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Families are the compass that guides us. They are the
inspiration to reach great heights, and our comfort when we

occasionally falter.

— Brad Henry

Dedicated to my family.





A B S T R A C T

Mobile service robots are needed in several applications (e.g.,
transportation systems, autonomous shopping carts, household
activities . . . etc). In such scenarios the robot aids the user with
tasks that require the robot to move freely across the environ-
ment in addition to direct interaction at certain times. Therefore,
such a robot needs a strategy to quickly find the user whenever
needed, in addition to a strategy that enables the robot to rea-
son about the user’s intended destination to be able to follow
him in a foresighted manner if the user needs its help at that
destination. In this dissertation, we tackle each of those prob-
lems separately in a divide and conquer manner.

We present an approach to learn optimal navigation actions
for assistance tasks in which the robot aims at efficiently reach-
ing the final navigation goal of a human where service has to
be provided. Always following the human at a close distance
might hereby result in inefficient trajectories, since people reg-
ularly do not move on the shortest path to their destination
(e.g., they may move to grab the phone or make a note). There-
fore, a service robot should infer the human’s intended navi-
gation goal and compute its own motion based on that predic-
tion. We propose to perform a prediction about the human’s
future movements and use this information in a reinforcement
learning framework to generate foresighted navigation actions
for the robot. Since frequent occlusions of the human will oc-
cur due to obstacles and the robot’s constrained field of view,
the estimate about the humans’s position and the prediction of
the next destination are affected by uncertainty. Our approach
deals with such situations by explicitly considering occlusions
in the reward function such that the robot automatically consid-
ers to execute actions to get the human in its field of view. We
show in simulated and real-world experiments that our tech-
nique leads to significantly shorter paths compared to an ap-
proach in which the robot always tries to closely follow the
user and, additionally, can handle occlusions.

On the other side, an autonomous robot that directly helps
users with certain tasks often first has to quickly find a user,
especially when this person moves around frequently. A search
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method that relies on a greedy approach that do not perform
any predictions about the user’s most likely location, even when
it is provided with background information about the frequently
visited destinations of the user, might not be the best option.
In this dissertation, we propose to compute the likelihood of
the user’s observability at each possible location in the environ-
ment based on simulations that rely on hidden Markov model
based predictions. As the robot needs time to reach the search
locations, we take this time into account as well as the visibil-
ity constraints. In this way we aim at selecting effective search
locations for the robot to find the user as fast as possible. As
our experiments in various simulated environments show, our
approach leads to significantly shorter search times compared
to the greedy approach.
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Z U S A M M E N FA S S U N G

Mobile Serviceroboter werden in verschiedenen Anwendun-
gen benötigt (z.B. Transportsysteme, autonome Einkaufswa-
gen, Haushaltsaktivitäten usw.). In solchen Szenarien unter-
stützt der Roboter den Benutzer mit Aufgaben, bei denen sich
der Roboter zusätzlich zur direkten Interaktion zu bestimmten
Zeiten frei in der Umgebung bewegen muss. Daher benötigt
ein solcher Roboter eine Strategie, um den Benutzer bei Be-
darf schnell zu finden. Außerdem benötigt der Roboter eine
Strategie, die es dem Roboter ermöglicht über das beabsichtigte
Ziel des Benutzers nachzudenken, um ihm vorausschauend fol-
gen zu können, wenn der Benutzer seine Hilfe an diesem Ziel
benötigt. In dieser Dissertation gehen wir jedes dieser Probleme
auf getrennte Weise an.

Wir stellen einen Ansatz vor, um optimale Navigationsaktio-
nen für Assistenzaufgaben zu erlernen, bei denen der Roboter
darauf abzielt, das endgültige Navigationsziel eines Menschen,
an dem der Dienst erbracht werden muss, effizient zu errei-
chen. Wenn man dem Menschen in unmittelbarer Nähe folgt,
kann dies zu ineffizienten Bewegungsbahnen führen, da sich
Menschen nicht regelmäßig auf dem kürzesten Weg zu ihrem
Ziel bewegen (z. B. können sie sich bewegen, um das Tele-
fon zu ergreifen oder eine Notiz zu machen). Daher sollte ein
Serviceroboter das beabsichtigte Navigationsziel des Menschen
ableiten und basierend auf dieser Vorhersage seine eigene Be-
wegung berechnen. Wir schlagen vor, eine Vorhersage über
die zukünftigen Bewegungen des Menschen durchzuführen
und diese Information in einem Verstärkungslernsystem zu
verwenden, um vorausschauende Navigationsaktionen für den
Roboter zu erzeugen. Da aufgrund von Hindernissen und dem
eingeschränkten Sichtfeld des Roboters häufige Verdeckungen
des Menschen auftreten, sind die Schätzungen über die Posi-
tion des Menschen und die Vorhersage des nächsten Ziels von
Unsicherheit betroffen. Unser Ansatz behandelt solche Situa-
tionen, indem er Okklusionen in der Belohnungsfunktion ex-
plizit berücksichtigt, so dass der Roboter automatisch Aktio-
nen ausführt, um den Menschen in sein Sichtfeld zu bringen.
Wir zeigen in simulierten und realen Experimenten, dass un-
sere Technik zu wesentlich kürzeren Wegen führt als bei einem
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Ansatz, bei dem der Roboter immer versucht, dem Benutzer
genau zu folgen, während unserer Ansatz zusätzlich mit Okklu-
sionen umgehen kann.

Auf der anderen Seite muss ein autonomer Roboter, der Be-
nutzern mit bestimmten Aufgaben direkt hilft, oft erst einen
Benutzer finden, wenn er dazu aufgefordert wird, besonders
wenn sich diese Person häufig bewegt. Eine Suchmethode, die
auf einem gierigen Ansatz beruht und keine Vorhersagen über
den wahrscheinlichsten Standort des Benutzers trifft, selbst
wenn es mit Hintergrundinformationen über die häufig be-
suchten Ziele des Benutzers bereitgestellt wird, ist möglicher-
weise nicht die beste Option. In dieser Dissertation schlagen wir
vor, die Wahrscheinlichkeit der Beobachtbarkeit des Benutzers
an jedem möglichen Ort in der Umgebung basierend auf
Simulationen zu berechnen, die auf Hidden-Markov-Modell-
basierten Vorhersagen beruhen. Da der Roboter Zeit braucht,
um die Suchorte zu erreichen, berücksichtigen wir diese Zeit
sowie die Sichtbarkeitseinschränkungen. Auf diese Weise zielen
wir darauf ab, effektive Suchorte für den Roboter auszuwählen,
um den Benutzer so schnell wie möglich zu finden. Wie un-
sere Experimente in verschiedenen simulierten Umgebungen
zeigen, führt unser Ansatz zu wesentlich kürzeren Suchzeiten
im Vergleich zur Lösung des gierigen Ansatzes.
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No one knows what the right algorithm is, but it gives us hope that if
we can discover some crude approximation of whatever this

algorithm is and implement it on a computer, that can help us make
a lot of progress.

— Andrew Ng
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1
I N T R O D U C T I O N

Mobile robots have gained more attention in the last decade in
conjunction with the significant advancement in the artificial in-
telligence and the computer vision fields. The cognitive capabil-
ities of mobile robots were significantly enhanced which accord-
ingly widens the scope of their applications. Mobile robots can Smart service robots

are crucially needed
to help humanity.

be deployed, using their cognitive capabilities, as service robots
to help humans in difficult or dangerous tasks, i.e., transport-
ing heavy items, disposal of dangerous wastes, or even work-
ing in normal landfill sites, as shown in Figure 1. Additionally,
such robots are needed in domestic domains to offer care for el-
derly people and patients in addition to offering help for users
in daily tasks (e.g., shopping, cleaning ... etc), as illustrated in
Figure 2. Furthermore, robots that can interact and play with
children have shown a remarkable success in helping children
with autism more than humans. Since robots are simple and
predictable, the children can engage better with them and en-
hance their social interaction skills [Kim et al., 2013], as illus-
trated in Figure 3.

Mobile service robots that can quickly find people and effi-
ciently follow them are needed in several applications such as
in industrial settings and in work environments where robots
can be deployed as transportation systems for heavy items (see
Figure 4). Also, they can be deployed in home scenarios, es-
pecially for assisting the elderly people in daily housekeeping
activities. Moreover, robots with such features may act as au- People finding and

following are key
features for service
robots.

tonomous shopping carts in stores. In such scenarios the robot
aids the user with tasks that require the robot to move freely
across the environment in addition to direct interaction at cer-
tain times. Therefore, such a robot needs a strategy to find the
user as fast as possible when it is necessary, in addition to a
strategy that enables the robot to reason about the user’s in-
tended destination in order to follow them in a foresighted
manner. Resolving occlusions that may occur during the follow-
ing task, due to obstacles in the environment, is a key challenge
that the robot must overcome via inferring the user’s intended
destinations, as well as executing navigation actions that ex-
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2 introduction

Figure 1: Future conception of cognitive robots operating in haz-
ardous environments that are not suitable for humans
(Source: DARPA).

(a) (b)

Figure 2: A conception of a service robot (Amigo) operating in domes-
tic domain (Source: Tech United Eindhoven): (a) to take care
of patients in hospitals, and (b) to help users in shopping at
supermarkets.

ploits the environment structure to gain information that con-
firms or refutes the belief about the user’s intended destination,
especially when the user is out of the robot’s field of view. Ad-
ditionally, the robot must be able to resolve the situations in
which the user takes paths that are impassable for the robot
due to size or safety constraints via finding alternative paths
while maintaining an updated belief about the user’s intended
destination.

Unfortunately, the existing people finding and following ap-
proaches still suffer from unnecessary delays and inefficiency,
respectively. Concerning people finding techniques that try toMaximum coverage

techniques lead to
unnecessary delays.

maximally cover the visible area of the environment [Choset,
2001; Guibas et al., 1996; Suzuki and Yamashita, 1992], they
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(a) (b)

Figure 3: (a) Nao robots can be deployed to play simple games with
children. (b) Children with autism can engage better with
robots more than humans which accordingly improves their
social interaction skills (Source: University of Portsmouth
and Science X).

lead to long search times and high navigation costs as they
aim at covering the whole environment without estimating the
user’s location. Moreover, the maximum coverage techniques
will not necessarily revisit already covered regions and since
the user is assumed to move freely across the environment, the
robot might miss them during the search. Therefore, it will be
much more efficient to exploit the environment ’s visibility char-
acteristics as well as making use of prior knowledge about the
user’s potential destinations which will lead to finding the user
faster.

Furthermore, following the user at a certain distance [Har-
mati and Skrzypczyk, 2009; J. Huang et al., 2006; L. Huang,
2009; Kuderer and Burgard, 2014; Nascimento et al., 2013;
Pradhan et al., 2013] ignoring that humans may not always

take the shortest path to their next destination might lead to
an inefficient robot navigation behavior in scenarios where the
robot is needed to encounter the user only at designated places.
In such situations, robots that directly follow the user without
any reasoning about their intended destination will suffer from
unnecessary battery consumption as well as faster actuators’
wear. Additionally, the user might occasionally move through Direct following

may lead to
inefficient
trajectories.

passages that are impassable for the robot such that the robot
is forced to find an alternative route. In such cases the prob-
lem arises that the user will eventually be out of the robot’s
field of view, which will lead to an uncertain estimate about
the user’s position and a wrongly predicted destination. Thus,
the robot will need to consider active re-localization of the user,



4 introduction

Figure 4: ASIMO pushes a cart to deliver some items in an office en-
vironment (Source: Honda).

via exploiting knowledge about the user’s common paths in the
environment, to improve the estimate and to be able to infer the
next navigation goal.

In order to address the aforementioned literature gaps, a suc-
cessful people finding and following strategy must be able to
autonomously infer foresighted answers for the following ques-
tions without the need for any human interference:

• How can the robot estimate the user’s potential locations
at any time step when the user is out of the robot’s field
of view? How to evaluate the likelihood of each potential
location?

• Does the robot have enough time to reach that estimated
location, i.e., to search for the user there, from its current
location, before the user moves again?Foresighted

strategies will
enhance the

efficiency of the
people finding and

following tasks.

• In which cases does the robot have to closely follow the
user if the user is within the robot’s field of view? When
is it better to take an alternative path (or just keep waiting
at its current location) to minimize navigation costs even
if this will lead to losing track of the user?

• How to predict the user’s intended final destination?

• How to select navigation actions that can improve the
robot’s belief about the user’s predicted destination even
if the user is out of the robot’s field of view?
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To answer these aforementioned questions, we need to exploit
the prior knowledge about the environment structure, as well
as the user’s set of common paths. Accordingly, we can sim-
ulate various future scenarios of the user’s behavior and es-
timate the user’s most likely current location as well as their
intended destination. These estimates are then updated based
on the robot’s observations which depend on our selected nav-
igation actions. Therefore, we have to consider selecting key
navigation actions which will lead to more information gain as
well.

This dissertation is organized as follows. We first introduce
a literature review in Chapter 2 about existing approaches for
both people following and people finding, respectively. Further-
more, we point out the gaps in these approaches and how
our novel approaches address them. Then, in Chapter 3 we
introduce the main concepts of reinforcement learning and
demonstrate the properties of the various reinforcement learn-
ing techniques. Furthermore, we hold a comparison between
these demonstrated techniques and justify our choice of using
SARSA(λ) in the next two chapters.

After that, we discuss in Chapter 4 our proposed learning
framework for foresighted people following given known poses
of both the robot and the user. This assumption about known
poses can be achieved in reality via an external motion capture
systems that covers the environment within which the follow-
ing task takes place. In this framework, we focus on exploring
the feasibility of applying a learning approach on the follow-
ing problem and whether it is capable of generating naviga-
tion actions that leads to foresighted following behavior. This People following

given known poses.foresighted following behavior implies that the robot infers
about the user’s intended destination and does not follow the
user to locations where they do not need the robot’s help. The
robot tends to meet the user at their intended final destination
through a more efficient path (that fits the robot size and satis-
fies any further constraints) instead of the direct naive follow-
ing of the user, which leads accordingly to a decreased traveled
distance by the robot in such scenarios.

In Chapter 5, we extend our people following framework in
order to attain a performance that better fits real-world scenar-
ios without involving any assumptions about known poses of People following

under occlusions.the user. In other words, the robot has to rely on its sensors to
localize itself as well as tracking the user. Therefore, the robot is
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vulnerable to occlusions due to its limited field of view as well
as obstacles that restrict this limited field of view even more.
Additionally, occlusions may occur if the user walks through
paths which are impassable for the robot due to size or safety
constraints, where in such scenarios a robot that performs di-
rect following will get stuck at the entrance of such locations.
Therefore, the robot applying our approach will have to find
an alternative path to resume its task, which accordingly will
lead to losing track of the user and thus much more uncertainty
about the estimated destination will be involved. Therefore, we
enhanced our aforementioned framework approach in order to
improve the generated foresighted navigation behavior to rea-
son better about such situations.

After that, we introduce our proposed people finding ap-
proach in Chapter 6. It focuses on scenarios where the user
moves along common paths between places where they remain
for a while, e.g., to discuss work with a colleague, grab material
from the printer, or get a coffee. The service robot aids a user
at tasks that require direct interaction. However, the robot may
also move freely across the environment in order to accomplish
its tasks. Furthermore, the user’s initial location is unknown
to the robot and the robot may suffer from noisy sensors and
dynamic obstacles that occlude its limited field of view. OurPeople finding.
approach addresses the deficiencies arising from the existing
approaches which focus either on maximal coverage of the en-
vironment while only considering the visibility characteristics
of the environment without making use of any prior knowl-
edge, or they predict the user’s location and navigate to that
predicted location. Accordingly, we make use of prior knowl-
edge about possible destinations of the user and their connect-
ing paths to achieve a short searching time. Our approach sim-
ulates possible behaviors of the user for future time steps in
addition to considering the visibility characteristics of the envi-
ronment in order to select a good search location at which there
is a high likelihood to observe the user.

1.1 key contributions

In this dissertation we discuss several contributions in the field
of navigation with respect to the people following as well as
the people finding tasks. In this section we summarize the key
contributions as follows:
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• to the best of our knowledge, we present the first solution
for applications involving people following tasks that con-
siders the efficiency of the generated robot paths (Chap-
ter 4 & Chapter 5),

• the generation of foresighted robot behavior for people
following based on learned navigation strategies and the
prediction of human motion (Chapter 4 & Chapter 5),

• a foresighted people following framework that relies only
on the robot’s on-board sensors and can deal with occlu-
sions as well as impassable passages for the robot (Chap-
ter 5),

• a learning framework that is able to handle also large en-
vironments without overloading the learning process of
foresighted navigation actions for people following tasks
(Chapter 5),

• a novel people finding approach that computes the likeli-
hood of the user’s observability at each possible location
based on HMM-based simulations (Chapter 6),

• achieving a short search time via making use of prior
knowledge about frequently visited destinations of the
user and their typical paths (Chapter 6),

• determining good search locations using a hidden Markov
model on a graph representation of the moving possibili-
ties in the environment (Chapter 6),

• taking into account the time needed by the robot to reach
the search locations from its current position as well as the
visibility constrains that arise from obstacles (Chapter 6).

1.2 publications

Parts of this dissertation have been published before [Bayoumi
and Bennewitz, 2015; 2016; Bayoumi, Karkowski, and Ben-
newitz, 2017; 2018; submitted in 2018]. We present the publi-
cations in chronological order as follows:

• A. Bayoumi, P. Karkowski, and M. Bennewitz. People Find-
ing under Visibility Constraints using Hidden Markov
Models. In Robotics & Autonomous Systems, submitted in
2018

• A. Bayoumi, P. Karkowski, and M. Bennewitz. People Find-
ing under Visibility Constraints using Graph-Based Mo-
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tion Prediction. In Proc. of the Int. Conf. on Intelligent Au-
tonomous Systems (IAS), 2018, accepted

• A. Bayoumi, P. Karkowski, and M. Bennewitz. Learning
Foresighted People Following under Occlusions. In Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2017

• A. Bayoumi and M. Bennewitz. Learning optimal naviga-
tion actions for foresighted robot behavior during assis-
tance tasks. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2016

• A. Bayoumi and M. Bennewitz. Efficient Human Follow-
ing Using Reinforcement Learning. In Proc. of the IROS
Workshop on Machine Learning in Planning and Control of
Robot Motion (MLCP), 2015



2
R E L AT E D W O R K

In this chapter we review the related work to the people fol-
lowing and finding tasks, respectively. We review the existing
approaches of each task independently and discuss the liter-
ature gaps within them. Furthermore, we highlight how our
proposed novel approaches address such gaps.

