓 can be integrated
on 𝑈: ∫𝑈 𝑓 (𝑢, 𝑣) det(𝜕𝑢𝐩, 𝜕𝑣𝐩) 𝑑𝑢𝑑𝑣. The area form 𝑑𝑝 = det(𝜕𝑢𝐩, 𝜕𝑣𝐩) 𝑑𝑢𝑑𝑣 is
independent of the local parameterization and thus defines an integral over ℳ.

Real-valued functions with a finite square integral are called square integrable:
ℒ2(ℳ) ∶= {𝑓 ∶ ℳ → ℝ ∣ ∫ℳ 𝑓 2(𝑝) 𝑑𝑝 < ∞}. The area form 𝑑𝑝 defines a scalar prod-
uct and norm on ℒ2(ℳ):

⟨𝑓 , 𝑔⟩ ∶= ∫
ℳ

𝑓 (𝑝)𝑔(𝑝) 𝑑𝑝 ‖𝑓 ‖2 = √⟨𝑓 , 𝑓 ⟩ (2.1)

On ℒ2(ℳ) both, ⟨𝑓 , 𝑔⟩ and ‖𝑓 ‖2, are finite due to the definition of ℒ2 and the Cauchy-
Schwarz inequality.

The directions in which the surface can be traversed from a fixed point 𝑝 are
called Tangent vectors. Riemannian geometry usually represents tangent vectors by
derivative functionals. For simplicity, we represent tangent vectors by the derivation
of the embedding function 𝐩, i.e. by tangent vectors on the surface in the classical
sense. This choice simplifies the exposition at the cost of representing the intrinsic
tangent vectors dependent on the embedding 𝐩[Car16; FC13].

Any differentiable curve 𝑥∶ (−𝜖, 𝜖) ⊂ ℝ → ℳ can be extended into the embed-
ding by 𝐩∘𝑥. The tangent vectors [𝜕𝑡(𝐩 ∘ 𝑥)]𝑡=0 of these extended curves are tangent
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to the embedding of the surface and are called the tangent vectors of the surface. For
every tangent vector 𝑋 ∈ ℝ3 at the point 𝑝 there is a curve 𝑥 as above with

𝑋 = [𝜕𝑡(𝐩 ∘ 𝑥)]𝑡=0 with 𝑥(0) = 𝑝 (2.2)

and every such curve induces a tangent vector. Every curve represents exactly one
tangent vector, but a single tangent vector is represented by several curves. The
tangent vectors at a point 𝑝 ∈ ℳ are orthogonal to the surface normal 𝑛𝑝 ∈ ℝ3 at 𝑝
and span a two-dimensional subspace of the ℝ3 called the tangent space 𝑇𝑝ℳ. With
a slight abuse of notation we write 𝑥 ∈ 𝑇𝑝ℳ as well for a differential curve 𝑥, which
represents a tangent vector in 𝑇𝑝ℳ. On a non-degenerate triangle embedded with
a linear map, the embedded edges are tangent vectors spanning the tangent space.

The gradient (∇𝑓 )𝑝 ∈ 𝑇𝑝ℳ at a point 𝑝 ∈ ℳ of a real-valued function 𝑓 is the
tangent vector defined by:

⟨(∇𝑓 )𝑝, [𝜕𝑡(𝐩 ∘ 𝑥)]𝑡=0⟩ = [𝜕𝑡(𝑓 ∘ 𝑥)]𝑡=0 ∀𝑥 ∈ 𝑇𝑝ℳ (2.3)

on vector fields 𝑉, 𝑊∶ ℳ → ℝ3, which assign every point 𝑝 a vector, like the
gradient of a function above, we define the scalar product:

⟨𝑉, 𝑊⟩ ∶= ∫
ℳ

𝑉(𝑝)𝑇𝑊(𝑝)𝑑𝑝 (2.4)

2.1.1. Smoothness
Many methods in geometry processing use the concept of smoothness. Its usage
is pervasive and often concealed in implicit formulations. One possible definition
of a smooth function is one with small variations. In other words its gradients are
small as measured with the Dirichlet energy:

𝐸Dirichlet[𝑓 ] ∶= 1
2

∫
ℳ

‖(∇𝑓 )(𝑝)‖2
2 𝑑𝑝 = 1

2
⟨∇𝑓 , ∇𝑓 ⟩ (2.5)

Smooth functions are characterized as minima of the Dirichlet energy, which is a
quadratic, positive semi-definite functional that is minimal on a linear subspace
of ℒ2(ℳ). When solving for the function values in an open subset 𝑈 ⊂ ℳ the
solution can be further restricted by boundary conditions such as:

• Dirichlet boundary conditions: 𝑓 (𝑥) = 𝑓0(𝑥)

• Neumann boundary conditions: (𝜕𝑓 /𝜕𝑣𝑥)(𝑥) = 𝑔0(𝑥) where 𝑣𝑥 is the out-
wards pointing normal vector of the boundary

• Natural boundary conditions: Neumann boundary conditions with 𝑔0 = 0
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(a) (b)

Figure 2.1.: Harmonic (a) and biharmonic (b) scalar field interpolation.

(a) (b)

Figure 2.2.: Mesh completion with minimal area (a) and thin-plate energy (b).

Different sections of the boundary of 𝑈 can have different boundary constraints
and the boundary of 𝑈 does not have to be the boundary of ℳ. For example
interpolation of function values at discrete points can be modeled by Dirichlet
boundary conditions on the points and natural boundary conditions elsewhere.

The extremal functions of the Dirichlet energy on 𝑈 ⊂ ℳ with fixed boundary
conditions are called harmonic functions. Figure 2.1a shows smooth interpolation of
five discrete function values, depicted with small balls, with a harmonic function.
Their smoothness is confirmed by the following maximum principle:

Proposition 1 (Maximum Principle). Within a compact, connected, open subset 𝑉 ⊂ 𝑈
a harmonic function 𝑓 ∶ 𝑈 → ℝ has no local extrema unless it is constant.

Harmonic functions can approximate minimal surfaces. Parameterized with
local orthogonal, coordinates (𝑢, 𝑣) ∈ 𝑈 ⊂ ℝ2 → ℳ the embedding 𝐩∶ 𝑈 → ℝ3

has the area:

∫ ‖𝜕𝑢𝑝 × 𝜕𝑣𝑝‖ 𝑑𝑢𝑑𝑣 (2.6)

Minimization of the non-convex functional is difficult, also for its invariance to
reparameterization. Pinkall [PP93] built an algorithm on the idea to minimize the
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Dirichlet energy ⟨Δ𝐩, 𝐩⟩ instead:

⟨Δ𝑝, 𝑝⟩ = ∫ ‖𝜕𝑢𝑝‖2 ‖𝜕𝑣𝑝‖2 𝑑𝑢 𝑑𝑣 ≤ ∫ ‖𝜕𝑢𝑝 × 𝜕𝑣𝑝‖2 𝑑𝑢 𝑑𝑣 =∶ 𝑅(𝑝) . (2.7)

The inequality becomes an equality for a conformal, that is angle preserving, pa-
rameterization. Therefore, minimizing the Dirichlet energy yields an embedding
minimizing the area and in which the parameterization is a conformal one. Fig-
ure 2.2a shows such the result of minimizing the Dirichlet energy in the blue area
while fixing the read area with Dirichlet boundary constraints.

2.1.2. Laplace-Beltrami operator
A function is harmonic if and only if it solves the Euler-Lagrange equation of the
Dirichlet energy, which we derive in the following using variational calculus. From
the divergence theorem follows:

∫
𝒰

𝑔 div ∇𝑓 + (∇𝑓 )𝑇(∇𝑔) 𝑑𝑝 = ∫
𝒰

div(𝑔∇𝑓 ) 𝑑𝑝 = ∮
𝜕𝒰

⟨(𝑔∇𝑓 )(𝑝), 𝑣𝑝⟩ 𝑑𝑝

where 𝑣𝑝 is the outwards pointing boundary normal vector as above and ∮ is the
integral along the boundary. For any 𝑔 with 𝑔(𝜕𝒰) = 0 the right side is zero so that:

⟨− div ∇𝑓 , 𝑔⟩ = ⟨∇𝑓 , ∇𝑔⟩ ∀𝑔 ∈ ℒ2(ℳ) ∶ 𝑔(𝜕𝒰) = 0

The linear operator Δ∶ ℒ2(ℳ) → ℒ2(ℳ); 𝑓 ↦ div ∇(𝑓 ) is known as the Laplace-
Beltrami - or simply Laplace operator or Laplacian.

The harmonic functions over an open subset 𝑈 ⊂ ℳ are exactly the functions
𝑓 ∶ 𝑈 → ℝ that adhere to the boundary conditions as well as to the Euler-Lagrange
equation of the Dirichlet energy:

(Δ𝑓 )(𝑥) = 0 ∀𝑥 ∈ 𝒰 𝜕𝒰 (2.8)

Proof. From variational calculus follows:

0 != [ 𝑑
𝑑𝜖

1
2

⟨∇(𝑓 + 𝜖𝑔), ∇(𝑓 + 𝜖𝑔)⟩]
𝜖=0

= ⟨∇𝑓 , ∇𝑔⟩ = ⟨Δ𝑓 , 𝑔⟩ ∀𝑔 ∈ ℒ2(ℳ) ∶ 𝑔(𝜕𝒰) = 0

so that the Euler-Lagrange equation of Eq. 2.5 is Eq. 2.8.

The definition of the Dirichlet energy, the Laplace operator and all derived quan-
tities such as harmonic maps depend only on intrinsic quantities, i.e. they only
depend on distances on the shape but not on how the shape actually is embedded.
Intrinsic quantities are important for the matching of articulated shapes as artic-
ulation changes them little. Figure 2.3 shows several harmonic and biharmonic
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Figure 2.3.: Harmonic and biharmonic functions on different instances of the cat.

functions on several articulated versions of a mesh. As the calculation of these
functions depends only on intrinsic quantities the functions on the meshes are very
similar.

2.1.3. Biharmonic functions
Harmonic functions on 𝒰 are smooth within 𝒰, but not necessarily on the boundary,
e.g. the harmonic function in Figure 2.1a is not smooth at the constraint vertices.
Another definition for smoothness stems from the thin-plate energy, defined for
functions 𝑓 ∶ ℝ2 → ℝ on the Euclidean plane by:

1
2

(𝜕2

𝜕2
𝑥
𝑓)

2
+ ⎛⎜

⎝
𝜕2

𝜕𝑥𝜕𝑦
𝑓⎞⎟
⎠

2
+ 1

2
⎛⎜
⎝

𝜕2

𝜕2
𝑦
𝑓⎞⎟
⎠

2

[= 1
2

‖Δ𝑓 ‖2
𝐹] (2.9)

The thin-plate energy on surfaces is defined analog:

1
2

‖Δ𝑓 ‖2
𝐹 . (2.10)

A function 𝑓 ∶ 𝒰 ⊂ ℳ → ℝ of extremal thin-plate energy is called a biharmonic
functions. Biharmonic functions are precisely the ones fulfilling the Euler-Lagrange
equation of the thin-plate energy, which is:

(Δ2𝑓 )(𝑥) = 0 ∀𝑥 ∈ 𝒰 𝜕𝒰 (2.11)

Proof. Again we use variational calculus for the Euler-Lagrange equation:
0 != [ 𝑑

𝑑𝜖
1
2
‖Δ(𝑓 + 𝜖𝑔)‖2]

𝜖=0
= ⟨Δ2𝑓 , 𝑔⟩ ∀𝑔 ∈ ℒ2(ℳ) ∶ 𝑔(𝜕𝒰) = 0

The class of biharmonic functions is larger than the class of harmonic functions.
For example, every harmonic function is also biharmonic:

Δ𝑓∣
int(𝒰)

= 0 ⇒ Δ2𝑓∣
int(𝒰)

= 0 .
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Euler-Lagr. eq. Effect

Dirichlet
energy ‖∇𝑓 ‖2

𝐹

harmonic
Δ𝑓 = 000

minimum principle on 𝑓, i.e. in an open
neighborhood 𝑓 is constant or has no extrema

Thin-plate
energy ‖Δ𝑓 ‖2

𝐹

biharmonic
Δ2𝑓 = 000

minimum principle on Δ𝑓, i.e. in an open
neighborhood Δ𝑓 is constant or has no
extrema

Table 2.1.: Dirichlet energy vs thin-plate energy

Furthermore, a function 𝑓 ∶ 𝒰 → ℝ is biharmonic if and only if there is a harmonic
function ℎ∶ 𝒰 → ℝ, such that:

Δ𝑓 = ℎ∣
int 𝒰

Δℎ = 0∣
int 𝒰

(2.12)

To construct a biharmonic function we can therefore enforce boundary constraints
on 𝑓 as well as on ℎ. The additional degrees of freedom allow smoother interpolation
with biharmonic functions. A typical choice is to restrict the Laplace operator at the
boundary as well Δ𝑓∣

𝜕𝒰
= 0, which led to the smooth interpolations of Figure 2.1b

and Figure 2.2b [BK04b]. Table 2.1 gives an overview over both concepts.

2.1.4. Spectral decomposition of the Laplace operator
For natural boundary conditions Δ is a self-adjoint operator, i.e. ⟨Δ𝑓 , 𝑔⟩ = ⟨𝑓 , Δ𝑔⟩.
Therefore, it has a spectral decomposition with real eigenvalues 𝜆𝑖 and eigenvectors
𝜙𝑖 that build a basis of the ℒ2(ℳ). Δ is positive definite as ⟨Δ𝑓 , 𝑓 ⟩ = ⟨∇𝑓 , ∇𝑓 ⟩ ≥ 0, so
that all eigenvalues are larger or equal to 0. With natural boundary conditions the
multiplicity of the eigenvalue 0 is equal to the number of components. Eigenvalues
asymptotically converge to linear growth [RWP06]:

∃𝜅 ∈ ℝ+ ∶ lim
𝑖→∞

|𝜆𝑖 − 𝜅 ⋅ 𝑖|
𝜅 ⋅ 𝑖

= 0 (2.13)

Figure 2.4 shows several eigenvectors on an example surface and the growth of the
eigenvalues of various shapes after normalization by their area. When smoothing
a function via gradient descent on the Dirichlet energy, the next section shows
that the coefficients in the eigenbasis change by exp(−𝑡𝜆𝑖), thus the smaller the
eigenvalue of an eigenspace, the later the corresponding signal diminishes. The
eigenvalues of the eigenvectors thus corresponds to their smoothness. In the Eu-
clidean plane the Laplace eigenvectors and eigenvalues equal the Fourier basis.
On general manifolds the Laplace eigenvectors are a generalization of the Fourier
transformation to manifolds.
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𝑖 = 1 (constant)
𝑖 = 2 𝑖 = 3 𝑖 = 4

Eigenvalues of Tosca dataset
(cats are blue)

𝑖 = 5 𝑖 = 6 𝑖 = 7 𝑖 = 8

Figure 2.4.: Eigenvectors of the Laplace operator on a single and its eigenvalues on
multiple meshes.

2.1.5. Diffusion processes

When the distribution of a quantity on a surface changes over time, such that quan-
tities move along the surface opposite to the gradient direction and proportional to
its length, this is called a linear diffusion process. A typical example is the evolution
of an initial temperature distribution 𝐹0 ∈ ℒ2(ℳ) into its equilibrium described by
the heat-equation:

𝐹𝑡 ∶ ℝ → ℒ2(ℳ) 𝑓0 = 𝐹0 −𝜕𝑡𝑓𝑡 = Δ(𝑓𝑡) (2.14)

Thus an intuitive meaning of the Laplace operator is the temperature change in
the next infinitesimal step of a heat diffusion process. Previously we defined
smoothness of a function by small Dirichlet energy. Smoothing a function by infinite
steps against the gradient of the Dirichlet energy results in the same equation:

𝜕𝑡𝑓𝑡 = − [ 𝑑
𝑑𝑡

1
2

⟨∇𝑓 , ∇𝑓 ⟩]
𝑓 =𝑓𝑡

= −Δ(𝑓𝑡)

Thus the heat-equation describes a gradient descent on the Dirichlet energy thereby
steadily increasing the smoothness of 𝑓𝑡.

The solution of the partial differential equation Eq. (2.14) with initial temperature
𝐹0 is:

𝑓𝑡(𝑥) = (exp(−𝑡Δ) 𝐹0)(𝑥) = ∑
𝑖

exp(−𝑡𝜆𝑖)𝜙𝑖(𝑥)⟨𝜙𝑖, 𝐹0⟩ exp(𝐴) ∶= ∑
𝑖

𝐴𝑖

𝑖!
(2.15)

The heat-kernel ℎ𝑡 ∶ ℳ × ℳ → ℝ is defined such that ℎ𝑡(⋅, 𝑦) ∶ ℳ → ℝ is the
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𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6
0

1

𝑝1

𝑝2 𝑝3

𝑝4

𝑝5𝑝6

𝑝7

Figure 2.5.: Nodal basis on a 1d domain and a single basis vector on a 2d domain.

solution of the heat-diffusion for a delta-distribution at 𝑦 ∈ ℳ:

ℎ𝑡(𝑥, 𝑦) = ∑
𝑖

exp(−𝑡𝜆𝑖)𝜙𝑖(𝑥)⟨𝜙𝑖, 𝛿𝑦⟩ = ∑
𝑖

exp(−𝑡𝜆𝑖)𝜙𝑖(𝑥)𝜙𝑖(𝑦) (2.16)

and 𝑓𝑡 can also be written as:

𝑓𝑡(𝑥) = ∫
𝑝

ℎ𝑡(𝑥, 𝑝)𝐹0(𝑝) 𝑑𝑝 (2.17)

2.1.6. Discretization
After arranging the 𝑛 vertices in a predefined order, a function 𝑓 ∈ ℒ2(ℳ) can be
represented by a vector ̂𝑓 ∈ ℝ𝑛 of function values. The underlying basis is called
the “hat” or nodal basis and is depicted in Figure 2.5. A basis element 𝑏𝑝 ∶ ℳ → ℝ of
the point 𝑝 is defined to be 1 on 𝑝, 0 on all other vertices and linearly interpolated on
the triangles. The linear space spanned by the nodal basis contains all continuous
functions, which are linear on the triangles.

Cotan-Laplace The cotan formula [PP93; Mey+03] is a well-known discretiza-
tion of the Laplace operator. Let 𝑝, 𝑞 be two points in a triangle of area 𝐴 and let 𝛼𝑝𝑞
be the angle opposite the edge 𝑝𝑞. The scalar products of the nodal basis on the
single triangle and the scalar product of their gradients are

⟨𝑏𝑝, 𝑏𝑝⟩ = 𝐴
6

⟨∇𝑏𝑝, ∇𝑏𝑞⟩ =
cot 𝛼𝑝𝑞

2
⟨𝑏𝑝, 𝑏𝑞⟩ = 𝐴

12
⟨∇𝑏𝑝, ∇𝑏𝑝⟩ = −⟨∇𝑏𝑝, ∇𝑏𝑞⟩ − ⟨∇𝑏𝑝, ∇𝑏𝑟⟩

Summation over all triangles leads to a matrix representation 𝑊 ∈ ℝ𝑛×𝑛 of the
scalar product ⟨⋅, ⋅⟩, which is also called the “mass matrix”, and a matrix represen-
tation 𝐶 ∈ ℝ𝑛×𝑛 of ⟨∇⋅, ∇⋅⟩, which is also called the “stiffness matrix”. Let 𝒩 ′(𝑝)
be the adjacent triangles to vertex 𝑝, 𝒩(𝑝) be the adjacent vertices to vertex 𝑝, let
𝐴𝑘 be the area of triangle 𝑘. For edge 𝑝𝑞 let 𝐴𝑝𝑞 and 𝐵𝑝𝑞 be the areas of the adjacent
triangles and let 𝛼𝑝𝑞 and 𝛽𝑝𝑞 be the opposing angles in the adjacent triangles. Then
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𝑊 and 𝐶 are

𝑊𝑝𝑞 =
⎧{
⎨{⎩

∑𝑘∈𝒩 ′(𝑝) |𝐴𝑘|

6
𝑝 = 𝑞

|𝐴𝑝𝑞|+|𝐵𝑝𝑞|
12

𝑝 ≠ 𝑞
𝐶𝑝𝑞 =

⎧{
⎨{⎩

cot 𝛼𝑝𝑞+cot 𝛽𝑝𝑞

2
𝑝 ≠ 𝑞

− ∑𝑘∈𝒩(𝑝) 𝐶𝑝𝑘 𝑝 = 𝑞
(2.18)

and the Laplace-Beltrami operator is 𝐿 = 𝑊−1𝐶. Often the mass matrix is replaced
by the diagonal “lumped-mass matrix”, which simplifies further calculations:

𝑊𝑝𝑞 =
⎧{
⎨{⎩

∑𝑘∈𝒩 ′(𝑝) |𝐴𝑘|

3
𝑝 = 𝑞

0 𝑝 ≠ 𝑞
(2.19)

Spectral Decomposition The spectral decomposition of the Laplace operator
Δ can be written by a generalized eigenvalue problem over the matrices 𝑊 and 𝐶:

𝐶𝜙𝑖 = 𝜆𝑖𝑊𝜙𝑖 so that 𝜙𝑇
𝑖 𝑊𝜙𝑗 = 𝛿𝑖𝑗 and 𝜆1 ≤ 𝜆2 ≤ …

As long as 𝐶 and 𝑊 are symmetric and 𝑊 is positive definite the generalized
eigenvalue problem has real eigenvalues and yields a basis of ℒ2(ℳ). If 𝑊 is posi-
tive definite, the generalized eigendecomposition can be reduced to the standard
eigenvalue problem of the symmetric matrix 𝑊−1/2𝐶𝑊−1/2, whose eigenvectors 𝜓𝑖
are related to 𝜙𝑖 by 𝜙𝑖 = 𝑊−1/2𝜓𝑖.

Graph Laplacian For equally sampled meshes the Laplace operator can be well
approximated from the connectivity alone, while neglecting the geometry of the
embedding. Let 𝑁(𝑖) be the indices of vertices adjacent to vertex 𝑖 and let |𝑁(𝑖)| be
the number of neighbors of vertex 𝑖. Then the graph Laplacian is defined by:

(𝐶𝑓 )𝑖 = ∑
𝑗∈𝑁(𝑖)

𝑓 (𝑗) − 𝑓 (𝑖)
|𝑁(𝑖)|

(2.20)

Point Cloud Laplacian Smoothness is a concept of small Dirichlet energy,
defined by the eigenvectors belonging to the smallest eigenvalues. Although, from
the derivation of the cotan weighting scheme above might hint that the local shape
of the manifold is important in the definition of smoothness it is not. Indeed, the
Graph Laplacian, which simply connects all neighboring vertices with uniform
weights, often results in very similar smoothing. It is therefore not surprising that
generalizations of the Laplace operator to point clouds, which lack connectivity
information, are feasible as well.

Belkin introduced such a discretization [BSW09; LPG12]. They model Δ so that for
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a small, fixed time step 𝑡 the heat-diffusion with Δ equals Euclidean heat-diffusion:

(𝐶𝑢)𝑖 = 1
4𝜋𝑡2 ∑

𝑗
exp ⎛⎜⎜

⎝
−

‖𝑝𝑖 − 𝑝𝑗‖2

4𝑡
⎞⎟⎟
⎠

(𝑢𝑖 − 𝑢𝑗) , (2.21)

where 𝑝𝑖 ∈ ℝ3 are the point positions. Point areas and thereby 𝑊 are calculated
from a local estimation of the surface.

Discretization of the biharmonic equation As discussed above, harmonic
functions also solve the biharmonic equation. After discretization this is true if
care is taken. The evaluation of (𝑊−1𝐶)2, which is the discretization of Δ2, at vertex
requires the values of its two-ring neighborhood. It therefore can not be computed
in the one-ring of the boundary. The discretization of Eq. 2.12 does not have this
limitation.

2.1.7. Further results
The cotan weights are independent from the triangulation in the sense that the
results converge as the triangulation is correctly refined [Xu04]. They are often used
and have been derived several times, for example using finite elements methods
as above or the discrete exterior calculus [Hir03; KS13]. There are also discretiza-
tions to other primitives, such as to general polygons[AW11]. Still, there is no
discretization on triangles, which exhibits all properties of the continuous Laplace
operator [War+07]: symmetry, locality, linearity, semi-definite positivity.

2.2. Mapping between shapes
In the following we investigate maps between two shapes ℳ and 𝒩 embedded with
the differentiable maps 𝐩∶ ℳ → ℝ3, 𝐪 ∶ 𝒩 → ℝ3. A point-wise map 𝑇∶ ℳ → 𝒩
between the shapes induces several maps and functions, which help understand
the properties of 𝑇.

Functional maps For example, 𝑇 can be used to map functions defined on 𝒩
onto functions defined on ℳ: 𝑓 ∈ ℒ2(𝒩) ↦ 𝑓 ∘ 𝑇 ∈ ℒ2(ℳ). This mapping is called
the pullback functional map 𝐹𝑇, as it pull function values along 𝑇:

𝐹𝑇 ∶ ℒ2(𝒩) → ℒ2(ℳ), 𝑓 ↦ 𝑓 ∘ 𝑇 (2.22)

Note, while 𝑇 is from ℳ onto 𝒩, the functional map is the other way around.
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The transportation of functions from 𝒩 onto ℳ defines a new integration of
functions on 𝒩 by first projecting them onto ℳ and integrating there:

∫
𝒩

𝑓 (𝑞) 𝑑𝑞∗ ∶= ∫
ℳ

𝐹𝑇(𝑓 )(𝑝) 𝑑𝑝 (2.23)

The new integral is defined by the area form 𝑑𝑞∗ and induces a new scalar product
⟨𝑓 , 𝑔⟩ℳ→𝒩 as well as a new norm for functions 𝑓 , 𝑔 ∈ ℒ2(𝒩):

⟨𝑓 , 𝑔⟩ℳ→𝒩 ∶= ∫
𝒩

𝑓 (𝑞)𝑔(𝑞) 𝑑𝑞∗ ‖𝑓 ‖ℳ→𝒩,2 ∶= √⟨𝑓 , 𝑓 ⟩ℳ→𝒩 (2.24)

Area-preserving maps The map 𝑇 is called area-preserving if the old and new
area forms on 𝒩 match:

⟨𝑓 , 𝑔⟩ℳ→𝒩 = ⟨𝑓 , 𝑔⟩𝒩 ∀𝑓 , 𝑔 ∈ ℒ2(𝒩) (2.25)

and a point-wise functional map is area-preserving if and only if it is orthogonal:

𝑇 area-preserving ⇔ 𝐹𝑇
𝑇 = 𝐹−1

𝑇 (2.26)

Proof. ⟨𝐹𝑇(𝑓 ), 𝐹𝑇(𝑔)⟩ℳ = ⟨𝑓 , 𝑔⟩𝒩∀𝑓 , 𝑔 ∈ ℒ2(𝒩) ⇔ 𝐹𝑇
𝑇𝐹𝑇 = Id.

Differential Another map induced by 𝑇 is the differential 𝑑𝑇𝑝. It maps tangent
vectors from 𝑇𝑝ℳ onto 𝑇𝑇(𝑝)𝒩 by mapping the underlying differentiable curves
𝑥 ∈ 𝑇𝑝ℳ:

𝑑𝑇𝑝 ∶ 𝑇𝑝ℳ → 𝑇𝑇(𝑝)𝒩, 𝑋 = [𝜕𝑡(𝐩 ∘ 𝑥)]𝑡=0 ↦ [𝜕𝑡(𝐪 ∘ 𝑇 ∘ 𝑥)]𝑡=0 (2.27)

The differential is a linear map. It is defined only on the tangent space 𝑇𝑝ℳ and it
is undefined in the normal direction 𝑛𝑝 ∈ ℝ3. The differential at a point is defined
by the image of the linear independent tangent vectors as they span a basis of the
tangent space. In applications 𝑇 as well as the embeddings 𝐩, 𝐪 are often linear on
the triangles. In this case, the differential is constant on the triangles and is defined
by the embedded edges, which span the tangent spaces.

The differential describes the local change of the surface metric. For example
the new area form 𝑑𝑞∗ is related to the old area form 𝑑𝑞 by 𝑑𝑞∗ = det(𝑑𝑇𝑝) ⋅ 𝑑𝑞 and
area-preserving maps are the maps whose differential has determinant 1.

Proof. For a local parameterization of ℳ over an open set 𝑈 ⊂ ℝ2 the area forms
are 𝑑𝑞∗ = det(𝜕𝑢(𝐪 ∘ 𝑇), 𝜕𝑣(𝐪 ∘ 𝑇)) 𝑑𝑢𝑑𝑣 and 𝑑𝑝 = det(𝜕𝑢𝐩, 𝜕𝑣𝐩) 𝑑𝑢𝑑𝑣, so that the
equation above follows.
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The adjunct of the differential 𝑑𝑇𝑇
𝑝 is defined by the equation

⟨𝑑𝑃𝑇
𝑝 (𝑓 ), 𝑔⟩ = ⟨𝑓 , 𝑑𝑃𝑝(𝑔)⟩ ∀𝑓 , 𝑔 ∈ ℝ3

and maps the gradient of a function on 𝒩 onto the gradient of the same function
on ℳ:

∇ℳ(𝐹𝑇(𝑓 )) = 𝑑𝑇𝑇
𝑝 (∇𝒩𝑓 ) (2.28)

Proof. For any 𝑥 ∈ 𝑇𝑝ℳ follows from Eq. (2.3): ⟨∇ℳ(𝑓 ∘ 𝑇), [𝜕𝑡(𝐩 ∘ 𝑥)]𝑡=0⟩ℳ =
[𝜕𝑡(𝑓 ∘ 𝑇 ∘ 𝑥)]𝑡=0 = ⟨∇𝒩𝑓 , [𝜕𝑡(𝐪 ∘ 𝑇 ∘ 𝑥)]𝑡=0⟩𝒩 = ⟨∇𝒩𝑓 , 𝑑𝑇𝑝([𝜕𝑡(𝐩 ∘ 𝑥)]𝑡=0)⟩𝒩, so that
⟨∇ℳ(𝑓 ∘ 𝑇), 𝑋⟩ℳ = ⟨∇𝒩𝑓 , 𝑑𝑇𝑝(𝑋)⟩𝒩 for any 𝑋 ∈ 𝑇𝑝ℳ.

Furthermore, the scalar product on the tangent vectors and on vector fields can
be pulled from 𝒩 onto ℳ using the differential:

⟨𝑋, 𝑌⟩𝒩→ℳ,𝑝 ∶= ⟨𝑑𝑇𝑝(𝑋), 𝑑𝑇𝑝(𝑌)⟩𝑇(𝑝) = 𝑋𝑇 𝑑𝑇𝑇
𝑝 𝑑𝑇𝑝 𝑌 ∀𝑋, 𝑌 ∈ 𝑇𝑝ℳ (2.29)

⟨𝑋, 𝑌⟩𝒩→ℳ ∶= ∫
𝒩

⟨𝑑𝑇𝑝(𝑋𝑝), 𝑑𝑇𝑝(𝑌𝑝)⟩
𝑇(𝑝)

𝑑(𝑇(𝑝))∗ ∀𝑋, 𝑌 ∈ 𝑇𝑝ℳ (2.30)

Conformal maps A map 𝑇 is called a conformal if it preserves the angles between
tangent vectors:

⟨𝑋, 𝑌⟩ℳ/‖𝑋‖ℳ‖𝑌‖ℳ = ⟨𝑋, 𝑌⟩𝒩→ℳ/‖𝑋‖𝒩→ℳ‖𝑌‖𝒩→ℳ . (2.31)

A map is conformal if and only if its differential is a similarity transform at any
point, i.e. for every point 𝑝 there is a scaling factor 𝛾𝑝 so that (𝑑𝑇𝑝)𝑇(𝑑𝑇𝑝) = 𝛾2

𝑝 Id.
The scaling factor 𝛾𝑝 ∈ ℝ is called the conformal factor.

Proof. “⇐” If 𝑑𝑇𝑇
𝑝 𝑑𝑇𝑝 = 𝛾2

𝑝 then ⟨𝑋, 𝑌⟩𝒩→ℳ = 𝛾2
𝑝⟨𝑋, 𝑌⟩ℳ, thus follows Eq. (2.31).

“⇒” For a conformal map and 𝑋, 𝑌 ∈ 𝑇𝑝ℳ holds ⟨𝑋, 𝑌⟩ℳ = 0 ⇔ ⟨𝑋, 𝑌⟩𝒩→ℳ = 0.
Let 𝑈, 𝑉 be a orthonormal basis of 𝑇𝑝ℳ. Then from 𝑈𝑇𝑉 = 0, (𝑈 +𝑉)𝑇(𝑈 −𝑉) = 0
follows 0 = ⟨𝑈 + 𝑉, 𝑈 − 𝑉⟩𝒩→ℳ = ⟨𝑈, 𝑈⟩𝒩→ℳ − ⟨𝑉, 𝑉⟩𝒩→ℳ, i.e. ⟨𝑈, 𝑈⟩𝒩→ℳ =
⟨𝑉, 𝑉⟩𝒩→ℳ = 𝛾2

𝑝 . Therefore, for any vectors 𝑋, 𝑌 ∈ 𝑇𝑝ℳ we have ⟨𝑋, 𝑌⟩𝒩→ℳ =

(⟨𝑋, 𝑈⟩
⟨𝑋, 𝑉⟩)

𝑇
𝛾2

𝑝 Id (⟨𝑌, 𝑈⟩
⟨𝑌, 𝑉⟩).

