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“Science is all about: building and communicating knowledge. 

You may have a beautiful experiment in your lab notebook, or in 

your head, but it isn’t science until you make it available to 

others so that they can build on it.”  

— Nobel Laureate Oliver Smithie
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Abstract	
Convergence of exponentially advancing technologies is driving medical research with life 

changing discoveries. On the contrary, repeated failures of high-profile drugs to battle 

Alzheimer’s disease (AD) has made it one of the least successful therapeutic area. This 

failure pattern has provoked researchers to grapple with their beliefs about Alzheimer’s 

aetiology. Thus, growing realisation that Amyloid-β and tau are not ‘the’ but rather ‘one of 

the’ factors necessitates the reassessment of pre-existing data to add new perspectives. To 

enable a holistic view of the disease, integrative modelling approaches are emerging as a 

powerful technique. Combining data at different scales and modes could considerably 

increase the predictive power of the integrative model by filling biological knowledge gaps. 

However, the reliability of the derived hypotheses largely depends on the completeness, 

quality, consistency, and context-specificity of the data. Thus, there is a need for agile 

methods and approaches that efficiently interrogate and utilise existing public data.  

This thesis presents the development of novel approaches and methods that address 

intrinsic issues of data integration and analysis in AD research. It aims to prioritise lesser-

known AD candidates using highly curated and precise knowledge derived from integrated 

data. Here much of the emphasis is put on quality, reliability, and context-specificity. This 

thesis work showcases the benefit of integrating well-curated and disease-specific 

heterogeneous data in a semantic web-based framework for mining actionable knowledge. 

Furthermore, it introduces to the challenges encountered while harvesting information from 

literature and transcriptomic resources. State-of-the-art text-mining methodology is 

developed to extract miRNAs and its regulatory role in diseases and genes from the 

biomedical literature. To enable meta-analysis of biologically related transcriptomic data, 

a highly-curated metadata database has been developed, which explicates annotations 

specific to human and animal models. Finally, to corroborate common mechanistic patterns 

— embedded with novel candidates — across large-scale AD transcriptomic data, a new 

approach to generate gene regulatory networks has been developed.  

The work presented here has demonstrated its capability in identifying testable mechanistic 

hypotheses containing previously unknown or emerging knowledge from public data in 

two major publicly funded projects for Alzheimer’s, Parkinson’s and Epilepsy diseases.  
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Zusammenfassung	
Die Konvergenz exponentiell fortschreitender Technologien treibt die medizinische 

Forschung mit lebensverändernden Entdeckungen voran. Andererseits das wiederholte 

Versagen von hochkarätigen Medikamenten gegen die Alzheimer-Krankheit hat sie zu 

einem der am wenigsten erfolgreichen Therapiegebiet gemacht. Dieses Versagensmuster 

hat Forscher dazu veranlasst, sich mit ihren Überzeugungen über die Alzheimer-Ätiologie 

auseinanderzusetzen. Die wachsende Erkenntnis, dass Aβ und tau nicht die Faktoren, 

sondern einer der Faktoren sind, macht eine Neubewertung bereits vorhandener Daten 

erforderlich, um neue Perspektiven zu eröffnen. Um eine ganzheitliche Betrachtung der 

Krankheit zu ermöglichen, entwickeln sich integrative Modellierungsansätze zu einer 

wirkungsvollen Methode. Die Kombination von Daten aus verschiedenen Ebenen und 

Modi wird die Vorhersagekraft des integrativen Modells erheblich erhöhen, indem 

biologische Wissenslücken geschlossen werden. Die Zuverlässigkeit der abgeleiteten 

Hypothesen hängt jedoch in hohem Maße von der Vollständigkeit, Qualität, Konsistenz 

und Kontextspezifität der Daten ab. Daher bedarf es agiler Methoden und Ansätze, die 

öffentlich verfügbare Datensätze effektiv und effizient abfragen und nutzen. 

Diese Arbeit stellt die Entwicklung neuer Ansätze und Methoden vor, die sich mit 

wesentlichen Fragen der Datenintegration und -analyse in der Alzheimer-Forschung 

befassen. Sie zielt auf die Priorisierung von weniger bekannten Alzheimer-Kandidaten mit 

Hilfe von hochgradig kuratiertem und präzisem Wissen, das aus integrierten Daten 

gewonnen wird. Dabei wird der Schwerpunkt auf Qualität, Zuverlässigkeit und 

Kontextspezifität gelegt. Diese Arbeit zeigt den Nutzen der Integration gut kuratierter und 

krankheitsspezifischer heterogener Daten in ein semantisches web-basiertes Framework 

für die Gewinnung von handlungsfähigem Wissen. Darüber hinaus werden die 

Herausforderungen bei der Extraktion von Informationen aus Literatur und 

transkriptomischen Ressourcen vorgestellt. Modernste Text-Mining-Methodik werden 

entwickelt, um miRNAs und ihre regulatorische Rolle bei Krankheiten und Genen aus der 

biomedizinischen Literatur zu extrahieren. Um die Metaanalyse von biologisch verwandten 

transkriptomischen Daten zu ermöglichen, wird eine hochgradig kuratierte Metadaten-

Datenbank entwickelt, die Annotationen spezifisch für menschliche und tierische Modelle 

bereitstellt. Schließlich wird ein neuer Ansatz zur Generierung von 

Genregulationsnetzwerken entwickelt, um gemeinsame mechanistische Zusammenhänge
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 nachzuweisen, die mit neuartigen Kandidaten in umfangreichen transkriptomischen 

Alzheimer-Daten eingebettet sind. 

Die hier vorgestellte Arbeit hat gezeigt, dass sie in der Lage ist, testbare mechanistische 

Hypothesen zu identifizieren, die bisher unbekannte oder neu entstehende Erkenntnisse aus 

bestehenden öffentlich verfügbare Daten enthalten. Diese Daten stammen aus zwei 

öffentlich finanziert Projekten, die sich mit Alzheimer-, Parkinson- und Epilepsie-

Erkrankung beschäftigen 
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Glossary	
This glossary provides information on the tools applied in this thesis. Further information 

on the listed tools can be found under the URLs provided. 
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A software platform for visualization and analysis of complex 

biological networks along with integration of experimental of data 

http://www.cytoscape.org/  

Knowtator 

A text annotation tool integrated in the Protégé for manual 

information extractions tasks 

http://knowtator.sourceforge.net/index.shtml  

ProMiner 

A named entity and concepts recognition tool used in the field of life 

sciences 

https://www.scai.fraunhofer.de/de/geschaeftsfelder/bioinformatik/pr

odukte/prominer.html  

Protégé 

A knowledge representation framework for ontology development 

and management  

https://protege.stanford.edu/products.php  

SCAIView 

A semantic search engine for biomedical concepts and entities from 

scientific literature using comprehensive biomedical terminologies 

and disease ontologies 

https://www.scaiview.com/en/introduction.html  

MySQL 
A SQL-based relational database management system  

https://www.mysql.com/  
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A leading knowledge management platform that integrates data 

storage and data mining applications needed for translational research 

and genomic research  
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Chapter	1 Introduction	
The irreversible and debilitating nature of neurodegenerative diseases (NDD) — with no 

cure — has made it a daunting medical and socio-economic issues of our time. A focused 

interdisciplinary effort to transform our biological understanding of the brain, driven by 

technological advancements and large-scale data, aims to treat and eradicate NDDs. Today, 

it is possible to sequence a human genome in a day with cost of approx. $1000 compared 

to the cost of $3 billion and several years of effort needed for the first human genome 

sequencing. Yet, the multifactorial nature of these diseases has made it difficult to unravel 

its molecular underpinnings; leading to repeated drug failures. Thus, innovative paradigms 

are needed to discover meaningful players and gain biological insights from high 

dimensional feature space.  

1.1 Alzheimer’s	disease:	A	looming	global	crisis	

NDDs share a common property of progressive dysfunction and loss of neurons, which is 

the major cause of motor (ataxia) and mental dysfunction (dementia). In 2016, 47 million 

people were demented with an estimated global cost of $818 billion [1]. Owing to 100% 

drug attrition rate in the last two decades1 [2], WHO has recognised dementia as the “public 

health priority” [3]. Alzheimer’s disease (AD) is the most prevalent form of NDD, 

representing approximately 60–70% of the dementia cases. This global epidemic is 

currently the 6th leading cause of death and costs $160 billion in the USA alone, which will 

spike to $1 trillion by 2050 [4]. Moreover, AD prevalence has increased from less than 1% 

to 2.5% as the first baby boomers turned 65 [4]. If unaddressed, AD’s economic burden 

will simply become unsustainable, driving millions below the poverty line.  

AD is characterised clinically by progressive cognitive decline and neuropathologically by 

the presence of intraneuronal neurofibrillary tangles (NFTs) and extracellular amyloid-beta 

(Aβ) deposits — hallmark pathological features [5,6]. It begins with slowly progressing 

memory loss and advances to deteriorate higher intellectual and cognitive abilities, namely 

language, recognition, and personality [7]. The actual AD neuropathology(-ies) is thought 

                                                

1 https://www.ohe.org/publications/dementia-rd-landscape (this and subsequent URLs have been last 
accessed on 15th March 2018) 
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to begin 20–25 years before any apparent clinical symptoms, making it difficult for early 

diagnosis and treatment [8]. Moreover, a very thin line delineates the memory loss in the 

initial phase of normal ageing and AD [9]. This awareness has recently led to the refinement 

(first revision since 1984) of current AD guidelines and diagnostic criteria [10]. Thus, based 

on the disease continuum, AD is now classified as: (i) preclinical AD (newly defined stage) 

represents asymptomatic individuals with evidence of amyloidosis, synaptic dysfunction, 

and not overtly evident cognitive changes [11] (ii) in AD-MCI stage noticeable changes in 

memory and thinking are observed, disrupting day-to-day activities [12] (iii) AD dementia 

causes severe impairments of memory, thinking, and behaviour, needing support in 

everyday life [13].  

Furthermore, two major categorisations of AD cases are: (i) Based on the inheritance 

pattern — familial and sporadic (ii) Based on the age of onset — early-onset AD (EOAD) 

and late-onset AD (LOAD). Familial AD exhibits the mendelian autosomal dominant 

pattern of inheritance attributed to several and varied highly penetrant mutations in more 

than 20 genes [14]. Accounting for 95% of the AD cases, sporadic AD is the commoner 

form whose precise aetiology is not yet known. However, it is attributed to multiple 

inheritances that include low penetrant genetic variants and non-genetic factors such as 

environmental risks [15]. Since sporadic AD mostly occurs after the age of 65 years, it is 

synonymously used with LOAD. EOAD accounts for 1-2% of all the AD cases with age of 

onset earlier than 65 years and accounts for 10% of familial AD cases [16,17].  

1.2 AD	etiopathogenesis		

Although the AD cause-consequence debate still continues, many researchers have tried to 

elucidate its insidious features since its first description by Alois Alzheimer in 1907 [18]. 

Indeed, with the advent of molecular revolution in the mid-1980s, identification of AD 

genetic risks offered a promise of more rapid development in unravelling the AD aetiology 

[15]. However, some of the elementary questions asked decades ago about Aβ and NFTs, 

although highly topical, remains unanswered.  

1.2.1 Amyloid	cascade	hypothesis		

At this point of time, the central role of “neurotoxic Aβ plaques” is very strong in AD 

pathogenesis and believed to be “too big to fail”; Joseph et al. described it as the “Church 

of the Holy Amyloid” [19,20]. It has long been hypothesised that the core of Aβ plaques 
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formation is due to disordered proteolytic actions of α-, γ- and β-secretases on APP 

processing leading to abnormal folding of Aβ peptides, aggregating as insoluble plaques. 

Hardy and Allsop [21] postulated this Aβ dyshomeostasis as the primary event in AD 

pathological chain, known as the amyloid cascade hypothesis (ACH). Nonetheless, it was 

later transpired that (a) the mutations in the familial AD genes caused overproduction of 

Aβ 42 peptide (b) e4 allele of APOE (APOE4) gene is a potent risk factor [22] (c) decreased 

Aβ clearance was observed in LOAD cases [7] (d) soluble Aβ oligomers were primary 

neurotoxic agents [23] and (e) trisomy 21 (Down syndrome) led to overexpression of APP 

gene [24]. Most researchers accept that the downstream effect of Aβ plaques initiate tau 

hyperphosphorylation, leading to NFT formation, further synapse destruction, and 

subsequently causing neuronal death. However, studies also report that Aβ accumulation is 

observed in elderly individuals who show no signs of cognitive decline [25].  

1.2.2 Tau	hypothesis	
The tau hypothesis identifies hyperphosphorylated tau protein as the possible culprit of AD 

pathogenesis and that tau tangles (also known as NFTs) occur prior to Aβ plaques formation 

[26,27]. Hyperphosphorylated tau loses its ability to bind to microtubules causing it to 

aggregate into insoluble tangles (known as paired helical filaments (PHFs)) to eventually 

form NFTs2. There is good evidence that hyperphosphorylated tau and its aggregates lead 

to the disruption of axonal transport, resulting in synaptic dysfunction [28]. Recent imaging 

studies, involving a large autopsy cohort (3618 brains), have linked tau deposits more 

closely to age at onset of cognitive impairment, disease duration and dementia than Aβ 

deposits [29]. Thus, tau is a speculated to be a better and more robust predictor of different 

stages when patients transition from healthy to severe AD [30].  

1.2.3 Alternative	hypotheses	
With the passage of time, growing evidence reject the linear structure of either Aβ or tau 

being the singular cause in the cascade of AD pathogenesis. Conversely, we should not 

ignore the entirety of these hypotheses, rather revisit them with an assumption that they are 

                                                

2 NFTs are bundles of PHFs found in the cytosol of neurons 
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the consequence of paradoxical associations. To better unify and reconcile the existing 

hypotheses, alternative perspectives are proposed [31]. 

A steadily growing body of evidence suggests that the brain may compensate for the effect 

caused by Aβ, but the combined work of Aβ and tau drive the dramatic decline of healthy 

neurons [32]. The duo effect takes place either when tau renders neuronal dendrites to Aβ 

toxicity, or Aβ and tau synergistically amplify each other’s toxic effect [28]. Some 

researchers have repositioned the causal molecular events of AD within the ageing 

spectrum as the histological boundaries between them are not absolute. Thus, AD’s onset 

could represent the failure of the ageing brain to revert back the altered cell functioning due 

to events such as injury, infection, stress, negative life event, to name a few [33,34].  

A recent study by AddNeuroMed Consortium [35], posits mitochondrial dysfunction as the 

primary pathology; reported altered mitochondrial genes in blood before any clinical 

diagnosis of AD. Furthermore, strong indications of oxidative stress and DNA damage in 

early AD pathology due to redox imbalance is reported [36,37]. Several neuroscientists 

argue that continuum of abnormalities in the cholinergic system [38], autophagy and/or 

lysosomal pathways [39,40], hormonal imbalance [41] and Ca2+ homeostasis [42] lies in 

the core of AD pathology. The vital role of neuroinflammation [43,44], highly active innate 

immune system [45,46], and disrupted insulin signalling [47,48] are strongly argued. 

Figure 1.1 depicts this conceptualization using three of the major AD contributing factors, 

refer [9,50,52,53].  

Evidence suggests that some or all the above-mentioned events may augment to Aβ plaque 

formation and tau hyperphosphorylation, forming a vicious cycle that promotes AD 

pathogenesis [49,50]. Given this, Prof. Garrett proposes to approach the AD pathology as 

‘A Complexity Theory’ where the effects of several causal variances are seemingly 

independent but rely on each other in ways, yet unknown, to bring about systematic 

malfunctions linking to the disease symptoms [51]. 

1.3 Status	quo	of	AD	therapeutics	

Since 1960, ACH hypothesis has maintained supremacy in driving AD drug development 

strategies. Additional burden has been casted by gnawing controversies and major gaps in 

the basic biology and clinical pathophysiology. Despite huge investments, AD is one of the  
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Figure 1.1: Overview of several factors that contribute to the clinical symptoms of AD. 

Three major AD contributing factors are represented in the ovals: cellular imbalances (orange), genetic risk 

factors (green), and modifiable and non-modifiable factors (blue). Genes emphasized in green indicate their 

role in EOAD. The intersection between any two ovals remain empty to depict interaction between factors 

in ways currently unknown, contributing (trigger symbol) to common AD symptoms (in red). 

least successful therapeutic areas with 0.5% success rate and with no blockbuster drug yet 

[52]. Many pharma companies are wary about investing significantly (both time and 

money) in AD after a series of high profile late stage failures, questioning investment in 

AD research [53]. To increase the probability of being successful and to speed up the hunt 

for AD’s holy grail, several public-private initiatives such as the Innovative Medicines 

Initiative (IMI)3 are providing platforms for collaborative projects to boost pharmaceutical 

innovation. Given the burning need for AD (prevention) therapy, FDA is now granting fast-

track designations to potential interventions to reach the global deadline set in G8 summit 

— to prevent or effectively treat AD by 2025 [54,55]. Several countries have joined this 

global fight by encouraging a number of key strategic initiatives [55,56]. 

                                                

3 http://www.imi.europa.eu/content/home  
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Figure 1.2: Overview of the ongoing clinical trials for AD therapeutics, reported according to their 

mechanism of action, phase of study, type of agents and targeted subjects.  

Reproduced from Cumming et al. [57] under Creative Commons Attribution-NonCommercial-No 

Derivatives License. 

Knowledge of neurotransmitter disturbances led to the development of currently approved 

AD palliative treatments [6]: (i) inhibitors of cholinesterase (tacrine, donepezil, 

galantamine, and rivastigmine) and (ii) NMDA (N-methyl-D-aspartate) antagonist 

(memantine). These drugs show no evidence of modifying the disease pathology but rather 

aim to slow the decline in quality of life — symptomatic treatment. However, increasing 

knowledge of AD’s multifactorial nature has amplified the drug discovery ecosystem and 

rationales for modification in therapeutic strategies [58,59]. Although lagging behind Aβ-

directed agents, some of these disease-modifying agents have advanced to initial human 

trials.  Figure 1.2 provides an overview of the currently investigated AD drugs along with 
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the details of their mechanism of action, broadly categorised under (visit the PhRMA 

Foundation4 for more details) [9,58,60,61]: 

• Aβ related —targeting α-, γ- and β-secretases, clearance of Aβ aggregates, 

proteases, chaperones, immunotherapy (both active and passive) 

• tau related — inhibition/clearance of tau aggregates, immunotherapy (both active 

and passive), targeting kinases and phosphatases, stabilizing microtubules  

• others — modulating abnormalities in multiple neurotransmitters pathways such as 

cholinergic, glutamatergic, and GABAergic system, microglia-mediated 

inflammatory response, modifying epigenetics and/or epidemiological factors such 

as mitochondrial dysfunction, and metabolic disorders 

Adding to the decade of bitter disappointments, two of the potential ground-breaking drugs 

have recently failed, verubecestat (MK-8931) and solanezumab, despite promising results 

in phase 2 trials [62]. Nevertheless, repeated drug failures have not yet unequivocally 

disproved the ACH belief [63]. Examining closer, failed trials provide no evidence of target 

being the problem but rather acknowledges methodological weaknesses: lack of 

drug/placebo difference, unacceptable toxicity, misdiagnosis of the enrolled patients, low 

dosage, and so on [58,59,64,65]. Many experts argue that the fundamental problem is the 

lack of awareness between cause and visible effects [66] and the lack of translation from 

mouse to human [67]. 

Increasing interest in combination drug therapies involving a “cocktail” of medications5, 

aimed at several targets — with common associated biology — could address the profound 

complexity in AD, similar to current treatments in cancer [68]. This represents an important 

future direction in AD therapeutics; genuinely considering the systems biology approach 

and ending the vigorous debate between TAUists and BAPtists [69,70]. Moreover, 

neuroscientists suggest intervening early in the disease process before irreversible neuronal 

dysfunction prevails; similar to treating hypertension years before the incidence of cerebral 

infarction [66,71]. Unravelling new pathways amenable to neuronal changes (genetics or 

epigenetics) could improve the disease understanding and provide new therapeutic 

approaches [72].   

                                                

4 http://phrma-docs.phrma.org/sites/default/files/pdf/medicines-in-development-drug-list-alzheimers.pdf  
5 http://www.alz.org/research/science/alzheimers_treatment_horizon.asp  
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1.4 Elucidating	AD	mechanisms	through	computational	
approaches	

Modern biomedical research is driven by technological advancements with growing 

prodigious amount of disparate data; drowning with information. Yet, it is the one that 

bedevils the progress as we still starve for knowledge. With millions of data points and 

myriad clinical information6, the life science industry faces an increasing challenge of 

converting the harvested (complex-)data into actionable knowledge. In addition, there 

remain incredible barriers that have significantly stigmatized AD diagnosis and 

therapeutics: the high complexity of brain, the inaccessibility to good quality brain tissue, 

the lack of direct access to brain tissue in living patients, the lack of well characterised 

animal models, inadequate molecular diagnosis for cohort selection, huge cost and the time 

for extensive drug development processes, and current graveyard of AD clinical trials [73]. 

Thus, to stay in AD treatment race, pharma companies need to remain agile by skilfully 

drawing meaningful insights in a relatively short time, from limited observations and sparse 

data [74]. To increase the prediction accuracy, maximising the yield and biological 

relevance in downstream processes and critical evaluation of planned research, they need 

to leverage on huge volume of accumulated prior knowledge [75,76].  

To derive a realistic model on modular nature of cellular architecture and functioning, 

taking stock of available knowledge on physical and functional associations between 

biomolecules have become a standard approach. In contrast, not all domain expert’s 

knowledge is explicitly stated and manual interpretation is a daunting task; often leading 

to the question “How can I realise the potential of these resources to construct a systems-

level understanding?”  

Data integration approaches capable of describing complex systems and supporting broader 

interoperability are key to efficient integrative data analysis. Through these approaches, we 

may bring together previously overlooked factors (may or may not involve indicative 

biomarkers) that can uncover essential mechanistic relationships between molecular 

changes and diseases [77]. Biological information about diseases, genetic variants, 

experimental datasets, protein-protein interaction (PPIs), among others are well-

                                                

6 https://www.nia.nih.gov/research/blog/2016/12/increasing-usability-big-data-alzheimers-research  
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documented and well-annotated in databases. However, these databases represent only a 

small percentage of information when the bulk of scientific publications are taken into 

account. Furthermore, experimental data, not being fully exploited contain compelling 

evidence for biological understanding (or validating) a new hypothesis. Moreover, to 

harness the full potential of the integrated data, the inferred biological hypothesis must 

assume the form of biological networks such as gene regulatory networks or projected onto 

previously compiled pathways. On the other hand, one must take into account that these 

public resources are fragmented, lack harmonisation and reproducibility is by and large 

inconsistent7,8 [78–82].  

Technological and data resources required to determine links to diseases are pieces of the 

puzzle that when put together, promise to reveal novel regulators in pathomechanisms. The 

following paragraphs introduce fundamentals and applications of various bioinformatic 

approaches and resources used in this thesis: first, introduction to integrative approaches 

applied to the AD domain, focusing on semantic web (SW) technology; second, a detailed 

description of the technologies and methods applied to distil knowledge from existing 

resources before integration.  

1.5 Connecting	the	dots:	semantic	data	integration	to	boost	
identification	of	AD	driving	mechanisms	

To generate new insights into AD, several researchers have developed methods/tools to 

combine and show the extraordinary value of a wide variety of existing data through 

innovative re-analyses. Fowler et al. prioritized two genes involved in neuronal oxidative 

damage, to stratify patient subsets based on gender and APOE status: NEUROD6 for 

APOE4+ female and SNAP25 APOE4+ male patients; through the integration of publicly 

available gene expression datasets, a disease associated SNP datasets, and multiple 

databases [83]. Chen et al. developed a heuristic algorithm and scoring method to rank-

order proteins based on their functional relevance in an AD-PPI network [84]. To derive a 

highly-connected AD-PPI network, an initial seed of AD-related genes was extracted from 

the OMIM database, which was further enriched with PPIs from OPHID database using a 

                                                

7 http://www.alzforum.org/news/research-news/replication-challenge-quest-alzheimers-blood-test  
8 http://protomag.com/articles/replication-in-research-problem  
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nearest-neighbour expansion method. Similar to Chen et al., Soler-López et al. applied an 

interaction discovery strategy using initial seed gene list, and interaction network from 

public databases to prioritize novel genes, suggesting a link between plaque formation and 

inflammatory processes [85]. Krauthammer et al. presented a molecular triangulation to 

predict unknown genetic variants by computing the graph-theoretic distance between 

expert-curated seed genes and other biomolecules in the literature-derived molecular 

network [86]. Considerable studies integrated information about genetics, functional, 

dysregulated expression, and interaction from public data to unveil novel AD candidates 

and provide new hypotheses for mechanisms underlying AD [87]; for drug discovery [88–

90]. Among others, most widely used data integration strategies include data warehousing, 

data centralization, and federated databases [91].  

Problems for data integration are rooted in the data itself; resources are broadly distributed, 

across the web and encompass heterogeneity and diversity in data formats, concepts, 

semantics, syntax, to name a few. Of course, these approaches have strengths and 

limitations and there is no “one-size fits all” solution [75,92]. Furthermore, these 

integration solutions are local and fail to operate at the global level and cannot cope with 

the updates of resources such as newly added information and changes in the data structure, 

formats, and naming convention. In general, most of these approaches overlook the 

importance of data quality, and context-specificity. Semantic web technology is the first 

truly global integrative solution revolutionising the lossless exchange and formalisation of 

data, calling it “smart data” [93].  

Since the inception of World Wide Web, its inventor Tim Berners-Lee et al. envisioned 

SW as “intelligent agents” capable of universal integration and exchange of data through 

the incorporation of machine-readable meaning (or semantics) and logical relations 

between data elements 9  [94]. Thus, resulting in a network of linked data, whose 

formalization allows identification of new implicit connections by reasoning over the data. 

To realize the vision of SW, World Wide Web Consortium (W3C) focused on empowering 

SW technologies, among which RDF, OWL, SKOS, and SPARQL have become de facto 

standards10. The 7-layered Semantic Web Stack, depicted in Figure 1.3, shows, how the 

                                                

9 the definitions and descriptions of SW are taken from W3C’s web page https://www.w3.org/TR/  
10 https://www.w3.org/standards/semanticweb/  
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proposed technologies (although still evolving) realise each other’s capabilities towards 

building SW. Interested readers are referred to Glimm et al. for the overview of the SW 

developments since its inception 15 years ago [95]. 

 

Figure 1.3: Semantic Web Architecture, also informally known as “layer cake”  

This figure is taken from Wikipedia page11 under Creative Commons (CC0) License. The original 

illustration proposed by Tim Berners-Lee is available here12 Copyright © 2015 W3C® (MIT, ERCIM, 

Keio, Beihang)13.  

1.5.1 Semantic	web	technology	standards		

Resource Description Framework (RDF) is a W3C’s proposed standard for publishing and 

exchanging data on the web [96]. The core concept of RDF lies in the usage of a unique 

global identification system called as “Universal Resource Identifiers (URIs)” and more 

recently IRIs (Internationalized Resource Identifier) [97]. RDF data model uses the syntax 

of Extensible Markup Language (XML) to impose structural constraints for representing 

the data as graph structures. Due to high flexibility and cost effectiveness of graph 

databases (introduced in sub-section Biological databases), RDF-centric databases have 

                                                

11 https://en.wikipedia.org/wiki/Semantic_Web_Stack  
12 https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)  
13 http://www.w3.org/Consortium/Legal/2015/doc-license  
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become a choice for managing highly connected data. RDF triplestore is a semantic graph 

database which stores semantic facts as a network of links containing directed edges; 

termed as RDF statements or triples, hence the name triplestore [98]. Figure 1.4 shows the 

anatomy of a basic triple statement; subjects and objects are concepts (called resources), 

connected using verbs which represents the relationship types, called predicates and literals 

(also a resource) are the constant values mapped to the resources. 

 

Figure 1.4: Anatomy of a triple statement. 

Ovals represent subjects and objects; rectangle literals; arc predicates.   

The RDF’s simple triple format — although simpler to implement — does not allow higher 

levels of expressiveness such as the union of existing concepts, hierarchical relations 

between concepts, reasoning, among others [99]. Thus, W3C introduced two data modeling 

languages: RDF schema (RDFS) and Web Ontology Language (OWL). RDFS is objected 

oriented in nature and formally describes RDF data properties as taxonomies of object 

classes, and relationship properties using ontologies. Simply put, it defines a metamodel of 

concepts such as Resource, Literal, Class, and Datatype and relationships such as 

subClassOf, domain, and subPropertyOf. Ontologies allow explicit formal description of 

the terms — rich vocabulary with highest level of expressivity — in the data to map distinct 

terms to the same concept. Semantic Web Rule Language (SWRL) is an extension of OWL 

to provide more powerful “deductive reasoning” capabilities [99]. Although it is a daunting 

task to provide data linked to ontologies, the merit lies in higher interoperability. SPARQL, 

a self-referencing acronym for SPARQL Protocol and RDF Query Language, is a SQL-like 

query language for accessing RDF data. SPARQL queries can be federated, meaning one 

can access diverse and evolving data from various RDF resources in one query. The 

advantage of SPARQL over other query languages is the availability of a query interface 
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called SPARQL endpoint. Several programming environments have been developed to 

parse RDF data: PerlRDF for Perl, and Apache Jena for Java framework. Data exchange 

standards 14  for RDF include: RDFa, RDF/XML, N-Triples, Turtle, Javascript Object 

Notation-LD (JSON-LD), among others. Several optimized databases15 are available for 

storing RDF data, namely Virtuoso, GraphDB™, Stardog, and AllegroGraph. Among the 

variety of extraction tools, strategies, and interfaces to transform non-RDF into RDF 

resources: GRDDL transforms XML into RDF, and R2RML maps relational databases to 

RDF.  

RDF is capable of handling intuitive and powerful semantic queries (set of inference rules) 

to infer new triples (logical consequences) out of asserted facts; turning information into 

knowledge. For example, “If two diseases have common genes, then they affect each 

other’s incidence”. This gives a competitive edge for most pharma industries by creating 

more value and easily scaling up the derived knowledge into smart solutions. RIF (Rule 

Interchange Format) is a standard for exchanging rules between disparate semantic data 

models by combining ontologies. Using semantic reasoners, one can infer implicit facts out 

of explicit statements, thus uncovering hidden relationships. Since OWL provides 

Description Logic (DL)-based reasoning capabilities, a number of reasoners including 

Racer [100], Fact++ [101], Pellet [102], and KAON216 have been developed. Mishra et al. 

[103] have published an overview of semantic reasoners recently.  

1.5.2 Bridging	the	knowledge	gap	through	semantic	web:	focus	
on	neuroscience		

Despite the youth of SW technologies, active researchers and developers have been 

developing tools and infrastructures, both open source and commercial, that foster FAIR 

data (findable, accessible, interoperable and reusable) principles [104]. The OBO Foundry 

and BioPortal serve as an umbrella of ongoing collaborative efforts for standardisation, 

storage, and linking of public biomedical ontologies [105]. The Identifiers.org registry 

provides persistent official identifiers to scientific terms. Observing the immense advantage 

                                                

14 https://www.w3.org/TR/rdf11-new/  
15 https://www.w3.org/wiki/LargeTripleStores  
16 http://kaon2.semanticweb.org/  
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of linked open data, a number of existing bioinformatics resources have adopted SW as 

data exchange standards: Entrez Gene, EBI data resources, KEGG, and many more 

[106,107]. The importance of semantic data integration and mining in the life science 

domain was brought to limelight by the Bio2RDF and subsequently by Linking Open Drug 

Data (LODD) project [82,107]. These projects demonstrated the possibility of querying 

heterogeneous life science resources (public) as linked data. Steady efforts by W3C’s 

Semantic Web interest group to focus on Health Care and Life Sciences (HCLSIG) has led 

to the launch of projects such as for modeling ontologies [108], RDF-based graph system 

(LinkHub [109]), biological pathways (BioPAX [110]), and drug discovery (AlzPharm 

[111], TMKB [112][113]). A series of annually hosted DBCLS BioHackathons17 serve as 

the driving force to integrate life science databases using SW technologies, through 

improved interaction between providers of data and bioinformatics tools. Recently, "The 

Monarch Initiative18" has taken the semantic route to enable reasoning over genotype-

phenotype equivalence (similarity analysis of biochemical models) for generating new 

hypothesis and prioritising candidates/variants within and across species. 

A number of initiatives and projects are striving to advance neuroscience research by 

allowing sustained interlinking between data using SW technologies. Government-

sponsored endeavours such as the USA’s BRAIN19 initiative and Europe’s Human Brain 

Project (HBP)20 are among a few leveraging on SW technologies for data management. 

Under the premise of the US government, the Neuroscience Information framework (NIF)21 

project, an initiative of NIH Blueprint for Neuroscience, aims to advance neuroscience 

research by providing “one-stop-shop” to public neuroscience data and tools in a 

semantically enhanced networked environment. Some of the NIF – backend research 

outcome includes BIRN, NIFSTD, NeuroLex, and many more 22 . Other NIH-funded 

                                                

17 http://www.biohackathon.org/  
18 https://monarchinitiative.org/  
19 http://www.darpa.mil/program/our-research/darpa-and-the-brain-initiative  
20 https://www.humanbrainproject.eu/en/  
21 http://neuinfo.org  
22 https://neuinfo.org/Resources/search?q=%2A&l=  
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projects that use SW technologies include BD2K [114], and Commons23. The Open Science 

Framework24, the International Neuroinformatics Coordination Facility’s (INCF)25, the 

Neuroscience Database Gateway (NDG) [115], NeuroML26, DARPA’s Big Mechanism 

program [116], and others are fostering community efforts to use SW technologies as the 

core to catalyse neuroscience research. Originally as a part of HBP, the SenseLab project 

provides a suite of interrelated databases to gain insights into the neuronal basis of 

behaviour [117]. As part of SenseLab, the BrainPharm database27 stores information of 

NDD drugs/agents targeting neuronal receptors and signal transduction pathways 

(differentiates between diseased and healthy). The Linked Neuron Data (LND) [118] 

provides a platform for integration of multi-scale brain and neuroscience data and 

knowledge sources with the aim to understand the association between cognitive functions 

and brain diseases. Currently, LND integrates structured neuroscience knowledge from 

Allen Brain Atlas, NeuroLex, NeuroMorpho, Mesh terms, etc. The IMI’s Open PHACTS 

project [119] aimed to integrate diverse chemical and biological data resources for 

pharmacological research. Apart from these, BioGateway, BAMS, NeuroMorpho, 

NeuroSynth database, Entrez Neuron, DisGeNet, Cognitive Atlas, to name a few also apply 

SW technologies [120]. For more details refer to Nielsen for neuroinformatics databases 

[121] and Okano et al. for brain mapping projects [120].  

Among the several collaborative AD projects that receive European Union funding and that 

are under Framework Programme, European Medical Information Framework (EMIF)28, 

AETIONOMY30, EU Joint Programme – Neurodegenerative Disease Research (JPND)31, 

and ELIXIR32 utilise(-d) (partially-)SW technologies for data management. One notable 

community effort in AD is The Alzheimer Research Forum (Alzforum) [122], which 

                                                

23 https://datascience.nih.gov/commons  
24 https://osf.io/  
25 https://www.incf.org/  
26 https://www.neuroml.org/  
27 https://senselab.med.yale.edu/brainpharm/  
28 www.emif.eu 
30 http://www.aetionomy.eu/en/vision.html  
31 http://www.neurodegenerationresearch.eu/  
32 https://www.elixir-europe.org/about-us/how-funded/eu-projects  
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benefits from both social and technical solutions to nurture productive discussion and 

informal discourse to advance AD therapeutics. Alzforum’s SW initiative, AlzSWAN 

(SWAN — Semantic Web Applications in Neuromedicine) is a hypotheses management 

system that captures a significant amount of AD scientific discourse from hypotheses, 

claims, dialogues, publications, and digital repositories. Active participation of Alzforum 

in the HCLSIG has led AlzPharm development – integrates BrainPharm and SWAN [111]. 

