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Abstract
Since the formal definition of NP-completeness, there has been a huge discrepancy between theory
and practice. The theoretical point of view for an NP-complete problem is that we do not know
of any efficient, that is, polynomial-time algorithm for this problem. On the other hand, many of
these problems are very well tractable in a practical sense. For any such problem there is a family
of instances on which every known algorithm takes exponential time and is therefore not suitable
for larger instances. But these instance families are often very contrived and artificial. The real-
world instances, which we would actually like to solve, often tend to be much easier than what
the worst-case running times may suggest. This motivates the research in other settings than
the worst-case scenario. We will focus in this work on two popular analysis techniques: smoothed
analysis and kernelization.

In a smoothed analysis a small amount of random noise is added to the instances before
analyzing the expected running time of an algorithm. We use this framework to analyze local
search, a technique that is perhaps the most famous example for which worst-case analysis fails
to make reasonable running time predictions. Despite its exponential worst-case running time,
we show that local search for the Maximum-Cut problem terminates after a quasi-polynomial
number of steps in the smoothed setting. If we consider instances in which the nodes are points in
a d-dimensional space and the edge weights are given by the squared Euclidean distances between
these points, the smoothed running time is even polynomial in n and 2d.

Furthermore, we analyze local search for a standard scheduling problem in which jobs with
different processing requirements are assigned to related machines. Local search corresponds
to the best response dynamics that arises when jobs selfishly try to minimize their costs. We
assume that each machine runs a coordination mechanism that determines the order of execution
of jobs assigned to it. We obtain various new polynomial and pseudo-polynomial bounds for the
convergence time of local search with respect to the coordination mechanisms Makespan, FIFO,
and Shortest-Job-First. The pseudo-polynomial bounds can almost all be translated to smoothed
polynomial running times.

In the second part of this thesis we will focus on kernelization. This technique is a formalization
of efficient preprocessing for NP-hard problems using the framework of parameterized complexity.
The first application is again the Maximum-Cut problem and some generalizations of it. Several
of these cut problems are known to admit polynomial kernels when parameterized above the tight
lower bound measured by the size and order of the graph. We continue this line of research and
show how to find kernels with only O(k) vertices in O(km) time, where k is our parameter.

Finally we use an algorithm for compressing numbers due to Frank and Tardos (Cominatorica
1987) to derive polynomial kernels for weighted versions of several well-studied parameterized
problems like d-Hitting Set and d-Set Packing. It is also useful to obtain kernels for various
formulations of Subset Sum and Knapsack as well as for polynomial integer programs.

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).
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1 Introduction

Worst-case analysis has been the predominant analysis concept in theoretical computer science
since the beginning of this research area. If the worst-case running time of an algorithm is
small, we can expect it to run fast in practice. The introduction of NP-completeness has been
the most remarkable breakthrough to show that many optimization problems do not admit
such an algorithm with polynomial worst-case running time and therefore not every instance
can be solved efficiently unless P = NP. Fortunately, the vast majority of real-world instances
for NP-complete problems are much better tractable than the worst case might suggest. As a
consequence, we can solve considerably larger instances for many problems than we would be
able to by simple brute-force attempts. On the other hand, this means that we need different
analysis techniques if we want to predict real-world tractability by theoretical means. In this
thesis we will focus on two different popular analysis techniques: smoothed analysis, which is
especially successful at explaining running times for local search, and kernelization.

Let us first motivate smoothed analysis for local search. The most successful algorithms
for many well-studied optimization problems are based on the principle of local search: Start
with an arbitrary feasible solution and perform some kind of local improvements until none
is possible anymore. For many important problems like the traveling salesman problem,
clustering, and linear programming, local search is the method of choice in practice. Its success,
however, lacks a theoretical account. The main reason for the considerable gap between
experimental results and our theoretical understanding is that for most problems worst-case
analysis predicts that local search is inefficient and can result in very bad solutions. It is not
taken into account that worst-case instances are often rather contrived and rarely observed in
practice. This indicates that the predominant theoretical measure of worst-case analysis does
not suffice to evaluate local search. It suggests to apply more realistic performance measures
that help to advance our understanding of this simple, yet powerful algorithmic technique.

To narrow the gap between the worst-case results and experimental findings, we analyze
local search algorithms for Max-Cut and some scheduling problems in the framework of
smoothed analysis, which has been invented by Spielman and Teng [100] to explain the
practical success of the simplex method. In a smoothed analysis, first the adversary creates a
bad instance like in a worst-case analysis. Then a small amount of random noise is added to
this instance. This weakens of course the adversary. The idea however is that the expected
running time of an algorithm on the perturbed instance gets smaller and smaller the more
artificial and fragile a worst-case instance is. That means that the smoothed running time
of an algorithm should be much nearer to the actual running time in practice than the
worst-case is, as long as we do not test our algorithm in specially constructed benchmarks.
This approach is by now a well-established alternative to worst-case analysis. It is also
considered a very natural approach, as adding random noise to the instance can often be
motivated by, e.g., measurement errors, numerical imprecision or rounding errors. It can also
model parts of the input that cannot be quantified exactly, but for which there is no reason
to believe that they are adversarial. Therefore, the input model of smoothed analysis seems
to be well-suited for a vast number of application areas.

The second important technique we use is the concept of kernelization in the framework
of parameterized complexity. Kernelization is a formalization of efficient preprocessing for
NP-hard problems. Up to now we do not know of any algorithm for an NP-hard problem
that runs faster than exponential in the instance size and the widely-believed Exponential
Time Hypothesis even rules out such an algorithm. Instance size alone, however, is often
not a good indicator for the inherent difficulty of instances of a given NP-hard problem. For
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example, the Subset Sum problem, i.e., the problem whether there is a non-empty subset
of a set of integers whose sum is zero, becomes easier if most items have the same size, i.e.,
if the number k of different item sizes is small. This is because we can simply guess how
many items of each size we need for a feasible solution. Therefore, the problem is solvable in
time O(nk), which is polynomial for constant k. Hence, we can give more accurate statements
about the complexity of Subset Sum if we characterize instances not only by their size, but
also by the parameter k.

In fact, the running time nO(k) is trivial for many popular parameter choices for NP-
complete problems. Therefore, fixed-parameter tractability (and thus also kernelization) even
aims at running times that depend only polynomially on the instance sizes, i.e., that are of
the form f(k) ·nO(1) for some function f . These bounds scale much better when we increase k
or n.

The main idea of kernelization is to reduce the size of a given instance in the hope that
the remaining part will often be small enough to be tractable with an exponential-time
algorithm for the problem (this is where the f(k) part of the running time comes from). As
an example, consider the decision variant of the Vertex Cover problem together with the
size k of a minimum vertex cover as parameter, i.e., the question: Is there a vertex subset S
of size k in a graph G such that every edge of G is incident to S? If such a vertex cover
exists, then we know for sure that every vertex v of degree more than k must be contained
in it, as the edges incident to v cannot be covered in any other way by at most k vertices.
Hence, the question whether G contains a vertex cover of size k is equivalent to the question
whether G− v contains a vertex cover of size k − 1.

The combination of several such preprocessing steps often leads to equivalent instances
where the size of the instance is a function only in k, but independent of the original instance
size. This is called a kernel.

Our first application of kernelization is to tackle Max-Cut and some generalizations of
it from a different angle. We show that Max-Cut admits a kernel in which the number of
vertices is linear in our parameter k. This parameter k is roughly the size of the maximum
cut in the graph minus the guaranteed maximum cut size every connected graph of the
same order has. Second, we show kernels for various Subset Sum and Knapsack variants.
Finally we prove that for several problems, kernels for the unweighted case can be extended
to kernels for the weighted counterparts.

1.1 Smoothed Analysis

We will consider two different models for smoothed analysis. The first one is the original
model suggested by Spielman and Teng [100], in which Gaussian noise is added to the
input. Assume for simplicity that we consider a problem with input set x1, . . . , xn ∈ R and
that every variable of the input is about to be perturbed. Let A be an algorithm for the
given problem. Let us for simplicity assume that A is invariant under scaling of the input
numbers. Then we can w.l.o.g. scale down the input such that x1, . . . , xn ∈ [−1, 1]. Then we
add independent Gaussian random variables N1, . . . , Nn ∼ N (0, σ2) with mean value 0 and
variance σ2 to the input. Let f be the running time of an algorithm A for the considered
problem. The worst-case running time of A can then be expressed as

Tworst-case = sup
x1,...,xn∈[−1,1]

f(x1, . . . , xn).
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The smoothed running time of A is in contrast defined as the worst expected running time
when adding Gaussian noise to the input:

Tsmoothed = sup
x1,...,xn∈[−1,1]

EN1,...,Nn∼N (0,σ2) [f(x1 +N1, . . . , xn +Nn)] .

We can equivalently write

Tsmoothed = sup
x1,...,xn∈[−1,1]

EN1∼N (x1,σ2),...,Nn∼N (xn,σ2) [f(N1, . . . , Nn)] .

Note that the smoothed running time of the algorithm depends on the choice of the standard
deviation σ, that is, the smoothed running time of A is always expressed as a function
depending on σ. The smaller σ is, the more powerful is the adversary and the model
converges to a worst-case analysis. On the other hand, if σ tends to infinity, the random noise
dominates the input and therefore our model resembles an average-case analysis. Therefore,
smoothed analysis can be seen as a natural interpolation between the worst and the average
case.

The second smoothed analysis model we consider is the generalization introduced by
Beier and Vöcking [9]. Here we are even allowed to choose the probability distribution for the
random noise, instead of being fixed to the Gaussian distribution. Let us again assume that
our algorithm A is invariant under scaling such that we can w.l.o.g. scale down the input such
that x1, . . . , xn ∈ [−1, 1]. Now every variable xi is replaced by a random variable Xi ∼ ϕi,
where ϕi : [−1, 1]→ [0, φ] is an adversarially chosen density function bounded from above by
a parameter φ. The variables X1, . . . , Xn are of course again drawn independently of each
other. The smoothed running time is then defined as

Tsmoothed = sup
ϕ1,...,ϕn : [−1,1]→[0,φ]

EX1∼ϕ1,...,Xn∼ϕn [f(X1, . . . , Xn)] .

The parameter φ plays a similar role as 1/σ in the traditional model: If φ→∞, the adversary
becomes arbitrarily powerful and the analysis resembles a worst-case analysis. On the other
hand, if φ = 1/2, which is the minimum value such that ϕ1, . . . , ϕn exist, we have reached
an average-case analysis.

In order to get an idea what the parameter φmeans, one can think of the input distributions
in the following way: Given φ, the adversary can choose for every input variable Xi an interval
of length 1/φ from which Xi is chosen uniformly at random. But of course the adversary is
not restricted to this kind of density functions.

Technically, the second model is not a proper generalization for the first model because
Gaussian random variables have an infinite support, whereas the density functions of the
second model are restricted to the interval [−1, 1]. Nevertheless, it seems natural to speak of
a generalization because we are mainly interested in the algorithmic behavior for σ → 0, in
which case the tails of the Gaussian density function not contained in an interval of constant
length become negligible.

Smoothed analysis is even more general than explained above because we can choose not
to perturb all variables of the input, but only a fraction of it. For example, we could say that
only the profits, but not the weights in a Knapsack instance are perturbed. This way we
can keep hard constraints on parts of the input for which it is harder to legitimate random
noise.

After the introduction of smoothed analysis to explain why the simplex method solves
linear programs efficiently in practice despite its exponential worst-case running time [100],
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it has gained a lot of attention and it has been used to analyze a wide variety of optimization
problems and algorithms (see, e.g., the surveys [83, 101]). It seems to be especially well-suited
for local search methods, as these are for many optimization problems prime examples of
algorithms with exponential worst-case running time that work well and efficiently in practice.
Let us give two examples.

Methods based on local search are very successful for the TSP. One commonly used
heuristic is k-Opt, which starts with an arbitrary tour and replaces in each local improvement
k edges of the current tour by k other edges. Usually the 2-Opt heuristic needs a clearly
subquadratic number of improving steps until it reaches a local optimum and the computed
solution is within a few percentage points of the global optimum [72]. On the other hand it
is known that even on two-dimensional Euclidean instances 2-Opt can take an exponential
number of steps to reach a local optimum [38]. Therefore, Englert et al. [38] analyzed the
smoothed number of local improvements of 2-Opt and proved that it is polynomially bounded
in the number of nodes and the perturbation parameter φ. Manthey and Veenstra [85] showed
smoothed polynomial bounds in the classical model with Gaussian perturbations.

Another area in which local search methods are predominant is clustering. The k-means
method is one of the most widely used clustering algorithms that is very efficient on real-world
data (see, e.g., [10]), but exhibits exponential worst-case running time [104]. Arthur and
Vassilvitskii [5] initiated the smoothed analysis of the k-means method that culminated
in a proof that the smoothed running time of the k-means method is polynomial [4]. The
smoothed analysis of the k-means method has also been extended from squared Euclidean
distances to general Bregman divergences [84]. Arthur and Vassilvitskii [5] also showed that
the smoothed running time of the ICP algorithm for minimizing the difference between two
sets of points is polynomial while its worst-case running time is exponential.

1.2 Kernelization
The field of fixed-parameter tractability goes back to the seminal work by Downey and
Fellows [32]. Since then it has gained huge popularity, see for example the books by Downey
and Fellows [33] and Cygan et al. [28]. This field and kernelization belong to the area
of parameterized complexity. Therefore, let us first formally define what a parameterized
problem is.

A parameterized problem is a language Π ⊆ Σ∗×N, where Σ is a finite alphabet; the second
component k of instances (I, k) ∈ Σ∗ × N is called the parameter. A problem Π ⊆ Σ∗ × N is
fixed-parameter tractable if it admits a fixed-parameter algorithm, which decides instances
(I, k) of Π in time f(k) · |I|O(1) for some computable function f . The class of fixed-parameter
tractable problems is denoted by FPT.

A kernelization for a parameterized problem Π is an efficient, i.e., polynomial-time,
algorithm that given any instance (I, k) returns an instance (I ′, k′) with |I ′|+ k′ ≤ f(k) for
some computable function f such that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π. We call (I ′, k′) the
kernel and f the size of the kernel, and we have a polynomial kernel if f(k) is polynomially
bounded in k.

The size of the kernel, as stated, is defined by the number of bits we need to encode the
equivalent instance (I ′, k′). However, for many graph problems it makes sense to emphasize
the kernel size with respect to other measures. For example, we will derive kernels for Max-
Cut Above Edwards-Erdős Bound that contain a linear number of vertices, despite
needing a quadratic number of bits to encode all the edges in the instance. But the number of
vertices in the kernel is arguably more crucial because when applying a brute force algorithm
to the kernel it has running time O(ck) for some constant c. If we only stated that we have a
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kernel with quadratic encoding size, we could not rule out that the brute force-algorithm
could have a running time of O(ck2) for some constant c.

The concepts of fixed-parameter tractability and kernelization are closely related. In fact,
a parameterized problem is fixed-parameter tractable if and only if it has a kernelization: If
we have a kernelization of size f(k), it is easy to see that we can obtain a fixed-parameter
algorithm by first applying the kernelization algorithm and then using a brute-force approach
on the resulting kernel. For the other direction, assume there is a fixed-parameter algorithm A
with running time f(k)·|I|c for some constant c > 0. We let algorithm A run on an input (I, k)
for at most |I|c+1 steps. If it terminates, we can replace (I, k) by a trivial “yes”- or “no”-
instance of constant size. Otherwise, it must hold that f(k) ≥ |I|. This means that (I, k)
itself is a kernel of size at most f(k) + k.

Although fixed-parameter tractability and kernelization are equivalent according to the
above-mentioned result, the kernels implied by this fact are usually of superpolynomial size.
This is because the size nearly matches the f(k) from the running time, which for NP-hard
problems is usually exponential as typical parameters are upper bounded by the instance
size.

1.3 Outline and Bibliographical Notes
Section 2 gives an overview of all results covered in this work. The following five sections are
used to prove these results about local search for the Maximum-Cut problem (Sections 3-4) and
scheduling (Section 5) as well as about kernelizations for the Signed Maximum-Cut Problem
(Section 6), generalizations of it (Section 7), and several weighted problems (Section 8). In
Section 9 we draw conclusions and point out possible future research questions.

The results in Section 3 have been published at a conference and in a journal:

Michael Etscheid and Heiko Röglin. Smoothed analysis of local search for the maximum-
cut problem. In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 882–889, 2014.
Michael Etscheid and Heiko Röglin. Smoothed analysis of local search for the maximum-
cut problem. ACM Trans. Algorithms, 13(2):Art. 25, 12, 2017. URL: https://doi.org/
10.1145/3011870.

Preliminary versions of the results in Section 4 have been published at a conference:

Michael Etscheid and Heiko Röglin. Smoothed analysis of the squared euclidean maximum-
cut problem. In Proceedings of the 23rd Annual European Symposium on Algorithms
(ESA), pages 509–520, 2015.

The results in Section 5 have been published at a conference:

Tobias Brunsch, Michael Etscheid, and Heiko Röglin. Bounds for the convergence time of
local search in scheduling problems. In International Conference on Web and Internet
Economics, pages 339–353. Springer, 2016.

The results in Section 6 and Section 7 have been published at a conference and in a journal:

Michael Etscheid and Matthias Mnich. Linear kernels and linear-time algorithms for
finding large cuts. In Proc. ISAAC 2016, volume 64 of Leibniz Int. Proc. Informatics,
pages 31:1–31:13, 2016.
Michael Etscheid and Matthias Mnich. Linear kernels and linear-time algorithms
for finding large cuts. Algorithmica, Oct 2017. URL: https://doi.org/10.1007/
s00453-017-0388-z, doi:10.1007/s00453-017-0388-z.

https://doi.org/10.1145/3011870
https://doi.org/10.1145/3011870
https://doi.org/10.1007/s00453-017-0388-z
https://doi.org/10.1007/s00453-017-0388-z
http://dx.doi.org/10.1007/s00453-017-0388-z
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The results in Section 8 have been published at a conference and in a journal:

Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels
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2 Results

In this section we give an overview of all results of this thesis.

2.1 Smoothed Analysis of Local Search for Max-Cut

2.1.1 General Graphs

We analyze the simple local search algorithm FLIP for the Max-Cut Problem. An instance
of this problem consists of an undirected graph G = (V,E) with edge weights w : E → R. We
call a partition (P1, P−1) of the nodes V a cut and define its weight to be the total weight of
the edges between P1 and P−1. The FLIP algorithm starts with an arbitrary cut (P1, P−1)
and iteratively increases the weight of the cut by moving one vertex from P1 to P−1 or
vice versa, as long as such an improvement is possible. It is well-known that any locally
optimal cut is a 2-approximation of a maximum cut (see, e.g., [74]). However, it is also known
that the problem of finding a locally optimal cut is PLS-complete (for an explanation, see
Section 2.1.3) and that there are instances with cuts from which every sequence of local
improvements to a local optimum has exponential length [97].

In the smoothed analysis model we consider, an adversary specifies an arbitrary graph G =
(V,E) with n nodes. Instead of fixing each edge weight deterministically he can only specify
for each edge e ∈ E a probability density function fe : [−1, 1]→ [0, φ] according to which the
weight w(e) is chosen independently of the other edge weights. We point out again that the
parameter φ ≥ 1/2 determines how powerful the adversary is. He can, for example, choose for
each edge weight an interval of length 1/φ from which it is chosen uniformly at random. This
shows that in the limit for φ→∞ the adversary is as powerful as in a classical worst-case
analysis, whereas the case φ = 1/2 constitutes an average-case analysis with uniformly chosen
edge weights. Note that the restriction to the interval [−1, 1] is merely a scaling issue and no
loss of generality.

For a given instance of the Max-Cut Problem we define the number of steps of the
FLIP algorithm on that instance to be the largest number of local improvements the FLIP
algorithm can make for any choice of the initial cut and any pivot rule determining the
local improvement that is chosen if multiple improving steps are possible. Formally, this
can be described as the longest path in the transition graph of the FLIP algorithm. We are
interested in the smoothed number of steps of the FLIP algorithm. This quantity depends
on the number n of nodes and the perturbation parameter φ and it is defined as the largest
expected number of steps the adversary can achieve by his choice of the graph G and the
density functions fe. We then obtain the following result.

I Theorem 2.1. The smoothed number of steps of the FLIP algorithm is bounded from above
by a polynomial in nlogn and φ.

This result significantly improves upon the exponential worst-case running time of the
FLIP algorithm. While a polynomial instead of a quasi-polynomial dependence on n would
be desirable, let us point out that the theorem is very strong in the sense that it holds for all
initial cuts and all pivot rules. The theorem shows that worst-case instances, on which FLIP
can take an exponential number of steps, are fragile and unlikely to occur in the presence of
a small amount of random noise.
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2.1.2 Squared Euclidean Distances
We continue the smoothed analysis of local search for Max-Cut and consider the special
case in which the nodes are points in a d-dimensional space and the edge weights are
given by the squared Euclidean distances between these points. In this setting, a different
encoding for problem instances becomes natural: An instance is now given by a finite
set {x1, . . . , xn} ⊆ Rd of points that is to be partitioned into two parts P1 and P−1 such that
the weight

∑
x∈P1

∑
y∈P−1

∥∥x− y∥∥2 becomes maximal, where
∥∥x− y∥∥ denotes the Euclidean

distance between x and y. Squared Euclidean distances are common in many clustering
applications.

When an instance is given by some points in Rd instead of a set of weighted edges,
we cannot simply add random variables to the given edge weights and expect that there
is a point set in Rd that complies with the updated edge weights. Therefore we have to
change the influence of randomness in the smoothed setting. In the model we consider now,
an adversary specifies an arbitrary set x1, . . . , xn ⊆ [0, 1]d of n points. Then each point is
randomly perturbed by adding a Gaussian vector of standard deviation σ to it. We will
denote the Gaussian random vectors with mean values x1, . . . , xn and standard deviation σ
by X1, . . . , Xn. Note again that the restriction to [0, 1]d is merely a scaling issue and entails
no loss of generality.

The smoothed number of steps of the FLIP algorithm is in this model of course the largest
expected number of steps the adversary can achieve by his choice of the point set x1, . . . , xn.
This quantity depends on the number n of nodes and the standard deviation σ. We obtain
the following result.

I Theorem 2.2. For any dimension d ≥ 2, the smoothed number of steps of the FLIP
algorithm for complete graphs with squared Euclidean distances as edge weights is bounded
from above by 2O(d) · n23 ·max{σ−8, n4}.

As a contrast, we show that the worst-case number of steps of the FLIP algorithm
is exponential even in dimension d = 2 on non-complete graphs with squared Euclidean
distances.

I Theorem 2.3. For every n ∈ N, there is a weighted graph G on n vertices with the following
properties:

There is an embedding of V (G) into R2 such that the edge weights correspond to the
squared Euclidean distance of the incident vertices.
The number of steps of the FLIP algorithm is at least Ω(2n/6).

The theorems indicate that worst-case instances for squared Euclidean distances are
fragile and unlikely to occur in the presence of a small amount of random noise. We view
Theorem 2.2 as a further step towards understanding the behavior of local search heuristics
on semi-random inputs.

The conference version of this work [46] used a novel approach, which was different
to the typical smoothed analysis of local search heuristics in the literature. After O(d)
vertices flipped sides of the partition, we constructed a matrix of dimension d × d, the
entries of which were independently normally distributed, and a vector of dimension d such
that

∑
x∈P1

x−
∑
x∈P−1

x is the solution of the resulting system of linear equations. We then
used a result by Sankar, Spielman, and Teng [96] that the condition number of the matrix is
bounded with high probability, i.e., that we can compute

∑
x∈P1

x−
∑
x∈P−1

x with only a
small error without having to take an exponentially-sized union bound over the configuration
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of all points. In this updated version, we take the approach of Angel et al. [3] and simply
guess

∑
x∈P1

x−
∑
x∈P−1

x and a few other terms up to a small error. This not only simplifies
the analysis significantly, but also improves the resulting bound in the theorem.

2.1.3 Max-Cut in the Context of PLS
We give a short introduction to the class PLS following [1]. The problem of computing a local
optimum with respect to some neighborhood structure belongs to PLS if it is possible to
compute in polynomial time the objective value of a given solution, an initial feasible solution,
and a better solution in the neighborhood of a given locally non-optimal solution. PLS
contains many natural local seach problems like linear programming, where the neighborhood
are the geometrical neighbor vertices on the polytope (this corresponds to the simplex
algorithm), the Traveling Salesman Problem with the k-Opt neighborhood, and Max-2Sat
under the FLIP neighborhood.

A PLS-reduction from a local-search problem Π1 to a local-search problem Π2 consists of
two polynomial-time computable functions h and g: The function h maps instances x of Π1
to instances of Π2 and the function g maps solutions of h(x) back to solutions of x such
that g(s, x) is a local optimum for x if s is a local optimum for h(x). In other words, we
can find local optima for a Π1 instance by translating it to a Π2 instance and computing
a local optimum for this problem. This means that Π1 is not “harder” than Π2, neglecting
polynomial-time blow-ups.

A problem Π is PLS-complete if every problem in PLS can be PLS-reduced to it. It
was shown that Max-Cut together with the FLIP neighborhood is PLS-complete [97] even
for graphs of maximum degree five [37]. This implies that one cannot efficiently compute a
locally optimal cut unless PLS ⊆ P.

Furthermore, the reductions used to show PLS-completeness are all tight. Intuitively this
means the following for a PLS-reduction (h, g) from Π1 to Π2: Let x be an instance of Π1
and let y = h(x). If there is an edge from a solution s1 to a solution s2 in the transition
graph of y, then either g(s1, x) = g(s2, x) or there is an edge from g(s1, x) to g(s2, x) in the
transition graph of x. In other words, a path in the transition graph of h(x) gets translated to
a path in the transition graph of x that is not longer. For a formal definition, we refer again
to [1]. As a consequence, local search for h(x) cannot terminate faster than local search for x.
Because there is a problem in PLS for which local search takes exponential time (the solution
set is the set of n-bit integers and the neighborhood of i is {i− 1}) and this problem can be
tightly reduced to Max-Cut, it follows for the Max-Cut problem that there exist initial
cuts from which any sequence of local improvements to a local optimum has exponential
length.

The Max-Cut Problem is not only interesting for itself, but it is also interesting because
it is structurally one of the easiest PLS-complete problems. It is used as a starting point for
many PLS-reductions so that the analysis of the FLIP algorithm might also shed some light
on other local search algorithms.

2.1.4 Related Work
The Max-Cut Problem has been considered several times in the model of smoothed analysis.
Elsässer and Tscheuschner [37] showed that the smoothed number of steps of the FLIP
algorithm is polynomially bounded if the graph G has at most logarithmic degree. After the
conference version of our result on squared Euclidean instances [46], Angel et al. [3] improved
the quasipolynomial bound from Theorem 2.1 to a polynomial bound for complete graphs.
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This result, however, does not imply Theorem 2.2, as the edge weights in the model of Angel
et al. are chosen independently from each other, whereas the edge weights in our model for
squared Euclidean distances heavily depend on each other.

Schulman [98] studied the min-sum 2-clustering problem for squared Euclidean distances.
In this problem, the input also consists of a finite set of points X ⊆ Rd and the goal is to
find a partition of X into two classes X1 and X2 such that the sum of the edge weights inside
the two classes (i.e.,

∑
x,y∈X1

∥∥x− y∥∥2 +
∑
x,y∈X2

∥∥x− y∥∥2) becomes minimal. This problem
is equivalent to the Max-Cut Problem with squared Euclidean distances (not in terms of
approximation though) and hence the FLIP algorithm can also be seen as a local search
algorithm for min-sum 2-clustering. Schulman gives an algorithm that solves the problem
optimally in time O(nd+1). His algorithm is based on the observation that in an optimal
clustering the classes X1 and X2 are separated by a sphere and there are only O(nd+1) spheres
that one has to consider. He also presented a polynomial time approximation scheme.

In recent years there has been an increased interest in the class PLS due to its connection
to algorithmic game theory. For many games the problem of computing pure Nash equilibria
belongs to PLS and is often even PLS-complete. This is due to the fact that better- and
best-response dynamics followed by agents in a game can be interpreted as variants of local
search whose local optima are exactly the pure Nash equilibria. This line of research has been
initiated by Fabrikant et al. [49] who showed that for network congestion games the problem
of computing a pure Nash equilibrium is PLS-complete. Their proof has been simplified by
Ackermann et al. [2] who gave a simple reduction from the Max-Cut Problem.

Even the Max-Cut Problem itself has been formulated as a party affiliation game in
which agents (nodes) have to choose one of two sides and the edge weights are a measure for
how much two agents like or dislike each other [11]. Theorem 2.1 has direct consequences for
these games as well and shows that any sequence of better responses has with high probability
at most quasi-polynomial length if the edge weights are subject to random noise. Since every
local optimum is a 2-approximation, this implies in particular that with high probability
after a quasi-polynomial number of better responses the social value is at least half of the
optimal value. This is in contrast to the worst-case result of Christodoulou et al. [21] who
show that there are instances with exponentially long best response sequences after which
the social value is only a 1/n-fraction of the optimal value.

Christodoulou et al. also show that if agents are allowed to play best responses in a
random order then already after one round, in which every agent has been activated at
least once, an 8-approximation is achieved. Awerbuch et al. [7] considered α-best response
dynamics in which agents only change their strategy if this increases their payoff by a certain
factor α. They prove that this α-best response dynamics reaches after a polynomial number
of steps a (2 + ε)-approximation if every player gets the chance to move at least once every
polynomial number of steps. While these positive results hold only for certain sequences
of best responses, our positive result holds for any quasi-polynomial sequence of better
responses.

2.2 Scheduling
Additionally to the FLIP algorithm for Max-Cut, we analyze another local search approach
for the following scheduling problem: Given m machines and n jobs, find an assignment of
the jobs to the machines minimizing the maximum costs of a job, which are defined according
to a coordination mechanism. The jobs may have different job sizes and the machines may
have different machine speeds. A typical definition of the costs of a job is the sum of the
job sizes assigned to the same machine divided by the machine speed, which is a natural
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choice when the makespan is to be minimized. In other contexts it might be more realistic to
assume an order in which the jobs on a machine are executed and that a job only pays for
the execution time of itself and all previous jobs.

Even in the case of identical machine speeds, the problem is known to be strongly
NP-hard [55] and local search is a popular tool to approximate good solutions. Here, a
job unilaterally changes its assignment and moves to another machine if it can reduce its
costs this way. Throughout this work, we assume a best response policy, i.e., a moving
job selects a machine that minimizes its costs. If there is no job left that can improve its
costs, we have attained a local optimum, which is guaranteed to be reached after a finite
number of steps. Although the quality of the worst local optimum has been thoroughly
analyzed [16, 30, 40, 53, 99], there is not much work about the convergence time needed to
find one via local search.

2.2.1 Terminology
Let us first describe the studied problem in detail. Consider an instance with m machines
and n jobs. Each machine i has a speed si ∈ Q>0 and each job j has a job size pj ∈ Q>0. Let
smin, smax, pmin, and pmax be the minimal and maximal speeds and job sizes. LetW =

∑n
j=1 pj

be the sum of the job sizes. For identical machines, smax = smin = 1, and for unit-weight
jobs, pmax = pmin = 1.

For an assignment σ : {1, . . . , n} → {1, . . . ,m} that maps the jobs to the machines, let
Li =

∑
j∈σ−1(i) pj/si be the load of machine i. The maximum load is called makespan. The

costs of a job j are defined according to a coordination mechanism, which assigns costs to
every job depending only on the set of jobs that have chosen the same machine, but not on
the residual schedule.

1. In the Makespan model, all jobs assigned to the same machine are executed simultaneously
such that the costs cσj = Lσ(j) of a job j correspond to the load of its machine. This is the
most common coordination mechanism and it corresponds to linear weighted congestion
games on parallel links.

2. In the FIFO model, the jobs on each machine are executed one after another. Therefore,
we need a permutation π on the jobs that determines the order in which the jobs on a
machine get processed. The costs of a job j are then c(σ,π)

j =
∑
j′∈Jπσ (j)

pj′

sσ(j)
, where Jπσ (j)

is the set of jobs j′ on the same machine with π(j′) ≤ π(j). If a job j jumps to another
machine, it is inserted as the last job, i.e., π(j) = n.

3. In the SJF (shortest job first) model, the jobs are executed one after another, but the
permutation of the jobs is at any time implicitly given by their job sizes where the smallest
job on a machine is executed first. Ties for jobs of equal size are broken arbitrarily. This
means that the costs of a job are defined as cσj =

∑
j′ : σ(j′)=σ(j)∧π(j′)≤π(j)

pj′

sσ(j)
, where π

is a permutation of the jobs assigned to machine σ(j) such that π(j′) < π(j) if pj′ < pj
and π(j′) > π(j) if pj′ > pj .

The FIFO model is not a coordination mechanism in the classical sense as the order in which
the jobs are executed depends on previous iterations. Nevertheless, we believe that this model
can easily be motivated by many real-world applications where the first-come, first-served
principle is ubiquitous.

In the case of the Makespan and SJF models, we call σ a schedule. In the FIFO model,
we call the tuple (σ, π) a schedule. Often, we omit the parameters σ and π if they are clear
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from the context, or we replace them by an iteration number t. Then we mean the schedule
before the move of iteration t gets executed.

We say that a job is unsatisfied if it could improve its costs by jumping to a different
machine. When an unsatisfied job jumps, it always jumps to a machine minimizing its costs,
i.e., we consider best response dynamics. If there is no unsatisfied job, we call the current
schedule a local optimum. The convergence time for an instance is the maximum number of
jumps it can take starting from an arbitrary schedule until a local optimum is reached. The
price of anarchy is the ratio of the makespans of the worst local optimum and the global
optimum.

If there are several unsatisfied jobs, we choose the next job to jump according to a pivot
rule:

Best Improvement: Select a job for which the largest improvement of its costs is possible.
Random: Select a job uniformly at random from the set of unsatisfied jobs.
Min Weight: Select a smallest unsatisfied job.
Max Weight: Select a largest unsatisfied job.
Fixed Priority: Select the unsatisfied job with the largest priority according to a given
order on the jobs. This pivot rule includes Min Weight and Max Weight as special cases.

2.2.2 Smoothed Analysis
We will again use the more general model of smoothed analysis introduced by Beier and
Vöcking [9], in which the adversary is even allowed to specify the probability distribution of
the random noise. The influence he can exert is described by a parameter φ ≥ 1 denoting
the maximum density of the noise. The model is formally defined as follows. The adversary
chooses the following input data:

the number m of machines;
arbitrary machine speeds s1, . . . , sm in the case of non-identical machines;
the number n of jobs;
for each pj , a probability density fj : [0, 1] → [0, φ] according to which pj is chosen
independently of the sizes of the other jobs.

The smoothed convergence time is the worst expected convergence time and the smoothed
price of anarchy is the worst expected price of anarchy the adversary can achieve by his
choices. Note that the only perturbed part of the instance are the job sizes. These perturbed
job sizes are easily justifiable in many practical applications.

2.2.3 Related Work and Results
The notion of coordination mechanisms has been introduced by Christodoulou et al. [20]
in the context of congestion games. There has been extensive research about the price of
anarchy for the different coordination mechanisms. In the Makespan model it is constant for
identical machines [53, 99] and Θ

(
min

{
logm

log logm , log smax
smin

})
for related machines [30]. The

smoothed price of anarchy for related machines is Θ(log φ) regardless of whether the job
sizes [16] or the machine speeds [40] are perturbed.

Immorlica et al. [68] showed a price of anarchy of 2− 1/m for identical and Θ(logm) for
related machines for the SJF model, which is the same as for list schedules, i.e., schedules
that are generated by a greedy assignment.
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The FIFO model has been introduced implicitly by Brunsch et al. [16] through the
equivalent concept of near list schedules which was used as a generalization of local optima
w.r.t. the Makespan model and list schedules. They showed that the smoothed price of
anarchy is Θ(log φ). We complement this by the corresponding worst-case results for identical
and related machines to obtain the same tight bounds as in the SJF model.

There is less known about the convergence times in the different models. As we are up to
our knowledge the first ones who consider the FIFO model, there are no previous results
about convergence times. We show tight results for special cases like identical machines
and several upper bounds depending on W/pmin for different pivot rules in the general case.
Although we conjecture polynomial bounds for all cases, we give the first non-trivial proofs
for this natural problem. Immorlica et al. [68] showed for the SJF model that if the jobs are
asked on a rotational basis if they want to jump, the convergence time is in O(n2). This is in
sharp contrast to our result that for the Min Weight pivot rule it can take an exponential
number of iterations even in the case of two identical machines.

Brucker et al. [15] considered the Makespan model with the difference that only jobs from
a machine with maximum load—a so-called critical machine—are allowed to jump, i.e., a
local optimum is reached as soon as every job on a critical machine is satisfied. They gave
an algorithm that finds a local optimum after O(n2) improving steps for identical machines.
From this, one can easily derive an algorithm for identical machines in the Makespan model:
Run Brucker’s algorithm exhaustively until every job on a critical machine is satisfied. As on
identical machines the minimum load of a machine is monotonically increasing, these jobs
cannot become unsatisfied again by any sequence of improving steps. Hence, the jobs on the
critical machine are fixed and therefore we can remove the critical machine together with its
assigned jobs from the instance. Repeating this argument yields a running time of O(n2m)
improving steps. As the monotonicity argument does not hold anymore in the case of related
machines, we are not aware of a way to use similar results by Schuurman and Vredeveld [99]
and Hurkens and Vredeveld [67] for Brucker’s model on related machines.

For the Makespan model and identical machines, Goldberg [56] considers randomized
local search, where in each step a job and a machine are selected uniformly at random, and
the job moves to that machine if it is an improving step . He shows that random local search
converges in expected (m+ n+ pmax

pmin
)O(1) time.

