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  Abstract 

Abstract 

In the brain of animals, locomotion is encoded and represented in multiple ways. During 

locomotion, the hippocampus (HC) displays characteristic activity patterns that change 

from asynchronous states when the animal is resting to synchronous rhythmic activity 

during movement. The increase in firing rates of principal neurons in CA1 and the 

presence of oscillations in the HC both correlate to the velocity of the animal. It has been 

shown previously that glutamatergic neurons in the medial septum (MS) increase their 

activity prior to movement onset. However, the time-course of activation of individual MS 

neuron types during an episode of locomotion is unknown.  

I investigated the MS-HC circuitry with cell-type specificity by expressing the genetically 

encoded calcium indicator GCaMP5G in inhibitory (PV+) and excitatory (VGluT2+) cells of 

the MS. I have monitored activity-dependent changes in fluorescence with a 

fiberoptometer coupled to an implanted fiber optic cannula in head fixed mice on a linear 

treadmill. In addition, I obtained CA1 local field potentials and recorded multi-unit activity 

in both CA1 and the MS. I aligned and correlated the recorded parameters with different 

phases of locomotion (onset, acceleration, deceleration, offset). My results show that 

there is a significant representation of locomotion in both CA1 and MS neuronal 

populations. I demonstrate that both glutamatergic VGluT2+ and GABAergic PV+ cells in 

the MS show an increase in activity several hundred milliseconds before movement.  

My experiments provide evidence on the single neuron activity level for CA1 and MS 

cellular activity that predicts movement onset. A simultaneous activation of glutamatergic 

and GABAergic neurons within the MS suggests the activation of an excitatory-inhibitory 

feedback loop controlling motion execution and HC information processing.  

  



  Foreword 

Foreword 

“That’s one small step for [a] man, but a giant leap for mankind.” (Neil Armstrong, 1969)  

Every step on the moon and every step on earth is controlled by our brain. While sensory 

systems gather information about our surroundings, movement is the only ability we 

possess to interact with the environment. Understanding how the brain initiates and 

controls movement, how the initial idea of a movement is created, and how distinct 

movements are fine-tuned and finally executed is one of the big tasks of our field. Up to 

now we still lack profound knowledge of the neuronal basis underlying this seemingly 

primitive behavior.  

Modern neuroscience is focusing more and more on the connectivity of neurons rather 

than investigating properties of the individual cells. Therefore the term of neuronal 

networks has become a part of the neuroscientific landscape. By manipulating and 

monitoring neuronal networks we might one day be able to control and predict movement 

in animals. Moreover, we will be able to understand how neuronal dysfunction in various 

brain regions effecting locomotion can lead to movement disorders. The ultimate goal is 

to develop better treatments for disorders such as Parkinson’s disease.  

This work is based on the assumption that if we want to understand a behavior we have 

to find the neuronal correlates underlying this behavior. Even though this project cannot 

give a general answer to this big question it still may shed some light on it.  

And step by step we are getting closer to know. 

 

Ancient Egyptian Sign for Brain from 17th century BC 

(Breasted JH (1930): The Edwin Smith Papyrus. University of Chicago Press. 2)  



 
1 Introduction 

1. Introduction 

1.1. Voluntary movement in animals 

In order to interact with the environment, animals depend on their ability to move. In higher 

animals respiration, chewing, digestion, and even the heartbeat are regulated by the 

autonomic nervous system while voluntary locomotion is controlled by the central nervous 

system (Campbell and Reece, 2006). Even single-cell organisms rely on equivalent 

subcellular features which enable them to move (Jahn and Votta, 1972) as locomotion is 

the only possibility to interact with an environment. 

Locomotion in vertebrates is encoded and represented in multiple ways within the brain. 

Elementary movement circuits are organized by nuclei of the brain stem and the spinal 

cord. In mammals, the voluntary and goal-driven locomotor system is structured 

hierarchically into motor cortex, motor areas in the brain stem, and the spinal cord (Kandel 

et al., 2000). The ultimate origin of movement, the “initial command” to perform any 

behavior is still unknown. Yet, studies in humans have shown that there is a clear 

dissociation between preparation and initiation of movement implying adaptions of 

encephalic activity prior to the first physical output (Haith et al., 2016). In this regard, the 

primary motor cortex (PMC) is the central region that transmits signals to the spinal cord 

and to subsequent muscles evoking voluntary movement (Sherrington, 1906). Many brain 

regions downstream of the PMC affect locomotor activity (Figure 1). The cerebellum, the 

basal ganglia, and prefrontal cortical areas (Purves et al., 2001) project to the PMC and 

pathological studies have given proof for their involvement in movement production 

(Delmaire et al., 2007; Neychev et al., 2008; Pawela et al., 2017). By sending feedback 

signals to the PMC and relevant brain stem areas (Holmes, 1917; Kemp and Powell, 

1971), the cerebellum and the basal ganglia compare the intended movement to the actual 

movement in real-time. Patients with severe damage in these areas suffer from an inability 

to reduce such discrepancies, thereby displaying coordination deficits (Purves et al., 

2001). The prefrontal cortex (PC) upregulates rhythmic activity in brain regions associated 

with the integration of sensory information (Vanderwolf, 1969; Buzsaki et al., 1983). These 

peripheral inputs originating from the visual system, the vestibule-cochlear system, or the 

proprioceptive system contain important information for both PMC and associated 

feedback regions and are crucial for the successful execution and adaption of movement 
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(Salinas and Romo, 1998; Hooks et al., 2015). Damage to the feedback projections from 

the basal forebrain to the PMC severely impairs cognitive behavior tasks like navigation 

or spatial learning (Hagan et al., 1988) as well as associative learning (Roland et al., 

2014). 

 

 

Figure 1: Hierarchical organization of the motor system in mammals from the central 

nervous system to the periphery 

 

1.2. Behavior and its neuronal representation 

Studying and understanding the neuronal correlates of behavior is a major challenge in 

modern neuroscience. To do so, it may be important to consider a neuron not as an 

isolated entity, but to understand it as a part of a neuronal network. Therefore, behavioral 

studies in animals require simultaneous recording of coherent parameters that can be 

correlated and linked to each other, as well as to the behavior itself (Figure 2). The links 

between the electrophysiological processes within single neurons and the network 
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signaling within the brain are extremely complex. On the one hand, a single cell view 

focusses on the microscopic scale, ignoring the magnitude and diversity of neuronal 

processing. On the other hand, studying a single aspect of movement does not do the 

complexity of this matter justice. Considering neuroscientific findings such as spatially 

dependent neuronal depolarization (O'Keefe and Conway, 1978), we begin to understand 

the magnitude and the diversity of the brain as a network. 

The neuroscientific toolbox has rapidly expanded during the last century. The population 

activity within brain regions can now be monitored by using genetically encoded calcium 

indicators (GECIs), e.g. GCaMP. Upon excitation cells expressing these proteins emit 

fluorescence when the intracellular calcium concentration (Ca2+) increases (Mank and 

Griesbeck, 2008). The influx of calcium via voltage-sensitive and ligand-gated 

Ca2+-channels correlates directly to the activation of AMPA/NMDA receptors and can be 

used as a proxy for cellular activity. Electrophysiological recording of local field potentials 

(LFP) and monitoring of neuronal action potential (AP) output with electrodes inserted into 

neuronal tissue are additional valuable tools for detection of neuronal network activity. 

The LFP signal (see chapter 1.6) represents a summation of electrical currents flowing in 

the close area around the electrode as a result of synaptic activity. AP firing of multiple 

cells can be monitored by using multi-unit electrodes which record electrical currents in a 

much smaller area due to a smaller contact area with the surrounding neuronal tissue 

(Legatt et al., 1980). Combining these methods in this study sets the basis for a correlation 

of electrical brain activity in distinct areas with behavior (Figure 2). Additionally, by 

manipulating parts of a neuronal network the functional principles of the system can be 

investigated. These manipulations can be conducted by pharmacologically blocking or 

activating receptors or channels (e.g. by using a GABAA agonist like Muscimol), or by 

activation of light sensitive proteins such as channelrhodopsin or halorhodospin. The 

activity of these proteins (“opsins”) can be controlled by light of a defined wavelength. 

They can either mediate inward or outward ion flux (Nagel et al., 2002; Mattis et al., 2011). 

This study used the GECIs for detailed investigation and monitoring of cellular activity 

without manipulating network activity.  

The list of activity indicator proteins is long and constantly increases in size. Moreover, in-

vivo electrophysiology has developed up to a state that recordings in the intact and 
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behaving animal are possible from thousands of neurons (Alivisatos et al., 2013; Jun et 

al., 2017). But further progress on the toolbox is made on a daily basis and our 

experiments are mostly limited by our scientific imagination only. 

 

 

Figure 2: Scheme of parameters investigated in this study 

In this study different parameters were recorded simultaneously during locomotion: the local field 

potential (LFP) and the fluorometric signal of a genetically encoded Ca2+ marker protein (GCaMP) 

were monitored as readout of electrical population activity; the action potential (AP) frequency of 

individual neurons was recorded as the unit activity in a population of cells; manipulations such as 

pharmacological blocking of synaptic transmission or optogenetic control of neuronal activity were 

not used in this study. 

 

1.3. Basal forebrain 

The basal forebrain consists of several nuclei. Together with other brain regions such as 

the locus coeruleus (LC), the parabrachial nucleus, and the raphe nucleus it belongs to 

an ascending arousal system (Kandel et al., 2000). The basal forebrain can be subdivided 

into septal nuclei, the diagonal band of Broca (DB), and the nucleus basalis. The major 



 
5 Introduction 

output is mediated via cholinergic neurons while GABAergic and glutamatergic 

populations have also been described as relevant (Sotty et al., 2003). Each functionally 

distinct region in the basal forebrain with special subpopulations of neurons connects to 

different target areas. For instance, the medial septal nucleus (MS) mainly innervates the 

hippocampal formation (HCF), whereas the DB is intensively connected to the HCF and 

the cingulate cortex (Gritti et al., 1993). The nucleus basalis forms strong projections to 

the neocortex and amygdala (Mayse et al., 2015). The presence of highly heterogenic 

magnocellular corticopetal projection neurons allows the basal forebrain to play an 

important role in a variety of tasks (Zaborszky et al., 1999). These connections keep the 

target regions in a state which enables fast and appropriate reactions to incoming sensory 

information by boosting or inhibiting neuronal activity in the affected target regions (Gritti 

et al., 1993; Gritti et al., 2003). 

 

1.3.1. The medial septum and the diagonal band of Broca 

Located in the central part of the basal forebrain (Figure 3A), the MS and the DB are 

strongly innervated and massively projecting central nuclei, together referred to as MSDB 

(Figure 3B). Its medial localization and its dorsal-ventral extension support relaying 

various inputs and outputs throughout the whole brain (Kandel et al., 2000). Efferents of 

MSDB cells exit the septal nucleus via the dorsal fornix-fimbria, the medial forebrain 

bundle, or the stria medullaris (Meibach and Siegel, 1977a). Primary targets of these 

projections (Figure 3D) are the hypothalamus, the habenular nucleus, and the HCF, the 

latter receiving the strongest input (Kohler et al., 1984; Frotscher and Leranth, 1985; 

Freund and Antal, 1988). Furthermore, synaptic terminals of MSDB neurons can be found 

in the lateral septum (LS) and the ventral tegmental area (VTA;(Meibach and Siegel, 

1977a; Lynch et al., 1978; Unal et al., 2015). Mono-transsynaptic tracing experiments 

identified the hypothalamic nuclei including the supramammillary nuclei, the preoptic 

nuclei, the periventricular nuclei, and the median raphe nucleus as the main input regions 

to the MSDB (Swanson and Cowan, 1979; Fuhrmann et al., 2015). Due to this strong 

connection between the MSDB and the rest of the brain it is suggested to function as a 

relay station involved in the procession of sensory information (Swanson and Cowan, 

1979; Wallenstein and Hasselmo, 1997).  
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Figure 3: Basal forebrain nucleus MSDB forming a highly effective micro network 

A Nissl staining of a brain section depicting the MSDB region (red outline; modified from: Allen 

Institute); scale bar = 1 mm. B Scheme displaying MSDB localization in the basal-frontal parts of 

the rodent brain and its main efferents (inspired by Swanson & Cowan, 1979); MSDB medial 

septum and diagonal band of Broca, HCF hippocampal formation, DR dorsal raphe, MPO medial 

preoptic area, HT hypothalamic area, VTA ventral tegmental area, LC locus coeruleus; D dorsal, 

C caudal. C Schematic distribution of MSDB neuron populations, displaying ChAT+ (yellow), PV+ 

(blue), and VGluT2+ (red) neurons (inspired by Kiss et al., 1997). The dashed line indicates the 

medial line. D Illustration of the MSDB micro network and target regions (inspired by Manseau et 

al., 2005; Fuhrmann et al., 2015); colors as in C. 

 

The MSDB transmits a speed-signal to downstream regions adjusting the general 

excitability to a state of increased excitability (Fuhrmann et al., 2015; Hinman et al., 2016; 

Justus et al., 2017). Studies have shown that the MSDB is crucially involved in proper 

execution of spatial navigation, learning tasks, and locomotion per se (Hagan et al., 1988; 

Sutherland and Rodriguez, 1989; Fuhrmann et al., 2015). During these behaviors 

rhythmic oscillations of the LFP in the range of 4 to 12 Hz (theta oscillation) can be 



 
7 Introduction 

observed in the HCF. These rhythms are thought to be partially generated by rhythmic 

activity in MS neurons (Buzsaki, 2002). Studies involving lesions in the MS showed that 

disturbing the connection between MS and HCF leads to severe impairment of spatial 

representation in the HCF (Leutgeb and Mizumori, 1999). A short inactivation of the MS 

is sufficient to eliminate theta in the HCF. Simultaneously, such a manipulation disrupts 

existing spatial maps in the hippocampus (HC) and the entorhinal cortex (EC). Moreover, 

new and highly distinct and stable spatial activity patterns are formed immediately 

(Brandon et al., 2014). 

 

1.3.2. Subpopulations and connections 

Several distinct neuronal subpopulations have been reported in the MS, which form 

functional intraseptal networks (Hajszan et al., 2004; Halasy et al., 2004). These subsets 

of cells differ significantly from each other with respect to their anatomical localization, 

their molecular composition, and their physiology (Figure 3C). Immunohistochemically, 

four subpopulations can be defined: choline-acetyl-transferase positive (ChAT+), 

parvalbumin positive (PV+), and vesicular glutamate transporter 1/2 positive (VGluT2+) 

cells (Kiss et al., 1990; Kiss et al., 1997; Manseau et al., 2005). VGluT2+ neurons are 

mainly localized in the DB and at the MS/LS border and display very low spontaneous 

firing episodes. The PV+ neurons are highly abundant in the central parts of the MS, 

delivering firing bursts to intra- and extraseptal targets. The ChAT+ neurons are distributed 

more medial (Figure 3C) and display the highest rhythmicity in their firing (Kiss et al., 

1997; Hajszan et al., 2004; Halasy et al., 2004; Leao et al., 2012; Leao et al., 2015).  

Intraseptally, VGluT2+ neurons release glutamate onto other VGluT2+ cells, ChAT+, and 

PV+ cells. The latter form reciprocal connections onto VGluT2+ neurons and connect to 

ChAT+ cells in the MSDB. ChAT+ neurons have been shown to release acetylcholine onto 

MSDB PV+ cells (Figure 3D) while a direct connection to VGluT2+ neurons is not 

described (Manseau et al., 2005; Leao et al., 2015; Mysin et al., 2015). All cell types 

project onto neurons in various target regions including the HCF. The combination of 

rhythmic septal-hippocampal GABAergic and excitatory glutamatergic input onto 

hippocampal neurons is thought to play an important role for the control of hippocampal 
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field activity. On the other hand, septal choline release mediates slow depolarization of 

neurons in the HC (Colom et al., 2005). 

 

1.4. The hippocampal formation 

The HCF is essential for spatial learning, memory consolidation as well as sensory 

processing. In humans, this region is thought to be crucial for maintaining our quality in 

life. The HCF has been in the focus of many studies dealing with neurodegenerative 

diseases such as Alzheimer’s disease, epilepsy, and Parkinson’s disease that link 

pathologies in the HCF to behavioral deficits such as learning deficits, disorientation, and 

memory formation impairment (Stephan et al., 2001; Costa et al., 2012). 

The HC and the adjacent parahippocampal regions, the subiculum (SC) and the EC are 

subregions of the HCF. During embryonal development the HC is derived from medial 

parts of the telencephalic vesicle. Its final orientation in the temporal lobe (Figure 4A) 

depends strongly on developmental processes and differs among species (Caronia-

Brown et al., 2014). This precursor structure differentiates into the cornu ammonis (CA) 

and the tooth-shaped dentate gyrus (DG). Defined by Lorente de Nó in 1934 (Lorente de 

Nó, 1934), the CA contains the molecular distinct areas CA1, CA2, and CA3 (Figure 4B). 

The neuroanatomy of the CA regions (Figure 4C) is strictly organized in layers (Andersen 

et al., 2007). The alveus is located on the surface of the stratum oriens (s.o.) and contains 

the fibers of the major efferent outputs of the HC. Containing only few cells, the s.o. is 

located below the alveus. Yet, this layer contains different types of interneurons (Freund 

and Buzsaki, 1996; Andersen et al., 2007). In addition, the axons and basal dendrites of 

pyramidal cells from the subjacent stratum pyramidale (s.p.) reach out into the outer s.o. 

The cell bodies of these principal neurons are densely packed in the s.p. Below the s.p. 

the stratum radiatum (s.r.) is located.  
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Figure 4: Anatomical organization in the hippocampal formation and tri-synaptic circuit 

A Nissl staining of a coronal brain section containing the hippocampal formation (modified from: 

Allen Institute). B Magnification of the box in A: scheme of the hippocampal formation (HCF), 

consisting of the dentate gyrus (DG), the cornu ammonis 3 (CA3), the cornu ammonis 2 (CA2), 

the cornu ammonis 1 (CA1), and the subiculum (SC). Connections are shown for granule cells in 

DG (green) and pyramidal cells in CA3 (blue), CA3 to CA1 (orange), CA1 to SC (yellow), and SC 

to neocortex (NC). Well described inputs to the HCF originate from entorhinal cortex (EC), medial 

septum and diagonal band of Broca (MSDB), and thalamus (TH); projections terminate in the 

contralateral CA1 (cCA1), EC, and the neocortex (NC). C Magnified inset from A; layered structure 

of hippocampal CA regions consisting of stratum oriens (s.o.), stratum pyramidale (s.p.), stratum 

radiatum (s.r.), and stratum lacunosum-moleculare (s.l.m.). The soma of pyramidal cells in CA1 

are located in the s.p.; the apical dendritic tree reaches out to s.r. and s.l.m.; the basal dendrites 

and the axon face to s.o. Inputs from CA3 terminate in s.o. and s.r., inputs from TH terminate in 

s.p., synapses from EC cells are located in s.l.m. Scale bar in A: 1 mm. 

