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For several decades the nature of Dark Matter (DM) has been elusive to physics. Ex-
planations for its evidences have been stacked up and most of them require new particle
physics. In this work, we explore the standard thermal WIMP DM scenario as well as a
non-thermal alternative for DM production. For the former framework, we introduce the
foundations for its understanding: the FLRW metric for an isotropic and homogeneous
universe, the Λ-CDM cosmological model and thermodynamics of the early universe. We
also present theoretical tools such as the Boltzmann equation for the DM relic density
calculation, after which experimental detection tests are discussed. Two applications of
the thermal WIMP scenario are dealt with: (i) a study of a more precise calculation of
the Standard Model (SM) degrees of freedom, discussing thereafter the impact of that
evaluation on the DM relic density calculation in a model-independent way, comparing
it to indirect detection tests; (ii) a BSM (Beyond SM) model with a B − L extension, in
which the possibility of a fermionic majorana DM is considered, and the cross section of
the candidate is compared with spin-independent direct detection upper bounds.
In the end we explore the nonthermal scenario, where we consider �elds motivated by
string theory, the KL sector. Therein we introduce the feature of uplifting, whereby the
AdS originated solely by the KL potential can be lifted to the dS vacuum by the addition
of the ISS sector. Afterwards, the ISS �elds oscillations and their subsequent decays are
analyzed within a context of small entropy production as well as su�cient neutralino DM
generation.
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1 Introduction

In the year 1973, the theoretical formulation of the Standard Model (SM) of particle
physics was completed after the invention of the QCD Lagrangian [1]. Experimental
con�rmations and devised theoretical tools for the SM ingredients were several along the
years, with the most important being:

⇒ Discovery of the electron in cathode rays (1897) [2]; �rst observation of the muon
decay (1940) [3]; �rst indication of the tau lepton (1975) [4];

⇒ Con�rmation of the detection of the electron antineutrino ν̄e in the process ν̄e + p→
e+ + n (1959) [5]; �rst evidence of the muon neutrino νµ from π+ → µ+ + (ν/ν̄)

(1962) [6]; �rst evidence that the number of light neutrinos is 3 (1989) [7];

⇒ Introduction of local gauge invariance in Quantum Field Theory (1954) [8]; prediction
of unavoidable massless bosons if a global symmetry of the Lagrangian is sponta-
neously broken (1961) [9]; invention of the gauge principle as basis to construct quan-
tum theories of interacting fundamental �elds (1961) [10]; introduction of the neutral
intermediate weak boson Z (1961) [11]; example of a �eld theory with spontaneous
symmetry breakdown with massive vector boson and without massless Goldstone
bosons (1964) [12�14]; rigorous proof of renormalizability of the massless and mas-
sive Yang-Mills quantum �eld theory with spontaneously broken gauge invariance
(1971) [15];

⇒ First evidence for parity nonconservation in weak decays (1957) [16]; CP violation due
to the mixing of B0 − B̄0 (1987) [17];

⇒ Evidence for the gluon jet (1979) [18�21]; evidence for the charged intermediate bosons
W± (1983) [22, 23]; evidence for the neutral intermediate boson Z (1983) [24, 25];

⇒ Evidence for the quarks u, d and s following the �scaling� behaviour for deep-inelastic
scattering � joint e�ort of the SLAC experiment (1969) [26], Bjorken (1969) [27]
and Feynman (1969) [28]; evidence for the J/ψ (cc̄) (1974) [29,30]; �rst evidence of
Υ
(
bb̄
)
(1977) [31]; observation of the top quark production (1995) [32];

⇒ Discovery of the Higgs boson by the CMS and ATLAS collaborations (2015) [33, 34].

Although the SM theory is the most precise theory of nature1 and explains all the ex-
perimental data referred to above, it cannot account either for the neutrino oscillations

1Its greatest achievement is to predict the electron anomalous magnetic moment ge up to 10 orders of
magnitude precision.
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1 Introduction

discovery [35, 36] or the dark matter (DM) evidences (discussed in depth next), besides
other issues such as baryogenesis and the hierarchy problem.
In its original form, the SM Lagrangian cannot include masses for the active neutrinos

(νL) consistent with local gauge invariance. A strategy most BSM (Beyond Standard
Model) models use for the active neutrinos masses generation is to employ the seesaw
mechanism by introducing the so-called sterile right-handed neutrinos, often denoted by
NR. By setting the masses of the latter very high, O (1 TeV), the active neutrinos are given
very tiny masses, consistent with solar and atmospheric mass splittings which require the
active neutrinos masses to be O (10−2 eV).
Before turning to dark matter, another reserach topic that is beyond the Standard

Model is the matter-antimatter asymmetry (or baryogenesis). The amount of asymmetry
encoded within the SM cannot account for the one observed, if one considers matter and
antimatter were once in equal amount. Mechanisms attempting to solve this question
must yield an asymmetry (nB − nB̄) /s0 ∼ 10−10, where s0 is the entropy density of today
and nB (nB̄) the baryon (antibaryon) number density.
In the 1930s, Fritz Zwicky obtained �rst evidence for dark matter when mapping the

radial velocities of galaxies in the Coma Cluster, approximately 3.2 · 108 light years away
from Earth; it was observed that galaxies did not move with the velocity they were
supposed to move if only visible matter would be present within the cluster. One can
take this observation as a failure of the newtonian dynamics and study the possibility of a
Modi�ed Newtonian Dynamics (so-called MOND). On the other hand, one can face this
discrepancy from observation as the existence of a new kind of particle. In this work, we
consider a new kind of particle as the explanation for the evidences of this new physics,
particle which we call the Dark Matter (DM) particle.
From the particle perspective, since Zwicky, apart from the knowledge that dark matter

cannot be electrically charged or baryonic, its nature remains a mistery. The simplest
assumption is that it interacts through gravity and weakly with known SM elementary
particles. Up to now, only upper bounds on both its cross sections and thermally averaged
cross sections (both studied into several di�erent channels, such as lepton l+l− or quark q̄q
pairs) have been obtained, therefore dark matter direct or indirect detection still remains
to be investigated.
The simplest possibility to implement dark matter theoretically is to consider a new

scalar �eld or a new fermion within the SM. It is required to not exhibit baryonic number
or electric charge and must possess a very low cross section in accordance with the direct
and indirect detection experiments. Among the implementations, The Higgs portal is a
mainstream strategy, which considers the DM to interact with the Higgs mostly and there-
fore simpli�es the study since the analysis depends mostly on the Higgs-DM interaction
coupling; also because the interaction DM-[other SM particles] happens via propagator
and/or loop diagrams and is consequently small.
The active neutrinos have already been regarded as dark matter: their masses are too

small to provide the necessary amount of DM relic density. Additionally they cannot
behave as DM since they are relativistic and it is known that most of the DM energy

2



1 Introduction

density is composed of cold particles, i.e. non-relativistic matter. Sterile neutrinos have
been considered in the literature and are not ruled out as fermionic DM candidates.
Undoubtedly, the most studied and prominent DM candidate is the neutralino, which

stems from the MSSM (Minimal Supersymmetric Standard Model). It is the lightest
supersymmetric particle within MSSM and originates from the linear combination of
four symmetry eigenstates: the superpartners of the W3, B, h1 and h2 bosons. The
four types of neutralino are then the so-called Wino, Bino and the two Higgsinos with
main components on the W̃3, B̃, h̃1 and h̃2 �elds, respectively. Non-supersymmetric
models models deserve reference here as well: the 3-3-1 models, with a local symmetry
SU (3)C⊗SU (3)L⊗U (1)X ; the 2HDM (Two-Higgs-doublet model) model which contains
an additional doublet compared to the SM; and the B-L model, with a local symmetry
SU (3)C ⊗ SU (2)L ⊗ U (1)Y ′ ⊗ U (1)B−L, among many others.
The standard treatment of dark matter is realized assuming a period in which all the

particles in the universe were in thermal equilibrium. This way, one needs to solve the
di�erential Boltzmann equation in order to obtain the DM energy of today. For non-
relativistic particles, that amounts basically to their energy at the time a little after
their decoupling from the interacting relativistic plasma. The thermal WIMP (Weakly
Interacting Massive Particle) DM was suggested as a particle which interacts with a
strength typical to the SMWeak interaction and its natural mass is around∼ 10−1−1 TeV.
Another candidate particle is the thermal SIMP (Strongly Interacting Massive Particle)
DM, a particle which interacts with itself strongly, fact which yields interactions of the
kind 3 SIMPs → 2 SIMPs leading to self-heating; its natural mass is around ∼ 100 MeV.
These are examples of thermal DM.
Opposed to thermal relics, non-thermal relics are particles which are not generated

by the usual freezout (decoupling from the relativistic plasma), but rather by the late
decay of more massive particles, e.g. moduli �elds or FIMPs (Feebly Interacting Massive
Particles). The latter is a kind of particle which is used sometimes as the DM particle
itself. Opposed to the standard freezout, the FIMPs may su�er freezein: one or more
bath particles decay into the FIMP itself, thus yielding its energy and consequently its
relic density.
This work deals theoretically with the question of DM production, both thermal and

non-thermal, and is organized as follows. In chapter 2, we provide evidences for the
existence of dark matter. In chapter 3, we cover the basics of general relativity to provide
the background framework of this work, explaining the FLRW metrc and its implications
as well as the Λ-CDM cosmological model. Still in this chapter, we provide the basics to
obtain the relic density of a thermal species, along with an example of how the Boltzmann
equation works. In chapter 4, dark matter direct and indirect detection frameworks are
explained since they provide constraints on our dark matter candidates which will be
dealt with in chapter 5. In the latter, we provide the reader a detailed view on two
works which were completed in the thesis period and focus on the thermal DM, the �rst
with emphasis on the calculation of the particles relativistic degrees of freedom near the
QCD phase transition and the second focusing on dark matter relic density calculation

3



1 Introduction

within a speci�c BSM model. In chapter 6 we talk about non-thermal sources of dark
matter, including the basic framework and a speci�c study performed during the thesis
period, where we explain its properties, including �eld content and its masses, decay rates,
post-in�ation dynamics, dark matter production as well as the achievement of vacuum
uplifting. Finally, in the last chapter we draw our conclusions.

4
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2 Evidences

Within this chapter, we try to provide the reader an overview to the problem of dark
matter, exposing the discrepancy between observations and theory expectations. We
review below the most important evidences to the existence of dark matter1.

• In 1933, Fritz Zwicky measured the mass of the Coma Cluster of galaxies outside
of our local group [38]. The technique used by Zwicky was to measure the relative
velocities of the galaxies in the cluster via Doppler shift; and use the virial theorem2

to obtain the gravitational potential in which these galaxies were moving, and then
get the mass distribution that would generate such a potential. He found for the
mass of the cluster the value of about 400 times the mass that could be computed
from the visible galaxies in the cluster. The observation was soon con�rmed by
similar measurements of the Virgo Cluster by Smith [39].

• Evidence for dark matter is also found by relating X-ray emission from clusters
of galaxies to the distribution of the respective cluster masses [40]. Clusters form
via a collapse of matter over the region of several megaparsecs (1 parsec = 3.26

light-years). They generate deep gravitational potential wells because of their high
masses. This way, hydrogen gas from the galaxies leaks out and �lls the whole
volume of the cluster. These atoms, with large velocities3, emit X-rays when they
collide. Thus, in this manner, the X-ray luminosity probes the depth of the cluster
gravitational potential. Therefore, one can estimate the mass that generates such a
potential, providing the contradiction between the observed matter and the matter
necessary to account for the measured X-ray luminosity.

• In the decade of 1970, astronomers started to measure sistematically the pro�les of
rotational velocity for several galaxies. If all the mass of the galaxy is made of stars
that are visible, outside the region with visible matter the objects velocities behave
as follows,

Fcentripetal = Fgravitational ∴ v2 =
GMgal

r
→ v ∝ 1√

r
, (2.0.1)

whereMgal is the mass of the visible galaxy, and r is the distance of the test subject
to the center of the galaxy; here we suppose that the galaxy is spherically symmetric.

1This section is based mostly on [37].
2The virial theorem states that the time average of the kinetic and potential of the considered system are
related by 〈K〉t = − 1

2 〈V 〉t (the minus sign for gravitational force) provided that the system remains
bounded (spatially and also in terms of �nite momentum values.)

3For a typical cluster mass of
(
1014 − 1015

)
M�, the gas reaches temperatures of several 107 K.

7



2 Evidences

Something unexpected was observed: the velocities are almost constant or slightly
increasing with distance [41]. Particularly, in the galaxy NGC 3067, Rubin et al. [42]
showed that the rotational velocity pro�le maintains its large value at a distance of
40 Kpc from the center of the galaxy, even though the density of stars outside of 3

Kpc becomes very rare if compared to the halo of the galaxy.

Another way to measure the mass of a particular galaxy, other than rotation curves
of its stars and X-ray emitting gas belonging to the galaxy, is to take positions and
velocities of test particles such as globular clusters of stars or satellite galaxies, i.e.
object not belonging to the chosen galaxy. By measurements of the velocities of
globular clusters of the Milky Way, it was found that there is extra contribution
to the mass of our galaxy up to distances of ∼ 100 Kpc from its center [43]. The
distance, from where stars of Milky way begin to become rare, to the center of the
galaxy is approximately 15 Kpc (for reference, the solar system is at ∼ 8.5 Kpc).

• Another sort of measurements concerning the existence of dark matter comes from
the cosmic microwave background (CMB) [44, 45]. The CMB was emitted at the
time of recombination, epoch when protons and electrons � particles that earlier
were not bounded to each other because of high temperatures of the particle plasma
which contained them � became bounded, forming Hydrogen; from this time on,
the Universe became neutral for the photon (the photon cannot interact at as high a
rate as before with proton and electron). Recombination ocurred when protons and
neutrons were at the temperature of ∼ 1 MeV. The most recent measurements of the
PLANCK satellite require a medium in which a very weakly interacting species in
nonrelativistic motion, usually called CDM (Cold Dark Matter), dominates. These
measurements can be converted to the density ratios of baryonic and dark matter:

Ωbaryonh
2 = 0.02226± 0.00016 , ΩCDMh

2 = 0.1193± 0.0014 , (2.0.2)

where Ωi = ρi
ρcrit

4 and h is de�ned as h ≡ H/ (100 Km/s/Mpc), where H is the
current Hubble parameter value.

• Up to now, we referred to the name �dark matter�. But that does not need to
be the case. Instead, one could modify gravity [46] and then he would not have
to introduce this new kind of matter. That approach had great phenomenological
success at scales ranging from dwarf spheroidal galaxies to superclusters. However,
the interpretation in terms of a new matter was encouraged by the observations in
�g. 2.1, extracted from [47].

The parameter κ is de�ned as the surface mass density. It is given by the integral
of the energy density ρ (~r) over the line of sight distance. Thus, it is related to the
concentration of energy that bends the incoming source light.

4ρi is the i-species energy density, and ρcrit = 3H2/8πG is the universe energy density that would make
the universe be spatially �at.

8



2 Evidences

(a) (b)

Figure 2.1: In this �gure are shown (a) a color image of the merging cluster 1E0657-558
and (b) a X-ray image of the same cluster. The white bar indicates 200 Kpc. The green
contours in both images come from the reconstruction from the weak lensing method:
the innermost contour has the highest κ and the outermost one the lowest κ. The white
contours show the positions of the κ peaks and correspond to 68.3%, 95.5% and 99.7%
con�dence levels.

The actual existence of dark matter can be con�rmed either by a laboratory detec-
tion or inferred by the discovery of a system in which the observed baryons and the
hypothesized dark matter are spatially separated. The galaxy cluster 1E0657-558
is such a system.

