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Abstract

In the current picture of the evolution of the Universe, gravity is primarily responsible for the agglomer-
ation of matter, leading to the formation of galaxies, as our milky way. Thereby, the matter content is
dominated by dark-matter, which is neither emitting nor absorbing light and only appears through its
gravitational interaction. Regions of dark matter, which initially are slightly above the mean density,
collapse under their own gravity into virialized, quasi-static structures (called haloes). These are the sites
where galaxies form and it is, therefore, important to understand the evolution of haloes.

In this study, we use numerical simulations of structures developing in the universe under the action of
gravity. We compare the resulting haloes from these simulations to the predictions of simplified models of
halo formation. We further analyse the validity of the assumptions used to construct the models. Against
the common wisdom we find that the growth of haloes in simulations can come to complete rest. We
develop an estimator for the collapse time of haloes and show that early collapsing haloes preferentially
live in prominent filaments of the cosmic web. The flow of matter inside the filament inhibits the halo
from growing in mass. We present a simple criterion based on the ellipticity of the tidal field to predict
the appearance of the filament and, thus, the collapse time and final mass of the halo.

Further, we show that the mechanism of quenched accretion is responsible for an effect called assembly
bias. Assembly bias describes the fact that haloes of the same mass, but different age, are distributed
differently in the cosmic web. Older haloes cluster more strongly together compared to younger haloes.
In particular, we report that, as a characteristic imprint of the filament, in early collapsing haloes matter
particles move on more tangential orbits compared to late collapsing haloes. This corroborates the
recently found strong assembly bias with respect to the internal distribution of orbits, which is naturally
and for the first time explained by our results.

Finally, we study the correlation of galaxies on very large scales, which only become observable with
new upcoming surveys. We develop and implement a new method to calculate the observed distribution
of galaxies starting from Newtonian simulations and taking into account leading-order general-relativistic
corrections. The method is called Liger and is important to make predictions for the clustering of galaxies
on large scales and especially its expected uncertainty. We present two example applications of Liger
and demonstrate its usefulness for estimating observables that highlight the small effect of non-standard
general-relativistic effects.
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CHAPTER 1

Introduction

“Nature is an infinite sphere whose center is everywhere and whose circumference is nowhere.”

– Blaise Pascal (17th century)

Since ages the night sky with its stars rises interest to humanity which always tried to understand the
origin of the world. Already ancient cultures built models of the Universe, e.g. consisting of the central
Earth enclosed by rigid spheres harbouring the Sun, the Moon and the stars. Together with deeper
observations of the sky not only our knowledge and the ‘size’ of the Universe grew, but mankind had
to realize that neither the Earth, nor the Sun, nor our Galaxy form the centre of the world. Even our
solar system is not unique as was recently shown by the discovery of many other planets orbiting stars
(roughly 3000 exoplanets have been catalogued in e.g. these archives: J. Schneider et al., 20111; Rein,
20122; Han et al., 20143). Today the ‘cosmological principle’, which states that no point in outer space is
special, is one of the pillars of cosmology, the study of the Universe as a whole. According to the current
perspective, the Universe has a well defined beginning, the Big Bang (e.g. Weinberg, 1993; Singh, 2004),
where all matter is created. Afterwards, gravity is the main driver to form structures which in the end
harbour galaxies and stars. This evolution is well described by ΛCDM, the present standard model of
cosmology. In this work we study the formation of structures within the cosmological standard model.
Although competing models have been developed, ΛCDM offers the best accord between simplicity and
agreement with observational data. However, also ΛCDM postulates two poorly understood ingredients
of the universe. We are going to introduce them along with the standard model in section 1.1, which
describes a perfectly homogeneous universe. In section 1.2 we discuss the evolution of perturbations
within this model. Further we motivate the utility of numerical simulations to study the evolution of
structures in the universe and elucidate how they are performed in section 1.3. Finally, the main questions
addressed in this thesis concerning the formation of structures in the universe and a method to estimate
realistic full-sky maps of the galaxy distribution are presented in section 1.4.

1.1 The cosmological standard model

In the late 1920s it was realized that our Universe extends beyond the size of our Galaxy, the Milky
Way. Back then, Edwin Hubble used a correlation between the periodicity of pulsating stars and their

1 http://www.exoplanet.eu/
2 http://www.openexoplanetcatalogue.com/
3 http://exoplanets.org/
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Chapter 1 Introduction

luminosity, found by Henrietta Leavitt, to estimate the distance to objects called ‘nebulae’ at that time.
Although the distance was underestimated, he showed that the nebulae are far away from our galaxy.
Further, the intensity of the received light as a function of its wavelength has been measured by e.g.
Humason (1927), which is called a spectrum. These spectra contain sharp peaks or dips which can be
uniquely attributed to specific atoms (or molecules at low wavelength), where the locations of these
‘lines’ are shifted with respect to spectra obtained in laboratories on Earth (first noted by Slipher, 1913;
Slipher, 1915). This deviation is denoted as ‘redshift’, since the spectra are usually shifted towards
higher wavelength (redder colours). At the time of its detection, the redshift was explained invoking the
Doppler effect, requiring a high relative receding velocity between the Earth and the nebulae to generate
the shifted spectra. Hubble (1929) then highlighted a linear relation between the distance and velocity of
the nebulae, where most of the nebulae are receding from the Milky Way. Overall, it turned out that these
nebulae are actually galaxies themselves similar to our Milky Way.

Independent from each other Friedmann (1922) and Lemaître (1927) developed a model of the
evolution of a homogeneous universe, based on general relativity proposed several years before. Together
with the relation found by Hubble this implies that our Universe is currently expanding with a rate
equal to the slope of Hubble’s relation. The Friedmann-Lemaître model describes the evolution of space
homogeneously filled with a matter density ρ(t), where the space is allowed to expand/contract only
uniformly such that ρ stays homogeneous. To describe the evolution of the model it is convenient to
introduce a coordinate system which is comoving with the general expansion of the universe. If the
position of any target relative to any observer is denoted by r(t), we introduce the comoving coordinates
x(t) and the scale factor a(t), such that

r = ax, (1.1)

u = ṙ = ȧx + aẋ = Hr + v, (1.2)

where t is the time passed since the big bang (for a comoving observer) and the dot denotes a derivative
with respect to t. Hereby, the scale factor a(t) captures the global evolution of the size of the universe
and, as a convention, is set to unity a(t0) = 1 at the time of today t0. In the following, r is called the
physical coordinate with the corresponding physical velocity u. Further v = aẋ is the peculiar velocity
and we define the Hubble parameter H = ȧ

a . If the peculiar velocities are small compared to H|r|, eq. (1.2)
predicts a linear relation between distance and receding velocity as found by Hubble (1929). The slope
of this relation then highlights the present day value of the expansion rate of the universe H0.

Note that, in the homogeneous world model each matter element is following only the global expansion
and hence x is constant in time and v = 0. Such a model is a simplified representation of our own
Universe, although we observe accumulations of matter as e.g. galaxies. However, on larger spatial scales
(or in larger volumes) we expect the Universe to be uniformly filled with matter (and galaxies), if the
cosmological principle holds. Thus, the homogeneous world model is a valid approximation. To study
the evolution of this simple model we resort to general relativity (GR). In GR, the geometry is described
by the metric, which serves as a rule to estimate the infinitesimal distance ds between two neighbouring
points in the four dimensional space-time. Photons, or light, travel at the finite speed c. Thus, two
points which are separated in space and time such that a photon can pass both, have zero separation
ds = 0⇒ c dt = dr = a dx. In turn, this means that light received from objects located at larger distances
dates back to an earlier epoch in the cosmic history. Any massive particle can only travel at speeds lower
than the speed of light, and any travelled distance in space-time must be space like c dt > dr = a dx. We
use the convention which denotes space-like separations with negative values of ds. Accordingly, positive
ds correspond to time-like paths, which cannot be travelled by any known particle and the connected
points are not in causal contact. However, in GR, gravity is sourced by the distortion of space-time due

2



1.1 The cosmological standard model

to matter, or energy. Therefore, the distances dt and dr are not simply measured employing Euclidean
geometry. If we connect the time and three spatial dimensions into a single four-vector dxµ, where time
is the leading dimension denoted with the index zero4, we can write

ds2 = gµνdxµdxν. (1.3)

Here we employ the Einstein summation convention, such that a sum is performed over each repeated
index. The metric, gµν, acts here as a ruler which indicates how distances are measured in space-time.
Note that, if the metric has the diagonal elements (−c2,1,1,1) and zeros elsewhere, it is called the
Minkowski metric. In this case the distance estimate in the spatial dimensions only coincides with the
usual Euclidean measure. Further, the metric depends on the position in space-time and is connected to
the matter (or energy) content by Einstein’s field equation. Since the photons follow the paths which are
defined by ds = 0, eq. (1.3) implies that the distorted space also affects light rays. As a consequence light
rays appear to bend around massive objects, an effect called ‘gravitational lensing’ (e.g. P. Schneider,
2003). Indeed, lensing is one of the first predictions of GR which has been tested with observations using
the Sun as a lens to displace the apparent position of background stars. Dyson, Eddington and Davidson
(1920) made use of a solar eclipse in 1919 and found evidence in favour of GR by measuring the shift of
stars on the sky during the eclipse that matched the predictions well. Further, photons which fall into or
climb up a potential well gain or lose energy, respectively, because time passes ‘faster’ the deeper the
potential the photon resides in. This has first been shown by Pound and Rebka (1960) in an experiment
on Earth, shooting high energy photons from the ground floor to the roof, about 20 m, and measuring the
frequency shift. Although the effect is tiny, it could be estimated making use of nuclear transition lines,
which are narrow due to the Mössbauer effect (occouring for certain atoms if they are confined within a
lattice). This frequency shift can slightly modify also cosmological observables as shown by Sachs and
Wolfe (1967), hence it is called ‘Sachs-Wolfe’ effect.

For the homogeneous world model H. P. Robertson (1935) and Walker (1937) showed that there exists
an unique solution to the metric, if homogeneity is enforced on all scales. Thus, the metric is called
Friedmann-Lemaître-Robertson-Walker (FLRW)5 metric:

ds2 = −c2dt2 + a2(t)
(
dχ2 + f 2

K(χ)dΩ2
)
, (1.4)

fK(χ) =


K−1/2 sin(K1/2χ) (K > 0)
χ (K = 0)
|K|−1/2 sinh(|K|1/2χ) (K < 0).

(1.5)

Here, χ is the radial coordinate in a comoving spherical coordinate system and K describes the curvature
in the spatial three-dimensional slice of space-time at constant coordinate time t. Solving the GR field
equations using the FLRW metric reveals that the homogeneous world model can only contain a perfect
fluid. A perfect fluid is fully described by its density ρ and an isotropic pressure P. In this case, the

4 We follow the usual convention that Greek indices represent values between 0 and 3, while Latin indices run only over the
spatial part of the four vector, i.e. (1-3).

5 It is also found under the name Friedmann-Robertson-Walker metric only (FRW).
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Chapter 1 Introduction

different components of the field equations give two independent differential equations

ȧ2 =
8πG

3
ρa2 − Kc2, (1.6)

ä = −
4πG

3

(
ρ +

3P
c2

)
a, (1.7)

where G is the gravitational constant. Due to the fact that matter and energy are equivalent in GR, the
expansion history of the universe depends also on the pressure of its content as revealed by eq. (1.7).
Also the curvature parameter K influences the evolution of the universe. In the special case of K = 0,
space is ‘flat’ as in Euclidean space. Our understanding of geometry is based on flat space, e.g. initially
parallel lines have a constant separetion along the whole length of the lines. Instead, if space is curved
(i.e. K , 0), parallel lines either converge (K > 0, spherical geometry) or diverge (K < 0, hyperbolic
geometry) from each other. Setting K = 0 in eq. (1.6) we can estimate the characteristic (critical) density
ρcrit of a flat universe

ρcrit =
3H2

8πG
. (1.8)

The critical density depends on the expansion rate of the universe. Hubble (1929) was the first to
estimate the present day value of the expansion rate H0, from the slope of the relation between the
distance and radial escape velocity of galaxies (as can be seen from eq. (1.2)). For a long time, H0 was
poorly constrained and, thus, parametrised with H0 = 100 h km s−1 Mpc−1. Today, h is known quite
precisely to h = 0.678 ± 0.008 (Planck Collaboration et al., 2014a) and there would be no need to
parametrise it. However, to facilitate the comparison with previous work, we quote results usually using
the parametrization, where dependencies on h will be given along with the units.

To simplify eqs. (1.6) and (1.7), we make some assumptions on the content of the universe, i.e. how
pressure relates to density. One can distinguish three basic components of ρ: pressureless matter ρm,
radiation ρr and a constant vacuum energy ρΛ. We can estimate how these components behave in an
expanding space invoking the first law of thermodynamics. It relates the change in internal energy U of a
closed system to the work done by the system, i.e. dU = −P dV . It basically states that a hot cloud of
gas, which has a high pressure and, therefore, expands (corresponding to the work P dV), cools down
because it looses internal energy. Restoring to special relativity, the internal energy of matter is given by
ρc2V . Note that V is a physical volume, such that, written in comoving coordinates Vc = Va−3 and the
first law of thermodynamics then is

d(ρc2a3) = −P d(a3) (1.9)

Since pressureless matter has P = 0 we find that ρm = ρm,0a−3, where ρi,0 denotes the density of the
species i today. This corresponds to the intuitive result that the matter density decreases anti-proportional
to the increase in volume. For radiation we can make use of the equation of state Pr = ρrc2/3, such that
inserting this into eq. (1.9) we derive ρr = ρr,0a−4. Compared to matter, the radiation density decreases
more rapidly. This is due to the effect of redshift, which we discuss later in more detail. The third
ingredient, a vacuum energy density, is assumed to be constant in time. Hence, we can use the first law
of thermodynamics to estimate its pressure. Setting ρ = ρΛ to a constant in eq. (1.9) we find a negative
pressure PΛ = −ρΛc2. In contrast to a hot ball of gas which looses internal energy while expanding (and
therefore cools down), vacuum increases its internal energy during expansion (as ρΛ is fixed). Taking

4



1.1 The cosmological standard model

everything together we can write the density and pressure of the universe as

ρ = ρm + ρr + ρΛ, (1.10)

P = Pm + Pr + PΛ =
1
3
ρrc2 − ρΛc2. (1.11)

Inserting this into eqs. (1.6) and (1.7) and defining the density parameters as Ωi =
ρi,0
ρcrit,0

we obtain

Kc2 = −H2
0(1 −Ωr −Ωm −ΩΛ) = −H2

0(1 −Ωtot) (1.12)

H2 = H2
0

[
Ωra−4 + Ωma−3 + (1 −Ωtot) a−2 + ΩΛ

]
, (1.13)

where Ωtot is the sum of all density parameters Ωi. The latter equation describes the expansion history of
the universe depending on its content. The former equation relates the curvature parameter to Ωtot. Hence,
the total density in the universe determines the geometry of space. Densities above (below) ρcrit lead
to a spherical (hyperbolic) geometry of the universe. In the following, we further discuss the different
contributions to Ωtot in detail.

1.1.1 Baryonic and dark matter

We know that baryonic matter, which summarises all the matter we are made of (i.e. all massive particles
of the standard model of particle physics except neutrinos), has a non-vanishing pressure. However,
typically baryons move slowly compared to the speed of light. Thus, they contribute to pressureless
matter. Since the dominant contribution of the energy density is given by the rest mass, the density of the
pressureless component relates anti-proportional to the volume. Accordingly, the ρm decays like a−3 as
the universe expands (see eq. 1.13).

However, baryonic matter is not the only contribution to Ωm (see e.g. Del Popolo, 2014). Already
Zwicky (1933) indicated that the visible baryonic matter is not sufficient to explain the motion of galaxies
inside the nearby galaxy cluster Coma. Galaxy clusters are the most massive gravitationally bound
objects in the Universe containing up to hundreds of galaxies. He estimated the baryonic matter content
inside the cluster based on the apparent luminosity and calculated the relative radial velocities of the
galaxies with respect to each other from the individual redshifts. He found that the amount of visible
matter is not sufficient to keep the cluster bound, since the individual galaxies move fast enough to escape
from the cluster, which in turn would dissolve within a short time. However, since Coma is assumed to
be a stable structure, he speculated that it must contain a large amount of non-luminous matter (i.e. ‘dark
matter’).

Further studies of galaxy clusters confirmed the discrepancy between luminous and dynamically
inferred mass (e.g. Diaferio, Schindler and Dolag, 2008). In the 1970’s the Uhuru telescope made the
first detection of a diffuse X-ray emission from galaxy clusters (Gursky et al., 1972). It turned out that
the cluster medium is filled with very hot gas that is emitting X-rays via bremsstrahlung. Due to the high
temperatures almost all atoms in the cluster gas are completely ionized, i.e. the electrons get stripped
from the atomic nucleus. The free electrons are moving at high speeds and scatter off the stripped protons
and nuclei, emitting high-energy bremsstrahlung-photons. The amount of the cluster gas exceeds the
amount of baryonic matter in the galaxies of the cluster. Note that in the original argument of Zwicky
(1933) the cluster gas is not considered, as it cannot be detected in optical images. Although, being the
dominant baryonic matter component in a cluster, the amount of diffuse gas is not sufficient to compensate
the discrepancy of the mass budget to the motion of the galaxies. Moreover, the potential induced by
baryonic matter is not deep enough to hold the cluster gas at the observed temperatures (e.g. Fabricant,

5



Chapter 1 Introduction

Figure 1.1: Observational evidence for dark matter. The left panel shows the rotational velocity of neutral hydrogen
gas around the centres of spiral galaxies of different morphological types. The right panel displays the Bullet
cluster. The coloured area depicts the intensity of X-ray radiation obtained with the Chandra satellite, highlighting
the distribution of the cluster gas. The colour sequence from blue to red, yellow and white is indicating a raising
X-ray flux. Note, the cone-like structure of the right emission peak, suggesting that the cluster run from left to right
(through the other cluster) and, therefore, the gas experiences a shock. The green contours illustrate the distribution
of the total mass in the system retrieved from weak gravitational lensing. (The left panel is taken from Rubin,
Thonnard and Ford, 1978, while the right panel is from Clowe et al., 2006).

Lecar and Gorenstein, 1980). Without dark matter the diffuse gas would evaporate from the cluster.

As mentioned, GR predicts gravitational lensing, i.e. the bending of the path of light rays in a
gravitational potential. Therefore, clusters can act as lenses that distort the image of background galaxies
and even create multiple images of the same background source (see e.g. P. Schneider, 2003). The
gravitational lensing effect of clusters has been observed and indicates a much higher mass then inferred
by the cluster’s luminosity (e.g. Squires et al., 1996). Furthermore, on galactic scales, dark matter is
needed to explain the rotational speed of stars and gas around the centre of their host galaxy (e.g Rubin,
Thonnard and Ford, 1978; van der Kruit and Allen, 1978; Bosma, 1981, but also the review by Sofue
and Rubin, 2001). The rotation velocity is not decreasing with increasing radius in the outskirts of the
galaxy as expected, but stays constant instead (left panel of fig. 1.1). In summary, there are many different
observations which show the need of an additional dark-matter component. The dark-matter component
in the Universe is assumed to be massive but only weakly (or not at all) interacting. Thus, it only appears
through its gravitational influence. This behaviour of dark matter can be observed in the Bullet cluster
(e.g. Clowe et al., 2006): two merging clusters, that passed each other almost completely. Observing
the cluster gas with X-ray telescopes shows that the gas of the smaller cluster is shocked presenting a
typical cone in the intensity map (right panel of fig. 1.1). However, using gravitational lensing to map the
total matter component in the system reveals that the total projected density peaks at a different place
then the gas. The reason is that dark matter is weakly interacting and the two massive haloes just passed
through each other. On the other hand, the gas is interacting with each other, leading to the shock and a
deceleration of the gas. Hence, the gas stays behind the dark-matter component of the cluster. Recent
data constrain Ωm = 0.306 ± 0.004, where baryonic matter only accounts for a small part of the matter
content of the Universe Ωb = 0.0482 ± 0.0005 (Planck Collaboration et al., 2014a).
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1.1 The cosmological standard model

1.1.2 Radiation and redshift

In contrast to massive particles, photons travel with the speed of light. Therefore, their pressure is not
negligible and their contribution to the evolution of the universe is different. Since Pr > 0, a universe
filled with radiation will decelerate faster compared to one filled with pressureless matter, as can be seen
in eq. (1.7). This is closely related to the redshift, radiation is subject to. In addition to the Doppler effect,
which shifts the wavelength of photons due to the relative velocity of emitter and receiver, the expansion
of the universe induces a wavelength shift

z + 1 =
1
a
. (1.14)

Here we assume that today we receive redshifted photons from a light source emitted when the Universe
had a scale factor a. The frequency ν of the received light is shifted by ∆ν/ν = z. This is called the
cosmological redshift.

Note that the cosmological redshift depends on the time a photon was emitted and, since photons
travel at a constant speed of light, it can be used to infer the distance to the source. We can deduce the
relation between comoving distance and expansion factor (hence also redshift) from the metric eq. (1.4)
by setting ds = 0

χ =

∫ 1

a
da′

c
a′2H(a′)

. (1.15)

However, this is not a practical definition of distance. In general, two different definitions of distance
are used: the luminosity and the angular-diameter distances. The latter defines distance by the apparent
angle θ under which an extended object (of physical size s) is seen

dang =
s
θ
. (1.16)

Accordingly, the luminosity distance relates the intrinsic luminosity of a source L to the received flux f

dlum =

√
L

4π f
. (1.17)

The metric (eq. 1.4) can be used to relate these distance estimators to the comoving distance χ. In case of
a flat universe we obtain

dang =
χ

1 + z
, (1.18)

dlum = (1 + z)χ. (1.19)

Based on Euclidean geometry we would expect that both measures of the distance give the same result.
However, as shown in the latter equations this is not true in general.

As the energy density of radiation decays as a−4 (more rapid then pressureless matter), radiation is
mostly important at early times. Today, the radiation energy density has a negligible contribution to the
total energy content of the universe (Ωr ∼ 10−4). The majority of the present radiation energy has its
origin in the early universe. Several minutes after the big bang the universe was filled with photons,
electrons and atomic nuclei. Back then, the electrons and nuclei could not combine into neutral atoms,
as any atom is dissociated immediately by the high energy photons. Furthermore, all these constituents
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Chapter 1 Introduction

are tightly coupled due to the frequent elastic scattering of photons on the charged particles. But as the
universe expands, the energy of the photons decreases due to redshift and, at z ∼ 1100, the formation
of neutral atoms could not be inhibited any more. Suddenly, the universe then became transparent to
radiation as all charged particles combined into neutral atoms. Since then, the photons travel without
any further interaction. Due to the action of star formation most of the baryons in the Universe are
ionized again, but only a minority of the primordial photons have scattered on the charged particles.
This primordial radiation has been redshifted further and is observed today in the microwave regime,
called the cosmic microwave background (CMB). It has an almost perfect black-body spectrum with
temperature of ∼ 2.7K. Small inhomogeneities in the early Universe imprinted tiny µK fluctuations in
the CMB. The statistical properties of the fluctuations are sensitive to the content of the universe, making
the CMB one of the most important probes for the cosmological model (Dwek et al., 1998; Hinshaw
et al., 2013; Planck Collaboration et al., 2014a).

1.1.3 Dark energy

The last term in eq. (1.13) describes a vacuum energy density that is constant in space and time. This is
also called the cosmological constant Λ or ‘dark energy’.6 As we pointed out before, such an energy
density has negative pressure, leading to a repelling force. Originally, Einstein (1917) realized that
he was free to introduce the constant Λ into GR and used it to create a static model of the universe.
A non-expanding universe only filled with matter would contract under its own gravity. Therefore a
repelling force is necessary to keep such a universe static. The static universe is ruled out due to the
measurement of Hubble’s relation, which indicates that the Universe is currently expanding. More
recently, the observations of exploding stars of the particular type Ia revealed that the expansion of
the Universe is currently accelerating (Riess et al., 1998; Perlmutter et al., 1999). Type Ia supernovae
are believed to be exploding white dwarfs, which are remnants of medium sized stars like our Sun. In
a binary system, the dwarfs can accrete material from their companion and explode as supernovas of
type Ia, once they reach the critical mass above which a white dwarf is unstable. Since the mass of the
exploding white dwarfs is always the same, their luminosity is known and their measured brightness
can be used to infer the luminosity distance (eq. 1.17) to the supernova. Measuring their spectrum, the
redshift z can be obtained, which constrains the expansion history of the universe. In this way Riess et al.
(1998) and Perlmutter et al. (1999) revealed that the expansion of the Universe is currently accelerating.
If the Universe just contains usual matter and radiation, such a behaviour cannot be explained, since
self-gravity will always decelerate the expansion. Therefore, the cosmological constant Λ is introduced,
which accelerates the expansion at late times (z . 1). Today, dark energy is the dominant contribution to
the energy density budget of the universe ΩΛ = 0.692 ± 0.010 (Planck Collaboration et al., 2014a).

The sum of all density parameters is very well constrained by recent observations and is consistent
with unity with an uncertainty of 0.7 per cent (Planck Collaboration et al., 2014a). This implies, that the
universe is flat and the third term in eq. (1.13) disappears (Ωtot = 1).

1.2 Structure formation in the cosmological model

Up to now, we discussed a universe which is perfectly homogeneous. Such a universe always stays
homogeneous and, therefore, never harbours galaxies. A possibility to generate small fluctuations in the

6 Note that today many observational campaigns (e.g. the Euclid mission, Laureijs et al., 2011) aim to investigate whether the
dark-energy density is constant in time and obeys the expected equation-of-state, i.e. the pressure-density relation. In this
context, the term dark energy has been generalised to encompass also evolving dark-energy densities. Since there is yet no
evidence for running dark energy, we only consider a constant Λ.
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1.2 Structure formation in the cosmological model

early universe is a period of exponential growth just after the big bang, called ‘inflation’ (e.g. Hawking,
1982; Bardeen, Steinhardt and M. S. Turner, 1983). During inflation microscopic quantum variations get
stretched on macroscopic scales. Independently of how the fluctuations are seeded, the attractive nature
of gravity amplifies them, leading to large density variations. It is convenient to describe the perturbed
density field with the density contrast

δ(x, t) =
ρ(x, t) − ρ̄(t)

ρ̄(t)
. (1.20)

In general, we need to work in the framework of GR to study the evolution of δ. However, on small length
scales GR reduces to the Newtonian description of gravity. Given the expansion rate of the universe H,
we can define the Hubble radius

dh =
c
H
. (1.21)

For the evolution of spatially large perturbations, compared to dh, the global expansion of the universe is
important. On the other hand, for length scales much smaller than dh, additional GR effects are negligible
and we can restore to a Newtonian description of gravity. Furthermore, we adopt an approximate
description of δ as a fluid. The fluid assumption is only valid as long as the velocity v(x) is uniquely
defined in each point. The collisionless nature of dark matter allows different flows of matter to be
present at the same spatial position, since they do not interact with each other. At this point the fluid
approximation breaks down. However, at early times, when the perturbations are still small these
multi-stream regions are unimportant. Then the fluid obeys the continuity, Euler and Poisson equations

∂δ

∂t
+

1
a
∇x · [(1 + δ)v] = 0, (1.22)

∂v
∂t

+ Hv +
1
a

(v · ∇x)v = −
1
a
∇xφ, (1.23)

∇2
xφ =

3H2
0Ωm

2a
δ, (1.24)

which are written here in comoving coordinates. We have defined the comoving potential φ(x, t), which
is related to the potential in physical coordinates φphy(x, t) as

φ(x, t) = φphy(x, t) +
äa
2
|x|2. (1.25)

Note that this system of equations is non-linear and has no known general solution. However, we can
approximate these equations in the case of small perturbations |δ| � 1.

1.2.1 Early linear evolution

In the early universe, density perturbations are thought to be small. Hence, the peculiar velocity v is also
small. This allows us to linearise eqs. (1.22) to (1.24), where we neglect any term of second order in the
perturbations of peculiar velocity δ2 ∝ v2 ∝ δv. Thus, for the continuity and Euler equation we obtain

∂δ

∂t
+

1
a
∇x · v = 0, (1.26)

∂v
∂t

+ Hv = −
1
a
∇xφ. (1.27)
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The Poisson equation (eq. 1.24) remains unchanged since it is already linear. Now, we can combine all
three equations, by applying a time derivative to eq. (1.26) and a−1∇x to eq. (1.27), to get

∂2δ

∂t2 + 2H
∂δ

∂t
−

3H2
0Ωm

2a3 δ = 0. (1.28)

Interestingly, this differential equation for the density field does not contain any spatial derivative.
Therefore, we can make a general ansatz to solve it

δ(x, t) = D+(t)∆+(x) + D−(t)∆−(x), (1.29)

where we factorised δ into spatial and time dependent components. Equation (1.28) only constrains D±,
where D− is decaying with time while D+ is growing. Hence, only the solution connected with D+ will
be important for structure formation and its solution is given by

D+(a) ∝
5Ωm

2
H(a)H2

0

∫ a

0

da′

[a′H(a′)]3 . (1.30)

We choose to normalize the growth factor D+ to unity at the time of today. The density evolved up to
today using eqs. (1.29) and (1.30) is called the linear density contrast δLin.

As pointed out before, the solution we obtained is valid if the universe is matter dominated and the
scale of the perturbation is small compared to the Hubble radius. However, since the radiation density
decays faster than matter going back in time, radiation will eventually dominate. Compared to the matter
dominated epoch of the universe, in the radiation dominated phase the expansion rate is enhanced (see
eq. 1.13). In this case, H in eq. (1.28) is different, leads to the surprising result that matter perturbations
do not grow during this time. In contrast to that, large-scale matter perturbations compared to the Hubble
radius grow in amplitude during radiation domination. This is also valid in the matter dominated epoch
and the perturbation amplitude grows even at the same rate as small perturbations.

To characterise the perturbations in the universe, we refer to statistical estimators like the two-point
correlation function ξ. The correlation function describes the excess density compared to the mean and is
defined as

〈ρ(x)ρ(y)〉 = [1 + ξ(q)]ρ2, (1.31)

where q = |x − y|. Equivalent to this, the power spectrum can be defined as the Fourier transform of ξ

P(|k|) =

∫
d3q eiq·k ξ(q). (1.32)

Inserting the expression of ξ we obtain

(2π)3δD(k − k′)P(|k|) = 〈δ̃(k)δ̃∗(k′)〉. (1.33)

where δD is the Dirac-distribution, δ̃ and δ̃∗ denote the Fourier transformed density contrast and its
complex conjugate, respectively. The Fourier transform decomposes the density field into waves with
wavenumber k (corresponding to a wavelength of 2πk−1) and the power spectrum gives the variance of
the amplitude as a function of scale. The fact that P only depends on the magnitude of k and not on its
direction is a direct consequence of the assumed isotropy of the universe. If the probability distribution
of δ is a Gaussian function and all Fourier modes of the density field are statistically independent, δ
is called a Gaussian random field. A Gaussian random field is then fully characterised by either ξ or
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Figure 1.2: Linear power spectrum of perturbations in the density field. Black lines and coloured background show
the evolution of P(k) as a function of redshift. At early times the power spectrum is well described by a power law.
During the radiation-dominated era in the evolution of the universe the growth of spatially small perturbations
compared to dH is strongly suppressed. Thus, P(k) develops a peak which shifts with time to larger scales. At later
times the universe becomes matter-dominated, then all scales grow at the same rate and the shape of the power
spectrum is conserved. The linear power spectrum has been computed using the CAMB web interface7(Lewis and
Challinor, 2011).

P. Up to now no evidence has been found that δ is non-Gaussian (Planck Collaboration et al., 2014b),
hence, this assumptions is still justified. Note however, that non-linear gravitational growth will produce
a non-Gaussian density field at later times.

Inflation is believed to produce a nearly scale free power spectrum P ∝ kntilt , with a slope ntilt which
is slightly lower than unity (see e.g. the review by Riotto, 2010). Recent observations of the CMB
constrain the slope of the primordial power spectrum to ntilt = 0.961 ± 0.005 (Planck Collaboration et al.,
2014a). The shape of the primordial power spectrum is then modified by the different growth rates of
matter perturbations during the radiation dominated epoch. This is illustrated in fig. 1.2 where the linear
power spectrum of perturbations is depicted at different times. In general, the amplitude of the power
spectrum increases with time, hence lower curves correspond to earlier epochs. Since the Hubble radius
at very early times (z ∼ 107) is smaller than the range of spatial scales indicated in fig. 1.2, the power
spectrum grows initially at the same rate. However, dH increases with time, such that the growth of small
scale perturbations (corresponding to high wavenumbers k) is suppressed, because the expansion of the
universe is still dominated by radiation. Therefore, a peak appears in the power spectrum, which moves
to lower wavenumbers with time, as the Hubble radius increases further. Later, the expansion rate of
the universe changes from radiation to matter dominated. The expansion factor at the time when the
radiation and matter density are equal is aeq = Ωr/Ωm ' 10−4h−2. At times a > aeq, perturbations grow
at the same rate across all length scales. Accordingly, the scale of the power spectrum is unchanged and
it only increases in amplitude ∝ D2

+(a). The modified shape of P(k) is usually captured by the transfer
function T (k), such that

P(k, a) = D2
+(a)AkntiltT 2(k), (1.34)

where A is a normalisation constant. It is convenient to express the normalisation A in terms of the

7 https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
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integrated power spectrum of the density field convolved with a smoothing kernel WR. Usually, for WR, a
spatially spherical top-hat filter is adopted

WR(x) =

0 (|x| > R)
3

4πR3 (x| < R).
(1.35)

By convolving the linearly evolved density contrast δLin with WR we obtain its smoothed version

δL(x) = (δLin ∗WR) (x), (1.36)

where perturbations of scale R or smaller are washed out. The standard deviation of the smoothed density
σR can then be written as an integral over the power spectrum

σ2
R = 〈δL(x)2〉 =

∫
dk
2π2 P(k)W̃2

R(k)k2, (1.37)

where W̃R is the Fourier transform of the smoothing kernel. The amplitude of the power spectrum
is then parametrised with a top-hat smoothing kernel of R = 8 h−1 Mpc size and is constrained to be
σ8 = 0.83 ± 0.01 (Planck Collaboration et al., 2014a). Note that, P(k) in eq. (1.37) is the prediction from
linear theory, which is presented also in fig. 1.2. Non-linear evolution will be important if |δ| & 1. Given
the fact that σ8 is of order unity, non-linear evolution will modify all scales k & 0.1 h Mpc−1, i.e. on the
right side of the peak.

