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Abstract  

Wetlands provide important ecological, biological, and social-economic services that are critical for human 

existence. The increasing demand for food, arable land shortage and changing climate conditions in East Africa 

have created a paradigm shift from upland cultivation to wetland use due to their year-round soil water 

availability. However, there is need to control and manage the activities within the wetlands to ensure sustainable 

use while negating any negative effects caused by these activities. This is implemented through the decisions 

made by the land managers within the wetlands. Providing the users of the wetlands with scientific knowledge 

acts as a support tool for policy-making geared towards the sustainable use of the wetlands. The overall research 

contains two main components: First, the need for timely land cover maps at a reasonable scale, and secondly, 

the assessment of soil moisture as a major contributor to agricultural production. 

The objectives of the study were to generate land cover maps from multi-sensor optical datasets and to assess 

the performance of single-polarized Sentinel-1 Gray Level Co-occurrence Matrix (GLCM) texture and Principal 

Component Analysis (PCA) features by applying multiple classification algorithms in a floodplain in the 

Kilombero catchment. Furthermore, soil moisture spatial-temporal patterns over three hydrological zones was 

assessed, estimation of soil moisture from radar data and generation of soil moisture products from global 

products was investigated. The correlation of the merged products to Normalized Difference Vegetation Index 

(NDVI) measures was also investigated.  

RapidEye, Sentinel-2 and Landsat images were used in determining the areal extents of four major land cover 

classes namely vegetated, bare, water and built up. The acquisition period of the images ranges from August 

2013 to June 2015 for the RapidEye images, December 2015 to August 2016 for the Sentinel-2 images and 2013 

to 2016 Landsat-8 images were included in the land cover time series dynamic study. However, the major 

challenge arising was cloud coverage and hence Sentinel-1 images were tested in the application of Synthetic 

Aperture Radar (SAR) in wetland mapping. Variograms were used in spatial-temporal assessment of soil 

moisture data collected from three hydrological zones, riparian, middle and fringe. A roughness parameter was 

derived from a semi-empirical model. Soil moisture was retrieved from TerraSAR-X and RadarSAT-2 with the 

retrieved roughness parameter as an input in a linear regression equation. Triple collocation was applied in error 

assessment of the global soil moisture products prior to development of a merged product. Cross-correlation 

was applied in relating NDVI to soil moisture. 

Optical data (RapidEye, Landsat-8, and Sentinel-2) generated land cover maps used in assessing the land cover 

dynamics over time. The land cover ratios were related to depth to groundwater. As the depth to groundwater 

reduced in June the bare land coverage was 45-57% while that of vegetation was 34-47%. In December when 

the depth to groundwater was highest, bare land coverage was 62-69% while that of the vegetated area was 27-
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25%. This indicates that depth of groundwater and vegetation coverage responds to seasonality. During the dry 

season, 68-81% of the total vegetation class is within the riparian zone.  

In the classification of the SAR images, the overall accuracies for the single polarized VV images ranged from 

54-76%, 60-81% and 61-80% for Random Forest (RF), Neural Network (NN) and Support Vector Machine 

(SVM) respectively. GLCM features had overall accuracies of 64-86%, 65-88% and 65-86% for RF, NN, and 

SVM respectively. PCA derived images had similar overall accuracies of 68-92% for NN, RF, and SVM 

respectively. The PCA images had the highest overall accuracy for the entire time series indicating that reduction 

in the number of texture features to layers containing the maximum variance improves the accuracy. 

The standard deviation of soil moisture was noted to increase with increasing soil moisture. Soil texture plays a 

key role in soil moisture retention. The riparian fields had a high water content explained by the high clay and 

organic matter content. A roughness parameter was derived and utilized in the retrieval of soil moisture from 

SAR resulting to R2 of 0.88- 0.92 between observed and simulated soil moisture values from co-polarized 

RadarSAT-2 HH and TerraSAR-X HH and VV.  

Merged soil moisture product from FEWSNET Land Data Assimilation System_NOAH (FLDAS_NOAH), 

ECMWF Re-Analysis Interim (ERA-Interim) and Soil Moisture and Ocean Salinity (SMOS) and 

FLDAS_Variable Infiltration Capacity (VIC), ERA-Interim and SMOS had similar patterns attributed to 

FLDAS_NOAH and FLDAS_VIC forced by the same precipitation product (RFE). Cross-correlation of 

Moderate-resolution Imaging Spectrometer (MODIS) NDVI and the merged soil moisture products revealed a 

2-month lag of NDVI. Hence, the relationship is useful in determining the Start of Season from soil moisture 

products.  

In conclusion, the successful land cover mapping of the study area demonstrated the use of satellite imagery for 

wetland characterization. The vast coverage and frequent acquisitions of optical and microwave remotely sensed 

data additionally make the approaches transferable to other locations and allow for mapping at larger scales. Soil 

moisture assessment from point data revealed varied soil moisture patterns whereas global remotely sensed and 

modeled products rather provide complementary information about growing conditions, and hence a situational 

assessment tool of potential of physical availability dimension of food security. This study forms a baseline upon 

which additional monitoring and assessment of the Kilombero wetland ecosystem can be performed with the 

current results marked as a reference. Moreover, the study serves as a demonstration case of remote sensing 

based approaches for land cover and soil moisture mapping, whose results are useful to stakeholders to aid in 

the implementation of adapted production techniques for yield optimization while minimizing the unsustainable 

use of the natural resources. 
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Zusammenfassung 

Feuchtgebiete erbringen wichtige ökologische, biologische und sozial-ökonomische Dienstleistungen, welche 

entscheidend für das menschliche Dasein sind. Der steigende Bedarf  an Nahrung, der Mangel an 

landwirtschaftlichen Nutzflächen und die Veränderung der klimatischen Bedingungen in Ostafrika haben zu 

einem Paradigmenwechsel vom Anbau im Hochland hin zur Nutzung von Feuchtgebieten geführt. Allerdings 

sind Kontrolle und Management der Aktivitäten in Feuchtgebieten notwendig, um die nachhaltige Nutzung zu 

sichern und negative Effekte dieser Aktivitäten zu vermeiden. Die Implementierung erfolgt durch die 

Landverwalter in den Feuchtgebieten. Den Nutzern von Feuchtgebieten wissenschaftliche Erkenntnisse 

bereitzustellen dient als Hilfsmittel zur politischen Entscheidungsfindung für die nachhaltige 

Feuchtgebietsnutzung. Die Forschung im Rahmen der Dissertation beinhaltet zwei Hauptkomponenten: erstens 

den Bedarf  an aktuellen Landbedeckungskarten auf  einer angemessenen Skalenebene und zweitens die 

Erfassung der Bodenfeuchte als wichtiger Einflussfaktor auf  die landwirtschaftliche Produktion. 

Das Ziel der Untersuchung war, Landbedeckungskarten auf  Grundlage von multisensorischen optischen Daten 

zu erstellen und die Eignung der Textur der einfach polarisierten Sentinel-1 Grauwertmatrix (GLCM) sowie der 

einer Hauptkomponentenanalyse (PCA) bei Anwendung unterschiedlicher Klassifikationsalgorithmen zu 

beurteilen. Des Weiteren wurden raum-zeitliche Bodenfeuchtemuster über drei hydrologische Zonen hinweg 

modelliert, die Bodenfeuchte aus Radardaten abgeleitet sowie die Erstellung von Bodenfeuchteprodukten auf  

Basis von globalen Produkten untersucht. Die Korrelation der Bodenfeuchteprodukte mit dem Normalisierten 

Differenzierten Vegetationsindex (NDVI) wurde ebenfalls analysiert. 

RapidEye, Sentinel-2 und Landsat Bilder wurden genutzt um die räumliche Ausdehnung der vier Hauptklassen 

(Vegetation, freiliegender Boden, Wasser und Bebauung) der Landbedeckung zu ermitteln. Für die 

Zeitreihenanalyse der der Landbedeckungsdynamik wurden RapidEye-Daten von August 2013 bis Juni 2015, 

Sentinel-2-Bilder von Dezember 2015 bis August 2016 und Landsat-8-Bilder von 2013 bis 2016 verwendet. Die 

größte Herausforderung war jedoch die Wolkenbedeckung, weshalb die Anwendung von Synthetic Aperture 

Radar (SAR) für die Feuchtgebietskartierung getestet wurde. Die gemessene Bodenfeuchte wurde mittels 

Variogrammen für die drei hydrologischen Zonen (Uferzone, Mitte und Randgebiete) raum-zeitlich interpoliert. 

Ein Rauhigkeitsparameter wurde aus einem semi-empirischen Modell hergeleitet. Die Bodenfeuchte wurde aus 

TerraSAR-X und RadarSAT-2- Bildern unter Verwendung des Rauhigkeitsparameters als Eingangsgröße in einer 

linearen Regression abgeleitet. Vor der Zusammenführung der Produkte wurde das globale 

Bodenfeuchteprodukt mithilfe von dreifacher Kollokation auf  Fehler überprüft. Die Kreuzkorrelation zwischen 

NDVI und Bodenfeuchte wurde berechnet. 

Optische Daten (RapidEye, Landsat-8 und Sentinel-2) wurden genutzt, um die zeitliche Dynamik der 

Landbedeckung zu bestimmen. Die Landbedeckungsverhältnisse wurde mit der Höhe des Grundwasserspiegels 
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korreliert. Ein hoher Grundwasserstand im Juni resultierte in 45-57% unbedecktem Boden, während der Anteil 

der Vegetation 34-47% betrug. Im Dezember, als der Grundwasserspiegel seinen Tiefststand hatte, erhöhte sich 

der Anteil des freiliegenden Bodens auf  62-69% und der Anteil der Vegetation verringerte sich auf  27-25%. 

Das zeigt, dass Grundwasserspiegel und Vegetation saisonalen Schwankungen unterworfen sind. Während der 

Trockenzeit liegen 68-81% der gesamten als Vegetation klassifizierten Fläche innerhalb der Uferzone. 

In der Klassifikation der SAR-Bilder liegt die Gesamtgenauigkeit der einfach polarisierten VV-Bilder im Rahmen 

von 54-76%, 60-81% und 61-80%, entsprechend für Random Forest (RF), Neuronale Netze (NN) und Support 

Vector Machine (SVM). Die GLCM ergab eine Gesamtgenauigkeit von 64-86%, 65-88% und 65-86% für RF, 

NN und SVM. Die über eine PCA abgeleiteten Bilder erreichten eine ähnliche Genauigkeit von 68-92% für 

NN, RF und SVM. Die PCA-Bilder weisen die höchste Gesamtgenauigkeit der gesamten Zeitreihe auf, was 

darauf  hinweist, dass eine Reduktion von Textureigenschaften auf  Layer der maximalen Varianz enthalten, die 

Genauigkeit erhöht. 

Die Standardabweichung der Bodenfeuchte stieg mit zunehmender Bodenfeuchte. Die Bodentextur spielt dabei 

eine Schlüsselrolle für das Wasserhaltevermögen des Bodens. Die Uferzone wies einen hohen Wassergehalt auf, 

was durch den hohen Anteil von Ton und Humus zu erklären ist. Die beobachteten und simulierten 

Bodenfeuchtewerte von co-polarisierten RadarSAT-2 HH, TerraSAR-X HH und VV Daten korrelieren mit 

einem R2 von 0.88 - 0.92. 

Die zusammengesetzten globalen Bodenfeuchteprodukte von FLDAS_NOAH, ERA-Interim sowie SMOS und 

FLDAS_VIC, ERA-Interim und SMOS zeigen ähnliche Muster wie FLDAS_NOAH und FLDAS_VIC, was 

über die Verwendung desselben Niederschlagsproduktes (RFE) zu erklären ist. Die Kreuzkorrelation von 

MODIS NDVI und den zusammengeführten Bodenfeuchteprodukten ergab eine zeitliche Verzögerung des 

NDVI von zwei Monaten. Dieser Zusammenhang kann daher bei der Bestimmung des Saisonbeginns aus 

Bodenfeuchtigkeitsprodukten nützlich sein. 

Zusammengefasst hat die Studie gezeigt, wie Satellitenbilder zur Charakterisierung von Wetlands genutzt 

werden können. Die große Abdeckung und häufige Aufnahme der optischen und Mikrowellen-

Fernerkundungsdaten ermöglichen darüber hinaus die Übertragung der Ansätze auf  weitere Gebiete und 

Kartierung auf  größeren Skalen. Die Punktmessungen zeigen kleinräumige Muster der Bodenfeuchte, während 

globale Fernerkundungsprodukte und Modelle Informationen über die Wachstumsbedingungen liefern und 

somit ein Bewertungsinstrument der Ernährungssicherheit darstellen können. Weiterhin bildet die Studie eine 

Basis, auf  der ein weitergehendes Monitoring und eine Bewertung des Feuchtgebietsökosystems durchgeführt 

werden kann. Sie ist ein Beispiel für fernerkundungsbasierte Ansätze zur Landbedeckungs- und 

Bodenfeuchtekartierung; ihre Ergebnisse sind nützlich, um Akteuren bei der Implementierung von 

Produktionstechniken zu unterstützen, welche die Erträge maximieren und gleichzeitig die nicht nachhaltige 

Nutzung der natürlichen Ressourcen minimieren. 
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1. Introduction  

Sub-Sahara Africa is expected to account for 20% of the world population by 2050 (Alexandratos and Bruinsma, 

2012). This gives rise to the need for increased food production to meet the demand of the increasing 

population. Sustainable Development Goal 2 (SDG2) is geared towards eradication of hunger through an 

increase in food production (Le Blanc, 2015). Climate change is a challenge to increased food production causing 

extreme events such as flooding or prolonged dry seasons and droughts, which lead to low yields or total crop 

failure (Nicol et al. 2015). Reported global warming modifies the agro-ecological zones subsequently altering the 

plant growing seasons which boils down to ambiguity in planting times. Unpredictable seasonality due to climate 

variability is a vulnerability experienced in the agriculture sector (National Bureau of Statistics, 2015). Fertile 

soils and constant water supply make wetlands preferred ecosystems for expanding and intensifying agricultural 

production. 

Wetlands are multi-functional ecosystems with diverse agricultural, ecological, hydrological, logistical and social 

roles such as water reservoirs, water consumption, livelihoods (e.g., agriculture, pastoralism, fishery, domestic 

use, and industrial use), a buffer for flooding, carbon sequestration, and habitats for species (Moser et al. 2014). 

They control the source, amount, and temporal and spatial distribution of sediment and nutrient movements 

and influence distribution of flora and fauna.  

However, the utilization of wetlands necessitates monitoring and any developments within them controlled to 

avoid degradation. It is with this framework that the 1971 Ramsar Convention on Wetlands of International 

importance was signed into a treaty with the aim of conservation and wise utilization of wetlands. The 

Kilombero wetland in Tanzania was declared a Ramsar site in the year 2002, and it is the largest seasonal 

freshwater lowland floodplain in East Africa.  

About 80% of the people of Tanzania depend on subsistence agriculture (Shetto et al. 2007, Mombo et al. 2011). 

The Kilombero floodplain was identified as a potential agricultural area to enhance food security (Kato, 2007). 

Though the wetland was declared a Ramsar site, the land uses within it threaten its existence if activities are left 

uncontrolled. Moreover, the implementation of the Southern Agricultural Growth Corridor of Tanzania 

(SAGCOT) with an interest in agriculture development further emphasizes the need for land use planning 

(Milder et al. 2013). Major threats to African wetlands include land use activities such as reclamation for 

agricultural production and developmental pressures (Gardner et al. 2009, Junk et al. 2013, Moser et al. 2014). 

Soil moisture information plays a vital support role in agricultural activities such as irrigation scheduling, 

precision farming, or drought risk assessment (McNairn et al. 2012, Wilhite and Pulwarty 2018). Monitoring soil 

moisture over vast areas poses a challenge due to its high spatial and temporal variability. Moreover, in situ soil 

moisture measurements are tedious and costly to collect at repeated intervals. Synthetic Aperture Radar (SAR) 

satellite imagery have a high response to soil dielectric properties associated with soil moisture content and are 

thus suited in soil moisture derivation (Ulaby et al. 1996). Examples of SAR imagery in soil moisture retrieval 

include RadarSat-2 and TerraSar-X (Baghdadi, Camus, et al. 2011, Gherboudj et al. 2011, Baghdadi et al. 2012, 
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Chai et al. 2015, Gorrab, Zribi, Baghdadi, Mougenot, Fanise, et al. 2015, Yue et al. 2016). At large scales such as 

in the Kilombero catchment, however, multiple acquisitions covering the entire catchment would be required. 

The temporal acquisition interval of SAR images is rather long (RadarSat-2 24 days, TerraSar-X 11 days) and 

hence acquisitions within the catchment would be on different dates, introducing a challenge in estimation of 

the dynamic soil moisture. Additionally, collecting in situ data for validating the retrieved soil moisture is 

impractical at large scales. This prompts the application of large-scale remotely sensed observations (passive and 

active satellite sensors) and land surface model soil moisture products due to their high temporal resolution and 

their availability in the processed form. Land surface models use multiple land models, vegetation, and 

meteorological inputs to generate ensemble estimates of land surface states and fluxes such as soil moisture 

(McNally et al. 2017). Passive sensors (radiometers) record brightness temperatures, have a low spatial resolution 

and a high temporal resolution. The active sensors on the other hand record backscatter; they have a low 

temporal and high spatial resolution (Wang and Qu 2009, Chen et al. 2014, Srivastava et al. 2016). 

Start of Season (SOS) marks the beginning of the photosynthetic phase of vegetation and is a crucial parameter 

in monitoring food security since a delayed planting time translates to yield reduction since the crops do not 

optimally utilize the growing period necessary to grow to maturity (Brown and de Beurs 2008, Vrieling et al. 

2013). Associating the SOS with soil moisture illustrates the potential of determining the planting times from 

soil moisture. SOS derived from soil moisture will thus offer solutions to the uncertainty introduced by changing 

seasonality explained by changing climatic patterns by monitoring its variability over time hence identify the 

suitable planting times.  

Science-based knowledge on the ecosystem forms the influential basis upon which management plans in support 

of sustainable use of wetlands can be established, more so considering the agricultural potential of the 

Kilombero wetland. The research herein was developed based on that concept.  

 

1.1 Remote sensing and groundwater assessment of East African wetlands 

Wetlands provide a wide range of ecosystem services among which are the provisioning services including food, 

water, and fuel (Gardner et al. 2009, Ramsar Convention on Wetlands et al. 2014). Due to water reliability and 

fertile soils, wetlands form suitable sites for agricultural production. Increased demand for food caused by 

increasing population subsequently places wetlands under threat of degradation and hence planning wetland use 

is critical in sustaining the food water ecosystem nexus (Leemhuis et al. 2017). Knowledge of land cover and its 

spatiotemporal changes plays an important role in planning the sustainable use of wetlands. Additionally, 

knowledge of water dynamics and spatiotemporal variability of soil moisture, a critical variable in agriculture, is 

key in determining the potential of vegetation growth ultimately translated to the potential of food production 

in a region. 

The synoptic view, spatial and temporal capabilities of remote sensing sensors provide timely and cost-effective 

techniques of data acquisition for wetland mapping (Lillesand et al. 2004). Earth observation sensors include 
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optical and microwave operating in the visible and microwave parts of the electromagnetic spectrum, 

respectively. Numerous land cover (Furtado et al. 2016, Morandeira et al. 2016, Moser et al. 2016, Tian et al. 2016, 

p. 20, Chatziantoniou et al. 2017, Mahdavi et al. 2017) and soil moisture mapping applications (Dabrowska-

Zielinska et al. 2010, 2016, Jacome et al. 2013, Touzi and Cloude 2013) of remote sensing in wetlands have been 

reported worldwide.  

Studies on mapping of wetlands in East Africa are reported though they apply low and medium resolution 

satellite imagery. Advanced Very High-Resolution Radiometer (AVHRR) data for 1983 to 1984 was used in 

assessing vegetation dynamics at regional scale over East Africa with results revealing that NDVI is suitable in 

determining phenology in areas of high spatial variability (Justice et al. 1986). Serneels et al. (2001) applied 

AVHRR in assessing the land cover changes in Mara National Reserve ecosystem in Kenya for the periods 

between 1981 and 1994. Reports indicated that expansion of agriculture within the buffer of the national park 

has resulted in decreased vegetation though the reserve is stable in terms of land cover changes since it is a 

protected area (Serneels et al. 2001). Landsat imagery was used in assessing the Omo River delta changes whereby 

results indicated an increase in sedimentation and decreased water levels in Lake Turkana due to increased 

agriculture and livestock farming between the years 1979 to 1989 (Haack 1996). Landsat was also applied in 

assessing the changes in the extent of Lake Baringo catchment in Kenya (Kiage et al. 2007). Pressure due to 

increasing human livestock population was reported to cause a reduction in forested areas and increased 

sediment deposition between 1986 and 2000.  

In the East Africa region, Kuria et al. (2014) mapped the Malinda wetland using optical and radar data for the 

dry and wet season and assessed the phenological changes in the two-time epochs. High conversion rates for 

rice-farmed areas, cleared lands and homesteads were reported between May and August 2012 (Kuria et al. 2014). 

Mwita et al. (2013) mapped land use in small (<500 ha) inland valleys and floodplains in Tanzania (Usambara 

Highlands and Pangani floodplain) and Kenya (Mt. Kenya Highlands and Laikipia floodplain). The results 

revealed that floodplains were mainly used for cultivation of subsistence crops and cattle grazing whereas 

highlands are dominated by horticultural farming (Mwita et al. 2013). It was also reported that encroached natural 

vegetation is used as grazing grounds for cattle in the dry season and drained for use as arable land in the wet 

season. Within the same study, Sakané et al. (2011) characterized the highlands and floodplains based on the 

biophysical and socio-economic attributes. Physical accessibility, seasonality of flooding, population, market 

prospects, changes in rural livelihoods, and government policies were reported to influence the use of wetlands 

for agricultural production (Sakané et al. 2011).  

Climate changes effecting changes in precipitation and evaporation cause ultimate shifts in soil moisture deficits, 

surface runoff and groundwater recharge (Calow and MacDonald 2009). With continued unreliability of rainfall 

and surface water, demand and pressure on groundwater is envisaged to increase (Braune and Xu 2010). There 

is a need to understand the recharge patterns, which will aid in policy formulation in sustainable use of this 

renewable water resource (Calow et al. 1997). (Moukana and Koike 2008) investigated long-term changes (1987-
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2003) in groundwater levels within a catchment using a multivariate model to estimate reduction in groundwater 

based on land cover. Results indicated that land cover influences groundwater recharge reporting conversion 

from rice field to urban reduces recharge since infiltration of groundwater is halted by material used for 

constructing the urban areas (Moukana and Koike 2008). (Pan et al. 2011) assessed the impact of land use change 

on groundwater recharge based on a water-balancing model between the years 1980 and 2005 (Pan et al. 2011). 

Similar to results by (Moukana and Koike 2008), decreased cropland and grassland and increased urban and 

rural settlements resulted in a decrease in groundwater recharge. In Africa, (Ndou et al. 2017) modeled the 

relationship between depth to groundwater and evapotranspiration with reports indicating high 

evapotranspiration is expected in areas of low depth to groundwater whereas evapotranspiration decreases as 

the depth to groundwater increases (Ndou et al. 2017).  

Understanding the land cover changes occurring within shorter periods is relevant in determining suitable 

cropping seasons, which in turn provides information to enable planning of cropping season for maximum crop 

yield. The study herein, sought to generate maps at shorter time intervals showing the changes that occur in the 

wetland throughout the year and thereby focused on the changes of land cover taking place within land use 

classes (e.g., an agricultural field left bare during the dry season and cultivated during rainy season). The 

relationship of groundwater and land cover was assessed additionally. However, the focus was at a smaller areal 

coverage within the Ifakara region where the piezometer distribution for the groundwater level measurements 

were distributed. 

 

1.2 Soil moisture monitoring in East African wetlands 

Soil moisture influences vegetation dynamics since it is directly associated with their photosynthetic activity. 

Knowledge of soil moisture distribution in space and time contributes to understanding the land surface 

systems, which subsequently influence the agricultural management options for improved productivity. For the 

spatiotemporal variability analysis, classical near-surface soil moisture measurements are obtained by techniques 

such as Time Domain Reflectometry (TDR) probes. In situ, soil moisture measurements are required in the 

validation of satellite-based moisture observations. Due to the disparity in spatial resolution of point and satellite 

footprint, a need to determine the number of soil moisture measurements required to obtain a representative 

mean value matching the footprint of the satellite arises (Famiglietti et al. 2008). Moreover, locations with an 

accurate representation of the average soil moisture over the entire sampling period require a limited number 

of measurements in future sampling campaigns (Cosh et al. 2008). Soil moisture monitoring with point 

measurements is time-consuming and tedious hence SAR is adopted for the continued estimation of soil 

moisture. 

Soil moisture studies in East African wetlands included a study by Böhme et al. (2013) who calibrated a soil 

moisture sensor for wetland conditions (Böhme et al. 2013). The regression equation established for estimating 

volumetric soil moisture from sensor readings reported a lower root mean square error (RMSE) as compared 
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to the RMSE resulting for the use of manufacture’s calibration constants. Daniel et al. (2017) analyzed the soil 

physical properties at 0-20 cm and 20-40 cm depths in the Kilombero floodplain (Daniel et al. 2017). Results 

indicated that bulk density increased with increasing depth due to compaction. Soil organic carbon was reported 

to be higher in the top 0-20 cm though the quantity was insufficient for arable farming. Higher saturated soil 

water content was observed at the riparian zone (close to the Kilombero River) as compared to sampling sites 

further from the river. Kirimi et al. (2016) retrieved soil moisture from TerraSar-X imagery by applying a 

vegetation index derived from UAV photos in the Malinda wetland (Kirimi et al. 2016). Eliminating the effects 

of vegetation improved the accuracies of retrieved soil moisture in the two-time epochs evaluated.  

Distinct from the previous studies, the current study aims at assessing spatial-temporal patterns of soil moisture 

from repeated measurements over two-time epochs (March-May 2015 and December 2015-February 2016). 

The temporal stability of the soil moisture data is assessed. Moreover, the minimum number of sampling points 

necessary to capture field means is examined. SAR application in roughness parameter and soil moisture 

estimation is tested.  

 

1.3 Application of global soil moisture and NDVI products in East Africa  

Soil moisture influences water availability for crop production whereas the growing conditions can be tracked 

using NDVI. In the assessment of the influence of water availability on vegetation dynamics, soil moisture is 

preferred as opposed to precipitation because much of the precipitation is lost through interception and runoff 

while soil moisture is the actual water available for the plant influencing the photosynthetic processes (Chen et 

al. 2014). Soil moisture and NDVI are datasets informing management bodies of vegetation dynamics from 

which declining yields can be perceived prompting humanitarian actions in cases where a food crisis is envisaged. 

Remotely sensed and globally modeled products are critical in information provision in data scarce regions.  

Soil moisture is a key parameter in studies such as agriculture and hydrology as it regulates infiltration, runoff, 

and groundwater recharge and determines the water available to plants. Environmental factors influencing soil 

moisture include meteorological factors (precipitation, temperature), soil properties (such as soil texture, organic 

matter content), topography (e.g. slope influencing infiltration and runoff), and land use (e.g. vegetated land 

controlling rate of evaporation from the soil) (Petropoulos and Albergel 2013).  

Approaches for soil moisture retrieval from spaceborne satellites include passive and active microwave sensors. 

Microwave remote sensing is of particular importance in soil moisture studies due to its day and night and all-

weather availability Microwave sensors are suitable in soil moisture retrieval since there is a large contrast in 

dielectric constant of water (~80) and soil particles (~4) resulting in a strong dependency of the dielectric 

constant on volumetric soil moisture (Moran et al. 2004, 2004, Kong and Dorling 2008, Barrett et al. 2009).  

Transmitted energy returned from the target determines the brightness of radar backscatter. Characteristics of 

the radar system as well as the target surface influence this energy. These include the incidence angle, wavelength, 

polarization, surface roughness and geometry of the surface. The roughness of a surface is dependent on the 
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wavelength and incident angle. Long wavelengths penetrate through the canopy whereas shorter wavelengths 

reflect on the surfaces of canopies. Surfaces appear smooth with longer wavelengths and with increased 

incidence angles. Smooth surfaces have specular reflection; thus, a small amount of energy returns to the radar, 

and hence they appear dark. The soil moisture changes the electric properties of the soil influencing the 

absorption, transmission, and reflection of microwave energy. Reflectivity and image brightness increases with 

increased soil moisture content (Trudel et al. 2012). Decomposition of signals into individual causal components 

is a challenge due to a combination of surface characteristic in the total signal recorded. This makes microwave 

sensors ill-posed problem as any combination of signal due to roughness, soil moisture, vegetation can result in 

the same magnitude of recorded signal (Dawson et al. 1997, Mattia et al. 2006, Paloscia et al. 2008, Álvarez-

Mozos et al. 2009, Pierdicca et al. 2014).  

For passive microwave radiometers, naturally emitted radiation within their field of view is measured and 

recorded as brightness temperature. The field of view of passive sensors must be large to detect enough energy 

to record a signal. Passive sensors, therefore, have a low spatial resolution and a broad spatial coverage, more 

suited for analysis of soil moisture over large areas (Petropoulos and Albergel 2013). Inactive approaches, the 

satellite sensor sends a microwave pulse to a target feature on the ground, on interacting with the feature, the 

pulse is sent back to the sensor. The signal sent out and that received is compared to determine backscatter of 

the surface. Spaceborne radiometers platforms (sensors) include AQUA (AMSR-E) from 2002 to 2011, SMOS 

(MIRAS) launched in 2009, GCOM (AMSR2) launched in 2012 and SMAP launched in 2014. The low-

frequency microwave region, 1-10 GHz, is mainly used to obtain soil moisture from near surface layers. The L 

band is most suitable for observation of soil moisture as it has a high vegetation penetration. Higher frequencies 

are affected by atmospheric effects and vegetation cover (Barrett et al. 2009, Nichols 2011). Active SAR sensors 

include TerraSar-X (X band wavelength 9.6 GHz) and RadarSat-2 (C band wavelength 5.3 GHz) launched in 

2007, Sentinel-1 (C band wavelength 5.3 GHz) launched in 2014.  

Soil moisture retrieval models which can be used at local scales include physical based theoretical models, semi-

empirical models and empirical models (Nichols 2011). Empirical models are generated from site-specific 

frequency, incidence angles, and surface roughness and are thus not applicable to different sets of conditions 

(Srivastava et al. 2016).  

Theoretical models are based on theoretical perspectives on the trend of backscatter in response to soil moisture 

or roughness. The Integral Equation Model (IEM) is a theoretical model, and is a function of radar frequency, 

polarization, incidence angle, dielectric constant; rms surface height, correlation length and the autocorrelation 

function to quantify the backscatter coefficient (Bindlish 2000, Lievens and Verhoest 2011, Wang et al. 2011). 

The IEM model does not account for double or multiple scattering and is suitable for soil moisture estimation 

in bare surfaces (Barrett et al. 2009).  

The semi-empirical combined rules from the theoretical and empirical models e.g. water cloud model, Oh, Shi, 

Dubois model. The Oh model relates ratios of backscattering coefficients in different polarizations to soil 
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moisture and surface roughness. The advantage of this model is that only rms height is required and there is 

limited need for field data when using multi-polarized data is used. The Dubois model works well with co-

polarized coefficients as they are less sensitive to system noise, are easier to calibrate and are more accurate as 

compared to cross-polarized backscattering coefficients (Panciera et al. 2014, Choker et al. 2017). The water 

cloud model represents backscatter from the vegetation canopy and underlying soil during the phenological 

cycle of the plant. The total backscatter is a sum of contribution from vegetation, soil and two-way attenuation 

of vegetation layer (Bindlish and Barros 2001, Lievens and Verhoest 2011, Bai et al. 2017).  

Other approaches include statistical analysis techniques where estimated soil moisture from radar images are 

correlated with the actual field measurements and mathematical relationships established (Azad Hossain and 

Easso 2009). Artificial neural networks which use complex mathematical equations to design desirable 

correlation between radar backscatter and in situ soil measurements are also applied in soil moisture retrieval 

(Santi et al. 2013, Notarnicola and Solorz 2014, Hassan-Esfahani et al. 2015, Hossain and Easson 2016). Change 

detection approaches involving the use of multi-date imagery to determine the changes from which parameters 

are derived are applied in soil moisture retrieval (Baghdadi, Saba, et al. 2011, Lievens and Verhoest 2012, Gorrab, 

Zribi, Baghdadi, Mougenot, and Chabaane 2015). Normalized Backscatter Soil Moisture Index (NBMI) is 

obtained from backscatter measurements at two different times over the same location. For the delta index, the 

backscatter difference between wet and dry reference image is divided by the dry image backscatter. This index 

accounts for roughness and vegetation provided they remain unchanged though the imagery must be acquired 

with the same wavelength and viewing geometry for the backscatter changes to be attributed to changes in soil 

moisture (Jacome et al. 2013). Another change detection technique is principal component analysis where 

correlated variables are transformed to a reduced number of uncorrelated principal components, some of which 

are related to soil moisture (Kong and Dorling 2008). 

Rainfed agriculture is practiced in the Kilombero catchment (Kato 2007). The onset of rains marks the beginning 

of the planting season. Aligning water availability with planting times ensures maximization of the growing 

season to meet the crop water requirement, which results in a good harvest. Therefore, for optimal growth, 

precise determination of start of season (SOS) is crucial as it dictates the growing period (Brown and de Beurs 

2008). In Africa, SOS, end of season (EOS) and length of crop cycle influence the quantity of yields produced 

by subsistence farmers (Vrieling et al. 2013). The SOS and EOS are indicators of reduction in yields and hence 

early warning parameters in food security monitoring. The length of season (LOS) limits crop choices under 

rainfed agriculture since the LOS has to fulfill the optimal growing period for the crops selected to complete its 

cycle to maturity (Vrieling et al. 2013). Sparse weather stations and data gaps in climate data limit its use in the 

determination of start and end of growing season. Remotely sensed NDVI, on the other hand, has a wide 

coverage, is available for a long time series depending on the launch of satellite sensors, and is thus a preferred 

approach in seasonality determination and detection of anomalies from long-term averages.  
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(Rojas et al. 2011) identified SOS and evaluated the probability of occurrence of drought using vegetation indices 

from AVHRR over cropped areas in Africa from 1982 to 2010. Drought probability maps were generated at 

continental and regional level. The method correctly indicated the 2009/10 drought in East Africa. 8 km 

GIMMS NDVI3g based on 1981 to 2011 data was analyzed to determine the length of growing period over 

Africa (Vrieling et al. 2013). Over lower East Africa, in Tanzania and extending to northern Mozambique, LOS 

ranged from 180 to 300 calendar days with the SOS and EOS reported as November-December and May-June 

(Vrieling et al. 2013).  

Models relating rainfall based and remotely sensed SOS in west Africa were investigated (Brown and de Beurs 

2008). The results indicated MODIS NDVI based SOS at 16-day composite provided the closest fit to observed 

SOS while shorter NDVI composites presented a challenge in SOS determination. Shorter compositing periods 

introduce artifacts in the composited NDVI due to cloud residue. A seasonal lag of 2-6 weeks of vegetation 

response to rainfall was reported for the wet savanna region in East Africa where AVHRR NDVI and outgoing 

longwave radiation, an indicator of rainfall, from NOAA were applied in the investigation (Shinoda 1995).  

Soil moisture has a more direct link to plant growth than precipitation since some amount is lost through runoff 

or seepage to groundwater. In situ soil moisture networks for validation and calibration of remotely sensed and 

modeled soil moisture products over Africa are scarce raising interest in the application of globally available 

products. African Monsoon Multidisciplinary Analysis (AMMA) network in West Africa was among the data 

assessed in testing the performance of remotely sensed ASCAT and SMOS and ECMWF modeled SM-DAS-2 

soil moisture product (Albergel, de Rosnay, Gruhier, et al. 2012). The ten in situ observation stations located in 

West Africa reported a correlation of 0.69, 0.74 and 0.73 for SM-DAS-2, ASCAT and SMOS soil moisture 

products.  

In East Africa, (McNally et al. 2016) compared CCI-SM with modeled NOAH and VIC over rainfed agricultural 

areas. Pixel-wise Spearman rank correlations of CCI soil moisture from 1992 to 2013 was 0.76 and 0.85 for 

NOAH and VIC. The focus was mainly in Kenya and Ethiopia. Caveats to address while applying global 

products over large regions include low spatial and temporal coverage which ultimately determine the analysis 

methods adopted (McNally et al. 2016). Other soil moisture networks in Africa include the COSMOS network 

in Kenya and CARBOAFRICA in Sudan (Zreda et al. 2012, Ardö 2013). 

While the studies mentioned before were at a regional and continent scale, the current study focuses on 

catchment scale. The lack of soil moisture networks in the area supported the use of globally available moisture 

data. Different moisture products portray varied values due to the differences in acquisition sensors and retrieval 

algorithms. Understanding the discrepancy across independent datasets poses a challenge, as there are no 

networks to assess the accuracy of the products. Triple collocation analysis assessed the relative errors of the 

independent datasets. Least square merging was applied in the generation of a merged soil moisture product. 

The impact of soil moisture on vegetation dynamics is assessed by estimating the variability in the relationship 

between soil moisture and vegetation. Unlike the study by (Chen et al. 2014), who used low-resolution AVHRR 
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NDVI in quantifying soil moisture NDVI relationship, the current study derives vegetation information from 

higher resolution 16-day MODIS NDVI composites at 250 m spatial resolution (Chen et al. 2014). 

 

1.4 Aim of study  

Wetland regions are highly dynamic systems. Lack of maps describing the allocation of different land cover 

types throughout the year is a major impediment to managing wetland activities. Knowledge of land cover types 

and their occurrence time within the year is required to monitor water availability and devise techniques of 

increasing production to improve food security and ensure sustainable use of wetlands. Land cover dynamics 

maps act as spatial records that aid in decision planning with respect to land uses. Documenting the short-term 

land cover patterns, however, aids in informed decision making on seasonal land use planning. Groundwater 

provides base flow for rivers and is a source of water for agricultural production in the face of changing climate. 

Understanding the land use-groundwater relationship gives insight into periods over which alternative water 

sources are required to ensure continued agricultural production. The current study sought to generate land 

cover maps from optical imagery over the study area and qualitatively examine the effect of land cover on depth 

to groundwater. Presence of clouds poses a challenge in mapping from optical images. Inconsistency in usable 

optical images due to cloud cover and limited data availability of single sensor systems motivated the use of a 

multi-sensor approach in mapping land cover whereby three sensors; RapidEye, Sentinel-2, and Landsat, for 

the periods 2013 to 2016 was adopted.  

The cloud coverage challenge prompted the use of all-weather, free access Sentinel-1 SAR imagery. However, 

for the period under study, consistent acquisitions were only available as single polarized images for 2015 and 

2016. The study therefore assessed the performance of multiple classification algorithms on consistently 

acquired Sentinel-1 images. 

Understanding soil moisture variation in space and time at the plot scale requires high resolution spatial and 

temporal measurements subsequently aiding in decision making concerning farm management practices. With 

the planned SAGCOT agricultural intensification strategies, knowledge on field-specific soil properties is crucial 

in fostering precise farming activities such as in application of fertilizers, whereby infield variations are put into 

consideration to ensure enhanced crop growth since applications are as per the soil and crop needs (Milder et 

al. 2013). Subsequently, increased yields improve food security as well as the livelihoods of the population.  

In situ soil moisture data is also required for validation of satellite-based soil moisture products. Satellite-based 

soil moisture is in form of pixels whereby soil moisture within the pixel is averaged to one value. In situ soil 

moisture, on the other hand, could have several measurements within the pixel coverage. Discrepancies in spatial 

resolution between the satellite footprint and field point data prompt the determination of number of sample 

points required to adequately capture the mean within a defined areal coverage (Jacobs 2004, Famiglietti et al. 

2008). Identification of fields whose average is stable in time reduces the number of measurement points in 

future field campaigns for validating satellite-based soil moisture products (Cosh et al. 2008, Brocca et al. 2009).  
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Extending the soil moisture assessment to a larger site prompts the application of SAR imagery in soil moisture 

retrieval due to its vast coverage as soil moisture point data collection is time-consuming and impractical for 

large areas. Soil moisture and soil roughness influence backscatter recorded by SAR over bare soils. Soil 

roughness data collection is time-consuming and requires skills to analyze. Moreover, the small farms with 

varying management practices in Ifakara instigate the development of an a priori soil roughness parameter. In 

this study, a semi-empirical model by (Baghdadi et al. 2016) generated by incorporating data from multifrequency 

SAR data for soil moisture retrieval is inverted to derive the roughness parameter (Baghdadi et al. 2016).  

Soil moisture data scarcity necessitates the application of remote sensing based monitoring techniques and 

physically based land surface models over the Kilombero catchment. Due to different retrieval algorithms, the 

available independent soil moisture products are characterized by systematic differences. The reliability of the 

products is impossible to evaluate due to lack of in situ soil moisture networks. This prompts the generation of 

merged soil moisture products that take into account the discrepancy estimates between the products. 

Estimating variability in the relation between NDVI and soil moisture portrays the impact soil moisture has on 

vegetation dynamics. Continued monitoring of soil moisture from globally available products to determine the 

SOS offers a solution to the confusion in planting dates that the farmers experience due to seasonal differences 

in timing and amount of rainfall, caused by climate variability and climate change (Brown et al. 2010). Ultimately, 

precision in planting times ensures maximum utilization of rainwater in meeting the plant water requirements 

thus ensuring maximum yields are obtained. Moreover, a delay in SOS is an indicator of declined crop 

production, which is critical in food security monitoring (Brown and de Beurs 2008). 

 

This study was executed under the BMBF funded GlobE project “Wetlands in East Africa – Reconciling future 

food production with environmental protection” whose goal is assessing the potential of utilizing wetlands for 

increased and sustainable food production (https://www.wetlands-africa.uni-bonn.de/). The multi-disciplinary 

project consists of a series of diverse groups with backgrounds in agronomy, hydrology, economics, ecology, 

social sciences and remote sensing.  

The research presented herein is within the remote sensing discipline. The main purpose of the research was to 

assess land cover changes within the tropical floodplain in the Kilombero wetland and evaluate the soil moisture 

information based on in situ data, SAR and global datasets derived from different sources. 

The research seeks to: 

i. Assess the land cover dynamics to understand the land cover changes throughout the year using optical 

data. 

ii. Examine the performance of VV single polarized backscatter images, grey level co-occurrence matrix 

(GLCM) texture images and their PCA derivatives in monitoring land cover at high spatial and temporal 

resolution.  

https://www.wetlands-africa.uni-bonn.de/
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iii. Explore the variation of soil moisture over space and time. Derive a roughness parameter as an input 

for estimating soil moisture from SAR data. 

iv. Evaluate the performance of global soil moisture products and estimate the variability in the relation 

between soil moisture and SOS  

 

The hypotheses guiding the study are as follows: 

i. Depth to groundwater has an influence on spatiotemporal land cover dynamics. 

ii. Single polarized SAR images have sufficient information enabling land cover classification.  

iii. There exists a variation in soil physical properties along a hydrological gradient within the Kilombero 

floodplain. 

iv. Surface roughness has a big effect on the accuracy of soil moisture derived from SAR imagery. 

v. Global soil moisture products can be utilized to infer the start of planting seasons.  

 

1.5 Organizational structure of the thesis 

The thesis is organized into seven chapters (Figure 1.1).  

Chapter 1 has presented information about the research objectives, hypotheses, and the justification of the 

study. 

 

Chapter 2 introduces the description of the Kilombero catchment in terms of location, climate, soils and 

geology, vegetation, population and economic activities.  

 

Chapter 3 focuses on land cover dynamics using optical imagery. Time series of RapidEye, Sentinel-2, and 

Landsat images were classified with the aim of understanding changes in land cover with respect to depth to 

groundwater over a period of three years (2013-2016). Cloud coverage remained a great challenge for the optical 

images and thus radar images were adopted. The areal scale of the study was at the extended plot scale (Table 

1.1). Ifakara area is within the stated extent and is comprised of varying hydrological zones, subdivided, based 

on their flooding characteristics. The riparian zone is completely flooded during the long rainy season, the 

middle zone is partially flooded whereas the fringe is not flooded (Burghof et al. 2017).  

 

Chapter 4 deals with the use of single-polarized free access Sentinel-1 radar images for the period 2015-2016 in 

monitoring the wetlands. For the study period, dual polarized images were hardly available and hence methods 

of improving classification accuracies were tested. Grey Level Co-occurrence images and Principal Component 

Analysis derivatives of the texture images are thus employed in delineating land covers using multiple 

classification algorithms to test their performance in wetland mapping.  
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Chapter 5 addresses spatial-temporal variability of the soil moisture at plot scale. In situ soil moisture was 

collected within selected sample fields in three hydrological zones, the fringe, middle and riparian zones. The 

spatial variability of physical properties including texture, organic carbon, and bulk density are analyzed premised 

on the notion that varying soil texture influences the soil moisture behavior. 

At large scales, however, collection of in situ soil moisture is tedious. Moreover, soil moisture is highly dynamic 

and thus a fast measurement method required. Microwave satellite imagery from RadarSat-2 and TerraSar-X 

Sensors are thus employed in the derivation of soil moisture. Roughness information is crucial in soil moisture 

estimation from radar images. Roughness parameters are derived are derived from semi-empirical models and 

their performance tested. The assessment in this objective was at plot scale.  

 

Chapter 6 is dedicated to assessing the performance of global soil moisture products over the Kilombero 

catchment. Global soil moisture products provide a solution in high temporal soil moisture acquisition at large 

scales. Determining the Start of Season from global moisture products is also evaluated to assess the plausibility 

of determining the SOS from soil moisture data.  

 

Chapter 7 and 8 offers an overall synthesis of the topics covered. A conclusion of the research and 

recommendations for further research are given. 

 

 

Figure 1.1: Organigram of research. Optical and Radar Remote Sensing (RS) in land cover mapping and Soil 

Moisture (SM) assessment formed the core of research 
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Table 1.1: Spatial scales addressed in the study  

Spatial unit  Size  Aspects covered  

Plot scale  734-19,206 m2 Soil moisture spatial temporal variability of in situ data 

Soil moisture estimation from SAR data  

Extended plot 

scale 

13*5 km2 Land cover dynamics using optical and SAR data 

Catchment 40,240 km2 Determining phenological parameters from global soil moisture products 

and NDVI 
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2. Study Area and Ground Data 

2.1 Study Area  

2.1.1 Location  

The Kilombero valley floodplain is the largest seasonal freshwater lowland floodplain in East Africa situated in 

the Kilombero and the Ulanga Districts in the Morogoro region, south-central Tanzania. The floodplain is about 

260 km and 52 km covering approximately 626,500 ha at high water. The area lies between 210 to 400 m a.s.l. 