During a merger of two clusters, galaxies behave as collisionless particles, while the
�uid-like X-ray emitting plasmas (belonging to the respective galaxy concentrations)
collide. Therefore, in this �gure the two galaxy concentrations moved ahead of their
plasma clouds which su�ered ram pressure. In the absence of dark matter, the
gravitational well depends only on the dominant visible component, i.e. the X-
ray plasma. If, on the other hand, the total mass was dominated by collisionless
dark matter, the potential would trace its distribution, which is expected to be
spatially coincident with the collisionless galaxies. Hence, by extracting a map of
the gravitational potential, one is able to infer that this phenomenon is probably
caused by an unknown particle, usually called dark matter.

9





3 Thermal relics

In this chapter, we explain the tools and assumptions which underlie the calculations
of relic abundance for particles which were in thermal equilibrium within the era of the
radiation-dominated universe and eventually decoupled from it. We provide important
concepts of General Relativity (GR), also thermodynamics and �nally explain how the
Boltzmann equation can provide information on the density of a generic species after
they decoupled from the primordial thermal plasma. This discussion will also lay the
foundations for the introdution of non-thermal relics in chapter 6.

3.1 Basic General Relativity

3.1.1 Introduction

The Standard Cosmological Model is based on the Einstein equation of gravity,

Rab − 1

2
Rgab + Λgab = 8πGT ab , (3.1.1)

where gab is the metric tensor (which is found from Einstein equation). Locally in 3 + 1

dimensions, by the Equivalence Principle, its components are reduced to the Minkowski
metric ones, i.e. diag(−1, 1, 1, 1),1 which is the metric of Special Relativity. Λ is the
cosmological constant which accounts for the accelerated expansion of the universe (it
parametrizes the content of dark energy in the universe). G is the Newton's constant of
gravitation, T ab is the symmetric energy-momentum tensor of matter and radiation. The
Ricci tensor Rab and the Ricci scalar R are de�ned by

Rab = Racb
c and R = Ra

a , (3.1.2)

where R d
abc is the Riemann tensor,

R d
abc = ∂bΓ

d
ac − ∂aΓdbc +

(
ΓeacΓ

d
eb − ΓebcΓ

d
ea

)
. (3.1.3)

The Christo�el symbols Γcab are given by (provided null torsion2 and ∇agbc = 0)

Γcab =
1

2
gcd (∂agbd + ∂bgad − ∂dgab) . (3.1.4)

1expressed in cartesian coordinates.
2∇a∇bf = ∇b∇af , where f is a function which takes from the manifold M to the reals R; ∇a is the
covariant derivative which acts as ∇atb = ∂at

b + Γbact
c on a vector tb, for example.

11



3 Thermal relics

They determine the motion of free-falling bodies via the geodesic equation,

d2xµ

dτ 2
+ Γµσν

dxσ

dτ

dxν

dτ
= 0 . (3.1.5)

An assumption of vital importance in general relativity is the Equivalence Principle,
which is based on the equality of inertial and gravitational masses. It states that a
free-falling observer does not experience any gravitational e�ect (dynamometers attached
to his body would not register any force). This means that a free-falling observer can
describe spacetime with a metric which is locally �at (Minkowski metric) and has a
locally vanishing Christo�el symbol. One is able to verify that the geodesic equation then
reduces to the special relativity equation of motion for an inertial body, i.e. d2xµ/dτ 2 = 0

.

3.1.2 FLRW metric

Since observations of the universe have shown that it is spatially homogeneous and
isotropic on large scales (100 Mpc), the Standard Cosmological Model assumes this is
valid for a reference frame (this frame will be later de�ned). If one takes these consider-
ations ahead, he is led to the following form of the interval,

ds2 = −dt2 +R2 (t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
, (3.1.6)

which is called Friedmann-Lemaitre-Robertson-Walker metric, for short FLRW metric. k
speci�es three di�erent spatial sections of the universe:

• k = 1 means we have a 3-sphere, de�ned as the surface in 4-D �at Euclidean space
R4 whose Cartesian coordinates satisfy

x2 + y2 + z2 + w2 = R2 , (3.1.7)

where R can vary, depending on the 3-sphere. In spherical coordinates, the metric
of the unit 3-sphere (R = 1) is

ds2 = dψ2 + sin2ψ
(
dθ2 + sin2θdφ2

)
. (3.1.8)

If we change variables in the following way:

dψ ≡ 1√
1− kr2

, with k = 1 , (3.1.9)

we obtain the interval of (3.1.6).

• k = 0 means we have a plane, de�ned in the 3-D �at Euclidean space R3. This
plane is generated by not constraining the three coordinates, let us say x, y and z.

12



3 Thermal relics

In cartesian and spherical coordinates, respectively, the metric of the plane is

ds2 = dx2 + dy2 + dz2 , (3.1.10)

ds2 = dψ2 + ψ2
(
dθ2 + sin2θdφ2

)
, (3.1.11)

If one changes variables as in (3.1.9) (now with k = 0), he obtains (3.1.6).

• k = −1 means that the spatial section is a three-dimensional hyperboloid, de�ned
as the surfaces in a 4-D Lorentz signature space whose cartesian coordinates satisfy

t2 − x2 − y2 − z2 = r2 , (3.1.12)

where r can vary, depending on the 3-D hyperboloid.

In hyperbolic coordinates, the metric of the unit hyperboloid is

ds2 = dψ2 + sinh2ψ
(
dθ2 + sin2θdφ2

)
, (3.1.13)

which turns into (3.1.6) if one changes variables according to (3.1.9), for k = −1.

All that is left to determine is the evolution with time of the function R (t). For that,
we have to introduce dynamics via Einstein's equation, which contains a quantity we
did not de�ne yet, that is the energy-momentum tensor Tab. Some considerations are
necessary. Just considering ordinary matter, we can say that at large scales each galaxy
can be considered as a grain of dust. The random velocities of the galaxies are small,
so the pressure of the dust galaxies is negligible. Thus, to an approximation the energy-
momentum tensor of the universe is given by the one of dust (which is a perfect �uid, but
its pressure is null)

Tab = ρuaub , (3.1.14)

where ρ is the average matter density, and ua is the four velocity of each galaxy. However,
there are other energy contributions. Radiation has to be considered: we know that there
exists radiation at a temperature of about 3 K �lling the universe. That energy den-
sity can be described by a perfect �uid energy-momentum tensor, with nonzero pressure
(Prad = ρrad/3). Therefore, we take its energy-momentum tensor to be of the perfect �uid
form

Tab = ρuaub + P (gab + uaub) . (3.1.15)

This tensor is the most general one respecting homogeneity and isotropy because it is
formed by a combination of the only tensors which do not specify a privileged direction,
i.e. tensors gab and ua. Therefore, also the content of dark matter can be assumed to
have that general form. Thus, assuming an energy-momentum tensor of a perfect �uid,
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3 Thermal relics

one can solve Einstein equation to obtain the so-called Friedmann equations

R̈

R
= −4πG

3
(ρ+ 3p) +

Λ

3
, (3.1.16)(

Ṙ

R

)2

=
8πG

3
ρ− k

R2
+

Λ

3
. (3.1.17)

For completeness, the cosmological constant Λ can be moved to the right side of (3.1.1)
as a contribution to the energy-momentum tensor,

TΛ
ab = − Λ

8πG
gab . (3.1.18)

If we identify TΛ
ab with the Tab of a perfect �uid, we can obtain

PΛ = − Λ

8πG
, (3.1.19)

ρΛ = −PΛ =
Λ

8πG
. (3.1.20)

Substituting the vacuum energy density into (3.1.16) and (3.1.17), it yields

R̈

R
= −4πG

3
(ρ− 2ρΛ + 3p) , (3.1.21)(

Ṙ

R

)2

=
8πG

3
(ρ+ ρΛ)− k

R2
. (3.1.22)

With them we can then �nd how R (t) evolves in time, and consequently know how the
geometry of the isotropic and homogeneous universe evolves.

3.2 Λ-CDM Cosmological Model

The model on which this work will be based is the Λ-CDM Cosmological Model. It assumes
that general relativity, with cosmological constant Λ, is the correct theory of gravity on
cosmological scales, using the FLRWmetric. Then, into this framework, one can introduce
a �eld to describe dark matter (if one deals with the dark matter particle description),
besides the �elds that describe the usual matter, which is basically the Standard Model
of particles. This is in short the Λ-CDM model.
It manages to match with well stablished observational tests, for example:

• the accelerating expansion of the universe observed in the light from distant type
Ia Supernovae (SNe Ia) [48,49];

• the structure of the cosmic microwave background [50];

• the large-scale structure in the distribution of galaxies [51];
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3 Thermal relics

• the baryon acoustic oscillations, which have possibly been formed in the initial
plasma via perturbations and have been carried through the epoch of recombination
[52];

• the measurements of dark energy parameters through weak lensing [53];

But there are still some challenges the model faces [54], among which is the most important
one:

• the too big to fail problem. Simulations for the substructure of the Milky Way and
Acquarius halos imply ∼ 10 subhalos, that are so massive and so dense that they
would be too big to fail to form lots of stars. The problem lies on the observation
that none of the satellite galaxies of the Milky Way or Andromeda have stars moving
as fast as expected in these dense subhalos [55,56].

There are modi�cations to the Λ-CDM model and some of which can be found in [57].
However, we assume Λ-CDM throughout this work.

3.3 Thermodynamics of the early Universe

In order to study the early universe, we have to de�ne the following quantities:

nχ =
gχ

(2π)3

ˆ
fχ (~p) d3p , (3.3.1)

ρχ =
gχ

(2π)3

ˆ
Eχ (~p) fχ (~p) d3p , (3.3.2)

pχ =
gχ

(2π)3

ˆ |~p|2
3Eχ (~p)

fχ (~p) d3p , (3.3.3)

where nχ, ρχ and pχ denote respectively number of the particle species χ per volume,
energy of the particle species χ per volume and pressure associated to the particle species

χ. gχ is the number of internal degrees of freedom (spin) and Eχ (~p) =
√
|~p|2 +m2

χ is
the energy of the particle. The statistical equilibrium distribution fχ (~p) depends on the
energy Eχ, the chemical potential µχ, and the temperature Tχ, and is given by

fχ (~p) =
1

e(Eχ−µχ)/Tχ ± 1
, (3.3.4)

where the plus sign applies to fermions and the minus sign to bosons. We might as well
provide the relativistic and the nonrelativistic limits of (3.3.4).

Nonrelativistic limit. For mχ � Tχ and mχ � µχ, we have both bosons and fermions

fχ (~p) ' e−mχ/Tχe−|~p|
2/2mχTχ , (3.3.5)
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which leads to

nχ ' gχ

(
mχTχ

2π

)3/2

e−mχ/Tχ , (3.3.6)

ρχ ' mχnχ

(
1 +

3

2

Tχ
mχ

)
, (3.3.7)

pχ ' nχTχ � ρχ . (3.3.8)

Relativistic limit. For Tχ � mχ and Tχ � µχ, we have

fχ (~p) ' 1

e|~p|/Tχ ± 1
, (3.3.9)

which leads to

nχ (boson) ' ζ (3)

π2
gχT

3
χ , (3.3.10)

nχ (fermion) ' 3

4

ζ (3)

π2
gχT

3
χ , (3.3.11)

ρχ (boson) ' π2

30
gχT

4
χ , (3.3.12)

ρχ (fermion) ' 7

8

π2

30
gχT

4
χ , (3.3.13)

pχ '
ρχ
3

, (3.3.14)

where ζ (3) ' 1.20206 is the Riemann zeta evaluated at 3.

Now we de�ne the total energy density (including both relativistic and nonrelativistic
kinds) by

ρ =
∑
χ

ρχ =
π2

30

(∑
χ

ρχ
30

π2

1

T 4
γ

)
T 4
γ ≡

π2

30
gT 4

γ , (3.3.15)

where we de�ned

g ≡
∑
χ

g(χ) , (3.3.16)

g(χ) ≡ ρχ
30

π2

1

T 4
γ

. (3.3.17)

We can express g(χ) as

g(χ) = gχ
15

π4

(
Tχ
Tγ

)4
∞̂

xχ

dz
z2
√
z2 − x2

χ

ez−ξχ ± 1
, (3.3.18)

with xχ ≡ mχ/Tχ and ξχ ≡ µχ/Tχ. The plus sign for fermions, the minus sign for bosons.
Note that if the particle is relativistic, its g(χ) value can be evaluated from (3.3.12) and
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(3.3.13), which yield

g(χ) (boson) = gχ

(
Tχ
Tγ

)4

, (3.3.19)

g(χ) (fermion) =
7

8
gχ

(
Tχ
Tγ

)4

. (3.3.20)

The contribution from nonrelativistic particles is negligible compared to the relativistic
ones, as can be seen from the limits of the integral in (3.3.18). We can then approximately
obtain

g '
∑

χ=relativistic bosons

gχ

(
Tχ
Tγ

)4

+
∑

χ=relativistic fermions

7

8
gχ

(
Tχ
Tγ

)4

. (3.3.21)

To �rst approximation, the value of g changes when the temperature drops below the
mass of a particle in the interacting plasma (i.e. the particle is no longer relativistic).
Then, this particle does not contribute to the sum (3.3.21) anymore. The exact transition
between the two values of g must be calculated numerically using the expression (3.3.18).
For a clearer understanding of the contribution of a particle to g, we consider three

di�erent temperature regimes for the SM:

• For me ' 0.5 MeV � Tγ � 105 MeV ' mµ, the relativistic particles within the
plasma are the photons γ, electrons e−, positrons e+ and neutrinos νi (which we
will consider to be Majorana and therefore are their own antiparticles), all with the
same temperature, yielding

g ' 2 + 2
7

8
2 + 3

7

8
2 =

43

4
= 10.75 . (3.3.22)

• For mµ ' 105 MeV � Tγ � 300 MeV ∼ Tc
3, there are also muons µ− and anti-

muons µ+ (which give the same contribution as e− and e+, yielding 7/2), thus
leading to

g ' 57

4
= 14.25 . (3.3.23)

• For Tγ � 300 MeV, there are tau τ− and anti-tau τ+ (contributing 7/2 for Tγ >
mτ ' 1800 MeV); u and ū, d and d̄, s and s̄ quarks (contributing 63/2 for Tγ �
(mu,md,ms) ∼ (1− 100) MeV); c and c̄ quarks (21/2 for Tγ � mc ' 1200 MeV); b
and b̄ quarks (21/2 for Tγ � mb ' 4.2 GeV); t and t̄ quarks (21/2 for Tγ � mt '
170 GeV); eight gluons ga (yielding 16); W± and Z (9 for Tγ � mZ ' 90 GeV ); H
(1 for Tγ � mH ' 125 GeV ) for a total

g ' 427

4
= 106.75 . (3.3.24)

3Tc is roughly the QCD transition temperature, around which the crossover between partons (gluons
and quarks) and hadrons (pions, protons, ...) happens. It will be de�ned and discussed in detail at
the subsection 5.1.1.
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Two comments are in order:

(i) For Tγ < me ' 0.5 MeV, neutrinos are already decoupled (Tdec ∼ 1 MeV) and they
are at di�erent temperatures than the plasma. These temperatures Tνi can be
calculated [58], but we will not do this step here;

(ii) The �rst and second regimes are not realistic since it is not possible to have at the
same time Tγ � 105 MeV and Tγ � 0.5 MeV (or even worse Tγ � 300 MeV and
Tγ � 105 MeV), but are shown for enlightenment of the reader. An exact calculation
should be performed via (3.3.18), accounting for the mixture of relativistic and
nonrelativistic behaviour.