The Global Alzheimer’s Association Interactive Network (GAAIN) project [80] attempts 

to build a global collaborative platform for sharing AD data such as ADNI, by overcoming 

data-sensitive sharing impediments. 

1.6 Knowledge	discovery:	Needles	in	stacks	of	needles		

An important requirement for any data integration approach is to first capture the relevant 

data from diverse resources in an efficient and effective way. However, the most common 

problem is to condense useful information from these data mountains and transform them 

into actionable knowledge. Several data mining methods have shown great promise in 

closing the gap between large disparate data and discovering hidden/new knowledge. In 

this thesis, we have focused on three major data sources: databases, literature, and 

transcriptomic data. 

A compendium of transcriptomic studies provides quantitative information on the state of 

the gene in a cell. Most certainly, modeling of interactome and regulatory relations 

represent confirmed knowledge when derived from omics data. However, they do not 

account for the domain knowledge, which is important in any scientific discovery. 

Databases provide a systematised collection of biologically important information; 

increasing in number every year according to Nucleic Acids Research journal’s annual 

compendium of peer reviewed databases [123]. However, they do not fully represent the 

current state of rapidly growing knowledge. Conversely, vast collections of literature data 

are a massive body of existing current knowledge that can fill knowledge gaps and assist 

in informed decision making. However, due the data deluge, it becomes unmanageable. 

Below we discuss how data mining approaches applied to these data models contribute to 

knowledge discovery.   
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1.6.1 Omics	data	analysis:	complex	biological	data	streams	

The advent of high-throughput technologies has fuelled the search for unique molecular 

markers that govern the information flow in “the central dogma” framework of molecular 

biology. Omics-based approaches are now broadly used for the identification of disease 

markers and understanding underlying pathomechanisms; supporting hypothesis-free 

elucidation. Particularly, it provides a holistic view of genes (genomics), gene expression 

(transcriptomics), proteins (proteomics), and metabolites (metabolomics) through a variety 

of techniques including mRNA and miRNA arrays, NGS, and mass spectrometry [124]. 

Recent research has led to the revelation that RNA is not just a simple genetic messenger 

but rather plays a central role in translating genetic code into protein, gene silencing, post-

transcriptional regulation, and as a modulator of epigenetic elements [125]. Relative to the 

fixed nature of DNA sequence variation, gene expression varies tremendously between 

tissues, cells, and response to external stimuli [126]. Thus, gene expression profiling, 

encompassing many species of RNA such as miRNA, mRNA, and snoRNA, represents a 

rich source for early diagnosis by revealing altered transcriptome signatures of the cells, 

and tissues under a given biological state [127]. 

Quantification of RNA abundance using microarray technologies [128] or, more recently, 

developed RNA-Seq [127] methods have led to the accumulation of large amounts of data 

in public repositories. As of 15th March 2018, GEO contains 2,429,236 samples from 4,348 

datasets[129] and ArrayExpress hosts 70,834 experiments [130]. Although RNA-Seq is a 

substantially advanced technology with several advantages over microarray [127,131], 

microarrays are still widely used as they are less expensive, more consistent with the 

already existing wealth of data, and there exist substantial number of robust statistical 

methods [132,133]. Extracting biological information from these data is done by 

identifying individual genes (differentially expressed (DE) genes) associated with a 

particular biological effect (such as fold change) or finding global signatures composed of 

multiple gene expression changes. A more consistent and robust approach is looking for 

genes that share a particular biological characteristic [134]. However, low reproducibility 

and low overlap with similar studies performed by other study groups, render gene 

expression levels incomparable, mainly arising due to several technical and biological 

variabilities like applied analytical methods, different platforms, and dependency on library 

preparation [131,135,136]. Due to difficulties in acquiring human brain tissue and the 
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associated cost, NDD research experiments are composed of small sample sizes, resulting 

in less robust gene signatures and missing out on less apparent signals [137]. Thus, there is 

a need to fully exploit the existing data for more compelling evidence that could pave way 

for next ground-breaking discoveries. 

Combining multiple transcriptomic studies (termed as “cross-platform normalisation 

(CPN)”) or their results (termed as “horizontal meta-analysis”) has been advocated to 

increase the power of derived conclusion by overcoming the biases of individual studies 

[137–140]. These approaches have been used to uncover disease subtypes, predict survival, 

discover new biomarker and therapeutic targets [141–144]. Although it is argued that CPN 

is more powerful, it is less frequently used as: (i) it fails to eliminate batch effects across 

experiments (ii) very few well-established algorithms are available and (iii) increased 

complexity of data integration [145]. Refer to Rudy and Valafar for detailed comparative 

analysis of different CPN methods [146]. Most current meta-analysis methods are gene-

centric, combining DE genes based on majority voting, gene rank aggregation, and 

combining univariate summary statistics, such as p-values and effect sizes [147–149]. A 

more consistent and robust approach is through functional enrichment of the identified 

genes using established pathway knowledge such as KEGG [150], MSigDB [151], or, more 

recently, NeuroMMSig [152]. For the majority of the meta-analysis approaches, functional 

enrichment has become a standard follow-up. However, these approaches often have a 

tendency to converge towards genes that express in large magnitudes and generated 

hypotheses are restricted by current understanding of pathways. Moreover, these 

approaches do not shed light on the coordinated genes that collectively orchestrates the 

underlying (patho-)mechanism, unravelling dysregulated events heralding known and 

unknown patterns. Network-based approaches that rely on the coherence of functionally 

dependent genes could ameliorate DE gene’s dependency and increase confidence in 

biological validation by collapsing the number of testable hypotheses with regulatory clues. 

1.6.2 Biological	network	inference		
Cellular and molecular components work in concert with a large number of dynamic 

partners — directly or indirectly — to execute or govern cell/tissue phenotypes [153]. The 

power of biological networks resides precisely in simplifying the complex systems merely 

as nodes (biomolecules) and edges (intramolecular interactions) in the form of pathways, 

protein-protein interactions (PPIs), miRNA-target interactions (MTIs), among others. In an 
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attempt to dissect higher level organisation of molecular and cellular communications, 

information on modules of genes, proteins, or miRNAs that are physically associated, or 

functionally co-ordinated are translated into physical and functional networks. Physical 

interaction networks represent how biomolecules of interest interact with each other. 

Functional networks aim to connect not only interacting but also non-interacting 

biomolecules that depict functional or regulatory dependencies; examples include 

pathways, co-expression networks (CENs), and gene regulatory networks (GRNs). 

Analysis of these networks relies on characteristic topological properties, which serve as 

scaffold information for global and local graph theory [154–156]. Through these networks, 

useful discoveries for identification of putative biomarkers, understanding the disease-

driving mechanisms, and insights into the research findings can be made.  

Network inference (NI) methods have recently emerged as highly effective “reverse 

engineering framework” to reconstruct biological networks based on educated inference 

from data profiles, reducing the cost and time associated with the experimental 

investigation by prioritising putative candidates [157–161]. In the last few years, we have 

seen a swarm of NI approaches that majorly fall under: (i) deconvolution methods applied 

to the literature [162,163], databases [150], and multi-omics data and (ii) prediction 

algorithms based on thermodynamic stability, and sequence similarity [164,165].  

Networks inferred from literature and databases represent “what is already known” and are 

usually used as reference or gold standard to put the inferred results from other NI 

approaches in a specific biological context. Although, these networks as quite large, most 

of the interactions cannot be easily filtered for a specific biological context and data formats 

are not easily interchangeable. Recent endeavours have led to the development of 

standardised languages that use rich semantics for modelling networks: OpenBEL, and 

PySB [166]. On the other hand, use of genomic profiling technologies is more reliable for 

uncovering previously unknown and underappreciated mechanistic links along with 

involved putative candidates. Genomic data-based NI approaches have transformed 

biological research by enabling comprehensive monitoring of co-expressed and co-

regulated components. I refer the reader to Lee et al. [167] for conceptually different GRN 

methods, Markowetz et al. [168] for other NI approaches, and a book chapter by Vert [169] 

for machine-learning based NI approaches. Series of The Dialogue for Reverse Engineering 
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Assessment and Methods (DREAM) challenges allow comparison of strengths and 

weaknesses of different network inference methods33. 

Gene regulatory networks and co-expression networks 

Most researchers mistakenly use GRNs and CENs synonymously, however, the latter may 

contain co-regulated genes that represent the former [170–173]. CENs comprise of gene 

clusters where the edge (non-directed) represent similarity or dependency in expression 

patterns between two genes across tissues/cells. Similarities are usually quantified by 

Pearson correlation, Spearman correlation, mutual information, or linear modelling [174–

176]. On the other hand, GRNs (directed graphs) capture regulatory relationships (such as 

causal influence, and transcription regulation) assuming that changes in expression level of 

regulatory elements should be mirrored in expression levels of its regulated elements [170]. 

Allen et al. proposes four co-expression measures to define gene similarity metric for 

inferring GRNs [177]: (i) probabilistic-based, e.g. Bayesian networks [178] (ii) correlation-

based, e.g. Weighted Correlation Network Analysis (WGCNA) [179] (iii) partial 

correlation [180], and (iv) mutual information-based (MI), e.g. ARACNE [181], MRNET 

[182], and CLR [183]. For details of these measures, I refer the reader to Song et al. [184] 

and Kiani et al. [185].  

Failure to identify more complex dependencies between the genes by correlation-based 

methods is overcome by MI methods. Moreover, MI-based methods apply refinement 

approaches to eliminate indirect interactions for a given threshold using empirical 

distribution (CLR), Data Processing Inequality (ARACNE), maximum 

relevance/minimum redundancy criterion (MRNET), and predictions based on estimates of 

MI values with a maximisation step (C3NET [186]). Although Bayesian inferred networks 

are capable of modelling higher order dependencies, they lack feedback loops and some 

are limited to time series data [187,188]. A recent trend, ensemble-based methods are 

reported to improve stability and accuracy by formulating feature selection using random 

forests [189], gradient boosting [190], least angle regression [191], and partial least squares 

[192]. Briefly explained, these methods apply NI approach(-es) on bootstrapped data, 

aggregating the results in a final network; examples include BC3Net [193], and GENIE3. 

                                                

33 http://dreamchallenges.org/publications/  
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Clearly, these methods have an advantage of being straightforward and efficient on large 

computer clusters. A recently patented approach by Leiserson et al., called the heat 

diffusion based genetic network analysis [194], identifies known and unknown pathways 

by determining local neighbourhood influence of each mutated gene via physics of heat 

diffusion in the network [195,196] has brought a lot of attention to GRNs.  

Choice of the method to infer GRNs depends on the studied conditions such as type of data 

(real or simulated), network size, number of samples, noise level, experimental design 

(intervention, observational), underlying interaction structure (scale-free, random), error 

measure (local, global), among others [197]. However, recently, de Matos Simoes et al. 

demonstrated for C3Net, BC3Net, and ARACNE that the differences are not large if one 

focuses on the biological consistency rather than technical [198]. 

Application of GRNs and CENs in AD 

Using public transcriptomic data, Rhinn et al. identified key regulatory molecules (APBA2, 

FYN, RNF219 and SV2A) and pathways (endocytosis, intracellular trafficking) involved 

in APOE-based risk for LOAD [199,200]. Their work focuses on differences between 

diseased and healthy co-expression patterns. Zhang et al. [201] identified eight immunity- 

and microglia-specific genes, including TYROBP, strongly dominating the LOAD 

pathology; inferred from GRNs generated using 1,647 post-mortem brain tissue of LOAD 

and non-demented subjects. From these results, the authors concluded that the causal 

network framework was a useful predictor of response to gene perturbations and could be 

used to test models of disease mechanisms underlying LOAD. Forabosco et al. [202] 

reported TREM2 to be a hub gene in 5 out of 10 brain regions in neuropathologically 

normal individuals using the co-expression network analysis. Additionally, they found 

highly enriched genes in TREM2-containg module that are genetically implicated in AD, 

sharing common pathways centred on microglia functioning. Miller et al. [203] identified 

convergent and divergent co-expression modules between 18 human and 20 mouse public 

microarray datasets. Significantly, they determined three hub genes (for human only) with 

zinc-finger motifs, whose exact functioning in dementia was previously unknown. In a 

similar approach, Ray et al. [204] revealed transcriptional commonalities that might 

explain the co-occurrence of cardiovascular diseases and AD. Additionally, several efforts 

have been made to unfold the links and common mechanisms between AD and ageing 

[134].  
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The current multi-omics-based GRN approaches have an intrinsic limitation of dependency 

on (i) known interactions catalogued in databases and literature for follow-up analysis (ii) 

well-known gene candidates to refine networks within its proximity and (iii) restricting 

inference on genes that exhibit a clear shift in expression behaviour. This means that the 

derived results have a tendency to converge to “what is already known”, missing out on 

lesser-known candidates. Additionally, none of the above approaches elaborates on 

context-specificity and completeness of the generated networks, undermining the modules 

that approximate the biological truth.  

1.6.3 Biological	databases	
Databases provide convenient, searchable, visualisable, and computable access to 

organised prior knowledge. They are indispensable research tools for translating “big data 

to big discovery”, hosting enriched and pertinent information, [205]. Biological databases 

are developed for diverse purposes and encompass heterogeneous data types, and formats, 

refer Kumari et al. [206]. These databases can be classified based on: 

• type: primary, secondary (curated or/and value-added) 

• nature of stored information: RNA, drugs, pathway, miRNAs, among others 

• curation: expert-curated, community curated (crowd-sourced) 

• storage type: MySQL, NoSQL, flat files 

Primary databases host experimentally derived raw sequence read data (for proteins, 

nucleotide, so on) or macromolecular structure, which is directly submitted by the 

researchers; examples include ArrayExpress [207], miRBase [208], and GEO [129]. 

Secondary databases, mostly curated, build upon the information derived from primary 

databases. For example, ExpressionAtlas derives knowledge about gene expression 

patterns from ArrayExpress archive [209]. Zou et al. provides a comprehensive overview 

of human databases, categorised based on the data type and nature of information stored 

[205]. Highly knowledgeable and experienced biocurators critically assimilate and review 

the information before being stored in expert-curated databases, namely UniProt [210,211]. 

Crowd-sourced databases have proven to be an efficient, economical, and faster way to 

harness knowledge from the scientific community with broad coverage; RiceWiki is a good 

example [212]. Relational databases (e.g. MySQL and PostgreSQL) are an efficient way to 

access structured information using declarative query language (e.g. SQL) for a pre-

specified set of operations and schema. NoSQL databases are whiteboard friendly that 
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reflect our natural thinking and support agile development for dynamic schemas and are 

quickly scalable for additional data integration [213]. NoSQL databases include key-value 

stores (e.g. Berkeley DB), document stores (e.g. MongoDB), wide column stores (e.g. 

Cassandra), and graph databases (e.g. Neo4j) [214].  

Community efforts keep researchers abreast with the growth of bioinformatics tools and 

databases in the form of trusted directories/databanks, such as Biological Links Directory 

[215], and OmicTools [216]. Several core bioinformatics organisations provide an 

amalgamation of multiple primary and secondary databases covering different data types 

and species; examples include NCBI [217], EMBL-EBI 34 , and Swiss Institute of 

Bioinformatics [218]. In addition, several commercial ventures such as Ingenuity 

Pathway35, NextBio36, and MetaCore™37 provide a wealth of curated information in a 

structured form. However, most of the databases vary in data quality and become obsolete 

over time [219].  

Primary transcriptomic repositories, namely GEO and ArrayExpress, provide a wealth of 

molecular data to conduct integrative meta-analysis and inferring GRNs. This allows 

researchers to reproduce and/or reanalyse existing data for new discoveries, especially 

when the data availability is limited (see section Omics data analysis: complex biological 

data streams). To consistently integrate heterogeneous data, accurate details of the 

associated metadata information including patient’s age, gender, pathological diagnosis, 

and comorbidity are crucial in clinical practice. In addition, mapping of this information to 

standard ontologies could increase the compatibility and usability across studies. The 

Ioannidis study [220] highlighted the importance of metadata information in reproducible 

science. Pioneering attempts to adopt guidelines for submission of minimum metadata 

information required for data reproducibility such as MIAME38 and MINISEQE39, still lack 

compliance. Often, the data submitter and data generator are different persons, increasing 

                                                

34 https://www.ebi.ac.uk/services/all  
35 https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/  
36 http://www.nextbio.com/b/nextbio.nb  
37 https://lsresearch.thomsonreuters.com/pages/solutions/1/metacore  
38 https://www.ncbi.nlm.nih.gov/geo/info/MIAME.html  
39 http://fged.org/projects/minseqe/  
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the risk of errors and missing information [221]; sometimes leading to the metadata 

information being scattered in the associated publication(s). There is no easy way to tackle 

this problem and extensive manual effort is needed. Several (non-)commercial value-added 

databases and tools such as NextBio, and ArrayExpress have invested considerably to 

manually extract and correct the missing and erroneous metadata information. Indeed, to 

our knowledge none of the value-added databases capture NDD specific metadata 

information. In addition, they fail to explicate annotations that distinguish diseased human 

from NDD-induced immortalised cell lines, and mouse/rat strains, which are critical for 

translating preclinical studies to drug trials. Thus, there is a need for a dedicated approach 

to extract and refine metadata annotations catered to NDD research. 

1.6.4 Text	mining:	discovering	hidden	connections	

Biomedical literature is the key communication channel for scientific findings and 

hypotheses in the form of research articles, conference proceedings, reviews, books, and 

monographs [222]. Advancing with impressive speed, automated technologies — text 

mining — have complemented the manual reading for extracting and reconstructing mosaic 

of non-trivial and implicit knowledge from unstructured (or semi-structured) text, along 

with provenance [223]. Although not trivial, text mined information has the capability to 

shed perspective on modeling complex biological systems by summarising the entirety of 

prior research [224]. Text mining techniques can be simply abstracted to four phases: 

information retrieval (IR), information extraction (IE), knowledge discovery (KD), and 

hypothesis generation [225,226]. 

IR deals in identifying and triaging relevant textual sources to seek background 

information, addressing a research question at hand. For the overview of current IR 

tools/services refer to Lu et al. [227]. In the biomedical domain, IE involves identification 

of predefined classes of biomedical entities (genes/proteins, miRNAs, drugs, etc.) and 

relations between these entities (drug-gene, gene-miRNAs) from the text. Tagging key 

biological entity mentions in the text is the first step in IE, called as named entity 

recognition (NER), performed using predefined vocabulary (dictionary-based), applying 

rules (rule-based), or classifying (machine-learning-based) on the basis of training data 

[228,229]. Relation extraction (RE) adds context to the identified entities by extracting 

relationship(s) between them through association-based (co-occurrence and tri-occurrence) 

or natural language processing (NLP)-based methods [222,230,231]. More narrowed 
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application of RE is event extraction (EE) [232], which focuses on identifying specific 

events such as phosphorylation, and inhibition. To benchmark the developed methodology, 

several expert-annotated reference corpora are available, but they do not cover all the 

entities and relations [230,231,233]. In contrast to IE, which extracts nuggets of 

information, KD aims to extract new knowledge for answering biomedical queries [234]. 

Furthermore, hypothesis generation infers novel and testable insights from hidden clues in 

the text that are not easily derivable through expert reading [235]. However, text-mined 

information is error prone and must be crucially assessed by human experts as they are 

inherently limited by variable quality, lack of systematisation, and absence of reporting 

negative data [236–238]. Several annotation tools are in place to speed up manual curation 

process [239–241]. Specialised databases are established to provide standardised and 

structured accessibility of the harvested literature knowledge [242–245]. 

Many cellular functions — biological and pathological — are a result of cross-talk between 

different bio-entities, namely genes, proteins, transcription factors, and miRNAs. 

Therefore, to fully uncover the modular organization of the cellular networks it is crucial 

to elucidate these players. Although extensively researched, protein-coding genes represent 

only 2% of the human genome suggesting that PPIs are just half of the story in AD biology. 

With the beginning of miRNA era in 2001, non-coding RNAs have become attractive 

targets and research topic for novel diagnostic and therapeutic approaches [246]. 

Information about miRNA’s regulatory roles has been widely discussed in the literature. 

Thus, utilising biomedical text-mining approaches to extract new evidence from existing 

literature has become very crucial to drive AD research.  

MicroRNAs (miRNAs) are highly conserved small non-coding RNAs (21-25nt), post-

transcriptionally regulating 30% of protein-coding genes through mRNA degradation and 

translational inhibition. Previous studies have reported on the essential roles of miRNAs in 

neuronal functioning, and survival and its potential implications in modulating AD genes 

[247–249]. The cross-talks between AD-related miRNAs and genes/proteins are far more 

intricate and dynamic than anticipated but poorly understood. Significant research efforts 

in dissecting miRNA-related associations (e.g. miRNA-target, miRNA-disease) have 

resulted in high-quality databases, curated networks, and prediction algorithms. In reality, 

relative to PPIs, automated text-mining methods dedicated to the identification of miRNA-

related relationships are limited and not widely adopted [250]. Indeed, resulting in a lack 
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of expert-annotated corpus needed for benchmarking the developed tools [251]. Thus, there 

is a clear need for automated text-mining approaches/tools/resources to support and drive 

the miRNA research for a new perspective on diseases at post-transcriptional level. 
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Chapter	2 Goals	and	Objectives		
Enabling scientists to reuse and extend the work of other researchers is frequently perceived 

to have “an upper hand” in generating time and cost efficient testable hypotheses, assisting 

biomarker and mechanism discovery. Repurposing public data using data collation and 

integrative approaches could act as an evidence store for deriving new knowledge where 

traditional approaches fail to deliver [252]. Several studies and projects have employed 

data mining approaches on public data to identify novel mutations, genes, pathways, among 

others that were previously undetected in AD [253–255]. These reports are a proof that 

retrospective analysis of public data can provide important insights for clinical utility. 

However, they have also inherently raised several questions illuminating fundamental 

aspects of data reusability and retrospective analysis: (i) lack of high-quality and 

informative data (ii) lack of sufficient metadata information for more focused reanalysis 

(iii) overfitting the developed models to prior knowledge (iv) data bias, and (iv) a need of 

a high-quality pre-competitive infrastructure for data integration.  

2.1 Issues	addressed	and	goal	of	this	thesis	

Motivated by the need of novel approaches for integrative analysis and considering the 

scepticism around public data, the primary goal of my PhD thesis is to provide improved 

and novel solutions for accessibility, reusability, and unbiased retrospective analysis of 

high-quality public data with a potential impact on uncovering previously unattended AD 

insights towards real world drug development. In this thesis, I offer a perspective on the 

looming central issues of data reusability and limitation of current approaches that hinder 

the progress in research on AD therapeutics. 

Taking into account my previously made statement: “Technological and data resources 

required to determine links to diseases are pieces of the puzzle that when put together, 

promise to reveal novel regulators in pathomechanisms. — refer page 9”, the objectives 

of my thesis work are summarised in Figure 2.1. The specific objectives of this thesis 

addressing the issues stated above and in Chapter 1 are:   
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Figure 2.1: Objectives of my thesis work 

1. Problem Statement: Problems for data integration are rooted in the data itself; 

resources are broadly distributed, across the web and encompass heterogeneity and 

diversity in data formats, concepts, semantics, syntax, to name a few. Of course, 

these approaches have strengths and limitations and there is no “one-size fits all” 

solution [75,92]. Furthermore, these integration solutions are local and fail to 

operate at the global level and cannot cope with the updates of resources such as 

newly added information and changes in the data structure, formats, and naming 

convention. In general, most of these approaches overlook the importance of data 

quality, and context-specificity. — page 10  

Objective: To build a high-quality and domain-specific pre-competitive 

infrastructure for intellectual integration of existing resources to facilitate 

interrogation of the distributed data legacy; enabling a systematic and objective 

prioritisation of molecular protagonists and mechanisms in AD 

2. Problem Statement: Many cellular functions — biological and pathological — are 

a result of cross-talk between different bio-entities, namely genes, proteins, 

transcription factors, and miRNAs. Therefore, to fully uncover the modular 

organization of the cellular networks it is crucial to elucidate these players. 

Although extensively researched, protein-coding genes represent only 2% of the 
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human genome suggesting that PPIs are just half of the story in AD biology. With 

the beginning of miRNA era in 2001, non-coding RNAs have become attractive 

targets and research topic for novel diagnostic and therapeutic approaches [247]. 

Information about miRNA’s regulatory roles has been widely discussed in the 

literature. Thus, utilising biomedical text-mining approaches to extract new 

evidence from existing literature has become very crucial to drive AD research. — 

page 25 

Objective: To develop an automated text-mining method for extracting new 

interaction evidence from existing scientific literature using miRNA research 

domain as an example.  

3. Problem Statement: Indeed, to our knowledge none of the value-added databases 

capture NDD specific metadata information. In addition, they fail to explicate 

annotations that distinguish diseased human from NDD-induced immortalised cell 

lines, and mouse/rat strains, which are critical for translating preclinical studies to 

drug trials. Thus, there is a need for a dedicated approach to extract and refine 

metadata annotations catered to NDD research. — page 24 

Objective: To develop a comprehensive and highly curated metadata database for 

public NDD gene-expression studies that allow precise selection of data subsets for 

meta-analysis and translational research 

4. Problem Statement: The current multi-omics-based GRN approaches have an 

intrinsic limitation of dependency on (i) known interactions catalogued in 

databases and literature for follow-up analysis (ii) well-known gene candidates to 

refine networks within its proximity and (iii) restricting inference on genes that 

exhibit a clear shift in expression behaviour. This means that the derived results 

have a tendency to converge to “what is already known”, missing out on lesser-

known candidates. Additionally, none of the above approaches elaborates on 

context-specificity and completeness of the generated networks, undermining the 

modules that approximate the biological truth. — page 22 

Objective: To establish an approach for constructing a more reliable and complete 

large-scale AD GRNs that is not biased towards prior knowledge, but rather extends 

the scope to not so obvious players 
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2.2 Thesis	organisation	

The dissertation consists of four publications, fulfilling the above listed objectives, 

organised as individual chapters40: 

RDF Framework for data integration In Chapter 3, an integrative approach based on 

RDF technology for modelling curated knowledge to prioritise potential AD candidates 

and mechanisms is introduced. This study utilises the data resources reported in Chapter 4, 

and Chapter 5. 

Extracting new interaction evidence from literature — applied to miRNA domain In 

Chapter 4, the state-of-the-art text-mining methodology for extracting miRNA mentions 

and its relations from biomedical literature is reported. In addition, the generated 

benchmark corpus to evaluate this and previously reported similar studies is described.  

Capturing metadata information from public transcriptomic studies In Chapter 5, 

systematic harvesting and curation of NDD-specific metadata from publically available 

transcriptomics studies is reported, which lead to the development of NeuroTransDB 

database. 

Knowledge-instructed gene regulatory network construction The high-quality and 

NDD-specific data harvested in Chapter 5 can contribute to more comprehensive meta-

analysis to derive new-novel insights in AD. Therefore, a new computational approach to 

construct more reliable GRNs across large-scale omics studies has been developed in 

Chapter 6. This approach is capable of identifying lesser-known players and mechanisms 

in AD. 

Conclusion and outlook The key aspects and utilisation of the work presented in this 

dissertation are concluded in Chapter 7. 

	

                                                

40 Supplementary files, other than supplementary figures and tables, from the publications are not included 

in this thesis. Please refer to the publication’s webpage for downloading these files.  



  List of all the publications 

31 

2.3 List	of	all	the	publications	

2.3.1 Thesis	publications	
1. Shweta Bagewadi Kawalia¶, Tamara Raschka¶, Mufassra Naz, Ricardo de Matos 

Simoes, Martin Hofmann-Apitius, and Philipp Senger.  “Analytical strategy to 

prioritize Alzheimer’s disease candidate genes in gene regulatory networks using 

public expression data.” Journal of Alzheimer’s Disease 2017; 59(4) [IF 3.9] 

2. Anandhi Iyappan¶, Shweta Bagewadi Kawalia¶, Tamara Raschka, Martin 

Hofmann-Apitius, and Philipp Senger. “NeuroRDF: semantic integration of highly 

curated data to prioritize biomarker candidates in Alzheimer's disease.” Journal 

of Biomed Semantics 2016, 7:45 [IF 2.4] 

3. Shweta Bagewadi, Subash Adhikari, Anjani Dhrangadhariya, Afroza Khanam Irin, 

Christian Ebeling, Aishwarya Alex Namasivayam, Matthew Page, Martin 

Hofmann-Apitius, and Philipp Senger. “NeuroTransDB: Highly Curated and 

Structured Transcriptomic Meta-Data for Neurodegenerative Diseases.” Database 

2015: bav099. [IF 3.9] 

4. Shweta Bagewadi, Tamara Bobić, Martin Hofmann-Apitius, Juliane Fluck, and 

Roman Klinger. “Detecting miRNA Mentions and Relations in Biomedical 

Literature.” F1000Research 2014, 3:205 

2.3.2 Other	publications	
1. Jiali Wang, Shweta Bagewadi Kawalia, Mehdi Ali, Philipp Senger, Reinhard 

Schneider, Serge Haan, and Venkata P. Satagopam. “miRSystec: an integrated web 

portal of human miRNA-target interaction.” Frontiers in Genetics 2017 

(submitted) [IF 3.78] 

2. Martin Hofmann-Apitius, Gordon Ball, Stephan Gebel, Shweta Bagewadi, 

Bernard de Bono, Reinhard Schneider, Matt Page, Alpha Tom Kodamullil, Erfan 

Younesi, Christian Ebeling, Jesper Tegnér and Luc Canard. “Bioinformatics 

Mining and Modeling Methods for the Identification of Disease Mechanisms in 

                                                

¶ The authors contributed equally to this work 



Goals and Objectives 

32 

Neurodegenerative Disorders.” International Journal of Molecular Sciences 

2015, 16, 29179-29206. [IF 3.48] 

3. Avisek Deyati, Shweta Bagewadi, Philipp Senger, Martin Hofmann-Apitius, and 

Natalia Novac. “Systems approach for the selection of micro-RNAs as therapeutic 

biomarkers of anti-EGFR monoclonal antibody treatment in colorectal cancer.” 

Scientific Reports 2015, 5:8013 [IF 4.8] 

4. Alpha Tom Kodamullil, Erfan Younesi, Mufassra Naz, Shweta Bagewadi, and 

Martin Hofmann-Apitius. “Computable cause-and-effect models of healthy and 

Alzheimer's disease states and their mechanistic differential analysis.” 

Alzheimer's & Dementia 2015, ISSN 1552-5260 [IF 13.29] 

5. Ashutosh Malhotra, Erfan Younesi, Shweta Bagewadi, and Martin Hofmann-

Apitius. “Linking hypothetical knowledge patterns to disease molecular signatures 

for biomarker discovery in Alzheimer’s disease.” Genome Medicine 2014, 6:97 

[IF 7.07] 

6. Anandhi Iyappan¶, Shweta Bagewadi¶, Matthew Page, Martin Hofmann-Apitius, 

and Philipp Senger. “NeuroRDF: Semantic Data Integration Strategies for 

Modeling Neurodegenerative Diseases.” In Proceedings of the 6th International 

Symposium on Semantic Mining in Biomedicine (SMBM2014). Aveiro, Portugal. 

2.3.3 Other	published	posters/abstracts	
1. Mohammad Asif Emon, Shweta Bagewadi Kawalia, Aliaksandr Masny, Philipp 

Senger, Henri A. Vrooman and Martin Hofmann-Apitius. “NeuroMap: Modeling 

of amyloid beta and tau spreading across brain circuitry in Alzheimer’s disease 

using BEL language.” The International Conference on Systems Biology, 

Barcelona, Spain, 2016 

2. Tamara Raschka, Shweta Bagewadi, Mufassra Naz, Martin Hofmann-Apitius, 

and Philipp Senger. “Analytical strategy to unravel novel candidates from 

Alzheimer's disease gene regulatory networks using public transcriptomic studies.” 

6th International Conference on Genomics & Pharmacogenomics, Berlin, 

Germany, 2016 

3. Philipp Senger and Shweta Bagewadi. “Automatic Quality Assessment Of 

Microarray Datasets Using Ensemble Methods.” The 13th European Conference 

on Computational Biology (ECCB'14), Strasbourg, France, 2014 



  List of all the publications 

33 

4. Shweta Bagewadi, Erfan Younesi, Alpha Tom Kodamullil, and Martin Hofmann-

Apitius. “Identifying Unconventional Role of MiRNAs in Alzheimer's Disease 

Through Cause-and-Effect Model.” The 8th World Congress on Controversies in 

Neurology (CONy), Berlin, Germany, 2014 





 35 

Chapter	3 Semantic-based	Integrative	
Strategy	for	Candidate	Prioritization	
and	their	Mechanistic	Analysis	

 

3.1 Introduction	

Combining data and knowledge in a robust, scalable, shareable, and extensible framework 

is the fundamental need to understand the dynamics of neurodegenerative mechanisms. It 

increases the confidence of the derived hypotheses if the consensus is shown by different 

data resources. Indeed, such a framework should provide the capability to refine the search 

paths for dynamic exploration of the data without losing the underlying biological meaning. 

Disparate data types coming from literature, databases, imaging, omics experiments, 

GWAS studies, among others are an integral part of such a framework. However, 

assembling ever-growing information from several disciplines that represent complex and 

heterogeneous data is far from trivial. This is due to high variability in distribution, quality, 

representation, and applied statistical methods. If not addressed, these issues have a huge 

impact on the derived hypotheses and decisions made.  

This publication presents an approach using RDF framework to facilitate representation 

and integration of heterogeneous AD data. It shows that well-curated and precise data 

enables novel biomarker and mechanism discovery. It additionally points out the need and 

effort of manual curation for precise modelling. 
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Background
Alzheimer's disease (AD), the most prominent neurode-
generative disease (NDD), has become a global threat to
the aging society, affecting nearly 115 million people by
2050 [1]. The imperfect understanding of the AD
etiology has created a large gap in translating the pre-
clinical findings into clinical trials dominantly observed
in high drug attrition rates [2]. Early diagnosis and pre-
ventive interventions could facilitate substantial reduc-
tion in the number of affected cases to 9 million by 2050
[3, 4]. Particularly, reliable biological markers of disease
and disease progression could assist in early diagnosis
and treatments catered to the patient [5]. In this direc-
tion, considerable global research efforts have been dedi-
cated to investigate molecular players underlying AD
pathogenic events, contributing to an ever-growing
wealth of disparate data. Refinement of this information
into actionable knowledge representations requires a
good interoperable and formalized framework, capable
of inferring potential biomarkers across different facets
of the molecular physiology. Additionally, in silico
disease models that integrate complementary data from
various resources are capable of recapitulating key
mechanisms for a given condition [6–8].
Among others, most widely used data integration

strategies include data warehousing (e. g., Pathway Com-
mons [9]), data centralization (e. g., UniProt [10], IntAct
[11]), and federated databases (e. g., BioMart [12]). An
example of a data integration framework is tranSMART
[13], which consists of a data warehouse covering vari-
ous types of data and related data mining applications
required for translational research and biomarker
discovery workflows. Such a harmonized aggregation of
heterogeneous data sources facilitates interpretation over
a large knowledge space [14].
However, one fundamental challenge with most of

these integration approaches is to cope with the variabil-
ity and heterogeneity in content, language, and formats
of incoming data from different source repositories.
Moreover, regular updates of these data resources are
necessary to keep up with newly added information and
to avoid incompleteness. The inaccessibility to the inte-
grated data resources, due to altered database structure
or change in the naming conventions is unavoidable
[15]. Semantic web technologies have overcome the
above described challenges up to an extent by revolu-
tionizing the lossless exchange of data and formalizing
the data format into a computable knowledge [16],
calling it “smart data" [17]. The capability of using rich
formal descriptions for data and its standardized map-
ping allows complex querying in a more efficient way
without information loss.
Resource Description Framework (RDF) is the World

Wide Web Consortium (W3C) proposed standard for

semantic integration and modeling of data. RDF uses the
syntax of Extensible Markup Language (XML) and im-
poses structural constraints to represent the meta-data
as a set of triples containing directed edges. One big ad-
vantage lies in the usage of common namespaces across
the different data domains encoded as Unified Resource
Identifiers (URIs). Initiatives such as Identifiers.org [18]
provide persistent official identifiers in the biomedical
domain, allowing sustained interlinking between distinct
data resources. This allows high levels of seamless inter-
operability between data sources and the capability to
access and map against additional related data unam-
biguously, called data federation. On the contrary, large
efforts are still needed during an initial definition of the
ontologies to build the schema for data representation.

