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Abstract

This thesis is divided into two parts. In the first part, we study co-rotational wave maps
from the (1 + d)-dimensional Minkowski space into the d-sphere for all odd integers d > 3.
This model reads

Uy (t,r) — Yy (t, 1) — ?ﬂ%(t, r) + d — 1sin (2¢(t, 7)) _0,
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for t € I, an open interval in R and » > 0. Shatah [74], Turok-Spergel [89] (for d = 3)
and Bizon-Biernat [7] (for d > 4), showed that there exist smooth, self-similar, initial data
which lead to solutions that blowup in finite time. However, this is an energy-supercritical
model meaning that the energy norm is too weak to detect the self-similar break down.
Relying on a method developed by Donninger and Schérkhuber [29-32], we prove the
asymptotic nonlinear stability of the “ground-state” self-similar solution. Our method is
also based on the results of Costin-Donninger-Xia [19] and Costin-Donninger-Glogi¢ [20].
This result constitutes the main result of the first part and is a joint work of the author
with Donninger and Glogi¢ [18|. In the second part, we consider the wave equation with a
focusing cubic nonlinearity in higher odd space dimensions

—ug(t, ) + Agult, ) +u(t, z) =0,

for ¢t € I, an open interval in R and z € R?, without symmetry restrictions on the data.
This equation also exhibits finite-time blowup from smooth, compactly supported initial
data. Starting from spatially homogeneous solutions which develop a singularity in finite
time, we use the symmetries of the equation to construct a larger family of blowup so-
lutions. Donninger and Schoérkhuber developed intense research on the stability of the
blowup solutions. Their study resulted in a series of papers: in three space dimensions
for radial initial data [29,30], for all space dimensions and radial initial data [33] and in
three space dimensions without symmetry restrictions [31]. The latter relies on an integral
identity over the 2-sphere that is only valid in three space dimensions. Our main result of
the second part completes the picture and concentrates around the stability of the blowup
solutions in all odd space dimensions without symmetry restrictions on the data [17]. More
precisely, we prove that there exists an open set of initial data for which the solution exists
in a backward light-cone and approaches the blowup profile described by the ODE. This
is a joint work of the author with Donninger [17].

This thesis is structured into three chapters. In Chapter 1, we introduce the wave maps
and the cubic wave equation, the setting in which we work and give a brief overview of some
related results that have been obtained. Then, we state Theorem 1.1.1 [18] and Theorem
1.2.1 [17] which are the main results of the present thesis, give an outline of the proofs and
discuss the main difficulties encountered. We do not claim originality of any kind concern-
ing the results presented in Chapter 1 besides Theorem 1.1.1 [18] and Theorem 1.2.1 [17].
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To the best knowledge of the author, these two results are original. In Chapter 2, we focus
on the blowup of co-rotational wave maps from the (1 + d)-dimensional Minkowski space
into the d-sphere in odd space dimensions d > 3 odd and prove our first result. This chap-
ter contains the result of the paper [18]. In Chapter 3, we turn our attention to the stable
blowup for the cubic wave equation in higher dimensions without symmetry restrictions on
the data and prove our second result. This chapter contains the result of the paper [17].
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Chapter 1

Introduction and statement of the main
results

In this chapter, we begin by introducing the wave maps and the cubic wave equation.
Then, we state our main results and discuss the main ideas involved in the proofs.

1.1 Wave Maps

Let (M,g) be a Lorentzian spacetime and (N,h) any curved Riemannian manifold of
dimensions 1+ m and n respectively. The wave maps equation is a coupled system of non-
linear wave equations for a smooth map w : (M, g) — (N, h). This system has attracted a
lot of interest due to its pure geometric structure: it involves certain types of non-linearities
which contain the Christoffel symbols of the underlying target manifold and consequently
information about the curvature. Due to its geometric character, the wave maps equation
was proposed as a toy-model for some aspects of the critical behavior in the formation of
black holes, see Bizon-Chmaj-Tabor [9].

1.1.1 Variational formulation

Specifically, wave maps arise naturally as functions for which the action functional

1
Sylu] = 3 /M |dyul® du, (1.1)

is stationary. Here, du, is the volume form of the domain manifold determined by the
metric g. For all x € M, the differential dju(x) : T,M — Ty N is a linear map and
hence it can be identified with an element of TyM ® T),,)N. Moreover,

dyu(@)” = dyu(@) B, ., = try (u* (1)



that is the trace with respect to g of u* (h), the pullback metric on (M, g) via the map u.
In local coordinates {z,}, on (M, g), this expression reads

trg (u* (h)) = g" (u* (), = 9" (Buue”) (Ot ().

Here and in the following, we adopt the Einstein summation convention. This means that
repeated indices are summed over. In particular, we use the Latin alphabet for spatial
components only, for example

n n n n
A ByC* =3 "> AIByC*, DYE; =) Y DVEy
=1 k=1 i=1 j=1
whereas the Greek alphabet is used for space and time components, namely

m m m m
ng _ iz v _ uy
a,bec, = E 5 a,bec,,  d"eu = 5 E d"e,,, .

pn=0 v=0 pn=0 v=0

1.1.2 Euler-Lagrangian equations

In this section, we are going to derive the Euler-Lagrangian equations corresponding to
the first variation of the action (1.1). To this end, we follow [40,75,81] and reproduce the
computation for sake of completeness. We vary a fixed wave map u : (M, g) — (N, h)
by allowing it to be a member of an one-parameter family of maps. For any function
¢ € CX (M), we define

ue:<Mag)—>(N7h>7 Ue := U+ €0.

Notice that ug = u on all of (M, g) and u. = u outside a compact set. Let Q@ C M be a
compact set such that supp(¢) C . Then, u is a wave map if and only if

S,lu] = 0. (1.2)

We compute

d 1 [ d
— — — N nv a b
dE e:OSQ[UE] 2 /Q dE =0 (g (aﬂu )(al/u )hab(u)) d,LLg
= 3 Y _—__Z h° a nv a
- 2 /Q (g ouc (’b a:“u 81’“ +9g hab(u)aﬂ(b 8,/'&

+ ¢" hap(u) 0, u” V(bb) diig
I/ahab c a b v a b
g =—— 0, u 0’ dpy + | g" hap(w)0,0"0u’dp,
Q due Q
aha,b
Q (9uc

N~ DN —

gbc@uu“a“ubdug—i-/hab(u)@(é“@”ubd,ug, (1.3)
0
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where the contravariant metric tensor g is used to raise the index, 0* := ¢g*d,. We focus
on the second integral and define the vector field

XH = hgy(u)p* 0 ul.
We compute
a b a b b aah(lb c
VX = hap(1)0,0 0" 1 + hop(w)@*Oyu’ + 0Hu’ @ Wﬁuu
where V, X* stands for the divergence of the vector field X,

1
VXt =0,X"+ T X = mau (lglX*)

and O, is the Laplace-Beltrami operator on (1, g),
1
Oy =V, V" :=V,0" = mau(lglﬁ“% lg] == 1/|det (g, ).
Now, X = 0 on 02 since ¢ = 0 on 02 and Stokes’s theorem yields

/ V. X"dp, = 0.
Q

Therefore, we can rewrite the second integral in (1.3) as

/h“b(u)augbaau“bd:“g = _/ < p(w)o"Oyu +8“ub¢aahab )dﬂg
Q Q

and using (1.2) we are left with

10h h
-/ (—5 Tt 09 + )07 Oyl + aﬂu%ﬂ%@uﬂ) dpy = 0.

Observe that the third term can be written as

ahab

P

10h 10h
¢ — g ucotub [ =2k g 4 = ZaC pa
d,u 8uu8u<28uc¢ +28u”¢>

and therefore

1 Oh oh Oh
CLD b - b W, C ab ac . be a
hap(u) O u’ + 5Ol ( R aua) b ) dug

aheb ahec ahbc ace

(auc ub ) ¢ ‘5“) ity
(aheb ahec 8hbc
Pep

hag(w)p"Oguf +§a uP o ul 5~ gue ) O (u )hfa(u)) dpg

1 8h oh
a f - bapu,,c ec bc .
af® ( gU +28uu8u (6 S 8u>h ())d,ug

(

:_/Q (haf( )¢ Ogul + c‘) u’ oM u
(
h
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Using the fact that
) 1. .
we = ihlm(azhmk + Okhume — O ier)

are the Christoffel symbols associated to the metric h on the target manifold, we infer
a f f bau,,c _
—/ ha s (Dgu + I, (u)0,u’0"u ) dpy = 0.
Q
We conclude that the Euler-Lagrange equations associated to the functional (1.1) are
Ogu® + T (u)0,u’ 0" u’ = 0 (1.4)
and they constitute a system of semi-linear wave equations
O,u' + T}, (w)0,u’0"ut = 0
O,u? + T2, (u)0,u’0"u’ = 0
4 be() Oy . (1.5)
Oyu" 4 I (u)d,ubo"uc = 0.

This system of equations is called the wave maps equation.

1.1.3 Equivariant ansatz

The full system of semi-linear wave equations (1.5) can be reduced to a single semi-
linear wave equation with a singular non-linear term under the so called equivariant or
co-rotational ansatz. To introduce this ansatz, we first need to fix the domain and the
target manifolds. Let (M, g) = (R% g) be the Minkowski space and (N,h) = (S h) the
standard round d—sphere. In particular, we assume that d > 3. With respect to spherical
coordinates on the Minkowski space

(t,r,w) € R x [0,00) x [0,7)"! x [0,27) ~ R x [0,00) x ST' ~ R x R = R'*¢
the metric on the base manifold is given by
g(t,r,w) = —dt* + dr* + r*dw?,

where dw? stands for the standard round metric on S¢~!. In addition, with respect to the
hyper-spherical coordinates

(U, Q) €[0,7) x [0,7) " x [0,27) =~ S' x $¥! ~ §¢
the metric on the target is given by

h(W,Q) = dU? + sin?(¥)d0?,

12



where dQ? stands for the standard round metric on S%'. Now, any map from the
Minkowski space to the d—sphere can be written with respect to these coordinates as

u(t,r,w) = (V(t,r,w), Qt,rw))
and the equivariant ansatz suggests
Qt,r,w) =w.
Adopting this ansatz, we get

U(t,r,w) =(t,r)

and, most importantly, the wave maps system for functions u : (R4, g) — (S%, h) reduces
to the single semi-linear wave equation

wtt - wrr - d; 1% + - 1Sln(2w)

2 r?

— 0. (1.6)

Note that the non-linear term involved occurs due to the Christoffel symbols on the
d—sphere. Due to this singular non-linear term, we ask for the solutions of (1.6) to satisfy
the boundary condition (¢,0) = 0, for all times, so that we can ensure the regularity of
the solutions. However, we do not require v,(¢,0) = 0 due to a special cancellation in the
Taylor series expansion.

1.1.4 Blowup solutions

Now, we are interested in the future development of smooth initial data. In other words,
we prescribe initial data on the ¢ = 0 slice

(f.9) = (¥(0,-),14(0,-)) € H*(RY) x H*"(R%)

and consider the Cauchy problem

i (t, 1) — Dy (8, 7) — TLah, (8, 77) = — LU iy 15 [0, 00)
V(0,7) = f(r), ©(0,7) = g(r), on {t =0} x [0, +00)
w<t70> =0, on [ X {0}7

where I C R is an open interval with 0 € I. In the study of the Cauchy problem the
following questions arise: Does the solution exists? What is the domain in which it is
defined? Is the solution unique? Can it become singular in the future? To begin with,
we first turn our attention to the symmetries of the equation. Equation (1.6) is invariant
under dilations: if 1) = (¢, r) is a solution, so is

%@W%:¢(£§),A>O (1.7)
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Due to this symmetry, it is natural to expect self-similar solutions, that is solutions of the
form

vitr) =1 (3).
Other symmetries of the equation include time translation and reflection symmetry i.e., if
¥ = 1)(t,r) is a solution, so is
Yt r) =Yt +T,r), T>0
and
v (t,r) == (—t,7r),

respectively. Taking into account all the symmetries, we see that a generic self-similar
solution can be written as

vt =1 (7).

Indeed, it is well known that there exist smooth self-similar solutions. To be precise,
Shatah [74], Turok-Spergel [89] and Bizon-Biernat |7| showed that the function

W (t,r) = fo(TT_ t) = Zarctan <(T - t)r d— 2)

solves (1.6). However, 97 develops a singularity in finite time. Notice that ¢T is perfectly
smooth for all 0 < ¢t < T but it breaks down at ¢ = T in the sense that

9| 2 1
or r:0¢ (t,7) = Vd—2T —t

For small dimensions, d € {3,4,5,6}, there exists a sequence of self-similar solutions

T
{fn (T - t) }nENU{O}

of (1.6) and ¥ is the first member of this family, corresponding to n = 0, see [3,5]. For this
reason, we call 9T the “ground-state” solution and it constitutes an one-parameter family
of solutions for singularity formation. Furthermore, notice that the break down occurs at a
single spacetime event, that is (7),0). By finite speed of propagation and radial symmetry,
only information within the backward light-cone

Cr={(t,r):0<t<T, 0<r<T-—t}

— 400, ast— T .

can influence this point. Therefore, a natural first step is to restrict our interest to the
Cauchy problem

wtt(ta T.) - wﬂ“(ta T) - %wr(t//j) = _%SH}@:‘##7 n CYT
w(ov 7’) = f(T), wt(ovr) = g('f’), on {t = O} X [07 +OO) (18)
(t,0) = 0, on (0,T) x {0}.



1.1.5 Main result

One can use the “ground-state” as initial data to obtain a solution which blows up in finite
time as t — 7T'. Now, a natural question arises: How generic is this break down? How
special are these initial data? Does the singularity occurs only for ¢! or is it stable with
respect to perturbations? The main goal is to establish estimates that prove the latter,
namely the existence of an open set of initial data centered at 17 which lead to blowup via
T, In other words, we prove the asymptotic non-linear stability of the blowup described
by the “ground-state” solution. We formulate our main result in terms of the function ¥
as follows.

Theorem 1.1.1 (Chatzikaleas-Donninger-Glogié, [18]) Fiz Ty > 0 and d > 3 odd.
Then there exist constants M, 6,€ > 0 such that for any radial initial data [0] satisfying

)
—1
H" ( >H 2 (Bar2 g a2 ) T =

To +6 To+6
the following statements hold:
1. T = Td,[o] € [TO — 5,T0 + 5],

2. the solution v : Cr — R satisfies
(e =T )|
7 (Bt ) - T () |

(T — 1)k <O(T—t)

g d
HF(BEH)

(T — t)*+1-2 < §(T —t)f

H(BT)

_ d+3 _ dt1
forallk=0,1,2,..., 92 and £ =0,1,2..., 9.

Notice that the Sobolev spaces for the rescaled functions involved in Theorem 1.1.1 are
in d + 2 dimensions. To motivate this, we give an alternative formulation which is more
compact and convenient. To do so, we rescale the function ¢) and define

x(t,r) = %1/1(25, r).

Then, the Cauchy problem transforms into

Xtt(t 7") X?“r(t 7") _ d+1 ( T) _ _Tlsln(2rx(t,7;)3)—2rx(t,r)’ in CT
x(0,7) = @, Xt (0, 7“) = gsn)’ on {t =0} x [0,400).

(1.9)

Note that, since rx(t,7) = O(r) as r — 07, the nonlinearity is a smooth function and the
radial Laplacian is in d 4+ 2 dimensions. We also rescale the ground-state solution

T =Ly rzgarcan 4
X (t,?“) = r¢ (t? ) r t ((T—t)ﬂ)

15




and write

X[t] = (X<t7 ')a atX(ta ))

for convenience. Now, Theorem 1.1.1 can be formulated in terms of the variable y as
follows.

Theorem 1.1.2 (Alternative formulation of Theorem 1.1.1, [18]) Let d > 3 be an
odd integer and fix Ty > 0. There exist constants M, d, e > 0 such that for any radial initial
data

d+3 d+1
X[0] € H= (BT2;) x H = (BE2,)

satisfying
T )
HX[O] R O[O]H 42 5 B2, i (B‘%+i5 < M
the following statements hold:
1. T=Tyy € [To — 6,To + 0],
2. the solution x : Cr — R satisfies the estimates
(T—1)* HX XT(t")HHk(B‘;t?t) < (T —1)S,
(T — t)i+- Hatx — ot ')HHZ(Bth?t) < §(T —b)",

forallk=0,1,2,..., w and £ =0,1,2..

1.1.6 Outline of the proof

The proof of Theorem 1.1.1 is contained in Chapter 2. Essentially, it is based on suitable
perturbation theory around the rescaled ground-state solution x?. In other words, we are
interested in the evolution of the rescaled perturbation

¢(t> T) = X(t’ T) - XT(tv T)'

However, plugging this ansatz into (1.9) yields a second order partial differential equation
with respect to the variable ¢ with T'—dependent coefficients. For this reason, we switch
to similarity coordinates. This is a new coordinate system (¢,7) — u(t,r) =: (7, p) which
maps the backward light-cone

Cr={(t,r):0<t<T, 0<r<T-—t}
to the cylinder

C:={(r,p):0<7T <400, 0<p<1}.

16



Recall that the break down occurs at (77,0). In particular, this spacetime event is mapped
to 7 = oo. Now, we get a second order partial differential equation with respect to the
variable ¢ o u~! with T—independent coefficients and the blowup time T appears only in
the initial data. Then, we transform the second order partial differential equation for the
rescaled perturbation ¢ o ! into a first-order vector-valued evolution equation. We get

8,® (1) = Lb(7) + N(®(7)), for T € (0,+00)
®(0) =U(v,T),
where the linear operator consists of two parts
:E = :EQ + L/.

Here, io stands for the free wave operator, see (2.9), whereas L’ is a compact perturbation
containing the linear terms produced from the linearization around the rescaled blowup
solution x| see (3.18). The desired estimates in Theorem 1.1.2 follow from a fixed point
argument. However, to make the fixed point argument feasible, we must ensure the decay
of the solutions.

First, we focus on the free wave operator and study the evolution equation
8,®(7) = Lo®(7).

However, the energy norm is not the right candidate to ensure the decay of the solutions
for this problem. This fact is a manifestation of the energy-supercritical character of the
problem. To explain what this means, we write

¢[t] = (1/1(757 ')7 87&1/}@7 ))

and recall that equation (1.6) is invariant under dilations: the functions

() = 1 (;X) As0

are solutions provided that 1) = ¥ (¢, r) is a solution and the scaling property holds

o)

| (t, ')||H5(Rd) = A0

s (Re)
This property defines the space
. . d
HSC(Rd) % [_[Scflde)7 S, 1= 5

as the critical Sobolev space, that is the unique L?-based homogeneous Sobolev space
preserved by this scaling. On the other hand, for any Schwartz function v, multiplying
(1.6) by 79 14(¢,7) and integrating by parts yields that the energy

Bty =g [ (vi+vr@-p2 ) o

17



is conserved in time. Now, the energy defines the energy space
HY(RY) x L*(RY)

that is, the space of initial data for which the energy is known to be finite. Indeed, for any
¥[t] in the energy space, the first two terms involved in the energy are obviously bounded.
For the third term, we use the condition ¢ (¢,0) = 0 and Hardy’s inequality to infer

[ e | (ntst |x|>>)2dx

()

S [ Vaute o) P
Rd

which is finite for ¢ (t,-) € H'(R?). We call the equation (1.6) energy-supercritical if the
critical regularity s. = g is larger than the energy-critical regularity s, = 1. Obviously,
our initial restriction on d is equivalent to the the validity of this condition,

d>3 < s.> 5.

A consequence of the energy-supercriticality is the fact that the energy norm is too weak
to detect the self-similar blowup. To illustrate this phenomenon, we follow [34] and add
the term (d — 1)%2 to both sides of (1.6) to smooth out the non-linearity

d—1 Y d—1sin(2¢) —2¢
wtt_wrr_Twr_F(d_l)ﬁ__ 2 r2

and we are left with the free wave equation

d—1
wtt_¢rr_7¢r+(d—1)% = 0. (1.10)

Now, for any Schwartz function v, multiply (1.10) with 7?4, and integrate by parts. We
infer that the energy

Bl = [ (+u+a-0%) e ar

is conserved in time. As before, the energy space is
H'(RY) x L*(RY).

We define the local energy

Tt 2
Ewc(V]t]) == %/0 <¢f + 2+ (d — 1)%) rLdr
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and compute

Hw?(ta')”[lz(ﬁd ) ‘

f0< - !t) (T!;It)2

T 1R Dl
~ (T — t)% '

L2(Bd )

HIDT(ta’)HHl(lB ‘f0(| |t> .
- HY(BS._,)
a_
= (T =)= 1fo(l - Dllgraag
~ (T —1)5,
A L (A
EERT
L2(BS_,) )
a 1
= (T —t)z! mf0<||>
L2(BY)
~ (T —1)2!
Hence,
2 2 ¢T<t=') ’ B
B0~ I g 1970 S
BF_,) (BT _,) | ’ | L2(Bf_,)

Since d > 3, our self-similar blowup solution 17 does not blowup in this norm and, on the
contrary, it decays, as t — T—. On the other hand, the local energy of any solution to
the free wave maps equation (1.10) does not decay. For this fact also, we refer the reader
to [34] and we reproduce the result here for sake of completeness. Indeed, we fix a solution
1 to the free wave equation and use the fact that the energy is conserved to obtain

Buoc(01f]) < B S 1.
However, this result cannot be strengthened. As pointed out in [34],

Ve > 0,3 a solution ¢, to (1.10) : Elee(¢ [t]) ~ (T —t)*
and consequently

By > 0: B (¥[t]) < (T —t)7, V solutions 1 to (1.10).

In conclusion, the self-similar blowup solution 1 does not blowup in the energy norm, the
local energy of ¢! decays while the same energy of any solution to the free wave equation
only stays bounded.
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Another way to interpret the energy-supercritical character of the problem is to consider
the conserved energy of the original equation (1.6), namely

o sin?
Bl = [ (vt @-nT5 )
0
for any Schwartz function 1. As before, the energy space is
HY(R?Y) x L*(RY).
However, the minimum regularity required on the initial data

(f7 g) = (¢(Oa ')77/)15(07 )) € HS(Rd) X Hs_l(Rd)
to ensure local well-posedness is

>d
5> —.
2

For this result, we refer the reader to the works of Klainerman-Machedon [47], Klainerman-
Selberg [49] and Keel-Tao [44] for d > 3, d = 2, d = 1 respectively. Therefore, for d > 3,
the problem is ill-posed at the energy regularity s, = 1 and consequently the energy cannot
be used to control the evolution.

Consequently, we need a stronger topology to detect the blowup. In other words, we need
to find a norm such that

|U[t]|| — o0, ast — T

Furthermore, it would be advantageous if this norm follows form a suitable conserved
quantity. To motivate the choice of the suitable inner product, we refer the reader to
the works of Donninger-Schorkhuber [32] and Donninger-Schorkhuber-Aichelburg [34] and
reproduce the result here for sake of completeness. According to [32,34], the main idea is
to map the free part of the equivariant wave maps equation

d—1 v
wtt_wrr_Twr_'_(d_l)T_Q_o

to the one-dimensional wave equation
Y — P = 0. (1.11)
This can be done via the transformation
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see [34] for d = 3 and [32] for d > 3. Now, (1.11) has the conserved energy
B = [ (37 +02)dr
0
and the local energy
o Tt , o,
Bl i= [ (774 07) dr
0

blows up as t — T. For more details, see [34] for d = 3 and [32] for d > 3. Now,
this “higher energy norm” yields the desired decay for the solutions to the free wave maps
equation, see Proposition 1.1.3 below. Then, we turn our attention to the full linear
problem

8,®(7) = (Lo + L) ®(7),

prove that the operator L/ is in fact a compact perturbation, and that the solution to the
full linear evolution exists in the backward light-cone. We summarize these results in the
following proposition.