In the Makespan model, Feldmann et al. [50] provided an O(nm2)-time Nashification
algorithm, which, given an arbitrary schedule, computes a local optimum without increasing
the social cost, i.e., the makespan in our case. They further showed that the convergence
time on identical machines is bounded by Ω(2

√
n) and O(2n). To be more precise, Even-Dar

et al. [48] showed (again for identical machines) that the Max Weight and the Random pivot
rule converge in n and O(n2) steps, respectively, while the Min Weight pivot rule can take
an exponential number of steps. We extend this result by showing that every pivot rule
converges in O(n ·W/pmin) steps, which can be seen as a generalization of their result that
every pivot rule converges in O(W + n) steps in the case of integer weights. For related
machines and unit-weight jobs, Even-Dar et al. [48] showed that there is a pivot rule that
converges in mn steps. We improve this by showing that the convergence time for any pivot
rule with best response policy is exactly n. For the case of related machines and integral job
sizes and machine speeds, they showed that any pivot rule converges in O(W 2 · s2

max/smin)
steps. We prove a similar bound for the Best Improvement pivot rule on arbitrary weights.
An overview of our results on convergence times is given in Table 1, Table 2, and Table 3.
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identical machines n− 1 (Thm. 5.3)

unit-weight jobs n (Thm. 5.12)

two machines Θ(n) (Thm. 5.15)

Best Improvement O(m2n ·W/pmin) (Thm. 5.16)

Random O(m2n2 ·W/pmin) (Thm. 5.17)

Fixed Priority O(n2 ·W/pmin) (Thm. 5.18)

lower bounds Ω(mn), Ω(m2) for Min Weight (Thm. 5.19)
Table 1 FIFO convergence times

identical machines O(n ·W/pmin) (Thm. 5.4)

unit-weight jobs n (Thm. 5.12)

Best Improvement O(m2n ·W 2/p2
min) (Thm. 5.26)

Table 2 Makespan convergence times

Max Weight on two identical machines 2Ω(n) (Thm. 5.5)

Max Weight on two identical machines with random weights 2Ω(
√
n) (Thm. 5.5)

Min Weight n (Thm. 5.27)

Random O(n2) (Thm. 5.27)
Table 3 SJF convergence times
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2.3 Signed Max-Cut Above Edwards-Erdős Bound and Linear Vertex
Kernels for λ-Extendible Properties

We now turn to the parameterized complexity part of this thesis. A recent paradigm in
parameterized complexity is to not only show a problem to be fixed-parameter tractable, but
indeed to give algorithms with optimal running times in both the parameter and the input
size. Ideally, we strive for algorithms that are linear in the input size, and optimal in the
dependence on the parameter k assuming a standard hypothesis such as the Exponential
Time Hypothesis [69]. New results in this direction include linear-time fixed-parameter
algorithms for Graph Bipartization [70], Planar Subgraph Isomorphism [31], DAG
Partitioning [103], Planar Independent Set [34] and Subset Feedback Vertex
Set [79].

Here, we consider the Max-Cut problem and some generalizations from the view-point
of linear-time fixed-parameter algorithms. We refer to the survey [91] for an overview of the
research area.

We focus on Max-Cut parameterized above Edwards-Erdős bound. This parameterization
is motivated by the classical result of Edwards [35, 36] that any connected graph on n vertices
and m edges admits a cut of size at least

m/2 + (n− 1)/4 . (1)

This lower bound is known as the Edwards-Erdős bound, and it is tight for cliques of every
odd order n. Ngdoc and Tuza [89] gave a linear-time algorithm that finds a cut of size at
least (1).

Parameterizing Max-Cut above Edwards-Erdős bound means, for a given connected
graph G and integer k, to determine if G admits a cut that exceeds (1) by an amount of k:
formally, the problem Max-Cut Above Edwards-Erdős Bound (Max-Cut AEE) is to
determine if mc(G) ≥ |E(G)|/2 + (|V (G)| − 1 + k)/4 for a given pair (G, k), where mc(G) is
the maximum number of edges of a bipartite subgraph of G. It was asked in a sequence of
papers [22, 60, 81, 82] whether Max-Cut AEE is fixed-parameter tractable, before Crowston
et al. [25] gave an algorithm that solves instances of this problem in time 8k ·O(n4), as well as
a kernel of size O(k5). Their result inspired a lot of further research on this problem, leading
to smaller kernels of size O(k3) [23] and fixed-parameter algorithms for generalizations [87]
and variants [26].

In the Signed Max-Cut problem, we are given a graph G whose edges are labelled
by (+) or (−), and we seek a maximum balanced subgraph H of G, where balanced means
that each cycle has an even number of negative edges. Max-Cut is the special case where
all edges are negative. Signed Max-Cut finds applications in, e.g., modelling social net-
works [63], statistical physics [8], portfolio risk analysis [64], and VLSI design [18]. The dual
parameterization of Signed Max-Cut by the number of edge deletions was also shown to
be fixed-parameter tractable [66].

Poljak and Turzík [90] showed that the property of having a large cut (i.e., a large
bipartite subgraph) can be generalized to many other classical graph properties, including
properties of oriented and edge-labelled graphs. They defined the notion of “λ-extendible”
properties Π and generalized the lower bound (1) to tight lower bounds for all such properties;
we refer to these lower bounds as the Poljak-Turzík bound for Π. Well-known examples of
such properties include the bipartite subgraphs, q-colorable subgraphs for fixed q, or acyclic
subgraphs of oriented graphs. We will use the slightly different notion of strongly λ-extendible
properties [87]. Every strongly λ-extendible property is λ-extendible and every λ-extendible
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property we are aware of is also strongly λ-extendible, but it is unclear whether the two
concepts are really equivalent.

Let us give now a formal definition. A graph property Π is simply a set of graphs. For
a graph G, a Π-subgraph is a subgraph of G that belongs to Π. A graph property Π is
hereditary if for any G ∈ Π also all vertex-induced subgraphs of G belong to Π.

I Definition 2.4. Let G be a class of (possibly labelled and/or oriented) graphs and let
λ ∈ (0, 1). A (graph) property Π is strongly λ-extendible on G if it satisfies the following
properties:

(i) inclusiveness: {G ∈ G | 〈G〉 ∈ K1,K2} ⊆ Π.
(ii) block additivity: G ∈ G belongs to Π if and only if each 2-connected component of G

belongs to Π.
(iii) extendibility: For any G ∈ G and any partition U ]W of V (G) for which G[U ], G[W ] ∈ Π

there is a set F ⊆ E(U,W ) of size |F | ≥ λ|E(U,W )| for which G− (E(U,W ) \ F ) ∈ Π.

The set of all bipartite graphs Πbipartite is a strongly 1
2 -extendible property. Thus, Max-Cut

AEE is equivalent to Above Poljak-Turzík Bound(Πbipartite).
Poljak and Turzík[90] showed that, given a (strongly) λ-extendible property Π, any

connected graph G contains a subgraph H ∈ Π with at least λ|E(G)| + 1−λ
2 (|V (G)| − 1)

edges. We denote this lower bound by pt(G).
Mnich et al. [87] considered the problem Above Poljak-Turzík(Π) of finding subgraphs

in Π with k edges above the Poljak-Turzík bound pt(G); they gave fixed-parameter algorithms
for this problem on all strongly λ-extendible properties Π, thereby generalizing the algorithm
for Max-Cut. A subclass of these properties, requiring certain technical conditions, was
later shown to admit polynomial kernels [26].

2.3.1 Our Contributions
Linear-Time FPT. Our first result shows that the fixed-parameter algorithm by Crowston
et al. [23] for the Signed Max-Cut AEE problem can be implemented so as to run in linear
time:

I Theorem 2.5. (Signed) Max-Cut AEE can be solved in time 8k ·O(m).

Theorem 2.5 considerably improves the earlier running time analysis [23, 25], which shows
a running time of 8k ·O(n4). At the same time, our algorithm improves the very involved
algorithm by Bollobás and Scott [14] that considers the weaker lower boundm/2+(

√
8m+ 1−

1)/8 instead of (1). Third, Theorem 2.5 generalizes the linear-time algorithm by Ngdoc and
Tuza [89] for the special case of Max-Cut with k = 0. Note that Max-Cut AEE cannot be
solved in time 2o(k) · nO(1) assuming the Exponential Time Hypothesis [25].

Linear Vertex Kernels. Our second contribution is a kernel with a linear number O(k) of
vertices for Max-Cut AEE and its generalization Signed Max-Cut AEE.

I Theorem 2.6. The (Signed) Max-Cut AEE problem admits a kernel with O(k) vertices,
which can be computed in time O(km).

These results considerably improve the previous best kernel bound of O(k3) vertices by
Crowston et al. [23]. Moreover, the presented kernel completely resolves the asymptotic
kernelization complexity of (Signed) Max-Cut AEE, since a kernel with o(k) vertices
would again contradict the Exponential-Time Hypothesis, as the Max-Cut problem can
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be solved by checking all vertex bipartitions. On top of that, our kernelization is also fast.
In fact, we only need to compute O(k) DFS/BFS trees. The rest of the algorithm runs in
time O(m).

Extensions to Strongly λ-Extendible Properties. As mentioned, the property of graphs
having large bipartite subgraphs can be generalized to λ-extendible properties as defined
by Poljak and Turzík [90]. For a given λ-extendible property Π, we consider the following
problem:

Above Poljak-Turzík(Π)
Input: A connected graph G and an integer k.
Question: Does G have a spanning subgraph H ∈ Π s.t. |E(H)| ≥ λ · |E(G)|+ 1−λ

2 · (|V (G)| −
1) + k?

Max-Cut AEE is a special case of this problem with λ = 1
2 . Note the slight change in

the definition of k compared to (Signed) Max-Cut AEE, where k was divided by 4 = 2
1−λ

for λ = 1
2 .

Crowston et al. [23] gave polynomial kernels for Above Poljak-Turzík(Π), for all
strongly λ-extendible properties Π on possibly oriented and/or labelled graphs satisfying at
least one of the following properties:

(P1) λ 6= 1
2 ; or

(P2) G ∈ Π for all graphs G whose underlying simple graph is K3; or
(P3) Π is a hereditary property of simple or oriented graphs.

Their kernels have O(k3) or O(k2) vertices, depending on the exact problem.
Our third result improves all these kernels for strongly λ-extendible properties to asymp-

totically optimal O(k) vertices:

I Theorem 2.7. Let Π be any strongly λ-extendible property of (possibly oriented and/or
labelled) graphs satisfying (P1), or (P2), or (P3). Then Above Poljak-Turzík(Π) admits
a kernel with O(k) vertices, which is computable in time O(km).

Consequences for Acyclic Subdigraphs. Theorem 2.7 has several applications. For
instance, Raman and Saurabh [92] asked for the parameterized complexity of the Max
Acyclic Subdigraph problem above the Poljak-Turzík bound: Given a weakly connected
oriented graph G on n vertices and m arcs, does it have an acyclic sub-digraph of at least
m/2 + (n − 1)/4 + k arcs? For this problem, Crowston et al. [24] gave an algorithm with
running time 2O(k log k) ·nO(1) and showed a kernel with O(k2) vertices. They explicitly asked
whether the kernel size can be improved to O(k) vertices, and whether the running time
can be improved to 2O(k) · nO(1). Here, we answer their questions in the affirmative by using
Theorem 2.7 and then applying an O∗(2n)-time algorithm by Raman and Saurabh [93, Thm.
2] to our kernel with O(k) vertices.

I Corollary 2.8. Max Acyclic Subdigraph parameterized above Poljak-Turzík bound
admits a kernel with O(k) vertices and can be solved in time 2O(k) · nO(1).

Again, assuming the Exponential Time Hypothesis, the running time of this algorithm is
asymptotically optimal.
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2.4 Polynomial Kernels for Weighted Problems
The question of handling numerical values is of fundamental importance in computer science.
Typical issues are precision, numerical stability, and representation of numbers. We study
the effect that the presence of (possibly very large) numbers has on weighted versions of well-
studied NP-hard problems in the context of kernelization. In other words, we are interested
in the effect of large numbers on the computational complexity of solving hard combinatorial
problems.

The issue of handling large weights in kernelization has been brought up again and again
as an important open problem [12, 52, 29, 27]. For example, it is well-known that for the
task of finding a vertex cover of at most k vertices for a given unweighted graph G one
can efficiently compute an equivalent instance (G′, k′) such that G′ has at most 2k vertices.
Unfortunately, when the vertices of G are additionally equipped with positive rational weights
and the chosen vertex cover needs to obey some specified maximum weight W ∈ Q then it
was long unknown how to encode (and shrink) the vertex weights to bitsize polynomial in
k. In this direction, Cheblík and Cheblíková [19] showed that an equivalent graph G′ with
total vertex weight at most 2w∗ can be obtained in polynomial time, whereby w∗ denotes
the minimum weight of a vertex cover of G. This, however, does not mean that the size of G′
is bounded, unless one makes the additional assumption that the vertex weights are bounded
from below; consequently, their method only yields a kernel with that extra requirement
of vertex weights being bounded away from zero. In contrast, we do not make such an
assumption.

Let us attempt to clarify the issue some more. The task of finding a polynomial kernel-
ization for a weighted problem usually comes down to two parts: (1) Deriving reduction
rules that work correctly in the presence of weights. The goal, as for unweighted problems, is
to reduce the number of relevant objects, e.g., vertices, edges, sets, etc., to polynomial in
the parameter. (2) Shrinking or replacing the weights of remaining objects such that their
encoding size becomes (at worst) polynomial in the parameter. The former part usually
benefits from existing literature on kernels of unweighted problems, but regarding the latter
only little progress was made.

For a pure weight reduction question let us consider the Subset Sum problem. Therein
we are given n numbers a1, . . . , an ∈ N and a target value b ∈ N and we have to determine
whether some subset of the n numbers has sum exactly b. Clearly, reducing such an instance
to size polynomial in n hinges on the ability of handling large numbers ai and b. Let us recall
that a straightforward dynamic program solves Subset Sum in time O(nb), implying that
large weights are to be expected in hard instances. Harnik and Naor [65] showed that taking
all numbers modulo a sufficiently large random prime p of magnitude about 22n produces an
equivalent instance with error probability exponentially small in n. (Note that the obtained
instance is with respect to arithmetic modulo p.) The total bitsize then becomes O(n2).
Unfortunately, this elegant approach fails for more complicated problems than Subset Sum.

Consider the Subset Range Sum variant of Subset Sum where we are given not a
single target value b but instead a lower bound L and an upper bound U with the task
of finding a subset with sum in the interval {L, . . . , U}. Observe that taking the values ai
modulo a large random prime faces the problem of specifying the new target value(s), in
particular if U − L > p because then every remainder modulo p is possible for the solution.
Nederlof et al. [88] circumvented this issue by creating not one but in fact a polynomial
number of small instances. Intuitively, if a solution has value close to either L or U then the
randomized approach will work well (possibly making a separate instance for target values
close to L or U). For solutions sufficiently far from L or U there is no harm in losing a little
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precision and dividing all numbers by 2; then the argument iterates. Overall, because the
number of iterations is bounded by the logarithm of the numbers (i.e., their encoding size),
this creates a number of instances that is polynomial in the input size, with each instance
having size O(n2); if the initial input is “yes” then at least one of the created instances is
“yes” (this is usually called a (disjunctive) Turing kernelization).

To our knowledge, the mentioned results are the only positive results that are aimed
directly at the issue of handling large numbers in the context of kernelization. Apart from
these, there are of course results where the chosen parameter bounds the variety of feasible
weights and values, but this only applies to integer domains; e.g., it is easy to find a kernel
for Weighted Vertex Cover when all weights are positive integers and the parameter
is the maximum total weight k. On the negative side, there are a couple of lower bounds
that rule out polynomial kernelizations for various weighted and ILP problems [13, 77]. Note,
however, that the lower bounds appear to “abuse” large weights in order to build gadgets
for lower bound proofs that also include a super-polynomial number of objects as opposed
to having just few objects with weights of super-polynomial encoding size. In other words,
the known lower bounds pertain rather to the first step, i.e. finding reduction rules that
work correctly in the presence of weights, than to the inherent complexity of the numbers
themselves. Accordingly, since 2010 the question for a deterministic polynomial kernelization
for Subset Sum or Knapsack with respect to the number of items can be found among
open problems in kernelization [12, 52, 29, 27].

Recently, Marx and Végh [86] gave a polynomial kernelization for a weighted connectivity
augmentation problem. As a crucial step, they use a technique of Frank and Tardos [54],
originally aimed at obtaining strongly polynomial-time algorithms, to replace rational weights
by sufficiently small and equivalent integer weights. They observe and point out that this
might be a useful tool to handle in general the question of getting kernelizations for weighted
versions of parameterized problems. It turns out that, more strongly, Frank and Tardos’
result can also be used to settle the mentioned open problems regarding Knapsack and
Subset Sum. We point out that this is a somewhat circular statement since Frank and
Tardos had set out to, amongst others, improve existing algorithms for ILPs, which could be
seen as very general weighted problems.

2.4.1 Our Contributions
We use the theorem of Frank and Tardos [54] to formally settle the open problems, i.e., we
obtain deterministic kernelizations for Subset Sum(n) and Knapsack(n). Generally, in the
spirit of Marx and Végh’s observation, this allows to get polynomial kernelizations whenever
one is able to first reduce the number of objects, e.g., vertices or edges, to polynomial in the
parameter. The theorem can then be used to sufficiently shrink the weights of all objects
such that the total size becomes polynomial in the parameter.

Motivated by this, we consider weighted versions of several well-studied parameterized
problems, e.g., d-Hitting Set, d-Set Packing, and Max Cut, and show how to reduce
the number of relevant structures to polynomial in the parameter. An application of Frank
and Tardos’ result then implies polynomial kernelizations.

Next, we consider the Knapsack problem and its special case Subset Sum. For Subset
Sum instances with only k item sizes, we derive a kernel of size polynomial in k. This way,
we are improving the exponential-size kernel for this problem due to Fellows et al. [51].
We also extend the work of Fellows et al. in another direction by showing that the more
general Knapsack problem is fixed-parameter tractable (i.e., has an exponential kernel)
when parameterized by the number k of item sizes, even for unbounded number of item



26 2. Results

values. On the other hand, we provide quadratic kernel size lower bounds for general Subset
Sum instances assuming the Exponential Time Hypothesis [69].

Finally, as a possible tool for future kernelization results we show that the weight reduction
approach also carries over to polynomial ILPs so long as the maximum degree and the domains
of variables are sufficiently small.
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3 Max-Cut on General Graphs

We start the main part of this thesis with the analysis of local search for the Max-Cut
problem on general graphs.

3.1 Outline of the Analysis

As mentioned in the introduction, there are already a few results on smoothed analysis
of local search. There is, however, one fundamental difference between our analysis and
the previous ones. The previous analyses for the 2-Opt heuristic, the ICP algorithm, the
k-means method, and the Max-Cut Problem for graphs of logarithmic degree all rely on
the observation that on smoothed inputs with high probability for every locally non-optimal
solution every available local improvement results in a significant change of the potential
function. Together with bounds on the minimal and maximal potential value, this implies
that in expectation there cannot be too many local improvements.1

For the Max-Cut Problem the situation is different because even on smoothed inputs
it is very likely that there exists a locally non-optimal cut that allows local improvements
that cause an exponentially small change of the potential. It is even likely that there exist
longer sequences of consecutive local improvements that all cause only a small change of the
potential. The reason for this is the large number of possible cuts. While for any fixed cut it
is unlikely that there exists an exponentially small local improvement, it is very likely that
for one of the exponentially many cuts there exists such an improvement.

On first glance the situation for the other problems is no different. There is, for example,
also an exponential number of different TSP tours. However, for determining the amount
by which the length of the tour decreases by a particular 2-Opt step, only the lengths of
the four involved edges are important and there is only a polynomial number of choices
for these four edges. If, on the other hand, one node changes its side in the Max-Cut
Problem, to determine the improvement one needs to know the configuration of all nodes in
its neighborhood. If the degree of the graph is at most logarithmic, there is only a polynomial
number of such configurations. In fact, this is a crucial ingredient of the smoothed polynomial
bound by [37]. However, in general there is an exponential number of configurations.

As it is not sufficient anymore to analyze the potential change of a single step, our analysis
is based on considering longer sequences of ` consecutive steps for an appropriately chosen `.
Let us denote by ∆ the smallest improvement made by any sequence of ` consecutive local
improvements for any initial cut. In order to analyze ∆, one could try to use a union bound
over all choices for the initial cut and the sequence of ` steps. There are at most 2nn` such
choices. Let us assume that an initial cut and a sequence of ` consecutive steps are given. Then
we get a system of ` linear combinations of edge weights that describe the potential increases
that are caused by the ` steps. Each such linear combination has the form

∑
e∈E λew(e)

for some λe ∈ {−1, 0, 1}, where λe is 1 for edges joining the cut, −1 for edges leaving the
cut, and 0 for the other edges. For ε > 0, we would like to bound the probability that all
these linear combinations simultaneously take values in the interval (0, ε], that is, they are
all improvements by at most ε. A result from Röglin [94] implies that this probability can be
bounded from above by (εφ)r where r denotes the rank of the set of linear combinations.

1 To be more precise, in one case of the analysis of the k-means method, one needs to consider three
consecutive local improvements to gain a significant change of the potential function. Also in the analysis
of the 2-Opt algorithm two steps are considered in order to improve the degree of the polynomial.
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If we could argue that for any initial cut and any sequence of length ` the rank is at least α`
for some constant α > 0, then a union bound would yield that Pr [∆ ≤ ε] ≤ 2n(nφαεα)`.
Choosing ` = n, this would even be sufficient to prove an improved version of Theorem 2.1
with only polynomial dependence on n. The problem is, however, that we cannot guarantee
that for any sequence of length n the rank is Ω(n). Indeed there are sequences of length n in
which only few different nodes move multiple times such that the rank is only polylogarithmic
in n. Hence with this approach Theorem 2.1 cannot be proved.

In order to reduce the factor 2n in the union bound, we make use of the following
observation: Consider a node v that moves at least twice and take the linear combination L
obtained by adding up the linear combinations belonging to two consecutive moves of
node v. As after these two moves node v is in its original partition again, L contains only
weights belonging to edges between v and other nodes that have moved an odd number of
times between the two moves of node v. Therefore we only need to fix the configuration of
these active nodes, which reduces the factor 2n in the union bound to 2`. While this is no
improvement for ` ≥ n, it proves valuable when we consider subsequences of smaller length.
If both moves of node v yield an improvement in (0, ε], then L takes a value in (0, 2ε].

We call a sequence of length ` a k-repeating sequence if at least d`/ke different nodes
move at least twice. Given a k-repeating sequence of length `, we argue that the rank of
the set of linear combinations constructed in the above way is at least d`/(2k)e. One can
then show that with high probability any k-repeating sequence yields an improvement in the
order of 1/(φnΘ(k)). Then we argue that any sequence of 5n consecutive improvements must
contain a subsequence that is Θ(logn)-repeating. Together this implies Theorem 2.1.

Let us make one remark about the number 2n of initial cuts that we have to consider. One
might be tempted to conjecture that the factor 2n in the union bound can be avoided if only
the cut the FLIP algorithm starts with is considered instead of every possible cut. However,
then our analysis would not be possible anymore. We break the sequence of steps of the
FLIP algorithm into subsequences of length 5n each and argue that each such subsequence
yields a significant improvement. Hence, not only the initial cut the FLIP algorithm starts
with needs to be considered but also the initial cut of each of these subsequences.

3.2 Analysis
Our goal is to show that each sequence of 5n consecutive steps yields a big improvement
with high probability. Throughout the analysis, we need a parameter k. For simplicity, we
directly set it to k = d5 log2 ne, which is the value needed in Lemma 3.5. We would like to
point out that Lemma 3.2 and Lemma 3.4 also hold for general k.
I Definition 3.1. We call a sequence of ` ∈ N consecutive steps k-repeating if at least d`/ke
different nodes move at least twice in that sequence.

As already explained in subsection 3.1, for each two consecutive moves of a node we can
obtain a linear combination that only contains edges to active nodes. To be more precise,
consider an arbitrary initial cut and an arbitrary sequence of moves in which a node v moves
at least twice. Now consider two moves of v that are consecutive in the sense that v does not
move in between these two moves. The improvements of these two moves can be expressed
as linear combinations∑

e={v,w}∈E

λe · w(e) and
∑

e={v,w}∈E

µe · w(e)

with λe, µe ∈ {−1, 1}. In the sum of these linear combinations, the weight w(e) of an
edge e = {v, w} cancels out if and only if node w moves not at all or an even number of times
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w1
w2

w3

1st move: +w1 −w2 +w3

w1
w2

w3

2nd move: −w1 +w2 +w3

v v

v′ v′

cut edges cut edges

Figure 1 Example for the linear combination Lv for a node v: The left hand side and right
hand side depict the partition of the vertices before the first and the second move of v, respectively.
Through the first move of v, the edges with weights w1 and w3 enter the cut, while the edge with
weight w2 leaves the cut. Through the second move of node v, the edges with weights w2 and w3

enter the cut, while the edge with weight w1 leaves the cut. Adding the two corresponding linear
combinations results in Lv = (w1−w2 +w3) + (−w1 +w2 +w3) = 2w3, where w3 is the weight of the
edge {v, v′} and v′ is the only neighbor of v which moved an odd number of times in the meantime.

between the two considered moves of node v. Hence, the sum Lv of these linear combinations
contains only weights of edges e = {v, w} for which node w moves at least once between the
moves of node v. Figure 1 illustrates this observation in an easy example.

We first show a lower bound for the rank of the set of these linear combinations.

I Lemma 3.2. Let S be a k-repeating sequence of length ` with an arbitrary starting
configuration and let D ⊆ V be the set of vertices that move at least twice in the sequence S.
For each node v ∈ D, let Lv denote the sum of the linear combinations corresponding to the
first two moves of v. The rank of the set {Lv : v ∈ D} of linear combinations is at least
d`/(2k)e.

Proof. We construct an auxiliary directed graph G′ = (V,E′) in the following way: For any
Lv, let Wv be the set of vertices that move an odd number of times between the first two
moves of v, i.e., Lv contains exactly the weights of edges between v and the nodes from Wv.
This set cannot be empty for any v ∈ D because otherwise the configuration before the first
move of v would be equal to the configuration after the second move, contradicting the fact
that configurations cannot repeat in any sequence of improving steps. For any v that moves
at most once, set Wv = ∅. Let E′ = {(w, v) : v ∈ V,w ∈Wv}.

We want to find a set I ⊆ D with |I| ≥ |D| /2 such that the linear combinations
{Lv : v ∈ I} are linearly independent. We call a vertex w ∈ Wv a witness for v ∈ I if
w /∈ I or v /∈ Ww. If w is a witness for v ∈ I, then the edge {v, w} only occurs in Lv but
not in another Lv′ , v′ ∈ I \ {v} (it could only occur in Lw, but this is forbidden by the
definition of witnesses). Hence, if every vertex in I has a witness, then the linear combinations
{Lv : v ∈ I} must be linearly independent.

We start with I = ∅. Compute a BFS arborescence B in G′ rooted at an arbitrary vertex
r ∈ V (G′), and let V ′ be the vertex set of B. Define the bipartition V 0 ∪̇ V 1 of V ′ as the
sets of vertices whose (unique) path from r in B contains an even or odd number of edges,
respectively. Add the bigger of the two sets V 0 ∩D and V 1 ∩D to I. Remove V ′ from G′

and repeat until G′ is the empty graph.
In every iteration, every vertex v added to I has a witness: If v is not the root r of the

arborescence, its predecessor w on the path from r to v is a witness for v as it is in Wv but
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not in I. If v = r, then r belongs to D, i.e., Wr is non-empty. No edge (w, r), w ∈ V, has
been deleted in a former iteration as otherwise r would have belonged to the same former
arborescence as w. Hence, there is an edge (w, r) in G′. Then w is a witness: If r ∈ Ww

then w ∈ V 1 and hence w will deleted and not added to I. Otherwise r /∈ Ww and w is a
witness for r by definition.

As S is k-repeating, there are at least d`/ke nodes in D. Therefore we obtain a set I with
size |I| ≥ d`/ke/2, i.e., |I| ≥ d`/(2k)e because |I| is integral. This yields the lemma. J

For the next lemma we need a probability result by Röglin [94]. For completeness, we
state a simpler, sufficient version of this result and prove it.

I Lemma 3.3 (Röglin [94]). Let X1, . . . , Xn be independent real random variables with
density bounded by φ. Let λ1, . . . , λk ∈ Zn be linearly independent vectors. For i ∈ {1, . . . , k}
and fixed ε ≥ 0, we denote by Ai the event that λi ·X takes a value in [0, ε], where X denotes
the vector X = (X1, . . . , Xn). Then

Pr
[
k⋂
i=1
Ai

]
≤ (εφ)k.

Proof. For 1 ≤ i ≤ n, let fi : R→ [0, φ] denote the density of Xi. The main tool for proving
the lemma is a change of variables. Instead of using the canonical basis of the n-dimensional
vector space Rn, we use the given linear combinations as basis vectors. To be more precise,
the basis B that we use consists of two parts: it contains the vectors λ1, . . . , λk and it is
completed by some vectors from the canonical basis {e1, . . . , en}, where ei denotes the i-th
canonical row vector, i.e., eii = 1 and eij = 0 for j 6= i. Without loss of generality, we assume
that B = {λ1, . . . , λk, ek+1, . . . , en}.

Let A = (λ1, . . . , λk, ek+1, . . . , en)T and let Φ: Rn → Rn be defined by Φ(x) = Ax. Since
B is a basis, the function Φ is a diffeomorphism. We define the vector Y = (Y1, . . . , Yn)
as Y = Φ(X). Let f : Rn → R≥0 denote the joint density of the entries of X, and let
g : Rn → R≥0 denote the joint density of the entries of Y . We can express the joint density g
as

g(y1, . . . , yn) = |det
∂

Φ−1| · f(Φ−1(y1, . . . , yn)),

where det∂ Φ−1 denotes the determinant of the Jacobian matrix of Φ−1.
The matrix A is invertible as B is a basis of Rn. Hence, for y ∈ Rn, Φ−1(y) = A−1y and

the Jacobian matrix of Φ−1 equals A−1. Thus, det∂ Φ−1 = detA−1 = (detA)−1. Since all
entries of A are integers, also its determinant must be an integer, and since it is invertible,
we know that detA 6= 0. Hence, |detA| ≥ 1 and |detA−1| ≤ 1. For y ∈ Rn, we decompose
Φ−1(y) ∈ Rn into Φ−1(y) = (Φ−1

1 (y), . . . ,Φ−1
n (y)). Due to the independence of the random

vectors X1, . . . , Xn, we have f(x1, . . . , xn) = f1(x1) · . . . · fn(xn). This yields

g(y) ≤ f(Φ−1(y)) = f1(Φ−1
1 (y)) · . . . · fn(Φ−1

n (y)) ≤ φk · fk+1(Φ−1
k+1(y)) · . . . · fn(Φ−1

n (y))
≤ φk · fk+1(yk+1) · . . . · fn(yn)

as f1, . . . , fk are bounded from above by φ and the i-th row of A is ei for k < i ≤ n. Hence,
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the probability we want to estimate can be upper bounded by

Pr
[
k⋂
i=1
Ai

]
=
∫

(y1,...,yn)∈[0,ε]k×Rn−k
g(y1, . . . , yn) d(y1, . . . , yn)

≤ (εφ)k ·
n∏

i=k+1

∫
R
fi(yi) dyi = (εφ)k,

where the last equation follows because fk+1, . . . , fn are density functions. J

I Lemma 3.4. Denote by ∆(`) the smallest improvement made, for any starting configuration,
by any k-repeating sequence of length ` in which every step increases the potential (and
set ∆(`) =∞ if not such sequence exists). Then for any ε > 0,

Pr [∆(`) ≤ ε] ≤ (2n)`(2φε)d`/(2k)e.

Proof. We first fix a k-repeating sequence of length `. As there are ` steps in this sequence,
there are at most n` choices for the sequence. We will use a union bound over all these n`
choices and over all possible starting configurations of the nodes that are active in the
sequence. This gives the additional factor of 2` because in the considered sequence at most `
nodes can move.

For a fixed starting configuration and a fixed sequence, we consider a node v that moves
at least twice and the linear combinations L1 and L2 that correspond to two consecutive
moves of node v. As after these two moves node v is in its original partition again, the
sum L = L1 + L2 contains only weights belonging to edges between v and other nodes
that have moved an odd number of times between the two moves of node v. In particular,
L contains only weights belonging to edges between active nodes, for which we fixed the
starting configuration.

Only if L ∈ (0, 2ε], both L1 and L2 can take values in (0, ε]. Hence it suffices to bound
the probability that L ∈ (0, 2ε]. Due to Lemma 3.2, the rank of the set of all linear
combinations constructed like L is at least d`/(2k)e. We can apply Lemma 3.3 to obtain
a bound of (2εφ)d`/(2k)e for the probability that all these linear combinations take values
in (0, 2ε]. Together with the union bound this proves the claimed bound on ∆(`). J

I Lemma 3.5. Denote by ∆ := min
1≤`≤5n

∆(`) the minimum improvement made, for any
starting configuration, by any k-repeating sequence of length at most 5n in which every step
increases the potential. Then ∆ is a lower bound for the improvement made by any sequence
of 5n steps.

This holds due to the fact that every sequence of 5n steps contains a k-repeating subsequence,
which we will prove later. Based on this lemma, we can prove Theorem 2.1 by showing that,
with high probability, ∆ is significantly bounded away from zero.

Proof of Theorem 2.1. Let T be the number of steps of the FLIP algorithm divided by 5n.
As every cut contains fewer than n2 edges and every edge weight is in the interval [−1, 1],
the weight of every cut is in [−n2, n2]. If the minimum improvement of any sequence of
length 5n is at least ∆, then the number of steps is bounded by 5n · T ≤ 5n · 2n2/∆, i.e.,
Pr [T ≥ t] ≤ Pr

[
∆ ≤ 2n2/t

]
for every t > 0.
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To simplify the notation, let ζ = 4φn2(2n)2k = φ · nO(logn). For i ≥ 2, let ti = ζi. By
Lemma 3.4 we know that for every i ≥ 2,

Pr [T ≥ ti] ≤ Pr
[
∆ ≤ 2n2

ti

]
≤

5n∑
`=1

Pr
[
∆(`) ≤ 2n2

ti

]
≤

5n∑
`=1

(2n)`
(

2φ2n2

ζi

)d`/(2k)e

≤
5n∑
`=1

(
(2n)2k · 4φn2

ζi

)d`/(2k)e

=
5n∑
`=1

(
1
i

)d`/(2k)e
≤
∞∑
`′=0

2k
(

1
i

)`′
− 2k

= 2k
(

1
1− 1/i − 1

)
= 2k
i− 1 .

The bound T ≤ 2n is trivial as no configuration of the nodes can occur twice. Together with
ti+1 − ti = ζ, we obtain

E [T ] =
2n∑
t=1

Pr [T ≥ t] ≤ 2ζ +
2n∑
i=2

ti+1−1∑
t=ti

Pr [T ≥ t] ≤ 2ζ +
2n∑
i=2

ti+1−1∑
t=ti

Pr [T ≥ ti]

≤ 2ζ +
2n∑
i=2

ζ · 2k
i− 1 ≤ ζ(2 + 2k(log(2n) + 1)) = ζ ·O(n logn) = φ · nO(logn). J

What remains to show is Lemma 3.5, i.e., ∆ is a lower bound for the minimum improvement
of any sequence of length 5n. Assume that this is not the case. Then there is a sequence
of length 5n that does not contain any k-repeating subsequence. We show that this is not
possible because then more than n nodes would have to move in that sequence.

I Definition 3.6. We call a sequence A1, . . . , Aq of sets a non-k-repeating block sequence of
length ` if the following conditions hold.

(i) For every 1 ≤ i < q, |Ai| = k.
(ii) 1 ≤ |Aq| ≤ k.
(iii)

∑q
i=1 |Ai| = `.

(iv) For every i and j with i ≤ j, the number of elements that are contained in at least two
sets from Ai, . . . , Aj is at most j − i.

We denote by nk(`) the cardinality of A1 ∪ . . .∪Aq minimized over all non-k-repeating block
sequences of length `.

Proof of Lemma 3.5. Any sequence S of length ` that does not contain a k-repeating
subsequence corresponds to a non-k-repeating block sequence A1, . . . , Aq of length ` with
q = d`/ke blocks: Subdivide S into subsequences S1, . . . , Sq of length k (except for Sq, which
can be shorter) and put the nodes occurring in Si into Ai. Because S does not contain
a k-repeating subsequence of length k, no node can occur twice in a subsequence Si. For
1 ≤ i < j ≤ q, the subsequence Si, . . . , Sj contains at most j − i nodes which occur multiple
times because S does not contain a k-repeating subsequence of length (j − i+ 1) · k.

Hence, it suffices to show that there is no non-k-repeating block sequence of length 5n
with at most n distinct elements. In other words, nk(5n) > n. If n ≤ 3, then there are at
least two blocks as 5n > k, but k = d5 log2 ne > n such that the first condition of Definition
3.6 cannot be satisfied under the assumption nk(`) ≤ n. Therefore we can assume n ≥ 4.

Let q = d5n/ke and let A1, . . . , Aq be a non-k-repeating block sequence of length 5n
with exactly nk(5n) different elements x1, . . . , xnk(5n) contained in A1 ∪ . . . ∪Aq. Construct
an auxiliary graph H as follows: Introduce a vertex i ∈ V (H) for each set Ai. For an
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element xi, let ρ(i) be the number of different sets that contain xi and let Ai1 , . . . , Aiρ(i)

(i1 < . . . < iρ(i)) be these sets. Define Qi = {{ij , ij+1} : 1 ≤ j < ρ(i)}. The edges in Qi

connect neighbored occurrences of the element xi. Define E(H) =
⋃̇nk(5n)
i=1 Qi as the disjoint

union of these edge sets. Note that we allow parallel edges. With every edge in H, the
number of different elements needed in the sequence decreases by exactly 1. Therefore,
nk(5n) =

∑q
i=1 |Ai| − |E(H)| = 5n− |E(H)|, i.e., it suffices to show that |E(H)| is strictly

less than 4n.
Define the length of an edge {v, w} as |w − v|. Now we group the edges by their lengths:

For 1 ≤ i ≤ dlog qe, let Ei = {{v, w} ∈ E(H) : 2i−1 ≤ |w − v| ≤ 2i}. Furthermore, we define
cuts Sj = {{v, w} ∈ E(H) : v ≤ j < w} for every 1 ≤ j < q.

For a cut Sj and some Ei, consider an arbitrary edge {v, w} ∈ Sj ∩ Ei: As this edge
has a length of at most 2i, we know that j − 2i < v,w ≤ j + 2i. Because A1, . . . , Aq is a
non-k-repeating block sequence, there can only be at most j + 2i − (j − 2i) ≤ 2i+1 elements
that occur multiple times in Amax{j−2i,1}, . . . , Amin{j+2i,q}. By construction, every element
can generate at most one edge in Sj . Hence |Sj ∩ Ei| ≤ 2i+1.