An interesting property of conformal maps is their preservation of the scalar
product on gradients and the Dirichlet energy:

⟨∇ℳ𝐹𝑇(𝑓 ), ∇ℳ𝐹𝑇(𝑔)⟩ℳ = ⟨∇𝒩𝑓 , ∇𝒩𝑔⟩𝒩 ∀𝑓 , 𝑔 ∈ ℒ2(𝒩) (2.32)
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Proof. ∫ℳ ∇ℳ(𝑓 ∘ 𝑇)(𝑝)𝑇∇ℳ(𝑔 ∘ 𝑇)(𝑝) 𝑑𝑝 = ∫ℳ 𝛾2
𝑝(∇𝒩(𝑓 )(𝑝)𝑇∇𝒩(𝑔)(𝑝)) ∘ 𝑇 𝑑𝑝

= ∫𝒩
𝛾2

𝑝

𝛾2
𝑝
(∇𝒩(𝑓 )(𝑞)𝑇∇𝒩(𝑔)(𝑞)) 𝑑𝑞

Remark: We mentioned that a linear diffusion process can be described as a
gradient descent on the Dirichlet energy. Linear diffusion processes can be very
different on conformally equivalent shapes, i.e. shapes mapped onto each other
by a conformal map. That is despite the preservation of the Dirichlet energy along
the conformal maps. The apparent contradiction vanishes as the gradient of the
Dirichlet energy, which is the direction of fastest change, depends on the area form
as well.

Indeed, 𝑇 is a conformal map if and only if 𝐹𝑇 pulls the Laplace operator from
ℳ onto 𝒩:

𝑇 conformal ⇔ Δ𝒩 = 𝐹𝑇
𝑇Δℳ𝐹𝑇 (2.33)

Proof. ⇒ follows directly from Eq. (2.32), for ⇐ see [Rus+13a].

Isometries A map 𝑇 preserving intrinsic (that is geodesic) distances is called
isometric, that is a map which preserves the scalar product on the tangent spaces:

⟨𝑋, 𝑌⟩ℳ,𝑝 = ⟨𝑋, 𝑌⟩𝒩→ℳ,𝑝 ∀𝑋, 𝑌 ∈ 𝑇𝑝ℳ∀𝑝 ∈ ℳ (2.34)

Two shapes are called isometric if they can be mapped by an isometry. There are
several other equivalent descriptions of isometric maps. For a point-wise map 𝑇
the following are equivalent statements:

(i) 𝑇 is an isometry according to Eq. (2.34).
(ii) 𝑇 preserves the length 𝐿[𝑥] ∶= ∫1

0 ∥[ 𝑑
𝑑𝑡

𝑥]
𝑡=𝜏

∥
2

𝑑𝜏 of curves 𝑥∶ [0, 1] → ℳ, i.e.
𝐿[𝑥] = 𝐿[𝑇 ∘ 𝑥].

(iii) 𝑑𝑇𝑝 is a rotation for all 𝑝 ∈ ℳ.
(iv) 𝑇 is area-preserving and conformal.
(v) 𝐹𝑇 is orthogonal and Δ𝒩 = 𝐹𝑇

𝑇Δℳ𝐹𝑇.

Proof. (i) ⇔ (ii): 𝐿 only depends on the scalar product of the tangent spaces. (i)
⇔ (iii): From the definition of ⟨𝑋, 𝑌⟩𝒩→ℳ,𝑝. (iii) ⇔ (iv): area-preserving maps are
exactly the ones with det(𝑑𝑇𝑝) = 1 and conformal maps are exactly the ones where
𝑑𝑇𝑝 is a similarity transform. (iv) ⇔ (v): equivalent as shown above.

Isometries transport the intrinsic metric and therefore preserve all intrinsic quanti-
ties, such as angles between curves, lengths of curves, areas of sets. The correspond-
ing functional maps preserve the scalar product on functions (⟨𝑓 , 𝑔⟩ℳ = ⟨𝑓 , 𝑔⟩𝒩→ℳ),
the scalar product on gradients of functions (⟨∇ℳ𝑓 , ∇ℳ𝑔⟩ℳ = ⟨∇𝒩𝑓 , ∇𝒩𝑔⟩𝒩→ℳ) and
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the Dirichlet energy. Furthermore, the Laplace operator (Eq. (2.35)) commutes with
the functional map 𝐹𝑇:

Δℳ ∘ 𝐹𝑇 = 𝐹𝑇 ∘ Δ𝒩 (2.35)

As the Dirichlet energy is preserved as well as the scalar product on functions,
linear diffusion processes, which are a gradient descent on the Dirichlet energy, are
the same on both shapes. And also the eigenvalues and eigenvectors of the Laplace
operator match.

2.3. Extrinsic shape alignment
The goal of this section is to derive a low distortion correspondence map 𝑇∶ ℳ → 𝒩
of two shapes ℳ and 𝒩 with the embeddings 𝐩∶ ℳ → ℝ3 and 𝐪∶ 𝒩 → ℝ3. This
can be done by finding a new embedding �̂� such that �̂� and 𝐪 are aligned and that
the deformation 𝐝𝐩 = �̂� ∘ 𝐩−1 has low distortions. How well shapes are aligned can
be measured by their Hausdorff distance, which is the smallest 𝛿 > 0 such that:

‖𝐩(𝑝) − 𝐪(𝑞)‖2 ≤ 𝛿 ∀𝑝 ∈ ℳ ∃𝑞 ∈ 𝒩 and
‖𝐩(𝑝) − 𝐪(𝑞)‖2 ≤ 𝛿 ∀𝑞 ∈ 𝒩 ∃𝑝 ∈ ℳ

If (ℳ, �̂�) and (𝒩, 𝐪) are aligned and have small Hausdorff distance then the new
correspondences can be calculated by (note that embeddings are injective):

𝑇∶ 𝑝 ↦ arg min
𝑞∈𝒩

‖�̂�(𝑝) − 𝐪(𝑞)‖2 (2.36)

If on the other hand we have a correspondence map 𝑇 then the embeddings �̂� ∶= 𝐪∘𝑇
and 𝐪 are aligned.

The distortion of 𝐝 is closely related to the differential of the identity map from
(ℳ, 𝐩) to (ℳ, �̂�) and is some measure how much lengths were changed, i.e. how
much the differential deviates from a rotation.

2.3.1. Rigid iterative closest points
The Iterative Closest Points (ICP) method aligns shapes by repeatedly alternating
between optimizing the deformation and the correspondences. Usually it assumes
predefined initial correspondences. From these it calculates a new alignment,
which then yield new correspondences using Eq. (2.36), which again lead to another
alignment, and so on.

The earliest instances of the shape matching problem was the alignment of
multiple partial point cloud scans of a static scene, for which rigid deformations
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are sufficient [RL01b]. For a set of fixed set of point-to-point correspondences
(𝑐1, 𝑑1), … , (𝑐𝑠, 𝑑𝑠) ∈ ℳ × 𝒩 the optimal rigid alignment 𝑥 → 𝐑𝑥 + 𝑡 in the least
squares sense is the minimum of the quadratic cost function:

𝐸 = ∑
𝑖

(𝐑 ⋅ 𝐩(𝑐𝑖) + 𝑡 − 𝐪(𝑑𝑖))2 with 𝐑𝐑𝑇 = Id (2.37)

Let ̄𝐜 = 1
𝑛

∑ 𝐩(𝑐𝑖), ̄𝐝 = 1
𝑛

∑ 𝐪(𝑑𝑖), 𝐂 = [𝐩(𝑐1) − ̄𝐜, … , 𝐩(𝑐𝑛) − ̄𝐜], 𝐃 = [𝐪(𝑑1) −
̄𝐝, … , 𝐪(𝑑𝑛) − ̄𝐝] and 𝐔 diag (𝛌)𝐕𝑇 be the singular value decomposition of 𝐂𝐃𝑇.

Then the optimal alignment is

𝐑 = 𝐕𝑇𝐔𝑇 𝑡 = ̄𝐪 − 𝐑�̄� (2.38)

Proof. From 𝜕𝐭𝐸 = 0 follows 2 ∑(𝐑 ̄𝐜+ ̄𝐝+𝐭) = 0 and 𝐭 as above. Substituting the opti-
mal 𝐭 into 𝐸 yields 𝐸 = tr ((𝐑𝐂 − 𝐃)(𝐑𝐂 − 𝐃)𝑇) = tr (𝐂𝐂𝑇 + 𝐃𝐃𝑇)−2 tr (𝐑𝐂𝐃𝑇).
𝑅 follows from maximizing tr (𝐑𝐂𝐃𝑇) = tr (𝐕𝐑𝐔 diag 𝜆). The rotation matrix
𝐕𝐑𝐔 has diagonal entries strictly less than 1. Then tr (𝐕𝐑𝐔 diag 𝛌) ≤ ∑𝑖 𝛌𝑖 with
equality for 𝐕𝐑𝐔 = Id.

Analysis. Rigid ICP is an iterative, deformation-based correspondence algorithm.
From its simple formulation follow a number of properties, which many advanced
methods share as well:

• ICP is the minimization of the non-convex cost function Eq. 2.37.

• Optimizing critically depends on the initial correspondences.

• Heuristics to prune correspondences are crucial for stability.

• Nearest neighbor search in ℝ3 tends to match extrinsically close point to
extrinsically close points. This is an advantage when matching rigid shapes,
but becomes a disadvantage when matching articulated shapes.

Further work. Several methods address the stability issues of the original ICP
method. 𝐿1 and Huber distances were used to circumvent the sensitivity of 𝐿2
distance to outliers [Hub92; Fit03]. Binary nearest neighbor assignments were
relaxed to soft assignments [Gol+98; TK04]. Coherent point-drift assumes that
neighboring points should move in a similar direction [M+07; MS10]. The initial
correspondence were determined by Graph matching as described in section 2.5.
And some methods find the globally best alignment by following a branch and
bound approach over the rigid transformations of the ℝ3 [CP16; Yan+16; ZPK16].
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2.3.2. Deformable iterative closest points

Alignment of articulated shapes requires non-rigid deformation methods. De-
formable ICP methods generalize the above rigid alignment method to articulated
shapes by substituting the rigid deformation with a non-rigid deformation model.
In the following we present several non-rigid deformation models and the resulting
deformable ICP methods.

Let again ℳ and 𝒩 be two shapes embeddings by 𝐩∶ ℳ → ℝ3 and 𝐪∶ 𝒩 → ℝ3,
let further (𝑐1, 𝑑1), … , (𝑐𝑠, 𝑑𝑠) ∈ ℳ × 𝒩 be known sparse correspondences and we
solve for a new coordinate function �̂� so that �̂� and 𝐪 are aligned.

Smooth coordinate functions A first deformation model constraints �̂� at
the correspondences target points and minimizes the smoothness of �̂� elsewhere.
Smoothness is measured with the Dirichlet energy (Eq. (2.5), Figure 2.2a), or the
thin-plate energy (Eq. 2.10, Figure 2.2b):

min
�̂�𝑖

𝑤𝑑‖∇�̂�𝑖‖2
𝐹 + 𝑤𝑡 ‖Δ�̂�𝑖‖2

𝐹 + 1
𝑠

∑
𝑖=1,…,𝑠

∥�̂�𝑐𝑖
− 𝐪𝑑𝑖

∥2 ,

where the parameters 𝑤𝑑 and 𝑤𝑡 allow deciding which smoothness to use and
allow trading interpolation quality against smoothness. The quadratic cost function
typically has a unique minimum, which can be efficiently computed solving the
normal equations. If the constraint indices are fixed, the normal equations can be
prefactorized, which greatly decreases the time to solve for an alignment from the
constrained positions. The deformation depends on the constraint positions as well
as on the intrinsic metric of 𝐩 as captured by its Laplace operator Δ and the function
norm ‖ ⋅ ‖𝐹.

Smooth differential of the deformation The previous deformation model
looses many details of the embedding 𝐩 as it depends on the embedding only indi-
rectly via the intrinsic metric. The next deformation model restricts the deformation
𝐝 = �̂� ∘ 𝐩−1 and preserves the extrinsic shapes of 𝐩 much better. At every point 𝑝 ∈
ℳ we approximate 𝐝 with an affine map 𝐴𝑝 ∶ ℝ3 → ℝ3, 𝐴𝑝(𝑥) = 𝐋𝑝(𝑥 − 𝐩(𝑥)) + 𝐭𝑝
so that

(i) 𝐴𝑝(𝐩(𝑝)) = �̂�(𝑝) ∀𝑝 ∈ ℳ, i.e. 𝐭𝑝 = �̂�(𝑝) and
(ii) that the restriction of 𝐋𝑝 to the tangent space 𝑇𝑝ℳ is the differential of 𝐝

(Section 2.2), i.e. tangent vectors on 𝐩 are mapped onto the corresponding
tangent vectors on �̂�.

A common deformation model determines ̂𝐪 by minimizing the thin-plate energy
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of the 𝐿𝑝[ARV07; SSP07; Yos+14]:

𝑤𝑠‖Δ𝐋𝑝‖2
𝐹 + 1

𝑠
∑

𝑖=1,…,𝑠
∥ ̂𝐪𝑐𝑖

− 𝐪𝑑𝑖
∥2 (2.39)

Over the variables �̂� and 𝐋𝑝 the quadratic cost function with linear constraints can
be solved with Lagrange multipliers or via normal equations after converting the
hard to soft constraints. The parameter 𝑤𝑐 allows trade-off interpolation quality for
smoothness.

Discretization. Let 𝐿1, 𝐿2, ⋯ ∈ ℝ3×3 be the linear maps on each triangle, further
let ℋ be the set of oriented edges, 𝑎(𝑖, 𝑗) be the index of the clockwise-oriented
triangle which contains the edge 𝑖 → 𝑗 and let 𝒟 be a set of dual edges, i.e. (𝑖, 𝑗) ∈ 𝒟
iff triangles 𝑖, 𝑗 are adjacent. For the triangle valued functions 𝐿𝑖 we discretize the
Laplace operator with the graph Laplacian and determine the new positions by
minimizing:

min
̂𝐪;𝐿1,𝐿2,…

∑
(𝑖,𝑗)∈𝒟

‖𝐿𝑖 − 𝐿𝑗‖2 + 𝑤𝑐 ∑
𝑖=1,…,𝑠

∥ ̂𝐪𝑐𝑖
− 𝐪𝑑𝑖

∥2

s.t. 𝑇𝑎(𝑖,𝑗)(𝐩𝑖 − 𝐩𝑗) = �̂�𝑖 − �̂�𝑗 ∀(𝑖, 𝑗) ∈ ℋ

A comparison of the different deformation methods is shown in Figure 2.3.2. It
shows that deformable ICP as a local optimization is easily stuck in local minima.
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shapes with deformable ICP
using different deformation
models and from five
predefined correspondences
(black markers).

source target

28



2.4. Functional maps

The alignment of articulated shapes becomes much more stable once shifted from
extrinsic to intrinsic alignment, i.e. invariant of the shape articulation. This is one of
the advantages of the functional maps framework, which describes maps between
shapes by their effect on real-valued functions. Let ℳ and 𝒩 be two shapes with
the embeddings 𝐩∶ ℳ → ℝ3 and 𝐪∶ 𝒩 → ℝ3. For symbols whose belonging to
either ℳ or 𝒩 is not obvious we mark the belonging with ℳ and 𝒩. A functional
map is a mapping between the function spaces of ℳ and 𝒩:

𝐹∶ ℒ2(𝒩) → ℒ2(ℳ) (2.40)

A correspondence map 𝑇∶ ℳ → 𝒩, which is also called a point-wise map, is tightly
coupled to the functional map [Ovs+12] pulling functions from ℒ2(𝒩) onto ℒ2(ℳ)
using 𝑇 (Section 2.2):

𝐹𝑇 ∶ ℒ2(𝒩) → ℒ2(ℳ) 𝑓 ↦ 𝑓 ∘ 𝑇 (2.41)

The point-wise induced functional maps 𝐹𝑇 are a proper subset of all the func-
tional maps. A point-wise induced functional map 𝐹𝑇 maps a function with a
distinguished maximum onto a function maximal at the corresponding point, so
that 𝑇 can be recovered from 𝐹𝑇. For example, in Figure 2.7 a point-wise induced
functional map maps a function from 𝒩 onto ℳ and the maxima of both functions
coincide. In the functional maps setting we solve for a functional map 𝐹 using
constraints that are valid for 𝐹𝑇 and derive the point-wise map 𝑇 only as a last step,
if at all. In contrast to point-wise maps 𝑇 the functional maps are proper linear
maps and form a vector space with a well-defined addition and multiplication with
real numbers. We can therefore describe functional maps as minima of convex func-
tions and use standard linear algebra tools for their solution and analysis [Ovs+13;
Rus+13b]. Figure 2.8 illustrates the interpolation of functional maps, i.e. a simple
application of the vector space property. The concatenation of functional maps,

point-wise map
𝑇∶ ℳ → 𝒩

functional map
𝐹∶ ℒ2(𝒩) → ℒ2(ℳ)

Figure 2.7.: Some function 𝑓 on 𝒩 is mapped onto ℳ (red region is maximal).
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𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1

Figure 2.8.: Interpolating two functional maps using (1−𝛼)𝐹1 +𝛼𝐹2 and mapping a
scalar field. 𝐹1 is the identity map, 𝐹2 maps onto the intrinsic symmetry,
i.e. flipping the left and the right side (from [Ovs+12]).

whose target and source shape match, is well-defined, so that joint optimization of
a collection of maps for a ensemble of shapes is possible [Hua+12; HWG14].

Solving Solving for a functional map usually involves functional constraints. These
constrain the image of a function 𝑓 ∈ ℒ2(𝒩) onto another function 𝑓 ∈ ℒ2(ℳ):

𝐹(𝑓 ) = ℎ 𝑓 ∈ ℒ2(𝒩), ℎ ∈ ℒ2(ℳ) (2.42)

Examples of functional constraints are matching indicator functions of point-to-
point constraints or matching heat-kernel signatures for isometric maps. Functional
constraints are linear in the functional map 𝐹. When solving for a functional maps,
functional constraints can be included as hard constraints, for example using La-
grange multipliers. Usually functional constraints are not exact but approximative
and they are minimized in a least squares sense.

Two linear, functional operators 𝑂ℳ ∶ ℒ2(ℳ) → ℒ2(ℳ) and 𝑂𝒩 ∶ ℒ2(𝒩) →
ℒ2(𝒩) commute with the functional map 𝐹 iff application of 𝑂𝒩 follows by a
projection with 𝐹 is equivalent with application of 𝑂ℳ after a projection with 𝐹.
Two operators commuting with 𝐹 lead to the linear constraint:

𝑂ℳ𝐹 = 𝐹𝑂𝒩 (2.43)

For example, on isometric shapes the Laplace operators commute with 𝐹: Δℳ𝐹 =
𝐹Δ𝒩 (Eq. 2.35). Another example are operators mapping onto intrinsic symmetries,
such as mapping the cat of Figure 2.8 onto itself while changing the left and right
sides.

For the functional constraints (𝑓1, 𝑔1), … , (𝑓𝑠, 𝑔𝑠) ∈ ℒ2(𝒩) × ℒ2(ℳ) and commu-
tativity with the two operators (Δℳ, Δ𝒩), the optimal functional map in the least
squares sense is:

min
𝐹∶ ℒ2(𝒩)→ℒ2(ℳ)

∑
𝑖

‖𝐹(𝑓𝑖) − 𝑔𝑖‖2
2 + ‖𝐹Δ𝒩 − Δℳ𝐹‖2

𝐹 (2.44)
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𝑝1, 𝑘 = 20 𝑝2, 𝑘 = 20 𝑝3, 𝑘 = 20

𝑝2, 𝑘 = 5 𝑝2, 𝑘 = 10 𝑝2, 𝑘 = 20 𝑝2, 𝑘 = 40

Figure 2.9.: Projection of delta-distributions, located at the points 𝑝1, 𝑝2, 𝑝3, into the
basis of the first 𝑘 eigenvectors.

2.4.1. Representation of points

Point-to-point constraints are often included and point-to-point correspondences
are often extracted by identification of points with primal or dual delta-distributions.
For a point 𝑝 on ℳ the dual delta-distribution is the linear functional:

𝐷ℳ
𝑝 ∶ 𝒞∞(ℳ) → ℝ, 𝐷ℳ

𝑝 (𝑓 ) ↦ 𝑓 (𝑝)

For a linear subspace 𝒯 ⊂ ℒ2(ℳ) and a point 𝑝 the function 𝛿𝑝 ∈ 𝒯 is a delta-distri-
bution if and only if:

⟨𝛿𝑝, 𝑓 ⟩ = 𝐷𝑝(𝑓 ) = 𝑓 (𝑝) ∀𝑓 ∈ 𝒯 (2.45)

For 𝒯 = ℒ2(ℳ) such a function 𝛿𝑝 ∈ ℒ2(ℳ) does not exist, as it can be shown to be
0 almost everywhere except for 𝑝 where it is unbounded. For a finite dimensional
subspace spanned by the orthonormal basis 𝜙1, … , 𝜙𝑘 delta-distributions the delta--
distributions are well-defined (Riesz representation theorem):

𝛿𝑝 = ∑ 𝜙𝑖(𝑝)𝜙𝑖 (2.46)

Proof. Let 𝑓 = ∑𝑗 𝛼𝑗𝜙𝑗 then ⟨𝛿𝑝, 𝑓 ⟩ = ⟨𝛿𝑝, ∑𝑗 𝛼𝑗𝜙𝑗⟩ = ∑𝑗 𝛼𝑗𝜙𝑗(𝑝) = 𝑓 (𝑝)

Figure 2.9 shows some delta-distributions for different points and subsets spanned
by the Laplace eigenvectors.

The delta-distributions and dual-delta-distributions are related by the pullback

31



functional map 𝐹𝑇:

𝐷ℳ
𝑝 ∘ 𝐹𝑇 = 𝐷𝒩

𝑇(𝑝) (2.47)

𝐹𝑇
𝑇𝛿ℳ

𝑝 = 𝛿𝒩
𝑇(𝑝) (2.48)

Proof. 𝐷ℳ
𝑝 ∘ 𝐹𝑇(𝑓 ) = 𝐹𝑇(𝑓 )(𝑝) = 𝑓 (𝑇(𝑝)) = 𝐷𝒩

𝑇(𝑝)(𝑓 ). Because 𝐷ℳ
𝑝 (𝑓 ) = ⟨𝛿ℳ

𝑝 , 𝑓 ⟩ℳ we
have ⟨𝛿ℳ

𝑝 , 𝐹𝑇(𝑓 )⟩ℳ = 𝐷ℳ
𝑝 ∘ 𝐹𝑇(𝑓 ) = 𝐷𝒩

𝑇(𝑝)(𝑓 ) = ⟨𝛿𝒩
𝑇(𝑝), 𝑓 ⟩𝒩.

Furthermore, area-preserving point-wise functional maps 𝐹−1
𝑇 = 𝐹𝑇

𝑇 map delta--
distributions: 1

𝛿ℳ
𝑝 = 𝐹𝑇𝛿𝒩

𝑇(𝑝)

The above observations allow building functional constraints from the point-to-
point constraints (𝑐1, 𝑑1), … , (𝑐𝑠, 𝑑𝑠) ∈ ℳ × 𝒩 by representing points with dual-del-
ta-distributions:

∑
𝑖

‖𝐹𝑇𝛿𝑑𝑖
− 𝛿𝑐𝑖

‖2
2 (2.49)

And for area-preserving maps additionally with delta-distributions:

∑
𝑖

‖𝐹𝛿𝑐𝑖
− 𝛿𝑑𝑖

‖2
2 (2.50)

Extracting a correspondence map 𝑇 from a functional map is possible by project-
ing delta-distributions and determining the most similar delta-distribution on the
other shape:

𝑇(𝑝) = arg min
𝑞∈𝒩

‖𝐹𝑇𝛿𝑞 − 𝛿𝑝‖2 (2.51)

And for area-preserving maps additional with:

𝑇(𝑝) = arg min
𝑞∈𝒩

‖𝐹𝛿𝑝 − 𝛿𝑞‖2 (2.52)

This only works if 𝐿2 distances on delta-distributions provide a reasonable distance
measure on the shape. Indeed, if represented with the first 𝑘 eigenvectors of the

1 Various publications assume Eq. 2.49 without restricting themselves to area-preserving maps, e.g.
[Ovs+12](Section 6.1), but interestingly result in good maps for area-distorting shapes as well.
One reason might be that often area changes are small. Another reason is that those methods
solve for 𝐹𝑇

𝑇 instead of 𝐹𝑇.
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𝑘 = 5 𝑘 = 10 𝑘 = 20 𝑘 = 1000

Figure 2.10.: 𝐿2 distances of delta-distributions projected into a basis of 𝑘
eigenvectors.

Laplace operator 𝐿2 distances on delta-distributions measure intrinsic, articulation
invariant distances in a small neighborhood as Figure 2.10 shows.

Functional maps provide an intrinsic shape matching in the following sense. If
the constraints on the functional map are intrinsic, i.e. only depend on the distances
on the shape but not on its embedding and articulation, then calculating a functional
map representing and extracting points with delta-distributions is intrinsic and
does not depend on the articulation of the shapes.

2.4.2. Choice of basis
Computation of functional maps and representation of functions and delta-distri-
butions requires a functional basis on both shapes. The linear functional map is
represented over the bases 𝜙ℳ

1 , … , 𝜙ℳ
𝑘 and 𝜙𝒩

1 , … , 𝜙𝒩
𝑘 by the matrix 𝐅 ∈ ℝ𝑘×𝑘:

𝐅𝑖𝑗 = ⟨𝜙ℳ
𝑖 , 𝜙𝒩

𝑗 ∘ 𝑇⟩ℳ (2.53)

The resulting map and the cost to compute it depend on the choice of the basis:

• The basis should be small as it determines the size of the equation system to
solve.

• 𝐿2 distances on delta-distributions should approximate intrinsic distances.

• Functional constraints should be representable in the basis.

• The basis should span similar function spaces on two near-isometric shapes.

Furthermore, calculation of functional maps and the resulting point-wise map is
most stable when working with smooth functions, i.e. functions of small Dirichlet
energy. Smooth functions vary little when moving along the surface. Therefore, the
image and preimage of smooth functions are similar when disturbing 𝑇 by moving
correspondences by small distances on the surface.

The eigenvectors of the Laplace operator are the most prominent choice for the
function basis. They are one of the smallest basis to represent smooth functions and

33



isometric (cats) near-isometric (fourlegged)

Figure 2.11.: Matrix representations of two functional map.

𝐿2 distances of delta-distributions in the eigenbasis approximate intrinsic distances
in a small neighborhood.

For the shapes of 2.7 the matrix representation of the functional map is given in
Figure 2.11. The matrix has several properties:

• The first eigenvector is the constant function. Thus, 𝐅𝑖,1 = 0 for 𝑖 > 1 as
constant functions map onto the constant functions. Furthermore, 𝐅1,𝑖 are the
mean values of 𝜙𝒩

𝑖 ∘ 𝑇 on ℳ.

• For near-isometric maps the off-diagonal entries tend to be small due to
commutativity of 𝐹 with the Laplace operator.

The basis of the Laplace operator is stable against local changes in the diffusion
weights and depends most on the global diffusion properties. Therefore, also
generalizations of the Laplace operator to point clouds give similar good results,
e.g. Eq. 2.21.

2.4.3. Convex relaxation
Solving for a functional map via Eq. (2.44) might seem like a silver bullet: despite
intrinsic ambivalences in shape matching it solves for a functional map. It is no
silver bullet and those ambivalences are shifted into the calculation of a point-wise
map from a functional map, which we further illuminate.

The point-wise induced functional maps 𝐹𝑇 are only a fraction of the functional
maps and all point-wise induced functional maps fulfill the equation:

∀𝑝 ∈ ℳ ∃𝑞𝑝 ∈ 𝒩 ∶ 𝐹𝑇𝛿ℳ
𝑝 = 𝛿𝒩

𝑞𝑝
(2.54)
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On the other hand, Eq. (2.54) defines a point-wise map 𝑇 from the functional
map 𝐹 by mapping 𝑝 onto 𝑞𝑝. And because (2.48) uniquely determines a functional
map we have 𝐹 = 𝐹𝑇:

Theorem 2. Let 𝐹 be a functional map then the following statements are equivalent:

(i) 𝐹 aligns dual delta-distributions by Eq. (2.54).
(ii) There is a point-wise map 𝑇 such that 𝐹 = 𝐹𝑇.

Therefore, solving for a point-wise induced functional map 𝐹𝑇 from the functional
constraints (𝑓1, 𝑔1), … , (𝑓𝑠, 𝑔𝑠) ∈ ℒ2(𝒩) × ℒ2(ℳ) and the commuting operators 𝒪ℳ
and 𝒪𝒩 amount to the non-convex optimization:

(FCT-C) min
𝐹∶ ℒ2(𝒩)→ℒ2(ℳ)

∑
𝑖

∥𝐹(𝑓𝑖) − 𝑔𝑖∥2
2 + ∥𝐹Δ𝒩 − Δℳ𝐹∥2

𝐹

s.t. ∀𝑝 ∈ ℳ ∃𝑞𝑝 ∈ 𝒩 ∶ 𝐹𝑇𝛿ℳ
𝑝 = 𝛿𝒩

𝑞𝑝

Theorem 3. Least-squares solving for a function map by Eq. 2.44 is a convex relaxation of
solving for a point-wise functional map (FCT-C).

2.4.4. Equiareal, conformal and isometric maps
Further prior knowledge about the point-wise map 𝑇 simplifies solving for its
functional map 𝐹𝑇. For example if 𝑇 is area-preserving, the functional map is
orthogonal (Eq. (2.26)):

𝑇 area-preserving ⇔ 𝐹𝑇
𝑇 = 𝐹−1

𝑇 (2.55)

This allows an important refinement process for functional maps by alignment of
(dual-)delta-distributions with the rigid ICP alignment described in section 2.3.1.
Furthermore, section 5 shows how to utilize that a conformal map 𝑇 pulls the
Laplace operator from ℳ onto 𝒩 (Eq. (2.33)):

𝑇 conformal ⇔ Δ𝒩 = 𝐹𝑇
𝑇Δℳ𝐹𝑇

Constructing isometries between isometric shapes is an important and common
shape matching task. Isometries preserve the intrinsic structure and intrinsic
quantities of the shape making the creation of such maps especially effective. The
functional map 𝐹𝑇 of an isometry is orthogonal, as 𝑇 is area-preserving, and pulls
Laplace operator from ℳ onto 𝒩, as 𝑇 is conformal. Combined both properties
result in the Laplace operator commuting with 𝐹𝑇: Δℳ𝐹𝑇 = 𝐹𝑇Δ𝒩. All together
these properties are powerful aids for the construction of functional maps.

Even without aligning the shapes with functional maps the intrinsic metric can
effectively limit the potential matches of any point to a small set by deriving and
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Figure 2.12.: Heat-kernel-signatures of highlighted points on the cat shape (thick-
lines), as well as the minimum/maximum of the heat-kernel-
signatures of corresponding points on all tosca cat models (colored
bands).
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Figure 2.13.: 𝐿2 distance of the heat-kernel-signatures from the selected points (top)
and shapes colored by the fraction of area with smaller distances
(bottom).

comparing point signatures based on diffusion processes. To this extend the heat-
kernel-signature (hks) [SOG09] compares two points 𝑝, 𝑞 ∈ ℳ by the weighted 𝐿2
distance of the diagonals of the heat-kernels ℎ𝑡(𝑥, 𝑦) in a time interval [𝑎, 𝑏]:

hks𝑝 ∶ ℝ+ → ℝ, 𝑡 ↦
ℎ𝑡(𝑝, 𝑝)

∫ℳ ℎ𝑡(𝑥, 𝑥) 𝑑𝑥
=

∑𝑖 exp(−𝑡𝜆𝑖)𝜙2
𝑖 (𝑝)

∑𝑖 exp(−𝑡𝜆𝑖)
(2.56)

𝑑2
hks,[𝑎,𝑏](𝑝, 𝑞) ∶= ∫

1

0
(hks𝑝(𝑡) − hks𝑞(𝑡))2 𝑑𝜏 with 𝑡 = 𝑎1−𝜏𝑏𝜏 (2.57)

Figure. 2.12 depicts the heat-kernel-signatures (hks) of several points on the cat.
For large times the diffusion process converged to an equilibrium and all descriptors
are equal. The number of eigenvalues used to calculate the signatures decides the
smallest times that can be calculated before the signature converges to a constant
value related to the Gaussian curvature.

The figure shows how similar descriptors of intrinsically equivalent regions are,
such as the feet and body. Furthermore, it shows that the descriptors can reliably
calculated over isometries as the colored bands around each descriptor is between
the minimum and maximum of the signature of corresponding points on all tosca
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cat models.

Figure. 2.13 shows how to retrieve points by their signature. The top shows
the 𝐿2 signature distance of the marked point to all other points. The magnitude
of 𝐿2 distances varies strongly and more interesting than the distance might be
how points are sorted by similarity as shown on the bottom. As the descriptors
intrinsically similar regions have similar descriptors these queries by descriptor
return intrinsic similar regions first, such as in f) where all feet are returned equally.

Visualizing the Laplace operator gives a better understanding how isometry
and the commutativity with the Laplace operator is so helpful for the creation
of maps. The Laplace operator can be visualized by the following ellipsoid (Δ is
positive-semidefinite):

{𝑓 ∈ ℒ2(ℳ) ∣ 𝑓 𝑇Δ𝑓 = 1} =
⎧{
⎨{⎩

∑
𝑖

𝛼𝑖𝜙𝑖
∣∣∣∣
𝛼𝑖 ∈ ℝ, ∑

𝑖

⎛⎜
⎝

𝛼𝑖

√𝜆𝑖

⎞⎟
⎠

2

= 1
⎫}
⎬}⎭

(2.58)

Figure 2.14a shows instances of the cat with the above ellipsoid. The functional map
of an isometry aligns the delta-distributions embeddings as well as the ellipsoid
with a rotation. The interplay of the ellipse with the embeddings is used in the
computation of heat-kernel-signatures. Especially for the first eigenvectors the
alignment of the ellipses strongly restricts the possible functional maps. The rest of
the figure shows how well such an alignment is possible for the tosca cats, which
are mostly isometric apart from small local distortions due to bending. The sign of
the eigenvectors in the eigendecomposition is arbitrary as shown in b) and corrected
in c). As the relative difference of eigenvalues (and thus the length of the ellipsoid
axis) decreases, the eigenspaces of larger eigenvalues are increasingly rotated into
each other. How well the alignment with rotations is possible in d) is one reason
for the good correspondences achievable by functional maps on isometric shapes.

Furthermore, the smallest Laplace eigenvectors correspond to the (orthogonal)
directions in which the ellipsoid has the largest extents. The first eigenvectors on
both shapes therefore span function spaces that correspond in an isometric map.