Proposition 1.1.3 (Proposition 2.4.1, [18]) The operator Ly : D(Lo) C H — H is
closable and its closure Lo : D(Lg) C H — H generates a strongly continuous one-
parameter semigroup (So(7))r>0 of bounded operators on H satisfying the growth estimate

1So(7)]] < Me™™ (1.12)

for all 7 > 0 and some constant M > 1. In addition, the operator L := Lo+ L' : D(L) C
H — H, D(L) = D(Ly), is the generator of a strongly continuous semigroup (S(7))r>0
onH and L' : H — H is compact.

The proof of this result relies on the Lumer-Phillips theorem (Theorem 3.15, page 83, [36])
and the bounded perturbation theorem (Theorem 1.3, page 158, [36]). Using the result of
Proposition 1.1.3, together with Hadamard’s equality (Theorem 1.10, p. 55, [36]), we can
now locate the spectrum of free linear operator. We obtain

o(Lp) C{A € C:ReX < -1} (1.13)

and see that it consists only of “stable” spectrum points, that is spectrum points with
strictly negative real part. On the other hand, the bounded perturbation theorem yields a
growth estimate also for the solution operator to the full linear evolution, namely

IS(7)|| < Me(—1+MIIL’II)T7
for all 7 > 0 and some constant M > 1, and Hadamard’s equality implies

o(Lo+ L) C{AeC:ReX < -1+ M|L/||}.
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Contrary to (1.13), such a result does not guarantee the decay of the solutions to the full
linear problem and hence it is not useful for our purposes.

For this reason, we focus on the spectrum of the generator L := L + L’ and note that the
full linear operator is highly nonself-adjoint. Consequently, the spectral analysis needed
here requires advanced tools from ordinary differential equations as well as asymptotic
resolvent estimates. First, we consider the point spectrum and prove the following result.

Proposition 1.1.4 (Proposition 2.4.2, [18]) We have
(L) C{A € C:ReX < 0} U{1}.

We note that the “unstable” eigenvalue A = 1 occurs due the time translation symmetry.
Our proof heavily relies on the works of Costin-Donninger-Xia [19] and Costin-Donninger-
Glogi¢ [20]. Then, we use the fact that L’ is compact and semigroup theory to pass from
the point spectrum to the whole spectrum.

Lemma 1.1.5 (Corollary 2.4.3, [18]) We have
oL)yC{AeC: Rex<0}U{l}.

To establish the desired decay for the solutions to the full linear operator we must ensure
that the distance

d(o(L),:R) :=inf{{]\—=(|: A€ o(L), ( €iR},

where ‘R stands for the imaginary axis, is uniformly bounded from below by a strictly
positive number. To this end, we continue our analysis on the spectrum of L and show
absence of spectral points wihtin the region

Qp:={A€C: Rer>—l+e |\ >R}

for € > 0 sufficiently small and R > 0 sufficiently large.
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Figure 1.1: The set (2 g.

Such a result follows immediately once we have a uniform bound for the resolvent operator
associated to L on ) g.

Proposition 1.1.6 (Proposition 2.4.4, [18]) Let € > 0. Then there exist constants
R.,C. > 0 such that the resolvent Ry, exists on Q¢ r. and satisfies

RV < Ce
for all X € Qg
Therefore, for sufficiently small € > 0 and sufficiently large R > 0, we have
o(L) CC\ Qp..

Now, recall Proposition 1.1.3. The full linear operator L is closed and consequently o (L)
is a closed set. Hence, there exists a sufficiently small € > 0 such that

d(o(L),iR) > d(o(L), {it : t € [-Re, R]}) > € > 0.
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Figure 1.2: Gap between o(L) and the imaginary axis

Finally, we obtain
oL)C{AeC: Rel < —€}uU({l},

for some fixed and sufficiently small ¢ > 0.

Due to the “unstable” eigenvalue A\ = 1, a subspace of the initial data will lead to a
solution to the full linear evolution generated by L which grows exponentially in time
whereas all the other initial data will lead to exponential decay. In the following, we study
the time evolution of the linearized equation and we prove this result rigorously. First, we
introduce a (non-orthogonal) Riesz projection P on the space of initial data H,

1
P-H—%H P:= —,/RL(u)d,u,
2mi ),

where 7 : [0, 27] — C is a fixed positively orientated circle around A = 1 with sufficiently
small radius so that v([0,27]) C p(L), see [43]. This projection splits the Hilbert space of
initial data into the unstable rg P and the stable rg (1 — P) space,

H=rgPdrg(l-P).

Recall that the full linear operator L is highly nonself-adjoint. Hence, we do not know
appriori that g, the eigenfunction associated to the isolated eigenvalue A = 1, is the only
unstable direction in H. This fact together with growth estimates on the stable and
unstable spaces is the result of the following proposition.
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Proposition 1.1.7 (Proposition 2.4.5, [18]) There ezists a projection
PeB(#H), P:H— (g),
which commutes with the semigroup (S(T))T>O. In addition, we have
S(7)Pf = ¢"Pf, (1.14)
and there exist constants C,e > 0 such that
11— P)S(f]| < Ce=7[|(1 - P)e]. (1.15)
for all f € H and 7 > 0.
Next, we focus on the non-linear evolution
9,®(7) = L&(r) + N(®(7))

and formulate this problem as an anstract integral equation via Duhamel’s principle
O(7) =S(1)u +/ S(1 — s)N(®(s))ds. (1.16)
0

For the purposes of the fixed point argument, we introduce the Banach space

X ={PeC([0,00);H): ||P]x:= suge””@(r)” < +oo}
T>

and the closed ball of radius ¢ in X,
X = {@ € C([0,00); H) : [|@(7)]| < 6™, V7 >0}.

Notice that € is the decay rate from Proposition 1.1.7. However, due to the one-dimensional
subspace (g) from which solutions to the linear problem grow exponentially, a fixed point
argument to (1.16) is hopeless. For this reason, we change the initial data

ur— u :=u-— C(d,u).

Here, u* is a carefully chosen element defined by subtracting the correction term

C(®,u) =P (u—i— /OOO eSN(QD(s))ds)

from the original data. Moreover, notice that this correction term delongs to the unstable
space rg P and therefore u* is a suitable candidate to stabilize the evolution. Now, we
consider the modified integral equation

O(7) = K(P,u)(7) (1.17)
where

K(®,u)(7) := S(m)u* + /OT S(1 — s)N(®(s))ds

and together with Lipschitz-type estimates for the non-linear term (which follow from
Moser’s inequality, see Lemma 2.4.6, [18]) we prove the following result.
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Theorem 1.1.8 (Theorem 2.4.7, [18]) There exist constants 6,C" > 0 such that for
every u € H with ||u|| < &, there exists a unique ®(u) € X; that satisfies

®(u) = K(®(u),u).

Finally, we turn our attention to the initial data we prescribe, ®(0) = U(v,T). First, we
prove that the original initial data are small provided that the perturbed rescaled initial

data
"|1V.ZL<F>:L(JC_¢TO(0:')>
1 I\G) ] \g = a0 (0, )

Lemma 1.1.9 (Lemma 2.4.8, [18]) Fiz Ty > 0. Let § > 0 be sufficiently small and v
with | - |~'v € HTF. Then, the map

are sufficiently small.

U(V7 ) : [TO - 67 TO + 6] — %7 T'— U<Va T)
is continuous. Furthermore, for all T € [Ty — 0, Ty + 6],
||| ’ |_1VHHTO+6 <= HU(V,T)H S.J J.

Second, given Ty > 0, sufficiently small 6 > 0 and any T' € [Ty — 0, Ty + d], we can apply
Theorem 1.1.8 to u = U(v,T). For all T € [Ty — §, T + 0], we get a unique solution to
the modified integral equation (1.17). Now, we look at the correction term and use an
additional fixed point argument to show that

ElTV S [T() - 5, T() + 5} : C((I)Tv, U(V,Tv>) = 0, (118)

see (3.61), and the discussion thereafter. In summary, given Ty > 0, sufficiently small § > 0
and sufficiently large M > 0, we have

6 emma 1.1.¢ 5
Il 17l < g === (U T < 5, VT € [Ty = 6T + 0]

Theorem 1.1.8
>

&y = O(U(v,T)) € Xs to (1.17), VT € [Ty — 6, Ty + 0]
U8 31, = B(U(v,T3)) € &; to (1.16).

The desired estimates for x(t,) — x?(¢,-) and 9;x(¢,-) — d;x" (¢, -) follow immediately from

the fact that ®(U(v,Ty)) € Xs. This concludes the proof.

1.2 Cubic wave equation

In the second part, we focus on the semi-linear wave equation with a focusing nonlinearity
in higher space dimensions without symmetry assumptions on the data. We consider the
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Minkowski spacetime (R'*¢ n) endowed with the standard Minkowski metric
n(t,z) : = —dt* + |dz|?
d
= —dt* + z:(d:ci)2

i=1
with respect to the Cartesian coordinates (20 = ¢, z!,..., 2%) € R and study the wave
equation

O,u(t, ) = — Ju(t, )" u(t, z), (1.19)

with (¢,2) € I x R%. Here, I is an open interval in R, p > 1 and O, stands for the
Laplace-Beltrami operator with respect to the Minkowski metric n on R,

0,:=—0; + A,
d
=1

Equation (1.19) is invariant under conformal transformations [38] if and only if it is of the
form

Oyult, 2) = — ut, 2)| 77 u(t, ),

which defines the conformal exponent

see [38], and distinguishes the following three cases: we call equation (1.19) subconformal,
conformal, or superconformal if p < p., p = p., or p > p,, respectively. Furthermore,
equation (1.19) is invariant under the following scaling: if u = wu(t,z) is a solution, so is

2 t
ux(t,z) ==\ 7 Tu <X’ ;) , A>0 (1.20)

()

Hsc (Rd) % Hsc—l (Rd)

and the scaling property holds

gy = A7 |
T o)

This property defines the critical Sobolev space

27



where

d 2
Se i == — ——,
2 p-—1
that is the unique L2-based homogeneous Sobolev space preserved by this scaling. As
before, we write

ult] = (u(t, ), Gu(t, -))

for convenience. In addition, for any Schwartz function u, multipling (1.19) by d,u and
integrating by parts yields that the energy

E(ult]) == E (|(9tu(t,x)|2 + |qu(t,x)|2) dr — b lu(t,z) [P+ d. (1.21)
2 Jga p+1 Jpa

is conserved in time. The energy defines the energy space
HY(RY) x L*(RY) (1.22)

that is the space of initial data for which the energy is finite. We call equation (1.19)
energy-subcritical, critical, or supercritical if the critical regularity is smaller, equal or
larger than the energy regularity, namely if s. < 1, s. = 1, or s, > 1, respectively. This is
equivalent to p < pe, p = pe, or p > p., respectively, where

d+2
Pe = ——

d—2
is the unique exponent for which the energy (1.21) is invariant under the scaling (1.20). In
the following, we are interested in the superconformal, energy supercritical wave equation,
ie.,

(p,d) € o
where
o = {(p,d)e [1,00)><N:p>pc::%, D> Pe ::%}.
For simplicity, we set
p=3
and study the equation
O,u(t,z) = —u’(t, x), (1.23)
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for (t,x) € I x R% Note that (3,d) € « if and only if

[755)

p AN\
d+3 d+2
Bean M az
\ {(3,d):d e N} N ot
p=3 & - - - - - - - - - — - - - - - - -
=1 &
. d
>
d=1 d=2 d=5

Figure 1.3: The set {(3,d) : d e N} N.«.

1.2.1 Blowup solutions

Equation (1.23) admits smooth and compactly supported solutions which blowup in finite
time. To construct such blowup solutions, we look for z—independent solutions and plug
the ansatz

u(t, x) = v(t)
into (1.23). We obtain the ordinary differential equation

d? 3
@U(t) =v°(t)

which can be solved explicitly and generates the solution

ui(t,x) = é

Obviously, u; breaks down at t = 1. Now, we use the symmetries of the equation to obtain
a much larger family of blowup solutions. Observe that (1.23) enjoys time translation
symmetry as well as time reflection symmetry, that is, if u = u(t¢, x) is a solution, so are

u'(t,x) = u(t + 7,x),
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for all 7 > 0, and
u (t,x) == u(—t,x),
respectively. Hence, for 7' € R, the function

up(t, ) = TL—Zt (1.24)

defines a one-parameter family of solutions which blowup at (T, ), for all x5 € R%. When
studying the evolution in a backward light-cone, we can assume, that the tip of the cone
is (T,0) due to the space translation symmetry i.e., if u = u(t,z) is a solution, so is

u?(t, x) = u(t,x +y),
for any fixed y € RY. In addition, (1.23) is invariant under the Lorentz transformations
Ap(a) : R — R

for any o € R?. These transformations are similar to rotations in the d—dimensional
Euclidean space but in the context of a (1 + d)—dimensional Lorentzian spacetime. In
particular, the spacetime event (77,0) is a fixed point and light-cones with vertex (7',0),

Cirpy = {(t,x) c[0,7) xR : |z| < T—t},

remain invariant. For any fixed “angle” of rotation a = (al,...,a?) € R? and for all

j=1,2,...,d, the Lorentz transformation in the j—direction is given by

(o) = () =)

where

and

(5 —'T) . (cosh(aj) sinh(ozj)) . (t — T)
v/ ) \sinh(a’) cosh(a?) )
Now, the Lorentz transformation is defined by
Ar() == Af(a®) o A (@b o 0 AL(al).
Taking into account all the previous symmetries, we infer that, if u = u(t, z) is a solution,

So 18

X

wralt, ) = uo An(a) <t) (1.25)
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for T € R and o = (al, -+ ,a?) € R% In conclusion, we combine (1.24) with (1.2
get a (1 + d)—parameter family of explicit blowup solutions

V2

uro(t,r) =

to (1.23), where

Same useful observations are in order. First, it holds ury = ur as well as Ay(«a)
and A;(a) = O(a) for all sufficiently small o € R?. Second, notice that

 Ap(a)(T —t) — Aj(a)zd

1
uT,a(tax) = T_twa (T

where

which implies the blowup of the solutions uz, as ¢ — 7" in the sense that

(7=3)

~ (T —t)"" [¥all v me)

[NJisH

_d _
(T = )2 [lura(t, ')|‘Hk(IB§dT7t) = (T —t)*

= (T - t)ila

5) and

(1.26)

= 0(1)

for all k € NU {0} and « # 0, see Remark 3.3.4. As before, the energy norm (1.22) is too
weak to detect the blowup of ur,. Indeed, the energy norm corresponds to k£ = 1 and the

energy-super-criticality to d > 5. We have

2 d—4
luma(t, M ms )= (T ="

1.2.2 Main result

By finite speed of propagation, one can use the explicit blowup solutions ur , as initial data
to construct a solution to the cubic wave equation which develops a singularity in finite
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time from smooth and compactly supported initial data. Our main result is concentrated
around the stability of the blowup of ur,. We consider the Cauchy problem

Ou(t, z) + ud(t, z) = 0,
{um ~(f.9) (20
where
(fa g) = uTo,ao[O] + <f~7 g)
and

To >0, a€e€RY  uft] = (u(t,-),ul(t,-)).

More precisely, we prove the existence of an open, sufficiently small neighbourhood of ur
from which all initial data lead to the same type of blowup described by the ODE blowup
profile.

Theorem 1.2.1 (Chatzikaleas-Donninger, [17]) Fiz d € {5,7,9,11,13}, Ty > 0 and
ag € R, There exist constants M,5 > 0 such that the following holds. Suppose that the
imnitial data

d+1 a-1
(f,9) € H= (Bf,,5) x H = (BF, )
satisfy

J
< —.

[ 7.9 = w0 l0] =

d+1 d—1
H 2 B, IxH 2z (B

d ) -
To+6 To+6

Then, T = Ty € [To — 6, To + 0] and there exists an a € Bd,,s(co) such that the solution
u: Cr — R to (1.27) satisfies the estimates

NI

<o(T —1)2,

— )kt 3 — .
(T = )5 u(t, ) = uralt, )‘HW“)_

NI

(T — )2+ < §(T —t)2,

HYB )

dult,”) — Bpura(t, -)‘

forallk=0,1,--- , %L and ¢ =0,1,--- , 4L,

2 2

1.2.3 Outline of the proof

The proof of Theorem 1.2.1 is contained in Chapter 3. In this section, we will present
an outline of the proof and discuss the main ideas involved. Without loss of generality
we assume that Ty = 1 and ag = 0. As before, we are interested in the evolution of the
perturbation

u(t, ) — ura(t,-).
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First, we switch to similarity coordinates, namely a new coordinate system (¢,z)
w(t,x) =: (7,€) which maps the backward light-cone

Ciro = {(t,x) c[0,T)xR: 2 € ]BédT,t}
to the cylinder
C:={(r,):0<7 <400, £ €B}.

Notice in particular that 7" is mapped to co. Second, we obtain a second order partial differ-
ential equation for the variable uwo ! and rescale the function to cancel the 7—dependent
factors. Now, the blowup time 7" appears only in the initial data. Then, we transform
the second order partial differential equation for the rescaled variable into a first-order
vector-valued evolution equation. We infer

0,®(7) = L&(7) + N(®(1)), 7 € (0, +00).

Following the same transformations to the blowup solutions (1.26), we obtain the 7-
independent blowup solution ¥, = ¥, (£), see (3.10). As before, the desired estimates
in Theorem 1.2.1 follow from a fixed point argument and hence we must first ensure the
decay of the solutions.

First, we start with the linear free evolution generated by i namely
0,®(7) =L®(7), 7€ (0,400)
and would like to construct a suitable inner product
) d
(1) (CH@®) x = B)) — R (u]v) =D (ulv),, (1.28)
i=1

which yields the desired decay of the solutions to the free linear evolution. However, for a
generic d > 5, the inner products

d+1 — d—1 — \ 2 .
(], : (c?(xaad) X (JT(IB%d)) R, i€{L,2,...,d}
are defined via inconvenient recurrence relations causing technical difficulties and make
the proof rather involved. For this reason, we focus on small odd spatial dimensions,

d € {5,7,9,11,13}, and define the inner products explicitly. For example, for d = 5, we
define

(‘) : <C’3(I@) X C’%]Bﬁ))Q — R, (u|v) = 25: (u‘v)i

i=1
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where

(ulv), == [ 00,000, T00 0@t + | 00ua(e)TTeaEIe

+ | 0;0;u1(w)00v; (w)do(w),
S4
(uv), = [ 0:0"0u1(£)0'070;01(€)dE + / 03 (£)0" 9 v5(E)dE
B5 B5

+ y Djus(w) P va(w)do (w),

(u‘v)3 =5 (u|v)1 + (u‘v)2 + /84 ug(w)vg(w)do (w),
(uly), + (afv), + [ dniFontdnto),

(), = ([ ¢twunan) (

for allu,v e C? (]Bﬁ) x C? (@), where

—~
=
<
~—

N
I

S4

mdaw) |

S4

((w,w(w)) : = Dswy(w) + f)g,wg(w),
Dsw; (w) : = w'w! 9;0;w; (w) + 5w’ O (w) + 3wy (w),
(

Dsw; (w) : = w'w? 9;0;w; (w) + 5w dw (w) + 3wy (w).

For more details, see section 3.5.1 for d = 5 and the discussion at the end of section 3.10 for
d € {7,9,11,13}. To establish the decay of the solutions we use Lumer-Phillips theorem
(see Theorem 3.15, page 83, [36]). To proceed, we fix d = 5 and prove the following result.

Proposition 1.2.2 (Proposition 3.5.1, [17]) The free operator L : D(i) CH—H
1s densely defined, closable and its closure L : 'D(L) C H —> H generates a strongly
continuous one-parameter semigroup of bounded operators S : [0,00) — B(H) which
satisfies the decay estimate

IS(m) || < Me™"
for all 7 > 0 and for some constant M > 1.

The proof of this proposition is divided into three parts. In the first part, we consider the
inner products (‘)Z for i € {1,2,3,4} and we use an elementary inequality to show the
following estimate.

Lemma 1.2.3 (Lemma 3.5.4, [17]) For allu € D(L) and i € {1,2,3,4}, we have
~ 3 9
Re(Lu’u)i < —§Hu|\Z
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Second, we consider the inner product (|)5 and note that ( is a carefully chosen function
so that the sum (1.28) induces a norm, see Lemma 3.5.3, and the following decay property
holds.

Lemma 1.2.4 (Lemma 3.5.5, [17]) For allu € D(L), we have
Re(Lu‘u)5 = —|jul|2.
The latter is based on the integral identity
/ ¢ (w, Eu(w>) do(w) = — [ ¢ (w,u(w))do(w).
54 st

The analogous result in d = 3 has been proved by Donninger and Schérkhuber [31] but
their argument works only in three space dimensions.

Third, we prove the last ingredient of the Lumer-Phillips theorem, namely the density
of rg(% — L) in H, see Lemma 3.5.7 and Lemma 3.5.8. These results constitute the proof
of Proposition 1.2.2. As a consequence, we locate the spectrum L, i.e.,

o(L) C{AeC:ReX < -1},
see (3.34) and Hadamard’s equality, [36], p. 55, Theorem 1.10.

Next, we consider the Lorentz symmetry and use a modulation ansatz. We vary the
vector @ € R® by allowing it to depend on time, set a(0) = 0 and assume that the limit
Qoo = lim, o a(7) exists. Later we chose our Banach spaces so that these assumptions
are verified, see (3.50) and (3.51). Then, we find an evolution equation for the perturbation

D(7) = V(1) — Wurr).

Here, W,y are variations in time of ¥, the Lorentz transformations of the static blowup
solution solution ¥,. We obtain the modulation equation

0,®(7) — (L+L,_)®(r) = Lo ®(7) + No(r) (®(7)) — 0: T o),

where f,a(T) =L, —Li., Li,, is the linearized part of the nonlinearity N, see (3.29), and
No(-) stands for the remaining full nonlinearity, see (3.30). Our intention is to formulate
the modulation equation as an abstract integral equation via Duhamel’s principle and
apply a fixed point argument. To do so, we first prove that the linear operator generates

a solution for sufficiently small o € R5.

Lemma 1.2.5 (Lemma 3.6.1, [17]) Let o € R® be sufficiently small. Then, the operator
L!, defined in (3.29) is compact. In particular, the operator

L,:=L+L, (1.29)

generates a strongly continuous one parameter semigroup of bounded operators S,, : [0,00) —

B(H).

35



To establish the decay for the solutions to the full linear operator (1.29) we turn our at-
tention to the spectrum of L, for sufficiently small o € R,

First, we consider the case where o = 0 and prove the following result.

Proposition 1.2.6 (Lemma 3.7.2, [17]) We have
o(Lo) C{A e C:Rex < -1} U{0,1}.

To prove this result, it suffices to consider the point spectrum of L, see Lemma 3.7.1. We
write the spectral equation, switch to spherical coordinates, expand in spherical harmonics
and find a decoupled system of ODEs, see (3.35), which has four singular points. First, we
reduce the singular points to three, transform the spectral equation into a hypergeomet-
ric differential equation and finally rely on the connection formula for the coefficients [68]
which is well-known for this class. We note that the eigenvalue A = 0 occurs due to Lorentz
symmetry whereas the eigenvalue A = 1 due to time translation symmetry.

Second, we pass to the spectrum of L, for a # 0 sufficiently small and prove the fol-
lowing result.

Proposition 1.2.7 (Proposition 3.7.5, [17]) Let a € R® be sufficiently small. Then,
3
o(Ly) C {/\ € C:Rex < —1} u{0,1}.

For the proof of this result, we define the total projection

1
o /8 o ReO

and rely on Lemma 3.7.4 (dimrg P¥* = 6), Lemma 3.7.6 (continuous dependence of L/,
with respect to «), Lemma 3.7.7 (o(L,) C o(Lg) for sufficiently small a # 0), Lemma
3.7.8 (absence of spectrum for L, away from the origin) which imply that the ranges
of Pl are all isomorphic to one another for sufficiently small o and in addition the
rank P .= dimrg P! are constant in «, see Lemma 4.10 page 34, [43]. Hence, we
infer rank P! .= dim rg P! = dim rg P{"'* = 6.

total ,__
plotal .