On the other hand, every edge in Ei has a length of at least 2i−1. Therefore every edge
in Ei occurs in at least 2i−1 cuts. Thus we can bound the cardinality of Ei by

|Ei| ≤
1

2i−1

q−1∑
j=1
|Sj ∩ Ei| ≤

1
2i−1

q−1∑
j=1

2i+1 ≤ 4(q − 1)

= 4
(⌈

5n
d5 logne

⌉
− 1
)
<

4n
logn.

As the union of the Ei is a covering of E(H), we can bound the total number of edges by

|E(H)| ≤
dlog qe∑
i=1
|Ei| <

4n
logndlog qe = 4n

logn

⌈
log
⌈

5n
k

⌉⌉
≤ 4n,

where the last inequality stems from⌈
log
⌈

5n
k

⌉⌉
≤ log

(
5n
k

)
+ 1 ≤ log

(
5n

d5 logne

)
+ log 2 ≤ log

(
2n

logn

)
≤ logn

for n ≥ 4. This concludes the proof. J
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4 Max-Cut with Squared Euclidean Distances

We continue the analysis of local search for Max-Cut with the special case of complete
graphs for which the edge weights are given by squared Euclidean distances between the
graph vertices. In Section 4.1 we will present the main idea of our proof of Theorem 2.2.
Section 4.2 contains preliminary observations and simple probability lemmas. We then use
Section 4.3 and Section 4.4 to prove Theorem 2.2 and Theorem 2.3, respectively.

4.1 Outline of the Analysis
We will now give an outline of the main ideas necessary to prove Theorem 2.2. For simplicity,
assume for now that the dimension d is constant so we can speak about polynomial bounds
despite having factors 2O(d). Theorem 2.2 is as well as all other results on smoothed analysis
of local search algorithms based on finding a lower bound for the improvement made by
any local improvement or any sequence of consecutive local improvements of a certain
length. Since the mean values of our points are in [0, 1]d, the value of any cut is bounded
polynomially in n with high probability. Hence, proving that in any local improvement or in
any sequence of poly(n) consecutive local improvements the value of the cut increases by
at least ε := 1/poly(n) with high probability suffices for proving that the expected number
of local improvements is polynomially bounded. We will call an improvement of at least ε
significant in the following. On the other hand, we call a pair of a configuration C of V (i.e.,
a partition of V into two parts) and a point x ∈ V bad if flipping x in the configuration C
yields an insignificant improvement.

In the proof of Theorem 2.1 the union bound fixes only the configuration of the active
vertices of the considered sequence. The configuration of the passive vertices is not fixed in the
union bound. By adding two flips of an active point, it sufficed to know their configuration to
compute the probability that the considered sequence of steps was bad, because the influence
of the passive points canceled out.

In our analysis we also fix only the configuration of the active vertices. The difference is
that we do not combine two improvements of the same vertex anymore and thus the passive
vertices are not irrelevant because their configuration has a very essential impact on the
improvements made by the flips in the considered sequences. The crucial idea is that we can
rewrite the improvements in such a way that we do not need to know the exact configuration
and placement of the passive points, and that certain partial information is enough to bound
the probability that all steps in the sequence are bad. We can guess this partial information
closely enough such that we can approximately compute the improvements while having few
enough possibilities for our guesses such that the union bound stays small enough.

Let us go into more detail. Remember that we consider complete graphs in which each
vertex is a point in Rd and the weights of the edges are given by squared Euclidean distances.
Our goal is to show that in this setting with high probability there is no sequence in which
` = O(d) different vertices flip making only insignificant local improvements. Observe that
the length of such a sequence is at most 2` as otherwise one configuration would repeat,
which is not possible since the value of the cut increases with every flip. We apply a union
bound over all such sequences and over all configurations of the active points.

With only the information about the sequence and the configuration of the active points,
it is not possible to determine linear combinations of the edge weights that describe the
improvements made in the sequence because the configuration of the passive points is
unknown. Assume that the point set X is partitioned into the sets P1 and P−1. We can
rewrite the improvement made by flipping a point such that we only need to know the value
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|P1| as well as c :=
∑
x∈P1

x−
∑
x∈P−1

x and ξ :=
∑
x∈P1

∥∥x∥∥2 −
∑
x∈P−1

∥∥x∥∥2. These values
are unknown if the configuration of the passive points is unknown and we have to assume
that they are chosen adversarially.

Let us assume that the standard deviation σ is small. Then the whole point set X is
contained in [−2, 2]d with high probability. This gives us bounding boxes for c and ξ. Hence,
we can guess |P1|, c, and ξ up to an ε error, which causes a factor of roughly (nd/ε)d in
the union bound. We then substitute c and ξ by our guesses in the formulas describing the
improvements of steps. This results in formulas which do not depend on the passive points
anymore and are good approximations for the improvements of the active points. We use
these formulas to argue that it is unlikely that the first step of every active point yields an
improvement of at most ε without having to use a union bound over the configuration of the
passive points. (This approach is remotely inspired by the analysis of the k-means method
where approximate centers of clusters are used [4].)

In our analysis we crucially rely on the fact that the edge weights are given by squared
Euclidean distances because for other distance measures the necessary information about the
configuration of the passive points is not captured solely by |P1|, c, and ξ.

4.2 Preliminaries and Notation
In this subsection we state some lemmas that we will use later to prove Theorem 2.2 and we
introduce some notation. Throughout the section, ε denotes the threshold value between an
insignificant and a significant step. We use the notation X ∼ N (µ, σ2) to indicate that X
is a Gaussian random variable with mean µ and standard deviation σ. Up to our proof
of the main result, we assume without further mention that σ ≤ 1/

√
2n. Furthermore, we

may assume n ≥ d because every instance with n points in dimension d ≥ n can simply be
projected to an n-dimensional subspace of Rd. We will often identify the points with their
indices {1, . . . , n}=:N . A configuration of the points is a map π : N → {−1, 1}. We often
use the shortcut πv to denote π(v).

I Lemma 4.1. Let Dmax :=σ
√

2n+1 and let X be a set of n Gaussian random vectors in Rd
with mean values in [0, 1]n and standard deviation σ. Let F1 be the event X 6⊆ [−Dmax, Dmax]d.
Then Pr [F1] ≤ d/2n.

For the proof of Lemma 4.1, we use the following well-known fact.
I Claim 4.2. Let X ∼ N (0, 1) be a one-dimensional Gaussian random variable. Then
Pr [|X| > x] ≤

√
2·exp(−x2/2)√

π·x for all x ≥ 0.

Proof. The density function of X is symmetric around 0. As t
x ≥ 1 for t ≥ x, it follows

Pr [|X| > x] = 2
∫ ∞
x

1√
2π
· e−t

2/2 dt ≤ 2√
2πx

∫ ∞
x

t · e−t
2/2 dt

=
√

2√
π · x

·
[
−e−t

2/2
]∞
x

=
√

2 · e−x2/2
√
π · x

. J

Proof of Lemma 4.1. We use a union bound over all nd coordinates of the points in X .
Let x ∼ N (µ, σ2) be such a coordinate. We apply the claim to the random variable y =
(x− µ)/σ ∼ N (0, 1). Because we assume σ ≤ 1/

√
2n, it holds

Pr [|x| > Dmax] ≤ Pr
[
|x− µ| > σ

√
2n
]

= Pr
[
|y| >

√
2n
]

≤
√

2 · e−2n/2
√
π ·
√

2n
<

1√
n · en

= 1√
n · (e/2)n · 2n

≤ 1
n · 2n ,
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where the last inequality follows from (e/2)n ≥
√
n. Now the lemma follows from the union

bound over the nd coordinates. J

I Lemma 4.3. If F1 does not occur, then the weight of any cut is between 0 and φmax :=16dn2.

Proof. The lower bound trivially holds because all distances are non-negative. For the
upper bound it suffices to observe that fewer than n2 edges cross the cut in any partition
and the Euclidean distance between any two points in the hypercube [−Dmax, Dmax]d is at
most 2

√
d ·Dmax ≤ 4

√
d, where the inequality follows from the assumption σ ≤ 1/

√
2n. J

The following lemma follows from elementary probability theory.

I Lemma 4.4. Let k ∈ N and λ1, . . . , λk ∈ Z with
∑k
i=1 λi 6= 0. Let u, v1, . . . , vk ∈ Rd

and let z denote a d-dimensional Gaussian random vector with mean µ ∈ Rd and standard
deviation σ. Then for every τ ∈ R and δ > 0,

Pr
[
u · z +

∑k
i=1 λi ·

∥∥z − vi∥∥2 ∈ [τ, τ + δ]
]
≤
√
δ
σ .

Proof. Let λ :=
∑k
i=1 λi. Then

u · z +
k∑
i=1

λi ·
∥∥z − vi∥∥2 = u · z +

k∑
i=1

λi · (
∥∥z∥∥2 − 2z · vi +

∥∥vi∥∥2)

= λ ·
∥∥z∥∥2 − 2z ·

(
k∑
i=1

λivi −
u

2

)
+

k∑
i=1

λi ·
∥∥vi∥∥2

.

Note that every term except for z is constant. Hence, by completing the square we obtain a
constant τ1 ∈ R such that the previous term simplifies to

λ ·
∥∥z∥∥2 − 2z ·

(
k∑
i=1

λivi −
u

2

)
+

k∑
i=1

λi ·
∥∥vi∥∥2

=λ ·
∥∥∥∥z − ∑k

i=1 λivi −
u
2

λ

∥∥∥∥2
+ τ1.

=λ ·
∥∥z − x∥∥2 + τ1 for x =

∑k
i=1 λivi −

u
2

λ
.

We may assume w.l.o.g. that λ ≥ 1. Then

Pr
[
u · z +

k∑
i=1

λi ·
∥∥z − vi∥∥2 ∈ [τ, τ + δ]

]
=Pr

[
λ ·
∥∥z − x∥∥2 + τ1 ∈ [τ, τ + δ]

]
=Pr

[∥∥z − x∥∥2 ∈
[
τ2, τ2 + δ

λ

]]
for τ2 = τ − τ1

λ
.

We use the principle of deferred decisions and assume that the last d−1 coordinates z2, . . . , zd
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of z are already uncovered. Then

Prz
[∥∥z − x∥∥2 ∈

[
τ2, τ2 + δ

λ

]]
≤ max

τ3∈R
Prz1

[
(z1 − x1)2 ∈

[
τ3, τ3 + δ

λ

]]
≤ max

τ3∈R
Prz1

[
z1 ∈

[
x1 +

√
τ3, x1 +

√
τ3 + δ

λ

]]
+ Prz1

[
z1 ∈

[
x1 −

√
τ3 + δ

λ
, x1 −

√
τ3

]]
.

Since both intervals have length
√
τ3 + δ

λ −
√
τ3 ≤

√
δ
λ , we can bound the probability further

by

Prz
[∥∥z − x∥∥2 ∈

[
τ2, τ2 + δ

λ

]]
≤ 2 ·max

τ4∈R
Prz1

[
z1 ∈

[
τ4, τ4 +

√
δ

λ

]]

≤ 2√
2πσ

·
√
δ

λ
≤
√
δ√
λσ
≤
√
δ

σ
,

where the first inequality in the last line follows because the density of z1 is bounded from
above by 1/(

√
2πσ) and the last inequality follows from λ ≥ 1. J

I Lemma 4.5. Let u ∈ Rd with
∥∥u∥∥ 6= 0, and let X be a d-dimensional Gaussian random

vector with mean µ ∈ Rd and standard deviation σ. Then for every τ ∈ R and δ > 0,

Pr [u ·X ∈ [τ, τ + δ]] ≤ δ

2 ·
∥∥u∥∥ · σ .

Proof. Since every Xi, i ≤ d, is a normally distributed random variable with standard
deviation σ, the product ui · Xi is normally distributed with standard deviation |ui| · σ.
Therefore, u ·X has variance

∑d
i=1(|ui| · σ)2 = σ2 ·

∑d
i=1 |ui|2 = σ2 ·

∥∥u∥∥2. This means that
the density function of u · X is bounded from above by (

√
2πσ ·

∥∥u∥∥)−1, from which the
lemma follows. J

I Corollary 4.6. Let λ ∈ Z be an integer, let δ > 0, let u ∈ Rd with
∥∥u∥∥ ≥ √δ4 , and let X

denote a d-dimensional Gaussian random vector with mean µ ∈ Rd and standard deviation σ.
Then for every τ ∈ R,

Pr
[
λ ·
∥∥X∥∥2 − 2u ·X ∈ [τ, τ + δ]

]
≤
√
δ

σ
. (2)

Proof. If λ 6= 0, use Lemma 4.4. Otherwise use Lemma 4.5 with u′ = −2u. J

4.3 Bounding the Smoothed Number of Steps
Let L be a fixed sequence of steps with ` = Θ(d) active points. We may assume without
loss of generality that the active points are the points 1, . . . , ` and that the first move of
point i is before the first move of point j if and only if i < j. Furthermore, let πi ∈ {−1, 1}n
be the configuration of all points before the first flip of point i. Note that π1 is the initial
configuration of the points.
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4.3.1 Approximation for the Improvement of a Flip
We start by rewriting the improvement of the objective function that a flip makes.

I Lemma 4.7. Let π be a configuration of all points and let v ∈ N flip its state. Then the
improvement made by the flip of v is given by

πv ·

(∑
w∈N

πw

)
·
∥∥Xv

∥∥2 − 2πv ·
(∑
w∈N

πw ·Xw

)
·Xv + πv ·

(∑
w∈N

πw ·
∥∥Xw

∥∥2
)
. (3)

Proof. As v switches its state, an edge vw enters the cut if πv = πw, and leaves the cut
otherwise. Hence, the improvement can be written as∑

w 6=v
πvπw ·

∥∥Xv −Xw

∥∥2 =
∑
w∈N

πvπw ·
∥∥Xv −Xw

∥∥2

=
∑
w∈N

πvπw

(∥∥Xv

∥∥2 − 2XvXw +
∥∥Xw

∥∥2
)

= πv
∑
w∈N

πw ·
∥∥Xv

∥∥2 − 2πvXv

∑
w∈N

πwXw + πv
∑
w∈N

πw
∥∥Xw

∥∥2
.J

An improvement is bad if the term (3) lies in the interval (0, ε]. Note the structural
resemblance to (2), which also contains a quadratic and a linear dependence on the random
vector X = Xv. Our goal is now to apply Corollary 4.6 to (3) once for every active point,
yielding a combined bound of roughly (

√
ε/σ)` (assuming that the applications can be made

independently of each other). In order to achieve this, we have to overcome three obstacles:

Corollary 4.6 requires that the norm of u is not too small. We will show later that this
happens often with high probability.

The prefactors in (3) are not known without determining the exact configuration of
all points. This would yield a factor 2n in the union bound, which is too large for our
purposes.

An application of Corollary 4.6 and Lemma 4.7 would be done in the following way: Let v
be the point that is about to flip its state. Uncover all other points to fix the prefactors
of (3) (to be precise, the prefactors also depend on Xv, but this dependency can easily be
avoided, see the proof of Lemma 4.7). Then Corollary 4.6 is applicable.
This approach would mean that we could not use Corollary 4.6 and Lemma 4.7 independ-
ently for every active vertex because after the first application every random point Xi

would already be uncovered, i.e., exactly determined.

Therefore we alter the approach by guessing the prefactors of (3) up to a small error. This
idea is inspired by Angel et al. [3].

Guess λ =
∑
w∈N π

1
w. There are 2n+ 1 possible values for λ.

Guess a point c ∈ ( 2ε
d Z)d with

∥∥c−∑w∈N π
1
w ·Xw

∥∥
∞ ≤

ε
d . If we assume that F1 does

not occur, the point
∑
w∈N π

1
w ·Xw lies in [−2n, 2n]d, i.e., there are O((ndε )d) possible

choices for c.

Guess ξ ∈ 2εZ such that
∣∣∣ξ −∑w∈N π

1
w ·
∥∥Xw

∥∥2
∣∣∣ ≤ ε. Again if we assume that F1 does

not occur, every
∥∥Xw

∥∥2 is bounded from above by 2d, which means that there are O(ndε )
possible choices for ξ.
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This way we get a good approximation of the actual improvement by a vertex flip using a
union bound of size only O(n · (ndε )d+1) instead of 2n. The improvement made in the first step
of the sequence L (in which point 1 flips) is approximated by π1

1 ·λ ·
∥∥X1

∥∥2−2π1
1 ·c ·X1 +π1

1 ·ξ
with an error of O(ε). Note that we can use Corollary 4.6 uncovering only X1, i.e., the other
points X2, . . . , Xn are still covered.

We now want to use the same tools for the first flip of every active vertex 2, . . . , `.
Instead of guessing all the parameters again, we use that the prefactors in (3) are only
deterministically changed by points that previously have already been active. As an example,
consider the factor c∗ :=

∑
w∈N π

1
w ·Xw, for which c is an approximation, i.e.,

∥∥c− c∗∥∥∞ ≤ ε
d .

If a point i flips from side 1 to side −1, the vector c∗ as well as c are translated by the exact
same vector −2 ·Xi. Because we have already uncovered Xi if this is not the first flip by
point i, this translation of c is deterministic. Hence, if we want to use Corollary 4.6 for the
first flip of a point j, we can guess the prefactor

∑
w∈N π

j
w ·Xw by simply translating our

guess c by
∑
w∈N π

j
w ·Xw − c∗, which is a linear combination of X1, . . . , Xj−1.

Let us make this observation more formal. The configurations πi and π1 can only differ in
the first i− 1 coordinates. To be precise, πiv − π1

v = 0 for every point v that flipped an even
number of times (including the case that v did not flip at all, i.e., v ≥ i), and πiv−π1

v = −2π1
v

for all points v < i that flipped an odd number of times. Therefore we define B as the set of
all vectors ζ ∈ Rn such that

ζi ∈ {0,−2π1
i } for 1 ≤ i ≤ `,

ζi = 0 for `+ 1 ≤ i ≤ n.

Furthermore we define C := {c+
∑
v≤` ζv ·Xv | ζ ∈ B}. This means that C contains every

possible approximation for the prefactor
∑
w∈N π

i
w ·Xw. Now because for every i ∈ N the

difference πi − π1 lies in B, we can write πi = π1 + ζ for some ζ ∈ B. This gives rise to the
following lemma.

I Lemma 4.8. For every v ≤ ` there are constants αv, γv ∈ R and a vector βv ∈ C, each of
which only depends on λ, c, ξ, πv − π1, and X1, . . . , Xv−1, but not on Xv, . . . , Xn, such that
the following holds:

If F1 does not occur and the improvement made by the first flip of point v is at most ε,
then∣∣∣αv · ∥∥Xv

∥∥2 − 2βv ·Xv + γv

∣∣∣ ≤ 6ε.

Proof. For notational simplicity, let (Xv)2 =
∥∥Xv

∥∥2 and (Xv)0 = 1. According to Lemma 4.7,
the improvement made by flipping v is given by

πvv ·

(∑
w∈N

πvw

)
·
∥∥Xv

∥∥2 − 2πvv

(∑
w∈N

πvwXw

)
·Xv + πvv

(∑
w∈N

πvw ·
∥∥Xw

∥∥2
)
.

Let λ∗ =
∑
w∈N π

1
w = λ, c∗ =

∑
w∈N π

1
w · Xw, and ξ∗ =

∑
w∈N π

1
w ·
∥∥Xw

∥∥2. Then the
improvement made by flipping point 1 for the first time is given by

π1
1 ·
(
λ∗ ·

∥∥Xv

∥∥2 − 2c∗ ·Xv + ξ∗
)
.

Now we want to rewrite the improvement made by flipping a point v for the first
time. Note that πvv = π1

v, i.e., we can replace πvv by π1
v. Let ζ := πv − π1 ∈ B. Then for
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every i ∈ {0, 1, 2}, the difference between
∑
w∈N π

v
w · (Xw)i and

∑
w∈N π

1
w · (Xw)i is given

by ηi =
∑
w<v ζw · (Xw)i. This means that the improvement made by flipping v for the first

time can be rewritten as

π1
v ·
(

(λ∗ + η0) ·
∥∥Xv

∥∥2 − 2(c∗ + η1) ·Xv + (ξ∗ + η2)
)
.

We can now set

αv := (λ+ η0),
βv := (c+ η1), and
γv := (ξ + η2).

Note that βv ∈ C and αv, βv, γv in fact do not depend on Xv, . . . , Xn. Then we can again
rewrite the improvement made by flipping v by

π1
v ·
(
αv ·

∥∥Xv

∥∥2 − 2βv ·Xv + γv − 2(c∗ − c) ·Xv + ξ∗ − ξ
)
.

Because c and ξ are approximate guesses for c∗ and ξ∗, it holds that |ξ∗ − ξ| ≤ ε and
|2(c∗ − c) · Xv| ≤ 2 · εd ·

∥∥Xv

∥∥
1 ≤ 4ε, where the last inequality holds because we assume

that F1 does not occur, i.e., every coordinate of Xv lies in [−Dmax, Dmax] ⊆ [−2, 2].
This means that

∣∣∣αv · ∥∥Xv

∥∥2 − 2βv ·Xv + γv

∣∣∣ is by at most 5ε larger than the improvement
made by the first flip of v. This yields the lemma. J

4.3.2 Bounding the Probability of Insignificant Improvements
The idea developed so far is to apply Corollary 4.6 successively for every active point 1, · · · , `
to the approximation term in Lemma 4.8. The only problem left is that the point βv can
have small norm, in which case Corollary 4.6 is not applicable. The following lemma shows
that this does not occur too often with high probability.

I Lemma 4.9. Let Fε2 be the event that there are at least nine different vectors in C with

norm at most
√
ε. Then Pr [Fε2 ] ≤ 24` ·

(√
ε
σ

)4d
.

Proof. Let Cε be the subset of vectors of C with norm at most
√
ε. Consider first the case

that there are four vectors x1, x2, x3, x4 in C such that x1−c, x2−c, x3−c, x4−c are linearly
independent. Every coordinate of a vector in Cε must be contained in the interval [−

√
ε,
√
ε],

i.e., its absolute value must be in the interval [0,
√
ε]. Furthermore, every coordinate is

normally distributed with variance at least σ2 and thus the density of its absolute value is
bounded by 1/σ. Hence, Lemma 3.3 bounds the probability that x1, . . . , x4 are all contained

in Cε by
(√

ε
σ

)4d
. Together with a union bound of size |C|4 = 24` for the different choices

of x1, x2, x3, x4, this yields the desired bound.
It remains to show that |Cε| ≤ 8 if Cε contains only at most three linearly independent

vectors. To simplify notation, let D be the set of vectors z ∈ {0, 1}` such that c+
∑
v≤` zv ·

(−2π1
i ) ·Xv ∈ Cε. That means, a vector in D indicates for every coordinate i whether the

according point i has flipped an odd number of times. It clearly holds |Cε| = |D| and if a
vector set in Cε is linearly independent when shifted by −c, then the corresponding vector
set in D must also be linearly independent. Hence, we can assume that there do not exist
four linearly independent vectors in D. That means that D is contained in a linear subspace
of R` with dimension 3. The following claim then implies |D| ≤ 8 and hence also |Cε| ≤ 8.
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I Claim 4.10. Let U be a linear subspace of R`. Then |U ∩ {0, 1}`| ≤ 2dim(U).
Let x1, . . . , xk be a maximum set of linearly independent vectors in U ∩ {0, 1}`. We may
assume that x1, . . . , xk is a basis of U by simply restricting U to the linear span of x1, . . . , xk.
Then every vector v ∈ U can be written as

∑k
i=1 µi · xi for some µ1, . . . , µk ∈ R. This means

that we can write U as

U =
{(
µ · λ1, . . . , µ · λ`

)
|µ ∈ Rk

}
for (λ1 . . . λ`) = (x1 . . . xk)ᵀ.

Let i1, . . . , ik be an index subset such that {λ1, . . . , λ`} lies in the span of λi1 , . . . , λik .
This subset exists because rank(λ1 . . . λ`) = rank(x1 . . . xk)ᵀ = k. If µ · λi1 , . . . , µ · λik
are already fixed, then so is µ · λj for every 1 ≤ j ≤ `, since λj can be expressed as a
linear combination of λi1 , . . . , λik . Therefore, two vectors v, w ∈ U are equal if and only
if (vi1 , . . . , vik) = (wi1 , . . . , wik). Hence, there can only be at most |{0, 1}|k ≤ 2dim(U) different
vectors in U ∩ {0, 1}`. This completes the proof of both the claim and the lemma. J

I Lemma 4.11. Let ∆ be the smallest improvement made by any sequence L with exactly ` :=
4d+ 8 active vertices, beginning in an arbitrary starting configuration π, and let 0 < ε ≤ 1.
Then Pr [∆ ≤ ε] ≤ Pr [F1] + 217d2+O(d)n5d+10σ−4dεd−1.

Proof. Let us first derive a union bound over all the ingredients we need:

There are n` choices for the active vertices of L.
A union bound over all possible sequences L with ` active vertices would be too large.
But in order to use Lemma 4.8 we only need to know the configuration of the active
points before an application of that lemma. We use the lemma at most ` times. Hence,
by introducing a factor 2`2 in the union bound we gather enough information about the
sequence L.
As discussed before, there are O(n · (ndε )d+1) choices for λ, c, and ξ.
If Fε2 does not occur, then there are at most eight vertices v such that

∥∥βv∥∥ ≤ √ε. Let L′
be a subset of {1, . . . , `} of size `− 8 = 4d that contains none of these vertices. There are
less than `8 possible choices for L′.

In total this yields a union bound of sizeO(2`2
n`+d+2dd+1`8ε−(d+1)) ≤ 217d2+O(d)n5d+10ε−(d+1).

For 1 ≤ v ≤ `, let αv, βv, γv be defined like in Lemma 4.8. Let F3 be the event

∀v ≤ ` :
∣∣∣αv · ∥∥Xv

∥∥2 − 2βv ·Xv + γv

∣∣∣ ≤ 6ε.

Because the improvement ∆ can be bounded from below by the smallest single improvement
during the whole sequence L, we can according to Lemma 4.8 bound the probability for the
event ∆ ≤ ε by

Pr [∆ ≤ ε] = Pr [(∆ ≤ ε) ∩ F1] + Pr [(∆ ≤ ε) ∩ (¬F1)] ≤ Pr [F1] + Pr [Fε3 ∩ (¬F1)] .

The last probability can be bounded in the following way:

Pr [Fε3 ∩ (¬F1)] ≤ Pr [Fε3 ] ≤ Pr [Fε2 ] + Pr [Fε3 ∩ (¬Fε2 )] .

Because αv, βv, and γv do not depend on the random variables Xv, . . . , Xn, we can apply
Corollary 4.6 successively and independent of the former applications for the first flip of
every vertex 1, . . . , `. If v ∈ L′, then Corollary 4.6 yields

Pr
[∣∣∣αv · ∥∥Xv

∥∥2 − 2βv ·Xv + γv

∣∣∣ ≤ 6ε
]
≤
√

12ε
σ

.
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Hence, if the event Fε2 does not occur, the application of Corollary 4.6 to all vertices in L′
yields

Pr [Fε3 ∩ (¬Fε2 )] ≤
(√

12ε
σ

)4d

= (12ε)2d

σ4d .

Therefore, the probability that the whole sequence yields an improvement of at most ε can
be bounded by

Pr [∆ ≤ ε] ≤ Pr [F1] + Pr [Fε2 ] + 217d2+O(d)n5d+10

εd+1 · (12ε)2d

σ4d

≤ Pr [F1] + 24` · ε
2d

σ4d + 217d2+O(d)n5d+10

εd+1 · ε
2d

σ4d

≤ Pr [F1] + 217d2+O(d)n5d+10

εd+1 · ε
2d

σ4d = Pr [F1] + 217d2+O(d)n5d+10σ−4dεd−1.J

4.3.3 Calculating the Expected Number of Steps
The rest of the proof is a simple calculation. For this, let κ′ :=217dn5σ−4 and κ:=2`+5n2d·κ′ =
221d+13n7dσ−4.

I Lemma 4.12. For any dimension d ≥ 2, it holds∫ 2n

κ′

(
217dn5

σ4t

)d−1

dt ≤ 217dn6σ−4.

Proof. Substitute x = tσ4

217dn5 . Then dx
dt = σ4

217dn5 = 1
κ′ and thus∫ 2n

κ′

(
217dn5

σ4t

)d−1

dt =
∫ 2n/κ′

1

(
1
x

)d−1
· 2

17dn5

σ4 dx ≤ 217dn5

σ4 ·
∫ 2n

1

1
x

dx ≤ 217dn6σ−4.J

I Lemma 4.13. For any dimension d ≥ 2, it holds∫ 2n

κ′
Pr
[
∆ ≤ 1

t

]
dt ≤ 2O(d)n21σ−8.

Proof. First note that κ′ ≥ 1 because we assume that σ ≤ 1/
√

2n. Therefore, we can use
Lemma 4.11 together with Lemma 4.1 to obtain the following calculation:∫ 2n

κ′
Pr
[
∆ ≤ 1

t

]
dt ≤

∫ 2n

κ′
Pr [F1] + Pr

[
∆ ≤ 1

t

]
dt

≤d+
∫ 2n

κ′
217d2+O(d)n5d+10σ−4dt−(d−1) dt

=d+ 2O(d)n15σ−4 ·
∫ 2n

κ′

(
217dn5

σ4t

)d−1

dt.

Plugging in Lemma 4.12 yields∫ 2n

κ′
Pr
[
∆ ≤ 1

t

]
dt ≤ d+ 2O(d)n15σ−4 · 217dn6σ−4 ≤ 2O(d)n21σ−8. J
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We are now ready to prove the main theorem.

Proof of Theorem 2.2. We first stick with our assumption σ ≤ 1/
√

2n. Let T be the number
of steps that FLIP takes starting from an arbitrary starting configuration.

Following the definition of ∆, every 2` steps φ increases by at least ∆. Because the size
of the maximum cut is bounded from above by 16dn2 if F1 does not occur, FLIP must then
terminate after at most 2` · d 16dn2

∆ e ≤ 2` · 32dn2

∆ = 2`+5 · dn
2

∆ steps, where the inequality
follows from the fact that the minimum increase ∆ cannot be larger than 16dn2.

Because no configuration of the vertices can occur twice in a sequence of strictly improving
steps, T cannot be larger than 2n. This means that the smoothed number of steps E [T ] can
be bounded in the following way.

E [T ] =
∫ ∞

0
Pr [T ≥ t] dt =

∫ 2n

0
Pr [T ≥ t] dt ≤ κ+

∫ 2n

κ

Pr [F1] + Pr
[
2`+5 · dn

2

∆ ≥ t
]

dt

≤ d+ κ+
∫ 2n

κ

Pr
[
∆ ≤ 2`+5dn2

t

]
dt

Substitute x = t
2`+5dn2 = t·κ′

κ . Then dx
dt = κ′

κ and thus

E [T ] ≤ d+ κ+ κ

κ′
·
∫ 2n·κ′/κ

κ′
Pr
[
∆ ≤ 1

x

]
dx ≤ d+ κ+ κ

κ′
·
∫ 2n

κ′
Pr
[
∆ ≤ 1

x

]
dx.

Using κ
κ′ = 2O(d) · n2d together with Lemma 4.13 yields

E [T ] ≤ d+ 2O(d) · n7dσ−4 + 2O(d) · n2d · 2O(d) · n21σ−8

≤ 2O(d) · n7σ−4 + 2O(d) · n23σ−8 ≤ 2O(d) · n23σ−8.

If σ > 1/
√

2n, we create an equivalent instance by scaling down the mean values by the
factor 1/(

√
2nσ) (i.e., the mean values remain in [0, 1]n) and setting the standard deviation

to σ′ = 1/
√

2n. As these instances are equivalent, we obtain the same expected number of
iterations and thus a bound of 2O(d) · n23 · (

√
2n)8 ≤ 2O(d) · n27. J

4.4 An Exponential Lower Bound in the Deterministic Setting
In this subsection we prove Theorem 2.3.

Proof of Theorem 2.3. For this proof we name the sides of a partition 0 and 1 instead
of −1 and 1. We use XOR gadgets as depicted in Figure 2. These gadgets follow the idea
by Haken and Luby [61]. Every gadget contains four vertices a, b, c, d and two additional
“anchor” vertices (the ones in squares) that are permanently assigned to side 1, i.e., they
never flip sides at all. Given such a gadget, every time vertex a or vertex b flips sides, the
vertices c and d are checked in the given order whether they can also be flipped. If neither c
nor d can be flipped, their logical meaning is exactly a NOR b and a XOR b, respectively.
Hence, vertex d can be flipped as often as vertices a and b combined.

We can now concatenate n/6 gadgets in such a way that the edge weights are scaled down
by the factor 10 for adjacent gadgets. Then the vertices a′ and b′ of the next gadget can be
flipped each whenever vertex d is flipped. This means that the vertices a′ and b′ can flip
twice as often as the vertices a and b. Add now an additional vertex and two very expensive
edges to the vertices a and b of the top-most gadget such that a and b can flip sides. This
completes the construction.
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It remains to show that the generated instance can be embedded into the plane with
squared Euclidean distances. Given a gadget with scaling factor x, we place the vertices at
the following coordinates:

Vertices a and b are both located at (0,
√
x).

Vertex c is located at (
√

2x, 0).
Vertex d is located at (0, 0).
The anchors are located at (

√
2x,
√

3x) and (0,
√
x).

We now verify that all edge weights inside a XOR gadget are correct:

For the edge between c and the first anchor:
∥∥(
√

2x,
√

3x)− (
√

2x, 0)
∥∥2 = 3x.

For the edge between d and the second anchor:
∥∥(0,
√
x)− (0, 0)

∥∥2 = x.

For the edges {a, c} and {b, c}:
∥∥(
√

2x, 0)− (0,
√
x)
∥∥2 = 2x+ x = 3x.

For the edges {a, d} and {b, d}:
∥∥(0, 0)− (0,

√
x)
∥∥2 = x.

For the edge {c, d}:
∥∥(0, 0)− (

√
2x, 0)

∥∥2 = 2x.

To make the edge weights of the edges {d, a′} and {d, b′} correct, we simply shift the gadgets
accordingly. Note that this does not impose a problem, as a′ and b′ have the same position
in the plane. This completes the proof. J

a

b

1 c = a NOR b d = a XOR b

1

a′

b′

3x

3x

3x

1x

1x

2x

1x

0.45x

0.45x

a b c = a NOR b d = a XOR b

0 0 1 0

0 1 0 1

1 0 0 1

1 1 0 0

Figure 2 A XOR gadget. Every flip of a or b induces a flip of d. The table shows the preferred
side for the vertices c and d, given a configuration for a and b.
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5 Scheduling

This part is devoted to the convergence time of local search in different scheduling settings.
First we show in Section 5.1 how to convert superpolynomial deterministic convergence times
to smoothed polynomial convergence times. In Section 5.2 and Section 5.3 we deal with the
special cases of identical machines and unit-weight jobs, respectively, before we turn to the
more general case of related machines in Section 5.4. We conclude with the analysis of the
price of anarchy in the FIFO model in Section 5.5.

5.1 Smoothed Analysis
Some of our shown convergence times include the factor W/pmin. While in the worst case
this fraction can be exponentially large, in the smoothed setting they turn into expected
polynomial convergence times.

I Lemma 5.1. If the convergence time is bounded by f(m,n) ·W/pmin for some polynomial f ,
then the smoothed convergence time is bounded by O(f(m,n) · n3 log(m) · φ).

Proof. Let T be a random variable for the convergence time. Then T is trivially bounded by
mn as there are only mn different schedules and no schedule can appear twice in a sequence
of monotonically improving steps. As the job sizes are each drawn from the interval [0, 1] and
thus the total weight W is at most n, we can bound the expected value of T in the following
way.

E[T ] =
∫ ∞

0
Pr[T ≥ α] dα =

∫ mn

0
Pr[T ≥ α] dα ≤

∫ mn

0
Pr
[
f(m,n) · n

pmin
≥ α

]
dα

= f(m,n) · n ·
∫ mn

f(m,n)·n

0
Pr[pmin ≤ 1/α] dα ≤ f(m,n) · n ·

∫ mn

0
Pr[pmin ≤ 1/α] dα.

The random variable pmin is at least 1/α exactly if all job sizes are at least 1/α. For every job
size pj this happens independently of the other jobs sizes with probability at least 1− φ/α
as the density function of pj is bounded by φ. Hence, with a Union Bound it follows

Pr[pmin ≤ 1/α] = Pr[∃j : pj ≤ 1/α] ≤
n∑
j=1

Pr[pj ≤ 1/α] ≤ nφ

α
,

and thus,∫ mn

0
Pr[pmin ≤ 1/α] dα ≤ 1 +

∫ mn

1

nφ

α
dα = 1 + nφ · ln(mn) = 1 + n2φ · lnm. J

Unfortunately, our result about the convergence time of the Best Improvement pivot rule
in the Makespan model depends quadratically on pmin. This does not allow us to derive an
expected polynomial convergence time, but instead we can show that with high probability
the convergence time is polynomially bounded.

I Lemma 5.2. The smoothed convergence time of the Best Improvement pivot rule in the
Makespan model is in m2n7φ2 with probability at least 1− 1/n.

Proof. Analogously to the proof of Lemma 5.1, we can bound the probability of 1/p2
min ≥ α

for some α using a Union Bound.

Pr[1/p2
min ≥ α] ≤ Pr[pmin ≤ 1/

√
α] ≤ nφ√

α
.
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This bound is at most 1/n for α ≥ n4φ2. Theorem 5.26 shows that the Best Improvement
pivot rule converges in the Makespan model in O(m2n ·W 2/p2

min) steps. As W 2 ≤ n2, the
probability that the Best Improvement pivot rule does not converge in m2n7φ2 steps is
bounded from above by

Pr[m2n3/p2
min ≥ m2n7φ2] = Pr[1/p2

min ≥ n4φ2] ≤ 1
n
. J

5.2 Identical Machines
5.2.1 FIFO and Makespan Model
In the FIFO model, the costs of a job decrease monotonically while the minimum load of
a machine increases monotonically when considering identical machines. As a moving job
always jumps to a machine with minimum load, every job can jump at most once. This leads
to the following result.

I Theorem 5.3. In the FIFO model, for any pivot rule the worst-case running time is
exactly n− 1.