To the northeast, there are the Udzungwa Mountains that have elevations up to 2580 m a.s.l. and to the 

southwest, it is bordered by the Mahenge highlands with elevations of up to 1520 m a.s.l. Ifakara, the largest 

settlement in the floodplain is located within the Kilombero wetland between 36°41'E, 08°05’S and 36°44' E, 

08°12' S with an elevation of 230-270 m a.s.l. (Figure 2.1).  

The Kilombero River divides the Ulanga and the Kilombero districts. The Ruhudji River and the Pitu River 

originating from Mbeya and Iringa mount ranges border the floodplain to the south (“Information Sheet on 

Ramsar Wetland (RIS),” 2002). The Ruhudji River receives water from several tributaries and then subdivides 

on the floodplain. West of the Kihansi River exists a zone of permanent swamps approximately 45 km long 

extending up to four kms from the bank. At Ifakara, rivers flow into the Kilombero River following the 

Udzungwa escarpment. The Kilombero River then leaves the floodplain to the south-east on the border of 

Selous Game Reserve and borders Mikumi national park to the north. The river joins the Luwegu River 56 km 

on as Rufiji River. This then forms the Rufiji River Delta at the outlet into the Indian Ocean. The delta comprises 

of seagrass, coral reef and the largest mangrove forest in East Africa. The surrounding mountains and highlands 

are important catchment areas crucial to the hydrology of the wetland. 

The rivers flow through the evergreen forests and the Miombo woodlands and then enter the floodplain forming 

seasonal and perennial rivers, oxbow lakes, swamps, ponds, and lakes. Perennial rivers flow from the north to 

the south-flowing into the Kilombero River, which flows from west to east.  

 The floodplain has a series of swamps, ponds and lakes, river, riverine forest, grassland habitats with a section 

of Miombo woodland and groundwater evergreen forest. The major part of the wetland has flooded grassland 

and bushland.  

The ecosystem regulates the flow of the Rufiji River as it maintains the slow rate of rise and fall of the water 

levels and provides nutrients and sediments for downstream areas at Mafia Rufiji mangrove, seagrass and coral 

reef complex. The annual flooding is important for the maintenance of soil fertility creating rich agricultural 

lands (Kato 2007). Ponds and flooded grasslands upstream are important breeding sites for fish during the wet 

season.  

The study was carried out at different scales i.e. catchment (Figure 2.1), extended plot scale (Figure 2.2) and plot 

scale (Figure 2.2). The catchment was selected due to its potential in increased food production (Kato 2007). 

Due to the vast extent of the catchment, it would be impractical to set up experiments at all locations of the 

catchment. Therefore additional studies focused on an extended plot size in Ifakara chosen because of the high 
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variability of the water table with extensive flooding during the rainy season, subsequent land use patterns 

(Burghof et al. 2017). Moreover, the alluvial fan at Ifakara study site acts as a natural dam that retains water 

during the rainy season. The selected study site is also within the area of focus of the project GlobE Wetlands 

of East Africa (https://www.wetlands-africa.uni-bonn.de/). The plot scales were selected such that they were 

within the three hydrological zones namely Riparian, Middle, and Fringe. At the extended plot and plot scale, 

the farms are privately owned by individual farmers, plots are highly fragmented and used for small-scale arable 

farming and are highly variable in management practices. 

 

 

Figure 2.1: The Kilombero catchment and extended plot scale maps. Elevation information is from a TanDEM-

X image. The locations of Ifakara town and the locations of the sample fields are shown. 

 

https://www.wetlands-africa.uni-bonn.de/
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Figure 2.2: Location of the Ifakara study site within the Kilombero Valley, Tanzania. The riparian, middle and 

fringe zones are hydrological zones categorized based on the flooding pattern during the rainy season. Elevation 

information, piezometer (PZ) locations and the location of the rain gauge installed at Ifakara Health Institute 

(IHI) is presented. The sample fields used in the study are indicated. C1-C6 are riparian fields, M1-M5 are middle 

fields while F1-F4 are fringe fields. The fields are overlaid on UAV photos taken in September 2014 

2.1.2 Climate 

The climate of the Kilombero catchment falls under the tropical savanna climate as per the Köppen-Geiger 

classification (Peel et al. 2007). The Kilombero catchment has bimodal rainfall with mean annual rainfall of 

between 1200 – 1400 mm with an average daily temperature of 22-23°C with the climatic conditions 

characterized as subhumid (Koutsouris et al. 2016). The rain season is between November and May (Kangalawe 

and Liwenga 2005). The region experiences a high intensity of rains between March and May and a lower rain 

intensity between October and December. Flood peaks occur during the April-May while the dry season occurs 
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between June and October. The wettest months being March and May while the driest months are in August to 

September (Koutsouris et al. 2016). However, from historical data, the driest month is August whereas the 

greatest precipitation occurs in April. The average annual temperature is 24.8 °C with the warmest month being 

November and the lowest temperature occurring in July (Climate-data.org 2015) (Figure 2.3) 

 

 

Figure 2.3: Climate data from climate-data.org based on data for 1982 to 2012 

 

2.1.3 Vegetation  

The Kilombero catchment falls under the alluvial plains agro-ecological zone (National Bureau of Statistics 

2015). There are evergreen forests in the Udzungwa Mountains on the northern part of the Kilombero 

catchment which act as a natural water storage to the Kilombero floodplain. In the foothills of the mountain, 

there are Miombo woodlands with patches of closed forests (Kangalawe and Liwenga 2005). Agricultural lands, 

open forests and the wetlands are at the lower altitudes of the Kilombero Valley. On the edges of the floodplain, 

open woodlands, evergreen forests and teak plantations are present. A land cover map of 2014 is presented in 

Figure 2.4. 
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Figure 2.4: The Kilombero Valley land cover map (Leemhuis et al. 2017) 

 

2.1.4 Geology and soils 

The southern side of the catchment is largely covered by Acrisols (Figure 2.5 a). The lower section is well-

drained soils. Acrisols are acidic with low availability of nutrients. They have a weak physical structure and a 

high susceptibility to rainfall erosion.  

Arenosols and fluvisols are located within the floodplain (Figure 2.5 a). The floodplain is poorly to moderate 

excessively drained. Arenosols have a high sand content with low organic matter and low nutrient availability. 

They have a low available water capacity and are susceptible to leaching. Fluvisols are fertile and do not impair 

availability of nutrients. Their texture varies from coarse sand to heavy clays in basin areas. 

The northern part of the catchment is characterized by Nitisols, is well drained, has gneiss and migmatite rocks 

and is within a medium gradient landform since it forms the base of the Udzungwa Mountains (Figure 2.5 b, c). 

Nitisols have a high clay content with a good physical structure. The available water capacity is high with high 

organic matter.  
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The eastern part of the catchment is characterized by cambisols, with sandstone lithology, is well drained and 

mainly lies within the floodplain (Figure 2.5 b). Cambisols have a good structural stability, a high porosity with 

a good water holding capacity. The soil textures are loamy to clayed and the organic matter is moderate to good.  

The western part of the catchment is characterized by lixisols and small percent coverage of nitisols, it is well 

drained and lies within a plateau. The physical characteristics of rocks found here are granodiorite and acidic 

pyroclastic (Figure 2.5 b, d). Lixisols are strongly weathered with low levels of available nutrients and low 

nutrient availability. They are free draining and lack evidence of saturation.  

To the northeast, a small percentage of the catchment has leptosols soils that are excessively drained lying in a 

high gradient escarpment. Leptosols are free draining and have low water holding capacity due to their stoniness 

(Bouwman 1990).  
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Figure 2.5: Soil and Terrain features for the Kilombero catchment. a) Soil map, b) Lithology map, c) Drainage 

map, d) Landforms. (“e-SOTER | ISRIC,” 2018) 

 

2.1.5 Population  

The 1967 population census recorded a population of 12,313,469 while that for 1978 was 17,512,610. In 1988, 

the population was 23,174,336, more than double the population recorded in 1967. More specifically to regions, 

Morogoro (consisting of Morogoro Municipality, Gairo, Kilombero, Kilosa, Morogoro Rural, Mvomero and 

Ulanga districts) has a population of 939,264 and 1,279,931 in 1978 and 1988 respectively. The growth rates in 

Morogoro were 2.9 and 2.6 in 1967/1978 and 1978/1988 respectively. In 2002, Morogoro recorded a population 

of 1,753,362 and in 2012, an increased to 2,218,492 people. Narrowing down to Kilombero region, 187,593; 

321,611 and 407,880 people were reported in the 1988, 2002 and 2012 census. This marked growth rates of 3.9 
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in 1988/2002 and 2.4 in 2002/2012 census (National Bureau of Statistics 2015, Tanzania National Bureau of 

Statistics 2018).  

 

2.1.6 Economic activities  

Subsistence agriculture is the main activity in the Kilombero Valley. Over the years, the wetland and surrounding 

buffer areas are for agriculture, livestock keeping and fishing. Rice cultivation is common in naturally inundates 

areas whereas in the Miombo region, teak and maize are mainly grown, maize being the flood recession crop 

during the dry season Livestock keeping, fishing, brick making, forest products, business and casual laboring 

are other livelihood options for people in the Kilombero Valley (Siima et al. 2012). Fishing locations include the 

Kilombero River, in small rivers in the wetland and in flooded crop fields during the rainy season. Teak 

plantations by the Kilombero Valley Teak Company (KVTC) play a critical role in forest management and 

protection of the wetland ecosystem (KVTC 2009). Additionally, the woodlands provide refuge for the seasonal 

wildlife migrations from the adjoining Selous Game Reserve located to the south-west of the Kilombero Valley. 

The Kilombero Valley is suitable for sugarcane farming with the Kilombero Sugar Company Limited (KSCL) 

owning vast sugarcane plantation (ISG 2016). However most crops are produced by small-scale farmers 

(Kangalawe and Liwenga 2005, National Bureau of Statistics 2015). 

The Kilombero floodplain is important in conservation and biological diversity and is an important tourist 

destination for those visiting the Udzungwa Mountains National Park, Mikumi National Park, Kilombero game 

controlled area and Selous Game Reserve. It is home to the rare Puku Antelope and its survival depends on the 

floodplain dynamics. It forms a dry season habitat for large mammals, particularly the elephant and buffalo from 

the Selous ecosystem (KVFP 2002, Mombo et al. 2011). Fish in the myriad of rivers within the floodplain is a 

common economic activity which provides food and a source of livelihood for the local population. During the 

harsh dry season, the area is vital in provision of water and food for the large mammals and during the dry 

seasons, it acts as a spawning area for fish. The ecosystem holds more than 20,000 waterbirds in the wet season.  

In terms of agricultural development, for the Kilombero Valley, the Tanzania government initiated Kilimo 

Kwanza (“Agriculture First”) to address national food security and economic growth. It is implemented through 

Agricultural Sector Development Program (ASDP) and Southern Agricultural Growth Corridor of Tanzania 

(SAGCOT). SAGCOT is a private-public partnership launched in 2010 at the world economic forum to support 

and mobilize private sector investment to realize the goals of Kilimo Kwanza (Agriculture First) which is 

agricultural development. Another multi-agency program, feed the future of the US supports the development 

of irrigation schemes, infrastructural improvements, technological training such as System of Rice 

Intensification (SRI) and nutritional education.  

Local organizations working with farmers to support sustainable resource management include: the Kilombero 

Valley Environment and Development Organization (KIVEDO), Association of Kilombero high quality Rice 
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Growers (AKIRIGO), Rural-Urban Development Initiative (RUDI), Mtandao wa Vikundi vya Wakulima 

Tanzania (MVIWATA) (National Networks of Farmers Groups in Tanzania) (http://www.mviwata.org/).  

 

2.2 Ground Data collection  

2.2.1 Training and validation data 

Training and validation data for the classification was collected using GPS devices and UAV photo campaigns. 

A LumixGX 1 camera was mounted on an Unmanned Aerial Vehicle (UAV) and the MaVinci Desktop software 

was used for flight planning. The flight periods were 29th May to 1st June 2014, 24th to 26th September 2014 and 

the last flight campaign was from 27th February to 2nd March 2015. Post-processing of the geotagged UAV 

photos was performed with the Agisoft PhotoScan software.  

Training and validation sample points identifying the land cover classes were determined with the Garmin Etrex 

30 GPS with a horizontal positional accuracy of <3m (Garmin International 2005) for the periods between 

March and May 2015 and December 2015 to February 2016.  

 

2.2.2 Monitoring depth to groundwater 

Despite the large size of the Kilombero Valley, the study site focused on a small area over which the piezometers 

were installed. Depth to groundwater was monitored hourly by pressure sensors installed in 10-cm-diameter 

piezometers at each hydrological position from March 2015 to June 2016 (Gabiri et al. 2018). This research 

included observations from nine piezometers.  

Piezometer 1, 2 and 4 were in the riparian zone, piezometer 3 was located a few meters from the Kilombero 

River, piezometer 6 was in the middle zone and piezometer 10 and 14 in the fringe zone while piezometer 12 

and 13 were located on higher regions above the study site.  

 

2.2.3 Soil moisture sampling design  

Soil samples were collected at three hydrological zones namely the riparian, middle and fringe. The riparian is 

closest to the Kilombero River whereas the fringe is located furthest away from the Kilombero River. The 

experimental campaigns involved the use of Time Domain Reflectometry (TDR) probes in the measurement of 

5cm soil moisture. The soil moisture sensor was the ML3 ThetaProbe and HH2 recording device (Delta-T 

Devices).  

The data was collected during the wet season between March and May 2015 and the beginning of wet season 

between December 2015 and February 2016. In situ measurements collected 8 times between March and May 

2015. Repetitions were made 10 times between December 2015 to February 2016. In each of the fields, 10x10 

m grids were established for measurement of soil moisture. The sizes of sample fields were 4,272 to 8,290 m2 

http://www.mviwata.org/
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for the riparian, 1,523 to 10,727 m2 for the middle and 734 to 19,206 m2 for the fringe fields. In addition, soil 

samples were collected by core method at 10cm depths for determination of percentages of clay, sand, silt, soil 

organic carbon (SOC) and bulk density. Sampling locations varied from 9 in the middle and riparian zones and 

20 in the fringe zones determined by the shapes of hydrological zones. Each sampling location was designed 

not more than 750m away from the subsequent sampling spot. Texture was determined using the laser method, 

bulk density by core method and SOC was determined using the modified Walkley-Black method as described 

by Daniel (Daniel et al. 2017). 

 

2.2.4 Soil roughness sampling design  

Roughness information was collected a day prior or after the satellite overpass. A 1m pin profiler, with 41 pins 

at 25mm spacing aided in roughness data collection. A pin profiler consists of equally spaced pins lowered into 

the surface to give an impression of the surface roughness. The heights of the pins are read against a white 

background attached to the profiler (Cihlar et al. 1987).  

One set of roughness profile measurements was taken in fields with areas of less than 2,000 m2, while 2 sets 

were taken in every other field. A set of roughness profile consisted of 2 measurements in the NS direction and 

two in the EW direction such that the total roughness length measured was 2m in the NS and EW direction.  
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3. Assessing seasonal land cover dynamic and groundwater observations  

3.1 Introduction  

Sub-Saharan Africa is expected to account for 20% of the world population by 2050 (Alexandratos and 

Bruinsma 2012). Sustainable Development Goal 2 (SDG2) is geared towards eradication of hunger through 

increased food production (Le Blanc 2015). Agricultural production systems are adversely affected by climate 

variability causing extreme weather events (increased amounts and variation in rainfall, increased temperature) 

and changing seasons (Peltonen-Sainio et al. 2008, Food and Agriculture Organization of the United Nations 

2014, Vizy et al. 2015). Low crop productivity due to water stress and degraded soil fertility are among the 

consequences of the changing climate. Land is under increasing pressure driven by urbanization and population 

growth. Subsequently, need for land to expand agricultural production has led to deforestation and 

encroachment in protected areas like wetlands, negatively affecting the regulatory functions of the ecosystem.  

Tanzania is an agricultural country with 80% of the population depending on subsistence agriculture (Shetto et 

al. 2007). Kilombero Valley was identified as a potential agricultural area to enhance food security and meet the 

SDG 2 (Beck 1964, Kato 2007). A large seasonally flooded alluvial floodplain is within the Kilombero Valley. 

Expansion of agricultural land in the floodplain is restricted due to the existence of protected areas i.e. the 

Kilombero Game Controlled Area, the Selous game reserve, and the Udzungwa National park. Furthermore, 

changing climatic patterns affect agricultural production causing extreme periods of dryness, floods, and 

changes in seasonality.  

The increasing demand for food, shortage in arable land and unpredictable climate conditions in East Africa 

have recently created a shift from upland cultivation to Kilombero Valley. This highlights the need for wetland 

monitoring and the generation of seasonal land cover maps for sustainable conservation policies (Eitel et al. 

2011, Seki et al. 2017). Within the study area, few studies on the status of the wetlands are existing. Monitoring 

spatial phenomenon through ground survey method is tedious and not cost effective. With their synoptic view, 

spectral and temporal capabilities of remote sensing sensors provide an alternative timely and cost-effective 

method of data acquisition.  

Remote sensing of wetlands in East Africa has had a long history of study. The evaluation of vegetation 

dynamics at regional scale over East Africa with Advanced Very High Resolution Radiometer (AVHRR) data 

for 1983 to 1984 revealed that NDVI is suitable in determining phenology in areas of high spatial variability 

(Justice et al. 1986). (Haack 1996), reported an increase in sedimentation and decreased water levels in Lake 

Turkana due to increased agriculture and livestock farming between the years 1979 to 1989. AVHRR was 

applied in assessing the land cover changes in Mara National Reserve ecosystem in Kenya for the periods 

between 1981 and 1994. Reports indicated that expansion of agriculture within the buffer of the national park 

has resulted in decreased vegetation though the reserve is stable in terms of land cover changes since it is a 

protected area (Serneels et al. 2001). Within the Lake Baringo catchment in Kenya, pressure due to increasing 
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human livestock population were reported to cause reduction in forested areas and increased sediment 

deposition between 1986 and 2000 (Kiage et al. 2007).  

More recently however, within the Kilombero Valley, land cover change was assessed by (Ntongani et al. 2014) 

using local knowledge. From their research, the local population reported a conversion of forested areas and 

grasslands to cultivated areas for a period of more than 30 years. Recently, (Leemhuis et al. 2017) analyzed long 

term land changes (1994-2004 and 2004-2014) in the whole Kilombero Valley while (Seki et al. 2017) assessed 

land cover changes (1990, 1998 and 2011) in the Kibasira Swamp in the Kilombero Valley with both studies 

revealing an increase in agricultural land. While these studies cover periods between 8-13 years, they are relevant 

in portraying the long-term changes. The land cover dynamic within one year is important for determining the 

suitable cropping seasons in this rain fed agricultural region. Understanding the land cover dynamics will 

therefore aids in recognizing the short-term land use patterns subsequently promoting monitoring programs to 

ensure sustainable use of the wetland to increase agricultural production (SAGCOT n.d., Milder et al. 2013). 

Furthermore, to our knowledge, there is no published work on land cover mapping at high temporal resolutions 

over East African wetlands. Knowledge on seasonal land cover is important to farmers as it aids in 

understanding the patterns experienced throughout the year within the wetland and hence aid in identification 

of times and locations with optimum vegetation growth.  

Groundwater provides base flow for rivers, dilutes effluents and is a source of water for domestic and 

commercial uses (Lerner and Harris 2009). A strong feedback between groundwater and land use exist 

influencing water availability for plants and groundwater recharge (Scanlon et al. 2005, Zhang and Schilling 

2006, Pan et al. 2011, Prabhakar and Tiwari 2015). With changing climate, the value of groundwater is expected 

to increase to sustain agriculture and domestic use needs (Taylor et al. 2012). A review of land cover relation to 

groundwater by (Owuor et al. 2016) revealed a need for site-specific groundwater monitoring networks due to 

the highly varied environmental and geological landscapes of Africa. The importance of the land use-

groundwater relation is emphasized due to the increased demand for water to meet the needs of the rising 

population (Owuor et al. 2016).  

In this study, analysis of multispectral imagery (RapidEye, Landsat and Sentinel-2 images spanning from 2013 

to 2016) was conducted to map seasonal land cover variability. First, RapidEye images were selected due to 

their uniqueness of the red edge band capable of detecting drastic reflectance changes in vegetation (Rodriguez 

et al. 2006, Schönert et al. 2015). The open access, free of charge and consistent availability of European Space 

Agency’s (ESA) high-resolution Sentinel-2 images favored their selection as the second set of imagery for the 

study. The sub-humid wetland lies in a tropical region experiencing the presence of clouds exacerbated during 

the rainy season witnessed from March to May. To address the problem of cloud coverage, the third set of 

images used were Landsat to densify the acquisitions acquired over the study area despite their lower spatial 

resolution.  
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The nonparametric statistical learning technique, Support Vector Machine (SVM) was applied in the land cover 

characterization (Mountrakis et al. 2011). The concept of SVM is the generation of hyperplanes which best 

differentiate the input features. Learning involves iterative selection of optimal boundaries minimizing the 

misclassification. SVMs ability to give good accuracies despite limited training samples prompted its use for the 

research (Mountrakis et al. 2011, Paneque-Gálvez et al. 2013).  

In addition to mapping seasonal land cover dynamics, other vegetation dynamics explanatory variables such as 

depth to groundwater and meteorological conditions are assessed (Li et al. 2014). The specific objectives of this 

study are: 

i) To assess seasonal land cover changes using multi-temporal multi-spectral satellite imagery with an aim 

of understanding how land cover reflects the impact of water balance components.  

ii) To generate cumulative seasonal land cover maps from all the classified images. 

iii) To evaluate the temporal patterns of precipitation and spatio-temporal patterns of land cover and their 

relationship to depth to groundwater along the hydrological zones of a floodplain.  

The information obtained is important in understanding spatio-temporal patterns of water availability that 

drive plant growth. 

 

3.2 Materials and datasets  

The hydrological zones were subdivided based on extent and duration of flooding during the long rainy season 

(Daniel et al. 2017). The fringe zone is not flooded; the middle zone is partially flooded whereas the riparian 

zone is completely flooded during the long rains. The riparian fields are located closest to the Kilombero River, 

the middle fields located between Riparian & Fringe fields have elevation slightly higher than the riparian fields, 

and the fringe fields are located furthest from the river at a higher elevation compared to the other two test 

sites. Elevation increases with increasing distance from the river. Subsequently, the flooding depths are higher 

in the riparian zone.  

 

3.2.1 Satellite Data  

The multi-spectral data used in this study comprised of two high-resolution (RapidEye and Sentinel-2) and the 

medium resolution (Landsat) imagery (Figure 3.1). Classification was performed on each individual image to 

generate a series of land cover maps on the dates of image acquisition. RapidEye has five spectral bands with at 

nadir pixel resolution of 6.5 m by 6.5 m resampled to 5 m by 5 m. The data acquired from 

http://blackbridge.com (Planet 2016) was level 1B in which the radiometric and sensor corrections have been 

applied. RapidEye images have a resolution of 5m for all bands hence no resampling was applied. Fourteen level 

1B RapidEye scenes from August 2013 to June 2015 were analyzed.  

Nine Sentinel-2 images were downloaded from https://scihub.copernicus.eu/dhus/ (ESA Sentinels Scientific 

Data Hub 2016). The images have a spatial resolution of 10m with acquisitions from December 2015 to August 

http://blackbridge.com/
https://scihub.copernicus.eu/dhus/
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2016. Sentinel-2 has 13 bands which include aerosol detection bands, vegetation classification bands, water 

vapor and cloud discrimination bands (Drusch et al. 2012). In this research, bands 2 to 8 designed for vegetation 

classification were utilized. Sentinel-2 bands 2, 3, 4 and 8 have a 10m resolution while bands 5, 6, 7 and 8A have 

a 20 m resolution. Resampling was performed on the 20 m bands to obtain an image with uniform 10m 

resolution. 

Seven Landsat images were downloaded from the USGS Earth Explorer platform 

(https://earthexplorer.usgs.gov/ ). For the period spanning 2013 to 2016, bands 2 to 8 were used in the analysis 

as the other images had a large cloud coverage. Landsat Operational Land Imager multispectral bands 1-7 have 

30 m spatial resolution whereas panchromatic band 8 has a resolution of 15m. Resampling was performed on 

the 15m band for uniformity in the Landsat bands. Resampling to a higher and common pixel size for the three 

sets of imagery would introduce a smoothing effect and a subsequent loss of spatial accuracy and the ability to 

discriminate features. The spectral properties of the bands in the classification are presented in Table 3.1 

(Drusch et al. 2012, Schuster et al. 2012, Barsi et al. 2014). 

 

 

Figure 3.1: Temporal distribution of the RapidEye, Landsat and Sentinel-2 image acquisitions. Percentage 

coverage of cloud on the images is indicated.  
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The spectral band selection (visible, Near Infra-Red, Short Wave Infra-Red) are reported to be optimal 

bands in wetland mapping due to their spectral response on the electromagnetic spectrum. The strong 

reflectance in the Red Edge and Near Infra-Red related to plant biochemical properties are suitable for 

mapping vegetation (Adam et al. 2010).  

 

Table 3.1: Attributes of the spectral bands of the sensors used in classification of the wetland 

Sensor Band Name Central Wavelength, 

micrometers  

Spatial 

resolution (m) 

Landsat 2 Blue – visible spectrum  0.482 30 

 3 Green– visible spectrum 0.561 30 

 4 Red– visible spectrum 0.655 30 

 5 Near Infra-Red 0.865 30 

 6 Short Wave Infra-Red 1 1.610 30 

 7 Short Wave Infra-Red 2 2.200 30 

 8 Panchromatic 0.590 15 

Sentinel-2 2 Blue– visible spectrum 0.490 10 

 3 Green– visible spectrum 0.560 10 

 4 Red– visible spectrum 0.665 10 

 5 Vegetation Red Edge 0.705 20 

 6 Vegetation Red Edge 0.740 20 

 7 Vegetation Red Edge 0.783 20 

 8 Near Infra-Red 0.842 10 

 8A Vegetation Red Edge 0.865 20 

RapidEye 1 Blue– visible spectrum 0.475 5 

 2 Green– visible spectrum 0.555 5 

 3 Red– visible spectrum 0.657 5 

 4 Red Edge 0.710 5 

 5 Near Infra-Red 0.805 5 

 

3.2.2 Ground Data collection 

3.2.2.1 Study design  

During the data collection campaigns, the fields had rice plantations with varying plant heights. The plantation 

in the fringe had heights of 1 to 1.5 meters, the middle between 0.5 to 1m while the lowest heights were in the 
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Riparian ranging from 0.3 to 0.7 m. Plantations in the riparian fields were submerged by floods to a height of 

0.5m. Scattered maize plantations were also present in the riparian fields.  

3.2.2.2 Training and validation data 

Knowledge of study area, false color composition (FCC) and NDVI images generated from the optical images 

formed the basis of generation of the training and validation points. Utilization of images collected in the past 

with no corresponding field data and non-accessibility of some areas within the wetland necessitated the 

inclusion of NDVI and FCC in the identification of land cover class. FCC used for clear identification of the 

classes under study was NIR: R: G hence for RapidEye 5:3:2, for Sentinel 8:4:3 and for Landsat 5:4:3. Land 

cover type auxiliary information from GPS data (March to May 2015 and December 2015 to February 2016) 

and UAV photos (May and September 2014 and February 2015) were collected to create a database for 

generating the training and validation data for the 2013-2016 thematic maps.  

A LumixGX 1 camera was mounted on an Unmanned Aerial Vehicle (UAV) and the MaVinci Desktop software 

was used for flight planning. The flight periods were 29th May to 1st June 2014, 24th to 26th September 2014 and 

the last flight campaign was from 27th February to 2nd March 2015. Post processing of the geotagged UAV 

photos was performed with the Agisoft PhotoScan software.  

Training and validation sample points identifying the land cover classes were determined with the Garmin Etrex 

30 GPS with horizontal positional accuracy of <3m (Garmin International 2005). Points located in a clouded 

area on the images were removed.  

Acquisition time for the satellite images, the GPS points and the UAV photos varied. Field data points were 

directly obtained from GPS points and others selected from UAV photos close to an image acquisition. Random 

sampling divided the points into training (70%) and validation (30%). However, in some cases, there was no 

field data (GPS points or UAV flights) corresponding or taken close to image acquisition date while other areas 

were inaccessible. Hence, NDVI was computed and random sampling performed on the each of the NDVI 

images to generate 80 to 150 reference points. The sampling design tool on ArcGIS 10.3.1 randomly subdivided 

these points into training (70%) and validation (30%). Therefore approximately 2/3 (50-100) and 1/3 (25-50) 

points were available for training and validation respectively. In such cases, inference from NDVI ranges, FCC 

and local knowledge of the study area were used in identifying the land cover classes. 

 

3.2.2.3 Monitoring depth to groundwater 

Despite the large size of the Kilombero Valley, the study site focused on a small area over which the piezometers 

were installed. Depth to groundwater was monitored hourly by pressure sensors installed in 10-cm-diameter 

piezometers at each hydrological position from March 2015 to June 2016 (Gabiri et al. 2018). This research 

included observations from nine piezometers (Figure 2.2).  
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Piezometer 1, 2 and 4 were in the riparian zone, piezometer 3 was located a few meters from the Kilombero 

River, piezometer 6 was in the middle zone and piezometer 10 and 14 in the fringe zone while piezometer 12 

and 13 were located on higher regions above the study site.  

In addition to monitoring depth to groundwater, a rain gauge station (Figure 2.2) installed at the Ifakara Health 

Institute (IHI) within the floodplain provided daily precipitation data.  

 

3.3 Analysis Methods 

3.3.1 Work Flow for Satellite Image Processing  

The RapidEye images were orthorectified using the 1-arc second Shuttle Radar Topography Mission Digital 

Elevation Model (SRTM DEM) to ensure they are located in their corresponding x, y locations. The 

orthorectification was performed in Erdas Imagine inbuilt Rational Polynomial Coefficients that relate image 

and ground coordinates taking into account the satellites orbital position. ATCOR (Atmospheric CORrection) 

model removes the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain 

information from optical images in the extraction of physical earth surface parameters (Richter and Schläpfer 

2013). This is important especially when the comparison of images acquired from different satellite sensors is 

required. Atmospheric correction implemented with ATCOR 2 in Erdas Imagine applies for multispectral 

imagery acquired over flat terrain. Bidirectional Reflectance Distribution (BRDF) defines the reflectance of a 

target as a function of sun and sensor viewing geometry. In small, flat areas with undulating topography, the 

BRDF effect is small as differences in illumination are negligible and therefore BRDF correction was not applied 

since our study site is 13*5km with an elevation difference of approximately 170 m (Vaudour et al. 2008). 

Cloud coverage greatly affects optical imagery over the tropical region (Figure 3.1). Cloud removal process 

involved setting thresholds of brightness, secondly selecting of areas identified as either clouds or cloud shadows 

was performed by application of the thresholds, thirdly, generating masks from the cloud and cloud shadow 

layer and finally, clipping the RapidEye images to eliminate the cloud areas. Cloud masking of Top of 

Atmosphere Sentinel-2 and Landsat was performed using the F-mask (Zhu et al. 2015). Orthorectification and 

co-registration followed in the processing chain. Ground control points and google earth images were references 

for the coregistration implemented by autosync tool in Erdas Imagine assessed. The positional accuracies were 

less than 2m for the Sentinel-2 and less than 5 m for Landsat. Clipping to the size of the study area extent was 

the final step in preprocessing.  

 

3.3.2 Classification  

SVM is a machine-learning algorithm that separates classes by generating hyperplanes for optimal class 

separation. The method was selected as it has resulted in high accuracies in monitoring wetland dynamic 

(Chatziantoniou et al. 2017, Pande-Chhetri et al. 2017). The radial basis function, that fits data in a higher 
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dimensional space to increase class separability was implemented in the EnMap toolbox (van der Linden et al. 

2015). All optical images were classified using the training data after which performance metrics were assessed 

by computing the overall and Cohen's-Kappa coefficient (Congalton and Green 2009). Separation of training 

and validation points offered an independent unbiased accuracy assessment. Figure 3.2 shows the processing 

chain of the optical images.  

 

 

Figure 3.2: Data process flow. Auxiliary training and validation points for the Support Vector Machine (SVM) 

classification were obtained using the Unmanned Aerial Vehicle Photos (UAV) and the Global Positioning 

System (GPS) points 

 

The analysis was as follows: 

 Support Vector Machine classification algorithm was run on the series of multi-spectral images: RapidEye, 

Sentinel-2, and Landsat. Built up areas, bare land, vegetation cover and water extent coverage were the 

classes of interest. The tropical region is vastly affected by clouds thus a separate class of all masked out 

areas was included. The total area of classification was 5000 hectares. The sensing period for the RapidEye 

ranged from August 2013 to June 2015 and for Sentinel-2 from December 2015 to August 2016. To 

increase the temporal resolution of the time series, cloud-free and minimum-clouded Landsat images 

acquired within the three-year study period were included in land cover mapping. The RapidEye, Sentinel-

2 and Landsat 5m, 10m and 30m resolution were retained for the classification as resampling to a higher 

pixel size will lower the classification accuracy (Fisher et al. 2017). 
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 The validation dataset was used to calculate the overall and Kappa coefficient as accuracy assessment tests 

for the classification. The overall accuracy is the percentage of correctly classified pixels divided by the 

total number of test pixels. The Kappa coefficient estimates the error reduction generated by the classier 

verses the error of a random classifier (Congalton and Green 2009). It is given by  

�̂� =
𝑝𝑐 − 𝑝𝑒

1 − 𝑝𝑒
 

In which �̂� is the Cohen's-Kappa coefficient, pc is correct classification giving the observed level of 

agreement, and pe is expected agreement by chance. 

 Cumulative seasonal land cover maps were generated from all the classified images to identify the spatial 

distribution of the most frequent classes over the study area. The spatial resolution of the classified 

RapidEye images was 5 m, Sentinel-2 was 10 m and Landsat was 30m. All the maps were resampled to a 

common resolution of 5 m. Resampling to the smallest resolution ensured that the classes assigned to the 

pixels are retained since the bigger pixels in Landsat and Sentinel-2 are subdivided into smaller sizes. The 

resampled classified maps were separated into individual classes i.e. bare, water, vegetated and built up. A 

stack was generated for each land cover class. The number of occurrence of each class through the stacked 

image was then calculated. This gave the frequency of recurrence of the given class presented as the 

cumulative seasonal maps, whose resolution is 5 m. The study selected images taken between January to 

June (time epoch 1 in the rainy season) and July and December (time epoch 2 in the dry season) in 

generation of the frequency maps. 

 Groundwater levels were qualitatively related to land cover as an additional validation method explaining 

the occurrence of land covers and groundwater levels in the dry and wet season. Ratios generated were 

constrained to one such that 𝑏𝑎𝑟𝑒𝑟𝑎𝑡𝑖𝑜 + 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑒𝑑𝑟𝑎𝑡𝑖𝑜 + 𝑤𝑎𝑡𝑒𝑟𝑟𝑎𝑡𝑖𝑜 + 𝑏𝑢𝑖𝑙𝑡𝑢𝑝𝑟𝑎𝑡𝑖𝑜 = 1  

 

3.3.3 Geostatistical Analysis of depth to groundwater 

A limited number of piezometers observations provided groundwater levels information. To obtain values for 

all areas in the study site, the piezometer readings were used in generation of groundwater surfaces. For 

interpolating the groundwater level measurements, several methods are available from which geostatistical 

methods are the most sophisticated approaches as they analyze the spatial structure of the data. This involves 

estimation and modeling of spatial correlation (covariance or semi-variance) of measured point data (Hengl et 

al. 2007, Hengl 2009).  

Semi-variograms are plots of semi-variances against separation distances of point observations. Points are 

averaged for a standard distance called lag (experimental/sample variogram). Fitting of the variogram was done 

using linear, Exponential and Gaussian models. Weights assigned to semivariograms are iterative least square 

estimation based on a number of point pairs and distance (indicative of true spatial autocorrelation structure). 

A number of pairs at a certain lag divided by the square of the distance mainly gives the weight. Thus, a higher 
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weight assigned to many pairs and at short distances. The semivariance is defined by the average squared 

difference of data points separated by lag distance h. Semivariance increases with increasing distance. When the 

distance between samples is less than the range, there is a spatial relationship between the samples. A separation 

distance greater than the range implies random variation (Trangmar et al. 1986). The semivariograms 𝛾(ℎ) is 

calculated by  

𝛾(ℎ) =  
1

2𝑛(ℎ)
∑[(𝑧(𝑠𝑖) − 𝑧(𝑠𝑖 + ℎ))

2
]

𝑛(ℎ)

𝑖

 

𝑛(ℎ) 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑣𝑒𝑟 𝑎 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ℎ,  

𝑧(𝑠𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑖,  

𝑎𝑛𝑑 𝑧(𝑠𝑖 + ℎ)𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑠𝑖 + ℎ 

With 𝑛 point observations, 𝑛 ∗ (𝑛 − 1)/2 semivariance pairs can be computed. Plotting the semivariances and 

their separation distance produces Figure 3.3 (Hengl 2009).  

 

Figure 3.3: Components of a semivariogram 

The Exponential and Gaussian variograms were fitted.  

𝛾(ℎ) = {
0

𝐶0 + 𝐶1(1 − 𝑒
−ℎ

𝑎⁄ )
 
ℎ = 0
ℎ > 0
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𝐶0 ≥ 0 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑔𝑔𝑒𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝐶1 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 

 𝐶0 + 𝐶1 = 𝑠𝑖𝑙𝑙, 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒  

Nugget variance is the small-scale variability representative of variation due to random factors such as 

measurement errors not detectable at the sampling scale used. The sill gives an indication of total variance of 

the system, comprising of randoma and structural variance. Structural variance can be caused by intrinsic factors 

such as climate, parent material, topography, soil type and occurs at the point where the variogram flattens out 

(Rodríguez Martín et al. 2016). The range is the maximum distance at which spatial correlations exist. Beyond 

the range, correlation is minimal. The number of lags and lag tolerance were adjusted to produce the best fit for 

the data. The Exponential and Gaussian models were implemented in variogram modeling The degree of spatial 

dependence indicates the level of correlation between the measured point data different spatial locations. 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 =
𝐶0

𝐶0 + 𝐶1
 

 

 

A spatial dependence lower than 25% indicates a strong spatial correlation between the groundwater levels 

measured at different locations, 25% to 75% describe a moderate correlation, and a value greater than 75% 

indicates a weak spatial dependence (Jing et al. 2014). Monthly groundwater raster maps were generated for the 

period under study.  

 

3.4 Results and Discussion  

3.4.1 Time series of land cover characterization using multi-source imagery  

The Support Vector Machine classification algorithm was applied to multi-temporal multi-sensor RapidEye, 

Sentinel-2, and Landsat satellite imagery. Built up areas, bare land, vegetation cover and water extent coverage 

were the classes of interest (Figure 3.4, 3.5). The tropical region is vastly affected by clouds thus a separate class 

of all masked out areas was included. The total area of classification was 5000 hectares. The overall classification 

accuracies for the RapidEye, Sentinel-2, and Landsat ranged from 70 to 96% while the Cohen´s-Kappa 

coefficients ranged from 0.61 to 0.95 (Table 3.2). 
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Table 3.2: Accuracy assessment of the Support Vector Machine classification 

Image 

Date 

Sensor  Overall 

Accuracy  

Kappa 

Coefficients 

Image 

Date 

Sensor  Overall 

Accuracy  

Kappa 

Coefficients 

25-08-13 RapidEye 93.8 0.92 17-05-15 RapidEye 81.6 0.77 

28-09-13 RapidEye 94.1 0.93 06-06-15 RapidEye 87.9 0.85 

03-02-14 RapidEye 87.8 0.85 10-08-15 Landsat 91.0 0.88 

10-05-14 RapidEye 93.6 0.92 30-11-15 Landsat  82.3 0.76 

19-05-14 Landsat 70.5 0.61 06-12-15 Sentinel-2 89.0 0.85 

10-06-14 RapidEye 91.5 0.89 26-12-15 Sentinel-2 85.6 0.82 

07-08-14 Landsat 90.0 0.87 14-05-16 Sentinel-2 91.7 0.89 

24-08-14 RapidEye 96.7 0.95 24-05-16 Sentinel-2 88.4 0.86 

15-10-14 RapidEye 85.4 0.82 13-06-16 Sentinel-2 87.3 0.84 

25-10-14 RapidEye 82.1 0.78 23-06-16 Sentinel-2 95.0 0.93 

11-11-14 Landsat 86.1 0.81 11-07-16 Landsat 90.8 0.88 

06-12-14 RapidEye 95.6 0.94 23-07-16 Sentinel-2 78.9 0.74 

31-03-15 RapidEye 84.9 0.81 02-08-16 Sentinel-2 84.3 0.8 

18-04-15 RapidEye 92.7 0.91 22-08-16 Sentinel-2 79.5 0.75 

27-04-15 RapidEye 91.2 0.89 28-08-16 Landsat 83.3 0.78 

 

Despite the varying spatial resolution for Landsat (30m), Sentinel-2 (10m) and RapidEye (5m), the overall 

accuracies were all above 70%. The potential of each of the satellite sensors in delineating bare, vegetated, water 

and built up areas portrays its use in inventorying and monitoring land cover over the study area. The maps 

developed show temporal changes in land cover patterns providing seasonal change information for land use 

planning. Different climate-smart technologies can be adopted depending on the spatial seasonal patterns from 

the land cover maps and time of year.  

The current study was limited to general land cover classes and did not assess crop type mapping. The major 

challenge was the small sizes of the farms having varying crop types. Object-based classification offers a solution 

to crop type and field scale mapping. However, it would require very high-resolution imagery capable of 

delineating the actual field boundaries.  
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Figure 3.4: Classified images of the rainy (May) and dry season (August). The masked areas (white) are due to 

cloud coverage; the 225m contour line shows the delineated riparian zone. RapidEye has a resolution of 5 m, 

Sentinel-2 10m and Landsat 30 m. 
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The use of different sensors with slightly varying number of spectral bands and range is a possible cause of error 

in classification. To minimize further differences and likely bias in the data acquired from the three satellite 

sensors, the same classification algorithm was performed on each individual image. The interpretation of each 

image is independent of the subsequent images. Varying spatial resolution introduces uncertainties particularly 

for the Landsat 30m resolution images. High-resolution satellite imagery is preferable for classification of small 

sites with small and heterogeneous field sizes and small features present like in the current study (Fisher et al. 

2017). Features with sizes smaller than the low Landsat resolution pixels were not distinguishable.  

 

 

Figure 3.5: Areal coverage of land classes in hectares. The spacing between acquisitions indicates the 

inconsistent optical image availability.  

 

The bare cover class is greater than 70% in the months of August to October, which coincides with the dry 

season. It is a common practice for the farmers to clear their fields by burning in preparation for the subsequent 

short rainy season.  

From December to February, the bare land coverage decreases as the rainy season begins. Flooding along the 

Kilombero River is a periodical event though the extent varies from year to year (Figure 3.6). In June, bare land 

coverage increases due to sediment accumulation following receding waters after the floods. The location of 

vegetated land cover shifts depending on the season. In the rainy season, areas outside of the riparian zone are 
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vegetated while vegetation coverage within the riparian zone increases in the dry season. The built up class 

remains constant with the slight variations due to changes in masked out areas. The road heading to the 

Kilombero River is slightly higher than the surrounding area. During the rainy season, flooding partly submerges 

this road. As a result, the width of the road varies between the rainy and the dry season as seen on the optical 

images (Figure 3.6). During the dry season, the road width remains constant and is clearly visible in the optical 

images. Cloud coverage ultimately prevents that the areas masked out due to clouds and cloud shadows fall in 

any other class and thus land cover change analysis was not possible (Figure 3.1).  

 

 

Figure 3.6: RapidEye images for 10-05-14 (rainy season), 24-08-14 (dry season), 17-05-15 (rainy season) and 06-

06-15 (dry season). The right side of the road towards the Kilombero River submerges during the rainy season.  

 

The farmers in the study area mainly practice agriculture dependent on rain. The major land cover in the dry 

season between June and October is bare. High temperatures and low soil water content attribute to the bare 

land cover. At the beginning of the rainy season in December, the vegetation cover increases and reaches a peak 

in May-June (Figure 3.4). Areas in the north of the study area, not affected by floods are vegetated at this time. 

Hence, images acquired in May to June indicate that there is vegetation in the northern sections. Images acquired 

in August indicate that the northern parts are bare explained by little or no vegetation since this marks the dry 

season.  
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Figure 3.7: Relationship of precipitation and ratio of land cover. 

 

The maximum flooding extent during the rainy season reaches up to 3 km on both sides of the Kilombero River 

as was experienced in May 2014. However, the El Niño phenomenon caused the exceptional flooding (Figure 

3.4). The flooded zone corresponds to the 225m contour. The high vegetation coverage in the middle and fringe 

areas in May and June indicates the presence of suitable conditions to support vegetation growth in areas out 

of the riparian zone (Figure 3.4). The riparian zone has a bare land cover in June due to the accumulation of 

sediments following the rains and subsequent floods.  

The pattern of land cover change over the three years is consistent and is determined by the seasons. It is 

evident that with increased precipitation, there is a reduction of bare land cover and increase in vegetated cover. 

Consequently, low precipitation results in increased bare cover class (Figure 3.4). Knowledge derived from the 

seasonal land cover thematic maps are a basis for operational monitoring of land conditions which aid in 

establishing land management practices to increase agricultural production. Vegetation covers the middle and 

fringe zones for most of the rainy season. In the dry season, the riparian zone, having close proximity to the 

river is vegetated implying the potential existing in this area for crop production. Conversely, the areas away 

from the river are bare for most of the dry season. This implies that when it comes to decisions making on land 
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use for increased food production during the dry season, farms in the middle and fringe zones would require 

additional water supply to produce crops in the dry season.  

From the time series of the RapidEye, Landsat, and Sentinel-2 images, frequencies of land cover classes over 

the entire period were determined (Figure 3.8). The bare land cover through the investigated period dominates 

the areas to the northeast, central and south of the study area. The region within the riparian zone is frequently 

vegetated postulating sufficient soil moisture for continued agriculture.  

Information from cumulative seasonal maps aid in detailing locations where agricultural improvement 

mechanisms such as setting up of water pumps and irrigation planning can be spatially located. Areas with a low 

bare cover recurrence rate, can adopt less cost-effective methods (such as manual pumps) whereas areas such 

as to the northeast where bare land cover is dominant require permanent methods (such as drip irrigation 

systems) that ensure constant and continuous availability of water to support vegetation growth (Figure 3.8). 
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Figure 3.8: Recurrence of bare cover (left column), vegetation (central column) and water (right) column for all 

images (upper row), rainy season (central row) and dry season (bottom row). The legend indicates the number 

of images that generated the cumulative seasonal maps.  
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The spatial-temporal changes occurring between January to June and July to December are assessed by 

computing the cumulative season duration maps of each class from the classification maps produced (Figure 

3.8). Observations indicate an increase in bare cover to the south and northeast in the second half of the year. 