Third, we study the time evolution for the full linearized problem. As before, we de-
fine (non-orthogonal) projections P,, Qa.1,Q0.2,Qa,3:Qa,4,Qas which split the space of
initial data into the stable and unstable spaces and obtain useful growth estimates on the
corresponding subspaces.

Proposition 1.2.8 (Proposition 3.7.10, [17]) Let a € R® be sufficiently small. Then,
the projections P, and Q,; for j € {1,2,3,4,5} have rank one and commute with the
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semigroup. In addition,

So(T)P, = €"Py,,
Sa(T)QOéJ = Qa,j7

_ P
[Sa(T)Pall S e 37[|Pall,

where f’a =1—P, — Q.. Furthermore,

rg(Pa) = (8a);
I'g(QaJ‘) = <ha,j>7 j - {]., 27 3, 4, 5},

where g, and h, ; are eigenfunctions of L, with eigenvalues 1 and 0, respectively.

We note that the unstable subspaces occur due to the symmetries of the original equation,
i.e. the Lorentz and time-translation symmetry.

Next, we choose our Banach spaces in such a way so that the limit a,., exists and in
addition

|| S 9,

see section 3.9.1 and (3.51). We choose ¢ sufficiently small and use Lemma 1.2.5 to write
the modulation equation as an abstract integral equation

®(7) =Sa.(T)u+ /0 T Sow (T —0) (Ila<a)<1>(a) + Ny (®(0)) — 8U\Ila(o))da. (1.30)

The desired estimates in Theorem 1.2.1 follow from a fixed point argument to (1.30).
However, the solution operator S, generated by the linearized operator L + L[, has two
unstable subspaces rg P, and rg Q.. meaning that the future development of initial data
from rg P, and rg Q.. do not decay but rather stay constant and grow exponentially in
time, respectively, see Proposition 1.2.8. These instabilities render the solvability of (1.30)
hopeless from the very beginning. To make the fixed point argument feasible, we proceed
as follows. In the case of the Lorentz symmetry, we use a fixed point argument and choose
the unknown parameter o« = «(7) to prevent the development of the instability, see section
3.9.2 and Proposition 3.9.4. In the case of the time translation symmetry, we stabilize the
evolution by changing the initial data. This can be done by subtracting the correction term
(3.57) from the original data. Then, we obtain a modified integral equation (3.55) and use
another fixed point argument to guarantee the existence of the solution, see Proposition
3.9.5. Next, we rely on an additional fixed point argument to ensure that the correction
term vanishes, see Lemma 3.9.8 provided that the perturbed initial data are sufficiently
small. For more details, see section 3.9.3. All the fixed point arguments are based on a
series of Lipschitz-type estimates, Lemma 3.8.1, Lemma 3.8.2, Lemma 3.9.2 and Lemma
3.9.3. In summary, we obtain the following result.
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Theorem 1.2.9 (Theorem 3.10.1, [17]) Let § > 0 be sufficiently small, ¢ sufficiently

large and pick an arbitrary v € Hg(B‘;’+5/C) X HQ(]B%“;’M/C) such that HVHHS(Bi(s/C)XHQ(Bﬁa/C) <
s

5. Then, there exists T =T, € [1 — %, 1+ g] such that the full, non-corrected equation
(3.49) with initial data w = U(Ty, V), that is

®(7) = S (1)U(Ty,v) + /0 S (r—0) (ﬁa(a@(a) + Ny (B(0) — aaxpa(a))da,

has a solution (P, a) = (P, ar,) € Xs X X;.

Finally, we prove our main result, see section 3.10. The desired estimates follow from the
fact that the solution (®,a) = (®7,, ar,) belongs in X5 x X.
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Chapter 2

On blowup of co-rotational wave maps
in odd space dimensions

This chapter contains the result of the paper [18] and is a joint work of the author with
Donninger and Glogi¢.

2.1 Abstract

We consider co-rotational wave maps from the (1 + d)-dimensional Minkowski space into
the d-sphere for d > 3 odd. This is an energy-supercritical model which is known to exhibit
finite-time blowup via self-similar solutions. Based on a method developed by the second
author and Schorkhuber, we prove the asymptotic nonlinear stability of the “ground-state”
self-similar solution.

2.2 Introduction

Let (M, g) be a Lorentzian spacetime and (N, h) a Riemannian manifold. In this paper,
we study wave maps u : (M, g) — (N, h), that is, critical points of the geometric action
functional

1
Sl =5 [ gl du
M
Here,

dyu(@)? = 1dgu(@) By pror, . v = tr (u* (1))

is the trace (with respect to g) of the pullback metric on (M, g) via the map u. The integral
is understood with respect to the standard measure dp, on the domain manifold. In local
coordinates (x,) on (M, g), this expression reads

S,[u] = / (8,1 (0,6 Yhap 0 u dpt
M
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where the Einstein summation convention is used. The Euler-Lagrange equations associ-
ated to this functional are

Ogu® + g" (g, o u)(9,u”) (Oyu) = 0 (2.1)

and they constitute a system of semi-linear wave equations. Here, O, is the Laplace-
Beltrami operator on (M, g)

1 v
Oy = mau(g“ 1910,), gl == 1/|det(g,w)]
and I'j, are the Christoffel symbols associated to the metric h on the target manifold.
Eq. (2.1) is called the wave maps equation (known in the physics literature as non-linear
o model) and is the analog of harmonic maps between Riemannian manifolds in the case

where the domain is a Lorentzian manifold instead. For more details, we refer the reader
to [71] and [81].

2.2.1 Intuition

Recently, the wave maps equation has attracted a lot of interest. On the one hand, the
wave maps equation is a rich source for understanding nonlinear geometric equations since
it is a nonlinear generalization of the standard wave equation on Minkowski space. In
addition, the wave maps equation has a pure geometric interpretation: it generalizes the
notion of geodesic curves. Notice that, if M = (a, 3) is an open interval and (N, h) any
curved Riemannian manifold, the wave maps equation is the geodesic equation

d*u® dub | du¢

() + (T, 0 u(t) - ()2 (1) = 0.

On the other hand, the Cauchy problem for the wave maps system provides an attractive
toy-model for more complicated relativistic field equations. Specifically, wave maps con-
tain many features of the more complex Einstein equations but are simple enough to be
accessible for rigorous mathematical analysis. Further details on the correlation between
the wave maps system and the Einstein equations can be found in [46,65, 66, 90].

Being a time evolution equation, the fundamental problem is the Cauchy problem: given
specified smooth initial data, does there exist a unique smooth solution to the wave maps
equation with this initial data? Furthermore, does the solution exist for all times? On the
other hand, if the solution only exists up to some finite time 7', how does the solution blow
up as t approaches T'?7 The investigation of questions of global existence and formation
of singularities for the wave maps equation can give insight into the analogous, but much
more difficult, problems in general relativity.

2.2.2 Equivariant wave maps

Now, we turn our attention to the Cauchy problem in the case where the domain is the
Minkowski spacetime (R'9, ¢g) and the target manifold is the sphere (S¢, k) for d > 3.
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Hence, we pick g =diag(—1,1,...,1) and h to be the standard metric on the sphere.
Furthermore, we choose standard spherical coordinates on Minkowski space and hyper-
spherical coordinates on the sphere. The respective metrics are given by

g = —dt* +dr* + r’dw?®, h=d¥?* 4 sin®(V)dQ?,

where dw? and dQ? are the standard metrics on S~!. Moreover, a map u : (R'*4 g) —
(S, h) can be written as

u(t,rw) = (\If(t,r,w),Q(t,r,w)).

We restrict our attention to the special subclass known as 1-equivariant or co-rotational,
that is

U(t,r,w) =9t r), Qtrw)=w.

Under this ansatz, the wave maps system for functions u : (R'*% g) — (S, h) reduces to
the single semi-linear wave equation

Vit — Yrr — ?m LA 1sin@0) (2.2)

2 r?

By finite speed of propagation and radial symmetry it is natural to study this equation in
backward light-cones with vertex (T',0), that is

Cr={(t,r):0<t<T, 0<r<T—t}

where T' > 0. Consequently, we consider the Cauchy problem

ra —1 sin(2 T :
{wtt(tﬂn) - Ar,(g (t’ ’I") = _dTls ( ;Z;(t ))’ n CT (23)

»(0,r) = f(r), ¥(0,r)=g(r), on {t =0} x [0,4+00)
where A;‘fj stands for the radial Laplacian

d—1
A;i? (ta T‘) = ¢rr(t>7") + Tﬁbr(tﬂ“).

To ensure regularity of solutions, equations (2.3) must be supplemented by the boundary
condition

P(t,0) =0, forallte (0,7). (2.4)

41



2.2.3 Self-similar solutions

A basic question for the Cauchy problem (2.3) is whether solutions starting from smooth
initial data

(fa g) = (1/1(0> ')a at¢(07 ))

can become singular in the future. Note that Eq. (2.2) has the conserved energy

puli= [ (s +vie@- 2

However, the energy cannot be used to control the evolution since Eq. (2.3) is not well-posed
at energy regularity, cf. [77]. Indeed, Eq. (2.2) is invariant under dilations

ba(t,r) =1 (; g) A0 (2.5)

and the critical Sobolev space for the pair (¢ (t,-), 0)(t,-)) is H% x H571. Consequently,
Eq. (2.2) is energy-supercritical for d > 3.

In fact, due to the scaling (2.5) and the supercritical character it is natural to expect self-
similar solutions and indeed, it is well known that there exist smooth initial data which
lead to solutions that blowup in finite time in a self-similar fashion. Specifically, Eq. (2.2)
admits the self-similar solution

r r
= 2arctan , T >0.
T—t) ( d—2(T—t))

This example is due to Shatah [74], Turok-Spergel [89] for d = 3, and Bizon-Biernat [7| for
d > 4 and provides an explicit example for singularity formation from smooth initial data.
Indeed, the self-similar solution 7 is perfectly smooth for all 0 < ¢ < T but breaks down
at t =T in the sense that

e

1
0T (t, 7)) pmo T — 400, ast—T".
We note in passing that for d € {3,4,5,6}, ¥T is just one member of a countable family
of self-similar solutions, see [3,5].

2.2.4 The main result

By finite speed of propagation one can use 1 to construct smooth, compactly supported
initial data which lead to a solution that blows up as ¢ — 7. Our main theorem is
concerned with the asymptotic nonlinear stability of ¥?. In other words, we prove the
existence of an open set of radial data which lead to blowup via ¥”. In this sense, the
blowup described by 7 is stable. To state our main result, we will need the notion of the
blowup time at the origin. From now on we use the abbreviation 1[t] = (¢¥(¢,-), 0u(t,-)).
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Definition 2.2.1 Given initial data (1o, 11), we define

3 solution ¥:C7—R to (2.3) in the sense of
Tlpo,) = sup {T > 0‘ Definition 3.9.1 with initial data w[o]:(¢0,¢1)|BdT} U {0}.

In the case where Ty, ) < 00, we call T' = Ty, ) the blowup time at the origin.

We remark that the effective spatial dimension for the problem (2.3) is d 4+ 2. To see this,
recall that, by regularity, we get the boundary condition (2.4). Therefore, it is natural to
switch to the variable ¥ (¢, 7) := r~*4(t,7). Then (2.3) transforms into

T

$(0,7) =12 gy (0,r) = 9, on {t = 0} x [0, +00)

r

{%(t’” A (1, r) = — At ey el iy 0y

Note that the nonlinearity is now generated by a smooth function and the radial Laplacian
is in d + 2 dimensions.

Theorem 2.2.2 Fixz Ty > 0 and d > 3 odd. Then there exist constants M,d,e > 0 such
that for any radial initial data 1[0] satisfying

0
-1
H" < >H 2 (I g (Bd+2)<M

To +6 To+6
the following statements hold:
1. T = T¢[0] € [TO —9,Ty —|—(5],

2. the solution ¢ : Cp — R satisfies
- (v ) =o' ))|
17 (Bt ) — 07 (1) |

(T —t)* §(T — t)°

HE(BG) ™

o ST =)
HY(BEE)

(T — )12

forallk=0,1,2,..., %3 agnd ¢ =0,1,2..., 92

2 2 -

Remark 2.2.3 Note that the normalizing factors on the left-hand sides appear naturally
and reflect the behavior of the self-similar solution 1T in the respective homogeneous Sobolev
norms, i.e.,

I P47 Mgy = 750 (75 = @ 810 () D

HF(BG?)
/ | ’ ‘
5(725)

d_pg_
= (T = )27 (- D e,
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2.2.5 Related results

The question of singularity formation for the wave maps equation attracted a lot of interest
in the recent past, in particular in the energy-critical case d = 2. Bizon-Chmaj-Tabor
[10] were the first to provide numerical evidence for the existence of blowup for critical
wave maps with S? target. Rigorous constructions of blowup solutions for this model are
due to Krieger-Schlag-Tataru [50], Rodnianski-Sterbenz [72], and Raphaél-Rodnianski [69].
Struwe [82] showed that blowup for equivariant critical wave maps takes place via shrinking
of a harmonic map. This result was considerably generalized to the nonequivariant setting
by Sterbenz-Tataru [79,80], see also Krieger-Schlag [52] for a different approach to the
large-data problem and e.g. [21-23, 39,53, 73| for more recent results on blowup and large-
data global existence.

The energy-supercritical regime d > 3 is less understood. The small-data theory at min-
imal regularity is due to Shatah-Tahvildar-Zadeh [77] in the equivariant setting whereas
Tataru [86, 87] and Tao [83,84] treat the general case, see also [48,51,67,76,88]. Self-
similar blowup solutions were found by Shatah [74|, Turok-Spergel [89], Cazenave-Shatah-
Tahvildar-Zadeh [16], and Bizon-Biernat [7]. The stability of self-similar blowup was in-
vestigated numerically in [3,7,9] and proved rigorously in [19,20, 26, 35] in the case d = 3.
Furthermore, Dodson-Lawrie [24] proved that solutions with bounded critical norm scatter.
Finally, concerning the method, we remark that our proof relies on the techniques developed
in the series of papers [26,27,29-32,35]. However, we would like to emphasize that the
present paper is not just a straightforward continuation of these works. In fact, new
interesting issues arise, e.g. in the spectral theory part, see Proposition 2.4.5 below.

2.3 Radial wave equation in similarity coordinates

To start our analysis, we rewrite the initial value problem (2.3) as an abstract Cauchy
problem in a Hilbert space. First, we rescale the variable v = (¢,r) and switch to
similarity coordinates. Then, we linearize around the rescaled blowup solution and derive
the evolution problem satisfied by the perturbation.

2.3.1 Rescaled variables
We define

) = L=t vt = C= 0.

r r
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Using the fact that 1 is a solution to (2.3), we get

atXl(tar) - = T _ tXl(tﬂ“) + T _ tX2(t7T)=

20T — t
Yaltr) + (T — AR (1, ) + 2L

aer(ta T)

T—t d—1 sin (725X (t,7)
Xl(tar)_T(T_t)2 (T t )

atXQ(t7/r) - T _ t

+(d—-1)

r2 r3

We introduce similarity coordinates

T

w:Cr—C, (t,r)— u(t,r)=(1,p) = <10g (ﬁ)’ Tr—t>’

which map the backward light-cone Cr to the cylinder C := (0, +00) x [0,1]. By the chain
rule, the derivatives transform according to

627' 627

e’ e’ ra ra
0= T O+ p0), O = 00 8 = 50 AT = AT

Finally, setting
@Z)j(Tv P) = Xj(t(7_7 p)? T(Ta P)) = Xj(T(l - e_T)a Tpe_T)’

for 7 = 1,2, we obtain the system

o-i(T,p)\ —Y1(T, p) + Va(T, p) — pOihi(T, p)
(3r¢2(77 p>> = (Amml(n 0) — pOba(r,p) — 20, p>) (2:6)
e ) )
2P3 Sin@ﬂ% (7—7 p)) o 2p¢1 (7—7 P) 7

for (1, p) € C. Note that the linear part is the free operator of the (d+2)—dimensional wave
equation in similarity coordinates and the nonlinearity is perfectly smooth. Furthermore,
the initial data transform according to

(o) =5 (Foim) = rtntio ) + 5 (i)

for all p € [0,1]. Here, Ty > 0 is a fixed parameter and

T »p
T0(0,Tp) = 2arctan (— ) ) =p(t,r) =
$7°(0,Tp) Ti=3) P=rEn)

F = f - wTO(Ov ')7 G:= g — aowTO(O? )

T—t

We emphasize that the only trace of the parameter T is in the initial data.
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2.3.2 Perturbations of the rescaled blowup solution

We linearize around the rescaled blowup solution and use the initial value problem for
(¢1,19)T to obtain an initial value problem for the perturbation as an abstract Cauchy
problem in a Hilbert space. For notational convenience we set

wow - (2]

The blowup solution is given by
Fdien) - (3440
T—t T - / 3
— t,r

1y (L) (tr) == (r:p) Jo(p)
i.e., it is static. We linearize around W™ by inserting the ansatz ¥ = ¥ + @ into (2.6).
For brevity we write

w=(r)(o) =

n(x) :=sin(2z) — 2z, z€R

and use Taylor’s theorem to expand the nonlinearity around % fo(p). We get

sin (2p91) — 2pU1 = 1 (p¥1) = 11 (fo + po1) = 1 (fo) + 1" (fo) pdr + N(pgr),
where, by definition,

N(pp1) := n(fo+ pe1) — n(fo) — 0’ (fo) por-

We plug the ansatz and the Taylor expansion into Eq. (2.6) which yields the abstract
evolution equation

0,® (1) = L(®(r (1)), for 7€ (0,+00)
{@(O)ZU( )) + N(®(7)) (2.7)

for the perturbation

o = (5ien) = (i)

where
L:=L,+L, (2.8)
L) = (ol i~ i~ e
L'u(p) := (_%n’(éj(p))ul(p)’) ; (2.10)
N0) = (s Nl ) 2.11)




for u = (uqy,uy) and

2

, _ o B P
1 (fo(p)) = 2cos(2fo(p)) — 2 = —16(d 2)—(p2 a2
Furthermore, the initial data are given by
_ _ %fO(TZOP) B %fo(/))
2(0)(5) = Uv,T)(p) = ( £l ) () evene e

where

o= (455) = 2)

p

2.3.3 Strong light-cone solutions
To proceed, we need to define what it means to be a solution to the evolution problem

(2.7). We introduce the Hilbert space

d+3 d+1
Ho=H 2 (B2 x H 2 (B2,

r rad

In Section 4.3 we prove that the closure of the operator f;, augmented with a suitable
domain, generates a semigroup S(7) on H. This allows us to formulate (2.7) as an abstract
integral equation via Duhamel’s formula,

O(r) = S(r)U(v,T) + /OT S(7 — s)N(®(s))ds. (2.13)

Eq. (3.33) yields a natural notion of strong solutions in light-cones.

Definition 2.3.1 We say that ¢ : Cp — R is a solution to (2.3) if the corresponding
® : [0,00) — H belongs to C([0,00); H) and satisfies (3.33) for all T > 0.

2.4 Proof of the theorem

2.4.1 Notation

Throughout we denote by o(L), 0,(L) and o.(L) the spectrum, point spectrum, and
essential spectrum, respectively, of a linear operator L. Furthermore, we write Ry, () :=
(A—L)~", X € p(L), for the resolvent operator where p(L) := C\ o(L) stands for the
resolvent set. As usual, a < b means a < ¢b for an absolute, strictly positive constant c¢
which may change from line to line. Similarly, we write a ~ b if a < b and b < a.
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2.4.2 Functional setting

In the following we consider radial Sobolev functions @ : B&™? — C, that is, @(¢) = u(|¢])
for all ¢ € B%™ where u : (0, R) — C. In particular, we define

ue H”

rad

(B%—u) = (€ Hm(IBg‘j%+2) = WW?(]B%—&-%.
The function space H™,(B%?) becomes a Banach space endowed with the norm
HUHH::d(B‘??) = ||,&/||Hm(B%+2).

From now, we shall not distinguish between u(| - |) and 4. In addition, we introduce the
Hilbert space

_d+3

H = HT (B™?) x H? ' (B?), m=my: 5 (2.14)
associated with the induced norm
2
lual = [, o) 12 = e Pty + sz 2 g

2.4.3 Well-posedness of the linearized problem

We start with the study of the linearized problem and we convince ourselves that it is
well-posed. Recall that the linear operator is given by (3.16). To proceed, we follow [32]
and define the domain of the free part by

D@@:{uecwmgfmﬂn@ec%mﬂpﬂmecﬂmu%uﬁm:o}

where, for all p € [0,1] and j = 1,2,

d—1
1d\%5 i (
w;(p) = Das2u;(p) = (Ed_p> ("us(p) = D car™ (),
n=0
for some strictly positive constants ¢, (n = 0,1,.. .7%). Note that the density of

C>(B4+2) in H™(B%*?2) implies the density of

even

(€,[0,1])" = {u e (C[0,1)": u®* () =0, k=012, .. } c D(Lo)

in H which in turn proves the density of D(io) in H. In other words, D(io) =7 and L
is densely defined.
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Proposition 2.4.1 The operator Ly : D(io) C H — H is closable and its closure Ly :
D(Ly) C H — H generates a strongly continuous one-parameter semigroup (So(7))r>0 of
bounded operators on H satisfying the growth estimate

ISo(7)|| < Me™T (2.15)

for all 7 > 0 and some constant M > 1. In addition, the operator L := Lo+ L' : D(L) C
H — H, D(L) = D(Ly), is the generator of a strongly continuous semigroup (S(T))r>o
onH and L' : H — H is compact.

Proof. The fact that io is closable and its closure generates a semigroup satisfying the
growth estimate (2.15) follows from Proposition 4.9 in [32] by replacing d in [32] with d+2
and setting p = 3. It remains to apply the Bounded Perturbation Theorem to show that
L := Ly + L' is the generator of a strongly continuous semigroup (S(7)),>o. In fact, we
prove that L' : H — H, defined in (3.18), is compact. We pick an arbitrary sequence
(up)nen € H that is uniformly bounded. By Lemma 4.2 in [32], (Dgyou1 )nen is uniformly
bounded in H?(0,1) and the compactness of the Sobolev embedding H*(0,1) — H'(0, 1)
implies the existence of a subsequence, again denoted by (Dgi2u1 1, )nen, which is Cauchy
in H'(0,1). Hence, for any n, m € N sufficiently large, we get

/
W -Vl S sup | P9 D — Dol
pe(0,1) p?
1
= sup )2 HDd+2U1,n - Dd+2u1,mHH1(o,1)

p€(0,1) (p2 + d—2

= HDd+2U1,n - Dd+2u1,mHH1(o,1),

which shows that (L'u,),en is Cauchy in H. This proves that L’ is compact. O

2.4.4 The spectrum of the free operator

We can use the previous decay estimate for the semigroup (So(7)).>0 to locate the spectrum
of the free operator Ly. Indeed, by [36], p. 55, Theorem 1.10, we immediately infer

o(Lop) C{A € C:ReX < —1}. (2.16)

2.4.5 The spectrum of the full linear operator

Next, we need to derive a suitable growth estimate for the semigroup S(7) and therefore
turn our attention to the spectrum of the operator L. To begin with, we consider the point
spectrum.

Proposition 2.4.2 We have
op(L) C{AeC: Rel<0}U({1}.
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Proof. We argue by contradiction and assume there exists a A € 0,(L)\ {1} with Re\ > 0.
The latter means that there exists an element u = (uy,u2) € D(L) \ {0} such that u €
ker(A — L). A straightforward calculation shows that the spectral equation (A — L)u =0
implies

(1— %) (p) + (d;l —a(a+ 2>p> i (p) - ((A FH(A+2)+ d;1v<p>>u1<p> —o,

for p € (0, 1), where

o Ualp) _ —16(d—2)

YT T

d+3
Since u € H, we see that u; must lie in H_% (B42). To proceed, we set v (p) := puy(p). A
straightforward computation implies that v; solves the second order ordinary differential

equation
@—pﬂﬁw%+(i%l—2Q+1M)%@%—(MA+1%+Q%—V@0vmﬁ=O,@lﬂ
for p € (0,1), where

ooy Pt = 6(d—2)p* + (d-2)°
i) =2 a—

We remark that this is the spectral equation studied in [19,20]. Since all coefficients
in (2.17) are smooth functions in (0, 1), we immediately get the a priori regularity v, €
C*>(0,1). We claim that v; € C*°[0,1]. To prove this, we employ Frobenius’ method. The
point p = 0 is a regular singularity with Frobenius indices s; = 1 and sy = —(d — 1).
Therefore, by Frobenius theory, there exists a solution of the form

vi(p) = PZ zip' = Z zip
i=0 i=0

which is analytic locally around p = 0. Moreover, since s; — sy = d € Nyqq, there exists a
second linearly independent solution of the form

vi(p) = Clog(p)vi(p) +p~ ™ ysp!
=0

for some constant C' € C and yy = 1. However, vi(p)/p does not lie in the Sobolev

d+3
space H_% (B%"?) due to the strong singularity in the second term, no matter the value
of the constant C. Consequently, v; must be a multiple of v{ and we infer v; € C*[0,1).