Proof. First consider an instance with m = n machines and every job has size 1. In the
initial schedule all jobs are assigned to the first machine. Then in every step one job moves
from the first machine to an empty machine. This happens n− 1 times.

For the upper bound, first observe that the running time of the least loaded machine is
monotonically increasing (this was also observed in [48]). As a job always strictly decreases its
running time by moving and moves to a least loaded machine, each job can only move once.
The first job on each machine does not move. Hence, the number of iterations is bounded
from above by n− 1. J

For the Makespan model, Even-Dar et al. [48] proved that the Min Weight pivot rule can
take as many as Ω((n/m2)m−1) steps. They also showed that this is near to the worst case
as every pivot rule terminates after O(( nK + 1)K) steps, where K is the number of different
job weights. We derive the bound O(n · W

pmin
) for arbitrary pivot rules, which is a significant

improvement if W
pmin

is small. This bound is almost optimal as it is easy to see that the worst
case instance used in [48] has pmax

pmin
= (n/(m− 1))m−2. It is also a generalization of the result

that every pivot rule converges in O(W + n) steps in the case of integer weights.

I Theorem 5.4. In the Makespan model, every pivot rule terminates after O(n · W
pmin

) steps.

Proof. As Even-Dar et al. [48] pointed out (without proof), after a job j moved to machine i,
it can only be unsatisfied again after a strictly greater job moved to machine i in the
meantime: A job always jumps to a machine with minimum load and the minimum load
increases monotonically. Consider the last job j′ entering machine i in iteration t′ before job j
jumps away from machine i in iteration t. Then machine i must be a machine with minimum
load before iteration t′. Now if pj > pj′ , then Lt+1

i would be stricly smaller than Lt′i , which
is a minimum load in a former iteration. If pj = pj′ , then job j cannot be unsatisfied because
job j′ is not unsatisfied.

Based on their idea of push-out potentials, we define the potential φ :=
∑m
i=1 u

t
i ≤ W ,

where uti is the maximum total weight of jobs on machine i that could consecutively move
away from i, starting in the schedule before iteration t. When a job j jumps from machine i
to machine i′, then uti′ was 0 beforehand. As mentioned above, no job from any other machine
than machine i′ can become unsatisfied by the move of job j and thus the potential φ
decreases by at least uti − ut+1

i − ut+1
i′ .
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If ut+1
i′ was larger than pj , then there would be a sequence of moves from jobs away from

machine i′ such that the load of machine i′ after these moves would be less than Lti′ . But
machine i′ was a machine with minimum load before iteration t, a contradiction. Note also
that uti − ut+1

i ≥ pj : Let J ′ be the jobs on machine i with total weight ut+1
i which could

consecutively jump away from machine i after iteration t. Then J ′ ∪ {j} could consecutively
jump away before iteration t and thus uti ≥

∑
j′∈J′∪{j} pj′ = ut+1

i + pj′ . We can conclude
that uti − ut+1

i − ut+1
i′ ≥ 0 and thus that φ is actually a potential.

We call a jump of job j to machine i in iteration t stable if after that jump, another
job moves to i before a job leaves i. As discussed above, through the stable jump the total
potential of all machines except machine i decreases by at least pj ≥ pmin and ut′i = 0 at
time t′ when the next job enters or leaves machine i. Hence, every stable jump induces a
potential drop of at least pmin. We maintain a set of indices: In the initial schedule, every
job has an index attached to it. When a job j moves away from machine i, then the indices
attached to j get transferred to the job j′ that moved last to machine i. If no such job exists,
the indices get deleted. Afterwards, a new index gets attached to job j on its new machine if
it was a stable jump.

When a job j moves to machine i, then no job on machine i was unsatisfied beforehand
as j jumps to a machine with minimum load. Thus, when an index gets reattached from
job j′ to job j, then j made j′ unsatisfied and thus pj is strictly greater than pj′ because only
larger jobs can make smaller jobs unsatisfied. Therefore, every index can be reattached at
most n times. Furthermore, every time a job j jumps away from a machine i, it has at least
one index attached to it: Assume to the contrary that it is the first jump without attached
indices. If it is the first jump by job j or its last jump was stable, then there is by definition
an attached index. Otherwise, there is a job j′ that left machine i such that job j is the last
job entering machine i beforehand and thus job j′ transferred its indices to job j. Hence, the
number of indices is at least one nth of the total number of jumps. There can only be W/pmin
many stable jumps as otherwise φ would be negative. This yields the desired bound. J

5.2.2 SJF Model
Finally let us consider the SJF model. The Max Weight pivot rule in the SJF model can take
an exponential number of steps even on two identical machines. Also an average-case analysis
yields a superpolynomial convergence time. We do not consider the Random pivot rule and the
Min Weight pivot rule in this subsection because for these rules we prove in subsection 5.4.3
polynomial upper bounds even for the more general setting of related machines. We leave it
as an open question whether the convergence time of the Best Improvement pivot rule is
polynomial for identical machines.

I Theorem 5.5. In the SJF model, the convergence time of the Max Weight pivot rule
is 2Ω(n) even for two identical machines. The smoothed convergence time of the Max Weight
pivot rule is 2Ω(

√
n) even for two identical machines and φ = 1.

The proof idea for Theorem 5.5 is the following. We consider 2k + 1 jobs with job sizes
p0 � p1 < . . . < p2k < (1 + 1/k) · p1, which are to be assigned to m = 2 identical machines.
Initially, job 1 and all even-numbered jobs j ≥ 4 are assigned to machine 1, whereas job 2 and
all odd-numbered jobs j ≥ 3 are assigned to machine 2. As the job sizes are all almost equal,
only the number of jobs smaller than job j on each machine and not their exact weights
determine on which machine job j wants to be. One can then show that in every second
iteration either job 2k − 1 or job 2k jumps. Then by induction, the number of iterations
grows exponentially in k.
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One can use the same idea for the second part of the theorem to prove an expected
superpolynomial convergence time when all job sizes are drawn uniformly at random from
the interval [0, 1]. Let k = Θ(

√
n) and let p1 < . . . < p2k be the 2k largest job sizes. Then

with constant probability p2k < (1 + 1/k) · p1 and the other n − 2k smaller jobs can be
distributed among the two machines in such a way that they generate nearly the same load
on both machines and thus do not affect the jumps of the 2k largest jobs.

Now let us go into detail. Let k ≥ 2. We construct a scheduling instance Ik with m = 2
identical machines and n = 2k + 1 jobs and an initial schedule for this instance from which
the Max Weight pivot rule needs 2k−1 steps to a local optimum. The jobs 1, . . . , 2k have
processing requirements p1 < p2 < . . . < p2k−1 < p2k < (1 + 1/k) · p1. Additionally there is
an extremely small job 0 with processing requirement p0 ≤ (k + 1) · p1 − k · p2k ≤ p1. Note
that (k + 1) · p1 − k · p2k = k · ((1 + 1/k) · p1 − p2k) is strictly positive. The additional job 0
is not needed for the proof of the first part of Theorem 5.5. However, we will see later that
its existence makes it possible to extend the theorem (with a slightly weaker bound for the
convergence time) to φ-perturbed scheduling instances.

I Lemma 5.6. Consider an arbitrary schedule σ on instance Ik. For a job j and a machine
i ∈ {1, 2}, let Ji(j) denote the set of jobs on machine i that have a smaller size than job j
ignoring job 0, i.e.,

Ji(j) = {j′ ∈ {1, . . . , j − 1} : job j′ is assigned to machine i} .

If |J1(j)| < |J2(j)|, then job j prefers to jump onto (stay on) machine 1.
If |J1(j)| > |J2(j)|, then job j prefers to jump onto (stay on) machine 2.

Lemma 5.6 states that in the case |J1(j)| 6= |J2(j)|, the values p0, p1, . . . , p2k are not of
interest when we have to decide which of the machines 1 and 2 is favored by job j in the
current schedule. We only have to count on each machine the jobs whose indices are smaller
than j, ignoring job 0. Only in the case |J1(j)| = |J2(j)|, the values p0, p1, . . . , p2k matter.

Proof of Lemma 5.6. Due to symmetry, we only have to consider the first claim. For this,
observe that |J1(j)| < k since |J1(j)| < |J2(j)|, J1(j) ∩ J2(j) = ∅, and J1(j) ∪ J2(j) ⊆
{1, . . . , 2k}. We obtain∑

j′∈J2(j)

pj′ −
∑

j′∈J1(j)

pj′ ≥ |J2(j)| · p1 − |J1(j)| · p2k ≥ p1 + |J1(j)| · (p1 − p2k)

> p1 + k · (p1 − p2k) = (k + 1) · p1 − k · p2k ≥ p0 .

Hence, the total processing requirement of all jobs on machine 1 that are smaller than job j
is at most

p0 +
∑

j′∈J1(j)

pj′ <
∑

j′∈J2(j)

pj′ .

The latter sum is a lower bound for the total processing requirement of all jobs on machine 2
that are smaller than job j. J

I Definition 5.7. Let σ be an arbitrary schedule on instance Ik. By χ(σ) ∈ Z we denote
the difference between the number of jobs from {1, . . . , 2k} on machine 1 and the number of
jobs from {1, . . . , 2k} on machine 2. We call schedule σ balanced, if χ(σ) = 0. Otherwise, σ
is called imbalanced. In an imbalanced schedule, we call the machine with more jobs from
{1, . . . , 2k} the critical machine.
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Now consider the following schedule σk: Job 0 is assigned arbitrarily and job j ∈
{1, . . . , 2k} is assigned to{

machine 1 if j = 1 or (j ≥ 3 and j is even) ,
machine 2 if j = 2 or (j ≥ 3 and j is odd) .

In the remainder of this subsection, let S denote the sequence of schedules that we obtain
when we consider the Max Weight pivot rule, starting with schedule σk.

I Lemma 5.8. For any schedule σ from the sequence S, χ(σ) ∈ {−2, 0, 2}.

Proof. We prove the claim by induction. For the initial schedule, the claim is true since
χ(σk) = 0. Now consider an arbitrary schedule σ and its predecessor σ′ in S. For σ′, the
induction hypothesis states that χ(σ′) ∈ {−2, 0, 2}. If χ(σ′) = 0, then |χ(σ)| = 2 since the
value χ changes by 2 in each iteration. Let us consider the case |χ(σ′)| = 2. We show that
the largest job j on the critical machine i of σ′ will jump in the next iteration yielding
χ(σ) = 0. Due to |χ(σ′)| = 2, we obtain |Ji(j)| = k and |Ji′(j)| ≤ k − 1 in the schedule σ′,
where i′ = 3 − i denotes the other machine. Hence, in accordance with Lemma 5.6, job j
desires to jump. Due to the Max Weight pivot rule, it prevents all jobs j′ < j from jumping.
On the other hand, all other jobs j′ > j must be on machine i′ due to the choice of j. As
|Ji(j′)| = |Ji(j)| + 1 = k + 1 > |Ji′(j′)| for the schedule σ′, these jobs do not desire to
jump. This again follows from Lemma 5.6. Consequently, job j will jump from machine i to
machine i′ in the next iteration. This concludes the proof. J

I Lemma 5.9. Let σ be an arbitrary imbalanced schedule from the sequence S. Then at least
one of the two largest jobs 2k − 1 or 2k is assigned to the critical machine.

Proof. Assume, to the contrary, that there is an imbalanced schedule σ in S that assigns
both jobs 2k−1 and 2k to the non-critical machine. We consider the first such schedule in the
sequence and let i and i′ denote the critical and the non-critical machine, respectively. Since
the first schedule σk in the sequence S is balanced and, thus, is not equal to σ, schedule σ
must have a predecessor σ′ in the sequence S. Due to Lemma 5.8 and the observation, that
the value χ changes by 2 in each iteration, schedule σ′ must be balanced. Furthermore, since
machine i becomes the critical machine after the following iteration, a job must jump from
machine i′ to machine i. Consequently, as both, job 2k − 1 and job 2k, are not assigned to
machine i in schedule σ, they must be assigned to machine i′ in schedule σ′. Now let us
consider the largest job j that is assigned to machine i in schedule σ′. We will show that
this job is the next to jump, contradicting the fact that the next jump is from machine i′ to
machine i.

As all jobs j′ that are larger than j (including job 2k − 1 and 2k) are assigned to
machine i′, none of these can improve by jumping to machine i as |Ji(j′)| = k > |Ji′(j′)|
because schedule σ′ is balanced and j is the largest job on machine i. On the other hand, we
know that |Ji′(j)| ≤ |Ji′(2k− 1)| = k− 2 < |Ji(j)| since both jobs 2k− 1 and 2k are assigned
to machine i′. This implies that job j will be the next job to move. J

I Corollary 5.10. In the sequence S, the number of jumps involving one of the jobs 2k − 1
or 2k is at least half the number of all jumps.

Proof. Consider an arbitrary imbalanced schedule σ from the sequence S. According to
Lemma 5.9, at least one job from {2k − 1, 2k} is assigned to the critical machine i. Let
j ≥ 2k − 1 be the largest job on the critical machine. Then, |Ji(j)| = k > |J2−i(j)|, i.e.,
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job j desires to change its machine. Hence, the next jump will be performed by job 2k− 1 or
job 2k.

Since every second schedule from the sequence S is imbalanced and the last schedule of S
cannot be imbalanced due to the previous argument, at least half of the jumps involves job
2k − 1 or job 2k. J

The first part of Theorem 5.5 follows directly from the following lemma.

I Lemma 5.11. The number of iterations in the sequence S is at least 2k−1.

Proof. We prove the lemma by induction on k. For the base case k = 2, job 1 and job 4 are
assigned to machine 1 and job 2 and job 3 are assigned to machine 2 in schedule σ2. Hence,
job 3 will jump to machine 1 in the next iteration because p1 < p2. Afterwards, job 4 will
jump to machine 2. Hence, the number of jumps is at least 2 = 22−1.

For the inductive step let us consider an arbitrary value k ≥ 3. First of all observe that

p1 < p2 < . . . < p2k < (1 + 1/k) · p1 < (1 + 1/(k − 1)) · p1

and

p0 ≤ (k + 1) · p1 − k · p2k

< ((k − 1) + 1) · p1 − (k − 1) · p2k

< ((k − 1) + 1) · p1 − (k − 1) · p2(k−1) .

Particularly, the jobs 0, 1, . . . , 2(k−1), together with the machines 1 and 2, form a scheduling
instance Ik−1 with the properties required to apply the inductive hypothesis. Moreover,
when we remove the jobs 2k − 1 and 2k from schedule σk, then we obtain σk−1 for which
we can apply the inductive hypothesis. We classify the iterations that we obtain starting
from schedule σk as follows: if job 2k − 1 or job 2k changes the machine, then we call this
iteration a Type 2 iteration. Otherwise it is a Type 1 iteration. Observe that the subsequence
of all Type 1 iterations is exactly the sequence of iterations that we get when we start with
schedule σk−1. This is due to the fact that the behavior of the jobs 0, 1, . . . , 2(k − 1) is not
affected by the larger jobs 2k − 1 and 2k. Hence, the number of Type 1 iterations is at least
2k−2 in accordance with the inductive hypothesis. Finally, Corollary 5.10 states that there
are at least as many Type 2 iterations as Type 1 iterations, yielding the lower bound of 2k−1

for the total number of iterations. J

Proof of Theorem 5.5. Only the second part of the theorem is left to show. Let n denote
the number of jobs and let r1, . . . , rn denote the random processing requirements. For φ = 1,
every processing requirement ri is chosen uniformly at random from [0, 1]. Let x = 1

3
√
n
≤ 1

3

and k = bx4 · nc = b
√
n

12 c. We show that the convergence time is 2Ω(
√
n), unless at least one of

two failure events F1 or F2 occurs.
We define F1 to be the event that fewer than 2k values ri lie in the interval [1− x, 1] or

that fewer than n/3 values ri lie in the interval [0, 1−x]. In expectation, nx =
√
n

3 values ri lie
in the interval [1−x, 1]. Due to the Chernoff bound, the probability that fewer than 2k ≤ nx

2
values ri lie in the interval [1− x, 1], is bounded from above by exp(−xn/8) = exp(−

√
n/24),

which tends to 0 for n→∞. Additionally, the probability that at least n ·2x ≤ 2n/3 values ri
fall into the interval [1−x, 1] is at most 1/2 due to Markov’s inequality. Hence, with constant
probability the failure event F1 does not occur. From now on assume that this is the case.
Then at least 2k values lie in [1− x, 1] and at least n/3 values lie in [0, 1− x].
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By p1 < . . . < p2k we denote the 2k largest values ri. Observe that, under the assump-
tion ¬F1, p1 ≥ 1− x and hence

p̄0 := (k + 1) · p1 − k · p2k

= p1 − k · (p2k − p1)
≥ 1− x− k · x
= 1− (k + 1) · x

and

(k + 1) · x = kx+ 2x− x ≤ x2n

4 + 2x− x ≤ 1
36 + 2

3 − x ≤ 1− x .

Consequently, p̄0 ≥ x > 0 and

p2k = 1
k
· ((k + 1) · p1 − p̄0) <

(
1 + 1

k

)
· p1 .

Hence, the jobs with processing requirements p1, . . . , p2k together with the two machines
form an instance Ik as used in the proof of the first part of Theorem 5.5 (except for the
missing job 0).

This alone does not suffice to prove the theorem because we cannot simply eliminate
the other jobs from the instance. Instead we will distribute them onto the two machines
in such a way that their total contributions to the loads of the two machines are almost
the same. Let R1 ⊆ {i | ri ∈ [1 − x, p1)} denote the remaining values from [1 − x, 1],
let R2 ⊆ {i | ri ∈ [0, 1−x)}, and let R = R1 ∪R2. We look for a subset R′ ⊆ R such that the
gap ∆(R′) :=

∣∣∑
i∈R′ ri −

∑
i∈R\R′ ri

∣∣ is small. For this, we first choose a subset R′1 ⊆ R1
such that α(R′1) :=

∑
i∈R1\R′1

ri−
∑
i∈R′1

ri ∈ [−1, 1]. Such a subset must always exist and it
can be constructed by greedily assigning the jobs from R1 one after another to the machine
with lower load.

Now we use the principle of deferred decisions and assume that the index set R2 is
already fixed. Note that the processing requirements of the jobs in R2 have not been chosen
yet. Then each value ri with i ∈ R2 is uniformly distributed on [0, 1− x]. Since we assume
that the failure event F1 does not occur, we have |R2| ≥ n/3. Our goal is now to find
a subset R′2 ⊆ R2 such that the gap β(R′2) :=

∑
i∈R′2

ri −
∑
i∈R2\R′2

ri is close to α(R′1)
because ∆(R′1∪R′2) = β(R′2)−α(R′1). Lueker [80] studied the partition gap of a set of random
numbers. Adapted to our notation, he proved that with probability exponentially close to 1, for
every α ∈ [−1, 1] there exists a subset R′2 ⊆ R2 such that β(R′2) is exponentially close to α. In
particular, the probability that there does not exist a subset R′2 for which |β(R′2)−α(R′1)| ≤ p̄0
goes to 0 for n → ∞. Failure event F2 is defined to be the event that no such subset R′2
exists.

If neither F1 nor F2 occurs, we consider the scheduling instance with jobs 1, . . . , 2k
with sizes p1, . . . , p2k and jobs 2k + 1, . . . , n with sizes corresponding to the remaining,
smaller values ri. The jobs 2k + 1, . . . , n are assigned to the machines 1 and 2 as induced
by the aforementioned partition, ensuring that the jobs from the larger class are assigned
to machine 1. The jobs 1, . . . , 2k are now assigned to the machines 1 and 2 according
to schedule σk. As long as one of the jobs 1, . . . , 2k can jump, none of the smaller jobs
2k+ 1, . . . , n will move due to the Max Weight pivot rule. Hence, as long as the jobs 1, . . . , 2k
move, they behave exactly the same as in schedule σk where machine 1 is assigned jobs from
{1, . . . , 2k} and the additional job p0 and machine 2 is only assigned jobs from {1, . . . , 2k}.
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By Lemma 5.11, this takes at least

2k−1 = 2bnx/4c−1 = 2b
√
n/12c−1

iterations. This proves the theorem because with constant probability neither F1 nor F2
occurs. J

5.3 Unit-Weight Jobs
In the case of unit-weight jobs, Even-Dar et al. [48] claimed that for Makespan, there exists
a pivot rule which converges in mn steps and that there is a pivot rule with convergence
time Ω(mn) if jobs do not necessarily move to the machine yielding the biggest improvement
but only have to improve their costs by jumping. We show that all pivot rules have linear
convergence time if jobs have to jump to the best machine.

I Theorem 5.12. In both the FIFO and the Makespan model for unit-weight jobs, the
convergence time for any pivot rule is n for any number m ≥ 2 of machines.

Proof. For the lower bound on two machines, assign all jobs to a machine of speed 1/(2n)
and set the speed of the other machine to 1. Then all jobs jump to the faster machine.

For the upper bound, we show that every job jumps at most once. Assume to the contrary
that there is a job j that jumps twice and let t be the iteration in which job j is the first
time able to move again after its first jump. Then in the previous iteration, a job j′ 6= j

jumped from a machine i1 to a machine i2 and job j is now able to jump to machine i1 as the
load of no other machine decreased during the last iteration. Job j cannot be on machine i2
because it has the same size as job j′ and thus we would end up in the same potential as
in iteration t− 1 if job j jumped from machine i2 to machine i1. But then job j could also
jump to machine i2 in the previous iteration because

ct−1
j = ctj > Lti1 + 1

si1
= Lt−1

i1
> Lt−1

i2
+ 1
si2

.

This contradicts the choice of t. J

5.4 Related Machines
For the most general case of related machines we use potential functions in order to show
pseudo-polynomial convergence times for different pivot rules in both the FIFO and the
Makespan model.

The potential φFIFO used in the FIFO model is the Rosenthal potential introduced in [95],
which is the sum of the execution times of the jobs. It is easy to see that φFIFO decreases by
at least ∆ when the jumping job improves its execution time by ∆. It decreases even more if
the jumping job was not on top of its original machine.

For the Makespan model, we use the potential

φMakespan :=
m∑
i=1

1
si
·


 ∑
j∈σ−1(i)

pj

2

+
∑

j∈σ−1(i)

p2
j

 ,

defined by Even-Dar et al. [48].
The fastest machine has always load at most W/smax. If there is a machine with load

greater than 2W/smax, then a job from this machine can improve its costs by at leastW/smax
by jumping to the fastest machine. This gives rise to the following lemma.
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I Lemma 5.13. The following two statements hold:

1. If there is a machine with load greater than 2W/smax, the best improvement can be
achieved by a jump from some job from a machine with load greater than W/smax to a
machine with load at most W/smax.

2. If there is no machine with load greater than 2W/smax, then φFIFO = O(n · W
smax

) and
φMakespan = O( W

2

smax
).

Proof. Let T := W
smax

. For any given schedule, we categorize the machines in the following
way:

A machine i is a Type 2 machine if Li > 2T .
A machine i is a Type 1 machine if 2T ≥ Li > T .
A machine i is a Type 0 machine if T ≥ Li.

Consider a job j on a machine i that can improve by jumping onto machine i′. If i is a
Type 0 machine, then the costs of j are at most T and thus j can only improve by at most T .
The costs of the top-most job on any Type 2 machine are greater than 2T . Therefore, such a
job can improve by strictly more than T by jumping onto the fastest machine, where its new
costs would be at most W/smax = T .

Second, i′ must be a type 0 machine as the new costs of j are at most its costs if it would
jump to the fastest machine, which is at most W/smax = T . This proves the first part of the
lemma.

If there are no Type 2 machines, then 2T is an upper bound for the costs of any job and
thus also for the makespan of the current schedule. Then φFIFO ≤ n · 2T = O(n · W

smax
). The

Makespan potential for a schedule σ can be bounded in the following way:

φMakespan =
m∑
i=1

1
si
·


 ∑
j∈σ−1(i)

pj

2

+
∑

j∈σ−1(i)

p2
j

 ≤ m∑
i=1

2
si
·

 ∑
j∈σ−1(i)

pj

2

=
m∑
i=1

2Li ·
∑

j∈σ−1(i)

pj

 ≤ 4T ·
m∑
i=1

∑
j∈σ−1(i)

pj = O(T ·W ) = O

(
W 2

smax

)
. J

I Corollary 5.14. For the Best Improvement pivot rule after n iterations and for the
Random pivot rule after expected O(n logn) iterations there is no machine left with load
greater than 2W/smax.

5.4.1 FIFO Model
Before we come to the general cases, let us first mention a linear-time result for the special
case of m = 2 machines.

I Theorem 5.15. In the FIFO model, the convergence time for any pivot rule on two related
machines is at least n and at most 2n− 2. There are pivot rules for which 2n− 2 is tight.

Proof. The lower bound of n for every pivot rule follows directly from Theorem 5.12.
For the lower bound of 2n− 2 for some pivot rules, consider two machines with speeds

s1 = 2 and s2 = 1 and n jobs with sizes p1 = 2, p2 = . . . = pn−1 = 1/(2n), and pn = 1. All
jobs are assigned to the slower machine 2 and their permutation π is the identity, i.e., job 1
is the first job to be processed and job n is on top.
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Let the jobs n, . . . , 1 jump from machine 2 to machine 1 in this order. This is valid as
(
∑
j pj)/s1 < 2 = p1/s2. Then let the jobs 2, . . . , n− 1 jump back to machine 2. This is valid

as (n− 2)/(2n) < 1/2 = pn/s1 and n is the first job on machine 1.
For the upper bound, consider the setting of two machines with s1 ≥ s2. We claim that

after a job jumped from the faster machine 1 to the slower machine 2, no job can jump in
the other direction from machine 2 to machine 1. Then there are at most n jumps from
machine 2 to machine 1 and at most n− 2 jumps from machine 1 to machine 2 as the first
job on the faster machine 1 does never jump to machine 2 and the last job leaving machine 2
does also not jump back.

In order to show the claim, let a job j jump from machine 1 to machine 2 in iteration t
and let j′ be another job on machine 2. Then,

ct+1
j′ = ctj′ ≤ Lt2 < Lt1 −

pj
s2

= Lt+1
1 + pj

s1
− pj
s2
≤ Lt+1

1 ≤ Lt+1
1 + pj′

s1
,

i.e., job j′ cannot improve its costs by jumping. The strict inequality comes from the fact
that job j improved its costs by jumping in iteration t. J

The main idea of the following proofs is that if a job jumps that is not on top of its
machine, the costs of all jobs above the moving job and thus the potential φFIFO decrease by
at least pmin/smax. We are able to show that this must happen after a polynomial number of
steps for the Best Improvement and for Fixed Priority pivot rules.

I Theorem 5.16. In the FIFO model, the convergence time of the Best Improvement pivot
rule is in O(m2n ·W/pmin).

Proof. According to Lemma 5.13 and Corollary 5.14, after O(n) iterations the potential
φFIFO is in O(n ·W/smax). Hence, it suffices to show that in every sequence of m2 consecutive
iterations, φFIFO drops by at least pmin/smax. Therefore, let us consider a sequence S of
maximum length in which φFIFO drops by strictly less than pmin/smax. It is obvious that
only jobs that are on top of some machine can jump as the running times of all the jobs
above the moving job decrease by at least pmin/smax.

For a given point in time, we call a job active if it jumps until the end of the sequence S.
At any time, there can only be at most one active job on any machine. To see this, assume to
the contrary that there are two active jobs j1 and j2 at the same time t1 on a machine i. Let
job j1 w.l.o.g. be directly above job j2, and let t2 > t1 be the first iteration in which job j2
leaves machine i again. Define α := ct1j1

− ct2j1
as the difference of j1’s running times at time t1

and t2. As job j2 was a top-most job in iteration t2 and no job below j2 could jump before j2
jumped, job j1 would have a running time of Lt1i − pj2/si if it jumped to machine i in the
next step, yielding a total improvement of j1’s running time of at least pmin/smax. If j1 does
not jump back to machine i in the next step, then either we have reached an equilibrium
(then pj2/si ≤ α) or there is a job (possibly also j1) that can improve by strictly more than
pj2/si −α. Hence, the potential drops by at least pj2/si ≥ pmin/smax during all the jumps of
job j1 between t1 and t2 and the iteration following t2 + 1.

Thus, we have shown that also at the beginning of the sequence S there are at most m
active jobs as on each machine there is at most one active job. It also implies that no job j
can jump back to a machine i it has already been onto as all jobs lying underneath j stay on
machine i until the end of the sequence S. Hence, every job jumps at most m− 1 times and
the length of S is bounded from above by m(m− 1). J

I Theorem 5.17. In the FIFO model, the expected convergence time of the Random pivot
rule is in O(m2n2 ·W/pmin).
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Proof. Due to Corollary 5.14, after an expected number of O(n logn) iterations, the potential
φFIFO is bounded by O(nW/smax). As shown in the proof of Theorem 5.16, after at most
m(m−1) iterations there is a job j such that φFIFO decreases by a total of at least pmin/smax
in this sequence if job j jumps next. Hence, after an expected number of O(n) such sequences
the potential φFIFO drops by this amount. J

For Fixed Priority pivot rules, we cannot assume anymore that after a linear number
of iterations there is no machine with load more than 2W/smax left and thus that φFIFO is
small. On the other hand, we know that the sum of the running times of all jobs that have
already jumped is bounded by O(n ·W/smax) and we are able to show that during O(n)
consecutive iterations, either a job jumps for the first time or the potential φFIFO drops by
at least pmin/smax. In order to bound the potential by O(n ·W/smax), we use the modified
potential function

φ′FIFO :=
n∑
j=1

min
{
cj ,

W

smax

}
.

I Theorem 5.18. In the FIFO model, the convergence time of any Fixed Priority pivot rule
is in O(n2 ·W/pmin).

Proof. As 0 ≤ φ′FIFO ≤ n ·W/smax, we only have to show that during every sequence of
n+ 1 steps, either φ′FIFO drops by at least pmin/smax or a job must jump for the very first
time. In such a sequence, it must be the case that a job j2 jumps directly after a job j1,
where the priority of j2 is greater than the priority of j1. This means that j2 jumps to the
old machine i of job j1 as it could not jump before the move of j1. If it was not j1’s first
jump, let t2 be the point in time between the two jumps by j1 and j2, and let t1 be the point
in time before j1 jumps the last time before t2− 1. As j2 does not want to jump to machine i
at time t1, but does this later at time t2, it must be the case that Lt1i > Lt2i . Hence, between
t1 + 1 and t2− 1 a job j′ assigned to machine i at time t1 must leave its machine. But during
this time, job j1 lies above job j′ yielding a running time improvement of pj′/si ≥ pmin/smax
for job j1 through the jump by j′. As j1 has jumped before, its running time before the jump
by j′ was already at most W/smax, meaning that also φ′FIFO drops by at least pmin/smax. J

The machine speeds do not occur in our bounds for the convergence times. Nevertheless,
different machine speeds result in a higher convergence time than in the case of identical
machines, as the following result shows. We believe that our proofs for the upper bounds on
the convergence times are too pessimistic and thus we conjecture polynomial convergence
times for all pivot rules. This is in contrast to the superpolynomial lower bounds in the
Makespan and SJF model but a crucial difference is that the costs of a job can never increase
in the FIFO model.

I Theorem 5.19. In the FIFO model, local search can take Ω(mn) steps. The convergence
time for the Min Weight pivot rule is in Ω(m2).

Proof. For the lower bound Ω(mn), let ` ≥ 1 and k ≥ 1 be two integers. There are m = 2k+1
machines and n = k`+ k + 1 jobs split up in 2k + 1 job classes J1, . . . , J2k+1. The machine
speeds are si = 2i−1 for 1 ≤ i ≤ 2k and s2k+1 = 22k+1. The job classes J1, . . . , Jk each
contain ` jobs with sizes 20, . . . , 2`−1 and the job classes Jk+1, . . . , J2k+1 each contain a single
job with size 2`+j for job class Jj .

Initially, each job class Jj is assigned to machine j and the jobs on a machine are processed
in monotonically increasing order of the job sizes. We consider the following k rounds 1, . . . , k.
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Before round i begins, the jobs from job class Jj , j ≤ k, are on machine j + i− 1 such that
they are processed in increasing order of the sizes, the jobs from job classes Jk+1, . . . , Jk+i−1
are on machine 2k + 1 and the other jobs have not moved before. Then we let the single job
from class Jk+i move from machine k+ i to machine 2k+1. Thereupon, the jobs from class Jk
move in ascending order of the sizes from machine k + i− 1 to machine k + i, the jobs from
class Jk−1 move in ascending order of the sizes from machine k + i− 2 to machine k + i− 1
and so on. One can easily see that every job strictly decreases its costs while moving. All
jobs from the job classes J1, . . . , Jk move in every round. Hence, there are Ω(k2`) = Ω(mn)
iterations.

For the lower bound Ω(m2) for the Min Weight pivot rule, let again k be an integer and
let ε > 0 be appropriately small. There are m = n = 2k + 1 machines and jobs. The machine
speeds are si = 1 + i · ε for 1 ≤ i ≤ 2k and s2k+1 = 4k. The job sizes are pj = 1− j · ε for
1 ≤ j ≤ k, pj = 2 + 2j · ε for k+ 1 ≤ j ≤ 2k, and p2k+1 = 4k. Initially, every job j is assigned
to machine j and the loads on the first k machines are less than 1, Lk+1 = . . . = L2k = 2 and
L2k+1 = 1. One can easily see that every job k+1, . . . , 2k can move to machine 2k+1 as L2k+1
remains to be less than 2 and that every such jump induces jumps from the jobs 1, . . . , k.
Hence, there are Ω(k2) = Ω(m2) iterations. J

5.4.2 Makespan Model
In this subsection, we consider the Best Improvement pivot rule in the Makespan model. We
use the fact that the potential φMakespan decreases by at least 2pmin · pmin/smax if a sequence
of jobs decrease their running time by a total of pmin/smax through jumping. This is due to
a lemma by Even-Dar et al. [48] that if a jumping job j improves its execution time by ∆,
then φMakespan drops exactly by 2pj∆.

Suppose that a job j wants to jump away from machine i to machine i′ and there is a
smaller job j′ on machine i. At the current time, the costs of j and j′ are the same as they
are on the same machine. But the additional costs job j′ would generate on any machine
are strictly smaller than the additional costs job j would generate. Hence, job j′ would have
smaller costs on machine i′ than job j. This leads to the following observation.
I Observation 5.20. When a job jumps away from a machine i according to the Best
Improvement pivot rule, it was a smallest job on machine i.

Let us now provide the main ideas of our proof. Imagine there are two jobs j1, j2 on the
same machine i and job j1 jumps away in iteration t1 making a small improvement directly
before job j2 leaves machine i in iteration t2 = t1 + 1. Then job j1 could improve its running
time by pj2/si by jumping back to machine i in iteration t2 + 1. If, however, t2 > t1 + 1,
it could happen that another job j3 from job j1’s new machine leaves this machine leaving
job j1 unable to jump back. But then job j3 is smaller than j1 according to Observation 5.20
and thus could jump to machine i in iteration t2 +1 unless it already made a big improvement
or another job from job j3’s new machine jumped away in the meantime etc. Lemma 5.21
proves that the potential drops significantly during such a sequence.
I Lemma 5.21. If two jobs jump away from a machine i at iterations t < t′ and no job
enters machine i between t and t′, then the potential φMakespan drops by at least p2

min/smax
during the iterations t, . . . , t′ + 1 when using the Best Improvement pivot rule.

In order to prove Lemma 5.21, we introduce the following terminology.
I Definition 5.22. Let (j1, . . . , j`), (i0, . . . , i`), and t1 < . . . < t` be sequences such that
for any k = 1, . . . , `, job jk jumps from machine ik−1 to machine ik in iteration tk. These
sequences are called
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1. forward thread if from iteration tk + 1 to iteration tk+1 − 1, no job leaves machine ik for
every k = 1, . . . , `− 1.

2. backward thread if from iteration tk + 1 to iteration tk+1 − 1, no job enters machine ik for
every k = 1, . . . , `− 1.

Intuitively, a forward thread always follows the first job leaving a machine and a backward
thread backtracks the last job entering a machine in the past.

I Lemma 5.23. Consider a forward thread ((j1, . . . , j`), (i0, . . . , i`), t1 < . . . < t`). Then
pj1 ≥ . . . ≥ pj` and the potential φMakespan decreases in total by at least 2(Lt1i0 −L

t`+1
i`

) · pmin
in the iterations t1, . . . , t`.

Proof. The job sizes are monotonically decreasing because at iteration tk for 2 ≤ k ≤ `,
job jk−1 is also on machine ik−1 when job jk leaves this machine and only the smallest job
on a machine is able to leave according to Observation 5.20.

The improvement of the jumping job in iteration tk is given by Ltkik−1
− Ltk+1

ik
leading to

a potential drop of at least 2(Ltkik−1
− Ltk+1

ik
) · pmin. As no job leaves machine ik between the

iterations tk + 1 and tk+1 − 1, it holds Ltk+1
ik

≤ Ltk+1
ik

. By summing over all possible choices
for k, we attain the desired bound. J

Proof of Lemma 5.21. Let job j jump away from machine i at iteration t and let job j′

jump away from machine i at iteration t′ such that no job enters machine i in the meantime.
W.l.o.g., also no job left machine i in the meantime. Let (j = j1, . . . , j`), (i = i0, . . . , i`),
and t = t1 < . . . < t` be the maximum forward thread starting in iteration t with t` < t′.
If Lt`+1

i`
≤ Lti − pmin/(2smax), the potential drop follows from Lemma 5.23. Otherwise, the

potential drop gained by letting job j` jump from machine i` to machine i at iteration t′ + 1
is at least

Lt
′+1
i`
−
(
Lt
′+1
i + pj`

si

)
≥ Lt`+1

i`
−
(
Lt
′+1
i + pj`

si

)
> Lti − Lt

′+1
i − pj`

si
− pmin

2smax

=pj + pj′ − pj`
si

− pmin

2smax
,

where the first inequality stems from the maximality of the chosen thread, i.e., no job
left machine i` in the meantime. Again by Lemma 5.23, it holds pj ≥ pj` and thus the
improvement for job j` would then be at least pmin/(2smax). The Best Improvement pivot
rule chooses a job in iteration t′ + 1 that gains at least that much leading to a potential drop
of at least p2

min/smax. J

Imagine now there are two jobs j1, j2 entering the same machine i in two consecutive
iterations t1 and t2 = t1 + 1, where job j1 moves first. Then job j2 would improve its running
time by at least pj1/si if it jumped in iteration t1 as it also has the incentive to move to
machine i after job j1’s jump. But if t2 > t1 + 1, it could be that in iteration t1 job j2’s
running time is smaller than in iteration t2 and in the meantime another job j3 enters job j2’s
machine. If job j3 is much larger than job j2, then job j2 would improve much by jumping to
job j3’s old machine. Otherwise, job j3 could have moved to machine i in iteration t1 unless
another job entered job j3’s old machine in the meantime etc. Lemma 5.24 shows that also
in this case the potential drops significantly.

