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Abbrevations

2-AG 2-Arachidonoylglycerol

AA Amino acid

ABHD Aβ-hydrolase

AD Alzheimer’s disease

ADAM A disintegrin and metalloproteinase

AEA N -arachidonoylethanolamine, anandamide

AGER Advanced glycation end products receptor

AICD APP intracellular domain

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANOVA Analysis of variance

APC Allophycocyanin

APH Anterior pharynx-defective

APOE Apolipoprotein E

APP Amyloid precursor protein

ARA Arachidonic acid

Arg1 Arginase 1

ATP Adenosine triphosphate

Aβ Amyloid-β

BACE1 β-site APP cleaving enzyme 1

BBB Blood brain barrier

BCA Bicinchoninic acid

BCP 1-bromo-3-chloropropane

BMdM Bone marrow-derived macrophages

BSA Bovine serum albumin

CA Cornu Ammonis

CB Cannabinoid receptor [protein]

CD Cluster of differentiation

cDNA Complementary deoxyribonucleic acid

cnr Cannabinoid receptor [gene]

CNS Central nervous system

CP Crossing point



Cy3 Cyanine 3

DAG Diacylglycerol

DAGL Diacylglycerol lipase

DAPI 4’,6-Diamino-2-phenylindole

DC Dendritic cell

DG Dentate gyrus

DMEM Dulbeccos’s modified eagle medium

DNA Deoxyribonucleic acid

DS Down syndrome

DSE Depolarisation induced suppression of excitation

DSI Depolarisation induced suppression of inhibition

EAE Experimental autoimmune encephalitis

EC Endothelial cells

ECS Endocannabinoid system

EDTA Ethylenediaminetetraacetate

ELISA Enzyme-linked immunosorbent assay

FAAH Fatty acid amide hydrolase

FACS Fluorescence activated cell sorter

FAD Familial Alzheimer’s disease

FCS Foetal calf serum

FIZZ1 Found in inflammatory zone 1

FRET Fluorescence resonance energy transfer

GABA γ-aminobutyric acid

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

gMFI Geometric mean fluorescence intensity

GPCR G-protein-coupled receptor

h Hour

hAPP Humanised amyloid precursor protein

HBSS Hank’s buffered salt solution

HSC Haematopoietic stem cell

Iba1 Ionized calcium-binding adapter molecule 1

ICAM Intercellular adhesion molecule

ICL Intracerebral leukocytes



IDE Insulin degrading enzyme

IFN Interferon

IL Interleukin

iNOS Inducible nitric oxide synthase

JNK Jun amino-terminal kinases

JWH John William Huffman

LPS Lipopolysaccharide

MAGL Monoacylglycerol lipase

MARCO Macrophage receptor with collagenous structure

M-CSF Macrophage colony-stimulating factor

MEM Minimum essential medium

MFI Mean fluorescence intensity

mM Millimolar (millimol/l)

mGlu Metabotropic glutamate receptors

MMP9 Matrix metalloproteinase-9

MMR Macrophage mannose receptor

MWM Morris water maze

NAGly N-Arachidonyl glycine

NAPE N-acylphosphatidylethanolamine

NAPE-PLD N-acylphosphatidylethanolamine phospholipase D

NEP Neprilysin

NeuN Neuronal nuclei

NFT Neurofibrillary tangles

NMDA N-methyl-D-aspartate

NSAID Non-steroidal anti-inflammatory drug

Parv Parvalbumin

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PDGF-β platelet derived growth factor-β chain

PE Phycoerythrin

PEA N-Palmitoylethanolamide

PerCP-Cy5.5 Peridinin-chlorophyll-cyanine 5.5

PET Positron-emission tomography



PFA Paraformaldehyde

PGK Phosphoglycerate kinase

PLC Phospholipase C

PrP Prion protein

PS1, PSEN1 Presenilin-1

PVM Perivascular macrophage

qRT-PCR quantitative real-time PCR

RAGE Receptor for advanced glycation end products

RIPA Radioimmunoprecipitation assay

RNA Ribonucleic acid

RPM Rounds per minute

RPMI Roswell Park Memorial Institute

RT Room temperature

SAPK Stress-activated protein kinases

aAPP Soluble APP

SDS Sodium dodecyl sulfate

SEM Standard error of the mean

TAE TRIS acetate EDTA

TE TRIS EDTA

tg Transgenic

TGF Transforming growth factor

Th T-helper

THC Tetrahydrocannabinol

TLR4 Toll-like receptor 4

TMB 3,3’,5,5’-Tetramethylbenzidine

TNF Tumor necrosis factor

TREM2 triggering receptor expressed on myeloid cells 2

TRIS Tris(hydroxymethyl)aminomethane

TRPV-1 transient receptor potential vanilloid type-1

WT Wildtype



Summary

Over the past years, an important role of the cannabinoid receptor 2 (CB2) has been implicated in

several neurological and immunological conditions, such as experimental autoimmune encephalitis,

stroke, memory, neuropathic pain or Alzheimer’s disease (AD).

In AD transgenic mouse models, AD-associated neuroinflammatory processes were shown to

decrease by the pharmacological stimulation with agonists of the endocannabinoid system (ECS),

while age- and AD-associated cognitive deficits were diminished. However, the exact mechanism

by which CB2 might be involved in these processes still remains elusive.

Therefore, the current study was designed to analyse the effects of CB2 signalling on the one hand

in microglia polarisation using in vitro cell-culture models. On the other hand, neuroinflammatory

and neurodegenerative processes as well as changes in cognitive performances were evaluated in

the AD transgenic mouse model APPswe/PS1dE9 (APP/PS1) and in mice lacking functional CB2

receptor expression (CB2−/−).

We demonstrate here that neonatal microglia derived from CB2−/− mice were less responsive to

pro-inflammatory stimuli when compared to microglia derived from wildtype mice. These findings

were based on the cell surface marker expression of the intercellular adhesion molecule 1 (ICAM)

and cluster of differentiation (CD) 40 as well as the release of the cytokines interleukin (IL) -6

and tumor necrosis factor (TNF) -α and the chemokine CCL2. Furthermore, we found a reduced

amyloid-β (Aβ) plaque load in hippocampal and cortical regions, a reduced microgliosis, diminished

markers of neuroinflammation as well as a decreased neurodegeneration in aged APP/PS1∗CB2−/−

mice when compared to samples of age-matched APP/PS1 mice. Finally, we could demonstrate

that spatial learning and memory deficits were rescued in aged APP/PS1∗CB2−/− mice.

These data suggest that microglia polarisation is alternatively altered in the absence of CB2

signalling and positively influenced AD-associated neuroinflammation in the present mouse model.
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1 Introduction

1.1 Alzheimer’s Disease

Among chronic neurodegenerative diseases, Alzheimer’s disease (AD) is one of the most prevailing

neurological diseases in western countries, affecting up to 70% of the more than 35 million people

suffering from dementia [63, 204]. So far, no preventive treatment is available, thus an increasing

prevalence of AD is expected due to demographic changes, affecting approximately 115 million

people by the year 2015 [204]. In 1907, the German psychiatrist Alois Alzheimer first described

unique structures in the cerebral cortex in a case study publication of a 55-year-old woman with

progressive dementia [251]. In his article (“Über eine eigenartige Erkrankung der Hirnrinde”)

he delineated disorientation, memory impairments as well as problems in reading, spelling and

speaking of his patient Auguste Deter. He related these deficits with post-mortem diagnosed

changes of neurofibrils, which he identified using Bielschowsky’s silver method. Additionally, he

described “miliary foci”, which were later referred to as amyloid-β (Aβ) plaques, in an evenly

atrophic brain. Today, the pre-clinical phase of AD possesses deficits in learning and short-term

memory. With progression of the disease, patients unlearn well-known skills and are more and more

unable to recognize friends and family members as well as trivial objects. Furthermore, behavioural

problems, such as hallucination and agitation up to loss of body functions are described. These

behavioural changes are accompanied by shrinkage of the cerebral cortex, entorhinal cortex and

the hippocampus from moderate to extreme, while ventricles enlarge with progressing disease (Fig.

1.1, A). Up to now, AD is mainly characterised by two histopathological hallmarks: deposition of

extracellular Aβ plaques (Fig. 1.1, B) and intracellular neurofibrillary tangles (NFT; Fig. 1.1, C).

Production of Aβ is a result of proteolytic cleavage of the amyloid precursor protein (APP).

NFT are composed of hyperphosphorylated microtubule-associated binding protein tau (τ) [145].

In healthy neurons, τ is an essential component of microtubules, which acts as an internal support

structure providing axonal transport for nutrients, vesicles and mitochondria. In AD, τ proteins

are hyperphosphorylated and form tangled treads, which leads to a dysregulated axonal transport

[81, 32]. These pathological hallmarks are further accompanied by increasing loss of synapses and

neurons, firstly affecting in the entorhinal cortex, followed by neuronal loss in the hippocampus,

amygdala and neocortical areas [82].

1.1.1 APP processing

Although the physiological function of APP in the adult brain is poorly understood, extensive re-

search on this complex molecule and its numerous cleavage products revealed an important function

of in central nervous system (CNS) development and cell differentiation [149].

In the healthy brain, the cleavage pathway of the type I transmembrane protein APP is referred
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Figure 1.1: Histopathological hallmarks of Alzheimer’s disease A) Representative illustrations
of atrophic brain regions in AD. With disease progression, shrinkage of the hippocampus, cerebral
cortex and entorhinal cortex and enlargement of ventricles are described. Histopathological hallmarks
are amyloid-β plaques (B) and neurofibrillary tangles (NFT). Image A adapted from [219], images B
and C adapted from [3].
AD = Alzheimer’s disease

to as the non-amyloidogenic pathway (Fig. 1.2). Thereby, APP is initially cleaved by an extra-

cellular α-secretase (a disintegrin and metalloproteinase domain-containing protein, short ADAM),

ADAM10 or ADAM17, liberating the extracellular soluble APP (sAPP) fragment sAPPα. This

APP cleavage product shows neurotrophic properties, identified by enhanced survival of cells and

neurite outgrowth in cortical and hippocampal neurons [9, 191]. Furthermore, neurotrophic as well

as regulatory functions of sAPPα regarding cell excitability and synaptic plasticity were demon-

strated (reviewed by [263]). In a second step, the remaining APP fragment is cut within the trans-

membrane region by the so-called γ-secretase, liberating the APP intracellular domain (AICD) and

a small residual peptide. The γ-secretase is composed of at least four different proteins: presenilin

1 or 2 (PSEN1 or PSEN2), nicastrin, anterior pharynx-defective (APH) 1 and presenilin-enhancer

2. In mammalian cells, two homologues of APH-1, APH-1a and APH-1b, were identified [86, 66].

Furthermore, APH-1a exists in two different splice forms, APH-1aS and APH-1aL, resulting in at

least six different possible γ-secretase complexes [245].

In brains of AD patients, APP is primarily cleaved by an aspartyl protease, known as the β-
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Figure 1.2: Cleavage pathways of the amyloid precursor protein. In the non-amyloidognic
pathway, APP is initially cleaved by an α-secretase, followed by cleavage through the integral mem-
brane γ-secretase. This results in the release of cytoplasmic soluble sAPPα and the small p3 peptide as
well as the release of AICD. The role of sAPPα In patients with AD, the amyloidogenic pathway takes
place. Thereby, APP is sequentially cut by β-secretase followed by γ-secretase cleavage, resulting in the
release of toxic Aβ peptides. Image adapted from [16].
AICD = APP intracellular domain; APP = amyloid precursor protein; CTF = c-terminal fragment;
Aβ= amyloid-β; P3 = P3 peptide.

secretase (beta-site amyloid precursor protein cleaving enzyme 1 [BACE1]), followed by cleavage

through the γ-secretase. The small fragment, 40 to 42 amino acids (AA), remaining between the

β- and γ-cleavage site, is known as the Aβ peptide. These small fragments are able to aggregate

extracellularly, forming oligomers and ultimately cluster to macroscopic plaques (Fig 1.2). Addi-

tionally to Aβ, sAPPβ is released from the cell membrane. sAPPβ shares the same AA sequence

as sAPPα, apart from the last 16 carboxy-terminal AA. However, neuroprotective effects of sAPPβ

against excitotoxicity or glucose deprivation were 50- to 100-fold less potent than effects observed

after treatment with sAPPα [69].

1.1.2 Forms of AD: early onset, late onset and familiar AD

The main risk factor for the development of AD is ageing. Far more than 90% of all patients are

diagnosed after the age of 65. This form of AD is generally termed as sporadic or idiopathic AD.

Earlier disease onset is usually associated with dominant genetic mutations and referred to as fa-

miliar AD (FAD). Only rare cases of early onset AD are not associated with genetic predispositions.

Gene mutations of at least three proteins were shown to be causative of FAD: PSEN1, PSEN2 and

3



APP (for review see [24]).

Mutations in the Psen1 gene on chromosome 14 are the most common cause of early onset FAD;

affecting 362 families and a disease onset between 35 and 50 years [243]. However, at least two of

the identified 166 pathogenic mutations in the Psen1 gene have been associated with late onset

FAD. Patients are clinically characterised by early onset memory impairment and rapid global cog-

nitive decline. Mutations in Psen2 gene on chromosome 1 are causative for only a small group of

families (18 affected families) [220, 142]. Disease onset lies between the age 45 to 88 and patients

show similarities with patients affected with sporadic late-onset AD. Mutations of the App gene

on chromosome 21 account for about 78 families worldwide. Here, the disease onset lies between

40 and 65 years and patients develop an aggressive form of dementia [80].

In recent years, over a dozen genes have been found to increase the lifetime risk for developing spo-

radic AD by using genome-wide association studies [23, 24]. The most important polymorphism

was found in the gene encoding for apolipoprotein E (APOE) [46]. In the brain, ApoE is mainly

expressed by astrocytes and microglia and functions in lipoprotein metabolism [124]. The human

apoe gene is polymorphic, containing several single nucleotide polymorphism (SNPs)[186]. One of

the most common SNPs is resulting in the APOε4 isoform and was discovered as the strongest

genetic risk factor for AD [46]. Individuals with one ε4 allele show a 2-3 fold increased risk for

AD, while in individuals with two ε4 alleles the risk is about 12-fold increased as compared to

individuals with no ε4 alleles [225]. Furthermore, an earlier onset of AD is also associated with

expression of the APOε4 allele [225].

1.2 Cause of AD

1.2.1 The amyloid cascade hypothesis

Up to know, the main cause of AD remains still unknown and the general view on disease progression

based on the “Amyloid cascade hypothesis” [238, 93] is controversially discussed. This hypothesis

states Aβ as the causative agent for both familiar and sporadic AD. Hence, NFT, neuronal loss,

vascular damage and dementia are seen as a direct result of plaque deposition. The amyloid

hypothesis was further supported by findings of FAD mutations, all of which affect properties or

production of Aβ [91, 187]. Additionally, virtually all patients suffering from Down syndrome

(DS), a heterogeneous disorder caused by the presence of an extra copy of human chromosome 21

(trisomie 21), also develop AD neuropathology [280]. However, not all DS patients also develop

dementia [134]. The “Amyloid cascade hypothesis” could be confirmed by two tests: firstly, adding

Aβ to healthy individuals should result in the development of AD. Secondly, removing Aβ from

patients suffering from AD should ameliorate disease progression. Studies using life imaging with

positron-emission tomography (PET) ligands clearly showed the existence of a group of individuals

4



carrying substantial amyloid burdens in their brains, however without being cognitively impaired

[4]. Therefore, we can be sure, that the existence of amyloid plaques is not sufficient to cause AD

[100].

Several studies have linked AD progression to a number of different cellular imbalances: malfunction

in autophagy [190], lysosomal malfunction [189], imbalance in calcium homoeostasis [25, 49], loss

of mitochondria function [256, 255, 287] or oxidative damage of deoxyribonucleic acid (DNA) [135,

292]. In summary, the cause of AD has not clearly been identified and could therefore result from

a number of different physiological malfunctions, environmental and genetic conditions.

1.2.2 Neuroinflammatory processes in Alzeimer’s disease

Emerging evidence suggests that chronic inflammation plays a pivotal role in disease pathogenesis

[44, 98, 278, 289]. The initial connection of AD and inflammation was established in arthritis

patients, which were chronically medicated with non-steroidal anti-inflammatory drugs (NSAIDs).

In these patients, the risk for developing AD was approximately 50% reduced [166, 221]. Nowadays,

a neuroinflammatory component of AD is well established and an increasing number of classic

immune molecules are associated with AD, especially in and around AD-defining Aβ plaques and

NFT (Table 1.1).

Table 1.1: List of inflammatory molecules associated with AD

Inflammatory
mediators

Function Reference

Complement
components

Aβ can bind and activate the classical
complement cytolytic pathway in vitro

[222]

Interleukin-1 IL-1 is upregulated in brains of AD patients [89, 177, 242, 241]
Interleukin-6 IL-6 exerts dichotomic functions in the CNS [17, 151, 249]
Macrophage

colony-stimulating
factor (M-CSF)

M-CSF expression is increased in the CNS,
cerebrospinal fluid and in plasma levels of AD
patients. M-CSF activates microglia and
triggers chomotaxis, proliferation and
phagocytosis.

[55, 138]

Transforming growth
factor (TGF)

Might be involved in plaque formation [265, 256]

Reactive oxygen
species

Produced by microglia, enhances Aβ
neurotoxicity

[8, 212, 234, 199]

Reactive nitrogen
species

Might contribute to lipid oxidation in AD
brains

[277, 10]

1.3 Microglia: Cellular mediators of neuroinflammation

A characteristic histological sign of chronic CNS inflammation is gliosis, characterised as an in-

creased number of astrocytes and microglia, the brain resident immune cells [7, 99]. Reactive glia
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cells have been found in close vicinity to plaques and tangles in AD [239] and are known to produce

multiple inflammatory mediators. The following section will discuss the origin of microglia, which

was the matter of debate for a long time, different activation profiles of microglia and the role of

resident microglia and invading macrophages in AD.

1.3.1 Origin of Microglia

Microglia cells, initially discovered by Cajal and his student Rio-Hortega, represent the brains’

resident innate immune cells. In the healthy brain, microglia account for 5-20% of the total glia

population [200] and continuously control the brain parenchyma to protect and support neuronal

functions [188, 262].

Origin of murine microglia was a long and controversial debate . For a long time it was as-

sumed that bone-marrow derived monocytes enter the CNS via blood circulation and subsequently

differentiate into tissue-macrophage. However, this view has changed dramatically due to re-

cent fate-mapping studies. Nowadays, there is growing evidence of two independent waves of

erythro-myeloid progenitors, which give rise to microglia and macrophages [104]. The so-called

primitive haematopoiesis gives rise to microglia, which arise from erythromyeloid precursors in

extra-embryonic yolk sac blood islands in early embryonic development (E7.5-E8.0) [121]. After

establishment of the blood circulating system, these progenitors migrate into various tissues, in-

cluding the brain, where they differentiate into primitive macrophages as early as embryonic day

9.5 [78, 79] (Fig 1.3).

A second wave of haematopoietic progenitors arises within the haemogenic endothelium of the

embryo proper, starting in the aorta-gonad-mesonephros region. The definite haematopoiesis gives

rise to immature and mature haematopoietic stem cells (HSC), seeding the foetal liver at around

E12.5. Via the blood stream, foetal liver monocytes subsequently spread to all tissues and differen-

tiate into tissue macrophages. This is true for all tissues except for the brain, which is isolated by

the blood brain barrier (BBB). Establishment of the BBB occurs approximately E13.5. During neu-

roinflammatory, neurodegenerative and neurooncological diseases non-parenchymal macrophages,

such as perivascular, choroid plexus and meningeal macrophages, also play a pivotal role as critical

effectors and regulators of immune responses at CNS borders. Therefore, their origin was also

critically discussed in recent years and is nowadays believed to arise from HSC, as reviewed by by

Prinz and Priller [208].

Previously established primitive macrophages are consequently replaced by these fetal monocyte-

derived macrophages. In certain tissues, such as the liver, replacing macrophages maintain their self-

renewal capacity throughout adulthood [105]. Differences in primitive and definite haematopoiesis

were further confirmed by findings showing that the latter is dependent on the expression of c-Myb,

a transcription factor required for the expansion and differentiation of haematopoietic cell lineages
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Figure 1.3: Microglia arise from yolk sac progenitors. Primitive macrophages, which arise from
yolk sac blood islands, enter the brain neuroepithelium at the onset of blood circulation from E9.5 and
give rise to microglia. Development of the BBB starts from E13.5 and thus permit entry of foetal liver
macrophages. After birth, embryonic microglia expand and colonize the whole CNS until adulthood. In
the steady-state brain, microglia maintain themselves via proliferation. However, upon inflammatory
conditions and a disruption of BBB, resident microglia can be supplemented with recruited monocytes
or bone-marrow derived precursors. Figure adapted from [79].
BBB = blood brain barrier; CNS = central nervous system

[216]. In contrast, microglia arise from a Myb-independent [237, 85] but Pu.1- and interferon regu-

latory factor 8 (Irf8) dependent pathway [121]. Thus, microglia and monocyte-derived macrophages

represent two ontogenetically distinct populations and fulfil different functions [209].

1.3.2 Microglia polarisation

Under homoeostatic conditions, microglia are the first line of defence against invading pathogens or

apoptotic cells. Therefore, they constantly screen the brain parenchyma with their motile processes

for pathological alterations [188]. In the healthy brain, activation of microglia is tightly regulated

by various neuronal signalling molecules, the so-called “on and off signals” [26]. Under physiological

conditions, neurons constitutively release “off signals”, e.g. cluster of differentiation (CD) 200 or

CX3CL1 (also known as fractalkine), to dampen microglia activation (Fig 1.4). Disappearance of

“off signals” in turn directly causes per se a microglial response [266]. “On signals” on the other

hand are produced on demand to initiate a defined microglia polarisation to an either more anti- or

pro-inflammatory state [266]. Potential “On signals” released by endangered neurons are e.g. the

chemokines CCL21 [217, 47] and CXCL10 [129], which induce microglia migration in vitro. Dam-

aged neurons also release purines, e.g. adenosine triphosphate (ATP), which can bind to specific

microglial P2Y12R or P2Y6 receptors and induce various types of activation [131].
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Figure 1.4: Innate immunity profile in the healthy brain. The healthy brain is protected by
an intact BBB, formed by firmly connected endothelial cells (EC). This restricts entry on pathogens or
toxins from the circulating blood vessel (BV) to the brain parenchyma. Neurons (N) tightly regulate mi-
croglial (M) functions by the release of various “on and off signals”. Widely studied “off-signals” CD200
and CX3CL1 (fractalkine) bind to microglial receptors, CD200R and CX3CR1 (fractalkine receptor),
respectively, and dampen microglial activation. In contrast “on-Signals” trigger a specific microglia
activation profile, e.g. CCL21 binding to its specific receptor CCR7 and ATP binding to microglial P2Y
receptors. Figure adapted from [258].
ATP = adenosine triphosphate; BBB = blood brain barrier; BV = blood vessel; CD = cluster of dif-
ferentiation; EC = endothelial cells; M = microglia; Mo = monocyte, N = neuron; PVM = perivascular
macrophage

Complementary to macrophages in the periphery, microglia can polarize into various activation

states upon detection of different signals [43]. This allows a rapid migration to sites of lesion and

inflammation [120]. The ability of peripheral macrophages to polarize into different activation

states has been studied intensively in the last decades [155, 160, 122, 37, 246, 185, 53]. Mirroring

the Th1/Th2 nomenclature of T-helper cells (Th-cells), at least two different activation states in

macrophages have been recognised already in the early 1990s [250] and various terminologies were

used since then: the pro-inflammatory or anti-inflammatory [250], M1 or M2 polarisation [175],

followed by a subdivision of different M2 polarisation states into M2a, M2b and M2c [29].

Th1 cytokines, such as interferon (IFN) -γ or the bacterial lipopolysaccharide (LPS) are able

to polarize macrophages into the pro-inflammatory M1 phenotype. These activated macrophages

release pro-inflammatory cytokines, such as interleukin- (IL) 12, IL23, and tumor necrosis factor-

(TNF) α as well as the chemokines CXCL9 and CXCL10 to recruit Th1 cells. Furthermore, they

show an increased capacity of antigen presentation and are able to generate reactive oxygen and

nitrogen species though the activation of inducible nitric oxide synthase (iNOS) [101]. In com-
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parison, the Th2 cytokine IL-4 induces M2 polarisation. IL-4 stimulated macrophages secret anti-

inflammatory cytokines, such as IL-10, and show an increased phagocytic activity. Additionally,

tissue remodelling and repair is supported by M2 macrophages through an upregulation of arginase

1 (Arg1) expression [101].

However, M1 and M2 polarisations are just the extremes of a continuum of functional states, as-

sessed by transcriptome-based network analysis [283]. Therefore, a new terminology of macrophage

activation was recommended, which adopts a nomenclature linked to the stimulation condition, i.e.,

M(IL-4), M(IL-10), M(IFN-γ), M(LPS), and so on [182].