Similarly, the point p = 1 is a regular singularity with Frobenius indices s; = 0 and

20



ss = %1 — X\ Now we need to distinguish different cases. If %+ — X\ ¢ Z, we have two

linearly independent solutions of the form

vi(p) = in(l —p)',

V)= (1-p) = Y g1 —p)

=0

d+3
with zyp = yo = 1. The solution v?(p)/p does not belong to the Sobolev space H_2% (B*?)
and thus, v; € C*°[0,1]. In the case % — X := k € Ny, we have two fundamental solutions
of the form

vi(p) = (1—p)" Z«%’z(l — ), ro =1

vi(p) = w1 —p)' + Clog(1 = p)oi(p), o =1
=0

near p = 1. By assumption, ReXA > 0 and thus, k¥ < 1. Hence, v}(p)/p does not lie in

di3
the Sobolev space H_ 2 (B“"2) unless C' = 0 and we conclude v; € C*°[0,1]. Finally, if

d;Ql — A =: —k is a negative integer, the fundamental system around p = 1 has the form
vi(p) =) (1= p)
=0
vi(p) = Clog(1 — p)vi(p) + (L= p)™* > wi(1 = p)’
=0

d+3

with 2o = yo = 1. Again, v¥(p)/p does not belong to H_% (B**?) and we infer v; € C*°[0, 1
also in this case. In summary, we have found a nontrivial solution v; € C*°|0,1] to
Eq. (2.17) with ReA > 0, A # 1, but this contradicts 19, 20]. ]

The fact that L’ is compact implies that the result on the point spectrum from Proposition
2.4.2 is already sufficient to obtain the same information on the full spectrum.

Corollary 2.4.3 We have
oL)C{AeC: Rex<0}U{l}.

Proof. Suppose there exists a A € o(L) \ {1} with ReA > 0. Then A ¢ o(Ly) and
thus, Ry, (A\) exists. From the identity A — L = [1 — L'Rg,(A\)](A — Lg) we see that
1 € o(L'Rgy(A)). Since L'Rg,(A) is compact, it follows that 1 € o,(L'Rg,())) and
thus, there exists a nontrivial f € H such that [1 — L'Ry,(\)]f = 0. Consequently,
u = Ry, (Mf # 0 satisfies (A —L)u = 0 and thus, A € 0,(L). This contradicts Proposition
2.4.2. Ll
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Next, we provide a uniform bound on the resolvent. To this end, we define
Qerp:={AeC: ReA>-1+¢|\>R}
for e, R > 0.

Proposition 2.4.4 Let € > 0. Then there exist constants R., C. > 0 such that the resol-
vent Ry, exists on Q¢ r. and satisfies

IRV < Ce
for all X € Q. g, .

Proof. Fix e > 0 and take A € Q p for an arbitrary R > 0. Then A € p(Ly) and the identity
(A—L) =[1 —L'Rg,(N)](A — Lg) shows that Ry, (\) exists if and only if 1 — 'Ry, (A) is
invertible. By a Neumann series argument this is the case if [|[L'Ry, (\)]| < 1.

To prove smallness of L'Ry, (), we recall the definition of L', Eq. (3.18),

() — 0 _ ' (folp) _ —16(d = 2)
Lule) = (—%V(p)ul(p))’ vie) =

Let u = Ry, (A)f or, equivalently, (A — Lo)u = f. The latter equation implies

P Prd-2

(A4 Dui(p) = ua(p) — puy(p) + fr(p).

Now we use Lemma 4.1 from [32] and [|[V®||1eo1) < 1 for all k € {0,1,...,m — 1} to
obtain

A+ 1L R, (VE[F = A+ LIL"al| 2= [V (u2 = (-)ui + f1)

HHZZ;l(]Bd‘W)
S Nzl g @arey + 1) [ gmos garey + [ fill gt gasey

N ||U2|’H;;;1(1Bd+2) + ||U1||H;gd(18d+2) + |’f1||H;Z;1(Bd+2)

~ fl| < 1)
Tl + 161 < (g + 1)
S IEl

where we have used the bound
1
= fl| < f
Jull = R, (V| < =

which follows from semigroup theory, see [36], p. 55, Theorem 1.10. In other words,

1 1 1
s < <
Al S -1-R-1

IR, (A)
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and by choosing R sufficiently large, we can achieve the desired |[L'Ry, ()| < 1. As a
consequence, [1 — L'Ry,(A\)] ™! exists and we obtain the bound

IR (M) = R, (ML — LRy, (A)] |
< R, (WL = LRy, (M)] |
< [[Re, (M)l Z IL'Re, (V)|

<C..

2.4.6 The eigenspace of the isolated eigenvalue

In this section, we convince ourselves that the eigenspace of the isolated eigenvalue A =1
for the full linear operator L is spanned by

g@yz(m@D:=<€E$3>,peﬁxu (2.15)

gQ(IO) (p2+d—2)2

Consequently, we are looking for all u = (uy,us) € D(L) \ {0} such that u € ker(1 — L).
A straightforward calculation shows that the spectral equation (1 — L)u = 0 is equivalent
to the following system of ordinary differential equations,

us(p) = pui(p) + 2ui(p),
(1= ) () + (£ = 6p)ui (p) — (6 + LEZED Yy () = ),

for p € (0,1). One can verify that a fundamental system of the second equation is given
by

{ 1 Qa—1(p) }

Pt+d—2 plp2+d-—2)

where (41 is a polynomial of degree d — 1 with non-vanishing constant term. We can
write the general solution for the second equation as

1 Qa-1(p)
=C C. )
P rd—2 2 rd—2)

uy(p)

We must ensure that u € D(L) which in particular implies that w; must lie in the Sobolev

i3
space H_2 (B%"?). This requirement yields C, = 0 which in turn gives u € (g). In
conclusion,

ker(1— L) = (g), (2.19)

as initially claimed.
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2.4.7 Time evolution for the linearized problem

We now focus on the time evolution for the linearized problem (2.7). Due to the presence
of the eigenvalue A = 1, there exists a one dimensional subspace (g) of initial data for
which the solution grows exponentially in time. We call this subspace the unstable space.
On the other hand, initial data from the stable subspace lead to solutions that decay
exponentially in time. As we will show now, this time evolution estimates can be established
using semigroup theory together with the previous results on the spectrum of the linear
operators Ly and L. To make this rigorous, we follow [32] and use the fact that the unstable
eigenvalue A = 1 is isolated to introduce a (non-orthogonal) projection P. This projection
decomposes the Hilbert space of initial data H into the stable and the unstable space.
Most importantly, we must ensure that (g) is the only unstable direction in H. This is the
key statement of the following proposition and it is equivalent to the fact that the algebraic
multiplicity of the isolated eigenvalue A = 1,

me(A =1) :=rank P = dimrgP,

is equal to one. We denote by B(#) the set of bounded operators from H to itself and
prove the following result.

Proposition 2.4.5 There exists a projection
PeB(H), P:H— (g),
which commutes with the semigroup (S(T))T>O. In addition, we have
S(7)Pf = ¢"Pf, (2.20)
and there exist constants C,e > 0 such that
11— P)S(N)E]| < Cem|(1 — P, (2.21)
forallf € H and 7 > 0.

Proof. We argue along the lines of [32]. Since the eigenvalue A = 1 is isolated, we can
define the spectral projection

1
P:H—%H P:= —,/RL(,u)d,u,
2mi J,

where « : [0,27] — C is a positively orientated circle around A = 1 with radius so small
that ([0, 27]) C p(L), see e.g. [43]. The projection P commutes with the operator L and
thus with the semigroup S(7). Moreover, P decomposes the Hilbert space as H = M BN,
where M := rgP and N := rg(l — P) = kerP. Most importantly, the operator L
is decomposed accordingly into the parts L, and Ly on M and N, respectively. The
spectra of these operators are given by

o(Ly) =o@)\ {1},  o(Ln) = {1}. (2.22)
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We refer the reader to [43] for these standard results.
To proceed, we break down the proof into the following steps:

Step 1: We prove that rank P := dimrgP < 4o00. We argue by contradiction and as-
sume that rank P = +o00. Using [43], p. 239, Theorem 5.28, the fact that L’ is compact
(see Proposition 2.4.1), and the fact that the essential spectrum is stable under compact
perturbations ( [43|, p. 244, Theorem 5.35), we obtain

rank P = +oo =1 € 0.(L) = 0.(L — L") = 0.(Lg) C o(Lo).
This contradicts (2.16).

Step 2: We prove that (g) = rgP. It suffices to show rgP C (g) since the reverse in-
clusion follows from the abstract theory. From Step 1, the operator 1 — L, acts on the
finite-dimensional Hilbert space M = rgP and, from (3.37), A = 0 is its only spectral
point. Hence, 1 — L, is nilpotent, i.e., there exists a k € N such that

for all u € rgP and we assume k to be minimal. Recall (2.19) to see that the claim
follows immediately if £ = 1. We proceed by contradiction and assume that & > 2. Then,
there exists a nontrivial function u € rgP C D(L) such that (1 — L )u is nonzero and
belongs to ker(1 — L) C ker(l — L) = (g). This means that u € rgP C D(L) satisfies
(1 — L)u = ag, for some a € C\ {0}. Without loss of generality we set « = —1 and a
straightforward computation shows that the first component of u solves the second order
differential equation

(1—p?) ui(p) + <$ - 6/)) i (p) — (6 + d; ! 77/(122(/)))> ui(p) = G(p),

for p € (0, 1), where

G(p) = %, p €10,1].

In order to find the general solution to this equation, recall (2.18) to see that

1

- € (0,1

a1(p) == g1(p) =

is a particular solution to the homogeneous equation

(1= )t + (52 = 00) o) — (6 52T Y uygp) o
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To find another linearly independent solution, we use the Wronskian

A5 _ g
Wi(p):=(1—p*)7 p !
to obtain

P d—>5
ts(p) == U1(p) / (1—2?)7 27 (2% + d — 2)%du,

p1

for some constant p; € (0,1) and for all p € (0,1). Note that we have the expansion
ts(p) = P_dzajﬂj, ap # 0
=0

near p = 0. Furthermore, if d > 5, 4, € C*°(0, 1] and we choose p; = 1 which yields the
expansion

. 43 ;
da(p) = (1=p)2 Y bi(1=p),  bo#0
j=0
near p = 1. For d = 3, we set p; = % and the expansion of Uy near p = 1 contains a term

log(1— p). We invoke the variation of constants formula to see that u; can be expressed as

uy(p) = criiy(p) + catiz(p)

aalp) /Op i (y)G(y)y™! dy — is(p) /0 Cis(y)Gy)y™!

a—3 d—3 ?

(1—y?)> (I—y?)>

d+3
for some constants ¢;, c2 € C and for all p € (0,1). The fact that u; € H_3 (B“™?) implies
¢y = 0 and we are left with

. A P (y)Glyy™tt 7 ta(y)Gy)y™
wlp) = crin(p) + i) [ gy gy [TRUEE gy o)
o (I—y?)z o (1—y¢?)>
If d =3, us(p) ~ log(1 — p) near p = 1 and thus, the last term in Eq. (2.23) stays bounded
as p — 1— whereas the second term diverges unless
/ H i (y) G (y)y dy = 0
o (1—y)F ’

which, however, is impossible since the integrand is strictly positive on (0, 1). This contra-

d+3
dicts u; € H_% (B4"?) and we arrive at the desired k = 1.
Next, we focus on d > 5, where the last term in Eq. (2.23) is smooth on [0, 1]. To analyze

the second term, we set

i [T Faly) Ca@GW™ 5 —2)
pry e /0 (1-y)= e ) 1+y)% 1+ T @ +d—2)?
(2.24)
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Note that F5(1) # 0 and thus, the expansion of Z5(p) near p = 1 contains a term of the form
(1—p)log(1—p). Consequently, Z! ¢ L?(3,1) and this is a contradiction to u; € H4(B").

rad
The general case is postponed to the appendix (Proposition 2.5.2) where it is shown that

the function Z; is not analytlc at p = 1. This implies that the expansmn of Za4(p) near

p =1 contains a term (1 — ) 2 log(1 — p) which again contradicts u, € H, Y (Bd+2)

rad

Step 3: Finally, we prove the estimates (2.20) and (2.21) for the semigroup. First, note
that (2.20) follows immediately from the facts that A = 1 is an eigenvalue of L with eigen-
function g and rgP = (g). Furthermore, from Corollary 2.4.3 and Proposition 2.4.4 we
infer the existence of C, e > 0 such that

[RL(M)(1-P)[| <C

for all A € C with Re\ > —2¢. Consequently, the Gearhart-Priiss Theorem, see [36], p. 302,
Theorem 1.11, yields the bound (2.21). L]

2.4.8 Estimates for the nonlinearity

The aim of this section is to establish a Lipschitz-type estimate for the nonlinearity. Recall
that the nonlinear term in (2.7) is given by

N0 = (s ) = (gt )

To begin with, we claim that

N(p, u1(p))
= 4(d — Du?(p cos (22 (fo(p) + zypui(p))) Jolp) + zyuy(p) | xdzdydz.
o 1L (5

o7



To see this, we use the fundamental theorem of calculus and the fact that 7”(0) = 0 to
write

N(pui(p)) = n(folp) + pui(p)) —n(fo(p)) — n'(fo(p))pur(p)

fo(p)+pui(p)
_ / 0 (s)ds — 11 (fo(p))pur (p)
fo(p)

= pui(p) | 7' (folp) +xpur(p))dz —n'(fo(p))pui(p)

)
— pu(p / (0 (folp) + wpur(p)) =1/ (folp))) de
/01 (/fo e ds) dx

= p*ui(p) " (fo(p) + zypur(p))dyda

[+
1 1 pfolp)+zypui(p)
= p*ui(p /x// n"(s)dsdydx
0 o Jo
o]

/0 0" ((fo(p) + zypui(p))z) (folp) + xypui(p)) dzdydx

= p*ui(p / / / " )+ zypui(p))z) <f0£ ) + xyuy(p )) dzdydzx.

For later purposes, we note that the function

N(p,¢) =4(d—1)¢ / / / cos (2z (fo(p —|—xyp§))<f<p) >xdzdydx,

defined for all (p, () € [0,1] x R, is perfectly smooth in both variables since

Mzgarctam( P )
p P d—2

is smooth at p = 0. Moreover, we define

M(p,¢) := 0N (p.¢) = 4(d = 1) (A(p,¢) + B(p, ) + C(p. Q) + D(p, ). (2.25)

= pPui(p

o8



where

Alp. Q) = cos (2z (fo(p) + 2yp()) zdzdydz,

1 1 1

B =92 2 in (2 2yzdzdyd

(0, 0) ﬁ@<% 4[}m<amm+wm»xwzy%

1 1 1

Cl(p, () := 3> 2 2ydzdydz,

(0, ) =3 / / / cos (22 (fo(p) + zypC)) ydzdyds

1 1 1

D(p,¢) :== —2p¢° /0 /0 /0 sin (22 (fo(p) + zypQ)) 2’y 2dzdydz.

We denote by Bs C H the ball of radius 0 in H centered at zero, i.e.,

Bs = {ueH: lull =, u)l| ags ap éé}-

H3 (BY2)xH,3 (B?)
The main result of this section is the following Lipschitz-type estimate.
Lemma 2.4.6 Let 6 > 0. Then we have
IN(u) = N)|| < (lull + [[v])[[u =] (2.26)
for all u,v € Bs.

Proof. We start by fixing a § > 0, we pick two elements u, v € Bs and define the auxiliary
function

C(o)(p) = our(p) + (1 = o)vi(p),
for p € (0,1) and o € [0, 1]. The triangle inequality implies

< <
u M 6 85 :> HU/lH rac21 (Bd+2) o ||U1”Hra?1 (Bd+2) o 5 :> HC( )HHrajz;g (Bd+2) o 6’

for all o € [0,1]. In other words,
— d+2
ety ={remE @l ., <0},

for all o € [0, 1]. Now, we claim that to show (3.45), it suffices to establish the estimate

M fODN ags S

Hrad (Bd+2 ag Bd+2)

(2.27)

for all f € ABs, where M is given by (2.25). To see this, we use the algebra property

1700250 gy S 17152 g 90252
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a+3 >

5 %, to estimate

which holds since

A~

||N(u> — N(V)H = N(,Ul()) - N('7U1('>)HH#(Bd+2)
rad
< N(.,ul(.))_N(.,vl(.))HHrff(BM)
u1 ()
_ / HN(Odc|
v1(+) H%(Bdw)
rad
1 A
= || (u1(") —vl(-))/ BN (- oui(-) + (1 = o)u(-))do
0 h d d+3
(o) H,Z (Bi+2)
<Ny — v / 15, N
e i Hrdf (Be+2)
gmh—mnd%BHQ/|MH3«wcmu%ﬂwﬁﬂa

Sl =il o / N, 0,0,

rad rad

|

1
< — 1- d
Hul Ul” rag (IB‘H?)/(; <UHU1H 3 (Bd+2)+( U) H, 3 (]Bd+2)) 4

< Hul _UIHH 3 (pa+2) (H 1HH L2 (BA+2) ” 1” =8 Bd+2)>

ad
S [ha = vl (falf+vi) -

[t remains to prove (2.27). To this end we use a simple extension argument (see e.g. Lemmas
B.1 and B.2 in [32]) and Moser’s inequality ( [70], p. 224, Theorem 6.4.1) to infer the
existence of a smooth function & : [0, 00) — [0, 00) such that

MO g0y <O ) W1 s
for all f € %5. By Sobolev embedding we have || f| s mi+2) S Hf||H? mir) < 0 for all
[ € PBs and (2.27) follows. This concludes the proof. L]

2.4.9 The abstract nonlinear Cauchy problem

In this section, we focus on the existence and uniqueness of solutions to the Cauchy problem
(2.7). In fact, by appealing to Definition 3.9.1, we consider the integral equation

O(7) = S(T)u+ /OT S(1 — s)N(®(s))ds, (2.28)
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for all 7 > 0 and u € ‘H. We introduce the Banach space

X ={PeC([0,00);H): ||P]x:= suge””@(r)” < +oo}
T>

with € > 0 from Proposition 2.4.5. Moreover, we denote by X5 the closed ball
Xy ={PeX:||P|x<d}={PcC(0,00);H): [P <de™, Vr>0}.

In the following, we will only sketch the rest of the proof and discuss the main arguments
since they are analogous to [26,27,29,30,32]. To prove the main theorem, we would like
to apply a fixed point argument to the integral equation (2.28). However, the exponential
growth of the solution operator on the unstable subspace prevents from doing this directly.
We overcome this obstruction by subtracting the correction term®

C(®,u) =P (u+/ e_SN(q)(s))ds) (2.29)
0
from the initial data. Consequently, we consider the fixed point problem
O(7) = K(P,u)(7) (2.30)

where
K(®,u)(7) :=S(7)[u— C(®,u)] + /OT S(t — s)N(CD(s))ds. (2.31)

This modification stabilizes the evolution as the following result shows.

Theorem 2.4.7 There ezist constants §,C > 0 such that for every u € H with ||ul| <
there ezists a unique ®(u) € X that satisfies

g
C

In addition, ®(u) is unique in the whole space X and the solution map u — ®(u) is
Lipschitz continuous.

Proof. The proof is based on a fixed point argument and the essential ingredient is the
Lipschitz estimate (2.26) for the nonlinearity. Although the proof coincides with the one
of Theorem 4.13 in [32], we sketch the main points for the sake of completeness. We pick
§ > 0 sufficiently small and fix u € H with |[ul| < &, where C' > 0 is sufficiently large.
First, note that the continuity of the map

K(®,u):[0,00) — H, 7+— K(®,u)(7)

LAll integrals here exist as Riemann integrals over continuous functions.
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follows immediately from the strong continuity of the semigroup (S(7)),.,. Next, to show
that K(-,u) maps Xjs to itself, we pick an arbitrary ® € X5 and decompose the operator
according to

K(®,u)(7) = PK(®,u)(7) + (1 — P)K(®,u)(7).
The Lipschitz bound (2.26) implies
IN(@())I| < 6%

and together with the time evolution estimates for the semigroup on the unstable and
stable subspaces (see Proposition 2.4.5), we get

IPK (@,u) (1)]| < %77, [[(1 - P)K (@, u) (7)]| < (& +6%)e™".

Clearly, these estimates imply that K(®,u) € X for sufficiently small § and sufficiently
large C' > 0. Finally, we need to show the contraction property. To this end, we pick two
elements &, ® € X5. As before, the Lipschitz estimate (2.26) together with Proposition
2.4.5 imply

HP (K(Cb,u)( ) — K(B,u) )H < e

o— ch

H(l -P) <K((I)’u)( ) — K(®, u) )H < SemeT

o — <1>H
and by choosing ¢ sufficiently small we conclude
~ 1 ~
K@, <o)
x 2 X

Consequently, the claim follows by the contraction mapping principle. Uniqueness in the
whole space X and the Lipschitz continuity of the solution map are routine and we omit

the details. L]

Now we turn to the particular initial data we prescribe. To this end, we define the space

d+3
HE = H™(BE?) x B (BE?),  mo=my = %
for R > 0, endowed with the induced norm
2 2
HW”HR = ||(w17w2)||HR = leHHrrgd(BdR“) + ||w2||H::§1(B(11%+2) .

Recall the definition of the initial data operator U(v,T) from Eq. (2.12).

Lemma 2.4.8 Fiz Ty > 0. Let § > 0 be sufficiently small and v with | - |~'v € HTo*.
Then, the map

Uv,): [Ty —0,Ty+6] —H, T+ UWT)
is continuous. Furthermore, for all T € [Ty — 0, Ty + 6],

I 17Vl ys < 0= U T S 6
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Proof. The statements are straightforward consequences of the very definition of U(v,T)),

the smoothness of fOT(p), and the continuity of rescaling in Sobolev spaces. We omit the
details. L]

Finally, given Ty > 0 and v € H° with ||| - |'v||;z+s < 2 for § > 0 sufficiently small
and M > 0 sufficiently large, we apply Lemma 2.4.8 to see that u := U(v,T) satisfies the
assumptions of Theorem 2.4.7 for all T' € [Ty — 0, To + d]. Hence, for all T' € [Ty — 6, Ty + 4],
the map K(-,U(v,T)) has a fixed point &7 := ®(U(v,T)) € Xs. In the last step we
now argue that for each v, there exists a particular Ty, € [Ty — 0, Ty + 0] that makes the
correction term vanish, i.e., C(®z,,U(v,Ty)) = 0. Since C has values in rgP = (g), the
latter is equivalent to

T, € [Ty — 6, Ty + 6] - <c (®r,, U (v, T3)) ,g>H — 0. (2.32)

The key observation now is that
1p (T
S Jo(7;0) 2vd — 2
Or ﬁf/(Tol ) = —g(p)
I\ ) g,
and thus, we have the expansion

(C(or, U, 1) 8) = 2—V;O_Q||g|y2(T “T) + O(T - To)?) + O(ET°) + O(8°T°).

Consequently, a simple fixed point argument proves (3.61), see [32], Theorem 4.15 for full
details. In summary, we arrive at the following result.

