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CHAPTER 1

Introduction

Information Technology (IT) plays a crucial role in modern society. Over the past decade the Internet
has emerged as a key communication platform for businesses and private users demonstrated by an
exponential increase not only of hosts connected to the Internet but also Internet users. While in 2007
561.6 Million hosts were advertised in the Domain Name System (DNS) 1, the number of hosts has
almost doubled to 1.062 Billion 2 over the past 10 years [1]. In addition, with the ongoing adoption
of Internet of Things (IoT) as key technology enabler for advanced infrastructure concepts such as smart
cities, smart grids, virtual power plants, or intelligent transportation systems (e.g. connected cars), the
number of hosts connected to the Internet is expected to increase exponentially to 30 Billion devices
by 2020 [2]. With an increase of hosts on the Internet, the number of Internet users has also increased
dramatically over the past decade. While in 2007 20% of the world’s population (1,319 Billion) utilized
the Internet, the number of Internet users in 2017 has more than doubled to 3,885 Billion users (approx.
52% of the world’s population [3]).

Considering the pervasiveness of today’s IT organizations become increasingly exposed – predomin-
antly driven by threat likelihood and vulnerability level of the organization. On the one hand, the number
of reported security incidents world-wide has increased tremendously at a compound annual growth rate
of approx. 60% between 2009 (3.4 Million incidents) and 2015 (59 Million incidents) [4]. One reason for
the tremendous growth of computer and network attacks is an increase of attack automation and attack
sophistication [5]. While in earlier days computer attacks had to be crafted manually and were aimed at
specific targets, today complex malware tool kits are readily available to infiltrate a network, persistently
deploy on target hosts, selectively propagate across the network and perform a wide range of actions
ranging from sensitive data ex-filtration to distributed denial of service attacks [6]. A common concept to
mount sophisticated and large-scale attacks are Botnets in which hosts are infected by malware to receive
commands from a Command & Control (C2) server to execute malicious payload [7]. For example, the
self-propagating worm Mirai infected over 600.000 IoT devices (mostly cameras and routers). Infected
devices were controlled by so called C2 servers to mount the largest distributed denial of service attack
on record with more than one Terabits per second (Tbps) at its peak causing temporary but significant
connectivity issues for Internet users.

On the other hand, while there is an increase in threats, the vulnerability surface of organizations is
also growing. As an example, the number of disclosed software vulnerabilities has grown at a compound
annual growth rate of approx. 8.3% from 6,516 in 2007 to 14,451 reported vulnerabilities in 2017 [8].
Lack of security awareness, continuous adoption of emerging technology, increasingly complex software

1 Devices behind Network Address Translation (NAT) segmented networks are not included in the estimation.
2 Billion = 109
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Chapter 1 Introduction

combined with fast-paced software development life cycles can be considered major factors that drive an
organization’s vulnerability level [9].

The following sections will provide an overview of challenges in the fields of computer and network
security – specifically related to the detection of network-based computer attacks and host-based malware
attacks – and furthermore introduce a machine learning-based approach to overcome these challenges.

1.1 Known and unknown threats

One of today’s key challenges is the detection of unknown threats. The majority of the state-of-the-art
security controls deployed in organizations are reactive in nature and predominantly based on known
attack signatures. Although those safeguards demonstrate high detection accuracy for known attack
patterns, drawbacks include their inability to reliably detect not only unknown but also modified versions
of known threats. For example, in the context of targeted attacks by adversaries with advanced capabilities
(e.g. state-sponsored attackers), computer and network attacks have become increasingly sophisticated.
Obfuscation techniques such as polymorphism, metamorphism, armoring or simply using "living-off-the-
land" functionality (i.e. file-less malware) are specifically designed to thwart existing countermeasures
and enable undetected delivery and execution of malicious code [e.g. 10, 11].

The problem of unknown threat detection is known in many different areas in computer and network
security. Network attacks and malware are among the most common threat vectors [12] and thus, are
focal point of this dissertation.

Network attacks. Extensive research has been conducted to develop methods and systems for the
detection of computer and network attacks. A computer attack refers to an attempt to compromise
confidentiality, availability or integrity of a computing resource. An Intrusion Detection System (IDS)
captures and analyzes streams of data in networks or on hosts to detect computer attacks. The conceptual
design of intrusion detection systems goes back to the work of Denning [13] which serves as a foundation
for numerous state-of-the-art intrusion detection systems nowadays [e.g. 14, 15]. An overview of existing
intrusion detection approaches is provided by the work of McHugh [5]. Intrusion detection techniques
can be broadly classified into misuse detection and anomaly detection [16]. While misuse detection
methods are intended to recognize known attack patterns, anomaly detection techniques aim at identifying
unusual structural or activity patterns in observed data. A well-known drawback of misuse detection
systems is their inability to detect "unknown" attacks due to their reliance on pre-defined policies or attack
signatures. Thus, significant research has been conducted on anomaly-based detection methods [e.g.
17–19]. However, the majority of these methods focuses on spotting computer and network attacks
exploiting network protocol header vulnerabilities such as Teardrop, Land or Ping of Death [20].

Nowadays, the vast majority of network attacks is carried out at the application layer exploiting
vulnerabilities in applications or third party software components by leveraging standard network
protocols to deliver malicious exploit payload. Driven by the growing automation of vulnerability
research and exploit development tools and techniques [e.g. 21, 22], exploit development cycles become
increasingly shorter, leading to faster production and proliferation of commercial-grade software exploits.
A zero-day vulnerability refers to a software or hardware flaw that is unknown to the security community
and no fix or patch is available [23]. A zero-day attack refers to an attack exploiting a zero-day
vulnerability whereas the time between discovery of the vulnerability and its exploitation is less than a
day. For example, a recent attack launched against a major U.S. credit bureau showed how quickly a
zero-day vulnerability can be exploited [24]. In that particular example, an exploit was developed and
executed against a server containing an unfixed vulnerability (CVE-2017-5638 [25]) within less than 24
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1.1 Known and unknown threats

hours. The example below shows a Hyper-Text Transfer Protocol (HTTP) [26] request carrying malicious
payload to exploit the aforementioned vulnerability residing in the Jakarta-based file upload multi-part
parser of the Apache Struts 2 web application framework [27] installed on one of the servers. In the
vulnerable version (i.e. 2.3.2 or lower), incorrect exception handling and error message generation during
file upload allow for arbitrary remote code execution via command injection in the Content-Type field of
the HTTP request. In the example below, the current directory of the server is read out (i.e.#cmd=d́ir)́
and returned as output in the HTTP response. More sophisticated variants of that exploit have surfaced
which include reconfiguration of security settings or utilization of persistency mechanisms [28].

GET / HTTP/1.1
Host: 192.168.126.128:80
User-Agent: Mozilla/5.0
Accept-Encoding: identity
Content-Type: %{(#_=’multipart/form-data’).(#dm=@ognl.
OgnlContext@DEFAULT_MEMBER_ACCESS).(#_memberAccess?(#_memberAccess=#dm):((#
container=#context[’com.opensymphony.xwork2.ActionContext.container’]).(#ognlUtil
=#container.getInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ognlUtil.
getExcludedPackageNames().clear()).(#ognlUtil.getExcludedClasses().clear()).(#
context.setMemberAccess(#dm)))).(#cmd=’dir’).(#iswin=(@java.lang.
System@getProperty(’os.name’).toLowerCase().contains(’win’))).(#cmds=(#iswin?{’cmd
.exe’,’/c’,#cmd}:{’/bin/bash’,’-c’,#cmd})).(#p=new java.lang.ProcessBuilder(#cmds)
).(#p.redirectErrorStream(true)).(#process=#p.start()).(#ros=(@org.apache.struts2.
ServletActionContext@getResponse().getOutputStream())).(@org.apache.commons.io.
IOUtils@copy(#process.getInputStream(),#ros)).(#ros.flush())}

Connection: close

Listing 1.1: Malicious HTTP request exploiting vulnerability in the Apache Struts framework (CVE-2017-5638)

Although the HTTP request shows distinctive characteristics of malicious or at least suspicious payload
(i.e. HTTP Content-Type parameter value), exploit authors can leverage various techniques (e.g.
utilization of different character encodings, encryption etc.) to obfuscate the malicious payload, rendering
traditional misuse detection ineffective to detect malicious payload delivered over application-level
network protocols.

Advanced malware. The continuous proliferation of increasingly sophisticated malware poses a
significant threat to organizations. Malware detection methods can be broadly categorized into static
and dynamic analysis. While static analysis refers to the decompilation and analysis of structure, flow
and data residing within the malicious binary at compile time [e.g. 29–32], dynamic analysis aims at
profiling activity of malware binaries at run time [e.g. 33–37]. A major drawback of existing methods is
its reliance on malware signatures resulting in limited ability to detect unknown malware or variants of
known malware. This is reflected in detection accuracies between 18 to 70% – demonstrating a large
variance between operating systems [38].
Nowadays, staging and obfuscation techniques are oftentimes used by malware authors in an attempt to
evade anti-malware solutions. Staging refers to the segregation of malware functionality into download
and execution stages, primarily to reduce the overall size of the malware during installation and hide
malicious activity in normal network traffic during downloading of malicious payload. Multi-stage
malware is a crucial component of today’s Botnets, i.e. networks of compromised machines (i.e. bots)
controlled by attackers through a C2 server infrastructure [39]. As opposed to single-stage malware
in which malicious code is directly contained in the Dropper, multi-stage malware first downloads to
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Chapter 1 Introduction

the victim’s machine (e.g. via phishing or DNS hijacking) to establish persistency and consequently
execute malicious payload obtained from a C2 server. Obfuscation is another technique used by malware
authors to hide malicious characteristics of malware. Techniques such as oligomorphism, polymorphism
or metamorphism aim at changing the representation (e.g. function call obfuscation, control flow
obfuscation behavior) of malicious code while maintaining its functionality [e.g. 40].
IoT is as an example for growing sophistication and complexity of malware. The number of malware-
enabled attacks on IoT devices has significantly increased by approx. 600% in 2017 (6.000 attacks
in 2016). The most common IoT malware families observed in 2017 were Linux.Lightaidra, Tro-
jan.Gen.NPE and Linux.Mirai [41]. For example, the self-propagating multi-stage malware Mirai was
developed to execute denial-of-service attacks by compromising IoT and infrastructure devices and
performing application-level (e.g. HTTP) or network-level flooding over Generic Routing Encapsulation
(GRE), Transmission Control Protocol (TCP), or User Datagram Protocol (UDP). Mirai works by first
installing a loader on the victim’s host which creates a multi-threaded server. Mirai then scans its
environment for open telnet ports to propagate itself to hosts by brute-forcing telnet passwords based on
a dictionary. Subsequently, the loader is executed which connects the host to a C2 server to download
and execute architecture specific payload. Although Mirai does not show persistency mechanisms, the
malware provides basic defense functionality such as process termination. Basic obfuscation techniques
are performed to cover malicious activity including deletion of downloaded binaries and process name
obfuscation. Another example of more sophisticated utilization of obfuscation techniques is ransomware.
The wide-spread distribution of malware instances (e.g. WannaCry, Petya, NotPetya, BadRabbit) in
2017 suggests an increased utilization of obfuscation techniques. While the number of new ransomware
families has decreased by 63% from 98 families in 2016 to 28 families in 2017, the number of new
ransomware variants have increased by 46% from 241.000 to 350.000 indicating a lack of new threat
actor groups and less innovation on the one hand but mutation and customization of existing ransomware
through obfuscation techniques on the other [41].

1.2 Machine learning to detect unknown threats

For organizations a multitude of technical safeguards is available to detect and prevent cyber threats.
Concepts can be broadly categorized into misuse detection and anomaly detection. While misuse
detection methods are intended to recognize known attack patterns described by rules, anomaly detection
focuses on detecting unusual activity patterns in the observed data [e.g. 17, 18, 42].
The majority of state-of-the-art methods can be classified as misuse detection due to their reliance on
rule sets. Rule-based solutions can be further divided into blacklist- and whitelist-based approaches.
Blacklist-based methods can be further refined into signature-based and heuristic-based approaches.
While signature-based approaches allow to detect threats based on specific threat patterns (e.g. malicious
byte sequences), heuristic methods allow for the detection of unknown threats based on an expert-based
probabilistic rule sets that describe malicious indicators. Although heuristic approaches often complement
signature-based solutions, a major drawback is their susceptibility to high false positive rates. Finally,
white-list based approaches usually include policies which allow for the detection of threats based on
the deviation from a pre-defined negative baseline configuration (e.g. IP whitelists). An overview of
state-of-the art misuse and anomaly-based detection methods is provided by the work of Modi [43] and
Mitchell [44].
To overcome challenges with existing approaches (i.e. limited ability to detect unknown threats by
signature-based methods and lack of detection accuracy by behavior-based methods), interest has grown
in the security community to utilize machine learning as an alternative and more accurate approach to
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1.2 Machine learning to detect unknown threats

existing methods for the detection of unknown threats or variants of known threats [e.g. 45–52].
Machine learning provides methods to automatically infer generalized data models based on patterns
identified in data. Significant research has been conducted on theory and methods for machine learning
over the past decades [e.g. 53–56]. An overview of learning techniques is provided by the work of
Duda [57] and Hastie [58] whereas kernel-based learning is more specifically discussed by Mueller [59]
and Smola [60].

Generally, machine learning is concerned with solving an optimization problem to find a function f̂θ with
parameters θ that minimizes the expected risk R( f ) (test error):

f̂ = argmin
f∈H

R( f ) + Ω( f ), (1.1)

whereas f : X 7→ R refers to a predictor that learns a real-value mapping of a set of n-dimensional
data points X = {x1, x2, xi, ..., xm | xi ∈ Rn} to an output variable ŷ ∈ R. The risk function R( f ) =∫
L( f (x), y)dP(x, y) is defined as the expectation of the loss function L( f (x), y) that penalizes incorrect

prediction of ŷ = f (x) based on the ground truth mapping y. The most common loss function for
classification and anomaly detection is the squared loss L( f (x), y) = ( f (x) − y)2 [59, 61].
Unfortunately, the expected risk R( f ) cannot be calculated as the underlying joint probability distribution
P(x, y) is unknown. However, as an approximation, the empirical risk Remp( f ) = 1

n
∑n

i=1 L( f (xi), yi)
(training error) can be calculated as the average loss over a sample of training points for a function in
function setH . Unfortunately, minimization of the empirical risk is not sufficient to obtain a function
which accurately predicts on unseen data instances. Structural risk minimization, originally introduced
by Vapnik [62], provides a framework that puts expected risk and empirical risk into a relationship. The
framework provides an upper bound for the expected risk R( f ) ≤ Remp( f ) + C( f , ...) using the empirical
risk Remp( f ) and the capacity term C of the function class of the predictor f . Intuitively, the capacity term
reflects model complexity. While predictors with linear decision surface have low capacity, non-linear
functions demonstrate high capacity.
The accuracy of a predictor is largely determined by two types of errors: bias and variance. While
the bias error takes into account the deviation of the expected prediction of a model to the true target
values, the variance error takes into account the variability of the prediction based on training of a specific
function over different training sets. While high capacity function (e.g. non-parametric or non-linear
functions) have low bias but high variance (risk of overfitting), low capacity functions (e.g. parametric or
linear functions) tend to have high bias but low variance (risk of underfitting). The overall objective is to
learn a function with low bias and low variance, i.e. a function with low training error but also generalizes
on unseen data. This relationship is commonly known in machine learning as the bias-variance dilemma.
Mathematically, the total error E(x) (i.e. expected risk) can be decomposed into bias error, variance error
and irreducible error [58, 62]:

E(x) =
(
E[ f̂ (x)] − f (x)

)2
+ E

[
( f̂ (x) − E[ f̂ (x)])2]

+ σ2
e (1.2)

As illustrated in Fig. 1.1, a data model that minimizes both types of errors, bias and variance, allows to
accurately capture regularities in the training data while generalizing well over unknown data.

To address the bias-variance trade-off the concept of regularization is introduced to obtain a data model
that both accurately predicts on training and validation data and also generalizes on unseen test data. To
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Chapter 1 Introduction

Figure 1.1: Bias-variance trade-off

this end, the minimization problem is extended by a regularization term Ω( f ) = C
∑n

i=0 ξi to penalize
function complexity in favor for wrongful prediction for data points xi through so called slack variables ξi
which allow misclassification for the benefit of learning function with lower complexity. The parameter
C controls the bias-variance trade-off, yielding C = 0 for low bias and high variance. An increase
of C results in increasing bias and decreasing variance. A suitable C value can be obtained through
cross-validation.
Given the overwhelming amount of machine learning methods available, the choice of the right method
for the problem at hand depends on its properties. An introduction to various supervised and unsupervised
machine learning methods is provided in Chapter 2. Optimization and regularization are two major
components for learning accurate data models. Optimization methods can be broadly categorized into
iterative and non-iterative methods. In machine learning, gradient-based methods are commonly used
for iterative optimization as for example implemented in Multi-layer Perceptron (MLP) networks [63].
Convex optimization is commonly used in non-iterative approaches and is based on linear or quadratic
programming. While iterative methods provide fast convergence, the solution may not converge towards
the global minimum. On the other hand, convex optimization allows for convergence to a global minimum
but requires objective functions to be convex. Support Vector Machines provide both global optimization
as well as regularization [59]. Both properties are described in more detail for the One-class Support
Vector Machine (OC-SVM) in Chapter 6. The following paragraphs outline machine learning approaches
relevant for the detection of known and unknown threats based on Support Vector Machines for supervised
and unsupervised learning.

Supervised learning. In supervised learning a function is trained based on labeled training data
whereas each instance of the training data is a tuple consisting of data point xi represented by its
feature space representation φ(xi) alongside an output value yi (e.g. class label). A supervised algorithm
constructs a separating hyperplane between two or more classes based on geometric relationships between
data points considering their class labels. In this thesis a Support Vector Machine (SVM) is used for
classification tasks. In a binary classification scenario, the SVM determines an optimal hyperplane
that separates data points from two different classes with maximal margin. Mathematically, this can be
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1.2 Machine learning to detect unknown threats

formulated as a quadratic programming optimization problem in its primal form [60]:

min
w,b,ξ

1
2
||w||2 + C

n∑

i=1

ξi

subject to: yi(〈w, φ(xi)〉 + b) ≤ 1 − ξi,

ξi ≥ 0.

(1.3)

Since w lies in the feature space F (which can have much higher dimensionality than the input space), it
cannot be solved directly. By converting the primal form of the problem in 1.3 into its dual form, the
optimization problem can be formulated in terms of inner products between data points mapped in the
feature space [59].
A binary classification example is depicted in Fig 1.2. In this example, a hyperplane is learned by a
two-class SVM using a linear kernel. The margin between data points of two classes is determined
by two hyperplanes H1 : 〈w, φ(xi)〉 + b ≥ 1 for all yi = 1 and H2 : 〈w, φ(xi)〉 + b ≤ −1 for all yi = −1
respectively. An optimal hyperplane represented as the median between the two hyperplanes H1 and
H2 separates instances from two different classes (i.e. red and blue data points) such that the distance
between the hyperplane and the nearest data points from both classes is maximal. Data points on the
margin are called support vectors (circled data points) which specify the decision function. The term C
in the example denotes a regularization constant which controls the trade-off between margin width and
permissible misclassifications in the case of non-separable problems. While large values of C result in
smaller margin solutions with less misclassified data points allowed, smaller values of C will increase the
margin and allow more misclassifications.

Figure 1.2: Example of supervised learning (Support Vector Machine)

Unsupervised learning. Unlike supervised learning which allows to learn a classifier that separates
data instances of two or more classes, unsupervised learning allows to detect outliers from a previously
learned model of normality [64]. Decision functions are learned without the use of any label information
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Chapter 1 Introduction

based on the assumption that the vast majority of training data is drawn from the same distribution.
Outliers are detected as a deviation from a model of normality. In this thesis a OC-SVM [61] is used
as a means of novelty detection. The OC-SVM fits a minimal enclosing hypersphere to the data that
is characterized by a center θ and a radius R. Mathematically, this can be formulated as a quadratic
programming optimization problem:

min
R ∈R
ξ ∈Rn

R2
+ C

n∑

i=1

ξi

subject to: ||φ(xi) − θ||2 ≤ R2
+ ξi,

ξi ≥ 0.

(1.4)

Given the constraint in Eq.(1.4), minimizing R2 will minimize the volume of the hypersphere. A novelty
detection example is depicted in Fig 1.3. In this example, a hypersphere is learned that separates outliers
from the majority population considered normal using a OC-SVM and a Radial Basis Function (RBF)
kernel as similarity measure. In the example below, underlying data is bimodal and thus, has two centers
of mass. By using a non-linear kernel function (e.g. RBF), the separating hypersphere is fitted to the
shape of the underlying distribution without overfitting. The parameter σ (sigma) defines the width of
the RBF and determines the influence of support vectors to the decision function. While a small σ results
in a sharp decision function, a large σ increases smoothness of the decision function towards a linear
decision surface. The parameter ν (nu) in the example below represents a regularization to constant
similar to C in Eq. 1.4 to balance the bias-variance trade-off [60]. While a large ν value implies low
regularization allowing more samples to be outliers at the benefit of learning a lower complex decision
function, a smaller ν value results in strong regularization allowing less samples to be outliers.

Figure 1.3: Example of unsupervised learning (One-class Support Vector Machine)
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1.3 Data representations for sequential data

Semi-supervised learning. Semi-supervised learning is a class of supervised learning techniques
that can make use of unlabeled data for training [65]. The objective is to infer correct labels for unlabeled
data points based on the assumption that data points close to each other (continuity assumption) and data
points located in the same region in the feature space (cluster assumption) are more likely to share the
same labels. Goernitz et al. [51] investigate semi-supervised learning in the context of unknown attack
detection and further propose an active learning strategy to select unlabeled candidates for labeling to
improve the detection accuracy of the predictor. While semi-supervised learning approaches provide
benefits in terms of trade-off between improvement of accuracy by labeling a subset of data, these
methods are not included in the scope of this dissertation.

1.3 Data representations for sequential data

Machine learning methods usually operate on vector data. However, in computer and network security,
sequential data is oftentimes found. Feature engineering is concerned with the construction of features
that describe key characteristics of the underlying data. By using a generic feature map φ : X 7→ RN data
points can be represented in a N-dimensional vector space RN induced by a set of domain-descriptive
features.

x 7→ φ(x) = (φ1(x), φ2(x), φ3(x), ..., φN(x)), 1 ≤ N ≤ ∞. (1.5)

By utilizing data representations, sequential data can be embedded into a feature space in which a decision
function is learned based on geometric relationships between data representations of individual sequences.
Good data representations comprise non-redundant features which are discriminative to the problem at
hand. Oftentimes, the complexity of the data domain causes the volume of the feature space to increase
exponentially resulting in sparsely populated regions in the feature space [66]. High dimensionality of
input feature vectors exacerbates the learning process, particularly if discriminative information resides
in manifolds of the feature space (i.e. if the true function only depends on a small number of features)
which may result in high variance of the predictor. Thus, a good data representation allows for efficient
storage and processing of features. The following paragraphs provide an overview of data representations
that can be used for classification and anomaly detection in the field of computer and network security.

Sequential data representation. A substantial amount of work has been done in developing efficient
data structures for the comparison of sequential data such as suffix tries, suffix trees or suffix array [e.g.
67–69]. Suffix tries are space-efficient and allow for comparison of sequences in linear time. However,
due to the explicit representation of common path inner nodes in the suffix trie, the practical utilization
of this type of data structure is limited to comparably small sequences. A suffix tree is a compressed
trie containing all the suffixes of the given text as their keys and positions in the text as their values by
merging common paths to a single node. A suffix tree can be constructed in linear time and also allows
for linear time comparison of sequences [e.g. 69]. Due to the implicit representation of common paths,
suffix tree are more suitable to store and process large sequences - as typically found in network packet
payloads. An example of a suffix tree representing the sequence s="ababc$" is depicted in Fig 1.4. This
suffix tree data representation can be used to compare sequential similarity between sequences [67].
Fig. 1.4 shows a suffix tree as an example to represent byte sequences.
By traversing a suffix tree, unique features can be efficiently extracted. An intuitive feature type at
byte-level are language models. A commonly used type of language model is referred to as k-grams
which involves extraction of unique substrings by moving a sliding window of length k over a byte
sequence [67].
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v0

v7v4

v6v5

abc$ c$

v1

v3v2

abc$ c$

ab b c$

Figure 1.4: Suffix tree to represent byte sequences ("ababc$")

More formally, consider an alphabet to be a finite set of symbols Σ. In network and computer security
the alphabet Σ = {0, ..., 255} usually correspondes to byte values. Let Σ

∗ denote the set of all possible
concatenation of Σ and the set of all possible concatenation of length k to be Σ

k. The k-spectrum of a
symbol sequence refers to the set of of all contiguous unique subseqences u of length k generated by an
alphabet Σ. Hence, a mapping function φ can be define which maps fixed length substrings u contained
in string s into a feature space F :

φ : s 7−→ (φu(s))u∈Σk ∈ F . (1.6)

The mapping function φu(s) allows to map a subsequence u contained in s to a binary, count or relative
frequency value. A binary mapping function sets the value of a mapped subsequence u to one if u is
contained at least once in s. A count mapping function sets the value of the mapped subsequence u
to m if u is contained m times in s. Finally, a frequency mapping function sets the value of a mapped
subsequence u to m

n−k+1 whereas m denotes the number of times u is contained in s and n refers to the
length of string s.
It is noteworthy, that by traversing a suffix tree, other types of features can be extracted as well, such as
bag-of-words or all-subsequences features [67].

Syntactic data representation. Network protocol messaging follows a defined context-free grammar.
As attacks are commonly delivered at the application-layer, network protocol syntax may carry useful
information. By deploying network protocol analysis, syntactic information can be extracted from
byte-level sequences. The syntax tree data representation can be used to represent the structure of a
sequence generated by a context-free grammars [e.g. 70–72].
A tree T=(V,E) is a directed acyclic graph in which any two vertices v1, v2 ∈ V are connected by at most
one path e1, ...ei, ...en ∀ei ∈ E. A leaf or terminal node refers to a node without children. An internal
node is a node with at least one child. A pre-terminal node refers to an internal node with only leaf node
children attached.
A rooted tree is called a tree in which a special labeled node is singled out as the root node. A labeled
tree is a tree in which each internal node is associated with a label. A structured tree is one in which
the children of any node are given a fixed ordering. A syntax tree represent a specific type of a labeled
structured tree.
An attributed tree is a labeled, structured tree in which each node v is associated with a finite sequence
s = s1...s|s| of symbols drawn from an alphabet of unique symbols Σ, including the empty sequence. By
applying a specified grammar, network protocol analyzers can be used to extract protocol structure from
byte sequences with attributes associated to individual protocol elements.
Fig. 1.5 shows an example of a syntax tree for a HTTP request. In this example, the HTTP request is
parsed and substrings are associated with network protocol elements.
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Request

.method

”GET”

.uri

.path

”GET”

.params

.〈cgi − key1〉

cgi − val1

.〈cgi − keyn〉

cgi − valn

.version

”HTT P1.0”

.header

.〈hdr − key1〉

hdr − val1

.〈hdr − keym〉

hdr − valm

Figure 1.5: Syntax tree to represent syntax structure of byte sequences

The syntax tree data representation can be used to compare structural similarity between sequences [e.g.
71]. In order to compare syntax trees, a corresponding feature map must be defined. A commonly used
feature map φ(T ) involves the mapping of all subtrees of a tree T to a feature space F :

φ : T 7−→ (φS )S∈I ∈ F , (1.7)

whereas I denotes the set of all possible subtrees. The mapping function returns 1 if a subtree S is a
subtree of T and 0 otherwise.

φS (T ) =

{
1 if S is a subtree of T
0 otherwise.

(1.8)

An alternative feature mapping is based on the idea of k-grams. To this end, consider an alphabet to be a
finite set of syntactic tokens Σ. A mapping function φ can be defined which maps sequences of syntactic
tokens u of length k into a feature space F :

φ : Ts 7−→ (φu(Ts))u∈Σk ∈ F . (1.9)

The mapping function φu(Ts) allows to map a token subsequence u contained in tree Ts (i.e. syntactic
representation of sequence s) to a binary, count or relative frequency value. The resulting feature set
can be referred to as token grams. For k = 1, the feature set corresponds to a bag-of-tokens data
representations. By increasing k the sensitivity for structural differences between two syntax trees
increases as well.

Syntax-sequential data representation. The syntax-sequential data representation (ck-grams) can
be considered an extension of the sequential data representation as outlined in Section 1.3. As k-grams
can have multiple different protocol contexts in a parsed sequence, the same sequential feature can
co-exist in different locations in the geometric space taking into account its protocol context. Fig. 1.6
shows an example of a c2-gram data representation of an HTTP requests. For example, the bi-gram "er"
occurs in the tokens "keyword" (2) as well as in the "Host" (6) context of the HTTP request. Thus, this
feature is embedded in two different locations in the feature space.
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Figure 1.6: Contextual grams (c2-grams) of an HTTP request

Graph-based data representation. Graphs can be used to represent semantic relationships extracted
from sequential data. Graph representations can be used to learn behavior models based on observed user
or system activity (i.e. a subject performs specific activities on a specific object).
Let E = (e1, ..., ei, ..., em) be a list of chronologically ordered events ei ∈ Σ. A session S = (e1, ..., en) ⊆ E
can be considered as an ordered set of activities represented by events ei ∈ Σ. An activity model
G = (Σ,Q, q̂,T,F) can be defined as a directed graph where Σ refers to the universal set of events, Q
denotes the set of states of a session (represented as nodes), with q̂ being the current state, T : Q×Σ→ Q
being the state transition function used to specify permissible state changes based on the observed events
and F being the set of final states. The example in Fig. 1.7 shows a graph which represents a user who
performs a series of web requests within a session.

q0start q1 q2 q3

url1 url2

url3

url4

Figure 1.7: Graph representing user activity

In order to compare graphs, a corresponding feature map must be defined. A commonly used feature
map φ(T ) involves the mapping of all paths of a graph G to a feature space F :

φ : G 7−→ (φw)w∈W ∈ F , (1.10)

whereas W denotes the set of all possible walks (i.e. paths) induced by the set of vertices. The mapping
function returns 1 if a path w is contained in G and 0 otherwise.