In the first half of the year, the central and northern regions are vegetated with no vegetation cover observed in 

these central and northeast regions during the second half of the year. The static structures visible in both the 

wet and dry season vegetation images located towards the lower north are trees. The extent of water coverage, 

with maximum extent observed in May 2014 when there was excessive flooding. In the second half of the year, 

the water extent is shown to reduce, consistent with the dry season experienced in that time of the year.  

Analyzing land cover changes in the riparian zone aided in the understanding of its unique seasonal dynamics 

due to its proximity to the river. This area covers 2500 ha (half of the total study site). Vegetation increased 

during the dry season contrary to the areas in the middle and fringe zones. During the rainy season, the riparian 

zone has less vegetation as compared to the middle and fringe zones because it is largely flooded. 

Vegetation within the riparian zone was greater than 50% of the total vegetation coverage of the study area 

from August to October (Figure 3.9). High vegetation coverage in the riparian zone in the dry season indicates 

the presence of a high soil water content capable of supporting the growth of crops. The bare land cover was 

greater than 50% of the total coverage in April to June representative of exposure of sediment accumulation 

following receding floods in the riparian zone. The results are consistent with a report by (Wilson and Lewis 

2015) who indicated that rainfed lowland rice is prone to submergence under floods. The receding floods in the 

riparian zone expose bare land whereby any previously existing vegetation is buried under a layer of silt washed 

down from the surrounding farms. 
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Figure 3.9: Ratio of vegetation and bare land cover within the riparian zone as a function of total vegetation and 

total bare land cover of the study area in percentage. The percentage not in the riparian zone is also shown. 

 

Varying yearly flooding patterns in the riparian zone pose a challenge in the determination of planting times. 

From the results (Figure 3.4), a delay in planting time is recommended until the floods recede. In the dry season, 

the presence of vegetation within the riparian zone infers the agricultural potential of this area. However, in the 

selection of a suitable crop to plant in the riparian zone during the dry season, factors such as the high 

temperatures experienced during the dry season should be taken into consideration (Nicol et al. 2015).  

The seasonal land cover dynamics indicates the farmers currently adopt a balance between risk and chance in 

crop growth. Given the current reports on changing weather patterns, a challenge exists of knowledge on 

expected flooding patterns. Farmers within the study area take a chance by prepare their fields during the rainy 

season to maximize the use of the available water for rice plantations. With this opportunity comes the risk of 

crop loss in case excess flooding destroys the planted rice. Based on the current land cover seasonal maps, 

forecasting to aid in planning the planting times and spatial locations is recommended. 
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3.4.2 Relationship between land cover and depth to groundwater 

The hourly depth to groundwater observations were averaged to daily readings. Table 3.3 highlights the highest 

and lowest piezometer readings for the period under study. The riparian zone had the highest recorded value 

of depth to groundwater (3.3 m). The lowest depth to groundwater level at the middle zone was 2.83 m where 

that at the fringe was 3.38 m. Negative values stipulate flooding represented by the highest groundwater levels. 

The highest value was in the riparian zone at -3.98 m. The middle and fringe zones had -0.89m and -0.08 m as 

the highest values respectively.  

 

Table 3.3: Piezometer readings for the period of observations running from March 2015 to June 2016 

Name Highest 

measured 

water level 

Lowest 

measured 

water level 

Low depth to 

groundwater occurrence 

periods 

High depth to groundwater 

occurrence periods  

PZ01 -1.01 3.33 Greater than -0.5 

30/04/-21/05/15 

23/04-14/05/16 

Below 3.0  

07/10/15-18/01/16 

PZ02 -2.79 1.88 Greater than -0.5 

15/04/-18/05/15 

13/01-09/03/16 

09/04-03/06/16 

Below 1.5  

18/10/15-18/01/16 

PZ03 -3.98 1.80 Greater than -2.0 

24/04/-27/05/15 

11/02-28/02/16 

14/04-30/05/16 

Below 1.5  

26/08/15-01/01/16 

PZ04 -1.94 2.50 Greater than 0.1 

22/01-01/03/16 

10/04-01/06/16 

Below 1.5  

28/08/15-05/01/16 

PZ06 -0.89 2.83 Greater than 0.1 

15/04/-09/06/15 

03/04-12/06/16 

 

Below 2.0  

23/09/15-22/01/16 

PZ10 -0.08 1.30 Greater than 0.1 

21/03/-24/05/15 

20/01-26/02/16 

31/03-12/05/16 

Below 1.0  

27/09/15-16/12/15 
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PZ12 3.09 3.38 Consistently between 

3.15 and 3.25 in June to 

December 2015 

Increased level between 3.1 

and 3.15 from January to 

June 2016  

PZ13 0.20 2.35 Greater than 0.5  

29/04/-14/05/15 

07/02-12/02/16 

06/04-05/05/16 

Below 2.0  

27/10/15-07/01/16 

PZ14 -0.04 2.05 Greater than 0.2  

23/03/-21/04/15 

27/01-23/02/16 

31/03-09/05/16 

Below 1.6  

05/09/15-05/01/16 

 

Groundwater depths for the middle and fringe show a similar pattern whereas that of the fringe shows that the 

water is close to the surface throughout the year (Figure 3.10). The fringe receives groundwater from the 

mountains as base flow while the groundwater level in the riparian and the middle zone depend on the river 

water level. The depth to groundwater is higher for the riparian zone compared to the middle in the rain season. 

Rainfall pattern is reflected directly in the fringe piezometers whereas the response in the middle and riparian 

fields is very little and is delayed (Gabiri et al. 2018). A steep decrease in depth to ground water is observed in 

March and January, usually taking between 1 to 2 months to reach a peak. A slight increase in depth to 

groundwater is observed in February coinciding with the reduced precipitation. An increase in precipitation in 

March subsequently results in a decrease in depth to ground water. In the dry season, the increase in depth to 

ground water has a gentle slope taking approximately 7 months to reach its lowest level. The precipitation and 

depth to ground water pattern indicate that the groundwater responds to precipitation patterns. This implies 

that some portion of the rainwater infiltrates into the ground in rainy seasons resulting to a fast rise in the water 

level. The rate of rise of the water level (recharge) is faster than the rate at which the depth to groundwater 

increases (groundwater drains).  
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Figure 3.10: Groundwater depths in the riparian (PZ 01), middle (PZ 06) and fringe (PZ 10) zones and the 

corresponding ratios of land cover. The effects of changes in precipitation on depth to groundwater levels is 

shown.  

 

Figure 3.10 presents the ratios of the land cover classes of images with less than 10% cloud cover together with 

the depth to groundwater. The ratio of areas for the water class remained constant for the images analyzed. 

Towards the end of May, the depth to groundwater level increased and bare land cover within the riparian zone 

increased as flooding recedes. The vegetated regions fall in the middle and fringe fields. The groundwater depth 

at the beginning of December was low ranging from 3.3, 2.7 and 0.9 for the riparian, middle and fringe zones. 

The high areal coverage of bare land is a result of the dry season experienced in the preceding months. By the 

end of December, the depth to groundwater was 3.3, 2.8 and 0.7m. Despite the lower groundwater towards the 

end of December, vegetation cover increased, attributed to the occurrence of precipitation. In June 2016, depth 

to groundwater was 1.26, 0.36 and 0.38 for the riparian, middle and fringe zones. Comparing the vegetated and 

bare cover of 2015 and 2016, it is evident that the vegetated coverage in 2016 is higher due to earlier recession 

of flooding water in 2016. In 2015, the decrease in depth to groundwater level began on 27th of May for the 

Riparian and 15th May for the fringe. However, in 2016, the decline began on 23rd of May in the Riparian zone 

and 6th of May in the fringe zone. Saturated soils had drained excess water by 23rd of June 2016 and hence the 
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soil water content was suitable to support vegetation growth. The results show that the land covers respond to 

depths to groundwater.  

Climate influences groundwater via precipitation infiltration and evapotranspiration rates depending on 

temperature (Li et al. 2014). Comparison of the precipitation data from the IHI station and climate data in 

Ifakara (climate-data.org) indicate that average temperatures are similar (Figure 3.12). Precipitation recorded at 

IHI is however slightly lower by approximately 1.2mm per day. Increased precipitation reduces the depth to 

groundwater, occurring between March and April 2015 and October 2014 to April 2016 (Figure 3.10). High 

temperatures as a proxy of high evapotranspiration rates affect shallow groundwater as reported by (Ndou et al. 

2017). Consequently, the high temperature period results in a decrease in groundwater level. Lower 

temperatures, occurring between October and December 2015 in the rainy season, result in a rise in 

groundwater level. Another episode of low temperature between February and April 2016 subsequently resulted 

to a rise in groundwater level. Both temperature and precipitation influence the groundwater levels in the study 

area.  

Point groundwater information are not sufficient to explain the spatial pattern of the land cover image and 

hence, application of Kriging interpolation method on the observed groundwater levels generated groundwater 

maps containing information at sampled and non-sampled locations. Variogram parameters that generated the 

kriged images are shown in Table 3.4. The depth to groundwater patterns from March 2015 to June 2016 are 

as shown in Figure 3.11. 

Table 3.4: Variogram model parameters for generating kriged images 

Dates Model Nugget 

variance 

Sill Degree of Spatial 

Dependance (%) 

Range 

15-03-15 exponential  0.2 0.9 17.0 5199.1 

15-04-15 exponential  0.1 0.9 6.3 6498.7 

15-07-15 exponential  1.0 0.1 88.2 10469.0 

15-08-15 exponential  1.0 0.1 88.1 10469.0 

15-09-15 exponential  0.9 0.2 84.1 5199.1 

15-10-15 exponential  1.0 0.2 79.6 5199.1 

15-11-15 exponential  0.7 0.5 60.0 5199.1 

15-12-15 exponential  0.9 0.4 67.8 5199.1 

15-01-16 exponential  0.3 1.1 19.4 5199.1 

15-02-16 exponential  0.3 0.7 32.1 4957.1 

15-03-16 exponential  0.3 0.7 27.3 5199.1 

15-04-16 exponential  0.1 1.6 6.8 10412.4 

15-05-16 exponential  0.0 1.3 0.0 9193.2 

15-06-16 exponential  0.3 1.5 15.3 8803.3 
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The degree of spatial dependence for the groundwater depth raster images generated indicated that in the 

second half of the year (July-December) had data has a low spatial correlation, i.e. spatial dependence (Table 

3.4). There was a high correlation for the groundwater depths observed in the first half of the year. From this 

analysis, it is evident that during the dry season when the groundwater level is low, there is a low spatial 

correlation of the groundwater level measured at the piezometers distributed in the study area. During the first 

half of the year, the groundwater depth rises and a strong spatial dependence is evidenced. Figure 3.10 shows 

the pattern of groundwater depth over the study period.  

Depth to groundwater reduces in March and a further reduction in depth is observed in May (Figure 3.10). 

From July to December, the depth to groundwater increases, within this time a vast amount of land has bare 

cover and there is a rare occurrence of precipitation (Figure 3.10). At the onset of the rains in December, the 

depth to groundwater is observed to increase from January to June, with the peak observed in the riparian 

region in April and May. The negative depth to groundwater portrays flooding (Figure 3.10). The flooding is 

observed to commence on the southwestern side of the study area. There is a reduction in bare class and an 

increase in vegetated land cover from January to June. 
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Figure 3.11: Groundwater levels interpolated using the Kriging method and changes in groundwater level 

between 2015 and 2016. Negative values indicate flooding. 
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The areas, particularly to the south of the study area, have a higher rise in water level as opposed to the northern 

parts of the study area. The Kilombero River drives the groundwater in the southern part whereas lateral flow 

from the Udzungwa Mountains drives the groundwater in northern part (Gabiri et al. 2018). Floods are variable 

and discernable on the optical images. Lateral flow is deep-seated and more stable.  

The current study showed that a link exists between land cover and depth of groundwater. High groundwater 

depths result in a high percentage of vegetated land cover class whereas bare land cover class mainly occurs in 

low groundwater depths and after flooding events. However, in the riparian zone, despite a high depth to 

groundwater in the dry season, vegetation thrived due to moisture emanating from the Kilombero River.  

A more detailed assessment of thematic land cover was not possible due to the limited number of cloud-free 

images. Differentiation of crop types and mapping of the field boundaries was not possible due to the highly 

fragmented farm sizes and high variability of crops grown. To capture the field boundaries, very high-resolution 

imagery would be required. Furthermore, the limited number of matching cloud-free images and groundwater 

level restricted the analysis of the relationship between land cover and groundwater water depth.  

 

3.5 Conclusions  

The study understanding the land cover dynamics within Ifakara, in the Kilombero River floodplain, by 

generating land cover maps and cumulative seasonal land cover maps. The dynamics of land cover and depth 

to groundwater at three hydrological zones were evaluated. The first major finding was that in the rainy season, 

groundwater level is high and a large amount of land in the middle and riparian zone are vegetated. The riparian 

zone is flooded with a maximum observed extent of 3 km on both sides of the Kilombero River during the El 

Niño rains in 2014. However, the flooding intensities vary from year to year. The second major finding was 

that in the dry season, groundwater level is low, the area within the riparian zone is vegetated and the other 

zones are mainly bare. This availability of moisture capable is supporting vegetation growth in the margins of 

the riparian zone indicates that the moisture in soils emanates from the water in the Kilombero River. The high 

proportion of vegetated areas in the middle and fringe zones during the rainy season point to the good moisture 

conditions, which favor crop growth. Most sections of the riparian zone are classified as bare after the rainy 

season due to accumulation of soil sediments. The cumulative season maps revealed low vegetation coverage 

in the central and northeast regions of the study area. Groundwater responds to precipitation and the rate of 

groundwater recharge is higher than the rate of draining.  

This research enhanced our understanding of land cover changes and their role in agricultural production in 

rainfed agricultural systems by providing spatiotemporal explicit land use information. Seasonal land cover 

information will help in land use planning with respect to suitable crops and farming practices that will lead to 

increased yield and therefore an increase in food security. Future studies investigating the economic capability 

of the farmers and agricultural development research institutions to adopt climate-smart agriculture is 

recommended. Continued monitoring is recommended to assess the impact of adopted technologies on 
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agricultural yields. The effect of land use on groundwater quality should be assessed in the face of increasing 

pressure on water demands as it forms an additional source of water for the growing population and therefore 

any contamination points should be controlled and halted.  

 

 

Figure 3.12: Comparison of climate data from IHI and climate data from climate.org for Ifakara 
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4. Multi-temporal Analysis of Sentinel-1 Texture and Principal Component Analysis 

features 

4.1 Introduction 

Tanzania is mainly an agricultural country with 90% of the rural population involved in the agricultural sector 

(Kalinga and Shayo 1997). Due to increased population and elevated food requirements, wetlands are utilized 

for agricultural activities, making them highly dynamic systems (Mombo et al. 2011). Lack of records showing 

the spatial extents and use of the wetlands affects their sustainable and wise use (Kalinga and Shayo 1997). 

Wetland monitoring is thus essential in ensuring controlled utilization of resources and activities to warrant a 

balanced ecosystem. Furthermore, development and implementation of policies regarding wetland use require 

detailed knowledge of wetland dynamics (Frenken and Mharapara 2001, Eitel et al. 2011). Wetlands undergo 

rapid changes over time and cover vast regions.  

Therefore, monitoring such spatial phenomenon through ground survey methods is not cost effective. Synoptic 

viewing and temporal capabilities of remote sensors provide an alternative timely and cost-effective data 

acquisition platform (Guo et al. 2017). Longer wavelength microwave images are sensitive to the structure of 

target features whereas optical images are sensitive to the chemical composition of the features (Shang et al. 

2009, Schuster et al. 2015). However, the presence of clouds adversely affects optical remote sensing imagery 

resulting in inconsistency in available satellite data. Due to this shortcoming, weather independent SAR 

observations are favored especially for tropical regions. Over the years, various studies have been carried out in 

mapping habitats and monitoring agricultural areas using SAR images (Evans et al. 2010, Turkar et al. 2012, 

Betbeder et al. 2015).  

The scattering mechanisms of polarimetric parameters have aided in wetland monitoring in several studies. 

However, polarimetric decompositions are only possible in cases where fully polarized or co polarized images 

are available. Flooded vegetation is characteristic of double bounce whereas for open water specular reflection 

with lower backscatter values is dominant (White et al. 2015). Vegetated lands are dominated by volume 

scattering due to the interaction of the waves with the stems and leaves (Moser et al. 2016). These scattering 

mechanisms aid in discrimination of land cover types within the wetlands (White et al. 2015). (Morandeira et al. 

2016) utilized the H/A/α decomposition parameters in mapping plant types in a wetland. Classification of 

model-based decomposition yielded higher accuracies as compared to Eigen decompositions in a wetland in 

the Amazon (Furtado et al. 2016). The Kennaugh decomposition matrix for dual polarized TerraSar-X images 

resulted in higher classification accuracies as opposed to the single polarized images in wetland monitoring 

(Moser et al. 2016). In another study, TerraSar-X Shannon Entropy resulted in higher classification accuracy 

compared to the single polarized HH and VV data (Betbeder et al. 2014). Similar backscatter values can occur 

for single polarized images and thus discrimination of features is low (Mosleh et al. 2015). Single polarized 

images require more acquisitions than multi-channel images (Shao et al. 2001).  
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Polarimetric elements are generated from dual polarized and/or quad-polarized Single Look Complex (SLC) 

products that have amplitude and phase information and requires two or more orthogonal polarizations (Cloude 

2010). The Sentinel-1 images for the study area over the study period, however, are single polarized and thus 

pose a challenge with respect to generation of this polarimetric information. Incorporation of spatial 

dependence of neighborhood pixels was shown to increase land cover classification accuracy (Ghimire et al. 

2010). Spatial structuring of Landsat TM using the Getis statistic detected changes in spectral values between 

objects otherwise not perceived in a comparative maximum likelihood classification (Wulder and Boots 1998). 

(Myint 2003) utilized the fractal approach, spatial autocorrelation which included Moran’s I and Geary’s C, 

mean and standard deviation in Landsat classification with the spatial autocorrelation resulting in highest 

accuracy. Variance, Moran’s I and fractal dimension was used in another study in urban land cover classification 

(Emerson et al. 2005). The fractal approach proved to be effective in improving classification accuracy in 

urbanized areas.  

The calculation of Grey Level Co-occurrence Matrix (GLCM) texture features is another method to spatially 

analyze neighboring pixel values. GLCM texture shows tonal changes within a set distance on an image. 

Utilizing information on arrangements of objects and their spatial relationships enables better discrimination of 

land cover classes (Ghimire et al. 2010, Rodríguez-Galiano et al. 2011). GLCM texture has been shown to 

improve overall accuracies in analyzing the health of trees using multispectral Ikonos imagery (Wang et al. 2015), 

in mapping wetland communities in the Everglades National Park (Szantoi et al. 2013), and in field-based 

classification using single polarized HH GLCM texture features from TerraSar-X images (Mahmoud et al. 2011). 

They have been shown to be correlated to forest biomass (Eckert 2012) and attempts have been made to map 

vegetation structure (Wood et al. 2012). GLCM texture was utilized in discriminating oil palm and rubber 

plantations from other land cover classes (Torbick et al. 2016). In that study, contrast and homogeneity were 

deemed to be the most important variables. (Inglada et al. 2016) utilized LandSat-8 and Sentinel-1 in crop 

monitoring where GLCM texture was generated from Sentinel-1 data. Energy, entropy and angular second 

moment were found to be the most important GLCM texture features. VV polarization was found to be more 

important input as opposed to the VH polarization. Texture information from ALOS and Sentinel-1 Dual 

polarized data were classified using the SVM and Maximum likelihood with SVM giving best accuracy (Homa 

Zakeri et al. 2017). Random Forest and SVM had highest accuracies as compared to Neural network and 

Maximum likelihood in mapping mountainous forests with spectral derived parameters, SAR derived 

parameters among which was GLCM and a combination of all GLCM features (Attarchi and Gloaguen 2014). 

Therefore it is evident from this classification literature, different classifiers have different strengths resulting 

in different accuracies for the same classes (Lu and Weng 2007). 

Principal Component Analysis reduces the dimensionality of a large number of interrelated variables generating 

uncorrelated bands that maintain the variation in the data (Gupta et al. 2013). GLCM texture features have 

bands with potentially redundant information and thus PCA was applied to the texture features. 
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Chamundeeswari et al. (2009) assessed the PCA applicability of texture features in classification accuracy 

(Chamundeeswari et al. 2009). It was reported that PCA based classification yielded higher accuracies. The study, 

however, involved the k mean unsupervised classification.  

Addition of GLCM features in wetland mapping has been assessed by studies such as Landsat GLCM increased 

the accuracy of change detection the Mediterranean coastal wetland indicating the importance of texture in 

providing additional information in areas with high spatial variation (Berberoğlu et al. 2010). Application of 

high-resolution Quickbird in the classification of riparian and forest ecosystem resulted in an increased accuracy 

of 2-19% for vegetation classes when texture information (Johansen et al. 2007). Texture from the red band of 

high-resolution IKONOS was incorporated in mapping plant communities in a wetland reporting high 

accuracies where texture features were applied (Barbosa 2010). (Kim et al. 2011) incorporated scale and texture 

in high-resolution aerial imagery in mapping salt marsh features (Kim et al. 2011). They reported that GLCM 

features improved between class discrimination yielding higher classification accuracies. Hyperspectral imagery 

was utilized in object-based mapping of the Everglades wetlands using GLCM texture features (Zhang and Xie 

2012). In the study, minimum noise fraction was used to reduce the dimensionality of data prior to application 

of multi classifiers. High spatial and spectral resolution, the data transformation and combining GLCM spatial 

information were reported to increase accuracies in vegetation classification. Still, within the Everglades, the 

addition of NDVI and texture features to aerial photo spectral bands was reported to increase discrimination 

of plant communities with SVM yielding higher accuracies as compared to Maximum Likelihood (Szantoi et al. 

2013). (Chatziantoniou et al. 2017) examined the performance of Sentinel 2 (S2) transformations (Principal 

Component Analysis and Minimum Noise Fraction), S2 spectral bands, S2 NDVI texture values, Sentinel-1 

SAR in wetland mapping in the Mediterranean reporting that the texture features from NDVI improved the 

vegetation and bare accuracies by 2-4% (Chatziantoniou et al. 2017).  

The Kilombero Wetland in Tanzania is mainly used for crop production. However, agricultural practices in use 

give low yields. As reported by (Ntongani et al. 2014), a local information survey showed that more land is 

cleared to make room for further agriculture (Ntongani et al. 2014). A quantification of the spatial extent of 

these agricultural fields is vital in regional agricultural management and decision making on how to produce 

more yield for the increasing population.  

Flooding events are a common occurrence along the River Kilombero during the rainy season resulting to loss 

of crop. The farmers subsequently have reduced production for subsistence use. The weather independent 

image acquisition capability of SAR systems warrant their use in water extent mapping. Moreover, SAR’s unique 

response in discriminating water and land favor its application in flood mapping. Flat surfaces reflect the signal 

away from the sensor decreasing the radiation recorded by the SAR sensor and thus dark pixels appear for water 

surfaces as opposed to the brighter land surfaces (Kussul et al. 2011, Refice et al. 2018). Monitoring the flood 

extent is an asset to farmers to determine yield expected based on flooding duration of their plots. Presence of 

clouds in this tropical region hinders the utilization of optical images in monitoring the area. However, these 
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images are useful in selection of reference data. Within the study period, very few cloud-free scenes were 

available.  

In this study, Sentinel-1 GLCM texture measures and PCA derivatives are evaluated to assess their suitability in 

mapping a floodplain wetland in Ifakara, Tanzania. The purpose is to show the potential of temporally 

consistent Sentinel-1 VV acquisitions in wetland monitoring which is crucial in understanding land cover 

changes in time thus deriving seasonal land cover cycle. Moreover, the response of different classification 

schemes is assessed. The methods applied include Support Vector Machine (SVM), Artificial Neural Network 

(NNET) and Random Forest (RF).  

To test the quality of the classification, sensitivity, positive predictive values, kappa and overall are calculated 

according to (Congalton 1991). The unique feature of the study is the evaluation of GLCM texture features 

with their corresponding PCA images applying three different classification algorithms to a time series of SAR 

imagery over a tropical wetland. Moreover, a method that utilizes few available optical images for generation of 

reference data is tested since the area is adversely affected by cloud coverage. The main objective of the current 

study is the assessment of the potential and performance of single-polarized Sentinel-1 VV images, GLCM 

texture features and PCA images derived from the texture features with minimal reference data in continuous 

monitoring of the Kilombero wetland by applying different classification algorithms. Binary change masks are 

applied in selection of the training and validation data. Change detection involves identifying changes of an area 

between acquisition dates. Binary change detection deals with separating the areas into change and non-change 

areas (Hu and Ban 2014). To minimize the probability of erroneous changes between acquisitions, the images 

in the study are all from the Sentinel-1 sensor and were all acquired at the same incidence angle (ascending 

mode at 39°) and had the same temporal resolution (24 days). Additionally, flooding frequencies are assessed 

based on the classified images.  

4.2 Materials 

4.2.1 Datasets  

4.2.1.1 Satellite Data  

Sentinel-1 is one of the European Space Agency (ESA) Copernicus satellite systems with SAR sensors. It 

operates in C-band at a frequency of 5.4 GHz, an altitude of 693 km and an orbital inclination angle of 98.18°. 

The operational modes of the satellite are the Strip Map mode with 80 km swath with 5x5 m² spatial resolution. 

The Interferometric Wide Swath mode has a swath width of 250 km and a 5x20 m² spatial resolution. The Extra 

Wide Swath mode has a 400 km swath width and a 25x100 m² spatial resolution. Finally, the Wave mode has a 

20x20 km² swath width and a 5x20 m² spatial resolution (European Space Agency 2013). Single Look Complex 

(SLC) and Ground Range Detected (GRD) data products are available for the four modes. The images selected 

over Ifakara were acquired in the Interferometric Wave mode single polarizations (VV) at an incidence angle of 
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39° in ascending mode at 15:53hrs. A time series of Sentinel-1 GRD images were acquired from the Sentinel’s 

scientific data hub (https://scihub.copernicus.eu/dhus/ ).  

A level 1B RapidEye image acquired on 27th April 2015 from http://blackbridge.com (Planet 2016) and two 

Sentinel-2 images acquired on 26th December 2015 and 5th March 2016 from 

https://scihub.copernicus.eu/dhus/ (ESA Sentinels Scientific Data Hub 2016) were the reference images from 

which the training and validation data was derived. The RapidEye and Sentinel-2 images were orthorectified 

and coregistered ensuring correct positional accuracy prior to generation of NDVI and reference points for 

classification. 

 

4.2.1.2 Reference Data 

Field data collection is vital in determining how accurate a classification has been performed. This motivated 

the need to gather ground reference information to be used in assessing the accuracy of the classifications. 

Reference data was obtained from ground measurements and remote sensed derived products. The field 

reference data was collected using Etrex 30 Garmin GPS between February and May 2015 and December 2015 

and February 2016. During field planning, random points were selected on a base map before the actual 

fieldwork. During the fieldwork, these points were visited to confirm the actual land class. Moreover, a UAV 

flight campaign was performed in February 2015.  

To secure a sufficient number of reference points, RapidEye and Sentinel-2 optical images were included in the 

generation of reference data. NDVI was also generated as a means of improved land class interpretation. The 

water and built up areas were relatively easy to identify as the town is located towards the middle of the study 

area and the Kilombero River flows on the lower section of the study area. At least 400 reference points for 

each of the optical image dates (27th April, 26th December 2015) were randomly selected in ArcGIS 10.3.1 

(Figure 4.1). The land cover classes were interpreted by visual inspection of the false color composite and 

corresponding NDVI and with the aid of the UAV photos and GPS points. Photographic records of different 

land covers were also acquired. The reference data is listed in Appendix A1. 

Challenges faced during the GPS data collection included inaccessibility of some locations as they were within 

the protected area. Moreover, the lands are communally owned and hence permission to access the lands was 

not always possible. In other cases, the road network proved challenging to reach the locations. This prompted 

the use of the remote sensing derived reference points. However, cloud coverage was a major challenge in the 

use of NDVI for additional reference point generation. The small sizes of farms accompanied by different farm 

management practices resulting to highly varied land cover confined the study to four broad classes. Collection 

of spectral signatures from individual crops was therefore not part of the current study.  

 

https://scihub.copernicus.eu/dhus/
http://blackbridge.com/
https://scihub.copernicus.eu/dhus/
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Figure 4.1: Training and validation points over RapidEye (27-04-2015) and Sentinel-2 (26-12-2015) scenes. The 

colors of the multispectral satellite imagery appear according to the band combinations 5-3-2 (RapidEye) and 

8-4-3 (Sentinel-2). The white areas are clouds. 

Differences in image appearance are due to sensors and time of acquisition. The RapidEye image was acquired 

on 27th April 2015, during the rainy season when the fields are vegetated. The Sentinel-2 image was acquired on 
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26th December 2015 during the beginning of the rainy season just after the dry season. The fields at this time 

are mainly bare. The display for both images used the band combination NIR: R: G.  

 

4.3 Methods 

Availability of consistent coverage of single-polarized Sentinel-1 data over the Kilombero floodplain during the 

period of study enables continuous monitoring of the wetland. The influence of utilizing GLCM texture features 

is assessed by applying different classification schemes and evaluating uncertainties and classification errors. A 

flow chart is given in Figure 4.2.  

 

  

Figure 4.2: Data process flow 

Radar data processing is performed with the SNAP Toolbox (Sentinel-1 Toolbox n.d.). The IW GRD single 

VV polarized Sentinel-1 data is radiometrically and geometrically calibrated using the 3-second SRTM DEM to 

correct for topographic variations and resampled to 10 m spatial resolution. Lee refined speckle filtering is 

applied for noise removal. However, application of speckle filtering on images before texture extraction has 

been an issue of controversy with some studies applying it (Pultz and Brown 1987, Pierce et al. 1998) while 

others do not (Treitz et al. 2000, Arzandeh and Wang 2002). The intensities were converted to Sigma 0 

backscatter values in decibels. The region of interest was extracted and used for subsequent analysis.  
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4.3.1 Grey Level Co-occurrence Matrix (GLCM) 

Grey Level Co-occurrence Matrix developed by (Haralick et al. 1973) was designed to estimate how often 

variation of grey level intensity of a pixel occurs within a given moving window size (defining local window 

within which the GLCM is computed) in a given direction (angle and distance defining neighbourhood 

relationship for the pixels whose GLCM is being computed) (Haralick 1979). The generation of GLCM texture 

involves generation of spatial relationships of the reference and neighbor pixels, the decision on the window 

size or separation between the pixels (d), generating symmetrical matrices and normalizing to obtain the 

probability of occurrence (Pradhan et al. 2014). Interpixel distance selected for the GLCM computations 

included 5, 7 and 9. The orientations selected, based on the position of the reference pixel, included 0° (considers 

pixels to the east and west of reference pixel), 45° (considers pixels to the northeast and south-west of reference 

pixel), 90° (considers pixels to the north and south of reference pixel), 135° (considers pixels to the north-west 

and south-east of reference pixel) and a selection considering all the pixels surrounding the reference pixel 

(direction invariant).  

Taking 𝐼(𝐵𝑥 ∗ 𝐵𝑦) to be the satellite image with spatial extents in x- (𝐵𝑥) and y-direction (𝐵𝑦), (𝑥1, 𝑦1)(𝑥2, 𝑦2) 

are reference and neighborhood pixels whose texture is being computed and separation between the pixels is d, 

then GLCM is given by (Haralick et al. 1973): 

𝐺𝐿𝐶𝑀 (𝑖, 𝑗) = {((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ∈ (𝐵𝑥 ∗ 𝐵𝑦) × (𝐵𝑥 ∗ 𝐵𝑦)  

𝑥1 − 𝑥2 = 0, |𝑦1 − 𝑦2| = 𝑑, 𝑓𝑜𝑟 0° 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

𝑥1 − 𝑥2 = 𝑑, 𝑦1 − 𝑦2 = −𝑑, 𝑓𝑜𝑟 45° 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

|𝑥1 − 𝑥2| = 𝑑, 𝑦1 − 𝑦2 = 0, 𝑓𝑜𝑟 90° 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

𝑥1 − 𝑥2 = 𝑑, 𝑦1 − 𝑦2 = 𝑑, 𝑓𝑜𝑟 135° 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

𝐼(𝑥1, 𝑦1) = 𝑖, 𝐼(𝑥2, 𝑦2) = 𝑗} 

𝑑(𝑥1, 𝑦1), (𝑥2, 𝑦2) = {|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|} 

 

GLCM is the probability of occurrence of a pixel with value j for all values from 1 to B occurring at a distance 

d with respect to a pixel i for all values from 1 to B on an image (the number of times gray tones i and j have 

been neighbors). Different weights are then assigned to the GLCM probability values depending on the output 

information required (Haralick 1979, Hall-Beyer 2007) (Table 4.1). GLCM texture features can be arranged in 

three main groups: The contrast and orderliness groups as well as the descriptive statistics group. The contrast 

group is designed to enhance variations of the pixel intensities. Weights of dissimilarity increase linearly whereas 

those of contrast increase exponentially highlighting variation present in the image. For homogeneity, the 

weights decrease exponentially with increased variation of the neighboring pixels indicating large values in areas 

with small differences in grey levels. The orderliness group is designed to enhance regularity or commonness 

within a window. It comprises of Angular Second Moment which uses the square of the probability as a weight 

for itself whereas the square root of this is the energy/uniformity. ASM measures uniformity or repetitions of 
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pixel pairs such that large values indicate less local texture variation. Entropy is obtained by multiplying the 

GLCM logarithm with itself, measuring image disorder. Small entropy values indicate textural uniformity of the 

image. Lastly, the general statistics are defined in the descriptive group based on the GLCM matrix values. The 

GLCM mean, variance and correlation are computed based on the frequency of occurrence in relation to the 

neighboring pixels. Mean incorporates the grey level of each line in the texture calculation. Variance is a measure 

of heterogeneity which increases when the grey level values differ from the mean. Correlation is a measure of 

grey tone linear dependencies in the image. High correlation values indicate linear relationships between grey 

levels of pixel pairs (Arzandeh and Wang 2002). Table 4.1 lists the GLCM texture feature formulation. 

 

Table 4.1: The GLCM texture features extracted from each VV SAR image 

 Texture feature  Formulas  

Contrast group  Contrast  
∑∑𝐺𝐿𝐶𝑀𝑖,𝑗(𝑖 − 𝑗)2

𝑗𝑖

 

 Dissimilarity  
∑∑𝐺𝐿𝐶𝑀𝑖,𝑗|𝑖 − 𝑗|

𝑗𝑖

 

 Homogeneity  

(Inverse Difference Moment) 
∑∑

𝐺𝐿𝐶𝑀𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑗𝑖

 

Orderliness group  Angular Second Moment (ASM) 
∑∑𝐺𝐿𝐶𝑀𝑖,𝑗

2

𝑗𝑖

 

 Energy (Uniformity) 

√∑∑𝐺𝐿𝐶𝑀𝑖,𝑗
2

𝑗𝑖

 

 Maximum Probability (MAX) Gives the largest probability within the 

selected window 

 Entropy  
−∑∑𝐺𝐿𝐶𝑀𝑖,𝑗(log𝐺𝐿𝐶𝑀𝑖,𝑗)

𝑗𝑖 

 

Descriptive statistics GLCM Mean 
𝜇 = ∑∑𝑖(𝐺𝐿𝐶𝑀𝑖,𝑗)

𝑗𝑖

 

 GLCM Variance 
𝜎2 = ∑∑𝐺𝐿𝐶𝑀𝑖,𝑗(𝑖 − 𝜇)2

𝑗𝑖

 

 GLCM Correlation  

∑∑𝐺𝐿𝐶𝑀𝑖,𝑗

[
 
 
 
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]
 
 
 

𝑗𝑖
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The experiments conducted on the set of images included: 

Experiment 1: Classification of multi-temporal GLCM features: The aim of this experiment is to make use 

of the temporal stability of GLCM texture features in generating multi-temporal time series with the 

aim of understanding the land cover patterns over the study site for a period of two years. Moreover, 

three classification schemes are applied. The aim is to identify the best classification scheme from the 

texture features over a floodplain overlooked by mountainous ranges. Comparative analysis of 

classification performance of the GLCM images and PCA images. The first three PCA features were 

selected following (Chamundeeswari et al. 2009) as these components capture the maximum variance 

in the texture features. The aim is to assess the impact of utilizing PCA features as opposed to all the 

GLCM texture features in the classification endeavors.  

Experiment 2: Water extent assessment: Based on the classification obtained from experiment 1, temporal 

changes in water extents were assessed. The aim was to identify areas prone to submergence and 

subsequent loss of crop yield.  

 

4.3.2 Classification schemes  

Optical imagery are sources of reference data in cases where actual ground data is unavailable. Due to the scarcity 

of optical data over the study area because of cloud coverage, change detection using binary change mask was 

adopted in the generation of training data for the land cover classification. The method involves performing a 

classification on the SAR image acquired on date 1 using the training data acquired from a corresponding optical 

image date. Next, the difference in backscatter between the SAR image on date 1 and SAR image on date 2 is 

analyzed by generating a ratio image (Kim 2016) (Figure 4.3).  

 

Figure 4.3: Generation of the binary mask images 

Areas of “change” and “no change” are defined by applying decision threshold to the ratio image histogram. 

The ratio image is classified into a binary mask file of change and no change areas. The no change mask is 

overlaid on the training dataset. The training areas within the no change areas are selected and applied in 

classification of the SAR image acquired on date 2. The assumption in the method adopted is that the areas 

marked as changed are associated with land cover changes (Chen 2008). The main reason for selection of the 
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method was the unavailability of ground truth information for all the time series of sentinel-1 image acquisitions 

spanning 2015-2016. Change detection by the pixel-based image ratioing is indicated by (Hussain et al. 2013); 

𝐼𝑟𝑎𝑡𝑖𝑜 = 𝐼𝑖+1/𝐼𝑖 

𝑤ℎ𝑒𝑟𝑒 𝐼𝑖+1 𝑖𝑠 𝑡ℎ𝑒 𝑉𝑉 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 2 𝑎𝑛𝑑 𝐼𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 1, 

𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 

 

The ratio is in the range of 1 whereby values greater than 1 indicate a higher VV backscatter in time 2, with 

values lower than 1 indicating a higher backscatter in time 1. Values of 1 indicate no change in backscatter 

between the two image acquisition times (Hussain et al. 2013). A histogram representing the distribution of the 

ratio values was generated. A binary mask was developed by setting values smaller than 20% percentile and 

values larger than 80% percentile to zero and all remaining values to 1. Taking time 1 to have a corresponding 

optical image from which reference areas (from section 2.2) are selected, then the reference points falling within 

the binary mask with a value of 1 are used in the classification of the time 2 image. The method is based on the 

selection of reference points from areas of no change between two images taken on different dates. For each of 

the images considered, stratified sampling was performed on the reference points such that 70% were training 

data and the remaining 30% were for validation of the classification (Appendix A1).  

The GLCMs were stacked into one data set as it has been reported that using a single texture feature gives poor 

results (Arzandeh and Wang 2002). Classification of the texture features was carried out with three different 

classifiers. These included Random Forest, Support Vector Machine and Artificial Neural Network. The 

classification was implemented in R-Studio with package RStoolbox (Benjamin Leutner and Horning 2017). 

The classification models were imported from the caret package. The “superclass” function which requires the 

input image, the classification model, the response parameter, the training, and validation data.  

SVM is based on the generation of hyperplanes which best differentiate the input features by acquiring the 

largest minimum distance to the training samples thus placing the features in the best possible class. To enlarge 

the feature space, nonlinear kernels are used. Adjusting the bandwidth and regularization parameter controls 

the SVM behavior. The radial basis function was used in this research. 

NNET are a series of neurons that model non-linear relationships between predictors and response parameters. 

The algorithm learns a function by training the data. It consists of three layers, input, hidden and output. The 

hidden layer can have many nonlinear layers.  

The non-parametric supervised ensemble classification algorithm Random Forest (RF) generates a series of 

trees where each contributes as a vote in deciding the classes to which the features in the input image belong 

(Breiman 2001). RF uses ensemble learning where samples are randomly selected from the training dataset to 

grow a so-called classification tree. The splits at the nodes of these trees are determined by purity measures 

given by the Gini index. 
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Entropy gives the degree of randomness in a set of predictions. This is used in assessing the similarity of the 

classification algorithms in assigning the classes. The entropy is zero if the classification of that pixel is the same 

in the three algorithms.  

 

4.3.3 Validation of classifications  

For the validation of the classifications, a set of validation metrics is calculated. Please note that classification is 

performed for SAR data only, where the multispectral data has been utilized to identify training and validation 

points. The separation of training points from validation points offers an independent unbiased accuracy 

assessment. Validation points to assess the accuracy of SAR classification at dates where no multispectral data 

is available are identified by implementing the same procedure introduced in section 3.2 to identify training 

points. The number of training and validation points for each date is listed in the Appendix A1. The classes to 

investigate are bare, built up, vegetated and water. This simplified analysis of four classes only is justified by the 

general aim of this study to investigate the temporal course of vegetation and water dynamics in the Kilombero 

wetlands. The temporal course of the validation metrics for the classifiers Random Forest, Neural Net and 

Support Vector Machine are compared for all classes jointly by kappa coefficient and overall accuracies 

(reference to these metrics) as well as by the positive predicted value and the sensitivity measure given by: 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 /(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 /(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

 

4.4 Results and Discussion  

4.4.1 GLCM temporal classification  

Texture features were generated with the 9*9 moving window size in the invariant direction (the average of all 

four spatial arrangements). The 10 texture features were combined into a single image. PCA was generated from 

this dataset. Random Forest, Neural Net and Support Vector Machine resulted in the overall accuracy and kappa 

coefficients displayed in Table 4.2. 

Table 4.2: Averaged Overall Classification Accuracy for Random forest (RF), Neural net (NNET), Support 

Vector Machine (SVM) classifiers. TEX, VV, PCA are texture, single polarized and Principle Component 

derived overall classification accuracies 

 VV TEX PCA 
 

RF NNET SVM RF NNET SVM RF NNET SVM 

Kappa coefficients  0.49 0.59 0.58 0.68 0.68 0.68 0.78 0.78 0.78 

Overall accuracy 0.62 0.70 0.70 0.77 0.77 0.77 0.84 0.84 0.84 
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Overall accuracies for the single polarized VV images were 0.62 for RF and 0.70 for NNET and SVM 

respectively. The GLCM featured resulted in accuracies of 0.77 for all the three classification algorithms. PCA 

features reported the highest accuracy of 0.84 for all the algorithms. The high overall accuracies of the PCA 

images indicate that reduction in dimensionality of texture data to its basic components containing the most 

variance increases the accuracy of classification. The GLCM are relatively large and therefore compressed with 

PCA. PCA texture features capture the variation of the land covers and are recommended for use when dealing 

with a large dataset.  

Similar to the pattern in the overall accuracy results, the single polarized classifications exhibited low kappa 

coefficients. Single polarized kappa ranged from 0.62 to 0.70 for the three classifiers representing its low ability 

to identify features from single polarized SAR images. The Kappa coefficients for the GLCM texture features 

and PCA features were 0.77 and 0.84 respectively. The results indicate that PCA features have high potential in 

monitoring land cover in the Kilombero wetland yielding higher accuracies as compared to utilizing the single 

polarized sentinel VV images or their corresponding texture features.  

Table 4.3: Average Sensitivity and positive predicted values for single polarized, texture features and Principal 

component classified images 

 VV   GLCM   PCA   

sensitivity RF NNET SVM RF NNET SVM RF NNET SVM 

bare 0.45 0.52 0.51 0.61 0.62 0.61 0.66 0.66 0.66 

vegetated 0.50 0.64 0.68 0.66 0.67 0.67 0.84 0.84 0.84 

built up 0.55 0.63 0.57 0.85 0.79 0.84 0.89 0.89 0.89 

water 0.95 0.97 0.97 0.95 0.94 0.92 0.96 0.96 0.96 
          

positive 

predicted value 

RF NNET SVM RF NNET SVM RF NNET SVM 

bare 0.47 0.54 0.56 0.64 0.64 0.63 0.83 0.83 0.83 

vegetated 0.47 0.56 0.54 0.63 0.65 0.63 0.74 0.74 0.74 

built up 0.59 0.79 0.82 0.87 0.89 0.88 0.94 0.94 0.94 

water 0.96 0.97 0.97 0.97 0.98 0.98 0.95 0.95 0.95 

 

The sensitivity gives the probability that a class in the classified map is actually in that class on the ground 

indicating the effectiveness of a classifier to identify a land cover class correctly. The sensitivity of the bare class 

was lowest for the single polarized images with the application of the Random Forest classifier (Table 4.3). The 

three classification algorithms reported the highest sensitivity for the bare class (0.66) in the classification of the 

PCA features. The ability to identify vegetation was lowest for the single polarized images with the Random 

Forest classifier, while the highest vegetation discrimination ability is reported for the PCA images irrespective 
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of the classifier (0.84). Texture features have a similar performance in vegetation discrimination as the single 

polarized SVM algorithm. Discrimination of built up areas is best for the PCA features regardless of the classifier 

while it is lowest for the single polarized images. The classifiers ability to discriminate built up areas from both 

the texture and PCA images was highly throughout the time series. Built up areas have high backscatter due to 

double-bounce scattering hence increasing their discrimination potential (Zhang et al. 2014). Water was easily 

distinguishable for all classifiers for the single polarized, texture and PCA images due to its distinctive low 

backscatter values.  

The positive predicted value gives the probability that a land cover on the ground is classified correctly on the 

map. The bare prediction was lowest for the Random Forest single polarised images. A slight improvement was 

observed for the texture features with the best prediction ability recorded for the PCA features. Similarly, 

prediction ability for the vegetated land cover class was lowest for the single polarised images and highest for 

the PCA features. It was noted that the prediction for vegetated areas was slightly lower than for the bare area 

when dealing with the PCA features. All the classifiers correctly mapped built up areas at high precision, greater 

than 0.8, except for single polarized images Random Forest and NeuralNet. Classification of water was high 

with a precision of 0.9 to 1 due to its unique low backscatter characteristics. The complete tables of overall 

accuracies, kappa coefficients, sensitivity and positive predicted values are in the Appendix A2-A11. 