Semantics in life sciences
The idea of semantic web prevails in various domains,
including life sciences. Recently, "The Monarch Initia-
tive" [19] has taken the semantic route to enable reason-
ing over genotype-phenotype equivalence within and
across species. They leverage on ontologies to link exter-
nal curated data resources for generating new hypothesis
and prioritizing candidates/variants based on the pheno-
typic similarity. Stevens et al. [20] launched TAMBIS,
multi-data application tool, which allows biologists to for-
mulate complex molecular biology questions to databases
such as Swiss-Prot [21], Enzyme [22], CATH [23], BLAST
[24], and Prosite [25] through well-defined semantics.
Among the early users of RDF, Lindemann et al. [26]

applied it to centralize and flexibly access the heteroge-
neous and varying quality of medical data obtained from
several clinical partners. The importance of semantic
mining in the life science domain was brought to lime-
light by the Bio2RDF project [27], which demonstrated
the possibility of querying life science knowledgebases
by linking public bioinformatics databases and providing
public SPARQL endpoints. Subsequently, Linking Open
Drug Data (LODD) [16] demonstrated linking drug data
information from DrugBank [28] and clinical trials
resources. Chem2Bio2RDF [29] demonstrates the poten-
tial usage of the above two mentioned RDF repositories
in the field of chemoinformatics.
Observing the immense advantage of linked open data,

several major publicly available life science databases
such as UniProt, DisGeNet [30], Protein Data Bank
Japan (PDBj) [17], and EBI resources such as Gene Ex-
pression Atlas [31], ChEMBL [32], BioModels [33],
Reactome [34], and BioSamples [35], have made their
data available in the form of RDF. Thus, the RDF plat-
form has been increasingly adopted as a standard for
data exchange. Amidst prime users of RDF in elucidating
disease pathophysiology, Shin et al. [36] demonstrated
systematic querying of linked experimental data to
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explore the effect of genes that are regulated by volatile
organic compounds in human blood. Qu et al. [6]
showed semantic framework capability in drug re-
purposing by proposing Tamoxifen, an FDA approved
drug for Breast Cancer, as a candidate drug for Systemic
Lupus Erythematosus. The above reported association
has already been tested in mice by Sthoeger et al. [37],
showing a leverage of semantic web in a real world sce-
nario. Furthermore, Willighagen et al. [38] presented the
linkage of several RDF technologies in molecular che-
moinformatics and proteochemometrics.
To our knowledge, there has been very limited applica-

tion of semantic web approaches to the research of neuro-
degenerative diseases. Linked Brain Data (LBD) [39] is an
upcoming initiative which focusses on understanding the
brain functionality by integrating resources such as gen-
omic, proteomic, anatomical and biochemical resources
with respect to neuroscience. Using such a multi-level
knowledgebase, they aim to understand the association
between cognitive functions and brain diseases. Lam et al.
[40] made the first attempt to develop an e-Neuroscience
data integration framework, AlzPharm [41]. They ex-
tracted AD-related drug information from BrainPharm
[42] to be further integrated with manually inferred
hypotheses from the scientific literature and published ar-
ticles (SWAN [43]). They demonstrated the usage of such
a model by clustering AD drugs based on their molecular
targets and to filter publications (claims and hypotheses)
specific to Donepezil effect on treatment of AD. Although
AlzPharm made use of manually inferred hypothesis, they
lack the validation of their findings with experimental data
such as gene expression and pathways.

Motivation
Despite the current advancements in semantic web tech-
nology, we still do not have cure for complex diseases like
AD. One of the key reasons accountable for this could be
the increasing gap between generated data and the derived
knowledge. In order to increase the probability of the
derived knowledge to be novel, data quality and data
reliability is highly desirable. Moreover, the contextual
specificity of the data is of paramount importance.
Compared to relational database management system

(RDBMS) technologies, in RDF the relations have expli-
cit meaning (expressiveness) in a given context and are
directly accessible; allowing the user to extract meaning-
ful knowledge from the data as opposed to an unstated
structured data. In addition, RDF structures are more
adaptive and flexible, allowing fluidity in the data rela-
tionships. This overcomes the fragility of RDBMS; where
if the underlying representation of the keys and flat table
changes, the tentacled connections are lost. Moreover,
triples from RDF can be transformed into RDBMS struc-
ture and vice-versa. One another advantage of RDF is its

graph representation that enables us to better explore
relations through network topological characteristics
such as relatedness, network perturbation, centrality, in-
fluence, etc. The usage of automated reasoners have
largely been beneficial to understand the semantics and
to expand the associated relations [44].
In this paper we propose NeuroRDF, an approach harnes-

sing the potential of RDF as a framework for modeling neu-
rodegenerative diseases to enable a close, biologically
sensitive integration of well curated, complementary, and
multi-faceted data. The fundamental principle of this strat-
egy is to take advantage of semantics to develop a context
specific, multi-layered in silico disease model, represented
as a formalized, and computationally processable domain
knowledge. A fine-grained analysis of the metadata from
various data resources empowers the user to ask more fo-
cused questions around a hypothesized pathomechanism
involving previously neglected or hidden candidates, further
leveraged for experimental investigations. Considerable ef-
forts have been invested to process and manually curate
huge amounts of data that is required to build such a
knowledge base around a specific indication. This includes
for example the in-depth assessment of the respective
phenotype, the type of tissue used in an experiment, and in-
formation around the donor of the tissue like gender, age,
and possible comorbidities. Querying such a highly curated
and focused knowledgebase increases the chances of unrav-
eling novel hypothesis, which could have been lost over
time or pave way to newly emerging knowledge.
We used SPARQL to traverse each of these knowledge

graphs (derived from distinct resources) in an integrative
manner, allowing highly disease specific analysis of the
underlying data. Using this approach, we demonstrate an
example on how to prioritize novel candidates in AD
mechanism.

Methods
The developed generic semantic web-based workflow in-
tegrating heterogeneous data resources is outlined in
Fig. 1. This multi-layered model integrates data from
various public resources such as databases, literature,
and gene expression information. The harmonization of
heterogeneous data to build RDF models was achieved
by using several data/file parsers. The workflow also
includes a pre-processing step to monitor the quality of
each incoming data type for specificity.

Data collection and resources
This subsection depicts briefly the different data re-
sources integrated into the NeuroRDF.

Database-derived interactions for healthy brain
A closer look into the healthy human brain interac-
tions could improve identification of the dysregulated
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mechanisms which further surges the plausibility of
identifying AD drugs in clinical trails [45, 46]. How-
ever, the mainstream AD research is biased towards
the well known disrupted events such as APP, and tau
rather than recognizing their role in normal brain
functions [47].
Several publicly available databases provide protein-

protein interactions (PPIs) and microRNA-target inter-
actions (MTIs), which can be derived using multiple
sources and methodologies. For instance, Human Pro-
tein Reference Database [48], Molecular INTeraction
database [49], and miRTarBase [50] focus on experimentally
verified interactions that are manually mined from litera-
ture by expert biologists. In addition to literature-derived
information, Biomolecular Interaction Network Database
[51] centralizes interactions from high-throughput tech-
nologies. Few other databases such as STRING [52], and
miRWalk [53] also provide predicted interactions.
However, none of these databases mine interactions
specific to a given context (for example AD pathology
or normal physiology).
A lot of published healthy state PPIs are not directly

measured in human cells but in artificial conditions such
as human cell lines, human genes transfected into yeast
cells, etc., missing out on the biological plausibility in
humans and context specificity [54]. Hence, considerable
effort by Bossi and Lehner [55] was invested to verify
the tissue specificity of PPI interactions from 21 data-
bases (including a few above mentioned) using human
gene expression data. Furthermore, this additional action
to ensure validity of the interactions in normal state aids
improved prediction of genes in disease state [56]. In
that direction, our group has extracted a subset of these

experimentally confirmed PPIs belonging to healthy
brain physiology [57]. Currently, the healthy brain PPI
network contains 7,192 genes and 45,001 PPIs.

Extracting AD-specific interactions from literature
The bridging factor between researchers and scientific
accomplishments are published as texts, warehoused in
large repositories like PubMed [58]. These biomedical
articles are the major information source of functional
factors such as proteins, genes, microRNAs (miRNAs),
etc. However, their functional descriptions are scattered
as unstructured text in literature [59]. Text-mining
methods could help us mine these articles and retrieve
the associated relations/evidence for a given context.
Since proteins are the chief players in almost all bio-
logical processes and miRNAs have been established in
the last decade as important regulators of gene expres-
sion, we focus our current research on MTIs and PPIs.
In order to harvest AD-specific knowledge from the

literature, we used our in-house state-of-the-art named
entity recognition (NER) system ProMiner [60] and the
semantic search engine SCAIView [61]. Identification of
genes/proteins and disease mentions was accomplished
using dictionaries. The disease dictionary was built using
MeSH [62], MedDRA [63], and Allie [64] databases.
Currently, it contains 4,729 concepts and 64,776 syno-
nyms [65], which are normalized to MeSH names.
Human Genes/Proteins dictionary [60] was compiled
from three different resources: SwissProt, EntrezGene
[66], and HGNC [67]. Currently, this dictionary consists
of 36,312 entries and 515,191 synonyms. All the identi-
fied gene/protein names were normalized to HUGO
gene symbols for maintaining homogeneity across all

Fig. 1 Overall workflow of NeuroRDF. The workflow illustrates the collection of data from various resources such as databases, and literature,
followed by steps taken to pre-process and prune the collected data. These high-quality data are represented semantically as RDF models and
stored in a triplestore. The stored knowledge can later be queried for biologically interesting questions
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data resources and also for future comparisons and
visualizations.
To identify MTIs from MEDLINE abstracts, we applied

our previously developed approach [65]. Here we ex-
tracted novel miRNA mentions using a regular expression.
These mentions were normalized to miRBase database
identifiers [68]. In addition, relation dictionary containing
the major classes of relationship terms between miRNAs
and their target genes/proteins was also developed. A tri-
occurrence based approach was used to extract the MTIs
(co-occurring with a relation term) at the sentence level.
Using the above-mentioned dictionaries, our group

previously harvested AD specific PPIs from MEDLINE
abstracts and full text articles [69]. Here we used the
interaction terms compiled by Thomas et al. [70]. A
state-of-the-art machine learning based approach [71]
was applied to retain true pairs of PPIs in a given sen-
tence. Both approaches have been optimized for recall.
Hence, the obtained relations have been manually fil-
tered for false positives. After manual inspection, 339
PPIs for 301 proteins and 99 MTIs for 36 microRNAs
that are specific to AD were obtained. Articles published
in languages other than English could lead to increased
information content, however a dedicated approach to
harvest them is needed. Moreover, separate parsers are
needed. Thus, for this work we extracted interactions
from the biomedical literature in English.

AD gene expression data
A standard approach to test any generated hypothesis is
to assess the gene expression of the involved candidates
between affected and healthy patients or in the absence of
human data we fall back to animal models or derived cell
cultures [72–75]. High-throughput technologies such as
microarray, RNA-seq provide potential to measure gene
expression simultaneously for different experimental/bio-
logical conditions. These studies are assembled in widely
adopted public archives: The NCBI Gene Expression
Omnibus (GEO) [76] and ArrayExpress [77].
For querying AD-specific gene expression data, we used

previously developed database, NeuroTransDB [78], which
contains highly curated meta-data information for eligible
AD studies. It assembles studies from public resources
namely, GEO and ArrayExpress, using a keyword based
search approach. Among the 45 prioritized AD human
studies, we filtered for microarray studies that measure
gene expression in brain tissue extracted from both AD
and healthy patients. In addition, availability of raw data
was a mandate for applying uniform pre-processing. In
total, we obtained eight microarray studies to be integrated
in NeuroRDF: GSE12685, GSE1297, GSE28146, GSE5281,
E-MEXP-2280, GSE44768, GSE44770, and GSE44771.
To assess the quality of the arrays we applied ArrayQuali-

tyMetrics [79] package. The selected studies (independent

of the platform type) were pre-processed using Bioconduc-
tor (Version 3.0) packages in R [80], by applying similar
methods for maintaining consistency by reducing variance.
All studies conducted on Affymetrix chips were normalized
by robust multi-array average method (rma) [81]. Similarly,
package limma [82] was applied on Rosetta/Merck Human
44 k 1.1 microarray chip. All the chips were normalized for
background correction and quantile normalization. The
normalized intensity values were log2-transformed
and duplicate probes were averaged. To identify the
differentially expressed genes between healthy and
Alzheimer’s patients we used limma package by ap-
plying Benjamini and Hochberg's method to control
for false discovery rate (adjusted p-value ≤ 0.05).

Data curation
Although the current text-mining methods have started
to leverage expert curators to extract PPIs, MTIs, etc.
from text, the extracted information are still prone to
false positives [83]. Moreover, it is not straightforward to
use these systems for retrieval of context-specific triples
due to technological limitations [84]. Hence, the meticu-
lousness of the identified triples to occur in a certain cell
type, disease state, or events captured in AD-specific
documents is not guaranteed. Thus, the need for manual
verification is unavoidable, especially when considering
the full text articles. The previously published test cor-
pus used for evaluating the constructed AD PPI network
contained AD-specific PPIs extracted by the machine
learning approach from 200 full text articles [69]. Man-
ual inspection by the authors resulted in retaining PPIs
from 38 articles that are truly specific to AD, thus dis-
carding 81 % of the originally retrieved articles. Similarly,
we retained only 68 abstracts from 250 articles (27 %)
that were retrieved using our tri-occurrence based ap-
proach for AD MTIs [65]. Thus, we can conclude that
only about 20–30 % of the (relation extraction based)
extracted PPIs and MTIs are truly relevant to AD, point-
ing out the need of manual curation.
Similarly, in our recent publication [78], we have

highlighted the key issues related to retrieval and reusabil-
ity of the datasets from public transcriptomics archives,
such as GEO and ArrayExpress. We showed that a simple
keyword based search not necessarily asserts the specifi-
city of the retrieved datasets to the queried disease or
organism. When manually inspected, we reported nearly
20 % of these retrieved studies to be irrelevant for AD
query. In addition, basic metadata annotations such as
age, gender, etc., which strongly contributes to the differ-
ential estimates, were observed to be incomplete. Brazma
et al. [85] had earlier reported that not all the data submit-
ted to GEO or ArrayExpress are MIAME compliant [86].
We additionally noticed these missing annotations being
scattered as unstructured prose in database webpages,
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publications, supplementary material, figures, etc., leading
to a steep increase in the needed curation effort. Al-
though the published research articles are rich in anno-
tations, a large number of experiments have missing
citations [87], which have to be added manually. More-
over, inconsistencies between the information stored in
the archives and in the associated publications were
also noted. On an average, about 30 min to 2 h of cur-
ation effort was needed to retrieve pertinent informa-
tion for a single dataset. The outcome of this work
resulted in a highly curated metadata database, Neuro-
TransDB, which is used in this work for extracting rele-
vant AD gene expression studies.

Generation of RDF models
RDF data model
RDF allows the generation of models for processed data
that exchanges information on the Web [82]. The RDF
data model stores all the relationships between different
entities as triples (subject-predicate-object). In RDF
terminology, the subject, the predicate and the object
are known as resources and are represented by a
unique “Uniform Resource Identifiers (URIs)" in order
to support global data exchange. Literals are constant
values such as numbers and strings mapped to the re-
sources. Literals can only be used as objects but never
as subjects or predicates.

RDF schemas
We constructed the RDF schemata by abiding the stand-
ard RDF graph notation where an ellipse represents
Resource, an arrow for Property, and rectangle for Literal.
In all the RDF schemas, we have maintained a common
resource representation for the “Gene" namespace adapted

from Bio2RDF that maps to the NCBI gene database. For
the namespaces with no available ontologies, we created
an internal namespace, called “SCAI". Some of the proper-
ties were described using URIs from Dubin Core Metadata
Element [88].
Four separate schemas (for each data resource) have

been generated that are centered on genes for interoper-
ability, associating each gene product to its official gene
symbol. In the AD PPI schema (see Fig. 2), proteins and
their interactions were represented using the Uniprot
Core Ontology [89]. Supporting literature evidence were
adapted to URIs from Bio2RDF namespaces. The article
resource was linked to its PubMed ID, sentence in which
the interaction has been mentioned, and the associated
journal. Experimental evidence that validates the given
interaction (if any) were mapped to BioPax [90], MGED
[91], ONTOAD [92], and SCAI namespaces. In the MTI
models (see Fig. 3), literature, genes, and proteins name-
spaces were adapted similarly to the PPIs. To represent
the miRNAs, we applied the Bio2RDF namespace that
links it to miRBase database [93].
For the PPI schema encoding the healthy state, as seen

in Fig. 4, we used the same ontologies as in case of AD
PPI. Additional interaction evidence such as brain
region, reference database, experimental evidence, and
literature information were described using Core, BioPax,
and Bio2RDF namespaces.
The microarray schema has two branches that are

linked to the experiment: sample details and differential
expression analysis. The majority of the resources and
properties are linked to URIs from EBI's Atlas (atlas) [94]
and MGED [91] namespaces, cf. Fig. 5. Gene expression
experiments could contain several samples that are
measured in different conditions. A detailed description of

Fig. 2 Schematic representation of the Diseased PPIs in RDF. The figure describes AD specific PPI interactions along with supporting evidence
mined from literature
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each sample is needed for accurate analysis. Thus, we
associated each sample to its meta-data annotations,
namely age, gender, organism, organism part, platform,
and phenotype. Organism under investigation is mapped
to NCBI Taxonomy URIs [95]. The factor value of each
sample, i.e., the phenotype information, is described using
the EFO ontology [96]. Each platform array is made up of
multiple probes that may represent a gene. To be able to
retain the expression values for individual probes, we
linked the probe ID resource to platform. However, for
better reasoning, quantitative values retrieved from
statistical analysis are linked to genes and not to probes.
The meta-analysis results, derived from limma [82], such

as differential expression value of a gene and its associated
p-value are all linked to the gene symbols.

Construction, validation and storage of RDF models
We modeled all the triples (represented in the schemas)
using the Apache Jena API [97]. Resources, and Proper-
ties as Java classes were created from the ontologies
using the corresponding in-built methods in the API
and with the help of Schemagen [98].
In order to check for the correctness of our generated

RDF models, we made use of the online service RDF
validator [99]. By using such a service, we verified the
models using their graph and triples representation.

Fig. 4 Schematic representation of Healthy PPIs in RDF. The figure represents PPIs of healthy subjects extracted from
literature and PPI specific databases. The schema also contains meta-information about these PPIs

Fig. 3 Schematic representation of MiRNA-target interactions in RDF. The figure encapsulates miRNA mentions along with their corresponding
gene identifier from literature
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Triple stores, such as Virtuoso [100], provides an op-
portunity to store individual or integrated RDF models
in one endpoint. Taking advantage of this, we stored all
the generated RDF models as individual graphs in a sin-
gle Virtuoso instance. Using common URIs (e.g., “Gene"
identifier) as the connecting link between these models,
it is possible to traverse through them integratively.

Data mining and analysis
In RDF, all the stored triples are accessible using a com-
mon query language, SPARQL Protocol and RDF Query
Language (SPARQL) [101]. We generated a Java library
with embedded SPARQL queries to ask our endpoint
and the underlying networks biologically relevant ques-
tions. Queries were generated from individual models,
which were further integrated as nested queries to
traverse different graphs. Each query uses the common
Gene URI namespace (which is common across all
models) to pass on the results used to the next nested
query. One possibility to visualize the query results is
the SemScape Cytoscape [102], to represent the return
values as (sub-) graphs again.

Results and discussions
NeuroRDF covers a wide range of curated AD related
data resources, stored as four separate RDF models in a
single Virtuoso endpoint. It tries to address the main
concepts (complementary) that contributes significantly
to unraveling AD pathology.

Differentially expressed genes
For the eight selected microarray datasets, gene expres-
sion analysis was performed between healthy and
diseased patients. Among these, GSE1297, GSE28146,
and E-MEXP-2280 resulted in no differential genes for
adjusted p-value cutoff 0.05. From the remaining studies,
only genes that exhibited a log2 fold change of > 1.5
were selected for analysis. In total, GSE5281 resulted in
4,278 genes under p-value cutoff and 2 up-, and 48 down-
regulated genes for the defined fold change cutoff. Simi-
larly, GSE44770 provided 254 differentially expressed
genes, among which 16 up- and 11 down-regulated were
selected further. In case of GSE44771, we obtained 335
differential genes that contain 11 up and 11 down-
regulated genes that show > 1.5 log2 fold change. For both,
GSE12685 and GSE44768, we obtained 1 and 51 genes
under the p-value cut-off. However, there were no genes
that had log2 fold change of >1.5. The list of all the
differentially expressed genes that were selected for fur-
ther analysis is provided in Additional file 1.

RDF models
Table 1 summarizes the content of the generated triple
store by providing some statistics of all integrated
networks. In total, there are 8353 unique triples in AD
PPI, 1,204,194, 667 unique triples in Healthy PPI, and
20,454 unique triples in gene expression RDF models
(Additional file 2). The number of unique predicates
(relations) for AD and healthy PPIs are 11, whereas
for MTI there are 5 and the gene expression model

Fig. 5 Schematic representation of Gene Expression Data in RDF. This figure represents gene expression data obtained from public resources
such as GEO and ArrayExpress
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consists of 16. The number of entities present in
these models range from 300 to 78,852 (cf. Table 1).
In case of the gene expression data, to avoid large
triples we excluded the gene expression values of in-
dividual probes and included information only related
to differential expression. Uploading and querying these
models was not computationally expensive due to lower
set of predicates and relatively small file size.

Prioritization of AD candidates
To illustrate the potential of NeuroRDF approach and to
determine novel AD candidates from the high quality
integrated data, we exploit the underlying biological
association between the different data resources and
identify the previously unknown information.
Our prioritization criteria was based on the notion

that every data resource brings with it a piece of missing
biological information which is needed to understand
the mechanism of a certain candidate. We tried to
associate this distributed information by systematically
addressing the following questions:

(1)Whether candidates in the diseased network tend to
be associated with normal physiology. If yes, what
are the common players that could help us in the
differential estimates (called as causal candidates);

(2)Which microRNAs regulate the selected causal
candidates that could give insights into their post-
transcriptional dysregulation;

(3)Have any of the selected causal candidates assessed
for their level of differential expression in an
unbiased data source (e. g., gene expression data);

(4)How strong is the influence of the neighboring
genes on the casual candidates. This is based on the
assumption that strong candidates tend be
surrounded by dysregulated genes and have an
influence on the candidate itself;

(5)Is there any functional relatedness between the
causal candidates and their neighbors;

To answer these questions, we generated a set of
SPARQL queries. Figure 6 is an example SPARQL query
syntax used to obtain miRNAs that regulate the genes in
the AD networks. Similar querying has been applied to
build a system of faceted searches for the above de-
scribed questions. Firstly, we identified common genes
between the healthy and AD PPI networks. This query
resulted in 230 intersecting genes. Looking into the
MTIs, we found 13 of these genes to be regulated by at
least one microRNA (cf. Table 2). Among these 13
genes, 9 were observed to be differentially expressed:
APP, BACE1, ADAM10, IL1B, MAPK3, DLG4, LRP1
PTGS2, and TGFB1. Except for APLP2, and IL6, all the
other genes contained differentially expressed neighbors
either in AD or in healthy PPIs. There were no miRNAs
that were common to these 13 genes.
Sub-networks from the AD and healthy PPIs were ex-

tracted to investigate the prioritized candidates (see
Figs. 7 and 8). As observed from Fig. 8, for healthy PPIs
there was one larger sub-network (containing APP,
ADAM10, BACE1, MIF, MAPT, and LRP1) and a
smaller one containing two genes (PTGS2, and IL1B).
On the other hand, for diseased PPIs in Fig. 7, there
were two large sub-networks containing four (STAT4,
JUN, MAPK3, and STMN2) and five genes (APP, LRP1,
BACE1, DLG4, and TGFB1). The third sub-network was
made up of two genes (MAPT, and TUBA4A). Among
the prioritized candidates, APLP2 and IL6 had no com-
mon links to other prioritized candidates. Thus, they
were discarded for further analysis.

Relevance of prioritized AD candidates
The remarkability of complementing wet lab research
using the predictability and reproducibility of measured
outcomes is one of the core reasons why researchers are

Table 1 Statistics of generated RDF models stored in Virtuoso
endpoint
Models No. of triples No. of entries No. of

properties
Size (mb)

Alzheimer’s disease
PPI

8353 19900 11 0.894

Healthy State PPI 1204194 78852 11 99.102

MTI 667 300 5 0.095

Microarray 20454 9477 16 303.5

Fig. 6 Example SPARQL query for information retrieval from NeuroRDF. SPARQL query as seen in the figure retrieves the miRNAs for a given gene
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more inclined to the field of bioinformatics. Therefore,
in silico validation of predicted candidates for its rele-
vancy is of utmost importance. In this direction, we pin-
point the relevance of our prioritized candidates through
a literature survey.

AD established candidates
Although there are no FDA approved biomarkers for AD,
researchers focus on some of the key candidates that are
hypothesized to be involved in AD. In the current NDD
research practice, APP has been established as the widely
used biomarker candidate. The classical pathological hall-
mark of AD is formation of amyloid-beta aggregates (lead-
ing to plaques) in brain. This is reported to be caused by
faulty proteolytic processing of APP that releases amyloid-
beta [103]. Another hallmark of AD is tau pathology
(MAPT gene), regulated by amyloid-beta. Hyperphosphor-
ylation of tau causes accumulation of neurofibrillary tan-
gles due to the disrupted functioning of axonal transport
[5]. However, it is also interesting to note the paradigm
shift in AD research due to recently failed drug trails that
focused mostly around these hypotheses [2]. Never-
theless, several neuroscientists still believe in the po-
tential of APP and the tau hypothesis for elucidation
of the underlying pathomechanism. As observed from
our generated sub-networks, our largest sub-network
was established around the APP gene.
When compared to APP, BACE1 has not been so fre-

quently studied. However these genes often fall into the
"most interesting gene zone" as far as AD is concerned
since it is involved in the formation of amyloid-beta.
BACE1 is the major enzyme (beta secretase) involved in
the cleaving of APP at beta site and generating soluble
amyloid-beta [104]. However, increased BACE1 activity
has been reported to be associated with amyloid-beta ag-
gregation in AD patients [105]. Bu et al. have detailed out
the evidence that LRP1 is a receptor for APOE, a contrib-
uting factor to AD [106]. Furthermore, in 1993, Strittmat-
ter, Roses and colleagues [107] have identified APOE4 as
the major risk for late-onset AD. TGFB1 polymorphism
has been widely associated with an increased risk of late-
onset AD. Deficiency in TGFB1 signaling leads to neuro-
fibrillary tangle formation increasing the advancement of
mild cognitive impairment patients to AD, by increasing
the depressive symptoms [108]. DLG4 is a post-synaptic
scaffolding protein that interacts with postsynaptic recep-
tors such as NMDA receptors for efficient postsynaptic
response [109]. However, its impairment has largely con-
tributed to the synaptic degeneration in AD. Mutations in
ADAM10 gene have been associated to late-onset AD.
ADAM10 enzyme has alpha-secretase activity to cleave
amyloid-beta, however BACE1 competes with ADAM10
for cleavage. Thus, its decreased expression has been
implicated in AD pathogenesis [110].

Table 2 Prioritized AD candidate genes
Intersected genes
between healthy
and AD PPI

MiRNAs Differentially expressed
neighbors

Number of
literature articles
for intersected
genes

Healthy PPI AD PPI

APP MIR101-1, ADAM10, TGFB1,

MIR106A, MAPT, BACE1,

MIR106B, MIF, LRP1

MIR124-1, BACE1, 24550

MIR137, LRP1

MIR153-1,

MIR181-C,

MIR29A,

MIR520C,

MIR19-1

BACE1 MIR107,

MIR124-1, APP,

MIR145, APP LRP1 1883

MIR298,

MIR29A,

MIR29B1,

MIR328,

MIR9-1

ADAM10 MIR451,

MIR144,

MIR1306, APP - 231

MIR107,

MIR103

IL1B MIR146A,

MIR155 PTGS2 - 1099

MAPK3 MIR15A, - STMN2, 276

MIR155 JUN

MAPT MIR16-1, APP TUBA4A 3367

MIR132

APLP2 MIR153-1 - - 134

DLG4 MIR485 - LRP1 151

IL6 MIR27B - - 748

JUN MIR144 - STAT4, 142

MAPK3

LRP1 MIR205 APP DLG4, 305

APP,

BACE1

PTGS2 MIR146A IL1B - 474

TGFB1 MIR155 - APP 276

This table summarizes the literature based evidences of intersected genes
between healthy and AD PPI and their corresponding miRNAs and
differentially expressed genes

Iyappan et al. Journal of Biomedical Semantics  (2016) 7:45 Page 10 of 15



Semantic-based Integrative Strategy for Candidate Prioritization and their Mechanistic Analysis 

46 

 

AD emerging candidates
To identify emerging knowledge in the context of AD, we
performed an individual gene analysis using SCAIView for
publications in PubMed. Here, we measured the co-
occurrence of the causal genes (including its differential

neighbors) and AD over a period of last 10 years, see Fig. 9.
Since the number of articles for the APP gene was rela-
tively too high each year, we normalized the number of lit-
erature evidence of other candidates using the APP gene's
article count for that year. Hence, the normalized range
for the literature distribution is between 0 and 1, where 1
is the highest number of articles for that year (the APP
gene). Please refer to Additional file 3 for details of the lit-
erature counts. Inspecting literature evidence, we found
that all the prioritized causal candidates have been studied
in the context of AD. Moreover, among their differentially
expressed neighbors, STMN2 (8 articles), MAPK4 (1 art-
icle), TUBA4A (2 articles), and MIF (15 articles) contained
fewer articles related to AD. Among these genes, STMN2
and MIF have been recently studied in the context of AD,
whereas, MAPK4, STMN2, and TUBA4A were implicated
in AD nearly two decades before but failed to establish as
robust biomarker candidates.

MIF's role in AD
Macrophage Migration Inhibitory Factor (MIF) has for
long been known to participate in tumor proliferation
due to its pro-inflammatory cytokine functionality [111].
In general, MIF acts as a key regulator of inflammatory
activities such as innate and adaptive immunity [112].
Apart from that, it is also known to play a significant
role as an anti-apoptotic factor of neutrophils as well as
macrophages [113].
The MIF gene has been well studied in cancer and

inflammation. However, recent studies are emerging
around a plausible role of MIF in neurodegenerative dis-
eases, in particular AD. Moreover, Flex et al. [114] have
earlier reported that MIF polymorphisms are not linked

Fig. 7 Extracted sub-networks from AD PPIs network. This figure symbolizes the diseased sub-graphs that were generated using prioritized
candidates and their differentially expressed neighbors

Fig. 8 Extracted sub-networks from healthy PPIs network. This figure
symbolizes the healthy sub-graphs that were generated using
prioritized candidates and their differentially expressed neighbors
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to AD, but confirmed its complex immune and inflam-
matory activities. Although, APP and tau have been as-
sociated to play a key role in the pathophysiology of AD,
many researchers strongly believe in the role of inflam-
matory processes subsidizing to the pathology of AD.
This stems from the fact that activated microglial cells
discharge immunoregulatory cytokines which result in
various side-effects such as neuronal dysfunction and in-
hibition of hippocampal neurogenesis [115]. MIF is one
such pro-inflammatory cytokine which is known to bind
with amyloid-beta protein and enhance the plaque re-
moval and neuronal debris from the brain during normal
conditions [116]. Also, MIF has been identified to play a
role in neuronal survival by inhibiting the activation of
ERK-1/MAP kinases [117] (regulatory role in cell prolif-
eration and glucocorticoid action) as well as its ability to
surpass the p53 mediated apoptosis [118]. Although, the
precise molecular function of MIF in the context of AD
is unknown, it is known to play a role in inflammatory
processes around the plaque formation. MIF is also
highly expressed in the neurons of rat hippocampus, one
of the primary regions to be affected by AD [117]. Bryan
et al. [119] also report on the abnormal expression of
MIF in both microglia and in the hippocampal neurons
in human. This all makes MIF a plausible biomarker for
inflammatory responses in AD.

Conclusion
NeuroRDF approach has been designed to identify new
knowledge through semantic mining. The proposed inte-
grative approach takes advantage of the RDF technology
to integrate well-curated data from various sources
within a specific indication area. From our perspective,
it is necessary to focus on one indication or at least a

group of indications to build such a knowledge base for
precise modeling and analysis due to the high curation
effort one has to spend in order to reach the necessary
details. We showed how to harmonize three major het-
erogeneous resources (databases, gene expression data,
and literature) used in the research area to generate
hypotheses for underlying disease mechanisms. This ap-
proach supports identification of novel insights without
compromising over quality. Furthermore, new data re-
sources can be included without altering the overall
framework. The usage of well-accepted ontologies pro-
vides the advantage for further integration of external re-
sources and databases (e.g., federated queries). Using
such an approach, we were able to prioritize MIF gene
as an emerging candidate due to its role in inflammatory
processes implicated in AD pathogenesis.
The advantage of using an RDF schema is that it is

highly supportive for data interoperability. Although this
work represents the usage of the RDF schema specific
for AD, we have also extended the same to other disease
models such as Parkinson's and Epilepsy. However, the
curated data and the generated hypothesis for these two
diseases will be released in future under the terms of a
Neuroallianz agreement [120]. Also, these resources are
constantly kept up-to-date as they are transferred to
various upcoming projects such as AETIONOMY [121].

Additional files

Additional file 1: List of differentially expressed genes. This file contains
the list of differentially expressed genes (for each dataset used) that fall
under the adjusted p-value cutoff of 0.05. The differential expression
analysis was performed using limma package in R statistical environment.
The file is provided in an Excel format. (XLSX 68 kb)
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Additional file 2: The developed RDF models and the SPARQL queries
used are made available at: http://www.scai.fraunhofer.de/en/business-
research-areas/bioinformatics/downloads/neurordf.html. (ZIP 178 kb)

Additional file 3: Detailed count of literature evidences for prioritized
candidates. This file contains the detailed count of number of evidences
available for each prioritized candidate for each year since 2005 in
context of Alzheimer's disease. These statistics were retrieved using
SCAIView knowledge discovery tool (as of 18 May, 2016). (XLSX 35 kb)
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3.3 Summary	

This work leverages on semantic-web technologies to develop a context-specific 

integrative and interoperable disease model. The proposed approach, NeuroRDF, 

harmonises and integrates data from three public resources: PPI databases, text-mined 

MTIs and PPIs from literature, and gene dysregulation information derived from 

transcriptomic studies. It outlines the pre-processing steps applied to each data resource to 

monitor quality and context-specificity. In addition, it reports on the need of huge manual 

effort for inspecting missing and incorrect metadata information. The main benefits of this 

work lie in enabling semantic interoperability across heterogeneous data to foster 

innovation in NDD research. 

