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Abstract 

Despite an avalanche of data in the field of biomedicine, we are obviously not managing 

well to extract meaningful information from this vast amount of data to better 

understand complex diseases and their mechanisms. Something must be wrong with the 

paradigmatic “let us generate new data”, that drives current biomedical research. After 

all, we still have only a limited number of approved drugs available for many complex 

diseases; interpreting data and associating them with underlying molecular mechanisms 

of the disease is still a substantial challenge. Approaches that look into a wider 

perspective of the whole disease etiology as opposed to investigating on specific 

perturbed pathways or differentially expressed genes bear the potential to go beyond 

mere pattern identification. Biological networks help to achieve this goal acting as a 

platform to integrate heterogeneous data and a priori knowledge that may comprise 

various causal and correlational relationships among biological entities. These networks 

will lay the ground for the identification of disease mechanisms. 

This thesis presents a new formalism that integrate all combinations of interactions with 

various types of entities from different sources to understand how a single perturbance 

between two interactors can totally modify or amplify the changes of the whole system. 

As a use case, I have built the biggest computable mechanistic model of Alzheimer’s 

disease (AD) in the course of this work. The first outcome is the identification of an 

early perturbed mechanism on AD based on interference with the neurotrophin signaling 

pathway. Secondly, I have linked SNP-associated effects to a larger functional context, 

which corroborates the comorbid association between AD and type 2 diabetes mellitus. 

Thirdly, I have systematically linked genetic and epigenetic alterations of DNA to the 
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aetiology of diseases. Whilst the established computable model is specific to human 

pathophysiology, I have taken the opportunity of its existence to tackle one of the key 

questions of translational Alzheimer research, namely the functional equivalence of 

transgenic mouse models with the human disease pathophysiology.  I compared the 

functional, mechanism inventory of a pre-clinical mouse model with the 

pathophysiology mechanisms that were described for humans in the area of neuro-

inflammation. That analysis was extended towards pharmacology, where I analyzed – 

on the basis of the putative mechanism of action of a discontinued AD targeted drug; 

Celecoxib, - the reasons why that drug failed in the late phases of clinical trials. As I 

could show, the pre-clinical mouse experiments did not reflect the mechanistic context 

that is active in humans; which explains at mechanism-level the late failure of the drug 

despite promising results of the pre-clinical studies done with experimental animals. 

Lastly, I have used a comprehensive inventory of Alzheimer disease mechanisms to 

trace the investment of the pharmaceutical industry in AD drug development. I could 

demonstrate, how small the spectrum of candidate pathophysiology mechanisms is that 

the pharmaceutical industry is working on and I could show, how reluctant big pharma 

companies are to move from the “established targets” or “well-known pathways” into 

mechanisms that are novel, “ignored” or at least “not targeted” yet. 
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Data does not equal information; information does not equal knowledge; and, most 

importantly of all, knowledge does not equal wisdom. We have oceans of data, rivers of 

information, small puddles of knowledge, and the odd drop of wisdom. 

- Henry Nix, Keynote address, AURISA, 1990 
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Introduction  

Advancements in high-throughput technologies and diagnostic techniques have 

produced big data in the biomedical field. However, the question remains whether we 

are able to retrieve meaningful insights from this vast amount of data to understand 

disease mechanisms. As we have a limited number of approved drugs for most complex 

diseases, it remains a challenge to interpret existing data and associate them with 

molecular mechanisms underlying the disease. The ‘one target-one disease’ concept 

adhered to by many pharmaceutical companies, naturally, does not equate to success 

with regard to complex and multimodal diseases (Achenbach 2011). Accordingly, in 

order to study complex diseases, it is important to explore approaches that consider 

whole disease etiology, as opposed to specific perturbed pathways or differential genes. 

Systems biology is a new avenue to study complex systems and their biological 

interactions using a holistic approach (Kesic 2016). Systems biology approaches 

integrate different types of biological data into networks based on interactions among 

entities (Chen 2013). Biological data can be extremely diverse as it is generated by 

different groups and is often available in different formats. Moreover, interactions 

among entities can also be diverse. Based on the different types of interactions between 

two entities, an entirely different outcome can result, adding complexity to a biological 

system. Therefore, it is necessary to integrate all combinations of interactions with 

various types of entities from different sources to understand how a single perturbation 

in an interaction can elicit and amplify changes in the whole system. Biological 

networks help to achieve this goal by acting as a platform to integrate heterogeneous 

data, various causal and correlational interactions, and associations among biological 
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entities. Successful modeling of diseases necessitates the need for large-scale data-

collection and storage, interoperable representation, and development of algorithms and 

tools enabling pattern or network analysis. This can further help to generate hypotheses 

to be validated in the laboratory setting, ultimately giving new insights for novel 

therapeutic targets in the drug discovery processes.  

 

Figure 1: Interconnection between systems biology and drug discovery cycles - An 

illustration of how systems biology approaches like disease models and computational 

screening and simulation can lead to hypotheses generation, support drug discovery 

and treatment optimization [Taken From: Kitano, Hiroaki. "Computational systems 

biology." Nature 420.6912 (2002): 206] 

 

Figure 1 illustrates the analogous processes of systems biology and drug discovery. As 

shown in the figure, the systems biology model integrates available knowledge and data 

which describes gene regulatory mechanisms and how it affects biochemical reactions 

in a system. This leads to further insights into the mechanisms of disease regarding 

which parts of a system are perturbed in a disease condition. This process promotes 

hypotheses generation. Moreover, computational disease models allow for better design 

of in-vitro and in-vivo experiments that lead to drug discovery based on new hypotheses.  

The next step consists of collecting data from wet lab experiments and converting them 
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into biological and physiological knowledge. This give rise to treatment optimization to 

better prioritize targets, and to characterize off-target and on-target effects.  

Based on the availability of experimental tissues or cell lines used for experimentation 

in wet labs, an understanding of the mechanisms involved in many disease areas like 

cancer, cardiovascular diseases, and infectious diseases have been vastly improved, 

resulting in greater advancements in therapeutics. However, progress in unraveling 

biological mechanisms in neurological disorders or neurodegenerative diseases 

(NDDs), has been limited, in part, to the limited accessibility of experimental tissues 

and to the complexity of the brain. Additionally, the complexity of the brain is reflected 

in the heterogeneity of neurodegenerative diseases, which render single drug target 

approaches ineffective.  

Alzheimer’s disease and hypotheses on etiology 

Amongst the NDDs, Alzheimer’s disease (AD) is most prevalent (Figure 2). AD is a 

progressive neurodegenerative disorder that causes brain cell death. As a result, overall 

brain size shrinks and the number of connections between neurons decreases, which 

gradually leads to impairments in memory and cognition (Peters 2006), (Anderton 

2002). In the more than one hundred years since Alois Alzheimer identified Alzheimer’s 

disease in 1901, considerable research has been directed towards discovering the cause 

of the disease (Hippius 2003). 
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Figure 2: Percentage of AD among other neurological disorders–Comparison of 

Alzheimer’s disease with Percentage of DALYs for neurological disorders [Taken 

from: Global burden of neurological disorders estimates and projections. 

http://www.who.int/mental_health/neurology/chapter_2_neuro_disorders_public_h_ch

allenges.pdf?ua=1] 

Alzheimer’s disease is a complex, multifactorial disease, which is driven by biological 

pathway dysfunction. There are different hypotheses and reasoning about the cause of 

disease.  The major hypotheses under study in AD are outlined below. 

Amyloid Hypothesis: 

The Amyloid Hypothesis is the most prominent as proposed by the majority of 

biomedical researchers. It postulates that abnormal proteolytic processing of the 

amyloid precursor protein (APP) results in the production and aggregation of neurotoxic 

forms of amyloid ß (Selkoe 2016). APP, a transmembrane protein, is cleaved by alpha-
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secretase and beta-secretase, forming soluble fragments such as sAPP-alpha, sAPP-ß, 

C83 and AICD in the unperturbed pathway.  With regard to the pathogenic mechanism, 

APP is processed by gamma-secretase and produces Abeta 40-42 peptides (Amyloid 

beta peptides), which form amyloid plaques (Figure 3). These plaques are then deposited 

in the brain, causing inflammation and other pathway changes leading to AD symptoms. 

 

Figure 3: Processing of APP in healthy brain and in AD brain - The figure illustrates 

how processing by different enzymes leads to divergent molecular endpoints. The 

pathway which lead by alpha-secretase is the normal physiological pathway and the 

right hand side pathway lead by beta-secretase and gamma-secretase shows the 

pathological pathway. [Taken From: AF Teich, O Arancio Is the amyloid hypothesis of 

Alzheimer's disease therapeutically relevant? Biochemical Journal, 2012] 

 

Based on this hypothesis, the following drug target approaches follow to (Alzheimer's 

Association 2017): 

a) Decrease the Abeta 40-42 production by inhibiting gamma-secretase.  

b) Inhibit aggregation of and deposition of amyloid plaques 
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c) Removal of amyloid plaques 

d) Reduce inflammation and other symptoms 

Recently, the drugs Bapineuzumab, produced by Pfizer and Johnson & Johnson, and 

Flurizan, developed by Myriad Genetics, both targeting amyloid ß peptides, were 

withdrawn, as they failed to improve cognitive or functional abilities in patients 

(Salloway 2014), (Wan 2009). Similar to the above drugs, Semagacestat, a gamma-

secretase inhibitor, also failed after being tested in five different clinical trials for not 

eliciting improvement in cognition. The target, gamma-secretase, also has many 

physiological functions, such as being a receptor for NOTCH which has a role in neural 

development (Carroll 2016). APP also plays many vital physiological functions in the 

brain (Figure 4).  
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Figure 4: Physiological functions of APP - Vital physiological functions of APP and 

processed products in the amyloidogenic pathway [Taken From: Pearson, Hugh A., and 

Chris Peers. "Physiological roles for amyloid β peptides." The Journal of physiology 

575.1 (2006): 5-10.] 

The failures of amyloid ß-lowering agents have posed many questions regarding the 

validity of the amyloid hypothesis. Amyloid ß processing noticeably involves numerous 

enzymes and signaling pathways, which could play a role in a diverse array of cellular 

processes. Thus, the clinical failure of amyloid ß -lowering agents does not necessarily 

amount to the conclusion that the hypothesis itself is incorrect, but rather, it may simply 

mean that manipulating amyloid ß directly is an unrealistic strategy for therapeutic 

intervention. However, much research is needed to understand why amyloid beta 

deposition perturbs the normal signaling pathways in the brain with age.  
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Tau Hypothesis: 

Another notable hypothesis is the Tau hypothesis, which states that the abnormal 

phosphorylation of MAPT (Microtubule Associated Protein Tau) leads to the formation 

of hyper-phosphorylated tau and aggregates together to form neurofibrillary tangles in 

AD (Maccioni 2010). In healthy brains, MAPT organizes microtubule assembly 

together with tubulin. However, hyper-phosphorylated tau in the diseased brain 

disintegrates microtubules and promotes formation of neurofibrillary tangles.  

Deposition of neurofibrillary tangles interferes with axonal transport and leads to cell 

death (Gong 2008). In 1991, Hardy J et al. reported that it is unclear whether hyper-

phosphorylation of tau occurs prior to the formation of neurofibrillary tangles or if it is 

an outcome of the deposition of amyloid ß peptides (Hardy 1991). As outlined in the 

amyloid hypothesis, the major drug target approaches in the tau hypothesis consist of 

reducing tau phosphorylation and neurofibrillary tangles, immunotherapy against tau 

perturbations, increasing stability of microtubules, and the enhanced removal of 

neurofibrillary tangles (Godyn 2016). Epothilone D (2013) by Bristol-Myers Squibb, a 

drug that was recently withdrawn,   targeted microtubules to increase stabilization 

(Alzforum-Epithilone D 2017). Epothilone D showed positive outcomes in mice, but 

failed in clinical trials (Alzforum-Epithilone D 2017).  

Cholinergic Hypothesis: 

Apart from the amyloid and tau hypotheses, dysregulation of neuro-chemical signaling 

pathways involved in AD is a key hypothesis and has been targeted by many drugs is 

the cholinergic hypothesis (Francis 1999). The cholinergic hypothesis states that the loss 

of cholinergic function in the brain is associated with the reduced production of the 
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neurotransmitter acetylcholine (Kihara 2004). The cholinergic hypothesis has gained 

further prominence as four out of five approved AD drugs target cholinergic 

mechanisms. In a review, Francis et al. (1999) reported that the impairment of the 

cholinergic mechanism is evident in the early stages of the disease (Francis 1999). 

However, some studies suggest that perturbation in the cholinergic mechanism is not 

the early event in the course of AD, thus challenging the validity of this hypothesis and 

its potential to be a drug target for disease prevention. For example, Davis KL et al. 

(1999) reported that the perturbed activity of choline acetyltransferase and 

acetylcholinesterase were characteristic of a severe AD patient and did not differ 

significantly from controls in mild AD subjects (Davis 1999). Some recent drugs that 

targeted the cholinergic mechanism have been discontinued; (ABT-288 (2014) from 

AbbVie, GSK239512 from GSK (2014), and Varenicline from Pfizer (2011)). ABT-288 

aimed to increase the release of neurotransmitters like histamine, acetylcholine, and 

dopamine, but failed to improve cognitive scores (Alzforum - ABT-288 2017). 

GSK239512 also had the equivalent mechanism of action as ABT-288, but was 

withdrawn due to excessive side effects such as headaches, dizziness and a lack of 

improvement in cognitive and clinical measures (Alzforum-GSK239512 2017). 

Varenicline is an approved drug to aid in smoking cessation which was in clinical trials 

for AD. But in the context of AD, it intensifies neuropsychiatric symptoms and 

gastrointestinal side effects (Alzforum - Varenicline 2017).  However, the failure of 

these drugs do not negate the cholinergic hypothesis, as there are some ongoing trials 

with positive results such as Encenicline in Phase III, a drug which modulates 

acetylcholine response in AD (Godyn 2016).  
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In addition to the aforementioned hypotheses of the underlying pathogenesis of AD, 

there are many others, including the neuroinflammation hypothesis, oxidative stress 

hypothesis, glutamate hypothesis, calcium hypothesis, mitochondrial dysfunction 

hypothesis, cholesterol hypothesis, and metal ion hypothesis (Mohandas 2009). 

 

 

Figure 5: Comparison of research articles on based on leading disease mechanism 

hypotheses related to Alzheimer’s disease, from 1997 to 2017, accessed on 15.08.2017 

based on PubMed search 

Figure 5, depicts the bias in AD research with regard to various hypotheses; more than 

half of the research between 1997 to 2017 focused on the amyloid hypothesis. However, 

none of these readily identify the earliest mechanisms of AD which must be targeted to 

prevent the disease. This necessitates the need for a comprehensive understanding of 
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the many mechanisms underlying AD along with the normal functioning of the brain, 

as opposed to a focus limited to specific hypotheses.  

Data and knowledge in AD 

Knowledge in publications: as text and cartoons 

As AD is a multi-factorial disease, discerning disease mechanism in its entirety is 

possible only through a deep understanding of the interactions between regulatory 

biological entities (genes, proteins, SNPs, etc) and signaling networks. In order to do 

so, it is important to assess the current knowledge of the disease, based on signaling 

pathways. Scientific knowledge about a disease can be accessed from scientific 

publications, cartoons, and from clinical data. As evident from Figure 6, the research 

and publications in Alzheimer’s disease are increasing over time. However, the 

assembly of textual knowledge from free-text into biological interaction networks is an 

immense undertaking, as knowledge from different sources are quite scattered and 

available in the form of unstructured text.  
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Figure 6: Estimation of number of PubMed articles on Alzheimer’s disease from the 

year 2007 – 2017, last accessed on 15.08.2017 from PubMed 

 

Scientific knowledge is diverse and spread over various resources including research 

articles, reviews, electronic health records (EHRs), patents, and books. In this case, an 

integrative model that brings this diverse knowledge into a single model is highly 

advantageous. Unstructured text in publication poses a second challenge. This hinders 

the extraction of information and the ability to obtain meaningful context without 

ambiguity. To date, automatic text mining workflows do not exist that can convert these 

heterogeneous data into a structured format, and subsequently integrate them into 

networks or models. 

In addition to the unstructured and scattered textual knowledge, researchers also 

represent scientific knowledge as pathway cartoons, which are not computer readable 

and are difficult to contextualize. For example, figure 7.A shows a pictorial 

representation of the insulin signaling pathway in a normal, healthy brain whereas 

Figure 7.B contains more specific information like the role of Aß oligomers in insulin 
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signaling in an Alzheimer’s disease state. It is essential to link together the biological 

pathways in these figures, as well as capture and store the knowledge and integrate them 

into a cell signaling network. 

 

 

 

Figure 7: A pathway cartoon showing normal and disease etiology in Alzheimer’s 

disease based on insulin signaling pathway. The figure A depicts the normal insulin 

signaling pathway, while figure B represents the perturbed insulin signaling in AD 

[Taken From: Bedse, G., Di Domenico, F., Serviddio, G., & Cassano, T. (2015). 

Aberrant insulin signaling in Alzheimer's disease: current knowledge. Frontiers in 

neuroscience, 9.] 

Apart from the technical difficulties in extracting useful knowledge from text and 

pictures, reliability of the knowledge itself is questionable. The first issue is publication 

bias, which can occur due to various reasons. As shown in Figure 4, researchers may 

focus on well-known hypotheses or established results. Additionally, negative, 
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insignificant, or novel results may be insufficiently promoted or published, further 

leading to publication bias (Easterbrook 1991). Nissen et al. (2016) reported that 

publication bias affects downstream results and demonstrates that positive hypotheses 

may be canonized as facts much sooner than otherwise (Nissen 2016). It is important to 

be aware of publication bias as it can affect the results of the integrative approaches. 

The second issue lies with limited access to clinical research data. Many large 

pharmaceutical companies or investigators in pharma companies do not publish novel 

results or disclose data. 

One approach to increase reliability of literature-based models is through the use of 

comparative models. Publications tend to focus on pathological pathways more than 

normal, healthy function. In complex diseases like AD, it is important to concurrently 

explore healthy brains as well as various states of disease so comparisons between both 

are possible. This highlights the major players that perturb the normal functioning of 

the brain as well as elucidates how AD advances from mild-cognitive impairment to 

more severe stages of dementia.  

