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Abstract
A major goal of this thesis is to introduce stochastic, physically consistent models
for precipitation extremes based on the moisture budget. The moisture budget
describes the moisture flux convergence and is essential for the generation of pre-
cipitation and in particular extreme precipitation. The introduced models are used
to extensively study to which extent the budget equation can account for charac-
teristics of precipitation extremes. An important question in this respect is under
which conditions the budget equation generates a heavy-tailed behavior. A further
point is to understand whether the spatial structure of the humidity transport is
essential in generating precipitation extremes. It is demonstrated that the humidity
budget equation does not allow for the emergence of heavy-tailed precipitation dis-
tributions from light-tailed distribution for wind and humidity. At the same time
finite sample approximations of the models suggest that asymptotic properties may
be of very limited practical relevance. The models considered here show a remark-
able stability to the correlation of wind and humidity. We prove the convergence
of a precipitation model to its max-stable limit, which yields asymptotic spatial
independence of precipitation extremes. Further, there is no prominent difference
between precipitation extremes in purely rotational or purely divergent flow. The
budget equation reveals a strong sensitivity to the marginal distributions of wind
and humidity and further assumptions, which shows the need for well-established
distributional assumptions for these variables.

In order to model moisture flux convergence spatially consistent a multivariate
Gaussian random field formulation is introduced. It represents the differential re-
lations of a wind field and related variables such as the streamfunction, velocity
potential, vorticity, and divergence. The covariance model of the Gaussian random
field is based on a flexible bivariate Matérn covariance function for the stream-
function and velocity potential. It allows for different variances in the potentials,
nonzero correlations between them, anisotropy, and a flexible smoothness param-
eter. The joint covariance function of the related variables is derived analytically.
Further, it is shown that a consistent model with nonzero correlations between the
potentials and positive definite covariance function is possible, rebutting a claim of
Obukhov (1954). The statistical model is fitted to forecasts of the horizontal wind
fields of a mesoscale numerical weather prediction system. Parameter uncertainty
is assessed by a parametric bootstrap method. The estimates reveal only physi-
cally negligible correlations between the potentials. The covariance model provides
opportunity for a wealth of applications in data assimilation.
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1 Introduction

The amount of typical extreme precipitation substantially exceeds the moisture
that is stored locally in a column of the atmosphere (Trenberth et al., 2003).
Hence, a necessary condition for such events is sufficient moisture supply. Con-
versely, if a large quantity of humidity is transported to a specific location, the
Clausius-Clapeyron threshold is exceeded and precipitation emerges. Thus hu-
midity transport is essential in generating heavy precipitation (Trenberth, 1999;
Trenberth et al., 2003). The transport of humidity is given by the following budget-
equation

∫ H

0

∂

∂t
q +∇ · (Uq) dz = E − P, (1)

where H is the upper boundary of the moisture containing layer of the tropo-
sphere, q is the absolute humidity, U the horizontal wind field, E the evaporation
and P precipitation. In this thesis stochastic and physically consistent models for
precipitation extremes based on the moisture budget are introduced. Using these
models we will extensively study to which extent the budget equation can account
for characteristics of precipitation extremes. We address the following questions.

Under which conditions generates the moisture budget (1) a heavy-
tailed P? Which terms in (1) are essential for the generation of ex-
tremes?

The stochastic models for extreme precipitation are introduced and studied in
Chapter 3.

Perhaps the most demanding task for a stochastic model based on the bud-
get equation (1) is to find a stochastic process that models the moisture flux
convergence spatially consistent. We base our model on the right hand side of
∇ · (Uq) = U · ∇q + q∇ · U and introduce in Chapter 2 a stochastic process that
describes the wind field U its divergence ∇ · U and further related variables such
as streamfunction, velocity potential and vorticity. The variables are connected via
the Helmholtz decomposition. In dimension two it states that any wind field U can
be uniquely decomposed given appropriate boundary conditions into a rotational
and divergent component. For the potentials streamfunction ψ and velocity poten-
tial χ we have U = ∇× ψ +∇χ. Divergence is given by ∇ · U = ∆χ and vorticity
by ∇×U = ∆ψ, where ∆ is the 2-dimensional Laplace operator. Here, we address
the following questions.

Is there a stochastic process able to represent the differential relations
between the variables of the Helmholtz decomposition, which is suffi-
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ciently flexible to be a useful approximation for realistic wind fields?
Can such a process model the correlations of streamfunction and veloc-
ity potential?

Our approach models the differential relations of the Helmholtz relation exactly
and its consistency makes it an intrinsically valuable geostatistical approach. It
has various potential applications in data assimilation as it allows one to perform
an update step preserving the physical balance. Generating physically consistent
initial conditions is a major goal in data assimilation (Daley, 1991; Gottwald, 2014;
Laloyaux et al., 2016) and the lack of such initial conditions resulted in the failure
of the first numerical weather prediction systems (Daley, 1991). In a case study we
fit the process to the output of a numerical weather prediction system, assess their
uncertainty and discuss utility and limitations of the model. Chapter 2 as well as
parts of the abstract have been published with slight modifications in Hewer et al.
(2017).

The models discussed here are physical in the sense that they adopt characteristic
physical relations that link various meteorological variables. In this sense we use
the word physical in this thesis. The models are not dynamical as they do not
represent a closed system, whose temporal development is self-contained.

The two chapters of this thesis are connected in two ways. First, the stochastic
methods introduced in Chapter 2 are indispensable in formulating and simulating
the precipitation models of Chapter 3. The physical consistency of the wind field
model is necessary to obtain a physically consistent model for the precipitation
fields. Secondly and more generally, both approaches are statistical models that
are based on physical reasoning.

From a statistical point of view such methods are valuable as they provide a
method to reduce the number of independent variables in a system. For example,
in Chapter 2 a covariance model for streamfunction and velocity potential suffices
to derive the covariance of the wind field, vorticity and divergence. The informa-
tion that is contained in the physical relations allows one to reduce the estimation
uncertainty, as more data is available to estimate the same number of parameters.
Further, physical relations can be used to infer stochastic properties. The distribu-
tion of precipitation can be inferred from the distributions of wind and humidity
field. For example, Wilson and Toumi (2005) modeled precipitation as a product
of three Gaussian variables based on physical reasoning.

From a meteorological point of view such methods are attractive as they can
be used to understand which physical terms and relations can explain observed
stochastic properties like heavy tails or spatial structure. Further, such physically
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motivated models are particularly interesting if observational data are rare or suffer
from systematic errors. For example there are few observations of vertical velocity
in the atmosphere such that physical understanding of the influence of its distribu-
tion is particularly important. Theoretical insight into the distribution of extreme
precipitation events may be particularly needed as there are few very long time
series and their homogeneity may be questioned (Venema et al., 2012). Wilson and
Toumi (2005) argue that physically-motivated models are stable under climatic
change and may thus be used to assess its consequences. Extrapolation methods
from extreme value theory (EVT) rely on the appropriateness of asymptotic rela-
tions, yet the appropriateness is questioned by e.g. Wilson and Toumi (2005) and
Veneziano et al. (2009). In such a situation a physically based distribution for pre-
cipitation may give useful preasymptotic approximations. Relying on more precise
characterization of the underlying process these methods allow for finite-sample
improvements of the extrapolation methods.

Recent improvements in data assimilation have led to substantial progress in
predictive skill of weather forecasts (Bauer et al., 2015). The present study performs
basic research, which could lead to improvements in data assimilation and therefore
may provide added value to numerical weather prediction (NWP). Similarly, this
thesis improves our understanding of the generation of extreme precipitation events
and could lead to more realistic extrapolation and representation of extreme events.
Due to the fundamental risks that our society faces with respect to precipitation
and flooding (MunichRe, 2017) such methods are valuable to both society and
economy.
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2 A Matérn based multivariate Gaussian random process
for a consistent model of the horizontal wind
components and related variables

2.1 Introduction

An appropriate representation of the covariance structure in spatial models of me-
teorological variables is essential when analyzing (Gandin, 1963; Kalnay, 2003)
meteorological data using data assimilation (Hollingsworth and Lönnberg, 1986;
Evensen, 1994; Bonavita et al., 2012; Pu et al., 2016). Assuming Gaussian statis-
tics this requires an appropriate representation of the background error covariance
matrix. Further, spatial stochastic models for meteorological variables should re-
spect physical relationships.

One of the first approaches to include physical consistency via differential rela-
tions between variables can be found in Kolmogorov (1941). Thiébaux (1977) in-
troduced a covariance model for wind fields assuming geostrophic balance, thereby
incorporating anisotropy error covariance structure of the geopotential height. Da-
ley (1985) derived a covariance model for the horizontal wind components assum-
ing a Gaussian covariance model for the velocity potential and the streamfunction,
where he derived the differential relations between the potentials and the wind
field. The covariance model proposed by Daley (1985) is rather flexible as it al-
lows for geostrophic coupling, nonzero correlation of streamfunction and velocity
potential, and differing scales for the two potentials. Daley (1985) also considered
geopotential height as an additional model variable. However, the resulting co-
variance function for the wind fields is not positive definite for many parameter
combinations. Hollingsworth and Lönnberg (1986) adapted Daley’s method and
formulated a covariance function for the potentials using cylindrical harmonics.
They show that on the synoptic scale the correlation between the potentials is
small, such that Daley (1991) reformulated his model for zero correlations. These
approaches (Thiébaux, 1977; Hollingsworth and Lönnberg, 1986; Daley, 1985) as
well as our model differ from current data assimilation methods, as they provide
an explicit, parametric and analytic covariance model for the background error.
So-called control variable transform methods (Bannister, 2008) describe the back-
ground error matrix in an implicit non-parametric way via its square root 1 using
latent variables which model the physical variables. Sample based methods like
the ensemble Kalman filter (Evensen, 1994) describe the error statistics based on

1e.g. Cholesky decomposition



estimates obtained from an ensemble.

The data assimilation literature (e.g. Thiébaux, 1977; Hollingsworth and Lönnberg,
1986; Daley, 1985) typically uses the stochastic models in order to describe the co-
variance matrix of the background error, which is the difference of a forecast and
the true field. Similar methods have also been used in order to describe the full
turbulent field (Frehlich et al., 2001). There has also been considerable interest in
describing the statistics of the velocity field directly or via its spectrum (Bühler
et al., 2014; Lindborg, 2015; Bierdel et al., 2016).

While Thiébaux (1977), Hollingsworth and Lönnberg (1986) and Daley (1985)
include physical relations via differentiation of the covariance function, finite differ-
ence operators are used in Bayesian hierarchical models. For example, Royle et al.
(1999) modeled the geostrophic relation of pressure and wind field.

In this chapter, we propose a multivariate Gaussian random field (GRF) for-
mulation for six atmospheric variables in a horizontal two-dimensional Cartesian
space. Assuming a bivariate Matérn covariance for streamfunction ψ and velocity
potential χ, we derive the covariance structure of the horizontal wind components
~U = (u, v)T as well as vorticity ∇× ~U := − ∂

∂e2
u+ ∂

∂e1
v and divergence ∇· ~U . All of

these quantities are connected via the Helmholtz decomposition, which states that
for any given wind field ~U there exists a streamfunction ψ and velocity potential
χ, such that ~U = ∇×ψ+∇χ, where ∇×ψ :=

(− ∂
∂e2
ψ, ∂

∂e1
ψ
)T . In dimension two

and with appropriate boundary conditions this decomposition is unique. Curl and
divergence of the wind field are given as ∇× ~U = ∆ψ and ∇· ~U = ∆χ, respectively,
where ∆ is the 2-dimensional Laplace operator.

Our multivariate GRF formulation is novel for several reasons. While e.g. Daley
(1985) only used the potentials to derive the covariance function of the wind fields,
our model is formulated for all related variables, including a formulation for the
potential functions and the wind field, as well as vorticity and divergence. Secondly,
our model provides a formulation for anisotropy in the wind field and the related
potentials. Further, we allow for nonzero correlations between the rotational and
divergent wind component, which might be particularly relevant for atmospheric
fields on sub-geostrophic scales. We show that the scale parameters considered
by Daley (1985) are inconsistent with nonzero correlations between streamfunction
and velocity potential, as they do not lead to a positive definite model. An exact
derivation of the condition under which the covariance function of Daley’s model
is positive definite is given in Appendix A. Further our model is a counter example
to a theorem of Obukhov (1954), which claims that there is no isotropic wind field
with nonzero correlation of the rotational and non-rotational component of the
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wind field. More details to Obukhov’s claim are given in Appendix B.
The covariance function of our multivariate GRF will be incorporated into an

upcoming version of the spatial statistics R package RandomFields (Schlather et al.,
2016). This opens the possibility for a wealth of applications in spatial statistics,
including the conditional simulation of streamfunction and velocity potential given
an observed wind field, a consistent formulation of the covariance structure for both
the potential and the horizontal wind components to be used in data assimilation, or
stochastic interpolation (Kriging) of each of the involved variables given the others.
Kriging is the process of computing the conditional expectation of a certain variable
given others. It is typically used to interpolate fields.

To exemplify the multivariate GRF we estimated its parameters for atmospheric
fields of the ensemble-NWP, COSMO-DE-EPS (Gebhardt et al., 2011), provided by
the German meteorological service (DWD). COSMO-DE is a high-resolution fore-
cast system, that provides forecasts on the atmospheric mesoscale (Baldauf et al.,
2011). Estimation is realized using the maximum likelihood method, while uncer-
tainty in the parameter estimation is assessed by parametric bootstrap (Efron and
Tibshirani, 1994). We also discuss the meteorological relevance of the parameters.

The remainder of the chapter is organized as follows. In Section 2.2 we introduce
the multivariate GRF, and demonstrate how the physical relations and anisotropy
are included in the model formulation. Section 2.3 introduces the COSMO-DE-
EPS data. Section 2.4 is devoted to the parameter estimation and the assessment
of the uncertainties, while Section 2.5 presents and interprets the results of the
estimation. We conclude in Section 2.6 and discuss potential applications, limits
and extensions of our multivariate GRF.

2.2 Theory

An important aspect of our multivariate GRF is the inclusion of the differential
relations between the atmospheric variables. Under weak regularity assumptions
the derivative of a Gaussian process is again a Gaussian process (Adler and Taylor,
2007). Hence, the assumption of Gaussianity of the streamfunction and the velocity
potential implies Gaussianity of all the considered variables. A zero-mean Gaussian
process is uniquely characterized by the covariance function, we only need to study
the joint covariance of a random field and its derivatives. A Gaussian process(
Xs, s ∈ Rd

)
is a continuously indexed stochastic process. For each finite number

of locations (si, i = 1, . . . , n) the variables (Xsi , i = 1, . . . , n) have a multivariate
Gaussian distribution.

Let Xs, s ∈ R, be a stochastic process with finite second moments, and assume
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that the covariance function C(s, t) = Cov (Xs, Xt) is twice continuously differen-
tiable, then the covariance model of the process and its mean-square derivative is
given by

Cov




 Xs

dsXs


 ,


 Xt

dtXt




 =


 Cov (Xs, Xt) dtCov (Xs, Xt)
dsCov (Xs, Xt) dsdtCov (Xs, Xt)


 , (2)

where s, t ∈ R (Ritter, 2000). Using the linearity in the arguments the validity of
this equation can be roughly seen by

Cov (Xs, dtXt) = lim
∆→0

Cov
(
Xs,

Xt −Xt+∆
∆

)

= lim
∆→0

Cov (Xs, Xt)− Cov (Xs, Xt+∆)
∆

= dtCov (Xs, Xt) .

One key advantage of this approach is that the bivariate covariance in (2) allows
us to model the dependence between the process and its derivative. In order to
provide a better theoretical basis for this idea, we consider the following definition.

Definition. A stochastic process Xt, t ∈ Rd is mean square differentiable at t ∈ Rd

in direction ei, i = 1, . . . , d, if there exists a random variable X(i)
t with E

(
X

(i)
t

)2
<

∞ such that,

E
((

Xt −Xt+∆ei

∆

)
−X(i)

t

)2
→ 0 as ∆→ 0,

where ei denotes the unit vector in the i− th coordinate direction. In this case, we
use the following notation ∂

∂ei
Xt = X

(i)
t .

A stochastic process is mean square differentiable if its covariance function is
twice continuously differentiable (Ritter, 2000). However, this condition is neither
sufficient nor necessary for the differentiability of the sample paths. For Gaussian
processes the following conditions on the derivatives of the process guarantees con-
tinuity of the sample paths. The paths of a Gaussian process are continuous, if
there exist 0 < C <∞ and α, η > 0 such that

E
∣∣∣∣
∂

∂s
Xs −

∂

∂t
Xt

∣∣∣∣
2
≤ C

|ln |s− t||1+α ,

for all |s− t| < η, see Theorem 1.4.1. in Adler and Taylor (2007).
In our case, the covariance function describes the dependence of the horizontal

wind components us and vs, streamfunction ψ, velocity potential χ, and the Lapla-
cian of the potentials (i.e. vorticity ζ = ∆ψ and divergence D = ∆χ) at locations
s, t ∈ R2,
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C(s, t)

= Cov
((
ψs, χs, us, vs, ∆ψs, ∆χs

)T
,
(
ψt, χt, ut, vt, ∆ψt, ∆χt

)T)
. (3)

The covariance function C(s, t) is well-defined, if

Cψ,χ (s, t) = Cov
((

ψs χs
)T

,
(
ψt χt

)T)

is four times continuously differentiable. Four times differentiability of the covari-
ance function is equivalent to the process being twice mean square differentiable,
see Lemma 14 in Ritter (2000).