Similar to polarisation in macrophages, divergent microglia activation states have been described

[172, 6] and polarisation of microglia with divergent stimuli was the focus of several research groups

in the past years. In accordance with macrophages, murine microglial M1 and M2 phenotypes are

clearly distinguishable by the expression of a specific pattern of cell surface markers and cytokines

[160]. The pro-inflammatory activation state M1 is mostly correlated with an increased expression

of CD16/32 (Fc receptor), CD86, IL-1β, IL-6, IL-12, IL-23, TNFα, iNOS, and CCL5. In con-

trast, alternatively activated microglia show enhanced expression of Arg1, macrophage mannose

receptor (MMR or CD206), insulin-like growth factor 1, triggering receptor expressed on myeloid

cells 2 (TREM2), chitinase 3-like 3 (also known as YM-1), resistin-like-α (also known as ’found

in inflammatory zone 1’ [FIZZ1]) and IL-10 [141, 195]. MMR is a transmembrane glycoprotein

that specifically binds to mannosylated molecules, which are expressed on the surface of several

pathogens, such as bacteria, fungi, parasites and viruses [61, 67]. By endocytosis of divergent

pathogens, MMR serves as an important factor in homoeostasis and immune responses.

Hence, microglia can exert divergent functions, varying from beneficial and neuroprotective to

neurotoxic properties. In the past, these activation states have been correlated with microglial

morphology. So-called resting microglia were correlated with a highly ramified morphology with

small cell bodies. In response to pathogenic stimuli, ramified microglia retract their processes

and acquire a morphology, which was referred to as “activated microglia” displaying an amoeboid

shape with a larger cell body. Additionally, “activated” microglia were shown to express harmful

substances. This led to the assumption that amoeboid shaped or “activated” microglia are detri-

mental and mostly neurotoxic, whereas ramified microglia remain in a resting state monitoring the

brain parenchyma. However, this concept of “microglial activation” has changed lately, as recent

publications clearly demonstrated that highly ramified microglia in the healthy brain are active as

well [272, 2, 92, 96, 95].

1.3.3 Resident Microglia and peripheral monocytes in AD

In the healthy brain, microglia can be easily identified using specific antibodies against the ionized

calcium binding protein 1 (Iba1) or CD11b. However, under pathological conditions, in which the
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BBB integrity is disrupted [19], circulating monocytes can enter the CNS and differentiate into

bone marrow-derived macrophages (BMdM) [174] (Fig. 1.5).

Figure 1.5: Innate immunity in Alzheimer’s diseased brain. Under pathological conditions,
integrity of the BBB is compromised due to deregulation of endothelial cell (EC) tight junctions.
Amyloid depositions (Aβ plaques) induce activation of resident microglia (M), which in turn release
pro-inflammatory cytokines and chemokines, including monocyte-chemoattractant protein CCL2 (or
MCP-1). This triggers the entry of blood-derived circulating monocytes (Mo) into the inflamed perivas-
cular space and brain parenchyma through CCR2. Infiltrated monocytes subsequently differentiate into
BMdM. Together with perivascular macrophages (PVM), BMdM contribute to uptake and phagocytosis
of Aβ deposits. Furthermore, the release of pro-inflammatory mediators (e.g. reactive oxygen species)
and a disturbed microenvironment can directly harm neuronal functions and lead to cellular death.
Figure adapted from [258].
Aβ= amyloid β, BBB = blood brain barrier; BMdM = bone marrow-derived macrophage; BV = blood
vessel; CD = cluster of differentiation; EC = endothelial cells; M = microglia; Mo = monocyte,
N = neuron; PVM = perivascular macrophage

Although microglia and peripheral monocytes have different ontogeny [208], they share many

properties and are not easily distinguishable. There is growing evidence from transgenic (tg) mouse

models and experiments using bone-marrow chimeras that myeloid infiltration is highly dependent

on the expression of the chemokine (C-C motif) receptor 2 (CCR2) [103]. Expression of CCR2 is

regarded as a marker for peripheral monocytes [174, 207, 206]. Another way to discriminate between

resident microglia and infiltrated monocytes is the expression of CD45 and CD11b using flow

cytometry. [218, 87]. Although both cell types express CD45, resident microglia display only a dim

expression, while blood derived macrophages show enhanced expression of this common leukocyte

antigen [84]. Several studies pointed out an important role for infiltrated monocytes in terms of

Aβ clearance, demonstrating that invading BMdM display a greater potential to phagocytose and

clear Aβ deposits [247]. This finding suggests that resident microglia and BMdM display not only
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a different ontogeny but also fulfil non-redundant functions in the AD brain [173]. Additionally,

another type of myeloid cells, namely perivascular macrophages (PVM), have been observed in Aβ

clearance. These cells are regularly replenished by infiltrated and differentiated monocytes in the

perivascular space and seem to assist in plaque elimination [94].

The role of microglia in Aβ clearance and AD pathology is still under debate. Recent genome-wide

association studies have linked rare microglial gene variants to an increased risk for AD, implicating

an important function of microglia in AD pathogenesis. Variances in the gene encoding for CD33,

a transmembrane receptor of the innate immune system expressed on the surface of microglia and

peripheral monocytes, have been linked to amyloid pathology and disease progression [106, 184, 88].

Similarly, variances in the gene encoding for TREM2 have also been associated with an increased

risk for developing late-onset AD [116, 90, 65]. With disease progression, murine microglia are

functionally impaired in plaque clearance and display deficits in process motility and phagocytosis

[133].

Conclusively, the balance of activated microglia being harmful to the microenvironment and

microglial activation being necessary for the repair and neurogenesis functions seems to be disturbed

in AD pathogenesis. Therefore, the interplay between microglia and peripherally derived monocytes

has to be further clarified in future studies.

1.4 Mouse models of Alzheimer’s Disease

With demographic change and subsequently elevated incidence and prevalence rates of dementia,

AD research as well as the development of therapies is of increasing importance. To study and

manipulate different aspects of AD, several mouse models reflecting AD pathogenesis have been

established in the last decades. These mouse models are based on autosomal dominant mutations,

which account only for the relatively few FAD cases. Up to now, many humanised APP (hAPP)

tg mouse lines exists, all of which generally develop a robust amyloid pathology and memory im-

pairments. Differences between hAPP lines lie in the driving promoters, the hAPP isoforms and

mutations as well as in the background strain used. Most commonly used promoters for the gen-

eration of hAPP mice are the platelet derived growth factor-β chain (PDGF-β), the thymocyte

differentiation antigen 1 (Thy-1) and the prion protein (PrP) promoter. The strongest, but less

selective expression levels are driven by the PrP promoter. Due to alternative splicing, three APP

isoforms exist, named by the number of remaining AA: APP695, APP751 and APP770. Most tg

mouse lines were generated with the APP695 isoform. The first AD mouse model, which was de-

veloped in 1995, expresses the so-called human Indiana-mutation of APP (valine717phenylalanine:

V717F) under control of the PDGF-β promoter [74]. These mice resemble the main pathological

hallmarks of AD: numerous amyloid deposits, synaptic loss, astrocytosis and microgliosis. Addi-

tionally, Dodart and colleagues described a reduction in the size of hippocampus, fornix and corpus
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callosum in this mouse model, which correlated to working and reference memory impairments [54].

Shortly after, the Tg2576 AD mouse model was reported [108]. Human APP695 containing the dou-

ble mutation lysin670asparagine and methionine671leucine (K670N and M671L) was inserted into

a hamster prion protein cosmid vector. Compared to non-tg littermates, tg mice express about

5.5-fold higher levels of endogenous murine APP and plaque-like deposits in 11-month-old mice

across the frontal, temporal and entorhinal cortices, hippocampus, presubiculum, subiculum and

cerebellum, similar to the expression pattern observed in PDAPP mice. Furthermore, microgliosis

and astrocytosis as well as hyperphosphorylated tau were found [260]. However these mice did not

develop measurable synaptic loss as compared to PDAPP mice [125].

Mutations in Psen1 have also been used for the generation of tg AD mice. However, mice express-

ing merely a mutation in the Psen1 gene do not develop cognitive deficits or AD pathology [110],

although increased levels of Aβ42 are generated. The reason for this is likely due to differences in

the AA sequence of human and murine APP [114]. Nowadays, double-tg AD mice are most com-

monly used. These mice are developed by a co-injection of Psen and hApp transgenes. Borchelt

and colleagues developed a tg mouse line, that combines hAPP containing the Swedish mutation

and PSEN1 containing the ∆E9 mutation, namely the APPswe/PSdE9 (further on referred to

as APP/PS1) mouse model [31, 30]. Similar to AD patients, these mice develop Aβ plaques in

the hippocampus and cerebral cortex with increasing age [109]. Furthermore, memory decline,

anxiety-like behaviour, hippocampal atrophy as well as neuronal and synapse protein loss have

been demonstrated in aged APP/PS1 mice [109]. Therefore, these mice represent a useful research

tool to study Aβ-related pathogenesis.

Nevertheless, it is of importance to emphasize that no existing tg mouse line models all features

of the disease, even though several different mouse models for the analysis of AD pathology have

been developed in the past two decades. Even though most models show amyloid pathology and

cognitive deficits, tau pathology is only seen when human tau is expressed. However, due to the

fact that until now all clinical trials evaluating the effectiveness of newly designed drugs, such

as bapineuzumab, solanezumab, ganteneruman and crenezumab, to treat patients with AD or

mild cognitive impairments did not show any statistically significant slowing in cognitive decline

compared to patients treated with placebo [228]. Therefore, further basic research is needed to

investigate AD development and pathogenesis as well as AD associated neuroinflammation.
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1.5 The Endocannabinoid system

Usage of the plant marijuana (Cannabis sativa) dates back over 10000 years and was initially grown

for fibre and grain [236]. First archaeological evidence for the medicinal purposes of cannabis was

found in a 2700-year old tomb in north-western China [226]. The Irish physician Sir William

B. O’Shaughnessy publicised the therapeutic value of cannabis for the first time in the western

countries in the early 19th century [196]. Since then, medicinal properties of cannabis were assessed

clinically and the so-called cannabis research started.

Based on pioneering work from Thomas Wood and colleagues, who firstly isolated cannabinol,

Lord Alan Tood simultaneously with Roger Adams completed the elucidation of its chemical struc-

ture in 1940 [112]. However, the discovery of the main psychoactive component was not before

1964, when Yehiel Gaoni und Raphael Mechoulam isolated and synthesised tetrahydrocannabinol

(THC) [76]. This was the starting point for the intensively studied cannabinoid research. However,

it took more than two decades until the corresponding receptor for THC, termed cannabinoid-

receptor (CB) 1, was identified from several previously cloned ‘orphan’ G-protein-coupled receptors

(GPCRs) [163]. Three years later, the second receptor was identified and named CB2 [181].

The first endocannabonoid, arachidonoylethanolamide (AEA), later named anandamide, was iden-

tified in the early 1990s by Mechoulams group and others [51]. Three years later, the second and

more abundant endocannabinoid, 2-arachidonoylglycerol (2-AG), was identified by two research

groups [171, 253]. Both compounds are derived from lipid precursors, are produced on demand and

are rapidly released into the synaptic cleft. Here they act on pre-synaptic cannabinoid receptors

as retrograde signalling molecules. These findings gave rise to the now widely known field of endo-

cannabinoid research, which is comprised of cannabinoid receptors, their corresponding ligands as

well as synthesising and degrading enzymes.

Due to increasing functional investigation of the endocannabinoid system (ECS), there is a wide

and unanimous consensus for a distinct expression pattern of the two - primarily Gi/o-protein cou-

pled - cannabinoid receptors. CB1, encoded by the gene Cnr1, is generously expressed in the CNS

on different neuronal cell types. In the hippocampus, CB1 receptors are more abundantly expressed

on inhibitory γ-aminobutyric acid (GABA)-ergic terminals than on glutamatergic principal neurons

[158, 119, 264]. Furthermore, CB1 receptor expression has also been detected in peripheral tissues,

such as thymus, prostate, heart, bone-marrow, lung and tonsils [71]. In contrast, CB2, encoded

by the gene Cnr2, is primarily expressed on immune cells, such as B-cells, T-cells, macrophages,

dendritic cells (DCs) and microglia [197].

Expression of functional CB2 receptors in the healthy CNS, especially a neuronal expression of

CB2, is still controversially discussed and was the content of different publications in the recent

years [193, 290, 233, 143]. This controversy is due to poor availability of specific antibodies for
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CB2 protein detection in murine tissue and missing controls, such as CB2 knockout tissues, in the

past. While CB2 expression on CNS resident microglia is nowadays being accepted more widely

[34, 13], the expression of CB2 on neuronal subtypes is still a matter of debate. However, just

recently it was demonstrated that CB2 receptors are indeed expressed in hippocampal principal

neurons, where they mediate a cell-type specific plasticity in pyramidal cells of the hippocampal

Cornu Ammonis (CA) regions CA3 and CA2 [252].

In the past decades, other receptors, like the orphan G-protein coupled receptor 18 [130, 45]

and 55 [139, 227] as well as the transient receptor potential vanilloid type-1 (TRPV-1) have been

discussed as non CB1 / CB2 cannabinoid receptors [293]. Nevertheless, both, the immune system

and cognitive functions are affected by cannabinoid signalling. Thus, the ECS has been implicated

in diverse diseases, such as malaria, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s

disease, pain, addiction, depression and schizophrenia.

1.5.1 ECS mediated retrograde signalling

Communication between neurons is mediated through synaptic transmission (depicted in Fig. 1.6).

In response to an action potential, calcium influx into the pre-synaptic bouton is induced. This di-

rectly activates the release of glutamate to the synaptic cleft through exocytosis of neurotransmitter-

filled vesicles with the membrane. Under normal conditions, released glutamate binds to post-

synaptic N-methyl-D-aspartate receptors (NMDA) or the ionotropic α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptor.

This basal communication does not activate the ECS. However, upon high frequency stimula-

tion of the pre-synaptic neuron, dramatically increased levels of released glutamate also bind to

post-synaptic type 1 metabotropic glutamate receptors (mGlu) 1/5. Thereby, coupled G-proteins

become activated, leading to the production of diacylglycerol (DAG) by phospholipase C (PLC).

Activation of the diacylglycerol lipase (DAGL) in turn hydrolyses DAG into the monoacylglycerol 2-

AG and fatty acid [205, 253]. 2-AG is released into the synaptic cleft, where it binds to pre-synaptic

CB1 receptors. Similar to other Gi-coupled receptors, the activation of CB1 typically blocks the

activation of adenylyl cyclase, preventing signalling through cyclic AMP. Subsequently, inhibition

of voltage-gated calcium channels reduce neurotransmitter release from the pre-synapse. This phe-

nomenon is also known as depolarisation induced suppression of excitation (DSE), when mediated

via excitatory glutamatergic synapses and depolarisation induced suppression of inhibition (DSI),

when mediated via inhibitory GABA-ergic synapses.

CB2 receptors are also coupled to Gi/o proteins, whereby adenylyl cyclase is inhibited and the

mitogen-activated protein (MAP) kinase cascade is induced [254].
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Figure 1.6: ECS mediated retrograde signalling illustrated exemplary for a glutamatergic
synapse. Incoming action potential induce the influx of extracellular calcium into the pre-synaptic
bouton. This triggers the fusion of transmitter-filled vesicles with the synaptic membrane and releases
neurotransmitters (in this example glutamate) into the synaptic cleft. Glutamate in turn binds to
post-synaptic NMDA or AMPA receptors, which will transmit the signal. However, upon excessive
stimulation of the pre-synapse, increased amounts of glutamate are released and, additionally to AMPA
and NMDA receptors, bind to mGlu. Consequently, coupled G-proteins trigger the production of DAG
by PLC, which in turn activates the enzyme DAGL. This mediates the hydrolysis of DAG to 2-AG.
Released 2-AG binds pre-synaptic Gi-coupled CB1 receptors and thereby activation of the adenylate
cyclase is blocked and further calcium influx prevented. Same effects can be induced by AEA, which
is produced by the enzyme NAPE-PLD. How the activation of microglial CB2 in close vicinity to
synapses is regulated and the exact molecular mechanism of communication between these cell types,
still remains a matter of future research.
2-AG = 2-Arachidonoylglycerol; AEA = N-arachidonoylethanolamine; AMPA =α-amino-3-
hydroxy- 5-methyl-4-isoxazolepropionic acid; CB = cannabinoid receptor; DAG = diacylglycerol;
DAGL = diacylglycerol lipase; ECS = endocannabinoid system; mGlu = metabotropic glutamate recep-
tors; NAPE-PLD = N-acylphosphatidylethanolamine phospholipase D; NMDA = N-methyl-D-aspartate;
PLC = phospholipase C

1.5.2 Synthesis and hydrolysis of endocannabinoids

As mentioned above, endocannabinoids cannot be stored and thus have to be synthesised on

demand due to their lipophilic nature. Biosynthesis of AEA is not yet fully elucidated, how-

ever, synthesis is devided into in two-steps. Firstly, the plasma membrane constituent phos-

phatidylethanolamine is acetylated by the membrane-bound enzyme N-acetyltransferase to generate

N-acylphosphatidylethanolamine (NAPE). In a second step, NAPE hydrolysing phospholipase D

(NAPE-PLD) converts NAPE to AEA in a calcium sensitive manner. Hydrolysis of AEA is me-

diated through fatty acid amide hydrolase (FAAH), which leads to the production of arachidonic

acid (ARA) and ethanolamine. 2-AG synthesis is also generated in two steps. Hydrolysis of the
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membrane phospholipid phosphatidylinositol through the PLC provides the ARA-containing pre-

cursor DAG. Subsequently, DAGL hydrolyses DAG into the monoacylglycerol 2-AG and fatty acid.

Hydrolysis of 2-AG is mostly mediated via monoacylglycerol lipase (MAGL) (up to 85%). How-

ever, also the two Aβ-hydrolases (ABHD) 6 and ABHD12 have been shown to play a role in 2-AG

signalling termination (for review see [231]). Together these three serine hydrolases account for

approximately 99% of 2-AG hydrolysing activity.

1.5.3 The endocannabinoid system in Alzeimer’s disease

Increasing evidence suggests that the ECS plays an important regulatory role in AD-associated

neuroinflammation. Using in vitro receptor autoradiography and in situ hybridization, it was

shown that CB1 binding density was reduced in brains of AD patients, but expression of CB1 was

not altered [276]. In contrast, independent findings by Ramirez and Solas revealed a significant

decrease in CB1 receptor levels as well as CB1 protein nitration in areas of microglial activation in

AD brains [215, 248]. Increased CB1 receptor activity at early stages of the disease were recently

shown to decrease with age and disease progression, indicating an attempt to compensate for early

synaptic impairments [156]. However, this compensatory mechanism seems to weaken over time.

Correspondingly, in mouse models of AD, a decreased CB1 protein expression was found when

compared to age-matched control mice [18, 117].

In contrast to the CB1 receptor, the relationship between CB2 and AD was intensively investi-

gated in the past years. In brains of AD patients, CB2 and FAAH were selectively overexpressed in

neuritic plaque-associated microglia [20]. Furthermore, increased CB2 receptor expression in AD

brains was correlated with two relevant molecular markers of AD, Aβ levels and senile plaque score

[248]. Apart from human studies, AD-associated mouse models also revealed an overexpression

of CB2 in Aβ-affected brain areas [107, 233]. Likewise, rats and rat astroglioma cells showed an

up-regulation of CB2 receptors and an increase in 2-AG concentration after treatment with Aβ

[60].

Since chronic neuroinflammation is one of the hallmarks of AD, anti-inflammatory strategies

have been proposed as an attractive approach to cope with disease progression. The ECS displays

important anti-inflammatory and neuroprotective properties and is therefore intensively studied as

a therapeutic target. The role of CB2 receptor activation in AD pathogenesis was investigated by

independent researchers over the past years. Most of the initial reports were investigated in in vitro

models of Aβ induced neuronal toxicity and later followed up in AD tg or Aβ-injected animals.

Using pharmacological activation with synthetic CB2 ligands, a modulation of disease progression

in different mouse models of AD was reported. Administration of the specific CB2 agonist JWH-133

(named after the chemist John William Huffman [JWH]), into double-tg APP/PS1 mice improved

cognitive performance, decreased microglial reactivity and the expression of pro-inflammatory cy-
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tokines IL-1β, IL-6, TNFα and IFNγ [11]. Furthermore, JWH-133 reduced the expression of active

p38 and stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) and increased

the expression of inactive glycogen synthase kinase 3 β [11]. In rats, injected with Aβ1-40 fibrils, the

treatment with the novel CB2 receptor agonist 1-((3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-

yl) carbonyl) piperidine (MDA7) decreased the secretion of IL-1β and expression of CB2 receptors.

Additionally, Aβ clearance was promoted and synaptic plasticity, cognition and memory was re-

stored after daily MDA7 treatment for 14 days [281]. Only few reports do not support the benefi-

cial effects of cannabinoids on AD pathology. Chronic administration of the synthetic cannabinoid

agonist HU-210 did not improve performance of AβPP23/PS45 mice in the Morris water maze

paradigm or in contextual fear conditioning, as reported by Chen and colleagues [38].

Nevertheless, the exact molecular mechanism of reported beneficial effects after CB2 receptor

stimulation in AD pathogenesis remains still unknown and further research is needed to evaluate

the role of CB2 and other cannabinoid receptor stimulation in the modulation of the disease.
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2 Aim of this Study

Alzheimer’s disease, one of the most prevailing neurological diseases in western countries and affects

the majority of the more than 35 million people suffering from dementia. To date, no preventive

treatment is available, thus, an increasing prevalence of AD is expected due to demographic changes.

An inflammatory process is nowadays discussed as a fundamental component of AD, therefore,

various research groups have studied alterations of neuroinflammatory processes in AD mouse

models.

The ECS - especially CB2 receptors - have been discussed as a therapeutic target for the treat-

ment of AD. It has been demonstrated that CB2 is upregulated in plaque-associated microglia.

Furthermore, the pharmacological stimulation of CB2 receptors in AD-associated mouse models or

cell-culture systems revealed beneficial effects on neuroinflammation, A-β load as well as cognitive

deficits. However, the exact role of CB2 signalling on these events remains elusive.

Therefore, the current study was designed to evaluate the influence of CB2 signalling on AD

associated expression of inflammatory markers, Aβ deposition as well as on learning and memory.