1.2.2 Non-linear evolution: spherical collapse model

Since linear theory is only valid if |δ| � 1, it is not suitable to describe the structures in the Universe
observed today. Although there is no analytical solution for the general evolution of δ, some special
cases can be studied. One particular case is the evolution of a homogeneous sphere with enhanced
density in an otherwise uniform universe (Partridge and Peebles, 1967; Peebles, 1967; Gunn and Gott,
1972; Peebles, 1980). In the seek of simplicity we will review it within a matter dominated background
universe (Ωm = 1.0, ΩΛ = 0.0), which is known as Einstein-de Sitter universe (EdS). The spherical
perturbation has an extent r and contains a mass M. First we can study the evolution of a spherical patch
of the background universe of the same mass M but enclosed within the radius rEdS. According to our
assumption, the volume of this patch always matches the critical density eq. (1.8), which we can rewrite
as

ρcrit =
3M

4πr3
EdS

=
3H2

8πG
, (1.38)

rEdS =

(
8πGM
3H2

)1/3

. (1.39)

Further, we can use the relation between expansion factor and cosmic time

t(a) =

∫ t

0
dt =

∫ a

0
da′

dt
da′

=

∫ a

0
da′

1
a′H(a′)

, (1.40)

12



1.2 Structure formation in the cosmological model

to replace H with t (using the fact that in an EdS universe H = H0a−3/2), we then find

t =
1

H0

∫ a

0
da′
√

a′ =
1

H0

2
3

a3/2 =
2
3

1
H
, (1.41)

rEdS =
1
2

(GM)1/3(6t)2/3. (1.42)

Now we can turn to the spherical perturbation, which initially is expanding along with the universe. The
evolution of the sphere is entirely determined by its self-gravity and the Newtonian equation of motion

r̈ = −
GM
r2 . (1.43)

Due to the attractive force of gravity, the initial expansion of the sphere is decelerated until the perturbation
reaches a maximum extent. Then it will collapse again to a point. Hence, we can parametrise a possible
solution with ω and express time and radius as

t(ω) = B(ω − sin(ω)), r(ω) = A(1 − cos(ω)). (1.44)

In this parametrization the perturbation reaches its maximum extension rmax at ω = π and collapses back
to a point at which ω = 2π. Inserting this in eq. (1.43) yields

A3

B2 = GM. (1.45)

Thus, there exists a solution equal to our parametrization ifA and B obey eq. (1.45). Combining this
with the evolution of the EdS model we can calculate the density contrast inside the perturbation as a
function of ω

δNL =
r3

EdS

r3 − 1 =
GM(6t)2

23[A(1 − cos(ω))]3 − 1

=
9GMB2(ω − sin(ω))2

2[A(1 − cos(ω))]3 − 1 =
9(ω − sin(ω))2

2(1 − cos(ω))3 − 1. (1.46)

Figure 1.3 shows the radius and density contrast as a function of time for some example cases. The solid
line highlights a perturbation which exactly collapses today. Additionally, the case of higher (dashed
line) and lower (dot-dashed line) initial density is depicted.

As shown by the above equation a homogeneous and perfectly spherical perturbation will collapse to a
point and its density will diverge. However, realistic perturbations will not fullfill our assumption and
thus form a virialized and stable object with finite extent rvir. In this case we can calculate the final total
energy per unit mass E of the perturbation using the virial theorem

E =
EPot

2
= −

1
2

GM
rvir

. (1.47)

If we assume energy conservation during the collapse, we can estimate the virial size of the perturbation
by calculating the energy at the point of the maximum extent

E = Ekin + EPot = 0 −
GM
rmax

. (1.48)
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Figure 1.3: The left panel shows the evolution of the radius of a spherical symmetric and homogeneous denstiy
perturbation, for different values of the initial density but equal enclosed mass. The right panel highlights in blue
the non-linear density contrast for the same perturbations presented in the left panel. The red lines indicate the
linear approximation for the density evolution.

Thus, we obtain that the virial radius of a spherical perturbation is rmax/2 and its final density contrast is

ρvir

ρEdS
=

r3
EdS(ω = 2π)

(rmax/2)3 = 18π2 ≈ 178. (1.49)

We can compare this result to the prediction of linear theory. Therefore, we approximate eq. (1.46) to
linear order using a Taylor expansion

δLin =
9(ω − ω + ω3/6 − ω5/120)2

2(1 − 1 + ω2/2 − ω4/24)3 − 1

=
9 · 23ω6

2 · 62ω6

(1 − ω2/20)2

(1 − ω2/12)3 − 1

≈

(
1 +

3
20
ω2

)
− 1 =

3
20
ω2. (1.50)

Now we need to consider the linear time evolution with respect to ω, which we can obtain by truncating
the series expansion of the sine

t(ω) = B

(
ω − ω +

ω3

6
. . .

)
≈

1
6
Bω3. (1.51)

We substitute this in the linear density evolution and obtain

δLin =
3
20

(
6t
B

)2/3

. (1.52)

Note that the growth is proportional to t2/3 and therefore scales exactly as the growth parameter D+ for
an EdS universe as can be computed from eq. (1.30). The predicted linear density contrast today of the
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spherical patch is

δsc =
3

20

(
6t(ω = 2π)
B

)2/3

=
3
20

(12π)2/3 ≈ 1.686. (1.53)

The red lines in the right panel of fig. 1.3 indicate the evolution of the linear density for the three cases
shown in blue. Of course the result from linear theory for the late evolution of the spherical perturbation
is wrong. But it is used to state that if linear theory predicts a density contrast of 1.686 the region of space
should have collapse by now. Note that a small change in the linear density has a strong effect on the
non-linear evolution of the perturbation. This model can be generalised to a spherical perturbation which
is subject to an external gravitational tidal force. The external force can be driven by other collapsing,
potentially more massive, perturbations and distorts the sphere into an ellipsoid. We will investigate this
further in section 2.2 together with the possibility of an initially ellipsoidal perturbation.

1.3 Numerical simulations

Since there is no analytical solution to the fluid equations available, we solve them numerically. Therefore,
we sample the density field with Np particles and place them in a comoving box with side length Lbox. In
this work we use the code Gadget (Springel, 2005) to evolve this set of particles in time. In comoving
coordinates this problem reduces to a Newtonian evolution of the particle system. The box has periodic
boundary conditions, i.e. each particle leaving the box on one side will enter it on the opposite side again.
This implements the cosmological principle. Gadget needs to evaluate the Newtonian force for each
particle

Fi = Gmp,i

Np∑
j=1, j,i

mp, j

|xi − x j|
3 (xi − x j). (1.54)

In order to avoid strong two-body interactions a softening length ε is introduced such that the force
is converging to the final value −Gmp,imp, j

ε2 for two particles with vanishing separation. These strong
two-body interactions are non-physical, since the particles originate from the discretisation of the smooth
phase-space (i.e. the 6 dimensional space spanned by x and v) distribution of matter. With the introduced
softening length, particles are assumed to be Plummer spheres of size ε.

For computational efficiency Gadget employs the so-called TreePM method which is a hybrid between
two methods to approximate the sum in the force estimation. In the particle-mesh algorithm (PM) the
density is computed on a grid using the cloud-in-cell (CIC) method (Hockney and Eastwood, 1988).
The basic idea of the CIC method is to replace each particle with a cube of the same side length as the
distance between two grid cells. The mass of each particle is then distributed to the neighbouring grid
cells according to the fraction of intersecting volume with the grid cell. From the density the gravitational
potential is evaluated in Fourier space solving the Poisson equation. This has the benefit that solving the
differential equation reduces to a multiplication with the appropriate Green’s function.

One shortcoming of the PM method is that the resolution is limited to the size of the grid. Therefore,
Gadget also employs the Tree method for evaluating the sum in eq. (1.54). Here space is recursively
subdivided and all particles contained within a subdivision are collected into a group, called node. One
particle thereby contributes to many nodes, hence the nodes can be arranged in a tree-like structure. The
force is then obtained by walking the tree from the root node, i.e. all particles in the full simulation box,
downwards. Based on a parameter controlling the precision of the algorithm a decision is made whether
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the combined force estimate of the total group is accurate enough or the eight daughter nodes should be
considered. The contribution of a node to the force is estimated based on its monopole moment, i.e. a
fictive particle with the total node mass at the position of the centre of mass. The benefit hereby is, that
there is no intrinsic limiting scale as in the PM method.

The hybrid TreePM algorithm combines the Tree and the PM method to have the benefit of both.
The Tree offers accurate short range force estimates and a high dynamical range. At the same time the
long-range forces can be estimated accurately from the PM method with improvements in computational
speed and memory consumption. For the TreePM method the potential calculated with the PM method
φPM is smoothed with a Gaussian filter of size RTPM. This corresponds to a exponential cut off in the
Fourier transformed potential

φ̃L = φ̃PMe−k2R2
TPM . (1.55)

Accordingly, the short range potential estimated from the Tree method φTree is modulated by (1−e−k2R2
TPM)

in Fourier space to compensate for the smoothing of φPM

φ̃S = φ̃Tree
(
1 − e−k2R2

TPM
)
, φS = −G

∑
i

mi

xi
erfc

(
xi

2RTPM

)
, (1.56)

where we used the inverse Fourier transform and approximate the total potential as a superposition of
potentials sourced by point particles. Gadget computes the forces from both estimates (eqs. 1.55 and
1.56) and adds them to arrive at the total particle acceleration.

Based on the estimated force Gadget evolves the velocities (called a Kick) and the positions of the
particles set in time (called a Drift). From the Hamiltonian of the N-particle system the Kick and Drift
operations for the time step ∆t can be estimated (Quinn et al., 1997)

v
K(∆t)
−−−−−−−→ v +

F
mp

∫ t+∆t

t
dt

1
a

(1.57)

x
D(∆t)
−−−−−−−→ x + v

∫ t+∆t

t
dt

1
a2 . (1.58)

In Gadget these integrations are performed as a function of log(a), which is related to t by eq. (1.40).
As the system of N particles evolves, also the force acting on each particle changes. Thus, the force has
to be recalculated after each time step. The long-range PM force update defines the global timestep of
the simulation ∆tPM. This time step might be quite long, since the long-range potential is only evolving
slowly. For the short-range force-estimate another advantage of the Tree algorithm can be used. To
increase computational efficiency, the short-range force can only be calculated on a subset of particles.
In the simulation each particle gets assigned its own timestep, depending on the strength of the force
currently estimated. This timestep is a fraction of the global timestep ∆tPM/2n where n ε N. Between two
force estimates the particles are evolved in time with the operations

K

(
∆t
2

)
D (∆t)K

(
∆t
2

)
. (1.59)

Usually in cosmological simulations all particles have the same mass, but Gadget does not rely on
this assumption. Actually, in chapter 3 we will use so called zoom-in simulations, where in a small
spatial region the number of particles is high and hence the particle mass is small. This region is then
surrounded by particles with increasing mass further away from the high-resolution region in a number
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of steps. This is particularly useful to study the evolution of single objects of interest in the simulation.
The surrounding by low resolution particles is needed to guarantee a realistic environment.

1.3.1 Initial conditions

We use the code Music (Hahn and Abel, 2011) to generate initial conditions, which are then further
evolved with Gadget . In general, linear theory (see section 1.2.1) is used to estimate the density field
at the initial redshift of the simulation zinit. Usually, zinit ∼ 100 depending on the size of smallest scale
which should be resolved. First, a grid is defined in Fourier space on which the (Fourier transformed)
density is computed, given the linear power spectrum at zinit. Since we have a finite number of grid-cells,
the density field can be represented by a finite number of Fourier-modes each representing some scale
k. Following the definition of the power spectrum (eq. 1.32) for each available mode a random number
is drawn from a Gaussian distribution with mean zero and variance equal to P(k). Further the Poisson
eq. (1.24) is solved to derive the potential φ from the density contrast. Changing the random seed for
the estimation of the random numbers might completely change the appearance of the density field,
therefore, one such field is called a realisation of δ. However, all realisations have by construction the
same statistical properties. Second, a regular grid of particles is generated which are evolved according
to the realisation to the potential φ. This is done with Lagrangian perturbation theory (LPT). The final
position of each particle in the initial conditions is then given by a displacement L(q, t) of each particle
from its initial position q

x(t) = q + L(q, t), v(t) =
d
dt

L(q, t). (1.60)

We can now use LPT to approximate L(q, t), since φ is small and so will be the displacement. To first
order L(q, t) can be written as a function to the spatial derivative of φ and D+

L1LPT(q) = −D+(t)∇qφ(q, t). (1.61)

The first order LPT is also called the Zel’dovich approximation. Note that particles move on straight
paths in comoving coordinates. We will also use the second order LPT displacement which can be written
as

L2LPT(q) ' −D+(t)∇qφ(q, t) +

(
3
7

D+(t)
)2

∇qΨ (q, t). (1.62)

Here Ψ is a second order potential ∆qΨ (q, t) = τ(q, t) and

τ(q, t) = −
1
2

∑
i, j

[
(∂qi∂qjφ)2 − (∂qi∂qiφ)(∂qj∂qjφ)

]
. (1.63)

1.3.2 Non-linear structures in simulations

Starting from these initial conditions N-body simulations compute the non-linear density distribution.
Here we review some basic aspects which have been found in simulations.
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Figure 1.4: A density slice though a dark-matter simulation of 50 h−1Mpc side length. The density is indicated with
a grey colour scale, where darker colours highlight denser regions. The top-right panel shows a zoom-in on a halo
situated in the node of the filamentary structure.

Dark-matter haloes

Figure 1.4 shows the density field in a slice through a simulation box, 50 h−1Mpc in size, carried out
with the Gadget code. The final (z = 0) particle distribution has been mapped onto a grid using the CIC
method, where darker regions indicate higher densities. The density forms a web with linear structures
(‘filaments’), where at their intersections very high mass concentrations are located. In fig. 1.4 the zoom
in panel shows one of the concentrations in detail, referred to as dark-matter haloes. The particles in
these haloes form a gravitationally bound structure. Usually individual particles follow eccentric orbits
in the potential.

In general, the definition of a halo is ambiguous, since the transition to the embedding cosmic web is
smooth. Most algorithms identifying haloes are therefore based on a cut in density contrast, inspired by
the spherical collapse model (eq. 1.49). These algorithms can be classified into two broad categories:
Spherical overdensity (SO) halo finders search for local density peaks in the particle distribution and
grow spheres around them which enclose the density contrast ∆SO. A common choice is ∆SO = 200,
close to the value found for the spherical collapse model. Note, however, that the density contrast can be
either computed relative to the mean matter or critical density. This always needs to be specified.

The drawback of SO halo finders is that they impose a spherical shape on the halo. However, haloes are
not necessary spherical. An alternative approach is used by the friends-of-friends (FOF) algorithm (Davis,
Efstathiou et al., 1985) which links particles with distance less then bFOF times the mean inter-particle
distance into groups. A commonly used value is bFOF = 0.2 which gives consistent enclosed density
contrasts to common values of ∆SO. However, the FOF algorithm does not make any assumptions about
the shape of the halo.
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It is worth pointing out that both methods discussed so far depend on the mean density of the universe.
Thus, even a completely static halo surrounded by a decreasing background density field will grow with
time, independent which of the two algorithms is used to identify it (for a recent discussion see e.g. Zemp,
2014). For the SO-halo finder this is obvious, since it is directly linked to the mean (or critical) density of
the universe. But this is also true for the FOF-halo finder, since the linking length of the particle pair is a
fixed comoving separation. However, a halo of constant physical size shrinks in a comoving coordinate
frame. Recently, a new way of defining the bound region of a halo was proposed, the ‘splashback’ radius
(Diemer and Kravtsov, 2014; Adhikari, Dalal and Chamberlain, 2014; More, Diemer and Kravtsov,
2015). When matter accretes onto a halo it passes close to the halo centre (with some impact parameter)
and orbits in usually very eccentric orbits. If the particle is bound the orbit has a well defined maximum
distance to the halo centre, called the apocentre. The splachback radius follows the idea to identify the
first apocenter of recently accreted matter. Thus, it should enclose all bound particles. We will discuss
this in more detail and apply this definition to our haloes in section 3.2.2.

Apart from the fact that there is no unique dark-matter halo definition, haloes show an interesting
property: Their average radial density profile follows a simple relation, known as the NFW profile, which
fits haloes of various masses well (Navarro, Frenk and S. D. White, 1997)

ρ(r) =
r3

s ρs

r (rs + r)2 . (1.64)

Here rs and ρs are the characteristic radius and density of the profile and the only two free parameters.
One can infer the circular velocity of particles in a halo of a NFW profile and find that the circular
velocity is almost constant for a sufficiently large range in radius to explain observations. However,
one should be careful with direct comparison of pure dark-matter profiles to observed galaxies. Since
baryons radiate energy and cool, they fall deep in the potential of the halo and accumulate at the centre.
Thus, the density of baryons can become very large in the centres of haloes, which leads to the formation
of galaxies (S. D. White and Rees, 1978). All these processes, however, alter the properties of haloes
especially on small scales.

Origin and growth of haloes

Due to the attractive nature of gravity, it is tempting to consider local peaks in the linear density field
as origins of haloes. This has been explicitly studied using numerical simulations, where recent high-
resolution simulations find a good correspondence of haloes to initial density peaks (Ludlow and Porciani,
2011). According to the spherical collapse model, a peak should have a linear density contrast of
δsc = 1.686 to form a halo today. Thus, it is illustrative to investigate the standard deviation of the
smoothed density contrast σR (eq. 1.37) as function of the smoothing length as shown in fig. 1.5. Note
that σR decreases with increasing size of the top-hat smoothing kernel R, indicating that the variance in
δL is dominated by the smallest scales. The size of the top-hat can be related to a specific mass scale
given by the enclosed mass of the sphere with radius R at mean density of the universe

Ms =
4π
3

R3ρcritΩm. (1.65)

Based on the spherical collapse model and fig. 1.5 we expect that small mass haloes form first, since
on small scales the highest density peaks are expected. On the other hand, large haloes should be rare
as only few regions of the linear density field reach δsc. Indeed this is found in simulations as well, the
mass function of haloes (the number of haloes as a function of mass) extends to larger masses with
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Figure 1.5: The blue thick line shows the standard deviation of the smoothed linear density contrast σR with a
top-hat kernel as function of the top-hat radius R (solving eq. 1.37). The thin lines highlight the density contrast at
a few fixed points in the smoothed linear density field. The horizontal dashed line indicates the spherical collapse
barrier δsc. Top axis labels translates the size of the kernel into a mass-scale, computed as the enclosed mass of a
sphere of radius R at mean density of the universe.

proceeding time (see e.g. Jenkins et al., 2001; Springel, S. D. White et al., 2005). Moreover, haloes
show a hierarchical growth, where higher mass haloes are formed by subsequent mergers of lower mass
haloes (e.g. Tormen, Bouchet and S. D. White, 1997). Beside mergers, haloes also increase their mass
by accretion of material in their surrounding, called ‘smooth accretion’. If along the simulation several
snapshots of the particle distribution at different times are saved we can follow the evolution of haloes
identifying the progenitor of a halo in a snapshot at previous time. Thereby, the joint distribution of
particles is estimated between a halo in snapshot n and all haloes in the previous snapshot n − 1 and the
main progenitor is defined as the halo (in snapshot n− 1) with maximum number of common particles. In
this way an accretion history of haloes is build, that features continues slow growth, and distinct jumps,
due to smooth accretion and mergers, respectively. To characterise the growth history of haloes, it is
convenient to estimate the time at which the halo had accumulated half its present day mass, termed
‘half-mass formation time’ or simply ‘age’.

Figure 1.5 further shows several realisations of the contrast δL as grey lines. Each realisation is obtained
at a fixed position in the linear density field, which has been smoothed with a spherical top-hat filter of
varying size R. Hence, these excursion-set trajectories encode the spherically averaged density profile
around random points in the linear density field. According to the spherical collapse model, all these
points in the initial density field should have collapsed to a halo, if δL exceeds the collapse barrier δsc.
The mass then corresponds to the size of the highest filtering scale R for which δL ≥ δsc. The spherical
collapse threshold is computed for the case of a halo forming today. If we instead require the collapse
of the sphere to occur at a different time, δsc has to be scaled with the inverse growth factor. Hence, by
applying different thresholds for different times, the mass accretion history can be predicted from the
initial density field. Moreover, the statistical count of trajectories and their highest mass-scale at which
they cross the collapse barrier, yields a prediction of the halo mass function (Press and Schechter, 1974;
Bond, Cole et al., 1991). The total mass in haloes in any infinitesimal mass range is then given by the
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fraction of trajectories which up-cross the barrier in the same range of smoothing mass scales. Originally,
Press and Schechter (1974) just counted the number of barrier crossings at each smoothing mass scale
independently. However, the smoothed density contrast can cross the barrier several times as a function
of R, which leads to a wrong normalisation of their predicted mass function. Later, Bond, Cole et al.
(1991) argued that only the up-crossing at the largest smoothing mass scale should be counted, which
is called the ‘extended Press-Schechter theory’ (EPS) and leads to a correctly normalized prediction.
Still, the EPS mass function underestimates the number of high mass haloes and predicts too many low
mass haloes (see e.g. Jenkins et al., 2001). (Bond and S. T. Myers, 1996, hereafter BM96) introduced
an anisotropic gravitational field (tidal field) in the spherical collapse model, which is sourced by the
gravitational influence of neighbouring haloes. Their extended model is named ‘ellipsoidal collapse
model’, since the initial sphere is stretched into an ellipsoid due to the tidal field. In the presence of a
significant tidal field, a higher initial density is required for spherical perturbations to collapse at the
same time compared to δsc. Accordingly, Sheth, Mo and Tormen (2001) modified the collapse barrier in
EPS to account statistically for the ellipsoidal collapse. However, they had to rescale their resulting mass
function to achieve a precise fit of simulation results, which they attributed to the ambiguity in the halo
definition. Until today theoretical predictions of the formation of haloes are not precise enough, such that
simulations are still an important tool to predict the number of haloes, although the theoretical prediction
of the shape of the mass function is used and fitted to simulation results (see e.g. Tinker et al., 2008).

Large-scale structure

In the following we turn from a single halo to the distribution of haloes in the simulation box. As
already evident from fig. 1.4 haloes are not distributed randomly in the simulation, but are embedded
in a web-like density field. Figure 1.6 shows in the top and left wedge (blue points) the distribution of
observed galaxies from three different surveys. Each galaxy is plotted as a dot at the measured redshift
and angular position on the sky. Note that due to the finite speed of light we observe distant galaxies at
an earlier epoch. The comoving distance χ (eq. 1.15) corresponds to the cosmological redshift, however,
what we measure is modulated by so-called redshift space distortions. One of the most prominent effects
is the so-called ‘finger-of-god’ effect: Big dark-matter haloes can host many galaxies, which we observe
as galaxy clusters. These galaxies are confined in a small region of space. Thus, their cosmological
redshift and angular position on the sky is almost the same. However, the velocity dispersion of the
individual galaxies is big and their peculiar velocity induces a Doppler shift of the emitted spectrum. This
leads to a broadly distributed observed redshift, which produces elongated structures pointing towards
the observer, hence the name.

In the right and bottom panel of fig. 1.6 (red dots) a numerical dark-matter only simulation was
populated a posteriori with galaxies using a semi-analytical model (Springel, S. D. White et al., 2005;
Springel, Frenk and S. D. White, 2006). In general semi-analytical models analyse the accretion history,
i.e. the evolution of mass of a halo as function of time, to deduce the properties of the hosted galaxy.
Here, Springel, Frenk and S. D. White (2006) used some observational motivated relations to estimate
the amount of star formation during the quiescent accretion phase, which happens in a disk around the
galaxy centre. In contrast to that, mergers of gas-rich haloes with similar mass lead to a starburst, i.e.
high star formation rate for a short amount of time. However, major mergers in this model also destroy
the disc and change the morphology of the galaxy to a spheroidal configuration. From the amount of
stars and their age the luminosity of each galaxy is determined. Taking the sensitivity of a specific
telescope into account a mock catalogue is constructed from the simulation and shown as red dots in
fig. 1.6. The redshift hereby is computed from the cosmological distance as well as the contribution
due to the peculiar velocity. As it is evident from fig. 1.6, there is qualitative agreement between the
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Figure 1.6: Top and left wedges show the measured galaxy sky position and redshift from three different surveys.
Right and bottom wedges show the estimated galaxy distribution from a simulation. The simulation is dark matter
only and galaxies where inserted using a semi-analytical approach. (Figure taken from Springel, Frenk and S. D.
White, 2006).

web-like structure of observed galaxies and the numerical simulations. This correspondence has also
been checked quantitatively by estimating the two-point correlation function of galaxies, which also
matches the correlation function from simulations well (Springel, S. D. White et al., 2005; see also Davis,
Huchra et al., 1982).

Halo Bias

Figure 1.6 also exemplifies the difficulty to compare the result of dark-matter only simulations to
observations. N-body simulations give precise predictions for the distribution of dark matter, once the
initial conditions are known. In contrast, observations can only detect objects which emit light, like
galaxies. However, galaxies do not trace the dark-matter density uniformly, but are believed to populate
haloes. Of course we can identify haloes in the simulation, although, it is not clear which kind of galaxy
an individual halo hosts. Semi-analytical models or simulations which include baryons still rely on many
assumptions and use empirical relations to convert gas into stars and estimate their feedback on the gas.

To be able to compare simulations with observations it is therefore important to study the statistics
of biased tracers, in general called galaxy bias (for a recent review see Desjacques, Jeong and Schmidt,
2016). On large scales, where the matter density fluctuations are small |δ| < 1, a perturbative approach
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Figure 1.7: Points with error bars show the two-point correlation function for haloes in different mass ranges as
indicated by the legend. The solid black line and the grey band highlight the matter correlation function and its
uncertainty, respectively. Errors are estimated bootstrapping the distribution of the corresponding sample. The top
panel shows the bias of the haloes, i.e. the square-root of the ratio of the halo and matter correlation functions.

can be applied and the galaxy number density contrast is expanded as

δg =
∑

n

bnδ
n. (1.66)

This is known as the ‘local bias expansion’, since the galaxy density only depends on the local matter
density contrast. Further, there have been more local contributions discussed to the sum, like the tidal
field

Ki j = ∂i∂ jφ − δi j
δ

3
. (1.67)

The tidal field measures the stretching or compressing action, due to a gradient of the gravitational force.
Although the tidal field is sourced by the surrounding structure, it is a local observable. However, such
extensions to eq. (1.66) enter only at second order (n = 2) or higher. For our purpose it is enough to
consider the first order only, where the galaxy density contrast is linearly related to the matter density
contrast

δg = b1δ. (1.68)

Following this assumption, the two-point correlation function of galaxies ξgg (eq. 1.31) is

ξgg(|x − y|) = 〈δg(x)δg(y)〉 = b2
1〈δ(x)δ(y)〉 = b2

1ξmm(|x − y|). (1.69)

Hence, the galaxy correlation function is enhanced by a factor of b2
1 over the matter correlation function

ξmm. Using dark-matter haloes instead of galaxies, which can also be used as tracers of the density field,
this is shown in fig. 1.7. The coloured connected points indicate the halo correlation function for different
halo mass ranges. These haloes are drawn from the larger of the two simulations introduced in section 2.3.
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The solid black line highlights the matter correlation function computed for the same simulation. Clearly,
the halo correlation function is biased with respect to ξm, where the bias value, estimated by the square
root of the ratio of the correlation functions, is shown in the upper panel of fig. 1.7. Indeed, on large
scales (several h−1Mpc) the bias is constant, but changes with the mass of the haloes.

The concept of galaxy bias has already been introduced by Kaiser (1984). At that time the first galaxy
redshift surveys have been compiled (e.g. CfA: Huchra et al., 1983). The estimated correlation amplitude
from these galaxies was substantially smaller compared to the one of the Abel galaxy cluster sample.
Since galaxy clusters are the most massive gravitationally bound objects in the Universe, they originate
from exceptionally large initial density peaks. Kaiser (1984) showed that this would imply that galaxy
clusters are biased tracers of the density field and estimated the amplification of the correlation function
to be roughly an order of magnitude. Later, Davis, Efstathiou et al. (1985), using numerical simulations,
argued that if galaxies would trace the matter density field uniformly this would imply a very dense
universe with Ωm > 1. Since this is inconsistent with other observations it highlights the need of galaxy
bias to compare galaxy statistics with simulations. Unfortunately, the precise galaxy bias depends on the
specific tracer chosen. Figure 1.7 shows that in the case of haloes the bias depends strongly on mass,
and in analogy to the high clustering of the Abel cluster sample, higher mass haloes cluster stronger.
However, the precise connection between halo mass and inherited galaxy is unknown, so that precise
predictions of galaxy bias cannot be made.

Following the EPS approach as discussed before, a prediction of the bias of dark-matter haloes can be
obtained. It turns out that the bias depends only on how rare the high density regions are. The relevant
parameter for the rarity is σR, which has a unique relation to halo mass. Hence, halo bias should be a
function only of halo mass. Recent investigations from simulations surprisingly show that the bias is not
only a function of the dark-matter halo mass, but also their age (Gao, Springel and S. D. White, 2005).
This dependence becomes more important at haloes of smaller mass and is refereed to as ‘assembly bias’.
Since its discovery, it has been shown that many more halo properties correlate with the halo bias, like
the concentration of the radial dark-matter density profile or internal distribution of particle velocities
(Wechsler, Zentner et al., 2006; Jing, Suto and Mo, 2007; Gao and S. D. White, 2007; Bett et al., 2007;
Angulo, Baugh and C. G. Lacey, 2008; Faltenbacher and S. D. White, 2010; R. Li et al., 2013).

1.4 Open questions addressed in this study

The aim of this study is twofold. First, we use numerical simulation to investigate the collapse and growth
of dark-matter haloes. Second, a new method is developed to derive realistic mock observations from
numerical simulations.

1.4.1 The formation and evolution of dark-matter haloes

In chapter 2 we compare the evolution of perturbations in idealised models to perturbations in cosmo-
logical simulations. Following the idea of the spherical collapse model (section 1.2.2) haloes should
originate from local maxima in the linear density of height 1.686. In agreement with previous work, we
show that haloes in simulations come from a large variety of initial densities δ & 1.686. There have been
extensions to the spherical collapse model which we introduce in section 2.1 and lay out the relevant
equations in section 2.2. As the spherical collapse model, the extended models predict a linear density
contrast for the collapse of the perturbation. We use the simulations to measure the remaining parameters
of the models and compare the predicted linear density contrast with the one measured in simulations.
The aim is to either find a model which reproduces the collapse of perturbations in simulations well,
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or, if this is not the case, which is shown in section 2.4, investigate why they fail. In general simplified
collapse models underpredict the linear density contrast. Or in other words, we expect that simulations
should contain more massive haloes then what is measured. We argue that growth of haloes is halted
in numerical simulations. If one accounts for the prohibited growth in the models, the predicted linear
density matches well with the simulation result.

The reason for haloes to halt accretion is further investigated in chapter 3. Here we use numerical
zoom-in simulations to study some stalled haloes, as we call them, in detail and compare them to regular
accreting ones. The simulations are explained in section 3.2, while the results are presented in section 3.3.
We find that stalled and accreting haloes populate different regions of the cosmic web, which is the reason
of their different growth rates. We show that this effect of inhibited halo growth is the reason for the
assembly bias effect. Finally, we present a modification to the spherical collapse model which accounts
for this effect and leads to accurate predictions for the collapsed final mass.

1.4.2 Mock galaxy distributions from simulations in a perturbed FLRW metric

In chapter 4 we turn to the implementation of a new method to derive realistic large-scale mock galaxy
distributions from simulations. As discussed briefly in section 1.3.2, simulations can be used to produce
mock observations (e.g. fig. 1.6). However, it is necessary to take redshift-space distortions into account,
which modulate the redshift and angular position of a galaxy. The most prominent effect is the Doppler
shift of the spectrum due to the peculiar velocity of each galaxy. This changes the estimated redshift and is
routinely considered when mock observations are performed. Further, we shortly mentioned gravitational
lensing, which also shifts the position of the galaxy on the sky. All these redshift-space distortions
originate from the fact that we observe galaxies on our backward light cone. Thereby, the geometry of
space-time is not exactly described by the FLRW metric (eq. 1.4). The density inhomogeneities in the
universe also perturb the metric. In section 4.2 we lay out how the observed position of a galaxy changes
when the disturbed metric is considered. These additional GR effects become important if the scale of the
observed galaxy correlation approaches the Hubble radius. Current surveys do not cover enough volume
to constrain such large scale signals. But upcoming surveys will map almost the full sky and deliver
an unprecedented amount of data. Hence, new tools are necessary to model the expected signal, which
include GR redshift-space distortions. We present the Liger method in section 4.2 and how it can be used
to produce mock galaxy distributions. Finally, we discuss two applications of Liger at the example of the
Euclid and SKA2 telescope in section 4.3.
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CHAPTER 2

The formation of CDM haloes: collapse time and
tides1

2.1 Introduction

The formation of dark-matter haloes through gravitational instability of small density perturbations is a
formidable non-linear problem. Most of our current understanding of the process is based on N-body
simulations, yet valuable theoretical insight can be gained through analytic models that attempt to
approximate the growth of structure.

