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Abstract

In this work we investigate the Weakly Interacting Massive Particle (WIMP) dark matter
searches in colliders. We focus on the mono-jet searches and derive the upper bounds on
the WIMP production cross-sections at the LHC. Using the derived bounds we further
constrain the models describing WIMP dark matter. We start by using Effective Field
Theory (EFT) for our analysis. In our context, EFT for WIMP dark matter is an extension
of the Standard Model by a dimension–6 operator which has a coefficient 1/Λ2, where Λ
is the regulating scale upto which the effective theory analysis is safely applicable. We do
the analysis for both the 8 TeV and 13 TeV searches at the ATLAS and CMS experiments
of LHC. We also combine the 8 TeV data of ATLAS and CMS collaborations and observe
that this approach improves the individual bounds only very little.
The EFT is able to accurately describe the contributions from the O(Λ−2) to the

tree-level matrix element. However, we show that the tree level matrix element receives
significant contributions of order Λ−4 for the values of Λ near the current bound. When
these higher order contributions of Λ are considered they strengthen the current upper
bounds on the WIMP cross-section significantly. In case of a simplified model, such
contributions further correspond to the processes where two mediators are exchanged.
EFT interpretations face difficulties when the higher order operators, like dimension–8
operators, are not taken into consideration. The Λ−4 contributions to the matrix element
from a double mediator exchange are similar to the O(Λ−4) contributions coming from the
dimension–8 operators. Based on our observations, we challenge the internal consistency
of the EFT description.
We further translate the bounds obtained from the effective theory to the simplified

models. We study the mono-jet signals for the s−channel mediator in the simplified
model where the mediator’s width can be accurately calculated. We then show that if the
mediator’s width is small then the simplified models can be accurately derived from the
effective field theory only when the mediator has a mass greater than 5 TeV. This requires
that the upper bounds on the cross-sections to be 16 times stronger than the current
bounds at LHC. This is very unlikely for the considered parameters and hence, such a
model cannot be described accurately by EFT. This application is even more redundant
if the bounds at 13 TeV are to be considered. In the end we show that the inconsistency
of the EFT description further makes it difficult to apply its model independent results
to a well-defined model, in any sensible way.
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CHAPTER 1

Introduction

Our Universe has always been an element of wonder and surprises. The scientifically
driven understanding of the Universe and its creation hold the key to the development
and growth of mankind. Though it seems impossible to completely understand if our
universe is all chaos or a magnificent crafted design, all the means have been exploited to
understand our origin. The Big Bang Theory [1] appeals as a sensible explanation of our
currently expanding Universe. The particles created during the Big Bang have undergone
several modifications and form the large-scale structures of Universe as observed today.
For a long time the Universe was known to consist of only the visible or baryonic

matter. It was in early 1930’s when Jeans [2] and Oort [3] studied the random motion of
the stars in the Milky Way disk. Their observations indicated towards the presence of
‘extra’ gravitational force responsible for such peculiar motions. Since then, numerous
observations supported the presence of invisible ‘Dark Matter’ in the Universe and held
it responsible for these gravitational anomalies. Despite its existence being observed
for decades now, we know very little about the dark sector component of our Universe.
Numerous observations have ruled out the massive baryonic objects to satisfy the observed
abundance of dark matter in the universe, thus forcing it to be a more fundamental issue.
Cosmologists aim to solve the dark matter mystery by reforming the gravitation theories
to explain the missing masses in the large-scale structures. However, particle nature of
the dark matter appears a more attractive solution.
If dark matter components are fundamental particles, they need to fit in a theory that

is in accord with the Standard Model (SM) [4]. Dark matter cannot be a SM particle
or a composite, else we would have been able to find some signature with our current
experimental reach. As the nature of dark matter cannot be fully explained by the
known fundamental particles, it is certain that particle dark matter needs a Beyond
Standard Model (BSM) theory, and even new particles to explain its relic abundance.
Several particles have been proposed, like axions and Weakly Interacting Massive Particles
(WIMPs), coming from SM extensions. WIMPs have masses of the order of 1GeV to
few TeV and can couple to the SM particles through very weak interactions. In fact,
with their masses of about electro-weak scale, they are the most promising candidates
for dark matter as they closely satisfy the measured relic density of dark matter i.e.
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Chapter 1 Introduction

ΩDMh
2 = 0.1186± 0.0020 [5]. WIMPs could very likely be a fundamental particle and

can be produced in high energy collisions. Being stable and long-lived in the collider time
scales, electrically neutral, and also lacking any strong interaction, WIMPs escape any
possible detection. The only way to observe a WIMP pair escaping the detection is to
tag them with an associated high transverse momentum (pT ) object, like a mono-jet.

Several models based on Supersymmetry [6, 7] (e.g. Minimal Supersymmetric Standard
Model(MSSM) [8]) have been proposed which naturally contain dark matter candidates. So
far no signal has been observed in any dark matter experiment which could be explained by
such theories. As there has been no sign of new fundamental particles in the experiments,
it has become difficult to validate any BSM theory. In light of this uncertainty for the
right dark matter model, it is important to have a theoretical framework which can justify
the dark matter in the experiments efficiently.

Effective Field Theory (EFT) [9] comes in as a great tool to probe into the nature of
dark matter. It allows us to study the possible interactions without complicating the inner
physics at the interaction vertex. In EFT, the interaction between standard model and
the dark matter sector is carried by a mediating particle. The mass (M) of the mediating
particle is taken to be extremely large, such that it is much greater than the momentum
(Q) exchanged between the interacting particles, i.e., M � Q. With this approximation
the mediator can be integrated out, leaving a four-point interaction vertex where one can
easily focus on the outgoing dark matter particles with a model-independent approach.
For heavy mediators, the mediating width becomes enough large that the particle-like
behaviour of the mediator can be ignored. This simplifies the analysis since EFT has
fewer free parameters than complete models; moreover, several models may lead to the
same EFT, and can thus be treated simultaneously. Based on the mediator and WIMP
properties, there are several dimensional operators for a contact interaction. In this work,
we focus mainly on axial-vector and pseudo-scalar operators.

Also, ambient Dark Matter WIMPs are non-relativistic, with a mean velocity, v ∼ 10−3c.
Hence, the maximal momentum exchanged in direct detection experiments is of order
100MeV (for the scattering of a relatively heavy WIMP on a heavy target nucleus, like
Xenon). Since WIMPs carry neither electric nor color charge, their interaction with
quarks must be mediated by a massive particle. In most cases, the mass of this mediator
is usually much larger than 100MeV. Hence, dark matter direct detection searches can be
analysed with an EFT where the mediators have been integrated out.

Mono-jet signals have also been analysed with EFT, both by theorists [10, 11], and by
the Large Hadron Collider (LHC) collaborations [12, 13]. Clearly, this can be expected to
accurately reproduce the results obtained in a renormalizable theory only if the momentum
flow through the mediator is much smaller than the mass of this mediator. The most
sensitive search region for the 8TeV data requires missing transverse momentum of about
500GeV. One may then conclude that the EFT description should work if the mediator
mass is (well) above 500GeV. In fact, this estimate is not that far off for t−channel
mediators [14]. However, in this work we will see that the exchange of narrow s−channel
mediators can be accurately modelled by an EFT only for mediator masses above 5TeV.
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The experimental bounds on the cut-off scale ‘Λ’1, upto which the EFT formulation is valid,
are around 1TeV. These bounds on the Λ can be saturated only if the mediator’s couplings
to quarks and/or WIMPs are considerably above 1, i.e. for strongly interacting theories.
Moreover, we find that even in this case some contributions to the matrix element for
WIMP production, that are of order Λ−4, are sizeable. This means that an accurate EFT
treatment would need to also include dimension−8 operators, thereby introducing several
new parameters and thus spoiling the main advantage of EFTs. Thus, simply ignoring all
these Λ−4 terms (which so far has been a standard practice in the experimental analyses)
means that the EFT applied to mono-jet searches does not accurately describe any
renormalizable theory with a s−channel mediator, if the scale Λ is near the experimental
lower bound.
The chapters in this thesis are structured as follows. We begin with a brief discussion of

dark matter properties, evidences and detection techniques in Chapter 2. In Chapter 3, the
theoretical framework of EFT is discussed in detail and the operators used for the analysis
are derived. We discuss our methodology and analyses in Chapter 4, with the focus on
the collider mono-jet searches for WIMPs. We discuss our analysis for the

√
s = 8TeV

and 13TeV and validate our results with current experimental bounds on the cut-off
scale. We combine the experimental data from both ATLAS and CMS experiments for an
improvement on their individual bounds. In Chapter 5 we discuss our key results. We show
that there is an inconsistency in the EFT analysis as several contributions from tree-level
sub-processes are not included. We observe that this discrepancy in the effective approach
for dark matter searches makes it invalid for any precise estimations. We demonstrate
that a double-mediator exchange complicates the established EFT interpretations of dark
matter searches. In Chapter 6, we do a comparative study for our observations of EFT
by applying them to our simplified model. We also determine the mediator mass for a
realistic width in a simplified model derived from our EFT model. With our observations
we explain that it is meaningless to consider a simplified model derived from such an
effective theory. Finally, in Chapter 7, we conclude with a summary of our key highlights.

1 Throughout this work, we depict the cut-off scale by Λ in a universal context, otherwise we add a
subscript for the corresponding interaction.
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CHAPTER 2

Dark Matter

The cosmological observations done by various experiments, like WMAP [15] and PLANCK
[5], have well established that dark matter is stable and long-lived. From the structure
formations observed by these experiments, it is required that dark matter must be non-
relativistic (or cold) [16], as it survived the developments of our Universe. Based on the
experimental observations of dark matter, we do know that:

• it has no electromagnetic interaction and is not electrically charged.

• it has no color charge and hence does not show any strong interaction.

• it may have very weak interactions, which are difficult to observe at current experi-
ments.

• most of the dark matter evidence proves it to be massive due to its observed
gravitational effects.

2.1 Evidences
Dark matter is a crucial component of our Universe. The latest cosmological data by
PLANCK refines the dark energy contribution to the total energy density upto 68.3%,
and dark matter contribution upto 26.8% [17]. Only the remaining 3.8% of the total
energy density is contributed by the baryonic matter.
Dark Matter plays a significant role in the formation of galactic structures and clusters

[18]. The discrepancies observed in the predicted galactic rotation curves, which obey
Newtonian dynamics, corresponds to dark matter present in them. Based on the Kepler’s
law, the radial velocity of a galaxy should be v(r) =

√
GM(r)/r, where, G = gravitational

constant and r is the distance from the galactic center. The galactic massM(r), consisting
of all the visible objects and gases, is governed by the mass distribution profile of the
galaxy (ρ(r)), such that M(r) ≡ 4π

∫
ρ(r)r2dr. This, however, does not hold for the

NGC6503 galaxy as observed by Vera Rubin and collaborators in 1970’s. Later, these
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Chapter 2 Dark Matter

observations were also made for several other galaxies, including Milky Way [19, 20]. The
discrepancies in these curves indicate the presence of an invisible mass in the respective
galaxies.
Fritz Zwicky in 1933 observed the velocity dispersion of the galaxies in Coma cluster.

However, he found the Doppler shifts for the system were higher by 1000-2000 km/sec,
indicating higher velocities than predicted using the Virial theorem [21]. This could
have been possible only if the mass of the Coma cluster was 400 times larger than the
observed luminous mass. Gravitational lensing of the Coma cluster indeed confirms such
observations. Similar discoveries have been made for other galaxies with lower mass-to-
light ratios. Gravitational lensing in Abell2218 [22] and the Bullet cluster collisions [23]
stressed on the fact that the dark matter present in these clusters governs their dynamics
with its strong and weak gravitational effects.
Cosmic Microwave Background (CMB) observations have revealed more valuable insights

on dark matter being responsible for the large-scale structures that we observed today. The
temperature fluctuation of CMB through its propagation occurring due to compression
and expansion of the universe due to mass and radiation pressure, can be carefully
translated into its power spectrum. As the peaks of the spectrum can give the most
precise details on the matter and energy compositions of the Universe, it establishes that
the dark energy and dark matter define the major contributions [5]. The baryonic acoustic
oscillations (BAO), which can be observed in the CMB power spectrum further indicate
on their interactions with possible dark matter along their propagation [24, 25].
Attempts to discard any dark matter being responsible for such observations have been

made by modifying the gravitational theories but rather unsuccessfully. For example,
Modified Newtonian Dynamics (MOND) [26] does reproduces the rotational curves of the
galaxies, but fails to explain the observed matter density and the large-scale structure
formation in the absence of dark matter.

