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CHAPTER 1

Introduction

At high temperatures any local deviation from thermal equilibrium in a generic many-body
system has a large number of channels available into which it can decay. In such an scenario
most excited degrees of freedom relax exponentially fast, within times determined by the
microscopic interactions, i.e. times which are small on a macroscopic scale. However, if the
degree of freedom in question is conserved, that is, a constant of motion, the corresponding
initial imbalance can only relax by spreading slowly (“diffusing”) over the entire system as a
long-lived collective mode.

To be precise, let us consider the (average) longitudinal magnetization density M(r, t) at the
space-time point (r, t) in a magnetic system invariant under rotations about the ẑ-axis. The U(1)
symmetry implies the total magnetization along the longitudinal axis is conserved, that is

d
dt

{∫
d3r M(r, t)

}
= 0. (1.1)

Note the conservation law (1.1) also has a differential form, the continuity equation

∂M(r, t)
∂t

+ ∇ · js(r, t) = 0, (1.2)

where the spin current js(r, t), as the magnetization, is an average local density.
Suppose M(r, t) deviates from its equilibrium value. The continuity equation (1.2) alone

does not completely determine how this initial inhomogeneous density becomes uniform, it
only restricts the relaxation process a little. To solve for M(r, t) we therefore need a second
equation relating the spin current to the magnetization density. Now, at high temperatures one
may think the magnetic system as being a spin fluid featuring two kinds of relaxation processes:
first, within a short correlation time τ0, thermal equilibrium is approximately established in
small regions of macroscopic size,1 with a local magnetization density as a macroscopic state
variable; second, the resulting magnetization gradient at longer length scales causes a much
slower net flow of magnetization, so as to attain uniformity in coordinate space. The latter is
a hydrodynamic process characterized by a relaxation time τr which is much longer than the

1 Regions which are small as compared to the size of the entire system, and yet big enough to include a large
fraction of magnetic moments.
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Chapter 1 Introduction

microscopic relaxation time τ0. Thus, in the hydrodynamic limit, for time intervals τr > t � τ0

during which all properties of the system vary very slowly in space and time, one may write

js(r, t) = −Ds∇M(r, t), (1.3)

where Ds > 0 is the spin diffusion coefficient. The phenomenological relation (1.3), first
proposed in [1] for spins on nuclei fixed on a lattice, entails the current follows changes in
the magnetization instantaneously, that is, it implies the rate of dissipation is Markovian (a
memoryless process).

Inserting eq. (1.3) into (1.2) yields the diffusion equation for the magnetization

∂M(r, t)
∂t

= Ds ∇
2M(r, t), (1.4)

which is solved in the thermodynamic limit by Fourier (Laplace) transforming the spatial
(temporal) coordinate to find

M̃(k, z) =
i

z + iDs k2 M(k, 0), (1.5)

with Im z > 0 and k the wave vector of the magnetic fluctuations. Note from eq. (1.5) the
diffusion process is reflected in a pole on the negative imaginary axis at z = −iDs k2. Using
Cauchy’s residue theorem we can calculate the inverse Laplace transform of eq. (1.5) to be

M(k, t) = e−Dsk2t M(k, 0), (1.6)

which displays the characteristic properties of a hydrodynamic mode [2, 3] — a spatially
sinusoidal collective fluctuation which for long wavelengths λ = 2π |k|−1 is exponentially
damped, with a lifetime τr = (Dsk2)−1 which diverges as |k| approaches zero. In other words,
a local deviation of the conserved magnetization density from its equilibrium value cannot
disappear locally (which could happen rapidly) but can only relax by diffusing over the entire
system as a collective mode.

Finally, assuming M(r, 0) = M δ(r) one can write down the inverse Fourier transform of
eq. (1.6) as

M(r, t) =
M

(4πDs)3/2 t−3/2 e−r2/(4tDs). (1.7)

Eq. (1.7) says the phenomenological relation (1.3) — valid in the long-time regime t � τ0

only — entails the spin modes in the system behave as independent Gaussian fluctuations. The
slow relaxation of M(r, t) can then be interpreted as a random walk of the magnetization through
a cubic lattice, just as in classical diffusion. A local distortion of the longitudinal magnetization
density thus has a characteristic size which scales as a power law of time in the hydrodynamic
limit

〈 (∆x)2 〉 ∼ t d, (1.8)

for generic d-dimensional systems, provided a relaxation time τ0 small on macroscopic scales
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exists.

In this thesis we shall study high-temperature spin transport in anisotropic spin-1/2 chains for
which the total magnetization along the ẑ-axis is conserved. However, these chains will show
fundamentally different relaxation properties from the generic phenomenological Markovian-
diffusive picture drawn above. Indeed, among the many reasons that make one-dimensional
systems special, and their finite-temperature transport properties radically different from systems
in higher dimensions — even at infinite temperatures — is that, due to momentum and energy
conservation, the scattering of two identical particles can only rearrange their incoming momenta,
which implies the corresponding scattering amplitude cannot but be a phase shift. Hence two-
body collisions alone cannot thermalize a one-dimension fluid of identical particles [4]. What
is truly remarkable is that in certain class of one-dimensional models, many-body scattering
processes are exactly equivalent to a sequence of two-body collisions.2

Models belonging to this class of nonergodic dynamical systems are known as quantum
integrable models and feature stable collective excitations which undergo completely ellastic
scattering. The underlying dynamical constrains result in a macroscopic number of local (and
quasilocal) conserved quantities [6–9] which can prevent generic correlation functions from
fully decaying. This renders the timescale-separation assumption of the phenomenological
diffusion theory inapplicable. Transport properties in integrable models are therefore expected to
be anomalous, characterized by the coexistence of both ballistic and diffusive transport channels.
More generally, one may think local fluctuations of conserved densities in integrable systems
scale anomalously in the hydrodynamic limit as

〈 (∆x)2 〉 ∼ t 1−α, with |α| ≤ 1. (1.9)

In contrast, the more common diffractive models, that is, models featuring nonelastic scatter-
ing, are said to be nonintegrable. These exhibit chaotic spectra and are effectively described by
random matrix theory [10]. Furthermore, due to the statistical properties of their highly excited
eigenstates, finite-temperature correlation functions in these models usually decay very rapidly.
In this case the phenomenological diffusion theory is expected to provide a good description of
the long-time finite-temperature dynamical behavior.

Remarkably, newly synthetized families of quasi one-dimensional materials characterized by
weak interchain coupling and low disorder — and described by quantum integrable models —
have been found to display unconventional (nondiffusive) transport properties. In the spin-chain
context, for example, a major breakthrough was the identification of Sr2CuO3 crystals as nearly
ideal realizations of the one-dimensional (integrable) spin-1/2 antiferromagnetic Heisenberg
model [11]. Two observations are noteworthy: first, the spin-mediated heat conductivity in this
compound was found to be strongly anisotropic and very large in magnitude along the chain
direction at high temperatures, exceeding the phonon contribution quite substantially [12, 13].
Interestingly enough, the energy current in the corresponding Heisenberg model is conserved,
which entails heat transport is trivially ballistic [9]. The anomalously large value of the
heat conductivity in Sr2CuO3 is thus usually considered a reflection of dissipationless energy

2 This property is the very essence behind the Bethe Ansatz — a many-body wave function entirely composed of
elements from two-particle wave functions, originally proposed by Hans Bethe to find the exact eigenvalues and
eigenfunctions of the spin-1/2 one-dimensional Heisenberg model [5].

3



Chapter 1 Introduction

transport within the pure chain. Second, nuclear magnetic resonance spectroscopy (NMR)
experiments revealed the low-frequency long-wavelength finite-temperature spin dynamics in
Sr2CuO3 is diffusive, but with a fairly large diffusion constant [14, 15]. Although the issue of
finite-temperature spin transport in the Heisenberg chain is long standing and controversial, the
large diffusion constant observed in Sr2CuO3 is also commonly attributed to the integrability of
the chain.

Now, in systems as Sr2CuO3 additional interactions not included in their corresponding
integrable models are always present. The nontrivial conservation laws of the latter are thus
violated by perturbations, which can often be considered to be small. How are the transport
properties of integrable models modified by weak “integrability-breaking” perturbations? —
one may ask. A possible answer to this question is that, if the perturbation is small enough,
the “nearly conserved” quantities in the (nonintegrable) system govern its long-time dynamical
properties [16, 17]. This picture however does not always hold, as we explicitly show in
chapter 4.

In this work we investigate spin transport properties in both integrable and nonintegrable spin
chains at zero and infinite temperatures, and question in the latter limit whether diffusion is
always normal (Markovian) when the spin current decays rapidly. Specifically, we study spin
transport in the integrable XXZ Heisenberg model — defined in section 1.2 — and its response
to integrability-breaking next nearest-neighbor spin flips. Let us now briefly outline our main
results.

We start in chapter 2 by investigating the consequences of breaking integrability on the
zero-temperature transport properties of the model using exact diagonalization [18]. There
we note that depending on the sign of the spin-flip perturbation the model can display in-
plane frustration and localize the spin degrees of freedom. We find an interaction-induced
enhancement of transport when the model is frustrated. The enhancement occurs because the
spin anisotropy, which favors Néel-like configurations, effectively reduces the frustration in the
system thereby increasing the strength of the spin stiffness. The latter is defined in section 1.1.
Surprisingly, a similar phenomenon is observed at infinite temperature later in this work, with
much richer dynamical properties.

The rest of the thesis focuses on both DC and AC response in the infinite temperature limit.
In chapter 3 we consider the issue of ballistic transport in the integrable chain. There we

revisit the numerical problem of computing the high-temperature spin stiffness using exact
diagonalization, to explain some finite-size extrapolation inconsistencies found in the literature.
Within the canonical ensemble and for states with zero total magnetization, we find the stiffness
vanishes exactly due to spin-inversion symmetry for all but the fractal set of anisotropies
∆̃MN = cos(πM/N), with N ∈ N+, M < N coprimes. This holds provided system sizes
L ≥ 2N, for which states with different spin-inversion signature become degenerate, due to
the underlying sl2 quantum loop symmetry. We thus confirm spin transport is ballistic within
the gapless phase of the XXZ chain and find the current-carrying sl2-loop degenerate states to
play an important role in contributing to the thermodynamic limit of the spin stiffness. At the
isotropic point and within the gapped phase, in contrast, the spin stiffness is found to vanish in the
thermodynamic limit, independent of symmetry or ensemble. Our analysis further demonstrates
how convergence to the thermodynamic limit within the gapless phase may be accelerated
and the previously reported finite-size anomalies overcome: the spin stiffness extrapolates
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1.1 Linear dynamical response and Kubo conductivity

nicely in the thermodynamic limit to either the recently computed exact lower-bound or the
Thermodynamic Bethe Ansatz result provided both spin-inversion and sl2-loop symmetry are
broken or the system size L ≥ 2N.

In chapter 4 we investigate instead high-temperature AC response, both in the integrable and
nonintegrable limits of our model. Our analysis is based on (i) a three-parameter Ansatz for
the memory function whose long-wavelength limit describes the Kubo conductivity, which we
introduce in section 1.1, and (ii) an exact-diagonalization evaluation of the regular component
of the Kubo formula for small spin chains. The Ansatz is chosen as to capture the possibility
of anomalous diffusion at and close to the integrable limit, and yields an expression for the
low-frequency power-law exponent of the regular conductivity in terms of the microscopic
parameters of the model. Our main results can be summarized as follows: in the integrable XXZ
model we find (i) the regular component of the conductivity to show subleading subballistic
low-frequency power law behavior within the gapless phase; (ii) the isotropic point to be
superdiffusive, with a frequency dependent conductivity σ(ω→ 0) ∼ |ω|−3/7 in close numerical
agreement with t-DMRG results[19–21]; and (iii) a diffusion constant linearly proportional
to the weak nearest-neighbor spin-flip amplitude deep into the gapped phase. After breaking
integrability we find that (iv) while positive NNN spin flips enhance spin transport, there is a
narrow interval of negative NNN spin-flip amplitudes for which transport is strongly suppressed;
and that (v) if the perturbing NNN spin-flips amplitudes are small (i.e. close to the integrable
limit) the model displays anomalous diffusion on intermediate time scales. This behavior is
predicted by the Ansatz and corroborated by the exact-diagonalization computations. Thus
we present a semi-heuristic approach applicable to integrable and nonintegrable systems alike,
capable of describing both qualitative and quantitative aspects of quantum transport. We note
that similar anomalous transport properties at low frequencies in thermal transport have also
been observed in perturbed Heisenberg chains with NNN couplings [17]. The anomalies
were there shown to be inherited from the integrable point and associated with near-conserved
quantities. However, in that study the thermal anomaly showed up as a J−4

2 effect, independent
of the sign of J2.

The main quantity we focus on is the spin Kubo conductivity, which within linear response
theory is defined as the ratio between the spin current density 〈 ĵ 〉non-eq and the gradient of an
external magnetic field h(k, ω)

〈 ĵ(k, ω) 〉non-eq = σ(k, ω) ik h(k, ω). (1.10)

In what follows we make sense of eq. (1.10) and introduce the concepts that will be used
throughout this work.

1.1 Linear dynamical response and Kubo conductivity

The dynamical properties of the spin chains we consider are disclosed by stimulating the system
with external disturbances — such as neutron beams and magnetic fields — and investigating
how it responds. This (out of equilibrium) dynamical response can be expressed in terms of
time-dependent thermodynamic expectation values of spin operators in the equilibrium state as

5



Chapter 1 Introduction

we now show.