Most theoretical models are based on the assumption that haloes of mass M originate from compact
Lagrangian patches of initial comoving size R ∝ M1/3 in which conditions are favorable for collapse. In
the most simplistic picture, the collapse process can be approximated by following the evolution of a
spherically symmetric perturbation with a top-hat density profile and vanishing initial peculiar velocities
in a otherwise homogeneous and expanding background (Partridge and Peebles, 1967; Peebles, 1967;
Gunn and Gott, 1972; Peebles, 1980). In this “spherical collapse model”, perturbations that are dense
enough to form bound structures decouple from the background expansion, eventually reverse their
motion and start collapsing at an increasingly faster rate. The mathematical solution of the equation of
motion leads to a singularity, but the development of non-radial motions due to the imperfect symmetry of
any realistic perturbation is expected to halt the collapse and form a stable structure in virial equilibrium.
Energy conservation suggests that the final radius of the bound structure should be approximately one half
of the maximum “turn-around” radius (Gott and Rees, 1975), or smaller in the presence of a cosmological
constant (Lahav et al., 1991).

Based on the statistical properties of Gaussian random fields, Press and Schechter (1974) developed a
model for the number density of dark-matter haloes as a function of their mass and redshift. The model
assumes that all Lagrangian patches in which the linearly extrapolated density contrast at redshift z
lies above a critical value δc (of order unity) have collapsed to form bound haloes by that redshift. For
practical applications, one has to choose a specific value for δc that matches a given halo definition. In an
Einstein-de Sitter universe, spherical collapse produces virialized haloes with a final mean overdensity
of ∆vir = 18 π2 ' 178 which occurs when the linear density contrast is δc = (3/5)(3 π/2)2/3 ' 1.686
(Kaiser, 1984; Bardeen, Bond et al., 1986; Efstathiou et al., 1988). For different cosmological models,
these quantities acquire a redshift dependence which, however, is very weak for δc (e.g. Eke, Cole and

1 This chapter and appendix A have been published in Borzyszkowski, Ludlow and Porciani (2014). The notation has been
adapted to match the remaining thesis.
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Frenk, 1996).
Bond, Cole et al. (1991) provided a sounder theoretical basis for the Press-Schechter mass function

using the theory of “excursion-sets”. A key assumption of their model is that a halo identified at redshift
zid should form by collecting all matter initially contained within the largest possible region over which
the mean linear overdensity is δL(zid) = δc. In other words, the Lagrangian boundary of a halo coincides
with the outermost shell which is collapsing at redshift zid. However, for δc ' 1.686, this method yields
halo mass functions that agree only qualitatively with those extracted from N-body simulations; they
exhibit systematic shifts from the numerical result at both low and high masses which can be eliminated
by adopting an effective mass-dependent threshold for halo formation δc(M) (e.g. Sheth and Tormen,
1999).

One possible explanation for this discrepancy is that the spherical collapse model is too simplistic. For
example, N-body simulations have shown that dark-matter haloes originate from elongated Lagrangian
regions whose longest geometric axis aligns with the direction of maximum gravitational compression
(Porciani, Dekel and Hoffman, 2002, see also Despali, Tormen and Sheth, 2013; Lee and Pen, 2000;
Ludlow, Borzyszkowski and Porciani, 2014, hereafter LBP14) The collapse of an ellipsoidal top-hat
overdensity amplifies any initial departure from sphericity whether perturbations are isolated (Lynden-
Bell, 1964; C. C. Lin, Mestel and Shu, 1965) or embedded in a uniform and expanding background (Icke,
1973; S. D. White and Silk, 1979; Peebles, 1980). The presence of external tides generated by large-scale
structure, however, is expected to influence the dynamics of collapsing ellipsoids (e.g. Hoffman, 1986;
Bertschinger and Jain, 1994). These tides were incorporated into the EC model by Eisenstein and Loeb
(1995) and BM96 in a way that recovers the Zel’dovich approximation (Zel’Dovich, 1970) in the linear
regime. In the latter formulation, an initially spherical overdensity is sheared into a collapsing ellipsoid
by the action of external tides. The perturbation first reaches zero extension along the direction of largest
compression, at which point orbit crossing occurs and the single-stream fluid equations cease to be valid.
This can be prevented, however, by artificially halting collapse once the axis has shrunk by a critical
factor (18 π2)−1/3 ' 0.178 with respect to the background expansion (BM96; Angrick and Bartelmann,
2010).

Using this model, and defining the collapse time of a perturbation to be the epoch at which its last
principal axis freezes out, Sheth, Mo and Tormen (2001) showed that more strongly sheared perturbations
require higher initial density contrasts to overcome the tidal stretching and collapse by a particular
time. Approximating the locations of halo formation as random points in a Gaussian random field, this
“ellipsoidal-collapse threshold”, BSMT, can be expressed in terms of the rms amplitude of linear density
perturbations, σR, or equivalently in terms of halo mass. The value of BSMT typically increases towards
lower masses in a way that resembles the measured mean linear overdensities of dark-matter “protohaloes”
identified in the initial conditions of N-body simulations (B. E. Robertson et al., 2009; Elia, Ludlow and
Porciani, 2012; LBP14); this is generally interpreted as a reflection of the stronger tides felt, on average,
by less massive haloes.

Sheth, Mo and Tormen (2001) used the ellipsoidal-collapse threshold to predict the mass function and
bias of dark-matter haloes in the excursion-set formalism. If BSMT is rescaled by an ad-hoc factor, this
solution offers better agreement with the results of numerical simulations than calculations based on
the spherical collapse model. Sheth, Mo and Tormen (2001) justified the rescaling by noting that the
halo finder that was used in the simulations did not necessarily match the final overdensity of the haloes
produced by the EC model.

The EC model of BM96, however, cannot account for the considerable scatter in the measured linear
overdensities, δL, of regions that later collapse to form haloes of a particular mass M, and additionally
fails to explain why δL depends strongly on the characteristic half-mass formation time of the halo
(LBP14). In that companion paper we showed that, although the average overdensity of dark-matter
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protohaloes tends to scale with external tides as described by the ellipsoidal model of BM96, the majority
of recently collapsed haloes fall systematically below the model-predicted threshold for collapse. Hahn
and Paranjape (2014) reached similar conclusions using warm-dark-matter simulations and thus provided
further evidence that the ellipsoidal model systematically over-predicts the collapse time of a perturbation.

These puzzling results can be explained by a modified EC model that allows for initial asymmetry in
the shape of the linear perturbations. Changing the initial axis lengths alters their individual collapse
times and therefore modulates the initial density contrast required for complete collapse by a particular
redshift. In LBP14, we showed that a model tuned to match the Lagrangian shapes of dark-matter
protohaloes in numerical simulations can accurately reproduce their linear overdensities as well as its
dependence on the initial departure from sphericity. A nice feature of this model is that the three principal
axes of the perturbation freeze out almost simultaneously, similar to the case of spherical collapse. There
is one caveat, however: the predicted threshold for collapse at redshift zid only traces the overdensities
of recently collapsed haloes for a given external tidal field and lies below the mean value measured for
fixed halo mass and identification redshift. This begs the question of why dark-matter protohaloes with
linear overdensities substantially above the ellipsoidal-collapse threshold exist at all, when virtually none
with lower initial densities are found in cosmological simulations. We address these questions here using
different versions of the ellipsoidal collapse model combined with the same numerical simulations (and
dark-matter halo catalogs) as in LBP14. We anticipate that our findings imply a major revision of the
standard lore for halo formation and raise questions regarding the validity of the excursion-set ansatz.

This chapter is structured as follows. The dynamical model for ellipsoidal collapse is presented in
section 2.2, while our simulations, halo catalogs and analysis techniques are discussed in section 2.3. Our
main results are presented in section 2.4, with a discussion of the implications of our results in section 2.5.
The conclusions are then summarized in section 2.6.

2.2 The Ellipsoidal Collapse Model

The dynamical equations for the collapse of a constant density ellipsoid in the presence of an external
tidal field were derived in LBP14. We assume that the principal axes of the perturbation are aligned with
the eigenvectors of the external tidal field (Porciani, Dekel and Hoffman, 2002), and that the background
expansion is driven by a pressureless matter density and a cosmological constant (see Del Popolo, 2002
for a similar model).

In a Cartesian coordinate system that is aligned with the principal frame of the ellipsoid, the differential
equation for the axis lengths, ri, is (BM96)

r̈i

ri
= ΩΛ H2

0 −
3
2

ΩM H2
0

a3

(
1
3

+ λtot
i

)
, (2.1)

where the dots denote time derivatives; H0 is the Hubble constant; a the expansion factor; and ΩM and
ΩΛ are the present-day densities of matter and the cosmological constant, Λ, normalized to the critical
density, ρcrit = 3 H2

0/8 πG, where G is Newton’s gravitational constant. The tidal field, λtot
i , is given by

λtot
i = λext

i +
δ

3
+
ζi δ

2
, (2.2)

where δ = δ(a) is the time-dependent density contrast of the ellipsoid. Note that eq. (2.2) contains
contributions from both external tides, λext

i , as well as an internal component generated by the ellipsoid
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itself. The latter can be calculated explicitly using elliptic integrals:

ζi = r1 r2 r3

∫ ∞

0

dτ

(τ + r2
i )

∏3
k=1

√
τ + r2

k

−
2
3
, (2.3)

where the 2/3 guarantees
∑

i ζi = 0. Note that for a spherical geometry, the integral in eq. (2.3) is equal
to 2/3 and internal tides vanish. Initial condition for eq. (2.1) are set at some early time, a0, using the
Zel’dovich approximation.

The external tidal field, λext
i , however, as well as its time evolution, must be explicitly specified. One

common assumption is that λext
i is generated by structure on large scales and evolves from its initial value

according to linear theory; another possibility is that λext
i is dominated by the (non-linear) tidal field

generated by the perturbation itself (BM96). A model which interpolates between these two regimes was
recently proposed by Angrick and Bartelmann (2010). In this approach, one adopts the non-linear model
λext

i (t) until axis i turns around, at which point its corresponding eigenvalue continues to evolve linearly.
In our model we will initially assume that external tides are generated by large-scale structure and grow
with time according to the linear growth factor, D(z); internal tides are calculated self-consistently using
the time-dependent shape of the ellipsoid. In section 2.4.2 we will revisit the issue of external tides in
more detail, in order to test the assumption made above regarding their time evolution.

The collapse and virialization of the perturbation is generally approximated in this model by freezing
the individual axes when they reach a size r f ,i = f qi a (BM96). Here qi is the initial comoving length
of axis i, and the parameter f is usually set to 0.178. In the case of spherical collapse in an Einstein-de
Sitter universe, this choice ensures that the perturbation has a density contrast of δ ≈ 178 at the moment
of collapse. Note, however, that a particular choice of f has no fundamental physical motivation and
may depend on the nature of collapse (e.g., whether spherical or ellipsoidal) or on the background
cosmological model. A more general virialization condition based on the tensor virial theorem was
suggested by Angrick and Bartelmann (2010). However, since the late stages of collapse generally occur
quite rapidly, such modifications have only a minor effect on axis collapse times, from which density
thresholds are inferred. For the sake of simplicity, and to ease comparison with previous work, we adopt
the traditional freezing factor f = 0.178 for our EC model as well, but return this point in section 2.4.3.

2.3 Numerical Methods

2.3.1 The Simulations

Our analysis focuses on dark-matter haloes identified at zid = 0 in two cosmological simulations of
structure formation in the standard ΛCDM cosmology. These simulations are the same as those described
in LBP14 (see also Pillepich, Porciani and Hahn, 2010). We therefore summarize here only their main
aspects, and refer the reader to that work for further details.

Both runs followed the evolution of the dark-matter component using 10243 equal mass particles. The
periodic boxes have side lengths equal to 150 h−1Mpc and 1200 h−1Mpc. Each run was carried out with
a lean version of the simulation code Gadget (Springel, Yoshida and S. D. White, 2001; Springel, 2005)
and adopted the following cosmological parameters: ΩM = 0.279, ΩΛ = 1 −ΩM = 0.721, ntilt = 0.96,
σ8 = 0.817, and H0 = 73 km s−1 Mpc−1. Here ntilt is the spectral index of primordial density fluctuations;
σ8 is the rms density fluctuation measured in 8 h−1 Mpc spheres, linearly extrapolated to z = 0. These
values are consistent with the WMAP 5-year data release (Komatsu et al., 2009). The resulting particle
masses are mp = 2.43 × 108 h−1 M� and mp = 1.24 × 1011 h−1 M� for the 150 h−1Mpc and 1200 h−1Mpc
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boxes.
Initial conditions for the simulations where produced using the Zel’Dovich approximation for a starting

redshift of zstart = 70 and 50 for the small and large box, respectively. As discussed in detail by Pillepich,
Porciani and Hahn (2010), these choices of zstart are sufficient to erase all transient artifacts in the halo
mass function by z = 0. During each simulation, 30 snapshots were saved between z = 10 and 0 in
logarithmically spaced intervals of (1 + z)−1.

2.3.2 Halo Catalogues

We identified dark-matter haloes in each simulation output using a friends-of-friends (FOF) halo finder
with a linking length equal to 0.2 times the mean nearest-neighbour distance. All haloes with at least
NFOF = 32 particles were included in the halo catalogues. Once all dark-matter haloes were identified,
the formation histories of zid = 0 haloes were constructed by tracing each halo’s most massive progenitor
backwards through all previous simulation outputs. Accretion histories defined in this way can be used to
provide simple estimates of halo formation times, such as the redshift z50 at which 50 per cent of the
halo’s final mass had first assembled into one main progenitor.

We will also consider the Lagrangian “protohaloes” of each z = 0 halo, which can be easily identified
by tracing all halo particles back to the initial conditions of the simulation. In this chapter we will only
consider haloes that, at z = 0, are composed of at least NFOF = 1000 particles, unless explicitly stated
otherwise.

In order to test the sensitivity of our results to the adopted halo definition, we have also built halo
catalogues using a spherical overdensity (SO) halo finder. This algorithm grows spheres around local
density maxima until they reach a density contrast of ∆SO times the mean matter density. We adopted
∆SO = 100, 200 and 500, and repeated all aspects of the analysis using these alternative halo definitions.
We will distinguish the characteristics of haloes identified by the FOF or SO algorithms using subscripts.
The FOF halo mass, for example, will be denoted MFOF, whereas M200 defines the SO mass based on an
overdensity of ∆SO = 200. The main results of our work will be presented for the FOF halo definition;
the results for SO haloes are summarized in appendix A.

2.3.3 Analysis Techniques

The EC model described in section 2.2 depends explicitly on the initial axis ratios of the collapsing
overdensity. Since in practice these are free parameters, we will constrain their values using the shapes of
protohaloes identified in the initial conditions of our simulation.

We characterize the shapes of dark-matter haloes and protohaloes using the inertia tensor, defined

Ii j = mp

∑
k

xk,i xk, j , (2.4)

where xk is the distance vector between particle k and the halo’s center-of-mass; the i and j are the
projected lengths of xk along each coordinate direction. This matrix can be diagonalized to obtain the
principal axis lengths of the ellipsoid, q1 ≥ q2 ≥ q3, which can be used to characterize halo shapes in
terms of their ratios: q2/q1 and q3/q1, for example, are the intermediate-to-major and minor-to-major
axis ratios. The eigenvectors of the inertia tensor define the principal axis frame, and will be denoted ii.

As discussed in LBP14, the shapes of protohalo boundaries are closely related to the external tidal field
acting upon them. Protohaloes have strongly triaxial shapes whose principal directions align closely with
those of the surrounding tides. When estimating the tides acting upon a given protohalo, it is therefore
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desirable to move beyond simple spherical filtering of the tidal field, and attempt to incorporate additional
information on the shape of the protohalo as well.

Here we propose a novel method to estimate the average tidal field acting upon a protohalo as it
collapses to form a non-linear object. We start by calculating the density contrast field on a 10243 grid
that covers the entire simulation volume. Densities are assigned to each grid element using cloud-in-cell
interpolation (Hockney and Eastwood, 1988). Within each grid element, we also calculate the tidal
deformation tensor,

Di j =
∂2Φ

∂xi∂x j
, (2.5)

using standard Fourier techniques. Here Φ is the peculiar gravitational potential, which is related to the
density contrast by Poisson’s equation: ∇2Φ = δ. This field can be used compute the total strength and
orientation of the tidal field over an arbitrary volume, V (for example, a protohalo), in the following way.
We first compute the magnitude of Di j along the direction ϑ using

λ =
∑

V

ϑ · D · ϑ , (2.6)

where the sum is over all grid cells contained within the volume. We then iteratively determine the
orientation of ϑ that minimizes λ; this defines the direction d3 and its magnitude λ3. In the plane
perpendicular to d3, we then search for the direction ϑ = d1 that maximizes eq. (2.6), which also
determines λ1. This constrains the direction d2 since it is, by definition, perpendicular to both d1 and
d3; λ2 is then determined using eq. (2.6) along the direction ϑ = d2. In this way we estimate the total
tidal tensor, described by the λis and dis, acting on the volume V without invoking a spherical filter
function. For protohaloes, we assume that V can be approximated by an ellipsoid whose axis lengths and
orientations are derived from its inertia tensor.

Once the linear tidal field has been measured in this way, we define the Lagrangian overdensity of
each protohalo as δL =

∑
i λi. Both the tides and the density contrast of the protohaloes are therefore

evaluated within an ellipsoidal (rather than spherical) aperture whose shape and orientation is tailored to
match each individual protohalo. Relative to spherical filtering, this results in per cent-level corrections
to δL over the range of masses we study here.

Applying this procedure to FOF haloes with ≥1000 particles ensures that even the lowest mass haloes
are, on average, resolved with at least 20 grid cells. We have explicitly verified that this is sufficient to
yields robust estimates of the λis and dis.

Note that the tidal field can be alternatively characterized in terms of its ellipticity, e, and prolateness,
p. These are defined

e =
λ1 − λ3

2 δL
(2.7)

and

p =
λ1 − 2 λ2 + λ3

2 δL
. (2.8)
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Figure 2.1: Lagrangian overdensities of dark-matter protohaloes predicted by the ellipsoidal collapse model plotted
versus their overdensities measured in the initial conditions of our simulations. Model predictions assume that the
Lagrangian tidal field measured at each protohalo’s center evolves according to linear theory. The left-hand panel
corresponds to the EC model of BM96, which assumes that each protohalo’s initial shape can be approximated
by a sphere; the right-hand panel explicitly accounts for each protohalo’s initially non-spherical shape, which we
measure in the simulation initial conditions. Shaded regions highlight the density of points in the δ − δ plane;
contours enclose 50 per cent and 80 per cent of the data. Connected points show the median values of δMod

L at fixed
δSim

L measured in separate mass bins (shown using different colored lines), equally spaced in log M. Solid circles
are used for haloes in our 150 h−1 Mpc box; open squares for those in the 1200 h−1 Mpc box

2.4 Results

2.4.1 Ellipsoidal collapse and density thresholds for CDM halo formation

Given estimates of the tidal field acting upon a given protohalo, we can use the EC model described
in section 2.2 to predict the linear density contrast required for collapse to occur at zid = 0. We will
discriminate “predicted” and “measured” values of δL using superscripts: δSim

L , for example, refers to its
value measured in the initial conditions of our simulations; δMod

L to the model-predicted value. Protohalo
overdensities predicted by the EC model are shown in fig. 2.1, and are compared directly with the linear
overdensities δSim

L obtained by the method described above. We will use these “δ − δ” relations as a
diagnostic for the ability of the EC model to describe the dynamics of individual dark-matter haloes.

In fig. 2.1 we plot, for each protohalo, the linear density contrast for collapse at z = 0 predicted by
the EC model versus their measured overdensities. The left hand panel shows the predictions of the EC
model of BM96, which assumes that each protohalo occupies a spherical Lagrangian volume2. We will
hereafter refer to this as the ECS model (for Ellipsoidal Collapse of Spherical perturbations); density
contrasts predicted by this model will be denoted δECS

L . On the right, we have included the influence of
each protohalo’s shape on the predicted collapse threshold (hereafter referred to as the ECE model, for
Ellipsoidal Collapse of Ellipsoidal perturbations). Note that, in this case, the non-spherical perturbation
itself contributes to the initial tidal field. We therefore modify the external component such that the

2 Note that an equivalent plot was provided in Figure 3 of Sheth, Mo and Tormen (2001).
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Figure 2.2: Evolution of the median external tidal field (solid lines) for haloes in two separate mass bins. Upper
panels correspond to haloes in the mass range 2.5 < MFOF/(1014 h−1 M�) < 5, lower panels to those with
2.4 < MFOF/(1011 h−1 M�) < 4.9. Left- and right-hand panels split haloes in each mass bin according to their
initial density contrast, δSim

L : those of the left include only haloes that rank in the lowest 15 per cent of the δSim
L

distribution, and those on the right only those in the highest 15 per cent. In each case, hatched regions correspond
to the 90 per cent confidence interval on the median λext

i (z) obtained by bootstrapping. For comparison, we also
show the linear evolution of the median Lagrangian tidal fields measured at each halo center using dashed lines.
Grey shaded regions correspond to redshifts z < z50, where z50 is the median half-mass formation redshift of each
halo sample.

total tidal field in the model initially matches the linear tidal field measured for each protohalo in the
simulation. In each panel connected symbols show the median values of δMod

L measured in fixed bins of
δSim

L ; different colored lines plot the relations for equally spaced logarithmic mass bins (indicated in the
legend).

Note that, in both cases, the model-predicted overdensities correlate rather well with those measured
directly in the initial conditions of the simulations, albeit with considerable scatter. The median trends,
however, are noticeably shallower than one would expect if the ellipsoidal model truly captures the
dynamics of halo collapse. Note also that the ECS model predicts a strong mass dependence to the
median δ − δ relations. This results from the fact that the collapse barrier (at fixed p) depends entirely on
the ellipticity of the tidal field e, growing monotonically with increasing e. Because, for random points, e
scales with mass as e = (σR/δ)/

√
5 (Doroshkevich, 1970), the ECS model predicts systematically higher

collapse thresholds for lower mass haloes, resulting in a segregation of the average δMod
L s predicted for

haloes of different mass.
Intriguingly, the mass dependence disappears when individual protohalo shapes are included in the

34



2.4 Results

model prediction. This is because toward lower masses, protohaloes become increasingly triaxial, which
lowers the density threshold required for collapse to occur in spite of the increasing tidal field strength
(see LBP14). None the less, both models fail to reproduce the measured distribution of protohalo
overdensities, and it is worthwhile exploring what aspects or assumptions of the EC model may result in
the discrepancy.

2.4.2 The influence of external tides

One common assumption of the EC model – and indeed our assumption in constructing fig. 2.1 – is that
the external tidal field, assumed to be generated by structure on very large scales, remains linear at all
times. All ingredients needed to solve eq. (2.1) are therefore already present in the linear density field.
In reality, a growing dark-matter halo may be subjected to interactions with nearby neighbours which
may result in strongly non-linear tidal forces that act to suppress its growth and alter its collapse time
(Hahn, Porciani, Dekel et al., 2009; H. Wang et al., 2011). It is therefore important to assess whether the
assumption of linearly evolving tides remains valid during the evolution of simulated haloes, in order to
make a more meaningful comparison between their measured and predicted overdensities.

To do so, we trace all particles belonging to each protohalo through each simulation output, and use
eq. (2.4) to characterize the redshift dependence of the shape and orientation of each collapsing region.
We approximate the geometry of this region as an ellipsoid and fix its volume, V , such that it encloses the
protohalo mass at all subsequent times. The total tidal field acting upon the collapsing region is then
estimated using the procedure outlined in section 2.3.3. This method has two distinct advantages over
using the particles themselves to define V: 1) it ensures that we follow a region with constant enclosed
mass, even though the individual particles within it may change with time; 2) it allows for a simple
decomposition of the total tidal field into its internal and external components.

We apply this procedure to each zid = 0 FOF halo (containing at least 1000 particles) and in all
simulations outputs in order to explicitly measure the time evolution of the tidal field, λtot

i (z), acting upon
each halo. The shape of the ellipsoid can be used to approximate the contribution of internal tides, ζiδ/2,
using eqs. (2.2) and (2.3), in order to estimate λext

i (z). Note that calculating the internal tides this way
assumes a homogeneous density inside the ellipsoid, which may be inaccurate at late times.

The evolution of the external tidal field calculated in this way is shown in fig. 2.2 for haloes in two sepa-
rate mass bins. Upper panels correspond to haloes that fall in the mass range 2.5 < MFOF/(1014 h−1 M�) <
5; the lower to those with 2.4 < MFOF/(1011 h−1 M�) < 4.9. Panels on the left show haloes in each mass
bin that rank in the lowest 15 per cent of δSim

L , whereas those on the right rank in the highest 15 per cent.
(The threshold values of δSim

L for each sample are provided in each panel.) Grey shaded regions indicate
redshifts below the median half-mass formation redshift for each sample, after which the assumption of a
homogeneous density inside the ellipsoid is likely inaccurate. The measured λext

i (z)s are shown using
solid lines, as indicated in the legend, while the dashed lines show the linear extrapolation of the average
Lagrangian tides measured for each halo sample.

Massive haloes tend to evolve in environments where the tidal field scales approximately as expected
from linear theory. This is not surprising given that these haloes dominate their environments and the
external tides are therefore generated by long-range modes that have not yet collapsed. The same is
true for low-mass haloes in low-density regions. Protohaloes with low values of δSim

L tend to to be less
clustered than those of higher δSim

L , with the latter forming in regions where tidal fields clearly grow more
strongly than expected from a simple linear extrapolation of the Lagrangian values.

What implications do these non-linear tides have for the collapse thresholds of dark-matter haloes
inferred from the EC model? Having calculated the evolution of the tidal field explicitly for each
individual halo, we can insert it directly into eq. (2.1) in order to asses the impact of non-linear tides on
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Figure 2.3: Linear density contrast predicted by the ECET model plotted against the measured Lagrangian
overdensities of dark-matter protohaloes. The ECET model explicitly accounts for the non-spherical shape of
each individual protohalo as well as the evolution of their external tidal fields, without resorting to the common
assumption of linearly evolving tides. As in fig. 2.1, shaded regions indicate the density of haloes in the δ− δ plane;
contours enclose 50 per cent and 80 per cent of the data points. Connected points show the median values of δSim

L
at fixed δMod

L measured in separate mass bins, as indicated in the legend.

the collapse thresholds inferred from the ellipsoidal collapse model. The resulting δ − δ relation for the
ECE model is show in fig. 2.3 (hereafter the ECET model) where, again, the connected points highlight
medians in logarithmic mass bins.

As expected, massive haloes, and those with δSim
L ≈ δsc, are largely unaffected by the inclusion of

explicitly measured external tides. Those with higher δSim
L , however, live in more clustered environments

and are affected by tides that clearly evolve non-linearly. These tides act to inhibit the collapse of the
density perturbations, increasing the initial density contrast required for collapse to occur at z = 0. The
effect, however, is weak. For example, haloes in the lower right panel of fig. 2.2 are subject to external
tides that deviate from the linear theory extrapolation by roughly a factor of ∼2.2 at the halo’s half-mass
formation time (shaded regions indicate redshifts below the median value of z50 for all haloes in each
sample). This effect delays full collapse (in the ECE case) by roughly 1.4 h−1Myr, or, equivalently,
requires an enhancement of only 12 per cent in the initial density contrast for collapse at z = 0. This is
clearly not sufficient to bring the predictions of the ECE model into agreement with the simulation data,
suggesting that other factors may be at play. We turn our attention to these next.

2.4.3 Collapse times

There is a clear mismatch between the predictions of the EC model and the true properties of dark-matter
protohaloes when applied on a object-by-object basis. As discussed in LBP14, these differences may be
related to the details of each halo’s unique evolutionary history. For example, in the EC or SC model,
collapse occurring at redshift zc > zid requires an initial density contrast a factor of D(zid)/D(zc) larger
than what would be needed for collapse at zid under the same environmental conditions. Because, at a
given mass scale, haloes with higher δL typically form earlier than those of lower δL (LBP14), correcting
the model predictions for zc > 0 may explain the discrepancy between the measured overdensities of
protohaloes and the model-predicted values.
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Figure 2.4: Upper panel: Evolution of the median volume of the ellipsoid, centred on each collapsing protohalo,
that, at any z, encloses the final mass of the descendant halo at z = 0 (see section 2.4.3 for details). All haloes are
selected to lie in a narrow mass bin, as indicated in the legend. The black solid line corresponds to the median V(a)
for all haloes in that mass bin. Dashed (red) and dot-dashed (blue) lines show the evolution for the subsamples of
haloes that lie in the upper-most and lower-most 15 per cent of δSim

L . Lower panel: Evolution of the median FOF
mass of the most massive progenitor for the same samples of haloes. In both panels, solid circles highlight the
“collapse redshift”, zc, defined in section 2.4.3, whereas open squares indicate the half-mass formation time, z50, at
which each haloes main progenitor first assembled half of its present-day mass.

As discussed in LBP14, simple estimates of halo formation times based on the growth of their most
massive progenitors fail to account for the scatter in their linear overdensities. However, unlike our
simulated haloes, which grow through a sequence of mergers and smooth accretion, perturbations in
the EC model remain homogeneous throughout their evolution and the collapse redshift is therefore
unambiguously defined as the time at which the last axis reaches the radius r f ,i = f qi a. Once collapse
has occurred, the model assumes that the volume of the ellipsoid remains constant thereafter. Is there an
analogous definition of “collapse” that can be easily applied to cosmological haloes?

For a dark-matter halo identified at zid = 0, one can approximate the evolution of its outermost mass
shell by tracking the volume V(a) of the same best-fitting ellipsoid used to calculate the external tidal
field (described in section 2.4.2). Its size can be used to provide a simple and intuitive estimate of the
time at which its entire z = 0 mass had first assembled into a single, dispersion-supported non-linear
system.

In the upper panel of fig. 2.4 we plot the evolution of the volume of three such ellipsoids after averaging
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Figure 2.5: Evolution of the volume of an ellipsoid centred on the progenitor of a (z = 0) 2.8 × 1012 h−1 M� halo
that, at each redshift, encloses the present day halo mass. The shape and orientation of the best-fitting ellipsoid is
explicitly calculated using the full set of particles that, at z = 0, belong to the FOF group. The evolution of the
volume, V(z), is used to estimate the “collapse redshift” of the halo, zc = 1.2 (dotted-dashed vertical line), using
the condition specified in eq. (2.9). This definition of zc estimates the time at which the entire z = 0 halo mass
had first assembled into a stable configuration, and accounts for oscillations in the volume that occur during the
system’s approach toward equilibrium. The coloured symbols plotted along the blue line highlight the collapse
times predicted by the different versions of the EC model discussed in this chapter.

over subsamples of haloes in the mass range (2.4− 2.9)× 1011 h−1 M�. The solid (black) curve shows the
evolution of the median V(a) computed for all haloes in the quoted mass bin; dashed (red) and dot-dashed
(blue) lines show the corresponding result for haloes that rank in the maximum and minimum 15 per cent
of δSim

L , respectively.
On average, the present-day mass of these haloes was already in place at z ≈ 0.7. More extreme

examples can be found in the sample with the highest initial density contrasts, whose present-day masses
reached a stable volume at z ≈ 2, when the Universe was only ∼15 per cent of its current age. Attempting
to predict the collapse dynamics of these haloes with models tuned for collapse at z = 0 is therefore prone
to systematic errors. On the other hand, haloes with the lowest value of δSim

L appear to have accreted their
outer-most mass shells only very recently. This implies that, on average, haloes with δSim

L > δECE
L have

zc > 0: strictly speaking, these haloes collapsed before they were identified.
This may seem to conflict with the mass accretion histories of the same haloes, shown in the bottom

panel of fig. 2.4. These curves trace the median evolution of the FOF mass of each halo’s main progenitor,
and suggest that halo masses increase at all redshifts. However, as already noted by Diemand, Kuhlen
and Madau (2007), this “pseudo-growth” results from the fact that halo boundaries are defined, at any
time, relative to a fixed (or slowly varying) overdensity threshold. The decrease in the cosmic background
density with time therefore results in an artificial increase of halo boundaries, and hence masses (see
also, Cuesta et al., 2008; Diemer, More and Kravtsov, 2013; Zemp, 2014). Halo finders based on fixed
physical densities may therefore result in more realistic estimates of their masses and sizes.

None the less, we can use the trajectories of V(a) to estimate an appropriate “freezing” or collapse
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Figure 2.6: Mass dependence of halo collapse and formation times. Circles connected by solid lines show the
median “collapse redshift”, zc (defined in eq. 2.9); squares connected by dashed lines show the the median half-mass
formation time, z50, at which each halo’s main progenitor had first assembled half of its present-day mass. Triangles
connected by dotted and dot-dashed lines show the medians values of zc for haloes that rank in the highest and
lowest quartile of δSim

L . Filled and open symbols are used to distinguish haloes identified in our 150 h−1 Mpc box
from those in the 1200 h−1 Mpc box, respectively. Shaded regions (shown only for zc) indicate the 25th and 75th
percentiles of the scatter.

time, zc, for each individual halo. This estimate of zc can then be used to halt collapse in the EC model in
order to make a more appropriate comparison between the model’s predictions and measured Lagrangian
overdensities of dark-matter protohaloes.

We define zc as earliest redshift at which the following condition is satisfied:∫ tmax

tc
[V(t) − V(tc)] dt = 0 , (2.9)

where tc and tmax are the cosmological times corresponding to the collapse redshift, zc, and the end of
the simulation, zmax. In fig. 2.5 we provide an example of the evolution of V(a) (solid blue curve) for a
single halo of (z = 0) mass MFOF ∼ 2.9 × 1012 h−1 M�. The evolution mimics the expectations of simple
collapse models: after an initial phase of expansion the system turns around, begins collapsing and
eventually reaches a stable quasi-equilibrium configuration. The first “dip” after turnaround corresponds
to a state of maximal compression in which the halo’s entire z = 0 mass is briefly confined within a
compact volume smaller than the present-day virial volume of the halo. This is followed by a phase
of expansion, and a second (very slight) phase of contraction as the system moves toward equilibrium.
These “dips” and “peaks” clearly occur after collapse, but before virialization. Our definition of zc allows
for these oscillations as the system relaxes to a state of equilibrium. The grey shaded region in fig. 2.5
highlights the integrand of eq. (2.9). Note that areas above and below the horizontal line cancel so that
the integral vanishes. The corresponding collapse time, zc ≈ 1.2, is indicated with a vertical (red) dotted
line.