With regard to integration of knowledge from pathway cartoons and publications, there 

are remarkable efforts to store knowledge as pictorial representations. Pathway cartoons 

of cell signaling pathways are stored in databases such as KEGG (KEGG 2017), 

REACTOME (REACTOME 2017), and WikiPathways (Wikipathways 2017). These 

pathway databases serve as a platform to collect various cell signaling pathways which 

have been established through intervention studies. These databases provide pathways 

in standard formats like Systems Biology Markup Language (SBML) and Biological 

Pathway Exchange (BioPaX), enabling easy exchange of data and implementation into  
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Figure 8: Comparison of KEGG and Cartoons on the basis of calcium signaling 

pathway – The first figure A, depicts the Kegg cartoon of calcium signaling pathway. 

Whereas figure B and C shows calcium signaling pathway cartoons from a scientific 

article and from a research site. Each figure contains different information even though 

all three figures represent calcium signaling. 

[Taken From:  

1) http://www.genome.jp/kegg-bin/show_pathway?hsa04020+5156+5159 

2) Berridge, M. J. (2010). Calcium hypothesis of Alzheimer’s disease. PflügersArchiv-

European Journal of Physiology, 459(3), 441-449. 

3) http://physics.usf.edu/faculty/gullah/] 

 

algorithms for visualization and analysis (Bauer-Mehren 2009). Databases such as 

REACTOME contain manually curated data, which are species specific and have cross 

A 

B C 

http://www.genome.jp/kegg-bin/show_pathway?hsa04020+5156+5159
http://physics.usf.edu/faculty/gullah/
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references to other established publically available databases (Bauer-Mehren 2009). 

Conversely, KEGG and WikiPathways are not species or tissue specific and, in the case 

of Wikipathways, curation is done by crowdsourcing.  

With regard to the representation of disease specific knowledge, canonical pathways 

present some limitations. The first drawback is that pathway databases are not specific 

to any particular disease, and therefore, corresponding molecular interactions are not 

disease or tissue specific. Second, pathway databases suffer from inadequate amounts 

of data and knowledge. This refers to the fact that many of the disease specific canonical 

pathway cartoons are incomplete, static over time, and not updated regularly as new 

knowledge is revealed. Third, these pathways are not readily computer readable. Figure 

8, depicts a calcium signaling pathway from KEGG and two pathway cartoons from 

scientific article and website regarding calcium signaling in AD. In the pathway cartoon, 

specific proteolytic fragments of APP like Aß42, AICD (amyloid precursor protein 

intracellular domain), and entities which play crucial roles in the amyloidogenesis 

process, such as BACE and gamma-secretase, are represented. These specific entities 

are not included in the general KEGG calcium signaling pathway (KEGG, Calcium 

Signalling Pathway 2017). Furthermore, from the corpus needed to build the KEGG 

calcium signaling pathway, it is clear that the pathway was based on many different 

diseases (evident from the annotations to 23 diseases).  Therefore, in order to study 

disease-specific mechanisms, it is necessary to represent and integrate all of the 

knowledge dispersed as cartoons in the literature and analyze the data together. Until 

now, there was no automatic way to convert textual knowledge and pathway cartoons 

into a computer readable form and link this to other biological data. Integration of 
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knowledge from cartoons as well as unstructured text present in scientific articles is 

necessary in the age of big data. Hence, developing network models that integrate all 

interactions between regulatory genes and signaling networks driving the 

neuropathological pathway of Alzheimer’s disease are essential.   

Integration of multi-scale data 

Apart from the challenges mentioned above regarding pathway cartoons and textual 

knowledge, integrating multi-scale biological entities and their interactions is a 

significant hurdle. Moreover, diversified formats of data make linking of data and 

knowledge tedious. Biomedical data comes from many levels, e.g. genomic, molecular, 

cellular, clinical, and phenotypic (Figure 9). At the genomic level, data varies from the 

complete deep sequencing of the genome to narrow information about genetic variants, 

epigenetic modifications, and differential expression of genes. At the molecular level, 

data may be various protein interactions from proteomics experiments or metabolomics 

changes, measured at the clinical level. Various imaging diagnostic techniques generate 

large amounts of data related to brain function, localized properties of tissue density, 

local diffusion properties, structural connections between regions, and 

electrophysiological measures of neural activity. As we acquire more data and 

knowledge around diseases, the complexity of data accordingly rises. Therefore, 

integration tools and modeling languages should be capable of warehousing diverse 

experimental data and knowledge (that are dispersed, different, and difficult to process) 

into one platform for further analysis. 
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Figure 9: Multi-scale of biology in the brain: Different levels of brain physiology 

based on structural and functional aspects. 

[Taken From: http://bouchardlab.lbl.gov/research-and-developement/ Last accessed on 

March 2017] 

 

Drug discovery in AD 

As outlined in the previous sections, research in AD has generated an enormous quantity 

of data and knowledge. However, this explosion of data has not led to a wealth of new 

treatments. Currently, there are only 5 approved drugs in AD: Donepezil (1996), 

http://bouchardlab.lbl.gov/research-and-developement/
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Rivastigmine (2000), Galantamine (2001), Memantine (2003) and a combination drug 

of memantine and donepezil (2014). These approved drugs do not halt the progression 

of disease or cure the disease, but rather reduce some symptoms. Until now, more than 

800 clinical trials have been conducted new treatments. Figure 10 depicts the number 

of clinical trials conducted in the past 10 years in AD for various purposes.  

 

Figure 10: Number of clinical trials in the last 10 years based on the different types 

of clinical trials. In total there were 1550 AD clinical trials of which 1186 AD trials 

were aimed at treatment, prevention and diagnosis and as supportive trials [Last 

accessed on March 2016 from https://clinicaltrials.gov/] 

 

Jeffrey L Cummings et. al (2014) and Paul et al (2010) showed that the overall success 

rate of AD clinical trials is less than 0.4% (Figure 11) (Cummings 2014) (Paul 2010). 

Many clinical trials are discontinued after Phase II or III due to the following:  

1. They fail to demonstrate performance better than placebo 

2. Inefficacy of drugs to induce desirable effects 

3. Severe side effects of drug usage  
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4. Lack of efficiency 

 

Figure 11: Overall success rate of AD drugs in comparison to other diseases areas 

and overall industry average [Taken From: Calcoen, D., Elias, L., & Yu, X. (2015). 

What does it take to produce a breakthrough drug? Nature Reviews Drug Discovery, 

14(3), 161-163.] 

 

Overall, 72% of agents fail in Phase I, 92% fail in Phase II, and 98% fail in Phase III of 

clinical trials (Cummings 2014) (Paul 2010). Although new insights about novel 

potential targets and mechanisms have been provided in recent studies, the question 

arises of whether pharma companies are in fact investing in the right mechanisms or 

potential therapeutic targets. Are pharma companies paying enough attention to novel 

drug-targetable mechanisms and targets?   

Reliability of pre-clinical models 

Another reason for high attrition rates is due to the fact that pre-clinical models poorly 

mimic human drug response. Although mouse models contributed significantly to 

unwinding the etiology of the disease, the translation of genetic responses from mouse 

to human still remains a complex issue. According to Mouse Genome Informatics, there 
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are 151 mouse models available for the Alzheimer phenotype (Mouse Genome 

Informatics - Mouse models 2017). However, no model thus far has contributed to 

finding a disease modifying therapy in AD (Sabbagh 2013). Additionally, many of these 

models fail to show the phenotypic endpoints seen in AD patients. As an example, the 

first animal model of AD was the PDAPP mouse. While this model shows increase in 

tau phosphorylation, it does not produce neurofibrillary tangles (Sabbagh 2013). One-

fifth of mouse coding genes are different from the human genome (Science Daily 2009). 

When compared on the basis of brain physiology, humans and mice are not analogous 

models. As depicted in Figure 12, in the mouse brain, prominent regions such as the 

frontal lobe, parietal lobe, temporal lobe and pons are absent. 

 

Figure 12: Physiological difference between mouse and human brain structures 

[Taken From: Cryan, J. F., & Holmes, A. (2005). The ascent of mouse: advances in 
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modeling human depression and anxiety. Nature reviews Drug discovery, 4(9), 775-

790.] 

 

Regardless of whether the plethora of animal models suitable for AD research are 

questionable in translatable, transgenic models of AD continue to gain credibility as 

more features of the human disease are shown to be successfully represented in mice. 

As the number of publications and research in AD is increasing, most of this research is 

done in transgenic models. Thus, the immense need to annotate and use scientific 

knowledge carefully, as translation of genetic responses among species can vary. As of 

now, no computable models are available to facilitate the comparability of normal and 

diseased states or animal and human models and elucidate the cause-and-effect 

phenomena in molecular cascades and go beyond simplistic cartoon representations of 

signaling pathways. 

In order to fill the gap between research and drug development, we need to bring 

together state-of-the-art knowledge and data, precisely differentiate translation ability 

between species and invest wisely in drug-targetable mechanisms. Due to these reasons, 

it is advantageous to have a knowledge based model to: 

(1) aggregate all relevant knowledge  

(2) integrate upward and downward regulatory circuits at a maximum granular level at 

different stages of the disease  

(3) predict the drug targets which could effectively be applicable in humans.  

To integrate the knowledge and data, it is necessary to adopt computational modeling 

of mechanisms of disease. In this work, the formalism which is used for modeling is 

called Biological Expression Language (BEL) (Open BEL 2017). 
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Computable Modeling of Diseases using BEL (Biological Expression 

Language)         

The BEL language is a formalism for representing the knowledge in life sciences in a 

computable form. BEL is designed to represent scientific findings by capturing causal 

and correlative relationships in context, where contextual information may encapsulate 

biological and experimental system characteristics where the relationships were 

observed, the supporting publications cited, and the process of curation. Knowledge in 

BEL is expressed as BEL Statements that are stored in BEL documents. BEL documents 

are structured text documents that contain BEL Statements, along with sufficient 

additional information to fully describe and process the document. 

 

Figure 13: Example of converting text into BEL – Illustrated here is the conversion 

of an evidence from a scientific article. The green highlighted ones are BEL functions, 

where ‘p’ indicates protein, ‘pmod’ indicates protein modification ‘P’ indicates 

phosphorylation, ‘T’ indicates threonine, ‘668’ is the position of modification. ‘->’ 

indicates increase relationship in BEL and ‘deg’ function represents degradation. All 

entities like GSK3B and APP is referenced with standard ontology; HGNC. 

 

Apart from a concise set of intrinsic categories of life science concepts, BEL does not 

prescribe any specific ontology or vocabulary of concepts to be used in the 
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representation of life science knowledge. Rather, BEL is specifically designed to adopt 

external vocabularies and ontologies, and therefore, represent life science knowledge in 

the language and schema of the organization which is collecting or using the knowledge. 

Thus, biological entities encoded in BEL are defined by reference to values in external 

vocabularies, which provide a specification of a set of well-known domain values such 

as the HGNC symbols (Figure 13).  

Using BEL, one can encode prior candidate mechanisms of neurodegenerative diseases 

from publicly available knowledge about a disease with a dedicated syntax ideally suited 

to model cause-and-effect relationships between biological entities. BEL and the 

framework are open source and supports algorithms that work on BEL, such as causal 

reasoning and mechanism enrichment analysis (Catlett 2013). These concepts are 

already applied in cancer research. One such method is called Reverse Causal 

Reasoning (RCR), a reverse engineering method to detect mechanistic hypotheses from 

molecular profiling data. This algorithm gives insights into drug action and toxicity 

(Catlett 2013). Another established algorithm based on BEL models is the Network 

Perturbation Amplitude (NPA) which combines high-throughput data and literature 

derived knowledge to characterize perturbation caused in a collection of biological 

processes. This framework includes a comparative assessment of the biological impact 

caused by environmental factors, toxic substances, or drug treatments (Martin 2012). 

Apart from BEL, there are many other biological expression languages available, such 

as SBML and Biopathways Exchange Language (BioPAX). Numerous comprehensive 

disease signaling networks are available with BioPax and SBML in neurology such as 
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AlzPathway (Ogishima 2016) for AD and molecular interaction map of Parkinson’s 

disease (Fujita 2014). 

Even though BEL and BioPAX are both open standards used to capture knowledge 

about molecular biology and biological processes, their goals differ and they are 

designed for different applications BioPAX focuses on enabling integration, exchange, 

visualization, and analysis of biological pathway data. BEL, in contrast, is designed to 

represent discrete scientific findings and their relevant contextual information as 

qualitative causal relationships that can drive knowledge-based analytics. In BEL, the 

focus is on the representation of qualitative causal relationships, capturing statements 

of cause and effect that enable biological inference by applications. BEL’s design 

enables the representation of causal relationships across a wide range of mechanistic 

details and between the levels of molecular events, cellular processes, and organism-

scale phenotypes. In contrast, BioPAX provides a vocabulary to express control at a 

precise, biochemical level of description, facilitating the communication of detailed 

pathway knowledge (Figure 14) (Open BEL 2017). 
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Figure 14: Comparison of BioPAX and BEL for the same evidence text. The same 

reaction is illustrated in two different formats. [Taken from: https://wiki.openbel.org/] 

 

Until now, there are no fully automated systems to convert knowledge from text into 

BEL code. However, there are semi-automatic machines available which partially 

extract BEL statements, though they often require additional manual curation to check 

the correctness of these statements. The first tool of this type is BelSmile, which is 

based on a semantic role labelling approach (Lai 2016). Additional tools available in 

the community are BELMiner (Ravikumar 2017), a rule based relation extraction 

system, and BELIEF (Fluck 2014) which embeds an information extraction workflow 

https://wiki.openbel.org/
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with state-of-the-art named entity recognition (NER) and relation extraction (RE) 

methods. 

 

Figure 15: Examples of representation of different scales in BEL: this figure 

illustrates the various functions, relationships and annotations in BEL which are used to 

represent different levels of biological knowledge from genomic level to phenotypic 

level. 

 

We have used BEL as the modeling language to build a computational model of AD, 

which can integrate multiple levels of biological knowledge in a high granularity level. 

Figure 15 illustrates the integration of heterogeneous, multiscale, and multimodal 

information in the field of neurology, generally, and neurodegeneration, in particular 

(Figure 15). We demonstrate, how a combination of text analytics and information 

extraction with expert knowledge and the abstraction of large-scale experimental data 

across multiple scales (ranging from omics level to complex clinical readouts) work 
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together to establish computable "disease models" that are rich sources for new 

mechanistic hypotheses about the etiology of neurodegenerative diseases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 
 

References 

Achenbach 2011: Achenbach, Janosch and Proschak, Ewgenij. 2011. „Rational, computer-

aided design of multi-target ligands.“ Journal of Cheminformatics P10. 

Alzforum - ABT-288 2017: 2017. „Alzforum - Therapeutics.“ Alzforum - Therapeutics. 

Zugriff am 3. October 2017. http://www.alzforum.org/therapeutics/abt-288. 

Alzforum - Varenicline 2017: 2017. „Alzforum - Therapeutics.“ Alzforum - Therapeutics. 

Zugriff am 3. October 2017. http://www.alzforum.org/therapeutics/varenicline. 

Alzforum-Epithilone D 2017: 2017. „Alzforum-Therapeutics.“ Alzforum-Epithilone D. 

Zugriff am 3. October 2017. http://www.alzforum.org/therapeutics/epothilone-d. 

Alzforum - GSK239512 2017: 2017. „Alzforum-Therapeutics.“ Alzforum-Therapeutics. 

Zugriff am 3. October 2017. http://www.alzforum.org/therapeutics/gsk239512. 

Alzheimer's Association 2017: 2017. Alzheimer's Association. Zugriff am 3. October 2017. 

https://www.alz.org/national/documents/topicsheet_betaamyloid.pdf. 

Anderton 2002: Anderton, Brian H. 2002. „Ageing of the brain.“ Mechanisms of ageing and 

development 811--817. 

Bauer-Mehren 2009: Bauer-Mehren, Anna and Furlong, Laura I and Sanz, Ferran. 2009. 

„Pathway databases and tools for their exploitation: benefits, current limitations and 

challenges.“ Molecular systems biology 5: 290. 

Carroll 2016: Carroll, Courtney M and Li, Yue-Ming. 2016. „Physiological and pathological 

roles of the $\gamma$-secretase complex.“ Brain research bulletin 126: 199-206. 

Catlett 2013: Catlett, Natalie L and Bargnesi, Anthony J and Ungerer, Stephen and Seagaran, 

Toby and Ladd, William and Elliston, Keith O and Pratt, Dexter. 2013. „Reverse 

causal reasoning: applying qualitative causal knowledge to the interpretation of high-

throughput data.“ BMC bioinformatics 14: 340. 

Chen 2013: Chen, Bor-Sen and Wu, Chia-Chou. 2013. „Systems biology as an integrated 

platform for bioinformatics, systems synthetic biology, and systems metabolic 

engineering.“ Cells 635--688. 

Cummings 2014: Cummings, Jeffrey L and Morstorf, Travis and Zhong, Kate. 2014. 

„Alzheimer’s disease drug-development pipeline: few candidates, frequent failures.“ 

Alzheimer's research \& therapy 6: 37. 

Davis 1999: Davis, Kenneth L and Mohs, Richard C and Marin, Deborah and Purohit, 

Dushyant P and Perl, Daniel P and Lantz, Melinda and Austin, Gregory and 

Haroutunian, Vahram. 1999. „Cholinergic markers in elderly patients with early signs 

of Alzheimer disease.“ Jama 281: 1401-1406. 



 

30 
 

Easterbrook 1991: Easterbrook, Phillipa J and Gopalan, Ramana and Berlin, JA and 

Matthews, David R. 1991. „Publication bias in clinical research.“ The Lancet 337: 

867-872. 

Fluck 2014: Fluck, Juliane and Madan, Sumit and Ansari, Sam and others. 2014. „BELIEF—

a semiautomatic workflow for BEL network creation.“ Proc. 6th Int. Symp. Semant. 

Min. Biomed 109-113. 

Francis 1999: Francis, Paul T and Palmer, Alan M and Snape, Michael and Wilcock, Gordon 

K. 1999. „The cholinergic hypothesis of Alzheimer’s disease: a review of progress.“ 

Journal of Neurology, Neurosurgery \& Psychiatry 66: 137-147. 

Fujita 2014: Fujita, Kazuhiro A and Ostaszewski, Marek and Matsuoka, Yukiko and Ghosh, 

Samik and Glaab, Enrico and Trefois, Christophe and Crespo, Isaac and Perumal, 

Thanneer M and Jurkowski, Wiktor and Antony, Paul MA and others. 2014. 