 

This suprapyramidal layer contains most of the apical dendritic arbor and by this receives 

most afferents (Lynch et al., 1978). Subjacent to s.r. is the stratum lacunosum-moleculare 

(s.l.m.), a layer that receives significant input from EC (Deadwyler et al., 1987). This 

pattern in CA is different from the three layers in the DG. Here, the most superficial layer 

close to the hippocampal fissure is called the molecular layer (m.l.) which contains only 
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few cells. Deep within the m.l. is the granule cell layer (g.c.l.) containing the principal 

neurons in the DG (Andersen et al., 2007). Together, the g.c.l. and its surrounding m.l. 

are referred to as the fascia dentata. The EC, CA3, and CA1 are unidirectionally linked in 

the tri-synaptic circuit (Andersen et al., 2007). In this micro network, cells in the EC project 

onto granule cells in the DG which is referred to as the perforant path. Excited granule 

cells send signals to pyramidal cells in CA3 via the so called mossy fibers. The axons of 

CA3 neurons which transmit the excitation further onto pyramidal cells in CA1 are called 

Schaffer collaterals (Figure 4B) and terminate both in s.o. and s.r. (Andersen et al., 2007; 

Stepan et al., 2015). In addition to this circuit, there are more synaptic connections linking 

the HC to various brain regions. The temporoammonic pathway mediates the direct 

synaptic input from EC to CA1, forming synapses mainly in s.l.m.; subcortical afferents 

from MSDB and thalamus (TH) to the HC terminate in CA1 s.o., and inputs from the 

contralateral CA3 to ipsilateral CA1 are mediated via the associational commissure, 

terminating in s.r. (Doherty, 1999; Witter et al., 2000; Hartley et al., 2014). There is also 

evidence for monosynaptic connectivity between CA3 to EC (Agster and Burwell, 2013). 

 

1.5. Septal-hippocampal network 

The MSDB in the basal forebrain and the HCF are strongly interconnected to each other 

(Figure 5A). This network is part of the sensory integration system of the central nervous 

system and it adjusts its network activity depending on the behavioral state (Deadwyler et 

al., 1987; Fuhrmann et al., 2015; Justus et al., 2017). The MSDB directly influences the 

general activity of cells in the CA1 region of the hippocampus and controls the occurrence 

and intensity of rhythmic activity in the respective areas (Bland and Bland, 1986). This 

modulation is mediated by neurons in the MSDB that are connected to different cell 

populations in the dorsal CA1 (Meibach and Siegel, 1977a, b; Wainer et al., 1985; Nyakas 

et al., 1987). Hippocampal afferents originating from the MS release acetylcholine (Lewis 

and Shute, 1967), GABA (Kohler et al., 1984), and glutamate (Sotty et al., 2003), 

activating respective receptors in the HC (Figure 5B). PV+ neurons in the MS fire at high 

frequency and evoke strong inhibition in hippocampal interneurons and pyramidal cells 

(Sun et al., 2014). Activity of MS ChAT+ projections into the HC increases excitability of 

hippocampal pyramidal neurons by slow depolarization (Frotscher and Leranth, 1985). 
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The synapses of MS VGluT2+ neurons release glutamate onto hippocampal interneurons 

and pyramidal neurons which has recently been described as a key element in the 

regulation of hippocampal activity (Sotty et al., 2003; Huh et al., 2010; Robinson et al., 

2016). This connection is suggested to be crucial for the generation of theta oscillations 

in the HC (Fuhrmann et al., 2015) which are important to the integration of various sensory 

cues during behavior such as locomotion (Deadwyler et al., 1987).  

 

 

Figure 5: Septal-hippocampal connectivity map 

A Schematic localization of the MSDB (green) sending projections to the HC (blue). B Illustration 

of intraseptal/intrahippocampal and MSDB-HC connectivity, including ChAT+ (yellow), PV+ (blue), 

and VGluT2+ (red) neurons in both brain regions. ChAT+ neurons release choline, PV+ neurons 

release GABA, and VGluT2+ neurons use glutamate as neurotransmitter (inspired by Sun et al., 

2014). 

 

The MS-HC connection has also been shown to play an important role in the generation 

of place fields, sequential learning, and phase precession (Wallenstein and Hasselmo, 

1997). Septal lesion experiments have exposed behavioral deficits (see chapter 1.3). 

These findings underline the importance of the MS-HC connectivity for theta generation 

and resulting behavior (Green and Arduini, 1953; Stewart and Fox, 1990).  
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1.6. Oscillatory activity in the hippocampus 

Sensory information during behavior passes the HC before it reaches the cortex (Green 

and Arduini, 1953). To deal with the flow of information the HC adjusts its general state of 

activity depending on the current requirements (Buzsaki, 1986). Electroencephalographic 

monitoring of hippocampal activity revealed the presence of rhythmic slow activity (RSA 

or theta oscillation) during episodes of voluntary movements such as locomotion or 

manipulations of objects (Figure 6A), as well as during REM sleep (Winson, 1972; 

Buzsaki, 1986). In contrast, irregular hippocampal activity patterns were found during 

periods of immobility, alertness, and elementary movements such as chewing or lapping 

water (Vanderwolf, 1969; Whishaw and Vanderwolf, 1971). Similar rhythmic theta activity 

was also described to be present in many other structures throughout the brain like 

cingulate cortex and amygdala (Leung and Borst, 1987; Pare and Collins, 2000). Using 

pharmacological approaches, two types of theta oscillations could be defined: the 

atropine-sensitive, low frequency oscillation type I theta and the atropine-insensitive, fast 

frequency oscillation type II theta (Kramis et al., 1975). The frequency of the oscillation is 

determined by the MSDB which is also referred to as the pacemaker of theta oscillations 

(Meibach and Siegel, 1977a, b; Holsheimer et al., 1982; Buzsaki et al., 1983). Inactivation 

of the MSDB resulted in complete abolishment of theta in rabbits, implying that the MSDB 

is the ultimate generator of theta (Petsche et al., 1962). Theta activity is defined as an 

oscillation ranging from 4-12 Hz in frequency and can increase its amplitude 4-fold 

compared to the baseline (Whishaw and Vanderwolf, 1973). Even though the exact control 

mechanisms of theta oscillation remains enigmatic, recent studies suggest a crucial role 

of VGluT2+ neurons (Fuhrmann et al., 2015; Robinson et al., 2016). The repetitive 

occurrence of electrical currents in CA1 pyramidal cells underlying theta oscillations 

(Figure 6A) is mainly generated by inputs received via the perforant path (originating from 

EC), the Schaffer collaterals (arising from CA3), and dendritic voltage-dependent currents 

(Skaggs et al., 1996). CA3 neurons provide the strongest theta drive by coherently exciting 

CA1 pyramidal cells (Csicsvari et al., 2003). This rhythmicity is caused by a recurrent 

connection between CA3 pyramidal cells and DG mossy cells creating an 

intrahippocampal oscillator (Figure 6B).  
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Figure 6: Recurrent intrahippocampal network generates oscillatory activity 

A Recorded raw LFP signal (blue, magnified from black, scale bar indicates 1 s), the calculated 

power spectrum and the corresponding changes in velocity (red) are shown below. B CA1 

pyramidal cells (red) receive rhythmic extrahippocampal excitatory input from EC layer II/III 

neurons, excitatory MSDB neurons, and CA3 cells. The strongest theta drive (thick black line) 

originates from CA3 pyramidal cells. These cells form a recurrent network with mossy cells in DG, 

representing the intrahippocampal oscillator (light yellow box) and depending on cholinergic input 

which possibly originates from the MSDB. CA1 pyramidal cells receive MSDB inhibition and 

excitation. Rhythmic inhibition (light blue box) is mainly created by MSDB stimulation of CA1 OLM 

(blue), bistratified (green), and basket/chandelier (yellow) interneurons. OLM cells project onto 

bistratified cells and onto distal dendrites of CA1 pyramidal cells; bistratified interneurons provide 

inhibition in the basal and proximal apical dendrites; basket and chandelier interneurons target the 

perisomatic area of pyramidal cells, while receiving additional inputs from CA1 pyramidal cell 

collaterals and CA3 Schaffer collaterals. The EC provides extrahippocampal theta input (light red 

box) onto the distal dendrites of CA1 pyramidal cells via the perforant path, as well as excitation 

onto mossy cells in DG.  
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The hippocampal micro network receives cholinergic inputs from the MSDB and further 

inputs from the EC (Amaral and Witter, 1989; Kocsis et al., 1999). Additionally, 

extrahippocampal theta input via the perforant path from EC (Figure 6B) results in 

rhythmic excitation in CA1 (Kocsis et al., 1999). In contrast, rhythmic inhibition of CA1 

pyramidal cells is mediated by excitatory and inhibitory projections of MSDB neurons onto 

interneurons and pyramidal cells in CA1, evoking cholinergic modulation in interneurons 

coupled with phasic septal inhibition, respectively (Freund and Antal, 1988). Bistratified 

cells involved in this rhythmic inhibition circuit receive additional theta inputs from CA3 

neurons (Müller and Remy, 2014). OLM and bistratified interneurons get direct input from 

CA1 pyramidal cells and provide feedforward inhibition, feedback inhibition, and lateral 

inhibition in CA1 (Müller and Remy, 2014). Moreover, direct phasic stimulation of CA1 

cells by MSDB synapses (Figure 6B) can increase rhythmicity (Petsche et al., 1962). 

Theta oscillations are referred to as the “on-line” state of the HC (Buzsaki, 2002). They 

are crucial for the precise input/output transformation of the HC (Klausberger et al., 2004), 

involved in the induction of LTP (Hasselmo, 2005), and required for proper formation of 

spatial maps in the HC (Huxter et al., 2003). Furthermore, this oscillatory activity is 

responsible for the exchange of information among linked members in the ensemble 

(Buzsaki, 2002) and involved in the procession of spatial information and memory guided 

navigation (Hasselmo et al., 2002a; Hasselmo et al., 2002b). 

  



 
15 Introduction 

1.7. Central hypothesis 

The central hypothesis of this study builds up on recent findings by Fuhrmann and 

colleagues from 2015 who revealed that movement can be induced by optogenetic 

excitation of MS VGluT2+ cells in mice. Furthermore they convincingly showed that theta 

oscillations in the hippocampal CA1 region are locked to the very stimulation frequency 

used in the MS. These findings prove the strong interconnection between MSDB and HC 

and indicate a crucial role of the MSDB-HC micro network for movement execution.  

I hypothesize that an increase in activity in the MS precedes a corresponding increase of 

HC theta oscillations under physiological conditions, both correlated to the onset of 

locomotion. The presence of individual neurons with predictive function would strongly 

suggest that the MS is an important region mediating the preparation of the hippocampal 

network for increased sensory integration during movement. I suggest a reliable encoding 

of movement phases within the neuronal activity of the MS-HC network. Furthermore, I 

try to give proof for a neuronal representation of individual movement phases within the 

MS-HC network that can reliably predict upcoming changes in locomotion. 

I investigated the physiological activity of the MS-HC network during spontaneous 

movement. To do so, I combined fiberoptometric imaging of the population activity in the 

MS, multi-unit recordings in both MS and HC, and recordings of the LFP in the HC during 

voluntary movement of head-fixed mice on a linear treadmill. In this study, locomotion is 

addressed as a sequence of initiation, acceleration, deceleration, and termination of motor 

actions rather than the simplified classification of running and resting. For this, I focused 

on how the rodent MS-HC network changes its activity during distinct movement phases. 

The fundamental assumption is that movement related activity in the MS can induce theta 

oscillations in the HC. Analyzing the locomotor behavior of the animal and correlating the 

simultaneous activity in the MS-HC network on a fine temporal scale should reveal the 

temporal relation between neuronal preparation in the MS-HC network and movement 

before, during, and after physical execution.  
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2. Methods 

2.1. Transgenic mouse lines 

The experiments were performed in adult mice of both sexes of the lines listed in Table 1. 

The animals were group-housed up to a maximum of five animals per cage and kept at 

21 °C with 12 hours day and night alternation. Food and water were provided ad libitum. 

All experiments were in accordance to the German law for the use of animals. 

Experimental procedures were approved by the Landesamt für Natur, Umwelt und 

Verbraucherschutz in North Rhine-Westphalia, Germany, and performed in agreement 

with the European Committees Council Directive (RL2010/63/EU).  

 

Table 1: List of mouse lines used in this study 

Mouse strain Official nomenclature Description 

VGluT2-cre Slc17a6tm2(cre)Lowl/J 

 

Expression of a cre recombinase variant 

under the promotor of the sodium-

dependent inorganic phosphate 

cotransporter member 6. Functional 

enzyme activity has been shown in 

excitatory and VGluT2-positive neurons 

in the septal complex, the hippocampal 

formation, and other nuclei 

 

PV-cre B6.129P2-Pvalbtm1(cre)Arbr/J 

 

Expression of a cre recombinase variant 

under the promotor for somatic PV. 

Expression of functional cre has been 

detected in inhibitory and PV-positive 

neurons, including interneurons 
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2.2. Surgical procedures 

Prior to all surgical procedures, animals were deeply anesthetized by an intraperitoneal 

injection of anesthetics containing Ketamine (0.13 mg/g bodyweight) and Xylazine 

(0.01 mg/g bodyweight). Additionally, buprenorphine (0.05 µg/g bodyweight), carprofen 

(5 µg/g bodyweight), and cefotaxime (0.2 µg/g bodyweight) were injected. All following 

surgical steps were only conducted once responses to painful stimuli were abolished. In 

case of recurring responsiveness following tail/toe pinch an additional dose of Ketamine-

Xylazine up to a maximum of 50 % of the initial dose was injected. During anesthesia, the 

animal was placed on a self-regulating heating mat (Fine Science Tools, Heidelberg, 

Germany) to maintain the physiological body temperature at 36-37 °C. Additionally, breath 

rate was monitored as the primary vital parameter. For surgical procedures the head of 

the animal was positioned in a stereotactic frame with ear bars and nose clamp (MA-6N, 

Narishige, Tokyo, Japan). Following every surgery, injections of buprenorphine (0.05 µg/g 

bodyweight) were administered twice a day for three days. 

 

2.2.1. Stereotactic injections 

Stereotactic injections of virus-based vectors were performed on anesthetized animals as 

described before. The skin on top of the skull was incised and the periosteum was 

removed. The tip of the injection cannula (34G cannula Hamilton syringe, World Precision 

Instruments, Berlin, Germany) was placed onto the bregma and moved to the stereotactic 

coordinates taken from Frankling & Paxinos (The Mouse Brain in Stereotaxic Coordinates, 

Third Edition, Academic Press), listed in Table 2. Movement of the syringe was motorized 

(Luigs&Neumann, Ratingen, Germany) and target areas were approached in a 10 ° 

medial-lateral angle to circumvent major blood vessels. A small hole was drilled into the 

skull (Ideal micro drill, World Precision Instruments, Berlin, Germany) above the target 

region and the injection needle was pushed slowly into the brain until it reached the final 

position. A total volume of 1 µl virus solution (see Table 3) was injected with an 

UltraMicroPump (World Precision Instruments, Germany) at 0.1 µl/min pump speed 

followed by 10 minutes pause to enable the virus solution to sink into the surrounding 

tissue. After the injection, the needle was slowly removed from the tissue. The craniotomy 

was sealed with an absorbable gelatin sponge (Gelfoam, Pfizer, New York, USA). A 
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biodegradable sewing thread (Vicryl Plus, Johnson & Johnson Medical GmbH, 

Norderstedt, Germany) was used to suture the skin.  

 

Table 2: Stereotactic coordinates of brain regions targeted in this study 

Target brain region Stereotactic coordinates relative to bregma 

Medial septum diagonal band of 

Broca 

+ 1000 µm 

+ 750 µm 

- 4400 µm 

rostral-caudal 

lateral 

dorsal-ventral 

Hippocampal formation (CA1) 

- 2300 µm 

+ 2000 µm 

- 1200 µm 

rostral-caudal 

lateral 

dorsal-ventral 

 

 

2.2.1.1. Vectors 

An adeno-associated virus (AAV) was used as a vector to express proteins in specific 

brain regions by stereotactic injections. These nonpathogenic human parvoviruses have 

a limited replication capability and can transduce dividing and non-dividing cells. The 

vectors contain a single-stranded DNA fragment and are suitable for long-term 

expressions in the living animal due to little immunogenicity. The vector used is shown in 

Table 3. The virus contained the DNA sequence for a floxed version of the GCaMP5G 

protein under a synapsin promoter. An additional posttranscriptional regulatory element 

(WPRE) was added to enhance expression of the protein of interest (Figure 7). The virus 

was commercially available and purchased from Penn Vector Core (Penn Vector Core, 

Philadelphia, USA). 
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Table 3: Viral vector used in this study 

Plasmid Type Promotor Fusion protein Titer Manufacturer 

 

hSyn.Flex.GCaMP5G 

(GCaMP3-

T302L.R303P.D380Y).WPRE.

SV40 

 

AAV2 hSynapsin GFP 2.49e13 Penn Vector Core 

 

 

2.2.1.2. Cre-loxP system 

In order to monitor and manipulate specific neuronal subpopulations in the target areas, 

viral vectors containing the necessary constructs were introduced into the brain areas. 

Cell-type specific transduction was achieved by cre-regulated gene expression 

(Figure 7).  