Theorem 2.4.9 Fix Ty > 0. Then there exist 6, M > 0 such that for any v with
)

M

there exists a T € [Ty — 0, Ty + 0] and a function ® € X5 which satisfies

T+ 17 v llymos <

®(r) =S(m)U(v,T) + /T S(r — s)N(®(s))ds (2.33)
0
for all 7 > 0. Furthermore, ® is unique in C([O, oo),?-t)

2.4.10 Proof of the main theorem

With the results of the previous section at hand, we can now prove the main theorem. Fix
To > 0 and suppose the radial initial data ¢[0] satisfy

0
< —
yxHE @2 ) = M

T+

H| . |_1 (1/}[0] B ¢TO [OD HHC%S(IB%%'*'?M
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with 6, M > 0 from Theorem 3.57. We set v := 9[0] — ¥T0[0], cf. Section 2.3. Then we
have

J

7 s = (117 (01 = w™0) | < 27

and Theorem 3.57 yields the existence of T' € [Ty — 6, Ty + 6] such that Eq. (2.33) has a
unique solution ® € X' that satisfies ||®(7)|| < de™" for all 7 > 0. By construction,

T T r
(t,r) ="t r) + T——t¢1 (log T T= )

is a solution to the original wave maps problem (2.3). Furthermore,

B T r T r
aﬂﬂ(tﬂ") - aﬂb (t,?") + (T— t)2¢2 (IOgT—t’ T _ t) .

Consequently,
<T—w“ﬂuw4w@»—¢% N e e

= (T — )k~ (log TT o ’—b)

T
:‘¢1 (IOgT 0 )
< §(T —t)°

forall t € [0,T) and k = 0,1,2,..., 42 Analogously,

(T =) F || 17 (O (k) = 0" (1) o
og L Il
2 T -t T—¢t
1 T
BTy

< T —1t)f
forall ¢ =0,1,2,..., %1

Hk(Bd+2)

=

H*(Bd+2) H

— (T —t) 2!

g d
HY(BLT2)

T
<o (s7 )|
HZ(B(H—Q) T —t

2.5 Properties of the function Z;

We first derive a consequence of results from [20] which then leads to the desired statement
that Z, is not analytic at 1. Recall the supersymmetric problem Eq. (4.1) from [20],

k41 2 p? —k—2
(1= )it + % =20 | 7= MO+ D+ ppTaA —0,  (2.34)

where d = k + 2.
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Lemma 2.5.1 Let m € N, m > 2, and d = 2m + 1. Then the function

(o) = (1= [Pl ) =

y*+d—2
1s not analytic at p = 1.

Proof. In view of the supersymmetric factorization derived in [20] (or by a direct computa-
tion) it follows that 1, satisfies Eq. (2.34) for A = 1if and only if 9, (p) = p"(1—p?) "2 a1 (p)
satisfies
(95 = w(p)[(L = p*)*(9, + w(p))]r(p) = 0, (2.35)
where w = % and
vi(p) = " (1= ) gi(p).

Observe that the function 1/v; solves Eq. (2.35). Furthermore, the Wronskian of two
solutions of Eq. (2.35) is of the form ~—S5; for some constant ¢ and thus, the reduction

(1=p?)?
formula yields another solution

R B R PR ok il O PN
hle) = /0 (1—’y2)2dy_ g1(p)pmHt /0 (1—y2>mgl<y) i

By construction,

a1(p) = p ™1 = p*) 201 (p) =

(1— p?)mt /,0 y2m+? o1y — U (p)
gi(p)p*t Jo (1 —y?)m gi(p)p*m+t

is a solution to Eq. (2.34). Clearly, @; is analytic at p = 0. Suppose 4, were analytic at
p = 1 also. Then we would have found a nontrivial solution @; € C*[0,1] to Eq. (2.34)
with A = 1. This, however, contradicts Theorem 4.1 in [20]. We conclude that @; and
hence U,, must be nonanalytic at p = 1. Ll

Proposition 2.5.2 Let d > 5 be odd. Then the function I, defined in Eq. (2.24) is not
analytic at p = 1.

Proof. Since 1y, = g1 and G(y) = 2yg;(y) + 591(y), we have

p

N Y

Lu(p) = ialp) | s [2um(0)sh () + Sa (o)) dy
o (1—y?)>

To simplify notation, we use the convention from above and write d = 2m + 1. Since the

order of the zero of uy(p) at p =1 is m — 1, it is enough to prove that

2m—+2

Tm(p) = (1= p*)" ™" /O ' (im 2y91(y)91(y) + 591(y)?] dy

Y
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is nonanalytic at p = 1. An integration by parts yields

Tnlp) = (1= gy / ' %dﬂ; (P 01(v)?) dy
— P (0)? — 2m — 1)(1 — )™ / ' ﬁgmywy

and Lemma 2.5.1 completes the proof.
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Chapter 3

Stable blowup for the cubic wave
equation in higher dimensions

This chapter contains the result of the paper [17] and is a joint work of the author with
Donninger.

3.1 Abstract

We consider the wave equation with a focusing cubic nonlinearity in higher odd space
dimensions without symmetry restrictions on the data. We prove that there exists an open
set of initial data such that the corresponding solution exists in a backward light-cone and
approaches the ODE blowup profile.

3.2 Introduction

3.2.1 Cubic wave equation

In this paper we study the wave equation with a focusing cubic nonlinearity
Ou(t,z) + u?(t,x) = 0, (3.1)

with (t,2) € R4, Here, O stands for the Laplace-Beltrami operator on Minkowski space
with signature (— + ++), i.e.,

O0:=—07 + A,.

R.D. is supported by the Austrian Science Fund FWF, Project P 30076-N32. The authors would like
to thank Birgit Schorkhuber for fixing a mistake in an earlier version of this paper.
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Equation (3.1) has the conserved energy

1 1 1
Elu(t) = 5 /R Ot 2| do + 5 /]R (Vout, z) do — - /R u(t, z)[" da.

Obviously, equation (3.1) is invariant under time-translations. In addition, other symme-
tries of the equation that are relevant in our context are Lorentz boosts, namely, if u is a
solution to (3.1), so is

uralt, ) = 1o Ar(a) (t) (3.2)

X

for T € R and a = (a!,---,a?) € R% Here, we define the Lorentz transformations in a
way that resembles circular rotations in d-dimensional space using hyperbolic functions,
that is

Ar(a) = Ad(a) o AdT_l(ozdfl) o---0An(ah)

where the boost in the j—direction is given by

t (t = T) cosh(a?) + 27 sinh(a?) + T
z! x!
iy | |2 o .
(o) x| (t — T)sinh(a?) + a7 cosh(a?)
x? xd

A Lorentz boost can be thought of as a hyperbolic rotation of spacetime coordinates of
the (1 + d)—dimensional Minkowski space. The parameter o € R? (called rapidity) is the
hyperbolic angle of rotation, analogous to the ordinary angle for circular rotations. Note
in particular that the spacetime event (77,0) is a fixed point of the transformation Ar(«)
and the light-cones emanating from (7', 0) are invariant under Az(a).

3.2.2 Blowup solutions

Equation (3.1) exhibits finite-time blowup from smooth, compactly supported initial data.
This fact is most easily seen by looking at spatially homogeneous blowup solutions. In other
words, we ignore the Laplacian in the space variable in the equation and the remaining
ordinary differential equation can be solved explicitly. This leads to the solution

V2

t = —

Using the symmetries of the equation we get a larger family of blowup solutions. Namely,
time translation symmetry yields

V2

up(t,z) = T3 (3.3)
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and Lorentz symmetry implies that

V2
el ) = @) T 1) Ao o4

is also a solution, see (3.2). Here and in the following, we adopt the Einstein summation
convention, namely

d
Cijj = Z Cljbj
j=1

and

([ Ay(a) := cosh(a?) - - - cosh(a®) cosh(a?) cosh(alt),
Aj(a) := cosh(a?) - - - cosh(a?®) cosh(a?) sinh(a?),
Ay(a) == cosh(a?) - - - cosh(a?) sinh(a?),

Observe that Ag(a) = O(1) whereas A;(a) = O(a) for all sufficiently small o € R?.

3.2.3 The Cauchy problem

Our intention is to study the future development of small perturbations of ur o, under
(3.1) for fixed Ty € R and ag € R?. Hence, we consider the Cauchy problem

Ou(t,x) + u3(t,x) = 0,
{mm=<ﬁm, (3
where
<f7 g) = UTy,a0 [O] + (]F,f]) (36)

Here, we use the abbreviation ult] = (u(t, ), dyu(t,-)) for convenience, ur, o, is defined in
(3.4) and (f, g) are small in a suitable sense. Furthermore, we restrict the evolution to the
backward light-cone

Cr={(te): 0<t<T, |a| <T—t}= |J {t} xBL,

t€[0,T)
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3.2.4 Related results

There is a lot of activity in the study of blowup for wave equations. The interest in (3.1)
stems from the fact that this equation contains many features common to a whole range of
blow-up problems arising in mathematical physics, as for example in nonlinear optics [8]
and general relativity [28].

By definition, u is a solution to (3.5) if and only if it satisfies the equation in the integral
form using Duhamel’s principle, namely

wg + /0 i |_v|8) Vs, yas,

u(t,) =cos (t|V|) f+

for initial data
(f.9) € H'(R?) x H*'(R?).

Using this formula, one can show that (3.5) is locally well-posed for initial data in H*(RY) x
H* M (R?) for s > 4, see [85]. On the one hand, equation (3.1) is invariant under the scaling
transformation

1
ux(t, z) := T (;, ;) , A>0 (3.7)

t
‘()
This scaling property is closely related to the existence of a suitable local theory for the
problem and distinguishes the space H%(R%) x H® 1(R%), s5 := ¢ — 1 as the critical
Sobolev space, the unique L2-based homogeneous Sobolev space preserved by the scaling
(3.7). Indeed, Strichartz theory shows that (3.5) is locally well-posed for initial data in the
critical Sobolev space H®(R%) x H®» (R%), [78], [55]. On the other hand, equation (3.1)
has the conserved energy

and

[u(t, -)|

. — %—1—5
HS(IRd) A HS(Rd) .

1 1 1
Elu)(t) := 5 /Rd Oyu(t, )| do + B /Rd \Vau(t,z)|” de — 2 /Rd lu(t, z)|* dx

which distinguishes the space H'(R?) x L?(R%) as the energy space, that is, the space of
initial data for which the energy is known to be finite. For d > 5, the critical regularity
S3 = g — 1 is larger than the energy-critical regularity s = 1 and equation (3.1) is energy-
supercritical.

The one-dimensional case has been completely understood, see [59], [60], [61], [62] where

Merle and Zaag exhibited a universal one-parameter family of functions which yields the
blowup profile in self-similar variables for general initial data. In higher dimensions, the
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situation is less clear. In three space dimensions, Bizon together with Breitenlohner, Mai-
son and Wasserman in [12], [4] showed that equation (3.1) admits infinitely many radial
self-similar blowup solutions of the form

1 |z]
T—tf" <T—t)‘

Here, the ground-state solution (3.3) corresponds to fy = /2. Levine [54] used energy
methods and a convexity argument to show that initial data with negative energy and finite
L?>—norm lead to blowup in finite time, see also [45] for generalizations to the Klein-Gordon
equation. We also mention the works of Alinhac 2] and Caffarelli and Friedman [15], [14]
where more blowup results can be found. The stability of the ground-state has been studied
extensively by Schérkhuber and the second author in three space dimensions (in [29], [30]
for radial initial data and in [31] without symmetry restrictions) and later in [33] for all
space dimensions and for radial initial data. Some numerical results are available in a
series of papers by Bizon, Chmaj, Tabor and Zenginoglu, see (6], [11], [13]. Furthermore,
in the superconformal and Sobolev subcritical range, an upper bound on the blowup rate
was proved by Killip, Stoval and Visan in [45], then refined by Hamza and Zaag in [41]. In
a series of papers [58], [64], [63], [57], [56], Merle and Zaag obtained sharp upper and lower
bounds on the blowup rate of the H'—norm of the solution inside cones that terminate at
the singularity, see also the work of Alexakis and Shao [1]. We also mention the recent work
by Dodson-Lawrie [25] on large-data scattering for the cubic equation in five dimensions.

3.3 The main result

By finite speed of propagation one can use ur, to construct smooth, compactly supported
initial data which lead to a solution that blows up as ¢ — 7. In the present work, we
study the asymptotic nonlinear stability of ur,. As a matter of fact, we prove that all
initial data from an open, sufficiently small region centered at ur, lead to the same type
of blowup described by the ODE blowup profile. First, we need a definition for our notion
of the blowup time.

Definition 3.3.1 Given initial data (f,g), we define

3 solution u:Cr—R to (3.5) in the sense of

Tis,g) := sup {T > 0‘ Definition 3.9.1 with initial data u[O]z(f,g)|BdT} u{0}.

In the case where Ti; 4 < 0o, we call T'=T(y 4y the blowup time at the origin.
The main result of this work is the following.

Theorem 3.3.2 Fir d € {5,7,9,11,13}, Ty > 0 and ag € RL. There exist constants
M, > 0 such that the following holds. Suppose that the initial data

d+1 d-1
(f,g) € H> (EdTOJra) X H™> (B%}M)
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satisfy

)
< —.

7.9 = 0] =

H 7z (BZ

d—1
TO+6)><H 2 (B

d =
To+s)

Then, T = Ty € [To — 0, Ty + 0] and there exists an o € BYy5(a) such that the solution
u: Cr — R to (3.5) satisfies the estimates

NI

(T o t)kf%Jrl

ult,) = ura(t, )

, <O(T —1t)z,
H*BZ_,)

3tu(t, ) — atuTﬂ(t, )‘

ol

< O(T —t)2,

HYBL )

forallk=0,1,--- , %L and ¢ =0,1,--- , 4L,

7’2 2

Remark 3.3.3 Theorem 3.3.2 shows that the future development of small perturbations of
the blowup solution ug, o, defined in (3.4) converge back to ur, o, up to symmetries of the
equation.

Remark 3.3.4 Note that the normalizing factors on the left-hand sides appear naturally
and reflect the behavior of the solution ur, in the respective homogeneous Sobolev norms.
Namely, for

V2
o(@) = Aj(a)¢/

bal®) = 5 (38)

we have
_d
(T =02 Jura(t, Mgy = (T =) luzalt, (T = ) ey = 1Yl oy
_d
(T =) 72" Ouralt, M gepe_y = (T =) [Oruralt, (T = t)) jeguay = IVWall fregaey -
for all k.0 € Ny and o # 0.

Remark 3.3.5 We strongly believe that the result holds true in all odd dimensions d and
the restriction on d is not essential and for technical reasons only. Similarly, the restriction
to the cubic power is for the sake of simplicity only. Similar results are true for any focusing
power and can be proved by straightforward adaptations of our method.

Remark 3.3.6 The corresponding result in d = 3 was proved in [31] and relied on a
delicate identity that only holds in 3 dimensions. In this paper we show that our method is
robust enough to extend to all odd dimensions.

3.4 Formulation as a first-order system in time

Without loss of generality we assume that Ty = 1 and ay = 0.
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3.4.1 First-order system

To start our analysis, we write the Cauchy problem (3.5) as a first-order system in time.
First, we change coordinates and map the backward light-cone

Cr={(tz):0<t<T, 2| <T -t} = U {t} x BZ_,

t€[0,T)
diffeomorphically into the cylinder
C:={(7,§): 0< 7 < 400, |{] <1} = [0,00) x B,

Specifically, we introduce the similarity coordinates

(t,x) — p(t, x) == (7(t,2),&(t, x)) == (log <TT_ t) 7Tgi t)

and derivatives translate according to

e’ -
Oy = T ((‘L +§]85j) ,

27
0 = 75 (02 + 00 + 26060, + 0O + 260

eT
O0pi = —0¢i,
T T 3

627'

Or1 s, = 50D,

Notice in particular that the blowup time 7" is mapped to co. Now, equation (3.1) can be
written equivalently as

e* 2 j ik j ok j 3

(= 02— 00 = 260050, + (9" — £€") 00 — 2600, ) U (1. €) = ~U*(r. ),

for U := wo pu'. Next, we remove the 7—dependent weight on the left hand side by
rescaling,

(1, 8) :=Te 7U(T,9),
which implies
(83. + 30, + 287060, — (67F — E9€7)05i O + 47 0es + 2)%0(7, §) = ¢°(r,€).
Finally, we set

L Y1(7,€) o (7€)
(\I’(T>) (5) T (w2(7—7 ,5)) T (aTw(T, f) + fj(?fﬂb(ﬂ f) + w(T7 f))
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which yields
0,%(7) = L (¥(7)) + N (¥(7)) (3.9)

where

~ . —f . Vul(ﬁ) - Ul(g) + u2(£)
L (u) (¢) = (ARdul(é) — & Vuy(§) — 2uz(f)) 7

3.4.2 Static blowup solution

Now, starting from (3.4), we switch to similarity coordinates and rescale the function
appropriately as before to find a d—parameter family W, of static blowup solutions to
(3.9), i.e.,

_ ba(©)
¥a(€) = (e‘ajwa(s) Y wa@,) (3.10)

where 1), is defined in (3.8). We emphasize that there is no trace of the blowup time 7" in
the definition of 1),.

3.5 The linear free evolution in the backward light-cone

In this section, we focus on the evolution of the free linear equation and obtain a useful
decay estimate for the solution operator. To this end, we need to find a norm

|- : H —R

on the function space

da+1

H:=H% (BY) x HZ (BY)
which yields the sharp decay for the free evolution. Specifically, we define
D(L) := ¢ (BY) x C*F (BY)
and work towards proving the following result.

Proposition 3.5.1 The free operator L: D(i) C H — H is densely defined, closable
and its closure L : D(L) C H — H generates a strongly continuous one-parameter
semigroup of bounded operators S : [0,00) — B (H) which satisfies the decay estimate

IS ()| < Me™™
for all T > 0 and for some constant M > 1.

To proceed, we fix d = 5 and construct a suitable inner product on H = H? (B°) x H? (B®).
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3.5.1 Inner Product
We define

H = C3(B5) x C*(B?)
and consider the sesquilinear forms

(u|v)1 = [ 0;0;0,u1(§)0010%v1 (€)dE + | 0;,0;ua(§)0'0Ive(§)dE + | 0;0;u1(w)0' 070y (w)do (w),
BS BS st

(11|V>2 = azakﬁkul(ﬁ)@@]a]vl (§)d£ + dﬁjug(g)@@]vz(@dﬁ + ” 8juz(w)€)jvg(w)da(w),

B> B

(u|v)3 =5 (u‘v)1 + (u|v)2 + /S4 Uy (w)vg(w)do (W),

(u|v)4 = (u‘v)1 + (u’v)2 —i—/ Oiuy (w) vy (w)do (w),

S4

for all u,v € H. All these sesquilinear forms are derived from a higher energy of the free
wave equation but neither of them defines an inner product on H. To fix this, we also

define

@)= ([ ¢loan) [ ceviow)
where
¢ (W, w(w)) = Dswi (w) + Dsws(w)
and

Dsw; (w) = w'w’8;0;w; (W) + 5w'djw; (w) + 3w (w),
Dswi(w) := w?djws(w) + 3w, (w).

Finally, let

(‘) “HxH— R, (u’v) ::Z(u‘v)i (3.11)
and
Il H— R =/ (). (3.12)

Now, we will show that the norm (3.12) induced by the inner product (3.11) defines indeed
a norm equivalent to || || gs B5)x H2(B%). However, we first need the following technical result.
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Lemma 3.5.2 For all (uy,us) € H, we have

|| s sy = 10wl 25y + (107w 2(ss) + |0 || L2se) + [[uallz2se),s

||u2||H2(IB%5) ~ ||a2u2||L2(IEB5) + ||8U,2HL2(§4) + ||U2||L2(§4).

Proof. The process is the same for both estimates and so we illustrate it on the second
estimate only. Note that, for a generic function f € L*(B®), we have

1
sy = [ [ 715 Pdrtear,

By density, it suffices to consider uy € C*(B?). Now, the fundamental theorem of calculus,
Jensen’s inequality and integration by parts yield

/0 "0y (Pun(sw)) ds| < ( /0 10, (2us(sw)| ds)2

< T/OT |0 (5%us(sw)) |2 ds < /o |0 (5°us(sw)) ‘2 ds

1
= / |25u5 (sw) + 8285102(8(,«))‘2 ds
0

T4|u2(rw)|2 =

1
— / (452|u2(sw)|2 + 54 ’85U2(S(JJ)|2 + 243 (uQ(sw)Gsug(sw) + u2(sw)8suQ(sw)> )ds
0
1
= / (4% us(sw)|* + s Osua(sw)|* + 25°0;|ua(sw)|?) ds
" 1
= 2|up(w)|* + / < — 257 |ug(sw) > + 54]88u2(sw)|2>d5
0
1
< 2|ug(w)? +/ s*|Osua(sw)|*ds
0
1
= 2|ug(w)[? +/ s*|w? Ojug(sw)|*ds
0
1
< 2|up(w))? +/ s*Oug (sw)|*ds.
0

Integrating this inequality with respect to r € [0,1] and w € S* yields the estimate

[uall p2@s) S 0uall 2 sy + 12l 2y -

Replacing uy by 0;us, we find

1
P41 Ghun(rw) [2 < 2/Bsua(w)]? + / 5|00tz (5w)[2ds,
0
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for all i € {1,2,3,4,5}, and hence

Hau2HL2(]}B5) S H82u2HL2(B5) + H8U2||L2(S4) :

In summary, we get

Hu2|lH2(IB%5) S H82U2HL2(B5) + ||8U2||L2(S4) + Hu2HL2(S4) :

This concludes the proof since the reverse inequality is a direct consequence of the trace
inequality (see Theorem 1, page 258, [37]). L

Lemma 3.5.3 The sesquilinear form (‘) in (3.11) defines an inner product on H. Fur-

thermore, the completion of H is a Hilbert space which is equivalent to H.

Proof. From (3.11) and (3.12), we get

Jul? = [ 00,06 TP + | 20,0 €T ualEe

+/ 0;0;u1 (w) 009wy (w)do(w) + | Oyuy(w)iuy (w)do(w)
S* s4

—l—/ ai(?j(?jul(f)ﬁi@k@kul(f)dé+/ Ojug(w)Vug(w)do(w)
BS 54
2

¢ (w,u(w)) do(w)

S4

?

+ /84 ‘u2(w)‘2 do(w) +

for all u € H. We need to show that [ul| ~ a3 @5y x 2 (85), for all u € H. First, note
that it suffices to prove ||ul|gsms)xmn2@s) < [[ul| since the reverse inequality is a direct
consequence of the trace theorem (see Theorem 1, page 258, [37]) and the embedding
L*(S*) — L' (S*). From Lemma 3.5.2, we get

a3 @)y 2@y S [l + [Jur || L2y
and the Poincare inequality on the 4—sphere (see Theorem 2.10, page 40, [42]),

uy — 2 uy (w)do(w)

72 Jas S IVl zass,

L2(S4)

77



together with the embedding L? (S*) — L' (S*) yield

w221y S [Vl pzs + ‘/ uy(w)do(w)
S4

< ull +| [ o)

_|_

Sl + | [ ¢ ) dote)
/S4 w! Ojur (w)do(w) /S ) w! B (w)do (w)

/ w'w? 9;0;u1 (w)do (w)
S4

+ + + /84 Ug(w)do (w)

Shul+ ([ Prufire) + ([ oulaow)

. </ ‘aug(w)l?d"(”); ! (/ () da(wf

S [l

which concludes the proof. L]

3.5.2 Free evolution and decay in time

Now, we focus on the proof of Proposition 3.5.1 and show that a semigroup (solution
operator) is generated and decays in time with a sharp decay estimate. We specify the

domain of L,

D(L) := C*4(B%) x C3(B?). (3.13)
To prove Proposition 3.5.1, we intend to apply the Lumer-Phillips theorem (see Theorem
3.15, page 83, [36]). The following two Lemmas constitute the key property of the sesquilin-

ear forms defined above and verify the first part of the hypothesis of the Lumer-Phillips
theorem. First, we define

Il —R - ;:=1/(]);
for all j € {1,2,3,4,5}, where the sesquilinear forms (‘)J are defined in section 3.5.1.