2.1 people following

The task of people following and tracking has been thoroughly
investigated using control theory, e.g., J. Huang et al. [2006]
introduced an approach using velocity control that guides the
robot along the trajectory of a Bézier curve to a leading robot.
Furthermore, L. Huang [2009] presented two control models
for both the linear and angular velocity of a robot. These con-
trol models focus on originating velocity commands that allow
the robot to follow a human while ensuring smoothness of the
resulting trajectory. Harmati and Skrzypczyk [2009] applied
a fuzzy logic controller and proposed a game-theory based
method for a team of robots tracking a target. In this approach, Approaches

based on
control theory.

each robot has knowledge about the positions of its teammates
and optimizes its control signals using a cost function that takes
also into account the predicted decisions of the other robots.
Similarly, Nascimento et al. [2013] developed an approach for
collaborating robots’ formation control during tracking of a
moving target or a leader. They use a nonlinear predictive for-
mation control model in a distributed architecture for collabo-
rating robots. Each robot shares information about its pose with
the rest of the team and optimizes its control signals under a
prediction of the next states of the target as well as of the other
team members. Pradhan et al. [2013] proposed a path planning
method with a navigation function that uses predictive fields of
moving obstacles to follow a target. Choi et al. [2010] presented
a model for the following task in an environment equipped
with RFID tags that are used by the robots for localization. The
velocity of the following robot is computed according to the

9
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leading robot’s relative position, it is inversely proportional to
the relative distance.

Furthermore, there are approaches that aim at following a
human with a fixed distance, e.g., Nishimura et al. [2007] devel-
oped a modified shopping cart to follow a person in a certain
range. Prassler et al. [2002] considered side-by-side followingFixed distance

following. within the application of a robotic wheelchair following a hu-
man. Morales et al. [2012] analyzed side-by-side trajectories of
humans in order to predict the trajectory of a human during
walking beside a robot. Using the learned utility function, the
optimal robot trajectory can then be planned locally.

Regarding the use of machine learning techniques in related
problems, Goldhoorn et al. [2014] introduced a two-stage ap-
proach to find a moving person first and then following them.
The authors presented continuous real-time partially observ-
able Monte Carlo planning (CR-POMCP) to generate a policy
tree through simulations. Afterwards, the authors extended the
CR-POMCP by combining it with a standard direct following
approach. Thus, the robot moves directly to the human as longMachine learning

techniques. as it is in the field of view. If the human is not visible, the
authors use the human position with the highest probability ac-
cording to the CR-POMCP as the next navigation goal of the
robot. In contrast, our approach reasons about the next destina-
tion of the human and uses the learned policy to decide on the
best action, thereby explicitly taking into account observation
actions. Our system does the reasoning in both cases whether
the human is in the field of view or not to generate efficient
robot behavior.

Kretzschmar et al. [2014] learned a probabilistic model of
pedestrians from observing their trajectories. Kuderer and Bur-
gard [2014] applied that approach to predict a human’s tra-
jectory and plan an intelligent path for a robot following the
human. The proposed method takes into account information
about obstacles in the environment and computes the robot’s
trajectory so that the distance to the desired relative position
along the predicted human path is minimized. In our work,
we go beyond such an idea and take into account long-term
prediction of the human’s motions and compute efficient robot
actions, instead of staying always in the vicinity of the human.

The contribution of our work is the generation of foresighted
robot behavior based on learned navigation strategies and theContribution.
prediction of human motion. The prediction of human motions
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itself is not the focus. Nevertheless, we present some recent
work in this area in the following. Best and Fitch [2015] pre-
sented a Bayesian trajectory prediction model for moving peo-
ple. They assume that there is a set of predefined destinations
between which the person moves on the shortest path and,
therefore, the likelihood of a movement is inversely propor-
tional to how far is the corresponding future position from
the shortest path to a given destination. Ziebart et al. [2009]
introduced an approach based on a softened Markov decision
process (MDP) that is trained on a set of observed human tra-
jectories and uses a Q-table to encode the human’s movements
in a grid map at any point at any time. The authors proposed
to make use of this modeling for planning collision-free paths.
Vasquez [2016] extended the work of Ziebart et al. [2009] in or-
der to decrease the computational complexity. Both, Vasquez
and Ziebart et al. assume that the cost function based on which
the human plans its motion is given a priori. In Chapter 4, we
implemented the technique of Ziebart et al. [2009] but noticed
in our experiments that we could not achieve good prediction
results in case the human deviates from learned trajectories.
Therefore, we apply a particle filter based motion prediction in
Chapter 5.

Further approaches predict human trajectories to generate
robot motions that do not interfere with people. Bennewitz et al.
[2005] proposed to predict human trajectories based on learned
motion patterns to avoid interferences in tight environments. Motion

prediction.Laugier et al. [2007] use hidden Markov models to represent
the motion of dynamic obstacles and avoid collision. Fentanes
et al. [2015] proposed to predict periodic changes in the envi-
ronment that affect the navigation actions of the robot. They
compute a frequency map and combine it with the topological
map of the environment.

In contrast to all the approaches discussed above, we present
a learning framework in Chapter 4 that enables a service robot
to efficiently reach the intended destination of the human. Us- Conclusion.
ing our approach, the robot is not required to follow the human
with a fixed distance, which might lead to inefficient trajecto-
ries, instead the robot predicts the navigation goal, constantly
updates it, and adapts its actions based on a learned strategy
via reinforcement learning that is robust to prediction errors.
Moreover, the extension of our proposed framework (Chapter 5)
relies only on the robot’s on-board sensors and can deal with
occlusions. Moreover, with the modified state space in that ex-
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tension we are able to handle also large environments without
overloading the learning process.

2.2 people finding

The problem of finding a moving person in an environment
was early studied as a coverage problem based on the robot’s
visibility polygon, e.g., Suzuki and Yamashita [1992] and Guibas
et al. [1996] consider finding intruders by a surveillance robot.Maximum

coverage. They make use of the geometrical properties of the robot’s visi-
bility polygon in order to find a directed graph on which a pur-
suer take a tour to clear the environment from unpredictable
intruders. They use the geometric properties of the visibility
polygon in order to minimize the visited points through the en-
vironment. However, they do not predict motion of the person
and thus they do not estimate the person’s pose. Furthermore,
a survey about different coverage approaches is presented by
Choset [2001].

Concerning making use of multi-robot cooperation for the
purpose of a coverage problem, Moors et al. [2005] propose
a graph-based approach for multi-robot coordination in order
to clear a certain indoor area from some undetected intruders.
They represent the environment using a topometric representa-
tion. Then, they divide this graph into a group of sub-graphsMulti-robot

cooperation. where the size of each sub-graph should be less than a cer-
tain threshold that depends on the number of available robots.
Some of the robots are used as guards in the connections be-
tween these sub-graphs, i.e., doors and corridors, in order to
avoid recontamination of cleared areas. Moreover, Kolling and
Carpin [2008] present a multi-robot strategy in order to solve
the graph-clearance problem in NP-complete way. However,
they do not consider the encountering probability of intrud-
ers, i.e., they have to check every single position in the envi-
ronment. Hollinger, Singh, et al. [2010] assume that they have
some knowledge about the target’s motion model aiming at
achieving a balance between getting a guaranteed solution and
efficiency. Therefore, they allocate the searching robots for the
clearance schedule such that some of the searching robots con-
sider a worst case scenario in which they have no knowledge
about the user’s motion model, while the others make use of
the given information. Then, Hollinger, Yerramalli, et al. [2015]
consider data fusion between the searching robots under un-
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certain communication in order to share their estimates about
their target’s location.

Furthermore, Stiffler et al. [2017] additionally consider
the problem of unreliable sensors. The authors developed a
visibility-based geometric formulation to place the surveillance
robot at specific environment locations that maximize the trav-
eled distance by the intruder through the robot’s visible region
to increase the likelihood of observing the intruder by the un-
reliable sensors. All these solutions to the coverage problem do
not predict motion of the person and thus cannot provide any
pose estimate. They lead to long search times and high naviga-
tion costs as they aim at covering the whole environment.

On the other hand, several approaches that predict motions
and aim at minimizing the searching time for a mobile robot
have been presented. Tipaldi and Arras [2011] proposed to learn
a spatial affordance map in order to increase the probability for
the robot to encounter specific humans. They apply a Poisson
process to relate space, time, and occurrence probability of ac-
tivity events. Afterwards, the spatio-temporal model can be
used to generate an optimal path on a grid map of the envi-
ronment for a mobile robot to encounter specific humans. This
approach does not make use of any sensor modalities to up-
date the belief about the location of a user but considers just
the encounter probability of grid cells. Schwenk et al. [2014] Motion

prediction.developed a search approach that uses a highly abstract topo-
logical representation of the environment and learns about the
user’s behaviors in order to estimate the likelihood of the user’s
current room. Here, it is assumed that the robot detects peo-
ple when they are within a range of 1.8m around the robot.
Kulich et al. [2016] introduced a model that learns the tempo-
ral likelihood of possible desired interactions to actively search
for humans in order to interact with them in public space. Kra-
jník et al. [2015] presented a method based on spatio-temporal
models to enable the robot finding non-stationary objects in an
office environment. The authors represent the environment as
an abstract topological map and combine it with periodic func-
tions in order to compute the likelihood of existence of the ob-
jects at any node of the map with respect to the time. All these
approaches, however, ignore the visibility constraints resulting
from the environment layout.

Other approaches considered the frequency of human exis-
tence at specific locations as well as the robot’s field of view.
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The idea here is to construct a probability distribution for ev-
ery hour of the day. For example, in the work of Volkhardt and
Gross [2013], the robot searches for the human at pre-defined lo-
cations, where each location is assigned a probability relative to
the frequency of observing the human there. Accordingly, theExistence

frequency. robot selects the location with the highest probability. Mehdi
and Berns [2014] presented a technique that generates a min-
imum set of view points that ensure a maximum coverage of
the environment. The authors proposed to construct a proba-
bility distribution about the human’s observability at these des-
tinations during each hour of the day and take the navigation
cost into account while deciding which one of the view points
to take as search location. These approaches do not model the
human’s motion and therefore cannot predict their expected
position at a certain intermediate time step.

Goldhoorn et al. [2017] proposed using particle filters to es-
timate the most likely location of the user at the current time
step. The robot moves toward that location for few time steps
then updates its estimate about the user’s position and recom-
putes the robot’s movement. As opposed to our method, this
technique does not take into account the time needed by the
robot to reach search locations from its current place. Moreover,
moving the robot just for few time steps and then selecting
another search location often leads to oscillating navigation be-
havior as the estimation jumps across the map as we realized
in our experiments.

In contrast to all the mentioned search methods, our system
in Chapter 6 models the human’s motion and provides a proba-
bility distribution about their position at each time step. We con-Conclusion.
sider the robot’s limited field of view and visibility constraints
when computing the likelihood of observing the user at a cer-
tain place and also take into account the time needed by the
robot to reach the search locations.



3
I N T R O D U C T I O N T O R E I N F O R C E M E N T
L E A R N I N G

In this chapter, we briefly introduce the basic concepts of re-
inforcement learning techniques. After that, we present the
SARSA(λ) approach that we use in our proposed approaches
in Chapter 4 and Chapter 5. Furthermore, we compare it to
various reinforcement learning techniques showing the advan-
tages and disadvantages of each of them and, thus, we justify
our choice of the SARSA(λ) approach to be used by our pro-
posed approaches. More detailed explanations can be found in
the work of Kaelbling et al. [1996] and Sutton and Barto [1998].

3.1 introduction

Reinforcement learning is a type of learning opposed to two
other main types of learning: supervised and unsupervised
learning, where supervised learning depends on labeled exam-
ples, i.e., these examples consist of a set of inputs and their cor-
responding outputs according to some unknown function that
we are interested to learn. On the other hand, unsupervised
learning tends to learn a generative model of the input data
that tries to describe possible patterns and features of these in-
puts without the need for labeled outputs [Ghahramani, 2004].
Reinforcement learning is a learning process through interac-
tion with a certain learning environment (as illustrated in Fig-
ure 5), where a set of possible actions are given from which
the learning agent can choose one to be executed at each time
step. These actions can change the state of the environment Types of

learning.when they are executed. As opposed to supervised learning,
the perfect actions for each situation are not given. Instead, the
agent has to learn from its previous mistakes and construct
some form of experience based on which it can select better
actions. The learning agent is given some evaluation measure-
ments instead to help in evaluating the interaction with the
environment during the learning process, i.e., the execution of
the actions change the state of the learning environment and
based on the evaluation of that change a reward or a penalty is

15
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given to the learning agent. Thus, reinforcement learning tends
to maximize the achieved rewards which leads to learning the
best actions that fit every state of the environment.

Figure 5: The interaction during the reinforcement learning process
between the agent and the environment.

Furthermore, a reinforcement learning task is defined as a
Markov decision process (MDP) if it satisfies the Markov prop-
erty in which the transition to the next state from its currentMDP.
state as well as the obtained immediate reward from this transi-
tion are dependent only on the current state and selected action
to be executed at that time step, as follows:

Pr
{
st+1 = s

′, rt+1 = r
∣∣st,at, rt, st−1,at−1, . . . , r1, s0,a0}

= Pr
{
st+1 = s

′, rt+1 = r
∣∣st,at} (1)

where rt+1 is the obtained immediate reward from executing a
certain action at while being in state st at time t to end up in a
successor state st+1.

Additionally, the exploration-exploitation dilemma is a key
challenge that faces reinforcement learning techniques. The
learning process requires trying various actions for various
states in order to learn from that experience, i.e. exploration
of the state-action space of the learning problem. However, theExploration

vs
exploitation.

process also needs to make use of the so far learned experience
in order to enhance it and to maximize the obtained reward,
which is unfortunately contradictory. Thus, a good balance be-
tween exploration and exploitation has to be found because re-
lying only on either exploration or exploitation alone will lead
to the failure of the learning process.

Reinforcement learning has been used to solve various prob-
lems successfully, e.g., training industrial robots to do certain
tasks [Kaelbling et al., 1996], inventory management of supply
chains [Giannoccaro and Pontrandolfo, 2002] and dynamic pric-Applications.
ing of products based on demand and supply [Busoniu et al.,
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2008]. Furthermore, solving the Go game by the AlphaGo agent
is one of the most famous problems to which reinforcement
learning contributed via a training stage of the neural network,
that generates the game decisions, on a dataset generated from
self-play of reinforcement learning [Silver et al., 2016].

3.2 elements of reinforcement learning

In this section we present the four main components from which
any reinforcement learning process is composed, as follows.

3.2.1 Policy

The policy of reinforcement learning agent determines how this
agent behaves in different situations, i.e., it defines how an ac-
tion is selected to be executed in a specific state. The policy can Actions’

selection
probabilities.

range from a simple lookup table to a very computationally ex-
pensive function, where its sole goal is to map each possible
state of the environment to its corresponding action. Therefore,
the goal of reinforcement learning is to learn a good policy.

A policy is denoted as π(s,a) which is the probability of
choosing an action a to be executed if the learning environ-
ment is experiencing a state s, where s is a state out of the set
of possible states S and a is an action out of the set of possible
actions in such state A(s).

3.2.2 Reward Function

The reward function defines the goal of the reinforcement learn-
ing process. It maps every state-action pair to a single scalar
value, i.e., the immediate reward, that evaluates such pair. In Learning

objective.other words, the reward function contributes to the learning
process via evaluating the short-term effect of executing a cer-
tain action while being in a certain state. The goal of the learn-
ing process is to maximize the expected return of these imme-
diate rewards in the long run.
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3.2.3 Value Function

The value function defines the value of starting from a certain
state of the learning environment in the long run. Thus, the
value of a certain state is the expected return to be achieved
starting from this state and is denoted as follows:

Vπ(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s
}

, (2)

where Vπ(s) is the value of a state s if the agent follows a policy
π and Eπ is the expected value following that policy. Moreover,
Rt is the return of rewards at time t and it is defined as follows:Expected

return.

Rt = rt+1 + γrt+2 + γ
2rt+3 + · · · =

∞∑
k=0

γkrt+k+1, (3)

where rt+1 is the immediate reward that is obtained when a
certain action is executed at a certain state at time step t. The
discounting factor γ is used to favor the impact of immediate
rewards of the recent time steps, where its value ranges from
0 to 1. Accordingly, the foresightedness of the learning agent
increases as γ approaches 1.

Therefore, a value function is more foresighted compared to
the reward function, since a state may yield a low immediate re-
ward, however, it may lead to other future states through which
much higher rewards are expected, i.e., delayed reward.