2.2 Candidates
Particle nature of dark matter is so far the most promising and realistic. The baryonic
dark matter has been ruled out, being insufficient to substitute the observed relic density.
Non-baryonic dark matter is a more compelling possibility as dark matter has escaped
detection up to now. The fact that dark matter can also be a fundamental particle has
ignited theoretical reforms. It is certain that dark matter is a particle beyond the SM
and needs new theories which are either an extension of the SM [27], or naturally contain
SM within them (e.g. SUSY).
Sterile neutrinos as dark matter have been excluded recently [28]. Even though SM

neutrinos seem to fit as dark matter candidates, they are ultra-relativistic to form the
large-scale structures and hence, cannot account for the observed abundance [29]. QCD
axions arising as the Pecci-Quinn solution to the strong-CP problem are one of the
promising candidates for light dark matter [30]. Axions are the only SM candidates which
are comfortably accommodated as dark matter. However, with their theoretical mass
range of only a few eVs, they cannot suffice for dark matter relic density. Other complex
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2.3 Searches

particles, like Q-balls [31] and Wimpzillas [32], are too heavy and face stability issues and
theoretical challenges.
WIMPs are by far the most promising dark matter due to their natural properties.

They arise naturally from beyond standard model theories as exotic (non-standard)
and fundamental particles, like SUSY candidates [33] (for e.g., neutralinos, sneutrinos,
gravitinos and axinos), and Kaluza-Klein states coming from higher dimensional string
theories [34]. Being fundamental particles, WIMPs are assumed to be the relics from the
freeze-out era. They are mainly proposed to be non-thermal and fundamental such that
they do not decay into SM particles.
The relic density in terms of Hubble parameter is given as,

Ωχh
2 ≈ 3× 10−27cm3s−1

〈σv〉
(2.1)

where, χ stands for the WIMP, and Hubble parameter h = H0/100 kms−1Mpc−1. 〈σv〉 is
the thermally averaged WIMP annihilation cross-section. The latest Planck results give
the dark matter abundance of :

Ωχh
2 = 0.112± 0.009 (2.2)

This gives the self annihilation cross-section for WIMPs as:

〈σv〉 ≈ 3× 10−26cm3s−1 (2.3)

Thus, WIMPs have masses in the range of 10GeV to 1TeV which is within the range of
weak interactions. In fact, particles like neutralinos have masses of order of few GeVs to
satisfy the dark matter abundance and stand out as interesting WIMP candidates. This
advantage of WIMPs having mass in this range, and their ability to naturally satisfy the
dark matter relic density, is the so called ’WIMP miracle!’.

2.3 Searches
Concentrating mainly on the non-baryonic dark matter, the experimental searches look
for new and exotic particles [35]. Dark matter searches are broadly summarized into three
categories: direct searches, indirect searches and collider searches, Fig.(2.1).
Direct detection of WIMPs is one of the most promising dark matter searches. Given

their high density in our galactic halo, a good number of WIMPs certainly pass through
the Earth and collide with the baryonic matter. The direct detection experiments aim to
detect these collisions of the WIMPs with the nuclei of a stable element by measuring the
recoil energy of the nuclei. The approximate local density of WIMPs around the sun is
0.39GeV/cm3, and their mean velocity in the halo is about 220 km/s. From this, one
can calculate the average rate of interaction for a WIMP-nucleon scattering as:

R ≈
∑
i

Ninχ〈σiχ〉 (2.4)
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Chapter 2 Dark Matter
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Figure 2.1: The three categories of dark matter searches related to each other with crossing
symmetry. Here, DM stands for Dark Matter particles, and SM for Standard Model particles.

where, Ni is the number of nuclear species (or elements) present in the detector with i
corresponding to different nuclei species, nχ is the local WIMP density, and 〈σiχ〉 is the
cross-section for WIMP scattering off ith species of nuclei in the detector.
The scattering cross-section can be either elastic, where phonons are recorded to generate

the recoil energy spectrum of the nuclei, or in-elastic, where the nuclei are left in an
excited state after the collision and are detected by a photon emitted in the event. CDMS,
CRESST, XENON 100 are some example of experiments which use similar techniques of
studying the WIMP-nuclear recoils [36]. Another interesting way to observe WIMPs is to
study the annual solar modulation. Due to the location of the hemisphere with respect to
the sun, the experiments receive different inflow of the WIMPs at different times of the
year, as recorded by DAMA [37].
WIMPs could be scalars, vectors, Dirac or Majorana spinors. Based on the interaction

that WIMP has with nuclei, their scattering can be spin-dependent and spin-independent.
Spin-dependent scattering occurs for axial-vector, pseudo-scalar, and tensor-like interac-
tions, and is dependent on the residual spin factor of the nuclei, i.e J(J+1). The scalar
and vector interactions result in the spin-independent scatterings, and hence are more
dominated in the direct detection experiments. For studying spin-independent interaction,
stable nuclei with neutral spins, like Ge and Xe, are considered such that they have
significantly higher masses. For spin-dependent interactions nuclei with residual spins
are important, like 19F and 23Na. Direct detection can give best sensitivity for WIMP
masses nearly equal to the nucleus mass to gain resonance in the recoil energy for an easily
distinguishable signal. The direct detection limits the upper bounds on the cross-sections
being as low as of order 10−45 − 10−46 cm2 for WIMP masses in the range of 10GeV to
1TeV [38].
Indirect detection, as the term indicates, focuses on detecting particles or residues

(referred to as ‘Smoking gun’ signals) arising from dark matter annihilations at ultra-high
energies. Such active regions with very high energies (like the center of our galaxy) where
dark matter can annihilate, have extremely high average temperature for WIMPs to be

8



2.3 Searches

‘hot’ enough (relativistic) and to have significant collision rates. The residual final states
after WIMPs annihilating into SM particles are generally high energy γ rays or positrons,
which are being looked by experiments like FermiLAT [39]. When captured inside the
sun, WIMPs can annihilate into a pair of neutrinos. Hence, these localized and increased
fluxes would be a good WIMP signal, as being looked upon by IceCube [40].
High energy particle colliders for long have been actively searching for new and exotic

particles. This year, LHC reached the landmark of having a center of mass energy of
13TeV, with an upcoming upgrade of 14TeV and a promised increase in the luminosity
by a factor of 10 [41]. The idea behind the collider searches is to actually produce dark
matter in high-energy collisions and observe it in the detectors like ATLAS [13] and CMS
[12]. As this work focuses on the current WIMP searches at the LHC, we discuss the
analysis techniques and our results for mono-jet searches later in much detail.
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CHAPTER 3

Effective Field Theory

In order to verify a WIMP detection, it is important to have a self-sufficient theoretical
model capable of validating the WIMP signals in the experiments. Some issues which
need to be targeted while building a dark matter theory are:

• The theory needs to be an extended version of the standard model. This means that
at least one of the particles in the extension must have a portal to interact with the
standard model particles if it is to satisfy the pre-freeze out equilibrium of WIMPs
and SM particles.

• It must be renormalizable and, without any ultra-violet (UV) and self-diverging
mass terms.

• The theory must be valid at the Planck scale and should not violate the hierarchy,
i.e. the particles must have masses in the range to avoid any irregularities when
going beyond the SM scale.

• Lastly, the theory should contain natural and fundamentally stable WIMPs which
can satisfy the dark matter relic density and can explain all the dark matter evidence
to a good extent.

Creating such a self-sufficient and validating theory is difficult as it requires the
knowledge of a large parameter space for accurate interpretations. For example, SUSY
naturally contains neutralinos (like bino and wino), which perfectly qualify to be WIMPs
as they are weakly interacting and their masses can be in the range of a few GeV. In
an attempt to reduce the parameter dependence on the searches minimal SUSY models,
like pMSSM, has been introduced. This indeed reduces the number of independent
parameters significantly but one risks losing the relevant details which might lead to
misinterpretations.
To avoid such complications, one often looks into simplified models [42] with only the

minimal particles, like a WIMP pair and a mediator that connects the WIMPs to the SM
particles, thus reducing all the unnecessary effort of determining hundreds of parameters

11



Chapter 3 Effective Field Theory

q̄ χ̄

q χ q χ

q̄ χ̄

q χ

q̄ χ̄

A P

Figure 3.1: An interaction vertex is shown in the middle. The diagram conveys how a WIMP-SM
interaction via an axial-vector (A) and a pseudo-scalar (P ) mediator in a full theory can be
understood as a four point interaction in EFT.

as in SUSY. Even though simplified models appear practically efficient, it is difficult for
them to justify themselves as a complete theory [43].
A relatively simple way to focus on dark matter searches is to follow the effective

approach where one has the freedom to focus on interactions requiring minimal and only
the necessary parameters. The idea behind an effective interaction is the sole purpose of
making the analysis easier for the observer to understand.

3.1 Effective theory for WIMPs
In Effective field theory (EFT) prescription one treats the considered process as a low
energy theory being a limit of a fundamentally higher energy theory [44–46]. A huge
advantage of EFT is its flexibility to span over multiple energy scales. It helps us in
studying a process as a limiting effect of an underlying full theory at some higher energy
such that the phase space is restricted and the high energy degrees of freedom are not
accessible. In terms of EFT, SM can be considered as a low energy theory where the
higher mass scales observed at the Planck scale have been integrated out, and thus, do
not affect the SM processes. Fig.(3.1) shows an example of how the processes in a full
theory will correspond to an EFT vertex.
The energy scale upto which an EFT is valid is called the cut-off scale, Λ. To formulate a

general effective Lagrangian one only needs the relevant degrees of freedom and symmetries
of the system. A quantum field theory analysis can be performed using this general
Lagrangian only if the momenta Q of all the particles is much greater than Λ. After
renormalization of the mass terms, the coefficients of an effective theory operator can be
related to the physical observables, making them independent of Λ.
In order to simplify a complex interaction in a complete UV theory with effective

interaction, we derive the effective theory operators. We integrate out the mediator from
the interaction such that we only need minimal information about the mediating particle
and we can focus more on the dark matter particles and their interactions with SM particles.
There are several dimensional operators for such contact interactions, for example, scalar,
vector, axial-vector, pseudo-scalar, tensor and several other complicated operators [47–50].
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3.2 Derivation of EFT operators from a full theory

Though the operators in themselves do not hold a physical meaning, their coefficients
(including Λ) can be inferred being proportional to the couplings of the particles. The
physical parameters are thus dependent on Λ as it governs the nature of underlying theory.
This dependence, however, is further constrained by the renormalization group invariance
and perturbativity.
EFT is a bottom-to-top approach for dark matter physics, i.e., we start with a full

theory Lagrangian, use effective analysis for studying dark matter interactions, and then
use the results to provide more information on the dark matter interactions in a full
theory. At colliders, an EFT analysis gives an upper bound on Λ, whereas the lower
bounds are given by direct detection experiments [51]. This helps in focusing the WIMP
searches in the regions satisfying the boundary conditions. Though an interpretation from
effective analysis might not give a complete picture as all the other relevant parameters
for a complete theory are not taken into account, but it indeed will help to narrow down
our searches by ruling out the redundant dark matter models, and by putting limits on
the parameter values.