We plot in �g. 3.1 a numerical evaluation of g as a function of the temperature of the
plasma Tγ, using (3.3.18), summing over all pertinent particles of the SM within the
di�erent temperature regimes. The calculation is considered within a temperature region
quite above the QCD transition temperature Tc ∼ 300 MeV.
At this point, we turn to another important quantity, the entropy density, which is used

within the Boltzmann equation (we talk about the latter in sec. 3.4). To derive it, we
�rst use the second law of thermodynamics, which states

d̄Q = dU + d̄W , (3.3.25)

where the heat di�erential d̄Q is given by d̄Q = TdS, where S = S (T, V,N) is a function
of state of the system called entropy, U is the system internal energy and W stands for
work, the energy added to or taken from the system. From (3.3.25), we have

TdS (T, V,N) = d [ρ (T )V ] + p (T ) dV + µ (T ) dN

= V
dρ

dT
dT + [ρ (T ) + p (T )] dV + µ (T ) dN . (3.3.26)

Notice that the functions µ, p and ρ depend on the temperature T only. First, µ = µ (T )

cannot depend either on the volume or the number of particles because the observable
which determines whether an hypothetical process φ1 + φ2 ↔ φ3 + φ4 will happen is the
cross section, which depends ultimately on s = (p1 + p2)2; s is related to T since the latter
is what provides the necessary kinetic energy for that process to occur. Thus, when T

becomes su�ciently small, the process considered is not likely to happen anymore because
of the consequent s drop. In the end, the φi in our example is forced to decouple from
the surrounding particles.
Now for the case of ρ = ρ (T ) and p = p (T ), it is clear from (3.3.6), (3.3.7), (3.3.8),

(3.3.12), (3.3.13), (3.3.14) that they can only depend on mχ, µχ and Tχ. mχ enters as an
input parameter, therefore in the end we have the functions µ, ρ and p depending only
on T . Hence,

∂S (T, V,N)

∂T
=
V

T

dρ (T )

dT
,

∂S (T, V,N)

∂V
=
ρ (T ) + p (T )

T
,

∂S (T, V,N)

∂N
=
µ (T )

T
.
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On S (T, V,N) is imposed the condition

∂2S (T, V,N)

∂V ∂T
=
∂2S (T, V,N)

∂T∂V
, (3.3.27)

which implies
dp (T )

dT
=
ρ (T ) + p (T )

T
. (3.3.28)

Also, we can �nd from
∂2S (T, V,N)

∂N∂T
=
∂2S (T, V,N)

∂T∂N
(3.3.29)

the expression
dµ (T )

dT
=
µ (T )

T
. (3.3.30)

Putting (3.3.28) and (3.3.30) into (3.3.26), we obtain

TdS (T, V,N) = d [ρ (T )V ] + p (T )V +

[
V
dp (T )

dT
dT − V dp (T )

dT
dT

]
+µ (T ) dN +

[
N
dµ (T )

dT
dT −N dµ (T )

dT
dT

]
dS (T, V,N) = d

[
p+ ρ+ µN

V

T
V

]
≡ d

[
p+ ρ+ µn

T
V

]
. (3.3.31)

Therefore, apart from an additive constant, the entropy S (T, V,N) and the entropy den-
sity s (T, n) are given by

S (T, V,N) =
p+ ρ+ µn

T
V , s (T, n) ≡ S (T, V,N)

V
=
p+ ρ+ µn

T
. (3.3.32)

We will neglect the chemical potential µ for the following reasons:

• In thermodynamic equilibrium, the chemical potential for neutral particles is null.
In fact, if one considers the following reversible processes: φ0 + φ0 
 φ+ + φ− and
φ0 + φ0 + φ0 
 φ+ + φ−, which are allowed by charge conservation, they yield
2µ0 = µ+ + µ− and 3µ0 = µ+ + µ−. They imply that µ0 = 0;

• For charged particles, as indicated in the frist item, we obtain µ+ = −µ−. Also,
considering thermal equilibrium, particle and antiparticle have roughly the same
number densities, n+ ' n−, therefore the term 1

T
(µ+n+ + µ−n−) in the entropy

density de�nition yields µ+

T
(n+ − n−) ' 0.

In the end, we just have to calculate

s =
ρ+ p

T
. (3.3.33)

As we did for the total energy density ρ (3.3.15), we can do the following de�nition for
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the total entropy density (all species being fed by the temperature Tγ):

s =
∑

χ=interacting

sχ =
2π2

45
hT 3

γ . (3.3.34)

The sum over interacting particles means we consider all the particles which contribute
to the entropy of the plasma when interacting in thermal equilibrium. We de�ned

h ≡
∑
χ

h(χ) , (3.3.35)

h(χ) ≡ sχ
45

2π2

1

T 3
γ

. (3.3.36)

We can express h(χ) as

h(χ) = gχ
15

4π4

∞̂

xχ

dz

(
4z2 − x2

χ

)√
z2 − x2

χ

ez−ξχ ± 1
, (3.3.37)

where xχ ≡ mχ/Tγ and ξχ ≡ µχ/Tγ. The plus sign for fermions and minus sign for bosons.
We can see from the last equation that relativistic particles contribute much more than
nonrelativistic ones to the total entropy density due to xχ � 1 for the latter. Note also
that if the particle is relativistic, its h(χ) value can be evaluated from (3.3.12), (3.3.13),
(3.3.14) and (3.3.33). Therefore, we can write

h =
∑

χ=int. rel. bosons

gχ +
∑

χ=int. rel. fermions

7

8
gχ . (3.3.38)

The value of h changes when the temperature drops below the mass of a particle in
the plasma, as we observed for the function g. Then, this particle will not contribute
to (3.3.38) anymore. The exact transition between the two stages should be calculated
numerically using the expression (3.3.37) for the particle that becomes relativistic.
We avoid examplifying here, since when Tχ = Tγ, h and g turn out to be identical. In

�g. 3.1, we compare h and g above Tc.

The di�erence between the two curves lies on the following feature: the two functions
would be equal if every particle was in equilibrium all the time (Tχ = Tγ), which is visible
in the �gure for Tγ & 500 GeV. However, when particles decouple from thermal equilib-
rium, they no longer share the same temperature as before the decoupling. g can still be
calculated through (3.3.15) if we know Tχ of all decoupled particles, as well as h through
(3.3.34), however their dependence on the temperature ratio r ≡ (Tχ/Tγ) is di�erent, ∝ r4

for ther former and ∝ r3 for the latter; also one must note the term
(
4z2 − x2

χ

)
inside h(χ)

expression, as opposed to (4z2) within the g(χ) de�nition. The di�erence between these
terms is noticeably more important than the rn discrepancy for the region considered in
the �gure, i.e. for 1 GeV ≤ Tγ ≤ 1000 GeV. For the region T ∼ 0.1 MeV, one can note
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Figure 3.1: Plot of h and g as a function of the plasma temperature Tγ. We do not show
the �ne behaviour of the QCD decon�nement transition (T ∼ 0.3 GeV), leaving this range
to section 5.1, where it will be discussed more precisely.

that the rn dependece is more prominent for the behaviour of g and h, as we will see sec.
5.1, where a wider temperature region is considered.

3.4 The Boltzmann equation

In this section, we are going to provide the tools to the calculation of thermal relic
densities, i.e. the densities of particles which decoupled from the plasma. This task can
be achieved through the Boltzmann equation. Since we will not go through the explicit
derivation of the latter, we refer the reader to [59�61]. We will though provide the reader
with an intuitive insight of the equation through an example an related observations.
Firstly, let us write the Boltzmann equation for a particle species χ interacting through

the process χ+ χ
 [any allowed species],

ṅχ + 3Hnχ = −〈σvMøl〉
(
n2
χ − n2

χ,eq

)
, (3.4.1)

where 〈σvMøl〉 is the thermally averaged annihilation cross section of the considered parti-
cle, vMøl is the Møller velocity involving the initial particles, H is the Hubble parameter,
nχ is the number density of the species χ, and nχ,eq is the thermal equilibrium number
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density of χ. The de�nition of 〈σvMøl〉 is

〈σvMøl〉 =

´ ´
σvMøldn

eq
χ dn

eq
χ´ ´

dneqχ dn
eq
χ

=
1

8m4T
[
K2

(
m
T

)]2 ˆ ∞
4m2

σ
(
s− 4m2

)√
sK1

(√
s

T

)
,

(3.4.2)

where dneqχ = gχfχ (~p) d3p

(2π)3 as de�ned in eq. (3.3.1), and vMøl =
(
|~v1 − ~v2|2 − |~v1 × ~v2|2

)1/2
=

((p1·p2)2−m2
1m

2
2)

1/2

E1E2
, where 1 and 2 are the initial colliding particles.

Let us describe every term in the eq. (3.4.1):

• The �rst term is simply the rate at which nχ evolves with time;

• The second one accounts for the expansion of the universe. This term states that
ṅχ < 0 as the universe dillates, which is the e�ect one would expect since a number
density ni is inversely proportional to the considered volume, and as the volume
turns bigger, ni gets smaller;

• The third term accounts for the interaction of χ with the surrounding environment,
and also has the e�ect of decreasing nχ. 〈σvMøl〉 takes into its de�nition the cross
section of the processes χ + χ → [any allowed particles], thus its interpretation as
an interaction term; additionally, the squared n2

χ = nχnχ means that the initial
particles are 2 χ particles.

When nχ = nχ,eq � i.e. the particle χ is still in thermal equilibrium � the third
term vanishes, which means that there is no preferred direction of the allowed pro-
cesses, χ+χ
 [any allowed particles]. When the temperature of the plasma drops
su�ciently so that 〈σvMøl〉 is not e�cient enough to maintain the particle χ at
thermal equilibrium, the particle χ is said to freeze out (or decouple). After its
decoupling, the particle density evolves following the Hubble parameter.

We must comment that the form of the third term 〈σvMøl〉
(
n2
χ − n2

χ,eq

)
only applies

to the case where two χ particles are in the initial state. For example, if the pro-
cess χ + χ 
 χ + [any allowed particle] turns dominant, the Boltzmann equation third
term becomes 〈σvMøl〉

(
n2
χ − nχnχ,eq

)
and a di�erent behaviour is to be expected: χ

takes longer to decouple from the plasma, since its depletion is not as fast as the case
χ + χ 
 [any allowed particles]. We will nevertheless not consider such cases and refer
to eq. 3.4.1 as the Boltzmann di�erential equation for nχ.
For later use and convenience, we will de�ne 〈σv〉 ≡ 〈σvMøl〉.
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3.4.1 Rewriting the Boltzmann equation

It is convenient to replace time in the eq. (3.4.1) by the plasma temperature. For this
task, we need our previous de�nitions for h and g:

h (Tγ) =
45

2π2

s (Tγ)

T 3
γ

, (3.4.3)

g (Tγ) =
30

π2

ρ (Tγ)

T 4
γ

, (3.4.4)

where s (Tγ) and ρ (Tγ) are respectively the total entropy and energy densities of the
plasma of interacting particles, and Tγ is the plasma temperature. Now we de�ne the
variable Y ≡ nχ/s. Its time derivative reads:

dY

dt
=

1

s

dnχ
dt
− nχ
s2

ds

dt
, (3.4.5)

ds

dt
=

d

dt

(
S

R3

)
= −3S

R4
Ṙ = −3sH , (3.4.6)

s
dY

dt
= ṅχ + 3Hnχ , (3.4.7)

where we have used the condition of entropy conservation dS
dt

= 0 (when no external
energy is introduced).
Thus, the Boltzmann equation gets the form

dY

dt
= −s 〈σv〉

(
Y 2 − Y 2

eq

)
. (3.4.8)

We now use the chain derivative rule to obtain the derivative of Y with respect to x ≡
mχ/Tγ: dY/dt = dY/dx · dx/dt. Similarly, from eq. (3.4.6) we obtain

s = − 1

3H

ds

dt
= − 1

3H

ds

dx

dx

dt
. (3.4.9)

At this point, we have
dY

dx
=

1

3H

ds

dx
〈σv〉

(
Y 2 − Y 2

eq

)
. (3.4.10)

ds/dx can be expressed, following eq. (3.4.3), as

ds

dx
=

2π2

45

(
dh

dTγ
T 3
γ + 3hT 2

γ

)
dTγ
dx

. (3.4.11)

Within the FRLW cosmology with no curvature (k = 0), the Hubble constant can be
written via one of the Friedmann equations,

H =

(
8

3
πGρ

)1/2

, (3.4.12)

23



3 Thermal relics

where ρ can be substituted by eq. (3.4.4), which yields

H =

(
4

45
π3Gg

)1/2

T 2
γ , (3.4.13)

Therefore,

1

3H

ds

dx
=

2π2

45

(
1
3
dh
dTγ

Tγ + h
)
dTγ
dx(

4
45
π3Gg

)1/2
. (3.4.14)

In the end, the Boltzmann equation can be written as [59,60]

dY

dx
= −mχ

x2

(
1
3
dh
dTγ

Tγ + h
)

(
45
π
Gg
)1/2

〈σv〉
(
Y 2 − Y 2

eq

)
, (3.4.15)

where we used dTγ
dx

= −mχ
x2 . For later use, we de�ne the function

g1/2
∗ =

h

g1/2

[
1 +

1

3

d (lnh)

d (lnTγ)

]
, (3.4.16)

which yields eq. (3.4.15) as

dY

dx
=

√
π

45G
mχg

1/2
∗ 〈σv〉

1

x2

(
Y 2
eq − Y 2

)
. (3.4.17)

In the next subsection, we solve the last equation for a simple interaction.
Lastly we address the expression of the relic density. For WIMPs (weakly interacting

massive particles), numerically solving eq. (3.4.17) from an initial point xi . 10 is enough,
yielding a �nal result independent of the initial value Y (xi). From xi, one needs to
numerically track the behaviour of Y (x) up to x0 (today), however for computational
and accuracy reasons, x0 ' 1000 is su�cient4. The present scaled relic density Ωχ times
the squared scaled Hubble parameter h can then be computed from

Ωχh
2 =

ρχ
ρcrit

h2 , (3.4.18)

=
mχY0s0

3H2
0/8πG

(
H0

100 km s−1 Mpc−1

)2

, (3.4.19)

where Y0 = Y (x = 1000) and s0 = 2891.2 cm−3 (today's entropy density); and we sub-
stituted ρcrit = 3H2

0/8πG (today's critical energy density). Note that H0 cancels on the
right hand side, yielding in the end (after adding the values of G and s0)

Ωχh
2 = 2.7889 · 108Y0

mχ

(1GeV)
. (3.4.20)

4If one takes into account the precision achieved by PLANCK observations, Ωh2 = 0.1193 ± 0.0014, it
is only necessary to obtain �ve orders of magnitude precision on the numerical solution of Y (x0).
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3 Thermal relics

Do not confuse here the symbol h for the scaled Hubble parameter and the function of
entropy degrees of freedom.