 

Figure 7: Illustration of cre-dependent expression of virally transferred constructs in 

neurons 

A Single-stranded DNA including a promotor (P), a stop codon (Stop) flanked by loxP sites (lx), 

an open reading frame containing the genome for the desired protein (ORF), a post-regulatory 

element (WPRE, woodchuck hepatitis posttranscriptional regulatory element; increases 

expression by a magnitude), and a poly-A cassette (pA). B Cells with active cre recombine the 

viral DNA and excise the stop codon between the loxP sites. C Cre-positive cell start expressing 

the protein encoded in the ORF while cells without active cre are not able to recombine and do 

not express the introduced protein. 
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The viral construct required a special design for this purpose. For this, loxP sites were 

positioned on either side of a stop codon preceding the gene of interest (here GCaMP) 

that repressed expression in the absence of the cre-recombinase protein. In cells that 

contained functional cre the stop codon was excised and the gene was translated during 

protein biosynthesis.  

 

2.2.2. Chronic implantations 

For optical monitoring of changes in GCaMP5G fluorescence mono fiber-optic cannulas 

(Figure 8A) were implanted into the brain of anaesthetized animals. 

 

 

Figure 8: Principle of a mono fiber-optic cannula 

A Mechanical composition of a mono fiber-optic cannula. B Scheme of an implanted mono fiber-

optic cannula at a 10° angle attached to the skull; light fiber patch cord inserted into patch cord 

guide canal. Blue halo indicates spread of excitation light for fluorometric recordings from the tip 

of the light fiber.  
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After sedation the scalp and the periosteum were removed and the surface of the cranial 

bone was etched with phosphoric acid (Phosphoric Acid Gel Etchant 37.5 %, Kerr Italia, 

Italy). Coating the skull with a volatile primer solution (OptiBond FL Prime, Kerr Italia, Italy) 

followed by an adhesive substance (OptiBond FL Adhesive, Kerr Italia, Italy) created a 

solid basis for implants. Afterwards, a craniotomy was performed above the MSDB and a 

mono fiber-optic cannula (MFC_400/430-0.37_5mm_SM3(P)_FLT, Doric Lenses, 

Quebec, Canada; Figure 8A) was inserted into the tissue in a 10 ° angle and pushed to 

its final position in the immediate vicinity to the MS (Figure 8B). For local field potential 

recordings monopolar tungsten electrodes (W558511, Advent Research Materials, 

Oxford, England) were implanted in the CA1. Implants were permanently attached to the 

head with a light-curable flowable composite (Gradia Direct Flo, GC Corporation, Japan).  

 

Figure 9: Scheme illustrating locations of chronic implants 

A local field potential electrode was implanted into the left hippocampal CA1 stratum pyramidale; 

a grounding electrode was implanted above the cerebellum; a reference electrode was implanted 

into the cerebellum; a craniotomy was performed above hippocampus CA1 or the MS and sealed 

with a removable silicone plug; the fiber-optic hybrid cannula was implanted proximate to the 

medial septum. 
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For experiments involving tetrode recordings in either MSDB or hippocampal CA1, smaller 

craniotomies were performed similarly on the opposite hemisphere. These craniotomies 

were immediately covered by silicon. For head-fixation during the experiment a metal-bar 

(Luigs&Neumann, Ratingen, Germany) was positioned on the skull (Figure 9). The 

positions of the implanted fibers were checked post-mortem in the sliced tissue using a 

confocal laser microscope (LSM700, Zeiss, Germany). Animals with badly positioned 

implants were excluded from the analysis. 

 

2.3. Data acquisition and software 

All acquired data was recorded at 10 kHz sampling rate and down sampled for the offline 

analysis to 1 kHz. The higher sampling rate was necessary for proper detection of unit 

activity in tetrode recordings. 

 

2.3.1. Habituation 

The animals used in in vivo experiments were habituated to both the experimenter and 

the setup for at least one week prior to the first recording session. Habituation to the 

experimenter included physical contact and head restraining.  

 

2.3.2. Fiberoptometry 

Fluorometric recordings of fluorescence signals were performed using an implanted glass 

fiber (see 2.2.2) connected to a light fiber patch cord transporting blue light-evoked 

fluorescence to a photon multiplier tube (PMT). The signal was pre-amplified and analog-

digital converted by an ITC 18 board (NPI, Germany). 

 

2.3.3. Local field potential recordings 

Electrical local population activity in the HCF was measured via implanted tungsten wire 

electrodes in CA1 s.p. During the recording the electrodes were connected to an EXT-

02F extracellular amplifier (NPI, Germany). Electrical signals were filtered with a 3 Hz high 

pass and a 500 Hz low pass filter and amplitudes were amplified 500-fold. Data were 
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recorded with an ITC-18 board (NPI, Germany), operated with the Igor Pro software 

(Wavemetrics, Oregon, USA). 

 

2.3.4. Multi-unit recordings 

The electrical activity of multiple cells (“units”) was monitored by placing tetrodes (probe 

with an array of four electrodes) or heptodes (probe with an array of seven electrodes) in 

the brain region of interest. The animals that had been prepared for these experiments 

had received a craniotomy that had been covered with a silicone plug (Figure 9). The plug 

was removed for the course of the experiment and placed back afterwards. The tetrode 

was stereotactically placed into the brain through the opening in the skull until it reached 

the outer borders of the MS (3500 µm ventral in 10 ° angle from brain surface) or the HCF 

(1100 µm ventral in 10 ° angle from brain surface). The tetrode was then lowered deeper 

into the tissue until AP like unit activity was detected using a digital oscilloscope (Rigol, 

Beaverton, USA). The electrophysiological data were analog-digital converted with an 

EXT-16DX board (NPI, Germany) and acquired with the Igor Pro software. 

 

2.3.4.1. Transcardial perfusion fixation 

After completion of the in-vivo experiments the brain tissue of each animal was extracted 

from the skull and positioning of electrodes and cannulas was checked. For this, the 

animal was anesthetized with a lethal dose and the thorax was opened. After opening of 

the pericardium, the left ventricle was pierced with an injection needle for perfusion. The 

right atrium was incised and a peristaltic pump (PeriStar Pro, World Precision Instruments, 

Germany) was used to perfuse PBS (Sigma Aldrich, Germany) in 5 ml/min. As soon as 

the leaking perfusion solution was free of blood the perfusion solution was switched to 

4 % PFA (Roti-Histofix, Carl Roth, Germany). The perfusion was performed for 

15 minutes. Afterwards, the head was detached and the brain was removed from the skull. 

The tissue was either stored in 4 % PFA for 1 hour at room temperature or overnight at 

4 °C to improve fixation efficiency before being transferred into PBS for permanent 

storage. 
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2.3.4.2. Confocal slice microscopy 

For microscopic imaging the brain tissue was sliced with a Leica VT-1200S vibratome 

(Leica Microsystems, Wetzlar, Germany) into 100 µm thick sections. The slices were 

mounted with Aqua-Poly/Mount (1806-20, Polysciences, Inc.) and stored at 4 °C. High-

resolution images were obtained with a confocal laser microscope (LSM700, Zeiss, 

Germany) using a 20x objective (PlanApochromat 20x/0.8, Zeiss, Germany).  

 

2.4. Data analysis 

2.4.1. Analysis of locomotion 

Movement of the animal was tracked by the position readout of a custom-designed virtual 

reality setup recording the rotation of one rotating wheel of a linear treadmill. The virtual 

position of the animal was computed offline in MATLAB 2013b (MathWorks, Natick, USA) 

and locomotion speed could be calculated. The digital position signal was noise-

compensated with a Kalman filter.  

𝑉 = 𝑓′(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

𝑉 =  lim
𝑥1→𝑥0

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
 

𝑉 = lim
∆𝑥→0

∆𝑦

∆𝑥
 

Immobility or resting was defined as every time point with a velocity slower than 0.1 cm/s 

and running as every velocity faster than 2 cm/s. 

Detailed analysis of movement phases was performed by defining four distinct phases 

during locomotion: (1) Initiation of movement, (2) end of acceleration, (3) start of 

deceleration, and (4) termination of movement. By defining criteria, alignment points for 

the four movement phases (Figure 10) could be detected in the velocity traces of each 

recording (Table 4). 
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Table 4: Functional definition of movement phases 

Phase Previous interval 

Point of 

alignment Following interval 

 

Initiation 

(onset) 

 

0.1 cm/s > |v| for t ≥ 2 s v>0.1 cm/s v > 0.1 cm/s for t ≥ 1 s 

 

End of 

acceleration 

(acc) 

 

Detected onset 

 v > 0.1 cm/s for t ≥ 1 s 
v’=0 v > 0.1 cm/s for t ≥ 1 s 

 

Start of 

deceleration 

(dec) 

 

v > 0.1 cm/s for t ≥ 1 s v’=0 
v > 0.1 cm/s for t ≥ 1 s 

 detected offset 

 

Termination 

(offset) 

 

|v| > 0.1 cm/s for t ≥ 1 s v=0 cm/s 0.1 cm/s > v for t ≥ 2 s 

 

In detail, the different phases are defined as:  

(1) Initiation (onset):  

The absolute velocity is required to be slower than 0.1 cm/s for at least 2 s before 

crossing the threshold of 0.1 cm/s (putative onset point); if the velocity is faster than 

0.1 cm/s for at least 1 s the initial threshold crossing is defined as an onset point. 

 

(2) End of acceleration (acc):  

After a detected onset, the velocity is required to be faster than 1 cm/s for at least 1 s 

before the first derivative of the trace (v’) is checked to be equal to 0 (putative acc 
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point); if the velocity stays faster than 0.1 cm/s for at least 1 s, the point with v’=0 is 

defined as an end of acceleration point. 

 

(3) Start of deceleration (dec)  

The velocity is required to be at least 1 s faster than 0.1 cm/s backwards from a 

previously defined offset point (see 4) before the first derivative of the velocity trace 

(v’) is checked to equal 0 (putative dec point); if the velocity is larger than 0.1 cm/s for 

at least 1 s prior to this, the point is defined as a start of deceleration point.  

 

(4) Termination (offset)  

The absolute velocity is required to be faster than 0.1 cm/s for at least 1 s before 

crossing the 0.1 cm/s threshold (putative offset point); if the velocity is slower than 

0.1 cm/s for at least 2 s the threshold crossing is defined as an offset point. 

These intervals were automatically detected by the individual characteristics of each 

phase with custom-mage MATLAB 2013b scripts, as illustrated in Figure 10.  

 

Figure 10: Illustration of distinct states during a movement phase and functional criteria 

Schematic illustration of movement phase detection. The alignment points (circles close to T0) are 

identified time points that fulfill all respective criteria during any movement.   
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2.4.2. Alignment and slope analysis 

In the next step of the analysis the data of the fluoremetric recording, the LFP recording, 

and the multi-unit recording were aligned to the movement intervals as described before. 

Furthermore, dependencies and correlations between the parameters and the locomotion 

were analyzed using these short intervals. To investigate whether a parameter would 

predict the upcoming change in locomotion at the alignment, the slope of the linearly fitted 

data in the interval 400 ms prior to the alignment point was extracted for every alignment 

and statistically tested against zero (Figure 11A). In case of an onset of locomotion, a 

significant slope indicated that the parameter predicted the future movement behavior 

(Figure 11B). 

 

 

Figure 11: Exemplary slope analysis of a parameter prior to an alignment point 

A Exemplary firing pattern of a single MS unit during an onset phase (onset point at T0). The data 

in the 400 ms interval prior to the alignment point (dashed line) was linearly fitted (red line) and 

the slope value was extracted. B The slopes of the linear fit for each alignment were tested against 

zero. Significant slopes indicated that the unit/parameter tested could predict the upcoming 

initiation of locomotion. 
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2.4.3. Analysis of electrophysiological recordings 

2.4.3.1. Analysis of local field potential recordings 

The spectral analysis of LFP data was performed using the Morlet-Wavelet transformation 

in Matlab 2013b. Spectrograms were generated with a resolution of ΔFreq=0.1 Hz and 

Δt=0.001 s and used for all calculations and correlations. The theta peak frequency was 

identified as the predominant frequency between 4 Hz up to 12 Hz while the theta power 

was the averaged amplitude of all frequencies in this theta range. Theta frequency bands 

were defined as 1 Hz integer bins covering the theta frequency range.  

Theta phases were described as a sinus wave (Figure 12A) with sin(0 °) to sin(90 °) 

representing the rising phase, sin(90 °) to sin(270 °) describing the decaying phase, and 

sin(270 °) to sin(360 °) describing the following rising phase of the oscillation recorded in 

the hippocampal CA1 region (Figure 12B).  

 

 

Figure 12: Mathematical description of oscillations in local field potential recordings 

A Sinus wave indicating activation phases for increases in voltage (rising phase) or decreases in 

recorded voltage (decay phase). B Overlay of a mathematical sinus wave (red) and recorded 

7-8 Hz local field oscillation (black). 
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2.4.3.2.  Analysis of multi-unit recordings 

Multi-unit recordings were processed using the KlustaKwik software (Kenneth Harris, 

UCL). Automatically detected spike events were compared regarding their spike timing on 

the four electrodes of the tetrode. Spike waveforms were manually compared to all other 

waveforms of a recording session and similar waveforms were clustered as one unit. The 

spiking time points of combined units were combined and saved. Afterwards, spiking 

frequencies were calculated for every unit by counting events per 50 ms and these time 

bins were displayed in [Hz]. Only recordings with a minimum of 10 s running duration and 

a peak velocity faster than 5 cm/s were further processed. Units with an average firing 

rate of less than 0.5 Hz during periods of running were discarded to prevent imprecise 

conclusions due to insufficient firing frequencies.  

 

2.4.4. Analysis fiberoptometric recordings 

The fluorometric recordings of neuronal population activity using the GCaMP5G signal 

were corrected for bleaching and noise artefacts by subtracting 120 s average moving 

boxes from the original raw data. The average fluorescence of the raw signal was added 

afterwards to maintain relation between transients and baseline fluorescence. The change 

in fluorescence is presented as 

∆𝐹

𝐹
 

or 

𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒
 

with the average fluorescence intensity as baseline fluorescence. Individual fluorescence 

traces were smoothed by 50 ms intervals for display.  
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2.4.5. Modulation analysis 

In order to analyze speed modulation of any of the parameters recorded, the velocity trace 

was binned into 1 cm/s velocity bins. For every bin faster than 2 cm/s, each parameter 

was averaged correspondingly and the overall average for each velocity bin was 

calculated. The averages per velocity bin were linearly fitted and weighted by the spare 

root of its duration. The continuous GCaMP5G and LFP data were considered as 

significantly speed-modulated if the slope of the linear fit was significantly different from 

zero among the animals recorded, tested with the one-sample Wilcoxon sign-rank test. 

Single-units were considered as positively speed-modulated if the 2.5 % confidence 

interval of the linear fit was positive or rather as negatively speed-modulated if the 97.5 % 

confidence interval of the slope was negative. Possible theta modulation of single-units 

was estimated by calculating the fast Fourier transform of the -500 ms to +500 ms interval 

of the autocorrelation for each unit. The amplitude was smoothed with a rectangular filter 

over ±1 Hz and the theta modulation index (TMI) was defined as the ratio of the squared 

amplitude in the 6-11 Hz and the 2-50 Hz bands. Significance of the TMI was tested by 

shifting the AP time points for every unit randomly between -10 s and +10 s. This 

procedure was repeated 1000 times. Every iteration generated an artificial TMI. The p-

value of the real data was defined as the ratio of artificial modulation indexes larger than 

the original to the number of iterations.  

Phase modulation of recorded units was calculated by estimating the respective theta 

phase for every AP time point, binned into 72 phase bins of 5° each (see chapter 2.4.3.1). 

The APs were counted for each bin. The preferred theta phase was detected as the phase 

bin containing the highest count of APs. The phase modulation index (PMI) was defined 

as the ratio between counts at the preferred phase minus the count at the phase with the 

lowest count divided by the sum of both counts.  

PMI =  
Countmax − Countmin 

Countmax +  Countmin
  

The significance of each PMI was calculated similar to the TMI by artificially time shifting 

every AP time point and repeating this procedure 1000 times. The ratio of artificial PMIs 

larger than the original PMI to the number of iterations was defined as the p-value. This 

approach is referred to as bootstrapping. 
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2.4.6. Time shift analysis 

To analyze a movement-predictive character of LFP oscillations and unit firing, a time shift 

analysis was performed. The parameters were time shifted by +1 s in +50 ms steps and 

by -1 s in -50 ms steps respectively. After each step the time shifted parameter was 

correlated to the binned velocity trace (1 cm/s bins). After performing a linear fit of the time 

shifted correlation, the resulting slope was compared to the slope of the original data and 

taken as an indicator for the overlap of the parameter and the velocity trace. An increased 

slope indicated a higher degree of overlap; a decreased slope represented less overlap. 

For each time shift analysis, the “best overlap” was defined as the time shift step resulting 

in the largest slope and the corresponding “time shift” (Figure 13).  

 

 

Figure 13: Illustration of a time shift analysis for a parameter against the corresponding 

velocity 

A The original recording of an exemplary parameter (grey) and the corresponding velocity trace 

(black) are shown. B The parameter of interest is shifted in 50 ms steps by -1000 ms to +1000 ms. 

C Every shifted data is plotted against the underlying velocity and linearly fitted (red line). D The 

best overlap is determined depending on the resulting slope of the linear fit; in this example, the 

+500 ms shift yielded the largest positive slope and is referred to as the best fit.  
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To statistically validate the best overlap, the bootstrapping method was used on the 

recorded data. For this, all data points of the parameter traces were randomly shifted by 

-10 s to +10 s and the resulting traces were used in a time shift analysis. The best overlap 

of the shuffled data was compared to the best overlap of the real data. The best overlap 

of the real data was considered to be significant if this overlap was larger than the largest 

slope of the bootstrapped data in at least 975 out of 1000 iterations. 

 

2.4.7. Statistical analysis 

Statistical analysis of the data was done using SPSS Statistics 21 software (IBM). All data 

was first checked for Gaussian distribution with a Kolmogorov-Smirnov test. Normally 

distributed data was tested for significant differences with the paired or unpaired two-tailed 

Student’s t-test. Heterogeneously distributed related and independent samples were 

tested with a non-parametric related-samples Wilcoxon signed rank test and Mann-

Whitney U test, respectively. Slopes of fits without corresponding baseline data were 

tested for significant increase or decrease with the Wilcoxon rank-sum test. The 

significance levels were defined as p<0.05 = *, p<0.01 = **, p<0.001 = ***, and 

p<0.0001=****. 
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3. Results 

3.1. In-vivo cell-type specific population activity in the MS 

Activity analysis of neuronal populations in the MS was achieved by deep brain 

epifluorescence imaging via chronically implanted light fibers. To target genetically distinct 

groups of neurons, cre-expressing cells of mice were transduced with AAVs carrying a 

floxed version of GCaMP5G. The emitted fluorescence was detected by a fiberoptometer. 