Typically, the computation of an isometry in the functional setting is as follows.
Matching heat-kernel-signatures for equally spaced values 𝜏 are usually used as
functional constraints. From these, Laplace operator commutativity, as well as
additional functional constraints the initial functional map is computed. Note
that neither the Laplace commutativity nor the functional constraints from the
heat-kernel-signature can decide an intrinsic symmetry, such as the cat which can
be mapped onto itself switching the left and the right. For those shapes usually
additional functional constraints are required. The functional map obtained in
this way is then refined into a point-wise map via rigid ICP alignment of the
delta-distributions described in section 2.3.1.
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Figure 2.14.: Embedding the cats of Figure 2.3 with delta-distributions, either with-
out alignment or after aligning with a rotation.
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2.4.5. Summary

In summary functional maps allow alignment of non-rigid deformations with a
linear map. This is done with a relaxation of the shape matching problem to the
functional maps and deferring the extraction of the point-wise map. The linear map
is found as the minimum of a quadratic energy solvable via the normal equations.
The formulation is intrinsic independent of the articulation of the embeddings,
as long as the used constraints are, and there is a rich theory on isometric maps.
The eigenbasis of the Laplace operator allows a multi-scale representation, where
the lower eigenvectors encode the global behavior of the maps. Smooth functions
have a prominent role as they encapsulate the global behavior and are stable under
small movements of the correspondences. On the other hand, there is no guarantee
that the obtained functional map 𝐹 is close to a point-wise induced functional
map 𝐹𝑇 and extraction of the point-wise correspondences might fail. Inclusion
of differential properties of the map, such as area, angle or length distortion are
difficult to include in the optimization.

2.5. Assignment problems

Previously presented methods compute point-wise maps by first aligning shapes
(extrinsically or intrinsically) followed by mapping points with nearest neighbor
searches (Eq. (2.36), (2.51), (2.52)). Mapping points independently from each other
introduces artifacts, such as mapping multiple points onto one and not mapping
onto a region of the target at all. Solving for a one-to-one assignment of two point
sets, one on each shape, avoids these artifacts.

Here an underlying assumption is, that we can generate two point sets which are
in one-to-one correspondence. Interestingly this is often feasible. For near-isometric
shapes the correspondences map often is approximately area-preserving after a
global scaling, such that sampling equally distributed points results in such sets.
Otherwise, more involved heuristics based on feature point detection can be used.

2.5.1. Linear assignment problems

Minimizing a cost function over the one-to-one correspondences of two point sets
is called an assignment problem. If furthermore the cost function summarizes terms
depending only on single point-to-point assignments the problem is called a linear
assignment problems. After writing 𝑆𝑛 for the symmetric group, which contains all
𝑛-element permutations, and 𝐃𝑖,𝑗 with 𝐃 ∈ ℝ𝑛×𝑛 for the cost of assigning the 𝑖-th
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onto the 𝑗-th point, the linear assignment problem minimizes:

(LAP-𝜙) min
𝜙∈𝑆𝑛

∑
𝑖

𝐃𝑖,𝜙(𝑖)

Every permutation 𝜙 can be represented by a permutation matrix 𝐗𝜙, where 𝐗𝜙
𝑖𝑗 = 1

if 𝜙(𝑖) = 𝑗 and 0 otherwise. We can therefore formulate (LAP-𝜙) with a linear
objective over the permutation matrices:

(LAP-OPT) min
𝐗∈ℝ𝑛×𝑛

⟨𝐗, 𝐃⟩ s.t. 𝐗 ∈ {𝐗𝜙 ∣ 𝜙 ∈ 𝑆𝑛}

Interestingly, the minimal cost of a linear cost function under non-convex con-
straints can be found with a linear programs:

Theorem 4. The minimal cost of a linear function 𝑓 under non-convex constraints equals
the minimal cost of a linear program over 𝑓, whose solutions are constrained to the convex
hull of the original problem’s feasibility set.

Proof. Let 𝑥 be the solution of the original problem and 𝑦 be the solution of the
linear program, which can be written as a convex combination of feasible solutions
𝑥𝑖 of the original problem: 𝑦 = ∑𝑖 𝛼𝑖𝑥𝑖. As any solution of the original problem is
also a feasible solution of the linear program, we have 𝑓 (𝑦) ≤ 𝑓 (𝑥) ≤ min𝑖 𝑓 (𝑥𝑖). Due
to the linearity of 𝑓 we also have 𝑓 (𝑦) = ∑𝑖 𝛼𝑖𝑓 (𝑥𝑖) and thus min𝑖 𝑓 (𝑥𝑖) ≤ 𝑓 (𝑦).

The convex hull of the permutation matrices {𝐗𝜙 ∣ 𝜙 ∈ 𝑆𝑛} is known as the Birkhoff
polytope Π𝑛 [AM14] and we can efficiently compute the minimum of (LAP-𝜙) with
the linear program:

(LAP-R) min
𝐗∈ℝ𝑛×𝑛

⟨𝐗, 𝐃⟩ s.t. 𝐗 ∈ Π𝑛

where

Π𝑛 ∶= conv({𝐗𝜙 ∣ 𝜙 ∈ 𝑆𝑛}) = {𝐗 ∈ ℝ𝑛×𝑛 ∣ 0 ≤ 𝐗, 𝐗111 = 111, 𝐗𝑇111 = 111} .

Figure 2.15 shows several pairs of aligned shapes, each sampled with a point
set, and the correspondences computed using either nearest neighbor matching or
linear assignment problems. If there is a good one-to-one assignment of the point
sets (a,b), linear assignment problems usually yield much better correspondences.
Figure 2.16 recalculates the extrinsic shape alignments of Figure 2.3.2 using linear
assignment problems instead of nearest neighbor searches to match points.
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Figure 2.15.: Linear assignment problems (LAP) yields better correspondences than
nearest-neighbor queries for relative area-preserving maps (a,b).

harmonic interpolation biharmonic interpolation smooth differential

alignment
before …

…and after
iterating

final
assignments

Figure 2.16.: A practical example showing the correspondences computed with the
same deformation models as in Figure 2.3.2, but with linear program-
ming instead of nearest neighbor search.
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2.5.2. Quadratic assignment problems
Good correspondences induce little stretch, that is mapping an edge results in
an edge of similar geodesic length. A cost function based on stretch therefore
summarizes terms depending on the assignment of point-pairs. An assignment
problem minimizing such a cost function is called a quadratic assignment problem.
After writing 𝐀𝑖,𝜙(𝑖),𝑗,𝜙(𝑗) for the cost of assigning the pair (𝑖, 𝑗) onto (𝜙(𝑖), 𝜙(𝑗)), an
instance of the quadratic assignment problem can be then be written as:

(QAP-𝜙) min
𝜙∈𝑆𝑛

∑
𝑖𝑗

𝐀𝑖,𝜙(𝑖),𝑗,𝜙(𝑗)

Various authors [BBM05; FS06; Kez+15b] modeled the computation of correspon-
dences with quadratic assignment problems. For example, Kezurer et al. [Kez+15b]
minimizing the following stretch based cost function on a few sampled feature
points to determine correspondences (𝑑𝑖𝑗 ∈ ℝ and 𝑑′

𝑖𝑗 ∈ ℝ are pairwise geodesic
distances of the feature points on both shapes and 𝜎 ∈ ℝ is a parameter):

min
𝜙∈𝑆𝑛

∑
𝑖𝑗

− exp (− (𝑑𝑖𝑗 − 𝑑′
𝜙(𝑖)𝜙(𝑗))

2/𝜎2) (2.59)

Figure 2.17 depicts several computed correspondences.
Solving quadratic assignment problems is NP-hard with a computational com-

plexity growing exponentially with the number of points to match. Much research
[Bur+98] therefore went into approximating good solutions. To this end, the theory
of convex relaxations, where non-convex constraints are approximated by convex
ones, proved especially fruitful. Section 6 will give a detailed introduction into cur-
rent state-of-the-art approximations of quadratic assignment problems via convex
relaxations.

Despite its complexity, the major advantage of shape matching formulations using
quadratic assignment problems is that they often yield globally good solutions.
These methods therefore do not depend on any prior information, such as prior
correspondences or prior functional constraints. This is an important difference
to previously discussed alignment methods, which are local optimizations of non-
convex cost functionals.
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Figure 2.17.: Correspondences compute by solving the QAP defined by Eq. 2.59.
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3 Simple, robust,
constant-time bounds on
geodesic distances using

point landmarks

Abstract In this paper we exploit redundant information in geodesic distance fields
for a quick approximation of all-pair distances. Starting with geodesic distance
fields of equally distributed landmarks we analyze the lower and upper bound
resulting from the triangle inequality and show that both bounds converge reason-
ably fast to the original distance field. The lower bound has itself a bounded relative
error, fulfills the triangle equation and under mild conditions is a distance metric.
While the absolute error of both bounds is smaller than the maximal landmark
distances, the upper bound often exhibits smaller error close to the cut locus. Both
the lower and upper bound are simple to implement and quickly to evaluate with
a constant-time effort for point-to-point distances, which are often required by
various algorithms.

This chapter corresponds to the paper[BK15b]: Oliver Burghard and Reinhard
Klein. “Simple, Robust, Constant-Time Bounds on Surface Geodesic Distances
using Point Landmarks”. In: Vision, Modeling & Visualization. 2015.
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a) lower bound b) upper bound d) lower bound
front & back front & back & relative error

(30 landmarks) (30 landmarks) (100 landmarks)

Figure 3.1.: (teaser) Lower and upper bounds on two shapes for 30 and 100 landmark
points.

3.1. Introduction

Geodesic distances on surfaces are an important tool providing intrinsic infor-
mation derived from the metric. Even though there has been much research in
approximating geodesic distances their calculation can take a significant time in
current processing.

To motivate our approximation notice that distance fields at different points
typically share a lot of common information (see [XYH12] for a discussion and our
later analysis). The triangle inequality estimates lower and upper distance bounds
between two points based on distances to a third point. Starting with a reasonable
set of landmark points we derive a lower and upper bound on all-pair geodesic
distances. We analyze these bounds and show that they are accurate, simple to
implement and efficient to compute.

The lower bound has itself a bounded relative error, so that it can be used as an
approximation for geodesic distances. The upper bound often exhibits smaller ab-
solute errors close to the cut locus, which makes them better suited for certain class
of applications. And because the difference of lower and upper bound is limited by
the maximal distance of landmark points, so is the absolute approximation error
by both bounds.

Under the mild condition that no point has equal distances to all landmarks
(which should not happen for more than 3 landmarks) the lower bound is a distance
metric (𝑑𝑚𝑖𝑛(𝑝, 𝑝) = 0, triangle equation and 𝑝 ≠ 𝑞 ⇒ 𝑑𝑚𝑖𝑛(𝑝, 𝑞) > 0). As some
efficient methods for calculating geodesic do not assure the triangle equation (e.g.
[CWW13]), our lower bound might be used as an approximation instead.

Our distance fields are efficient to compute in the sense that there is a constant ef-
fort required for calculating bounds on the distance of two points. Often algorithms
depend on pairwise distances only instead of global distance fields (e.g. Karcher
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means or Voronoi regions). Such algorithms will be typically much faster with our
approach, then with global distance fields (see [CWW13; Xu+15]).

3.2. Related work
Calculating geodesic distance fields there are two different classes of algorithms,
exact and approximate ones. Exact algorithms [MMP87; CH90; XW09; Xu+15] often
utilize that single-source distances (on a piece-wise linear mesh) equal to a set of
quadratic functions on an edge (called windows). Similar to Dijkstra on graphs,
they distribute windows between triangles over adjacent edges. Best algorithms
have a complexity of 𝑂(𝑛2) [CH90; Xu+15], which is minimal [Xu+15] and thus
their complexity is optimal.

Exact distances are often not critical for applications as long as errors are small.
Indeed, frequently used piece-wise linear surfaces often are an approximation
of a continuous surface themselves. Geodesic distances solve the Eikonal PDE:
‖∇𝑑𝑝(𝑥)‖ = 1, so that [KS98] approximate geodesics as solutions to this equation.
Their approach hast a complexity of 𝑂(𝑛 log 𝑛)). Predicting the geodesic gradient
from heat diffusion [CWW13] speeds up approximation further. Ignoring a one-
time matrix factorization, it reduces the complexity to 𝒪(𝑛) per distance field, which
is trivially optimal for an entire distance field.

Yet this complexity is not optimal when approximating point-to-point distances.
Typically, applications require only few distances and not the whole distance field,
e.g. calculating Karcher means [Kar77], intrinsic Voronoi regions [XW10] or non-
rigid registration [Hua+08b]. After preprocessing a constant time approximation,
i.e. not depending on the number of mesh vertices such as our algorithm, would
be optimal.

A different set of algorithms has this constant complexity for point-to-point
distances. They define intrinsic distances by embedding a manifold into some
Euclidean space and back-projecting the distance metric [LRF10a; CL06; QH07].
This construction guarantees a distance metric with constant time point-to-point
distances. Still, no embedding has been found so that distances are assured to
approximate geodesic distances (indeed, exact preservation of geodesic distance is
often impossible).

[XYH12] proposed a method for constant time geodesic distance approximation
with a similar motivation such as our method. From equally spaced landmarks they
construct a coarse intrinsic Delaunay triangulation on the surface with precomputed
pair-wise distances on the landmarks. Mesh distances are then interpolated utilizing
this triangulation by projecting quadrilaterals into the Euclidean plane, as side
lengths and one diagonal are known.

Their method is similar to ours and delivers good approximations to the exact dis-
tances. Yet their approximations might be lead to less smooth, even non-continuous
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distance fields as they depend on the induced coarse triangulation (which changes
non-continuously). They have no bounds on the approximation error and their
approximated distance might not be a distance metric. See Sec. 3.4 for a comparison.

The chapter is structured as follows: First we introduce our lower and upper
bounds on geodesic distances. Then we analysis their properties and error bounds.
Finally, we show qualitative and quantitative evaluations.

3.3. Landmark induced distance bounds

To motivate our method notice that on a surface ℳ there is much redundant
information in the all-pair geodesic distances. For example, each distance field
from 𝑝 amounts to the information of all shortest paths starting in 𝑝. Therefore,
with all-pair distances all geodesics, which shortest paths are subsets of, can be
reconstructed and vice-versa.

A distance field is typically required or desired to adhere to the triangle inequality
, that is the shortest path from 𝑝 to 𝑞 must get longer if we additionally require that
it passes some other point 𝑟:

𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞) (3.1)

Subtraction of 𝑑(𝑝, 𝑟) and changing 𝑞 and 𝑟 gives a reformulation with a lower and
upper bound on distance 𝑑(𝑝, 𝑞) induced by a distance field from some landmark
point 𝑟:

|𝑑(𝑝, 𝑟) − 𝑑(𝑟, 𝑞)| ≤ 𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞) (3.2)

Unifying bounds induced by a set of landmark points 𝑅 = {𝑟1, … , 𝑟𝑘} we gain the
following bounds:

Definition 5. The minimal and maximal induced distances of the landmarks 𝑅 over the
distance metric 𝑑 ∶ ℳ × ℳ → ℝ+

0 are:

𝑑𝑚𝑖𝑛(𝑝, 𝑞) ∶= max
𝑟∈𝑅

|𝑑(𝑟, 𝑝) − 𝑑(𝑟, 𝑞)| (3.3)

𝑑𝑚𝑎𝑥(𝑝, 𝑞) ∶= min
𝑟∈𝑅

𝑑(𝑟, 𝑝) + 𝑑(𝑟, 𝑞) (3.4)

The actual landmark 𝑟 that gave rise to a maximum of 𝑑𝑚𝑖𝑛(𝑝, 𝑞) or a minimum of 𝑑𝑚𝑎𝑥(𝑝, 𝑞)
is called the inducing landmark. We add an upper 𝑟 index to denote the distance w.r.t. a
single landmark and will use this also on upcoming definitions: 𝑑𝑟

𝑚𝑖𝑛, 𝑑𝑟
𝑚𝑎𝑥.

For completeness, we quickly recapitulate properties defining a distance metric:
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pos sym ident strict pos tri. ineq.
𝑑𝑚𝑖𝑛 mostly
𝑑𝑚𝑎𝑥 × (mostly) ×

Figure 3.2.: Properties emerging from the definitions of 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 (see Theorem
7). Properties in brackets are valid for landmark distances that do not
emerge from a proper distance metric (see Sec. 3.3.1).

Definition 6. A pseudo distance metric is a map 𝑑 ∶ ℳ × ℳ ↦ ℝ with (∀𝑝, 𝑞, 𝑟 ∈ ℳ)

𝑑(𝑝, 𝑞) ≥ 0 (pos) (3.5)
𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) (sym) (3.6)
𝑑(𝑝, 𝑝) = 0 (id) (3.7)
𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑟) + 𝑑(𝑟, 𝑞) (tri. ineq.) (3.8)

A distance metric is a pseudo metric with (∀𝑝, 𝑞 ∈ ℳ)

𝑑(𝑝, 𝑞) > 0 if 𝑝 ≠ 𝑞 (strict pos) (3.9)

As the next Theorem and Tab. 3.2 shows 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 share several desirable
properties:

Theorem 7. 𝑑𝑚𝑖𝑛(𝑝, 𝑞) is a pseudo distance metric and a proper distance metric iff there
are no points with equal distances to all landmarks. 𝑑𝑚𝑎𝑥 is symmetric and strictly positive.
(Please find all proofs in the appendix)

After defining the absolute approximation error as

𝑒𝑚𝑖𝑛(𝑝, 𝑞) ∶= 𝑑(𝑝, 𝑞) − 𝑑𝑚𝑖𝑛(𝑝, 𝑞) > 0 (3.10)
𝑒𝑚𝑎𝑥(𝑝, 𝑞) ∶= 𝑑𝑚𝑎𝑥(𝑝, 𝑞) − 𝑑(𝑝, 𝑞) > 0 (3.11)

there are the following relations:

𝑑𝑚𝑖𝑛(𝑟, ⋅) = 𝑑𝑚𝑎𝑥(𝑟, ⋅) = 𝑑(𝑟, ⋅) (3.12)
𝑒𝑚𝑎𝑥(𝑝, 𝑞) + 𝑒𝑚𝑖𝑛(𝑝, 𝑞) ≤ min

𝑟∈𝑅,𝑧∈{𝑝,𝑞}
𝑑(𝑧, 𝑟) (3.13)

𝑒𝑚𝑖𝑛(𝑝, 𝑞) ≤ 𝑒𝑚𝑖𝑛(𝑝′, 𝑞) + 2 𝑑(𝑝, 𝑝′) (3.14)
𝑒𝑚𝑎𝑥(𝑝, 𝑞) ≤ 𝑒𝑚𝑎𝑥(𝑝′, 𝑞) + 2 𝑑(𝑝, 𝑝′) (3.15)

On the landmark points the approximation is exact (Eq. 3.12). Otherwise, it is
bounded by the maximal inter landmark distance (Eq. 3.13), which assures that
adding landmarks decreases the absolute errors. For example placing landmarks on
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Figure 3.3.: Illustration of a few maximal shortest paths induced from a single
landmark point.

a torus in a regular grid, 𝑛 grid points will lead to a landmark distance in 𝒪(√1/𝑛).
Thus, for twice the precision 4 times the landmarks are needed.

Eq. 3.14 and Eq. 3.15 allow limiting the error with distances to well approximated
sets, which leads to much better convergence. Let 𝑉𝑚𝑖𝑛(𝑝) ∶= {𝑞| 𝑑𝑚𝑖𝑛(𝑝, 𝑞) = 𝑑(𝑝, 𝑞)}
and 𝑉𝑚𝑎𝑥(𝑞) ∶= {𝑞| 𝑑𝑚𝑎𝑥(𝑝, 𝑞) = 𝑑(𝑝, 𝑞)} be the sets of points where 𝑑𝑚𝑖𝑛 respective
𝑑𝑚𝑎𝑥 are exact. Then the distance of either 𝑝 or 𝑞 bounds the absolute error:

𝑒𝑚𝑖𝑛(𝑝, 𝑞) ≤ 2 𝑑(𝑞, 𝑉𝑚𝑖𝑛(𝑝)) (3.16)
𝑒𝑚𝑎𝑥(𝑝, 𝑞) ≤ 2 𝑑(𝑞, 𝑉𝑚𝑎𝑥(𝑝)) (3.17)

Now for estimating the error one has to determine the set 𝑉𝑚𝑖𝑛(𝑝) and 𝑉𝑚𝑎𝑥(𝑝), i.e.
all 𝑞 where 𝑑𝑚𝑖𝑛 or 𝑑𝑚𝑎𝑥 are exact. Because 𝑒𝑚𝑖𝑛(𝑝, 𝑞) = min𝑟∈𝑅 𝑒𝑟

𝑚𝑖𝑛(𝑝, 𝑞) and analog
𝑒𝑚𝑎𝑥 = min𝑟∈𝑅 𝑒𝑟

𝑚𝑎𝑥(𝑝, 𝑞) determining 𝑉𝑟
𝑚𝑖𝑛(𝑝) and 𝑉𝑟

𝑚𝑎𝑥(𝑝) is sufficient (remember
that upper indices are restrictions to single landmarks).

We assume that we have a smooth surface and for simplicity assume that there
is a single shortest path between two points. For geodesic distances and some
landmark 𝑟, the induced distance 𝑑𝑟

𝑚𝑖𝑛 is exact iff 𝑞 is located on the shortest path of
𝑝 and 𝑟, or 𝑝 is located on the shortest path of 𝑞 and 𝑟. 𝑑𝑚𝑎𝑥 is exact iff 𝑟 is located on
the shortest path connecting 𝑝 and 𝑞.

Shortest paths starting in 𝑟 either intersect only in 𝑟 or one is the subset of the
other. This partial ordering gives rise to maximal shortest paths. A few of those
maximal shortest paths are visualized in Fig. 3.3. Let 𝑅+ denote the maximal
shortest path starting in 𝑟 including 𝑝, 𝑅− be the opposite maximal shortest path
located on the same geodesic. Similar let 𝑃 be the union of maximal shortest path
containing 𝑟 and its opposite. Then:
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Figure 3.4.: a) The Euclidean line is split up by a single landmark between two
regions - one where 𝑑𝑚𝑖𝑛 is exact and one where 𝑑𝑚𝑎𝑥 is exact. b) On
the circle there due to topology influence there is a third region where
none is exact. c) The geodesic spanned by 𝑟 and 𝑝 shown with same
regions (𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥). As in (b) due to topology in parts of the geodesic
neither is exact.

𝑉𝑟
𝑚𝑖𝑛(𝑝) = 𝑅+ ∩ 𝑃 = 𝑅+ 𝑉𝑚𝑖𝑛(𝑝) = ⋃

𝑟
𝑉𝑟

𝑚𝑖𝑛 (3.18)

𝑉𝑟
𝑚𝑎𝑥(𝑝) = 𝑅− ∩ 𝑃 𝑉𝑚𝑎𝑥(𝑝) = ⋃

𝑟
𝑉𝑟

𝑚𝑎𝑥 (3.19)

In Fig. 3.4 we see 3 different domains and fixed 𝑝 and 𝑟. In the first example the
Euclidean line is partitioned by 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 into two segments and for every point
on the line, either 𝑑𝑚𝑖𝑛 or 𝑑𝑚𝑎𝑥 is exact. Any subset of a geodesic (the Euclidean line)
is a shortest path. Top right we see a closed circle demonstrating the topological
influence in comparison with the line. There is a region where neither 𝑑𝑚𝑖𝑛 nor
𝑑𝑚𝑎𝑥 is exact. Finally, bottom left we see a geodesic on a smooth surface showing
topological and tangential error.

An illustration of 𝑉𝑚𝑖𝑛 can be seen in Fig. 3.5. Equally, spread landmarks create
curves quickly becoming dense everywhere. Errors get smaller, the closer 𝑝 and 𝑞,
which in our tests resulted in a bounded relative error of 𝑑𝑚𝑖𝑛 as well. This dense
field of lines leads to a decrease of absolute errors of 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 as well as the
relative error of 𝑑𝑚𝑖𝑛 (𝑒𝑚𝑖𝑛(𝑝, 𝑞)/𝑑(𝑝, 𝑞)).

Approximation errors can be classified into two categories. For a good approx-
imation one needs a landmark 𝑟 inducing maximal shortest paths 𝑃 so that 𝑃 is
close to 𝑞. We call this first class of errors tangential errors. Additionally, 𝑟 must be
located on 𝑃 in such a way that errors on 𝑃 can be inferred and this second class
of errors we call topological errors, as it does not appear in Euclidean domains.
Moving a landmark 𝑟 along 𝑃 will change the topological error, moving 𝑟 so that 𝑃
changes, changes the tangential error.
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Figure 3.5.: Visualization of 𝑉𝑚𝑖𝑛(𝑝). For a single point 𝑝 we collect the maximal
induced shortest paths from all landmark points (exactly one curve
for each landmark). The error 𝑒𝑚𝑖𝑛(𝑝, 𝑞) is bound by twice the distance
of 𝑞 to any of these curves. The curves of 𝑑𝑚𝑖𝑛 have smaller lengths
than the maximal shortest paths starting in 𝑝, what we described as the
topological error (ends are marked with small arrows).

3.3.1. Arbitrary landmark distance fields
The input of the 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 is strictly speaking not a distance metric, but consists
of |𝑅| different distance fields (𝑑(𝑟, ⋅) ∶= 𝑑𝑟(⋅)). For the given input, there might
not exist a distance metric reconstructing input distances. This might be due to
numerical errors or might be because the input distances were not derived from a
distance metric in the first place. In the following we reason about effects on the
bounds.

There are various reasons why arbitrary distance fields might not be compati-
ble with any distance metric: Distances might not be symmetric (𝑑𝑟(𝑟′) ≠ 𝑑𝑟′(𝑟)),
triangle equation might not hold between two distance fields, distances might not
be 0 at the landmarks (𝑑𝑟(𝑟) ≠ 0), distance might be 0 elsewhere (𝑑𝑟(𝑝) = 0, 𝑝 ≠ 𝑟)
or distance might be negative (𝑑𝑟(𝑝) < 0). Interestingly 𝑑𝑚𝑖𝑛 will still be a (pseudo)
distance metric:

Theorem 8. Given arbitrary distance fields 𝑑𝑟 ∶ ℳ → ℝ with 𝑑𝑟(𝑟) = 0∀𝑟 ∈ 𝑅 as input
and define 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 as:

𝑑𝑚𝑖𝑛(𝑝, 𝑞) ∶= max
𝑟∈𝑅

|𝑑𝑟(𝑝) − 𝑑𝑟(𝑞)| (3.20)

𝑑𝑚𝑎𝑥(𝑝, 𝑞) ∶= min
𝑟∈𝑅

|𝑑𝑟(𝑝)| + |𝑑𝑟(𝑞)| (3.21)

Then most results of Theorem7 stay valid: 𝑑𝑚𝑖𝑛(𝑝, 𝑞) is a pseudo distance metric and a
proper distance metric iff there are no points with equal distances to all landmarks. 𝑑𝑚𝑎𝑥 is
symmetric and positive.
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On landmark points there is:

𝑑𝑚𝑎𝑥(𝑟, ⋅) ≤ 𝑑𝑟(⋅) ≤ 𝑑𝑚𝑖𝑛(𝑟, ⋅) (3.22)

and for two points 𝑝, 𝑞 ∈ ℳ the inequality 𝑑𝑚𝑎𝑥(𝑝, 𝑞) < 𝑑𝑚𝑖𝑛(𝑝, 𝑞) holds if and only if there
exists two landmarks 𝑟1,𝑟2 where the triangle inequality can not be fulfilled for 𝑝, 𝑞, 𝑟1, 𝑟2
(not necessarily pairwise different).

The reason why the exactness of 𝑑𝑚𝑖𝑛 depends only on the triangle equation is
simply that violations of identity, positivity and symmetry lead to triangle equation
violations.

Let 𝑑𝑚𝑖𝑛[𝑑𝑟] and 𝑑𝑚𝑎𝑥[𝑑𝑟] denote the distance fields emerging from the distances
𝑑𝑟 at the fixed landmarks. Then 𝑑𝑚𝑖𝑛[𝑑𝑚𝑖𝑛[𝑑𝑟]] equals 𝑑𝑚𝑖𝑛[𝑑𝑟], because 𝑑𝑚𝑖𝑛[𝑑𝑟] is
a distance metric, that will be exactly reproduced (Eq. 3.12). This is generally not
true for 𝑑𝑚𝑎𝑥[𝑑𝑚𝑎𝑥[𝑑𝑟]] = 𝑑𝑚𝑎𝑥[𝑑𝑟].

As a simple example we inspect a triangle with edge lengths 1, 2, 4, that violates
the triangle inequality. All three vertices should be landmark points. Then 𝑑𝑚𝑖𝑛 and
𝑑𝑚𝑎𝑥 are 2, 3, 4 and 1, 2, 3 respectively. As guaranteed 𝑑𝑚𝑖𝑛 adheres to the triangle
inequality, but in this simple case also $dmax. Because the triangle equation was
initially violated for all edges we have 𝑑𝑚𝑎𝑥 ≤ 𝑑𝑚𝑖𝑛 everywhere.

There could be ’better’ distance metric approximations. For example, we could
define the optimal least squares approximation with a least squares energy

argmin𝑑 is a distance metric ∑
𝑟∈𝑅

∫(𝑑(𝑟, 𝑥) − 𝑑𝑟(𝑥))2𝑑𝑥

which defines a quadratic program. 𝑑𝑚𝑖𝑛 is not optimal, but for our example above
11

3
, 21

3
, 32

3
would be.

3.4. Evaluation
To get a first qualitative idea of the bounds, Fig. 3.6 contains plots of 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥
in a Euclidean plane (top) and on the torus (bottom). There are up to 4 landmarks
(black points) and we infer bounds for the distances from the origin 𝑜 to the plane.
First observation is that errors are indeed bound by twice the distance from the
origin to the closest landmark (2 ⋅ √2 in our case) which follows from Eq. 3.13. The
error is bound for each point by twice its distance to the closest position without
error (𝑉𝑚𝑖𝑛(𝑜) and 𝑉𝑚𝑎𝑥(𝑜)). In the Euclidean plane the distances to 𝑉𝑚𝑖𝑛(𝑜) and
𝑒𝑚𝑖𝑛 decrease quickly, which is not true for 𝑑𝑚𝑎𝑥. The torus additionally exhibits
topological error, which leads to worse lower bounds 𝑑𝑚𝑖𝑛, but affects 𝑑𝑚𝑎𝑥 less.

One interesting insight from the Euclidean case is that relative errors of 𝑑𝑚𝑖𝑛, i.e.
𝑒𝑚𝑖𝑛/𝑑 are bound (if there is at least one landmark). Let 𝛼𝑟 be the minimal angle
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Euclidean plane

𝑒 𝑚
𝑖𝑛

𝑒 𝑚
𝑎𝑥

Torus

𝑒 𝑚
𝑖𝑛

𝑒 𝑚
𝑎𝑥

Figure 3.6.: 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 on different domains with up to 4 landmarks (black dots).
Top rows depict an unbounded Euclidean space and the bottom rows a
bounded torus (i.e. warping around left-to-right and top-to-bottom).
Please see the text for further discussion. [Coordinates: −3 to 3, land-
marks on a circle of radius √2, colors from 0 (light blue) to 3 (light
brown) with 6 equal spaces contour lines].
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𝑑𝑚𝑖𝑛 𝑑𝑚𝑎𝑥

p
front

p

back

Figure 3.7.: Regions colored based on the landmark inducing distances to 𝑝. Regions
should resemble Voronoi regions around lines of 𝑉𝑚𝑖𝑛(𝑝) and 𝑉𝑚𝑎𝑥(𝑝).

between the shortest path from 𝑝 to 𝑞 and some path in 𝑉𝑟
𝑚𝑖𝑛(𝑝). Then

𝑒𝑚𝑖𝑛(𝑝, 𝑞)/𝑑(𝑝, 𝑞) ≤ 1 − cos 𝛼𝑟

The same is true on a smooth manifold for some small neighborhood around 𝑝.
But then the relative error is also globally bound. In our experiments the largest
relative errors appeared locally, so that the finer the directions of the tangent space
are sampled by shortest paths 𝑉𝑟

𝑚𝑖𝑛(𝑝), the smaller is the maximal relative error of
𝑑𝑚𝑖𝑛 (see Fig. 3.1d and Fig. 3.11).

For evaluation on real world data we need to decide on landmark points. In
our tests we chose farthest point sampling, which worked quite well. We choose a
random point first and then iteratively add the point with maximal distance to all
previously chosen. Distance calculations were done with [CWW13] so that for 𝑘
landmarks and 𝑛 points the run-time is 𝒪(𝑘𝑛), excluding the once required matrix
factorization (tests with exact geodesics [MMP87] led to similar results).

After having landmark points spread we can evaluate 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 on actual
meshes. Fig. 3.7 shows a cat, where two points share the same color if distances to
a fixed 𝑝 are induced by the same landmark. The exactness of 𝑑𝑚𝑖𝑛(𝑝, 𝑞) depends
on the minimal distance from 𝑞 to one of the sets 𝑉𝑟

𝑚𝑖𝑛(𝑝). Thus, we expect regions
of same colors to resemble Voronoi regions of 𝑉𝑟

𝑚𝑖𝑛(𝑝). Same is true for 𝑑𝑚𝑎𝑥 and
𝑉𝑟

𝑚𝑎𝑥(𝑝). In agreement with our previous writing they change frequently for 𝑑𝑚𝑖𝑛,
less so for 𝑑𝑚𝑎𝑥.