Querying such a framework empowers the user to ask more fine-grained questions across 

the knowledge graphs. Exemplary questions, as SPARQL queries, that account for patho-

mechanisms and network topology illustrated the power of NeuroRDF in identifying 

previously unattended candidates in AD. The prioritised candidate, MIF, has a pro-

inflammatory cytokine functionality that is crucial in inflammatory responses implicated 

in AD plaque formation. Thus, such an approach has the capability to assist in identification 

of reliable biomarkers for early diagnosis and treatment. The overall work presented here 

can be easily extended to other domains. The manual effort needed may vary depending on 

the formalization and interoperability of the selected data. 

Integration of other data resources such as GWAS, NGS, imaging, so on can increase the 

biological confidence of the derived hypothesis in NeuroRDF. Additionally, drug-target 

information can aid in drug repurposing. The methodologies and approaches to harvest and 

integrate multiple resources are not well established in AD research. Particularly, 

knowledge representing miRNA’s regulatory roles in AD and regulatory relationships 

between expression levels of genes. Work addressing these two topics are presented in 

Chapter 4, Chapter 5, and Chapter 6. 
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Chapter	4 	Hypothesis-driven	
Knowledge	Discovery	

 

4.1 Introduction	

A wealth of untapped information is available in the ever-growing biomedical literature, 

Delivering crucial background knowledge, it can maximise insights into AD research. 

Automated approaches are required to provide rapid access to this information by gleaning 

over large textual documents. Most of these methods unearth relationships between 

biological entities and additionally enrich it with a multitude of contextual information. 

When integrated with other data, the harvested knowledge allows generation and 

exploration of novel hypotheses. Text-mining approaches are well-established in some 

fields to identify biological entities and their relationships — like PPIs, drug-drug 

interaction. However, its development in other domains — like miRNAs and its 

interactions — is limited.  

MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. 

Due to its involvement in several normal and pathophysiological processes, miRNAs are 

considered as potential biomarkers for diagnosis, prognosis, and therapeutics. This chapter 

describes the automated text-mining methods developed to extract miRNA’s regulatory 

roles in diseases and gene expression from Pubmed abstracts. It provides step-by-step 

guidelines for annotating entities and their relationships for generating the benchmark 

corpus. The work here evaluates different relations extraction approaches for identification 
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of miRNA-disease and miRNA-target associations. This work demonstrates how domain- 

specific highly relevant information — for miRNAs — can be extracted from existing 

scientific literature.  
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 MicroRNAs (miRNAs) have demonstrated their potential asIntroduction:
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dysregulation is implicated in a vast array of diseases. Dissection of
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corpus for miRNA-relations has caused difficulty in evaluating the available
systems.
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corpora, along with dictionaries, and miRNA regular expression are freely
available for academic purposes. To our knowledge, these resources are the
most comprehensive developed so far.
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lead to an  score of up to 0.76. A comparison of the information extracted byF
our approach to the databases  and  for the extraction ofmiR2Disease miRSel
Alzheimer's disease related relations shows the capability of our proposed
methods in identifying correct relations with improved sensitivity. The published
resources and described methods can help the researchers for maximal
retrieval of miRNA-relations and generation of miRNA-regulatory networks.
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Introduction
Functionally important non-coding RNAs (ncRNAs) are now better 
understood with the progress of high-throughput technologies. Dis-
covery of the major class of ncRNAs, microRNAs (miRNAs1) has 
further facilitated the molecular aspects of biomedical research.

MicroRNAs are a large group of small endogenous single-stranded 
non-coding RNAs (17–22nt long) found in eukaryotic cells. They 
post-transcriptionally regulate gene expression of specific mRNAs 
by degradation, translational inhibition, or destabilization of the 
targets (transcripts of protein-coding genes)2. Esquela-Kerscher 
et al. have reported on miRNAs involvement in almost every 
regulation aspect of biological processes such as apoptosis, and 
stress response3. Wubin et al. demonstrated that miR-29a regula-
tory circuitry plays an important role in epididymal development 
and its functions4. Additionally, tissue-specificity of miRNAs has 
been shown to provide a better clue of their fundamental roles in 
normal physiology5.

Dysregulation of miRNAs and their ability to regulate repertoires of 
genes (as well as co-ordinate multiple biological pathways) has been 
linked to several diseases6,7. One example is chronic lymphocytic 

leukemia where (in about 68% of the cases) miRNA genes (miR15  
and miR16 ) are missing or down-regulated8. Thus, uncovering the 
relations between miRNAs and diseases as well as genes/proteins is 
crucial for our understanding of miRNA regulatory mechanisms for 
diagnosis and therapy9,10.

Several databases, prediction algorithms and tools are available, 
providing insight into miRNA-disease and miRNA-mRNA associa-
tions. Although the detailed target recognition mechanism is still 
elusive, several algorithms attempt to predict miRNA targets. How-
ever, a limited precision of 0.50 and recall of 0.12 has been reported 
when evaluated against proteomics supported miRNA targets11. 
Despite the fact that these resources provide insight into miRNA-
associated relationships, the majority of relations are scattered as 
unstructured text in scientific publications12. Figure 1 shows the 
growth of publications in MEDLINE and in addition depicts the 
normalized growth of publications that reference the keyword 
“microRNA”.

Some databases such as miR2Disease and PhenomiR store manu-
ally extracted relations from literature. The miR2Disease database13 
contains information about miRNA-disease relationships with 3273 
entries (as of the last update on March 14, 2011). PhenomiR14 is a 
database on miRNA-related phenotypes extracted from published 
experiments. It consists of 675 unique miRNAs, 145 diseases, and 
98 bioprocesses from 365 articles (Version 2.0, last updated on 
February 2011). TarBase11 hosts more than 6500 experimentally 
validated miRNA targets extracted from literature.

However, manual retrieval of relevant articles and extraction of 
relation mentions from them is labor-intensive. A solution is to 
use text-mining techniques. Moreover, the vast majority of the 
research in this direction is mainly focused around extraction of 
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protein-protein interactions15. On the contrary, miRNA relation 
extraction is still naive. The shift of focus towards identification 
of miRNA-relations is slowly establishing with the rise in systems 
approaches to investigate complex diseases. The manually curated 
database miRTarbase16 incorporates such text-mining techniques 
to retrieve miRNA-related articles. Recently, the miRCancer data-
base has been constructed using a rule-based approach to extract 
miRNA-cancer associations from text17. As of June 14, 2014, this 
database contains 2271 associations between 38562 miRNAs and 
161 human cancers from 1478 articles.

Related work
Text-mining technologies are established for a variety of applica-
tions. For instance, the BioCreative competition18,19 and BioNLP 
Shared Task20–22 series have been conducted to benchmark text min-
ing techniques for gene mention identification, protein-protein rela-
tion extraction and event extraction, among others.

To our knowledge, only limited work has been carried out in 
the area of miRNA-related text-mining. Murray et al. consid-
ered miRNA-gene associations from PubMed database using 
semantic search techniques23. For their analysis, experimentally 
derived datasets were examined, combined with network analy-
sis and ontological enrichment. Regular expressions were used to 
detect miRNA mentions. The authors claim to have optimized the 
approach to reach 100% accuracy and recall for detecting miRNAs 
mentions as in miRBase. Relations were identified based on a 
manually curated rule set. The authors extracted 1165 associations 
between 270 miRNAs and 581 genes from the whole MEDLINE.

The freely available miRSel12 database integrates automatically 
extracted miRNA-target relationships from PubMed Abstracts. 
A set of regular expressions is used for miRNA recognition that 
matches all miRBase synonyms and generic occurrences. The 
authors reach a recall of 0.96 and precision of 1.0 on 50 manu-
ally annotated abstracts for miRNA mention identification. Further, 
the relations between miRNA and genes were extracted at sentence 
level employing a rule-based approach. They evaluated on 89 sen-
tences from 50 abstracts resulting in a recall of 0.90 and precision 
of 0.65. Currently, it hosts 3690 miRNA-gene interactions11.

Since the miRNA naming convention has been formalized very 
early in comparison to other biological entities such as genes and 
proteins, applying text-mining approaches is relatively simple17. 
Thus, most of the previously applied text mining approaches for 
miRNA detection has been based on keywords. miRCancer uses 
keywords to obtain abstracts from PubMed, further miRNA entities 
have been identified using regular expressions based on prefix and 
suffix variations. Similarly, miRWalk database uses keyword search 
approach to download abstracts and applies a curated dictionary 
(compiled from six databases) for miRNA identification of human, 
rat, and mouse species24. TarBase, miR2Disease, miRTarBase, and 
several others have followed related search strategies. However, 
several authors still tend to use naming variations for acronyms, 
abbreviations, nested representations, etc. for listing miRNAs. 
Additionally, in contrast to the previous text-mining approaches 
focusing purely on miRNA gene relations, we extend the informa-
tion extraction approach additionally to retrieve miRNA-disease 
relations. Furthermore, we evaluate our approach using a larger 

corpus to achieve robustness. We differentiate between actual 
miRNA mentions (refered to as SPECIFIC MIRNAs) and co-refer-
encing miRNAs (NON-SPECIFIC MIRNAs), which could in addition 
enhance keyword search. We evaluated three different relation 
extraction approaches, namely co-occurrence, tri-occurrence and 
machine learning based methods.

To support further research, our corpora are made publicly available 
in an established XML format as proposed by Pyysalo et al.25, as 
well as the regular expressions used for miRNAs named entity rec-
ognition. In addition, our dictionary for trigger term detection and 
general miRNA mention identification are made available. To our 
knowledge, the annotated corpora as well as the information extrac-
tion resources are the most comprehensive developed so far.

Methods
Data curation and corpus selection
Named entities annotation. Mentions of miRNAs consisting 
of keywords (case-insensitive and not containing any suffixed 
numerical identifier) such as “Micro-RNAs” or “miRs” are anno-
tated as NON-SPECIFIC MIRNA. Names of particular miRNAs such 
as miRNA-101, suffixed with numerical identifiers are labeled as 
SPECIFIC MIRNA. Numerical identifiers (separated by delimiters such 
as “,”, “/”, and “and”) occurring as part of specific miRNA mentions 
are annotated as a single entity. Box 1 depicts the annotation of spe-
cific miRNA mentions (including an example for part mentions). In 
addition, DISEASE, GENE/PROTEIN, SPECIES, and RELATION TRIGGER are 
annotated. The detailed annotation guideline for annotating specific 
miRNA mentions is available as a supplementary file.

Box 1. Example of miRNAs annotations. Here “-181b”, and 
“-181c” are the part mentions annotated as a single entity along 
with “miR-181a” in box. A non-specific miRNA mention is shown 
in italics.

Interesting results were obtained from  miR-181a, -181b, and -181c . 
These set of brain-enriched miRNAs are down-regulated in 
glioblastoma. However,  miR-222 , and  miR-128  are strongly 
up-regulated.

Mentions of disease names, disease abbreviations, signs, defi-
ciencies, physiological dysfunction, disease symptoms, disorders, 
abnormalities, or organ damages are annotated as DISEASE. Only 
disease nouns were considered, adjective terms such as “Diabetic 
patients” are not marked; however, specific adjectives that can be 
treated as nouns were marked, e.g. “Parkinson’s disease patients”. 
Mentions referring to proteins/genes which are either single word 
(e.g. “trypsin”), multi-word, gene symbols (e.g. “SMN”), or com-
plex names (including of hyphens, slashes, Greek letters, Roman or 
Arabic numerals) are annotated as GENE/PROTEIN. Only those organ-
isms that are having published miRNA sequences and annotations 
represented in miRBase database are labeled as SPECIES. Any verb, 
noun, verb phrase, or noun phrase associating miRNA mention to 
either labeled disease or gene/protein term is annotated as RELATION 
TRIGGER.

Relations annotation. We restrict the relationship extraction to sen-
tence level and four different interacting entity pairs: SPECIFIC MIRNA-
DISEASE (SpMiR-D), SPECIFIC MIRNA-GENE/PROTEIN (SpMiR-GP), 
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NON-SPECIFIC MIRNA-DISEASE (NonSpMiR-D), and NON-SPECIFIC 
MIRNA-GENE/PROTEIN (NonSpMiR-GP). Relevant triples, an inter-
acting pair (from one of the above-mentioned) co-occurring with 
a RELATION TRIGGER in a sentence are defined to form a relation and 
can belong to one of the four above-mentioned Relation classes. 
On the contrary, if an interacting pair does not co-occur with any 
RELATION TRIGGER then we do not tag such pair as a relation.

The annotation has been performed using Knowtator26 integrated 
within the Protégé framework27.

Corpus selection, annotation and properties. We develop a new 
corpus based on MEDLINE, annotated with miRNA mentions and 
relations. Shah et al.28 showed that abstracts provide a comprehensive 
description of key results obtained from a study, whereas full text is 
a better source for biological relevant data. Thus, we choose to build 
the corpus for abstracts only. Out of 27001 abstracts retrieved using 
the keyword “miRNA”, 201 were randomly selected as training and 
100 as test corpus. Two annotators performed the annotation. The 
first annotator annotated the training corpus iteratively to develop 
guidelines and built the consensus annotation. The second annotator 
followed these guidelines and annotated the same corpus. Disagree-
ing instances were harmonized by both the annotators through man-
ual inspection for correctness and its adherence to the guidelines. 
Any changes to the guidelines were made if needed. During the 
harmonization process only the non-overlapping instances between 
the two annotators were investigated. Decisions were based on the 
rule that only noun forms were to be marked (specific adjectives 
that can be treated as nouns were also considered). In case of partial 
matches, where conflicting parts could be interpreted as an adjec-
tive were not resolved. For example, in “chronic inflammation”, 
marking either “chronic inflammation” or just “inflammation” were 
considered correct. Table 1 provides the inter-annotator agreement 
(measured as F1, for both exact and boundary match, and Cohen’s 
g) for the test corpus. Exact string match occurs only when both the 
annotators annotate identical strings, whereas in partial match frac-
tion of the string has been annotated by either of the annotators. It is 
evident (cf. Table 1) that in almost all cases partial match performs 
better than exact string match, indicating variations in span of men-
tioned entities. An example annotation is shown in Box 1.

Table 2 shows the number of annotated concepts in the training 
and test corpora for each entity class and the count for manually 
extracted relations (triplets), categorized for different interacting 
entity pairs. Table 3 provides the overall statistics of the published 
corpora (additional information about the corpus is given in the 
README supplementary file).

Table 1. Inter-annotator agreement scores for the test corpus.

Annotation Class F1 
(Exact Match)

F1 
(Partial Match) g

Non-specific MiRNAs 0.9985 0.9985 0.996
Specific MiRNAs 0.9545 0.9779 0.916
Genes/Proteins 0.8343 0.8705 0.752
Diseases 0.8270 0.9575 0.853
Species 0.9329 0.9437 0.875
Relation Triggers 0.8441 0.9543 0.798

Table 2. Manually annotated entities 
statistics. Counts of manually annotated 
entities in the training and the test corpora as well 
as annotated sentences describing relations.

Annotation Class
Corpus

Training Test
Non-specific MiRNAs 1170 336
Specific MiRNAs 529 376
Genes/Proteins 734 324
Diseases 1522 640
Species 546 182
Relation Triggers 1335 625
SpMiR-D 171 127
SpMiR-GP 195 123
NonSpMiR-D 124 54
NonSpMiR-GP 77 16

Table 3. Statistics of the published miRNA corpora.

Occurrences in the corpus Training Test

Sentences 1864 780
Entities 5836 2483
Entity pairs 2001 868
Positive entity pairs 567 320
Negative entity pairs 1434 548

Automated named entity recognition
For identification of specific miRNA mentions in text (cf. Table 4), 
we developed regular expression patterns using manual annotations 
of miRNA mentions as the basis. Similarly, a dictionary has been 
generated for general miRNA recognition. The regular expression 
patterns are represented in the format as defined by Oualline et al.29. 
For simplicity and reusability, several aliases are defined (cf. Table 5) 
to be used in the final regular expression patterns for specific miRNA 
identification, given in Table 4. Detected entities are resolved to a 
unique miRNA name and disambiguated to adhere to standard nam-
ing conventions as authors use several morphological variants to 
report the same miRNA term. For example, miR-107 can be repre-
sented as miRNA-107, Micro RNA-107, MicroRNA 107, has-mir-
107, mir-107/108, micro RNA 107 and 108, micro RNA (miR) 107 
and so on. Thus, the identified miRNA entity has been resolved to 
its base form (e. g. hsa-microRNA-21 to hsa-mir-21 and microRNA 
101 to mir-101) following the miRBase naming convention. Man-
ual inspection of the test corpus for species distribution revealed 
that 71% of the documents belonged to human, followed by mouse 
(15%), rat (8%). Pig has 2 abstracts, zebrafish, HIV-1, HSV-1, 
and Caenorhabditis elegans 1 each (cf. Supplementary Figure A 
for the distribution). Thus, we assumed that most of the abstracts 
belonged to human and resolved the identified miRNA entities to 
human identifier in miRBase. Unique miRNA terms are mapped to 
human miRBase database identifiers through the mirMaid Restful 
web service. For those names where we do not retrieve any database 
identifiers, we fall back to another organism mention found in the 
abstract (if any), using the NCBI taxonomy dictionary (see below) 
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Table 5. MiRNAs regex aliases. Aliases used in regular expression patterns for miRNAs identification 
(highlighted in bold).

Description Alias Regular Expression Pattern
Digit sequences D (\d?\d*)
Admissible hypens with a trailing space Z ([\-]?[\-]*)
Admissible hypens with a leading space S ([\-]?[\-]*)
3-letter prefix for human followed by a 
hyphen Pref ([hH][sS][aA][\-])

Non-specific miRNA mentions miRNA ([mM][iI]([cC][rR][oO])+[rR]([nN][aA]s+)+)
Let-7 miRNA mention Let ([lL][eE][tT]S*[7]?\l+)
Lin-4 miRNA mention Lin ([lL][iI][nN]S*[4]?\l+)
Oncomir miRNA mention Onco ([oO][nN][cC][oO][mM][iI][rR])
Admissible tilde and word boundaries Cluster (^[\b]-[\b]-*)
Admissible hyphen and separator and and 
comma Sep (S*((and?,S,\/,)? S*)+)

Admissible combination of upper and lower 
case alphabets UL (?\l?\l+,?\u?\u+)

Admissible alpha-numerical identifiers in 
specific miRNA mentions AN (UL((/, *and*,D+)? UL)+)

Admissible alpha-numerical identifiers in 
oncomir mentions Tail (D(AN Cluster+,\-D AN+)+)

(cf. Supplementary Figure B), otherwise we retain the unique nor-
malized name (cf. Box 2).

Box 2. Un-normalized and normalized entities that are 
mapped to miRBase identifiers. Here MIR0000007, MIR0000008, 
and MIR0000005 are internal identifiers used by ProMiner.

We detect SPECIES with a dictionary-based approach. The built dic-
tionary consists of all the concepts from the NCBI taxonomy cor-
responding to only those organisms mentioned in miRBase.

Similarly, for identification of DISEASE and GENE/PROTEIN men-
tions in text we adapted a dictionary-based approach. To detect 
DISEASE, we apply three dictionaries: MeSH, MedDRA30  and Allie. 
For GENE/PROTEIN, a dictionary31 based on SwissProt, EntrezGene, 
and HGNC is included. Gene synonyms which could be poten-
tially tagged as miRNAs are removed to overcome redundancy. 

For example, genes encoding microRNA, hsa-mir-21 are named 
as miR-21, miRNA21 and hsa-mir-21, the gene symbol of MIR16 
membrane interacting protein of RGS16 is MIR16, which can repre-
sent a miRNA mention.

The RELATION TRIGGER dictionary comprises of all interaction terms 
from the training corpus. After reviewing the training corpus for 
relation trigger terms, we retrieved not one but many variants of 
the same RELATION TRIGGER occurring in alternative verb-phrase 
groups. For example, “change in expression” can be represented as 
one of the following verb-phrases: Change MicroRNA-21 Expres-
sion, Expression of caveolin-1 was changed, Change in high levels 
of high-mobility group A2 expression, change of the let-7e and 
miR-23a/b expression, expression of miR-199b-5p in the non-met-
astatic cases was significantly changed, etc. To allow flexibility for 
capturing RELATION TRIGGER along with its variants spanning over 
different phrase length, we first manually represented all the rela-
tions in its root form, such as “regulate expression” to “regulate” 
(cf. Relation_Dictionary.txt file in Dataset 1). The base form has 
been extended manually to different spelling variants, e.g. regulate 
to regulatory, regulation, etc., the detailed listing of variants is pro-
vided in Word_variations.txt in Dataset 1. Not all combinations of 

Table 4. Regular expression patterns used for miRNAs identification. Aliases used to form the final regular 
expression, see Table 5, are highlighted in bold.

Regular expression patterns Description Example of identified text

(Pref+(Lin,Let)) Detection of Lin and Let 
variations of miRNAs lin-4; hsa-let-7a-1

(Pref+(miRNA, Onco)(S*Tail)(Sep Tail)*) MiRNAs mentions for different 
separators hsa-mir-21/22; Oncomir-17^92

(Pref+(miRNA, Onco) S*(D(Z([/]Z)*)+) ([\,] 
S*? (Pref+(miRNA, Onco) S*(D(Z([/]Z)*)+)*)))

Multiple miRNA mentions 
occurring progressively

miR-17b, -1a; hsa-miR-21,22, 
and hsa-miR-17

MIR0000007:MIMAT0015092@MIRBASE|MI0000002@MIRBASE|cel-lin-4|lin-4

MIR0000008: miR-171|microRNA 171

MIR0000005:MIMAT0000416@MIRBASE|has-miR-1|miRNA-1 
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the root forms are logical; target and up-regulation terms cannot be 
combined to form a relation trigger. Thus, we additionally defined 
a set of relation combinations that are allowed (see Permutation_
terms.txt in Dataset 1 for all combinations).

For all named entity recognition performed, the dictionary-based 
system ProMiner31 is used. Supplementary Table A (Dataset 1) pro-
vides a quantitative estimate of the entities available in the diction-
aries used in this work.

Relation extraction
We consider three approaches for addressing automatic extrac-
tion of interacting entity pairs from free text, described in the 
following.

The co-occurrence approach serves as a baseline. Assuming all 
interactions to be present in isolated sentences, this approach is 
complete but may be limited in precision. Reducing the number 
of false positives can be achieved by filtering with the dictionary 
of relation triggers occurring in the same sentence. The rationale 
behind this filter is that the interaction is more likely to be described 
if such a term is present (we refer to this as tri-occurrence).

To increase the precision, we use a machine learning-based approach 
formulating the relation detection as a binary classification prob-
lem: each instance (consisting of a pair of entities) is classified 
either as not-containing a relation or belonging to one of the four-
relation classes. Our system uses lexical and dependency parsing 
features. We evaluate linear support vector machines (SVM)32 as 
implemented in the LibSVM library, as well as LibLINEAR, a spe-
cialized implementation for processing large data sets33, and naive 
Bayes classifiers34. For more details, we refer to Bobić et al.35.

Lexical features capture characteristics of tokens around the 
inspected pair of entities. The sentence text can roughly be divided 
into three parts: text between the entities, text before the entities, 
and text after the entities. Stemming36 and entity blinding is per-
formed to improve generalization. Features are bag-of-words and 
bi, tri, and quadri-gram based. This feature setting follows Yu et al. 
and Yang et al.37,38. The presence of relation triggers is also taken 
into account, using the previously described manually generated 
list. Next to lexical features, dependency parsing (created using 
Stanford parser) provides an insight into the entire grammatical 
structure of the sentence39 and was performed using the Stanford 
CoreNLP library (http://nlp.stanford.edu/software/corenlp.shtml). 
Deep parsing follows the shortest dependency path hypothesis40. 
We analyzed the vertices v (tokens from the sentence) in the 
dependency tree from a lexical (text of the token) and syntacti-
cal (POS tag) perspective. Edges e in the tree correspond to the 
information about the grammatical relations between the vertices. 
Extracting relevant information from the dependency parse tree is 
usually done following the shortest dependency path hypothesis40. 
Lexical and syntactical e-walks and v-walks on the shortest path 
are created by alternating sequence of vertices and edges, with the 
length of 3. We capture the information about the common ancestor 
vertex, in addition to checking whether the ancestor node represents 
a verb form (e.g. POS tag could be VB, VBZ, VBD, etc.). Finally, 
the length of the shortest path (number of edges) between the enti-
ties is considered as a numerical feature.

Results and discussion

Dataset 1. Version 2. Manually  annotated miRNA-disease and 
miRNA-gene interaction corpora

http://dx.doi.org/10.5256/f1000research.4591.d40643

Please see README.txt in the zip file for precise details about the 
corpus and supplementary files. The updated zip file contains new 
files (Permutation_terms.txt, Non-Specific_miRNAs_Dictionary.txt 
and Word_variations.txt) and Table A has been updated.

In the following, we present results for named entity recognition 
and relation extraction. This section concludes with two use-case 
analyses.

Performance evaluation of named entity recognition
Among the 201 abstracts present in the training corpus, 82% con-
tained general miRNA mentions, in comparison to specific miRNAs 
with 45%. In Table 6, results for miRNA entity recognition are 
reported. Non-specific miRNA recognition is close to perfect. Spe-
cific miRNA mention recognition has an F1 measure of 0.94.

For disease mention recognition, combined dictionaries, based on 
three established resources, resulted in 0.79 and 0.69 F1 score for 
the training and test corpus respectively. The low score for disease 
identification could be due to the variation in disease mentions, such 
as multi-word, synonym combination, nested names, etc. However, 
the partial matches result for diseases reported 0.88 of F1, providing 
the possibility for detection of similar text strings for better recall 
(cf. Supplementary Table B in Dataset 1). Genes/proteins dictionary 
showed a performance of 0.84 and 0.85 of F1 in training and test 
corpus respectively.

The evaluation of the relation trigger dictionary (cf. Table 6) sug-
gests that it covers a substantial part of the vocabulary with recall of 
0.86 for the training and 0.79 for the test corpus.

Relation extraction
We queried MEDLINE for “miRNA and Epilepsy” documents, 
among which 16 documents containing miRNA-related relations 
were manually selected (cf. Supplementary Figure C for the detailed 
distribution statistics). To avoid any biased approach we choose Epi-
lepsy disease domain. Manual inspection of these articles revealed 

Table 6. Evaluation results for miRNA entity  classes. Here only 
complete match results are presented. The performance of named 
entity recognition is evaluated using recall (R), precision (P) and F1 
score.

Entity  Class
R P F1 R P F1

Training Corpus Test Corpus

Non-specific 
MiRNAs 1.000 0.995 0.997 1.000 0.997 0.999

Specific MiRNAs 0.921 0.928 0.924 0.936 0.934 0.935

Relation Triggers 0.864 0.885 0.874 0.790 0.842 0.815
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11.5% of miRNA-related associations occur outside the sentence 
level. Thus, our work focused on relations at sentence level. Sen-
tences in which co-occurring entity pairs do not participate in any 
relation are tagged as false. A comparison of the different relation 
extraction approaches is shown in Figure 2. Supplementary Table D 
in Dataset 1 provides statistical details of the applied approaches 
given in Figure 2. If all the entities are correctly identified then 
co-occurrence based approach leads to 100% recall for relation 
extraction. The recall is not diminished using the tri-occurrence 
approach, as the true entity pairs remain constant, while the preci-
sion increases between 4pp (percentage points) and 17pp when com-
pared to the co-occurrence based approach, reducing false positives 
(cf. Figure 2). However, overall the precision reaches less than 60%. 
In our work, we assume that all the entities have been identified 
giving a recall of 100% for both co-occurrence and tri-occurrence 
based approaches. Using the machine-learning based classification, 
precision is increased up to 76% for specific miRNA-gene relations 
for both LibLINEAR and LibSVM methods, although Naïve Bayes 
is not far behind. Similarly, these two methods performed nearly the 
same for specific miRNAs-disease relations, the F1 measure is not 
substantially different but a trade-off between precision and recall 
can be observed. An increase in F1 measure is observed for non-
specific miRNA relations when Naïve Bayes method is applied, out 
performing other strategies. Nevertheless, preference of the method 
highly depends on the compromise one chooses, whether better 
recall or precision. Overall, better recall and acceptable precision 
can be achieved with tri-occurrence method.

Most relation extraction approaches are dependent on the perform-
ance of named entity recognition. The impact of error propaga-
tion coming from automated entity recognizers is evaluated by 
applying the tri-occurrence method on the automatically annotated 
training and test corpus, here termed as “NERTri”. Compared to 
the results on the gold standard entity annotation a drop of 13 pp 
for NonSpMiR-D, 7pp for NonSpMiR-GP, 22pp for SpMiR-D, and 
30pp for SpMiR-GP in F1 is observed for the test corpus. Overall 

performance of the NERTri approach on training and test corpus is 
detailed in Supplementary Table C in Dataset 1.

Use case analysis
For the impact analysis of the proposed approach, we compare the 
extracted information with two databases, namely miR2Disease and 
miRSel. We focus on relations and articles concerning Alzheimer’s 
disease.

Alzheimer’s disease (AD) is ranked sixth for causing deaths in 
major developed countries41. It affects not only individuals but also 
incurs a high cost to the society. Recently, miRNAs have shown 
close associations with AD pathophysiology42,43. Increasing the 
need to identify new therapeutic targets for AD, after major set 
backs due to failed drugs, motivates the need to look in this direc-
tion. In silico methods, such as the one proposed in this work, can 
aid in building miRNA-regulatory networks specific to AD, for 
further analysis such as identifying the mechanisms, sub-networks, 
and key targets.

Extracting miRNA-Alzheimer’s disease relations from full 
MEDLINE
The database miR2Disease is queried to return all miRNA-dis-
ease relations occurring in Alzheimer’s disease. For comparison, 
we retrieved miRNA-disease relations from MEDLINE using 
NERTri approach, resulting in 41 abstracts containing 159 rela-
tions. Obtained triplets have been manually curated to remove 51 
false positives. False negatives have not been accounted, which 
may result in loss of information (cf. Relation extraction section). 
Comparison between the relations obtained from miR2Disease and 
NERTri are summarized in Table 7. The miR2Disease database 
returns 28 evidential statements from 9 articles. Among these, only 
14 evidences are present in abstracts. Moreover, 16 evidences are 
extracted from one full text document44. Only two evidences are 
identified at abstract level among these 16 evidences. Overall, 26 
miRNAs identified by miR2Disease refer to Alzheimer’s disease. 

Figure 2. Comparison of different relation extraction approaches. On the x-axis, different entity pair relations are represented as SpMiR-D 
for SPECIFIC MIRNA-DISEASE, SpMiR-GP for SPECIFIC MIRNA-GENE/PROTEIN, NonSpMiR-D for NON-SPECIFIC MIRNA-DISEASE, and NonSpMiR-GP for 
NON-SPECIFIC MIRNA-GENE/PROTEIN.
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Table 7. miR2Disease database comparison. MiRNA-Alzheimer’s disease relation 
retrieved from MEDLINE and in miR2Disease database.

miR2Disease NERTri True Positives 
in NERTri

NERTri and 
miR2Disease 
Overlap

Publications 9 41 36 8

Relations 28 159 108 11

Evidences (abstracts) 14 159 108 10

Unique miRNAs 26 46 40 16

Therefore, our text-based extraction proposes approximately three 
times more relations than the database provides.

The analysis of 17 false negative relations which are in the data-
base but not found by our approach shows that most of the rela-
tions could be found only in full text and that the automatic system 
misses four miRNA-Alzheimer’s disease relations from abstracts. 
Manual inspection reveals that in three out of these missing four 
evidences the disease name is not mentioned in the sentence (rela-
tion occurred at co-reference level).

Extraction of miRNA-gene relations for Alzheimer’s diseases 
from full MEDLINE
Here we compare the performance of our relation detection NER-
Tri with another text-mining database, miRSel. For comparison, 100 
abstracts from PubMed were retrieved using the query “alzheimer 
disease”[MeSHTerms] OR (“alzheimer disease”[All Fields] 
OR “alzheimer”[All Fields]) AND (“micrornas”[MeSH Terms] 
OR “micrornas”[All Fields] OR “microrna”[All Fields]) AND 
(“2001/01/01”[PDAT]:“2013/7/4”[PDAT]). Manual inspection of 
these articles leads to 184 miRNA-gene relations, at sentence level, 
(Table 8) in 37 abstracts.

NERTri approach was able to identify 140 of these found relations 
in 28 abstracts. Among the 37 abstracts from the PubMed query, 
miRSel contained only 12 abstracts with 56 miRNA-gene relations 
(cf. Table 8). False negatives in our approach when compared with 
miRSel could not be directly identified as the database is not down-
loadable and searchable for disease specific relations. However, low 
intersection between miRSel and NERTri can be observed.

In summary, our approach provides AD related gene-microRNA 
relations from PubMed which have not been available in the data-
base before.

Overall, the results are promising when compared with the miR2D-
isease and miRSel databases and indicate that we can extend the 
databases to a large extent with new relations. Such an approach 
makes it much easier to keep databases up to date. Nevertheless full 
text processing would most certainly increase the recall of auto-
matic processing.

Conclusion and future work
In this work, we proposed approaches for identification of relations 
between miRNAs and other named entities such as diseases, and 
genes/proteins from biomedical literature. In addition, details of 
named entity recognition for all the above entity classes have been 
described. We distinguished two types of miRNA mentions, namely 
Specific (with numerical identifiers) and Non-Specific (without 
numerical identifiers). Non-specific miRNAs entity recognition 
has enabled us to achieve better recall and precision in document 
retrieval. Three different relation extraction approaches are com-
pared, showing that the tri-occurrence based approach should be 
the first reliable choice among all others. The tri-occurrence based 
approach is comparable to a machine learning-based method but 
considerably faster. In comparison to two well-established data-
bases, we have shown that additional useful information can be 
extracted from MEDLINE using our proposed methods.

To best of our knowledge, this is the first work where manually 
annotated corpora containing information about miRNAs and 
miRNA-relations are published. Moreover, the corpora and meth-
ods provided represent useful basis and tools for extracting the 
information about miRNAs-associations from literature. This work 
serves as an important benchmark for current and future approaches 
in automatic identification of miRNA relations. It provides the basis 
for building a knowledge-based approach to model regulatory net-
works for identification of deregulated miRNAs and genes/proteins.

The proposed methods encourage the extension of this work to 
full-text articles, to elucidate many more relations from Biomedical 
literature. Non-specific miRNA mention identification could prove 
highly beneficial for co-reference resolution in full-text articles, in 
addition to abstracts. Proposed machine-learning approaches could 
be applied to only tri-occurrence based instances for reducing the 
false positive rates. Extending the current approach to other model 
organisms such as mouse, and rat could be helpful in revealing 

Table 8. miRSel database comparison. Comparison of 
miRNA-gene relations retrieval for Alzheimer’s disease in 
MEDLINE.

Approach Articles Relations

PubMed Query (“Alzheimer AND 
miRNA”) 100 NA

PubMed Query with relations at 
sentence level 37 184

PubMed Query � NERTri 28 140

PubMed Query � miRSel 12 56

NERTri � miRSel 14 22
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important relations for translational research. Inclusion of addi-
tional named entities such as drugs, pathways, etc. could lead to an 
interesting approach for detection of putative therapeutic or diag-
nostic drug targets through a gene-regulatory network generated 
from identified relations.
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Supplementary  figures

Supplementary  Figure A. Distribution of organism mentions in training corpus.

Supplementary  Figure B. A screenshot example of how we handle other organism miRNA normalization. There is no miR-125 entry 
related to human in miRBASE. Since the abstract mentions Drosophila melanogaster in the title, the miRNA is normalized to dme-mir-125.
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Supplementary Figure C. Coverage of relations occurring in Epilepsy Documents.
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4.2.1 Supplementary	Tables	

 

 

 

 

4.3 Summary	

This publication details the development of the text-mining methods to automatically 

extract miRNAs and its associations from the text. To build these automated methods, 

firstly a training corpus was developed. A detailed description of the literature curation 

workflow and the annotated entities are provided. Here two types of miRNAs were 

distinguished for annotation: specific and non-specific. Specific miRNAs represent the 
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Table A. Count of entries available in the dictionaries.