3.2 Derivation of EFT operators from a full theory
An effective field theory (EFT) Lagrangian describing the interactions of WIMPs (χ)
with SM fermions (f) can be written as [10] :

LEFT =
∑
Γ

1
Λ2

Γ
χ̄Γχf̄Γf . (3.1)

Here, Γ ∈ {1, iγ5, γµ, γµγ5, σµν} for scalar, pseudo-scalar, vector, axial-vector, and tensor
interactions, respectively.
To derive this EFT Lagrangian we start by taking a UV complete theory which is

a simple extension of SM. We add only a fermionic WIMP pair and a mediator which
regulates the interaction of the dark sector to the standard model. A general Lagrangian
for WIMPs interacting with the SM particles can be given as:

L = LSM + LWIMPs + Lmediator + Linteraction (3.2)

Throughout this text, we denote our WIMP dark matter with χ and consider them to
be Dirac fermions to incorporate their spin-dependent interactions. Majorana fermionic
WIMPs will also give similar results as Dirac fermions pertaining to their spins. The
scalar WIMPs cannot interact with the considered operators in this work, and hence, are
out of the context. For a simplification, we consider that our WIMPs interact only with
all of the quarks (q) with an equal coupling strength, and neglect their interactions with
other SM fermions like leptons. Moreover, there are stringent constraints on WIMP-lepton
couplings coming from di-lepton resonance searches [52]. The motivation to make this
choice is that we are focusing mainly on the collider searches for WIMPs, specifically
at the proton-proton collider (LHC), where the colliding beams majorly constitute of
quarks. Also, we concentrate on mono-jet searches which are relevant only for the quark
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interactions with WIMPs, as they require an initial state jet production.
For the EFT analysis, we consider our mediator mass to be 10TeV. This choice of

the mass ensures an off-shell production of our mediator for our both 8TeV and 13TeV
analysis. With this we also safely avoid any resonance production of the mediator at the
current LHC energies. The mass of WIMP varies in the range of 1GeV to 1TeV.
One of the goals of our analysis is to compare predictions derived from the EFT

(eq.(3.1)) with those derived from a ‘simplified model’, where χ interacts with quarks via
the exchange of one mediator. We focus on s−channel mediators for two reasons. First,
t−channel mediators would need to carry color, whereas s−channel mediators do not.
The latter can for e.g. be an additional gauge or Higgs bosons [53], which have been
widely discussed in the literature for reasons not related to Dark Matter; such models,
therefore, seem somewhat better motivated than models with t−channel mediators [54].
Secondly, in models with t−channel mediators, a Fierz transformation is required to bring
the effective Lagrangian into the form of eq.(3.1) [55], which has also been used by the
experimental groups. Hence, a simplified model with a t−channel mediator will generally
produce several terms in the effective Lagrangian simultaneously, thereby complicating
the analysis.
Among the s−channel mediators, models with a scalar (CP-even) or vector mediator will

lead to spin-independent contributions to the WIMP-nucleon scattering matrix elements.
Moreover, there is no renormalizable theory with mediators of spin-2, which would lead to
tensor interactions. Hence, we focus on pseudo scalar (CP-odd) and axial vector mediators
as:

• For the collider studies, the bounds obtained for EFT are nearly same for the vector
and axial-vector operators, and similarly, for scalar and pseudo-scalar operators, as
at very high energies the effects coming from spins of the particles are negligible.

• Also, spin-dependency of these operators makes them interesting for dark mater
direct searches, thus allowing us to cover a wide application of our results.

3.2.1 Pseudo-scalar operator
We begin with the case of a pseudo-scalar mediator denoted by P throughout this work.
The general Lagrangian for a pseudo-scalar interaction is given as:

LP = LSM + 1
2�P

2− 1
2M

2
PP

2 + iχ̄/∂µχ−mχχ̄χ− igχPPχ̄γ5χ−
∑
q

igqP
yq√

2
P q̄γ5q (3.3)

Here, LSM is the SM Lagrangian, � is the d’Alembert operator (= ∂µ∂ν), MP is the mass
of the mediator P , mχ is the mass of χ, and gχP is the coupling of χ and P . gqP is the
constant describing the mass-dependent couplings of the mediator P with quarks (q) such
that:

gqP = g
yq√

2
(3.4)
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3.2 Derivation of EFT operators from a full theory

where, yq is the SM Yukawa coupling of the quarks such that yq/
√

2 = mq/v. g is a real
constant. The choice of the quark couplings proportional to their masses is to preserve
chiral symmetry of the SM fermion masses [10, 13]. This definition of gqP also comes in
handy for coupling ratio-based analysis which we discuss in later chapters.
To derive the EFT operator we break down this Lagrangian. For a many body problem

in quantum field theory, the S-matrix gives all the information of initial and final states
in a process. This S-matrix forms the effective action when integrated over time. The
effective action S, is given as:

S =
∫
dnxL (3.5)

where, n is the number of space-time dimensions of the process and L is the Lagrangian
describing all the interactions of φ. For the following derivation we use the basic axiom of
four dimension, i.e. n = 4.
The correlational function of a particle ‘φ’, is then given by its path integral over the

time limit from 0 to ∞ as:
eiS =

∫
[dφn] eiE(φ1φ2...φt) (3.6)

Here, φt describes the particle φ’s states at different time intervals from 1 to t and E is
its corresponding energy.
For a single field (φ) in the presence of an external source (J), the generating functional

(Z) of the correlation function is given by [56]:

Z(J) = e−iE(J) =
∫
Dφe

∫
d4x(L+J) (3.7)

Here, D = ∏
i
dφi.

For an effective vertex with two incoming quarks, two outgoing WIMPs, and one
pseudo-scalar mediator getting exchanged, we have in total five external sources. In
our case, these are four fermionic fields (f) and one pseudo-scalar field (p). Thus, our
generating functional of eq.(3.7) becomes:

Z(J) = Z(f1, f2, f3, f4, p) (3.8)

=
∫
DqDq̄DχDχ̄DP exp

[∫
d4x (L+ f1q + f2q̄ + f3χ+ f4χ̄+ pP )

]
(3.9)

Here, f1, f2, f3, f4 and p are the external source terms for the four fermions and one
pseudo-scalar. This generating functional can now be used to calculate the path integrals.
Now, the general two-point correlation function for φ from state x to y is given as:

〈Ω|Tφ(x)φ(y)|Ω〉 = Z[J ]
Z[0] = lim

T→∞(1−iε)

∫
Dφφ(x)φ(y)ei

∫ T

−T
d4xL

∫
Dφei

∫ T

−T
d4xL

(3.10)

where, |Ω〉 denotes the ground state of the interaction, and T is time-ordering symbol.
Also, Z[J ] = Z[0] when all the external fields are zero, i.e. J = 0.
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Therefore,

〈Ω|Tφ(x)φ(y)|Ω〉 = 1
Z0

(
−i δ

δJ(x)

(
−i δ

δJ(y)

)
Z[J ]

) ∣∣∣
J=0

(3.11)

Here, the functional derivative is

δ

δJ(x)

∫
d4yJ(y)φ(y) = φ(x) (3.12)

Also,
δ

δJ(x)J(y) = δ4(x− y) (3.13)

Thus, we have
〈Ω|Tφ(x)φ(y)|Ω〉 = Dφ(x− y) (3.14)

Here, Dφ(x− y) is Green’s function describing the propagator for a field from point x to
y. For our pseudo-scalar mediator (P ), the Green’s function is denoted as DP (x− y).
We now discuss our calculations for pseudo-scalar and fermionic functional parts

separately. Let us denote DqDq̄DχDχ̄ together by DF , and all the fermionic parts of the
Lagrangian by F . Now, we first calculate the mediator dependent part of the Lagrangian.
The integral for eiS has a square term for the pseudo-scalar field P coming from the
Lagrangian in eq.(3.3). We can generate this term by using following transformation as:

P (x)→ P (x)− i
∫
d4yDP (x− y)F (y) (3.15)

Using this we can thus write

LP+interaction = −1
2
[
P (x)− i

∫
d4yF (y)DP (y − x)

][
�+MP

2
]

[
P (x)− i

∫
d4zF (z)DP (z − x)

]
− i

2

∫
d4yF (x)DP (x− y)F (y)

(3.16)

Coming to the fermionic part of the functional, we use the following transformation:

F (x)→ F (x) +
∫
d4yDF (x− y)F (y) (3.17)

Similarly, the fermionic part will be:

LF =
[ ¯F (x) +

∫
d4y ¯F (y)SF (y − x)

][
i/∂ −mF

]
[
F (x) +

∫
d4zF (z)SF (z − x)

]
−
∫
d4yF(x)SF (x− y)F(y)

(3.18)

The Green’s function has the following properties for pseudo-scalar field:

(�+M2
P )DP (x− y) = −iδ4(x− y) (3.19)
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3.2 Derivation of EFT operators from a full theory

DP (y − x)(�+M2
P ) = −iδ4(x− y) (3.20)

and, for fermionic field:

(i/∂ −mF )SF (x− y) = iδ4(x− y) (3.21)

SF (y − x)(i/∂ −mF ) = iδ4(y − x) (3.22)

Using the Gaussian path integral for the field independent terms of pseudo-scalar part,
we get: ∫

DP exp
(
− 1

2

∫
d4xP (x)[�+MP

2]P (x)
)

= det[�+M2
P ]−1/2 (3.23)

Similarly for the fermionic part we get:∫
DFDF̄ exp

( ∫
d4xF̄ (x)[i/∂ −mF ]F (x)

)
= det[i/∂ −mF ] (3.24)

The above constant mass terms and the interaction independent fermionic terms will
cancel out when substituted in eq.(3.10). Thus, we can write our generating functional
consisting of only the interaction part as:

Z[J ] = Z[F, P ] = ei
∫
d4xL = exp

∫
d4x

[
− i

2F (x)DP (x− y)F (y)
]

(3.25)

In the above steps, we have been successfully able to extract our mediator out from the
interaction. The action ei

∫
d4xL can also be defined in momentum space by using Fourier

transformation. Using this in the above equation we get:

F (x) =
∫ d4k

(2π)4 F̃ (k)e−ikx (3.26)

Also, the Green’s functional, in terms of the momentum exchanged between the particles
(Q), then becomes:

DP (x− y) =
∫ d4Q

(2π)4
1

Q2 −M2
P

e−iQx (3.27)

Integrating the exponential terms gives:∫
d4xeikx = (2π)4δ4(k) (3.28)

Thus, substituting the above transformed terms into the integral of the generating
functional, eq.(3.6), we get:

iS = i

2

∫ d4Q

(2π)4 F̃ (−Q) 1
Q2 −M2

P

F̃ (Q) (3.29)

Now, for the validity of our EFT implementation, and to ensure the production of the
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mediator as off-shell, we know that the minimal condition is

Q2 −M2
P ≈ −M2

P (3.30)

On applying this condition and by using Taylor’s expansion, we get:

1
Q2 −M2

P

= − 1
−M2

P

+ Q2

M4
P

+ higher order terms ≈ 1
M2

P

(3.31)

Thus, on transforming back from the momentum space to real physical space we get:

iS = 1
2

1
M2

P

∫
d4x(F (x))2 (3.32)

With this, our effective Lagrangian for the four point interaction can be interpreted as:

Left = 1
M2

P

F (x)2 (3.33)

Now, from the initial Lagrangian, we know that F consists of WIMPs (χ) and quarks
(q) in our EFT model. Thus, for the pseudo-scalar interaction, we can finally write our
effective operator as:

OPS ≡
gχPgqP
M2

P

(χ̄γ5χ)(q̄γ5q) (3.34)

The cut–off scale, ΛPS, which we consider equal for all quarks (with non–vanishing
coupling to P ), is now given by:

Λ3
PS = M2

Pmq

gqPgχP
= vM2

P

ggχP
(3.35)

where, v ' 246 GeV is the vacuum expectation value of the Higgs field breaking the
electroweak gauge symmetry. Note, that here we have assumed that the theory is weakly
coupled, i.e. that the total decay width of the mediator, ΓP , is significantly smaller than
its mass, Γ2

P �M2
P .