A quantitative analysis of the bounds, their distances and absolute and relative
errors were done on 3 different models in Fig. 3.8. First 1000 landmark points and
their distances were calculated with farthest point sampling. Then the last 100
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Figure 3.8.: Absolute and relative errors in a logarithmic plot over the number of
points. In agreement with our model errors decrease approximative
with 𝒪(1/𝑛) in contrast the distance to the closest landmark decreases
only with order 𝒪(√1/𝑛). Straight lines represent 𝒪(1/𝑛) and 𝒪(√1/𝑛)
for reference.

were chosen as test points, on whose distance fields the bounds were compared
to the exact distances. The graph 𝑒𝑚𝑖𝑛 for example contains the mean value of 𝑒𝑚𝑖𝑛
as measured from the test points to all others. The graph is twice logarithmic, so
that exponential functions become straight lines whose slope is the exponent. Two
guide lines were added showing the functions 𝒪(√1/𝑛) and 𝒪(1/𝑛) to which the
other plots can be set in relation. In agreement to our theoretical considerations,
absolute errors 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 and the relative error 𝑒𝑚𝑖𝑛/𝑑 are decreasing similar to
𝒪(1/𝑛), while the distance to the closest landmark point decreases only with order
𝒪(√1/𝑛), which is thus not the reason for good convergence. The bounds can be
further visually inspected in Figures 3.9, 3.10 and 3.11.

From the related work the work of Xin et al. [XYH12] is most significant, as they
approximate geodesic distances in constant time as well. For a fair comparison
we chose for their algorithm the same landmark points as for our approach, from
which they then build a coarse triangulation to infer distances. They deliver a
good approximation, w.r.t. the absolute approximation error. Yet through the
influence of the triangulation, their approximation is not continuous. Further their
approximation might not result in a distance metric. For large Gaussian curvatures
the real distances might deviate largely for their approximation, while our method
always gives assured bounds. Finally, the implementation of our algorithm is of a
remarkable simplicity.
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Figure 3.9.: Visualization of bounds on the Tosca Cat and Stanford Dragon for a
single query point (30/100 landmarks).
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Figure 3.10.: Visualization of boundaries on the Happy Buddha.
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exact distances (colorscale 0-160) 𝑒𝑚𝑖𝑛/𝑑 (colorscale 0%-35%)

𝑒𝑚𝑎𝑥 (colorscale 0-26) 𝑒𝑚𝑎𝑥/𝑑 (colorscale 0%-35%; unbounded)

Figure 3.11.: Visualization of the errors for the Stanford dragon.
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Figure 3.12.: Comparison to [XYH12]. They calculate constant time all-pairs dis-
tances as well. We utilize the same sample points as in our results
(farthest point sampling). Note the discontinuities and see the text for
discussions.
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3.5. Future work
It could be well worth, investigating ideas for better landmark placing. We present
the following simple Theorem, that might help to relate potential landmarks to the
resulting approximation error.

Theorem 9. Let 𝑝, 𝑞, 𝑠 ∈ ℳ, further 𝑑(𝑝, 𝑠) ≤ 𝑑(𝑝, 𝑞) and 𝑑(𝑞, 𝑠) ≤ 𝑑(𝑝, 𝑞) and ℎ𝑠 be the
shortest distance of 𝑠 to any shortest path connecting 𝑝 and 𝑞. Then

𝑒𝑞
𝑚𝑖𝑛(𝑝, 𝑠) = 𝑒𝑝

𝑚𝑖𝑛(𝑠, 𝑞) = 𝑒𝑠
𝑚𝑎𝑥(𝑝, 𝑞) ≤ ℎ𝑠 (3.23)

When solving for distance metrics (for example with linear/quadratic programs),
it might be interesting to represent these over finite distance fields as discussed in
Section 3.3.1.

Additionally, it would be interesting to investigate the information that general
pairwise distances [LRF10a; Sol+14] share and it would be interesting whether a
generalization of our method is applicable in their setting.
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4 Compact part-based shape
spaces for dense
correspondences

Abstract We consider the problem of establishing dense correspondences within
a set of related shapes of strongly varying geometry. For such input, traditional
shape matching approaches often produce unsatisfactory results. We propose
an ensemble optimization method that improves given coarse correspondences
to obtain dense correspondences. Following ideas from minimum description
length approaches, it maximizes the compactness of the induced shape space to
obtain high-quality correspondences. We make a number of improvements that are
important for computer graphics applications: Our approach handles meshes of
general topology and handles partial matching between input of varying topology.
To this end we introduce a novel part-based generative statistical shape model. We
develop a novel analysis algorithm that learns such models from training shapes of
varying topology. We also provide a novel synthesis method that can generate new
instances with varying part layouts and subject to generic variational constraints.
In practical experiments, we obtain a substantial improvement in correspondence
quality over state-of-the-art methods. As example application, we demonstrate a
system that learns shape families as assemblies of deformable parts and permits
real-time editing with continuous and discrete variability.

This chapter corresponds to the paper[Bur+13b]: Oliver Burghard et al. “Compact
Part-Based Shape Spaces for Dense Correspondences”. In: arXiv:1311.7535 (2013).
An accompanying video is available online1. Further, sampling results can be seen
in chapter A.2.

1https://www.youtube.com/watch?v=2m3TbGO9Kls
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(a) shape collection (b) coarse segmentation (c) dense correspondences

Figure 4.1.: (teaser) We compute high-quality dense correspondences between se-
mantically models with strongly varying geometry, such as the four-
legged animals in (a) (6 out of 12 input shapes shown). We require a
coarse initialization as input (b) and refine them by maximizing the
compactness of a part-wise Gaussian generative model (c).

4.1. Introduction
Computer graphics has reached impressively high standards in representation and
rendering of 3D scenes, regularly achieving photo-realism. As a consequence, the
problem of creating 3D models of matching quality has become a serious problem,
making content creation a major bottleneck in practice.

Data-driven methods are a promising avenue towards addressing this problem.
The reuse of existing content, such as models available in large online data-bases,
might become a viable option for reducing the content creation costs in the future.
In order to be useful as a creative tool, the goal is not to just copy existing models
like clip-arts, but to be able to maneuver within the space spanned by the examples
and synthesize new shapes of related structure.

An important low-level problem for building such navigable shape spaces is
the correspondence problem: We need to determine which parts of objects are
equivalent and which surface points have to be matched, establishing dense corre-
spondences. Most statistical analysis techniques for building parameterized shape
spaces require such a dense prior alignment as input [BV99a; ACP03b; Has+09b].
The results crucially depend on the quality of the correspondences: Inaccurate and
drifting correspondences yield bad shape spaces. In such spaces, sampling and
interpolation yields implausible results (see the accompanying 2for a visualization).
In other words, such models fail to generalize beyond the input data. The problem
can be reduced by using large training sets to learn rather low-dimensional shape
spaces. This averages out drift but also reduces the accuracy; only low frequency
bands of the geometry are still predicted (see for example the results in [Has+09b]
obtained from almost 2000 shapes).

Hence, good correspondences are a key requirement for building useful and

2https://www.youtube.com/watch?v=2m3TbGO9Kls
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informative shape spaces. The correspondence problem comes in two flavors: Global
and local matching. Local matching requires a rough initialization and refines it
but is prone to getting stuck in local optima. Global methods are complementary:
They aim at providing the initialization, but are usually unable to compute detailed
and dense solutions. Our paper addresses the local problem: We want to find good
dense correspondences given a coarse initialization. Specifically, we address this
problem for the case of shapes that have strongly varying geometry, as typically
required for learning shape spaces.

Computing correspondences among rather “similar” shapes is a problem that is
by now already quite well understood. Variants of the ICP algorithm handle local
alignment [RL01a] for both rigid and deformable models. Deformable ICP em-
ploys differential deformation priors such as elasticity [HTB03], isometry [BBK06a;
Ovs+10], conformal maps [Lév+02; KLF11a], or thin-plate-splines [ACP03b; BR07].
These approaches model the behavior of infinitesimally small portions of the object:
For example, elasticity penalizes local stretch and bending, and thin-plate splines
optimize for smooth deformations.

The problem with differential deformation models is that their assumptions are
often not justified when considering shape families with substantial geometric
variability, such as a diverse collection of four-legged animals (Figure 4.1). Elas-
tic models can capture pose changes of a single shape reasonably well [HTB03;
LSP08], but matching objects of different proportions creates strong artifacts (see
Figure 4.9d). Thin-plate splines [ACP03b; BR07] are more flexible but their bias
towards affine mappings still causes very noticeable artifacts (Figure 4.9f). In both
cases, reducing the weight of the regularization reduces bias but also increases
noise and drift in the correspondences.

Isometry and conformal maps are by design already quite rigid: Both are already
fixed by three point-to-point correspondences (for spherical topology), which is
very valuable for solving the global matching problem efficiently [LF09a]. These
models are again useful for modeling pose changes, but shape sets of largely varying
geometry are very unlikely to fall into the prescribed, low-dimensional sub-manifold
of matchable shapes. Blending between partial maps [KLF11a] can reduce the
problem, but substantial bias persists (see Figure 4.9g).

Overall, computing dense correspondences among shapes of strongly varying
geometry remains a problem that is mostly unsolved. The conceptual problem
is that we need an effective notion of similarity that does not yet prescribe very
specific geometric properties. Supervised machine learning from user annotated
examples [KHS10; Kai+11; Sun+13] has shown promising results for establishing
coarse correspondences. However, it cannot be easily extended to the dense case
because it is very difficult if not impossible for a human to prescribe accurate dense
correspondences for the training data.

This observation is a major motivation for our paper: We assume that coarse
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annotations are available. In addition to existing coarse matching methods [HKG11;
Sid+11], we can always resort to manual human labeling. However, this is impos-
sible for dense matches. We therefore develop a new method to get high-quality
dense correspondences from a sparse and inaccurate initialization.

Towards this end we build upon another recent idea: Correspondence extraction
from shape collections. By considering many shapes of a similar kind simultaneously,
more information is available. Several recent papers employ the cycle consistency con-
straint to build correspondences in shape collections [Ngu+11a; Hua+12; Kim+12]:
Correspondences are usually understood as a point-wise equivalence relation, being
transitive over multiple shapes. Thus, unclosed loops indicate errors in pairwise
matches that can be detected and removed. As pairwise regularizer, near-isometry
[Ngu+11a; Hua+12] or (optionally) extrinsic shape similarity [Kim+12] are em-
ployed. However, this implicitly assumes that the shapes in the collection are dense
samples of a continuous manifold of shapes, i.e., nearby samples are intrinsically
very similar. This is not always the case in practical shape sets and thus introduces,
as we will demonstrate experimentally, substantial artifacts.

In this paper, we therefore improve this model by explicitly regarding corre-
spondence estimation as optimization of shape spaces, aiming at capturing the class
of observed models well. This can be understood as a statistical learning prob-
lem: A good explanation for a phenomenon is one that not only fits the observed
data tightly but that is also simple [DHS01]. It is trivial to fit a large number of
observations with a highly flexible model with lots of parameters (overfitting).
However, making accurate predictions with a small and concise model makes such
a hypothesis statistically meaningful.

Matching shapes of widely varying geometry forces us to choose mappings from
a very large and sufficiently flexible set. However, from this large set, we aim at
picking the simplest, the most compact representation: The model should minimize
the degrees of freedom utilized for representing the various shapes, rendering
accidental matching unlikely: only natural correspondences will create simple
shape spaces because they arise from a hidden, simple explanation for the observed
geometric variability. Technically, this is formalized by minimizing the description
length (MDL) of objects created by a Gaussian generative probabilistic model on
a linear shape space. This approach has been originally developed in computer
vision and medical imaging [KT98; Dav+02b].

In order to extend the applicability to a spectrum of typical computer graphics
problems, we extend the original idea: First, we adapt the representation to handle
meshes of generic topology. Second, we introduce a part-based representation that
permits modeling correspondences across shapes of varying topology, interpreting
each shape as an assembly of dockable, deformable parts. This allows us to learn a
larger class of such composite models with both continuous (part deformation) and
discrete (part assembly) variations. In particular, we introduce a novel algorithm
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to synthesize seamless and continuous models for assemblies of parts. Finally,
the part-based approach yields high quality results: It decouples correlations
between distant parts, which permits learning of expressive shape spaces with
fewer examples, and with higher-quality correspondences.

In summary, we make the following main contributions: First, we introduce com-
pact shape spaces for correspondence optimization to graphics, and demonstrate
that this approach has a substantial impact on correspondence quality. Second, in
order to make the method applicable to general meshes, we develop a new algo-
rithm that can handle manifold meshes of generic topology while still maintaining
meshing quality (uniform sampling and avoiding fold-overs). Third, we introduce
a part-based formulation that represents shapes of variable topology; in particular,
we describe new analysis and synthesis algorithms for composite shapes. We show
that the part-based approach also improves the quality of the results over global
optimization. Finally, as an example application, we demonstrate an interactive
system for designing deformable shapes with continuous and discrete variability.

4.2. Related work
In this section, we discuss previous work on compactness of shape spaces, comple-
mentary to generic correspondence estimation methods already discussed above.
The concept originates from studying point distribution models such as active
shape/appearance models [Coo+95] that build generative Gaussian models of
variability in images.

For model optimization, Hill et al. [HT94] have proposed compactness as crite-
rion, and modeled this as the total variance of the shape distribution. Kotcheff and
Taylor [KT98] employ normal-distribution entropy, which creates sparse represen-
tations.

Davies et al. [Dav+02b] refine this model by formulating the objective as mini-
mum description length (MDL) approach [Ris78] that avoids inconsistencies and
singularities.

Ericsson et al. [EÅ03] derive a gradient for the MDL energy, replacing the rather
slow genetic algorithms and simplex methods by more efficient gradient descent
[Hei+05].

The approach can be combined with surface parameterization [Dav+02a; Hei+05;
Dav+10] to handle manifolds and guarantee bijectivity, however this restricts the
topology to the spherical case.

Cates et al. [Cat+06] extend the approach to regularly sampled point-based
representations of manifolds, handling the sampling uniformity by an elegant com-
plementary entropy term. This approach also removes the topological restrictions
but does not yield continuous, bijective mappings between meshes.
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Our technique builds upon the entropy-based approach of Kotcheff and Tay-
lor [KT98]. Unlike previous methods, we use a smooth implicit representation of
input meshes and parameterize the correspondences over a single such a shape
of general topology. We enforce regular and uniform meshing by a bi-Laplacian
regularizer and dynamic resampling [BK04a]. Our representation automatically en-
sures cycle-consistent correspondences and permits handling of meshes of general
topology while maintaining meshing quality (in practice, also effectively avoiding
fold-overs). Further, the smoothness of the representation allows us to employ an
efficient quasi-Newton method for optimization.

A problem of straightforward Gaussian MDL models is that they create bias
towards linear representation of global shape rather than aligning surface features.
Thodberg et al. [TO03] address this by adding a curvature-matching error. Our
part-based approach can be seen as an alternative and complementary measure
to limit such artifacts by providing localized adaptivity. In addition, it permits
more flexibility in analyzing and representing composite shapes, which none of
the previous methods provide.

A second, orthogonal problem is the global nature of the statistics. The model
tends to overfit correlations between unrelated parts. For example, the poses of
the arms in a human model are mostly independent, but excessive training data
is required for a PCA model to recognize this. For this reason, many approaches
have used part-based formulations [BV99a; Zha+04; FKY08; TDM11]. Our main
contribution in this respect is that our analysis algorithm optimizes such models
automatically. As a convenient by-product of the part-based correspondence opti-
mization, our method optimizes the boundaries of the segmentation automatically
given only a very coarse initialization. Further, our synthesis method works in the
gradient-domain and thereby provides improved smoothness across boundaries in
comparison to previous spatial domain methods [TDM11].

4.3. Creating compact shape spaces
In this section, we describe the basic method for optimizing shape correspondences
with the objective of creating compact shape spaces. We here first discuss the case
of each shape consisting of a single part only; composite, part-based shape spaces
will be discussed later, in Section 4.4.

Input: In the following, let 𝒮1, ..., 𝒮𝑛 ⊂ ℝ3 be a set of 3D shapes. We assume
that these are smooth, compact 2-manifolds embedded in ℝ3. The topology can be
arbitrary but has to be fixed across all input shapes for now (by assembling multiple
such parts, this requirement can be relaxed later). In practice, the shapes are
discretized as triangle meshes. We denote the corresponding vertices by S1, ..., S𝑛;
each S𝑖 = (s1, ..., s𝑛𝑖

) is a matrix formed by the vector of the individual vertices. The
set of triangles of each mesh are denoted by 𝒯S𝑖

.
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4.3.1. Linear shape spaces
We first recap Gaussian generative shape models, as well known from literature
[Coo+95; BV99a; ACP03b], and define our notation.

First, we define the generative process: Let 𝒰 be a urshape, i.e., a base shape that
has the same topology as each of the input shapes and that serves as parameteriza-
tion domain for the shape space. This space is formed by the mappings:

𝑓 ∶ 𝒰 × ℝ𝑑 → ℝ3. (4.1)

For each vector 𝛌 = (𝜆1, ...𝜆𝑑) ∈ ℝ𝑑 and each x ∈ 𝒰, the function 𝑓 returns a
point on the generated shape. We assume the generative process to be linear. This
shapes can be described by coordinates in an orthogonal basis. For a x ∈ 𝒰, 𝛌 ∈ ℝ𝑑,
we have:

𝑓𝛌(x) = 𝑓𝜆1,...,𝜆𝑘
(x) = 𝑏0(x) +

𝑑

∑
𝑖=1

𝜆𝑖 ⋅ 𝑏𝑖(x) (4.2)

Where the function 𝑏0 encodes the mean shape and 𝑏1, ..., 𝑏𝑑 are orthogonal basis
functions that describe the possible linear modes of variation. In our implementa-
tion, we use (as most others) the mean shape as urshape, i.e., 𝑏0 ≡ 𝑖𝑑. In practice, 𝒰
will be approximated by a triangle mesh of 𝑛 vertices. We denote the 3 × 𝑛 matrix
of the 𝑛 vertices of the mesh by U, and denote the created meshes by 𝑓𝛌(U), and the
continuous version by 𝑓𝛌(𝒰), respectively.

We equip the shape space {𝑓𝛌(𝒰)|𝛌 ∈ ℝ𝑑} with a Gaussian probability measure
with an axis aligned neg-log likelihood

− log Pr(𝛌) = 1
2

𝑑

∑
𝑖=1

𝜆2
𝑖

𝜎2
𝑖

+ const, (4.3)

where 𝛔 = (𝜎1, ..., 𝜎𝑑) specifies the standard deviations along the main axes of
the model.

Further, we will usually consider the space of shapes generated by 𝑓 and then
rigidly arranged in ℝ3. Given R ∈ 𝑂(3) and t ∈ ℝ3, we denote a rigidly trans-
formed shape (in slight abuse of notation) by:

R (𝑓𝛌(𝒰)) + t ∶= {R ⋅ 𝑓𝛌(x) + t ∣ x ∈ 𝒰} . (4.4)

Building the model: Given a set of input shapes and correspondences between
them, we can easily build Gaussian shape spaces using principal component anal-
ysis (PCA): Assume that we are given a set of consistently triangulated vertex
meshes S∗

1, ..., S∗
𝑛 that match the input 𝒮1, ..., 𝒮𝑛 with vertex correspondence, i.e.,

corresponding vertices located at matching geometry (we use the star to denote
known correspondences). We compute the mean S by averaging the input shapes
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and determine the covariance matrix

ΣS = 1
𝑛 − 1

𝑛

∑
𝑖=1

(S∗
𝑖 − S) (S∗

𝑖 − S)T (4.5)

The mean and the eigenvectors of ΣS yield the mean and basis meshes and the
eigenvalues correspond to the standard deviations 𝛔. Further, it is easy to see (for
example, by applying a singular value decomposition and rearranging terms) that
the Gram matrix

GS =
𝑛

∑
𝑖=1

(S∗
𝑖 − S)T (S∗

𝑖 − S) (4.6)

has the same eigenvalue spectrum (up to the factor 𝑛 − 1). In the continuous
case, the sum is replaced by an integral. Assume that we have homeomorphisms
𝑠∗

𝑖 ∶ 𝒰 → 𝒮𝑖 that encode continuous correspondences to our input shapes 𝒮1, ..., 𝒮𝑛.
We then again form the mean function 𝑠 by averaging and the 𝑛 × 𝑛 Gram matrix:

G𝒮 = ∫
𝒰

(𝑠∗
𝑖 (x) − 𝑠(x))T (𝑠∗

𝑖 (x) − 𝑠(x)) 𝑑x. (4.7)

The matrix has at most rank 𝑛; in the (typical) case of redundancy in the shape
collection, the number of significant eigenvalues will typically be substantially
smaller than 𝑛. Importantly, the spectrum does not just depend on the geometry
of 𝒮1, ..., 𝒮𝑛 but crucially on the correspondences encoded in the functions 𝑠∗

1, ..., 𝑠∗
𝑛.

While the variability of the shapes prescribes a lower bound on the rank of G𝒮, we
can in general artificially inflate it up to full rank by just letting the correspondences
drift randomly along the surface.

4.3.2. Compactness
We now discuss how to measure the compactness of the shape space and how to
minimize it. We also recap ideas from [KT98; Cat+06; Dav+10] to keep the paper
self-contained.

Spectral view: Let 𝛔 denote the vector of eigenvalues of G𝒮. If the correspon-
dences 𝑠∗

1, ..., 𝑠∗
𝑛 include unnecessary movements along the surfaces of the objects,

the spectrum will spread out, creating more non-zero eigenvalues. In reverse, a
compact shape space should have a compact spectrum. A simple way of modeling
this is to penalize the square norm ‖𝛔‖2

2 = tr(G𝒮) of the eigenvalues, as proposed
by Hill and Taylor [HT94]. It is equivalent to trying to keep all surface points in
deformed shapes close to the mean shape, independent of each other (therefore not
transporting information globally). From a spectral perspective, it favors multiple
small eigenvalues over a few large ones, which does not match the intuition of a
low-dimensional generative process that we want to reconstruct. Rather than that,
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(a) untransformed (b) linear differential prior (c) entropy prior

Figure 4.2.: Geometric interpretation: Differential models such as (linearized) elas-
ticity or thin-plate splines impose a quadratic energy on a linearly
transformed shape space that attracts all target shapes to the source
shape. Our method minimizes the entropy of the ensemble, moving
correspondences such that the shapes align in a lower-dimensional
subspace, creating less bias.

we aim at a sparse spectrum, as detailed next.
Probabilistic view: We can also look at the probability distribution the shapes

are drawn from. The less variability it permits, without reducing the likelihood of
the training examples, the more concisely it captures the shape space. In this view,
we should measure the entropy of the Gaussian model:

𝐻Pr(𝛌) = 1
2

ln
𝑛

∏
𝑖=1

𝜎2
𝑖 + 𝑐𝑜𝑛𝑠𝑡. (4.8)

This approach suffers from singularities: If one of the eigenvalues becomes
zero, the determinants of the covariance and Gram matrix become zero, leaving
the entropy ill-defined. Further, driving even just the least eigenvalue close to
zero would falsely indicate a near-perfect solutions, which leads to instability and
inconsistency.

Information theoretic view: From the point of view of information theory, we
can measure the capacity of the generative probabilistic model (Equations (4.2, 4.3))
to encode different models by considering the description length of a specific
shape, given the knowledge of the generative model in terms of the probabilistic
shape space. To transmit one shape, we need to encode the shape parameters
𝛌 = (𝜆1, ..., 𝜆𝑑). Given an independent Gaussian distribution along each axis 𝑏𝑖
with variance 𝜎2

𝑖 , and assuming that a finite accuracy of Δ > 0 is required in our
application, encoding a single parameter requires roughly 𝒪(log 𝜎𝑖

Δ
) bits [Tho03]

(see Davies et al. [Dav+02b] for the accurate and more detailed derivation). For
small variances 𝜎𝑖 < Δ, no information needs to be encoded. This suggests the
following energy [KT98; Cat+06] that approximates the information content of the
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shape space depending on correspondences 𝑠1, ..., 𝑠𝑛:

𝐸𝐻(𝑠1, ..., 𝑠𝑛) = ln
𝑛

∏
𝑖=1

(𝜎𝑖 + 𝛿) = ln det (G𝒮 + 𝛿I) (4.9)

𝛿 > 0 is a regularizer that determines the accuracy of the shape space: We assume
that independent of the example data, there is always an isotropic Gaussian noise
component of standard deviation 𝛿 in all dimensions of the space. This removes the
singularity and makes the entropy usable as measure that encourages sparse PCA
spectra during correspondence optimization [KT98]. This is an approximation to
coding length [Dav+02b]; nonetheless, it already yields favorable results in practice.

Geometric view: We can also interpret these results as imposing a prior in a
shape space. Figure 4.2 shows schematically a number of example shapes S1, ..., S𝑛
as points in a high-dimensional shape space. Traditional regularizers such as
thin-plate-splines or linearized elasticity impose a Gaussian prior, i.e., the neg-log-
likelihood is a quadratic energy of the form

𝐸(S1, ..., S𝑛) =
𝑛

∑
𝑖=1

(L(S𝑖 − S))2 , (4.10)

where L is a linear operator (a matrix) that acts on the vertex sets S𝑖 interpreted as
(3⋅𝑛𝑖)-vectors. For example, in thin-plate-splines, L measures the bending by taking
second derivatives. In other words, traditional (linear) differential priors can be seen
as an isotropic attraction to a single point (the urshape) in a linearly transformed
shape space (Figure 4.2b). Contrarily, minimizing the entropy encourages a tight
fit of an ellipsoid to the data, minimizing its volume, and thereby encouraging
all models to be located on a low-dimensional linear subspace (Figure 4.2c). This
creates bias towards a linearly correlated representation rather than towards a single
shape. It is not surprising that this yields significantly better results when the final
objective is to describe a shape collection with exactly this representation rather
than reconstructing it from pairs of biased, point-wise matches in shape space.

4.3.3. Shape optimization
Let S1, ..., S𝑛 be a set of example models given as triangle meshes. We approximate
these by smooth surfaces 𝒮1, ..., 𝒮𝑛, as detailed later. Let U be an urshape of matching
topology. We denote the vertices of U by u1, ..., u𝑚. We now want to compute
correspondences

𝑥𝑖 ∶ {u1, ..., u𝑚} → 𝒮𝑖. (4.11)

We denote the set of all correspondences by 𝒳 = {𝑥1, .., 𝑥𝑛}. All of these are
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(a) 𝐸𝐻(𝒳) (b) 𝐸𝐿(𝒳) (c) 𝑥𝑖 ∈ 𝒮𝑖

Figure 4.3.: Shape space optimization. Our energy consists of three terms (a-c)
and a hard constraint (d). (a) The term 𝐸𝐻 minimizes the description
length of the model by aiming at minimizing the entropy (volume) of
the Gram matrix of the model collection. (b) 𝐸𝐿 encourages uniform
meshing using a Laplacian energy. (c) Matching the data surfaces 𝒮𝑖 is
a hard constraint.

hard-constrained to be located on the (smoothed) input surfaces. We optimize the
correspondences by minimizing the following energy, subject to the constraint of
moving only along the surface (as illustrated in Figure 4.3):

𝐸(𝒳) = 𝐸𝐻(𝒳) + 𝜇𝐿𝐸𝐿(𝒳) (4.12)

The term 𝐸𝐻 approximates the description length as discussed above and 𝐸𝐿 is a
bi-Laplacian regularizer.

We set its weight 𝜇𝐿 to the ratio of the number of triangles divided by the surface
area squared (to make the overall weight mesh-independent), multiplied by a
relative weight of 0.25 ⋅ 10−5.

The overall energy is minimized using l-BFGS, a nonlinear quasi-Newton solver.
Further, we factor out rigid motions according to Equation (4.4): We compute a
least-squares optimal translation, rotation, and reflection from the initial corre-
spondences. The rigid motion is updated during the optimization by including
the rotation as variable in the optimization (parameterization the small rotational
update as Euler angles with respect to the initial least-squares fit).

Compactness

For creating compact shape spaces, we use the energy 𝐸𝐻 from Equation (4.9).
We compute the Gram matrix by integrating over the deformed triangle meshes
according to Equation (4.7). Because of additional regularization (described next),
it is sufficient to approximate the integrals by an unweighted sum over vertex
positions (Equation (4.6)). We compute the derivative of the energy using the
explicit formula derived in [KT98].
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Regularization

The regularization term 𝐸𝐿 is a prior on the graph Laplacian of the deformed meshes
𝑥𝑖(U). With 𝑁𝑖 denoting the set of indices of vertices sharing an edge with vertex
u𝑖 in the mesh U, we obtain:

𝐸𝐿(𝒳) =
𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

1
|𝑁𝑗|

⎛⎜⎜
⎝

∑
𝑘∈𝑁𝑗

(𝑥𝑖(u𝑗) − 𝑥𝑖(u𝑘))⎞⎟⎟
⎠

2

(4.13)

This term encourages the graph Laplacian of the triangle mesh to be zero, which
is the case if every vertex is located in the center of its 1-ring neighborhood, corre-
sponding to a uniform triangulation [BK04a]. Although adding this least-squares
energy does not guarantee bijectivity of the mapping, it also effectively avoids
fold-overs in practice.

Data Modeling

We model the hard-constraint that correspondences must remain on the input sur-
faces by a level-set approach. As our input is only discrete, 𝐶0 mesh approximation
of a shape, we first build a smooth surface 𝒮𝑖 that tightly approximates S𝑖 so that
we can slide along the surface smoothly during optimization. We first sample the
input mesh with a dense, uniform point cloud S′

𝑖 = {s′
1, ..., s′

𝑛𝑖
} representing the

input mesh S𝑖 with (given) oriented normals {n1, ..., n𝑛𝑖
}. We fit a signed distance

function 𝑑 ∶ ℝ3 → ℝ to S𝑖 by minimizing the following energy [CT11]:

𝐸(𝑑) = 𝜇𝑧

𝑛𝑖

∑
𝑖=1

𝑑(s′
𝑖)2

⏟⏟⏟⏟⏟
zero crossing

+𝜇𝑔

𝑛𝑖

∑
𝑖=1

∥∇𝑑(s′
𝑖) − n𝑖∥

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
gradients

+𝜇𝐹 ∫
Ω

‖𝐻𝑑(x)‖2
𝐹𝑑x⏟⏟⏟⏟⏟⏟⏟

smoothness

(4.14)

The first term assures that the zero crossing of 𝑑 is at the data points. The second
term aligns the gradients with the normals, creating a smooth result and removes
the trivial solution (𝑑 = 0). The last term integrates the squared Frobenius norm of
the Hessian of 𝑑 over a bounding volume Ω, acting at a regularizer that propagates
function values linearly and encourages smoothness. We set the weight 𝜇𝑧 = 1/𝑛𝑖,
𝜇𝑔 = 0.1/𝑛𝑖 and 𝜇𝐻 = 10−4/|Ω|, which is sufficient to smooth very sharp corners a
bit.

We optimize this quadratic energy by solving the linear system resulting of a
finite difference discretization with spacing ℎ set to ℎ = 1.5% of the bounding box of
the object. Continuous values for 𝑑(x) and ∇𝑑(x) are obtained by interpolation with
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radial basis functions at each grid point; we employ Wendland kernels max(0, (1 −
‖y−x‖2/ℎ2)3). 𝐻𝑑 is approximated by finite differences over the grid. The domain Ω
is obtained by including all grid cells within a distance of 4ℎ to data points. Triangle
meshes sampled with spacing ℎ/4 to obtain S′

𝑖. We refer to the zero-level set of the
result as 𝒮𝑖.

Using the implicit function: The 𝒮𝑖 serve as constraint manifolds for correspon-
dences during optimization: First, any initial solution is projected to 𝒮𝑖 by simple
gradient descent. During numerical optimization, the quasi-Newton l-BFGS solver
attempts to update the correspondences positions: 𝑥𝑖(u𝑗) → 𝑥′

𝑖(u𝑗) by first finding a
new direction and then the distance by a line search. In each iteration, we project
𝑥′

𝑖(u𝑗) back onto the surface (using the exponential map in 𝑥𝑖). The rational is that
small step sizes turn the smooth constraint into a sequence of linear subspace con-
straints that can are handled by the quadratic (low-rank) optimizations performed
in the inner loop of l-BFGS.

Motivation: In experiments with various formulations, the implicit function
formulation with hard constraints to the zero level-set turned out to be most reli-
able and crucial for good results. Other options did not give satisfactory results:
Least-squares soft-constraints are unreliable: weak constraints have trouble with
thin structures and sharp creases, and strongly weighted soft constraints yield a
numerically ill-conditioned energy, preventing convergence. The option of just
using the input triangle meshes was not satisfactory either: Using such a 𝐶0 surface
lead to spurious local optima in our experiments. Experiments with a projection to
dynamically computed MLS-approximation of the surface have also turned out to
be slow and unreliable for general surfaces with small feature size.

4.4. Extended model
We now extend our approach by introducing composite, part-based models that
capture correspondences among objects of varying topology.

4.4.1. Part-based modeling
The method as discussed so far, as well as previous proposals in literature, is
restricted to shapes that have global correspondences and form a single, global
shape space. In practice, this is often a strong restriction. Many man made shapes
consist of composite parts (for example, the irons in Figure 4.7b have been assembled
from different parts), forming shape spaces of varying topology that cannot be
captured by a single shape space.

We therefore propose a model that decomposes complex shapes into a set of
parts that have individual shape spaces. First, we modify the analysis algorithm to
optimize both the shape and the decomposition of the surface. Second, develop a
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(a) input shapes (b) docking sites (c) part graphs (d) docking rules

Figure 4.4.: Decomposing objects into morphable parts (iron example; c.f. Fig-
ure 4.7b). (a) Objects are segmented into different parts, indicated by
different colors.(b) Boundaries permit docking of shapes according
to the observed variations. (c) Each discrete assembly corresponds
to a graph of parts. (d) This yields a set of rules for possible part
arrangements.

synthesis algorithm that can build seamless models consisting of deformed parts
in different poses. The synthesis can handle general arbitrary constraints (changing
the discrete composition of the parts, handles for free-form deformation, subspace
constraints).

Analysis

Input: We again assume that we are given a set of example shapes S1, ..., S𝑛 as
triangle meshes (Figure 4.4 shows an example, reflecting the actual result demon-
strated in Figure 4.7b). We further assume that the shapes are segmented into parts,
i.e., every triangle is tagged with a part type 𝑝 ∈ {1..𝐾}, where 𝐾 is the number of
different part types (Figure 4.4a shows the types as different colors). Each part of
the same type must have the same topology (The irons example use a adapter pieces
(yellow/pink/brown) to attach handles of different topology to the body). Each
discrete configuration corresponds to a different graph of parts (Figure 4.4c). In
addition, each part has continuous parameters (not shown) that permit deformation
according to the shape space learned from all parts of the same type (same color in
our figures).