The classified maps appear identical (Figure 4.4 a, b, c) nonetheless the uncertainty map (Figure 4.4d) reveals 

the areas with differences between the models. The areas along the Kilombero River have a high uncertainty 

rate represented by the high values of entropy. Mixed pixels could be a causal effect of the high entropy values 

as varied covers including submerged vegetation is located within this riparian zone.  
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Figure 4.4:  Land cover classifications of selected dates based on Artificial Neural Network (ANN), Support 

Vector Machine (SVM) and Random Forest (RF). The corresponding Entropy image indicates difference in the 

assignment of land use classes using the three classifiers low vales (light areas) have common class assigned 

whereas the high vales (green areas) were different for the three algorithms. 

 

SAR backscatter constitutes contribution from vegetation, soil water content and surface roughness. SAR is an 

ill-posed problem as different combinations influencing factors can give the same value. The method adopted 

for selection of training sites involved ratioing backscatter values from two dates. Hence in the selection of non-

change areas, land cover changes could have occurred but with no significant magnitude thus assumed to have 

the same land cover. Inability to decompose the total backscatter into individual contributory elements could 

introduce errors in classification since the changes recorded could be due to, for example, a change in soil 

moisture and not necessarily a change in the land cover class. This is a shortcoming of the method adopted 

though it worked well in general. Additionally, the GLCM texture features are derived from the backscatter 

values and hence are also subject to influence by vegetation, soil water content and soil roughness (Kurvonen 

and Hallikainen 1999).  

 

4.4.2 Flooding extents and farmer information 

The highest flooded area was computed by superimposing the water class from the series of classified images. 

Multiple SAR images thus enabled the identification of maximum flood extent. Temporal assessment of water 

extent indicates that the areal coverage of water along the riparian region is highest in the month May which is 

consistent with the precipitation pattern of the area (Figure 2.3). The farm located up to 3 km from the 

Kilombero River to the west of Ifakara and Minepa wards (circle 1), south of the Kilombero River in Minepa 
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ward (circle 2) and up to 6km to the East of Kiberege ward (circle 3) has the highest likelihood of submergence 

in the rainy season (Figure 4.5). Farms located in this area, on one hand, are at risk of a reduced cultivation 

period and a reduced yield. On the other hand, temporary floods transport necessary nutrients onto the fields 

and improve the soil conditions. The resulting map time series provides useful information to plan general 

management strategies by the authorities and to individually support farmers in this area where rainfed 

subsistence agriculture is the main economic activity. In addition, setting up insurance policies for farmers 

currently adopting a balance between risk and chance of crop growth is required. The analysis at hand is based 

on two-year data, which makes it prone to general variability between the years, e.g. according to teleconnection 

processes such as El Nino Southern Oscillation. Therefore, the study needs to be extended to gain general 

decadal flood probabilities as soon as the SAR record is long enough. 

 

Figure 4.5: Flood-prone extents derived from the multiple SAR images. The number of images used in 

generating the cumulative land cover map were 26. The circles show example regions with floods extending 

more than 3km from the Kilombero River. 
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The continuous monitoring of land cover change with the cloud independent SAR aids in assessing the 

vegetation patterns, which in turn are linked to the yield expected. The study has shown the potential of Sentinel-

1 in assessing the patterns of land cover in a region where data on dynamics is scarce. Land cover maps and 

patterns are useful to individual farmers as they provide a means of inventorying areal coverage and patterns of 

land use on their farms. This provides a basis upon which evaluations on suitable mechanisms to improve 

agricultural yield are adopted. At the management level, the land cover maps are preliminary databases providing 

information on vegetated land. With further analysis, cropped areas and rates of growth in areal coverage and 

their link to yields produced give insight into establishing measures of sustained use of the wetland.  

The flooding extents aid in the identification of flood susceptible fields. For the farmers, the information aids 

in preventing absolute loss by delaying the planting time till after the heavy precipitation. The agricultural 

support organizations in the area would consequently develop flood-combating mechanisms helpful to farmers 

to prevent total loss of food crops. Organizations could also offer technical advice and training to farmers in 

flood-prone areas on alternative crops and planting times.  

 

4.5 Conclusions  

Utilization of texture features in delineating land covers is tested in the Kilombero Valley, Tanzania. Texture 

features were extracted from consistently available single polarized Sentinel-1 VV time series to monitor their 

performance in land cover mapping. Moreover, PCA of the texture features was generated to assess the effect 

of the use of data whose dimensionality has been reduced while retaining its variation. SVM, NNET and RF 

classification algorithms were applied on the single polarized, texture and PCA images. Due to the scarcity of 

optical images from which reference data is sought, ratioing the VV images corresponding to optical image dates 

was adopted to derive non-change areas. Reference data within the no change areas for each subsequent image 

in the time series was applied in classification. Single polarized images yielded low classification accuracies as 

compared to the texture and PCA images. PCA had higher overall accuracy values (84%) as compared to the 

texture features (77%). This indicates that the reduction in dimensionality of the data has a positive effect on 

the accuracies. The three classification algorithms had similar and higher performances for the PCA suggesting 

that reducing the dimensionality of the texture features into components containing most variance is beneficial 

for improved classification. Additionally, irrespective of the classifier applied for the PCA features, the ensuing 

performance is similar. In terms of correct identification of classes, built up and water had high sensitivity and 

positive predictive values. This is explained by their distinctively high and low backscattering coefficients values 

respectively in SAR imagery. The relatively lower bare and vegetation sensitivity and positive predictive values 

indicate other factors such as soil moisture, surface roughness, and the vegetation attenuation had an influence 

of the SAR backscatter recorded. Therefore, the training sites selected from image ratioing could have 

contributed to interclass confusion during the land cover classification. Entropy maps indicate the level of 

uncertainty between the classification algorithms applied. The areas of most disagreements were in the riparian 
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zone, near the Kilombero River. Submerged vegetation is a common occurrence in this zone thus contribution 

to variations in backscatter values subsequently causing confusion in the classifications. Areal extents of flooding 

indicated that maximum flooding occurs up to 3 km from the Kilombero River. The implication to the farmers 

is the high probability of loss of crops due to flooding. Flood extent information is useful to the authorities in 

terms of offering support to farmers whose crops are affected by floods. Moreover, the inundation patterns are 

valuable as inputs in flood modeling geared towards reduction of crop loss. With respect to the wetland and 

sustainable use, matching the crops that can do well given the water available is recommended. Additionally, 

analysis of the precipitation patterns will give more accurate information particularly with respect to inundation 

duration, appropriate planting and harvesting periods.  
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5. Spatial-temporal variation of physical soil properties and soil moisture estimation from 

SAR data                                  

5.1 Introduction  

Increased food demand caused by high population growth has led to encroachment of wetlands in East Africa. 

Studies by (Rebelo et al. 2010, Mombo et al. 2011) highlighted the importance of the Kilombero wetland for 

food production. Assessment of soil properties at field scale captures the infield variation which could influence 

farm management practices for higher yields (Gebbers and Adamchuk 2010, Stoorvogel et al. 2015). Soil 

moisture influences groundwater recharge, surface, and subsurface runoff and is important in understanding 

hydrological responses in a watershed (Korres et al. 2015). Knowledge of soil moisture distribution is important 

in agricultural management and hydrological studies (Hupet and Vanclooster 2002, Moran et al. 2004, 

Henderson and Lewis 2008, Ziadat et al. 2010, Nichols 2011, Brocca et al. 2017).  

Soil moisture is highly varied in space and time and hence analyzing the spatial and temporal persistence of soil 

moisture contributes to the understanding of land surface systems and the development of management options 

for improved productivity such as the implementation of irrigation schemes. Spatial-temporal variation of soil 

moisture can be analyzed via statistical methods involving means, standard deviation, the coefficient of variation 

and relative differences. Geostatistical analysis, on the other hand, examines the spatial structure of point data 

(Brocca et al. 2007). At field scales, spatial variations are due to differences in topography, the texture of the soil 

and temporal variability due to management practices such as tilling and cropping (Jenny 1971, Famiglietti et al. 

1998, Brocca et al. 2009). In wet conditions, soil moisture variability was influenced by porosity and hydraulic 

conductivity whereas in dry conditions it was influenced by elevation, aspect and clay content in a study along 

a hillslope transect (Famiglietti et al. 1998). Field scale variation is site-specific and therefore transferability to 

other study sites needs investigation depending on the locations physiographic parameters (Entin et al. 2000, 

Brocca et al. 2007). Analysis of temporal consistency aids in the probability of upscaling the point data to a mean 

value comparable to a remote sensing product (De Lannoy et al. 2007). Studies on spatial-temporal variability of 

soil moisture at field scales with emphasis on determining stability of soil moisture at certain locations within 

the test fields are important in agricultural management. Brocca et al. (2007, 2009) assessed the spatial structure 

of soil moisture in an inland valley at three locations of varying elevation in Italy reporting a high negative 

correlation between elevation and soil moisture (Brocca et al. 2007, 2009). Within agricultural fields, Heathman 

et al. (2012) and Zhang et al. (2013) utilized permanently installed moisture sensors to assess the spatial-temporal 

patterns of soil moisture for future applications in hydrological modeling and irrigation management (Heathman 

et al. 2012, Zhang et al. 2013). In both studies, the potential of utilizing soil moisture networks in representing 

local field scale averages was revealed.  

Geostatistics examines the spatial structure of point data, which involves estimation and modeling of spatial 

correlation (covariance or semi-variance) (Hengl et al. 2007, Hengl 2009). Spatial prediction aids in determining 
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values in unvisited locations surrounded by existing observations. The analysis is a function of the distance 

between observed measurements, overall coverage and area occupied by each sample (Western and Blöschl 

1999). Field scale soil moisture distribution maps aided in investigating the moisture patterns while highlighting 

the in-field variability, important in identifying water-stressed regions (Zhang et al. 2013).  

The classical methods of soil moisture measurements including TDR probes, gravimetric measurements are 

time-consuming and costly over large areas. This has led to the use of remote sensing imagery in the 

determination of soil moisture. The strengths in the use of microwave imagery lie in their extensive areal 

coverage and independence from effects of solar irradiation and cloud coverage. Moreover, the consistent 

availability of SAR imagery provides a potential source of regular soil moisture estimates that are vital in 

agricultural management such as planning for auxiliary sources of water for plants in cases of low soil moisture. 

Active radar imagery have high spatial resolution and are thus preferred in the estimation of soil moisture over 

extended areas.  

In situ soil moisture is also required to authenticate any estimates of soil moisture computed from satellite 

imagery. The mismatch in spatial resolution between point data and satellite footprints (e.g. TerraSar-X, 25-50 

km) and the high spatial-temporal variation of soil moisture introduces challenges in the aggregated use of point 

and satellite data in soil moisture estimation over large areas. Differences in spatial resolution between field and 

satellite footprint soil moisture prompt a need to determine the minimum number of points required to give an 

average representative value of soil moisture over a defined areal coverage comparable to the satellite footprint 

(Jacobs 2004, Brocca et al. 2007). Therefore, for future auxiliary data collection in the study site, the minimum 

number of points required to obtain soil moisture within error values of ±1 and ±2% volumetric soil moisture 

at 95% confidence interval is computed. Identification of fields whose average soil moisture is stable in time 

will further reduce the number of measurements required during field campaigns. Temporal persistence of soil 

moisture patterns assesses fields which are stable in time and therefore could be used as long-term test sites for 

determining soil moisture dynamic used as reference point for remote sensing products.  

SAR imagery has been used in soil moisture derivation in a large number of studies (Das and Paul 2015a, Zhang 

et al. 2015, El Hajj et al. 2016, Yue et al. 2016, Kim et al. 2017). Backscatter recorded by the SAR imagery is 

influenced by roughness, soil moisture, and presence of vegetation (Petropoulos et al. 2015). The backscatter 

from bare soils is a factor of roughness and soil moisture (Ulaby et al. 1996). Methods of collecting roughness 

information include photogrammetric methods (Taconet and Ciarletti 2007, Grims et al. 2014), Light Detection 

and Ranging (LIDAR) methods (Fernandez 2010, Turner et al. 2014) with the most common being the use of 

pin profiler. Parameterization of roughness is a great source of error in soil moisture retrieval (Verhoest et al. 

2008, Álvarez-Mozos et al. 2009) and hence methods seeking to utilize roughness from alternative sources have 

been on the rise. Attempts to reduce the effect of roughness include the application of rainfall reducing factor 

(Jackson et al. 1997), and the use of effective roughness parameters (Zribi and Dechambre 2003, Lievens et al. 

2009, Lievens and Verhoest 2011).  
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The practicality of roughness parameter collection by the local population at Ifakara is minimal. The pin profiler 

requires time and skill to operate and analyze the data to obtain the root mean square height (rmsh) and 

correlation length. Additionally, presence of high field variability, small and uneven farms and different 

management practices dependent on the farm owners call for the development of a priori roughness information 

as a solution to the challenges arising in the collection of in situ roughness measurements. Moreover, 

representation of farm soil parameters with averages of point data gives rise to errors subsequently propagated 

to the soil moisture retrieval and thus a representative roughness parameter is required. Previous studies have 

obtained apriori roughness information through inversion of empirical models (Mattia et al. 2006), multi 

polarized images (D’Urso and Minacapilli 2006), multi-angular images (Zribi and Dechambre 2003, Rahman et 

al. 2008, Sahebi and Angles 2010, Wang et al. 2016), co-polarized images (Magagi & Kerr, 2001) and the use of 

polarimetric parameters (Hajnsek et al. 2003).  

In summary, the study generates temporal moisture maps from TDR probe measurements showing variation in 

the moisture in 14 agricultural fields located in different hydrological zones within a floodplain, investigates the 

spatial-temporal variation of soil moisture in small-scale fields that are approximately 700 to 19,000 m2 and the 

influence of soil physical properties on the moisture content. The study also investigates the minimum number 

of sampling points required to accurately estimate the field average soil moisture and assesses the temporal 

stability of the measured soil moisture. Finally, the study simulates soil moisture from SAR imagery by 

application of apriori roughness parameter.  

5.1.1 Soil properties  

Soil consists of mineral particles, organic matter, microorganisms, water and air all of which are important in 

terrestrial plant growth (Hillel 1998). The particles have varying mineral composition, texture, and structure 

resulting in different aggregates. Water and air fill gaps between the particles. The proportion of water compared 

to soil particles is the moisture content.  
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𝑚𝑑𝑠
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𝑚𝑣  𝑖𝑠 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡, 𝑣𝑤 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, 𝑣𝑡  𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑚𝑔 𝑖𝑠 𝑔𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡,𝑚𝑤  𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒, 

 𝑚𝑑𝑠 𝑖𝑠 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒,  

𝜌𝑤  𝑖𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, 𝜌𝑏 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 

Topography, climate, soil texture and vegetation influences the soil moisture availability and variability across 

fields. Ground measurement methods in soil moisture determination include the use of time domain 

reflectometry (TDR) probes. For vast areas, however, it is tedious and time consuming to carry out field-based 

measurements. Hence, satellite-based methods are used in conjunction with the TDR measurements. These 

measurements are mainly used as training and validation data for soil moisture retrieved over large areas using 



Spatial-temporal variation of physical soil properties and soil moisture estimation from SAR data 

75 

 

remote sensing imagery. These instruments measure dielectric properties which are related to the soil moisture 

content (Ventrella D. et al. 2008). 

Soil roughness is the variance in height of the soil surface. Soil roughness varies depending on agricultural 

practice and precipitation. The roughness parameters represented by the root mean square height (rmsh), 

correlation length and autocorrelation function (ACF) describe statistical properties of a randomly rough 

surface.  

𝑟𝑚𝑠ℎ = √∑ (ℎ𝑖 − ℎ̅)
2𝑛

𝑖=1

𝑛 − 1
 

ℎ𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, 

 ℎ̅ 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟 𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

The rmsh is the standard deviation of height variation with respect to a selected level surface. The ACF describes 

the statistical independence of two locations on a surface separated by a distance, 𝑥. The shape of the 

autocorrelation function determines the behavior of the backscatter. The Exponential ACF was used in 

describing surface roughness.  

𝜌(𝑙) = 1
𝑒⁄ =≈ 0.3678 

𝜌𝑐𝑜𝑟𝑟(𝑥) = 𝑒−𝑥 𝑙⁄   

ACF describes the degree of correlation between the height ℎ𝑖 at location 𝑖 and the height ℎ𝑖+𝑥 at a horizontal 

distance 𝑥 from 𝑖.  

𝜌𝑐𝑜𝑟𝑟 =
∫ℎ𝑖ℎ𝑖+𝑥 𝑑𝑖

∫ ℎ𝑖
2   𝑑𝑖

 

The limits of integration extend over the overlapping segment of the height profiles. The correlation length is 

the horizontal distance/displacement at which the 𝜌𝑐𝑜𝑟𝑟 drops below 1/𝑒 (the surface profile is auto correlated 

at a lag equal to 1/𝑒). The exponential ACF is usually used for smooth surface and where there are long sampling 

intervals.  

Surface roughness is wavelength dependent. Surfaces appear rough in short wavelengths and appear smoother 

as the wavelength increases. It is thus essential that normalization is done with the wave number k: 

𝑘 =
2𝜋

𝜆
, 𝑔𝑖𝑣𝑖𝑛𝑔 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑟𝑚𝑠ℎ (𝑘ℎ𝑟𝑚𝑠)  

The possible roughness classification includes random roughness and oriental roughness. Random roughness 

is due to the organization of soil clods whereas oriented roughness is dependent on tillage tool used (Marzahn 

et al. 2012). Methods used for soil roughness measurements include using laser scanners, photogrammetry 

methods, pin profilers, photogrammetric method. Roughness is usually a challenge to measure and thus deriving 

roughness purely from satellite imagery is investigated.  
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5.1.2 Synthetic Aperture Radar (SAR) 

SAR operates in the microwave region of the electromagnetic spectrum. Active sensors emit electromagnetic 

radiation towards the earth; the radiation interacts with the earth features and the backscattered energy recorded. 

Active systems are all weather and unaffected by clouds, rain (Azad Hossain & Easso, 2009).  

Swaths/tracks are the satellites flight paths. Cross track or range is perpendicular to flight direction whereas 

along track or azimuth is parallel to the direction of motion of the satellite (Figure 5.3). Time delay separates 

echoes in the across track direction and Doppler history separates echoes in the along-track dimension. Using 

time delay and Doppler histories, SAR image resolutions are independent of distance from scene to imaging 

sensor (Van Zyl and Kim 2011).  

 

Figure 5.1: SAR satellite geometry (Van Zyl and Kim 2011) 

SAR transmits polarized pulses / high bandwidth phase waves across the imaged scene. The incident energy is 

scattered, reflected, absorbed or it penetrates the surface it is in contact with. The pulses returned at the sensors 

are processed together to simulate a long aperture with a high resolution in direction of flight. The waves 

received are a sum of detected amplitude and phase information recorded as backscatter for each pixel forming 

the radar image. Echoes from targets further away in the along track direction are received at later times.  
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5.1.2.1 Radar equation 

Backscatter is the amount of radiation reflected from a target surface measured in a unit area in radar cross 

section (Ulaby et al. 1996). In a monostatic configuration, the transmitter and receiver are located at the same 

location whereas bistatic configuration, the transmitter and receiver are spatially separated (Skolnik 1990).  

A radar image consists of digital numbers at each pixel, determined by the strength of radar signal reflected 

from the target surface. The interaction of the incident radiation with the earth surface determines variations in 

brightness of the radar image, which is useful in discriminating features on the ground. The radar equation 

describes the radar power returned from each transmitted radar pulse. This equation explains the radar 

propagation, system, and target parameters.  

Suppose a radiator at point R produces power outwards, and the power radiated by a point source (Pt) is spread 

out uniformly over the surface of a sphere (isotropic radiation), then the portion of this power radiated in a 

given direction is given by  

𝑃 =
𝑃𝑇

4𝜋𝑅2
 𝑊𝑚−2 

In radar, an antenna concentrating the power in a given direction is used instead of an isotropic radiator. Hence 

power transmitted is given by  

𝑃 =
𝑃𝑇𝐺𝑇

4𝜋𝑅2
 𝑊𝑚−2 

Gain is the ratio of power density produced in a preferred direction to the power density produced by an 

isotropic radiator. The range is the distance from the satellite to the target feature on earth. The radar cross 

section per unit area (𝜎 𝑚2) describes the power the target extracts from the incoming radiation. Hence the 

power radiated back is given by 

𝑃𝑅 =
𝑃𝑇𝐺𝑇𝜎0

4𝜋𝑅2
∗

1

4𝜋𝑅2
 𝑊 𝑚−2 𝑑𝑢𝑒 𝑡𝑜 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 

 

For the actual power received, the equation is multiplied by antenna s aperture Ar.  

𝐴𝑟 =
𝐺𝑅 𝜆

2

4𝜋
 

Power received by the radar system after scattering from the target becomes; 

𝑃𝑅 = 𝑃𝑇(𝜎0) (
𝐺𝑇𝐺𝑅𝜆2

(4𝜋)3𝑅4)𝑊 
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𝑃𝑅 𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑, 𝑃𝑇 𝑝𝑜𝑤𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑, 

𝜆 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ, 𝑅 𝑟𝑎𝑛𝑔𝑒  

 𝐺𝑇 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑛𝑡𝑒𝑛𝑛𝑎, 𝐺𝑅 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑎𝑛𝑡𝑒𝑛𝑛𝑎  

𝜎0 𝑟𝑎𝑑𝑎𝑟 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

The total power returned to a satellite platform from a pixel is given by  

𝑃𝑅 = 𝑃𝑇(𝜎0) (
𝐺𝑇𝐺𝑅𝜆2

(4𝜋)3𝑅4) ∗ 𝑟𝑎 ∗ 𝑟𝑔 

𝑟𝑎  𝑟𝑔 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑛𝑑 𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑛𝑔𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

To convert the backscatter to decibels the formula applied is as shown below,  

𝜎0(𝑑𝐵) = 10 log 𝜎0 

 

5.1.2.2 System and target parameters 

Backscatter coefficient is a measure of reflectivity of a target surface and is influenced by the sensor (frequency, 

polarization, incidence angle) and target (soil moisture, surface roughness) parameters (Sahebi and Angles 2010, 

Balenzano 2013, Notarnicola and Solorz 2014). To measure the moisture or roughness from backscatter, it is 

necessary to separate their effect on the total backscatter recorded (Van Zyl and Kim 2011).  

a) Incidence Angle  

The sensitivity of backscatter to soil moisture decreases with increasing incident angle (Beaudoin 1990, Coppo 

1995). Higher incidence angles are more sensitive to soil roughness. Hence, steep incidence angles are preferred 

to reduce the contributions from soil roughness in soil moisture retrieval (Baghdadi et al. 2002, Holah et al. 

2005).  

b) Polarization  

Polarization is the orientation of the electric field of the electromagnetic wave. Linear polarization consists of 

HH, HV, VV, VH with the first term being the emitted radiation and the second received radiation. The 

composition of polarization provides information on the form and orientation of scattering on the target 

surface. HH and VV were found to be the most sensitive in soil moisture retrieval as opposed to cross 

polarizations (Ulaby and Batlivala 1976). Higher uncertainty is reported in the use of cross polarization than co 

polarization in soil moisture retrieval (Jiankang Ji et al., 1996).  
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c) Wavelength  

Wavelength affects the penetration depth of the incident waves. Longer wavelengths will result in deeper 

penetration depth of the incidence radiation thus more information on soil profile (Ulaby et al. 1996). Sensitivity 

to roughness is higher in longer wavelengths (lower frequencies) as compared to shorter wavelengths (higher 

frequencies) (Mattia et al. 1997). Surface parameters sensitive to wavelength hence they are normalized with 

k=2π/λ (Kornelsen and Coulibaly 2013). 

d) Soil moisture  

Soil moisture has a unique characteristic with respect to dielectric properties of water (~80) and dry soil particles 

(~4). Microwave sensors have the capability of detecting changes in dielectric constant occurring in soil-water 

mixtures as the moisture changes. Backscatter increases with increasing soil moisture until 35% vol (Das and 

Paul 2015b). The use of radar backscatter in soil moisture estimation is limited to soils with less than 35% vol 

as the backscatter becomes insensitive to soil moisture at higher values (Dobson and Ulaby 1981, Chanzy 1993). 

The soil moisture changes the electric properties of the soil influencing the absorption, transmission, and 

reflection of microwave energy. Reflectivity and image brightness increases with increased soil moisture content. 

e) Soil roughness  

The surface of the soil affects the backscatter response of electromagnetic waves. There is higher sensitivity of 

roughness at high incidence angles (Holah et al. 2005). Target roughness varies depending on the wavelength 

and incidence angle. The Rayleigh criterion determines the smoothness or roughness of a surface by the 

following equations; 

ℎ >
𝜆

8 ∗ cos 𝜃
  𝑟𝑜𝑢𝑔ℎ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

ℎ <
𝜆

8 ∗ cos 𝜃
  𝑠𝑚𝑜𝑜𝑡ℎ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

𝜆 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ, ℎ 𝑚𝑒𝑎𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠, 𝜃 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑎𝑛𝑔𝑙𝑒  

Surfaces appear smooth with longer wavelengths and with increased incidence angles. Smooth surfaces have 

specular reflection; thus, a small amount of energy returns to the radar, and hence they appear dark on the radar 

image. 

5.1.2.3 Active microwave sensing of soil moisture retrieval 

The greatest challenge in the estimation of soil moisture is determining the portion of backscatter from the 

water content in the soil (Barrett et al. 2009). To retrieve soil moisture from bare surfaces, there is need to 

eliminate the scattering contribution of surface roughness from the total measured backscatter value. 
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𝜎𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒
° = 𝜎𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟

° − 𝜎 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

°  

Soil moisture retrieval models from active microwave sensors at local scales include physical based theoretical 

models, semi-empirical models and empirical models (Nichols 2011). Empirical models are generated from site-

specific data i.e. backscatter, soil moisture and surface roughness and are not applicable to different sets of 

conditions.  

Physical models are based on theoretical perspectives on the trend of backscatter in response to soil moisture 

or roughness e.g. Kirchhoff approximation model. The models assume the apriori knowledge of root mean 

square height (rmsh), correlation length and backscatter. The Integral Equation Model (IEM) is another example 

of a theoretical model, which requiring apriori knowledge of radar frequency, polarization, incidence angle, 

backscatter coefficient, root mean square height, correlation length and the autocorrelation function for 

computation of the dielectric constant. The model does not account for double or multiple scattering and is 

suitable for soil moisture estimation in bare surfaces (Barrett et al. 2009).  

The semi-empirical models combine rules from the theoretical and empirical models e.g. water cloud model, 

Oh, Shi, Dubois model. The Oh model relates ratios of backscattering coefficients in different polarizations to 

soil moisture and surface roughness (Oh et al. 1992). The advantage of this model is that relatively few field 

measurements e.g. surface roughness are required, more so in cases where multi polarized imagery is used. The 

Dubois model works well with co-polarized coefficients as they are less sensitive to system noise, are easier to 

calibrate and are more accurate as compared to cross-polarized backscattering coefficients (Dubois et al. 1995). 

The Shi model is derived using the L band with incidence angles ranging from 25˚-70˚ is valid for co-polarized 

backscatter coefficients and is based on regression analysis of simulated backscatter using the single scattering 

term of the IEM (Petropoulos et al. 2015). The water cloud model represents backscatter from the vegetation 

canopy and underlying soil during the phenological cycle of the plant (Bindlish and Barros 2001). The total 

backscatter is a sum of contribution from vegetation, soil and two-way attenuation of vegetation layer. Other 

approaches include statistical analysis techniques where relationships between in situ soil moisture, backscatter 

from radar, soil and vegetation variables are established and applied in the retrieval of soil moisture e.g. linear 

regression equations (Nichols 2011). The linear dependence of backscatter and soil moisture over bare soils 

have been reported to be reliable in soil moisture retrievals (Baghdadi et al. 2007, Le Morvan et al. 2008, Gorrab, 

Zribi, Baghdadi, Mougenot, and Chabaane 2015). The linear relationship is of the form; 

𝜎0
𝑑𝐵 = 𝐴𝑚𝑣 + 𝑓(𝑅) 

𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑑𝑎𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

𝑚𝑣  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 

 𝑓(𝑅) 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 
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5.2 Materials  

The study area consists of riparian, middle and fringe fields located in different hydrological zones. The 

characteristics of these zones vary based on flooding duration in the rainy season (Burghof et al. 2017). Riparian 

fields are closest to the Kilombero River, have the lowest elevation and are completely flooded in the rainy 

season. The middle fields have non-flooded as well as some patches of flooded regions in the rainy season. 

Fringe fields are located furthest from the Kilombero River and are rarely flooded.  

 

 

Figure 5.2: Climate data for Ifakara based on weather data collected between 1982 to 2012 (Climate-data.org 

2015) 

The soils in the study site are mainly sand with gravel and silt sediments (Geological Survey of Tanzania 2007). 

The main economic activity is rainfed agriculture mainly growing rice, maize, and sugarcane. Additionally, 

fishing is a common practice in Ifakara.  

 

5.2.1 Data 

5.2.1.1 Soil moisture sampling design  

Soil samples were collected at three hydrological zones namely the riparian, middle and fringe (Figure 2.2). The 

experimental campaigns involved the use of Time Domain Reflectometry (TDR) probes in the measurement of 

5cm soil moisture. A TDR probe constitutes a high frequency electromagnetic wave propagated along a cable 
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with a probe inserted into the soil. Time elapsed between sending and receiving the pulse is measure by the 

sensor. Propagation velocity is inversely proportional to the dielectric constant, providing the volumetric soil 

moisture content (Petropoulos and Albergel 2013). The automated and non-destructive nature of the TDR 

probe and fast volumetric measurements made it a preferred method for the in situ soil moisture measurements. 

The soil moisture sensor was the ML3 ThetaProbe and HH2 recording device (Delta-T Devices).  

The data was collected during the wet season between March and May 2015 and the beginning of wet season 

between December 2015 and February 2016. In situ measurements collected 8 times between March and May 

2015. Repetitions were made 10 times between December 2015 to February 2016. In each of the fields, 10x10 

m grids were established for measurement of soil moisture. The sizes of sample fields were 4,272 to 8,290 m2 

for the riparian, 1,523 to 10,727 m2 for the middle and 734 to 19,206 m2 for the fringe fields. In addition, soil 

samples were collected by core method at 10cm depths for determination of percentages of clay, sand, silt, soil 

organic carbon (SOC) and bulk density. Sampling locations varied from 9 in the middle and riparian zones and 

20 in the fringe zones determined by the shapes of hydrological zones. Each sampling location was designed 

not more than 750m away from the subsequent sampling spot. Texture was determined using the laser method, 

bulk density by core method and SOC was determined using the modified Walkley-Black method as described 

by Daniel (Daniel et al. 2017). 

 

5.2.1.2 Soil roughness sampling design  

Roughness information was collected a day prior or after the satellite overpass. A 1m pin profiler, with 41 pins 

at 25mm spacing was used in roughness data collection. A pin profiler consists of equally spaced pins lowered 

into the surface to give an impression of the surface roughness. The heights of the pins are read against a white 

background attached to the profiler (Figure 5.2).  

One set of roughness profile measurements was taken in fields with areas of less than 2,000m2, while 2 sets were 

taken in every other field. A set of roughness profile consisted of two measurements in the NS direction and 

two in the EW direction such that the total roughness length measured was 2m in the NS and EW direction.  
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Figure 5.3: Roughness measurements using the pin profiler 

5.2.1.3 Satellite data 

Soil moisture estimation from SAR is accomplished using dual polarized RadarSat-2 and TerraSar-X (Table 5.1). 

Three TerraSar-X and five RadarSat-2 images were acquired for periods of soil moisture less than 35% volume 

as the radar signal becomes less sensitive to soil moisture beyond this value (Dobson and Ulaby 1981, Holah et 

al. 2005, Verhoest et al. 2008). 

Table 5.1: Acquisition parameters for SAR data utilized in soil moisture retrieval  

Sensor  TerraSar-X RadarSat-2 

Polarization HH_VV HH_HV 

Mode spotlight  

ascending  

fine beam  

ascending, descending 

Wavelength (cm) 3 5.5 

Frequency  X C 

Product type Single Look Slant Range 

Complex (SSC) 

Fine Beam Single Look 

Complex (SLC) 

Incidence angle  22.73 ° 30.31° – 36.44 ° 

Acquisition dates 07-03-2015 

29-12-2015 

09-01-2016 

 

16-12-2015 

19-12-2015 

23-12-2015 

09-01-2016 

12-01-2016 
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5.3 Methodology  

5.3.1 Spatial and temporal variability 

5.3.1.1 Statistical methods 

Soil moisture averages, standard deviations, and coefficient of variations (cv) were computed for the three 

hydrological zones for each measurement dates. The cv gave an indication of the variation between the 

measured data. Analysis of variance to test differences in soil property content was conducted for clay, sand, 

silt, organic carbon and bulk density at 5% significance level. The coefficient of variation is given by;  

𝑐𝑣𝑗 = 
 𝜎(𝑆�̅�)

𝑆�̅�
=

 √
1

𝑁 − 1
∑ (𝑆𝑖,𝑗 − 𝑆�̅�)

2𝑁
𝑗=1

𝑆�̅�
  

𝑤ℎ𝑒𝑟𝑒 𝑆�̅� 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑎𝑦 𝑎𝑛𝑑 𝜎(𝑆�̅�) 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  

The equations are according to (Gilbert 1987) for determining the number of points required for estimating the 

mean within a given relative error and confidence interval are as follows;  

𝑛 = (𝑡
1−

𝛼
2
,𝑛0=1

∗
𝑐𝑣

𝑑𝑟
)
2

 

 

𝑑𝑟 =
|�̅� − 𝜇|

𝜇
 

𝑑𝑟  𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟, 

 𝑡
1−

𝛼
2
,𝑛0=1

 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑎𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 1 −
𝛼

2
 

Relative error is allowable deviation of a value from the mean. The use of the coefficient of variation is preferred 

because it is less variable than the use of standard deviation (Gilbert 1987) in the computation of the number 

of sampling points required. Initially, the value of t is derived from normal distribution 𝑍1−
𝛼

2
 since no prior 

value of n is available. The n value obtained is input in the t distribution table to obtain the value of t variate 

cutting off 100
𝛼

2
% of the upper tail with n-1 degrees of freedom. The process is continued iteratively until 

the 𝑛𝑖 − 𝑛𝑖−1 ≤ 𝜀. In this study, 𝜀 is 0. The relationship between soil moisture and coefficient of variation aided 

in quantifying the number of required samples.  

Soil moisture mean (𝜃) and coefficient of variation are related through the exponential equation (Jacobs 2004, 

Brocca et al. 2009, 2012); 

𝑐𝑣 = 𝐴 exp(𝐵𝜃)   

𝐴 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑  

𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑛 𝑚𝑒𝑎𝑛 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 
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5.3.1.2 Relative differences 

The relative difference relates the differences in soil moisture measured over time with the mean of the 

repetitions. Given m measurement campaigns and n measurement points, the soil moisture measured at location 

i (given i=1…..n) and at time j (j=1…m) is given by 𝑆𝑖,𝑗. Following Vachaud et al. (1985), the temporal stability 

by relative differences between soil moisture at individual locations and the mean of each sample is given by 

(Vachaud et al. 1985); 

𝑟𝑑𝑖,𝑗 =
𝑆𝑖,𝑗 − 𝑆�̅�

𝑆�̅�
 𝑤ℎ𝑒𝑟𝑒 𝑆�̅� =

1

𝑛
∑𝑆𝑖𝑗

𝑛

𝑖=1

 , 𝑆�̅� 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑒𝑎𝑛  

The mean (𝑟𝑑̅̅ ̅
𝑖,𝑗) and standard deviation (𝜎(𝑟𝑑𝑖,𝑗)) of relative difference for every location, i, is given by  

𝑟𝑑̅̅ ̅
𝑖,𝑗 =

1

𝑚
∑𝑟𝑑𝑖,𝑗

𝑚

𝑗=1

    𝜎(𝑟𝑑𝑖,𝑗) = √
1

𝑚 − 1
∑( 𝑟𝑑𝑖,𝑗 − 𝑟𝑑̅̅ ̅

𝑖,𝑗)
2

𝑚

𝑗=1

 

A point is termed to have a high temporal stability and representative of the measured soil moisture if it has low 

values of 𝑟𝑑̅̅ ̅
𝑖,𝑗 and 𝜎(𝑟𝑑𝑖,𝑗). For such a point, the low relative difference indicates a small deviation of the soil 

moisture at location i, from the mean soil moisture. A high temporal stability realizes a possibility of estimation 

of soil moisture over larger scales with a limited number of observations (Brocca et al. 2010).  

The root mean square error (RMSE) of the relative differences identified the fields with the highest temporal 

stability. The RMSE provided a metric for comparison of stability with other fields under study (Jacobs 2004).  

𝑅𝑀𝑆𝐸𝑖,𝑗 = (( 𝑟𝑑𝑖,𝑗)
2
− (𝜎(𝑟𝑑𝑖,𝑗))

2
)

1
2
 

Geostatistical analysis was performed as explained in Chapter 3.3.3 using the Variogram Estimation and Spatial 

Prediction Software (Vesper 1.6) developed by Precision Agriculture Centre in Australia (ACPA, Sydney 2006). 

Soil moisture raster maps were produced by block kriging at 10m pixels. The spatial resolution was selected as 

it matched the sampling distance as well as the spatial resolution of the SAR images used in soil moisture 

estimation. The semivariogram model parameters produced were used in computing semivariances of all points. 

The semivariances are used in the generation of weights that estimate soil moisture values at all locations to 

produce a raster surface.  

 

5.3.2 Soil moisture retrieval from SAR backscatter 

SAR images have side-looking geometry (Figure 5.3) resulting in slant range images. The Single Look Complex 

RadarSat-2 and TerraSar-X images were processed in SNAP Toolbox (European Space Agency 2013). 

Radiometric calibration removes variations ensuring that the intensity values presented as backscatter values are 

true representations of target features on the ground (Moreira et al. 2013). Multi looking was performed to obtain 

square pixels. Geometric calibration using the SRTM 3-second digital elevation model later followed to correct 
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for topographic variations. Suppression of speckle was performed with the Lee refined speckle filter. The 

backscatter values were converted from linear to decibels (dB) using the equation;  

𝜎0
𝑑𝐵 = 10 ∗ log10 𝜎𝑙𝑖𝑛𝑒𝑎𝑟 

Due to the difference in incident angle for the RadarSat-2 images, normalization was carried out with the 

reference angle being 33° (van der Velde et al. 2008).  

𝜎0(33) =
𝜎0

cos2 𝜃
 

𝑤ℎ𝑒𝑟𝑒 𝜎0 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟  

 𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑎𝑑𝑎𝑟𝑆𝐴𝑇 − 2 𝑖𝑚𝑎𝑔𝑒𝑠  

(Baghdadi et al. 2016) proposed a semi-empirical model for soil moisture derivation over bare surfaces based on 

the Dubois model. A large dataset from worldwide study sites with sensors in X, C, and L with incidence angles 

between 20 and 45 generated the model suitable for application in all surface conditions.  

𝜎0
𝐻𝐻 = 10−1.287(cos 𝜃)1.227100.009 cot(𝜃) 𝑚𝑣(𝑘𝐻𝑟𝑚𝑠)0.86 sin(𝜃) 

𝜎0
𝑉𝑉 = 10−1.138(cos 𝜃)1.528100.008 cot(𝜃) 𝑚𝑣(𝑘𝐻𝑟𝑚𝑠)0.71 sin(𝜃) 

𝜎0
𝐻𝑉 = 10−2.325(cos 𝜃)−0.01100.011 cot(𝜃) 𝑚𝑣(𝑘𝐻𝑟𝑚𝑠)0.44 sin(𝜃) 

Inverting the Baghdadi equations; 

𝐴 = 10−1.287(cos𝜃)1.227 

𝐵 = 10−1.138(cos𝜃)1.528 

𝐶 = 10−2.325(cos𝜃)−0.01 

Inverting to obtain soil moisture (mv); 

𝑚𝑣 =
log(𝜎𝐻𝐻 𝐴 ∗ 𝑘𝐻𝑟𝑚𝑠⁄ )

0.009 ∗ cot 𝜃
 

𝑚𝑣 =
log(𝜎𝑉𝑉 𝐵 ∗ 𝑘𝐻𝑟𝑚𝑠⁄ )

0.008 ∗ cot 𝜃
 

𝑚𝑣 =
log(𝜎𝐻𝑉 𝐶 ∗ 𝑘𝐻𝑟𝑚𝑠⁄ )

0.011 ∗ cot 𝜃
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The root mean square height (rmsh) was computed for all pin profiler measurements with Matlab R2012b. The 

normalized rmsh (kHrms) was computed as; 

𝑘𝐻𝑟𝑚𝑠 =
2𝜋

𝜆
∗ 𝑟𝑚𝑠ℎ 

For satellites with dual polarization, the soil moisture should be the same for two polarizations. Thus, solving 

the soil moisture equations as per the polarizations of the satellites simultaneously and inverting to obtain 

normalized root mean square height (kHrms);  

𝑘𝐻𝑟𝑚𝑠𝑠𝑖𝑚 = 
𝜎𝑉𝑉 ∗ 𝐴 ∗ 100.009∗cot𝜃

𝜎𝐻𝐻 ∗ 𝐵 ∗ 100.008∗cot𝜃
 𝑓𝑜𝑟 𝑇𝑒𝑟𝑟𝑎𝑆𝐴𝑅 − 𝑋 

𝑘𝐻𝑟𝑚𝑠𝑠𝑖𝑚 = 
𝜎𝐻𝑉 ∗ 𝐴 ∗ 100.009∗cot𝜃

𝜎𝐻𝐻 ∗ 𝐶 ∗ 100.011∗cot𝜃
 𝑓𝑜𝑟 𝑅𝑎𝑑𝑎𝑟𝑆𝐴𝑇 − 2 

The linear dependence of radar on soil moisture for values of soil moisture between 5 and 35% vol has been 

reported by (Baghdadi et al. 2007, Baghdadi, Camus, et al. 2011). The equation used to retrieve soil moisture was 

of the form;  

𝑦 = 𝑎 ∗ 𝑚𝑣 + 𝑏 ∗ 𝑘𝐻𝑟𝑚𝑠_𝑠𝑖𝑚 + 𝑐  

𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 𝑎𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠  

To assess the extent to which the model fits the data, the accuracy of the model, Residual standard error, r 

squared, and the F statistic were computed. The residual standard error is the average amount that the response 

variable (soil moisture), will deviate from the true regression line and thus measures the quality of the regression 

model. R squared measures how well the model fits the actual data. It provides a measure of the amount of 

variance in the response (soil moisture) variable that can be explained by the predictor variables (rhms and 

backscatter) (James et al. 2013). The adjusted r squared considers the number of variables in the model. The F-

statistic provides an indication of the presence of a relationship between the predictor and response variables, 

with a higher value indicating the presence of a relationship.  

To assess how well the model can predict soil moisture values, k-fold cross-validation was implemented. The 

measurements are divided into k groups/folds of equal size. The first fold, the validation set, and the model fit 

to k-1folds. The mean square error (MSE1) is computed for this first fold. The procedure is repeated k times 

and each time an MSE is computed for the different folds (James et al. 2013). This procedure will result in MSE 

values equal k. The k fold cross validation is acquired by averaging the MSE values.  
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𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛(𝑘) =
1

𝑘
∑𝑀𝑆𝐸𝑖

𝑘

𝑖=1

 

 

5.4 Results and Discussion 

5.4.1 Spatial and temporal variability 

5.4.1.1 Statistical methods 

The average soil moisture over the three hydrological zones are as shown in Figure 5.4, Table 5.2. In periods of 

excessive rainfall from mid of April 2015 and end of January 2016, the Riparian zone holds a higher capacity of 

water explained by the high percentage of clay content and organic carbon. The riparian fields have a high 

standard deviation in high moisture content.  
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Table 5.2: Spatial statistics; mean, standard deviation (sd), coefficient of variation (cv) and number of sampling 

points (num) of soil moisture 

 
Riparian  Middle Fringe  

date Mean sd  cv 

 (%) 

num  Mean 

(vol

%) 

sd  cv 

 (%) 

num  Mean 

(vol

%) 

sd  cv 

 (%) 

num  

(vol

%) 

(vol

%) 

(vol

%) 

(vol

%) 

07-03-15 18.0 6.7 37.2 525 20.9 13.9 66.3 219 19.5 11.2 57.5 337 

31-03-15 37.0 18.2 49.0 436 42.8 14.1 33.0 221 40.5 12.1 29.81 336 

20-04-15 48.5 16.7 34.4 177 46.8 11.2 23.9 211 45.2 8.7 19.3 299 

23-04-15 54.2 15.2 28.1 146 51.1 9.4 18.4 177 48.6 7.9 16.3 342 

27-04-15         54.0 8.2 15.3 181 46.9 8.7 18.4 269 

01-05-15         54.3 8.1 15.0 183 48.3 7.0 14.5 250 

14-05-15         52.0 8.1 15.5 178 49.3 7.5 15.2 266 

17-05-15         49.9 9.6 19.3 191 48.5 8.7 17.9 295 

16-12-15 8.6 3.6 41.8 477 6.5 3.1 47.7 250 6.7 3.5 52.5 419 

19-12-15 6.2 3.2 50.5 244 8.6 3.3 37.9 125 15.9 6.9 43.5 226 

23-12-15 21.3 6.8 31.9 248 23.5 7.7 32.7 137 25.7 8.9 34.7 206 

29-12-15 9.8 3.4 34.6 246 7.3 3.4 47.4 122 11.8 5.4 45.7 194 

09-01-16 22.3 6.4 28.7 254 20.8 10.2 49.1 146 23.8 8.3 35.1 238 

12-01-16 27.7 7.0 25.3 253 28.9 10.9 37.6 148 31.5 8.2 25.9 242 

20-01-16 39.5 8.3 21.1 250 44.6 10.7 24.1 117 42.1 11.3 26.9 189 

31-01-16 44.3 12.0 27.1 103 46.0 10.9 23.8 104 43.3 8.7 20.0 164 

06-02-16 48.1 13.8 28.7 111 44.2 11.5 26.0 114 45.6 7.6 16.6 130 

11-02-16         49.8 8.6 17.4 113 46.9 7.2 15.4 135 

 

Soil moisture was analyzed for variation in time and space. March to May marks the rainy season in the study 

area. Due to increased rainfall, the soil moisture levels increase to a maximum till May for the middle and fringe 

fields, after which the soil moisture recorded reduces for that first season. The riparian fields were flooded from 

the 27th April and thus no measurements were taken until the end of the season. The second collection of soil 

moisture was from December 2015 to February 2016 (Figure 5.4). The rains begin in December. The slight 

increase in soil moisture on 23rd December can be attributed to a precipitation experienced on 21st and 22nd. 