Lemma 3.5.4 For allu € D(i) and i € {1,2,3,4}, we have

Re(Lulu), < —g||u||§.
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Proof. To begin with, fix an arbitrary u € C*(B5) x C3(B5). On the one hand, the
divergence theorem implies

3

e | 0:0;00(Tu), (000w () = 3 | 0,001 ()T Di0Fur (§)d
B5 B5
5 [ 0800 () TTTw@)do ()
S4
+Re | 0:0;05u(€) 0030 un(€)dE,
B5
Re/ 0:0; (L) () 907us(€)dé = —2 / 0:05u2(€) 0D ua(€)de
BS B5

— Re aﬁjakul (5)81836’%2 (£)d£

B
+ Re /s4 W 0,0;0;u1 (W) DI ug (w)do (w)
- % /S 00,2() T w2} ()
and, on the other hand, we have
e | 0:0; (L) @) F0Tur(w)do(w) = =3 | Didjus() T ur(w)dor(w)
— Re /S4 W 01,0;0;u1 (W) DD uy (w)do (w)
+ Re 5 030511 (W) DI ug(w)do (w).

Hence, we obtain

Re (Lulu), + gHqu =— /s4 0i0juy (w) ' uy (w)do(w) + | A(w)do(w),

y
A(w) 1= 000,01 ()T 01) — 50,002 T () — 500501 ()02 ()
+ Re( k9030, (w W) +Re (aiajul (w)aiaTz(w))

~Re <w akaiajul(w)m).
Now, we use the inequality

1

_ 1
Re(ab) + Re (ac) — Re (be) < §|a|2 |b|2 |c|2 (3.14)
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which holds for all a, b, c € C, together with Cauchy-Schwarz inequality

2
<3 @)Y 00 @) = Y 0005w )
k k k

Z wkﬁk&-@jul (w)
k

to obtain A(w) < 0 for all w € S* and the desired estimate for (Iiu‘u)l follows. For the
second estimate, the divergence theorem yields

B5 B5

—% / 0,09 0:ur (1) T 0T r (@) dor ()
st

+ Re (9i8j6’ju1 (5)813k(9kU2 (g)dé-a
IBS
Re [ 8:9;(Lu),(£)0707us(€)de = —; 0i0juz(§) 0" uy(§)dE
BS B5

—% / 0105115(00) T 0 (@) dor(w)
S4

—Re [ 00" 0pu1(€)0;090;uq(€)dE

BS

—i—Re/ W’ 0;0u2(w) ' O*Opuy (w)do (w),
S4
and, in addition, we have

Re/ 0, (iu)Q(w)OJUZ(w)da(w) = —3 | Ous(w)duy(w)do(w)
S4

S4
- Re/ WrOROjuz (W) D ug(w)do(w)
S4
+Re [ 0'0;0;u1(w)Puy(w)do(w).
S4
Therefore, we get

Re (Lulu), + ;||u||g - —/S4 Dt (@) T (@) dor(w) +/S4B(w)da(w),

where
B(w) := —éaiajajul(w)alakakul(w) — §8iaju2(w)8187u2(w) — éaiUQ(w)ﬁlug(w)
+Re <wj8j8iuQ(w)8i8k8ku1(w)>

+ Re <8qu (W)W) —Re <wk0k8ju2 (w)W)
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As before, we use (3.14) together with Cauchy-Schwarz inequality

< Z ) 10diua()* =Y [9kDiuz(w)

to get B(w) < 0 for all w € S* and the claim for (iu}u)2 follows. For the third estimate,
we use the previous estimates together with Cauchy-Schwarz inequalities

2
Z@iﬁiul(w) < Z 12 Z 0.0 (w)]* <5 1005w ()],
i ij

ZwkﬁkuQ < Z 2 Z |8ku2(w)|2 = Z |8ku2(w)|2 5

and Young’s inequality to obtain

8U2

_ 3 ~ 3 ~ 3
Re (Lu}u)3 + §||u||§ =5 (Re (Lu‘u)1 + §||u||%) + Re (Lu‘u)2 + §||u||§+

#e [ ((Bue),ml + ) o

<-5 9 0;0;u1 (w)0'09uy (w)do(w) — [ Ojug(w)dius(w)do(w)

S4

+ Re /84 <8i82-u1 (w)ug(w) — wrohus (w)ug(w) — %’m(w) ‘2) do(w)
-/ 9;0"uy (w)9;09uy (w)do (w) — 8 o (W) Dy (w)do (W)

+Re/ (8i8iu1(w)u2(w)—wk8ku2( )u2 ——’u2 ’2 do(w
S4

:_% ;0 u1 (w)0;07u (w)dor (w) — ; Otz ()0 (w) dor(w)
s o

— Re /54 9'0,u1 (w)wk Ous (w)do (w) + /S4 C(w)do(w)
< [ clo

C(w) :== —%8i8iu1(w)8j8ju1(w) — l@m(w)@iuQ(w) - %IUQ(w)‘Q

+ Re (ug( )0 Ouq (w )) + Re (826 uq (w )W) —Re (wkakUQ(w)m).
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Inequality (3.14) implies C(w) < 0 for all w € S* and the claim for (f;u‘u)3 follows. Finally,
for the last estimate, we use the previous estimates together Cauchy-Schwarz inequality

< Z (u)k)2 Z |8k8iu1(w)|2 = Z |akaiu1(w)|2
k k k

and Young’s inequality once more to obtain

Z wkaké)iul (w)
k

~ 3 ~ 3 =~ 3
Re (Lu|u), + §Hu]|f1 = Re (Lu|u), + iHqu +Re (Lulu), + §Hu||§+
+ Re / (81 (EU)I(w)aiul(W) + ;dul(w)azul(w)> dO’(W)
S4

< - 5 0;0;u1 (w)0' 0 uy (w)do(w) — [ Oiug(w)dius(w)do(w)

s4
Ao (W)iug (w) — wWFOLOuy (w) P uy (w —1 A (w) Ot (w o(w
#1e [ (Da)d ) - 00T - o) ) o)

= —% 0;0ju1 (w) 009 uy (w)do (w) — % Oyuz(w)0'uz(w)do(w)
st st

—Re 9 Oiuz (W)wkOROuy (w)do(w) + | D(w)do(w)

S4

< [, Do),

D(w) = —§8Z-u2(w)(92u2(w) — §aiu1 (w)Duy (w) — 58,-(9ju1(w)318]u1(w)

+ Re <8¢U2<w)m> + Re (ékug (w)W) — Re (w@ﬁmﬂw)W) )
As before, (3.14) implies D(w) < 0 for all w € S* and the claim for (INJu|u)4 follows. [
Lemma 3.5.5 For allu € D(f), we have
Re(iu!u)5 = —|Julz.
Proof. Fix u € C* (Bﬁ) x C3 (IB?) A long but straight-forward calculation yields
¢ (w D)) = ¢ (@, u(w)) + A% (ww) + @t (@), (3.15)
where Afﬁ stands for the Laplace-Beltrami operator on the 4—sphere, namely

AS' = (9 — W) 0,50 — 41D,
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Now, Stoke’s theorem yields

/ Afj (ul(w) + wjﬁjul(w)> =0
S4
which implies the initial claim. Ll

Summarizing the results of the two previous Lemmas, we get

Corollary 3.5.6 For allu € D(L), we have
Re(Lu|u) < —|[[ul*

Next, we prove that the range of \ — L is dense in H for some A > —1 which verifies the
second and last hypothesis of the Lumer-Phillips theorem. However, we will first need a
technical result.

Lemma 3.5.7 For any F € H*(B®) and € > 0, there exists v € C*(B5) such that the
function defined by

35

hE) = — (67 — £¢) 8;0;0(€) + T 0v(E) + Z“(ﬁ)

satisfies h € C*(B5) and ||h — F||p2(s) < €.

Proof. To begin with, we pick an arbitrary F' € H*(B") and € > 0. Since C*° (B5) is dense
in H*(B®), we pick a function h € C*°(B°) such that ||[F' — h||g2@ms) < 5. We consider the
equation

L : 35 =
—(0% = £¢7)0i050(€) + T 0jv(&) + v (€) = h(&). (3.16)
To solve (3.16), we switch to spherical coordinates £ = pw, where p = [¢] and w = %

Then,

0F — wi(Ew*(€)
p(§)

0;p(€) = wi(€),  Qu'(€) =
and derivatives transform according to

&ou(€) = pdyulpw),
§'E0:0;u(€) = p*Oiu(pw),

. 4 1 g
doju(é) = <8§ + ;8,) + ;Ai ) u(pw).
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Hence, (3.16) can be written equivalently as

( 1)@ (—% + 7p) 9, + % _ %Afﬁ)v(pw} i) (347)

The Laplace-Beltrami operator AS" is self-adjoint on L? (S*) and its spectrum coincides
with the point spectrum

o( =A%) =0, (=A%) = {I(1+3): 1 € Ny}

For each [ € Ny, the eigenspace to the eigenvalue (I 4 3) is finite dimensional and spanned
by the spherical harmonics {Y},, : m € ;} which are obtained by restricting harmonic
homogeneous polynomials in R® to S*. Here, 2; C Z stands for the set of admissible indices
m. Since h € C(BY), we can expand

h(pw) =Y > hum(p)Yim(w)

and we define hy € C®(B?) by

for all N € N. It is well known that

HiL— iLN”HQ(M) — 0, as N — o0

and therefore we can pick N € N large enough so that ”ﬁ_ﬁNHm(M) < §. Then, (3.17) and
the linear independence of Y}, yield the decoupled system of elliptic ordinary differential
equations

& 4 d 35 1(1+3) -
— (1= p%) — —— — 4+ — = ) 1
( ( P ) d,02 + ( p + 710) dp + 4 + pz Ul,m(p) hl,m(p) (3 8)
Setting u;m(p) = pvim(p), (3.18) yields an equation for wu;,, that is
d> 2 d 15 (I+1)({+2) -
— (=) =+ (== R B — phum(p). (31
( ( P ) dp2 + ( p + 5:0) dp + 4 + P2 ul,m(p) P l,m(p) (3 9)

Note that this is a second-order linear ordinary differential equation with four regular
singular points, p = —1,0, 1 and co. By the reflection symmetry, these four singular points
can be reduced to three and therefore, (3.19) can be transformed into a hypergeometric
differential equation. First, consider the homogeneous version of this equation, namely we
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set the right hand side equal to zero. Now, we introduce a new dependent variable. The
transformation wuy,, (p) = p!wm(2), 2 = p? brings (3.19) to a hypergeometric differential

equation in its canonical form

2(1— z)wf’m(z) + (c —(a+b+ 1)2) w;m(z) — abwy,(2) =0, (3.20)
where
52 1 T2 542
a=—— b=atg=—— c=2=——.

Then, (3.20) admits two solutions

1 13
¢0,l(2> = <a,a—|— 57206; 2) ) ¢1,l(2) = o (a,a + 57 5; 1- 2) )

which are analytic around z = 0 and z = 1 respectively, see [68], page 395, 15.10.2 and
15.10.4. First, notice that both ¢o; and ¢;; can be expressed in closed forms as

Pou(z) = \/11_—2 (1 n jﬁ) gH, (3.21)

Pule) =57 zz;m <(1 - Jlm> - (ﬁ) 2H> ’ (3:22)

see [68], page 387, 15.4.18 and [68], page 386, 15.4.9. Second, we argue that ¢o,; and ¢y,
are linearly independent. Indeed, we assume that there exist constants cy;,c1; € C such
that

co1¢P0,1(2) + c1,01,(2) = 0.

Now, ¢1; = 0 since lim, ¢+ ¢1 (%) = oo whereas lim, o+ ¢o,(2) < co. Furthermore, ¢y; = 0
since lim, ,1- /1 — z¢1 (%) < oo. For later reference, we note that the function

Sra(2) = (1 —2)"26(2)

is also a solution to (3.20), see [68], page 395, 15.10.4, where

N 11
¢1(2) =2 P (G,Cl— §7§§1 - 2)

is analytic around z = 1, see [68], page 384, 15.2.1. Since {¢o,, ¢1,} is a fundamental
system for (3.20), we get that there exist constants oy, f; € C such that

G0,(2) = aypry(z) + 51@231,1(2)-
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Transforming back, we obtain two linearly independent solutions 1;,(p) = pl+1¢j,l(/)2)a
j € {0,1} to the homogeneous version of equation (3.19) as well as ¥y ;(p) = p'1é1(p?).
In particular, we get that there exist constants oy, §; € C such that

Bou(p) = arr(p) + Bu(1 — p) "2 4(p),

where 1&1,1 is analytic around p = 1. Moreover, 9, is analytic around p = 1 since ¢;;
is analytic around z = 1, see [68], page 384, 15.2.1. Next, we find the Wronskian. A
straightforward calculation yields

_9l+3
W (%o, 1) (p) = 2;03[+2W(¢0,l, ¢1,z)(ﬂ2) T g (3.23)
p* (1 —p?)2
By the variation of constants formula, a particular solution to equation (3.19) is given by
Urm(p) = —%ou(p)111(p) — ra(p)Lou(p), (3.24)
where
P 1
Io(p) = / Yo,(8)Zim(s)ds, Li(p) := / V1,1(8) Zim(5)ds,
0 p
and
Shym(s 1 1 37
Zim(s) == () =(1—-95)2&m(s), &m(s):=— (1+ s)ésghhm(s).

2l+%

(1= s2)W (o, 11,2)(s)

Notice that &, € C*([0,1]) since hy,, € C*([0,1]). We claim that u,, € C* (0,1]. To
prove this, we first observe that the quantity

1
0

i = / (1= 5)40u(8)€um(s) = o / (1= )} hra(p)um(s)ds + fi / B14(5)Eum(5)ds

is a real number since both integrands are continuous functions on the closed interval [0, 1].
Hence, we can write

1 L 1 R
Toi(p) = ciym — Oél/ (1 —5)2111(5)&m(s)ds — 51/ V1,1(8)&1,m(5)ds.
p P
Moreover,
V1a(p)Loi(p) = crm¥ra(p)
1 L 1 N
—atualp) [ (1= )0l ($)ds = Gitnalp) [ dua(s)eun(s)ds,
P p

1

You(p)14(p) = crtbra(p) | (1= 8)2411(s)Em(5)ds

—

[N

A1 = p) up) / (1= )3 ¢h0()€1m(5)ds,
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and hence
U (p) = —CLm¥P11(p)
L 1~ 1 1
+ 5l¢1,l(P)/ Y1,1(8)&m(s)ds — Bi(1 — P)%ﬁ,l(ﬂ)/ (1 = s)24p14(5)&m(s)ds
p P

Obviously, the first and the second terms belong to C'* (0, 1]. Therefore, we focus on the
third term and define

Uin(p) = (1 — ) 41.(p) / (1= 8)14(5)um(s)ds

Now, we choose an arbitrary N € N and show that the limit

N

lim — 2
Jim 2% ~Usm(p) (3.25)

exists. Fix sufficiently small § > 0, p € (1 —9,1). Then, the Taylor series expansion yields

glm Zazlml_ +RN+1(1—P)

for some coeflicients a;,,,. Here, Ry/(1—p) stands for a remainder term which may change
from line to line and satisfies the estimates

[Ru(1=p)| < K1 —=p)™, |05Ru(1 = p)| <A1 = p)™F,

forall k=0,1,..., M and p € (1 —6,1) and for some constants M € R, K, A > 0. Recall
that v, ; and v ; are analytic functions around p = 1 and hence we can write

wll Zbul—Pia %l Zﬁzl

=0

for some coefficients b;; and €;;. Then, we have

(1= p)2¢11(p)&m(p mel—mk*wmm( —p),

k=0
/ (1= ) a(5)6m(s) = p>k+%+RN+2+%<1—p>,
P k:O
(1—p) %/ (1= )3 11(5)Em(s) = 4 Rya(1— ),
P k:O
~ 1 1
dua(p)(1 — p)} / (1= 5 (m(s) = 3 Corm(1 = 1 + Rga(l - p).
P k=0
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for some coefficients ;. ,, and (y .. Therefore,

dN dy
WUl»m(P):W<ZCMm1—P)k+1+RN+21_ > Z'fhlml— T+ Ra(1 - p),

for some coefficients 7;;,,. Consequently, the limit (3.25) exists and we get that u;,, €
C>(0,1]. Finally, u € H*(B°%) N C(B>\ {0}) and translating back we get v € H?*(B®) N
C>(B5 \ {0}). By elliptic regularity, we infer v € C*°(B®) N C>(B5 \ {0}) which implies
v € C®(BP) as desired. O

Lemma 3.5.8 The range of% — L is dense in H.
Proof. Since (C’OO(IB?))2 is dense in H, it suffices to show that

_ 3 -
Vie (CXE) andves o, g (5-L) -l <c

First note that, for any u € D(i), the equation <§ — f) u = g reads

up(&) = Jur(€) + Eui(€) — 1 (8),
—70juy(€) + E'0us(€) + Fua(E) = ga(€)

Inserting us into the second equation, we obtain

(Y — €€, (€) + TEDan(€) + ua(6) = G,

where

G(O) = 0(6) + 201(6) +E0,01(6)

Now, pick an arbitrary f € (COO (@))27 e > 0 and apply Lemma 3.5.7 to the function

F(&) = Fl6) + L F1(E) +E0,11(0)

We infer the existence of a function v € C*(B?) such that

H(E) 1= — (59 — £€) D.0,0(E) + TE0,0(E) + u(e)
satisfies h € C*(B5) and ||h — F| g2y < €. Now, define
u1(§) = v(§),
us(&) = Sur(§) + &05ui (&) — f1(),
{ 01(6) = £(8),
2(§) = h(&) = F(§) + f2(E).
Then, by construction, we have u € D(f;), (% - E) u=gand |f —g| <e ]

Proof of Proposition 3.5.1. It follows immediately from Corollary 3.5.6 and Lemma 3.5.8.
L]
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3.6 Modulation ansatz

To account for the Lorentz symmetry we use a modulation ansatz. To be precise, we allow
for the unknown parameter o to depend on 7, set a(0) = 0 initially and assume (and later
verify) that a., := lim,_, «(7) exists. Then, we define

D(7) = W(1) — Wyurn (3.26)

where W, are the Lorentz transformations defined in (3.10) of the static blowup solution
solution W,. This ansatz leads to an equivalent description as an evolution equation for
the perturbation term @, that is

0, ®(7) — (L+ L, _)®(7) = Lo ®(7) + Nair) (2(7)) — 9, T ), (3.27)

where

~

and L;(T) denotes the linearized part of the nonlinearity N, i.e

/ . 0 - 6
a(T) (11(6)) = (VQ(T)(f)lh(f)) ) Va(‘r)(g) = (AO(Q(T)) — Aj(a/(/;—))gj)z (329)
and N () stands for the remaining full nonlinearity
Na(T)(u) = N(u -+ ‘I/a(7)> - N(\IIQ(T)) - ;(T)u. (330)

The advantage of this formulation is that the left hand side of (3.27) consists (besides
0. ®) only of linear and T—independent operations on ®, whereas the right hand side is
expected to be small for large 7. Therefore, the right hand side of the equation (3.27)
will be treated perturbatively. Note that, for sufficiently small a, we have Ag(a) = O(1)
whereas A;(a) = O(a) which shows that

IVl s <1 3.31
I U s e (3.:31)

provided that « is sufficiently small. As we will now prove, this fact, together with the
compactness of the Sobolev embedding yields the compactness of the operator L/ for
sufficiently small a.

Lemma 3.6.1 Let a € R® be sufficiently small. Then, the operator L., defined in (3.29)
1s compact. In particular, the operator

L,:=L+1L} (3.32)

generates a strongly continuous one parameter semigroup of bounded operators S,, : [0,00) —

B(H).
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Proof. To begin with, we fix a sufficiently small. First, we prove that L/ is compact.
We pick a bounded sequence {u,}5°,; C H. The compactness of the Sobolev embedding
H? (B5) — H* (1835) yields the existence of a subsequence {uy, }>°, in H? (IB%5) which is
Cauchy in H? (1835). Now, (3.31) together with Holder’s inequality imply

||L/Oéukn - L:)cuka = ||Va (uLkn - ul,km)||H2(BS) S ||u17kn - ul,k?m ||H2(IB§5)
for sufficiently large n,m € N. This proves that {L'uy, }>°, is Cauchy in H and the claim

follows. It remains to apply the Bounded Perturbation Theorem (see Theorem 1.3, page
158, [36]) to show that L, := L + L/, is the generator of a strongly continuous semigroup

(Sa(T))7->0' L

3.6.1 Solution to the full linear problem

Due to Lemma 3.6.1, we can write the solution to the linear part of (3.27),

0, ®(r) = (L+ L) ®(7),
®(0) =ueH,

®(7) =S, (T)u, (3.33)

provided that a, is sufficiently small which is verified later, see (3.51). In addition to the
existence of the semigroup S,_, we need growth estimates in time. By Proposition 3.5.1
and Lemma 3.6.1, the Bounded Perturbation Theorem (see Theorem 1.3, page 158, [36])
yields

Sa (7)]| < Me(FHHMILas )7,

as long as a., is sufficiently small. However, such a growth estimate would not suffice and
hence we turn our attention to the spectrum of the generator L.

3.7 Spectral Analysis

In this section, we intend to establish a useful growth estimate for S, for sufficiently small
a and therefore we turn our attention to the spectrum of the generator L,. We start our
analysis with the case a = 0 where the Lorentz boost A(0) is the identity. Therefore, the
potential V4 in the definition of Ly, see (3.29), is constant in . Consequently, the spectral
equation can be solved explicitly and solutions belong to the hypergeometric class, as it
turns out. The advantage here is that we can use the connection formula which is well
known for this class. Then, we proceed to the case where o # 0 but we are only interested
in small o which allows for a perturbative approach, as already explained above.
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3.7.1 The spectrum of the free operator.

We can use the decay estimate for the free semigroup (S(7))_., from Proposition 3.5.1 to

>0
locate the spectrum of the closure L of the free operator L. As a matter of fact, by [36],
p. 55, Theorem 1.10, we immediately infer

o(L) C{AeC:ReX < —1}. (3.34)

3.7.2 The spectrum of the full linear operator for a = 0.

To begin with, we use the fact that L], is compact for sufficiently small a to see that it
suffices to consider the point spectrum of L,,.

Lemma 3.7.1 Let o € R® be sufficiently small. We have
o(La) \ 0(L) C 0p(La).

Proof. Fix a € R® sufficiently small and pick A € o(L,) \ o(L). From the identity A\ —
L, = [1 = L RL(A\)](A — L) we see that 1 € o(L,Ry()\)). Since LRy ()) is compact,
it follows that 1 € o,(L ,Ry()\)) and thus, there exists a nontrivial f € H such that
1 — L/ Rr(MN)]f = 0. Consequently, u := Ryg(A)f # 0 satisfies (A — L,)u = 0 and thus,
A € o,(Ly). ]

Now, we prove the following result.
Proposition 3.7.2 We have
o(Lo) C{Ae C:ReX < -1} U{0,1}.

Proof. To prove this result, we argue by contradiction. To begin with, fix a spectral point
A € o (Lp) with ReA > —1 and X\ # 0,1. Then, (3.34) implies that A ¢ ¢ (L) and Lemma
3.7.1 yields X\ € g, (Ly). Consequently, there exists a non-trivial element v € D(LO) CH
such that ()\ — LO)V = 0. Then, for v = (v, v2), we get

v2(§) = (A + Dor(§) + &7 01 (8),
—9;v1(&) + £ 0iv2(&) + (A + 2)v2(&) — 6u1(€) = 0.

Inserting v, into the second equation, we obtain

— (07 = €€7) 0:0501(€) + 2 + D01 () + (A + DA +2) = 6)ui(€) =0,

To solve this equation, we switch to spherical coordinates §& = pw, where p = [£] and
w = é—l Then,

0F — w;(Ew*(€)
p(§)

0ip(€) = w;(€), 9wt (€) =
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and derivatives transform according to

&0,v1(€) = pdyu(pw),
§E0:0501(€) = p* o0 (pw),

. 4 1
Gjajvl(f) = <0§ + ;8p + ?Ai ) vl(pw).