The habituated animal was head-fixed on a linear treadmill under standardized conditions. 

Perception of external stimuli, acoustical or visual, was minimized to prevent irritations. 

Optical monitoring of changes in fluorescence intensity in the MS, electrophysiological 

recordings of local field potentials in the HC, and recording of the velocity of the animal 

were performed simultaneously. High sampling frequencies were used for high temporal 

resolution in the detection of onset, changes, and termination of locomotor behavior.  

 

3.1.1. Locomotion associated activation of VGluT2+ neurons in the MS 

Population activity of glutamatergic cells in the MS was measured via an implanted light 

fiber in VGluT2-cre mice expressing a floxed version of GCaMP5G (Figure 14A). The tip 

of the light fiber terminated close to the MSDB region and detected the summed 

fluorescence of cells expressing the Ca2+ indicator protein GCaMP5G. Increasing Ca2+ 

dependent fluorescence signals were reliably recorded for subsequent running intervals 

(Figure 14C) with changes in fluorescence ranging from ~1-10 % ΔF/F. This locomotion 

associated 2-fold increase (n=6, µrest=1.78 ± 0.23 [%], µrun=3.47 ± 0.54 [%], p=0.005) was 

observed in multiple recording sessions and animals (Figure 14B). Increases in Ca2+ 

signaling as a proxy for neuronal AP firing confirmed an elevated activity level in the MS 

during movement. 
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Figure 14: VGluT2-GCaMP5G transients increase during locomotion 

A Schematic illustration of MS expressing GCaMP5G with adjacent light fiber. B Comparison of 

averaged GCaMP5G ΔF/F in VGluT2+ MS neurons during resting intervals and running intervals; 

single animal data depicted as circles. C Exemplary MS GCaMP5G transients (red) and 

corresponding velocity trace (black). 

 

3.1.2. Velocity-correlated increases in VGluT2+ population activity 

The locomotion associated changes of the MS VGluT2-GCaMP5G signals were further 

investigated regarding specific kinetics during distinct velocities. While the head-fixed 

animal moved on the linear treadmill at varying speeds (Figure 15A), binned velocities 

exceeding the threshold for running detection at 2 cm/s were correlated to the 

corresponding ΔF/F (Figure 15B). Weighted fitting of the data (Figure 15B; red line) was 

used as a measure to describe the linear relation between velocity and fluorescence in 

MS VGluT2+ neurons revealing a positive interrelation (Figure 15C; n=6, 

µ=0.19 ± 0.06 [slope], p=0.046). Due to individual behavior of each animal and differing 

maximum velocity this finding was blurred in some recordings, most probably caused by 

low top speeds during a recording session (Figure 15D). Yet, this positive speed 

modulation of GCaMP5G fluorescence was detected in 5 of 6 animals underlining its 

physiological relevance. 
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Figure 15: VGluT2-GCaMP5G fluorescence is positively correlated to the velocity of 

locomotion 

A Illustration of a head fixed VGluT2-GCaMP5G animal on a linear treadmill with the light fiber 

patch cord. B Exemplary interrelation of binned velocity to changes in fluorescence intensity 

(circles), a weighted linear fit of the data (red), and the respective confidence interval of the fit 

(dashed line). C Median slope of fits of 6 recorded animals; single animal data depicted as circles. 

D Interrelation of normalized velocity to changes in normalized fluorescence intensity shown for 

all recorded data. 

 

3.1.3. Movement-state related VGluT2+ activity occurs prior to onset and 

deceleration phases 

High temporal resolution of locomotion enabled a detailed analysis of distinct phases 

during movement. Onset detection, as well as determining the endpoint of the first 

acceleration phase, the start of the final deceleration, followed by the absolute termination 

of locomotion was used to relate specific Ca2+ dependent fluorescence changes in 

VGluT2-GCaMP5G animals to each velocity state. By reproducibly aligning these phases, 

general kinetics underlying the change in speed along with adaptions occurring prior to 

the respective phase (Figure 16) could be revealed using the slope analysis (see chapter 

2.4.2).  
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Figure 16: Movement related VGluT2-

GCaMP5G transients display state 

specific changes during onset and 

deceleration 

A1 Top: changes in GCaMP5G intensity 

(MEAN shown in black; SEM shown in red) 

aligned to the onset of locomotion (T0, orange 

line) and the corresponding velocity trace 

(bottom; MEAN shown in black; SEM shown 

in red). A2 Median of slopes of the interval 

indicated by the dashed box on GCaMP5G 

traces; single animal data depicted as circles. 

B1, B2 like A1 and A2 with alignment point end 

of acceleration (acc), C1, C2 like A1 and A2 

with alignment point start of deceleration 

(dec), and D1, D2 like A1 and A2 with 

alignment point offset of locomotion (offset). 
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Detailed investigation of the onset phase (Figure 16A1) revealed an increase of VGluT2-

GCaMP5G fluorescence prior to the alignment point (Figure 16A2; n=6, 

µ=1.12 ± 0.30 [%], p=0.046) followed by an ongoing increase of ΔF/F. The early increase 

was detected in an interval 400 ms before locomotion started although the exact time point 

could not be estimated. The succeeding acceleration phase was aligned to the first 

velocity peak after 1 s continuous acceleration (Figure 16B1). The mean ΔF/F in this 

interval characteristically displayed leveling kinetics despite the still increasing velocity 

(Figure 16B2; n=6, µ=0.28 ± 0.17 [%], p=0.075), is not in agreement with a strictly linear 

correlation of fluorescence and velocity (Figure 15C). Phases in which the animal slowed 

were investigated around the start of deceleration (Figure 16C1). This interval was 

characterized by the last detectable velocity peak followed by decreasing speeds and a 

certain termination of locomotion (Figure 16D1). The corresponding GCaMP5G signal of 

VGluT2+ neurons showed a significantly negative slope of the linear fit in the 400 ms 

interval prior to the alignment point T0 (Figure 16C2; dec; n=6, µ=-0.99 ± 0.32 [%], 

p=0.046). The mean ΔF/F during detected offsets of movement displayed a slope 

indifferent to zero in the immediate 400 ms interval before total halt (Figure 16D2; n=6, 

µ=-0.20 ± 0.11 [%], p=0.249). The kinetics of the GCaMP5G-protein appeared to be rather 

slow after a completed movement period. The minimum time needed to reduce 

fluorescence back to baseline level was not estimated here but clearly exceeded 2 s 

(Figure 16D2, visible after offset). These slow decay kinetics of Ca2+ indicators have been 

previously described (Akerboom et al., 2012) and prevent the precise definition of the time 

point of locomotion offset. 

 

3.2. Increased activity in MS PV neurons during episodes of movement 

In another set of experiments the change in GCaMP5G fluorescence was recorded from 

GABAergic PV+ neurons in the MS (Figure 17A). Albeit small in peak intensity, ΔF/F was 

increased during running periods (Figure 17C). Similar to the findings in VGluT2-

GCaMP5G animals (Figure 14), quantification and statistical evaluation of resting versus 

running intervals revealed a significant increase during locomotion (Figure 17B; n=8, 

µrest=0.75 ± 0.12 [%], µrun=1.05 ± 0.22 [%], p=0.029). Positioning of the light fiber in PV-

GCaMP5G animals was comparable to VGluT2-GCaMP5G animals, yet the majority of 
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PV neurons tended to be located in the medial part of the MS resulting in lower net 

fluorescence intensity (see Figure 3).  

 

 

Figure 17: PV-GCaMP5G fluorescence increases during locomotion 

A Schematic illustration of GCaMP5G expressing MS with adjacent light fiber. B Comparison of 

averaged GCaMP5G ΔF/F in PV+ MS neurons during resting intervals and running intervals; single 

animal data depicted as circles. C Exemplary MS GCaMP5G transients (blue) and corresponding 

velocity trace (black). 

 

3.2.1. Changes in PV+ population activity correlated to the speed 

Ca2+ transients of PV-GCaMP5G animals performing voluntary movement while being 

head-fixed on a linear treadmill (Figure 18A) were correlated to binned velocity faster than 

2 cm/s. Averaged bins (Figure 18B; circles) were weighted and linearly fitting (red line). 

The averaged slopes were averaged over every animal and used as measure to evaluate 

the fluorescence versus velocity interrelation. Statistical analysis of the slopes of the linear 

fits detected a positive correlation to the velocity (Figure 18C; n=8, µ=2.25*10-3 [slope], 

p=0.017). This phenomenon was found in the global approach but was consistently 

detected in the majority of individual recording sessions, as well (Figure 18D). 
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Figure 18: PV-GCaMP5G fluorescence is positively correlated to the velocity of 

locomotion 

A Illustration of a head fixed PV-GCaMP5G animal on a linear treadmill with the light fiber patch 

cord attached. B Exemplary interrelation of binned velocity to changes in fluorescence intensity 

(circles), a weighted linear fit of the data (red), and the respective confidence interval of the fit 

(dashed line). C Median slope of fits of 8 recorded animals; single animal data depicted as circles. 

D Interrelation of normalized velocity to changes in normalized fluorescence intensity shown for 

all recorded data. 

 

3.2.2. Onset and offset of locomotion is represented in the activity of septal PV+ 

neurons 

To relate population activity of PV+ neurons in the MS to changing locomotor states, the 

ΔF/F traces were aligned to the previously described movement phase’s onset, end of 

acceleration, start of deceleration, and offset (Figure 19).  
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Figure 19: Movement related PV-

GCaMP5G transients display state 

specific changes during onset and 

termination phases 

A1 Top: changes in GCaMP5G intensity 

(MEAN shown in black; SEM shown in red) 

aligned to the onset of locomotion (T0, orange 

line) and the corresponding velocity trace 

(bottom; MEAN shown in black; SEM shown 

in red). A2 Median of slopes of the interval 

indicated by the dashed box on GCaMP5G 

traces; single animal data depicted as circles. 

B1, B2 like A1 and A2 with alignment point end 

of acceleration (acc), C1, C2 like A1 and A2 

with alignment point start of deceleration 

(dec), and D1, D2 like A1 and A2 with 

alignment point offset of locomotion (offset). 
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Deep brain fiberoptometry via the implanted light fiber enabled monitoring of Ca2+-

dependent fluorescence transients originating from GABAergic PV+ neurons in the MS. 

Fluorescence remained at baseline level before movement onset, but started to increase 

during the immediate 400 ms time interval prior to the alignment point (Figure 19A1). The 

slopes of the linearly fitted ΔF/F during this short period were statistically tested (see 

chapter 2.4.2) and the positive median was significantly different from 0 (Figure 19A2; 

n=8, µ=0.25 [%], p=0.036). During the subsequent acceleration peaking at T0 of the acc 

phase Ca2+-dependent transients were highly variable among the animals tested 

(Figure 19B1; blue area). Statistical testing of the slopes during the 400 ms interval prior 

to the alignment point showed that the ΔF/F increase was not statistically significant 

(Figure 19B2; n=8, µ=0.11 [%], p=0.161). This characteristic leveling of the ΔF/F prior to 

the velocity peak perfectly resembled the findings in VGluT2-GCaMP5G animals 

(Figure 19B2). Over the course of movement, GCaMP intensity remained at elevated 

levels as previously demonstrated (Figure 19B; rest versus run comparison) and 

decreased slowly once the animal slowed down (Figure 19C1, D1). During the 

deceleration phase, the analysis of the slopes was not different from 0 prior to T0 

(Figure 19C2; n=8, µ=-0.03 [%], p=0.484) while displaying a negative slope during the 

400 ms interval before the offset of movement (Figure 19D2; n=8, µ=-0.13 [%], p=0.017). 

As mentioned in chapter 3.1.3 (VGluT2-GCaMP5G alignment), GCaMP5G ΔF/F levels 

required more than 2 s to reach baseline levels (Figure 19D1, showing ongoing decay of 

ΔF/F 1 s after standstill).  
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3.3. In-vivo monitoring of oscillatory activity in hippocampal CA1 stratum 

pyramidale 

Brain regions structured in layers tend to display oscillatory activity caused by current 

flowing in specific patterns.  Under physiological conditions, rhythmic activity in the 

hippocampal CA1 pyramidal cell layer typically oscillated at frequencies between 4-12 Hz 

in mice (see chapter 1.6). These theta oscillations could be recorded using electrodes 

terminating close to the very cell layer. Changes in the potential of the local field 

represented changes in the general population activity in the area. 

 

3.3.1. Power and peak frequency of HC CA1 LFP increased in theta range 

The electrical local field in hippocampal CA1 was routinely monitored with custom-made 

tungsten wire electrodes which were chronically implanted into pyramidal cell layer in s.p. 

(Figure 20A). The LFP signal was monitored while the habituated and head-fixed animal 

was moving voluntarily on a linear treadmill. The recorded theta oscillations were changed 

when the immobile animal began to move (Figure 20B). Direct comparison of resting and 

running periods (Figure 20C) revealed an increase in theta mean power (Figure 20D; 

n=41, µrest=2.63*10-6 [µV²/Hz], µrun=3.24*10-6 [µV²/Hz], p=0.001). Moreover, the peak 

frequency of the occurring oscillation was increased after the transition from resting to 

running (Figure 20E; n=41, µrest=6.16 [Hz], µrun=6.92 [Hz], p<0.0001). Taken together, the 

adaption of the oscillatory activity indicated an increase in activity of the whole neuronal 

population in hippocampal CA1 s.p. 
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 Figure 20: Theta oscillation power and peak frequency increase during locomotion 

A Schematic illustration of local field potential electrodes implanted into the HC. B Exemplary local 

field potential signal (black) and the corresponding velocity trace (red). C Enlarged section in B 

with the velocity trace displaying a period of resting (dark grey area) in contrast to a running period 

(light grey area). The oscillatory local field potential is shown in below. D Comparison of median 

theta power and E Mean theta peak frequency during resting intervals and running intervals; single 

animal data depicted as circles.  
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3.3.2. Frequency specific representation of locomotion in hippocampal CA1 

pyramidal layer 

As described before, the transition from immobility to locomotion is accompanied by 

changes in the attributes of theta oscillation occurring in the HC (Figure 21A). Splitting 

theta oscillations into its spectrum of frequencies, the most prominent oscillations could 

be found between 6-10 Hz (Figure 21B). Focusing on single-Hz frequency bands 

depicted frequency-specific encoding of locomotion (Figure 21C-J). Oscillations between 

4-7 Hz were low in amplitude during periods of running (Figure 21C, D, E). Higher 

frequencies from 7-10 Hz were strongest during locomotion (Figure 21F, G, H), while 

oscillatory events at frequencies faster than 10 Hz displayed only little amplitudes overall 

(Figure 21I, J). Quantification of the respective power traces of each frequency band 

(Figure 21K) revealed decreasing power in the 4 Hz and 5 Hz frequency band 

(Theta 4 Hz: n=41, µrun/rest=0.53 [%], p<0.0001; Theta 5 Hz: n=41, µrun/rest=0.7 [%], 

p<0.0001). Oscillations at the frequency band of 7 Hz and 8 Hz were increased during 

running (Theta 7 Hz: n=41, µrun/rest=1.42 [%], p<0.0001; Theta 8 Hz: n=41, 

µrun/rest=1.26 [%], p=0.001). Higher frequencies in the frequency band of 10 Hz and 11 Hz 

again showed decreasing mean power (Theta 10 Hz: n=41, µrun/rest=0.81 [%], p=0.001; 

Theta 11 Hz: n=41, µrun/rest=0.84 [%], p<0.0001). The intermediate frequency bands at 

6 Hz and 9 Hz were unchanged (Theta 6 Hz: n=41, µrun/rest=0.84 [%], p=0.636; 

Theta 9 Hz: n=41, µrun/rest=0.9 [%], p=0.876). Subsequently, similar behaving frequency 

bands encoding locomotion were combined into larger frequency bands defined as 

theta 4-6 Hz, theta 7-9 Hz, and theta 10-12 Hz (Figure 21K). 
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Figure 21: HC Theta frequency bands change in amplitude during locomotion 

A Exemplary velocity trace (red) including a resting interval (dark grey area) and a running interval 

(light grey area) with the corresponding LFP below (black). B Power spectrogram of the LFP in A 

between 4 to 12 Hz; the dashed lines confining 1 Hz frequency bands. C-J Filtered LFP signal 

(black line) of the 1 Hz frequency bands shown in B with the mean power shown as grey area. 

K Comparison of median theta power during resting intervals and running intervals for every 

frequency band; single animal data depicted as circles for every 1 Hz frequency band shown in 

C-J; single animal data depicted as circles. The dashed boxes indicate similar frequency bands 

depending on their kinetics: Theta 4-6 Hz, theta 7-9 Hz, and theta 10-12 Hz.  
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3.3.3. Hippocampal theta oscillations increase in both peak frequency and 

amplitude in correlation to the movement speed 

To investigate potential speed modulation of theta oscillations in the hippocampal CA1 

region, the LFP signal was separately tested in regard of theta frequency (peak 

frequency), theta mean power, theta 4-6 Hz amplitude, theta 7-9 Hz amplitude, and 

theta 10-12 Hz amplitude (Figure 22). Theta mean power was correlated to the binned 

velocity (Figure 22A1) and linearly fitted, considering the absolute duration of each 

velocity bin by weighting the fit (Figure 22A1; red line). The majority of recordings showed 

comparable distribution of data points in this correlation (Figure 22A3). Slopes of the fits 

were tested and showed a positive correlation of theta mean power and velocity 

(Figure 22A2; n=41, µ=3.11e-8 [slope], p=0.001). The peak frequency of the contemporary 

oscillation was correlated to the same velocity bins (Figure 22B1). The overall relation 

appeared similar to the findings on theta mean power (Figure 22B2), and statistical 

analysis of the slopes revealed a positive correlation of peak frequency to speed during 

running (Figure 22B2; n=41, µ=0.012 [slope], p=0.001). This positive correlation was 

observed in more than 80 % of the recorded animals. Plotting the lower theta frequencies 

4-6 Hz versus each velocity bin differed from the previous findings (Figure 22C1, C3) and 

quantification of the estimated slopes showed no significant modulation (Figure 22C2; 

n=41, µ=-3.8e-9 [slope], p=0.115). The interrelation of the theta 7-9 Hz frequency band 

and velocity (Figure 22D1) matched the kinetics seen for theta mean power and peak 

frequency (Figure 22D3), with the statistical analysis confirming a positive correlation 

(Figure 22D2; n=41, µ=1.02e-8 [slope], p=0.001). The highest frequencies in the frequency 

band between 10-12 Hz were low in amplitude (Figure 22E1) and seemed to anti-correlate 

to the velocity (Figure 22E3), even though the slope analysis evidenced a median slope 

indifferent to 0 (Figure 22E2; n=41, µ=-1.36e-9 [slope], p=0.098). Nevertheless, except for 

theta 7-9 Hz, the mean amplitude of theta frequency bands were decreasing while velocity 

increased (Figure 22C3, E3). 
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Figure 22: Theta oscillations are positively correlated to the velocity of locomotion 

A1 Exemplary interrelation of binned velocity to mean theta power between 4-12 Hz (circles),  a 

weighted linear fit of the data (red), and the respective confidence interval of the fit (dashed line). 