φp(G) =

{
1 if w is a path contained in G
0 otherwise.

(1.11)
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1.4 Measuring similarity in feature spaces

Machine learning methods are based on data models which represent geometric relationships between
data points based on defined similarity measures in a geometric space. Similarity measures can be
broadly categorized into distances, coefficients and kernels. Table 1.1 outlines commonly used similarity
measures [e.g. 73, 74].

Distance Coefficient Kernel
Name d(x, y) Name s(x, y) Name k(x, y)

Minkowski
(∑

i
|φi(x) − φi(y)|k) 1

k Czekanowski 2a
2a+b+c Linear

∑
i
φi(x)φi(y)

Mahalanobis
√∑

i

(φi(x)−φi(y))2

σ2
i

Kulczynski 1
2
( a

a+b + a
a+c

)
Gaussian e

( ‖φ(x)−φ(y)‖2
σ2

)

Chebychev max
i
|φi(x) − φi(y)| Jaccard a

a+b+c Polynomial
(∑

i
φi(x)φi(y) + c

)d

Canberra
∑
i

|φi(x)−φi(y)|
|φi(x)|+|φi(y)| Sokal-Sneath a

a+2(b+c)

Cosine

∑
i
φi(x)φi(y)

√∑
i
φi(x)2

√∑
i
φi(y)2

Sorenson-Dice a
b+c

Table 1.1: Similarity measures

Distances. A distance d : X × X 7→ R is a a real-valued function over a set of data points X which
satisfies the following conditions for any data point x, y, z ∈ X: non-negativity (i.e. d(x, y) ≥ 0), identity
of indiscernibles (i.e. d(x, y) = 0 ⇐⇒ x = y), symmetry (i.e. d(x, y) = d(y, x)), and sub-additivity (i.e.
d(x, z) ≤ d(x, y) + d(y, z)).
Commonly used distances for approximate string matching include Hamming distance [75] and Leven-
shtein distance [76, 77]. However, both distances show limited usability for the application in the network
and host security domain. For example, the Hamming distance requires equal length binary strings as
input while the Levenshtein distance employs non-linear runtime. By casting sequences into their vector
space representations, other distance functions can be used such as Minkowski, Canberra or Mahalanobis.

Similarity coefficients. A similarity coefficient s : X × X 7→ R is a a real-valued function over a set
of data points X which reflects similarity between two data points based on four aggregation variables
a,b,c, and d. Thereby, the variable a defines the number of positive matching components in both data
points, b denotes the number of left mismatches, c the number of right mismatches, and d represents the
number of negative matches (i.e. zero-value variables in both data points). Similarity coefficients do not
necessarily satisfy all distance properties. For example, the Sorenson-Dice coefficient does not meet the
non-negativity and sub-additivity condition.

Kernels. A kernel k : X × X 7−→ R is a real-valued function over X × X such that for any two data
point x, y ∈ X k(x, y) = 〈φ(x), φ(y)〉F for an inner product space F such that ∀x ∈ X φ(x) ∈ F . Thereby,
an inner product space F satisfies symmetry (〈x, y〉 = 〈y, z〉), linearity (〈ax, y〉 = a〈x, y〉 and 〈a + x, y〉 =

〈a, x〉 + 〈a, y〉) and positive semi-definiteness (〈x, x〉 ≥ 0).
A Hilbert spaceH refers to a strict inner product space F in which 〈x, x〉 = 0 iff x = 0 and F is complete
(i.e. for any ε > 0 there exists an N such that for any pair m and n with n > N the |an − am| < ε) and
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separable (i.e. for all h ∈ F and ε > 0 there exists a countable set of elements h1, ..., hi, ...hn of F such
that |hi − h| < ε).
The output of kernel functions can largely differ. For example, a Gaussian kernel is bounded and returns
values in the range between 0 and 1. On the other hand, a tree kernel can return much larger values [e.g.
78]. In order to address scale diversity and facilitate learning, kernel normalization can be employed
which allows for the projection of kernel values to the same interval. Kernel functions are normalized as
defined below:

k̂(x, y) =
k(x, y)√

k(x, x) · k(y, y)
. (1.12)

Convolution kernels have been first introduced by Haussler [79] and describe a class of kernel functions
that can be used to calculate similarity between structured data objects. Consider a composite data object
x = (x1, x2, ..., xD) consisting of D parts. Let R(~x, x) = R(x1, x2, ..., xD; x) be a relation that is true if
components x1, x2, ..., xD constitute the data object x. Similarity between two structured data objects x
and y can be calculated using the R-convolution kernel as introduced by Haussler [79]:

k(x, y) = [k1 × k2 × ... × kD](x, y) =
∑

~x∈R(x), ~y∈R(y)

D∏

d=1

kp(xd, yd). (1.13)

The overall simiarity between two composite data objects can hence be assessed by measuring similarity
across all possible decompositions of x and y. For the remainder of this section, various kernels are
outlined that allow to measure similarity between structured data objects which have been shown to be
instances of R-convolution kernels [78–80].

String kernel. String kernels allow for the pairwise comparison of sequential data based on common
substrings. Based on the set of features extracted using a feature map φ, a linear kernel function k(x, y)
between two sequences x, y ∈ X can be defined as follows to measure similarity:

k(x, y) = 〈φ(x), φ(y)〉 =
∑

u∈L
φu(x)φu(y), (1.14)

where L refers to the underlying language of generated sequences. The language L ⊆ Σ
n includes

k-grams - the set of unique substrings of length k generated by the alphabet Σ (c.f. 1.3). The kernel
function over k-grams is commonly referred to as Spectrum kernel [64, 81]. Complexity of the Spectrum
kernel k(x, y) is O(k|x||y|) using dynamic programming. However, using suffix trees the complexity can
be reduced to O(|x| + |y|) by pairwise comparison of two sequences x and y through parallel traversal of
the corresponding suffix trees T (x) and T (y) along suffix links.
It is noteworthy, that other classes of string kernels exist such as all-subsequence kernel, fixed length-
subsequence kernel, or gap-weighted subsequence kernel and mismatch string kernel [64, 82, 83].
However, due to their marginal gain compared to an increased runtime complexity, these classes of string
kernels are excluded from further consideration.

Tree kernel. A huge amount of data in the network security domain is entangled with specific formats
for storage on hosts or exchange of data across a network using network protocols. In network security,
for example, data is often transferred using application-level network protocols such as HTTP [26], File
Transfer Protocol (FTP) [84], or Simple Mail Transfer Protocol (SMTP) [85] which provides fruitful
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information to detect threats.
Tree kernels allow for the pairwise structural comparison of data points based on their tree representations.
Two trees Tx and Ty are identical if there exists a bidrectional mapping between their nodes that maintains
node labels, parent-child relations as well as ordering of siblings of each internal node. A kernel can be
defined by explicitly embedding all finite trees to a vector space F . The co-rooted subtree kernel [64,
78] is a commonly used kernel function for structural comparison of trees. Based on the feature map in
Eq. 1.7 the following kernel can be defined as follows:

k(Tx,Ty) = 〈φ(Tx), φ(Ty)〉
=

∑

S∈T
φ(Tx)φ(Ty)

=

d+r(Tx)∏

i=1

φr
S i

(τ(chi(r(Tx))))φr
S i

(τ(chi(r(Tx))))

=

d+r(Tx)∏

i=1

(k(τ(chi(r(Tx))), τ(chi(r(Tx)))) + 1)

(1.15)

whereas T0 denotes the set of all trees, τ(v) refers to a subtree of a tree T rooted at node v, r(T ) denotes
the root of tree T , chi(v) denotes the i-th child of a node v and d+(v) specify the out-degree of node v. The
complexity of the calculation is at most O(min(|Tx|, |Ty|)).
It is noteworthy, that there are also other, more complex tree kernel functions such as all-subtree kernel.
However, calculation of these types of kernels is computationally expensive and they are therefore not
further considered.

Attributed tree kernel. Structured data is oftentimes annotated with attributes (e.g. Extensible
Markup Language (XML) [86]) which may contain information that allow to discriminate between two
structurally identical data objects. To this end, this paragraph defines similarity measures that take into
account both structural as well as sequential information using attributed trees.
Based on a modification of the co-rooted tree kernel, an attributed tree kernel can be defined to compare
similarity between two attributed trees Tx and Ty:

k(Tx,Ty) = 〈φ(Tx), φ(Ty)〉
=

∑

S∈T
φ(Tx)φ(Ty)

=

d+r(Tx)∏

i=1

φr
S i

(τ(chi(r(Tx))))φr
S i

(τ(chi(r(Tx))))

=

d+r(Tx)∏

i=1

(k(τ(chi(r(Tx))), τ(chi(r(Tx)))) + k̂(attr(r(Tx)), attr(r(Ty)))),

(1.16)

where k̂(s1, s2) denotes a normalized sequence kernel function to compare two sequences s1 and s2 as
introduced in Paragraph 1.3 and attr(v) refers to a function that extracts a sequential attribute associated
with an inner node v in the tree. In that context, the kernel function k(Tx,Ty) returns the sequential
similarity between attributes of identical labeled structured subtrees. Note, that by using the k-spectrum
kernel, the spectrum length should be chosen to meet k ≤ min({|attr(v)|}). It is clear from the definition
above, that similarity calculation over attributed trees increases complexity as attributes of matching
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labeled tree nodes have to be compared individually using sequential kernel functions.
However, in the field of network security, complexity of calculation can be reduced as internal nodes of
an attributed tree are not associated with attributes. Therefore, calculation of similarity between two parse
trees can be limited to pairwise comparison of their pre-terminal nodes associated with corresponding
attributes extracted from the network protocol analysis. To this end, the attributed tree kernel can be
reduced to an attributed token kernel [71].
The ck-gram data representation (c.f. Section 1.3) contains k-grams extracted from parsed attributes annot-
ated by their corresponding protocol token. Thus, the data representation allows for similarity comparison
between sequences based on the similarity of substrings with matching syntactical context [72].

Graph kernel. Graph kernels are useful to model behavior (e.g. user or system behavior) or complex
data structures, e.g. as typically found in computational chemistry.
Consider a digraph G = (V, E ⊆ V × V, vstart, vend) consisting of a set of vertices V and a set of directed
edges E whereas each edge ei = (v1, v2) ∈ E connects two adjacent vertices v1 and v2 in G. A digraph is
called labeled if each vertex is assigned to a unique label to distinguish it from other vertices. Graph
kernels are a specfic type of convolution kernels on pairs of graphs to calculate similarity between graphs
which is known to be a difficult problem. It has been shown that calculating a strictly positive definite
graph kernel is at least as hard as solving the NP-hard graph isomorphism problem [87].
Alternative approaches include the enumeration of random walks by counting the number of common
walks in two input graphs Gx and Gy whereas a walk (i.e. path) denotes a sequences of nodes in a graph
(with possible repetitions). Conventionally, the walks of length k can be calculated by looking at the k-th
power of the adjacency matrix A of each graph as defined below:

k(Gx,Gy) =

|V |∑

i, j=1

[ ∞∑

k=0

λkAk
]
i, j
. (1.17)

Drawbacks of this approach are however exponential runtime behavior, halting or tottering due to
repetitive node walks. Various alternative kernels have been proposed (e.g. shortest-path kernel, optimal
assignment kernel, weighted decomposition kernel, edit-distance kernel, cyclic pattern kernel, graphlet
kernel) to calculate graph similarity [64]. However, these approaches are either computationally expensive
or do not satisfy the positive semi-definiteness property.
A computational less expensive alternative involves the utilization of the ck-gram data structure (c.f.
Section 1.3) by de-composing the graph into its set of unique fixed-length walks and mapping the graph
in the feature space using a feature map as outlined in Eq. 1.10. The similarity between two graphs Gx
and Gy can then be determined by calculating the inner product over the set of all possible walks P of
length k common in both graphs:

k(Gx,Gy) = 〈φ(Gx), φ(Gy)〉
=

∑

w∈W
φw(Gx)φw(Gy).

(1.18)

However, this approach has one limitation that the calculation of similarity does not account for cycles
in a graph as the ck-gram data structure hashes unique walks only. Therefore, repetitive walks are not
considered.
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1.5 Thesis outline

This dissertation addresses a major challenge in cyber security research – namely the reliable detection of
unknown cyber attacks. The main focal point of this dissertation is the development of machine learning
methods to detect unknown attacks in computer networks at the application-layer and furthermore derive
useful information to pinpoint unknown vulnerabilities in applications based on the analysis of network
packet payloads. To this end, six representative studies are introduced and organized in individual
chapters. While the first five contributions focus on network security, the last study demonstrates usability
of the proposed methods in other areas of computer and network security such as malware detection.
Each of the presented studies addresses a specific research question related to the main focus of this
dissertation:

• To what extent is unsupervised machine learning an alternative to supervised approaches for the
detection of network attacks using network packet header features? – Numerous machine learning
methods can be used to detect network attacks. Generally, methods can be distinguished between
supervised and unsupervised learning. While supervised learning requires label information to
train models, unsupervised learning allows to detect attacks as outliers in terms of deviation
from a model or normality. Chapter 2 provides a comparative analysis of various supervised
and unsupervised methods on the well-known KDD Cup 1999 dataset [88] over network packet
header features to investigate strengths and limitations in terms of capabilities to detect known and
unknown attacks in the presence and absence of label information.

• To what extent does unsupervised machine learning allow for the detection of unknown network
attacks in network packet payloads? – One of the limitations of the KDD Cup 1999 dataset used in
the experimental evaluation in Chapter 2 is its focus on network packet header information. The
study presented in Chapter 3 extends the work described in Chapter 2 and provides an experimental
evaluation of anomaly detection using String kernel measures over language models extracted
from both plain-text and binary network packet payloads commonly seen in Supervisory and Data
Acquisition (SCADA) network traffic of industrial automation facilities [89].

• What are the features that maximize accuracy of network attack detection? – Good features contain
discriminative information to learn accurate data models. Oftentimes, the selection of the right
set of features is a problem given the extensive amount of features available. For example, while
Chapter 2 focuses on network packet header features, experiments in Chapter 3 are based on content
byte stream features and experiments in Chapter 5 elaborate on the usefulness of structural features
to detect network attacks. In order to investigate which features are most effective for anomaly
detection in network security, Chapter 4 introduces a method for automatic feature selection and
provides an experimental evaluation to identify features to maximize accuracy of anomaly-based
attack detection in network traffic.

• To what extent does the incorporation of network protocol information in similarity measures
improve the detection of application-level attacks? – Nowadays, the vast majority of network
attacks are carried out at the application layer entangled with network protocols. As a continuative
study Chapter 5 introduces a SVM-based anomaly detection method that allows for the detection
of unknown network attacks based on syntax-sequential features extracted from parsed network
packet payloads containing HTTP requests. To this end, this study introduces a novel composite
similarity which is used to calculate pairwise similarity of HTTP requests based on the sequential
similarity of byte-sequence components of matching syntactic tokens.
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• To what extent does combination of syntax and sequential features improve the detection of
application-layer attacks and increase explainability? – Fast similarity calculation is crucial for
the practical use of machine learning in computer and network security. Unfortunately, similarity
calculation over composite data structures can be complex due to kernel normalization across
components. One way of reducing complexity and increasing speed is to disable normalization.
However, this may lead to inaccurate data models due to under-representation of important features
or over-representation of unimportant features. Chapter 6 introduces a novel, efficient feature
extraction method that allows to store syntactical information along with associated byte-level
features and this bridges the gap between network protocol analysis and anomaly detection.
The novel data representation can be used by regular kernel measures without additional kernel
normalization and furthermore can be used by security analysts to pinpoint unknown vulnerabilities
in network protocols and applications.

While the previous five studies focus on network security, the following study is presented in order to
demonstrate general applicability of the proposed methods in the field of computer security. Specifically,
the contribution addresses the question of how to detect unknown malware instances based on malware
behavior. To this end, Chapter 7 investigates the usability of SVM-based classification over features
extracted from malware behavior reports to detect novel malware families.
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CHAPTER 2

Learning intrusion detection: supervised or
unsupervised?

2.1 Introduction

Machine learning techniques have been gaining increasing attention in the intrusion detection community
to address well-known limitations of state-of-the-art misuse-based attack detection methods. Main goal of
this work is to investigate the trade-offs between different machine learning techniques in their application
to network intrusion detection as an alternative to misuse-based attack detection. Motivated by the fact
that label information is difficult to obtain, particularly for novel attack types, this contribution provides
an experimental evaluation of supervised and unsupervised techniques to compare detection performance
and investigates to what extent label information is required to obtain higher detection accuracy. In order
to fairly compare methods, this contribution casts experiments into a unified experimental setup that
allows to apply model selection for both supervised and unsupervised learning. Experiments are carried
out on the well-known KDD Cup 1999 data set [88] in which data instances are mostly characterized
by network packet header features at the Transmission Control Protocol/ Internet Protocol (TCP/IP)
layer. Evaluation of the algorithms is carried out under two different scenarios. Under the first scenario,
training data and test data are drawn from the same distribution (i.e. training and test samples share attack
instances) to baseline detection of known attacks. Under the second scenario, attack data is drawn from a
distribution that is different from the training data to evaluate the capabilities of the methods to detect
unknown attacks.

2.2 Publication
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Abstract. Application and development of specialized machine learn-
ing techniques is gaining increasing attention in the intrusion detection
community. A variety of learning techniques proposed for different in-
trusion detection problems can be roughly classified into two broad cat-
egories: supervised (classification) and unsupervised (anomaly detection
and clustering). In this contribution we develop an experimental frame-
work for comparative analysis of both kinds of learning techniques. In
our framework we cast unsupervised techniques into a special case of
classification, for which training and model selection can be performed
by means of ROC analysis. We then investigate both kinds of learning
techniques with respect to their detection accuracy and ability to detect
unknown attacks.

1 Introduction

Intrusion detection techniques are usually classified into misuse detection and
anomaly detection [1]. Anomaly detection focuses on detecting unusual activity
patterns in the observed data [2–6]. Misuse detection methods are intended to
recognize known attack patterns. Signature-based misuse detection techniques
are currently most widely used in practice; however, interest is growing in the
intrusion detection community to application of advances machine learning tech-
niques [7–10]. Not uncommon is also a combination of anomaly and misuse de-
tection in a single intrusion detection system.

To decide which learning technique(s) is to be applied for a particular intru-
sion detection system, it is important to understand the role the label informa-
tion plays in such applications. The following observations should be considered:

1. Labels can be extremely difficult or impossible to obtain. Analysis of net-
work traffic or audit logs is very time-consuming and usually only a small
portion of the available data can be labeled. Furthermore, in certain cases,
for example at a packet level, it may be impossible to unambiguously assign
a label to a data instance.

2. In a real application, one can never be sure that a set of available labeled
examples covers all possible attacks. If a new attack appears, examples of it
may not have been seen in training data.
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The main goal of this work is to investigate the tradeoffs between supervised
and unsupervised techniques in their application to intrusion detection systems.
To this end, we develop an experimental setup in which such techniques can
be fairly compared. Our setup is based on the well-known KDD Cup 1999 data
set [11]. Since a typical application of a supervised learning method involves
model selection, we have built in the same step into unsupervised methods.
Performance of both groups of methods is evaluated based on the analysis of the
receiver operator characteristic (ROC) curve. The details of our experimental
setup are presented in Sec. 2.

Evaluation of several representative supervised and unsupervised learning
algorithms, briefly reviewed in Sec. 3, is carried out under the following two sce-
narios. Under the first scenario, an assumption that training and test data come
from the same (unknown) distribution is fulfilled. Under the second scenario, we
violate this assumption by taking a data set in which attacks unseen in training
data are present in test data. This is a typical scheme to test the ability of an
IDS to cope with unknown attacks. The experimental results are presented in
Sec. 4.

2 Experimental Setup

2.1 Data source

The KDD Cup 1999 data set [11] is a common benchmark for evaluation of intru-
sion detection techniques. It comprises a fixed set of connection-based features.
The majority of instances in this set (94%, 4898430 instances) has been extracted
from the DARPA 1998 IDS evaluation [12]. The remaining fraction of data (6%,
311029 instances) was additionally extracted from the extended DARPA 1999
IDS evaluation [13]. A detailed description of the available features and attack
instances can be found in [14, 6].

2.2 Preprocessing

The KDD Cup data set suffers from two major flaws in distribution of data
which can bias comparative experiments:

1. The attack rate within the KDD Cup data set is unnatural. About 80%
of all instances correspond to attacks, since all one-packet attacks, e.g. the
smurf attack, are treated as full-value connections and are represented as
individual instances.

2. The attack distribution within the KDD Cup data set is highly unbalanced.
It is dominated by probes and denial-of-service attacks, which cover millions
of instances. The most interesting and dangerous attacks, e.g. the phf or
imap attacks, are grossly under-represented.

In order to cope with these artifacts we preprocess KDD Cup data in order to
achieve (a) a fixed attack rate and (b) a balanced distribution of attack and
service types.
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At the first level of preprocessing, the attack data is split into disjoint par-
titions containing only one attack type. The normal data is split into disjoint
partitions containing only one service type. These partitions are merged into the
three disjoint sets of equal length: the training data Dtrain, the validation data
Dval and the test data Dtest. This procedure ensures the presence of each attack
and service type in the three data partitions.

At the second level of preprocessing samples of 2000 instances are randomly
drawn from the training, validation and testing data sets. The sampling proce-
dure enforces a fixed attack rate of 5% and attempts to preserve balanced attack
and service type distributions.

The data with “known attacks” is generated from the DARPA 1998 part of
the KDD Cup data set. The data with “unknown attacks” has the test part
sampled from the DARPA 1999 part of the KDD Cup data set. The attacks in
both data sets are listed in Table 1.

2.3 Metric Embedding

The set of features present in the KDD Cup data set contains categorical and
numerical features of different sources and scales. An essential step for handling
such data is metric embedding which transforms the data into a metric space.
Our embedding is a two-stage procedure similar to [3, 2].

Embedding of categorical features. Each categorical feature expressing m
possible categorical values is transformed to a value in Rm using a function e that
maps the j-th value of the feature to the j-th component of an m-dimensional
vector:

e(xi) = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
1 at Position j

if xi equals value j

Scaling of features. Both the numerical and the embedded categorical features
are scaled with respect to each feature’s mean µ and standard deviation σ:

n(xi) =
xi − µ

σ

“Known” Attack Types “Unknown” Attack Types

back buffer overflow ftp write
guess passwd imap ipsweep land
loadmodule multihop neptune nmap
perl phf pod portsweep rootkit satan
smurf spy teardrop warezclient
warezmaster

apache2 httptunnel mailbomb mscan
named processtable ps saint sendmail
snmpgetattack snmpguess sqlattack
updstorm worm xlock xsnoop xterm

Table 1. Distribution of attack types in the experiments.
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2.4 Model Selection

Model selection is performed by training a supervised algorithm on a training
set Dtrain and evaluating the accuracy on 10 validation sets Dval generated as
described in Sec. 2. For unsupervised algorithms only evaluation is performed.
The criterion for evaluating the accuracy is the area under the ROC curve,
computed for the false-positive interval [0, 0.1].

3 Methods

In the following we briefly describe the algorithms used in our experiments.

3.1 Supervised Algorithms

C4.5. The C4.5 algorithm [?] performs inference of decision trees using a set of
conditions over the attributes. Classification of new examples is carried out by
applying the inferred rules. Although the original algorithms contains numer-
ous free parameters, only the number of bootstrap iterations was used in our
evaluation.

k-Nearest Neighbor. The k-Nearest Neighbor is a classical algorithm (e.g.
[19]) that finds k examples in training data that are closest to the test example
and assigns the most frequent label among these examples to the new example.
The only free parameter is the size k of the neighborhood.

Multi-Layer Perceptron. Training of a multi-layer perceptron involves opti-
mizing the weights for the activation function of neurons organized in a network
architecture. The global objective function is minimized using the RPROP al-
gorithm (e.g. [16]). The free parameter is the number of hidden neurons.

Regularized discriminant analysis. Assuming both classes of examples are
normally distributed, a Bayes-optimal separating surface is a hyperplane (LDA),
if covariance matrices are the same, or a quadratic surface otherwise (QDA). A
gradual morph between the two cases can be implemented by using a regulariza-
tion parameter γ [17]. Another free parameter λ controls the addition of identity
matrix to covariance matrices.

Fisher Linear Discriminant. Fisher Linear Discriminant constructs a sep-
arating hyperplane using a direction that maximizes inter-class variance and
minimized the intra-class variance for the projection of the training points on
this direction (e.g. [19]). The free parameter is the tradeoff between the norm of
the direction and the “strictness” of projection.

31



Linear Programming Machine and Support Vector Machine. Linear
Programming Machine (LPM) and Support Vector Machine (SVM) construct
a hyperplane of the minimal norm which separates the two classes of training
examples (e.g. [?]). LPM uses the 1-norm, SVM uses the 2-norm. Furthermore,
SVM apply a non-linear mapping to construct a hyperplane in a feature space.
In our experiments, radial basis functions are used, their complexity controlled
by the width parameter w. Another parameter C controls the tradeoff between
the norm of a hyperplane and the separation accuracy.

3.2 Unsupervised Algorithms

γ-Algorithm. The γ-algorithm is a recently proposed graph-based outlier de-
tection algorithm [18]. It assigns to every example the γ-score which is the mean
distance to the example’s k nearest neighbors. The free parameter is k.

k-Means Clustering. k-Means clustering is a classical clustering algorithm
(e.g. [19]). After an initial random assignment of example to k clusters, the
centers of clusters are computed and the examples are assigned to the clusters
with the closest centers. The process is repeated until the cluster centers do not
significantly change. Once the cluster assignment is fixed, the mean distance of
an example to cluster centers is used as the score. The free parameter is k.

Single Linkage Clustering. Single linkage clustering [2] is similar to k-Means
clustering except that the number of clusters is controlled by the distance pa-
rameter W : if the distance from an example to the nearest cluster center exceeds
W a new cluster is set.

Quarter-sphere Support Vector Machine. The quarter-sphere SVM [5, 6]
is an anomaly detection method based on the idea of fitting a sphere onto the
center of mass of data. An anomaly score is defined by the distance of a data
point from the center of the sphere. Choosing a threshold for the attack scores
determines the radius of the sphere enclosing normal data points.

4 Results

The supervised and the unsupervised algorithms are evaluated separately on the
data with known and unknown attacks. The results are shown in Figs. 1 and 2
respectively. The ROC curves are averaged over 30 runs of each algorithm by
fixing a set of false-positive rate values of interest and computing the means and
the standard deviations of true-positive rate values over all runs for the values
of interest.

The supervised algorithms in general exhibit excellent classification accuracy
on the data with known attacks. The best results have been achieved by the
C4.5 algorithm which attains the 95% true positive rate at 1% false-positive
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Fig. 1. ROC-curves obtained with the supervised methods on the data sets with known
(left) and unknown (right) attacks.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive

tr
ue

 p
os

iti
ve

QSSVM / k−Means
Gamma
Single Linkage

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive

tr
ue

 p
os

iti
ve

QSSVM / k−Means
Gamma
Single Linkage

Fig. 2. ROC-curves obtained with the unsupervised methods on the data sets with
known (left) and the unknown (right) attacks.

rate. The next two best algorithms are the MLP and the SVM, both non-linear,
followed by the local k-Nearest Neighbor algorithm. The difference between the
four best methods is marginal. The worst results were observed with the three
linear algorithms. One can thus conclude that a decision boundary between the
attack and the normal data in KDD Cup features is non-linear, and is best
learned by non-linear algorithms or their approximations.

The accuracy of supervised algorithms deteriorates significantly if unknown
attacks are present in the test data, as can be seen in the right part of Fig. 1.
Not all algorithms generalize equally well to the data with unknown attacks. The
best results (with a significant margin) are attained by the SVM, which can be
attributed to the fact that the free parameters of this algorithm are motivated
by learning-theoretic arguments aimed at maintaining an ability to generalize
to unseen data. The next best contestant is the k-Nearest Neighbor algorithm
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which possesses the most similarity to the unsupervised methods. The remaining
algorithm perform approximately equally.

The unsupervised algorithms exhibit no significant difference in performance
between known and unknown attacks. This result is not unexpected: in fact,
in all data sets the attacks are unknown to the algorithms – the two data sets
differ merely in the set of attacks contained in them. Among the algorithms the
preference should be given to the γ-algorithm which performs especially well
on the “unknown” data set. The accuracy of unsupervised algorithms on both
data sets is approximately the same as that of supervised algorithms on the
“unknown” data set.

5 Conclusions

We have presented an experimental framework in which supervised and unsuper-
vised learning methods can be evaluated in an intrusion detection application.
Our experiments demonstrate that the supervised learning methods significantly
outperform the unsupervised ones if the test data contains no unknown attacks.
Furthermore, among the supervised methods, the best performance is achieved
by the non-linear methods, such as SVM, multi-layer perceptrons, and the rule-
based methods. In the presence of unknown attacks in the test data, the perfor-
mance of all supervised methods drops significantly, SVM being the most robust
to the presence of unknown attacks.

The performance of unsupervised learning is not affected by unknown attacks
and is similar to the performance of the supervised learning under this scenario.
This makes the unsupervised methods, which do not require a laborious labelling
process, a clear forerunner for practical purposes if unknown attacks can be
expected.

Our findings suggest that the problem of test data being drawn from a differ-
ent distribution cannot be solved within the purely supervised or unsupervised
techniques. An emerging field of semi-supervised learning offers a promising di-
rection of future research.
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Chapter 2 Learning intrusion detection: supervised or unsupervised?