In the remainder of the chapter we will consider stationary processes, which
means that C(s, t) depends only on the lag vector h = t − s. We will adopt a
commonly used notation for stationary processes, C(h) := C (0, h). Our next step
is to review two notions of isotropy that exist for multivariate processes. Follow-
ing Schlather et al. (2015) a vector of scalar quantities is called isotropic if the
covariance function C fulfills

C (Qh) = C (h) h ∈ Rd, (4)

for all rotation matrices Q and h = t − s. A matrix Q is a rotation matrix if
QQT equals the d-dimensional identity matrix and det(Q) = 1. Under the assump-
tion of stationarity (4) is equivalent to the more typically used notion of isotropy
C (h) = C (‖h‖). Bi- (multi-) variate variables consisting of scalar quantities such
as streamfunction, velocity potential or the Laplacian thereof fulfill (4). A multi-
variate process is vector isotropic if its covariance functions fulfills

C (h) = QTC(Qh)Q for all h ∈ Rd. (5)

This relation shows that E
(
X0XT

h

)
= E

(
QTX0

(
QTXQh

)T)
, which means that

the covariance is preserved if the lag vector h and the random vector are rotated
simultaneously.

In the remainder of the chapter we consider isotropic processes, hence Cψ,χ (Qh) =
Cψ,χ (h) for all rotation matrices Q. Using the notation,

A =


 r1 cos θ r1 sin θ
−r2 sin θ r2 cos θ


 , (6)

we set Cψ,χ,A (h) = Cψ,χ (Ah).
The effect of the anisotropy matrix A on the covariance function of the vector

components, namely the rotational part ∇× ψ and the divergent part ∇χ, is non-
trivial. The divergent part satisfies
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Cov (∇χ (As) ,∇χ (At)) = ATCov ((∇χ) (As) , (∇χ) (At))A. (7)

The rotational part fulfills a more complex formula

Cov (∇× ψ (As) ,∇× ψ (At)) (8)

= RATRTCov ((∇× ψ) (As) , (∇× ψ) (At))RART ,

where

R =


0 −1

1 0


 .

If A is simply a rotation matrix (i.e. r1 = r2 = 1), then RART = A, which
implies that both the divergent and the rotational part are vector-isotropic. For
the Laplacians we obtain the following transformation

Cov (∆χ (As) ,∆χ (At)) = r4
1Cov

(
∂2
e1χ
∣∣∣
As
, ∂2

e1χ
∣∣∣
At

)
+ r4

2Cov
(
∂2
e2χ
∣∣∣
As
, ∂2

e2χ
∣∣∣
At

)

+ 2r2
1r

2
2Cov

(
∂2
e1χ
∣∣∣
As
, ∂2

e2χ
∣∣∣
At

)
. (9)

In the appendix we provide the formulae for all entries of the covariance matrix
(3) in the isotropic case. Equations (7)−(9) are useful since they are the easiest
way to compute the covariance in the anisotropic case from the covariance in the
isotropic case. They have been derived using the chain rule and the linearity of the
covariance function in both arguments.

Our GRF is a counter example to a theorem of Obukhov (1954), which claims
that the rotational and divergent component of isotropic vector fields are necessarily
uncorrelated, which is equivalent to streamfunction and velocity potential being
uncorrelated. Obukhov considers an invalid expression for the covariance of a
rotational field and deduces from this expression that it is necessarily uncorrelated
to a gradient field. We present the detailed argument in the Appendix B.

In the remainder of the chapter we will exemplify the full process in the case
that the potential functions have the following bivariate structure.

Cψ,χ (s, t) =


 σ2

ψ ρσψσχ

ρσψσχ σ2
χ


M (‖A (t− s) ‖2, ν) , (10)

where M (·, ν) denotes the Matérn correlation function with smoothness parameter
ν, and ‖t − s‖2 the L2 norm. Goulard and Voltz (1992) consider a more gen-
eral model and prove its positive definiteness, implying the positive definiteness of
our model (10). Figure 2.1 represents a realization of the full stochastic process,
with parameters chosen in order illustrate the flexibility of the model. The rota-
tional wind component is larger than the divergent wind component with a ratio
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Figure 2.1: Isotropic realization of the multivariate GRF on a 50 × 50 grid with
unit grid point distance and parameters ν = 5, σχ/σψ = 0.3, ρ =
0.7, r1 =r2 =0.25. In color are shown a) streamfunction, b) velocity
potential, c) vorticity, and d) divergence. The arrows represent the
associated wind fields in m/s. The arrow in the right upper corner is a
standard arrow of 0.5 m/s. The x/y-axis indicate distance measured
in grid points.

of σχ/σψ = 0.3. The two potential functions are strongly correlated with a correla-
tion coefficient of ρ = 0.7. The coherence of the variables can be very well spotted,
although the simulation of the process is inherently stochastic. The smoothness
is set to ν = 5, which implies that not only the potentials but also vorticity and
divergence are continuously differentiable. We will see later in Section 2.4, that
realistic mesoscale wind fields have a smoothness parameter close to 1.25. This
suggests that the vorticity and divergence fields are discontinuous.
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2.3 Data

The horizontal wind fields are taken from the NWP model COSMO-DE, namely
the wind fields at model level 20 (i.e. at approximately 7 km height). COSMO-DE
is the operational version of the non-hydrostatic limited-area NWP model consor-
tium of Small-scale Modeling (COSMO) operated by DWD (Baldauf et al., 2011). It
provides forecasts over Germany and surrounding countries on a 2.8 km horizontal
grid and 50 vertical levels. At this grid size deep convection is permitted by the
dynamics and COSMO-DE is able to generate deep convection without an explicit
parameterization thereof. Thus COSMO-DE particularly aims at the prediction of
mesoscale convective precipitation with a forecast horizon of up to one day. The
ensemble prediction system (COSMO-DE-EPS) uses COSMO-DE with different
lateral boundary conditions (LBC), perturbed initial conditions and slightly modi-
fied parameterizations. The four LBC are generated by the Global Forecast Systems
of NCEP, the Global Model of DWD, the Integrated Forecast System of ECMWF
and the Global Spectral Model of the Meteorological Agency of Japan. For details
on the setup of COSMO-DE-EPS the reader is referred to Gebhardt et al. (2011),
Peralta et al. (2012), and references therein.

In our application we concentrate on a COSMO-DE forecast for 12 UTC on 5
June 2011 initialized on 00 UTC. COSMO-DE-EPS provides 20 forecasts of hor-
izontal wind fields on a grid with 461 × 421 grid points. Five ensemble members
are forced with identical LBC, respectively. They only differ due to perturbed ini-
tial conditions and four different parameterizations. Thus differences between the
members with identical LBC are mainly due to small-scale internal dynamics. These
differences are the differences obtained from subtracting two fields which have been
generated using the same lateral boundary conditions. All combinations of fields
with different model physics and identical lateral boundary conditions generate a
set of 40 different fields of differences. The differences are referred to as inner-LBC

anomalies.
To illustrate the data, Figure 2.2 displays a field of inner-LBC anomalies of the

zonal wind component. The fields exhibits small scale anomalies with amplitudes
that vary over the model region while the spatial structure seems relatively homo-
geneous. Thus, the data violate the assumption of stationarity. In order to model
the instationarity of the variance we estimate the spatial kinetic energy ĝ by apply-
ing a kernel smoother to the kinetic energy field. In analogy to the field of electric
susceptibility (1 + χe) , which models the spatial varying potential polarization of
the dielectric medium (Jackson, 1962), we apply the following transformation to
the data
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Figure 2.2: Zonal wind component at 12 UTC on 5 June 2011. a) Shows the
inner-LBC anomalies, b) the transformed inner-LBC anomalies. The
colors represent wind speed in m/s. The x/y- axis are in longitude
and latitude.

Ũs = Us
c+ ĝs

,

where c ∈ R+. Such a transformation, if applied to the full field
(
χ̃, ψ̃, Ũ , D̃, ζ̃

)
=

(χ, ψ, U,D, ζ) /(c+ ĝ), violates the differential relations that hold between the vari-
ables, though they are still valid approximately. For example for a non-rotational
field we have

∇
(

χ

c+ ĝ

)
= ∇χ
c+ ĝ

+ ε. (11)

The smoother the transformation the smaller the approximation error

ε = −χ∇ (c+ ĝ)
(c+ ĝ)2 .

Due to the constant c > 0 the transformation (11) does not resolve the full in-
stationarity of the data. Still we find that this transformation is superior to the
more natural transformation Ũ = U/ĝ, as the approximation error for the potential
functions is strongly reduced by the introduction of c > 0. We observe a trade-off
between the differential relations being hardly violated and on the other side Gaus-
sian marginal distribution and constant variance in space by a rougher function ĝ

and values of c close to zero. We chose c = 1/3 and a kernel such that the trans-
formation kurtosis of the data is reduced from 24 to 16, while we have to accept
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Figure 2.3: Quantile-Quantile plot of (a) the zonal, and (b) the meridional wind
component of transformed inner-LBC anomalies versus a standard
normal distribution. The linear lines indicate perfect accordance
with the marginal distributions, both graphs depict clear deviation
from the normal distribution.

an error of the potential fields close to 15 percent. The error is measured by com-
paring the potential that satisfies ∇χ̃ = U/(c + ĝ) and the potential that satisfies
∇χ = U and is normalized by c+ ĝ (the same is done for the rotational part). For
a Pareto optimal solution to this trade-off see Appendix D. Figure 2.2 shows that
the instationarity of the original fields is mitigated by the transformation. Figure
2.3 shows the marginal distribution of the transformed inner-LBC anomalies for the
zonal and the meridional wind component. Both distributions deviate from the
assumption of Gaussian marginals, although Gaussianity is a common assumption
for wind fields in the meteorological literature (Frehlich et al., 2001). The kurtosis
amounts to about 16 instead of 3, which results in heavier extreme values than
expected under the assumption of Gaussianity.

2.4 Parameter estimation

We start by parameter estimation of the bivariate GRF model for the transformed
inner-LBC anomalies of the horizontal wind fields described in Section 2.3. Since the
computation of the Gaussian likelihood would require the inversion of a quadratic
matrix with 2 × 461 × 421 rows, a standard maximum likelihood approach is un-
feasible. We thus use a composite likelihood (CL) approach to approximate the
true likelihood function. An overview of the CL approach is given in Varin et al.

18



(2011). Here, we apply a special version of the CL approach known as pairwise
likelihood (Cox and Reid, 2004). For a bivariate field this likelihood is a product
of 4-dimensional likelihoods. We calculate the log likelihood of the CL as

lc (θ) =
∑

s∈G

∑

h∈N
log (L (us, vs, us+h, vs+h| θ)) ,

where θ denotes the parameter vector, and G denotes the set of all grid points.
The set N controls for which separations h the likelihood is computed. The set N
has to be determined relative to the given problem. If feasible it should include
all lags h for which there is non-negligible dependence and some for which there is
negligible dependence, in order to estimate the range. One way of determining this
is to inspect the empirical covariance estimate. We chose N to be a regular 41×41
grid with step size one, which is centered in the origin. The choice is justified by the
low uncertainties observed in the parametric bootstrap samples presented below.

The unknown parameters are the variances of the potentials σ2
ψ and σ2

χ, their
correlation ρ, the smoothness parameter ν, and the scale parameters r1, r2, and
the angle θ of the anisotropy.

To reduce the number of parameters, we use the correlation function instead of
the covariance function, which only depends on the ratio and not on the magnitude
of the variances of streamfunction and velocity potential (Daley, 1991). This is
possible as we can estimate the variance of the zonal and meridional wind with
very low uncertainty due to the large size of the considered grid. The CL was
maximized using the built-in function optim of R Core Team (2015). In order to
show the independence of the optimization technique of the initial values it was
started 50 times with varying initial parameters. This reveals that there is a single
global maximum of the likelihood function.

Parameter uncertainty such as the Fisher information are not available for our
problem. We thus resort to a parametric bootstrap (Efron and Tibshirani, 1994)
to assess the uncertainty of the parameter estimates. We simulated the multivari-
ate GRF using circulant embedding (Wood and Chan, 1994) to obtain independent
realizations of the fitted process. Re-estimating the parameters for a sample of 100
independent realizations provides the uncertainty of the parameter estimates given
that the estimated model is true. The simulation of the data was made possible by
the implementation of the considered covariance model in an upcoming version of
the spatial statistics package RandomFields (Schlather et al., 2016). The paramet-
ric bootstrap describes the estimation uncertainty based on the assumption that
the model is sufficiently close to the data. It cannot assess the uncertainty related
to the modeling error. As the considered data deviates from Gaussian distribution
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Figure 2.4: Box-whisker plots representing the parametric bootstrap estimates
for the inner-LBC wind anomalies. The horizontal lines indicate the
maximum-likelihood estimates: a) shows the smoothness parame-
ter ν, the left box-whisker in b) represents the maximum-likelihood
estimates (λ), and the right box-whisker the numerically derived es-
timates (λN ) of the ratio λ = σχ/σψ. c) shows the correlation ρ, d)
the scale parameters r1 e) the scale parameter r2, and f) the angle
of the anisotropy matrix θ.

and is only approximately stationary this error is presumably not negligible.

2.5 Results

Figure 2.4 shows the estimates of the parameters of the multivariate GRF and the
respective distribution of the parametric bootstrap estimates as a boxplot. The
ratio of divergent and rotational wind is estimated to about σχ/σψ ≈ 0.82. This
indicates, that both wind components are of the same order of magnitude. A
geostrophic balance would require a ratio of order σχ/σψ = 0.1, with a significant
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dominance of the rotational wind component. This is not the case in COSMO-
DE, which is well consistent with the mesoscale dynamics, which are highly non-
geostrophic. The results are also consistent with Bierdel (2012)2. Her spectral anal-
ysis of the horizontal wind fields of COSMO-DE-EPS revealed a slightly stronger
rotational than divergent component.

Figure 2.4b compares the statistical estimate for λ = σχ/σψ to a numeric esti-
mate, which equals the ratio of the L2-norms of curl and divergence of the wind field
calculated with finite difference approximations and which is denoted by λN . Both
estimators have been computed on data simulated by our model (10). The com-
parison made for the two estimators has the limitation of the parametric bootstrap
described in Section 2.4. The uncertainty related to the modeling error cannot
be quantified by it. Yet the performance on data simulated by our model can be
assessed. Although the statistical estimate has a higher variance it clearly outper-
forms the numeric estimate due to the relatively large bias of the latter on data
simulated from our model. Our model can be used to generate data with known
parameters on this data the performance of estimators can be assessed.

The correlation between streamfunction and velocity potential ρ is almost zero ≈
−2.5×10−2. Similar results have been described for larger scales (Hollingsworth and
Lönnberg, 1986) and have often been assumed in the literature (Daley, 1991). The
smoothness parameter ν is close to 1.24. This corresponds non continuous fields of
vorticity and divergence. A quasi realistic model for vorticity are the point vortices
where vorticity is concentrated on a single point, or given as a delta function in
space (Aref, 2007). This relatively low value of ν is not due to noise in the data. We
have included tentatively a noise parameter in the estimation but it was set to zero
and similar values as in Figure 2.4 were obtained. As a measure for the anisotropy
we consider the ratio of the scale parameters r1/r2. This ratio is significant larger
than 1 for both data sets, which suggests that the data is anisotropic. The estimated
parameters are very much in accordance with our expectations, as they describe
a non-geostrophic and anisotropic wind field. The most important result is that
the independence of streamfunction and velocity potential in the case of the 5
June 2011 is valid on the mesoscale. Similar results were already known for larger
scales (Hollingsworth and Lönnberg, 1986). In addition, our parametric bootstrap
reveals that this covariance model can be estimated with a very high precision if
the distribution of the data is close to the model. Under the same condition we
have shown that our estimate of the ratio of divergence and vorticity is superior to

2Personal communication: Lotte Beata Bierdel (2012): Mesoskalige Turbulenz in dem konvektionsauflösenden
Wettervorhersagemodell COSMO-DE-EPS. Masterarbeit in Meteorologie. Meteorologisches Institut der
Friedrich-Wilhelms-Universität Bonn. 159p.
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Figure 2.5: Empirical correlation (above) and estimated correlation (below) for
the inner-LBC anomalies. a) (u,u) empirical correlation; b) (u,v) em-
pirical correlation; c) (v,v) empirical correlation; d) (u,u) estimated
correlation; e) (u,v) estimated correlation; f) (v,v) estimated corre-
lation.

a numeric estimate.
Figure 2.5 shows the empirical estimate of the correlation structure of the data

and the correlation obtained for the maximum likelihood estimation. Again the
scale and the orientation of the correlation is very well matched. The (u, u) and
(v, v) auto correlation component is matched relatively well. The (u, v) correlation
component has a deviation from the data as there are regions of positive correlation,
which is not present in the empirical correlation estimate.