Genes/Proteins Relation Trigger

Dictionaries MeSHAbbr MedDRA Original Processed Species Dictionary Spelling variants

Entries 4,683 15,436 39,386 34,392 158 207 386
Synonyms 60,554 54,885 721,455 677,943 1,330 - -

Table B. Aliases used in regular expression patterns for miRNAs identification.

Description Alias Regular Expression Pattern

Digit sequences D ([0-9]:d?d*)
Upper and lower case letters L ([a-zA-Z]:l?l*)
Lower case letters only Low ([a-z]:low?low*)
Upper case letters only Up ([A-Z]:up?up*)
Admissible hypens Z ([[\-]:z?z*)
3-letter prefix for human Pref ([hH][sS][aA])
Non-specific miRNA mentions miRNA ([mM][iI]([cC][rR][oO])+[rR]([nN][aA]s+)+)
Let-7 miRNA mention Let ([lL][eE][tT][-]*[7]?l+)
Lin-4 miRNA mention Lin ([lL][iI][nN][-]*[4]?l+)
Oncomir miRNA mention Onco ([oO][nN][cC][oO][mM][iI][rR])
Admissible tilde and hyphens Cluster (⇠[\b]-[\b]-*)
Admissible hyphens and separator term and Sep ([-]:s*((and?s,\,)?s*)+)
Admissible alpha-numerical identifiers in specific miRNA mentions Two ((?low?low+,?up?up+):two((/, *and *?D+)?two)+)
Admissible alpha-numerical identifiers in oncomir mentions Tail (?D(?Two?Cluster+,-?D?Two+)+)

Table C. Regular expression patterns used for miRNAs identification (aliases from cf. Table 2 are highlighted in bold).

Regular expression patterns Example of identified text

(?Pref+(?Lin,?Let))=m([a-zA-Z0-9]-,\n)=><nn mirna>,?m; lin-4, hsa-let-7a-1
(?Pref+(?miRNA,?Onco)(?s?s*?Tail)(?Sep?Tail)*)=m([a-zA-Z0-9]-,\n)=><nn mirna>,?m; hsa-mir-21, microRNA 101
(?Pref+(?miRNA,?Onco)[-]*(?D(?Z([/]?Z)*)+):Expr([,][-]*?Expr)*)=m=> <nn mirna>,?m; miR-17⇠92, Oncomir-1

the sentence level, where a sentence with n entities contains at most
�n
2

�

interacting pairs. We consider three approaches, described in the following.
The co-occurrence approach is often considered as a baseline, since it

involves minimal effort. Assuming all interactions to be present in isolated
sentences, this approach is complete, but may be limited in precision.
Reducing the number of false positives can be achieved by filtering with
the dictionary of relation triggers. The rationale behind this filter is that an
interaction is more likely to be described if such a term is present (we refer to
that as tri-occurrence).

To increase the precision, we use a machine learning-based approach,
formulating the relation detection as a binary classification problem: each
instance (consisting of a pair of entities) is to be classified either as not-
containing a relation or belonging to one of the four relation classes. Our
system uses lexical and dependency parsing features. Several classifiers
are tested, out of which results obtained by Support Vector Machines
(SVM), Naive Bayes and LibLINEAR are reported. For more details of
the configuration, we refer to Bobic et al. (2012).

Lexical features capture the information coming from the tokens around
the inspected pair of entities. The sentence text can be roughly divided into
three parts: text between the entities, text before the entities and text after
the entities. To improve generalization, stemming (using the Porter stemmer
(Porter, 1980)) and entity blinding is performed. Features are bag-of-words

and bi, tri, and quadri-gram based. This feature setting follows GuoDong
et al. (2005), Yu et al. (2009) and Yang et al. (2010). The presence of relation
triggers is taken into account as well, using the previously described manually
generated list. Next to lexical features, deep parsing, which provides an
insight into the entire grammatical structure of the sentence, is applied by
using the Stanford parser (Marneffe and Manning, 2010). Vertices v (tokens
from the sentence) in the dependency tree are analyzed from a lexical (text
of the token) and a syntactical (POS tag) perspective. Edges e in the tree
correspond to the information about the grammatical relations between the
vertices. Extracting relevant information from the dependency parse tree is
usually done following the shortest dependency path hypothesis (Bunescu and
Mooney, 2005). Lexical and syntactical e-walks and v-walks on the shortest
path are created by alternating sequence of vertices and edges, with the
length of 3. The information about the common ancestor vertex is captured,
as proposed by Van Landeghem et al. (2008). Furthermore, it is checked
whether the common ancestor represents a verb form (e. g. POS tag could
be VB, VBZ, VBD etc). Finally, the length of the shortest path (number of
edges) between the entities is considered as well.

The system is developed in Java, using Weka 3.7.421 (Hall et al., 2009).

21 http://www.cs.waikato.ac.nz/ml/weka/
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from the sentence) in the dependency tree are analyzed from a lexical (text
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usually done following the shortest dependency path hypothesis (Bunescu and
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path are created by alternating sequence of vertices and edges, with the
length of 3. The information about the common ancestor vertex is captured,
as proposed by Van Landeghem et al. (2008). Furthermore, it is checked
whether the common ancestor represents a verb form (e. g. POS tag could
be VB, VBZ, VBD etc). Finally, the length of the shortest path (number of
edges) between the entities is considered as well.

The system is developed in Java, using Weka 3.7.421 (Hall et al., 2009).

3 RESULTS AND DISCUSSIONS
3.1 Corpus Analysis

Identification of relations between entities of interest may appear
over a span of several sentences, across document, or may occur in
a single sentence. 16 abstracts from PubMed,retrieved using the
keyword “miRNA AND Epilepsy” were inespected to determine
the scope of of miRNA-related associations being expressed on

21 http://www.cs.waikato.ac.nz/ml/weka/

Table B. Performance evaluation of the disease dictionaries on
training corpus (CM=Complete match and PM=Partial match).

R P F1

CM PM CM PM CM PM

MeSH 0.62 0.74 0.70 0.70 0.66 0.72
MedDRA 0.50 0.59 0.73 0.86 0.60 0.70
MeSHAbbr 0.72 0.85 0.77 0.91 0.74 0.88

sentence level or by coreference. The corpus analysis revealed
two ways in which the authors write miRNA mentions in text,
with and without numerical identifiers. In spite of the fact that
miRNA mentions with numerical identifiers provide more specific
information, authors use general miRNA mentions to coreference
specific miRNAs occurring in previous sentence, paragraph or in full
text. Incorporation both specific and non-specific miRNA into our
relation extraction approach merely 11.5% of all sentences participate
in additional coreference relations at abstract level, thus our work
focussed on relations at sentence level.

Out of 201 training abstracts, 165 abstracts constitute relations
with general miRNA mentions and specific miRNA mentions were
used in 90 abstracts. Similarly, in 100 test corpus, 76 abstracts
contain relations wherein general miRNAs are involved and 49
abstracts involving specific miRNA mentions. Thus, to avoid loss
of information, two miRNA classes were defined for annotation:
SPECIFIC MIRNAS and NON-SPECIFIC MIRNAS.

Table ?? shows the number of annotated concepts in training and
test corpus for each entity class and the count for manually relations
(triplets), categorized for different interacting entity pairs.

3.2 Performance Evaluation of NER

The recognition of miRNAs based on regular expressions performs
very well in terms of recall and precision. Non-specific miRNAs
mention identification performs better than specific-miRNAs,
indicating usage of standard terms representing non-specific miRNAs.
In specific miRNA mentions, authors tend to use uncommon
representations, including nested terms such as miRNA (miR)-223,
not covered in the regular expressions, leading to slightly lower
performance of the specific miRNAs identification. Table ?? reports
results for miRNA recognition and all other entity classes in training
and test corpus.

For disease mention, firstly two standard dictionary performance
are considered: MeSH and MedDRA, reported in Table B. For
both dictionaries we observed high differences in performance
considering complete match (CM) in comparison to partial match

4
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Table C. Results of tri-occurrence based approach for relation extraction
using entities identified by ProMiner.

Interacting Entity Classes Training Corpus Test Corpus

R P F1 R P F1

NonSpMiR-D 0.60 0.21 0.31 0.49 0.3 0.38
NonSpMiR-GP 0.53 0.35 0.42 0.87 0.36 0.51
SpMiR-D 0.62 0.31 0.41 0.52 0.38 0.44
SpMiR-GP 0.43 0.41 0.42 0.45 0.41 0.43

(PM). Especially for MeSH the recall increase of 12 % evaluating
partial match. Reasons are correct matches but more granular
descriptions of diseases in the text than the ones contained in the
MeSH dictionary. Inspection of missing hits revealed that both
dictionaries have a lack of disease name abbreviations.

The MeSHAbbr dictionary is developed to overcome this
(cf. Table B), resulting in gain of ⇠11 % recall and ⇠21 %
precision. Furthermore, merging results obtained from MeSHAbbr
and MedDRA dictionary led to an additional increase of 8% in recall
(cf. Table ??). Overall, it is noticeable that by considering these two
processing steps, 20% recall was gained in comparison to the MeSH
dictionary.

By far, most abstracts in test corpus are talking about human
(71), followed by mouse (16), and rats (8). Pig has 2 abstracts,
zebrafish, HIV-1, HSV-1, and C.elegans 1 each. Note that the
species distribution is strongly biased to human, facilitating better
performance of species dictionary indicated in cf. Table ??.

Evaluation results of dictionary containing relation triggers
(cf. Table ??) shows that it covers substantial part of the terms that
represent relations involving miRNAs, providing sufficient coverage.

3.3 Relation Extraction

A comparison of the different relation extraction approaches is shown
in Table D and Figure 3. For the evaluation of the relation extraction
the named entity recognition is given and result naturally in a 100
% recall for the co occurrence. This recall is not diminished using
the trio-ccurrence approach while the precision increases between 4
and 17 % when compared to the co-occurrence based approach, due
to the fact that it detects lesser false positives. For both training and
test corpus the precision is higher when entities belonging to Specific

miRNAs class are involved in interaction. However, the precision in
both classes reaches less than 60%. Using machine learning based
classification the precision could be increased up to 76 % for specific
miRNA -gene relations. The F1 measure is not substantially different
but recall is decreased and precision increased. This is true for all
three methods (LIBLINEAR, SVM, Naive Bayes) used.

Class imbalance is an evident issue for the classifier, resulting in a
lower recall and a decreased performance for the relation classes with
high ratio of negative instances. Depending on the use-case (high
recall or precision) either tri-occurrence or machine learning-based
relation extraction can be selected.

Most relation extraction approaches are dependent on the
performance of the named entity recognition. The error propagation
coming from an automated NER system is a behavior that is well
known and investigated in the community Giuliano et al. (2007).

The impact of the entity recognition on miRNA relation extraction is
evaluated by applying the tri-occurrence method on the automatically
annotated training and test corpus. Compared to the results on the
gold standard entity annotation a drop of 21 percentage points (pp)
for NSM-D, 5pp for NSM-G/P, 24pp for SM-D, and 32pp in F1 can
be observed for the test corpus.

4 EXTRACTING MIRNA -NEURODEGENRATIVE
DISEASE RELATIONS FROM FULL MEDLINE

For the neurodegenerative diseases Alzheimer, Parkinson and
Epilepsy we extract the miRNA - disease relations from full
MEDLINE applying our tri- occurrence approach. For Alzheimer’s
disease 41 abstracts with 159 relations, for Epilepsy ? publications
with ? relations and for Parkinson ? abstracts with ? disease - miRNA
relations could be retrieved. For Alzheimer’s Disease we compared
the results obtained from tri-occurrence based approach for Specific

MiRNAs with the results obtained by querying a manually curated
database, miR2Disease (Jiang et al., 2009) E. The mir2Disease
database contains about 28 evidences from 9 articles containing
information on miRNAs-Alzheimer disease relations. Among these
only 14 evidences were obtained from the abstracts, 50% of all
the evidences. Out of the 28 evidences, 16 were extracted from a
one full text document (PMID: 18434550). Only 2 evidences were
identified at abstract level among these 16 evidences. Overall, about
26 miRNAs were identified by miR2Disease database which are in
relation with Alzheimer disease.

From the 159 evidences found by our automatic apporach 108 were
true positives revealing a precision of ... . Compared to the content
of the miR2Disease database for Alzheimer’s Disease our approach
has 3-fold increase in miRNAs-disease relation information. This
approach was able to identify about 40% more number of miRNAs
that participate in Alzheimer disease (at abstract level).

The analysis of 17 false negative relations which are in the database
but not found by our apporach shows that most of the relations could
only be found in full text and that the automatic system misses
four miRNA-Alzheimer’s disease relations from abstracts. Manual
inspection reveales that in three out of the missing four evidences the
disease name was not mentioned in the sentence (relation occurred
at coreference level).

Overall, our approach give promising results when compared
with the miR2Disease databse and indicate that we can extend the
databases to a large extend with new relations. Such an approach
makes it much easier to keep databases up to date. Nevertheless full
text processing would most certainly increase the recall of automatic
processing.

To analyse the gene - miRNA relations for those diseases we
extracted those relations for the three neurodegenerative diseases.

For the neurodegenerative diseases Alzheimer, Parkinson and
Epilepsy we extracted the miRNA - disease relations from full
MEDLINE. For We compared the results obtained from tri-
occurrence based approach with the results obtained by querying a
manually curated database, miR2Disease (Jiang et al., 2009). This
comparison was performed for only one disease, Alzheimer’s Disease.
To generate the results for comparison we followed the below steps:
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Table D. Comparison of different relation extraction approaches on test corpus.

NonSpMiR-D NonSpMiR-GP SpMiR-D SpMiR-GP

RE approaches R P F1 R P F1 R P F1 R P F1

Co-occurrence 1.00 0.20 0.34 1.00 0.28 0.44 1.00 0.41 0.58 1.00 0.53 0.69
Tri-occurrence 1.00 0.35 0.51 1.00 0.41 0.58 1.00 0.50 0.66 1.00 0.58 0.73
ProMiner NER 0.49 0.3 0.38 0.87 0.36 0.51 0.52 0.38 0.44 0.45 0.41 0.43

Machine Learning Approaches

LIBLINEAR 0.51 0.56 0.53 0.64 0.57 0.60 0.73 0.62 0.67 0.87 0.68 0.76
SVM 0.49 0.55 0.52 0.63 0.56 0.59 0.73 0.61 0.66 0.86 0.68 0.76
Naive Bayes 0.60 0.52 0.56 0.75 0.57 0.65 0.65 0.62 0.63 0.90 0.64 0.75

Fig. 3. Comparison of different relation extraction approaches.

• Tri-occurrence based approach was applied for Specific MiRNAs-
disease (Alzheimer Disease only) interacting entity classes over
whole MEDLINE.

The result file (tab separated) contained information of the
PMID, interacting Specific miRNAs and disease mentions, the
relation term, and the sentence.

• Entries in this file were manually curated to remove false
positives.

Comparison of our results with the miR2Disease results are shown
in Table E. An entry in our result file was considered as a true positive,
if the interacting entities identified in a particular abstract exists in
the miR2Disease entries. From the result table we observe that with
our approach, content of miR2Disease database can be increased by
nearly 3 times. This approach reduces the effort involved in

the identification of abstracts (and sentences) depicting miRNAs-
disease relationship and reduces the time required to read articles.

Discussion For ....describe what you have found .... We compared
the found relations with the contend of another automatic generated
database miRSel containing gene miRNA relations. Since we focused
on disease related gene - miRSel we can not directly compare to
the contend of miRSel because there is no possibility to search the

database using the disease and miRNA pair or even just disease
name. Thus we compared for a set of abstracts retrieved with the
query (Alzheimer, parkinson or epilepsy) and miRNA and test if the
PMIDs are contained in miRSel.

we hae to discuss this again
Thus, I compared for individual disease files I generated

(Alzheimer, parkinson and epilepsy). I took each individual PMID
and searched in miRSel. Compared the triplets(miRNA-relation
trigger-gene/proteins) from my file if they are occurring in MiRSEL.
If miRSel identified more relations which my approach could not, I
have added it them to the sum of relations identified by miRSel in
the table.

mir2Disease database contains about 28 evidences from 9 articles
containing information on miRNAs-Alzheimer disease relations.
Among these only 14 evidences were obtained from the abstracts,
50% of all the evidences. Out of the 28 evidences, 16 were extracted
from a one full text document (PMID: 18434550). Only 2 evidences
were identified at abstract level among these 16 evidences. Overall,
about 26 miRNAs were identified by miR2Disease database which
are in relation with Alzheimer disease.

Our approach was applied only at the sentence level. From the
comparison results, it is observed that our approach has 3-fold
increase in miRNAs-disease relation information when compared

6
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mentions that can directly be mapped to miRBase database identifiers, whereas non-

specific mentions aid in co-reference resolution. Annotated relations include miRNA-

disease and miRNA-gene associations. To our knowledge, this is the first work which has 

published a comprehensive corpus for miRNA research. Currently, this corpus serves as 

the gold standard for developing text-mining-based methods for miRNA research.  

The automated text-mining workflow was implemented in the ProMiner tool. Specific 

miRNA mentions were identified using a set of regular expressions. Dictionaries were 

developed to extract non-specific miRNAs and relation trigger terms. Existing dictionaries 

were adapted for extracting genes/proteins and disease mentions. Three relation extraction 

approaches were evaluated: co-occurrence, tri-occurrence and machine learning-based. 

Among these, tri-occurrence-based and machine-learning approaches were comparable, the 

latter with a slightly better precision than the former.  

To showcase the potential of the developed approach, an AD use-case was presented. The 

developed approach outperformed well-known databases: miR2Disease and miRSel. To 

conclude, this work serves as an important benchmark for current and upcoming attempts 

at aggregating highly specific and relevant miRNAs information. 
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Chapter	5 	Discovery-based	Data	
Harvesting		

 

5.1 Introduction	

With rapid advancements in high-throughput technologies, a number of omics studies have 

grown over the years. Indeed, the cumulative effort of several NDD researchers to decipher 

the underlying aetiology has added to these mountains of public data. More and more of 

these datasets are made available to the community to accelerate the much needed 

discoveries and innovations to aid NDD patients. Hence, there is an urgent need to organize 

the existing digital data objects for sharing and reusability. If reused and reanalyzed from 

a different perspective, such a large collection of data has huge potential to uncover hidden 

knowledge. However, only a small subset of these data holdings support efficient 

reusability. A potential reason is that most of the repositories allow data search based on 

the metadata provided by the researchers, which is often far from complete and are not 

adapted to standard ontologies. Moreover, it still requires significant effort to retrieve a 

relevant study or obtain experiment-related metadata information. In addition, these 

databases lack context-specific metadata information that is vital for comprehending 

disease-specific studies. For example, in NDD it is important to understand symptoms or 

comorbidities of the patients, treatment methods applied to induce neurodegeneration in 

animal models, etc. To retrieve pertinent studies and thus obtain the most context-specific 
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datasets for analysis, there is a need to harvest more granular, formalised, searchable, and 

context-specific metadata information. 

In the following publication, a NDD-specific metadata database has been developed, 

named NeuroTransDB. Our study outlines the challenges faced during precise retrieval of 

omics data from GEO and ArrayExpress. Several examples have been provided that show 

the lack of compliance by data submitters. In addition, it describes the need for additional 

metadata fields needed for NDD research with good data coverage in humans and animal 

models. This publication emphasises on the approach and effort required to achieve 

FAIRness (Findable, Accessible, Interoperable, Reusable) of exisitng data in NDD. 
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Abstract

Neurodegenerative diseases are chronic debilitating conditions, characterized by
progressive loss of neurons that represent a significant health care burden as the global eld-
erly population continues to grow. Over the past decade, high-throughput technologies
such as the Affymetrix GeneChip microarrays have provided new perspectives into the path-
omechanisms underlying neurodegeneration. Public transcriptomic data repositories,
namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to con-
duct integrative meta-analysis; increasing the power to detect differentially regulated genes
in disease and explore patterns of gene dysregulation across biologically related studies.
The reliability of retrospective, large-scale integrative analyses depends on an appropriate
combination of related datasets, in turn requiring detailed meta-annotations capturing the
experimental setup. In most cases, we observe huge variation in compliance to defined
standards for submitted metadata in public databases. Much of the information to complete,
or refine meta-annotations are distributed in the associated publications. For example, tissue
preparation or comorbidity information is frequently described in an article’s supplementary
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tables. Several value-added databases have employed additional manual efforts to over-
come this limitation. However, none of these databases explicate annotations that distin-
guish human and animal models in neurodegeneration context. Therefore, adopting a more
specific disease focus, in combination with dedicated disease ontologies, will better em-
power the selection of comparable studies with refined annotations to address the research
question at hand. In this article, we describe the detailed development of NeuroTransDB, a
manually curated database containing metadata annotations for neurodegenerative studies.
The database contains more than 20 dimensions of metadata annotations within 31 mouse,
5 rat and 45 human studies, defined in collaboration with domain disease experts. We eluci-
date the step-by-step guidelines used to critically prioritize studies from public archives and
their metadata curation and discuss the key challenges encountered. Curated metadata for
Alzheimer’s disease gene expression studies are available for download.

Database URL: www.scai.fraunhofer.de/NeuroTransDB.html

Background

Considerable effort by the global research community has

been dedicated to addressing a limited understanding of the

pathogenic events underlying neurodegenerative disease

(NDD) (1, 2). The cumulative output of these efforts has es-

tablished an increased amount of deposited molecular data

and published knowledge. As life expectancy continues to

rise and treatment options for NDD remain limited, there is

an increasing urgency to translate this amassed molecular

data into biomarker tools for early diagnosis; to open the

possibility of disease altering and preventative therapy (3,

4). Furthermore, biomarkers aiding the decision-making

process for therapies targeting specific pathophysiological

mechanisms will help to address the high drug attrition rate

in the NDD pharmaceutical industry. Informatic efforts to

facilitate the integration and interrogation of the distributed

molecular data legacy for NDD can enable a systematic and

objective prioritization of molecular protagonists and there-

fore potential biomarkers in NDD (5–8).

In this direction, we have previously developed a seman-

tic framework, called NeuroRDF (9), for integration of

heterogeneous molecular data types, extracted from bio-

medical literature, transcriptomic repositories and bespoke

databases. NeuroRDF enables researchers to formulate

biological questions that relate to the interplay of different

facets of molecular biology as a formalized query. Even

today, the most abundant source of quantitative molecular

data remains transcriptomic data, which can support hy-

pothesis-free, elucidation of biological function (10). When

the same biological function is replicated in additional ex-

pression data sets, it increases the plausibility of the

derived hypothesis (11).

The inaccessibility of the brain is a significant barrier

to molecular analysis of NDD and this frequently limits

the availability of samples from post-mortem tissue (12,

13). This is evident when simply comparing the availabil-

ity of NDD studies to other disease domains, like cancer

(14), in public archives such as Gene Expression

Omnibus (GEO) (15) and ArrayExpress (16) (see

Supplementary Figure S1). For instance, GEO contains

157 NDD studies in contrast to 16,910 cancer studies.

Therefore, animal models are an important complement

to human-derived samples but are at best an incomplete re-

flection of the human conditions. Assessing the biological

complementarity of studies is important when considering

a meta-analysis. Such an assessment can be a cumbersome

process as searching in these public repositories is princi-

pally based on free text. Additionally, limited adoption of

controlled vocabularies, such as the Experimental Factor

Ontology (EFO) (17), to describe the metadata fields and

lack of compliance to defined standards (18) has contrib-

uted to the dilemma. This has resulted in metadata being

scattered as unstructured prose in public databases and as

additional annotations, widely distributed in originating

publications. Moreover, applying automated methods to

retrieve information from these databases could comprom-

ise on the accuracy. On the other hand, capturing missing

annotations through the manual curation can incur huge

costs of trained labour.

Capturing the associated metadata in a standardized

and precise fashion will empower integrative analysis by

helping to control sources of variability that do not relate

to the hypothesis under investigation (11, 19–21). Ober

et al. (22) have reported on differing gene-expression pat-

terns related to gender and suggest gender-specific gene

architectures that underlay pathological phenotypes. Li

et al. (23) observed distinct expression patterns, strongly

correlated with tissue pH of the studied subjects; these pat-

terns are not random but dependent on the cause of death:

brief or prolonged agonal states. Thus, studies enriched
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with metadata annotations provide the power to obtain

more precise differential estimates.

Related work

Numerous approaches have been proposed to tackle the

problem of identifying relevant gene-expression studies

and annotating metadata information resulting in several

databases, web servers and data exploration tools. These

(value added) databases differ from one another based on

their objectives, information content and mode of query.

AnnotCompute (24) is an information discovery plat-

form that allows effective querying and grouping of similar

experiments from ArrayExpress, based on conceptual dis-

similarity. The dissimilarity measure used, Jaccard dis-

tance, which is derived from the MAGE-TAB fields

submitted by the data owners. Another tool, Microarray

Retriever (MaRe) (25) enables simultaneous querying and

batch retrieval from both GEO and ArrayExpress for a

range of common attributes (e.g. authors, species)

(MAGE-TAB is a submission template, tab-delimited, for

loading functional genomics data into ArrayExpress.

https://www.ebi.ac.uk/fgpt/magetab/help/). GEOmetadb

(26) is a downloadable database of structured GEO meta-

data with programmatic querying libraries in both R and

MATLAB. However, all the above-mentioned resources

suffer from a common limitation: they rely completely on

the submitted data and do not provide solutions for miss-

ing metadata information.

Several value-added databases invest manual curation

effort to enrich metadata information for gene-expression

studies. Many Microbe Microarrays Database (M3D) (27)

contains manually curated metadata, retrieved from the

originating publications, for three microbial species, con-

ducted on Affymetrix platforms. Similarly, the Oncomine

database (28) contains extensive, standardized and curated

human cancer microarray data. A-MADMAN (19); an

open source web application, mediates batch retrieval and

reannotation of Affymetrix experiments contained in GEO

for integrative analyses. Microarray meta-analysis data-

base (M2DB) (11) contains curated single-channel human

Affymetrix experiments (from GEO, ArrayExpress and lit-

erature); categorized into five clinical characteristics, repre-

senting disease state and sample origin. However,

experiments with missing link to the published paper in

GEO and ArrayExpress were excluded. A substantial pau-

city of sample associated gender information in GEO and

ArrayExpress motivated Buckberry et al. (29) to develop a

R package, massiR (MicroArray Sample Sex Identifier) to

label the missing and mislabelled samples retrospectively

with gender information, based on data from Y chromo-

some probes. Apart from publicly available resources,

there are various commercial products that contain manu-

ally curated transcriptomic metadata: NextBio, Genevesti-

gator and InSilicoDB (30) (http://www.nextbio.com/b/

nextbioCorp.nb and https://genevestigator.com/gv/).

However, none of the above databases are optimized to

capture detailed metadata specific to neurodegenerative

disease. In addition, these databases fail to handle species-

specific annotations; especially treatments applied on ani-

mal models to partially explicate or treat human-related

NDD mechanisms, which may strongly contribute to in-

crease the predictive power of translating preclinical results

in NDD drug trials.

Here, we describe the detailed development of

NeuroTransDB, a manually curated database containing

metadata annotations for neurodegenerative studies and

an enabling resource for supporting integrative studies

across human, mouse and rat species. The participation of

our group, at Fraunhofer Institute SCAI, in projects funded

by the Neuroallianz Consortium (a part of the BioPharma

initiative of the German Ministry of Education and

Research) and the evident lack of a comprehensive NDD

specific metadata archive has motivated us to develop

Neurodegenerative Transcriptomic DataBase

(NeuroTransDB) (http://www.neuroallianz.de/en/mission.

html). This database now contains more than 20 dimen-

sions of metadata annotations for human studies, as well

as mouse and rat models, defined in agreement with dis-

ease experts. To demonstrate our approach, we chose to

highlight Alzheimer’s disease for this publication because it

depicts a wide spectrum of the possible annotations across

different types of metadata in neurodegeneration.

Additionally, we have applied the same approach to all

publicly available Parkinson’s and Epilepsy studies, which

shows that the overall approach is unspecific to the disease.

However, the curated data for these two diseases will be

released in the future under the terms of a Neuroallianz

agreement. The database is updated every six months using

highly trained curators. An interactive graphical user inter-

face to access this data is currently being developed as part

of the AETIONOMY IMI project (http://www.aetionomy.

eu).

Curation of gene-expression studies:
prerequisites, key issues and solutions

This section discusses the workflow we followed to re-

trieve relevant gene-expression datasets and to generate

detailed metadata annotations for each study (Figure 1).

First, we retrieved all functional genomics studies from

GEO and ArrayExpress that reference Alzheimer’s dis-

ease (AD) or a set of AD synonyms, along with the pro-

vided metadata (cf. Data Retrieval section). Each study
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was then prioritised (cf. Experiment Prioritization sec-

tion) based on the disease relevancy, experimental type

and sample source. Only studies in the top prioritization

category were subjected to rigorous, semiautomated

metadata curation (cf. Metadata Curation section).

Annotations are standardized by reference to controlled

vocabularies for each extracted metadata dimension (cf.

Normalization of Metadata Annotations section). The

curated Alzheimer’s data is stored in NeuroTransDB, but

in principle the proposed workflow can be applied with

little adaptation to any disease indication, especially

NDD.

Primary data resources

Together the GEO and ArrayExpress databases constitute

a wealth of gene expression studies and are commonly

reused for validating new hypotheses and identifying novel

signatures through meta-analysis by multi-data integration

(11). GEO is the largest public repository of functional

genomic data; maintained by the National Center for

Biotechnology Information (NCBI) in the USA.

ArrayExpress is the European counterpart of GEO and

consists of manually curated experimental information im-

ported from GEO, in addition to the data that are directly

submitted by the researchers. To support reuse of the de-

posited studies, each repository adheres to annotation

standards for submission of transcriptomic data:

‘Minimum Information about a Microarray Experiment’

(MIAME) and ‘Minimum Information about a high-

throughput nucleotide SEQuencing Experiment’

(MINSEQE) (http://fged.org/projects/miame/ and http://

www.fged.org/projects/minseqe/). GEO allows data sub-

mission in Excel, SOFT or MINiML format and

ArrayExpress as MAGE-TAB through Annotare webform

tool (http://www.ncbi.nlm.nih.gov/geo/info/submission.

html and http://www.ebi.ac.uk/arrayexpress/submit/over-

view.html).

Curation team

An obvious prerequisite for any curation process is to have

access to specially trained personnel, who understand the

key attributes required to adequately describe an expres-

sion experiment and are able to complete these attributes

by reference to appropriate resources (31). Such individ-

uals are known as biocurators. We assembled a team of

candidate biocurators who have adequate biological ex-

perience. Each biocurator underwent extensive training in

the fundamentals of curation, including the basics of gene

expression study design, outlined by experts, scientists and

disease experts. Clear curation guidelines (see Experiment

Prioritization and Metadata Curation section) and a

weekly meeting of the biocurators with one of the experts

ensured good quality, consistency, and uniformity in cur-

ation procedure. In addition, this provided an opportunity

to get feedback from the biocurators for improving and

updating the defined guidelines. To keep abreast and elim-

inate any bias, the curated data was regularly exchanged

between them for good interannotator agreement. The ex-

perts resolve any disagreement that may arise between the

curators.

Data retrieval

Putative AD studies were programmatically retrieved from

GEO and ArrayExpress by applying a recall-optimized

keyword search approach, cf. Figure 2. The keywords in-

clude a set of AD synonyms such as ‘Alzheimer’,

‘Alzheimer’s’ or ‘AD’ in combination with a species filter.

Since ArrayExpress imports and curates the majority of

GEO experiments, we firstly queried the former through

its REST service (http://www.ebi.ac.uk/arrayexpress/help/

programmatic_access.html). Conjointly, we further

queried GEO using the eSearch Entrez Programming

Utilities (E-utils) service to fetch additional identifiers

(IDs), which were not picked up by the previous query

(http://www.ncbi.nlm.nih.gov/geo/info/geo_paccess.html).

The final list of unified experiment IDs was downloaded

Data Retrieval

Experiment Priori!za!on

Manual meta-data cura!on

Normaliza!on

Priority 1

Priority 2

Storage in NeuroTransDB

Figure 1. Overall workflow for curation of gene expression studies

related to neurodegeneration from public archives. The first step in-

volves automated retrieval of gene expression studies (along with

metadata) from public archives such as GEO, and ArrayExpress. The

related studies were further assigned to one of the two prioritization

classes (priority 1 or priority 2), based on the specific experimental vari-

ables. Next, manual curation was applied to capture missing metadata

information on priority 1 studies. All the harvested metadata was nor-

malized using standard vocabularies. Both raw and normalized data are

stored in NeuroTransDB.
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(along with their metadata) and stored in

NeuroTransDB. Metadata information was captured

from Sample and Data Relationship Format (SDRF) file

of ArrayExpress and SOFT file of GEO (https://www.ebi.

ac.uk/fgpt/magetab/help/creating_a_sdrf.html and http://

www.ncbi.nlm.nih.gov/geo/info/soft.html). The above-

described steps are fully automated; enabling an auto-

matic update procedure we run every 6 months to obtain

new published studies.

Experiment prioritization

For integrative meta-analysis, combining studies that ad-

dress the same objectives could minimize biases from co-

hort selection (inclusion and exclusion criteria) and other

design effects. Anatomical and functional heterogeneity

arising from experimental sample source, imposes yet an-

other challenge for integrative analysis. Moreover, key-

word-based, recall optimized retrieval of experiments does

not guarantee its clinical relevancy to the queried indica-

tion or organism. Thus, we propose a straightforward bin-

ning approach to select potentially eligible studies for AD

as illustrated in Figure 3.

Firstly, we identified experiments relevant to AD indica-

tion, if not relevant we mark them as unrelated (referred as

AD3 in the database). Relevancy is defined on the basis of

the experiment’s characteristics: investigation on AD

mechanism, AD associated mechanism, AD genes or con-

tains samples that belong to direct or implicated effects of

or on AD. For example, GSE4757 is relevant to AD since it

investigates the role of neurofibrillary tangle formation in

Alzheimer patients between normal and affected neurons.

The retained AD-related experiment IDs were manually

classified by biocurators into one of the two-prioritization

categories (cf. Figure 3). To support this process, a set of

classification rules were devised that capture two import-

ant considerations: organism specificity and source of the

samples used in the study. Although curation with regards

to these considerations is of obvious importance, no previ-

ously published guidelines were available for reference. To

our knowledge, this is the first work where such a guide-

line has been explicitly detailed. A simplified description of

the classification rules adopted for AD disease prioritiza-

tion is provided below:

Priority 1

• Experiments that study AD pathophysiology in in vivo

systems
• Studies containing samples from:

– Human AD patients such as blood, brain tissue,

serum, etc.

– Animal model samples such as mouse brain tissue or

rat brain, e.g. C57BL/6 mice, Sprague–Dawley rat, etc.

– Animal models modified to study the role of an AD

gene (knock-out models), or AD mechanism (trans-

fected models), or diet/drug treatments (treated mod-

els), such as TgAPP23, APLP2-KO mice, etc.
• Experiments containing only healthy/normal samples

from human/mouse/rat that are a part of a bigger study

investigating AD

Priority 2

• Experiments that study AD pathophysiology in in vitro

systems

Keyword search for human, mouse, and rat:
“Alzheimer”,  “Alzheimer’s”, or “AD”

eSearch E-u!ls service

Parse XML file for experiment IDs

Storage in NeuroTransDB

REST Service

Parse XML file for experiment IDs

Fetch the SOFT file using experiment 
IDs and parse meta-data annota!ons

Fetch the SDRF file using experiment 
IDs and parse meta-data annota!ons

Figure 2. Automated data retrieval of Alzheimer’s Disease specific gene expression studies from ArrayExpress and GEO. Here, the dotted line

represents the sequence of query performed. Alzheimer’s disease specific experiment IDs were automatically retrieved from GEO and ArrayExpress,

using keywords, through eSearch and REST service respectively. Metadata information was extracted by automatically parsing sample information

files (SDRF and SOFT) of these experiment IDs.
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• Studies containing samples from derived or cultures

sources:

– Cell lines

– Pluripotent cells

– Stem cells

Incorrect organism or disease specificity

Although the experiment retrieval step was restricted to a

specific organism and disease conditions, we observed dif-

fering levels of specificity. For example, some mouse stud-

ies were retrieved when querying for human studies.