A2 Median slope of fits of all recorded animals. A3 Interrelation of normalized velocity to normalized 

mean theta power between 4-12 Hz shown for all recorded data (99 recordings in 42 animals). 

B1, B2, B3 same as A1, A2, A3 for theta peak frequency. C1, C2, C3 same as A1, A2, A3 for theta 

4-6 Hz frequency band. D1, D2, D3 same as A1, A2, A3 for theta 7-9 Hz frequency band. 

E1, E2, E3 same as A1, A2, A3 for theta 10-12 Hz frequency band. 
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3.3.4. Hippocampal theta oscillation frequency bands contain information on 

changes in the movement state 

Following the reproducible detection of movement phase alignment points the three theta 

frequency bands theta 4-6 Hz, theta 7-9 Hz, and theta 10-12 Hz were analyzed 

corresponding to each locomotion state. Referring to the varying velocity modulation of 

theta described previously, strong differences were expected in the kinetics of theta band 

powers over the course of a movement interval (Figure 23). The changes in velocity 

during the distinct movement states were consistent among all recorded animals 

(Figure 23A1-A4) and changes in the LFP were addressed with the slope analysis (see 

chapter 2.4.2). The mean power spectrum between 4-12 Hz showed a clear shift towards 

higher frequencies around the onset point (Figure 23B1). This increase in theta peak 

frequency and power was also visible in the acc phase (Figure 23B2), and the dec phase 

(Figure 23B3), but faded away during the offset phase (Figure 23B4). Quantification of 

the mean power for each frequency band during the onset interval (Figure 23C1, D1, E1) 

revealed a decrease of theta 4-6 Hz mean power during the 400 ms interval prior to 

locomotion onset (Figure 23F1; n=26, µ=-2.38e-7 [slope], p=0.0.001). In contrast, the 

theta 7-9 Hz band displayed an increase in the mean power (Figure 23F1; n=26, 

µ=3.91e-7 [slope], p=0.001), while theta 10-12 Hz was unchanged (Figure 23F1; n=26, 

µ=-3.93e-9 [slope], p=0.732). Before the end of the acceleration (Figure 23C2, D2, E2) the 

4-6 Hz frequency band was still decreasing (Figure 23F2; n=26, µ=-4.16-8 [slope], 

p=0.0.049). Theta between 7-9 Hz and 10-12 Hz showed insignificant kinetics during the 

acc phase (Figure 23F2; Theta 7-9 Hz: n=26, µ=-4.16e-8 [slope], p=0.638; 

Theta 10-12 Hz: n=26, µ=-1.96e-8 [slope], p=0.517). In the deceleration interval, the low 

frequencies ranging from 4-6 Hz (Figure 23C3) began to increase in mean power 

(Figure 23F3; n=31, µ=7.62e-8 [slope], p=0.007). Theta 7-9 Hz (Figure 23D3) and 

theta 10-12 Hz (Figure 23E3) displayed no changes in the dec phase (Figure 23F3; 

Theta 7-9 Hz: n=31, µ=-9.13e-8 [slope], p=0.068; Theta 10-12 Hz: n=31, µ=-5.51e-10 

[slope], p=0.433).  
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Figure 23: Theta frequency band-specific changes during states of movement 

A1-A4 Averaged velocity trace (MEAN shown in black; SEM shown in grey) aligned to the defined 

time point (orange line) during the movement phases onset, end of acceleration (acc), start of 

deceleration (dec), and offset. B1, B2, B3, B4 Averaged power spectrogram of LFP recordings 

between 4-12 Hz aligned to movement phases shown in A; the dashed lines mark the frequency 

bands between 4-6 Hz (bottom), 7-9 Hz (middle), and 10-12 Hz (top). C1, C2, C3, C4 Averaged 

mean power of the theta 4-6 Hz frequency band (MEAN shown in black; SEM shown in grey) 

aligned to the alignment point T0 (orange line); the dashed box indicates the interval taken for the 

slope calculation of a linear fit prior to the alignment point (shown in F). D1, D2, D3, D4 same as C 

for theta 7-9 Hz. E1, E2, E3, E4 same as C for theta 10-12 Hz. F1, F2, F3, F4 Median slopes of fits 

for the three frequency bands and all recorded animals with at least 5 alignments per phase 

(nonset=26, nacc=26, ndec=31, noffset=31).  
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Prior to termination of movement, the theta 4-6 Hz frequency band (Figure 23C4) 

displayed still increasing mean power (Figure 23F4; n=31, µ=8.25e-8 [slope], p=0.018). 

Theta 7-9 Hz and theta 10-12 Hz (Figure 23D4, E4) were unaffected during this period 

(Figure 23F4; Theta 7-9 Hz: n=31, µ=-2.49e-8 [slope], p=0.41; Theta 10-12 Hz: n=31, 

µ=-1.18e-8 [slope], p=0.217). Changes in the kinetics of the 7-9 Hz frequency band mean 

power (Figure 23D1-D4) preceded every detected movement phase (Figure 23B1 B4). 

Yet, the statistical analysis of the data during the movement phases could only confirm an 

increase prior to the onset of locomotion (Figure 23F1-F4). To evaluate this kinetics 

statistically, a modified analytical approach would be required. 

 

3.4. Intraseptal neuronal ensemble activity represents movement 

Using multi-unit electrodes and velocity read-out simultaneously, representation of 

locomotion in the single neuron activity could be investigated. Acute electrophysiological 

recordings of multi-unit activity in the MS were performed by stereotactically placing 

electrode arrays into the central regions in the MS (Figure 24A). Active neurons were 

then identified as single units using information on firing rate and waveform of the recorded 

APs afterwards. The timing and frequency of APs could be analyzed in in correlation to 

the velocity of the animal (Figure 24B). Many units were identified that displayed high 

firing rates during running periods (Figure 24C; light grey area behind the velocity trace) 

while firing at lower rates or non-firing at all during resting intervals (dark grey areas). The 

summed activity of all units recorded by one electrode array during a single recording 

session consistently showed high activity during running; yet, this multi-unit activity could 

be dominated by highly active units with the majority of units behaving in a different 

fashion. Therefore a single-unit analysis rather than a population approach was required. 

Quantification of the ratio between firing rate during movement (Freqrun) and firing 

frequency during immobility (Freqrest) indicated that units in the MS tended to discharge 

APs more often while the animals were in motion (Figure 24D; n=320, µ=1.21, p<0.0001). 
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Figure 24: MS unit firing frequency shows dependence on locomotor activity 

A Schematic illustration of an acute tetrode recording in the MS. B Exemplary recording showing 

the velocity (red), single-unit activity of 6 recorded units (black markers), and the combined multi-

unit activity recorded with one tetrode (black bars). C Enlarged section in B, with the velocity trace 

displaying a period of resting (dark grey area) in contrast to a running period (light grey area). The 

single-unit activity for 6 units (waveform of each unit shown as blue curve next to the unit number) 

is presented as AP time points (black markers), with the overall multi-unit activity shown below 

(black bars). D Median ratio of mean firing frequency during running intervals to resting intervals 

for all recorded single-units in the MS; single animal data depicted as circles.  
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3.4.1. MS unit activity heterogeneously modulated by velocity 

The detailed investigation of speed dependent increase of unit activity yielded information 

about how single neurons in the MS (Figure 25A) alter their electrophysiological output 

frequencies when the animal moves at different velocities. Correlation of AP frequency 

versus 1 cm/s velocity bins enabled the calculation of weighted linear fits for each unit 

(Figure 25B; red line). The slope of each fit was used as an indicator of velocity 

modulation. The statistical analysis of these slopes detected an overall positive speed 

modulation of units in the MS (Figure 25C; n=314, µ=0.013 [slope], p=0.031). A sorted 

presentation of all calculated correlations for every unit showed opposing modulations in 

large populations of MS units (Figure 25D). This observation could be confirmed after 

counter-checking the confidence intervals of the respective linear fits for positive lower 

and negative upper bounds respectively (see chapter 2.4.5). The individual mathematical 

evaluation of every single-unit revealed significant speed modulation in a subset of units 

(Figure 25E). The approach identified 49/314 positively speed modulated units 

(Figure 25F1; µpos=0.203 [slope]), 228/314 unmodulated units (Figure 25F2; 

µnon=0.009 [slope]), and 37/314 negatively speed modulated units (Figure 25F3; 

µneg=-0.165 [slope]) in the MS. 

 

3.4.2. Theta coupling in MS single-units 

MS activity is crucial for generation of hippocampal theta oscillations. To assess the theta 

modulation of the recorded units in the MS, the AP timing was correlated to the phase of 

theta oscillation (see chapter 2.4.3). By individually determining whether a MS unit was 

linked to the theta cycle in the HC, a fraction of cells could be identified to be preferentially 

active at distinct phases of theta (Figure 26A1; n=128 ≡ 40 %).Yet, the majority of units 

showed no significant theta phase-modulation (Figure 26A2; n=212 ≡ 60 %). Preferred 

theta phases were homogeneously distributed and ranged primarily from 103 ° to 243 ° 

(Figure 26B1; µphase=173 °), and the average of phase modulated units showed no 

preference for a theta phase on the population level (Figure 26B2). In the next step, AP 

firing was analyzed by auto correlating single-unit AP output.  
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Figure 25: Global MS unit activity sensitive to changes in velocity 

A Schematic illustration of an acute tetrode recording in the MS. B Exemplary single-unit 

(waveform shown as blue curve) interrelation of binned velocity to AP frequency (circles), a 

weighted linear fit of the data (red), and the respective confidence interval of the fit (dashed line); 

scale bar of the inset: 200 µV/1 ms. C Median slope of fits of all recorded MS single-units; single 

unit data depicted as circles. D Interrelation of normalized velocity to normalized firing frequency 

shown for all recorded single-units (n=314). E Slopes shown in C divided into significantly positive, 

significantly negative, and insignificant slopes. F1 Exemplary interrelation of a positively-

modulated (n=49), F2 a negatively-modulated (n=37), and F3 an unmodulated (n=228) single-unit 

(waveform shown as inset; scale bar 200 µV/1 ms). 
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Figure 26: MS single-unit firing is modulated by speed and theta 

A1 Histogram of APs fired by a significantly phase-modulated single-unit during a theta cycle. 

A2 Histogram of APs fired by a non-phase-modulated single-unit during a theta cycle. B1 Preferred 

theta phases of phase modulated single-units. B2 Averaged histogram of APs fired by all 

significantly phase-modulated single-units (MEAN in cyan; SEM in black) during a theta cycle. 

C1 Left: Autocorrelation of AP firing for a theta-modulated single-unit. Right: FFT of the 

autocorrelation displaying a peak at ~9 Hz. C2 Left: autocorrelation of AP firing for a non-theta-

modulated single-unit. Right: FFT of the autocorrelation. D Proportion of units being modified in 

their AP firing. Modulations shown are: positive speed-modulation (pos speed), negative speed-

modulation (neg speed), theta-modulation (theta), phase-modulation (phase), and combinations 

of different modulations. 
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The autocorrelation revealed a subset of units that fired significantly at frequencies 

between 4-12 Hz (Figure 26C1; n=73 ≡ 22.81 %), with the rest firing at various frequencies 

(Figure 26C2; n=247 ≡ 77.19 %). In general, MS units were affected by different 

modulations ranging from positive and negative speed-modulation (Figure 25) to theta 

frequency-modulation and phase-modulation (Figure 26D). Interestingly, units that were 

positively correlated to movement speed were more likely to be modulated by the phase 

of theta (n=25 ≡ 7.81 %) or fire in theta frequency (n=18 ≡ 5.6 %) as well, while among 

negatively speed-modulated units only 4.06 % (n=13) were additionally phase-modulated 

and 1.25 % (n=4) fired significantly at in theta range. 

 

3.4.3. MS multi-unit activity heterogeneously encodes movement phases 

Despite the heterogeneous characteristics of MS multi-unit activity, mean firing rates of all 

units were aligned to the movement phases as described previously (Figure 27; see 

chapter 2.4.1). This analysis should conclude whether neurons in the MS not only encode 

the speed of an animal but also the coming movement state (see chapter 2.4.2). 

Surprisingly, during the onset phase of a locomotion interval (Figure 27A1) the firing rate 

did not increase prior to movement initiation. Although the linear representation of the 400 

ms interval prior to the alignment point was positive in general, quantification of the single 

slopes was insignificant for the complete population of MS units (Figure 27A2; n=159, 

µ=0.0034 [slope], p=0.065). 
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Figure 27: Global MS unit activity 

heterogeneously adapts to the state of 

locomotion 

A1 Top: Averaged 50-ms time bins of MS 

multi-unit AP frequency (MEAN shown in 

cyan; SEM shown in black) aligned to the 

defined onset time point at T0 (orange line) 

and the corresponding velocity (bottom; 

MEAN shown in black; SEM shown in grey). 

A2 Median of slopes of the interval indicated 

by the dashed box on the AP frequency trace 

with the range close to the median being 

enlarged; single animal data depicted as 

circles. B1, B2 same as A1 and A2 for 

alignment point end of acceleration (acc). C1, 

C2 same as A1 and A2 for alignment point 

start of deceleration (dec). D1, D2 same as A1 

and A2 for alignment point offset of 

locomotion (offset).  
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The increase in firing rate during the transition from immobility to locomotion was clearly 

visible in the multi-unit activity, and general activity remained at high levels over the course 

of movement (Figure 27A1 right side, B1, C1, and D1 left side). Still, in the end of the 

acceleration phase (Figure 27B1) and at the start of the deceleration (Figure 27C1) the 

slope analysis showed highly heterogeneous kinetics in septal multi-unit activity 

(Figure 27B2; acc: n=159, µ=-0.0013 [slope], p=0.671; Figure 27C2; dec: n=209, 

µ=-0.0007 [slope], p=0.631). The termination of locomotion at the offset alignment point 

was preceded by a decrease in AP firing rates in the multi-unit activity (Figure 27D1) which 

was validated by the slope analysis (Figure 27D2; n=207, µ=-0.0036 [slope], p=0.001). 

 

3.4.4. MS single-units predict future movement states 

As the population of MS units (Figure 28A) was heterogeneously active during periods of 

locomotion, an additional approach was used to identify units that encoded information on 

any upcoming movement state (see chapter 2.4.2).  

 

 

Figure 28: Individual MS units change their firing frequency prior to change in locomotion 

A Schematic illustration of an acute tetrode recording in the MS. B Proportion of units with 

significantly increasing, significantly decreasing, or insignificant firing rates prior to the alignment 

points onset, acc, dec, and offset, respectively. 
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The comparison of single-unit slopes from the intervals preceding the respective 

alignment point (Figure 27A2, B2, C2, and D2) to a slope equal to zero (=not predictive) 

revealed a group of 6/159 units that were capable of reliably predicting the onset of 

locomotion (Figure 28B; increase: 4/159 ≡ 2.51 %, decrease: 2/159 ≡ 1.26 %, 

insignificant: 153/159 ≡ 96.23 %). The end of acceleration could be predicted by 5/159 

units that decreased their firing rates (increase: 0/159 ≡ 0 %, decrease: 5/159 ≡ 3.14 %, 

insignificant: 154/159 ≡ 96.85 %). The beginning of the deceleration was reliably 

predicted by 10/209 units (increase: 6/209 ≡ 2.87 %, decrease: 4/209 ≡ 1.91 %, 

insignificant: 199/209 ≡ 95.21 %), while the termination of movement at the offset 

alignment point could be predicted in 7/207 units (increase: 1/207 ≡ 0.48 %, decrease: 

6/207 ≡ 2.90 %, insignificant: 200/207 ≡ 96.62 %). 

 

3.5. HC CA1 unit firing increased during running 

Precisely positioned electrode arrays in CA1 were used to investigate the 

electrophysiological representation of locomotion in the HC (Figure 29A). Aligning 

simultaneously recorded velocity, single-unit activity, and the summed multi-unit activity 

(Figure 29B) revealed that high frequencies of AP firing were condensed in running 

phases (Figure 29C; light grey area behind the velocity trace) compared to resting phases 

(Figure 29C; dark grey area). Even short periods of immobility flanked by movement 

phases were clearly distinguishable in some units (Figure 29C; e.g. unit 3). Quantifying 

the ratio of AP frequency during running to AP frequency during resting revealed a 

1.86-fold increase in firing frequency when the animal was in motion (Figure 29D; n=149, 

µ=1.86, p<0.0001). 

 

3.5.1. HC single-units display diverse speed-modulation 

Correlating 1 cm/s velocity bins to the respective firing frequency for each unit recorded 

in HC CA1 (Figure 30A) enabled a conclusion on speed modulation of these neurons. 