The initialization of the part boundaries does not need to be precise; only the
topology and coarse geometry needs to match. We will improve the segmentation
geometry automatically.

Part docking: Parts will share common boundaries, and possibly in different
combinations. We learn the way parts can be discretely assembled from the input
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Figure 4.5.: In order to obtain initial correspondences, we cut the parts into pieces of
disc topology. Afterwards, a cross parameterization ensures a bijective
initialization.

by just reading of the observed adjacency relations from the input.
Figure 4.4d,e show the rules that have been deduced from the input. Boundaries

between that connect two types of parts across a common docking site are always
in fixed correspondence; i.e., the dense correspondences of the parts themselves
are enforced at the boundary, too.

In the following we discuss our analysis algorithm that creates part graphs and
shape spaces for each part automatically given a coarse user segmentation and
possibly a few additional landmark matches.

Part parameterization: The first step is to compute initial dense correspondences.
We need bijective correspondences without fold-overs. For this, we use cross--
parameterization [KS04a]: We first cut the parts further into topological discs, and
then compute a cross-parameterization of the discs to obtain initial correspondences
(see Figure 4.5). For cutting, we first detect the interior boundaries within all parts.
We connect each resulting boundary curve to its closest neighbor (see Figure 4.5) and
then cut along a geodesic path between the corresponding closest point. Cutting
is iterated until only topological discs remain, and the process is done in all parts
simultaneously. This initialization is presented to the user, who can move the
initial landmark correspondences along the boundaries (red dots in Figure 4.5).
The resulting sub-parts are set into correspondences by a least-squares conformal
map to a unit circle; the boundaries of the circle are set into correspondence by
comparing the relative arc length (normalized to [0, 2𝜋]), using the cutting points
as starting point. For the outer boundary 𝜕P(𝑝)

𝑗 of the initial segmentation, the user
has to specify this starting point manually.

The result of this step are dense correspondences between all parts, with topology
consistent to the user-defined segmentation. The correspondences are guaranteed to
be bijective, but the quality is usually very bad, showing strong drift and distortions
across the shape.
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Optimization: We now perform the optimization from Section 4.3 to improve
this initial guess. For each part type (same color in our figures), we setup a separate
energy 𝐸(𝑝) according to Equation (4.12). We use the cross-parameterization result
as initial correspondences 𝑥(𝑝)

𝑖 , and the resulting mean shape as urshape U(𝑝). We
first run the optimization separately, constraining the boundaries of the domain to
fit the boundary curve by a point-to-line energy that snaps the closest vertex to its
the boundary of the parts. We add the boundary energy

𝐸𝐵 =
𝐾

∑
𝑝=1

𝑛𝑝

∑
𝑗=1

∫
𝜕U(𝑝)

dist (𝑥(𝑝)
𝑗 (x), 𝜕P(𝑝)

𝑗 ) 𝑑x (4.15)

that measures the deviation of boundary vertices from the boundaries of the input
parts.

Boundary optimization: After the energy has converged, we remove the con-
straint of Equation (4.15) and start optimizing the boundary location. We need
to make sure that parts still meet at the boundaries, and this should happen in a
consistent way. As consistency condition, we maintain fixed correspondences along
all matching part boundaries of the same type. We impose this consistency as a
soft constraint in an alternating two-stage optimization:

In stage one, we find all pairs of closest points between boundaries of matching
type: For points x ∈ 𝑏(𝑝)

𝑙 we compute all instances in the data, and for each instance,
the closest point in the adjacent instance of type 𝑏(𝑝)

𝑙 . We average over all of these
matches and set a soft constraint penalizes the quadratic distances for all these
pairs. In stage two, we run the optimization of 𝐸(𝑝) according to Equation (4.12)
with the additional constraint energy added. We obtain improved correspondences,
which are again used to refine the correspondences.

Conceptually, this could be interpreted as a variant of iterative closest points
(ICP), performed simultaneously along multiple boundary curves while keeping
their correspondences consistent. The alternating estimation of boundary corre-
spondences is combined with the estimation of global rigid motions for each part,
as already introduced in Section 4.3.3.

Further details: In our implementation, a few extra steps are performed to improve
the efficiency of the method. First, before computing the cross-parameterization, we
use the dynamic remeshing algorithm of Botsch et al. [BK04a] in order to improve the
mesh quality of each part (which might already have been bad in the input meshes).
The method iteratively minimizes the sum of the squared graph Laplacians and
performs edge contractions / vertex splits in order to create a uniformly sampled
mesh. We use the average edge length in all part instances as length criterion.
Second, after parameterization, we might end up with very uneven sampling; the
conformal map can have large scale factors that lead to a uneven distribution of
triangles. Using vertex splits, again according to the same criterion, we refine
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regions that are undersampled and project the resulting newly inserted points onto
the implicit surface that models the data. These steps could in principle be omitted,
but then a very dense initial mesh is required to obtain results of good quality.
Another improvement is to perform a final optimization pass of the correspondence
energy 𝐸(𝒳) (Equation 4.12) where the Laplacian regularizer is evaluated for each
composite input shape S𝑖 instead of its parts separately, which makes sure that the
boundaries between parts are only determined by the compactness criterion and
not by the mesh regularization (we obtain a slight improvement here).

Overall, the result of the preceding is an optimized composite shape space in
which (i) the correspondences within each part, (ii) the position of the boundaries on
the example shapes, and (iii) the correspondences among matching boundaries have
been optimized with the goal of compactness and mesh quality. In the following,
we discuss how we can utilize the result to create new shapes.

Synthesis

The model that we have obtained in the previous step describes a shape by a
set of parts that are connected along their boundary lines. A key feature of this
extended model is that we can instantiate composite models consisting of multiple
parts, potentially rearranged by attaching the parts differently across compatible
boundaries. We therefore need to devise a generative process by which we can
instantiate such composite shapes, governed by multiple local shape spaces. We
aim at maximum flexibility: Given an arbitrary arrangement of parts and arbitrary
user constraints on geometry and shape parameters for each part, we want to find
a global geometry that fits all of these constraints best.

Variational Part Reconstruction

The first step is to formulate the problem of reconstructing the part shapes as a
variational problem. In order to facilitate a smooth reconstruction later on, we
formulate the whole process in the gradient domain [Sum+05a; SA07]. We first
consider a single part. Assume that we are given a part shape space by its urshape U,
its mean and variation modes 𝑏0, ..., 𝑏𝑑, and the standard deviations 𝛔 = (𝜎1, ..., 𝜎𝑑).
Our objective is to reconstruct an instance V = (v1, ..., v𝑛) of this shape with shape
parameters 𝛌 = (𝜆1, ..., 𝜆𝑑). Because of the formulation as an optimization problem,
multiple parts can be coupled along boundaries, thereby implicitly constraining the
reconstruction and finding the best embedding of the part graph in a least-squares
sense.

We model the similarity by comparing each vertex v𝑖 with a reconstructed vertex
𝑏0(u𝑖) + ∑𝑑

𝑘=1 𝜆𝑘𝑏𝑘(u𝑖). The residual is minimized in a least squares sense. In order
to get a smooth transition between multiple parts later, we follow [Sum+05a] and
formulate the optimization in a gradient domain. We do not compare absolute
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(a) mesh (b) pair (c) docking
boundaries geometry with weights

Figure 4.6.: Attaching two part instances: (a) Boundaries are joined continuously by
sharing variables. (b) We extract geometry adjacent to the boundary and
(c) blend between part and pair shape spaces for smoother transitions.

coordinates but edge vectors in the mesh. Finally, we also include an orthogo-
nal transformation R to be invariant to rigid motion (translational invariance is
automatically obtained by working on edge differences).

Formally, we get the following energy:

𝐸𝑟𝑒𝑐(V, 𝛌, R) =
𝑛

∑
𝑖=1

∑
𝑗∈𝑁𝑖

𝜔𝑖,𝑗((v𝑖 − v𝑗) − R(𝑏0(u𝑖) − 𝑏0(u𝑗))

−
𝑑

∑
𝑘=1

𝜆𝑘R (𝑏𝑘(u𝑖) − 𝑏𝑘(u𝑗)) )
2

+
𝑑

∑
𝑖=1

𝜆2
𝑖

2𝜎2 (4.16)

Again, 𝑁𝑖 denotes the set of neighboring vertices of u𝑖 in the mesh U. 𝜔𝑖,𝑗 is the
cotangent weight of the edge (u𝑖, u𝑗) in the mean shape. The variable R is a rotation
variable, to be optimized along with the variables V and 𝛌.

This formulation is an extension of the as-rigid-as-possible shape deformation
of [SA07], encouraging the result to be as-close-as-possible to a linear subspace of
models (ignoring rigid differences as well). We use the same optimization method:
The linear system is solved alternatingly with an update of the rotation matrix R
(which, in our approach, is global for the whole part); see Sorkine and Alexa’s paper
[SA07] for details.

Reconstructing Part Graphs

In order to reconstruct shapes consisting of multiple parts, we add up the energies
𝐸𝑟𝑒𝑐 for all parts. Along the boundaries, the analysis stage gives us fixed and
consistent correspondences. Therefore, we can remesh the urshapes of the parts
such that they share common points along the boundaries. We then use the same
variables in order to enforce a 𝐶0 continuous solution (see Figure 4.6a).

Improved smoothness: Although the shape of the boundary curve transports
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information between pairs of parts, it only captures limited information on the
correlation between the part shapes. We therefore learn a more expressive model
from the input data: We form an extended region by gathering the geometry within
a fixed distance to the boundary between the pair of parts, called pair geometry (Fig-
ure 4.6b). As the parts are in dense correspondence, we have dense correspondences
between all pair geometry that connects the same part type through the same pair
of boundaries. We build the probabilistic shape space for the pair geometry by a
simple PCA analysis. We add the additional energy to the overall energy for all
docked part pairs.

To avoid discontinuities, we use smooth weights for all singleton part and pair-
wise constraints (Figure 4.6c): The attraction to the shape spaces of the parts fades
continuously to zero when approaching the boundaries. Contrarily, the attraction
to the pair geometry model grows when moving towards the boundary of the parts.
We weight each vertex by exp(−𝑑2/𝜎2

𝑏𝑑𝑟), where 𝑑 is the distance to the boundary.
For seamless results, we set 𝜎𝑏𝑑𝑟 to to blend within about one third of the part
diameter.

4.5. Results
We have implemented the method in C++ and tested the implementation on a
dual socket PC (Intel Core i7 with 2.6Ghz and 6 cores per processor). The results
are shown in Figures 4.1 and 4.7-4.9. We strongly encourage the reader to watch
the accompanying ,3 which shows interpolation and sampling results from the
constructed shape spaces; these make the improvements due to our method much
clearer.

Dense correspondences from coarse co-segmentation: We use the painting in-
terface discussed in Section 4.4.1 to annotate a number of models from the SHREC
2007 model collection. The user has to mark the colored regions shown in Fig-
ure 4.1b,4.9b by painting on the surface. Additionally, point-to-point correspon-
dences have to be set if the initialization is not clear. For example, for the birds
(Figure 4.7d), the tip of the wings needed one more such point match per wing.
Additional constraints are not always necessary; for example, the animals data set
has been build from the user segmentation only. After such initialization, we run
the optimization. The user has to chose the parameter 𝜇𝐿 as well as the level of
resolution for the remeshing step (after initial cross parameterization). The first
parameter is critical for the results, the second trades-off run-time and accuracy.
Finding an appropriate annotation and parameterization that works for a whole
shape ensemble requires multiple iterations of interaction and optimization. Here,
computing correspondences, minimizing Eq. 4.12), took on average about 20min for

3https://www.youtube.com/watch?v=2m3TbGO9Kls
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a shape set. Given the additional steps (parameterization, remeshing etc.), the net
computation time adds up to to roughly 1h per model. In our examples, interaction
and computation amounted to up to 6h for our example models, depending on
the complexity (e.g., animals were more difficult than teddies). It would probably
be possible to automate the procedure by using recent fully automatic co-analysis
[HKG11; Sid+11; Hua+12; Kim+12] for initialization, but this is still subject to future
work.

Results: The resulting correspondences within several subsets of this collection
are shown in Figure 4.7: We use a checker-board texture projected to one instance of
the input and transfer it to all other models to visualize correspondences. Addition-
ally, differently colored regions depict parts. The resulting correspondences capture
salient features of the models and there is not unwarranted drift. This is very well
visible in our video, where we obtain good interpolations for within all of the shape
spaces: Intermediate shapes due to morphing as well as due to random sampling
from the underlying Gaussian at the learned standard deviations (sampling at
𝜎 = 1) are plausible (Figure 4.7f). We should highlight that the model is able to
handle structures with fine details, such as the legs of the animals in Figure 4.7a.
As discussed in Section 4.4.1, we have tried various alternative approaches, all of
which failed at this data set.

Comparison to pairwise local registration: We compare to a number of base-line
methods first. In all cases, matching is done by first sampling 43 points uniformly
from our solution to be used as initialization and then switching to deformable ICP
[ACP03b]. We have also tried alignment without landmarks, as well as deactivating
landmarks; the show result (keeping the landmarks during ICP) yielded the best
results.

Figure 4.9 shows the results of pairwise matching between a pig and a young
deer. We examine as-rigid-as-possible (ARAP) deformation model ([SA07], Fig-
ure 4.9d) and a closely related variant, using a smooth subspace deformation model
([Ada+08], Figure 4.9e): The subspace model uses a volumetric low-frequency basis
(123 grid in our case), which leads to smoother results than ARAP. Nonetheless,
both cases suffer from artifacts such as wrinkles and drifting correspondences. The
video illustrates the disastrous effect on the obtained shape spaces.

Thin-plate splines (TPS) are substantially better (Figure 4.9f), which was to be
expected as this is the current standard solution for this type of matching prob-
lems [ACP03b; Has+09b]. Nonetheless, the TPS model still creates wrinkles and
unwarranted drift. Our video shows various artifacts in the resulting shape spaces.

Intrinsic matching methods: In order to compare to recent state-of-the-art meth-
ods, we have also performed pairwise matches with blended intrinsic maps (BIM)
[KLF11a]. As shown in Figure 4.9g, the pairwise partial isometries cannot cap-
ture the variation in this challenging data set well (please note though, that BIM
is a global correspondence method; it solves a more difficult problem than our
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paper). Subsequently, we use the hub-and-spoke ensemble matcher of Huang et
al. [Hua+12] (also a global matcher) that takes these results as input and performs
a selection of best partial isometries in order to create consistent equivalence rela-
tions. The method improves the quality of the correspondences (Figure 4.9h), but
substantial misalignment persists, which is seen best in the morphs shown in our
video (remark: the output of their method is not as dense as the original vertices;
we use interpolation to visualize the results; the same artifacts are also visible in
the sparser output alone). In comparison, our method (Figure 4.9h) has a very good
feature alignment and virtually no drift (see the video).

Modeling with deformable parts: The reconstruction from part graphs is for-
mulated as an optimization problem. A variational approach permits us to easily
include additional constraints. For example, any of the points can be fixed. We can
for example use an energy (v𝑖 −y)2 to implement handles that the user can attach to
the shape for editing. Further, shape parameters can be prescribed. We use energies
of the form (𝜆𝑖 − 𝑦)2 to control the shape of individual parts. We can also couple
parameters of different parts (energies of the form (𝜆𝑖 − 𝜆𝑗)2), for example, to keep
shapes of the same type symmetric. The accompanying video shows some morphs
between shapes with random shape space parameters, as well as an interactive
editing session. A result of interactive editing is also shown in Figure 4.8c.

Impact of the part-based model: Using a part-based approach has a number
of advantages: First, as shown in Figure 4.7a,b and in the video, we can capture
discrete, topological variations in addition to continuous shape parameters: The
irons consist of parts that can be assembled in different variations; the four-legged
animals also distinguish open and closed mouths. Learning these shape families
would be very challenging with global approaches. Despite the part-wise approach,
our gradient-domain synthesis algorithm yields perfectly smooth boundaries in all
cases (deactivating for example the smoothed connections illustrated in Figure 4.6c
degrades the quality significantly). Further, our learning method benefits from
symmetry within a shape; for example, all four legs in each animal share the same
shape space, similarly the wings of the birds. We also obtain additional benefits:
As illustrated in Figure 4.8a,b we can learn more compact shape spaces using
well-chosen parts. A global models yield bad correspondences for strong entropy
penalties (i.e., low values of 𝜇𝐿). Reducing these improves the results, but the model
then learns global correlations that are often unwanted. For example, in the case
of the teddy bear in Figure 4.8c, global pose correlations are captured, which tilt
the object against the position constraints on the chest; this that make harder and
yields worse results (see also the video for an animated visualization). In summary,
parts give us a more flexible model that allows us to integrate topologically diverse
shapes and to learn shape spaces from fewer examples, avoiding overfitting.

Limitations: The most important limitation of our method is that it is a local opti-
mization technique, thus requiring quite some user interaction as well as parameter
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(a) four legged animals (b) irons

(c) teddy bears (d) birds

(e) fish (f) samples from the
shape space of (a)

Figure 4.7.: Correspondences obtained with our method for different test data sets
taken from the SHREC 2007 benchmark.
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(a) part-based vs. global optimization
high penalty on 𝐸𝐻

(b) part-based vs. global optimization
lower penalty on 𝐸𝐻

(c) editing: part-based (left) vs. global
(right)

Figure 4.8.: Impact of parts: (a) For high entropy penalties, a one-part model cannot
capture the pose variations, while our method still yields good results.
Using a lower weight (higher 𝜇𝐿; factor 10) resolves the problem, albeit
with higher entropy for the global method. (c) shows interactive editing
with constraints. Here, the global model has overfit to global pose
correlations while parts avoid the effect.
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(a) source shape (b) target shape (c) input shape collection

(d) elastic (ARAP) (e) elastic (subspace) (f) thin-plate splines

(g) blended intrinsic maps (h) hub and spoke (i) our result

Figure 4.9.: Comparison to previous work. We map source shape (a) to target (b).
We use deformable ICP based on as-rigid-as-possible (d) and subspace
(e) deformation, as well as (f) thin-plate splines, all initialized with
15 landmarks. We have also employed (g) blended intrinsic maps, (e)
ensemble optimization by Huang et al. [2012]. Our result is shown in
(h); (g) and (h) are ensemble matches, optimized over 19 and 12 animals,
respectively, as shown in (i). Please watch the accompanying video to
see the impact on the resulting shape spaces; the differences are much
more visible in morphing and sampling.
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choices. Although we require only a coarse initialization, a too coarse annotation
causes the algorithm to get stuck in a local optimum. A further, theoretical limita-
tion is that we cannot formally guarantee bijectivity of correspondences, but we
have not observed problems in practice. Finally, the hard-constraints for the surface
constraints in the optimization limits the applicability to manifold input. Noisy
and, in particular, incomplete data from 3D scans currently cannot be handled.

4.6. Conclusions
We have presented a new method for refining correspondences in families of shapes.
By taking the compactness of the shape space into account as an optimization
criterion, we obtain high-quality dense correspondences well-suited for the creation
of shape spaces among shapes of considerable variability. In direct comparison,
previous methods show substantial artifacts in such situations that we can avoid.
Even difficult situations such as strong deformations and widely varying geometry
yield good results. Our method handles objects of general topology, it handles
challenging meshes with small feature sizes reliably, and is able to learn from objects
of varying part composition, which can be used to synthesize new shapes with
variable part configuration and continuous variability that adapts automatically to
the designed part layout. Further, the part-based approach yields higher quality
correspondences and is a useful tool to avoid overfitting.

In future work, we would like to extend the method towards fully automatic
global matching, avoiding tedious manual initialization. Recent progress in co-
segmentation would provide a starting point here, but a fully automatic method
would require making our method robust to slight variations in part topology and
outlier mismatches. In the long term, the question of how to build compact expla-
nations from observed data is of fundamental importance. An ultimate modeling
system with deformable parts would decompose shape collections automatically
to obtain a shape grammar and various deformable, dockable shape spaces of
parts, both optimized for compactness of encoding. While our model can in prin-
ciple already handle such scenarios in terms of representation and synthesis, the
automated analysis is the key challenge.
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5 Embedding shapes with
Green's functions for global

shape matching

Abstract We present a novel approach for the calculation of dense correspondences
between non-isometric shapes. Our work builds on the well-known functional
map framework and investigates a novel embedding for the alignment of shapes.
We therefore identify points with their Green’s functions of the Laplace-Beltrami
operator, and hence, embed shapes into their own function space. In our embedding
the 𝐿2 distances are known as the biharmonic distances, so that our embedding
preserves the intrinsic distances on the shape. In the novel embedding each point-
to-point map between two shapes becomes and can be represented as an affine
map. Functional constraints and novel conformal constraints can be used to guide
the matching process.

This chapter corresponds to the paper[BDK17b]: Oliver Burghard, Alexander
Dieckmann, and Reinhard Klein. “Embedding shapes with Green’s functions for
global shape matching”. In: Computers & Graphics (2017).

Figure 5.1.: A variety of maps generated by aligning the Green’s embeddings. The
color from the source shape (black contour) is mapped onto the target
shapes using the sparse correspondences depicted by small spheres.
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5.1. Introduction

Finding correspondences between two or more shapes is an important sub-task for
a variety of applications, in which information has to be transferred or correlated
between shapes. For example, local deformations can be transferred for shape edit-
ing [SP04; Sum+05b; KMP07], and correlations between corresponding regions can
be exploited to compress dynamic meshes [SSK05; Váš+14] and to create generative
shape models [BV99b; ACP03a; Has+09a].

Finding correspondences is especially interesting between non-isometric shapes,
see Figure 5.1 for some examples. Many previous approaches tailored to register
isometric shapes fail in this case. Extrinsic non-rigid ICP [ARV07; ACP03a] and
variants [SP04; Yeh+11; Bur+13b; Yos+14] suffer from unreliable correspondences
on extrinsic distances and from difficulties in solving the non-linear deformation
models. The Blended Intrinsic Maps method [KLF11b; LF09b] replaces the extrinsic
metric by an intrinsic one and delivers good registration results by assuming the
resulting maps to be locally conformal. A problem of BIM is that it is not clear how
to incorporate a priori constraints which might be necessary to guide the method to
the correct map out of the multiple reasonable ones (Figure 5.2). Furthermore, the
stitching of local maps leads to inconsistencies at their boundaries. Another group
of approaches embeds shapes into a high dimensional space, where 𝐿2 distances
approximate intrinsic distances. Although most of them allow incorporating addi-
tional constraints, many share the major drawback that their embedding requires a
non-linear alignment.

Functional maps [Ovs+12] overcome this problem by constructing an embedding,
in which shapes can be aligned with a linear deformation. Unfortunately 𝐿2 distances
of delta-distributions, that are typically used to embed points, only approximate
intrinsic distances between intrinsically close points, see Figure 5.4. This is especially
important when only a few implicit constraints are available, such as when matching
non-isometric shapes.

In contrast to functional maps [Ovs+12] we identify points with their Green’s
functions of the Laplace-Beltrami operator. In this embedding the 𝐿2 distances are
the well-known biharmonic distances [LRF10b], which are an intrinsic distance
metric on the shape. They are invariant to isometric shape deformations so that
pose deformations have little influence on the matching process. We calculate
correspondences by aligning these embeddings with an affine deformation, which
can be computed reliably and efficiently. There is a linear relation between the
Green’s alignment and the (pullback) functional map [Ovs+12], so that we can
incorporate functional constraints and operator commutativity into our setting.
Last but not least, we can include additional constraints on the alignment, which
require the resulting map to be close to conformal.

The main contributions of our paper are (a) a novel embedding of shapes in
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the functional map framework by identifying points with their Green’s functions,
(b) combining our novel embedding with functional constraints and (c) including
conformality constraints into functional shape matching. The paper is organized as
follows:

Section 5.2 discussed the related work. Section 5.3 introduces the alignment of
shapes with Green’s functions and relates it to the functional maps framework.
We further motivate the novel embedding by a comparing Green’s functions and
delta-distributions in Section 5.4. Then Section 5.5 shows how to utilize functional
constraints and conformality in the matching process. After discussing the dis-
cretization in Section 5.6 we describe a shape matching algorithm in Section 5.7,
which is evaluated in Section 5.8.

5.2. Related work
Estimating correspondences between different shapes is a challenging task that has
been addressed intensively in literature. In this section, we only provide a brief
overview on directly related works and kindly refer the interested reader to the
recent surveys [Van+11; Tam+13].

ICP. Initially the problem of shape matching appeared in the context of registering
sequential point cloud scans of a static scene. This led to the development of rigid
ICP algorithms [RL01b], which alternate between detecting corresponding points
and rigidly aligning shapes. Due to the local optimization, these techniques depend
strongly on the initial correspondences and on heuristics to prune novel correspon-
dences. A variety of methods extend the original ICP metaphor to match deformed
shapes by allowing non-rigid deformations in ℝ3 for the alignment [ACP03a; SP04;
ARV07; Hua+08a; Yeh+11; Bur+13b; Yos+14]. A common shortcoming of these
methods is the detection of corresponding points based on extrinsic instead of
intrinsic distances. For deformable shapes extrinsic distances can be small even for
intrinsically distant points. As a consequence these methods typically require nu-
merous point-to-point constraints to begin with and utilize sophisticated heuristics
to prune novel correspondences.

The Blended Intrinsic Maps method [KLF11b] obtains good results by concate-
nating and blending multiple conformal maps into a single global map. However,
it cannot incorporate user constraints, which are sometimes necessary to solve
ambiguities (e.g. Figure 5.2). Furthermore, at the boundaries of the local maps
the results often exhibit discontinuities. Additionally, the method is difficult to
generalize to point-clouds or shapes of genus other than zero.

Other methods map shapes by parameterizing them on a common domain and
then aligning their parameterizations so that either an intrinsic measure of stretch
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Figure 5.2.: Failure case of Blended Intrinsic Maps, that are difficult to resolve
without predefined constraints.

from source to target becomes minimal [KS04b; APL14; APL15; AL15; AL16] or so
that the integrated stretch along a sequence of deformations from the source onto
the target [Kur+13; Kur+12; Lag+16] becomes minimal. These methods deliver
continuous maps of high quality, but are often computational demanding and their
application on non-simple topologies is non-trivial.

Yet another class of methods uses an ICP-like alignment after embedding shapes
into a high dimensional space where 𝐿2 distances approximate intrinsic ones.
Shapes have been embedded with the eigenvectors of an affinity matrix [JZ06; SY12],
with an embedding approximating geodesic distances [AK13], with an embedding
based on electrostatic repulsion [BGB14] and with delta-functions [RMC15]. All
of these methods use non-linear maps to align the embeddings. Slightly different
are the methods [BBK06b; ADK13], where the alignment of shapes is avoided by
directly embedding one shape into the other by minimizing a non-linear functional.

Functional maps. The remarkably successful functional maps framework was
introduced in [Ovs+12]. To the best of our knowledge this paper was the first to
fully exploit the fact that a linear alignment of a functional embedding is sufficient
to represent arbitrary non-linear alignments in ℝ3. This significantly simplifies
the matching process. Additionally, the authors demonstrate the usefulness of
functional constraints, such as matching labeled regions. Particularly for isometric
shapes, where many functional constraints are available [SOG09; ASC11] and the
alignment is a rotation commuting with the Laplacian, superior results have been
achieved. Furthermore, the resulting maps can be optimized with an ICP-like
alignment algorithm after embedding the shapes with delta-distributions.

Typically, when matching non-isometric shapes there are few a priori constraints
available and the ICP-like alignment becomes especially important. In this case a
drawback of their embedding emerges, namely the 𝐿2 distances on delta-distribu-
tions, which are a critical ingredient for a ICP-like method, are not well-defined. As
we describe in Section 5.4, the distances are only defined after projecting the delta--
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distributions onto the first eigenvectors of the Laplace operator and the distance
metric depends strongly on the number of eigenvectors that were used. The more
eigenvectors are used the more localized these distances become. In our work we
therefore provide a novel embedding for shape matching that respects intrinsic
distances.

Functional maps initiated a series of publications, such as improving the extrac-
tion of correspondences [Ngu+11b; COC15; RMC15] utilizing low-rank assump-
tions on the functional map [Kov+13; Kov+15] (which still requires multiple initial
constraints typically not available for non-isometric shapes) or investigating the
matching of shape collections [Ngu+11b; HWG14].

Previous work represented points as Green’s functions[LRF10b] and as the re-
lated Global Point Signatures [Rus07]. The invariance of the Dirichlet energy to
conformal deformations was prominently explored in [Rus+13a]. Yet to the best of
our knowledge, we are the first to compute correspondences by aligning shapes
represented with Green’s functions and the first to use functional correspondences
to approximate the functional map representation of a conformal map.

5.3. Embedding with Green's functions

We start our exposition by describing the embedding of a shape ℳ using Green’s
functions. Let ℒ2(ℳ) = {𝑓 ∶ ℳ → ℝ ∣ ∫ℳ 𝑓 2(𝑥) d𝑥 < ∞} be the set of square
integrable, real-valued functions on ℳ and let 𝛿𝑝 be the delta-distribution at a
point 𝑝, i.e. ⟨𝛿𝑝, 𝑓 ⟩ = 𝑓 (𝑝) ∀𝑓 ∈ ℒ2(ℳ). Let further Δ∶ ℒ2(ℳ) → ℒ2(ℳ) be the
Laplace-Beltrami operator and its spectral decomposition have the eigenvectors
𝜙𝑖 ∈ ℒ2(ℳ) and the eigenvalues 𝜆𝑖 ∈ ℝ (𝜆1 ≤ 𝜆2 ≤ … ). Then the Green’s function
𝑔𝑝 of the Laplace operator Δ at point 𝑝 is the solution of the equation:

Δ𝑔𝑝 = 𝛿𝑝 (5.1)

This equation has a solution if and only if 𝛿𝑝 is orthogonal to the null-space of Δ.
For a simple exposition, we assume that 0 = 𝜆1 < 𝜆2 ≠ 0, which is the case for
a compact, simply-connected shape. Hence, the null-space of Δ is the subspace
of constant functions, which is spanned by the first eigenvector 𝜙1. We further
write Π for the orthogonal projection on the complement of this null-space, i.e.
Π(𝑓 ) ∶= 𝑓 − 𝜙1⟨𝜙1, 𝑓 ⟩. Therefore, in our context we define the Green’s function
of the Laplace operator of point 𝑝 ∈ ℳ as the solution to the slightly different
equation

Δ𝑔𝑝 = Π (𝛿𝑝) = 𝛿𝑝 − 𝜙1⟨𝜙1, 𝛿𝑝⟩ ⟨𝑔𝑝, 𝜙1⟩ = 0 , (5.2)
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Figure 5.3.: (left) Biharmonic distances 𝑑𝑏(𝑝, 𝑥) from a fixed point 𝑝 and (right) its
Green’s function 𝑔𝑝 and three other Green’s functions.

which now always has a solution that can be written with the pseudo-inverse Δ+ as

𝑔𝑝 = Δ+𝛿𝑝 =
∞

∑
𝑖=2

𝜙𝑖
𝜙𝑖(𝑝)

𝜆𝑖
. (5.3)

We state a few properties, for the upcoming discussion (proof see appendix):

Theorem 10. (a) The mapping from a surface ℳ onto its Green’s functions 𝑔ℳ
𝑝 is injective,

thus an embedding. (b) The functions {𝑔ℳ
𝑝 + 𝜙1 ∣ 𝑝 ∈ ℳ} form a basis of ℒ2(ℳ). (c)

The functions {𝑔ℳ
𝑝 ∣ 𝑝 ∈ ℳ} are linearly dependent and span a subspace of ℒ2(ℳ) of

co-dimension 1 (see the Appendix).

Several Green’s functions can be seen in Figure 5.3. The further points are located
on the surface, the more their Green’s functions differ. 𝐿2 distances on the Green’s
functions are called biharmonic distances [LRF10b] and the left of Figure 5.3 shows
the distance fields of several points.

Matching shapes. In the following we utilize the properties of Green’s func-
tions for the construction of a mapping 𝑇∶ ℳ → 𝒩 between the shapes ℳ and
𝒩. As Green’s functions define a distance field on the surface, we can recover a
point from its Green’s function simply by determining the surface point whose
Green’s function is most similar. Therefore, Green’s functions represent the intrinsic
location of a point on the shape. We can therefore solve for a map 𝑇 by solving
for a map 𝐺∶ ℒ2(ℳ) → ℒ2(𝒩) which aligns the Green’s functions of ℳ onto the
Green’s functions of 𝒩 and only later calculate 𝑇 from 𝐺. For clarification, we add
superscripts to the involved quantities on ℳ and 𝒩. Then such an alignment 𝐺
has to fulfill:

𝐺 (𝑔ℳ
𝑝 ) = 𝑔𝒩

𝑇(𝑝) ∀𝑝 ∈ ℳ 𝐺 (𝜙ℳ
1 ) = 0 (5.4)
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𝐺 is well-defined as due to Prop. (10a) different points have different Green’s
functions. Actually there is one unique affine map 𝐺 which fulfills Eq. (5.4). It
can be written as 𝐺(𝑓 ) = 𝐵(𝑓 ) + 𝑡 where 𝐵∶ ℒ2(ℳ) → ℒ2(𝒩) is a linear map (i.e.
𝐵(𝑓 + 𝜆𝑔) = 𝐵(𝑓 ) + 𝜆𝐵(𝑔) ∀𝜆 ∈ ℝ∀𝑓 , 𝑔 ∈ ℒ2(ℳ)) and 𝑡 ∈ ℒ2(𝒩). Choosing 𝐺
as an affine map simplifies solving for 𝐺 and allows the inclusion of least squares
constraints. To see why choosing 𝐺 as an affine map is possible, note that due to
Prop. (10b) there is a unique linear map ̃𝐺 with

̃𝐺 (𝑔ℳ
𝑝 + 𝜙ℳ

1 ) = 𝑔𝒩
𝑇(𝑝) + 𝜙𝒩

1 ∀𝑝 ∈ ℳ . (5.5)

Using ̃𝐺 one can write 𝐺(𝑓 ) = 𝐵(𝑓 ) + 𝑡 as 𝑡 = ̃𝐺 (𝜙ℳ
1 ) − 𝜙𝒩

1 and 𝐵(𝑓 ) = ̃𝐺(𝑓 ) −
⟨𝑓 , 𝜙ℳ

1 ⟩(𝜙1 + 2𝑡). 𝐺 is unique, because it can be used to write ̃𝐺 using ̃𝐺(𝑓 ) =
𝐵(𝑓 ) + ⟨𝑓 , 𝜙ℳ

1 ⟩(𝜙1 + 2𝑡) and from ̃𝐺 one can infer 𝑇.
Yet not every map 𝐺 is induced by some point-wise map 𝑇. If 𝐺 is induced by

some point-wise map 𝑇, then it aligns the Green’s functions:

∀𝑝 ∈ ℳ ∃𝑞𝑝 ∈ 𝒩 ∶ 𝐺 (𝑔ℳ
𝑝 ) = 𝑔𝒩

𝑞𝑝
(5.6)

On the other hand, if 𝐺 fulfills the last equation, we can reconstruct 𝑇 via 𝑇∶ ℳ →
𝒩, 𝑝 ↦ 𝑞𝑝. The above results are summarized in the following proposition:

Theorem 11. For each point-wise map 𝑇, Eq. (5.4) defines a unique affine map 𝐺, that
maps the Green’s functions of ℳ onto the Green’s functions on 𝒩. Such an alignment of
Green’s functions supports Eq. (5.6), which can be used to restore 𝑇 from 𝐺. Therefore, there
is an one-to-one relation of point-wise maps 𝑇 and the Green’s alignment 𝐺 supporting
Eq. (5.6).