The implementation of our covariance model in an upcoming version of the R
package RandomFields (Schlather et al., 2016) allows for the simulation of large
field with a size of the order of (800× 800) grid points. This is made feasible
by using circulant embedding introduced by Wood and Chan (1994). Circulant
embedding is a powerful simulation technique, which to the best of our knowledge,
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Figure 2.6: a) Same as Figure 2.2b). b) Zonal wind component of a realization
of the fitted GRF. The x/y- axis are in longitude and latitude.

has not been used for the simulation of wind fields yet. Figure 2.6 shows the
zonal wind anomalies from Figure 2.2 together with a realization of the fitted
multivariate GRF, which has been scaled with the spatial variance that has not
been resolved by the transformation (11). It shows that the orientation as well as
the spatial scale of the zonal wind fields match very well. The multivariate GRF

shows less extreme values and less values very close to zero, due to the assumption
of Gaussianity. However, visual accordance is quite well, such that we conclude
that the multivariate GRF formulation represents a useful stationary, multivariate
Gaussian random fields approximation of mesoscale wind anomalies.

2.6 Conclusions

In this chapter we introduce a multivariate GRF which jointly models streamfunc-
tion, velocity potential, the 2-dimensional wind field, vorticity and divergence. Its
flexibility allows for different variances of the potential functions, anisotropy and a
flexible smoothness parameter. Further, the model is able to represent nonzero cor-
relation of the divergent and non-divergent wind component. All parameters of the
proposed covariance model have direct meteorological interpretation, such that they
provide meteorological insight into the dynamics of the atmosphere. Further, the
model allows us to easily implement meteorological balances such as non-divergence
or geostrophy.

We have reviewed the theory that guarantees the existence of derivatives of
stochastic processes, developed a complex covariance model for various atmospheric
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variables and studied its transformation subject to anisotropy. Our multivariate
GRF is a counter example to a theorem of Obukhov (1954), which claims that the
rotational and divergent components of an isotropic vector field are necessarily
uncorrelated.

We have developed an estimation technique and shown its performance for wind
anomalies of a mesoscale ensemble prediction system (COSMO-DE-EPS). A para-
metric bootstrap method provides estimates of the uncertainty implicit in our es-
timation technique. We thus provide estimates for the ratio of variances of the
rotational and divergent wind component without numerical approximations. Nu-
meric estimates suffer from a truncation error, which arises due to the numerical
scheme that computes the derivatives of the wind field.

The multivariate GRF formulation may be particularly useful for global atmo-
spheric models with a spectral representation of the horizontal fields, such as the
ECHAM climate model (Roeckner et al., 2003). Spectral models solve the prognos-
tic equations for the potentials instead of the horizontal wind components, whereas
the observations are given as horizontal wind vectors. Our multivariate GRF for-
mulation provides a consistent formulation of the covariance structure for both the
potential and the horizontal wind components. A stochastic formulation of the
potentials may also be relevant for the assimilation of measurements of the vertical
velocity (Bühl et al., 2015), which provide proxies for the horizontal divergence of
the field. Our covariance function represents the divergence within a stochastic
model, which is needed to assimilate the observations.

The proposed covariance model can be used to interpolate observed wind fields
and to compute the associated derivative fields. This is feasible either by condi-
tional simulation or Kriging. Numerical methods have been used for interpolation
(Schaefer and Doswell III, 1979) and the computation of derivatives of vector fields
(Caracena, 1987; Doswell III and Caracena, 1988). While numeric methods become
significantly more complex for scattered observations, the multivariate GRF formu-
lation provides an accessible way for both problems which additionally provides
information about the uncertainty.

The fields obtained by computing the expectation of velocity potential and
streamfunction given a certain wind field can be shown to solve the differential
equations of the Helmholtz equation. In this sense our covariance model can be
used via Kriging to solve the Helmholtz equation. As stochastic models describe
the uncertainty of all of the variables these methods even allow stochastic error
bands to be computed for the solution of the partial differential equations.

Another potential application is the stochastic simulation of the transport of
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tracer variables such as aerosols or humidity in the atmosphere. Stochastic models
that describe gradient fields and their divergence have been considered in the liter-
ature (Scheuerer and Schlather, 2012). However, to the best of our knowledge no
stochastic model has been formulated to jointly model spatial wind fields and its
divergence. Both variables are needed to describe the transport adequately.

Our methods show that both physical coherence and geostrophic constraints
can be easily implemented into a covariance model. Further, we have illustrated
that the model parameters can be estimated with very small uncertainty on data
simulated by our model.
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3 Precipitation extremes in stochastic models based on the
moisture budget

In this chapter we introduce stochastic, physically consistent models for precipita-
tion extremes based on the moisture budget equation (1). Using these models we
will extensively study to which extent the budget equation can account for char-
acteristics of precipitation extremes. In Section 3.1 we introduce basic concepts of
EVT for both univariate and multivariate random variables and stochastic processes
and study under which conditions products of random variables are heavy-tailed.
In Section 3.2 an overview of the literature related to precipitation extremes is
given. Section 3.3 reviews the physically motivated stochastic model of Wilson and
Toumi (2005) and introduces three models for precipitation fields. The precipita-
tion models proposed in this section are based on the stochastic process for wind
and related variables introduced in Section 2.2. In Section 3.4 we investigate both
asymptotic extremal properties of the models and their extremal behavior for finite
sample size. Section 3.5 discusses and reviews the main results of our approach to
model precipitation fields.

3.1 Extreme value theory

3.1.1 Univariate extreme value theory

EVT has been developed to estimate the probability of extreme events. It has been
used in many scientific fields like hydrology (Coles and Tawn, 1996), meteorology
(Lenderink and Van Meijgaard, 2008), climate science (Katz, 1999) and geology
(Knopoff and Kagan, 1977) and applications like insurance and finance (Embrechts
et al., 1999). Due to a remarkable simplicity of the tail behavior it is possible
in many situations to extrapolate into the tail of the distribution function. This
means that based on a sample of a distribution it is possible to give meaningful
estimates of the probability of non-observed extreme quantiles.

There are two basic approaches to describe the behavior of extreme events. The
first approach is to describe the distribution of the maximum of a sample,

P (max (X1, . . . , Xn) ≤ c) = Fn (c) i.D.→ G(c) (n→∞) , (12)

where Xi
iid∼ F, F is a distribution function and G is a distribution yet to be deter-

mined. The second approach introduces distributions H that describe a random
variable conditional on exceeding a certain threshold,

P (X ≤ c+ T |X > T ) i.D.→ H(c) (T →∞) . (13)
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The two approaches exhibit largely similar results as will be shown below. Following
De Haan and Ferreira (2006), we start with the first one. Let x? = supx (F (x) < 1),
then Fn (x) → 0 whenever x < x? and Fn(x) = 1 if x ≥ x?. This means that the
maximum over n realizations tends to the upper endpoint of the distribution as n→
∞. In order to obtain more precise results we have to transform max (X1, . . . , Xn)
such that a non-degenerate limit in (12) occurs. A distribution is called degenerate
if its probability is localized in a single point. Hence, we are searching for limits of
the kind

Fn (anx+ bn) i.D.→ G (x) (n→∞) , (14)

with a non-degenerate distribution function G. Such functions G play a vital role
in EVT. We cite the following definition from De Haan and Ferreira (2006).

Definition 1. A non-degenerate distribution function G that fufills (14) for a
distribution function F and sequences an, bn ∈ R, an > 0 is called generalized
extreme value distribution (GEV).

There is a remarkably simple characterization of the class of GEV. Again we
cite the following theorem from De Haan and Ferreira (2006) which was originally
proved by Fisher and Tippett (1928) and Gnedenko (1943).

Theorem 2. The class of GEV is given by Gγ (ax+ b) with a ∈ R+, b ∈ R,

Gγ (x) = exp
(
− (1 + γx)−1/γ

)
1 + γx > 0,

with γ ∈ R. The limit for γ → 0 is

G0 (x) = exp (− exp (−x)) .

Proof. See Theorem 1.1.3 in De Haan and Ferreira (2006).

The distribution Go is known as the Gumbel distribution and the parameter γ as
shape parameter. For positive shape parameter the distribution Gγ is called Fréchet
distribution and for negative-shape Weibull distribution. The theorem shows that
up to affine transformations the class of extreme-value distributions consists of a
single parameter family. We introduce a further important concept from Embrechts
et al. (1997).

Definition 3. A distribution function F for which there are sequences an ∈
R+, bn ∈ R such that

(F (anx+ bn))n = F (x) for all n,

is called max-stable.
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The above equation shows that the maximum over n realizations of a max-stable
distribution F has up to an affine transformation distribution function F . The class
of non-degenerate max-stable distribution is identical to the GEV (Theorem 3.2.2 of
Embrechts et al., 1997). If for a certain distribution function F there are sequences
an, bn ∈ R, an > 0 such that

Fn (anx+ bn) i.D.→ Gγ (x) (n→∞) ,

we say that F lies in the max-domain of attraction of Gγ or F ∈ D (Gγ). We
will call a distribution heavy-tailed if it is in the max-domain of attraction of the
Fréchet distribution. A distribution function in the max-domain of attraction of
the Weibull or the Gumbel distribution will be called light-tailed. This is a typical
but not generally adopted use of the notions light and heavy-tailed. The following
theorem presents a simple condition implying that a distribution function lies in
the max-domain of attraction of a GEV. For simplicity the theorem is slightly more
restrictive than Theorem 1.1.8 in De Haan and Ferreira (2006).

Theorem 4. Let F be a distribution function and x? = supx {x|F (x) < 1}. As-
sume that F is a twice continuously differentiable and invertible distribution func-
tion. Further assume that the density f is strictly positive in a left-open interval
containing x?. If

lim
t↑x?

(1− F
f

)′
(t) = γ

or

lim
x↑x?

(1− F (t)) f ′(t)
f(t)2 = −γ − 1,

then

lim
n→∞ (F (anx+ bn))n = Gγ (x) ,

where bn = F−1 (1− 1/n) and an = 1/ (nf(bn)).

Proof. See Theorem 1.1.8 in De Haan and Ferreira (2006).

In order to illustrate this result we derive the extreme value behavior of an
exponentially distributed random variable.

Example 5. The distribution function of an exponentially distributed random
variable is F (x) = 1 − exp(−x/λ), λ ∈ R+. This function is invertible with in-
verse F−1(x) = −λ ln(−x + 1) and is a smooth function. The density f(x) =
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exp(−x/λ)/λ is strictly positive on the real axis and has the right endpoint x? =∞.
Further we have

(1− F (t)) f ′(t)
f(t)2 = − exp(−x/λ) exp(−x/λ)/λ2

(exp(−x/λ)/λ)2 = −1

and hence γ = 0. The exponential distribution is in the domain of attraction of
the Gumbel distribution and

lim
n→∞P

(max (X1, . . . , Xn)− bn
an

≤ x
)

= lim
n→∞ (F (anx+ bn))n = exp (− exp(−x)) ,

where bn = −λ ln(1/n) = λ lnn and an = 1/ (nf(bn)) = λ.

Similar to the central limit theorem describing the sample mean, this theorem
describes the limit distribution of the sample maxima. The sequences an, bn trans-
form the maximum such that a non-degenerate limit distribution is obtained. The
maximum of a sample of length 10 is already very close to the Gumbel limit. Exam-
ple 5 shows that the maximum of a sample of length n of an exponential distribution
is of order O (lnn). For other distributions like the normal distribution it is well-
known that the convergence of the maximum to the Gumbel limit is very slow and
therefore hardly applicable. The following theorem is implied by Theorem 1.1.6 in
De Haan and Ferreira (2006).

Theorem 6. For γ ∈ R the following statements are equivalent.
(i) There exist sequences an ∈ R+, bn ∈ R such that

lim
n→∞F

n(anx+ bn) = Gγ (x) = exp
(
− (1 + γx)−1/γ

)
,

for all x fulfilling (1 + γx) > 0.
(ii) There is a positive function h such that we have,

lim
t→x?

1− F (t+ xh(t))
1− F (t) = (1 + γx)−1/γ , (15)

where x? := supx {x|F (x) < 1}.

Proof. See Theorem 1.1.6 in De Haan and Ferreira (2006).

The theorem provides a connection between the two fundamental distributions
(12) and (13). The first statement is the classical convergence of the maximum of
a sample to an extreme value distribution. The second statement is related to the
probability of exceeding a certain threshold t+xh(t). This connection can be made
much more explicit. Let Y be a random variable with distribution function F . If
x > 0, we can deduce as h(t) > 0,
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1− F (t+ xh(t))
1− F (t) = P (Y > t+ xh(t))

P (Y > t) = P

(
Y − t
h(t) > x

∣∣∣∣Y > t

)
.

This shows that essentially equation (15) describes the tail behavior of F . Theorem
6 establishes an equivalence of the limit behavior of the maximum of a sample and
the tail of the distribution. Further, this theorem motivates the definition of the
generalized Pareto distribution (GPD) as the limit distribution of exceedances.

Definition 7. The GPD with shape parameter γ is given by

Fγ(x) =





1− (1 + γx)−1/γ γ > 0, x > 0

1− exp (−x) γ = 0, x > 0

1− (1 + γx)−1/γ γ < 0, 0 < x < 1/|γ|.

Similarly to the GEV, the GPD has three different regimes. For γ > 0 we observe
a polynomial decay of the inverse probability of exceedances. This behavior is
associated with heavy tails. For γ = 0 the decay is exponential and the distribution
is light-tailed. For γ < 0 the distribution has finite support and the probability of
exceedances decays polynomially.

Since the GPD describes the tail of the distribution, it is reasonable to estimate
the parameter γ from the largest values in a sample. If γ > −1/2 the maximum
likelihood estimate γ̂n is asymptotically normally distributed (De Haan and Fer-
reira, 2006). The convergence rate is γ − γ̂n = O

(
1√
n

)
(De Haan and Ferreira,

2006), where γ̂n is the maximum-likelihood estimate from a sample of length n.
The limitation γ > −1/2 is no restriction in our context as most studies describing
precipitation extremes propose either γ = 0 or γ > 0. This result is essential for
this study as we will use estimates of the shape parameter in order to describe the
extremal behavior of precipitation distributions (Sections 3.4.3).

3.1.2 Multivariate extreme value theory

Multivariate EVT is a tool to describe the dependence structure of multiple extreme
events. Although there is no unique reasonable definition of a multivariate extreme,
the theory was mainly developed for the componentwise maximum of a vector.

n∨

i=1
Xi :=

(
n∨

i=1
Xi,1, . . . ,

n∨

i=1
Xi,d

)
,

where ∨ni=1Xi,1 := max (X1,1, . . . , Xn,1) and X1, . . . , Xn is a sample of multivari-
ate random variable. This setting may seem artificial and hard to interpret, as
the componentwise maximum of a sample is typically not a member of the sam-
ple. Yet the theory developed for this setting can be used to solve many applied

31



problems (De Haan and Ferreira, 2006). Similar to the univariate setting a non-
degenerate function G is called d-variate extreme value distribution, if there exists
a distribution function F and sequences an,i > 0, bn,i, n ∈ N, i = 1, . . . , d such that

lim
n→∞F

n(an,1x1 + bn,1, . . . , an,dxd + bn,d) = G(x) x ∈ Rd.

The marginal of such distributions are the univariate extreme value distributions.
A d−variate distribution function G is called max-stable if for every n ∈ N, i =
1, . . . , d there are constants an,i > 0, bn,i ∈ R such that

Gn(an,1x1 + bn,1, . . . , an,dx1 + bn,d) = G(x) x ∈ Rd.

The univariate marginals of max-stable distributions are max-stable and the class of
non-degenerate max-stable processes coincides with the class of generalized extreme
value distriubtions (De Haan and Ferreira, 2006).

To illustrate characteristics of the multivariate setting we present extremal prop-
erties of the multivariate Gaussian distribution. The componentwise maximum
over Gaussian vectors consists of asymptotically independent 3 entries whenever
the variables have correlation |ρ| < 1 (Sibuya, 1960). In order to obtain asymptotic
relations that are applicable for settings of highly dependent Gaussian variables,
Hüsler and Reiss (1989) introduced a triangular array consisting of d-variate vec-
tors Xn,i where i ≤ n and n ∈ N. In the bivariate case d = 2 the vectors consist
of two standard normal Gaussian vectors with correlation pn. Hüsler and Reiss
(1989) show that if

(1− pn) lnn→ λ2 ∈ [0,∞] (16)

the maximum converges to a limit
n∨

i=1

Xn,i − bn
bn

i.D.→ Mλ,

where bn =
√

2 lnn and Mλ is a Hüsler-Reiss process. It is a bivariate extreme
value distribution with distribution function

Hλ (x, y) = exp
[
−Φ

(
λ+ x− y

2λ

)
exp (−y)− Φ

(
λ+ y − x

2λ

)
exp (−x)

]
.