Thus, mice lacking functional CB2 receptor expression (CB2−/−) were crossed with the AD mouse

model APP/PS1 to compare the AD-associated pathology in APP/PS1∗CB2−/− mice with age-

matched AD and control mice. In the first part, we investigated the effect of conditional CB2

receptor deletion on microglial polarisation in vitro. In the second part, components of the ECS

were analysed in APP/PS1∗CB2−/− and control mice. Finally, we investigated AD-associated

plaque deposition, microgliosis, neuroinflammation, neurodegenration and cognitive performance.
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3 Materials

3.1 Equipment

Analytical balance Sartorius BP 2100, Elk Grove, IL, USA

Apotome ApoTome2, Zeiss, Jena, Germany

CCD camera Axiocam MRm, Zeiss, Jena, Germany

Cell count chamber Neubauer, CarlRoth GmbH, Karlsruhe, Germany

Cell culture dishes Greiner Bio-one, Frickenhausen, Germany

Centrifuge Fresco17 Zentrifuge, Heraeus and Multifuge 3SR, Heraeus,
Thermo Scientific, Langenselbold, Germany

Cryostate CM3050 S, Leica, Wetzlar, Germany

Electrophoresis apparatus PowerPac supply, BioRad, Muenchen, Germany

Flow cytometer FACS-Canto II, BD Bioscience, Heidelberg, Germany

Homogenizers Precellys R© 24, Bertin Technologies, Erlangen, Germany
Ultra-Turrex R©, IKA Werke, Staufen, Germany
Ultrasound homogenizer, Bandelin Sonoplus, Berlin, Germany

Incubator CB210, Binder, Tuttlingen, Germany

Magnetic stirrer MR3001, Heidolph, Schwabach, Germany

Microscope Axioplan 2, Zeiss, Jena, Germany

PCR Cycler 7900 HAT Fast Real-Time PCR System, Applied Biosystem,
Carlsbad, CA, USA

Photometer NanoDrop ND-1000 Spectraphotometer,
Wilmington, DE, USA

Petri dishes Greiner, Bio-one, Frickenhausen, Germany

Polyamide mesh (40 µm) VWR International, Darmstadt, Germany

Polypropylene vials (15, 50 ml) BD Bioscience, Pharmingen, San Diego, CA, USA

Polystyrene vials (5 ml) BD Bioscience, Pharmingen, San Diego, CA, USA

Safe-lock vials (0.5, 1.5, 2 ml) Eppendorf, Hamburg, Germany

SlideA-Lyzer mini dialysis Pierce, ThermoFisher Scientific,
cassette (3.5 kD) Rockford, IL, USA

Superfrost Plusr slides Menzel-Glaeser, Braunschweig, Germany
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Thermo mixer Eppendorf, Hamburg, Germany

Thermo cycler ICycler, BioRAD, Muenchen, Germany

Tissue culture hood HERsafe, Thermo Scientific, Langenselbold, Germany

Plate photometer MRX TC II, Dynex Technologies, Denkendorf, Germany

24-well-plate BD Bioscience, Pharmingen, San Diego, CA, USA

96-well-plate for cell-culture Greiner, Bio-one, Frickenhausen, Germany

96-well-plate for ELISA eBioscience, San Diego, CA, USA

384-well-plate Applied Biosystems, Carlsbad, CA, USA
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3.2 Antibodies and Primers

Table 3.1: List of Primary Antibodies used in this study: Abcam, Cambridge, UK; AbD Serotec,
Düsseldorf, Germany; BD Pharmingen, San Diego, IL, USA; Biozol, Eching, Germany; eBioscience,
Frankfurt, Germany; Invitrogen, Darmstadt, Germany; Millipore, Schwalbach, Germany; Santa Cruz
Biotechnol., Heidelberg, Germany; SIGMA-Aldrich, Steinheim, Germany; Signet Laboratories, Dedham,
MA; USA; Wako Chemicals GmbH, Neuss, Germany

1st Antibody Species Host Conjugation Dilution Company

amyloid-β 6E10 human mouse - 1:1000 Signet Laboratories
β-actin mouse mouse - 1:2000 SIGMA-Aldrich
CD11b mouse rat APC 1:200 eBioscience
CD11b mouse rat Biotin 1:200 BD Pharmingen
CD11b mouse rat eFluor450 1:200 eBioscience
CD11b mouse rat FITC 1:200 Biozol
CD11b mouse rat PE 1:200 BD Pharmingen
CD16/32 mouse rat - 1:300 Biozol
CD40 mouse rat PE 1:200 eBioscience
CD45 mouse rat eFluor450 1:200 eBioscience
CD54 (ICAM) mouse rat FITC 1:200 eBioscience
F4/80 mouse rat Biotin 1:200 eBioscience
F4/80 mouse rat FITC 1:200 Biozol
Iba1 mouse rabbit - 1:500 WAKO
NeuN mouse rabbit - 1:500 Sigma
Parv mouse rabbit - 1:1000 Abcam

Table 3.2: List of secondary Antibodies used in this study:

2nd Antibody Species Host Conjugation Dilution Company

anti-goat goat rabbit AlexaFluor647 1:500 Invitrogen
anti-rabbit rabbit goat Biotin 1:500 Invitrogen
anti-rabbit rabbit goat Cy3 1:500 Invitrogen
Streptavidin - - APC 1:300 Biozol
Streptavidin - - Cy3 1:300 Invitrogen
Streptavidin - - PerCP-Cy5.5 1:300 BD Pharmingen

Table 3.3: Cell culture stimulants and according concentrations: Peptide Specialty Companies,
Heidelberg, Germany; Roche, Grenzach, Germany; R&D systems, Wiesbaden-Nordenstadt, Germany;
SIGMA-ALDRICH, Steinheim, Germany

Stimulant concentration or dilution company

Amyloid-β peptide 515 nM Peptide Speciality Companies
IFNγ 20 ng/ml R&D Systems
LPS 100 ng/ml SIGMA-Aldrich
Proteinase K 0.6% (v/v) Roche

21



Table 3.4: Assays and ELISA Kits: eBioscience, Frankfurt, Germany; Invitrogen, Darmstadt,
Germany; Linaris, Dossenheim, Germany; PerkinElmer, Rodgau, Germany; ThermoFisher, Rockford,
IL, USA

Kit Company

Human Aβ 40 ELISA Kit Invitrogen
Human Aβ 42 ELISA Kit Invitrogen
Mouse CCL2 (MCP-1) ELISA Ready-SET-Go! R© eBioscience
mouse IL-6 ELISA Ready-SET-Go! R© eBioscience
mouse IL-10 ELISA Ready-SET-Go! R© eBioscience
mouse TNFα ELISA Ready-SET-Go! R© eBioscience
Peptide labeling Kit Thermo Fisher
BCA Assay Thermo Fisher
TSA Enhancer Kit Perkin Elmer
VectaShield DAPI Linaris

Table 3.5: Primer sequences for PCR: All primers for polymerase chain reactions (PCR) were
purchased from TIBMolBiol, Berlin, Germany

Primer Sequence
PSEN-1 (forward) GGT CCA CTT CGT ATG CTG
PSEN-1 (reverse) AAA CAA GCC CAA AGG TGA T
CB2 common GTC GAC TCC AAC GCT ATC TTC
CB2 wild-type GTG CTG GGC AGC AGA GCG AAT C
CB2 knock-out AGC GCA TGC AGA CTG CCT

Table 3.6: List of TaqMan gene assays: All Taqman primer were purchased from Applied Biostys-
tems, Carlsbad, CA, USA

Target gene Assay ID
adam10 Mm00545742 m1
adam17 Mm00456428 m1
ager Mm01134790 g1
arg1 Mm00475988 m1
app Mm01344172 m1*
bace1 Mm00478664 m1
ccl2 Mm00441242 m1*
ccr2 Mm00438270 m1
cnr1 Mm01212171 s1*
cnr2 Mm00438286 m1
cxcr3 Mm99999054 s1*
daglα Mm00813830 m1*
fos Mm00487425 m1*
gapdh Mm9999991 g1
gpr18 Mm01224541 m1
il-1β Mm01336189 m1
marco Mm00440265 m1*
magl Mm00449274 m1*
mmp9 Mm00442991 m1*
nape-pld Mm00724596 m1*
nep Mm00485028 m1*
tlr4 Mm00445273 m1
tnfα Mm00443258 m1
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3.3 Chemicals

The following chemicals, presented in alphabetical order, were used according to manufacturer

protocols or standard operating protocols in the current study.

Agarose Invitrogen

β-mercaptoethanol GIBCOr

Collagenase Roche

Dulbeccos’s modified eagle medium (DMEM) (4500 mg/l glucose) GIBCOr

DNase Roche

Ethylene diamine tetraacetic acid (EDTA) Sigma-Aldrich

Ethanol, absolut (C2H5OH; M 46.07 g/mol) Merck

Ethidiumbromide Promega

Foetal calf serum (FCS) PAA

GoTaqr Green Master Mix (2x) Promega

Hanks balanced salt solution (HBSS) GIBCOr

IGEPALr CA-630 Sigma-Aldrich

Isopentan (methylbutan) VWR

Ketamine hydrochrloride Sigma-Aldrich

Lipopolysachharide (LPS) Sigma-Aldrich

Rotir-phenol / chlorophorm / isoamylalcohol Roth

Paraformaldehyde (PFA) Sigma-Aldrich

Phosphate buffered saline (PBS) GIBCOr

Penicillin / streptomycin GIBCOr

Percoll VWR

Poly-L-lysin Sigma-Aldrich

Proteinase K Roche

Sodium dodecyl sulfate (SDS) Fluka

Tris(hydroxymethyl)aminomethane (TRIS) Carl Roth GmbH + Co. KG

Trypsin / EDTA GIBCOr

TWEENr 20 Roth

Vectashieldr mounting medium (DAPI) Vector Laboratories, Linaris

Xylazine Sigma-Aldrich
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3.4 Buffers and solutions

All reagents used were purchased from Carl Roth (Karlsruhe, Germany), Invitrogen (Darmstadt,
Germany), Merck (Darmstadt, Germany), or SIGMA-Aldrich (Steinheim, Germany). Exceptions
are noted separately.

cell culture medium DMEM (4.5 g/l glucose)
10% (v/v) FCS (heat-inactivated)

digestion solutions for CNS 0.1 mg/ml collagenase (in cell culture medium)
or
0.1 mg/ml DNase (in cell culture medium)

ELISA washing buffer 1x PBS
0.05% (v/v) TWEENr 20

ELISA stop solution 1 M H3PO4

FACS buffer 1x PBS (pH = 7.2)
2% (v/v) FCS (heat-inactivated)

macrophage culture medium RPMI 1640
15% (v/v) M-CSF
10% (v/v) FCS (heat-inactivated)
1% (v/v) penicillin / streptomycin
0.1% (v/v) β-mercaptoethanol

microglia culture medium DMEM (4.5 g/l glucose)
10% (v/v) FCS (heat-inactivated)
1% (v/v) penicillin / streptomycin
1% (v/v) minimum essential medium (MEM)
0.1% (v/v) β-mercaptoethanol

lysis buffer 450 µl TNE buffer
50 µl 10% (w/v) SDS
3 µl (v/v) proteinase K

narcotic solution 1 ml ketamine (100 mg/ml)
0.5 ml xylazine (20 mg/ml)
8.5 ml saline (sterile, isotonic)

percoll gradient solutions 70% (v/v) percoll (in cell culture medium)
30% (v/v) percoll (in FACS buffer)

radioimmunoprecipitation assay (RIPA) buffer 100 millimolar (mM) TRIS (pH = 8)
150 mM NaCl
0.5% (w/v) IGEPALr

0.2% (w/v) SDS
(prior to use: 1 tablet complete mini
protease inhibitor per 10 ml buffer)

10% SDS 100g SDS per 1 l
pH = 7.2
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TRIS acetate EDTA (TAE) buffer 40 mM TRIS acetate
1 mM EDTA

TRIS EDTA (TE) buffer 10 mM TRIS-HCl
1 mM EDTA
pH = 7.6

TNE buffer 10 ml 1 M TRIS (pH 8.0)
20 ml 5 M NaCl
2 ml 0.5 M EDTA
make up to 1 l with H2OmilliQ
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4 Methods

4.1 Mouse strains and animal housing

CB2−/− mice were generated by Buckley and colleagues [33]. Thereby, the 3’region of the Cnr2 cod-

ing exon was replaced through homologous recombination by the phosphoglycerate kinase (PGK)-

neomycin sequence. Consequently, this mutation resulted in the elimination of a part of the intra-

cellular loop 3, the transmembrane domains 6 and 7 and the carboxy terminus. APP/PS1 mice were

purchased from Charles River Laboratories (B6.Cg-Tg (APPswe(K594N/M595L)/,PSEN1dE9)

85Dbo/J; Charles River Laboratories, Germany GmbH) and crossed with CB2−/− mice.

APP/PS1∗CB2+/− mice were then crossed with CB2−/− mice. All animals were bred and housed

in a specific pathogen-free animal facility under standard animal housing conditions in a 12 hour

(h) dark-light cycle with access to food and water ad libitum according to German guidelines

for animal care (Tierschutzgesetz v 18.5.2006 BGBI. I S. 1206, 1313). Mice were weaned and

ear-tagged 3 weeks after birth and generally group-housed with up to six animals per cage. As

APP/PS1*CB2−/− pups were not obtained with the expected Mendelian frequency, APP/PS1*

CB2−/− mice were bred with CB2−/− mice. The experiments were carried out with mice at the

age of 9 and 14 months from both breeding strategies. Mice were genotyped by PCR using DNA

from tail biopsies. For cell culture experiments, C57BL/6J (JAXTM mice strain) mice were used

as controls. C57BL/6J, further on referred to as wildtype (WT or CB2+/+) mice, were initially

purchased from Charles River Laboratories and bred in-house for the current study.

4.1.1 APP/PS1 and CB2 genotyping

Tail biopsies were obtained from 3-4 weeks old mice and incubated in 500 µl lysis buffer at 37◦C

overnight. DNA extraction was conducted using the phenol/chloroform/isoamylalcohol (25:24:1)

method. Thereby, lysed biopsies were incubated with phenol/chloroform/isoamylalcohol and thor-

oughly mixed. After centrifugation at 13,000 rounds per minute (rpm) for 5 min, the supernatant

was taken and the DNA was precipitated by adding 900 µl ethanolabs. After centrifugation at

13,000 rpm for 5 min, the supernatant was discarded and the pellet was washed with 500 µl 70%

(v/v) ethanol and dried for 20 min. The pellet was re-suspended in 200 µl TE buffer. DNA con-

centration was measured at λ nm = 260 nm using a NanoDrop spectrophotometer. Purity of the

DNA samples was given by a ratio of A260/280nm = 1.8 and a ratio of A260/230nm = 2.0.

For APP/PS1 genotyping, purified DNA samples were diluted with DNase/RNase free water to

obtain a concentration of 50-100 ng*µl −1.
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For each sample, the following concentrations were used:

1 µl sample

8 µl H2O

10 µl 2x GoTaq Green Master Mix

0.5 µl primer PSEN forward

0.5 µl primer PSEN reverse

APP/PS1-PCR reaction mixtures were run under the following conditions:

1 x: denaturation (1x): 95◦C, 5 min

40 x: I. denaturation: 95◦C, 1 min

II. annealing: 63◦C, 1 min

III. elongation: 72◦C, 1 min

1 x: final denaturation: 72◦C, 10 min

4◦C, ∞

For CB2 genotyping, two PCR reaction mixtures (CB2 WT and knockout) were prepared:

1 µl sample

8 µl H2O

10 µl 2x GoTaq Green Master Mix

0.5 µl primer CB2 common

0.5 µl primer CB2 WT or knockout, respectively

Both CB2-PCR reaction mixtures were run using the following cycling parameters:

1 x: denaturation (1x): 95◦C, 5 min

40 x: I. denaturation: 95◦C, 30 sec

II. annealing: 60◦C, 45 sec

III. elongation: 72◦C, 1 min

1 x: final denaturation: 72◦C, 7 min

4◦C, ∞

The samples were loaded on a 1% (w/v) agarose gel, run with 120 V for 50 min, and incubated in

a 0.16% (w/v) EtBr bath for 20 min.
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4.2 Cell culture experiments

4.2.1 Generation of bone marrow-derived macrophages

For the generation of BMdM, CB2+/+ and CB2−/− mice were killed by cervical dislocation and

the skin was removed from both hind limbs. Femur and tibia were isolated and remaining tissue

was removed by using scalpel blades. Tissue-free bones were opened by cutting off the epiphyses

under cell-culture sterile conditions, before flushing out the bone-marrow with ice-cold PBS using

a 10 ml-syringe. Bone-marrow from femur and tibia from each mouse was collected in a 10 cm2

Petri dish and re-suspended until a single-cell suspension was achieved by using a glass pipette.

This suspension was filtered into a 50 ml tube though a 100 µm filter and cells were washed with

ice-cold PBS to a final volume of 50 ml. Cells were counted, adjusted to a cell number of 1,5 x 105

cells / ml and seeded in a total volume of 10 ml in fresh macrophage medium in uncoated Petri

dishes. Cells were incubated for 6 days at 37◦C and 5% CO2. On day 3, 5 ml of freshly prepared

medium was added. On day 6, cells were harvested for phagocytosis assays.

4.2.2 Isolation of primary microglia cells

Primary mouse microglia cells were isolated from CB2+/+ and CB2−/− mice at postnatal day

1-4. After cervical dislocation, whole brains were isolated from the skull. Isolated cortices were

mechanically minced to a single-cell suspension using a pipette. Cortices of up to 70 mice per

genotype were pooled in ice-cold Hanks buffered salt solution (HBSS). For sedimentation of insoluble

fragments, brain homogenates were kept on ice for 5 min. Supernatant was transferred into a fresh

tube and centrifuged at 1200 g for 5 min. Cell pellets were re-suspended in pre-warmed microglia

medium. Cortices of 2-3 pups of the same genotype were plated onto poly-L-lysine coated cell-

culture flasks at 37◦C and 5% CO2. Medium was changed after 24 h and subsequently twice per

week for approximately 21 days, or until mixed glia cultures reached confluency.

4.2.3 Harvesting and re-plating of primary microglia cells

Microglia cells were harvested by mild trypsination according to Saura et al. [230]. To enrich

microglia cells, confluent mixed glia cultures were first subjected to 0.25% trypsin/ethylenediamine-

tetraacetic acid (EDTA) (1/2) diluted 1/4 in microglia medium without serum for 15-20 min at

37◦C and 8% CO2. After detachment of the upper cell layer, trypsin digestion was stopped by

adding the same volume of complete media containing FCS. Remaining cells were harvested by an

incubation with undiluted 0.25% trypsin/EDTA (1/2) for 5 min. Detached cells were spun down

(1200 g, 5 min) and re-plated into 24 well plates at a density of 1.5− 2 x 105 cells per ml.

28



4.2.4 Phagocytosis assay

Microglia cells were incubated with fluorescently labelled Aβ (AlexaFlour 649) for 1 h at room

temperature (RT), or at 4◦C as a negative control to exclude unspecific binding. Labelling of

Aβ was performed by using DyLightTM649 Microscale Antibody Labelling Kit (ThermoScientific,

Waltham, MA). Purification of Aβ-DyLight649 (4.5 kDa) from unlabelled peptide was conducted

using the Slide-A-Lyzer mini dialysis cassette for peptides < 3.5 kDa. The Aβ-DyLight649 solution

was incubated in the dialysis cassette for 2 h in HBSS on a stirrer (RT, dark). Purified Aβ-

DyLight649 solution was aliquoted and stored at -20◦C before usage. After washing, cells were

subjected to flow cytometric analyses and stained with CD11b antibodies.

4.2.5 Stimulation assay

Stimulation of primary microglia cells was conducted 24 h after harvesting and re-plating cells

(4.2.3). Stimulation substances were diluted adequately in microglia medium and added to the

medium. For aggregation, monomeric Aβ peptides were incubated at RT for 1 h and a subsequent

stimulation with aggregated Aβ was conducted for 24 h. LPS and IFNγ were applied for approxi-

mately 16 h, while unstimulated cells served as controls. After stimulation, each supernatant was

collected separately, shock-frozen in liquid nitrogen and stored at -20◦C for further usage. Subse-

quently, cells were harvested for flow cytometric staining. All cell culture experiments were carried

out in triplicates.

4.3 Organ withdrawal and isolation methods

4.3.1 Brain removal for protein isolation and immunohistochemistry

Prior to surgery, mice were injected intraperitoneally with a ketamine/xylazine combination cocktail

(0.1 ml volume of cocktail was administered to mouse per 10 g body weight). Once the animal had

reached a surgical plane of anaesthesia, it was fixed backwards on a polystyrene plate. Abdomen

and thorax were opened, and each mouse was perfused transcardially with 20 ml ice-cold PBS.

Next, the skull was opened, the brain was removed carefully and divided into the two hemispheres.

For protein isolation, the left hemisphere was immediately snap-frozen in N2(liq.) and stored at -

80◦C. The right hemisphere was fixed in 4% (w/v) PFA overnight at 4◦C, followed by an incubation

in 20% (w/v) sucrose, embedded in TissueTekr and stored at -80◦C.

4.3.2 Isolation of cortex and hippocampus

For isolation of different brain areas, mice were sacrificed by cervical dislocation and the skull was

opened. Using micro forceps, cortex and hippocampus of each hemisphere were isolated and frozen

in pre-cooled tubes on dry ice. Samples were stored at -80◦C.
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4.3.3 Isolation of intracerebral leucocytes

For the analysis of intracerebral leucocytes (ICL), mice were anaesthetised and perfused as described

above (4.3.1). Brains were removed, placed in 5 cm2 Petri dishes (one brain per dish), and cut

into small pieces. For digestion, 1 ml of collagenase digestion solution was added to each dish and

brain pieces were further minced by pipetting up and down with a syringe containing 4 ml cell

culture medium. The brains were incubated at 37◦C and 5% CO2 for 45 minutes. Thereafter, 1

ml of DNase digestion solution was added per dish and the brains were incubated again for 45 min

(37◦C, 5% CO2). After digestion, the single cell suspension was filtered through a 100 µm mesh,

and the digestion was stopped by adding cell culture medium up to 50 ml. The cell suspension

was spun down (1,500 rpm for 7 min at 4◦C) and the cell pellet was dissolved in 20 ml of 70%

(v/v) percoll solution. To achieve a two-phase density gradient system, the 70% percoll solution

was carefully overlaid with a 30% (v/v) percoll solution. The samples were spun down again (2,100

rpm for 25 min at RT, without brake). Intracerebral mononuclear cells, which were identified as a

white ring between the two phases, were collected at the interface of the two phases. 10 ml of the

cell containing interphase were placed into a fresh tube and combined with 40 ml of cell culture

medium. After centrifugation (1,800 rpm for 10 min at 4◦C), the cell pellet was dissolved in 1 ml

fluorescence-activated cell sorting (FACS) buffer for flow cytometric analysis.

4.4 Flow cytometry

BMdM(4.2.1), primary microglia cells (4.2.2) as well as isolated ICL (4.3.3) were washed in 1 ml

FACS buffer by centrifuging with 4,500 rpm for 5 min at 4◦C. The cell pellet was re-suspended

in 45 µl blocking buffer (CD16/32; 1:300) and incubated for 15 min on ice. Cells were washed

with 500 µl FACS buffer and spun down (4,500 rpm for 5 min at 4◦C). Afterwards, cells were

incubated in 45 µl mixed primary antibody solution (1:200) and stained for cell surface markers for

15 min in the dark on ice. After a washing step, cells were incubated in 45 µl secondary antibody

solution (1:200) for 15 min on ice in the dark. After a last washing step, cells were re-suspended

in 300 µl (intracerebral mononuclear cells) or 200 µl (primary microglia or BMdM) FACS buffer.

Immediately before flow cytometric analyses, cell suspensions were filtered through a 40 µm mesh

of gauze (for the removal of aggregated cells) into FACS tubes and measured with a FACS Canto II

(BD Bioscience). Data analysis was performed using FlowJo software, versions 887 and X 10.0.7r2

(Tree Star Inc.).
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4.5 Biomolecular and biochemical methods

4.5.1 Protein isolation

For protein isolation, frozen brain hemispheres were weighted and 1 ml radioimmunoprecipita-

tion assay (RIPA) buffer with proteinase inhibitor was added per 150 mg brain. Brains were

homogenised by sonication (first step: 1 x 20 s, 30% cycles, 100% power; second step: 1 x 20 s, 60%

cycles, 100% power) and chilled on ice for 20 min. Afterwards, samples were spun down (13,300 g

for 30 min at 4◦C) and the supernatant was portioned in 200 µl aliquots and stored at -80◦C.

4.5.2 Protein quantification by BCA assay

To determine the total level of proteins, the commercially available bicinchoninic acid (BCA) kit

was used. The assay makes use of the ability of proteins to react with Cu2+ to a Cu1+ coloured pro-

tein chelat complex under alkaline conditions (biuret reaction). In a second step, BCA reacts with

the reduced (cuprous) cation that was formed in the first step and exhibits a colour-intense stable

complex with a linear absorption at λ nm = 562 nm, increasing with protein concentrations. Sam-

ples were diluted 1:50 and the total protein concentration was measured following manufacturer’s

instructions.

4.5.3 Enzyme-linked immunosorbent assays (ELISA)

ELISA kits were used to quantify protein concentrations in cell culture supernatant of stimulated

primary microglia cells and human amyloid-β (hAβ42, hAβ40) in mouse brain homogenates. The

so-called sandwich assays are based on the principle of antibody-mediated detection of a spe-

cific protein. In summary, 96-well plates are coated with a specific antibody against the target

antigen. After application of the sample, the target antigens binds to the specific antibody and

unbound proteins are discarded and washed, to exclude false-positive reactions. Subsequently, a

secondary antibody, specific for the target antigen, is added. As this antibody is coupled to the

enzyme horse radish peroxidase and can catalyse oxidation of the chromogenic substrate 3,3’,5,5’-

tetramethylbenzidine (TMB), resulting in a directly proportional light-sensitive detection signal.

This specific colour shift was detected using a plate reader at λ nm = 450 nm. For the determi-

nation of cytokines or chemokines concentrations, the samples were diluted individually for each

target protein and concentrations were determined according to the manufacturers instructions.

4.5.4 RNA isolation

Ribonucleic acid (RNA) from hippocampal tissue was isolated using TRIzolr protocol. Therefore,

frozen tissue samples were transferred to 2 ml tubes containing 1.4 mm zirconium oxide beads and

homogenised in TRIzolr (800 µl TRIzolr) by vigorous shaking (2 x 30 sec with 5,000 rpm) in the
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Precellysr tissue homogenizer. Homogenised tissue was transferred to a new tube and spun down

(12,000 g, 10 min, 4◦C), to exclude bigger tissue aggregations. After transferring the supernatant to

another fresh tube, 1-bromo-3-chloropropane (BCP) (1:5) was added and the samples were mixed

thoroughly for 30 sec. After a 10 min incubation at RT, samples were spun down (12,000 g, 10

min, 4◦C). Subsequently, the RNA-containing upper phase (aqueous) was transferred into a new

tube and precipitated with 400 µl isopropyl alcohol. After two washing steps with 75% ethanol,

dried RNA pellets were dissolved in 20 µl RNase-free water. Samples were stored at -80◦C.