The value function can also represent the value of a state-
action pair as well as the value of a state. Accordingly, the value
function of a state s and action a following a policy π is denoted
as Qπ(s,a) and is defined as follows:

Qπ(s,a) = Eπ{Rt|st = s,at = a}

= Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s,at = a
}

.
(4)

Moreover, if the Markov property is satisfied, the value func-
tions can be solved recursively using dynamic programming
which is a very effective feature in facilitating the computations.
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Thus, the value of any state can be computed using the values
of possible successor states, as follows:

Vπ(s) = Eπ{Rt|st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s
}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2

∣∣∣∣∣st = s
}

=
∑
a

π(s,a)
∑
s′

Pass′

[
Rass′ + γEπ

{ ∞∑
k=0

γkrt+k+2

∣∣∣∣∣st = s
}]

=
∑
a

π(s,a)
∑
s′

Pass′

[
Rass′ + γV

π(s′)
]
,

(5)

where Rass′ is the expected reward of the state change from s

to s′ due to executing action a and Pass′ is the probability of
such transition. Similarly, the value of a state-action pair can be
recursively computed as follows:

Qπ(s,a) = Eπ {rt+1 + γVπ(st+1)|st = s,at = a}

=
∑
s′

Pass′

[
Rass′ + γV

π(s′)
]
. (6)

3.2.4 Model

The environment model defines the transitions between states
according to the executed actions, i.e., Pass′ in Equation 6. There-
fore, the environment model can be used in planning of tasks,
i.e., predicting the next possible states as well as the next re-
wards. However, in various situations, it might be difficult States’

transitions.to have a complete model about the environment, especially
in real world tasks. Therefore, the reinforcement learning ap-
proaches that do not require any model of the environment
and, instead, can learn via direct interaction with the environ-
ment, have a big advantage over the methods that need such a
model. Furthermore, we discuss later in Section 3.5 which re-
inforcement learning approaches require having a model and
which of them do not.
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3.3 optimal value functions

In order to solve the reinforcement learning task successfully,
we need to find an optimal policy π∗ to follow. Such optimal
policy is either better or equal to any other policy with respect
to the value function of all states as well as for all the state-
action pairs, as follows:

V∗(s) = max
π
Vπ(s) ∀s ∈ S (7)

andMaximizing
returns.

Q∗(s,a) = max
π
Qπ(s,a) ∀s ∈ S ∀a ∈ A(s). (8)

Thus, assuming that our reinforcement learning problem satis-
fies the Markov property, we can make use of dynamic pro-
gramming to define the recursive formulas of both optimal
value functions, as opposed to the recursive formulas in Equa-
tion 5 and Equation 6, as follows:

V∗(s) = max
a∈A(s)

∑
s′

Pass′

[
Rass′ + γV

∗(s′)
]

(9)

and

Q∗(s,a) =
∑
s′

Pass′

[
Rass′ + γmax

a′
Q∗(s′,a′)

]
. (10)

In the next section, we will discuss SARSA(λ) approach which
is a well-known reinforcement learning method that we use, in
the next chapters of this dissertation, to estimate the optimal
policy and the optimal function values.

3.4 sarsa(λ)

SARSA(λ) is well known and widely used reinforcement learn-
ing technique that does not require having a model of the envi-
ronment that describes the transition probabilities among all
the states. In other words, the learning task takes place via
learning from interaction with the environment through real
world experiments or simulated ones. These experiments are
represented as some learning episodes, where the learning task
advances via making use of the returns of the state-action pairs
that belong to these episodes. Therefore, SARSA(λ) approach re-
lies on the samples of the state-action pairs that appear during
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each learning episode and learn from them instead of relying
on a model, where a learning episode terminates if a terminal
state is reached or after a certain number of elapsed learning
steps per episode.

SARSA(λ) relies on temporal-difference (TD) learning. More-
over, it combines TD learning with eligibility traces in order
to generalize the learning performance and to increase its effi-
ciency. The TD learning technique updates value functions of
the state-action pairs, that appear in the learning episodes, at
each step. The key idea behind this technique is to wait for the TD Learning.
next time step until the reward for that transition is obtained
and thus use the expected return from this transition, i.e., the
achieved immediate reward in addition to the current estimated
value of the new state, in updating the estimated value of the
state that originated that transition. This can be illustrated as
follows:

V(st) = V(st) +α
[
Rt − V(st)

]
= V(st) +α

[
rt+1 + γV(st+1) − V(st)

]
,

(11)

where α is a constant step size and rt+1+γV(st+1) is the TD up-
date. Thus, the learning process takes place faster compared to
other reinforcement learning techniques that postpone updat-
ing the estimated values till the end of each learning episode,
e.g., Monte Carlo techniques. However, TD learning does not
consider the long run effect of each selected action and its im-
pact on the future return of the learning episode. Therefore,
SARSA(λ) combines TD learning with eligibility traces in order
to maintain an acceptable speed of learning while generalizing
the learning process.

The eligibility traces, in general, are temporary memory vari-
ables that record the visits to states over time to determine the
responsibility of such visits for future rewards and thus the el-
igible states are rewarded for their effects, i.e., either positively
or negatively. As mentioned above, the eligibility traces tend
to balance between the speed of the learning process and its
generalization, since focusing only on one of them can be con-
sidered as an extreme. Therefore, the eligibility traces introduce Balanced

approach.an intermediate balanced solution that relies on performing n-
step TD predictions, i.e., to wait for n-steps before the update
takes place and perform this update based on the immediate re-
wards obtained from these n-steps instead of waiting until the
end of the learning episode. This approach tends to generalize



22 introduction to reinforcement learning

the TD technique and enhance its efficiency as well as its esti-
mates about value functions. Moreover, it will not lead to such
slow learning process as in the case of Monte Carlo techniques.
An eligibility trace achieves this via acting as variable, for each
state, that decays over time and is incremented by one each
time this state is re-visited, which reflects the responsibility of
the frequently visited states for the returns, i.e., they have to be
punished or rewarded more than the other states. Accordingly,
the eligibility trace variable of each state at an arbitrary time
step t is defined as follows:Eligible

states.

et(s) =

γλet−1(s) + 1 if s = st

γλet−1(s) otherwise,
∀s ∈ S, (12)

where λ represents a decay factor over time. Therefore,
the approaches that involve eligibility traces have the sym-
bol λ attached to their names in order to distinguish them,
e.g., SARSA(λ). Accordingly, the update step of TD-learning
(refer to Equation 11) is modified in its eligibility traces version
as follows:

Vt+1(s) = Vt(s) +αδtet(s) ∀s ∈ S, (13)

where

δt = rt+1 + γVt(st+1) − Vt(st). (14)

As opposed to TD learning, SARSA in its general form up-
dates the value functions of the state-action pairs that appear
in the learning episodes. Furthermore, SARSA is an on-policy
approach that estimates the same policy which is used for the
generation of the learning episodes, unlike off-policy methods
which involve two policies,i.e., a policy that is responsible for
the generation of the learning episodes and an estimation pol-
icy that is evaluated and improved. Therefore, exploration isOn-policy.
a key factor for such approach otherwise it will not be able
to learn, i.e., it has to explore various state-action pairs in or-
der to learn from such experience because relying only on a
greedy policy for selecting the actions will prevent such experi-
ence from occurring.

Furthermore, since SARSA considers estimating the value
functions of the state-action pairs instead of those of the states,
the update step takes place based on the expected return of a
transition from one state to another because of an action. This
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Algorithm 1 : SARSA(λ)

Initialize Q(s,a) arbitrary ∀s ∈ S, a ∈ A(s);
t← 1;
et(s,a)← 0 ∀s ∈ S, a ∈ A(s);
for i← 1 to number of episodes do

while st /∈ terminal states do
at+1 ← ε-greedy policy;
δt ← rt+1 + γQt(st+1,at+1) −Qt(st,at);
for s ∈ S and a ∈ A(s) do
Qt+1(s,a)← Qt(s,a) +αδtet(s,a);
et+1(s,a)← γλet(s,a);
if s == st+1 and a == at+1 then
et+1(s,a)← et+1(s,a) + 1;

end
end
t← t+ 1;

end
end

return is estimated based on the immediate reward from that
transition in addition to the estimated state-action value of the
new state while considering a new action that is chosen follow-
ing our policy of interest. In other words, the update occurs SARSA.
relying on this sequence of events: (st, at, rt+1, st+1, at+1), ac-
cordingly this approach is denoted as SARSA, i.e., following
that sequence of events. Therefore, its update step compared
to that of the TD learning (see to Equation 11) is defined as
follows:

Q(st,at) = Q(st,at) +α
[
rt+1 + γQ(st+1,at+1) −Q(st,at)

]
. (15)

Therefore, SARSA(λ),i.e., the eligibility traces variant of SARSA,
computes the eligibility traces variables for each state-action
pair as well, such that the frequently visited state-action pairs SARSA(λ).
take more responsibility of the obtained returns (as opposed to
Equation 12), as follows:

et(s,a) =

γλet−1(s,a) + 1 if s = st and a = at

γλet−1(s,a) otherwise,
∀(s,a), (16)

Therefore, the estimation of the values of the state-action pairs
is modified, as opposed to SARSA (Equation 15), as follows:

Qt+1(s,a) = Qt(s,a) +αδtet(s,a) ∀(s,a), (17)
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where

δt = rt+1 + γQt(st+1,at+1) −Qt(st,at). (18)

Moreover, the steps of SARSA(λ) are illustrated in Algorithm 1.

In the next chapter, we hold a comparison between the afore-
mentioned SARSA(λ) approach and other reinforcement learn-
ing techniques showing the advantages of SARSA(λ) over them
and highlighting how these merits are urgently needed for the
problems addressed in this dissertation.

3.5 comparisons & discussions

In this section we compare SARSA(λ), i.e., which we use in the
next chapters of this dissertation, to various approaches of rein-
forcement learning and, thus, we show why SARSA(λ) is con-
sidered the most suitable approach for the context of this dis-
sertation. Accordingly, we briefly discuss various approaches
and point out the advantages SARSA(λ) compared to them.
Therefore, we focus on the main approaches of reinforcement
learning which we divide into four main groups: approaches
that rely on dynamic programming, Monte Carlo control tech-
niques, temporal-learning approaches, and approaches that in-
volve eligibility traces.

3.5.1 Dynamic Programming Techniques

Dynamic programming techniques tend to estimate the state
value function recursively starting from an arbitrary guess about
the state values. This step iteratively updates the values of all
states based on the previous estimate of the value function until
the value function converges. Such techniques require a model
of the environment that describes the transitions between states
according to the executed actions in order to evaluate the esti-
mated policy and improve it as well. Therefore, the feasibility
of such approaches are limited by the availability of the model
which may be difficult in various real world scenarios.

3.5.2 Monte Carlo Techniques

On the other hand, the Monte Carlo approaches do not require
any knowledge about the model that describes the dynamics of
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the learning environment. They rely on learning from samples
of the state-action pairs, that appear in learning episodes that
are taken from simulated or real world experiments, via aver-
aging the returns of these state-action pairs. On the other side,
they update the learned value functions after each full learning
episode unlike the dynamic programming approaches at which
the estimated values are updated at each time step. This behav-
ior considers the long run effect of the selected actions, but, it
results in a slow learning process.

3.5.3 Temporal-Difference (TD) Learning

Therefore, in order to deal with the problems of both the
dynamic programming and the Monte Carlo approaches, the
temporal-difference (TD) learning approach tends to combine
the advantages of both of them. Similar to Monte Carlo ap-
proaches, TD learning does not require having any model about
the environment’s dynamics and thus it can learn from inter-
action with the environment via samples of state-action pairs
obtained from some real world or simulated experiments. Fur-
thermore, the learning process takes place on a step by step
basis relying on the immediate rewards which leads to a faster
learning process, as opposed to the Monte Carlo approaches
that postpone updating the learned value functions to the end
of each learning episode.

Additionally, R-Learning, which is an off-policy that relies
on TD learning, focuses on undiscounted continuing learning
which does not involve dividing the learning process into learn-
ing episodes. Thus, this approach does not fit the nature of the
applications discussed in this dissertation which requires di-
viding the learning task into independent episodes to be able
to train the framework on various possible situations that are
represented by these episodes and, accordingly, rewarding the
learning agent based on the specific terminal states reached.

3.5.4 Eligibility Traces

The TD learning and the Monte Carlo approaches act as ex-
tremes with respect to the rate of updating the learned value
functions. The first considers only the immediate reward of
the current step and estimates the rest of the return. The lat-
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ter postpones the learning until the end of the learning episode.
Therefore, combining TD learning with eligibility traces act as
an intermediate solution between these two extremes. Apply-
ing eligibility traces is equivalent to waiting for n-steps before
the update takes place and perform this update based on the
immediate rewards obtained from these n-steps instead of wait-
ing until the end of the learning episode. Therefore, combining
TD learning with eligibility traces will generalize the learning
performance of the TD learning and increase its efficiency.

As illustrated in Section 3.4, SARSA(λ) relies on TD learning
and additionally combines eligibility traces for the frequently
visited state-action pairs. Therefore, SARSA(λ) has an advan-
tage compared to dynamic programming since it learns from di-
rect interaction without relying on a model of the environment.
Furthermore, it handles the problem of Monte Carlo techniques
via providing a technique that maintains balance between the
learning speed while taking the generality of the learning pro-
cess and its efficiency into consideration. However, there are
other approaches that belong to the same family, i.e., perform
TD learning while computing the eligibility traces. Therefore,
in the rest of this section, we hold a comparison between these
approaches and point out why SARSA(λ), in particular, is con-
sidered the best fit for the addressed problem in this disserta-
tion.

TD(λ), i.e., the eligibility traces extension of TD learning ap-
proach, estimates the value functions for the states, thus it
is used only for the prediction of the value functions and it
does not interfere with controlling the learning task (see Equa-
tion 13). On the other hand, SARSA(λ) estimates the value func-
tions for the state-action pairs, thus it develops a control policy,
as shown in Equation 17.

Q(λ) is an off-policy approach which involves two policies:
a behavior policy that is responsible for the generation of the
learning episodes based on which the learning via interaction
takes place, and an estimation policy that is evaluated and im-
proved. Q-learning performs TD updates for the value func-
tions of the state-action pairs that appear during the learning
episodes, i.e., the estimation policy is updated using TD inde-
pendently from the behavior policy which generates the learn-
ing episodes. Accordingly, Q(λ) suffers from handling the eli-
gibility traces for the exploration actions, which are generated
from the behavior policy. For example, Watkins’s Q(λ), which
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is one of the Q(λ) variants, cuts the eligibility traces in case an
exploration action is chosen, which weakens the effect of eligi-
bility traces in case of frequent exploration actions. On the other
hand, SARSA(λ) which is an on-policy approach does not suf-
fer from the aforementioned problems of the Q(λ) because all
the actions are generated following the same policy that is esti-
mated. Furthermore, SARSA(λ), as opposed to Q(λ), considers
action selection within its update step instead of only consider-
ing the greedy action that leads to the highest expected return.
Although this leads to slower learning process, it is considered
a safer learning approach [Sutton and Barto, 1998].

Furthermore, we prefer SARSA(λ) compared to the Actor-
Critic method with eligibility traces, which also avoids the
aforementioned problems via separating the data structure of
the value function from that of the policy, because SARSA(λ)
was successfully deployed in a close problem [Hornung et al.,
2010].

3.6 conclusion

All in all, we choose to use SARSA(λ) approach for the appli-
cations presented in this dissertation, due to its ability to learn
from interaction with the environment based on samples from
state-action pairs without the need for a model that describes
the transitions between the states and the environment’s dy-
namics. Furthermore, it performs n-step TD prediction, i.e., it
does not postpone the learning to the end of each learning
episode and at the same time it does not update the values
function immediately, which does not slow the learning process
while generalizing its learning performance and increasing its
efficiency. Moreover, it is a safe learning approach that does not
cut the eligibility traces during the learning process compared
to Q(λ). Finally, it is a widely used approach that have been
used before in related applications.





4
F O R E S I G H T E D P E O P L E F O L L O W I N G W I T H
K N O W N P O S E S

In this chapter, we present a learning model to deal with peo-
ple following in assistance tasks. Our learning framework fo-
cuses on foresighted people following given known poses of
both the robot and the user. Therefore, we explore the feasibil-
ity of applying a learning approach on the following problem
and whether it is capable of generating navigation actions that
lead to foresighted following behavior. This foresighted follow-
ing behavior implies that the robot infers about the user’s in-
tended destination and does not follow the user to locations
where they do not need the robot’s help.

4.1 introduction

People following with mobile robots is a challenging problem
and is needed in several applications such as transportation
systems in industrial settings where robots are responsible for
the transportation of heavy items or dealing with hazardous
substances. They can also be deployed in home scenarios, es- Mobile robots that

are capable of people
following are needed
to assist the user in
several applications.

pecially for taking care of elderly people as well as helping
them in daily household activities. Moreover, recent studies
show that interacting with robots enhances the social interac-
tion skills of children with autism [Kim et al., 2013], since they
interact better with robots compared to humans due to the sim-
ple and predictable actions of the robots. This highlights the
importance of deploying such accompanying robots in appli-
cations and games that can help those children. Additionally,
such following robots can be deployed in stores as autonomous
shopping carts, or in scenes where robotic wheelchairs should
navigate next to an accompanying pedestrian.

Existing approaches have been focusing on direct following
of the user via maintaining a certain distance between the robot
and the user irrespectively of the user’s intended destination.
These approaches focus mainly on keeping the user within
the robot’s field of view without considering the efficiency of

29
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the robot’s trajectory with respect to the traveled distance and
its impact on the battery consumption and the wearing of the
robot’s actuators. A detailed discussion about these approaches,
which demonstrate the research gaps among them, can be found
in Chapter 2.

Direct following approaches suffer from inefficiency if the
user does not move on the shortest path to their goal. In other
words, the user may need to move to some temporary interme-
diate destination due to any external interrupt that may occur
during the following task and in such intermediate destinations
the services of the following robot may be not needed. Such sit-
uations are likely to occur in real life scenarios since humans
are easily interrupted by unexpected events during navigation.Inefficiency of

direct following. For example, consider a home-assistance robot performing a
delivery task and following the user when suddenly the phone
rings and needs to be grabbed, or the doorbell rings. Or it might
be that in the middle of the task an elderly person decides to
rest for a while. In such situations, a robot that is closely fol-
lowing the user will have to keep following them, although the
robot’s assistance is not required. Thus, following the user to
such destinations irrespective of the real need to the robots will
lead to an inefficient behavior that affects the battery consump-
tion. Moreover, it will lead to the wearing of the robot actuators
on the long run. Therefore, it will be more efficient if the robot
can infer the user’s intended destination, which is initially un-
known to the robot, and meets them there. However, depending
on the classical ways of path prediction will not be reliable due
to the uncertainties involved in such predictions due to the pos-
sibility of having more than one destination sharing parts of the
paths toward them. Furthermore, the uncertainties will increase
even more in case the user walks toward any unexpected inter-
mediate destination or performs any unexpected detour. Thus,
such problem needs a framework that can deal in a foresighted
way while taking such uncertainties into account.