In fig. 2.6 we plot the mass dependence of ac = (1 + zc)−1 for all zid = 0 haloes in each simulation.
Note that we have verified that our estimates of zc are insensitive to the snapshot output sequence by
skipping even-numbered outputs and repeating the analysis. Connected, filled (blue) circles show the
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Table 2.1: Values obtained from fitting eq. (2.10) to the median collapse redshift as a function of halo mass.
Haloes c1 c0

FOF 0.13 -0.88
SO (∆ = 100) 0.13 -0.81
SO (∆ = 200) 0.12 -0.79
SO (∆ = 500) 0.11 -0.66

median trend for all haloes in our 150 h−1 Mpc box; open (red) circles correspond to haloes in our 1200
h−1 Mpc box. Shaded regions in each case indicate the 25th and 75th percentiles of the scatter3. As
expected, the most massive haloes (those above a few ×1014 h−1 M�) have typical collapse times of
zc ≈ 0, whereas zc > 0 for lower mass haloes. The median mass dependence to ac can be approximated
by a simple linear function:

ac = c1 log10(M/[h−1M�]) + c0. (2.10)

The values of the best-fitting parameters are provided in table 2.1 for several different halo definitions.

2.4.4 The collapse threshold at collapse redshift zc

Adopting separate collapse and identification redshifts has a subtle implication for comparing the
predictions of the EC model to the outcome of simulations. FOF haloes defined at zid = 0 are bounded
by mass (and resolution) dependent isodensity contours. Our definition of zc, however, defines the time
at which the entire z = 0 mass was first confined within approximately the same physical volume. As
a result, the (comoving) overdensity of the halo at zc will be lower than its z = 0 value by a factor of
(1 + zc)3. To account for the different density contrast at collapse we multiply the radial freezing factor,
f , used in the EC model by (1 + zc).

Additional corrections to f can be made in order to account for the mass-dependence of FOF halo
overdensities. For example, we find that haloes in our 150 h−1Mpc box have, on average, ∆ ≈ 325,
whereas ∆ ≈ 270 for those in our 1200 h−1Mpc run (see More, Kravtsov et al., 2011, for a more detailed
discussion of the overdensities of FOF groups). Since f = 0.178 sets the z = 0 virial overdensity in
the spherical collapse model, we modify the radial freezing factors in the EC model to match the mean
overdensities of haloes in each of our simulations. This results in f = 0.145 for haloes in our 150 h−1Mpc
box, and f = 0.155 for those in the 1200 h−1Mpc box.

Based on the results presented in fig. 2.6, the vast majority of dark-matter haloes (apart from the
most massive ones) are expected to have reached stable configurations at zc ≥ 0. This implies that
most haloes, at the moment they are identified, are experiencing little, if any, net mass accretion. We
examine this point further in fig. 2.7, where we plot the average radial-velocity profiles measured in
spherical bins surrounding each zid = 0 dark-matter halo. Note that the radial coordinates have been
scaled to the characteristic radius RFOF = (3 VFOF(z = 0)/4 π)1/3; median values of the radii enclosing
fixed overdensities of ∆ = 100, 200, and 500 are also shown as solid, dashed and dot-dashed vertical
lines, respectively. Panels correspond to two separate mass bins: (2.5 − 5.0) × 1014 h−1M� (top) and
(2.4 − 4.9) × 1011 h−1M� (bottom). Within each mass bin separate curves show the median vr(r) profiles

3 Because many massive haloes at z = 0 are expected to be in a state of rapid growth, the use of eq. (2.9) to estimate zc may
not be justified. In order to obtain a reasonable estimate of the collapse times of massive systems we decided to extend our
1200 h−1Mpc box run to z = −0.27, which allowed us to track the collapse phase of even the most massive haloes identified
at zid = 0.
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Figure 2.7: Solid black lines show the median radial velocity profiles of FOF haloes at zid = 0 in two separate
mass bins. Dashed (red) and dot-dashed (blue) lines show the median vr(r) for haloes that rank in the highest and
lowest 15 per cent of δSim

L . In all cases, the radial coordinate is expressed in units of the mean size of the FOF
haloes. Vertical grey lines indicate the typical size of the haloes when identified with the SO-algorithm, using an
overdensity threshold of ∆ = 100 (dotted), 200 (dashed) and 500 (dot-dashed), respectively. Note the different
scale of the velocity axis in the upper and lower panels.

for all haloes (solid curve) as well as for the upper and lower-most 15 per cent of the δSim
L distribution.

Independent of their initial overdensity, the majority of massive haloes exhibit a strong pattern of infall
in the regions surrounding the halo. The radius at which infall becomes substantial, however, is a function
of δL (and hence, zc). This suggests, that these systems are still accreting, and have not yet reached their
final quasi-equilibrium state. Lower-mass haloes, on the other hand, display very little infall and are
therefore not accreting mass (see also Prada et al., 2006).

The physics that determines the collapse redshift of a particular halo, or the moment at which infall
is suppressed, is not well understood. None the less, practical estimates of zc, such as that defined by
eq. (2.9), can be used to rescale the collapse redshifts in the EC model in order to make a more meaningful
prediction of the density threshold required for the perturbation to collapse. We plot the predicted density
contrast for collapse at zc, linearly extrapolated to zid = 0, versus the measured protohalo overdensities
(also linearly extrapolated to z = 0) in fig. 2.8. For completeness, we include the results for all variants of
the ellipsoidal model that we have considered, and show the median trends in the same halo-mass bins as
before. In all cases, correcting for zc > 0 significantly improves the correlation between the predicted a
measured protohalo overdensities.

Note that the mass dependence of the δ − δ relation predicted by the ECS model (seen already in
fig. 2.1) remains after correcting for zc. This is a result of the fact that zc increases with decreasing mass,
and therefore corrects the predicted overdensities of low-mass haloes more than those of massive ones.
Haloes of ∼ 1012 h−1 M�, for example, have 〈zc〉 ∼ 0.58, rather than zc = 0. Within the ECS model,
this shift in collapse time is achieved by enhancing the linear density contrast of the perturbation by
roughly 35 per cent. Massive haloes (& 1014 h−1 M�), on the other hand, have zc ∼ 0 and therefore
remain unchanged in this δ − δ plot.

Note also that the overdensities predicted by the ECE and ECET models now follow closely the
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Figure 2.8: Predicted linear overdensities of dark-matter protohaloes calculated from the EC model plotted versus
their measured overdensities. Predicted overdensities are calculated for collapse at zc > 0 (zc is the collapse redshift
defined by eq. (2.9), and is explicitly calculated for each individual halo). The left-hand panel corresponds to
the predictions of the BM96 ECS model, which assumes that each protohalo occupies a spherical Lagrangian
volume, and that external tidal forces evolve from their initial values according to linear theory. Predictions in the
middle panel explicitly account for the non-spherical shapes of dark-matter protohaloes, as measured in the initial
conditions of our simulations, but retains the linear evolution of their tidal fields (this model is referred to in the
text as the ECE model). Finally, the right-most panel shows the predictions of the EC model after fully accounting
for the triaxial shapes of dark-matter protohaloes, as well as the evolution of their non-linear external tidal fields
(referred to as ECET). As in similar figures, the connected symbols show, for various mass bins, the median values
of δMod

L in bins of δSim
L .

one-to-one line (shown in each panel as a dashed line), with the median trend differing by, at most, 10
per cent for all halo masses and the full range of linear overdensities. The median relations for these
models are also independent of halo mass: all individual lines in the middle and right-hand panels of
fig. 2.8 neatly overlap. The fit of a linear function, δMod

L = A δSim
L + B, to individual points in the δ − δ

plane reveals that the ECE model is consistent with a one-to-one line, while the ECS model is not.
The correction to the slope of the δ − δ relation results from the fact that, at any given mass scale, δSim

L
and zc are strongly correlated. The dotted and dot-dashed lines in fig. 2.6 make this point clear. These
curves highlight the median mass-dependence of zc for haloes that, in each mass bin, rank in the highest
and lowest 25 per cent of δSim

L . Clearly haloes that are initially denser tend to collapse earlier, resulting in
a larger correction to their model-predicted overdensities.

2.5 Discussion

2.5.1 The mass dependence and scatter of δL

The dependence of zc on δL can also be seen in the lower-right panel of fig. 2.9. Here we plot the
mass-dependence of δL for all haloes in both of our simulations, and color points by ∆ac, defined by the
offset between each halo’s collapse time, ac , and the median value for haloes of the same mass. The
mean trends are shown using solid and open points for haloes in our 150 h−1Mpc box and our 1200
h−1Mpc box, respectively; the error bars indicate standard deviation.

For comparison, we also plot the predicted δL(M) relations in the other three panels, adopting the same
color-coding for each. Data in the upper-left panel show the mass-dependence of protohalo overdensities
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Figure 2.9: Linear density contrast as a function of mass. Points show the predicted value of the ECS model in the
upper left panel, the ECE model including collapse times in the right upper panel and the ECET model including
collapse times in the lower left panel. The lower right panel shows the values measured directly in the simulation.
The points are coloured according to ∆ ac, the offset between the expansion factor at collapse and the corresponding
mean value for haloes of the same mass (note that this colour coding is different from what is used in figure 1 of
LBP14). Heavy points with error bars show the mean and standard deviation of the measured density contrast in
bins of mass. Heavy lines show the mean of the predicted density contrast in each panel, while thin lines indicate
the standard deviation. For clarity, we have randomly down-sampled points in mass bins with &1000 haloes.

predicted by the ellipsoidal model of BM96, tuned for z = 0; the upper-right and lower-left panels
correspond to the ECE and ECET-model predictions (both tuned for collapse at zc). In all cases, the mean
trends at fixed mass are shown using thick solid lines, with thinner lines indicating the standard deviation
at fixed M. These trends can be compared to the points with error bars, which reproduce the measured
δL(M) relation plotted in the lower-right panel.

Note that, while the standard ECS model systematically under-predicts the linear collapse threshold, the
ECE and ECET models fare much better. Both models reproduce the mass and collapse time-dependence
of δL rather well; the average trends deviate by at most ∼10 per cent over roughly five orders of magnitude
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Figure 2.10: Excursion-set trajectory associated with the protohalo shown in fig. 2.5. δL(MTH) is the linear density
contrast extrapolated to z = 0 after averaging within a sphere of radius RTH (corresponding to the mass scale
MTH = 4πρcrit ΩM R3

TH/3) extending around the protohalo center of mass. Open symbols highlight the points at
which the trajectory crosses the threshold for halo formation at z = zid = 0 evaluated using different collapse
models. In all cases, the EPS theory substantially overestimates the halo mass measured in the simulation at zid
(indicated by the vertical dot-dashed line). On the other hand, when the SC and ECE models are tuned for collapse
at zc (solid symbols), the predicted halo masses are is in excellent agreement with the numerical results.

in mass. This is remarkable given the simplicity of the ellipsoidal model, which overlooks entirely the
complex hierarchical growth of dark-matter haloes. Note also that these models predict a scatter in δL
that decreases with increasing mass, which is qualitatively consistent with the variance of measured
protohalo overdensities. However, all models typically over-predict the scatter in δL at a given mass, and
it is unclear whether different estimates of halo collapse times will perform better in this regard.

2.5.2 Implications for the extended Press-Schechter formalism

Our results raise questions concerning the validity of the extended Press-Schechter (EPS) formalism
(Bond, Cole et al., 1991), particularly for low-mass haloes identified at late times (i.e. those with
σ(M) � δc). In the EPS theory, the outer boundary of a protohalo coincides with the initial location of a
spherical mass shell that should collapse at zid. However, our results demonstrate that most haloes stop
accreting matter at zc > zid and are essentially immutable thereafter. For redshifts z < zc, the use of halo
finding algorithms based on density contrasts results in the (small) pseudo-growth of the halo mass due
to the decreasing background density.

We present an illustrative (and typical) example in fig. 2.10, where we plot the excursion-set trajectory
at the Lagrangian location of the same halo used in fig. 2.5. The solid line shows the linear density
contrast (extrapolated to z = 0) smoothed with a spherical top-hat filter of radius RTH and mass MTH.
The open symbols indicate the points where the trajectory crosses the threshold for collapse at z = zid = 0
computed using the SC (circle), ECS (triangle) and ECE (square) models. In all cases, the EPS model
substantially overestimates the halo mass measured in the simulation at zid (dot-dashed line). This is
because, contrary to the model assumption, no mass shells were accreted onto the halo after zc = 1.2. On
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the other hand, the EPS predictions are rather accurate at zc (cf. the solid symbols and the dot-dashed
line), when the ECE (or SC) model is adopted to predict the collapse threshold. This can also be seen in
fig. 2.5, where the same symbols mark the collapse times predicted by the different models.

We therefore disagree with the interpretation given by Sheth, Mo and Tormen (2001) that the mass
dependence of the halo formation threshold δc is due to the fact that denser linear perturbations are
necessary to overcome stronger tides in order to guarantee collapse at zid. Rather, we attribute the mass
scaling to the fact that, on average, low-mass haloes collapse and stop accreting at higher redshifts than
haloes of higher mass. Future work will focus on understanding the physical mechanisms that prevent
the collapse of the outer material shells. Non-linear tidal interactions (e.g. Hahn, Porciani, Dekel et al.,
2009) and the geometrical overlap of the outer Lagrangian boundaries of neighbouring haloes (LBP14)
likely play a key role.

Finally, we note that the phenomenon known as “assembly bias” (see e.g. Gao, Springel and S. D. White,
2005) simply reflects the dependence of the collapse threshold on zc at fixed halo mass and identification
redshift: “old” haloes (zc � zid) are more biased tracers of the underlying matter distribution than “young”
haloes (zc ' zid).

2.6 Summary

We used two high-resolution simulations of structure formation in the ΛCDM cosmology to test how
well the EC model describes the linear density contrasts in regions that collapse to form haloes identified
at zid = 0. Our analysis focused on EC models of increasing complexity. The first (ECS) assumes that
each protohalo can be approximated by a spherical Lagrangian tophat perturbation acted upon by linearly
evolving external tidal forces, as described in BM96. The second model (ECE) allows for initially
non-spherical perturbations, but retains the linear evolution of external tides (this model was described
in detail in LBP14). Finally, we consider a model (ECET) which accounts for both the non-spherical
initial shape of protohaloes, as well as the fact that their external tidal fields evolve non-linearly. Our
main results can be summarized as follows.

1. The ECS model fails to describe the linear density contrasts measured at the sites of halo collapse
in the initial conditions of our simulations. In this model, the required density contrast for collapse
(at fixed zc) is determined entirely by the surrounding tidal field, i.e. by e and p. Because the
average tidal field strength decreases with mass, the ECS prediction is strongly mass-dependent,
and is unable to reproduce the measured density contrasts of haloes on an object-by-object basis,
as evident in fig. 2.1. For example, protohaloes with the same linear density contrast, but with final
masses of 1012 and 1014 h−1M�, have predicted δECS

L values that differ systematically by ∼ 30 per
cent.

2. The mass dependence of the predicted protohalo overdensity disappears completely when their
measured initial shapes are properly accounted for in the model calculation. This is because initially
triaxial perturbations that align with the eigenvectors of their external tidal field typically collapse at
lower overdensities than their spherical brethren when acted upon by strong external tides (LBP14).
The mass dependence of protohalo shapes (in which lower mass haloes are systematically less
spherical) therefore balances the higher initial density contrasts needed for low-mass systems to
overcome the strong tidal forces in the ECS model. Nevertheless, when tuned for collapse at z = 0,
the model still fails to predict the observed range of Lagrangian overdensities measured in our
simulations, succeeding only for very massive haloes and those with low initial density contrasts.
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3. In order to better understand these results, we developed an accurate method to measure the time
evolution of the strength and orientation of the external tidal field acting upon a collapsing halo.
This method reproduces the linear evolution of external tides for massive haloes, and for those
forming in low density regions, but shows a clear non-linear evolution for highly clustered haloes
in the initial density field. Although non-linear tides act to inhibit the collapse of dense protohaloes
(and therefore increase the model-predicted density contrasts for collapse at z = 0), incorporating
these effects into the EC model only slightly improves the agreement between the model prediction
the measured Lagrangian overdensities of protohaloes.

4. The main discrepancy between the predicted and measured protohalo overdensities can be accu-
rately accounted for if one drops the assumption that haloes are collapsing today. For a given tidal
ellipticity, e, and prolaticity, p, the barrier height for collapse at redshift zc > zid predicted by the
EC model is larger by factor of D(zid)/D(zc) > 1. We devised a simple method of calculating
zc: it does not depend on halo merger histories or on the growth of the main progenitor, but
approximately estimates the earliest time at which the entire z = 0 mass of the halo first reached a
stable volume. Using this, we showed that a modified EC model that accounts for both the triaxial
nature of protohaloes as well as the collapse times of their descendants, can predict the Lagrangian
density contrast of protohaloes in an unbiased way.

5. Although the ECE and ECET models provide a more faithful description of the density thresh-
olds required for gravitational collapse, they rely heavily on input from the simulations. This
substantially reduces the predictability of these models, but illuminates possible avenues for future
progress. For example, a deeper understanding of the connection between the overdensities of pro-
tohaloes and their collapse times, zc, would undoubtedly result in a much more powerful analytic
model for halo formation. This would have important implications for theoretical modeling of,
among other things, large-scale structure, the halo mass function, and the merger trees of dark
matter halos.

Our results suggest that the Lagrangian overdensity of regions that collapse to form haloes by z = 0
increase toward lower halo masses (see also B. E. Robertson et al., 2009; Elia, Ludlow and Porciani,
2012). Within the context of the standard model for ellipsoidal collapse (referred to here as the ECS
model) this behavior results from the fact that lower-mass haloes are subject to stronger tidal distortion
and therefore require larger initial overdensities to collapse by a particular time (Sheth, Mo and Tormen,
2001). Our results suggest a different interpretation. One difference results from the much weaker
dependence of BSMT on external tides when protohaloes are modeled as triaxial ellipsoids rather than
spheres. This substantially reduces the model-predicted density threshold required for the collapse of
low-mass (or strongly sheared) perturbations by z = 0. On the other hand, the vast majority of low-mass
haloes had already assembled their total z = 0 masses at zc > 0, suggesting that model barriers tuned
for collapse today are underestimating the true barrier height. In this interpretation, the shape of the
δL(M) relation simply reflects the mass-dependence of halo collapse times: low-mass haloes collapse,
on average, earlier than more massive ones, and therefore have higher initial density contrasts. This
interpretation is supported by the fact that, at fixed halo mass, δL depends strongly on zc but not on the
shape or strength of the surrounding tidal field.
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CHAPTER 3

How the cosmic web inhibits halo growth and
generates assembly bias1

3.1 Introduction

In the standard model of cosmology, galaxies are surrounded by extended haloes made of cold dark matter
(CDM). These CDM clumps are generated by primordial density perturbations that are gravitationally
unstable. The power spectral density of the fluctuations is such that haloes form hierarchically in a
bottom-up fashion. The first generation of haloes comes into being at redshift z ∼ 60 with Earth masses
(Diemand, Moore and Stadel, 2005). Larger and larger objects are then progressively assembled through
halo mergers and accretion of loose material. N-body simulations are the ideal tool to study this highly
non-linear process. They show that the host haloes of present-day bright galaxies start forming at a
redshift of a few and become a prominent population around z ∼ 1.

Galaxies and their host haloes are embedded in the large-scale structure of the Universe. Matter is
organised in a vast network of knots, filaments and sheets known as the ‘cosmic web’ (Bond, Kofman
and Pogosyan, 1996). Distinct halo populations trace the various elements of the web in different ways
and thus show dissimilar clustering properties (Hahn, Porciani, Carollo et al., 2007; Hahn, Carollo et al.,
2007; Aragón-Calvo et al., 2007; Cautun et al., 2014). For a long time, numerical studies have focussed
on determining the clustering amplitude (e.g. the amplitude of the two-point correlation function) as a
function of halo mass (see also section 3.3.5 for a more theoretical perspective). More recently, however,
it has been shown that, at fixed mass, halo clustering depends on the formation time (Gao, Springel and
S. D. White, 2005; Wechsler, Zentner et al., 2006; Zhu et al., 2006; Y. Li, Mo and Gao, 2008; J. Wang
et al., 2011; Sunayama et al., 2016) and other correlated variables (Wechsler, Zentner et al., 2006; Jing,
Suto and Mo, 2007; Gao and S. D. White, 2007; Bett et al., 2007; Angulo, Baugh and C. G. Lacey, 2008;
Faltenbacher and S. D. White, 2010; R. Li et al., 2013). For galaxy-sized objects (the subject of this
chapter), haloes that formed earlier cluster more strongly than their ‘younger’ counterparts. In other
words, older haloes tend to reside in denser environments (Sheth and Tormen, 2004; Harker et al., 2006).
This set of phenomena is known under the collective name of ‘halo assembly bias’. It is an intriguing
open question whether also ‘galaxy assembly bias’ exists, i.e. to what extent the assembly history of
the host haloes influences galaxy properties and imprints detectable signatures in the galaxy-clustering
pattern (e.g. Jung, Lee and Yi, 2014; Hearin, Watson and van den Bosch, 2015; Hearin, Zentner et al.,

1 This chapter has been published in Borzyszkowski, Porciani et al. (2016). The notation has been adapted to match the
remaining thesis.
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2016; Y.-T. Lin et al., 2016).
This chapter is the first in a series of three articles describing a numerical project named Zooming On

a Mob of Galaxies (ZOMG). The aim of the ZOMG simulations is to study how cosmic environment
regulates the growth and the structure of dark-matter haloes and of their central and satellite galaxies,
hence to investigate the physical origin of halo and (possibly) galaxy assembly bias. Here we focus on the
formation of dark-matter haloes and therefore use high-resolution N-body simulations. In the companion
papers, instead, we also consider the baryonic component and use hydrodynamic simulations including
star formation and feedback. In particular, in paper II (Romano-Díaz et al., 2017), we investigate how
environment regulates the gas supply and the properties of the central galaxies while, in paper III (Garaldi
et al., 2017), we shift our attention to the satellite galaxies.

In this work, we study the formation and evolution of the host haloes of present-day L∗ galaxies. These
haloes are of particular interest because they are the sites where star formation is most efficient and the
stellar-to-halo mass ratio peaks (Moster, Naab and S. D. White, 2013; Behroozi, Wechsler and Conroy,
2013). In N-body simulations, they also present a number of puzzling properties which are interconnected.
First, they show a strong assembly bias. Second, the bulk of them seem to have assembled early on
(chapter 2) and, consistently, do not present signs of mass growth at later times (Diemand, Kuhlen and
Madau, 2007 and chapter 2). Third, the region within which they are dynamically stable (i.e. where the
mean radial velocity of matter vanishes) appears to be significantly more extended than expected from
simple theoretical considerations (Prada et al., 2006). Fourth, given the linear overdensity and the tides
in the Lagrangian patch from which they originate, they form much earlier than predicted by popular
collapse models (LBP14; Hahn and Paranjape, 2014 and chapter 2). The main motivation for our work is
to verify these results and provide a comprehensive and coherent explanation for all of them.

Several studies indicate that halo assembly bias can be explained in terms of a population of haloes
that stop accreting matter once they find themselves in dense environments (H. Y. Wang, Mo and Jing,
2007; Dalal et al., 2008; Hahn, Porciani, Dekel et al., 2009; J. Wang et al., 2011). However, the detailed
physical origin of this phenomenon has not been clarified yet. Although older haloes lie closer to more
massive objects (H. Y. Wang, Mo and Jing, 2007), mass loss due to tidal stripping during fly-bys does not
seem to play any relevant role in establishing the bias (H. Y. Wang, Mo and Jing, 2007; Hahn, Porciani,
Dekel et al., 2009; J. Wang et al., 2011). H. Y. Wang, Mo and Jing (2007) note that the dark-matter
flow surrounding the older haloes is hotter and might escape capture from the halo potential well. Hahn,
Porciani, Dekel et al. (2009) provide evidence in favour of tidally suppressed accretion driven by the
strong velocity shear within marked filaments of the large-scale structure. Consistently, J. Wang et al.
(2011) find that halo formation time at fixed mass correlates with the strength of the local tidal field.
All these valuable investigations are based on fairly large cosmological N-body simulations providing
substantial statistical samples but with relatively poor spatial and mass resolution. For this reason they
are ideal for spotting correlations in the data although they give little insight into the physics of assembly
bias. In fact, there are questions that cannot be addressed with simulations in which galaxy-sized haloes
are resolved with 102 − 104 particles leading to a very poor sampling of the phase-space configuration of
the halo and its surroundings. Information on the internal structure of the haloes as well as the precise
geometry with which matter accretes onto them can only be inferred stacking thousands of objects
with similar apparent characteristics. In this way, one always ends up mixing information coming from
different objects in more or less disparate dynamical states. The precise outcome of this procedure relies
on assumptions (for instance a stacking criterion) and can provide only generic indications or trends.
Actually, the corresponding results cannot be treated as facts at the level of individual haloes until they
are corroborated with further, direct evidence. Complementary to this line of research, we use the zoom
technique to study a small sample of representative haloes at very high resolution. This enables us to
investigate the accretion-pattern of individual haloes in great detail and identify the series of events
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leading to halted growth. Furthermore, our simulations allow us to make a connection between matter
accretion from the environment and the dynamical structure of the haloes. This is particularly interesting
since assembly bias has been found to be surprisingly strong when haloes are split based on the velocity
anisotropy parameter (Faltenbacher and S. D. White, 2010). Our study reveals the unknown origin of this
signal and its connection with the halted halo growth.

This chapter is structured as follows. In section 3.2 we introduce our numerical simulations and lay
out the methods we use to analyse them. In section 3.3 we present our results and clarify the origin of
halo assembly bias. We show that there is a tight link between halo assembly and the cosmic web: the
accretion rate of matter onto galaxy-sized haloes is regulated by the environment. In particular, mass
growth is inhibited for haloes embedded in prominent filaments due to the strongly sheared velocity
field. Furthermore, the characteristic accretion pattern determines the internal dynamics of the haloes
quantified in terms of the velocity anisotropy profile. In section 3.3.5 we discuss the mass-accretion
history of our haloes in the context of the excursion-set model (Bond, Cole et al., 1991; Zentner, 2007).
We show that the most common implementations of this theoretical framework fail to capture the effects
of the inhibited mass growth in filaments. Hence we propose a simple extension to the model that nicely
accounts for them. Finally, we draw our conclusions in section 3.4. :

3.2 Simulations and methods

We use the tree-PM N-body code pgadget-3 (Springel, 2005) to simulate the formation and evolution of
dark-matter haloes in the ΛCDM cosmology. Consistently with the most recent observations (Planck
Collaboration et al., 2014a), we assume the cosmological parameters ΩΛ = 0.692, Ωm = 0.308,
Ωb = 0.0481 and H0 = 100 h km s−1Mpc−1 = 67.8 km s−1Mpc−1. Initial conditions are set at z = 99
using second-order Lagrangian perturbation theory with the music code (Hahn and Abel, 2011). The
linear power spectrum of the density fluctuations (Eisenstein and Hu, 1998) is characterised by the scalar
spectral index ntilt = 0.9608 and the normalisation amplitude σ8 = 0.826.

We first carry out a simulation within a periodic cube of side 50 h−1 Mpc at a uniform initial resolution
in which the matter distribution is sampled with 5123 equal mass particles (hereafter U512). This
box forms the parent run from which we select sub-volumes to sample at higher resolution using the
multimass zoom technique (section 3.2.2). To study the stability of our results with respect to numerical
discretization, we run a second simulation with uniform initial resolution starting from the same initial
conditions but containing only 2563 identical particles (U256).

Using the amiga halo finder (Gill, Knebe and Gibson, 2004; Knollmann and Knebe, 2009), we
conventionally identify dark-matter haloes as spherical regions enclosing a mean matter density equal to
200 times the critical density of the universe (the consequences of adopting this common definition will
be discussed later). Additionally, we apply an unbinding procedure which iteratively purges the halo
of the particles that move faster than 1.5 times the escape velocity. We define the halo radius Rh as the
radius of the smallest sphere enclosing the bound particles and the halo mass Mh as their total mass.

3.2.1 Collapse time

Halo formation can be discussed either in terms of the growing mass of the most massive progenitor or
as the coherent collapse of a single perturbation with the final halo mass. The first approach is popular in
numerical studies while the second one characterises many analytical models. In this work, we follow
both methods and make use of a particular definition of halo collapse time first introduced in chapter 2
in order to establish a direct correspondence between the predictions of theoretical models and N-body
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Figure 3.1: The volume of the collapsing patch that ends up forming a dark-matter halo is plotted as a function of
time. Results are shown for two haloes with approximately the same mass Mh ∼ 4 × 1011h−1M�. Different line
styles correspond to N-body simulations with different mass and force resolution and the solid symbols indicate the
collapse time, tc, defined as in eq. (3.1). The top series of curves refers to Amun, a halo whose outer shells are still
contracting at the present time and that represents the prototypical ‘accreting’ halo. On the other hand, the bottom
set shows results for Supay, a representative of the class of ‘stalled’ haloes. Supay turned around earlier than Amun
and reached a much lower maximum volume. Although Supay has been identified at the present time, its volume
has been stable for ∼ 70 per cent of the life of the universe. Note that the measurement of tc is very robust with
respect to the numerical resolution of the simulations.

simulations.
To begin with, we compute the (time-dependent) physical volume of the collapsing patch out of

which a halo forms. This goal is achieved implementing the following procedure (for further details see
chapter 2): (i) a halo is identified at some epoch (we use the present time, t0); (ii) the halo particles are
tagged and their inertia tensor is evaluated for every snapshot of the simulation (with respect to their
centre of mass); (iii) an ellipsoid with principal axes oriented as the eigenvectors of the inertia tensor
and shape determined by the ratios of the square roots of the eigenvalues is located at the centre of mass
of the particle set; (iv) the ellipsoid is rigidly rescaled until it encloses the final mass of the halo. The
volume of the ellipsoid defines the volume of the collapsing patch, V(t).

In fig. 3.1 we show results obtained for two haloes with approximately the same mass named Amun
and Supay (various line styles correspond to simulations with different mass resolutions). Qualitatively
the time evolution of V conforms to the predictions of the spherical-collapse model. The volume first
increases in a decelerated fashion due to the combined action of cosmic expansion and self gravity. At a
certain point the perturbation turns around and from this moment onwards V decreases until ‘virialization’
is achieved (meaning that V stabilizes around a constant value). However, in spite of these similarities,
the patches that give origin to Amun and Supay show very different evolutionary paths. Supay turns
around earlier (when its mean physical density is comparable with the present-day one) and virializes
shortly after turnaround. On the other hand, Amun has a much lower density at turn around2 and has not
yet reached a stable configuration by the present time. Note, that the final volume is determined by the
fixed density threshold with which haloes have been defined.

2 For both Amun and Supay, the ratio between the maximum of V(t) and V(t0) is much lower than the factor of eight one
would expect based on the spherical collapse model and simple descriptions of the virialisation process (similar findings have
been presented by Diemand, Kuhlen and Madau, 2007).
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Figure 3.2: Probability distribution of collapse times for haloes with 2.0 < Mh/(1011h−1M�) < 20.0 extracted from
the U512 simulation. The spike in the rightmost bin (painted red) represents the total contribution of haloes with
tc & t0. The vertical arrows indicate the collapse time of the haloes selected for re-simulation.
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Figure 3.3: Bottom: datapoints show the two-point correlation function of haloes with mass 2.0 <
Mh/(1011h−1M�) < 20.0 and that populate the lower (red) and upper (blue) 20 per cent tails of the collapse-
time distribution. For comparison, the correlation function of all haloes in the mass bin is shown in black. All data
come from the U512 simulation. Error bars are obtained bootstrapping the halo positions. Top: Halo assembly bias
defined as the square root of the ratio between the two-point correlations of a sub-population and of the full sample.

It is tempting to classify haloes based on these marked differences. We thus define the collapse time of
a halo, tc, as the moment in which V(t) becomes stable. In order to account for the late-time oscillations
of V(t), we determine tc as the earliest epoch for which∫ tmax

tc
[V(t) − V(tc)] dt = 0 , (3.1)

with tmax = t0 (i.e. the final time of our simulations although, in principle, it would make sense to take the
limit tmax → +∞). Solving this equation, for Supay we find that tc ' 0.31 t0 (or, equivalently, ac ' 0.4 in
terms of the cosmic expansion factor normalized to unity at the present time). For haloes like Amun that
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have not yet collapsed, instead, we can only provide a lower limit tc > t0 [although a precise value for tc
could be determined by running the simulations into the future this would not influence our results].

Figure 3.2 shows the probability distribution of tc for haloes of mass 2.0 < Mh/(1011h−1M�) < 20.0
in the U512 simulation. The median value is 0.54 t0 and the scatter around it is quite large. The
distribution is skewed towards large values of tc. The earliest-forming object collapsed at tc = 0.11 t0
while approximately 9 per cent of the haloes have not collapsed by the present time.

Halo assembly bias can be clearly detected after partitioning objects of a given mass in different classes
based on tc. The red and blue lines in fig. 3.3 show the two-point correlation functions of the haloes with
the 20 per cent earliest (tc < 0.33 t0) and latest (tc > 0.85 t0) collapse times, respectively. For comparison,
the black line indicates the autocorrelation function of all haloes in the same mass range. The size of
the bias is comparable with (if not larger than) that obtained after separating the haloes based on the
half-mass formation time, t50 (see e.g. Gao, Springel and S. D. White, 2005) although tc correlates poorly
with t50 (see also sections 3.2.2 and 3.3.1).

3.2.2 The Dark-ZOMG simulation suite

We employ high-resolution zoom simulations to pin down the physical mechanism leading to the different
collapse histories presented in fig. 3.1. At the level of single objects, the zoom technique provides several
advantages over standard cosmological simulations in which galaxy-sized haloes are typically resolved
with only a few thousand computational elements. Zooming allows a much closer look at the geometry
of matter accretion and provides a detailed picture of the phase-space structure. In particular, we use
this information to make a connection between the halo environment and its internal structure. On the
other hand, the heavier computational requirements of zoom simulations limit our analysis to a small
number of representative cases. The concept is to provide clear templates and extract regularities from
them that serve as a model to explain what happens in general. Our investigation is thus complementary
to statistical studies analysing thousands of low-resolution haloes. In particular, we build upon Hahn,
Porciani, Dekel et al. (2009) and chapter 2.