RNA concentration of each sample was measured using NanoDrop spectrophotometer. RNA shows

an absorption maximum at λ nm = 260 nm (A260) and the ratio of A260 and A280 is used to assess

RNA purity of each sample preparation. The absorption of 1 unit at 260 nm is equivalent to a RNA

concentration of 40 µl/ml. Protein or phenol impurities can influence this ratio due to different

absorption maxima.

4.5.5 cDNA synthesis

For complementary DNA (cDNA) synthesis, 400 ng RNA were incubated for 5 min at 65◦C and

then reversely transcribed at 42◦C for 50 minutes. For each sample, cDNA synthesis was performed

using the following master mix reaction and an intermittent cycling program:

master mix per sample (8 µl)

5x first strand buffer 5 µl

DTT (0.1 M) 2 µl

dNTPs (10 mM) 1 µl

cycling parameters for 1 µl RNA + 1 µl Oligo (dt) primer:

70◦C 10 min

4◦C 3 min

add 8 µl master mix per sample

42◦C 2 min

4◦C 3 min

add 1 µl reverse transcriptase per sample

42◦C 60 min

70◦C 15 min

4 ◦C 10 min

cDNA samples were adjusted to a final concentration of 10 ng/µl and stored at -20◦C.
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4.5.6 Quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) was conducted to quantify gene expression levels in ani-

mals dependent on age and genotype. This method offers the possibility to track DNA amplification

in real-time by making use of the fluorescence resonance energy transfer (FRET). A gene-specific

oligonucleotide probe, fluorescently labeled at the 5’ end (6-carboxyfluorescein, acronym: FAM)

and quenched at the 3’ end with a non-fluorescent tag (tetramethylrhodamine, acrony: TAMRA),

is added to the cDNA sample together with an unlabelled pair of primers. During the annealing

phase, the probe hybridises with the complementary target sequence and the 5’→ 3’ exonuclease ac-

tivity of the Taq polymerase allows degradation of the probe. Thereby, the fluorochrome is released

from the quencher, while fluorescence intensity increases which each cycle. This is proportional to

the amount of cDNA template available in the sample. To determine the relative expression, the

difference (∆) between the crossing points (CP) of a target gene and a constitutively expressed

reference gene is measured (∆CP) [148]. Each sample was run in triplicates; for each gene one

water control was used as a negative control to account for possible contaminations.

PCR setup for TaqMan gene expression analysis:

cDNA (= 10 ng/µl) 4 µl

RNase-free water 0.5 µl

2x Taqman Gene Expression Master Mix 5 µl

20x Taqman Gene Expression Assay 0.5 µl

Cycling parameters:

1 x 95◦C 10 min

40-45 x 95◦C 15 sec

60◦C 60 sec

∆CP values were calculated by subtracting the CP values of the internal reference gene

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Afterwards, 2−∆CP values were calculated.

4.6 Immuno-histochemical methods

4.6.1 Cryo sectioning

TissueTek-embedded frozen brains were sliced sagitally or coronally into 12 or 14 µm slices, re-

spectively. Sagittal slices were taken starting from a lateral depth of 1.92 mm to a lateral depth

of 0.24 mm (for hippocampus). Coronal slices were taken from bregma -0.94 mm to -3.08 mm (for

hippocampus and cortex). Every second slice was taken on SuperfrostTM microscope slides (three

slices per slide) and slides were stored at -20◦C until staining.
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4.6.2 Thioflavine T staining

The AD mouse model, APP/PS1, develops Aβ aggregates with increasing age. These aggregates

contain β-sheet-rich structures, which can be specifically detected by benzothiazol dyes, such as

thioflavin T or thioflavin S. These compounds display a dramatic shift of the excitation maximum

(from 385 nm to 450 nm) and the emission maximum (from 445 nm to 482 nm), and are therefore

widely used chemical compounds to specifically stain Aβ plaques in mouse models of AD. Brain

slices were thawed for 5 min at 4◦C, washed for 5 min in PBS, and incubated in 280 ml of 0.025%

(w/v) thioflavine T solution (1:2 EtOH/PBS). Slices were washed twice with PBS for 5 min and

subsequently embedded with FluoromountTM aqueous mounting medium. Cover slips were fixed

with nail polish. For quantification, numbers of Aβ plaques were counted in 1 mm2 in 4 to 9

sections per animal by using a self-established makro for ImageJ (1.50i, Wayne Rasband, National

Institute of Health, USA).

4.6.3 Iba1, NeuN and Parv immunostaining

Brain slices from all genotypes were prepared as described above (4.6.1). Slices were thawed at 37◦C

for 30 min, washed with PBS and subsequently permeabilised with 0.2% (v/v) TritonTM X-100 for

20 min. After washing with PBS for 10 min, slices were blocked in 3% (w/v) bovine serum albumin

(BSA) for 20 min at RT. After blocking, the primary antibody (see table 3.1) was diluted in 0.5%

BSA (w/v) and directly applied onto the slices. Incubation was conducted in a moist chamber at

4◦C over night (for dilutions of antibodies see table 3.1). The following day, slices were washed 3

times followed by the incubation with the secondary antibody, diluted in 0.5% BSA (w/v), for 1

h at RT. Finally, slices were washed again and mounted in 4’,6-diamidino-2-phenylindole (DAPI)

FluoromountTM . To avoid drying-out, cover slips were sealed using nail polish.

4.7 Behavioral phenotyping

The Morris water maze (MWM) task, developed by Richard Morris in the early 1980’s [176], is

one of the most widely used methods to examine cognitive performances in tg AD mice. Using

this task, spatial learning and memory can be assessed. Thereby, mice are trained to find a hidden

platform in large pool of milky water using visual keys. Learning ability of the mouse is given by

the escape latency, the time to find the hidden platform. As a second parameter, memory strength

can be measured. Thereby, the platform is removed after the acquisition phase and the time spent

in each quadrant is measured. In the current study, mice were trained to find the hidden platform

over five consecutive days with four trails per day. To assess small genotype differences in the

acquisition phase, the intertrial time was set to 1 h.
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4.8 Statistical analyses

To determine differences between genotype- and treatment- or age-groups, two-way analysis of vari-

ance (ANOVA) and Tukey’s multiple comparisons test were used, except if stated otherwise. For

statistical analysis within one age-group, one-way ANOVA followed by Tukey’s multiple compar-

isons test was used. To detect genotype differences in the Morris water maze learning paradigm over

the training period, two-way ANOVA followed by Sidak’s multiple comparisons test was used. Data

are given as mean ± standard error of the mean (SEM). All tests were performed with GraphPad

Prism 5 software (GraphPad Software, San Diego, USA) and p ≤ 0.05 was considered significant.

4.9 Integrated projects and cooperation partners

Within my PhD thesis, a side project was overtaken by a medical PhD student. Immunohisto-

chemical experiments involving staining for the marker neuronal nuclei (NeuN) and parvalbumin

(Parv) were performed by Gregor Toporowski in the context of his medical thesis. Stimulation

experiments of primary microglia cells were done in cooperation with Dr. Anne Schmoele from the

German centre of neurological diseases (DZNE), Bonn, Germany. Analyses of endocannabinoids

and related lipids in cortical and hippocampal tissue of 9- and 14-month-old mice was conducted

in a cooperation with the lipidomic group of Prof. Dr. Beat Lutz and Dr. Laura Bindila from the

Institute of physiological chemistry of the University Medical Center Mainz, Germany.
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5 Results

5.1 Role of microglial CB2 receptor signalling in vitro

5.1.1 Microglia derived from CB2−/− mice are less responsive to pro-inflammatory stimuli

To examine the role of CB2 signalling on microglia polarisation, primary neonatal microglia cells

derived from CB2+/+ and CB2−/− mice were stimulated with LPS and IFNγ to induce a pro-

inflammatory activation state. Cell surface marker expression, analysed as mean fluorescence

intensity (MFI) via flow cytometry, was compared. After stimulation, mean expression of the

intercellular adhesion molecule (ICAM) was significantly increased in microglia derived from both,

CB2+/+ (mean ICAM-MFI: 709 vs. 4944; p< 0.0001) and CB2−/− (mean ICAM-MFI: 694 vs.

1409; p = 0.0016) mice as compared to each unstimulated control (Fig. 5.1, A). However, even

though CB2−/− microglia responded with an upregulation of ICAM upon LPS/IFNγ stimulation,

this increase was markedly reduced in comparison to stimulation-induced ICAM-upregulation in

CB2+/+ microglia (2-way ANOVA, genotype effect F1,12 = 273.3, p< 0.0001).

Figure 5.1: Expression levels of cell-surface marker in CB2+/+ and CB2−/− primary mi-
croglia. Upon stimulation with LPS/IFNγ, expression of cell-surface marker ICAM (A), CD40 (B)
and MMR (C) was compared to unstimulated controls (vehicle). In CB2−/− microglia (light gray bars),
ICAM and CD40 expression was significantly reduced when compared to corresponding CB2+/+ mi-
croglia (white bars), while MMR expression was increased under basal and stimulatory conditions in
CB2−/− microglia. N = 3; samples were run in triplicates. Data were analysed by 2-way ANOVA,
followed by Tukey’s multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001; # significance to
unstimulated corresponding genotype control.
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A similar expression pattern and a highly significant genotype effect (2-way ANOVA, genotype

effect F1,10 = 62.25, p< 0.0001) was observed for expression levels of the co-stimulatory molecule

CD40 (Fig. 5.1, B). Upon LPS/IFNγ challenge, CD40 expression was 12-fold increased in cultures of

CB2+/+ microglia (mean CD40-MFI: 130 vs. 1583; p< 0.0001) as compared to a four-fold increase

in CB2−/− microglia cultures (mean CD40-MFI: 153 vs. 622; p = 0.0004). Finally, expression

levels of the anti-inflammatory marker MMR was investigated (Fig. 5.1, C). Under basal conditions,

CB2−/− microglia showed increased expression levels of MMR as compared to cultures derived from

CB2+/+ (p = 0.0016). Upon LPS/IFNγ stimulation, expression levels of MMR were significantly

reduced in CB2+/+ cells (p = 0.0419), whereas expression levels in CB2−/− microglia remained

constant (p = 0.2996; Fig. 5.1, C) in comparison to basal expression levels. Conclusively, CB2+/+

and CB2−/− microglia showed highly significant cell surface marker expression of MMR upon pro-

inflammatory stimulation (2-way ANOVA, genotype effect F1,12 = 31.56, p = 0.0001; followed by

Tukey’s multiple comparisons test: p = 0.0003).

Following analyses of cell surface marker expression, the secretion of cytokines and chemokines

upon pro-inflammatory stimulation was analysed as an indicator of microglial activation. Via

ELISA measurements, levels of secreted TNFα, IL-6, CCL2 and IL-10 were analysed in cell culture

supernatants of unstimulated (vehicle) and stimulated microglia derived from CB2+/+ and CB2−/−

mice. Similar to the expression profile of cell-surface marker, secretion of the pro-inflammatory

cytokine TNFα was significantly induced after challenge with LPS/IFNγ in both groups (2-way

ANOVA, stimulation effect F2,12 = 1437, p< 0.0001; Fig. 5.2, A). However, microglia derived from

CB2−/− mice secreted significantly less TNFα than microglia derived from CB2+/+ mice (2-way

ANOVA, genotype effect F1,12 = 33.40, p< 0.0001; followed by Tukey’s multiple comparisons test:

p< 0.0001). A highly significant stimulation and genotype effect was also observed for the lev-

els of secreted IL-6 (2-way ANOVA, stimulation effect F2,11 = 165.1, p< 0.0001; genotype effect

F1,11 = 121.7, p< 0.0001; Fig. 5.2, A). In CB2+/+ microglia, IL-6 secretion was significantly in-

duced by LPS/IFNγ challenge (p < 0.0001), while IL-6 levels in stimulated CB2−/− microglia were

significantly reduced as compared to levels of CB2+/+ microglia (p< 0.0001; Fig 5.2, B). Secretion

of the monocytic migratory chemokine CCL2 was highly upregulated in LPS/IFNγ challenged mi-

croglia derived from CB2+/+ mice (p < 0.0001; Fig. 5.2, C). In contrast, CB2−/− microglia did not

upregulate CCL2 secretion after pro-inflammatory stimulation (p> 0.9999), thus a highly signif-

icant genotype difference was detected (2-way ANOVA, genotype effect F1,12 = 144.2, p< 0.0001;

followed by Tukey’s multiple comparisons test: p< 0.0001; Fig. 5.2, C). Furthermore, secretion

of the anti-inflammatory cytokine IL-10 was analysed. Under basal conditions, IL-10 secretion

was not detectable in cell cultures derived from CB2+/+ nor from CB2−/− mice (Fig. 5.2, D).

However, LPS/IFNγ treatment significantly induced the secretion of IL-10 in cell cultures ob-

tained from mice of both genotypes (2-way ANOVA, stimulation effect F2,12 = 1313, p< 0.0001;
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Fig. 5.2, C). Interestingly, a LPS/IFNγ-initiated upregulation of IL-10 was significantly more pro-

nounced in samples of CB2−/− than in samples of CB2+/+ microglia (2-way ANOVA, genotype

effect F1,12 = 255.7, p< 0.0001; followed by Tukey’s multiple comparisons test: p< 0.0001; Fig. 5.2,

D). In general, microglia derived from CB2−/− mice seemed to be less responsive in terms of an

induced expression of pro-inflammatory cell-surface marker or the secretion of pro-inflammatory

cytokines and chemokines upon inflammatory conditions. On the contrary, expression or secretion

of anti-inflammatory markers, such as MMR and IL-10, respectively, was significantly enhanced in

CB2−/− microglia as compared to CB2+/+ controls.

Figure 5.2: Measurement of cytokine and chemokine release in supernatants of CB2+/+

and CB2−/− primary microglia. After stimulation with LPS/IFNγ, secretion of TNFα (A), IL-
6 (B), CCL2 (C) and IL-10 (D) was quantified in microglia from CB2+/+ (white bars) and CB2−/−

(light gray bars) and compared to unstimulated controls (vehicle). Microglia from CB2−/− displayed a
markedly reduced secretion of TNFα IL-6 and CCL2 in comparison to microglia derived from CB2+/+

mice, while secretion of IL-10 was increased in CB2−/− upon LPS/IFNγ stimulation. N = 3; samples
were run in triplicates. Data were analysed by 2-way ANOVA, followed by Tukey’s multiple comparisons
test, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001; # significance to corresponding unstimulated genotype control.
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5.1.2 Microglia and macrophages derived from CB2−/− mice show equal phagocytic

capacities compared to cultures from CB2+/+ mice

We next determined whether the reduced pro-inflammatory activation profile observed in CB2−/−

microglia was also associated with changes in the phagocytic efficacy of microglia. Therefore, the

uptake of fluorescently labelled Aβ by neonatal microglia and BMdM derived from CB2+/+ and

CB2−/− mice was analysed. Cells were incubated with DyLight647r-labelled Aβ for 1 h at 37◦C

to analyse their phagocytic activity. A control experiment was conducted simultaneously at 4◦C

to account for unspecific binding. Using flow cytometric analysis, living cells were gated for their

expression of CD11b to determine the proportion of microglia. Subsequently, CD11b+ cells were

gated for their expression of DyLight647r to analyse the proportion of cells that phagocytosed Aβ.

Via dot plot analysis, we identified a proportion of approximately 50% CD11b+ microglia, that

took up DyLight647r-labelled Aβ at 37◦C when compared to the control group at 4◦C (Fig. 5.3, A;

upper right quadrant). Quantification revealed an equivalent percentage of CB2+/+ and CB2−/−

microglia that phagocytosed Aβ, thus a genotype specific difference regarding the phagocytic ac-

tivity was absent (Fig. 5.3, B). Similarly, histograms of DyLight647r-labelled Aβ fluorescence

intensity were comparable between both genotypes (representatively shown in Fig. 5.3, C).

Figure 5.3: Phagocytosis of fluorescently labelled Aβ by primary neonatal microglia. Rep-
resentative dotplots of Aβ uptake by CB2+/+ and CB2−/− microglia analysed by flow cytometry (A).
Quantification of the percentage of cells, that phagocytosed labelled Aβ (B). Representative histogram
of Aβ fluorescence intensity labelled with DyLight647r and cell count of CB2+/+ and CB2−/− microglia
(C).
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As infiltrating macrophages have been discussed as better phagocytes [150], we next analysed

BMdM for their ability to take up fluorescently-labelled Aβ. Analogous to microglia, their phago-

cytic activity was evaluated via flow cytometry and quantified as the proportion of macrophages

(CD11b+), which took up fluorescently labelled Aβ (Fig. 5.4, A). After quantification, a com-

parable proportion of BMdM phagocytosed Aβ within both genotypes (Fig. 5.4, B). Similar to

neonatal microglia, also the fluorescence intensity of DyLight647r-labelled Aβ remained compara-

ble between both genotypes (Fig. 5.4, C). These data demonstrate that the presence or absence

of CB2 signalling did not affect the efficiency of Aβ phagocytosis in primary neonatal microglia or

BMdM.

Figure 5.4: Phagocytosis of fluorescently labelled Aβ by BMdM. Representative dotplots of
Aβ uptake by bone-marrow derived CB2+/+ and CB2−/− macrophages analysed by flow cytometry (A).
Quantification of the percentage of cells, that phagocytosed labelled Aβ (B). Representative histogram
of Aβ fluorescence intensity labelled with DyLight647r and cell count of CB2+/+ and CB2−/− BMdM
(C).
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5.2 Role of CB2 signalling on expression of ECS components

5.2.1 mRNA expression of ECS receptors is altered in APP/PS1∗CB2−/−

ECS components are known to change with age and disease progression in humans. Therefore,

we examined whether the expression of humanised APP and mutated presenilin also influenced

expression levels of cannabinoid receptors, endocannabinoid-producing enzymes or the levels of

the main endocannabinoids and cannabinoid-related lipids in 9- and 14-month-old tg and control

mice. Hippocampal tissue of 9- and 14-month-old mice was subjected to qRT-PCR and target gene

expression levels were compared to expression levels of the internal reference gene GAPDH (Fig.

5.5).

Figure 5.5: Expression levels of endocannabinoid system receptors. Shown are expression
levels of the cannabinoid receptor 1 (Cnr1, A), Cnr2 (B) and the orphan cannabinoid receptor Gpr18
(C). n = 5-8; samples were run in triplicates. Data were analysed by 2-way ANOVA followed by
Tukey’s multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001; # significance to corresponding
9-month-old group.

Overall, cannabinoid receptor 1 (Cnr1 ) mRNA expression levels were significantly altered by

age (F1,53 = 15957, p = 0.0002), genotype (F3,53 = 3.096, p = 0.0345) and interaction (F3,53 = 7.572,

p = 0.0003; Fig. 5.5, A). Specifically, Cnr1 mRNA levels were age-dependently decreased in

APP/PS1 (p = 0.0003) and APP/PS1∗CB2+/+ mice (p = 0.0031) in comparison to the correspond-

ing 9-month-old group. In samples of 9-month-old APP/PS1 mice, Cnr1 mRNA expression levels
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were slightly upregulated compared to CB2−/− mice (p = 0.0292), while expression levels in CB2+/+

and APP/PS1∗CB2−/− were comparable (Fig. 5.5, A). In 14-month-old mice, a significant decrease

in Cnr1 mRNA levels was found in samples of APP/PS1∗CB2−/− mice when compared to expres-

sion levels in CB2+/+ (p = 0.0027) or CB2−/− (p = 0.0285) hippocampal tissue (Fig. 5.5, A).

As an increased expression of CB2 receptors has been associated with AD pathology in recent

years, we also investigated Cnr2 expression levels in both age groups. In 9-month-old mice, Cnr2

expression was comparable between the four groups, even in CB2−/− mice (Fig. 5.5, B). The

expression of Cnr2 in tissue samples of CB2−/− mice is due to the expression of a truncated CB2

receptor, because the strategy used to generate CB2 knockout mice was by replacing a part of

the coding exon with a neomycin resistance cassette. This resulted in the deletion of part of the

intracellular loop 3, the transmembrane domains 6 and 7 as well as the carboxy terminus. Even

though ligand receptor binding studies were used to confirm the loss of CB2 receptor function [33],

the remaining N-terminus is still expressed. Therefore, currently available antibodies targeting this

N-terminus still lead to the detection of a truncated CB2 receptor.

Nevertheless, we detected a significantly increased Cnr2 expression in samples of 14-month-

old APP/PS1∗CB2−/− mice when compared to 9-month-old APP/PS1∗CB2+/+ mice (p< 0.0001)

and in comparison to age-matched CB2+/+ (p< 0.0001), CB2−/− (p< 0.0001) and APP/PS1

(p< 0.0001), suggesting a compensatory effect.

Gene expression of the recently discovered orphan cannabinoid receptor Gpr18 remained sta-

ble in hippocampal tissue of all four 9-month-old groups (Fig. 5.5, C). However, in 14-month-old

mice, Gpr18 expression was significantly altered with age (F1,54 = 6.641, p = 0.0127) and geno-

type (F3,54 = 2.954, p = 0.0405). In detail, Gpr18 gene expression was remarkably upregulated in

APP/PS1 mice as compared to CB2+/+ (p = 0.0209) and CB2−/− (p = 0.0053) mice, as analysed

by Tukey’s multiple comparisons test.

5.2.2 mRNA expression of ECS enzymes is altered with age

Subsequent to expression analyses of the main endocannabinoid receptors, expression levels of the

main enzymes responsible for endocannabinoid synthesis and degradation were analysed. Statisti-

cal analysis of Daglα gene expression in hippocampal tissue of 9- and 14-month-old mice showed

a significant interaction (F3,51 = 4.459, p = 0.0074), age (F1,51 = 18.64, p< 0.0001) and genotype

effect (F3,51 = 3.204, p = 0.0308). Interestingly, Daglα gene expression was exclusively upregulated

in tissue of 14-month-old APP/PS1∗CB2−/− mice as compared to age-matched control groups

(p = 0.0032 vs CB2+/+, p = 0.0017 vs CB2−/−, p = 0.0469 vs APP/PS1) or expression levels in

hippocampal tissue of 9-month-old mice APP/PS1∗CB2−/− (p = 0.0002; Fig. 5.6, A). In all other

groups, Daglα gene expression was unaltered.

While gene expression levels of Magl remained comparable in hippocampal tissue samples of
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Figure 5.6: Expression levels of endocannabinoid system synthesizing and degrading en-
zymes. Shown are expression levels of 2-AG synthesizing and degrading enzymes Daglα (A) and Magl
(B), AEA synthesizing and degrading enzymes Faah (C) and Nape-Pld (D). n = 5-8; samples were run
in triplicates. Data were analysed by 2-way ANOVA followed by Tukey’s multiple comparisons test,
∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001; # significance to corresponding 9-month-old group.

9-month-old animals, Magl mRNA expression levels were significantly upregulated in hippocam-

pal tissue of 14-month-old CB2−/− (p = 0.0401), APP/PS1 (p = 0.0219) and APP/PS1∗CB2−/−

(p = 0.0393; Fig. 5.6, B) mice, respectively. This finding was accompanied by a highly significant

age effect (2-way ANOVA, F1,51 = 38.44, p< 0.0001).

Similar to Daglα and Magl, gene expression of Nape-Pld, the main enzyme responsible for the

biosynthesis of AEA, was not altered in hippocampal tissue of 9-month-old mice (Fig. 5.6, C).

However, a highly significant interaction effect (F3,52 = 5.977, p = 0.0014) and a significant genotype

effect (F3,52 = 2.826, p = 0.0475) was detected. In detail, Nape-Pld expression levels were signifi-

cantly decreased in tissue samples of 14-month-old CB2−/− (p = 0.0049), APP/PS1 (p = 0.0106)

and APP/PS1∗CB2−/− (p = 0.0031) mice when compared expression levels of age-matched CB2+/+

mice.

The expression pattern of the enzyme responsible for AEA degradation, Faah, was comparable with

the expression pattern of Nape-Pld (Fig. 5.6, D). In 9-month-old animals, Faah gene expression

levels were almost equal, while gene expression levels were significantly reduced in samples of aged

43



CB2−/− and APP/PS1∗CB2−/− as compared to 14-month-old CB2+/+ littermates (p = 0.0126

and p = 0.0037, respectively). These findings were further confirmed by a significant interaction

(F3,53 = 4.536, p = 0.0067) and age effect (F1,53 = 8.638, p = 0.0049; Fig. 5.6, D).

5.2.3 Endocannabinoid level in cortex and hippocampus

Subsequent to gene expression analyses of cannabinoid receptors as well as synthesizing and hy-

drolysing enzymes, secretion of the main endocannabinoids 2-AG and AEA was evaluated. Ad-

ditionally, secretion levels of ARA, a polyunsaturated fatty acid present in diacylgylcerol, and N-

palmitoylethanolamine (PEA), an anti-inflammatory and analgesic mediator, were analysed. Lipid

extraction of hippocampal and cortical tissue samples and measurements of endocannabinoid levels

were conducted in a collaboration with Prof. Dr. Beat Lutz and Dr. Laura Bindila from the

institute of physiological chemistry, University Medical Center Mainz, Germany.