„Integrating pathways of Parkinson's disease in a molecular interaction map.“ 

Molecular neurobiology 49: 88-102. 

Godyn 2016: Godyn, Justyna and Jonczyk, Jakub and Panek, Dawid and Malawska, Barbara. 

2016. „Therapeutic strategies for Alzheimer's disease in clinical trials.“ 

Pharmacological Reports 68: 127-138. 

Gong 2008: Gong, C-X and Iqbal, K. 2008. „Hyperphosphorylation of microtubule-

associated protein tau: a promising therapeutic target for Alzheimer disease.“ Current 

medicinal chemistry 15: 2321-2328. 

Hardy 1991: Hardy, John and Allsop, David. 1991. „Amyloid deposition as the central event 

in the aetiology of Alzheimer's disease.“ Trends in pharmacological sciences 12: 383-

388. 

Hippius 2003: Hippius, Hanns and Neundörfer, Gabriele. 2003. „The discovery of 

Alzheimer's disease.“ Dialogues in clinical neuroscience 101. 

KEGG 2017: 2017. KEGG. Zugriff am 6. Oct 2017. http://www.genome.jp/kegg/. 

KEGG, Calcium Signalling Pathway 2017: 2017. „KEGG, Calcium Signalling Pathway.“ 

KEGG, Calcium Signalling Pathway. Zugriff am 3. October 2017. 

http://www.genome.jp/dbget-bin/www_bget?pathway+hsa04020. 

Kesic 2016: Kesic, Srdjan. 2016. „Systems biology, emergence and antireductionism.“ Saudi 

journal of biological sciences 584-591. 

Kihara 2004: Kihara, Takeshi and Shimohama, Shun. 2004. „Alzheimer's disease and 

acetylcholine receptors.“ Acta neurobiologiae experimentalis 64: 99-106. 

Lai 2016: Lai, Po-Ting and Lo, Yu-Yan and Huang, Ming-Siang and Hsiao, Yu-Cheng and 

Tsai, Richard Tzong-Han. 2016. „BelSmile: a biomedical semantic role labeling 

approach for extracting biological expression language from text.“ Database 2016: 

baw064. 



 

31 
 

Maccioni 2010: Maccioni, Ricardo B and Far{\'\i}as, Gonzalo and Morales, Inelia and 

Navarrete, Leonardo. 2010. Archives of medical research 41: 226-231. 

Martin 2012: Martin, Florian and Thomson, Ty M and Sewer, Alain and Drubin, David A 

and Mathis, Carole and Weisensee, Dirk and Pratt, Dexter and Hoeng, Julia and 

Peitsch, Manuel C. 2012. „Assessment of network perturbation amplitudes by 

applying high-throughput data to causal biological networks.“ BMC systems biology 6: 

54. 

Mohandas 2009: Mohandas, E and Rajmohan, V and Raghunath, B. 2009. „Neurobiology of 

Alzheimer's disease.“ Indian journal of psychiatry 51: 55. 

Mouse Genome Informatics - Mouse models 2017: 2017. Mouse Genome Informatics - 

Mouse models. Zugriff am 8. July 2017. 

http://www.informatics.jax.org/allele/summary?phenotype=Alzheimer%0D%0A&no

men=&chromosome=any&cm=&coordinate=&coordUnit=bp. 

Nissen 2016: Nissen, Silas Boye and Magidson, Tali and Gross, Kevin and Bergstrom, Carl 

T. 2016. „Publication bias and the canonization of false facts.“ Elife 5: e21451. 

Ogishima 2016: Ogishima, Soichi and Mizuno, Satoshi and Kikuchi, Masataka and 

Miyashita, Akinori and Kuwano, Ryozo and Tanaka, Hiroshi and Nakaya, Jun. 2016. 

„AlzPathway, an updated map of curated signaling pathways: towards deciphering 

Alzheimer’s disease pathogenesis.“ Systems Biology of Alzheimer's Disease 423-432. 

Open BEL 2017: 2017. Open BEL . Zugriff am 7. October 2017. http://openbel.org/. 

Paul 2010: Paul, Steven M and Mytelka, Daniel S and Dunwiddie, Christopher T and 

Persinger, Charles C and Munos, Bernard H and Lindborg, Stacy R and Schacht, 

Aaron L. 2010. „How to improve R\&D productivity: the pharmaceutical industry's 

grand challenge.“ Nature reviews Drug discovery 9: 203-214. 

Peters 2006: Peters, R. 2006. „Ageing and the brain.“ Postgraduate medical journal 84--88. 

Ravikumar 2017: Ravikumar, KE and Rastegar-Mojarad, Majid and Liu, Hongfang. 2017. 

„BELMiner: adapting a rule-based relation extraction system to extract biological 

expression language statements from bio-medical literature evidence sentences.“ 

Database 2017: baw156. 

REACTOME 2017: 2017. REACTOME. Zugriff am 5. October 2017. https://reactome.org/. 

Sabbagh 2013: Sabbagh, Jonathan J and Kinney, Jefferson W and Cummings, Jeffrey L. 

2013. „Animal systems in the development of treatments for Alzheimer's disease: 

challenges, methods, and implications.“ Neurobiology of aging 34: 169-183. 

Salloway 2014: Salloway, Stephen and Sperling, Reisa and Fox, Nick C and Blennow, Kaj 

and Klunk, William and Raskind, Murray and Sabbagh, Marwan and Honig, Lawrence 

S and Porsteinsson, Anton P and Ferris, Steven and others. 2014. „Two phase 3 trials 



 

32 
 

of bapineuzumab in mild-to-moderate Alzheimer's disease.“ New England Journal of 

Medicine 322--333. 

Science Daily 2009: 2009. Science Daily. 27. May. Zugriff am 5. October 2017. 

https://www.sciencedaily.com/releases/2009/05/090526202722.htm. 

Selkoe 2016: Selkoe, Dennis J and Hardy, John. 2016. „The amyloid hypothesis of 

Alzheimer's disease at 25 years.“ EMBO molecular medicine 595--608. 

Wan 2009: Wan, Hong I and Jacobsen, J Steve and Rutkowski, J Lynn and Feuerstein, Giora 

Z. 2009. „Translational medicine lessons from flurizan's failure in Alzheimer's disease 

(AD) trial: implication for future drug discovery and development for AD.“ Clinical 

and translational science 2: 242--247. 

Wikipathways 2017: 2017. Wikipathways. Zugriff am 5. October 2017. 

www.wikipathways.org/. 

 

 



33 
 

Goals of the thesis 

 

Bench-to-bedside – Concept used to describe the process of applying results from 

biomedical research directly for therapeutic development [Taken from: 

https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=561321 

https://irp.nih.gov/catalyst/v24i3/news-you-can-use] 

 

The goals of this thesis are outlined below: 

 

• Develop and implement a strategy to make all relevant knowledge pertinent to 

Alzheimer’s disease available in computable form 

The first goal of this thesis is to build a high granular multi-scale Alzheimer’s disease 

knowledge model integrating unstructured knowledge. Using this knowledge model I 

aimed to identify early drug-targetable mechanisms in AD and to understand the 

functional consequences of genetic and epigenetic variants in disease context. 

• Address reliability of pre-clinical mouse models to mimic human genomic 

responses 

Having all knowledge around AD in a computable model, how does the comparison 

with the preclinical models with the human model would look like? Therefore, the 

second major goal is to assess the degree to which a mouse can translate the genetic 

responses in human and to what extent mouse model can predict the efficacy of drugs 

prior to a clinical trial. 

https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=561321
https://irp.nih.gov/catalyst/v24i3/news-you-can-use
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• Establish mechanism inventory and analyze research and development strategy  

If we have inventory of mechanisms from the established computable cause and effect 

model, how the investment from pharmaceutical company would appear in the 

portfolio of mechanisms and do they invest in the right mechanism? Based on this, the 

third major goal is to investigate the trend of pharma investment on the basis of drug 

targetable mechanisms in AD. 
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Chapter 1 

Building cause and effect models and predicting novel druggable mechanisms in 

AD 

 

 

Introduction 

Alzheimer’s disease is a complex disorder and the discovery of effective drug 

candidates to halt the disease requires a deeper understanding of disease mechanisms. 

This understanding of mechanisms can be made possible by integrating unstructured 

knowledge and pathway cartoons into a structured computable form which are specific 

to human. This chapter outlines how an inventory of mechanisms based on cause-and-

effect models of Alzheimer’s disease and normal, healthy aged brains are built. By 

comparative analysis, an early stage pathogenic mechanism is identified and new 

insights are given into shared mechanisms between AD and T2DM based on 

functional interpretation of genetic variants. This chapter also explains the syntax 

extension of BEL for the inclusion of epigenetic modifications and demonstrates the 

relevance of epigenetic modification in NDDs. 
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1. Introduction

Difficulties with the diagnosis of Alzheimer’s disease
(AD) and the absence of disease-modifying treatments for
AD remain among the great challenges in biomedicine that
need to be addressed in the 21st century. Recent disap-
pointing results of Alzheimer’s treatment trials reaffirm
that pathogenic mechanisms underlying dementia are more
complex than previously thought [1]. Given the obvious
complexity of the AD pathology, an important question
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that arises is whether current knowledge provides a way for-
ward to better understand the underlying pathological
pathways.

It has been long hypothesized that the deposition of
amyloid-beta peptide in the brain triggers a cascade of mo-
lecular events that consequently lead to AD dementia. The
amyloid hypothesis represents the mainstream scientific
opinion and knowledge on the cause and progression of
AD, despite the growing skepticism surrounding this hy-
pothesis [1]. The amyloid-beta protein also plays normal
physiologic roles, for example, as protein hormones [2].
Given the amount of accumulated knowledge on both
normal and abnormal function of amyloid, which remains
scattered in the form of free text and representations in
various pathway databases, in silico modeling methods pro-
vide a means of aggregating and presenting this information
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in a collated, computer-readable format. Major biological
processes and pathways involved in the pathogenesis of
AD have been collectively represented in the form of the
AlzPathway map [3]. However, to be useful and supportive
for drug and biomarker discovery efforts, such disease
maps need to go beyond the pure representation of pathway
information as cartoons, which suffer from missing biolog-
ical entities (such as Single Nucleotide Polymorphisms
[SNPs]) and difficulties in relational representation. Unfor-
tunately, current AD models do not capture the dynamic na-
ture of the disease (e.g. staging) and because of the lack of
time course gene expression data on AD in humans, these
models do not permit to go beyond the simple overlay of
expression snapshots obtained from post-mortem brains.

Future modeling approaches should thus support the auto-
matic reasoning of interlinked molecules and processes. We
argue that a computer-processable disease model should be
readily amenable to computational reasoning for disease
mechanism discovery based on the identification of cause-
and-effect regulatory effects, thus linking upstream causal en-
tities to downstream bioclinical effects. Furthermore, in the
absence of healthy state models that represent normal cellular
processes, any attempt to derive mechanistic interpretations
of disease is inconclusive. Thus, disease mechanism discov-
ery requires the conversion of descriptive knowledge into
computer-processable cause-and-effect models and mecha-
nistic interpretation should be addressed by the differential
analysis of normal and abnormal processes.

We address these requirements by constructing two cause-
and-effect computer-processable models for pathophysiolog-
ical processes associated with AD and their healthy state
analogs based on the Biological Expression Language (BEL;
http://www.openbel.org/). BEL integrates literature-derived
“cause and effect” relationships into network models, which
can be subjected to causal analysis using quantitative data
such as gene expression. The models developed here not
only represent a comprehensive view on the core established
pathways involved in amyloid processing but also cover a
broad spectrum of events that lead to clinical readouts often
seen in AD patients, such as neuroinflammatory processes.
Moreover, the healthy and disease state models provide a
means for mechanistic differential analysis through which
causal pathogenic pathways can be identified.
2. Methods

2.1. Data collection and human APP BEL model building

The scientific knowledge of physiological functions
(normal) and pathological actions (diseased) of amyloid pre-
cursor protein (APP) processing were acquired from AD-
related articles, reviews, and databases. First, 37 pathway
cartoons were collected from pathway databases (such as
Kyoto Encyclopedia of Genes and Genomes [KEGG]
(http://www.genome.jp/kegg/), Reactome (http://www.
reactome.org/PathwayBrowser/), and BioCarta (http://
www.biocarta.com/genes/index.asp)). Second, using SCAI-
View [4] we retrieved a list of 4124 genes, reported to be
linked to pathology of AD, of which the top 50 genes were
selected based on their relevancy to the query. Documents
tagged for these genes were manually filtered for normal
(64 documents) and disease (295 documents) states. Rela-
tionships reported in these documents were encoded in
BEL language v1.0 and used to build the APP BEL models.
Furthermore, documents related to top 10 AD related genes
were obtained from the AlzGene Database [5]. The APP
BEL models were validated for correct syntax and compiled
using the OpenBELFramework v2.0, omitting Phase III
network augmentation. The models were visualized using
Cytoscape and queried using the OpenBEL Knowledge As-
sembly Model (KAM) Navigator Cytoscape plug-in (https://
github.com/OpenBEL/Cytoscape-Plugins).
2.2. Comparison of the normal and disease state models

To identify differential pathways, which are specifically
present in the disease state model, the two APP models
were compared using the Cytoscape plug-in “advanced
network analysis” [6].
2.3. GSEA using MSig database

The “Compute Overlaps” tool available via MSigDB
(http://www.broadinstitute.org/gsea/msigdb/help_annotatio
ns.jsp#overlap) was used to identify enriched pathways in
the BEL models and the AlzPathway map, using the canon-
ical pathways collection of gene sets (MSig database v4.0
updated May 31, 2013). This was used to identify the com-
mon canonical pathways between Normal and Disease state
BEL models and to revalidate the specificity of models with
AD context and to compare it with the existing AlzPathway
model. Three canonical pathway data sets were used to
compute overlaps; BioCarta, Reactome, and KEGG. Anal-
ysis was done using the entire gene list of both (normal
and diseased) models and AlzPathway. From the BEL
models, we have extracted all the genes/proteins/RNA
names (referenced by HUGO Gene Nomenclature Commit-
tee [HGNC] namespace) and given as input for computing
overlaps. For further analysis, we have selected the top
ranked pathways by the number of genes with the highest
P-value and FDR-q value by Gene Set Enrichment Analysis
(GSEA) analysis. From the common pathways, the overlap-
ping genes were identified for both disease and normal BEL
models and identified how these pathways differentiate the
normal and diseased states.

2.3.1. SNP analysis for comorbidity
Genetic variants (SNPs) for Alzheimer disease (AD)

and genes of APP-related pathways were collected from
PubMed and genome-wide association studies (GWAS)
databases in which SNPs were identified for AD and
genes of APP-related pathways. Using GWAS databases,

http://www.openbel.org/
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http://www.reactome.org/PathwayBrowser/
http://www.reactome.org/PathwayBrowser/
http://www.biocarta.com/genes/index.asp
http://www.biocarta.com/genes/index.asp
https://github.com/OpenBEL/Cytoscape-Plugins
https://github.com/OpenBEL/Cytoscape-Plugins
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more than 9000 SNPs for AD with the P-value threshold
,1023 were collected. Of this, 96 SNPs associated with
47 genes were encoded in the APP-disease model. SNPs
were prioritized according to their functional effect on
the gene/protein in the disease context based on scores
referring to the RegulomeDB database (http://regulome.
stanford.edu/index) and experimental evidence for their
position in a chromatin state was obtained from the Chro-
MoS web tool [7].
3. Results

3.1. APP biology models representing normal versus
disease processes in human brain

Following the workflow illustrated in Fig. 1, 295 articles
were found to contain essential information on APP
processing under disease condition in human brain and
were used to build the so-called “APP-Disease model”; simi-
larly, 64 articles were used to construct the “APP-Normal
model” representing the analogous normal processing of
APP in neurons (Fig. 2). This imbalance between the number
of articles is reflecting the publication bias toward APP in the
disease context as compared with reports on its normal bio-
logical role. Although we are aware of this bias, we aimed at
the maximum coverage of causal and correlative statements
that can be encoded in BEL. Consequently, the models
we present here have grown way beyond this well-
characterized APP pathophysiological endpoint and now
include the vast majority of AD associated processes and
pathways. As a result, the models encoded in BEL consist
of 701 nodes for “APP-Normal” and 1314 nodes for “APP-
Disease”. There are 920 BEL knowledge statements config-
uring the APP-Normal model and 2087 BEL statements
supporting the APP-Disease model. The total numbers of in-
teractions (edges) in normal and disease models are 1416
and 2935, respectively.

The APP BEL models (normal and disease) were
compared with the previously published AlzPathway
model in terms of information coverage [3]. A comparison
among all three models is shown in Supplementary
Table 1. To investigate functional similarities and differ-
ences in content, a comparative pathway analysis was per-
formed with the AlzPathway model using pathway
enrichment analysis (see Methods) with the canonical path-
ways in the MSig database [9] (Supplementary Table 2).
The literature supporting the role of unique pathways of
APP-Disease model indicates that these unique pathways
form the core of hypotheses describing the pathology of
AD (Supplementary Table 3)

3.2. Differential analysis of APP-Normal and APP-
Disease models for identification of causal events

The differential model analysis aims to identify patho-
physiological mechanisms underlying disease in compari-
son to the normal baseline function. We developed a
strategy for differential model analysis that normalizes be-
tween the two models at the level of common, overlapping
processes and pathways.

After the alignment of two APP models, we identified the
disease-specific parts of the APP-Disease model by subtrac-
tion of the nodes and edges shared by bothmodels. The result-
ing “delta” model was subjected to pathway enrichment
analysis, which resulted in the identification of several path-
ways enriched in the portion of the model that is unique to dis-
ease, for example, the neurotrophin signaling pathway,
mitogen-activated protein kinase (MAPK) signaling pathway,
and signaling by nerve growth factor (NGF). The identifica-
tion of these pathways provides a starting point for the gener-
ation of mechanistic hypotheses. The integration of additional
information from high-throughput data sources (e.g. GWAS
data; gene expression data) and scientific literature not used
to build the BEL model (e.g. patent literature) provide inde-
pendent evidence for the relevance of a putative diseasemech-
anism identified through differential model analysis.