Target haloes for re-simulation are selected from the U512 run based on Mh, tc, and applying an
isolation criterion. We consider haloes with mass Mh ' a few × 1011h−1M� (i.e. the hosts of present-day
L∗ galaxies, Moster, Naab and S. D. White, 2013; Behroozi, Wechsler and Conroy, 2013) that are not
closely surrounded by more massive neighbours (i.e. no particles belonging to a more massive halo
must be found within three Rh from the halo centre). The latter condition is necessary to limit the size
of the high-resolution region and thus the computational costs while fully benefiting from the zoom-in
method. Admittedly, introducing the seclusion criterion might bias our sample. However, there are good
reasons why the bias should be very small. In the parent run, only 4.8 per cent of the haloes with the
selected mass violate our isolation criterion. Moreover, it has been shown that close encounters and
fly-bys cannot generate the assembly bias (H. Y. Wang, Mo and Jing, 2007; Hahn, Porciani, Dekel et al.,
2009; J. Wang et al., 2011). Therefore, we are confident that our sample is adequate for this study and
mostly representative of the halo population.

Among the haloes that satisfy the selection criteria, we randomly pick five objects that collapsed
very early on (at ac ≤ 0.4) and two that have not collapsed by today. This set forms the Dark-ZOMG
simulation suite (D-ZOMG). To facilitate distinguishing between the different haloes, we name each
of them after an ancient god (and also associate them with individual colours in figures, see table 3.1).
We use names starting with the letter A (standing for ‘accreting’) for the haloes with tc & t0 and with
the letter S (standing for ‘stalled’) for the remaining ones. Although the meaning of our labels can be
intuited from fig. 3.1, it will become clearer in section 3.3.1.

For each halo, we use the music code (Hahn and Abel, 2011) to generate zoom initial conditions in
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Table 3.1: Properties of the haloes in the D-ZOMG simulation suite (Z4096). The columns give the halo name and
the colour we associate with it in all plots, the z = 0 mass (Mh) and radius (Rh), the splashback radius (Rspl), the
minimal Hill radius RH, the concentration (cNFW) of the radial mass-density profile fitted with the Navarro-Frenk-
White (NFW) formula (Navarro, Frenk and S. D. White, 1997), the major to minor axis ratio (d1/d3) derived from
the inertia tensor of the halo particles in the initial conditions and at the present time as well as the angle between
the shortest principal axes at these two epochs (θ33), the cosmic expansion factor at formation time defined in terms
of the first appearance of a progenitor with 30 and 50 per cent of the final halo mass (a30 and a50), the expansion
factor at collapse time (ac) defined as in section 3.2.1, and, finally, the spin parameter (S) (as defined by Peebles,
1969).

Halo Mh Rh Rspl RH cNFW d1/d3 d1/d3 cos(θ33) a30 a50 ac S

1011h−1M� h−1kpc h−1kpc h−1kpc z = 99 z = 0 10−2

Abu 4.5 156 261 1528 8.0 1.39 1.23 0.71 0.44 0.46 0.97 2.4
Amun 4.3 153 304 1697 9.3 1.58 1.56 0.90 0.50 0.51 1.00 3.4
Seth 7.4 184 228 1478 6.0 3.45 1.10 0.70 0.32 0.49 0.39 3.7
Supay 4.7 158 337 922 8.7 3.01 1.30 0.07 0.32 0.45 0.40 1.8
Sobek 4.3 153 201 653 10.7 2.40 1.10 0.07 0.34 0.38 0.38 2.1
Sedna 4.2 152 306 854 11.2 2.36 1.36 0.17 0.27 0.50 0.40 1.6
Siris 2.6 129 195 724 15.4 1.79 1.16 0.35 0.25 0.45 0.33 0.7

which the mass resolution varies within the simulation box. The high-resolution region coincides with
the Lagrangian convex hull of the particles that in the parent simulation are found within 3Rh from the
halo centre of mass at z = 0. Within this patch, matter is sampled with a large number of elements and,
during the evolution, gravitational forces are computed at high resolution. Outside this volume, we place
a number of buffer regions in which the simulation particles become progressively more massive (and
forces less accurate) with increasing distance from the high-resolution region. This method allows us
to simulate the haloes and their immediate surroundings at high resolution while keeping into account
the tidal influence of the large-scale structure in a reasonable computational time. In the D-ZOMG
simulations, the coarsest mass resolution in the box corresponds to that of a uniform grid sampled with
1283 particles while we simulate each halo twice at different maximum resolutions. In our production
runs (Z4096), the dark-matter particles in the high-resolution region have a mass of 1.6 × 105 h−1M�
corresponding to a uniform grid with 40963 elements. In order to test the robustness of our results
with respect to numerical errors, we repeat the simulations using a particle mass of 1.3 × 106 h−1M�
corresponding to a 20483 grid (Z2048). The Plummer equivalent softening lengths adopted in the
high-resolution region are 0.24 and 0.49 h−1kpc for Z4096 and Z2048, respectively.

During each run, we save eight snapshots between z = 90 and z = 30 uniformly sampled in redshift,
and twelve between z = 30 and z = 9. Subsequently, we save an output every 20 Myr, for a total of 682
snapshots. We identify haloes in all snapshots (using the method previously described) and find their
main progenitor by maximizing the merit function N2

i∩ j/(NiN j) where Ni and N j denote the number of
particles in the descendant halo and in the candidate progenitor halo (defined at the previous snapshot
with respect to the descendant), respectively, and Ni∩ j is the number of particles they have in common
(Knollmann and Knebe, 2009). Iterating this procedure, we build mass-accretion histories moving along
the so-called ‘main branch’ of the halo merger tree (e.g. Y. Li, Mo and Gao, 2008). We tag the earliest
time at which a main-branch progenitor with a mass of Mh/2 appears as t50 and we refer to this quantity
as the half-mass formation time (C. Lacey and Cole, 1993). Similarly, we use the symbol t30 to indicate
the time at which a progenitor with 30 per cent of the final mass first comes into existence.
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Figure 3.4: Matter distribution in the D-ZOMG haloes. N-body particles are coloured based on the local mass
density computed with a standard smoothed-particle-hydrodynamic kernel including 64 neighbours. Each panel
refers to a cube with side length of 540 h−1 kpc projected along one of the axes and centred on a resimulated halo.
The solid circle shows Rh while the dashed one indicates Rspl.

A particular, parameter-free, halo definition has been recently discussed in the literature (Diemer and
Kravtsov 2014; Adhikari, Dalal and Chamberlain 2014; More, Diemer and Kravtsov 2015). In this case,
the halo boundary is defined in terms of the so-called ‘splashback’ radius, Rspl, which corresponds to
a sudden steepening of the radial mass-density profile and is attributed to a caustic (intended as the
accumulation of particle trajectories) located near the first apocenter of recently accreted matter. We
determine the splashback radius for our re-simulated haloes (at all time steps) by measuring the density
profile in spherical shells around the halo centre and locating the global minimum of its slope. Since
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substructures introduce spikes in the profile, we preventively exclude their particles from the calculation.
[Substructures are associated with local density peaks within haloes and their edge coincides with the
radius of the smallest sphere enclosing all their gravitationally bound particles.] The mass enclosed
within the splashback radius is denoted by Mspl and we track its growth along the main branch of the
merger tree.

Before moving further with our study, it is imperative to test that our definition of tc is robust with
respect to numerical resolution. Figure 3.1 shows that the U256, U512, Z2048 and Z4096 simulations give
perfectly consistent values for the collapse times of Amun and Supay. The same conclusion applies to the
other re-simulated haloes (not shown in the figure). The only discrepancy which is worth mentioning is
found for Abu. In this case, we measure ac > 1 in the U256 and U512 (fig. 3.2) runs as well as ac = 0.96
and 0.97 in Z2048 and Z4096, respectively (table 3.1). The difference is caused by a merger with a
sizeable mass ratio that takes place at a ∼ 0.9. The outward motion of the recently accreted subhalo
after the first pericenter passage causes a small upturn in the V(t) plot (we remind the reader that all our
ellipsoids are drawn around the centre of mass) which basically determines the collapse time. In fact,
the integral in eq. (3.1) is sensitive to fluctuations in V(t) when tc ' tmax while it is very robust when
tc � tmax so that the interval of integration is larger. The net effect is that small temporary increases in
V(t) at late times can artificially give values of tc which are very close to tmax in high-resolution runs.
This issue is irrelevant if one wants to distinguish early and late collapsing haloes and can be easily
solved by using a larger value for tmax (i.e. by running the simulations longer). Inspection of the mass
shells immediately surrounding Abu reveals that they are coherently infalling at z = 0 as expected for
an accreting halo. It follows from this test that large-volume cosmological simulations with uniform
sampling of the initial conditions are well suited for measuring tc and performing statistical studies based
on this quantity.

3.3 Results

A synopsis of the D-ZOMG haloes is given in fig. 3.4 and table 3.1 where we report several halo properties
measured from the Z4096 simulations. A prominent feature can be noticed at first glance: stalled haloes
originate from much more aspherical patches in the initial conditions than the accreting ones (while the
final shape of the haloes does not seem to be different between the two classes). In the remainder of this
chapter we will investigate the origin of this characteristic pattern and delve into the physical processes
that generate it.

3.3.1 Collapse time and halo growth

At this point, it is interesting to compare our definition of collapse time with other related quantities that
are commonly used in the literature to define halo ages. From table 3.1 we note that, while accreting and
stalled haloes neatly separate based on tc, they are not so clearly distinct using the half-mass formation
time. As a matter of fact, many of our re-simulated haloes have very similar formation times. On the
other hand, using t30 gives results more in line with those obtained with tc. This suggests that tc contains
information on the early phases of halo formation.

The mass-accretion histories of our re-simulated haloes are shown in fig. 3.5. Abu and Amun experience
a major merger at a ∼ 0.4-0.5, steadily grow in mass afterwards and undergo a minor merger at late
times. In parallel, the stalled haloes assemble a significant fraction of their mass early on through major
mergers and subsequently show a positive net mass-increment rate. From this perspective, it appears
that the difference between stalled and accreting haloes is just the timing at which an adequately sized
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Figure 3.5: Mass accretion histories of the resimulated haloes in the highest resolution simulation. The grey shaded
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Figure 3.6: The mass enclosed within the splashback radius is plotted as a function of the cosmic expansion
factor. Haloes are followed along the main branch of their merger tree. To reduce noise, the curves have been
obtained averaging over our accreting (dashed red) and stalled (solid blue) haloes. The time evolution has also been
coarse-grained with a resolution of 200 Myr. Stalled haloes assemble most of their final mass early on compared to
accreting haloes which, on the other hand, grow more rapidly at the present time.

progenitor is assembled. No other evident dissimilarity emerges from fig. 3.5. We are going to show that
this mental picture is simplistic and does not capture a number of fundamental features that distinguish
the two classes of haloes.

The first thing to consider is that haloes are conventionally cut out of their environment adopting a
somewhat arbitrary criterion that defines their outer boundary. Following a standard practice, we use a
density threshold which decreases with time. As a consequence of this choice, the halo mass is subject
to pseudo-evolution, meaning that the very same immutable object would be assigned different masses
at different epochs just because its conventional boundary moves outwards (see e.g. Diemer, More and
Kravtsov, 2013; Zemp, 2014). The grey band in fig. 3.5 highlights the pseudo-evolution of a stationary
NFW density profile and its thickness reflects the range of concentrations covered by our stalled haloes
(6 < cNFW < 16). For a > 0.6, the mass-accretion histories of Sedna, Sobek and Supay closely match
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Figure 3.7: The red curves reproduce the volume evolution shown in Fig. 1 for Amun (left-hand panel) and Supay
(right-hand panel). The same analysis is repeated considering different volumes (blue curves) that enclose a mass
ranging from 0.1Mh to 10Mh in logarithmic steps. To improve readability and place equal emphasis on all shells, a
logarithmic scale is used for V . Note that the outer mass shells are infalling onto Amun and receding from Supay.

the pseudo-evolution of a stationary NFW profile while this is not true for the accreting haloes. In fact,
Abu and Amun grow faster than that mainly because they both undergo a merger with approximately 1:6
mass ratio. Finally, Seth and Siris show an intermediate behaviour as they also experience a merging
event at a ∼ 0.77 (with a substantially smaller mass ratio) and follow pseudo-evolution afterwards.

In fig. 3.6 we show the evolution of Mspl which is not affected by changes in the critical density
of the universe. Since measurements of Mspl are quite noisy for individual haloes, we report results
averaged over our re-simulated objects and smoothed over ten snapshots. These curves are well fit by
an exponential function of redshift (Wechsler, Bullock et al., 2002) only for z < 1. At earlier times the
evolution is much more rapid than the simple analytical approximation. Two things are worth noticing
here. (i) The haloes with low tc assemble any given fraction of their final mass earlier with respect to the
others. (ii) These haloes do not grow much at late times: on average, Mspl only increases by 17 per cent
since a = 0.6. On the other hand, the haloes with high tc increase their mass by 34 per cent during the
same period. All this points to tc as a discriminator between haloes that assemble at early times and then
undergo little changes and those that gathered most of their mass later on and are still growing at the
present time.

3.3.2 Collapse time and accretion dynamics

Although parameter free, our definition of collapse time is sensitive to the halo definition. In fact, the
halo finder identifies the particle set and thus the Lagrangian patch whose volume evolution determines tc.
Let us imagine for a moment that our halo definition just picks the innermost virialized core of the halo
and excludes more recently accreted shells [haloes are known to form from the inside out (Salvador-Solé,
Solanes and Manrique 1998; Wechsler, Bullock et al. 2002; Zhao et al. 2003; J. Wang et al. 2011)]. In this
case, we would severely underestimate the collapse time for the more extended halo. To investigate the
stability of tc with respect to the operational halo definition, we repeat the study of the volume evolution
for many shells that enclose from ten per cent up to ten times the final halo mass (in logarithmic steps).
Our results for Amun and Supay are plotted in fig. 3.7 [we find consistent results also for all the other
re-simulated haloes]. It is straightforward to note that the innermost core of Amun reaches a stable

57



Chapter 3 How the cosmic web inhibits halo growth and generates assembly bias

configuration at approximately t = t0/2 while all the outer shells are still contracting towards the halo
centre at the present time (hence the appellative ‘accreting’). This conforms to the common idea that
haloes constantly grow in mass due to the infall of outer shells (e.g. Press and Schechter, 1974; Bond,
Cole et al., 1991). In this case, it would make sense to define the boundary of the halo as the location of
the outermost shell that stabilized by z = 0. For Amun, this criterion gives a mass of ∼ 0.5 Mh. Switching
our attention to Supay, we immediately note that there are no infalling shells at the present time. The
material surrounding what we conventionally call the halo is actually receding from its centre. Even some
of the internal shells show the same feature. The net outward motion kicks in at t > 0.8 t0 following a
long period in which the shells have been loitering at nearly constant volume. Based on this information
it is unclear how to draw a physically motivated boundary for Supay. Anyway, our analysis suggests
that Supay, as a physical object, should not be able to grow in mass at late times (hence the appellative
‘stalled’).

Haloes are objects with a complex dynamics and continuously interact with their surroundings. To
capture the details that might have been lost in the study of the different mass shells, in the top-panels of
fig. 3.8 we investigate the radial phase-space distribution of matter at z = 0 within and around Amun
and Supay [consistent results are found for all the other re-simulated haloes]. Colour coding reflects
the phase-space density while the vertical lines indicate Rh (dashed) and Rspl (dot-dashed). The halo
cores are characterized by a large velocity dispersion reflecting the depth of the gravitational-potential
well. Substructures and external haloes can also be easily identified as patches with high density and
increased velocity dispersion. Infalling material (vr < 0) moves faster and faster while approaching the
halo core and, after reaching the pericenter, suddenly reverses its motion (vr > 0). Particles that are
bound to the halo describe particular trajectories in the radial phase-space diagram. The needle-shaped
configurations with positive radial velocity correspond to the remnants of substructures after their first
pericenter passage. Note that these streams of matter stretch far beyond Rspl which has been computed
in terms of a spherically averaged mass-density profile. Defining the halo boundary in terms of the
apocenter of the material ‘ejected’ with high speed would thus require tracing the positions of the caustics
in three dimensions. The thick white curve in fig. 3.8 shows the mean radial velocity as a function of
the distance, r, from the halo centre. Amun shows a net radial inflow of matter over a large range of
r. This flow is rather cold and coherent. Basically the phase-space diagram can be decomposed into
three elements: the halo, an accretion flow and the outward streams (although it is not obvious how
to separate them). The corresponding diagram for Supay shows striking differences. For instance, the
outward streams are much less pronounced than in Amun. Moreover, for Supay there is no net inflow of
matter: the mean radial velocity is zero in the innermost regions and positive in the outer regions. This
does not mean that no material is infalling, rather that the mass outflow through any spherical surface
exactly matches the inflow up to distances of several times Rh (consistent with Prada et al., 2006). All
this suggests that some sort of dynamical equilibrium is established between the halo and the surrounding
environment which is characterized by a rather large velocity dispersion.

The bottom panels of fig. 3.8 show the mass-density profile of the two haloes at z = 0 and of their
progenitors at z = 1.5 (which corresponds to the collapse time of Supay). The matter distribution in
Amun has evolved a lot between these two epochs. Only the very central and dense core appears not to
have changed while the outskirts have developed later. On the contrary, Supay shows exactly the same
profile at z = 1.5 and at z = 0 within the innermost 250 h−1 kpc (' 1.6 Rh) while the evolution in the
outer regions just reflects the drop in the mean density of the universe.

We have now collected sufficient factual evidence to support the claim that there exists a large
population of dark-matter haloes that: (i) are in place since early times with essentially unchanged
structure; (ii) do not grow in mass although they experience some matter infall which is however balanced
by outflows. These stalled haloes form the bulk of galaxy-sized haloes at the present time (fig. 3.2).
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Figure 3.8: Top: radial phase-space diagram for Amun (left-hand panel) and Supay (right-hand panel) at z = 0.
The colour coding indicates the matter density in phase space while the white curve shows the mean velocity as a
function of the distance from the halo centre. The vertical lines refer to the halo radius (dashed) and the splashback
radius (dot-dashed). Bottom: the radial mass density profiles of the haloes at z = 0 (red) and 1.5 (blue). The dotted
horizontal lines indicate the mean matter density of the universe at the corresponding epochs.

Our findings challenge the common wisdom about halo formation according to which the halo mass
constantly grows with time due to infalling material. Only a small minority of the haloes shows this
behaviour on galaxy scales. Conversely, the vast majority of cluster-sized haloes are of the accreting type
(chapter 2). What remains to be identified is the physical process that prevents accretion to the stalled
haloes. This is the subject of the following section.

3.3.3 The impact of the cosmic web on halo growth

We want to study how accreting and stalled haloes are assembled and connect this process with the
properties of their Lagrangian patches and final environments. To achieve this goal, we use Amun and
Supay as templates representing the two classes of haloes [the other haloes behave identically]. The cyan
area in the left-hand panels of fig. 3.9 marks the distribution of the halo particles in the initial conditions
that from now on we call the ‘protohalo’. We use physical coordinates and project the particle positions
onto the image plane. The Cartesian axes of the plot are aligned with the longest and the shortest principal
axes of inertia of the halo particles and the blue ellipse shows the projection of the inertia ellipsoid. The
greyscale in the background highlights the nested mass resolution levels of the re-simulations and is
not relevant to our analysis. It is worth noticing, however, that the central light-grey area indicates the
high-resolution region of the re-simulations which corresponds to the Lagrangian patch occupied by the
particles that are found within 3Rh from the halo centre at z = 0. For Supay, this volume is very well
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Figure 3.9: Particle positions and orbits for Amun (top) and Supay (middle and bottom). The left-hand panels
show the halo particles in the initial conditions (cyan points). The x and y axes are oriented parallel to the longest
and the shortest principal axes of inertia of the halo particles at z = 99, respectively. The blue ellipse shows the
projection of the inertia ellipsoid on this plane. The underlying grey scale reveals the multi-mass sampling of the
initial conditions. The central light grey area denotes the high-resolution region. We select particles within a thin
cylinder and colour them according to their distance from the centre of mass of the protohalo. The projection of the
cylinder onto the plane of the figure produces the central coloured rectangle. The middle panels show the particle
distribution at z = 0 using the same orientation of the axes as in the left-hand panels (the size of the represented
region is different though). All the particles within ±100 h−1 kpc from the plane of the page are rendered using
grey circles with size proportional to the particle mass and fixed transparency. Note that the middle and bottom row
only differ by the orientation of the thin cylinder used to define the coloured particles. The white circumference
indicates the conventional halo boundary, Rh. The final positions of the particles that initially lie within the cylinder
shown in the left-hand panel are highlighted using the colour coding introduced above. The right-hand panels show
how the distance to the halo centre of 21 particles selected within the cylinder evolves with time (coloured curves).
Also indicated is the evolution of the halo radius (thicker black curve). The halo position and size are computed
considering the main progenitor at every snapshot.
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Figure 3.10: As in the middle panels of fig. 3.9 but colouring the simulation particles according to their radial
velocity with respect to the halo center. Note that separate logarithmic scales are used for infalling and receding
matter connected with a linear scale in the range from −3 to +3 km s−1. The solid and dashed circles indicate the
halo and the splashback radius, respectively.

aligned with the cyan patch while a substantial misalignment is noticeable for Amun. This fact suggests
that concentric Lagrangian shells follow a more consistent dynamics in Supay than in Amun.

In the central panels of fig. 3.9, we plot the particle distribution at z = 0. The orientation of the
axes is the same as in the left-hand panels but the comoving area shown here is a bit smaller. The
white circumference indicates Rh and all the non-halo particles within ±100 h−1 kpc in the direction
perpendicular to the page have been rendered using grey circles with size proportional to the particle mass
and fixed transparency. These plots show that Amun forms a node in the cosmic web and is connected to
a series of thin filaments. Some of these are more prominent than others but there is clearly no dominant
structure surrounding the halo. On the contrary, Supay is embedded in a very pronounced filament which
is much thicker than Rh. Note that the filament is perfectly aligned with the shortest principal axis of the
protohalo and perpendicular to the longest one. The entire high-resolution region has been compressed
into the filament. Similar visual examples of the connection between halo assembly and the cosmic
web have been published by Hahn, Porciani, Dekel et al. (2009, see their fig. 2). Their statistical study
based on large cosmological simulations shows that the halo mass-assembly rate correlates most strongly
with the largest eigenvalue of the rate-of-strain tensor (a measure of velocity shear) which reflects the
integrated effect of gravitational tides over time. What is still missing, however, is a detailed study of a
few examples that help establishing physical links between these correlated variables: how does matter
accretion respond to the more or less sheared dark-matter flows surrounding haloes? We address this
issue below by analysing our zoom simulations.

To study how matter accretes to the haloes, we hand-pick a set of particles based on their Lagrangian
coordinates and follow their trajectories. In particular, we consider the material that is initially contained
within a right circular cylinder symmetrically located around the protohalo centre of mass. The radius
of the cylinder is small compared to its height which is comparable with the size of the protohalo. In
fig. 3.9 we highlight the material in the cylinder with colours indicating its distance from the protohalo
centre (left-hand panels) and also show its final Eulerian position at z = 0 (middle panels). We finally
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select 21 individual particles initially located within the cylinder (and equally spaced in
√

r to put more
emphasis on the halo boundary) and plot the time evolution of their distance to the centre of the halo
main progenitor using the same colour coding (right-hand panels). As a reference, we also show Rh as
a function of time as black line. For Amun (top row), we orient the cylinder with a slight tilt (15 deg
inclination) with respect to the shortest principal axis of inertia of the protohalo. Of course, the particles
that initially are found close to the centre of the cylinder end up forming the halo. Those that originally
are in the outskirts, instead, still form a continuous sequence at z = 0 which is aligned with the short
principal axis of inertia of the protohalo. This implies that the particles follow nearly radial orbits with
respect to the halo centre. The top right-hand panel of fig. 3.9 shows that the most distant particles are
approaching or have just experienced turn around at the present time. They will then accrete to the halo
in the future. In the left-hand panel of fig. 3.10, we colour the simulation particles at z = 0 according to
their radial velocity: blue tones indicate infall while red ones correspond to outflows. The thin white
cloud marks the locus of the particles that are turning around. Matter flows towards Amun along a few
preferential directions which are isotropically distributed around the halo. To first approximation, the
collapsing patch can be described as an ellipsoid (as in many theoretical models for halo collapse, see
section 3.3.5) although the distance of the particles that are turning around is always substantially larger
that 2Rh (which is what is generally assumed).

We now repeat the analysis for Supay (middle row of fig. 3.9), once again considering a cylinder
which is slightly tilted with respect to the short principal axis of inertia of the protohalo. In this case, this
direction also coincides with the orientation of the thick filament embedding the halo at z = 0. All the
particles that are nor part of the halo form a thin plumeof matter lying at the centre of the filament at
the present time. Most of them, however, are found at very large distances from the halo (i.e. outside
the range of ±1.5 h−1 Mpc shown in the figure). This is a consequence of the fact that the velocity field
in the filament has a very strong shear and matter recedes from the halo as clearly demonstrated in the
right-hand panel of fig. 3.10. Further evidence is provided by the radial trajectories of the particles that
show a clear separation between those that are orbiting within Supay and those that are receding from it
(middle-right panel in fig. 3.9). We conclude that matter cannot accrete to the halo along the filament.

Since the protohalo of Supay is very asymmetric and elongated, it is interesting to replicate our analysis
using a different set of particles. We thus consider a narrow cylinder which is slightly tilted with respect
to the first principal axis of inertia of the protohalo and perpendicular to the final filament (bottom panels
in fig. 3.9). At z = 0 this material is stretched into a thin strip of matter that runs along the filament.
Particles that initially were lying on the left-hand side of the protohalo are now found on the right-hand
side of the filament and vice versa. This phenomenon reveals that the material originally contained in the
cylinder underwent orbit crossing during the formation on the thick filament which is a fully non-linear
structure. Examining the radial trajectories of the particles we notice that also in this case there is a clear
gap in the final position between the particles bound to the halo and those dispersed along the filament.
Material that immediately surrounds the protohalo in the initial conditions is now receding from the halo
(sometimes after having experienced turn around followed by an episode of positive acceleration). We
also note that some particles found initially at the boundary of the protohalo, nowadays follow orbits that
loiter at approximately fixed distance from the halo centre with a dominant velocity component in the
tangential direction. They form the outermost shell of matter that can accrete to the halo.

Hahn, Porciani, Dekel et al. (2009) have shown that the velocity shear of the dark-matter flow
surrounding a halo correlates with the tides due to the dominant neighbour halo. These authors used the
restricted three-body problem to quantify the tidal influence of larger haloes. Consider two bodies of
mass M (the primary mass) and m � M (the secondary mass) orbiting each other at distance d. The
gravitational region of influence of the secondary mass is approximately bounded by the Hill radius,
RH ' d [m/(3M)]1/3, i.e. the maximum distance at which a test particle can stably orbit the secondary
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without being pulled away by the primary (this is a proxy for the size of the complex Roche lobes). To
extend the applicability of this concept in the presence of multiple neighbours, Hahn, Porciani, Dekel
et al. (2009) considered a given halo as the secondary body and determined the corresponding minimal
Hill radius by varying the primary among all more massive objects. They found that the mass flux into
the minimal Hill sphere is reduced for the least accreting halos which provides a hint towards tidally
suppressed mass growth. Repeating this analysis, we find that the minimal Hill radii of the stalled haloes
are substantially smaller than for the accreting ones (see table 3.1) which is not surprising as they cluster
much stronger. In all cases, however, the minimal Hill radius is much larger than Rh and Rsp showing that
the tidally dominant neighbour is not directly responsible for the stalled accretion (nor it causes any mass
loss). Hahn, Porciani, Dekel et al. (2009) envisaged that stalled haloes can accrete material lying within
their minimal Hill radii as long as it does not move with too large relative velocities. In the right-hand
panel of fig. 3.10, we plot the radial-velocity map for the matter surrounding Supay at z = 0. Infall takes
place within a donut shaped region that extends till the turnaround radius (which is comparable with
RH) while strong and coherent outflows are present within the filamentary structure that hosts Supay. In
this case, the tidally dominant halo has a mass of 5.41 × 1012 h−1 M� and lies at a distance of 3.01 h−1

Mpc from Supay mostly in the direction of the filament. This halo is actually receding from Supay: both
objects are flowing towards a very large mass concentration located at one extreme of the filament but
Supay, which is more distant from it, moves more slowly. The second and third most dominant haloes are
two much more distant cluster-sized objects (Mh ' 1014 h−1 M�, d ' 15 h−1 Mpc) which lie in opposite
directions with respect to Supay and, substantially, define the filament. In general, our high-resolution
simulations reveal that reasoning in terms of the minimal Hill sphere provides a poor description of the
dark-matter flow around stalled haloes mainly because of the strong geometrical asymmetry due to the
presence of elongated large-scale structures.

3.3.4 The impact of the cosmic web on halo structure

We now focus on the material that forms the haloes at the present time and explore differences in the
internal structure of accreting and stalled haloes.
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Figure 3.11: Indicators of the dynamical state of the resimulated haloes at z = 0: the virial ratio (2Ekin,h +Us)/|Epot,h|

(see the main text for details), the offset between the centre of mass and the location of the potential minimum
in units of Rh, coff , and the mass fraction in resolved substructures, fsub. The unshaded area indicates the region
of parameter space occupied by dynamically relaxed halos ((2Ekin,h + Us)/|Epot,h| < 1.35, coff < 0.07, fsub < 0.1)
according to the study by Neto et al. (2007) which is based on large cosmological simulations with a lower mass
resolution than ours and thus provides smaller values for fsub. Overall, stalled haloes appear to be more relaxed (i.e.
closer to dynamical equilibrium) with respect to the accreting ones.
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Chapter 3 How the cosmic web inhibits halo growth and generates assembly bias

We first consider halo shapes both at the initial and final times. As evidenced in table 3.1, fig. 3.9,
and briefly described at the beginning of section 3.3, the Lagrangian patches of stalled haloes show a
characteristic elongated shape in which the shortest principal axis of inertia aligns with the filament (see
also Porciani, Dekel and Hoffman 2002; LBP14). This phenomenon reflects the fact that halo growth is
inhibited along the filament by a strong velocity shear while material can more easily flow in along the
perpendicular directions (this is the way the filament itself is formed, actually). As already mentioned, at
z = 0, no obvious difference can be noticed in the halo shapes between stalled and accreting haloes (see
table 3.1). However, the minor axis of stalled haloes retains a ‘memory’ of the halo-assembly process
and is preferentially oriented in the perpendicular direction to the filament. The mass-density profiles of
the resimulated haloes at z = 0 are well approximated by the NFW formula. With the exception of Seth,
stalled haloes tend to be slightly more concentrated.

Three quantities are often used to infer whether a halo is dynamically relaxed or not: the offset between
the centre of mass and the minimum of the gravitational potential measured in units of the halo radius,
coff , the fraction of mass in resolved substructures, fsub, and the virial ratio, (2Ekin,h + Us)/|Epot,h|. [Here
Ekin,h and Epot,h denote the kinetic and the potential energy of the halo, respectively, while Us is the
correction due to the surface pressure of the particles crossing the halo boundary.] In fig. 3.11, we
contrast the accreting haloes (squares) with the stalled ones (diamonds) in terms of these quantities.
Accreting haloes show a systematically higher virial ratio and a tendency towards having larger fsub
while no significant difference in coff is seen. Seth distinguishes itself from the other stalled haloes by
showing the largest values of the virial ratio, fsub and, in particular, coff . This is because it contains a
massive substructure (with mass ratio 1:17) that just had its first pericenter passage.