4.1.1 Contribution

The contribution of this chapter is to present the first solution,
to the best of our knowledge, for applications involving peo-
ple following tasks that consider the efficiency of the generated
robot paths. We focus on scenarios in which the user does not
need the robot’s assistance along their way to their intended
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destination, but they need the robot’s assistance only at that
destination. In other words, the robot aims at meeting the user
at their final unknown destination without the need to accom-
pany them along their path, for example, as in delivery tasks. Foresighted people

following considers
the efficiency of the
following paths.

Therefore, it will be more efficient if the robot can infer the
user’s intended destination which is initially unknown for the
robot and accordingly meets the user at that destination via tak-
ing shorter path than that of the user. However, as mentioned
before, relying on traditional prediction techniques will not be
robust due to the uncertainties involved. Thus, we propose ap-
plying reinforcement learning on the top of such prediction
techniques to estimate the best navigation actions that can deal
successfully with the prediction uncertainties. As we show in
the experiments, our approach leads to foresighted navigation
behavior that can successfully handle cases in which the user’s
trajectory contains detours. Our method results in paths with
significantly shorter path length and significantly reduced com-
pletion time compared to direct following strategies.

4.1.2 Assumptions

In this chapter, we focus on exploring the feasibility of our
learning model, therefore we consider scenarios with relaxed
assumptions. We assume that the poses of both the robot and
the user are given with rather high accuracy. Thus, the robot
does not rely on its on-board sensors in neither localizing itself
nor tracking the pose of the user. Moreover, according to this
assumption, there will be no possibility of occlusions. This as-
sumption can be achieved in reality within environments that
are equipped with an external motion capture system, i.e., a
system of calibrated cameras that tracks the poses of a set of
markers via triangularization. Additionally, we assume that the
user moves in small environments in order to satisfy the as-
sumption that these environment are equipped with external
motion capture systems and to focus on exploring the capabil-
ity of our framework to learn and to generalize with a bounded
environments before extending that to larger ones. It is worth
mentioning that these assumptions are necessary only for this
chapter. On the other hand, we extend our framework in Chap-
ter 5 to rely on the robot’s on-board sensors in localization and
tracking, in addition to handling occlusions and large environ-
ments.
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4.1.3 Framework Overview

We model our problem as a Markov Decision Process (MDP)
with finite state and action spaces which are bounded with the
environment’s dimensions and the eight possible navigation di-
rections, respectively. To solve such MDP, we apply SARSA(λ)
reinforcement learning to generate foresighted navigation ac-
tions, where SARSA(λ) is chosen since it can learn directly
from interaction with the environment via simulated learning
episodes without the need for an explicit model that describes
the learning environment’s dynamics, moreover, it provides a
balanced approach compared to temporal-difference learning
and Monte Carlo techniques with respect to the rate of learn-
ing updates (refer to Chapter 3 for more details). Additionally,
it was previously used in rather close problems [Hornung et
al., 2010]. The generated foresighted navigation actions fromHandling

predictions’
uncertainties.

such framework are supposed to deal with unexpected human
behaviors during the tasks, i.e., detours, such that they guide
the robot to meet the user successfully at their final destination
while considering the efficiency of the robot’s trajectory. Our
approach generates these foresighted actions via two steps, at
the beginning we constantly predict the user’s intended desti-
nation via a prediction model that is presented by Ziebart et
al. [2009]. This model performs the predictions via a softened
MDP that is independent from the one used for generation of
actions. Then, based on that obtained prediction, our reinforce-
ment learning framework infers foresighted navigation strate-
gies that are more robust to prediction uncertainties. Following
these learned navigation strategies, the robot meets the user at
their intended destination efficiently, i.e., via a shorter path.

An overview of our framework is depicted in Figure 6. In this
scenario, the user moves through the environment between dif-
ferent possible designated locations (as shown in the top of the
figure) where it stays for a while and might need the help of
a mobile robotic assistant, i.e., for general assistance tasks, so-
cial interaction, or delivery tasks. The task of the robot is toOur foresighted

navigation actions
are encoded in a

Q-table.

efficiently reach the initially unknown destination of the user,
who might not move on the shortest trajectory. On the other
hand, our learning framework generates optimal navigation ac-
tions based on predicted motions of the user (as illustrated in
the block diagram at the bottom of the figure), which results
in more foresighted behavior than just following the user at a
close distance. Through out the learning process, we rely on
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Figure 6: An overview of our learning framework.

a set of previously observed human trajectories between the
possible destinations. Given these trajectories, we train the pre-
diction model that is used to reason about the future motions
and the intended destination of the user, furthermore, we use
these trajectories to train our reinforcement learning framework
which generates the navigation actions. The output of our learn-
ing framework is a table of Q-values, i.e., estimated values for
the various state-action pairs in order to evaluate the possible
actions at each state, that encodes the best navigation action for
the robot based on the current robot’s state.
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4.1.4 Organization

The rest of this chapter is organized as follows: we discuss
a simple prediction model that relies on a softened MDP in
the next section. After that, we demonstrate our reinforcement
learning framework in the form of another MDP, i.e., indepen-
dent from the one used in prediction. After that, we present
our findings both in simulation and real-world experiments. Fi-
nally, we draw some conclusions about the approach presented
in this chapter.

4.2 motion prediction

In this section, we present the motion prediction technique ap-
plied in our learning framework. We predict the user’s trajec-
tory based on the trajectory observed so far and use the predic-
tion in the state space representation of our learning approach
for generating foresighted robot actions. Our technique for mo-
tion prediction is based on the work of Ziebart et al. [2009]. ThisMotion prediction

via softened MDP. approach models the sequence of motion actions performed by
a human as a softened Markov Decision Process (MDP) whose
state space corresponds to the cells of a discretized grid map
of the environment. The authors propose to train a prediction
model using a softened version of the Bellman equation and
value iteration to get a Q-table that represents the most likely
motion action performed by the human at a certain position.
This softened version uses the soft-maximum function instead
of the ordinary maximum to be able to reason about the dis-
tribution of the trajectories, instead of considering only one
single trajectory. The soft-maximum function, as defined by
Ziebart et al. [2009], is as follows:

softmaxxf(x) = log
∑

x
ef(x) (19)

and is used within the computation of the state and action val-
ues V(s) and Q(s,a):

Q(s,a) = R(s,a) + V(T(s,a)), (20)
V(s) = softmaxa Q(s,a). (21)

Here, s and a represent the user’s current state and correspond-
ing action, respectively, T(s,a) is the transition function, and
R(s,a) is the reward after executing action a at the current
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state s. Equation 20 and Equation 21 are used to train the mo-
tion predictor based on a set of training trajectories with a re-
ward function that also takes into account obstacle locations.
Ziebart et al. [2009] use the obtained Q-table to predict the fu-
ture destination of the trajectory observed so far as explained
in the following.

Let ζA→B denote the observed trajectory of the user from
the initial state A to the current state B and ζB→C the future
trajectory from B to the unknown destination C. The probabil-
ity P(dest C|ζA→B) of a certain destination C given the observed
trajectory ζA→B can then be computed with Bayes’ rule, where
the likelihood P(ζA→B|dest C) intuitively depends on the ratio
of the reward of ζA→B and the expected value of ζB→C to the
value of the whole trajectory to the destination ζA→C:

P(dest C|ζA→B)
Bayes’
=

P(ζA→B|dest C)P(dest C)
P(ζA→B)

(22)

=

eR(ζA→B)+V(B→C)

eV(A→C) P(dest C)∑
D
eR(ζA→B)+V(B→D)

eV(A→D) P(dest D)
. (23)

Here, D corresponds to a destination among the set of possi-
ble destinations according to the training trajectories. The prior
distribution P(dest D) is known from the training set1. Further-
more, the reward of the trajectory R(ζ) is the sum of all individ-
ual rewards of state-action pairs according to ζ:

R(ζ) =
∑

(s,a)∈ζ
R(s,a) (24)

and V(X→ Y) denotes the softmax value function of the trajec-
tory from state X to state Y.

1 When using a motion capture system, possible destinations can be identified
as places where the person frequently stays for a while without moving
much. The distribution P(dest D) can be learned by counting how often
the person moves between possible destinations and might depend on the
starting location.
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We can then compute the probability of the future trajec-
tory ζB→C to the unknown future destination C given the so
far observed trajectory ζA→B:

P(ζB→C|ζA→B)

= P(ζB→C|dest C)P(dest C|ζA→B) (25)

=
eR(ζB→C)

eV(B→C)
P(dest C|ζA→B) (26)

= eR(ζB→C)−V(B→C)P(dest C|ζA→B). (27)

The term P(dest C|ζA→B) is hereby computed using Equation 23.
This posterior probability is used to weight the conditional prob-
ability P(ζB→C|dest C) of the expected future trajectory given
the destination C.

In our implementation, we assume that the human can move
one step at a time step in any of the eight possible directions
corresponding to the neighbor cells or remain at the same state.
Accordingly, our action space consists of nine actions. We set
the reward to be inversely proportional to the distance from
obstacles within a certain range of the human.

Thus, using the probability distribution about the future tra-
jectory, we can predict the position of the user at a certain time
step given its trajectory history. Note that since there is uncer-
tainty in the prediction, the robot does not know the user’s
destination in advance and, thus, cannot directly plan a path
toward it. Accordingly, we use the information about possible
destinations in our navigation framework and learn optimal
navigation actions as described in the following section.

4.3 learning navigation actions

To model the problem as a Markov Decision Process (MDP),
one needs to define a state space S that describes the relevant
aspects of the situations that the agent may encounter and an
action space A that represents the set of actions from which
the agent can choose according to its policy π : S → A. The
state of the agent at a time step st is transformed to the new
state st+1 after executing the action at according to the transi-
tion function T : S ×A → S, and the agent gets an immediate
reward rt ∈ R. Then, we learn the best actions via a reinforce-
ment learning framework, where the Q-table computed by our
framework contains entries Q(s,a) for each state-action pair.
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4.3.1 State Space S

In this chapter, we use a discretized representation of the en-
vironment in form of a grid map in which static obstacles are
represented as occupied cells. The state representation of our Relative

positions.MDP includes the relative distance between the current 2D po-
sition of the human xht and the current 2D position of the fol-
lowing robot xrt at time t as well as the relative distance between
xrt and the predicted position of the human xht+i after i further
time steps

st =

[
xht − xrt

xht+i − xrt

]
. (28)

Here, we compute xht+i according to Equation 27. The intuition
behind choosing such a state representation is that the gener-
ated action at any time step must mainly depend on both the
robot and the user’s current positions. Furthermore, we add
the user’s predicted position in order to involve some sort of
foresightedness in the generation of the actions, which involves
increasing the robustness of these generated actions with re-
spect to the prediction uncertainties. Additionally, we use rela- Robustness

to prediction
errors.

tive positions instead of global positions in order to reduce the
learning problem. The corresponding state space is much more
compact than one that considers all possible combinations of
current and predicted global positions. As shown in the exper-
iments, this generalization works well in practice.

4.3.2 Action Set A and Q-Table

The action space consists of a set of discrete moving actions in
the eight neighbor cells in addition to standing still. The Q-table
computed by our learning framework contains entries Q(s,a)
for each state-action pair where s is defined as in Equation 28

and a is one of the nine navigation actions. Each state-action
pair entry has its corresponding Q-value, which represents as
an estimate to the expected return from selecting such action
at that state. Thus, this Q-Table represents the intended output
of our learning framework, since it is used to select the best
navigation actions for the various situations of our task. We
show how these Q-values are computed in Section 4.3.4.

We assume that the human moves between a set of desig-
nated locations along commonly used paths where they may
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stay at one of them for a while and might need the help of
the robot. Therefore, one of them is the starting position of the
human before moving to the next destination. Accordingly, we
learn an independent Q-table for each of these designated start-
ing locations within the map. These Q-tables are needed to be
computed once for each environment. Moreover, they can be
computed in parallel.

4.3.3 Reward R

We designed the reward function so as to combine both the
shortest path to the predicted human position as well as the
difference between the distance traveled so far by the human
and the traveled distance by the follower robot, as shown in
Equation 29. The first term aims at guiding the robot to fol-
low the user in a foresighted way, whereas the second term is
for preferring shorter paths during the task. Thus, the learned
behavior is intended to keep a balance between these two ob-
jectives. Accordingly, we define the intermediate reward rt atThe reward

function guides
the robot

in a foresighted
manner via

shorter paths.

time t as follows:

rt =

Rmax if t = T

−A∗(xrt, xht+i) + (distht − distrt) otherwise,
(29)

where T is the final time step and Rmax is a high positive re-
ward. The function A∗(xrt, xht+i) denotes the distance resulted
from applying the A* algorithm on the grid map to get the
shortest path between the current robot position xrt and the pre-
dicted position of the human xht+i. Furthermore, distht and distrt
refer to the distance traveled until time step t by the human
and the robot, respectively. The final state with time step T is
reached when the robot is sufficiently close to the human (via
a shorter path compared to the direct following strategy) af-
ter they have reached the next destination, which is the case
when the human stays for a while close to a designated desti-
nation. Therefore, the reward function leads to the generation
of foresighted navigation actions that guides the robot to meet
the user at their final destination while minimizing the cost of
reaching that destination.
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4.3.4 Reinforcement Learning

We apply reinforcement learning in order to solve the aforemen-
tioned Markov Decision Process and learn the best navigation
action for each possible state. We apply SARSA(λ) reinforce-
ment learning to estimate the optimal values of the values of
the state-action pairs which implies developing a policy for the
robot to execute during its tasks. In Chapter 3, we have pre-
sented SARSA(λ) in detail. Therefore, we briefly point out in
this section the main characteristics that fits our problem and
based on which we selected this particular technique.

SARSA(λ) is an on-policy temporal-difference (TD) learning
approach. Thus, it is able to learn from interaction with the
environment based on a training set that allows experiencing
various samples of state-action pairs without the need for a
model that describes the environment’s dynamics, i.e., the tran-
sitions between the states based on the possible actions. This
property favors SARSA(λ) over other variants of reinforcement
learning which involve dynamic programming, since they rely
on having a predefined model of the environment which is not
feasible in our considered application.

Furthermore, SARSA(λ) involves the use of eligibility traces,
thus, it considers the effect of any action for several time steps
beyond its selection at a given state, i.e., the frequently visited
state-action pairs take more responsibility of the obtained re-
turns. Therefore, SARSA(λ) is preferred compared to the TD-
learning techniques that update the values function immedi-
ately and, additionally, it is better than Monte Carlo techniques
which postpone the learning until the end of each learning
episode. Accordingly, SARSA(λ) combines the positive traits
of both techniques leading to generalizing its learning perfor-
mance and increasing its efficiency, while not slowing down the
learning process. Moreover, it is considered a safer learning ap-
proach compared to Q(λ), since it is an on-policy method, thus,
it does not cut the eligibility traces during the learning process.

Additionally, it estimates the value function of the state-action
pairs, so it develops a control policy compared to TD(λ) which
estimates the value function only for the states. Furthermore, it
is a widely used approach that have been used before for very
close applications [Hornung et al., 2010].

Accordingly, the learning process is iterated multiple times,
where each iteration is called a learning episode. A learning
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episode is considered complete when a terminal state is reached
at time T . During each learning episode, the value of each state-
action pair Q(s,a), which represent an estimation of the ex-
pected return due to executing action a starting from state s
following the current policy, is updated and improved, as well
as the current policy that is learned so far, to approach the op-
timal state-action values function Q∗ and the optimal policy π∗,
respectively, based on the achieved immediate reward rt at each
time step t (see Equation 17 in Chapter 3).

Throughout the learning phase, we use an ε-greedy action se-
lection. This selection method chooses the action with the high-
est Q-value with probability 1− ε and all non-greedy actions
with equal probability. This selection method tends to deal inε-greedy

policy. a balanced way with the exploration-exploitation dilemma, in
which a question is raised about whether to continue search-
ing for better actions for a given state, i.e., to explore the state-
action space more, or to exploit the so far learned pairs in or-
der to enhance them and to maximize the obtained reward,
which is unfortunately contradictory. Therefore, our selection
method combines exploring various state-action pairs in addi-
tion to exploiting the Q-values learned so far via giving higher
probability for selecting the greedy actions while making sure
that the probability of choosing any other action is always non-
zero throughout the learning process. Moreover, we decrease
the value of ε after certain number of learning iterations in or-
der to protect the learned Q-values from random distortions
during proceeding with learning.

4.4 experimental results

4.4.1 Environment Setup

In this phase of experiments we considered relatively small en-
vironments in order to focus on exploring the capability of our
framework to learn and to generalize with a bounded environ-
ments before extending that to larger ones. Later in Chapter 5,
we extend our framework taking into account large and com-
plex environments. We evaluated our approach in simulated
and real-world experiments in two environments each of the
size of 4.8m×3.6m. The first one contains three possible des-
tinations reachable with overlapping trajectories from an ini-
tial position while the other one contains trajectories between
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multiple designated locations (see Figure 7). We used a map
resolution of 60 cm, which yields reasonable navigation actions
for the real robot with a diameter of 45 cm, however, collision
checking was performed independently based on a resolution
of 3 cm. Note that even if the environment consists of 48 grid
cells, the size of the actual state space is much bigger since we
do not only consider the relative distance between the current
positions of the robot and the human but also the predicted
difference in a certain number of time steps (see Equation 28).