Because the neurotrophin signaling pathway was among
the top identified, disease-associated pathways, we investi-
gated this pathway in more detail. In our BEL models, we
identified four key regulators of the neurotrophin signaling
cascade as described in the KEGG neurotrophin pathway,
namely NTRK2 (neurotrophic tyrosine kinase receptor,
type 2), BDNF (brain-derived neurotrophic factor), nerve
growth factor receptor, and NGF. However, the differential
model analysis reveals that the mode of interaction among
these four proteins drastically differs between the normal
and disease states. Accordingly, these proteins control two
branches of the neurotrophin pathway, which regulate the
balance between two possible biological outcomes, namely
neuron survival versus apoptosis (Fig. 3).

The neurotrophic protein BDNF and its receptor NTRK2
are involved in neuron differentiation and growth. In the
normal state, ubiquitin carboxyl-terminal esterase L1
(UCHL1), a deubiquinating enzyme that controls BDNF-
mediated retrograde transport, activates BDNF, and in-
creases the binding of BDNF to its receptor NTRK2, thereby
promoting neuronal development and homeostasis. In
contrast, under AD conditions, amyloid-beta prevents the
binding of BDNF to NTRK2 receptor, thereby blocking
BDNF-NTRK2 downstream signaling. This blockade leads
to the repression of neuron survival, differentiation, and
growth, so that abnormal APP processing and amyloid-
beta production has been experimentally shown to attenuate
BDNF-NTRK2 signaling [10]. UCHL1 activity is repressed
by amyloid-beta, which in turn impairs BDNF-NTRK2-
mediated downstream signaling, leading to diminished syn-
aptic plasticity and neuronal survival [11]. Our BEL models
also shed light on a second pathophysiology mechanism of
two other proteins involved in neurotrophin signaling:
NGFR and NGF. In the normal state, the NGF protein binds
to NGFR resulting in NGFR polyubiquitination. Ubiquiti-
nated NGFR binds to inhibitor of kappa light polypeptide
gene enhancer in B-cells, kinase beta (IKBKB) and activates

http://regulome.stanford.edu/index
http://regulome.stanford.edu/index


Fig. 1. Schematic representation of the model construction and analysis workflow: Two amyloid precursor protein (APP) models were built using the scientific

knowledge present in the scientific literature, databases, pathway cartoons, and genomic databases. The twomodels represent the normal neuron physiology and

the diseased state physiology. The initial models have undergone an enrichment through Reverse Causal Reasoning (RCR) analysis [8]. Differential model com-

parison based on gene set enrichment led to the generation of two hypotheses, which were investigated further in silico and are supported by additional, inde-

pendent evidence.
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nuclear factor of kappa light polypeptide gene enhancer in
B-cells 1 (NFKB1), which promotes neuronal cell survival
[11]. In the disease state, amyloid beta peptides competi-
tively bind to the NGFR and inhibit the binding of NGF, re-
sulting in increased cell death [13,14].

An exhaustive search of patent and nonpatent literature
for further evidence supporting the mechanism of compet-
itive blocking of the NGF receptor through APP peptides
revealed that although the literature supports the inhibi-
tion of BDNF signaling by APP and the induction of
NGFR-mediated cell death by APP, separately, the
embedding of the competitive binding of NGF and APP
peptides in the context of the model shown in Fig. 3
brings these observations together as a novel, cohesive
disease mechanism. Further supportive evidence comes
from the patent literature [15]. Accordingly, the occur-
rence of a mutation from lysine to alanine at position
34 of the NGF amino acid sequence has been detected
that results in binding mutant NGF molecule to NGFR
with 50% lower affinity. Interestingly, the patent reports



Fig. 2. Amyloid precursor protein (APP) biological expression language (BEL) models: The first image (A) represents APP-Disease model and second image

(B) represents APP-Normal model. The observation that the APP-Normal model is sparse but the APP-Disease is denser reflect the bias toward the research in

pathology, as compared with normal physiology of APP in the human brain.
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a simultaneous occurrence of the amino acid sequence
“lysine-glycine-alanine” in the amyloid peptide that pro-
vides a binding site for NGFR, thus creating a competitive
binding capacity for the amyloid peptide.

3.3. Systematic aggregation of evidence in support of the
amyloid-mediated neurotrophin switch hypothesis

The putative amyloid-mediated switch mechanism iden-
tified through differential model analysis of the neurotrophin
signaling pathway is based on qualitative information. To
further support the mechanism of action exerted by amyloid
beta in the neurotrophin signaling pathway, we systemati-
cally harvested and screened independent pieces of evidence
from experimental databases containing data sets on
knockout mouse models and miRNAs. For four key regula-
tors in the neurotrophin signaling pathway (BDNF, NGF,
NGFR, and NTRK2), knockout mice were identified in the
Mouse Genome Informatics database [12] and this provides
supportive evidence for the proposed amyloid-switch mech-
anism (Supplementary Table 4).

We also systematically investigated reports on miRNAs
that regulate the genes in the neurotrophin pathway. Indeed,
several miRNA studies provide supportive evidence for a
key role of members of the neurotrophin pathway in early
decision making on neuron survival [16,17] (see
Supplementary Table 5).

3.3.1. Biomarker-guided validation of the amyloid-
mediated neurotrophin switch hypothesis

Mentions of potential biomarkers in the literature can be
used for biomarker-guided pathway analysis [18]. We
therefore extracted mentions of potential biomarker func-
tions of BDNF, NTRK2, NGF, and NGFR from the litera-
ture (Supplementary Table 6). Mapping these evidences for
expressed biomarkers to the neurotrophin pathway clearly
supports the amyloid-dependent switch mechanism hy-
pothesis (Fig. 3). The coordinated decrease in the levels
of NGF and increased expression of NGFR protein, on
one hand, and consistent decrease in levels of BDNF-
NTRK2 complex, on the other hand, is aligned with our
hypothesis and can be mechanistically explained by the
model. In addition, the decreased expression of BDNF
and NTRK2 in synergy with the inhibitory effect of amy-
loid beta on UCHL1 leads to “switching” the entire
pathway from its normal state with neuroprotective effect
to the disease state with a strong trend toward neuron
apoptosis.

3.4. Inclusion of genome variation information in causal
models

The addition of information on genetic variation to BEL
models can support the generation of new hypotheses and
analyze their mechanistic link to comorbidities of AD such
as diabetes. The enrichment analysis of our models earlier
indicated that insulin signaling pathway is among signifi-
cantly enriched pathways connected to the APP processing
(see Supplementary Table 2). Accumulated evidence suggests
that type 2 diabetes mellitus (T2DM) is a strong risk factor for
AD, as shown by Akomolafe (2006) [19] and patients treated
with insulin were at highest risk of dementia [20].

Consistent with these findings, analysis of APP-Normal
and APP-Disease models revealed that some interactions in



Fig. 3. Molecular decision-makingmechanism linked to the neurotrophin signaling pathway between Normal and Disease states: The nodes and edges shown in

green color represent the normal pathway. The red color indicates the perturbation of the neurotrophin pathway under Alzheimer’s disease diseased state con-

ditions. The node act represents activity of the protein and (U) represents the ubiquitination of the protein. The black colored arrows (up and down) indicate over-

or underexpression of the nodes in diseased state from the biomarker guided validation.

A.T. Kodamullil et al. / Alzheimer’s & Dementia 11 (2015) 1329-13391334
normal insulin signaling are perturbed by AD-causing factors
such as amyloid beta peptides (see Supplementary Table 2).
We have identified 12 functionally relevant SNPs linked to
ADandT2DMand associated themwith threegenes (clusterin
[CLU], serine/threonine kinase 11 [STK11], and phosphatidy-
linositol binding clathrin assembly protein [PICALM]) in the
APP-Diseased BEL model (Supplementary Table 7). Two of
the three genes (CLU and STK11) could be integrated with
prior knowledge to build a hypothesis (Fig. 4).

3.4.1. Model-guided interpretation of genetic variation
data by inferring chains of causation

The comorbidity model shown in Fig. 4 reveals the
possible causative effects of genetic variants on the mech-
anistic association of T2DM with AD. In a recent GWAS
study on AD, CLU intronic SNPs were found to be associ-
ated with the disease [4,21,22]. Clusterin is a transport
protein and has a role in helping the clearance of
amyloid-beta by transporting it through the blood-brain
barrier [23]. The risk variant rs9331888 (with allele G)
associated with the CLU gene increases the quantity of a
CLU isoform in AD, which induces apoptosis [24] and
may contribute to the accumulation of amyloid beta in
AD (Fig. 5). A study that quantified levels of clusterin iso-
forms showed a decrease in secreted soluble CLU in pro-
dromal Alzheimer brain and a significant increase in
intracellular CLU [25]. Furthermore, in a proteomic anal-
ysis of human hippocampal tissues from AD brains and
age-matched control brains, it was confirmed that an iso-
form of CLU is upregulated in AD cases [26]. Moreover,
AD patients have a higher expression of CLU mRNA
and its concentration is positively linked to programmed
cell death or apoptosis [27]. In line with these observa-
tions, expression quantitative trait loci (eQTL) analysis
has shown that CLU is overexpressed in AD [28]. It is
possibly linked to fibrillar amyloid-beta and apoptotic
mechanisms in neurodegenerative diseases [29]. One of
the SNPs (rs1532278) in the CLU gene is also associated
to T2DM in GWAS analyses of diabetes patients; the
amount of CLU is also significantly increased in the serum
of T2DM patients, which is correlating with blood glucose
levels [29]. It has been hypothesized that this SNP is linked
to T2DM through insulin resistance and impairment of in-
sulin secretion.

Similarly, genetic variants of STK11 have been linked to
T2DM and also to AD in GWAS studies [39,40]. In mouse
models, the deletion of this gene is linked to the inhibition
of axon branching [41]. According to GWAS studies, two in-
tronic SNPs in the STK11 gene are associated with AD [39].
Moreover, two intronic SNPs of STK11 are also associated
with T2DM. The expression of STK11 in liver seems to be
required to lower blood glucose and its deficiency upregulates
gluconeogenesis. Additionally, targeted STK11 deletion in
liver leads to hyperglycemia [42] (Fig. 6). Furthermore,
mouse models lacking S6K1 (C57BL/6J) display enhanced
insulin sensitivity [7]. The dysfunction of STK11 gene may
also contribute to the accumulation of amyloid beta via the
overactivation of mTOR and inhibition of autophagy. Gene
expression studies show that STK11 is downregulated in
AD [43]. Finally, the relevance of the regulatory and causal



Fig. 4. Comorbidity association of Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) by genetic variants of clusterin (CLU) and serine/threonine

kinase 11 (STK11) genes: In the normal state (green color edges), insulin protein binds to its receptor insulin receptor and this binding event activates INSR

through phosphorylation [30]. The activated INSR binds to insulin-like growth factor 1 (IGF1) and activates insulin receptor substrate 1 (IRS1) [31]. Activated

IRS1 activates the phosphoinositol signaling system which activates protein kinase B (AKT) signaling and controls glycogenesis. Activated INSR binding to

IGF1 also activates Src homology 2 domain containing protein (SHC) and thereby activates the MAPK signaling pathway [32]. In the disease state (red color

edges), CLU promotes neuron apoptosis [27]. Amyloid beta peptides bind to INSR, effectively preventing activation of INSR by insulin. As a consequence,

through inactivation of the phosphoinositol signaling system, AKT signaling and mitogen-activated protein kinase (MAPK) signaling pathways, binding of

APP peptides suppresses the insulin signaling pathway [33]. The CLU single nucleotide polymorphisms (SNPs) are associated with an increased production

of amyloid beta peptides and the CLU variants increase the risk of T2DMby primarily inducing the insulin resistance and secondly by decreasing the production

of insulin [34]. In the case of insulin resistance, the amount of INS is increased due to its accumulation in the blood [35]. Normally under the condition of energy

stress, STK11 activates adenosine monophosphate-activated protein kinase (AMPK) by phosphorylation and AMPK activation decreases Mechanistic target of

rapamycin serine/threonine kinase (mTOR) signaling activity, thereby helping degradation of b-amyloid. In T2DM, the SNP rs8111699, which maps to the

enhancer region of the STK11 gene, is influencing insulin sensitivity [35]. The other SNP (rs741765) is located in the insulator region, which may block

the interaction between the enhancer and promoter of the gene, resulting in downregulation of the STK11 gene [36]. Deficiency and dysfunction of STK11

inhibits the AMPK phosphorylation, thereby reducing the activity of AMPK [37], which hyper-activates mTOR signaling in AD [38]. Moreover, in T2DM,

hyperactivation of mTOR signaling inhibits IRS1 via activation of S6K1 and the IRS1 inhibition leads to insulin resistance (linking the STK11 causal graph

to the CLU graph), which leads to increase in INS and glucose in blood. The black colored arrows (up and down) indicate over- or underexpression of the nodes

in diseased state; while dotted arrows are inferring the possible effect of genetic variants.
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circuitry outlined here is underpinned by the activity of an
antidiabetic drug known as metformin, which is used to acti-
vate AMPK (Adenosine monophosphate-activated protein ki-
nase) phosphorylation and probably may repress and delay
the appearance of AD pathology [44].
4. Discussion

There is an unmet need for strategies to model and
identify potential disease-initiating events/mechanisms
in the absence of both sufficient data (which makes
data-driven approaches impossible) and models for early
Neurodegenerative disease (NDD) initiation (which
makes a simple cause-effect analysis very difficult). We
believe that complex, idiopathic diseases cannot be ad-
dressed by the established routes of molecular biology
experimentation alone, as neurodegeneration works in
the context of an entire organ and the pathology can
only be studied in the organ context. Model-driven ap-
proaches are a way to capture the collective knowledge
about disease processes and allow for a comparison at
systems level.

The results of this study demonstrate that encoding
relevant knowledge into causal relationship models con-
fers enhanced interpretation power that is well-suited for
hypothesis generation. BEL models of APP processing
represent a broad coverage of the molecular knowledge
on the pathological events underlying AD while preser-
ving sensitivity (by inclusion of various biological path-
ways linked to the core pathology), specificity (by
inclusion of species- and disease-specific information),
and context (by inclusion of almost all types of biological



Fig. 5. Evidence-based interpretation of CLUgenetic variation effect: The flowchart shows themajor evidences from the biological expression language (BEL)-

Model that support the mechanistic interpretation of genetic variants (single nucleotide polymorphisms) of clusterin (CLU) and links these mechanisms with

disease etiology of late-onset Alzheimer’s disease (LOAD) and type-2-diabetes T2DM). In diseased state, CLU is inducing the increased production of amyloid

beta peptides, which is binding to insulin receptor (INSR) and inhibits the insulin-signaling pathway. Moreover, CLU is associated with an increasing risk for

T2DM primarily by inducing insulin resistance and secondarily by decreasing insulin secretion. It is also increasing neuron apoptosis in diseased state.
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entities). Our approach overcomes the general problem of
missing values, low reproducibility, and static representa-
tion with microarray gene expression data so that differ-
entially expressed genes detected for the same disease
Fig. 6. Evidence-based interpretation of STK11 genetic variation effect: Cartoon-l

language (BEL) models that associate genetic variants (SNPs) of STK11/LKB1 gen

type-2-diabetes (LOAD and T2DM).
are often highly inconsistent and may even fail to include
genes representing key causal mechanisms [45]. For
instance, the functional role of neurotrophin signaling
pathway in pathology of AD could be completely ignored
ike representation flowchart of evidence encoded in the biological expression

e to the putative disease etiology of late-onset Alzheimer’s disease (AD) and
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if only gene expression values for BDNF, NGF, NTRK2,
and NGRF were considered. In contrast, the power to
detect this mechanism was remarkably increased when
knowledge-based BEL models were used as the integra-
tive platform for expression data.

We are of course aware of the fact that differences be-
tween the two models we generated could either reflect
true pathomechanisms that differentiate the healthy and
the diseased state, or—in the most trivial case—could reflect
differences in the research published so far on a certain
biology. We therefore emphasize that the differential model
analysis is a way to generate hypotheses on possible patho-
mechanisms, but does not provide any proof for their true ex-
istence. Additional, independent evidence (e.g. SNP data
that support the notion of an important, putative disease
mechanism) and classical model validation strategies using
independent data sets (e.g. RNAseq data) will help us to
rapidly identify those hypotheses that merit an in-depth anal-
ysis, including experimental validation in appropriate exper-
imental systems.

Our differential analysis of normal and disease states in
AD and the additional supporting information provided
evidence for the key role of amyloid-beta in switching
the neurotrophin signaling pathway between cell survival
and cell death. Retrospectively, we found an elegant study
by Matrone et al. (2009), which lends empirical support to
the role of amyloid-beta in switching from prosurvival to
proapoptotic activity of the neurotrophin pathway [46].
Consistent with these results and as preclinical support
for the previously mentioned hypothesis, the administra-
tion of small molecule BDNF mimetics or injection of
NGF to mice models of AD has been clearly shown to
result in rescue from cell death and the promotion of
neuronal survival [47].

Enriched context of the APP BEL-based models with
SNP data leveraged the interpretation power and allowed
for linking causal effects of genetic variants to down-
stream molecular pathways and biological phenotypes,
as exemplified for insulin resistance under AD conditions.
Indeed, encoding SNPs in BEL models allows for linking
SNP-associated effects to a larger functional context
including biological pathways. On one hand, for most of
known and statistically significant SNPs in AD GWAS re-
sults including CLU, the mode of action is not well under-
stood but the presented BEL model in this study explains
how intronic variants of CLU may increase the risk of AD
through insulin resistance and increasing prevalence of
T2DM. On the other hand, rare regulatory variants such
as on STK11, which reside on noncoding regions of genes
and are difficult to detect, have been shown to be causal
for several monogenic diseases (e.g. beta-thalassemia)
or modifier (e.g. sickle cell anemia) [48] but their mech-
anism of action is unclear. Our mechanistic models pro-
vide chains of argumentation for the causal effects of
such rare regulatory variants mediated by increased levels
of amyloid-beta.
It is noteworthy that BEL models go far beyond mere
representation of genetic information by including down-
stream molecular entities and biological processes and
pathways. However, BEL lacks a temporal dimension;
the language has not been designed to capture kinetic infor-
mation. Our future strategy to deal with the temporal
dimension of Alzheimer is, to generate models represent-
ing the staging of Alzheimer by capturing the knowledge
available for different stages. A first step toward stage-
specific identification of biomarker candidates has already
been made [49].