The internal dynamics of the haloes can be conveniently described in terms of the velocity anisotropy
parameter,

β = 1 −
σ2

t

2σ2
r
, (3.2)

where σr and σt = (σ2
θ + σ2

φ)1/2 denote the radial and tangential velocity dispersions, respectively.
An isotropic velocity distribution has β = 0, while β < 0 indicates a bias towards tangential motions.
Faltenbacher and S. D. White (2010) showed that classifying haloes in terms of β leads to a very strong
assembly bias. Stacking thousands of haloes from a large cosmological simulation, they also found a
systematic difference between the radial β profiles of halo subpopulations split based on some other halo
properties (e.g. shape or spin) at fixed halo mass. These unexplained results suggest that the halo velocity
structure correlates with the large-scale environment and provide us with the motivation to analyse what
happens in single objects using our zoom runs. In the left-hand panel of Figure 3.12, we report the
individual and averaged radial β profiles extracted from our re-simulations. Stalled and accreting haloes
show consistent dynamics only in their innermost cores (i.e. for r/Rh < 0.15 where β ' 0.2). Further
out, their orbital structure is very different. Within Rh, β increases with r for the accreting haloes while it
decreases and even turns negative for the stalled ones that are therefore dominated by tangential motions
in their outer regions. The origin of this phenomenon can be schematically understood as follows. To
first approximation, matter falls towards accreting haloes following radial orbits as it is assumed in the
spherical or ellipsoidal collapse models. However, this is not the case for the stalled haloes. In fact, the
presence of the host filament has a dramatic influence on the orbits of the surrounding material particles
that get deflected from the radial direction and accrete to the halo with a significant tangential-velocity
component. Due to the approximate symmetry around the filament axis, both senses of rotation are
possible for the accreting particles and stalled haloes do not spin up substantially (see table 3.1). Small
asymmetries in the accretion flow, however, could potentially generate a spin component parallel to the
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Figure 3.12: The present-day velocity anisotropy parameter β (left-hand panel) and the ratio of tangential to
total velocity variance (right-hand panel) measured in thin spherical shells at distance r from the centre of our
resimulated haloes. The thick solid and dashed lines show averages taken over all the stalled and accreting haloes,
respectively. The thin lines refer to the individual haloes (with the usual colour coding). Circular orbits play a
much more important role in the stalled haloes due to the impact of the host filament on halo assembly.

filament. For our six re-simulated stalled haloes this component is always subdominant (the mean and
standard deviation of the angle between the spin and the filament direction are 66◦ and 17◦, respectively).
The velocity anisotropy also reflects changes in the radial velocity dispersion which is slightly higher
for the accreting haloes due to the contribution of their radially infalling streams. In order to get a more
complete picture, we show the tangential contribution to the total velocity variance in the right-hand panel
of fig. 3.12. Once again the differences between stalled and accreting haloes are striking and consistent
with our previous findings. We conclude that the dynamical effects due to the gravitational attraction of
the filament are already noticeable deep inside the haloes where stalled haloes are dominated by tangential
orbits and accreting haloes by radial ones. This intimate link between the velocity anisotropy parameter
and the formation history of the haloes elucidates the results by Faltenbacher and S. D. White (2010). Our
results complement (and are consistent with) several recent studies on the complex interplay between the
cosmic-web dynamics and the spins of galaxy-sized haloes (independently of their assembly histories).
Orbit-crossing generates vortical flows within multi-stream regions (Pichon and Bernardeau, 1999;
Pueblas and Scoccimarro, 2009; Libeskind, Hoffman and Gottlöber, 2014; X. Wang et al., 2014) and the
resulting vorticity is preferentially perpendicular to the axis along which gravitational collapse proceeds
faster (Libeskind, Hoffman, Steinmetz et al., 2013; Laigle et al., 2015). In the plane perpendicular to
a filament, vorticity shows a characteristic quadrupolar pattern (Laigle et al., 2015) originated by the
winding of the matter flows (Pichon, Pogosyan et al., 2011; Codis et al., 2012). Halo spins are thus
influenced by secondary anisotropic infall of matter from the vortical filaments (Aubert, Pichon and
Colombi, 2004; Bailin and Steinmetz, 2005; Codis et al., 2012; Libeskind, Hoffman, Steinmetz et al.,
2013). As a consequence, the angular momentum of low-mass haloes (Mh < 5 × 1012 M� at z = 0) tends
to be preferentially aligned (in a statistical sense) with the cosmic-web filaments in which they reside
whereas the spin of larger objects lies in the perpendicular direction (Hahn, Porciani, Carollo et al., 2007;
Aragón-Calvo et al., 2007; Sousbie, Pichon et al., 2008; Paz, Stasyszyn and Padilla, 2008; Zhang et al.,
2009; Codis et al., 2012; Aragon-Calvo and Yang, 2014). Laigle et al. (2015) make the conjecture that
these correlations reflect the Lagrangian size of the haloes compared with the Lagrangian stretch of the
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Figure 3.13: The velocity anisotropy parameter measured in thin radial shells for our resimulated haloes at z = 0 is
plotted against the corresponding slope of the mass-density profile. Only shells contained within Rh are considered.
The solid line indicates the universal relation proposed by Hansen and Moore, 2006.

vorticity quadrants forming within the filament. Small haloes feel only one polarity and get an important
spin component along the filament. On the other hand, more extended objects overlap with quadrants
of opposite polarity and do not develop a net angular-momentum component parallel to the filament,
L‖. In order to clarify what happens in our simulations, we compute the specific L‖ per unit mass for
the particles immediately surrounding the stalled haloes (i.e. lying between Rh and Rspl). The spatial
distribution of the specific L‖ in the plane perpendicular to the filament presents a complicated pattern
(approximately quadrupolar with superimposed small-scale fluctuations), while its azimuthally averaged
probability density is broad and approximately symmetric for the two senses of rotation. The mean value
corresponds to 20-30 per cent of the mean specific angular momentum of the halo particles. The same
result is found considering only infalling material. This suggests that, in the mass range we consider,
accretion from the filament should not alter the halo spin significantly. The kinematic structure of the
filament mostly imprints a tangential velocity dispersion in the halo as a characteristic signature.

Early studies suggested that β follows a universal radial profile in relaxed haloes (e.g. Cole and C.
Lacey, 1996; Carlberg et al., 1997; Rasia, Tormen and Moscardini, 2004). More recently, Hansen
and Moore (2006) provided evidence for a universal relation between β and the slope of the radial
mass-density profile (both evaluated at the same position). Our simulations are inconsistent with such
a relation. In fact, while the density profiles of all haloes are monotonically decreasing, the β profiles
increase with r for accreting haloes and decrease with r for stalled haloes. The velocity anisotropy and
the logarithmic slope of the density profile for different radial shells (all with r < Rh) of our re-simulated
haloes are shown in fig. 3.13. The solid line highlights the fit derived by Hansen and Moore (2006).
Accreting haloes approximately follow the assumedly universal relation while stalled haloes violate it.
In both cases, better agreement with the fit is found for the innermost shells which are displayed on
the right-hand side of the figure. We deduce that the universal relation proposed by Hansen and Moore
(2006) holds true only in the halo core (r < 0.2Rh) where no difference is found between accreting and
stalled haloes. Several authors have reached similar conclusions following different approaches (e.g.
Navarro, Ludlow et al., 2010; Ludlow, Navarro et al., 2011; Lemze et al., 2012) even in the presence of a
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Figure 3.14: Map of the linear density field at z = 0 on a slice passing through the protohalo centres of Amun (left)
and Supay (right). The orientation of the axes is as in fig. 3.9. The solid white contour lines indicates the mean
density of the universe while the dashed one corresponds to the spherical-collapse threshold δL = 1.686. The blue
ellipse is the projection of the inertia ellipsoid of the protohalo as in fig. 3.9. The density contrast is smoothed with
a top-hat filter in configuration space with mass resolution Ms = Mh.

baryonic-matter component (Tissera et al., 2010). The reason why Hansen and Moore (2006) could not
notice any departure from a universal relation is that they considered a special set of simulations: single
overdensities undergoing spherical collapse, two colliding objects, and a very massive halo extracted
from a cosmological simulation. All these systems show a continuous radial infall of matter at late times
and would be tagged as accreting in our classification scheme.

3.3.5 Predicting halo masses with the excursion-set method

Analytical methods that establish a link between dark-matter haloes and the properties of their Lagrangian
patches in the linear density field are extremely useful in cosmology as they provide the tools to make
predictions for the halo mass function and clustering properties. In principle, the rarity and biasing of
density peaks in different environments of the cosmic web follows directly from the statistics of Gaussian
random fields (Doroshkevich, 1970). However, for any practical application, it is necessary to express the
results as a function of the final halo properties (rather than the initial peak height, etc.). The challenge is
to create a mapping from the initial to the final configurations in terms of a collapse model (e.g. Peebles
1980; BM96; LBP14) and deal with the multi-scale nature of the density field. The most successful
algorithm is certainly the excursion-set method (Bond, Cole et al., 1991; Zentner, 2007). In this section
we test it against our high-resolution simulations.

We extract the linear density field from the initial conditions of the parent U512 simulations and use
the linear growth factor of matter perturbations to evaluate the linear density contrast at the present time.
We convolve this field with a top-hat kernel in configuration space and obtain the smoothed linear density
contrast, δL. We vary the smoothing radius, Rs and associate it with the mass scale Ms = 4π

3 R3
sρm where

ρm denotes the mean matter density in the universe. For example, in fig. 3.14 we draw maps of δL for
Amun and Supay with resolution Mh (we use a plane passing through the protohalo center of mass with
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Figure 3.15: Volume rendered image of the linear density field presented in the right-hand panel of fig. 3.14.
Selected isodensity surfaces with δL = 1.68, 3.9 and 4.9 are drawn in green, red and white, respectively. Supay
originates from the small red peak located at the centre of the figure.

the same orientation as in fig. 3.9). To facilitate understanding, in fig. 3.15 we also present a volume
rendering of the linear density field for Supay. Both haloes originate from a density peak (although, for
Supay, this is not noticeable in fig. 3.14 as the local maximum is slightly off the plane of the image).
However, while Amun emerges from a rather isolated peak, the protohalo of Supay lies in between two
extended and very dense structures (its large-scale layout closely reminds that of a saddle point with a
superimposed small-scale peak). Only such particular configurations in the linear density field lead to the
formation of strong filaments. What is necessary is the presence of two rare high-density peaks that are
not too distant from each other and whose tidal tensors are sufficiently well aligned (Bond, Kofman and
Pogosyan, 1996). This layout evolves into two massive haloes joint by a thick filament. Consistently
with this concept, our stalled haloes always lie within 2 − 3 h−1Mpc from a more massive object and
move along the filament. The relative velocities indicate that merging might only happen in some distant
future thus confirming that stalled haloes are long lived objects.

Excursion-set trajectories are obtained by plotting δL evaluated at the Lagrangian positions of the
haloes versus Ms. In fig. 3.16, we show the trajectories for the D-ZOMG haloes and compare them with
the collapse threshold derived from the spherical collapse model (horizontal grey line). We first note
that the slopes of the excursion-set trajectories are pretty similar for accreting and stalled haloes (with
the only exception of Siris) thus indicating that their protohaloes have similar radial density profiles.
We attempt to predict the final halo masses by identifying the mass scale at which the trajectories first
up-cross the threshold level BSC = 1.686. This corresponds to requiring that the outermost mass shell
collapses at the present time according to the spherical collapse model (Peebles, 1980). Such a guess
overestimates Mh by a factor of ∼ 3 for the stalled haloes while it gives better results (offset by nearly 25
per cent) for the accreting ones. In addition, fig. 3.16 shows a tight correlation between the linear density
contrast smoothed on the halo mass scale (highlighted by a vertical grey line) and the collapse time as
already evidenced by LBP14 and in chapter 2 using large cosmological simulations. Therefore it is not
possible to accurately predict the halo masses using the same threshold for all the trajectories.

We now consider additional variables to account for the effect of tides that we quantify in terms of the
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Figure 3.16: The linear density contrast evaluated at the
centre of the D-ZOMG protohaloes is plotted as a func-
tion of the smoothing mass scale for a spherical top-hat
filter in configuration space. The vertical and horizontal
grey lines mark the mass of the haloes in the N-body
simulations and the spherical-collapse threshold, respec-
tively. Note that collapse time correlates very well with
the linear density contrast measured on the halo-mass
scale, Mh.
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Figure 3.17: As in fig. 3.16 but for the ellipticity of
the linear tidal field instead of the density contrast. The
vertical and horizontal grey lines indicate the mass of the
haloes in the N-body simulations and the value e = 0.5,
respectively. Note that the environment of stalled haloes
produces stronger tides.

linear deformation tensor, Di j = ∂i∂ jφ, where φ is the gravitational potential obtained solving ∇2φ = δL.
After computing the eigenvalues of the deformation tensor, λ1 ≥ λ2 ≥ λ3, we define the ellipticity of the
tidal field as

e =
λ1 − λ3

2δL
(3.3)

(we recall that λ1 + λ2 + λ3 = δL). This quantity measures the degree of anisotropy between the
most compressing and stretching components of the linear tidal field (or of the linear velocity shear). In
fig. 3.17, we show how e (evaluated at our protohalo centres) changes as a function of the smoothing scale.
For Ms ' Mh, stalled haloes experience significantly stronger tides than accreting ones. Information on
the formation of a filament in their surroundings is therefore already encoded in the linear density field.

The ellipsoidal model by BM96 is commonly used to describe gravitational collapse in the presence
of tides. In this case, an initially spherical patch is distorted into an ellipsoid by the action of linear
tides and collapse takes place at different times along the different principal axes. As a matter of fact,
collapse along all the three axes corresponds to an excursion-set threshold, BBM, that depends on λ1, λ2
and λ3. We apply this model to our protohaloes and we show the resulting mass-accretion histories in the
left-hand panel of fig. 3.18 (sharp variations are due to the oscillations in e seen in fig. 3.17). Predictions
for the halo mass at z = 0 are quite accurate for the accreting haloes but severely underestimate Mh for
the stalled haloes. The latter class of objects, in fact, shows very elongated protohaloes that cannot be
well approximated with spheres.

Sheth, Mo and Tormen (2001) combined the ellipsoidal collapse model with the statistics of Gaussian
random fields and derived an effective threshold for halo formation which is a function of Ms only. The
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Figure 3.18: Mass accretion histories for the D-ZOMG haloes predicted using the excursion-set method with
different collapse thresholds normalized to the individual measured halo present mass. The left-hand panel shows
results derived with the ellipsoidal collapse model by BM96. The middle panel is based on the fit by Sheth,
Mo and Tormen (2001). Finally, in the right-hand panel we combine the spherical-collapse threshold with the
additional condition e < 0.5 for a shell to collapse. The horizontal band highlights the halo mass measured in
the Z4096 simulations at z = 0 while the symbols in the right-hand panel indicate the collapse time of the haloes
estimated from the same runs. The smaller panels on the top show the logarithm of the ratio between the different
excursion-set predictions and the mass accretion histories measured in the simulations (see fig. 3.5).

underlying idea is that lower-mass objects experience stronger tides (on average) and thus need higher
initial densities to overcome the tidal forces and collapse by a given time. Once obtained a functional
form for the threshold, Sheth, Mo and Tormen (2001) arbitrarily rescaled some of its coefficients in
order to fit the halo mass function and linear bias parameters extracted from N-body simulations, the
justification being the freedom in the definition of the halo boundary. The resulting threshold, BSMT,
accurately describes the mean protohalo densities found in simulations as a function of halo mass (B. E.
Robertson et al., 2009; Elia, Ludlow and Porciani, 2012) although, contrary to expectations, the scatter
around the mean correlates with the halo collapse or formation time (LBP14, chapter 2) and does not
depend on the tidal prolateness (Hahn and Paranjape, 2014). In the middle panel of fig. 3.18, we show
the mass accretion histories deriving from the excursion-set method combined with BSMT. On average
the model predicts the correct halo masses at z = 0 but the individual estimates are not accurate. This
method tends to underestimate the mass of accreting haloes and to overestimate that of stalled haloes.
Furthermore, stalled haloes grow at a slightly faster pace in the model compared to the simulations
(top-centre panel).

N-body simulations show that protohaloes are strongly aspherical and their inertia tensors are closely
aligned with the tidal shear (Lee and Pen 2000; Porciani, Dekel and Hoffman 2002; Despali, Tormen and
Sheth 2013; LBP14). Supay provides a clear example of this phenomenon (see figs. 3.9 and 3.14). A
modified ellipsoidal collapse model that follows the evolution of ellipsoidal Lagrangian regions aligned
with the linear velocity shear has been introduced in LBP14 and further discussed in chapter 2. This
model provides a better match to simulations. Also in this case, however, the linear density required
for perturbations to collapse by the present time underestimates the values measured for protohaloes
in N-body experiments. Dropping the assumption that haloes are forming today and imposing that
their outermost shell collapsed at tc nicely reconciles model predictions and simulations and provides a
consistent picture chapter 2. This works well even when the constant threshold of the spherical collapse
model is adopted in the excursion-set calculations. The key idea is that haloes grow (in approximate
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agreement with the spherical collapse model) until the gravitational effect of surrounding structures
inhibits further growth. The problem is that one needs to estimate tc based on the linear field in order
to make the model predictive. Useful indications can be extracted from fig. 3.17: stalled haloes are
associated with values of e ∼ 0.5 for Ms ' Mh while accreting haloes present much smaller values of e.
This suggests the following condition for halo growth:

e < 0.5 ⇒ δL > λ1 − λ3 . (3.4)

This equation requires that the spherical part of the linear tidal tensor dominates over the anisotropic part.
Note that this condition is independent of λ1. In fact, substituting δL with the sum of the eigenvalues
of the deformation tensor, it can be re-written as λ2 > −2 λ3. It basically states that, in the presence
of one-dimensional dilating deformations (i.e. when λ2 > 0 and λ3 < 0), |λ3| cannot be too large for
accretion to take place. Moreover, halo growth is always inhibited if λ2 is negative (i.e. when dilation
happens along two or more principal axes). The latter case should be tested against numerical simulations
as all our stalled haloes have λ2 > 0 for Ms = Mh (as expected in the presence of a filament). It might be
possible that an additional condition on the tidal prolateness is necessary to describe the most general
configuration.

To develop an efficient algorithm that correctly identifies the halo masses given the initial conditions,
we implement eq. (3.4) within the excursion-set model as follows: (i) we build two trajectories for
each halo: δL versus Ms and e versus Ms; (ii) we look for the first up-crossing of the spherical-collapse
threshold (linearly rescaled with the growth factor for matter perturbations at each time) and label the
corresponding smoothing mass with Mup; (iii) if e < 0.5 on the scale Mup we say that the halo mass is
Mup, otherwise we keep the halo mass unchanged compared with the previous time step. [Note that if the
e trajectory crosses the value 0.5 several times, the halo will experience a series of accreting and stalled
phases.] The resulting mass-accretion histories are shown in the right-hand panel of fig. 3.18. Both the
collapse time and the final masses of the stalled haloes are nicely reproduced by this very simple scheme
(within 11 per cent for ac and 19 per cent for Mh). The ratio between the predicted and measured masses
is approximately constant over a large period of time (top-right panel). Stalled haloes, however, show a
slight decrease of the mass ratio, which can be attributed to pseudo-evolution in the simulation.

3.4 Summary & conclusions

We have investigated the origin of halo assembly bias using a suite of N-body simulations including a
cosmological box and seven zoom runs. Our analysis focuses on haloes with a mass of a few×1011h−1M�.
These are the haloes in which star formation is most efficient and that host L∗ galaxies at the present time.

Target haloes for re-simulation have been selected based on the collapse time, tc, introduced in
chapter 2. This quantity measures the time at which the physical volume occupied by the forming
haloes becomes stable and virialization can be established. Partitioning haloes of a fixed mass based
on tc generates a strong assembly bias. We sampled the tails of the distribution of tc by picking (for
re-simulation) five isolated haloes that form very early on (at redshift z > 1) and two that have not yet
collapsed by z = 0 in the parent run. This set forms the D-ZOMG simulation suite. We have checked that
our sample is mostly representative of the full halo population (less than 5 per cent of the haloes in the
parent run do not satisfy the isolation criterion).

We studied the formation process and the internal structure of the resimulated haloes as well as the
properties of the Lagrangian patches from which they originate. Our conclusions are as follows.

1. Matter steadily accretes to late-collapsing haloes which grow in mass. These ‘accreting’ haloes
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coincide with nodes of the cosmic web and are fed by the radial infall of matter along thin filaments.
Substructures and their associated tidal streams orbit the haloes following eccentric trajectories
that extend up to very large distances.

2. The radial mass-density profile of early-collapsing haloes does not evolve since tc. These ‘stalled’
haloes are embedded in prominent filaments of the large-scale structure which are thicker than the
halo radius. Matter recedes from the halo along the filament and infall is only possible from the
perpendicular directions (see the right-hand panel in fig. 3.10 for an illustrative example). Although
some matter always accretes to the halo, the inflow is balanced by outflows along the direction of
the filament so that there is no net mass growth. Stalled haloes form the bulk of the halo population
with a few×1011h−1M� at z = 0 (see fig. 3.2).

3. Halo assembly bias reflects the fact that accreting and stalled haloes populate different regions of
the cosmic web.

4. Stalled haloes are more dynamically relaxed, their radial density profiles are slightly more con-
centrated, and a smaller fraction of their mass is in substructures with respect to the accreting
haloes.

5. Excluding their core, accreting and stalled haloes are characterized by different internal motions.
The velocity anisotropy is biased towards radial orbits in accreting haloes and towards tangential
orbits in stalled haloes. This is a consequence of the different mass-accretion modes. While
matter impinges on the accreting haloes along nearly radial orbits, the gravitational influence
of the filament imparts the infalling particles a substantial tangential component for the stalled
haloes. Due to the approximate axial symmetry of the filament, little net angular momentum is
generated by this process because both senses of rotation are almost equally likely. No obvious
trend is noticeable between the collapse time and the spin parameter S in our (small) halo sample
(table 3.1). The strongest signature imprinted by the filament on the halo is an enhanced tangential
velocity dispersion. Our results reveal why classifying haloes in terms of their velocity anisotropy
produces a strong assembly bias (Faltenbacher and S. D. White, 2010).

6. The supposedly universal relation between the velocity anisotropy and the slope of the radial
mass-density profile found by Hansen and Moore (2006) holds only in the innermost parts of the
haloes. Accreting and stalled haloes show very different trends in the outer regions.

7. Accreting haloes are invariably associated with isolated density peaks in the initial conditions
and their Lagrangian patches are close to spherical. Stalled haloes, instead, form in between
two prominent peaks. The shape of their protohaloes is very elongated along the directions
perpendicular to the final filament. This is a consequence of the strong compressional deformation
that leads to the formation of the filament.

8. The excursion-set method based on the classical spherical or ellipsoidal collapse models cannot
reproduce the formation of the stalled haloes while it makes good predictions for the accreting
ones (see also chapter 2). We have presented a very simple extension of the model that accurately
predicts the collapse time and the final mass of both accreting and stalled haloes. The key concept
is that the accretion of new mass shells is inhibited whenever the asymmetric part of the tides
dominates over the spherical part.

9. It is common wisdom that new shells of matter continuously accrete to dark-matter haloes so that
they grow in mass. For this reason, in the calculation of the mass function (Press and Schechter,
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1974) or in the excursion-set model, one requires that the Lagrangian patches collapse at the same
redshift at which haloes are identified, zid (although some more general formulations that release
this assumption have appeared, e.g. Mo and S. D. White, 1996; Catelan et al., 1998). Furthermore,
N-body simulations show that the linear overdensity of protohaloes increases towards lower halo
masses (this is why the halo mass function departs from the Press and Schechter (1974) form).
The standard explanation is that lower mass haloes feel stronger tides and therefore need larger
initial overdensities to collapse by zid (Sheth, Mo and Tormen, 2001). Our results do not support
this conjecture and provide the following alternative explanation. Once galaxy-sized haloes are
embedded in non-linear filaments of the cosmic web (a manifestation of strongly anisotropic tides),
they cannot grow any longer. These objects must therefore assemble all their mass early on (at
z � zid) which can only happen starting from large overdensities (see also chapter 2).

In the next two papers of this series, we will use zoom hydrodynamic simulations including star
formation and feedback to investigate the impact of the dichotomy between accreting and stalled haloes
on galaxy formation and the properties of substructures.
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CHAPTER 4

Liger: mock relativistic light-cones from
Newtonian simulations1

4.1 Introduction

The advent of galaxy redshift surveys has revolutionised our understanding of the large-scale structure of
the Universe and provided us with multiple ways to constrain the cosmological model. Mock catalogues
of synthetic galaxies play a threefold role in the analysis of these datasets (Cole, Hatton et al., 1998;
Blaizot et al., 2005; Kitzbichler and S. D. White, 2007; Sousbie, Courtois et al., 2008; Carlson and
M. White, 2010; Merson et al., 2013). (i) They shape theoretical predictions into structures that closely
match observations. (ii) They form a straightforward tool to derive biases and covariance matrices of
estimators for statistical descriptions of the large-scale structure (e.g. correlation functions or their
Fourier analogues). (iii) Related to that, as forecasting tools, they provide key information to designing
new surveys by minimising the impact of statistical errors and systematic effects on selected observables.

Since the 1970s, the size of galaxy catalogues has constantly increased in terms of solid-angle and
redshift coverage as well as in sampling rate. The next generation of surveys will provide us with the
possibility to measure galaxy clustering on scales comparable with the Hubble radius (e.g. Laureijs et al.,
2011; Levi et al., 2013; R. Maartens et al., 2015). Theoretical studies suggest that a number of general
relativistic effects might be detectable on these scales. In order to fully exploit the potential of the new
datasets, it is therefore imperative to develop analysis tools (and thus mock catalogues) that include these
effects. In this chapter, we present a method to create mock galaxy catalogues that incorporate relativistic
corrections and are built upon the output of either common Newtonian simulations of galaxy formation
or semi-analytic models based on standard N-body simulations.

Relativistic effects arise from the fact that we observe galaxies on our past lightcone. The presence
of perturbations superimposed to a Friedmann-Robertson-Walker (FRW) background alters the null
geodesics of the photons emitted by distant galaxies. In consequence, all the direct observables for a
galaxy are different than in a smooth universe: its redshift, angular position on the sky and the flux in
any given waveband. Galaxy peculiar velocities, for instance, distort the radial pattern of the galaxy
distribution (Kaiser, 1987; Hamilton, 1998). Similarly, magnification due to gravitational lensing modifies
the observed number counts in flux-limited samples (E. L. Turner, 1980; E. L. Turner, Ostriker and Gott,
1984; Sasaki, 1987; Matsubara, 2000). Many recent studies have demonstrated the existence of several

1 This chapter and appendix B have been published in Borzyszkowski, Bertacca and Porciani (2017). The notation has been
adapted to match the remaining thesis.
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Newtonian simulation

Select an observer

Shift & magnify galaxies

Extract light cone

Figure 4.1: Schematic diagram illustrating the sequence of main processing steps in the Liger method.

additional corrections that, although suppressed on smaller scales, might generate observable signals
on distances comparable with the Hubble radius (e.g. McDonald, 2009; Yoo, 2009; Yoo, Fitzpatrick
and Zaldarriaga, 2009; Bonvin and Durrer, 2011; Challinor and Lewis, 2011; Bertacca et al., 2012;
Jeong, Schmidt and Hirata, 2012; Yoo, Hamaus et al., 2012; Di Dio, Montanari, Lesgourgues et al.,
2013; Di Dio, Montanari, Durrer et al., 2014; Bonvin, Hui and Gaztañaga, 2014; Montanari and Durrer,
2015; Yoo and Seljak, 2015; Bonvin, Hui and Gaztañaga, 2016; Cardona et al., 2016; Di Dio, Montanari,
Raccanelli et al., 2016; Raccanelli, Bertacca, Jeong et al., 2016; Raccanelli, Bertacca, R. Maartens
et al., 2016; Raccanelli, Montanari et al., 2016; Gaztañaga, Bonvin and Hui, 2017). At linear order in
the perturbations, these additional corrections include Doppler terms plus Sachs-Wolfe (standard and
integrated, see Sachs and Wolfe, 1967; Rees and Sciama, 1968) and (Shapiro) time-delay contributions.
Robust models of galaxy clustering on large scales should thus include these modifications that, most
likely, will be key to extracting unbiased information on the dark sector of the Universe (i.e. on the nature
of dark energy and dark matter) and to improve constraints on primordial non-Gaussianity. This can
be done following different approaches. One possibility is to study structure formation using N-body
simulations that include dynamical space-time variables in the weak-field approximation (Adamek
et al., 2013; Adamek, Durrer and Kunz, 2014; Adamek et al., 2016a; Adamek et al., 2016b), within a
post-Friedmann framework (Milillo et al., 2015; Bruni, Thomas and Wands, 2014; Thomas, Bruni and
Wands, 2015), or by employing full numerical relativity (Bentivegna and Bruni, 2016; Giblin, Mertens
and Starkman, 2016). Alternatively, one can correct a posteriori the results of Newtonian simulations to
account for lightcone effects (Chisari and Zaldarriaga, 2011). This is feasible because, at linear order in
the perturbations, the mathematical description of a pressureless fluid can be formulated so that there
is agreement between general relativity and its Newtonian approximation (Haugg, Hofmann and Kopp,
2012; Rigopoulos and Valkenburg, 2015; Fidler, Rampf et al., 2015; Fidler, Tram et al., 2016)

In this chapter, we follow the latter approach to develop the Liger (light cones using general relativity)
method. As illustrated in fig. 4.1, schematically, Liger takes a Newtonian simulation as an input and, after
selecting an observer, outputs the distribution of galaxies in ‘comoving redshift space’ (i.e. as it would be
inferred by applying the background metric to the observed galaxy properties). The algorithm combines
the original snapshots of the simulation at constant background time to produce the galaxy distribution
on the perturbed light cone. This is achieved by using a coordinate transformation that includes local
terms and contributions that are integrated along the line of sight.

Multiple efforts have been made in the literature to investigate the detectability of subtle relativistic
effects from forthcoming survey data. Generally, these studies are based on the Fisher-information matrix,
use idealised survey characteristics and neglect systematics. The ultimate test to discern which relativistic
effects will be observable is to apply the very same estimators that are used for the data to the Ligermocks.
This exciting perspective provides the main motivation for our work. The numerical implementation of
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the Liger method is publicly available at www.astro.uni-bonn.de/~porciani/LIGER.
The chapter is structured as follows. In section 4.2, we introduce the Liger method and describe its

numerical implementation. In section 4.3, we present two straightforward applications of our code. As
an illustration of Liger’s functionality, we first re-analyse a result which has already been discussed
in the literature, namely, the impact of magnification bias in the observed cross-correlation of galaxy
samples at substantially different redshifts. Subsequently, we discuss the more challenging detection of
Doppler terms in the galaxy angular power spectrum at low redshift. Finally, in section 4.4, we conclude.
Throughout, we adopt units in which the speed of light is one and define the space-time metric tensor to
have signature (−,+,+,+). Greek indices indicate space-time components (i.e. run from 0 to 3) while
Latin indices label spatial components (i.e. run from 1 to 3). The Einstein summation convention is
adopted.

4.2 The Liger method

4.2.1 Theory

Redshift-space distortions

We observe galaxies as they are at the time in which their worldline intersects our past light cone. The
comoving location of a galaxy can be inferred from two basic observables: its position on the sky, ns (a
unit vector defined in terms of two angles), and its redshift, z. In fact, these data are sufficient to build
three-dimensional maps of the galaxy distribution provided that we assume to live in an unperturbed
FRW universe with a fixed set of cosmological parameters. In reality, such a ‘redshift-space’ map gives a
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Figure 4.2: Real- and redshift-space perspectives. A galaxy with real-space position xi
r (top left), located at distance

χr from the observer (bottom), is assigned an apparent position xi
s in redshift space (top right) at distance χs. Since

the photon path to the observer in real space is not straight, the observed position of the galaxy on the sky, ns does
not coincide with its actual one, nr.
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distorted portrayal of the cosmic web due to the presence of inhomogeneities (Jackson, 1972; Sargent
and E. L. Turner, 1977). Galaxies are artificially shifted both in the radial and tangential directions due to
their peculiar motions and the bending of the light they emit. These effects are collectively known under
the name of redshift-space distortions.

In mathematical terms, redshift-space is characterized by a set of coordinates that ‘flatten’ our past
light cone (e.g. Bertacca, 2015). For instance, the null geodesic from an observed galaxy to us can be
described in terms of the following conformal space-time coordinates:

xµs = (ηs, xs) = (η0 − χs, χs ns) , (4.1)

where η0 is the present-day value of conformal time (i.e. at observation), χs denotes the comoving
distance (from the observer) of events located along the geodesic in the unperturbed model universe and
ni

s = xi
s/χs. The full distance to the galaxy corresponds to the observed redshift z, in compact notation

χs(z).

For a given photon path (see fig. 4.2), we want to define a mapping from real to redshift space,

xµr [χr(χs)] = xµs (χs) + ∆xµ(χs) , (4.2)

where xi
r denotes the actual comoving position located at distance χr along the direction ni

r = xi
r/χr. [In

general, we use the subscripts ‘s’ and ‘r’ to distinguish redshift-space quantities from their real-space
counterparts.] Perturbing xµr around xµs and writing χr = χs + δχ, we obtain, at linear order,

xµr (χr) = xµs (χr) + δxµ(χr) = xµs (χs) +
dxµs
dχs

δχ + δxµ(χs) . (4.3)

By using χs as the affine parameter for the null geodesic, we write the total derivative along the past light
cone as d/dχs = −∂/∂ηs + ni

s∂/∂xi
s. Since dxi

s/dχs = ni
s [to zero order], linear redshift-space distortions

can be written as

∆x0(χs) = − δχ + δx0(χs) (4.4)

∆xi(χs) =ni
sδχ + δxi(χs) . (4.5)

The first term on the right-hand side of eq. (4.5) corresponds to the change in the affine parameter while
the second one derives from the perturbation of the photon path and has both tangential and radial
components. Note that the real-space distance to the galaxy does not coincide with χs(z).

Perturbations of the past light cone

In order to compute explicitly all the terms in eqs. (4.4) and (4.5), we need to work out how metric
perturbations alter null geodesics. In what follows, we model the matter content of the universe as a
collisionless fluid in the single-stream regime. This common assumption provides a suitable approx-
imation on the large scales we are interested in. We use the subscripts ‘e’ and ‘o’ to denote the fluid
properties evaluated at the position of the light source (the galaxy) when the photons were emitted and at
the location of the observer when the photons were received, respectively. For linear scalar perturbations
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in the Poisson gauge2, the space-time metric can be expressed as

ds2 = a2(η)
[
− (1 + 2ψ) dη2 + (1 − 2ϕ) δi jdxi

rdx j
r

]
, (4.6)

where a denotes the scale factor of the expanding universe while ψ and ϕ indicate the Bardeen potentials
of the inhomogeneities. In this framework, the redshift of a galaxy measured by an observer is

1 + z =
(uµpµ)|e
(uµpµ)|o

, (4.7)

where uµ denotes the four-velocity of the matter fluid (we assume there is no velocity bias) and pµ is
the photon four-momentum. By perturbing the photon geodesic around the FRW solution, we derive
expressions for δxµ and δχ. The final result for the galaxy shift is (see also Yoo, 2009; Yoo, Fitzpatrick
and Zaldarriaga, 2009; Bonvin and Durrer, 2011; Challinor and Lewis, 2011; Jeong, Schmidt and Hirata,
2012)

δχ = −

(
χs +

1
H

) [
ψo −

(
ni

svi
)
o

]
+

1
H

[
ψe −

(
ni

svi
)
e

]
+

∫ χs

0

[
2ψ + (χs − χ)∂0 (ϕ + ψ)

]
dχ

+
1
H

∫ χs

0
∂0 (ϕ + ψ) dχ , (4.8)

δx0 = − χs
[
ψo −

(
ni

svi
)
o

]
+ 2

∫ χs

0
ψ dχ +

∫ χs

0
(χs − χ) ∂0 (ϕ + ψ) dχ , (4.9)

δxi = −
(
vi

o + ϕoni
s

)
χs + 2ni

s

∫ χs

0
ϕ dχ −

∫ χs

0
(χs − χ)δi j∂ j (ϕ + ψ) dχ , (4.10)

where H = ∂0 ln a and χs are evaluated at the observed redshift of the galaxy while vi is the peculiar
velocity. Here, local corrections express the Sachs-Wolfe and the Doppler effects. Those integrated along
the line of sight derive from gravitational lensing, the Shapiro time-delay and the integrated Sachs-Wolfe
effect.