In this chapter, we assume perfect knowledge about the
robot’s and the user’s trajectories. Thus, the robot does not rely
on its on-board sensors in neither localizing itself nor track-
ing the pose of the user and therefore there is no possibility
of occlusions to occur. This assumption can be realized via de- Perfect

knowledge
about poses.

ploying an external motion capture system in the environment,
i.e., a system of calibrated cameras that tracks the poses of a
set of markers via triangularization. Moreover, we assume that
both the robot and the user are moving approximately with
the same velocity, which only affects the prediction about the
user’s future location.

4.4.2 Trajectory Generation for Training and Testing

We randomly generated human trajectories for both, the train-
ing and test phases. However, a possible future extension is
to use real data acquired either from motion capture systems
or from 2D videos of human activity via trajectory extraction
techniques [Boukhers, 2017]. These randomly generated trajec-
tories are composed of straight line segments of 25 cm length.
The orientation of the segments relative to the destination is
chosen uniformly from the interval [0◦, 60◦]. For the map in Fig-
ure 7a, our training set consists of 60 trajectories, 20 for each
of the three possible destinations. For the map in Figure 7b, we
generated a training set consisting of 15 trajectories for each
of the possible combinations between the designated locations.
For testing, we used five randomly generated trajectories for
each motion class. It is worth mentioning that the prediction of
destinations with overlapping trajectories is more difficult and
leads to uncertainties regarding such predictions, thus, relying
only on these predictions and performing path planning based
on them will lead to inefficient robot trajectories.



42 foresighted people following with known poses

(a) (b)

Figure 7: Maps used for the experiments: (a) Environment with a
fixed start position and three possible destinations with
overlapping trajectories, making the prediction more diffi-
cult. (b) Environment with several designated locations be-
tween which the human moves.

4.4.3 Parameters

During the learning of the Q-table, we used an initial value of
0.4 for ε of the greedy action selection to allow for exploring the
state space and decreased the value to 0.2 after a certain num-
ber of iterations. This leads to more exploration of the state and
action spaces at beginning of the learning process compared to
more exploitation of the learned Q-values after a considerable
leaning iterations. For the execution, we used a value of 0.05,
i.e., the robot chooses the action with the highest Q-value with
probability 0.95. The Q-tables for our experiments were learnedExploration

vs
exploitation.

from a minimum of 12, 000 learning episodes. We consider a
learning episode as successful if the distance of the robot to the
human destination is smaller than 1.2m within a maximum
number of 100 time steps, otherwise the episode is aborted. In
the successful learning episode, we apply a high positive imme-
diate reward Rmax with a value of 10, 000 at the terminal time
step (see Equation 29). We experimentally determined the value
of 3 for i for the prediction in Equation 28 and Equation 29 to
work best with the chosen map resolution of 60 cm.
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In the learning episodes and test runs, we generated the
robot’s starting position randomly within a range of 60 cm
around the human’s initial position. In the test runs, we abort
the execution in case the robot does not reach the user’s desti-
nation within 25 time steps after the user arrives there, however,
in real applications the robot can drive to the last predicted lo-
cation of the user as we show in the extension of our work in
Chapter 5.

4.4.4 Evaluation Metrics

The main goal of this approach is to generate more efficient
robot trajectories compared to the direct following strategies.
Therefore, in order to evaluate our approach, we computed the
saving with respect to the path length by comparing the dis-
tance traveled by the robot according to our learned navigation
actions to that of applying a direct following method, in which
the robot follows the shortest path to the position of the user at
each time step. Furthermore, since the poses of both the robot Efficiency of

following paths.and the user are assumed to be known at every time step, it
is necessary to evaluate the time needed by the robot to meet
the user successfully at the destination. Thus, we evaluated the
completion time of our approach to a ’wait-and-observe-first’
strategy in which the robot waits until the user reaches its des-
tination and only then starts moving according to the shortest
path to the destination. To show statistical significance of our
results, we applied a statistical two-tailed paired t-test with a con-
fidence interval of at least 95%.

4.4.5 Experiments in Simulation

We performed 250 runs for each test trajectory to alleviate the
randomness arising from the generation of the initial position
of the robot as well as the randomness involved in the genera-
tion of the actions. As can be seen from Table 1 (first and third
row, first column), our approach significantly outperforms the
direct following strategy with respect to the traveled distance in
both environments. Note that in the environment of Figure 7b,
in some cases the robot can directly predict the correct naviga-
tion goal after one step and immediately move there. Depend-
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ing on the user’s and the robot’s start location, the robot then
reaches this destination faster than the user.

Furthermore, we added a number of non goal-directed trajec-
tories (i.e., trajectories that involve detours) to the test set (25%)
of the environment in Figure 7a to show the effectiveness of
the robot behavior generated by our learning framework and
its ability to handle unexpected trajectories. These detours rep-Detours.
resent unexpected behaviors that the user may perform due to
the occurrence of external events that may interrupt their path
to their destination, such as grabbing a phone that suddenly
rings, responding to the doorbell ring, or even the need to have
some rest in the case of elderly people.

These non goal-directed trajectories were not included in the
training phase and the generation of the Q-table for the navi-
gation actions to avoid the over-fitting of the training for such
scenarios. In the corresponding runs, the user trajectory leads
around the obstacle in the left part of the map (similar to the
user’s trajectory in Figure 10). This can be seen as the case
where the user moves to fetch some items and then continues
walking to its actual destination. In such scenarios, our fore-
sighted following robot waits for the user until they are back
from their detour then the robot resumes the following task.
If such scenarios are included in the test set we even achieve
an overall average gain of 19.1% (see Table 1 second row, first
column).

When comparing our approach to the ’wait-and-observe-first’
strategy regarding completion time, we achieve an average gain
of 13.1% - 14.6% (Table 1 second column). Furthermore, all the
reported results in Table 1 pass a statistical two-tailed paired t-test
with a confidence interval of at least 95%.

Table 1: Gain in traveled distance and completion time

Test trajectories of
environments

Gain in
distance

Gain
in time

Statistically
significant
(α = 0.05)

Dist. Time

Figure 7a
Basic set 7.9% 13.1% Yes Yes

With cycles 19.1% 14.6% Yes Yes

Figure 7b Basic set 18.3% 14.2% Yes Yes
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(a) (b)

Figure 8: Experiment in which the user first makes a large detour
before walking toward their intended destination. (a) The
robot does not follow the user but waits first. (b) Only as
the user continues moving in the direction of the actual des-
tination, the robot follows and, thus, avoids the detour that
would have resulted from closely following the user.

In 8% of the test runs, the robot was caught in local minima
and did not reach the destination within a fixed time limit while
choosing actions according to the Q-table. The corresponding
runs are not included in the evaluation. Note that we applied
only the Q-table for action selection in our approach and did
not combine it with moving on the shortest path to the actual
destination after the user arrived there, which would be reason-
able in practice and improve the performance in some cases, in
particular when facing the local minimum problem mentioned
above.

We performed an additional experiment to illustrate the
strength of our approach, where this scenario was not also in-
cluded in the training phase. Here, the user was only walking to
their final destination after performing a larger detour (see Fig-
ure 8a). This unexpected behavior was correctly handled by the
robot as it did not follow the user but waited. Only as the user
continued their path toward the destination, the robot started
moving again (see Figure 8b). Thus, the robot behaves in a fore-
sighted way and could avoid the large detour that would have
resulted from closely following the user.
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(a) (b)

(c) (d)

Figure 9: (a) The user starts walking toward his (unknown) destina-
tion and the robot executes navigation actions to follow him.
(b) The user does not move directly to his destination but
walks in a cycle around an object. (c) The robot behaving
according to our learned policy ignores this cycle and waits.
(d) The user continues walking toward his destination, fol-
lowed by the robot.

4.4.6 Experiments with a Real Robot

We also carried out experiments with a real robot (Robotino
by Festo) to test the learned navigation strategy. To detect the
position of the user and localize the robot, we used an exter-
nal motion capture (MoCap) system and retroreflective mark-
ers attached to both the user and the robot. We focused on the
scenario where the trajectory of the user does not directly lead
to his destination. As shown in Figure 9, the user performed
an inefficient trajectory by walking around the obstacle in the
left part instead of directly going to his goal location, where
this scenario was not included in the training phase. As can be
seen, the follower robot ignored this cycle and waited instead
in a foresighted manner before proceeding to follow the user
afterwards to its intended navigation goal. The corresponding
path (see Figure 10) is much shorter than the user’s trajectory.
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(a) (b)

Figure 10: Trajectories of the human and the robot corresponding to
the experiment shown in Figure 9 recorded by the MoCap
system. (a) The robot’s trajectory is rather efficient, as the
robot correctly predicts that the human will continue mov-
ing to one of the destinations in the area on top and there-
fore waits for the human half way. (b) Both human and
robot resume the path to the destination.

4.5 conclusions

In this chapter, we demonstrated an approach that generates
foresighted navigation behavior of an assistance robot. We con-
sider the scenario in which the human moves between different
designated locations where they might interact with the robot.
Thus, the task of the robot is to reach these places while mini-
mizing trajectory length and completion time. Our framework
relies on a learned prediction model for the human’s motions
that is used to reason about its future trajectory and target des-
tination. Based on that prediction and the current robot posi-
tion, we apply reinforcement learning to generate foresighted
navigation actions for the robot. These generated foresighted
actions are robust against the prediction uncertainties as well
as the unexpected behaviors and detors of the user. As the
experiments carried out in simulation and with a real mobile
robot demonstrate, our approach leads to foresighted naviga-
tion behavior resulting in significantly shorter paths and a sig-
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nificantly reduced completion time compared to naive follow-
ing strategies.

In the next chapter, we extend our system to use the robot’s
on-board sensors for people tracking, which will lead to occlu-
sions and uncertainty about the human’s position. So the robot
will also need to learn when to consider active re-localization
of the human based on its predicted motions. Furthermore, we
extend the state-action space as well as the reward function to
handle such occluded situations. Moreover, we consider larger
and more complex environments that demonstrate the strength
of our approach in various situations. Additionally, we replace
the prediction model with a more robust one.



5
F O R E S I G H T E D P E O P L E F O L L O W I N G U N D E R
O C C L U S I O N S

In this chapter, we focus on attaining a performance that better
fits real world scenarios in which the robot is vulnerable to
occlusions due to its limited field of view as well as obstacles
that restrict this limited field of view even more. Therefore, we
extend our people following framework that was discussed in
the previous chapter such that the robot relies on its sensors to
localize itself and to track the user.

5.1 introduction

In this chapter, we consider scenarios in which a service robot
needs to encounter a user at designated locations, between
which the human moves along commonly used paths. One ex-
ample application are transportation tasks where the robot has
to provide items to the human at predefined places. Such trans-
portation tasks can be vital in case of transporting hazardous
materials and chemicals, or heavy items. Additionally, such Example

applications of
people following
tasks.

robots can be deployed as autonomous shopping carts in stores
or in massive warehouses. Furthermore, robots with such capa-
bilities can be used in the treatment programs of the children
with autism via designing some interactive games to enhance
the children’s interactive capabilities and social skills. Since the
interaction of children with autism with robots proved better
results compared to adults [Kim et al., 2013].

Following the human at a certain distance might enable the
robot to solve such tasks and various techniques exist to closely
follow people via moving the robot on the shortest path to
the user at each time step [Harmati and Skrzypczyk, 2009; J.
Huang et al., 2006; L. Huang, 2009; Kuderer and Burgard,
2014; Nascimento et al., 2013; Pradhan et al., 2013], refer to
Chapter 2 for more details. However, since humans may not al-
ways take the shortest path to their next destination, i.e., due to
unexpected external interrupts that may occur such as a phone
rings and needs to be picked up, such methods that rely on di-

49
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rect following of the user might lead to an inefficient robot nav-
igation behavior in the considered scenarios where the robot
has to interact with the user only at designated places. Addi-Occlusions are

critical for direct
following.

tionally, robots that rely on on-board sensors to localize and
track the user may face some problems due to possible occlu-
sions that may occur. Furthermore, the user might occasionally
move through passages that are impassable to the robot, i.e.,
due to size or safety constraints, such that the robot is forced
to find an alternative route. Accordingly, direct following tech-
niques will face serious problems in the aforementioned situa-
tions. In such cases the problem arises that the user will even-
tually be out of the robot’s field of view, which will lead to
an uncertain estimate about the user’s location and a wrongly
predicted destination. Such techniques will get stuck in case of
occlusions, moreover, they will not be able to find alternative
paths to those impassable by the robot and will get stuck as
well. Thus, the robot will need to consider active re-localization
of the user to improve the estimate and to be able to infer the
next navigation goal.

5.1.1 Contributions

In this chapter, we reduce our previously mentioned assump-
tions in Chapter 4 in order to mimic real world scenarios,
thus, we rely on the on-board sensors of the robot in localizing
the user instead of our previous assumption of having perfect
knowledge about the user’s pose. Therefore, we use a particleForesighted

following using
on-board sensors.

filter-based predicted model in order to retain multi-modal hy-
pothesis about the user’s location in case of occlusions to have
more robust predictions. Moreover, we modify our previously
discussed approach to be able to handle such occlusions via
modifying the state space and the reward function to generate
foresighted navigation action that aims at keeping balance be-
tween having the user in the robot’s field of view and minimiz-
ing navigation costs. Furthermore, we consider large complex
environments, to highlight the strength of our approach, with-
out overloading the learning process.
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5.1.2 Framework Overview

An overview of our proposed system is shown in Figure 11. Ini-
tially, we use the motion prediction model to learn navigation
strategies via reinforcement learning. The output is a Q-table
that provides the robot with the best navigation action for the
current situation. Concerning the motion prediction, we apply We pass the

predictions to the
reinforcement
learning framework
to generate robust
actions to prediction
errors.

an approach to constantly predict the human’s position at fu-
ture time steps based on the robot’s previous observations of
the human’s position. As opposed to our previous approach
presented in Chapter 4, we use a particle filter-based predicted
model that can handle multi-modal hypothesis about the user’s
likely locations in case of occlusions. However, we can not rely
solely on such prediction due to uncertainties caused by the
occlusions. Thus, similar to Chapter 4, this prediction is used
as an input to a reinforcement learning framework to gener-
ate foresighted robot navigation actions that are robust to such
uncertainties.

Figure 11: Based on the robot’s current position and its observations
about the human, the robot chooses a navigation action
using the foresighted navigation strategy that was learned
off-line from a training set of observed human trajectories.
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Regarding the learning of navigation actions, similar to Chap-
ter 4, we also model our problem as a Markov decision process
(MDP) and thus we rely on SARSA(λ) reinforcement learning
to solve such MDP due to its ability to learn from direct inter-
action with the environment via simulated learning episodes
without the need for a model that describes the environment’s
dynamics. Furthermore, SARSA(λ) is a balanced approach be-
tween the speed of the learning and its safety, refer to Chapter 3

for more details. In addition to that, SARSA(λ) was proven to be
able to learn good navigation actions in Chapter 4. However, we
modify the map representation as well as the state space repre-
sentation to be able to handle large environments and possible
occlusions. Furthermore, we enhance the reward function in or-
der to maintain balance between having the user in the robot’s
field of view and minimizing navigation costs, in addition to
handling occlusions and finding alternative paths to those that
are impassable by the robot. Additionally, we allow the robot
to explicitly perform observation actions to update the belief
about the user’s location via autonomously selecting key loca-
tions at which the robot waits and observes, where these lo-
cations have distinguishable visibility characteristics (ex: inter-
section points, corridors ... etc) which increases the likelihood
of observing the user again. The resulting navigation strategy
leads to efficient robot paths and observation actions that im-
prove the prediction of future human movements.

Figure 12 highlights the strengths of our approach. The user
initially moves along a trajectory that might correspond to two
different paths, while the robot is only needed if the human
moved along path 2. Our modified approach leads to an effi-
cient strategy where the robot follows the human to the place
where the paths diverge and observes the future behavior of
the user, hence, reducing unnecessary movement actions. Fol-
lowing the user at close distance would also be a solution to re-
duce uncertainty, but this often results in unnecessary detours
and interferences with the human.

All in all, we extended our previous work presented in Chap-
ter 4 by using a more compact representation of the move-
ment possibilities, implementing a particle filter based predic-Extensions

compared to the
previous chapter.

tion, modifying the state space, enhancing the reward function
to deal with occlusions, and allowing the robot to explicitly
perform observation actions to update the belief about the hu-
man’s location. Moreover, as we show in simulated and real-
world experiments, our framework generates foresighted navi-
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Figure 12: Example of foresighted people following: In a scenario
where a human commonly walks on different known
paths, our approach enables the robot to act efficiently. a)
When the human starts walking the robot does not yet
know which of the two paths the human will take and sim-
ply follows. b) The robot predicts the path of the human
and remains at a spot, where possible deviations from the
prediction are well visible. c) The robot sees the human
return and immediately drives back to the initial spot.

gation actions that can also deal with cases in which the human
is not in the robot’s field of view. The trajectories generated
by our approach are significantly shorter compared to a direct-
following approach and we achieve a higher number of suc-
cessful runs. Furthermore, we compare the performance of our
approach to that of a heuristic that depends only on predicting
the user’s future location and moves the robot toward it. We
show in this comparison how such heuristic suffers from pre-
diction uncertainties and on the other side how our approach
is able to overcome such uncertainties and generate foresighted
navigation actions that lead to efficient robot trajectories.

5.1.3 Organization

The rest of this chapter is organized as follows: we state the
addressed problem of this chapter in the next section. Then,
we discuss a particle filter based prediction model to predict
the human’s motion. After that, we demonstrate our modified
reinforcement learning framework. After that, we present our
findings both in simulation and real-world experiments. Finally,
we draw some conclusions about the approach presented in this
chapter.