Assume our spin chains are described by some model Hamiltonian H. In the presence of an
external magnetic field the Hamiltonian becomes explicitly time dependent

H′(t) = H + δH(t) = H −
L∑
l

Ŝ z
l h(l, t), (1.11)

where S z
l is the ẑ-component of the spin-1/2 operator at site l of a L-site periodic chain, and

h(l, t) is the local time-dependent magnetic field coupling the spin. A gradient of the magnetic
field along the chain produces a magnetization imbalance which in turn generates a spin current
density. The latter is described by 〈 ĵl(t) 〉non-eq — the thermodynamic expectation value of the
(yet undefined) current operator in the nonequilibrium state. Following [3] we define such an
expectation value as

〈 ĵl(t) 〉non-eq = Tr
{
ρ̂(t) ĵl

}
, (1.12)

where the density matrix ρ̂(t) encoding the nonequilibrium dynamics is, to first order in δH(t)

ρ̂(t) = ρ̂0 + δρ̂(t), (1.13)

with ρ̂0 ≡ ρ̂(−∞) the density matrix describing the (equilibrium) state of the system in the
remote pass, when the perturbation δH is absent, and

δρ̂(t) =
1
i~

∫ t

−∞

dτe−iH(t−τ)/~ [δH(τ), ρ̂0] eiH(t−τ)/~. (1.14)

Here we choose the canonical ensemble ρ̂0 = e−βH/Z, with Z = Tre−βH the partition function
and β the inverse temperature. The derivation of eq. (1.14) is standard and can be found in
e.g. [3]. The linear spin current response to δH(t) then follows from the last three equations
above

〈 ĵl(t) 〉non-eq = Tr

− 1
i~

L∑
m

∫ t

−∞

dτ e−iH(t−τ)[Ŝ z
m, ρ̂0] eiH(t−τ)/~ ĵl h(m, τ)


=

i
~

∫ t

−∞

dτ
L∑
m

Tr
{

[ ĵl(t), Ŝ z
m(τ)] ρ̂0

}
h(m, τ),

(1.15)

where we use Tr{ ĵ ρ̂0} = 0 since there is no current in the equilibrium state.
Given that the models we consider are translationally invariant in both time and space we can

Fourier transform eq. (1.15) and write

〈 ĵ(k, ω) 〉non-eq = Λ(k, ω) h(k, ω), (1.16)

where we introduced the complex response function

6



1.1 Linear dynamical response and Kubo conductivity

Λ(k, ω) =
i
~L

∫ ∞

0
dtei(ω+iδ)t〈 [ ĵ(k, t), Ŝ z(−k, 0)] 〉, (1.17)

with 〈 · 〉 ≡ Tr{ · ρ0} the equilibrium expectation value, and δ a positive infinitesimal real number.
Now, using the continuity equation

∂tŜ (k, t) = −ik ĵ(k, t), (1.18)

we can partially integrate eq. (1.17) to find

Λ(k, ω) =
1

~L(ω + iδ)

{
−〈 [ ĵ(k, 0), Ŝ z(−k, 0)] 〉 + ik

∫ ∞

0
dtei(ω+iδ)t〈 [ ĵ(k, t), ĵ(−k, 0)] 〉

}
. (1.19)

The second term on the right hand side of (1.19) — which we label (ik) I(k, ω), has the
spectral representation

I(k, ω) = i
∫ ∞

−∞

dx
∑
n,m

e−βEn

Z
〈 n | ĵ(k) |m 〉〈m | ĵ(−k) | n 〉

1 − e−β(Em−En)

ω + iδ − x
δ(x − Em + En), (1.20)

where both summations run over the eigenstates H |n〉 = En |n〉. We now define the complex
longitudinal conductivity as

σ(k, ω) ≡ lim
δ→0

Λ(k, ω)
ik

, (1.21)

so that the relation

〈 ĵ(k, ω) 〉non-eq = σ(k, ω) ik h(k, ω), (1.22)

yields the Kubo formula for the spin conductivity in the long-wavelength limit [22]

σ′(ω) = D δ(ω) + σreg(ω). (1.23)

The weight “D” of the Dirac δ-function is known as spin stiffness (or spin Drude weight) and
quantifies the nondecaying components of the spin current operator, whereas σreg(ω) defines the
regular contribution of the spin conductivity. These quantities are defined as

D ≡ π lim
ω→0

ω Im
{
lim
k→0

σ(k, ω)
}

= −
π

L
〈 T̂ 〉 −

2π
L

∑
n,m

En,Em

e−βEn

Z
|〈m | ĵ | n 〉|2

Em − En
,

(1.24)

where we introduced the kinetic energy operator T̂ = lim
k→0

[Ŝ z(−k), ĵ(k)]/k and
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Chapter 1 Introduction

σreg(ω) ≡ Re
{
lim
k→0

σ(k, ω)
}

=
π

L
1 − e−βω

ω

∑
n,m

En,Em

e−βEn

Z
|〈m | ĵ | n 〉|2δ(ω − Em + En).

(1.25)

Clearly a finite spin stiffness gives an infinite conductivity and signals ballistic transport. On
the other hand, the zero-frequency limit of the regular conductivity yields the DC conductivity

σDC ≡ lim
ω→0

σreg(ω). (1.26)

From our discussion above it should be clear that models described by the phenomenological
spin diffusion theory — as one assumes is the case for generic nonintegrable models — must
have a vanishing spin stiffness and a finite σDC. The spin stiffness and the regular conductivity
are the quantities we analyze by means of exact diagonalization and a set of exact sum-rule
moment relations. Let us now define the model we shall investigate throughout this thesis.

1.2 The model

We consider a spin-chain of length L with periodic boundary conditions described by the
Hamiltonian

H =
J1

2

L∑
j

(Ŝ +
j Ŝ −j+1 + Ŝ +

j+1Ŝ −j ) +
J2

2

L∑
j

(Ŝ +
j Ŝ −j+2 + Ŝ +

j+2Ŝ −j ) + ∆

L∑
j

Ŝ z
jŜ

z
j+1, (1.27)

where the raising and lowering spin operators (Ŝ +
j Ŝ −j+i + h.c) flip pairs of spins at sites j and

j + i with amplitude Ji and the spin anisotropy ∆ > 0 controls the strength of the spin-spin
antiferromagnetic interaction. Note that although the sign of J1 have no effect on the physics of
the model, that of J2 does have a nontrivial effect. Indeed, if J2 is negative nearest- and next-
nearest neighbor flips are energetically favorable, whereas if J2 is positive the corresponding
energy cannot be simultaneously minimized. Thus we say the model shows in-plane frustration
when J2 > 0. We will see the sign of J2 strongly affects the dynamical properties of the model,
both at zero and at infinite temperatures. Finally, when J2 = 0 the model reduces to the well
known integrable XXZ Heisenberg model.

In what follows we set J1 as our energy scale.

1.2.1 Global symmetries

The Hamiltonian (1.27) is invariant under spin rotations about the z-axis m̂z, lattice translations
K̂, parity P̂ and spin-inversion Ẑ3

3 Not to be confused with the partition function Z.
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1.2 The model

The parity operator, with eigenvalues p = ±1, is defined as

P̂Ŝ γ
j P̂ = Ŝ γ

L− j, with γ = ±, z. (1.28)

Likewise the spin-inversion operator, with eigenvalues z = ±1, is defined such as

ẐŜ ±j Ẑ = Ŝ ∓j , ẐŜ z
jẐ = −Ŝ z

j. (1.29)

Therefore, in addition to the total energy, the total magnetization along the z-axis “mz", the
total crystal momentum “K", parity “p" and z-parity “z" are global conserved quantities of the
system, and this holds for all values of J(1,2) and ∆ ∈ R. This set of symmetries will be used in
chapters 3 and 4 to block-diagonalize a matrix representation of eq. (1.27).

1.2.2 Spin current operator

The (transversal) component of the total spin conductivity operator along the spin chain is
defined as

ĵ =

L∑
l

ĵl. (1.30)

Since the total magnetization mz is conserved, the local current operator ĵl satisfies the
continuity equation

ĵl − ĵl−1 = −i[H, Ŝ z
l ], (1.31)

which gives

ĵ = i
J1

2

L∑
j

(
Ŝ +

j+1Ŝ −j − Ŝ +
j Ŝ −j+1

)
+ iJ 2

L∑
j

(
Ŝ +

j+2Ŝ −j − Ŝ +
j Ŝ −j+2

)
(1.32)

Note this operator is odd under both parity and spin-inversion, i.e.

Ô ĵz Ô = − ĵz, for Ô = P̂, Ẑ (1.33)

1.2.3 At high temperatures, when is transport ballistic?

The model (1.27) is integrable when J2 = 0 and nonintegrable otherwise. The spin stiffness in
nonintegrable models is expected to vanish in the thermodynamic limit, and indeed numeric
simulations support this expectation [23]. In contrast, integrable models have a macroscopic
number of local conserved quantities Q̂m which may have a finite overlap with the spin current
operator, thereby preventing current-current correlations from completely decaying. In the XXZ
model all these local conserved quantities are even under spin-inversion [9], whereas ĵ is odd,
and consequently the thermodynamic expectation value 〈 ĵ Q̂m〉 vanishes identically. However,
if spin inversion symmetry is broken by e.g. an external magnetic field, a finite magnetization

9



Chapter 1 Introduction

density or a magnetic flux — the latter only for finite spin rings, the expectation value 〈 ĵ Q̂m〉

need no vanish. In fact, using an inequality due to Mazur [24] it has been shown that at high
temperature and for finite magnetization densities, the spin stiffness in the XXZ model has the
finite lower bound

D ≥
β

2
8 ∆2 m2

z (1/4 − m2
z )

1 + 8 ∆2(1/4 + m2
z )
, (1.34)

where β is the inverse temperature [9] . Eq. (1.34) accounts for the overlap of ĵ with the
conserved local energy current, and entails the XXZ mode displays ballistic transport for finite
mz and ∆ ∈ R.

At exactly zero magnetization eq. (1.34) is inconclusive, and one needs to distinguish between
three regimes with different transport properties. When ∆ < 1 there exists a one-parameter
family of quasilocal exact conserved quantities, which includes operators of odd q-parity having
a finite overlap with ĵ. This family of quasilocal operators, together with Mazur’s inequality,
yields a finite lower bound for the spin stiffness and entails ballistic transport within the gapless
phase (∆ < 1) [25, 26]. In chapter 3 we shall look in detail into this regime. At ∆ = 1 the
global SU(2) symmetry of the model can be used to construct a rigorous upper bound for the
spin stiffness. This upper bound vanishes with the magnetization, thus implying the absence
of ballistic transport at the isotropic point (∆ = 1) [27, 28]. Finally, within the gapped phase
(∆ > 1) no rigorous results are known but numerical simulations point towards a vanishing spin
stiffness [23, 29], as can be seen e.g. in Fig. 3.2. Summarizing, spin transport in the integrable
XXZ model, that is eq.(1.27) with J2 = 0, for anisotropies ∆ ≥ 1 and zero magnetization
densities is nonballistic, i.e. it is dominated by the regular part of the Kubo conductivity (1.25).

10



CHAPTER 2

Interaction-induced transport
enhancement in frustrated spin chains

This chapter is special in the sense that, as opposite to the other chapters in this work, it deals
with transport properties of our model (1.27) at precisely zero temperature. Our aim is to
make a simple observation regarding the sign of the spin-flip amplitude J2 and its effect on the
zero-temperature spin stiffness [18]. Indeed, as pointed out before the presence of a positive
J2 yields in-plane frustration: if J2 > 0 the energy associated with nearest and next-nearest
neighbor spin flips cannot be simultaneously minimized, whereas if J2 < 0 both processes lower
the ground-state energy. At zero temperature J1 and negative J2 simply increase the ability of
the system to sustain dissipationless spin transport. In contrast, when the model is frustrated
dimer spin configurations are preferred instead, as can be seen by e.g. considering the point in
parameter space where J2 = J1/2 and ∆ = 0 which has the two products of dimer states

∏
j ∈ even or odd

| ↑ j↓ j+1 + ↓ j↑ j+1〉, (2.1)

as exact ground states [30]. The spin anisotropy competes with this kind of order by favoring
Néel-like configurations wherein neighboring spins align antiparallel to each other. The model
thus displays three quantum phases, namely a gapless spin liquid, a gapped dimerized phase and
a gapped Néel phase, the critical properties of which have been extensively investigated in [30,
31]. We will work along a contour of the phase diagram presented by Mishra et al. [30] and
numerically show the competition between dimerized and Néel order results in an interaction-
induced enhancement of the spin stiffness within the gapless spin liquid phase of the model.
Surprisingly, we will find a similar phenomenon in the finite-frequency response of the model
at infinite temperatures in chapter 4,
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Chapter 2 Interaction-induced transport enhancement in frustrated spin chains

2.1 Drude weight, persistent currents and superfluid
density

We start by pointing out there is an alternative way of interpreting the spin stiffness that proves
very convenient for the numeric computation of D and provides a natural route to introduce
the concept of persistent currents in mesoscopic systems. Instead of a magnet, the quantum
system described by our model (1.27) can be viewed as a lattice gas of hard-core bosons with
nearest-neighbor repulsive interactions in a L-site ring. In such a representation an up (down)
spin at site j corresponds to a particle (hole) at that same site, created by the operator Ŝ +

j (Ŝ −j ),
while the boson number operator is essentially given by Ŝ z

j. With this picture in mind we shall
refer to the spin stiffness as Drude weight throughout this chapter. Likewise we shall identify
the spin liquid, dimer and Néel phases with superfluid, bond-ordered and charge density wave
phases, respectively. Now suppose the particles of the gas are charged and the ring is threaded
by a magnetic flux Φ. The flux gives rise to a static vector potential A = Φ/L along the path of
the particles, which can be gauged away into a Peierls phase factor [32]

Ŝ ±j → exp
{
±i

Φ

L
j
}

Ŝ ±j , (2.2)

and hence enters as a parameter of the Hamiltonian.