We envision that the application of the (qualitative)
knowledge-based model provided in this study to
mechanism-identification can support target identification
in drug discovery and can be further enhanced by the inclu-
sion of quantitative data. This potential has been already
shown using gene expression alterations between
responders and nonresponders to infliximab therapy in ul-
cerative colitis patients where a quantitative causal (BEL)
network analysis led to the identification of a set of strati-
fying genes which were confirmed by their correlation with
the Mayo score, a score used to diagnose patients with
active ulcerative colitis [50].
5. Conclusion

Although there are clear benefits of this BEL-based,
model-driven approach to understanding the complex
mechanisms contributing to disease, there are some consid-
erations for future enhancements to our models. First,
given the pace of scientific research, the models need to
be improved by regular update as more data and knowledge
becomes available. Second, the current version of BEL de-
scribes biological interactions qualitatively and in cases
where the same processes happen in both disease and
normal tissue, quantitative information—when available
in the literature—could allow a finer grained comparison
of the diseased and normal state. Last, many studies on
pathophysiology of neurodegenerative diseases like AD
have been carried out in animal models, but it is not clear
how well these findings are in agreement with humans. The
computerization of such biological processes for represen-
tation, analysis, and comparison of interspecies mecha-
nistic details will be a significant step forward in
translational research.
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RESEARCH IN CONTEXT

1. Systematic review: We have undertaken a compre-
hensive, systematic approach to capture a wide spec-
trum of knowledge about neuron molecular
physiology in the normal state and in the diseased
(Alzheimer’s disease or AD) state. The knowledge
gathered was used to generate two models, a “normal
neuron” model and a “diseased neuron” model
formalizing and representing major mechanisms un-
derlying neuron physiology and its deregulation in
disease.

2. Interpretation: With the knowledge-based modeling
approach outlined in this article we substantially
add to a computable, comprehensive knowledgebase
in AD research. The formalism applied for the
modeling supports not only sharing of knowledge,
but also the identification of new candidate mecha-
nisms underlying AD.

3. Future directions: The models we publish here are
meant to provide the starting material for an ever-
growing knowledgebase on AD that can be reused,
expanded, and improved by the AD research commu-
nity. Future directions will see an extension of the
models toward epidemiological and clinical evi-
dences, and modeling of epigenetics factors.
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Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a
combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major
milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to
unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations
of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically
captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL).
This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNAmethylation or acetylation of
histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional
context specific to Parkinson’s disease (PD) and Multiple Sclerosis (MS).

1. Introduction

In the 19th century, Gregor Mendel defined the mechanism
of inheritance patterns, which laid the ground for genet-
ics in modern biology. However, Mendel’s theories could
explain neither how different individuals in a population
are genetically similar but exhibit different phenotypes,
nor how identical twins are prone to different diseases.
Recent studies confirmed that copy number variations, single
nucleotide polymorphism, or any heritable changes in the
DNA sequence could be a plausible additional explanation
for Mendel’s observation. In 1942,Waddington used the term
epigenotype as a name for the study of causal mechanisms
through which genes exhibit phenotypic effects and their
adaptive interaction with the environment [1]. These epige-
netic causal mechanisms involve histonemodifications, DNA
methylation, and abnormal RNA regulation, which can alter

normal biological processes by heritable silencing of genes,
although they do not cause any nucleotide sequence changes
in chromosomal components [2]. Gill published the first
paper describing epigenetic mechanism in drosophila egg
promorphology [3]. In 1971, Tsanev and Sendov proposed the
role of epigenetics in neoplastic transformation and the pro-
cess of carcinogenesis [4]. Holliday reviewed the methylation
of cytosine in DNA and how they are consistent to the levels
of gene expression in higher organisms like human, mouse,
and hamster [5]. He also illustrated that epigenetic effects
are closely linked to aging such that decrease in methylation
correlates with lifespan. It has later been demonstrated that
epigenetic modifications are tissue-specific phenomena that
can have dramatic effects on the silencing, the increase, or
the reduction of the expression of genes in a given tissue.
Song et al. observed variations of the methylation status in
different developmental stages [6]. Additionally, Chen and
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Zhang showed the risk of neonatal mortality due to maternal
vascular underperfusion, which is a result of epigenetic
modifications in several genes during pregnancy [7].

Several studies illustrate how nutrition and environmen-
tal factors influence epigenetic modifications. A study based
on anAfrican-American cohort demonstrated that epigenetic
factors like psychological stress and social context are related
to inflammation in coronary heart disease and stroke [8]. In
the progression of type-2 diabetes mellitus (T2DM), Prat-
tichizzo et al. [9] reviewed interactions between epigenetic
(DNA methylation, posttranslational histone modifications,
and miRNA regulation) and environmental factors (lifestyle
and mainly dietary habits). Duru et al. proposed several
dietary chemoprevention agents—such as Retinoids/Vitamin
A, Resveratrol, EGCG/Green Tea, and VitaminD—which act
on miRNA-signalling pathways to be novel therapeutics in
breast cancer [10].

It is noteworthy that environmental exposures during
early stage of life can also induce persistent alterations in the
epigenome, which may lead to an increased risk of disease
later in life. Reviews by Van Dijk et al. and Cordero et al.
investigated different epigenomics patterns in obesity during
early and later stage of life [11, 12]. They elucidated the role
of dietary supplements and environmental conditions on
epigenetic mechanisms during the pregnancy period, which
lead to the risk of obesity in offspring.

2. Epigenetics in Neurodegenerative and
Autoimmune Disease

With the rising momentum of biomedical science, several
studies on neurodegenerative diseases (NDDs) not only
showed environmental influences on molecular and cellular
changes [13, 14] but also established possible relationships
between genes and the environment [15]. The major mech-
anisms for epigenetic alterations found in these diseases
include DNA methylation, histone tail modifications, chro-
matin remodelling, and mechanisms regulated by small
RNA molecules [16–18]. Epigenetics in neurodegenerative
and autoimmune diseases are of current interest to many
researchers and more recently several studies have shed light
on the role of epigenetic alterations in autoimmune diseases
and NDDs.

Ravaglia et al. discussed the association of folate and
Vitamin B12 levels in nutritional diet with the prevalence
of NDD [19]. An experiment performed on aged monkeys
showed epigenetic changes in APP expression and amyloid
beta level due to lead (Pb) exposure [20]. Another study
by Baccarelli and Bollati explained how air-pollutants (black
carbon, benzene) and toxic chemicals (arsenic, nickel, and
diethylstilbestrol) alter gene expression accompanied by
epigenetics changes [21]. This paper reviewed all possible
metals and chemicals; those are responsible for up- or
downregulation of disease specific gene such as BDNF.

Since NDDs are prevalent in the aged population,
experiments conducted on NDD patients have revealed
how environmental factors such as age, lifestyle, diet, and
level of education influence the development of diseases

and also highlighted the crosstalk of environmental factors
with genes [22]. HDAC gene expression has been shown
to be downregulated by Kaliman et al. due to moderate
physical activities, which in turn reduce the expression of
proinflammatory genes in NDDs [23]. Other than physical
exercise, Nicolia et al. reviewed the role of environmental
factors such as stressors (physical and behavioral), pesticides,
and mental exercise causing DNAmethylation in age-related
diseases, specifically in AD [24]. The authors suggested that
longer lifespan increases the risk of environment-induced
epigenetic changes. In a detailed study [25] of epigenetics
in AD, decreased DNA methylation was observed in the
temporal neocortex of monozygotic AD twins. Manipulation
of histone tail acetylationwithHDAC inhibitors also has been
investigated in several animal models of AD [26]. Mart́ı et al.
have explained a set of deregulated miRNAs that participate
in altered gene expression in neurodegeneration, especially in
Huntington’s disease [27].

A hypothesis, namely, “hapten hypothesis,” was intro-
duced by Mintzer et al. in 2009, which describes that drugs
like Penicillin and Clozapine play the role as haptens to pro-
duce antibodies against neutrophils in case of autoimmune
diseases, such as Systemic Lupus Erythematosus (SLE) [28].
Uhlig et al. mentioned smoking as risk factor in addition to
age and gender in another systemic autoimmune disorder,
that is, Rheumatoid Arthritis (RA) [29]. Similarly, ultraviolet
radiation also alters the immune mechanisms that may result
in Lupus Erythematosus (LE) [30]. From the above discussion
it is evident that epigenetic factors play a significant role in the
context of NDD and autoimmune disease.

Although there is growing interest in epigenetics ofNDDs
and autoimmune diseases, only a few studies have been per-
formed specifically on PD andMS. In fact, only a very limited
number of studies deal with the functional consequences of
epigenetic modifications and perturbed mechanisms leading
to a particular phenotype. A systematic comparison of the
number of epigenetic studies in AD, PD, and MS in the
last years is shown in Figure 1(a). The graph shows that
the number of scientific publications on epigenetics in PD
and MS is significantly lower than the number of papers
on epigenetics in AD. Figure 1(b) represents the overall
trend in epigenetic studies; it becomes obvious that AD, PD,
and MS represent only a minority fraction of the literature
on epigenetics mechanisms, in particular when compared
with the predominant indication areas arthritis, cancer, and
diabetes.

3. Computational Modelling of Epigenetic
Factors in a Functional Context

To represent, manipulate, and visualize large amounts of bio-
logical data from different sources, computational modelling
has become an intuitive approach. Artyomov et al. proposed
an “epigenetic and genetic regulatory network” that describes
how transcription factors affect cellular differentiation by
reprogramming embryonic cells [31]. Irrespective of any
specific disease context, a computational micromodel for
epigenetic mechanisms was developed by Raghavan et al.,
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Figure 1: (a) Statistics over scientific publications around epigenet-
ics related neurodegenerative (AD and PD), autoimmune diseases
and other diseases using PubMed with queries ((“Parkinson’s dis-
ease”) AND epigenetics), ((“Alzheimer’s disease”) AND epigenet-
ics), and ((“Multiple Sclerosis”) AND epigenetics), last accessed on
7/20/2015. In (a), blue, green, and orange coloured bars represent the
total number of publications, for AD, PD, and MS, respectively. (b)
This figure illustrates the trend of research on other diseases around
epigenetics compared to NDD (AD and PD) and autoimmune (MS)
disease, where green coloured portion representing the studies on
all sorts of diseases and blue portion covers only AD, PD, and MS
related researches.

demonstrating the interaction of histone modifications with
DNA methylation and transcription process [32]. The model
was able to identify the transcription rate when the level of
DNA methylation is known.

From high throughput gene expression data of 12 human
cell lines, a model integrating transcriptomic data and his-
tone modification has been developed, called Epigenetic
Regulatory Network [33], which identifies the main con-
tributing epigenetic factors among different cell types. To
facilitate the systematic integration of High Throughput
Sequencing (HTS) epigenetic data, Althammer et al. have
described a new computational framework. This workflow
was inspired by machine learning algorithms and can be
used to find alterations of epigenetic states between two
given cell types [34]. Artificial Epigenetic Regulatory Net-
work (AERN) proposed by Turner et al. has included DNA

methylation and chromatin modification as the epigenetic
elements in addition to genetic factors. They showed an
example of how disease specific genes can be allocated
in the network according to environmental changes and
how gene expression regulation can be analysed within the
network [35]. In a recent review paper [36], Hidden Markov
Models (HMM) have been used to handle the complexity of
epigenetic mechanisms, especially different patterns of DNA
methylation. For autoimmune diseases, Farh et al. developed
an algorithm, named “Probabilistic Identification of Causal
SNPs (PICS),” which was able to find out the possibility of
SNPs to be causal variants in immune cell enhancers when
epigenetic modifications on that chromatin site are known
[37].

Although there are algorithms that identify epigenetic
modifications, there are no previous evidences describing
the interpretation of functional consequences of epigenetic
modifications in disease mechanisms. Here, we propose
a computer-readable modelling strategy that is competent
of fusing knowledge and data based information, which
is capable of explaining the functional consequences of
epigenetic modification in a mechanistic fashion. In this
paper, we introduce the Biological Expression Language
(BEL; http://www.openbel.org/) that is the main base of
building models for epigenetics analysis of PD and MS.

BEL integrates literature-derived “cause and effect” rela-
tionships into network models, which can be subjected to
causal analysis and used for mechanism-based hypothesis
generation [38]. The semantic triple-based modelling lan-
guage used here enables the application of Reverse Causal
Reasoning (RCR) algorithms, which support the identifi-
cation of mechanistic hypotheses from the corresponding
causal network. The RCR methodology allows for investi-
gating to what extent a knowledge-based set of triples is
supported by omics data (e.g., gene expression data); the
method is therefore suited for inference based on qualitatively
significant data [39]. To enable a quantitative assessment
and to perform comparative mechanistic analysis, another
algorithm is integrated in the BEL framework: the Network
Perturbation Amplitude (NPA) method. Although it uses the
same network structure like RCR, its main purpose is to
estimate the activity changes of a specific biological process
when a pathophysiology state is compared to a nonperturbed
condition [40].

Until now, BEL based network modelling approaches
have been used in various applications such as early patient
stratification, biomarker identification [41], and personalized
drug discovery [42] in the context of cancer research by
different groups. Our objective behind this computational
modelling approach aims at harvesting relevant scientific
knowledge from unstructured text and to systematically
understand the functional impact of epigenetic modification
in the context of PD and MS using BEL.

4. Role of Epigenetics in Parkinson’s
Disease Using BEL Models

PD is characterized by a loss of midbrain dopaminergic
neurons leading to motor abnormalities and autonomic
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dysfunctions [43]. Genes such as SNCA, parkin, PINK1, and
FBX07 have been identified to be responsible for patho-
physiologicalmechanisms likemitochondrial damage, repair,
and oxidative stress [17]. There are evidences suggesting that
the above-mentioned key genes are epigenetically modified
under disease conditions. For example, studies in familial as
well as sporadic PD patients suggested that demethylation
of the SNCA gene stimulates its upregulation [17, 44, 45].
Increasing amounts of CYP2E1 have been found to promote
the formation of toxic metabolites, which further degen-
erate the dopaminergic neurons [46]. Abnormal epigenetic
modifications involved in the pathogenesis of PD have been
studied by Feng et al.; in that study, detailed insights on DNA
methylation and histone acetylation mechanisms and their
association with the disease are reported [47].

To construct an epigenetics model for PD, we have
made use of SCAIView (http://bishop.scai.fraunhofer.de/
scaiview/), a literature mining environment to extract all
relevant articles using the query ([MeSH Disease: “Parkinson
Disease”]) AND ([Parkinson Ontology: “Epigenetics”]). Based
on this literaturemining approach, we havemanually selected
78 articles, which were found to contain relevant information

about PD epigenetics. The content of these publications was
subsequently encoded in BEL. The model consists of 235
nodes and 407 edges representing 339 BEL statements. The
nodes contain 67 proteins/genes, 21 biological processes, 6
SNPs, 3 complexes, 24 chemical entities, 26 miRNAs, and
88 other nodes representing translocation, degradation, and
association functions.

As shown in Figure 2, seven representative genes, namely,
SNCA, MAPT, DNMT1, CYP2E1, OLFR151, PRKAR2A, and
SEPW1, were reported to be hypomethylated under disease
conditions. In these cases, hypomethylation causes over-
expression of genes that perturb normal biological pro-
cesses. Increased expression of SNCA and DNMT1 caused
by decreased methylation of these genes results in alpha-
synuclein oligomerization, which in turn causes neurotoxi-
city in PD [48]. Along with that, two SNPs, rs3756063 and
rs7684318, were associated with hypomethylation of SNCA
in PD patients. Similarly, the CYP2E1 gene was detected
to be upregulated due to (i) hypomethylation, (ii) release
of isoquinolines, and (iii) Reactive Oxygen Species (ROS),
which lead to dopaminergic degeneration and oxidative
stress, respectively [49]. Increased neurofibrillary tangles in
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PD have been reported to be linked with high expression of
MAPT gene, as a consequence of reduced methylation [50].
Furthermore, ADRB1 induced the hypomethylation of the
OLFR151 gene [51]. As a result, overexpression of OLFR151
leads to olfactory dysfunction and cortical atrophy, which are
early symptoms of PD [52].

GWAS and epigenomic studies suggest that SEPW1 and
PRKAR2A were overexpressed due to hypomethylation in
PD patients [53]. However, there is lack of well-established
knowledge about the functional role of SEPW1 andPRKAR2A
in the context of PD.We identified only one study that reports
the association of SEPW1 with PD brains [53]. Similarly, we
did not find any direct biological consequences of PRKAR2A
to play a role in the disease state. We employed a dedicated
data mining approach in our model and identified the
association of PRKAR2Awith the cAMP pathway. It has been
found that cAMP signal transduction pathway is stimulated
by GCG (glucagon) [54] and its receptor GLP1R, which is
secreted by the gastrointestinal mucosa [55]. GLP1R is also
known to play a role in dopamine secretion and inhibiting
dopaminergic degeneration [56].Therefore we speculate that
gastrointestinal dysfunction (an early symptom of PD) may
result in a perturbation of the cAMP pathway and that this
could be a possible mechanistic link to hypomethylation

of PRKAR2A in PD. In addition to the above-mentioned
hypomethylated genes, five more methylated genes were
identified in the PD context, namely, GFPT2, GPNMB,
PARK16, STX1B, and HLA-DQA1, where only GFPT2 was
inferred to be associated with oxidative stress [57]. These
examples demonstrate that even though the analysis of high
throughput data like GWAS or epigenetic studies do predict
many disease-associated risk genes, no further research has
been carried out to understand the functional impact of these
genes.

In addition to Figure 2, we represent in our modelling
approach three more highly relevant epigenetics modifi-
cations, namely, hypermethylation, phosphorylation, and
acetylation (Figure 3). Five genes, GSTT1, MRI1, KCNH1,
TMEM9, and TUBA3E, were reported to be significantly
hypermethylated resulting in low expression of genes [58].
However, there were no studies describing the functional
role of these genes in the PD context. In case of acetylation
modification, H3F3A, HIST3H3, and HIST4H4 were shown
to be acetylated under disease conditions. Acetylated H3F3A
increases CASP3 activity and thereby may cause cell dam-
age [59]. Acetylation in HIST3H3 decreases the expression
of SNCA leading to neurotoxicity [60], whereas HIST4H4
acetylation induces the activity of PRKCD, which promotes
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apoptotic cell death [59]. Phosphorylation of MAPT, SNCA,
and PRRX2 causes deposition of neurofibrillary tangles,
alpha-synuclein oligomerization, and oxidative stress, respec-
tively, in PD [50, 61].