Due to the highly dynamic nature of soil moisture, the levels were observed to subside towards the end of the 

year. Frequent precipitation from January 2016 resulted in the rise of soil moisture exhibiting the strong 

dependency of moisture to precipitation.  
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Figure 5.4: Mean temporal variation of soil moisture for riparian, middle and fringe fields from March to May 

2015 and December 2015 to February 2016. The upper and lower whiskers are representative of standard 

deviation. CE are the riparian fields, MD the middle fields and FR the fringe fields. The whiskers above and 

below show the maximum and minimum values, the segment in the box shows the median value, the circles are 

probable outliers. 

Figure 5.5 shows the relationship between the mean soil moisture observations and cumulative precipitation. A 

strong dependency of soil moisture on precipitation is noted for both study periods (March to May 2015 and 

December 2015 to February 2016).  
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Figure 5.5: Mean soil moisture versus cumulative rainfall for March to May 2015 and December 2015 to 

February 2016  
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Table 5.3: Spatial variability of selected soil physical properties along the hydrologic gradient 
 

n Clay% Silt% Sand% Bulk Density 

g/cm3 

Organic 

Carbon g/kg 

Texture 

Riparian 16 35.0 ± 12.2 a, b 56.2 ± 10.1 8.8 ± 18.2 c 1.03 ± 0.213 d 1.88 ± 0.742 silty clay 

loam 

Middle  12 18.8 ± 5.3 b 58.3 ± 11.0 22.9 ± 14.9 1.14 ± 0.258 1.36 ± 0.609 silt loam 

Fringe 8 13.9 ± 4.0 a 57.2 ± 7.3 28.9 ± 10.4 c 1.27 ± 0.136 d 1.42 ± 0.592 silt loam 

p-value  3.5e-06 *** 0.86 ns 0.011 * 0.053 ns 0.11 ns  

 

Same letters in a column indicate significant difference at p<0.05  

n is the number of mean soil moisture values included in the data analysis 

ns non-significant difference at 0.05 probability level 

* Significance at 0.05 probability level 

*** Significance at 0.001 probability level 

 

The clay percentage in the riparian zone is high and significantly different from the fringe and middle fields 

(Table 5.3, Figure 5.6). Organic carbon is highest in the riparian zone though not at a significant level as 

compared to middle and fringe. High organic content increases porosity and subsequently infiltration (Ziadat et 

al. 2010). Clay increases the retention capacity of the soils in the riparian zone (De Lannoy et al. 2006). There is 

a significant difference between the bulk density of riparian and fringe zones (Table 5.3, Figure 5.6). The riparian 

zone has a silty clay loam while the middle and fringe has silt loam texture according to the USGS soil 

classification.  
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Figure 5.6: Whisker plots of soil physical properties for the Riparian, Middle and Fringe fields 

5.4.1.2 Relative difference 

Evaluation of temporal stability was performed by use of relative difference technique indicating how much 

moisture deviation from the mean over the data collection dates. A relative difference greater than 0 

overestimates while less than 0 underestimates the averages despite the measurement times (Vachaud et al. 1985). 

The temporal mean relative difference was used in ranking. Figure 5.7, Table 5.4 shows the relative differences 

for the riparian, middle and fringe sites. The fields within each of the sites are shown in Figure 2.2.  
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Figure 5.7: Relative difference of sample fields in the riparian, middle and fringe zones 
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Table 5.4: Relative difference, standard deviation of relative differences and RMSE 

Field Relative 

Difference% 

Standard Deviation of 

Relative Difference% 

Range RMSE Area (m2) 

C1 -4.00 6.67 13.34 0.08 6263.4 

C2 0.11 7.29 14.58 0.07 3995.8 

C3 -0.32 8.95 17.90 0.09 8289.8 

C4 4.83 5.21 10.42 0.07 3856.6 

C5 -2.54 8.49 16.98 0.09 6314.7 

C6 1.93 4.76 9.52 0.05 4272.8 

F1 0.30 11.70 23.40 0.12 11521.8 

F2 -5.62 6.30 12.60 0.08 1126.7 

F3 23.67 6.40 12.80 0.25 19204.3 

F4 -18.35 15.28 30.56 0.23 732.8 

M1 -29.13 9.07 18.14 0.30 1705.4 

M2 20.58 8.20 16.40 0.22 10726.5 

M3 18.85 13.81 27.62 0.24 1524.0 

M5 -10.30 12.64 25.28 0.16 3210.1 

 

From the results (Table 5.4), relative difference ranged between -4% to +4.83% vol for the riparian fields 

whereas the standard deviation ranged from 4.76 to 8.95%. Middle fields recorded quite high relative differences 

ranging from -29.13% to 20.58% with a standard deviation of 9.07 to 13.81% vol. The fringe fields exhibited a 

mean relative ranging from -18.35% to 0.30% with a standard deviation of 6.4 to 15.28% vol. Low standard 

deviation of the relative difference was observed for the riparian fields. The highest standard deviation was 

observed for all the middle fields.  

The fields with the lowest relative difference and standard deviation of the relative difference are indicative of 

temporally stable fields. The riparian fields have the least deviations from mean throughout the measurement 

period. The representative sampling fields in the three zones were C6, M5, and F2 with lowest RMSE of 0.05, 

0.16 and 0.08 respectively. Field C6 has a relative difference of 1.93±4.76% vol (range of 9.52) M5 has -

10.30±12.64 (range of 25.3), while F2 has -5.62±6.30 (range of 12.6). Therefore, the representative fields in the 

riparian, middle and fringe hydrological zones were taken to be C6, M5, and F2. M3, M2, F3 were too wet to 

be representative fields whereas F4 and M1 were too dry. The high relative differences, particularly for M3, M2, 

F3, M1, and F4, could have been caused by random variation in terrain in addition to the actual variation of soil 

moisture with time (De Lannoy et al. 2007). Additionally, cropping patterns, variation in farm management, 
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utilization of hand tools in land preparation could be causal factors of the temporal instability of mean field soil 

moisture.  

The sample fields analyzed had varying sizes with some as small as 732 m2 and the large ones as big as 19,000 

m2. The riparian fields, which indicated highest stability ranged from 3,800 to ~9,000 m2. The average sizes of 

these fields as compared to other sample fields, the high clay content resulting in prolonged water retention and 

proximity to the Kilombero River, prompting moisture recharge may be linked to the low variability for the 

riparian fields. 

The mean soil moisture values for the riparian zone, the middle and fringe are shown in Figure 5.8. This 

emphasizes the existence of variations of soil moisture explained by varying soil properties in the three 

hydrological sites.  

 

 

Figure 5.8: Average mean soil moisture for the three hydrological zones for March to May 2015 and December 

2015 to February 2016 
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The cv from the mean soil moisture indicates that there is high variability in the dry season (season 2) falling 

between December and February. In the wetter season, the Fringe and middle exhibit low variability with the 

riparian having moderate variation (Table 5.5).  

 

Table 5.5: Coefficient of variation of mean soil moisture for Riparian, Middle and Fringe fields  

  Season1 Season2 

Zone Riparian Middle Fringe Riparian Middle Fringe 

Means 48.1 51.1 54.0 27. 7 30.5 34.2 

Standard Deviation 23.8 17.5 18.9 23.2 22.8 24.0 

Coefficient of Variation 0.49 0.34 0.34 0.84 0.74 0.70 

 

The cv values greater than 0.35 indicate high variability, which is observed for all the average measurements in 

the time between December and January (Season 2_dry season) as well as the time between March and May 

(Season 1_wet season) (Table 5.5). The wet season exhibits moderate variability for the middle and fringe fields, 

which has lower soil moisture values as compared to the riparian zone.  

 

The standard deviation increases with increasing soil moisture (Figure 5.9). This is in agreement with a study by 

(Zribi and Dechambre 2003) where dry fields had fewer variations. Converse results, where fields with high 

moisture content had higher variations, were reported by (Hupet and Vanclooster 2002).  
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Figure 5.9: Soil moisture vs standard deviation for the riparian, middle and fringe fields 

The coefficient of variation shows the relative magnitude of deviation as a function of the mean ensuring the 

possibility of comparison among different parameters (Kimble et al. 2000). CV =standard dev/mean. The 

coefficient of variation (cv) for 70% of the values was < than 35% concluding that was moderate variation in 

the measured soil moisture values (Figure 5.10). The maximum cv was reported for data measured on 07-03-15 

in the middle (0.66) and fringe (0.58) fields. At high soil moisture values, the cv is more compact and 

concentrated at values between 10-40% whereas, for low soil moisture values, the range is wider from 20-70%. 

Generally, there is a decrease in coefficient of variation as soil moisture increases. This is consistent with (Bell 

et al. 1980, Famiglietti et al. 1999, Brocca et al. 2007, 2010) whose campaigns were also field based.  

From the graphs (Figure 5.10), there is a high correlation between the cv of middle and fringe fields and their 

means. The riparian zone soil moisture was poorly correlated to the cv. This could be attributed to the variation 

in texture properties and fewer mean field measurements used in deriving the equations for the riparian zone.  
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Figure 5.10: Soil moisture vs coefficient of variation for the Riparian, Middle and Fringe fields. The exponential 

equation showing the relationship between mean soil moisture and coefficient of variation is indicated. The 

circled points show the maximum coefficient of variation for data measured on 07-03-15 in the middle and 

fringe fields. 

An exponential equation linking the mean soil moisture and coefficient of variation was established. The 

coefficients of the exponential equations are as shown in Table 5.6.  

 

Table 5.6: Exponential relationship between mean soil moisture and coefficient of variation  

Hydrologic zone  A B R2 

Riparian  0.411 -0.008 0.25 

Middle  0.648 -0.024 0.78 

Fringe  0.735 -0.030 0.89 

 

A and B are relative variability and dependence of variation on the soil moisture means (Jacobs 2004). From the 

coefficients, it is evident that there was low relative variability for riparian fields and high relative variability for 

the fringe fields in dry conditions. The fringe fields had a relatively rapid decrease in variability (lowest 

dependence of variation on soil moisture) as the moisture increased. The equations linking cv and soil moisture 

are important in the determination of the number of moisture measurements required to give a mean value 
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within a pre-specified margin of error and confidence interval. No further analysis concerning the number of 

points required was performed for the riparian fields due to the low correlation of the soil moisture to the 

coefficient of variation.  

The number of points required at a relative error of 10 and 20% for the middle and fringe at a confidence level 

of 95% is shown in Figure 5.11. The drier periods (5 to 10% vol) need a higher number of measurements for 

areal coverage of ~17,000 and ~32,000 m2 for the middle and fringe fields respectively. 

 

 

Figure 5.11: Mean soil moisture vs number of points required to obtain soil moisture with relative errors of 10 

and 20% the middle and fringe fields.  

A relative error of 10% (ranging from 105 to 125 for the 10% relative error) requires more points than 20% 

(from 25 to 30) in dry soil moisture conditions. The fringe fields have a higher number of points explained by 

the high values of the coefficients A and B in the exponential equation. The higher variation of the fringe fields 

indicates that more points are required to achieve the field averages within the given error margin. The sampling 

scale was 10m*10m, however from the results above, 105 and 125 points would have been sufficient for the 

middle and fringe fields to give mean field averages at 95% confidence level and a 10% relative error in dry soil 
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moisture conditions (5%). As soil moisture increases, the number of points required reduces, falling to between 

27-30 in soil moisture conditions of 30% vol.  

 

The relationship between cv and number of points required is shown in Figure 5.12 where the regression 

equations were linear similar to a study by (Wang et al. 2008). The number of points are required to obtain 

average soil moisture in the middle and fringe fields at 95% confidence level with a relative error of 10% (md_0.1 

and fr_0.1) and 20% (md_0.2 and fr_0.2) respectively at a sampling scale of 10m. The equations give a general 

idea of the number of samples that would be required for subsequent soil moisture sampling schemes of the 

study area.  

 

 

Figure 5.12: Coefficient of variation vs number of measurement points required to acquire average soil moisture 

at 10 and 20% relative error at 95% confidence interval for the fringe and middle fields 
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5.4.1.3 Geostatistical methods  

Quantile-Quantile (QQ) plots indicated the data was normally distributed, implying that the spatial pattern of 

the moisture was random (Brocca et al. 2007). The normal distribution requirement for kriging interpolation is 

met. The QQ plots for the complete soil moisture dataset is shown in the appendix (B.1).  

Table 5.7: P-values from Shapiro Wilk Normality test. Values greater than the 0.05 indicate a normal distribution.  

 
Riparian Middle Fringe 

 
 p-value   p-value   p-value  

07-03-15 0.54 0.05 0.14 

31-03-15 0.67 0.14 0.55 

20-04-15 0.08 0.66 0.07 

23-04-15 0.05 0.46 0.30 

27-04-15 
 

0.21 0.07 

01-05-15 
 

0.24 0.06 

14-05-15 
 

0.27 0.08 

17-05-15 
 

0.07 0.51 

16-12-15 0.10 0.16 0.11 

19-12-15 0.15 0.67 0.51 

23-12-15 0.39 0.05 0.86 

29-12-15 0.98 0.21 0.27 

09-01-16 0.07 0.17 0.17 

12-01-16 0.90 0.35 0.10 

20-01-16 0.07 0.97 0.27 

31-01-16 0.65 0.24 0.44 

06-02-16 0.09 0.54 0.12 

11-02-16 
 

0.17 0.46 

 

The ratio of nugget and sill indicated that weak spatial dependence occurred in relatively dry periods (Appendix 

B3). In the riparian fields, the range is within 0-40m in the drier periods whereas it ranges from 20-70m in the 

wetter season. In the middle fields, the range was between 80-140m in the dry season and 0-50 in the wet 

periods. In the fringe, the range was between 0-70m in the dry season and 0-40m in the wet season (Figure 

5.16). This indicated that for the fringe and middle fields, the range was higher in the dry season with the 

converse observed for the riparian fields. The distance over which soil measurements are correlated at the fringe 

and middle increases in the dry season. Correlation is only at smaller distances in the riparian fields in the dry 
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season. Sample spacing can be increased from 10 m to a value less than the range distance since the 

measurements below the range are correlated. Therefore, the sample spacing for the riparian fields will be lower 

(and hence more in number) than that of middle and fringe fields. The relationship between the deviation from 

the mean and the range indicate that low ranges in the dry season have low standard deviations in dry soils 

whereas high ranges corresponding to periods of high soil moisture have a higher standard deviation in wet 

soils. In the middle and fringe fields, the range and standard deviation seem to have an inverse relationship 

(Figure 5.13). At high soil moisture, the range is lower and the standard deviation is high. The distance of 

correlation decreases with increasing soil moisture implying that more sampling points are required in wet season 

which will subsequently reduce the deviation from the mean. The difference in the pattern of the distance of 

correlation, soil moisture, and standard deviation can be explained by soil texture properties (Vachaud et al. 

1985). Following the assessment of the variograms and variogram parameters (Figure 5.14, Appendix B2, Table 

5.8, Appendix B3), kriged images were generated with Vesper software. Examples are shown in Figure 5.15and 

Appendix B7-B9.  
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Figure 5.13: Soil moisture field means vs semi variogram range and standard deviation for a) riparian, b) 

middle and c) fringe zones  
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Spatial variogram parameters used in the generation of kriged soil moisture maps, the graphical representation 

of the variograms and a sample of kriged images are as shown. The complete list of variogram parameters is in 

the Appendix B3.  

 

Table 5.8: Spatial semivariogram parameters. Strong spatial dependence is exhibited for values less than 25%, 

moderate for values between 25-50% and weak dependence for values greater than 75%.  

fringe model nugget 

variance (c0) 

partial 

sill (c1) 

sill (c0+c1) Spatial 

dependence (%) 

range rmse 

09-01-16 Exponential 23.9 66.0 89.9 26.6 43.5 5.7 

12-01-16 Gaussian 134.9 133.5 268.4 50.3 119.7 15.7 

20-01-16 Exponential 155.7 659.2 814.9 19.1 39.5 24.3 

31-01-16 Exponential 166.0 590.0 756.0 22.0 24.6 26.9 

 

 

Figure 5.14: Semivariograms of soil moisture of selected fringe fields 
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The semivariogram shows the variance (y-axis) between all the points separated by distance (x-axis) as a series 

of points. The legend indicates the number of pairs of points used in the calculation of the variance at each lag 

(distance between points). 

  

 

Figure 5.15: Soil moisture distribution maps for the fringe fields on 9th, 12th, 20th and 31st January 2016.  

Temporal variograms at maximum 200 days were selected in the generation of the temporal variograms (Table 

5.9). This number was selected based on the period between the first and second field survey campaign, which 

was approximately 200 days to capture the pattern of the second collection period. The range (number of days 

below which there is a correlation in the observed data) was 109 for the riparian, 65 for the middle and 71 days 

for the fringe.  
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Figure 5.16: Temporal variograms for a) Riparian, b) Middle and c) Fringe zones  

Table 5.9: Temporal Gaussian semivariogram parameters. Strong spatial dependence is exhibited for values less 

than 25%, moderate for values between 25-50% and weak dependence for values greater than 75%.  

Zone nugget (c0) partial sill (c1) sill (c0+c1) spatial 

dependence 

range rmse 

Riparian 24 11464 11488 0.2 (strong) 109.3 45.9 

Middle 49.1 2424 2473 2.0 (strong) 65.8 110.6 

Fringe 40.8 3287 3328 1.2 (strong) 71.1 113.1 

 

5.4.2 Soil moisture retrieval from SAR backscatter 

Field averages of soil moisture were computed for all the data collection dates. Only the fields with soil moisture 

<40% volume were considered due to the insensitivity of backscatter at high soil moisture values (Dobson and 

Ulaby 1981, Chanzy 1993, Holah et al. 2005). The coefficients of the linear equations are shown in Appendix 

B4 whereas the goodness of fit of the predictive linear equations are shown in Table 5.10. For all the dates 

shown, the ground was bare laying the prominence in using the method by (Baghdadi et al. 2016) in roughness 

retrieval.  

Simulated kHrms values had very low correlations to the measured values. The coefficient of determination of 

simulated soil moisture from RadarSat-2 HH-HV was 0.6 while that from TerraSar-X HH-VV was 0.98 (Figure 

5.17). Better performance of TerraSar-X is attributed to the higher sensitivity of roughness at high incidence 

angles (Holah et al. 2005). Roughness has a higher effect on RadarSat-2 at 30-36° as compared to TerraSar-X at 

22.73°. Lower frequencies are more sensitive to roughness as compared to higher frequencies (Mattia et al. 1997). 

Moreover, penetration depth in RadarSat-2 C- band is more than that of TerraSar-X X-band. This translates to 

the shorter wavelength band X, having more roughness details than C, explaining the lower performance of C. 

This means that more roughness data would be required for soil moisture estimation using lower frequency 



Spatial-temporal variation of physical soil properties and soil moisture estimation from SAR data 

108 

 

radar data. Additionally, larger uncertainties exist for cross-polarized as compared to the co-polarized 

backscatter due to the poorer signal to noise ratio (Jiankang Ji et al. 1996).  

 

Figure 5.17: Simulated KHrms from RadarSat-2 HH and HV (a) and TerraSar-X HH and VV (b) 

Linear regression equations estimated the soil moisture values based on the observed and simulated kHrms. 

The goodness of fit assessment of the regression equations indicated that the simulated kHrms from (Baghdadi 

et al. 2016) performed better than the observed roughness (Table 5.10). The coefficients are shown in Appendix 

B3. 
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Table 5.10: Goodness of fit of the predictive linear soil moisture equations 

simulated soil moisture 

from 

Residual 

standard 

error 

degrees of 

freedom 

Multiple R-

squared 

Adjusted 

R-squared 

F-statistic  p-value 

RadarSat-2 hh with 

measured khrms 

7.61 41 0.36 0.33 11.77 0.00 

RadarSat-2 hh with 

simulated khrms 

2.47 41 0.93 0.93 285.70  < 2.2e-16 

RadarSat-2 hv with 

measured khrms 

8.24 41 0.25 0.22 6.98 0.00 

RadarSat-2 hv with 

simulated khrms 

2.37 41 0.94 0.94 312.40  < 2.2e-16 

TerraSar-X hh with 

measured khrms 

8.46 25 0.20 0.14 3.15 0.06 

TerraSar-X hh with 

simulated khrms 

3.30 25 0.88 0.87 90.28 0.00 

TerraSar-X vv with 

measured khrms 

8.42 25 0.21 0.15 3.30 0.05 

TerraSar-X vv with 

simulated khrms 

2.97 25 0.90 0.89 114.20 0.00 

 

The residual standard errors for the models indicate that the simulated khrms produced better results (2.37 to 

3.3) as opposed to the measured khrms (7.61-8.46). Additionally, the r squared from the models using simulated 

khrms (0.87-0.94) showed the data fitted the model better than the measured khrms (0.2-0.33). Moreover, the 

higher F-Statistic values of the model from simulated khrms indicated that there exists a relationship between 

the predictor (khrms, backscatter) and response (soil moisture) variables. In conclusion, it is evident that the 

model from simulated khrms performs better than the ones with the measured khrms as inputs. 
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Figure 5.18: Retrieval of soil moisture on validation points from RadarSat-2 HH (a), RadarSat-2 HV (b), 

TerraSar-X HH (c), and TerraSar-X VV (d) 

 

The predictive linear model was evaluated with the test data in a cross-validation process with 10-fold cross 

validation (Figure 5.19). The models from simulated kHrms indicated better performance as compared to using 

the roughness information measured in the field (Appendix B6). 
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Figure 5.19: K fold cross-validation with simulated Khrms from RadarSat-2 HH (a), RadarSat-2 HV (b), 

TerraSar-X HH (c), and TerraSar-X VV (d) 

 

The linear model estimated soil moisture with the simulated roughness parameter. Co-polarized bands resulted 

in a good performance as compared to the cross-polarized RadarSat-2 HV (Figure 5.20). Co-polarized imagery 
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have been reported to be optimal in soil moisture retrieval (Ulaby and Batlivala 1976). Soil moisture from 

measured kHrms yielded poor results with R2 from RadarSat-2 HH, HV, TerraSar-X HH, VV being 0.44, 0.3, 

0.12 and 0.15 respectively (Appendix B.5).  

Observed and simulated soil moisture from RadarSat-2 has a good agreement with underestimation observed 

in field F1 when the soil moisture is 15% vol (Figure 5.20). The middle fields M1, M2, M3, and M5 had an 

overestimation when the soil moisture is between 10 to 15% vol. There was a slight overestimation for F1 and 

F3 for soil moisture greater than 30% vol.  

Soil moisture from RadarSat-2 HV yielded the poorest results (Figure 5.20) with a correlation coefficient of 

0.33. There was an overestimation of simulated values of all the fields reaching values of 80% vol. This indicates 

that the predictive linear model based on HV polarization results to erroneous soil moisture values. Cross-

polarized sensors have been reported to have a high sensitivity to soil moisture explaining the low performance 

of RadarSar-2 HV (Hirosawa et al. 1978).  

TerraSar-X HH and VV exhibited similar patterns with a coefficient of correlation being greater than 0.9 for 

both HH and VV backscatter signals (Figure 5.21). The soil moisture for the fields at the fringe and riparian 

zone fit well whereas there was an underestimation of middle fields in low (<10% vol) and high (>25% vol) soil 

moisture conditions.  
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Figure 5.20: RadarSat-2 (a) HH and (b) HV simulated field soil moisture  
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Figure 5.21: TerraSar-X (a) HH and (b) VV simulated field soil moisture 

5.5 Conclusion  

Knowledge of soil properties plays a crucial role in land management practices. Bulk density (weight of soil per 

unit volume) affects micro-organism activity, availability of plant nutrients and movement of air and water 

through the soil which is essential to plant growth. Increased bulk density reduces the air pores in soil 

subsequently reducing the water available to the plants. Bulk density is influenced by organic matter and texture 

in terms of percentage clay, sand, and silt. Organic matter is residue from plants returned to the soil in form of 

humus (USDA n.d.). An increase in organic matter reduces bulk density thus increasing the soils ability to hold 

water. A high sand content increases bulk density since the pores spaces are reduced. The results obtained from 

the analysis indicate that the riparian zone has the highest water holding capacity as the bulk density is low with 

high organic content.  
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In general, soils in the sample fields are within the densities recommended for plant growth, which is less than 

1.4g/cm3 (Daddow and Warrington 1983). However, the soils can be improved by increasing their water holding 

capacity. Increasing the organic content of the soil reduces bulk density increasing the air spaces and 

subsequently ability of motion of the air and water through the soils to the roots of plants (Bauer 1974). Fields 

in the study site are mainly used in the growth of rice during the wet season and are left bare until the next 

growing season. During this time, farmers can be encouraged to grow crops that grow well at low moisture 

content such as sweet potatoes. Their varying root length helps break down the compact layers of soil thus 

increasing aeration in the next growing season. Planting cover crops and application of fertilizers result in an 

increase in water holding capacity of the soil (Nicol et al. 2015). Soil disturbance when the soil is wet is likely to 

increase compactness thus reducing the spaces between the soil particles and thus should be avoided. Moreover, 

adopting drought-tolerant crops which require less growth water can be adapted to increase vegetation 

productivity (USDA n.d., Evanylo and McGuinn 2000, Nicol et al. 2015).  

The field soil moisture dynamics and its relation to the coefficient of variation gives a basis upon which sampling 

designs can be set up. For the fields selected, increasing soil moisture results in an increase in deviation from 

the mean of the riparian fields. The converse is true for the middle and fringe fields. The coefficient of variation 

decreases with increasing soil moisture and was greater than 35% vol for the riparian, middle and fringe fields 

in low soil moisture, indicating the high variability of soil moisture across fields in the dry season. The 

implication of this with respect to assessing the field soil moisture against a remote sensed soil moisture product 

is that the actual soil moisture conditions are more reflective of the remote sensing product in wetter conditions 

since the cv is lower (Charpentier and Groffman 1992, Famiglietti et al. 1999). On the other hand, the spatial 

variograms have a weak spatial dependence of greater than 75 in the low soil moisture periods indicating there 

is little correlation between the measured soil moisture. This is in support of the results from the computations 

of the coefficient of variation. The preliminary information on the pattern of soil moisture in wet and dry 

conditions informs a decision of the number of points that would be required to correctly capture the mean 

moisture of fields at given margins of error and confidence levels. The number of points required increases with 

increasing soil moisture since the variation is high under such conditions as stipulated by the coefficient of 

variation. An increase of soil moisture from 20 to 60% vol reduces the number of points required by a factor 

of 6.5 for the middle and a factor of 11 for the fringe fields. The low correlation between the riparian and 

coefficient of variation may have been due to a lower number of sampling points as compared to the fringe and 

middle fields. The riparian fields were liable to flooding and hence in such cases, no sampling was done. This 

information is highly valuable for the planning of additional soil moisture data in which case the dry conditions 

require additional data collected whereas in wet conditions fewer moisture measurements suffice to represent 

the field mean (Hupet and Vanclooster 2002).  

The relative differences and the standard deviation of the relative differences aided in identifying time stable 

fields that could be used in upscaling the soil moisture to a larger area coverage. Riparian fields were the most 
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stable temporally for the period March to May and December to February. The soil texture in particular high 

clay content and its water holding capacity after rainfall events explains this temporal persistence. (Cosh et al. 

2008) reported that soil type had a high influence on the temporal stability of soil moisture. The riparian fields 

could be used as representative fields in upscaling strategies for areas with similar soil texture properties. The 

point data used in upscaling is feasible in development of products comparable to modeled remote sensing 

products at satellite resolution and footprint (De Lannoy et al. 2007). Reduction of the uncertainty introduced 

in upscaled products can be accomplished by utilizing soil moisture related predictor variables such as NDVI 

or weather information (Crow et al. 2012).  

Simulation of roughness parameter, kHrms, from RadarSat-2 and TerraSar-X yielded values that outperformed 

the observed roughness parameters. This indicated that infield variation of roughness is not captured by 

observations at several points in the field. Simulated soil moisture indicated that TerraSar-X had better results 

than RadarSat-2 explained by the difference in frequency, incidence angles, and polarization.  

The overall context of the research was geared towards highlighting variations existing at the field scale. For this 

study, the variation existing in physical properties sand, silt, clay, organic carbon, bulk density for the three 

hydrological sites along the floodplain were assessed. These properties were assumed to be constant for the 

duration of the study. The variation in highly dynamic soil moisture was assessed for the periods between March 

and May 2015 and December 2015 to February 2016. It is evident that there are differences at the field scale for 

these soil properties. This subsequently translates to having different management options for the sites, for 

example, there is a distinct water accumulation pattern in the fields shown in Figure 5.15. If there is leaching or 

surface flow draining water out of his farm from this location, then to retain the soil nutrient availability, the 

farmer could apply additional manure at this excess water locations. The variations call for adoption of farm-

specific technology adopted to manage the needs of individual farms. Soil moisture is a critical parameter in 

plant growth, however, it is tedious to collect every so often. Remote sensing imagery can be adopted in 

estimating the highly dynamic soil moisture.  

 

In summary, 

1. An increase in soil moisture resulted in an increase in standard deviation. The range increased with 

increasing moisture in the riparian whereas it reduced for the middle and fringe.  

2. Temporal variation in soil moisture is due to precipitation events. However, the spatial variation of 

the soil moisture measured is explained by differences in soil texture. Moreso for the riparian fields 

which had higher water content due to high clay and organic matter content. 

3. The coefficient of variation has an exponential relationship to mean soil moisture. Determination of 

required number of points at 10% confidence interval with an error limit of 10% and 20% indicated 

that higher number of points are needed for the fringe as compared to the middle. The riparian fields, 
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however, exhibited a poor correlation between the cv and mean soil moisture which can be explained 

by the lower number of measurement points included in deriving the relationship. 

4. 105 and 125 measurement points in the fringe and middle fields suffice to estimate mean soil moisture 

at 95% confidence level and 10% relative error in dry moisture conditions. The values reduce to 27-

30 measurement points for 30% vol soil moisture. 

5. The riparian fields have a higher temporal stability as compared to the fringe and middle fields.  

6. Temporal dependence of measured soil values is 109 days for the riparian, 65 days for the middle and 

71 days.  

7. RadarSat-2 and TerraSar-X yielded high performance in simulating soil moisture with simulated 

roughness parameters as inputs. Higher frequency X band outperformed the C band in the estimation 

of soil moisture from bare surfaces. 

The temporally stable fields can be used as locations for setting up future soil moisture sensors. The potential 

use of such auxiliary data is in the validation of remote sensing data. Moreover, additional SAR sensors and 

synergy of different sensors in soil moisture retrieval is recommended for exploration. Data from additional soil 

moisture sensors can also be input in hydrological and rainfall-runoff models, all geared towards improved 

understanding of hydrological processes in Ifakara in the Kilombero Valley. Furthermore, it is recommended 

that supplementary research on the effect of vegetation on soil moisture spatial-temporal variability be 

investigated. Additionally, it is recommended that subsequent studies assess the infield distribution of chemical 

properties vital in crop growth such as Nitrogen, Phosphorus, and others at field scales.  
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6. Kilombero catchment soil moisture assessment 

6.1 Introduction  

Wetland management and conservation have been subjects of research especially due to the pressure exerted 

on the wetlands with increasing population (Whigham et al. 1993, Rebelo et al. 2010, Mombo et al. 2011)(Rebelo 

et al. 2010). Emphasis on the need for development and implementation of management policies geared towards 

protection and regulation of wetlands providing ecosystem services is on the rise (Millennium Development 

Goals and Nations Unies 2011, Sachs 2012, Leemhuis et al. 2017). However, for the sustainable development 

decisions, there is a need for data highlighting the overall interrelated functioning of the ecosystem. An 

important aspect of understanding an ecosystem is knowledge on the spatial location, extent, and dynamics of 

geophysical parameters. Complex nature of wetlands and high temporal variability favor the utilization of remote 

sensing in wetland assessments (Klemas 2011, Tiner et al. 2015). Vast extent and repeated coverage facilitate the 

continued monitoring of land parameters that influence wetland environments and their use (Guo et al. 2017). 

Water conservation and runoff regulation are among the wetland functions making wetlands a preferred 

ecosystem for increased food production (Chen and Wong 2016). Exploitation of the ecosystem potential for 

agriculture while neglecting the negative impacts of the natural resources degrades the functional capability of 

the wetland (Rockström and Karlberg 2010, Rockström et al. 2017, Rosa et al. 2017). Information on water 

availability to crops guides farmers on irrigation times whereas seasonal forecasts aid in the determination of 

planting and harvest times for maximum yield (Rosa et al. 2017). Historical study on the trends of geophysical 

parameters such as soil moisture could act as a plant distribution indicator geared towards plant species selection 

based on their tolerance to environmental stress (Li et al. 2013). Such decisions could include a shift in the 

cropping system and adaptation of climate resilient crops based on the soil water availability (Verhoeven and 

Setter 2010, Nicol et al. 2015).  

Soil moisture is a crucial variable in hydrology and land-atmosphere interaction. It controls the meteorological 

and hydrological responses of the land surface. Soil moisture influences catchment drainage, groundwater 

recharge, and runoff. Remote sensed soil moisture products have vast spatial coverage and high temporal 

capability required to meet the demands of the agricultural sector (Lillesand et al. 2014). Soil moisture products 

previously in use include SMMR from 1978 to 1987 (C and X band), SSM/I launched in 1987 (Ku band), 

TRMM Microwave Imager in 1997 to 2001 (X band), AMSR E launched in 2002 to 2011 (C and X band), 

Windsat launched in 2003, Escat (L band), ASCAT (C band) onboard METEO A launched in 2006, SMOS 

launched in 2009 operating in the L band and SMAP launched in 2015 operating in L band (Das and Paul 

2015b).  

The Kilombero catchment and Tanzania by extension, lack precise knowledge on start and end of growing 

season. For a region that is dependent on subsistence rain-fed agriculture, precision on planting dates determines 
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a good or failed harvest. Several studies have noted increased intensity in variabilities of extreme rainfall events 

(especially droughts) coupled with variation in length of growing seasons. (Peltonen-Sainio et al. 2008, Julien 

and Sobrino 2009, Shrestha et al. 2012) reporting longer growing seasons while (Vizy et al. 2015) reported a 

reduction in length of growing season. Precipitation is the main driver of soil moisture. However, vegetation, 

evaporation, soil type, irradiation, topography mainly influence the water present in the soil (Dorigo et al. 2012) 

and thus soil moisture is preferred to precipitation in the study of water availability for vegetation (Chen et al. 

2016). However, non-existent in situ soil moisture monitoring network points to non-sustainability of rain-fed 

agriculture over the region hence famine and starvation. The lack of in situ soil moisture monitoring networks 

has made it impossible to validate the model derived soil moisture products, which could be analyzed to provide 

growing season information in conjunction with Normalized Difference Vegetation Index (NDVI). Since model 

soil moisture forecasts are normally available 3-6 months in advance (AghaKouchak 2014, Sheffield et al. 2014, 

Spennemann et al. 2017, Wilhite and Pulwarty 2018) it would be possible to determine the start of the season 

early enough if soil moisture values are available for validation. 

Development and application of statistical methods to global soil moisture are important as they are utilized as 

inputs or for validation purposes for various applications. Some applications of global soil moisture products 

include numerical weather predictions, runoff forecasting/hydrological modeling and forecasting, vegetation 

and crop growth monitoring, ecological modeling and forecasting, epidemic risk assessment (drought 

monitoring), meteorological modeling and forecasting and societal risk assessment (Ochsner et al. 2013, Wagner 

et al. 2013).  

Numerous studies have assessed and evaluated soil moisture products against in situ moisture measurements 

(An et al. 2016, Zhang, Zhang, et al. 2017). Low-frequency microwave region mainly used to obtain soil moisture 

from near surface layers. That is 1-10 GHz (Albergel, de Rosnay, Gruhier, et al. 2012). L band most suitable for 

observation of soil moisture as it has a high vegetation penetration (C band 0.5 -2 cm, L band 3-5 cm). 

Atmospheric effects and vegetation cover affect higher frequencies. Soil moisture distribution at large scale 

influenced by evaporation, soil type, irradiation, vegetation and topography and should be reflected in the soil 

moisture products. A challenge that remains in the use of large-scale satellite-derived soil moisture products is 

validation. This is especially so due to site-specific factors such as soil and vegetation that influences instrument 

performance, sampling networks for validation are limited in historic and current time (Dorigo et al. 2015). 

Moreover, in situ soil moisture is rare for the East African region as noted from the International Soil Moisture 

Network (Dorigo et al. 2011). In another analysis, (Albergel, de Rosnay, Gruhier, et al. 2012) assessed ASCAT, 

SMOS, ECMWF soil moisture-das-2 and in situ data for various parts of the world (Australia, France, US, West 

Africa, Spain, Italy, Germany) to test the ability of the global products to represent surface soil moisture. To 

avoid seasonal effects, monthly anomaly time series for soil moisture products were analyzed. It was reported 

that locally observed rainfall introduced discrepancies when compared to course resolution products particularly 
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when local storm events occurred in summer. Over Europe performance of SMOS dependent on RFI effects. 

ASCAT and SMOS signals were influenced by vegetation with reduced sensitivity to soil moisture over dense 

vegetation canopies. The assimilated ECMWF SMDAS2 product was more consistent with in situ data 

compared with ASCAT and SMOS.  

(Leroux et al. 2014) assessed the reliability of AMSR E VUA, ASCAT, SMOS, ECMWF soil moisture products 

against in situ data in four watersheds (Leroux et al. 2014). VUA and ASCAT grid products were first linearly 

interpolated on the SMOS grid. The linear correlation coefficient (R), standard error of estimate (SEE) between 

derived soil moisture and in situ measurements SEE, bias and root mean square error (RMSE) were computed 

for each data set with the ground measurements over each watershed at the corresponding overpass times. 

None of the four products had a significantly better correlation with in situ soil moisture. ECMWF had a lower 

SSE indicative of less scattered data, SMOS had a lower bias and RMSE while VUA bias was higher when the 

vegetation and soil temperature was low. This indicated that VUA has a high sensitivity to vegetation as 

compared to SMOS. AMSR E frequencies 6.9-10.7 GHz were reported to be more sensitive to vegetation and 

temperature than SMOS at 1.4 GHz. Moreover, the sensitivity was heightened by the effective temperature 

modeled at 36 GHz Temperature Brightness (TB). ASCAT soil moisture index was reported to be very noisy 

with rain events were observed in retrievals. SMOS retrievals were closest to the in situ measurements despite 

the in situ dynamics having a poor representation. The mean square error was least in the morning overpass as 

compared to the afternoon overpass.  

The studies compare global soil moisture products against in situ measurements. However, additional global 

datasets in combination with these products aid in understanding the causal factors of the soil moisture 

recorded. Moreover, the comparison of in situ soil moisture with satellite products is deemed problematic due 

to the difference in scales of the two datasets that is point data against areal averages extending several 

kilometers. Remote sensed soil moisture is dynamic due to highly varied and constantly changing atmosphere 

influences. On the other hand, in situ moisture is measured without taking account of atmospheric influences 

with measurement depths determined by the sensors in use (Wagner et al. 2007). These challenges of in situ 

moisture have driven researchers to analyze the performance of global products without the inclusion of the 

reference soil moisture. Differences in systems, retrieval algorithms, and mission designs are causal factors of 

varied data values in global products and therefore studies geared towards assessing global product uncertainties 

and the inconsistencies between datasets are performed. 

(Rötzer et al. 2015) analyzed ASCAT and SMOS satellite-based soil moisture products and ERA-Interim 

modeled soil moisture based on global spatial and temporal Koeppen Geiger climate classification (Rötzer et al. 

2015). They reported a high correlation for all products in areas with low vegetation, especially in arid regions. 

Around the equator, SMOS conveyed low soil moisture in tropical rainforest whereas ASCAT and ERA-Interim 

had moderate values. Backscatter recorded by ASCAT indicated less sensitivity to soil moisture in densely 
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vegetated tropical rain forests. ASCAT resulted in high fluctuations in time series spatial mean caused by the 

porosity data with high scattering and high variance indicating the large temporal changes in the soil moisture. 

High vegetation in tropical rainforest affected the ASCAT and SMOS retrieval of soil moisture. SMOS reported 

a weaker seasonal dependence on seasons than ASCAT. At L band, SMOS reported less sensitivity to vegetation 

effects than ASCAT at C band explaining less dependency of SMOS on seasons.  

Vegetation time series trend is preferred to direct numerical observations between ground and satellite 

observations because of differences in acquisition time, vertical resolution, spatial resolutions and inter-

observational periods (Owe et al. 2008). Assumptions made in vegetation seasonality analysis include correct 

representation of vegetation parameters by the sensor and vegetation signals change smoothly in time (Eklundh 

and Jönsson 2015). However, this is not the case as factors such as atmospheric absorption, cloud coverage, 

background color variations, viewing angles cause presence of noise in the data making the extraction of seasons 

difficult (Jonsson and Eklundh 2002). Application of cloud masks and atmospheric corrections reduce the noise 

however for a large number of images intended for time series assessment, the method is cumbersome. This 

resulted in the use of maximum value composites, which proved to be effective though some level of noise was 

still present in the data, calling for the development of smoothing algorithms. Universal start and end of seasons 

were not defined due to variations in climatic patterns, vegetation periods and varying number of seasons in 

different parts of the world (Eklundh and Jönsson 2015). Areas with big cycles of growth and decline are shown 

to have high amplitudes whereas low amplitudes are in areas where the change between highest and lowest 

NDVI values is small. In moist areas, amplitude is expected to be low due to weak seasonal variation as the area 

is green round the year (Jönsson and Eklundh 2004). Additionally, meteorological conditions affect the 

development of vegetation in particular presence of rainfall, which in turn support in assessment of drought 

(Rojas et al. 2011, Sheffield et al. 2014, Klisch and Atzberger 2016, Zhang, Chen, et al. 2017). Understanding the 

seasons of vegetation growth give a deeper insight into the interactions of vegetation and climate and 

subsequently give science-based support in decision making geared towards development and adaptation of 

coping mechanisms especially for rained agriculture-dependent areas.  

(Dorigo et al. 2012) analyzed the trends of a merged remote sensed soil moisture product (consisted of SMMR, 

TMI, AMSR-E, ERS1/2, ASCAT) from 1988-2010 against ERA-Interim and GLDAS_NOAH soil moisture, 

Global Precipitation Climate Project precipitation and Global Inventory Monitoring and Modeling Studies 

NDVI (Dorigo et al. 2012). Significant trends of the merged product and the modeled soil moisture product 

and precipitation product resulted. The trend assessment with NDVI seemed complex due to the influence of 

vegetation type and changes. The merged product, however, had uncertainties introduced by differences in 

temporal resolution and coverage, which could have contributed to its ability to capture the NDVI trends. In 

Tunisia, an empirical model for predicting AVHRR NDVI from root zone soil moisture was developed (Zribi 

et al. 2010) following a high correlation of soil moisture in the rainy season with vegetation dynamics. However, 
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the method was restricted for use in large-scale areas in semi-arid environments. (Chen et al. 2014) assessed the 

impact of soil moisture on vegetation over Australia reporting an NDVI lag period of one month behind soil 

moisture (Chen et al. 2014). Additionally, they reported enhancement of vegetation growth in dry regions and 

at the beginning stages of growth in wet regions. This emphasizes the importance of knowledge of the beginning 

of soil moisture increase. The research therefore seeks to identify the start of season (SOS) from NDVI and 

relate it to soil moisture measurements. This information is crucial to farmers as they are aware of the periods 

over which to plant to increase their yields since vegetation is highly sensitive to soil moisture at the beginning 

of the season (Chen et al. 2014). Moreover, the study hopes to offer a solution by addressing the uncertainties 

arising with respect to planting times due to the changing climatic conditions.  

The objectives of the study were 1) to evaluate global soil moisture products over the Kilombero catchment, 2) 

to assess the error structure of each dataset 3) to develop a merged soil moisture product for the Kilombero 

catchment, and 4) to assess the applicability of the merged soil moisture product in determining the start and 

end of planting season. The merged soil moisture products can be used as a component of hydrological 

modeling, runoff models and food and water security monitoring in this data-scarce region. Modeled soil 

moisture products and a satellite soil moisture product have been selected for the analysis. In situ soil moisture 

products over East Africa were not included in the evaluation, as they are not available. Besides, the method in 

the application, Triple Collocation (TC), requires a large set of data (Scipal et al. 2010) and it evaluates relative 

errors of products. Moreover, the FLDAS_NOAH, FLDAS_VIC, and ERA-Interim were selected as they had 

a long coverage period (2010 to 2016) and had the highest spatial resolution as compared to other model 

products (0.1°, 0.25°, and 0.25° respectively). Spatial and temporal variability was analyzed using the Empirical 

Orthogonal Functions of the three global soil moisture products i.e. the FLDAS_NOAH, FLDAS_VIC, and 

ERA-Interim.  

6.2 Global soil moisture products  

6.2.1 Soil moisture satellite sensors 

Passive microwave sensors measure radiation emitted from the surface of the earth as brightness temperatures. 

The components contributing to the magnitude recorded include the upwelling atmospheric emission, earth’s 

surface emission attenuated by atmosphere, atmospheric downwelling atmospheric emission reflected at surface 

and attenuated along the upward path by the atmosphere and cosmic background emission attenuated by 

atmosphere reflected at the surface and attenuate again along the upward path by the atmosphere (Wigneron et 

al. 2017). Passive sensors have a high revisit period e.g. Soil Moisture and Ocean Salinity (SMOS) and Soil 

Moisture Active Passive (SMAP) 2-3 days. Communications and broadcast systems cause Radio Frequency 

Interference (RFI) resulting in abnormally high brightness temperatures. RFI signals affect brightness 

temperatures at a higher intensity in the C band as compared to the X band (Oliva et al. 2012). Radio frequency 

interference has led to degraded measurements in some parts of Europe, South Asia, Middle East and China. 
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The RFI has reduced through sensitization in concerned countries to protect the 1400-1427 MHz SMOS 

operation frequency (Oliva et al. 2012). Radiometer measurements are most accurate in areas of low vegetation. 

However, lower frequencies have higher penetrative ability suitable for measurements in vegetated areas. The 

penetration ability of L band radiometers makes it an asset in the retrieval of soil moisture. Additionally, L band 

has a deeper sampling depth, approximately 0-3 cm as compared to C band 0-1 cm and are affected less by 

atmospheric effects (Wigneron et al. 2017). Unique values are assigned to areas with water, ice snow, excess 

surface roughness and steep topography. Algorithms in L band soil moisture retrieval include: 

1) 2-Parameter Retrieval Algorithm: SMOS soil moisture is based on this algorithm. Multi-angular dual 

polarized observations of brightness temperature are inverted using L Band Microwave Emission of 

the Biosphere (L-MEB) model to obtain soil moisture and optical depth at nadir. Incidence angles range 

from 0-55° with brightness temperatures for the ‘optimal location’ viewed from different angles. The 

value at the optimal location is used as a first approximation in the 2-parameter retrieval of soil moisture 

and optical depth at nadir. No estimates are required in the retrieval. 