In cortical tissue of 9- and 14-month-old mice, we were not able to detect significant differences in

the secretion of AEA between the four individual groups, however a significant interaction effect

was observed (F3,40 = 4.036, p = 0.0134; Fig. 5.7, A).

Figure 5.7: Secretion of AEA and 2-AG in cortical and hippocampal tissue of 9- and 14-
month-old mice. Quantification of AEA (A, B) and 2-AG (C, D) secretion in cortical and hippocampal
tissue of 9- and 14-month-old mice. n = 5-8; Data were analysed by 2-way ANOVA followed by Tukey’s
multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001; # significance to corresponding 9-month-
old group.
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In comparison to cortical tissue, AEA measurements in hippocampal tissue were age- and

genotype-dependently regulated (age effect F1,40 = 12.61, p = 0.0010 and genotype effect F3,40 = 4.041,

p = 0.0134; Fig. 5.7, B). In detail, secretion levels of AEA were significantly increased in 14-month-

old APP/PS1∗CB2−/− as compared to levels of 9-month-old APP/PS1∗CB2−/− mice (p< 0.0139),

as analysed by Tukey’s multiple comparisons test. In all other mouse groups, significant alterations

regarding AEA secretion were not detected. At the age of 9 months, 2-AG secretion of cortical

tissue was comparable between the four groups (Fig. 5.7, C). However, at the age of 14 months,

2-AG secretion was significantly reduced in APP/PS1∗CB2−/− when compared to 9-month-old

APP/PS1∗CB2−/− (p< 0.0001) as well as in comparison to age-matched CB2+/+ (p = 0.0414)

and CB2−/− mice (p = 0.0370). These findings were further accompanied by significant interaction

(F3,40 = 4.089, p = 0.0127), age (F1,40 = 31.65, p< 0.0001) and genotype (F3,40 = 2.883, p = 0.0476)

effects (Fig. 5.7, C). In hippocampal tissue, the secretion of 2-AG was age-dependently reduced in

CB2+/+ (p = 0.0395) and APP/PS1∗CB2−/− mice (p = 0.0016) when compared to corresponding

secretion levels of 9-month-old mice. These results were also reflected by a highly significant age

effect (F1,41 = 30.14, p< 0.0001). In contrast, 2-AG secretion in tissue samples of CB2−/− and

APP/PS1∗CB2+/+ mice remained constant between both age groups (Fig. 5.7, D).

Figure 5.8: Secretion of ARA and PEA in cortical and hippocampal tissue of 9- and 14-
month-old mice. Quantification of ARA (A, B) and PEA (G, H) secretion in cortical and hippocampal
tissue of 9- and 14-month-old mice. n = 5-8; Data were analysed by 2-way ANOVA followed by Tukey’s
multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001; # significance to corresponding 9-month-
old group.
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Secretion of ARA in cortical tissue of 9-month-old mice was not altered within the four groups

(Fig. 5.8, A). However, in tissue samples of aged mice, a significantly reduced secretion of ARA

was observed in samples of APP/PS1∗CB2−/− mice when compared to secretion levels of 9-

month-old mice (p = 0.0009). In general, significant interaction (F3,40 = 4.462, p = 0.0085) and age

(F1,40 = 17.98, p = 0.0001) effects were observed (Fig. 5.8, A). In hippocampal tissue, ARA secre-

tion remained comparable within the four genotypes, however a significant age effect (F1,41 = 6.413,

p = 0.0153; Fig. 5.8, B) was detected, indicating reduced secretion levels in cortical tissue samples

of 14-month-old mice. Finally, the secretion of PEA in cortical tissue was analysed and revealed

a significant interaction effect (F3,40 = 5.325, p = 0.0035), due to an increased secretion of PEA

in tissue samples of CB2+/+ and CB2−/− mice and decreased secretion levels of PEA in tissue

samples of APP/PS1 and APP/PS1∗CB2−/− mice (Fig. 5.8, C). In hippocampal tissue, secretion

levels of PEA were neither age- and nor genotype-dependently affected, thus, PEA secretion was

comparable between all groups (Fig. 5.8, D). In summary, expression levels of AEA, 2-AG, ARA

and PEA tended to decrease with age, especially in APP/PS1∗CB2−/− mice and expression in

hippocampal tissue seemed to be more stable regarding age and genotype differences.
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5.3 Role of CB2 signalling in APP processing and plaque formation

5.3.1 Reduced Aβ plaque load in APP/PS1∗CB2−/− mice

Most AD animals models are reflecting the Aβ-plaque-component of the disease, which is believed

to be the main reason for AD associated neuronal dysfunction. Due to the fact that the mouse

model used in the present study also expresses a mutated form of APP, the Aβ-plaque load in

different brain regions of 9- and 14-month-old mice was analysed. Therefore, the benzothiazole salt

thioflavin T was used to visualize and quantify the presence of misfolded APP-derived aggregates.

By binding to β-sheet-rich structures, the dye displays an enhanced fluorescence intensity as well

as a characteristic red shift of its emission spectrum.

Figure 5.9: Plaque deposition in 9- and 14-month-old AD transgenic mice. Representative
images of thioflavin t stained tissue of 9- and 14-month-old mice (A). Quantification of the number of
plaques in each group in cortical sections (B) and hippocampal sections (C). scale bar 50µ; n = 5-8; Data
were analysed by 2-way ANOVA, followed by Tukey’s multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01,
∗ ∗ ∗p< 0.001; # significance to corresponding 9-month-old group.

After thioflavin T staining in brain slices of AD tg mice, APP-derived aggregates were clearly

visible (Fig. 5.9, A), while stained brain slices of control mice were absent of any plaques (data not

shown). Furthermore, increased numbers of thioflavin T stained plaques were detectable between

brain slices of 9- and 14-month-old mice (Fig. 5.9, B and C). After quantification of thioflavin

T stained Aβ plaques in cortical brain regions, significant interaction (F1,71 = 14.35, p = 0.0003),

age (F1,71 = 91.65, p< 0.0001) and genotype effects (F1,71 = 40.58, p< 0.0001) were found. In 9-
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month-old mice, the numbers of Aβ plaques per mm2 in cortical areas were comparable between

the two AD tg mouse groups (Fig. 5.9, B). However, in samples of 14-month-old APP/PS1 mice,

the numbers of plaques increased significantly compared to age-matched APP/PS1∗CB2−/− mice

(p< 0.0001).

In hippocampal brain regions of thioflavin T-stained brain slices, significant age (F1,70 = 91.32,

p< 0.0001) and genotype effects (F1,70 = 32.94, p< 0.0001) were detected (Fig. 5.9, C). In brain

slices of 9-month-old mice, the number of Aβ plaques was significantly reduced in samples of

APP/PS1∗CB2−/− as compared to samples of age-matched APP/PS1 mice (p = 0.0004). With

increasing age, the plaque load was elevated in samples of both, APP/PS1 (p< 0.0001) and

APP/PS1∗CB2−/− (p< 0.0001) mice when compared to the number of plaques in each 9-month-old

group. Nevertheless, the number of Aβ plaques per mm2 was significantly reduced in samples of

APP/PS1∗CB2−/− as compared to APP/PS1 mice (p = 0.0013, Fig. 5.9, C).

5.3.2 Altered secretion levels of Aβ40 and Aβ42 in 9-month-old APP/PS1∗CB2−/− mice

Subsequent to analyses of APP plaque formation, secretion of the two major forms of soluble Aβ,

Aβ40 and Aβ42, was measured by ELISA and quantified in total brain lysates of 9- and 14-month-

old mice (Fig. 5.10, A and B). The Aβ protein load in pg per ml was adjusted to 500 µg of total

protein to adjust for unequal brain sizes.

Figure 5.10: Secretion of amyloid species measured by ELISA. Quantification of secreted Aβ40
(A) and Aβ42 (B) in CB2+/+ (white bar), CB2−/− (gray bar), APP/PS1∗CB2+/+ (black bar) and
APP/PS1∗CB2−/− (grey striped bar). Secretion of Aβ40 and Aβ42 was decreased in 9-month-old
APP/PS1∗CB2−/− (A and B), whereas secretion levels of both Aβ species was equal in AD mice at the
age of 14 months. Secretion of Aβ40 and Aβ42 was not detectable in samples of CB2+/+ and CB2−/−

mice. n = 5-8; Data were analysed by 2-way ANOVA followed by Tukey’s multiple comparisons test,
∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001; # significance to corresponding 9-month-old group.

Secretion of Aβ40 was reduced by approximately 50% in samples of 9-month-old

APP/PS1∗CB2+/+ mice as compared to secretion levels in samples of age-matched APP/PS1

mice (p< 0.0001; Fig. 5.10, A). In both control groups, CB2+/+ and CB2−/−, levels of secreted
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Aβ40 were below detection limit. Similarly, secretion levels of Aβ42 were significantly reduced

(p = 0.0068) in samples of 9-month-old APP/PS1∗CB2−/− as compared to APP/PS1 mice, while

Aβ42 was not detectable in both control groups (Fig. 5.10, B). However, in samples 14-month-old

mice, Aβ40 and Aβ42 secretion was comparable between both AD tg mouse groups, APP/PS1

and APP/PS1∗CB2−/− (Fig. 5.10, A and B).

5.3.3 Comparable expression of full length app in APP/PS1 and APP/PS1∗CB2−/− mice

Differences in Aβ plaque load and soluble Aβ species could result from differences in the expression

level of full-length APP. To examine whether lack of CB2 signalling affected APP gene expression

levels, real-time gene expression analysis of App mRNA was conducted using hippocampal tissue

samples from 9- and 14-month-old mice. As expected, APP/PS1 and APP/PS1∗CB2−/− mice

displayed significantly increased App gene expression levels as compared to CB2+/+ and CB2−/−

mice in both age groups (genotype effect F3,53 = 37.34, p< 0.0001; Fig. 5.11).

Figure 5.11: Gene expression levels of amyloid precursor protein. App gene expression was
normalised to expression levels of the corresponding reference gene GAPDH. Expression of App was
increased in both, 9- and 14-month-old APP/PS1 (black bar) and APP/PS1∗CB2−/− (grey striped bar)
compared to CB2+/+ (white bar), CB2−/− (gray bar). n = 5-8; Data were analysed by 2-way ANOVA
followed by Tukey’s multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001; § significance to
14-month-old CB2−/−.

In detail, App gene expression was significantly increased in 9-month-old AD tg mice as compared

to CB2+/+ (p< 0.0001) and CB2−/− (p = 0.0015 and p = 0.0021, respectively) mice. A similar gene

expression profile was detected in 14-month-old mice. App gene expression levels were significantly

increased in APP/PS1 and APP/PS1∗CB2−/− mice when compared to both, CB2+/+ (p< 0.0001

and p = 0.0007, respectively) and CB2−/− mice (p< 0.0001 and p = 0.0202, respectively). However,

gene expression levels of App were comparable between APP/PS1 and APP/PS1∗CB2−/− mice in

both age groups, 9- and 14-month-old mice (Fig. 5.11). Therefore, we could exclude that differences

seen in Aβ plaque load were due to an altered expression of full-length APP.
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5.3.4 Increased mRNA expression of α-secretases in APP/PS1∗CB2−/− mice

Differences in Aβ plaque load could also be due to differences in proteolytic cleavage of APP by

α, β- and γ-secretases. Thus, gene expression analyses using specific TaqMan R© probes were con-

ducted. Aβ is generated through cleavage of APP by β-secretases, followed by cleavage through a

γ-secretase. Therefore, gene expression analyses of the most prominent β-secretase, Bace1, and the

main γ-secretases component, Nicastrin, were conducted using qRT-PCR. Additionally, expression

levels of two α-secretases, Adam10 and Adam17, were analysed. Adam10 expression showed sig-

nificant interaction (F3,53 = 2.828, p = 0.0472) and age (F1,53 = 17.20, p = 0.0001) effects (Fig. 5.12,

A).

Figure 5.12: Gene expression levels of APP secretases. Gene expression of APP cleavage enzymes
were normalised to the corresponding reference gene GAPDH. Expression of the α-secretases, Adam10
(A) and Adam17 (B), β-secretase Bace1 (C) and the main γ-secretases component, Nicastrin (D),
was analysed and compared within 9-month-old and 14-month-old CB2+/+ (white bar), CB2−/− (gray
bar), APP/PS1∗CB2+/+ (black bar) and APP/PS1∗CB2−/− (grey striped bar) mice. n = 5-8; Data
were analysed by 2-way ANOVA followed by Tukey’s multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01,
∗ ∗ ∗p< 0.001; # significance to corresponding 9-month-old group.

In hippocampal tissue of 9-month-old mice, Adam10 expression levels were comparable between

the groups (Fig. 5.12, A). However, in 14-month-old mice, a significant down-regulation of Adam10

was detected in CB2+/+ mice when compared to 9-month-old CB2+/+ (p = 0.0039) mice as well as

in comparison to age-matched APP/PS1∗CB2−/− mice (p = 0.0111; Fig. 5.12, A).
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Analysis of Adam17 gene expression, showed significant interaction (F3,52 = 5.553, p = 0.0022) and

genotype (F3,52 = 6.667, p = 0.0007) effects (Fig. 5.12, B). Within all genotypes, Adam17 expression

levels were comparable between tissue samples of 9-month-old mice. In 14-month-old mice, expres-

sion levels of Adam17 decreased significantly in CB2+/+ mice in comparison to 9-month-old CB2+/+

(p = 0.0087) and age-matched APP/PS1 (p = 0.0306) mice. In contrast, APP/PS1∗CB2−/− showed

increased expression levels of Adam17 as compared to age-matched CB2+/+ mice (p< 0.0001; Fig.

5.12, B). Expression analysis of Bace1 showed a significant age effect (F1,52 = 8.316, p = 0.0057;

Fig. 5.12, C). However, genotype differences within each age group were not detected. Expression

of the γ-secretases component, Nicastrin, remained stable within the four genotypes and both age

groups (Fig. 5.12, D). Thus, significant differences were not detected. In general, expression levels

of Bace1 and Nicastrin remained comparable with increasing age and were not altered due to ex-

pression of transgenes or in knockout mice. However, samples of 14-month-old APP/PS1∗CB2−/−

mice showed increased expression levels of both α-secretases, Adam10 and Adam17.

5.3.5 Altered mRNA expression pattern of Aβ receptors

To evaluate whether CB2 signalling in AD mice influenced the uptake and degradation of Aβ, we

further analysed expression levels of the following Aβ specific receptors: advanced glycation end

products receptor (Ager, also known as Rage), macrophage receptor with collagenous structure

(Marco) and the toll-like receptor 4 (Tlr4 ).

Gene expression of Ager was age-dependently increased (age effect F1,54 = 55.41, p< 0.0001; Fig.

5.13, A). Using Tukey multiple comparison test, a significant upregulation of Ager was observed

in samples of APP/PS1 and APP/PS1∗CB2+/+ mice when compared to expression levels of each

9-month-old group (p< 0.0001 and p = 0.0135, respectively). Furthermore, expression of Ager in

samples of 14-month-old APP/PS1 mice was also significantly increased in comparison to age-

matched CB2−/− (p = 0.0118) and CB2−/− mice (p = 0.0008; Fig. 5.13, A).

Gene expression of Marco was age-dependently upregulated in all groups (age effect F1,54 = 87.21,

p< 0.0001), however, genotype-dependant differences within both age-groups were not detected

(Fig. 5.13, B).

Analysis of Tlr4 expression revealed significant age (F1,54 = 23.03, p< 0.0001), genotype (F3,54 = 3.105,

p = 0.0340) and interaction (F3,54 = 5.116, p = 0.0035) effects (Fig. 5.13, C). Similar to the gene

expression profile of Ager, a specific upregulation of Tlr4 expression was detected in samples aged

APP/PS1 mice as compared to 9-month-old APP/PS1 mice (p< 0.0001) and compared to age-

matched CB2+/+ (p = 0.0009) and CB2−/− mice (p = 0.0202; Fig. 5.13, C).
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Figure 5.13: Gene expression levels of amyloid receptors. Gene expression of Aβ receptors were
normalised to expression of the corresponding reference gene GAPDH. Expression of Ager (A), Marco
(B) and Tlr4 (C) was analysed and compared within both age groups in hippocampal tissue of CB2+/+

(white bar), CB2−/− (gray bar), APP/PS1 (black bar) and APP/PS1∗CB2−/− (grey striped bar) mice.
n = 5-8; Data were analysed by 2-way ANOVA followed by Tukey’s multiple comparisons test, ∗p< 0.05,
∗∗p< 0.01, ∗ ∗ ∗p< 0.001; # significance to corresponding 9-month-old group.

5.3.6 Altered mRNA expression pattern of Aβ degrading enzymes

Adjacent to the analyses of Aβ receptors, gene expression levels of Aβ specific degrading enzymes

insulin-degrading enzyme (Ide), neprilysin (Nep) and matrix-metalloproteinase-9 (Mmp9 ), were

evaluated in hippocampal tissue samples of 9- and 14-month-old mice.

In 9-month-old mice, expression levels of Ide were significantly lower in CB2−/− mice (p = 0.0137)

as compared to age-matched CB2+/+ littermates (Fig. 5.14, A). In contrast, Ide expression lev-

els of 14-month-old CB2+/+ and CB2−/− mice were comparable. However, Ide expression levels

were significantly upregulated in 14-month-old APP/PS1∗CB2−/− when compared to 9-month-old

APP/PS1∗CB2−/− mice (p< 0.0001) as well as in comparison to age-matched CB2+/+ mice and

CB2−/− mice (p< 0.0001). 2-Way ANOVA revealed significant age- (F1,54 = 12.21, p = 0.0010),

genotype (F3,54 = 6.430, p = 0.0008)and interaction effects (F3,54 = 10.50, p< 0.0001).

Expression levels of Nep were age-dependently down-regulated in all groups (age effect F1,53 = 259.2,

p< 0.0001; Fig. 5.14, B). Within 9-month-old mice, Nep expression levels were comparable between
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Figure 5.14: Gene expression levels of amyloid degrading enzymes. Gene expression levels
of Aβ specific degrading enzymes were normalised to expression levels of the corresponding reference
gene GAPDH. Expression of Ide (A), Nep (B) and Mmp9 (C) was analysed within hippocampal tissue
samples of 9- and 14-month-old CB2+/+ (white bar), CB2−/− (gray bar), APP/PS1 (black bar) and
APP/PS1∗CB2−/− (grey striped bar) mice. n = 5-8; Data were analysed by one-way or 2-way ANOVA,
respectively, followed by Tukey’s multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001; #
significance to corresponding 9-month-old group

all genotypes. However, by analysing gene expression levels in tissue samples of 14-month-old mice

separately, a significant decrease in Nep gene expression levels was observed in APP/PS1 mice as

compared to CB2+/+ littermates (one-way ANOVA followed by Tukey’s multiple comparisons test,

p = 0.0020), while gene expression levels were comparable between samples of CB2+/+ and CB2−/−

(p = 0.0757) or APP/PS1∗CB2−/− mice (p = 0.3815, Fig. 5.14, B).

Additionally, gene expression levels of Mmp9 were analysed. While Mmp9 expression remained

constant within tissue samples of 9-month-old mice, Mmp9 expression was strongly increased with

increasing age in all groups (age-effect, F1,54 = 493.4, p< 0.0001, Fig. 5.14, C). Furthermore, sig-

nificant interaction (F3,54 = 3.504, p = 0.0214) and genotype (F3,54 = 4.305, p = 0.0085) effects were

observed. 14-month-old APP/PS1∗CB2−/− mice displayed the strongest increase in Mmp9 gene

expression levels when compared to CB2+/+ and CB2−/− (p = 0.0003 and p = 0.0018, respectively)

as well as in comparison to APP/PS1 mice (p = 0.0022).

In summary, gene expression levels of Aβ degrading enzymes were almost comparable within
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tissue samples of 9-month-old mice. While Ide and Mmp9 expression increased with age, expres-

sion levels of Nep were age-dependently reduced, especially in tissue samples of APP/PS1 mice.

Furthermore, we observed the strongest upregulation of Ide and Mmp9 expression levels in hip-

pocampal tissue samples of APP/PS1∗CB2−/−, while expression in APP/PS1 mice was slightly

altered or comparable to expression levels of CB2+/+ and CB2−/− littermates.
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5.4 Role of CB2 signalling in microgliosis

5.4.1 Equal Iba1 immunoreactivity in samples of 9-month-old mice

As microglia represent an important cellular component in AD-associated neuroinflammation and

neurodegeneration, we investigated whether the total number of CNS resident microglia cells, also

referred to as microgliosis, was altered in APP/PS1∗CB2−/− mice as compared to control mice

and normal AD tg mice. Therefore, sagittal brains slices of 9- and 14-month-old mice were stained

with anti-Iba1 and counter stained with DAPI (Fig. 5.15).

Figure 5.15: Comparable levels of microgliosis in 9-month-old mice. Shown are representative
brain tissue sections stained for Iba1 (red) and counter stained with DAPI (blue) in CB2+/+ (upper
left), CB2−/− (upper right), APP/PS1 (lower left) and APP/PS1∗CB2−/− (lower right) mice (scale
bar = 100µm; A). Quantification of Iba1 stained area fraction showed comparable levels of microgliosis
in 9-month-old mice (B). Representative images of enlarged sections (white quadrants in A; scale bar =
100µm; C). n = 5-8; Data were analysed by 2-way ANOVA followed by Tukey’s multiple comparisons
test.
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In representative images of stained hippocampal tissue sections, Iba1 immunoreactivity was

clearly detectable in all groups (Fig. 5.15, A and C). The quantification of Iba1 immunoreactivity

revealed comparable levels of microgliosis between the four groups (one-way ANOVA followed by

Tukey’s multiple comparisons test, p = 0.0366; Fig. 5.15, B). Microglia in brain tissue sections

of CB2+/+ and CB2−/− mice showed smaller cell bodies as compared to microglia in samples of

APP/PS1 and APP/PS1∗CB2−/− mice (Fig. 5.15, A and C). Furthermore, Iba1 stained cells in

brain tissue sections of APP/PS1 mice were unevenly distributed and clustered in comparison to

microglia of control mice (Fig. 5.15, A and C, iii).
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5.4.2 Reduced microgliosis in aged APP/PS1∗CB2−/− mice

As microgliosis is known to increase with age and the number of Aβ plaques, Iba1 staining was

subsequently analysed in 14-month-old mice, where plaque load is significantly enhanced. Similar

to Iba1 immunoreactivity in 9-month-old mice, CB2+/+ mice displayed an even distribution of Iba1

stained microglia throughout the whole hippocampus (Fig. 5.16, A).

Figure 5.16: Enhanced microgliosis in 14-month-old APP/PS1 mice. Shown are representative
brain tissue sections stained for Iba1 (red) and counter stained with DAPI (blue) for the detection of mi-
crogliosis in CB2+/+ (upper left), CB2−/− (upper right), APP/PS1 (lower left) and APP/PS1∗CB2−/−

(lower right) mice (scale bar = 100µm; A). Quantification of Iba1 stained area fraction showed signifi-
cantly enhanced microgliosis in samples of 14-month-old APP/PS1 mice (B). Representative images of
enlarged sections (white quadrants in A; scale bar = 100µm; C). n = 5-8; Data were analysed by two-way
ANOVA followed by Tukey’s multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001.

A similar distribution was observed in CB2−/− mice (Fig. 5.16, A, upper right panel). In contrast,

in APP/PS1 mice, Iba1 immunoreactivity was significantly enhanced compared to CB2+/+ and

CB2−/− mice (Fig. 5.16, A-C). Furthermore, microglia clustering was observed; predominantly in
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the stratum lacunosum-moleculare of the hippocampal CA1 region and in the molecular layer of

the DG. In APP/PS1∗CB2−/− mice, Iba1 immunoreactivity was reduced and clusters of microglia

were less abundant when compared to samples of APP/PS1 mice (Fig. 5.16, A, lower right panel).

The quantification of microgliosis revealed a significantly increased Iba1 area fraction in samples

of APP/PS1 mice compared to samples of CB2+/+ littermates (Fig. 5.16, B; one-way ANOVA,

followed by Tukey’s multiple comparisons test, p = 0.0046). In contrast, Iba1 immunoreactivity

was comparable between CB2+/+ and CB2−/− (p = 0.1703) or APP/PS1∗CB2−/− (p = 0.1694),

respectively.
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5.4.3 Comparable amounts of intracerebral leucocytes in 9-month-old mice

To evaluate whether increased microgliosis seen in 14-month-old AD mice was due to an increased

proliferation of microglia or an increased recruitment of peripheral monocyte-derived macrophages,

flow cytometric analyses of ICLs using antibodies against CD11b and the leukocyte common antigen

CD45 were performed. For the analysis of the cellular distribution, a primary gate was set on all

living cells, namely lifegate. Using dot-plot analyses, the relative distribution of lymphocytes,

macrophages and microglia in samples of CB2+/+ (upper left panel), CB2−/− (upper right panel),

APP/PS1 (lower left panel) and APP/PS1∗CB2−/− (lower right panel) mice was analysed according

to the expression of CD11b (x-axis) and CD45 (y-axis) (representative dotplots in Fig. 5.17).