Similarly, we obtained experiments for related diseases

such as Parkinson’s disease, or diabetes, when querying for

AD. Therefore, during study prioritization it was import-

ant to confirm the species of origin and relevancy of the

study to AD. It’s also possible that keyword-based retrieval

may miss AD studies due to incorrect disease or organism

tagging. However, we did not perform an exhaustive

search for such falsely ignored studies, since it would re-

quire immense human effort.

Ambiguous species designation

In some studies, human cells such as embryonic stem cells

are injected into animal models and post-mortem samples

from these animal models are extracted for transcriptomic

analysis (e.g. GSE32658 experiment in GEO). Such a study

could arguably be classified as either human priority 2 or

mouse priority 1. After several discussions, we concluded

to prioritize such experiments based on the organism from

which the final sample was extracted. In this case,

although the mouse was grafted with human tissue, we pri-

oritized it to mouse priority 1.

Superseries redundancy

During prioritization, we retrieved several superseries ex-

periments from GEO. Manual inspection revealed that not

all the subseries IDs of these superseries experiments were

retrieved (see Data Retrieval section) (A SuperSeries is sim-

ply a wrapper to group of related Series (typically

described in a single publication). It facilitates access to the

entire dataset, and establishes a convenient reference

entry that can be quoted in the publication (definition

provided by the GEO team, as of 27 October 2014) and a

subseries is an experiment that is a part of superseries.).

With careful manual inspection, we included missing

subseries, further subjected to priorization. Conversely,

if the inclusion of superseries resulted in the duplication

of experiments, we removed the duplicates. Having assigned

priority categories to all retrieved AD studies, further meta-

data curation was focused on the priority 1 studies.

Metadata curation steps are described below.

Metadata curation

Precisely and comprehensively capturing the accessory in-

formation for a transcriptomic study as meta-annotations,

is an important precursor to identification of comparable

experiments that address the biological question at hand.

Unfortunately, the current, general, submission standards

do not cater to the needs of metadata annotations, specific

to a disease domain, during submission. In subsequent

Query downloaded experiment IDs 
from NeuroTransDB

Sample source

Alzheimer’s 
Disease 

relevancy?
Mark as unrelated

In vivo studies In vitro studies

Priority 1

Human pa!ents 

Animal models
Knock out/transfected/treated 
Animal models for AD patho-

physiology

Priority 2

Cell lines

Stem cells 

Pluripotent cells

Yes

No

Figure 3. Experiment prioritization for metadata curation in NeuroTransDB. All the downloaded Alzheimer’s Disease experiments were first checked

for their disease relevancy. Those experiments which were falsely retrieved, are marked as unrelated. The remaining experiments were classified

into one of two priority classes based on the experiment type: In vivo or In vitro studies. For priority 1, we considered direct/primary samples from

human or animal models such as brain tissue, blood, etc. Experiments that were conducted on derived sample sources such as cell lines, were put

into priority 2 class.

Page 6 of 17 Database, Vol. 2015, Article ID bav099

 by guest on O
ctober 2, 2016

http://database.oxfordjournals.org/
D

ow
nloaded from

 



  Publication 

77 

 

sections, we discuss the metadata curation for NDD and

key issues faced during the process.

Metadata annotation fields

We assembled a list of metadata annotations determined to

be important for evaluating NDD studies in a process

involving consultation by NDD domain experts. All the

metadata fields were categorized as organism attributes

and sample annotations, based on their relevancy to organ-

ism or sample source. Table 1 provides detailed descrip-

tions of curated metadata fields including examples for

human, mouse and rat.

Several animal models and in vitro systems have been

defined that partially mimic the human diseased condi-

tions. Animal models provide experimentally tractable sys-

tems for interrogating NDD, however, not all animal

models faithfully mimic human pathophysiology. A dedi-

cated set of meta-annotation was defined for NDD animal

models to support assessments of inter-study comparability

and translatability to human disease, cf. Table 2 These

fields were defined with assistance from biologists and dis-

ease experts from industry.

Metadata curation workflow

To capture all the relevant meta-annotations, we designed

a semiautomated curation workflow, illustrated in

Figure 4. Firstly, we automatically retrieved all the avail-

able meta-annotations from GEO and ArrayExpress (cf.

Figure 2). Annotations were captured in an Excel template

as shown in Supplementary Figure S2 (A) and confirmed

by our trained curators to rectify any inaccuracies.

To capture incomplete and newly defined meta-annota-

tions, we followed a two-step approach. First, we check if

the required meta-annotation entries are directly available

in GEO, GEO2R or ArrayExpress (http://www.ncbi.nlm.

nih.gov/geo/geo2r/). Where the required information is

complete, we directly update NeuroTransDB, otherwise

we move to a second step to manually harvest information

for missing annotations. Missing information is retrieved

from the originating publications and associated

Supplementary files. When necessary, corresponding au-

thors were contacted to request missing entries. The list of

experiment IDs where we contacted the authors for further

information, along with reason of contact (priority 1 ex-

periments only) are provided in Supplementary Table S1.

In most cases, the corresponding author or one of the coau-

thors responded to our queries; whereas, in few other cases

the email addresses no longer remained valid. In the event

that the authors do not respond or we were unable to con-

tact them, information in primarily deposited database is

used as the final authorative source. Once all the relevant

data was captured, we updated the annotations in

NeuroTransDB. If needed, we updated our automated re-

trieval iteratively.

To demonstrate the metadata curation process, here we

relate our experience with study GSE36980 that includes a

total of 79 samples. Common MIAME annotations such as

gender, age and sample tissue were automatically captured

from ArrayExpress and GEO. The associated publication

contained further useful information on the enrolled

patients, namely: disease stage, post mortem interval be-

fore sample extraction and preservation, pathological

diagnosis and whether the patient suffered from

comorbidities such as diabetes. This information was

located in Supplementary File S2 of the associated publica-

tion (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128

707/bin/supp_bht101_bht101supp_table2.xls). However,

lack of a common ID to enable mapping between the sam-

ple entries in GEO and the associated Supplementary File

S2 impeded curation. For example, sample GSM907797 in

GEO is annotated as being derived from a 95-year-old fe-

male patient. However, in their Supplementary file, there

are two entries that contain information for patients with

same age and gender. The ‘No.’ column, assumed to be pa-

tient ID, in the Supplementary file was not helpful for

mapping, since it was not mentioned in GEO. Thus, we

contacted the authors for the missing link. They provided

us an additional Excel sheet where the GEO sample ID

was mapped to the ‘No.’ column in the Supplementary file

(cf. Supplementary Figure S2 (B) and (C)). As a conse-

quence, we achieved a 28.5% increase in the missing meta-

data information (cf. Table 1 for total number of fields)

after contacting the authors.

Automated meta-annotation retrieval challenges

During automated retrieval of metadata fields, we

observed several alternate representations of information

for certain annotation types in the archives. For example,

age information can be provided in the Characteristics sec-

tion of GEO or ArrayExpress as ‘age: 57 years’ or ‘Stage

IV, male, 57 years’ and so on. We attempted to

prenormalize these diverse representations and automatic-

ally extract the correct information, however, due to the

heterogeneity in data representation, manual curation was

still required.

Although ArrayExpress and GEO provide program-

matic access to their meta-annotations, much essential in-

formation appears in fields meant for general categories.

For example, information about the sample source and

clinical disease presentation appear in the sample title

‘PBMC mRNA from Alzheimer’s disease patient 2’.

Adhering to the standard submission protocol for data
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Table 1. Detailed description of Neurodegenerative disease metadata fields outlined for human, mouse and rat

Annotation type Metadata fields Description of the annotation Relevancy for NDD Examples References

Organism

attributes

Age Age of the organism Main factor for predisposition to

disease

84 years, 9 months (32–35)

Gender Gender of the organism Possible disproportionate effect

arising from difference in anat-

omy and hormonal

composition

Male, female (36, 37 )

Phenotype Clinical phenotypes of the or-

ganism from which the sam-

ple was extracted

Supports comparative analysis

for underlying pathomechan-

isms based on the observable/

measurable characteristics

Healthy control,

early incipient

(38)

Behavioural

Effect

Description of behavioural

changes occurring in organ-

ism due to treatment or other

effects

Impact of developed drug or

other environmental factors to

treat or reduce the disease/dis-

ease symptoms

Reduced agitation/

aggression

(39, 40 )

Disease type The disease occurrence is due

to hereditary or effect of en-

vironmental factors

To distinguish the genetic vari-

ability and complexity be-

tween the two types during

analysis

Sporadic, familial (41 )

Stage Disease stage of the organism

from which the sample was

extracted

Capability to distinguish severity

of the affected disease

Incipient, severe,

BRAAK II

(42)

Cause of

death

Reason for the organism’s

death

To determine if Alzheimer’s dis-

ease or its associated comor-

bidities are major contributors

to death rate

Respiratory disorder (43)

Comorbidity Existence of another disease

other than Alzheimer’s

To determine the impact of an-

other disease on Alzheimer’s

disease aetiology and

progression

Type 2 diabetes (44, 45)

Sample

annotations

Post mortem

duration

(PMD)

Duration from death till the

sample extraction from the

dead organism

To assess quality and reliability

of the sample obtained by

measuring RNA integrity that

is influenced by natural deg-

radation of the sample after

death

2.5 hours (46, 47 )

pH pH value of the extracted post-

mortem sample

Indicator of agonal status and

RNA integrity

6 (48–50 )

Functional

effect

Description of functional ef-

fects observed

Observed changes such as gene

expression, post-translation,

or pathway due to external

effects

Decreased expres-

sion of BDNF

gene, reduced Ab
toxicity

(51 , 52)

Brain region Brain region of the extracted

sample

Provides information of patho-

genesis and disease progres-

sion, as AD does not affect all

the brain regions

simultaneously

Hippocampus (53, 54)

Cell and cell

parts

Type of cells or cell parts ex-

tracted from the sample for

analysis (if any)

To determine cell type specific

expression influencing patho-

genesis and regional

vulnerability

Synaptoneurosome,

neurons and

astrocyte

(55, 56)

Body Fluid Type of body fluid used for

analysis

Could serve as biomarkers for

early diagnosis and therapy

monitoring

CSF, blood (57 –59)

The table provides a list of metadata fields, confirmed by disease experts, critical for NDD meta-analysis. The selected fields are classified as organism attributes

and sample annotations based on their relevancy to organism or sample source.
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entry, this information should appear in the

‘Characteristics column’ of ArrayExpress and GEO. Again

inconsistent adherence to annotation standards means that

manual inspection is needed to capture correct and com-

plete information from these archives.

Accessing linked publications

For annotation information that is not directly available

from the source repositories, we refer to the associated full

text publications. However, not all deposited studies link

to an associated publication in PubMed, contributing to a

Table 2. Detailed description of additional metadata fields, defined specifically for mouse and rat models

Annotation type Metadata fields Description of the

annotation

Relevancy for NDD Examples References

Organism

attributes

Physical injury Method used to cause brain

injury in animal models

Consideration for analysing

plaque formation in animal

models to mimic disease

symptoms in human

Traumatic brain injury,

ischemia reperfusion

injury

(60, 61)

Type of

treatment

Description of chemical,

drug, genetic or diet

treatment

Consideration for determining

the effect of treatment on

animal models either to

mimic or treat the disease/

symptoms

Long-term pioglitazone,

BDNF treated

(62, 63 )

Dosage Detailed description of the

dosage associated with

“type of treatment”

description

Consideration of the right

quantity of the substance for

determining the effect on

animal models either to

mimic or treat the disease/

symptoms

Total polyphenol 6mg/

kg/day, received

drinking water with-

out ACE inhibitor

(64 , 65)

Mouse/rat

strain name

Mouse model official or

author given name

To determine the effect of dif-

ferent manipulated animal

models in recapitulating key

AD features capable of

extrapolating to human

studies

C57BL/6-129 hybrid,

Sprague–Dawley rat

(66, 67)

Mouse/rat

weight

Weight of the animal model

during analysis

Establishing a causative link to

metabolic disruption

100–150 g (68 )

These additional metadata fields are defined by disease experts as critical for translating mouse/rat model outcomes to human, in the field of neurodegenerative

diseases.

Go to GEO, AE or 
GEO2R page

Captured 
all 

relevant 
data?

Read associated 
publica!on

Update the curators 
excel sheet

Yes

Automa!cally extract the 
relevant  meta-data fields  and 

pre-fill the cura!on excel sheets

No

Data also 
available in 

prefilled 
columns?

No

Yes

Improve pre-filler method
if possible

NeuroTransDB

Figure 4. Semi-automated workflow for metadata curation. Automatically extracted metadata fields are rechecked by the curators. To capture the

missing fields, curators browse through GEO, ArrayExpress (AE) or GEO2R experiment’s description pages. For cases where the information is still

incomplete, associated fulltext publications and their associated supplementary material are read. All the extracted metadata annotations are stored

in NeuroTransDB. Intermediately, if feasible, automated extraction leverages on curator’s experience for improvement. This process is carried out

half yearly.
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significant loss of information while curating. We at-

tempted to overcome this by searching for an associated

article using the study title with search engines such as

SCAIView and/or Google (http://www.scaiview.com and

https://www.google.com). Supplementary Figure S3 shows

the percentage of articles that were retrieved with different

search strategies. We are aware that not all the experi-

ments in these databases are associated with published art-

icle (14%), but for 9% of the experiments (prioritized as 1)

we were able to link them to publications through a title

search. We strongly encourage study depositors to provide

PubMed annotation whenever available to allow enhanced

meta-annotation. Additionally, database owners should

find a more robust way to update their resources.

Duplication and inconsistent sample counts

We observed differences in sample counts for some experi-

ments between ArrayExpress and GEO, when downloaded

automatically. For example, GSE49160 contained 36 sam-

ples in GEO and 72 samples in ArrayExpress. Following

closer inspection at several similar experiments, we found

that ArrayExpress duplicates sample IDs to provide separ-

ate links to different raw file formats or large raw files split

into smaller ones (57%), processed raw files (17%), separ-

ate entry for each channel in double channel arrays (14%)

and replicates (12%) (cf. Supplementary Figure S4); more-

over, the duplicated samples mostly represented the same

annotation information. Since, we used sample IDs as a

unique entry in our database, the duplicated IDs were

replaced with the last entry from the archive, in

NeuroTransDB, as read by our algorithm; thus a risk of

loosing the raw file or other non-duplicated annotation

information.

Apart from duplication, occasionally some samples

were missing in one archive relative to the other. For ex-

ample, GSE47038 had some additional samples in

ArrayExpress, which were not present in GEO. When we

contacted the ArrayExpress team, they suggested that the

experiment entry could be out of sync, since each entry

from GEO is uploaded into ArrayExpress only once and is

not updated if GEO deletes some samples later. However,

they have now corrected the entry. This demonstrates a

need for periodic review of study records in each database.

Missing RAW filenames

Public transcriptomic archives provide a gateway for the

search and retrieval of studies for subsequent analysis out-

side of the platform. Therefore, one has to obtain the link

between a sample’s raw file name and corresponding

phenotype. However, this is not the case when applying

automated downloads. The majority of the raw file names

present in public archives contain syntactical errors such as

surrounded by brackets or separated by comma; moreover,

such entries could be normalized through a simple script.

In cases where no information about sample’s raw file

name is provided, manual intervention is required to link

sample’s raw file to its respective sample. This clearly indi-

cates the need for standardization of the database entries

for automation and to prevent loss of information.

Incorrect and incomplete metadata information

We also observed inconsistent meta-annotations between a

study deposited in an archive and the information in the linked

publication. In GEO for experiment GSE2880, the sample de-

scription page states that male Wistar rats have been used for

the study. However, when we looked into the associated full

text article, in the Methods section, the authors clearly men-

tion using female Wistar rats (69). We are still waiting for the

author’s reply to correct the gender information for this entry.

Another example is GSE18838, we observe that the ratio of

male to female patients provided in GEO (male/female: 19/9)

is different from that reported in the Supplementary file (male/

female: 18/10); additionally, Supplementary Table S2 provides

detailed challenges faced during mapping of age and gender

information to samples. When searched in ArrayExpress, this

experiment has been removed from the database, for un-

known reasons. In yet another example, GSE36980, the age

information for sample GSM907823 and GSM907823 vary

between GEO (84 and 81 years, respectively) and

ArrayExpress (74 and 86 years, respectively). From these

anecdotal experiences, it is evident that one has to spend

immense effort to obtain correct metadata information.

Database owners and the submitters have to take utmost care

to provide the correct data for reproducibility.

Information extraction from chained references

One further time consuming task included looking follow-

ing chains of references to previous publications for human

and animal model information such as mouse name, cross

breeding steps applied and human subject information. In

some cases, we had to tediously trace back 5–6 cross-

referred publications to obtain the original source of

information.

Normalization of metadata annotations

Meta-annotation involved the curation team extracting the

original text as provided in GEO/ArrayExpress or in the

published literature. We observed many different ways to

express information for each annotation field, with obvi-

ously ramifications for accurate and efficient querying of

NeuroTransDB. In an effort to standardize entries for dif-

ferent annotation fields specific controlled vocabularies

were adopted during curation.
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Age and gender normalization

We observed several different ways of representing age

such as ‘24 yrs’, ‘25 yo’ and ‘23 6 2 years old’. All age val-

ues were standardised by converting to simple decimal

numbers, e.g. 24.00 for 24 years. Similarly for gender, we

used a consistent representation of ‘M’ and ‘F’. As an ex-

ample, gender information for GSE33528 samples were re-

ported in the associated article (40) as ‘70% of the

participants were women’. Here, we annotated the infor-

mation as ‘70% female’. Although the annotations such as

ranges (e.g. ‘23 6 2 years old’), ratios (male/female: 19/9),

or percentages (70% female) (40) are study-level annota-

tions, they were provided as sample level annotations; as

they do not contribute to reasonable cohort selection we

did not normalize them.

Phenotype, brain region and stage normalization

Disease phenotype and stage information contributes to

specific details of clinical manifestations whereas the tissue

source (hereafter brain region) caters to the sample origin.

For all the curated phenotype mentions (human), we gener-

ated a binning scheme: diseased, control or treated. These

binned terms were further mapped to controlled vocabula-

ries provided by Alzheimer’s Disease Ontology (ADO)

(32). Other annotated terms that are not specific to AD

were mapped to the Human Disease Ontology (33),

Medical Subject Headings (MESH), Medicinal Dictionary

for Regulatory Activities (MEDDRA) and Systematized

Nomenclature of Medicine - Clinical Terms (SNOMED-

CT) (34) ontologies (http://bioportal.bioontology.org/

ontologies/MESH and http://bioportal.bioontology.org/

ontologies/MEDDRA). This caters the need to query sam-

ples at a more abstract level, for downstream analysis. In

total, for AD, we obtained 481 phenotype mentions as-

signed to at least one entry in the bins generated. Similarly,

all the stage mentions (117 terms) were mapped to ADO,

and ONTOAD (35). Mentions of brain region (41 unique

terms) were tagged to Brain Region and Cell Type

Terminology (BRCT) (http://bioportal.bioontology.org/

ontologies/BRCT?p¼summary). Please refer to

Supplementary File S2 for detailed mapping of human an-

notation terms to controlled vocabularies.

Normalization of animal models

Similar to human phenotype normalization, we have nor-

malized mouse and rat phenotype terms to EFO and

SNOMED-CT. Different treatment procedures have been

used to generate animal models that capture specific as-

pects of human diseases. At times, the incomplete nature of

the models could lead to inadequate or misinterpretation

of results. Thus, it is necessary to know the experimental

procedures used on these animal models. To enhance this

interpretation, we have binned all the captured animal

model information, during the metadata curation, to a

higher level of abstraction, further mapped to EFO, the

National Cancer Institute Thesaurus (36), and the

BioAssay Ontology (37). In addition, we mapped mouse

and rat names to EFO, Jackson Laboratory database iden-

tifiers, and Sage Bionetworks Synapse Ontology (http://jax-

mice.jax.org/query/f?p¼205:1:0 and http://bioportal.

bioontology.org/ontologies/SYN). This provides more

flexibility during querying of samples from specifically

treated animal models. Please refer to Supplementary Files

S3 and S4 for mapping of mouse and rat-related terms to

controlled vocabularies.

For some of the metadata terms, there were no con-

trolled vocabularies available, e.g. ‘Vehicle #1:non-

transgenic’ or ‘BDNF-treated’, describes that the mouse is

non-transgenic and a vehicle in the former case, while in

the second case it is specific gene treatment. Such terms

were mapped to either of the phenotype’s controlled vo-

cabulary. In case of human stage mentions, specific stages

such as Braak II or cognitive scores, such as CERAD,

MMSE, etc. could not be mapped to any staging controlled

vocabulary as most of the ontologies used higher level of

staging, namely Braak. Moreover, in most of the ontolo-

gies cognitive tests are not classified under staging, but ra-

ther as cognitive tests. This has prompted us to generate a

more detailed hierarchical representation of the above-

mentioned binning schemes, which will be published

separately as ontology, specifically for neurodegenerative

gene expression studies. However, for current version, we

stick to the already available controlled vocabularies, in

addition to our internal classification.

Curation results and discussion

Compliance to standards

Authors tend to provide minimum information as required

by the guidelines in archives; publishing major part of the

experimental metadata annotations in associated publica-

tion. To test, whether the authors adhere to the minimum

compliant standards, we performed an assessment of the

complaint scores provided by ArrayExpress, the highest

score being 5, for Alzheimer’s studies. Figure 5 shows the

trend in distribution of retrieved AD experiments (see Data

Retrieval section) in ArrayExpress, based on the published

MIAME and MINSEQE scores (for human, mouse and rat

experiments). We observe the trend of submission is con-

centrated around the score of 4, showing that the submit-

ted data are not fully MIAME or MINSEQE compliant;

leading to variable levels of information stored in these

archives.
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To conclude that not all the submitters’ abide 100% by

the compliant standards, we investigated if this trend is

same for all other disease domains; we chose one among the

most studied cancer disease, Lung Cancer, and generated

similar results to AD. Supplementary Figure S5 shows the

distribution of compliant standards across Lung Cancer

studies. From this observation, we show that the loss of in-

formation follow the same pattern across all submissions

(varying mostly around score of 4). As a result, automated

retrieval and meta-analysis is impeded, due to lack of infor-

mation availability. Details of the experiment IDs investi-

gated for AD and Lung Cancer, along with compliant scores

is provided in Supplementary File S1.

Retrieval and prioritization of indication specific
studies from GEO and ArrayExpress

Retrieval of experiment IDs using a keyword search (cf.

Data Retrieval section) also acquires false positive experi-

ments. Any non-disease specific experiment performed by

an author named ‘Alzheimer’ is also retrieved when search-

ing for AD specific experiments. For example, E-MTAB-

2584 aims to investigate neuronal gp130 regulation in

mechanonociception but was retrieved for AD since one of

its author’s name is Alzheimer. Moreover, we also ob-

tained experiments for related diseases such as Epilepsy, or

Breast Cancer, when querying for AD. For example,

GSE6771, and GSE6773 are Epilepsy studies; GSE33500

belongs to Nasu Hakola Disease; all these studies were

retrieved when queried for Alzheimer. Incorrect organism

specificity was also noticed during prioritization. For ex-

ample, GSE5281 was retrieved as rat study although it

belonged to human. Similarly, GSE2866 was retrieved as

mouse study but it belonged to zebra fish. Although incor-

rectly identified studies are not too high, this still indicates

the need to include organism and disease specificity filter

during prioritization. Additionally, we manually identified

a few experiments that were not retrieved using these key-

words, which were also included in the database.

Further on, just by applying these two filter criteria does

not assure that all retained experiments were specific to

AD. For example, there could be some experiments that

aim at a certain pathway that are also relevant in the area

of neurodegeneration, but the experiment submitted to the

repository does not deal with AD pathology. As a conse-

quence, additional disease relevancy conditions were

included before prioritization (cf. Experiment Prioritization

section). An overview of all the retrieved AD experiments,

categorized to one of the priority classes is shown in

Figure 6. In addition, a list of priority 1 experiments (for

human, mouse and rat) is provided in Supplementary file

S5. This figure indicates that nearly 20% of the retrieved

studies are in any case not related to AD. On the other

hand, to identify the remaining 80% of the experiments

(prioritized as 1 and 2) we need massive manual filtering by

trained personnel. Only if the archives take an initiative to

apply such a structured classification for all uploaded ex-

periments, individual time-cost can be reduced to a greater

extent.

Some experiments contain cell lines or other disease sam-

ples in addition to Alzheimer’s patient samples. Experiment

GSE26927 additionally contain samples from patients suffer-

ing from Parkinson’s disease, multiple sclerosis, etc. To be

able to query only AD related samples for integrative
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Figure 5. Distribution of MIAME and MINSEQE scores for all automatically retrieved Alzheimer’s Disease gene expression experiments in

ArrayExpress Database (for human, mouse and rat), as of December 2014. Percentage is calculated as (total number of AD experiments with a cer-

tain score)/(total number of AD experiments). ‘NA’ are the experiments which were not present in ArrayExpress. These scores reflect adherence to

compliance standards by the data submitters, needed for re-investigation and reproducibility. It is observed that large percentage of experiments fall

under score 4, shows that the required minimum information is still incomplete. The list of experiment IDs along with their associated scores, used

for generating this statistics are provided in Supplementary File S1.
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analysis, we additionally included priority information at

sample level. For example, we tagged Alzheimer’s disease

samples to AD1 whereas multiple sclerosis samples to MS1.

Please refer to the README.txt file for various priority no-

tations used.

Metadata curation

The underlying metadata information for any gene expres-

sion study has been underrepresented and thus is largely

under-utilized. To perform large-scale analysis, associated

annotations are of utmost importance. With the availabil-

ity of detailed annotation information, one is capable of se-

lecting studies that focus on a particular attribute, such as

stage or gender. Each priority class has a specific set of

fields for curation; some fields are organism dependent.

After prioritization of experiments (cf. Experiment

Prioritization section), we expect to have !100% coverage

of essential clinical and relational parameters during man-

ual metadata curation for priority 1 studies. For example,

age, gender, phenotype and stage are basic experimental

variables for human studies. Additionally, in case of ani-

mal models, mouse and rat strain names are important for

translational pipelines, as some strains are highly specific

models for human NDD while others not (38). Irrespective

of the organisms, samples mapped to their corresponding

raw file identifiers are vital for running large-scale analysis.

However, as shown in Figure 7, this does not hold true for

human studies. From Figure 7, it is evident that even after

performing thorough curation, we cannot achieve 100% in

capturing information for these five basic metadata fields,

a fact that is largely due to patient data privacy regula-

tions. Similar is the case with mouse and rat information,

see Supplementary Figure S6. Moreover, information

related to animal models are much more scare, obstructing

automated retrieval. Hence, manual curation accuracy is

highly dependent on information availability, as curators

cannot harvest information for annotation fields that are

not available. On the contrary, the level of detail also de-

pends on the type or aim of the experiment carried out.

The authors and database owners obviously need to focus

on the qualitative aspect of the experimental information,

especially the phenotype of the sample, to allow normal-

ized access for beginners, with standard prose, in order to

support a robust computational analysis across all studies

in ArrayExpress and GEO.

We selected five of the most common metadata fields

(common to any disease domain such as age, gender, pheno-

type, stage and raw filename) and carried out a trend analysis

of information availability versus time. Figure 8 (A) shows

the trend over time for the metadata information provided in

the archives versus the number of annotation fields that can

be harvested after manual curation for human AD priority 1

experiments. Although a bit obscure, we can observe that the

level of information submitted to the databases remains al-

most stable in the last decade (between 2 and 4 metadata

fields). Moreover, with manual curation support, we were

able to capture the majority of the remaining metadata from

associated publications, Figure 8 (B) shows the shift in the

mean value of the metadata availability. However, the trend

is recently declining since the authors submit relatively lesser

level of detailed information than in former times in the asso-

ciated publications.

The incompleteness of metadata annotations contrib-

uted to a substantial increase in curation workload through

an increased need for publication reading. This leads to a

steep increase of the cost of the trained personal for cur-

ation. Overall, for the prioritization and metadata curation

of AD gene expression studies, we spent about 1 year of

four biocurators effort (working 10 h/week). This does not
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include the expert’s effort, who constantly provided guid-

ance and monitored the curation work during the same

duration.

Accessing NeuroTransDB

Metadata annotations for priority 1 AD gene expression

studies for human, mouse and rat organisms, from GEO

and ArrayExpress, are stored as MySQL tables separately;

downloadable as dump files at Fraunhofer SCAI File

Transfer Protocol (FTP) website: http://www.scai.

fraunhofer.de/NeuroTransDB.html. Please refer to the

README.txt for details of how to install and use MySQL

dumps. Additionally, these tables are provided as Excel

files to allow users to use the curated information in their

preferred tools/interface. Currently, the data is in its non-
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normalized form. Normalized data, tagged with standard

ontologies (cf. Normalization of Metadata Annotations

section), will be made available through the

AETIONOMY Knowledge Base. Currently, we have pro-

vided human priority 1 studies normalized using our in-

ternal binning scheme. Half yearly updates are planned.

Our ultimate goal is to make NeuroTransDB a comprehen-

sive resource for researchers working on large-scale meta-

analysis in the field of neurodegenerative diseases.

Conclusion and future directions

NeuroTransDB fills the gap for large-scale meta-analysis

on publicly available gene-expression studies in the field of

neurodegeneration. It joins bits of missing metadata infor-

mation, scattered in public archives and associated publi-

cations, into a consistent, easily accessible and regularly

updated data resource. Additionally, in this paper, we have

systematically specified key issues encountered during se-

lection of relevant gene expression studies from public

archives, along with their associated metadata informa-

tion. We observed a huge lack of structured metadata in

these archives, hampering automated large-scale reusabil-

ity on a usable level of abstraction. We present here recom-

mendations, as guidelines, for prioritizing relevant studies

and a step-by-step protocol for metadata curation. The

challenges faced in the course of the development of these

guidelines have been pointed out, and the huge manual ef-

fort has been made explicit.

The work presented here has listed metadata fields, which

have been generated based on disease expert consultation.

They are highly important for choosing the right subsets of

expression studies to answer complex biological questions

underlying a diseased pathology. Some additional fields are

included for animal models studies to allow maximal use for

translational research. For all the manually curated fields, we

describe normalization strategies in an attempt to provide

standards for more robust automated querying and interoper-

ability. Our results show the amount of information that is

scattered in various resources, requiring extensive manual ef-

fort to capture the same. Additionally, we report that even

with comprehensive manual harvesting, we were not able to

capture 100% of information to fill for the basic annotation

fields. We demonstrate convincingly that data availability de-

pends largely on the meticulousness of the submitters.

Additionally, it also depends on the aim of the experiment

carried out. On an average, considering all the retrieved AD

experiments, the submitters provide about 60% of the most

basic metadata information. The outlined guidelines could be

of significant value to other researchers working on gene-ex-

pression studies. The described key issues we faced during

such a curation work could influence the data submission

and data storage architecture of public repositories.

Subsequently, we plan to extend the curation pipeline

to other NDD diseases namely, Huntington’s disease. A

more gene-expression specific ontology will be built based

on the curated annotations for selecting a subset of studies

for meta-analyses. Although, microarray studies are the

major contributors to the public repositories, RNA-Seq

data are rapidly growing. We comprehend that it will be

necessary for us to identify all the relevant RNA-Seq stud-

ies, since their large storage space has contributed to dis-

perse nature of the available raw data.

Supplementary Data

Supplementary data are available at Database Online.
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5.2.1 Supplementary	Figures	

 

 

 

 

Figure S1: Landscape of transcriptomic data availability for neurodegenerative diseases and cancer in GEO and
ArrayExpress. Here, we compare the data availability obtained by a simple keyword search for the two clinically
problematic disease domains, neurodegenerative diseases (NDD) and cancer [2,14]; also includes the statistics for
two most common diseases in each domain. The numbers on the bars represent quantification of the available
experiments, for the selected disease in respective databases (as of 26th July, 2015). The above statistics clearly
indicates that NDD field suffers from limited data availability.
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Figure S2: Screenshot of the sample information provided by authors in GEO and associated publication for
GSE36980. (A) Is an example of the excel sheet used by our curators for meta7data curation
(B) Shows the sample information (GSM907797) provided by the authors in GEO database. (C) Is a screenshot of the
Supplementary Table 2 where additional information about the patients is provided. From (B) we know that the AD
patient is a female and 95 years old, but in (C) there are two rows (marked in red boxes) that match this information.
Thus, we could not map additional information such as stage, diagnosis, etc. to the respective samples.
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Figure S3: Search strategies applied to retrieve published
articles linked to priority 1 Alzheimer’s Disease gene
expression studies (human, mouse and rat) for metaCdata
curation.
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Figure S4: Probable reasons behind duplicated sample
information in ArrayExpress for priority 1 Alzheimer’s
Disease gene expression studies (human, mouse, and rat).
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Figure S5: Distribution of MIAME and MINSEQE scores for randomly queried Lung Cancer gene expression
experiments in ArrayExpress Database (for human, mouse, and rat), as of May 8, 2015. Percentage is calculated
as (total number of Lung Cancer experiments with a certain score)/(Total selected Lung Cancer experiments). To
align with the quantity of AD experiments, we investigated (randomly) 100 microarray and 10 sequencing
experiments in ArrayExpress. The Lung Cancer domain resembles the trend pattern of Alzheimer experiments in
adhering to compliant standards, concentrated mostly around score of 4. For rat, there was just one sequencing
experiment. The list of experiment IDs along with their associated scores, used to generate this statistics, are
provided in supplementary file S1.

0

10

20

30

40

50

60

70

80

90

100

ScoreS1 ScoreS2 ScoreS3 ScoreS4 ScoreS5

Pe
rc
en

ta
ge
Lo
fLe

xp
er
im

en
ts
Lin
ve
st
ig
at
ed

L
fo
rLL
un

gL
Ca

nc
er

ScoreLprovidedLbyLArrayExpress

MIAMEUHuman

MIAMEUMouse

MIAMEURat

MINSEQEUHuman

MINSEQEUMouse

MINSEQEURat

0

10

20

30

40

50

60

70

80

90

100

Age Gender Phenotype Raw;
Filename

Mouse;
Name

Cell;Types Brain;
Regions

Pe
rc
en

ta
ge

of
M
ou

se
/R
at
0A
lzh

ei
m
er
's

sa
m
pl
es

pr
io
rit
ize

d
as

1

Annotation0Fields

Curated;Mouse

Automated;Retrieval;Mouse

Curated;Rat

Automated;Retrieval;Rat

Figure S6: Coverage of basic metaBdata annotation fields for mouse and rat AD priority 1 samples with automated
retrieval and manual curation. It is clear from the above statistics that manual curation accuracy for basic
annotations, such as age, gender, and raw file information, is highly dependent on data availability. The cell type
information for mouse, which was automatically downloaded, contained both brain regions, and cell type
information. Thus, after manual curation we observe reduced information in mouse cell type.
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5.2.2 Supplementary	Tables	

 

!
Experiment*ID** Contact*Reason* Response*of*the*authors*

GSE47036* Mismatch!in!sample!labelling!between!
GEO! database! and! the! associated!
publication!

Provided! us! the! correct!
mapping! file,! in! addition!
authors! corrected! the! error! in!
GEO!database!

GSE47038* Difference! in! number! of! samples!
between! GEO! (58! samples)! and!
ArrayExpress!(64!samples)!

ArrayExpress! synced! the!
sample!count!to!GEO!database!