The slope of the weighted linear fits of the correlated data (Figure 30B; red line) was used 

to estimate the overall positive speed modulation in all hippocampal CA1 units 

(Figure 30C; n=149, µ=0.036, p=0.001). 
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Figure 29: Elevated AP firing rates in HC neurons during locomotion 

A Schematic illustration of an acute tetrode recording in the HC. B Exemplary recording showing 

the velocity (red), single-unit activity of 9 recorded units (black markers), and the combined multi-

unit activity recorded with one tetrode (black bars). C Enlarged section of B, with the velocity trace 

displaying a period of resting (dark grey area) in contrast to a running period (light grey area). The 

single-unit activity for 9 units (waveform of each unit shown as blue curve next to the unit name) 

is presented as AP time points (black markers), with the overall multi-unit activity shown below 

(black bars). D Median ratio of mean firing frequency during running intervals to resting intervals 

for all recorded single-units in the MS; single animal data depicted as circles.  
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Figure 30: Global HC unit activity sensitive to changes in velocity 

A Schematic illustration of an acute tetrode recording in the HC. B Exemplary single-unit 

(waveform shown as blue curve) interrelation of binned velocity to AP frequency (circles), a 

weighted linear fit of the data (red), and the respective confidence interval of the fit (dashed line); 

scale bar of the inset: 200 µV/1 ms. C Median slope of fits of all recorded MS single-units; single 

unit data depicted as circles. D Interrelation of normalized velocity to normalized firing frequency 

shown for all recorded single-units (n=314). E Slopes shown in C divided into significantly positive, 

significantly negative, and insignificant slopes. F1 Exemplary interrelation of a positively-

modulated (n=49), F2 a negatively-modulated (n=37), and F3 an unmodulated (n=228) single-unit 

(waveform shown as inset; scale bar 200 µV/1 ms). 
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In order to identify variations in the speed-modulation of units within the population 

(Figure 30D), the upper/lower bounds of the confidence interval of the respective linear 

fit of every hippocampal unit was checked. This approach revealed subsets of differentially 

modulated units (Figure 30E). By this, an amount of 31/149 positively speed-modulated 

units (Figure 30F1; µpos=0.264 [slope]), 92/149 non-speed-modulated units (Figure 30F2; 

µnon=0.018 [slope]), and 18/149 negatively-modulated units (Figure 30F3; 

µneg=-0.209 [slope]) were identified within the population of hippocampal units. 

 

3.5.2. Single-units in HC CA1 coupled to theta phase and frequency  

Theta oscillations in the HC are generated by inputs onto CA1 pyramidal cells. Yet, the 

activity of these cells is not necessarily dictated by the activity of the local field. To 

investigate how pyramidal neurons in CA1 are affected by the local field surrounding them, 

single-unit data acquired from HC s.p. was correlated to the LFP recorded from the 

contralateral hemisphere. Phase specific AP firing was found in 24.32 % of the units 

(Figure 31A1; n=36) while the rest was active independent of the theta phase 

(Figure 31A2; n=112 ≡ 75.68 %). Preferred theta phases were primarily between 128 ° 

and 268 ° (25 and 75 percentile, respectively) with the median at 233 ° (Figure 31B1). 

Averaged histograms of phase modulated units revealed the largest mean count of APs 

at the transition from decay to rising phase between 240 ° and 280 ° (Figure 31B2). Firing 

specifically in the range of theta frequency between 4-12 Hz was investigated by 

calculating autocorrelations for every single-unit. The Fourier-transformation of 

the -500 ms to +500 ms interval of the autocorrelation revealed the primary firing 

frequency of the individual unit. This approach detected that 20.27 % of HC units were 

significantly firing at theta frequencies (Figure 31C1; n=30), leaving the rest to fire at other 

frequencies outside the range of theta (Figure 31C2; n=112 ≡ 79.73 %). Still, unit firing in 

the HC was strongly modulated by external drives. In general, hippocampal units showed 

speed-modulation both positive and negative (Figure 30), as well as theta frequency and 

theta phase modulation (Figure 31D). 
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Figure 31: Distinct modulation of HC CA1 single-unit firing 

A1 Histogram of APs fired by a significantly phase-modulated single-unit during a theta cycle. 

A2 Histogram of APs fired by a non-phase-modulated single-unit during a theta cycle. B1 Preferred 

theta phases of phase modulated single-units. B2 Averaged histogram of APs fired by all 

significantly phase-modulated single-units (MEAN in magenta; SEM in black) during a theta cycle. 

C1 Left: Autocorrelation of AP firing for a theta-modulated single-unit. Right: FFT of the 

autocorrelation displaying a peak at ~9 Hz. C2 Left: Autocorrelation of AP firing for a non-theta-

modulated single-unit. Right: FFT of the autocorrelation. D Proportion of units being modified in 

their AP firing. Modulations shown are: positive speed-modulation (pos speed), negative speed-

modulation (neg speed), theta-modulation (theta), phase-modulation (phase), and combinations 

of different modulations. 

 



 
65 Results 

Positive speed modulated units tended to be modulated more often by theta frequency 

(n=8 ≡ 5.4 %) or theta phase (n=12 ≡ 8.11 %) than negatively speed-modulated units. 

Among the latter, only 1 unit (≡ 0.68 %) was firing significantly in theta range and solely 

5 units (≡ 3.39 %) presented theta phase-coupled firing. 

 

3.5.3. Hippocampal multi-unit activity predicts the onset of locomotion 

Movement state specific alignment of hippocampal CA1 multi-unit activity showed up to 

5-fold changes in activity over the course of a movement phase (Figure 32). In the 400 ms 

interval prior to the onset phase of locomotion (Figure 32A1), an increase in mean firing 

rates was detected (Figure 32A2; n=39, µ=0.0119 [slope], p<0.001). During the following 

acceleration, multi-unit activity increased further until 700 ms prior to the acc alignment 

point (Figure 32B1). Firing rates started to decrease even though the analysis of the slope 

in the immediate 400 ms interval preceding the first velocity peak did not point out any 

significant kinetics (Figure 32B2; n=42, µ=-0.0006 [slope], p=0.648). Multi-unit firing rates 

remained at high rates during the process of running (see Figure 29). When the animal 

started to slow down, mean firing rates peaked approximately 400 ms before the last peak 

in velocity (Figure 32C1). Heterogeneous firing in this interval caused the statistical 

analysis to show no significant changes in the interval around the dec alignment point 

(Figure 32C2; n=82, µ=-0.003 [slope], p=0.102). Following the deceleration, the animal 

terminally stopped its movement at T0 in the offset phase (Figure 32D1). During this 

interval, the multi-unit activity was decreasing steadily while the animal slowed down, yet, 

the slope analysis prior to the alignment point already detected a median slope equal to 

zero (Figure 32D2; n=76, µ=-0.0003 [slope], p=0.592). 

 

3.5.4. A small proportion of units in HC CA1 predict upcoming movement states 

Individual analysis of hippocampal single-unit kinetics (Figure 33A) prior to the detected 

alignment points (onset, acc, dec, and offset) detected a proportion of units reliably 

predicting future changes in locomotion. 
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Figure 32: Hippocampal multi-unit 

activity predicts the start of movement 

A1 Top: Averaged 50-ms time bins of HC 

multi-unit AP frequency (MEAN shown in 

magenta; SEM shown in black) aligned to the 

defined onset time point at T0 (orange line) 

and the corresponding velocity shown below 

(MEAN shown in black; SEM shown in grey). 

A2 Median of slopes of the interval indicated 

by the dashed box on the AP frequency trace 

with the range close to the median being 

enlarged; single animal data depicted as 

circles. B1, B2 same as A1 and A2 for 

alignment point end of acceleration (acc). 

C1, C2 same as A1 and A2 for alignment point 

start of deceleration (dec). D1, D2 same as A1 

and A2 for alignment point offset of 

locomotion (offset). 
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The predictive unit would either significantly decrease or increase its firing rate before the 

actual change in locomotion occurs (see chapter 2.4.2). The analysis (Figure 33B) 

revealed that the onset of movement could be reliably predicted by 5/39 units (increase: 

4/39 ≡ 10.26 %, decrease: 1/39 ≡ 2.56 %, insignificant: 34/39 ≡ 87.18 %). The end of 

acceleration could only be predicted by 1/42 units in the HC (increase: 0/42 ≡ 0 %, 

decrease: 1/42 ≡ 2.38 %, insignificant: 41/42 ≡ 97.62 %), while the start of the deceleration 

phase was predictively represented in 6/82 units (increase: 1/82 ≡ 1.22 %, decrease: 5/82 

≡ 6.10 %, insignificant: 76/82 ≡ 92.68 %). The termination of locomotion was reliably 

encoded in 2/76 units (increase: 1/76 ≡ 1.31 %, decrease: 1/76 ≡ 1.31 %, insignificant: 

74/76 ≡ 97.38 %). Even though the total amount of cells predicting specific movement 

phases was low, it was possible to estimate changes in velocity by monitoring single-unit 

AP firing rates. 

 

 

Figure 33: Movement state prediction of single-units in hippocampal CA1 

A Schematic illustration of an acute tetrode recording in the HC. B Proportion of units with 

significantly increasing, significantly decreasing, or insignificant firing rates prior to the alignment 

points onset, acc, dec, and offset, respectively. 
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3.6. Kinetics of hippocampal theta oscillation’s amplitude and peak frequency 

predictively change prior to the velocity 

Representations of locomotion in the oscillatory events occurring in the HC have been 

described in this work (chapter 3.3). The early increase in theta frequency and amplitude 

before movement onset suggest a possible prediction of locomotion. To validate these 

findings, the whole time course of movement had to be taken into account. Complete 

recording sessions (t>20 min) were used to investigate whether changes seen in the 

velocity trace are reliably represented in the curves of theta power, theta peak frequency, 

theta 4-6 Hz band amplitude, theta 7-9 Hz band amplitude, and theta 10-12 Hz band 

amplitude. The kinetics of locomotion and signal were compared to each other by 

correlating the binned velocity to the signal and extracting the slope of the linear fit. Similar 

kinetics would generate larger slopes than diverse kinetics. In the next step the signal 

trace was shifted by -1000 ms to +1000 ms in 50 ms steps (adding up to 41 steps in total) 

and correlated to the non-shifted speed of the animal, afterwards. Each time shift yielded 

an individual correlation that was linearly fitted and the resulting slope was extracted (see 

chapter 2.4.6). The time shift which generated the largest significant slope (see chapter 

2.4.5) displayed the best overlap between signal and velocity. Time shifts 

between -1000 ms and -50 ms represented signal kinetics that followed behind the 

changes in velocity, while time shifts larger than zero pointed out that similar kinetics in 

the signal traces occurred prior to kinetics in the velocity trace. This time shift analysis 

performed on theta power (Figure 34A1) pointed out that the amplitude of theta 

oscillations between 4-12 Hz predictively took course similar to the velocity trace by 

approximately 150 ms prior to changes in the velocity of the animal (Figure 34A2; n=34, 

µ=+150 [ms], p=0.034). The predominant frequency of the theta oscillation changed over 

the course of movement, as presented before (Figure 23Figure 34B1-B4). Time shifting 

of the peak frequency (Figure 34B1) revealed that the theta peak frequency kinetics 

occurred 450 ms before the velocity changes (Figure 34B2; n=41, µ=+450 [ms], p=0.025). 

Based on the variable representation of locomotion in different frequency bands within the 

range of theta oscillations, slow oscillations between 4-6 Hz, medium oscillations between 

6-9 Hz, and high oscillations between 10-12 Hz were time shifted individually 

(Figure 34C1, D1, and E1).  
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Figure 34: Time shift analysis reveals different time points of highest prediction for 

individual theta bands  

A1 Exemplary result of a time shift analysis showing the slopes of linearly fitted interrelations of 

time shifted theta power traces and velocity. The red bar marks the time shift that created the 

largest slope. A2 Median of time shifts that created the largest and significantly positive slope (red 

bar in A1) for all animals (n=34). B1, B2 same as A1 and A2 for theta frequency. C1, C2 same as A1 

and A2 for theta 4-6 Hz frequency band. D1, D2 same as A1 and A2 for theta 7-9 Hz frequency band. 

E1, E2 same as A1 and A2 for theta 10-12 Hz frequency band. 
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The correlation of theta 4-6 Hz amplitude and movement speed generated a significantly 

positive slope in only 12/41 animals in any of the time shifts. The statistical analysis of the 

median of these identified best overlaps was indifferent to zero (Figure 34C2; n=12, 

µ=+325 [ms], p=0.692). This indicated that kinetics of theta 4-6 Hz and velocity were the 

most similar without any time shift. In contrast, mid-frequency theta in the range of 7-9 Hz 

(Figure 34D1) showed an increased overlap of mean amplitude and velocity when the 

signal was time shifted by +175 ms (Figure 34D2; n=37, µ=+175 [ms], p=0.015).This result 

prove that changes in locomotion were represented in the theta 7-9 Hz band 175 ms 

before physical movement was executed. The best overlap calculated for the low 

amplitude theta 10-12 Hz frequency band (Figure 34E1) was indifferent to zero 

(Figure 34E2; n=26, µ=-50 [ms], p=0.516). 

 

3.7. Locomotion predictively encoded in a subset of neurons in the MS 

Previous analyses showed that septal single-unit activity represents locomotion in various 

ways (see Figure 25). Yet, it was still unclear whether single-unit activity could be used 

to predict upcoming changes in velocity. Focusing on short movement phases (see 

Figure 27) only allows drawing conclusions about the prediction of single phases rather 

than predicting movement in general. Therefore the time shift analysis was used on unit 

recordings in the MS (Figure 35A). The septal multi-unit activity was time shifted in 50 ms 

steps by both -1000 ms and +1000 ms to determine the best fit of binned velocity and 

binned AP firing rates in single-units (timelagmax). The correlation of velocity and the AP 

frequency was linearly fitted and the resulting slope of the fit was used as a proxy for the 

rate of similarity (see chapter 2.4.6). The averaged slopes for every time shift in every unit 

recorded in the MS was heterogeneously distributed (Figure 35B). In order to deal with 

diverse phenotypes among septal single-units, every unit was analyzed for individual 

significance with the bootstrap method (see chapter 2.4.5).The approach revealed a 

subset of units which displayed a significant increase in overlap of AP rate and velocity at 

time shifts different larger or smaller than zero. Units that showed their best overlap at 

timelagmax values between -1000 ms and -50 ms were considered to follow the changes 

in the velocity trace and were specified as follower units (Figure 35C; red circles).  
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Figure 35: AP firing rates of septal single-units predict locomotor behavior 

A Schematic illustration of an acute tetrode recording in the MS. B Time shift analysis showing 

the slopes of linearly fitted correlations of septal multi-unit firing frequency and velocity (MEAN 

shown in cyan; SEM shown in black). C Time shifts of the best overlaps of all single-units recorded 

in MS. Units were subdivided into follower units (red circles), other units (grey circles), and 

predictor units (green circles). Follower units were defined as units displaying the best overlap at 

time shifts < 0 ms; predictor units were defined as units showing the best overlap at time shifts 

> 0 ms; other units combined all remaining units. D Averaged normalized slopes of time shifted 

follower units (MEAN shown in red; SEM shown in black). E Averaged normalized slopes of time 

shifted predictor units (MEAN shown in green; SEM shown in black). F Absolute count of best 

overlaps at each time shift for both follower (red) and predictor units (green). G Proportion of 

predictor units (green; n=33), follower units (red; n=44), and other units (black; n=243). 

 

On the other side, units that presented their largest slope when at time shifts between 

+50 ms and +1000 ms were considered predictive to the velocity and therefore termed 

predictor units (Figure 35C; green circles).  All insignificant units were referred to as other 

units (Figure 35C; grey circles). Averaged slopes for the follower and predictor units 

showed clear peaks in the according time shift direction (Figure 35D, E). Quantification 

of every timelagmax values calculated for both groups displayed a heterogeneous 

distribution for the timelagmax rather than a uniform clustering (Figure 35F). A total amount 

of 320 units was analyzed (Figure 35G), revealing 33/320 predictor units (≡ 10.3 %), 

identifying 44/320 follower units (≡ 13.8 %), and tagging 243/320 other units (≡ 75.9 %). 

 

3.8. Predictability of locomotion on the basis of single-unit activity in HC CA1 

Multi-unit recordings of neurons in the pyramidal cell layer of the HC were processed using 

the time shift analysis (Figure 36A). This approach should reveal whether HC units that 

change their firing rate in accordance to changes in velocity present this behavior either 

already before movement or after, or whether they are entirely unaffected by locomotion. 

As previously done on MS units, the AP time points of HC units were time shifted in 50 ms 

steps by -1000 ms up to +1000 ms, each step yielding a slope of the linear fit of the 

correlation between firing rates and the animal’s movement speed.  
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Figure 36: AP firing rates of hippocampal single-units reliably predict locomotion 

A Schematic illustration of an acute tetrode recording in the MS. B Time shift analysis showing 

the slopes of linearly fitted correlations of hippocampal multi-unit firing frequency and velocity 

(MEAN shown in magenta; SEM shown in black). C Time shifts of the best overlaps of all single-

units recorded in MS. Units were subdivided into follower units (red circles), other units (grey 

circles), and predictor units (green circles). Follower units were defined as units displaying the 

best overlap at time shifts < 0 ms; predictor units were defined as units showing the best overlap 

at time shifts > 0 ms; other units combined all remaining units. D Averaged normalized slopes of 

time shifted follower units (MEAN shown in red; SEM shown in black). E Averaged normalized 

slopes of time shifted predictor units (MEAN shown in green; SEM shown in black). F Absolute 

count of best overlaps at each time shift for both follower (red) and predictor units (green). 

G Proportion of predictor units (green; n=14), follower units (red; n=91), and other units (black; 

n=43). 

 

The averaged slopes of the whole population of HC units displayed a peak after being 

shifted by -400 ms (Figure 36B). Yet, individual analysis for randomness in this dataset 

identified significant follower units, significant predictor units, and an insignificant rest of 

units (Figure 36C). The averaged time shift analyses of follower units confirmed the 

finding on the population level with its peak at -400 ms (Figure 36D). In contrast, the 

cohort of predictor units displayed the largest slopes when shifted between +50 ms up to 

+1000 ms, peaking at 300 ms (Figure 36E). The timelagmax values of the identified 

follower units were ambiguously distributed along the range of negative time shifts while 

the majority of units showed the best overlap between -250 ms and -500 ms (Figure 36F; 

red bars). Timelagmax values of identified predictor units were scattered between +50 ms 

and +1000 ms without accumulating at any time shift step (Figure 36F; green bars). The 

total amount of 14/148 predictor units (≡ 9.5 %) was relatively low compared to the majority 

of 91/148 follower units (≡ 61.5 %) and 43/148 indiscriminate units (≡ 29 %; Figure 36G).  
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4. Discussion 

To understand how neuronal processing of incoming sensory information may be adapted 

to different locomotion velocities is crucial. Many previous studies addressed the neuronal 

representation of movement in general, comparing immobility versus locomotion 

(Vanderwolf, 1969; Wyble et al., 2004; Hinman et al., 2016). To investigate these distinct 

conditions and their neuronal activation patterns is an important first step to understand 

all that happens in the brain during movement. Yet, real movement is much more complex 

and goes beyond binary resting and locomotion states.  