The presence of the flux perturbs the energy levels of the quantum mechanical system and
produces a persistent thermodynamic flow J ∝ −dF/dΦ around the ring, where F stands for the
free energy of the system. Indeed, although F refers to a thermal equilibrium state with Φ fixed,
it remains meaningful if Φ varies adiabatically. The resulting rate of change of the free energy
represents the work per unit time delivered to the system. Under the application of the external
voltage V ∝ −dΦ/dt and with a total current J circulating around the ring one thus has, roughly

dF
dt

=
dF
dΦ

dΦ

dt
= JV, (2.3)

from which it follows J = −dF/dΦ [33, 34]. A notable example of this effect occurs in low
temperature mesoscopic rings in the presence of a static magnetic field, wherein the electronic
wave function can retain the Aharonov-Bohm phase acquired throughout the ring [35] and
coherently extend over the whole system, thereby generating a persistent current [36]. Note
this is also true for non-superconducting materials, as has been observed on copper [37] and
gold [38] rings1.

Expanding the flux-dependent Hamiltonian up to second order in Φ we find

1 Nevertheless, the persistent currents found in those experiments are orders of magnitude smaller than those in
superconductors [34]
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2.1 Drude weight, persistent currents and superfluid density

H[Φ] = H[0] +

 L∑
j

i
J1

2

(
Ŝ +

j+1Ŝ −j − Ŝ +
j Ŝ −j+1

)
+ i J2

(
Ŝ +

j+2Ŝ −j − Ŝ +
j Ŝ −j+2

) Φ

L
+ L∑

j

J1

2

(
Ŝ +

j+1Ŝ −j + Ŝ +
j Ŝ −j+1

)
+ 2 J2

(
Ŝ +

j+2Ŝ −j + Ŝ +
j Ŝ −j+2

) Φ2

L2 + O[Φ3], (2.4)

where H[0] labels the unperturbed (unfluxed) Hamiltonian. The term linear in Φ in eq. (2.4) is
nothing but the paramagnetic current, as obtained from the continuity equation in eq. (1.32).
The term quadratic in Φ is the diamagnetic current and corresponds to the kinetic energy operator
T̂ . Note this operator also shows up in eq. (1.24).

The ground state | 0[Φ] 〉 of the perturbed Hamiltonian H + ĵ (Φ/L) can be written in terms of
the unperturbed eigenstates by using standard perturbation theory

| 0[Φ] 〉 = | 0 〉 −
Φ

L

∑
m,0

|m 〉
〈m | ĵ | 0 〉
Em − E0

+ O [Φ2], (2.5)

where H[0] |m 〉 = Em|m 〉. Taking the second derivative of the perturbed ground-state energy
E0[Φ] = 〈 0[Φ] |H[Φ] | 0[Φ] 〉 with respect to the flux up to second order in Φ results [39, 40]

∂2E0

∂Φ2

∣∣∣∣∣∣
Φ=0

= −
1
L2 〈 0 | T̂ | 0 〉 −

2
L2

∑
m,0

|〈 0 | ĵ |m 〉|2

Em − E0
=

D
πL
, (2.6)

where the last identification follows immediately from the finite-temperature expression eq. (1.24).
The Drude weight is thus determined by the curvature of the ground-state energy induced Φ.

We finish this section with some remarks: first note that in the derivation above we have
implicitly assumed E0[Φ] is minimum at Φ = 0. When this is not the case D should be computed
at the minimum of E0[Φ] for it essentially describes an equilibrium state among the charge
carries within the ring [41, 42]. Second, since the magnetic flux simply produces a phase change
Φ when a particle goes around the ring, eq. (2.6) suggests D can alternatively be understood as
a measure of the sensitivity of the ground state to a small twist Φ in the boundary conditions.
Intuitively if E0 varies with Φ what happens at the boundaries affects the bulk. This can only
be true if the many-body wave function extends coherently throughout the ring, i.e. if the the
system is a metal. Therefore the Drude weight yields a simple way of distinguishing metallic
from insulating phases [39]. Finally, we point out that the superfluid density is defined very
similarly as the Drude weight in eq. (2.6). Specifically, it corresponds to calculating first the
ground-state energy in the thermodynamic limit and then its second derivative with respect to
the flux [43]. In (quasi) one-dimensional systems D and the superfluid density are therefore
equal due to the finite number of energy level crossings in the thermodynamic limit [43, 44].
Thus our results for the Drude weight may also be interpreted as a measure of the superfluid
density in the system.
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Chapter 2 Interaction-induced transport enhancement in frustrated spin chains

2.2 Numeric computation of the Drude weight

We compute the Drude weight by approximating the second derivative in eq. (2.6) with the finite
difference

D = πL
∂2E0

∂Φ2

∣∣∣∣∣∣
Φ=Φ0

≈ 2π L
E(Φ) − E(Φ0)

(Φ − Φ0)2 , (2.7)

where Φ0 is the flux at which the ground-state energy is minimum.
To evaluate eq. (2.7) one needs only the ground-state energy of two L-site rings, one threaded

by Φ0 and the other by Φ. This simplifies matters quite a bit, as compared to what would
mean to directly evaluate eq. (2.6) where the entire spectrum is needed. We implemented
Lanczos algorithm wherein the entire Hamiltonian matrix H is iteratively projected onto its
so-called Krylov subspaces to build a significantly smaller secondary matrix whose eigenvalues
approximate (to machine precision) the eigenenergies near the edges of the spectrum of H [45].
Using this technique we compute the lowest eigenvalue of (1.27) for rings of length L ≤ 26
whose matrix representations in real space have linear dimension of about 107 for the largest
chain.2

Given that the second derivative in eq. (2.7) is to be evaluated at the location where the
ground-state energy E(Φ) is minimum, the dependence of the many-body energy levels on the
flux deserves some explanation. In the absence of J2 the hardcore boson model — XXZ model
in the spin notation, is exactly solvable and its Drude weight may be written in closed form [40].
The model may also be Jordan-Wigner transformed into a system of spinless electrons and most
results from the bosonic model transfer to the fermionic one [46]. However when a flux Φ

threads the ring of electrons, the energy is minimum either at Φ0 = 0 or π depending on whether
the number N of electrons on the ring is odd or even, respectively. Such an energy shift is due to
the statistical phase that arises when an electron goes around the ring, thereby changing its place
with the other N−1 electrons. Such a “parity” effect does not arise in the corresponding hardcore
bosonic system whose many-body wave function is symmetric under particle interchange. The
energy minimum is thus at Φ0 = 0 and this is the point about which eq. (2.7) is evaluated.
The location of the energy minimum when J2 is included has also been found to be at Φ0 = 0,
provided the system is not in the incommensurately bond-ordered phase found in [31]. In the left
panel of Fig. 2.1 we show a representative plot of the flux dependence of the first three energy
levels, for a 16-site two hardcore-boson system, with parameters J2 = 0.2 J1 and ∆ = J1/2. Note
the energy crossing at Φ = π which results in a jump discontinuity of the persistent flow. Also
note the energy levels — as well as all physical properties — are periodic functions of Φ with
period 2π.

The right panel of Fig. 2.1 shows the Drude weight for a 20-site half-filled ring and three
values of J2 as a function of nearest-neighbor interaction ∆. It clearly bears out the expected
asymmetry with respect to the sing of J2. Indeed adding an unfrustrated hopping (J2 < 0) simply
enhances the Drude weight of the system. The latter is found to monotonically decay with

2 When these computations were carried out our implementation did not take advantage of translational symmetry.
Using the basis of single-particle momentum eigenstates together with Lanczos algorithm one can easily reach
larger system sizes.
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Figure 2.1: Left panel: Energy levels as a function of flux in a 16-site ring with two hard-core bosons and
system parameters J2/J1 = 0.2 and ∆/J1 = 0.5. Right panel: Drude weight for a 20-site ring and three
values of J2 as a function of the anisotropy ∆.

increasing the interaction for J2 ≤ 0, reflecting the fact that ∆ is the only localizing mechanism
present. In contrast, frustrated chains displays a nonmonotonic increase in the Drude weight as
the repulsive interaction is increased. Before discussing further the physics behind the observed
interaction-induced enhancement of D, let us show it corresponds to a thermodynamic effect.

2.3 Finite-size extrapolation and thermodynamic limit

A transition from a superfluid to a charge density wave phase is expected as the nearest-neighbour
repulsive interaction strength ∆ is increased, and this is true whether J2 is present or not [30,
40]. In the latter case the Berezinskii-Kosterlitz-Thouless (BKT) transition point is known
to be exactly at ∆ = J1 for a half-filled system. On the other hand, in the presence of J2 the
BKT transition points have been computed numerically from the behavior of the single particle
excitation gap using the density matrix renormalization group technique [30]. Here we focus on
the conducting phase of the system at half-filling and consider the representative frustrated value
of J2 = 0.2 J1 for which the phase transition was predicted to occur at ∆c ≈ 0.7 J1. Our main
results are summarised in Fig. 2.2 for a range of system lengths. As expected from previous
works [39, 41, 47, 48], we find the Drude weight to scale polynomially D(L) = D + a/L + b/L2

within the conducting phase and exponentially D(L) = C exp (−L/ξ) within the insulating phase,
where the localisation length ξ diverges at the transition, as shown in the right panel of Fig. 2.2.
Let us point out we do not employ the scaling laws to identify the transition point. Instead, we
assume the transition takes place at ∆c = 0.7 J1 and perform a polynomial extrapolation to the
thermodynamic limit of the computed Drude weights for ∆ < ∆c. Such an extrapolation, shown
as a full line in the left panel of Fig. 2.2, works well both for J2 = 0.2 J1 and for the exactly
solvable J2 = 0 case (inset of figure, showing agreement of the extrapolation with Bethe Ansatz
results [40]). For a finite J2 a similar sharp jump in the Drude weight should occur as L→ ∞.
This expectation is borne out from our plots.

The most important feature of the data shown in Fig. 2.2 is the rise of the Drude weight as the
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Figure 2.2: Drude weight of half-filled bosonic rings for various chain lengths L. Left panel: non-
monotonicity of the Drude weight with increasing interaction for frustrated nearest-neighbour hopping
J2 = 0.2 J1, and polynomial extrapolation (full lines) from data for L = 20, 22, 24 and 26 in the
conducting phase. Inset shows results from a similar extrapolation for t2 = 0 compared to Bethe Ansatz
(BA) results. Right panel: scaling of the Drude weight for J2 = 0 (triangles) and J2 = 0.2 J1 (circles)
as a function of inverse system length for interaction strengths ∆ = J1/2 (open symbols) and ∆ = 2J1
(closed symbols). Full lines are exponential fits D(L) = C exp (−L/ξ) and dashed lines are polynomial
fits D(L) = D + a/L + b/L2 to the thermodynamic limit L → ∞. The fits for ∆ = 2 give a localisation
length ξ ≈ 15, 11 for J2 = 0, 0.2 J1 respectively. As ∆ decreases the fits give increasing estimates for the
localisation lengths ξ.

nearest-neighbour interaction is increased, which translates as an enhancement of the persistent
flow in the ring. Kinetic (in-plane) frustration favors a situation in which the hardcore bosons
gain kinetic energy by hopping back and forth between a pair of nearest-neighbour sites and
decoupling from the rest of the system. The repulsive nearest-neighbour interaction ∆ favors
instead a charge density wave like ordering wherein the particles tend to avoid sitting next
to each other. Thus, initially increasing ∆ causes a spread of the particles and a concomitant
increase in charge density wave fluctuations, which in turn reduces the effective frustration,
thereby increasing the Drude weight. However, upon further increase of ∆ the insulating
behavior dominates and the Drude weight accordingly drops. Crucially, as seen in Fig. 2.2,
such a scenario of interaction-induced enhancement of D is valid for finite rings as well as in
the thermodynamic limit. This result is in fact more generic and we have checked its validity
away from half-filling. The main difference in that case being a much more gradual decay of
the Drude weight after it reaches its maximum, which is presumably due to the absence of an
insulating phase away from half-filling.
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CHAPTER 3

Spin stiffness anomalies: role of
symmetries and ensembles

In this chapter we investigate high-temperature ballistic transport in the integrable limit of our
model (1.27). Specifically, we use exact diagonalization to compute the spin stiffness in the
anisotropic XXZ chain for different combinations of the conserved symmetries and statistical
ensembles.

It is well known that both discrete and dynamical symmetries of the model play an important
role in the exact-diagonalization calculation of D [49, 50]. We were originally motivated to
revisit this long-studied problem due to certain inexplicable ensemble-dependent convergence
rates of the finite-system data to the thermodynamic limit, found for certain interaction strengths
only [29, 51, 52] — the details will be presented along the way. To resolve these issues we
start by systematically enlisting the contribution of the current carrying states in each symmetry
sector. In so doing we find what ensemble and what system symmetries (parity, spin-inversion,
loop algebra) best help to achieve quickest convergence to the thermodynamic limit. In particular
we shall identify the sl2-loop algebra degenerate states to play an important role in contributing
to the thermodynamic limit of the stiffness. This last point is particularly relevant in light of the
recent exact bounds to the high-temperature spin stiffness built from noncompact representations
of the sl2-loop algebra [26].