Magnification

Metric perturbations also alter the solid angle under which galaxies are seen by distant observers thereby
enhancing or decreasing their apparent flux. In terms of the luminosity distance, DL, the magnification of
a galaxy is defined as

M =

(
dlum

d̄lum

)−2

, (4.11)

where D̄L denotes the luminosity distance in the background model universe evaluated at the observed
redshift of the galaxy.

2 The restricted Poisson gauge containing only scalar perturbations is also known as the longitudinal or conformal Newtonian
gauge.
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At linear order in the perturbations, we can write (e.g. Challinor and Lewis, 2011; Bertacca, 2015)

M =1 − 2
(
1 −

1
Hχs

) [
ψo −

(
ni

svi
)
o

]
+ 2

(
1 −

1
Hχs

) [∫ χs

0
∂0(ϕ + ψ) dχ + ψe −

(
ni

svi
)
e

]
+ 2ϕe −

2
χs

∫ χs

0
(ϕ + ψ) dχ + 2κ , (4.12)

where

κ =
1
2

∫ χs

0
(χs − χ)

χ

χs
∇2
⊥ (ϕ + ψ) dχ (4.13)

corresponds to the classical convergence and the differential operator ∇2
⊥ is defined as

∇2
⊥ = ∇2 −

(
ni

s∂i
)2
−

2
χ

ni
s∂i . (4.14)

Note that the magnification includes contributions from different physical effects. We refer to the term
proportional to ni

svi as ‘Doppler lensing’. In order to model statistical observables (e.g. correlation
functions) on small-scales, it is acceptable to replace the two-dimensional Laplacian ∇2

⊥ with the three-
dimensional one ∇2, so that κ can be expressed in terms of the matter overdensity using the Poisson align.
In fact, the effective lensing weight, (χs − χ) χ/χs, varies on scales comparable to the Hubble radius and
the line-of-sight integral that defines κ heavily suppresses the contribution of radial Fourier modes with
smaller wavelengths (e.g. Kaiser, 1992). Although this approximation has been implemented to produce
full-sky mock catalogues (e.g. Fosalba, Gaztañaga, Castander and Manera, 2008; Fosalba, Gaztañaga,
Castander and Crocce, 2015), we do not use it since we want to study galaxy clustering at wide angular
separations.

Link with N-body simulations

To evaluate δxµ, δχ andM, we need to compute the gravitational potentials appearing in eq. (4.6) as a
function of space and time. Since we want to apply our results to simulations, we need to derive the
potentials starting from the particle distribution in the computer models. This corresponds to using the
matter density contrast in the synchronous comoving gauge, i.e. δsim ≡ δsyn. Fortunately, to linear order
in the perturbations and for a pressureless fluid in a universe with ΛCDM background, the source align
for ψ in the Poisson gauge can be re-written in terms of δsyn as the standard Poisson align (e.g. Chisari
and Zaldarriaga, 2011; Green and Wald, 2012). Therefore, the complete dictionary we use to translate
from the simulations to the Poisson gauge is:

ϕ = ψ = φ , ∇2φ = 4πGa2ρ̄mδsim , and vi = vi
sim , (4.15)

where G denotes Newton’s gravitational constant and ρ̄m is the matter density in the FRW background.

4.2.2 Light cones from simulations

In this section we explain the numerical methods we use to implement the theory discussed above and
build mock light cones starting from the output of a simulation. We begin with the calculation of the
gravitational potential. Following a standard procedure, we use the particle distribution in each snapshot
to compute the matter density contrast on a regular Cartesian grid with the cloud-in-cell method (e.g.
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Figure 4.3: Schematic summarising how galaxies (section 4.2.2) or N-body particles (section 4.2.3) are shifted to
build the light cones. We first apply the correction due to local terms (dashed arrow) and then compute the shift
produced by the non-local contributions (dotted arrow). In runs with low mass resolution, each particle ‘contains’
wg galaxies. The linear bias coefficient b1 and wg are calculated at the real-space position xi

r while the magnification
bias Q is computed at the redshift-space position xi

s.

Hockney and Eastwood, 1988). We then solve the Poisson align using a fast Fourier transform and
obtain φ(xr, t) as well as its spatial derivatives (by spectral differentiation). Partial time derivatives of the
potential are computed with a finite-difference method that combines several consecutive snapshots at
fixed comoving position xr.

There are a few subtleties at play in the calculation of the galaxy shift and the magnification given in
eqs. (4.8), (4.9) and (4.12). All these quantities include local terms evaluated at a specific position and
non-local parts that are expressed as integrals along the line of sight to the observer. The integrals should
be taken in redshift-space where the photon path is a straight line. Since |φ| � 1 and deflections are
generally small, we take the integrals in real space which is correct to linear order in the perturbations as in
the Born approximation in quantum mechanics. We use the fast voxel traversal algorithm by Amanatides
and Woo (1987) to perform the integrals within the grid over which the gravitational potential is evaluated.
All functions appearing in the integrands are interpolated in time (here converted into the line-of-sight
distance to make sure that everything is computed on the backward light cone of the observer) such that
their first derivatives are continuous. Note that the integration path starts at the observer and ends at a
fixed redshift-space position which is unknown for all the simulated galaxies. Although to linear accuracy
we could use the real-space position of the galaxies, we implement the following procedure which is
slightly more accurate (see also fig. 4.3). (i) We evaluate all local terms in eqs. (4.8) and (4.9) and shift
the galaxies accordingly. (ii) The non-local terms are estimated with integrals that run from the observer
to the position of the galaxy shifted by the local terms. (iii) An additional shift due to the non-local terms
is imposed to obtain the final redshift-space position. In principle, steps (ii) and (iii) could be iterated
until numerical convergence is achieved. However, this is not necessary in practice since the local terms
generate much larger shifts than the non-local ones. This is fortunate because the integration along the
line of sight is by far the slowest element of the Liger code. Magnification is computed along the same
lines (similar line-of-sight integrations have been used by M. White and Hu, 2000; Kiessling et al., 2011;
Fosalba, Gaztañaga, Castander and Manera, 2008; Fosalba, Gaztañaga, Castander and Crocce, 2015, for
weak-lensing studies).

Of course we do not shift all the galaxies at all times as this would significantly slow down the code
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Chapter 4 Liger: mock relativistic light-cones from Newtonian simulations

and also be useless. We first identify the snapshots within which a given galaxy would cross the backward
light cone of the observer in the absence of metric perturbations. We then calculate and apply the
redshift-space displacements considering a few outputs surrounding this time. Finally, we compute the
intersection of the world line of the galaxy with the straight light cone of the observer in redshift space
and we save this position and the corresponding magnification.

Each light cone identifies a sub-region in space-time corresponding to a three-dimensional ball in
comoving redshift space. Its radius is limited by the box size of the underlying simulation. To avoid
replications or spurious correlations due to the periodic boundary conditions applied in cosmological
simulations, we limit the radius of the balls to one third of the box size. This way each light cone covers
nearly 15 per cent of the simulation volume and we can place five different observers from a single run
avoiding intersections.

Galaxy mocks with Liger

Whenever galaxy positions, velocities and luminosities are available (from either a hydrodynamic
simulation or a semi-analytic model based on an N-body run), we modify the worldlines of the galaxies
according to eqs. (4.4) and (4.5). The different components of the shift in space-time are given in
eqs. (4.8) to (4.10) where (ni

svi)e coincides with the radial peculiar velocity of the galaxy in the simulation
and the gravitational potential φ is generated by the total matter content. Eventually, we determine the
coordinates of the event at which the modified worldline of the galaxy crosses the light cone of the
observer. The main differences between Liger and the standard method used to build mock catalogues
in redshift space are twofold. First of all, Liger considers four dimensional distortions affecting both
space and time. Furthermore, it includes several additional terms beyond the usual radial displacement
H−1(ni

svi)e.

4.2.3 Light cones based on dark-matter-only simulations

The Liger method is general and can be used with all kinds of cosmological simulations. However, the
transverse size of the light cones rapidly increases with redshift so that very large simulation boxes are
required to cover wide opening angles. In this case, running simulations with sufficient spatial and mass
resolution to follow galaxy formation is computationally challenging. A popular method to avoid this
problem is to tile replicate the simulation box to cover the light cone up to larger redshifts. Although this
technique could be applied to Liger, we decide not to implement it. Tile replications introduce spurious
artefacts and alter clustering statistics on large scales (e.g. Blaizot et al., 2005). This would be a major
drawback for a code which includes linear relativistic effects and aims at exploiting the very large scales
that will be surveyed by the observational facilities of the next generation. Instead, we use dark-matter
only simulations with very large computational boxes. For this reason, Liger has the option to shift the
dark-matter particles themselves and create the galaxy density field a posteriori. The problematic step
is to account for galaxy biasing. We illustrate how our implementation works by reasoning in terms of
continuous densities.

To linear order in the perturbations, we can write the matter density contrast in redshift space as

δs = δsim + δRSD , (4.16)

where we have conveniently collected the corrections due to the metric distortions into the term (Yoo,
2009; Yoo, Fitzpatrick and Zaldarriaga, 2009; Bonvin and Durrer, 2011; Challinor and Lewis, 2011;
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Jeong, Schmidt and Hirata, 2012)

δRSD = −

(
∂0H

H2 +
2

χsH

)
δ ln a + ψe − 2ϕe +

(∂0ϕ)e

H
+ 3Hφv −

1
H

[
ni

s∂i
(
n j

sv j
)]

e
+

2
χs

∫ χs

0
(ϕ + ψ) dχ − 2κ ,

(4.17)

in which φv is the linear velocity potential3 at the galaxy position (i.e. vi = ∂iφv) and the apparent redshift
change δ ln a = δz/(1 + z) due to the perturbations is

δ ln a = ψo − (ni
svi)o − ψe + (ni

svi)e −

∫ χs

0
∂0 (ϕ + ψ) dχ . (4.18)

To the same accuracy, galaxy clustering in redshift space can be modelled in terms of three redshift-
dependent bias parameters, b1, Q and E, encoding information about different properties of the galaxy
population under study, namely (Challinor and Lewis, 2011; Jeong, Schmidt and Hirata, 2012)

δg,s = b1 δsim + Q (M− 1) + E (δ ln a −Hφv) + δRSD . (4.19)

The expression above assumes that the intrinsic perturbation in the galaxy number density is δg,r = b1 δsim
with b1 the linear bias parameter. It also considers that lensing magnification alters the observed number
density of galaxies. This effect is quantified by the magnification-bias parameter

Q = −
∂ ln n̄g

∂ ln L

∣∣∣∣
L=Llim

, (4.20)

where n̄g(> L) denotes the comoving number density of galaxies with luminosity larger than L and the
derivative is evaluated at the (redshift-dependent) limiting luminosity of the survey.4 Finally, eq. (4.19)
takes into account that the comoving number density of galaxies in the sample might change with redshift.
This phenomenon is described by the ‘evolutionary bias’ parameter

E = −
∂ ln n̄g

∂ ln(1 + z)
. (4.21)

Our goal is to connect δg,s with the particle density in the N-body simulations. For simplicity, we
assume that |Hφv| � |δ ln a| and neglect the velocity potential which could influence galaxy clustering
only on scales comparable with the Hubble radius. Then eqs. (4.16) and (4.19) give

δg,s = (b1 − 1)δsim + δs + E δ ln a + Q (M− 1) , (4.22)

which can be used to derive the local galaxy number density ng,s = n̄g (1 + δg,s). By expressing the matter
fields in terms of the density of N-body particles, i.e. δsim + 1 = nsim,r/n̄sim and δs + 1 = nsim,s/n̄sim, we
can write

ng,s = (b1 − 1)
(
wgnsim,r − n̄g

)
+ wgnsim,s + n̄gE δ ln a + n̄gQ(M− 1), (4.23)

where wg = n̄g/n̄sim denotes the mean number of galaxies per simulation particle at a given redshift.

3 This term originates because δsim is defined in the synchronous comoving gauge while all the rest is set in the Poisson gauge.
4 For simplicity, we assume that the list of targets for spectroscopic observations is flux limited. In case also a size cut is

applied, another redshift-dependent function should be added to Q since gravitational lensing also alters the size of galaxy
images (Schmidt et al., 2009).
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The products wgnsim,r and wgnsim,s rescale the unbiased density fluctuations in the simulations to the
galaxy mean density. The magnification term in eq. (4.23) reflects the relative change of the galaxy
counts per particle which is proportional to wQ =MQ. For |M − 1| � 1, we can thus write wgwQnsim,s =

wg[Q(M− 1) + 1]nsim,s, so that

ng,s = (b1 − 1)
(
wgnsim,r − n̄g

)
+ wgwQnsim,s + n̄gE δ ln a . (4.24)

By using the definition of E and linearising, wg(z)wQ(n̂s, z)nsim,s(n̂s, z) + n̄g(z)E δ ln a coincides with
wg(z̄)wQ(n̂s, z)nsim,s(n̂s, z̄) where z̄ = z − δz is the redshift in absence of perturbations (note that to first
order it is equivalent to evaluate wQ at z or z̄). Eventually, making explicit the arguments of all functions,
we obtain

ng,s(n̂s, z) = [b1(z̄) − 1]
[
wg(z̄) nsim,r(n̂r, z̄) − n̄g(z)

]
+ wg(z̄)wQ(n̂s, z) nsim,s(n̂s, z̄) . (4.25)

We use this expression to compute ng,s from the simulations (see fig. 4.3 for a schematic representation).
In practice, we weigh the shifted and unshifted dark-matter particles according to eq. (4.25). Once the
light cone for the matter has been constructed, it is very fast to build the galaxy mocks for many different
galaxy populations. This corresponds to changing the functions wg(z), b1(z) and Q(z).

Doppler terms

Isolating the terms proportional to the velocity field in the right-hand side of eq. (4.19) we obtain

δg,v = −
1
H

(
∂ni

svi

∂χs

)
e
−
α(χs)
Hχs

[(
ni

svi
)
e
−

(
ni

svi
)
o

]
, (4.26)

where ∂/∂χs = ni∂i,

α(χs) = γ0 + γ1Hχs (4.27)

and, assuming a flat ΛCDM universe,

γ0 = 2(1 − Q) and γ1 = 1 −
3
2

Ωm(z) − E + 2Q . (4.28)

Equation (4.26) coincides with the seminal result for the linear redshift-space distortions derived by
Kaiser (1987). In the classical literature, the function α is often written as α = 2 + ∂ ln n̄g/∂ ln χs (Kaiser,
1987; Zaroubi and Hoffman, 1996; Hamilton, 1998). Taking into account that we observe galaxies on our
past light-cone reveals that several physical effects influence α (see also McDonald, 2009; Yoo, 2009;
Bertacca et al., 2012; Raccanelli, Bertacca, Jeong et al., 2016). Equation (4.28), get contributions from
geometric distortions, redshift evolution (or redshift-dependent selection effects), Doppler magnification
and cosmic acceleration.

Following a standard practice in cosmology, we label the expression proportional to α in eq. (4.26)
with the collective name of Doppler terms. Their contribution is usually neglected in clustering studies.
In fact, for an ideal galaxy sample with α ' 2 and if the depth of a galaxy redshift survey is much larger
than the comoving wavelength of interest, the Doppler induced δg,v is heavily suppressed (due to the χ−1

s
scaling) with respect to the signal generated by the radial velocity gradient which is always comparable
to density perturbations (Kaiser, 1987). This reasoning relies upon the distant-observer approximation.
However, it has been shown that the Doppler corrections can alter the galaxy autocorrelation function
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at large angular separations in a significant way (Pápai and Szapudi, 2008; Raccanelli, Samushia and
Percival, 2010). In this case, the two terms on the right-hand side of eq. (4.26) can be of comparable
sizes. Moreover, Q and E can drive α sensibly away from 2 and thus enhance the chance of detecting the
Doppler terms from observational data. We will return to this issue in section 4.3.6.

4.3 Examples

We present two sample applications of Liger: first, we estimate the importance of magnification bias in
an Euclid-like survey and then we investigate the detectability of Doppler terms in a low-redshift galaxy
catalogue based on the concept of the Square Kilometre Array (SKA). To begin with, we introduce the
numerical simulations and the statistical methods we use. We then describe the specifications for the
surveys and discuss our results in sections 4.3.4 and 4.3.6.

4.3.1 N-body simulations

We run a large number of cosmological N-body simulations using the L-PICOLA code (Howlett, Manera
and Percival, 2015) and subsequently apply Liger to their outputs. L-PICOLA is an implementation of
the COLA method (Tassev, Zaldarriaga and Eisenstein, 2013) in which the large-scale dynamics is solved
using second-order Lagrangian perturbation theory while a particle-mesh algorithm is used for the small
scales. This technique is orders of magnitude faster than standard N-body codes and accurately simulates
the clustering of matter on large scales. This makes it an ideal tool to build large mock catalogues for
studying galaxy clustering although it does not resolve the internal dynamics of dark-matter haloes.

Our simulations include 10243 particles in a periodic cube with side length L. In order to cover the
relevant volumes, we use very large values of Lbox, namely 12h−1 Gpc for our first application and
5h−1 Gpc for the second one. This way we obtain 165 light cones extending to redshift 2.3 for the
Euclid-like mocks and 125 light cones extending to redshift 0.6 for the more local mocks. In all cases,
the gravitational potential in Liger is evaluated on a grid with 5123 cells.

An illustrative example is presented in fig. 4.4 (using the ’total’ galaxy sample introduced in sec-
tion 4.3.6). In the upper part, we show wedge maps of the galaxy distribution in real- (top-left) and
redshift-space (top-right) colour coded according to the density contrast. The figures at the bottom isolate
different effects. On the left-hand side, we show the redshift-space distortions due to the Doppler terms.
This signal is dominated by the squashing of the density contours due to the coherent infall of matter
onto large-scale structures. On the right-hand side, we map the remaining distortions, δg,s − b1δsim − δg,v.
The resulting signal is patchy but the integrated terms in eq. (4.17) produce correlations along the line of
sight. Note that the maps on the bottom show very different patterns and characteristic amplitudes.

It is worth stressing that Liger is completely general and can be applied to the output of any N-body
code. Here we use L-PICOLA because it is ideal for our purposes. Note that we do not make use of
the built-in feature to build light cones on the fly implemented in L-PICOLA. However Liger could be
merged with it in the future.

4.3.2 Angular power spectra

Our examples focus on large-scale galaxy clustering that we quantify in terms of the angular power
spectrum. We first divide our mock light cones into multiple redshift bins and measure the projected
galaxy number density contrast on the sky, σ(i)

g (θ), for each of them (labelled by the index i). We then
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Figure 4.4: Wedge plots extracted from a sample like cone. The top images show b1δsim and δg,s. In all cases, the
maps show the galaxy density contrast projected onto the plane of the page within a slice of 5 arcmin thickness.
The observer is located at the vertex of the wedge and the labels indicate redshift and comoving distance. The
bottom panels highlight different contributions to the redshift-space distortions as described in detail in the main
text (note the symmetric log-scale).

decompose σ(i)
g (θ) in spherical harmonics, σ(i)

g (θ) = a(i)
lm Ylm(θ), with

a(i)
lm =

∫
d2θσ(i)

g (θ) Y∗lm(θ) , (4.29)

and measure the angular auto- and cross-spectra between all redshift bins using

C(i j)
l =

1
2l + 1

l∑
m=−l

a(i)
lm a( j)∗

lm . (4.30)
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In practice, we use the Healpix algorithm (Górski et al., 2005) to build digitized maps of σ(i)
g (θ)

from which we calculate the power spectra. In all cases, we make sure that the pixel size does not
affect our results in the range of scales of interest. The galaxy density in a pixel is computed from the
distribution of the N-body particles as described in section 4.2.3. Since our particles are rather massive
(1.2 × 1014 h−1M� for the 12 h−1 Gpc boxes and 8.8 × 1013 h−1M� for the 5 h−1 Gpc ones), each of
them ‘contains’ multiple galaxies (i.e. wg ∼ 10). This is unavoidable given the extremely large volumes
covered by our simulations and the obvious limitations in computing time and memory usage. Although
the resulting overdensity field has increased shot noise with respect to the actual galaxy distribution,
our statistical analysis is not influenced by it. In fact, we never attempt to subtract shot noise from the
power spectra as our study is based on the comparison of different sets of mock catalogues. Even more
importantly, in all cases, shot noise is by far subdominant with respect to the sample and cosmic variance
of the clustering signal we are interested in (note that our main results are based on the analysis of cross
statistics between galaxy samples at different redshift).

We also take into account that most survey geometries do not cover the full sky and exclude wide
regions surrounding the galactic plane. In order to simulate a realistic setting, we mask an appropriate
amount of the sky around the equator of the observer and consider two distinct regions around the poles
covering a fraction fsky of the celestial sphere. Spherical harmonics are not orthogonal over finite solid
angles and the pseudo power spectrum C̃(i j)

l measured from the cut sky does not coincide with Ĉ(i j)
l

(Peebles, 1973; Wandelt, Hivon and Górski, 2001). We use the standard method by Hivon et al. (2002)
to construct an unbiased estimate of the full-sky spectra Ĉ(i j)

l which is obtained multiplying C̃(i j)
l by the

inverse of a mode-mode coupling matrix that depends on the survey mask.

4.3.3 Statistical analysis

Our sample applications aim at quantifying the detectability of some specific redshift-space effects from
measurements of two-point statistics. We assume that we can perfectly model the different contributions
to the clustering signal and check whether including or excluding some of them improves or worsen the
fit to the mock data including the full physics. In particular, we proceed as follows. We isolate a particular
effect (say, e.g., magnification bias) and denote its expected partial contribution to the model galaxy
power spectrum as C(A)

l so that its complementary part is C(B)
l = Cl − C(A)

l (here the superscripts (i j)
indicating the redshift bins are understood to simplify notation). We then fit the power spectra extracted
from our mock catalogues with the model Ml = εC(A)

l + C(B)
l = Cl + (ε − 1)C(A)

l where the coefficient ε
can only assume the values zero or one. The question we want to address is to what statistical significance
the data favour ε = 1, i.e. how necessary it is to add C(A)

l to the model in order to fit the data Ĉl . All
this boils down to comparing the quality of the fit obtained using ε = 0 and ε = 1. This exercise can be
performed following different statistical procedures which give very similar results.

Frequentist approach: simple hypotheses (SH)

We want to test the null hypothesis H0 : ε = 0 against the alternative hypothesis H1 : ε = 1. Let
L0 and L1 denote the likelihood of the data under H0 and H1, respectively. Based on the Neyman-
Pearson lemma, the likelihood-ratio statistic Γ = L0/L1 provides the most powerful test for two simple
hypotheses. If the data do not support H0, then the likelihood ratio should be small. Thus, we reject
the null hypothesis with confidence level ς, if Γ ≤ ω, where ω is a constant such that the probability
P(Γ ≤ ω|H0) = ς. In order to determine ς it is thus necessary to determine the probability distribution of
the test statistic under H0. Working with the log-likelihood χ2 = −2 lnL, the rejection condition becomes
∆χ2 = χ2

1 − χ
2
0 > lnω. Assuming Gaussian errors for the angular power spectrum with covariance matrix
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Σlm = 〈ĈlĈm〉 − 〈Ĉl〉〈Ĉm〉, we find that, under H0, ∆χ2 follows a Gaussian distribution with mean

µ = C(A)
l Σ−1

lm C(A)
m (4.31)

and variance 4µ (see appendix B). Therefore, we reject H0 at the 95 per cent confidence level if
∆χ2 > µ + 3.29

√
µ. The coefficient 3.29 should be replaced with 4.652 to get a 99 per cent confidence

level. A formal 5σ rejection is obtained for ∆χ2 > µ + 10
√
µ.

It is worth noticing that, if the covariance matrix of the measurements does not depend on ε, then the
expected value of Γ under H1 is E(Γ|H1) = −E(Γ|H0) = −µ. Therefore, the mean values E(Γ|H1) and
E(Γ|H0) will be separated by more thanN standard deviations of the Γ distribution only if

√
µ > N . This

is why
√
µ is often denoted as the signal-to-noise ratio, S/N, of C(A)

l . On the other hand, if the covariance
depends on ε, then E(Γ|H1) , −E(Γ|H0) and the dispersions around the mean of Γ under H0 and H1 will
be different (see appendix B).

Frequentist approach: composite hypothesis (CH)

We also consider a generalized likelihood-ratio test with a compound alternative hypothesis. In this case
we contrast the null hypothesis H0 : ε = 0 with H1 : ε , 0. Let Lmax be the maximum value of the
likelihood of the data when ε is varied (between 0 and 1) and L0 the corresponding likelihood under
the null hypothesis. We form the ratio Γ = L0/Lmax which is always between 0 and 1. We assess the
statistical significance of the test by comparing ∆χ2 = −2 ln Γ to the chi-square distribution with one
degree of freedom (as we only tuned one parameter to determine Lmax). Basically we convert ∆χ2 into
the corresponding percentile of the chi-square distribution. This is the confidence level at which the null
hypothesis can be rejected. In this case, 95 (99) per cent confidence corresponds to a critical value of
∆χ2 = 3.84 (6.64).

Fisher information

An alternative approach consists of quantifying the Fisher information that the angular power spectrum
carries about ε (which, in this case, is assumed to be a real number). Assuming Gaussian errors, we
obtain that the Fisher ‘matrix’ for ε is

F = ∂εMl Σ−1
lm ∂εMm = C(A)

l Σ−1
lm C(A)

m ≡ µ (4.32)

(we adopt the ‘field’ perspective as in Carron, 2013). It follows from the Cramèr-Rao inequality that
µ−1/2 gives a lower bound for the expected uncertainty on ε (i.e. the mean curvature of the likelihood
function L(ε) at its peak). Therefore,

√
µ corresponds to the signal-to-noise ratio with which ε can be

measured.

Bayesian approach (BA)

Assuming a flat prior for ε, the posterior probabilities for ε = 0 and ε = 1 are P0 =
L0
L0+L1

and P1 =
L1
L0+L1

,
respectively. The Bayes factor, K = P0/P1, thus corresponds to the likelihood ratio L0/L1. According to
the Jeffrey scale, there is strong (decisive) evidence against H0 if K > 10 (100) which gives ∆χ2 > 4.605
(9.21). Using the alternative scale by Kass and Raftery gives very strong evidence for ∆χ2 > 10.
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Likelihood estimation

All the statistical methods listed above require the calculation of the likelihood function for ε in each
mock realisation. To do this, we need a model and the covariance matrix for the power spectra (we
assume Gaussian measurement errors). We build an ‘exact’ and unbiased model by averaging the angular
power spectra obtained for all our mock light cones. Since there are no particularly deviant realizations,
the average spectra are smooth. In parallel, we use the maximum-likelihood estimator to get a first
approximation for the covariance matrix, Σ̂lm. It is well known that the precision matrix obtained by
inverting Σ̂lm is not very accurate. Although we make sure to consider enough mock skies so that the
covariance matrix of our data vector is invertible, it still contains considerable noise. We thus use the
shrinkage method (Schäfer and Strimmer, 2005) to reduce the noise in Σ̂lm. As a target we use a diagonal
matrix which is always compatible with our estimates.

4.3.4 Magnification bias in a Euclid-like survey

As a simple application of the Liger method, we discuss the detectability of magnification bias in a
Euclid-like survey. Related work has been presented by Di Dio, Durrer et al. (2014) and Montanari and
Durrer (2015). These authors focused on the Fisher information matrix as a forecasting tool, while we
base our study on the statistical analysis of a large number of mock catalogues.

Euclid spectroscopic sample

Euclid is a medium-class mission of the European Space Agency planned for launch in 2020. It will map
the distribution of star-forming galaxies through their redshifted Hα emission in the regions with galactic
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Figure 4.5: Expected characteristics of the Euclid (solid) and SKA2 redshift surveys. In the latter case we consider
two flux sensitivities: 23 (dashed) and 60 µJy (dotted). The mean galaxy number counts per square-degree and
redshift (top), the evolutionary bias (middle), and the linear and magnification bias parameters (bottom) are shown
as a function of redshift.
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Figure 4.6: Angular power spectra for the galaxy distribution in an Euclid-like survey split into four equally
populated redshift bins. The left-hand panel refers to the auto-spectrum of the highest-redshift bin while the
right-hand panel shows the cross-spectrum between the lowest-and the highest-redshift bins. The blue curves show
the signal averaged over 165 mock catalogues that include relativistic effects to linear order in the perturbations
(GR). The shaded regions surrounding them indicate the standard deviation of the measurements for full-sky (light
blue) and Euclid-like (cross pattern) mocks. The red curves are obtained considering only the redshift-space
distortions generated by the Kaiser and Doppler effects (KD) but M = 1. The yellow ones (which basically
coincide with the blue ones) also consider magnification bias due to weak gravitational lensing. All spectra are
averaged in bandpowers with ∆l = 20. The bottom panels highlight the relative difference of the KD and kKD
models with respect to the GR signal.

latitude larger than 30 degrees ( fsky = 0.36). Low-resolution spectroscopy in the near infrared will be
used to measure galaxy redshifts in the range 0.7 < z < 2.0.

The specifics of the Euclid redshift survey depend on the poorly known properties of emission-line
galaxies at moderate redshifts. In order to calculate the redshift distribution of the galaxies as well as
Q(z) and E(z) we use the redshift-dependent luminosity function by Pozzetti et al. (2016, model two) and
assume a limiting line flux of 3.0 × 10−16 erg cm−2 s−1. Further, we use the linear fit for the galaxy bias
b1(z) given in Pozzetti et al. (2016). Our results are summarised in fig. 4.5.

Angular power spectra

We split each of the 165 Euclid mocks into four redshift bins (with boundaries 0.7, 0.86, 1.06, 1.35, 2.0)
that on average contain the same number of galaxies (∼ 1.6 × 107). We then compute the auto- and
cross-power spectra among all bins. To reduce noise we do not resolve individual multipoles and use ten
bandpowers with ∆l = 20. Figure 4.6 shows C(44)

l (left-hand panel) and C(14)
l (right-hand panel), where

the indices 1 and 4 indicate the lowest and highest redshift bin, respectively. The blue curves correspond
to the mean power spectra extracted from the mock catalogues that include all redshift-space effects
(hereafter GR). Note that the auto-spectrum is more than ten times larger than the cross-spectrum. The
shaded regions indicate the standard deviation of the spectra over the 165 realisations in the Euclid-like
(cross pattern) and in the full-sky mocks (light blue).

It is interesting to analyse the different contributions to the spectra. The most commonly considered
source of redshift-space distortions is the so-called Kaiser effect due to the gradient of the galaxy radial
peculiar velocities, i.e. the first term on the right-hand side in eq. (4.26). In our approach, this correction
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Figure 4.7: In order to explain the origin of the clustering signal, we consider two sets of Euclid-like mock
catalogues (each one containing the same 165 skies) in which we arbitrarily switch on and off some effects. In
the first group, redshift-space distortions are only generated by galaxy radial peculiar velocities (KD) whereas
the second suite includes general-relativistic effects to linear order in the perturbations (GR). We fit the angular
power spectra C(i j)

l extracted from each mock catalogue with two models that have been obtained averaging the
clustering signal within each series of catalogues. We then compute the change in χ2 for every sample. In the
left-hand panel, we compare the histogram of P(∆χ2|GR) (on the left) versus P(∆χ2|KD) (on the right). The fact
that the histograms are widely separated and do not overlap implies that an Euclid-like survey will clearly detect
redshift-space distortions that are not included in the KD model.. This is quantified in the right-hand panel where
we plot the fraction F(> x) of the GR mocks within which the KD model is rejected at a confidence level higher
than x using different statistical tests (for further details see section 4.3.3).

derives from the (ni
svi)e terms in the particle shift and is always mixed with the Doppler contribution. In

order to evaluate the relative importance of the velocity-induced shift, we build a new set of Euclid mock
catalogues (based on the same N-body simulations as the GR ones) in which we replace eqs. (4.8), (4.9)
and (4.12) with δχ = −(ni

svi)e/H , δxi = 0 andM = 1, respectively (this is the standard way to implement
redshift-space distortions in simulations and omits the terms proportional to Q in α). We dub these
light cones KD, a short for ‘Kaiser and Doppler’. The red curves in fig. 4.6 show the mean clustering
signal extracted from the KD mocks (which from now on we refer to as the KD model for the auto- and
cross-spectra). The lack of power with respect to the GR results is evident: C(44)

l is underestimated by
∼ 3 per cent and C(14)

l oscillates around zero. In the left-hand panel of fig. 4.7, we demonstrate that
these differences are highly significant. The histogram on the left-hand side displays the distribution of
∆χ2 = χ2

GR − χ
2
KD obtained fitting all the C(i j)

l from the 165 GR mocks with the GR and the KD models,
respectively. Similarly, the histogram on the right-hand side shows the corresponding distribution for the
KD mocks. Based on the fact that the histograms are well separated, we conclude that an Euclid-like
survey should be able to detect the signature of redshift-space distortions that are not included in the KD
model. To better quantify how inaccurately the KD model fits the mock GR data, we apply the statistical
tests we have introduced in section 4.3.3. The cumulative distribution over the 165 GR mocks of the
significance with which the KD model is rejected is shown in the right-hand panel of fig. 4.7. Typically
the data disfavour the simpler model with 8σ confidence or a Bayes factor of 1013. The precise statistical
significance of this result is very sensitive to the assumed Q(z). For instance, it increases to 14σ if we use
model 3 from Pozzetti et al. (2016).