GSE29652* Difficulty! in! mapping! the! sample!
information!from!GEO!to!the!detailed!
information! provided! in! publication!
(Table!1)!

The! authors! provided! us!
additional! file! mapped! to!
Source! name! (cf.$ GEO! sample!
page)! along! with! detailed!
information! of! how! to! map!
these! different! IDs! to! the! case!
information!in!Table!1!

GSE36980* Could! not! map! the! patient!
information!(Subject!No.)!provided!in!
Supplementary! Table! 2! to! the! GEO!
sample!IDs!

Authors! provided! additional!
supplementary! file! which!
contained! GEO! sample! IDs!
mapped! to! subject! numbers! in!
Supplementary!Table!S2!

GSE26927* Unable! to! map! the! Cohort!
characteristics!provide!in!Table!1!!(or!
Supplementary!Online!Resource!1)!of!
the!paper!with!sample!information!in!
GEO.! In! addition,! the! number! of!
samples!used!in!the!analysis!(113),!as!
described! in! the! paper,! differs! from!
the!number!of!samples!in!GEO!(118).!

Author! provided! the! mapping!
information!of!sample!title!with!
cohort! characteristics.!
Additionally,! the! authors!
reported!that!only!113!samples!
out!of!118!were!of!good!quality,!
thus! the! difference! in! sample!
numbers.!!

 
Table* S1:! Detailed* listing* of* GEO* experiment* IDs* where* we* contacted* the* authors* for* missing* or*
mismatched*information.*Along!with!the!experiment!IDs!we!provide!the!reason!for!contacting!the!authors!
and!their!response.!!
!
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Sample'ID'

from'GEO'

Sample'title'from'GEO'

(resemble'patient'ID)'

Associated'sample'age'

provided'in'GEO'

website'

Patient'ID'in'

supplementary'

file'

Associated'gender'

information'in'

supplementary'file'

GSM466881' PD#rep1# Male# PD8#
M#

GSM466882' PD#rep2# Female# PD9#
M#

GSM466883' PD#rep3# Male# PD11#
M#

GSM466884' PD#rep4# Male# PD13#
M#

GSM466885' PD#rep5# Male# PD14#
M#

GSM466886' PD#rep6# Male# PD15#
M#

GSM466887' PD#rep7# Male# PD15x#
M#

GSM466888' PD#rep8# Female# PD17#
F#

GSM466889' PD#rep9# Male# PD18#
M#

GSM466890' PD#rep11# Female# PD20#
F#

GSM466891' PD#rep12# Male# PD21#
M#

GSM466892' PD#rep13# Male# PD22#
M#

GSM466893' PD#rep14# Male# PD22x#
M#

GSM466894' PD#rep15# Male# PD23#
M#

GSM466895' PD#rep16# Male# PD23x#
M#

GSM466896' PD#rep17# Female# PD27#
M#

GSM466897' PD#rep18# Male# PD30#
M#

GSM466898' Ctrl#rep_2# Female# CNT4#
F#

GSM466899' Ctrl#rep_3# Female# CNT5#
F#

GSM466900' Ctrl#rep_4# Male# CNT6#
F#

GSM466901' Ctrl#rep_5# Male# CNT15#
F#

GSM466902' Ctrl#rep_6# Male# CNT16#
F#

GSM466903' Ctrl#rep_7# Female# CNT18#
F#

GSM466904' Ctrl#rep_8# Female# CNT19#
M#

GSM466905' Ctrl#rep_9# Male# CNT20#
M#

GSM466906' Ctrl#rep_10# Male# CNT21#
F#

GSM466907' Ctrl#rep_11# Female# CNT24#
M#

GSM466908' Ctrl#rep_12# Male# CNT#25#
F#

'

Table'S2:#Detailed'mapping'of'GEO’s'Sample'ID'and'Patient'ID'(from'supplementary'Table'S6'of'the'
associated'publication)'along'with'their'associated'gender'information'of'experiment'GSE18838.#
Here#we#mapped# the#Sample#and#Patient# IDs#with#an#assumption# that# they#are# in#natural# sorted#order.##
Samples#for#which#we#could#not#map#the#metaLdata#information#between#GEO#archive#and#supplementary#
file#(Table#S6)#of#the#associated#published#article#are#highlighted#in#green.#The#difference#in#male/female#
ratio# between# GEO# samples# (male/female:# 19/9)# and# Supplementary# Table# S6# (male/female:# 18/8)#
provides#enough#evidence#that#the#information#is#misleading.#



  Summary 

93 

5.3 Summary	

The database introduced here, NeuroTransDB, aims to assist researchers to re-use public 

omics data efficiently in NDD research. The presented work here is a good example to 

demonstrate that FAIRification of public omics data requires more than just reformatting 

and mapping to standard ontologies. Firstly, it reports on the key issues faced during 

retrieval of the subset of studies from public repositories. The keyword-based search 

possibilities provided by these repositories guarantees higher recall but misses out on the 

clinical relevancy to the queried indication and organism. Next, it draws attention to the 

need for comprehensive and precise harvesting of metadata annotations. Most of the data 

submitters do not comply to standards such as MIAME or MINSEQE during submission. 

This has resulted in missing or erroneous metadata annotations. Even when provided, the 

inconsistent and incomplete annotations are scattered as unstructured prose in the 

originating publications or associated supplementary files. Moreover, due to the varied 

nature of these files, automated extraction of annotations from these sources is not 

straightforward. Hence, large effort from dedicated individuals is required to harvest this 

valuable information. Finally, adding to the obstacles is the lack of uniform representation 

and mapping to standard vocabularies or ontologies.  

In this work, we carry out FAIR transformation of the public omics studies to increase the 

added value for translational research in NDD; by navigating around the above-mentioned 

obstacles. To increase Findability and Accessibility of the data, relevant studies were 

prioritised based on a simple binning approach: in vivo and in vitro systems. A set of 

classification rules that account for sample source, organism and disease specificity were 

stated for prioritisation. Consulting the disease experts, a list of metadata fields that are 

needed for translational research (both human and animal models) was laid out. These 

metadata fields are very specific to NDD research and are scalable to a usable level of 

abstraction based on the research question at hand. Using a semi-automated curation 

workflow, missing and incorrect metadata fields were manually curated by gathering 

information from several sources: (i) directly from databases; (ii) subsections, tables, 

figures or supplementary files of originating publications; (iii) chained references for 

original source of information; (iv) contacting the data submitters or corresponding authors. 

Moreover, the trend analysis showed a drop in furnishing basic metadata information such 

age, and gender over the last decade. Harvested metadata fields were normalised using 
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public vocabularies and ontologies. To enable richer integration and Interoperability, these 

metadata fields were annotated with the URIs provided by the ontologies. Thus, qualifying 

for globally accepted standard for data exchange and knowledge representation on web, 

RDF. Finally, Reusability is greatly enhanced by providing data in a machine-readable 

format with provenance on original data source, context, and information on curated 

metadata. In addition, since NeuroTransDB is based on publicly-funded GEO and 

ArrayExpress databases, its data is free for public use without any restrictions.  

To the best of our knowledge, this is the first database that systematically harvests metadata 

annotations specific to NDD research along the FAIR principles. The work presented here 

can act as a general guideline for prioritising and harvesting metadata information for any 

biomedical data. The transformed FAIR data increases the value of the public data in 

integrative data analysis, reported in Chapter 3; enabling researchers to ask questions that 

was previously not easily viable. The prioritised studies, with correct metadata annotations, 

enable researchers to precisely select samples for integrative meta-analysis; thereby 

increasing the accuracy of derived statistics. Chapter 6 proposes a new approach using gene 

regulatory networks to perform meta-analysis and identify robust expression patterns 

across heterogeneous datasets. 
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Chapter	6 	Knowledge	Instructed	Gene	
Regulatory	Networks	

 

6.1 Introduction	

Gene regulatory networks (GRNs) have attracted a lot of attention to model dependencies 

between the molecular entities from gene expression data. They serve as a blueprint of 

regulatory relations governing biological events, which can be used to derive biological 

hypothesis; to guide new experimental designs; as network based biomarkers; differential 

analysis. A variety of algorithms have been proposed to model GRNs that enhance our 

understanding of diseases: similarity measures (mutual information), regression-based, 

Bayesian models, or ensemble approaches. When considering biological consistency, the 

differences between these methods are not large. However, due to improved stability and 

accuracy, ensemble-based methods have gained popularity. Moreover, global gene 

expression analysis outperforms results derived from single experiment to classify 

subgroups or identify common patterns.  

Meta-analysis approaches result in more robust and reliable gene signatures across 

heterogeneous datasets by enhancing the statistical power; overcoming the variability of 

individual experiments. Modelling GRNs using meta-analysis approach identifies 

molecular mechanisms and key drivers in an unbiased way. A more conventional approach 

is to merge results that are gene-centric (DE genes) or through functional enrichment of 

dysregulated genes. Despite the promising potential, these approaches tend to converge 

Prioritization)
of)

lesser.known)
candidates)and)
mechanisms

Chapter(3
“NeuroRDF”

Chapter(5
“NeuroTransDB”

Chapter(4
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towards ‘what is already known’. To improve the reliability without increasing the 

computational costs, one can exploit existing sources of knowledge to discard or enforce 

edges that are already known. But not all prior knowledge sources are reliable and 

guarantee a high level of confidence, which may lead to noisy results. Thus, there is a need 

for a more robust approach utilising prior knowledge such that the networks scale well, 

reduce computational effort, and do not converge to known players.  

In this publication, we have developed an approach that iteratively self-instructs the 

generation of GRNs to unravel general principles of AD patho-mechanisms, firstly using 

literature knowledge and subsequently enriching with data-driven functional analysis. By 

integrating heterogeneous AD datasets, this approach has the capability to identify non-

obvious subtle changes in expression level playing a central role in dysregulated events.  
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Abstract	

Background: Alzheimer’s disease (AD) progressively destroys cognitive abilities in the 

aging population with tremendous effects on memory. Despite recent progress in 

understanding the underlying mechanisms, high drug attrition rates have put a question 

mark behind our knowledge about its etiology. Re-evaluation of past studies could help us 

to elucidate molecular-level details of this disease. Several methods to infer such networks 

exist, but most of them do not elaborate on context specificity and completeness of the 

generated networks, missing out on lesser-known candidates.  

Method: In this study, we present a novel strategy that corroborates common mechanistic 

patterns across large scale AD gene expression studies and further prioritizes potential 

biomarker candidates. To infer gene regulatory networks (GRNs), we applied an optimized 

version of the BC3Net algorithm, named BC3Net10, capable of deriving robust and 

coherent patterns. In principle, this approach initially leverages the power of literature 

knowledge to extract AD specific genes for generating viable networks.  

Results: Our findings suggest that AD GRNs show significant enrichment for key signaling 

mechanisms involved in neurotransmission. Among the prioritized genes, well-known AD 

genes were prominent in synaptic transmission, implicated in cognitive deficits. Moreover, 

less intensive studied AD candidates (STX2, HLA-F, HLA-C, RAB11FIP4, ARAP3, 

AP2A2, ATP2B4, ITPR2, and ATP2A3) are also involved in neurotransmission, providing 

new insights into the underlying mechanism.  

Conclusion: To our knowledge, this is the first study to generate knowledge-instructed 

GRNs that demonstrates an effective way of combining literature-based knowledge and 
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data-driven analysis to identify lesser known candidates embedded in stable and robust 

functional patterns across disparate datasets.  

Keywords: Alzheimer Disease; Gene Regulatory Networks; Microarray Analysis; 

Synaptic Transmission 

 

Background  

Alzheimer’s disease (AD) is a very complex idiopathic disease contributing to immense 

personal and societal burden, with ∼13.8 million people being affected by 2050 [1] in the 

US alone. High failure rate of AD drugs (98%) in Phase 3 trials have resulted in no new 

FDA approved drugs since 2003 [2]. Moreover, the five previously approved AD drugs 

just provide symptomatic relief [3]. Not all, but a substantial proportion of these studies 

focused on amyloid-beta (Aβ) and tau accumulations as being synonymous to the AD 

pathology [4], leading to an unprecedented wealth of molecular and clinical data. Despite 

the disappointing outcome of the clinical trials, neurology researchers still believe in the 

definiteness of these two hypotheses [5]. This reaffirms that pathological mechanisms 

underlying AD are much more complex than the current consideration, thus, opening up 

possibilities for new therapeutic targets. Working towards unraveling dysregulated events 

heralding known and unknown patterns could fill the gaps between AD hallmarks [6].  

Existing experimental data, not being fully exploited, contain compelling evidence that 

have the potential to contribute next groundbreaking discoveries. The great challenge, 

however, lies in harmoniously integrating these data and interpreting them differently to 

derive new-novel insights while maintaining the biological connections. The term, 

“Horizontal Meta-analysis” implies the integration of results from several independent 
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studies [7], thereby increasing the statistical power of the derived conclusion. A more 

conventional gene-centric approach is to intercross differentially expressed (DE) genes 

across studies based on majority voting [8], merging gene ranks [9], and combining p-

values [8]. However, differing factors can lead to a low overlap and discrepancies between 

studies such as the applied statistical methods, different platforms of the quantitative 

measurements, and heterogeneity of the patient cohorts [10]. Moreover, these approaches 

do not shed light on the co-ordinated genes that collectively orchestrates the underlying 

(patho-)mechanism. A more consistent and robust approach is through functional 

enrichment of the dysregulated genes using KEGG [11], MSigDB [12], and other sources 

of pathway knowledge. However, these approaches have a tendency to converge towards 

genes that express in large magnitudes and generated hypotheses are restricted by current 

understanding of pathways.  

Network-based approaches that rely on the coherence of expression changes between 

functionally dependent genes, could provide an effective means to overcome the above-

mentioned challenges. Such inferred networks have the capability to determine subtle 

expression shifts between correlated gene pairs that are linked to the dysregulation events. 

Particularly, these signatures are largely consistent across different studies; thus, 

emphasizing on its benefits for large scale meta-analysis. In the last few years, we have 

seen a swarm of methods that infer such networks based on co-expression, regulation, and 

causal information namely WGCNA [13], BC3Net [14], MRNET [15], ARACNE [16], 

GENIE3 [17], and CLR [18]. Among these, WGCNA and the bagging version of C3Net 

(BC3Net) are popular and computationally efficient methods. BC3Net is an ensemble 

method that statistically infers GRNs based on the strongest mutual dependencies between 

genes. Whereas, WGCNA clusters genes on the basis of calculated pairwise correlation 
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coefficients. In the meanwhile, BC3Net has been reported in providing meaningful 

biological insights for large-scale studies [19,20].  

Traditional GRNs identify patterns through differential co-expression analysis [21–23], 

displaying grouping of patterns based on dysregulated and co-ordinated biomolecular 

changes. Integration of such priors drastically improves the context specificity of the 

inferred networks relative to using data as the sole source [24–26]. However, these spurious 

discriminative structures, in a given disease context, may vary since DE genes are highly 

inconsistent across studies [27]. Biologically speaking, one may argue that the differences 

in functionally enriched components, derived from DE genes are more consistent than 

gene-centric activities [28]. But this approach misses out on less informative and less 

studied non-DE genes, which act in groups, contributing to the observed phenotype or a 

part of cascade effect. Furthermore, overlaying the inferred networks with known 

interactions, cataloged in databases or harvested from published literature expand the 

knowledge space [29,30]. However, an intriguing question on completeness, veracity and 

context specificity of these interactions has proven to be a major setback [31].  

Here we propose a new approach to identify common signature patterns across public AD 

studies and prioritize lesser known AD candidates that unravel the general principles of the 

intrinsic patho-mechanisms. To identify AD mechanistic footprints, we established an 

optimized workflow around BC3Net to extract more robust and coherent co-expressed gene 

patterns (named BC3Net10). The approach allows us to converge lesser known candidates 

into the final generated GRNs. Moreover, to generate context-specific GRNs, the main 

rationale applied was to leverage the power of prior knowledge and functionally enriched 

candidates in the data. Firstly, we identified most frequently discussed genes in the 

scientific literature using our literature mining environment SCAIView; this is called the 
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“seed”. We are aware that the generated GRNs may be biased due to the incomplete nature 

of the prior knowledge. To overcome this limitation, we extended the seed by adding all 

the genes from the enriched pathways, determined for the high scoring inferred interactions 

from BC3Net10. Several iterations are performed until there are no more genes to be added 

to the seed. Finally, an aggregated GRN from all the iterations, for each dataset, is generated 

to prioritize functional context and determine lesser known candidates from the genetic 

variant analysis. Figure 1 presents an overview of the strategy in this study, and descriptions 

of the methodology are available in the Material and Methods section. This work suggests 

a context-specific strategy for future interpretation of the GRNs. Taken together, our work 

demonstrates that optimizing the GRN generation can provide a powerful resource to 

prioritize novel candidate genes (could serve as biomarkers) and common functional 

components that axles the disease progression.  

Material and Methods  

Selection of datasets  

We collated eight Alzheimer’s disease datasets (cf. Table 1) that are composed of 50 or 

more samples (for diseased and control phenotype) from the previously developed value-

added database, NeuroTransDB [32]. Briefly, this database contains manually curated 

metadata annotations for eligible neurodegenerative studies. The datasets have been 

harvested from publicly available resources namely, Gene Expression Omnibus (GEO) 

[33] and ArrayExpress [34], using a keyword-based search approach.  

Furthermore, datasets that fulfilled the following criteria were retained for generating gene 

regulatory networks: (i) oligonucleotide arrays for analysis consistency, (ii) availability of 

raw data to facilitate uniform pre-processing and (iii) expression profiling carried out on 
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brain tissue. A list of four potential datasets that comply with the above conditions is 

eligible for further analysis: GSE5281, GSE44771, GSE44770, and, GSE44768. An 

overview of the platform, stage, and brain region information for the same is given in Table 

1. Among these, GSE44771, GSE44770, GSE44768 were from a single study reported by 

Zhang et al. [35] for late-onset AD.  

Pre-processing and gene annotation  

The four selected datasets were processed identically to reduce variance and to maintain 

consistent quality. All analysis was carried out with R (Version 3.1.3) [36], an open-source 

statistical language, using the packages from Bioconductor (Version 3.0) [37]. The overall 

step-by-step workflow is shown in Figure 1.  To eliminate the variance effect of non-

specific hybridization, all the downloaded raw data were uniformly normalized by 

performing background correction, quantile normalization, and averaging the expression 

values of duplicate probes on log2-transformed intensity values. For Affymetrix platform, 

robust multi-array average method (rma) [38] available in Bioconductor package affy was 

applied. Similar methods available in Bioconductor package limma [39] were applied on 

Rosetta/Merck Human 44k 1.1 microarray chip.  

Affymetrix probes to gene symbols annotation mapping were obtained from the 

“hgu133plus2.db” Bioconductor package. In the case of Rosetta/Merck chip, the gene 

symbol annotations were provided directly along with the intensity values. For multiple 

probes mapping to the same gene within an array, average expression values were used. 

Unmapped probes were excluded from further analyses. As a result of this preprocessing 

step, we retained 20155 in GSE5281, 11254 in GSE44771, 10437 in GSE44770, and 12000 

in GSE44768 genes for further analysis.  
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Quality control and outlier detection  

Using the Bioconductor package arrayQualityMetrics [40], we assessed the array quality 

and removed the outlier samples. Describing shortly, arrayQualityMetrics determine 

outliers using three different metrics: (i) distance between samples using principal 

component analysis (ii) array intensity distributions of all samples on the array (iii) 

individual array quality through MA-plots. If a sample is detected as an outlier in either of 

the three metrics, we discard it from further analysis. In the four selected datasets, 9 in 

GSE5281, 19 in GSE44771, 27 in GSE44770, and 12 in GSE44768 arrays were outliers. 

The list of identified outlier arrays is provided in Supplementary File S3. The remaining 

arrays that passed the quality control were processed as described earlier.  

Leveraging stable gene regulatory networks  

In order to derive AD relevant GRNs, we divided the AD gene expression profile based on 

their phenotypes, disease and normal. Subsequently, BC3Net10 algorithm was applied only 

on diseased samples for AD seed genes, cf. Figure 1. GRNs were generated independently 

for each dataset, visualized as igraph objects in Cytoscape tool [41]. Network topological 

properties such as node degree, hub genes, etc. were determined using the Bioconductor 

package igraph.  

Filter pre-processed data for seed gene list  

Prior to GRN generation, each pre-processed dataset was restricted to the genes in the seed. 

Initially, it consists of a set of literature-derived genes that have high probability of direct 

or indirect involvement in AD pathogenesis (see Section Gathering initial seed genes). The 

rationale behind applying this filtration is to maintain the disease specificity and reduce 
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high run time due to bootstrapping in BC3NET. Furtheron, after every functional 

enrichment iteration we again restrict the expression data to the new seed.   

Gathering initial seed genes  

The backbone of the seed comprises of the results harnessed from our text-mining 

knowledge framework, SCAIView [42]. SCAIView is a knowledge discovery framework 

that supports named entity recognition, information retrieval, and information extraction 

on large textual sources. Its capability to rank documents and biomedical entities based on 

the relevancy score allows retrieval of significant players in a disease context [43,44]. 

Querying SCAIView for AD related genes resulted in 4808 genes, as of 2nd January 2016. 

Only the top 500 retrieved genes were used as the initial seed, depicted as i=1 in Figure 1.  

Optimized GRN construction  

For the construction of GRNs, R package bc3net was applied to the processed data with 

100 bootstraps (B=100). Briefly explained, one aggregated network was generated by 

applying the C3Net algorithm on 100 bootstrapped data, which were inferred from given 

processed dataset. Statistically, non-significant edges inferred by C3Net and BC3Net were 

discarded using Bonferroni’s multiple testing correction, α = 0.05. In the resulting 

aggregated network, edge weights represent the frequency of a correlated gene pair in 100 

random sampling, ranging from 0 to 1.  

During random sampling, true and most prominent correlations are stochastically more 

likely to be selected than the non-correlated ones. This is reflected in BC3Net networks, 

where three independently generated GRNs, inferred from the same gene expression 

dataset (GSE5281), have an edge overlap of ∼74% (for no edge weight cutoff) and ∼89% 

(for edge weight>=0.5); the node overlap always remained 100%. The BC3Net parameters 
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used for performing this analysis are: boot=100, estimator= “pearson”, disc= “equalwidth”, 

mtc1=TRUE, alpha1=0.05, adj1= “bonferroni”, mtc2=TRUE, alpha2=0.05, adj2= 

“bonferroni”, weighted=TRUE, igraph=TRUE, verbose=FALSE and number of seed 

genes=4808 (see Section Gathering initial seed genes). However, less frequently appearing, 

yet plausible, edge interactions could offer the potential for promising candidates that are 

buried in expression data.  

We observed that the intersection between independently generated GRNs saturated after 

5-10 repetitions of the BC3Net algorithm on the same dataset. Thus, in order to expand the 

knowledge space around AD candidates and for completeness, we propose an optimization 

of the randomness to devise a more recall optimized GRNs. More specifically, we applied 

the BC3Net algorithm to the same dataset 10 times, named BC3Net10. Finally, we 

aggregated the 10 independently generated GRNs into one. The final edge weight is now 

the mean of the computed edge score from 10 GRNs. This increases the prospect of 

deducing more reasonable functional speculations in complex diseases with the high 

probability of novelty for further investigations.  

Subnetwork selection and functional enrichment analysis  

The choice of a threshold can significantly affect the integrity of the network and the co-

expression modules derived from it. In this regard, computed edge weight (mean 

weight>0.5) from BC3Net10 was used as the filter criteria for selecting significant gene 

pairs in the generated GRNs. This increases the significance level by 50% for the inferred 

interactions in each dataset.  

The overlap between the inferred interactions/edges was very low (zero genes common to 

all 4 subnetworks, see Figure 2) when BC3Net was applied on the initial seed. Several 
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reasons can be presumed for lack of common and stable genes such as different platforms, 

distinct brain tissues, diverse patient cohort, and treatment heterogeneity. However, 

numerous studies have already shown that the functional signatures are more stable relative 

to individual gene level information [45–48]. In this context, to extract the most 

representative biological pathways for genes in the subnetworks (separately for each 

dataset), we performed functional enrichment analysis (based on one-sided Fisher’s exact 

test) for KEGG pathway information using ConsensusPathDB (CPDB) [49] (Release 30). 

Using the Bioconductor package, org.Hs.eg.db [50] we mapped the gene symbols to Entrez 

gene identifiers obtained from CPDB.  

Identification of enriched candidates and seed gene list enrichment  

We devised a strategy to expand the seed through functional enrichment analysis of the 

individual network modules inferred by the GRNs, enabling us to quantify the saturation 

of the inferred network. We extracted significant pathways (for the p-value<0.05) common 

between the determined subnetworks of the four datasets, generated using the initial seed. 

We added a new gene (called enriched candidate) to the seed when the gene belongs to the 

respective CPDB and KEGG pathway gene set that is significantly enriched across all 4 

inferred GRNs and is not present in our initial seed. Further, we repeated the functional 

enrichment analysis to determine overlapping pathways for the enriched seed. We 

leveraged the identified enriched candidates in these pathways by subsequent inclusion in 

the seed iteratively until saturation. Once the seed has reached its saturation, we merge the 

networks of all iterations, separately for each dataset, to generate an aggregated network. 

This approach goes beyond just candidate enrichment, corresponding to a maximal AD 

specificity with minimal noise and harvesting lesser known genes in GRNs.  
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Gene list prioritization by genetic variant analysis 

For the consensus network, we identified genes (involved in significant pathways and hub 

genes) to prioritize them using genetic variant analysis. Multiple genetic variants are 

attributed in the etiology of complex diseases. To investigate the impact of genetic 

variation, we extracted AD evidences for single-nucleotide polymorphisms (SNPs) from 

GWAS catalog [51], GWAS Central [52] and gwasDB [53], resulting in 11,314 SNPs. 

Further, linkage disequilibrium (LD) analysis was carried out to enrich the list of AD 

associated genetic variants, which were sorted based on their chromosome location. 

Linkage disequilibrium is SNP’s property on a contiguous stretch of a chromosome that 

describes the degree to which an allele of one genetic variant is inherited or correlated with 

an allele of another genetic variant within a population. The LD analysis was performed 

using HaploReg v2 (developed by Broad Institute of MIT) [54] based on dbSNP-137 [55], 

motif instances (based on PWMs provided by the ENCODE project database) [56], 

enhancer annotations (adding 90 cell types from the Roadmap Epigenome Mapping 

Consortium) [57], and eQTLs (from the GTex eQTL browser) [58]. With LD threshold 

cutoff of r2 = 0.8, we obtained 115,782 SNPs. Furtheron, these SNPs were filtered based 

on the ENSEMBL SNP Effect predictor that estimates the influence of SNP variants on the 

respective transcripts of a gene and their gene products [59], shortlisting 4,831 SNPs. Genes 

obtained from the aggregated networks were boiled down to those associated with 

shortlisted SNPs. Finally, these refined genes were ranked using a cumulative score of their 

SNPs from RegulomeDB [60], dbSNP’s functional annotation [55], ENSEMBL’s Variant 

Effect Predictor [61] and regulatory feature annotation by ENSEMBL variant database 

[62]. RegulomeDB’s ranking is based on the functional annotations from ENCODE 

database [63], chromatin states from the Roadmap Epigenome Consortium [64], DNase-
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footprinting [65], position weighted matrix for transcription factor binding [66], and DNA 

methylation [67].  

Results and Discussion  

Algorithm convergence and network properties  

Under the premise that lesser known genes are not prominently represented in literature, 

we extended the set of seed genes through functional enrichment (see Section Subnetwork 

selection and functional enrichment analysis). As depicted in Figure 1, BC3Net10 was 

applied on the identified four datasets for different seed lists to generate AD GRNs. 

Iteration 1, where we generated GRNs for SCAIView genes resulted in 10 overlapping and 

significant pathways between the four datasets. From these pathways, we obtained 820 

genes that were earlier not present in the seed. Hence, there is a clear need for further 

enrichment of the seed, which is done by including these newly identified candidates to the 

seed and repeating the functional enrichment step. In the second iteration, we identified 38 

overlapping significant pathways between the datasets. This iteration continues seven times 

until there are no newer candidates to be added. Table 2 provides the statistics of the number 

of pathways identified in each iteration, along with the number of enriched candidate genes 

that were added to the seed. A detailed list of the enriched candidates (as HGNC symbols) 

identified in each iteration is provided in Supplementary File S1. A sharp increase in the 

number of enriched candidates is observed in the first two iterations, which drops to zero 

in the seventh iteration. We assume that this indicates the completeness of the gene set that 

belongs to AD, specific to the selected four datasets.  

Extension of the GRNs using enriched seed is a knowledge guided approach, which relies 

on the functional information derived from the gene expression data. We note that the 
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GRNs grow progressively, both inferred interactions and the participating candidates, but 

in the process, eliminates few of the previously inferred interactions. A potential reason is 

that the extension of the expression matrix with new seed contributes to a shift in the 

significance of the inferred interactions by BC3Net. It implies that although we obtain a 

final GRN for saturated seed (iteration 7), aggregating networks from earlier iterations 

could capture interactions that were previously inferred as potential. The fraction of nodes 

and edges from each iteration that makes up the aggregated network, for each dataset, is 

presented in Figure 3. We observe that the addition of nodes, in each iteration, across 

datasets, remained stable whereas the same cannot be said for the edges. The variance in 

edges could be presumed that the newly added set of genes bring in higher functional 

relevance through newly inferred interactions in one or the other iteration.  

An assessment of the completeness of a GRN for AD specific genes can be precisely 

estimated by plotting the mean and the variance of the number of nodes and edges present 

in each dataset for each iteration. From Figure 4 (a), it is evident that the enrichment of the 

most relevant genes reach saturation. This increases the statistical significance of the GRNs 

suggesting an increment in the biological confidence. It is apparent that not all the genes 

present in the seed agree across platforms due to various differing experimental factors. 

However, we expect functional signatures across the datasets to be more agreeable. 

Analyzing edges, see Figure 4 (b), we observe that they orient three times, at saturation, to 

the number of nodes. The relative higher number of edges demonstrate that the gene sets 

are highly related, showing immense inter-connectivity between several functional 

modules. The high variance observed, in both nodes and edges, is contributed by the large 

network size of GSE5281 relative to the other three datasets. Details of the number of nodes 

and edges present in each dataset at each iteration is provided are Supplementary File S2.  
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Hub genes  

Hub genes have a higher grade of lethality when dysregulated in a pathological condition, 

referred to as centrality lethality rule [68]. For each aggregated GRN, a gene was defined 

as a hub gene when it had a higher degree of distribution (>95% quantile). By this criterion, 

we identified 29 in GSE5281, 8 in GSE44768, 14 in GSE44770, and 1 in GSE44771 as 

hub genes. Table 3 displays the list of identified hub genes along with their node degree 

and pathway annotation (only for significant pathways, see Functional homogeneity across 

datasets section). Interestingly, there were no common hub genes between the four datasets. 

It was evident that six of the hub genes were perturbed in multiple pathways. Many of the 

hub genes were functionally enriched in neurotrophin signaling, endocytosis, and estrogen 

signaling pathways. Additional associated pathways with hub genes include calcium 

signaling, adipocytokine signaling, NOD-like receptor signaling, insulin signaling, 

apoptosis, thyroid signaling, and pancreatic secretion. The majority of these hub genes 

formed a connected subnetwork within each dataset, indicative of a possible cooperative 

effect in AD pathology (see Supplementary Figure S1). In the case of GSE44771, due to 

the presence of a single hub gene, we extracted the largest subnetwork associated with 

HSPA2.  

Functional homogeneity across datasets  

Are the core functional modules (set of interconnected-genes) unique to a human brain 

region or do they depict patterns reflecting the tight linkage between different regions of 

the brain? To address these questions, we compared the final determined significant 

pathways across the four aggregated GRNs (outlined in Methods). The functional 

enrichment analysis revealed 187 in GSE5281, 120 in GSE44768, 170 in GSE44770, and 

43 in GSE44771 inferred modules within significant KEGG pathways. We computed a 
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simple overlap between the four GRNs to assess the conserved pathways, resulting in 34 

pathways. Because this list contained pathways that were not directly relevant to the core 

pathophysiology of AD, we categorized them into subsets based on their pertinence to AD, 

see Table 4. Please refer to Supplementary File S4 for details of summary statistics. From 

these, we chose to focus on pathways that exacerbate the AD phenotype, classified as 

“Potential”. Table 4 also provides the statistics of the number of genes enriched for these 

pathways in each dataset. Interestingly, there are no common genes between the four 

datasets when compared at the pathway level. However, many of the genes are shown to 

be involved in more than one potential pathway, providing the basis for functional 

connectivity in AD.  

Regulatory underpinning across Consensus network  

As described in Section Functional homogeneity across datasets, the genes in different 

GRNs are complementary for the top significant pathways. Thus, to provide a broader 

coverage than a single GRN and to infer stronger relationships through consensus, we 

merged the four aggregated GRNs into one, called consensus network. What we expect is 

to uplift the most promising pathways due to the assembly of more participating genes. To 

assess the concept of functional enrichment, we plot the p-values of all the significant 

pathways, listed in Table 4, for each of the aggregated and consensus GRNs, see Figure 5. 

From the figure, it is evident that these pathways have attained higher significance level 

(better p-values) in consensus GRN due to the gene complementarity from the aggregated 

GRNs.  
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Prioritizing through genetic variant analysis  

We compiled 608 genes from listed significant pathways across datasets (see Table 4) and 

hub genes. We mapped these genes to the 4,831 shortlisted ENSEMBL SNPs (see 

Methods). For the obtained 167 mapped genes, we ranked them based on the calculated 

cumulative score for their potential functional consequences in a disease context. 

Restricting the ranked genes to the RegulomeDB score of 3, we generated a final list of 44 

high ranked genes. In addition, we looked into the AD GWAS meta-analysis study carried 

out by Lambert et. al [69]. Among all their listed genes carrying genetic AD risks, we found 

three (AP2A2, DPYSL2, and EPHA1) of them to be present in our 608 gene list, including 

one (EPHA1) newly reported in their study; these three were added to our final gene list. 

Please refer to Table 5 for detailed ranking and RegulomeDB score. Additional 

investigation revealed 14 out of 47 genes from our final gene list are either validated by 

eQTLs studies or experimentally evident that the SNPs are linked to the active promoter 

region of the gene. These genes include IL1B, NSF, HLA-F, NOTCH4, VCL, PSAP, 

STX2, GGA2, STK11, CSF3R, LMNA, CTNNA2, HLA-C and RAB11FIP4. When we 

performed a comprehensive analysis of the biomedical literature, we found that many of 

these genes had no evidence of being linked to AD, but were rather known to be involved 

in AD co-morbidity diseases (see Supplementary Table S1).  

Well known prioritized AD candidates  

Apart from the new novel candidates, our method also determined well-known candidates 

(nearly 50 articles in AD) such as IL1B, NTRK2, GRIN2A, FYN, and DPYSL2. The IL1B 

gene is a pro-inflammatory cytokine that has been long studied for its modulatory effect in 

AD. It is reported that the expression of IL1B significantly increases with the increase of 

AD-related neurofibrillary pathology [70]. Synaptic plasticity, such as long-term 
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potentiation, is crucial for learning and memory. A neurotransmitter modulator, BDNF, 

mediates neuronal survival and plasticity by regulating neurotrophins through NTRK2. AD 

patients with cognitive deficits have been accounted with reduced levels of BDNF [71–73]. 