3.1 High-temperature spin stiffness

In chapter 1 we derived an expression for the finite-temperature spin stiffness, namely eq. (1.24).
A straightforward generalization of the calculation we presented in section 2.1 to finite tem-
peratures shows the spin stiffness can equivalently be expressed as the thermal average of
energy-level curvatures with respect to a fictitious flux Φ threading the L-site periodic spin chain

D =
π

L

∑
n

e−βEn

Z
∂2En

∂Φ2

∣∣∣∣∣∣
Φ=0

, (3.1)

where β is the inverse temperature, En labels the eigenstates of the unfluxed model and Z is the
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Chapter 3 Spin stiffness anomalies: role of symmetries and ensembles

partition function [53]. Evaluating the second derivative of the free energy F with respect to the
flux, and using eq. (3.1), one immediately finds

∂2F
∂Φ2

∣∣∣∣∣∣
Φ=0

=
L
π

D − β
∑

n

e−βEn

Z

(
∂En

∂Φ

∣∣∣∣∣∣
Φ=0

)2

+ β

∑
n

e−βEn

Z
∂En

∂Φ

∣∣∣∣∣∣
Φ=0

2

. (3.2)

Now we know from eq. (2.4)

∂En

∂Φ

∣∣∣∣∣∣
Φ=0

= 〈 n | ĵ |m 〉, with Em = En, (3.3)

where the | n 〉 are eigenstates of the unfluxed model. It follows the quantity within brackets in
the last term on the right hand side of eq. (3.2) simply vanishes due to parity. We also know
from our discussion in section 2.1 that the first derivative of the Free energy with respect to the
flux is proportional to the persistent currents in the system. However, at finite temperatures the
XXZ model shows no persistent current and thus ∂2F/∂Φ2|Φ=0 vanishes in the thermodynamic
limit. Eq. (3.2) thus simplifies to

D = πβ
∑

n

e−βEn

LZ

∑
m, Em=En

|〈 n | ĵ |m 〉|2, (3.4)

Eq. (3.4) allows us to give an alternative, perhaps more physical, interpretation to the spin
stiffness as the long-time asymptotic value of the current-current correlation function. Indeed

lim
τ→∞

1
τ

∫ τ

0
dt 〈 ĵ(t) ĵ(0) 〉 =

L
πβ

D + lim
τ→∞

1
τ

∫ τ

0
dt

∑
n

e−βEn

Z

∑
m, Em,En

|〈 n | ĵ |m 〉|2ei(En−Em)t

 , (3.5)

where 〈 · 〉 on the left hand side denotes a thermodynamic equilibrium average and the second
term on the right hand side vanishes in the long-time limit. Indeed, the left panel of Fig. 3.1
shows the integrand of this term — which we call C(t) — as a function of time for different
system sizes. The black points correspond to spin chains where parity, spin-inversion and
loop-algebra symmetries are present, whereas the red points correspond to chains where these
symmetries are broken. The main aspect to notice at this stage is that the time integral of C(t) is
clearly finite and thus its long-time average vanishes.

In the following we shall numerically evaluate Eq. (3.4) for the XXZ Heisenberg chain in the
high-temperature limit, where the meaningful quantity is limβ→0 β

−1D.

3.2 Quantum loop-algebra degeneracies

Besides the global symmetries discussed in section 1.2.1, the periodic XXZ chain has additional
symmetries at the dense set of commensurate “roots of unity" anisotropies ∆̃MN = cos(πM/N),
with N ∈ Z+ and M < N coprimes, for which there exists a large class of zero-energy N-particle
excitations [54, 55]. These excitations give rise to degeneracies between a parent state with
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Figure 3.1: Left Panel: time dependence of the correlation function C(t) — the integrand of the second
term on the right hand side of eq. (3.5) — for ∆ = 0.25. The black points correspond to spin chains
where parity, spin-inversion and loop-algebra symmetries are present, whereas the red points correspond
to chains where these symmetries are broken. Right panel: XXZ 20-site chain level-spacing distribution
for states within the sector of zero total magnetization, for two different anisotropies. The distribution
is averaged over each spin-inversion sector z, for every crystal momentum, as well as over parities for
K = {0, π}. Note the peak at δE = 0 for ∆ = 0.5 signaling the presence of additional degeneracies.

mz = mmax
z and states with mz = mmax

z − l N, where l ∈ Z+. Deguchi et al. [54] numerically
studied these degeneracies and found the corresponding multiplets have multiplicity(

2 mmax
z /N
l

)
, (3.6)

in the commensurable case mz = 0 (mod N), and(
2 [mmax

z /N] + α
l

)
, (3.7)

in the incommensurable case mz , 0 (mod N), where [x] denotes the greatest integer contained
in x, and α = 0, 1 or 2. In particular, the degeneracies in the commensurable case were related
to the sl2-loop algebra [54], whose generators commute with the XXZ Hamiltonian at roots of
unity when mz = 0 (mod N). However the incommensurable sectors do not have this symmetry.
We shall refer to the quantum symmetry in the full Hilbert space by Λ henceforth.

The additional degeneracies in the system at these special ∆̃MN points can be readily verified
by inspecting its level-spacing distribution [56]. To find the latter one first needs to unfold the
eigenenergies so as to make the density of states constant throughout the spectrum [10]. The
unfolded eigenenergies Ẽn are usually defined through the average integrated density of states
〈N(E)〉 as Ẽn ≡ 〈N(En)〉, with

N(E) =
∑

m

Θ(E − Em), (3.8)

where the summation runs over all the eigenenergies of the model and Θ(E) denotes the
Heaviside step function. We approximate the average 〈N(E)〉 with a spline interpolation through
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a set of equidistant points within the bandwidth.
Now, being an integrable model the XXZ chain has a macroscopic number of conserved

quantities which fully diagonalize the Hamiltonian. The resulting eigenvalues are statistically
uncorrelated and their spacing distribution follows a Poisson distribution. In contrast, as shown
in the right panel of Fig. 3.1, at the commensurate anisotropy ∆ = ∆̃1,3 = 0.5 the level spacing
distribution deviates from the Poisson distribution and displays a small peak at δE = 0 signaling
the presence of additional degeneracies.

3.3 Current-carrying states in the XXZ model

Given that m̂z commutes with K̂, these two symmetry operations can be used to block-diagonalize
the XXZ model. The resulting eigenstates can then be labeled by both the total magnetization
mz and the total crystal momentum K. On the other hand, the discrete symmetries can only be
used for block diagonalization in specific subsectors [57]: (i) Ẑ commutes with both P̂ and K̂
but only does so with m̂z in the sector with zero total magnetization; (ii) P̂ commutes with m̂z

but with K̂ only in the subsectors with zero and π total crystal momentum. Now, the numerical
evaluation of eq. (3.4) may be performed either in the canonical or grand canonical ensemble.
In the former case we sum over eigenstates with a fixed total magnetization mz, whereas in the
latter the summation includes eigenstates from all the different magnetization sectors. In what
follows we consider only spin chains with even L.

Let us start by summarizing a couple of empirical observations regarding the many-body
states connected by the current operator (1.32) when the spin stiffness is evaluated within the
canonical ensemble. To study how parity and spin-inversion enter in the determination of the
stiffness, we break them using an irrational magnetic flux Φ =

√
2. The effect of threading

the periodic chain with a flux is incorporated into the model by gauging Φ into the spin-ladder
operators via the usual Peierl’s substitution (2.2). The flux also lifts every ∆̃-related degeneracy,
as we expatiate more fully below.

We shall see that when parity and spin-inversion symmetries are broken all nondegenerate
eigenstates of the XXZ model are eigenstates of the spin current operator, and that the main
contribution to the spin stiffness comes precisely from these nondegenerate states (m = n) — the
degenerate states being only those coming from the Λ quantum symmetry at ∆̃MN . By contrast,
if spin-inversion is present only Λ-related degenerate states contribute to D provided L ≥ 2N.
Table 3.1 recaps the main points we discuss below.

3.3.1 mz = 0 Sector

Due to the discrete symmetries present in this subsector, and to the oddness of the spin current
under their action, only matrix elements from degenerate states of the form

〈m,K, z | ĵ | − z,K, n 〉, with K , {0, π}, (3.9)

or
〈m,K, z, p | ĵ | − p,−z,K, n 〉, with K = {0, π}, (3.10)
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3.3 Current-carrying states in the XXZ model

Symmetry Current carrying states
Ẑ, P̂ and Λ Degenerate multiplets

from Λ symmetry only.Ẑ and Λ

P̂ and Λ

All pairwise degenerate
states of different parity,
including Λ multiplets.

Ẑ and P̂ None.
Ẑ

P̂
All pairwise degenerate
states of different parity.

Λ

Every nondegenerate state,
and the degenerate Λ multi-
plets.

None Every nondegenerate state.

Table 3.1: Current carrying states for symmetry blocks with fixed (mz,K) and different combinations of
spin-inversion Ẑ, parity P̂, and quantum-loop Λ symmetries.

and En = Em contribute to the spin stiffness (3.4).

For anisotropy values different from ∆̃MN we find degenerate states only within the sectors
of K = {0, π}. These states belong to different parity sectors but have the same spin-inversion
signature and hence are not connected by the current operator. Therefore, there is no net current
for any L and the stiffness vanishes exactly in the sector of zero total magnetization. Note that
at the isotropic point (∆ = 1) the SU(2) symmetry was exploited to show explicitly that D = 0
for any β [27].

For ∆ = ∆̃MN we find degenerate states due to the additional Λ symmetry only for chain
lengths

L ≥ Lmin ≡ 2N, (3.11)

the number of which increases with system size. Indeed Λ-related spectral degeneracies are
split between sectors of mz = 0 (mod N) [54]. These have multiplicities given by (3.6) and the
minimum length (3.11) for which we start finding such degeneracies follows precisely from
that equation. Given mmax

z = L/2 one finds the symmetry sectors with total magnetization
mA = L/2 − N and mB = mmax

z are degenerated. Each of these sectors has the smallest Λ-related
degenerate subspace possible whose dimension is L/N. It immediately follows that for system
sizes L = 2N one should find the first pair of Λ-degenerate states within the mz = 0 sector. Such
a pair is also degenerate with a second pair belonging to the sector of mz = N. We have checked
numerically this is indeed the case, and table 3.2 shows an example. Importantly, these states
are pairwise degenerate with opposite spin-inversion — as well as opposite parity within the
K = {0, π} sectors — and yield a finite spin stiffness. We remark this is the only case where
degenerate contributions to D dominates over the nondegenerate contributions.
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Chapter 3 Spin stiffness anomalies: role of symmetries and ensembles

L deg(∆ = 0.25) deg(∆ = ∆̃16)
8 4 4

10 20 20
12 96 98
14 364 392
16 1364 1592

Table 3.2: Number of degenerate states in the sector of zero total magnetization, for different system
sizes and two anisotropy values. Note how the first two degenerate states due to the Λ symmetry appear
at L = 2N = 12.

3.3.2 mz , 0 Sector

In the sectors of finite total magnetization there is no spin-inversion symmetry and hence every
state potentially carries a current. The relevant matrix elements are now

〈m,K | ĵ |K, n 〉, with K , {0, π}, (3.12)

or
〈m,K, p | ĵz | − p,K, n 〉, with K = {0, π}, (3.13)

with En = Em. For ∆ , ∆̃MN and K = {0, π}, we find pairwise degenerate states of opposite parity,
each of which are connected through the spin current operator. The rest of the K-subsectors
have no degenerate states, but all of these are found to be eigenstates of the current operator
and, consequently, to carry a finite current. Since all K sectors are about the same dimension, it
follows that nondegenerate current-carrying states yield the dominant contribution to the spin
stiffness, an observation which has been made before [50]. For ∆ = ∆̃MN one finds additional
degeneracies in all K-subsectors. These additional degenerate states are not eigenstates of the
current but do contribute to the spin stiffness through off-diagonal terms.

3.3.3 mz = 0 Sector and finite magnetic flux

If ∆ , ∆̃MN and K = {0, π} we find the same number of degenerate states as for the non-
fluxed model. In this case, however, since parity and spin inversion are broken degenerate and
nondegenerate states alike give finite contributions to the summation in eq. (3.4). For all the
other momenta one finds that all states are nondegenerate eigenstates of ĵz and carry a finite
current. Summarizing, the relevant matrix elements in this case are

〈m,K | ĵ |K, n 〉 δmn, with K , {0, π}, (3.14)

or
〈m,K | ĵ |K, n 〉, with K = {0, π}, (3.15)

with En = Em. Remarkably, if ∆ = ∆̃MN we find the presence of the flux lifts all the extra
degeneracies coming from the additional quantum symmetry and hence the model behaves as
though ∆ , ∆̃MN .
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3.4 Finite-size spin stiffness anomalies

3.3.4 mz , 0 Sector and finite magnetic flux

In this last case we find no degenerate state in any of the symmetry subsectors, and that all the
eigenstates of the model are also eigenstates of the current operator, and carry a finite current
regardless of ∆. All contributing matrix elements, within any K-sector, therefore are of the form

〈m,K | ĵ |K, n 〉 δmn. (3.16)

3.4 Finite-size spin stiffness anomalies

We present our infinite temperature spin stiffness results in Fig. 3.2, evaluated within the grand
canonical (GCE) and canonical ensemble (CE) in the mz = 0 sector, both with and without a
flux, for even-length chains of size L = 6 − 18. We also show a second order (1/L)-polynomial
fit to the data points of L = 10 − 18 to guide the eye.

Per usual statistical mechanics GCE and CE should be equivalent in the thermodynamic limit,
especially if the quantity measured is a meaningful one in this limit [58]. We will find that
although in the gapped phase D quickly becomes independent of both ensemble and symmetries
as L increases, in the gapless phase the presence of spin-inversion symmetry makes convergence
towards the thermodynamic limit remarkably slow, depending on how fast the Λ degeneracies
start showing up when increasing system size.