I Lemma 5.24. If two jobs enter a machine i at iterations t′ < t and no job leaves machine i
between t′ and t, then the potential φMakespan drops by at least p2

min/(2 · smax) between t′ and
t+ 1 when using the Best Improvement pivot rule.
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Let us again first show an auxiliary lemma.

I Lemma 5.25. Consider a backward thread ((j1, . . . , j`), (i0, . . . , i`), t1 < . . . < t`). Then
the potential φMakespan decreases in total by at least (pj1 − pj`) · pmin/smax in the itera-
tions t1, . . . , t` + 1 when using the Best Improvement pivot rule.

Proof. Let 1 ≤ k ≤ ` and consider the iterations tk and tk + 1. If job jk+1 (which could also
be equal to job jk) jumped from machine ik to machine ik−1 in iteration tk + 1, then the
total improvement for the two jumping jobs would be

Ltkik−1
−
(
Ltkik + pjk

sik

)
+ Ltk+1

ik
−
(
Ltk+1
ik−1

+
pjk+1

sik−1

)
=Ltkik−1

−
(
Ltk+1
ik−1

+
pjk+1

sik−1

)
=
pjk − pjk+1

sik−1

,

where we used that Ltkik + pjk
sik

= Ltk+1
ik

and Ltk+1
ik−1

= Ltkik−1
− pjk

sik−1
. This leads to a potential

drop of φMakespan by at least 2(pjk − pjk+1) · pmin/smax. We do not know whether this term
is positive and hence whether this move by job jk+1 is legal, but we know that the job that
jumps in iteration tk + 1 improves by at least as much as job jk+1 would improve by jumping
to machine ik−1. By summing over all possible choices for k, we count every iteration at
most twice leading to the lower bound of (pj1 − pj`) · pmin/smax for the total decrease of
φMakespan. J

Proof of Lemma 5.24. Let job j′ enter machine i at iteration t′ and let job j enter machine i
at iteration t such that no job leaves machine i in the meantime. W.l.o.g., also no job enters
machine i in the meantime. Let (j1, . . . , j` = j), (i0, . . . , i` = i), and t1 < . . . < t` = t be
the maximum backward thread ending in iteration t with t1 > t′. As job j1 jumps from
machine i0 to machine i1 in iteration t1 and no other job enters machine i1 from then on until
iteration t2, it holds Lt1i0 > Lt1i1 + pj1

si1
≥ Lt2i1 . Reiterating this argument yields Lt1i0 > Lti + pj

si
.

As the chosen sequence is maximal, it also holds Lt′i0 ≥ Lt1i0 > Lti + pj
si

= Lt
′

i + pj′+pj
si

and
job j1 is on machine i0 during iteration t′. If pj1 > pj + pmin/2, the potential drop follows
from Lemma 5.25. Otherwise,

Lt
′

i0 ≥ L
t′

i + pj′ + pj1 − pmin/2
si

≥ Lt
′

i + pj1

si
+ pmin

2smax
,

i.e., job j1 would improve by at least pmin/(2smax) by jumping from machine i0 to machine i
in iteration t′. Hence, the job j′ moving in iteration t′ must decrease its running time by at
least as much yielding a potential drop of at least p2

min/smax. J

Hence, we are able to show that if there is a machine to which two jobs migrate without
a job leaving or from which two jobs leave without a job entering, the potential φMakespan
drops significantly. The proof then concludes with the observation that this must happen
every O(m2n) iterations.

I Theorem 5.26. In the Makespan model, the convergence time of the Best Improvement
pivot rule is in O(m2n ·W 2/p2

min).

Proof. According to Lemma 5.13, afterO(n) iterations the potential φMakespan is inO(W 2/smax).
Hence, it suffices to show that in every sequence of m2n consecutive iterations, φMakespan
drops by at least p2

min/(2smax).
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Let S be a sequence of maximum length such that φMakespan drops by less than p2
min/(2smax),

lasting from iteration t0 to iteration t`. We maintain a set of indices, which is empty at
time t0. When a job j jumps from a machine i1 to a machine i2 at iteration t ∈ {t0, . . . , t`}
and if there has not been a job that jumped to machine i1 during the iterations t0, . . . , t,
generate a new index which gets attached to machine i2. Otherwise, reattach the index
previously attached to machine i1 to machine i2. Lemma 5.21 shows that this is well-defined
as there cannot be another job leaving machine i1 before another index gets attached to this
machine.

At the end of the sequence, there can only be at mostm indices. If an index gets reattached
from machine i1 to machine i2 at iteration t, then Lti1 > Lt+1

i2
, i.e., the running time of the

machine an index is attached to is strictly monotonically decreasing.
Consider an index that jumps with job j at iteration t and with job j′ at iteration t′ to

the same machine i. Let j = j1, j2, . . . , j` be the jobs that entered machine i and let j′1, . . . , j′`
be the jobs that left machine i during the iterations t, . . . , t′ − 1 in this order. Lemma 5.21
and Lemma 5.24 show that the order in which this happened must be j1, j′1, j2, j′2, . . . , j`, j′`
and that the sequences have the same length, i.e., the sequences are well-defined. As always
only a smallest job on a machine is able to achieve the best improvement and for every k,
job jk is on machine i when job j′k leaves this machine, it must be the case that Lti ≤ Lt

′

i .
But in the iterations t+ 1 and t′ + 1, the same index is attached to machine i, meaning that
Lti + pj/si = Lt+1

i > Lt
′+1
i = Lt

′

i + pj′/si, i.e., pj > pj′ . This means that an index cannot
be attached twice to the same machine by a jump of the same job and thus an index gets
reattached at most n ·m times. This concludes the proof. J

5.4.3 SJF Model
I Theorem 5.27. In the SJF model, the convergence time of the Min Weight pivot rule is
exactly n, even on two machines. The expected convergence time of the Random pivot rule is
less than n2.

Proof. W.l.o.g., p1 ≤ . . . ≤ pn. When the Min Weight pivot rule selects a job j to jump, all
jobs 1, . . . , j − 1 do not want to jump. As larger jobs do not affect the decision whether a job
wants to jump, the jobs 1, . . . , j − 1 do not want to jump to job j’s old machine afterwards
and thus, the jobs 1, . . . , j will never jump again. Hence, every job jumps at most once and
the convergence time is at most n. On the other hand, every job jumps if all jobs are initially
assigned to an arbitrarily slow machine.

For the analysis of the Random pivot rule, let j be the smallest unsatisfied job. It takes
an expected number of O(n) iterations until job j gets selected to jump. Afterwards, it will
not jump again. By linearity of expectation, the convergence time for the Random pivot rule
is then in O(n2). J

5.5 Price of Anarchy for FIFO
Brunsch et al. [16] already showed that the smoothed price of anarchy for near list schedules
in the Makespan model, which correspond to local optima in the FIFO model, is Θ(log φ).
We give matching bounds for the deterministic case.

I Theorem 5.28. In the FIFO model, the price of anarchy for local search is Θ(logm) on
related machines and 2− 1/m on identical machines.

Proof. It is easy to see that every list schedule is a local optimum w.r.t. the FIFO model.
Hence, the lower bounds Ω(logm) by Aspnes et al. [6] for related machines and 2− 1/m by
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Graham [57] for identical machines translate to lower bounds for local search in the FIFO
model. Graham’s proof for the upper bound of 2− 1/m can be applied to the FIFO model
without any changes.

For the upper bound for related machines, we use the notation of near list schedules
defined in the Makespan model by Brunsch et al. [16]:

I Definition 5.29. We call a schedule σ on machines 1, . . . ,m with speeds s1, . . . , sm a near
list schedule, if we can index the jobs in such a way that

Li′ + pj
si′
≥ Li −

∑
`∈σ−1(i) : `<j

p`
si

(4)

for all machines i′ 6= i and all jobs j ∈ Ji(σ).

This definition is equivalent to the definition of a locally optimal schedule w.r.t the FIFO
model if one inverses the order of the jobs. Hence, in order to bound the price of anarchy
of local search in the FIFO model, we can use their results for near list schedules in the
Makespan model.

W.l.o.g., s1 ≥ . . . ≥ sm and let the makespan of an optimal schedule be exactly 1. Let σ
be a near list schedule with a makespan of strictly less than c+2 for some integer c, and let i∗
be the fastest machine with Lσi∗ < 2. Brunsch et al. [16] showed that the total processing
requirement on the machines i∗, . . . ,m in any optimal schedule is at least (c − 1) · s1
(cf. Lemma 9 and Lemma 13 with k = t = 2). On the other hand, they showed that
s1 ≥ 2b(c−1)/6c · si∗ (cf. Lemma 15 with i1 = 1 and i2 = i∗). Since in any optimal schedule,
the running times of the machines i∗, . . . ,m are at most 1 and the machine speeds are
monotonically decreasing, it holds

m ≥ m− i∗ + 1 ≥ (c− 1) · 2b(c−1)/6c,

i.e., c = O(logm) and thus the price of anarchy for FIFO is in O(logm). J
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6 Signed Max-Cut Above Edwards-Erdős Bound

We now come to the first kernelization results. We consider the Signed Max-Cut problem
parameterized above the Edwards-Erdős Bound (Signed Max-Cut AEE). After the Pre-
liminaries in Subsection 6.1, we discuss in Subsection 6.2 that Signed Max-Cut AEE can
be solved in linear time, i.e., we show Theorem 2.5. Subsection 6.3 is dedicated to Signed
Max-Cut AEE kernelization resulting in Theorem 2.6.

6.1 Preliminaries
Since in this and the next section we discuss general properties on possibly oriented and/or
labelled graphs, we choose to define the involved terms more rigorously for this part. We use
] to denote the disjoint union of sets. The term “graph” refers to finite undirected graphs
without self-loops, parallel edges, edge directions, or labels. For a graph G, let V (G) denote
its set of vertices and let E(G) denote its set of edges. In an oriented graph, each edge
e = {u, v} has one of two directions, −→e = (u, v) and ←−e = (v, u); thus, an oriented graph is
a digraph without 2-cycles and loops. Distinct vertices a, b, c are said to induce a triangle
(a, b, c) if they form a complete subgraph. In a labelled graph, each edge in E(G) receives
one of a constant number of labels. For an oriented and/or labelled graph G, let 〈G〉 denote
the underlying simple graph obtained from omitting orientations and/or labels. Throughout
the section, we assume graphs to be encoded as adjacency lists.

A graph is connected if there is a path between any two of its vertices. A connected
component of G is a maximal connected subgraph of G. A cut vertex of a graph G is a vertex
whose removal increases the number of connected components. A graph is 2-connected if it
does not contain any cut vertices. A maximal 2-connected subgraph of a graph G is called
a block or a 2-connected component of G. A block that contains at most one cut vertex
of G is called a leaf block of G. A clique tree is a connected graph whose blocks are cliques,
where a clique is a complete subgraph of a graph. A clique forest is a graph whose connected
components are clique trees.2 For an oriented and/or labelled graph G we say that G has
one of the above-defined properties if 〈G〉 does.

Let G be a graph. For a vertex subset X ⊂ V (G), the (vertex-)induced subgraph G[X]
is the graph with vertex set X whose edge set consists of all the edges of G with both
endpoints in X. Similarly, we define G−X = G[V (G) \X] for a vertex subset X ⊆ V (G)
and G− x = G− {x} for a vertex x ∈ V (G).

For a vertex v ∈ V (G), let NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. For signed graphs G, we
define NG(v) = N〈G〉(v). For a vertex set V ′ ⊆ V (G), let NG(V ′) = (

⋃
v∈V ′ NG(v)) \ V ′. For

disjoint vertex sets V1, V2 ⊆ V (G), let E(V1, V2) denote the set of edges with one endpoint
in V1 and the other endpoint in V2. For a signed graph G, let E+(G) ⊆ E(G) be the edges
with positive labels, and E−(G) = E(G) \ E+(G) be the edges with negative labels. Define
N+
G (v) = {u ∈ V (G) | {v, u} ∈ E+(G)} and N−G (v) = {u ∈ V (G) | {v, u} ∈ E−(G)} for all

v ∈ V (G). A sequence of vertices (v0, v1, . . . , v`) is a path in G if v0, v1, . . . , v` are distinct
vertices of G and {vi, vi+1 (mod `)} ∈ E(G) for i = 0, . . . , `. For vertices u, v ∈ V (G), a
[u, v]-path is a path in G between u and v. A path is induced if additionally {vi, vj} /∈ E(G)
for i = 0, . . . , ` and j 6= i+1 (mod `). The length of a path is the number of edges it contains,
and an `-path is a path of length `.

2 Clique forests are sometimes called block graphs; however, there are competing definitions for this term
in the literature and so we refrain from using it.
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Given a λ-extendible property Π, we define the excess of G over the lower bound pt(G)
with respect to Π as ex(G) = max{|E(H)| − pt(G) | H ⊆ G,H ∈ Π}. When considering
properties of labelled and/or oriented graphs, we denote by ex(Kt) the minimum value
of ex(G) over all labelled and/or oriented graphs G with 〈G〉 = Kt; here, Kt denotes the
complete graph of order t.

A strongly λ-extendible property Π diverges on cliques if ex(Kj) > 1−λ
2 for some j ∈ N.

For example, every strongly λ-extendible property with λ 6= 1
2 diverges on cliques [26]. We

recall the following fact about diverging properties:

I Proposition 6.1 ([26, Lemmas 7-8]). Let Π be a strongly λ-extendible property diverging
on cliques, and let j ∈ N, a > 0 be such that ex(Kj) = 1−λ

2 + a. Then ex(Ki) ≥ ra for all
r ∈ N and i ≥ rj.

We will need the following proposition. For Signed Max-Cut, we will apply it with
λ = 1

2 .

I Proposition 6.2 ([26, Lemma 6]). Let Π be a strongly λ-extendible property, let G be a
connected graph and let U1 ] U2 be a partition of V (G) into non-empty sets U1, U2. For
i ∈ {1, 2} let ci be the number of connected components of G[Ui]. If ex(G[Ui]) ≥ ki for some
ki ∈ R and i ∈ {1, 2}, then ex(G) ≥ k1 + k2 − 1−λ

2 (c1 + c2 − 1).

6.2 A Linear-Time Fixed-Parameter Algorithm for Signed Max-Cut
AEE

In this subsection we show that the fixed-parameter algorithm given by Crowston et al. [23] for
the Signed Max-Cut AEE problem can be implemented so as to run in time 8k ·O(|E(G)|).
That is, given a connected graph G whose edges are labelled either positive (+) or negative
(−), and an integer k, we can decide in time 8k · O(|E(G)|) whether G has a balanced
subgraph with at least |E(G)|/2 + (|V (G)| − 1 + k)/4 edges. This will prove Theorem 2.5.

We build on the following classical characterization of signed graphs:

I Proposition 6.3 (Harary [62]). A signed graph G is balanced if and only if there exists
a partition V1 ] V2 = V (G) such that all edges in G[V1] and G[V2] are positive and all
edges E(V1, V2) between V1 and V2 are negative.

The algorithm by Crowston et al. [23] starts by applying the following seven reduction
rules. We restate them here, as they are crucial for our results. A reduction rule is 1-safe
if, on input (G, k) it returns a pair (G′, k′) such that (G, k) is a “yes”-instance for Signed
Max-Cut AEE if (G′, k′) is. (Note that the converse direction does not have to hold.) In a
signed graph G we call a triangle positive if its number of negative edges is even.

In the description of the rules, G is always a connected signed graph and C is always a
clique without positive triangles. We initialize an empty set S of marked vertices. (Note: In
previous work the term selected vertices was also used, so we stick to the set name S.)

I Reduction Rule 1. If (a, b, c) is a positive triangle such that G − {a, b, c} is connected,
add a, b, c to S and delete them from G, and set k′ = k − 3.

I Reduction Rule 2. If (a, b, c) is a positive triangle such that G− {a, b, c} has exactly two
connected components C and Y , then add a, b, c to S and delete them from G, delete C, and
set k′ = k − 2.

I Reduction Rule 3. Let C be a connected component of G− v for some vertex v ∈ V (G). If
there exist a, b ∈ V (C) such that G− {a, b} is connected and there is an edge {a, v} but no
edge {b, v}, then add a, b to S and delete them from G, and set k′ = k − 2.
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I Reduction Rule 4. Let C be a connected component of G− v for some vertex v ∈ V (G). If
there exist a, b ∈ V (C) such that G− {a, b} is connected and (a, b, v) is a positive triangle,
then add a, b to S and delete them from G, and set k′ = k − 4.
I Reduction Rule 5. If there is a vertex v ∈ V (G) such that G−v has a connected component C
such that G[V (C) ∪ {v}] is a clique without positive triangles, then delete C. If |V (C)| is
odd, set k′ = k − 1; otherwise, set k′ = k.
I Reduction Rule 6. If a, b, c ∈ V (G) induce a 2-path (a, b, c) such that G − {a, b, c} is
connected, then add a, b, c to S and delete them from G, and set k′ = k − 1.
I Reduction Rule 7. Let C, Y be the connected components of G−{v, b} for some v, b ∈ V (G)
such that {v, b} /∈ E(G). If G[V (C) ∪ {v}] and G[V (C) ∪ {b}] are cliques without positive
triangles, then add v, b to S and delete them from G, delete C, and set k′ = k − 1.

Note: Rules 1/2/4 require positive edges. Hence, the other four rules suffice to handle the
classical Max-Cut AEE problem, where all edges are negative. We will make use of this in
Section 7.

We will call the vertex v of Rule 5 the anchor of the removed vertex set V (C).
We slightly changed Rule 5. Crowston et al. [23] always set k′ = k, whereas we set k′ = k−1

when |V (C)| is odd. In this case, pt(G[V (C)∪ {v}]) cannot be integral because |V (C)∪ {v}|
is even, and thus ex(G[V (C)∪{v}]) ≥ 1

4 . Therefore, our change for k is 1-safe by the following
result.
I Proposition 6.4 ([23, Lemma 2]). Let G be a connected signed graph and let Z be a connected
component of G− v for some v ∈ V (G). Then ex(G) = ex(G− Z) + ex(G[V (Z) ∪ {v}]).

We subsume the results by Crowston et al. [23] in the following proposition.
I Proposition 6.5 ([23]). Rules 1-7 are 1-safe. To any connected signed graph G with at least
one edge, one of these rules applies and the resulting graph is connected. For the set S of
vertices marked during the exhaustive application of Rules 1-7, G− S is a clique forest. If
|S| > 3k, then (G, k) is a “yes”-instance for Signed Max-Cut AEE.

Following Crowston et al. [23, Corollary 3], we assume—without loss of generality—from
now on that the resulting clique forest G− S does not contain positive edges.

I Lemma 6.6. Let G be a signed graph for which 〈G〉 is a complete graph. Then in
time O(|E(G)|), we either find a positive triangle in G or decide that none exists.

Proof. Let H = (V (G), E+(G)), where E+(G) are the positive edges in G. As a positive
triangle has either exactly zero or exactly two negative edges, our task is to find either a
triangle in H or an edge {a, b} ∈ E(H) and a vertex c ∈ V (H) such that {a, c}, {b, c} /∈ E(H)
(remember that 〈G〉 is a complete graph). In order to achieve this, we try to find a 2-coloring,
i.e., a bipartition, of H using breadth-first search [76].

If this succeeds, then we have found a bipartition A ]B of V (H) such that H[A], H[B]
are edgeless. If H is a complete bipartite graph or E(H) = ∅, then G does not contain a
positive triangle. Otherwise, we can assume, without loss of generality, that there is a
vertex a ∈ A with ∅ 6= NH(a) 6= B, i.e., there are vertices b ∈ NH(a) and c ∈ B \NH(a).
Then (a, b, c) is a positive triangle.
If it fails, then we have found an odd cycle C = (x1, . . . , x`, x1), i.e., ` is odd. If {x1, x3} ∈
E(G), then (x1, x2, x3) is a positive triangle in G. Otherwise, if {x1, x3} /∈ E(G) and
{x1, x4} /∈ E(G), then (x1, x3, x4) is a positive triangle in G. Otherwise, (x1, x4, . . . , x`, x1)
is an odd cycle in H with length smaller than C. Repeat this procedure until a triangle
is found. Note that every iteration can be performed in constant time.
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Hence, in linear time we either find a positive triangle or decide that none exists.
J

I Definition 6.7. Let T be a DFS tree of a graph G rooted at a vertex r ∈ V (G). For two
vertices v, w ∈ G, we say that v is lower than w if its distance to r with respect to T is larger
than the distance from w to r with respect to T . For a vertex v, we denote by Tv the subtree
of T rooted at v. A child tree of a vertex v is the subtree Tw of a child w of v.

I Lemma 6.8. Let G be a 2-connected graph and let r ∈ V (G) such that G − r is not
2-connected. Then in time O(|E(G)|), we can find an induced 2-path P in G− r such that
G− V (P ) is connected.

Proof. Note that r ∈ V (G− V (P )).
We first state the algorithm before we discuss why it is well-defined and correct.

1. Compute a cut vertex v of G − r and let Z1, Z2 be 2-connected components of G − r
containing v.

2. For i ∈ {1, 2}, find a vertex ui of V (Zi) \ {v} with minimum distance to r with respect
to G− v, and let Pi be a shortest [r, ui]-path in G− v.

3. For i ∈ {1, 2}, let Ti be a DFS tree of Zi rooted at v such that ui is a child of v in Ti if
{v, ui} ∈ E(G).

4. For i ∈ {1, 2}, let wi be a lowest (w.r.t. Ti) neighbor of v in Zi.
5. Return the induced 2-path P = (w1, v, w2).

Because G − r is not 2-connected, a cut vertex v and thus also Z1 and Z2 exist. The
paths P1 and P2 exist because G is 2-connected, i.e., G− v is still connected. As w1 and w2
are in different 2-connected components of G− r, they are in different connected components
of G−{r, v} and therefore not adjacent. Hence, P is indeed an induced path and the algorithm
is well-defined.

We now prove that G− V (P ) is connected by showing that for every x ∈ V (G)− V (P )
there is an [x, r]-path in G− V (P ). Note that r is still contained in G− V (P ) because it is
by definition of Z1 and Z2 not contained in either of them.

First look at the case that x ∈ V (Z1) (the case x ∈ V (Z2) is analogous). This im-
plies |V (Z1)| ≥ 3 because two vertices of Z1 are contained in P . Because Z1 is 2-connected,
the vertex v is adjacent to at least two vertices of V (Z1) \ {v}. It follows that u1 can-
not be the lowest neighbor of v in Z1 by construction of T1 and thus u1 is contained
in G − V (P ). Because v is a cut vertex of G − r, every path from r to Z1 that uses a
vertex from Z2 must also use v. But P1 ⊆ G− v, i.e., P1 cannot use vertices from Z2 and
thus it does not contain w2. Hence, P1 ⊆ G − V (P ) and therefore r is connected to a
vertex from Z1 − {v, w1} (namely, u1).
Because w1 is the lowest (w.r.t. T1) neighbor of v in Z1, every child tree of w1 is not
adjacent to v. But because Z1 is 2-connected, every child tree of w1 is adjacent to a
vertex that is higher than w1 as otherwise w1 would be a cut vertex of Z1. This shows
that Z1 − {v, w1} is connected and thus there is an [x, r]-path in G− V (P ) via ui.
Now consider the remaining case that x is neither contained in Z1 nor in Z2. As G
is 2-connected, there are two [x, r]-paths Q1, Q2 in G that do not share an internal
vertex. Let y be the vertex of V (Z1) ∪ V (Z2) that is nearest to x with respect to G− r.
Because G − r is not 2-connected and Z1 as well as Z2 are 2-connected components
of G− r, the vertex y is a cut vertex of G− r separating x from V (Z1)∪V (Z2)\{y}. This
means that every [x, r]-path that uses vertices from V (Z1)∪ V (Z2) must also contain the
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vertex y. Hence, as Q1 and Q2 do not share internal vertices, only at most one of these
two paths can use vertices from V (Z1) ∪ V (Z2) and thus one of the paths Q1, Q2 is fully
contained in G− V (P ).

Finally we show that the algorithm runs in linear time. The vertex v and the 2-connected
components Z1, Z2 can be found in time O(|E(G)|) using any linear-time algorithm for finding
2-connected components in undirected graphs. The vertices u1, u2 and the paths P1, P2 can
be found via breadth-first search in G− v, starting in r. The DFS trees T1, T2 can also be
computed in linear time. The restriction that ui shall be the direct child of v if these two
vertices are adjacent, can easily be followed by selecting the edge {v, ui} as the first traversed
edge in the depth-first search. In linear time, we can find the neighbor wi of v that is the
lowest with respect to Ti, i ∈ {1, 2}. This completes the proof.

J

I Lemma 6.9. Let G be a connected signed graph, let X be a leaf block of G, and let r ∈ V (G)
such that V (X) \ {r} does not contain any cut vertex of G. Then we can always apply one of
Rules 1-7 to G such that only vertices from X are marked and deleted, in time O(|E(X)|).

Proof. Let us first argue why we may assume for this proof that the edges of X are given in
form of an adjacency matrix (this is a standard argument):

Let v1, . . . , vn′ be the vertices and e1, . . . , em′ be the edges of X. Create an array L of
size m′ and a 2-dimensional array M of size n′ × n′, both of which are not initialized and
therefore need only constant construction time. For every edge ei = {va, vb}, where a < b,
set L[i] to (a, b) and set M [a][b] to i. This takes O(m′) time in total. After it, L is completely
and M is partly initialized.

In order to check now in constant time whether an edge {a, b}, a < b, exists in X, try to
read the integer i that is stored inM [a][b]. ThenM [a][b] is initialized and thus the edge {a, b}
exists if and only if L[i] is set to (a, b).

Having this construction, we can check in time O(|E(X)|) whether a subset X ′ ⊆ V (X)
induces a clique in G in the following way: We test for the O(|X ′|2) many pairs of vertices ofX ′
in lexicographically ascending order whether the corresponding edge exists in X. We stop at
the first vertex pair that does not exist as edge. This way we check at most |E(X)|+ 1 =
O(|E(X)|) pairs and every check can be processed in constant time.

Let us now turn to the proof of the lemma. We consider the following cases:

1. If X is a clique, then we can find with Lemma 6.6 in time O(|E(X)|) a positive tri-
angle (a, b, c) in X or decide that none exists. If none exists, then Rule 5 applies to X − r
and r. If G− {a, b, c} is connected, then Rule 1 applies to (a, b, c). If G− {a, b, c} is not
connected, then Rule 2 applies if r 6∈ {a, b, c}, and Rule 4 applies if r ∈ {a, b, c}.

2. If X is not a clique, but X− r is a clique, then again try to find a positive triangle (a, b, c)
in X − r. If this fails, then Rule 3 applies. Otherwise, r /∈ {a, b, c} and thus Rule 1 or
Rule 2 applies.

3. If X is not a clique, NX(r) = {x, y} for some vertices x, y ∈ V (X) with {x, y} /∈ E(X),
and X − {r, x} as well as X − {r, y} are cliques, then again try to find a positive
triangle (a, b, c) in X − {r, x} or X − {r, y}. If this fails, then Rule 7 applies. Otherwise,
r /∈ {a, b, c} and thus Rule 1 or Rule 2 applies.

4. Now assume that none of the previous cases applies. If X − r is not 2-connected, then we
can find with Lemma 6.8 a path P in X that does not use r such that X − V (P ) and
thus also G− V (P ) is connected. Hence, Rule 6 applies to P . From now on we assume
that X − r is 2-connected.
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We perform a breadth-first search on X starting in r to compute the distance from r to
all vertices x ∈ V (X) \ {r}. For i ≥ 1, let Li ⊆ V (X) \ {r} be the set of vertices with
distance i to r.
Find vertices x, y ∈ V (X) \ {r} such that {x, y} /∈ E(X), L1 6= {x, y}, and the dis-
tance from r to x is minimum. We do this again by testing all possible vertex pairs in
lexicographically ascending order. After at most |E(X)| tested pairs, two non-adjacent
vertices must have been found. Note that these vertices must exist, as otherwise one of
the previous cases would be applicable.
Find a shortest path Q from r to x; by breadth-first search, this can be done in
time O(|E(X)|). The length of Q is at most 2, because if L3 6= ∅, then every pair
of vertices from L1 and L3 is non-adjacent.
Then we try to find via breadth-first search in time O(|E(X)|) a shortest path P from x

to y in X − (V (Q) \ {x}). If P exists, then P is an induced path. Let P ′ be the unique
connected subgraph of P containing x with |V (P ′)| = 3 (i.e., P ′ contains the “first” three
vertices of P ).
If P ′ exists and G− V (P ′) is connected, then Rule 6 applies. Otherwise, we have found a
(not necessarily induced) path (p1, . . . , p`) of vertices from X[V (Q) ∪ V (P ′)] with p1 = r

such that G[X−{p1, . . . , p`}] is not connected. By construction, it holds that ` ≤ 6. As X
is 2-connected, there is an i ∈ {0, . . . , `−1} such that X ′ :=X \{p1, . . . , pi} is 2-connected,
but X ′ \ {pi+1} is not. Using Lemma 6.8, we can find a vertex-induced path P ′ in X ′
that does not use pi+1 such that X ′ − V (P ′) is connected. In particular, every vertex is
reachable from pi+1 and thus from p1 = r in X − V (P ′). It follows that G − V (P ′) is
connected and Rule 6 applies to P ′. J

Given an instance (G, k), we can thus compute in time O(k · |E(G)|) a vertex set S that
either proves that (G, k) is a “yes”-instance or G−S is a clique forest. We now show that, if a
partition for the vertices in S is already given, we can in time O(|E(G)|) compute an optimal
extension to G. We use the following problem, which goes back to Crowston et al. [25]:

Max-Cut Extension
Input: A clique forest GS and weight functions w0, w1 : V (GS)→ N0.
Task: Find an assignment ϕ : V (GS)→ {0, 1} maximizing

∑
{x,y}∈E(GS) |ϕ(x)− ϕ(y)|+∑1

i=0

∑
x : ϕ(x)=i wi(x).

I Lemma 6.10. Max-Cut Extension can be solved in time O(|V (GS)| + |E(GS)|) on
clique forests GS.

Proof. In order to solve Max-Cut Extension on GS in time O(|V (GS)|+ |E(GS)|), we
use the natural approach suggested by Crowston et al. [25], and argue why it runs in the
desired time. We provide a transformation that replaces an instance I = (GS , w0, w1) with
an equivalent instance I ′ = (G′S , w′0, w′1) such that G′S has fewer blocks than GS , and that we
can recover an optimal solution for I from an optimal solution for I ′. By repeatedly applying
the transformation we obtain a trivial instance, and thus the optimal solution for I.

We may assume that GS is connected, as otherwise we can handle each connected
component of GS separately. Let X ∪ {r} be the vertices of a leaf block in G, with r a cut
vertex of GS (unless GS consists of a single block, in which case let r be an arbitrary vertex
and X = V (GS) \ {r}). Recall that by definition of a clique forest, X ∪ {r} is a clique. For
each possible assignment to r, we will calculate the optimal extension to the vertices in X.
(This optimal extension depends only on the assignment to r, since no other vertices are
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adjacent to vertices in X.) We can then remove all vertices in X, and change the values of
w0(r) and w1(r) to reflect the optimal extension for each assignment.

Suppose we assign r the value 1. Let ε(x) = w1(x)− w0(x) for each x ∈ X. Now arrange
the vertices of X in order x1, x2, . . . , x|X|, such that if i < j then ε(xi) ≥ ε(xj). Observe that
there is an optimal assignment for which xi is assigned 1 for every i ≤ t, and xi is assigned 0
for every i > t, for some t ∈ {0, . . . , |X|}. (Consider an assignment for which ϕ(xi) = 0 and
ϕ(xj) = 1, for i < j, and observe that switching the assignments of xi and xj will increase∑1
i=0
∑
x : ϕ(x)=i wi(x) by an amount of ε(xi)− ε(xj) while

∑
{x,y}∈E(GS) |ϕ(x)−ϕ(y)| stays

the same.) So we only need to try |X|+ 1 different assignments to the vertices in X in order
to find the optimal coloring when ϕ(r) = 1. Let V1 be the value of this optimal assignment
over X ∪ {r}. By the same method we can find the optimal assignment when r is assigned 0,
whose value we denote by V0. Now remove the vertices in X from GS , and change wi(r) to Vi
for i = 0, 1.

Let us now analyze the running time of this procedure. If ε(v) > |X| for a vertex v ∈ X,
then ϕ(v) must be 1 in an optimal assignment. Similarly, ϕ(v) = 0 if ε(v) < −|X|. Hence,
we only have to sort at most |X| vertices according to their value {−|X|, . . . , |X|}, which we
can do in time O(|X|) using counting sort.

The value of the first tested single assignment ϕ can be computed in time O(|E(GS [X ∪
{r}])|. The next assignment ϕ′ we want to test differs in only one vertex v from the last
assignment. Hence, the only differences between ϕ and ϕ′ are in E({v}, X ∪ {r} \ {v}).
Therefore we can compute the value of ϕ′ in time O(|N(v)|). This way, we can check all
|X|+ 1 assignments in time O(|E(GS [X])|). Since each edge of E(GS) belongs to exactly
one block of GS , the entire procedure runs in time O(|E(GS)|). J

We now give a proof for Theorem 2.5. Given a connected signed graph G on m edges, by
Lemma 6.9 we find the set S from Proposition 6.5 in time O(km) (the case that k is not
decreased can only take O(m) total time). Guess one of the at most 23k partitions on S and
solve the corresponding Max-Cut Extension problem with Lemma 6.10.

Proof of Theorem 2.5. Let (G, k) be an instance of Signed Max-Cut AEE. Compute the
2-connected components of G and apply Lemma 6.9 to a leaf block X of G to obtain an
instance (G′, k′). Repeat this procedure exhaustively or until k′ ≤ 0.

If Rule 5 was applied, the only remaining vertex of X in G′ is the cut vertex in X. Thus
we do not need to recompute the 2-connected components of G and we can use Lemma 6.9
immediately again. This way, all applications of Rule 5 take time O(|E(G)|) in total. For
every other rule, it holds k′ ≤ k − 1. This means that the other rules are applied at most k
times and thus the whole procedure runs in time O(k · |E(G)|).

Let S be the set of marked vertices. If k′ ≤ 0, then (G, k) is a “yes”-instance. Otherwise,
|S| ≤ 3k. We guess a 2-coloring ϕS : S → {0, 1} for the vertices in S; there are 2|S| ≤ 23k = 8k
such 2-colorings. For ϕS , we solve Max-Cut Extension on the clique forest G− S, where
we try to extend ϕS to a maximum cut in G.

Formally, for an assignment ϕ : S → {0, 1} let Si = {v ∈ S | ϕ(v) = i} for i = 0, 1. For a
vertex v ∈ V (G) \ S, define the weight functions w0(v) := |N+

G (v) ∩ S0|+ |N−G (v) ∩ S1| and
w1(v):=|N+

G (v)∩S1|+|N−G (v)∩S0|. Then remove the vertices of S from G. By Proposition 6.5,
the resulting graph GS = G− S is a clique forest. Let p be the number of edges within G[S]
that are satisfied by the restriction of ϕ to G[S]. Then for any assignment to the vertices of
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GS , the maximum number of satisfied edges in G is exactly equal to

p+
∑

{x,y}∈E(GS)

|ϕ(x)− ϕ(y)|+
1∑
i=0

∑
x : ϕ(x)=i

wi(x),

where ϕ : V (GS) → {0, 1} is the desired bipartition. Thus, (G, k) is a “yes”-instance if
and only if the instance of Max-Cut Extension has optimal value at least |E(G)|/2 +
(|V (G)| − 1 + k)/4− p. We can test this in time O(m) for every assignment ϕS according to
Lemma 6.10. J

6.3 A Linear Vertex Kernel for Signed Max-Cut AEE
In this subsection we will show how to obtain a kernel with O(k) vertices and thus prove
Theorem 2.6. Let G0 be the original graph, let S be the set of marked vertices during
the exhaustive application of Rules 1-7 on G0, and let Gr be the resulting graph after the
exhaustive application of our kernelization Rules 8-9 (to be defined later) on G0.

Let C be a block in the clique forest G− S. Define

Cint = {v ∈ V (C) | NG−S(v) ⊆ V (C)}

as the interior of C, and Cext = V (C) \ Cint as the exterior of C. The block C is called
special if Cint ∩NG(S) is non-empty. Let B be the set of blocks in Gr − S and let B? be the
set of special blocks in Gr − S. A ∆-block is a non-special block C on exactly three vertices
for which |Cext| ≤ 2.

If there is a (unique by Proposition 6.5) remaining vertex v left after the exhaustive
application of Rules 1-7, then add an induced 2-path (v, w, x) to G0, i.e., define G′ =
(V (G0) ∪ {w, x}, E(G0) ∪ {{v, w}, {w, x}}). Then (G′, k + 2) is an instance of Max-Cut
AEE, that by Proposition 6.4 is equivalent to (G, k) because the excess of an induced
2-path equals 2/4. Therefore, we can assume that every vertex gets removed during the
exhaustive application of the reduction rules because we can assume that Rule 6 removes the
path (v, w, x) in the last iteration. Furthermore, as Rule 5 can then not be applied last, we
can assume that at least one of the vertices that are removed in the last iteration is contained
in S.

We will now use two-way reduction rules to reduce the size of G0 − S by shrinking
or merging blocks that satisfy certain conditions. These rules are similar to the two-way
reduction rules by Crowston et al. [23]. However, our two-way reduction rules have the
property that connected components of G− S cannot “fall apart”, i.e., two blocks in Gr − S
are reachable from each other if and only if the corresponding blocks in G0 −S are reachable
from each other. We can then show that Rules 1-7 can behave “equivalently” on Gr as on
G0 (Lemma 6.13), i.e., that the same set S of vertices can also be marked in Gr. This is the
crucial idea which allows us to obtain better kernelization results than previous work, as it
allows the following analysis.