3.4.2 An example: How the Boltzmann equation works

For sake of clarity, we now perform an example of numerical computation regarding the
decoupling of a species from the plasma. For this task, we assume an e�ective interaction
Lagrangian (for this species) of the kind

Le� =
λ

4
χ2φ2 , (3.4.21)

where χ is a real scalar �eld representing the pertinent particle, and φ is some SM real
scalar �eld.
First, we need to �nd an expression for the cross section of the process χ+χ→ φ+φ. Up

to tree-level Feynman diagrams, we have just a vertex diagram, which yields an amplitude

iM = −iλ , (3.4.22)

For the cross section (
dσ

dΩ

)
CM

=
|M|2
64π2s

ξ34

ξ12

, (3.4.23)

where ξij =
(
s− (mi +mj)

2)1/2 (
s− (mi −mj)

2)1/2
, we obtain

σχφ =
|λ|2
16πs

(
s− 4m2

φ

s− 4m2
χ

)1/2

. (3.4.24)

Next, we calculate 〈σv〉, considering mφ = 0 for simplicity, which yields

〈σv〉 =
|λ|2

32πm2
χ

[
K1

(mχ
T

)
K2

(mχ
T

)]2

, (3.4.25)

where K1 and K2 are modi�ed Bessel functions of the �rst and second orders, respectively.
We plot in �g. 3.1 the evolution of Y as x evolves according to (3.4.17).
As one can notice, there is an xf (∼ 20 for WIMPs) when the particle decouples, i.e. it

stops interacting with the other particles. Before this event, the particle density followed
the equilibrium function Yeq. Thereafter, its Y settles at a constant value since its inter-
action rate is negligible compared to the Hubble term. Also, we see that the highest cross
section σχφ (with λ = 10−1) corresponds to the solution which shows the largest xf , and
therefore freezes out the latest; and the lowest σχφ represents the lowest xf and decouples
the earliest.
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Figure 3.1: This �gure shows how a nonrelativistic particle decouples. In it, are shown the
equilibrium distribution Yeq (red line) which behaves as Yeq = neq/s =

45gχ
4π4

x2K2(x)
h(mχ/x)

; and
numerical solutions of Y for λ = 10−1, λ = 10−2 and λ = 10−3. We took mχ = 100 GeV
and mφ = 0.
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4 Dark Matter Detection

This chapter is dedicated to the overview of experiments and theoretical tools which
are the basis for ruling out or constraining models which include possible dark matter
candidates. Direct and indirect detection constraints will be used further in our text,
therefore a brief survey and study of them will be provided.

4.1 Direct detection of Dark Matter

Although WIMPs are only weakly coupled to baryons, they can occasionally scatter elas-
tically o� nuclei. Several experiments [62] try to look for possible direct detection signals.
Examples of such experiments are:

• XENON1T experiment [63];

• LUX (Large Underground Xenon) experiment [64];

• and PandaX-II experiment [65],

whose limits we plot in �gure 5.5 along with other sources, shown for reference, such as
CDMS (Cryogenic Dark Matter Search) [66] and XENON100 [67].
The direct detection experiments try to measure the nuclei recoil energies, which are the

result from interactions. The energies involved are estimated to be of order 10 keV, which
is below the typical nuclear energy scales, therefore the non-relativistic limit (v � c) can
be taken within the calculations. The magnitude of the WIMP-nucleus scattering cross
section is sensitive to the exact form of the interactions of the dark matter particle with
the individual nucleons. Because of that, we need to distinguish spin-dependent from spin-
independent interactions for the experimental data are separated into these two classes.
For spin-dependent interactions, the scattering amplitude changes sign with spin di-

rection, so that paired (null total spin) nucleons contribute zero to the full scattering
amplitude and only the residual unpaired (nonzero total spin) nucleons contribute. Thus
only nuclei with an odd number of protons plus neutrons can probe spin-dependent inter-
actions. For spin-independent interactions, all the partial scattering amplitudes (related
to each nucleon) are summed no matter the pairing of nuclear spins. The three collabo-
rations cited above probe these two types of interactions.
Below we classify the interactions [68] relevant to direct detection for a dark matter χ

(a scalar ϕ or a fermion ψ) in the low velocity regime (since we consider cold dark matter):

• Vector-vector interaction. χ̄←→∂ µχq̄γ
µq

v�c' 2mχ̄
←→
∂ µχ

[
a†a+ b†b

]
δµ0 is spin-inde-

pendent because no spin operators appear inside of it;
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• Vector-axial interaction. χ̄←→∂ µχq̄γ
µγ5q

v�c' 2mχ̄
←→
∂ µχ

[
a†a
(
ξ†σiξ

)
+ b†b

(
η†σiη

)]
·

· δµi is spin-dependent because σi are spin operators;

• Scalar-pseudoscalar interaction. χ̄χq̄γ5q
v�c' χ̄χ× 0 is spin-independent for it is

negligible in this limit;

• Scalar-scalar interaction. χ̄χq̄q v�c' 2mχ̄χ
[
a†a+ b†b

]
is spin-independent for the

same reason as for the vector-vector interaction,

where q represents a quark �eld; γµ is a dirac matrix and χ̄ represents either ϕ† or ψ̄. We
choose not to describe interactions with Γµ = γµ, γ5, γ

µγ5 for the ψ̄Γµψ bilinears, since
the goal here is to de�ne spin-dependent and spin-independent interactions; also because,
later on in sec. 5.2.3, we deal with a WIMP which interacts with quarks with a trivial
Γµ = 1, i.e. as ψ̄ψ.
The scalar and vector quark bilinears just yield the number operator. Therefore, when

these operators are evaluated in the nuclear state, they add coherently. The axial-vector
bilinear q̄γµγ5q on the other hand yields the spin operator, and hence couples to the net
spin of the nucleus. The sum over the entire nucleus for the two cases is given in [68].
There are no χ bilinear terms of the kind χ̄∂µ∂ν (χ) q̄σµνq (two derivatives coupled

to a totally antisymmetric tensor1) since they yield zero. Even if the operation of the
derivatives was di�erent, e.g. ∂µχ̄∂νχ or ∂µ∂ν (χ̄)χ, the result would be null.2

4.1.1 Theoretical description

In order to theoretically describe direct detection of WIMP collisions against nuclei, we
need to introduce some tools. We describe theoretically only the SI cross section treat-
ment, since only this kind will be necessary in sec. 5.2.3 where we describe the dark
matter constraints on the 3− 3− 1 model (the DM there is the fermion nR3). There we
�nd out that the interaction of nR3 with quarks is given mostly by ∝ (nR3)cnR3q̄iqi, thus
SI interaction.
For an interaction of the kind

Lint = Gqχ̄χq̄q , (4.1.1)

where χ is a majorana fermion and q is a quark �avour, the dark matter-nucleus cross
section is spin-independent (SI) (see ref. [68]),

σχN =
4

π

m2
NM

2
χ

(mN +Mχ)2 [(A− Z) fn + Zfp]
2 , (4.1.2)

where A and Z are respectively the mass and the atomic numbers of the target nucleus.
For example, xenon has Z = 54 and A = 131. mN is the nucleon mass which is equal to

1σµν = i
2 [γµ, γν ] = i

2 (γµγν − γνγµ).
2Because of the hermiticity of the Lagrangian, the last term is zero. It can be shown that its hermitian
conjugate is minus the term itself.
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mp ' 938.27GeV for the proton and mn ' 939.57GeV for the neutron.

The e�ective coupling to neutrons and protons fp,n can be written in terms of the dark
matter couplings to quarks3. In the case of a scalar interaction,

fp,n =
∑

q=u,d,s

Gq√
2
f

(p,n)
Tq

mp,n

mq

+
2

27
f

(p,n)
Tg

∑
q=c,b,t

Gq√
2

mp,n

mq

, (4.1.3)

where Gq denotes the dark matter e�ective coupling for a given quark species as in eq.
(4.1.1). The �rst term on the right-hand side of eq. (4.1.3) re�ects scattering with light
quarks while the second term accounts for interactions with gluons through a heavy
quark loop; f (p,n)

Tq are density functions of each quark q within the proton p or neutron n;

and f (p,n)
Tg are density functions of gluons within p or n and are related to the quark

density functions f (p,n)
Tq through f (p,n)

Tg = 1−∑q=u,d,s f
(p,n)
Tq . The values f (p,n)

Tq have been
measured to be (we write only the mean values)

fpTu = 0.020, f pTd = 0.026, f pTs = 0.118 ∴
∑

q=u,d,s

fpTq = 0.164 , (4.1.4)

fnTu = 0.014, fnTd = 0.036, fnTs = 0.118 ∴
∑

q=u,d,s

fnTq = 0.168 . (4.1.5)

Consequently, they yield

fpTg = 1−
∑

q=u,d,s

fpTq = 0.836 , (4.1.6)

fnTg = 1−
∑

q=u,d,s

fnTq = 0.832 . (4.1.7)

If one can de�ne G0 ≡ Gq/mq
4, this assumption leads to

fp,n =
G0mp,n√

2

{ ∑
q=u,d,s

f
(p,n)
Tq +

2

9
f

(p,n)
Tg

}
,

=
G0mp,n

9
√

2

{
2 + 7

∑
q=u,d,s

f
(p,n)
Tq

}
.

3Dark matter does not couple directly to gluons due to its non-coloured nature.
4In sec. 5.2.3, our fermion dark matter candidate nR3 interacts with quarks mainly through the scalars
channel. On one hand we have ∝ (nR3)

c
nR3φ2, whereas on the other hand the Yukawa potential

provides
(
mij
u ūiLujR H̃ +mij

d d̄iLdjRH + h.c.
)
. In the end, the nR3 interaction with q is given through

a scalar propagator, yielding the e�ective coupling ∝ mqi(nR3)
c
nR3q̄iqi (observe that a mixing of φ2

with H is necessary for the interaction term to exist). Therefore, in our case, one can separate G0

into Gq/mq for each separate quark.
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Since
∑

q=u,d,s f
p
Tq '

∑
q=u,d,s f

n
Tq, consequently fp ' fn, we can write eq. (4.1.2) as

σχN ' 4

π

m2
NM

2
χ

(mN +Mχ)2A
2f 2
p , (4.1.8)

which enables the de�nition of a cross section per nucleon,

σχ,p ≡
σχN
A2

=
4

π

m2
NM

2
χ

(mN +Mχ)2f
2
p , (4.1.9)

with fp given by

fp =
G0mp,n

9
√

2

{
2 + 7

∑
q=u,d,s

fpTq

}

' 9.38 · 10−1 GeV

9
√

2
{2 + 7 · 0.164}G0

[
GeV−3

]
(4.1.10)

' 0.23 ·
(

G0

GeV−3

)
GeV−2 .

Substituting the latter into the σχ,p expression, it yields

σχ,p ' 0.07 · m2
NM

2
χ

(mN +Mχ)2

(
G0

GeV−3

)2

GeV−4 . (4.1.11)

Now, using the conversion factor

1 pbarn = 10−36 cm2 = 2.5681 · 10−9 GeV−2 , (4.1.12)

we have

σχ,p '
0.07

2.5681 · 10−9
·
(
m2
NM

2
χ/ (mN +Mχ)2

GeV2

)(
G0

GeV−3

)2

pbarn

' 2.7 · 107 ·
(
m2
NM

2
χ/ (mN +Mχ)2

GeV2

)(
G0

GeV−3

)2

pbarn . (4.1.13)

Thus in the end we have the cross section per nucleon dependent on the coupling G0

which is dependent on the coupling of the dark matter particle to the Higgs particle
CDM2H . Therefore the direct detection experiments will constrain the latter in a way
that the cross section per nucleon will be below the limits set by them.

One comment is due. Note that we obtained eq. (4.1.13) through some approximations.
Though this derivation provides enlightenment to the theoretical procedure, in reality if
one desires to compare precisely theory with experiment, he must obtain σχ,p =

σχN
A2

through eq. (4.1.2) and not via eq. (4.1.8).

Below, we present �ve upper bounds on the SI cross section σSIχ,p, as a function of the
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Figure 4.1: Spin-independent limits on σχ,p from XENON1T [63], PandaX-II [65], LUX
[64], CDMS [66] and XENON100 [67] experiments.

dark matter particle mass mDM.

4.2 Indirect detection of Dark Matter

The philosophy behind indirect detection of dark matter consists in detecting the sig-
natures of the annihilations or decays of dark matter particles in the �uxes of cosmic
rays, for example: charged particles (electrons, positrons, protons, antiprotons, ...), hard
photons and neutrinos. Additonally, the measurements made by the PLANCK satellite
(as well as WMAP and COBE before it) probe the anisotropies of the CMB as hints for
dark matter.
We provide the references for some current experiments:

Neutrinos. Large neutrino detectors such as IMB [69], Kamiokande [70], Macro [71],
Super-Kamiokande [72], AMANDA [73] and BAIKAL [74] have obtained constraints
on DM neutrino �uxes;

Charged particles. Results have already been obtained with PAMELA [75], Fermi-LAT
[76] and AMS [77] (all related to positron measurements). Searches for antiparticles
(e+, p̄, antideuterons, ...) are cleaner for they are much less abundant than the
corresponding particles;

Hard photons. Photons travel in straight lines through our galaxy due to its electric
charge neutrality, making the task to locate its source simpler, while for charged
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Figure 4.1: Indirect detection limits on 〈σv〉 from CMB anisotropies analysis [84] for DM
annihilation into e+e− pairs (green dashed line) and indirect searches from searches of the
Milky Way dwarf spheroidal satellite galaxies [81] for DM annihilation into τ+τ−, bb̄ and
uū pairs (black dot-dashed, blue dashed and orange dot-dot-dashed lines respectively).

particles, the uncertainty on the source location is an extra factor since our knowl-
edge about the galactic magnetic �eld is limited, thus it would be impossible to
focus at a certain direction where the products signal would be particularly strong.
Another advantage of γ rays is that they are present in a variety of possible �nal
states: hard photons can originate from the decay of neutral pions and other hadrons
that result from the hadronization of q̄q �nal states or the decay of τ leptons, and
can be produced from energetic e+ or e− through inverse Compton scattering of
ambient photons. The most stringent limits stem from [78�81] which assume the
DM annihilation into di�erent channels such as bb̄ or τ+τ−, which in turn decay
into γ rays; we plot [81] in �g. 4.1;

CMB photons. The limits on 〈σv〉 stem from the fact that WIMP annihilations heat
up the plasma in the recombination epoch when neutral atoms �rst formed [82,83],
thereby delaying the decoupling of the CMB photons and distorting the pattern
of CMB anisotropies. The strongest limit on 〈σv〉 from spectral distortions of the
CMB, assuming WIMP annihilation into e+e− pairs, is contained in ref. [84], which
is also drawn in �g. 4.1.

The results of indirect searches and CMB analysis shown in �g. 4.1 are in terms of
the thermal annihilation cross section 〈σv〉. For the former, this fact is not hard to
understand: after the WIMP freezout, if its number density is high enough, it can produce
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through self-annihilation energetic standard model particles such as e+e−, b̄b or τ+τ− (this
production happens up to the point when nχ ∼ H/ 〈σv〉, as will be explained in sec. 6.1).
These particles in turn yield γ rays, consequently the γ signal �ux φs (photons cm−2 s−1)

depends linearly on 〈σv〉. Whereas for the CMB analysis, the dependence on 〈σv〉 stems
from the fact that WIMP annihilation heats up the plasma in the recombination epoch,
thus delaying the decoupling of the CMB photons and distorting the pattern of CMB
anisotropies. The energy release per unit time and unit volume dρχ/dt depends linearly
on 〈σv〉.
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5 Standard thermal scenario
applications

In this section we focus on two works which rely on the the standard scenario of thermal
WIMP. We will discuss in 5.1 the precise calculation of relativistic degrees of freedom in
the early universe, considering an accurate treatment of the QCD phase transition [85],
along with the consequences on the WIMP relic density evaluation in a model-independent
way. The second work in sec. 5.2 is focused on a speci�c model, the B − L extension of
the SM [86], in which we assess the possibility of a fermionic dark matter candidate.