3.4.1 Gapless phase

For ∆ < 1 it is rigorously known that the high temperature transport is ballistic [60] i.e. D > 0 in
any magnetization sector, especially the zero magnetization sector where Mazur’s inequalities
alone do not settle the issue. However computing the actual value of D in the gapless phase is
a different matter, with D lower-bounded more strictly recently [26], and even claimed to be
exactly computable [59]. The explicit expression for the exact bound at the ∆̃MN points reads

D ≥ 2π
β

16
sin2(πM/N)
sin2(π/N)

(
1 −

N
2π

sin(2π/N)
)
. (3.17)

In the top panels of Fig. 3.2 we show the finite size data for β−1D as a function of system
size in the gapless phase, for two anisotropies ∆ = 0.25, 0.50 – the latter being the Λ-symmetric
point ∆̃1,3. In both cases we note (i) D always extrapolates in the thermodynamic limit to a finite
value O(1) and (ii) the fluxed cases, for finite L, always gives larger D values. The second point
is analogous to the observation that in the GCE odd-length chains have larger D values than
even-length chains[29]. The reason behind such a difference lies mainly in the presence/absence
of spin-inversion symmetry — for odd-length chains spin-inversion is always broken. Indeed,
as pointed out above, in the absence of spin-inversion all eigenstates, whether degenerate or not,
of the XXZ Hamiltonian are connected by the current operator and give a finite contribution to
D. If the states have a definite z-signature, in contrast, many of the eigenstates of H, as e.g. all
states with mz = 0 for ∆ , ∆̃MN carry no current. Hence D assumes greater values in the GCE
for either fluxed or odd-length periodic chains.
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Figure 3.2: Finite size scaling of the spin stiffness for different values of the anisotropy ∆, calculated
within both canonical (CE) and grand canonical ensemble (GCE), and in the presence and absence of
a magnetic flux. Symbol coding: N GCE with flux, M GCE without flux, � CE with flux and � CE
without flux. The dashed lines correspond to second order polynomial fits and are to be taken as guide
to eye. Top panels show results for the gapless phase, with the crosses representing exact results in the
thermodynamic limit [26, 59], and the type of current carrying states that contribute to the finite-L D
values labeled as nondegenerate (NDg), degenerate (Dg), and Λ-degenerate states (DgΛ); the dominant
contributor is highlighted in bold. Bottom panels show results away from gapless phase, consistent with
vanishing spin stiffness for L→ ∞, independent of ensemble or symmetry.
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Figure 3.3: Finite size scaling of the spin stiffness in the canonical ensemble for two ∆ values, calculated
in the presence (full symbols) and absence (empty symbols) of a magnetic flux, for different magnetization
sectors. Crosses indicate mz = 0 values in the presence of a flux. As mz and L increase the effect of flux
disappears for both anisotropies; however note that for larger ∆ the mz = 0 contributes the least, whereas
it is the opposite for smaller ∆, explaining why, when the weighted average is taken, mz = 0 CE is above
(below) the GCE result as seen in the upper (lower) right panel of Fig. 3.2 for the two anisotropies. Note
that our D computation is for fixed mz (rather than mz/L) and hence the tendency to extrapolate to zero,
as well as the nonmonotonicity at large L seen in the top figure.

Let us focus on ∆ = 0.5 first. We see that independent of keeping or breaking the discrete
symmetries and the type of ensemble chosen, the D values always agree with one another,
even for moderately small L ≈ 18. Pivotally, they tend to extrapolate to the same value in the
thermodynamic limit which is in good agreement with the exactly computed lower bound [26,
59], marked with a cross in the figure. Note that for ∆ = 0.5 the lower bound, eq. (3.17), and
our numerics of Fig. 3.2, also agree with the Thermodynamic Bethe Ansatz (TBA) solution [51,
61, 62]

β−1D = 2π
γ − sin (2γ)/2

16γ
, (3.18)

with γ = cos−1(0.5) = π/3.
For the second case of ∆ = 0.25, which is not exactly equal to one of the ∆̃MN points

(although it can come arbitrarily close to one) the results seem generally the same but distinctly
different in one aspect: the finite-size data for the GCE without flux seems to extrapolate to a
different thermodynamic limit from the fluxed GCE or CE cases. The latter two here tend to
extrapolate to the same thermodynamic limit in good agreement with the exactly lower-bounded
result [26]. We understand the source of the discrepancy between non-fluxed GCE and fluxed
GCE/CE − as well as to theoretical predictions − as follows: consider the nearby Λ symmetric
point ∆̃13,31 = cos(13π/31) ≈ 0.2506. For the system sizes considered here the difference
D[∆ = 0.25] − D[∆̃13,31] is always of the order of 10−4. However, we know from the previous
section that for ∆̃13,31 the degeneracies due to the Λ symmetry start showing up for spin chains
of length L ≥ 2 × 31 = 62. We also know that these degenerate states, the number of which
increases with system size, carry a finite current. Thus in order to see the GCE non-fluxed data
for ∆̃13,31 extrapolate to the exact result one would have to consider chains of length L ≥ 64.
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Chapter 3 Spin stiffness anomalies: role of symmetries and ensembles

Such system sizes are out of the question when all exact eigenstates are needed.
Going back to the ∆ = 0.5 example, the degeneracies from the Λ symmetry are already

present for chains of length L ≥ 6. This is why we see how, when increasing system size, both
non-fluxed GCE and CE data approach the exact lower bound from below. The problem with
∆ = 0.25 is that as one chooses ∆̃MN points closer to it, the integer N gets significantly large
and the corresponding D[∆̃MN] converges towards its exact value very slowly. This of course
does not answer the question whether the actual (non-fluxed) GCE data at exactly ∆ = 0.25,
or any ∆ , ∆̃MN for that matter, where no Λ symmetry is present, converges towards some
(M,N)-dependent lower bound.

We close this subsection with the following remark: we have noticed that when increasing the
anisotropy, the contribution to the spin stiffness from the symmetry sectors of larger magnetiza-
tion densities slowly start dominating the summation in eq. (3.4), as exemplified by Fig. 3.3 for
∆ = 1.5 (top panel), whereas the trend is exactly the opposite for the smaller anisotropy ∆ = 0.5
(bottom panel). This makes the GCE computation for large ∆ less susceptible to the physics of
the zero- and low magnetization sectors, and hence to the symmetry-related anomalies. In fact,
we have carried out computations for the large anisotropies ∆̃1,6 ≈ 0.87, 0.9 and ∆̃1,8 ≈ 0.92 and
confirmed that, even when the current-carrying Λ-degenerated states have yet to appear, the
GCE data extrapolates to the same thermodynamic limit as the fluxed GCE and CE data.

3.4.2 Isotropic point and gapped phase

Away from the gapless phase the high-temperature spin stiffness is expected to vanish [19, 20,
29, 63]. We confirm this picture holds for GCE and CE, again with and without a flux, in the
bottom panels of Fig. 3.2. For ∆ ≥ 1 the quantum symmetry Λ is absent [54, 55] and the
non-fluxed CE with mz = 0 case gives once more identically zero D due to spin-inversion (and
hence it is not shown). Accordingly the fluxed GCE results, which include finite contributions
from the zero magnetization sector, are above the non-fluxed ones. The main difference one
notes here, in contrast to the two gapless points from above, is that the mz = 0 CE D values are
lower than those for the GCE. This is so because, as already mentioned, for these anisotropies
and available system sizes, the contributions from the symmetry sectors of finite magnetization
densities dominate the summation in eq. (3.4) (see Fig. 3.3). Thus the GCE results show less
dependence on flux, and hence on Ẑ and P̂ when increasing ∆, as was seen in Fig. 3.2.

3.4.3 Extrapolation anomalies within the gapless phase (∆ < 1)

Despite seemingly good convergence of the numerical results to the lower bound of Ref. [26]
when all symmetries are broken, we will see that there are caveats.

Herbrych et al. [51] found that for anisotropies ∆ > 0.5 the spin stiffness generically scales
as 1/L and extrapolates to the TBA result, eq. (4.26). They pointed out, however, that for
some anisotropies ∆ < 0.5, the spin stiffness does not scale as 1/L due to the emergence of
finite-size low-frequency contributions in the regular part of the Kubo conductivity, which lead
to a finite correction δD in the thermodynamic limit. It was found, in particular, that when such
a correction is not taken into account, the spin stiffness data does not extrapolate to the TBA
result.
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Figure 3.4: Finite size scaling of the spin stiffness computed in both fluxed CE (�) and GCE (N) within
the gapless phase. The crosses represent the exact lower bound results, eq. (3.17), and the stars the
Thermodynamic Bethe Ansatz results, eq. (4.26).

Here we complement these observations by reporting that, for those anisotropies where the
low-frequency anomalies take place, and if no correction δD is considered, D nicely extrapolates
to the exact lower bound, eq. (3.17), as was already seen in the top panel of Fig. 3.2 for ∆ = 0.25.
Fig. 3.4 shows additional data for the anisotropies ∆̃4,9 ≈ 0.17, ∆̃3,7 ≈ 0.22 and 0.49. In the left
and center panels D clearly extrapolates to the lower bound, marked with a crux. Interestingly,
when approaching the point ∆̃1,3 = 0.5 the finite-size data extrapolates instead to the TBA
solution, as can be seen in the right panel of Fig. 3.4 for ∆ = 0.49 (for any ∆̃1,M Eqs. (3.17)
and (4.26) agree). Similarly, when approaching ∆̃1,2 = 0 the data again extrapolates to the
TBA solution: we have checked this explicitly for ∆ = 0.05. We are unable to theoretically
account for the convergence to these two distinct results, apart from concluding that (i) the
low-frequency anomalies of Ref. [51] seem to vanish when close to the ∆̃1,2 and ∆̃1,3 points, and
that (ii) in between these points, where the anomalies take place, the data extrapolates to the
exact lower bound of Ref. [26].
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CHAPTER 4

Anomalous transport in spins-half
chains

Within linear response theory, the connection between transport properties and conserved
quantities is evident when considering the real part of the Kubo conductivity [22]

σ′(ω) = D δ(ω) + σreg(ω), (4.1)

where the spin stiffness D can be expressed as a thermal average over the energy level curvatures
of the many-body system with respect to a fictitious magnetic flux [53]. A finite spin stiffness
thus implies an infinite conductivity and hence ballistic transport.

Integrable models have an infinite set of local conserved quantities which, for some regions
of the models’ parametric space, couple with the current operator of the relevant dynamical
degrees of freedom. The nondecaying components of the current then yield a finite stiffness, and
hence ballistic transport, even at infinite temperatures [9, 53]. In contrast generic nonintegrable
models show level repulsion and, as a consequence, their energy level fluctuations are bound to a
range of the order of the average level spacing which vanishes in the thermodynamic limit. The
thermal average over the level curvatures of the model, i.e. the stiffness D, is therefore expected
to go to zero when increasing the system’s size [53]. Such an expectation is generally borne out
by numeric simulations [23]. Thus in nonintegrable models and integrable models with rapidly
decaying currents, finite-temperature transport is governed by the regular component of the
conductivity, σreg(ω), whose low-frequency behavior can be non-analytic due to the nonlinear
coupling between collective modes of the conserved degrees of freedom [64], and is usually
expected to display normal diffusion, i.e. long-lived modes as independent Gaussian fluctuations,
although unconventional low-frequency power-law behavior is still in general possible.

In this chapter we study infinite temperature AC transport in the integrable spin-1/2 XXZ
chain, as well as their response to next-nearest neighbor (NNN) integrability breaking spin-flips.
Our analysis is based on (i) a three-parameter Ansatz for the memory function whose long-
wavelength limit describes the Kubo conductivity, and (ii) an exact-diagonalization evaluation
of the regular component of the Kubo formula for small spin chains. The Ansatz is chosen as to
capture the possibility of anomalous diffusion at and close to the integrable limit, and yields an
expression for the low-frequency power-law exponent of the regular conductivity in terms of the
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microscopic parameters of the model.

4.1 Memory function and sum rules

Let us consider the spin correlation function C j, j′(t), defined here as a scalar product in operator
space

C j, j′(t) = (Ŝ z
j|Ŝ

z
j′(t)) ≡ Z−1Tr{ Ŝ z

jŜ
z
j′(t) }, (4.2)

where Z is the partition function and equals the dimension of the Hilbert space, and Ŝ z
j(t) =

eiHt/~Ŝ z
je
−iHt/~. This correlation function describes the spontaneous fluctuations of the local

magnetization and diverges for asymptotically large times due to the mz-conservation law.
It is convenient to work with the (lattice) Fourier transform of Eq. (4.2)

C(k, t) =
1
L

∑
j

e−ik jC j,0(t). (4.3)

Instead of directly studying the complicated structure of C(k, t) in the long-time limit, we
will consider another time correlation function, the so-called memory function [65–67], whose
dynamics does not include the intrinsic fluctuations of mz, nor those of any other slow degree of
freedom of the model, for these are explicitly projected out in its construction. In the limit of
asymptotically large times one then expects the spectrum of the memory function to be simpler
than that of C(k, t), and so that approximations to it have a better chance of success.

4.1.1 Memory function formalism

To construct the memory function we follow Berne and Harp [67] and specialize their generic
formulation to integrable systems. Consider the set {Q̂ j} of operators describing the slow modes
of our model, with Q̂0 ≡ Ŝ z

k the Fourier transform of Ŝ z
i and Q̂ j>0 the (infinite) set of local (or

quasilocal) conserved quantities associated with the integrable limit of the Hamitonian (1.27).
Note that we do not need to include in {Q̂ j} the operator describing the slow energy fluctuations
of the system since these do not couple to the magnetization, and hence the set {Q̂ j} only
includes Q̂0 in the nonintegrable case.