To show size bounds for our kernel Gr, we first argue that (Gr, k) is a “yes”-instance if
there are many special blocks. Intuitively, if there are many special blocks in Gr − S, we can
find large pairwise vertex-disjoint stars Ys for every s ∈ S, whose leaves are internal vertices
of blocks of Gr − S. The excess of such a star Ys grows linearly in its size because a star is a
bipartite graph. We then (hypothetically) modify Rules 1-7 in such a way that whenever a
vertex s ∈ S is about to be removed, we additionally remove the associated star Ys. We can
distribute the internal vertices of blocks from Gr − S in such a way to the different stars Ys
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that the generated intermediate graphs during the exhaustive application of these rules are
all still connected. Therefore we can conclude with Proposition 6.2 that the excess of Gr can
only be by O(|S|) smaller than the total excess of all the stars Ys. Hence, we can show that
there are only O(k) special blocks or (Gr, k) is a “yes”-instance (Lemma 6.17).

Next we limit the total number of blocks in Gr − S by O(k). On a high level, Rule 8
deletes two internal vertices of a block and Rule 9 merges two ∆-blocks. There can only
be O(k) blocks in Gr −S with an even number of vertices (Lemma 6.22) because every block
corresponds to an application of Rules 1-7 where k was decreased (every application of a
rule can “generate” only one block of Gr − S and the only case in which k is not decreased
is when Rule 5 removes an even number of vertices, which together with their anchor form a
block of odd order).

On the other hand, non-special blocks of odd order can be shrunk by Rule 8. If they have
only at most two external vertices, they eventually become ∆-blocks. There cannot be more
∆-blocks than non-∆-blocks (Lemma 6.20) because Rule 9 merges adjacent ∆-blocks. We
conclude in Lemma 6.23 that the total number of blocks is in O(k).

The total number of external vertices in blocks of Gr − S, i.e., the number of cut vertices,
is of course bounded by the total number of blocks in Gr−S. Due to Rule 8, every non-special
block in Gr − S contains at most as many internal as external vertices. This is why the total
number of vertices in non-special blocks is also bounded by O(k). In order to bound the
number of vertices in special blocks (Lemma 6.25), we reuse the approach of Lemma 6.17.
The difference is that we do not take only single vertices from special blocks in order to
build stars Ys, s ∈ S, but larger sets of internal vertices from each block. The idea will be
described in more detail before Lemma 6.24. This will complete the proof.

6.3.1 Kernelization Rules
We now give our two-way reduction rules, which on an input (G, k) produce an instance
(G′, k) of Signed Max-Cut AEE. Note that the parameter k does not change. We call a
rule 2-safe if (G, k) is a “yes”-instance if and only if (G′, k) is. The first rule is again due to
Crowston et al. [23], who showed it to be 2-safe; here we contribute its improved running
time analysis. Recall our assumption that (without loss of generality) G−S does not contain
any positive edges.
I Reduction Rule 8. Let C be a block in G − S. If there exists X ⊆ Cint such that |X| >
|V (C)|+|NG(X)∩S|

2 ≥ 1, N+
G (x)∩ S = N+

G (X)∩ S and N−G (x)∩ S = N−G (X)∩ S for all x ∈ X,
then delete two arbitrary vertices x1, x2 ∈ X.
I Reduction Rule 9. Let C1, C2 be ∆-blocks in G−S which share a common vertex v. Make a
block out of V (C1)∪V (C2), i.e., add negative edges {{u,w} | u ∈ V (C1)\{v}, w ∈ V (C2)\{v}}
to G.

The combination of these two rules is a powerful tool to eliminate non-special blocks of
odd order: Rule 8 ensures that in every non-special block C it holds |Cint| ≤ |Cext| (otherwise,
set X to Cint, then |X| > |V (C)|

2 = |Cint|+|Cext|
2 ≥ 1, where the last inequality holds because

every non-special block contains at least two vertices). This means that Rule 8 reduces
non-special blocks C of odd order with |Cext| ≤ 2 to blocks of order 1 (i.e., deleting the block
if C was a leaf block of odd order) or order 3. In the latter case, C becomes a ∆-block.

Rule 9 combines two adjacent ∆-blocks to a block of order 5. If the common external
vertex of the ∆-blocks is not adjacent to S, the resulting block is also non-special and can
therefore again be shrunk by Rule 8. We can therefore contract arbitrarily large chains of
non-special blocks.
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I Lemma 6.11. Rules 8-9 are 2-safe. If they are applied to a connected graph G, then the
resulting graph G′ is also connected.

Proof. For Rule 8 we have nothing to show because it is Rule 8 from Crowston et al. [23].
Rule 9 does not destroy connectivity, as nothing is deleted. It remains to show that Rule 9 is
2-safe.

Let C = V (C1) ∪ V (C2). Consider a partition V1 ] V2 of V (G). This partition induces
balanced subgraphs H in G and H ′ in G′ (see Proposition 6.3). Let us first assume that
neither V (C1) nor V (C2) is completely contained in either V1 or V2. Then also |V1 ∩ C| ≤ 3
and |V2 ∩ C| ≤ 3. Because G[C] is the union of two triangles and G′[C] is a clique of size 5,
the partition induces subgraphs H[C] and H ′[C] with exactly four and exactly six edges,
respectively. Hence, |E(H ′)| = |E(H)|+ 2. It also holds that pt(G′) = pt(G) + 2, as G′ is
equal to G with four additional edges. It remains to show that there always is a partition
which induces maximum balanced subgraphs for G and G′ such that neither V (C1) nor V (C2)
is completely contained in one of the sides of the partition.

Therefore, let us assume w.l.o.g. that V (C1) be completely contained in V1. Let b be
an internal vertex of C1. Because b is in G as well as in G′ only adjacent to vertices in C,
it holds |NH(b)| = 0 and |NH′(b)| ≤ 2. As it also holds |NG(b)| = 2 and |NG′(b)| = 4, the
partition (V1 \ {b}) ] (V2 ∪ {b}) induces balanced subgraphs of G and G′ that cannot be
smaller than H and H ′, respectively. This completes the proof.

J

I Lemma 6.12. Given S, Rules 8-9 can be applied exhaustively to G0 in total time O(m).

Proof. First observe that we can compute the blocks of G0 − S in time O(m) using any
linear-time algorithm for detecting 2-connected components. Then we can store for every cut
vertex the list of ∆-blocks it belongs to. An update of this list after an application of one of
the rules can be done in constant time. As Rule 9 can be applied O(n) times and merging
two ∆-blocks takes constant time, all applications of this rule can be done in total time O(n).

We now discuss the running time of Rule 8. Let B be a block in G0 − S. Let SB be the
vertices from S adjacent to B, i.e., SB = S ∩NG0(B). Consider the auxiliary graph HB :=
(SB ∪Bint, E(SB , Bint)). We use partition refinement to find the partition V1] . . .]Vp = Bint
of the internal vertices of B such that two vertices v, w are in the same set Vi if and only
if N+

G0(v) = N+
G0(w) and N−G0(v) = N−G0(w). To be more precise, let P be a partition of

Bint. Initially, P = {Bint}. Then for every v ∈ V , we refine P by N(v), i.e., we split every
set X ∈ P into three sets X ∩N+(v), X ∩N−(v), and X \N(v). Using appropriate data
structures [75], this refinement can be executed in time O(|N(v)|) in every iteration. Thus,
we can compute V1 ] . . . ] Vp in time O(|V (HB)|+ |E(HB)|). As every edge of G0 is in at
most one auxiliary graph and every vertex s ∈ S is in at most |NG0(s)| auxiliary graphs, we
can do these computations for all blocks of G0 − S in total time O(m).

For a block B, we can find the biggest class Vi∗ in linear time. Then, as long as B does
not get merged due to Rule 9, Vi∗ is the only class from which Rule 8 can delete vertices.
(This is a bit subtle, as |Vi∗ | can be |V (B)|−1

2 after deleting vertices from Vi∗ , but then
NG0(Vi∗)∩S = ∅; hence, every other Vi has a neighbor in S and would thus need size strictly
larger than |V (B)|+1

2 in order to meet the requirements of Rule 8).
It is trivial to compute the number of possible applications of Rule 8 to Vi∗ . This means

that we can apply Rule 8 exhaustively (without allowing Rule 9 to be applied in the meantime)
on G0 − S in total time O(m).

Now observe that every block newly created by Rule 9 has constant size. Hence, if we
have also computed a partition according to the neighborhoods for the whole graph G0 − S
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(in time O(m)), we can check in constant time whether we can apply Rule 8 again on a newly
created block. As this happens O(n) times, the total time required for all applications of
Rule 8 is O(m). J

I Lemma 6.13. Rules 1-7 can be applied exhaustively to the graph Gr in such a way that
the set S′ of marked vertices is equal to S. Moreover, if only the Rules 3/5/6/7 are applied
to G0, the same set of rules is applied to Gr.

The last part of the lemma will be needed later in Section 7.2. It can easily be seen by the
fact that the mentioned rules are the only rules applicable to an instance of Max-Cut AEE
(where all edges are negative).

Proof of Lemma 6.13. It suffices to show the following: Let G be a connected graph and
let G′ be the resulting graph after a single application of Rule 8 or Rule 9 to G. Then
Rules 1-7 can be applied exhaustively to G′ in such a way that the same vertices are marked
as during the exhaustive application of these rules to G.

Let (G = G0, G1, . . . , Gq) be the sequence of graphs generated by the exhaustive applica-
tion of Rules 1-7 to G and let S be the set of marked vertices. Let Xi := V (Gi) \ V (Gi+1)
for i < q be the set of vertices removed in the i-th application of one of the rules (we start
counting at 0 here for convenience).

We first consider the case that G′ resulted from an application of Rule 8. Let C,X, x1, x2
be defined like in this rule. Furthermore, let i and j be the indices such that x1 ∈ Xi

and x2 ∈ Xj . W.l.o.g., i ≤ j. Because x1 /∈ S, the set Xi is removed by one of the
Rules 2/5/7. The only possible neighbor of x1 remaining in Gi+1 is either contained in S
or an external vertex in G−S. Because x2 is by the definition of Rule 8 an internal vertex
of G− S, it follows that i = j.
Consider now the sequence of graphs (G′ = G′0, G

′
1, . . . , G

′
q) defined byG′i′ = Gi′−{x1, x2}

for every index i′. Note that G′i′+1 = G′i′ − Xi′ for every index i′ 6= i, and G′i+1 =
G′i − (Xi \ {x1, x2}). We show that the exhaustive application of Rules 1-7 can yield this
sequence of graphs.
Consider first the iteration i′ = i. Because Xi contains vertices that are not in S, this set
must be removed from Gi by one of the Rules 2/5/7. If Rule 2 removes Xi from Gi, then
Rule 1 or Rule 2 can remove Xi\{x1, x2} from G′i, depending on whether Xi\{x1, x2} ⊆ S.
If Rule 5 removes Xi from Gi, then either the same rule can remove Xi \{x1, x2} from G′i
or G′i = G′i+1 due to |Xi| = 2. If Rule 7 removes Xi from Gi, then |X| ≥ 3 by the
definition of Rule 8 and therefore the same rule can remove Xi \ {x1, x2} from G′i.
For every other iteration we just have to ensure that connectivity is preserved, i.e., it
suffices to show that for every Y ⊆ V (G′i′) and two vertices a, b ∈ V (G′i′) \ Y , the
vertices a, b are in the same connected component of G′i′ − Y if and only if they are in
the same connected component of Gi′ − Y .
Let P be a shortest a-b-path in Gi′ − Y (if one exists). If P does not contain x1 and x2,
then P also exists in G′i′ . Otherwise, P contains exactly one of these two vertices because
they share the same closed neighborhood. Let w.l.o.g. x1 be the vertex contained in P .
Because x1 is an internal vertex in G− S, the predecessor and the successor of x1 in P
must be contained in Cext∪S. This means that |V (C)|+ |NG(X)∩S| ≥ |{x1, x2}|+2 ≥ 4
and thus |X| ≥ 3, i.e., there is a vertex x3 ∈ V (G) with the same closed neighborhood
as x1. With the same arguments as for x2 one can conclude that also x3 ∈ Xi. Therefore,
x3 is contained in G′i′ and thus we can replace x1 by x3 in P . Hence, a and b are in
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the same connected component of G′i′ − Y if they are in the same connected component
of Gi′ . The converse direction holds trivially.
Now consider the case that G′ resulted from an application of Rule 9. Let v, C1, C2 be
defined like in this rule. Because C1 and C2 are both ∆-blocks and hence not special, the
following is well-defined: Let i be the index such that Xi ⊆ V (C1) ∪ V (C2) and Xi is
removed by Rule 5 using v as anchor, and let j be the index such that v ∈ Xj and Xj is
removed by Rule 5 using some anchor w. Let ` be the index such that w ∈ X`.
We define the sequence of graphs (G′ = G′0, G

′
1, . . . , G

′
q) in the following way: In iteration i,

do nothing, i.e.,G′i+1 = G′i. In iteration j, removeXi∪Xj fromG′j . In all other iterations i′,
remove Xi′ from G′i′ . We show again that this sequence can be generated by the exhaustive
application of Rules 1-7 to G′.
Consider first the j-th iteration. Obviously Rule 5 can remove Xi ∪Xj from G′j using w
as anchor. For every other iteration, observe that w is the only vertex in V (G) \ (Xi ∪Xj)
with NG(w) 6= NG′(w). Hence, one can easily check for every single rule and every
iteration i′ 6= ` that whenever a rule removes Xi′ from Gi′ , it can also remove the same set
from G′i′ (intuitively because the rule cannot “see” the difference between G′i and Gi). It
remains to look at iteration `. Because G′i′ = Gi′ for every index i′ > j, it follows G′` = G`
and thus also the `-th iteration is safe. This completes the proof. J

6.3.2 Bounding the Kernel Size
After having shown Lemma 6.13, we can now turn to the task of showing a linear kernel
size. We first show some auxiliary lemmas, which will be useful in the proofs of the main
Lemmas 6.17/6.25.

For the whole subsection, let (Gr = G0, . . . , Gq) be the sequence of graphs generated
by the exhaustive application of Rules 1-7 to Gr such that the set of marked vertices is S,
and let Xi := V (Gi) \ V (Gi+1) be the set of vertices removed in the (i+ 1)-th application.
Recall that we assumed, without loss of generality, that Gq is the empty graph, i.e.,

⋃
i<qXi

covers V (Gr).

I Definition 6.14. Let Int be the set of internal vertices in Gr − S. Furthermore we call a
vertex v fixed if it is removed as the only vertex in an application of Rule 5 with anchor
in S, but v is not an isolated vertex in Gr − S. Denote by F the set of all fixed vertices.
Let Cand := Int \ F be the set of candidate vertices.

Fixed vertices play a special role in our clique forest. If a block B contains a fixed vertex v,
then V (B) \ {v} is removed by Rule 5 using v as anchor, before in a later iteration {v} is
removed by Rule 5 as the last vertex of its connected component of Gr−S. As a consequence,
the number of blocks in Gr − S does not increase when Rule 5 removes a fixed vertex. In
other words, the total number of applications of Rules 2/5/7 is equal to the number of
blocks in Gr − S minus |F |. It is also clear that there can only be at most k fixed vertices
or (Gr, k) is a “yes”-instance. The name “fixed” stems from the fact that later in the proofs
of Lemma 6.17 and Lemma 6.25 we do not want to “reattach” these fixed vertices.

I Lemma 6.15. Let G be a connected signed graph, and let X be a vertex set from G such
that G[X] is a clique containing only negative edges. If Rule 5 can remove X using some
anchor w ∈ V (G), then ex(G) ≥ ex(G−X) + min{|X ∩N+

G (w)|, |X ∩N−G (w)|}.

Proof. Let α := min{|X ∩ N+
G (w)|, |X ∩ N−G (w)}. Order the vertices {x1, . . . , x`} = X in

such a way that there is an index i∗ such that the edge wxi is positive if and only if i ≤ i∗. Be-
cause G[X] is a clique containing only negative edges, the partition
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({x1, . . . , xb`/2c}, {xb`/2c+1, . . . , x`}) induces a balanced subgraph of size pt(G[X])+ex(G[X]).
Now we add the vertex w to the left-hand side.

If i∗ ≤ b `2c, then α = i∗ and ({w, x1, . . . , xb`/2c}, {xb`/2c+1, . . . , x`}) induces a balanced
subgraph of size

pt(G[X]) + ex(G[X]) + i∗ + (`− b`/2c) = pt(G[X]) + ex(G[X]) + d`/2e+ α.

If i∗ ≥ d `2e, then α = ` − i∗ and ({w, x1, . . . , xd`/2e}, {xd`/2e+1, . . . , x`} induces a balanced
subgraph of size

pt(G[X]) + ex(G[X]) + d`/2e+ (`− i∗) = pt(G[X]) + ex(G[X]) + d`/2e+ α.

Because G[X∪{w}] contains ` edges and one vertex more than G[X], it follows that pt(G[X∪
{w}]) = pt(G[X]) + `/2 + 1/4 and thus

ex(G[X ∪ {w}]) ≥ ex(G[X]) + d`/2e+ α− `/2− 1/4 ≥ α,

where the last inequality follows from the fact that ex(G[X]) = 1
4 if ` is even. The lemma

now follows from Proposition 6.4. J

I Lemma 6.16. Let (G, k′) be an instance of Signed Max-Cut AEE that arises during
the exhaustive application of Rules 1-7 to (Gr, k). If in the next step Rule 5 removes a
vertex set X from G with an anchor s ∈ S, and if the connected component of Gr − S that
contains X consists of a single block, then ex(G) ≥ ex(G−X) + 1

4 .

Proof. Let C be the block of Gr − S containing X. For a better understanding, we first
point out the relation between C and X: Either V (C) = X or the single vertex in X was the
anchor of V (C) \X in a previous iteration and now this single vertex is removed by Rule 5.

We now turn to the proof. If |X| is odd, then the lemma follows immediately from
Proposition 6.5. Otherwise |X| is even, X = V (C) and NG(x) ∩ S = {s} for every x ∈ X.

If N+
G (s) ∩ X = ∅ or N−G (s) ∩ X = ∅, then Rule 8 would have eliminated X, as X

is an isolated block in Gr − S, i.e., it contains only internal vertices, which have all the
same neighborhood Hence, min{|X ∩N+

G (w)|, |X ∩N−G (w)} ≥ 1. Because Gr − S contains
only negative edges, in particular G[X] contains only negative edges. Therefore we can use
Lemma 6.15. J

The following lemma is dedicated to bounding the number of special blocks to O(k).
Our approach is the following. Let G be a connected vertex-induced subgraph of Gr and
let s ∈ V (G) ∩ S. Furthermore, let Ys be a subgraph of G that contains s and internal
vertices of blocks from Gr−S that are all adjacent to s. If all these vertices are from different
blocks, then Ys is a star, that is, it is a bipartite graph. Hence, if G − Ys is connected, it
holds ex(G) ≥ ex(G− V (Ys)) + ex(Ys)− 1

4 = ex(G− V (Ys)) + (|E(Ys)| − 1)/4.
The idea is now to apply Rules 1-7 again to Gr in a modified way: Whenever a vertex

from S is removed, then at the same time also the star Ys is removed, resulting in a decrease
of k by roughly |E(Ys)|. If there are more than Θ(k) many special blocks, i.e., blocks
with internal vertices that are adjacent to S, then we should be able to identify Gr as a
“yes”-instance.

In order to make this approach work, we make sure that the following properties hold:

All resulting graphs should be connected. In particular, we do not want to add fixed vertices
to Ys. For an illustration of the arising problem, take a look at the graph G depicted
in Fig. 3, in which Rule 6 can remove the sets X1 = {s1, s2, s3} and X4 = {s4, s5, s6}
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from the graph, whereas Rule 5 removes X2 = {x2} using x1 as anchor, and X3 = {x1}
using s4 as anchor. By definition the vertex x1 is a fixed vertex. If we added x1 to Ys3 ,
then G′1 = G[{x2, s4, s5, s6}] would not be connected.

s1 s2 s3 s4 s5 s6

x1

x2

Figure 3 An example where putting the fixed vertex x1 into Ys3 disconnects the graph.

Whenever a set X gets removed by Rule 5 during the “original application” and we want to
remove the setX ′ ⊆ X in our modified setting, thenX ′ should also be removable by Rule 5.
This means that, if s ∈ S is the anchor of X, then Ys cannot contain a vertex w ∈ X, as
otherwise both s and w would be in the neighborhood of X ′, contradicting the conditions
of Rule 5.

I Lemma 6.17. If Gr −S has more than 11k special blocks, then (Gr, k) is a “yes”-instance
of Signed Max-Cut AEE.

Proof. For a vertex s ∈ S, let Ws be the union of all vertex sets Xi such that s is the anchor
when Rule 5 removes Xi from Gi. Furthermore, let Γ := ∅ be the set of reattached vertices.

For every i = q − 1, . . . , 0 in decreasing order, do the following procedure successively
for every s ∈ Xi ∩ S: Let Ys ⊆ Gr[(Cand \Ws) ∪ {s}] be a maximum vertex-induced star
centred in s. Add V (Ys) \ {s} to Γ.

We define a sequence of graphs (Gr =G′0, . . . , G
′
q) in the following way: For every i ∈

{0, . . . , q − 1}, let X ′i := (Xi \ Γ) ∪
⋃
s∈Xi∩S V (Ys), and let G′i+1 :=G′i −X ′i.

I Claim 6.18. For every i = 0, . . . , q − 1, the following properties hold.

1. The graph G′i is a vertex-induced subgraph of Gi with Gi − Cand = G′i − Cand.
2. Both Gr[X ′i] and G′i are connected.

Proof of the claim. Let s ∈ S and w ∈ V (Ys) \ {s}. As w is not contained in S, it originally
got removed by Rule 2/5/7 and this happened not before s got removed (by the definitions
of these rules). Hence, every vertex of Γ cannot be removed later than originally, which is
why G′i must be fully contained in Gi. Furthermore, as only candidate vertices of Gr − S get
reattached, the claim Gi − Cand = G′i − Cand follows trivially.

For the second part, first note that the subgraphs Gr[X ′i ∩S] and Ys for all s ∈ Xi∩S are
connected. If Rule 5 removes Xi from Gi, then Xi ∩ S = ∅, i.e., Gr[X ′i] is a vertex-induced
subgraph of the clique Gr[Xi] and thus connected. If Rule 2/7 removes Xi from Gi, then
NGi(Xi \ S) ⊆ Xi ∩ S, i.e., each vertex s′ ∈ S ∩ Xj for j > i is non-adjacent to Xi \ S
in Gr. Hence, at least one star Ys, s ∈ Xi ∩ S, contains a vertex v from Xi \ S. The
graph Gr[(X ′i ∩ Xi) \ S] is a vertex-induced subgraph of the clique Gr[Xi \ S] and thus
connected. Hence, every vertex of X ′i is adjacent to Xi ∩ S = X ′i ∩ S or to v. Thus, Gr[X ′i] is
connected.

Regarding G′i, we show that for every v, v′ ∈ V (G′i) there is a [v, v′]-path in G′i. The
vertices v and v′ are also contained in Gi because G′i is a subgraph of Gi. Because Gi is
connected, there is a path v = p1, . . . , p` = v′ in Gi. If this path is not fully contained in G′i,
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let j, j′ ∈ {1, . . . , `} be indices such that pj , pj′ ∈ V (G′i) and pj+1, . . . , pj′−1 /∈ V (G′i). We
show that there are vertices w,w′ ∈ V (G′i) for which Gr[{pj , w, w′, pj′}] is connected. This
suffices to show the claim, as G′i is a vertex-induced subgraph of Gr.

Because Gi−Cand = G′i−Cand, the vertices pj+1, . . . , pj′−1 must all be non-fixed internal
vertices, and because they form a path, they must all belong to the same block C of Gr − S.
There are now two possibilities for pj and pj′ : Each of the two is either an external vertex
of C or contained in S. If pj is adjacent to every internal vertex of C, we can set w := pj .

Otherwise pj ∈ S. Let d be the index such that pj ∈ Xd. Because pj ∈ V (Gi), it holds d ≥ i.
Furthermore, as pj+1 /∈ V (G′i), it holds pj+1 ∈ X ′t for some t < i ≤ d. This means that Ypj
contains a vertex w from Cint, for otherwise pj+1 could have been added to Ypj . In the same
way we can find a vertex w′ ∈ (Cint ∩ Ypj′ ) ∪ {pj′}. In any case, w,w′ ∈ V (C) ∩ V (G′i), and
{w,w′} ∈ E(G′i). This shows the claim. J

I Claim 6.19. If |Γ| ≥ 5k, then (Gr, k) is a “yes”-instance.

Proof of the claim. Let i ∈ {0, . . . , q − 1}. If X ′i = ∅, then trivially ex(G′i+1) = ex(G′i).
Therefore we assume X ′i 6= ∅ from now on.

If Xi is removed by Rule 5, then Xi∩S = ∅, i.e., X ′i ⊆ Xi and thus NG′
i
(X ′i) ⊆ NGi(Xi) =

{v} for some anchor v. Because an anchor cannot be a candidate vertex by definition, and
because G′i − Cand = Gi − Cand, the vertex v is also contained in G′i. This means that
Rule 5 can remove X ′i from G′i with the same anchor v. Thus, ex(G′i) ≥ ex(G′i+1).

Consider now the case that a rule different to Rule 5 removes Xi from Gi. Then X ′i∩S 6= ∅.
For every vertex s ∈ X ′i ∩ S, the subgraph Ys is a star, and thus by Proposition 6.4 it holds
ex(Ys) = |E(Ys)|

4 . Furthermore, if X ′′ :=X ′i \
⋃
s∈X′

i
∩S V (Ys) is non-empty, then X ′′ is a clique

(removed by Rule 2/5/7) and thus connected.
Hence, repeated applications of Proposition 6.2 in appropriate order (such that all

generated intermediate graphs are connected) then yields

ex(G′i[X ′i]) ≥
∑

s∈X′
i
∩S

|E(Ys)|
4 − |X

′
i ∩ S|
4 =

∑
s∈X′

i
∩S

|E(Ys)| − 1
4 .

A further application results in

ex(G′i) ≥ ex(G′i+1) + ex(G′i[X ′i])−
1
4 = ex(G′i+1) +

∑
s∈X′

i
∩S

|E(Ys)| − 1
4 − 1

4 .

It holds |Γ| =
∑
s∈S |V (Ys) \ {s}| =

∑
s∈S |E(Ys)|. Because |S| ≤ 3k and only at most k

times a rule different to Rule 5 is applied (otherwise, (Gr, k) would be a “yes”-instance), it
follows that

ex(G′0) ≥ ex(G′q) +
∑
s∈S

|E(Ys)| − 1
4 − k

4 ≥
|Γ| − 3k − k

4 ≥ |Γ| − 4k
4 ,

which is larger than k
4 if |Γ| ≥ 5k. Therefore, (Gr, k) is a “yes”-instance if |Γ| ≥ 5k. This

shows the claim. J

Up to now we have already shown that at most 5k special blocks contribute a vertex to Γ
or (Gr, k) is a “yes”-instance. It remains to find a bound for the number of special blocks C
that do not share a vertex with Γ.

Let C be such a special block, and let i be the largest index such that Xi ∩ V (C) 6= ∅.
If C contains a fixed vertex, then Xi consists of this fixed vertex and k was decreased by 1
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when Rule 5 removed Xi. If the intersection NGr(CInt) ∩ S would contain a vertex s′ that
is not the anchor of Xi, then the star Ys′ could be enhanced by a vertex from Cint. Hence,
NGr (CInt) ∩ S consists of a single vertex s, which is the anchor of Xi. In particular, Xi got
removed by Rule 5.

Let Z be the connected component of Gr − S containing the block C. We now consider
the following two cases:

1. If Z contains another special block C ′, then one vertex of C ′ is contained in Γ. This is
because in every connected component of Gr − S only at most one block can have an
anchor in S (namely, the one that is removed last) and only these blocks can contain
fixed vertices. Hence, the number of such blocks C is bounded by |Γ|.

2. Now let Z not contain another special block. If |Xi| is odd, then k is decreased by 1
during the application of Rule 5. If C is an isolated block in Gr − S, then Lemma 6.16
assures that ex(G′i) ≥ ex(G′i+1) + 1

4 .
It remains the case that C is not an isolated block, but all other blocks of Z are not
special. Let C ′ 6= C be a leaf block of Z. As C ′ has not been eliminated by Rule 8, it
must contain exactly two vertices, namely an internal vertex and an external vertex w.
Then V (C ′) \ {w} got removed by Rule 5 using w as anchor. Because |V (C ′) \ {w}| = 1
is odd, k was decreased by 1 in that iteration.
Combining these two observations yields that the case that Z does not contain another
special block can only occur at most k times or (Gr, k) is a “yes”-instance.

Hence, the number of special blocks that do not share a vertex with Γ is bounded from
above by |Γ|+ k. This means that in total there are at most 2|Γ|+ k special blocks. As we
already pointed out that (Gr, k) is a “yes”-instance if |Γ| ≥ 5k, the lemma follows. J

Now that we have bounded the number of special blocks in Gr − S, we can turn to the
task of bounding the total number of blocks in Gr − S. In the following lemmas we show
that a constant fraction of all blocks is special.

I Lemma 6.20. The number of ∆-blocks in Gr is at most the number of non-∆-blocks in
Gr.

Proof. Assume the contrary. By Rule 8, any leaf block C of Gr − S cannot be a ∆-block, as
otherwise one could set X = Cint with |X| = 2 > 3

2 = |V (C)|+|NGr (X)∩S|
2 . Hence, there are

two ∆-blocks C1, C2 which share a common vertex v. Then Rule 9 applies. J

I Definition 6.21. We define a block forest F of Gr−S in the following way. For a connected
component Z of Gr − S, let CR be an arbitrary block in Z. For every block C in Z, there
is a vertex vC in F . Add an edge {vCR , vC} for every block C sharing a vertex with CR.
Additionally, add an edge {vC1 , vC2} if C1 and C2 share a vertex and every path from a
vertex in CR to a vertex in C2 contains at least two vertices from C1.

It is easy to verify that any block forest is actually a forest.

I Lemma 6.22. If more than k non-special blocks in Gr−S have an even number of vertices,
then (Gr, k) is a “yes”-instance of Signed Max-Cut AEE.

Proof. Let B be a non-special block of Gr − S, and let w be the external vertex of B. Then
Rule 5 removed V (B) \ {w} using w as anchor. If |V (B)| is even, then |V (B) \ {w}| is odd
and hence k was decreased by 1 in that iteration. J
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I Lemma 6.23. If Gr − S has more than 48k blocks, then (Gr, k) is a “yes”-instance
of Signed Max-Cut AEE. Otherwise, Gr − S has at most 48k external vertices, and∑

B∈B |Bext| ≤ 96k.

Proof. Consider a leaf block C of Gr − S that is not special. Then C cannot have at least
three vertices due to Rule 8. Every block with exactly one vertex must be special. Hence,
every leaf block is either special or it has exactly two vertices, i.e., due to Lemma 6.17 and
Lemma 6.22 there are at most 12k blocks that are leaf blocks or have an even number of
vertices.

Let F be a block forest of Gr − S. Every leaf of F corresponds to a leaf block in Gr − S
and every block C in Gr − S with |Cext| ≥ 3 corresponds to a vertex with degree at least
three in F . Because in every forest the number of leaves is at least the number of vertices
with degree at least three, there are at most 12k such blocks.

Now consider one of the remaining blocks C. Then C is not special, contains at most two
external vertices, and |V (C)| is odd. Because it cannot be shrunk by Rule 8, it holds that
|V (C)| = 3 and thus C is a ∆-block. This means that with the above arguments we bounded
the number of blocks that are not ∆-blocks by 24k. Lemma 6.20 yields that there can only
be up to 24k ∆-blocks. From this the bound of 48k blocks follows.

Let U be the set of external vertices in Gr−S. Every external vertex in Gr−S which is in
c(v) blocks induces c−1 ≥ 1 edges in F . Because F is a forest, it holds |E(F )| < |V (F )| ≤ 48k.
Thus,

∑
B∈B |Bext| ≤

∑
v∈U c(v) ≤ |E(F )|+ |U | ≤ 96k. J

Now we have bounds for the total number of blocks and the number of external vertices
in Gr − S. The number of internal vertices of non-special blocks is easily upper-bounded by
the number of external vertices (otherwise apply Rule 8). So the remaining challenge is to
find an upper bound for the number of internal vertices in special blocks.

We use the same approach as for Lemma 6.17, which already bounded the number of
special blocks. There we generated a vertex-induced star Ys for every s ∈ S, which contained
internal vertices of Gr − S that were all adjacent to s. Intuitively speaking, every special
block adjacent to s contributed a leaf to Ys, which lead to a constant gain in our bounds
for the excess of Gr. Now a constant gain per special block is not enough for our purposes.
Instead we need a gain that grows proportionally to the number of internal vertices in a
block.

Let B be a special block of Gr−S. First note that due to Rule 8 at most |Bext|+ |Bint|/2
vertices of Bint can be non-adjacent to S, i.e., it suffices to find a bound for |NGr (S) ∩Bint|.
Let s ∈ S be a vertex that is adjacent to Bint. Select subsets U+ ⊆ N+

Gr (s) ∩ V (Bint), U− ⊆
N−Gr (s) ∩ V (Bint), and Ū ⊆ V (Bint) \NGr (s) with the following properties:

|U+ ∪ U−| is maximal.∣∣|U+| − |U−|
∣∣ = |Ū |+ 1.

We will show that we can cover a constant fraction of all internal vertices of Bint if we repeat
this procedure for every vertex in S. Then we follow the lines of the proof of Lemma 6.15:
We can subdivide Ū into to sets Ū+ and Ū− such that|U+ ∪ Ū+| = |U− ∪ Ū−| − 1. This
means that (U+∪ Ū+, U−∪ Ū−) induces a maximum balanced subgraph of Gr[U+∪U−∪ Ū ].
Then we add the vertex s to the left-hand side of the partition and increase thereby the
number of edges in the induced subgraph by |U+ ∪ U−|, whereas the Poljak-Turzík bound
only increases by roughly the half of it. Thus the excess bound grows linearly in |U+ ∪ U−|
and thus in |NGr (s) ∩Bint|.
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I Lemma 6.24. Let G be a connected signed graph with a cut vertex s ∈ V (G) such that for
every connected component C of G− s the following properties hold:

C is a clique containing only negative edges.∣∣|N+
G (s) ∩ V (C)| − |N−G (s) ∩ V (C)|

∣∣ = |V (C) \NG(s)|+ 1.

Then ex(G) ≥ |V (G)\{s}|
4 .

Proof. Let C be a connected component of G− s. Furthermore, let U+ = V (C) ∩N+
G (s),

U− = V (C) ∩N−G (s), and Ū = V (C) \NG(s).
First note that C is an odd clique, i.e., ex(C) = 0. Because

∣∣|U+| − |U−|
∣∣ = |Ū |+ 1 and

G− s only contains negative edges, there is a partition Ū+ ] Ū− of Ū such that |U+ ∪ Ū+| =
|U− ∪ Ū−| − 1, i.e., (U+ ∪ Ū+, U− ∪ Ū−) induces a balanced subgraph of size pt(C) in C.
Then ({s}∪U+∪ Ū+, U−∪ Ū−) induces a balanced subgraph of size pt(C) + |NG(s)∩V (C)|,
whereas pt(G[V (C) ∪ {s}]) = pt(C) + |NG(s)∩V (C)|

2 + 1
4 . Therefore,

ex(G[V (C) ∪ {s}]) ≥ |NG(s) ∩ V (C)|
2 − 1

4 = |V (C)|
4 ,

where the last equality holds because |V (C)∩NG(s)| = |V (C)\NG(s)|+1. By Proposition 6.4,
we conclude that ex(G) ≥ |V (G)\{s}|

4 . J

I Lemma 6.25. If there are more than 111k internal vertices in special blocks in Gr − S,
then (Gr, k) is a “yes”-instance of Signed Max-Cut AEE.

Proof. For notational simplicity, all neighborhoods in this proof are with respect to Gr.
For a vertex s ∈ S, let Ws be the union of all vertex sets Xi such that s is the anchor

when Rule 5 removes Xi from Gi. Let W :=
⋃
s∈SWs. Furthermore, let Γ := ∅ be the set of

reattached vertices, and let Ys := {s} for every s ∈ S. (Note that Ys is a set as opposed to a
subgraph in the proof of Lemma 6.17, but this is merely a technical issue.)

For all blocks B of Gr−S and every i = q−1, . . . , 0 in decreasing order, run the following
procedure successively for every s ∈ Xi∩S: Let X :=Bint\(F ∪Γ∪Ws). Let U− ⊆ X∩N−(s),
U+ ⊆ X∩N+(v) and Ū ⊆ X\N(s) with |U−∪U+| maximal such that

∣∣|U−|−|U+|
∣∣ = |Ū |+1.

If such sets exist, i.e., if X ∩N(s) 6= ∅, then add U− ∪ U+ ∪ Ū to Ys and to Γ.
We define a sequence of graphs (Gr = G′0, . . . , G

′
q) in the following way: For every i ∈

{0, . . . , q − 1}, let X ′i := (Xi \ Γ) ∪
⋃
s∈Xi∩S Ys, and let G′i+1 :=G′i −X ′i.

I Claim 6.26. For every i = 0, . . . , q − 1, the following properties hold.

1. The graph G′i is a vertex-induced subgraph of Gi with Gi − Cand = G′i − Cand.
2. Both Gr[X ′i] and G′i are connected.

Proof of the claim. The proof is identical to the proof of the corresponding claim in
Lemma 6.17. For completeness we repeat it here.

Let s ∈ S and w ∈ V (Ys) \ {s}. As w is not contained in S, it originally got removed by
Rule 2/5/7 and this happened not before s got removed (by the definitions of these rules).
Hence, every vertex of Γ cannot be removed later than originally, which is why G′i must be
fully contained in Gi. Furthermore, as only candidate vertices of Gr − S get reattached, the
claim Gi − Cand = G′i − Cand follows trivially.