Pullback Functional maps. The affine map 𝐺 is related to the pullback func-
tional maps 𝐹𝑇 introduced in section 2.4:

𝐹𝑇 ∶ ℒ2(𝒩) → ℒ2(ℳ) 𝑓 ↦ 𝑓 ∘ 𝑇 (5.7)

Both 𝐹 and 𝐺 map functions between ℳ and 𝒩 and are thus “functional maps”. For
the sake of a clear notation we refer to 𝑇 as a point-wise map, to 𝐹 as the corresponding
pullback functional map and to 𝐺 as the corresponding alignment of Green’s functions.
Because 𝐹 preserves function values at corresponding points, it aligns (dual) del-
ta-distributions (⋅𝑇 denotes transposed):

⟨𝛿ℳ
𝑝 , 𝐹(𝑓 )⟩ℳ = 𝐹(𝑓 )(𝑝) = 𝑓 (𝑇(𝑝)) = ⟨𝛿𝒩

𝑇(𝑝), 𝑓 ⟩𝒩

⇒ 𝐹𝑇𝛿ℳ
𝑝 = 𝛿𝒩

𝑇(𝑝) ∀𝑝 ∈ ℳ (5.8)

Note: The original publication on functional maps [Ovs+12](Section 6.1) as-
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sumes that functional maps defined by Eq. (5.7) align delta-distributions:

𝛿ℳ
𝑝 = 𝐹𝛿𝒩

𝑇(𝑝) ∀𝑝 ∈ ℳ (5.9)

This is true only for area-preserving maps, which fulfills 𝐹−1 = 𝐹𝑇. Interestingly the
difference of Eq. (5.8) and Eq. (5.9) seems to have had limited effect in previous
works. One reason might be, that for any functional map 𝐹 defined by Eq. (5.7)
there is another map 𝐹′ = 𝐹−𝑇 that aligns delta-distributions. The difference of 𝐹
and 𝐹′ depends on the change in the area-form and is often small.

Theorem 12. The alignment of Green’s functions 𝐺 can be written in terms of the pullback
functional map 𝐹 (𝐴ℳ is the area of ℳ, see the appendix) as

𝐺(𝑓 ) = Δ+
𝒩𝐹𝑇

𝑇Δℳ(𝑓 ) + 1
√𝐴ℳ

Δ+
𝒩𝐹𝑇

𝑇𝜙ℳ
1 (5.10)

and 𝐹 can be written in terms of 𝐺(𝑓 ) = 𝐵(𝑓 ) + 𝑡 as

𝐹 = Δ+
ℳ𝐵𝑇Δ𝒩 + √𝐴ℳ𝜙ℳ

1 𝑡𝑇Δ𝒩 + √𝐴ℳ

𝐴𝒩
𝜙ℳ

1 𝜙𝒩,𝑇
1 . (5.11)

Each constraint on 𝐹 has an equivalent constraint on 𝐺 and vice versa. The final corre-
spondences do not depend on whether one optimizes for 𝐹 or 𝐺. They depend on the involved
constraints to solve for 𝐹 and 𝐺 and on the method to extract correspondences from 𝐹 and 𝐺.

The point-wise maps 𝑇 induce only a fraction of all possible functional maps.
Not only does any induced functional map align dual delta-distributions (Eq. (5.8)),
but also any functional map 𝐹 which does so according to Eq. (5.12) is induced
by a point-wise map 𝑇. Thus, the alignment of dual delta-functions by 𝐹 and the
alignment of Green’s functions by 𝐺 are equivalent conditions.

∀𝑝 ∈ ℳ ∃𝑞𝑝 ∈ 𝒩 ∶ 𝐹𝑇𝛿ℳ
𝑝 = 𝛿𝒩

𝑞𝑝
(5.12)

Theorem 13. Let 𝐹 be a pullback functional map and 𝐺 an alignment of Green’s functions
which are related by Eq. (5.10) or (5.11), then the following statements are equivalent:

(i) 𝐺 aligns Green’s functions by Eq. (5.6)
(ii) 𝐹 aligns dual delta-distributions by Eq. (5.12)
(iii) There is a point-wise map 𝑇 inducing 𝐹 by Eq. (5.7) or 𝐺 by Eq. (5.4)
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5.4. Green's functions vs delta-distributions

Next we discuss the differences between our novel embedding and the original
embedding with delta-distributions and why it matters for non-isometric shape
matching. Aligning shapes with an ICP-like algorithm is a minimization of the
non-linear ICP energy functional:

𝐸[𝐺; 𝑇] = ∫
ℳ

∥𝐺 (𝑔ℳ
𝑝 ) − 𝑔𝒩

𝑇(𝑝)∥
2
2

d𝑝 (5.13)

This functional depends on the 𝐿2 distances in the embedding. For Green’s functions
these distances are known as biharmonic distances - a well-defined intrinsic distance
metric [LRF10b]. In contrast, delta-distributions are not square integrable (𝛿ℳ

𝑝 ∉
ℒ2(ℳ)) and their 𝐿2 distances are therefore not well-defined. To replace the Green’s
functions in Eq. (5.13) with delta-distributions they first have to be projected onto a
finite subspace. For example, the authors of [Ovs+12] (in Section 6.1) embed the
shapes with delta-distributions projected onto the first 𝑘 eigenvectors of the Laplace
operator:

𝑝 ∈ ℳ ↦ 𝛿(𝑘)
𝑝 =

𝑘

∑
𝑖=1

𝜙𝑖𝜙𝑖(𝑥) ∈ ℒ2(ℳ) (5.14)

Unfortunately, the emerging distances approximate intrinsic distances only for
a few eigenvectors (e.g. 𝑘 < 10), while for large 𝑘 the 𝐿2 distances do no more
approximate intrinsic distances, but only discriminate points:

∥𝛿(𝑘)
𝑝 − 𝛿(𝑘)

𝑞 ∥2 =
𝑘

∑
𝑖=1

(𝜙𝑖(𝑥) − 𝜙𝑖(𝑦))2 𝑘→∞
−−−→

⎧{
⎨{⎩

0 𝑥 = 𝑦
∞ else

(5.15)

Eventually also the Green’s functions have to be approximated by a finite basis. In
contrast to 𝐿2 distances on delta-distributions the biharmonic distances are well
approximated with the first few eigenvectors of the Laplace operator. Approxima-
tions of both distance fields with different numbers of eigenvectors are shown in
Figure 5.4. For 1000 eigenvectors delta-distributions only discriminate the query
point in agreement with Eq. (5.15). The effect of the different embeddings on the
alignment process is shown in Figure 5.5, where two shapes are matched with
a ICP-like method that will be described in Section 5.7 (no conformality, 𝛼 = 0).
Using a few eigenvectors (𝑘 = 5) the results using delta-distributions and Green’s
functions are similar, while for 20 eigenvectors the alignment with delta-distribu-
tions becomes discontinuous, even after iterating. This is especially the case, when
only few a priori correspondences are known, which is typical for non-isometric
matching.
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Figure 5.4.: Biharmonic distances and 𝐿2 distances on delta-distributions for dif-
ferent numbers of eigenvectors.

5.5. Functional constraints and conformality

Next we utilize the linear relation between 𝐹 and 𝐺 to transfer functional con-
straints and operator commutativity into our setting. Afterwards we propose novel
functional constraints for conformal maps.

Functional constraints. Instead of localizing correspondences at single points,
it is often more appropriate to determine corresponding regions, or equivalently to
require indicator functions to match. This is an instance of a functional constraint,
where the map 𝑇 is known to pull a function 𝑓𝒩 ∈ ℒ2(𝒩) back onto another function
ℎℳ ∈ ℒ2(ℳ):

𝐹𝑓𝒩 = ℎℳ (5.16)

Functional constraints emerge in other applications as well. For example isomet-
ric shapes have the same heat- and wave-kernel-signatures [SOG09; ASC11]. As
functional constraints are linear constraints in 𝐹, they can be written as a linear
constraints in 𝐺 using Eq. (5.11).

Operator commutativity. If we have a functional operator on each shape and
these operators have the same effect on equivalent functions, then these operators
commute with the functional map 𝐹. In this case applying the first operator followed
by a projection onto the other shape has the same effect as first projecting onto the
other shape followed by applying the second operator there. A typical example for
operator commutativity are intrinsic symmetries or the Laplace-Beltrami operator
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Figure 5.5.: Matching two shapes from the “fourlegged” dataset from point-to-point
constraints using either delta-distributions or Green’s functions.

for isometric shapes where we have:

Δℳ𝐹 = 𝐹Δ𝒩 (5.17)

Using Eq. (5.11) this linear constraint on 𝐹 becomes a linear constraint on 𝐺.

Conformal maps. Additionally we introduce novel constraints on 𝐹 and 𝐺 by
assuming that 𝑇 approximates a conformal map. A conformal map is a locally angle
preserving, continuous map. The class of conformal maps includes the isometric
maps and is general enough to match typical shapes of equivalent topology. At
the same time a conformal map is already determined by a few known correspon-
dences [LF09b]. Furthermore, conformal maps were successfully used in previous
work to match near-isometric shapes [LF09b; KLF11b].

Conformality does not only restrict the map 𝑇, but also the functional map 𝐹 and
the Green’s alignment 𝐺. For two functions 𝑓 , ℎ ∈ ℒ2(𝒩) the Dirichlet energy is
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defined by

𝐸𝐷[𝑓 , ℎ] = ⟨∇𝒩𝑓 , ∇𝒩ℎ⟩𝒩 = ⟨Δ𝒩𝑓 , ℎ⟩𝒩 .

and measures how much their gradients agree. A point-wise map is conformal if
and only if its functional representation preserves the Dirichlet energy [Rus+13a]:

⟨Δℳ𝐹(𝑓 ), 𝐹(ℎ)⟩ℳ = ⟨Δ𝒩𝑓 , ℎ⟩𝒩

or equivalently

𝐹𝑇Δℳ = Δ𝒩𝐹−1 . (5.18)

Eq. (5.18) is an instance of a non-linear Procrustes problem, namely that Δ1/2
ℳ 𝐹Δ−1/2

𝒩
is orthogonal [GD04; Vik06]. We propose to use the current functional and point-
to-point constraints to transfer Eq. (5.18) into linear constraints instead.

Each functional constraint 𝐹𝑓𝒩 = ℎℳ is equivalent to 𝑓𝒩 = 𝐹−1ℎℳ, which is
combined with Eq. (5.18) into

(Δ+
𝒩𝐹𝑇Δℳ) (𝑓ℳ) = Π𝒩(𝑓𝒩) , (5.19)

and each point-to-point constraint 𝐺 (𝑔ℳ
𝑝 ) = 𝑔𝒩

𝑞 is equivalent to 𝑔ℳ
𝑝 = 𝐺+ (𝑔𝒩

𝑇(𝑝)),
which we combined with Eq. (5.18) into

(Δ+
ℳ𝐵𝑇Δ𝒩) (𝑔𝒩

𝑇(𝑝)) + 1
√𝐴𝒩

Δ+
ℳ𝐹−𝑇𝜙𝒩

1 = 𝑔ℳ
𝑝 (5.20)

where 𝐺+(𝑓 ) = Δ+
ℳ𝐹−𝑇Δ𝒩(𝑓 ) + 1

√𝐴𝒩
Δ+

ℳ𝐹−𝑇𝜙𝒩
1 is the inverted Green’s alignment.

Theorem 14. Let 𝑇∶ ℳ → 𝒩 be a conformal, point-wise map with the corresponding func-
tional map 𝐹 and the corresponding Green’s alignment 𝐺, then 𝐹 adheres to the Eq. (5.18).
If 𝐹 fulfills a functional constraint 𝐹𝑓𝒩 = ℎℳ, then it also fulfills Eq. (5.19) and if 𝐺 fulfills
a point-to-point correspondence 𝐺 (𝑔ℳ

𝑝 ) = 𝑔𝒩
𝑞 , then it also fulfills Eq. (5.20).

Area preserving maps (𝐹𝑇 = 𝐹−1) have similar constraints, whose investigation
we leave for future work.

Area preserving maps (𝐹𝑇 = 𝐹−1) have similar constraints, whose investigation
we leave for future work.

Conformal maps and Green's functions. It is interesting how Green’s func-
tions change under a conformal map. Let 𝑇∶ ℳ → 𝒩 be a conformal map with
the corresponding functional map 𝐹 and the corresponding Green’s alignment 𝐺,
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Figure 5.6.: Smoothed versions of the Stanford bunny colored by the Green’s func-
tion of a vertex at the nose. To illustrate the preservation of Green’s func-
tions, the Green’s functions from the deformed meshes were mapped
onto the original mesh in the lower row.

then the Green’s function of a point 𝑝 ∈ ℳ and the Green’s function of the mapped
point image 𝑇(𝑝) ∈ 𝒩 differ by (see the appendix):

𝐹−1𝑔ℳ
𝑝 − 𝑔𝒩

𝑇(𝑝) = 𝜙𝒩
1 ⟨𝜙𝒩

1 , 𝐹−1𝑔ℳ
𝑝 ⟩ + Δ+

𝒩𝐹𝑇𝜙ℳ
1

1
√𝐴ℳ

(5.21)

= 𝜙𝒩
1

∞

∑
𝑖=2

(𝐹−1)1𝑖

𝜆ℳ
𝑖

+ 1
√𝐴ℳ

∞

∑
𝑖=2

𝜙ℳ
𝑖

(𝐹)1𝑖

𝜆𝒩
𝑖

(5.22)

The values 𝐹1𝑖 and (𝐹−1)1𝑖 represent the mean of the mapped eigenvectors on 𝒩,
which typically are small if the area form changed little, in which case we expect little
difference between the original and the mapped Green’s function. Figure 5.6 shows
the Stanford bunny and multiple increasingly smoothed versions of it. During the
smoothing a conformal map between the meshes was obtained [CPS11]. Projecting
the Green’s functions from the smoothed meshes onto the original mesh shows
that Green’s functions of a single point indeed changed little. Apart from the
observation above our work does not exploit the connection of conformal maps and
Green’s functions further, but leaves this interesting issue open for future work.

5.6. Discretization
To represent functions and with them the Green’s alignment 𝐺 a basis of the function
spaces ℒ2(ℳ) and ℒ2(𝒩) is required. We use the first 𝑘 eigenvectors of the Laplace
operator [𝜙1, 𝜙2, … , 𝜙𝑘], which is a common choice in literature [Ovs+12].
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Practical evaluation shows that biharmonic distances can be well approximated
with as little as 5 eigenvectors (Figure 5.4).

Spectral decomposition. Next we discuss the calculation of the eigenvalues
𝜆𝑖 and eigenvectors 𝜙𝑖 of a shape’s Laplace-Beltrami operator Δ. Let functions on the
surface be represented by vectors, whose coefficients are the function values at the
mesh vertices or point-cloud points. Let 𝑊 be the matrix representation of the scalar
product on functions and 𝐿 be the matrix representation of the Laplace-Beltrami
operator, which is typically written as 𝐿 = 𝑊−1𝐶, where 𝐶 is the Dirichlet energy
on functions. The eigenvectors and eigenvalues of 𝐿 are defined by the following
generalized eigenvalue problem:

𝐶𝜙𝑖 = 𝜆𝑖𝑊𝜙𝑖 so that 𝜙𝑇
𝑖 𝑊𝜙𝑗 = 𝛿𝑖𝑗 and 𝜆1 ≤ 𝜆2 ≤ …

For triangle meshes we utilize the well-known Cotan Laplacian [PP93; Mey+03].
We estimate the vertex areas as a third of the sum of the adjacent triangle areas and
set 𝑊 to be a diagonal matrix of the estimated vertex areas. Furthermore,

(𝐶𝑢)𝑖 = ∑
𝑗∈𝒩(𝑖)

1
2

(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)(𝑢𝑖 − 𝑢𝑗) (5.23)

defines the Dirichlet energy, where 𝒩(𝑖) is the 1-neighborhood of the vertex 𝑖 and
𝛼𝑖𝑗, 𝛽𝑖𝑗 are the two angles opposing the edge from vertex 𝑖 to vertex 𝑗.

For point-clouds (e.g. Figure 5.11a) we use a variant of the Laplace operator
from Belkin and Liu [BSW09; LPG12]. They define 𝐿 so that for a small time 𝑡
heat-diffusion matches the Euclidean one. With the point positions 𝑝𝑖 ∈ ℝ3 the
Dirichlet energy is:

(𝐶𝑢)𝑖 = 1
4𝜋𝑡2 ∑

𝑗
exp ⎛⎜⎜

⎝
−

‖𝑝𝑖 − 𝑝𝑗‖2

4𝑡
⎞⎟⎟
⎠

(𝑢𝑖 − 𝑢𝑗) (5.24)

𝑊 is again the diagonal matrix of the estimated point areas. We estimate the area
of a point as 𝜋𝑟2/3, where 𝑟 is the average Euclidean distance to its 6 nearest points.
This simple heuristic worked well in our experiments and allows us to avoid the
more complicated area estimations of Belkin and Liu [BSW09; LPG12].

We choose 𝑡 so that exp(− ̄𝑑2/4/𝑡) = 1/10, where ̄𝑑 is the average Euclidean
distance of all the points to their 10 closest neighbors. Next we sparsify 𝐶 by
removing small elements as follows. First we mark all coefficients of 𝐶 larger than
1/(10 ⋅ 4𝜋𝑡2). Then in each row we mark the ten largest coefficients (excluding the
diagonal). For symmetry, we mark 𝐶𝑖𝑗 if 𝐶𝑗𝑖 is marked. Lastly we set all unmarked
coefficients to 0 and update the diagonal entries of 𝐶 so that 𝐶(1, … , 1)𝑇 = (0, … , 0)𝑇.
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5.7. Alignment algorithm

Next we propose a concrete method to calculate a Green’s alignment of two shapes
and therefore a point-wise map 𝑇 from a few known point-to-point or functional
constraints.

Alignment energy. We use the variables 𝐵 ∈ ℝ(𝑘−1)×(𝑘−1); 𝑡, ̃𝑡 ∈ ℝ𝑘−1 to de-
scribe the affine alignment and we define a quadratic energy, where we incorporate
point-to-point and functional constraints in a least squares sense. The parameter
𝛼 ∈ [0, 1] encodes whether we assume conformality. For the point-to-point corre-
spondences 𝒞 = ((𝑝1, 𝑞1), … , (𝑝𝑛, 𝑞𝑛)) ∈ (ℳ × 𝒩)𝑛 the matching energy 𝐸𝑝

𝒞[𝐵; 𝑡; ̃𝑡]
is

1
𝑛

𝑛

∑
𝑖=1

( ∥𝐵𝑔ℳ
𝑝𝑖

+ 𝑡 − 𝑔𝒩
𝑞𝑖

∥2
2

+ 𝛼 ∥Πℳ𝐹𝑔𝒩
𝑞𝑖

+ ̃𝑡 − 𝑔ℳ
𝑝𝑖

∥2
2

) (5.25)

and for the functional constraints 𝒟 = ((𝑓1, ℎ1), … , (𝑓𝑚, ℎ𝑚)) ∈ (ℒ2(ℳ) × ℒ2(𝒩))𝑚

the matching energy 𝐸𝑓
𝒟[𝐵; 𝑡] is

1
𝑚

𝑚

∑
𝑖=1

( ∥𝐹ℎ𝒩
𝑖 − 𝑓 ℳ

𝑖 ∥2
2

+ 𝛼 ∥Δ+
𝒩𝐹𝑇Δℳ𝑓 ℳ

𝑖 − Π𝒩ℎ𝒩
𝑖 ∥2

2
) (5.26)

where 𝐹, 𝐵 and 𝑡 are related by Eqs. (5.10) and (5.11).

Initial solving. Typically, there are so few a priori point-to-point and functional
constraints, that in the first iteration the energy is under-constrained. We therefore
add further regularization constraints. Translation depends on the area scale and
is typically small, so that we assume 𝑡 = ̃𝑡 = 0. Furthermore, the distortion of 𝐺
should be as little as possible, so that we add the regularizer 𝜖‖𝐵‖2

𝐹 (𝜖 = 10−6). In
our experiments this simple choice lead to consistently good results and clearly
outperformed other possible terms, such as ‖𝐹‖2

2 or ‖Δℳ𝐹 − 𝐹Δ𝒩‖2
2. In conclusion

the initial alignment 𝐺 for the a priori point-to-point 𝒞0 and functional constraints
𝒟0 is the unique minimum of:

𝐸𝑝
𝒞0

[𝐵, 0, 0] + 𝐸𝑓
𝒟0

[𝐵, 0, 0] + 𝜖‖𝐵‖2
𝐹 ; 𝑡 = ̃𝑡 = 0 (5.27)

Updating correspondences. Once we have an alignment 𝐺 we map the Green’s
functions of ℳ onto the Green’s functions of 𝒩 and determine novel point-to-point
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Algorithm 1 Matching two shapes
1: Input: shapes ℳ, 𝒩; initial point-to-point 𝒞0 and

functional 𝒟0 constraints; 𝛼 ∈ [0, 1]
2: 𝑆ℳ/𝑆𝒩 ← Farthest_Point_Sampling(ℳ/𝒩, 200)
3: 𝐵, 𝑡 ← solve Eq. (5.27) for an initial alignment

using 𝒞0, 𝒟0, 𝛼, 𝜖 = 10−6

4: for i=1…20 do
5: 𝒞1 ← Matches(𝐵, 𝑡, 𝑆ℳ, 𝑆𝒩)
6: 𝐵, 𝑡 ← solve Eq. (5.29) for a novel alignment

using 𝒞0, 𝒟0, 𝒞1, 𝛼
7: return Matches(𝐵, 𝑡, ℳ, 𝒩)

▷ Sub routines:
8: function Matches(𝐵, 𝑡, 𝑀, 𝑁): ▷ Eq. (5.28)
9: return {(𝑝, 𝑞) ∣ 𝑝 ∈ 𝑀, 𝑞 = arg min𝑦∈𝑁 ∥𝐵 𝑔ℳ

𝑝 + 𝑡 − 𝑔𝒩
𝑦 ∥

2
}

∪ {(𝑝, 𝑞) ∣ 𝑞 ∈ 𝑁, 𝑝 = arg min𝑥∈𝑀 ∥𝐵 𝑔ℳ
𝑥 + 𝑡 − 𝑔𝒩

𝑞 ∥
2
}

10: function Farthest_Point_Sampling(ℳ, 𝑛)
11: 𝑆 ← {𝑝} with a random point 𝑝 on ℳ
12: for 𝑖 = 2 … 𝑛 do ▷ 𝑑𝑏 biharmonic distances
13: 𝑆 ← 𝑆 ∪ {arg max𝑥∈ℳ min𝑦∈𝑆 𝑑𝑏(𝑥, 𝑦)}
14: return 𝑆
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correspondences with a nearest neighbor search:

𝜌ℳ ∶ ℳ → 𝒩, 𝑝 ↦ arg min
𝑥∈𝒩

‖𝐵 𝑔ℳ
𝑝 + 𝑡 − 𝑔𝒩

𝑥 ‖2

𝜌𝒩 ∶ 𝒩 → ℳ, 𝑞 ↦ arg min
𝑦∈ℳ

‖𝐵 𝑔ℳ
𝑦 + 𝑡 − 𝑔𝒩

𝑞 ‖2

It is sufficient to calculate correspondences from and onto a subset of both shapes
𝑆ℳ and 𝑆𝒩, which were initially calculated using farthest point sampling in the
Green’s embedding, i.e. using biharmonic distances. For efficient nearest neighbor
queries we use k-d trees with the “sliding mid-point rule” [MM99], which adapts to
the low intrinsic dimensionality of the data. In summary, the current point-to-point
correspondences 𝒞1 are inferred from 𝐺 by:

𝒞1 = {(𝑝, 𝜌ℳ(𝑝)) ∣ 𝑝 ∈ 𝑆ℳ} ∪ {(𝜌𝒩(𝑞), 𝑞) ∣ 𝑞 ∈ 𝑆𝒩} (5.28)

Iterative alignment. We refine the alignment by alternating between solving
for the alignment 𝐺 using the current point-to-point constraints and calculating
novel point-to-point constraints 𝒞1 from the current alignment. From the second
iteration on solving for 𝐺 is over-constraint and no further regularization is required.
𝐺 is then defined as the minimum of:

𝐸𝑝
𝒞0

[𝐵, 𝑡, ̃𝑡] + 𝐸𝑓
𝒟0

[𝐵, 𝑡] + 𝐸𝑝
𝒞1

[𝐵, 𝑡, ̃𝑡] (5.29)

In our experiments we use 20 iterations, which was enough to converge. The effect
of iterating is shown in Figure 5.7 and the entire alignment procedure is shown in
Algorithm 1.

5.8. Evaluation
An important application of our method is matching non-isometric shapes, which
we evaluate on the Shrec dataset [GBP07]. The dataset contains several shape
classes, in which we create maps and evaluate their quality using the dense inter-
class correspondences from [Bur+13b] as ground truth.

Initial results. The first results in Figures 5.1, 5.5 and 5.7 show that good results
can be obtained from few sparse point-to-point correspondences. As discussed
in Section 5.4 and shown in Figure 5.5, the well-defined distances on the Green’s
functions result in a better alignment than distances on delta-distributions. The
novel embedding gives smoother maps already in the first iteration, which are
further smoothed by the iterative ICP-like alignment. Figures 5.5 and 5.7 show the
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source first iteration 20 iterations

Figure 5.7.: Correspondences before and after iterating (20 eigenvectors, 𝛼 = 0).

effect of iterative alignment depicting maps without iterating and after 20 iterations.

Solving with point-to-point constraints. We compare our method to func-
tional maps (FM), which aligns delta-distributions, and Blended Intrinsic Maps
(BIM), which is a state-of-the-art method for automatic shape matching and does not
use predefined constraints. More precisely, when matching with functional maps,
we use Eq. (2.49) to iteratively align the delta-distributions and extract correspon-
dences via nearest neighbor search. We omit the additional rigid ICP alignment
described in [Ovs+12] as it requires isometric shapes and in principle can be ap-
plied to our method as well. In each class of the Shrec dataset we build between 30
random maps. Then we build the point-to-point constraints by geodesic farthest
point sampling on the source shape and mapping these points onto the target with
the ground truth map. To evaluate the maps we equally distributed 200 points on
the source, mapped them onto the target and measured the deviation from the
ground-truth. Figure 5.8a shows the results of the three methods with either three
or six point-to-point correspondences and Figure 5.8b gives details for three classes.
Independent of the number of constraints our method outperforms the functional
maps method.

The number of eigenvectors used for the calculations influences the results. Fig-
ure 5.8c shows a steady improvement as the number of eigenvectors is increased
(six point-to-point constraints, 𝛼 = 0). In principle maps are not restricted when
represented with Green’s functions. For every map 𝑇 there is a Green’s alignment
𝐺 and for a finite set of constraints there is an infinite number of possible maps. Yet
in our case there are two additional requirements for the solution, namely the align-
ment must be represented with 𝑘 eigenvectors and for 𝛼 > 0 the solution must fulfill
the conformality conditions. These two requirements can be seen as the degrees-
of-freedom of the optimization, as without these requirements any (continuous)
map is a valid solution. The degrees-of-freedom are reduced by either decreasing
the number of eigenvectors 𝑘 or by increasing the weight 𝛼 of the conformality
constraints. The influence of the degrees-of-freedom on the optimization is shown
in Figure 5.8d. For three initial point-to-point constraints results improve when
degrees-of-freedom are reduced, while for six initial point-to-point constraints the
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a) Comparison of all methods b) Details on some classes

c) Varying number of eigenvectors
(6 pts)

d) Varying degrees-of-freedom

Figure 5.8.: Quantitative comparison of approximating point-to-point
correspondences on the Shrec dataset [GBP07] using ground truth
correspondences of [Bur+13b] (20 iterations, no functional constraints,
no conformality 𝛼 = 0, sub-sampling 2000 points).

105



birds fourlegged

Figure 5.9.: Quantitative results of matching with functional correspondences (pa-
rameters as in Figure 5.10).

results improve when degrees-of-freedom are increased.

Solving with functional constraints. We labeled three regions on a repre-
sentative shape of the classes ’birds’ and ’fourlegged’ and transfer these labels onto
all shapes of the same class using the ground truth correspondences [Bur+13b].
Each label consists of four colors, so that we can build four functional constraints
from the indicator functions. Figure 5.10 shows the labels on the bird class as well
as the matching results. Here we intentionally have chosen an example where BIM
fails to demonstrate the usefulness of predefined constraints. Figure 5.9 depicts a
quantitative evaluation of the matching process and further results are depicted in
the additional material.

Our method differs from the FM method in two aspects, namely in the novel
embedding and in the addition of conformality constraints. We also considered a
third method, that uses dual delta-distributions (to constrain and extract point-to-
point correspondences) and conformal functional constraints. This third method
differs from each of the other two formulations in only one aspect. The results
show that both the novel embedding and the conformality constraints improve the
results.

While a variety of different combinations of embeddings and constraints are
possible only few achieved good results in our experiments. For example, the
embedding with dual-delta-distributions (𝐹𝑇𝛿𝑝 = 𝛿𝑞) does not work well with
functional constraints without conformality (𝐹𝑓 = 𝑔). The reasons might be that
the first is a constraint on 𝐹, while the second is a constraint on 𝐹𝑇 and mixing
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a) source b) labels src c) labels dst

d) our method e) BIM f) Fct.Maps

Figure 5.10.: Labels on the source (b) and target (c) were used to map colors from
the source (a) with the various methods (d-e). We use the four func-
tional constraints depicted here and in more detail in the additional
material. No point-to-point constraints were used (20 eigenvectors,
with conformality 𝛼 = 1, sub-sampling 2000 points).

constraints on 𝐹 and 𝐹𝑇 does not work well:

Con-
straints
on 𝐹 and
𝐺𝑇

Functional constraints;
embedding with primal
delta-distributions

Con-
straints
on 𝐹𝑇

and 𝐺

Conformal functional
constraints; embedding with
dual delta-distributions;
embedding with Green’s
functions.

Point clouds and topological changes. Due to its underlying simplicity, our
method is rather general. It works with point clouds (Figure 5.11a) and compli-
cated topologies (Figure 5.11b). Figure 5.11c shows an example of matching in the
presence of severe topological differences, where meshes were sewed together at
self-intersections. Apparently our method can be seen as a global intrinsic align-
ment. Where the matching succeeded, most errors were localized around areas
where the topology has changed.

107



a)

b) c)

Figure 5.11.: Demonstrating the generality of the approach: matching point-clouds
(a), shapes of higher genus (b) and shapes with severe differences in
their topology and inner metric (c).

Isometric Matching. The embedding with Green’s functions is most useful
when there are few known constraints. If the functional constraints already deter-
mine the functional map, there is little difference between embedding with Green’s
functions and delta-distributions. For example, when matching isometric shapes
the heat-kernel-signatures and wave-kernel-signatures[SOG09; ASC11] provide a
magnitude of functional constraints. Figure 5.12 shows a quantitative evaluation of
matching several classes from the TOSCA[BBK08] dataset using heat-kernel-signa-
tures and a single point-to-point constraint due to the intrinsic symmetry (see also
additional material). Here the results of our novel embedding are indeed similar to
the original functional maps. Note the results of both algorithms can be further
improved by applying rigid ICP on the delta-distributions as described in [Ovs+12].
This was not done here as our focus is on near-isometries and as it improves both
methods in the same way.