This result is not surprising. It is well known that weak gravitational lensing alters the observed
clustering signal in deep magnitude-limited surveys (E. L. Turner, 1980). The influence of lensing is
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Figure 4.8: The same as fig. 4.7, but for the κKD model, i.e. including the effect of the convergence. For the CML
test, 28 per cent of the GR mocks have ∆χ2 > 0 and therefore favour the κKD model.

twofold: (i) the actual magnitude limit of the survey fluctuates on the sky and with redshift; (ii) the
surface density of galaxies on the sky (and thus their volumetric density in redshift space) is changed.
The last two terms in eq. (4.17) and the Q-dependent term in eq. (4.19) summarise the net effect on the
galaxy overdensity field. Following some early detections (Bartelmann and P. Schneider, 1994; Norman
and Williams, 2000), the weak-lensing effect on clustering has been measured with high statistical
significance (8σ) by cross correlating samples of distant quasars and background galaxies in the Sloan
Digital Sky Survey (Scranton et al., 2005). Given this premise, we build a third set of mock light cones
(labelled κKD) in which we account for the redshift-space distortions due to both the peculiar velocities
and weak lensing assuming that the convergence is the only source of magnification, i.e. M = 1 + 2κ.
To account for both magnification bias and the volume corrections due to lensing, we simply weigh
the N-body particles proportionally to [M(n̂s, z)]Q(z)−1 (instead of the standard [M(n̂s, z)]Q(z)) and use
the same shifts as in the KD mocks.5 The resulting spectra (yellow lines in fig. 4.6 which are barely
distinguishable by eye from the blue ones) provide an excellent fit to the C(i j)

l derived from the GR
mocks. This suggests that the measurable differences between the full signal and the KD model are due
to gravitational-lensing convergence.

In order to make a quantitative analysis and investigate whether other (more subtle and interesting)
light-cone effects (e.g. Doppler lensing and potential terms) might be detectable with a Euclid-like
survey, we once again resort to statistics. Figure 4.8 shows that, in almost all mock GR realizations, the
null hypothesis that the data are generated under the κKD model cannot be rejected to any meaningful
confidence level. Although only few of the skies presents deviations larger than 3σ, fig. 4.8 indicates
that the GR mocks contain an additional signal (most likely due to Doppler lensing) which is however
comparable than the noise. We thus conclude that no additional sources of redshift-space distortions
beyond the Kaiser effect, Doppler contributions and magnification bias can be detected from the angular
clustering of all galaxies with spectroscopic redshifts in a Euclid-like survey divided in four equally-
populated redshift bins. This, of course, does not prevent the development of dedicated probes to isolate
additional contributions, in particular combining photometric and spectroscopic data to define multiple
tracers of the large-scale structure along the lines of the forthcoming discussion in section 4.3.6.

5 The additionalM−1 results from a volume distortion due to lensing. To test the consistency of our code, we evaluate this
effect in two ways. In the GR mocks the change of volume is realized by the particle shift. Alternatively, we weigh particles
proportionally toM−1 in the KD mocks. We find the same result.
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Figure 4.9: The average RMS statistical error of Ĉ(i j)
l over the 165 Euclid mocks and 10 angular power spectra is

plotted as a function of the covered sky fraction (all curves are normalized to unity for fsky = 1). The thick dashed
and solid lines refer to two multipole bins centred at l = 30 and l = 150, respectively. The shaded areas highlight
the corresponding uncertainty obtained bootstrapping the mock light cones. The black curve shows the scaling
∝ f −1/2

sky expected in the Gaussian approximation. The vertical grey line indicates the planned sky coverage of the
Euclid redshift survey.

4.3.5 Estimating covariances with Liger

Mock catalogues provide a direct way to estimate the covariance matrix of observables and test the range
of validity of idealised theoretical models for the statistical errors and their correlations. The covariance
matrix of the power spectrum on large scales is often described in terms of the Gaussian approximation,

Σ
(ik)( jh)
lm = δlm

C(ik)
l C( jh)

l + C(ih)
l C( jk)

l

(2l + 1) fsky
, (4.33)

where δlm denotes the Kronecker symbol and we have restored the superscripts for the redshift bins, for
clarity. As a byproduct of the study presented in the previous section, we use the Euclid mock catalogues
to assess the accuracy of the Gaussian approximation. Overall, our numerical estimates are compatible
with the diagonal structure of Σ

(ik)( jh)
lm . The diagonal elements obtained from the full-sky mocks are in

excellent agreement with eq. (4.33). However, we find that the expected scaling with respect to fsky holds
true only for low multipoles. Figure 4.9 shows how the average standard deviation of C(i j)

l in the mocks
varies as a function of fsky. The thick blue line corresponds to the multipole interval 20 < l ≤ 40, while
the dashed line represents the bin 140 < l ≤ 160. Both curves have been normalised by the corresponding
standard deviations measured in the full-sky mocks. The hatched area indicates the error on the ratio
estimated bootstrapping the realisations. The black line highlights the theoretical scaling proportional
to f −1/2

sky . Note that the statistical error for C(i j)
l at l ∼ 30 follows this curve for fsky > 0.35 but rapidly

departs from it for smaller sky fractions. Basically, the data cannot optimally constrain the large-scale
power when the footprint of the survey covers too small a fraction of the sky. Higher multipoles deviate
from the ideal relation for even larger values of fsky. For an Euclid-like survey, the statistical error on
C(i j)

l at l ∼ 150 is on average 17 per cent larger than expected using the f −1/2
sky scaling. All this exemplifies

the usefulness of Liger (and mock catalogues in general) to estimate the size of measurement errors in
clustering statistics and warns against using simple approximations outside the range within which they
have been accurately tested.
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4.3.6 Detectability of Doppler terms at low redshift

The question we want to address in this section is whether forthcoming probes of the large-scale structure
will be able to provide evidence for additional sources of redshift-space distortions beyond the classic
Kaiser effect and magnification bias. Although the term proportional to α in eq. (4.26) has been almost
invariably neglected in past studies of galaxy clustering, it might become detectable using data from
future wide-angle surveys. Recent work based on analytical calculations has concluded that the Doppler
terms should leave a measurable imprint on the cross correlations between two galaxy populations
(McDonald, 2009; Yoo, Hamaus et al., 2012; Bonvin, Hui and Gaztañaga, 2014) and, possibly, also
on the angular clustering of a single population (Raccanelli, Bertacca, Jeong et al., 2016). Here we
re-examine this case using Liger to build mock catalogues for the SKA2 survey.

Simulating a galaxy redshift survey with the SKA2

The SKA is an unprecedentedly large and powerful array of radio telescopes that will be built in Australia
and South Africa by an international collaboration. The construction will be split into two phases: 10 per
cent of the collective area should be in place by 2023 (SKA1) while the full array should follow by 2030
(SKA2). The ‘billion galaxy survey’ conducted with the SKA2 will measure ∼ 109 individual galaxy
redshifts over 30,000 deg2 using the 21-cm line emission from neutral atomic hydrogen (R. Maartens
et al., 2015). In many senses, this will be the ultimate ground-based redshift survey for cosmology.

We build 125 mock light-cones with the expected characteristics of the billion-galaxy survey. Pro-
ceeding as described in sections 4.2.3 and 4.3.1, we populate our N-body simulations with galaxies
making sure to reproduce the forecasts for the galaxy number counts presented in Yahya et al. (2015).
At low redshifts (z . 0.2) and for flux6 limits below 10 µJy, their predictions for n̄g depend very little
on the limiting flux of the survey (implying that Q ' 0). This might possibly reflect a shortcoming
of their fitting formula (which covers a broad redshift range), an imperfection in the HI modeling, or
the finite mass resolution of the N-body simulations used to make the forecasts (i.e. fainter galaxies
might reside within unresolved dark-matter haloes). Indeed, Yahya et al. (2015) note that observed HI
mass functions at low redshifts contain more low-mass objects than found in the forecasts for SKA2. To
play safe, we avoid this region of parameter space. We thus use a conservative flux limit of 23 µJy to
define our main sample (Yahya et al., 2015, use 5.3 µJy for their realistic forecasts and 23 µJy for the
pessimistic ones) and also consider a second galaxy population (the bright sample) with fluxes above
60 µJy. We derive the corresponding values for Q(z) and E(z) after fitting the cumulative number density
presented in Yahya et al. (2015) with a third-order polynomial. This is the same approach followed by
S. Camera, M. G. Santos and R. Maartens (2015) and yields consistent results with their revised analysis7

(S. Camera, M. G. Santos and R. Maartens, 2017). The outcome of our calculations is shown in fig. 4.5
together with the functions b1(z) which we take directly from Yahya et al. (2015).

To test the impact of the Doppler terms on the clustering of SKA2 galaxies, we build and contrast
two sets of mock catalogues. The first includes relativistic effects while the second drops the Doppler
terms that are proportional to E and Q. We omit Doppler magnification by simply ignoring the velocity-
dependent terms in eq. (4.12). Further, we neglect the term proportional to E in eq. (4.22) so that the
weight wg(z̄) in the second line of eq. (4.25) is replaced with wg(z). We use the label DS (Doppler

6 Although Jy is a unit of flux density for simplicity we refer to it as a flux.
7 In a flux limited survey, Q cannot assume negative values as it would imply that less galaxies are detected when a fainter

limiting flux is considered (the presence of an additional bright cut or another selection criterion are necessary to drive
Q < 0). Due to an unfortunate mishap, the original fitting functions presented in S. Camera, M. G. Santos and R. Maartens
(2015) yield Q < 0 for faint galaxies at low redshifts. Although this mistake does not affect their conclusions, the negative
magnification biases have been used by many authors to make forecasts for the SKA2 survey
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Figure 4.10: Forecasts for the billion-galaxy survey that will be conducted with the SKA2. We consider two
galaxy populations (the total sample (T) characterised by observed flux above 23 µJy and the bright sub-sample (B)
corresponding to a flux limit of 60 µJy) sampled within two narrow and consecutive redshift bins (I: 0.15 < z < 0.2
and II: 0.2 < z < 0.25). The average cross-spectra Ĉ(TI BII)

l (solid thick line) and Ĉ(BI TII)
l (dashed thick line) extracted

from the full GR mocks are shown in the left-hand panel. The hatched area denotes the standard deviation of
the noise for Ĉ(TI BII)

l . The corresponding quantities computed from the DS mock catalogues are displayed in the
right-hand panel.

suppressed) to indicate the light cones constructed in this way, since it is impossible to isolate the
remaining Doppler effects.

Cross spectra and results

General relativistic corrections alter galaxy clustering on large scales with respect to the predictions of the
‘standard model’ including a linear bias and the Kaiser distortions. In particular, they break the symmetry
of two-point statistics under the exchange of particles in the pairs. In the distant-observer approximation,
the relativistic effects generate odd multipoles in the redshift-space cross-correlation function between
two galaxy populations or, equivalently, an imaginary part in the cross spectrum (McDonald, 2009;
Yoo, Hamaus et al., 2012; Croft, 2013; Bonvin, Hui and Gaztañaga, 2014; Bonvin, 2014; Raccanelli,
Bertacca, Doré et al., 2014). In terms of the comoving wavenumber of the perturbations k, relativistic
corrections to the cross spectra due to Doppler effect and gravitational redshifts are suppressed by a
factorH/k with respect to the leading standard-model terms (McDonald, 2009). Additional corrections
(due to the gravitational potential, the integrated Sachs-Wolfe effect and the Shapiro time delay) are
instead suppressed by a factor (H/k)2. Measurements of galaxy clustering on scales comparable with
the Hubble radius are therefore necessary to detect them. There is a complication, however. In the
standard model, the time evolution of the galaxy populations and wide-angle effects due to the fact
we observe on our past light-cone give rise to several anti-symmetric terms with similar amplitudes to
the relativistic corrections (Bonvin, Hui and Gaztañaga, 2014). Moreover, dust extinction can further
introduce spurious anti-symmetric terms in the galaxy correlation functions (Fang et al., 2011). Finally,
from the observational point of view, it is challenging to keep the photometry stable and measure weak
clustering signals on very large scales. Therefore, it is still an open question whether the Doppler
contribution can be seen. In the rest of this section, we will employ our SKA2 mock light cones to
address this issue. In doing this, we will neglect systematic effects due to observational limitations and
dust and focus on the feasibility of the experiment from a theoretical point of view.
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Figure 4.11: The observable ∆Ĉl averaged over the GR (blue line) and DS (red line) mock catalogues. Hatched
areas indicate the standard deviation of the estimates over the realisations.

In order to maximise the chances for a successful outcome, it is important to carefully configure the
test we want to perform. There are a few facts to take into consideration: (i) linear peculiar velocities
grow bigger at lower redshifts; (ii) γ0 in δg,v is divided byHχs; (iii) the galaxy number density of the
samples rapidly decreases for z & 0.2 thus producing a large evolutionary bias but also increasing noise;
(iv) we need to cover enough comoving volume to reduce sample variance. Given all this, we end up
considering the interval 0.15 < z < 0.25 which we further divide into the bins I: 0.15 < z < 0.2 and II:
0.2 < z < 0.25. We also make use of the two galaxy populations introduced in section 4.3.6.

In order to access the scales that are sensitive to the Doppler contribution, we focus on galaxy pairs
with very wide angular separations. We thus compute the cross angular power spectrum, Ĉ(TI BII)

l , between
the total galaxy sample within the lower redshift bin and the bright subsample within the highest redshift
bin. Similarly, we measure Ĉ(BI TII)

l by considering the bright galaxies in bin I and the full population in
bin II. Finally, we consider the difference between the cross spectra:

∆Ĉl = Ĉ(TI BII)
l − Ĉ(BI TII)

l . (4.34)

Average results over the SKA2 mock light cones are shown in fig. 4.10. The left-hand panel displays
Ĉ(TI BII)

l (solid thick line) and Ĉ(BI TII)
l (dashed thick line) both sampled in bandpowers with ∆l = 4. The

same quantities derived from the DS mock catalogues are shown in the right-hand panel. The additional
Doppler terms included in the GR light cones clearly enhance the difference between the cross spectra at
low l. They boost Ĉ(BI TII)

l (i.e. make it more negative) and suppress Ĉ(TI BII)
l . This can be explained as

follows. The leading Doppler contribution to the cross spectra on large scales originates from correlating
the term b1δsim −H

−1∂ni
svi/∂χs with the Doppler term in eq. (4.26). Therefore, schematically, in terms

of single Fourier modes,

∆Ĉl ∝
[
(bTI + µ2

I fI)αBII − (bBI + µ2
I fI)αTII

] δI vII

HIIχII
+

[
(bBII + µ2

II fII)αTI − (bTII + µ2
II fII)αBI

] δII vI

HIχI
,

(4.35)

where f = d ln D/d ln a (with D the linear growth factor of matter perturbations) describes the evolution
of the velocity field, while µI and µII are the cosines between the wavenumber and the two lines of sight
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Figure 4.12: As in fig. 4.7 but for the 125 DS and GR mock catalogues for the billion-galaxy survey that will be
conducted with the SKA2. We fit the first 25 multipoles of ∆Ĉl defined in eq. (4.34). The fact that the histograms
do not significantly overlap demonstrates that the SKA2 will be able to detect non-standard Doppler terms in the
galaxy-clustering signal.

in the wide-angle configuration. A peculiarity of our samples is that bB(z) ' bT(z) = b1(z) to very good
accuracy (this is different from Bonvin, Hui and Gaztañaga, 2014, which relies on different linear bias
parameters and use three dimensional correlation functions) so that

∆Ĉl ∝
(
αBII − αTII

) (
bI + µ2

I fI
) δI vII

HIIχII
+

(
αTI − αBI

) (
bII + µ2

II fII
) δII vI

HIχI
. (4.36)

Now, the DS mocks only include the geometric distortions and those generated by cosmic acceleration,
i.e. αDS = 2 + [1 − (3/2)Ωm(z)]Hχs which is independent of the galaxy sample and only depends on the
underlying cosmological model. Thus, ∆Ĉl ' 0 in the DS case. On the other hand, for the GR mocks we
get αBI = −1.49, αBII = −2.42, αTI = 0.35 and αTII = −0.38 which combine to produce a positive signal.
In this case Q and E give roughly equal contributions.

The shaded areas in fig. 4.10 indicate the standard deviation for Ĉ(TI BII)
l (the scatter for Ĉ(BI TII)

l is of
comparable size). It is evident that the cross spectra extracted from the galaxy survey will be very noisy.
In fig. 4.11 we show the mean and scatter of ∆Ĉl for the full GR mocks (blue) and the DS ones (red).
While the relative error on the single cross-spectra is very large, ∆Ĉl can be measured with much better
accuracy (especially for l < 25). Since both galaxy populations trace the same large-scale structure, most
of the noise in the cross-spectra is correlated and thus does not appear in the difference. This exemplifies
the advantage of using a multi-tracer approach (McDonald and Seljak, 2009).

We are now ready to investigate whether Doppler effects will be measurable with the SKA2. We
first measure ∆Ĉl from the 125 GR mocks and then fit the multipoles in the range 1 ≤ l ≤ 25 using
both the GR and the DS models (we recall that the models are obtained averaging the signal over all
the mock light cones). The left-hand side histogram in the left panel of fig. 4.12 shows the distribution
of the corresponding value for ∆χ2 = χ2

GR − χ
2
DS. In parallel, we fit the ∆Ĉl measurements extracted

from the DS mocks and plot the corresponding histogram of ∆χ2 on the right-hand side of the figure.
The fact that the two histograms are well separated demonstrates that the SKA2 data should contain
enough information to distinguish between the two models. To better quantify this, for each mock light
cone we compute the statistical significance with which we can reject the null hypothesis that the GR
data are generated by the DS model. The resulting cumulative distribution is plotted in the right panel
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of fig. 4.12 using three different statistical tests (see section 4.3.3). In the vast majority of the mock
catalogues, the DS model is ruled out at a confidence ranging between 4 and 7σ (or with a Bayes factor
above 1000 corresponding to decisive evidence). We conclude that the SKA2 should be able to detect the
non-standard Doppler contribution to galaxy clustering.

Our results heavily rely upon the multi-tracer technique for the suppression of the statistical noise.
After repeating the analysis with a single tracer (using cross correlations between adjacent and narrow
redshift bins), we find that only extreme values for the magnification and evolutionary biases (e.g. Q & 10
and |E| & 20) could lead to a statistically significant detection.

4.4 Summary & conclusions

There are multiple reasons for which galaxy clustering requires a proper general relativistic description.
(i) We observe events lying on our past light cone. (ii) The propagation of light is affected by the presence
of inhomogeneities in the matter distribution. (iii) In consequence, galaxy observables (i.e. redshift, flux
in some waveband and angular position on the sky) are influenced by the large-scale structure intervening
between the source and the observer. However, when we interpret observations we use an unperturbed
FRW model to translate redshifts and fluxes into distances and absolute luminosities. This leads to
redshift-space distortions, i.e. the reconstructed galaxy density does not coincide with the actual one. The
most important source of the discrepancy is the correction due to the peculiar velocity gradient (Kaiser,
1987) but it is long known that there are additional contributions and that they might become significant
at large angular separations. Although no consensus has been reached yet, some recent studies based
on analytical calculations and on the Fisher information matrix have concluded that signatures of these
additional corrections should be detectable with the next generation of wide-angle surveys.

This chapter describes the Liger method, a numerical technique to build mock galaxy catalogues
including all general relativistic corrections at linear order in the cosmological perturbations. Liger post
processes the output of a Newtonian simulation and combines its snapshots at constant background time
to build the galaxy distribution in comoving redshift space. The Liger method is composed of three
steps: (i) we shift the position of the simulated galaxies from real to redshift space; (ii) we evaluate the
corresponding magnification due to gravitational lensing; (iii) we find the intersection of the modified
world lines of the galaxies with the unperturbed backward light cone of the observer in redshift space.
Steps (i) and (ii) include both local corrections and terms that have been integrated along the line of
sight using the Born approximation. Note that standard mock galaxy catalogues generally include only
the Kaiser effect for step (i) and do not account for lensing (with the exception of Guimarães, A. D.
Myers and Shanks, 2005) although magnification maps are routinely built for weak-lensing studies (e.g.
Wambsganss, Cen and Ostriker, 1998; Jain, Seljak and S. White, 2000; M. White and Hu, 2000; Vale and
M. White, 2003; Fosalba, Gaztañaga, Castander and Manera, 2008; Fosalba, Gaztañaga, Castander and
Crocce, 2015; Hilbert et al., 2009; Kiessling et al., 2011).

Liger is characterized by the following features. (i) It can be applied to the output of any Newtonian
simulation (N-body or hydrodynamic) independent of the code with which it has been run. (ii) It is fast
to execute so that it is computationally feasible to produce very large numbers of mock catalogues for a
given survey. (iii) A variant of the standard implementation has been specially designed to work with
simulations that cover very large comoving volumes but do not resolve single galaxies. In this case, the
galaxy density field is obtained by biasing the dark-matter distribution.

The main applications of Liger are foreseen for forthcoming wide-angle spectroscopic surveys like
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DESI8, Euclid9, HETDEX10, SKAII11, SPHEREx12, SuMiRe13 as well as photometric surveys like
J-PAS14 and LSST15. Mock catalogues will be used as forecasting tools and to measure biases and
covariance matrices of estimators for several statistics of the large-scale structure. As a proof of concept,
we quantify the impact of magnification bias in the angular clustering of galaxies for a Euclid-like
survey. Our results show that lensing convergence generates a non-negligible correction for the angular
power spectra of galaxies in broad redshift bins and dominates cross-spectra between galaxies at widely
separated redshifts (similar conclusions have been reached by Di Dio, Durrer et al., 2014; Montanari and
Durrer, 2015, using analytical calculations). The convergence signal can be detected at 8σ significance
and this provides the intriguing possibility to measure the lensing potential from the cross spectra
(Montanari and Durrer, 2015).

Additional redshift-space distortions on top of the standard Kaiser correction and the weak-lensing
convergence are generally small. Therefore, customised techniques need be developed in order to
measure their signatures. It is foreseeable that Liger-based mocks will be key to optimising the design
of these probes. In anticipation of these future applications, we have investigated the detectability of
several additional Doppler terms using the specifics of the planned ‘billion galaxy survey’ with the SKA2
telescope. Our results show that using two galaxy populations with different flux cuts (T: f > 23 µJy and
B: f > 60 µJy) and two consecutive redshift intervals (I: 0.15 < z < 0.2 and II: 0.2 < z < 0.25), it will be
possible to measure a significant Doppler-induced signal. The statistic we use is the difference of the
angular cross power spectra ∆Cl = C(TI BII)

l −C(BI TII)
l . For multipoles l ≤ 25, this quantity is dominated

by the contribution of the Doppler terms and shows a strikingly reduced variance compared to each of the
cross correlations due to the fact that both galaxy populations are biased tracers of the same underlying
matter density. Based on our simulations, ∆Cl should be detectable with a signal-to-noise ratio of ∼ 5.5.

8 http://desi.lbl.gov
9 http://www.euclid-ec.org

10 http://hetdex.org
11 https://www.skatelescope.org
12 http://spherex.caltech.edu
13 http://sumire.ipmu.jp/en/
14 http://j-pas.org
15 https://www.lsst.org
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CHAPTER 5

Summary & conclusions

In the final chapter, we want to summarise and highlight the main results of this thesis. The investigation
of a new model for gravitational collapse has improved our knowledge of how haloes form and has
contributed to the understanding of their properties. Furthermore, we provide a tool to calculate mock
observed distributions of galaxies including leading order general relativistic effects. This is particularly
suited to predict observables on large scales for the upcoming surveys that will provide an unprecedented
amount of data. In the following, we discuss these results also in a broader context.

5.1 A new paradigm for the formation of dark-matter haloes

The current picture of halo formation is mostly based on the ellipsoidal collapse model (BM96;Sheth,
Mo and Tormen, 2001; dubbed ECS in chapter 2). One of the major successes of the ECS model is that it
can explain why haloes of smaller mass originate on average from higher density regions in the initial
density field (see e.g. fig. 2.9). Based on the spherical collapse model, the ECS additionally takes into
account that surrounding structures break the spherical symmetry and induce an anisotropic external
tidal field. The action of the tidal field distorts the initial sphere of the ECS and, as a consequence, the
perturbation always collapses later compared to a vanishing tidal field. Since the mean strength of the
tidal field increases for perturbations of lower mass, the ECS model predicts the density contrast δL to
rise for lower mass haloes, which is in agreement with results from simulations.

However, simulations show a larger scatter in δL than estimated from the ECS model. Moreover, the
distribution of the matter of a halo identified today in the initial density field (called protohalo) is not
spherical, but better described by an ellipsoid. This is another effect of the tidal field: along a certain
direction the gravitational force is enhanced, while it is reduced in another direction. Indeed, simulations
reveal that the shape and orientation of protohaloes and their tidal field are correlated. Accordingly, we
incorporate this into the collapse model by replacing the initial shape of the perturbation with an ellipsoid
aligned with the tidal field (LBP14 and chapter 2; dubbed ECE). Interestingly, when this new model is
applied to protohaloes from simulations, the required linear density contrast for perturbations to collapse
today is approximately constant (see fig. 2.1). This common value for δL is close to δsc, indicating that
the collapse of ellipsoidal perturbations in the presence of a tidal field proceeds similarly to the spherical
collapse model.

Furthermore, following the collapse of the haloes in simulations, we found that many haloes of lower
mass are already assembled prior to the time of their identification. In some cases this happens at times
earlier than half of the age of the universe (see figs. 2.5 and 3.2). We give a prescription to estimate the
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collapse time of haloes and show that if we require the perturbation in the ECE model to collapse at the
very same time the model predictions match the results from simulations well (see fig. 2.8). In chapter 3
we study some example haloes and show that haloes which are located in prominent filaments of the
cosmic web stop growing in mass. This behaviour is unexpected as we would suppose that haloes always
grow.

Hence, we present a new paradigm of halo formation, where haloes evolve approximately following
the expectations from the spherical collapse model. The tidal field reshapes the protohalo and eventually
leads to the formation of a filament, which is able to quench the growth of the halo. Since haloes that
collapse earlier originate from higher initial densities, this model can explain the observed trend of the
linear density contrast at the sites of protohaloes as a function of their mass. Finally, we present a simple
model that uses the ellipticity of the tidal field to predict the accretion history of haloes (see section 3.3.5).

5.2 A piece in the puzzle of understanding assembly bias

The fact that the amplitude of the two-point correlation function of haloes does not only depend on the
halo mass but also on their age or other internal characteristics is called assembly bias. It has been argued
that the suppressed accretion of a subset of low mass haloes would lead to assembly bias (e.g. H. Y. Wang,
Mo and Jing, 2007; Dalal et al., 2008; Hahn, Porciani, Dekel et al., 2009; J. Wang et al., 2011). Although,
a correlation between the growth of haloes and the strength of the tidal field has been noted (Hahn,
Porciani, Dekel et al., 2009; J. Wang et al., 2011), the detailed physical mechanism was so far unclear.
Within this thesis, in chapter 3, we describe how haloes embedded in prominent filaments become stalled,
i.e. have no net growth in mass. From this explanation, it is clear that early and late collapsing haloes
populate different regions of the cosmic web. This difference in the spatial distribution of the haloes is
the origin of assembly bias. As very massive haloes source the filaments and have a large clustering
amplitude, early collapsing smaller haloes follow their distribution and clustering properties. On the
other side, accreting (or late collapsing) haloes avoid the close neighbourhood of filaments. Hence, their
clustering amplitude is decreased. We find a consistent behaviour among all haloes within the sample we
studied in fig. 3.3, classified using the collapse time. The strength of the bias found is among the largest
reported in the literature.

Strong assembly bias has also been reported by Faltenbacher and S. D. White (2010) when splitting
haloes by the velocity anisotropy parameter β (eq. 3.2). However, the reason of the correlation between
the internal halo quantity β and the position in the cosmic web remained elusive. As we show in chapter 3,
we can explain this as a characteristic imprint of the filament on stalled haloes. The prominent non-linear
structure alters the accretion pattern of the collapsing patch and induces tangential orbits of the halo
particles. Thus, early collapsing haloes carry a reduced value of β, as a characteristic signature, which
indicates tangentially dominated particle orbits, as a consequence of the cosmic web (fig. 3.12). Hence,
the model of halo formation presented here corroborates and connects different studies on halo clustering
and contributes to the understanding of assembly bias.

5.3 The impact of General Relativity on the large-scale clustering of
galaxies

Finally, in chapter 4 we present a novel method to build mock realisations of the observed galaxy number
counts on large scales using numerical simulations. The next generation of galaxy redshift surveys will
map galaxies over a large fraction of the sky up to high redshifts (z ∼ 1 − 2). Thus, the correlation of
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galaxies on large scales becomes observable. These correlations are effected by redshift-space distortions
originating from the fact that we observe galaxies on the past light cone. We have developed and
implemented a new algorithm to extract a light cone from a Newtonian simulation taking into account
leading-order redshift-space distortions as predicted by the weak-field expansion of GR. The method
is fast and can be used to produce many realisations, which is helpful to estimate the expected error on
observables of galaxy clustering.

We name our method Ligerand illustrate its usage with two examples. First, we estimate the angular
power spectra of the galaxy distribution for a Euclid-like survey. We find that the large-scale signal of the
cross-correlation between galaxies in different redshift bins is dominated by magnification due to the
weak lensing convergence. Second, we use the two-tracer approach to show that the SKA2 galaxy survey
is in principle able to detect relativistic Doppler effects in the angular power spectrum of galaxies. The
Liger code is made publicly available1.

5.4 Outlook

We present a model of halo formation which describes the evolution of our rather small number of
randomly selected haloes well. Thus, it is desirable to test this model against a larger statistical sample of
haloes. It is interesting to study whether the simple condition on e is sufficient to predict the appearance
of filaments or further conditions e.g. on the prolateness p are necessary. Further, the implementation of
this model into the excursion-set framework could improve predictions of the halo mass function in the
future.

Another interesting question is whether early-collapsing haloes in filaments can accrete baryonic matter.
Dark matter haloes are of special importance, because they are the sites where baryons accumulate and
form galaxies. Hence, it is interesting to study what type of galaxies are harboured by early- and late
collapsing haloes. This has already been investigated by the two follow-up papers of the ZOMG series
(Romano-Díaz et al., 2017; Garaldi et al., 2017). Even though the gas accretion of stalled haloes is
suppressed compared to accreting ones, in both halo types actively star-forming disk galaxies can develop.
This makes it difficult to detect the assembly bias effect in galaxies. However, some characteristic
differences between the galaxies are found, like the age of the stellar content and the thickness of the
stellar disk. Although, it is currently computationally challenging, it would be desirable to study a larger
galaxy sample in the future. This could help to determine whether a galaxy assembly bias signal is in
principle observable.

Finally, we present Liger, a tool to produce mock observations on large-scales including leading
order general relativistic effects. This is particularly useful for the upcoming surveys, where Liger
can contribute to predict the expected large-scale clustering signal and it can be used to estimate the
covariance matrix. Furthermore, Liger can be used to identify observables which make it possible to
measure the small signature of general-relativistic redshift-space distortions (beyond the known Kaiser
and magnification effect). Thus, our new tool will be key to shape new probes and target novel large-scale
clustering signals.

1 www.astro.uni-bonn.de/~porciani/LIGER
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APPENDIX A

Collapse thresholds for SO-haloes

In order to test the sensitivity of our results to our adopted (FOF) halo definition, we have repeated
the analysis on dark-matter haloes identified using a spherical overdensity (SO) algorithm. Our SO
halo finder identifies local maxima in the evolved density field and grows spheres around them until
a given density contrast, ∆SO, is reached. For this analysis we have adopted three different over-
density values: ∆SO = 100, 200 and 500. All aspects of the analysis were carried out as described in
section 2.3.3, including modifications to the model freezing factor, f , required to match the (z = 0)
SO-halo overdensities at z = 0.

In fig. A.1 we plot the resulting δ − δ (for collapse at zc rather than at z = 0). In general, we find that
all conclusions drawn from our analysis of FOF haloes remains valid for SO haloes as well, suggesting
that our interpretation should not be affected by halo definition.
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Appendix A Collapse thresholds for SO-haloes

Figure A.1: Same as fig. 2.8 but for haloes identified using the spherical overdensity algorithm with density contrast
thresholds of 100, 200 and 500.
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APPENDIX B

Likelihood-ratio test

Let x be a Gaussian data vector with mean m and covariance matrix Σ. Let M be a perfect theoretical
model for m, i.e. M = m. The likelihood of M given the data is proportional to the probability
of observing the data under the hypothesis that M is true, i.e. L(M|x) ∝ exp(−χ2/2) with χ2 =

(x −M)T · Σ−1 · (x −M). Let also consider an imperfect or incomplete model N such that m − N = B.
The likelihood ratio between M and N is L(M|x)/L(N|x) = exp(−∆χ2/2) with

∆χ2 =(x − N)T · Σ−1 · (x − N) − (x −M)T · Σ−1 · (x −M)

=(B + e)T · Σ−1 · (B + e) − eT · Σ−1 · e
=BT · Σ−1 · B + 2 eT · Σ−1 · B , (B.1)

where we have decomposed the data vector in the signal and noise components, x = m + e = M + e, and
used the symmetry of the covariance matrix. The fact that the difference in the log-likelihoods depends
linearly on e implies that ∆χ2 follows a Gaussian distribution over an ensemble of realisations of the data
vector. Its expectation is

µ = E[∆χ2] = BT · Σ−1 · B . (B.2)

Similarly, its variance is
E[(∆χ2 − µ)2] = 4 µ. (B.3)

In a classic likelihood-ratio test for a simple hypothesis, the probability distribution of ∆χ2 obtained under
a model (i.e. assuming that this model perfectly describes m) is compared against the corresponding
distribution obtained under an alternative model. If the covariance matrix of the data does not depend
on the model, the two ∆χ2 distributions differ only in the sign of their mean values (in fact models M
and N are switched in the alternative hypothesis and the sign of ∆χ2 is reversed). The test rejects one of
the models if the two distributions of ∆χ2 are clearly separated with respect to their intrinsic dispersion.
Since the distance between the averages is 2µ and the RMS value of each distribution is 2

√
µ, the ratio

2µ/(2
√
µ) =

√
µ is commonly referred to as the signal-to-noise ratio S/N. If, however, the covariance

matrix is model dependent, then the comparison should be done between two Gaussian distributions
with different mean values µM = BT · Σ−1

M · B and µN = −BT · Σ−1
N · B as well as variances 4µM and 4µN ,

respectively.
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