2.3 Summary

An experimental framework is presented in which supervised and unsupervised learning methods are
evaluated in an network intrusion detection application. Experimental results show that supervised
learning significantly outperforms unsupervised learning methods if test data is drawn from a distribution
identical to the training data distribution (i.e. known attack detection scenario). In this scenario, non-
linear classification methods such as SVM, multi-layer perceptron and decision tree demonstrated best
performance with more than 95% true positive at 2% false positive rate. However, under the second
scenario, in presence of unknown attacks in test data, performance of supervised learning methods drops
significantly rendering SVM with a detection accuracy of to 82% true positive at 10% false positive
rate to outperform all other supervised learning methods tested. Although the detection accuracy of
unsupervised learning method under-perform supervised methods, the performance of unsupervised
learning methods is not impacted by either of the two scenarios. The graph-based γ-outlier detection
method which defines the distance of a data point to its k nearest neighbors as anomaly score outperforms
all other tested unsupervised methods and compares to the best supervised method with a detection
accuracy of 79% at 10% false positives in the unknown attack detection scenario.
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CHAPTER 3

Cyber-Critical Infrastructure Protection Using
Real-Time Payload-Based Anomaly Detection

3.1 Introduction

While Chapter 2 focuses on the investigation of supervised and unsupervised learning methods to
detect network attacks entangled in network protocol headers, this section investigates to what extent
unsupervised machine learning allows for the detection of unknown network attacks in network packet
payloads particularly in SCADA network traffic.
Critical infrastructures such as electricity generation and transmission, oil & gas production and distri-
bution or water supply heavily rely on SCADA networks for process automation. Given the increasing
demand for inter-connectivity and the adoption of standardized network protocols, cyber-critical in-
frastructures are exposed to a plethora of cyber threats. Known attacks on critical infrastructure such
as “Stuxnet” or “BlackEnergy” demonstrated the severe impact advanced cyber-physical attacks can
have. These attacks showed the importance of effective network-level protection to detect exploits
targeting “Zero-day” vulnerabilities on IT systems to prevent hijacking or denial of service of critical
infrastructures. Moreover, patching of known vulnerabilities in industrial control systems is not always
feasible due to unknown impact of a patch on the system’s integrity.
This contribution proposes a fast, centroid-based anomaly detection method that detects unknown zero-
day network attacks on SCADA network protocols based on language models and various distances.
Main objective of this contribution is to investigate to what extent the proposed method is capable to not
only detect attacks delivered via plain-text protocols such as HTTP but more specifically to evaluate attack
detection capabilities in binary application level network protocols typical for SCADA networks such
as Remote Procedure Call (RPC), Server Message Block (SMB), or Netbios. To this end, experiments
are conducted over network traffic recorded in an industrial automation testbed of a major industrial
automation manufacturer. Similarly to experiments in Section 2 attack instances in test data partitions
are not contained in training data partitions during cross-validation. Finally, experimental results are
compared against the state-of-the-art anomaly detection method PAYL [46] which uses Mahalanobis
distance over single-byte distributions to perform anomaly detection.

3.2 Publication
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Abstract. With an increasing demand of inter-connectivity and pro-
tocol standardization modern cyber-critical infrastructures are exposed
to a multitude of serious threats that may give rise to severe damage
for life and assets without the implementation of proper safeguards.
Thus, we propose a method that is capable to reliably detect unknown,
exploit-based attacks on cyber-critical infrastructures carried out over
the network. We illustrate the effectiveness of the proposed method by
conducting experiments on network traffic that can be found in modern
industrial control systems. Moreover, we provide results of a throughput
measuring which demonstrate the real-time capabilities of our system.

1 Introduction

Industrial control systems such as supervisory control and data acquisition sys-
tems (SCADA), distributed control systems (DCS ), and energy distribution sys-
tems (EDS ) are used to monitor and control industrial automation processes and
have been successfully deployed in critical infrastructures including power plants,
power and water distribution, and traffic systems. Over the last decade consider-
able effort has been done to protect computer networks. However, a comparable
small amount of research has been dedicated to cyber-security related aspects
of critical infrastructure protection mainly because control systems were based
on proprietary protocols and separated from public networks.

∗This work was supported by the German Bundesministerium für Bildung und
Forschung (BMBF) under the project ReMIND (FKZ 01-IS07007A).
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2 Düssel et al.

Nowadays, with the increasing demand of inter-connectivity and the ongoing con-
vergence towards standardized network protocols communication is realized us-
ing well-known transport-layer protocols such as TCP/IP. Consequently, the risk
of becoming exposed to novel threats is raised. As availability is most eminent
for real-time systems countermeasures to ensure integrity and confidentiality of
communication can be barely applied as they usually come along with a reduc-
tion of availability. With regard to the strong utilization of computer networks
and the increasing transparency of communication software patching becomes
not only a very important but also a difficult task. Unfortunately, patching is
not always an option since it usually requires a reboot during rare maintainance
intervals or, even worse, if it cannot be guaranteed that the patch does not alter
the system behavior. As a consequence, critical services in control systems re-
main vulnerable for a long period of time which cannot always be compensated
by existing technical or administrative controls.

Thus, in order to provide adequate protection of process control networks re-
liable and fast intrusion detection (IDS) is crucial. Intrusion detection meth-
ods can be broadly categorized into signature detection and anomaly detection.
While signature detection identifies attacks based on known attack characteris-
tics, anomaly detection tags suspicious events by measuring a deviation from a
model of normality. Signature-based intrusion detection systems possess a num-
ber of mechanisms for analyzing application-level content, ranging from simple
scanning of payload for specific byte patterns, as in Snort [12], to sophisticated
protocol analysis coupled with policy scripts, as in Bro [9; 10]. Signature-based
IDS typically exhibit a high detection accuracy and is therefore widely deployed
as a proper compensating control in enterprise networks. However, the major
drawback of signature-based IDS is their reliance on the availability of appro-
priate exploit signatures. Unfortunately, the rapid development of new exploits
and their growing variability make keeping signatures up-to-date a daunting if
not impossible task. This motivates investigation of alternative techniques, such
as anomaly detection, that are in principle capable to detect unknown attacks.
In our contribution we propose a method that is capable to reliably detect un-
known, vulnerability-based attacks against industrial control systems that orig-
inate from both trusted and untrusted networks. We illustrate the effectiveness
of the proposed method by conducting experiments on network traffic that can
be typically found (SCADA) systems.

The paper is structured as follows. Related work on anomaly detection in SCADA
networks is presented in Section 2. In Section 3 we present a topology of a mod-
ern SCADA network and briefly describe two attack scenarios that are addressed
in our experiments. Details on the architecture of our anomaly detection system
can be found in Section 4. Experimental evaluation on real network traffic is
carried out in Section 5 which also provides a performance evaluation of our
approach. Finally, conclusions are presented in Section 6.
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2 Related Work

Anomaly-based IDS have traditionally focused on features derived from network
and transport layer protocols. An example of such features can be found in
the data mining approach of Lee and Stolfo [7], containing packet, connection
and time window features derived from IP and TCP headers. The same work
has pioneered the use of “content” features that comprised selected application-
level properties such as number shell prompts, number of failed login prompts,
etc. deemed to be relevant for detection of specific attacks. Similar features
comprising selected keywords from application layer protocols have been used
by Mahoney and Chan for anomaly detection [8].
General content-based features using payload distribution of specific byte groups
have been first proposed by Kruegel et al. [6] in the context of service-specific
anomaly detection using separate normality models for different application layer
protocols. Full distributions of byte values have been considered by Wang and
Stolfo [14], extended to models of various languages that can be defined over
byte sequences, e.g. n-grams [11; 13].
With regard to critical infrastructures previous work on anomaly detection has
been mainly focused on physical measurement modeling which differs from our
work in that we do not learn models over physical processes and also don’t
assume prior knowledge on protocols used to transfer measurements.
In the work of Bigham et al. [2] the authors propose to learn a n-gram model
and an invariant model from data that is passed around the system. While
the n-gram approach is used for the first four bytes of each data reading to
determine a model of sign, decimal point position and most significant digits
the latter model is used to determine linear dependencies between different data
readings which are expressed as invariants. In a continuative work by Jin et al.
[5] which specifically addresses anomaly detection in electricity infrastructures
the authors extended the set of invariant models by a value range model which
marks a data reading to be anomalous if its value exceeds a pre-determined
threshold. Furthermore, a bus-zero-sum model is deployed which tests current
inflow and outflow on a bus for equality. Given these models anomaly scores
are finally combined in a probabilistic framework to reason about the likelihood
of an anomaly given the set of trained models. Clearly, the features used for
anomaly detection strongly depend on a particular domain.
A more network-centric approach is suggested by Antonio et al. [3]. They propose
a distributed architecture for high-speed intrusion detection which stipulates the
deployment of classification techniques to detect suspicious traffic patterns. It
differs from our work in that their method requires label information to detect
attacks.

3 SCADA Networks

SCADA networks are widely deployed to monitor and control processes that
are essential to a modern society. Typically, a SCADA system consists of a
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master terminal unit (MTU), a human machine interface (HMI) and one or more
remote terminal units (RTU) which are connected to field devices such as sensors
and actuators. Field device data is periodically transfered to the MTU which
continuously reassembles an image of the overall ongoing process. The topology
of a SCADA network satisfying state-of-the-art security concepts [1] is shown
in Fig.1. The network basically consists of three segments which are segregated
by firewalls: an untrusted enterprise control network (ECN), a semi-trusted de-
militarized zone (DMZ) and a process control system forming a trusted network.
The process control system consists of a control system network (CSN) and a
process control network (PCN). The CSN as the lowest layer network is made
up of automation stations (AS) which are RTUs capable to exchange field device
data via Industrial Ethernet to satisfy real-time requirements. The PCN which is
located above the CSN constitutes the most critical part of a SCADA system. It
contains a MTU referred to as operator station (OS) server and an engineering
station (ES). While the OS server controls field devices attached to the CSN
the engineering station provides an interface for the configuration of systems
in both CSN and PCN (e.g. programming of individual AS). Communication
between trusted networks is carried out via secure tunnels (e.g. VPN). The DMZ
which separates untrusted and trusted networks provides a service interface to
untrusted networks.
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Fig. 1. General topology of a SCADA system

Penetration of a SCADA system requires previous exploitation of existing soft-
ware vulnerabilities. Generally, there are two kinds of threat scenarios that we
address in our contribution:

– External Threat . SCADA systems increasingly provide interfaces to un-
trusted networks such as corporate networks or the Internet. A threat agent
perpetrates a device located in the DMZ (e.g. web server) from an external
network either to prevent the system from being accessed by others or to
carry out relayed attacks against the process control system.
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– Internal Threat . A threat agent with direct access to the process control
system (CSN and PCN) located at one of the facility sites mounts exploit-
based attacks against critical services in the network. This threat becomes
particularly serious in the presence of unmanned stations and wireless com-
munication.

4 Methodology

The key benefit of payload-based anomaly detection lies in its ability to cope
with unknown attacks. The following four stages outline the essential building
blocks of our approach and will be explained in detail for the rest of this section.

1. Network Sensor. Inbound transport layer packets are captured from the net-
work by Bro5 which provides fast and robust TCP re-assembly. TCP Payload
is extracted and forwarded to the feature extraction stage.

2. Feature Extraction. Byte sequences are mapped into a feature space which
is defined by the set of sequential features extracted from incoming se-
quences. The utilization of efficient data structures allows to operate in
high-dimensional feature spaces. Details on the feature extraction process
can be found in Section 4.2.

3. Similarity Computation. A proper definition of similarity between byte se-
quences is crucial for payload-based anomaly detection. The similarity be-
tween byte sequences is determined by computing the pairwise distance be-
tween their respective vectorial representation. The similarity computation
is explained in Section 4.3.

4. Anomaly Detection. The anomaly detector initially learns a global model
of ”normality” which is represented by the center of mass of training data
points. At detection time arriving byte sequences are compared to the previ-
ously learned model and based on a distance an anomaly score is calculated.
The anomaly detection process is described in Section 4.4.
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Fig. 2. Payload-based anomaly detection system

5See http://www.bro-ids.org/ for details.
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4.1 Network Sensor

Bro as the basis of our prototypical implementation is a Unix-based Network
Intrusion Detection System that passively monitors network traffic. To match
our requirements as a TCP/IP network sensor we exclude parsing of network
traffic and signature matching. The Berkeley Packet Filters (BPF), also known
as tcpdump expressions, provided by Bro can be used in a highly flexible and
adapted mode to process the desired packets for detection. Moreover, Bro takes
care of fragmented packets and TCP re-assembly which are important factors
for robust processing of TCP network traffic. Byte sequences are extracted from
the payload of incoming packets and forwarded to the feature extraction stage.

4.2 Feature Extraction

Anomaly detection usually requires data to be in a vectorial representation.
Therefore, the feature extraction process embeds a byte sequence s into a feature
space F in which similarity between sequences can be computed. By moving
a sliding window of a particular length n over a sequence s a set of unique,
sequential features – so called n-grams – is extracted. The resulting feature space
is defined over the set I ⊆ Σn of possible n-grams u induced by an alphabet Σ:

φ(s) 7→ (φu(s))u∈I ∈ F , u ∈ Σn (1)

Once a sequence is embedded into F various feature maps φ can be applied.
Commonly used feature maps for contiguous strings are explained below:

– Count Embedding. The value of the coordinate φcnt
u (s) reflects the count of

a string u contained in s
– Frequency Embedding. The value of the coordinate φfreq

u (s) reflects the term
frequency of a string u contained in s. Essentially, this mapping corresponds
to a count embedding normalized by the maximum number of n-grams con-
tained in s.

– Binary Embedding. The value of the coordinate φbin
u (s) reflects the presence

of a string u in s.

4.3 Similarity Measure

The utilization of a geometric representation of a byte sequence through φ allows
to deploy classical, vector-based similarity measures such as distance functions.
A list of relevant function is provided in Table 1.

4.4 Anomaly Detection

Anomalies can be considered as deviations from a previously learned model of
normality which is represented as the center of mass of a set of data points. To
this end, the center of mass c can be defined by:

c =
1

ℓ

ℓ∑

i=1

φ(xi), φ(xi) ∈ Rn (2)
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Name Similarity Name Similarity

Manhattan
Pn

i=1 |xi − yi| Canberra
Pn

i=1
|xi−yi|
xi+yi

Euclidean
Pn

i=1(xi − yi)
2

Chi-Squared
Pn

i=1
(xi−yi)

2

xi+yi

Table 1. Similarity measures

where φ(xi) refers to a training point explicitly embedded in a n-dimensional
geometric space as described in Section 4.2. In order to down-weight sparse
representations c is normalized as follows:

ĉ =
c · w
‖w‖1

(3)

where w denotes the standard deviation of individual dimensions in F observed
over ℓ training points. Finally, an anomaly score Sx for an unknown data point
x is computed by calculating the distance to the center of mass of training data:

Sx =

n∑

j=1

d(ĉj , φj(x)) (4)

A similar anomaly detection method is referred to as Payl [14] which relies on
the computation of a simplified Mahalanobis distance. The anomaly score Sx is
defined as the variance-scaled distance from an unknown data point x to the
center of mass c:

Sx =

n∑

j=1

d(cj, φj(x))

σj
(5)

5 Experiments

With regard to the attack scenarios outlined in Section 3 we evaluate our method
on two data sets containing traffic monitored at our institute as well as in a
SCADA testbed. For each of the two data sets we recorded a collection of service-
specific attacks including buffer overflows which can be used for privilege escala-
tion as well as web application attacks. Exploits were taken from the Metasploit
framework 6 and from common security forums such as securityfocus.com and
remote-exploit.org.
The first data set (Web07 ) contains inbound HTTP traffic captured in a DMZ
over a period of five days and consists of approx. 1,000,000 TCP packets. The
corresponding attack set comprises 42 attack instances exploiting 11 different
vulnerabilities in HTTP services together with a Nessus vulnerability scan. The
list of HTTP-related exploits can be found in Table 2.

6http://www.metasploit.com
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Id CVE Description Type Id CVE Description Type

H
T

T
P

1 2002-0071 IIS (ISAPI/HTR Script) Buf 7 2006-5478 Novell eDirectory Buf

2 2001-05001 IIS (ISAPI/Indexing) Buf 8 2003-1192 IA WebMail Buf

3 2001-0241 IIS (ISAPI/Printing) Buf 9 2000-0884 IIS Dir. Traversal Web

4 2004-1134 IIS (ISAPI/W3Who) Buf 10 2006-2644 AwStats (Logging) Web

5 2003-0109 IIS (NTDLL/WebDAV) Buf 11 2005-2847 Barracuda (Spam) Web

6 2002-2270 Alt-N WebAdmin Buf 12 - Nessus scan Web

R
P

C

1 2003-03522 RPC (DCOM) Buf 6 2006-4696 SMB Mailslot Buf

2 2003-0533 LSASS Buf 7 2006-3441 RPC (DNS) Buf

3 2004-1080 RPC (WINS) Buf 8 2008-42503 SMB (SRVSVC) Buf

4 2005-0059 RPC (MSMQ) Buf 9 - RPC scan -
5 2006-3439 SMB (SRVSVC) Buf

Table 2. Attack sets (1 Code Red, 2 W32.Blaster, 3 Conficker)

The data sets Aut09a (57100 TCP packets) and Aut09b (765,103 TCP pack-
ets) were captured in a process control network and contain payload of binary
application-layer protocols such as SMB and RPC and Netbios.
The corresponding attack set contains 19 attack instances exploiting eight differ-
ent vulnerabilities. Attacks were carried out using various attack payloads (i.e.
account creation, (reverse) shell binding and VNC server injection. RPC-related
exploit details are provided in Table 2.

5.1 Experimental Setup

In order to find a model that maximizes the detection performance a validation
phase precedes the actual evaluation of our method. It is important to mention
that data used during validation is not employed during evaluation. To this end,
data is split into three distinct partitions for training, validation and testing
from which samples are randomly drawn. Each sample consists of 1000 TCP
payloads. Model selection is implemented as a 10-fold cross validation. Both,
validation and test samples are equally mixed with distinct subsets of available
attack classes. Each model is trained on a training sample and subsequently
validated on ten distinct validation samples. Finally, the model that maximizes
the average detection accuracy during validation is applied on a test sample.
The detection accuracy is measured in terms of area under receiver operating
characteristic curve (AUC0.01) which integrates true positive values over the
false positive interval [0,0.01]. For statistical reasons experiments on both data
sets are repeated over 20 repetitions.

5.2 Experiments on HTTP Traffic

In this experiment we investigate the detection of overflow-based attacks and web
application attacks carried out over the well-known HTTP protocol. As shown
in Table 3 cross validation reveals that variance-weighted Manhattan distance
over 3-grams is chosen to be the best model over all repetitions. Considering the
average AUC values for the best three models the choice of the feature embedding
has only a minor impact on the detection accuracy. As shown in Fig. 3(b) with a
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Measure Weighting n-gram Embedding AUCavg AUCstd |Modelbest|
Manhattan variance 3 freq 0.9231 ±0.0370 10

Manhattan variance 4 freq 0.9169 ±0.0406 2

Canberra none 4 bin 0.9091 ±0.0395 5

Table 3. AUC0.01 values of selected models in validation phase

detection rate of 88% at a false alarm rate of 0.2% our method outperforms Payl.
A detailed analysis of the cost associated with the detection of individual attack
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Fig. 3. Detection of unknown attacks in HTTP traffic

classes is given in Table 4. It shows that overflow-based attacks are perfectly
detected while some web application attacks suffer from a small number of false
positives.

Centroid Payl
Class Instances FPavg FPstd FPavg FPstd

1 - 8 25 0.0000 ±0.0000 0.0000 ±0.0000

9 3 0.0008 ±0.0013 0.0060 ±0.0014

10 5 0.0072 ±0.0079 0.0360 ±0.0128

11 6 0.0045 ±0.0053 0.0260 ±0.0081

12 3 0.0056 ±0.0037 0.0264 ±0.0075

Table 4. False positive rate per HTTP attack class on test data

This is not a surprise considering the significant differences in the byte his-
tograms of normal data and overflow-based attacks which are compared in
Fig.3(a). Unlike overflow-based attacks which heavily rely on the utilization of
bytes in the range between 0x7f and 0xff to carry malicious opcode web ap-
plication attacks usually exploit vulnerabilities of scripts using bytes that are
commonly found in normal HTTP traffic. This explains the comparably high
cost associated with the detection of this type of attacks. However, the detection
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10 Düssel et al.

accuracy for web application attacks can be further enhanced by incorporating
syntactic information into sequential feature representations [4].

5.3 Experiments on RPC Traffic

While in the previous section we address the problem of detecting attacks car-
ried out over text-based application protocols such as HTTP in this section we
investigate the detection of overflow-based attacks carried out over binary proto-
cols such as Netbios, SMB and RPC. Experiments were applied to the Aut09a
data set. As shown in Table 5 cross validation chooses a variance-weighted Chi-
squared distance using a frequency embedding as the best model.

Measure Weighting n-gram Embedding AUCavg AUCstd |Modelbest|
Chi-Squared variance 4 freq 0.8655 ±0.0721 13

Canberra none 4 bin 0.8548 ±0.0892 3

Canberra none 2 bin 0.8459 ±0.0911 3

Table 5. AUC0.01 values of selected models during validation

Similarly to the results of experiments on HTTP in this experiment our method
attains a detection rate of 92% at a false positive rate of 0.2%. Interestingly, al-
though a rather complex model (i.e. Chi-squared distance over 4-grams) is chosen
our method demonstrates a marginal improvement in detection accuracy only
compared to the results obtained using Payl. However, while most of the attacks
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Fig. 4. Detection of unknown attacks in RPC/SMB traffic

are perfectly separable from the normal data (cf. Table 6) ”SMB-Mailslot” is
the only attack that suffers a comparably high false positive rate of approx. 5%.
This particular denial of service attack exploits a vulnerability in the Microsoft
server service (SVR.SYS) and is triggered by a specially crafted but fairly short
malformed SMB packet.
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Centroid Payl

Class Instances FPavg FPstd FPavg FPstd

1 3 0.0004 ±0.0005 0.0004 ±0.0005

2 1 0.0003 ±0.0006 0.0003 ±0.0006

3 1 0.0001 ±0.0003 0.0003 ±0.0005

4 1 0.0000 ±0.0000 0.0000 ±0.0000

5 6 0.0003 ±0.0005 0.0003 ±0.0005

6 1 0.0705 ±0.0684 0.2783 ±0.0464

7 1 0.0005 ±0.0008 0.0000 ±0.0000

8 4 0.0005 ±0.0008 0.0018 ±0.0014

9 1 0.0950 ±0.1118 0.0231 ±0.0097

Table 6. False positive rate per RPC/SMB attack class on test data

5.4 Performance Evaluation

The performance of our prototypical implementation is tested inside of a virtual
network which consists of two client machines7 which operates as sender and re-
ceiver of network traffic. Each client is installed on a separate host8. To simulate
a proper online scenario we use the tcpreplay tool suite9 to replay the captured
tcpdump files between both clients. In order to maintain the original transport-
layer characteristics (i.e. to preserve the TCP connection on the receiver site)
the Media Access Control address of all packets are rewritten to the receivers’s
interface card. Thus, the prototype can process full TCP connections, as it is
required in a production environment. Table 7 shows the throughput in MBits
per second obtained from running our prototype in single CPU mode. During
measurement anomaly detection is applied to incoming traffic. The performance
evaluation reveals that the throughput of our prototype depends on the ratio of
inbound packets as well as the n-gram size at hand. The drop of performance
linked with the increasing n-gram size is due to the fact that the dimensionality
of the underlying feature space increases exponentially which also affects the
feature extraction process.

Data set Replayed packets Analyzed packets 1-gram 2-gram 3-gram 4-gram

Web07 1,000,000 6.0% 429.1Mbps 348.6Mbps 309.9Mbps 253.1Mbps

Aut09b 765,103 52.3% 197.5Mbps 113.1Mbps 31.4Mbps 18.3Mbps

Table 7. Throughput of the prototype using a single CPU with the anomaly detector
analyzing incoming traffic.

6 Conclusion

In this contribution we propose a fast and effective payload-based anomaly de-
tection system which can be deployed in cyber-critical infrastructures to reliably

7FreeBSD images using 2 CPUs with 4 GByte RAM memory. The BPF buffer size
is set to 10MByte.

8The server hardware are two Sun Fire X4100 M2 with 4 CPU x 2,8Ghz.
9See http://tcpreplay.synfin.net/trac/ for details.
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12 Düssel et al.

detect zero-day attacks. Our method relies on the computation of similarity be-
tween transport-layer packet payloads embedded in a geometric space. We carry
out experiments on traffic containing various application-layer protocols (text-
based and binary) that were captured in different network segments of a SCADA
testbed. With a detection rate of 88%-92% at a false positive level of 0.2% the
method has been proved to be useful for the detection of unknown attacks in
network traffic. Considering the nature of critical infrastructures future work
should address intelligent incident handling which includes the incorporation of
process model features into anomaly detection.
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3.3 Summary

This contribution proposes a fast and effective centroid-based anomaly detection method which utilizes
higher order language models in combination with distance measures to detect payload-based zero-day
attacks in SCADA network traffic. The method relies on the computation of similarity between transport-
layer network packet payloads embedded in a geometric space. With a detection rate of 88-92% true
positives at 0.2% false positives the method has proven to be useful for the detection of unknown attacks
in SCADA network traffic. Moreover, experimental results suggest that the proposed method significantly
outperforms (88% true positives at 0.2% false positives) the state-of-the-art anomaly detection system
PAYL (65% true positives at 0.2% false positives) over plain-text protocols. However, the accuracy
improvement of the proposed method over binary network protocols is only marginal compared to PAYL.
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CHAPTER 4

Automatic feature selection for anomaly
detection

4.1 Introduction

Learning models in presence of a plethora of available features is a commonly known challenge in
machine learning. For example, while Chapter 2 focuses on network packet header features, experiments
in Chapter 3 are based on content byte stream features and Chapter 5 discusses the usefulness of structural
features to detect network attacks. The choice of the right set of features is crucial not only for learning
the right model but also to allow for efficient learning and decision making. In order to investigate which
features are most effective for anomaly detection in network security, this section introduces a method
for automatic feature selection and provides an experimental evaluation to identify features to maximize
accuracy of anomaly-based attack detection in network traffic.
The vast majority of feature selection methods requires label information in order to find discriminative
features [e.g. 90]. In presence of feature blending (i.e. learning predictors over a combination of features
of different sets) and in absence of label information – typical for anomaly detection problems – a
different approach is required. To this end, this contribution proposes a novel method for automated
feature selection in anomaly detection which allows to identify a set of discriminative features from
different feature sets alongside optimal feature set mixture coefficients which realize a minimal-volume
description of data. Experiments are conducted on unsanitized HTTP data for network intrusion detection
to investigate the impact of weighting features from different feature sets on the detection accuracy
using Support Vector Data Description (SVDD) - a particular implementation of the One-class Support
Vector Machine. To this end, two different feature sets are generated (syntactic features and sequential
features). Syntactic feature sets are obtained from parsing and tokenizing HTTP requests using the
Binpac protocol analyzer. For each of the two feature sets, three different types of features are generated:
3-grams/ frequency embedding, 3-grams/ count embedding and expert features which consists of a set of
16 different features describing length, entropy as well as special character presence in an HTTP request
or HTTP request token.

4.2 Publication

51



Automatic Feature Selection for Anomaly Detection

Marius Kloft
Technical University of Berlin
Dept. of Computer Science

Berlin, Germany
kloft@cs.tu-berlin.de

Ulf Brefeld
Technical University of Berlin
Dept. of Computer Science

Berlin, Germany
brefeld@cs.tu-berlin.de

Patrick Düssel
Fraunhofer Institute FIRST
Intelligent Data Analysis

Berlin, Germany
patrick.duessel

@first.fraunhofer.de

Christian Gehl
Fraunhofer Institute FIRST
Intelligent Data Analysis

Berlin, Germany
christian.gehl

@first.fraunhofer.de

Pavel Laskov
∗

Fraunhofer Institute FIRST
Intelligent Data Analysis

Berlin, Germany
pavel.laskov

@first.fraunhofer.de

ABSTRACT
A frequent problem in anomaly detection is to decide among
different feature sets to be used. For example, various fea-
tures are known in network intrusion detection based on
packet headers, content byte streams or application level
protocol parsing. A method for automatic feature selection
in anomaly detection is proposed which determines optimal
mixture coefficients for various sets of features. The method
generalizes the support vector data description (SVDD) and
can be expressed as a semi-infinite linear program that can
be solved with standard techniques. The case of a single fea-
ture set can be handled as a particular case of the proposed
method. The experimental evaluation of the new method
on unsanitized HTTP data demonstrates that detectors us-
ing automatically selected features attain competitive per-
formance, while sparing practitioners from a priori decisions
on feature sets to be used.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; I.2.6 [Artificial Intelligence]: Learn-
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1. INTRODUCTION
The main merit of anomaly detection techniques is their
ability to detect previously unknown attacks. One might
think that the collective expertise amassed in the computer
security community rules out major outbreaks of “genuinely
novel” exploits. Unfortunately, a wide-scale deployment of
efficient tools for obfuscation, polymorphic mutation and en-
cryption results in an exploding variability of attacks. Al-
though being only“marginally novel”, such attacks quite suc-
cessfully defeat signature-based detection tools. This reality
brings anomaly detection back into the research focus of the
security community.
The majority of anomaly detection methods use some form
of machine learning techniques to devise a model of normal-
ity from observed normal traffic. They may vary in features
being used but share the general idea of measuring anomal-
ity of new objects by their distance (in some metric space)
from the learned model of normality, historically also known
as “the sense of self” [2]. Apart from this theoretical obser-
vation, in practice the effectiveness of anomaly detection
crucially depends on the choice of features. Various fea-
tures have been deployed for network intrusion detection,
such as raw values of IP and TCP protocol headers [6, 7],
time and connection windows [5], byte histograms and n-
grams [15, 14], and“bag-of-tokens” language models [10, 11].
While packet header based features have been shown to be
effective against probes and scans (which many practition-
ers consider uninteresting anyway), other kinds of attacks,
e.g. remote buffer overflows, require more advanced payload
processing techniques. The right kind of features for a par-
ticular application has always been considered as the matter
of a judicious choice (or trial and error).
But what if this decision is really difficult to make? Given
the choice of several kinds of features, a poor a priori deci-
sion would lead to an inappropriate model of normality being
learned. A better strategy is to have a learning algorithm
itself decide which set of features is the best. The reason
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for that is that learning algorithms find models with opti-
mal generalization properties, i.e. the ones that are valid not
only for observed data but also for the data to be dealt with
in the future. The a priori choice of features may bias the
learning process and lead to worse detection performance.
By leaving this choice to the learning algorithm, the possi-
bility of such bias is eliminated.
The problem of automatic feature selection has been well
studied in the machine learning community in the context
of classification, i.e. choosing among two or more labels to
be assigned to events [4; 8; 16; 3, e.g.]. The classification
setup, however, is hardly appropriate for anomaly detection
since the training data contains examples of only one class,
the normal traffic. To enable automatic feature selection
for anomaly detection, we derive an appropriate formulation
for one-class-classification, a particular kind of anomaly de-
tection using support vector data description (SVDD) [13].
Our approach generalizes the vanilla SVDD that is contained
as a special case when only a single feature vector is used.
The solution to our feature selection problem is a sparse lin-
ear combination of features that realizes a minimal-volume
description of the data. The underlying optimization can
be phrased as a semi-infinite linear program and solved by
standard techniques. A further advantage of the proposed
method is that it allows training on contaminated data by
limiting the impact of single events on the learned model.
To emphasize this feature, we have carried out experiments
on unsanitized training data obtained “from the wire”.
Our paper is structured as follows. Section 2 reviews the
problem setting of classical one-class anomaly detection with
only a single feature mapping. We derive our feature selec-
tion SVDD in Section 3 where we also state the final op-
timization problem. Section 4 reports on empirical results
and Section 5 concludes.