The enlisted microRNAs in Table 1 were suggested to reg-
ulate the epigenetic modification in disease state of Parkin-
son.These microRNAs bind to their target and downregulate
or upregulate their expression in diseased condition. For
instance,MIR34C induces the expression of the PARK7 gene,
which in turn causes oxidative stress in PD. SomemicroRNAs
function together (i.e., MIR34B and MIR34C) while others
target individually specific genes such as PARK7, PARK2,
and TP53 to cause dysregulation in target genes, which may
contribute to the disease aetiology [62].

5. Role of Epigenetics in Multiple
Sclerosis Using BEL Models

Multiple Sclerosis, a complex autoimmune disease of the
central nervous system, is characterized by inflammation,
demyelination, and destruction of the axons in the central
nervous system [63]. Although the aetiology is not known,
there is accumulating evidence that, in a cohort with genetic
predisposition, environmental factors may play a key role
in the development of the disease [64]. Epigenetic studies
of this autoimmune disease have shown that disorders of
epigenetic processes may influence chromosomal stability
and gene expression, resulting in complicated syndromes [65,
66]. In a more detailed study, increased immunoreactivity
for acetylated histone H3 in oligodendrocytes was found in
a subset of MS samples [67]. Various microRNAs have been
shown to differentially express in MS samples; particularly
MIR223 was found to be upregulated in MS patients com-
pared to healthy controls [68]. Major epigenetic mechanisms
involved in MS have been listed in a current review article
[69], for example, DNA methylation, histone citrullination,
and histone acetylation.

Similar to the approach takenwith the PDmodel, we have
started with a systematic literature analysis using SCAIView.
We extracted information from all articles that could be
retrieved with the query ([MeSH Disease: “Multiple Sclero-
sis”]) AND ([Multiple Sclerosis Ontology: “Epigenetics”]). An
overall number of 75 highly relevant articles were used to
build the BEL model for MS epigenetics. From this corpus of
relevant literature, we have extracted 339 BEL statements to
develop a network comprising 215 nodes and 536 edges. The
nodes consist of 69 proteins/genes, 43 biological processes,
8 complexes, 18 chemical entities, 38 miRNAs, 8 protein
families, and 31 other entities representing translocation,
degradation, and association functions.

Most frequent epigenetic factors affectingMS were found
to be miRNA regulation, histone citrullination, and lifestyle
factors. We found 24 miRNAs that positively regulate the
pathogenesis of MS and miR23B, miR487B, miR184, and
miR656 seem to be less expressed in the diseased context
[70]. Apart from these, many epigenetics modifications like
acetylation and citrullination were found in cytokines (IFNG,
TNF) [71], chemokines (CCR5, CCL5, CXCR3, CXCL10,

Table 1: Role of microRNAs in PD epigenetics. 26 microRNAs have
been identified that have been reported to control PD pathways.
Positive and negative correlations of these microRNAs with PD
mean if they are inducing or inhibiting the disease state, respectively.
Also, we have enlisted the target genes for retrieved microRNAs.

Role of microRNAs in PD epigenetics
MicroRNA Relation to PD Target
MIR133B Negative correlation PITX3
MIR1 Negative correlation TPPP, BDNF
MIR29A Negative correlation —
MIR221 Negative correlation —
MIR222 Negative correlation —
MIR223 Negative correlation —
MIR224 Negative correlation —
MIR30A Positive correlation SLC6A3, FGF20, GRIN1, GRIA1
MIR16-2 Positive correlation FGF20
Mir26a-2 Associated Gria1, Tyr
MIR886 Positive correlation —
MIR133B Negative correlation —
MIR433 Negative correlation FGF20
MIR7-1 Negative correlation —
MIR7-2 Negative correlation —
MIR-7 Positive correlation SNCA
MIR34B Positive correlation PARK7, PARK2, TP53
MIR34C Positive correlation PARK7, PARK2, TP53
MIR219A1 Negative correlation GRIN1, CD164
MIR219A2 Negative correlation GRIN1, CD164
MIR124-1 Positive correlation PPP1R13L
Mir219a-1 Negative correlation Grin1
Mir219a-2 Negative correlation Grin1
Mir124a-1 Negative correlation —
Mir124a-2 Negative correlation —
Mir124a-3 Negative correlation —

CXCL8, and CXCR6) [72], neurotrophic factors (BDNF,
NTF3) [73], surface antigens (CD8A, CD8B) [74], and other
genes like GFAP, MBP, SNORD24, and NOTCH4. In addi-
tion, dietary factors such as Vitamin D, intake of fruit
juice, fruit/vegetables, cereal, bread, grains, and fish products
reduce the risk of MS whereas intake of high energy and
animal food such as fat, pork, hot dogs, and sweets increase
risk of the disease (Figure 4).

6. Discussion

Epigenetics is a major mechanism that accommodates gene-
expression changes in response to gene-environment inter-
actions. In the last few decades, it has been shown that
epigenetic factors play an important role in neurodegener-
ative as well as in autoimmune diseases. Even though there
are strategies to identify new epigenetic modifications, there
are very few studies, which link these alterations in DNA
to the aetiology of the disease. Given the complexity and
the wide variety of entities like epigenetic modifications and
genetic variants, which perturb normal biological processes,
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we need new strategies to integrate data driven and knowl-
edge driven approaches to unravel the mechanisms behind
these complex diseases. We demonstrated that it is possible
to collectively capture disease-related, epigenetic knowledge
and integrate it into a functional context using the modelling
language BEL. An adaptation of the BEL syntax enables
us to integrate epigenetic modification information like
methylation (hypo and hyper), acetylation, phosphorylation,
and miRNAs regulation into a specific disease network. In
addition to these mechanisms, we have also included the
role of many environmental factors such as food habit and
obesity to the model which are responsible for the epigenetic
modifications.

Although fewer studies related to PD and MS around
epigenetics have been published until now, we tried to
integrate all available knowledge from the scientific literature.
In the case of PD, the main genes which are epigenetically
regulated through methylation are SNCA, PARK6, CYP2E1,
PINK1, BDNF, FGF, MAPT, MTHFR, OLFR 151, PARK16,
PARK2, PARK7, TPPP, PDE4D, andMETRNL. Also we have

found acetylation in H3F3A, HIST3H3, and HIST4H4 genes
and phosphorylation in MAPT, SNCA, and PRRX2 genes as
major epigeneticmodifications in PD alongwithmiRNA reg-
ulation. Similarly for MS, we have found several citrullinated
or acetylated cytokines, chemokines, transcription factors,
neurotrophins, andmany dietary factors, which can influence
disease processes.

Some of the genes identified are well studied, but for
others still an in-depth analysis is needed. Since there are no
studies published on these novel candidates derived fromdata
driven approaches, we were not able to link the functional
impact of epigenetic modifications to the disease aetiology.
For instance, there are about 30 GWAS studies associating
the PARK16 gene with PD, but no detailed information about
the functional context of PARK16 in the pathophysiology of
PD exists in the literature. We observe a clear bias towards
well-known candidate genes like SNCA for PD andMBP for
MS; in order to overcome this bias, dedicated effort towards
investigating the role of the new candidate genes and related
bioprocesses is required.
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Although BEL has the capability to integrate different
biological entities and modifications at the levels of proteins,
the current version of BEL is not efficient in representing
epigenetic modifications at gene level, so that it is not yet
possible to reason over epigenetic effects automatically (e.g.,
using RCR). It is obvious that we need to extend the syntax
of the modelling language in order to formally represent
this type of variation and develop algorithms that assess the
functional impact based on biological network models.
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[17] F. Coppedè, “Genetics and epigenetics of Parkinson’s disease,”
The Scientific World Journal, vol. 2012, Article ID 489830, 12
pages, 2012.

[18] J. M. Greer and P. A. McCombe, “The role of epigenetic
mechanisms and processes in autoimmune disorders,”Biologics,
vol. 6, pp. 307–327, 2012.

[19] G. Ravaglia, P. Forti, F.Maioli et al., “Homocysteine and folate as
risk factors for dementia and Alzheimer disease,”TheAmerican
Journal of Clinical Nutrition, vol. 82, no. 3, pp. 636–643, 2005.



Journal of Immunology Research 9

[20] J. Wu, M. R. Basha, B. Brock et al., “Alzheimer’s disease (AD)-
like pathology in agedmonkeys after infantile exposure to envi-
ronmental metal lead (Pb): evidence for a developmental origin
and environmental link for AD,” The Journal of Neuroscience,
vol. 28, no. 1, pp. 3–9, 2008.

[21] A. Baccarelli and V. Bollati, “Epigenetics and environmental
chemicals,”Current Opinion in Pediatrics, vol. 21, no. 2, pp. 243–
251, 2009.

[22] I. A. Qureshi and M. F. Mehler, “Advances in epigenetics and
epigenomics for neurodegenerative diseases,” Current Neurol-
ogy and Neuroscience Reports, vol. 11, no. 5, pp. 464–473, 2011.
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Summary 

 

In the AD research field, the number of research articles is extensive, and it is unfeasible for 

a researcher to read and retain all the relevant knowledge from the vast number of articles 

produced. Therefore, it is essential to have an integrative model which can store knowledge 

in a single format and retrieve relevant information at any time. In the preceding chapter, I 

showed how BEL is used to build cause and effect based computable models of AD and of 

normal physiological functions in the human brain. The AD models depicted in the previous 

publications are comprised of biological entities ranging from the genomic to the phenotypic 

level.  

The primary aim of the modelling described above is to gain insight and understanding of the 

underlying mechanisms of AD. By comparing the normal healthy model with the AD model, 

I have identified an early mechanism by which the neurotrophic signaling pathway is 

perturbed. Based on the comparative analysis, I have also made apparent a publication bias 

exists in AD research towards the amyloid hypothesis in the AD context, as well as 

demonstrated that there are fewer studies which focus on the normal function of the brain. 

Additional drug-targetable mechanisms in AD (more than one hundred) were identified based 

on this work (see additional publications: Domingo-Fernández D, Kodamullil AT et al, 

(2017)). 

In addition, BEL models were used during the course of this work to include epigenetic 

modifications and to find the functional consequences of epigenetic modifications in the 

context of AD.  These models also allowed the extraction of shared mechanisms between AD 

and T2DM and demonstrated the functional role of SNPs in comorbidity association between 
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these two diseases. This finding allowed us to explore options for the repurposing of T2DM 

drug candidates in AD as well as to reconsider, whether T2DM is a risk factor for the 

development of AD (see additional publications: Karki R, Kodamullil AT et.al (2017)).  

As a follow up of my initial modeling and analysis work, Emon MA, Kodamullil AT et.al 

(2017), (see additional publications) annotated the model with drug-target information and 

proposed two repositioning candidates for Alzheimer's disease and one for amyotrophic 

lateral sclerosis (ALS). 
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Chapter 2 

Analyzing the predictive power of the mouse model for drug efficacy in human 

 

 

 

Introduction 

 

Although there is an overwhelming amount of research conducted in the AD field, the success 

rate of clinical trials in this field is less than 0.5 percent (Cummings 2014). At present, AD is 

not curable and the approved drugs in AD are limited to symptom reduction. Animal models, 

especially mouse models, contribute significantly in deciphering the underlying mechanism 

of diseases. Nevertheless, it is debatable as to what extent genomic responses of humans can 

be translated to the mouse, particularly due to the discordance of clinical trials in humans and 

pre-clinical drug assessments (Seok 2013), (Warren 2015). In this work, we have performed 

a comparative, functional analysis of on neuro-inflammatory pathways in mouse and human. 

We also show marked divergence in drug-targeted pathways between the species, based on a 

discontinued AD drug but approved for different disease. 



64 
 

References 

Cummings 2014: Cummings, Jeffrey L and Morstorf, Travis and Zhong, Kate. 2014. 

„Alzheimer’s disease drug-development pipeline: few candidates, frequent failures.“ 

Alzheimer's research \& therapy 6: 37 

 

Seok 2013: Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, 

McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, 

Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, 

Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano 

SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis 

RW, Xiao W, Tompkins RG, Inflammation and Host Response to Injury, Large Scale 

Collaborative Research Program. “Genomic responses in mouse models poorly mimic human 

inflammatory diseases.” Proc Natl Acad Sci U S A. 110 :3507-12 

 

Warren 2015: Warren HS, Tompkins RG, Moldawer LL, Seok J, Xu W, Mindrinos MN, 

Maier RV, Xiao W, Davis RW. “Mice are not men.” Proc Natl Acad Sci U S A; 112(4):E345. 

 

 

 

 



Journal of Alzheimer’s Disease 59 (2017) 1045–1055
DOI 10.3233/JAD-170255
IOS Press

1045

Of Mice and Men: Comparative Analysis of
Neuro-Inflammatory Mechanisms in Human
and Mouse Using Cause-and-Effect Models

Alpha Tom Kodamullila,b, Anandhi Iyappana,b,1, Reagon Karkia,b,1, Sumit Madana,b,
Erfan Younesia and Martin Hofmann-Apitiusa,b,∗
aDepartment of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin,
Germany
bRheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany

Accepted 6 June 2017

Abstract. Perturbance in inflammatory pathways have been identified as one of the major factors which leads to neurodegen-
erative diseases (NDD). Owing to the limited access of human brain tissues and the immense complexity of the brain, animal
models, specifically mouse models, play a key role in advancing the NDD field. However, many of these mouse models fail to
reproduce the clinical manifestations and end points of the disease. NDD drugs, which passed the efficacy test in mice, were
repeatedly not successful in clinical trials. There are numerous studies which are supporting and opposing the applicability
of mouse models in neuroinflammation and NDD. In this paper, we assessed to what extend a mouse can mimic the cellular
and molecular interactions in humans at a mechanism level. Based on our mechanistic modeling approach, we investigate the
failure of a neuroinflammation targeted drug in the late phases of clinical trials based on the comparative analyses between
the two species.

Keywords: Alzheimer’s disease, human, mice, neuroinflammation

INTRODUCTION

Neuroinflammation is the hallmark of almost
all neurodegenerative diseases (NDDs) including
Alzheimer’s disease (AD) [1]. Aggregated amyloid-
� (A�) peptides are believed to trigger the innate
immune response through microglial and astroglial
cells, which may lead to exacerbation of the dis-
ease [2]. Studies on early stage of AD as well as
rodent models suggest that immune actions alone
are sufficient to cause AD-like pathology and can
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Augustin 53754, Germany. Tel.: +49 2241 14 2802; Fax: +49 2241
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precede tau and amyloid pathology in the brain [3].
As a consequence, neuroinflammation in AD has
been proposed as an attractive target for therapeu-
tic modulation and prevention [4]. Modulation of
neuroinflammation for drug target- or biomarker
identification requires extensive use of rodent mod-
els of AD to study molecular drivers of inflammation
and various disease phenotypes associated to it [5].
Despite the availability of different mouse models
representing APP mutations or tauopathy, the results
of neuroinflammation modulation in these models
have been divergent, suggesting that currently avail-
able mouse models do not accurately reflect human
AD pathology [6]. For instance, conventional trans-
genic models of AD, which are routinely used for
preclinical studies, have been shown to incompletely
mirror the inflammatory response seen in AD human
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brains [7]. Work of Seok et al. in 2013 that reported on
poor recapitulation of genomic responses of human
inflammatory diseases in mouse models [8] stimu-
lated the old debate [9] as to whether animal models
can reliably inform human diseases. However, sta-
tistical re-evaluation of Seok et al. results by Takao
and Miyakawa in 2014 suggested that correlations
between gene expression patterns from mouse mod-
els and human conditions were stronger than reported
originally [10]. Warren et al. re-confirmed essential
differences between these two species at molecular
level by showing that mouse models mimicked only
12% of the genes deregulated in human conditions
[11]. Beside these inter-species differences between
inflammatory responses in human and mouse at
molecular level, a similar significant difference also
exists at the brain anatomical level, including greater
size, higher lobular organization, more developed
sulci and gyri, and larger amount of white matter
in the human brain [12]. Importantly, such anatomi-
cal differences have underlying molecular correlates
as demonstrated by the atlas of the mid-gestational
human brain [13].

Taking into account 65 million years of inter-
species evolutionary divergence, it is not surprising
that there are also significant discrepancies in both
innate and adaptive immunity between human and
mouse, including differences in immune receptors,
cell types, and signaling pathways [14]. Such substan-
tial inter-species differences can have considerable
impact on drug discovery and development efforts.
In fact, biomedical research has long relied on exper-
imentation in mice to investigate human diseases and
evaluate drug candidates. The value of animal models
in drug discovery and development cannot be over-
stated even though the failure of the clinical trials
can be attributed to other factors like poor design of
the trials (wrong dose or endpoint), different genetic
make-up among patients, and so many other logis-
tic issues. However, the high rate of drug failures
in general start right from selection of the correct
molecule in pre-clinical studies and recent failures
of AD therapies in phase III of clinical trials, in
particular, again point to the fact that inter-species dis-
crepancies at all biological levels should be seriously
taken into consideration before proceeding to expen-
sive clinical trials. Computational systems models
can facilitate this task by gathering both experi-
mental data and published knowledge, standardizing
this information, integrating them across various bio-
logical scales, and representing this species-specific
information in the form of consolidated cause-and-

effect digital models. We have already shown the
value of such approach for identification of disease-
specific pathways in AD as compared to normal
bioprocesses in the human brain [15], and Pappalardo
et al. built computational model in immune system,
which predicts how immune system activates in dif-
ferent conditions [16]. Motivated by these results,
we sought to systematically model and mechanisti-
cally compare neuroinflammatory pathways specific
to microglia, astrocytes, macrophages, and neurons
between human and mouse in the context of AD. Bio-
logical Expression Language (BEL) [17] was used
to build cause-and-effect computable models of neu-
roinflammation for both human and mouse based
on published knowledge in the biomedical literature.
Comparison of human and mouse models were per-
formed at structural and functional levels, with the
aim of answering the question, whether our current
knowledge about neuroinflammation in mouse and
human allows us to speak about a “functional equiv-
alence” between these two species. In this work, we
present the species-specific models and discuss which
functional elements of neuroinflammation are sim-
ilar and which elements are different between the
two species. We also demonstrate, how the modeling
approach can be used to explain—at a mechanistic
level—the failure of translation from preclinical to
clinical phase using a given drug in clinical phase III.

METHODS

Corpus selection and construction of
neuroinflammation models specific for mouse
and human

Based on the workflow illustrated in Fig. 1, we
have built neuroinflammation BEL models for human
and mouse by extracting knowledge from literature,
which are specific to three cell types in neurons:
astrocytes, microglia, and macrophages; as they are
actively involved in neuroinflammation.