Figure 5.17: Flow cytometric analysis of ICLs in 9-month-old mice. Representative dotplot
images show the distribution of lymphocytes, macrophages and microglia in samples of CB2+/+ (upper
left), CB2−/− (upper right), APP/PS1 (lower left) and APP/PS1∗CB2−/− (lower right) mice using
the markers CD45 (y-axis) and CD11b (x-axis). Lymphocytes (CD45+CD11b−) are depicted in red,
macrophages (CD45highCD11b+) are depicted in green and microglia (CD45lowCD11b+) are depicted
in blue. Analyses were conducted by using FlowJo X software.

Lymphocytes (depicted in red) are known to express high levels of CD45, but expression of

CD11b is absent in these cells. Both, microglia and macrophages are known to express high levels

of the monocytic marker CD11b. However, while macrophages (depicted in green) also express high
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levels of CD45, microglia (depicted in blue) only present a dim expression of CD45 (Fig. 5.17).

Fig. 5.18 shows the quantitative analysis of ICLs percentages in samples of 9-month-old CB2+/+,

CB2−/−, APP/PS1 and APP/PS1∗CB2−/− mice.

Figure 5.18: Quantification of ICLs in samples of 9-month-old mice. Shown are quantitative
analyses of ICLs in CB2+/+, CB2−/−, APP/PS1 and APP/PS1∗CB2−/− mice using the markers CD45
and CD11b. Percentages of lymphocytes (CD45+CD11b−; A) were unaltered within the groups. Lym-
phocytic expression levels of ICAM (B) and CD40 (C) were comparable. Percentages of macrophages
(CD45highCD11b+; B) were increased in APP/PS1 and APP/PS1∗CB2−/− compared to CB2+/+ mice.
Macrophages of APP/PS1∗CB2−/− showed increased expression of ICAM (E) and CD40 (F). Percent-
ages of microglia (CD45lowCD11b+; G) as well as expression levels of ICAM (H) and CD40 (I) were
comparable within the groups. n = 4-6; Data were analysed by one-way ANOVA, followed by Tukey’s
multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001.

In the four groups, percentages of lymphocytes (CD45high and CD11b−) were equivalent (mean

26%± 6,477; Fig. 5.18, A). To evaluate the activation profile of each cellular subset, expression

levels of ICAM (also known as CD54) and the co-stimulatory molecule CD40, which is commonly

found on antigen presenting cells, were analysed. Expression of both molecules was evaluated as

geometric mean fluorescence intensity (gMFI) to account for logarithmically increasing fluorescence
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intensity. Lymphocytic expression of ICAM was comparable between all groups (Fig. 5.18, B).

Similarly, expression levels of CD40 were unaltered within the four groups (Fig. 5.18, C). In com-

parison to CB2+/+ littermates, percentages of macrophages were increased in samples of APP/PS1

(p = 0.0176) and APP/PS1∗CB2−/− (p = 0.0269) mice (one-way ANOVA F3,18 = 5.966, p = 0.0052;

Fig. 5.18, D). Furthermore, expression of ICAM was significantly upregulated in in macrophages

of APP/PS1∗CB2−/− mice as compared to CB2+/+ (p = 0.0182) and CB2−/− (p = 0.0050) mice

(one-way ANOVA F3,18 = 6.142, p = 0.0046; Fig. 5.18, E). Similarly, gMFI of the co-stimulatory

molecule CD40 was significantly increased in samples of APP/PS1 (169 gMFI; p = 0.0106) and

APP/PS1∗CB2−/− (138 gMFI; p = 0.0206) mice as compared to CB2−/− mice (one-way ANOVA

F3,18 = 5.981, p = 0.0051; Fig. 5.18, F). Finally, microglia percentages as well as their expression

levels of pro-inflammatory markers were analysed in brain samples of 9-month-old mice. Here,

percentages of microglia were comparable between the four groups (Fig. 5.18, G). Mean fluores-

cence intensity of ICAM (gMFI 550± 87.9) was equal within the four groups (Fig. 5.18, H). Also,

gMFI of CD40 was not significantly altered within the groups (gMFI 213± 43.9; Fig. 5.18, I).

These results reflect immunohistochemical data (Fig. 5.15), which demonstrated comparable Iba1

immunoreactivity in brain slices of 9-month-old mice. However, as microgliosis was increased with

age, we subsequently analysed ICL subsets in brain samples of 14-month-old mice.
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5.4.4 Decreased percentages of microglia and BMdM in aged APP/PS1∗CB2−/− mice

Equivalent to ICL analyses described above, brain samples of 14-month-old mice were analysed

regarding their relative distribution of lymphocytes, macrophages and microglia (representatively

shown in Fig. 5.19). The quantification of the three cellular subsets and their expression levels of

the pro-inflammatory molecules ICAM and CD40 is presented in Fig. 5.20.

Figure 5.19: Flow cytometric analysis of ICLs in samples of 14-month-old mice. Repre-
sentative dotplot images show the distribution of lymphocytes, macrophages and microglia in CB2+/+

(upper left), CB2−/− (upper right), APP/PS1 (lower left) and APP/PS1∗CB2−/− (lower right) mice
using the markers CD45 (y-axis) and CD11b (x-axis). Lymphocytes (CD45+CD11b−) are depicted in
red, macrophages (CD45highCD11b+) are depicted in green and microglia (CD45lowCD11b+) depicted
in blue. Analyses were conducted by using FlowJo X software.

Percentages of lymphocytes (Fig. 5.20, A) as well as expression levels of ICAM (Fig. 5.20, B)

and CD40 (Fig. 5.20, C) were comparable between the four groups. Interestingly, the percentage

of macrophages was significantly diminished in samples of CB2−/− and APP/PS1∗CB2−/− mice

when compared to APP/PS1 mice (p = 0.0267 and p = 0.0128, respectively; Fig. 5.20, D). This is

suggestive for a reduced infiltration of blood-derived monocytes. Expression levels of ICAM and

CD40 were comparable between the groups (Fig. 5.20, E and F). Percentages of microglia were sig-

nificantly increased in samples of APP/PS1 mice when compared to APP/PS1∗CB2−/− (one-way

ANOVA F3,20 = 3.592, p = 0.0317; Tukey’s multiple comparison test p = 0.0399; Fig. 5.20, G). Fur-

thermore, expression levels of the pro-inflammatory cell surface molecule ICAM were significantly
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Figure 5.20: Quantification of ICLs in samples of 14-month-old mice. Shown are quantitative
analyses of ICL subsets in CB2+/+, CB2−/−, APP/PS1 and APP/PS1∗CB2−/− mice using the marker
CD45 and CD11b. Percentages of lymphocytes (CD45+CD11b−; A) were comparable within the groups.
Expression of ICAM (B) and CD40 (C) were unaltered. Percentages of macrophages (CD45highCD11b+;
B) were increased in APP/PS1 compared to CB2+/+ and APP/PS1∗CB2−/− mice. Expression levels
of ICAM (E) and CD40 (F) were unchanged. Percentages of microglia (CD45lowCD11b+; G), as well
as expression levels of ICAM (H) and CD40 (I) were increased in APP/PS1 mice as compared to
APP/PS1∗CB2−/− littermates. n = 4-6; Data were analysed by one-way ANOVA, followed by Tukey’s
multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001.

increased in samples of APP/PS1 mice when compared to age-matched APP/PS1∗CB2−/− mice

(one-way ANOVA F3,20 = 4.733, p = 0.0118; Tukey’s multiple comparison test p = 0.0074; Fig. 5.20,

H). Additionally, expression levels of CD40 were reduced in samples of APP/PS1∗CB2−/− versus

samples of APP/PS1 mice, although one-way ANOVA just failed to reach statistical significance

(F3,20 = 3.077, p = 0.0510; Tukey’s multiple comparisons test p = 0.0592; Fig. 5.20, I).
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5.5 Role of CB2 signalling in neuroinflammation

5.5.1 Decreased expression of Tnfα and Inos in aged APP/PS1∗CB2−/− mice

Based on the observation of a reduced microgliosis as well as diminished percentages of microglia and

infiltrated macrophages in aged APP/PS1∗CB2−/− mice, gene expression levels of AD-associated

inflammatory markers were analysed. Therefore, TaqManr gene expression analyses were con-

ducted using specific assays for the pro-inflammatory molecules TNFα, IL-1β, iNOS and IL-6.

Figure 5.21: Gene expression analyses of inflammatory cytokines. Gene expression levels
of pro-inflammatory cytokines were analysed in hippocampal tissue samples of 9- and 14-month-old
CB2+/+ (white), CB2−/− (gray), APP/PS1 (black) and APP/PS1∗CB2−/− (black striped) mice. Ex-
pression levels of Tnfα (A), Il-1β (B), Inos (C) and Il-6 (D) were normalised to expression levels of
the corresponding reference gene GAPDH. n = 3-13; Data were analysed by 2-way ANOVA followed by
Tukey’s multiple comparisons test; ∗p< 0.05, ∗∗p< 0.01, ∗ ∗ ∗p< 0.001; # significance to corresponding
9-month-old group.

Regarding gene expression levels of Tnfα, significant interaction (F3,51 = 4.132; p = 0.0107), age

(F1,51 = 129.4; p< 0.0001) and genotype (F3,51 = 4.294; p = 0.0089) effects were found in hippocam-

pal tissue of 9- and 14-month-old mice (Fig. 5.21, A). In samples of 9-month-old mice, a very

low expression of Tnfα mRNA was detected, while expression levels significantly increased with

increasing age in all groups (Tukey’s multiple comparison test, CB2+/+: p = 0.0033, CB2−/−:

p< 0.0001, APP/PS1: p< 0.0001 and APP/PS1∗CB2−/−: p = 0.0004). Furthermore, Tnfα gene

expression was highly upregulated in 14-month-old APP/PS1 mice when compared to age-matched
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CB2+/+ (p< 0.0001) and CB2−/− (p = 0.0009) mice as well as in comparison to APP/PS1∗CB2−/−

(p = 0.0020) mice. Interestingly, an upregulation of Tnfα gene expression was not detected in aged

APP/PS1∗CB2−/− mice, as Tnfα expression levels remained comparable to those of CB2+/+ and

CB2−/− mice.

In 14-month-old mice, expression levels of Il-1β were upregulated in samples of AD tg mice.

Statistical analyses detected significant interaction (F3,53 = 6.883; p = 0.0005), age (F1,53 = 35.84;

p< 0.0001) and genotype (F3,53 = 11.79; p< 0.0001) effects (Fig. 5.21, B). In detail, hippocam-

pal tissue expression of Il-1β was significantly upregulated in aged APP/PS1 (appox. 4.6x)

and APP/PS1∗CB2−/− (approx. 4.7x) mice when compared to age-matched CB2+/+ littermates

(p< 0.0001). Similarly, Il-1β-levels of APP/PS1 and APP/PS1∗CB2−/− mice were significantly

increased as compared to CB2−/− mice (p = 0.0012 and p = 0.0038, respectively). However, Il-1β

gene expression levels remained equivalent in samples of aged APP/PS1 and APP/PS1∗CB2−/−

mice (Fig. 5.21, B).

Gene expression of Inos remained comparable, independently of age and genotype. Solely a sig-

nificant interaction effect was detected (F3,54 = 2.945, p = 0.0410; Fig. 5.21, C). Expression of Inos

was not altered between 14-old APP/PS1 and APP/PS1∗CB2−/− mice (p = 0.0734).

Statistical analysis of gene expression levels of the ambivalent cytokine Il-6 revealed a significant

genotype effect (F3,51 = 4.177, p = 0.0102; Fig.5.21, D). However, Tukey’s multiple comparisons test

failed to detect significant differences between the single groups. Thus, mRNA expression levels of

Inos and Il-6 were neither age- nor genotype-dependently regulated.

5.5.2 Altered mRNA expression pattern of Ccl2 and Ccr2

The monocyte chemoattractant protein 1 (MCP1), which is also referred to as chemokine (c-c

motif) ligand 2 (CCL2), is a small inducible cytokine responsible for the recruitment of monocytes,

memory t-cells and dendritic cells to sites of inflammation. An involvement of CCL2 in various

neurodegenerative diseases, including epilepsy, experimental autoimmune encephalomyelitis (EAE),

traumatic brain injury and AD has been demonstrated in various studies [128, 126]. Therefore,

the effect of CB2 signalling on Ccl2 expression levels was analysed in samples of AD and control

mice. Using a specific assay targeting Ccl2, a strong increase of Ccl2 gene expression was detected

in hippocampal tissue of 14-month-old mice as compared to expression levels in tissue samples of

9-month-old mice (F1,51 = 126.3, p< 0.0001; Fig. 5.22, A). A detailed analysis of the 14-month-old

group individually revealed a significant CB2-dependent decrease of Ccl2 (p = 0.0152). This finding

is in line with our in vitro data, showing a significantly diminished CCL2 secretion in microglia

derived from CB2-deficient mice (see Fig. 5.2, C). In tissue samples of 9-month-old mice, Ccl2

expression levels remained comparable between the four genotype groups.

Expression of the corresponding receptor Ccr2 was genotype-dependently altered (F3,51 = 6.766,
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Figure 5.22: Gene expression analysis of the monocytic chemokine CCL2 and its recep-
tor CCR2. Gene expression levels of Ccl2 and Ccr2 were analysed in hippocampal tissue of 9- and
14-month-old CB2+/+ (white), CB2−/− (gray), APP/PS1 (black) and APP/PS1∗CB2−/− mice (black
striped). Expression levels of Ccl2 (A)and Ccr2 (B) were normalised to expression levels of the corre-
sponding reference gene GAPDH. n = 3-13; Data were analysed by 2-way ANOVA followed by Tukey’s
multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001; # significance to corresponding 9-month-
old group

p = 0.0006; Fig. 5.22, B). Furthermore, Tukey’s multiple comparisons test revealed a significantly

increased Ccr2 expression in samples of aged APP/PS1∗CB2−/− mice as compared to to samples

of age-matched CB2−/− (p = 0.0203) and APP/PS1 (p = 0.0090) mice.
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5.6 Rescue of neurodegeneration in aged APP/PS1∗CB2−/− mice

AD-associated neuroinflammation is generally associated with a chronic and progressive loss of

neuronal structure and function, resulting in functional and mental impairments [223]. As we al-

ready demonstrated a decreased microgliosis and a diminished expression of inflammatory markers

in brain samples of 14-month-old APP/PS1∗CB2−/−, we subsequently analysed whether AD as-

sociated neuronal loss is altered in those mice. Therefore, immunohistochemical analyses of the

neuronal marker NeuN were conducted in the hippocampal CA1/2 layer and the thickness of the

stratum pyramidale (SP) was measured and subsequently compared between the four groups (Fig.

5.23, A). Representative images of NeuN immunoreactivity in hippocampal CA1/2 regions are

shown in Fig. 5.23, B.

Figure 5.23: Evaluation of hippocampal neurodegeneration in 9-month-old mice. Neuronal
loss was evaluated in the stratum pyramidale (SP) of the hippocampal CA1/2 region (A). Representative
images of NeuN immunoreactivity in the CA1/2 region in samples of CB2+/+ (upper left), CB2−/−

(upper right), APP/PS1 (lower left) and APP/PS1∗CB2−/− (lower right) mice show the neuronal
distribution (B, scale bar = 100µm). The thickness of the SP layer in µm revealed an equal cellular
distribution within the groups (C). N = 3, 6 images per animal; Data were analysed by one-way ANOVA,
followed by Tukey’s multiple comparisons test. Data and analysis adopted from Gregor Toporowski.

67



The quantification revealed comparable neuronal densities in samples of 9-month-old CB2+/+

(mean 50.10 ± 0.374), CB2−/− (mean 49.86 ± 2.17), APP/PS1 (mean 46.91 ± 2.28) and APP/PS1∗

CB2−/− (mean 47.26 ± 1.56) mice (one-way ANOVA, F3,8 = 0.9018, p = 0.4816; Fig. 5.23, B and

C). Subsequently, the neuronal distribution in cortical areas was analysed as NeuN-positive cells

per mm2 in different cortical regions (Fig. 5.24, A). Representative images of the NeuN immunore-

activity are schown in Fig 5.24, B. Similar to the results described above, a comparable NeuN

immunoreactivity was detected in tissue samples of all four 9-month-old groups (one-way ANOVA,

F3,8 = 2.549, p = 0.1290; Fig. 5.24, B).

Figure 5.24: Evaluation of cortical neurodegeneration in 9-month-old mice. Neuronal loss
was evaluated in cortical areas (red boxes) of coronally sliced brain sections (A). Representative images
of NeuN immunoreactivity in CB2+/+ (upper left), CB2−/− (upper right), APP/PS1 (lower left) and
APP/PS1∗CB2−/− (lower right) mice show the neuronal distribution in cortical regions (B; scale bar =
100µm). Quantification of the neuronal bound revealed an equal cellular distribution within the groups
(C). N = 3 with 6 images per animal; Data were analysed by one-way ANOVA, followed by Tukey’s
multiple comparisons test. Data and analysis adopted from Gregor Toporowski.

In contrast to 9-month-old mice, the thickness of the hippocampal CA1/2 pyramidal cell layer

was markedly reduced in samples of 14-month-old APP/PS1 mice (Fig. 5.25, A). This finding

was confirmed by a quantitative analysis, showing a significantly reduced SP thickness in samples

of APP/PS1 mice when compared to age-matched CB2+/+ littermates (Fig. 5.25, B; one-way
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ANOVA, F3,8 = 4.739, p = 0.0349, followed by Tukey’s multiple comparisons test p = 0.0249). In-

terestingly, this effect was rescued in samples of aged APP/PS1∗CB2−/− mice, which showed a

comparable SP thickness to samples of age-matched CB2+/+ mice (Fig. 5.25, B).

Figure 5.25: Evaluation of hippocampal neurodegeneration in 14-month-old mice. Repre-
sentative images of NeuN immunoreactivity in the stratum pyramidale (SP) of the CA1/2 region in
samples of CB2+/+ (upper left), CB2−/− (upper right), APP/PS1 (lower left) and APP/PS1∗CB2−/−

(lower right) mice show the neuronal distribution (A, scale bar = 100µm). The thickness of the neu-
ronal CA1/2 pyramidal cell layer in µm revealed a decreased NeuN immunoreactivity in APP/PS1 mice
(B). N = 3 with, 6 images per animal; Data were analysed by one-way ANOVA, followed by Tukey’s
multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001. Data and analysis adopted from Gregor
Toporowski.

Similarly, the neuronal density in cortical areas was severely diminished in samples of aged

APP/PS1 mice; an effect that was not present in samples of CB2−/− and APP/PS1∗CB2−/− mice

(Fig. 5.26, A and B). The average number of NeuN-positive cells was significantly reduced in

samples of APP/PS1 mice (547 cells / mm2) as compared to CB2+/+ (796 cells / mm2; p = 0.0009),

CB2−/− (750 cells / mm2; p = 0.0034) and APP/PS1∗CB2−/− (720 cells / mm2; p = 0.0091) mice

(Fig. 5.26, B; one-way ANOVA, followed by Tukey’s multiple comparisons test).

In mouse models of AD, a loss of neurons, in particular interneurons, had been demonstrated

in various previous studies [140, 203, 257, 271]. Therefore, immunohistochemical analysis using

a specific antibody detecting parvalbuminergic interneurons was conducted in tissue samples of

14-month-old mice to further characterise the subpopulation of declining neurons. In line with

the findings of overall neuronal loss through NeuN-staining, a significant loss of parvalbuminergic

interneurons (parv-positive) was detected in cortical areas aged APP/PS1 mice (Fig. 5.27; A-B).

Representative immunohistochemical images display the cellular distribution of parvalbuminergic

cells in the four groups (Fig. 5.27, A). The quantification revealed a significant reduction of parv-
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Figure 5.26: Evaluation of cortical neurodegeneration in 14-month-old mice. Representative
images of NeuN immunoreactivity in CB2+/+ (upper left), CB2−/− (upper right), APP/PS1 (lower left)
and APP/PS1∗CB2−/− (lower right) mice show the neuronal distribution in cortical regions (A; scale
bar = 100µm). Quantification of the neuronal density as the number of NeuN positive cells per mm2

revealed a decreased NeuN immunoreactivity in APP/PS1 mice (B). N = 3 with 6 images per animal;
Data were analysed by one-way ANOVA, followed by Tukey’s multiple comparisons test, ∗p< 0.05,
∗∗p< 0.01, ∗ ∗ ∗p< 0.001. Data and analysis adopted from Gregor Toporowski.

Figure 5.27: Distribution of parvalbuminergic interneurons in 14-month-old mice. Repre-
sentative images of Parv immunoreactivity in CB2+/+ (upper left), CB2−/− (upper right), APP/PS1
(lower left) and APP/PS1∗CB2−/− (lower right) mice in the cortex (A) (scale bar = 100µm). The
quantification of parv-positive cells per mm2 (B) revealed a decreased immunoreactivity in APP/PS1
mice. N = 3 with 6 images per animal; Data were analysed by one-way ANOVA, followed by Tukey’s
multiple comparisons test, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001. Data and analysis adopted from Gregor
Toporowski.
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positive interneurons in samples of APP/PS1 mice when compared to samples of age-matched

CB2+/+ (p = 0.0004), CB2−/− (p = 0.0007) and APP/PS1∗CB2−/− (p = 0.0319) mice (Fig. 5.27,

B). However, the cellular density of parvalbuminergic interneurons was also slightly decreased

in samples of APP/PS1∗CB2−/− mice when compared to samples of CB2+/+ (p = 0.0206) and

CB2−/− (p = 0.0483) mice, respectively.
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5.7 Rescue of cognitive deficits in aged APP/PS1∗CB2−/− mice

Finally, the impact of CB2 signalling on cognitive performance and spatial learning was analysed

by using the Morris water maze paradigm. Therefore, 9- and 14-month-old mice were trained to

find a hidden platform in a milky water bath. In the 5-day-training period with four training trials

per day, 9-month-old CB2+/+ and CB2−/− mice showed equal learning curves, represented by com-

parable escape latencies (Fig. 5.28, A). Within both groups, statistical analyses revealed a highly

significant trial effect (2-way ANOVA followed by Sidak’s multiple comparisons test, F4,100 = 26.67,

p< 0.0001), while a genotype effect was absent (F1,25 = 0.1778, p = 0.6769). Similarly, escape la-

tencies were decreasing over the training period in 9-month-old APP/PS1 and APP/PS1∗CB2−/−

(2-way ANOVA followed by Sidak’s multiple comparisons test, F4,88 = 22.61, p< 0.0001; Fig. 5.28,

B). Again, a significant genotype effect was absent (F4,22 = 2.181, p = 0.1539).

To evaluate potential differences in short-term memory, mean escape latencies of the four indi-

vidual trials of the first acquisition day were analysed (Fig. 5.28, C, D). In both control groups,

CB2+/+ and CB2−/−, a significant trial effect was detected (F3,84 = 13.93, p< 0.0001), while a

general genotype effect was absent (p = 0.3305; Fig. 5.28, C). However, statistical analysis using

Sidak’s multiple comparisons test showed a significant genotype effect between both groups on

trial four (p = 0.0084), as CB2+/+ needed less time to find the platform compared to CB2−/−.

In APP/PS1 and APP/PS1∗CB2+/+ mice a significant difference between the four trials or both

genotypes was absent.

Finally, analysis of the mean swim speed over the whole training period showed neither an

alteration within CB2+/+ and CB2−/− (genotype effect p = 0.1652; Fig. 5.28, E), nor within

APP/PS1 and APP/PS1∗CB2+/+ (genotype effect p = 0.8540; Fig. 5.28, F) mice. However, mean

swim speed decreased significantly with increasing number of trials in both, the control group -

CB2+/+ and CB2−/− (trial effect: F4,112 = 68.84, p< 0.0001; Fig. 5.28, E) - as well as in the AD

tg group - APP/PS1 and APP/PS1∗CB2+/+ (trial effect: F4,92 = 40.43, p< 0.0001; Fig. 5.28, F).

In 14-month-old mice, mean escape latency was comparable between CB2+/+ and CB2−/− mice

(Fig. 5.29, A). In both groups, the time needed to find the hidden platform decreased significantly

with increasing number of trials (time effect: F4,64 = 23.37, p> 0.0001), while a difference between

both genotypes was absent (p = 0.8414). More interestingly, a highly significant genotype effect

(F1,11 = 13.01, p = 0.0041) regarding the mean time spent to find the hidden platform was detected

between aged APP/PS1 and APP/PS1∗CB2−/− mice (Fig. 5.29, B). Similar to control groups,

performance of both AD tg groups improved significantly during the acquisition phase, which is

reflected by a significant trial effect (F4,44 = 21.81, p< 0.0001). Moreover, Sidak’s multiple com-

parisons test showed a significant improvement in the escape latency of APP/PS1∗CB2−/− versus

APP/PS1 mice on trial three (p = 0.0267) and trial five (p = 0.0311). Equivalent to 9-month-old
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mice, short-term memory was evaluated as the decrease in mean escape latency over the four trials

of the first day of acquisition. With 1 h intertrial time, CB2+/+ as well as CB2−/− mice learned

equally fast to find the hidden platform (trial effect: F3,48 = 6.550, p = 0.0008), thus, no significant

difference was detected in short-term memory (genotype effect p = 0.2266; Fig. 5.29, C).