2. ONE-CLASS ANOMALY DETECTION
In this section, we briefly review the classical support vec-
tor data description (SVDD) [13]. We are given a set of n
normal inputs x1, . . . ,xn ∈ X and a function φ : X → F
extracting features out of the inputs. For instance, xi may
refer to the i-th recorded request and φ(xi) may encode the
vector of bigrams occurring in xi.
The goal in anomaly detection is to find a description of the
normal data such that anomalous data can be easily identi-
fied as outliers. In our one-class scenario, this translates to
finding a minimal enclosing hypersphere (i.e., center ~w and
radius R) that contains the normal input data [13]. Given
the function

f(x) = ‖φ(x) − ~w‖2 −R2,

the boundary of the ball is described by the set {x : f(x) =
0 ∧ x ∈ X}. That is, the parameters of f are to be cho-
sen such that f(x) < 0 for normal data and f(x) > 0 for
anomalous points. The center ~w and the radius R can be
computed accordingly by solving the following optimization
problem [13]

min
~w,R,~ξ

R2 + η
X

i

ξi

s.t. ∀n
i=1 : ‖φ(xi) − ~w‖2 ≤ R2 + ξi

∀n
i=1 : ξi ≥ 0.

The trade-off parameter η > 0 adjusts point-wise violations

of the hypersphere. That is, a concise description of the
data might benefit from omitting some data points in the
computation of the solution. Discarded data points induce
slack that is absorbed by variables ξi. Thus, in the limit
η → ∞, the hypersphere will contain all input examples
irrespectively of their utility for the model and η → 0 implies
R → 0 and the center ~w reduces to the centroid of the data.
In general, model selection strategies such as cross-validation
are necessary not only to find optimal user-defined parame-
ters such as the trade-off η, but also to choose an appropriate
feature representation φ. In the next section, we detail an
approach to automatically select the optimal linear combi-
nation of several feature mappings.

3. AUTOMATIC FEATURE SELECTION
FOR ANOMALY DETECTION

In this section, we present our approach to automatic feature
selection for anomaly detection. Our approach generalizes
the support vector data description (SVDD) [13] that is ob-
tained as a special case when only a single feature mapping
is given. In contrast to the previous section we are now given
k feature mappings φ1, . . . , φk with φj : X → Fj , 1 ≤ j ≤ k,
in addition to the n input instances x1, . . . ,xn ∈ X . For in-
stance, xi may refer to the i-th recorded request and φj(xi)
may encode the j-gram feature vector of xi.
Besides finding a center and radius, the operational goal is
now to learn a linear combination of the given feature map-
pings to realize the minimal model. This can be expressed
equivalently as an embedding of φ1, . . . , φk with mixture co-
efficients β1, . . . , βk. That is, the model f is now given by

f(x) =

‚

‚

‚

‚

‚

‚

‚
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√
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and the above SVDD optimization problem can be general-
ized accordingly to multiple feature mappings. In the fol-
lowing we write ~w = (~w1, . . . , ~wk)T to avoid cluttering the
notation unnecessarily. We are now ready to state the pri-
mal optimization problem for one-class anomaly detection
with multiple feature mappings.

Optimization Problem 1 (primal). Given n instan-
ces x1, . . . ,xn ∈ X , k feature mappings φ1, . . . , φk with φj :
X → Fj , and η > 0. The primal feature selection SVDD
optimization problem is given by

min
~w,R,~ξ,~β

R2 + η
n
X

i=1

ξi

s.t. ∀n
i=1 : ‖ψβ(xi) − ~w‖2 ≤ R2 + ξi (1)

∀n
i=1 : ξi ≥ 0

∀k
j=1 : βj ≥ 0

k
X

i=1

βj = 1,

where ψβ(xi) = (
√
β1φ1(xi), . . . ,

√
βkφk(xi))

T.

The last constraint in Optimization Problem 1 requires the
mixing coefficients to sum to one which corresponds to an L1

regularization. We thus promote sparsity and aim at select-
ing subsets of the k feature mappings. From a geometrical
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point-of-view, Optimization Problem 1 can be understood
as follows: Redundant and deceptive feature mappings lead
to arbitrary and widespread data representations and thus
render concise spherical descriptions impossible. Such inap-
propriate embeddings will be penalized by vanishing mixing
coefficients βj . On the contrary, useful feature mappings are
promoted during the optimization, hence enforcing concise
data descriptions.
Unfortunately, we cannot solve Optimization Problem 1 di-
rectly since it is not convex due to non-linear dependencies

between ~β and ~w, which we see by expanding the term

‖ψβ(xi) − ~w‖2 =
k
X

j=1

βj〈φj(xi), φj(xi)〉 (2a)

− 2
k
X

j=1

〈
p

βjφj(xi), ~wj〉 + 〈~w, ~w〉. (2b)

Moreover, setting φj(x) = ~0 for 1 ≤ j ≤ k, Equation (1) can
be solved for the radius R which can be expressed in terms
of the center ~w and a non-negative offset ǫ2,

‖~0 − ~w‖2 ≤ R2 + ξi ⇒ R2 = 〈~w, ~w〉 + ǫ2. (3)

A remedy to the nonlinearity in ~w and ~β is a variable sub-
stitution by ~vj =

p

βj ~wj . Together with Equations (2) and
(3) we obtain a convex analogue of the optimization problem
(1) given by

min
~v,ǫ,~ξ,~β

ǫ2 +
k
X

j=1

1

βj
〈~vj , ~vj〉 + η

n
X

i=1

ξi

s.t. ∀n
i=1 : ǫ2 + ξi ≥

k
X

j=1

βj〈φj(xi), φj(xi)〉

− 2
k
X

j=1

〈φj(xi), ~vj〉

∀n
i=1 : ξi ≥ 0 ; ∀k

j=1 : βj ≥ 0 ;
k
X

j=1

βj = 1.

The above optimization problem is convex and has only lin-
ear constraints that can now be integrated into the objective

by the Lagrange Theorem. For any valid ~β ∈ {~β′ :
P

j β
′
j =

1 ∧ β′
j ≥ 0} we obtain a partial Lagrangian by introducing

nonnegative Lagrange multipliers ~α, ~µ ≥ 0, leading to the
Lagrangian L that needs to be minimized.

L(~v, ǫ, ~ξ, ~β, ~α, ~µ) = ǫ2 +
k
X

j=1

1

βj
〈~vj , ~vj〉 + η

n
X

i=1

ξi −
n
X

i=1

µiξi

−
n
X

i=1

αi

 

−
k
X

j=1

βj〈φj(xi), φj(xi)〉

+ 2
k
X

j=1

〈φj(xi), ~vj〉 + ǫ2 + ξi

!

.

The Lagrangian reaches its minimal value when it is min-

imized with respect to the primal variables ~v, ǫ, ~β, ~ξ and
maximized with respect to the Lagrange multipliers; hence,
the optimum is found at a saddle-point. Setting the partial

derivatives with respect to the primal variables ǫ,~v, and ~ξ

to zero yields

δL

δǫ
!
= 0 ⇒

n
X

i=1

αi = 1 (4a)

δL

δ~v
!
= 0 ⇒ ~vj = βj

n
X

i=1

αiφj(xi), 1 ≤ j ≤ k (4b)

δL

δ~ξ

!
= 0 ⇒ η − µi − αi = 0, 1 ≤ i ≤ n. (4c)

Equation (4c) together with the nonnegativity constraints
on αi and µi leads to the so-called box-constraints 0 ≤
αi ≤ η. Resubstitution of Equations (4) into the primal
Lagrangian removes its dependence on the primal variables:

L(α) =

n
X

i=1

αi

k
X

j=1

βjKj(xi,xi) −
n
X

i,ℓ=1

αiαℓ

k
X

j=1

βjKj(xi,xℓ).

Together with the minimization over ~β we resolve the fol-
lowing min-max problem

min
~β

max
~α

L(α) (5)

s.t. ∀n
i=1 : 0 ≤ αi ≤ η ;

n
X

i=1

αi = 1

∀k
j=1 : βj ≥ 0 ;

k
X

j=1

βj = 1,

where we introduce kernel Kj(x,x
′) = 〈φj(x), φj(x

′)〉 for
1 ≤ j ≤ k. To efficiently optimize the above optimization
problem, we translate it into an equivalent semi-linear infi-
nite program (SILP). The idea behind this transformation

is as follows: Let Ω(~α, ~β) be the objective function in Equa-
tion (5) and suppose ~α∗ is chosen optimally. Then it holds

Ω(~α∗, ~β) ≥ Ω(~α, ~β) for all ~α and ~β. Hence we can equiva-
lently minimize an upper bound θ on the optimal value and
by doing so we arrive at the final Optimization Problem 2.

Optimization Problem 2 (SILP). Given n instances
x1, . . . ,xn ∈ X , either k feature mappings φ1, . . . , φk or al-
ternatively k kernel functions K1, . . . ,Kk : X ×X → ℜ with
Kj(x,x

′) = 〈φj(x), φj(x
′)〉, and η > 0. The SILP formula-

tion of the feature selection SVDD is given by

min
~β,θ

θ

s.t. θ ≥
k
X

j=1

βj

0

@

n
X

i=1

αiKj(xi,xi) −
n
X

i,ℓ=1

αiαℓKj(xi,xℓ)

1

A

∀ ~α ∈ ℜn : 0 ≤ αi ≤ η ,
n
X

i=1

αi = 1;

∀k
j=1 : βj ≥ 0 ;

k
X

j=1

βj = 1.

Optimization Problem 2 is equivalent to the primal Opti-
mization Problem 1 and can be efficiently optimized by stan-
dard techniques [12].

4. EMPIRICAL EVALUATION
In this section we empirically evaluate the proposed feature
selection SVDD on real HTTP network traffic recorded at
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GET /openworx.php?key=malware+behavior HTTP/1.1\r\n
Host: www.first.fraunhofer.de\r\n
Connection: keep-alive\r\n
Keep-alive: 300\r\n
User-Agent: Mozilla/5.0 (Windows; Windows NT 5.1;
en-US) Gecko/20070312 Firefox/1.5.0.11\r\n
Cookie: owx_ecrm_keks=b604613a489d40\r\n
Referer: http://www.first.fraunhofer.de/ida\r\n
Accept: image/png,*/*;q=0.5\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n
Accept-Encoding: gzip,deflate\r\n

Figure 1: An exemplary HTTP request.

the Fraunhofer FIRST institute. The unsanitized dataset
contains a sample of 2500 normal HTTP requests drawn
randomly from two months of incoming HTTP traffic. We
injected 30 instances of 10 different attacks taken from recent
exploits in the Metasploit framework1 and a Nessus HTTP
scan. All exploits (6 buffer overflow attacks and 4 PHP
vulnerabilities) were normalized to match the tokens and
frequent attributes of normal HTTP requests such that the
malicous payload provides the only indicator for identifying
the attacks.

4.1 Feature Extraction
We consider six different feature sets extracted from the raw
data. Three of these feature sets are based on a sequential
representation of byte streams comprising HTTP requests
as depicted in Figure 1. The remaining three feature sets
correspond to a token representation of the HTTP request.
The latter is obtained by running requests through an HTTP
protocol analyzer constructed with binpac [9], and collecting
the analysis results in a token-attribute sequence. The to-
kens in this sequence correspond to keywords of the HTTP
protocol whereas the attributes consist of byte sequences as-
sociated with these keywords. Figure 2 visualizes the corre-
sponding token-attribute structure of the request in Figure
1. For each of the two representations, we extract the fol-
lowing features from the HTTP requests:

3-gram occurrence features
The feature functions φseq

occ and φtok
occ register the occurrence

of particular byte 3-grams for the sequential and the token
representation, respectively. Each feature function is a bi-
nary vector where the elements equal 1 if a certain 3-gram
occurs in a sequence and 0 otherwise. For sequential repre-
sentations, this measure is evaluated for the complete byte
sequence of the requests. For the token representation, the
measure is evaluated separately for all attributes of match-
ing tokens and added up for all tokens.

3-gram frequency features
The computation of the frequency feature functions φseq

freq

and φtok
freq is analogous to the 3-gram occurrence features.

The only difference is that both vectors now contain the
frequencies of the occurring 3-grams.

Expert features
The feature functions φseq

exp and φtok
seq exploit the expert knowl-

edge about observed requests. We have chosen a somewhat

1http://www.metasploit.com/
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Figure 2: A protocol analyzer returns a set of token-
attribute pairs for each HTTP request.

eccentric set of features to show that even a wild guess may
be well-suited for the automatic feature selection approach.
Our feature set contains 16 features defined as follows.
Positions 1 to 11 represent a coarse string length histogram.
The range of observed string lengths up to lmax, the largest
string length in a training corpus, is divided in 10 equally
spaced bins. A binary feature is set, if the observed string
length falls into the respective bin. Position 11 is reserved
for strings exceeding the maximal training string length; this
position is always 0 for the training data but may be set to
one for the test data. Position 12 is set to one if the entropy
of a string lies in the interval [4.5, 5.5]. Positions 13–15 flag
the occurrence of the following character types in HTTP
requests:

• non-printable characters: ANSI numbers 127-255,

• control characters: ASCII numbers 0-31 except for 10
and 13, and

• uncommon characters: $, [, ], {, }, |, \.
Position 16 is set if blacklisted words that are not supposed
to appear in a request – in our case: exec, home, passthru,
root, CMD and SYSTEM – are found in a string. The dif-
ference between sequential and token representations is the
same as for the other feature sets.

4.2 Results
We compare the accuracy of the detector obtained by au-
tomatic feature selection using the proposed approach with
the accuracy of individual detectors using each of the six fea-
tures separately and a uniform mixture of the features. The
respective optimization problems are solved with CPLEX.
For the experiments, we randomly draw distinct training,
validation, and test sets from the normal pool. The valida-
tion and test sets are each augmented by 15 randomly drawn
attacks, where we make sure that attacks of the same class
occur only in one of the two sets. For every η ∈ [0, 250],
each model in our discourse area is adapted to the training
set and subsequently tested on the validation set for model
selection. Models realizing the largest area under the ROC
curve in the false-positive interval [0, 0.01] (AUC0.01) on the
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Figure 3: Average AUC0.01 performances for varying training set size.

validation set are then evaluated on the independent test
set.
We investigate the accuracy of learned detectors as a func-
tion of the training set size. The average AUC0.01 values are
reported in Figure 3 over n = 100 repetitions with randomly
drawn training, validation, and test sets. The standard er-
ror (standard deviation divided by

√
n = 10) was observed

to be less than 0.01 in our experiments and is not shown in
the plots.
It can be clearly seen from Figure 3 that the accuracy of
the detector with automatic feature selection dominates the
accuracy of all individual classifiers for all training data set
sizes (except the ridiculously small training set of size 2).
Towards larger training set sizes, some of the features yield
equally accurate detectors; the detector obtained by the pro-
posed method remains among the winners.
The behavior of the automatic feature selection becomes
clear from the analysis of the distribution of the mixture co-
efficients for different features shown in Figure 4. Recall that
by definition of our problem these features add up to one.
It can be seen that for smaller training set sizes, an optimal
feature selection is non-sparse, i.e. more than one feature
is needed for the best classification. This explains why a
strict improvement of the detection accuracy is attained by
our method. For larger training sets, the information con-
tained in the data alone becomes sufficient to determine a
“strict winner” among the features: in our case, the feature
set φseq

exp. Although some other feature sets also exhibit good
performance for these training set sizes, the choice is made
for the feature set with the best overall performance. As
a sanity check, we have repeated the experiment with the
best feature set replaced by random features and have ob-
served that the best alternative set of features is chosen by
automatic feature selection (results not shown in the plots).

5. CONCLUSION
We have presented a novel generalization of the support vec-
tor data description (SVDD) that automatically selects the
optimal feature combination. The optimization problem of
the feature selection SVDD can be formulated as a semi-
infinite linear program and solved with standard techniques.
The vanilla SVDD is obtained as a special case for only a
single feature function. Empirically, the automatic feature
selection proved robust against noise in the training data:
Fluctuations caused by small sample sizes are absorbed by
appropriately chosen mixtures. The feature selection SVDD
has consistently outperformed any baseline using only a sin-
gle feature set.
The proposed method for feature selection for anomaly de-
tection shows that multiple features sets, possibly resulting
from various characterizations of the normal traffic, can be
automatically combined to obtain optimal detectors. In this
way a practitioner faced with the choice of alternative fea-
ture sets need not make an a priori choice by hand but can
rely on the same learning algorithm used to derive the model
of normal data.
The future work will focus on optimizing the run-time of
the proposed method (currently our implementation uses
standard optimization software not suitable to more than a
few hundred examples, however for other types of machine
learning these kinds of methods have been shown to scale
to thousands of training examples [1, 12, 17]), as well as
to extend the proposed method to other anomaly detection
algorithms.
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Chapter 4 Automatic feature selection for anomaly detection

4.3 Summary

This contribution presents a novel automated feature selection method for anomaly detection which
allows for the selection and combination of an optimal set of discriminative features taken from different
feature sets to realize a minimal-volume data description. Experiments showed that the proposed method
outperforms or compares to any baseline using a single set of features using for than five samples to train
the model of normality. Moreover, experimental results suggest, that the proposed method is particularly
effective on small training set sizes. By measuring the detection accuracy over different training set sizes,
results suggest that the feature weighting depends on the size of training data. While for smaller sized
training set the feature weight distribution tends to be uniform, the weight distribution is increasingly
dominated by a specific feature set (i.e. sequential expert features) with growing training set size. By
increasing the size of the training set the information contained in the the data alone becomes more and
more sufficient for one particular feature set to describe “normal” data.
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CHAPTER 5

Incorporation of Application Layer Protocol
Syntax into Anomaly Detection

5.1 Introduction

The vast majority of today’s cyber attacks is carried at the application layer exploiting vulnerabilities in
the application or third party components delivering untrusted, malicious user input to the application.
Hence, the analysis of application layer content in network traffic has become increasingly important.
As a continuative study to Chapter ??, Chapter 5 introduces a SVM-based anomaly detection method
that allows for the detection of unknown network attacks based on syntax-sequential features extracted
from parsed network packet payloads containing HTTP requests. To this end, this section introduces
a novel composite similarity which is used to calculate pairwise similarity of HTTP requests based on
the sequential similarity of byte-sequence components of matching syntactic tokens. To this end, this
contribution conducts an experimental evaluation over HTTP traffic using a One-class SVM to investigate
to what extent conventional language models over network packet payloads capture discriminative
information sufficient to detect unknown application-level attacks, such as Structured Query Language
(SQL) injections or Cross-site Scripting (XSS) attacks, and furthermore evaluate to what extent utilization
of network protocol context helps improving detection accuracy. To this end, this contribution provides a
novel method that extends payload-based anomaly detection by incorporating network protocol structure
represented as abstract syntax trees into anomaly detection. A novel kernel function – the attributed token
kernel – is proposed which defines distance between two data points based on the pairwise comparison
of syntax-tagged substrings of HTTP requests. The novel method is evaluated using full-fledged cross
validation and compared against a state-of-the-art service-specific anomaly detection method [45] as
well as the signature-based attack detection solution Snort. The experimental evaluation considers two
scenarios. Under the first scenario, we investigate and compare the detection accuracy of the proposed
attributed token kernel against the spectrum kernel on unknown overflow-based attacks simulated against
a research institution’s website (FIRST07). Under the second scenario, both kernels are evaluated on a
different, more complex HTTP dataset (NYT08) containing a set of recorded web application attacks,
such as SQL or XSS injections.

5.2 Publication
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Abstract. The syntax of application layer protocols carries valuable in-
formation for network intrusion detection. Hence, the majority of modern
IDS perform some form of protocol analysis to refine their signatures with
application layer context. Protocol analysis, however, has been mainly
used for misuse detection, which limits its application for the detection of
unknown and novel attacks. In this contribution we address the issue of
incorporating application layer context into anomaly-based intrusion de-
tection. We extend a payload-based anomaly detection method by incor-
porating structural information obtained from a protocol analyzer. The
basis for our extension is computation of similarity between attributed
tokens derived from a protocol grammar. The enhanced anomaly detec-
tion method is evaluated in experiments on detection of web attacks,
yielding an improvement of detection accuracy of 49%. While byte-level
anomaly detection is sufficient for detection of buffer overflow attacks,
identification of recent attacks such as SQL and PHP code injection
strongly depends on the availability of application layer context.

Keywords: Anomaly Detection, Protocol Analysis, Web Security.

1 Introduction

Analysis of application layer content of network traffic is getting increasingly
important for protecting modern distributed systems against remote attacks. In
many cases such systems must deal with untrusted communication parties, e.g.
the majority of web-based applications. Application-specific attack can only be
detected by monitoring the content of a respective application layer protocol.

Signature-based intrusion detection systems (IDS) possess a number of mech-
anisms for analyzing the application layer protocol content ranging from simple
payload scanning for specific byte patterns, as in Snort [19], to protocol analysis
coupled with a specialized language for writing signatures and policy scripts, as
in Bro [15]. By understanding the protocol context of potential attack patterns,
significant improvements in the detection accuracy of unknown application layer
attacks can be achieved.

R. Sekar and A.K. Pujari (Eds.): ICISS 2008, LNCS 5352, pp. 188–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Incorporation of Application Layer Protocol Syntax 189

The main drawback of signature-based IDS is their dependence on the avail-
ability of appropriate exploit signatures. Rapid development of new exploits and
their growing variability make keeping signatures up-to-date a daunting if not
impossible task. This motivates investigation of alternative techniques, such as
anomaly detection, that are capable to detect previously unknown attacks.

Incorporation of the protocol context into anomaly detection techniques is,
however, a difficult task. Unlike a signature-based system which looks for a
specific pattern within a specific context, an anomaly-based system must translate
general knowledge about patterns and their context into a numeric measure of
abnormality. The latter is usually measured by a distance from some typical
“profile” of a normal event. Hence, incorporation of protocol syntax into the
computation of distances between network events (e.g. packets, TCP connections
etc.) is needed in order to give anomaly detection algorithm access to protocol
context.

The idea behind the proposed method for syntactically aware comparison of
network event is roughly the following. A protocol analyzer can transform a
byte stream of each event into a structured representation, e.g. a sequence of
token/attribute pairs. The tokens correspond to particular syntactic constructs
of a protocol. The attributes are byte sequences attached to the syntactic ele-
ments of a protocol. Measuring similarity between sequences is well understood,
for general object sequences [18], as well as byte streams of network events
[16; 17; 23]. To compare sequences of token/attribute pairs we perform compu-
tation of sequential similarity at two levels: for sequences of tokens (with partial
ordering) and byte sequence values of corresponding tokens. The resulting sim-
ilarity measure, which we call the attributed token kernel, can be transformed
into a Euclidean distance easily handled by most anomaly detection algorithms.

To illustrate effectiveness of the protocol syntax-aware anomaly detection,
we apply the proposed method for detection of web application attacks. Such
attacks, for example SQL injection, cross-site scripting (XSS) and other script
injection attacks, are particularly difficult for detection due to (a) their variabil-
ity, which makes development of signature a futile exercise, and (b) entanglement
of attack vector within the protocol framework, which makes simple byte-level
content analysis ineffective. Our experiments carried out on client-side HTTP
traffic demonstrate a strong performance improvement for these kinds of at-
tacks compared to byte-level analysis. The proposed method should be easily
adaptable for other application layer protocols for which a protocol dissector is
available.

2 Related Work

A large amount of previous work in the domain of network intrusion detection
systems has focused on features derived from network and transport layer pro-
tocols. An example of such features can be found in the data mining approach
of Lee and Stolfo [9], containing packet, connection and time window features
derived from IP and TCP headers. The same work has pioneered the use of
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190 P. Düssel et al.

“content” features that comprised selected application-level properties such as
number shell prompts, number of failed login prompts, etc. deemed to be rele-
vant for detection of specific attacks. Similar features comprising selected key-
words from application layer protocols have been used by Mahoney and Chan
for anomaly detection [12].

General content-based features using payload distribution of specific byte
groups have been first proposed by Kruegel et al. [7] in the context of service-
specific anomaly detection using separate normality models for different appli-
cation layer protocols. Full distributions of byte values have been considered
by Wang and Stolfo [23], extended to models of various languages that can be
defined over byte sequences, e.g. n-grams [16; 22].

Incorporation of application-level protocol information into the detection pro-
cess has been first realized in signature-based IDS. Robust and efficient protocol
parsers have been developed for the Bro IDS [15]; however, until recently they
were tightly coupled with Bro’s signature engine, which has prevented their
use in other systems. The development of a stand-alone protocol parser binpac
[14] has provided a possibility for combining protocol parsing with other de-
tection techniques. Especially attractive features of binpac are incremental and
bi-directional parsing as well as error recovery. These issues are treated in depth
in the recent. Similar properties at a more abstract level are exhibited by the
recent interpreted protocol analyzer GAPAL [1].

Combination of protocol parsing and anomaly detection still remains largely
unexplored. By considering separate models corresponding to specific URI at-
tributes in the HTTP protocol, Kruegel and Vigna [8] have developed a highly
effective system for the detection of web attacks. The system combines models
built for specific features, such as length and character distribution, defined for
attributes of applications associated with particular URI paths. Ingham et al.
[6] learn a generalized DFA representation of tokenized HTTP requests using
delimiters defined by the protocol. The DFA inference and the n-grams defined
over an alphabet of protocol tokens performed significantly better than other
content-based methods in a recent empirical evaluation [5]. Our approach dif-
fers from the work of Ingham and Inoue in that our method explicitly operates
on a two-tier representation – namely token/attribute pairs – obtained from a
full protocol analyzer (binpac/Bro) which provides a more fine-grained view on
HTTP traffic.

3 Methodology

A payload-based anomaly detection approach benefits from its ability to cope
with unknown attacks. The architecture of our system which is specifically built
for the requirements of anomaly detection at application layer is illustrated in
Fig. 1. The following four stages outline the essential building blocks of our
approach and will be explained in detail for the rest of this section.

1. Protocol Analysis. Inbound packets are captured from the network by
Bro which provides robust TCP re-assembly and forwards incoming packets
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Fig. 1. Architecture of payload-based anomaly detection

to the binpac protocol analyzer. The latter extracts application-layer events
at different levels of granularity, typical for common text protocols such
as HTTP, FTP, SMTP or SIP. Initially, extraction starts at the level of
request/response messages and can be further refined to specific protocol
elements. A key benefit of using protocol dissectors as part of data pre-
processing is the capability to incorporate expert knowledge into the feature
extraction process. Details on protocol analysis can be found in Section 3.1.

2. Feature Extraction. Each parsed event is mapped into a feature vector
which reflects essential characteristics. However, an event can be projected
into byte-level or syntax-level feature spaces. Our approach allows to combine
both. Details of the feature extraction process can be found in Section 3.2.

3. Similarity Computation. The similarity computation between strings is a
crucial task for payload-based anomaly detection. Once a message is brought
into a corresponding vectorial representation two events can be compared by
computing their pairwise distance in a high-dimensional geometric space. We
extend the common string similarity measures for token/attribute represen-
tations provided by a protocol parser, as explained in Section 3.4.

4. Anomaly Detection. In an initial training phase the anomaly detection
algorithm learns a global model of ”normality” which can be interpreted as
a center of mass of a subset of training data. At detection time an incoming
message is compared to a previously learned model and based on its distance
an anomaly score is computed. The anomaly detection process is described
in Section 3.3.

3.1 Protocol Analysis

Network protocols specify rules for syntax, semantics, and synchronization for
bidirectional data communication between network endpoints. The protocol syn-
tax is usually defined by an augmented Backus-Naur Form.

Our goal is to analyze network traffic based on the grammatical characteris-
tics of an underlying protocol in order to detect network attacks. We perform
the analysis at the granularity of protocol elements present in request/response
messages. The HTTP protocol definition is a classical representative of such re-
quest/response protocols. Additionally, HTTP is the most frequently used proto-
col for web applications and so we limit our focus to this particular specification.
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Usually, a request is transmitted in a single TCP packet, although certain fea-
tures of the TCP/IP (e.g. fragmentation) can make the process more complicated.
An application protocol analyzer, e.g. binpac [14], allows one to transform the
network event’s raw byte payload into a structured representation reflecting the
syntactic aspects of an underlying application protocol. For example in the syn-
tactic context of HTTP the sequence “Content-Length: 169” refers to a header
“Content-Length” with attribute “169”.

We present two examples of HTTP connections to illustrate the effect of ap-
plying binpac’s grammar and parser to an application-level specification. The
first example is a benign GET request containing common HTTP headers to-
gether with a CGI parameter.

GET /search.asp?keyword=master+thesis+learning HTTP/1.1\r\nHost: www.firs

t.fraunhofer.de\r\nUser-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1; SV1)\r\nConnection: Keep-alive\r\nAccept-Encoding: gzip\r\n\r\n

The second example shows a SQL injection attack against a Microsoft SQL
Server exploiting the vulnerable CGI parameter keyword.

GET /search.asp?keyword=’+exec+master..xp_cmdshell(’tftp -i badhost.com g

et backdoor.exe c:/windows/system32/calc.exe’)+-- HTTP/1.1\r\nHost: www.f
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64



Incorporation of Application Layer Protocol Syntax 193

irst.fraunhofer.de\r\nUser-Agent: Mozilla/5.0\r\nConnection: Keep-alive\r

\nAccept-Language: en-us,en\r\nAccept-Encoding: gzip\r\n\r\n

The token/attribute pairs generated by the protocol analyzer are shown in
Fig. 2. One can clearly see that the difference between these two requests is
given by the attributes attached to the token “keyword” of the parsed GET
request.