To build specific models for human and mouse,
we have generated relevant literature corpora using
SCAIView [18], a text mining tool developed in
Fraunhofer SCAI. We specifically selected articles,
which are specific to neuroinflammation in human
as well as in mouse. We retrieved 189 documents
for mouse using the following query: {((((([NDD:
“Neuroinflammation”]) AND [MeSH Disease:
“Alzheimer Disease”]) AND [Organism:“Mus
musculus”]) NOT [Organism:“Rattus norvegicus”])
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Fig. 1. Workflow used for construction of models and their analysis.

NOT [Free Text:“patients”]) NOT [Free
Text:“human”]}. Out of 189 documents, we
manually filtered 173 articles which were further
incorporated into the ‘Mouse neuroinflammation
model’. Similarly, 309 articles were harvested
for human using the query {(((((((((([NDD:
“Neuroinflammation”]) AND [MeSH Disease:
“Alzheimer Disease”]) AND [Organism:“Homo
sapiens”]) NOT [Organism:“Mus musculus”])
NOT [Organism:“Rattus rattus”]) NOT [Free
Text:“mice”]) NOT [Free Text:“mouse”]) NOT
[Free Text:“murine”]) NOT [Organism:“Rattus
sordidus”]) NOT [Free Text:“rat”]) NOT [Free
Text:“rodent”]} and 152 articles were used to
build the ‘Human neuroinflammation model’. The
selected articles were subjected to analysis of causal
and correlative relationships using the the BEL
Information Extraction workflow (BELIEF) [19],
a semi-automatic system that identifies cause-and-
effect relationships in scientific text. The statements
proposed by BELIEF were semi-automatically

extracted, converted into BEL statements and further
curated manually to build the neuroinflammation
BEL models.

Comparison of mouse and human
neuroinflammation models

Comparison based on interactions from
species-specific BEL models

A systematic comparative analysis was done
based on the molecular involvement of genes,
bioprocesses, and pathways. The BEL models
were used to compare pathways and we identified
shared as well as unique pathways, based on BEL
statements and entities. In addition to this, we have
done a pathway enrichment analysis using DAVID
for human and mouse, by giving the complete gene
set as input from each of the models (Supplementary
Table 1) and compared the most enriched pathways
(Supplementary Table 2). To identify the consistency
between mouse and human interactions, we have
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done an additional manual evidence enrichment
from the literature (Supplementary Table 3).

Comparison based on gene expression data for
genes from species-specific models

To identify the concordance at the gene expression
level between the two species, human and mouse, we
have analyzed the representation of expressed genes
in our models using gene expression datasets from
Gene Expression Omnibus (GEO) [20]. We have ana-
lyzed 6 different gene expression datasets (Mouse:
GSE35338, GSE74615, GSE74995 and Human:
GSE26927, GSE45880, GSE59671) to support the
findings of our study, all of which were related to
neuroinflammation. GSE35338 contains expression
data from astrocytes of mice where inflammation
is induced by lipopolysaccharide treatment. Simi-
larly, GSE74615 provides expression values from
astroglia and microglia of transgenic mice, whereas
GSE74995 has expression profiles of cortical tis-
sue of AD transgenic mice. GSE45880 contains
cytokine-induced expression profiles of human cere-
bral endothelial cell. GSE26927 contains expression
data of males and females from different NDD
patients, of which we considered only AD-related
datasets. Lastly, GSE59671 contains expression val-
ues of RNAs of human smooth muscle cells treated
with celecoxib and rofecoxib. All datasets were ana-
lyzed using the GEO2R tool provided by GEO [21].

RESULTS

Differential analysis of human and mouse
neuroinflammatory pathways at the molecular
level using cause-effect models

The neuroinflammation model for human consists
of 884 BEL statements comprising 671 nodes and
1,224 edges extracted from 152 articles. Likewise, the
mouse neuroinflammation model consists of 1,016
nodes and 1,939 edges specific to mouse, supported
by 1,395 BEL statements from 173 articles. Even
though we have a higher number of articles that dis-
cuss neuroinflammation in humans than mouse, we
found that biological entities and relationships are in
fact highly redundant among human specific articles.
However, we could integrate more BEL statements
and a larger variety of entities in the mouse model,
as a higher number of novel molecular interactions
have been studied in transgenic mouse experiments.
For example, in case of App (Amyloid precursor pro-

tein), there are 155 transgenic mouse models, which
have been generated for studies on amyloid biology
[22].

In order to find shared and unique pathways
between mouse and human, we have done a differ-
ential analysis between the two models. Gene set
enrichment analysis was performed on genes in each
model using the DAVID tool [23] to identify the most
enriched pathways in both models. We retrieved 42
pathways in the human model and 29 pathways in the
mouse model, of which 19 pathways were unique to
human model and 24 pathways were found common
between the two (Supplementary Table 2).

Among the 19 unique pathways in the human neu-
roinflammation model, we found VEGF signaling
pathway and mTOR signaling pathway as the two top
ranked pathways. In the case of mouse models, we
found only 6 unique pathways but they were not spe-
cific to neuroinflammation. Based on these findings,
we linked the bioprocesses corresponding to each
pathway from the neuroinflammation models (Fig. 2).
Despite shared pathways between the species, we
found differential molecular patterns at the level of
bioprocesses. For instance, bioprocesses like pyropo-
tosis and pattern recognition receptor activity are
better represented in the human model than the mouse
model. However, when we extend these bioprocesses
to pathways like cytokine-cytokine receptor interac-
tion and Nod-like receptor signaling pathway, we can
see that some parts of these pathways (e.g., inflam-
matory response or astrocyte activation) are well
investigated in mouse experiments. Therefore, the
resolution of mechanistic knowledge at the level of
bioprocesses is higher in the mouse model than in the
human model. At the abstraction level of canonical
pathways, there are more commonalities between the
two species, than at the level of underlying “cause-
and-effect” mechanisms.

We also sought to identify to which extent the
mouse model can represent human interactions at the
molecular level. For this purpose, we investigated in
more details the top common pathway (from DAVID
analysis) between the two species; that is, cytokine-
cytokine receptor interaction pathway. As shown in
Fig. 3, there are 73 interactions in this pathway, which
were represented in the human neuroinflammation
model. Out of these 73 interactions, 33 interactions
are protein-protein interactions at molecular level and
40 interactions among proteins, cell types, and bio-
processes, which are at cellular and bioprocess levels.

Furthermore, we have checked additional litera-
ture for more evidences on each interaction in the
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Fig. 2. Shared pathways and bioprocess between mouse and human. Entities present in both models are in black color, enriched pathways
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human cytokine-cytokine pathway and compared
these against the mouse model to see how many
of the molecular and cellular interactions proven in
humans are already reflected in the mouse model.
At the molecular level, we found that 27% of
cytokine interactions are similar in both species,
15% of interactions in mouse are found to be con-
tradictory (opposite direction) to human, and 58%
of interactions were found only in human or in
other words, 58% of these human interactions are
not proven with mouse experiments (Supplementary
Table 4).

These numbers should be interpreted with regard
to the bias of our knowledge repertoire toward molec-
ular research and publication on mouse and human
experiments. However, within these limits, it can be
observed that our current knowledge in the domain of
cytokine pathway not only reflects the contradictions
in molecular interactions between human and mouse,
but also misses many comparable human interactions
in the mouse model.

At the cellular level, based on the interactions
among cell types (microglia and astrocytes), biopro-
cesses, and proteins, we found a relatively higher
similarity between the two species. 62% of the inter-
actions were similar between the species, 28% of
interactions were found only in human, and 10% of
interactions were found to be contradicting in human
and mouse.

In addition to the above comparison and to support
our findings from model comparison, we have done
an overall analysis on the availability of gene expres-
sion data for each species (Supplementary Table 5).
We found 13 experiments with the topic of neuroin-
flammation in human and 32 experiments in mouse or
rat (Supplementary Table 5). From these experiments,
we have further selected GSE74615, GSE35338, and
GSE74995 for mouse, as these experiments were per-
formed using brain-specific tissues like astrocytes,
microglia, and cortex. Based on these experimental
data, we have investigated how many cytokine inter-
actions in our model are supported by independent
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transcriptome data. Similarly, we have conducted
gene expression analysis for human brain tissues
using GSE26927 (entorhinal cortex) and GSE45880
(cerebral endothelial cell line) datasets. Since these
experiments have not used the same tissues in human
and mouse, a direct comparison between the two
species is not possible, considering the fact that genes
can be expressed differently in different tissues and
regions. Excluding tissue specificity, expression pat-
terns for 31% of genes in both species were the
same, while 14% of genes from Fig. 3 were signif-
icantly expressed only in human and 19% of genes
were expressed only in mouse. 17% of genes were
identified to be inconsistent (same gene is shown as
up- and downregulated) within the species and 7%
of genes showed to have contradictions between the
species. 12% of genes were found to be statistically
non-significant (p-value >0.05) in both species (Sup-
plementary Table 6).

Analysis of failure of drugs on the basis of
translation between species

Based on the approach suggested by Younesi and
Hofmann-Apitius for translational validation of dis-
ease models [24], we aimed to identify the extent to

which the mouse model can translate into the human
biological interactions by including the mode-of-
action of drugs within the mechanistic model. For this
purpose, we performed an analysis based on failed
drugs in AD that specifically were targeted against
neuroinflammation as these drugs proved to work in
mouse models in pre-clinical development, but failed
in human during clinical trials.

Accordingly, drugs which have failed in AD clin-
ical trials were collected from the Therapeutics
database of AlzForum [25], using the following
search query: Food and Drug Administration (FDA)
status – discontinued, Target Type – Inflammation,
Therapy Type – All, Condition – Alzheimer’s disease
and Mild cognitive impairment.

We were able to retrieve 8 failed or discontinued
AD therapeutics, out of which, celecoxib which is
approved for pain and arthritis was selected for anal-
ysis [26, 27]. The rationale behind this selection is
that there were many lines of evidence supporting
the role of comorbidity association between rheuma-
toid arthritis and AD [28–30], and points to a likely
shared mechanism at the molecular and cellular lev-
els. Thus, we performed mechanistic analysis around
the targets of celecoxib, both for human and mouse, in
order to find probable mechanistic differences in the
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translation of interactions between the two species
which might have led to the failure of celecoxib in
AD.

Celecoxib has two main targets namely:
PTGS2 (prostaglandin-endoperoxide synthase
2 (prostaglandin G/H synthase and cyclooxygenase))
and PDPK1 (3-phosphoinositide dependent protein
kinase 1).

According to transgenic mouse experiments, in
normal conditions Pdpk1 increases the activity of Il4
and Ins [31] and also phosphorylates Gsk3b and Akt1
[32]. Pdpk1 also inhibits Ccr2, M1 macrophages, and
insulin resistance [31]. Similarly, Ptgs2 increases A�
peptides [33, 34], which further increases Tnf and
Nfkb1 [35]. Nfkb1 increases Ptgs2 forming a self-
regulatory network [36] leading to an increase in
A� peptide aggregation and an increase in inflamma-
tion due to increased activation of Tnf. Based on the
above-mentioned interactions deduced from mouse
experiments, inhibition of PTGS2 and PDPK1 with
administration of celecoxib seems to be a good tac-
tic in treating neuroinflammation. Here are some of
the positive effects of celecoxib in case of AD and
neuroinflammation (mainly based on mouse exper-
iments and few supportive evidence from human
experiments):

• Celecoxib increases M1-macrophage1 and Ccr2
and thereby increases phagocytosis and A�
clearance in mouse models respectively [31].

• Furthermore, Pdpk1 inhibition of Gsk3b phos-
phorylation by celecoxib prevents the formation
of neurofibrillary tangles through phosphory-
lated tau (Mapt).

However, we have extended our investigation very
specific to the celecoxib interactions particularly in
the context of AD on the basis of mouse models.

We have also deduced the perturbation caused in
normal physiological brain pathway in human upon
administration of celecoxib. The following lines of
evidence provide, at mechanism level, explanatory
insight why celecoxib could not work in humans as
expected in mouse:

• In the case of Pdpk1 inhibition, phosphoryla-
tion of Akt1 can be reduced which may further

1The authors are aware of the fact that M1/ M2 nomenclature
of macrophages is most likely obsolete or needs new interpretation
as pointed out by Xue J. et al. 2014 (Immunity. 2014 Feb 20; 40(2):
274–288), but we stick to the “M1 object” in our models, as defined
processes and properties have been associated with this object are
derived from other researchers.

increase the phosphorylation of Tsc2. According
to Shang et al., it was proposed that phosphory-
lation of threonine at position 1462 of Tsc2, a
target of Akt1, is increased in AD [37], and sup-
ported by the finding that Tuberin (TSC2) was
hyperphosphorylated at Thr1462 in postmortem
frontal cortex tissue of both AD and PD/DLB
patients [38].

• Hyperphosphorylated Tsc2 hyperactivates
Mtor through Rheb which reduces autophagy
[39–41]. If autophagy is reduced, then it will
lead to increased amyloid deposition.

• Also, a very recent paper by Oddo et al. stated
that decreased mTOR activity may be necessary
to decrease BACE1 and reduce A� generation in
AD from mouse experiments [41]. Therefore, as
a result of reduction in Akt1 activity upon cele-
coxib administration, Mtor hyperactivates and
leads to increased amyloid deposition.

• Celecoxib increases IL-4 (which is anti-
inflammatory protein) inhibition which causes
inflammation [43]. Similarly, inhibition of
Pdpk1 by celecoxib might cause increase in
insulin resistance through inhibition of Ins.
Insulin resistance is proposed to be a risk factor
for AD [44].

• Upon celecoxib administration, it inhibits
PDPK1 (PDK1) which reduces the phosphory-
lation of AMPK (PRKAA1) (which in normal
physiology reduces MTOR activation) leading
to the inhibition of autophagy. This leads to
decrease in A� clearance [45, 46]. This disease
mechanism has been described already in detail
by Kodamullil et al. [15].

Based on the above reports (evidence which sup-
port the usage of celecoxib with mouse experiments
and evidence how the normal physiological mecha-
nism in human brain is perturbed upon administration
of celecoxib), we can conclude that even though cele-
coxib modulates MTOR toward neuronal protection
to limit the toxicity of A� and consequently neu-
roinflammation in AD, we may also require targeting
TSC2, AKT, and AMPK simultaneously. It is note-
worthy at this point that AD and neuroinflammation
in humans are so complicated that it appears unlikely
that an experimental design based on a specific trans-
genic mouse manipulated for a single gene allows us
to expose all the interlinked mechanisms.

To validate the celecoxib interactions shown in
Fig. 4, we have done gene expression analysis using
the gene expression experiment GSE59671, which
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is the only dataset available related to our research
context, even though the cell line used was human
aortic smooth muscle cells (3F1243) pre-treated with
rofecoxib (500 nM) or celecoxib (500 nM) (Supple-
mentary Table 5). As seen in Fig. 4, the expression
data supports the reduction in levels of INS, Il1b,
and RHEB, and increase in TSC2 although there
are inconsistencies about increased MAPT in human
upon celecoxib administration.

DISCUSSION

Mouse models are extensively used in biomedical
research mainly to understand the etiology of the dis-
ease. Complex diseases like AD may involve several
simultaneous alterations in molecular and processual
activities, including neuroinflammation, aggregation
of A� peptides, or tau phosphorylation, which are
likely to contribute to pathophysiology. In this paper,
we have compared the mouse and human at molec-
ular, cellular, and pathway levels to shed light on
mechanistic differences with important implications
for translation outcomes. Mechanistic modelling spe-
cific to species allows us to “embed” and “represent”

similarities and differences in innate immunity which
can lead to the development of “conflictious informa-
tion detection engine”. It is important to note that our
analysis is purely based on the research and publica-
tion bias in mouse and human experiments as many
mouse experiments are mainly focused on particu-
lar explorative areas, and experiments with human
tissues are also concentrated on limited areas of dis-
ease mechanism. We found that mouse experiments
often reveal new molecular interactions between dif-
ferent entities that are not observed or reported in
human experiments. Differential analysis of mouse
and human model for neuroinflammation shows that
mouse and human differ at the molecular and cellu-
lar levels, but have more similarities at the pathway
levels as numbers indicate. More explicitly, the under-
lying molecular patterns which lead to a particular
bioprocess differ between the two species. This find-
ing implies that although the two species share some
similarities at the cellular or pathway level, the pattern
of molecular interactions that form, govern, and regu-
late those pathways is substantially different between
mouse and human.