Hence, the spectral equation above can be written equivalently as

[— (1—p%) 02— (% - 2(A+2)p>ap+ ((A+ DA+2) — 6) - %Aff vy (pw) = 0.

By elliptic regularity, we infer v; € C*°(B®) N H3(B®). Therefore, we may expand

[e.9]

nlpw) =Y Y vim(p)Yim(w).

1=0 me

Inserting this ansatz into the spectral equation above, we obtain the decoupled system of
ordinary differential equations

[_(1_p2)j_;_ (%_2(/\+2)p>dip+((A+1)(A+2)—6+l(l;3))

Ul,l,m(p) =0.

(3.35)

From now on we suppress the subscripts. First note that this is a second order ordinary
differential equation with four regular singular points: —1,0,1 and oco. Again, by the
reflection symmetry, these four singular points can be reduced to three and therefore, (3.35)
can be transformed into a hypergeometric differential equation. To do so, we introduce the
change of variables v(p) = p'w(z) with z = p? and we get

2(1—2)w"(z) + (c —(a+b+ 1)z>w’(z) —abw(z) =0 (3.36)
where
a:= %()\—i—l—l), b= %()\—i-l—i—él), c::g—i-l.

The functions

wo(z) = oF} (a,b;¢; 2),

wy(z) =2""%F (a—c+1,b—c+1;2—¢;2),

wi(z) == oF (a,b;a+b+1—¢;1—2),

Wy (2) = (1= 2) "% F (c—a,c—bc—a—b+1;1—2),
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are all solutions to (3.36), see [68]. First, note that w; is not admissible since the initial
condition Re\ > —1 yields

Re(c—a—b)=1—Rel <2

and thus w; ¢ H3(3,1) whereas D(Ly) C H. Similarly, @, is not admissible either

since it would lead to a solution vy, that behaves like p‘g as p — 0+ which contradicts
Um € C[0,1). Hence, we are left with wy and w; and since both {wg, we} and {wy,w;}
are fundamental systems for the hypergeometric equation (3.36) we infer that wy and w;
must be linearly dependent. In view of the connection formula [68],

F(e)'(c—a—10) Fe)l'(a+b—c) -

w(z) = T e —p) 1) TlaTm) 1)
the linear dependence of wy and w; implies that
L(e)'(a+b—c) 0

['(a)T'(b)

However, the gamma function has no zeros and therefore we see that a or b must be a pole
of I'. The latter means —a € Ny or —b € Ny. The first condition, —a = n for some n € Ny,
yields 2n < 2 — [ which is possible only if n = 0 and [ € {0,1} which in turn implies
A € {0,1} and refutes the initial assumption. The second condition, —b = m for some
m € Ny, yields A = —2m—4—[ and the initial hypothesis on A yields —1 <ReA = —2m—4—]
which is a contradiction, namely 3 < —(2m + ). ]

Remark 3.7.3 The spectral equations for A =0 and A = 1 respectively read

— (67 = £'€7) 8,0;01(€) + 4E" 01 (€) — 41 (€) = 0,
— ((5” - fzfj) &@-vl (f) + 6§i8iv1 <§> =0.

It is straightforward to check that, for all fived j € {1,2,3,4,5}, v1(§) = & solves the first
equation whereas the constant function v1(§) = 1 solves the second equation. Consequently,
the eigenspaces for the isolated eigenvalues X = 0 and A = 1 of the operator Ly are spanned
respectively by

hO,j(é) - aaqua(fﬂaz() = \/5(5] > y ] € {172737475}

2¢i
@l = ()

and hence {0,1} C 0,(Lg). Finally, notice that the above derivation shows that the geo-
metric eigenspaces of 0 and 1 are 5—dimensional and 1—dimensional, respectively.
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Note that since the operator Lg is highly non self-adjoint, it is not straightforward to see
that the algebraic multiplicity of the isolated eigenvalues A = 0 and A = 1 are equal to
5 and 1, respectively. Now, we focus on proving this result rigorously. To be precise, we
follow [31] and use the fact that the eigenvalues A = 0 and A = 1 are isolated to introduce
two (non-orthogonal) Riesz projections Qg and Py, namely

1
Q= o [ Ru(c
1

Po=— | R d
0 277-7/ " LO(C) C’
where 79,7 : [0,1] — C stand for the circles centered at A =0 and A =1,
1., . 1 ...
Yo(s) == 5627”57 m(s) =1+ 5627”8,

respectively. These projections decompose the Hilbert space of initial data # into rg(1—Qy)
(stable space for A = 0) and rgQ (unstable space for A = 0),

H=1g(1 — Qo) ®18(Qo0)-
Similarly, for Py. We show that
mq(A = 0) :=rank Qo = dimrg Q,,
mq(A = 1) := rank Py = dimrg Py,
are equal to 5 and 1 respectively.

Lemma 3.7.4 We have dimrg Qo =5 and dimrg Py = 1.

Proof. Since the process is the same for both quantities, we illustrate it on Qg only. We
refer the reader to [43] for the following standard results. The projection Qp commutes
with the operator Ly and thus with the semigroup Sy(7). Moreover, Qg decomposes the
Hilbert space as H = M & N, where M :=rgQ and N := ker Qy = rg(1 — Qo). Most
importantly, the operator Ly is decomposed accordingly into the parts Lo o¢ and Lg o on
M and N, respectively. The spectra of these operators are given by

o (Lon) = o(Lo) \ {0}, o (Lom) = {0}. (3.37)

Finally, rg Qo C D(L). To proceed, we break down the proof into the following steps:

Step 1: We prove that rank Qp := dimrgQy, < +oo. We argue by contradiction and
assume that rank Qo = +o00. Using [43], p. 239, Theorem 5.28, the fact that L; is com-
pact (see Lemma 3.6.1), and the fact that the essential spectrum is stable under compact
perturbations ( [43|, p. 244, Theorem 5.35), we obtain

rank Qp = 400 = 1 € 0.(Lg) = 0.(Lo — L) = 0.(L) C o(L),
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which clearly contradicts (3.34).

Step 2: We prove that (hgi,hgo,hos, hos, hos) = rgQp. It suffices to show rgQy C
(ho1,ho2,hg 3, g4, ho5) since the reverse inclusion follows from the abstract theory. From
Step 1, the operator Ly a¢ acts on the finite-dimensional Hilbert space M = rg Qo and,
from (3.37), A = 0 is its only spectral point. Hence, Ly is nilpotent, i.e., there exists a
minimal k£ € N such that

(Lo) u=0

for all u € rgQy. Now, the claim follows immediately if & = 1. Indeed, if k£ = 1, then
rg Qo = ker Ly = (hg 1, ho o, ho 3, ho 4, ho 5) which shows that dimrg Qp = 5. We proceed by
contradiction and assume that k& > 2. Then, there exists a nontrivial function u € rg Qy C
D(L) such that (Lo a)u is nonzero and belongs to ker(Lg o) C ker(Lg). This means that
u € rg Qo C D(L) satisfies Lou = f, for some f € ker Ly. A straightforward computation
shows that the first component of u solves the second order differential equation

— (67 = €'¢7) Bi0jur(€) + 480 () — 4w (§) = — f(€),

where

F(&) == &0 /1(€) + 2f1(8) + f2(€)

and f = (fi, f2). We switch to hyper-spherical coordinates ¢ = pw where p = [¢| and
w = é—| Then,

d? 4 d 1
(1= — — (2 —4p) — —4— A8
[ ( p)dp2 ( p) dp p*

P ur(pw) = f(pw).

Since

1 5
f < ker(LO) = <h071, h072, h(),g, h()74, ho75> = <\/§ (Qil) y T \/§ (2£§5> >a

we infer that
2
F&) =& = [¢law’ = ¢ ) amYim(w).
m=—2

Here, a,, # 0 for at least one m € {—2,—1,0,1,2}. Without loss of generality we assume
that ag = 1. An angular momentum decomposition as in the proof of Proposition 3.7.2
leads to the inhomogeneous ordinary differential equation

Ul,l,o(p) =p, (3-38)




which can be simplified to

4 4 p
" / —
U1,1,0(P) + ;Um,o(P) - ;ULLO(P) 1 02

(3.39)

This is a second order ordinary differential equation and one can readily verify that {¢(p) =
p, ¥(p) = p~*} is a fundamental system for the homogeneous version of (3.39). We
calculate the Wronskian W (¢, 1)(p) = —5p~* and the variation of constants formula yields

! P 2 1 1+p 1 14, 14
= — —log (1 — 1 - — = -
u11,0(p) p4+cop+ 10 og( p)—|— 10,1 og(l_p 5 p+3p _|_5p

for some constants cg,¢; € C. Now, (-)~* ¢ L*(0,1) whereas u; 1 € L*(0,1) and therefore
we must have ¢; = 0. This fact leaves us with

1 1+ 1 1 1
ur10(p) = cop + s log (1 - p2) + log ( p) 50t (p +-p°+ _p5>

10 10p* 1—p) B5p 3" 75
which behaves like (1 — p)log(1 — p) near p = 1 and thus, does not belong to H3. This

contradiction shows that we must have £ = 1 and thus Qg has rank equal to 5. Similarly,
one can show that P( has rank equal to 1. L]

3.7.3 The spectrum of the full linear operator for o # 0.

Now, we assume that o # 0 is sufficiently small and we will show that the spectrum o(L,,)
is close to o(Lg). More precisely, we work towards proving the following result.

Proposition 3.7.5 Let a € R® be sufficiently small. Then,
3
o(La) C {/\ € C:Rex < —1} u{0,1}.

However, we start with some useful properties of L,. The first crucial observation is that
L/, depends continuously on a.

Lemma 3.7.6 There exists 6 > 0 sufficiently small such that
L = Ll < e = 81,
for all a, B € E.
Proof. Tt follows from the fundamental theorem of calculus, see Lemma 4.4 in [31]. U]

The second observation is that spectrum of L, does not differ too much from the spectrum
of Ly when « varies in sufficiently small and compact domains of R®.

96



Lemma 3.7.7 There exists 6 > 0 sufficiently small such that
A€ o(Lg) = X € o(La)
provided |o| < dmin{1, ||Ry,(\)||7'}.
Proof. Tt follows from Lemma 3.7.6 and the identity
A=La = (1+ Ly — Ly) Re, (V) (A = L),
see Corollary 4.5 in [31]. ]

The next result shows absence of spectrum points outside a sufficiently large neighbourhood
of the origin. To be precise, we provide a uniform bound on the resolvent operator of L,
on the set

Qo = {)\ €eC: Rel> —2} \ Q05

where

Qk’o,wo = {)\ ecC: Rele |:—§1, k0:| , Im) € [—WD,WD]} ,

Lemma 3.7.8 Let ko, wo > 0 be sufficiently large and § > 0 sufficiently small. Then there
exists a positive constant C' such that the resolvent Ry, ewists on . , —and satisfies the
uniform bound

IRe. (M < C,
for all X € Q) . and a € B,
Proof. Let A € ) . The identity
(A =La) = 1 = L,RL(N)](A - L)

implies that it suffices to show smallness of L/ Ry, (\) which in turn follows from choosing
ko, wo > 0 sufficiently large and the bound

1
ReA +1

R (Mf| < I]

which follows from semigroup theory, see [36], page 55, Theorem 1.10. For more details
see Lemma 4.6 in [31]. O
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Remark 3.7.9 A straightforward calculation shows that the eigenspaces for the isolated
eigenvalues A = 0 and A = 1 of the operator L, are spanned respectively by

~( Ao(@) (Ag(@) — Aj(a)eh)
B.(8) = (M%(a) (Ao(ar) - Aj<a>sﬂ'>‘3) ’
ha,j(f) :801\];’&(5)7 J € {1’273747 5}

and hence {0,1} C 0,(L,). Finally, the above derivation shows that the algebraic multiplic-
ities of the eigenvalues 0 and 1 are equal to 5—dimensional and 1—dimensional, respectively.

With these results at hand we can now prove Proposition 3.7.5.

Proof of Proposition 3.7.5. To start with, we choose kg, wy sufficiently large so that Q’ w &

p(Ly) (Lemma 3.7.8) and § sufficiently small so that 0, ., C p(L,) for all |o| < = where
M := max{1, SUDceany, ., |IRL,(¢)||} (Lemma 3.7.7). Now, we define the pl“OJeCthH

1
Ptotal . 2_ / RLa (C)dC
T 8Qk0v“’0

Lemma 3.7.6 shows that P depends continuously on « and therefore, from Lemma
4.10 page 34 in [43], it follows that rg(P!) are all isomorphic to one another and the
rank P = dim rg P! is constant for all o and Lemma 3.7.4 shows that dim rg P{'® =
6. In addition, the total geometric multiplicity of the eigenvalues A = 0 and A = 1 equals
6 and since P! has rank 6, there can be no other eigenvalues besides A = 0 and \ = 1
in Q.- In addition, the algebraic multiplicity of the eigenvalues 0 and 1 must be 5 and
1 respectively. L]

3.7.4 Growth estimates for the full linearized problem

The above spectral analysis leads to a description of the full linearised evolution. In
particular, we start by partitioning the space of initial data H into disjoint parts and we
establish growth estimates for the semigroup S, in each of these parts. Namely, we define
the projections

Q. = Ry, (¢)d¢,
27rz/ L. (Q)dC

Poi= o [ RanlOc

where 79,7 : [0,1] — C stand for the circles centered at A =0 and A\ =1,

1 .. 1 ...
10(s) = 5, (s) = 1+ 5E¥,
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respectively. By remark 3.7.9, we have

g Q. = <ha,17 ha,27 hoz,37 ha,4, ha,5>

and hence we may write

5

Q.f = Z ajha,j

J=1

for coefficients a; € C and for all f € H. We define the projection onto the subspace
generated by h, ;, that is

Qo it == ajha

for all f € H. We show that the solution operator grows exponentially on rg(P,), is
constant in time on rg(Q,,;) and decays exponentially on the remaining infinite-dimensional
subspace.

Lemma 3.7.10 Let o € R® be sufficiently small. Then, the projections P, and Q,; for
Jj€{1,2,3,4,5} have rank one and commute with the semigroup. In addition,

Sa(T)P, = €"Py,,
Sa(7)Qa; = Qo
1Sa()Pall £ e 5Pl
where f’a =1-—P, — Q.. Furthermore,
rg(Pa) = (ga),
rg(Qay) = (hay), J €{1,2,3,4,5},
where g, and h, ; are eigenfunctions of L, with eigenvalues 1 and 0, respectively.

Proof. The growth estimates follow from the Gearhart-Priif Theorem ( [36], page 302, The-

orem 1.11) since Lemma 3.7.5 and Lemma 3.7.8 yield supgec>_3 IRL, (()Pa|l < co. The
remaining statements are consequences of Lemma 3.7.5. For more details see Proposition
4.8, page 30, [31]. ]

Remark 3.7.11 It follows that Qa jQax = 0;xQa,; and Qu;Po =PoQq; = 0.

3.8 Non-Linear Estimates

In this section, we establish Lipschitz-type estimates for the eigenfunctions g,, h, ;, the
projections P,, Q, the semigroup S, as well as for the nonlinearity N,. These estimates
will be used later for the main fixed point theorem. To begin with, we prove the following
result.
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Lemma 3.8.1 For all o, 3 € R5 and for all j € {1,2,3,4,5}, we have

Igo — sl + o =gl S Jo =B, (3.40)
[Po = Ppl| + |Qa — Qpl| S v — 4], (3.41)
[Sa(7)Pa = Sp(T)Ps|| S o — Ble2, (3.42)

for all 7 > 0.

Proof. The estimate (3.40) follows immediately from the fundamental theorem of calculus.
Furthermore, the estimate (3.41) follows from a Lipschitz-type estimate for the resolvent
operator, namely

IRL, (A) = R, (W[l S IRz, (MR, (M[la = 3],
which in turn follows from the identity
AT'-B'=B'(B-AA",

valid for all invertible operators A and B. Finally, we establish the estimate (3.42) for the
semigroup. To do so, we first observe that the function

Sa(T)f)au — SB(T)f)ﬁu
o = ]

for u € D(L) C H, solves the initial value problem

Do p(7) 1=

~ L.P, — L3P ~
0ra(r) = LaPatas(r) + =0 —7—8s(1)Psu.
P, - P,
PO =0

The key observation here is that
L.P, - LsPs=L, - L, +Ps— P,

and therefore the apparently unbounded operator L.P, — ngi\ig is in fact bounded, that
is

|LoPo — LsPs|| < o — 3].

Now, it remains to apply Duhamel’s principle, write down the general solution formula for
®, 5(7) and use the previous estimates. For more details see Lemma 4.9 in [31]. U]
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Next, we establish a Lipschitz-type estimate for the nonlinearity N,. To begin with, recall
(3.9), (3.29) and (3.8), i.e.,

SEAN

and
V2
o(a) — Aj(a)&r

Furthermore, recall that Ap(or) = O(1) whereas A;(a) = O(«) for all sufficiently small
a € R?. Hence, we find € > 0 small enough so that

/ - 0 a2 .
L O = (1 )+ 1ol = 32O, 0l =

sup sup ||| ey S 1 (3.43)
lol<e 5€{0,1,2,3}

A direct calculation shows that the full non-linearity defined in (3.30) can be written as
follows

N, (u) = N(u+¥,) — N(W,) — L.u = (N(wz, u1>> , (3.44)

where
N(1a(€),u1(€)) = 3va(&)ui(€) + ui(€).
Also, we define
M (0a(8),u1(€)) == BN (¥a(€),u1(£)) = 6¢a(E)ur(€) + 3ud(€).

Finally, we write ||f|| := [|f|s where H := H*(B®) x H?(B®). We prove the following
result.

Lemma 3.8.2 Fix sufficiently small o € R® and sufficiently small § > 0. Then, we have
INa(w) = Ns(W)[| < (Il + [vl) [l = v+ ([l + [v]*)le - 8], (3.45)
for all u,v € H with |[u|| <6 and |v|| < & and for all o, f € BY.

Proof. To begin with, we fix sufficiently small 6 > 0, sufficiently small o € E and pick
any u,v € H with [Ju|| < ¢ and ||v|| <. First, we show that

[Na () = No(v)[| < la =i (]l +v]) (3.46)

Notice that the function G(€,¢) := M(1ha(£), ¢) = 61 (€)C + 3¢2, (€,¢) € R® x R belongs
to C*°(R® x R;R) and G(&,0) = 0. Furthermore, for any compact set K C R, we have
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9¢.G € L™ (R® x K), for all multi-indices a with || < 4, due to (3.43). Consequently,
Moser’s inequality (see [70], p. 224, Theorem 6.4.1) and Sobolev extension imply

| M (o 0) | 3wy S ]| s 89y, (3.47)

for all w € H3(B%). For any fixed o € [0, 1], we define (o) := ou; + (1 — o)v;. Now, since
3> g, the algebra property

1/ 9lls @) S W f Nl s e gl s ey (3.48)
holds and we can use this together with (3.47) to estimate
||Na(u) - Na(v)” = N(d@y ul) - N(¢aa UI)HHZ(BS)

S HN<¢Q; ul) - N<wa7 Ul)HHS(Bs)

_ ‘ / 0N (¢, )

H3(B5)

(uy —vl)/o 32N(¢a7C(U))dJ

H3(B%)

/0 N (e, C(0))do

1
< _
Sl = w1l [ .

1
S s = vl [ 16y do
0

< Jlur = o1l sgar
H3(B5)

M(ar ()]

1
Sl = oalsn [ (o lunlasgany + (1= ) ollne) do
0

< = 01l gsgusy (I sy + 0 s o)
S e =l (lull + [v])-
To complete the proof, it suffices show that

INa(w) = Na(w)| < llull77s o)l = 81,

which is a consequence of the fundamental theorem of calculus. Indeed, we fix o, 3 € R®
sufficiently small and let () := t5 + (1 — t)a, t € [0,1] be a parametrisation of the line
segment E[a, (] joining « and 3. Then,

Vo — g = y) — Yya) = /

5 1
Oy - dl =" (5 — aa)/ 8,50 oy dt,
Ela,f] j=1 0
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and the triangle inequality implies the bound

5
10 (o = ) N2y S Y 167 = | sup ] 10705505 25y S 18 — e,

J=1 s€E[a,B

for all m € {0,1,2,3}, due to (3.43). Therefore, (3.48) yields

INa(u) = Na(w)|| = [[3ui (e — vs)lln2ees) < 1367 (¢ — ¥5) | maes)
S Nl s es) 1¥a — Vsllaaes) S lwallfses)la — B,

which concludes the proof. L]

3.9 The modulation equation

To begin with, we apply Duhamel’s principle to rewrite the modulation equation (3.27)
coupled with initial data in a weak formulation. Due to (3.33), we may write the Cauchy
problem

{ 0. ®(1) — (L - L’%O)CIJ(T) = ﬁa(f)q)(T) + No) (R(7)) — 0; Worry,
P(0) =ueH,

as an integral equation, that is
d(7) = S (T)u+ / Sae (7 = 0) (La() () + Nago) (B(0)) — 0o ) o, (3.49)
0

provided that a., is sufficiently small which we later verify, see (3.51). We use this formu-
lation to define the notion of light-cone solutions.

Definition 3.9.1 Fiz o € R® sufficiently small. We say that u : Cr — R is a solution
to (3.5) if the corresponding ® : [0, 00) — H belongs to C([0,00); H) and satisfies (3.49)
for all 7 > 0.

Consequently, in order to establish a solution u = u(t, ) to the initial Cauchy problem (3.5)
we need to construct a global in 7 solution ®(7) to (3.49). To prove the existence of a global
solution, we would like to apply a fixed point argument to the integral equation (3.49).
However, the solution operator S, _ for the linearized equation has two unstable subspaces
12 Q,.., 1g P, which appear due to the symmetries of the original equation, namely the
Lorentz and time-translation symmetry, respectively (Lemma 3.7.10). Specifically, initial
data from rg Q.. and rgP,_ lead to solutions which stay constant or grow exponentially
in time, respectively. These growths prevent us from applying a fixed point argument
directly. We overcome this obstruction as follows. In the first case, we choose the rapidity
parameter & = «(7) in such a way that this instability is suppressed. In the second case,
we proceed differently and add a correction term to the initial data which stabilizes the
evolution. In both cases, we use fixed point arguments to establish existence and uniqueness
of the respective modified equations and hence we first introduce the Banach spaces.
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3.9.1 Banach spaces
We define the following sets.

X :={2 € C([0,00);H) : | @[[x < o0},
X :={a e C'([0,00);R’) : a(0) = 0 and [|o||x < 00},

endowed with the norms

l7'
]l == sup (e2[[(7)]])
>0

1.
ol x := sup (e27]a()| + [a(r)]).
T>

on X and X respectively. Furthermore, we denote by
Xs = {(I) e X H(I)HX < (5},
X = {a e X :la(r)| < 56-%7} ,
the closed subsets of X and X respectively. Recall that H := H3(B%) x H*(B®) and ||- || :=

| - || 35y x H2(ms)- First, notice that for an element o € Xj, the limit o := lim, o a(7)
exists. Indeed, for all 0 < 7 < 75 with 71, 79 — o0,

|Oé(7'2) - a(Tl)l S / |OZ(7-)| dr 5 ) (6_%7-1 _ 6_%7—2) 0.

T1

Fixing 7 and letting 75 go to infinity, we obtain
Va € Xs: o —a(T)] S e727, ¥r>0. (3.50)
In particular for 7 = 0 we get the smallness condition
|| S 0. (3.51)

Furthermore, by Lemma 3.8.2, Lemma 3.7.6, Proposition 3.7.10 and the fact that 9, ¥ () =
dk(T)ha(Tm we get the following result.

Lemma 3.9.2 Let 6 > 0 be sufficiently small. Then, for all ® € X5 and a € X,

@] + [Nary @) < 8%
[Po 0 Wi || + |1 = Qo) Wur|| < 6267

for all 7 > 0.