Blending shapes and limitations. A good demonstration of the quality of the
correspondences is their utilization to linearly blend the source triangulation onto
the target shape, which results a novel triangulation of the target shape. This new
triangulation depends on the correspondences and shows their quality. Typically,
the following errors occur: (1) If the correspondence map is not surjective, i.e. not
all target vertices have a corresponding source vertex, then these vertices are not
contained in the novel triangulation at all (e.g. see missing vertices on the teddy
ear). (2) If neighboring source vertices are mapped differently, then this leads to
intersecting edges, outstanding long edges, and edges that are not located on the
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Figure 5.12.: Quantitative results of matching isometric shapes with heat-kernel-
signatures. As described in the text, the alignment of Green’s func-
tions and delta-distributions yield similar results if there are suffi-
cient constraints, as it is the case for isometric shapes when using
heat-kernel-signatures (20 iterations, 20 eigenvectors, 1 point-to-point
correspondence, 40 HKS functional constraints, conformality 𝛼 = 1,
sub-sampling 2000 points).

target shape.
Figure 5.13 shows such a blending using our results. While in principle our results

are of good quality, there are at least two reasons for the occurring misalignments.
One is that Green’s functions are very similar in proximity of thin extrusions (e.g.
horse legs) and another is that only a local but not a global optimization was used
(e.g. teddy arm). Our results can be further improved using a method for affine
point cloud alignment such as Coherent Point Drift[M+07], which is also shown in
Figure 5.13 and in much more detail in the additional material.
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𝜆 = 0 𝜆 = 0.25 𝜆 = 0.5 𝜆 = 0.75 𝜆 = 1

Figure 5.13.: Visualization of the correspondences by a linear interpolation of the
source triangulation (𝜆 = 0) onto the target shape (𝜆 = 1). Please see
the additional material for further results. (20 iterations, 6 point-to-
point constraints, no functional constraints, no conformality 𝛼 = 0,
sub-sampling 2000 points)
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5.9. Concluding remarks
We expanded on the understanding of the intrinsic alignment of shapes by re-
formulating the alignment in a Euclidean space with a well-defined metric. Our
novel embedding preserves the important advantages of the functional framework,
namely that it can be aligned with an linear map, that it is invariant to shape de-
formations preserving the intrinsic metric and that it can incorporate functional
constraints. Using the Green’s embedding has proven to be especially useful for
matching non-isometric shapes, where typically only a few correspondences are
known. Additionally, to the best of our knowledge, we are the first to include
conformality as functional constraints into the matching process. Our evaluation
shows that to match non-isometric shapes the novel embedding is superior to the
previously utilized delta-distributions. Due to its simplicity and generality our
method works on shapes of higher genus, on point clouds and to some degree
even in the presence of severe changes in the topology and the inner metric. It
therefore might as well serve as a basis for further development of techniques for
shape matching.

Appendix
Prop. 10a): Injectivity of 𝑔ℳ

⋅ ∶ ℳ → ℒ2(ℳ), 𝑝 ↦ 𝑔ℳ
𝑝 : Let 𝑝, 𝑞 ∈ ℳ with 𝑔ℳ

𝑝 = 𝑔ℳ
𝑞

and 𝑓 ∈ ℒ2(ℳ), then 0 = ⟨Δ𝑓 , (𝑔ℳ
𝑝 − 𝑔ℳ

𝑞 )⟩ = ⟨𝑓 , 𝛿ℳ
𝑝 − 𝛿ℳ

𝑞 ⟩ = 𝑓 (𝑝) − 𝑓 (𝑞) ⇒ 𝑝 = 𝑞

Prop. 10b): Let 𝛽 ∈ ℒ2(ℳ) be the coefficients of a linear combination ℎ(𝑦) =
∫𝑞 𝛽(𝑞)(𝜙1 + 𝑔𝑞(𝑦)) d𝑞 ∈ ℒ2(ℳ), then

⟨𝜙𝑖, ℎ⟩ = ⟨𝜙𝑖, 𝛽⟩
⎧{
⎨{⎩

√𝐴 𝑖 = 1
1/𝜆𝑖 𝑖 ≥ 1

∶

⟨𝜙1, ℎ⟩ = ∫𝑞 𝛽(𝑞)⟨𝜙1, 𝜙1 + 𝑔𝑞⟩ d𝑞 = ∫𝑞 𝛽(𝑞) d𝑞 = √𝐴⟨𝜙1, 𝛽⟩

“𝑖 ≥ 2”: 𝜆𝑖⟨𝜙𝑖, ℎ⟩ = ⟨Δ𝜙𝑖, ℎ⟩ = ⟨𝜙𝑖, Δℎ⟩ =

⟨𝜙𝑖, ∫𝑞
𝛽(𝑞)Δ(𝜙1 + 𝑔𝑞) d𝑞⟩ = ⟨𝜙𝑖, ∫𝑞

𝛽(𝑞)Π𝛿𝑞 d𝑞⟩ =

⟨𝜙𝑖, Π (∫
𝑞
𝛽(𝑞)𝛿𝑞 d𝑞)⟩ = ⟨𝜙𝑖, Π(𝛽)⟩ = ⟨𝜙𝑖, 𝛽⟩

“Independent”: Let ℎ be a linear combination as defined above with ℎ(𝑦) = 0,
then also 𝛽 = 0.

“Spans ℒ2(ℳ)”: Because the 𝜙𝑖 form a basis of ℒ2(ℳ) it is sufficient to represent
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the 𝜙𝑖 with linear combinations of the 𝑔ℳ
𝑝 . Choosing 𝛽 = 𝜙𝑖 results in ℎ = 𝜇𝜙𝑖 for

some 𝜇 ≠ 0.

Prop. 10c): Let ℎ(𝑦) = ∫𝑞 𝛽(𝑞)𝑔𝑞(𝑦) d𝑞 ∈ ℒ2(ℳ) then analog to above ⟨𝜙1, ℎ⟩ = 0
and ⟨𝜙𝑖, ℎ⟩ = 1/𝜆𝑖⟨𝜙𝑖, 𝛽⟩ for 𝑖 ≥ 2. Therefore, the set is not independent (∫𝑞 𝑔𝑞(𝑦) d𝑞 =
0) and has co-dimension 1 because 𝜙1 is not contained in the span.

Prop. 12, Eq. 5.11): 𝐹𝑇𝛿ℳ
𝑝 = 𝜙𝒩

1 (𝑇(𝑝))+Δ𝒩𝐵Δ+
ℳ𝛿ℳ

𝑝 +Δ𝒩𝑡 = 𝜙𝒩
1 (𝑇(𝑝))+Δ𝒩𝐺(Δ+

ℳ𝛿ℳ
𝑝 )

= 𝜙𝒩
1 (𝑇(𝑝)) + Π𝒩𝛿𝒩

𝑇(𝑝) = 𝛿𝒩
𝑇(𝑝)

Eq. 5.22): 𝐹−1𝑔ℳ
𝑝 = 𝜙𝒩

1 ⟨𝜙𝒩
1 , 𝐹−1𝑔ℳ

𝑝 ⟩ + Π𝒩𝐹−1𝑔ℳ
𝑝 and

Π𝒩𝐹−1𝑔ℳ
𝑝 = Δ+

𝒩Δ𝒩𝐹−1Δ+
ℳ𝛿ℳ

𝑝 = Δ+
𝒩𝐹𝑇ΔℳΔ+

ℳ𝛿ℳ
𝑝 =

Δ+
𝒩𝐹𝑇[𝐼𝑑 + (Π − 𝐼𝑑)]𝛿ℳ

𝑝 = Δ+
𝒩𝛿𝒩

𝑇(𝑝) + Δ+
𝒩𝐹𝑇𝜙ℳ

1
1

√𝐴ℳ
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6Efficient lifted relaxations of
quadratic assignment

problems

Abstract Quadratic assignment problems (QAPs) and quadratic assignment match-
ings (QAMs) recently gained a lot of interest in computer graphics and vision, e.g.
for shape and graph matching. Literature describes several convex relaxations
to approximate solutions of the NP-hard QAPs in polynomial time. We compare
the convex relaxations recently introduced in computer graphics and vision to
established approaches in discrete optimization. Building upon a unified constraint
formulation we theoretically analyze their solution spaces and their approxima-
tion quality. Experiments on a standard benchmark as well as on instances of the
shape matching problems support our analysis. It turns out that often the bounds
of a tight linear relaxation are competitive with the bounds of semidefinite pro-
gramming (SDP) relaxations, while the linear relaxation is often much faster to
calculate. Indeed, for many instances the bounds of the linear relaxation are only
slightly worse than the SDP relaxation of Zhao [Zha+98; PR09], which itself is at
least as accurate as the relaxations currently used in computer graphics and vision.
Solving the SDP relaxations can often be accelerated considerably from hours to
minutes using the recently introduced approximation method for trace bound SDPs
[Wan+16], but nonetheless calculating linear relaxations is faster in most cases. For
the shape matching problem all relaxations generate the optimal solution, only
that the linear relaxation does so faster. Our results generalize as well to QAMs
for which we deliver new relaxations. Furthermore, by interpreting the Product
Manifold Filter [Ves+17] in the context of QAPs we show how to automatically
calculate correspondences between shapes of several hundred points.

This chapter is based on [BK17b]: Oliver Burghard and Reinhard Klein. “Efficient
Lifted Relaxations of the Quadratic Assignment Problem”. In: Vision, Modeling &
Visualization. 2017.
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a) b)

c)

Figure 6.1.: QAPs can be used to model point assignment problems such as in (a),
which are then further refined using linear assignment problems (b).
We show that solving QAPs with linear relaxations is often sufficient
and expectedly much faster, even when compared to fast approximative
solvers for the SDPs (c) [Wan+16].
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6.1. Introduction
Assigning two point sets, which were sampled on two different surfaces, onto each
other is a discretization of the shape matching problem. We initially assume that
the points have a one-to-one correspondence, which can then be represented by an
𝑛-element permutation contained in the symmetric group 𝑆𝑛. Good point-to-point
assignments have small isometric distortion[BBM05; FS06; Kez+15b] defined over
the pairwise geodesic distances 𝑑𝑖𝑗 ∈ ℝ and 𝑑′

𝑖𝑗 ∈ ℝ, and some parameter 𝜎:

min
𝜙∈𝑆𝑛

∑
𝑖𝑗

exp (− (𝑑𝑖𝑗 − 𝑑′
𝜙(𝑖)𝜙(𝑗))

2/𝜎2) (6.1)

The minimization of the simple functional already yields good point-to-point as-
signments as shown in Figure 6.1a. The minimization is an instance of a quadratic
assignment problem (QAP) - a difficult discrete optimization problem whose solu-
tion is our main interest. For two cost matrices 𝐀 ∈ ℝ𝑛2×𝑛2, 𝐁 ∈ ℝ𝑛×𝑛 and noting
𝐀𝑝𝑞,𝑟𝑠 for 𝐀𝑝𝑛+𝑞,𝑟𝑛+𝑠 the quadratic assignment problem (QAP) minimizes:

(QAP-𝜙) min
𝜙∈𝑆𝑛

∑
𝑖𝑗

𝐀𝑖 𝜙(𝑖),𝑗 𝜙(𝑗) + 2 ∑
𝑖

𝐁𝑖 𝜙(𝑖) (6.2)

Setting 𝐀𝑖 𝑘,𝑗 𝑙 = exp (− (𝑑𝑖𝑗 − 𝑑′
𝑘𝑙)

2/𝜎2) transforms Eq. (6.1) in this new form. 𝐁 can
be removed from the formulation as the diagonal of 𝐀 has the same effect.

Several practically relevant hard matching problems can be modeled as a QAP,
such as matching shapes as above or matching feature points between images
[BMP02; SRS07; Cae+09; EKG13]. Sadly approximating QAPs to any precision is
already NP-hard[SG76] and solving instances with as little as 30 points is typically
not considered any more practical.

Convex relaxations estimate a lower bound on the cost and can be used to ap-
proximate solutions with small costs. The idea is to drop non-convex constraints
from the problem formulation such that the optimization becomes a convex one.
Because a solution of the original problem is still a feasible solution of the relaxation,
the efficiently computable minimal cost of the relaxation are a lower bound for
the original costs. Furthermore, as the solution of the relaxation fulfills all but the
dropped constraints, projecting it onto the feasibility set of the original problem
estimates a solution. The cost difference from the estimated to the minimal solution
is smaller than the cost difference from the estimated solution to the lower bound
of the relaxation, which is therefore a measure of the quality of the relaxation and
is called the optimality gap.

Recent methods in computer graphics and vision relax QAPs into semidefinite
programs [Kez+15b; Wan+16], which we compare to already established convex
relaxations of discrete optimization[AJ94; Zha+98; PR09]. Interestingly on shape
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matching problems a carefully built linear programming relaxations is only slightly
inferior to the best SDP relaxations, but solving it is often much faster. We fur-
thermore investigate the approximation of the SDP relaxations by quasi-Newton
minimization of the Lagrange dual[Wan+16] and which for certain relaxation is
an order of magnitude faster than calculating their solution with interior-point
methods.

We show theoretically that the SDP relaxation of Zhao [Zha+98] yields lower
bounds at least as large as the SDP relaxations currently used in computer graphics
and vision, and this claim is supported by our practical evaluation of the QAPLIB
[BKR97] benchmark and on typical shape matching problems. Interestingly the
shape matching problems result in QAPs which are solved exactly with all investi-
gated relaxations, only the linear methods are typically faster.

Furthermore, we show how to use these relaxations to solve the related quadratic
assignment matching (QAM) for which we present novel relaxations. Last but not
least we show, that we can interpret the product manifold filter [Ves+17] as an
iterative minimization of a QAP. This insight allows us to calculate correspondences
of several hundred points without predefined correspondences.

6.2. Related work
Koopmans[KB57] introduced a first restricted version of the QAP to locate eco-
nomic activities. The more general formulation of Eq. (6.2) was presented by
Lawler[Law63] soon after. Since then a variety of discrete optimization problems
have been reformulated as QAPs, which therefore themselves became an important
research topic. There is much related work on solving QAPs, reviewed in several
good surveys[Bur+98; Loi+07; Cel13], and in the following we only present the
most relevant developments for our work.

Solving arbitrary QAPs is NP-hard as for example the traveling salesman problem
can be modeled as a QAP. Despite extensive research, solving QAP instances with
𝑛 ≥ 30 is still not considered to be practical. Relaxations provide lower bounds for
the minimal cost and estimate a solution. If the estimated solution is insufficient
then the exact solution can be determined by Branch and Bound methods[Gil62;
Law63; Ans03]. Hereby the solution space is traversed and subspaces, whose lower
bound is larger than the cost of the best solution found so far, are discarded. The
Gilmore-Lawler bound[Gil62; Law63] is one of the earliest lower bounds and it is still
used, due to its fast calculation. There are many other relaxations such as spectral
relaxations[LH05; ADK13] (which were among the first used in computer graphics
and vision), linear programs[HG98; Kar+99], mixed linear integer programs [KB78;
FY83; AJ94], quadratic constraint quadratic programs[Luo+10] and semidefinite
programs [GW95; LS91; Kar95; Zha+98; PR09].

There are relaxations of varying sizes, for example using 𝒪(𝑛2) [Pen+15; KST15] or
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𝒪(𝑛4) [FY83; AJ94; Zha+98] variables. Our interest is in linear and SDP relaxations
over the lifted permutation matrices using 𝒪(𝑛4) variables (as will be introduced
below), which are known to deliver tight bounds. They depend on the second-order
Birkhoff polytope [JK96a; JK96b; JK01; AM14], whose affine subspace is known but
not all of its facets.

Recently there is growing interest in relaxations as copositive programs[PVZ15;
Bur12; PR09; BMP12], which minimize a linear objective under linear constraints
over the convex set of copositive matrices, i.e. matrices with 𝐱𝑇𝐀𝐱 ≥ 0 for all 𝐱 ≥ 0.
Although solving copositive programs is NP-hard, as several NP-hard problems can
be modeled as copositive programs, there are SDP approximations of copositive
programs to any accuracy.

Solving large SDPs with current interior point solvers is costly, especially the
semidefinite programming relaxations of QAP of size 𝒪(𝑛4), and several methods
specialize in solving or approximating QAP relaxations and the related binary inte-
ger programs. For example by reformulating the convex program with a separable
cost function[BV06], by approximating the relaxation with the bundle method[RS06]
and recently with a fast approximative semidefinite program solver of trace bound
SDPs[WSV13; Wan+16]. We quickly present and evaluate the latter as for some
relaxations it is a magnitude faster than current interior point solvers.

6.3. Solving quadratic assignment problems

A permutation 𝜙 can be represented by a matrix 𝐗𝜙 where 𝐗𝜙
𝑖𝑗 = 1 if 𝜙(𝑖) = 𝑗 and 0

otherwise. Then the following is an equivalent formulation of (QAP-𝜙):

(QAP) min
𝑋

[𝐗]𝑇𝐀[𝐗] + 2 ⟨𝐁, 𝐗⟩ (6.3)

s.t. 𝐗 ∈ ℝ𝑛×𝑛, 𝐗2
𝑝𝑞 = 𝐗𝑝𝑞 ∀𝑝, 𝑞

0 ≤ 𝐗, 𝐗111 = 111, 𝐗𝑇111 = 111

The convex hull of the permutation matrices {𝐗𝜙 ∣ 𝜙 ∈ 𝑆𝑛} is called the Birkhoff
polytope Π𝑛 [AM14]:

Π𝑛 ∶= conv({𝐗𝜙 ∣ 𝜙 ∈ 𝑆𝑛})
={𝐗 ∈ ℝ𝑛×𝑛 ∣ 0 ≤ 𝐗, 𝐗111 = 111, 𝐗𝑇111 = 111}

6.3.1. Lifted variables
We reformulate (QAP) by replacing the quadratic factors 𝐗𝑝𝑞𝐗𝑟𝑠 with the lifted
variables 𝐘𝑝𝑞.𝑟𝑠. Each permutation 𝜙 induces a lifted feasible solution of the form
(𝐗𝜙, 𝐘𝜙) ∶= (𝐗𝜙, [𝐗𝜙][𝐗𝜙]𝑇), which is called a second-order permutation. The
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convex hull of the second-order permutations is called the second-order Birkhoff
polytope Π𝑛

2 [AM14]:

Π𝑛
2 ∶= conv ({(𝐗𝜙, 𝐘𝜙) ∣ 𝜙 ∈ 𝑆𝑛}) (6.4)

Several authors explored the second-order Birkhoff polytope and the isomorphic
QAP-polytope[JK96a] (which describes the lifted permutations with a graph struc-
ture):

Theorem 15. [JK96a; JK01] The affine hull of Π𝑛
2 is:

𝐗111 = 𝐗𝑇111 = 111 (6.5a)
𝐘 = 𝐘𝑇, diag(𝐘) = [𝐗] (6.5b)

𝐘𝑘𝑞,𝑘𝑠 = 𝐘𝑞𝑘,𝑠𝑘 = 0 ∀𝑘∀𝑞 ≠ 𝑠 (6.5c)

∑
𝑘
𝐘𝑝𝑞,𝑘𝑠 = ∑

𝑘
𝐘𝑝𝑞,𝑠𝑘 = 𝐗𝑝𝑞 ∀𝑝, 𝑞, 𝑠 (6.5d)

Theorem 16. [JK96a; AM14] Some facets of Π𝑛
2 are given by:

0 ≤ 𝐘 (6.6)

For 3 ≤ 𝑚 ≤ 𝑛 − 3 and (𝑖0, … , 𝑖𝑚), (𝑗0, … , 𝑗𝑚) ∈ [1 ∶ 𝑛]𝑚+1 pairwise disjunct other facets
are:

∑
𝑟

𝐘𝑖𝑟𝑗𝑟,𝑖0𝑗0 + 𝐘𝑖𝑟𝑗𝑟,𝑖𝑟𝑗𝑟 ≤ 𝐗𝑖0𝑗0 + ∑
𝑟
∑

𝑠
𝐘𝑖𝑟𝑗𝑟,𝑖𝑠𝑟𝑠

(6.7)

And there are additional currently unknown facets.

Every second-order permutation fulfills the following semidefinite constraints,
whose equivalence follows from the Schur complement:

𝐘 ≽ [𝐗][𝐗]𝑇 (⇔ ( 1 [𝐗]𝑇

[𝐗] 𝐘 ) ≽ 0) (6.8)

Because Eq. (6.8) is a convex constraint fulfilled on all second-order permutations it
is fulfilled on their convex hull as well:

Proposition 17. Eq. (6.8) holds for all second-order permutations as well as for any tuple
in Π𝑛

2 .

6.3.2. Convex relaxations
In the following we define several convex relaxations of (QAP). Over a fixed rep-
resentation of the solutions with variables, the convex relaxation with the largest
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lower bounds is the one with the smallest convex solution space that still contains
all valid solutions, i.e. the convex hull of the valid solutions. Over the lifted per-
mutations (LIN-OPT) is the convex relaxation with the largest lower bound as it
restricts the solutions to the second-order Birkhoff polytope Π𝑛

2 :

(LIN-OPT) min
𝐗,𝐘

⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩

s.t. (𝐗, 𝐘) ∈ Π𝑛
2

Despite being a linear program, solving (LIN-OPT) is difficult. Not only are not
all facets of Π𝑛

2 known, but it is also NP-hard:
Theorem 18. (LIN-OPT) and (QAP) have the same minimal cost. Because the decision
problem of QAP (“is there a solution of cost less than 𝑥”) is NP-complete, so (LIN-OPT) is
NP-hard as well.

Proof. Every minimal solution of (LIN-OPT) can be expressed as a convex com-
bination of second-order permutations 𝜙1, … , 𝜙𝑘 ∈ 𝑆𝑛: (𝐗, 𝐘) = ∑𝑖 𝛼𝑖(𝐗𝜙𝑖, 𝐘𝜙𝑖)
with 𝛼𝑖 > 0, ∑𝑖 𝛼𝑖 = 1. As the cost 𝑓 (𝐗, 𝐘) ∶= ⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩ is linear in 𝐗 and 𝐘,
we have 𝑓 (𝐗, 𝐘) = ∑𝑖 𝛼𝑖𝑓 (𝐗𝜙𝑖, 𝐘𝜙𝑖). Because 𝑓 (𝐗, 𝐘) is minimal, the summands
of 0 = ∑𝑖 𝛼𝑖(𝑓 (𝐗𝜙𝑖, 𝐘𝜙𝑖) − 𝑓 (𝐗, 𝐘)) are not negative and therefore all 0. Thus,
𝑓 (𝐗𝜙𝑖, 𝐘𝜙𝑖) = 𝑓 (𝐗, 𝐘) for all 𝑖.

(LIN)[FY83; AJ94] is an efficiently solvable linear programming approximation of
(LIN-OPT). It replaces Π𝑛

2 with the approximation of Theorems 15 and 16, dropping
the exponential number of facets from Eq. (6.7). It has the same affine subspace as
Π𝑛

2 , as Eq. (6.5c) follows from Eqs. (6.10b) and (6.10c):

(LIN) min
𝐗,𝐘

⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩

s.t. 𝐗111 = 𝐗𝑇111 = 111 (6.10a)
0 ≤ 𝐘, diag(𝐘) = [𝐗] (6.10b)
∑

𝑘
𝐘𝑝𝑞,𝑘𝑠 = ∑

𝑘
𝐘𝑝𝑞,𝑠𝑘 = 𝐗𝑝𝑞 ∀𝑝, 𝑞, 𝑠 (6.10c)

with 𝐗 ∈ ℝ𝑛×𝑛; 𝐘 ∈ 𝒮𝑛2

A tighter relaxation (SDP-R3) follows by adding the semidefinite constraint from
Eq. (6.8) to (LIN). It was introduced in [Zha+98] and reformulated as presented
here in [PR09]:

(SDP-R3) min
𝐗,𝐘

⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩

s.t. as in (LIN) and

0 ≼ ( 1 [𝐗]𝑇

[𝐗] 𝐘 ) (6.11a)
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Adding one of the following two equivalent non-convex constraints

rank ( 1 [𝐗]𝑇

[𝐗] 𝐘 ) = 1 ⇔ 𝑌 = [𝐗][𝐗]𝑇

to (SDP-R3) makes it equivalent to (QAP), as 𝐗𝑝𝑞 ∈ {0, 1} follows from 𝑌 = [𝐗][𝐗]𝑇

and 𝐗2
𝑝𝑞 = 𝐘𝑝𝑞,𝑝𝑞 = 𝐗𝑝𝑞.

We compare the above relaxation against two state-of-the-art relaxations of the
recent computer graphics [Kez+15b] and vision literature [Wan+16]. Both are
relaxations of a variation of the QAP, which minimizes over the partial permutations,
i.e. it assigns subsets of the nodes onto each other. Here we present their relaxations
adapted to (QAP) and postpone a discussion of the differences to Section 6.3.5:

(TIGHT) min
𝐗,𝐘

⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩

s.t. 0 ≤ 𝐗, 𝐗111 = 𝐗𝑇111 = 111 (6.12a)
0 ≤ 𝐘, tr(𝐘) = 𝑛, 111𝑇𝐘111 = 𝑛2 (6.12b)
𝐘𝑝𝑞,𝑘𝑠 ≤ 𝐗𝑝𝑞 ∀𝑝, 𝑞, 𝑘, 𝑠 (6.12c)
𝐘𝑘𝑞,𝑘𝑠 = 𝐘𝑞𝑘,𝑠𝑘 = 0 ∀𝑘∀𝑞∀𝑠 ≠ 𝑞 (6.12d)

0 ≼ ( 1 [𝐗]𝑇

[𝐗] 𝐘 ) (6.12e)

with 𝐗 ∈ ℝ𝑛×𝑛; 𝐘 ∈ 𝒮𝑛2

(FASTBQP) min
𝐗,𝐘

⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩

s.t. 𝐗111 = 𝐗𝑇111 = 111 (6.13a)
diag(𝐘) = [𝐗] (6.13b)
𝐘𝑘𝑞,𝑘𝑠 = 𝐘𝑞𝑘,𝑠𝑘 = 0 ∀𝑘∀𝑞∀𝑠 ≠ 𝑞 (6.13c)

0 ≼ ( 1 [𝐗]𝑇

[𝐗] 𝐘 ) (6.13d)

with 𝐗 ∈ ℝ𝑛×𝑛; 𝐘 ∈ 𝒮𝑛2

We say that a relaxation (A) dominates another relaxation (B) and write (A) ≥ (B)
if they have the same cost function and if the feasibility set of (A) is contained in
the feasibility set of (B). In this case the minimum of (B) is a lower bound for the
minimum of (A).
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Theorem 19. Using this notation the following relations hold:

(LIN-OPT) ≥ (SDP-R3)
(SDP-R3) ≥ (LIN)
(SDP-R3) ≥ (TIGHT)
(SDP-R3) ≥ (FASTBQP)

All relaxations have 𝒪(𝑛4) variables and 𝒪(𝑛4) constraints, except for (FASTBQP) which
has only 𝒪(𝑛3) constraints.
Proof. We show all relations by showing that the feasibility sets are subsets of each
other. Due to Proposition 17 the feasible set of (LIN-OPT) is a subset of the feasibility
set of (SDP-R3). The feasibility sets of (LIN) + Eq. (6.11a), (TIGHT) + Eq. (6.10b) +
Eq. (6.10c) and (FASTBQP) + Eq. (6.10b) + Eq. (6.10c) are equivalent to the feasible
set of (SDP-R3).

We conclude that, the lower bound of (SDP-R3) is at least as large as the other
lower bounds, except for the lower bound of (LIN-OPT) which cannot be efficiently
computed. Typically, the larger the lower bound, the less projection onto the original
feasible set changes the solution, so that (SDP-R3) is as well likely to have one of the
tightest duality gaps. Despite the bounds of (LIN) being weaker than the bounds
of (SDP-R3), solving a linear program is often faster than solving a semidefinite
program, so that (LIN) offers a trade-off between performance and the quality of
the bounds.

6.3.3. Fast approximation of semidefinite programs
While (LIN) can be solved efficiently with an interior-point solver, solving the SDP
relaxations (SDP-R3), (TIGHT) and (FASTBQP) with interior-point solvers is often
slow. Recently the authors of [Wan+16] proposed a fast approximation method
for SDPs, whose solution has a fixed trace, which all previous SDP relaxation have
(tr(𝑌) = 𝑛). For completeness, we quickly rephrase the necessary steps.

After subsituting 𝐗 and 𝐘 by the new variable

𝐙 = 𝐙[𝐗, 𝐘] ∶= ( 1 [𝐗]𝑇

[𝐗] 𝐘 ) .

we express (SDP-R3), (TIGHT) and (FASTBQP) in the form:

(SDP-F) min
𝐙≽0

⟨𝐀0, 𝐙⟩

s.t. ⟨𝐁𝑖, 𝐙⟩ = 𝑏𝑖 𝑖 ∈ 1, … , 𝑗
⟨𝐁𝑖, 𝐙⟩ ≤ 𝑏𝑖 𝑖 ∈ 𝑗 + 1, … , 𝐽
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We approximate (SDP-F) with another convex program (SDP-A):

(SDP-A) min
𝐙≽0

⟨𝐀0, 𝐙⟩ + 1
2𝛾

‖𝐙‖2
𝐹

s.t. as in (SDP-F)

The difference of the minimal costs of (SDP-F) and (SDP-A) depends on ‖𝐙‖𝐹 and
𝛾. Let 𝜆𝑖 ≥ 0 be the eigenvalues of 𝐙, then

‖𝐙‖2
𝐹 = ∑ 𝜆2

𝑖 ≤ (∑ 𝜆𝑖)
2 = tr(𝐙)2 = (𝑛 + 1)2 (6.14)

and the minimal costs of (SDP-A) and (SDP-F) are related by

𝑐SDP-A − (𝑛 + 1)2

2𝛾
< 𝑐SDP-F ≤ 𝑐SDP-A . (6.15)

For 𝛾 large enough the solutions of (SDP-F) and (SDP-A) are arbitrarily close and
solving variants of (SDP-A) yields arbitrary precise upper and lower bounds on
(SDP-F).

Let Π(𝐂) = ∑𝑖 max(0, 𝜆𝑖) 𝜙𝑖𝜙𝑇
𝑖 be the projection of a matrix 𝐂 with the eigende-

composition 𝐂 = ∑𝑖 𝜆𝑖𝜙𝑖𝜙𝑇
𝑖 onto the positive semidefinite cone {𝐗 ∈ 𝒮𝑛 ∣ 𝐗 ≽ 0}.

Then (SDP-A) can be minimized with a quasi-Newton method on the dual problem:

Theorem 20 ([WSV13; Wan+16]). If (SDP-F) is feasible, so is (SDP-A) for which then
strong duality holds. Instead of minimizing (SDP-A) we can maximize its dual:

max
𝐮∈�̂�

𝑑𝛾(𝐮) = −𝐛𝑇𝐮 −
𝛾
2

∥Π(𝐂(𝐮))∥2
𝐹 (6.16)

where

Û = {u ∈ ℝ𝐽 ∣ u𝑖 ≥ 0 ∀𝑖 ∈ 𝑗 + 1, … , 𝐽} (6.17)
𝐂(𝐮) = −𝐀0 − ∑

𝑖
𝐮𝑖𝐁𝑖 . (6.18)

The dual is once but not twice differentiable and its gradient is

(∇𝑑𝛾)𝑖 = +⟨𝐁𝑖, Π(𝐂(𝐮))⟩ − 𝑏𝑖 . (6.19)

6.3.4. Determining a solution
The above convex relaxations solve for 𝐗 and 𝐘, yet what is required is a permutation
𝜙 ∈ 𝑆𝑛. If 𝐙[𝐗, 𝐘] ≽ 0 and rank(𝐙[𝐗, 𝐘]) = 1 then 𝐗 is indeed a solution of (QAP),
as noted in the comments of (SDP-R3). But often the rank of 𝐙[𝐗, 𝐘] is larger than 1.
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In this case we can project 𝐗 onto the possible permutation matrices Π𝑛 by solving
the Linear Assignment Problem:

min
𝜙∈𝑆𝑛

∥𝐗𝜙 − 𝑛
[𝐗]𝑇111

𝐗∥
1

(6.20)

Often better results are obtained using the randomized approach described in
[Luo+10]. Let 𝜉 ∈ ℝ𝑛2 be a vector sampled from a centered multidimensional
normal distribution 𝒩(0, 𝐙) with covariance 𝐙. For any matrix 𝐀0 the expected
value of 𝜉𝑇𝐀0𝜉 is

E𝜉∼𝒩(0,𝐙)[𝜉𝑇𝐀0𝜉] = ⟨𝐙, 𝐀0⟩ .

Thus (SDP-F) solves for a matrix 𝐙 such that sampling from 𝒩(0, 𝐙) fulfills and
minimizes (SDP-F) in expectation. It is therefore reasonable to sample several so-
lutions 𝜉𝑖 ∼ 𝒩(0, 𝐘), project each onto the permutations and choose the one with
minimal cost:

𝜙𝑖 = min
𝜙∈𝑆𝑛

∥[𝐗𝜙] − 𝑛
1𝑇𝜉𝑖

𝜉𝑖∥
1

𝜙 = min
𝑖

[𝐗𝜙]𝑇𝐀0[𝐗𝜙] + 2 ⟨𝐵, 𝐗𝜙⟩

6.3.5. Quadratic assignment matching

A partial permutation is a bijection from 𝑘 of 𝑛 elements onto 𝑘 of 𝑚 elements.
Quadratic Assignment Matching (QAM) [Kez+15b] is a generalization of QAP to
partial permutations, used for example for partial graph matching. QAM minimizes
the following cost defined with the matrices 𝐀 ∈ ℝ𝑛𝑚×𝑛𝑚 and 𝐁 ∈ ℝ𝑛×𝑚 over the
partial permutations:

(QAM) min ∑
𝑖𝑗

𝐀𝜙(𝑖)𝜓(𝑖),𝜙(𝑗)𝜓(𝑗) + ∑
𝑖

𝐁𝜙(𝑖)𝜓(𝑖) (6.21)

s.t. 𝜙∶ {1, … , 𝑘} → {1, … , 𝑛}, 𝜙 injective
𝜓∶ {1, … , 𝑘} → {1, … , 𝑚}, 𝜓 injective

We can model (QAM) as a QAP of size ̂𝑛 = 𝑛 + 𝑚 − 𝑘 by adding extra nodes on
both shapes (loosely following an idea from [MD58]). With 𝐀′ ∈ ℝ�̂�2×�̂�2, 𝐁′ ∈ ℝ�̂�2
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as follows

𝐀′
𝑝𝑞,𝑟𝑠 =

⎧{
⎨{⎩

𝐀𝑝𝑞,𝑟𝑠 𝑝, 𝑟 ≤ 𝑛 and 𝑞, 𝑠 ≤ 𝑚
0 otherwise

𝐁′
𝑝𝑞 =

⎧{
⎨{⎩

𝐁𝑝𝑞 𝑝 ≤ 𝑛 and 𝑞 ≤ 𝑚
0 otherwise

we define the following problem:

(QAM-QAP) Minimize the QAP defined by 𝐀′, 𝐁′

s.t. 𝐗𝑝𝑞 = 0 ∀𝑝 > 𝑛 ∀𝑞 > 𝑚

To show the equality of (QAM) and (QAM-QAP) let 𝜙 be a solution of (QAM-QAP).
Then 𝐗 = 𝐗𝜙 it is of the form:

𝐗 = (𝐄 𝐅
𝐆 0) with 𝐄 ∈ ℝ𝑛×𝑚, 𝐅 ∈ ℝ𝑛×(𝑛−𝑘), 𝐆 ∈ ℝ(𝑚−𝑘)×𝑚

𝐗 has exactly one 1 in each row and column and in total 𝑛 + 𝑚 − 𝑘 ones. Thus 𝐅 has
𝑛 − 𝑘, 𝐆 has 𝑚 − 𝑘 and 𝐄 has 𝑘 ones. Let (𝜙(1), 𝜓(1)), … , (𝜙(𝑘), 𝜓(𝑘)) be the indices
of the ones of 𝐄 then 𝜙, 𝜓 defines a solution of QAM. On the other hand if 𝜙 and 𝜓
is a solution of QAM then we can define a solution of (QAM-QAP) of equal cost by
setting 𝐄𝜙(𝑖)𝜓(𝑖) = 1 and 0 otherwise, and filling 𝐅 and 𝐆 such that the constraints
are met. Due to the definition of 𝐀′ the costs of both solutions are equivalent and
one is optimal if and only if the other is, thus:

Theorem 21. The problems (QAM) and (QAM-QAP) are equivalent and a solution of
one leads to the solution of the other.