The present study investigates the physiological processes that are involved in the brain-

state transition from immobility to locomotion. It confirms existing models on movement 

initiation involving the MS-HC network (Oddie and Bland, 1998; Fuhrmann et al., 2015) 

and adds significant insights on both population and single-unit level of septal and 

hippocampal neurons. This work extends previous approaches by investigating 

physiological brain activity during a well-defined locomotor behavior on a linear treadmill.  

 

The central results of this work are the following: 

(1) MS VGluT2+ and PV+ neuron populations are positively speed-modulated and 

increase their activity prior to locomotion onset. 

 

(2) HC CA1 theta oscillations’ amplitude and peak frequency are positively speed-

modulated and begin to increase before the start of movement. 

 

(3) MS and HC action potential firing rates are increased during locomotion with 

distinct populations showing firing patterns that reliably predict future locomotion. 
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4.1. Movement associated activity in the MS 

The MS is positioned centrally in the basal forebrain and holds a key function in connecting 

behaviorally relevant brain regions and relaying signals (Petsche et al., 1962). The 

intraseptal micro circuitry contains a strongly interconnected local network which contains 

glutamatergic, cholinergic, and GABAergic neurons (Kiss et al., 1990; Gritti et al., 1993; 

Kiss et al., 1997; Gritti et al., 2003; Hajszan et al., 2004; Halasy et al., 2004). The 

distribution patterns of these cells (Figure 3C) and the unique electrophysiological 

properties enable a versatile range of neuronal output (Sotty et al., 2003; Manseau et al., 

2005) that is highly increased during movement (Petsche et al., 1962; Morris and Hagan, 

1983; Fuhrmann et al., 2015; Justus et al., 2017). The existence of glutamatergic neurons 

in the MS has been demonstrated previously (Kohler et al., 1984). Yet, research mostly 

focused on other cell types as VGluT2+ cells constitute the smallest population within the 

septal area (Colom et al., 2005). These cells recently gained more attention since recent 

studies revealed a direct connection between VGluT2+ neurons and locomotion in animals 

(Bender et al., 2015; Fuhrmann et al., 2015; Kropff et al., 2015; Justus et al., 2017).  

 

4.1.1. Population activity of VGluT2+ and PV+ neurons in the MS display a 

movement related increase in activity 

In this study I find an increase of MS VGluT2+ neuronal activity before and during episodes 

of locomotion, using fiberoptometric monitoring of population calcium signals (Figure 14, 

Figure 15, Figure 16). The data confirm the results of Fuhrmann et al., 2015 who used 

similar methods and analyses. The physiological relevance of MS VGluT2+ activity during 

locomotion is demonstrated by showing that these cells are recruited during voluntary 

movement initiation. It was investigated in higher detail than was done in previous studies. 

This approach of temporal dissection was important to understand that VGluT2+ activity 

specifically changes over the course of locomotion. In detail, this activity indicates 

transitions from one movement state to the next one rather than a linear increase or 

decrease once movement was initiated. The present work demonstrates that while 

acceleration is still ongoing, VGluT2+ activity already ceases to increase (Figure 16B1). 

Similarly, activity starts to decrease before the final deceleration takes place 
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(Figure 16C1). This temporal recruitment pattern was previously unknown. It suggests 

that glutamatergic cells in the MS are involved in relaying signals about future movements.  

With the link between septal VGluT2+ activity and locomotion confirmed, the mechanism 

mediating this correlation still remains not fully resolved. Experiments involving 

optogenetic stimulation of VGluT2+ neurons in the MS reliably initiated movement and 

evoked theta oscillations in the HC depending on the stimulation frequency (Fuhrmann et 

al., 2015; Robinson et al., 2016). However, optogenetic activation of VGluT2+ axons 

leaving the MS via the fornix (projecting into the HC) was insufficient to modulate theta 

oscillation in hippocampal CA1 (Robinson et al., 2016). The disruption of the glutamatergic 

network in the MS by local administration of NMDA receptor blocker prolonged stimulated 

movement but impaired theta oscillation generation and uncoupled theta oscillations from 

movement speed (Fuhrmann et al., 2015). Moreover, disrupting MS activity by micro 

infusion of pharmacological compounds or lesioning of the MS region strongly reduced 

theta while an effect on the behavioral performance is not clear yet (Leutgeb and 

Mizumori, 1999; Koenig et al., 2011; Wang et al., 2015). These findings suggest that the 

intraseptal glutamatergic network rather than VGluT2+ septal-hippocampal projections are 

essential for hippocampal theta entrainment. Together, these studies indicate that the HC 

might play a minor role for movement initiation and are not in full agreement to the recent 

publication of Bender et al., 2015. By using optogenetic control of the MS-HC in order to 

control theta oscillations, Bender and colleagues were able to narrow the range of 

velocities an animal would run, yet, the likelihood of movement initiation was unaffected. 

Lesioning of the HCF in rats by infusion of excitotoxic compounds into the hippocampal 

and parahippocampal regions left locomotion behavior unaltered (Kim and Frank, 2009). 

Moreover, human studies involving the bilateral ablation of the HCF as in the case of 

patient H.M. did not describe any motor phenotype (Scoville and Milner, 1957; Penfield 

and Milner, 1958).  

VGluT2+ neurons are highly important for the network activity within the MS. 

Immunohistochemical studies showed that the major proportion of septal VGluT2+ axons 

remain locally in the MSDB and terminate on PV+ neurons (Hajszan et al., 2004). VGluT2+ 

synapses could be detected on septal ChAT+ and other VGluT2+ neurons (Manseau et 

al., 2005). Septal VGluT2+ neurons and PV+ interneurons are reciprocally connected, 
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while only few ChAT+ synapses could be detected on other neurons in the MS (Manseau 

et al., 2005; Fuhrmann et al., 2015). This indicates that the intraseptal network is primarily 

driven by glutamatergic excitation mediated by VGluT2+ cells. Yet, glutamatergic neurons 

in the MS contribute to the septal output and provide ~4-23 % of the septal-hippocampal 

projections (Colom et al., 2005). They project on both principal pyramidal neurons and 

interneurons in the HC (Huh et al., 2010; Sun et al., 2014) thereby influencing the local 

network activity in CA1 (Petsche et al., 1962; Mysin et al., 2015). This glutamatergic input 

was shown to rather lead to modulation than generation of theta oscillation (Buzsaki et al., 

1980; Fuhrmann et al., 2015; Robinson et al., 2016). PV+ neurons in the MS, however, 

are indispensable for controlling the local field activity in the hippocampal CA1 region 

(Freund and Antal, 1988; Oddie and Bland, 1998; Leutgeb and Mizumori, 1999; Mysin et 

al., 2015). GABAergic cells constitute the major part of neurons in the MS (Gritti et al., 

1993; Gritti et al., 2003) and are known to induce rhythmic activity patterns in the HC by 

evoking local disinhibition (Freund and Antal, 1988; Li et al., 2014). Moreover, PV+ 

neurons efficiently drive theta oscillations and stimulation of septal PV+ axons in the dorsal 

HC is sufficient to control theta frequency and power (Bender et al., 2015). They evoke 

inhibition in CA1 interneurons, but monosynaptic connectivity onto pyramidal cells has 

also been described (Sun et al., 2014).  

The present study provides evidence for a specific pre-movement activation of PV+ 

neurons in the MS similar to the activity of MS VGluT2+ neurons (Figure 17). These 

GABAergic interneurons displayed increased GCaMP5G transients prior to the onset of 

movement and maintained high levels of activity during locomotion, which increased 

corresponding to the velocity (Figure 18). The movement phase specific alignment of 

GCaMP5G transients emitted by PV+ cells revealed an early onset of activity 

(Figure 19A1). The experiments also showed that GCaMP5G transients were no longer 

linearly increasing prior to the endpoint of acceleration (Figure 19B1). The termination 

phase around the offset alignment point showed significantly decreasing kinetics, but it 

remains unclear whether this decrease was corresponding to the state of immobility or 

rather correlated to an earlier time point during deceleration (Figure 19D1). In general, 

GCaMP5G time courses of VGluT2+ and PV+ neurons were comparable. However, 

visualizing inactivation using GCaMP5G suffers from reduced temporal resolution due to 
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comparatively slow fluorescence decay kinetics. Also, PV+ neurons in the MS tend to fire 

at high frequencies (Morris et al., 1999). Resolving such activity with Ca2+-dependent 

fluorescent proteins is challenging due to these slow off-kinetics (Akerboom et al., 2012; 

Akerboom et al., 2013). Considering this, the interpretation of the time course during the 

deceleration phase and the offset phase should be treated with some caution. On the 

other hand, the increasing activity during the onset interval and the acceleration interval 

can be reliably visualized with GCaMP5G.  

MS PV+ neurons are strongly excited by the intraseptal network (Colom et al., 2005; 

Manseau et al., 2005; Mysin et al., 2015). That may explain the co-activation during 

running episodes. However, once the glutamatergic transmission within the MS micro 

network is disrupted, theta oscillations break down and cannot be maintained (Fuhrmann 

et al., 2015), elucidating that VGluT2+ neurons may not be the generators of hippocampal 

theta oscillations (Buzsaki et al., 1980). Yet, glutamatergic cells in the MS drive septal PV+ 

neurons which are shown to be strong theta inducers (Li et al., 2014; Sun et al., 2014; 

Mysin et al., 2015). Under physiological conditions, both cell types are simultaneously 

active. Blocking the intraseptal glutamatergic excitation of PV+ neurons impaired theta 

oscillations in the HC likely due to reduced activity of the theta generators (Fuhrmann et 

al., 2015). Accounting for the intraseptal connectivity, similar kinetics of the excitatory 

VGluT2+ and inhibitory PV+ neurons are therefore necessary.  

The results of Fuhrmann and colleagues indicate that the onset of locomotion is directly 

linked to the activity of neurons in the MS. Indeed, the initiation of movements after 

indifferent septal VGluT2+ stimulation might be an effect of distinct MS efferents 

(Fuhrmann et al., 2015). Yet, it is unlikely that these finding are mediated by HC projecting 

VGluT2+ neurons in the MS. Instead, glutamatergic projections leaving the MSDB via the 

fimbria are promising candidates for the observed locomotor control (Buzsaki et al., 1980). 

Evidence supporting this hypothesis is given by a study which describes motor 

impairments after performing a lesion of the fimbria/fornix output of the MS (Morris and 

Hagan, 1983). As the fornix stimulation of MS glutamatergic projections was unable to 

reliably initiate a movement (Fuhrmann et al., 2015; Robinson et al., 2016), movement 

induction is likely dependent on the fimbric efferents. A similar stimulation of septal PV+ 

fibers in the hippocampal CA1 region did not increase the probability of locomotion onsets 
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(Bender et al., 2015). Furthermore, intraseptal optogenetic activation of GABAergic 

neurons left locomotion unaltered (Sweeney and Yang, 2016), providing more evidence 

for a septal VGluT2+ activity which is involved in the initiation of locomotion via fimbric 

efferents. 

 

4.1.2. Unit activity in the MS is heterogeneous during locomotion 

The electrophysiological changes in neuronal activity in the MS were monitored to 

evaluate single-cell activity. By performing septal recordings using electrode arrays, the 

time resolution with which neuronal activity was monitored could be drastically increased 

while cells could no longer be differentiated based on their genetic properties. 

In general, the findings that VGluT2+ and PV+ neurons in the MS are both activated during 

running episodes could be confirmed by the multi-unit data acquired with tetrodes. The 

majority of recorded septal units were significantly more active when the animals moved 

(Figure 24), which is in accordance to the findings in Fuhrmann et al., 2015. Furthermore, 

AP frequency was positively correlated to the velocity (Figure 25). Justus et al., 2017 

showed that these so called speed-cells in the MS carry the information about the current 

velocity and project onto speed-cells in the medial entorhinal cortex (Kropff et al., 2015; 

Justus et al., 2017). My data points out that these mechanisms were not applicable to 

every neuron in the MS, as some cells reduced their AP firing rate during locomotion. 

Also, subsets of units were shown to be either negatively correlated to the speed of the 

animal or unaffected by locomotion. These versatile firing phenotypes agree with the idea 

that the MS is not passively encoding movement speeds, and imply a septal involvement 

in other tasks than speed-encoding, e.g. spatial learning or exhibition of trained behaviors 

(Henderson and Greene, 1977).  

Deeper investigation of modulations affecting neuronal firing of cells in the MS revealed 

prominent phase coupling to hippocampal theta oscillations (Figure 26). A strong coupling 

of septal neurons to the phase of theta would be expected for neurons which generate 

theta oscillations in the downstream HC. In regard of an efficient control of theta 

oscillation, PV+ cells have been described to lock their firing to distinct phases of HC theta 

waves (King et al., 1998; Borhegyi et al., 2004). In addition, a population of units showed 
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a preference to fire at frequencies in the range of theta. Interestingly, a set of cells 

preferentially fired at theta frequency even though uncoupled from hippocampal theta. 

These cells may project onto targets different than the HC and control rhythmic activity in 

other parts of brain. In-vivo intracellular recordings in the MSDB previously described 

three types of neurons with respect to their relationship to hippocampal theta phases and 

intracellular theta rhythms, being in line with the presented results (Barrenechea et al., 

1995). The combination of positive speed-modulation and either theta-modulation or 

phase-modulation was more abundant than the combination of negative speed-

modulation and theta-modulation or phase-modulation (Figure 26). This coherence 

strengthens the interpretation that the hippocampal transition into an activity-state for 

enhanced computation of sensory input (activation of theta) during locomotion is mediated 

by neurons in the MS (Fuhrmann et al., 2015).  

The movement phase specific analysis of AP firing of septal neurons yielded 

heterogeneous results. The alignment of AP frequencies units in the MS to the onset of 

locomotion showed no clear increase in firing rate prior to the alignment point (Figure 27). 

This does not agree with the findings of the GCaMP5G experiments. It can be explained 

by highly diverse and heterogeneous firing patterns of glutamatergic cells in the MS, which 

was uncovered by electrophysiological studies in brain slices: AP firing ranges from slow 

and clustered-firing (Sotty et al., 2003; Manseau et al., 2005) to fast-firing with prominent 

Ih currents and rhythmic spontaneous AP frequencies in theta range, which is comparable 

to septal GABAergic neurons (Huh et al., 2010). In accordance to the clear increase of AP 

frequency from resting to running, the population of MS neurons indeed increased their 

firing around movement onset and maintained this elevated activity level. Though AP 

frequencies remained stable over the course of the movement interval, the offset of 

locomotion was accompanied by an explicit drop in firing rate (Figure 27D1). These 

heterogeneous firing patterns are not surprising, considering that only a fraction of cells 

in the MS is involved in the representation of locomotion while the rest is more responsive 

to other sensory stimuli (Kaifosh et al., 2013). Yet again, my work points out that a 

population of septal units was able to predict individual movement states (Figure 28), 

implying that the information on upcoming changes in locomotion is contained in the AP 

firing of a few cells within the MS micro network. 
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4.2. Movement associated activity in the hippocampal CA1 region 

Sensory information of multiple sources is processed within the HC (Knierim et al., 2006). 

A prominent proportion of excitatory and inhibitory inputs into the HC originate from the 

MS (Agster and Burwell, 2013). These afferents control and regulate both the amplitude 

and the frequency of the oscillatory activity (Leung, 1998; Buzsaki, 2002). Inhibition of 

theta mostly goes along with severe impairments in spatial memory and orientation 

(Leutgeb and Mizumori, 1999; Hasselmo et al., 2002b; Koenig et al., 2011). 

 

4.2.1. HC CA1 theta amplitude and peak frequency increase during running 

Various studies on rhythmic activity in the HC investigated the connection between theta 

and movement. Early findings could show that the distinct behavioral states of 

wakefulness, sleep, and arousal are encoded in the hippocampal electrical activity (Green 

and Arduini, 1953; Vanderwolf and Heron, 1964). Further work on the HC pointed out that 

voluntary movements like locomotion and jumping are preceded and accompanied by 

trains of rhythmical activity in the HC (Vanderwolf, 1969; Whishaw and Vanderwolf, 1973).  

My experiments are in agreement with these studies. They show an increase in both 

frequency and amplitude of theta during voluntary locomotion (Figure 20). The detailed 

analysis of frequency bands revealed that this observation is mainly caused by an 

increased power of frequencies between 7-9 Hz and a lowered abundance of 4-6 Hz 

oscillations, while frequencies faster than 10 Hz were generally low in amplitude and 

seemingly unaffected by movement (Figure 21). Intermediate frequencies (6-7 Hz and 

9-10 Hz) were neither increased nor decreased during locomotion compared to rest, 

thereby these frequencies sharpened the contrast between the three frequency bands 

defined in the analysis. Interestingly, the movement associated range of theta between 

7-9 Hz increased its amplitude in a similar magnitude as theta 4-6 Hz was decreased 

(Figure 21). Faster oscillations were also decreased, yet, the relative change was less for 

theta 10-12 Hz. Pharmacological experiments blocking muscarinic receptors identified 

frequencies within theta range which reacted differently to compound infusion, indicating 

that different frequencies are generated by independent sources (Kramis et al., 1975). 

These results are in accordance to experiments that indicated velocity-dependent 



 
83 Discussion 

modulation of theta. By directly correlating movement speed to the frequency or the 

amplitude of hippocampal theta, a positive correlation to the motor behavior could be 

shown (Rivas et al., 1996; Oddie and Bland, 1998). In fact, this work shows that theta 

amplitude and peak frequency are positively correlated to the speed of an animal 

(Figure 22). Furthermore, separating theta into the previously described classes pointed 

out that this positive relation is based on the emerging prominence of theta 7-9 Hz 

(Figure 22D1). These results fit into the functional understanding of the MS-HC network 

which increases its general activity during locomotion. This model implies direct control of 

theta oscillations by PV+ neurons in the MS which in turn are primarily driven by the 

glutamatergic activation of MS VGluT2+ cells (Freund and Antal, 1988; Manseau et al., 

2005; Huh et al., 2010; Bender et al., 2015). The results presented in this work suggest a 

functional coupling of septal VGluT2+, septal PV+, and hippocampal theta oscillations 

which is supported by an observed synaptic coupling of MS and HC (Freund and Antal, 

1988; Buzsaki, 2002; Manseau et al., 2005).  