54 foresighted people following under occlusions

5.2 problem formulation

We consider a scenario where the robot knows the structure
and static obstacles in the environment. We assume that the hu-
man commonly walks on typical paths between different points
of interest (destinations) where a robot is needed to assist the
human. Our aim here is to exploit the given information in or-
der to generate more efficient navigation actions for the robot
compared to a direct-following method and additionally deal
with situations where such a method would fail. An example
of the former is discussed in Figure 12. Furthermore, since it
sometimes happens that the human moves along paths which
are impassable for the robot, the robot should learn in these
cases how to move to the predicted destination of the human,
thereby performing explicit observation actions to update the
prediction of the human position if useful. All in all, the aim of
our approach is to reach the correct destination of the human
while reducing the overall path length.

5.3 motion prediction

To track the user while moving along paths between a set of
predefined destinations, we use a particle filter following ideas
of the work by Liao et al. [2003]. We restrict the propagation of
the particles over a topo-metric graph that represents the envi-
ronment (see Figure 13). The particles are propagated, over theTopo-metric

graph
representation.

nodes of the topo-metric graph, according to the user’s veloc-
ity, following the common paths that the user may take. The
poses of the particles are initialized at the graph node that cor-
responds to the user’s known starting location. Each particle
moves on the graph toward one of the destinations, reachable
from the previous destination (the user’s starting location).

For each particle we independently sample one of the possi-
ble destinations based on transition probabilities between the
destinations. Then, at every time step, each particle moves to a
graph node along the path to its current destination according
to a Gaussian motion model based on the estimated velocity
of the user, i.e., each particle may move to a node along theParticles’

propagation. path, stay at the current node, or move to other nodes that do
not belong to the intended path following a Gaussian motion
model. Such motion model is necessary to be able to handle
unexpected behaviors of the user, i.e., if the user does not fol-
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low one of the common paths and performed some detour in
order to pick some items before resuming their path to one of
the predefined destinations.

The weights of the particles correspond to the observation
likelihood. High weights are assigned to the particles that are
close to the user’s observed position. In case the user is not Weights are

proportional
to the
observation
likelihood.

observed, the weights of the particles in the field of view are
reduced, thus, our belief about the user’s existence at other lo-
cations increase. Therefore, observation actions are vital and
lead to information gain that updates our multi-modal belief of
the user’s location whether the user is within the robot’s field
of view or not.

Furthermore, at every time step, we perform a selective re-
sampling to enhance the particles that correspond to good be-
liefs while avoiding the particle depletion problem, i.e., the
problem of performing unnecessary resampling which leads to
losing important particles. Thus, we compute the number of ef-
fective particles according to the updated normalized weights,
i.e., which corresponds the inverse variance of these weights,
and if the number of effective particles is below half the total
number of particles we perform a low-variance resampling. In
other words, we only perform resampling when the current dis-
tribution of particles is meaningless and far from the intended
distribution according to the updated weights.

To predict the user’s future location, we simulate the propa-
gation of the particles according to the motion model described
above a few time steps into the future and then determine the
predicted graph node based on the cluster of particles that
has the highest weight. According to the aforementioned ap-
proach, the prediction model can correct itself via observations,
i.e., either positive or negative, and thus it leads to more ro-
bust predictions. However, we can not rely solely on the gen- Particle filter

based
predictions.

erated prediction and perform path planning based on them,
because these corrections will be on the cost of the efficiency of
the robot’s trajectory, i.e., the robot still needs to move toward
some initial predictions which are not guaranteed to be correct
due to the involved uncertainties and during this process the
prediction model corrects itself. Therefore, we need to generate
foresighted navigation actions that are able to overcome such
uncertainties, which is illustrated in the upcoming section.
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5.4 learning navigation actions

In order to generate actions for the robot while observing and
following the human, we model the problem as a Markov de-
cision process (MDP), and combine it with the human motion
prediction (see Section 5.3). We apply reinforcement learning
on such MDP to learn a Q-table that represents the navigation
policy of the robot. For every possible starting location of the
human (corresponding to the points of interest/destinations),
we learn a separate Q-table that encodes the suitable policy for
the set of the user’s common paths which start from that loca-
tion.

The remainder of this section explains in detail all aspects
of our learning approach. First, we define a state space S that
describes the relevant aspects of the situations that the agent
may encounter and an action space A that represents the set of
actions from which the agent can choose according to its policy
π : S → A. Then, we define our modified reward function that
evaluates the chosen actions and their effect on the states’ tran-
sitions, i.e., the state of the agent at a time step st is transformed
to the new state st+1 after executing the action at according to
the transition function T : S ×A → S, and the agent gets an
immediate reward rt ∈ R. Then, we discuss the SARSA(λ) rein-
forcement learning approach based on which we learn the best
actions in the form of a Q-table that contains entries Q(s,a) for
each state-action pair.

5.4.1 State Space S

As mentioned in Section 5.3, for the prediction of the human’s
motion, we represent the environment as a discretized grid map
with an overlaid topo-metric graph. For the state space and the
action generation we use the same representation, such that ev-
ery grid cell is mapped onto the closest graph node within the
same room. Additionally, every graph node is mapped onto
the grid cell, which lies at the same position as the node. TheMore concise

representation. topo-metric representation is a compact representation of the
movement possibilities in the environment and scales better
with larger maps. The corresponding map representation as
topo-metric graph for our quantitative simulation experiments
is depicted in Figure 13. Note that the environment contains a
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Figure 13: Simulation environment with topo-metric graph. The en-
vironment is represented as a grid map with an overlaid
topo-metric graph, such that each grid cell corresponds to
the nearest graph node (green dots) within the same room.
At the same time, each graph node is mapped onto the
grid cell, which lies at the same position. The orange dots
correspond to nodes that are only passable by the human
but not by the robot.

passage that is not passable by the robot (orange nodes) and,
thus, the corresponding navigation actions are excluded.

The state space includes the current graph node position of
the robot xrt at time t and the predicted position of the human,
also mapped onto the graph, xht+i after i future time steps:

st =

[
xrt

xht+i

]
. (30)

Due to the compact representation of the environment as a
topo-metric graph, this state space is much more concise com-
pared to our previous work that relies on the 2D relative po-
sitions of the robot’s current location with respect to both the
user’s current location as well as their predicted location (see
Section 4.3.1 in Chapter 4 for more details). Such concise state
space is important since it leads to a faster learning process.
Furthermore, we do not include the human’s current position
here since it does not give more information and, apart from
that, might not be observable. Therefore, in contrast to our pre-
vious state representation, the new formulation can scale for
reasonably large environments in addition to its ability to han-
dle occlusions.
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The topo-metric graph does naturally not cover the whole
grid map and the real robot might not perfectly drive along the
graph. Therefore, the graph node position of the robot is always
determined according to the robot’s current grid cell mapped
onto the graph, similarly as for the human.

5.4.2 Action Set A and Q-tables

The action space consists of movement actions, a waiting action,
and an observation action. Movement actions are defined along
the graph and consist of movements to all neighboring nodes.
Therefore, the amount of movement actions depends on the
current node position of the robot, as certain nodes have more
neighbors compared to others, e.g., intersections. An observa-
tion action consists of a full 360◦ rotation or a rotation until
the human is observed. Finally, successive waiting actions are
converted to observation actions if the user is not in the field
of view while the robot is waiting. This approach helps to keep
the human in the field of view of the robot while the robot is
waiting, e.g., in the case of long detours of the user.

In order to execute actions in the real world we need to map
the action space, i.e., movements between neighboring graph
nodes, onto real actions of the robot. We accomplish this by
determining the corresponding grid cell position of the graph
node after performing an action and sending the real 2D coor-
dinate as a new local goal to the robot.

5.4.3 Reward Function R

During the training phase, we define the immediate reward rt
at time t as follows:

rt =

Rmax if t = T

−A∗(xr
t, xh

D) − v ·A
∗(xr

t, xh
t+i) −C otherwise

, (31)

where T is the final time step in the case of a successful learning
episode and and Rmax is a high positive immediate reward. A
learning episode is considered as successful if the robot reaches
the human’s destination through a shorter path compared to an
approach that uses the concept of directly following. This direct
following approach also moves along the graph, however, at
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every time step simply moves one node toward the human’s
current position.

The function A∗(xr
t, xh

D) in Equation 31 denotes the distance
resulting from applying the A* algorithm to get the shortest
path from the robot’s current position xr

t to the human’s in-
tended destination xh

D, which is known from the training data.
The term A∗(xr

t, xh
t+i) represents the A* distance between the

robot’s current position and the predicted position of the hu-
man after i time steps, while v is 0 in case the human is cur-
rently visible and 1 otherwise. Finally, C represents the cost for
performing an action, which is 0 in case of waiting and obser-
vation actions and the distance between two neighboring nodes
in case of a movement action.

The first term of Equation 31 guides the robot toward the
goal while the second term helps to keep the human in the Motivation

of the reward
function.

robot’s field of view. The last term minimizes the total amount
of movement actions, which is desirable if the human takes
detours or moves to areas where the robot is not required.

Our previous work presented in Chapter 4 can not deal with
occlusions since it assumes perfect knowledge about the user’s
pose (see Section 4.3.3 for more details). On the other hand, our
modified reward function in Equation 31 is more general and
realistic since it maintains balance between different aspects. It
guides the robot to the correct final destination as well as trying
to keep the user in the robot’s field of view as much as possible
while considering the efficiency of the robot trajectory. Thus,
the generated actions are foresighted actions that are able to
make sure of the visibility characteristics of the environments,
i.e., via autonomously choosing key locations to perform the
observation actions.

5.4.4 Reinforcement Learning

In order to solve the aforementioned Markov decision pro-
cess (MDP), similar to our previous work in Chapter 4, we
apply SARSA(λ) reinforcement learning in order to learn the
best navigation action for each possible state. Mainly, we choose
to continue using SARSA(λ) in this chapter due to its success-
ful performance which we have presented in Chapter 4. Ad-
ditionally, in this section, we briefly present a quick reminder
about the main characteristics based on which we chose to ap-
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ply SARSA(λ) in the first place, however, a detailed discussion
can be found in Chapter 3.

We choose SARSA(λ) because it does not require any model-
ing of the environment, however, we can train it using sample
examples of the user’s trajectories. We denote these simulated
experiments that are used for training as learning episodes. Fur-
thermore, SARSA(λ) is considered as a balanced approach be-
tween the Monte Carlo techniques and the temporal-difference
(TD) learning approaches. A main drawback of Monte Carlo
techniques is postponing the learning to the end of each learn-
ing episode and, on the other side, the TD learning approaches
update the values function immediately at each time step which
does not consider the effect of the chosen actions on the long
run which degrades the generality of the learned policy. How-
ever, SARSA(λ) waits for n-steps before updating the values
via the use of eligibility traces that are memory variables that
keep track of the frequently visited state-action pairs and, thus,
they reward the responsible actions for their subsequent effects
without postponing that until the end of the learning episode.

As mentioned above, the learning process is iterative where
each iteration is called a learning episode, where a learning
episode terminates successfully when the robot meets the hu-
man at their final destination at time T via a shorter path com-
pared to direct following techniques. In each learning episode
the Q-value Q(s,a), which represent the expected return of ex-
ecuting action a at state s following the current policy, is up-
dated for each state-action pair that belongs to this episode (see
Equation 17 in Chapter 3). Such updates are reflected on updat-
ing the so far learned policy.

The learned action policy should aim at maximizing the re-
turn of each state, which corresponds to choosing the action
with the maximum Q-value. However, since the robot may
get stuck in a local-minimum at a certain graph node, we ap-ε-greedy

policy. ply ε-greedy action selection to allow more exploration of the
state-action search space. This policy selects the action with
the maximum Q-value with probability 1− ε or any of the
other non-greedy actions randomly with probability ε. Thus,
this selection method tends to deal in a balanced way with the
exploration-exploitation dilemma via always having a non-zero
probability for choosing any possible action.
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Figure 14: Left: The real-world environment with an overlaid topo-
metric graph. The orange dots correspond to nodes that
are only passable by the human but not by the robot. Right:
Common human trajectories used in the real-world envi-
ronment.

5.5 experiments

We carried out both simulated and real-world experiments to
evaluate our proposed approach and compare it to the direct
method approach. In Section 5.5.1, we demonstrate the setup
of our experiments. Then, we discuss the achieved results of
the simulated and real-world experiments in Section 5.5.2 and
Section 5.5.3, respectively.

5.5.1 Experimental Setup

We evaluated our approach, both in simulated and real-
world experiments. The size of the simulation environment is
41m×20.5m with a map resolution of 0.25m and a map of
size 4.8m×7.6m with a resolution of 0.05m for the real-world
experiment (see Figure 13 and Figure 14, respectively). The
distances between the graph nodes in the simulated and real-
world environments are 1.5m and 0.5m, respectively. To show
one strength of our approach, each of the environments con-
tains a narrow passage that is not passable by the robot due
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to size constraints. Thus, directly following the human along
these passages is not possible and will not succeed, while our
approach tries to predict the destination of the human and
learns how to best move in order to encounter the human at the
destination, thereby considering also observation actions along
the way. Note that the heuristic strategy of just moving to the
predicted destination on the shortest path does not consider
observation actions and will sometimes be affected by wrong
predictions.

In case the human is outside the robot’s field of view, we
propagate the particles and update their weights, i.e., reduce
their weights if they are within the robot’s field of view, and
then determine the predicted graph node based on the cluster
of particles that has the highest weight. Therefore, performingNegative

observations. observation actions at locations that have distinguishable visi-
bility characteristics (ex: intersection points, corridors ... etc) is
vital, moreover, this is determined autonomously by our frame-
work via the learned actions.

During the reinforcement learning phase, we initialize ε of
the greedy action selection policy with 0.35 to allow for a wider
exploration of the state and action space. During the execu-
tion phase, the robot follows the learned policy represented
by the Q-table, i.e, ε = 0. Each Q-table is learned in simulationParameters.
from a maximum of 4000 learning episodes with a maximum
of 100 time steps. In the successful learning episode, we apply
a high positive immediate reward Rmax with a value of 10, 000
at the terminal time step (see Equation 31). We experimentally
determined that a three-step prediction ahead, i.e., i = 3 in
Equation 30 works best.

5.5.2 Experiments in Simulation

For the simulation experiments we simulated 105 human tra-
jectories, 15 for each possible route (see Figure 15). 60% of
the trajectories were used for the training and the rest for the
evaluation of the learned robot behavior. As illustrated in Fig-
ure 15, these common passes cover various scenarios, i.e., some
of them perform unnecessary detours and others correspond to
shortest paths between destinations, in addition of considering
a path that is impassable by the robot due to size constraints.
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Figure 15: Common human trajectories used in the simulation envi-
ronment. Note that path 1 in this figure corresponds to the
example shown in Figure 12.

As a performance measure, we computed the reduction in
path length to evaluate the efficiency of the generated motion
actions, e.g., to assess battery saving. We compare the path re- Evaluation

metrics.sulting from applying our framework to the path generated
from the direct-following strategy, in which the robot moves at
each time step toward the node of the human’s position. This
presents the best heuristic behavior the robot can execute as the
actual destination can only be predicted and might be wrong.
We evaluated the statistical significance using a two-tailed paired
z-test.

The experimental results show, as illustrated in Table 2, that
our learned policy significantly outperforms the direct-following
approach in terms of path length (statistical significance of 95%),
which was reduced by 7.33%. Additionally, the percentage of
runs in which the robot failed to reach the final destination of
the user, is reduced to only 1% compared to 14% in the case of
the direct-following approach.

Table 2: Path length reduction of our approach compared to directly
following

Path
reduction

Statistical
significance

Failed runs
(our approach)

Failed runs
(direct following)

7.33% 95% 1% 14%
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Furthermore, we compare the performance of our approach
to that of a heuristic that depends only on predicting the user’s
future location and moves the robot toward it. We evaluate
this heuristic using the same test set and show the percent-Heuristics.
age of path reduction compared to direct following similar to
the aforementioned evaluation of our approach. We consider
two variants of this heuristic, one variant is that at every time
step the robot moves one step toward the user’s predicted lo-
cation after few future time steps (three-step prediction ahead
similar to the prediction used in the reinforcement learning ap-
proach, i.e., see Equation 30). The other variant is to continu-
ously predict the final destination of the user and to move one
step towards that predicted destination. We apply the predic-
tion method illustrated in Section 5.3 to obtain both predictions.

Table 3: Path length reduction of a prediction heuristic compared to
directly following

Prediction
Path

reduction
Statistical

significance
Failed runs

three-steps ahead −15.03% 99% 4.45%

final destination −35.56% 99% 5.05%

As illustrated in Table 3, the experimental results show that
relying only on the prediction model yields a significantly
worse performance even compared to the direct following tech-
nique since it suffers from prediction uncertainties. The first
two columns of Table 3 show that both variants of the predic-
tion heuristic approach lead to significantly longer paths (with
a statistical significance of 99%) compared to the direct follow-
ing due to the uncertainties involved in the predictions. Fur-
thermore, the third column in Table 3 that the percentage of
Unsuccessful runs is greater than that of our approach. There-
fore, these results highlight the strength of our approach and
its ability to deal with the prediction uncertainties to generate
foresighted navigation actions that lead to efficient robot trajec-
tories.

5.5.3 Real-World Experiment

In addition to the experiments in simulation, we performed
an experiment with a real robot. We used a Robotino robot



5.5 experiments 65

Figure 16: The robot and the user with a board of ArUco markers to
simplify pose estimation in the real-world experiment.

Figure 17: Real-world experiment: (a) The human gets outside the
robot’s camera field of view while walking along his path
(green trajectory) toward his destination. The robot keeps
updating the prediction until it reaches the correct destina-
tion. (b) The robot executes the learned actions to reach the
destination successfully through an alternative path (blue
trajectory) that avoids the narrow entrance that does not fit
the robot size.
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from Festo and used the on-board laser sensor for particle fil-
ter based localization on the given grid map. To estimate the
human’s position, the user holds a board of ArUco markers
[Garrido-Jurado et al., 2014] as shown in Figure 16. We focused
on showing the ability of our framework to handle situations
in which the human’s trajectory also contains passages that are
impassable for the robot so that simply following the human at
close distance will fail. The environment of the real-world ex-
periment with the topo-metric graph is shown in the left image
of Figure 14. The Q-table of the learned navigation actions for
this environment was also learned in simulation.