5.1 Behaviour of h and g near Tc and its consequences

We now pull the attention of the reader to the behaviour of the functions h and g for the
temperature region around Tc ∼ 300MeV.
Why is a careful study around Tc necessary for the evaluation of h and g? For early

studies [60,87], the entropy density s and energy density of the plasma ρ (and consequently
h and g) were calculated treating the particles contained within the plasma as relativistic
free particles, i.e. ignoring all the interactions between SM particles. However, it was
realized [59, 60] that this approach is not valid for temperatures near the decon�nement
transition from hadronic to partonic degrees of freedom, i.e. from protons, pions, kaons,
etc. to quarks and gluons. For WIMPmasses aroundmχ ∼ 20 ·Tc ∼ 6 GeV, the respective
relic densities are a�ected by the QCD crossover transition, therefore a careful study
should be carried.
Why should one worry about the precision on h and g? Currently, in the framework of

the minimal cosmological model, measurements on the CMB by the PLANCK collabora-
tion set the scaled CDM relic density to Ωch

2 = 0.1193± 0.0014 [45], thus with an error
of less than 1.5%. Therefore, if one desires to take advantage of this precision and draw
predictions from it, theoretical results should have an equal or higher precision.

5.1.1 Our calculation method of h and g

Much above the electron mass, we treat all the SM particles without strong interactions
as free particles. Therefore, for leptons, electroweak gauge bosons and the SM Higgs
boson, we use eqs. (3.3.18) and (3.3.37) to calculate their degrees of freedom. For g(T )

and h(T ) evaluation, we consider free massive W± and Z bosons (with three d.o.f. each)
and one physical Higgs boson, even above the electroweak symmetry breaking where one
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ct an bn dn
3.8706 −8.7704 3.9200 0.3419
t0 ad bd dd

0.9761 −1.2600 0.8425 −0.0475

Table 5.1: Parameters used in eq. (5.1.1) to describe the pressure of QCD with 2 + 1
�avours.

should in principle use a more precise description and consider massless gauge bosons
(with two d.o.f. each) and a massive complex Higgs doublet (with four d.o.f.). The
di�erence between these treatments is small, and only a�ects WIMPs with massses above
∼ 2 TeV. A �nal comment about this evaluation of free particles is in order: for the Higgs
physical mass mH ' 125GeV, within the Standard Model, the electroweak symmetry
breaking only leads to a smooth crossover [88�90], thus the comoving entropy density
remains constant1, as assumed in the derivation of eq. (3.4.17).
Now we focus on the evaluation of h and g evaluated near the decon�nement temper-

ature (a smooth crossover [91]). Recall that the former can be found from the entropy
density s, which from (3.3.33) reads s(T ) = [ρ(T ) + p(T )] /T , whereas the latter is eval-
uated from the energy density ρ. First we discuss the pressure p (T ).
We use the results of a lattice calculation with Nf = 2 + 1 active �avours (i.e. u and d

quarks have same masses and the s quark has a higher mass) [92], where its temperature
application range is 100MeV to 400MeV. This evaluation is consistent with the similiar,
independent work [93]. The ref. [92] provides a parametrization of the pressure due to
u, d, s quarks and gluons valid in that temperature interval:

p

T 4
=

1

2
[1 + tanh (ct (t̄− t0))]× pid + an/t̄+ bn/t̄

2 + dn/t̄
4

1 + ad/t̄+ bd/t̄2 + dd/t̄4
, (5.1.1)

where t̄ ≡ T/Tc, Tc = 154MeV being the QCD transition temperature. pid = 19π2/36 =

π2/30 ·
[
7 (gu + gd + gs) /8 + 8gg

]
is the ideal gas value of p/T 4 for QCD with three mass-

less quarks. The values of the numerical parameters appearing in eq. (5.1.1) are given
in table 5.1. For T � Tc (or t̄ � 1), eq. (5.1.1) provides p

T 4 = pid since tanh (x) ' 1

for large x. According to [92], eq. (5.1.1) is in agreement with the available perturba-
tive calculations at temperatures higher than 400MeV. Therefore, we use this pressure
parameterization for the u, d, s quarks and gluons contribution for temperatures above
100MeV.
Now we need to know the dependence of ρ on the plasma temperature. This is obtained

from the relation between the trace of the energy-momentum tensor (also called trace
anomaly) and the pressure [92]:

I(T )

T 4
=
ρ− 3p

T 4
= T

d

dT

( p

T 4

)
. (5.1.2)

1If the SM electroweak breaking was a phase transition, the comoving entropy density would be discon-
tinuous at T = vSM ' 246GeV.
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We now have two equations for two functions, s(T ) and ρ(T ). After evaluating them, one
needs just to calculate eqs. (3.3.18) and (3.3.37) to �nd h (T ) and g (T ).
The e�ect of the charm quark is not negligible at temperatures around Tc [94]. Its

contribution to the functions g(T ) and h(T ) using lattice QCD results from table 6 of [95]
using the physical ratio of charm and strange quark masses, mc/ms = 11.85 [96]. This
yields pc/T 4, from which the charm contributions to ρ(T ) and s(T ) can be obtained as
described above. This description is valid for T ≤ 1GeV. For larger temperatures we
smoothly match to the ideal gas results (3.3.18) and (3.3.37), using a �t function similar to
(5.1.1) with pcid = 7π2/60 = π2/90 · 7gc/8 and di�erent values for coe�cients and powers
to interpolate between the two regimes. This ensures that the functions g and h, as well
as their �rst derivatives, are smooth everywhere. Smoothness of h is specially important
for the Boltzmann equation (3.4.17), since it depends on g1/2

∗ ∝ T · dh/dT + 3.
For the bottom and top quarks, their contributions are only signi�cant at high tem-

peratures, where the QCD interactions have become relatively small. Therefore, we treat
these quarks as free particles, with on-shell masses given by the Particle Data Group [97].
Their contributions to pressure are then pb+t = 2 · 7π2/60 = 2 ·π2/90 · 7gc/8.
For T < Tc, the QCD behaviour can be best described by the hadron resonance gas

model [98], in which all the hadrons and hadron resonances are considered to contribute
to the thermodynamics quantities as free particles. This has been used in the early
treatments [99, 100]. Ref. [92] shows that for temperatures between 100MeV and Tc, it
matches well to the QCD results parameterized in eq. (5.1.1). A parametrization of the
trace anoaly in this model can be given by [98]:

I(T )

T 4
=
ρ− 3p

T 4
= a1T + a2T

2 + a3T
4 + a4T

10 , (5.1.3)

where a1 = 4.654GeV−1, a2 = −879GeV−3, a3 = 8081GeV−4, a4 = −7039000GeV−10.
This parametrization is valid for 70MeV ≤ T ≤ Tc. We use it to describe the contribution
from strongly interacting particles for all temperatures T < 100MeV, using cubic splines
to interpolate smoothly to QCD results at T > 100MeV. At very low temperatures, eq.
(5.1.3) is not accurate, since the hadronic contributions to g and h should in principle
account for charmed particles. However, this is not important for us since hadronic
contributions become exponentially small at T � mπ = 140MeV. Hence, for T �
100MeV the hadronic contribution is in any case very small and does need a very accurate
description.
If one inverts eq. (5.1.2), the pressure can be calculated:

p(T )

T 4
=
p0

T 4
0

+

ˆ T

T0

dT ′
I(T ′)

T ′5
, (5.1.4)

using the numerical result p(T0)/T 4
0 = 0.1661 at T0 = 70MeV [98]. The integral in eq.

(5.1.4) can be analytically evaluated if I(T ) is given by eq. (5.1.3). Therefore, once again
we are given an analytical parameterization of the pressure and can compute ρ and s as
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described above.
At temperatures below 1MeV, the e�ect of neutrino decoupling should be included2.

At �rst, right after the neutrino decoupling the expansion of the universe a�ects photons
and neutrinos in the same way, i.e. the photon and neutrino temperratures remain the
same. This changes only once e+e− pairs begin to annihilate, at T ' me. Since neutrinos
are already (almost) decoupled by this time, the entropy that was stored in electrons and
positrons gets transferred (almost) entirely to photons, not to neutrinos. In the limit where
neutrino decoupling was complete when electron decoupling began, this argument shows
that for T � me the ratio of relic photon and neutrino temperatures is Tγ/Tν = (11/4)1/3.
Actually (electrons) neutrinos were not completely decoupled at T ∼ me, when e+ and
e− start to annihilate. Therefore, some energy and entropy from e+e− annihilation goes
to the neutrinos. This e�ect can be described by writing

h = 2

[
1 +

7

8
Ne�

(
4

11

)]
, (5.1.5)

g = 2

[
1 +

7

8
Ne�

(
4

11

)4/3
]

, (5.1.6)

with Ne� ' 3.046 [101].3 Note that these expressions include the contribution from the
photon, with gγ = 2. Eqs. (5.1.5) and (5.1.6) are valid for T � me, in practice for
T ≤ 50 keV. As mentioned, for T > 1MeV we have Tν = Tγ. For 50 keV < T < 1MeV, we
use numerical results from �gure 1 of [102] to determine the evolution of Tν with respect
to Tγ. This can then be plugged into eqs. (5.1.5) and (5.1.6) instead of Tν/Tγ = (4/11)1/3

to compute the photon and neutrino contribution to g(T ) and h(T ). Note that the
temperature T is de�ned to be that of the photons, T = Tγ.
After performing all the theoretical procedure described above, we obtain in �g. 5.1

the precise behaviour for h and g, as well as g1/2
∗ . The behaviour of these functions will

be in the next section compared with other calculation methods for obtaining h, g and
g

1/2
∗ , which will then give us a notion of what has been accomplished with our new study.
What is important to notice here is that these functions do not have any discon-

tinuity and behave smoothly at all temperatures, even for the most delicate regions
[100MeV, 1GeV] and around 246GeV, where respectively the QCD transition occurs and
the electroweak gauge symmetry is restored. The smooth behaviour is a consequence of
crossover transitions as opposed to phase transitions and should be observed for a correct
theoretical result.

2The interaction rate of νµ and ντ actually becomes smaller than the Hubble parameter at a temperature
of several MeV.

3Strictly speaking, the neutrinos cannot be assigned a temperature after electron decoupling, since their
distribution is non-thermal: the part of the energy from e+e− annihilation which goes to neutrinos
mostly goes to neutrinos with E ' me at the time of the annihilation; and since neutrino oscillation
probabilities are energy dependent, they also distort the thermal spectrum of individual neutrinos.
Nevertheless eqs. (5.1.5) and (5.1.6) accurately describe the behaviour of the functions g and h at
T � me.
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Figure 5.1: The functions g (T ), h (T ) (upper frame) and g1/2
∗ (T ) (lower) de�ned in eqs.

3.4.4, 3.4.3 and 3.4.16 as a function of the plasma temperature. For g1/2
∗ (T ), the peak at

approximately T = 10−1 GeV is due to the smooth crossover of the QCD decon�nement
transition. These curves were obtained following our method described in the text.
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5.1.2 Comparison with previous studies

In order to compare our work with known calculation studies for g, h and g1/2
∗ , we �rst

brie�y review the evaluation methods encoded in the widely used program packages for the
calculation of the WIMP relic density DarkSUSY [103], micrOMEGAs [104] and SuperISO

[105].

There existed some attempts to describe the thermodynamics of the early universe
around the decon�nement transition. In [99], the interactions between hadrons and be-
tween partons were approximated by simple non-relativistic potentials. On the other
hand, ref. [100] used free particles and de�ned the transition temperature from the
hadronic to the partonic phase as the temperature where the two calculations give the
same entropy density. The hadron resonance gas model, description of the hadronic phase,
was used in all subsequent calculations at su�ciently low temperatures, including our own.
One problem of the simple de�nition of the transition temperature used in [100] is that

it leads to a discontinuity in g(T ). To avoid this problem, ref. [58] used smooth functions
interpolating between hadronic and partonic phases. While these functions ensure that
not only g (T ) and h (T ), but also their derivatives are smooth, they were not based on
dynamical considerations. The authors advocated estimating the uncertainty by using
two quite di�erent values, 150 and 400 MeV, for the transition temperature. The same
functions were used in [59], the functions for a transition temperature of 150MeV are still
used by default in the computer packages mentioned above.
The �rst attempt to include the results of lattice QCD calculations was due to Hind-

marsh and Philipsen [106]. At the same time the most accurate lattice QCD calculations
did not include dynamical quarks. There was some evidence that the ratio of the true
pressure to the corresponding value for non-interacting particles shows little dependence
on the number of quark �avors [107]. Therefore, ref. [106] scaled the contribution of all
strongly interacting partons by the same correction function, determined from pure glue
lattice calculations [107]; at T = 1.2GeV, these were matched to perturbative calcula-
tions [108].
The treatment by Laine and Schroeder [94] is rather similar. However, their results are

based on a di�erent set of pure glue lattice QCD calculations [109�113]. Moreover, they
match to perturbative calculations at the much lower temperature of 350MeV. Finally,
they include the quark mass dependence up to next-to-leading order, O (g2), in the per-
turbative expansion. In particular, they point out that charm quarks make non-negligible
contributions already at temperatures of a few hundred MeV.
After commenting about the di�erences in the literature for the methods of treating

the decon�nement transition, we plot in �gs. 5.2 and 5.3 the functions g (T ), h (T ) and
g

1/2
∗ (T ) evaluated following four di�erent approaches: our method, devised in subsec.
5.1.1; and the evaluations used in Gondolo and Gelmini's [59], Laine and Schroeder's [94],
and Hindmarsh and Philipsen's [106] works.
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Figure 5.2: The function g (T ) de�ned in eq. (3.4.4), as a function of the temperature.
The original calculation by Gondolo and Gelmini [59], based on results from [58], are
shown by the blue dotted curve. The black dashed and green dot-dashed curves show
results from Hindmarsh and Philipsen's [106] and Laine and Schroeder's [94] respectively,
which are based on pure glue lattice QCD calculations. The red solid curves describe our
results, which are based on lattice calculations with Nf = 2+1 dynamical quark �avours.

5.1.3 Impact of g, h and g1/2
∗ on the relic density value

Since we include the e�ect of e+e− decoupling on the neutrino bakground, described by
Ne� = 3.046 in eq. (5.1.5), we obtained h (Tγ,0) = 3.9387 in our calculation; here the
present temperature Tγ,0 = 2.7255± 0.0006K [97]. Our current value of h is thus slightly
higher than h (Tγ,0) = 3.9138 of ref. [106] and h (Tγ,0) = 3.9139 of ref. [103]. Note that for a
given value of Yχ (Tγ,0), the �nal relic density Ωχh

2 is directly proportional to h (Tγ,0)T 3
γ,0,

since Ωχh
2 ∝ s0 from eq. (3.4.19).

There clearly are some di�erences between the four calculations. These are most visible
near the QCD decon�nement transition. Moreover, the di�erences are more visible in
g

1/2
∗ , largely due to the derivative term in eq. (3.4.16), which makes the di�erences
between the four treatments more prominent. We notice that the older calculation [58]
used in [59] overestimates g1/2

∗ to a moderate amount for T ' 0.1GeV, compared to all
three calculations using results from lattice QCD. The treatment of ref. [106] yields a
discontinuity at T = Tc, and hence a divergent derivative, giving a formally in�nite spike
in g1/2

∗ . The continuity has been smoothed out in micrOMEGAs [104], from which we took
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Figure 5.3: The functions h (T ) (top frame) and g1/2
∗ (T ) (bottom) de�ned in eqs. (3.4.3)

and (3.4.16), as a function of the temperature. The functions by Gondolo and Gelmini [59]
based on [58] are shown by the blue dotted curves. The black dashed and green dot-dashed
curves show results from Hindmarsh and Philipsen's [106] and Laine and Schroeder's [94].
The red solid curves describe our results.
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the numerical results for g and h. We see that this treatment still gives a noticeable spike
in g1/2

∗ . Apart from this spike, ref. [106] predicts a smaller value of g1/2
∗ in this temperature

range than we do. Finally, the prediction for g1/2
∗ from ref. [94] is quite close to our own

result, except for some oscillatory behavior just above the QCD transition temperature.
In order to explore the e�ect of changes in h and g1/2

∗ on the WIMP relic density4, we
solve the Boltzmann equation (3.4.17) numerically, following the numerical procedure de-
vised after that equation, in order to obtain the relic density Ωχh

2 = 2.7889 · 108Y0
mχ

(1GeV)
.