We choose the {Q̂ j>0} such that

(Q̂i|Q̂ j) = Z−1Tr{ Q̂iQ̂ j } = δi, j χi β
−1, (4.4)

with χ j = β(Q̂ j|Q̂ j) the static susceptibility associated to Q̂ j. Furthermore the {Q̂ j} are so chosen
that their ensemble averages are zero, that is 〈Q j〉 = Z−1Tr Q̂ j = 0. The set {Q̂ j} can thus be
regarded as a set of vectors in a Hilbert space. The projector operator onto the subspace of slow
modes follows

P̂ =
∑

j

βχ−1
j |Q̂ j)(Q̂ j|. (4.5)
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To study the spin dynamics we consider the equation of motion (EOM) ∂t|Q̂0(t)) = iL|Q̂0(t)),
where L is the Liouville operator defined by iLÔ ≡ −i[Ô, Ĥ]. This EOM can clearly be rewritten
as

∂t|Q̂0(t)) = iLP̂|Q̂0(t)) + iL(1 − P̂)|Q̂0(t)). (4.6)

The EOM describing the spontaneous fluctuations of the local magnetization thus follows

∂tC(k, t) = (Q̂0|iLP̂|Q̂0(t)) + (Q̂0|iL(1 − P̂)|Q̂0(t)). (4.7)

Now note the first term on the right hand side of eq. (4.7) vanishes since, first, iL|Q̂ j) =

δ0, j|iLQ̂ j) because the {Q̂ j>0} are constants of motion; and second (Q̂0|iL|Q̂0) = 0 for Q̂0 is odd
under time reversal. The second term on the right hand side of eq. (4.7) can be obtained by
acting with (1 − P̂) on the left of eq. (4.6) and solving for (1 − P̂)|Q̂0(t)). This yields

(1 − P̂)|Q̂0(t)) =
∑

j

∫ t

0
dτei(1−P̂)L(t−τ)(1 − P̂)iL|Q̂ j) βχ−1

j (Q̂ j|Q̂0(τ)). (4.8)

Noting only the j = 0 contribution from the summation above is finite and that

ei(1−P̂)Lt(1 − P̂) = (1 − P̂)ei(1−P̂)L(1−P̂)t, (4.9)

we write eq. (4.7) as

∂tC(k, t) = −

∫ t

0
d τ(Q̂0|iL(1 − P̂)ei(1−P̂)L(1−P̂)(t−τ)(1 − P̂)iL|Q̂0) βχ−1

0 C(k, τ). (4.10)

Finally, using the continuity equation iLQ̂0 = −ik ĵk, where ĵk is the Fourier transform of the
total spin current (1.32), one can rewrite eq. (4.10) as

∂tC(k, t) + k2
∫ t

0
dτΣ(k, t − τ)C(k, τ) = 0, (4.11)

with Σ(k, t) the memory function [68] defined here as

β−1χ0 Σ(k, t) = ( ĵk|(1 − P̂)ei(1−P̂)L(1−P̂)t(1 − P̂)| ĵk), (4.12)

From eq. (4.12) we see the memory function differs from the usual current-current correlation
function in two aspects [3]: first, the evolution operator determining the spectrum of Σ(k, t) has
the intrinsic fluctuations of the slow modes {Q̂i} projected out of it; second, only the components
of the current orthogonal to the subspace spanned by the {Q̂i>0} determine the memory function.

In the long-wavelength limit, however, the projection operation has no effect [3] and so
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lim
k→0

β−1χ0 Σ(k, t) = lim
k→0

( ĵk|eiLt| ĵk)

= β−1σ′(t), (4.13)

with β−1χ0 = (Ŝ z
k|Ŝ

z
k) = 1/4 and β−1σ′(t) the infinite-temperature Kubo conductivity.

Eq. (4.13) implies the memory function displays the same behavior as the Kubo conductiv-
ity (4.1) in the long-wavelength limit. That the memory function is well behaved as k approaches
zero follows since the total spin current operator is a local operator and, consequently, its corre-
lation function falls off rapidly with distance. A bit more subtle is the long-time limit, at which
the memory function might become nonanalytic due to, e.g., (i) the aforementioned presence
of local or quasilocal conserved quantities coupling to the current, which contribute to Σ(k, t)
in the long-wavelength limit, or (ii) mode-mode coupling of the conserved spin density [64],
which may be relevant even at finite wavevectors [3].

4.1.2 Sum rules

To derive sum rules for the memory function, consider the Laplace-transform of Eq. (4.11)

C̃(k, z) =
iβ−1

z + ik2Σ̃(k, z)
χ0, (Imz > 0), (4.14)

and note that in the long-wavelength limit C̃(k, z) has a pole at z = 0 — a direct consequence of
the fact that limk→0 C(k, t) does not decay in time. In this limit eq. (4.14) can be expressed as

C̃(k, z)
iβ−1χ0

=
1
z

(
1 − i

k2

z
Σ̃(kz) + O[k4]

)
. (4.15)

Now, using the representation 2πi f̃ (k, z) =
∫

dω f (k, ω)(ω − z)−1 for both C̃(k, z) and Σ̃(k, z)
one can, in the limit of large z, Taylor expand both sides of the dispersion relation (4.15) in z−1

and equate the expansion coefficients. One thus obtains a set of identities relating the frequency
moments of the spin correlation function with those of the memory function. We write these
sum-rules as

µn ≡
1
k2

∫
dω
2π
ω2n C(k, ω)

β−1χ0
=

∫
dω
2π
ω2n−2Σ(k, ω), (4.16)

with n ∈ N+. The identities above are useful because the frequency moments of the spin
correlation function can be expressed as the thermal expectation value, within the grand canonical
ensemble, of the product of a 2n-fold commutator with a spin operator

µn =
4

k2L

∑
j, j′

e−ik( j− j′)〈[...[ [Ŝ z
j,H],H], ...,H]Ŝ z

j′〉, (4.17)

where H is the Hamiltonian (1.27) and Ŝ z
j corresponds to a spin within the bulk. In the limit of
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4.2 Memory function Ansatz

infinite temperatures, these commutators can be evaluated exactly for given n.

4.2 Memory function Ansatz

We mainly focus on situations where no conserved quantities couple to the current, i.e. when
Σ(k, t) describes the regular component of the Kubo conductivity. We shall allow for non-analytic
behavior of the memory function and assume that at and close to the integrable limit Σ(k, t)
scales with time as t −1−α in the hydrodynamic limit, and hence that any magnetization imbalance
relaxes anomalously, i.e. as limt→∞〈x2〉 ∝ t1−α. We relate the dynamical exponent (here α) to
the microscopic parameters of our model by means of the set of exact sum rules (4.16).

The first three moments of the memory function can be shown to be in the long-wavelength
limit

µ1 =
1
2

J2
1 + 2J2

2 , (4.18)

µ2 =
1
4

J2
1∆2 + J2

2∆2 −
3
2

J2
1 J2∆ +

5
2

J2
1 J2

2 , (4.19)

µ3 =
1
4

J2
1∆4 + J2

2∆4 +
5

16
J4

1∆2 +
3
2

J4
2∆2 + 10J2

1 J2
2∆2

−
11
4

J2
1 J2∆

3 −
5
2

J4
1 J2∆ −

27
8

J2
1 J3

2∆ +
7
2

J2
1 J4

2

+
85
16

J4
1 J2

2 , (4.20)

where the first moment yields nothing but the spin analog of the usual f -sum rule for the
conductivity ∫ ∞

0
dωσ(ω) =

π

4

(
1
2

J2
1 + 2J2

2

)
. (4.21)

That all the moments of the memory function exists, which follows from eq. (4.17), means
that both Σ(k, ω) and C(k, ω) have to fall off faster than any power-law for large frequencies.
Although one can easily compute higher order moments, the reconstruction of the memory
function from them is a well known ill-posed inverse problem. We shall instead adopt a
three-parameter Gaussian memory Ansatz with the aforementioned low-frequency power-law
behavior

lim
k→0

Σ(k, ω) = C
ω−1−α

0

Γ
(

1+α
2

) |ω|α exp
(
−

∣∣∣∣ ω
ω0

∣∣∣∣2) , (4.22)

where the parameters α and ω0 are to be determined in terms of the moments eq. (4.18)–(4.20),
Γ(x) is the gamma function, and the amplitude C is fixed by the first sum rule to be C = 2πµ1.

We choose a Gaussian Ansatz for it leads to finite even moments of any order, and allows to
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Chapter 4 Anomalous transport in spins-half chains

analytically solve the sum-rule equations for the two parameters determining it. Furthermore a
direct approximation by Padé approximants to the short-time power series expansion (up to t14)
of the true memory function shows that at the shortest times it decays as a Gaussian, as can be
clearly seen in the left panel of Fig. 4.1. Note this holds for both integrable and nonintegrable
cases. Our Ansatz thus matches the known short-time behavior with the expected long-time
behavior. The extent to which the Ansatz is an apt approximation for the true memory function
can of course only be tested a posteriori.

Similar ideas have been used before in the context of high-temperature spin transport to
obtain the diffusion constant of the integrable model [68–70]. Eq. (4.22) simply extends these
ideas to allow for anomalous diffusion. Indeed for α = 0 the Ansatz gives pure Gaussian
decay, corresponding to diffusive modes i.e. C(k, t) =

∑
j eik.(r j−r0)(S z

j|S
z
0(t)) ∼ e−Dsk2t, for the

wavevector k and spin diffusion constant Ds. When α > 0 this decay is further suppressed
with a higher power of k and subdiffusion ensues, whereas when α < 0 transport becomes
superdiffusive.

We want to stress that, as it stands, eq. (4.22) assumes the spin current does not overlap with
any of the local or quasilocal conserved quantities of the model, and hence it is only valid (i) for
finite J2 and ∆ ∈ R; or (ii) in the integrable case (J2 = 0) for ∆ ≥ 1. Below we present a simple
way of generalizing the sum-rule equations so that the Ansatz describes the regular component
of the conductivity even when transport is ballistic.

Introducing eq. (4.22) into eq. (4.16) results in

µn

µ1
= ω2n−2

0

Γ
(

2n−1+α
2

)
Γ
(

1+α
2

) . (4.23)

where n ∈ N+. Solving the sum-rules equations yields an expression for the memory function
which only depends on the microscopic parameters of the model Hamiltonian. Thus the
dynamical exponent reads

α(J2,∆) =
3 µ2(J2,∆)2 − µ1(J2)µ3(J2,∆)
µ1(J2)µ3(J2,∆) − µ2(J2,∆)2 , (4.24)

and likewise

ω0(J2,∆)2 =
2

α(J2,∆) + 1
µ2(J2,∆)
µ1(J2)

, (4.25)

where we have set J1 as our energy scale.

4.3 Predictions

Let us employ the above formalism to study the integrable and nonintegrable cases separately —
a lot more is known about the former to which comparison may be made [20, 25, 26, 29, 71].
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Figure 4.1: Left: Padé approximant to the short-time power series expansion to O[t14] of the true memory
function for three J2 values and ∆ = 1. The data shows the memory function decays as a Gaussian
at short times for the three J2 values. Right: memory function dynamical exponent (full line) “1 − α”
characterizing the longitudinal spin damping limt→∞〈(∆x)2〉 ∼ t1−α for ∆ = 1 as a function of J2. The
range of J2 values for which α > 0 makes the system subdiffusive. The dashed line indicates the variation
of ω−1

0 with J2, also showing the asymmetry with respect to the sign of J2.

4.3.1 Integrable case

As already discussed in section 1.2, in the integrable limit one needs to distinguish between three
regimes with different transport properties, namely the gapless, isotropic and gapped phases of
the XXZ model. Let us start with the gapless phase.

Gapless phase

It is rigorously known that in the gapless phase (0 ≤ ∆ < 1) the Drude weight “D" is fi-
nite [60] and so the memory function Ansatz (4.22) should be modified accordingly to include a
4β−1D δ(ω) contribution. This contribution only modifies the first sum rule and can be taken
into account by explicitly subtracting it away from the first moment, i.e. µ1 → µ1 − (2/π)β−1D,
so that the Ansatz still approximates the regular component of the Kubo conductivity.

Taking the Drude weight to be given by the Thermodynamic Bethe Ansatz result [61, 62]

β−1D = 2π
γ − sin (2γ)/2

16γ
, (4.26)

with γ = cos−1 ∆, setting J2 = 0 and using the modified the first moment in eq. (4.24) yields [72]

α(0,∆) = −1 +
16∆2 cos−1 ∆

10 cos−1 ∆ + (5 + 4∆2) sin(2 cos−1 ∆)
, 0 ≤ ∆ < 1. (4.27)

This results implies the low-frequency spin conductivity displays subleading subballistic
behavior of the form

σ′(ω) ∼ D δ(ω) + ωα, with − 1 < α < −3/7. (4.28)
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Chapter 4 Anomalous transport in spins-half chains

In the section A below we investigate further the consequences of Eqs. (4.27) in the limit
∆ � 1, and find good agreement with numerical simulations.

Isotropic and gapped phases

Away from the gapless phase (∆ ≥ 1) the Drude weight vanishes. Setting J2 = 0 in eq. (4.24)
we get

α(0,∆) =
2∆2 − 5
2∆2 + 5

. (4.29)

Similarly, setting J2 = 0 in eq. (4.25) we obtain

ω0(0,∆) =

√
2∆2 + 5

2
, (4.30)

which implies increasing the anisotropy stretches the Gaussian and shortens the average collision
time ∼ ω−1

0 . Let us now focus on the cases ∆ = 1 and ∆ > 1 separately, for the dynamical
properties in these two regimes are known to be very different [19–21].

Isotropic point — at the isotropic point (∆ = 1) eq. (4.29) predicts superdiffusive transport
with the exponent α = −3/7. Thus, within our approximation, any magnetic distortion scales
with time as

〈(∆x)2〉 ∼ t10/7 ≈ t1.43 (4.31)

in the long-time limit. Superdiffusion at the isotropic point has been predicted previously, both
analytically with the scaling ∼ t12/7 ≈ t1.71 in the continuum limit [73], and numerically, by
means of the recursion method [74] (∼ t1.26) and exact diagonalization [75] (∼ t1.41). More
recently t-DMRG studies [19–21] — both in unitary and nonunitary dynamics — also found
superdiffusive transport with 〈(∆x)2〉 ∼ t4/3 ≈ t1.33. Our prediction is in good agreement with
these numerical results and with the numeric simulations of section. 4.4.