The distribution function converges to the limit expressions

lim
λ→0

Hλ(x, y) = exp (− exp (min (x, y))) ,

lim
λ→∞

Hλ(x, y) = G0(x)G0(y).

3Let Xn, Yn be two sequences of random variables. They are called asymptotic independent, if (Xn, Yn) i.D.→
(X,Y ) (n → ∞) and X and Y are independent.
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The case λ = 0 models perfect correlation of the Gaussian variables and λ = ∞
complete independence. The multivariate case is similar to the bivariate, yet quite
technical. For example, the multivariate limit distribution cannot be analytically
evaluated.

3.1.3 Extreme value theory for stochastic processes

We now give a short overview of EVT for stochastic processes. Typically one
considers random processes from the set of continuous functions on the interval
[0, 1] (C [0, 1]). Similar to the multivariate setting the maximum of random func-
tions is taken pointwise. If for iid continuous random functions Xi there exist
sequences of continuous functions an(t) ∈ R+, bn(t) ∈ R

n∨

i=1

Xi(t)− bn(t)
an(t)

i.D.→ η(t) (n→∞) , (17)

with non-degenerate η, then η is called extreme value process (De Haan and Fer-
reira, 2006). Convergence in distribution in functional spaces is defined similarly
to other spaces. Let X,Xn ∈ C (D) , n ∈ N be random continuous function on a
set D ⊂ Rd. Let F, Fn be the associated distribution functions. We say Xn

i.D.→ X

if for any measurable function g ∈ C [0, 1] we have
∫
gdFn →

∫
gdF (n→∞).

The class of non-degenerate max-stable processes coincides with the class of
generalized extreme value processes. Similar to the multivariate case it is possible
to standardize the marginal distribution to the Fréchet case. Before we introduce
a spectral theorem for extreme value processes we need the definition of a Poisson
point process.

Definition 8. LetMp

(
Rd
)

be the set of positive measures on Rd, that have values
in N0

⋃ {∞}. A point process is a random process with values in Mp

(
Rd
)
. Let ν

be a measure on
(
Rd,A

)
, where A is σ-algebra4 on Rd. If there is a point process

Φ fulfilling

(i) for B ∈ A P (Φ (B) = n) = λn

n! exp (−λ) where λ = ν (B)

(ii) for disjoint sets B1, . . . , Bm ∈ A the variables Φ (B1) , . . . ,Φ (Bm) are independent,

Φ is called Poisson point process with intensity measure ν (Φ ∼ PPP (ν)).

De Haan (1984) shows that a wide class of continuous extreme value processes
can be constructed via a so-called spectral decomposition. Let Yt be an extreme

4For a definition of σ-algebra see Elstrodt (1997).
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value process that fulfills Ytn
P→ Yt for any sequence tn → t. Then there exists a

measure ν on [0, 1] and functions ft(·) that fulfill

∫ 1

0
ft(ω)ν (dω) = 1,

such that

Yt ∼
∞∨

i=1
zift(xi),

where ∑∞i=1 δ(zi,xi) ∼ PPP
(
dz/z2 × ν), where δ(z,x) is the Dirac function with

mass in (z, x). A similar representation called mixed-moving maxima has been used
to simulate extreme value processes (Oesting et al., 2012). The theorem shows that
extreme value processes can be constructed as the maximum over an infinite number
of functions with random intensity.

A further important class of extreme value processes is the Brown-Resnick class
(Brown and Resnick, 1977). They occur as the limit process of the normalized
maximum over Gaussian processes (Kabluchko et al., 2009). Further they are the
continuous generalization of the Hüsler-Reiss distribution. They are constructed in
the following way.

Theorem 9. Let Wi(t), t ∈ Rd be an iid Gaussian process with stationary incre-
ments, which means that the distribution of (Wi (t+ h)−Wi (t)) is independent of
t. Let

Zt =
∞∨

i=1
ui exp

(
Wi (t)− Var (Wi(t))

2

)
, (18)

where∑∞i=1 δui ∼ PPP
(
du/u2), where δu is the Dirac function with mass in u. Then

Zt is a max-stable process with Fréchet marginals, whose distribution depends only
on the variogram given by γ (h) := E (W1(0)−W1(h))2.

Proof. The theorem can be obtained by applying exp (·) to both sides of Theorem
2 in Kabluchko et al. (2009).

The stochastic process
(
Zt, t ∈ Rd

)
is then called Brown-Resnick process as-

sociated to the variogram γ (h). The theorem gives a very simple construction
principle for extreme value processes, as the spatial function in (18) are generated
by Gaussian processes.
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3.1.4 Asymptotic properties of products of random variables

The transport equation (1) consists of products of random variables. This motivates
the following consideration on asymptotic properties of products. We will show
that for a large class of distributions products of light-tailed distributions cannot
be heavy-tailed. Further we will study the shape parameter of products of heavy-
tailed distributions.

If a distribution F is in the domain of attraction of a GEV Gγ and if γ ≤ 0 then
EF {|X|α 1 (X > x)} is finite for any α ∈ R+, x < sup (x|F (x) < 1) (De Haan and
Ferreira, 2006). In the Fréchet case, there is also a clear relation between extreme
value index and the above expression. Namely, if γ > 0 and x ∈ R, then (De Haan
and Ferreira, 2006)

EF {|X|α 1 (X > x)}




<∞ α < 1/γ

=∞ α > 1/γ.
(19)

We now introduce the class of distribution functions F for which the expression
EF {|X|α 1 (X > x)} is finite if and only if EXα is finite. It is clear that the positive
distributions and the symmetric distributions lie in F . The absolute value of any
distribution function lies in F . Further, any distribution whose upper tail behavior
is more extreme than the lower lies in F . Hence, F includes most functions of
practical relevance. We now use this class of distributions to characterize the shape
parameter of products of random variables.

For a product of two iid random variables X,Y with distribution function F

(not necessarily F ∈ F) we obtain the following expressions for the moments

E (XY )n = EXnEY n = (EXn)2 , (20)

while for full dependence X = Y we obtain

E (XY )n = EX2n. (21)

If F ∈ F and F is in the domain of attraction of the Weibull or Gumbel dis-
tribution, all moments exist for F . From the above relations we see that also all
moments of X2 and XY exist. Hence, if the product is in the domain of attrac-
tion of any extreme value distribution, it is not in the Fréchet domain. This is an
important result showing that products of light-tailed random variables cannot be
heavy-tailed if the multiplicands lie in F . This holds irrespective of their correla-
tion and is especially true for the n-th power Xn of a random variable. This result
can easily be extended to non-identically distributed multiplicands X and Y . It is
clear that that all moments of the product XY exist. Hence, it is not heavy-tailed.
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For heavy-tailed distributions we see from (20) that products of iid random
variables XY have the squared moments of one of the multiplicands. If the mul-
tiplicands lie in F and the product in the max-domain of attraction of a GEV,
the relation (19) shows that, it has the same shape parameter as the multipli-
cand. Hence products of independent heavy-tailed distribution cannot enhance the
asymptotic extremal behavior. Again, this can be extended to non-identically dis-
tributed products XY . As it is clear that either X1X2 or Y1Y2 has a more extreme
behavior than the original products for X1, X2 ∼ X independent and Y1, Y2 ∼ Y

independent, the above considerations can be applied.
For squares of variables we have a different situation. Equation (21) shows that

the moments of the products are higher moments of the multiplicand. If X ∼ F ,
F ∈ F , F is in domain of attraction of Gγ and X2 is in domain of attraction of
any extreme value distribution, then X2 ∈ D (G2γ).

Koutsoyiannis (2004) argues that a heavy-tailed behavior of precipitation could
emerge from the interplay of seasonal and non-seasonal variability. Koutsoyiannis
(2004) models precipitation as P = X/Y , where X,Y are independent Gamma
distributions. Here, X represents the non-seasonal variability of precipitation and
1/Y the seasonal variability. Koutsoyiannis (2004) shows that P is heavy-tailed.
The example is misleading as already the inverse of a gamma distributed variable
is heavy-tailed and therefore the seasonality itself is assumed to be heavy-tailed.
Since X and 1/Y are positive they are in the class F and if their product is heavy-
tailed, then one of the distributions must be heavy-tailed. Otherwise all moments
of X/Y would exist. Further X is light-tailed (Beirlant et al., 2004), such that 1/Y
must be heavy-tailed. In the more typical use of the scale parameter as a multiplier
to the random variable our results of this section show that heavy tails cannot be
generated for a large class of functions from light-tailed random variables who have
scale parameter with light-tails.

3.2 Literature of precipitation extremes

A major issue in the literature related to precipitation extremes is the desire to
understand the effect of climate change on the intensity and frequency of extreme
precipitation (Groisman et al., 1999; Trenberth et al., 2003; Wilson and Toumi,
2005; Singleton and Toumi, 2013). An important relation is the Clausius-Clapeyron
equation describing an increase in the humidity holding capacity by 7% per 1◦C
increase of temperature (Trenberth et al., 2003). It is therefore a widely expressed
view that precipitation will increase as suggested by that rate (Trenberth et al.,
2003; Singleton and Toumi, 2013), although this may be overly simplistic (Haerter
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et al., 2010). Idealized simulations of storms show a precipitation increase con-
sistent with Clausius-Clapeyron scaling on time scales longer than one hour (Sin-
gleton and Toumi, 2013). An even stronger increase of precipitation for shorter
time periods in such simulations is connected to increases of vertical velocity with
temperature (Singleton and Toumi, 2013). Studies using global climate models to
investigate the relation between temperature increase and precipitation report a
scaling weaker than suggested by the Clausius Clapeyron relation (Allen and In-
gram, 2002; Pall et al., 2007), since on large scales precipitation is constrained by
divergence of energy flux and not by moisture supply (Allen and Ingram, 2002).

It is claimed that a temperature increase leads to an increase of the frequency
of heavy precipitation events (Trenberth et al., 2003). This prediction is consis-
tent with studies claiming that temperature variability is a generator of precipita-
tion extremes and high temperatures can be linked to extreme precipitation events
(Haerter et al., 2010).

Singleton and Toumi (2013) show that for heavy precipitation events precipita-
tion efficiency in the simulations is close to 100 %. Precipitation efficiency is the
ratio of precipitated water to the total water present in a column of the atmosphere.
This result is remarkable since there is no physical process that removes the total
humidity from the atmosphere (Trenberth et al., 2003) and Ferrier et al. (1996)
report values of precipitation efficiency close to 30%.

Observational data are used to study the change of precipitation due to climate
change (Lenderink and Van Meijgaard, 2008; Liu et al., 2009) and in particular
using EVT the distribution of precipitation extremes (Li et al., 2005). Here, the use
of EVT is of tremendous importance due to the great uncertainty associated with
rare extreme events and their potentially heavy-tailed behavior.

A further major problem is the appropriate description of the distribution of
precipitation. The variety of distributions used to fit precipitation is so vast that
it is described as a “battle of distributions” (Serinaldi and Kilsby, 2014). With
respect to extreme precipitation the most important question is whether precipita-
tion extremes are distributed following a heavy-tailed or light-tailed distribution.
Knowledge about the tail-behavior is essential for the extrapolation of probability
distributions, e.g. it is used to compute the return value of non-observed extreme
events, which is of crucial importance to hydrology, insurance industry and archi-
tecture. While some studies use light-tailed distributions e.g. mixed exponential
(Woolhiser and Roldan, 1982), gamma (Groisman et al., 1999), more recent studies
favor distributions with heavy tail e.g. quotient of gamma distributions (Kout-
soyiannis, 2004), GPD with positive shape (Serinaldi and Kilsby, 2014).
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For some distribution functions the convergence of the maximum of a sample is
so slow that it is not of practical relevance (Wilson and Toumi, 2005). For example
Wilson and Toumi (2005) uses the stretched exponential distribution and Biondini
(1976) the log-normal distribution for precipitation extremes. Both distributions
are asymptotically light-tailed, but for finite sample they are well-approximated
by heavy-tailed distributions. The slow convergence to the asymptotic behavior
makes standard extrapolation of the distribution function problematic and has in-
creased the interest in finite sample properties of the shape parameter of the GEV or
GPD (e.g. Koutsoyiannis, 2004; Serinaldi and Kilsby, 2014). Further, the potential
non-validity of standard extrapolation methods motivates the use of precipitation
distributions justified by physical reasoning (Wilson and Toumi, 2005).

Serinaldi and Kilsby (2014) estimate the GPD for daily precipitation measure-
ments on a data set containing records of 40 year length. While the shape parameter
has a slight tendency for very high thresholds towards negative values, it attains
for lower thresholds a positive shape parameter. This could be partly explained by
the inclusion of non-extreme values, but is mainly interpreted as a small sample
bias of the maximum likelihood estimator. Given a fixed threshold (98 percentile)
Serinaldi and Kilsby (2014) use a data set containing time series of up to 110 years
to study the effect of sample size on the estimates of the shape parameter. For
very small sample size the maximum likelihood estimates of the shape parame-
ter tend to slightly negative values and increase to positive shape parameter for
larger sample size. They reproduce the small sample bias of the shape estimator
by a Monte Carlo experiment using a GPD distribution with a normally distributed
shape parameter with positive mean. From this the authors conclude, that the
considered data is consistent with a distribution of the shape parameter that varies
slowly in time and attains typically positive values. The study proposes a very
elegant explanation for the dispute in the literature on whether precipitation is a
heavy-tailed phenomenon.

Koutsoyiannis (2004) argues that the popularity of the Gumbel distribution is
explained by the fact that for small samples of a Fréchet distribution the hypothesis
of a Gumbel distribution cannot be significantly rejected. Koutsoyiannis (2004) de-
scribes the bias of moment estimator and maximum likelihood estimator for various
sample sizes under the assumption of a Fréchet distribution for heavy precipita-
tion. It is argued that the climate variability or seasonality could be a potential
reason for the heavy-tail of extreme precipitation, since a varying scale parameter
of a Gamma distribution is shown to generate such a behavior. In Section 3.1.4 we
have shown that this argument is misleading, as the scaling parameter is already
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heavy-tailed in this case.

Of particular interest to this work is Wilson and Toumi (2005), since they model
the budget equation of humidity in a stochastic way in order to infer the distribution
of extreme precipitation. The distribution obtained by Wilson and Toumi (2005)
is asymptotically light-tailed, but for typical sample sizes used in hydrology or the
atmospheric sciences it is better approximated by a heavy-tailed distribution. The
authors identify the variability of precipitation efficiency as an important contribu-
tion to the extreme distribution of precipitation, while Singleton and Toumi (2013)
claim that precipitation efficiency is 100% when extreme precipitation is observed.
We describe the Wilson and Toumi (2005) model in more detail in Section 3.3.1.

Another issue of interest is the distribution of precipitation subject to temporal
or spatial aggregation (Koutsoyiannis et al., 1998; Coles and Tawn, 1996; Haerter
et al., 2010) and the related question whether precipitation shows a universal scaling
behavior (Tessier et al., 1993; Hense and Friederichs, 2006). Haerter et al. (2010)
studied the distribution of precipitation as a function of temperature and tempo-
ral aggregation. For short duration (5min) the extreme precipitation distribution
is well-approximated by a power law, which would indicate a scale-free behavior
(Haerter et al., 2010). For longer duration exponential decay is observed. The
comparison of various averaging periods allows to extrapolate the value to estimate
an instantaneous precipitation rate. Koutsoyiannis et al. (1998) investigated the
relation of intensity, duration and frequency of precipitation events (IDF). These
relations are important for the estimation of the distribution of extreme precipita-
tion amounts and are therefore of interest to the design of buildings. For various
potential distributions of precipitation Koutsoyiannis et al. (1998) derived the as-
sociated IDF curves.

Coles and Tawn (1996) used a different and more flexible approach to model
spatial dependence of precipitation extremes. Using EVT they describe both the
marginal distribution and spatial dependency of precipitation extremes. Similar to
IDF curves this approach is used to infer the distribution of the averaged precipita-
tion amount in space (Coles and Tawn, 1996). Max-stable processes have been used
to describe and simulate spatial precipitation extremes (Gomes et al., 2016) and
to provide a class of processes that allow a continuous description of precipitation
extremes in space.

Multiplicative and multifractal models are a particularly interesting class of
models. Motivated by the scale-free properties of turbulence (Tessier et al., 1993)
and their interaction with precipitation these models describe precipitation as the
product of a number of random variables, where the number increases with spa-
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tial resolution (Tessier et al., 1993; Over and Gupta, 1996). These models have
been used to construct IDF curves and to predict precipitation (Langousis and
Veneziano, 2007). Based on such models, Veneziano et al. (2009) put into question
the validity of asymptotic approximations made in EVT modeling precipitation ex-
tremes. This is consistent with Wilson and Toumi (2005) who show that the product
of Gaussian variables are approximated unsatisfactorily by their light-tailed limit.