The switch from a behavioral state that is independent of theta oscillations to a theta-

associated state has been intensively investigated. An alignment of theta power to the 

onset/offset of a movement showed an early increase in power, representing the transition 

from a non-theta state to a theta-state, or vice versa (Vanderwolf, 1969; Wyble et al., 

2004). The method presented in this work verified a power increase in the 7-9 Hz 

frequency band prior to locomotion onset by means of statistics (Figure 23D1). The early 

increase in theta peak frequency and amplitude is in accordance to the increased activity 

of septal PV+ neurons before movement initiation. The kinetics observed for theta 7-9 Hz 

around the acceleration endpoint well resembled the observations in the GCaMP5G 

transients of VGluT2+ and PV+ neurons in the MS. Furthermore, the amplitude of the 

theta frequency band between 7-9 Hz was reduced to baseline level before the movement 

was completely terminated (Figure 23D1). The functional connection between neurons in 

the MS and theta oscillation in the HC implies that HC projecting VGluT2+ and PV+ 

neurons most probably reduced their firing rates back to baseline before locomotion offset, 

too. Yet, this hypothesis could not be verified by the experiments presented in the current 

study. 
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The early shift from slow frequencies to higher frequencies during movement is in 

accordance to the other studies (Vanderwolf, 1969; Wyble et al., 2004). Initial studies in 

rats defined hippocampal theta as rhythmic activity between 4-12 Hz (Vanderwolf, 1969; 

Whishaw and Vanderwolf, 1971; Bland and Vanderwolf, 1972; Kramis et al., 1975). Yet, 

the analysis of the theta band from 10-12 Hz could not detect any characteristic changes 

for these frequencies, despite a decrease in mean amplitude during running (Figure 21K, 

Figure 23).  

 

4.2.2. Hippocampal units are diversely activated during locomotion 

In order to describe the locomotion dependent activity changes in the hippocampal CA1 

region it was necessary to monitor the activity of individual neurons. This requirement was 

met by recording AP firing of multiple cells with an electrode array acutely placed into CA1 

s.p. Experiments that involved tetrode recordings in the HC of behaving animals 

suggested that running speed can affect neuronal firing (O'Keefe and Conway, 1978). The 

presented work confirms that the population of hippocampal neurons significantly 

increases its firing rate from resting to running (Figure 29). This elevated baseline activity 

enabled neurons with spike rate modulation as a possible way to transfer information 

(Heck et al., 2013; Pfeiffer and French, 2015). The alteration of hippocampal activity is 

most likely caused by medial septal neurons, either by disinhibiting CA1 pyramidal cells 

via GABAergic projection onto hippocampal interneurons or by direct excitatory 

connection onto hippocampal interneurons (Roland et al., 2014; Robinson et al., 2016). 

Yet, this adaption to movement was not applicable to every recorded unit. Studies in 

guinea pigs showed that neuronal firing in the HC is increased linearly in accordance to 

the running speed (Rivas et al., 1996). This finding fits to the results presented in this work 

(Figure 30). One population of hippocampal units was indeed positively correlated to 

movement speed, a second population was unaffected by the velocity, and a third 

population decreased its firing rate with increasing running speed (Figure 30F1-F3). The 

latter group (anti-speed cells) has been described in the medial EC but these cells were 

more than 40 % less abundant than positively speed-correlated neurons and the 

functional relevance remains unresolved (Kropff et al., 2015). Still, anti-speed cells also 

switched from slow baseline-firing to elevated movement associated baseline-firing which 
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was then reduced in order to encode movement. This initial shift to higher baseline firing 

is necessary as principal neurons in HC CA1 tend to display very slow AP firing rates 

below 1 Hz during (Mizuseki et al., 2011). 

Apart from speed-modulation, a group of units showed significant theta-phase modulation. 

These cells preferentially fired during the rising phase of the theta cycle (Figure 31). AP 

coupling to distinct phases of theta oscillations was described to be crucial for place cell 

formation in hippocampal CA1 (Losonczy et al., 2010). Moreover, a smaller proportion of 

neurons preferred firing at frequencies between 4-12 Hz. Yet, only half of these cells were 

coupled to the recorded theta in the contralateral HC (Figure 31D). The remaining 

neurons fired incoherenlyt to the theta oscillations recorded from the contralateral 

hemisphere. It is unlikely that these theta-uncoupled cells are part of the intrahippocampal 

theta oscillator, so their physiological role remains unresolved (Holsheimer et al., 1982; 

Buzsaki, 2002). Possibly, these cells constitute an extra-regional theta oscillator for a 

downstream area, but up to now, there is no evidence for this. A small fraction of cells 

displayed rhythmic firing above 12 Hz and exceeded the theta range. These anti-theta 

cells stayed silent during theta oscillations but switched to rhythmic firing at 15-25 Hz in 

the absence of theta related oscillatory activity (Buzsaki et al., 1983; Mizumori et al., 

1990). Rhythmic activity in the HC occurs mainly during periods of locomotion causing 

anti-theta cells to be primarily active while the animal remains immobile (Green and 

Arduini, 1953; Vanderwolf and Heron, 1964). Increased activity of hippocampal neurons 

during theta unrelated behavior was rarely seen and the function has yet to be determined 

(Mizumori et al., 1990). Comparable to neuronal modulation in the MS, the presented 

hippocampal speed-cells in this study were more often theta-modulated than anti-speed 

cells (Figure 31D). This is in agreement to the positive speed-correlation of theta peak 

frequency (Figure 22), as increased oscillation frequencies cause faster firing rates in 

neurons coupled to the local field activity. Plus, it has been shown that pyramidal cells in 

the HC couple their firing to the negative phase of theta (Holsheimer et al., 1982). This 

indicates that at least a fraction of units is required to display positive speed-modulation 

as well as phase-modulation. Otherwise, such firing patterns would counteract and 

diminish theta, which would most probably result in a decreased ability of retrospection 

(Leutgeb and Mizumori, 1999).   
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The alignment of septal multi-unit activity depicted elevated neuronal activity during 

locomotion (Figure 27), but was mostly constant during distinct movement states and 

thereby differed from the findings of the GCaMP5G recordings (Figure 16, Figure 19). 

Still, individual units could be identified which predicted reliably upcoming changes in 

locomotion (Figure 28). Assuming a massive synaptic coupling of hippocampal neurons 

by septal neurons, only few cells in the MS would be sufficient to evoke the observed theta 

kinetics over the course of locomotion intervals. In fact, the results of the alignment of 

hippocampal multi-unit activity to the start of movement showed a strong increase in unit 

activity prior to the onset (Figure 32A1). This fast rise in multi-unit activity was followed by 

a further increase in AP frequency. The end of acceleration was preceded and followed 

by activity peaks, and similarly the start of deceleration was flanked by peaking AP firing 

rates (Figure 32B1, C1). The termination of movement was clearly indicated by the 

strongly decreasing multi-unit activity more than 400 ms before the animal terminally 

stopped (Figure 32D1). The presented kinetics differs in part from the alignment traces 

shown for theta recorded in the contralateral HC CA1 region. This discrepancy points out, 

that the LFP must not to be mistaken as a proxy for neuronal firing. Theta oscillations 

reflect the inputs entering a local field which contains theta cells, theta-unassociated cells, 

and anti-theta cells rather than representing the firing of local neurons (Mizumori et al., 

1990). The activity patterns of pyramidal cells in the HC have been described to be highly 

diverse and originate from a highly diverse intrahippocampal network with a multitude of 

interneuron types (Alger and Nicoll, 1982; Freund and Buzsaki, 1996; Müller and Remy, 

2014). The peaks in activity close to the alignment points in the acc and the dec interval 

could represent these diverse firing patterns of hippocampal neurons (Figure 32B1, C1). 

A subset of cells increased its firing rate in accordance to the described kinetics of theta, 

while another population of cells displayed similar changes ~1 s later. This delay in 

elevated activity could represent a replay of ongoing internal activity dynamics, as 

described in studies investigating reoccurring sequences of hippocampal pyramidal cell 

firing during episodes of running (Malvache et al., 2016). Still, the investigation of single-

unit AP firing prior to the aligned movement phases revealed that both the onset and the 

start of deceleration were most reliably predicted by single-units (Figure 33). The end of 

acceleration and the offset of locomotion could be predicted by only few single-units. My 

analysis used a time-window of 400 ms prior to an alignment point to evaluate AP firing 
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rates and thereby did not allow for any specific activity pattern that occurred before the 

interval. Therefore, the identified cells displayed highly conserved activity patterns during 

each respective movement phase.  

 

4.3. Predictive encoding of locomotion 

The activity patterns in the MS-HC network are strongly correlated to the current locomotor 

behavior. Analyzing the slope in a 400 ms interval before an upcoming onset of movement 

revealed an increase in activity in both septal VGluT2+ and PV+ neurons, as well as in 

amplitude of the theta frequency band 7-9 Hz (Figure 16, Figure 19, Figure 23). On the 

level of multi-units, an increase in septal firing rates corresponding to the increase in the 

GCaMP transients that was found in fiberoptometric recordings was not detected 

(Figure 27). These findings were inconclusive and further experiments will be required. In 

order to evaluate the capability of the recorded parameters to predict future locomotion, 

the time shift analysis was established (see 2.4.6). This approach allowed for an 

assessment of the overlap between recorded parameter and the velocity of the animal.  

The time shift analysis was used on the theta parameters and single-unit firing rates. 

Analyzing GCaMP5G data with this method seemed inappropriate, as the slow off-kinetics 

of the fluorescence impedes a reliable outcome. Shifting the decay of large and slow 

GCaMP transients after movement offset would lead to inaccurate assumptions. Instead 

of specific movement-related transients, large amplitude data would correspond to periods 

of immobility. Faster activity indicator proteins such as newer isoforms of GCaMP or even 

voltage sensors would render a time shift analysis of an optical population signal possible 

(Akerboom et al., 2012; Chen et al., 2013). 

Time shifting the parameters extracted from the theta oscillations confirmed the previous 

findings. Both theta mean power and power of the 7-9 Hz frequency band were changing 

similarly ahead of the velocity trace, yielding the best overlap after shifting their traces by 

~175 ms to future time points. In contrast, theta 4-6 Hz and theta 10-12 Hz did not yield 

better correlations and are in full agreement with the previous results. An increase in theta 

amplitude preceding the onset of a movement was described in other studies (Vanderwolf, 

1969; Wyble et al., 2004). The presented work adds a suitable measure for evaluating 
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and quantifying this kinetics. Such an approach was not described previously and could 

become a valuable tool for prediction analysis. Interestingly, the positively speed-

correlated theta peak frequency displayed the best overlap with the velocity trace after 

being time shifted by +450 ms. This result indicates that locomotion specific increase in 

theta peak frequency starts already approximately half a second before movement onset. 

The required time for a complete transition of the field oscillating at 4-6 Hz to faster 

frequencies is unknown, yet, it has been reported that the increase in frequency prior to 

locomotion is completed before movement execution (Vanderwolf, 1969). This shift was 

interpreted as an electrical transition within the forebrain which mediates organization and 

initiation of voluntary motor behavior (Vanderwolf, 1969). And indeed, the spectral 

analysis of the LFP recording during the onset interval depicted that the movement 

associated theta frequencies prevail already before any locomotion begins (Figure 34). 

Thereby, the necessary elevated brain activity for sensory information procession during 

locomotion is provided (Fuhrmann et al., 2015). 

In the next step, the multi-unit activity in the MS was further analyzed in regard of its 

capability to predict motor behavior. Testing the whole population of recorded septal units 

yielded a uniform distribution of correlations (Figure 35B). This result was similar to the 

observations gathered from the movement phase alignment of multi-unit activity in the 

MS. Yet, a more detailed analysis of single units revealed two populations of cells which 

revealed enhanced correlations with the velocity trace in the time shift analysis 

(Figure 35C). Depending on the time shift which yielded the most positive linear 

correlation of AP firing rate and velocity of the animal, the group of significant cells could 

be subdivided into follower units (best overlap at time shifts between -50 ms to -1000 ms), 

predictor units (best representation between +50 ms and +1000 ms), and other units 

(combining all remaining units). The averaged slopes for both follower and predictor units 

depicted clear peaks between -100 to -300 ms (follower) and +100 ms to +300 ms 

(predictor), respectively. Interestingly, half of the identified follower units showed their best 

overlap between -100 ms to -300 ms, while the best overlaps of predictor units were 

distributed more homogeneous over the range of time shifts. The absolute amount of 

significant follower and predictor units was comparable (~10-14 %). However, the overall 

proportion of identified significant units was below 25 % of all recorded septal neurons. 
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Still, given the fact that the MS supposedly contains approximately 10,000 to 

20,000 neurons (Yoder and Pang, 2005; Guijarro et al., 2006; Ang et al., 2015), the 

representation of movement states within the MS is mediated by a large absolute number 

of cells. My analysis could confirm the existence of septal neurons which adjust their firing 

rate prior to locomotion, thereby agreeing with the results of the GCaMP5G experiments. 

The existence of follower units in the MS could be explained by the previously mentioned 

“replay of ongoing internal activity dynamics”, probably involved in the post-procession of 

sensory signals (Malvache et al., 2016).  

Applying the time shift analysis on the recorded hippocampal multi-activity depicted a 

strong overlap among the population at time shifts between -200 ms and -500 ms. The 

analysis of single-units revealed a group of follower units preferentially adjusting their firing 

rate subsequently to the motor behavior, as well as a group of predictor units preceding 

the velocity of the animal (Figure 36). On average, the population of follower units 

displayed the most positive slopes around -200 ms to -500 ms. On the other hand, the 

putative predictor units showed the best overlap with the velocity at time shifts between 

+200 ms to +500 ms. However, the proportion of cells that showed significant encoding of 

locomotion constituted more than 70 % of all hippocampal units recorded. This outcome 

is in agreement with the idea, that the HC is required to adjust its baseline activity in order 

to process and compute the incoming stream of sensory information during locomotion 

(Leutgeb and Mizumori, 1999; Hufner et al., 2011). Yet, the large amount of follower units 

compared to lower number of predictor units clearly outlines the main role of the HC as 

the central region for memory formation and post-procession of sensory inputs (e.g. 

spatial information) as a consequence of behavior (Bird and Burgess, 2008).
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5. Conclusion 

In conclusion, this work elucidates the physiological relevance of the septal-hippocampal 

network for locomotor behavior. It points out, that this circuit contains diversely active 

neurons, which link their firing to distinct time points during a movement interval. 

Furthermore, it shows that the network activity increases prior to locomotion and highlights 

the non-linearity of this activity increase in relation to the animal’s velocity despite the 

observed speed-modulation. Taken together, the results presented here suggest a 

primary role of the MS during the execution of locomotion and in controlling theta 

oscillations in the HC. This conclusion is in accordance with previous assumptions about 

the role of the MS (Dragoi et al., 1999; Borhegyi et al., 2004; Hangya et al., 2009).  

Future studies should attempt to compare and correlate the electrical activity patterns of 

septal and hippocampal neurons simultaneously, rather than in separate experiments. In 

order to understand this highly efficient network within the brain during behavior, these 

units need to be molecularly identified and classified into groups that then can be 

associated to distinct forms of behavior.  
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6. Appendix 

6.1. Abbreviations 

 

ΔF/F  Change of fluorescence over baseline fluorescence 

µ   Mean 

µ V   Microvolts 

AAV   Adeno-associated virus 

acc  Movement phase: end of acceleration 

AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AP   Action potential 

Ca2+   Calcium2+ 

CA1   Cornu ammonis region 1 

CA2   Cornu ammonis region 2 

CA3   Cornu ammonis region 3 

cCA1   Contralateral CA1 

ChAT+  Choline acetyl transferase-positive 

cm   Centimeter 

cre  Creates-recombination protein 

dec  Movement phase: start of deceleration 

DB  Diagonal band of Broca 

DNA  Deoxyribonucleic acid 

DR   Dorsal raphe nucleus 

e.g.   For example 

EC   Entorhinal cortex 

FFT   Fast Fourier Transformation 

Freqrest  Frequency at resting 
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Freqrun  Frequency at running 

g.c.l.   Granule cell layer 

GABA   γ-aminobutyric-acid 

GCaMP5G  Genetically encoded calcium indicator isoform 5G 

GECI  Genetically encoded calcium indicator 

GFP  Green fluorescent protein 

Glut+   Glutamate-positive 

HC   Hippocampus 

HCF   Hippocampal formation 

Hz   Hertz 

LC   Locus coeruleus 

LFP   Local field potential 

lx   loxP sites 

m.l.   Molecular layer 

MPO   Medial preoptic distribution 

MS   Medial septum 

ms   Millisecond 

MSDB  Medial septum and diagonal band of Broca 

NC  Neocortex 

neg speed  Negative speed-correlated 

NMDA  N-Methyl-D-Aspartate 

offset  Movement phase: offset of locomotion 

OLM  Oriens-lacunosum-moleculare 

onset  Movement phase: onset of locomotion 

ORF  Open reading frame 

P  Promotor 
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pA  Poly-A cassette 

PC  Prefrontal cortex 

PMC  Primary motor cortex  

pos speed  Positive speed-correlated 

PV+   Parvalbumin-positive 

REM   Rapid eye movement 

RSA   Rhythmic slow activity 

s   Second 

s.l.m.  Stratum lacunosum moleculare 

s.o.   Stratum oriens 

s.p.   Stratum pyramidalis 

s.r.   Stratum radiatum 

SC   Subiculum 

SEM   Standard error of the mean 

Stop   Stop codon 

T0  Alignment point for movement phase analysis  

TH  Thalamus 

Timelagmax  Time shift displaying the most positive slope 

v   Velocity 

VGluT2+  Vesicular glutamate transporter isoform 2-positive 

VTA   Ventral tegmental area 

WPRE   Woodchuck hepatitis virus posttranscriptional regulatory element 
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6.2. Contributions 

The experiments and the analysis of the data were done by C.H. The experiments 

regarding the VGluT2+-GCaMP5G recordings have been partly published in Justus et al., 

2016. 
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