Gapped phase — Eq. (4.29) gives a smooth interpolation between superdiffusive behavior at
the isotropic point and no transport at the Ising limit (i.e. α→ 1 as ∆→ ±∞), thereby implying
the possibility of anomalous diffusion for ∆ > 1, i.e. that increasing ∆ continuously slows
down the damping of the longitudinal component of an inhomogeneous magnetization from
superdiffusive to subdiffusive spreading, making the system a perfect insulator (a system with a
vanishing diffusion constant)for ∆ >

√
5/2 [72]. Interestingly enough, numerical simulations

within the gapped regime show that (i) only the first two cumulants of the spin current operator
scale diffusively whereas higher cumulants do not [63], which suggests the system is not truly
normal diffusive in the presence of a gap; and that (ii) Gaussian relaxation (as opposite to
exponential relaxation) dominates the long-time limit at the smallest nonzero wavevector of
C(k, t), which entails anomalous diffusion in finite chains [76]. However, there is disagreement
on this, with normal diffusion being suggested for ∆ > 1, especially in the large ∆ limit [19, 21,
77]. Given the good agreement found at the isotropic point between our approximation, the
literature and the numerics of section 4.4, one could argue the Ansatz (4.22) may give a good
description of AC transport within the gapped phase for anisotropies not too far from ∆ = 1. A
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4.3 Predictions

very different matter is the limit ∆ � 1, which our Ansatz does not capture. Let us therefore
modify our Ansatz accordingly.

Large ∆ limit — In the large ∆ limit the eigenstates of the model are close to classical spin
configurations. Consider spin flips between, say, second and third sites in a segment of an
infinite chain. The four possibilities are: (i) ... ↓↑↓↓ ..., (ii) ... ↑↑↓↑ ..., (iii) ... ↑↑↓↓ ..., (iv)
... ↑↓↑↓ .... Spin flips from J1 mix degenerate states (up to a splitting in J1) in the first two cases,
and states separated by ±∆ in the last two cases — these are the only processes contributing
to the conductivity. With these considerations in mind, the large-∆ memory function may be
approximated by

Σ(ω) =
A

2
√
πω2

A

{
e−

(
ω−ξ
ωA

)2

+ e−
(
ω+ξ
ωA

)2}
+

B√
πω2

B

e−
(
ω
ωB

)2

. (4.32)

This Ansatz involves five unknown parameters to be determined. Using the five known
moments for the XXZ chain, the sum-rule eqs. (4.16) yield

A =
J2

1

4
−

3J4
1

16∆2, ωA = J1

B =
J2

1

4
+

3J4
1

16∆2, ωB =

√
3
2

J1,

ξ = ∆ −
J2

1

4∆
.

(4.33)

With these results eq. (4.32) predicts the diffusion constant

Σ(ω = 0) ≈
J1

10
, for ∆ � 1. (4.34)

The linear dependence of the diffusion constant with J1 close to the Ising limit is consistent
with earlier studies [19, 77]. Hence, eq. (4.32) is a much better Ansatz to be employed in
the large-∆ limit, as opposed to Eq. (4.22). Let us note, nevertheless, that eq. (4.34) is in
disagreement with Ref. [78] which suggests the diffusion constant saturates instead. In what
follows we will not focus on the strongly interacting case but will limit to being close to the
isotropic Heisenberg limit.

4.3.2 Nonintegrable case

We break integrability of the XXZ chain by including next-nearest neighbor spin flips with
amplitude J2. The full line in the right panel of Fig. 4.1 depicts the low-frequency dynamical
exponent “1 − α” characterizing the longitudinal spin damping 〈(∆x)2〉 ∼ t1−α, for ∆ = 1 as
a function of J2. This result shows the sign of the next-nearest neighbor spin-flip term has a
strong effect on the spin dynamics: positive J2 values enhance superdiffusion in a nonmonotonic
way, whereas for some small range of negative J2 values long-time transport is suppressed and
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Figure 4.2: Left: frequency dependence of the (normalized) memory function Ansatz, for ∆ = 1 and three
values of J2. Note the asymmetry for the transport rates with respect to the sign of J2. Right: normalized
Kubo conductivity for a 20-site spin ring, computed within the canonical ensemble for states with zero
total magnetization, and the same set of parameters as for the memory function (uniform binning, width
= 0.01). All the given results are in units of J1.

becomes subdiffusive. Transport suppression for small negative J2 is remarkable, for one would
expect that close to the integrable limit the “nearly-conserved” quantities dominate the long-time
dynamics and slow down the decay of the current-current correlations. The dashed line in the
right panel of Fig. 4.1 depicts the dependence of ω−1

0 on J2, which is clearly consistent with the
results for the dynamical exponent. We show in Fig. 4.2 the frequency dependence of our Ansatz
for ∆ = 1 and three values of J2 as compared to exact-diagonalization computations, the details
of which can be found in section 4.4 below. Note again the sharp asymmetry of the transport
rates with respect to the sign of J2: positive J2 shifts the spectral weight to lower frequencies
and favors transport whereas negative J2 shifts the spectral weight to higher frequencies, thereby
implying slow collective modes. Both these aspects — the differences in low and high frequency
response — are clearly present in the Kubo conductivity results, as can be seen in the right panel
of Fig. 4.2, and may be confirmed by a simple calculation on a weakly perturbed 3-site chain, as
we do below.

Microscopic mechanism — Our spin chain may be interpreted as a zig-zag ladder with J2

acting along the rails and J1 acting along the rungs. As discussed in chapter 2 positive J2

values yield in-plane frustration in the ground state and, one may argue, tend to favor dimer
spin configurations even at high temperatures. Such configurations effectively compete with the
anisotropy, the dominant localizing mechanism, and lead to an enhancement of transport. Upon
further increasing J2 however, “frustration" becomes the main localizing mechanism and spin
transport is slowed down until, for even larger J2 values, the ladder starts decoupling into two
“free" spin chains. We consider the limit J2 � 1 more thoroughly in section A and find very
good agreement between our Ansatz and the numerics.

We can corroborate the above picture for intermediate J2 from a simple trimer calculation:
consider a 3-site spin chain, with two up spins and one down spin. This system may be readily
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shown to respond, through the current operator, eq. (1.32), only at two frequencies

ω± =
1
8

(
∆ − 6J2 ±

√
(∆ + 2J2)2 + 32

)
, (4.35)

with the conductivity given by

σ(ω) =
ω2

+δ(ω − ω+)

32 + 4(2J2 + ∆)2 + 4(2J2 + V)
√

(2J2 + ∆)2 + 32

+
ω2
−δ(ω − ω−)

32 + 4(2J2 + ∆)2 − 4(2J2 + ∆)
√

(2J2 + ∆)2 + 32
,

(4.36)

for small J2 � ∆ and ω− < ω+, with the latter difference increasing for J2 < 0. Thus for
positive J2 the two frequency modes are constrained to be closer to each other, and with about
the same spectral weight, whereas for negative J2 the two modes separate out into a high- and a
low-frequency mode, the latter being spectrally suppressed in amplitude. This means that in the
presence of small negative next-nearest neighbor spin flips the system’s dynamics gets slower
due to the spectral redistribution. Such redistribution is predicted by our memory function
Ansatz and is vindicated by the numerical linear response calculations, as shown in Fig. 4.2.

Note that setting ∆ = 0 in the above eq. (4.35) and (4.36) gives identical dynamical properties
for both signs of J2. This can also be seen directly in the first three moments, eq. (4.18)–(4.20):
the odd powers of J2 are always coupled to ∆. Hence, it is really the competition between
frustration and interaction that begets the anomalous dynamics.

We finish this section with a comment and caveat: in what follows we will compare more
thoroughly the picture emerging from our simple Ansatz, Eq. (4.22), with the spin conductivity
of finite-size spin chains. We will find that intermediate and high frequency dynamics are indeed
well modeled by our memory function in describing anomalous transport. Note however that in
the long-time or low-frequency limit, the nonintegrable systems are all expected to be (normal)
diffusive, with σ(ω→ 0) = σ0 (unless level repulsion sets in for the finite-L systems).

4.4 Numerics: Kubo conductivity

The infinite-temperature regular conductivity at frequency ω is computed from the Kubo formula

lim
β→0

β−1 σreg(ω) =
π

LZ

∑
m,n

|〈m | ĵ | n 〉|2 δ(ω − Em + En), (4.37)

which follows from eq. (1.25). The summation is over all the eigenstates of the model, the
Em’s are the corresponding eigenvalues, Z is the partition function and ĵ is the total spin current
operator (1.32).

Before proceeding, a few comments on practical aspects are in order. Since m̂z and Ẑ commute
with both K̂ and P̂, and that [K̂, P̂] = 0 in the k = 0 sector and [m̂z, Ẑ] = 0 in the mz = 0 sector,
one can use this set of symmetries to block-diagonalise the Hamiltonian [57]. For finite J2 and
large L the energy-level statistics of each of these symmetry sectors are those of the Gaussian
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Figure 4.3: Filled squares: level-spacing distribution for a 20-site spin ring with ∆ = 1 and J2 = 0.2
averaged over the different symmetry subsectors with zero total magnetization (mz = 0). The inset
shows the usual low-frequency linear decay of the level spacing distribution due to level repulsion.
Empty squares: Level-spacing distribution for the states mixed by the spin current operator (1.32). Note
the absence of level repulsion in this case which will be reflected in the conductivity. The ideal GOE
distribution is shown as a full line in both plots.

orthogonal ensemble (GOE) [10]. However, as previously mentioned, the total spin current
operator ĵ is odd under both parity and spin-inversion and, consequently, its only nonvanishing
matrix elements are those connecting symmetry subsectors with opposite (p, z). Thus, in the
presence of spin-inversion symmetry and parity, the energy difference in the argument of the
Dirac delta functions in the Kubo formula mixes different GOE spectra. The left of Fig. 4.3
illustrates the consequences of this: the filled squares show the level statistics taken within
each symmetry sector and then averaged over; the correspondence with random matrix theory
is evident. Empty squares, in contrast, correspond to the level spacing distribution for the
set of states mixed by the current operator. The main aspect to be noted is the absence of
level repulsion, which entails that for frequencies much smaller than the average level spacing,
the conductivity, when computed in the canonical ensemble within the zero-magnetization
sector, will not display the usual reduction due to the decrease of level pairs with such energy
differences.

The right panel of Fig. 4.2 shows the Kubo conductivity for a 20-site spin chain with ∆ = 1
and three values of J2 (in units of J1). It is obtained by approximating the Dirac delta functions
in Eq. (4.37) with uniformly spaced frequency bins, averaged over the different total momentum
sectors of the symmetry block with vanishing total magnetization (mz = 0). As pointed out
above, the main feature of this result is the asymmetry with respect to the sign of J2: in
the presence of in-plane frustration the spectral weight is mainly located at low frequencies,
whereas for negative J2 the spectral weight is shifted to higher frequencies and shows a more
complex structure, signaling slower collective excitations. We remark once again the qualitative
agreement between this data set and the predictions from the memory function Ansatz (left
panel of Fig. 4.2).
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Figure 4.4: Mid-frequency power laws and ensemble dependence of the normalized high temperature
conductivity. Left: conductivity in canonical (CE) and grand canonical ensemble (GCE) of the L = 18
integrable chain. A superdiffusive power-law as obtained from the ansatz gives a good-fit before the low-
frequency ω2 behavior sets in; the latter is consistent with the argument in Ref. [79] at low-frequencies
in the integrable chains. Center: conductivity in nonintegrable L = 18 chains in the mz = 0 sectors; the
black lines correspond to power-law fits from the Ansatz, whose exponents are defined in the right panel
of the figure. Note the behaviour predicted by the Ansatz is qualitatively and quantitatively consistent
with the drift, and often values, of the power laws as ±J2 is changed. Right: Same as middle panel but
in the grand canonical ensemble. An extra peaking is observed at much lower-frequencies in all J2 , 0
cases, which is a remnant of the finite-L Drude peak from the integrable limit (which is absent in the
middle panel due spin-inversion symmetry).

To further study the long-time transport properties of our model, as well as the validity of
the predictions from the previous sections let us consider Fig. 4.4. It shows the ensemble
dependence of the conductivity, computed using logarithmically spaced frequency bins, together
with the mid-frequency power-law predictions from the memory function Ansatz. Here we
distinguish between canonical (CE) and grand canonical (GCE) ensemble calculations: in the
former case we average over eigenstates with mz = 0, whereas in the latter the average includes
eigenstates from all the different magnetization sectors. Let us consider the integrable and
nonintegrable case separately.

4.4.1 Integrable case

The left panel of Fig. 4.4 depicts the finite-size low-frequency conductivity for an 18-site
isotropic Heisenberg chain. The first aspect ones notes is that at frequencies lower than ω ∼ 0.1
the conductivity abruptly drops, a feature which has been identify as a pseudogap in previous
studies [80]. The difference between the two ensemble calculations at these frequencies has
a simple explanation: at the isotropic point (∆ = 1) the Drude weight of small chains is
finite and vanishes exponentially when increasing system size in the GCE, whereas it vanishes
identically for any L due to spin-inversion in the CE. Hence we expect the regular part of the
GCE conductivity to drop at higher frequencies – as compared with the CE calculation, in order
to preserve the optical sum-rule, eq. (4.21). Since in the thermodynamic limit the Drude weight
vanishes, such a difference between ensembles is nothing but a finite size effect. At even lower
frequencies we observe the onset of a clear ω2 power law. Such a ω2 low-frequency behavior
has been argued for in Ref. [79] for the integrable chain. However, by repeating our simulations
for different chain lengths, we have observed the onset of the ω2 behavior slowly moves towards
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lower frequencies when increasing L (see Appendix B), thus indicating it corresponds to another
finite-size effect. Hence, for the system sizes considered here we expect strong finite-size effects
for frequencies ω . 0.1.