For the experiment shown in Figure 17, the human moved to-
ward his intended destination (which is unknown for the robot)
through a path that involved passing through two narrow walls,
which does not fit the size of the Robotino robot. Moreover, the
human left the robot’s field of view (due to the robot’s orien-
tation). The prediction, however, kept being updated until it
reached a final destination. Meanwhile, the robot executed the
learned Q-table actions based on the current robot position and
the current prediction at each time step. As can be seen, the
robot could successfully encounter the human at the intended
destination. The robot took an efficient path that fits the robot
size and at the same time considers potential prediction errors,
i.e., it executed an observation action by rotating 360° that put
destination 2 into its field of view (see Figure 17 (a)). After
that, the learned actions led to a path that put destination 3 in
the field of view of the robot as it moved on its path (see Fig-
ure 17 (b)). Therefore, if the prediction about the human pose
was wrong and the human was waiting in any of these desti-
nations, there would be a high probability of observing the hu-
man again and, thus, the prediction would have been updated
accordingly. Note that in this scenario, if the robot navigates ac-
cording to the strategy of closely following the human it would
get stuck in front of the narrow passage.

5.6 conclusions

In this chapter, we presented a reinforcement learning ap-
proach to generate efficient navigation actions for a service
robot that needs to encounter a user at designated locations,
between which a human moves on typical paths. We extended
our previous work presented in Chapter 4 by using a more com-
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pact representation of the movement possibilities, modifying
the state space, enhancing the reward function. Furthermore,
we hereby apply a particle filter based prediction about the hu-
man’s motion to deal with possible occlusions and generate
effective navigation and observation actions.

In simulated as well as in real-world experiments, we showed
that our method enables the robot to navigate efficiently to
predicted destinations and also deal with cases in which the
human is not within the robot’s sensor range. In these situa-
tions, the robot explicitly considers to execute observation ac-
tions to re-observe the human and update the prediction about
the destination. Additionally, the experimental results demon-
strate that our framework generates significantly shorter paths
and performs with a higher percentage of successful runs com-
pared to a baseline approach in which the robot tries to follow
the human at close distance. Furthermore, we compare the per-
formance of our approach to that of a heuristic that depends
only on predicting the user’s future location and moves the
robot toward it. We show in this comparison how such heuristic
suffers from prediction uncertainties and on the other side how
our approach is able to overcome such uncertainties and gen-
erate foresighted navigation actions that lead to efficient robot
trajectories.





6
P E O P L E F I N D I N G U N D E R V I S I B I L I T Y
C O N S T R A I N T S

In this chapter, we introduce our people finding approach which
focuses on scenarios where the user moves along common paths
between places where they remain for a while. Our approach
simulates possible behaviors of the user for future time steps in
addition to considering the visibility characteristics of the envi-
ronment in order to select a good search location at which there
is a high likelihood to observe the user.

6.1 introduction

Finding a person is an essential functionality that is needed
by several applications of mobile service robots. In scenarios
where the robot aids the user with tasks that require the robot
to move freely across the environment but also direct interac-
tion at certain times, the robot needs a strategy to find the user
as fast as possible when it is necessary. Typically, users do not
stay at a fixed position but move along common paths between
places where they remain for a while, e.g., to discuss work with
a colleague, grab some material, or get a coffee. The robot needs People finding

is essential in
daily tasks.

a good strategy to find the user as fast as possible also in these
situations to carry out its task. One possible solution to the
search problem is to apply techniques that try to maximally
cover the visible area of the environment [Choset, 2001; Guibas
et al., 1996; Suzuki and Yamashita, 1992]. However, these ap-
proaches lead to long search times and high navigation costs
as they aim at covering the whole environment. Moreover, the
maximum coverage techniques will not necessarily revisit al-
ready covered regions and since the user is assumed to move
freely across the environment, the robot might miss them dur-
ing the search.

Existing approaches either focus on maximum coverage as
mentioned above while ignoring making use of prior knowl-
edge about frequently visited destinations of the user and their
connecting paths, or they predict the user’s most likely loca-

69
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tions without considering the visibility constraints resulting from
the environment layout as well as ignoring the time needed by
the robot to reach such locations. Other approaches consideredDrawbacks of

existing methods. the frequency of human’s presence at specific locations as well
as the robot’s field of view, however, they do not model the
human’s motion and therefore cannot predict their expected
position at a certain intermediate time step. A detailed discus-
sion about these approaches, which demonstrate the research
gaps among them, can be found in Chapter 2.

6.1.1 Contributions

In contrast to all such aforementioned methods, we make use
of prior knowledge about frequently visited destinations of the
user and their connecting paths to achieve a short search time.
We developed an approach that determines good search loca-
tions using hidden Markov model (HMM) based predictions of
the user’s position on a graph representation of paths which the
user typically takes. Our novel approach performs HMM-based
simulations to compute the likelihood of the observability of
the user at each possible location. We hereby take into account
the time needed by the robot to reach the search locations from
its current position as well as the visibility constrains that arise
from the robot’s limited field of view and obstacles.

6.1.2 Framework Overview

Figure 18 highlights the strength of our approach. The location
of the user is initially unknown. The user may walk toward
any of a set of predefined destinations, known by the robot.Example

of good
search

locations.

Thus, the exact intended destination and the user’s location at
each time step are unknown. The robot’s task is to find the
user as soon as possible. As illustrated, our approach leads to
the selection of an effective search location that provides the
highest expected observability, i.e., the robot can observe the
corridor and the entrances to multiple rooms and, thus, locate
the user.

This search location selection can be achieved via performing
HMM-based simulations, that rely on individual HMM-based
predictions, in order to simulate possible behaviors of the user
for future time steps. Our novel approach simulates the user’s
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Figure 18: Top: The robot needs to find a user whose current location
is unknown. The user may walk toward any of a set of
predefined destinations, known by the robot. Bottom: The
robot needs to select a good search location that covers
most of the expected paths of the user. Our approach se-
lects a search location with maximum observability of the
user at the time the robot reaches it.

motion for future time steps and computes the predicted beliefs
about the user’s presence at each possible location at each fu-
ture time step. Then, we make use of these predicted beliefs, i.e., HMM-based

Simulations.that are obtained via simulations, while considering the visibil-
ity characteristics of the environment in order to select a good
search location at which there is a high likelihood to observe
the user. Moreover, our approach takes into account the time
needed by the robot to reach a certain search location, from
the robot’s current location, which accordingly plays a key role
in the selection criteria of that search location, i.e., reaching a
search location either early or late leads to negative results even
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if that search location may be considered as a good choice from
the prospective of the visibility characteristics of that location.

Concerning the individual predictions that are generated and
accordingly used by our simulations, they are generated via a
hidden Markov model (HMM) as mentioned above. Each hid-
den state of our proposed HMM represent a potential location
of the user, i.e., each hidden state corresponds to one of theHMM.
topo-metric graph nodes that represent the environment (see
Figure 19). Therefore, the belief of being at any hidden state rep-
resents our belief about the user’s presence at the correspond-
ing location. Furthermore, the transition probabilities between
these states model the user’s motion along their path and, thus,
these transition probabilities correspond to our prior knowl-
edge about the user’s frequently visited destinations and the
typical paths between them. Accordingly, we can keep a multi-
modal belief about the user’s presence following the beliefs of
the hidden states, where these beliefs are updated at each time
step based on the states’ transitions, i.e., the transitions of our
beliefs between the states model the user’s motion at each time
step. Thus, we can predict the user’s future positions via per-
forming the transitions of the beliefs between the hidden states
for some future time steps and compute the resulting future
beliefs of the user’s presence.

We show in extensive simulated experiments and in vari-
ous environments that our technique generates search locations
that significantly reduce the time to find the user compared to a
greedy solution that is provided with background information
about the possible destinations between which the user moves.
In the experiments, we model noisy observations and dynamic
obstacles to show the robustness of our approach.

6.1.3 Organization

The remainder of the chapter is structured as follows. The
next section states the problem formulation in detail. Then,
Section 6.3 discusses our graph-based people tracking model.
After that, we introduce our novel approach to select effective
search locations in Section 6.4. Then, we discuss the experimen-
tal setup and present comparative results in Section 6.5. Finally,
we draw some conclusions in Section 6.6.
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6.2 problem formulation

The task of the robot is to find a non-stationary user as fast as
possible. The environment is hereby known to the robot and it Frequently

visited
locations.

has prior knowledge about locations where the user frequently
stays and their typical paths between these locations. We refer
to these locations as destinations. After reaching such a destina-
tion, the user might stay there or move to another destination
after a certain waiting time.

We represent the environment as a grid map with an overlaid
topo-metric graph as shown in Figure 19, where each cell in
that grid is mapped onto its closest graph node [Bayoumi et
al., 2017]. The connections shown between neighboring nodes Topo-metric

graph.correspond to valid paths between these nodes. However, some
of the paths are only passable by humans, e.g., due to the size
of the robot or any other potential constraints of the searching
environment.

The location of the user is initially unknown to the robot as
well as their intended destinations when moving. After reach- Assumptions.
ing a destination, the user might stay there or start moving to
another destination after some time. We assume the moving
velocity of the user to be within a certain range, however, the
exact velocity of the user is unknown to the robot. Dynamic ob-
stacles, e.g., other humans, can appear in the environment and
temporarily constrain the robot’s field of view. The task is con-
sidered as successful when the robot observes the user within
its field of view.

6.3 graph-based people tracking

To represent the belief about the location of the user and track
its motion on the graph between the destinations, we apply a
hidden Markov model (HMM). A hidden Markov model, in
general, consists of a set of hidden states. These states are con-
sidered hidden since the current state of the model is unknown.
Therefore, we estimate the current state based on subsequent
observations. Furthermore, the model’s state changes at each HMM.
time step, i.e., which is called a state transition, based on a
transition probability distribution. Thus, given an initial distri-
bution that describes our belief about the initial hidden state
of the model, we keep updating these beliefs while considering
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Figure 19: Three simulation environments with overlaid topo-metric
graphs. Each environment is represented as a grid map
with an overlaid graph, where each grid cell is mapped to
the closest graph node (green dots) in the same room. The
orange dots represent paths that are only passable by the
user but not by the robot. The bold green dots represent the
predefined destinations between which the user moves.
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the possible transitions from each state to the other states and
the likelihood of such transitions, as well as taking into account
the likelihood of the generation of the obtained observations
from each of these states [Rabiner and Juang, 1986].

We hereby apply a HMM instead of a particle filter to achieve
more robust performance that is less prone to the initially gen-
erated particles and their propagation along the possible paths.
Since an infinite number of particles is theoretically needed to
fully represent the probability distribution of the user’s pres-
ence at each possible location at each time step. Instead, this
issue is implicitly handled in the case of HMMs.

In our proposed hidden Markov model, each hidden state
corresponds to one of the topo-metric graph nodes, that repre-
sent the environment, in order to track the user’s potential lo-
cations over that graph. Every node is represented by a unique
hidden state. Accordingly, the belief of the occurrence of each
hidden state represents our belief about the user’s presence
near to the corresponding graph node. Furthermore, we use
the information about the typical paths between the destina-
tions and the times that the user stays at the destinations to
find the average time that the user occupies each node. Then, Learning

distributions.we generate the initial state distribution, i.e., which represents
our belief about the user’s unknown initial location, according
to this occupation likelihood. For each node, we learn the state
transition probability distribution which models the transition
of the user from that node to the neighboring nodes based on
the typical paths that lead through that node. Moreover, this
transition probability distribution takes into account the aver-
age velocity of the user as well as the typical time the user
spends at the frequently visited destinations.

At each time step, we update the belief based on the tran-
sition probabilities and the belief at the previous time step as
follows: States’

transitions.
Belt(i) =

∑
j

p(i | j) Belt−1(j), ∀i ∈ N, (32)

where Belt(i) is the belief of being at node i at the time step t
and p(i | j) is the transition probability from node j to node i.
Additionally, N is the set of graph nodes.

After that, we update the belief of the graph nodes propor-
tional to the observation likelihood. According to our problem, Negative

observations.positive observation of the user leads to a successful termina-
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tion of the search process. Therefore, we only consider negative
observations in the observation model to update the belief. For
the graph nodes that fall within the robot’s field of view while
the user is not currently detected, the probability is reduced, as
follows:

Belt(i) =

γBelt(i), if (i ∈ FOV)∧ user not detected

Belt(i) otherwise
, (33)

where FOV is the area covered by the robot’s visual sensors
and γ ∈ [0, 1) is a reduction factor. Since the likelihood of falseFalse

negatives. negative observations increases with the distance of the user
to the robot, γ decreases with this distance. As we assume a
proper identification system, we do not model false positive ob-
servations. Note, however, that we can deal with false positiveFalse

positives. observations for a short time by requiring a minimum number
of subsequent time steps where the human is detected before
the search is assumed to be successful.

Then, we can estimate the most likely location of the user
by considering the node with the highest probability. However,
moving the robot to that estimated location is inefficient since
this strategy ignores the time needed to reach the search loca-
tion and to find the user. Moreover, estimating the most likelyMost Likely

Location. location of the user at each time step and accordingly updating
the robot’s search location at each time step might lead to an
oscillating navigation behavior as the estimation might jump
across the map. Therefore, we present in the next section our
approach that performs HMM-based simulations using the in-
dividual predictions obtained from the HMM.

6.4 selecting search locations

In this section, we describe our approach to selecting effective
search locations for the robot to find the human. Relying only
on the estimated most likely location of the user at each time
step leads to an oscillating navigation behavior as the estima-
tion might jump across the map, i.e., following the approach
of Goldhoorn et al. [2017] (refer to Section 2.2 for more de-
tails). We, therefore, propose in Section 6.4.1 a method that
performs HMM-based simulations which take into account the
time needed by the robot to reach the possible search locations
from its current place. After that, we present in Section 6.4.2
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few possible extensions to that proposed approach to enhance
its performance.

6.4.1 Using HMM-based Simulations

We first perform HMM-based simulations to compute the like-
lihood of the user’s presence for each graph node at future
time steps. Thus, we use the HMM presented in the previous
section in order to compute this likelihood. We predict the hu-
man’s motion along the graph by simulating the state transi-
tions for future time steps and compute the probability of the
graph nodes according to Equation 32. The belief at any time
step represents the estimate about the user’s presence at the
corresponding graph node at that time step. We simulate the HMM-based

Simulations.states transitions as many future time steps as needed by the
robot to reach the furthest graph node relative to the robot’s
current node.

After that, we use the predicted beliefs in order to compute
the likelihood of observing the user from each graph node, i.e.,
the likelihood of the user’s observability at that node, while
considering the time needed to reach this node. For example, if
a node lies ten time steps away, we consider the computed be-
lief resulting from simulating the state transitions ten time steps
into the future when computing the likelihood of the user’s ob-
servability at this node.

Our approval would be to compute the observability likeli-
hood lk of the user at each node k as follows: Observability

likelihood.
lk =

∑
i∈OT

k

Belt+T(i), ∀k ∈ RT, 1 6 T 6 T, (34)

where RT is the set of graph nodes that can be reached from
the robot’s current node nr within exactly T future time steps,
T is the number of future time steps needed by the robot to
reach the furthest graph node from nr, and OT

k is the group of
graph nodes that can be observed from node k by performing
an observation action, i.e., a full rotation. Moreover, Belt+T(i) is
the predicted belief about the user’s presence at node i after T

future time steps relative to the current time step t.
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After computing lk for every k, we select the graph node
with the highest observability likelihood s as the next search
location1, i.e.,Search

location
selection. s = argmax

k
lk. (35)

The pseudo-code of our search goal selection algorithm is listed
in Algorithm 2. As can be inferred from the example shown in
Figure 20, the robot selects the next search goal as the location
that is expected to provide highest observability at the time the
robot reaches it.

Algorithm 2 : Selection of the next search location using
HMM-based simulations

Input :beliefs and robotPose
Output : next search location
likelihood← {};
for t← 1 to T do
beliefs← simulate HMM’s states transitions for one
more time step in the future;
reachableNodes← nodes that can be reached by the
robot in exactly t time steps;

// calculate observability likelihood for each node;
for r ∈ reachableNodes do
visibleNodes← visible nodes from r (incl. r);
for v ∈ visibleNodes do
likelihood[r]←
likelihood[r] + beliefs[v];

end
end

end
return argmax

node

likelihood[node];

The robot then navigates to the selected node along the short-
est path in the graph and does an observation action by per-
forming a full rotation. If the user cannot be found anywhere
on the way to the current search location nor while performing
the observation action, a new search location is selected as pre-
viously and so forth. Performing the HMM-based simulations
in the described way provides an effective method for select-

1 Note that the time is inherently considered in the computation of the lk,
such that s does not need to have a time index.
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Figure 20: This figure shows the selected search location according to
Algorithm 2. The graph nodes are drawn with a color in-
tensity corresponding to the observability likelihood of the
user at the time the robot reaches this search location. The
robot selects the node that provides the highest observabil-
ity likelihood as next search location.

ing a good search location that takes into account the dynamic
behavior of the user.

While computing the next search location, we do not con-
sider waiting actions or non-shortest paths, as this results in
infinite possibilities to reach any node. Neither do we take into
account the observability along the intermediate nodes to the
considered search location. As we have found out in our exper-
iments, this leads to a selection of search locations with longer
paths and does not decrease the search time.