Similar to Wilson and Toumi (2005)’s approach and the above mentioned fractal
models there is a literature trying to explain the extremal behavior of precipitation
or other atmospheric variables by physically motivated models. Sardeshmukh and
Sura (2009) derived a linear stochastic model, which includes correlated and mul-
tiplicative noise, from non-linear dynamical systems. These models exhibit heavy
tails and explain an observed relation of skewness and kurtosis. Interestingly, they
are not unrelated to ARCH-processes (Engle, 1982), which is a highly-useful class
for the modeling of financial time series. These processes generate heavy tails
(Kesten, 1973) by temporal spikes of the variance known as heteroscedasticity. To
the best of our knowledge, it is not known if atmospheric process are heteroscedas-
tic and whether the intermittent behavior of atmospheric motions triggers heavy
tails or heteroscedasticity.

3.3 Stochastic models for precipitation extremes

3.3.1 The Wilson and Toumi (2005) model

Wilson and Toumi (2005) propose a probability distribution for precipitation ex-
tremes based on the dynamics of moisture transport. The atmosphere is modeled
in two layers, where the lower layer contains the moisture and where moisture con-
vergence is exclusively present (Reed and Recker, 1971). Wilson and Toumi (2005)
consider the following integral as humidity budget equation. The precipitation rate
R̃ is given by

R̃ = −
∫ zm

0
∇ · (qρU)dz =

∫ zm

0

∂ (qρw)
∂z

dz = (qρw)zm
, (22)

where the overbar denotes temporal averaging, q specific humidity, ρ specific den-
sity, U the horizontal wind field and w the vertical wind speed, zm the height of the
top of the moist layer. This equation was derived in Stevens and Lindzen (1978)
under the assumption of vertically constant q and the anelastic continuity equation
∇· (ρU) = 0, where U is the 3-dimensional wind field. For more general conditions
implying (22) see Stevens and Lindzen (1978). In (22) it is assumed that the com-
plete moisture that ascends at the top of the moist layer is precipitated. Wilson
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and Toumi (2005) consider the possibility of temporal storage of moisture in the
dry layer and therefore introduce the precipitation efficiency κ. In this model it
describes the percentage of moisture, that is precipitated, from the total water as-
cending at the top of the moist layer. The product of vertical wind and the density
equals the mass flux m = ρw. Using the precipitation efficiency κ, Wilson and
Toumi (2005) obtain the following model for the precipitation rate R

R = (κmq)zm
. (23)

Motivated by this physical derivation, Wilson and Toumi (2005) model the pre-
cipitation rate R as the product of three independent Gaussian variables. The
product of three Gaussian variables lies in the domain of attraction of the Gum-
bel distribution and is hence light-tailed (Wilson and Toumi, 2005). This means
that the maximum of a sample of the distribution of product of three Gaussian
variables will converge up to affine transformation to a Gumbel distribution. Yet
this convergence is very slow (Furrer and Katz, 2008) and for data length typically
available in meteorology it is no satisfactory approximation. A maximum from a
finite sample of a product of three Gaussian variables is well approximated by a
Fréchet distribution, it appears to be heavy-tailed. The distribution of R in (23)
can be very well approximated by the stretched exponential distribution (Wilson
and Toumi, 2005)

P (R < x) = 1− exp
(
−
(
x

R0

)c)
, (24)

where R0 is a scale parameter and the shape parameter c = 2/3. Wilson and
Toumi (2005) show that equation (24) is consistent with observational data. The
authors argue that the precipitation observations are inconsistent with the prob-
ability distribution of the product of two Gaussian variables, which suggests that
the precipitation efficiency is essential in explaining the characteristics of heavy
precipitation.

3.3.2 Derivation of a simplified moisture budget

Similar to Wilson and Toumi (2005) we introduce a model for precipitation extremes
based on the budget equation for humidity. It follows a passive tracer transport
equation

∫ H

0

∂

∂t
q +∇ · (Uq) dz = E − P̃ , (25)

where H is the upper boundary of the moisture containing layer of the troposphere,
q is the absolute humidity, U the horizontal wind vector, E the evaporation and P̃
precipitation.
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Wilson and Toumi (2005) suggest that multiplication of random variables inten-
sifies the preasymptotic extremal behavior, such that it is plausible to assume that
the term ∂

∂tq is less important than the other terms in (25), we thus neglect it.
We use ∇ · (Uq) = q∇ · U + U · ∇q, since this will allow to use the methods

of Chapter 2 later on. Decomposing the variables U and ∇q in its vertical mean
U,∇q and a vertical anomaly U ′, (∇q)′ we see that

∫ H

0
U · ∇qdz = HU · ∇q +

∫ H

0
U ′ · (∇q)′ dz.

Up to integration the term imposed by the vertical anomaly is similar to the verti-
cally constant term. If the vertical anomaly U ′ (∇q)′ fulfills sufficiently fast strong
mixing the anomaly term is well approximated by a Gaussian variable (Rosenblatt,
1956) and has thus negligible influence on the extremal behavior. A similar consid-
eration applies for q∇ · U . Neglecting the terms induced by the vertical anomalies
of U,∇ · U, q,∇q and the factor H we obtain a simplified two-dimensional budget
equation

P̃ = E − U · ∇q − q∇ · U.

In the following we will call q∇ · U divergence term and U · ∇q advection term.
Before we introduce stochastic processes that model the terms of the simplified
budget equation, we discuss thresholding due to the Clausius-Clapeyron threshold
and precipitation efficiency. The Clausius-Clapeyron relation describes saturation
water vapor as a function of temperature and pressure. A good approximation is
an increase by 7% per degree Celsius. A parcel of moist air exceeding the sat-
uration water vapor pressure generates cloud water proportional to the excess of
the threshold. Thus the Clausius-Clapeyron relation imposes a thresholding of the
humidity field. Thus the actual precipitation rate is given by

P =
(
P̃ − T

)
+

= (−U · ∇q − q∇ · U + E − T )+ , (26)

where (x)+ = max (0, x) and T is the Clausius-Clapeyron threshold.
Precipitation efficiency is the ratio of precipitated water and the total water in

a column of the atmosphere. Precipitation efficiency is accounted for in Wilson
and Toumi (2005) by a multiplier to the excess humidity, as explained in detail
in Section 3.3.1. The parameterization of the transition of cloud droplets to pre-
cipitation droplets of Kessler (1969) suggests that the precipitation droplets are
proportional to cloud droplets subject to a further thresholding. On the contrary
the parameterization in Seifert and Beheng (2001) suggests a quadratic increase
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of precipitation droplets with humidity exceeding the Clausius-Clapeyron thresh-
old and therefore an increase of precipitation efficiency in extreme events. While
the first parametrization could be modeled by increasing the Clausius-Clapeyron
thresholding in (26), the second would suggest to square P . As the physical valid-
ity of the parameterizations is not clear especially for extreme events we model the
precipitation droplets as proportional to cloud droplets, which is consistent with
Kessler (1969).

3.3.3 Stochastic models for precipitation fields

Based on Section 3.3.2 we introduce here a stochastic models for precipitation
fields. Generalizing Wilson and Toumi (2005) we introduce a model that describes
the spatial distribution of precipitation. Further, our models allow for correlation
of various terms included in the budget equation and we do not exclusively rely on
the assumption of marginal Gaussianity of the included terms.

We use a zero-mean Gaussian process
(
(ψs, χs, qs) , s ∈ R2) with covariance func-

tion

Cov
((

ψs, χs, qs
)T

,
(
ψt, χt, qt

)T)
(27)

=




σ2
ψ ρψ,χσψσχ ρψ,qσψσq

ρψ,χσψσχ σ2
χ ρχ,qσχσq

ρψ,qσψσq ρχ,qσχσq σ2
q


M (‖b(t− s)‖2, ν) ,

where M(·|ν) is the Matérn covariance function with smoothness parameter ν,
σ2
ψ, σ

2
χ, σ

2
q the variances and correlations ρψ,χ, ρψ,q, ρχ,q of ψ, χ and q, b ∈ R+ the

scale-parameter and s, t ∈ R2 two arbitrary locations. Using Us = ∇ × ψs +∇χs
and ∇·Us = ∆χs we model

(
(qs,∇qs, Us,∇ · Us) , s ∈ R2) as a zero-mean Gaussian

process with covariance function

C(s, t) = E
[
(qs,∇qs,−∇× ψs +∇χs,∆χs)T (qt,∇qt,−∇× ψt +∇χt,∆χt)

]
. (28)

In Chapter 2 (in particular Section 2.2) we extensively study such processes and
show how to derive (28) from (27). Although qs,∇qs is not included in Chapter 2
it is straightforward to generalize. Hence we obtain from (25) spatial precipitation
fields

Ps = (−Us · ∇qs − qs∇ · Us + E − T )+ s ∈ R2. (29)

In the following we will call model (29) Gaussian model (GM).
We consider two further variations of our model that can be easily derived from

GM. The distribution of q is multivariate log-normal such that the gradient field of
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humidity has the following simple property, ∇q = ∇ exp (q̃) = exp (q̃)∇q̃ = q∇q̃,
where q̃ is a latent Gaussian process. Let the process

(
(q̃s,∇q̃s, Us,∇ · Us) , s ∈ R2)

be a zero-mean Gaussian process with covariance function (28). For this model we
obtain the following stochastic process

Ps = (− exp (q̃s)∇q̃s · Us − exp (q̃s)∇ · Us + E − T )+ s ∈ R2. (30)

The model will be called log-normal model (LNM). A further variant of GM can
be obtained by assuming that χ and ψ follow a multivariate Student-t distribu-
tion. A multivariate Student-t field with d ∈ N degrees of freedom is obtained
by a Gaussian field that is divided by the variable

√
χ2
d/d, where χ2

d is a χ2 dis-
tribution with d degrees of freedom. As the denominator of the Student-t field
is constant we obtain a very simple formula for the derivatives of such processes:
∇ψ = ∇

(
ψ̃√
χ2

d
/d

)
= ∇ψ̃√

χ2
d
/d

, where ψ̃ is a Gaussian process. The spatial derivative
of a Student-t process is Student-t distributed with the same degrees of freedom.
Using a zero-mean Gaussian process

(
(qs,∇qs, Us,∇ · Us) , s ∈ R2) with covariance

function (28) we obtain the following model

Ps =


−Us · ∇qs − qs∇ · Us√

χ2
d/d

+ E − T



+

s ∈ R2, (31)

which will be called Student-t model (StM) in the following.

In the following sections we will study the extremal behavior of these models.
We will discuss the asymptotic properties of the processes, but more often we will
be interested in the preasymptotic extremal behavior. A well-known way to de-
scribe the preasymptotic shape is to find parameter γn such that Gγn is close to the
distribution of Mn (Embrechts et al., 1997). For many distributions the sequence
γn converges slowly to the true asymptotic shape. Hence, either theoretical esti-
mates or maximum-likelihood estimates of a sample will be used to describe the
preasymptotic behavior of distributions. A similar way would be to fit a GPD to the
values of a sample exceeding a threshold T . Here, T quantifies the transition from
the preasymptotic to the asymptotic regime, similar to n in the first approach.

Except when noted otherwise all results in the following sections have been
obtained for the following parameters in (27). σψ = σχ = σq = 1, ρψ,χ = ρψ,q =
ρχ,q = 0, ν = 2.5 and b = 1 and for StM d = 6. The threshold T in (29)-(31) has
been set to the 0.7-quantile of the humidity distribution.
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3.4 Results

3.4.1 Kinematic properties of the moisture budget

We start by deriving conditions, which imply that the advection and divergence
term in GM, LNM and StM are uncorrelated. The covariance function (27) is station-
ary and isotropic. This implies, for example, that there is a function f such that
f (‖t− s‖) = Cov (qs, χt), where ‖ ·‖ is a norm. Hence, the covariance is symmetric
to zero. Further the covariance is four times differentiable whenever ν > 2. The
symmetry and differentiability implies that Cov (qs,∇χs) = 0. Similarly we can
derive Cov (qs, Us) = Cov (∆χs, Us) = Cov (∇qs, qs) = Cov (∇qs,∆χs) = 0. This
shows that in GM the advection term and divergence term are independent. In
LNM they are uncorrelated. In StM they are uncorrelated whenever the correlation
exists, which is equivalent to d > 2.

For some of the parameters in (27) we can analytically deduce the influence on
the extremal behavior of Ps. If the fields χ, ψ and q are scaled by the same factor
b ∈ R+ like X̃s = Xbs, the advection term and the divergence term are scaled by b2

and the marginal distribution of the transport of humidity in the model (29)-(31) is
simply scaled by b2. Since the terms E and T are independent of that scaling, the
marginal distribution of Ps is slightly changed. But as these parameters have very
simple deterministic additive structure the extremal properties of Ps are unaffected.
Further, the scale parameter has the obvious influence on the spatial structure of
Ps.

If the variance of q is multiplied σ̃2
q = aσ2

q and the terms σ̃2
χ = σ2

χ/a and
σ̃2
ψ = σ2

ψ/a for a ∈ R+, the distribution of Ps in models (29)-(31) is obviously
unaffected. Multiplication of the variance of q by a has the same influence on the
marginal distribution of Ps as a multiplication of the scale by

√
a.

3.4.2 Asymptotic shape and preasymptotic extremal behavior

We start by deriving relations for the asymptotic extremal behavior for GM, LNM

and StM. By the methods of Section 3.1.4 it is clear, that all moments of P in GM

and LNM exist and that this implies the following statement. If P ∈ D (Gγ), then
γ ≤ 0 and P is hence light-tailed.

Using the methods of Section 3.1.4 we see that the α moment of StM is finite
whenever α < 1/d, where d is the degrees of freedom. Hence, if P ∈ D (Gγ), then
γ = 1/d.

Further we study the preasymptotic extremal behavior for GM, LNM and StM.
Gomes and De Haan (1999) show that for a wide class of distribution functions
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preasymptotic approximations for the shape parameter for Mn = max (X1, . . . , Xn)
are provided by

γn = −(1− F (xn)) f ′(x)
f(xn)2 − 1, (32)

where xn = F−1
(
1− 1

n

)
. This means Gγn is close to the distributions of Mn (for

details be refereed to Gomes and De Haan (1999)). A good intuition of this result
may be obtained from Theorem 4. The asymptotic expression of this theorem is
evaluated for finite values to obtain γn.

We will apply this preasymptotic relation to the model of Wilson and Toumi
(2005), GM, LNM and StM. The fundamental probability distribution for precipi-
tation extremes derived in Wilson and Toumi (2005) is the stretched-exponential
distribution

P (P > r) = exp (−rc) ,

where c = 2/3. Using (34) Furrer and Katz (2008) obtain for the stretched-
exponential distribution

γn = 1− c
c lnn. (33)

Figure 3.1 shows the behavior of preasymptotic values of γn for various distribu-
tions. For the stretched-exponential distribution with c = 2/3 it reduces very slowly
and the asymptotic shape is not relevant. In the following sections we will show
that the marginal distribution of the GM is close to the product of two Gaussian
variables. This distribution is approximatively close to the stretched exponential
distribution with c = 1 (Frisch and Sornette, 1997). The approximation of Furrer
and Katz (2008) suggests that this distribution is not only asymptotically but also
for finite-sample light-tailed. In Section 3.4.3 we will see that we obtain a slightly
positive shape parameter when computing maximum-likelihood estimates of a GPD

with a sample of GM.
The marginal distribution of the LNM has slightly larger preasymptotic shape

parameter than the log-normal distribution. For the log-normal distribution it is
possible to derive similar preasymptotic estimates of the shape parameter. Setting
xn = F−1(1− 1/n) ∼ exp

(
Φ−1

(
1− 1

n

))
to the typical size of a maximum over n

realizations we obtain

γ(xn) = −(1− F (xn)) f ′(x)
f(xn)2 − 1 = (1− Φ(ln xn)) (ln xn + 1)

ϕ(ln xn) − 1. (34)

Figure 3.1 shows that the shape parameter for the log-normal distribution re-
duces even slower than in the stretched-exponential case. For example, we obtain
γ (x1000) ≈ 0.2.

46



10 20 50 100 200 500 1000

0.
0

0.
1

0.
2

0.
3

n

sh
ap

e 
pa

ra
m

et
er

Figure 3.1: Analytic approximation for the shape parameter for the maximum
over n realizations of a sample. The stretched-exponential distribu-
tion with c = 2/3 equation (33)(blue line), the log-normal distribu-
tion equation (34) (black line) and the Student-t distribution with
d = 6 degrees of freedom equation (35) (red line) are shown. The
horizontal black line indicates the asymptotic shape parameter of the
stretched-exponential and log-normal distributions and the horizon-
tal red line the asymptotic shape of the Student-t distribution.

The asymptotic shape of the StM is similar to a Student-t random variable, since
the Student-t variable is heavy-tailed and the other Gaussian variables are light-
tailed. The shape parameter of a Student-t random variable is γ = 1/d (De Haan
and Ferreira, 2006). For d = 1 the shape is maximal γ = 1, and for d → ∞ it
converges to zero, and the StM is identical to the GM. For a Student-t variable
with d degrees of freedom we obtain setting xn = F−1 (1− 1/n), where F is the
corresponding CDF

γ(xn) = −(1− F (xn)) f ′(xn)
f(xn)2 − 1 = −xn (1 + 1/d)

n
(
1 + x2

n
d

)−(d−1)/2

√
dπΓ (d/2)

Γ ((d+ 1) /2) − 1, (35)

where Γ is the Gamma function. Figure 3.1 shows that γ (xn) increases mono-
tonically and relatively fast to its limit γ = 1/6. Even for a maximum over 1000
realizations the shape of the log-normal distribution is higher than the one of a
Student-t, although the former is light-tailed and the latter heavy-tailed. Careful
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Table 1: Asymptotic domain of attraction and preasymptotic extremal behavior
of the models GM, LNM, StM with d degrees of freedom and Wilson and
Toumi (2005). The claims in italics rely on the assumption that the
model is in a domain of attraction of a GEV.