Figure 5.28: Cognitive performance of 9-month-old mice in the Morris water maze
paradigm. Leaning curves show mean escape latency (A, B), short-term memory (C, D) and swim
speed (D, E) of 9-month-old mice. Statistical comparison was conducted between CB2+/+ (green) and
CB2−/− (red; A, C and E), as well as between APP/PS1 (black filled) and APP/PS1∗CB2−/− (white
filled; B, D and F). N = 8-16; data were analysed by two-way ANOVA, followed by Sidaks multiple
comparison test for repeated measures, ∗p < 0.05, ∗∗p < 0.01, ∗ ∗ ∗p < 0.001

In contrast, APP/PS1∗CB2−/− performed significantly better in the test paradigm, which was

already visible on the first training day (genotype effect: F1,11 = 14.87, p = 0.0027; Fig. 5.29, D).
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Figure 5.29: Cognitive performance of 14-month-old mice in the Morris water maze
paradigm. Leaning curves show mean escape latency (A, B), short-term memory (C, D) and swim
speed (D, E) of 14-month-old mice. Statistical comparison was conducted between CB2+/+ (green) and
CB2−/− (red; A, C and E), as well as between APP/PS1 (black filled) and APP/PS1∗CB2−/− (white
filled; B, D and F). N = 8-16; data were analysed by two-way ANOVA, followed by Sidaks multiple
comparison test for repeated measures, ∗p < 0.05, ∗∗p < 0.01, ∗ ∗ ∗p < 0.001

Particularly, escape latencies of the third trial dropped significantly in APP/PS1∗CB2−/− when

compared to age-matched APP/PS1 mice (p = 0.0008). However, this difference was abolished at

trial four (p = 0.8659).

To assess whether genotype-dependent differences seen in APP/PS1 and APP/PS1∗CB2−/−

mice were due to physiological reasons, the mean swim speed was analysed over the whole train-

ing period. In both control groups, CB2+/+ and CB2−/− mice, the mean swim speed was sta-

74



tistically equivalent (genotype effect: p = 0.4306; Fig. 5.29, E). However, a significant decrease

of the mean swim speed over time was detected (time effect: F4,64 = 43.03, p< 0.0001). Simi-

larly, APP/PS1 and APP/PS1∗CB2−/− mice swam slower with increasing training days (time

effect: F4,44 = 24.75, p< 0.0001), but genotype-dependent differences were absent (genotype effect:

F1,11 = 1.90132, p = 0.1954; Fig. 5.29, F).
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6 Discussion

The present study was designed to investigate the effects of CB2 signalling in AD associated neu-

roinflammation. Therefore, a CB2 deficient (CB2−/−) murine model reflecting the main pathomech-

anism of AD (APP/PS1∗CB2−/−) was analysed and compared to CB2+/+, CB2−/− and APP/PS1

littermates. In comparison to age-matched APP/PS1 mice, 14-month-old APP/PS1∗CB2−/− mice

showed reduced levels of Aβ plaque load in the cerebral cortex and hippocampus and increased

mRNA expression levels of the Aβ degrading enzymes Ide and Mmp9, while soluble Aβ40 and Aβ42

as well as mRNA expression of full length App was comparable. Furthermore, we detected a signif-

icantly enhanced Iba1 immunoreactivity in aged APP/PS1 mice, while the amount of Iba1-positive

cells in samples of APP/PS1∗CB2−/− mice was comparable to levels detected in CB2+/+ mice.

This finding was in line with flow cytometric analyses of intracerebral leucocytes, showing reduced

percentages of resident microglia as well as invading macrophages. Interestingly, AD-associated

neuroinflammatory marker, such as ICAM, CD40, TNF-α or iNOS, were reduced in brain sam-

ples of 14-month-old APP/PS1∗CB2−/− mice, but not in APP/PS1 mice. These findings were

accompanied by a reduced neuronal loss, evaluated by NeuN and parvalbumin immunoreactivity.

Consecutively, the observed differences in plaque load, inflammatory molecules and neurodegener-

ation resulted in a rescue of cognitive deficits in aged APP/PS1∗CB2−/− mice.

6.1 Analysis of CB2 signalling in neonatal microglia

To assess the functional role of CB2 in the inflammatory response of microglia, neonatal microglia

were challenged with pro-inflammatory stimuli. The presence of functional CB2 receptors on mi-

croglia cells had already been demonstrated by various studies [36, 57]. Furthermore, it was shown

that exposure of neonatal rat microglia to the exogenous cannabinoid THC resulted in a reduction

of LPS-induced mRNA expression levels of IL-1α, IL-1β, IL-6 and TNFα [210]. Thus, these data

already implicated that CB2 plays an important role in activated immune cells and particularly in

an inflammatory milieu.

6.1.1 CB2 deficient microglia are less responsive to pro-inflammatory insults

According to the Th-1/Th-2 nomenclature of T-lymphocytes, microglia cells can also be primed

into different activation states [261, 42, 43]. In the current study, the ability of CB2+/+ and

CB2−/− microglia regarding their response to pro-inflammatory stimuli was evaluated. Thereby,

we clearly demonstrated that microglia derived from CB2−/− mice were much less responsive to

pro-inflammatory stimulation than cells from control mice, while alternative activation markers

are increased in these mice. In contrast, it was demonstrated that the alternative activation (M2)

is hampered in microglia from CB2 knockout animals [170]. However, Mecha et al. used the
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commercially available CB2 knockout strain generated by Deltagen (Cnr2tm1Dgen), which contains

a 391 bp deletion at the N terminus. Thus, the different CB2 knockout strategy as well as the

different genetic background of these mice could be an explanation for the contradictory results.

In comparison to CB2 receptor deletion, the activation of microglial CB2 receptors with synthetic

or exogenous cannabinoids was generally shown to suppress microglia activation. A study by

Ehrhart et al. showed that selective stimulation of CB2 receptors by the synthetic agonist JWH-

015 suppressed microglia activity in terms of a reduced IFNγ-induced expression of CD40, TNFα

and iNOS [57]. Thus, the current data suggest a context- and system-dependent role of CB2

regarding microglial activation pattern.

In the current study, we could also demonstrate that the LPS/IFNγ-induced secretion of the

monocytic chemotactic cytokine CCL2 was markedly reduced in microglia cells derived from CB2−/−

mice, while the pro-inflammatory challenge in CB2+/+ cultures dramatically induced the CCL2 se-

cretion. These results are in line with a study by Deveaux et al., demonstrating that genetic

or pharmacological inactivation of CB2 receptors reduced CCL2 and TNFα expression in adi-

pose tissue macrophages associated with obesity [52]. In different studies, induction of CCL2 was

demonstrated not only at sites of acute inflammation but also in the context of various chronic in-

flammatory diseases, including atherosclerosis, autoimmune diseases, cancer and chronic infection

[50]. In the CNS, CCL2 was shown as the responsible mediator for the recruitment of immune cells

in neuroinflammatory conditions such as AD, ischemic and traumatic brain injury, multiple sclero-

sis, experimental autoimmune encephalomyelitis and viral encephalitis [21, 41, 153, 284, 128, 275].

These results suggests that CB2 deficient microglia are less able to recruit peripheral immune cells

to sites of inflammation.

Ever since Stein et al. observed the effect of IL-4 stimulation on the expression of the mannose

receptor (MMR), the alternative activation pattern has been an area of interest [250]. Generally,

acute pro-inflammatory stimulations leads to a decreased expression of anti-inflammatory marker

molecules, such as MMR [195]. Interestingly, CB2−/− microglia already exhibited increased levels

of MMR at baseline conditions. After stimulation, a decreased MMR expression was detected

in cells derived from CB2+/+ mice, while MMR expression in CB2−/− cells remained constant

in response to LPS and IFNγ. Furthermore, secretion of the anti-infammatory cytokine IL-10

was induced in both cultures, CB2+/+ and CB2−/−, upon inflammatory conditions. However,

microglia cells from CB2−/− mice displayed a two-fold increase of IL-10 upon LPS and IFNγ

challenge as compared to CB2+/+ cells. As CB2 receptor activation is generally proposed to be

anti-inflammatory [224, 62], a distinct M1 phenotype would be expected in microglia cells lacking

CB2 signalling. Thus, the current data suggest a crucial role of CB2 deletion on microglia function

independent from pharmacological inhibition.
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6.1.2 Phagocytic capacity is unaltered in neonatal microglia and macrophages

To investigate whether the altered inflammatory profile of CB2−/− microglia also affected their

ability to phagocytose exogenous material, we further quantified the uptake of fluorescently labelled

Aβ-peptides in both, CB2+/+ and CB2−/− cultures. The ability of microglia to phagocytose Aβ

in vitro was already shown in 1991 [279]. In the current study we demonstrated that lack of CB2

signalling did not alter the uptake of fluorescently labelled Aβ by neonatal microglia or BMdM.

Quantification via flow cytometry revealed comparable phagocytic capacities of cultures derived

from CB2+/+ and CB2−/− mice.

It was shown that the cannabinoid agonist JWH-015 triggered the phagocytic capacity of human

macrophages incubated with Aβ and induced the removal of native Aβ from human frozen tissue

sections [259]. This effect was at least partially CB2 mediated, as the selective CB2 antagonist

SR144528 could prevent the JHW-015-induced plaque removal in situ. In contrast, in a recent

study by Mai et al. it was demonstrated that activation of CB1 (not CB2) increased macrophage

phagocytic activity, while pharmacological or genetic ablation of CB1 inhibited the particle uptake.

CB2 activation or inhibition, however, had no effect on macrophage phagocytic activity [154].

Thus, the influence of CB2 signalling on microglia phagocytosis seems to be cell-type and context-

dependent.

6.2 Endocannabinoid system components in APP/PS1∗CB2−/− mice

6.2.1 Altered expression of cannabinoid receptors with age and disease

In the current study we could demonstrate that Cnr1 mRNA expression decreased with increasing

age, particularly in mice expressing tg APP. These data are in correspondence with studies by

Ramirez and Solas which showed a significant decrease in CB1 receptor levels as well as CB1

protein nitration in areas of microglial activation in AD brains [215, 248]. Additionally, independent

findings by Bedse and Kalifa demonstrated a decreased CB1 protein expression mouse models of AD

when compared to age-matched control mice [18, 117]. In contrast, in a study by Kärkkäine et al.,

who used functional autoradiography to assess CB1-receptor-dependent G(i)-protein activation, no

significant difference between APP/PS1 tg and control mice in CB1 receptor signalling was found

[118]. Furthermore, it was shown that CB1 activity is increased in early AD stages but decreased in

advanced stages [156]. The initial hyperactivity of the ECS in brain areas, which lack pathological

hallmarks, suggests a compensatory attempt for the early synaptic impairment. However, with

progression of the disease this compensatory mechanism might then be excelled. Thus, the direct

role of Cnr1 receptor expression and CB1 receptor activity in tg mouse models of AD still needs

to be clarified in future research.

Besides the regulation of CB1 receptors, the role of CB2 signalling is an area of great interest
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for recent years, since AD is intensively investigated as an inflammatory condition of the CNS. In

the current study Cnr2 was equally expressed in hippocampal tissues of APP/PS1 mice compared

to control littermates. Benito at al. showed a selective overexpression of CB2 in neurotic plaque-

associated microglia [20]. These findings were in accordance with studies using AD-associated

mouse models, which also revealed CB2 overexpression in Aβ affected brain areas [107, 233]. Like-

wise, rats and rat astroglioma cells showed an up-regulation of CB2 receptor and an increase in

2-AG concentration after treatment with Aβ [60]. Thus, our current results do not directly re-

flect previous research results. However, this controversy might be due to different methodological

approaches used to detect CB2 expression. Benito and colleagues used western blot and immuno-

histochemistry to detect and quantify CB2 receptor density in posmortem brains of seven AD

patients. For in vivo evaluations of CB2 receptor density, Horti et al. described the development

of a new potential radioligand ([11C]A836339) for PET imaging studies [107]. Thereby, they were

able to prove that CB2 receptor binding can be measured in neuroinflammatory conditions. How-

ever, the newly synthesised ligand showed relatively high non-specific binding properties, which

were analysed by blocking CB2 receptors with the specific antagonist AM630 [107]. The working

group of Savonenko et al. also used the radioligand [11C]A836339 to evaluate CB2 receptor binding

density in AD tg mouse models and claimed CB2 as a potential biomarker in Aβ-induced neu-

roinflammation [233]. Thereby, CB2 receptors were particularly observed in microglial processes

forming engulfment synapses with Aβ plaques [233]. Thus, results obtained in our study and by

using PET radioligands are not directly comparable as CB2 mRNA levels do not always reflect

protein levels.

More interestingly, we found a markedly increased Cnr2 expression in APP/PS1∗CB2−/−. This

finding can be explained by the generation of the used CB2−/− mouse line. Through homologous

recombination, the 3’ region of the coding exon was replaced with a PGK neomycin sequence. By

using this strategy, a part of the intracellular loop, the transmembrane regions 6 and 7 and the

carboxy terminus were deleted. However, current available real-time gene expression assays target

the remaining 5’ untranslated region, therefore, the alignment of TaqMan R© probes still reveal Cnr2

mRNA expression. Furthermore, two different isoforms of the murine Cnr2 gene (CB2A and CB2B)

were detected due to the presence of two separate promoters [147]. Liu and colleagues also described

a compensatory effect of Cnr2 promoter activities, which upregulates the expression of both CB2

isoforms in the currently used CB2 knockout mouse model by [33]. Therefore, our results obtained

in the present study directly reflect the findings by Liu et al. The significantly increased expression

of Cnr2 in APP/PS1∗CB2−/− mice suggests an additional intrinsic compensatory mechanism to

counterbalance the insufficient endocannabinoid signalling. However, these speculative explanations

and their possible consequences need to be analysed in future studies.

Additionally to Cnr1 and Cnr2 gene expression analyses, we found an APP-dependent increase
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in mRNA levels of the orphan G-protein coupled receptor Gpr18 in aged AD tg mice. After the

first reports describing GPR18 in 1997 [75], various research groups aimed to identify GRP18 ex-

pressing tissue and binding partner [267, 130, 288]. A potential link between GPR18 and microglia

was provided by Hugh and colleagues in 2010 [168]. In their study, GPR18 was proposed as an

unidentified abnormal-cannabinoid receptor expressed by BV-2 immortalised microglia cell line as

well as in primary microglia cells. Furthermore, GPR18 has been demonstrated to regulate cellular

migration through binding with its ligand N-arachidonoyl glycine (NAGly) [168]. Additionally,

a subsequent study by the same working group provided evidence for a NAGly-GPR18-mediated

microglia activation and cytokine production in the BV-2 microglia model system [169]. Our re-

sults suggests that GPR18 is not only involved in microglia cell cultures systems but is particularly

involved in neuroinflammatory conditions in vivo, where it might act in neuronal-microglial com-

munication. However, future studies need to elucidate the role of GPR18-mediated signalling events

in microglia-involved neuroinflammatory conditions.

6.2.2 Altered expression of ECS synthesizing and hydrolysing enzymes

The role of the ECS in AD-associated neuroinflammation was also intensively investigated in recent

years. Bisogno and Di Marzo reviewed the dual role of endocannabinoids in AD [28]. While an

increased tone of endocannabinoids might exert beneficial functions by reducing pro-inflammatory

microglial priming in a CB2-dependent manner [215], modulation of CB1 receptors can gate Aβ

neurotoxicity and protect against Aβ-induced amnesia in hippocampal learning tasks [164]. Ex-

pression of endocannabinoid system components have been demonstrated to change with age [202]

as well as in neuroinflammatory conditions, such as AD [180]. Therefore, we investigated gene

expression levels of the main endocannabinoid synthesising enzymes Daglα and Nape-pld as well

as their hydrolysing enzymes Magl and Faah.

In 9-month-old mice, mRNA expression levels of Daglα were comparable between the geno-

types. However, in 14-month-old mice, Daglα was specifically and significantly upregulated in

APP/PS1∗CB2−/− mice as compared to CB2+/+, CB2−/− and APP/PS1 mice. The role of 2-

AG metabolism has been directly connected with AD progression by studies showing that Magl

inhibition reduces Aβ formation, neuroinflammation and neurodegeneration, while long-term po-

tentiation and spatial memory were increased in AD tg mice [40, 201]. These results suggest that

an increased 2-AG tone could also ameliorate disease pathology in AD tg mice. However, as 2-AG

has been demonstrated to exert its beneficial effects through CB2 receptor binding, therefore, our

results would suggest that a different cannabinoid receptor would be involved.

Gene expression of the 2-AG hydrolysing enzyme Magl did not show any genotype specific al-

terations in the current study. However, with increasing age, Magl mRNA was age-dependently

increased. An increased MAGL activity with increasing age in mouse hippocampi was also shown
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by [202], suggesting a general age-dependent down-regulation of 2-AG tone in hippocampal areas.

However, in the current context, APP expression did not alter the physiological upregulation of

Magl.

Expression of the main enzyme responsible for synthesising AEA, Nape-Pld, was age-dependently

down-regulated in a CB2- and APP-dependent manner, while mRNA expression was not altered in

samples of aged CB2+/+ mice. This finding suggests that AEA expression is context-dependently

altered in samples of aged mice, however, expression of the main hydrolysing enzyme Faah was

similarly regulated with age and genotype. These findings are in line with results obtained by

Piyanova et al., showing an altered expression of 2-AG but a stable expression of AEA with age

[202].

6.2.3 Levels of endocannabinoids

The importance of endocannabinoid signalling in neurodegenerative diseases was described in var-

ious reviews, for instance see [161].

According to gene expression analyses of the main endocannabinoid synthesizing and hydrolysing

enzymes, endocannabinoids levels were analysed in hippocampal and cortical brain tissue samples of

9- and 14-month-old. In the current study, we detected an age and APP-dependent downregulation

of AEA protein levels in hippocampal tissue, while expression in cortical tissue remained constant.

Similarly, Maroof et al. showed stable AEA levels in the frontal cortex of four-, six- and 8-month-

old AD tg mice, when compared to age-matched control mice [157]. However, in contrast to the

study by Maroof and colleagues, we detected an age-related decrease in cortical 2-AG levels in AD

tg mice and an overall decline of hippocampal 2-AG levels in all genotypes aged 14 months. These

alternations could be due to the age groups used for analyses. As Maroof and colleagues used mice

in the age of four, six and eight month, we evaluated mice in the age of nine and 14 month due

to the presence of plaque development and inflammation at later stages of disease progression. In

line with our analyses, Maroof et al. did not detect alterations in hippocampal or cortical PEA

levels with age or genotype [157]. Increased expression levels of Daglα detected in 14-month-old

APP/PS1∗CB2−/− mice were not reflected by increased 2-AG levels in the same mouse group.

These results clearly demonstrate that mRNA expression levels are not always correspondent with

protein levels and conclusions from gene expression analyses should be drawn with caution.

In general, lack of CB2 signalling did not influence the levels of principal endocannabinoids and

related derivatives in an age- and disease-dependent matter. Thus, secretion of endocanabinoids

seem to be age-dependently regulated in both, physiological brain ageing and in neuroinflammatory

or neurodegenerative conditions.
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6.3 Decreased Aβ deposition in aged APP/PS1∗CB2−/− mice

6.3.1 Lack of CB2 signalling decreases Aβ species and plaque load

Using thioflavin staining, we detected a decreased Aβ plaque load in cortical tissue of 14-month-

old mice as well as in hippocampal tissue of 9- and 14-month-old APP/PS1∗CB2−/− compared to

age-matched APP/PS1 mice. These results suggest a CB2-dependent mechanism involved in APP

expression, processing or degradation.

In contrast, Koppel et al. showed that deficiency of CB2 receptors in an AD mouse model

resulted in increased amyloid pathology [132]. While the same CB2 knockout mouse model was

used in Koppel’s study and our set up, namely the CB2−/− (by [33]), Koppel and colleagues used

the J20 tg amyloid mouse model (by [179]). These mice develop plaques between the age of 7

and 10 months and plaque load was analysed after one year using the human specific antibody

6E10 on immunohistochemical brain slices. In the current study, the APP/PS1 mouse model by

[31], which develops plaques already by the age of 6 months, while plaque load was measured in

samples of 9- and 14-month-old mice by using thioflavin staining of cryosectioned brain tissue slices.

The difference in AD mouse models and plaque staining techniques within both studies could be

responsible for the conflicting results. Thus we hypothesize that the influence of CB2 signalling on

APP processing is strongly context dependent and should be further examined in future studies.

Besides a direct association between CB2 signalling and plaque development, an indirect corre-

lation via the modulation of microglial activity was speculated. Yamamoto et al. and colleagues

demonstrated that a Swedish APP tg mouse model lacking the IFNγ receptor type 1 resulted in

reduced gliosis and amyloid plaque load by the age of 14 month, suggesting a direct relationship be-

tween pro-inflammatory cytokines and AD pathogenesis [285]. Another study showed that pharma-

cological or genetic inhibition of MAGL, the main hydrolysing enzyme of 2-AG, reduces Aβ plaque

formation as well as neuroinflammation and neurodegeneration, while long-term-potentiation and

spatial memory were improved in APP tg animals [40, 201]. Therefore, we hypothesized that block-

ade of CB2 signalling in APP/PS1 mice affects amyloidosis by modulating the inflammatory milieu

through a diverse glia activation, which in turn affected Aβ plaque load. However, the exact mech-

anism of CB2 signalling on neuroinflammatory modulation still needs to be elucidated in further

studies.

6.3.2 Expression of APP and APP-cleavage enzymes remains stable

To investigate whether APP gene expression per se was influenced by CB2 signalling, we evaluated

App mRNA expression levels in both age- and all four mouse-groups. As expected, AD tg mice

showed increased App mRNA levels as compared to CB2+/+ and CB2−/− mice. However, within

AD tg mice, lack of CB2 signalling did not influence App expression levels, as App mRNA levels
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were comparable between APP/PS1 and APP/PS1∗CB2−/− mice. Thus, we can exclude that CB2

signalling directly influences Aβ levels by an up-regulation of App mRNA levels.

Up to date, other studies did not directly investigate the role of CB2 deficiency on APP ex-

pression. However, the role of CB2 receptor signalling in the context of AD, both in cell culture

models as well as in diverse AD tg mouse models, was of increasing interest in various research

groups over the last decade [57, 215, 59, 62, 159, 11, 281, 15, 39, 12]. Most studies used pharma-

cological stimulation of CB2 receptors in Aβ triggered myeloid cells or tg mouse models. Direct

CB2 receptor activation using specific ligands reduced Aβ plaque load and diminished the amount

of soluble Aβ species [259, 159, 11, 281, 39, 35]. As these effects were mostly in accordance with

anti-inflammatory activation of microglia cells, an indirect mechanism of CB2 signalling on APP

plaque load via microglia polarisation can be hypothesised.

Consecutively, we investigated expression levels of different APP cleavage enzymes, namely α-

and β-secretases. As already mentioned in the introduction, APP cleavage is regulated differently

in the CNS of healthy and AD subjects. In the current study, hippocampal mRNA expression

levels of the β-secretase Bace1 did not differ between the groups. Therefore, we can exclude that

differences seen in Aβ plaque load and soluble Aβ levels are due to differentially expressed cleavage

enzymes which could result in an unbalanced APP processing. Nevertheless, it should be kept

in mind that mRNA expression levels do not always correspond to protein levels or even enzyme

activity. Further studies should therefore examine the enzyme activity of APP proteases to clarify

this aspect.

6.3.3 Expression levels of Aβ receptors and degrading enzymes

The role of microglial Aβ uptake and degradation was analysed by evaluating mRNA expression

levels of the most abundant receptors and degrading enzymes, which have been shown to interact

with different Aβ species. While we were able to detect an age-dependent increase in mRNA

levels of Ager, Marco and Tlr4, CB2 deficiency did not influence expression levels in comparison

to age-matched APP/PS1 mice. Therefore, our results do not provide evidence for an increased

Aβ-uptake in APP/PS1∗CB2−/− mice due to differentially expressed receptors.