For the second part, first note that the subgraphs Gr[X ′i ∩ S] and G[Ys] for all s ∈
Xi ∩ S are connected. If Rule 5 removes Xi from Gi, then Xi ∩ S = ∅, i.e., Gr[X ′i] is a
vertex-induced subgraph of the clique Gr[Xi] and thus connected. If Rule 2/7 removes Xi

from Gi, then NGi(Xi \ S) ⊆ Xi ∩ S, i.e., each vertex s′ ∈ S ∩Xj for j > i is non-adjacent
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to Xi \ S in Gr. Hence, at least one set Ys, s ∈ Xi ∩ S, contains a vertex v from Xi \ S.
The graph Gr[(X ′i ∩Xi) \ S] is a vertex-induced subgraph of the clique Gr[Xi \ S] and thus
connected. Hence, every vertex of X ′i is adjacent to Xi ∩ S = X ′i ∩ S or to v. Thus, Gr[X ′i] is
connected.

Regarding G′i, we show that for every v, v′ ∈ V (G′i) there is a [v, v′]-path in G′i. The
vertices v and v′ are also contained in Gi because G′i is a subgraph of Gi. Because Gi is
connected, there is a path v = p1, . . . , p` = v′ in Gi. If this path is not fully contained in G′i,
let j, j′ ∈ {1, . . . , `} be indices such that pj , pj′ ∈ V (G′i) and pj+1, . . . , pj′−1 /∈ V (G′i). We
show that there are vertices w,w′ ∈ V (G′i) for which Gr[{pj , w, w′, pj′}] is connected. This
suffices to show the claim, as G′i is a vertex-induced subgraph of Gr.

Because Gi−Cand = G′i−Cand, the vertices pj+1, . . . , pj′−1 must all be non-fixed internal
vertices, and because they form a path, they must all belong to the same block C of Gr − S.
There are now two possibilities for pj and pj′ : Each of the two is either an external vertex
of C or contained in S. If pj is adjacent to every internal vertex of C, we can set w := pj .

Otherwise pj ∈ S. Let d be the index such that pj ∈ Xd. Because pj ∈ V (Gi), it holds d ≥ i.
Furthermore, as pj+1 /∈ V (G′i), it holds pj+1 ∈ X ′t for some t < i ≤ d. This means that Ypj
contains a vertex w from Cint, for otherwise pj+1 could have been added to Ypj . In the same
way we can find a vertex w′ ∈ (Cint ∩ Ypj′ ) ∪ {pj′}. In any case, w,w′ ∈ V (C) ∩ V (G′i), and
{w,w′} ∈ E(G′i). This shows the claim. J

I Claim 6.27. The following inequalities hold for every i ∈ {0, . . . , q − 1}.

1. If Xi ∩ S 6= ∅, then ex(G′i) ≥ ex(G′i+1) +
∑
s∈X′

i
∩S
|Ys\{s}|

4 − 1.
2. If Rule 5 removes Xi from Gi with an anchor w ∈ V (Gi), then

ex(G′i) ≥ ex(G′i+1) + min{|X ′i ∩N+(s)|, |X ′i ∩N−(s)|} .

In particular, ex(G′i) ≥ ex(G′i+1) for the case that w /∈ S.

Proof of the claim. 1. First of all we know from Lemma 6.24 that ex(G[Ys]) ≥ |Ys\{s}|4 for
every vertex s ∈ X ′i ∩ S. Furthermore, every subgraph G[Ys], s ∈ X ′i ∩ S, is connected
by construction. The set X ′i \ (Γ ∪ S) is also connected because it is a vertex-induced
subgraph of Xi \ S, which is a clique by the definitions of Rules 2/7. Hence, there is an
ordering Z1, . . . , Zd of the sets X ′i \ (Γ ∪ S) and (Ys)s∈S such that every graph (G[Z1 ∪
. . . ∪ Zi])i≤d is connected. We can deduce from the definitions of Rules 1-7 that d ≤ 4.
Hence, a (d− 1)-fold application of Proposition 6.2 results in

ex(G′i[X ′i]) ≥
∑

s∈X′
i
∩S

|Ys \ {s}|
4 − 3

4 .

Another application of the same proposition yields the first part of the claim.
2. Like in the proof of Lemma 6.17, we use the fact that G′i is a vertex-induced subgraph

of Gi with G′i−Cand = Gi−Cand. This means that the anchor w of Xi is also contained
in G′i and that X ′i ⊆ Xi cannot have any other neighbors than w. Then Rule 5 can
remove X ′i from G′i using w as anchor. The second part of the claim follows now from
Lemma 6.15. J

For an index i such that X ′i is removed by Rule 5 from G′i using an anchor s ∈ S, define αi :=
min{|X ′i ∩N+(s)|, |X ′i ∩N−(s)|} and βi := max{|X ′i ∩N+(s)|, |X ′i ∩N−(s)|}. Furthermore,
let αs be the sum of all αi such that s is the anchor of X ′i, and let α :=

∑
s∈S α.
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Because Xi ∩ S 6= ∅ for at most k many indices i (otherwise, (Gr, k) is a “yes”-instance),
the previous claim now shows that

ex(Gr) = ex(G′0) ≥
∑
s∈S

|Ys \ {s}|
4 − k + α = |Γ|4 + α− k .

Hence, if α ≥ 5k
4 or if |Γ| ≥ 5k, then ex(Gr) ≥ k

4 and (Gr, k) is a “yes”-instance.
It remains to show that the total number of internal vertices in special blocks is bounded

by Θ(|Γ|+α). Let B be a special block of Gr−S and let X = Bint\(Γ∪F ) = (Bint∩Cand)\Γ
be the remaining candidate vertices in B. Let i be the smallest index such that V (B)∩Xi 6= ∅.
There are the following possibilities.

1. The vertex set Xi is removed by Rule 2/7 from Gi or Xi is removed by Rule 5 using an
anchor that is an external vertex of Gr − S. Then V (B) = Bext ∪ (Bint ∩ Γ)∪X, because
if B contains a fixed vertex, then this vertex must be an external vertex of Gr − S.
Suppose there were x1, x2 ∈ X such that there is a vertex s ∈ (N+(x1) \N+(x2)) ∩ S.
Then x1 and x2 could have been added to Ys. (Note that x1 and x2 cannot be contained
in Ws because the anchor of Xi is not in S.) The same argument for negative edges
yields N+(x) = N+(X) and N−(x) = N−(X) for all x ∈ X.
Because Rule 8 cannot delete vertices from B, it now holds that

|X| ≤ |V (B)|+ |N(X) ∩ S|
2 = |Bext|+ |Bint ∩ Γ|+ |X|+ |N(X) ∩ S|

2 ,

i.e., |X| ≤ |Bext|+ |Bint ∩ Γ|+ |N(X)∩ S|. Now for every s ∈ N(X)∩ S there is a vertex
of Bint in Ys (otherwise we could add an arbitrary vertex of N(s) ∩ X to it). Hence,
|N(X) ∩ S| ≤ |Bint ∩ Γ| and the bound simplifies to |X| ≤ |Bext|+ 2 · |Bint ∩ Γ|.

2. The vertex set Xi is removed by Rule 5 using a vertex w ∈ Bint ∩ F as anchor.
The only difference to the case before is that Bint now contains a (single) fixed vertex
and thus |V (B)| = |Bext|+ |Bint ∩ Γ|+ |X|+ 1. The same reasoning results in the bound
|X| ≤ |Bext|+ 2 · |Bint ∩ Γ|+ 1. Note that this case occurs only at most |F | ≤ k times.

3. The vertex set Xi is removed by Rule 5 using a vertex s ∈ S as anchor. Then B does not
contain a fixed vertex because we chose i as the smallest index such that Xi contains
vertices from B, and an anchor from s means that Gi+1 cannot contain vertices from V (B)
any more.
The difference to the cases before is that edges from s to X can be positive or negative, i.e.,
not all vertices of X have the exactly same neighborhood. But with the same arguments
one shows that N+(x)\{s} = N+(X)\{s} and N−(x)\{s} = N−(X)\{s} for all x ∈ X.
Furthermore, because Xi does not contain vertices from S, the set X is identical to X ′i,
which has size |X ′i| = αi + βi.
Again due to Rule 8 we see that

βi ≤
|V (B)|+ |N(X) ∩ S|

2 ≤ |Bext|+ |Bint ∩ Γ|+ αi + βi + |N(X) ∩ S|
2 ,

i.e., βi ≤ |Bext|+ |Bint ∩ Γ|+ αi + |N(X) ∩ S| ≤ |Bext|+ 2 · |Bint ∩ Γ|+ αi. Then |X| =
αi + βi ≤ |Bext|+ 2 · |Bint ∩ Γ|+ 2αi.

Putting these bounds together shows that the number of internal vertices in special blocks
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can be bounded by∑
B∈B?

|Bint| =
∑
B∈B?

(|Bint ∩ F |+ |Bint ∩ Γ|+ |Bint \ (F ∪ Γ)|)

≤ k + |Γ|+
∑
B∈B?

|Bint \ (F ∪ Γ)|

≤ k + |Γ|+
∑
B∈B?

(|Bext|+ 2 · |Bint ∩ Γ|) + k + 2α

=
∑
B∈B?

|Bext|+ 2 · |Γ|+ 2k + 2α.

Lemma 6.23 showed that
∑
B∈B? |Bext| ≤ 96k. Furthermore, we discussed already that α ≤ 5k

4
and |Γ| ≤ 5k or (Gr, k) is a “yes”-instance. Thus, the total number of internal vertices in
special blocks is bounded from above by 96k + 10k + 2k + 5k

2 ≤ 111k. J

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let (G0, k) be an instance of Signed Max-Cut AEE. Like in
Section 6.2, apply Rules 1-7 exhaustively to (G0, k) in time O(k · |E(G0|), producing an
instance (G′, k′) and a vertex set S of marked vertices. If k′ ≤ 0, then (G′, k′) and thus also
(G, k) is a “yes”-instance.

Now apply Rules 8-9 exhaustively to (G0, k) in time O(|E(G)|) (Lemma 6.12) to obtain
an equivalent instance (Gr, k). Check whether (Gr, k) is a “yes”-instance due to Lemma 6.23
or Lemma 6.25. If this is not the case, then there are at most 3k vertices in S, at most 48k
external vertices in Gr − S and at most 111k internal vertices in special blocks. If there
were more internal than external vertices in a non-special block, we could apply Rule 8
to this block. Thus, the number of internal vertices in non-special blocks is bounded by
96k according to Lemma 6.23. Hence, the total number of vertices in Gr is bounded by
3k + 48k + 111k + 96k = 258k. J
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7 Linear Vertex Kernels for λ-Extendible Properties

In this section we extend our linear kernels for Signed Max-Cut to all strongly λ-extendible
properties satisfying (P1), or (P2), or (P3) (see page 23). Henceforth, fix a strongly λ-
extendible property Π, and let (G0, k) be an instance of Above Poljak-Turzík(Π). For
notational brevity, we assume the empty graph to be in Π. We refer to Section 6.1 for the
definitions used throughout this section.

As in the previous section, we use a set of 1-safe reduction rules to find a set S such
that G0 − S is a clique forest; the difference compared to Signed Max-Cut is the different
change of k. These rules were initially devised by Mnich et al. [87]; for sake of completeness,
we list them here. Every rule takes an instance (G, k) and produces an instance (G′, k′) such
that (G, k) is a “yes”-instance if (G′, k′) is. Initially, S := ∅.

I Reduction Rule 10. Let v ∈ V (G) and C be a connected component of G − v such
that G[V (C) ∪ {v}] is a clique. Delete C from G and set k′ = k.

I Reduction Rule 11. Suppose Rule 10 does not apply. Let C1, . . . , C` be the connected
components of G− v for some vertex v ∈ V (G). If at least one of the Cis is a clique, and at
most one of them is not a clique, then add v to S, delete v and all the Cis which are cliques
from G, and set k′ = k − d · 1−λ

2 , where d is the number of deleted cliques.

I Reduction Rule 12. For vertices a, b, c ∈ V (G) inducing a path (a, b, c) such that G−{a, b, c}
is connected, add a, b, c to S, delete them from G, and set k′ = k − 1−λ

2 .

I Reduction Rule 13. Suppose Rule 12 does not apply. Let v, b ∈ V (G) such that {v, b} /∈ E(G).
Let C1, . . . , C` be the connected components of G− {v, b}. If there is at least one Ci such
that both G[V (Ci) ∪ {v}] and G[V (Ci) ∪ {v}] are cliques, and there is at most one Ci for
which this does not hold, then add v, b to S, delete them from G, delete all the Cis which
satisfy the conditions, and set k′ = k − 1−λ

2 .

I Proposition 7.1 ([87], Lemmas 6-8). Rules 10-13 are 1-safe and can each be applied in
polynomial time. To any connected graph with at least one edge, one of these rules applies
and the resulting graph is connected. The exhaustive application of the rules to (G0, k) either
decides that ex(G0) ≥ k, or finds a set S of at most 6k

1−λ vertices such that G0−S is a clique
forest. This also holds for all strongly λ-extendible properties of oriented and/or labelled
graphs.

The detection which of the reduction rules can be applied to a graph G is completely
analogous to the Signed Max-Cut reduction rules. Hence, it follows immediately from
Lemma 6.9 that the rules can be applied exhaustively in time O(km).

7.1 Linear Kernel for Properties Diverging on Cliques
We first show that Above Poljak-Turzík Bound(Π) admits kernels with O(k) vertices for
all strongly λ-extendible properties Π that are diverging on cliques and for which ex(Ki) > 0
for all i ≥ 2.

For this subsection, let (G0 = G0, . . . , Gq) be the sequence of graphs generated by the
exhaustive application of Rules 10-13 to (G0, k), let S be the set of marked vertices, and
let X0, . . . , Xq−1 be vertex sets such that Gi −Xi = Gi+1 for all i < q.

I Definition 7.2. Let i < q be an index such that Rule 10 removes Xi from Gi. Let w ∈
V (Gi+1) be anchor of Xi. We call the vertices from Xi bad if ex(G[Xi ∪ {w}]) = 0. We also
call the block of G0 − S containing Xi bad.
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I Lemma 7.3. Let Π be a strongly λ-extendible property diverging on cliques, and let (G0, k)
be an instance of Above Poljak-Turzík(Π). Let Γ be the set of bad vertices resulting from
an exhaustive application of Rules 10-13 to (Gr, k). Then |V (G0) \ Γ| = O(k) or (Gr, k) is a
“yes”-instance.

As a consequence, if ex(Ki) > 0 for all i ≥ 2, then Above Poljak-Turzík(Π) admits a
kernel with O(k) vertices.

Proof. We know already that |S| = O(k) or (G0, k) is a “yes”-instance. If ex(Ki) > 0 for
all i ≥ 2, then there are no bad vertices, i.e., |Γ| = 0. In the following we show that there is a
constant ε > 0 such that ex(Gi) ≥ ex(Gi+1) + ε · |Xi \ (S ∪ Γ)| for every index i < q. This
implies that |V (G) \ (S ∪ Γ)| = O(k) or (G0, k) is a “yes”-instance, showing the lemma.

Because Π diverges on cliques, there is by definition an integer j ∈ N and a constant a > 0
such that ex(Kj) = 1−λ

2 + a. Note that j only depends on Π and not the instance (G0, k).
Hence, we can treat j as constant for a given property Π. Let

τ ′ := min
{

ex(G)
|V (G)| | ex(G) > 0 and 〈G〉 = Ki for some 2 ≤ i < j

}
.

Then τ ′ is well-defined, since j is constant; moreover, it can be computed in polynomial time
by computing the excess of all graphs G such that 〈G〉 is a clique of size up to j. Furthermore,
τ ′ > 0 holds by definition.

Let τ := min{τ ′, a2j } > 0.

I Claim 7.4. Let C be a clique with |V (C)| ≥ (a+ 3 · 1−λ
2 ) · (aj − τ)−1 =:M . Then ex(C) ≥

τ · |V (C)|+ 3 · 1−λ
2 .

Proof of the claim. Let i:=|V (C)|, and let r:=b ij c. Then Proposition 6.1 assures that ex(C) ≥
r · a. This means that

ex(C) ≥ ra ≥ i

j
· a− a ≥ 3 · 1− λ

2 + τ · i,

where the last inequality holds if

i ·
(
a

j
− τ
)
≥ a+ 3 · 1− λ

2 .

This is exactly the bound for i = |V (C)| given in the claim. Note that a
j − τ > 0 by the

definition of τ . J

Let now ε := min{ τ2 ,
1−λ
2M } > 0.

I Claim 7.5. For every i < q, it holds ex(Gi) ≥ ex(Gi+1) + ε · |Xi \ S|.

Proof of the claim. Let i < q. We consider the following different cases.

1. Rule 12 removes Xi from Gi. Then there is nothing to show, as Xi \ S = ∅.
2. Rule 10 removes Xi from Gi. Let C and v be defined like in Rule 10, i.e., Xi = V (C), C

is a connected component of Gi− v, and B :=Gi[V (C)∪ {v}] is a clique of size at least 2.
If C contains bad vertices, there is again nothing to show. Assume therefore from now on
that V (C) ∩ Γ = ∅. This means that ex(B) > 0.
Because |Xi \ S| = |V (B)| − 1 ≥ |V (B)|/2 and because B is a block of Gi, by the block
additivity of Π it suffices to show that ex(B) ≥ τ · |V (B)|.
If |V (B)| < j, this is immediately clear. Otherwise, let r := b |V (B)|

j c. Proposition 6.1
assures that ex(B) ≥ r · a, whereas |V (B)| ≤ (r + 1) · j. Because r ≥ 1, we therefore
obtain ex(B)

|V (B)| ≥
r·a

(r+1)·j ≥
a
2j ≥ τ .
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3. Rule 13 removes Xi from Gi. Let v, b ∈ Xi ∩ S. Mnich et al. [87, Observation 19]
showed that Xi consists of v, b, and a single clique C. If |V (C)| ≥ M , then ex(C) ≥
τ · |V (C)|+ 3 · 1−λ

2 . Proposition 6.1 then shows

ex(Gi[Xi]) ≥ ex(Gi[Xi \ {v}])−
1− λ

2 ≥ ex(Gi[Xi \ {v, b}])− 2 · 1− λ
2

≥ τ · |V (C)|+ 1− λ
2 .

Another application yields

ex(Gi)− ex(Gi+1) ≥ ex(Gi[Xi])−
1− λ

2 ≥ τ · |V (C)| ≥ ε · |V (C)| .

Otherwise, |V (C)| ≤M . Because Rule 13 is 1-safe, it holds

ex(Gi)− ex(Gi+1) ≥ 1− λ
2 ≥ 1− λ

2M · |V (C)| ≥ ε · |V (C)| .

4. Rule 11 removes Xi from Gi. Let C1, . . . , Cd be the connected components of Gi[Xi \ S].
Then every Ci is a clique. Note that d is exactly the variable named d in the definition of
Rule 11.
Order the cliques so that |V (Cj)| ≥M if and only if j ≤ p for some p ∈ {0, . . . , d}.
If p = 0, then, as Rule 11 is 1-safe, it holds

ex(Gi)− ex(Gi+1) ≥ d · 1− λ
2 ≥ d · 1− λ

2dM · |Xi \ S| ≥ ε · |Xi \ S| .

Consider now the case p > 0. The graph G′ :=G−
⋃
j≤p V (Cj) is still connected. Then

the previous claim together with Proposition 6.2 yields

ex(Gi) ≥ ex(G′) +
p∑
j=1

τ · |V (Cj)|+ 2p · 1− λ
2 ≥ ex(G′) +

p∑
j=1

τ · |V (Cj)|+
1− λ

2 .

Now if C1, . . . , Cp did not exist, then Rule 11/13 could still remove Cp+1, . . . ,

Cd, decreasing k by (d− p) · 1−λ
2 ≥ ε ·

∑
j>p |V (Cj)|. Now observe that

ex(Gi − (Xi \ S)) ≥ ex(Gi+1)− 1− λ
2 ,

because Xi ∩ S consists of a single vertex. Putting these bounds together yields the
desired result ex(Gi) ≥ ex(Gi+1) + ε · |Xi \ S|. J

The lemma follows now immediately from the previous claim. J

I Theorem 7.6. Let Π be a strongly λ-extendible property. If λ 6= 1
2 or G ∈ Π for every G

with 〈G〉 = K3, then Above Poljak-Turzík(Π) admits a kernel with O(k) vertices.

Proof. Crowston et al. [26, Lemmas 24-26] show that if λ 6= 1
2 or K3 ∈ Π, then Π diverges

on cliques and ex(Ki) > 0 for all i ≥ 2. Therefore, we can apply Lemma 7.3. J

7.2 Strongly 1
2-Extendible Properties on Oriented Graphs

We now turn to strongly 1
2 -extendible properties Π on oriented graphs. We can now use

a subset of Rules 1-7 again, to be more precise, exactly the rules that are applicable to
signed graphs with only negative edges. This has the advantage that we will be able to reuse
Lemma 6.13.

We restate the rules here because the parameter k is scaled by a factor of 1
4 due to the

different problem definitions. Let G always be a connected graph.



7.2. Strongly 1
2 -Extendible Properties on Oriented Graphs 85

I Reduction Rule 14. Let C be a connected component of G− v for some vertex v ∈ V (G)
such that G[V (C) ∪ {v}] is a clique. Delete C and set k′ = k.
I Reduction Rule 15. Let C be a connected component of G− v for some vertex v ∈ V (G)
such that C is a clique. If there exist a, b ∈ V (C) such that G − {a, b} is connected
and {a, v} ∈ E(G), but {b, v} /∈ E(G), then add a, b to S and delete them from G, and
set k′ = k − 1

2 .
I Reduction Rule 16. Let (a, b, c) be an induced 2-path for some a, b, c ∈ V (G) such that G−
{a, b, c} is connected. Add a, b, c to S and delete them from G, and set k′ = k − 1

4 .
I Reduction Rule 17. Let v, b ∈ V (G) such that {v, b} /∈ E(G) and G−{v, b} has exactly two
connected components C, Y . If G[V (C) ∪ {v}] and G[V (C) ∪ {b}] are cliques, then add v, b
to S and delete them from G together with C, and set k′ = k − 1

4 .
Rules 14-17 are exactly Rules 5/3/6/7 for Signed Max-Cut AEE with all edges negative.
Note that the concept of bad vertices translates naturally to vertices removed by Rule 14,

which is equivalent to Rule 10.

I Lemma 7.7. Rules 14-17 are 1-safe. To any connected graph with at least one edge, one
of the rules applies and the resulting graph is connected. If S is the set of marked vertices,
then G− S is a clique forest. If |S| > 12k, then (G, k) is a “yes”-instance.

Proof. First note that we cannot deduce 1-safeness from the fact that these rules are 1-safe
for Signed Max-Cut AEE. But Rules 14/16/17 are 1-safe because they are equal to or
special cases of Rules 10-13, which were shown to be 1-safe for all λ-extendible properties.

Now we show that Rule 15 is 1-safe. Let G, a, b, v and C like in the description of the
rule, and let G′ be the resulting graph. Let H ′ be a Π-subgraph of G′. We extend H ′ to
a Π-subgraph H of G by adding the vertices a, b, the edge {a, b}, and at least d |E({a,b},V (G′))|

2 e
edges between {a, b} and V (G′). We can do this due to the extendibility property of Π. Now
observe that |E({a, b}, V (G′))| is odd because every vertex of V (G′) \ {v} is adjacent to a if
and only if it is adjacent to b. Therefore, we can guarantee that

|E(H)| ≥ |E(H ′)|+ 1 +
⌈
|E({a, b}, V (G′))|

2

⌉
= |E(H ′)|+ 1 + |E({a, b}, V (G′))|+ 1

2 .

As pt(G) = pt(G′) + 2
4 + 1

2 + |E({a,b},V (G′))|
2 , it follows that ex(G) ≥ ex(G′) + 1

2 , i.e., Rule 15
is 1-safe.

Now we argue that one of the rules applies to any connected graph G with at least one
edge. Let G′ be the signed graph that results from adding a negative sign to every edge
of 〈G〉. We know from Proposition 6.5 that one of the Rules 1-7 applies to G′. To be more
precise, Rule 3/5/6/7 applies to G′ because all other rules require at least one positive edge.
But the mentioned rules correspond exactly to Rules 14-17, i.e., one of these rules must apply
to G.

Let H be the resulting graph after applying one of the Rules 14-17 to G, and let H ′
be the resulting graph after applying the corresponding rule of the Rules 3/5/6/7 to G′.
Then 〈G′〉 = 〈H ′〉 and the same set of vertices has been marked. Therefore, we can follow
from Proposition 6.5 that H is connected and that G− S is a clique forest.

The last claim simply follows from the fact that Rules 14-17 decrease k by at least 1
12

for every vertex that is added to S. Note that the change from |S| ≥ 3k to |S| ≥ 12k stems
from the different meanings of k: in the Signed Max-Cut AEE problem the question is
whether ex(G) ≥ k

4 , whereas Above Poljak-Turzík(Π) asks whether ex(G) ≥ k. J
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Like Crowston et al. [26], we restrict ourselves to hereditary properties. Let
→
K3 be the

orientation of K3 which is an oriented cycle, and let
9
K3 be the only (up to isomorphisms)

other orientation of K3. Crowston et al. [26] showed that if
→
K3∈ Π, then also

9
K3∈ Π, and

thus Theorem 7.6 applies. We now consider the case that
→
K3 6∈ Π together with

9
K3∈ Π.

I Proposition 7.8 ([26]). Let Π be a hereditary strongly 1
2 -extendible property on oriented

graphs with
9
K3∈ Π. Then ex(Ki) > 0 for all i ≥ 4 and Π diverges on cliques.

Following Proposition 7.8, Lemma 7.3 shows a “kernel” with O(k) + |Γ| vertices, where Γ
is the set of bad vertices of an input graph. The only oriented clique with at least two vertices,
but without positive excess is

→
K3, because ex(K2) = 1

4 for 1
2 -extendible properties. Therefore,

a vertex is bad if and only if it belongs to a set X removed from G by Rule 14 using an
anchor w such that G[X ∪ {w}] ∼=

→
K3. Hence, we only need reduction rules to bound the

number of blocks B in a clique forest with B ∼=
→
K3. (Note: If the anchor w is contained

in S, then the resulting block in the clique forest has only two vertices, but this can happen
only once per connected component of Gr − S, the number of which is dominated by other
tractable terms.)

Let Π be a hereditary strongly 1
2 -extendible property on oriented graphs with

9
K3∈ Π.

Let (G0, k) be an instance of Above Poljak-Turzík(Π). Lemma 7.7 either proves that
(G0, k) is a “yes”-instance, or it finds a set S of at most 12k vertices such that G0 − S is a
clique forest. Starting with (G0, k), we apply the following reduction rules, which on input
(G, k) produce an equivalent instance (G′, k).

I Reduction Rule 18. Let a, b ∈ V (G) \ S and w ∈ V (G) \ {a, b} such that
NG(a) = {w, b}, NG(b) = {w, a}, and G[{w, a, b}] ∼=

→
K3. Delete a and b from G.

I Reduction Rule 19. Let B1, B2, B3 be non-leaf-blocks in G − S and let v1, . . . ,

v4 ∈ V (G) be such that

vi, vi+1 ∈ (Bi)ext for all i ∈ {1, 2, 3};

Bi ∼=
→
K3 for all i ∈ {1, 2, 3}; and

NG({v2, v3, w1, w2, w3}) = {v1, v4}, where wi is the internal vertex of Bi.

Delete v3, w3, and add edges {v2, v4} and {w2, v4} to G.

Intuitively speaking, Rule 19 takes three blocks in G − S that form a “path” and are
all isomorphic to

→
K3. If all vertices except the “endpoints” v1 and v4 are not adjacent to

S and not contained in other blocks from G− S, then it is safe to delete one block. For an
illustration, see Fig. 4.

w1 w2 w3

v1 v2 v3 v4

→

w1 w2

v1 v2 v4

Figure 4 Illustration of Rule 19.



7.2. Strongly 1
2 -Extendible Properties on Oriented Graphs 87

I Lemma 7.9. Let Π be a hereditary strongly 1
2 -extendible property on oriented graphs with

9
K3∈ Π. Then Rules 18-19 are 2-safe. The resulting graphs are connected.

Proof. Let G′ be the resulting graph. Then G′ is clearly connected. Rule 18 is 2-safe because
ex(G) is additive on 2-connected components and G[{a, b, w}] is a 2-connected component of
G.

To show that Rule 19 is 2-safe, let G̃ = G−{v2, v3, w1, w2, w3}. Let X :=V (B1)∪V (B2)∪
V (B3) and X ′ :=X ∩ V (G′). First note that |E(H[X])| ≤ 6 for any Π-subgraph H of G and
|E(H[X ′])| ≤ 4 for any Π-subgraph H of G′, for otherwise there would be a block Bi with
|E(H[V (Bi)])| = 3. This is a contradiction, as Π is hereditary and

→
K3 6∈ Π. Also note that

pt(G) = pt(G′) + 2.
As Π is hereditary, it holds that H[V (G̃)] ∈ Π and H ′[V (G̃)] ∈ Π for all Π-subgraphs H

and H ′ of G and G′. Hence, it suffices to show that we can extend every Π-subgraph H̃ of G̃
to Π-subgraphs H and H ′ of G and G′ such that |E(H[X])| = 6 and |E(H[X ′])| = 4.

Let H̃ be a Π-subgraph of G̃. Let Y = G[X \{v1, v4}]−{v2v3} and Y ′ = G′[X ′ \{v1, v4}].
Examine Fig. 4 again for an illustration. Then Y and Y ′ both are trees with 4 and 2 edges,
respectively, and hence Y, Y ′ ∈ Π; see Fig. 5. By the extendibility of strongly 1

2 -extendible

w1 w2 w3

v1 v2 v3 v4

→

w1 w2

v1 v2 v4

Figure 5 The Π-subgraph Y in G and the Π-subgraph Y ′ in G′ are highlighted by thick edges. At
least half of the dotted edges between H̃ and Y or Y ′, respectively, can be added to a Π-subgraph.

properties, there is a Π-subgraph H of G which contains all edges of H̃, all edges of Y and
at least half of the edges between them. There are exactly 4 edges between them H̃ and Y ,
at most two of which can be contained in H as otherwise

→
K3 would be a subgraph of H.

Hence, |E(H[X])| = 6. With the same arguments we obtain a Π-subgraph H ′ of G′ with
|E(H ′[X ′])| = 4; this completes the proof. J

From now on, let Gr be the resulting graph after the exhaustive application of Rules 18-19
on G0. Furthermore, let (Gr = G0, . . . , Gq) be the sequence of graphs generated by the
exhaustive application of Rules 14-17 to (Gr, k), let S be the set of marked vertices, and
let X0, . . . , Xq−1 be the vertex sets such that Gi −Xi = Gi+1 for every i < q.

Rules 18-19 are special cases of Rules 8-9. As Rules 14-17 are Rules 5/3/6/7 for Signed
Max-Cut AEE with all edges negative, the next lemma follows from Lemma 6.13.

I Lemma 7.10. Rules 14-17 can be applied exhaustively on the graph Gr in such a way that
the set S′ of vertices removed by their application is equal to S.

Let B− be the set of bad blocks in Gr−S and let B+ be the set of all other blocks in Gr−S.
Let B̃ be the set of bad special blocks, i.e., the set of blocks B ∈ B with Bint ∩NGr (S) 6= ∅.
Furthermore, let R be the set of vertices r ∈ V (Gr) \ S such that

1. r is contained in exactly two blocks B1, B2 of Gr − S,
2. both blocks B1 and B2 are bad,
3. (B1)int 6= ∅ 6= (B2)int, and
4. B1 and B2 are not special.
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I Lemma 7.11. It holds |B−| = O(|B+|+ |B̃|+ |R|).

Proof. Let V − :=
⋃
B∈B− V (B) be the set of vertices contained in bad blocks (i.e., the bad

vertices together with anchors that are not in S and used to removed bad vertices), and
let H := G[V −]. Because V − ⊆ V (Gr) \ S and because Gr − S is a clique forest, also the
graph H is a clique forest.

Consider now a block forest F of H (see Definition 6.21). For a block B of H, denote the
corresponding vertex in F by fB. Let n1, n2, and n≥3 be the number of vertices in F with
degree 1, 2, and at least 3, respectively. Every leaf fB of F corresponds to a leaf block B
in H, i.e., n1 is at most the number of leaf blocks in H. Therefore we first bound the number
of leaf blocks in H.
I Claim 7.12. The number of leaf blocks in H is bounded by O(|B+|+ |B̃|).

Proof of the claim. Let B be a leaf block of H. Then there are the following possibilities:

B is an isolated block in Gr−S. Let i be the index such that Xi contains two vertices of B.
Then Xi was removed by Rule 14 using an anchor w ∈ V (G) with Gr[V (B) ∪ {w}] ∼=

→
K3.

Because B did not get eliminated by Rule 18, it must hold that NGr(V (B)) \ {w} 6= ∅.
This means that B is special. There can only be at most |B̃| many of these blocks.
|V (B)| = 2 and B is isolated in H, but not in Gr − S. This means that B shares a
vertex v with a block from B+. This vertex v is not contained in any other block from B−.
Therefore, there can only be at most |B+| many of these blocks.
|V (B)| = 2 and B is not isolated in H. Then B shares an external vertex with a block B′
in H. Because every connected component of H can only contain at most one block with
exactly two vertices (namely, the block removed last), the number of such blocks B is
bounded by the number of blocks in H with three vertices.
|V (B)| = 3. Then B contains three vertices u, v, w such thatNH(u) = {v, w} andNH(v) =
{u,w}. Because u and v did not get eliminated by Rule 18, there must be a vertex z ∈ V (G)
such that z ∈ NGr ({u, v}). If z ∈ S, then B is special. Otherwise, B shares a vertex with
a block from B+, and this vertex is not contained in any other block from B−. Therefore
the total number of blocks B with |V (B)| = 3 is bounded by |B̃|+ |B+|. J

Because F is a forest, it holds n≥3 ≤ n1. It now suffices to bound n2 because the number
of blocks in H is equal to n1 + n2 + n≥3.

Let fB1 and fB2 be two adjacent vertices in F . There are the following possibilities.

The degrees of both fB1 and fB2 are not equal to 2. The number of such pairs is already
bounded by O(n1).
|NH(fB1)| = 2 and |NH(fB2)| = 1. There are at most n1 such pairs.
|NH(fB1)| = 2 and |NH(fB2)| ≥ 3. There are at most n1 +n≥3 ≤ 2n1 such pairs. One can
easily see this by contracting all vertex sets X of F such that X is a path and |NH(x)| = 2
for all x ∈ X.
|NH(fB1)| = 2 and |NH(fB2)| = 2. The number of cases where B1 or B2 is a leaf block
(this can happen if this block is selected as root of the connected component of F in the
definition of block forests) is bounded by the number of leaf blocks in H.
The number of cases that B1 or B2 contains only two vertices is bounded by the number
of connected components of H, which is in turn bounded by the number of leaf blocks
in H.
It remains the case that B1 and B2 are not leaf blocks and B1 and B2 both contain
exactly 3 vertices. Then both blocks each contain exactly one internal vertex. The number
of cases where B1 or B2 is special is bounded by |B̃|.
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If this is not the case, let w be the external vertex shared by B1 and B2. Then w ∈ R.
Hence, the number of these remaining pairs is bounded by |R|.

This concludes the proof. J

I Lemma 7.13. It holds |B+|+ |B̃| = O(k) or (Gr, k) is a “yes”-instance.

Proof. Let B ∈ B+ and let i < q be the index that generates B. If Rule 15-17 removes Xi

from Gi, then ex(Gi) ≥ ex(Gi+1) + 1
4 because these rules are 1-safe.

On the other hand, if Rule 14 removes Xi from Gi using an anchor w ∈ V (Gi),
then ex(Gi[Xi∪{w}]) > 0 because B is not a bad block. Because λ = 1

2 , the term 4·ex(G) must
be integral for every graphG. It follows from the block additivity of Π that ex(Gi)−ex(Gi+1) ≥
ex(Gi[Xi ∪ {w}]) ≥ 1

4 . Hence, |B+| ≤ 4k.
We now turn to the number of bad special blocks. Because Rules 14-17 is exactly the subset

of Rules 1-7 applicable to signed graphs without positive edges, and because the kernelization
Rules 8-9 for Signed Max-Cut AEE and Rules 18-19 for Above Poljak-Turzík(Π) do
not change the number of special blocks, we can derive from Lemma 6.17 that the number of
special blocks in Gr − S is bounded by O(k) or (Gr, k) is a “yes”-instance. J

I Lemma 7.14. It holds |R| = O(|R ∩ NGr(S)|). Furthermore, it holds |R ∩ NGr(S)| =
O(|B+|+ |B̃|+ k) or (Gr, k) is a “yes”-instance.

Proof. For the first part of the proof, let r1, r2 ∈ R be adjacent in Gr. Then there are by
the definition of R three blocks B1, B2, B2 ∈ B− such that r1 ∈ V (B1), r1, r2 ∈ V (B2),
and r2 ∈ V (B3), such that B1, B2, B3 are bad and each have an internal vertex that is not
adjacent to S. Furthermore, there are no other blocks of Gr − S containing r1 or r2.

If both r1 and r2 were not adjacent to S, then all conditions of Rule 19 would be met (r1
and r2 would correspond to v2 and v3 in the definition of this rule). Hence, at least one of r1
and r2 is adjacent to S. Because every vertex of R is adjacent to at most two other vertices
from R, this means that |R| = O(|R ∩NGr (S)|).

Now we turn to the second part of the lemma. Let T be a maximum independent set
in G[R ∩ NGr(S)]. Again, as every vertex of R is adjacent to at most two other vertices
from R, it holds |T | ≥ 1

3 · |R ∩NGr (S)|.
Every vertex t ∈ T ⊆ R is by definition of R adjacent to exactly two internal vertices t′, t′′

of Gr − S, and these two vertices are not adjacent to S. For t ∈ T , let Ut = {t, t′, t′′}, and
let U :=

⋃
t∈T {t, t′, t′′}. Then Gr[U ] is a forest, because if there was an internal vertex x

from Gr − S adjacent to two vertices t1, t2 ∈ T , then t1 and t2 would be adjacent. See
Figure 6 for an illustration.

s1 s2

t1 t2

t′1 t′′1 t′2 t′′2

Figure 6 An example for the sets T and U . The vertices t1, t2 are in T , the vertices t′1, t′′1 , t′2, t′′2
are the corresponding internal vertices in U , and s1, s2 are in S. Edges contained in G[U ] are bold.



90 7. Linear Vertex Kernels for λ-Extendible Properties

Because every vertex of T is adjacent to S, there is a set (Ys)s∈S of stars with the following
properties:

Every star Ys is a vertex-induced subgraph of Gr centered in s and its leafs are from T .⋃
s∈S V (Ys) covers T .