3.2 Feature Extraction

Anomaly detection usually requires data to be in a vectorial representation.
Therefore, the feature extraction process maps application layer messages, such
as HTTP requests, into a feature space in which similarity between messages can
be computed. Protocol dissection in the pre-processing stage allows to deploy
feature extraction on two different levels explained in the following.

Byte-Level Features. An intuitive way to represent a message at byte level
is to extract unique substrings by moving a sliding window of a particular
length n over a message. The resulting set of feature strings are called n-
grams. The first example in Fig. 3 shows the mapping of the benign HTTP
request introduced in Section 3.1 into a binary 2-gram feature space.

Syntax-Level Features. Each message is transformed into a set of tokens.
Although shown as a sequence of tokens in Fig. 2, these feature have only
partial sequential order as the order of many (but not all) tokens in an
HTTP request is not defined. An embedding of the benign HTTP request
into a token feature space is exemplarily presented in Fig. 3.

With the extraction of byte-level features from token attributes a semantic notion
is implicitly assigned to the corresponding protocol token. Note, that an explicit
representation of application layer messages can easily become computational
infeasible due to the combinatorial nature of byte sequences. Therefore, we use
efficient data structures such as suffix trees or hash tables (”feature objects” in
Fig. 1) that allow an implicit vectorial representation.

3.3 Anomaly Detection

Once, application layer messages are mapped into some feature space the prob-
lem of anomaly detection can be solved mathematically considering the ge-
ometric relationship between vectorial representations of messages. Although
anomaly detection methods have been successfully applied to different prob-
lems in intrusion detection, e.g. identification of anomalous program behavior
[e.g. 3; 4], anomalous packet headers [e.g. 11] or anomalous network payloads
[e.g. 8; 16; 17; 22; 23], all methods share the same concept – anomalies are
deviations from a model of normality – and differ in concrete notions of nor-
mality and deviation. For our purpose we use the one-class support vector ma-
chine (OC-SVM) proposed in [21] which fits a minimal enclosing hypersphere
to the data which is characterized by a center c and a radius R as illustrated
in Fig. 4.
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Mathematically, this can be formulated as a quadratic programming optimiza-
tion problem:

min
R ∈ R
ξ ∈ Rn

R2 + C

n∑

i=1

ξi

subject to: ||φ(xi) − c||2 ≤ R2 + ξi,

ξi ≥ 0.

(1)

By minimizing R2 the volume of the hypersphere is minimized given the con-
straint that training objects are still contained in the sphere which can be ex-
pressed by the constraint in Eq.(1). A major benefit of this approach is the
control of generalization ability of the algorithm [13], which enables one to cope
with noise in the training data and thus dispense with laborious sanitization,
as recently proposed by Cretu et al. [2]. By introducing slack variables ξi and
penalizing the cost function we allow the constraint to be softened. The regular-
ization parameter C controls the trade-off between radius and errors (number
of training points that violate the constraint). The solution of the optimization
problem shown in Eq. (1) yields two important facts:

1. The center c =
∑

i αiφ(xi) of the sphere is a linear combination of data
points, while αi is a sparse vector that determines the contribution of the i-
th data point to the center. A small number of training points having αi > 0
are called support vectors (SV) which define the model of normality as
illustrated in Fig. 4.

2. The radius R which is explicitly given by the solution of the optimization
problem in Eq. (1) refers to the distance from the center c of the sphere to
the boundary (defined by the set of support vectors) and can be interpreted
as a threshold for a decision function.

Finally, having determined a model of normality the anomaly score sc(z) for a
test object z can be defined as the distance from the center:

sc(z) = ||φ(z) − c||2 = k(z, z) − 2
∑

i

αik(z, xi) +
∑

i,j

αiαjk(xi, xj), (2)
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where the similarity measure k(x, y) between two points x and y refers to a kernel
function which allows to compute similarity between two data points embedded
in some geometric feature space F . Given an arbitrary mapping φ : X �→ F of
a data point x ∈ X a common similarity measure can be defined from the dot
product in F :

k(x, y) = 〈φ(x), φ(y)〉 =

N∑

i=1

φi(x)φi(y), (3)

where φi(x) refers to the i-th dimension of a data point x mapped into F .

3.4 Similarity Measures

Having defined a set of characteristic features we can develop similarity measures
that, given two data points, returns a real number reflecting their similarity.

Spectrum Kernel. A natural way to define a kernel k(s, u) between two ap-
plication layer messages s and u is to consider n-grams that both messages have
in common. Given the set An of all possible strings of length n induced by an
alphabet A we can define a kernel function computing the dot product of both
messages embedded into a |A|n dimensional feature space.

k(s, u) = 〈φ(s), φ(u)〉 =
∑

w∈An

φw(s)φw(u), (4)

where φw(s)1 refers to a signum function that returns 1 if the w is contained in
s and 0 otherwise. The kernel function k(s, u) is referred to as spectrum kernel
[10]. Using n-grams to characterize messages is intuitive but may result in a
high-dimensional feature space. From an algorithmic point of view, it may seem
that running a summation over all possible substrings w ∈ An can become
computationally infeasible. Thus, special data structures such as tries, suffix
trees or suffix arrays enable one to compute k(s, u) in O(|s| + |u|) time [20].
Interestingly, the Euclidean distance deucl(s, u) which is of particular interest for
anomaly detection can be easily derived from the above kernel formulation:

deucl(s, u) =
√

k(s, s) + k(u, u) − 2k(s, u). (5)

Attributed Token Kernel. In this section we address the problem of how to
combine string similarity as defined in Section 3.4 and structural similarity of
two application layer messages. Consider an alphabet A = t1, t2, . . . , tz of tokens.
Let s = s1, s2, ..., sn and u = u1, u2, ..., um, si, uj ∈ A, be the token sets of two
application layer messages returned by a protocol analyzer. Let vu

t denote an
attribute attached to the token t found in a token set u. We can define a kernel
function for attributes in the same way we have done it in Eq.(4):

kt(s, u) =

{
k(vs

t , v
u
t ), if t is found in both s and u

0, otherwise.
(6)

1 Alternatively, the embedding function φw(s) may return the count or the term fre-
quency of w in s.
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Fig. 5. Normalization of the similarity measure between attributed token sequences

Finally, we combine definitions (4) and (6) in the following way:

k(s, u) =
∑

t∈s∩u

γ(t)

G
kt(s, u), (7)

where s ∩ u is an intersection of tokens in s and u, γ(t) is a weight assigned to a
particular token, and G is an overall normalization constant. The computation
of the kernel function in Eq. (7) runs through all matching tokens and computes
the similarity measure defined in Eq. (4) over associated attributes at byte level.

The weighting constant is defined as:

γ(t) = log(|vs
t |) × log(|vu

t |),

and the normalization constant is defined as:

G =
∑

t∈s∪u

γ(t).

These constants are motivated by the need to normalize contributions from in-
dividual value sequences according to their lengths. The overall normalization
constant also includes contributions from mismatching tokens. This allows the
latter to indirectly influence the similarity measure by rescaling contributions
from matching tokens; direct influence is not possible since it does not make any
sense to compare value strings for mismatching tokens. For the rest of this paper
we refer to the kernel function defined in Eq. (7) as attributed token kernel.

4 Experiments

We evaluate the impact of incorporation of protocol context into anomaly detec-
tion on two data sets containing HTTP traffic. Both data sets comprise exploits
taken from the Metasploit framework2 as well as from common security mailing
lists and archives such as xssed.com, sla.ckers.org or Bugtraq.

2 http://www.metasploit.com/
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The first dataset (FIRST07) contains a sample of 16000 normal HTTP con-
nections drawn from two months incoming traffic recorded at our institute’s web
server. We mixed normal data with 42 attack instances of 14 different types,
mostly overflow-based attacks (8 stack overflows, 4 heap overflows, 1 format
string exploit, 1 web application attack). Except for using unsanitized data, this
a typical experimental protocol used in previous work, e.g. [5; 8; 23].

The second data set (NYT08) has been motivated by the observation that a
traffic profile of a mostly static web site may be quite different from a profile of
a site running web applications. In particular, a much more involved structure of
URI and certain header fields can be expected in normal traffic, which may cause
significantly higher false positive rates than the ones reported in evaluations on
static normal traffic. Since we do not have access to a “pure” web application
traffic, as e.g. the Google data used by Kruegel and Vigna [8], we have attempted
to simulate such traffic using specially developed crawlers. Our request engine
analyzes the structure and content of existing static traffic (in our case, the
FIRST07 data) and generates valid HTTP requests using frequently observed
protocol header elements while randomly visiting a target domain. We generated
15000 client-side connections accessing the nytimes.com news site and mixed the
traffic with 17 instances of web application attacks (1 buffer overflow, 1 arbi-
trary command execution vulnerability, 3 Perl injection, 2 PHP include, 4 SQL
injections and 6 XSS attacks). XSS attacks and SQL injections were launched
against two prototypical CGI programs that were adapted to the structure of a
”login”-site (8 CGI parameters) and a ”search”-site (18 CGI parameters) found
in the nytimes.com domain. In order to obtain a normal behavior for these sites
we generated 1000 requests containing varying user names and passwords as well
as search phrases and realistic parameter values for both prototypical “mirrors”
of NYT sites. In contrast to previous work in which the structure of HTTP
requests in exploits was used “as is”, we have also normalized the attacks by
using the same typical headers injected by crawlers, in order to avoid attacks
being flagged as anomalous purely because of programmatic but non-essential
difference in their request structure.

In our experiments, a model was trained using 500 requests taken from a
normal pool of data and subsequently applied to 500 unknown requests taken
from a distinct test set mixed with attacks. The detection accuracy was measured
in terms of area under receiver operating characteristic curve (ROC0.1) for false
positive rates ≤ 10%. For statistical reasons experiments were repeated and the
detection accuracy was averaged over 50 repetitions.

4.1 Detection Accuracy: Byte-Level Versus Attributed Token-Level

In the experiment on FIRST07 we investigate the detection of overflow-based
attacks in HTTP requests. As shown in Fig. 6(a), the spectrum kernel sk on
binary 3-grams attains a detection rate of 82% at 0% false positives anomaly,
which is comparable to Snort. The only attack that repeatedly suffered a high
false positive rate (1.5%-2%) is a file inclusion (“php include”) which is the only
non-buffer-overflow attack in this data set. Similar results have been obtained
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Fig. 6. Detection accuracy on intrusion detection datasets FIRST07 and NYT08

for the attributed token kernel except for some initial false positives due to proxy
requests containing anonymized header attributes.

In the experiment on NYT08 we investigate the detection of attacks that
are bound to specific parameters of a CGI program. The results presented in
Fig. 6(b) reveal that the detection of web application attacks using byte-level
similarity over n-grams is much more difficult than for overflow-based attacks
(Fig. 6(a)). The OC-SVM achieves its best detection rate of approximately 64%
at zero percent false positives using a spectrum kernel (sk) over 3-grams and
a binary feature embedding. Moreover, it can be observed that the accuracy
of byte-level detection rises by increasing the size of n-grams. As illustrated in
Fig. 6(b) significant improvements can be obtained by incorporating structure of
application layer messages into payload-based anomaly detection as illustrated
in Fig. 2. It turns out that anomaly detection using the attributed token kernel
(atk) achieves a 97% detection rate without suffering any false positive.

In order to assess the computational effort of our method we measured the
runtime for involved processing steps. Parsing and feature extraction require on
average 1.2ms per request; average kernel computation and anomaly detection
take 3.5ms per request. The overall processing time of 4.7ms per request yields
a throughput of approximately 212 HTTP requests per second.

4.2 Visualization of Discriminative Features

In order to illustrate the increase of discriminative power gained through incor-
poration of application layer context into anomaly detection Fig. 4.2 displays
1-gram frequency differences between 1000 normal HTTP requests and two dif-
ferent attacks, a buffer overflow and a SQL injection. A frequency difference
of 1 arises from bytes that only appear in normal data points whereas bytes
that can be exclusively observed in the attack instance result in a frequency
difference of -1. Bytes with a frequency difference close to zero do not provide
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Fig. 7. Byte-frequency differences at request-level and token-level

discriminative information. The upper two charts display frequency differences
for a buffer overflow attack (”edirectory host shikata ga nai”) and a SQL injec-
tion (”sql union injection”) that results from conventional byte-level analysis.
The buffer overflow can be easily detected due to the presence of a large amount
of non-printable characters (a large number of points at -1 for lower byte values
and values above 128). On the other hand, the SQL injection contains mostly
ASCII characters, which is reflected by close to zero frequency differences for
most of the printable characters. As a consequence, the detection of this attack
is relatively difficult. The lower two charts show the frequency differences for the
same attacks within their appropriate application layer context. The frequency
differences of the buffer overflow attack become even more obvious by examin-
ing the local byte distribution within the exploited request parameter “Host”.
Similar clarification takes place for the SQL injection attack for which many pre-
viously normal bytes become clearly anomalous considering the CGI parameter
“USERID”. This results in a major improvement of detection accuracy.

4.3 Comparison with Other Methods

To give a comparison to different intrusion detection techniques we examined
a model-based anomaly detection method (model-based AD) proposed by
Kruegel and Vigna [8] and the well-known signature IDS Snort3. The model-
based detection method applies a number of different models to individual

3 VRT Certified Rules (registered user release) downloaded 07/15/2008.
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Table 1. Comparison of fp-rates between model-based AD, Snort and OC-SVM

HTTP attacks model-based AD Snort OC-SVM
(NYT08 dataset) ALM ICD Combined sk atk

edirectory host alpha mixed .0728 .0208 .0362 + .0 .0
sql 1=1 .0112 .0379 .0214 − .1798 .0002
sql backdoor .0 .0006 .0 + .0004 .0
sql fileloader .0025 .0006 .0010 − .0065 .0
sql union injection .0 .0020 .0 − .0047 .0
xss alert .0 .0 .0 + .0388 .0
xss dom injection .0 .0 .0 + .0001 .0
xss img injection .0 .0 .0 − .0004 .0

parameters of HTTP queries. By learning various parameter models this method
creates a ”user profile” for each server-side program that is compared against
incoming requests for a particular resource. To allow a fair comparison to our
method we build models of not only CGI parameters in the URI, but also of
header parameters and CGI parameters present in the request’s body.

In our experiments the model-based AD comprises two models:

Attribute length model (ALM) estimates the attribute length distribution
of CGI parameters and detects data points that significantly deviate from
normal models.

Attribute character distribution model learns the idealized character dis-
tribution (ICD) of a given attribute. Using ICD instances are detected whose
sorted frequencies differ from the previously learned frequency profile.

A comparison of false positive rates per attack class (percentage of false positives
in test set given a detection of all instances from that attack class) is provided
in Table 1. Anomaly detection using the attributed token kernel exhibits almost
perfect accuracy of the 8 selected attacks, whereas both models of Kruegel and
Vigna as well as their combination suffer from significant false positive rates for
the first two attacks. Interestingly, Snort reported alarms for most of the cross
site scripting and buffer overflow instances but failed to detect the majority of
SQL injections which shows that specific exploits may require customization of
signatures in order to provide a consistent protection.

5 Conclusions

In this paper, we have developed a general method for the incorporation of
application layer protocol syntax into anomaly detection. The key instrument
of our method is computation of similarity between token/attribute sequences
that can be obtained from a protocol analyzer. A combined similarity measure
is developed for such sequences which takes into account the syntactic context
contained in tokens as well as the byte-level payload semantics.

The proposed method has proved to be especially useful for the detection
of web application attacks. We have carried out experiments on realistic traffic
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using the HTTP protocol analyzer developed in binpac. Although the additional
effort of protocol analysis does not pay off for simple buffer overflow exploits, the
detection rate for web application attacks has been boosted from 70% to 100% in
the false positive rate interval of less than 0.14%. Surprisingly, our method has
even outperformed a very effective model-based method of Kruegel and Vigna
[8] that was specially designed for the detection of web application attacks.

Due to its generality, the proposed method can be used with any other applica-
tion layer protocol for which a protocol analyzer is available. It can be deployed
in a variety of distributed systems applications, especially the ones for which
very few examples of potential exploits are currently known (e.g. IP multimedia
infrastructure and SCADA systems).

Acknowledgements. This work was supported by the German Bundesminis-
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5.3 Summary

5.3 Summary

This contribution presentsa novel method that incorporates application layer protocol syntax into anomaly
detection. To this end, a novel kernel function was defined which allows to calculate pairwise similarity
between token-attribute sequences obtained from HTTP requests parsed by the binpac protocol analyzer.
Experimental results suggest, that under the first scenario the results for the attributed token kernel
compare to the best spectrum kernel (k=1, binary feature embedding) with a 99% true positive rate at less
than 1% false positives. This can be explained by the fact, that overflow-based attacks are not difficult
to detect, generally due to the inclusion of large network packet payloads and vast utilization of non-
printable characters. Under the second scenario, the experimental evaluation shows that attributed token
kernel significantly outperforms the spectrum kernel and boosts the detection rate on web application
attacks from 70% to 100% at less than 0.14% false positives. Surprisingly, the proposed method also
outperforms both misuse-based detection as well as the service-specific anomaly detection approach.
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CHAPTER 6

Detecting zero-day attacks using context-aware
anomaly detection at the application layer

6.1 Introduction

As the majority of network attacks are carried out at the application level, the analysis of application-layer
content in network traffic is getting increasingly important. Payload-based anomaly detection is capable
to detect unknown application-level attacks. Thereby, the choice of data representation required to
measure pairwise similarity strongly affects the detection accuracy of an anomaly detector. Sequential
data representations, such as n-grams over network packet payload bytes [e.g. 46, 47, 91] demonstrate
superior accuracy at the detection of unknown overflow-based attacks. However, this type of data
representation does not adequately account for structural sensitivity needed to detect inconspicuous types
of application-level attacks, such as SQL injections or cross-site scripting. Earlier work has proved
the usefulness of incorporating protocol analysis into anomaly detection [e.g. 71]. To this end, this
contribution introduces a novel data structure for attributed language models, ck-grams, which extends
earlier work by combining protocol syntax features and sequential features efficiently into one unified
feature space and thus, reduce complexity of pairwise similarity calculation as introduced in [e.g. 71]
while increasing local outlier sensitivity.

6.2 Publication
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Abstract Anomaly detection allows for the identifi-
cation of unknown and novel attacks in network traf-
fic. However, current approaches for anomaly detection
of network packet payloads are limited to the analysis
of plain byte sequences. Experiments have shown that
application-layer attacks become difficult to detect in
the presence of attack obfuscation using payload cus-
tomization. The ability to incorporate syntactic context
into anomaly detection provides valuable information
and increases detection accuracy. In this contribution,
we address the issue of incorporating protocol context
into payload-based anomaly detection. We present a
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new data representation, called cn-grams, that allows
to integrate syntactic and sequential features of pay-
loads in an unified feature space and provides the ba-
sis for context-aware detection of network intrusions.
We conduct experiments on both text-based and binary
application-layer protocols which demonstrate superior
accuracy on the detection of various types of attacks
over regular anomaly detection methods. Furthermore,
we show how cn-grams can be used to interpret de-
tected anomalies and thus, provide explainable deci-
sions in practice.

Keywords Intrusion detection · machine learning ·
anomaly detection · protocol analysis · deep packet
inspection

1 Introduction

The analysis of application-layer content in network
traffic is getting increasingly important for the
protection of complex business environments which
deploy a variety of application-specific services and
allow for access and transfer of sensitive data
between untrusted communication parties. Nowadays,
the majority of attacks is carried out at the
application-layer. Therefore, monitoring the content of
a respective application-layer protocol becomes vital for
the detection of unknown and novel application-specific
attacks, so called Zero-day attacks.
Signature-based intrusion detection systems (IDS)
possess a number of mechanisms for analyzing
application-layer protocol content ranging from byte
pattern matching as provided by Snort [28] to
sophisticated protocol analysis as realized in Bro [22,
23].
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However, the major drawback of signature-based IDS
is their reliance on appropriate exploit signatures in
order to provide adequate protection. Unfortunately,
keeping signatures up-to-date is a tedious and resource
intensive task given the rapid development of new
exploits and their growing variability. This motivates
the investigation of alternative techniques.
Payload-based anomaly detection is capable to instan-
taneously detect previously unknown application-layer
attacks. Unlike signature-based systems which search
for explicit byte patterns, payload-based anomaly de-
tection systems must translate general knowledge about
patterns into a numeric measure of abnormality which
is usually defined by a distance from some model
learned over normal payloads.
Thereby, the choice of data representation which is
required to measure similarity between sequential data
strongly affects the capabilities of an anomaly detector
at hand. Sequential data representations, such as n-
grams of payload bytes [25, 34], exhibit superior
precision at the detection of unknown overflow-based
attacks. However, this type of data representation does
not adequately account for structural sensitivity needed
for detection of rather inconspicuous looking attacks
such as cross-site scripting (XSS) or SQL injection. By
accessing protocol context of attack patterns significant
improvements in the detection accuracy of unknown
application-layer attacks can be achieved [5, 9, 14].
In this article, we propose a novel representation
of network payloads that integrates protocol context
and byte sequences into an unified feature space and
thus, allows for a context-aware detection of network
intrusions. To this end, a protocol analyzer transforms a
network byte stream into the structured representation
of a parse tree. Tree nodes are extracted and inserted
as tuples of token/attributes into the cn-gram data
structure, a novel data representation of network traffic
that allows to efficiently combine sequential models
with protocol tokens. Moreover, explainability and the
capability to visualize suspicious content with respect
to protocol context is another advantage of this data
structure over sequential representations.
In order to illustrate the effectiveness of the
proposed context-aware payload analysis, we conduct
an extensive experimental evaluation in which cn-
grams are compared to conventional n-grams in the
presence of a diversity of attacks carrying various
payloads. In order to point out the strengths of the
proposed data representation, attacks not only include
buffer overflows but also web application attacks. Such
attacks, for example SQL injections, XSS injections
and other script injection attacks, are particularly
difficult to detect due to their variability and their

strong entanglement in the protocol framework, which
makes content analysis based on sequential features
ineffective. Our experiments are carried out on network
traffic containing text-based and binary application-
layer protocols.
The paper is structured as follows: The main contri-
bution of the paper is presented in Section 2 and pro-
vides details on a novel data representation for network
payloads which allows for the computation of context-
aware sequential similarity by geometric anomaly de-
tection methods. A comprehensive experimental evalu-
ation of the proposed method on network traffic featur-
ing various application-layer protocols is carried out in
Section 3. Related work on content-based anomaly de-
tection and protocol analysis is presented in Section 4.
Finally, conclusions and an outline of future work can
be found in Section 5.

2 Methodology

The following four stages outline the essential building
blocks of our approach and will be explained in detail
for the rest of this section.

1. Data Acquisition and Normalization. Inbound
packets are captured from the network, re-
assembled and forwarded to a protocol analyzer
such as binpac [21] which allows to extract
application-layer messages from both text-based
and binary protocols. A key benefit of using protocol
dissectors as part of data pre-processing is the
capability to incorporate expert knowledge in the
subsequent feature extraction process. Details on
protocol analysis can be found in Section 2.1.

2. Feature Extraction. At this stage, byte messages
are mapped into a metric space using data
representations and features which reflect essential
characteristics of a byte sequence. Our approach
allows to combine byte-level and syntax-level
features in an unified metric space. Details of
the feature extraction process can be found in
Section 2.2.

3. Similarity Computation. The similarity compu-
tation between strings is a crucial task for payload-
based anomaly detection. With the utilization of
vectorial data representations messages can be com-
pared by computing their pairwise distance in the
designated geometric space. Similarity measures are
explained in Section 2.3.

4. Anomaly Detection. In an initial training phase
the anomaly detection algorithm learns a global
normality model. At detection time a message is
compared to the learned data model and based on
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its distance an anomaly score is computed. Details
on the anomaly detection process can be found in
Section 2.4.

2.1 Protocol Analysis

Network protocol analysis is a useful technique to
decode and understand data which is encapsulated by
an application-specific protocol. Many application-level
protocols follow the notion of a common protocol design
which is reflected in a unified protocol structure [3].
The majority of application-level protocols stipulate
the concept of an application session between two
endpoints in which a series of messages is exchanged
to accomplish a specific task. Thereby, a protocol state
machine determines the structure of the application
session and specifies legitimate sequences of messages
allowed by the protocol. Another essential element of an
application protocol is the message format specification
which defines the structure of an application-layer
message. A message format specifies a sequence of
fields and their corresponding notion. The syntax of an
application-layer protocol can usually be specified by an
augmented Backus-Naur-Form which is used to express
formal grammars that generate context-free languages.
Application protocol analyzer, such as binpac [21],
allow to transform re-assembled application-layer
messages into a structured data representation,
e.g.parse trees, which entangle transferred user data
with syntactic aspects of the underlying application-
layer protocol. In this contribution, we focus on
the analysis of message format specifications and do
not address the problem of inferring protocol state
machines which has been sufficiently addressed in the
past. The proposed method is demonstrated using the
two application-layer protocols HTTP and RPC which
are explained in detail in the following sections.

2.1.1 Hyper-Text Transfer Protocol

The Hyper-Text Transfer Protocol (HTTP) is one of the
most popular text-based application-layer protocols.
An example of a typical HTTP request is given below.
Control characters are shown as ’.’.
GET /search?q=network+security&gws=ssl&pr=20 HTTP/1.1..
Host: www.google.de..User-Agent: Mozilla/5.0 (X11; ..
Linux x86_64; rv:12.0) Gecko/20100101 Firefox/12.0..
Accept:text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8..Accept-Language:en-us,en;q=0.5..
Accept-Encoding: gzip, deflate..Connection: keep-
alive....

The GET request contains CGI parameters as
well as common HTTP headers. With the protocol

specification at hand a protocol analyzer generates a
structured representation of the request sequence which
is typically realized by parse trees. An example of a
corresponding parse tree is shown in Fig. 1(a). The
tree consists of non-terminal nodes as well as pre-
terminal and terminal nodes. However, due to the
limited complexity of the underlying HTTP grammar,
relevant information resides at the pre-terminal and
terminal level only. Therefore, the tree can be shrunk
and converted into a set of key/attribute tuples.
Thereby, each pre-terminal node label serves as a
unique protocol context key whereas the associated
attribute is assembled from connected terminal nodes.

2.1.2 Remote Procedure Calls

A more opaque application-layer protocol is provided
by Remote Procedure Call (RPC). A significant part
of the Microsoft Windows architecture is composed of
services (e.g. DNS, DHCP, DCOM) that communicate
with each other in order to accomplish a particular task.
Microsoft RPC is a widely used binary application-layer
protocol and represents a powerful technology which is
utilized by a multitude of services to access functions
located at foreign address spaces.
In order to invoke methods remotely, RPC requires
to establish a session context. By submitting a BIND
request the client initiates an RPC session in which the
endpoint mapper interface is requested to bind to the
desired RPC interface. An example of a BIND request is
shown below:

0000 05 00 0b
A

03 10 00 00 00 78 00 28 00 02 00 00 00
0010 d0 16 d0 16 92 bc 00 00 01 00 00 00 01 00

B
01 00

0020 a0 01 00 00 00 00 00 00 c0 00 00 00 00 00 00 46
C

0030 00 00 00 00 04 5d 88 8a eb 1c c9 11 9f e8 08 00
0040 2b 10 48 60 02 00 00 00

D
...

The most important fields of a BIND request are
highlighted and include protocol data unit type (A)
as well as RPC session information. Each session is
essentially defined by a context identifier (B) and a
universally unique identifier (UUID) which corresponds
to the requested RPC interface (C). In order to allow
for transfer encoding negotiation, the client provides
a coding scheme (D) to the server for each session
requested.
The endpoint mapper resolves and returns the endpoint
(TCP port) in response to the interface request. Once
the client obtains the endpoint it connects to the
interface and invokes the desired method by sending
a CALL request.

0000 05 00 00
A

03 10 00 00 00 20 03 00 00 02 00 00 00
E

0010 08 03 00 00 01 00
B

04 00
F

05 00 07 00 01 00 00 00
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(a) HTTP request parse tree

<header>

<pdu-type>

00

<obj-id>

<params>

<CLSID>

<request>

<orpcthis>

00 00 00 00 
00 00 00 00
00 00 00 00
00 00 00 00

<fct-id>

B8 4A 9F 4D 
1C 7D CF 11 
86 1E 00 20 
AF 6E 7C 57

<version>

00 00 00 00

<version>

05 00 01 00

<cause-id>

F1 59 EB 61 
FB 1E D1 11 
BC D9 00 60 
97 92 D2 6C

02 00 00 10 
00 00 00 00 
00 00 00 00 
00 00 00 01

<fct-id>

00 00 00 00 
00 00 00 00 
C0 00 00 00 
00 00 00 46

<sec-level>

02 00 00 00

<opcode>

00

00

DCOM CALL in RPC-
Payload

02 00 00 00 04 00A0 01 00 00 
00 00 00 00 
C0 00 00 00 
00 00 00 46

<uuid*><pdu-type> <opnum>

<stub><header>

<call-id>

<request>

... <orpcthis>

<version> <cause-id>

23 F7 4C BE 
D7 2C 03 4C 
AD AE 70 99 
DC 31 2E 80

<params>

<if-id>...

A2 01 00 00 
00 00 00 00 
C0 00 00 00 
00 00 00 46

05 00 07 00

... ...

(b) RPC/DCOM request parse tree (∗context identifier is
dynamically replaced by the corresponding UUID)

Fig. 1 Generated parse trees representing application-layer protocol requests

0020 00 00 00 00 23 f7 4c be d7 2c 03 4c ad ae 70 99
0030 dc 31 2e 80 00 00 00 00 00 00 00 00 00 00 02 00
0040 d8 02 00 00 d8 02 00 00 4d 45 4f 57 04 00 00 00
0050 a2 01 00 00 00 00 00 00 c0 00 00 00 00 00 00 46

G

0060 38 03 00 00 00 00 00 00 c0 00 00 00 00 00 00 46
0070 00 00 00 00 a8 02 00 00 a0 02 00 ...