The change of the predicted WIMP relic density due to our more re�ned treatment of
the functions h and g1/2

∗ is illustrated in �gure 5.4. The upper frame shows results for a
temperature independent 〈σv〉, while in the lower frame we have assumed 〈σv〉 ∝ 1/x.
These behaviours describe the thermally averaged cross section at small velocity away
from the poles (i.e. if the WIMPs cannot annihilate into any particle φ with mφ ' 2mχ

) and thresholds (i.e. if the WIMPs are signi�cantly heavier than all relevant �nal-state
particles), for the cases where the annihilation occurs from a pure S-wave and pure P-
wave initial state, respectively. The latter occurs, for example, for a Majorana WIMP
annihilating into light SM fermions, or for a complex scalar annihilating through s-channel
exchange of a gauge boson. Not unexpectedly, we observe the largest di�erences for WIMP
masses of a few GeV, which decouple just above the QCD transition temperature. The
di�erences amount to up to 9% for the pure S-wave, and up to 12% for the pure P-wave.
The results of �gure 5.4 can be understood in more detail using the approximate ana-

lytical solution of the Boltzmann equation developed in refs. [60, 61]:

Y0 ∝
xf

g
1/2
∗ (Tf ) 〈σv〉 (Tf )

, xf ∝ ln

(
mχg

1/2
∗ (Tf ) 〈σv〉 (Tf )

h (Tf )

)
. (5.1.7)

Very roughly, xf ∼ 20 for WIMP masses and annihilation cross sections of interest.
This equation shows that g1/2

∗ a�ects the �nal result more strongly than h does, which
appears only logarithmically. The derivation of eq. (5.1.7) assumes that g1/2

∗ and h are
constant around the WIMP decoupling temperature Tf = m/xf . This is not a very good
approximation near the QCD decon�nement transition, where these functions change
rapidly, as we saw in �g. 5.3. However, we can see directly from the Boltzmann equation
that the most relevant temperature range is around the decoupling temperature. At higher
temperatures, Y is in any case close to its equilibrium value, which does not depend on
g

1/2
∗ . At temperatures well below the decoupling temperature, i.e. for x � xf , the right
hand side of the Boltzmann equation (3.4.17) is suppressed by the explicit x−2 factor. If
〈σv〉 ∝ 1/x, as in the lower frame of �gure 5.4, the suppression at x > xf is even stronger.
Sharp features in g

1/2
∗ therefore give sharper features, with larger amplitudes, for pure

P-wave annihilation than for pure S-wave annihilation.
We noticed earlier that the older treatment of [59] overestimates g1/2

∗ for some range of

4One needs to take into account only two of the three functions g, h and g
1/2
∗ , since only two of them

are independent. However, it is more elucidating to perform the analysis with g
1/2
∗ and h, since the

solution Y0 directly depends on the former and indirectly on the latter.
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Figure 5.4: The relative di�erence between the predicted relic density of a Majorana
WIMP between our calculation and a calculation using the same older results for the
functions h and g

1/2
∗ shown in �g. 5.3, as a function of the WIMP mass. The upper

frame is for constant 〈σv〉, chosen such that our prediction for Ωχh
2 = 0.1193, while the

lower frame is for a pure P-ave annihilation, with 〈σv〉 = 1.2 · 10−24cm3s−1 ·T/mχ. These
results are almost independent of the numerical size of the annihilation cross section.
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temperatures above Tc. Eq. (5.1.7) indicates that this should lead to a smaller predicted
relic density, which is con�rmed by �gure 5.4. Since g1/2

∗ is overestimated for an extended
range of temperatures, the e�ect on the relic density is about the same for S- and P-wave
annihilation, amounting to about 5% near the peak of the ratio shown in �gure 5.4. The
second, much lower peak near mχ = 1TeV is probably due to lack of knowledge of the
top mass at the time when [59] was written.
The spike in g1/2

∗ predicted in micrOMEGAs treatment of the results of [106] gives promi-
nent spikes in the ratios shown in �gure 5.4. These spikes are numerical artefacts that
result from the smoothing procedure in micrOMEGAs. As argued in ref. [106], a true δ
function spike in g1/2

∗ should not a�ect the numerical solution of the Boltzmann equation,
which necessarily entails some discretization. The probability that the program then has
to evaluate the right hand side of the Boltzmann equation at the precise value of x where
the δ function diverges is zero. We nevertheless show results including the spike, since it
results from the �standard treatment� encoded in micrOMEGAs. Outside the mass range
a�ected by this spike, the results from [106] predict a slightly too large relic density,
consistent with our observation that it predicts smaller values of g1/2

∗ and h than our
treatment does. Note that for �xed g1/2

∗ , reducing h will (slightly) increase xf , leading to
an increase of the predicted relic density. A decrease of h therefore goes into the same
direction as a decrease of g1/2

∗ . However, the fact that the relative di�erence between our
calculation and the prediction based on ref. [106] is almost the same in both frames of
�gure 5.4 at large WIMP masses shows that the main e�ect still comes from the change
of g1/2

∗ .
We saw in �g. (5.3) that the prediction for g1/2

∗ from [94] lies below our prediction,
except for a very narrow range of temperatures around Tc. As a result, for pure S-wave
annihilation, the prediction for the relic density based on the treatment of [94] lies above
our prediction for all WIMP masses larger than 2GeV. We argued above that the relevant
range of temperatures is (even) smaller for pure P-wave annihilation. This explains why
the blue curve in the lower frame of �g. 5.4 goes slightly above 1 for mχ ' 25GeV.
Note also that the predictions using our treatment agrees with the prediciton using [94]
to better than 1% for all WIMP masses, except in the range between 2 and 20 GeV where
the di�erence reaches 9 (12) % for pure S- (P-) wave annihilation.
In order to put these results into perspective, it should be noted that the lattice QCD

predictions for the energy and entropy densities listed in table 1 of [92], on which our
treatment is based, still have signi�cant uncertainties, which decrease from about to 14%

at T = 130MeV to about 3% at T = 400MeV. The corresponding uncertainty in the
relic density is up to 2.5% for 2GeV ≤ mχ ≤ 20GeV. Finally, we note that treating the
charm quark as a free particle would increase the predicted relic density by about 2.2%

for mχ ' 30GeV.
We may comment that the results shown in the upper frame of �g. 5.4 do not depend

greatly on the WIMP annihilation cross section as long as the relic density comes out
roughly correctly. For the lower frame, the dependence of 〈σv〉 on the temperature has
implications on the �nal Ωχh

2. Also, eq. (5.1.7) shows that the thermodynamic e�ects
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Figure 5.5: The value of 〈σv〉, assumed to be completely independent of temperature,
required to obtain a thermal relic density Ωχh

2 = 0.1193 within standard cosmology,
as a function of WIMP mass (red solid line). Also, the result of ref. [114] scaled to
Ωχh

2 = 0.1193 is shown (black dashed line).

enter primarily through g1/2
∗ (xf ), and xf depends on the annihilation cross section only

logarithmically.
However, the exact value of the annihilation cross section that reproduces the correct

relic density, now (within the standard ΛCDM cosmology) constrained to be Ωχh
2 =

0.1193 ± 0.0014 [45], does depend on g1/2
∗ (Tf ), and less dramatically on h (Tf ). Precise

knowledge of the cross section is important to constrain the free parameters of models
of thermal WIMPs. Moreover, as we will see in more detail in sec. 5.1.4, indirect DM
searches now begin to probe annihilation cross sections close to the required value of 〈σv〉,
if the latter is (approximately) independent of the temperature.
In �g. 5.5 we show the required value of 〈σv〉, assumed to be independent of the

temperature, for a Majorana fermion, obtained from our re�ned calculation of g1/2
∗ and

h. This updates the results of ref. [114], which assumed Ωχh
2 = 0.11 and used [94] to

compute g1/2
∗ and h. For comparison, we also show the result of ref. [114], scaled by

0.11/0.1193 in order to (roughly) account for the di�erent assumptions on Ωχh
2.

We see that for 10GeV < mχ < 10TeV, the required value of 〈σv〉 is in fact closer
to 2 · 10−26 cm3s−1 than to the often cited value 3 · 10−26 cm3s−1. The near constancy of
the required value over such a large range of WIMP masses results from an accidental
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cancellation of two e�ects. This can again be understood from the approximate analytical
solution (5.1.7) of the Boltzmann equation. On one hand, increasing mχ increases xf ,
which increases the relic density. Since xf depends only logarithmically on mχ, the
freezout temperature Tf = mχ/xf still increases as mχ is increased. As shown in the
lower frame of �g. (5.3), this increases g1/2

∗ (Tf ), which in turn reduces the relic density.
For mχ > 10 TeV, all SM particles are essentially relativistic at Tf , i.e. g

1/2
∗ becomes

independent of T , reaching its asymptotic value of 106.75. For these very large masses,
the required value of 〈σv〉 would thus increase logarithmically with mχ, in order to cancel
the e�ect of the increase of xf . However, since by dimensional analysis and unitary
arguments 〈σv〉 ∝ 1/m2

χ, it is very di�cult to �nd scenarios with su�ciently large 〈σv〉
for mχ > 10TeV.
On the other hand, for WIMP masses below 10 GeV, the rapid decrease of g1/2

∗ (Tf )

with decreasing Tf shown in �g. 5.3 (lower frame) requires a rather rapid increase of
〈σv〉, to a peak value of about 4.5 · 10−26 cm3s−1. Finally, for mχ < 0.35GeV, g1/2

∗ (Tf )

becomes approximately constant again, with electrons, positrons, neutrinos, and photons
contributing so that g1/2

∗ ' 3.29. Since xf keeps decreasing with decreasing mχ, keeping
the relic density constant requires that 〈σv〉 also decreases logarithmically with decreasing
WIMP mass for these very light WIMPs.
For WIMP masses of a few GeV, the rescaled result of ref. [114] gives a somewhat larger

value of 〈σv〉 than our calculation. This agrees with the observation that the calculation
of g (T ) and h (T ) performed in ref. [94] leads to a larger relic density than our treatment,
as illustrated in �g. 5.5.5

5.1.4 Experimental constraints on 〈σv〉
In this section, we will compare experimental constraints from indirect WIMP searches
and from analyses of the cosmic microwave background (CMB) with our prediction for
〈σv〉 shown in �g. 5.5. This simultaneous comparison of 〈σv〉 with these two types of
constraint only makes sense if 〈σv〉 is largely independent of the temperature. In fact,
since the CMB decoupled much later than WIMPs did, and hence also at a much lower
temperature (∼ 0.3 eV rather than ∼ mχ/20), while the WIMPs in galaxies now have
an average kinetic energy of ∼ 10−6mχ. If 〈σv〉 ∝ T , as in pure P-wave annihilation, or
for even stronger T -dependence, the bounds on 〈σv〉 from the CMB and from indirect
WIMP searches are still several orders of magnitude above the value required to obtain
the correct relic density.
Currently the strongest and most robust upper bounds on 〈σv〉 from indirect WIMP

searches come from searches for hard γ rays (from dwaf galaxies) by the FermiLAT col-
laboration. The strongest WIMP signal is expected from near the center of our own
galaxy. Unfortunately this region also hosts several backgrounds, both in form of point
sources and in form of extended emission. It has been claimed that there is evidence for

5The comparison in �gure 5.5 is less accurate than that in �gure 5.4, since it relies on reading o�
numerical results of ref. [114], and since the relation Ωχh

2 ∝ 1/ 〈σv〉 assumed in the rescaling is not
exact.
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an additional component in the GeV γ �ux from near the galactic center which can be
explained through WIMP annihilation [115�118], but other interpretations of this addi-
tional component exist [119�121]. We also note that FermiLAT collaboration itself has
not published any analysis of their data on the galactic center.
In this paper we therefore focus on FermiLAT observations of nearby galaxies [78�81].

In contrast to big galaxies like our own, the mass density of dwarf galaxies should be
dominated by dark matter even in the central region, yielding a much better signal-to-
background ratio for indirect WIMP signals. No such signal has been seen. Our analysis
is based on the very recent 6-year �Pass 8� analysis [81].
The results are shown in �gure 5.6. We see that the upper bound on 〈σv〉 is strongest

if WIMPs predominantly annihilate into uū �nal states, but the bound for WIMP an-
nihilation into bb̄ is only slightly weaker. For the τ+τ− �nal state the upper bound on
the cross section is similar for WIMP masses below 40GeV, but is somewhat weaker for
heavier WIMPs; hadronic �nal states have higher multiplicity, and hence higher γ �ux
per WIMP annihilation, for larger WIMP masses, whereas for the τ+τ− �nal state the
photon multiplicity is essentially independent of the WIMP mass. These constraints ex-
clude WIMPs with mass mχ ≤ 70 to 100GeV annihilating into hadrons or τ leptons with
temperature independent 〈σv〉.
To WIMP annihilation into e+e−corresponds an upper bound on 〈σv〉 (not shown)

which is worse than that for WIMP annihilations into τ+τ− [81], excluding WIMPs with
mass mχ ≤ 15GeV annihilating into e+e− pairs for the value of 〈σv〉 shown in �g. 5.6.
WIMP annihilation also a�ects the CMB, as described in sec. 4.2. In �gure 5.6 we

show the bound on the WIMP annihilation cross section into e+e− pairs that results from
an analysis [84] of data from the WMAP and ACT collaborations. It excludes a thermal
WIMP with mχ ≤ 12GeV.
PLANCK data will lead to considerable stronger constraints [45, 122]. Unfortunately

these papers only cite upper bounds on the product of the WIMP annihilation cross
setion and an e�ciency factor fe� with whih energy of the WIMP annhilation products
is absorbed in the thermal plasma. Using results from ref. [123], we estimate that the
latest PLANCK data exclude WIMPs with m < 40GeV annihilating into e+e−pairs with
temperature independent cross section; see also the recent analysis [124], which obtians
the limite m < 50GeV. The di�erence follows from the fact that we are using f ' 0.8

following [123], whereas [124] assumes f = 1.
Since the e�ciency factor should be similar for other �nal states, the CMB constraint

should also vary accordingly (with the factor f) for �nal channels such as µ+µ− or qq̄.
The current CMB constraint is thus weaker than the bounds derived from the most
recent FermiLAT data if WIMPs mostly annihilate into qq̄ or τ+τ− �nal states, but is
stronger for WIMPs annihilating predominantly into e+e−. However, one should keep
in mind that the CMB constraint is less direct. Is is conceivable that additional non-
standard ingredients to the CMB �t � e.g., the presence of sterile neutrinos, a signi�cant
running of the spectral index of in�ation, and/or large contribution from tensor modes
� can (partly) compensate the distortions caused by early WIMP annihilation, thereby
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Figure 5.6: The result of �g. 5.5 is compared with several observational upper bounds on
〈σv〉, which is assumed to be independent of temperature. The orange, blue and black
curves follow from the FermiLAT upper bound [81] on the γ �ux from dwarf galaxies, for
di�erent dominant WIMP annihilation channel (uū, bb̄ or τ+τ−), whereas the red curve
results from an upper bound on spectral distortions of the CMB [84], assuming WIMP
annihilation into e+e− pairs.

weakening the constrain on 〈σv〉. On the other hand, the constraint derived from the
observation of dwarf galaxies depends on the assumed dark matter distribution [78]. In
any case, it is encouraging that recent astrophysical and cosmological observations begin
to probe relatively light thermal WIMPs with temperature independent annihilation cross
section.