2) Single Channel Algorithm (SCA): SMAP is based on this algorithm. TB is measured at one incidence 

angle, 40°, at one polarization. TB are corrected for vegetation and roughness and finally, a dielectric 

mixing model is used to retrieve soil moisture. 

3) Dual Channel Algorithm: This is an extension of the SCA where both polarizations, H, and V from 

SMAP are combined to retrieve soil moisture by minimizing the RMSE between simulated and 

observed Temperature Brightness (TB).  

4) Land Parameter Retrieval Model (LPRM): Microwave Polarization Difference Index (MDPI) is 

computed from the TB and the 𝜏 − 𝜔 model used to retrieve soil moisture. In densely vegetated areas, 

LPRM models do not converge and thus no data is recorded. 

5) Multi-Temporal Dual Channel Algorithm: Combined consecutive TB observations taken in the early 

morning when the temporal changes in Vegetation Water Content (VWC) are constant are used in 

retrieval of soil moisture. The retrieved albedo is constant due to the stability of the surface temperature 

in early hours of the morning.  
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Table 6.1: A summary of the data used  

Soil Moisture 

products 

Spatial 

resolution 

Temporal 

resolution 

Format Period 

assessed 

Data portal 

FLDAS_NOAH 0.1° Daily .NC 2010-2016 https://ldas.gsfc.nasa.gov/FLDAS/FLDA

Sdownloadphp. 

FLDAS_VIC 0.25° Daily .NC 2010-2016 https://ldas.gsfc.nasa.gov/FLDAS/FLDA

Sdownloadphp. 

ERA-Interim 0.125° Daily .NC 2010-2016 http://apps.ECMWF.int/datasets/data/Int

erim-full-daily/levtype=sfc/ 

SMOS 30-50 km Daily  .NC 14/1/2011

-2016 

https://SMOS-

diss.eo.esa.int/socat/SMOS_Open/search 

Vegetation 

product 

Spatial 

resolution 

Temporal 

resolution 

Format Period 

assessed 

Data portal 

MODIS 250 m 16-day .HDF 2010-2016 https://lpdaac.usgs.gov/dataset_discovery

/modis/modis_products_table/mod13q 

Rainfall  

product 

Spatial 

resolution 

Temporal 

resolution 

Format Period 

assessed 

Data portal 

TRMM_3B42 0.25° Daily .NC 2010-2016 https://disc2.gesdisc.eosdis.nasa.gov/data/

TRMM_L3/TRMM_3B42_Daily.7/ 

 

6.2.1.1 SMOS  

It was launched in 2009 has a spatial resolution of 30-50 km. Ascending mode in the early morning minimizes 

perturbation due to air, vegetation and soil temperature in the L band (Kerr et al. 2001). Moreover, L band has 

a high sensitivity to changes in soil moisture and salinity in the ocean and has a higher penetration depth up to 

5 cm which performs well in dense vegetation (Kerr et al. 2001). On the other hand, high-frequency products 

have a penetration depth of 1-2 cm preventing penetration into the soil layer in vegetated environments. SMOS 

has multi-angular dual polarization capabilities hence any points on the surface are viewed frequently at different 

angles and polarizations. The angular information separates the different contributions to the signal. The angular 

signature retrieves soil moisture and vegetation optical depth (vegetation water content) which expresses the 

quantity of signal that is absorbed by the vegetation layer through minimization of a cost function between L 

band microwave emission of biosphere model (L-MEB) and the corresponding SMOS measured temperature 

brightness to estimate soil moisture and VOD. L-MEB is associated with certain land cover classes thus making 

it possible to quantify the contribution of these classes (Kerr et al. 2012). The retrieval algorithm consists of 

https://ldas.gsfc.nasa.gov/FLDAS/FLDASdownloadphp
https://ldas.gsfc.nasa.gov/FLDAS/FLDASdownloadphp
https://ldas.gsfc.nasa.gov/FLDAS/FLDASdownloadphp
https://ldas.gsfc.nasa.gov/FLDAS/FLDASdownloadphp
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://smos-diss.eo.esa.int/socat/SMOS_Open/search
https://smos-diss.eo.esa.int/socat/SMOS_Open/search
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B42_Daily.7/
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B42_Daily.7/
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static (soil texture from FAO, ECOCLIMAP land use maps, topography index) and dynamic (rain, temperature, 

snow from ECMWF) datasets. Radio Frequency Interferences, vegetation opacity and surface roughness have 

regular updates for future inversions.  

HQN model is used for roughness parametrization. For low vegetation, hr is 0.1, for forests, it is set as 0.3, Q 

is 0 whereas Nv=0 and Nh=2. Dobson model was used in modeling dielectric constant before L2 v5.5. Currently, 

Mironov model is in use. Mironov improves retrievals over dry warm surfaces reducing extreme values in soil 

moisture. ECMWF determines the vegetation and soil temperature. 𝜏 − 𝜔 model used to model vegetation. 

Albedo for low vegetation set to 1 while that for forests is set to 0.06-0.08. The vegetation structure is assumed 

to be isotropic i.e. tth=ttv=1. Optical depth at nadir and soil moisture are byproducts of the 2 parameter retrievals 

by inversion of the LMEB model. Optical depth at nadir is modeled by a linear function of LAI.  

The spatial extent of SMOS (on average, 40x40 km²) poses a challenge due to the introduction of significant 

spatial variability in soil moisture. Moreover, due to the spherical nature of the earth, the view angle changes 

therefore different areas covered at different angles (Kerr et al. 2012). Additionally, SMOS surface soil moisture 

retrieval maps are available though there are gaps associated with RFI, steep topography, dense vegetation, snow 

cover, frozen soils. Data products available are Level 1(TB) and level 2(ocean salinity over oceans or soil 

moisture/vegetation opacity over land) and level 3 (1d, 3d, 10d or particular month for the globe either morning 

or afternoon passes for soil moisture and vegetation opacity). To improve spatial resolution, SMOS data can be 

combined with other data such as MODIS data.  

Albedo describes the fraction of solar energy reflected from the earth back into space. It is also optical brightness 

scaled from 0 to 1. The ratio of irradiance reflected to irradiance received by a surface. E.g. Ice albedo 0.5 to 

0.7 means 50 to 70%of the incoming radiation is reflected. While for ocean 0.060 means only 6% of incoming 

solar radiation is reflected and the rest is absorbed.  

Reflectivity describes the light reflected from the surface in relation to light incident upon it. The fraction of 

radiant energy reflected from a surface. 

Emissivity is the ratio of energy radiated from a surface in relation to that radiated from a black body at the 

same temperature and wavelength under the same viewing angles.  

The 𝜏 − 𝜔 model computes emission from a two-layer soil water medium in H and V polarization using three 

terms; upwelling emission by vegetation, downward emission from the vegetation reflected by soil and 

attenuated by vegetation canopy and emission by soil attenuated by canopy (Wigneron et al. 2017). The terms 

account for influence of vegetation and soil roughness on angular measurements and polarization mixing. The 

temperature brightness is given by:  

𝑇𝐵 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑏𝑦 𝑠𝑜𝑖𝑙 +   𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑏𝑦 𝑣𝑒𝑔  +  𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑣𝑒𝑔 𝑡𝑜 𝑠𝑜𝑖𝑙 𝑡𝑜 𝑣𝑒𝑔 
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𝑇𝐵 = 𝑇𝑠𝑜𝑖𝑙(1 − 𝑅𝑠𝑜𝑖𝑙,𝑝)𝑉𝐴𝑝 + (1 − 𝜔𝑝)𝑇𝑣𝑒𝑔(1 − 𝑉𝐴𝑝) + (1 − 𝜔𝑝)𝑇𝑣𝑒𝑔(1 − 𝑉𝐴𝑝)𝑅𝑠𝑜𝑖𝑙,𝑝
𝑉𝐴𝑝 

𝑉𝐴𝑝 = exp (
−𝜏𝑝

cos 𝜃⁄ ) 

𝑇𝑠𝑜𝑖𝑙  𝑖𝑠 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑒𝑚𝑝 𝑜𝑓 𝑠𝑜𝑖𝑙, 𝑇𝑣𝑒𝑔 𝑖𝑠 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑒𝑚𝑝 𝑜𝑓 𝑣𝑒𝑔, 𝑅𝑠𝑜𝑖𝑙,𝑝 𝑖𝑠 𝑠𝑜𝑖𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦,  

𝜏𝑝 𝑖𝑠 𝑣𝑒𝑔 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝜔𝑝 𝑖𝑠 𝑎𝑙𝑏𝑒𝑑𝑜 𝑜𝑓 𝑣𝑒𝑔 𝑐𝑎𝑛𝑜𝑝𝑦, 𝑉𝐴𝑝 𝑖𝑠 𝑣𝑒𝑔 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  

Roughness modeling  

The HQN model is used to model roughness.  

𝑅𝑠𝑜𝑖𝑙,𝑝 = [(1 − 𝑄)𝑅𝑝 + 𝑄𝑅𝑞]𝑒𝑥𝑝−𝐻𝑝 cos𝑁𝑝 𝜃 

𝑝 = 𝐻 𝑤ℎ𝑖𝑙𝑒 𝑞 = 𝑉 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛  , 𝑅𝑝& 𝑅𝑞 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑠𝑚𝑜𝑜𝑡ℎ 𝑠𝑜𝑖𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 

 𝐻𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑚𝑠ℎ 𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑄 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑚𝑖𝑥𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,  

 𝑁𝑝 𝑎𝑙𝑙𝑜𝑤𝑠 𝑓𝑜𝑟 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝑜𝑛 𝜃 

𝑄 = 0,𝑁𝑝 = 0 𝑎𝑛𝑑 𝑁𝑝 = 2  ℎ𝑒𝑛𝑐𝑒  𝑅𝑠𝑜𝑖𝑙,𝑝 = 𝑅𝑝𝑒𝑥𝑝−𝐻𝑝 cos𝑁𝑝 𝜃 

Roughness intensity increases with increasing roughness, Q, the difference between emissivity in horizontal and 

vertical polarization decreases as Q increases whereas Q shows an increase with increasing frequency.  

Vegetation modeling  

The vegetation optical thickness (height of vegetation canopy), is a function of optical thickness at nadir, 

incidence angle, and polarization (CBSA et al. 2014).  

𝜏𝑝 = 𝜏𝑁𝐴𝐷(sin2 𝜃 𝑡𝑡𝑝 + cos2 𝜃)  𝑝 = 𝐻, 𝑉 

A value of tt>1 results to increasing 𝜏𝑝 as a function of 𝜃. In cases where 𝜏𝑝 is independent of polarization and 

incidence angle, tt=1. The parameter tt accounts for effect of vegetation anisotropy on optical depth with 

respect to incidence angle, polarization. A good relationship was found between height of stems and tt v.  

*property of being directionally dependent, which implies different properties in different directions 

 

6.2.2 Modeled products 

Modeled products are preferred due to the challenges that come with remotely sensed products such as 

algorithm changes when using multiple satellites and hence multiple sensors and algorithms (Liu et al. 2017). 

Additionally, short temporal coverages and gaps due to flight paths of the satellites prove acquisition of a 

continuous dataset for uninterrupted monitoring a task.  
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A Land surface model for food security monitoring should have a rainfall product, a long history of data and 

both drought and hydrological communities should utilize the datasets to estimate land surface states. GLDAS 

is a global terrestrial modeling system that produces optimal fields of land surface states by incorporating satellite 

and ground-based observations (Rodell et al. 2004). It drives NOAH, Mosaic, Community Model and Variable 

Infiltration Capacity (VIC). However, GLDAS utilizes a global rainfall dataset not optimized for data scarce 

food insecure regions (McNally et al. 2017) and hence the preference in utilizing the FLDAS products. 

FEWSNET was created in 1985 by USAID as a provider of early warning and analysis of food insecurity issues. 

It acts as a support system as it provides data to help governments and agencies plan and respond to 

humanitarian crises. FLDAS is a customized LIS by NASA as a decision support tool in the functions of 

FEWSNET by producing models and estimates of hydroclimatic data over food insecure areas of Africa 

(McNally et al. 2017). FLDAS relies on the FEWSNET rainfall and is thus customized for the needs of data 

scarce food insecure regions in Africa. FLDAS constitutes of meteorological input, a land surface model input, 

and a post-processing evaluation component. NOAH and VIC Land Surface Models drive FLDAS.  

FLDAS_NOAH is a 4-soil layer water and energy balance Land Surface Model with a spatial resolution of 0.1°. 

It available from 1982 to present, uses CHIRPS and MERRA2 and 1 KM NCEP modified IGBP land cover 

map from MODIS. NOAH soil moisture is available at daily, 5-day, 10-day, monthly temporal resolution. 

Evaporation in NOAH land surface models includes the weighted sum of canopy intercepted evaporation, 

transpiration from vegetation canopies and evaporation from bare soils based on the respective land surface 

coverage fractions (McNally et al. 2017).  

The assumption in the calculation of potential evapotranspiration is a saturated ground surface with no canopy 

resistance. Canopy intercepted evapotranspiration scales PET by intercepted canopy water content and 

maximum canopy capacity. Transpiration scales PET with solar radiation, vapor pressure deficit, air temperature 

and soil moisture. Bare soil evaporation scales PET by a factor of current soil moisture availability. The surface 

runoff is computed with a two-layer conceptual approach from the Simple Water Balance Model. The upper 

layer produces surface runoff from excess precipitation when there is no soil moisture deficit. Subsurface runoff 

is produced as gravitational drainage from the bottom soil layer. Other parameters include monthly greenness 

fraction and albedo, soil texture datasets, vegetation and soil parameters.  

In FLDAS_VIC, FLDAS uses VIC in water and energy balance to better represent surface fluxes (sensible heat, 

latent heat, ground heat, outgoing longwave radiation) where evapotranspiration is a greater proportion of 

rainfall than runoff. Run at a sub-daily time step, it closes the energy balance by iteratively adjusting the surface 

temperature and surface energy fluxes to balance incoming radiation. It has a spatial resolution of 0.25°. It is 

available from 2001 to present, uses RFE and GDAS, 1 KM UMD land cover classification from AVHRR. RFE 
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is from NOAA CPC derived from infrared and microwave observations blended with WMO GTS data, 

available from 2000 at 0.1° with 1-day latency (McNally et al. 2017).  

Evaporation in VIC land surface models includes the weighted sum of canopy intercepted evaporation, 

transpiration from vegetation canopies and evaporation from bare soils based on the respective land surface 

coverage fractions. Canopy intercepted evapotranspiration is calculated by scaling Reference evapotranspiration 

(ReET) with canopy architectural resistance for humidity and aerodynamic resistance for heat and water. Canopy 

transpiration is calculated by scaling ReET with canopy resistance. Bare soil evaporation is calculated by scaling 

ReET by the current soil moisture conditions, wilting point soil moisture, and field capacity. Subtracting runoff 

and infiltration capacity at 0-10cm soil layer determines the surface runoff. Other parameters include soil texture 

and bulk density, soil characteristic curve parameters, monthly LAI and UMD land cover classification.  

ERA-Interim is a reanalysis product describes atmosphere, land surface and/or ocean conditions using forecast 

models and assimilation systems. The models extrapolate archived and current observations to generate 

estimates of the atmosphere or land surface parameters such as air temperature soil moisture (Dee et al. 2011). 

ERA-Interim is a global atmospheric reanalysis product from 1979. ERA-Interim is produced through 

sequential assimilation in 6-hour cycles (Dorigo et al. 2012). Estimation of the evolving state of the atmosphere 

and its underlying surface in each cycle encompasses a combination of available observations and prior 

information from a forecast model. ERA-Interim uses the ECMWFs Integrated Forecast System to constrain 

the state evolution within each analysis window and update bias correction estimate parameters. IFS comprise 

of three coupled components for atmosphere, land surface and ocean waves. The ERA-Interim forecast is 

provided by TESSEL land surface scheme. It has a resolution of 79km (Berrisford et al. 2011). Optimal 

assimilation technique produces estimates of temperature and relative humidity by combining 2m relative 

humidity and temperature over land with estimates from the recent analysis (Douville et al. 2000, Decker et al. 

2012). The model produces gridded products of volumetric soil moisture content at 0.75°.  

6.3 Datasets  

NASA Land Data Assimilation System consists of land surface models forced with observations. The 

FLDAS_NOAH and VIC daily dataset covering a duration of 2010-2016 was downloaded from the NASA 

Land Data Assimilation System website. The resolution of NOAH is 0.1° where the resolution of VIC is 0.25°. 

The NOAH and VIC netCDF files were extracted in MATLAB software to acquire daily means of soil moisture 

within the catchment. The NOAH 0.1° data was resampled to 0.25° to be spatially consistent with the VIC data.  

ERA-Interim is a reanalysis data set based on the ECMWF Integrated Forecast System. The downloaded dataset 

had a spatial resolution of 0.75°, at a depth of 0-7cm (Albergel, de Rosnay, Balsamo, et al. 2012). The dataset 

was selected as it has a high global spatial consistency (Scipal et al. 2008, Dorigo et al. 2010). The daily readings 



Kilombero catchment soil moisture assessment 

130 

 

downloaded were at 06:00 UTC. The data assessed covered the period January 2010 to December 2016. The 

data were resampled to a resolution of 0.25°. 

SMOS reprocessed level 2 soil moisture version 5.51 (SM_REPR_MIR_SMUDP2) Microwave Imaging 

Radiometer (MIR) NetCDF dataset is distributed by ESA. The ascending mode was considered as it is least 

affected by surface heating. Night time are preferred because of equilibrium conditions of surface soil, canopy 

and near-surface air (Owe et al. 2008). SMOS was selected for the study as it is one of the sensors dedicated for 

remotely sensed soil moisture retrievals operating at L band and has a relatively long acquisition period (from 

2010) as compared to SMAP which was launched in 2015. At low frequencies, L band is sensitive to water 

content of soils and can penetrate through vegetation, which is an important factor in selection of the dataset 

given that the Kilombero catchment comprises of varying land covers (Entekhabi et al. 2010, Kerr et al. 2012).  

The modeled soil moisture products (FLDAS_NOAH, FLDAS_VIC, and ERA-Interim) are produced daily. 

The satellite-derived moisture from SMOS however, suffers from data gaps explained by the flight swaths of 

the satellite and hence weekly composites were generated from the SMOS dataset. Inevitably, this translated to 

computing the weekly averages for the modeled datasets in preparation for the data merging (Section 6.4.2) 

16-day composites MODIS NDVI on Terra satellite was obtained on the LP DAAC from the year 2010 to 

2016. 16-day MODIS NDVI composites were adopted for this study because they had the least variation in 

phenometric dates when compared to the 8 day composite MODIS in a study to assesses the influence of 

different phenometric extraction methods (Wessels et al. 2009). There are therefore 23 images available per year. 

These were preferred to reduce the atmospheric effects and clouds. Dummy data was generated for 2009 and 

2017 as the phenology is not calculated in the first and last year of assessment as seasonality is only possible for 

n-1 center most seasons (Eklundh and Jönsson 2017). The data are in the Sinusoidal projection. The study area 

is covered by tile h21v09. On downloading the data sets, they were batch projected with the Modis Reprojection 

Tool to geographic coordinates. 

TRMM is a multi-satellite precipitation analysis product. An assembled precipitation estimate is generated from 

measurements of passive microwave measurements on multiple satellites. Infrared measurements are used to 

estimate precipitation. These are then calibrated against the assembled precipitation. Infrared estimates fill the 

gaps of the assembled precipitation. Precipitation from ground-based radar, rain gauge, and disdrometer are 

used in the calibration of the multi-satellite product. TRMMs, spatial (0.25°) and temporal (3h) resolutions favor 

its use over other precipitation products (Koutsouris et al. 2016). The daily timescale was selected for the analysis. 

Daily precipitation is generated from the 3-h TRMM Multi-Satellite Precipitation Analysis TMPA (3B42). NASA 

Goddard Earth Sciences Data and Information Services Center (GES DISC) produce the data. Datasets used 

covered the period 2010 to 2016.  
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6.4 Methodology  

The flow diagram (Figure 6.1) describing the research process is shown below;  

 

Figure 6.1: The data flow diagram in soil moisture assessment in the Kilombero catchment 

 

6.4.1 Spatial-temporal averaging 

The independent soil moisture products were resampled to a common grid of 0.25° to make the data 

comparable. The areal averages 𝑠𝑚̅̅ ̅̅ 𝑖 , for each of the soil moisture products were computed as follows: 

𝑠𝑚̅̅ ̅̅ 𝑖 =
1

𝑛
∑𝑠𝑚𝑖

𝑛

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒 𝑠𝑚𝑖 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 𝑝𝑒𝑟 𝑑𝑎𝑦,  

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑠𝑖𝑡𝑒 

 

6.4.2 Least square data merging  

Least squares are an estimation theory that has been used in numerous studies and serves as a basis for modern 

data assimilation techniques. Following from (Yilmaz et al. 2012), given three independent realizations such as 

soil moisture, 𝑆𝑥 , 𝑆𝑦, 𝑎𝑛𝑑 𝑆𝑧 of a variable along with their respective zero – mean errors 𝜖𝑥 , 𝜖𝑦, 𝑎𝑛𝑑 𝜖𝑧 and 

error variances 𝜎𝑥
2, 𝜎𝑦

2, 𝑎𝑛𝑑 𝜎𝑧
2. These realizations are represented as  

𝑆𝑥 =  𝛼𝑆𝑡 + 𝜖𝑥 

𝑆𝑦 =  𝛼𝑆𝑡 + 𝜖𝑦 
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𝑆𝑧 =  𝛼𝑆𝑡 + 𝜖𝑧 

Where 𝑆𝑡 is the true value of the variable and 𝛼 is a measure of the relation between these realizations and the 

assumed truth. The desired merged estimate 𝑆𝑚 is obtained as 

𝑆𝑚 = 𝑤𝑥𝑆𝑥 + 𝑤𝑦𝑆𝑦 + 𝑤𝑧𝑆𝑧 

Where 𝑤𝑥, 𝑤𝑦and 𝑤𝑧 are the relative weights of 𝑆𝑥, 𝑆𝑦, 𝑎𝑛𝑑 𝑆𝑧, respectively. For the resulting merged product 

to be unbiased the sum of weights of all the products must be constrained to one (𝑤𝑥 + 𝑤𝑦 + 𝑤𝑧 = 1). The 

ultimate goal is to derive these weights as a function of the error variance of the three realizations and to find 

the error estimate of the merged product. The error estimate of the merged product is obtained as 𝜖𝑚 = 𝑆𝑚 −

 𝛼𝑆𝑡 and the solution obtained from minimization of a selected cost function (𝐽) in a mean squares sense. The 

cost function, 𝐽, is selected to be the error variance (𝜎𝑚
2 ) of the merged estimate in the form (Yilmaz et al. 2012). 

𝐽 = 𝜎𝑚
2 = 𝑤𝑥

2𝜎𝑥
2 + 𝑤𝑦

2𝜎𝑦
2 + 𝑤𝑧

2𝜎𝑧
2 

𝐽 = 𝜎𝑚
2 = 𝑤𝑥

2𝜎𝑥
2 + (1 − 𝑤𝑥 − 𝑤𝑧)

2𝜎𝑦
2 + 𝑤𝑧

2𝜎𝑧
2 

Setting 𝜕𝐽 𝜕𝑤𝑧⁄ = 0 and 𝜕𝐽 𝜕𝑤𝑥⁄ = 0 in the above equation and solving for 𝑤𝑥,𝑤𝑦 and 𝑤𝑧, we obtain 

𝑤𝑥 =
𝜎𝑦

2𝜎𝑧
2

𝜎𝑥
2𝜎𝑦

2 + 𝜎𝑥
2𝜎𝑧

2 + 𝜎𝑦
2𝜎𝑧

2
 

𝑤𝑦 =
𝜎𝑥

2𝜎𝑧
2

𝜎𝑥
2𝜎𝑦

2 + 𝜎𝑥
2𝜎𝑧

2 + 𝜎𝑦
2𝜎𝑧

2
 

𝑤𝑧 =
𝜎𝑥

2𝜎𝑦
2

𝜎𝑥
2𝜎𝑦

2 + 𝜎𝑥
2𝜎𝑧

2 + 𝜎𝑦
2𝜎𝑧

2
 

The error variances of the merged product (𝜎𝑥
2, 𝜎𝑦

2, 𝜎𝑧
2) used in the computation of the weights was derived 

through triple collocation.  

 

6.4.3 Triple collocation analysis (tca) 

Triple collocation assesses errors in global geophysical products for example soil moisture. TC assumes that the 

unknown real soil moisture is linearly related to the estimated soil moisture through additive and multiplicative 

bias in three data sets. The advantage of TC is that it does not require reference data and it allows estimation of 

error variation in each of the three products.  

The three data products (e.g. soil moisture) have independent error structures and no systematic biases a1, a2, 

a3 with N observations in the same geophysical process, and taking into account spatial and temporal 

collocation. Two approaches of estimating the error variances in the soil moisture products include the mean 
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anomaly approach where the bias is incorporated into the mean and the TC is applied to the anomalies and the 

calibration constants approach where constants capturing the bias are introduced into the linear relationship 

between the three datasets and the hypothetical truth.  

The mean anomaly approach decomposes the products into mean and anomaly components (Leroux et al. 2011).  

𝑎1 = 𝑎 + 𝑟𝑒𝑠1 

𝑎2 = 𝑎 + 𝑟𝑒𝑠2 

𝑎3 = 𝑎 + 𝑟𝑒𝑠3 

𝑔𝑖𝑣𝑒𝑛 𝑟𝑒𝑠1, 𝑟𝑒𝑠2, 𝑟𝑒𝑠3𝑎𝑟𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠 𝑜𝑟 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 𝑡𝑟𝑢𝑡ℎ,  

𝑎 ℎ𝑎𝑠 𝑎 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝜎𝑡
2 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒  

The difference in the data product value in relation to the residual errors is given by  

𝑎1 − 𝑎2  = 𝑟𝑒𝑠1 − 𝑟𝑒𝑠2 

𝑎2 − 𝑎3 = 𝑟𝑒𝑠2 − 𝑟𝑒𝑠3 

𝑎3 − 𝑎1 = 𝑟𝑒𝑠3 − 𝑟𝑒𝑠1 

(𝑎1 − 𝑎2)(𝑎2 − 𝑎3)  = (𝑟𝑒𝑠1 − 𝑟𝑒𝑠2)(𝑟𝑒𝑠2 − 𝑟𝑒𝑠3) = 𝑟𝑒𝑠1𝑟𝑒𝑠2 − 𝑟𝑒𝑠1𝑟𝑒𝑠3 − 𝑟𝑒𝑠2𝑟𝑒𝑠2 − 𝑟𝑒𝑠2𝑟𝑒𝑠3 

(𝑎1 − 𝑎2)(𝑎3 − 𝑎1)  = (𝑟𝑒𝑠1 − 𝑟𝑒𝑠2)(𝑟𝑒𝑠3 − 𝑟𝑒𝑠1) = 𝑟𝑒𝑠1𝑟𝑒𝑠3 − 𝑟𝑒𝑠1𝑟𝑒𝑠1 − 𝑟𝑒𝑠2𝑟𝑒𝑠3 − 𝑟𝑒𝑠2𝑟𝑒𝑠1 

(𝑎2 − 𝑎3)(𝑎3 − 𝑎1)  = (𝑟𝑒𝑠2 − 𝑟𝑒𝑠3)(𝑟𝑒𝑠3 − 𝑟𝑒𝑠1) = 𝑟𝑒𝑠2𝑟𝑒𝑠3 − 𝑟𝑒𝑠2𝑟𝑒𝑠1 − 𝑟𝑒𝑠3𝑟𝑒𝑠3 − 𝑟𝑒𝑠3𝑟𝑒𝑠1 

Assuming the residuals are uncorrelated and mutually independent of the three datasets, the covariance terms 

become 0. The error variance is given by  

𝜎2
2 = 〈𝑟𝑒𝑠2𝑟𝑒𝑠2〉 = (𝑎1 − 𝑎2)(𝑎2 − 𝑎3) 

𝜎1
2 = 〈𝑟𝑒𝑠1𝑟𝑒𝑠1〉 = (𝑎1 − 𝑎2)(𝑎3 − 𝑎1) 

𝜎3
2 = 〈𝑟𝑒𝑠3𝑟𝑒𝑠3〉 = (𝑎2 − 𝑎3)(𝑎3 − 𝑎1) 

𝜎1
2, 𝜎2

2, 𝜎3
2 𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠  

In the calibration constant approach,  

𝑎1 =  𝛼1𝑎𝑡 + 𝜖1, 

𝑎2 = 𝛼2𝑎𝑡 + 𝜖2, 

𝑎3 = 𝛼3𝑎𝑡 + 𝜖3, 
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Where 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 are soil moisture anomalies related to the true anomaly 𝑎𝑡  through  𝛼1, 𝛼2 and 𝛼3. In 

general, the products are expected to have different relationships with the truth i.e., 𝛼1 ≠ 𝛼2 ≠ 𝛼3 thus to 

ensure each data set has a consistent relationship with the truth, they are rescaled as below (Yilmaz et al. 2012); 

𝑎1
∗ = 𝛼𝑎𝑡 + 𝜖1

∗ 

𝑎2
∗ = 𝛼𝑎𝑡 + 𝜖2

∗ 

𝑎3
∗ = 𝛼𝑎𝑡 + 𝜖3

∗ 

Where 𝑎1
∗ ,𝑎2

∗ and 𝑎3
∗  are the rescaled realizations and 𝜖1

∗,𝜖2
∗ and 𝜖3

∗ are the relative errors of the realizations with 

variances 𝜎1
∗2, 𝜎2

∗2, 𝑎𝑛𝑑 𝜎3
∗2.  

By arbitrarily setting any of the data sets as reference (e.g., by setting 𝛼 =  𝛼1) and assuming the error covariance 

between products are zero, and representativeness errors described in (Stoffelen 1998) are zero, these factors 

can be found as (Yilmaze et al 2012, Leroux 2011); 

𝑚1 = 1 

𝑚2 = 
𝑎1

∗𝑎3
∗̅̅ ̅̅ ̅̅

𝑎2
∗𝑎3

∗̅̅ ̅̅ ̅̅
=  

𝛼1

𝛼2
 

𝑚3 = 
𝑎1

∗𝑎2
∗̅̅ ̅̅ ̅̅

𝑎3
∗𝑎2

∗̅̅ ̅̅ ̅̅
=  

𝛼1

𝛼3
 

The rescaled values are related to the original estimates as 𝑎1
∗ = 𝑚1𝑎1,  𝑎2

∗ = 𝑚2𝑎2, 𝑎𝑛𝑑 𝑎3
∗ = 𝑚3𝑎3 where 

𝑚1,𝑚2, 𝑎𝑛𝑑 𝑚1 are the scaling factors. Where overbar indicate averaging in time. Assuming the errors in the 

products are independent from each other and from the truth, and assuming a mutual linear relationship 

between these estimates and the true soil moisture, the final error variances of the rescaled realization are found 

as (Leroux et al. 2011); 

𝜎1
∗2 = (𝑎1

∗ − 𝑎2
∗)(𝑎1

∗ − 𝑎3
∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝜎2
∗2 = (𝑎𝑆2

∗ − 𝑎1
∗)(𝑎2

∗ − 𝑎3
∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝜎3
∗2 = (𝑎3

∗ − 𝑎1
∗)(𝑎3

∗ − 𝑎2
∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

The error variances are used to compute the weights required for least squares data merging. Different datasets 

result in different error variances. TC provides relative accuracies describing how a product compares to another 

product. Absolute values of error variances are acquired in cases where a reference dataset is available. 
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6.4.4 Principal component analysis / empirical orthogonal functions  

PCA was used to analyze soil moisture spatial-temporal variability in the Kilombero catchment. EOF/PCA 

reduces the dimensionality of data to new variables that are linear combinations of the original ones (Lorenz 

1956, Preisendorfer et al. 1988, Jolliffe 2002). The new data is representative of the maximum variability 

contained in the original data (Björnsson and Venegas 1997, Wilks 2006). Spatial patterns of variability, time 

variation, and importance of the variation patterns is an output of PCA.  

Given a gridded dataset composed of a space-time field 𝑋 (𝑡, 𝑠) with X being soil moisture at time t in spatial 

position s. The value of soil moisture at time 𝑡𝑖 at location 𝑠𝑗 is denoted as 𝑥𝑖𝑗 for i=1,…, n and j=1,…p. The 

observed data is stored in a matrix X. 

𝑋 = (

𝑥11 𝑥12

𝑥21 𝑥22

… 𝑥1𝑝

… 𝑥2𝑝

⋮ ⋮
𝑥𝑛1 𝑥𝑛2

⋮ ⋮
… 𝑥𝑛𝑝

) 

𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,… . 𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

There are n maps each being p points long. Each map is arranged into a row such that the size of matrix X is n 

by p. each of the p columns is a time series for a given location. EOF analysis is performed with X as the data 

matrix.  

The time average of soil moisture at the ith spatial grid point is given by; 

�̅�𝑖 =
1

𝑛
∑ 𝑥𝑘𝑖

𝑛

𝑘=1

 

The mean is removed from each of the p time series in matrix X.  

The covariance matrix of X is calculated as  

𝑅 = 𝑋𝑡𝑋 

The Eigenvalues and vectors are then computed  

𝑅𝐶 = 𝐶Λ 

𝑤ℎ𝑒𝑟𝑒 𝛬 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝜆𝑖, 𝑜𝑓 𝑅,  

 𝐶 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑐, 𝑜𝑓 𝑅  

Each Eigenvalue 𝜆𝑖 has a corresponding Eigen vector 𝑐𝑖. The Eigen vectors are the maps / EOFs. The Eigen 

values on the other hand give a measure of fraction of total variance in R explained by the mode.  
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The Eigenvector matrix C is such that 𝐶𝑡𝐶 = 𝐶𝐶𝑡 = 𝐼,𝑤𝑖𝑡ℎ 𝐼 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. In other words, 

Eigen vectors are orthogonal to each other indicating that they are uncorrelated to each other.  

The time variability of the field (e.g. soil moisture) is calculated by  

𝑎1⃗⃗⃗⃗ = 𝑋𝑐1⃗⃗  ⃗ 

The n components of vector 𝑎1⃗⃗⃗⃗  are the projections of the maps in X on EOF1 and the vector is a time series 

for evolution of EOF1. For every 𝐸𝑂𝐹𝑗 there is a corresponding𝑎𝑗⃗⃗  ⃗. 𝑎𝑗⃗⃗  ⃗ are referred to as the principal 

components.  

In terms of PCA/EOF, the data matrix is given as  

𝑋 = ∑𝑎𝑗⃗⃗  ⃗(𝐸𝑂𝐹𝑗)

𝑝

𝑗=1

 

The first N Eigenvectors capture the dynamic behavior of the data whereas the other Eigenvectors with smaller 

values are due to random noise (Björnsson and Venegas 1997, Hannachi et al. 2007).  

In matrix form, PCA decomposes soil moisture matrix X into  

𝑋 = 𝐵𝑇𝑄 

Where 𝐵𝑇(standardized by diving by its standard deviation) is the temporal variability, 𝑄 (scaled by multiplying 

by standard deviation of 𝐵) is the spatial variability in 𝑚3𝑚−3, and 𝑇 denotes matrix transposition.  

 

6.4.5 Phenology extraction  

Seasonality describes annually occurring seasonal vegetation patterns. Fitted functions are used in extraction of 

seasonality parameters as satellite-derived observations have noise that introduces uncertainties and subsequent 

instability of measurements. SOS (EOS) is the day of year when the left (right) part of the fitted curve reaches 

a specified fraction of the amplitude. LOS is time from start to end of season. 

Phenological parameters SOS, EOS, and LOS were extracted to assess their correlation with soil moisture and 

hence the potential application of soil moisture in determining the SOS in food production. Definitions are 

derived from TIMESAT seasonal amplitude (region between minimum and maximum value of each of the 

individual seasons) (Figure 6.2).  
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Figure 6.2: TIMESAT derived time series of the NDVI of a pixel. Raw NDVI data is shown against smoothed 

NDVI. Seasonality parameters include a; the start of season (SOS), b; end of season (EOS), c; length of season 

(LOS) and d; the amplitude and are determined from the Savitzky-Golay fitted function.  

TIMESAT was used to calculate phenology metrics from the MODIS NDVI implemented in TIMESAT’s 

graphical user interface in Matlab. The steps involved include computing the trend in the data using the Seasonal 

Trend Decomposition by Loess (STL), filtering to remove outliers and pixels with few data, calculation of a 

seasonal fit, smoothing the data with adaptive Savitzky-Golay filter to remove the noisy signals, extracting the 

seasonal parameters based on the smoothed data and finally generation of output. The output includes the start 

of season time, end of season time, length of season time of the middle of season, amplitude among others. The 

data above can be viewed as images. The data fitted well and thus no weights were assigned to the fitting 

function. The smoothing method adopted, the Savitzky-Golay closely follows the curve of the fitted data and 

is able to capture increases and decreases in the data suitable for locations with sudden changes in vegetation 

reflectance (Eklundh and Jönsson 2017). The selection of the threshold for the start and end of season was an 

iterative process based on determining the fractions of seasonal amplitude with the aim being capturing the 

seasons as known from the apriori knowledge of the study area. Seasonal amplitude is defined between the base 

level and maximum value for each individual season. A user defined threshold of 20% of the seasonal amplitude 

was adopted in determining the vegetation phenometrics following (Wessels et al. 2011). The start of season was 

defined as the date at which the seasonal amplitude on the left side of the curve is at 20%. End of season is 

defined as the point at which the right edge of the curve declines to 20% of the amplitude. TIMESAT assigns 
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null values to pixels where no seasons are detected, where values are missing, where there is a failure in fitting 

function or the amplitude is low.  

 

6.5 Results and Discussion  

6.5.1 Soil moisture characteristics 

The basin spatial average soil moisture from FLDAS_NOAH, FLDAS_VIC, and ERA-Interim showed 

seasonal variability fairly well (Figure 6.3). Soil moisture peaked towards the end of the year reaching a maximum 

in April-May. This represents the beginning of the short rains in December-January leading into the long rains 

in March-May. ERA-Interim had highest estimates, followed by FLDAS_VIC, and finally FLDAS_NOAH.  

In addition to the spatial averages, the study further considered the temporal weekly averages from 2010 to 2016 

of the soil moisture products (Figure 6.3). The products had largely uniform means across the basin with ERA-

Interim having higher values (> than 0.25 m3/m3), closely followed by FLDAS_VIC and finally 

FLDAS_NOAH having values of less than 0.25. This is consistent with observations from the spatial averages, 

where ERA recorded highest spatial means Figure 6.3. 



Kilombero catchment soil moisture assessment 

139 

 

  

Figure 6.3: Weekly soil moisture spatial averages over the Kilombero catchment for the modeled and satellite-

derived global soil moisture products. Cumulative weekly TRMM precipitation in mm is shown. 

The soil moisture patterns are similar but not identical. Varying algorithms in computation of the soil moisture 

explain the differences in values. For example, ECOCLIMAP land cover, Global Land Cover Characteristics 

from AVHRR, University of Maryland land cover and IGBP land cover are inputs in soil moisture derivation 

for SMOS, ERA-Interim, FLDAS_VIC and FLDAS_NOAH respectively (Kerr et al. 2012, McNally et al. 2017).  
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Figure 6.4: Weekly soil moisture temporal averages and standard deviation for the modeled products from 2010 

to 2016 

The study further used the standard deviation of the soil moisture products to understand the uncertainty 

distribution over the basin (Figure 6.4). The spatial distribution of uncertainties in FLDAS_NOAH closely 

mirrored those of FLDAS_VIC where the eastern side, covered by the Mbarika Mountains, has higher 

uncertainties (standard deviations) compared to the western side. This similarity could be attributed to the fact 

that both the models (FLDAS_NOAH and FLDAS_VIC) are forced by same precipitation product; African 

Rainfall Estimation version 2.0 (RFE2;(McNally et al. 2017)). ERA-Interim, on the other hand, had an almost 

uniform distribution of uncertainties except for the northeastern tip of the basin with relatively lower 

uncertainties.  

The SMOS weekly temporal mean and standard deviation portrayed low values in the Northern and Southern 

side where the Udzugwa Mountains and Mbarika Highlands are located (Figure 6.5). The low values are 

explained by the inconsistent coverages of the SMOS sensors. Satellite-derived records often have data gaps 

due to the swaths followed by the sensor as it moves around the earth acquiring data (Anderson et al. 2012). 

Moreover, passive sensors are also affected by dense vegetation cover which is observed in the mountainous 

regions of the Kilombero catchment. Appendix C3 shows the SMOS coverage over the Kilombero catchment.  
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Figure 6.5: Weekly soil moisture temporal averages (a) and standard deviation (b) for SMOS from 2011 to 2016. 

The low values to the north, south and on the right side of the floodplain (covered by montane and closed 

woodland) are due to data gaps, common in densely vegetated areas.  
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6.5.2 Spatial and temporal variability 

Finally, the study analyzed the spatial-temporal variability of the soil moisture products through principal 

component analysis. The PCA decomposition of the weekly soil moisture products resulted in a single dominant 

mode across all the products (Figure 6.6). This mode explained 84.65%, 77.84%, and 96.78% of the variability 

in FLAS_NOAH, FLDAS_VIC, and ERA-Interim, respectively (Table 6.2). The spatial variability (Figure 6.6) 

closely mirrored the spatial distribution of uncertainties (standard deviations) observed in Figure 6.5, while the 

temporal variabilities resemble the spatial averages in Figure 6.4. The PCA for SMOS was not performed 

because the data set suffered from data gaps. Satellite derived gaps are a product of overpass repeat cycle 

resulting to swaths missing data on a regular cycle (Anderson et al. 2012, McNally et al. 2016).  

From the temporal variabilities, it is clear that the region has a bimodal moisture regime in response to bimodal 

rainfall (March-May and December – January). The temporal variability clearly depicts low moisture in 2010 

especially from FLDAS_NOAH and FLDAS_VIC, this is a result of drought reported over the East Africa 

region in 2009/2010 (Masih et al. 2014). The temporal variabilities show relatively high moisture values over 

2015/2016 (OND/MAM) duration, a reflection of 2015 El Niño rains. The other less dominant spatial-

temporal modes are shown in the Appendix C 1. 

Table 6.2: Percentage variabilities explained 

%age variability explained  PC 1 PC 2 PC 3 PC 4 PC 5 

FLDAS_NOAH 84.65 3.38 2.37 1.47 1.12 

FLDAS_VIC 77.84 6.53 2.33 1.78 1.16 

ERA_INTERIM  96.78 1.82 0.64 0.34 0.16 
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Figure 6.6: Spatial variabilities of EOF 1 
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Figure 6.7: Moisture spatial-temporal variability from Principal Component 1  

6.5.3 Merged products 

The lack of in situ soil moisture over the study area implies that it is not possible to evaluate how well the model 

and satellite-based soil moisture products (FLAS_NOAH, FLDAS_VIC, ERA-Interim, and SMOS) captures 

the moisture of the region (Anderson et al. 2012). Due to varying computation algorithms, the moisture datasets 

have differences in soil moisture values and therefore merging the independent datasets to a consensus product 

reduces the systematic differences in the input datasets. Due to the critical role of soil moisture in agriculture 

and the fact that it’s the only variable that indicates the plant available water between precipitation deficit and 

plant reaction. The chapter determined the rise and decline of soil moisture that can be linked to the start and 

end of planting season (AghaKouchak et al. 2015). Moreover, factors like vegetation cover also impede the 

proper presentation of soil moisture by the satellites. Therefore, objective merging of models (FLDAS_NOAH, 

FLDAS_VIC, and ERA-Interim) and satellite-derived (SMOS) soil moisture products based on their relative 

uncertainties provides the most suitable and reliable soil moisture product for the basin. In addition, based on 

spatial and temporal means, and spatial-temporal variability of soil moisture over the basin (Figure 6.7), it is 
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plausible to work with basin spatial averages as the basin had largely uniform variation in the soil moisture 

products. 

The selection of the modeled and passive product was such that the strengths and limitations of the methods 

are complimented in generation of the merged product. SMOS was selected as it is the current operational 

satellite dedicated to soil moisture measurements with the longest temporal coverage during the study period 

(2010 to 2016). Moreover, passive satellite moisture sensors are sensitive to surface soil moisture and are 

attenuated by vegetation coverage at shorter wavelengths. The advantage of SMOS is its operation in longer 

wavelength L band thus minimizing the attenuation of the microwave signals. A limitation to satellite-based 

moisture is the presence of data gaps due to the overpass swaths of the satellites and presence of dense 

vegetation.  

The modeled datasets (FLDAS_NOAH, FLDAS_VIC, and ERA-Interim) were selected as they were daily 

products with the longest temporal coverage running from 2010 to 2016 and ensured consistency with the 

SMOS dataset. Modeled products have the advantage of consistent coverage, as they use a combination of 

existing data and newly acquired datasets in models for generation of the soil moisture. The models therefore 

are at an advantage of applying hydrological, climatic and land cover memory in computing soil moisture. 

FLDAS_NOAH and FLDAS_VIC were selected as they are forced by FEWSNET rainfall specifically designed 

for food security assessment in Africa and other data scarce regions while ERA-Interim has a high global spatial 

consistency (Scipal et al. 2008, Dorigo et al. 2010, McNally et al. 2017).  

The assumptions made in generation of merged products by application of triple collocation are that the 

independent soil moisture products in consideration should be uncorrelated and should have a linear 

relationship (Scipal et al. 2008). Merged products one constituted FLDAS_NOAH, ERA-Interim, and SMOS 

while Merge 2 constituted FLDAS_VIC, ERA-Interim, and SMOS. The retrieval algorithms are different for 

the three sets of data in the two merged products thus the concept of uncorrelation is met. The linearity concept 

was tested (Figure 6.8), the p-value was less than 0.05 drawing a conclusion of significant correlation of the 

independent sets of data. The error variances were first computed followed by computation of weights that are 

assigned to each of the products to determine the contribution to the overall merged products (Table 6.3). 

Merged products are from the 2nd week of 2011 to 2016, making a total of 310 weeks. The reduction in the 

number of weeks was due to the time delay in the availability of SMOS soil moisture. To obtain a reliable 

estimation of the error variance, at least 100 observations are required for each of the three datasets (Dorigo et 

al. 2010, Leroux et al. 2011).  
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Figure 6.8: Linear relationship of the independent global soil moisture products used in generation of consensus 

merged soil moisture products.  