Thus, the dimension−6 effective operator for pseudo-scalar interaction is finally given
as:

O6
PS = mq

Λ3
PS

(q̄γ5q) (χ̄γ5χ) (3.36)

3.2.2 Axial-vector operator

In this section, we derive the effective operator for the axial-vector mediator (A) with
mass mA. Again, our WIMPs (χ) are the Dirac fermions with mass mχ, and the only SM
fermions that the mediator will interact with are the quarks (q). The general Lagrangian
in this case will be:
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3.2 Derivation of EFT operators from a full theory

LA = LSM −
1
4A

µνAµν + 1
2m

2
AA

µAµ + ı̇χ̄γµ∂µχ−mχχ̄χ+ gχAµχ̄γ
µγ5χ+

∑
q

gqAµq̄γ
µγ5q

(3.37)
Here, LSM stands for the SM Lagrangian. A is the axial-vector mediator with field

strength tensor Aµν = ∂µAν − ∂νAµ. gqA and gχA are the couplings of the mediator to q
and χ, respectively.
We follow the similar prescription for calculating the generating functional and the

correlation functional as described in the previous section. Also, here the fermionic part
of our functional is the same for χ is again a Dirac fermion.
The Green’s functional for the axial-vector mediator is given as:

DA
αβ(x− y)

[
(MA

2 + �)gβγ − ∂β∂γ
]

= iδ4(x− y)δγα (3.38)
[
(MA

2 + �)gαβ − ∂α∂β
]
DA

βγ(x− y) = iδ4(x− y)δαγ (3.39)

The above Green’s functional in the momentum space looks like:

DA
αβ(x− y) =

∫ d4Q

(2π)4
−i

Q2 −M2
A

(
δαβ − QαQβ

M2
A

)
eiQ(x−y) (3.40)

The dummy indices cancel out after performing the complete Fourier analysis, and
converting back to the real physical space. Thus, after implementing the limit on the
momentum (eq.(3.30)), the final effective Lagrangian can be obtained as:

Left = 1
M2

A

F µFµ (3.41)

where, following from the previous section, F stands for the fermionic part of the generating
functional. Thus, the effective operator for the axial-vector mediator is given by:

OAV ≡
gχgq
M2

P

(q̄γµγ5q)(χ̄γµγ5χ) (3.42)

Again, for a weakly coupled theory, the total decay width ΓA of the mediator should be
much smaller than its mass. The cut–off scale, ΛAV , of the effective theory is then

ΛAV = MA√
gχAgqA

(3.43)

If ΓA is not negligible, the numerator in eq.(3.43) is replaced by [M2
A (M2

A + Γ2
A)]1/4. Later

we will see that this can cause problems if MA is significantly larger than ΛAV .
Thus, the effective dimension–6 four-fermion operator corresponding to the Lagrangian

(eq.(3.37)) is given as:
O6
AV = 1

Λ2
AV

(q̄γµγ5q) (χ̄γµγ5χ) . (3.44)
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CHAPTER 4

Methodology

In Large Hadron Collider (LHC) protons are accelerated to 99% speed of light. At
these energies when the protons collide they break down into quarks, gluons and other
fundamental particles. If WIMPs are also fundamental particles, there is a good probability
for them to be created in such high-energy collisions. As WIMPs are significantly stable,
they are always produced in pairs to avoid their immediate decay in the colliders. As
WIMPs are sufficiently massive, one can detect a WIMP pair by observing a high-pT
object recoiling against it. As WIMPs are invisible to the detector material, this will
create and imbalance in the total energy for an event. This transverse missing energy,
Emiss
T , (or missing pT ), can then be manifested as the invisible WIMP pair. The high-pT

object could mainly be a photon, a boson (h, Z, W), or a gluon which further hadronizes
into a high-energy jet [10, 11]. As the colliding beams in LHC are protons, the probability
of WIMP production associated with a single high-energy jet (often called as a mono-jet)
is higher compared to the other objects. Thus, for WIMPs at colliders the largest cross
section and strongest bounds come from the mono-jet searches.
Thus, in order to detect the WIMP production in colliders, we look into the following

process:
q + q̄ → χ+ χ̄+ g (4.1)

Here, a quark pair (qq̄) annihilates into a WIMP pair (χχ̄). A gluon (g) with high-pT is
required to be emitted as initial state radiation, thus producing a mono-jet like event.
This ‘hard’ QCD jet gives a large amount of transverse momentum, hence approximately
large Emiss

T . A Feynman diagram leading to this signature in the framework of the EFT
is shown in Fig.(4.1). The cross-section (σ) for this process is given as:

σ ≈
g2
q(P,A)g

2
χ(P,A)

(M2
P,A −Q2)2 +M2

P,AΓ2
P,A

(4.2)

Here, the notations P,A correspond to the operators described in previous chapter, M is
again the mass of the respective mediator, Q is the momentum exchanged in the process,
and Γ is the width of the corresponding mediator.
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q

q̄

χ

χ̄

g

Figure 4.1: A Feynman diagram representation of a mono-jet event for the four–point EFT
interaction vertex corresponding to eq.(4.1).

4.1 Analysis
In this section, we discuss in detail the mono-jet bounds at the LHC. We compare
our results with both CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC
ApparatuS) detectors. Both the detectors use a right-handed coordinate system where
the collision point at the center of the detector is the origin, the z-axis is along the beam
pipe, the x-axis is from the interaction point towards the center of the LHC ring, and
the y-axis points upwards from the ground. The azimuthal angle, φ, is always measured
around the beam axis; the polar angle, θ, is measured with respect to the z-axis; and
pseudorapidity is defined as η = −ln[tan(θ/2)]. The transverse energy and momentum
are defined as E sinθ and p sinθ, respectively.
The CMS detector at LHC is a layered detector submerged in the high and localized

constant magnetic field of a superconducting solenoid [57]. The detector has multiple
layers; the first and innermost layer being the silicon pixel and strip tracker capable
of reconstructing the path of most high-energy particles (e−, µ, and hadrons) with
a momentum resolution of 2% for 1 < pT < 100GeV. The tungsten electromagnetic
calorimeter (ECAL), and the hadron calorimeter (HCAL) measure the energy of most
of the particles within a pseudorapidity, |η|= 5. The muons are efficiently reconstructed
with muon detection chambers, thus allowing a safe measure of their contribution to
Emiss
T . The Emiss

T recorded by the experiments includes SM neutrinos, however, their
count can accurately be measured by the information on all the other detectable particles
and precise background estimation.
The largest detector at LHC is the ATLAS detector [58]. Similar to CMS, it has the

innermost layer with silicon pixel detectors (PD), along with radiation trackers covering
up a pseudorapidity range of |η|< 2.5. The calorimeter layer consisting of ECAL and
HCAL together provide a coverage of |η|< 4.9. The muons are all reconstructed in the
muon tracker which covers |η|< 2.7.
We use our EFT model with axial-vector and pseudo-scalar mediators to validate our

analysis by comparing our bounds on the scale ΛAV and ΛPS with the bounds derived by
both the ATLAS and CMS collaborations. Since we wish to reproduce the EFT limit, we
keep our choice of the off-shell mediator mass of 10 TeV, and its width of 1 GeV, such
that eq.(3.43) is still applicable. For our analysis, we vary the WIMP mass as, mχ = 1,
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100, 200, 400, 700, 1000 GeV.
We begin with writing the model files in FeynRules-v2.0 [59]. All the necessary model

details for the particles and their couplings, along with the complete Lagrangian, are
given as an input to FeynRules-v2.0. As our model is based on EFT, the only required
parameters are the WIMP mass (mχ), the mediator mass (MP,A) and general cut-off
scale (Λ) which further determines the couplings. Based on our EFT model, we have
considered that the mediator couples only to quarks and WIMPs equally for the axial-
vector interaction. We define the Lagrangian as in eq.(3.37) and include the SM model
available in FeynRules-v2.0. We introduce that the interaction between the q and χ is
carried by the mediator A (or P ) coming from ‘New Physics’ (NP). We use the acronym
‘NP’ in our model file to limit the interaction order of new physics to NP = 1, i.e., we
allow at least one NP vertex or in other words, at least one mediator exchange in the
interaction.
The output from FeynRules, describing all the possible interactions in the Univer-

sal FeynRules Output (UFO) format [60], is then used as an input to MadGraph5-
aMC.at.NLO.v2.3.0 [61], a Monte-Carlo tool [62, 63] for matrix element calculations and
event generation. The mono-jet signal requires the existence of at least one hard jet. We
therefore allow events with at least one additional jet for increased efficiency. We use the
MSTW2008LO set of parton densities [64] as implemented in the LHAPDF package [65].
Using MadGraph, we generate the following process with 1-2 partons in the final state as:

> generate p p > χ χ̄ j @1 NP=2 QCD=2 QED=0

> add process p p > χ χ̄ j j @2 NP=2 QCD=2 QED=0

where, j @1 limits the number of jets allowed. The conditions NP=2, QCD=2 and QED=0
limit the coupling orders of NP, QCD and QED, respectively. QED=0 allows us to neglect
any electroweak jet contribution. For the generation of MadGraph events, we set number
of NP vertices, NNP = 2 (or NP=2 in the MadGraph notation) as this allows to limit
only a single exchange of the mediator in the process. Note that increasing the number of
jets affects the signal sensitivity, however, we limit the jet production to only two jets at
the matrix element level in order to have an increased efficiency for the signal after the
final cuts.
Similar to cross-sections of processes involving jets at hadron colliders, our cross-section

will diverge as the pT of the jets goes to zero. The experimental mono-jet searches use
strong cuts on the Emiss

T and on the pT of the hardest jet. Therefore, we apply parton-level
cuts at MadGraph level of minimum pT = 200GeV for the leading jet, and minimum
Emiss
T = 300GeV. This choice also allows our events to completely satisfy the trigger level

cuts in the experiments which are 105 GeV and 80 GeV for Emiss
T and leading jet pT ,

respectively. The random seed number is kept the same for all the events which helps in
minimizing any fluctuations in the final results occurring merely due to generator settings.
To avoid any further stringent constraints at the parton level we keep all the other cuts
equal as the defaults defined for the respective quantities in MadGraph. In MadGraph,
the definition of Emiss

T only includes neutrinos. As in our study for mono-jets we require
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only the WIMPs to account for Emiss
T , we redefine Emiss

T in MadGraph by including χ
and χ̄.
For parton showering, the generated events are passed to PYTHIAv6.4 [66], which is

integrated with MadGraph5-aMC.at.NLO.v2.3.0. Hard parton showering off the χχ̄ plus
one parton sample of MadGraph events, leads to the same final state as χχ̄ plus two
parton MadGraph events with relatively soft showering. In order to remedy this double
counting, we use the Michelangelo L. Mangano (MLM) matching prescription [67] for jets,
also implemented in MadGraph5-aMC.at.NLO.v2.3.0. The MLM matching prescription
allows to control the breakdown of matrix element for soft partons and showering for
hard partons. To regulate the overlapping of soft partons coming from matrix element
and the hard partons from showering, the MLM prescriptions introduces the parameter
xqcut. xqcut separates the region of phase space to be populated by showering from that
to be populated by the second hard parton, explicitly generated by MadGraph. We
checked that varying the value of xqcut up to a factor of two has little impact, both at
the parton-level cross-sections and also on the final cross section, after all the detector
level cuts are applied. Hence, we use a value of 100GeV for the xqcut variable. Since our
generator-level cuts are quite strong, this choice of xqcut ensures that the efficiency for
passing the final cuts is not very low. We found it sufficient to generate 50, 000 events
per point of the parameter space.
In order to implement the final selection cuts for various mono-jet signal regions as well

as a (simplified) simulation of detector effects we use CheckMATE-v2.0 [68, 69], based
on Delphes-v3.0.10 [70] with modified detector cards, as well as Fastjet-v3.0.6 [71] for
the jet reconstruction. We implemented CMS [12] and ATLAS [13] mono-jet analysis for√
s = 8TeV in CheckMATE-v2.0, following the prescription of [72].