5.2 Fermionic dark matter in a SM extension

In the last sections, much has been written about relic production, including detailed
aspects about decon�nement. We obtained the behaviour of functions h (T ) and g1/2

∗ (T ),
essential for solutions of the Boltzmann equation, as well as a required 〈σv〉 (for the S-wave
case) in order to obtain the observed mean value Ωχh

2 = 0.1193. The treatment for the χ
relic has been general, only assuming the χ particle is a Majorana particle. In this section,
we take another viewpont and detail a speci�c case [86] in which a fermionic dark matter
can be obtained, also majorana-like. Though this work also dealt with the neutrino mass
generation in the B−L SM extension, we will focus on dark matter generation. First we
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Fermion I3 Y ′ B − L Scalar I3 Y ′ B − L
νeL, eL ±1/2 0 −1 H+,0 ±1/2 1 0
eR 0 −1 −1 Φ0,− ±1/2 −4 3

uL, dL ±1/2 0 1/3 φ1 0 −8 8
uR 0 1 1/3 φ2 0 10 −10
dR 0 −1 1/3 φ3 0 1 −1

nR1, nR2 0 4 −4 φX 0 3 −3
nR3 0 −5 5

Table 5.2: Quantum number assignment for the �elds in the model. I3, Y ′ and B − L
are the quantum numbers under the symmetry groups SU (2)L , U (1)Y ′ and U (1)B−L
respectively.

describe the model, more speci�cally the gauge group and particles quantum numbers as
well as the scalar and Yukawa lagrangians.

5.2.1 The model

We consider an extension of the SM based on the gauge symmetry SU (2)L ⊗ U (1)Y ′ ⊗
U (1)B−L where B and L are respectively the usual baryonic and leptonic numbers and Y ′

is a new charge di�erent from the hypercharge Y of the SM. The values of Y ′ are chosen
in order to obtain the hypercharge Y through the relation Y = [Y ′ + (B − L)], after
the �rst spontaneous symmetry breaking. The �elds of this model with their respective
charges are shown in table 5.2. This model is a simpli�ed variation of the one introduced
in refs. [125, 126]. Speci�cally, we have removed one of the extra doublets of scalars
considered there. As we will show below, this allows an almost automatic Z2symmetry
that stabilizes the DM candidate, nR3. The remaining scalar �elds are enough to give
mass to the neutrinos at tree level. It is also important to note that there is an exotic
charge assignment for the B−L charges where (B−L)nR1,nR2

= −4 and (B−L)nR3
= 5,

di�erent from the usual one where (B − L)nRi = 1 with i = 1, 2, 3.
With the �eld content in table 5.2, we can write respectively the most general renor-

malizable Yukawa Lagrangian and scalar potential respecting gauge invariance as follows,

−LY = Y
(l)
i LLieRiH + Y

(d)
ij QLidRjH + Y

(u)
ij QLiuRjH̃ +DimLLinRmΦ

+
1

2
Mmn(nRm)cnRnφ1 +

1

2
M33(nR3)cnR3φ2 +

1

2
Mm3(nRm)cnR3φ3 (5.2.1)

+H.c.,
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and

VB−L = −µ2
HH

†H + λH
∣∣H†H∣∣ 2 − µ2

ΦΦ†Φ + λΦ

∣∣Φ†Φ∣∣2 − µ2
α |φα|2 + λα |φ∗αφα|2

+κHΦ |H|2 |Φ|2 + κ′HΦ(H†Φ)(Φ†H) + κHα |H|2 |φα|2 + κΦα |Φ|2 |φα|2

+καβ(φ∗αφα)(φ∗βφβ) +
[
κ123φ1φ2(φ∗3)2 − iκHΦXΦT τ2HφX + κ123X(φ∗Xφ1)(φ2φ3)

+κ′3X(φ∗Xφ
3
3) + H.c.

]
, (5.2.2)

where i, j = 1, 2, 3 are lepton/quark family numbers; m,n = 1, 2; H̃ = iτ2H
∗ (τ2 is the

Pauli matrix), and α, β = 1, 2, 3, X with α 6= β for the καβ(φ∗αφα)(φ∗βφβ) terms. Also, we
have omitted summation symbols over repeated indices.
Before we go further, two important remarks are in order. Firstly, from eqs. (5.2.1)

and (5.2.2) we see that apart from the 1
2
Mm3(nRm)cnR3φ3 +H.c. terms, the Lagrangian is

invariant under a Z2 symmetry acting in a non-trivial way on the nR3 �eld, i.e. Z2(nR3) =

−nR3 (the rest of �elds being invariant under this symmetry). We will consider the
case of this Z2 symmetry throughout this work. Hence, the nR3 fermionic �eld will be
the DM candidate. Secondly, from eq. (5.2.1) we see that quarks and charged leptons
obtain masses just from the H vacuum expectation value, 〈H0〉 ≡ vH . Therefore, the H
interactions with quarks and charged leptons are diagonalized by the same matrices as the
corresponding mass matrices. In this case the neutral interactions are diagonal in �avor
and there is no �avor-changing neutral current in the quark and charged lepton sector.
This feature remains after the symmetry basis is changed to mass basis [127,128].
However, lepton �avor violation (LFV) processes coming from the terms proportional

to Dim can occur at one loop. We �nd [86] that for both normal and inverted neutrino
mass hierarchies, numerical values for all six Dim can be found, which are consistent with
the bounds on the LFV processes: Br (µ→ e+ γ) < 5.7 × 10−13 and Br (τ → µ+ γ) <

4.4×10−8 [97]. We do not discuss this topic in detail here, since we are interested in dark
matter production.

5.2.2 Scalar sector

Within the general case, this model has a rich scalar spectrum and its vacuum structure
can take several con�gurations. However, we are going to make some simplifying and
reasonable assumptions that allow us in most cases to obtain analytical formulas in both
the neutrino and the dark matter sectors. We will discuss systematically our assumptions
throughout this paper.
Firstly, as result of the absence of one of the extra doublets and of writing only the

renormalizable terms in the scalar potential, the model here considered has a physical
Nambu-Goldstone (NG) boson J in its scalar spectrum. This is a general conclusion and
does not depend on any particular choice of the parameter set. Once the neutral scalars
develop non-vanishing vacuum expectation values (VEVs), we �nd that J can be written
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as

J =
1

NJ

[
−9
√

2vHv
3
φε

2 ImH0 − 9
√

2v2
Hv

2
φε ImΦ0

+
1√
2
v2
φ

(
10v2

H +
(
3v2

H + 10v2
φ

)
ε2
)
Imφ1 +

v2
φ

(
2v2

H −
(
3v2

H − 2v2
φ

)
ε2
)

√
2

Imφ2

+3
√

2v2
φ

(
v2
H + v2

φε
2
)
Imφ3 + 9

√
2v2

φ

(
v2
H + v2

φε
2
)
ImφX

]
, (5.2.3)

where NJ ≡ v2
φ

√(
4v2

H +
(
3v2

H + 4v2
φ

)
ε2
) (

58v2
H +

(
3v2

H + 58v2
φ

)
ε2
)
and ε ≡ vΦ/vφ. We

also have de�ned the VEVs as 〈φi〉 ≡ vφi with i = H, Φ, φ1, φ2, φ3, φX and set vφ1 =

vφ2 = vφ3 = vφX ≡ vφ for simplicity. The parameter ε is chosen � 1 as we will show
below. We have also used the usual shifting ϕ0 = 1√

2
(vϕ + Reϕ+ i Imϕ) for the scalar

�elds (the superscript �0� means we are taking the neutral part of the �eld).
The presence of J in the physical spectrum is due to an extra symmetry in the scalar

potential in eq. (5.2.2). In other words, the scalar potential actually has a larger global
SU (2)L⊗U (1)Y ′ ⊗U (1)B−L⊗U (1)J symmetry. The symmetry group U(1)J acts on the
scalar �elds H, Φ, φ1, φ2, φ3, φX with charges −18

23
, −18

23
, 1, 1

23
, 12

23
, 36

23
, respectively. We

have normalized the charges in order to set the φ1 charge equal to 1. Also, note U(1)J
is independent on the U (1)Y ′ and U (1)B−L symmetry groups, a necessary condition to
consider it as an actual extra symmetry. Furthermore, U(1)J can be extended nontrivially
to the total Lagrangian acting on the fermions QL, uR, dR, LL, eR, nRm, nR3 with charges
0,−18

23
, 18

23
, −59

23
, −1

2
, −1

2
, − 1

46
, respectively. Therefore, J is a true NG boson with mass

equal to zero at all orders in perturbation theory. Gravitational e�ects can break this
symmetry, and thus give mass to the NG boson [129�133]. However, we are not going to
comment in detail on the latter case.
The major challenge to models with a NG boson comes from the energy loss in stars

through the process γ+e− → e−+J . This process is used to put limits on the ēeJ coupling,
gēeJ , and it is found that it must be gēeJ ≤ 10−10 for the Sun, and gēeJ ≤ 10−12 for the

red-giant stars [134, 135]. In our case, gēeJ = Y
(l)
e√
2

9
√

2vHv
3
φ

NJ
ε2 = me

vH

9
√

2vHv
3
φ

NJ
ε2 where Y (l)

e

and me are the electron Yukawa coupling to the H scalar and electron mass, respectively.
Since ε = vΦ/vφ, vSM =

√
v2
H + v2

Φ and vH ' vSM (the ReH0 is the only �eld giving mass
to the top quark at tree level), we have that ε � 1. Thus, expanding gēeJ in powers of
ε, it is straightforward to see that gēeJ ' 9mevφ

2
√

29v2
H

ε2 + O(ε4). Choosing vφ = 1 TeV and

vH ' vSM = 246 GeV we can notice that ε . 3.8 × 10−4satis�es the limit coming from
red-giant stars analysis.
The charged sector can also be found analytically. Besides the charged Nambu-Goldstone

eaten by the W± gauge boson, the model has one charged scalar C±, which can be writ-
ten as C± = 1√

v2
H+v2

φε
2

(vφεH
± + vH Φ±) , with squared mass given by m2

C± = κHΦXvH√
2

1
ε

+

κ′HΦv
2
H

2
+

κHΦXv
2
φ√

2vH
ε+ 1

2
κ′HΦv

2
φε

2. Note that when ε→ 0, it yields mC± →∞. However, when
this happens, the minimization conditions in Appendix A require that κHΦX ∝ ε. Hence,
as one can see from C± mass expression, mC± remains �nite in the end.order to �nd

52



5 Standard thermal scenario applications

the rest of the mass eigenvalues and eigenstates of the scalar potential (the CP−even,
CP−odd scalars), in general we numerically proceed choosing the set of the parameters
to satisfy simultaneously the minimization conditions given in eqs. (A.1-A.6), the posi-
tivity of the squared masses, and the lower boundedness of the scalar potential. All these
constraints are always checked numerically. Furthermore, we wish to restrict ourselves to
a relevant set of parameters that allows us to study the dark matter properties in some
interesting cases. For that, we establish initial assumptions and results:

(i) For the sake of simplicity: vφ1 = vφ2 = vφ3 = vφX ≡ vφ (we have already used this
in eqs. (5.2.3) and in the C± charged scalar), κHΦ = κ′HΦ = κH1 = κH3 = κHX =

κΦ1 = κΦ2 = κΦ3 = κΦX = κ12 = κ13 = κ1X = κ23 = κ2X = κ3X = 0 and
κ123X = κ′3X = κ123.

(ii) In order to have the heaviest CP−even scalars with similar masses, we choose: λ1 =

λ2 = λ3 = λX ≡ λφ.

(iii) Due to the stability of the minima, we obtain: κHΦX = vφε (see eq. (A.2)) and

µ2
H = λHvH +

κH2v
2
φ

2
− v3

φ√
2vH

ε2, µ2
Φ = −vHvφ√

2
+ λΦv

2
φε

2, µ2
1 = (κ123 + λφ)v2

φ, µ
2
2 =

κH2v
2
H

2
+ (κ123 + λφ)v2

φ, µ
2
3 = (3κ123 + λφ)v2

φ, and µ
2
X = (κ123 + λφ)v2

φ −
vHvφ√

2
ε2. The

rest of parameters will be chosen when required.

In general, the squared mass matrices of the CP−odd scalars (M2
CP−odd) and the CP−even

scalars (M2
CP−even) can be written in powers of ε up to ε2, i.e. M2

i = M2
0,i + εM2

1,i + ε2M2
2,i

with i = CP − odd, CP − even. Despite the smallness of ε and the assumptions made
above, it is a hard task to obtain exact analytical expressions for the mass eigenvalues
and mass eigenstates of these matrices. These can be found perturbatively in powers of ε.
In this section we just provide the leading-order expression of the scalar masses because
these yield a good picture of their exact behavior.
In the CP−odd sector the model has three scalars, I1, I2, I3, besides the NG boson

J and the two NG bosons eaten by the Z1 (it is assumed that Z1 is the gauge boson
with mass equal to the Z boson in the SM) and Z2 boson. Their masses are given by
mI1 =

√
vHvφ
4√2

, mI2 =
√

5−
√

7
√−κ123vφ, mI3 =

√
5 +
√

7
√−κ123vφ. From the previous

expressions we see that we have to assume κ123 < 0 in order to have all masses belonging
to reals. It is also straightforward to see that I1 = ImΦ0 + O(ε). Additionally, we �nd
that I2 and I3 are, at ε order, a linear combination of the Imφi's with i = 1, 2, 3, X. The
CP−even sector is more complicated even in the leading order. In this sector the model
has six di�erent eigenstates, Ri's, with masses given by: mR1 =

√
2λHvH , mR2 =

√
vHvφ
4√2

,

mR3 =
√

2λφ − 3.58 |κ123|vφ, mR4 =
√

2λφ + 1.15 |κ123|vφ, mR5 =
√

2 (λφ + |κ123|)vφ,
mR6 =

√
2λφ + 2.42 |κ123|vφ. R1 (which is ReH0 +O(ε)) is the scalar that plays the role

of the Higgs scalar boson in this model, since it couples at tree level to all fermions, giving
mass to them when it gains a VEV, vH . Thus, we set its mass equal to 125 GeV. We �nd
that λH ' 0.13− 0.14 gives the correct value for the Higgs mass; R2 is ReΦ0 +O(ε); and
the remaining �elds are combinations of the Reφi's with i = 1, 2, 3, X. Note that the
latter �ve CP−even scalars do not yield precise mass values as R1. However, we have to
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choose the parameters in the scalar potential such that all mRi masses are larger than the

Z1 boson mass (m2
Z1
≈ g2(v2

H+v2
Φ)

4 cos2 θW
=

m2
W

cos2 θW
) due to the Z1 invisible decay width. In other

words, if some of mRi were < MZ1 then the Z1 boson could decay through the process
Z1 → Ri +J → J +J +J , which would contribute to the Z1 boson decay width as half of
the decay Z1 → ν̄ν [136]. According to the experimental data there is no room for such
an extra contribution [97].
All expressions above for masses and eigenstates are very useful to have a general

undertanding of the scalar spectrum. However, it is necessary to work with more precision
when calculations of the DM sector are involved. Thus, from here on, we always work
numerically to diagonalize the squared-mass matrices for both the CP−odd and the
CP−even scalars.
Finally, a further comment regarding the J presence is necessary. Since J is mass-

less, it contributes to the Universe radiation energy density of today which is usually
parameterized by the e�ective neutrino number Ne�. This parameter speci�es the energy
density of relativistic species in terms of the neutrino temperature. PLANCK together
with WMAP9 polarization data, high-l experiments and the BAO data (Planck + WP
+ highL + BAO) gives Ne� = 3.30+0.54

−0.51 [45]. J in our model decouples at Tf ' 14 GeV,
which is far above the neutrino decoupling temperature, therefore its contribution to Ne�

is given by ∆Ne� = 4
7

(
hBBNγ

hdecγ

)4/3

' 4
7

(
10.75

86

)4/3 ' 0.036, where hBBNγ and hdecγ are the

entropy degrees of freedom of the plasma at the time of big bang nucleosynthesis (BBN)
and of the J decoupling. Notice that this result is in agreement with the current bound
on Ne�. For a similar treatment, see ref. [137].