It is notable that mouse models have provided sig-
nificant insights into many disease areas like cancer;
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acute promyelocytic leukemia. However, recent drug
failures in the area of neurodegeneration have put
a question mark behind the extent to which mouse
models have been used in preclinical drug discov-
ery and to what extent transgenic mice mimic human
brain pathophysiology mechanisms. Pathophysiol-
ogy mechanisms are likely to act together and they
seem to be organized in a temporal cascade of events
that ultimately result in a severe disease phenotype.
Experiments with single gene knock-out in mice can
reveal only minor aspects of the disease perturba-
tions and do not usually allow us to decipher the
full complexity of the mechanisms underlying the
disease. For example, even though high amounts of
A� are observed in APP knock-in mice carrying
the Swedish mutations, these mice do not produce
amyloid plaques [47]. On the other hand, human
APP K670N-M671L (APPSw), which have amyloid
deposition and behavioral deficits, do not exhibit any
neuronal loss [48]. This points to the fact that each
strain of mouse results in various phenotypes and do
not represent the main clinical outcome. This empha-
sizes the need to do systematic comparisons between
the model organism (and factual findings in mice and
rats) and human. Additionally, development of vari-
ous mouse models should also consider the absence
of key functional human genotypes (Apoe 3,4) in
animal models. If the above hypothesis regarding sys-
tematic differences at molecular level among species
holds true, then the expectation is to observe differ-
ent or multipoint translational outcomes in human
compared to mouse. The most striking case of a
different outcome happens when a drug fails and
the most common case of a multipoint outcome
is serendipitous effect of a drug on an unexpected
biology. Even in the case that drug candidate success-
fully hits the pathology, the subsequent side effects
clearly show the underlying mechanistic differences
between human and mouse. Comparative analysis
of the mode-of-action of celecoxib in the neuroin-
flammatory pathway between human and mouse at
the high-resolution molecular level demonstrates that
perhaps target studies ignore human unique path-
ways and the underlying unique mechanisms. It was
found that many off-target interactions that could
occur in human were not considered in the mouse
experiments. The fact that mimicking human dis-
ease pathology in mice using a chemical agent or
a single gene is purely correlative and supports the
notion that it is crucial to take the fundamental mech-
anistic differences between mouse and human into
consideration when attempting to translate preclin-

ical findings to clinical trials. This is not intended
to criticize the use of mouse models (considering
the fact that failure of clinical trials are not solely
associated with mouse models, rather also to differ-
ences in patient level, drug dosage, etc.) but rather
to point out the repetitive failure of clinical trials in
AD and neuroinflammation indications. Therefore,
it is time to rethink about the caveats inherent with
the mouse model experiments. The construction and
simulation of computable cause-and-effect models of
disease pathology can greatly increase the probability
of translational success. The computable cause-and-
effect modeling approach described in this work can
be complemented with a systems biology simulation
at systems level. Such in-silico models can effectively
contribute to well-informed design of in vivo mouse
models by predicting the expected and unexpected
outcomes compared to human conditions. We foresee
that with the advent of big biomedical data and growth
of published knowledge, disease-specific computable
models will play an important role in drug discovery
and biomarker identification for clinical applications.
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Summary 

 

Animal models were a significant contribution in efforts to decipher the causes of Alzheimer’s 

disease. However, repeated failures in AD drug development motivated me to research on the 

predictability of mouse models in preclinical drug discovery and investigate the extent to 

which transgenic mice mimic human brain pathophysiological mechanisms.  As outlined in 

the chapter 2 publication, mechanistic modelling specific to species allows us to “embed” and 

“represent” similarities and differences in the context of neuroinflammation. We found that 

mouse experiments often reveal molecular interactions between entities that are not observed 

or reported in human experiments. Though differential analysis of mouse and human models 

of neuroinflammation show that mice and humans differ at the molecular and cellular levels, 

they have similarities at the pathway level. 

I also analyzed, how a discontinued drug, Celecoxib, failed based on the underlying 

mechanistic differences between human and mouse. Comparative analysis of the mode-of-

action of Celecoxib in the neuro-inflammation demonstrates that perhaps target studies ignore 

pathways unique to humans and their underlying unique mechanisms. It is time then to rethink 

about how “translational” mouse experiments are and consider computational models as 

useful predictors of drug targets and side effects. Simulations of cause-and-effect models to 

elucidate mechanisms of action of drugs can greatly increase the probability of translational 

success at the pre-clinical stage.  

It is important to note that our analysis was based purely on the research in mice and humans 

and is therefore subject to publication bias. Notably, many mouse experiments are focused on 
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explorative mechanisms, and experiments in human tissues concentrate on limited areas of 

disease mechanism. 
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Chapter 3 

Mapping investment to possible drug target mechanisms 

 

 

Introduction 

 

Based on the mechanistic models introduced in Chapter 1 and 2, we have developed a 

knowledge base called NeuroMMSig (see additional publications: Domingo-Fernández D, 

Kodamullil AT et al. (2017)) representing essential pathophysiological mechanisms of 

neurodegenerative diseases. In the case of AD, we have identified more than 100 disease 

mechanisms which could potentially be targeted by drugs. In this chapter, I discuss the 

triangulation of “the landscape of mechanisms, targets and R&D investments” and establish, 

how wide the spectrum of possible candidate mechanisms to be targeted could potentially be. 

I do also trace the money that actually goes into a very limited number of well-established 

disease mechanisms. The main aim of my analysis is to highlight and prioritize the vast space 

of opportunities that exist outside of the “classical paradigm / pathways” of drug discovery 
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in AD. It was and is my explicit goal, to foster discourse about alternatives to the established, 

exclusively targeted mechanisms. 
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The high failure rates of drug R&D for 
Alzheimer disease (AD) — and particularly 
the recent failures of several drugs that target 
the amyloid cascade in phase III trials — have 
raised questions about the relative emphasis 
on particular therapeutic strategies for AD. 
Here, we present the results of an analysis 
that aims to inform such debate by mapping 
R&D investment to the pathophysiological 
mechanisms of AD, rather than to individual 
drugs or targets (see Supplementary 
information S1 (box) for details). The analysis 
exploits a ‘mechanism inventory’ for AD, based 
on a mechanistic model of the disease encoded 
in biological expression language (Alzheimers 
Dement. 11, 1329–1339; 2015). This inventory, 
which has recently been developed (and 
continues to be enhanced) in the course 
of the AETIONOMY project (see Further 
information), includes 126 mechanisms for 
AD (Bioinformatics btx399, 23 June 2017).

A list of drugs that either underwent or 
were still undergoing clinical trials for AD 
was obtained from the Alzforum database in 
March 2016 (see Further information). We 
identified 59 discontinued drugs, 88 drugs in 
different phases of clinical trials that have not 
yet been discontinued and 5 approved drugs. 
Specific information regarding the drug 
targets of small molecules was extracted using 
DrugBank in combination with the HGNC 
and UniProt databases. This enabled each 
drug to be mapped to the most prominently 
targeted mechanism in the inventory. All 
antibodies that have been tested target either 
the amyloid cascade or tau protein, and 
were classified accordingly. A substantial 
proportion (36%) of drugs could not be 
mapped to a particular mechanism, and were 
classified as ‘other’. 

Investments in the development of 
these drugs for AD were estimated based 
on both the opinions of experts from 
various companies on clinical trial costs 
and on publicly available information 
on completed clinical trials for potential 
AD therapies conducted up until March 
2016 (Supplementary information S1 
(box)). ClinicalTrials.gov was used to 
gather information about the phase and 
number of patients enrolled in each trial. 
We also made a substantial effort to fill in 

 T R I A L  WAT C H

Tracing investment in drug development 
for Alzheimer disease

missing information (see Supplementary 
information S2 (table) for an example). It is 
likely that many clinical trials have not been 
registered on ClinicalTrials.gov (particularly 
earlier in our study period, before 
registration became standard practice) 
and so we had to make assumptions about 
average trial sizes and associated cost per 
patient for some of the drugs. 

Linking the investments in the clinical 
trials of each drug to their mapped mechanism 
provides an estimate of the relative amount of 
investment in each mechanism. FIG. 1a shows 
the estimated relative amounts of unsuccessful 
investment in different mechanisms, based on 
37 of the 59 drugs that have been discontinued 
for which we could identify sufficient 
information for analysis (see Supplementary 
information S3 (table)). This analysis indicates 
that the mechanisms that were the greatest 
focus of R&D investment were the amyloid 
cascade, tau aggregation, neuroinflammation 
and neurotransmission. FIG. 1b shows the focus 
of current investment in different mechanisms 
based on 61 of the 88 drugs in ongoing clinical 
trials for which mechanisms could be assigned 
(see Supplementary information S4 (table)), 
indicating relatively little or no investment in 
some promising novel mechanisms such as 
targeting endocytosis or autophagy.  

 The main limitation of our study was 
the limited access to (or missing) data, 
which required assumptions to be made 

on the overall cost of trials. The estimates 
of cost also ignored inflation and changes 
in currency exchange rates over time. 
Overall, our intention is to make R&D 
investments in different mechanisms of AD 
more transparent. We hope that our work 
stimulates and informs the discussion about 
‘where the money goes’ and catalyses the 
exploration of novel AD mechanisms. 
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Figure 1 | Investment in drug development for Alzheimer disease. a | Overview of unsuccessful 
investment in mechanistic classes based on discontinued drugs. b | Mechanistic focus of investment 
in ongoing clinical trials. See Supplementary information S1 (box) for details. 
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Box 1 | Data sources and analysis 

Estimating average clinical trial costs for drugs for Alzheimer disease 
Estimating the average cost for the clinical development of drugs for Alzheimer disease (AD) is non-trivial. Our cost estimate is 
based on expert opinions from leading scientists in the area of neurology, psychiatry and computational biology working in various 
pharmaceutical companies. We also took into account and used publicly available information from scientific reports 
(Supplementary information S2 (table)). Based on these information sources, we calculated the average cost of an AD drug in each 
phase for each patient as shown in Table 1. We invite experts from other pharma and biotech companies to share their cost 
estimates with us, in order to broaden the evidence base for our current estimates. 

Table 1 | Cost per patient per trial phase 

Phase Cost per patient* Average cost used for calculation in this study 

Phase I 80,000-100,000 Euros 100,000 Euros  

Phase II 100,000-120,000 Euros 120,000 Euros  

Phase III 60,000-80,000 Euros 80,000 Euros  

Phase I+II 80,000-100,000 + 100,000-120,000 Euros 100,000 + 120000 = 220,000 Euros 

Phase II+III 100,000-120,000 + 60,000-80,000 Euros 120,000 + 80,000= 200,000 Euros 

Phase IV US$2,992 2,640 Euros  

Phase 0 US$500,000 441,746 Euros 

*Based on pharma experts and/or scientific reports. 

The main limitation of our study was the limited access to data or missing data, which required assumptions to be made on the 
overall cost of trials. The estimates of cost also ignored inflation and changes in currency exchange rates over time. 

Identifying AD drugs tested in clinical trials 
ClinicalTrials.gov (https://clinicaltrials.gov/) was used to retrieve information in March 2016 about the phase of the trial and the 
number of patients enrolled in trials for AD. In total, there were 1,536 AD clinical trials conducted between April 1995 and 
September 2014, of which 1,186 trials were aimed at treatment, prevention, diagnosis or supportive care for AD.  

To generate an overview on drugs that either underwent or are still undergoing clinical trials we used the Alzforum database 
(http://www.alzforum.org/therapeutics) as an information source in March 2016. We retrieved 59 discontinued drugs, 88 drugs in 
different phases of clinical trials and 5 approved drugs. For 35 discontinued drugs, we could establish links to 121 clinical trials in 
ClinicalTrials.gov (in March 2016). For the remaining 24 discontinued drugs, we could not find any trial information with AD as 
condition (Supplementary information S3 (table)). However, even for some discontinued drugs where we could establish a link to 
clinical trials, essential information such as phase number and enrollment were missing. It is likely that many clinical trials have not 
been registered in ClinicalTrials.gov, and therefore we had to make assumptions about average trial sizes and associated cost for the 
estimation of the R&D investments. For example, clioquinol (also known as iodochlorhydroxyquin and PBT-1), developed by 
Prana Biotechnology (http://www.alzforum.org/therapeutics/clioquinol) underwent a phase II trial in 2003, although it is not 
registered in ClinicalTrials.gov. We have also undertaken substantial effort to fill in missing information: we have manually 
searched in relevant websites and publications for data such as number of patients enrolled or the phase of the clinical trials linked 
with the study. If information on enrolment numbers could not be found (not even with manual search), we assigned an average 
number of patients for each phase (Table 2). Assumptions about average trial sizes were made based on the range of empirically 
determined, prototypical AD trials.  

In total, we were able to identify sufficient information on 37 discontinued drugs to use for analysis which provided the basis for 
the information shown in Figure 1a, and on 61 of the 88 drugs in ongoing clinical trials for the information shown in Figure 1b. 
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Table 2 | Average number of patients enrolled in trials per phase 

Phase Number of recruited patients 
(empirical ranges of numbers) 

Average number of patients we considered if 
information was not available 

Phase I 20-100 60 

Phase II 100-300 200 

Phase III 1,000-2,000 1,500 

Phase 0 10 8 

 
 
Calculation of cost 
After collecting and aggregating as much relevant information as possible, we calculated the average cost of a clinical trial for the 
drugs by multiplying the number of enrolled patients with the average cost per patient.  
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Summary 

 

Despite the fact that drug discovery and development in AD is characterized by low success 

rates, we also observe a very limited spectrum of disease-related, “core pathophysiology” 

processes currently being prioritized. The fundamental question, I was investigating to answer 

in the previous chapter is: are we targeting the right mechanisms or do we need to broaden the 

strategies in drug discovery in order to invest more on novel mechanisms rather than the 

established ones which have to date been unsuccessful? The intention behind this work is to 

make the levels of pharma and biotech R&D investments in putative disease mechanisms 

underlying neurodegenerative diseases more transparent. I am able to generate this different 

view on “targeted disease mechanisms”, because we have generated a large “cause-and-effect” 

model of AD in the past as depicted in chapter 1 and 2. Annotating the subgraphs of this model 

with R&D spending provides a basis for a “mechanism-centric” discussion of drug discovery 

and development strategies in AD. Of course, we intend to stir up discussions about “where the 

money goes”. The approach we took is not trivial: the calculation of the cost for drug 

development is challenging and a lot of information is missing. Different publications 

communicate rather diverse estimates for the overall costs of drug discovery and drug 

development. Neurological diseases seem to be particularly challenging, when it comes to cost 

estimates for drug development.  

An interesting aspect of our results is the option, to specifically look into mechanisms that are 

“under-valued” or at least “not targeted”. We believe that the systematic analysis of “shared 

mechanisms” between AD and other medical conditions may open promising new routes to “re-

purpose” drugs and to “re-use” therapies already being tested in clinical trials for other 

conditions.  
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Of course, we are aware of the concerns and limitations (e.g. trial design; possible clinical 

readouts; legal aspects of changes in the approved trial protocol), but we believe that the 

pressing need to come up with a true “cure” or at least a “true prevention” for AD justifies the 

effort. 
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Conclusion and Outlook 

 

Alzheimer’s disease (AD) is a multi-factorial, complex pathological condition, which primarily 

affects an elderly population (Alz.org, 2017). Nevertheless, more than 5% of Alzheimer’s cases 

in the US, have an early onset starting at an age ranging from the 40s to 50s (Alz.org, 2017), 

indicating that genetic predispositions contribute to a significant degree to the incidence of AD.  

Vast amounts of data and knowledge on AD are available as a result of high-throughput omics 

studies and the overwhelming amounts of research efforts being conducted in the AD field. 

The task of deciphering the underlying mechanisms and interactions among various factors 

from this huge volume of data and knowledge becomes a nearly impossible challenge for an 

unaided human. Therefore, we need an integrative platform which reduces the dimension of 

data and knowledge, without any loss in expressiveness. Bioinformatics modelling 

approaches provide us with this integrative platform, however, the expressiveness of the 

relationships that occur in a biological context are often not comparable. The conventional 

modelling approaches merely provided associations and interactions among entities, but no 

cause-and-effect relationships. In this work, I have used a computational modelling approach 

known as Biological Expression Language (BEL) to model the knowledge in AD in a highly 

granular fashion, integrating knowledge from various biological levels. BEL is a knowledge 

integration language that uses the power of computing to make vast amounts of knowledge 

more approachable to humans.  

The AD model built during the course of this work is the first of its kind and most likely the 

largest computable AD model in the world as of now. In addition to the AD model, I have 

generated and published a normal physiological model of the human brain.  This was used to 
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compare the pathological changes which occur in AD as well as to portray the research bias 

that exists in the AD research field. Using these models, I have identified an early perturbed 

mechanism of AD as well as the functional role of genetic and epigenetic variants in a disease 

context. Apart from the two mechanistic hypotheses, which are published, this project 

subsequently has delivered more than 120 candidate mechanisms potentially involved in the 

aetiology of AD and is now made freely available to the research community through 

NeuroMMSig, a server for mechanism enrichment in clinical data. 

These models are valuable contributions to the AD research community as the scientific 

knowledge included is reusable, can be further extended, can be converted into different 

formats and can serve analyses purposes using different algorithms. The model I developed 

served as one of the key cornerstones for the IMI funded European project; AETIONOMY 

[https://www.aetionomy.eu]. Through this model the identification of specific mechanisms 

dysregulated in AD was made possible. The computable cause-and-effect modeling approach 

described in this work can be complemented with a systems biology simulation at the systems 

level. The construction and simulation of computable cause-and-effect models of disease 

pathology may therefore be able to predict the response to a drug or effectively contribute to 

the design of clinical experiments.  

Due to the limited access of human brain tissues and the immense complexity of the brain, 

mouse models have been extensively used as preclinical models in AD clinical trials. However, 

taking into consideration repeated drug failures, I have – in a well-defined, highly interesting 

pathophysiology context - compared systematically the mouse and human brain at molecular, 

cellular, and pathway levels to assess the functional equivalence between the two species. My 

findings imply that although the two species share some similarities at the cellular or pathway 
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level, the pattern of molecular interactions that form, govern, and regulate those pathways are 

substantially different between mouse and human. It is important to note that our analysis is 

purely based on the research and publication bias in mouse and human experiments. However, 

the in-silico models as developed in this work can effectively contribute to a well-informed 

design of in vivo mouse models that still needs to be shown to be predictive for human disease 

conditions.  

Although we have computable or preclinical models available to predict correct drug targets, 

we also observe a very limited spectrum of disease-related, “core pathophysiology” processes 

currently being prioritized as drug targets. During the course of this work, I have mapped the 

landscape of 126 mechanisms comprising the AD computable model, targets and R&D 

investments and showed how the AD research community has been hesitant to move to new 

and emerging biology/targets. This work established how wide the spectrum of possible 

candidate mechanisms to be targeted could potentially be. It is therefore a fitting time to analyze 

the spectrum of opportunities that exists for the targeting of new, disease-associated 

mechanisms in AD. 

Taken together, my thesis work presents a comprehensive computable model for AD research, 

which comprises of more than 120 different mechanisms of AD of which most could be 

targeted. These mechanisms included various scales of biology starting from genomic levels to 

phenotypic levels.  

However, validation of the established mechanisms or hypotheses in wet labs still remains to 

be done. This works lacks the systematic comparison of the computable model of AD to other 

existing pathway databases, such as KEGG or REACTOME. In future, it is also needed to 

connect the mechanistic model with existing databases to do more advanced analysis and ensure 
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the completeness of the model.  More research needs to be invested in these areas to bridge the 

gap between the molecular and clinical level data to the mechanistic information encoded in 

these models. For example, the model needs to be enriched more with clinical indices to connect 

with data like the Alzheimer's Disease Neuroimaging Initiative (ADNI).  Another prospect for 

the future based on this work is to provide a longitudinal aspect, where each relationship in the 

model could be assigned to a certain stage or time point based on the course of AD. If we are 

successful in linking clinical data with the mechanistic aspects, then a simulated trajectory 

showing the progress of a patient along with his age is not a distant. Lastly, there is an immense 

need to continue to update the knowledge model automatically as new insights are gathered in 

the research field. 
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