The header essentially specifies a call identifier (E), a
session context identifier (B), a method identifier (F)
and payload which contains arguments expected by
the method. Since the context identifier (B) refers to
an active application session in which the client has
bound to an interface already the UUID is not explicitly
transmitted in a CALL request but instead, referenced
by the corresponding context identifier.
With the protocol specification at hand the protocol
analyzer produces a parse tree which is shown in
Fig. 1(b). In this particular example, RPC is used to
call the ISystemActivator interface in order to request
instantiation of a class which is identified by the UUID
(G) in the parameter section of the RPC request.
Certainly, method call details can only be extracted
from the request if an appropriate RPC stub dissector
is in place which is able to analyze RPC payload
according to a list of known core interfaces and method
declarations. For our considerations, Wireshark’s [35]
DCE/RPC dissection module is used which allows
for concise and automatic parameter value extraction
of functions that are declared by well-known RPC
interfaces (e.g. LSARPC and SRVSVC).

2.2 Feature Extraction

Application payload is characterized by sequential
data which is not applicable for learning methods
that operate in metric spaces. Therefore, feature
extraction must be performed in order to map
sequences into a metric space in which similarity
between vectorial representations of sequences can be
computed. Formally, a feature map φ : X 7→ RN can
be defined which maps a data point in the domain of

application payloads X into a N -dimensional metric
space - in the following referred to as feature space F -
over real numbers:

x 7−→ φ(x) = (φ1(x), φ2(x), . . . , φN (x)), (1)

where φi(x) ∈ R≥0 represents the value of the i-
th feature. Thereby, the sole choice of the mapping
function φ(x) provides a powerful instrument to
transform data into a representation that is suitable
for a given problem.
In this section we describe feature mappings based
on different types of features. While protocol analysis
suggests to extract features from tree structures such
as parse trees, the detection of suspicious byte patterns
favors the extraction of sequential features. Once a
feature space has been designed, there are several
feature embeddings to chose from. Common feature
embeddings include binary, count as well as frequency
representations of individual features.

Syntax Features. The syntactic structure of transferred
application-level payload can be extracted by conduct-
ing protocol analysis which eventually allows to gen-
erate parse trees. An intuitive way to characterize a
parse tree structure is to consider each node indepen-
dently of its syntactic context, i.e. predecessors as well
as successors. The following feature map can be used
to determine structural similarity between sequences:

φ : s 7−→ (φτ (s))τ∈T ∗ ∈ F ,

where T ∗ denotes the set of all possible unique subtrees.
The mapping function φ(s) is defined as follows:

φt(s) =
{

1, t ∈ {τ ∈ T ∗ | n(τ) = 1}
0, otherwise,

(2)

where n(τ) is a function which returns the number
child nodes attached to a node τ . Using this mapping,
each dimension in F corresponds to a binary feature
indicating the presence of a particular pre-terminal
node t in the actual parse tree of a sequence s. For
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the rest of this paper, the set of pre-terminal nodes
as a representation of an application-level message is
referred to as bag-of-token features.

Sequential Features. An intuitive data representation
at byte-level involves the extraction of unique
substrings by moving a sliding window of length n

over a sequence. The resulting set of feature strings are
called n-grams. Each sequence s is embedded into a n-
dimensional metric space F where F ∈ Rn, using the
following feature map:

φ : s 7−→ (φw(s))w∈Σn ∈ F ,

where Σn refers to the set of all possible strings w of
length n induced by an alphabet Σ.

Context-aware Sequential Features. Protocol dissection
allows to attach syntactic information to sequential
features. By introducing a novel data representation,
so called contextual n-grams (cn-grams), syntactic
features can be combined with sequential features in
an unified feature space using the feature mapping φ(s)
below.

φ : s 7−→ (φw,τ (s))wτ∈Σn ∈ F ,

where Σn refers to the set of all possible strings wτ of
length n induced by an alphabet Σ and τ ∈ T ∗ refers to
a subtree in the set of all possible subtrees. A schematic
illustration of cn-grams is shown in Fig. 2.
The cn-gram data structure allows to efficiently store
n-grams along with syntactic labels. Each entry in
the data structure has a unique hash value. The hash
value encodes both syntactic context and sequential
information represents a cn-gram. The syntactic label
information (i.e. pre-terminal nodes from the parse
tree) is encoded using the first k-bits of the CPU’s
register size m, whereas the remaining m − k bits
are used to encode the actual n-gram (n ≤ bm−k8 c)
observed in the terminal string attached to a pre-
terminal node. As a result, a particular n-gram is
allowed to be contained in terminal strings attached
to different pre-terminal nodes which represents an
extension to the regular definition of n-grams outlined
in 2.2.
In the example shown in Fig. 2 extracted HTTP pre-
terminal nodes are encoded and combined with n-grams
from parsed terminal strings represented as cn-gram.
Finally, the set of cn-grams is convoluted in a joint
histogram H.
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Fig. 2 cn-grams: context-aware sequential data representation

2.3 Similarity Measure

Once a sequence is mapped into a feature space F a
kernel function k : X 2 → R can be applied to determine
pairwise similarity between data points {x1, ..., xn} ⊂
X . Thereby, the type of kernel function entails an
implicit mapping of a data point in F into a possibly
even higher dimensional feature space F which could,
in some situations, facilitate the learning process.
In this section we describe two different kernel functions
that are most widely used in various application
domains, the Linear Kernel and the Radial Basis
Function Kernel (RBF).

Linear Kernel. The linear kernel is defined by a dot
product between two vectors x and y and is used to
determine similarity between data points which are
linearly mapped into F :

k(x, y) = 〈φ(x), φ(y)〉

=
n∑
i=1

φi(x)φi(y).
(3)

With regard to network security, the major benefit of
this particular kernel becomes immediately clear. Due
to the bijective mapping, a pre-image of every data
point in the feature space F exists which allows to
directly deduce differences in features located in F .
Although it seems to quickly become computational
unfeasible to compute dot products over sequential
features the utilization of efficient data structures such
as suffix trees or hash tables allow to compute the
similarity k(x, y) in O(|x| + |y|) time [29, 32]. The dot
product is of particular mathematical appeal because
it provides a geometric interpretation of a similarity
score in terms of length of a vector as well as angle and

82



6 Patrick Duessel et al.

distance between two vectors. Therefore, the Euclidean
distance deucl(x, y) can be easily derived from the above
kernel formulation:

deucl(x, y) = ‖x− y‖2

=
√
k(x, x) + k(y, y)− 2k(x, y).

(4)

RBF-Kernel. A more complex similarity measure is
provided by the RBF-Kernel which implicitly maps
data points into a feature space F which is non-linearly
related to the input space. The RBF-kernel is defined
as follows:

k(x, y) = exp
(
−‖x− y‖

2

2σ2

)
, (5)

where σ controls the width of the gaussian distribution
and directly affects the shape of the learner’s decision
surface. While a large σ results in a linear decision
surface which indicates a linearly separable problem,
a small value of σ generates a peaky surface which
strongly adapts to the distribution of the data in F .
The interpretation of RBF-kernel values is non-trivial
because, unlike linear kernel functions, an RBF-kernel
implicitly maps data points from the input space to an
infinite dimensional feature space F . As an example,
consider two data points x, y ∈ R2, where x = (x1, x2),
y = (y1, y2), the RBF-kernel can be re-formulated as
an infinite sum of inner products over features in input
space using Taylor series as shown in Eq.( 6).

k(x, y) = exp
(
−‖x− y‖2) ,

= exp
(
−(x1 − y1)2 − (x2 − y2)2) ,

= exp
(
−x2

1 + 2x1y1 − y2
1 − x2

2 + 2x2y2 − y2
2
)
,

= exp
(
−‖x‖2) · exp

(
−‖y‖2) · exp

(
2xT y

)
,

= exp
(
−‖x‖2) · exp

(
−‖y‖2) ·∑∞n=0

(2xT y)n
n! .

(6)

2.4 Anomaly Detection

The problem of anomaly detection can be solved math-
ematically considering the geometric relationship be-
tween vectorial representations of messages. Although
anomaly detection methods have been successfully ap-
plied to different problems in intrusion detection, e.g.
identification of anomalous program behavior [e.g. 7, 8],
anomalous packet headers [e.g. 17, 19] or anomalous
network payloads [e.g. 12, 25, 26, 33, 34], all methods

share the same concept – anomalies are deviations from
a model of normality – and differ in concrete notions of
normality and deviation. For our purpose we use the
one-class support vector machine (OC-SVM) proposed
in [31] which fits a minimal enclosing hypersphere to
the data which is characterized by a center θ and a
radius R. Mathematically, this can be formulated as a
quadratic programming optimization problem:

min
R∈R
ξ∈Rn

R2 + C

n∑

i=1
ξi

subject to: ||φ(xi)− θ||2 ≤ R2 + ξi,

ξi ≥ 0.

(7)

By minimizing R2 the volume of the hypersphere is
minimized given the constraint that training objects are
still contained in the sphere which can be expressed by
the constraint in Eq.(7).
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Fig. 3 Anomaly detection using one-class support vector
machine with linear and non-linear decision functions. Support
vectors are shown with red edging.

A major benefit of this approach is the control of
generalization ability of the algorithm [20], which
enables one to cope with noise in the training data and
thus dispense with laborious sanitization, as proposed
by Cretu et al. [2]. By introducing slack variables ξi
and penalizing the cost function we allow the constraint
to be softened. The regularization parameter C =

1
Nν controls the trade-off between radius and errors
(number of training points that violate the constraint)
where ν can be interpreted as a permissible fraction
of outliers in the training data. The solution of the
optimization problem shown in Eq. (7) yields two
important facts:

1. The center θ =
∑
i

αiφ(xi) of the sphere can be
expressed as a linear combination of training points.

2. Each training point xi is associated with a weight
αi, 0 ≤ αi ≤ C, which determines the contribution
of the i-th data point to the center and reveals
information on the location of xi. If αi = 0 then
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xi lies in the sphere (||xi − c||2 < R2) and the data
point can be considered as normal. In constrast,
if αi = C xi can be interpreted as an outlier
(||xi − c||2 > R2). In both cases data points are
excluded from the model of "normality". Thus, only
those training points yielding 0 < αi < C are
located on the surface of the sphere (||φ(xi)−θ||2 =
R2) and thus, define the model of normality as
illustrated in Fig. 3. These particular points are
known as support vectors.

3. The radius R which is explicitly given by the
solution of the optimization problem in Eq. (7)
refers to the distance from the center θ of the sphere
to the boundary (defined by the set of support
vectors) and can be interpreted as a threshold for
a decision function.

Finally, having determined a model of normality the
anomaly score Sz for a test data point z can be defined
as the distance from the center in the feature space:

Sz = ||φ(z)− θ||2

=
∑
w∈A

(φw(z)− θw)2

=
∑
w∈A

(φw(z)−
n∑
i=1

αiφw(xi))2

= k(z, z)− 2
∑
i

αik(z, xi) +
∑
i,j

αiαjk(xi, xj),

(8)

where the similarity measure k(x, y) between two
points x and y defines a kernel function as introduced
in Section 2.3. Depending on the similarity measure
at hand data models of different complexity can
be learned. For example, as shown in Fig. 3(a)
the application of a linear kernel always results in
an uniform hypersphere. Thus, the resulting model
provides a rather general description of the data.
However, if data happens to follow a multi-modal
distribution the risk of absorbing outliers in low
density regions of the hypersphere might increase.
On the contrary, the utilization of an RBF-kernel
allows to adopt the distribution characteristics of
the data resulting in more complex data models as
shown in Fig. 3(b). Of course, the downside of these
kind of measures is their lack of interpretability as
data points are implicitly mapped into an infinite
dimensional feature space in which the identification
of individual feature contributions to the overall
dissimilarity between two data points becomes difficult
(c.f. Section 2.3).

2.5 Feature Visualization

So far, we have discussed how payloads are extracted
and mapped into a geometric space in which anomaly
detection is carried out to identify deviations from a
previously learned model of normality. At this point
the following question might arise: why is a data
point considered as an anomaly and what constitutes
the anomaly? In this section, we derive a feature
visualization for payload-based anomaly detection
which allows to trace back an anomaly to individual
features in the payload and thus, provide a technique
that not only helps to understand the reason for an
anomaly but also means to localize suspicious pattern.
Geometrically, a feature can be considered relevant if
it has a significant impact on the norm of a vector.
Consequently, the anomaly score S(z) can be expressed
as a composition of individual dimensions of R|A|
as shown in Eq. 8. We refer to δz = (φw(x) −
θ)2
w∈A as feature differences, an intuitive visualization

technique to explore sequential disparity which has
been originally introduced to determine discriminating
q-grams in network traces [25]. The entries of δz reflect
the individual contribution of a string feature to the
deviation from normality represented by θ.
While feature differences provide sufficient means
to visualize anomalous network features, a security
practitioner might also be interested to directly
inspect the portions of the payload that constitute an
anomaly. Therefore, the concept of feature differences
is incorporated into a method known as feature
shading [27]. The idea of feature shading is to assign
a number mj ∈ R to each position j in a payload
reflecting its deviation from normality. As a result, the
payload can be overlaid with a color shading according
to the amount of deviation at a particular position.
Considering the generic definition of string features S,
each position j in the payload can be associated with
multiple feature strings. Hence, a setMj can be defined
which contains all strings s matching a position j of a
payload z:

Mj = {z[i, ..., i+ |s|] = s | s ∈ S} j− k+ 1 ≤ i ≤ j (9)

where z[i, ..., i + |s|] denotes a substring of length k in
z starting at position i . By using Mj the contribution
mj of position j to an anomaly score can be determined
as follows:

mj = 1
|Mj |

∑

s∈Mj

− θ2
s . (10)

An abnormal pattern located at j corresponds to low
frequencies in the respective dimensions of the learned
model θ and therefore, results in a small value of mj . A
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frequent string is characterized by high values in θ and
yields a high value of mj .

3 Experimental Results

In this section we present results on experiments
involving recorded network traffic. Experiments are
designed to investigate the benefits of the proposed
data representation, specifically with regard to the
problem of detecting unknown attacks. Experiments
are carried out off-line on two data sets containing two
prominent types of network traffic: HTTP and RPC. In
our setup, inbound packets are captured, re-assembled
and forwarded to binpac, a flexible protocol analyzer
which extracts and parses application-layer messages.
As a baseline, anomaly detection is carried out on
application-layer messages using sequential features,
i.e. n-grams, and linear as well as non-linear feature
mappings. Our experiments are designed to address the
following two questions:

1. To which extent does the choice of data
representation affect the detection accuracy of an
anomaly detector with regard to different network
protocols, attack types and basic detector evasion?

2. How does the cn-gram data representation help to
explain and interpret geometric anomalies?

3.1 Data Sets

We evaluate our method on two sanitized data sets
containing traffic recorded on a publicly accessible
web server (HTTP traffic) as well in an industrial
automation testbed (RPC traffic). For both data sets,
application-level messages were extracted using the
binpac protocol parser. Furthermore, we simulated a
broad collection of application-level attacks on the
target servers and finally mixed those attacks with
the captured application-level messages. Attacks were
taken from the Metasploit framework 1 as well as from
common security forums such as securityfocus.com,
remote-exploit.org and xssed.com. Each attack class
consists of multiple attack instances carrying different
payloads.

3.1.1 BLOG09: Plain-text Protocol - HTTP

The first data set comprises a sample of 150000 HTTP
requests recorded on a blog site web server accessible
from the internet over a period of ten days. With
an average request length of 389 bytes the size of an

1 http://www.metasploit.com

HTTP request ranges between 39 and 61127 bytes
which is mainly due to the presence of a notable fraction
of web spam in the corpus. Protocol analysis reveals
317 distinct tokens including common HTTP protocol
elements as well as CGI parameters. In average, each
request consists of nine tokens whereas the average
length of a corresponding attribute is about 57 bytes.
Attacks were chosen to cover a variety of attack types
including buffer overflows (BUF), cross site scriptings
(XSS), SQL injections (SQL) and command injections
(CI). Details on the attacks can be found in Table 1.
In order to put forward a realistic setup, the majority
of attacks was customized to fit existing vulnerabilities.
For the rest of the paper this data set is referred to as
BLOG09-I. Moreover, in order to expose differences in
the detection behavior of an anomaly detector based on
various data representations we created a second, even
larger attack set (BLOG09-II ) in which the attacks
from the original attack set were tuned to increase
structural and sequential similarity to normal traffic to
impede attack detection. Therefore, HTTP header keys
and values frequently observed in normal traffic were
added to the attack instances contained in BLOG09-
II :
Host: tim.xxxxxxxx.de..User-Agent: Mozilla/5.0(X11; U
;Linux x86_64; de; rv:1.9.0.7) Gecko/2009030423 Ubunt
u/8.10 (intrepid) Firefox/3.0.7..Accept: text/html,ap
plication/xhtml+xml,application/xml;q=0.9,*/*;q=0.8..
Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3.
.Accept-Encoding: gzip,deflate..Accept-Charset: ISO-8
859-1,utf-8;q=0.7,*;q=0.7..Connection: close..

Class CVE n Description Type

1 - 5 wp_profile applet XSS
2 - 5 wp_profile embed XSS
3 - 5 wp_profile iframe XSS
4 - 5 wp_profile body XSS
5 - 11 wp_profile∗ crlf XSS
6 2005-1810 8 wp_index 1=1 SQL
7 2005-1810 5 wp_index outfile SQL
8 2008-1982 5 wp_index benchmark SQL
9 2008-4008 11 weblogic trans_enc BUF
10 2009-0921 9 openview OvOSLocale BUF
11 2004-1134 8 iis (isapi/w3who) BUF
12 2001-0241 10 iis (isapi/printing) BUF
13 2004-0798 10 ipswitch maincfgret BUF
14 2004-0798 2 edirectory_host BUF
15 2005-2848 3 barracuda_img_exec CI

Table 1 HTTP attacks

3.1.2 AUT09: Binary Protocol - RPC

The second data set consists of 765000 TCP packets
that were captured in an industrial automation testbed
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over a period of eight hours. The traffic contains mostly
DCE/RPC traffic. Details on the attack set can be
found in Table 2.

Class CVE n Description Type

1-3 2003-0352 3 RPC/DCOM BUF
4 2005-0059 1 RPC MSMQ BUF
5 2007-1748 1 RPC DNS BUF
6 2003-0533 1 LSASS BUF

7-11 2006-3439 5 SRVSVC BUF
12-14 2008-4250 3 SRVSVC BUF

Table 2 DCE/RPC attacks

3.2 Validation Metrics

Since feature extraction and anomaly detection may
require certain parameters to be set our experiments
are casted into a cross validation framework in order to
determine a parameter configuration which maximizes
the detection accuracy for the feature representation in
question. To this end, data is split into three distinct
partitions for training, validation, and testing. Since we
focus on the detection of unknown attacks validation
and test partitions contain attacks taken from distinct
attack classes. Each model is learned using a sample
of 1000 normal messages drawn from the training
partition and subsequently validated on 10 distinct
validation samples. A validation sample also consists of
1000 normal messages mixed up with attacks from the
validation partition. Finally, the model that maximizes
the detection accuracy during the validation phase is
applied on a test sample. The detection accuracy is
measured in terms of area under receiver operating
characteristic curve (ROC0.01) which integrates true
positive values over the false positive interval [0, 0.01].
For statistical reasons experiments are repeated and
results are averaged over 20 repetitions.

3.3 Impact of Data Representation on Detection
Accuracy

In this experiment we investigate the impact of different
data representations on the detection accuracy with
regard to unknown attacks.

BLOG09-I . At first, we present experimental results
on the BLOG09-I data set. Table 3 shows the model
parameters that yield the highest detection accuracy

during validation grouped by similarity measure and
feature type.
Although the cn-gram data representation clearly
outperforms the bag-of-token features the highest
detection rate is achieved by conventional n-grams.
The choice of a small n-gram length indicates a
comparably modest anomaly detection problem. This
is not surprising, since the majority of attacks in the
BLOG09-I data set is predominantly represented by an
attack vector and the respective payload which suggests
strong structural as well as sequential dissimilarity
to normal traffic. Furthermore, experiments with the
RBF-kernel demonstrate a detection behavior which is
comparable to the Linear Kernel.

Measure Feature n Embedding AUC

linear n-grams 2 bin 0.99 ±0.01
rbf10−100 n-grams 2 bin 0.99 ±0.01
linear cn-grams 2 freq 0.92 ±0.01
linear bag-of-token - bin 0.85 ±0.06

Table 3 Area under ROC0.01-curve (AUC) of best models
during validation over HTTP requests (BLOG09-I ) grouped
by measure and feature

Given the parameter settings in Table 3 data models are
learned and finally applied on separate test samples.
The results are depicted in Fig. 4(a) which shows
a comparison of ROC-curves that result from the
application of different data representations. Similar
to the validation results cn-grams clearly outperform
bag-of-token features while n-grams prevail over all
data representations. A more detailed analysis of the
results is presented in Table 6 which outlines individual
false positive rates per attack class (percentage of
“normal” test points having an anomaly score above
the smallest score achieved by instances of a particular
attack class). While the bag-of-token approach suffers
false positives around 1% for a few attack classes the
detection performance of n-grams and cn-grams can be
considered comparable. However, a major difference in
the detection behavior arises for attack class 6 which
comprises short and relatively harmless SQL injections
of the form “’ or 1=1 - -” and which are primarily
applied to escalate SQL selection statements.
Results clearly show that the utilization of cn-
grams in that particular case does not provide
significant advantages over conventional n-gram data
representations. The reason for the poor detection
accuracy of that particular attack class resides in
the fact, that the amount of suspicious characters
make up only a very small contribution to the overall
geometric norm of the attack data point embedded
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in the cn-gram feature space which is significantly
larger than the conventional n-gram feature space.
Therefore, the detection accuracy using the n-gram
data representation is significantly higher.

BLOG09-II . We now present results on the
BLOG09-II data set in which attacks are tuned to
match normal traffic characteristics. A list of best
models selected during validation is shown in Table 4.
In contrast to the validation results on BLOG09-I
the best model based on n-grams requires a larger
string length which suggests a more difficult anomaly
detection problem caused by the sole adherence of
HTTP protocol headers to the attack vector. As a
consequence, the detection accuracy deteriorates for
all data representations in comparison to the results
of the BLOG09-I validation results. As expected,
the bag-of-token features completely fail to provide
sufficient discriminating information on the attacks
yielding a detection accuracy of less than 10% within
a false positive interval of [0,0.01]. Interestingly,
the data representation providing the highest overall
detection accuracy changes for both experiments.
While in the BLOG09-I experiments the n-gram
data representation slightly prevails cn-grams clearly
outperform all other representations in the BLOG09-
II experiments. Moreover, the utilization of protocol
information in combination with sequential features
favors the choice of a much smaller string length n while
strongly improving the expressiveness of the cn-gram
features.

Measure Feature n Embedding AUC

linear cn-grams 2 freq 0.74 ±0.08
linear n-grams 4 bin 0.44 ±0.07

rbf10−100 n-grams 4 bin 0.44 ±0.07
linear bag-of-token - bin 0.10 ±0.05

Table 4 Area under ROC0.01-curve (AUC) of best models
during validation over HTTP requests (BLOG09-II ) grouped
by measure and feature

A comparison of ROC-curves for the BLOG09-II test
data set is depicted in Fig. 4(b). The corresponding
false positive rates per attack class are provided in
Table 7. While most of the buffer overflows (classes
9-14) can be reliably detected by both n-grams
and cn-grams the utilization of the cn-gram data
representation results in a superior detection accuracy
for cross site scripting attacks (classes 1-5) and SQL
injections (classes 7-8) which, on the other hand,
induces a significant increase in false positives for n-
grams. As shown in Fig. 4(b) the incorporation of

protocol information into sequential features results
in a detection rate of 80% at a false positive level
of 1% which is almost twice as high as attained by
conventional n-grams (43%).The false positive analysis
reveals that by using cn-grams the accuracy can be
strongly improved for majority of non-overflow attacks
which is reflected by a major reduction of the respective
false positive rate to a level less than 1%.
The reason for cn-grams to outperform conventional
n-grams becomes obvious by picturing document
frequency differences between normal data and
individual attack instances which is shown in Fig 5.
The plot displays 1-gram frequency differences between
10000 normal HTTP requests and two different
attacks, a buffer overflow (class 14) and a SQL
union injection (class 8). A frequency difference of 1
arises from bytes that solely appear in normal data
points whereas bytes that are exclusively found in
the attack yield a frequency difference of -1. Bytes
with a frequency difference close to zero do not
provide discriminating information. In the upper two
plots frequency differences of both attacks are shown
that result from conventional analysis at request-level,
whereas the lower two plots show frequency differences
of both attacks from token-level analysis. The boxes
in the plots mark areas with the largest amount of
differences between frequency difference distributions
attained from request-level and token-level analysis.
The buffer overflow can be easily detected due to the
presence of a large amount of non-printable characters
(a large number of points at -1 for byte values in the
range of [0,45] and [128,255]). On the other hand, the
SQL injection contains mostly ASCII characters, which
is reflected by close to zero frequency differences for
most of the printable characters. As a consequence, the
detection of this kind of attack is comparably difficult
using conventional n-gram features. On the contrary,
the lower two charts show frequency differences for
the same attacks but with regard to the respective
vulnerability. The frequency differences of the buffer
overflow become even more obvious considering the
local byte distribution in the scope of the exploited
parameter "Host". Similar clarification takes place for
the SQL injection for which many previously normal
bytes become clearly anomalous taking the respective
vulnerable protocol element ("cat") into account. This
results in a major improvement of the detection
accuracy.
In contrast to the results on the BLOG09-I data
set which demonstrate insignificant advantages of cn-
grams over conventional n-grams (with regard to the
problem of anomaly detection) experiments on the
BLOG09-II data set show that the utilization of cn-
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Fig. 4 ROC0.01-curve for attacks over binary and text-based application-layer protocols

grams results in a major improvement of detection
accuracy, predominantly for web application attacks
such as SQL injections and XSS attacks. This is mainly
due to the fact that both attack types employ portions
of the alphabet that are common with normal traffic.
However, since buffer overflows exhibit some kind
of binary shell code, the detection accuracy remains
largely unaffected for those type of attacks. The results
also suggest that in presence of payload customization
(e.g. adding frequently occurring HTTP headers) the
cn-gram data representation is more effective than n-
grams because the protocol context of a particular n-
gram becomes increasingly important if normal and
outlier classes are generated by similar alphabets and
distributions.

AUT09 . We now present results of experiments
conducted on binary network traffic. Table 5 shows

the model parameters that yield the highest detection
accuracy during validation grouped by similarity
measure and feature type. Since multiple best
parameter configurations are selected final experiments
are carried out using parameters that yield the least
complex data model. The results on the test data set are
depicted in Fig. 4(c). In contrast to the experiments on
HTTP, RPC attacks are perfectly detected using both
bag-of-token features and cn-grams. However, as shown
in Table 8 the utilization of cn-grams demonstrates
only a marginal improvement in the detection accuracy
compared to n-grams.
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Fig. 5 Byte-frequency differences at request and token level over BLOG09-II requests

Measure Feature n Embed AUC

linear bag-of-token - bin 1
linear cn-grams 2-4 bin/freq 1
linear n-grams 4-6 freq 0.99 ±0.01

rbf10−100 n-grams 4-6 freq 0.99 ±0.01
Table 5 Area under ROC0.01-curve (AUC) of best models
during validation over RPC requests (AUT09) grouped by
measure and feature

3.4 Localization of Anomalous Payloads Using
Syntax-Sensitive Features

The cn-gram data representation is not only effective
for the detection of web application attacks in network
traffic, it can also be used to pinpoint vulnerabilities
in protocols and web applications. In this section we
demonstrate the use of feature shading, an intuitive
method to explain geometric anomalies based on
feature differences (c.f. Section 2.5) in presence of
protocol context information.
The cn-grams data representation not only allows to
track down suspicious byte patterns, it also provides
a security operator with information on the syntactic
context, e.g. a potentially vulnerable protocol element
such as an HTTP header or a CGI parameter. This
constitutes a major benefit over conventional n-grams.
Geometrically, a protocol element can be considered
potentially vulnerable if its associated attribute consists
of n-grams which contribute to a large extent to
the norm of the overall feature differences vector.
An example for a SQL injection is shown in Fig. 6
which displays the contribution to the overall norm as
a function of individual protocol elements. The CGI

parameter “cat” clearly exhibits the largest fraction
of the overall feature differences norm and therefore,
might provide substantial information on the attack
vector.
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Fig. 6 Contribution of protocol tokens to overall norm of the
feature differences vector between 10000 normal HTTP requests
and a SQL injection

An example of a corresponding feature shading is given
in Fig. 7. For each byte position the corresponding
term frequency difference is calculated and graphically
highlighted using some coloring scheme. Darker regions
exhibit strong frequency differences and thereby,
indicate unusual byte patterns. As expected, the most
suspicious and longest contiguous byte pattern is
located in the attribute of the CGI parameter “cat”.
In this particular example the attacker mounts a SQL
union injection with the objective to create a file on
the web server that takes a URI as an argument to
eventually allow for remote file inclusion.
The identification of anomalous payloads transferred
over HTTP is not very difficult due to the nature
of text-based protocols. However, the localization
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Fig. 7 Feature shading of a SQL union injection based on cn-
grams

of malicious byte patterns transferred over binary
protocols is more challenging because the structure
of the underlying protocol is not always obvious and
typical shell code bytes can also be found in normal
traffic. Below is an example for the identification of
a potential vulnerability exploited by a RPC buffer
overflow.
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Fig. 8 Contribution of protocol tokens to overall feature
differences norm between 10000 normal RPC requests and a
RPC buffer overflow

With 93% the largest fraction of the overall feature
differences norm is caused by the attribute associated
with the token Object_Name. The feature shading is
presented in Fig. 9 and clearly reveals a long, contiguous
byte sequence which according to the opaque coloring
suggests anomalous content.
Examination of the corresponding parse tree shows
that the attacker binds to the Microsoft Windows
remote activation interface registered by the UUID
4d9f4ab8-7d1c-11cf-861e-0020af6e7c57 and exploits a
vulnerability located in the RemoteActivation function.
Thereby, the protocol token Object_Name which clearly
stands out in Fig. 8 corresponds to a parameter of the
RemoteActivation function which is overflown by the
attacker. Needless to say that the attack vector fits

Fig. 9 Feature shading of a RPC buffer overflow attack based
on cn-grams

the well-known RPC/DCOM vulnerability (CVE 2003-
0352).
As demonstrated in this section, protocol analysis along
with payload-based anomaly detection allows not only
to identify suspicious byte patterns in application-layer
messages, it also provides a better understanding of
attacks and helps to pinpoint potential vulnerabilities.