GM LNM StM Wilson and
Toumi (2005)

Preasymptotic light-tailed heavy-tailed heavy-tailed heavy-tailed

Asymptotic light-tailed light-tailed heavy-tailed with
γ = 1/d

light-tailed

checking whether asymptotic approximations are valid is essential for the extrapo-
lation of distribution functions.

For a better overview the asymptotic and preasymptotic extremal behavior of
the model in Wilson and Toumi (2005), GM, LNM and StM are summarized in Table
1.

3.4.3 Correlation parameter

In this section we investigate the effect of the correlation parameters ρχ,ψ, ρχ,q, ρχ,q
of (27) on the shape of the tail of Ps in models (29)-(31). We will call the pa-
rameters ρχ,ψ, ρχ,q, ρχ,q correlations although they are not necessarily identical to
the correlation for LNM and the StM. For example, if ρχ,q = 1 we have for LNM

Cor (χs, qs) = Cor (X, exp (X)) ≈ 0.76, where X is a standard normal random
variable.

The term in U · ∇q + q∆χ in (26) is given by

∂

∂e1
q

(
− ∂

∂e2
ψ + ∂

∂e1
χ

)
+ ∂

∂e2
q

(
∂

∂e1
ψ + ∂

∂e2
χ

)
+ q∆χ. (36)

For nonzero correlations ρq,χ the divergence term and the terms ∂
∂ei
q ∂
∂ei
χ for i = 1, 2

are products of correlated variables for the models (29)-(31). In a preasymptotic
sense, extreme values of one of the variable are more likely to appear if the other
variable is extreme. Yet, asymptotically they are independent whenever |ρχ,q| < 1
in the Gaussian case (Sibuya, 1960). Since the terms ∂

∂ei
qs,

∂
∂ej
ψs for i 6= j in (36)

are uncorrelated for any value of the parameter ρψ,q, this parameter has no direct
influence on the products in (36). However, it induces a correlation of the two
summands of the advection term (36).

Figure 3.2 shows maximum-likelihood estimates of the GPD shape parameter
fitted to the upper 5% of a sample of 104 precipitation events. For Figure 3.2 a)
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Figure 3.2: 100 replicates of maximum-likelihood estimates of the shape param-
eter GPD for a sample of n = 104 precipitation events obtained by
considering the upper 5% of the data. a) The samples have been
obtained by the GM for varying parameter ρχ,q. For the very right
box (N) the samples have been generated as product of two indepen-
dent standard normal Gaussian variables. b) Shows LNM for varying
parameter ρχ,q.

the samples have been simulated as a product of two independent standard normal
variables or with GM for varying values of ρχ,q. For all distributions we observe
similar distributions of the shape parameter. Hence, the correlation parameter has
no significant influence on the maximum-likelihood estimates of a GPD and has thus
no substantial influence on the shape of precipitation extremes in the GM. This
result is consistent with the asymptotic properties of a product of two Gaussian
variables. If the correlation equals one, the product of two Gaussian variables
has a χ2

1 distribution, which has shape parameter γ = 0 (Beirlant et al., 2004).
For independent Gaussian variables the product has also shape parameter γ = 0
(Wilson and Toumi, 2005).

For varying correlation parameter ρψ,q we estimated the shape parameter from
the upper 5% of the marginal distribution of the Gaussian. We observed no influ-
ence of the parameter (not shown). Similar results were obtained for the correlation
parameter ρχ,ψ (not shown).

In order to understand the behavior of GM, we investigate the behavior of prod-
ucts of two random variables as a function of their correlation. Figure 3.3 a) shows
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Figure 3.3: Tail-quantiles q = 0.95 + i/1000 for i = 0, . . . , 49 of products of inde-
pendent against products of perfectly correlated variables. The solid
line is a regression line and the crosses show bootstrapped 0.95 confi-
dence intervals. a) product of two Gaussian, b) product of Gaussian
and log-normal.

quantiles from the upper 5% tail estimated from a sample of length n = 106 for a
product of independent Gaussian variables and for a product of Gaussian variables
with correlation 1. The uncertainty was assessed by a bootstrap and is negligible.
The linear behavior indicated by the regression line shows a good accordance in tail
behavior. The asymptotic equivalence of the two distributions is a good approxima-
tion for the upper 5% of the data. Similar properties can be seen from estimating
the shape parameter from the upper 5% of a sample from a product of two Gaus-
sian variables with varying correlation, which is shown in Figure 3.4a). There is no
influence of the correlation to the extremal behavior of the process. This explains
why the GM is insensitive to changes in the correlation of the quantities ψ, χ and
q.

Figure 3.2 b) shows maximum-likelihood estimates of the GPD shape parameter
fitted to the tail of LNM. This model has an preasymptotic extremal behavior clearly
different from GM. The median of the estimated shape parameter lies between
0.2 and 0.3 and differs markedly from the true asymptotic value of γ = 0. The
distribution of the shape parameter is insensitive to the correlation parameter ρχ,q.

For the product of a Gaussian and a log-normal variable we see slight deviations
in the quantile plot in Figure 3.3 b). This is reflected in Figure 3.4 b), where GPD

shape parameter for the tail of X exp (Y ) is estimated for varying correlation of
the Gaussian variables X and Y . The shape parameter differs markedly from the
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Figure 3.4: Maximum-likelihood estimates of the shape parameter of a GPD ob-
tained from the upper 5% from a sample of length n = 105. The
samples have been generated by a product of variables with vary-
ing correlation parameter. The samples are a) product of Gaussian
variables, b) product of Gaussian and log-normal variable. The hor-
izontal line in a) indicates the true asymptotic shape parameter.

asymptotic shape parameter γ = 0 (Beirlant et al., 2004). For Cor (X, exp(Y )) = 0
the median of the shape parameter is slightly below 0.3. If the correlation parameter
is increased to 0.5, the shape parameter increases to ≈ 0.37. A further raise of the
correlation parameter shows no influence. The differences of the shape parameter
may seem negligible, but an examination of the return values shows they are not.
For zero mean and unit variance a 50 year return value for the independent product
has an approximate return value of 10 years for the perfectly correlated product.

In Figure 3.2b) we saw that the correlation parameter has no influence on the
GPD shape parameter estimated for P in LNM, although Figure 3.4 shows that in
principle correlation for products of normal and log-normal variables could influence
the shape. A plausible explanation for the irrelevance of the correlation parameter
is that the advection term in (30) consists of the product of three variables, while
the divergence term consists of two variables only. The main generator of extremes
is therefore the advection term. As argued in Section 3.4.1 the latent humidity field
q̃s is independent from the wind field Us and ∇q̃s for all s ∈ R2 in any isotropic and
stationary covariance model. Hence, the correlation parameter ρχ,q has no influence
on the dependence structure of exp (q̃s) ,∇q̃s and exp (q̃s) , Us. This explains why
this parameter has no influence on the preasymptotic extremal behavior of LNM.
Similar arguments are valid for the correlations ρχ,ψ and ρψ,χ in LNM.
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Figure 3.5: 1000 maximum-likelihood estimates of the shape parameter of a GPD

obtained from the upper 5% of a sample of length 105. a) The data
is simulated from the GM. b) The data is generated by the LNM. For
both plots the parameter σψ is proportional to r and σχ to (1− r).

So far we have not discussed the StM. It is obtained from GM by scaling the
moisture flux convergence with an independent scale variable. Hence, it is also
insensitive to changes of the correlation parameters ρχ,q, ρψ,χ, ρψ,q.

3.4.4 Precipitation extremes in rotational and divergent flow

Changing the ratio of the variances of streamfunction and velocity potential has
very little influence on the distribution of precipitation in the GM. This distribu-
tion is very close to the product of two normal distributions. In a qq-plot with
sufficiently high sample size there is no visible deviation of the two distributions
both for purely rotational and purely divergent flow (not shown). Both rotational
and divergent flow generate the same type of extremes in the GM.

Figure 3.5 depicts the behavior of the shape parameter of a GPD estimated
from a sample of length n = 105 subject to changes of the ratio of the divergent
and rotational wind components. The variance of the rotational wind component is
proportional to r and the divergent component is proportional to 1−r. In Figure 3.5
a) the shape parameter estimates have been obtained from the upper 5% of the data
generated from GM. We observe a slightly higher shape parameter for divergent flow
and a reduction for non-divergent flow. The reduction is not monotone and has a
minimum close to r = 0.85. An explanation for the non-monotone reduction of the
shape parameter is that the divergence term in the transport equation (29) has a
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higher variance for the considered parameters. The variance of the divergence term
is proportional to σχ. A similar behavior of the shape parameter can be generated
by the following model.

P = rX1X2 + 5(1− r)X3X4,

where Xi, i = 1, . . . , 4 are standard normal independent variables. For the value
r ≈ 0.85 we obtain smaller shape parameters than for all others. For this value
both summands have similar variance and mitigate each other. Intuitively this
can be understood by the central limit theorem. Informally it states that sums
of independent random variables are closer to the normal distribution than the
summands.

For the LNM we see in Figure 3.5b) a slight increase in the shape parameter for
purely rotational flow. The advection term consists of the product of three param-
eters and has therefore a more extreme finite sample behavior than the divergence
term in equation (30). If r → 1 the divergence term becomes negligible and the
extremal behavior is no longer mitigated by it. This is similar to the behavior
of sums of independent random variables. The sums converge, under appropriate
conditions, to normal distributions due to the central limit theorem and are hence
asymptotically light-tailed.

3.4.5 Spatial distribution of precipitation extremes

In order to study the spatial structure of the fields we set b = 1/40 in (27) and
consider fields of size 500×500 with unit grid point distance. Figure 3.6a),c) depict
a realization of P in GM and LNM. There are large areas with no precipitation and
clusters of precipitation. The clusters vary strongly in intensity, while the size of
the clusters is relatively homogeneous. The intensity of the clusters does not seem
to have an influence on the size of the clusters. Therefore, we observe regions with
very high gradient of the precipitation intensity, as for example close to the intense
cluster in the upper left corner of Figure 3.6a). The range of precipitation intensity
is much larger in LNM. Both precipitation fields exhibit very rough properties. As
ν = 2.5 in (27) neither the divergence field ∇ · U nor the precipitation field is dif-
ferentiable for both GM and LNM. Although the clustering of precipitation events
is a realistic feature, the fields differ from observed precipitation fields. Often pre-
cipitation is associated with fronts producing clusters in a line and and orientation
that deviates from the isotropy of our models. Further, orographic effects cannot
be modeled in our approach, which is another factor that leads to non-stationarity
of real precipitation fields.
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Figure 3.6: a) A precipitation field on a 500×500 grid, obtained from GM. Up to
scale in z-direction the StM has the same distribution. b) The asso-
ciated humidity field qs from the GM. c) Precipitation field obtained
from the log-normal model and d) associated humidity field.

Figure 3.6b),d) shows the associated humidity field qs. The humidity field is
smoother than the precipitation field and has a large spatial scale. Surprisingly, a
large proportion of the precipitation cells of the GM are located in a region where the
humidity field attains low values. Since the humidity field is a zero-mean Gaussian
process, a large proportion of the field is negative. Obviously, this is an unrealistic
feature of the model. Still, such fields could be a good approximation for model
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Figure 3.7: Log-log plot of quantiles of precipitation intensity subject to spatial
averaging of GM, LNM and StM. The x-axis shows the aggregation
area, the y-axis the precipitation intensity. In a),b) and c) the curves
correspond to the 0.999, 0.99, 0.95, 0.9, 0.85, 0.8 and 0.75− quantiles,
which have been estimated from a sample of length n = 105. Plot a)
is for the GM, b) LNM and c) StM. In d),e) and f) a certain quantile
of GM (black), LNM (blue) and StM (red) is shown. In d) the 0.75, e)
0.85 and f) 0.99 quantile is depicted.

minus observation fields.
The precipitation and humidity fields in StM have the same spatial structure as

in GM. Basically StM is obtained from GM by multiplication of a spatially constant
variable, such that the spatial structure of StM is similar to GM.

The marginal distribution of precipitation extremes is highly dependent on tem-
poral and spatial aggregation. It is therefore not meaningful to speak of precipita-
tion extremes in an absolute sense. Rather, any precipitation intensity should be
deemed rare or common with respect to a temporal aggregation period or spatial
aggregation area for which it is valid. This is illustrated in Figure 3.7a) which
shows the quantiles of precipitation fields of GM subject to spatial averaging. Due
to spatial averaging the values of the upper quantiles (0.999-0.85) of precipitation
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are strongly reduced. For a single location the 0.999-quantile of precipitation inten-
sity is roughly twice as large as the same quantile for the spatial average over 142

grid points. While lower quantiles like the 0.85 quantile show small variation due
to spatial averaging, the 0.75 quantile is increased by averaging. Figure 3.7b),c)
show analogous results for LNM and StM. Figure 3.7 c),d),e) compare the 0.75, 0.85
and 0.99 quantile of GM, LNM and StM. GM and StM yield a largely parallel be-
havior. Only for very large aggregation areas the quantiles of StM reduce slightly
slower. Generally the quantiles of LNM are higher and for the 0.75 and 0.99 quantile
show stronger variation. Particularly interesting is that we observe due to spatial
dependence a non-monotonic reduction of the 0.75 and 0.85 quantile.

In order generate Figure 3.7 and all further Figures in this section we generated
n = 105 realizations of GM, LNM and StM on a 125 × 125 grid with 4 grid point
distance. This is the same area as in Figure 3.6, yet with a rougher resolution.

The reduction of the intensities shown in Figure 3.7 for the GM is due to the
reduction of variance by the spatial averaging, since distant precipitation intensities
are uncorrelated. A further reason is the change of the marginal distribution due to
spatial averaging. For increasing aggregation areas the distribution of precipitation
tends to a normal distribution, due to the central limit theorem.

Figure 3.8 shows the histograms of precipitation events from the GM (29) for a
single point in space and the average of 1252 points in space. For better comparison
both distributions have been normalized to zero mean and unit variance. The
spatial averaging leads to a less skewed distribution and the distribution of the
averaged values is closer to a normal distribution, although they clearly differ from
a normal distribution.

Figure 3.9a) shows the GPD shape parameter estimated from the tail of GM

as a function of spatial averaging. It is highly sensitive and reduces considerably
with spatial aggregation. Even though all distributions lie in the domain of at-
traction of the Gumbel distribution, there is substantial variation of the extreme
value estimates for finite sample size. The average of the whole field has a shape
parameter γ ≈ −0.1, which is close to the preasymptotic extremal behavior of a
normal distribution.

The shape parameter of LNM, which is shown in Figure 3.9b), reduces also
rapidly with spatial aggregation over small areas. For larger aggregation areas this
tendency reduces considerably. Interestingly, for the complete aggregation area of
size 5002 the shape is still very far from the shape, that would be expected from a
normal distribution. Even though Figure 3.6c) suggests that there are lot of degrees
of freedom in the field.
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Figure 3.8: Distribution of precipitation intensity normalized to zero mean and
unit variance for a) precipitation intensity at one location and b)
averaged over area of size 5002 for the process (29) (GM).
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Figure 3.9: Boxplots of shape parameter of a GPD estimated from the upper
5% of a sample of size n = 104 bootstraped from a sample of length
n = 105. In a) the first box on the left shows the distribution obtained
for a sample of the process (29) (GM), while for the other boxes the
process has been averaged over a number of grid points indicated by
the x-axis. Analogue plots are given for LNM in b) and StM in c).
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Figure 3.10: Log-log plot of precipitation extremes from a data set of the World
Meteorological Organization (WMO, 1994) reproduced from Hense
and Friederichs (2006). The x-axis shows the aggregation period and
the y-axis the aggregated precipitation amount. The line indicates
a least square fit 6.5τ0.49.

The StM has a distinctly different behavior. It has a common factor for di-
vergence and the wind field, which is spatially constant. This factor is the main
generator of extremes and due to its spatially constant behavior the central limit
theorem cannot be applied to such fields. Accordingly, we do not observe a tendency
of the shape parameter to reduce with spatial averaging in Figure 3.9 c).