4.1.1 Implementation of CMS 8 TeV analysis
The CMS 8 TeV mono-jet analysis has a luminosity of 19.6 fb−1 [12]. The reconstruction
of all the particles produced in an event and background estimation have been described
in detail by the experiments. The experimental analysis divides the signal regions into
seven parts with the lower bound on the Emiss

T , such that Emiss
T > 250, 300, 350, 400,

450, 500 and 550 GeV. We stick to this distribution for consistency. To include all the
systematic and statistical uncertainties for precise final results, CheckMATE allows the
statistical evaluation using the CL prescription [73]. For this we give the input data on
the statistical and systematic uncertainties in the CheckMATE analysis manager. As
CMS provides the data at 90% C.L., we derive these limits from the full CLs limits (95%
C.L.) obtained using CheckMATE. The selection criteria implemented in CheckMATE
using AnalysisManager are given below:

1. All jets are required to have a minimum pT > 20GeV. As required by FastJet anti-kt
algorithm [74], all jets are constructed within a cone radius, R = 0.5.

2. To guarantee a mono-jet like event, atleast one single jet with high pT is required to
accommodate for the Emiss

T . Thus, leading jet with highest pT is required to have
pT > 110GeV and |η|< 2.4.
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3. A second jet is accepted only if it has pT > 30 GeV and |η|< 4.5. Also, it should
have a clear azimuthal separation from the leading jet, i.e. ∆φ(j1j2) < 2.5 radians
(or 143 degrees). This makes sure that the mono-jet event is not mistaken for a
di–jet event.

4. To ensure that leading jet qualifying as mono-jet has pure BSM origin, any hard jet
coming from QCD-like event is vetoed. For this, events with more than two jets are
discarded when their pT > 30GeV and |η|< 4.5.

5. Lepton isolation criteria discards any lepton which does not contribute to jet
composition. The cone radius along the direction of the lepton is defined as√

∆η2 + ∆φ2 = 0.4. A lepton is considered isolated if within this defined cone,∑
pT hadrons+photons

pT µ,e−
< 0.2 (4.3)

• Any electron or muon with pT > 10GeV and |η|< 2.4 is considered isolated and
is discarded. In CheckMATE, |η| can be implemented using the FilterPhaseSpace
function. Also, CheckMATE predefines electrons as loose, medium and tight,
similar to ATLAS’ analyses. Here we apply the |η| condition to electronsMedium
as they fit better into the CMS isolation criteria which otherwise, does not
distinguishes between the electrons. For muons, we use the muonsCombined
function.

• Other leptonic contributions to jets are vetoed by excluding events with tau
leptons having pT > 20GeV and |η|< 2.3.

4.1.2 Implementation of ATLAS 8 TeV analysis
The ATLAS 8TeV mono-jet analysis [13] with luminosity of 20.3 fb−1, is very similar
to the CMS in the approach, although it has few definitions and signal choices different
than CMS. Again, for consistency of our results, we consider the similar signal regions
as defined by ATLAS. ATLAS divides the signal regions (SRs) into nine regions, SR1
to SR9, such that they have minimum Emiss

T of 150, 200, 250, 300, 350, 400, 500, 600
and 700 GeV. Again, all the systematic and statistical uncertainties are calculated by
CheckMATE using the data provided by the experiment. As CheckMATE calculates the
theoretical limits at 95% C.L. we can directly compare them with the ATLAS’ limits at
95% C.L. The major signal selection cuts implemented are given below:

1. All jets are required to have a minimum pT > 30GeV and should be within |η|< 4.5.
Also, based on FastJet anti-kt algorithm, all defined jets have a cone radius of
R = 0.4.

2. The leading jet with highest pT must have a pT > 120GeV and |η|< 2.0.
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Chapter 4 Methodology

3. Mono-jet event is ensured with the condition that the pT of the hardest jet is at
least 50% of the total Emiss

T , i.e.,

pT leading jet

Emiss
T

> 0.5. (4.4)

4. ATLAS does not apply a limit on number of jets in an event but ensures an azimuthal
separation between all the jets and their Emiss

T (or missing transverse momentum,
pmissT ), i.e., ∆φ (jet, pmissT ) > 1 radian (57 degrees).

5. The Emiss
T is also required to be evaluated within a |η|< 4.9.

6. Lepton isolation criteria:
• Muons with pT > 7GeV and |η|< 2.5 are isolated if the transverse momenta of

non-muon tracks, confined in a cone of radius ∆R = 0.2 around the muon, is
less than 1.8 GeV.

• Any electron with pT > 7GeV and |η|< 2.47 is considered isolated and is
discarded.

• A track is isolated if within δR = 0.4 there is no additional track with atleast a
pT > 3GeV. Any isolated tracks with pT > 10GeV and |η|< 2.5 is discarded in
order to remove any unidentified lepton.

The signal efficiency is heavily dependent on the accurate estimation of all the back-
ground contributions. The backgrounds for both the experiments are very similar. For
mono-jet signals, the backgrounds majorly come from electroweak processes, like Z(νν)+
jets and W (lν)+ jets, along with Z(ll)+ jets, QCD multi-jets and di-boson events. Pre-
cise estimation of neutrinos contributing to the missing energy is done by measuring
neutrino background using Z(νν)/W (lν)+ jets control samples. For all the contributions
Monte-Carlo simulations are performed with relatively relaxed selection cuts compared
to the cuts on the signal event. This data forms the ‘control regions’, which are further
used to normalize the actual data and uncertainties. CheckMATE offers to evaluate
the background contributions by offering the implementation for these control regions
provided by the experiments. However, we do not require any control regions or back-
ground simulations for our analysis since we focus only on the implementation of the
signals.

4.1.3 Implementation of ATLAS 13 TeV analysis
For the early (2015)

√
s = 13TeV data, CMS does not provide any analysis for mono-jet

bounds. Also, ATLAS does not use the EFT interpretation of their mono-jet bounds.
Hence, we instead consider the simplified model analysis of ATLAS [75]. We imple-
ment their signal regions into CheckMATE-v2.0 and test our effective model against
this search. ATLAS achieved a luminosity of 3.2 fb−1 for

√
s = 13TeV. For 13 TeV

search, ATLAS describes the signal regions as exclusive and inclusive. For our work,
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4.1 Analysis

we explore the inclusive signal regions as they are in order with the 8 TeV analysis
and appropriate for being translated into model-independent upper limits on the cross-
section. These inclusive signal regions are divided into seven parts, such that their
Emiss
T > 250, 300, 350, 400, 500, 600, 700GeV.
As the trigger for Emiss

T at this increased center of mass energy at ATLAS is 250GeV,
we keep our parton level cuts at the MadGraph level same as before, as the final signal
events with the at least one jet of pT > 200GeV and Emiss

T > 300GeV satisfy the above
trigger. The signal selection criteria are given below:

1. All jets are required to have a minimum pT > 20GeV, should be within |η|< 2.8
and are constructed within a cone of radius, R = 0.4.

2. The leading jet with highest pT must have a pT > 250GeV and |η|< 2.4.

3. Like ATLAS, we allow maximum four jets only if they have a pT > 30GeV and |η|<
2.8. They are required to have clear azimuthal separation such that ∆φ(jet, pmissT ) <
0.4.

4. Any electron with pT > 20GeV and |η|< 2.47, and a muon with pT > 10GeV and
|η|< 2.5, are considered isolated and are discarded.

The most sensitive signal regions used to set the final cuts, typically have Emiss
T > 400

or 500GeV. It is important to note that neither ATLAS nor CMS strictly speak of pure
mono-jet events. Vetoing events with a second reconstructed jet would reduce the signal
considerably, since many events with Emiss

T ∼ 500 GeV produce at least one additional
jet from showering.
Results for the 8TeV analyses are depicted in Fig.(4.2). We successfully reproduce the

experimental lower bound on the cut-off scale (ΛAV ) to better than 10%. From this figure,
the CMS limit looks more stringent than that of ATLAS. Note, however, that ATLAS
quotes a lower bound at 95% C.L., whereas CMS only requires 90% C.L..
At the increased center of mass energy,

√
s = 13TeV, the on-shell production of

the mediator is in principle possible. However, from our results, we found that this
contribution is negligible because of the very small parton densities at the required large
parton energies. The resulting bound is shown in Fig.(4.4). We see that the lower bound
on the cut-off scale strengthens by approximately 100 TeV for

√
s = 13TeV than those

for
√
s = 8TeV.

Formally, our set-up can also treat the pseudo-scalar case, by simultaneously choosing
a large mediator mass, a small mediator width, and very large values for the coefficient g
defined in eq.(3.4). We compare our bounds on the pseudo-scalar mediator to the ATLAS’
scalar mediator bounds at

√
s = 8TeV, Fig.(4.3). As the bounds for pseudo-scalar and

scalar mediator are same at the high energy colliders at least for the low WIMP masses,
are bounds are well within the 2-σ error for the low mχ.
Owing to the factor of mq in the coefficient of the pseudo-scalar four-fermion operator

(eq.(3.36)), the resulting bound on ΛPS is much weaker than in the axial-vector case.
For example, even for light WIMPs, ATLAS quotes a lower bound on ΛPS of ∼ 40GeV.
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Chapter 4 Methodology

Figure 4.2: Our limits on the strength of the axial-vector interaction derived using CheckMATE,
compared to the ATLAS limits on ΛAV at 95% C.L. and CMS limits on ΛAV at 90% C.L. for√

s = 8TeV.
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4.1 Analysis

Figure 4.3: Our limits on ΛPS derived using CheckMATE, compared to the ATLAS limits on
scalar interaction at 95% C.L. for

√
s = 8TeV.

Figure 4.4: Bounds on ΛAV for axial-vector interaction at 95% C.L. compared to the ATLAS
data taken in 2015 at

√
s = 13TeV.
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This is well below the values of even the basic acceptance cuts defining mono-jet events,
making the usefulness of an EFT description, in this case, a priori unlikely.

4.2 A Combined Analysis
In order to obtain stronger limits, we combine the data from both ATLAS and CMS
since they give comparable bounds on ΛAV . Both ATLAS and CMS use ‘confidence level’
method to set the limits [73, 76]. If the errors on the background of the two experiments
are totally correlated, i.e., if both the errors are only due to the luminosity error, then the
total error should be a fixed percentage of the total background. In this case, the relative
error will not change when combining the results from the two experiments. The total
errors, however, in both the experiments, also come from their systematic and statistical
uncertainties which are calculated independently and are experiment specific. Hence, as
the errors in the background estimate are not correlated between the experiments it is
straightforward to combine the results.
To explain how we estimate the combined limits we briefly describe an example of

combining ATLAS SR7 (Emiss
T > 500GeV) [13] with CMS SR7 (Emiss

T > 550GeV) [12].
ATLAS quotes an expected background of 1, 030± 60 events in this signal region, and
finds 1, 028 events. From this we compute an upper bound on the number of signal events
at 95% CL, N95,ATLAS = 134, to be compared with an upper bound of 146 events quoted
by ATLAS. CMS expects 509 ± 66 events in their SR7, and observes 519 events. Our
computed N95,CMS = 145, whereas CMS cites a value of 142. Combining these SRs we
have a total expected background of 1, 539 ± 89 events, whereas the actual number of
observed events is 1, 547. From this we compute a combined 95% CL upper bound on the
number of signal events N95,combined = 198, to be compared with the sum of the individual
N95 values of 279 events. The proper statistical combination thus reduces the upper
bound on the total number of signal events by about 30%.
In practice, we let CheckMATE select the two signal regions which are expected to have

the best sensitivity, based on the expected number of background events. We combine
only these two statistically independent SRs as they refer to different experiments. In this
way, we avoid ‘look elsewhere’ problems that could arise if we combined all nine ATLAS
signal regions with all seven CMS signal regions. The most sensitive signal region depends
on the value of mχ, which (for large mediator mass) basically fixes the kinematics of the
process.
We find that the combination strengthens the bound on ΛAV in the model with axial-

vector mediator only very slightly. For example, for light WIMPs, mχ = 1GeV, and again
only including contributions with NNP = 2, we have a combined 95% C.L. lower bound
of ΛAV > 970GeV, compared to individual 95% CL lower bounds of 950GeV for ATLAS
and 900GeV for CMS.
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CHAPTER 5