Now we enhance the stars Ys by replacing every leaf t with Ut, i.e., we define Zs to be the
subgraph of Gr induced by s and Ut for every t ∈ T that is a leaf of Ys. Then every Zs, s ∈ S,
is a forest with |E(Zs)| = 3 · |E(Ys)| = 3 · |V (Ys) ∩ T | many edges. By the block additivity
of Π, it follows ex(Zs) = 3·|V (Ys)∩T |

4 for every s ∈ S.
Repeated application of Proposition 6.2 yields

ex(G[Z]) ≥
∑
s∈S

3 · |V (Ys) ∩ T |
4 − |S|4 = 3 · |T | − |S|

4 ,

where Z :=
⋃
s∈S V (Zs). This means that

ex(Gr) ≥ ex(G[Z])− c+ 1
4 ≥ 3 · |T | − |S| − c− 1

4 ,

where c is the number of connected components of G′ := G − Z. Now it suffices to show
that c ≤ |T |+ |B+|+ |B̃|, since then

ex(Gr) ≥ 2 · |T | − |B+| − |B̃| −O(k)
4 ,

i.e., |T | = O(|B+|+ |B̃|+ k) or (Gr, k) is a “yes”-instance.
Let us first bound the number of connected components of Gr −S. It is clear that Gr −S

can only have |B+| many connected components that contain a block that is not bad. Let
now W be a connected component of Gr − S that contains only bad blocks. If W contains
only one block, then this block is special. Otherwise, W contains at least two leaf blocks,
and because only one of the (bad) blocks of W can have size 2, there is a leaf block B in W
with |V (B)| = 3. Because B was not eliminated by Rule 18, it must be special. Hence, the
number of connected components of Gr − S containing only bad blocks is bounded by |B̃|
and thus the total number of connected components of Gr − S is bounded by |B+|+ |B̃|.

Because every vertex from U \ T is an internal vertex in Gr − S, the removal of these
vertices from Gr − S cannot increase the number of connected components. Furthermore, as
every vertex from T is contained in exactly two blocks of Gr−S, its removal can increase the
number of connected components by at most 1. Hence, the number c of connected components
of G− Z is at most the number of connected components of G− S plus |T |. This completes
the proof. J

I Theorem 7.15. Let Π be a hereditary strongly 1
2 -extendible property on oriented graphs

with
9
K3∈ Π. Then Above Poljak-Turzík(Π) admits a kernel with O(k) vertices.

Proof. Let (G0, k) be an instance of Above Poljak-Turzík(Π). Apply
Rules 14-17 exhaustively, producing an instance (G′, k′) and a vertex set S. If k′ ≤ 0,
then (G′, k′) and thus also (G0, k) is a “yes”-instance. Otherwise, |S| = O(k).

Now apply Rules 18-19 exhaustively on (G0, k) to obtain an equivalent instance (Gr, k).
Let Γ be the set of bad vertices of Gr. Lemma 7.3 shows that |V (Gr)\Γ| = O(k) or (Gr, k) is
a “yes”-instance. Because every bad vertex is in a bad block and every bad block contains at
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most three vertices, it holds |Γ| = O(|B−|). Using Lemma 7.11, Lemma 7.13, and Lemma 7.14,
we can bound this cardinality by

|B−| = O(|B+|+ |B̃|+ |R|) = O(|B+|+ |B̃|+ k) = O(k)

or (Gr, k) is a “yes”-instance. This shows the theorem. J

We are ready to complete the proof of Theorem 2.7.

Proof of Theorem 2.7. Let λ ∈ (0, 1) and let Π be a strongly λ-extendible property of
(possibly oriented and/or labelled) graphs. If λ 6= 1

2 or G ∈ Π for every G with 〈G〉 = K3, we
can use Theorem 7.6. Otherwise, we only have to consider the case that Π is a hereditary
property of simple or oriented graphs.

Consider the case that
→
K3∈ Π or

9
K3∈ Π. If

→
K3∈ Π, then Crowston et al. [26] show that

9
K3∈ Π, i.e., we can use Theorem 7.6. And if

9
K3∈ Π, we use Theorem 7.15.

Now we may suppose that G 6∈ Π for every G with 〈G〉 = K3. Then Crowston et al. [26]
show that Π is the set of all bipartite graphs. Hence, in the case of simple graphs as well as
if
→
K3,

9
K3 6∈ Π for oriented graphs, we can use Theorem 2.6 to obtain a linear vertex kernel.

It is easy to see that Rules 18-19 can be applied exhaustively in time O(m). As λ is
constant and we can apply every other reduction rule in linear time, it follows a total running
time of O(λ · km) = O(km). J
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8 Polynomial Kernel for Weighted Problems

In this section we use a theorem of Frank and Tardos [54] to obtain kernels for weighted
problems. Section 8.1 is devoted to the introduction of the technique by showing deterministic
kernels for Subset Sum(n) and Knapsack(n). We present polynomial kernels for various
weighted problems in Section 8.2. Next, we give positive and negative results for the Knapsack
problem and its special case Subset Sum with only few different item sizes in Section 8.3.
Finally, we consider polynomial ILPs in Section 8.4.

8.1 Settling Open Problems via the Frank-Tardos Theorem
8.1.1 Frank and Tardos’ theorem
Frank and Tardos [54] describe an algorithm which proves the following theorem.

I Theorem 8.1 ([54]). There is an algorithm that, given a vector w ∈ Qr and an integer N ,
in polynomial time finds a vector w ∈ Zr with

∥∥w∥∥∞ ≤ 24r3
Nr(r+2) such that sign(w · b) =

sign(w · b) for all vectors b ∈ Zr with
∥∥b∥∥1 ≤ N − 1.

This theorem allows us to compress linear inequalities to an encoding length which is
polynomial in the number of variables. Frank and Tardos’ algorithm runs even in strongly
polynomial time. As a consequence, all kernelizations presented in this work also have a
strongly polynomial running time.

I Corollary 8.2. There is an algorithm that, given a vector w ∈ Qr and a rational W ∈ Q,
in polynomial time finds a vector w ∈ Zr with

∥∥w∥∥∞ = 2O(r3) and an integer W ∈ Z with
total encoding length O(r4), such that w · x ≤W if and only if w · x ≤W for every vector
x ∈ {0, 1}r.

Proof. Use Theorem 8.1 on the vector (w,W ) ∈ Qr+1 with N = r+ 2 to obtain the resulting
vector (w̄, W̄ ). Now let b = (x,−1) ∈ Zr+1 and note that

∥∥b∥∥1 ≤ N − 1. The inequality
w · x ≤W is false if and only if sign(w · x−W ) = sign((w,W ) · (x,−1)) = sign((w,W ) · b) is
equal to +1. The same holds for w · x ≤W .

As each |w̄i| can be encoded with O(r3 + r2 logN) = O(r3) bits, the whole vector w̄ has
encoding length O(r4). J

Note that also w · x ≥W if and only if w · x ≥W for every x ∈ {0, 1}r. Therefore, also
w · x = W if and only if w · x = W .

8.1.2 Polynomial Kernelization for Knapsack
A first easy application of Corollary 8.2 is the kernelization of Knapsack with the number n
of different items as parameter.

Knapsack(n)
Input: An integer n ∈ N, rationals W,P ∈ Q, a weight vector w ∈ Qn,

and a profit vector p ∈ Qn.
Parameter: n.

Question: Is there a vector x ∈ {0, 1}n with w · x ≤W and p · x ≥ P?

I Theorem 8.3. Knapsack(n) admits a kernel of size O(n4). J

As a consequence, also the special case Subset Sum(n) admits a kernel of size O(n4).
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8.2 Small Kernels for Weighted Parameterized Problems
The result of Frank and Tardos implies that we can easily handle large weights or numbers
in kernelization provided that the number of different objects is already sufficiently small
(e.g., polynomial in the parameter). In the present subsection we show how to handle the
first step, i.e., the reduction of the number of objects, in the presence of weights for a couple
of standard problems. Presumably the reduction in size of numbers is not useful for this first
part since the number of different values is still exponential.

8.2.1 Hitting Set and Set Packing
In this subsection we outline how to obtain polynomial kernelizations for Weighted d-
Hitting Set and Weighted d-Set Packing. Since these problems generalize quite a few
interesting hitting/covering and packing problems, this extends the list of problems whose
weighted versions directly benefit from our results. The problems are formally defined as
follows, where

(
U
d

)
denotes the set of all subsets of U with exactly d elements.

Weighted d-Hitting Set(k)
Input: A set family F ⊆

(
U
d

)
, a function w : U → N, and k,W ∈ N.

Parameter: k.
Question: Is there a set S ⊆ U of cardinality at most k and

weight
∑

u∈S w(u) ≤W such that S intersects every set in F?

Weighted d-Set Packing(k)
Input: A set family F ⊆

(
U
d

)
, a function w : F → N, and k,W ∈ N.

Parameter: k.
Question: Is there a family F∗ ⊆ F of exactly k pairwise disjoint sets

of weight
∑

F∈F∗ w(F ) ≥W?

Note that we treat d as a constant. We point out that the definition of Weighted Set
Packing(k) restricts attention to exactly k disjoint sets of weight at least W . If we were to
relax to at least k sets then the problem would be NP-hard already for k = 0, as there would
be no restriction at all. On the other hand, the kernelization that we present for Weighted
Set Packing(k) holds also if we require F∗ to be of cardinality at most k (and total weight
at least W , as before).

Both kernelizations rely on the Sunflower Lemma of Erdős and Rado [39], same as their
unweighted counterparts. We recall the lemma.

I Lemma 8.4 (Erdős and Rado [39]). Let F be a family of sets, each of size d, and let k ∈ N.
If |F| > d!kd then we can find in time O(|F|) a so-called k + 1-sunflower, consisting of k + 1
sets F1, . . . , Fk+1 ∈ F such that the pairwise intersection of any two Fi, Fj with i 6= j is the
same set C, called the core.

I Theorem 8.5. Weighted d-Hitting Set(k) admits a kernelization to O(kd) sets and
total size bounded by O(k4d).

Proof. We can apply the Sunflower Lemma directly, same as for the unweighted case: Say we
are given (U,F , w, k,W ). If the size of F exceeds d!(k + 1)d then we find a (k + 2)-sunflower
Fs in F with core C. Any hitting set of cardinality at most k must contain an element of C.
The same is true for k+ 1-sunflowers so we may safely delete any set F ∈ Fs since hitting the
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set C ⊆ F is enforced by the remaining k + 1-sunflower. Iterating this reduction rule yields
F ′ ⊆ F with |F ′| = O(kd) and such that (U,F , w, k,W ) and (U,F ′, w, k,W ) are equivalent.

Now, we can apply Theorem 8.1. We can safely restrict U to the elements U ′ present in
sets of the obtained set family F ′, and let w′ = w|U ′ . By Theorem 8.1 applied to weights
w′ and target weight W with N = k + 2 and r = O(kd) we get replacement weights of
magnitude bounded by 2O(k3d)NO(k2d) and bit size O(k3d). Note that this preserves, in
particular, whether the sum of any k weights is at most the target weight W , by preserving
the sign of wi1 + . . .+wik −W . The total bitsize is dominated by the space for encoding the
weight of all elements of the set U ′. J

Setting d = 2, we derive a kernelization to O(k2) edges with total encoding size O(k8)
for Weighted Vertex Cover(k). For Weighted d-Set Packing(k) a similar argument
works.

I Theorem 8.6. Weighted d-Set Packing(k) admits a kernelization to O(kd) sets and
total size bounded by O(k4d).

Proof. If the size of F exceeds d!(dk)d then we find a dk + 1-sunflower Fs in F with core C.
We argue that we can safely discard the set F0 ∈ Fs of least weight according to w : F → N:
This could only fail if there is a solution that includes F0, namely k disjoint sets F0, . . . , Fk−1
of total weight at leastW . Notice that no set F1, . . . , Fk−1 can contain C, since C ⊆ F0. Since
|Fs| = dk + 1 there must be another set Fk, apart from F0, that has an empty intersection
with F1, . . . , Fk−1, as the sets in Fs are disjoint apart from C and there are in total d(k − 1)
elements in F1, . . . , Fk−1. It follows that F1, . . . , Fk is also a selection of k disjoint sets.
Since F0 is the lightest set in Fs we must have that the total weight of F1, . . . , Fk is at least
W .

Iterating this rule gives |F| = O(kd). Again, it suffices to preserve how the sum of any k
weights compares with W . Thus, we get the same bound of O(k3d) bits per element (of F ,
in this case). J

8.2.2 Max-Cut
Let us derive a polynomial kernel for Weighted Max-Cut(W ), which is defined as follows.

Weighted Max-Cut(W )
Input: A graph G, a function w : E → Q≥1, and W ∈ Q≥1.

Parameter: dW e.
Question: Is there a set C ⊆ V (G) such that

∑
e∈δ(C) w(e) ≥W?

Note that we chose the weight of the resulting cut as parameter, which is most natural
for this problem. The number k of edges in a solution is not a meaningful parameter: If we
restricted the cut to have at least k edges, then for k = 0 we would consider the general
Weighted Max-Cut problem, which is NP-hard. If we required at most k edges, we could,
in this example for integral weights, multiply all edge weights by n2 and add arbitrary edges
with weight 1 to our input graph. When setting the new weight bound to n2 ·W +

(
n
2
)
, we

would not change the instance semantically but there may be no feasible solution left with at
most k edges.

The restriction to edge weights at least 1 is necessary as otherwise the problem becomes
intractable. This is because when allowing arbitrary positive rational weights, we can transform
instances of the NP-complete Unweighted Max-Cut problem (with all weights equal to 1
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and parameter k, which is the number of edges in the cut) to instances of the Weighted Max-
Cut problem on the same graph with edge weights all equal to 1/k and parameter W = 1.

I Theorem 8.7. Weighted Max-Cut(W ) admits a kernel of size O(W 4).

Proof. Let T be the total weight of all edges. If T ≥ 2W , then the greedy algorithm yields a
cut of weight at least T/2 ≥W . Therefore, all instances with T ≥ 2W can be reduced to a
constant-size positive instance. Otherwise, there are at most 2W edges in the input graph
as every edge has weight at least 1. Thus, we can use Theorem 8.1 to obtain an equivalent
(integral) instance of encoding length O(W 4). J

8.2.3 Bin Packing with Additive Error
Bin Packing is another classical NP-hard problem involving numbers.
Therein, we are given n positive integer numbers a1, . . . , an (the items), a bin size b ∈ N, and
an integer k; the question is whether the integer numbers can be partitioned into at most
k sets, the bins, each of sum at most b. From a parameterized perspective the problem is
highly intractable for its natural parameter k, because for k = 2 it generalizes the (weakly)
NP-hard Partition problem.

Jansen et al. [71] proved that the parameterized complexity improves drastically if instead
of insisting on exact solutions the algorithm only has to provide a packing into k + 1 bins or
correctly state that k bins do not suffice. Concretely, it is shown that this problem variant
is fixed-parameter tractable with respect to k. The crucial effect of the relaxation is that
small items are of almost no importance: If they cannot be added greedily “on top” of a
feasible packing of big items into k+ 1 bins, then the instance trivially has no packing into k
bins due to exceeding total weight kb. Revisiting this idea, with a slightly different threshold
for being a small item, we note that after checking for total weight being at most kb (else
reporting that there is no k-packing) we can safely discard all small items before proceeding.
Crucially, this cannot turn a “no”- into a “yes”-instance because the created k + 1-packing
could then also be lifted to one for all items (contradicting the assumed “no”-instance). An
application of Theorem 8.1 then yields a polynomial kernelization because we can have only
few large items.

Additive One Bin Packing(k)
Input: Item sizes a1, . . . , an ∈ N, a bin size b ∈ N, and k ∈ N.

Parameter: k.
Task: Give a packing into at most k + 1 bins of size b,

or correctly state that k bins do not suffice.

I Theorem 8.8. Additive One Bin Packing(k) admits a polynomial kernelization to
O(k2) items and bit size O(k8).

Proof. Let an instance (a1, . . . , an, b, k) be given. If any item size ai exceeds b, or if the total
weight of items ai exceeds k · b, then we may safely answer that no packing into k bins is
possible. In all other cases the kernelization will return an instance whose answer will be
correct for the original instance: if it reports a (k + 1)-packing then the original instance
has a (k + 1)-packing. If it reports that no k-packing is possible then the same holds for the
original instance.

Assume that the items ai are sorted decreasingly by value. Consider the subsequence,
say, a1, . . . , a`, of items of size at least b

k+1 . If the instance restricted to these items permits
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a packing into at most k + 1 bins, then we show that the items a`+1, . . . , an can always be
added, giving a (k + 1)-packing for the input instance: assume that a greedy packing of the
small items into the existing packing for a1, . . . , a` fails. This implies that some item, say ai,
of size less than b

k+1 does not fit. But then all bins have less than b
k+1 remaining space. It

follows that the total packed weight, excluding ai, is more than

(k + 1) ·
(
b− b

k + 1

)
= (k + 1)b− b = kb .

This contradicts the fact that this part of the kernelization is only run if the total weight is
at most kb. Thus, a k + 1-packing for a1, . . . , a` implies a k + 1-packing for the whole set
a1, . . . , an.

Clearly, if the items a1, . . . , a` permit no packing into k bins then the same is true for
the whole set of items.

Observe now that ` cannot be too large: Indeed, since the total weight is at most kb (else
we returned “no” directly), there can be at most

kb
b

k+1
= k(k + 1) = O(k2)

items of weight at least b
k+1 . Thus, an application of Corollary 8.2 yields a size of O(k6) per

large item and a total encoding size of O(k8). J

8.3 Kernel Bounds for Knapsack Problems
In this subsection we provide lower and upper bounds for kernel sizes for variants of the
Knapsack problem.

8.3.1 Exponential Kernel for Knapsack with Few Item Sizes
First, consider the Subset Sum problem restricted to instances with only k distinct item
weights, which are not restricted in any other way (except for being non-negative integers).
Then the problem can be solved by a fixed-parameter algorithm for parameter k by a reduction
to integer linear programming in fixed dimension, and applying Lenstra’s algorithm [78] or
one of its improvements [73, 54]. This was first observed by Fellows et al. [51]. Let us restate
the integer linear programming result, as we will use it several times.

I Theorem 8.9 ([54]). Integer Linear Programming on n variables and input length s
can be solved using s · n2.5n+o(n) arithmetic operations.

We now generalize the results by Fellows et al. [51] to Knapsack with few item weights.
More precisely, we are given an instance I of the Knapsack problem consisting of n items
that have only k distinct item weights; however, the number of item values is unbounded.
This means in particular, that the “number of numbers” is not bounded as a function of the
parameter, making the results by Fellows et al. [51] inapplicable.

I Theorem 8.10. The Knapsack problem with k distinct weights can be solved in time
k2.5k+o(k) · poly(|I|), where |I| denotes the encoding length of the instance.

Proof. Observe that when packing xi items of weight wi, it is optimal to pack the xi items
with largest value among all items of weight wi. Assume the items of weight wi are labeled
as j(i)

1 , . . . , j
(i)
ni by non-increasing values. For each s ∈ N, define fi(s) :=

∑s
`=1 v(j(i)

` ), where
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v(j(i)
` ) denotes the value of item j

(i)
` . We can formulate the knapsack problem as the following

program, in which variable xi encodes how many items of weight wi are packed into the
knapsack and gi encodes their total value:

max
k∑
i=1

gi s.t.
k∑
i=1

wi · xi ≤W,

gi ≤ fi(xi), i = 1, . . . , k,
xi ∈ {0, 1, . . . , ni}, gi ∈ N0, i = 1, . . . , k.

The functions fi are in general non-linear, but they can be replaced by ni many linear
functions, as the following lemma shows.

I Lemma 8.11. For each i there exists a set of linear functions p(1)
i , . . . , p

(ni)
i such that

fi(s) = min` p(`)
i (s) for every s ∈ {0, . . . , ni}.

Proof. For each ` ∈ {1, . . . , ni} we define p(`)
i (s) to be the unique linear function such that

p
(`)
i (`− 1) = fi(`− 1) and p

(`)
i (`) = fi(`).

The function fi(s) is concave because

fi(`+ 1)− fi(`) = v(j(i)
`+1) ≤ v(j(i)

` ) = fi(`)− fi(`− 1)

for each ` ∈ {1, . . . , ni − 1}. Therefore, the definition of the linear functions p(`)
i implies that

fi(s) ≤ p
(`)
i (s) for every ` ∈ {1, . . . , ni} and s ∈ {0, . . . , ni}. Since for each s ∈ {1, . . . , ni}

we have that p(s)
i (s) = fi(s) and p(1)

i (0) = fi(0), we conclude that fi(s) = min` p(`)
i (s) for

every s ∈ {0, . . . , ni}. J

Hence in the program above, we can, for every i ∈ {1, . . . , k}, replace the constraint gi ≤
fi(xi) by the set of constraints gi ≤ p

(`)
i (xi) for ` ∈ {1, . . . , ni}. This way we obtain a

formulation of the knapsack problem as an integer linear program with 2k variables. The
encoding length of this integer linear program is polynomially bounded in the encoding length
of the instance of Knapsack. Together with Theorem 8.9 this implies the fixed-parameter
tractability of Knapsack with k item weights. J

8.3.2 Polynomial Kernel for Subset Sum with Few Item Sizes
We now improve the work of Fellows et al. [51] in another direction. Namely, we show that
the Subset Sum problem admits a polynomial kernel for parameter the number k of item
weights; this improves upon the exponential-size kernel due to Fellows et al. [51]. To show the
kernel bound of kO(1), consider an instance I of Subset Sum with n items that have only k
distinct item weights. For each item weight si, let ni be its multiplicity, that is, the number
of items in I of weight si. Given I, we formulate an ILP for the task of deciding whether
some subset S of items has weight exactly t. The ILP simply models for each item weight si
the number of items xi ≤ ni selected from it as to satisfy the subset sum constraint:

s1x1 + . . .+ skxk = t,

0 ≤ xi ≤ ni, i = 1, . . . , k,
xi ∈ N0, i = 1, . . . , k .

 (5)

Then (5) is an Integer Linear Programming instance on m = 1 relevant constraint and
each variable xi has maximum range bound u = maxi ni ≤ n.

Now consider two cases:
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If logn ≤ k · log k, then we apply Theorem 8.1 to (5) to reduce the instance to an
equivalent instance I ′ of size O(k4 + k3 logn) = O(k4 + k3 · (k log k)) = O(k4 log k) with
item weights s′1, . . . , s′k.
We now transform I ′ to an equivalent Subset Sum instance with fewer items: Given ni
items with weight s′i in I ′, we remove these items from the instance and add items with
weights 2j · s′i for 0 ≤ j ≤ `i and

(
ni −

∑`i
j=0 2j

)
· s′i, where `i is the largest integer such

that
∑`i
j=0 2j < ni (add one item per weight). It is now easy to check that for every

number 0 ≤ xi ≤ ni of chosen items with weight s′i in the original instance, there is a
combination of the new items with the same total weight and vice versa (consider the
binary representation of xi).
If we repeat this argument for every item weight si, we obtain an equivalent instance
with O(k logn) = O(k2 log k) items each with a weight which can be encoded in length
O(k3 + k2 logn+ logn) = O(k3 log k). Therefore we obtain an equivalent instance with
encoding length O((k2 log k) · k3 log k) = O(k5 log2 k). If we are allowed to encode the
instance by writing the different item weights followed by the multiplicity of every item
weight, encoded in binary, we have even obtained a kernel of size O(k · k3 log k) =
O(k4 log k).
If k log k ≤ logn, then we solve the integer linear program (5) using Theorem 8.9 in time
k2.5k+o(k) · |I|. As kk ≤ n ≤ |I|, this means that we can solve the ILP (and hence decide
the instance I) in polynomial time k2.5k+o(k) · |I| = |I|O(1).

In summary, we have shown the following:

I Theorem 8.12. Subset Sum with k item weights admits a kernel of size O(k5 log2 k).
Moreover, it admits a kernel of size O(k4 log k) if the multiplicities of the item weights can
be encoded in binary.

We remark that this method does not work if the instance I is succinctly encoded by specifying
the k distinct item weights wi in binary and for each item weight si its multiplicity ni in
binary: then the running time of Theorem 8.9 is exponential in k and the input length of the
subset sum instance, which is O(k · logn).

8.3.3 A Kernelization Lower Bound for Subset Sum
In the following we show a kernelization lower bound for Subset Sum assuming the Expo-
nential Time Hypothesis. The Exponential Time Hypothesis [69] states that there does not
exist a 2o(n)-time algorithm for 3-SAT, where n denotes the number of variables.

I Lemma 8.13. Subset Sum does not admit a 2o(n)-time algorithm assuming the Exponential
Time Hypothesis, where n denotes the number of numbers.

Proof. Gurari [59, Theorem 5.4.1] gives a polynomial-time reduction that transforms any
3-SAT formula φ with n variables and m clauses into an equivalent instance of Subset Sum
with exactly 2n+ 2m+ 1 numbers. Assume there is an algorithm for Subset Sum that runs
in time 2o(`), where ` denotes the number of numbers. With Gurari’s reduction we could use
this algorithm to decide whether or not a 3-SAT formula φ is satisfiable in time 2o(n+m).
Due to the sparsification lemma of Impagliazzo et al. [69], this contradicts the Exponential
Time Hypothesis. J
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I Theorem 8.14. Subset Sum does not admit kernels of size O(n2−ε) for any ε > 0
assuming the Exponential Time Hypothesis, where n denotes the number of numbers.

Proof. Assume there exists a kernelization algorithm A for Subset Sum that produces
instances of size at most κn2−ε for some κ > 0 and some ε > 0. We show that A can
be utilized to solve Subset Sum in time 2o(n), which contradicts the Exponential Time
Hypothesis due to Lemma 8.13.

Let I be an arbitrary Subset Sum instance with n items. We apply the kernelization
algorithm A to obtain an equivalent instance I ′ whose encoding size is at most κn2−ε.
Let a1, . . . , am be the numbers in I ′ and let c be the target value.

Let k = n1−ε/2. We divide the numbers in I ′ into two groups: a number ai is called heavy
if ai ≥ 2k and light otherwise. Since one needs at least k bits to encode a heavy number, the
number of heavy numbers is bounded from above by κn2−ε/k = κn1−ε/2.

We solve instance I ′ as follows: for each subset JH of heavy numbers, we determine whether
or not there exists a subset JL of light numbers such that

∑
i∈JL∪JH ai = c via dynamic

programming. Since there are at most κn1−ε/2 heavy numbers, there are at most 2κn1−ε/2

subsets JH . The dynamic programming algorithm runs in time O(m2 ·2n1−ε/2), as each of the
at mostm light numbers is bounded from above by 2n1−ε/2 . Hence, instance I ′ can be solved in
time O(m2 ·2(1+κ)n1−ε/2) = 2o(n), where the equation follows becausem ≤ κn2−ε = 2o(n). J

8.4 Integer Polynomial Programming with Bounded Range
Up to now, we used Frank and Tardos’ result only for linear inequalities with mostly binary
variables. But it also turns out to be useful for more general cases, namely for polynomial
inequalities with integral bounded variables. We use this to show that Integer Polynomial
Programming instances can be compressed if the variables are bounded. As a special case,
Integer Linear Programming admits a polynomial kernel in the number of variables if
the variables are bounded.

Let us first transfer the language of Theorem 8.1 to arbitrary polynomials.

I Lemma 8.15. Let f ∈ Q[X1, . . . , Xn] be a polynomial of degree at most d with r non-zero
coefficients, and let u ∈ N. Then one can efficiently compute a polynomial f̃ ∈ Z[X1, . . . , Xn]
of encoding length O

(
r4 + r3d log(ru) + rd log(nd)

)
such that sign(f(x)−f(y)) = sign(f̃(x)−

f̃(y)) for all x, y ∈ {−u, . . . , u}n.

Proof. Let w1, . . . , wr ∈ Q and f1, . . . , fr ∈ Q[X1, . . . , Xn] be pairwise distinct monomials
with coefficient 1 such that f =

∑r
i=1 wi · fi. Apply Theorem 8.1 to w = (w1, . . . , wr) and

N = 2rud + 1 to obtain w̃ = (w̃1, . . . , w̃r) ∈ Zr. Set f̃ =
∑r
i=1 w̃i · fi.

The encoding length of each w̃i is upper bounded by O(r3 + r2 logN) = O(r3 + r2 · d ·
log(r · u)). As there are

(
n+d
d

)
monomials of degree at most d, the information to which

monomial a coefficient belongs can be encoded in O(log((n + d)d)) = O(d log(nd)) bits.
Hence, the encoding length of f̃ is upper bounded by

O
(
r4 + r3d log(ru) + rd log(nd)

)
.

To prove the correctness of our construction, let x, y ∈ {−u, . . . , u}n. For 1 ≤ i ≤ r, set
bi = fi(x)− fi(y) ∈ Z ∩ [−2ud, 2ud], and set b = (b1, . . . , br). Then

∥∥b∥∥1 ≤ r · 2u
d, and thus

by Theorem 8.1, sign(w · b) = sign(w̃ · b). Then also sign(f(x)− f(y)) = sign(f̃(x)− f̃(y)), as

f̃(x)− f̃(y) =
r∑
i=1

w̃i · (fi(x)− fi(y)) =
r∑
i=1

w̃i · bi = w̃ · b,
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and

f(x)− f(y) =
r∑
i=1

wi · (fi(x)− fi(y)) =
r∑
i=1

wi · bi = w · b.

This completes the proof of the lemma. J

We use this lemma to compress Integer Polynomial Programming instances.

Integer Polynomial Programming
Input: Polynomials c, g1, . . . , gm ∈ Q[X1, . . . , Xn] of degree at most d

encoded by the coefficients of the O(nd) monomials,
rationals b1, . . . , bm, z ∈ Q, and u ∈ N.

Question: Is there a vector x ∈ {−u, . . . , u}n with c(x) ≤ z and
gi(x) ≤ bi for i = 1, . . . ,m?

I Theorem 8.16. Every Integer Polynomial Programming instance in which c and
each gi consist of at most r monomials can be efficiently compressed to an equivalent instance
of encoding length O

(
m(r4 + r3d log(ru) + rd log(nd))

)
.

Proof. Define c′, g′1, . . . , g′m : Zn × {0, 1} → Q as

c′(x, y) := c(x) + y · z,
g′i(x, y) := g′i(x) + y · bi i = 1, . . . ,m.

Now apply Lemma 8.15 to c′ and g′1, . . . , g′m to obtain c̃′ and g̃′1, . . . , g̃′m. Thereafter, split
these functions up into their parts (c̃, z̃) and (g̃1, b̃1), . . . , (g̃m, b̃m). We claim that the instance
Ĩ = (c̃, g̃1, . . . , g̃m, d, b̃1, . . . , b̃m, z̃, u) is equivalent to I. To see this, we have to show that a
vector x ∈ {−u, . . . , u}n satisfies c(x) ≤ z if and only if it satisfies c̃(x) ≤ z̃ (and analogously
gi(x) ≤ bi if and only if g̃i(x) ≤ b̃i for all i). This follows from

sign(c(x)− z) = sign(c′(x, 0)− c′(0, 1))
(?)= sign(c̃′(x, 0)− c̃′(0, 1))
= sign(c̃(x)− z̃),

where equality (?) follows from Lemma 8.15.
It remains to show the upper bound on the encoding length of I ′. Each of the tuples

(c, z), (g1, b1), . . . , (gm, bm) can be encoded with

O
(
r4 + r3d log(ru) + rd log(nd)

)
bits. The variables d and u can be encoded with O(log d+ log u) bits. In total, this yields
the desired upper bound on the kernel size. J

This way, Theorem 8.16 extends an earlier result by Granot and Skorin-Karpov [58] who
considered the restricted variant of d = 2.

As r is bounded from above by O((n+ d)d), Theorem 8.16 yields a polynomial kernel for
the combined parameter (n,m, u) for constant dimensions d. In particular, Theorem 8.16
provides a polynomial kernel for Integer Linear Programming for combined parameter
(n,m, u). This provides a sharp contrast to the result by Kratsch [77] that Integer Linear
Programming does not admit a polynomial kernel for combined parameter (n,m) unless
NP ⊆ coNP/poly.
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9 Conclusions and Open Problems

We used smoothed analysis as an attempt to explain the good practical performance of local
search for the Max-Cut problem as well as for some scheduling problems. Furthermore we
derived kernels with a linear number of vertices for Max-Cut Above Edwards-Erdős
Bound as well as for many generalizations. Finally we obtained polynomial kernels for several
weighted optimization problems. In the following we summarize some of the remaining open
problems related to our work.

9.1 Smoothed Analysis of Local Search for Max-Cut

We showed that the smoothed running time of the FLIP algorithm for the Max-Cut Problem
is polynomially bounded in nlogn and φ. For this purpose we introduced the analysis of Θ(n)
consecutive improvement steps, whereas former analyses only looked at a constant number –
normally one – of consecutive improvement steps. However, our approach is not suitable to
show polynomial bounds. This is because Angel et al. [3] proved that there are sequences of
length Ω(n) in which for every subsequence of length `′ only O(`′/ log(n)) vertices flip twice.
This means that for k = o(logn) every block sequence of linear length is k-repeating.

Instead we hope to trigger future research similar to Arthur and Vassilvitskii’s paper about
the k-means method [5]. They showed the non-polynomial bound nO(k) which inspired further
research leading to a polynomial bound by Arthur et al. [4]. We also hope that local search
algorithms for other PLS-hard problems can be analyzed in a similar manner, especially for
problems arising from algorithmic game theory. A first step to improve our quasi-polynomial
bound is the result by Angel et al. [3] that FLIP terminates with high probability after
polynomially many steps on complete graphs. We conjecture that a polynomial bound holds
for arbitrary instances.

A different perspective on the Max-Cut problem is given by our smoothed analysis of
complete instances with squared Euclidean distances. This setting is motivated by clustering
applications. Our Maximum-Cut setting corresponds to min-sum 2-clustering with the popular
choice of squared Euclidean distances as distance measure. Instead of perturbing edge weights
independently of each other, we perturb the positions of the vertices in a d-dimensional real
vector space. This matches our intuition for geometrical and clustering applications. We
proved an upper bound on the smoothed number of steps of the FLIP algorithm that is
polynomial in n, σ−1, and 2d. We do not know the worst-case behavior on complete graphs,
but as a contrast we showed that restricting the Max-Cut problem to squared Euclidean
distances on non-complete graphs does not suffice to guarantee a sub-exponential number of
steps in the worst case.

Manthey and Röglin [84] were able to extend their smoothed analysis of k-means clustering
from squared Euclidean distances to arbitrary Bregman divergences. Due to the similarities
to our setting, which can also be interpreted as a clustering setting, we believe that also our
results should be extendible in a similar way. Of course we conjecture also in this model that
the smoothed number of steps of the FLIP algorithm is polynomial also in the dimension d.

A version of the k-means method that works rather well in experiments is Hartigan’s
method [102]. Telgarsky and Vattani conjecture that the smoothed running time of this
algorithm is polynomial [102]. However, so far this conjecture could not be proven and
it seems rather challenging. As Hartigan’s method has some similarities with the FLIP
algorithm for the Max-Cut problem for squared Euclidean distances, we believe that our
proof technique might also be helpful for proving Telgarsky and Vattani’s conjecture.
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9.2 Scheduling
We have shown several bounds for the convergence times of local search regarding three
different coordination mechanisms on rational inputs. The choice of the right pivot rule
decides in the Shortest Job First model between linear and exponential convergence times.
The FIFO model is new but we believe that it is a realistic choice for many different real-life
applications. We were able to show that every pivot rule converges in this model in linear
time on identical machines and a large class of reasonable pivot rules converges in smoothed
polynomial time on related machines. An interesting observation is that the machine speeds
do not occur in any bound. We leave it as a conjecture that every pivot rule converges in
polynomial time in the FIFO model. Another interesting open problem is whether the Best
Improvement pivot rule in the Makespan model converges in smoothed or even deterministic
polynomial time on related machines. We were only able to show that this happens with
high probability when the input is perturbed.

9.3 Max-Cut Above Edwards-Erdős Bound
For the classical (Signed) Max-Cut problem, and its wide generalization to strongly
λ-extendible properties, parameterized above the classical Poljak-Turzík bound, we improved
the running time analysis for a known fixed-parameter algorithm to 8k ·O(m). We further
improved all known kernels with O(k3) vertices for these problems to asymptotically optimal
O(k) vertices. We did not try to optimize the hidden constants, as the analysis is already
quite cumbersome.

A natural question to ask is whether this problem admits faster algorithms and smaller
kernels, say with running time 2k ·O(m) and 2k vertices respectively, or whether such results
can be ruled out assuming a standard hypothesis.

It remains an interesting question whether all positive results presented here extend to
edge-weighted graphs, where each edge receives a positive integer weight and the number m
of edges in the Edwards-Erdős bound (1) is replaced by the total sum of the edge weights.

Further, Mnich et al. [87] showed fixed-parameter tractability of Above Poljak-
Turzík(Π) for all strongly λ-extendible properties Π. However, the polynomial kernel-
ization results by Crowston et al. [26] as well as our results do not seem to apply to
the special case of non-hereditary 1

2 -extendible properties. Such properties exist; e.g.,
Π = {G ∈ G | C 6∼= K3 for all 2-connected components C of G}. Also, for 1

2 -extendible
properties on labelled graphs we only showed a polynomial kernel for the special case of
Signed Max-Cut. It would be desirable to avoid these restrictions.

9.4 Polynomial Kernels for Weighted Problems
We obtained polynomial kernels for the Knapsack problem parameterized by the number of
items. We further provide polynomial kernels for weighted versions of a number of fundamental
combinatorial optimization problems, as well as integer polynomial programs with bounded
range. Our small kernels are built on a seminal result by Frank and Tardos about compressing
large integer weights to smaller ones. Therefore, a natural research direction to pursue is to
improve the compression quality provided by the Frank-Tardos algorithm.

For the weighted problems we considered here, we obtained polynomial kernels whose
sizes are generally larger by some degrees than the best known kernel sizes for the unweighted
counterparts of these problems. It would be interesting to know whether this increase in
kernel size as compared to unweighted problems is actually necessary (it could be that we
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need more space for objects but also due to space for encoding the weights), or whether the
kernel sizes of the unweighted problems can be matched.
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