 

In merge 1 and 2, ERA-Interim had the highest weight assigned, 0.77 and 0.52 respectively (Table 6.3). In both 

products, the satellite-derived soil moisture (SMOS) had the lowest weights assigned since it had the highest 

error variation. The microwave signals from passive sensors such as SMOS are sensitive to attenuation by 

vegetation cover explaining the high TC error values and subsequent low weight assignment for the consensus 

merged soil moisture products (Anderson et al. 2012). The dominant contributor in both merge 1 and 2 products 

was ERA-Interim reanalysis product which had a weight greater than 50%. The merged product 1 and 2 are 

shown in Figure 6.9.  
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Table 6.3: Average merging weights and TCA error variances for the Kilombero catchment 

 Retrieval  Average 

Merging 

Weights 

Average TCA error variances  

Merge 1 FLDAS_NOAH 0.128 7.1x10-4 

 ERA-Interim 0.771 1.2 x10-4 

 SMOS 0.102 9.0 x10-4 

 
 

  

Merge 2 FLDAS_VIC 0.353 3.0 x10-4 

 ERA-Interim 0.516 2.1 x10-4 

 SMOS 0.131 8.1 x10-4 
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Figure 6.9: Soil moisture independent datasets (FLDAS_NOAH, FLDAS_VIC, ERA-Interim and SMOS), 

merge 1 (FLDAS_NOAH, ERA-Interim and SMOS) and merge 2 (FLDAS_VIC, ERA-Interim and SMOS) 

products 

Interannual variability pattern over the Kilombero catchment is maintained for the independent soil moisture 

products and the two merged products. This indicates that the merged products sufficiently capture interannual 

timescale processes and are not affected by discrepancies between the datasets (Anderson et al. 2012).  

The variation of the merged products from their original values is compared through a correlation analysis 

(Figure 6.10). The two merged soil moisture products had similar coefficient of determination and correlation. 

The coefficient of determination and correlation coefficient was 0.54 and 0.73 for merge 1 and 0.6 and 0.77 for 

merge 2. The similarities in the performance of merge 1 and 2 are explained by similarity in the RFE forcing in 

the retrieval concepts of FLDAS_NOAH and FLDAS_VIC soil moisture. However, the slight variations in 

their performance is attributed to the varying input parameters in generation of the global moisture 

FLDAS_NOAH and VIC.  

 

 

Figure 6.10: Relationship of merged soil moisture products a) 1 and b) 2 and the respective moisture products 

used in generation of the merged products. 
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6.5.4 MODIS NDVI seasonality assessment  

Start, end, and length of the season for seven-year data assessed (2010-2016) are shown in Figure 6.12 to 6.14. 

However, dummy data was added as 2009 and 2017 to capture the seasonality of the years at the edge (2010 

and 2016). The discussion focuses on data from 2010 to 2016. A land cover map is included in Figure 6.10 to 

understand the classes existing in the Kilombero catchment and link them to SOS and EOS.  

 

Figure 6.11: The Kilombero Valley land cover map  

White areas (Figure 6.12 to 6.14) indicate pixels with missing data or where data could not be processed likely 

due to pixels with insufficient data in the time coverage of the seasonality computation (Eklundh and Jönsson 

2017). Mahenge highlands are located to the south and the Udzungwa Mountains to the north of the catchment 

(Figure 6.11). These regions experience heavy presence of clouds. Clouds affect the data values recorded by the 

optical sensor and thus in the computations of the seasons, such pixels (outliers) are masked out. This could 

explain the pattern of missing values along the edge of the catchment to the north and south. The regions 

masked out are noted to be in high elevations and mainly covered by closed woodland and montane forests.  

The phenology maps show the DOY when the season starts and ends, from which the length of season is 

retrieved. The Kilombero catchment, has a unimodal phenology pattern, consistent with a study by Vrieling 

who assessed the length of season from NDVI time series for the whole of Africa (Vrieling et al. 2013).  

The analysis from TIMESAT software included maps showing start of season (SOS), end of season (EOS) and 

length of season (LOS). In order to determine the weeks within which the seasonality changes occur, the values 
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of the NDVI pixels were extracted, and the period with the highest frequency of pixels for the SOS, EOS, and 

LOS were selected as the ultimate seasonality occurrence periods. 

In the year 2010-2011, the start of season was observed to be between day 321-353 (mid-November to mid-

December 2010) while the end of season was between day 225 to 257 (mid-August to mid-September 2011). 

In the year 2011-2012, SOS was observed to be between day 305 – 337 (November) while the EOS was between 

day 225 to 257 (mid-August to mid-September) (Figure 6.12).  

 

 

Figure 6.12: NDVI phenology for the Kilombero catchment from 2010 to 2012 
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In the year 2012-2013, the start of season was observed to be between day 289-321 (mid-October to mid-

November 2012) while the end of season was between day 241 to 273 (September 2013). In the year 2013-

2014, SOS was observed to be between day 305 – 337 (November) while the EOS was between day 225 to 257 

(mid-August to mid-September) (Figure 6.12).  

 

Figure 6.13: NDVI phenology for the Kilombero catchment from 2012 to 2014 

 

In the year 2014-2015, the start of season was observed to be between day 289-321 (mid-October to mid-

November 2014) while the end of season was between day 241 to 273 (September 2015). In the year 2015-
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2016, SOS was observed to be between day 305 – 337 (November) while the EOS was between day 241 to 273 

(September) (Figure 6.13).  

 

Figure 6.14: NDVI phenology for the Kilombero catchment from 2014 to 2016 

 

In summary, the average SOS for the Kilombero catchment mainly occurs between November and December 

whereas the EOS occurs between August to September. On average, the LOS is therefore 290 days. Temporal 

averages of mean NDVI over the Kilombero catchment are shown in Figure 6.14. Included are the average 

distributions of start and end of season dates.  
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Figure 6.15: The Kilombero catchment mean NDVI, Start Of Season, and End Of Season 

In 2012 and 2014, the season started in mid-October to mid-November as compared to 2011, 2013 and 2015 

where it started in beginning November to beginning December. The latest start of the season was in 2010 

from mid-November to mid-December. In 2011, 2012, 2014 the season ended towards mid-August to mid-

September. In 2013, 2015 and 2016 the season ended slightly later i.e. in September (Table 6.4).  
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Table 6.4: Seasonal sequences of phenology based on MODIS NDVI time series  

TIME SOS  SOS  EOS  EOS  SOS EOS LOS 

  date1  date2  date1  date2        

Year 1  17-11-10 

(doy 321) 

19-12-10 

(doy 353) 

13-08-11 

(doy 225) 

14-09-11 

(doy 257) 

03-12-10 

(doy 337) 

29-08-11 

(doy 241) 

269 

year 2 01-11-11 

(doy 305) 

03-12-11 

(doy 337) 

12-08-12 

(doy 225) 

13-09-12 

(doy 257) 

17-11-11 

(doy 321) 

28-08-12 

(doy 241) 

285 

year 3  15-10-12 

(doy 289) 

16-11-12 

(doy 321) 

29-08-13 

(doy 241) 

30-09-13 

(doy 273) 

31-10-12 

(doy 305) 

14-09-13 

(doy 257) 

318 

year 4  01-11-13 

(doy 305) 

03-12-13 

(doy 337) 

13-08-14 

(doy 225) 

14-09-14 

(doy 257) 

17-11-13 

(doy 321) 

29-08-14 

(doy 241) 

285 

year 5  16-10-14 

(doy 289) 

17-11-14 

(doy 321) 

29-08-15 

(doy 241) 

30-09-15 

(doy 273) 

01-11-14 

(doy 305) 

14-09-15 

(doy 257) 

317 

year 6  01-11-15 

(doy 305) 

03-12-15 

(doy 337) 

28-08-16 

(doy 241) 

29-09-16 

(doy 273) 

17-11-15 

(doy 321) 

13-09-16 

(doy 257) 

301 

SOS = start of season  

EOS= end of season  

LOS= length of season  

 

The plotted values in Figure 6.15 are the middle dates of the weeks within which the SOS and EOS fall. It is 

noted that for the 6 years analyzed (Table 6.5), the SOS falls mainly between the first two weeks of November 

while the end of the season is mainly in the first two weeks of September. This is consistent with the rainfall 

patterns in the area. Despite the changing SOS patterns over the years, MODIS NDVI assessment gives 

indications of the beginning of a season when the NDVI value starts rising. This information is vital for the 

farmers, as they are made aware of the period to plant their crops to maximize the crop growth conditions 

resulting in increased yields. Moreover, the composite images are consistently available every 16 days increasing 

the temporal resolution of vegetation monitoring capacity.  
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The closeness of the short (November-January) and long rain (March-May) pattern seemed not to be picked 

by the seasonality assessment. This indicates that the sensitivity in identifying vegetation seasons with very close 

periods is low. The small decline in the NDVI curves between February and March is evident from the 

seasonality assessment but the magnitude is small such that it is not considered a season. In the study area, 

maize is planted in December and harvested towards the end of February to give way for rice plantations just 

before the beginning of the long rains in March. Quite a number of pixels had no values due to the presence 

of clouds, this implies that a complete coverage of the catchment in seasonality analysis is still challenging 

despite the utilization of the 16-day maximum composite images.  

 

6.5.5 NDVI and soil moisture assessment 

Vegetation growth is reliant on the availability of soil moisture. Detection of an increase in NDVI gives an 

estimate on the approximate planting time. However, a time lapse is required for the NDVI to be detected. 

This implies that the lag time when there is sufficient water in the soil for vegetation growth is lost when 

assessing the SOS with NDVI only. This calls for inclusion of soil moisture in the identification of SOS and 

additional analysis on the lag time between the presence of soil moisture capable of supporting vegetation 

growth and NDVI changes. This will aid in a higher precision in selection of SOS. Figure 6.16 show the 

Kilombero catchment average NDVI and average soil moisture values (results from the derived merged soil 

moisture product) for the Kilombero catchment.  
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Figure 6.16: Comparison of NDVI and soil moisture patterns. Included is the daily TRMM precipitation 

In 2011, there was an increase in soil moisture at the beginning of February. Towards the beginning of March, 

a deduction was experienced this subsequently resulted in a decrease in NDVI. Soil moisture later increased to 

its maximum values 0.3 to 0.31 for the month of April. During this time, NDVI increased to a value to a 

maximum of 0.74, occurring in mid of June. Given the maximum soil moisture was at the end of April and the 

max NDVI was in mid of June, there was a lag period of 1.5 months between the occurrence of maximum Soil 

moisture and NDVI. Soil moisture reduction started at the beginning of May reaching its lowest value of 0.15 

from August to mid-September. NDVI started reducing from mid-June reaching the lowest value of 0.43in mid-

September. There was an increase in Soil moisture in the first 2 weeks of October 2011 than a decline towards 

the last weeks of October. Subsequently, there was an increase in NDVI later reducing from mid-October. Soil 

moisture increased from the beginning of November to mid of January 2012 with a slight decrease from mid of 



Kilombero catchment soil moisture assessment 

158 

 

January to mid of February. The soil moisture increased again reaching a maximum in mid-March 2012. NDVI 

increased from November 2011 to April 2012. There were, however, several peaks and valleys at this time. The 

peak in mid of January resulted in a peak in NDVI at the beginning of January 2012. A slight decrease in soil 

moisture in mid-January resulted in a decrease in NDVI from beginning to mid of February while an increase 

in soil moisture from the end of February to mid-March increased NDVI from mid-March to beginning of 

April. A slight decrease of soil moisture at the beginning of April resulted in a decrease in NDVI from mid of 

April to the beginning of May 2012.  

Soil moisture reduced from mid-April to end of October when the soil moisture values were lowest. 

Subsequently, NDVI reduced from mid-May to October 2012. Rainfall towards the end of October saw a rise 

in soil moisture reaching a small peak in mid-November before reducing again. The response time for the NDVI 

was one month with a slight peak occurring in mid-December. The slightly longer response time is due to the 

dry soils absorbing the moisture after being dry for five months. At the beginning of February, a peak in soil 

moisture results in a peak in NDVI in mid-February. An increase in soil moisture occurs from March 2013, 

reaching a peak from mid-March to beginning of April. NDVI reaches its peak at the beginning of April to 

June. Soil moisture shows a decreasing trend from April to mid-august. In this time, NDVI decreases, reaching 

its lowest value in mid-September.  

At the beginning of October 2013, soil moisture increased with the NDVI reaching its peak at the beginning of 

November. There was a reduction in soil moisture, which increased towards the end of November. The NDVI 

response to the decline in soil moisture took one month. From the end of November to mid of February 2014, 

there was increasing soil moisture. The NDVI increases as well, reaching a peak in mid of March. A slight 

reduction in soil moisture after February followed with an increase occurring at the beginning of March. Peak 

NDVI values occurred from the end of March to the end of April. Subsequently, the rise in NDVI occurred 

from mid of April, reaching a peak in mid May. A reduction in soil moisture followed starting in May reaching 

lowest values in mid-August. There was a slight increase in soil moisture in mid-august. NDVI, on the other 

hand, reduced from mid-May to the beginning of September where it rose reaching a peak in October due to 

the soil moisture increase recorded. The lag time of the response was one month. From mid-October 2014 to 

mid-January, soil moisture increased resulting in an increase in NDVI in mid-February. The decreased soil 

moisture at the end of January resulted in decreased NDVI in mid-February. Soil moisture increased reaching 

its maximum in mid-March. Subsequently, NDVI peaked from mid-May to mid-June. 2015 had unique 

characteristics in that it recorded the earliest peak in short rains, which occurred in January, unlike the previously 

analyzed years. Additionally, max soil moisture occurred in March followed by an increased NDVI, which had 

a lag of 2 months to reach the peak. Moreover, the soil moisture reduction began in April reaching the lowest 

value at the beginning of August. The NDVI subsequently reduced from June to mid-October. Soil moisture 

increased from mid-October 2015 to February 2016. The corresponding NDVI increased till it reached a 
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maximum in mid-March. Soil moisture decreased between March and may but increased till April. Subsequently, 

NDVI reached its peak in mid-May to mid-June 2016. Soil moisture then decreased to reach a minimum in 

August. NDVI subsequently reduced from mid-June to its minimum in October. Towards the beginning of 

November 2016, soil moisture had an upward pattern with NDVI showing a similar pattern of increase.  

The study area has one season, which mainly begins towards the end of the year, extending to the next year and 

ending in September. The lowest soil moisture values occur between September and November. NDVI has 

several troughs and peaks especially as the NDVI increases from the SOS to its maximum value. The NDVI 

reduces between the months of May and June. The reduction is a smooth curve with minimal troughs and peaks. 

This is due to the changing weather in which case it gets hot and dry. The soil moisture at this time reduces 

drastically with no rainfall within the dry season hence subsequently; NDVI is stable as it reduces.  

Table 6.5: Maximum and Minimum occurrence periods for the soil moisture and NDVI 

Soil moisture 
 

NDVI 
 

SM-NDVI lag SM-NDVI lag 

Maximum 

Occurrence 

date 

Minimum 

Occurrence 

date 

Maximum 

Occurrence 

date 

Minimum 

Occurrence 

date 

Months Months 

26-02-11 
 

23-04-11 
 

2 
 

09-04-11 01-09-11 10-06-11 14-09-11 2 0.4 

21-01-12 
 

06-04-12 
 

3 
 

10-03-12 15-09-12 08-05-12 29-09-12 2 0.5 

02-02-13 
 

07-04-13 
 

2 
 

30-03-13 14-09-13 25-05-13 30-09-13 2 0.5 

15-02-14 
 

22-03-14 
 

1 
 

12-04-14 04-10-14 09-05-14 16-10-14 1 0.4 

24-01-15 
 

18-02-15 
 

1 
 

28-03-15 03-10-15 25-05-15 16-10-15 2 0.4 

06-02-16 
 

21-03-16 
 

1 
 

02-04-16 01-10-16 24-05-16 15-10-16 2 0.5 

 

A distinctive characteristic of SOS is its occurrence when soil moisture values are increasing. In the study site, 

SOS occurred when the soil moisture values are on average 0.17. On average, the end of season occurs when 

the soil moisture values reach 0.16.  
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A characteristic trend of the study period is the presence of constant rain that alternatively influences the 

behavior of soil moisture and NDVI response. The pattern observed indicates an increase in NDVI in towards 

the end of January or beginning of February. A slight reduction in NDVI follows which begins rising again in 

March, reaching a peak in May or June, depending on the rainfall occurrence (Figure 6.16). Between February 

and April when the soil moisture is highest, the lag time for the rises and falls of NDVI is 1 to 2 months (Table 

6.5) though a lag time of 3 months was observed at the beginning of 2012. In the 2 months preceding January 

2012, a relatively low amount of precipitation (15mm) had been recorded and hence causing a delay in the start 

of vegetation process to an amount detectable by NDVI satellite imagery. Towards the end of the dry season in 

September and October, any increase in soil moisture results in a lag time of approximately 0.5 months for 

NDVI to reach its peak. 

The temporal resolution of the NDVI (16days from MODIS) and weekly merged soil moisture varies in time 

intervals. To have a consistent temporal resolution, monthly averages for both NDVI and soil moisture were 

computed for 2011 to 2016. Cross-correlation was applied to describe the lag of NDVI in relation to soil 

moisture (Figure 6.17).  

 

Figure 6.17: Cross-correlation of merged soil moisture and NDVI indicating the lag of NDVI to soil moisture 
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The maximum positive correlation value is 2 implying it takes 2 months for a change in soil moisture to be 

reflected in NDVI. Additional analysis was done to check the consistency in lag in the dry and wet seasons of 

the year and thus determine the effect of seasonality on the lag period.  

 

Figure 6.18: Cross-correlation of the merged soil moisture products and NDVI for January to June.  

The correlation in the first half of the year which is rainy shows a two-month lag of NDVI to soil moisture, 

with a maximum correlation of 0.41. A month after the maximum correlation between the NDVI and soil 

moisture is reached, the rate of decline in correlation reduces. In the month that follows, the correlation 

seemingly stagnates, after which the rate of reduction in correlation steeply increases. The pattern of the graph 

is linked to the increase in soil moisture and subsequent NDVI towards the beginning of January. In February, 

the rain rate reduces and increases again in March. Since the vegetation responds to soil moisture availability, 

the pattern in reduction and increase in soil moisture is also exhibited in the soil moisture-NDVI lag relationship 

(Figure 6.16).  

In the second half of the year, in the dry season, the lag of NDVI to soil moisture is one month (Figure 6.19) 

with a maximum correlation of 0.67. Similarly, (McNally et al. 2016) reported a better correspondence between 

NDVI and soil moisture in the dry period.  
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Figure 6.19: Cross-correlation of the merged soil moisture products and NDVI for July to December. 

The outcomes presented show the sensitivity of NDVI to soil moisture changes similar to a study by (Chen et 

al. 2016). As noted in the results, the numerous peaks of NDVI are a consequence of a change in the soil 

moisture, the minimum lag period being 2 weeks with the maximum at 1 month when comparing the NDVI 

and merged soil moisture in their initial temporal resolution. However, on averaging the two sets of data, a lag 

period of 2 months is reported. In this case, however, some dynamics in the data are not detected since averages 

tend to smoothen out the data. Soil moisture products can be forecast up to 6 months in the future. However, 

NDVI images are acquired for the particular day in question. The dependence of NDVI on soil moisture, 

therefore, portrays an important use of the global soil moisture within the wetlands. The projected soil moisture 

is applicable in determination of planting times. This solves the problem of uncertainty faced by farmers with 

respect to suitable planting weeks more so in the face of changing seasons because of climate variations.  

6.6 Conclusions 

Wetlands are potential sites for increased food production to cater for the needs of the growing population. 

However, their use needs to be controlled and monitored to ensure their sustainability. Soil moisture is 

important for agricultural monitoring as it indicates plant water deficiencies earlier than conventional products 
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such as the vegetation status from Normalized Difference Vegetation Index hence understanding its 

characteristics over a region such as the Kilombero catchment that depends on rain-fed agriculture largely 

contributes to improvement in agriculture. The study demonstrated the relevance of remotely sensed and 

modeled soil moisture products in identification of onset of vegetation growth.  

In the current study, global soil moisture products were analyzed for the period 2010 to 2016. The spatial 

averages indicated that the ERA-Interim records the highest soil moisture as compared to FLDAS_VIC, 

whereas FLDAS_NOAH gives the lowest soil moisture. A similar pattern was observed for the uncertainties 

stipulated by the standard deviation of the three products.  

PCA decomposition was employed in assessing the soil moisture spatial-temporal variability. All products had 

a leading dominant mode with 84.65%, 77.84% and 96.78% of the variation explained for FLDAS_NOAH, 

FLDAS_VIC, and ERA-Interim respectively. The spatial variation had a similar pattern to the standard 

deviation of the soil moisture products. The temporal variation, on the other hand, had similar patterns to the 

spatial averages of soil moisture indicating that the variation in mean soil moisture mainly influences the soil 

moisture variance.  

The differences in the global soil moisture products called for the need to assess the error structure of the 

products. This was done using the triple collocation, whereby the error variances of each of the model products 

was determined. This acted as a weight in the generation of a merged soil moisture product. Two merged 

moisture products were produced. Merge 1 constituted of FLDAS_NOAH, ERA-Interim, and SMOS, whereas 

merge 2 constituted of FLDAS_VIC, ERA-Interim, and SMOS. The Merge product 2 had lower standard 

deviation and thus was adopted as the soil moisture product in the determining the start of growing season.  

The end and start of growing season were calculated for the period corresponding to the stand-alone ensemble 

soil moisture product. It was noted that as the soil moisture rises, the NDVI begins increasing subsequently, 

marking the start of growing season, the peak in the NDVI however, occurs approximately 1-2 months after 

the peak of the soil moisture. The soil moisture increases from November with a slight reduction in February 

and an increase in March reaching a peak in April. The NDVI reaches a peak towards the end of May, from 

which a reduction in NDVI is experienced with the lowest occurring in October.  

The study above has shown the potential of using global soil moisture and NDVI products in determining and 

monitoring the start of growing season. The wide spatial coverage and frequent temporal acquisitions of satellite-

based and model-based products favor their use in the assessing changes over time. The study addresses the 

challenge experienced by farmers on uncertainty in planting times, which keeps changing year in year out due 

to climatic variations. The temporal resolution can identify changes occurring at minor scales. Moreover, a lag 

period of 2 to 4 weeks delayed vegetation response to soil moisture was identified. When the lag of monthly 

products was assessed, an NDVI lag of 2 months was detected, with the difference explained by the effects of 
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averaging out of the soil moisture and NDVI. Soil moisture projections can be utilized in the identification of 

the precise periods in the start of growing season thus farmers fully utilize the moisture availability to plants 

especially since they depend on rain-fed agriculture.  

It is recommended that future studies employ vegetation optical thickness, a product of SMOS instead of NDVI 

(Hornbuckle et al. 2016). This will account for vegetation water content for different vegetation types as 

different land covers have different responses to soil moisture (Van doninck et al. 2012). Incorporation of water 

requirement by different plants to assess the most suitable plants given the available soil moisture in the region 

warrants additional research. Soil texture determines the water holding capacity and thus its distribution 

recommended for future research.  
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7. General Discussion  

7.1 Introduction  

The study utilized remote sensing products to derive land cover maps and to assess the soil moisture conditions 

in the Kilombero catchment, Tanzania. The hypotheses at the commencement of the study were:  

 Depth to groundwater has an influence on spatiotemporal land cover dynamics. 

 Single polarized SAR images have sufficient information enabling land cover classification.  

 There exists a variation in soil physical properties along a hydrological gradient within the Kilombero 

floodplain. 

 Roughness has a big effect on accuracy of soil moisture derived from SAR imagery.  

 Global soil moisture products can be utilized to infer the start of planting seasons.  

The results of the study are presented in chapter 3 to 6. The current chapter gives the overall findings from the 

objectives assessed.  

 

7.1.1 Seasonal land cover dynamics using optical data 

Optical data was utilized in the generation of land cover maps in objective one. Additionally, depth to 

groundwater was related to seasonal land cover classes. The satellite imagery utilized included RapidEye, 

Sentinel-2, and Landsat-8. Reference information was obtained from aerial photographs, visual interpretation 

of the images and GPS points. The classification algorithm adopted was the Support Vector Machine (SVM). 

The land covers identified were open water, vegetation, bare land and built up areas. In the dry season, burnt 

areas were also identified.  

The overall accuracies ranged from 70 to 96% with the Kappa index of 0.61-0.95 despite the varying resolutions 

of RapidEye (5m), Sentinel-2 (10m) and Landsat-8 (30m). RapidEye has accuracies ranging from 81 to 96%, 

Sentinel-2 78 to 95% while Landsat 70 to 91%. The assessment of effects of spatial resolution on classification 

accuracy resulted to slightly different accuracies from a SVM classification of the THEOS (Thailand Earth 

Observation System) 15m satellite imagery (90.65%) and Landsat 30m resolution imagery (89.00%) 

(Suwanprasit and Srichai 2012). Another study to map agricultural parcels using 2.5m, 5m, 10m SPOT and 30m 

Landsat reported that a reduction in mapping accuracy occurs for pixels above 10m (Alganci et al. 2013). This 

indicates that finer spatial resolution increases the potential of extraction of land cover features since 

information that is more detailed is retrieved during the classification process. For more detailed mapping of 

the small-scale parcel size and crop type mapping in the study area, higher resolution imagery is required as 

distinguishing small parcel less than 1.5 hectares requires imagery with resolutions less than 10m (Alganci et al. 

2013).  

The study revealed that the depth to groundwater was highest between July and December and was closest to 

the surface in March to June. This is in line with the precipitation pattern whereby precipitation is highest in 



General Discussion 

166 

 

March to May from which the dry season sets in with minimal precipitation events between July and October. 

This indicates that precipitation plays a critical role in groundwater recharge. A study by Li et al. (2014) identified 

precipitation, temperature, groundwater exploitation and reservoir construction as the major factors influencing 

groundwater levels (Li et al. 2014). In this study however, we focused on precipitation although it would be 

interesting to study the influence of human activities on the groundwater dynamics especially with the increasing 

population and subsequently increasing demand for water.  

There was a distinct variation in depth to groundwater in the three hydrological zones. The depth to 

groundwater at the fringe zone is close to the surface throughout the year. This zone receives recharge from the 

Udzungwa Mountains, located north of the study area (Gabiri et al. 2018). The riparian zone experiences the 

highest depth to groundwater between November and January after which the depth begins reducing due to 

groundwater recharge from the precipitation.  

The bare land coverage was between 45-57% and increased to 62-69% in the January-June (wet) and July-

December (dry) respectively. The vegetation cover was between 34-47% in June and reduced to 25-27% in 

December. Within this period, the depth to groundwater increased from June to December as the season shifted 

from wet to dry owing to the reduction in groundwater recharge. Land cover influences the rate of recharge as 

it affects the infiltration and evaporation rate as evidenced by Koike et al. (2008) who reported a reduction in 

groundwater owing to increased urban land cover (Moukana and Koike 2008). The rate of recharge 

(approximately 3 months) is higher than the rate of groundwater loss (approximately 7 months). When the rainy 

season begins in January, the land cover is mainly bare and conversion to vegetated cover occurs as moisture 

accumulates to support plant growth. Managed land cover such as annual crops have shallow rooting system 

and less extensive moisture extraction depths hence explaining the high groundwater infiltration rate (Owuor et 

al. 2016). (Scanlon et al. 2005) reported similar results stating that dry bare land increases ground recharge 

(Scanlon et al. 2005). In the dry season, which begins in June-July, evaporation reduces soil moisture 

subsequently resulting in increased depth to groundwater (Zhang and Schilling 2006).  

The study also revealed the change of the land cover pattern at the riparian zone with respect to seasons. In the 

dry season, 68-81% of the total vegetation in the study area is within the riparian zone. This indicates that the 

zone relies on saturation from the Kilombero River and soil properties encompassing high clay content (Gabiri 

et al. 2018). A major limitation of the study was the availability of cloud-free images.  

 

7.1.2 Performance of single-polarized VV, GLCM texture images and their PCA derivatives in 

monitoring land cover 

The challenge of presence of clouds and thus inconsistent availability in the optical images motivated the second 

objective where weather independent SAR images are utilized in land cover mapping. During the study period 

(2015-2016), there was a consistent temporal acquisition of single-polarized Sentinel-1 images. Discrimination 

of features from single polarized images is low (Mosleh et al. 2015). This study generated Grey Level Co-
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occurrence Matrix (GLCM) data that accounts for the spatial dependence of neighboring pixels with an aim of 

increasing feature discrimination. GLCM produces a vast amount of data and hence Principal Component 

Analysis (PCA) was applied to reduce the GLCM features (Singh and Kaur 2011). Three classification algorithms 

were applied to the GLCM texture features and their corresponding PCA images.  

The overall accuracies for the single polarized VV images ranged from 54-76%, 60-81%, and 61-80% for 

Random Forest (RF), Neural Net (NN) and Support Vector Machine (SVM) respectively. GLCM features had 

overall accuracies of 64-86%, 65-88%, and 65-86% for RF, NN, and SVM respectively. PCA derived images 

had similar overall accuracies of 68-92% for NN, RF, and SVM respectively. The PCA images had the highest 

overall accuracy for the entire time series indicating that reduction in the number of texture features to layers 

containing the maximum variance improves the accuracy. It was noted that the accuracies are the same despite 

application of different classification algorithms in the case of PCA images. The study, therefore, revealed that 

the PCA images capture the variation of the land covers subsequently improving the land cover mapping. None 

of the classification accuracies portrayed a distinctively better performance. The transformation of the set of 

texture features into new axes that capture significant information as is the case in PCA was reported to increase 

classification accuracy in mapping water, urban and vegetated areas using ERS-2 SAR imagery operating in C 

band (Chamundeeswari et al. 2009). A challenge posed in the study by Chamundeeswari when mapping small-

scale agricultural plots that was similar to the current research of Ifakara was misclassified pixels in areas of 

heterogeneity due to mixed land cover classes. Mapping agricultural land using single C band polarizations of 

HH, HV and VV resulted in improved accuracies on inclusion of texture features (Treitz et al. 2000).  

GLCM features from single polarized TerraSar-X were similarly reported to increase accuracies in crop type 

mapping on well-demarcated fields (Mahmoud et al. 2011). (Jia et al. 2012) observed improved accuracies on 

including texture features derived from TerraSar-X and ASAR in mapping cotton, non-crop and wheat areas 

(Jia et al. 2012). The texture features smoothened out the salt pepper appearance of the SAR images subsequently 

improving the classification accuracy. GLCM have been reported to be of a higher importance in mapping when 

compared to statistical neighborhood features (e.g. mean, variance) and structural features (e.g. length, width) 

in crop type identification (Inglada et al. 2016).  

Variation in frequency of the radar images influences the discrimination capability of features as it affects the 

penetration depth of the microwave signal (Ulaby et al. 1996). Shorter wavelength X is attenuated by changes in 

plant structure as they grow, which plays a role in improving feature discrimination, while longer wavelength C 

can discriminate denser vegetation and it is affected by soil moisture and surface roughness in sparsely vegetated 

agricultural fields (Treitz et al. 2000, Sonobe et al. 2014). For crop type mapping therefore, X band is preferred 

and recommended for the small uneven fields in the study area. The higher spatial (3m) and temporal (11days) 

resolution of the TerraSar-X is an advantage in mapping small-scale farms as it capture the changes occurring 

between acquisitions and in monitoring the critical growth stages of crop growth (Lopez-Sanchez et al. 2011, 

Koppe et al. 2013).  
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7.1.3 Spatial-temporal variation of physical soil properties and soil moisture estimation from SAR 

data 

Variation of soil moisture is a function of scale. The composition of soil texture, presense of topographic 

features, land cover and meterorological forcing influence moisture variability at field, watershed, regional and 

continental scale respectiverly (Crow et al. 2012). In the study, spatial-temporal distributions of soil physical 

properties were assessed as they influence moisture distribution in turn affecting field scale crop production. 

Soil moisture is dynamic and its change over time was assessed. The soil moisture field data was collected 

between March and May 2015 and December and February 2016. From the end of April to May, the riparian 

fields were flooded owing to the long rains.  

Spatial distribution of texture (sand, silt, and clay), organic carbon content, bulk density and soil moisture 

indicated variations in distribution at the riparian, middle and fringe hydrological zones. Soil physical property 

distribution illustrated that the riparian zone has a high clay and organic carbon content and that the fringe has 

the highest level of sand and bulk density value. The highest silt content is in the middle zone. According to the 

USGS soil classification, the riparian zone has silty clay loam while the middle and fringe zones have silt loam.  

Validation and upscaling soil moisture to a satellite footprint requires multiple measurements from multiple 

fields within the footprint. For example, the SMOS footprint is on average 43*43 km², representing one pixel. 

This presents two aspects in planning the data collection for validation. Firstly, several well-distributed SMOS 

pixels are required within the selected validation region, running several hundreds of km squared. Secondly, 

within each 43*43 km pixels, well-distributed fields from which observations of point moisture measurements 

will be carried out need to be identified. Understanding the soil moisture variability within the selected fields 

and subsequently applying sampling requirements to obtain average values representative of the footprint in 

crucial in the upscaling and/or validation process of satellite-derived moisture.  

Understanding the variation in moisture is also important as it describes uncertainty associated with averaging 

point-based soil moisture observations to the extent of a satellite product. Results from the Ifakara soil moisture 

variability assessment indicated that the variation in moisture increases as the soil becomes drier. Brocca et al. 

(2009) assessed soil moisture in fields ranging from 5,000 to 8,800 m2 at 10 by 10m sampling intervals and 

reported similar findings whereby coefficient of variation increases for drier fields (Brocca et al. 2009). Similarly, 

Famiglietti et al. (2008) reported a similar behavior in moisture pattern across varying scales among which was 

a 50km scale which is within the SMOS footprint (Famiglietti et al. 2008). However, he also reported that as the 

scale of sampling increases the uncertainty likewise increases. This implies that more measurements are essential 

to obtain a highly accurate footprint average at large areal extents and during drier conditions.  

The number of sample points estimating means of soil moisture representative of the fields at the fringe 

(~370*200 m) and middle (~250*150 m) with an accuracy of 0.2% vol was 30 and 25 respectively. At field scales 

and considering high density of measurements taken at 10m intervals, soil texture was observed to play a role 
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in field moisture variability, which influenced the coefficient of variation (CV) (Crow et al. 2012). The number 

of samples required was estimated using the Student t distribution whereby the CV governs the output following 

the principle that a high CV requires more sampling points. As the scale increases, however, moisture variability 

is influenced by topography and vegetation (Crow et al. 2012). Results by Famiglietti et al. (2008) stipulated that 

30 samples are necessary at scales of 50*50km² to capture the soil moisture mean with an accuracy of ±0.03 

cm3/cm3 while (Brocca et al. 2010) reported that 40 samples are required at an area of 60*60km² to capture 

moisture with an accuracy of ±2%. The higher number of sample requirement is explained by the larger areal 

extent and the higher accuracy requirement (Brocca et al. 2010). 

Identification of temporally stable fields opens possibilities of reduction in the number of measurement samples 

required to obtain mean field soil moisture necessary in upscaling/validating satellite moisture. Temporal 

stability was assessed by applying relative difference technique to observed field moisture averages. In general, 

the riparian fields exhibited stable temporal patterns as thus were identified as representative fields. The high 

clay content increases the retention capacity of moisture contributing to the steady soil moisture and hence 

reduced variability exhibited for the riparian fields. The standard deviation of relative differences ranged from 

4 to 15% for study fields ranging from approximately 730 to 19,200 m2. Random patterns were observed in 

terms of areal extents and level of temporal variations while identifying the representative fields. Brocca et al. 

(2009) similarly reported randomness in terms of identifying representative locations in a flat field, reporting 

that topography influences the selection (Brocca et al. 2009).  

More specific to the hydrological zones, the riparian fields, C1, C3 and C5 postulated negative values whereas 

C2, C4 and C6 had positive values. Negatives indicate underestimations from the average implying the fields 

are relatively drier than the mean. Positive values are representative of fields that are relatively wetter than the 

mean. In the middle fields, M2 and M3 have higher moisture contents than the mean, while M1 and M5 indicate 

drier than mean conditions over time. Moisture accumulation starts in M2 and M3 due to infield level differences 

that are visible from the soil moisture accumulation patterns in Appendix B8. M1 and M5 slightly elevated and 

hence in cases of precipitation events, once the soil becomes saturated, they experience surface runoff. In the 

fringe fields, F1 and F3 have wetter than average conditions. These two fields are large, and they have infield 

troughs where water accumulates first in precipitation events. F2 and F4 are smaller fields that are slightly 

elevated as related to F3 and F1 (Appendix B9). Temporally stable fields have a low value of relative difference 

as well as low standard deviation of relative difference. For the riparian, middle and fringe fields, C6, M2 and 

F2 with areal coverages of approximately 4,200, 1,100 and 10,700 m2 were identified as temporally stable with 

relative differences of 1.93 (±4.76%), 20.58 (±8.2%) and -5.62 (±6.3%). A large standard deviation as was the 

case mainly for middle fields indicated that the soil moisture measured was not linearly related to the field 

averages (Cosh et al. 2008). Brocca et al. (2009) reported similar standard deviation values (6-18 and to 2-27%) 

for fields 5,000 and 8,800 m2 respectively. From the results, however, there is a large variation from the mean, 

explained by the highly detailed and dense data collection approach adopted, which highlighted the sensitivity 
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of texture on soil moisture at the field scale. More temporal persistence tests are recommended on additional 

fields with a less dense network of moisture samples. Additionally, a longer moisture collection period is required 

for conclusive definition of fields as temporally stable.  

Temporal variograms were used in identifying temporal structure of the soil moisture. The results indicated that 

the number of days over which the moisture values were correlated was 109 days for the riparian, 65 days for 

the middle and 71 days for the fringe. Sampling dates comprised of two time epochs, one from March to May 

2015 and the second from December 2015 to February 2016. Between the time epochs there was a measurement 

gap of 213 days. Assessing the temporal persistency in terms of days of year to determine if the moisture 

distribution is stable in time requires continuous data over a long period.  

Deriving soil moisture from SAR imagery requires roughness parameters. However, since it is time-consuming 

and impractical to collect over large areas, a representative parameter was generated from the SAR backscatter. 

Linear regression equations were established from the polarization of the RadarSat-2 and TerraSar-X. Soil 

moisture was estimated from the regression equations and the simulated roughness parameter. The coefficient 

of correlation (r) between simulated and observed soil moisture was 0.94 and 0.58 for RadarSat-2 HH and HV 

respectively whereas it was 0.95 and 0.96 for TerraSar-X HH and VV. The lower sensitivity of backscatter to 

roughness at low incidence and low frequencies increases soil moisture retrieval accuracies as was the case for 

the TerraSar-X (Mattia et al. 1997, Holah et al. 2005). Poor signal to noise ratio for the cross-polarized backscatter 

explains the low moisture retrieval accuracy from the RadarSat-2 HV (Jiankang Ji et al. 1996).  

 

7.1.4 Performance of the global soil moisture products and its relation to start of season  

Estimating soil moisture from SAR over the Kilombero catchment requires intense and frequent collection of 

in situ soil moisture measurements. This is costly and impractical and hence global products are preferred. The 

objective was motivated by the need to have frequent soil moisture values at the catchment scale. Moreover, 

the use of soil moisture in determining the start of growing season was investigated.  

The spatial average of FLDAS_NOAH, FLDAS_VIC, and ERA-Interim soil moisture revealed the seasonal 

variability with peaks towards the end of the year, reaching maximum in March to May. FLDAS_NOAH had 

the least soil moisture average while ERA-Interim had the highest estimates. The inconsistency in the values is 

attributed to varying retrieval algorithms, differences in spatial and temporal resolution. The standard deviation 

of the soil moisture products illustrated a similarity in the FLDAS_NOAH and FLDAS_VIC attributed to the 

fact that both are forced by RFE precipitation. Spatial-temporal variability was analyzed through Principal 

Component Analysis decomposition. Spatial variability explained in FLDAS_NOAH, FLDAS_VIC and ERA-

Interim was 84.65, 77.84, and 96.78% respectively. The region has a bimodal soil moisture regime occurring in 

December to January and March to May.  

Two merged soil moisture products were generated by applying the triple collocation approach, one from 

FLDAS_NOAH, ERA-Interim, SMOS, and the second from FLDAS_VIC, ERA-Interim, and SMOS. The 
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moisture layers for FLDAS_NOAH and VIC was 0-10cm that of ERA-Interim was 0-7 cm whereas passive 

sensors detect moisture at depths of 3 cm. The vertical inconsistencies are handled in the rescaling performed 

in TC as long as the relationships are linear, which was the case in the products analyzed (Yilmaz et al. 2012).  

Error variances in the global soil moisture products were determined by triple collocation. Using the error 

variances, weights were assigned to each of the products. The weights of product 1 were 0.13, 0.77 and 0.10 for 

FLDAS_NOAH, ERA-Interim, and SMOS. Weights of product 2 were 0.35, 0.52 and 0.13 for FLDAS_VIC, 

ERA-Interim, and SMOS. The higher weights for the ERA-Interim are consistent with studies by Scipal et al. 

(2008) and Dorigo et al. (2010) who reported consistency in the ERA global soil moisture product. The low 

weights assigned to the SMOS product are explained by the sensitivity of passive sensors to signal attenuation 

on vegetated areas (Anderson et al. 2012). The Kilombero catchment comprises of a series of vegetation covers, 

including forests and woodland areas (Figure 6.11). In the current analysis, the average values of the catchment 

irrespective of the land cover were assessed and hence the effect of vegetated areas lowered the performance of 

SMOS in formulation of the merged soil moisture products. The two merged products exhibited similar patterns 

through the study period as they are forced by the same precipitation product, RFE. Moreover, the ability of 

the two merged consensus products to portray similar interannual patterns as the independent soil moisture 

datasets boosts confidence in their use over the Kilombero catchment since the discrepancies between the 

datasets do not alter the annual variations in soil moisture (Anderson et al. 2012). The dissimilarities in the 

merged products are due to the difference in input parameters and derivation algorithms for the 

FLDAS_NOAH and FLDAS_VIC soil moisture. Some of the differences include the use of IGBP land cover 

classification from MODIS and use of green vegetation fraction to describe the vegetation phenology for the 

FLDAS_NOAH. FLDAS_VIC uses the UMD land cover classification derived from AVHRR and utilizes LAI 

to describe the vegetation phenology (McNally et al. 2016, 2017).  

Start and end of the season (SOS and EOS) were determined from 16-day composites of MODIS NDVI from 

2010 to 2016. Our findings indicated that the SOS occurs between November and December, EOS occurs 

between August and September and the LOS is 290 days. Despite the relatively short period of determining the 

phenological parameters, the SOS, EOS, and LOS were similar to a study by Vrieling et al. (2013) who assessed 

the phenological parameters for a period of 30 years over Africa. In the results reported over East Africa in the 

location of Kilombero catchment, the SOS and EOS was in December and August respectively while the LOS 

was 240-300 days.  

The soil moisture temporal pattern was similar to that of NDVI though with a lag period. The SOS occurs in 

mid-November whereas the EOS occurs in August. The SOS and EOS occurred when the weekly soil moisture 

was 0.17 and 0.16 respectively. A lag of 2 months was observed for the NDVI for an increase in soil moisture. 

The results presented comprised of analysis within the Kilombero catchment unlike the results by McNally who 

focused on East Africa. (McNally et al. 2016) reported a 1-month lag in a moderately vegetated area (Mpala, 
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Kenya), 1 to 2-month lag in a sparsely vegetated area (Tigray, Ethiopia), 1 month lag in a moderate to high 

vegetation area (Illubabor, Ethiopia) of GIMMS NDVI3g from CCI soil moisture between 1992 to 2013.  

 

7.2 Conclusion  

The chapter has revealed, that optical remote sensing facilitated the generation of seasonal land cover maps, 

which were linked to the depth to groundwater. Due to the limitation of cloud coverage, the study went ahead 

to show the use of free access Sentinel-1 radar images in continued monitoring of the floodplain.  

Soil moisture is a dynamic and critical parameter in agriculture. Assessing the spatial-temporal variation of soil 

moisture in the riparian, middle and fringe hydrological zones was illustrated. Moreover, the soil physical 

parameters explaining the moisture variations were assessed. At the catchment scale, application of global soil 

moisture products was illustrated. The patterns of NDVI and soil moisture were assessed to show the potential 

use of soil moisture in identify the start of growing season, which is important to the farmers especially in light 

of the changing climate and seasons.  
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8. Synopsis 

8.1 Conclusions and lessons learnt 

The increasing demand for food, arable land shortage, and unpredictable climate conditions in East Africa have 

created a paradigm shift from upland cultivation to wetland use due to their fertile soils and year-round soil 

water availability (Ramsar Convention on Wetlands et al. 2014). The Kilombero catchment was identified as 

having potential for increased food provision to cater for Tanzania’s growing population (Kato 2007, Tanzania 

National Bureau of Statistics 2018). Knowledge of land cover changes over time is essential in sustainable 

agricultural production in the wetland. In addition to understanding the characteristic land cover patterns in this 

rainfed agricultural region, knowledge on soil moisture is a key in improved production as it has a direct link to 

vegetation growth.  

The research herein, therefore, sought to understand land cover patterns, soil moisture spatial-temporal 

variability at field and catchment scale and correlate the soil moisture with Start of Season. Multi-temporal multi-

sensor optical images assessed the land cover changes occurring within the floodplain. Cloud cover presented 

challenges in the use of optical images and thus weather independent Radar images were assessed for their 

application in wetland land cover monitoring. For the period under investigation (2015-2016) however, single 

polarized Sentinel-1 images were available. A challenge in discrimination of features emerges with the utilization 

of single-polarized images and hence Grey Level Co-occurrence matrix images and the PCA derivatives of the 

texture images were assessed by applying multiple classification schemes.  

Time Domain Reflectometry probes were taken in 18 soil moisture measurement campaigns on fields ranging 

from 700 to 19,000 m2 at three hydrological zones between March and May 2015 and December 2015 to 

February 2016. The hydrological zones were defined by their variation in flooding patterns during the rainy 

season. The riparian zone is closest to the Kilombero River, has the lowest elevation and is usually flooded in 

the rainy season. The middle has patched floods and non-flooded regions whereas the fringe is not flooded in 

the rainy season. Statistical analysis, temporal persistence and geostatistical assessment were performed on the 

soil moisture data. The fields assessed have a bulk density less than 1.5g/cm3, suitable for plant growth. There 

is high variability of soil moisture in drier soil conditions and hence it was observed that more sampling points 

are required in such conditions. The fields closest to the Kilombero river were the most temporally stable as 

compared to the middle and fringe fields.  

Soil moisture is highly dynamic and requires continuous and consistent measurements. Field point 

measurements are tedious and expensive to acquire. Therefore the use of consistently available SAR imagery in 

soil moisture estimation is explored. Soil roughness influences the accuracy of the moisture retrieved from SAR. 

The practicality of roughness collection over study area is minimal and hence the study aimed at formulating 

apriori roughness parameter that can be applied in the retrieval of moisture. At the catchment scale, the spatial-

temporal variability of global soil moisture products was assessed to understand the relative deviations in the 
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products arising due to varied retrieval algorithms. Errors were assessed by applying triple collocation analysis, 

weights were generated and assigned to the products considered in generating a merged soil moisture product. 