We can therefore utilize the previous relaxations (SDP-R3) and (LIN) to solve
(QAM), which we name (QAM-SDP-R3) and (QAM-LIN).

But we can also build smaller, less tight relaxations by dropping 𝐹 and/or 𝐺
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altogether, turning equality into inequality constraints where necessary:

(QAM-LD) min
𝐗,𝐘

⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩

s.t. 0 ≤ 𝐗, 𝐗111 ≤ 111, 𝐗𝑇111 ≤ 111, 111𝑇𝐗111 = 𝑘 (6.22a)
0 ≤ 𝐘, diag(𝐘) = [𝐗], 111𝑇𝐘111 = 𝑘2 (6.22b)
max(∑

𝑘
𝐘𝑝𝑞,𝑘𝑠, ∑𝑘

𝐘𝑝𝑞,𝑠𝑘) ≤ 𝐗𝑝𝑞 ∀𝑝, 𝑞, 𝑠 (6.22c)
𝐘𝑘𝑞,𝑘𝑠 = 𝐘𝑞𝑘,𝑠𝑘 = 0 ∀𝑘∀𝑞∀𝑠 ≠ 𝑞 (6.22d)

0 ≼ ( 1 [𝐗]𝑇

[𝐗] 𝐘 ) (6.22e)

with 𝐗 ∈ ℝ𝑛×𝑚; 𝐘 ∈ 𝒮𝑛𝑚

This is similar to the QAM relaxation of [Kez+15b], which we add for completeness:

(QAM-TIGHT) min
𝐗,𝐘

⟨𝐀, 𝐘⟩ + 2⟨𝐁, 𝐗⟩

s.t. 0 ≤ 𝐘, tr(𝐘) = 𝑘, 111𝑇𝐘111 = 𝑘2 (6.23a)
𝐘𝑝𝑞,𝑘𝑠 ≤ 𝐗𝑝𝑞 ∀𝑝, 𝑞, 𝑘, 𝑠 (6.23b)
and Eqs. 6.22a, 6.22d, 6.22e and 𝐗, 𝐘 as above

Theorem 22. For the relaxations the following relations hold:

(QAM-SDP-R3) ≥ (QAM-LIN)
(QAM-SDP-R3) ≥ (QAM-LD) ≥ (QAM-TIGHT)

(QAM-SDP-R3) and (QAM-LIN) use (𝑛 + 𝑚 − 𝑘 + 1)4 variables and (QAM-LD) and
(QAM-TIGHT) use (𝑛𝑚 + 1)2 variables.

Proof. The first relation follows from Theorem 19. “(QAM-LD) ≥ (QAM-TIGHT)”:
The feasibility set of (QAM-TIGHT) + Eq. (6.22b) + Eq. (6.22c) is equivalent to
the feasibility set of (QAM-LD). “(QAM-SDP-R3) ≥ (QAM-LD)”: Let 𝐗, 𝐘 be a
solution of (QAM-SDP-R3). Then 𝐗′ = 𝐄 with 𝐄 as above and 𝐘′ ∈ 𝒮𝑛𝑚 with
𝐘′

𝑝𝑞,𝑟𝑠 = 𝐘𝑝𝑞,𝑟𝑠∀𝑝, 𝑞, 𝑟, 𝑠 are a valid solution of (QAM-LD) and by construction of 𝐀′

of equal cost.

In conclusion modelling (QAM) as (QAP-SDP-R3) gives lower bounds at least as
large as the other relaxations. For 𝑘 large solving (QAM) via (QAM-LIN) is likely
fastest and still gives good results. If 𝑘 is small (QAM-QAP) is significantly larger
than the relaxation (QAM-LD), which are therefore fastest. The lower bound of
(QAM-LD) is always larger than the lower bound of (QAM-TIGHT).
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6.4. Evaluation and applications
We compare solving QAPs by the following methods:

• solving the linear programming relaxation (LIN) with the Mosek[Mos10]
state-of-the-art interior-point solver (“LIN/IP”),

• solving one of the semidefinite programming relaxations with the Mosek
interior-point solver (“.../SDP”)

• approximating the semidefinite programming relaxations via maximization of
the dual of (SDP-A) with the L-BFGS[Noc80] quasi-Newton method (“.../QN”).

For a relaxation of a QAP instance let 𝑐− be the lower bound, 𝑐+ be the minimal
cost of 100 projected solutions as discussed in Section 6.3.4 and 𝑐∗ be the minimal
cost of the instance. The relative error 𝑐+−𝑐∗

|𝑐∗|
measures the quality of the solution. It

is bounded by the relative optimality gap 𝑐+−𝑐−

|𝑐∗|
, whose calculation is independent

of the minimal cost 𝑐∗.

6.4.1. QAPLIB
QAPLIB[BKR97] is a collection of QAP instances of various authors. Despite being
released in 1997 it is commonly used to benchmark QAP solvers, as the difficulty
of QAPs increases quickly when their dimensions grow. Our first evaluation is
on the QAPLIB instances of dimension 20 and less. Figure 6.2 shows the relative
optimality gap and the relative error, and Figure 6.1c depicts the times the different
algorithms used. The table in Figure 6.3 depicts the fraction of the instances, in
which one method had smaller optimality gap/error than the other.

Solving problem instances depends on the convex relaxation as well as on the
solver and this dependency on the solver makes a reliable practical evaluation of the
relaxations difficult. For convex programs with strong duality, remedy comes from
primal-dual solvers. They not only minimize the objective, but delimit it with lower
and upper bounds. Once the bounds are sufficiently close the global optimum has
reliably been found. The Mosek[Mos10] interior-point solver is such a primal-dual
solver, which we therefore strive to use in our evaluation when possible.

On the downside interior-point solvers can be slow, so that not all instances can
be solved with an interior-point solver in a reasonable time. For the relaxations
(SDP-R3) and (TIGHT) solving with the Mosek interior-point solver even the smaller
instances took hours, which we therefore did only on the instances “chr12a” to
“chr15c”.

When solving the SDP approximation (SDP-F) we limit the approximation in-
troduced error to 1% of the (known) minimal cost by choosing 𝛾 accordingly. The
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Figure 6.2.: Optimality gap and relative error on the QAPLIB instances.

reliability of the results then only depends on the minimization of a convex function
on a convex domain with a quasi-Newton method. From our experiments we draw
the following conclusions:

The quasi-Newton method and the interior-point solver yield similar results for
the (FASTBQP) relaxation as well as for the (SDP-R3) relaxation on the instances
“chr12a” to “chr15c” and for the (TIGHT) relaxation on the instances “chr12a”
to “nug14”. Thus in most cases the quasi-Newton approximation gave reliable
estimations of the lower bound. Only when solving (TIGHT) on the instances
“chr15a” to “chr15c” did the quasi-Newton method fail to converge and delivered a
much smaller lower bound then the interior-point solver, whose lower bounds were
much more comparable to the results of (SDP-R3). This is especially important as
research hints that the relaxations (TIGHT) and (SDP-R3) are indeed equal ([DML17],
proof of lemma (2) in the appendix).

After this note of caution we proceed with interpreting the results. (SDP-R3)
(and possibly (TIGHT)) provides in nearly all cases the smallest relative error and
the tightest bounds as expected from Theorem 19. Where this is not the case it
might be due to missing convergence of the quasi-Newton solver and due to the
randomization of the upper bound. (LIN) and (FASTBQP) have similar relative
errors and optimality gaps, although in a few examples (FASTBQP) has a very large
relative error and optimality gap.

(SDP-R3) is not only known for its good results but also for the long time interior-
point solvers require solving it. For most instances (LIN) and (FASTBQP) are the
fastest methods, which is clearly demonstrated in Figure 6.1c showing the solver
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Optimality gap Error
SDPR3 LIN FAST SDPR3 LIN FAST

SDPR3 - 0.81 0.98 - 0.67 0.86
LIN 0.19 - 0.67 0.10 - 0.43

FAST 0.02 0.33 - 0.05 0.48 -

Figure 6.3.: Fraction of experiments, where methods have smaller optimality gap/er-
ror (FAST is FASTBQP, TIGHT was left out due to uncertainties of the
quasi-Newton solver).

time relative to (LIN/IP). Approximating (SDP-R3) and (TIGHT) by maximizing the
dual of (SDP-A) with a quasi-Newton method is much faster than solving (SDP-F)
with an interior-point solver. Indeed, in nearly all cases the interior-point solver
requires much more than 30 minutes. This is a striking difference, from seconds
(LIN) to minutes (SDP-R3/QN) to hours (SDP-R3/IP) (note the logarithmic scale in
Figure 6.1c).

The various SDP relaxations differ not only in their solutions but also in their
timings. Typically, adding constraints to a relaxation restricts the solution space
and decreases the number of iterations, but increases the time for each iteration.
(TIGHT) has the most constraints and a feasible set at least as large as (SDP-R3)
and accordingly takes the most time to solve. (FASTBQP) on the other hand has got
only 𝒪(𝑛3) constraints and takes the least time to solve.

6.4.2. Shape matching
Graph and shape matching is an application of the QAP in computer graphics and
vision [SRS07; Kez+15b; Ves+17]. In the following we evaluate the performance
of our relaxations and solvers to match shapes from the Tosca[BBK08] and the
Shrec[GBP07] datasets.

On both surfaces, that are to be matched, we choose all points of extremal average
geodesic distance in a geodesic neighborhood of 1/5 the geodesic diameter, which
are usually located at semantically meaningful locations. Then we iteratively add
the geodesically farthest point until we have 𝑛 points. Let 𝑑𝑖𝑗 and 𝑑′

𝑖𝑗 be the pairwise
geodesic distances on both shapes, let 𝜎 be the mean of the distances from each
point to its closest neighbor. Then we define the geodesic distortion as:

𝐀ISO
𝑝𝑞,𝑟𝑠 = exp ⎛⎜⎜

⎝
−

(𝑑𝑝𝑟 − 𝑑′
𝑞𝑠)2

𝜎2
⎞⎟⎟
⎠

(6.24)

Good assignments have low distortions and the minimizer of the QAP defined by
𝐀ISO is often a good assignment of the points[LH05; Kez+15b].
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a b c

d e f

Figure 6.4.: Solving 𝐴ISO on pairs of shapes sampled at fifteen points. Correspond-
ing points have random colors, which are then diffused over the shape.
(b,e) match the intrinsic symmetry and is not a failure case. Points are
sampled as described in the text and do not necessarily agree exactly,
e.g. head in (b,d).

Figure 6.5.: Optimality gap after solving the QAP of Eq. (6.24) with several methods.
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Figure 6.6.: Solver times for the different methods to solve the QAP of Eq. (6.24).

Figure 6.4 shows several example shapes with sampled and assigned points on
isometric and near-isometric shapes. Figure 6.5 and Figure 6.6 depict the relative
optimality gaps and the times required to solve a series of test cases such as the
examples in Figure 6.4 sampled with 5, 10 or 15 points.

In the previous evaluation of QAPLIB the instances led to varying optimality gaps
and the optimality gaps can be seen as a measure of hardness of the QAP instance.
Interestingly, the QAP instances from Eq. (6.24) lead to a very tight relaxation, i.e. a
small optimality gap. (LIN) has an optimality gap of 0 in all cases and the optimality
gap of the SDP relaxations stems from the approximation with (SDP-A) and can be
further reduced by increasing 𝛾. Therefore, with the correct 𝛾 all relaxations result
in the optimal solution.

Yet the methods differ greatly in the time required to solve. Solving (LIN) and
possibly (FASTBQP) with an interior-point solver is the fastest method although
fast approximations of (SDP-R3) and (FASTQAP) with (SDP-A) are only by a factor
2-4 slower. Approximating (TIGHT) with (SDP-A) or solving the SDP relaxation of
(SDP-R3) with an interior-point solver is still one order of magnitude slower.
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Product Manifold Filter

The product manifold filter (PMF) [Ves+17] uses a few predefined correspondences
to infer improved ones. Typically, the method is applied iteratively until conver-
gence. Let the current correspondences be encoded in a matrix 𝐗𝑖 ∈ ℝ𝑛×𝑛 where
(𝐗𝑖)𝑝𝑞 = 1 if points 𝑝 and 𝑞 are assigned and 0 otherwise. Let 𝜎 be as above and let
𝑟 and 𝑟′ be measures of locality on both shapes. Then we calculate new correspon-
dences 𝜙𝑖+1 by solving the Linear Assignment Problem:

(PMF-LP) 𝜙𝑖+1 = arg min
𝜙∈𝑆𝑛

[𝐗𝜙]𝑇 𝐀PMF [𝐗𝑖]

with 𝐀PMF
𝑝𝑞,𝑟𝑠 =

⎧{{{
⎨{{{⎩

0 𝑑𝑝𝑟 < 𝑟 ∧ 𝑑′
𝑞𝑠 > 2𝑟′

0 𝑑′
𝑞𝑠 < 𝑟′ ∧ 𝑑𝑝𝑟 > 2𝑟

exp (−(𝑑𝑝𝑟+𝑑′
𝑞𝑠)2

𝜎2 ) otherwise

Requiring only a few initial correspondences, this method was shown to com-
pute correspondences of several hundred points. We show next that the above
formulation can be interpreted as an iterative minimization of the following QAP:

(PMF-QAP) 𝜙∗ = arg min
𝜙∈𝑆𝑛

1
2

[𝐗𝜙]𝑇 𝐀PMF [𝐗𝜙] (6.25)

First we relax both formulations onto the Birkhoff polytope Π𝑛:

(PMF-LP’) 𝐗𝑖+1 = arg min
𝐗∈Π𝑛

[𝐗]𝑇 𝐀PMF [𝐗𝑖] (6.26)

(PMF-QAP’) 𝐗∗ = arg min
𝐗∈Π𝑛

1
2

[𝐗]𝑇 𝐀PMF [𝐗] (6.27)

Theorem 23. The stationary points of (PMF-LP’) are the local minima of (PMF-QAP’). If
𝐀PMF is not positive definite, (PM-QAP’) might have several local minima.

Proof. 𝐗∗ is a local minimum of 𝑓 (𝐗) = 1
2
[𝐗]𝑇𝐀PMF[𝐗] if and only if 𝑓 (𝐗∗) grows

in any direction 𝑑 which does not leave the convex set Π𝑛. Such directions can be
parameterized by 𝐗 ∈ Π𝑛 with 𝑑 = 𝐗 − 𝐗∗:

𝐗∗ is a local minimum of 𝑓 (𝐗)
⇔ ((∇𝐗 𝑓)∣𝐗=𝐗∗)𝑇 [𝐗 − 𝐗∗] ≥ 0 ∀𝐗 ∈ Π𝑛

⇔ [𝐗∗]𝑇𝐀PMF[𝐗] ≥ [𝐗∗]𝑇𝐀PMF[𝐗∗] ∀𝐗 ∈ Π𝑛

⇔ 𝐗∗ = arg min
𝐗

[𝐗∗]𝑇𝐀PMF[𝐗]
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a b c

d e f

Figure 6.7.: Matching 15 points with (PMF-QAP) and refining the result with (PMF-
LP). Maps are shown by mapping a random color signal. (a,b,d,e)
matched correctly, although (b,e) match the intrinsic symmetry which
happens in little less than half of the times; Failures: QAP twisted the
feet in (c), finding the k best solutions with Branch&Bound could help;
(PMF-LP) had problems converging on the shoulder of (f).
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By interpreting PMF as a local minimization of a QAP energy we can remove
the requirement of predefined correspondences. We first solve (PMF-QAP) over a
small set of points (𝑛 ≈ 15) and then refine the solution using (PMF-LP), which has
only 𝒪(𝑛2) instead of 𝒪(𝑛4) variables and scales better. Some example applications
can be seen in Figure 6.7, which shows the correspondences after (PMF-QAP) and
after (PMF-LP).

6.5. Conclusions
We compared several methods to solve the quadratic assignment problem with
a focus on their application to shape matching. Our results show that the formu-
lation as a linear program (LIN) is often preferable to the more complicated SDP
relaxations. At least for 𝑛 ≤ 15 it is nearly always faster. Its bounds are often tighter
than the bounds of (FASTBQP). If required, (SDP-R3) yields lower bounds at least
as large as the others. Furthermore, approximating (SDP-R3) or (TIGHT) using
(SDP-A) [Wan+16] is always much faster than using state-of-the-art interior-points
solvers. We showed how to use these insights to solve quadratic matching problems
and how to utilize the results for shape matching. Furthermore our interpretation of
(PMF) as a (QAP) allows to remove the requirement of predefined correspondences.
Investigating the possibilities to iterate several low-cost solutions with a Branch
and Bound approach might be interesting possibilities for future work.
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7 Summary, conclusions and
outlook

Today there is an opportunity to exploit the information contained in the steadily
growing shape databases and in shapes obtained from large-scale 3d scanning.
Often the most valuable information is not within single shapes but in their relation.
To utilize this information dense correspondences between the shapes are required.
Despite several years of intense research, computation of dense correspondence
is still a major obstacle to exploit shape databases as well as other more advanced
applications.

7.1. Contributions and summary
This thesis presents several contributions to near-isometric shape matching pub-
lished by the author in the recent years. After an introduction to shape matching
in chapter 1, the chapter summarizes our contributions and illustrates how they
relate to the related work. The next chapters presented the publications the author
published in the field in the recent years. Finally, after this chapter the mathematical
foundations are presented in appendix 2. The discussion there will cover extrin-
sic and intrinsic shape alignment, functional maps and sparse correspondence
generation with assignment problems. The contributions can be summarized as:

• Geodesic distances are an important tool in geometric shape processing. Chap-
ter 3 presents novel lower and upper bounds to approximate geodesic dis-
tances. The bounds are simple in theory, they can be computed quickly, they
are continuous and they have small absolute error. Additionally, the lower
bound has a small relative error.
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• Chapter 4 generalizes the description length approach for ensemble optimiza-
tion [KT98] to the morphable-part model by Berner er al. [Ber+11]. Given
sufficient prior correspondences the method delivers high quality correspon-
dences especially well suited for the learning of shape spaces. In contrast to
the original method our part-based approach can match shapes of different
topology, has much fewer artefacts from part-wise rotations and the loose
coupling of the part-wise shape spaces generalizes better from fewer exam-
ples. The bi-Laplacian regularizer additionally smooths the correspondences
and works as a correction for the sampling bias caused by the entropy min-
imization. Using a quasi-Newton optimization allows the optimization of
much larger models.

• As noted in chapter 5 and section 2.4.3 solving for a functional representation
of a point-wise map is equivalent to computing an alignment of dual-delta--
distributions. This requires pairwise distances on dual-delta-distributions,
which are not well-defined. Previous methods therefore project dual-del-
ta-distributions onto the first 𝑘 eigenvectors of the Laplace operator, which
makes distances well-defined but dependent on 𝑘.
Chapter 5 explores the representation of point-wise maps by their alignment of
the Green’s functions of the Laplace operator. This alignment is well-defined
in the continuous case. Approximating the alignment on a basis of Laplace
eigenvectors converges quickly to the continuous result as the number of
eigenvectors increases. Additional the chapter explores connections between
Green’s functions and conformal maps.

• In computer graphics there is a growing use of the NP-hard quadratic as-
signment problems to model shape matching problems. Chapter 6 compares
convex relaxations over the lifted permutations of the quadratic assignment
problem recently used in computer graphics to the established methods in
discrete optimization. It shows that the best semidefinite relaxations provide
only slightly tighter bounds than linear relaxations, which are generally faster
to compute, despite approximating the semidefinite programs with the re-
cently introduced method from Wang et al. [Wan+16], which is itself often a
magnitude faster than the MOSEK [Mos10] interior-point solver. Additionally,
we show that quadratic assignment problems emerging from shape matching
are “simple” instances, as all the examined relaxations optimally solve all
shape matching instances.
Furthermore, we show that the Product Manifold Filter [Ves+17] can be seen as
a heuristic to solve a quadratic assignment problem. This allows the automatic
computation of correspondences between shapes of several hundred points.

Our contributions can be combined to compute correspondences on near-isometric
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shapes as follows: After approximating geodesic distances as described in chapter 3
we use the theory of chapter 6 to obtain up to fifteen sparse correspondences by
creating and solving a quadratic assignment problem (e.g. Figure 6.7). These sparse
correspondence are then used to compute a Green’s alignment as described in
chapter 5, from which we then extract dense correspondences. Typically such an
alignment is successfully computed from as little as six correspondences, so that the
fifteen computed above should be more than enough. Furthermore, as described
in sections 2.2 and 2.4 this becomes notably simpler for isometric shapes. On a
shape ensemble we subsequently apply the optimization of chapter 4 to obtain
correspondences especially well-suited for the creation of shape spaces.

Occasionally user intervention might be required. Sometimes the best solution of
the QAP mislabels few correspondences or maps to an intrinsic symmetry, which
might be unwanted. The correct assignment is usually contained in the first few best
solutions. Furthermore the dense correspondences extracted from the Green’s align-
ment and computed by entropy optimization, might partially be non-continuous
or non-surjective. Manually adding a few correspondences is usually sufficient for
their correction.

7.2. Future work
Despite intense research computation of dense correspondences on near-isometric
shapes often yields non-bijective maps with unnecessary large stretch. There are
several interesting directions to further improve the current state-of-the-art.

If we define the quality of a correspondence map by the induced metric stretch,
i.e. how far neighboring points are mapped to, then all but the simplest shapes have
several locally optimal configurations, where no small change in the correspondence
map yields lower stretch. For example, changing front and back as well as left
and right of a fourlegged animal results in four different configurations of locally
minimal stretch. This underlying non-convexity is one inherent reason for the
complexity of shape matching. A formulation of shape matching is either non-
convex, such as iterative closest points, or approximative, such as functional maps.

The theory on convex relaxations and on the quadratic assignment problem
shows, that tight bounds for non-convex problems can be found and exploited to
determine the global optimum and even enumerate local optima. On the downside
assignment problems are too strict to model near-isometric shape matching due to
the relative area-preservation. Remedy could be replacing bijectivity with a term
assuring surjectivity, i.e. that everywhere on the target shape is mapped to. How
to include surjectivity such that the formulation allows tight convex relaxations,
similar to the convex relaxations that bijectivity allows (see chapter 6), is an open
question.

Once there is a formulation of surjectivity, another problem of current approaches
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might become apparent: On near-isometric shapes the functionals 𝐀ISO and 𝐀PMF

result in non-continuous maps as correspondences have global influence. Mini-
mizing the target lengths of the source triangulation could be a viable alternative1.
Furthermore, the current stretch energies are not triangulation invariant.

Moreover, assignment problems are currently limited to small problem sizes. On
commodity hardware current methods solve linear assignment problems up to sev-
eral thousand points and quadratic assignment problems of less than twenty points.
While general instances of both problems have been thoroughly researched, there
is evidence that applications in shape matching might allow larger problem sizes.
Chapter 6 showed that shape matching formulations lead to “simple” quadratic
assignment problems, which have even been approximated by iterative applica-
tions of linear assignment problems (chapter 6 and [Ves+17]). Understanding what
makes shape matching instances simple and why approximation works so well
might lead to faster solutions of shape matching instances. On a more practical
note, after substituting surjectivity for bijectivity the maximal stretch is limited
and correspondences in linear assignment problems and correspondence pairs in
quadratic assignment problems can be pruned, which might be worth exploration.

There are many connections between the theory on functional maps, assign-
ment problems, convex relaxations and quadratically constraint quadratic pro-
grams[Luo+10]. Any permutation matrix and indeed any matrix of the Birkhoff
polytope (the feasible set of linear assignment problems) is a functional map repre-
sented in the nodal/hat basis. Linear assignment problems could be used to com-
pute an assignment induced functional map under functional constraints. Under
least squares functional constraints this could be modeled by a linearly constraint
positive-semidefinite quadratic program. Especially interesting are formulations as
quadratically constraint positive semi-definite quadratic programs, which were suc-
cessfully approximated with semi-definite programs [Luo+10]. Recently there were
used to compute an orthogonal functional map and a corresponding assignment
between isometric shapes [Mar+16b].

The best correspondences maps between near-isometric shapes are not relative
area preserving and can not be obtained from assignment problems. Solving for
a functional map is a convex relaxation of solving for a point-wise functional
map as noted in section 2.4.3. Instead of dropping the alignment constraints in
(2.54) it would be preferable to constrain the images of delta-distributions under
the adjoint of the functional map to be either within (linear constraints) or on
(quadratic constraints) the convex hull of the delta-distributions of the other shape.
Constraints on the inverse were shown to improve a functional map [Eyn+16] and
can be formulated as quadratic constraints. Combining those ideas might result in a
fast automatic computation of functional maps on near-isometries via quadratically

1Such a functional was evaluated for the publication of chapter 6, but possibly due to relative
area-preservation it gave similar results to 𝐀ISO and 𝐀PMF.

138



constraint quadratic programs possible.
Our ensemble optimization in chapter 4 becomes more reliable when formulated

over a joint parameterization, or when points are embedded such that extrinsic
match intrinsic distances (e.g. with delta-distributions over few eigenvectors or
Green’s functions). It would be interesting to extend such embeddings to optimize
extrinsic functionals, such as Laplace smoothness and ensemble entropy.

Furthermore, it would be interesting to exploit (5.22) to build an efficient and
simple method for the computation of conformal maps on arbitrary topologies.
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A Additional evaluations

A.1. Further comparision of distance
estimations (chapter 3)

This chapter compares our distance approximations in chapter 3 to the geodesic
distance approximating Euclidean embedding of Aflalo et al. [AK13], which we
quickly describe.

The smoother a distance field 𝑑𝑝 is, i.e. the smaller their Dirichlet energy, the
better it can be represented by the eigenvectors of the Laplace operator:

𝑑𝑝 = [𝜙1 … 𝜙𝑛]𝑇 [𝛼1 … 𝛼𝑛] (A.1)

Thus the symmetric distance operator �̃� ∶ ℳ × ℳ → ℝ, which maps two points
onto their geodesic distance, can be expressed in the eigenbasis as well:

𝑑𝑝(𝑞) = 𝛿𝑇
𝑝 �̃� 𝛿𝑞 = 𝛿𝑇

𝑝 [𝜙1 … 𝜙𝑛] 𝐷 [𝜙1 … 𝜙𝑛]𝑇 𝛿𝑞 𝐷 ∈ ℝ𝑛×𝑛 (A.2)

In a first step the Aflalo et al. solve for 𝐷 from a few distance fields in a least
squares sense. The approximates all pairs distances, but these distances are not
assured to be a proper distance metric, for example they can be negative.

In a next step the authors generalizing multidimensional scaling to the above
distance representation and determine a Euclidean embedding, whose Euclidean
distances approximate the (already approximated) geodesic distances. A Euclidean
embedding defines a proper distance metric, but is actually much more. For exam-
ple, it defines angles, allows point interpolation and rigid alignment.

Their method depends on the smoothness of geodesic distances, but except for
the simplest domains1 geodesic distances are not differentiable. For two or more
dimensional manifolds geodesic distances are not differentiable at the source point
and on compact surfaces they are not differentiable at the cusp regions, where they
are locally maximal. Interestingly on compact surfaces the Dirichlet energy of a

1On the Euclidean line geodesic distances are indeed linear function
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geodesic distance field is constant due to the Eikonal equation (𝐴 is the surface
area):

𝐸Dirichlet[𝑑𝑝] = 1
2

∫
ℳ

‖(∇𝑑𝑝)(𝑥)‖2
2 𝑑𝑥 = 1

2
∫

ℳ
1 𝑑𝑥 = 𝐴

2
(A.3)

Thus, for any number of eigenvectors 𝑛 and the equation A.1 and A.2 are only
approximations. Furthermore, there is no Euclidean embedding, such that the
Euclidean distances are exactly the geodesic distances. Figures A.1 and A.2 shows
a distance field, our bounds, the above method as well as both combined.
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Figure A.1.: Approximating distances using 30 landmarks.
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Figure A.2.: Approximating distances using 100 landmarks.
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A.2. Further shape sampling results (chapter 4)
Once correspondences have been computed, they can be used to compute a shape
space. A simple method to compute a shape space is to interpret the shapes as points
in a high-dimensional space and fit a multivariate normal distribution. Therefore
we sample the shapes at 𝑛 corresponding points and represent each shape by a
vector in ℝ3×𝑛. Then the maximum-likelihood estimated normal distribution is
computed by a principle component analysis. We use a method, that is similar in
principle, but adapted to our part-based model[Ber+11].

Such a shape space is said to generalize if it contains plausible shapes. We now
evaluate the correspondences computed in chapter 4, shown in Figure A.3,by in-
specting the shape spaces they yield, i.e. inspecting if they generalize. Usually only
high-quality correspondences, which exhibit little drift, lead to shape spaces that
generalize. Figure A.4 and A.5 show sampled shapes taken from the accompanying
video2. These shapes are not contained in the input examples, yet look very similar
to the input examples. This shows how well the correspondences computed in
chapter 4 are suited for the creation of shape spaces, as well as, how useful these
correspondences and such shape spaces are.

Figure A.3.: The correspondences computed in chapter 4.

2https://www.youtube.com/watch?v=2m3TbGO9Kls
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Figure A.4.: Sampling shapes from the bird ensemble.

Figure A.5.: Sampling shapes from the teddy ensemble.
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A.3. Evaluating the influence of the Laplace
regularizer (chapter 4)

Chapter 4, as well as the previous section, made clear that the optimization of
chapter 4 yields high-quality correspondences well-suited for the creation of shape
spaces. As described in the Eqs. (4.12) and (4.16), the optimization moves points
along the surface to minimize two energies: the compactness of the resulting shape
space and the regularizer penalty. It was not yet evaluated which of these two
terms is responsible for the quality of the correspondences, which we will in the
following on the simple synthetic example shown in Figure A.6.

If the shape ℳ is embedded by the three coordinate functions 𝑥, 𝑦, 𝑧 ∶ ℳ → ℝ
then the regularizer minimizes ‖Δ𝑥‖2 +‖Δ𝑦‖2 +‖Δ𝑧‖2, i.e. a variant of the biharmonic
energy from section 2.1.3. Hereby the Laplace operator is the graph Laplacian from
section 2.1.6, which derives its metric from the connectivity. It was indeed shown,
that such a regularizer alone is able to yield smooth correspondences [Yeh+11].

To show that the compactness assumption is a critical ingredient of the opti-
mization of chapter 4, our goal is to discriminate the influence of the regularizer
from the influence of the compactness assumption. A difficulty thereby is that the
compactness term requires the regularizer to ensure that the surfaces are sampled
everywhere. We therefore compare the correspondences computed with either the
regularizer alone or with both, the regularizer and the compactness assumption.

The example consists of five shapes that differ only at a continuously extruding
feature in the middle. We distinguish two regions on the shapes depicted on the
right of the Figure A.7. The green region consists of the body and the tip of the
extrusion and is constant during the deformation. In contrast, the brown part is
stretched anisotropically, i.e. in only one direction, through out the deformation.
We therefore expect the correct correspondences to map the colored regions onto

Figure A.6.: Source shapes for the evaluation and the colored regions.
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Figure A.7.: Correspondences computed with/without the compactness
assumption.

themselves, such that the green regions are not distorted at all, while the brown
regions are distorted anisotropically.

Figure A.7 depicts the correspondences computed with both variants. It shows
that the compactness assumption not only has a major influence on the result,
but that it yields exactly the correspondences we described above. It does not
introduce stretch in the green regions, which is best seen in the nearly constant
front facing views in the lower row, and thus necessarily distorts the brown region
anisotropically. In contrast the regularizer alone leads to an almost conformal map,
which is a minimizer of the biharmonic energy. It introduces stretch in all regions,
especially at the tip of the extrusion, which is strongly distorted in the front facing
views.

The correspondences directly affect the derived shape space, which we investigate
next. Figure A.8 shows the principle directions of both shape spaces as well as the
standard deviations into these directions. The regularizer alone results in a shape
space with slowly decreasing standard deviations in the principal directions, where
no direction exactly matches the extrusion process. The shape space computed
with the compactness assumption has negligible variations in all directions but
in one, which exactly matches the extrusion process. It is no surprise that it also
yields a more compact shape space with a smaller entropy, which is computed as
the logarithm of the product of the squared standard deviations.

As we discussed before, compactness is a machine learning principle to overcome
the bias-variance dilemma. Applied to shapes, it claims that reproducing shapes
with shape spaces tends to generalizes better the more compact they are. Figure A.9
evaluates the ability of the learned shape spaces to generalize by sampling from
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Figure A.8.: Principle directions of the shape spaces and their standard deviations.

their distribution as discussed in the previous section. And again, while the shape
space from the regularizer alone contains shapes differing in unseen ways from
the input shapes, the shape space computed under the compactness assumption
reproduce exactly the variation seen in the input shapes. We can therefore conclude
that the compactness assumption is a critical ingredient of the optimization.
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Figure A.9.: Sampling from the shape spaces.
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