According to Aβ degrading enzymes, aged APP/PS1∗CB2−/− mice displayed increased levels of

Ide and Mmp9 compared to age-matched control groups. These data suggest an increased ability of

amyloid degradation and thus a possible mechanism for the observed effects of reduced Aβ plaque

load in APP/PS1∗CB2−/− in comparison to APP/PS1 mice. In accordance with results by [274],

showing increased levels of Ide and decreased levels of Nep mRNA in AD patients, we also detected

increased levels of Ide mRNA in aged AD tg mice, while gene expression levels of Nep were decreased

with age. The≈110 kDa thiol zink-metalloendopeptidase IDE is located in the cytosol, peroxisomes,

endosomes and on the cell surface [83, 240, 56, 268]. IDE was shown to cleave small proteins
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which mostly share a β-pleated sheet-rich structure, such as amyloid fibrils [136, 111] and was

therefore initially identified as a major protease that degrades Aβ [213]. Furthermore, increasing

evidence suggested a crucial link between IDE and AD, showing that IDE is also associated with

neuroinflammation. Previous studies showed an up-regulation of IDE due to increased levels of

Aβ40 and Aβ42 in APP/PS1 tg mice [269]. In contrast to our study, Hickmann et al. detected

decreased levels of Ide, Nep and Mmp9 at the age of 1.5, 3, 8 and 14 month in CD11b+ cells from the

AD tg mouse model APP/PS1 compared to cells from CB2+/+ littermates [102]. Conflicting results

could be due to the analysed tissue samples. While [102] evaluated expression levels exclusively

in sorted cells, we analysed expression levels in hippocampal brain lysates of 9- and 14-month-old

mice. This could lead to a washout effect and should therefore be evaluated in specific cell culture

experiments.

6.4 Decreased microgliosis in APP/PS1∗CB2−/− mice

The role of CB2 receptor signalling on microglial activation has been studied intensively in the

past decade. Already in 2005, Ehrhart and colleagues demonstrated that the specific CB2 receptor

activation by JWH-015 was able to suppress IFNγ-induced activation of mouse primary microglial

cells [57]. Furthermore, Aβ- and CD40L-induced expression of TNFα or NO was opposed by CB2

receptor stimulation by interfering with the JAK/STAT pathway [57]. In line with this, a study by

Ramirez et al. showed reduced microglial reactivity to Aβ-insults in primary rat microglial cultures

when stimulated with cannabinoid ligands (HU-210, WIN55,212-2 and JWH-133; [215]). Similar

to these in vitro studies, JWH-133 and WIN55,212-2 stimulation in the AD mouse model TgAPP-

2576 reduced microglial responses to Aβ [159]. Similarly, a study by Aso et al. demonstrated

reduced microglial activity in the APP/PS1 tg mouse model after JWH-133 administration [11].

In general, these studies provide evidence for anti-inflammatory effects of CB2 receptor stimulation

in the context of amyloidosis and neuroinflammation.

Therefore, we expected an enhanced neuroinflammatory response and increased microgliosis in

the current AD mouse model lacking CB2 receptor signalling when compared to age-matched

control AD mice. However, lack of CB2 signalling resulted in a diminished microgliosis. While the

amount of Iba1+ positive cells was comparable between samples of 9-month-old mice, an increased

Iba1 immunoreactivity was observed in APP/PS1 mice with increasing age and AD-associated

neuroinflammation. Interestingly, this effect was reversed in APP/PS1∗CB2−/− mice. These data

suggests that lack of CB2 signalling in an aged and inflamed AD brain has a dramatic influence on

microgliosis.

In contrast to our findings, Koppel et al. reported an up-regulation of plaque-associated microglia

[132]. However, as already discussed above, Koppel and colleagues used a different AD tg mouse

model, the J20 AD tg mice. Furthermore, Iba1 overexpression was restricted to sites of Aβ plaques,
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while an overall up-regulation of Iba1 immunoreactivity was not detected in the study by [132]. In

our current study, Iba1 immunoreactivity was generally decreased in APP/PS1∗CB2−/− mice.

As described before, these contradictory findings could be due to usage of two different AD tg

mouse models. J20 tg mice, used by [132] express the human amyloid protein with the Swedish

mutation (Lys670Asn and Met671Leu) together with the Indiana mutation (Val717Phe; [179]).

However, data on neuroinflammatory changes are rare in this model model. In contrast, we used

the double tg APP/PS1 mouse model, which overexpresses human APP with the Swedish mutation

additionally to expression of the mutant presenilin-1 gene. This leads to pronounced amyloidogenic

processing of APP, resulting in elevated Aβ levels [137, 214].

As the neuroinflammatory milieu is known to regulate microglia activation states, proliferation

and the recruitment of peripheral cells, these data suggest that a different inflammatory microen-

vironment might be reasonable for the contradictory results described above. Therefore, future

studies are needed to analyse the influence of diverse AD tg mouse models and their mediated

neuroinflammatory profile on microglial phenotypes.

Consecutively, we further analysed if the observed up-regulation of Iba1 immunoreactivity re-

sulted from an increased microglia proliferation or from an enhanced recruitment of peripheral

myeloid cells to sites of Aβ-induced inflammation. A distinct and non-redundant role of microglia

and circulating monocytes was already described by Ginhoux et al., demonstrating that microglia

arise from yolk sac-primitive macrophages [78]. Additionally, studies from [5] and [174] showed

that circulating monocytes do not contribute to the microglia pool under normal physiological con-

ditions and that local expansion of microglia is solely dependent on microglial self-renewal. Due

to functional differences of these cell types, an experimental distinction was demonstrated through

different expression levels of CD45 and CD11b (reviewed by [209]).

As expected, we did not observe alterations in the percentage of microglia cells (CD11b+,

CD45low) or recruited bone-marrow derived macrophages (CD11b+, CD45high) in the CNS of 9-

month-old mice in the current study. However, flow cytometric analyses of 14-month-old mice

revealed enhanced percentages of both, resident microglia and bone-marrow derived macrophages,

in APP/PS1 mice as compared to age-matched APP/PS1∗CB2−/−. This finding indicates that

microglia proliferation on the one hand, as well as recruitment of myeloid cells on the other hand,

is altered in APP/PS1∗CB2−/− mice, and suggests a strong influence on the inflammatory milieu

in the CNS of these mice. These finding are further endorsed by the observation of markedly re-

duced ICAM and CD40 expression levels in microglia and bone-marrow derived macrophages of

APP/PS1∗CB2−/− mice. These data are in line with the exceedingly reduced capability of primary

CB2−/− microglia regarding their capability to express pro-inflammatory molecules in response to

activating stimuli

In summary, our results suggests an important role of CB2 receptor signalling in microglia acti-
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vation, however only in an age- and disease-associated context, as CB2−/− mice were comparable

to age-matched CB2+/+ littermates.

6.5 Altered neuroinflammatory profile in APP/PS1∗CB2−/− mice

Over the past two decades, the dogma of an immunologically privileged brain has been completely

overturned. Until the early 1990s, it was believed that the BBB impedes the passages of immune

cells or humeral factors into the CNS. Epidemiological studies by McGeer and colleagues first

demonstrated that patients suffering from arthritis, who chronically medicated their condition

with NSAIDs, had approximately half the risk for developing AD than did the broader population

[165, 167]. Nowadays, neuroinflammation, as characterised by gliosis and an elevated presence of

inflammatory mediators, is a widely studied feature of physiological ageing and neurodegenerative

diseases. Experimental as well as clinical evidence has demonstrated an increased synthesis of

pro-inflammatory cytokines, e.g. TNFα, IFNγ, IL-1β, IL-6, IL-18, and the up-regulation of their

cognate receptors [22, 1, 229, 192].

In the current study, gene expression levels of Tnfα increased dramatically in 14-month-old mice;

this was especially prominent in aged APP/PS1 mice. In line with this, Babcock and colleagues

found significantly upregulated levels of TnfαmRNA in neocortical tissue samples of aged APP/PS1

mice when compared to aged-matched CB2+/+ littermates [14]. In contrast, Tnfα gene expression

levels were equal in APP/PS1∗CB2−/− mice and CB2+/+ and CB2−/− littermates. This finding,

together with our in vitro data of CB2−/− microglia, suggests that deficiency of CB2 receptor

signalling impedes microglial ability to respond to inflammatory stimuli via the up-regulation of

pro-inflammatory cytokines. A recent review, summarizing the important role of TNFα signalling

in AD pathogenesis, points out the potential role of TNFα-inhibitors as a clinical treatment op-

tion to slow down disease progression and cognitive decline [48]. Hence, we hypothesize that a

decreased expression of TNFα in APP/PS1∗CB2−/− mice beneficially modulates AD-associated

neuroinflammation.

IL-1β has long been implicated in the initiation and propagation of neuroinflammatory changes

associated with AD pathogenesis [178], due to the initial finding of increased IL-1β expression

in reactive microglia surrounding amyloid plaques [89]. Since then, elevated IL-1β levels were

detected in AD mouse models and plaque associated microglia [22, 146]. These studies are in

accordance with data of the current study, showing an APP- and age-dependent elevation of Il-1β

mRNA expression levels. The interaction of cannabinoids and IL-1β was first discovered while

studying the effects of cannabis on consumers susceptibility to infections [68]. Later on, Esposito

and colleagues demonstrated that treatment of mice with cannabidiol was able to impair iNOS and

IL-1β protein expression [60]. Therefore, an antagonistic interplay between cannabinoids and IL-1β

is hypothesised, in which proliferation and formation of new neurons is initiated by cannabinoids
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but blocked through IL-1β expression [77]. This finding is of great importance in the context of

ageing and neurodegerative diseases. In the current study, we could contribute to these findings by

demonstrating that genetic deletion of CB2 receptor signalling did not influence IL-1β expression,

neither in an age-dependent context, nor in AD-associated environment.

However, the detrimental role of IL-1β is currently under debate, as recent studies also supported

a beneficial role of neuroinflammatory changes in AD pathogenesis (reviewed by [282]). In a murine

model of AD, which chronically over-expresses IL-1β, a reduction of both plaque pathology and

insoluble amyloid peptide was observed without evidence of effects on Aβ processing or APP

expression [242, 162]. Conclusively, the picture of IL-1β-mediated neuroinflammation in ageing

and AD pathogenesis might be much more complex and thus, further research is crucial to unravel

the molecular interplay of IL-1β in neurodegenerative diseases.

A significant up-regulation of iNOS expression in the context of APP expression was demon-

strated by various research groups in the past. In cortical neurons insulted with Aβ and in fore-brain

tissue of APP/PS1 mice at the age of 6 months, an up-regulation of Inos mRNA was demonstrated

[273]. In line with these results, Shi and colleagues recently showed an 8-fold increase in mRNA

expression levels of Inos in APP-tg mice versus CB2+/+ littermates [244]. However, in the current

study, we were not able to detect APP-dependent differences in Inos mRNA expression levels in

comparison to age-matched control mice. As both working groups used the same AD mouse model,

the age of the mice might be a possible explanation for the different findings. Wan et al. and Shi et

al. analysed mice already at the age of 6 and 7 months, respectively, while Inos mRNA levels were

not measured in older mouse groups. Furthermore, it is known that increasing age per se already

results in elevated expression levels of iNOS [270, 64]. Thus, an APP-dependent up-regulation of

iNOS might already be overlaid by the age of 9 or 14 months. Consecutively, further studies are

needed to unravel the role of an impaired CB2 signalling regarding Inos expression levels in AD tg

mice.

The important role of CCL2-CCR2 signalling in AD was widely analysed in recent years. Many

studies have linked elevated levels of CCL2 in the cerebrospinal fluid with a transition from mild

cognitive impairment to AD [72]. Furthermore, in vitro studies demonstrated that Aβ - used as a

stimulatory trigger - was able to induce CCL2 expression by astrocytes and oligodendrocytes [115].

In an in vivo study with a triple-tg mouse model of AD, increased CCL2 levels were found in the

entorhinal cortex but not in the hippocampus of 3- to 6-month-old animals [113]. In the current

study, elevated levels of CCL2 were detected in aged CB2+/+ and APP/PS1 mice. El Khoury et

al. demonstrated that CCR2 deficiency in an AD mouse model resulted in an accumulation of

Aβ due to impaired microglia accumulation, resulting in accelerated ageing and disease progression

[58]. Similar results were obtained by the working group of Naert and Rivest, showing that memory

impairment was accelerated in AD mice lacking CCR2 expression, while soluble Aβ levels increased
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significantly [183]. Gene expression levels of the chemokine Ccl2 were reduced in aged mice lacking

CB2 signalling. Diminished Ccl2 gene expression levels in CB2−/− and APP/PS1∗CB2−/− mice

could be one possible explanation for the reduced percentages of monocyte-derived macrophages

detected in the CNS of aged APP/PS1∗CB2−/− mice. This leads to the hypothesis that the

recruitment of peripheral myeloid cells to sites of inflammation is hampered in the absence of CB2

signalling. However, the dramatic decrease of CCL2 secretion seen in neonatal microglia derived

from CB2−/− mice was not present in aged mice. One the one hand, this finding might be explained

by a washout effect. In contrast to microglia-enriched cell culture experiments, gene expression

analyses were conducted using whole hippocampal tissue samples of aged mice, which contained

various cell types. On the other hand, CCL2 secretion in neonatal microglia was quantified by

using ELISA, thus protein concentrations were compared between different genotype groups. In

aged mice, protein quantification was not feasible due to a fast degradation of chemokines and

cytokines within the process of tissue harvesting. Therefore, the measurement of cytokine or

chemokine expression was only possible by using real-time gene expression analyses. Nevertheless,

also aged mice showed decreased levels of Ccl2 mRNA when CB2 signalling was lacking. These

results suggest an impact of CB2 signalling on CCL2 expression, which could be direct or indirect.

However, the exact mechanism needs to be evaluated in further studies. Experiments using tissue

samples of cell-type specific CB2 knockout mice could elucidate the role of CB2 signalling on CCL2

expression in future studies.

6.6 Decreased neurodegeneration in APP/PS1∗CB2−/− mice

Neurodegeneration, initially characterised by progressive loss of synaptic structure up to neuronal

loss, is one of the most prevalent histological hallmarks of AD [82]. At initial stages of the disease,

basal forebrain cholinergic neurons and adrenergic neurons in the locus coeruleus are affected from

neuronal loss, followed by a massive loss of hippocampal and cortical neurons at later stages of

the disease [27]. In the presently used murine model of AD, some neuronal subpopulation were

previously shown to alter with increasing age and disease progression. Aged female tg APP/PS1

mice were shown to develop a selective degeneration of catecholaminergic neurons in the locus

coeruleus [194]. Furthermore, decreasing levels of calcium-binding proteins, especially calbindin,

calretinin and parvalbumin, were detected in the dentate gyrus of APP/PS1 mice, suggesting the

involvement of calcium-dependent pathways in the pathogenesis of AD [203]. This finding was

further substantiated by Takahashi et al., showing a 40-50% loss of parvalbuminergic and a 37-

52% loss of calretinergic interneurons in the hippocampus of APP/PS1 mice [257]. In line with

these recent findings, we detected a decreased density of the pyramidal cell layer in the CA1/2

region in samples of 14-month-old APP/PS1 mice when compared to age-matched CB2+/+ mice.

Furthermore, the general number of NeuN-positive cells per mm2 was significantly decreased in
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APP/PS1 mice. However, this finding was rescued inAPP/PS1∗CB2−/− mice, which showed a

comparable neuronal density than age-matched CB2+/+ and CB2−/− mice. In accordance with

Takahashi et al., numbers of parvalbumigergic interneurons in cortical brain tissue sections were

significantly decreased in APP/PS1 mice [257].

These results indicate that lack of CB2 signalling positively influenced the age-dependent AD

associated neurodegenerative process.

6.7 Rescue of cognitive impairments in APP/PS1∗CB2−/− mice

Neurodegenerative processes as well as chronic expression of neuroinflammatory mediators and in-

creasing Aβ accumulation have been linked to deficits in spatial learning and memory in APP/PS1

mice [211, 97, 152, 73], and cognitive impairments in correlation with Aβ levels in APP/PS1

mice have been described by diverse research groups [232, 291, 140, 109]. Recently, Kim and col-

leagues reported that oral co-administration of 4-(2-hydroxyethyl)-1-piperazinepropane-sulphonic

acid (EPPS), an amyloid-clearing chemical, and donepezil, an acetylcholinesterase inhibitor, im-

proved cognitive impairments in 50 weeks old APP/PS1 mice, measured by Y-maze test [123].

In the current study, the impact of CB2 signalling on AD associated cognitive impairments was

evaluated by using an exacerbated MWM paradigm. In a previous study, we were not able to

detect cognitive differences between aged (14-month-old) APP/PS1 and APP/PS1∗CB2−/− mice

by using the MWM with an intertrail time of five minutes [235]. Therefore, we elevated the task

difficulty in the current study by using an intertrial time of 1 h. This allowed the detection of

minor learning differences between the groups. In line with our previous findings, escape latencies

in 14-month-old APP/PS1 mice were significantly increased in comparison to age-matched control

mice. However and more interestingly, cognitive deficits in 14-month-old APP/PS1∗CB2−/− mice

were rescued, as escape latencies were comparable to CB2+/+ and CB2−/− mice. These results

suggest that differences seen in neuroinflammatory markers as well as in Aβ load and neuronal loss

positively influenced cognitive abilities in aged APP/PS1∗CB2−/− mice. In a previous study, CB2

receptor deletion was already shown to enhance spatial working memory in animals at the age of

2.5-4 months, while long-term memory was impaired in these mice [144]. Furthermore, the authors

demonstrated that acute blockade of CB2 receptors by administration of the antagonist AM630

had no effect on working memory [144].

Therefore, we conclude that the genetic deletion of CB2 receptors cannot be directly compared to

the pharmacological inactivation of the same receptors and that brains regions and the surrounding

microenvironment plays a crucial role in CB2 receptor signalling. Thus, further studies are highly

needed to address the aspect of CB2 signalling in more detail using time- and cell-type-specific

CB2 knockout mouse models.
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7 Conclusion

The current data clearly demonstrate a crucial role of CB2 signalling in the development of AD-

like phenotypes in the APP/PS1 mouse model. A fundamental effect of CB2 receptor deletion was

already observed in microglia cultures derived from neonatal mice, showing that microglia derived

from CB2−/− mice were significantly less responsive to pro-inflammatory stimuli regarding their

upregulation of inflammatory cell surface marker ICAM and CD40 as well as the secretion of the

cytokines TNF-α, IL-6 or CCL2. However, CB2−/− microglia responded with an upregulation of

the ’M2’-like maker molecules MMR and IL-10 to inflammatory stimuli. These findings suggest

that constitutive CB2 knockout mice already show an alternative maturation of microglia cells

in early embryonic development, which might play an important role on microglia polarisation

in an inflammatory environment. We therefore hypothesise that lack of functional CB2 receptor

signalling influences the development of microglia in early developmental stages, which in turn are

less proned against pro-inflammatory stimuli.

Figure 7.1: CB2 deficiency in APP/PS1 mice. Lack of CB2 signalling reduced number of mi-
croglia and macrophages as well as the expression of pro-inflammatory factors, while expression of
anti-inflammatory mediators was enhanced in neonatal microglia and aged mice. In turn, Aβ clearance
might be increased due to increased expression of degrading enzymes, resulting in reduced neuronal loss
and consecutively ameliorated cognitive performance.

These findings are in line with many other studies showing that modulation of microglial function

in AD models can restore or improve memory function [127, 198, 70, 286].
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Thus, our current findings demonstrate that an altered microglia polarisation contributes dramat-

ically to memory deficits associated with AD progression due to their production of modulatory

substances and their ability to interact with the local brain environment. However, despite the

widely reported immunomodulatory effects of cannabinoids in central and peripheral immune cells,

the exact mechanism, by which lack of CB2 signalling affects the development and polarisation

of microglia in the current AD mouse model, needs further investigations. Due to recent find-

ings demonstrating CB2 receptor expression in hippocampal principal neurons, the involvement of

other cell types influencing the AD-associated progression cannot be ruled out [252]. Thus, usage

of conditional murine models with a cell type-specific CB2 receptor deletion or a time-specific CB2

receptor deletion could be a helpful model system to unravel to the role of CB2 signalling in a

neuroinflammatory and neurodegenrative context.
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Pozo, N. G. Innamorato, A. Cuadrado, M. L. de Ceballos, and M. L. D. Ceballos. Prolonged
oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and
improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation, 9(1):8, jan
2012.

[160] F. O. Martinez, A. Sica, A. Mantovani, and M. Locati. Macrophage activation and polariza-
tion. Front. Biosci. a J. virtual Libr., 13(4):453–461, 2008.

[161] V. D. Marzo, N. Stella, A. Zimmer, V. Di Marzo, N. Stella, and A. Zimmer. Endocannabinoid
signalling and the deteriorating brain. Nat. Rev. Neurosci., 16(1):30–42, dec 2014.

[162] S. B. Matousek, S. Ghosh, S. S. Shaftel, S. Kyrkanides, J. A. Olschowka, and M. K. O’Banion.
Chronic IL-1β-mediated neuroinflammation mitigates amyloid pathology in a mouse model of
Alzheimer’s disease without inducing overt neurodegeneration. J. Neuroimmune Pharmacol.,
7(1):156–64, mar 2012.

[163] L. a. Matsuda, S. J. Lolait, M. J. Brownstein, a. C. Young, and T. I. Bonner. Structure of a
cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346(6284):561–
564, 1990.

[164] C. Mazzola, V. Micale, and F. Drago. Amnesia induced by β-amyloid fragments is coun-
teracted by cannabinoid CB1 receptor blockade. Eur. J. Pharmacol., 477(3):219–225, sep
2003.

[165] P. L. McGeer, E. McGeer, J. Rogers, and J. Sibley. Anti-inflammatory drugs and Alzheimer
disease. Lancet (London, England), 335(8696):1037, apr 1990.

[166] P. L. McGeer and E. G. McGeer. NSAIDs and Alzheimer disease: Epidemiological, animal
model and clinical studies. Neurobiol. Aging, 28:639–647, 2007.

[167] P. L. McGeer, M. Schulzer, and E. G. McGeer. Arthritis and anti-inflammatory agents as
possible protective factors for Alzheimer’s disease: A review of 17 epidemiologic studies.
Neurology, 47(2):425–432, aug 1996.

[168] D. McHugh, S. S. J. Hu, N. Rimmerman, A. Juknat, Z. Vogel, J. M. Walker, and H. B.
Bradshaw. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed
cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neu-
rosci., 11:44, 2010.

[169] D. McHugh, D. Roskowski, S. Xie, and H. B. Bradshaw. ∆(9)-THC and N-arachidonoyl
glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for
signaling at GPR18. Front. Pharmacol., 4:162, 2014.
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Hippocampal Aβ42 Levels Correlate with Spatial Memory Deficit in APP and PS1 Double
Transgenic Mice. Neurobiol. Dis., 9(3):339–347, 2002.

[212] L. Qin, Y. Liu, C. Cooper, B. Liu, B. Wilson, and J.-S. Hong. Microglia enhance β-amyloid
peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen
species. J. Neurochem., 83(4):973–983, nov 2002.

[213] W. Q. Qiu, D. M. Walsh, Z. Ye, K. Vekrellis, J. Zhang, M. B. Podlisny, M. R. Rosner,
A. Safavi, L. B. Hersh, and D. J. Selkoe. Insulin-degrading enzyme regulates extracellular
levels of amyloid beta-protein by degradation. J. Biol. Chem., 273(49):32730–8, dec 1998.

[214] R. Radde, T. Bolmont, S. A. Kaeser, J. Coomaraswamy, D. Lindau, L. Stoltze, M. E. Calhoun,
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[259] R. M. Tolón, E. Núñez, M. R. Pazos, C. Benito, A. I. Castillo, J. A. Mart́ınez-Orgado, and
J. Romero. The activation of cannabinoid CB2 receptors stimulates in situ and in vitro
beta-amyloid removal by human macrophages. Brain Res., 1283:148–154, aug 2009.

[260] Y. Tomidokoro, Y. Harigaya, E. Matsubara, M. Ikeda, T. Kawarabayashi, T. Shirao, K. Ishig-
uro, K. Okamoto, S. G. Younkin, and M. Shoji. Brain Ab amyloidosis in APPsw mice induces
accumulation of presenilin-1 and tau. J. Pathol., 194(4):500–506, 2001.

[261] T. Town, V. Nikolic, and J. Tan. The microglial ”activation” continuum: from innate to
adaptive responses. J. Neuroinflammation, 2:24, oct 2005.

[262] M.-E. Tremblay, B. Stevens, a. Sierra, H. Wake, a. Bessis, and a. Nimmerjahn. The Role of
Microglia in the Healthy Brain. J. Neurosci., 31(45):16064–16069, nov 2011.

[263] P. R. Turner, K. O’Connor, W. P. Tate, and W. C. Abraham. Roles of amyloid precursor pro-
tein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol.,
70(1):1–32, 2003.

[264] M. Uchigashima, M. Narushima, M. Fukaya, I. Katona, M. Kano, and M. Watanabe. Sub-
cellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling
and its physiological contribution to synaptic modulation in the striatum. J. Neurosci.,
27(14):3663–3676, 2007.
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