Inconsistency of EFT Description

In this chapter, we discuss the interpretation of the mono-jet limits derived using EFT
description in Chapter 4. We find that the results are internally inconsistent and discuss
this in detail.
Recall the process generation in MadGraph for our analysis, eq.(4.1). Here we artificially

restricted ourselves to only include the processes where a single mediator is exchanged by
using NNP = 2, in the language of MadGraph. For the description of such processes in
EFT, the mediator masses are required to be very large and should also have very large
couplings. These requirements might infer that the processes where two mediators are
exchanged, i.e., NNP = 4, might not be relevant enough to affect the results. We show,
however, that these physically probable process with two mediators getting exchanged
can considerably affect the current mono-jet bounds on WIMPs at the colliders.
For WIMPs in the final state, the second mediator can again couple to χ̄χ current. For a

mono-jet like event, we will still require (at least) one hard parton from QCD interactions.
A minimal example of NNP = 4 interaction can be visualized in Fig.(5.1). Now, when the
second mediator couples to a quark current, no QCD vertex is mandatory to produce a
mono-jet signal. This is because the quarks are radiated off the first mediator which then
goes to the second mediator, further decaying into a WIMP pair. These contributions will
always have two partons (quarks or anti-quarks) in the final state. This is still consistent
with our previous analyses, as we have seen that both ATLAS and CMS searches tolerate
the existence of a second jet in their ‘mono-jet’ searches within certain limits.
For axial-vector case, this NNP = 4 interaction will have a matrix element of order:

gχAg
3
qA (5.1)

In case the mediator is emitted off the WIMP line, the matrix element will be of order:

g2
χAg

2
qA (5.2)

Thus, in general, the contribution of the second mediator exchange (NNP = 4) in the
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q

q̄ q̄

q
q

χ

χ̄

Figure 5.1: EFT interaction with NNP = 4 having a double mediator exchange

total matrix element will look like
O ≈ (Λ−4) (5.3)

5.1 Axial-vector case
For axial-vector mediator, the product of the couplings in eq.(5.2) is fixed for all the
processes once we fix gχA and gqA, because we consider the couplings of A degenerate
over the quark family in our EFT description. All NNP = 4 contributions involve the
propagator of light fermion (q or χ), in addition to the two mediator propagators. These
contributions can therefore not be expressed as a single higher-dimensional operator. In
some of these contributions, the momentum flowing through both of the boson propagators
is space-like, in a sense that these are double t−channel mediators, rather than s−channel
mediators. However, there are also several classes of contributions where the momentum
flowing through both the mediator lines are time-like.
Using the techniques described in previous chapter, we generate the processes with

second mediator exchange as:

> generate p p > χ χ̄ j @1 NP=4 QCD=2 QED=0

> add process p p > χ χ̄ j j @2 NP=4 QCD=2 QED=0

Keeping the basic assumptions of our EFT same as described in Chapter 3, we now
compare the bounds on ΛAV , from NNP = 4 interactions with that of NNP = 2, Figs.(5.2).
For NNP = 4 contributions, we see that the upper bound on ΛAV increases by at least
40GeV for the

√
s = 8(13)TeV data, and 150GeV for the

√
s = 13TeV data. Now this

increase of 40GeV (about ∼ 5%) might not look very impressive. However, remember that
the leading contribution to the signal cross-section scales like Λ−4

AV . A 5% increase of the
bound on ΛAV , therefore, corresponds to a 20% increase of the total signal cross-section.
This further implies that at

√
s = 13TeV, the total cross-section increases by about 60%,

Fig.(5.2).
The effect of the NNP = 4 contributions becomes even more pronounced when we

look at specific initial and final states. From the above discussion, it is clear that
diagrams with double mediator exchange always have at least two partons in the final
state. These diagrams will only contribute to the di-jet part of the signal cross-section,
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5.1 Axial-vector case

Figure 5.2: Comparison of bounds on Λ at 95% C.L. derived from ATLAS (up), and at 90% C.L.
derived from CMS data (bottom), at

√
s = 8TeV. The blue curves are for NNP = 2, i.e. only

diagrams where a single mediator is exchanged are included, while the red curves for NNP = 4
also include diagrams where two mediators are exchanged. Also, we have set gχA = gqA.
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Figure 5.3: Comparison of bounds on Λ at 95% C.L. derived from ATLAS at 13TeV. Again,
here the blue curves are for NNP = 2, i.e. only diagrams where a single mediator is exchanged
are included, while the red curves also include diagrams where two mediators are exchanged
(NNP = 4). We have set gχA = gqA.

which contributes to about 25% of the total cross-section after matching, if only the
generator-level cuts are applied. Moreover, NNP = 4 contributions only exist if all external
partons are (anti)quarks, rather than gluons, as restricted by our choice of the interactions.
Thus, after the generator-level cuts, for NNP = 2, all quark processes contribute about
15% to the total ‘di-jet’ cross-section, which is about 4% of the total signal cross-section.
The much stronger final ATLAS cuts enhance the importance of some of these contri-

butions. In particular, contributions of the kind qq → χ̄χqq are the only ones with two
valence quarks in the initial state. These contributions suffer the smallest reduction of
the parton densities when the energy scale of the process is increased by increasing the
Emiss
T cut. For this particular class of initial and final states, the effect of the NNP = 4

contributions is very dramatic. For example, for ΛAV = 900GeV and mχ = 1GeV, the
NNP = 4 terms increase the cross-section for uu→ uuχ̄χ (where u stands for a u quark
or anti-quark) by a factor of 2.7 even if only the generator–level cuts are applied. The
impact of the NNP = 4 contributions is even larger after the final cuts since the Λ−4

AV

suppression of these matrix elements implies that they become relatively more important
when the energy scale of the process is increased. The relative importance of the NNP = 4
contributions obviously increases with decreasing ΛAV . Since the bound on Λ decreases
with increasing WIMP mass, the impact of the NNP = 4 contribution on the final bound
is, therefore, even stronger for heavier WIMPs.
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5.1 Axial-vector case

Figure 5.4: Comparison of ATLAS’ bounds on ΛAV at 95% C.L. for NNP = 4 for different
coupling ratios.

Table 5.1: Our ATLAS’ and CMS’ limits on ΛAV for different coupling ratios at
√

s = 8TeV
based on NNP = 4 processes.

Coupling ratios ΛAV,ATLAS (GeV) ΛAV,CMS (GeV)
gχA = gqA, NNP = 2 950 900
gχA = gqA, NNP = 4 980 950
gχA = 10gqA, NNP = 4 980 950
gχA = 0.1gqA, NNP = 4 1350 1250

The NNP = 4 contributions depend on the coupling ratios of the mediator to q and χ.
To demonstrate this, we consider different coupling ratios, i.e. gχA = gqA, gχA = 10gqA
and gχA = 0.1gqA and derive our limits by keeping the remaining parameters same as
used for our axial-vector EFT analysis at 8TeV. The results are depicted in Fig.(5.4). We
see that gqA > gχA receives to quite a large contributions from NNP = 4 processes. For
gqA < gχA these contributions are essentially negligible as there is a large suppression on
the mediator-quark couplings. Thus, the NNP = 4 limits in this case are roughly same
as that for gqA = gχA. Our strongest limits coming from gqA = 10gχA for NNP = 4 are
below 2TeV, hence, our results are always within the limits on four-quark interactions
coming from QCD. Thus, for an s−channel mediator the ‘mono-jet’ limit is relevant only
if gχA is significantly larger than gqA. Table(5.1) summarizes the limits on ΛAV based on
NNP = 4, and compares them with the standard limits coming from NNP = 2.
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The importance of these O(Λ−4) contributions to the matrix element of the signal
basically dooms the EFT description. However, in the spirit of an EFT, for consistency
one would have to add all contributions of order Λ−4. This includes, in particular,
contributions from operators of mass dimension up to 8 in the effective Lagrangian, of
which there are a great many. The usual treatment of ignoring all NNP = 4 contributions
amounts to the assumption that the coefficients of all of these dimension−8 terms are
negligible, which cannot be justified from the point of view of the EFT alone. Note
that this is true already for the

√
s = 8TeV data. We saw above that, not surprisingly,

the effect of the NNP = 4 terms is even larger for the 13TeV data. Thus, with some
important sub-processes contributing to the ‘mono-jet’ signal, including only the O(Λ−2)
contributions to the matrix elements underestimates the current EFT bounds, where
on-shell production of the mediator is negligible for the considered energies.

5.2 Pseudo-scalar case
The pseudo-scalar case is quite different from the axial-vector one. For example, since the
bounds in the usual treatment are much weaker one would expect much bigger effects
from using the NP vertex twice as the couplings are directly proportional to the quark
masses. However, even treating this vertex once is non-trivial if we include loop induced
processes, as one should if the ansatz for the couplings of the mediator to quarks also
applies to the top quark. Also, inserting this kind of loop interaction twice is far more
complicated.
It is easy to see that it does not make much sense to extend this model to the top

sector, at least not in regions of parameter space anywhere near the current ATLAS and
CMS mono-jet bounds. For example, ATLAS finds a lower bound on their scale Λ of
about 40GeV for light χ for the scalar case (scalar and pseudo-scalar are basically the
same for small mχ). Using the coupling of the mediator to quarks as in eq.(3.4), and ΛPS

in eq.(3.35), we can have,

gχPg = v
MP

2

Λ3
PS

(5.4)

As the couplings (and their products) are mass dependent, the NNP = 4 contributions
to the total matrix element for the signal will heavily depend on the coupling ratios
of the mediator to quarks and WIMPs. The ATLAS’ bound in this channel requires
Emiss
T > 500GeV. Hence, the EFT approach will only make sense if, very conservatively,

the pseudo-scalar mass is above 500GeV. On the other hand, for MP > 500GeV and
ΛPS = 40GeV, we get gχPg > 680. Recalling that v ' mt, this implies that for our
model to saturate the ATLAS bound for a mediator mass, where the EFT might not be
completely off, requires the product of the couplings of the mediator to the χ and top
quark to exceed 500. Hence, it will not be possible to build a perturbative theory in this
case.
In order for the cross-section not to be dominated by the on-shell production of the

mediator, one indeed needs mediator mass to be a few TeV. Recall that for fixed Λ the
pseudo-scalar coupling scales like M2

P , even if the couplings of the mediator and quarks
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will have to be non-perturbative near the present experimental bound. In order to make
this last point a little bit more quantitative, we further consider a variant of the model
in next chapter for different mediator widths and determine the conditions for which a
simplified theory may be derived from our effective theory.
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CHAPTER 6

A Simplified Model from EFT

We now compare our EFT results with a more realistic situation - a real ‘simplified model’
where the decay width of the mediator can be derived and calculated precisely [27, 77, 78].
We derive our simplified model from the parameters based on our EFT description. We
discuss our model separately for the axial-vector and pseudo-scalar interactions separately.
We first discuss the extent to which our simplified models can be accurately described
by an EFT as far as mono-jet production is concerned, taking the finite width of the
mediator into account. We further discuss other limits on the models, independent of the
mono-jet interpretations.

6.1 Model descriptions
Our simplified models consist of SM quarks(q), and the WIMP sector which has an
axial-vector mediator (A) of mass (MA) = 10TeV and spin 1, and a pair of WIMPs (χ)
which are Dirac fermions and have a mass (mχ) of 1GeV. The off-shell mediator connects
the SM quarks to the WIMPs by s−channel exchange. Similar to our EFT consideration
we take the couplings of the mediator degenerate to all quarks gqA and WIMPs gχA. These
couplings can be determined by fixing the energy scale of the theory (eq.(3.43)). Based
on the current verified bounds on the cut-off scale, we have ΛAV = 900GeV.
For our model with a pseudo-scalar mediator (P ), we again take a mass (MP ) of 10TeV

and spin 1. WIMPs, again, are Dirac fermions of mass (mχ) of 1GeV. We again consider
only the s−channel exchange. The couplings of the mediator to quarks are gqP and gχP ,
given by eq.(3.4), and can also be determined by eq.(3.35) after fixing ΛAV = 40GeV.
In a simplified model, the width of the mediator (Γ) is finite and can be given as1:

ΓA = MA

12π
[
g2
χA

(
1−

4m2
χ

M2
A

)3/2
+Ncg

2
qA

∑
q

(
1−

4m2
q

M2
A

)3/2]
(6.1)

1 see Appendix for details
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ΓP = MP

8π
[
g2
χP

(
1−

4m2
χ

M2
P

)1/2
+Ncg

2∑
q

m2
q

v2

(
1−

4m2
q

M2
P

)1/2]
(6.2)

Here, the subscripts denote the corresponding particles in the respective models described
above. Also, v = 246GeV, mq denotes the respective quark mass, Nc = 3 for colored
quarks, and 1 for WIMPs.