Observational data of precipitation extremes issued by the World Meteorological
Society (WMO, 1994) exhibit a strong reduction of precipitation intensities with
temporal resolution. Figure 3.10 is a plot reproduced from Hense and Friederichs
(2006), where maxima from this data set are shown with respect to their temporal
resolution. The maxima are remarkably well approximated by the function 6.5τ0.49,
where τ is the aggregation duration (Hense and Friederichs, 2006). This behav-
ior suggests that precipitation is a scale-free phenomenon (Hense and Friederichs,
2006). Similar results could be expected from precipitation fields with a correlation
range that is smaller than the temporal resolution of the data. For such a time
series (Pn, n ∈ N) of precipitation amounts we have

Var
(

n∑

i=1
Pi

)
= O (n) .
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Figure 3.11: Log-log plot of maxima of spatial aggregates of precipitation fields.
The x-axis represents the aggregation area and the y-axis the spatial
aggregates. The vertical lines show the 95% confidence interval of
the maximum over n = 103 realizations bootstraped from n = 105

replicates. The line is the Kτ , where τ is the aggregation area and
K ∈ R such that the line coincides with the median of the maxima
over aggregation area 250000. A similar function is considered in
Figure 3.10. The data have been simulated with a) GM, b) LNM c)
StM.

For a distribution that is stable under summation this implies, that the quantiles
of aggregated precipitation increases proportional to n0.5. The normal distribution
is the only summation-stable distribution with finite second moments. Yet, it is
certainly no appropriate distribution for precipitation.

In Figure 3.11a) the maxima over 103 samples of GM are shown as a func-
tion of spatial aggregation. For very large spatial aggregates the variance of the
aggregate increases linearly as the precipitation rate of remote grid points are un-
correlated and do not increase the variance of the sum superlinearly. Together with
the convergence to the Gaussian limit, this explains why the maxima can be well
approximated by a linear function in the limit. In a one-dimensional setting the
same consideration would suggest an increase by n0.5. For small aggregation areas
these approximations are no longer valid and the rate is lower. In Figure 3.11b),c)
it is shown that similar results hold for the LNM and the StM. Particularly in the
case of StM the linear increase of precipitation extremes with aggregation area is
an unsatisfactory approximation.
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Figure 3.12: Quantiles of χ2
1 random variable (y-axis) and the absolute value of

a product of two standard Gaussian variables (x-Axis). The quan-
tiles q = 2i/100 for i = 1, . . . , 49 and the 0.999 quantile estimated
from samples of length n = 106 are shown. The straight line is a
regression line.

3.4.6 Max-stable limit of the Gaussian model

In this section we study the convergence of pointwise maxima of GM to a max-
stable limit. Max-stable processes are natural stochastic processes to describe the
spatial structure of precipitation extremes. The convergence of stochastic processes
to their max-stable limit gives insight in the typical size of spatial extreme events
relative to their intensity (Kabluchko et al., 2009) and is therefore an important tool
to estimate the tails of spatial functionals. Further, max-stable processes provide
opportunity to perform conditional simulation of extremes (Oesting et al., 2012)
and therefore allow to interpolate extremes fields to non-observed locations.

Section 3.4.4 shows that the precipitation fields of the GM have a distribution
very close to the product of two Gaussian variables. Figure 3.12 shows a qq-plot
for a χ2

1 distribution and the absolute value of a product of two Gaussian variables.
The almost linear behavior of the quantiles shows that the distributions have a very
similar shape. A bootstrap revealed negligible uncertainties of the estimated quan-
tiles (not shown). The two distributions are up to an affine transformation similar.
This suggests that the precipitation fields of the GM can be well-approximated by
χ2

1 fields. Such a field is given by the squared of a zero-mean Gaussian random
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field. We will investigate the convergence of a χ2
m to max-stable processes in this

section. We need the following definition before introducing the main result.

Definition 10. A measurable function L that is positive in an open set containing
0 is slowly varying at zero if

lim
x→0

L(ax)
L(x) = 1 ∀a ∈ R+.

The following assumption is slightly stronger than an assumption in Kabluchko
et al. (2009). We additionally assume the continuity of the following function L in
order to prove Theorem 12.

Assumption 11. Let (X(t), t ∈ D) be a zero-mean, unit-variance Gaussian process
defined on an open set D ⊂ Rd containing 0 with covariance function C(s, t) =
E (X (s)X (t)) . We assume

lim
ε↓0

1− C (εs, εt)
L (ε) εα = γ (s− t)

is uniform for bounded s, t, where L is continuous, slowly varying at zero; α ∈ (0, 2]
and γ : Rd → [0,∞) is a continuous function satisfying γ (λt) = λαγ(t), for λ ≥
0, t ∈ Rd.

A zero-mean, unit-variance Gaussian process with differentiable covariance func-
tion fulfills Assumption 11 with α = 1 and L = 1. We introduce the following
sequence, which has been considered in Hashorva et al. (2012)

bn,m := 2 lnn+ (m− 2) ln lnn− 2 ln Γ (m/2) , (37)

where Γ is the gamma function. This sequence can be used to change the location of
the maximum of n iid copies ofχ2

m, where m is the degree of freedom. If Assumption
11 is fulfilled, we define following Kabluchko et al. (2009) the sequence

sn = min
{
s > 0

∣∣∣∣L(s)sα = 1
2 lnn

}
. (38)

Theorem 12. Let Xi,j i, j ∈ N iid processes satisfying condition 11. For m ∈ N
define

χ2
i,m(t) :=

m∑

j=1
X2
i,j(t).

χ2
i,m is a χ2 distributed random field with m degrees of freedom. We have the

following asymptotic distribution
n∨

i=1

χ2
i,m(tsn)− bn,m

2 ⇒ η(t), (39)
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where η is the Brown-Resnick process associated to the variogram 2γ from Assump-
tion 11. The sequences bn,m and sn are given in (37) and (38). The convergence
denoted by “⇒“ holds in the sense that for any compact set K the left hand side
converges weakly in the space of continuous functions C (K) equipped with the
infinity-norm ‖ · ‖∞.

Proof. Idea: Hashorva et al. (2012) showed that in the finite dimensional setting the
asymptotic distributions of the componentwise maxima of χ2

m vectors and Gaus-
sian vectors are identical given the right normalizing sequences. The Kolmogorov
extension theorem states that a continuous process is completely characterized by
its finite dimensional distribution. Hence, we can extend the result of Kabluchko
et al. (2009) that was derived for the maxima of Gaussian fields to maxima of χ2

m

fields.
Assumption 16 of Kabluchko et al. (2009) is slightly weaker than Assumption

11. We have to show that the latter implies the following condition which is the
condition of Theorem 1.1 in Hashorva et al. (2012). The condition was introduced
by Hüsler and Reiss (1989). Let Xn be a sequence of d-dimensional Gaussian
vectors with correlation matrix Σn. The condition of Hüsler and Reiss (1989) is

lim
n→∞ 4 lnn(11T − Σn) = Λ ∈ [0,∞)d×d , (40)

where 1 is the d-dimensional vector consisting of 1 entries. We have to show that
the Gaussian vector obtained by projecting a Gaussian field fulfilling Assumption
11 to d points fulfills the condition (40). It is sufficient to do this for d = 2. The
condition (40) is trivially satisfied for the diagonal entries. For the non-diagonal
entries we have

lim
n→∞ 4 lnn (1− C (t1sn, t2sn))

= lim
n→∞

1− C (t1sn, t2sn)
L(sn)sαn

4 lnn
L(sn)sαn

= γ (t1 − t2) lim
n→∞

4 lnn
2 lnn

= 2γ (t1 − t2) .

In the second equation the continuity of L implies L (sn) sαn = 2 lnn. Hence (40)
is satisfied and the Λi,j is given by 2γ(ti − tj), where i, j = 1, . . . , d and t1, . . . td

are the locations where η is evaluated. Due to Theorem 1.1 of Hashorva et al.
(2012), the finite dimensional distributions of this process converge to the Hüsler-
Reiss process MΛ. A similar consideration for the asymptotic limit of Gaussian
fields (Kabluchko et al., 2009) shows that the finite dimensional distributions of
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such fields converge to the same limit, namely the Hüsler-Reiss process MΛ. By the
Kolmogorov extension theorem, which shows that stochastic processes are uniquely
characterized by the finite dimensional distributions, both processes converge to the
same limit. In Kabluchko et al. (2009) it was shown that this is the Brown-Resnick
process associated to the variogram 2γ (·).

The sequence sn describes the characteristic scale of precipitation extremes
drawn from n independent precipitation fields from the GM. If the covariance
function of the fields is differentiable, then sn ∼ 1/

√
lnn. The sequence sn can be

understood as a zooming sequence which increases the resolution such that a stable
dependence structure is obtained when the maximum is taken over an increasing
number of fields n. The theorem suggests that a company insuring precipitation
risks of different individuals in a neighborhood could assume asymptotic indepen-
dence for extreme incidents.

Figure 3.13 depicts pointwise maxima of multiple precipitation fields of the GM.
A moderate decrease of the characteristic size of the precipitation clusters can be
spotted when comparing the maximum over n = 10 fields to the maximum over
n = 103.

For StM extreme values are mainly generated by a spatially constant factor. Up
to this factor the model is identical to the GM. This suggests that the maximum
over n fields of this model could be well-approximated by a univariate extrapolation
of the factor. At least for moderate n we conjecture that the spatial structure of
the maximum is similar to a random draw from the GM.

3.5 Conclusions

In this chapter we extensively study the stochastic properties of precipitation fields
based on the budget equation of humidity (25). We begin by introducing methods
from EVT in Section 3.1 and deriving relations for the asymptotic shape of products
of random variables. Further, in Section 3.2 we summarize some important aspects
discussed in the literature about precipitation extremes. We present a physically
motivated statistical model of precipitation extremes (Wilson and Toumi, 2005) in
Section 3.3.1, that is an important motivation for this thesis. In Sections 3.3.2 we
derive a simplified equation (26) of the budget equation (25), that can be modeled
by the methods developed in Chapter 2. In Section 3.3.3 we define three different
stochastic models GM, LNM and StM. Both analytic methods and simulation studies
are used to describe and understand the stochastic properties of these models.

Some very basic relations of the terms of the simplified budget equation (1)
can be seen from the differential relations that hold between the variables. For
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Figure 3.13: Pointwise maxima of n independent realizations of the GM. a) n = 1,
b) n = 10 c) n = 102, d) n = 103.

example, due to kinematic properties the advection term and the divergence term
are uncorrelated for a stationary and isotropic covariance structure of ψ, χ and q.
Importantly, we have derived extremal properties of products of random variables
from moment relations for a wide class of random variables. For example we have
shown that the product of light-tailed distributions is under weak conditions not
heavy-tailed. Hence, the budget equation cannot be used to argue that precipitation
has heavy tails, if the humidity and the wind field are light-tailed. Further, we show
that for heavy-tailed distributions products of independent variables have no higher
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shape parameter than their multiplicands. However, the square of a heavy-tailed
distribution has a higher shape parameter if it is in the domain of attraction of an
extreme value distribution at all. Based on these results we show that an argument
of Koutsoyiannis (2004) is misleading, which claims that seasonality could be a
plausible generator of a heavy-tailed distribution of precipitation. Further, we
obtain analytic relations for the convergence of the shape parameter to its limit for
the precipitation models introduced here. Such relations have been used to improve
the convergence rates to limit relations of EVT (Embrechts et al., 1997). These
approximations illustrate that finite-sample properties may converge extremely slow
to the limit relation.

The results of Section 3.4.3 suggest that a diverse behavior with respect to the
correlation parameter can be observed. For finite samples the correlation can have
non-negligible influence on the extremal behavior even for light-tailed distributions,
opposed to the asymptotic irrelevance of correlation. For heavy-tailed distributions
the product of two perfectly correlated random variables has doubled shape param-
eter when compared to the product of independent variables.

In two physically motivated models of precipitation we do not find influence of
the correlation parameter on the preasymptotic extremal behavior. Particularly
interesting is the case of LNM, where the kinematic properties of the stochastic
process studied in Chapter 2 leads to an irrelevance of the correlation parameter,
even though we show that for products of Gaussian and log-normal distribution
the correlation is non-negligible in a finite-sample regime.

The preasymptotic extremal behavior of LNM and GM are hardly affected by the
transition from purely rotational flow to purely divergent flow. The small reactions
of the extremal behavior to this transition are heterogeneous. While the GM shows
a reduction of the shape parameter for rotational flow LNM exhibits a mild increase
of the shape parameter (see Section 3.4.4).

The models (29)-(31) can be used to generate physically meaningful fields of pre-
cipitation with the associated fields of streamfunction, velocity potential, humidity,
the gradient of humidity, divergence and vorticity. Due to the implementation in
the R packages RandomFields (Schlather et al., 2016) highly efficient algorithms
like circulant embedding (Wood and Chan, 1994) can be used to generate fields of
size 800 × 800. Such spatial models are useful to obtain relations of aggregation
and precipitation intensity like in Figure 3.7 via Monte Carlo methods. The spatial
aggregates of the GM converge relatively fast to a negative shape parameter. The
GPD shape parameter fitted to spatial aggreagtes of LNM reduces considerably with
the aggregation area, yet the convergence is slower as for GM. A different picture
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is obtained for the StM, whose shape parameter is stable under spatial aggregation.
This could be an appropriate feature of precipitation models for small scales, where
an approximation under the Gumbel limit is inappropriate.

A scale-free behavior of precipitation extremes with respect to temporal reso-
lution presented in Hense and Friederichs (2006) amongst others cannot be repro-
duced by the three model discussed here.

The wind field process (3) can be used for conditional simulation, such that the
models (29)-(31) are able to generate conditional simulation of precipitation fields
given certain realizations of the wind and humidity fields, which could be a useful
method for downscaling.

The GM has marginals very close to the product of two Gaussian variables.
The absolute value of this product in turn is very close to a χ2

1 variable with
one degree of freedom. We prove the convergence to a Brown-Resnick process for
pointwise maxima of χ2

m processes with arbitrary degrees of freedom. Such results
are the natural extension of the convergence of a univariate maximum to an extreme
value distribution. They allow insight into the spatial dependence structure and
its convergence to the asymptotic limit of spatial independence.

The three models (29)-(31) differ markedly in their extremal behavior. Assuming
zero-mean and unit variance a value that has an average return period of 100 years
for the GM occurs once every 16 years in the StM and every 5 years in LNM. The
differences make clear that careful checking of the appropriateness of the marginal
modeling assumptions is necessary to make useful inference about the shape of
precipitation distribution. It is presumably difficult to find adequate distributions
for wind and humidity that fit for various data sets. With respect to the large
influence of these distributions on the marginal distribution of precipitation, it
is difficult to use our approach to find a universally valid approximation for the
distribution of precipitation. Yet, this sensitivity exhibits a property of the balance
equation (25) and therefore cannot be neglected. This sensitivity could be used in
future work to solve the problem vice-versa and to find distributions for wind and
humidity that result in distributions in accordance with precipitation observations.
Similar to Wilson and Toumi (2005) we find that the asymptotic properties of
models are of limited practical relevance. For example for finite-sample LNM shows
a more extreme shape than the StM with d = 6 degree of freedoms, although the
former is light-tailed and the latter heavy-tailed, if they are in any domain of
attraction.

The precipitation in GM has a distribution largely similar to the product of two
independent normal variables. The inclusion of precipitation efficiency fields as a
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further multiplicative factor for the precipitation rate would yield more realistic
products of three independent Gaussian variables similar to Wilson and Toumi
(2005). We agree with Wilson and Toumi (2005) that precipitation efficiency is
potentially an essential feature of precipitation. Nevertheless, the sensitivity to
the type of marginal distribution suggests that a careful checking of appropriate
distributions is necessary. Modeling precipitation efficiency κ as a normal random
variable seems inappropriate since it does not fulfill 0 ≤ κ ≤ 1.

The parametrization of the transition of cloud droplets to precipitation droplets
in Seifert and Beheng (2001) suggests a precipitation rate quadratically increasing
with the humidity exceeding the Clausius-Clapeyron threshold. For the GM we
would then obtain relatively high preasymptotic GPD shape parameter γ ≈ 0.3 for
the upper 5% of data. This may be already too high to be consistent with obser-
vational data. For LNM we obtain a totally unrealistic high preasymptotic shape
parameter γ ≈ 0.75 and for StM estimates close to the shape parameter γ = 0.8.
This suggests that the parametrization of Seifert and Beheng (2001) is unsatis-
factory for extreme precipitation events. For such events, Kessler (1969)’s linear
parametrization may be more adequate. However, Seifert and Beheng (2001)’s
parametrization suggests that precipitation efficiency increases with the density of
cloud droplets. This could be a vital feature in modeling precipitation extremes.

For LNM the main generator of extremes is the advection term, while for the
GM the advection and convergence term are of comparable importance. This shows
that the marginal assumption even have influence on the interplay of the terms of
the budget equation. LNM yields a shape parameter γ ≈ 0.3 for finite sample size,
which may be too high to be a realistic approximation. In this model the variability
of the humidity field is the main generator of precipitation extremes.

The high kurtosis of data described in Section 2.3 suggests that the wind data are
well described by distributions with much fatter tails than the normal distribution.
This is a motivation of the StM, that is able to describe a diverse extremal behavior
of the wind fields. For six degrees of freedom it yields a realistic extremal behavior,
which is mainly generated by fluctuations in the wind fields and the divergence
of it. In order to have a multivariate-t distribution, we multiply the whole wind
field and divergence field by a single constant. This may be a useful approximation
for small-scales, that yields stable shape parameter under aggregation. For larger
scales a spatially varying scaling parameter could be considered.