Proof. The proof coincides with the proof of Lemma 5.4 in [31]. L]
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We also prove the corresponding Lipschitz bounds.

Lemma 3.9.3 Let 0 > 0 be sufficiently small. Then, for all &,V € X5 and o, f € X,

[Lan®(r) = Loy ()| S 6% (10 = Wil + lla = Bl1x),

[Ny (@(7) = Ny (U0 S 8% (& = W]l + o = Bl )
[Paw0r¥arr) = P 0: Vs || S 0% o= Bllx,

(1= Qu ) W) = (1= Qu )0 Ws || S 8% (19 = Wl + Jla = Bllx)

for all T > 0.

Proof. The proof coincides with the proof of Lemma 5.5 in [31]. U]

3.9.2 The Lorentz symmetry instability

Now, we focus on the instability induced by the Lorentz symmetry and in particular we
will choose av = a(7) in such a way that this instability is suppressed. To do so, we need an
equation for & = a(7). By Proposition 3.7.10, we have Q. ;Sa.. = Qa..,; and therefore
applying Q... ; to the weak formulation of the modulation equation, that is (3.49), we infer

ano,jq)(T) = Qouju+ Qo g / San (T —0) (i‘a(a)q)(a) + Na(o')(q)<‘7>> - aolpa(a)>d0’
0

for all j € {1,2,3,4,5}. To suppress the instability we would like to trivialize the range
and set the right-hand side equal to zero. However, this is not possible since for 7 = 0 the
condition Q. ju = 0 on the initial data would be required which is not true in general.
Since we are only interested in the long-term evolution it however suffices to assume that
Q... ;®(7) vanishes for large 7. Hence, we set

Qo j®(7) = x(T)h,  h:=Qq, juergQa,

where y is a smooth cut-off function, which equals to 1 on [0, 1], 0 for 7 > 4 and satisfies
|x| <1 everywhere. Now, evaluation at 7 = 0 yields h = Q,,__ ;u which now holds true in
general. This ansatz yields an equation for o, namely

(1= x(7)h+ Qan /OT (Ila((,@w) + Noo) (®(0)) — 8U‘Ila(a)>d0 =0. (3.52)

In particular, we define the auxiliary function

~

ha(T),k = ha(T),k - haooJm
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assume that «(0) = 0 and use the properties of Q,__; from remark 3.7.11 to write

ano,j/ ao\:[la(o)da = ano,j/ dk<a)ha(a),kd0
0 0
= Qo / &*(0) (Do & + haoo,k) do
0

_ Q. / (0 by pdo + 0 (7)ha_ .
0

Therefore, we can write equation (3.52) as
o (T)hay. ;= (1 = X(7))Qae ju
4 Quey [ (Ba®(0) + Nugo (@(0)))do
0

_ano,j/ dk(a)fla(r),kda

0

:—/ G,(a,®,u)(o)do. (3.53)
0

for the functions o/ = /(1) € R?, j € {1,2,3,4,5}. Then, we have a fixed point formula-
tion for a,

a(r) = / G(a,®,u) = G(a, d,u), (3.54)
0
where G = (Gl,GQ,Gg, G4, G5) and
¢y @ w)(0) = 1
(a,®,u)(0) = ——
! ha, |2

Qoo,j

(Gj(a, @, u)(0)|ha, ;) -

Finally, we use a fixed point argument to show that the function « : [0,00) — R can
be chosen in such a way that (3.54) (equivalently (3.53)) holds provided that & satisfies
a smallness condition. Consequently, the instability induced by the Lorentz symmetry is
suppressed.

Proposition 3.9.4 Let § > 0 be sufficiently small, ¢ > 0 sufficiently large and suppose
that ® € Xs. Then, there exists a unique function o € Xs such that equation (3.54) holds
for each j € {1,2,3,4,5} provided ||u|| < g. Furthermore, the map ® — « is Lipschitz
continuous.

Proof. The proof relies on a fixed point argument. The fact that é(, ®,u) maps Xs to
itself follows from Lemma 3.8.1 and Lemma 3.9.3. Furthermore, the contraction property
is a direct consequence of Lemma 3.9.3 and finally the Lipschitz continuity follows from
Lemma 3.9.3. For more details see Lemma 5.6 in [31]. ]
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3.9.3 The time translation instability

Next, we turn our attention to the instability induced by the time translation symmetry.
However, this time we proceed differently and we add a correction term to the initial data
®(0) = u in the equation (3.49) which stabilizes the evolution. In other words, we consider
the modified equation

CI)(T) = K(q),a,u), (3.55)
where

K(®,a,u) :=S,_(7) (u—C(®,a,u))
+ S (1 — o) (I:a(a)@(a) + N (®(0)) — aalpa((,)>da, (3.56)

and
C(®,a,u) = Py _u+P,_ / ¢ (Lot ®(0) + Nogo) ((0) — 0, W) o (357)
0

Here, all integrals exist as Riemann integrals over continuous functions. Now, we can
expect that the evolution (3.55) will have a solution provided that the initial data are
sufficiently small. This is precisely our next result.

Proposition 3.9.5 Let 6 > 0 be sufficiently small and ¢ > 0 sufficiently large. If [[u|| < %,
then there exists a unique functions a € Xs and ® € X5 such that equation (3.55) holds
for all 7 > 0.

Proof. Here, a € Xj is associated to ® via Lemma 3.9.4. The proof relies on a fixed
point argument. The fact that K(-,«,u) maps Xs to itself follows from Lemma 3.9.2
and Proposition 3.7.10. Furthermore, the contraction property is a direct consequence of
Lemma 3.9.3 and Lemma 3.9.4 and finally the Lipschitz continuity follows from Lemma
3.9.3, Lemma 3.8.1 and Lemma 3.9.4. For more details see Proposition 5.7 in [31]. ]

Recall that our initial goal is to solve the modulation equation (3.49) so that we can
establish a solution to the initial Cauchy problem (3.5). So far, we can do this only for the
modified equation (3.55) where the correction term is included. However, the correction
term C(®, «,u) is closely related to the time translation symmetry and therefore we can
choose T in such a way that the correction term vanishes. On the other hand, the blowup
time T' appears explicitly only in the initial data and not in the equation itself. To be
precise, we have that

107



for some fixed and given functions (f, g) which stand for a perturbation of the initial data,
see (3.6). Note, that we may write the initial data as

to distinguish between the blowup time 7" and the perturbation

vi— <£> , (3.59)

U(T,v) = v + U] — 0. (3.60)

where

Here, we also write

W= (Fe),

for a generic function w = (wy, wy) € H. Before describing how one can choose T in such
a way that the correction term vanishes, we must ensure that, for all 7' € [1 — g, 1+ %], the
modified equation (3.55) has a solution with initial data u = U(7,v) provided that the
perturbation v is sufficiently small. This fact is a direct consequence of Proposition 3.9.5
and the following lemma.

Lemma 3.9.6 Let § > 0 be sufficiently small. If v € H*(BY, ;) x H*(B}.;) such that
||V||H3(IB§’+5)><H2(153517+5) < then

10(T, V)||H3(B§>+5)xﬂ2(13§+6) S 9,
for all T € [1 — 6,1+ 6]. Furthermore, the map U(-,v) — H is continuous.

Proof. The smallness condition on U(T, v) follows immediately from the fundamental the-
orem of calculus since ¥ 1,192 € C*(R®). Furthermore, the continuity of the map follows

from the triangle inequality and an approximation argument using the density of C*>°(B7 ;)
in H*(B}_5). For a detailed proof see Lemma 5.8 in [31]. ]

Now, one can apply Proposition 3.9.5 to get the following result.

Corollary 3.9.7 Let 6 > 0 be sufficiently small and c sufficiently large. Furthermore, fix

v e M (BY,;,.) x H*(BY,;5,.) such that ||v||gs@s | yxmes DS Sand T e[l—2,147]

146 /c 146

Then, the modified equation (3.55) with u = U(T,v) has a solution (P,a) € X5 x Xs.
Furthermore, the map T — (P, «) is continuous.
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Now, we focus on the correction term. To begin with we fix § > 0 sufficiently small, ¢

sufficiently large and let v € H*(B},;,.) x H*(B}, ;) such that ||v| g (B, 5 )X 2B 5 )

4. Furthermore, pick an arbitrary T = T, € [1 — 2,1+ %] and let (®,a) = (Pr,ar) €
Xs x X5 be a solution to the modified equation (3.5 ) Wlth u = U(T,v) by corollary 3.9.7.

Lemma 3.9.8 There exists T, € [1 — 2,1+ 2] such that C(®r,, ar,, U (Ty,v)) = 0.

Proof. Since C has values in rg P, = (g...) (see Lemma 3.7.10), the vanishing of the
correction term is equivalent to

)
M el-= 1+ <C (@7, ar,, U (Ty,v)) ,g%o>H ~0. (3.61)

The key observation here is that
aT\II(j;szl = 280
and thus expanding ¥{ in Taylor with respect to T around 7' = 1 we get
U(T,v) = v’ +2go(T — 1) + Rp(T — 1)?,
for some remainder term Ry, which we rewrite as
U(T,v) =v' +2g, (T —1)+2(g0 — o) (T — 1) + Ryp(T — 1)2.

Now, the fact fact a(0) = 0 and (3.50) yield |y — @(0)] < § and from Lemma 3.8.1 (in
particular (3.40)) we get ||g — 8a..|| < 6. In addition, |[Ry|| S 1forall T € [1— 2,1+ 2],

Hence, using [|v|[gsms . yxm2(ms < % and rgP, = (g,.) from Lemma 3.7.10, we

1+6/ 1+5/c) - ¢

<PawU(T,v),gaw> —O<6)+2||g%0||( —1)+0(52>+0<§).

Moreover, the bounds of Lemma 3.9.2 imply
(P... /Ooo ¢ (Lo @(0) + Na(o) (®(0)) = 0, ¥ar) ) o 8o ) = O (52) g |-
Finally, summing up we get
(Clran UMw) 8.), =2l T -1+0(5).

Setting the left hand side equal to zero we obtain the equation

T =1+ F(T)

infer

(C) We choose ¢ sufficiently
Now, the continuous function
itself and from Brouwer’s fixed
.61) and concludes the proof. []

where F' is a continuous function in 7" such that F(T)
large and § = d(c) sufficiently small so that |F(T)] §
T+ 1+ F(T) maps the closed interval [1 — 2,1+ 2] t
point theorem we get a fixed point 7' = Ty. This proves (-

ol ||

QNO
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3.10 Proof of the main theorem

To begin with, we summarise the results of the previous section.

Theorem 3.10.1 Let § > 0 be sufficiently small, ¢ sufficiently large and pick an arbitrary

v € H3(IB%‘;’+5/C) X H2(B?+6/C) such that HVHH?’(B?M/C)XH2(B?+5/C) < 5. Then, there exists

T =T, €[l—2142] such that the full, non-corrected equation (3.49) with initial data
u=U(Ty,v), that is

&(7) = Su_ (1)U(T}, v) + /O ' S._ (1 —0) (ta(g)cp(a) + N (®(0)) — 80\Ila(a)>da,

has a solution (P, ) = (P, ar,) € Xs X X;.
Now, we are in position to prove our main result.

Proof of Theorem 3.3.2 for d = 5. Fix ¢ > 0 sufficiently small and ¢ > 0 sufficiently large
according to Theorem 3.10.1. Set ¢’ := g and M := c. Furthermore, pick any initial data

(f,9) € HB(BE{+6') X HQ(B?-HS')

satisfying

5/
< —.
H3(BS, )< H?(BS ) M

[04.6) - ol

Then, the perturbed initial data v := (f, §) (see (3.6)) satisfy

5/
||V||H3(]Bi+%)xH2(IB§5 s) = H(f, 9) - Ul,o[O]H < M = -

5 5 2
142 H3(IB%1‘+5,)><H2(IBE’H,) C

and Theorem 3.10.1 yields the existence of T = Ty, € [1—¢', 14 0’] such that equation (3.49)
has a unique solution (®,a) € X5 x X with initial data ®(0) = U(7y,v). Translating
back this statement to the origin setting we obtain a weak solution ¥(7) = U,y + ®(7)
to the initial system (3.9) with initial data ¥(0) = ¥y + U(7y,v). This means that

1 T x
T (log(T—t)’T—t)

solves the cubic wave equation (3.1) with initial data

u(t,x) =

u(0,2) = Zn(0, 3) = thro(x) + Fx) = ur(a) + F(a)

0u(0,) = =03(0, 1) = Yao(@) + §(2) = B ofe) + ()
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for all z € B}, 5 and therefore is a solution to the Cauchy problem (3.5). Finally, the fact
that & € A implies

|B(T)|| < e 27, Vr >0

and hence, for all t € [0,T) and £ = 0,1,2,3 we can estimate

_5
(T - t)k 5+1 |u(t, ) — ura.(t, ')”Hk(JB%,t) -

5 1 T : 1 :
e () ) P (-
T—¢ T—-t)'T—t) T-—t T—t) s,
) )
T - t Hk(]B%_t)
<log < ) > Va1 <
t Hk(B5)
<10g < t) > wa (log TL 1 Hk(B?) a(log(#) ’l/}aoo 1 Hk(IB%iﬁ) .

For the first term, we get

T
! (log (ﬂ) > ™ Yaton(75 )

AN
&
~~
@)

R
VR
~
||~
~
N———
N———
<
2
5
B
H‘H
=

HRBY)

<[ (s (7))~ |
o (o ()]

< (T —1)2.

H3(BY)

For the second term, fix t € [0,7) and let y(s) := sas + (1 —s)a (log (7)) , s € [0,1] be
a parametrisation of the line segment E|a (log (Tl_t)) , O] jOining « (log (TL)) and .

Then, the fundamental theorem of calculus yields

Valon(725))1 Vot = Va(ion(12)) ~ Voo
= Uy — Y

_ / o, - dt
E[a(log(TL)) Qoo

(o (75) ) [
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which implies the bound

_ || ax _
’ ARBY) H8 (wo‘(bg(%)) wo“"’)‘ L2(BS)

INES)
(o (729)

due to (3.43) and (3.50) since o € Xs. The second estimate for 0 (u(t,-) — ura. (t,-))
follows similarly. These estimates conclude the proof. L]

wa(log(%)),l - wam»l

sup 10055155l 2
sGE[a(log(%)),am}

Proof of Theorem 3.3.2 for d € {7,9,11,13}. All the results of the previous sections can
be carried on for any d € {7,9,11,13} with slight modifications. The important parts are
the function spaces which lead to a sharp decay for the free evolution and the spectral
equation for oo = 0.

Referring to the spectral equation for a = 0 in higher space dimensions, one can read-
ily verify that the potential V4 in the definition of L, see (3.29), will still turn out to be a
constant function. Consequently, the spectral equation will be solved explicitly, solutions
will belong to the hypergeometric class as well and we can still use the connection formula
which is well known for this class. Then, one can proceed to the case where a # 0 and
since we are only interested in small a we can still apply a perturbative approach. To be
precise, all estimates, Lipschitz bounds and decay rates will stay the same in all higher
space dimensions since our results are formulated and proved using elements of abstract
semigroup theory.

On the other hand, regarding the function spaces in higher space dimensions, one can
still define a suitable inner product on

H=H"% (BY) x H= (BY)
which yields a sharp decay for the "free" evolution operator. To be precise, we let
H=C% (BY) x C7 (BY),

and define

(‘) CH X H —> R, (u‘v) = i (u‘v)i,

=1
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where, for d = 2k 4 1, the sesquilinear forms are
(V)= [ 00,0 (07T T )
]B2 +1
+ / Oiy -+ O un(£)00 - - - Oy (€)dE
B2k+1
/ Oy -+ (W) - - - Oy (w)do(w),
S2k
(V)= [ 0,00, 0 OO T (@)
B2k+1
o SRR G T
B2k+1
/ 0+ Oy ua()TT O do ()
S2k

2q+2

Vosag 7= 20 A (), % [ O Ol e ()
2q+3

4+2q Z Br + S2k ail T 8ik717qu1(w)ai1 s Of1many (w)da(w)v

for some constants AP(d) and Bj(d) and for all ¢ = 0,1,...,k — 2 and all u,v € H. Tn
addition, the missing piece for it to define a norm is given by

() i= ([, Ctnao)) ([ Svionao))

where
¢ (w, W(w)) := Dajy1w:(w) + Dajy1wz(w)
and
Doy 1wy (w Z ajw't - 0wy (w) + agwr (w),
Dojo s (w Z bw™ - Oy wa(w) + bows (w),

for appropriate constants a;, b;, ap and by. Recall that in all these definitions the Einstein
summation convention is assumed. Now, the constants a;, b;, ap and by are chosen in such
a way that the identity

¢ (w, fu(w)) = —((w,u(w)) + AS* ([D%_l <u1(w) + wjajul(w)>> (3.62)
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holds which is the key identity to obtain the decay
Re (Lu|u)2k+1 = —Hu||§k+1, (3.63)

see (3.15). In higher space dimensions, although it is easy to prove that the inner product
(‘) defines indeed a norm equivalent to H, there are two main difficulties. On the one
hand, we can find a defining recurrence relation for the coefficients a;, b;, ap and by, which
unfortunately is not convenient to write it down nor easy to use and therefore proving
(3.62) turns out to be too difficult for us. On the other hand, we can use induction to
prove that

=~ 3
Re (Lu‘u)i < —§||uHZQ, (3.64)
for all : € {1,2,...,2k}, but the proof is rather involved.

However, for small d, say d € {7,9,11,13}, we can find the coefficients a;,b;,ao and
by explicitly, define Doy ; and ngﬂ without recurrence relations and successfully verify
(3.64), (3.62) and therefore (3.63). Furthermore, in this case, the proof of (3.64) rely on
similar estimates to the ones in Lemma 3.5.4 without any additional tools. Specifically, for
d =17, we define

D(L) := C°(B") x C*(B")

and

(‘) : <C4(IB%_7) X 03(153_7))2 — R, (u‘v) = :il (u‘v)i,

(2
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where the sesquilinear forms are
(ulv), = . 0;0;0,0puy (€)D101 D Dfvy (€)dE + /B 7 0;0; 012 (€) D701 DFuy (€)dE

+ /SG aiajakul(w)mda(w),
(ulv), = . 0;0;0F Dy (£) 0103 Dy (€)dE + . 8,00k (€) 0101 Oy (€)dE

+ 6&@uz(w)@i@jvg(w)da(w),
(u‘v)3 = ;Ag (u|v)j + /S6 Oiug(w) vy (w)do(w),

3
(ulv), = Z Al (u|v)j + [ 0;0;u1(w)00I vy (w)do(w),
=1 s

(u‘v)5 = Z Al (u|v)j + /S6 U (w)ve(w)do(w),
(u‘v)6 = ZA% (u|v)j + /SG Oiuy (w) 0y (w)do(w),

@)= ([ cwu@naso) [ Teovinow).

for some constants A7 and for all u,v € C*(B7) x C*(B7). Here,

¢ (w, W(w)) == Drwy(w) + Dyws(w),
D7U)1 (CL)) = wiijki?i@j@kwl (CL)) + 12wiwj(9i(9jw1 (CL)) + 33001'81'11)1(&)) + 1511)1 (CL)),
Drwa(w) = w'w? 8;0;wy(w) + 9w’ Djws(w) + 15w (w).

One can prove that this inner product defines indeed a norm equivalent to H* (B”) x H? (B")
and the decay estimates (3.63) and (3.64) hold. Furthermore, for d =9, we define

D(L) == C%(B9) x C5(BY).

and

(]): (05(13?) x 0%1@))2 — R (ulv) =3 (ufv),,
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where the sesquilinear forms are

(uv), = [ 000400001 (€)DDITF ™0, (€)dE + | 00,0400z () D DIT* D (€)dE
B9 B9

+ / 0;0;0,0pu1 (w) 007 0k vy (w)do (w),
S8

(u‘v)2 = (‘Z@ﬁkaﬁeul(f)@iajﬁkamamvl(f)df + 0;0;0,0pu2(£) 0107 0% 0% v9 (&) dE
B9 B®

+ [ 0,0;0ku2(w)0'01 0% vy (w)do (w),
S8
2
(u‘v)3 = Z B (u‘v)j —i—/ 0;0;ua(w)0 09 v9(w)do (w),
j=1 58

3
(ulv), = Z B (u‘v)j + . 0;0;0u1 (W) 007 Oy (w)do (w),
j=1 S

(u‘v)5 = Z B! (u‘v)j + [ Oius(w)divg(w)do(w),

S8

(u‘v)6 = Z B’ (u‘v)j + /SS 0;0ju1 (w)0'09v1 (w)do (w),

(u‘v)7 = Z Bl (u‘v)j + /ss Ug(w)ve(w)do(w),

(u‘v)8 = Z B (u‘v)j + [ Oy (w)0iv (w)do(w),

g
@), = ([ clonyao) ([ Tevi)).

for some constants B’ and for all u,v € C*(B°) x C*(B?). Here,

¢ (w, W(w)) := Dyw;(w) + Dyws(w),

Dywn (w) = wiijkwgaﬁj@k@gwl(w) + 22wiijk3i8j8kw1 (w) + 141w'w? 9;0;w; (w)
+ 279w 0w (w) + 105w, (w),

Dows(w) := w'w?wk9;0;06ws(w) 4 18w'w’ 9;0,ws(w) + 87w’ djws(w) 4 105ws(w).

We can verify that this inner product defines indeed a norm equivalent to H® (B?) x H* (B?)
and the decay estimates (3.63) and (3.64) hold. In addition, for d = 11, we define

D(L) == C7(BT) x C°(B1).
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and
() (OG(ET) . 05(BT))2 — R, (u]v) =3 (ulv),,

where the sesquilinear forms are

(u[v), = |  0:0,000:0,00u1 (€)FDIDFFDmT 0, (E)dE + [ 0i0;0400Dus(€) T DI IFD vy (€)dE

B1l1 B1l1

+ [ 9:0;000000u1 (w) DI RO v, (w)dor (w),

s10

(u[v), == |  0:0,0:000,0"ur (&) DD OD D™ D1 (€)E + | 0,0,0,0:0015(€) DI D05 (€) d
Bl B11

+ [ 0:0;00002(w) D DR vs (w)dor(w),

S10

2
(u|v)3 = Z Cy (u|v)j + | 0;0;05u2(w)0'07 0F vy (w)do (w),
j=1 st

S10

3
(ulv), =) _Cj (u[v), + | 0:0;0,00u1 ()5 DI 0001 (w)do(w),
j=1

(u|v)5 = Z C! (u|v)]. + 0;0ju2(w)0'0;v2(w)do (w),

S10

s10

5
(u|v)6 = Z C} (u|v)j + 0;0;0u1 (W) 07 Oy (w)do (w),
j=1

(ulv). = Z Gy (ufv), + | Bius(w)dvs(w)do(w),

S10

(u]v), = Z cy (u|v)j + [ 0;0;u1(w)0 vy (w)do(w),

S10

(u|v)9 = Z C} (u|v)j + /Sw ug(w)va(w)do(w),

(ulv),, = Zc{o (u[v), + [ O (w)dor(w)do(w),

S10

@)y = ([ cwuenas) ([ Teviiow),
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for some constants C? and for all u,v € C%(B!) x C°(B!!). Here,

¢ (w, W(w)) := Dyywy(w) + Dyyws(w),

Dyywn (w) := wiijkwéwm@@j@k@gamwl (w) + 35wiijkweai8j8k84w1(w) + 405wiijkaiajakw1(w)
+ 1830w'w’ 9;0,w1 (w) + 2895w dyw: (w) + 945wy (w),

Dijwy(w) = wiijkwe@@jak@gwg(w) + 30w’ w! w* 0,0, 05wy (w) + 285w'w? 9;0;ws(w)
+ 975w 9w (W) + 945wa(w).

We can verify that this inner product defines indeed a norm equivalent to H® (B'!) x

H5 (B'!) and the decay estimates (3.63) and (3.64) hold. Similarly, we get analogous
formulas for the case d = 13 and verify (3.63) and (3.64). ]
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