6.2 Finite Width Effects and Applicability of the EFT
So far we have simultaneously chosen large masses (10TeV) and small widths (1 GeV)
for our s−channel mediators. This allows to reproduce the EFT limit in our formalism;
note that FeynRules does not allow to directly input four–fermion operators into the
Lagrangian. We also show that the current LHC bound on the scale Λ is about a TeV for
the axial-vector mediator, and only about 40GeV for the pseudo-scalar mediator, even for
light WIMPs; for heavier WIMPs the bounds become even weaker. However, requiring
the mediator mass to be significantly larger than Λ also requires couplings which are
larger than 1. This, in turn, leads to large widths of the mediator. In other words, the
combination of a large mediator mass M2 � Λ2 with a small mediator width Γ2 �M2

cannot be realized in a physical model.
For this discussion, our χ has mass 1GeV. As noted in previous chapters, for heavier

χ the bound on Λ is weaker which makes the problem even more severe. This means
that the mediator can always decay into WIMPs as well as into quarks. If the decay into
WIMPs was not possible, one could have generated a small width of the mediator by
choosing its coupling to quarks to be very small. In order to keep Λ fixed, the coupling
strength to WIMPs would then have to be increased such that the product of the couplings
is constant. This quickly would require couplings to the WIMP exceeding

√
4π, again

indicating that at least one sector of the model is not perturbative.
Evidently the decay width of the mediator scales like the squared coupling times the

mass of the mediator. As long as the mediator is narrow, Γ2 � M22, increasing M for
fixed Λ implies that the couplings grow proportional to M , see eqs.(3.43) and (3.35). In
that case the mediator’s width will scale like M3. This means that the M2Γ2 term in the
squared propagator of the mediator, as obtained from eqs.(6.2) and (6.1), will scale like
M8 with increasing mass. When the mediator’s width becomes comparable to its mass
a perturbative treatment is no longer possible; moreover, eqs.(3.43) and (3.35), which
ignore the Γ2M2 term in the squared propagator, are no longer valid.
In order to illustrate this problem, consider the axial-vector case with MA = 10TeV,

ΛAV = 1TeV and gχA = gqA for all six quark flavours. Eq.(3.43) then gives gχA = gqA =√
10, which via eq.(6.1) leads to ΓA ' 50TeV = 5MA ! This is clearly beyond the domain

of perturbation theory, and also beyond the domain of applicability of eq.(3.43).
In our earlier analyses we chose MA = 10TeV just to be on the safe side; for such a

heavy mediator on–shell production of the mediator should clearly be negligible, and the
2 Here, M stands for the mass of the mediator in general. Remember that we add subscripts A and P
for specific mediators when required.
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EFT limit should be applicable to analyses of LHC data. We saw above that for fixed Λ
the mediator’s width grows like the third power of its mass. It is thus important to find
the minimal mass of the mediator for which the predictions of the simplified model can
be reproduced accurately by the EFT.
In order to determine this we again only consider contributions with NNP = 2. We

compute the mono-jet cross-section after cuts for two values of the width of the mediator,
Γ = 1GeV and Γ = M/2. In case of an axial-vector mediator, contributions with initial
b or t quarks are very small, due to their small parton densities in the proton. For
pseudo-scalar mediator, eq.(3.35) implies g = gχP ' 62 for Λ = 40GeV (near the current
bound) already for MP = 1TeV. Eq.(3.4) would thus imply a coupling gPt to the top
quark well beyond

√
4π. For only slightly heavier mediator, its coupling to b quarks

would become non-perturbative as well. We, therefore, set the couplings to b and t quarks
to zero in both scenarios.
We now compute the cross-section for χχ̄+ jet(s) ‘mono-jet’ events after cuts as a

function of the mediator mass, keeping Λ fixed. For Γ = M/2, we include the width
dependence of Γ, i.e. we replace M by (M4 +M2Γ2)1/4 in eqs.(3.43) and (3.35). We fix
ΛAV to 900 GeV and ΛPS to 40GeV, close to the current experimental limits. Since we
only include contributions where a single mediator is exchanged and fix the widths of the
mediators, the matrix element is always proportional to the product of couplings of the
mediator to quarks and to WIMPs. This is true by construction in the EFT limit but
holds here even for on–shell exchange of the mediator.
The results are shown in figs.(6.1). We see that if we fix the mediator’s width to 1GeV,

as we did in our previous analyses, it should have a mass of at least 6TeV for on–shell
production of the mediator to become negligible. Only for masses above this value does
the cross-section become independent of the mediator’s mass for fixed Λ, as predicted
by the EFT. This lower limit is basically the same for axial-vector and pseudo-scalar
mediator. These figures use the ATLAS cuts that offer the best-expected sensitivity in the
given model; this differs slightly, with the axial-vector model favouring a slightly stronger
cut on the ET .
However, taking such a small width exaggerates the problem. Since the width in this

calculation is kept fixed, independent of the mass and couplings of the mediator, the
cross-section for on–shell production of the mediator scales like 1/Γ after integrating over
the Breit–Wigner peak. An artificially small width, therefore, implies an artificially large
on–shell cross-section. On the other hand, figs.(6.1) also show that even for Γ = M/2, at
the border of the perturbatively treatable domain, the cross-section becomes approximately
independent of the mass only for M ≥ 3TeV .
For fixed product g2

A ≡ gχAgqA the total decay width of the axial-vector mediator is
minimized if g2

qA = g2
A/(2

√
3), giving

ΓA,min = MAg
2
A√

3π
= M3

A√
3πΛ2

AV

(6.3)

here we again assumed equal couplings gqA to all first and second generation quarks, and
have used eq.(3.43). Requiring ΓA < 0.5MA for a weakly–coupled theory, andMA > 3TeV
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Chapter 6 A Simplified Model from EFT

Figure 6.1: Mono-jet cross-section after cuts for two mediator widths. The upper frame is for
the axial-vector mediator with ΛAV = 900GeV and cuts taken from ATLAS SR7; the bottom
frame is for the pseudo-scalar mediator with ΛPS = 40GeV and cuts taken from ATLAS SR6.
The couplings have been varied along with the mediator masses, such that the scales Λ are kept
fixed.
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6.2 Finite Width Effects and Applicability of the EFT

Figure 6.2: Mono-jet cross-section after cuts from ATLAS SR7 in the model with axial-vector
mediator if the mediator’s width is calculated from eq.(6.1). Here the couplings are varied along
with MA such that ΛAV calculated using eq.(3.43) is kept fixed at 900GeV.

so that mono-jet production at the 8TeV LHC can be described adequately by the EFT,
thus implies ΛAV > 1.8TeV. This is only about a factor of 2 above the lower bound from
the 8TeV data. Recall, however, that the signal cross-section scales like Λ−4; improving
the bound by a factor of two would thus require a 16 times stronger upper bound on
the signal cross-section! We conclude that for parameter choices that give mono-jet
cross-sections near the upper bound, the model with axial-vector mediator cannot be
accurately described by an EFT, if the theory is weakly coupled, i.e. if perturbation
theory is applicable.
This problem can also be illustrated using Fig.(6.2). This shows the mono-jet cross-

section after the same cuts, and for the same value of ΛAV , calculated from eq.(3.43). The
main difference is that ΓA has now been computed from eq.(6.1), assuming gχA = gqA.
We see that now there is no region of mediator mass where the cross-section becomes
independent of the mass, as one would expect in the EFT picture. The reason is that,
as stated above, in this case the width grows like the third power of the mass. For the
given choice of couplings, ΓA > MA for MA > 1.5TeV. For larger values of MA, the
cross-section drops approximately like M−4

A . Of course, in this regime, the theory is no
longer weakly coupled, so the result is not reliable quantitatively. Note also that the
situation would have been different had Λ been an order of magnitude larger. In this
case, the cross-section would indeed become almost independent of MA for some range of
masses above 3TeV; it would also be very small, several orders of magnitude below the
experimental bound.
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Chapter 6 A Simplified Model from EFT

We saw in the previous chapters that already the early (2015) 13TeV data slightly
strengthened the bound on ΛAV . However, going to higher center–of–mass energy also
requires higher values of MA for on–shell production of the mediator to be negligible so
that the theory can be approximated by an EFT for LHC purposes. For MA > 5TeV,
ΓA < MA/2 is possible only if Λ > 3TeV. It seems extremely unlikely that the upper
bounds on the mono-jet cross-section at the LHC will ever become this strong.
The case of pseudo-scalar mediator is slightly different, although the conclusion will

be similar. For the assumed proportionality of the coupling to a given quark to the
mass of this quark, the total decay width of the mediator is dominated by decay into c
quarks and WIMPs. For fixed product g2

P ≡ gχPg the total decay width is minimized if
g2
χP =

√
3mcg

2
P/v, giving

ΓP,min =
√

3M3
Pmc

4πΛ3
PS

. (6.4)

Here we have again assumed that the WIMP is much lighter than the mediator, and used
eq.(3.35). We again need MP > 3TeV for the EFT to be applicable even if ΓP = MP/2,
see Fig.(6.1). Using a running charm quark mass mc(MP ) = 0.6GeV, we find that
MP > 3TeV and ΓP < MP/2 requires ΛPS > 110GeV. Recall that in this case the cross-
section scales like Λ−6

PS. Increasing the lower bound on ΛPS from about 40 to 110GeV
would thus require a reduction of the upper bound on the cross-section by a factor of
more than 400. As in case of the axial-vector mediator, the situation is not likely to
improve very much at the 13TeV LHC.
Although we did not treat them explicitly, the cases with vector and scalar s−channel

mediators are very similar to those with axial-vector and pseudo-scalar mediator, as far
as LHC physics is concerned (although the direct detection limits are much stronger for
these cases, as noted earlier). We are thus forced to conclude that there is no weakly
coupled simplified model with s−channel mediator to which the mono-jet bounds derived
in the EFT can be applied.

6.3 Implications of the EFT inconsistency
We briefly mention the effects of the NNP = 4 contributions to the EFT limits on Λ in
the context of our simplified models. For our models described in earlier sections, we
determine the limit at which the EFT analysis with double-mediator exchange breaks
down, fig.(6.3). For NNP = 4, the limits are comparatively stronger and the breakdown
of our perturbative theory occurs if mediator mass is > 6TeV. Since for our EFT study Λ
is proportional to the product of the mediator’s couplings to q and χ, in its simplified
counterpart, the width has terms ∝ gq

2 and ∝ gχ
23. Also, here we have taken the that

gq = gχ.
At
√
s = 13TeV (fig.(6.4)), the cross-sections are significantly larger than the 8TeV.