Although the multiplication of random variables cannot generate heavy tails
from light-tailed distribution, the multiplication of random variables leads to an
intensification of the preasymptotic distribution. For example the product of two
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Gaussian variables has a slightly positive shape parameter when estimated from
the upper 5% of the data. For a single Gaussian variable a shape parameter close
to −0.1 would be obtained. We agree with Wilson and Toumi (2005) that the mul-
tiplicativity of the budget equation is a very reasonable explanation for the extreme
shape of precipitation. The similarity of the distribution of precipitation in the GM

and the product of two Gaussian variables, suggests that the simplifications made
in Wilson and Toumi (2005) when deriving the budget equation are acceptable.
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4 Conclusions and outlook

In this thesis physically motivated stochastic models for wind fields and precipita-
tion extremes have been developed. These models allow for better understanding of
stochastic properties of meteorological processes. Further, the methods developed
in this thesis have multiple applications for example in data assimilation or risk
assessment related to precipitation.

In Chapter 2 we have introduced a stochastic process that models the differential
relations, which hold between a two-dimensional wind field and further related
variables. Due to its consistency with physical relations and its ability to preserve
balances like geostrophy or non-divergence, it has multiple applications in data
assimilation. Further applications of our model are kriging and the conditional
simulation of physical relations. Our approach extends similar methods that have
been used in data assimilation, most notably the work by Daley (1985, 1991). We
have reviewed the conditions under which derivative processes like our GRF exist
and showed that it is non-trivially transformed by anisotropy. In the introduction
we have posed the following questions.

Is there a stochastic process able to represent the differential relations
between the variables of the Helmholtz decomposition, which is suffi-
ciently flexible to be a useful approximation for realistic wind fields?
Can such a process model the correlations of streamfunction and veloc-
ity potential?

With respect to the first question the answer is affirmative. The process (3) has
been shown to be a useful geostatistical model for a mesoscale wind field. Yet, the
application to such data also reveals that the assumption of marginal Gaussianity
and stationarity may be quite restrictive. To overcome this restriction we have
shown that it is possible in some situations to extend the process to non-Gaussian
fields by transforming the data. The second question can be answered positively,
too. Our model allows for such correlations and we have disproved a theorem of
Obukhov (1954), which claims that such models cannot exist, if they are isotropic.

Particularly important for this thesis is the inclusion of divergence in the model
introduced in Chapter 2, which allows to model the transport of tracer variables
like aerosols or humidity. The transport of humidity is essential to the generation
of precipitation extremes. The methods of Chapter 2 allow us to build a stochastic
model for precipitation extremes based on the moisture budget, which models the
moisture flux convergence. In Chapter 3 we have extensively discussed such models,
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their limitations and their ability to explain characteristics of precipitation. We
return to the questions posed in the introduction.

Under which conditions generates the moisture budget (1) a heavy-
tailed P? Which terms in (1) are essential for the generation of ex-
tremes?

With respect to the first question, we find that the moisture budget (1) gener-
ates heavy tails only if the wind or the humidity field is heavy-tailed. Thus, the
moisture budget cannot account for the emergence of heavy-tailed distributions
from light-tailed ones. Nevertheless we have shown that such asymptotic results
may be of very limited practical relevance, as the convergence of sample maxima
to their asymptotic distribution may be extremely slow. Instead, preasymptotic
approximations give useful information about the extremal behavior. In such a
preasymptotic sense our results suggest similar to Wilson and Toumi (2005), that
the multiplications in (1) can account for a heavy-tailed behavior.

With respect to the second question, we verify Wilson and Toumi (2005)’s ansatz
to reduce the moisture budget to a multiplicative process. Wilson and Toumi (2005)
considered a similar yet less justifiable model for precipitation extremes. In our
approach we have been able to largely reproduce their results, which suggests that
their simplifications are acceptable. On the other hand, we have argued that some of
the distributional assumptions made in Wilson and Toumi (2005) are questionable,
which is particularly problematic since the precipitation field obtained from the
budget equation are highly sensitive to the marginal distributions of the physical
quantities in the moisture budget. Additionally, the found sensitivity suggests that
we are in a strong need of well-established distributional assumptions for humidity
and wind. Particularly the extremal behavior of vertical velocity is of tremendous
interest. Due to convection triggered by an unstable atmosphere it is very plausible
that it has a quite extreme distribution. Unfortunately, few observational data sets
of vertical velocity are available (Chu et al., 1996; Donner et al., 2016). Particularly
noteworthy is the insensitivity of precipitation extremes on the correlation of the
quantities ψ, χ and q.

Our approach is an extension of Wilson and Toumi (2005) as it is able to generate
spatial precipitation fields and therefore allows to study the spatial structure of
precipitation extremes. We prove the convergence of maxima of the Gaussian
precipitation model (29) to a Brown-Resnick process and show that precipitation
extremes are asymptotically independent in this model.

This thesis illustrates the value of linking complex statistical approaches with
physical reasoning in a twofold way. First, most of the applications of the GRF in
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Chapter 2 are particularly interesting due to their physical consistency. Secondly,
the inclusion of the budget equation into a stochastic model has allowed us to assess
to which extent it is able to account for precipitation extremes.

We conclude by giving a short outlook on how the models of both chapters could
be improved. A promising approach for both Chapter 2 and Chapter 3 is to model
streamfunction and velocity potential as the quotient of a Gaussian process and a
χ2−process.

χs = X(s)√
χ2
m(s)/m

s ∈ R2,

where X(s) is a Gaussian process with a correlation structure ρ (h) and χ2
m (s)

is a field obtained by the sum of m independent squared standardized Gaussian
processes with common correlation structure ϕ (h). The streamfunction could be
modeled as an independent copy of this process. Since the χ2 process is non-
constant in space this process is not identical to the standard multivariate Student-
t distribution. If the spatial range of ϕ is sufficiently large the derived quantities
∇χ (s) could be approximated by

∇
(

X(s)√
χ2
m(s)/m

)
≈ ∇X(s)√

χ2
m(s)/m

,

where obviously ∇X(s) can be modeled as in Chapter 2. Analogously, one could
approximate U,∆χ and ∆ψ. The process obtained in this way would be similar to
the process in Chapter 2, yet it would have non-constant variability much like the
data analysed in Section 2.3. The transformation of the data described in Section
2.3, that reduces its non-Gaussianity would no longer be necessary, as the process is
able to model due to the degrees of freedom m a variable tail-behavior. If the wind
field model of the StM would be replaced by this model, a very plausible model for
precipitation extremes would be obtained. The marginal precipitation distribution
is identical to the StM, which yields a realistic shape parameter. If the correlation
structure ϕ is sufficiently large the shape parameter of this distribution would be
insensitive subject to spatial averaging on small scales as shown in Section 3.4.5.
If m > 2 precipitation aggregates over very large areas would tend to a normal
distribution.
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A Positive definiteness of Daley’s (1985) model

Daley (1985) proposed the covariance model (cf. Moreva and Schlather, 2016; Gneit-
ing et al., 2010)

C (r) =


 exp

(
−1

2r
2
)

λ exp
(
−1

2
(
r
a

)2)

λ exp
(
−1

2
(
r
a

)2) exp
(
−1

2
(
r
a

)2)

 , r = ‖h‖,

for streamfunction and velocity potential. The Fourier transform of this covariance
matrix is given by

F (C) (ϕ) =


 exp

(
−1

2ϕ
2
)

λ
a exp

(
−1

2
(ϕ
a

)2)

λ
a exp

(
−1

2
(ϕ
a

)2) 1
a exp

(
−1

2
(ϕ
a

)2)

 .

By Cramér Theorem (Chiles and Delfiner, 2009) this Fourier-transform needs to be
positive definite for almost all frequencies ϕ. This is equivalent to

det (F (C) (ϕ)) ≥ 0 ∀ϕ ∈ R

a condition equivalent to

exp
(
−1

2ϕ
2
(

1− 1
a2

))
≥ λ2

a
∀ϕ ∈ R.

If a > 1 the model is not positive definite unless λ = 0. If 0 < a ≤ 1 the model
is positive definite if a ≥ λ2. Daley proposed a > 1 such that the model does not
allow for a nonzero correlation.

B Obukhov’s (1954) independence claims

Obukhov (1954) presents two arguments for an isotropic rotational field having
zero correlation with an isotropic scalar field and with an isotropic gradient field.
We believe that both arguments are erroneous for the same reason. As the argu-
ment for the scalar field is much less involved, we restrict ourselves to this case.
Obukhovs claims that the covariance of an isotropic rotational field to an arbitrary
scalar isotropic variable is of the form Cov (χs,∇× ψs+h) = P (‖h‖)h/‖h‖ for some
function P . Using the non-divergence of a rotational field Obukhov deduces from
his assumption:

0 = E (χs∇ · ∇ × ψs+h) = ∇ · E (χs∇× ψs+h) = ∇ ·

P (‖h‖)
‖h‖


 h1

h2






= 2P (‖h‖)
‖h‖ + ∂

∂‖h‖

(
P (‖h‖)
‖h‖

)
‖h‖ = P (‖h‖)

‖h‖ + P ′ (‖h‖)
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This differential equation is solved by the function

P (‖h‖) = c

‖h‖ c ∈ R.

If c 6= 0 this function has a pole. This implies that the variance of the corresponding
field could not exist. Hence c = 0 and this again implies the zero correlation between
the scalar field and the rotational field.

We believe that the correct covariance of a scalar field and a rotational field is
given by

Cov (χs,∇× ψs+h) = P (‖h‖)
‖h‖


 −h2

h1


 ,

for some P, as the curl operator derives the first component in direction e2 and the
second in direction e1. This covariance is consistent with the anisotropic transfor-
mation of the field, which has been described in (8). Using this assumption the
independence of an isotropic scalar field and an isotropic rotational field cannot be
deduced. However,

E (χs∇ · ∇ × ψs+h) = ∇ · E (χs∇× ψs+h) = ∇ ·

P (‖h‖)
‖h‖


 −h2

h1






= P (‖h‖)
‖h‖2 (−h2h1 + h1h2) = 0

for any differentiable function P .

C Formulae of the isotropic covariance model

We describe the formula for the covariance function considered in Chapter 2 (equa-
tion (3)). For brevity we introduce the following notation

X1,s := ψs X2,s := χs

U1,s := us U2,s := vs

∂i := ∂ei ,

and omit the argument of the covariance functions, which is (t− s) in all of the
following cases.
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Ci,j := Cov (Xi,s, Xj,t)

Cov (Ui,s, Uj,t) = (−1)i+j ∂2

∂3−i∂3−j
C1,1 + (−1)i ∂

∂3−i∂j
C1,2 + (−1)j ∂2

∂i∂3−j
C2,1 + ∂

∂i∂j
C2,2

Cov (∆Xi,s,∆Xj,t) =
∑

(k,l)∈{1,2}2

∂4

∂2
k∂

2
l

Ci,j

Cov (Ui,s, Xj,t) = −Cov (Xj,s, Ui,t) = (−1)i ∂

∂e3−i
C1,j + ∂

∂ei
C2,j

Cov (Xi,s,∆Xj,t) = Cov (∆Xj,s, Xi,t) = ∂2

∂2e1
Ci,j + ∂2

∂2e2
Ci,j

Cov (Ui,s,∆Xj,t) = −Cov (∆Xj,s, Ui,t)

= (−1)i ∂3

∂3−i∂2
1
C1,j + (−1)i ∂3

∂3−i∂2
2
C1,j + ∂3

∂i∂2
1
C2,j + ∂3

∂i∂2
2
C2,j ,

where i, j ∈ {1, 2} .

D Pareto optimal transformation of the inner-LBC

In this appendix we introduce a Pareto optimal solution to the trade-off in Section
2.3. We apply a kernel smoother to the kinetic energy field associated to the
horizontal wind field Us.

ĝθ(s) = 1
N(s)

∑

t∈G

(
u2
t + v2

t

)
exp

(−‖t− s‖2
θ

)
s ∈ R2,

where (us, vs) = Us, θ > 0 is a bandwidth parameter, G is the grid containing all
data locations, ‖ ·‖2 is the Euclidean distance and N(s) = ∑

t∈G exp (−‖t− s‖2/θ).
Let χs and ψs be the velocity potential and streamfunction that solve ∇χs +∇×
ψs = Us on the grid G with periodic boundary conditions. For a constant c ∈ R+ let
Ũ = U/(c+ ĝθ)0.5. Further let χ̃ and ψ̃ be the velocity potential and streamfunction
that solve ∇χ̃s + ∇ × ψ̃s = Ũs on the grid G with periodic boundary conditions.
We search for transformations such that

RMSE
(
ψ̃s, ψs/(c+ ĝθ)0.5

)
+ RMSE

(
χ̃s, χs/(c+ ĝθ)0.5

)
(41)

is small, where

RMSE (Xs, Ys) :=
∑
s∈G (Xs − Ys)2
∑
s∈GX2

s

.

The second objective of the transformation is to reduce the high kurtosis of the
data, which indicates a deviation from marginal Gaussianity. As the high kurtosis
is plausibly mainly a result of the non-stationarity of the variance of Us, in this
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case the kurtosis may also be used as measure of non-stationarity. We consider the
excess kurtosis of Ũs,

EK
(
Ũs
)

:=
∑

s∈G

(
u4
s + v4

s

)

∑

s∈G

(
u2
s + v2

s

)


−2

− 3. (42)

A Gaussian variable has excess kurotsis 0. Here, we search for Pareto optimal
solutions to this trade-off. We define a configuration x′ with properties f and g to
be Pareto optimal relativ to a set A if for all x ∈ A

f(x) ≤ f(x′)⇒ g(x) ≥ g(x′).

In our setting (relative mean square error and excess kurtosis) small values are
good, therefore our definition slightly deviates from the more typical positively
oriented. For simplicity we choose A to be a grid containing different values of
θ and c. Table 2 shows the excess kurtosis and the relative mean squared error
for different values of θ and c. Table 2 suggests that surprisingly low values of
θ = 0.6, 0.9 yield good results. This transformations outperform the one of Section
2.3, where θ = 6 and c = 1/3 was chosen, yielding a relative mean squared error
close to 0.15 and a excess kurtosis of 13. In principle any Pareto optimal choice is
reasonable. We restrict the further discussion to θ = 0.6 and c = 1, as it has lowest
kurtosis given relative mean square error below 0.1.

Figure D.1a) depicts the zonal wind component of Us/
√

1 + g0.6(s), where Us are
the inner-LBC anomalies. When comparing with Figure 2.6a) we see that the non-
stationarity of the variance is better removed than for the transformed inner-LBC
anomalies of Section 2.3. We perform maximum-likelihood estimation as described
in Section 2.4. We obtain the following estimates ν ≈ 1.17, σχ/σψ = λ ≈ 0.79,
ρψ,χ ≈ −0.02, r1 ≈ 0.08, r2 ≈ 0.07, θ ≈ 0.79. The estimates are relatively close to
the values obtained in Section 2.4 and shown in Figure 2.4, which suggests that the
distribution of Us/

√
1 + g0.6(s) is similar to the transformed inner-LBC anomalies.

Figure D.2 compares the empirical covariance estimate of the data Us/
√

1 + g0.6(s)
with the fitted covariance of our model. The results are similar to Figure 2.5. Fig-
ure D.1b) shows a simulation of the GRF, scaled by the variance not resolved by
the transformation Ũs = Us/

√
1 + g0.6(s). Again the results are similar to Figure

2.6, yet the accordance of the fields seems to be improved. The simulated fields
exhibit a slightly rougher structure than the transformed data.
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Table 2: Relative mean square error (41) & excess kurtosis (42) for different values of θ and c. Bold entries indicate Pareto optimality.

θ

c
0.4 0.7 1 1.3 1.6 1.9

0.02 0.178 & 9.067 0.127 & 9.807 0.099 & 10.356 0.081 & 10.8 0.069 & 11.178 0.059 & 11.507

0.3 0.178 & 8.577 0.127 & 9.465 0.099 & 10.098 0.081 & 10.599 0.068 & 11.016 0.059 & 11.376

0.6 0.177 & 8.034 0.125 & 9.104 0.097 & 9.864 0.079 & 10.457 0.067 & 10.947 0.057 & 11.365

0.9 0.174 & 8.169 0.123 & 9.313 0.095 & 10.118 0.078/10.744 0.065/11.258 0.056/11.692

1.2 0.172 & 8.474 0.121 & 9.652 0.094 & 10.474 0.076 & 11.108 0.064 & 11.625 0.054 & 12.060
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Figure D.1: Zonal wind component at 12 UTC on 5 June 2011. a) Shows
Us/
√

1 + g0.6, where Us are the inner-LBC anomalies, b) a simu-
lation of the fitted GRF with covariance (3). The colors represent
wind speed in m/s. The x/y- axis are in longitude and latitude.
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Figure D.2: Empirical correlation (above) and estimated correlation (below) for
data set 1. a) (u,u) empirical correlation; b) (u,v) empirical corre-
lation; c) (v,v) empirical correlation; d) (u,u) estimated correlation;
e) (u,v) estimated correlation; f) (v,v) estimated correlation.
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