Similarly, GRIN2A is a subunit of NMDA receptors, whose reduced expression increases 

the vulnerability of neurons to excitotoxicity in AD, correlated with cognitive impairment 

due to reduced plasticity [74,75]. A strong correlation between lower levels of BDNF and 

cognitive deficits in AD patients was recently reported by Buchman et al. [76]. Recent 

research work has suggested BDNF as an upstream regulator of FYN gene, a Src family 

kinase, leading to enhanced cascade effect of NMDA mediated excitotoxicity and regulates 

the activity of hyperphosphorylated tau [77,78]. In addition, it mediates the synaptic 

deficits that are induced by Aβ [79]. DPYSL2 mediates synaptic signaling to facilitate 

neuronal guidance through regulation of calcium channels. Furthermore, FYN 

phosphorylates DPYSL2 within the brain and its hyperphosphorylation is causally related 

to Aβ neurotoxicity [80]. Taken together, these findings suggest that synaptic transmission 

is critical for regulating Aβ production in AD. Further studies, along these lines, may 

provide insights into the precise molecular mechanism underlying this part of AD etiology.  

Mechanistic interpretation of newly prioritized candidates in neurotransmission  

Neurotransmission is a pivotal brain function that declines with progressing age. However, 

in the case of AD there is a drastic and non-uniform deterioration of synaptic 

neurotransmission [81]. It is known that soluble oligomeric amyloid-β, rather than 

insoluble deposits that form plaques (extracellular), are detrimental to synaptic currents 

through calcium channel modulation, leading to excitotoxic cascades that mediate AD 

progression [82] and are related to the formation of neurofibrillary tangles (intracellular) 

[83]. Emerging research strongly supports the hypothesis of dysregulated calcium 
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homeostasis influencing the presence of neurotoxic Aβ in AD patients [84]. Increased 

endocytosis activity, enlarged endosomes, has been reported by Cataldo et al. [85] as the 

earliest intraneuronal neuropathologic feature of AD, subsequently impairing the 

modulation of NMDA receptor. NMDA excitotoxicity leads to the pathological overload 

of calcium resulting in synaptic impairment and ultimately neuronal death [86].  

We observed that three of the “Potential” pathways are significantly involved in 

neurotransmission: calcium signaling, endocytosis, and synaptic vesicle cycle (see Figure 

6). To assess the modularity of the prioritized candidates in these identified pathways, we 

extracted the functional relevance of their combination. This confirms our previous 

findings associated with well-known candidates (see Section Well known prioritized AD 

candidates). To gain new insights in this context we focused on lesser known prioritized 

candidates in Alzheimer’s that are involved in these three pathways (less than 5 

publications): STX2, HLA-F, HLA-C, RAB11FIP4, ARAP3, AP2A2, ATP2B4, ATP2A3, 

and ITPR2. Below, we briefly discuss the possibility of these candidates to presumably 

bear potential as new targets in AD (detailed description is provided in Supplementary File 

S5).  

The presence of Aβ oligomers impairs the process of STX2 binding to SNARE proteins 

hindering the effective release of neurotransmitter during synaptic vesicle fusion in the 

presence of increased calcium influx [87,88]. From several previous studies, one can 

postulate that HLA-F and HLA-C mediated dysregulated trafficking of amyloid plaques in 

endocytosis could be correlated to the memory deficits in early AD [89–91]. Several recent 

evidence point to the fact that faulty amyloid-β processing can be detected in the membrane 

trafficking events (linked to RAB11 proteins) of early endosomes, promoting an effective 

early diagnosis [92,93]. ARAP3 modulates actin cytoskeleton’s remodeling by regulating 
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ARF and RHO family members [94] and a growing body of evidence suggest that axonal 

transport defects due to its abnormality could be responsible for neurite degeneration and 

tau toxicity [95–98]. Impairment of APP shuttling by AP2A2 (part of AP-2 complex [99]) 

from the endocytotic pathway to autophagy degradation leads to intracellular aggregation 

of Aβ [100]. The next three candidates (ATP2B4, ATP2A3, and ITPR2) participate in 

neuronal calcium shuttling. A substantial body of evidence indicates ATP2B4, a plasma 

membrane Ca(2+) ATPases (PMCAs) is inhibited by Aβ peptides [101], causing cell death 

[102]. Similarly, ATP2A3’s function in handling calcium load and release is perturbed by 

the mutation in PSEN1 (regulates the intramembrane Aβ processing) [103]. Increased 

expression of ITPR2 could lead to calcium toxicity in neurons and finally cell death 

[104,105]. 

Conclusion  

The identification of biological mechanisms underlying normal physiology and – when 

dysregulated – contributing to or even directly causing disease phenotypes is a key 

objective of current integrative biology. Strategies, both data- and knowledge-driven, for 

mechanism-identification have shown to deliver valuable insights into disease 

mechanisms, however, both approaches have their specific drawbacks. Here, we 

demonstrate a new approach that combines literature-based knowledge and data-driven 

analysis through gene regulatory networks in a flexible and adaptive way. Thus, allowing 

us to identify stable and robust patterns of co-expressed genes across several large disparate 

datasets, in parallel, which enhances the interpretability around “interesting patterns” of co-

regulated genes. 

We developed an adapted version of BC3Net, called as BC3Net10, that supports a more 

fine-granular specification of functional context by “injecting” sets of seed genes (derived 
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from literature) into the algorithm. The seed genes were iteratively extended through 

functional enrichment applied on generated GRNs until convergence. Through several 

iterations of “selecting and injecting seed genes” and subsequent co-expression analysis, 

we come up with stable, knowledge-instructed GRNs across several experiments. We show 

the ability of our approach to identify functional context around subtle signals that would 

typically be expected for highly individual “modifier” functions not in the core of a 

dysregulation event, but have the potential to modulate the clinical path of a disease. Hence, 

making this approach ideally suited for biomarker identification. We show that by the 

enhanced functional interpretation of the GRNs shed more light on the role of 

neurotransmission physiology in early dysregulation events presumed to be part of 

Alzheimer ́s Disease etiology. This warrant further investigation of their potential as 

therapeutic targets.  

We would like to point out that there is more potential to the method presented here: in the 

course of IMI-project AETIONOMY we found limited coverage of signals in knowledge 

based models coming from the analysis of either gene expression or genetic variation 

information (GWAS studies). The methodology presented here bears the potential to 

establish biologically meaningful context around “isolated signals” in knowledge-based 

models to “embed” previously “non-interpretable” (at functional level) genes into a wider 

(knowledge based) context. Insights drawn from this approach could provide a novel 

foundation for the formation of new hypotheses. Although microarray data is the obvious 

starting point, the next logical step would be to extend this work to incorporate orthogonal 

datatypes such as NGS and single cell data. This could provide a broader view of disease 

etiology and enable comprehensive in silico investigations. It remains to be shown that the 

method we introduce here scales up to a really large number of experiments of different 

sample size. 
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Figures 

 

Figure 1  The overall strategy applied to obtain robust gene expression patterns 
across public Alzheimer’s disease studies. Firstly, four gene expression datasets were 
shortlisted from NeuroTransDB database. The selected studies underwent preprocessing 
and quality control. In each dataset, the intensity values were limited to the seed gene list. 
To enrich the seed, functional enrichment was applied where genes from the identified 
significant pathways from each dataset’s subnetwork (edge weight>0.5), generated using 
BC3Net10 approach, were included. When no additional genes were identified, 
subnetworks from each iteration, separately for each dataset, were merged into an 
aggregated network for further prioritization of the genes using genetic variant analysis  
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Figure 2 Venn diagram depicting the gene overlap between the subnetworks (edge 
weight>0.5) of the four datasets, generated using the initial seed. The initial seed was 
compiled from top 500 genes retrieved by querying SCAIView for Alzheimer’s disease 
related genes. It is evident that there are no common genes among the four dataset’s 
subnetworks. Differing factors between platforms, analytical methods, tissue source, etc. 
could contribute to such a behavior.  

 

(a) Fraction of added nodes in different iterations  (b) Fraction of added edges in different 
iterations  

Figure 3 Stratification of the nodes and edges in four aggregated networks. Each stack in 
the bar plot represents the fraction of nodes added in that iteration (IT) relative to the 
aggregated network (considered as 1). The addition of nodes remained stable across the 
datasets in each iteration. However, the inclusion of edges varies, which could be presumed 
due to newly inferred interactions from the newly included nodes in each iteration 
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Figure 4 Mean and variance distribution across four datasets for the added nodes and edges 
in each iteration.  Enrichment of nodes and edges reach saturation after 7th iteration, 
suggesting the completeness of the generated GRNs. Relatively high number of edges (see 
y-axis range) show immense inter-connectivity between the genes in the GRNs. (a) Boxplot 
for mean and variance distribution of nodes (b) Boxplot for mean and variance distribution 
of edges  

 

 

 

Figure 5 The landscape of p-value for the final list of significant pathways. For easy 
visualization, we have used 1-pvalue instead of p-value on Y-axis.  Each line in the graph 
represents aggregated GRN for specified dataset (see chart legend). The listed pathways 
show higher significance level in consensus GRN in comparison to the individual dataset 
aggregated GRNs  
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Figure 6 Subnetworks of the three shortlisted potential pathways (extracted from 

consensus network) involved in neurotransmission. Nodes in Cyan are involved in more 

than one pathways and the size of the nodes depends on the number of pathways involved. 

Triangle nodes represent the presence of a SNP. (a) Calcium signaling pathway (b) 

Endocytosis pathway (c) Synaptic vesicle cycle 

 

Tables 

GEO ID  Number of Samples  Sample Source  

 

Stage Platform 

Diseased Control 

GSE5281  87 74 Entorhinal 
cortex, 
Hippocampus, 
Primary visual 
cortex, 
Prefrontal 
cortex, Medial 

- Affymetrix HG 
U133 Plus 2  
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temporal gyrus, 
Superior frontal 
gyrus 

GSE44768  129 101 Cerebellum  LOAD  Rosetta/Merck 
Human 44k 1.1 
microarray  

GSE44771  129 101 Visual cortex  LOAD  Rosetta/Merck 
Human 44k 1.1 
microarray 

GSE44770  129 101 Dorsolateral 
prefrontal 
cortex  

LOAD  Rosetta/Merck 
Human 44k 1.1 
microarray 

GSE13214 52 40 Hippocampal, 
Cortex frontal 

Braak 4-6 Homo sapiens 
4.8K 02-01 
amplified 
cDNA 

GSE15222 176 187 Cortical tissue LOAD Sentrix 
HumanRef-8 
Expression 
BeadChip 

GSE29676 350 200 Blood - Invitrogen 
ProtoArray 
v5.0 

GSE33528 615 600 Blood LOAD Illumina 
Human- 
Hap650Yv2 
Genotyping 
BeadChip 

Table 1 List of datasets shortlisted from NeuroTransDB for generating gene regulatory 
networks. Final selected studies are highlighted in bold  
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Iteration (i)  Seed No. of overlapping 
pathways between the 
four datasets 

No. of enriched 
candidate genes 
obtained from the 
overlapping pathways  

1     SCAIView (500)   10 820 

2   i1+820   38 1148 

3     i2 + 1148   30 361 

4     i3+361   30 84 

5     i4+84   32 41 

6     i5+41   33 7  

7 i6+7 37 - 

Table 2 Statistics of the iterative functional enrichment approach 

 

GEO ID Gene Symbols Hub Degree Pathway 
Annotation 
(CPDB) 

Similar results in 
other datasets? 

 

 

 

 

 

GSE5281  

HFE 244 - - 

ATP2A3 162 Calcium signaling, 
pancreatic 
secretion  

- 

GLP1R 150 Insulin Secretion - 

ADRBK1 145 Endocytosis GSE44770  

CACNG4, 
CACNG6  

141 - - 
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KCNJ5  

 

132 Estrogen signaling - 

P2RX2  130 Calcium signaling GSE44770 

KPNA2 122 - - 

NOX1 118 - - 

CACNG5 113 - - 

EPN1 113 Endocytosis - 

WAS 112 - - 

CASP10 111 Apoptosis - 

HSPB6, EPHA4 109 - - 

ADNP 108 - - 

DNAH3 106 - - 

GRIN2A 105 Calcium signaling - 

UBQLN1 101 - - 

IL34, ATP5A1, 
UBE2L3 

100 - - 

DPYSL2 99 - - 

FOLR2 98 Endocytosis - 

NPR1 96 - - 

DNM1L, KLC1, 92 - - 
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ATP5G3 

 

 

 

 

GSE44768 

RASGRF1 80 - - 

DNAL4 63 - - 

EPHA1 60 - - 

CHRND 59 - - 

TRPC1 54 Pancreatic 
secretion 

GSE5281, 
GSE44770 

PAK7 50 - - 

NDUFA4 44 - - 

CHMP4B 44 Endocytosis - 

 

 

 

 

 

 

 

GSE44770 

IVNS1ABP 103 - - 

FGF18 92 - - 

ATF2 90 Estrogen signaling, 
Insulin secretion 

- 

 

CTSG 88 - - 

GABRE 86 - - 

FBXL2 81 - - 

GAPDH 75 - - 

DIO1 72 Thyroid hormone 
signaling 

- 
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CACNB3, CDK2 66 - - 

NFKBIB 66 Adipocytokine 
signaling, 
neurotrophin 
signaling, NOD-
like receptor 
signaling  

GSE44768 

PRDM4 64 Neurotrophin 
signaling 

- 

MAPK9 63 Adipocytokine 
signaling, 
neurotrophin 
signaling, NOD-
like receptor 
signaling 

- 

PIK3CB 63 Apoptosis, 
estrogen signaling, 
neurotrophin 
signaling, thyroid 
hormone 
signaling  

GSE5281 

GSE44771 HSPA2 18 Endocytosis, 
estrogen signaling 

- 

Table 3 Hub genes identified in the aggregated network for the four datasets. The genes 
are sorted by their hub degree within each dataset. Only significant pathways are listed here 
(see Table 4 for the list)  

 

Common 
Pathways 

Pathway 
Category 

Total 
no. of 
genes in 
the 
pathwa
y 

Number of genes enriched for the pathway 

GSE528
1 

GSE4476
8 

GSE4477
0 

GSE4477
1 

Consensu
s 

Cancer Basal cell 
carcinoma 

55 5 2 7 1 15 

Cancer Colorectal 
cancer 

62 6 2 8 1 14 
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Cancer Pathways in 
cancer 

398 64 27 40 3 119 

Cancer Small cell lung 
cancer 

86 15 4 9 2 27 

Comorbidit
y 

Amyotrophic 
lateral 
sclerosis 
(ALS) 

51 14 2 5 1 18 

Comorbidit
y 

Arrhythmogen
ic right 
ventricular 
cardiomyopath
y (ARVC) 

74 13 5 8 2 21 

Comorbidit
y 

Dilated 
cardiomyopath
y  

90 17 6 7 2 26 

Comorbidit
y 

Hypertrophic 
cardiomyopath
y (HCM) 

83 14 7 7 2 23 

Comorbidit
y 

Rheumatoid 
arthritis 

91 10 4 7 1 20 

Infection Epithelial cell 
signaling in 
Helicobacter 
pylori 
infection 

68 9 2 6 1 16 

Infection Influenza A 177 25 4 22 2 46 

Infection Shigellosis 61 12 3 7 1 19 

Infection Toxoplasmosis 120 14 3 12 2 26 

Infection Tuberculosis 179 21 4 23 3 46 

Infection Vibrio cholera 
infection 

54 9 2 2 1 13 
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Infection Viral 
myocarditis 

60 12 2 5 2 19 

Others Melanogenesis 101 18 3 10 1 30 

Others Neuroactive 
ligand-receptor 
interaction 

275 57 24 30 3 98 

Potential Apoptosis 86 14 2 6 1 20 

Potential Calcium 
signaling 
pathway 

180 43 12 16 2 62 

Potential Endocytosis 213 47 10 21 4 70 

Potential Neurotrophin 
signaling 
pathway 

120 24 6 17 1 44 

Potential NOD-like 
receptor 
signaling 
pathway 

57 9 3 6 1 16 

Potential PPAR 
signaling 
pathway 

69 11 4 9 2 22 

Potential Synaptic 
vesicle cycle 

63 15 4 8 1 26 

Potential Adipocytokine 
signaling 
pathway 

70 17 6 8 1 27 

Potential Insulin 
secretion 

86 18 3 10 1 28 

Potential Pancreatic 
secretion 

96 21 5 9 1 30 
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Potential 
(hormones) 

Estrogen 
signaling 
pathway 

100 23 4 7 1 32 

Potential 
(hormones) 

Thyroid 
hormone 
signaling 
pathway 

119 26 3 10 1 37 

Potential 
(others) 

Lysosome 122 13 7 11 4 33 

Potential 
(others) 

Phagosome 155 31 4 16 2 48 

Table 4 Landscape of significant pathways (p-value<0.05) determined across datasets  

 

Rank Gene Symbol RegulomeDB score No. evidences 
for Alzheimer’s 
disease 

Pathways involved  

1 IL1B  1b 1073 Apoptosis, NOD-like 
receptor signaling 

2 NSF 1d 8 Synaptic vesicle cycle 

3 HLA-F 1f 0 Endocytosis 

4 NOTCH4 1f 3 Thyroid hormone 
signaling 

5 VCL 1f 10 Shigellosis 

6 PSAP 1f 3 Lysosome 

7 STX2 1f 2 Synaptic vesicle cycle 

8 GGA2 1f 4 Lysosome 

9 STK11 1f 7 Adipocytokine signaling 
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10 CSF3R 1f 5 Pathways in cancer 

11 LMNA 1f 11 Arrhythmogenic right 
ventricular 
cardiomyopathy(ARVC), 
Dilated cardiomyopathy, 
Hypertrophic 
cardiomyopathy(HCM) 

12 CTNNA2 1f 3 Arrhythmogenic right 
ventricular 
cardiomyopathy(ARVC) 

13 HLA-C 1f 1 Endocytosis 

14 RAB11FIP4 1f 0 Endocytosis 

15 GRIN2A 2a 52 Calcium signaling 

16 RBX1 2a 0 Viral Myocarditis 

17 KCNJ5 2a 0 Estrogen signaling 

18 EPHA4 2b 18 Hub Genes 

19 CACNG4 2b 0 Arrhythmogenic right 
ventricular 
cardiomyopathy(ARVC), 
Dilated cardiomyopathy, 
Hypertrophic 
cardiomyopathy(HCM) 

20 PLA2G5 2b 7 Pancreatic secretion 

21 ATP2B4 2b 1 Calcium signaling, 
pancreatic secretion 

22 P2RY14 2b 0 Neuroactive ligand 
receptor interaction 

23 P2RY13 2b 0 Neuroactive ligand 
receptor interaction 
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24 PTGER4 2b 11 Neuroactive ligand 
receptor interaction 

25 ARAP3 2b 0 Endocytosis 

26 FGF1 2b 22 Pathways in cancer 

27 RPS6KA2 2b 0 Neurotrophin signaling 

28 RAPGEF1 2b 0 Neurotrophin signaling 

29 GABBR2 2b 1 Estrogen signaling 

30 PRF1 2b 1 Viral myocarditis 

31 ITGA8 2b 0 Arrhythmogenic right 
ventricular 
cardiomyopathy(ARVC), 
Dilated cardiomyopathy, 
Hypertrophic 
cardiomyopathy(HCM)  

32 AP2A2 2b 0 Endocytosis, Synaptic 
vesicle cycle 

33 ITPR2 2b 2 Calcium signaling, 
Estrogen signaling, 
pancreatic secretion 

34 MED13L 2b 0 Thyroid hormone 
signaling 

35 COL4A1 2b 0 Pathways in cancer 

36 KCNJ6 2b 3 Estrogen signaling 

37 ATP2A3 2b 0 Calcium signaling, 
Pancreatic secretion 

38 ASAP2 3a 1 Endocytosis 
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39 FYN 3a 70 Viral myocarditis 

40 NTRK2 3a 124 Neurotrophin signaling 

41 PAK1 3a 7 Epithelial cell signaling 
in Helicobacter pylori 
infection 

42 COL4A2 3a 0 Small cell lung cancer, 
Pathways in cancer 

43 BMP4 3a 5 Thyroid hormone 
signaling 

44 GABRB3 3a 0 Neuroactive ligand 
receptor interaction 

45 CEBPB 3a 12 Tuberculosis 

46 EPHA1 5 31 Hub Genes 

47 DPYSL2 5 47 Hub Genes 

 Table 5 List of genes prioritized using genetic variant analysis 

 

List of Abbreviations  

AD Alzheimer’s Disease  

GRNs Gene Regulatory Networks  

Aβ Amyloid Beta  

DE Differentially Expressed 

LD Linkage Disequilibrium  
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Supplementary material 

GeneSeedList S1.xls—Enriched candidate genes in each iteration  

This is a .xls file. It contains the list of enriched candidate genes that were added in each 
iteration to the seed gene list. The genes are represented as HGNC symbols.  

 

NumberOfNodesAndEdges S2.xls — Network statistics for each dataset in each iteration  

This is a .xls file. It provides detailed number of nodes and edges present in each dataset 
for each iteration.  

 

Outlier S3.xlsx — Outlier arrays list  

This is a .xlsx file. Each tab in the file provides the details of outlier arrays in each dataset 
that were discarded from our work due to low quality. In addition, the phenotype of the 
array is also provided.  

 

Pathway Statistics S4.xls — Summary statistics of the enriched pathways 

This is a .xls file. Each tab provides the detailed summary statistics for the individual 
dataset (including consensus) such as p-value, adjusted p-value, FDR, etc. of the enriched 
pathways that are obtained from ConsensusPathDB. 

 

Mechanistic Details S5.doc — Detailed mechanistic information of the prioritized 
candidates 

This is a .doc file. It provides detailed mechanistic information for each of the newly 
prioritized candidates. 

 

Supplementary Figure S1.jpg—Connected subnetwork formed by the hub genes in each 
dataset  

 

Supplementary Table S1.xls—comprehensive literature analysis of prioritized 
candidates This is a .xls file. It contains the list of diseases that the prioritized candidate 
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genes are involved in. The information was retrieved by querying the SCAIView 
knowledge discovery tool. 
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6.2.1 	Supplementary	Figure	

 

6.3 Summary	

The presented study emphasises on the potential of literature knowledge and GRNs as a 

powerful framework for large-scale integrative meta-analysis to corroborate common AD 

mechanistic patterns. GRNs were inferred by leveraging the power of an ensemble-based 

method, BC3Net. To expand the knowledge space around previously unattended players, 

an optimised version of BC3Net was developed, BC3Net10. For generating AD specific 

GRNs, 500 most frequently discussed AD genes from the literature were injected into 

BC3Net10. Using this as the ‘seed’, first set of GRNs were generated independently for 

each dataset. Further, to overcome the incomplete nature of prior knowledge and identify 

new candidates from the grey-zone of knowledge, the seed was expanded with the genes 

from significant pathways that were common to these datasets. To obtain a stable and 

complete GRN, the enrichment and injection of seed was iteratively carried out until 

saturation. Although there were significant pathways common across datasets, the genes 

involved were not the same. Thus, to derive a stronger consensus and uplift the most 
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promising pathway the GRNs from different datasets were merged as one consensus GRN. 

The identified genes in these uplifted pathways, genetic variant analysis was applied. This 

resulted in 47 potential gene candidates, among which five well-known AD candidates 

were present. The value of this work comes from the identification of nine lesser known 

candidates that are mainly involved in pathways contributing to neurotransmission.  

Although many sophisticated approaches and methods to generate GRNs using prior 

knowledge have been published in recent years, none have applied prior knowledge to self-

instruct GRNs for identification of subtle signals that bear the potential to modulate the 

clinical path of the disease. To our knowledge, this is the first study to apply such an 

approach to retain inferred interactions that were lost due to shift in the significance 

considering the change in seed. Thus, our method is well-suited to provide a novel 

foundation for the generation of new hypotheses. 
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Chapter	7 Conclusion	and	Outlook	
Integrative approaches are evolving into a promising way for translating big data into 

evidence-based decision support. Influencing healthcare and drug discovery research, they 

widen the knowledge space by contributing a specialised set of insights unique to individual 

resources. These approaches play a vital role in determining the constellation of interrelated 

yet diverse AD factors from disparate public data. However, each data resource and its 

associated computational approaches bring with it a set of unique challenges. 

In this dissertation, I highlighted some of the challenges faced during the integration of 

biomedical data and approaches to address them. Mainly, I focused on solving the issues 

that revolve around two V’s of big data that have an implication on data integration in NDD 

research: Variety and Veracity. The core of this work lies in collating highly curated, and 

context-specific heterogeneous public data in an integrative semantic framework for 

modelling diseases. To collate the disjoint data and to extract unbiased knowledge, new 

methods were developed and improvements to existing methods were achieved. 

Particularly, significant contribution to knowledge discovery, data mining, and network 

inference have been made. Using such a semantic framework, this dissertation reports 

deciphering previously unknown findings and set forth novel hypotheses that can accelerate 

innovation in AD research, deviating from the common Aβ- and tau-centric approaches.   

7.1 Knowledge	discovery	and	data	mining	contribution	

In this dissertation, we developed novel approaches and methods to address the 

fundamental issues in integrative disease modelling for repurposing public data through 

several representative studies. In the first study, called NeuroRDF, we developed a 

semantic-based integrative approach using RDF framework to integrate well-curated and 

indication-specific data from databases, literature, and gene expression studies. This 

approach illustrated the potential of high-quality integrated data to exploit implicit 

associations and prioritise previously unattended AD candidates around well-known 

mechanisms. The remainder of the dissertation was dedicated to developing strategies and 

approaches to harvest, curate, extract, and analyse public data that were integrated into the 

NeuroRDF framework.  
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Although no consensus has yet been reached about the role of miRNAs in AD, several 

recent studies have suggested their value in early diagnosis. Hence, advancements in this 

direction are essential. In the second study, we developed text mining methods to 

automatically extract regulatory relationships of miRNAs with diseases and genes from the 

biomedical literature. Among the evaluated relation extraction approaches, tri-occurrence 

achieved state-of-the-art performance and outperformed existing approaches with 

comparable precision. This work provides the basis for building regulatory networks for 

identification of dysregulated miRNAs. 

High-throughput data have a huge impact on drug discovery and their metadata annotations 

serve as the backbone for standardised retrieval, querying and consistent analysis. 

However, high variability of metadata information stored in public repositories hinders 

integrative meta-analysis. In the third study, we developed a database, named 

NeuroTransDB, primarily aimed to fill the gaps in the meta-analysis by joining bits of 

missing and scattered metadata information for public transcriptomic studies. This is the 

first highly curated metadata database that caters to the needs of NDD research by 

differentiating metadata fields for human and animal models. Additionally, we have 

systematically described the curation guidelines for building such a domain-specific 

database. To unlock the hidden potential of these harvested disparate data, a novel strategy 

that corroborates common mechanistic patterns across biologically related transcriptomic 

data is presented in the fourth study. This is the first study to generate knowledge-instructed 

gene regulatory networks for identifying lesser known candidates embedded in stable and 

robust functional patterns across heterogeneous AD datasets.  

7.2 NDD	research	domain	contribution	

Comprehensive characterisation of the pathological events requires a systems level 

understanding by incorporating existing and new data. Semantic web technologies have 

proven to be particularly useful in providing a formalised framework for heterogeneous 

data integration and analysis. AlzPharm is a good example of a community effort for 

sharing AD data to advance hypothesis-driven therapeutic innovation. In general, a series 

of BioHackathons have aimed to increase interoperability between biological data (both 

structured and unstructured) and bioinformatics tools through semantic web. However, to 

pursue this ambitious aim in dementia and derive novel hypothesis, one needs to first 

address barriers associated with the data itself.  
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Public data in the field of dementia research are very heterogeneous with varying quality 

due to inconsistent diagnosis criteria and lack of adoption to standards; contributing to 

inconsistent reproducibility and reusability. Many commercial tools like MetaCore™, 

Ingenuity Pathway Studio, and NextBio have tried to address these issue by enriching with 

manual curation efforts, but rather fail to add domain context, extract missing values and 

verify incorrect information. In addition, they are not freely available for public use. In this 

dissertation, Chapter 3, NeuroRDF tries to address these issues and demonstrate that well-

curated, precise, and formalised data have a huge impact on the deriving novel hypothesis 

from integrated public data. Even with limited yet well-curated data resources, we were 

able to prioritise MIF as a potential candidate to elucidate AD aetiology. Recently, a study 

conducted by Kassaar et al. [256] on human AD brain samples, has confirmed MIF 

hypothesis. These authors provide new evidence that implicates glucose modified and 

oxidised MIF as a potential link between dementia and diabetes. In addition, their results 

confirm an increase in the concentration of modified and oxidised MIF from early to late 

AD stages. 

To start any research, the scientific literature is the primary source of knowledge; where 

scientists look for relevant and previous findings. It provides a comprehensive view across 

different disciplines and domains. Text mining technologies are a crucial part to extract 

knowledge from the vast growing literature, which otherwise is not achievable through 

manual reading. A recent monograph by Kostoff et al. [257], reported the usage of 

advanced text mining/information retrieval methodology to identify 600 actionable 

foundational causes of AD. Mining information from text is not an isolated problem, rather 

be considered as the evidence to be integrated with the experimental data; increasing the 

confidence of informed-decision making. Conventional preconceptions of cellular and 

molecular regulation, especially in neurology, — depended on genes and proteins — have 

changed with substantial progress in understanding of complex transcriptional landscape 

and non-coding RNA biology [258], especially miRNAs. This dissertation reports one of 

the early efforts for mining miRNA relations from text. The work presented in Chapter 4 

is one of the first ones that contributed to text mining methods and manually curated corpus 

to the miRNA research community [259]. Using this work as a benchmark, several other 

text mining approaches have been built such as miRTex [251], MiNCor [259], and IBRel 

[260]. Among the miRNAs that were reported in NeuroRDF, recently, miR-132 has been 

confirmed to be associated with NFTs accumulation in subjects from two longitudinal 
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cohorts of ageing [261]. A most recent study, by Díez-Planelles et al. [262], linking the 

Huntington’s disease diagnosis with dysregulated expression of circulating miRNAs in 15 

patients, serve as a promising approach for early non-invasive diagnosis and prognosis in 

neurodegenerative diseases; paving way to precision medicine. 

Although open science and global data sharing have gained momentum with recent 

initiatives like ADNI, JPND, and GAAIN. These future research projects/collaborations 

could leverage on existing experimental data to identify critical knowledge gaps in 

dementia. However, existing data resources are far from reusable as they are highly 

dependent on the quality and completeness of metadata.  A recent call by IMI 

“FAIRification of IMI and EFPIA data – IMI2 –  2017-12-02”41 recognizes this hurdle. In 

our third study, we have tried to highlight the need for FAIRification of the largest and 

most widely used public genomics databases, GEO and ArrayExpress, to cater to NDD 

research needs. This work clearly highlights that increasing interoperability of the metadata 

between resources is not sufficient to drive innovation. Moreover, complete and in-depth 

annotations that represent the heterogeneity and diversity in a specific domain like NDD 

are to be addressed first. Most of the existing research articles have tried to address this on 

a case-by-case basis [83,263]. Moreover, animal models have not shown high predictive 

validity in translating to AD clinical trials [264]. Onos et al. [265] have discussed the 

importance of detailed information on mouse models can avoid over interpretation of the 

derived results and help design more predictive mouse models the recapitulate clinical 

pathology for future experiments. Our work, reported in Chapter 5, is the only study which 

is dedicated to addressing these needs in the required breadth and depth for NDD, including 

detailed metadata for animal models, in a more structured way.  

Representing biology as networks allow scientists to understand the cross-functioning of 

the constituent elements. Gene regulatory networks (GRNs) aim to identify organisational 

similarities between molecular and cellular players using expression data. GRNs offer 

insights into causal relationships, biomarkers, perturbation, predict expression changes, etc. 

to advance mechanistic understanding and prioritisation of potential candidates. Zhang et 

al. [201] used GRNs to identify influential modules to further prioritise TYROBP as a key 

                                                

41 https://www.up2europe.eu/calls/fairification-of-imi-and-efpia-data-imi2-2017-12-02_1941.html  



  NDD projects contribution 

 169 

regulator in LOAD patients, which was confirmed by in vitro experiments. However, most 

of the retrospective approaches undermine the lesser-known evidence that approximate the 

biological truth and clearly tend to converge to our current knowledge of NDD. In addition, 

none of these studies have addressed the context-specificity and completeness of the 

generated GRNs. Chapter 6 reports a novel approach that emphasises on using literature 

knowledge as the seed to iteratively determine the completeness of generated GRN, 

identification of robust mechanistic patterns across studies, and prioritisation of lesser-

known candidates. This work has prioritised 5 well-known and 9 lesser-known AD 

candidates using public gene expression studies. The lesser-known candidates are observed 

to involved in three key pathways of neurotransmission in the generated GRNs: calcium 

signalling, endocytosis and synaptic vesicle cycle. A recent review by the Alzheimer’s 

Association Calcium Hypothesis Workgroup [266] has placed Ca2+ in the centre of NDD; 

increasing the value and confidence the hypothesis derived from GRNs. 

7.3 NDD	projects	contribution	

In principle, the methods and approaches presented in this dissertation can be applied to 

any disease domain with little or no further adaptations. Moreover, the work presented here 

has made novel contributions to two projects:  

1. D10 “In Silico Discovery for putative Biomarkers” – German Federal Ministry 

for Education and Research (BMBF) within BioPharma initiative ‘Neuroallianz’ (grant 

number: 1616060B) 

2. AETIONOMY “Development of Mechanism-based Taxonomy for 

Neurodegenerative Diseases”– EU/EFPIA Innovative Medicines Initiative Joint 

Undertaking grant agreement n◦115568 

In the D10 project, we applied the NeuroRDF framework to Parkinson’s and Epilepsy 

diseases. We formulated complex queries on the integrated data that relates to molecule’s 

biological role in the disease at the systems level. These queries were combined in a 

rationally informed weighting scheme as a set of features to rank putative biomarker 

candidates. The resulting prioritised novel candidates that provide novel mechanistic 

insights are currently being validated by our pharma partner, UCB Pharma. Depicted below 

is the overall workflow of the D10 project, which was previously published in a review: 
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Figure 7.1: The D10 project workflow.  

Here we present a top-down approach where highly-curated and context-specific data are integrated into the 

RDF framework. The candidates are scored based on the feature values determined for complex biological 

queries (features). Finally, the scored candidates are embedded in a mechanistic context for interpretation. 

Reproduced from Hofmann-Apitius et al. [267] under the Creative Commons Attribution License 

The data harvested in the NeuroTransDB database is being utilised for mechanism-based 

patient subgroup identification for Alzheimer’s and Parkinson’s diseases in the 

AETIONOMY project. The data is currently migrated to the tranSMART framework to 

enable selection of relevant datasets for analysis. In addition, the prioritised candidates 

from the fourth study have been integrated into the web server for mechanism enrichment, 

NeuroMMSig42. 

 

                                                

42 http://neurommsig.scai.fraunhofer.de/  
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7.4 Outlook	

The work presented here shows that semantically integrating precise and context-specific 

data, derived from data mining and knowledge-discovery methods, support in identification 

of new molecular players. Certainly, the approach can be extended to other data types such 

as next generation sequencing, imaging, proteomics, so on. However, ‘how to eliminate the 

influence of bias’ in these data sources is still an open question worth exploring. To keep 

up with fast-evolving data, there is a need for more (semi-)automated approaches to make 

the submitted data more interoperable and identifiable, so as to reduce human efforts and 

cost. Recent crowdsourcing work such as CREEDS [268], and OMiCC [269] have proven 

to be efficient ways for annotating metadata and extracting gene signatures from GEO 

studies. Classifier can be trained on this high confidence and curated data to serve as an 

useful tool to automatically label and extract associations. However, the developed corpora 

are context specific. To extend to another domain similar human efforts are required. 

Active learning algorithms have shown to perform better, starting with only a few labelled 

examples, and dynamically improving its performance with user feedback. They have been 

applied to label experiments, text classification, entity recognition, interactions, and so on 

[270–272]. Similar active learning approaches can be developed for network 

reconstruction, which dynamically chooses the algorithm that optimizes to identify 

previously unknown candidates. One way forward to promote reusability and integration 

of public data at a global scale is to ensure that the data and resources developed by 

individual groups or in projects obtain long-term funding to maintain it. 
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