4 Related Work

Payload-based Anomaly Detection. Over the last
decade, a multitude of anomaly-based intrusion
detection systems have been proposed which analyze
the payload of a packet with regard to sequential
anomalies. Wang et al. proposed Payl [33] which
constructs a simple packet-length specific model of
normal traffic. The model relies on the computation of
n-gram frequencies (n ≤ 2) in a payload. The anomaly
score is defined by the simplfied Mahalanobis distance
to the previously learned n-gram distribution. In a
continuitive work, the authors presented Anagram [34]
which computes a model of normal as well as malicious
traffic based on distinct binarized n-grams stored in
different Bloom filters. Packets are scored by counting
the number of unobserved normal n-grams as well as
observed malicious n-grams. An extensive experimental
evaluation of geometric outlier detection is provided
by Rieck and Laskov [26] who investigated global and
local outlier detection methods with regard to the
problem of unknown attack detection. Perdisci et al.
proposed McPad [24] which relies on an ensemble of
One-Class SVM detectors. Their approach allows to
incorporate different types of features by combining
individual detectors in order to achieve a better trade-
off between detection accuracy and false positive rate.

Feature Extraction. A large amount of previous work in
the domain of network intrusion detection systems has
focused on features derived from network and transport
layer protocols. An example of such features can be
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found in the data mining approach of Lee and Stolfo
[15], containing packet, connection and time window
features derived from IP and TCP headers. The same
work has pioneered the use of “content” features that
comprised selected application-level properties such
as number of shell prompts, number of failed login
prompts, etc. deemed to be relevant for detection of
specific attacks. Similar features comprising selected
keywords from application-layer protocols have been
used by Mahoney and Chan for anomaly detection [18].
General content-based features using the payload
distribution of specific byte groups have been first
proposed by Kruegel et al. [13] in the context of service-
specific anomaly detection using separate normality
models for different application-layer protocols. Full
distributions of byte values have been considered by
Wang and Stolfo [33], eventually extended to models
of various languages that can be defined over byte
sequences, e.g. n-grams [25, 34]. However, the problem
of modeling n-grams is ill-posed because it entails the
estimation of distributions in exponentially growing
sample spaces. To overcome this problem, Perdisci et
al. [24] suggested to use gappy n-grams [16] which
effectively reduces the sample space for higher-order n-
grams (n > 2). Instead of explicitly modeling n-grams,
the Spectrogram detector [30] which was specifically
designed to protect web applications against malicious
user input learns a probabilistic representation of
legitimate web-layer input using a mixture of factorized
n-gram Markov models. Their approach casts n-gram
observations into products of conditional probabilities
representing transitions between individual characters
which eventually results in a linearization of the space
complexity.
The incorporation of protocol features into the
detection process has been first realized in signature-
based IDS. Robust and efficient protocol parsers have
been developed for the Bro IDS [22]; however, until
recently they were tightly coupled with Bro’s signature
engine, which has prevented their use in other systems.
The development of a stand-alone and extendable
protocol parser binpac [21] has provided a possibility
for combining protocol analysis with other detection
techniques. Incremental and bi-directional parsing as
well as error recovery are especially attractive features
of binpac. Similar properties at a more abstract level
are exhibited by the protocol analyzer GAPAL [1].
Although, protocol parsing by definition limits the
scope of analysis to known network protocols unknown
protocols can be explored using sophisticated protocol
reverse engineering techniques [3, 36].
However, the incorporation of protocol analysis into
anomaly detection remains largely unexplored. Kruegel

and Vigna [12] have developed a highly effective
system for the detection of web attacks by considering
separate models for HTTP requests. The system
combines models built over specific features such as
length, character distribution and request token order
defined for individual web applications associated with
particular URI paths. Duessel et al. [5] proposed a
method which allows to integrate protocol analysis in
payload-based anomaly detection based on composite
kernel measures. Their experiments showed that
significant improvements in the detection accuracy can
be achieved, especially for unknown web application
attacks. Our method advances this approach in that
it allows to transparently map byte sequences into a
unique geometric space which reflects sequential as well
as syntactical features. Hence, instead of calculating
multiple kernels the cn-gram data structure eventually
requires to compute one kernel only.

Evasion. Attack obfuscation is a common practice
among attackers to avoid detection. Blending-based
evasion of byte frequency-based network anomaly
IDS has been first addressed by Kolesnikov and
Dagon [11] who suggest to blend malicious attack
packets with normal traffic using advanced obfuscation
techniques such as spectrum analysis [4]. Although
Fogla et al. [6] present a proof of NP-hardness of
the problem a comprehensive experimental evaluation
reveals practical feasibility of blending-based attacks
in a continuative study. Resistance of payload-
based online anomaly detectors against poisoning-based
evasion schemes has been investigated by Kloft and
Laskov [10].

5 Conclusion

In this contribution we propose a general method
that facilitates the combination of protocol analysis
and payload-based anomaly detection. To this end, we
present a novel data representation, so called cn-grams,
that allows to integrate protocol features and sequential
features in an unified geometric feature space.
We conduct extensive experiments on recorded
network traffic featuring both text-based and binary
application-layer protocols which demonstrate superior
accuracy on the detection of unknown attacks. Our
proposition shows that novel attacks can be identified
reliably and the detection accuracy can be boosted from
44% using unsupervised anomaly detection with plain
sequential features to 80% using combined features
in the presence of attack obfuscation. Although the
additional effort of protocol analysis does not seem
to pay off for simple SQL injections the method
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proves to be especially useful for the detection of web
application attacks such as XSS and SQL injections
in the presence of attack obfuscation by payload
customization. Moreover, we show how cn-grams can
be used to explain geometric anomalies to security
experts and also provide insight into vulnerabilities by
identifying and pinpointing meaningful features in a
payload stream using the feature shading technique.
Due to its general nature, the proposed feature
extraction method can be applied on any protocol for
which a protocol analyzer is available. While in this
contribution we focus on the utilization of protocol
features derived from message format specifications,
future work should address the problem of how to
incorporate protocol state machines into sequential
feature representations and investigate the identified
limitation of both data representations regarding the
accurate detection of local anomalies in sparse feature
spaces.
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Type Attack linear, bag-of-token linear, n-grams rbf, n-grams linear, cn-grams
Class FPavg FPstd FPavg FPstd FPavg FPstd FPavg FPstd

XSS

1 0.0187 ±0.0077 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
2 0.0137 ±0.0074 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
3 0.0140 ±0.0042 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004
4 0.0150 ±0.0070 0.0007 ±0.0008 0.0007 ±0.0008 0.0005 ±0.0012
5 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

SQL
6 0.0152 ±0.0053 0.0027 ±0.0015 0.0027 ±0.0015 0.6820 ±0.0478
7 0.0118 ±0.0015 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
8 0.0147 ±0.0057 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

BUF

9 0.0150 ±0.0072 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
10 0.0010 ±0.0007 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
11 0.0139 ±0.0068 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
12 0.0003 ±0.0005 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004
13 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
14 0.1698 ±0.0438 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

CI 15 0.0037 ±0.0022 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000

Table 6 False positive rates for unknown HTTP attacks (BLOG09-I ) on test data

Type Attack linear, bag-of-token linear, n-grams rbf, n-grams linear, cn-grams
Class FPavg FPstd FPavg FPstd FPavg FPstd FPavg FPstd

XSS

1 0.4044 ±0.0858 0.0802 ±0.0301 0.0798 ±0.0316 0.0004 ±0.0005
2 0.4250 ±0.0000 0.1260 ±0.0000 0.1260 ±0.0000 0.0000 ±0.0000
3 0.4248 ±0.0686 0.2683 ±0.0523 0.2682 ±0.0511 0.0017 ±0.0014
4 0.3750 ±0.0516 0.1223 ±0.0154 0.1220 ±0.0166 0.0007 ±0.0006
5 0.4452 ±0.0637 0.2074 ±0.0502 0.2078 ±0.0505 0.0012 ±0.0008

SQL
6 0.4357 ±0.0796 0.4143 ±0.0291 0.4143 ±0.0289 0.9263 ±0.0159
7 0.6779 ±0.1752 0.1333 ±0.0356 0.1330 ±0.0358 0.0034 ±0.0020
8 0.4697 ±0.1048 0.0389 ±0.0160 0.0386 ±0.0158 0.0019 ±0.0012

BUF

9 0.4113 ±0.0660 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
10 0.1677 ±0.0347 0.0000 ±0.0000 0.0000 ±0.0000 0.0000 ±0.0000
11 0.4054 ±0.0489 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004
12 0.1274 ±0.0728 0.0000 ±0.0000 0.0002 ±0.0004 0.0012 ±0.0008
13 0.0005 ±0.0007 0.0000 ±0.0000 0.0000 ±0.0000 0.0005 ±0.0007
14 0.8547 ±0.0412 0.0000 ±0.0000 0.0000 ±0.0000 0.0001 ±0.0004

CI 15 0.5048 ±0.0758 0.3335 ±0.0784 0.3318 ±0.0757 0.0008 ±0.0010

Table 7 Average false positive rates for unknown HTTP attacks (BLOG09-II ) on test data

Attack linear, bag-of-token linear, n-grams rbf, n-grams linear, cn-grams
Class FPavg FPstd FPavg FPstd FPavg FPstd FPavg FPstd

1 0 0 0.0010 ±0.0012 0.0010 ±0.0012 0 0
2 0 0 0.0012 ±0.0010 0.0012 ±0.0010 0 0
3 0 0 0.0008 ±0.0008 0.0008 ±0.0008 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0.0008 ±0.0009 0.0001 ±0.0003 0 0
8 0 0 0.0008 ±0.0010 0.0008 ±0.0009 0 0
9 0 0 0.0008 ±0.0007 0.0009 ±0.0011 0 0

10 0 0 0.0006 ±0.0005 0.0006 ±0.0005 0 0
11 0 0 0.0008 ±0.0008 0.0008 ±0.0008 0 0
12 0 0 0.0006 ±0.0007 0.0006 ±0.0007 0 0
13 0 0 0.0009 ±0.0008 0.0009 ±0.0008 0 0
14 0 0 0.0004 ±0.0005 0.0004 ±0.0005 0 0

Table 8 False positive rates for unknown RPC attacks (AUT09) on test data
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6.3 Summary

6.3 Summary

This contribution introduces a general method that facilitates the combination of protocol analysis
and payload-based anomaly detection. We present a novel data representation, so called ck-grams,
that allows to integrate protocol features and sequential features in an unified geometric feature space.
Extensive experiments are conducted on recorded network traffic featuring both text-based and binary
application-layer protocols which demonstrate superior accuracy on the detection of unknown attacks.
The proposition shows that novel attacks can be identified reliably and the detection accuracy can be
boosted from 44% using unsupervised anomaly detection with plain sequential features to 80% using
combined features in the presence of attack obfuscation. Although the additional effort of protocol
analysis does not seem to pay off for simple SQL injections the method proves to be especially useful
for the detection of web application attacks such as XSS and SQL injections in the presence of attack
obfuscation by payload customization. Moreover, this contribution shows how ck-grams can be used to
explain geometric anomalies to security experts and also provide insight into vulnerabilities by identifying
and pinpointing meaningful features in a payload stream using the feature shading technique. Due to
its general nature, the proposed feature extraction method can be applied on any protocol for which a
protocol analyzer is available.
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CHAPTER 7

Learning and classification of malware behavior

7.1 Introduction

The proliferation of malware poses a significant threat to the security of inter-connected systems.
Particularly, the exponential growth of this threat driven by the diversity of existing malware and
new malware families as well as the increasing sophistication of malware authors to use obfuscation and
polymorphism techniques undermines state-of-the-art malware detection which predominantly relies
on signature-based content-level static malware analysis. Dynamic malware analysis as an alternative,
allows to monitor behavior of malware at execution time. While it is more difficult to conceal malware
characteristics in presence of run-time analysis techniques, this method is also crucial to identify and
understand behavioral patterns shared between individual malware instances and malware families. These
insights are useful for signature updates or as an input for adjustment of heuristic rules deployed in
malware detection tools.
Based on the collection of malware behavior reports, this contribution proposes a methodology for
learning the behavior of malware from labeled samples and constructing behavior-based models capable
of classifying unknown variants of known malware families.
Primary objective of this contribution are to investigate to what extent unknown malware (e.g. new or
polymorphic versions of known malware) can be classified as instances of known malware families or as
novel malware strain. Furthermore, this contribution investigates discriminative features that allow to
separate between known malware families.
To this end, full-fledged cross-validation experiments are conducted using SVM-based classification
over a corpus of 10.000 malware samples collected over several months using the nephentes honeypot
platform [92]. Labels are obtained from running executing the malware samples in a secure environment
against Avira AntiVir anti-virus solution [93]. Behavior of malware samples is recorded using the malware
analysis tool CWSandbox [35].

7.2 Publication
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Abstract. Malicious software in form of Internet worms, computer viruses, and
Trojan horses poses a major threat to the security of networked systems. The
diversity and amount of its variants severely undermine the effectiveness of clas-
sical signature-based detection. Yet variants of malware families share typical
behavioral patternsreflecting its origin and purpose. We aim to exploit these
shared patterns for classification of malware and propose a method for learning
and discrimination of malware behavior. Our method proceeds in three stages: (a)
behavior of collected malware is monitored in a sandbox environment, (b) based
on a corpus of malware labeled by an anti-virus scanner amalware behavior
classifieris trained using learning techniques and (c) discriminative features of
the behavior models are ranked for explanation of classification decisions. Exper-
iments with different heterogeneous test data collected over several months using
honeypots demonstrate the effectiveness of our method, especially in detecting
novel instances of malware families previously not recognized by commercial
anti-virus software.

1 Introduction

Proliferation of malware poses a major threat to modern information technology. Ac-
cording to a recent report by Microsoft [1], every third scanfor malware results in a
positive detection. Security of modern computer systems thus critically depends on the
ability to keep anti-malware products up-to-date and abreast of current malware devel-
opments. This has proved to be a daunting task. Malware has evolved into a powerful
instrument for illegal commercial activity, and a significant effort is made by its authors
to thwart detection by anti-malware products. As a result, new malware variants are dis-
covered at an alarmingly high rate, some malware families featuring tens of thousands
of currently known variants.

In order to stay alive in the arms race against malware writers, developers of anti-
malware software heavily rely on automatic malware analysis tools. Unfortunately,
malware analysis is obstructed by hiding techniques such aspolymorphism and ob-
fuscation. These techniques are especially effective against byte-level content analy-
sis [17, 19] and static malware analysis methods [8, 10, 11].In contrast to static tech-
niques, dynamic analysis of binaries during run-time enables monitoring of malware
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behavior, which is more difficult to conceal. Hence, a substantial amount of recent work
has focused on development of tools for collecting, monitoring and run-time analysis
of malware [3, 5, 6, 14, 22, 23, 25, 27, 36, 38].

Yet the means for collection and run-time analysis of malware by itself is not suf-
ficient to alleviate a threat posed by novel malware. What is needed is the ability to
automaticallyinfer characteristics from observed malware behavior thatare essential
for detection and categorization of malware. Such characteristics can be used for sig-
nature updates or as an input for adjustment of heuristic rules deployed in malware
detection tools. The method for automatic classification ofmalware behavior proposed
in this contribution develops such a characterization of previously unknown malware
instances by providing answers to the following questions:

1. Does an unknown malware instance belong to a known malwarefamily or does it
constitute a novel malware strain?

2. What behavioral features are discriminative for distinguishing instances of one
malware family from those of other families?

We address these questions by proposing a methodology forlearning the behavior
of malware from labeled samples and constructing models capable of classifying un-
known variants of known malware families while rejecting behavior of benign binaries
and malware families not considered during learning. The key elements of this approach
are the following:

(a) Malware binaries are collected via honeypots and spam-traps, and malware family
labels are generated by running an anti-virus tool on each binary. To assessbehav-
ioral patternsshared by instances of the same malware family, the behaviorof each
binary is monitored in a sandbox environment and behavior-based analysis reports
summarizing operations, such as opening an outgoing IRC connection or stopping
a network service, are generated. Technical details on the collection of our malware
corpus and the monitoring of malware behavior are provided in Sections 3.1–3.2.

(b) The learning algorithm in our methodology embeds the generated analysis reports
in a high-dimensional vector space and learns adiscriminative modelfor each mal-
ware family, i.e., a function that, being applied to behavioral patterns of an unknown
malware instance, predicts whether this instance belongs to a known family or not.
Combining decisions of individual discriminative models provides an answer to the
first question stated above. The embedding and learning procedures are presented
in Sections 3.3– 3.4.

(c) To understand the importance of specific features for classification of malware be-
havior, we exploit the fact that our learning model is definedby weights of behav-
ioral patterns encountered during the learning phase. By sorting these weights and
considering the most prominent patterns, we obtain characteristic features for each
malware family. Details of this feature ranking are provided in Section 3.5.

We have evaluated our method on a large corpus of recent malware obtained from
honeypots and spam-traps. Our results show that 70% of malware instances not identi-
fied by an anti-virus software can be correctly classified by our approach. Although such
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accuracy may not seem impressive, in practice it means that the proposed method would
provide correct detections in two thirds of hard caseswhen anti-malware products fail.
We have also performed, as a sanity check, classification of benign executables against
known malware families, and observed 100% detection accuracy. This confirms that
the features learned from the training corpus are indeed characteristic for malware and
not obtained by chance. The manual analysis of most prominent features produced by
our discriminative models has produced insights into the relationships between known
malware families. Details of experimental evaluation of our method are provided in
Section 4.

2 Related work

Extensive literature exists on static analysis of malicious binaries, e.g. [8, 10, 18, 20].
While static analysis offers a significant improvement in malware detection accuracy
compared to traditional pattern matching, its main weakness lies in the difficulty to
handle obfuscated and self-modifying code [33]. Moreover,recent work of Moser et al.
presents obfuscation techniques that are provably NP-hardfor static analysis [24].

Dynamic malware analysis techniques have previously focused on obtaining reli-
able and accurate information on execution of malicious programs [5, 6, 23, 38]. As
it was mentioned in the introduction, the main focus of our work lies in automatic
processingof information collected from dynamic malware analysis. Two techniques
for behavior-based malware analysis using clustering of behavior reports have been
recently proposed [4, 21]. Both methods transform reports of observed behavior into
sequences and use sequential distances (the normalized compression distance and the
edit distance, respectively) to group them into clusters which are believed to correspond
to malware families. The main difficulty of clustering methods stems from their unsu-
pervised nature, i.e., the lack of any external informationprovided to guide analysis of
data. Let us illustrate some practical problems of clustering-based approaches.

A major issue for any clustering method is to decide how many clusters are present
in the data. As it is pointed out by Bailey et al. [4], there is atrade-off between cluster
size and the number of clusters controlled by a parameter calledconsistencywhich mea-
sures a ratio between intra-cluster and inter-cluster variation. A good clustering should
exhibit high consistency, i.e., uniform behavior should beobserved within clusters and
heterogeneous behavior between different clusters. Yet in the case of malware behavior
– which is heterogeneous by its nature – this seemingly trivial observation implies that
a large number ofsmall classes is observed if consistency is to be kept high. The re-
sults in [4] yield a compelling evidence to this phenomenon:given 100% consistency,
a clustering algorithm generated from a total of 3,698 malware samples 403 clusters,
of which 206 (51%) contain just one single executable. What a practitioner is looking
for, however, is exactly the opposite: asmall number oflarge clusters in which vari-
ants belong to the same family. The only way to attain this effect using consistency is
to play with different consistency levels, which (a) defeats the purpose of automatic
classification and (b) may still be difficult to attain at a single consistency level.

Another recent approach to dynamic malware analysis is based on mining of ma-
licious behavior reports [9]. Its main idea is to identify differences between malware
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samples and benign executables, which can be used as specification of malicious be-
havior (malspecs). In contrast to this work, the aim of our approach is discrimination
between families of malware instead of discrimination between specific malware in-
stances and benign executables.

3 Methodology

Current malware is characterized by rich and versatile behavior, although large families
of malware, such as all variants of the Allaple worm, share common behavioral patterns,
e.g., acquiring and locking of particular mutexes on infected systems. We aim to exploit
these shared patterns usingmachine learning techniquesand propose a method capable
of automatically classifying malware families based on their behavior. An outline of our
learning approach is given by the following basic steps:

1. Data acquisition.A corpus of malware binaries currently spreading in the wildis
collected using a variety of techniques, such as honeypots and spam-traps. An anti-
virus engine is applied to identify known malware instancesand to enable learning
and subsequent classification of family-specific behavior.

2. Behavior Monitoring. Malware binaries are executed and monitored in a sandbox
environment. Based on state changes in the environment – in terms of API function
calls – a behavior-based analysis report is generated.

3. Feature Extraction. Features reflecting behavioral patterns, such as opening afile,
locking a mutex, or setting a registry key, are extracted from the analysis reports
and used to embed the malware behavior into a high-dimensional vector space.

4. Learning and Classification.Machine learning techniques are applied for identify-
ing the shared behavior of each malware family. Finally, a combined classifier for
all families is constructed and applied to different testing data.

5. Explanation.The discriminative model for each malware family is analyzed us-
ing the weight vector expressing the contribution of behavioral patterns. The most
prominent patterns yield insights into the classification model and reveal relations
between malware families.

In the following sections we discuss these individual stepsand corresponding tech-
nical background in more detail – providing examples of analysis reports, describing
the vectorial representation, and explaining the applied learning algorithms.

3.1 Malware Corpus for Learning

Our malware collection used for learning and subsequent classification of malware be-
havior comprises more than 10,000 unique samples obtained using different collection
techniques. The majority of these samples was gathered vianepenthes, a honeypot solu-
tion optimized for malware collection [3]. The basic principle of nepenthes is to emulate
only thevulnerableparts of an exploitable network service: a piece of self-replicating
malware spreading in the wild will be tricked into exploiting the emulated vulnerabil-
ity. By automatically analyzing the received payload, we can then obtain a binary copy
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of the malware itself. This leads to an effective solution for collecting self-propagating
malware such as a wide variety of worms and bots. Additionally, our data corpus con-
tains malware samples collected viaspam-traps. We closely monitor several mailboxes
and catch malware propagating via malicious e-mails, e.g.,via links embedded in mes-
sage bodies or attachments of e-mails. With the help of spam-traps, we are able to obtain
malware such as Trojan horses and network backdoors.

The capturing procedure based on honeypots and spam-traps ensures that all sam-
ples in the corpus aremalicious, as they were either collected while exploiting a vul-
nerability in a network service or contained in malicious e-mail content. Moreover, the
resulting learning corpus iscurrent, as all malware binaries were collected within 5
months (starting from May 2007) and reflect malware familiesactively spreading in
the wild. In the current prototype, we focus on samples collected via honeypots and
spam-traps. However, our general methodology on malware classification can be easily
extended to include further malware classes, such as rootkits and other forms of non-
self-propagating malware, by supplying the corpus with additional collection sources.

After collecting malware samples, we applied the anti-virus (AV) engineAvira An-
tiVir [2] to partition the corpus into common families of malware,such as variants
of RBot, SDBot and Gobot. We chose Avira AntiVir as it had one of the best detec-
tion rates of 29 products in a recent AV-Test and detected 99.29% of 874,822 unique
malware samples [35]. We selected the 14 malware families obtained from the most
common labels assigned by Avira AntiVir on our malware corpus. These families listed
in Table 1 represent a broad range of malware classes such as Trojan horses, Internet
worms and bots. Note that binaries not identified by Avira AntiVir are excluded from
the malware corpus. Furthermore, the contribution of each family is restricted to a max-
imum of 1,500 samples resulting in 10,072 unique binaries of14 families.

Table 1.Malware families assigned by Avira AntiVir in malware corpus of 10,072samples. The
numbers in brackets indicate occurrences of each malware family in thecorpus.

1: Backdoor.VanBot (91) 8: Worm.Korgo (244)
2: Trojan.Bancos (279) 9: Worm.Parite (1215)
3: Trojan.Banker (834) 10: Worm.PoeBot (140)
4: Worm.Allaple (1500) 11: Worm.RBot (1399)
5: Worm.Doomber (426) 12: Worm.Sality (661)
6: Worm.Gobot (777) 13: Worm.SdBot (777)
7: Worm.IRCBot (229) 14: Worm.Virut (1500)

Using an AV engine for labeling malware families introducesa problem: AV labels
are generated by human analysts and are prone to errors. However, the learning method
employed in our approach (Section 3.4) is well-known for itsgeneralization ability
in presence of classifcation noise [34]. Moreover, our methodology is not bound to a
particular AV engine and our setup can easily be adapted to other AV engines and labels
or a combination thereof.
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3.2 Monitoring Malware Behavior

The behavior of malware samples in our corpus is monitored using CWSandbox– an
analysis software generating reports of observed program operations [38]. The samples
are executed for a limited time in a native Windows environment and their behavior is
logged during run-time. CWSandbox implements this monitoring by using a technique
calledAPI hooking[13]. Based on the run-time observations, a detailed reportis gener-
ated comprising, among others, the following information for each analyzed binary:

– Changes to the file system, e.g., creation, modification or deletion of files.
– Changes to the Windows registry, e.g., creation or modification of registry keys.
– Infection of running processes, e.g., to insert maliciouscode into other processes.
– Creation and acquiring of mutexes, e.g. for exclusive access to system resources.
– Network activity and transfer, e.g., outbound IRC connections or ping scans.
– Starting and stopping of Windows services, e.g., to stop common AV software.

Figure 1 provides examples of observed operations contained in analysis reports,
e.g., copying of a file to another location or setting a registry key to a particular value.
Note, that the tool provides a high-level summary of the observed events and often more
than one related API call is aggregated into a single operation.

copy_file (filetype="File" srcfile="c:\1ae8b19ecea1b65705595b245f2971ee.exe",
dstfile="C:\WINDOWS\system32\urdvxc.exe", flags="SECURITY_ANONYMOUS")

set_value (key="HKEY_CLASSES_ROOT\CLSID\{3534943...2312F5C0&}",
data="lsslwhxtettntbkr")

create_process (commandline="C:\WINDOWS\system32\urdvxc.exe /start",
targetpid="1396", showwindow="SW_HIDE", apifunction="CreateProcessA")

create_mutex (name="GhostBOT0.58b", owned="1")

connection (transportprotocol="TCP", remoteaddr="XXX.XXX.XXX.XXX",
remoteport="27555", protocol="IRC", connectionestablished="1", socket="1780")

irc_data (username="XP-2398", hostname="XP-2398", servername="0",
realname="ADMINISTRATOR", password="r0flc0mz", nick="[P33-DEU-51371]")

Fig. 1. Examples of operations as reported by CWSandbox during run-time analysis of different
malware binaries. The IP address in the fifth example is sanitized.

3.3 Feature Extraction and Embedding

The analysis reports provide detailed information about malware behavior, yet raw re-
ports are not suitable for application of learning techniques as these usually operate on
vectorial data. To address this issue we derive a generic technique for mapping analysis
reports to a high-dimensional feature space.
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Our approach builds on thevector space modelandbag-of-words model; two sim-
ilar techniques previously used in the domains of information retrieval [29] and text
processing [15, 16]. A document – in our case an analysis report – is characterized
by frequencies of contained strings. We refer to the set of considered strings as fea-
ture setF and denote the set of all possible reports byX. Given a strings ∈ F and
a reportx ∈ X, we determine the number of occurrences ofs in x and obtain the fre-
quency f (x, s). The frequency of a strings acts as a measure of its importance inx,
e.g., f (x, s) = 0 corresponds to no importance ofs, while f (x, s) > 0.5 indicates domi-
nance ofs in x. We derive an embedding functionφ which maps analysis reports to an
|F |-dimensional vector space by considering the frequencies of all strings inF :

φ : X → R|F |, φ(x) 7→ ( f (x, s))s∈F

For example, ifF contains the stringscopy_file andcreate_mutex, two dimen-
sions in the resulting vector space correspond to the frequencies of these strings in
analysis reports. Computation of these high-dimensional vectors seems infeasible at
a first glance, asF may contain arbitrary many strings, yet there exist efficient algo-
rithms that exploit the sparsity of this vector representation to achieve linear run-time
complexity in the number of input bytes [28, 31].

In contrast to textual documents we can not define a feature set F a priori, simply
because not all important strings present in reports are known in advance. Instead, we
defineF implicitly by deriving string features from the observed malware operations.
Each monitored operation can be represented by a string containing its name and a list
of key-value pairs, e.g., a simplified strings for copying a file is given by

“copy_file (srcfile=A, dstfile=B)”

Such representation yields a very specific feature setF , so that slightly deviating be-
havior is reflected in different strings and vector space dimensions. Behavioral patterns
of malware, however, often express variability induced by obfuscation techniques, e.g.,
the destination for copying a file might be a random file name. To address this problem,
we represent each operation bymultiple stringsof different specificity. For each oper-
ation we obtain these strings by defining subsets of key-value pairs ranging from the
full to a coarse representation. E.g. the previous example for copying a file is associated
with three strings in the feature setF

“copy_file ...” −→


“copy_file_1 (srcfile=A, dstfile=B)”

“copy_file_2 (srcfile=A)”

“copy_file_3 ()”

The resulting implicit feature setF and the vector space induced byφ correspond
to various strings of possible operations, values and attributes, thus covering a wide
range of potential malware behavior. Note, that the embedding of analysis reports using
a feature setF and functionφ is generic, so that it can be easily adapted to different
report formats of malware analysis software.
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3.4 Learning and Classification

The embedding functionφ introduced in the previous section maps analysis reports
into a vector space in which various learning algorithms canbe applied. We use the
well-established method ofSupport Vector Machines(SVM), which provides strong
generalization even in presence of noise in features and labels. Given data of two classes
an SVM determines anoptimal hyperplanethat separates points from both classes with
maximal margin [e.g. 7, 30, 34].