6.4.2 Extended Version of HMM-based Simulations

Moreover, as an extended version of our aforementioned ap-
proach, we extend the computations of the user’s observability
likelihood as opposed to Equation 34 such that we additionally
consider the user’s observability likelihood at each of the in-
termediate nodes along the robot’s path to the search location
instead of only considering it at the search location itself. How- Observability

along the
robot’s path.

ever, this leads the robot to favor far search locations despite of
the deficiency in order to maximize the observability likelihood
accumulated along the path, as we have mentioned previously.
Therefore, in order to overcome such issue, we consider the av-
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erage of the HMM’s predicted beliefs of every observed node
along the robot’s path, i.e., which represent the likelihood of
the user’s presence there, at the corresponding time steps of be-
ing observed or visited by the robot. Additionally, we take into
account the impact of observing the same nodes for multiple
times along the path of the robot via applying a reduction fac-
tor to alleviate such effect. These repetitions cause a problem
since the predicted belief of a node, that is observed repeat-
edly for multiple times, will be included in the aforementioned
averaging step for multiple times as well which, accordingly,
increases the uncertainty involved in the search location selec-
tion. Therefore, this reduction factor, which is computed inde-
pendently for each path, corresponds to the ratio between the
number of the observed intermediate nodes without repetition
to that with repetition. For example, this ratio takes the value
of 1 only if each observed intermediate node is only observed
once during the robot path to its search location. Therefore, we
compute the likelihood of observability, as opposed to Equa-
tion 34, as follows:

lk =
∑
i∈OT

k

Belt+T(i) +
α

T − 1

T−1∑
δ=1

∑
i∈Qt+δk

Belt+δ(i),

∀k ∈ RT, 1 6 T 6 T ,

(36)

where

α =

∑T−1
δ=1

∑
i∈Qt+δk

βi∑T−1
δ=1 |Q

t+δ
k |

, (37)

and

βi =

1 if first time to observe i

0 otherwise
. (38)

Again, RT is the set of graph nodes that can be reached from the
robot’s current node nr within exactly T future time steps, and
T is the number of future time steps needed to reach the fur-
thest graph node from nr. Moreover, OT

k is the group of graph
nodes that can be observed from node k by performing an ob-
servation action. On the other hand, Qt+δk is the list of nodes
that are observed by the robot at the intermediate time step
t + δ along its path from its current graph node nr to node
k. Additionally, Belt+T(i) is the HMM’s predicted belief about
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the user’s presence at node i after T future time steps relative
to the current time step t. The reduction factor α is computed
independently for each possible path. After that, the robot se-
lects its next search location that maximizes the observability
likelihood following Equation 35.

Additionally, we consider the possibility of performing obser-
vation actions, i.e., a full rotation, at important locations. There-
fore, during the HMM-based simulations we consider the inter-
section nodes at which performing an observation action might
lead to a considerable information gain. We select intersection Intermediate

observation
actions.

nodes eligible for observation actions during the HMM-based
simulations based on the predicted beliefs of the user’s pres-
ence at the graph nodes that can be observed only if an obser-
vation action is performed by the robot as follows:

Qt+δk ←

Ot+δk if
∑
i∈Ot+δk

Belt+δ(i) > c
∑
i∈Ft+δk

Belt+δ(i)

Ft+δk otherwise
,(39)

where, Ft+δk is the set of nodes that can be observed without a
rotation needing to be executed by the robot at the intermediate
time step t+ δ along the robot’s path from current graph node
to node k. Furthermore, c is a constant threshold that controls
the possibility of executing the rotation.

In other words, if the beliefs of such nodes, i.e., that can be
only observed via a rotation, are greater than a certain thresh-
old that involves the beliefs of the nodes that are already ob-
served without such rotation, then an observation action is con-
sidered. Accordingly, the list of intersection nodes along the
robot’s path at which observation actions are to be performed
is determined for each reachable node, i.e., while computing
the observability likelihood of the user at each of them. Then,
the actual list to be executed is chosen corresponding to the
selected search location.

It is worth mentioning that we do not consider updating the
search location before it is reached by the robot even when the
likelihood of observability of that location loses considerable
amount of its power. As we have found in our experiments,
aborting the search location and selecting a new one has a
negative impact on the search time and this impact appears
significant in environments where there are numerous move-
ment probabilities as in the case of the second environment
(see Figure 19). These aborting decisions are considered as hur-
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ried decisions that ignore the simulations based on which the
search locations are selected. Furthermore, these hurried deci-
sions will bias the subsequent selection of search locations since
the same location will not be reselected even if it is a good one
because of the effect of the negative observations on our belief
of the so far observed intermediate nodes.

In the next section, we present an extensive evaluation of
both variants of our approach to selecting the next search goal
and compare them to a greedy approach with background in-
formation and the approach of Goldhoorn et al. [2017] that re-
lies on the estimation of the user’s current location without
performing any simulations.

6.5 experimental results

We carried out extensive experiments to evaluate each of our
proposed approaches and compare them to alternative meth-
ods in different environments. In Section 6.5.1, we demonstrate
the setup of our simulation experiments. Then, we discuss the
achieved results in Section 6.5.2.

6.5.1 Experimental Setup

We performed the experiments in three different, challeng-
ing simulation environments (see Figure 19), each of size
41m× 20.5m with a grid map resolution of 0.25m and a node
distance of 1.5m. In the first two environments, multiple pathsSimulation

environments. exist between the destinations, among which the user chooses
one based on a certain known probability distribution. The tran-
sition probabilities of the user from one destination to the oth-
ers are equally likely. Note, however, that some passages are
impassible to the robot, i.e., the dotted line with orange nodes
for the first two environments to make the search problem even
more challenging. As can be seen, the visibility characteristics
of the second environment are very difficult due to the clut-
tered nature of the environment’s walls. On the other hand, the
third environment is much simpler to navigate as there is only
one path between any two nodes for both the robot and the
user.

In each experiment, the position of the user is initialized ac-
cording to the occupation likelihood (see Section 6.3) and the
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user moves in the environment between the predefined desti-
nations. The user does not necessarily move on the shortest Occupation

likelihood.path but might take detours. When the user reaches their des-
tination, they wait there for a certain period of time. The user
repeats this behavior until they reach their fourth destination
and remains there. The velocity of the user is sampled from a
certain interval. At each time step, the position of the user is
mapped onto the closest graph node given its grid map posi-
tion. The initial location of the user is unknown to the robot
and is outside its field of view.

The beliefs of the hidden states of the HMM are initialized
and updated as described in Section 6.3. The number of dy- Dynamic

obstacles.namic obstacles that constrain the robot’s field of view ranges
from three to five and their velocities are sampled from the
same interval as the velocity of the user.

Furthermore, we perform observation actions at the interme-
diate intersection nodes if the sum of beliefs of the hidden states
corresponding to the nodes that can be observed from such ro-
tation is at least twice those which can be observed without
rotation, i.e., constant c in Equation 39.

The search task is considered successful when the robot ob-
serves the user. The robot’s field of view has a horizontal open-
ing angle of 58◦, which corresponds to that of an ASUS Xtion
Pro Live RGB-D sensor, and a 10m view distance. We set the
probability of false negatives between 0.05 and 0.15 linearly in-
creasing with the distance between the robot and the user. We
do not consider false positive observations in the simulation
experiments. However, we can deal with false positive obser-
vations in real-world scenarios for a short time by requiring a
minimum number of subsequent time steps where the human
is detected before the search is assumed to be successful.

6.5.2 Results and Evaluation

We performed 5, 000 experiments in each of the three environ-
ments. In order to evaluate the performance of both versions
of our approach, we considered the search time of each of
them and compared it to the time needed by two different ap-
proaches. The strategy of the first alternative approach is to visit Benchmarks.
all destinations in a greedy fashion using background informa-
tion, i.e., the knowledge about the destinations of the user. The
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greedy approach does not consider any prediction about the
user’s location; it keeps selecting the closest unvisited destina-
tion as a search location until the user is found. After visiting
all destinations, it starts the search process all over again.

We additionally compared our approach to a method that
uses the hidden Markov model representation to infer the cur-
rently most likely location of the user and moves the robot to-
ward that location for one time step, then updates the estima-
tion and so on. This method is similar to the approach of Gold-
hoorn et al. [2017] and we refer to this method as the one-step
to estimation method.

We hereby refer to the initial version of our approach that
is presented in Section 6.4.1 as the limited version. On the other
side, we refer to the other version which is discussed in Sec-
tion 6.4.2 as full version.

We evaluated the statistical significance of our comparative
experiments with a two-tailed paired t-test. The experimental re-
sults show that both variants of our method performing HMM-
based simulations significantly outperforms each of the other
two approaches with a statistical significance of 99%. Figure 21

shows the average relative search times achieved by both ver-
sions of our approach for each of the three environments with
respect to the greedy approach with background information.
Additionally, Figure 22 shows the average relative search times
with respect to the one-step to estimation method. The results
demonstrate that both variants of our approach, performing
HMM-based simulations and predicting the observability like-
lihood of the user, significantly outperform all the other meth-
ods in various scenarios and environments regardless of their
visibility characteristics.

Moreover, the extended version of our HMM-based simu-
lations approach performs significantly better in all environ-
ments compared to the initial version with a statistical signif-
icance of 99% as well. These results show that making use of
intermediate nodes, i.e., to gain more information via obser-
vation actions, is more efficient regardless of the environment
type and its visibility characteristics.

As both versions of our approach do not guarantee to cover
the entire map and, thus, might not find a search location close
to the user’s final destination, we switch to the greedy approach
after a given time limit. The maximum time limit was deter-
mined experimentally such as to minimize the overall search
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Figure 21: Average relative search time achieved by both versions of
our HMM-based simulations approach with respect to the
greedy approach with background information. The times
are normalized so that the greedy approach equals 100%.

Figure 22: Average relative search time achieved by both versions of
our HMM-based simulations approach with respect to the
one-step to estimation method. The times are normalized
so that the one-step to estimation approach equals 100%.

time. Table 4 shows the percentage of experimental runs using
our approaches and the ”one-step to estimation” approach that
exceeded this time limit and switched to the greedy method. As
shown, our techniques based on HMM simulations outperform
the one-step to estimation method for all the environments. Fur-
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Table 4: Percentage of switching to the greedy approach.

HMM-based
Simulations

One-Step to
Estimation

Full Limited

Env. 1 0.8% 1.77% 4.38%

Env. 2 1.47% 1.75% 4.88%

Env. 3 4.2% 8.25% 12.15%

thermore, the extended version of our approach outperforms
the initial version for all the environments as well. It is worth
mentioning that we included these additional search times re-
sulting from switching to the greedy approach in all of the pre-
viously presented results.

A video showing the advantages of our approach for a com-
parative example run can be downloaded from https://www.

hrl.uni-bonn.de/ias18bayoumi.mp4. It demonstrates the supe-
rior performance of our novel search method.

6.6 conclusions

In this chapter, we presented an approach that enables a mo-
bile robot to quickly find a non-stationary user in complex en-
vironments. Our approach selects the best next search location
by predicting future paths of the user. To compute the likeli-
hood of the observability of the user at possible search loca-
tions, we apply HMM-based simulations using hidden Markov
model (HMM) on a graph representation of possible paths in
the environment. We hereby take into account the time needed
by the robot to reach the search locations as well as visibility
constraints. Furthermore, we present an extended version of
our HMM-based simulations approach that takes into account
the user’s observability likelihood at each of the intermediate
nodes along the robot’s path. Additionally, we consider per-
forming observation actions at important locations, i.e., inter-
section graph nodes, along the robot’s path to its search loca-
tion in order to gain more information about the user’s location.

As our simulation experiments demonstrate, our approach
enables the robot to select effective search locations to find the
user within a short amount of time. We showed in extensive

https://www.hrl.uni-bonn.de/ias18bayoumi.mp4
https://www.hrl.uni-bonn.de/ias18bayoumi.mp4
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experiments that both versions of our proposed method signif-
icantly outperforms two other common search methods, i.e., a
greedy approach using background information and a method
that infers the currently most likely location of the user and
moves the robot toward that location for one time step. The ex-
periments included runs where occlusions caused by dynamic
obstacles as well as false negative detection occurred, which
will be the case for real-world scenarios.





7
C O N C L U S I O N S & O U T L O O K

In this dissertation, we presented people following and finding
approaches that greatly reduce the robot’s navigation costs and
search time, respectively. We considered each of the following
and finding tasks separately. Concerning people following, as
opposed to existing approaches, we presented the first frame-
work, to the best of our knowledge, that focuses on the effi-
ciency of the robot’s trajectory during the following task. Thus,
we presented a reinforcement learning approach to generate
foresighted navigation actions. We considered the scenario in
which the user moves between different designated locations
where he might need to interact with the robot. Thus, the task
of the robot is to meet the user at his intended destination
which is initially unknown to the robot. Our approach con-
stantly predicts the user’s location after some future time steps,
and applies reinforcement learning on the top of such predic-
tion to generate foresighted navigation actions that are robust
to the prediction uncertainties as well as the unexpected behav-
iors and detours of the user.

Furthermore, we addressed the people following problem
within two main milestones. In the first milestone of develop-
ing such approach, due to the complexity of the problem and
our focus on exploring the feasibility of relying on such learn-
ing approach, we assumed having perfect knowledge about the
poses of both the user and the robot. In the second milestone,
we relied on the robot’s on-board sensors for active localization
of the user and thus we considered dealing with occlusions
and impassable paths to the robot, i.e., due to size or safety
constraints. Additionally, we considered a compact representa-
tion of the movement possibilities via a grid map with an over-
laid topo-metric graph, such that each grid cell corresponds to
the nearest graph node. Such representation allows us to han-
dle large and complex environments without overloading the
learning process, as opposed to relying only on grid maps as
in the first milestone. Furthermore, we applied a particle filter
based prediction about the user’s motion to deal with possible
occlusions and generate effective navigation and observation

89
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actions. Such prediction model maintains a multi-modal belief
about the user’s location and it able to correct itself based on ob-
servation actions. Thus, particle filter based prediction is more
robust compared to the softened Markov decision process pre-
diction model that is used in the first milestone.

In simulated as well as in real-world experiments, we showed
that our method enables the robot to navigate foresightedly
leading to significantly shorter paths. Additionally, our method
performed well in handling occlusions due to obstacles, be-
sides, finding alternative paths to impassable paths through
which the robot is not allowed to drive and follow the user.
Our method showed that it could autonomously select key lo-
cations (e.g., intersection points, corridors ... etc) to perform ob-
servation actions to gain more information, i.e., either positive
or negative information, to improve its belief about the user’s
location. Moreover, as our experiments showed, the generated
actions could balance smartly between contradicting objectives.
They tended to keep the user within the robot’s limited field
of view as much as possible while minimizing the navigation
costs needed to meet the user at his intended destination. More-
over, we showed that our approach significantly outperforms
a heuristic technique that depends solely on the predictions of
the user’s future location, i.e., performs path planning based on
these predictions. This shows that our approach is able to over-
come prediction uncertainties and generate foresighted naviga-
tion actions that lead to efficient robot trajectories.

On the other side, we presented an approach for people find-
ing that significantly reduces the search time to find a moving
user. Our approach relies on performing hidden Markov model
(HMM) based predictions in order to select good search loca-
tions from which the user can be most likely observed. We as-
sumed having prior knowledge about the user’s common paths
in the environment. Accordingly, we performed HMM-based
simulations on a graph representation of possible paths in the
environment using HMM-based predictions about the user’s
future locations. Additionally, we took into account the time
needed by the robot to reach the possible search locations as
well as the underlying visibility constraints of the environment.
Moreover, we extended this proposed approach by consider-
ing the user’s observability likelihood at each of the intermedi-
ate nodes along the robot’s path to its selected search location.
Furthermore, in the extended version, we allowed performing
observation actions at visually important locations along the
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robot’s path to the search location, as opposed to performing
them only at the search location in the initially presented ver-
sion of this approach.

Additionally, we performed extensive experiments to com-
pare both versions of our approach to a greedy approach that
is provided with background information about the possible
destinations between which the user moves. This greedy ap-
proach does not perform any prediction about the user’s loca-
tion to generate the search actions. Additionally, we compared
them to heuristics that perform path planning relying solely
on the most likely location of the user, i.e., without performing
HMM-based simulations. Both versions of our approach sig-
nificantly outperformed all such techniques. Furthermore, we
showed that the extended version of our approach significantly
outperforms its initial version.

outlook

We hope that this dissertation could contribute to the scientific
society and that other researchers will find this work helpful
for their applications as well as a valuable starting point for a
new research direction. There is still much to be done in this
field and it may move toward many different directions, thus,
in the rest of this section we point out some possible research
directions that make use of our presented work.

In this dissertation each problem is discussed independently
following a divide and conquer strategy. A possible starting
point is to combine methods of people following and finding
and address other domains of applications and problems. One
possible example is to integrate our people following and peo-
ple finding frameworks (see Chapter 5 and Chapter 6, respec-
tively) into one system that can automatically switch between
each of them according to the intended application of the robot.
This will require designing the knowledge transfer between
these two frameworks at each switch, e.g., the beliefs about the
user’s existence during a search task can be improved if it starts
with an initial distribution that takes into account the user’s last
location that was observed during a previous following task.

One more interesting research direction is to consider apply-
ing deep reinforcement learning techniques, i.e, following the
current upward trend of deploying deep learning techniques, in
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order to investigate possible performance improvements. Ad-
ditionally, it may be useful to increase the complexity of the
following scenarios by considering dynamic obstacles and peri-
odic variations to the given static maps.

One more starting point is to combine our presented ap-
proaches with simultaneous localization and mapping (SLAM)
techniques. Such that they no longer depend on a given map
that is subject to change. Such feature will be necessary in or-
der to obtain a robot that can apply both of our frameworks to
any possible scenario.

Additionally, more specific applications of our work can be
addressed, for example, the applications that target helping the
children suffering from autism. Such an application domain is
expected to have an increasing attention in the future due to
the remarkable success of using robots in helping those chil-
dren more than humans [Kim et al., 2013]. One example ap-
plication can be a hide-and-seek game that specially addresses
the children with autism where the robot tends to enhance the
engagement of the children via teaching them how to take part
and play such game. Such application is expected to have a
high impact on stimulating the children’s ability to communi-
cate effectively.
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