Note that there is strong numerical evidence for superdiffusion at the isotropic point [19–21].
Remarkably, a superdiffusive power-law, as obtained from our Ansatz (4.22), fits well the data
before the sudden drop of the conductivity.

4.4.2 Nonintegrable case

Consider first the center panel of Fig. 4.4, where we plotted CE data for four J2 values. To
begin with, note the strong suppression of spectral weight at low frequencies for negative J2,
and the absence of level repulsion at the lowest frequencies due to spin-inversion and parity
symmetries (see Fig. 4.3). Most importantly, and focusing on frequencies ω & 0.1 (i.e. before
the finite-size effects observed in the integrable limit set in) we see there is a frequency range
on which the power laws obtained from our Ansatz, represented as black lines whose legend is
shown in the right panel of the figure, are qualitatively consistent with the drift and power laws
of the conductivity data for both frustrated and unfrustrated cases. Pivotally one can clearly
identify from the exact-diagonalization data alone power-law behavior which signals anomalous
diffusion processes occurring on a limited time domain.

These observations are interesting because even if anomalous transport shows up on a limited
frequency range only, it might be enough to generate anomalous behavior in NMR experiments,
as was argued by Sirker et al. for the gapless phase of the integrable model [81]: although
normal diffusion was found to take place on a limited space-time domain, it was enough to give
diffusive behavior to spin-lattice relaxation rates, in agreement with experimental findings in the
1D chain Sr2CuO3.

The right panel of Fig. 4.4 shows similar results for the conductivity computed in the GCE.
For ω & 0.1 the qualitative agreement between the data and the Ansatz predictions persists.
At frequencies ω . 0.1 however, the conductivity displays an additional peak which can be
understood as follows: for finite L the Drude weight in the integrable limit is finite; breaking
integrability transfers the Drude peak’s spectral weight to finite frequencies so that the optical
sum-rule is satisfied [58]. Such a redistribution results in the low-frequency enhancement at
ω . 0.1, which then corresponds to a finite-size effect. We investigate further the role of
finite-size effects by considering GCE data for different system sizes in section B.

In summary, we have seem the power laws obtained from the Ansatz (4.22) qualitatively
describe the finite-frequency conductivity power laws observed in both canonical and grand
canonical ensemble computation. These results entail the possibility of mid-frequency anoma-
lous diffusion in nonintegrable systems.
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Conclusions

We have investigated quantum spin transport in clean spin 1/2 chains, at and away from
integrability. Using exact diagonalization, a set of exact sum-rule moment relations and a
memory function Ansatz we investigated the response of the XXZ model to next-nearest
neighbor integrability-breaking spin flips both at zero and infinite temperatures. Depending on
the sign of the perturbation the model displays in-plane frustration in its ground state which
localizes the spin degrees of freedom.

At zero temperature we computed the spin stiffness (or superfluid density) using exact
diagonalization and found an interaction-induced enhancement of the spin stiffness due to
the competition between spin-dimer and Néel like configurations — the former favored by
frustration, the latter by the spin anisotropy. Surprisingly a similar phenomenon was observed
in this model at infinite temperatures.

In the high-temperature limit we analyzed two quantities: the spin stiffness and the regular
component of the Kubo conductivity. If the former is finite the spin conductivity diverges and
spin transport is thus ballistic. In nonintegrable systems this quantity usually vanishes (we have
actually checked explicitly it vanishes for our model).

We investigated the influence of discrete symmetries (namely parity and spin-inversion) and
ensemble (canonical or grand canonical) on the high temperature spin stiffness “D” in the XXZ
model by exactly diagonalizing small spin chains. Introducing a flux provides a convenient way
to break these symmetries and study their effect upon the numeric evaluation of D. We found
that when spin-inversion symmetry is broken the dominant contributions to the spin stiffness
come from nondegenerate states. In contrast, if spin-inversion is intact only degenerate states
related to the Λ quantum loop symmetry contribute to D. Such Λ-degeneracies only appear
for spin chains of length L ≥ 2N, for anisotropies ∆ = cos(Mπ/N) with N ∈ Z+ and M < N
coprimes. These observations allowed us to identify the finite-size discrepancies between GCE
computations for even- and odd-length chains reported in the literature as consequence of the
absence/presence of spin-inversion symmetry in the model. We further found that within the
gapless phase (∆ < 1) and in the presence of a flux (i.e. when spin-inversion is broken and
the Λ degeneracies are lifted) the finite-size spin stiffness extrapolates to either the recently
computed lower-bounds or to the Thermodynamic Bethe Ansatz (TBA) solutions, independent
of the ensemble used. In particular, convergence towards the TBA solution is found whenever
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the previously reported low-frequency anomalies [51] are absent. In contrast, in the absence
of a flux the large-current-carrying degenerate states related to the Λ symmetry only show up
for system sizes L ≥ 2N, where N can be large depending on the anisotropy. This symmetry
thus plays an important role in contributing to the thermodynamic limit of D. In fact, we
have checked that for GCE calculations excluding the mz = 0 sector (i.e. no spin-inversion)
convergence is still slow. Hence breaking spin-inversion is not enough — one also needs to
break the Λ symmetry. Thus slow convergence towards the exact D-value should be expected
for generically chosen ∆ in the absence of a flux. Therefore if spin inversion is broken and the
Λ-degeneracies lifted, say with a magnetic flux, in an even-length spin-1/2 XXZ chain then
convergence of D to the thermodynamic limit is significantly improved.

Away from the gapless phase we confirm absence of ballistic transport for ∆ ≥ 1, both in
the grand canonical ensemble and the zero magnetization sector, with or without the discrete
symmetries preserved. Finally, we remark that with increasing anisotropy the contribution to
the spin stiffness from the zero magnetization sector goes from being the most dominant to the
least dominant. Given that only this magnetization sector is affected by the Ẑ symmetry, the
role of this decreases with increasing the anisotropy in a grand canonical ensemble calculation.

We studied AC response in both integrable and nonintegrable limits of the model, analytically
through a memory function Ansatz and numerically through exact diagonalization. At and
close to the integrable limit we chose a memory function Ansatz that allowed for anomalous
diffusion. We found in the XXZ model (i) superdiffusion at the isotropic point, with frequency
dependent conductivity σ′(ω→ 0) ∼ |ω|−3/7 in close numerical agreement with recent t-DMRG
computations; (ii) subleading subballistic behavior in the regular component of the conductivity
within the gapless phase; and (iii) normal diffusion deep into the gapped phase, with a diffusion
constant linearly proportional to the weak hopping.

We further find the sign of the integrability breaking perturbation matters: while positive
spin-flips (in-plane frustration in the ground state) enhance spin transport, there is a narrow
interval of negative spin-flips amplitudes for which transport is strongly suppressed. Transport
suppression for small negative spin-flips amplitudes is remarkable, for one would expect that
close to the integrable limit the “nearly-conserved” quantities dominate the long-time dynamics
and slow down the decay of the current-current correlations. The resulting (anomalous) long-
time transport tails as inferred from the regular conductivity of small spin chains (computed
using exact diagonalization) are captured faithfully, qualitatively and quantitatively by the
memory function Ansatz in all regimes: gapless, isotropic, and gapped for the integrable chain,
as well as across vast parametric swathes of the nonintegrable chain. These results entail the
possibility of mid-frequency anomalous diffusion in nonintegrable systems.
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APPENDIX A

Approaching the free-particle limit

The model Hamiltonian Eq. (1.27) becomes a free model when either the anisotropy ∆ is set
to zero in the integrable limit, or for large J2 → ∞. In this section we consider the transport
properties of the model as one approaches these two limits.

A.1 Small ∆ limit of the integrable chain

We have shown in Sec. 4.2 the Ansatz defined in Eq. (4.22) predicts the low-frequency subleading
behavior σ′(ω) ∼ D δ(ω) + ωα for the spin conductivity within the gapless phase, with the
dynamical exponent lying in the interval −1 < α < −3/7. More precisely, the regular component
of the conductivity shows subballistic behavior, smoothly going towards ballistic transport as ∆

goes to zero

Σ(ω) ≈
2π
5

∆2

ω1− 4∆2
5

e−
4
5ω

2
+ O

(
∆4

)
, for ∆ � 1. (A.1)

This regular component vanishes exactly at ∆ = 0, with a subleading behaviour approximated
by ω−1+4∆2/5 ≈ ω−1. Hence the conductivity in the XX chain is given by a δ(ω) contribution as
expected. Note that the small-∆ power-law behavior does not extend to the lowest frequencies
and so the moments are still well defined.

In the left panel of Fig. A.1 we contrast the Kubo conductivity between the isotropic point
and the small-∆ limit. Two points are noteworthy: (i) there are clear differences between the
power laws about ω ≈ 0.1 for the two cases, with σ(ω) ∼ ω−1 being approximately satisfied for
the small ∆ chain; (ii) also for ∆ = 0.05 there is a ∆2 drop between the end of the ω−1 power-law
and the onset of the ω2 finite-size-effect power-law that was discussed in the previous appendix;
this is in contrast to the isotropic point where the drop to the ω2 power law is immediate. Such
∆2 drop is in line with the Ansatz prediction Eq. (A.1).
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Figure A.1: L = 18 Kubo conductivity of fluxed chains in the grand canonical ensemble for extreme
limits of Hamiltonian parameters. Left panel: the integrable chain comparing the small ∆ limit with
the isotropic point, the former fitting a steeper power-law (≈ ω−1) at mid-frequencies as predicted by
the Ansatz Eq. (A.1) before a ∆2 drop (which occurs well before the onset of ω2 finite-size effect as
in the isotropic point) sets in, which is also in line with the Ansatz prediction (A.1). Right panel: the
nonintegrable chain for large J2 limit where the Ansatz predicts an insensitivity to the sign of J2. This
latter prediction and the associated power-law ≈ ω−1 given by Eq. (A.2) is vindicated by the displayed
numerics at mid-frequencies.

A.2 Large J2 limit

For large J2 the spin chains decouple into two independent chains. Moreover, from the results
shown in the right panel of Fig. 4.1, we expect the ±J2 dynamical responses to be identical as
J2 → ∞, with α→ −1, as in the small ∆ limit treated in the preceding paragraphs. Note that for
1 � J2 , ∞ the system is still nonintegrable and therefore normal diffusion is expected at long
times. In this limit, for ω � ω0(J2 → ∞, 1) =

√
5/2, our Ansatz predicts

Σ(ω) ≈
49π
10

1

ω
1− 49

20J2
2

+ O

(
1
J2

)
, for |J2| � 1, (A.2)

which shows the symmetry with respect to sign of J2 is restored. This restoration of the
symmetry and the actual power-law at mid-frequencies being close to -1 is supported by the
numerics as displayed in the right panel of Fig. A.1.
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APPENDIX B

Finite-size effects in the low-frequency
conductivity

To study how finite-size effects enter our exact diagonalization calculations, we repeated our
GCE simulations for spin rings of different system sizes, pierced with an irrational magnetic
flux. Fig. B.1 shows our results for ∆ = 1 and J2 = 0.0 (left), 0.2 (center) and -0.2 (right), in
units of J1. The flux breaks spin-inversion, parity and time-reversal symmetry (here labeled as
K̂) but preserves the symmetry under the combined operation (K̂ × P̂). As discussed in chapter 3
breaking these symmetries generically accelerates convergence to the thermodynamic limit.

Now, all our f inite-size spin chains have a finite Drude weight (even for finite J2) in the
symmetry sectors of finite mz. Breaking spin-inversion with the magnetic flux yields a finite
Drude weight within the sector of zero total magnetization as well, thereby enhancing the GCE
value of the Drude weight — again, as discussed in chapter 3. Thus in fluxed integrable chains
we expect the regular conductivity to drop at higher frequencies as compared to unfluxxed
chains, for the optical sum rule to hold. Comparing the left panels of Fig. 4.4 and Fig. B.1 shows
this is indeed the case. Most importantly, note from Fig. B.1 the ω2 behavior shows up for
ω . 0.1 and moves slowly to lower frequencies when increasing system size, which identifies it
as a finite-size effect.

Let us now discuss the results for the nonintegrable chains. Firstly, we point out that the
invariance under (K̂ × P̂) implies the energy pairs entering the Kubo formula for nonintegrable
chains belong to a single GOE [10] and, consequently, that the conductivity for finite J2 will
show level repulsion at frequencies small compared with the average level spacing. One can
clearly identify the onset of level repulsion in the center and right panels of Fig. B.1 as the
linear drop of the conductivity at the lowest frequencies, marked with dashed lines. A bit
more tricky is the increase with system size of the low-frequency enhancement before the
onset of level repulsion. We identify two competing effects: first, and as pointed out above,
breaking integrability transfers the Drude peak’s spectral weight f rom the integrable limit to
finite frequencies; the strength of this effect should decrease when increasing system size.
Second, the finite Drude weight of the nonintegrable chain itself rapidly decreases with system
size, the corresponding spectral weight being shifted to finite frequencies. The combination of
these two effects yields the low-frequency enhancement of the conductivity for ω . 0.1, which
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Figure B.1: low-frequency Kubo conductivity for spin rings of different length, pierced by an irrational
magnetic flux and averaged over all magnetization sectors. The parameters are ∆ = 1 and J2 = 0.0 (left),
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then corresponds to a finite-size effect.
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