Temporal patterns of NDVI and the merged soil moisture product were examined with the aim of establishing 

the time lag relationship. Applying the time lag relationship to soil moisture forecasts will aid in identifying the 

start of the season for agricultural production within the catchment. This information is crucial in the face 

uncertainty in planting times due to changing climate.  

The hypothesis stating that the depth to groundwater has an influence on land cover was confirmed. The depth 

to groundwater declines from June after the rain season and increases in December at the beginning of the rain 

season. Bare land cover over the entire study area was 45-57% and 62-69%, while vegetation was 34-47% and 

27-25% in June and December respectively. Vegetation cover decreases with increasing depth to groundwater.  

The hypothesis stating that single polarized SAR images have sufficient information enabling land cover 

classification was rejected. The analysis from single polarized, texture images and PCA images revealed that 

increasing dimensionality of the single polarized VV images increases feature discrimination and thus results in 

improved classification accuracy.  

The hypothesis that there exists a variation in soil physical properties along a hydrological gradient in Kilombero 

floodplain was accepted. Roughness has a big effect on the accuracy of soil moisture derived from SAR imagery 

was confirmed. Measured roughness parameters had a high variation due to the small sizes of the fields and 

representation of point measurements as field averages. Inversion of a model generated from multi-frequency 

multi-angular soil moisture measurements over different parts of the world under varying conditions resulted 

in a simulated roughness parameter applicable in the study area. Soil moisture estimation with the simulated 

roughness parameter resulted in R2 of 0.83-0.95.  

The hypothesis that global products such as soil moisture and NDVI can be used to determine the start of 

planting seasons was confirmed. A time lag of 2 months was revealed between soil moisture and NDVI increase. 

Hence identification of the Start of Season is possible with projected soil moisture data.  

In summary, optical and microwave remote sensing have a high potential in monitoring wetland use through 

generating land cover maps. Soil physical properties play a role in soil moisture retention capability. SAR images 

have potential in deriving soil moisture given a representative roughness parameter. The use of global soil 

moisture product at the catchment scale aids in the identification of the start of planting season, which is 

important information to the farmers in the region.  

 

8.2 Recommendations  

The study can be improved by  

 As this was the first study to understand the land cover changes in the study area, detailed crop type 

mapping was not carried out. With the knowledge about the land cover dynamics generated from the 

current research, more detailed mapping is recommended whereby farm management practices will be 
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considered as they affect the reflectance and backscatter recorded by the satellite imagery. Continuous 

monitoring of backscatter and reflectance from large fields with specific crops such as sugarcane or rice 

to capture the growth pattern at different crop stages is recommended. The use of large-scale fields is 

recommended as several satellite imagery pixels will be contained within the fields ensuring values 

analyzed are within field boundaries. Assessment of the backscatter and reflectance values at different 

growth stages offers information such as start, end, and length of growing of the specific crop under 

study. This information from the remote sensing data coupled with crop models can then be used in 

yield prediction, an important aspect in food security assessment.  

 Climate oscillations and telecommunications influence the precipitation patterns which in turn affect 

the vegetation growth. Incorporating climate phenomenon such as El Niño and La Niña in determining 

the start and end of season is recommended. 

 The soil moisture - NDVI relationship was assessed over the entire catchment irrespective of the land 

cover. It is recommended that the same analysis will be repeated in cropped areas. However, since 

global products have a low spatial resolution, downscaling to the resolution of cropped areas will be 

required.  

 

8.3 Outlook  

The seasonal land cover maps were focused on a small area in Ifakara. Suggestions are made to extent the 

seasonal land cover generation to a larger area. The effectiveness of any technologies adopted with the aim of 

improving agricultural produces should be assessed by repeating the study and analyzing changes occurring in 

areal extent of vegetated land cover class.  

Recommendations are made to have additional in situ soil moisture measurement campaigns distributed over 

the Kilombero catchment to test the performance of the merged soil moisture products as well as for application 

in upscaling and validating satellite-based soil moisture. Additionally, the potential of more global moisture 

products such as CCI, SMAP should be tested for their potential in agricultural management such as identifying 

declining moisture periods which can potentially be linked to drought occurrence.  
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A Appendix: Multi-temporal Analysis of Sentinel-1 Texture and Principal Component Analysis features 

In this section of the appendix, additional figures and tables from objective 2 (Chapter 4) are shown. 

Classification methods used were Random Forest (RF), Neural Net (NN) and Support Vector 

Machine (SVM). Sentinel 1 single polarized VV, Grey Level Co-occurrence Features (GLCM 

Texture) and Principal Component Analysis (PCA) features were classified.  
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A 1: Training and validation points 

 
Training 

 
Validation 

 

 
bare Veget 

ation 

built  

up 

water SUM bare Veget 

ation 

built  

up 

water SUM 

01_180115_ 145 145 187 164 641 63 62 77 74 276 

02_110215_ 72 67 59 71 269 36 31 32 27 126 

03_070315_ 75 75 79 84 313 32 32 30 38 132 

04_310315_ 118 129 130 170 547 50 54 54 64 222 

05_240415_ 146 145 184 166 641 62 62 80 72 276 

06_180515_ 145 148 185 165 643 63 59 79 73 274 

07_110615_ 107 118 138 157 520 49 54 59 81 243 
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08_050715_ 98 130 143 165 536 42 54 61 73 230 

09_290715_ 77 130 147 168 522 33 54 62 70 219 

12_091015_ 29 227 150 193 599 12 96 64 83 255 

13_021115_ 36 228 152 194 610 13 98 65 82 258 

14_261115_ 197 244 186 193 820 90 104 79 83 356 

15_201215_ 196 250 185 193 824 91 98 80 83 352 

16_130116_ 63 149 59 153 424 26 62 25 65 178 

17_060216_ 62 179 55 153 449 33 77 23 66 199 

18_010316_ 135 273 140 211 759 60 116 61 93 330 

19_250316_ 37 136 50 178 401 20 56 21 77 174 

20_180416_ 63 175 55 75 368 23 73 24 32 152 

21_120516_ 57 163 53 110 383 21 69 23 47 160 

22_050616_ 40 147 55 160 402 32 64 24 68 188 

23_290616_ 63 158 52 168 441 29 67 22 72 190 

24_230716_ 78 135 47 200 460 28 58 20 86 192 

26_090916_ 78 117 39 176 410 35 51 17 76 179 

27_031016_ 78 125 44 154 401 32 51 19 66 168 

28_271016_ 83 144 41 150 418 34 60 17 64 175 

30_141216_ 77 167 38 13 295 32 72 16 6 126 

 

A 2: Overall Classification Accuracy. RF, NNET, SVM are random forest, neural network and support vector 

machine classifiers. TEX, VV, PCA are texture, single polarized and PCA derived overall classification 

accuracies  

  RF NNET SVM RF NNET SVM RF NNET SVM 

  _TEX _TEX _TEX _VV _VV _VV _PCA _PCA _PCA 

18-01-15 0.76 0.73 0.71 0.62 0.66 0.68 0.88 0.88 0.88 

11-02-15 0.86 0.88 0.85 0.65 0.75 0.74 0.92 0.92 0.92 

07-03-15 0.79 0.81 0.81 0.60 0.73 0.72 0.89 0.89 0.89 

31-03-15 0.71 0.65 0.65 0.57 0.60 0.61 0.86 0.86 0.86 

24-04-15 0.77 0.79 0.77 0.62 0.68 0.67 0.86 0.86 0.86 

18-05-15 0.79 0.76 0.75 0.57 0.65 0.65 0.87 0.87 0.87 

11-06-15 0.71 0.71 0.72 0.57 0.61 0.61 0.86 0.86 0.86 

05-07-15 0.78 0.77 0.77 0.60 0.74 0.75 0.86 0.86 0.86 

29-07-15 0.79 0.80 0.80 0.65 0.75 0.75 0.88 0.88 0.88 
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09-10-15 0.84 0.85 0.86 0.67 0.76 0.75 0.82 0.82 0.82 

02-11-15 0.81 0.82 0.81 0.70 0.74 0.74 0.82 0.82 0.82 

26-11-15 0.76 0.80 0.78 0.55 0.65 0.65 0.78 0.78 0.78 

20-12-15 0.73 0.76 0.71 0.54 0.60 0.61 0.77 0.77 0.77 

13-01-16 0.66 0.66 0.69 0.58 0.61 0.66 0.77 0.77 0.77 

06-02-16 0.72 0.74 0.75 0.61 0.72 0.74 0.85 0.85 0.85 

01-03-16 0.75 0.75 0.72 0.62 0.67 0.67 0.84 0.84 0.84 

25-03-16 0.80 0.65 0.77 0.62 0.75 0.72 0.84 0.84 0.84 

18-04-16 0.67 0.68 0.72 0.62 0.64 0.63 0.80 0.80 0.80 

12-05-16 0.70 0.72 0.67 0.59 0.67 0.66 0.79 0.79 0.79 

05-06-16 0.76 0.79 0.79 0.63 0.70 0.71 0.83 0.83 0.83 

29-06-16 0.81 0.82 0.82 0.65 0.81 0.80 0.87 0.87 0.87 

23-07-16 0.86 0.86 0.86 0.65 0.79 0.77 0.91 0.91 0.91 

09-09-16 0.81 0.86 0.84 0.76 0.79 0.79 0.91 0.91 0.91 

03-10-16 0.85 0.84 0.83 0.74 0.79 0.78 0.90 0.90 0.90 

27-10-16 0.84 0.82 0.83 0.68 0.74 0.74 0.83 0.83 0.83 

14-12-16 0.64 0.71 0.71 0.55 0.61 0.61 0.68 0.68 0.68 

 

A 3: Kappa Coefficients. RF, NNET, SVM are random forest, neural network and support vector machine 

classifiers. TEX, VV, PCA are texture, single polarized and PCA derived kappa coefficients 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  _TEX _TEX _TEX _VV _VV _VV _PCA _PCA _PCA 

18-01-15 0.66 0.61 0.59 0.48 0.51 0.52 0.83 0.83 0.83 

11-02-15 0.81 0.83 0.80 0.52 0.66 0.64 0.89 0.89 0.89 

07-03-15 0.72 0.74 0.74 0.46 0.62 0.61 0.85 0.85 0.85 

31-03-15 0.61 0.51 0.53 0.41 0.45 0.46 0.82 0.82 0.82 

24-04-15 0.69 0.72 0.69 0.49 0.57 0.55 0.82 0.82 0.82 

18-05-15 0.72 0.67 0.66 0.41 0.52 0.52 0.83 0.83 0.83 

11-06-15 0.61 0.61 0.62 0.42 0.47 0.47 0.81 0.81 0.81 

05-07-15 0.70 0.69 0.69 0.46 0.64 0.65 0.81 0.81 0.81 

29-07-15 0.72 0.73 0.73 0.53 0.66 0.66 0.84 0.84 0.84 

09-10-15 0.78 0.79 0.82 0.55 0.67 0.66 0.76 0.76 0.76 

02-11-15 0.74 0.76 0.74 0.60 0.64 0.65 0.76 0.76 0.76 
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26-11-15 0.67 0.72 0.70 0.39 0.52 0.52 0.71 0.71 0.71 

20-12-15 0.64 0.68 0.62 0.38 0.46 0.47 0.70 0.70 0.70 

13-01-16 0.54 0.55 0.57 0.44 0.48 0.53 0.69 0.69 0.69 

06-02-16 0.62 0.64 0.66 0.47 0.62 0.64 0.80 0.80 0.80 

01-03-16 0.66 0.66 0.63 0.50 0.56 0.55 0.78 0.78 0.78 

25-03-16 0.73 0.49 0.67 0.48 0.65 0.60 0.78 0.78 0.78 

18-04-16 0.55 0.57 0.62 0.49 0.51 0.50 0.72 0.72 0.72 

12-05-16 0.60 0.62 0.56 0.45 0.55 0.54 0.72 0.72 0.72 

05-06-16 0.67 0.71 0.71 0.50 0.59 0.60 0.77 0.77 0.77 

29-06-16 0.74 0.75 0.75 0.53 0.73 0.72 0.82 0.82 0.82 

23-07-16 0.81 0.81 0.80 0.53 0.71 0.69 0.87 0.87 0.87 

09-09-16 0.74 0.81 0.77 0.67 0.71 0.70 0.87 0.87 0.87 

03-10-16 0.79 0.78 0.77 0.64 0.72 0.69 0.87 0.87 0.87 

27-10-16 0.78 0.76 0.77 0.56 0.65 0.65 0.77 0.77 0.77 

14-12-16 0.44 0.53 0.53 0.28 0.41 0.39 0.50 0.50 0.50 

 

A 4: Bare class sensitivity 

Bare Sensitivity 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 0.24 0.04 0.00 0.36 0.04 0.00 0.80 0.80 0.80 

11-02-15 0.91 0.94 0.91 0.60 0.86 0.89 0.94 0.94 0.94 

07-03-15 0.82 0.82 0.82 0.45 0.76 0.76 0.85 0.85 0.85 

31-03-15 0.52 0.15 0.38 0.29 0.27 0.25 0.77 0.77 0.77 

24-04-15 0.72 0.75 0.69 0.51 0.59 0.58 0.83 0.83 0.83 

18-05-15 0.76 0.61 0.69 0.44 0.76 0.76 0.78 0.78 0.78 

11-06-15 0.50 0.62 0.48 0.40 0.37 0.27 0.77 0.77 0.77 

05-07-15 0.48 0.48 0.43 0.29 0.36 0.40 0.71 0.71 0.71 

29-07-15 0.53 0.55 0.42 0.37 0.47 0.42 0.68 0.68 0.68 

09-10-15 0.66 0.90 0.86 0.55 0.59 0.38 0.59 0.59 0.59 

02-11-15 0.43 0.60 0.47 0.37 0.53 0.53 0.63 0.63 0.63 

26-11-15 0.59 0.59 0.62 0.52 0.59 0.52 0.79 0.79 0.79 

20-12-15 0.60 0.63 0.56 0.36 0.31 0.25 0.58 0.58 0.58 
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13-01-16 0.45 0.85 0.52 0.36 0.03 0.00 0.42 0.42 0.42 

06-02-16 0.47 0.69 0.75 0.31 0.56 0.75 0.61 0.61 0.61 

01-03-16 0.70 0.86 0.88 0.42 0.94 0.91 0.56 0.56 0.56 

25-03-16 0.42 0.00 0.21 0.25 0.00 0.00 0.25 0.25 0.25 

18-04-16 0.61 0.55 0.55 0.55 0.27 0.42 0.61 0.61 0.61 

12-05-16 0.48 0.28 0.38 0.35 0.43 0.00 0.48 0.48 0.48 

05-06-16 0.53 0.53 0.47 0.34 0.50 0.47 0.41 0.41 0.41 

29-06-16 0.61 0.61 0.61 0.39 0.64 0.67 0.64 0.64 0.64 

23-07-16 0.79 0.86 0.88 0.48 0.69 0.81 0.79 0.79 0.79 

09-09-16 0.80 0.91 0.82 0.73 0.89 0.89 0.84 0.84 0.84 

03-10-16 0.93 0.93 0.89 0.73 0.89 0.91 0.84 0.84 0.84 

27-10-16 0.77 0.77 0.84 0.66 0.73 0.84 0.64 0.64 0.64 

14-12-16 0.60 0.74 0.76 0.67 0.57 0.57 0.45 0.45 0.45 

 

A 5: Bare class positive predicted values 

Bare Positive Predicted Value 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 0.43 0.20 0.00 0.39 0.20 0.56 0.65 0.65 0.65 

11-02-15 0.94 0.94 0.89 0.70 0.77 0.76 0.92 0.92 0.92 

07-03-15 0.79 0.79 0.82 0.63 0.64 0.64 0.88 0.88 0.88 

31-03-15 0.52 0.39 0.39 0.33 0.30 0.30 0.76 0.76 0.76 

24-04-15 0.70 0.74 0.68 0.48 0.58 0.58 0.81 0.81 0.81 

18-05-15 0.68 0.66 0.66 0.39 0.47 0.47 0.86 0.86 0.86 

11-06-15 0.51 0.48 0.58 0.37 0.40 0.41 0.75 0.75 0.75 

05-07-15 0.61 0.65 0.75 0.33 0.58 0.63 0.79 0.79 0.79 

29-07-15 0.65 0.66 0.64 0.41 0.62 0.59 0.90 0.90 0.90 

09-10-15 0.66 0.59 0.64 0.53 0.68 0.73 0.61 0.61 0.61 

02-11-15 0.52 0.58 0.52 0.41 0.46 0.50 0.61 0.61 0.61 

26-11-15 0.65 0.74 0.67 0.48 0.65 0.65 0.56 0.56 0.56 

20-12-15 0.59 0.64 0.56 0.33 0.37 0.38 0.66 0.66 0.66 

13-01-16 0.47 0.50 0.55 0.44 0.14 0.56 0.82 0.82 0.82 
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06-02-16 0.46 0.51 0.53 0.32 0.48 0.51 0.85 0.85 0.85 

01-03-16 0.61 0.55 0.53 0.44 0.46 0.46 0.86 0.86 0.86 

25-03-16 0.59 0.64 0.56 0.23 0.54 0.56 0.86 0.86 0.86 

18-04-16 0.51 0.50 0.60 0.51 0.39 0.40 0.87 0.87 0.87 

12-05-16 0.54 0.69 0.48 0.38 0.47 0.00 0.95 0.95 0.95 

05-06-16 0.59 0.68 0.71 0.35 0.52 0.60 1.00 1.00 1.00 

29-06-16 0.71 0.69 0.73 0.47 0.77 0.77 0.92 0.92 0.92 

23-07-16 0.79 0.77 0.74 0.54 0.76 0.65 0.94 0.94 0.94 

09-09-16 0.81 0.85 0.88 0.78 0.78 0.75 0.93 0.93 0.93 

03-10-16 0.76 0.76 0.77 0.72 0.73 0.69 0.95 0.95 0.95 

27-10-16 0.83 0.77 0.79 0.69 0.73 0.70 0.97 0.97 0.97 

14-12-16 0.68 0.66 0.67 0.61 0.65 0.71 0.83 0.83 0.83 

 

A 6: Built up class sensitivity 

Built up Sensitivity  

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 0.78 0.74 0.74 0.48 0.26 0.26 1.00 1.00 1.00 

11-02-15 0.76 0.76 0.72 0.48 0.28 0.20 1.00 1.00 1.00 

07-03-15 0.71 0.71 0.71 0.33 0.29 0.19 1.00 1.00 1.00 

31-03-15 0.85 0.64 0.79 0.48 0.45 0.45 1.00 1.00 1.00 

24-04-15 0.80 0.80 0.82 0.57 0.62 0.51 0.92 0.92 0.92 

18-05-15 0.76 0.76 0.64 0.36 0.33 0.33 0.94 0.94 0.94 

11-06-15 0.90 0.90 0.87 0.38 0.36 0.36 0.97 0.97 0.97 

05-07-15 0.92 0.79 0.74 0.59 0.59 0.54 0.95 0.95 0.95 

29-07-15 0.88 0.90 0.93 0.67 0.64 0.62 0.98 0.98 0.98 

09-10-15 0.94 0.96 0.94 0.62 0.68 0.66 0.98 0.98 0.98 

02-11-15 0.94 0.92 0.96 0.79 0.79 0.73 0.98 0.98 0.98 

26-11-15 0.82 0.91 0.91 0.50 0.53 0.62 0.91 0.91 0.91 

20-12-15 0.83 0.86 0.84 0.52 0.65 0.59 0.97 0.97 0.97 

13-01-16 0.84 0.80 0.72 0.56 0.88 0.80 0.80 0.80 0.80 

06-02-16 0.88 0.83 0.83 0.54 0.83 0.79 0.83 0.83 0.83 

01-03-16 0.85 0.91 0.93 0.66 0.76 0.76 0.88 0.88 0.88 
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25-03-16 0.91 0.00 0.86 0.59 0.73 0.59 0.91 0.91 0.91 

18-04-16 0.79 0.88 0.96 0.67 0.75 0.71 0.79 0.79 0.79 

12-05-16 0.92 0.88 0.88 0.77 0.88 0.81 0.81 0.81 0.81 

05-06-16 0.78 0.78 0.83 0.52 0.61 0.52 0.87 0.87 0.87 

29-06-16 0.86 0.86 0.95 0.68 0.77 0.64 0.82 0.82 0.82 

23-07-16 0.92 0.88 0.96 0.54 0.67 0.63 0.83 0.83 0.83 

09-09-16 0.82 0.71 0.76 0.59 0.59 0.59 0.82 0.82 0.82 

03-10-16 0.89 0.83 0.89 0.61 0.83 0.78 0.89 0.89 0.89 

27-10-16 0.82 0.76 0.82 0.53 0.65 0.65 0.65 0.65 0.65 

14-12-16 0.81 0.81 0.75 0.31 0.81 0.50 0.75 0.75 0.75 

 

A 7: Built up class positive predicted values 

Built up Positive Predicted Value 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 1.00 0.94 0.85 0.41 1.00 1.00 0.96 0.96 0.96 

11-02-15 0.83 0.86 0.90 0.55 0.88 0.83 0.89 0.89 0.89 

07-03-15 0.65 0.75 0.75 0.30 0.75 0.80 0.84 0.84 0.84 

31-03-15 0.85 0.88 0.93 0.52 1.00 1.00 0.97 0.97 0.97 

24-04-15 0.91 0.94 0.94 0.76 0.88 0.97 0.95 0.95 0.95 

18-05-15 0.93 0.96 0.91 0.34 0.85 0.85 0.84 0.84 0.84 

11-06-15 0.71 0.73 0.69 0.52 0.70 0.70 0.90 0.90 0.90 

05-07-15 0.86 0.86 0.85 0.53 0.88 1.00 0.86 0.86 0.86 

29-07-15 0.93 0.90 0.95 0.64 0.90 1.00 0.93 0.93 0.93 

09-10-15 0.87 0.89 0.90 0.66 0.81 0.85 0.88 0.88 0.88 

02-11-15 0.92 0.90 0.92 0.78 0.88 0.90 0.90 0.90 0.90 

26-11-15 0.88 0.86 0.89 0.57 0.67 0.66 0.94 0.94 0.94 

20-12-15 0.93 0.95 0.91 0.60 0.61 0.71 0.89 0.89 0.89 

13-01-16 0.75 0.77 0.82 0.52 0.58 0.77 0.91 0.91 0.91 

06-02-16 0.91 0.95 0.95 0.62 0.83 0.86 1.00 1.00 1.00 

01-03-16 0.91 0.95 0.94 0.73 0.84 0.84 1.00 1.00 1.00 

25-03-16 0.91 0.89 0.86 0.54 0.80 0.76 1.00 1.00 1.00 

18-04-16 0.79 0.78 0.79 0.62 0.72 0.71 0.90 0.90 0.90 
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12-05-16 0.89 0.92 0.88 0.61 0.72 0.84 0.91 0.91 0.91 

05-06-16 0.90 0.95 0.95 0.55 0.74 0.75 0.95 0.95 0.95 

29-06-16 0.95 1.00 0.88 0.68 0.77 0.78 1.00 1.00 1.00 

23-07-16 0.92 0.91 0.88 0.68 0.80 0.83 1.00 1.00 1.00 

09-09-16 0.74 0.80 0.76 0.67 0.67 0.71 1.00 1.00 1.00 

03-10-16 0.84 0.83 0.89 0.73 0.79 0.78 1.00 1.00 1.00 

27-10-16 0.88 1.00 0.93 0.56 0.73 0.73 1.00 1.00 1.00 

14-12-16 0.87 0.93 0.92 0.63 0.72 0.73 1.00 1.00 1.00 

 

A 8: Vegetated class sensitivity 

Vegetation Sensitivity 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 0.83 0.89 0.93 0.50 0.91 0.98 0.74 0.74 0.74 

11-02-15 0.82 0.85 0.88 0.65 0.88 0.88 0.85 0.85 0.85 

07-03-15 0.73 0.78 0.78 0.65 0.81 0.84 0.86 0.86 0.86 

31-03-15 0.60 0.77 0.55 0.53 0.67 0.68 0.77 0.77 0.77 

24-04-15 0.68 0.71 0.67 0.57 0.64 0.72 0.80 0.80 0.80 

18-05-15 0.65 0.69 0.71 0.37 0.41 0.41 0.82 0.82 0.82 

11-06-15 0.55 0.43 0.67 0.52 0.71 0.81 0.79 0.79 0.79 

05-07-15 0.70 0.77 0.85 0.51 0.90 0.93 0.80 0.80 0.80 

29-07-15 0.80 0.78 0.85 0.62 0.87 0.92 0.90 0.90 0.90 

09-10-15 0.73 0.62 0.70 0.55 0.73 0.83 0.68 0.68 0.68 

02-11-15 0.73 0.69 0.69 0.60 0.62 0.65 0.62 0.62 0.62 

26-11-15 0.73 0.75 0.73 0.39 0.61 0.64 0.61 0.61 0.61 

20-12-15 0.57 0.64 0.55 0.37 0.54 0.68 0.63 0.63 0.63 

13-01-16 0.49 0.20 0.59 0.49 0.66 0.88 0.88 0.88 0.88 

06-02-16 0.53 0.44 0.44 0.49 0.49 0.42 0.91 0.91 0.91 

01-03-16 0.49 0.24 0.18 0.47 0.03 0.01 0.95 0.95 0.95 

25-03-16 0.76 1.00 0.82 0.42 0.92 0.92 0.97 0.97 0.97 

18-04-16 0.50 0.52 0.62 0.45 0.67 0.55 0.88 0.88 0.88 

12-05-16 0.59 0.83 0.61 0.39 0.51 0.95 0.93 0.93 0.93 

05-06-16 0.65 0.78 0.83 0.53 0.58 0.70 0.98 0.98 0.98 



Appendix: Multi-temporal Analysis of Sentinel-1 Texture and Principal Component Analysis features 

207 

 

29-06-16 0.75 0.78 0.73 0.48 0.75 0.78 0.95 0.95 0.95 

23-07-16 0.72 0.67 0.62 0.49 0.67 0.59 0.97 0.97 0.97 

09-09-16 0.58 0.70 0.67 0.58 0.48 0.45 0.91 0.91 0.91 

03-10-16 0.54 0.54 0.54 0.51 0.43 0.37 0.89 0.89 0.89 

27-10-16 0.76 0.73 0.65 0.43 0.54 0.41 0.97 0.97 0.97 

14-12-16 0.63 0.70 0.70 0.53 0.53 0.65 0.88 0.88 0.88 

 

A 9: Vegetated class positive predicted values 

Vegetation Positive Predicted Value 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 0.61 0.57 0.57 0.52 0.51 0.51 0.87 0.87 0.87 

11-02-15 0.74 0.76 0.73 0.51 0.63 0.61 0.94 0.94 0.94 

07-03-15 0.73 0.74 0.71 0.51 0.64 0.62 0.89 0.89 0.89 

31-03-15 0.59 0.47 0.49 0.50 0.48 0.48 0.85 0.85 0.85 

24-04-15 0.60 0.64 0.59 0.47 0.50 0.49 0.78 0.78 0.78 

18-05-15 0.66 0.56 0.58 0.49 0.54 0.53 0.81 0.81 0.81 

11-06-15 0.64 0.76 0.63 0.49 0.49 0.48 0.84 0.84 0.84 

05-07-15 0.64 0.62 0.60 0.53 0.61 0.59 0.84 0.84 0.84 

29-07-15 0.65 0.67 0.65 0.54 0.60 0.60 0.78 0.78 0.78 

09-10-15 0.80 0.93 0.91 0.56 0.63 0.60 0.87 0.87 0.87 

02-11-15 0.68 0.73 0.68 0.56 0.59 0.57 0.79 0.79 0.79 

26-11-15 0.65 0.70 0.71 0.38 0.51 0.53 0.79 0.79 0.79 

20-12-15 0.53 0.59 0.53 0.36 0.51 0.46 0.63 0.63 0.63 

13-01-16 0.51 0.47 0.52 0.44 0.50 0.49 0.60 0.60 0.60 

06-02-16 0.53 0.58 0.61 0.44 0.58 0.67 0.68 0.68 0.68 

01-03-16 0.53 0.53 0.46 0.41 0.50 0.25 0.64 0.64 0.64 

25-03-16 0.63 0.47 0.57 0.46 0.55 0.51 0.65 0.65 0.65 

18-04-16 0.57 0.59 0.62 0.49 0.55 0.56 0.65 0.65 0.65 

12-05-16 0.52 0.52 0.49 0.43 0.55 0.48 0.59 0.59 0.59 

05-06-16 0.57 0.61 0.60 0.50 0.51 0.52 0.64 0.64 0.64 

29-06-16 0.65 0.67 0.67 0.42 0.67 0.63 0.69 0.69 0.69 

23-07-16 0.72 0.74 0.77 0.38 0.58 0.61 0.75 0.75 0.75 
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09-09-16 0.61 0.72 0.65 0.51 0.57 0.56 0.75 0.75 0.75 

03-10-16 0.79 0.79 0.73 0.49 0.65 0.62 0.78 0.78 0.78 

27-10-16 0.68 0.66 0.71 0.42 0.53 0.54 0.62 0.62 0.62 

14-12-16 0.54 0.68 0.68 0.47 0.51 0.51 0.56 0.56 0.56 

 

A 10: Water class sensitivity 

Water Sensitivity                 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 0.98 0.95 0.88 0.98 0.98 0.98 1.00 1.00 1.00 

11-02-15 0.95 0.95 0.85 0.95 0.95 0.90 0.90 0.90 0.90 

07-03-15 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

31-03-15 0.92 0.98 0.94 0.92 0.94 0.96 0.98 0.98 0.98 

24-04-15 0.90 0.94 0.94 0.87 0.89 0.87 0.92 0.92 0.92 

18-05-15 1.00 0.98 0.94 1.00 0.96 0.96 0.98 0.98 0.98 

11-06-15 0.94 0.96 0.89 0.92 0.92 0.91 0.94 0.94 0.94 

05-07-15 0.98 0.98 0.96 0.96 0.96 0.96 0.98 0.98 0.98 

29-07-15 0.91 0.93 0.91 0.87 0.91 0.91 0.93 0.93 0.93 

09-10-15 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 

02-11-15 1.00 1.00 1.00 0.94 0.94 0.98 1.00 1.00 1.00 

26-11-15 0.95 1.00 0.91 1.00 1.00 0.91 0.91 0.91 0.91 

20-12-15 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

13-01-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

06-02-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

01-03-16 0.97 1.00 0.93 0.99 0.97 1.00 0.99 0.99 0.99 

25-03-16 0.98 1.00 0.96 0.98 1.00 0.98 1.00 1.00 1.00 

18-04-16 0.96 0.96 0.91 0.96 0.96 0.96 0.91 0.91 0.91 

12-05-16 0.97 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

05-06-16 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

29-06-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

23-07-16 1.00 1.00 0.96 0.96 1.00 0.94 0.98 0.98 0.98 

09-09-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

03-10-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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27-10-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

14-12-16 0.50 0.00 0.00 0.50 1.00 1.00 0.75 0.75 0.75 

 

A 11: Water class positive predicted values 

Water Positive Predicted Value 

  RF NNET SVM RF NNET SVM RF NNET SVM 

  TEX TEX TEX VV VV VV PCA PCA PCA 

18-01-15 0.98 0.98 0.97 0.98 0.98 0.98 1.00 1.00 1.00 

11-02-15 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 

07-03-15 1.00 0.96 1.00 1.00 1.00 1.00 0.96 0.96 0.96 

31-03-15 0.94 0.94 0.94 0.85 0.94 0.94 0.91 0.91 0.91 

24-04-15 0.98 0.95 0.98 0.95 0.98 1.00 0.95 0.95 0.95 

18-05-15 0.98 0.98 1.00 0.95 0.98 1.00 0.98 0.98 0.98 

11-06-15 0.96 0.94 0.98 0.89 0.96 0.96 0.96 0.96 0.96 

05-07-15 0.98 1.00 1.00 0.88 0.96 1.00 0.93 0.93 0.93 

29-07-15 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 

09-10-15 0.98 0.98 0.96 0.91 0.96 0.96 0.84 0.84 0.84 

02-11-15 1.00 0.98 1.00 0.98 1.00 1.00 0.88 0.88 0.88 

26-11-15 0.95 0.96 0.91 0.96 0.96 0.95 0.95 0.95 0.95 

20-12-15 0.97 0.97 0.97 0.98 0.97 0.98 0.94 0.94 0.94 

13-01-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

06-02-16 1.00 1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 

01-03-16 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

25-03-16 1.00 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

18-04-16 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 

12-05-16 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 

05-06-16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

29-06-16 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00 

23-07-16 1.00 1.00 1.00 0.98 0.96 1.00 1.00 1.00 1.00 

09-09-16 0.98 1.00 0.96 0.98 0.98 0.98 1.00 1.00 1.00 

03-10-16 1.00 0.97 0.95 1.00 0.97 1.00 0.95 0.95 0.95 

27-10-16 1.00 1.00 0.95 0.95 0.98 0.95 1.00 1.00 1.00 

14-12-16 0.50  0.98  0.98 0.67 0.67 0.67 0.60 0.60 0.60 
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A 12: Confusion matrix 3rd October 2016. In italics are overall accuracies. 

VV 

NET 

   bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 40 0 5 0 0.89 45 

 built up 0 15 3 0 0.83 18 

 vegetation 15 4 15 1 0.43 35 

 water 0 0 0 38 1.00 38 

 Pos predicted value 0.73 0.79 0.65 0.97 0.79 
 

 No. of points 55 19 23 39 
 

136 

VV RF    bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 33 0 12 0 0.73 45 

built up 0 11 7 0 0.61 18 

 vegetation 13 4 18 0 0.51 35 

 water 0 0 0 38 1.00 38 

 Pos predicted value 0.72 0.73 0.49 1.00 0.74 
 

 No. of points 46 15 37 38 
 

136 

VV 

SVM 

   bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 41 0 4 0 0.91 45 

built up 0 14 4 0 0.78 18 

 vegetation 18 4 13 0 0.37 35 

 water 0 0 0 38 1.00 38 

 Pos predicted value 0.69 0.78 0.62 1.00 0.78 
 

 No. of points 59 18 21 38 
 

136 

GLCM 

NET 

   bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 42 0 3 0 0.93 45 

 built up 0 15 2 1 0.83 18 

 vegetation 13 3 19 0 0.54 35 

 water 0 0 0 38 1.00 38 
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 Pos predicted value 0.76 0.83 0.79 0.97 0.84 
 

 No. of points 55 18 24 39 
 

136 

GLCM 

RF 

   bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 42 0 3 0 0.93 45 

 built up 0 16 2 0 0.89 18 

 vegetation 13 3 19 0 0.54 35 

 water 0 0 0 38 1.00 38 

  0.76 0.84 0.79 1.00 0.85 
 

  55 19 24 38 
 

136 

GLCM 

SVM 

   bare built up  vegetation  water  Sensitivity  No. of points 

 bare 40 0 5 0 0.89 45 

built up 0 16 2 0 0.89 18 

 vegetation 12 2 19 2 0.54 35 

 water 0 0 0 38 1.00 38 

 Pos predicted value 0.77 0.89 0.73 0.95 0.83 
 

 No. of points 52 18 26 40 
 

136 

PCA 

NET 

   bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 38 0 7 0 0.84 45 

 built up 0 16 2 0 0.89 18 

 vegetation 2 0 31 2 0.89 35 

 water 0 0 0 38 1.00 38 

 Pos predicted value 0.95 1.00 0.78 0.95 0.90 
 

 No. of points 40 16 40 40 
 

136 

PCA 

RF 

   bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 38 0 7 0 0.84 45 

 built up 0 16 2 0 0.89 18 

 vegetation 2 0 31 2 0.89 35 

 water 0 0 0 38 1.00 38 

 Pos predicted value 0.95 1.00 0.78 0.95 0.90 
 

 No. of points 40 16 40 40 
 

136 
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PCA 

SVM 

   bare  built 

up 

 vegetation  water  Sensitivity  No. of points 

 bare 38 0 7 0 0.84 45 

built up 0 16 2 0 0.89 18 

 vegetation 2 0 31 2 0.89 35 

 water 0 0 0 38 1.00 38 

 Pos predicted value 0.95 1.00 0.78 0.95 0.90 
 

 No. of points 40 16 40 40 
 

136 
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B 1: Quantile-Quantile (QQ) plots revealing normally distributed soil moisture 
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B 2: Spatial Variograms for soil moisture for measurement dates between March to May 2015 and December 

2015 to February 2016 for the Riparian, Middle and Fringe fields  

 

 

B 3: Spatial semivariogram parameters. Strong spatial dependence is exhibited for values less than 25%, 

moderate for values between 25-50% and weak dependence for values greater than 75%. 

riparian  model c0 

nugget 

variance 

c1 

partial sill 

c0+c1 

sill 

Spatial 

dependence 

(%) 

 range rmse 

07-03-15 Exponential 21.98 23.47 45.45 48.36  20.28 0.90 

31-03-15 Exponential 67.58 582.00 649.58 10.40  28.99 17.62 

20-04-15 Exponential 0.00 1119.30 1119.30 0.00  51.24 31.25 

23-04-15 Exponential 65.83 792.60 858.43 7.67  62.25 10.38 

27-04-15 
   

 
 

 
  

01-05-15 
   

 
 

 
  

14-05-15 
   

 
 

 
  

17-05-15 
   

 
 

 
  

16-12-15 Exponential 10.06 3.22 13.28 75.78  23.11 0.22 

19-12-15 Exponential 5.51 4.06 9.57 57.57  11.93 0.30 

23-12-15 Exponential 0.00 45.17 45.17 0.00  1.89 2.33 

29-12-15 Exponential 8.72 2.53 11.25 77.51  17.52 1.14 

09-01-16 Exponential 34.97 9.89 44.86 77.95  73.13 1.95 

12-01-16 Exponential 36.35 11.30 47.65 76.29  34.51 2.87 

20-01-16 Exponential 37.68 36.59 74.27 50.73  23.69 5.14 

31-01-16 Exponential 4.00 1031.10 1035.10 0.39  34.76 41.28 

06-02-16 Exponential 0.00 1057.60 1057.60 0.00  51.69 39.63 

11-02-16 
     

 
  

      
 

  

middle model c0 

nugget 

variance 

c1 

partial sill 

c0+c1 

sill 

Spatial 

dependence 

(%) 

 range rmse 

07-03-15 Exponential 88.90 50000.00 50088.90 0.18  50000.00 15.18 

31-03-15 Exponential 102.80 325.00 427.80 24.03  26.97 15.44 
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20-04-15 Gaussian 238.60 233.00 471.60 50.59  34.40 14.51 

23-04-15 Exponential 224.20 326.60 550.80 40.70  41.23 19.79 

27-04-15 Exponential 191.70 259.10 450.80 42.52  26.78 21.61 

01-05-15 Exponential 160.60 314.00 474.60 33.84  42.58 28.91 

14-05-15 Exponential 160.70 350.30 511.00 31.45  28.74 31.66 

17-05-15 Exponential 174.40 319.80 494.20 35.29  32.68 27.89 

16-12-15 Exponential 8.23 1043.90 1052.13 0.78  50000.00 0.41 

19-12-15 Linear with sill 8.21 1.09 9.30 88.31  88.27 0.53 

23-12-15 Gaussian 42.59 13.76 56.35 75.58  131.30 4.20 

29-12-15 Gaussian 9.43 2.16 11.59 81.40  88.86 0.83 

09-01-16 Linear with sill 59.02 64.44 123.46 47.80  96.03 9.98 

12-01-16 Gaussian 50.88 50000.00 50050.88 0.10  2610.50 9.78 

20-01-16 Linear with sill 472.40 119.70 592.10 79.78  97.92 49.09 

31-01-16 Exponential 240.30 352.20 592.50 40.56  13.06 44.80 

06-02-16 Exponential 67.44 494.30 561.74 12.01  12.28 46.51 

11-02-16 Exponential 169.20 294.70 463.90 36.47  12.60 25.08 
      

 
  

fringe model c0 

nugget 

variance 

c1 

partial sill 

c0+c1 

sill 

Spatial 

dependence 

(%) 

 range rmse 

07-03-15 Exponential 18.62 92.60 111.22 16.74  17.38 4.04 

31-03-15 Exponential 217.30 439.10 656.40 33.10  19.51 16.64 

20-04-15 Exponential 64.12 544.60 608.72 10.53  14.79 9.29 

23-04-15 Exponential 130.30 548.50 678.80 19.20  15.14 15.01 

27-04-15 Exponential 42.25 614.00 656.25 6.44  16.60 13.22 

01-05-15 Exponential 90.10 558.60 648.70 13.89  18.36 22.85 

14-05-15 Exponential 46.92 555.00 601.92 7.80  13.29 20.29 

17-05-15 Exponential 35.22 508.80 544.02 6.47  13.67 18.43 

16-12-15 Exponential 7.90 3.41 11.30 69.85  20.32 0.25 

19-12-15 Gaussian 36.31 6.38 42.69 85.06  68.18 3.44 

23-12-15 Exponential 21.10 42.57 63.67 33.14  7.81 4.07 

29-12-15 Exponential 15.04 12.03 27.07 55.56  26.76 1.40 

09-01-16 Exponential 23.90 66.00 89.90 26.59  43.50 5.68 

12-01-16 Gaussian 134.90 133.50 268.40 50.26  119.70 15.76 
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20-01-16 Exponential 155.70 659.20 814.90 19.11  39.53 24.32 

31-01-16 Exponential 166.00 590.00 756.00 21.96  24.62 26.86 

06-02-16 Exponential 0.00 674.00 674.00 0.00  15.55 18.83 

11-02-16 Exponential 134.90 538.10 673.00 20.04  21.02 24.20 

 

 

Standard error refers to the standard deviation of the coefficient estimate. The t value is a measure of the number 

of standard deviations the estimate is far away from 0. If it is far from zero, then a relationship between predictor 

and response variable exists. pr(>|t|) shows the probability of observing any value equal or larger than t. A 

small p value indicates it is highly unlikely to observe a relationship between predictor and response due to 

chance. 

Example, for RadarSat-2 hh with measured khrms, the intercept is different to zero at 0.05 significance level, 

hh.linear is different to zero at 0.001level of significance while khrms is different to zero at 0.1 significance level. 

There the khrms, hh and intercept have small p values, concluding that there is a relationship between khrms, 

hh (backscatter) and soil moisture. 

B 4: Coefficients for the linear equation for estimating soil moisture. HH, HV and VV are the coefficients for 

the backscatter, khrms is the measured normalized root mean square height representing the soil roughness, 

khrms_sim is the simulated roughness parameter 

 

  estimate standard error t value pr(>|t|)   

RadarSat-2 hh with measured khrms           

(intercept) 11.3 4.4 2.6 0.013 * 

hh 86.5 17.9 4.8 0.000 *** 

khrms -3.0 1.7 -1.8 0.084 . 

RadarSat-2 hh with simulated khrms           

(intercept) 20.6 1.3 15.4 <2e-16 *** 

hh 169.3 7.3 23.2 <2e-16 *** 

khrms_sim -13.8 0.7 -19.4 <2e-16 *** 

RadarSat-2 hv with measured khrms           

(intercept) 17.6 4.2 4.2 0.000 *** 

hv 419.7 113.0 3.7 0.001 *** 

khrms -3.3 1.9 -1.8 0.085 . 
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RadarSat-2 hv with simulated khrms           

(intercept) 23.5 1.0 23.6 <2e-16 *** 

hv 993.9 42.0 23.7 <2e-16 *** 

khrms_sim -13.4 0.6 -22.2 <2e-16 *** 

            

            

TerraSar-X hh with measured khrms estimate standard error t value pr(>|t|)   

(intercept) 20.7 5.3 3.9 0.001 *** 

hh -27.5 15.6 -1.8 0.091 . 

khrms 2.8 1.3 2.1 0.043 * 

TerraSar-X hh with simulated khrms           

(intercept) 15.0 2.0 7.5 0.000 *** 

hh 81.6 9.8 8.3 0.000 *** 

khrms_sim -6.9 0.5 -13.0 0.000 *** 

TerraSar-X vv with measured khrms           

(intercept) 20.6 5.1 4.0 0.000 *** 

vv -32.5 17.7 -1.8 0.078 . 

khrms 2.8 1.3 2.2 0.038 * 

TerraSar-X vv with simulated khrms           

(intercept) 14.8 1.8 8.4 0.000 *** 

vv 108.0 10.8 10.0 0.000 *** 

khrms_sim -11.9 0.8 -14.6 0.000 *** 

 

ns non-significant difference at 0.05 probability level 

. Significance at 0.1 probability level 

* Significance at 0.05 probability level 

** Significance at 0.01 probability level 

*** Significance at 0.001 probability level 
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B 5: Soil moisture estimation from measured kHrms from (a) RadarSat-2 HH, (b) RadarSat-2 HV, (c) 

TerraSar-X HH, and (d) TerraSar-X VV  
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B 6: K fold cross validation with measured Khrms from (a) RadarSat-2 HH, (b) RadarSat-2 HV, (c) TerraSar-X 

HH, and (d) TerraSar-X VV  
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B 7: Soil moisture distribution maps for the riparian fields. a) 07-03-15, b) 31-03-15, c) 20-04-15, d) 23-04-15, 

e) 16-12-15, f) 19-12-15, g) 23-12-15, h) 29-12-15, i) 09-01-16, j) 12-01-16, k) 20-01-16, l) 31-01-16, m) 06-02-

16 



 

226 

 

 

B 8: Soil moisture distribution maps for the middle fields. a) 07-03-15, b) 31-03-15, c) 20-04-15, d) 23-04-15, 

e)27-04-15, f) 01-05-15, g) 14-05-15, h) 17-05-15, i) 16-12-15, j) 19-12-15, k) 23-12-15, l) 29-12-15, m) 09-01-

16, n) 12-01-16, o) 20-01-16, p) 31-01-16, q) 06-02-16, r) 11-02-16 
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B 9: Soil moisture distribution maps for the fringe fields. a) 07-03-15, b) 31-03-15, c) 20-04-15, d) 23-04-15, 

e)27-04-15, f) 01-05-15, g) 14-05-15, h) 17-05-15, i) 16-12-15, j) 19-12-15, k) 23-12-15, l) 29-12-15, m) 09-01-

16, n) 12-01-16, o) 20-01-16, p) 31-01-16, q) 06-02-16, r) 11-02-16 
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C 1: The spatial variabilities as EOF’s from PCA decomposition of the soil moisture products 
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C 2: Soil moisture spatial temporal variabilities derived from principal component analysis of the global moisture 

products  
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C 3: SMOS soil moisture coverage in percentage over the Kilombero catchment 

 

 

 

 