The optimal hyperplane is represented by a vectorw and a scalarb such that the
inner product ofw with vectorsφ(xi) of the two classes are separated by an interval
between−1 and+1 subject tob:

〈w, φ(xi)〉 + b ≥ +1, for xi in class 1,

〈w, φ(xi)〉 + b ≤ −1, for xi in class 2.

The optimization problem to be solved for findingw andb can be solely formulated
in terms of inner products〈φ(xi), φ(x j)〉 between data points. In practice these inner
products are computed by so calledkernel functions, which lead to non-linear classifi-
cation surfaces. For example, the kernel functionk for polynomials of degreed used in
our experiments is given by

k(xi , x j) = (〈φ(xi), φ(x j)〉 + 1)d.

Once trained, an SVM classifies a new reportx by computing its distanceh(x) from
the separating hyperplane as

h(x) = 〈w, φ(x)〉 + b =
n∑

i=1

αiyik(xi , x) + b,

whereαi are parameters obtained during training andyi labels (+1 or −1) of training
data points. The distanceh(x) can then be used for multi-class classification among
malware families in one of the following ways:

1. Maximum distance.A label is assigned to a new behavior report by choosing the
classifier with the highest positive score, reflecting the distance to the most discrim-
inative hyperplane.

2. Maximum probability estimate.Additional calibration of the outputs of SVM clas-
sifiers allows to interpret them as probability estimates. Under some mild proba-
bilistic assumptions, the conditional posterior probability of the class+1 can be
expressed as:

P(y = +1 |h(x)) =
1

1+ exp(Ah(x) + B)
,

where the parametersA andB are estimated by a logistic regression fit on an in-
dependent training data set [26]. Using these probability estimates, we choose the
malware family with the highest estimate as our classification result.

In the following experiments we will use the maximum distance approach for com-
bining the output of individual SVM classifiers. The probabilistic approach is applicable
to prediction as well as detection of novel malware behaviorand will be considered in
Section 4.3.
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3.5 Explanation of Classification

A security practitioner is not only interested in how accurate a learning system per-
forms, but also needs to understand how such performance is achieved – a requirement
not satisfied by many “black-box” applications of machine learning. In this section we
supplement our proposed methodology and provide a procedure for explaining classifi-
cation results obtained using our method.

The discriminative model for classification of a malware family is the hyperplane
w in the vector spaceR|F | learned by an SVM. As the underlying feature setF corre-
sponds to stringssi ∈ F reflecting observed malware operations, each dimensionwi of
w expresses the contribution of an operation to the decision functionh. Dimensionswi

with high values indicate strong discriminative influence,while dimensions with low
values express few impact on the decision function. By sorting the componentswi of w
one obtains afeature ranking, such thatwi > w j implies higher relevance ofsi over sj .
The most prominent strings associated with the highest components ofw can be used to
gain insights into the trained decision function and represent typical behavioral patterns
of the corresponding malware family.

Please note that an explicit representation ofw is required for computing a feature
ranking, so that in the following we provide explanations oflearned models only for
polynomial kernel functions of degree 1.

4 Experiments

We now proceed to evaluate the performance and effectiveness of our methodology
in different setups. For all experiments we pursue the following experimental proce-
dure: The malware corpus of 10,072 samples introduced in Section 3.1 is randomly
split into three partitions, atraining, validationandtestingpartition. For each partition
behavior-based reports are generated and transformed intoa vectorial representation as
discussed in Section 3. The training partition is used to learn individual SVM classi-
fiers for each of the 14 malware families using different parameters for regularization
and kernel functions. The best classifier for each malware family is then selected us-
ing the classification accuracy obtained on the validation partition. Finally, the overall
performance is measured using the combined classifier on thetesting partition.

This procedure, including randomly partitioning the malware corpus, is repeated
over five experimental runs and corresponding results are averaged. For experiments
involving data not contained in the malware corpus (Section4.2 and 4.3), the test-
ing partition is replaced with malware binaries from a different source. The machine
learning toolboxShogun[32] has been chosen as an implementation of the SVM. The
toolbox has been designed for large-scale experiments and enables learning and classi-
fication of 1,700 samples per minute and malware family.

4.1 Classification of Malware Behavior

In the first experiment we examine the general classificationperformance of our mal-
ware behavior classifier. Testing data is taken from the malware corpus introduced in
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Section 3.1. In Figure 2 the per-family accuracy and a confusion matrix for this exper-
iment is shown. The plot in Figure 2 (a) depicts the percentage of correctly assigned
labels for each of the 14 selected malware families. Error bars indicate the variance
measured during the experimental runs. The matrix in Figure2 (b) illustrates confusions
made by the malware behavior classifier. The density of each cell gives the percentage
of a true malware family assigned to a predicted family by theclassifier. The matrix
diagonal corresponds to correct classification assignments.
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Fig. 2. Performance of malware behavior classifier using operation features on testing partition
of malware corpus. Results are averaged over five experimental runs.

On average 88% of the provided testing binaries are correctly assigned to malware
families. In particular, the malware families Worm.Allaple (4), Worm.Doomber (5),
Worm.Gobot (6) and Worm.Sality (12) are identified almost perfectly. The precise clas-
sification of Worm.Allaple demonstrates the potential of our methodology, as this type
of malware is hard to detect using static methods: Allaple ispolymorphically encrypted,
i.e., every copy of the worm is different from each other. This means that static analysis
can only rely on small parts of the malware samples, e.g., tryto detect the decryptor.
However, when the binary is started, it goes through the polymorphic decryptor, un-
packs itself, and then proceeds to the static part of the code, which we observe with
our methodology. All samples express a set of shared behavioral patterns sufficient for
classification using our behavior-based learning approach.

The accuracy for Backdoor.VanBot (1) and Worm.IRCBot (7) reaches around 60%
and expresses larger variance – an indication for a generic AV label characterizing mul-
tiple malware strains. In fact, the samples of Worm.IRCBot (7) in our corpus comprise
over 80 different mutex names, such asSyMMeC, itcrew or h1dd3n, giving evidence of
the heterogeneous labeling.
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4.2 Prediction of Malware Families

In order to evaluate how good we can evenpredict malware families which are not
detected by anti-virus products, we extended our first experiment. As outlined in Sec-
tion 3.1, our malware corpus is generated by collecting malware samples with the help
of honeypots and spam-traps. The anti-virus engine Avira AntiVir, used to assign la-
bels to the 10,072 binaries in our malware corpus, failed to identify additional 8,082
collected malware binaries. At this point, however, we can not immediately assess the
performance of our malware behavior classifier as theground truth, the true malware
families of these 8,082 binaries, is unknown.

We resolve this problem by re-scanning the undetected binaries with the Avira An-
tiVir engine after a period of four weeks. The rationale behind this approach is that the
AV vendor had time to generate and add missing signatures forthe malware binaries
and thus several previously undetected samples could be identified. From the total of
8,082 undetected binaries, we now obtain labels for 3,139 samples belonging to the 14
selected malware families. Table 2 lists the number of binaries for each of the 14 fam-
ilies. Samples for Worm.Doomber, Worm.Gobot and Worm.Sality were not present,
probably because these malware families did not evolve and current signatures were
sufficient for accurate detection.

Table 2. Undetected malware families of 3,139 samples, labeled by Avira AntiVir four weeks
after learning phase. Numbers in brackets indicate occurrences of each Malware family.

1: Backdoor.VanBot (169) 8: Worm.Korgo (4)
2: Trojan.Bancos (208) 9: Worm.Parite (19)
3: Trojan.Banker (185) 10: Worm.PoeBot (188)
4: Worm.Allaple (614) 11: Worm.RBot (904)
5: Worm.Doomber (0) 12: Worm.Sality (0)
6: Worm.Gobot (0) 13: Worm.SdBot (597)
7: Worm.IRCBot (107) 14: Worm.Virut (144)

Based on the experimental procedure used in the first experiment, we replace the
original testing data with the embedded behavior-based reports of the new 3,139 labeled
samples and again perform five experimental runs.

Figure 3 provides the per-family accuracy and the confusionmatrix achieved on
the 3,139 malware samples. The overall result of this experiment is twofold. On aver-
age, 69% of the malware behavior is classified correctly. Some malware, most notably
Worm.Allaple (4), is detected with high accuracy, while on the other hand malware
families such as Worm.IRCBot (7) and Worm.Virut (14) are poorly recognized. Still,
the performance of our malware behavior classifier is promising, provided that during
the learning phasenoneof these malware samples was detected by the Avira AntiVir
engine. Moreover, the fact that AV signatures present during learning did not suffice for
detecting these binaries might also indicate truly novel behavior of malware, which is
impossible to predict using behavioral patterns containedin our malware corpus.
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Fig. 3. Performance of malware behavior classifier on undetected data usingoperation features.
Malware families 5, 6 and 12 are not present in the testing data.

4.3 Identification of Unknown Behavior

In the previous experiments we considered the performance of our malware behavior
classifier on 14 fixed malware families. In a general setting,however, a classifier might
also be exposed to malware binaries that donotbelong to one of these 14 families. Even
if the majority of current malware families would be included in a large learning system,
future malware families could express activity not matching any patterns of previously
monitored behavior. Moreover, a malware behavior classifier might also be exposed to
benign binaries either by accident or in terms of a denial-of-service attack. Hence, it is
crucial for such a classifier to not only identify particularmalware families with high
accuracy, but also to verify the confidence of its decision and report unknown behavior.

We extend our behavior classifier to identify and rejectunknown behaviorby chang-
ing the way individual SVM classifiers are combined. Insteadof using the maximum
distance to determine the current family, we consider probability estimates for each
family as discussed in Section 3.4. Given a malware sample, we now requireexactly
oneSVM classifier to yield a probability estimate larger 50% andrejectall other cases
as unknown behavior.

For evaluation of this extended behavior classifier we consider additional malware
families not part of our malware corpus and benign binaries randomly chosen from
several desktop workstations running Windows XP SP2. Table3 provides an overview
of the additional malware families. We perform three experiments: first, we repeat the
experiment of Section 4.1 with the extended classifier capable of rejecting unknown
behavior, second we consider 530 samples of the unknown malware families given in
Table 3 and third we provide 498 benign binaries to the extended classifier.

Figure 4 shows results of the first two experiments averaged over five individual
runs. The confusion matrices in both sub-figures are extended by a column labeled
u which contains the percentage of predicted unknown behavior. Figure 4 (a) depicts
the confusion matrix for the extended behavior classifier ontesting data used in Sec-
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Table 3. Malware families of 530 samples not contained in malware learning corpus. The num-
bers in brackets indicate occurrences of each malware family.

a: Worm.Spybot (63) f: Trojan.Proxy.Cimuz (73)
b: Worm.Sasser (23) g: Backdoor.Zapchast (25)
c: Worm.Padobot (62) h: Backdoor.Prorat (77)
d: Worm.Bagle (20) i: Backdoor.Hupigon (96)
e: Trojan.Proxy.Horst (29)

tion 4.1. In comparison to Section 4.1 the overall accuracy decreases from 88% to 76%,
as some malware behavior is classified as unknown, e.g., for the generic AV labels of
Worm.IRCBot (7). Yet this increase in false-positives coincides with decreasing con-
fusions among malware families, so that the confusion matrix in Figure 4 (a) yields
fewer off-diagonal elements in comparison to Figure 2 (b). Hence, theresult of using
a probabilistic combination of SVM classifiers is twofold: on the one hand behavior of
some malware samples is indicated as unknown, while on the other hand the amount of
confusions is reduced leading to classification results supported by strong confidence.
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Fig. 4. Performance of extended behavior classifier on (a) original testing data and (b) malware
families not contained in learning corpus. The column labeled “u” corresponds to malware bina-
ries classified asunknown behavior.

Figure 4 (b) now provides the confusion matrix for the unknown malware fami-
lies given in Table 3. For several of these families no confusion occurs at all, e.g., for
Worm.Bagle (d), Trojan.Proxy.Horst (e) and Trojan.Proxy.Cimuz (f). The malware be-
havior classifier precisely recognizes that these binariesdo not belong to one of the 14
malware families used in our previous experiments. The other tested unknown malware
families show little confusion with one of the learned families, yet the majority of these
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confusions can be explained and emphasizes the capability of our methodology to not
discriminate AV labels of malware but its behavior.

– Worm.Spybot (a) is similar to other IRC-bots in that it usesIRC as command in-
frastructure. Moreover, it exploits vulnerabilities in network services and creates
auto-start keys to enable automatic start-up after system reboot. This behavior leads
to confusion with Worm.IRCBot (7) and Worm.RBot (11), whichbehave in exactly
the same way.

– Worm.Padobot (c) is a synonym for Worm.Korgo (8): several AV engines name
this malware family Worm.Padobot, whereas others denote itby Worm.Korgo. The
corresponding confusion in Figure 4 (b) thus results from the ability of our learning
method to generalize beyond the restricted set of provided labels.

– Backdoor.Zapchast (g) is a network backdoor controlled via IRC. Some binaries
contained in variants of this malware are infected with Worm.Parite (9). This cou-
pling of two different malware families, whether intentional by the malwareauthor
or accidental, is precisely reflected in a small amount of confusion shown in Fig-
ure 4 (b).

In the third experiment focusing on benign binaries, all reports of benign behavior
are correctly assigned to the unknown class and rejected by the extended classifier. This
result shows that the proposed learning method captures typical behavioral patterns
of malware, which leads to few confusions with other malwarefamilies but enables
accurate discrimination of normal program behavior if provided as input to a classifier.

4.4 Explaining Malware Behavior Classification

The experiments in the previous sections demonstrate the ability of machine learning
techniques to effectively discriminate malware behavior. In this section weexamine
the discriminative models learned by the SVM classifiers andshow that relations of
malware beyond the provided AV labels can be deduced from thelearned classifiers. For
each of the 14 considered malware families we learn an SVM classifier, such that there
exist 14 hyperplanes separating the behavior of one malwarefamily from all others. We
present the learned decision functions for the Sality and Doomber classifiers as outlined
in Section 3.5 by considering the most prominent patterns intheir weight vectors.

Sality Classifier Figure 5 depicts the top five discriminating operation features for
the family Worm.Sality learned by our classifier. Based on this example, we see that
operation features can be used by a human analyst to understand the actual behavior
of the malware family, e.g., the first two features show that Sality creates a file within
the Windows system directory. Since both variants created during the preprocessing
step (see Section 3.3 for details) are included, this indicates that Sality commonly uses
the source filenamevcmgcd32.dl . Moreover, this malware family also deletes at least
one file within the Windows system directory. Furthermore, this family creates a mutex
containing the stringkuku joker (e.g., kuku joker v3.09 as shown in Figure 5 and
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0.0142:create_file_2 (srcpath="C:\windows\...")
0.0073:create_file_1 (srcpath="C:\windows\...", srcfile="vcmgcd32.dl_")
0.0068:delete_file_2 (srcpath="C:\windows\...")
0.0051:create_mutex_1 (name="kuku_joker_v3.09")
0.0035:enum_processes_1 (apifunction="Process32First")

Fig. 5. Discriminative operation features extracted from the SVM classifier of thethe malware
family Sality. The numbers to the left are the sorted components of the hyperplane vector w.

0.0084:create_mutex_1 (name="GhostBOT0.58c")
0.0073:create_mutex_1 (name="GhostBOT0.58b")
0.0052:create_mutex_1 (name="GhostBOT0.58a")
0.0014:enum_processes_1 (apifunction="Process32First")
0.0011:query_value_2 (key="HKEY_LOCAL...\run", subkey_or_value="GUARD")

Fig. 6. Discriminative operation features extracted from the SVM classifier of thethe malware
family Doomber. The numbers to the left are the sorted components of the hyperplane vector w.

kuku joker v3.04 as sixth most significant feature) such that only one instance of the
binary is executed at a time. Last, Sality commonly enumerates the running processes.

Based on these operation features, we get an overview of whatspecific behavior
is characteristic for a given malware family; we canunderstandwhat the behavioral
patterns for one family are and how a learned classifier operates.

Doomber Classifier In Figure 6, we depict the top five discriminating operation fea-
tures for Worm.Doomber. Different features are significant for Doomber compared to
Sality: the three most significant components for this family are similar mutex names,
indicating different versions contained in our malware corpus. Furthermore, we can see
that Doomber enumerates the running processes and queries certain registry keys.

In addition, we make another interesting observation: our learning-based system
identified the mutex namesGhostBOT-0.57a, GhostBOT-0.57 andGhostBOT to be among
the top five operation features for Worm.Gobot. The increased version number reveals
that Gobot and Doomber are closely related. Furthermore, our system identified several
characteristic, additional features contained in reportsfrom both malware families, e.g.,
registry keys accessed and modified by both of them. We manually verified that both
families are closely related and that Doomber is indeed an enhanced version of Gobot.
This illustrates that our system may also help to identifyrelationsbetween different
malware families based on observed run-time behavior.

5 Limitations

In this section, we examine the limitations of our learning and classification methodol-
ogy. In particular, we discuss the drawbacks of our analysissetup and examine evasion
techniques.
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One drawback of our current approach is that we rely on one single program ex-
ecution of a malware binary: we start the binary within the sandbox environment and
observe one execution path of the sample, which is stopped either if a timeout is reached
or if the malware exits from the run by itself. We thus do not get a full overview of what
the binary intends to do, e.g., we could miss certain actionsthat are only executed on
a particular date. However, this deficit can be addressed using a technique calledmulti-
path execution, recently introduced by Moser et al. [23], which essentially tracks input
to a running binary and selects a feasible subset of possibleexecution paths. Moreover,
our results indicate that a single program execution often contains enough information
for accurate classification of malware behavior, as malwarecommonly tries to aggres-
sively propagate further or quickly contacts a Command & Control servers.

Another drawback of our methodology is potential evasion bya malware, either by
detecting the existence of a sandbox environment or via mimicry of different behavior.
However, detecting of the analysis environment is no general limitation of our approach:
to mitigate this risk, we can easily substitute our analysisplatform with a more resilient
platform or even use several different analysis platforms to generate the behavior-based
report. Second, a malware binary might try to mimic the behavior of a different malware
family or even benign binaries, e.g. using methods proposedin [12, 37]. The considered
analysis reports, however, differ from sequential representations such as system call
traces in that multiple occurrences of identical activities are discarded. Thus, mimicry
attacks can not arbitrarily blend the frequencies or order of operation features, so that
only very little activity may be covered in a single mimicry attack.

A further weakness of the proposed supervised classification approach is its inability
to find structure in new malware families not present in a training corpus. The presence
of unknown malware families can be detected by the rejectionmechanism used in our
classifiers, yet no further distinction among rejected instances is possible. Whether this
is a serious disadvantage in comparison to clustering methods is to be seen in practice.

6 Conclusions

The main contribution of this paper is a learning-based approach to automatic classifi-
cation of malware behavior. The key ideas of our approach are: (a) the incorporation of
labels assigned by anti-virus software to define classes forbuilding discriminative mod-
els; (b) the use of string features describing specific behavioral patterns of malware;
(c) automatic construction of discriminative models usinglearning algrithms and (d)
identification of explanatory features of learned models byranking behavioral patterns
according to their weights. To apply our method in practice,it suffices to collect a large
number of malware samples, analyse its behavior using a sandbox environment, iden-
tify typical malware families to be classified by running a standard anti-virus software
and construct a malware behavior classifier by learning single-family models using a
machine learning toolbox.

As a proof of concept, we have evaluated our method by analyzing a training cor-
pus collected from honeypots and spam-traps. The set of known families consisted
of 14 common malware families; 9 additional families were used to test the ability
of our method to identify behavior of unknown families. In anexperiment with over
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3,000 previouslyundetectedmalware binaries, our system correctly predicted almost
70% of labels assigned by an anti-virus scannerfour weeks later. Our method also de-
tects unknown behavior, so that malware families not present in the learning corpus
are correctly identified as unknown. The analysis of prominent features inferred by our
discriminative models has shown interesting similaritiesbetween malware families; in
particular, we have discovered that Doomber and Gobot wormsderive from the same
origin, with Doomber being an extension of Gobot.

Despite certain limitations of our current method, such as single-path execution in
a sandbox and the use of imperfect labels from an anti-virus software, the proposed
learning-based approach offers the possibility for accurate automatic analysis of mal-
ware behavior, which should help developers of anti-malware software to keep apace
with the rapid evolution of malware.
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Chapter 7 Learning and classification of malware behavior

7.3 Summary

This contribution proposed a novel method for automatic classification of malware behavior utiliz-
ing SVM-based classification of labeled malware samples which are represented by string features
describing specific behavior patterns of malware obtained from the CWSandbox malware analysis tool.
To this end, a corpus of 10.000 malware samples was collected, their behavior analysed in the sandbox
environment, and single-family behavior classifiers learned based on typical malware families identified
by running a standard anti-virus software. The set of known families consisted of 14 common malware
families – 9 additional families were used to test the ability of the method to identify behavior of unknown
families.
Experimental results confirm the two objectives of this contribution. In an experiment with over 3.000
previously undetected malware samples, the proposed method correctly predicted approx. 70% of labels
assigned by the anti-virus solution four weeks later. Furthermore, the method also reliably identified
unknown behavior such that malware families not learned during training are correctly classified as
“unknown”. An analysis of discriminative features revealed interesting similarities between Doomber and
Gobot worms, suggesting that Doomber being an extension of Gobot.
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CHAPTER 8

Conclusions

Modern society relies on information technology which is exposed to a plethora of cyber threats.
Increasing technology complexity and fast-paced adoption and integration of emerging technology, such
as Internet of Things (IoT), increases the demand for security and resilience. As the level of attack
sophistication has grown significantly, the detection of unknown cyber threats has emerged to a major
challenge for security practitioners in many different domains. The detection of so called “zero-day”
attacks – the exploitation of vulnerabilities unknown to the security community such that no fix or
patch is available – becomes paramount for the effective protection of critical information technology
infrastructures.
A number of representative studies has been presented as part of this dissertation which demonstrate
the effectiveness and usefulness of machine learning methods as alternative to state-of-the-art detection
approaches to solve existing unknown threat detection problems in both the network and computer
security domain. Thereby, the main focal point of this dissertation is the development of machine
learning methods to detect unknown cyber attacks in computer networks and furthermore derive useful
information to pinpoint vulnerabilities in applications based on the analysis of network packet payloads.
To this end, the studies presented make the following key contributions:

• Conducted comprehensive experiments to investigate strengths and limitations of supervised and
unsupervised machine learning methods for the detection of known and unknown network attacks
based on network packet header features.

• Developed and investigated the effectiveness of an anomaly detection method to detect network
attacks based on the extraction and selection of language model features from network packet
payload.

• Developed and investigated methods to bridge the gap between network protocol analysis and
payload-based anomaly detection and allow to reflect both structural and sequential similarity
aspects in learned data models.

• Investigated the effectiveness of proposed methods to other unknown threat detection challenges
outside of network security, i.e. unknown malware detectionn, to demonstrate applicability of
methods in other fields.

For each of the key contributions major results and conclusions are outlined below.
Numerous machine learning methods can be used to detect network attacks. In order to address the
question to what extent unsupervised machine learning can be leverage as an effective alternative to
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Chapter 8 Conclusions

supervised learning, Chapter 2 has provided a comparative analysis of various supervised and unsuper-
vised methods to investigate strengths and limitations in terms of capabilities and accuracy to detect
unknown attacks in the presence and absence of label information. A comprehensive experimental
evaluation over the well known KDD Cup 1999 data set has shown that, although supervised learning
significantly outperforms unsupervised learning in the known attack scenario (i.e. attack instances were
used during training/validation of supervised methods), performance of supervised learning methods
dropped significantly to the level of unsupervised learning methods. In the unknown attack scenario, the
Support Vector Machine attained highest detection accuracy with approx. 82% true positive at 10% false
positive rate. In the unknown attack scenario, the graph-based γ-outlier detection method, which defines
the distance of a data point to its k nearest neighbors as anomaly score, outperforms all other tested
unsupervised methods and compares to the best supervised method (SVM) with a detection accuracy of
79% at 10% false positive rate.
From the experimental evaluation it can concluded that unsupervised machine learning can be used as
an alternative to supervised methods to effectively detect unknown network intrusions as a label-free
alternative to supervised learning based on network packet header features.

Chapter 3 presented an experimental evaluation of anomaly detection over both plain-text (i.e. HTTP)
and binary (i.e. RPC) network packet payloads commonly seen in SCADA network traffic of industrial
automation networks. The contribution proposed a fast and effective centroid-based anomaly detection
method which utilizes higher order language models in combination with distance measures to detect
payload-based “zero-day” attacks in SCADA network traffic on the TCP/IP layer. With a detection rate
of 88-92% true positives at 0.2% false positives the method has proved to be useful for the detection of
unknown attacks in SCADA network traffic. Moreover, for plain-text network protocols, the proposed
method significantly outperformed the state-of-the-art anomaly detection system PAYL which attained
65% true positive at 0.2% false positive rate. However, the accuracy improvement of the proposed
method over binary network protocols is only marginal compared to PAYL.
From the experimental evaluation it can be concluded that the proposed payload-based anomaly detection
method using language model features extracted from network packet payloads allow for the effective
detection of network attacks carried out over both plain-text and binary network protocols.

Given the plethora of available feature sets to represent data objects, selecting the right set of features
to learn data models is a commonly known challenge in machine learning. Particularly, higher order
language models may result in high-volume and sparse feature spaces which can impact the quality of a
predictive model. Hence, the choice of the right set of features is crucial not only for learning the right
model but also to allow for efficient learning and decision making. Therefore, Chapter 4 introduced a novel
automated feature selection method for anomaly detection which allows for the selection and combination
of an optimal set of discriminative features taken from different feature sets to realize a minimal-volume
data description. Experiments showed that the proposed method outperforms any baseline using a single
set of features for more than five samples to train the model of normality. The proposed method turned
out to be particularly effective on small training set sizes. Furthermore, experimental results suggested
that feature weighting obtained from solving a semi-infinite linear program depends on the size of the
training data. While for smaller sized training sets the feature weight distribution tends to be uniform, the
weight distribution is increasingly dominated by the sequential expert feature type as the training set size
grows.
Based on the experimental evaluation it can be concluded that the proposed method allows to effectively
identify most informative, discriminative features from different sets of feature types which helps
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security practitioners to understand decision making by the predictive model and pinpoint suspicious
characteristics of attack instances.

Chapter 5 introduced a SVM-based anomaly detection method that allows for the detection of unknown
network attacks based on the novel attributed token kernel – a similarity measures for composite data
objects.The kernel allows to calculate similarity between composite data structures (e.g. HTTP requests)
by comparing sequential features associated with network protocol tokens obtained from parsing network
packet payloads. The experimental evaluation was carried out over two different HTTP data sets recorded
on publicly accessible web servers comparing the novel attributed token kernel against conventional
spectrum kernels. Two realistic attack data sets were created which contain overflow-type of attacks
as well as common web application attacks (e.g. SQL injection). Attack instances were merged with
test data partitions during full-fledged cross validation. Experimental results revealed, that the attributed
token kernel compares to the best spectrum kernel (k=1, binary feature embedding) attaining an accuracy
of 99% true positive rate and less than 1% false positive rate at the detection of unknown overflow-type
of attacks. This can be explained by the fact, that overflow-based attacks are not difficult to detect,
generally due to the inclusion of large network packet payloads and vast utilization of non-printable
characters. However, the experimental evaluation showed that for the detection of web application attacks
the attributed token kernel significantly outperforms the spectrum kernel and boosts the detection rate
from 70% to 100% at less than 0.14% false positives. This can be explained by the increased sensitivity
of local outliers induced by protocol tokenization. Surprisingly, the proposed method also outperforms
both misuse-based detection as well as the service-specific anomaly detection approach. However, a
major drawback of this approach is the complexity of similarity calculation due to normalization of
component-level kernel values.
Based on the experimental results it can concluded that the attributed token kernel is able to capture
sequential dissimilarity with respect to specific protocol context and thus, is particularly useful to
detect web application attacks which are hard to detect using kernels over language model features (e.g.
Spectrum kernel).

A continuative study presented in Chapter 6 proposed a novel data representation, so called ck-grams,
which allows to integrate protocol features and sequential features extracted from a composite data object
in a unified geometric feature space. The main difference to earlier work presented in Chapter 5 is
that ck-grams – as opposed to the attributed token kernel – reduce complexity of similarity calculation
based on linear kernel functions and provide transparency of feature relevance while preserving the same
information. Extensive experiments were conducted on recorded plain-text and binary application-layer
network traffic. Results demonstrated that novel attacks can be identified reliably and the detection
accuracy can be boosted from 44% using unsupervised anomaly detection with language model features
to 80% using combined features in the presence of attack obfuscation. The method has proved to be
particularly useful for the detection of web application attacks such as XSS and SQL injections in
presence of attack obfuscation. Furthermore, this contribution showed how ck-grams can be used to
explain geometric anomalies to security experts and also provide insight into vulnerabilities by identifying
and pinpointing meaningful features in a payload stream using the feature shading technique.
Based on the experimental evaluation it can be concluded that ck-gram are a powerful representation
for composite data objects (e.g. application-level network packet payload) that allows to significantly
improve detection accuracy compared to conventional language models while reducing complexity of
similarity calculation. Furthermore, the novel data representation showed to be particularly useful to
pinpoint vulnerable service parameters entangled with binary network protocols which helps security
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vendors to faster develop mitigating controls.

To demonstrate applicability of proposed anomaly detection and feature extraction methods in other
domains, two selected studies have been presented in the fields of malware detection and privilege misuse
detection.

Chapter 7 presented a novel method for automated classification of malware behavior utilizing single-
family Support Vector Machine-based classification of labeled malware based on compound string
features extracted from malware behavior reports to detect novel malware and classify malware instances
based on known malware families. Experiments over a corpus of 3.000 malware samples confirmed that
the proposed method correctly predicted approx. 70% of labels assigned by the anti-virus solution four
weeks later. Furthermore, the method also reliably identified unknown behavior, i.e. malware families not
learned during training were correctly classified as “unknown”. Due to the utilization of linear kernels, an
analysis of discriminative features revealed interesting similarities between Doomber| and Gobot worms,
suggesting that Doomber being an extension of (Gobot.
From the experiments, it can be concluded that compound string features extracted from malware
behavior reports carry informative features to discriminate different malware families and to detect
previously unknown malware instances. Furthermore, a norm-based feature analysis provided insights
into characteristics shared between different malware families.
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