Here, the break-down limit easily reaches 9TeV for NNP = 2. From the results it is clear
3 Here we drop the subscripts A and P from the couplings in order to make general comments for both
the axial-vector and pseudo-scalar cases
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6.3 Implications of the EFT inconsistency

Figure 6.3: Comparison of mono-jet cross-sections for axial-vector and pseudo-scalar models
for calculated mediator widths at 8TeV, for NNP = 2 and NNP = 4 processes. Note, that
Γ = 1GeV here for both the axial-vector and pseudo-scalar mediators.
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Chapter 6 A Simplified Model from EFT

Figure 6.4: Mono-jet cross-section after cuts from ATLAS SR7 in the model with axial-vector
mediator if the mediator’s width is calculated from eq.(6.1). Here the couplings are varied along
with MA such that ΛAV calculated using eq.(3.43) is kept fixed at 900GeV.

that as NNP = 4 cross-sections behave similar to those of NNP = 2, including them still
does not benefit us towards a meaningful EFT description of a simplified model.
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CHAPTER 7

Conclusion

In this chapter we summarize the key highlights of this thesis. We briefly discuss the dark
matter candidates and current searches. We focussed on the WIMP dark matter searches
at the LHC. We started by doing an effective field theory analysis to understand the WIMP
interactions with the Standard Model particles. We derived the dimension–6 effective
operators from a full-theory Lagrangian. For reasons specified earlier, we considered
axial-vector and pseudo-scalar operators. Throughout our analysis we had an off-shell
mediator of mass 10 TeV to ensure the validity of our effective approach.
We looked into the mono-jet searches as they are the most interesting and probable

probes for WIMPs at the proton-proton colliders. Using the EFT framework for our
mono-jet analysis, we derived the upper bounds on the WIMP cross-sections. The most
sensitive signal regions for deriving the bounds usually have a missing energy, Emiss

T >
400 GeV. We reproduced the current limits on the EFT cut-off scale Λ given by ATLAS
and CMS to better than 10%, both at

√
s = 8 and 13 TeV. We then obtained combined

limits from both the LHC experiments to reduce any discrepancy in the bounds due to
systematical uncertainities. However, from our results we found that combining the 8
TeV data from the ATLAS and CMS only improves the results by less than 1%.
Proceeding with the bounds obtained using EFT, we derived a simplified model for

WIMPs. We showed that there is no weakly coupled simplified model with s−channel
axial-vector mediator that can be accurately described by an EFT, as far as the LHC
mono-jet analyses are concerned. Our condition for weak coupling was the requirement
that the width of the mediator (Γ) is less than half of its mass. In this case, for the
on–shell production of the mediator to be negligible, the mediator must have masses much
larger than the cut-off scale Λ of the EFT. For this condition to satisfy, the couplings are
required to be extremely large which further leads to large decay widths. We demonstrate
that complications arise when we formulate a simplified model based on our EFT analyses.
For the pseudo-scalar mediator this problem is more severe as a weakly coupled theory
is much difficult to obtain. As our couplings to the pseudo-scalar mediator are mass
dependent, we observed that the couplings blow up even when we neglect the heavy
quarks (bottom and top) in the interactions.
Furthermore, we showed that for the EFT limit, the usual analysis with only single
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Chapter 7 Conclusion

mediator exchange (NNP = 2 in the language of MadGraph) underestimates the con-
tributions of some physically inevitable sub-processes. For our mono-jet analysis, we
include these sub-processes with a double mediator exchange (NNP = 4) at the tree-level.
We showed that their contributions to the final signals are of factor greater than two
even if only generator–level cuts are imposed. These contributions are even larger for
the signal regions after the final cuts are applied, thus resulting in stronger limits on
Λ with more than 5% increase. These effects are further enhanced at higher collision
energies, for example, the increase in the limits at 13 TeV correspond to an increase in
the total cross-section by at least 60%. Our results emphasize that these contributions to
the matrix element of the signal process, that scale like Λ−4, are indeed important for
a true EFT limit. Thus, for obtaining consistent EFT limits it is important to include
all the relevant operators with mass dimension up to eight. As these contributions from
sub-processes and higher dimension operators are always present in a physical scenario, it
is advised to not ignore them. Such an EFT, however, will have many more parameters
than a typical simplified model given the complexities of the higher dimension operators.
Thus, we finally conclude that the model independent approach of using effective field

theory analysis for the mono-jet searches, does not apply to any model.
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APPENDIX A

Appendix

A.1 Decay width of axial-vector mediator

We calculate the decay width of an axial-vector mediator within a simplified model, using
[56].

The probability of transition of a particle from initial state | i > to final state | f > is
proportional to the S-matrix

Pi→f ∝ Sfi (A.1)
where, Sfi = (2π)4δ4(pf − pi)Mfi is the S-matrix - the limiting unitary operator defining
the particle states at any common reference time. Mfi is the reduced matrix element, and
pi and pf are momenta of initial and final states, respectively.

For a collision of particles A and B resulting in multiple final states, such that particle
states A B → 1,2,3...n, the probability of this transition can be given as:

P(AB→1,2,..,n) =
∏
f

d3pf
(2π)3

1
2Ef
|〈p1...pn|φAφB〉in|

2 (A.2)

Here,Ef is the total energy of the final states. φA and φB correspond to the initial states
of respective particles. On describing the initial and final states in terms of the initial
state momenta (kA and kB) and the final state momenta, pf for f = 1, 2, 3...n, one can
get the complete transition as:

〈p1p2...|iT |kAkB〉 = (2π)4δ4
(
kA + kB −

∑
pf
)
iM (kA, kB → {pf}) (A.3)

Here, M(kA, kB → {pf}) is the invariant matrix element. Here, all of the the four
momenta (p0 = Ep, k

0 = Ek) involved in the transition are on mass-shell. Thus the
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cross-section can be given as:

dσ = 1
2EA2EB|vA − vB|

∏
f

d3pf
(2π)3

1
2Ef

 |M(pA, pB → {pf})|2(2π)4δ4
(
pA + pB −

∑
pf
)

(A.4)
Integrating over the final state momenta:

∫
d
∏
n

=
∏

f

∫ d3pf
(2π)3

1
2Ef

 (2π)4δ4
(
p−

∑
pf
)

(A.5)

where, P is the total initial momentum.

1
EAEB|vA − vB|

= 1
EBpA2 − EApB2 = 1∑

µν pµpν
(A.6)

Thus, the differential cross-section in center of mass frame (total energy of the system is
Ecm), for two initial state particles going to two particles in final state is given by:(

dσ

dΩ

)
cm

= 1
2EA2EB|vA − vB|

|p1|
(2π)24Ecm

|M (pApB → p1p2) |2 (A.7)

Now, in order to make this expression valid of our which in our case the axial-vector
mediator (A), we neglect all the terms coming from second initial state. Also, as our
particle is relatively heavy and decays, it is considered to be at rest in the center of mass
frame. Thus, the partial width for of the mediator to its decay components is given as:

dΓ = 1
2MA

∏
f

d3pf
(2π)3

1
2Ef

 |M(MA → {Pf})|2(2π)4δ4
(
pA −

∑
pf
)

(A.8)

Thus, the total decay width for the mediator can then be given as:

Γ =
∫
dΓ = 1

2MA

∫ ∏
f

d3pf
(2π)3

1
2Ef
|M(mA → {pF})|2(2π)4δ4

(
pA −

∑
pf
)

(A.9)

Γ = 1
2MA

|M(MA → {pf})|2
∏
f

∫ d3pf
(2π)3

1
2Ef

(2π)4δ4
(
pA −

∑
pf
)

(A.10)

For two particles (1,2) in the final state, we have:
∫
d
∏
2

=
∫ dp1p1

2dΩ
(2π)32E12E2

2πδ (Ecm − E1 − E2) (A.11)

where, E1 =
√
p2

1 +m2
1 and E2 =

√
p2

2 +m2
2 with m1 and m2 being their masses, and Ω
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A.1 Decay width of axial-vector mediator

is the solid angle in the phase-space.
∫
d
∏
2

=
∫
dΩ p2

1dΩ
(2π)32E12E2

(
P1

E1
+ P1

E2

)−1
=
∫
dΩ 1

16π2
|P1|
Ecm

(A.12)

For symmetric reactions about the collision axis, we can write Ω in terms of the polar
angle θ. Thus, the two body phase space equation will become:∫

d
∏
2

=
∫
d cos θ 1

16π
2|p1|
Ecm

(A.13)

At very high energies, Ecm ≡ 1. Thus, the total width for the axial-vector mediator will
become:

Γ = 1
2MA

|p1|
(2π)24Ecm

|M(MA → {pf}|2 (A.14)

A.1.1 Matrix element for axial-vector mediator

Here, we have the final states being same particles (say for now, WIMP χ) with same
mass (m) but different wave functions. The matrix element then for the interaction vertex
of the mediator with decay components is be given as

− iMfi = ū(p1)
(
−igχγµγ5

)
v(p2)εν (A.15)

∴

|M|2 = 1
3
∑
s

∑
|M|2 (A.16)

Taking the product for matrix element and expanding, we get:

|M|2 = 1
3gχ

2∑(
v̄(p2)(γµγ5u(p1)

)
(ū(p1)(γµγ5v(p2)) (A.17)

|M|2 = 1
3gχ

2v̄(p2)v(p2)γµγ5ū(p1)u(p1) (A.18)

The wave functions above are v̄(p2)v(p2) = /p2 +m and ū(p1)u(p1) = /p1 −m. ∴

|M|2 = 1
3g

2
χ

(
/p2 +m

)
γµγ5( /p1 −m)

∑
εµεν

∗ (A.19)

|M|2 = 1
3g

2
χ

[
tr
(
/p2 +m

)
γµγ5( /p1 −m)

]∑
εµεν

∗ (A.20)

|M|2 = 1
3g

2
χ

[
tr
(
/p2 +m

)
( /p1 −m)

]∑
εµεν

∗ (A.21)

|M|2 = 1
3g

2
χtr

(
/p2 · /p1 −m2

)
(A.22)
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|M|2 = 1
3g

2
χ8(p2 · p1 −m2) (A.23)

|M|2 = 8
3g

2
χ

(
M2

A

2 −m2
χ −m2

χ

)
(A.24)

|M|2 = 8
3g

2
χ

(
M2

A

2 − 2m2
χ

)
(A.25)

|M|2 = 4
3g

2
χM

2
A

(
1−

4m2
χ

m2
A

)
(A.26)

A.1.2 Calculation of phase-space factor

δ4 (pA − (p2 + p1)) = E

2|p|δ
|p|−MA

2

√√√√1−
4m2

χ

M2
A

 δ3(p2 + p1) (A.27)

∴ ∫
d
∏
2

=
∫ d3p

(2π)3
d3p

(2π)3
(2π)4

(2π)3
(2π)4

4E2
E

|p|

|p|−
√
M2

A

4 −m2

 δ3(p2 + p1) (A.28)

∫
d
∏
2

= 1
32π2

∫
d3p

1
E|p|

δ

|p|−
√
M2

A

4 −m2

 (A.29)

∫
d
∏
2

= 1
32π2

∫
0

4π
dΩ
∫

0

∞
d|p|

(
|p|2

E|p|

)
δ

|p|−
√
M2

A

4 −m2

 (A.30)

∫
d
∏
2

= 1
8π

∫
d|p|δ

|p|−
√
M2

A

4 −m2

 (A.31)

∫
d
∏
2

= 1
8π

√
M2

A

4 −m2√
m2 + M2

A

4 −m2
(A.32)

∫
d
∏
2

= 1
8π

(
1−

4m2
χ

M2
A

)1/2

(A.33)

Thus, by putting together eq.(A.26) and eq.(A.33) in eq.(A.14), the total width for an
axial-vector mediator decaying into two dark matter particles is given as:

Γ = 1
2MA

g2
χM

2
A

16
3

(
1−

4m2
χ

M2
A

)
· 1

8π

(
1−

4m2
χ

M2
A

)1/2

(A.34)

Thus,

Γ = MA

12πg
2
χ

(
1−

4m2
χ

M2
A

)3/2

(A.35)

60



A.1 Decay width of axial-vector mediator

Similarly, the decays width of the mediator to a pair of quarks will be:

Γ = 3MA

12πg
2
q

(
1−

4m2
q

M2
A

)3/2

(A.36)

Combining these, the total decay width of the mediator in our simplified model can
finally be given as:

Γ = MA

12πg
2
χ

(
1−

4m2
χ

M2
A

)3/2

+
Ncg

2
q

12π MA

∑
q

(
1−

4m2
q

m2
A

)3/2

(A.37)

here, Nc = 3 for all coloured particles.
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