5.2.3 Dark matter

As previously mentioned, this model has an almost automatic Z2 symmetry acting on
nR3, i.e. Z2 (nR3) = −nR3. We have imposed it to be exact in the total Lagrangian by
removing just one term. Thus, nR3 is stable and it can in principle be a DM candidate.
From here on, we consider NDM (which is equal to nR3, the di�erence being that NDM is
a mass basis �eld and the former a symmetry basis one) as a DM candidate and verify
whether it satis�es the current experimental data. These data come essentially from
investigations of Planck collaboration [45] which constrain the scaled DM relic density
to be ΩDMh

2 = 0.1193 ± 0.0014; and from direct detection (DD) limits of LUX [?],
XENON100 [67] and SuperCDMS [138], which on the other hand constrain the cross
section for scattering o� nucleons to be smaller than 7.6× 10−10 pb for a WIMP mass of
33 GeV. We will consider these constraints below.

Relic Abundance

In order to �nd the present scaled DM relic density ΩDMh
2 coming from theNDM Majorana

fermion, we must solve the Boltzmann di�erential equation. This standard procedure is
well described in refs. [59, 61]. Here we are not going to divert into its details since we
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Figure 5.1: Feynman diagrams which represent the main annihilation processes that
contribute to the calculation of ΩDMh

2. We have de�ned: χ ≡ NDM; Si ≡ Ri, Ii;
Aµ ≡ Z1µ, W

±
µ ; and A

0
µ ≡ Z1µ.

have used the packages Feynrules [139], Calchep [140] and MicrOMEGAs [141]. The �rst
two being auxiliary to the third that calculates ΩDMh

2 for a given model which contains
WIMPs.
In �g. 5.1 we show the processes which mainly contribute to the DM annihilation

cross section, consequently leading to the present relic density. All of them depend on
the parameters in the Lagrangians given in eqs. (5.2.1), (5.2.2) and on the kinetic terms
involving the covariant derivatives. We have already �xed most of those parameters in
sec. 5.2.2, however g, gY ′ , gB−L, λH , λφ, λΦ, κH2, κ123 and MDM still remain free6.
The �rst three parameters g, gY ′ , gB−L are the gauge coupling constants of the SU (2)L,
U (1)Y ′ and U(1)B−L groups, respectively. Roughly speaking, these couplings and the
VEVs together determine the masses of the gauge bosons; the VEVs have already been
set in the previous section, i.e. vφ1 = vφ2 = vφ3 = vφX = 1 TeV and vH ' vSM = 246 GeV,
while vΦ =

√
v2
SM − v2

H .
In addition, g can be set equal to 0.652 due to the W± mass. gY ′ and gB−L mainly

determine the mass of the Z2 gauge boson and its mixing with Z1 in the neutral current
(besides the Z1 mass itself). From precision electroweak studies [142�144], its mixing �
given by tan β � has to be . 10−3 (see ref. [145] for an analytical expression of tan β);
also its mass should respectMZ2/gB−L & 6TeV [146,147]. In the end we �nd that working
with gY ′ = 0.506 and gB−L = 0.505, we obtain tan β ' 2 × 10−4 and MZ2 ' 4.7TeV, as
well as the known SM gauge bosons masses.
Now, the λH parameter is chosen to be 0.13 ≤ λH ≤ 0.14 because it is the main

responsible for the Higgs mass, MHiggs = 125GeV, when κH2 ≤ 0.1. Whereas the λΦ and
λφ parameters can take a wide range of values. We set λΦ = 0.5 and λφ = 0.8, and as a
consequence we have the non-SM scalar masses larger than the SM particle masses.

6MDM = M33vφ/
√

2 is the mass of nR3, obtained if one diagonalizes the neutrino mass matrix. For
more details, see ref. [86].
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The κH2, κ123 and MDM parameters have been scanned in a broad region of values.
Speci�cally, we have iterated the MicrOMEGAs package for the DM mass within the range
10 GeV ≤ MDM ≤ 1000 GeV, taking into account di�erent values of κH2 and κ123, and
leaving the remaining parameters constant. In general, we have worked with κH2 =

0.1, 10−2, 10−4 and −0.56× λφ . κ123 6 0 (0.56× 0.8 = 0.448). The last choice because
we must assure that all the scalar masses are real (we obtain a slightly more constraining
condition on κ123 if we impose that all CP−even scalar must have masses larger than the
Higgs boson, i.e. 1

3.58v2
φ

(
m2

Higgs − 2λφv
2
φ

)
≈ −0.442 < κ123 6 0). Also, it is important to

note that κ123 controls the scalar trilinear vertices between scalars.
Regarding the κH2 parameter, we �nd that in our scenario it largely governs the invisible

Higgs width ΓInv
Higgs to non-SM particles. It is because κH2 induces mixing between ReH0

and Reφ2, consequently it mostly determines the Higgs − J − J coupling (ChJJ) since
J has a component in Imφ2. This ChJJ coupling induces a tree-level contribution to
the ΓInv

Higgs given by C2
hJJ/32πmHiggs. Under the assumption that the Higgs decays are

correctly described by the SM aside perhaps from decay into new unobserved particles,
the branching ratio for the Higgs decay into new invisible particles BrInvHiggs is known to
be . 0.1− 0.15 [148�151]. For κH2 < 0.2, we �nd that the BrInvHiggs remains under 0.1 for
−0.442 . κ123 6 0. We have been conservative choosing κH2 ≤ 0.1 for all results.
Taking into account all aforementioned considerations on the parameters, we plot in �g.

5.2 ΩDMh
2 versus MDM for κH2 = 10−1, 10−4, with κ123 = −0.4 (the �gure on the left)

and κ123 = −0.1 (the �gure on the right). The gray region has an overabundant ΩDMh
2

and is ruled out. The dot-dashed line stands for ΩDMh
2 = 0.1193 [45]. In general we �nd

that depending on theMDM, various annihilation channels are important and clearly some
resonances are visible; resonances are found at MDM = mmediator/2. Thus for convenience
we give the scalar masses for both �gures in �g. (5.2): for the case with κ123 = −0.4 (both
values of κH2) we have approximately mRi ' 125.0, 417.0, 411.3, 1435.8, 1549.2, 1603.0

GeV, MIi ' 417.0, 970.4, 1748.8 GeV, and MC± ' 417.0GeV. On the other hand,
for the case with κ123 = −0.1 (both values of κH2), we have approximately mRi '
125.0, 417.0, 1114.6, 1309.7, 1341.6, 1357.3 GeV, MIi ' 417.0, 485.2, 874.4 GeV, MΦ± '
417.0GeV. In all cases we have the NG boson J .
In order to better comprehend the annihilation processes and their contributions con-

tained in the curves in �g. 5.2, we plot �g. 5.3 which shows the relative contributions to
ΩDMh

2 of the main DM annihilation channels. Let us consider some relevant regions: for
MDM less than 80 GeV we have in general two resonances, the �rst one is due to the in-
terchange of the Z1 gauge boson in the s−channel, it is located at MDM = MZ1/2 ≈ 45.6

GeV and remains there even when κH2 = 10−4. It is so because it depends on the
NDM−NDM−Z1 coupling via neutral currents. Since this coupling arises from the covari-
ant derivatives, it is independent on the κH2 parameter. In contrast, the second resonance
which arises by the s−channel interchange of the Higgs boson (located in mHiggs/2 ≈ 62.5

GeV), disappears when κH2 = 10−4. This on the other hand is understood by realizing
that NDM couples to the Higgs boson via the term 1

2

√
2MDM

Vφ
(nR3)cnR3φ2 and since the

Higgs component in φ2 depends on κH2, it is clear that the smaller κH2 is, the smaller the
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Figure 5.2: Figures displaying the dependence of ΩDMh
2 on MDM, for κ123 = −0.4 (the

�gure on the left) and κ123 = −0.1 (the �gure on the right). Each �gure shows two cases
corresponding to κH2 = 10−1, 10−4. The dot-dashed line is the Planck ΩDMh

2. The gray
region means the DM candidate would be excluded, and the white one means that the
DM candidate can still make some part of the DM content of the Universe.

NDM−NDM−Higgs coupling gets. In this region of masses we also notice that NDM anni-
hilation processes into quark-antiquark pair (specially into bb̄ quarks for κH2 = 10−1) are
the dominant for both �gures; these occur via Higgs mediation. Annihilation processes
into neutrinos via the Z1 interchange are also important (∼ 25%). This is also true for
both values of κH2 and for both κ123 = −0.4 and −0.1.
AsMDM increases from 80GeV to 120 GeV, and as long as κ123 = −0.4 and κH2 = 10−1,

the annihilation into gauge bosons (W±/Z1) are dominant (in particular into W+W−)
with some considerable (∼ 20%) contribution of annihilation into quark-antiquark pair.
In contrast, for κ123 = −0.4 and κH2 = 10−4, the NDM annihilation processes into quark-
antiquark pairs continue being the most important. Moreover, NDM annihilation processes
into JJ start to be considerable (∼ 15%). For the lower frame, Similar conclusions are true
for the case of κ123 = −0.1 and κH2 = 10−1 when compared with the case of κ123 = −0.4

and κH2 = 10−1, however the former has annihilations into gauge bosons (W±/Z1) a
little less important than the latter. For the case of κ123 = −0.1 and κH2 = 10−4, the
annihilations into antiquarks-quarks are the most relevant.
In the region 120GeV ≤ MDM ≤ 180GeV and with κ123 = −0.4 and κH2 = 10−1,

roughly speaking three NDM annihilation processes are similarly predominant. These are
annihilations into W+W−/Z1Z1, R1R1 and JJ . Recall that R1 is the Higgs-like scalar.
For this region of mass and with κ123 = −0.1 and κH2 = 10−1, analogous conclusions
can be reached. This is not the case for κH2 = 10−4 (with κ123 = −0.4) in the same
MDM region, since NDM annihilations into JJ are almost completely dominant with an
additional contribution (∼ 12%) from the annihilations into quark-antiquark pairs. For
κ123 = −0.1 and κH2 = 10−4, annihilations into quark-antiquark pairs are still dominant.
WhenMDM is around mR3/2 ≈ 205 GeV, we see a resonance in the left panel of �g. 5.2,

due to the R3 s−channel interchange for both κH2 values. The predominant annihilation
process is NDMNDM → JJ with more than 50% contribution. It is also important to note
that for a MDM in this region we have the mean ΩDMh

2 PLANCK value. This resonance
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Figure 5.3: Figures displaying the relative contributions (%) of the main annihilation
channels to the DM relic abundance. The cases with κH2 = 10−1, 10−4 and κ123 =
−0.1, −0.4 are shown.

does not occur in the κ123 = −0.1 cases because then mR3 ≈ 1114.61 GeV. However, in
these cases we have one resonance at mI2/2 ≈ 242.6 GeV, with NDMNDM → R1J as the
dominant process for κH2 = 10−1, and with NDMNDM → q̄q as the dominant process for
κH2 = 10−4.
In the region 220GeV ≤ MDM ≤ 500GeV and with κ123 = −0.4 and κH2 = 10−1, we

can say that two annihilations processes, NDMNDM → JJ and NDMNDM → R3J , strongly
control ΩDMh

2. Except when MDM ≈ mI2/2 ≈ 485.1GeV where NDMNDM → R3J

annihilation completely governs ΩDMh
2. As 500GeV < MDM ≤ 700GeV, annihilations

into JJ , R1I1, R3R3, R3J and JI1 are predominant and their contributions depend on the
proximity to the three di�erent resonances. Finally, when 700GeV < MDM ≤ 1000GeV,
annihilations into JJ , R3I1, R3J , N1N1 and N2N2 are the most contributing processes to
determine ΩDMh

2. Similar behavior is found for the case κ123 = −0.4 and κH2 = 10−4. It
is so because in these regions of masses, the annihilation processes depend mostly on the
trilinear vertices between scalars.
For κ123 = −0.1 and κH2 = 10−1, the scalar spectrum changes and thus the location of

the resonances changes as well. As it was commented, the resonance at mR3/2 ≈ 205GeV
does not exist anymore. Instead, we have a resonance at mI2/2 ≈ 242.6 GeV. In the
region 220GeV ≤ MDM ≤ 470GeV, the most important di�erence, in contrast with the
case κ123 = −0.4, is that we hardly have regions with ΩDMh

2 ≤ 0.119 (a little tiny region
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can be seen in the mI2/2 ≈ 242.6GeV). Another di�erence is that annihilation into
W+W−/Z1Z1becomes important in this region (∼ 15%− 35%). In addition, annihilation
into R1I1 contributes > 35% in most of this mass region. Other annihilation channels
such as R1J , I1I1, JJ and R1R1 also contribute, but are subdominant. For 470GeV ≤
MDM ≤ 700GeV, ΩDMh

2 is completely determined by annihilation into I1I1, I1J , JJ .
When 700GeV ≤ MDM ≤ 1000GeV, annihilation processes into N1N1 and N2N2 share
importance with I1I1, R3I1, R4I1 and R5I1 to determine ΩDMh

2. For MDM > 470GeV,
the scaled relic density yields ΩDMh

2 ≤ 0.119.
Finally, when κ123 = −0.1 and κH2 = 10−4, we have some relevant di�erences. The most

prominent is that forMDM < 470GeV we just have the Z1 resonance, which depends only
on the VEVs and the covariant derivative gi couplings. This is because of the smallness
of κ123 and κH2 (specially κH2 = 10−4), which makes the couplings with the CP−odd
scalar mediators be tiny. Some other features are worth mentioning, though. Up to
MDM ' 350GeV, annihilation into quarks is predominant. After that, until MDM '
700GeV, the �nal products I1I1, I1J , JJ (summing ∼ 35% − 100%) enter as the major
contributors to the relic density and the quarks enter as subdominant processes fading
out atMDM ' 450GeV. Next, up toMDM ' 900GeV, the main annihilation products are
N1N1 and N2N2 (∼ 30%− 40% each), with R3I1 taking place at the end of this interval.
Finally, for 850GeV ≤ MDM ≤ 1000GeV, the main contributions come from R3I1, R4I1

and R5I1, summing more than 70% of the DM annihilation energy.
Now, in order to grasp the behavior of the relic density when one continually varies

κ123, we show a two-dimensional �gure, �g. 5.4, which was obtained with MicrOMEGAs,
from a 105 points iteration. We see from it that as one varies κ123, the regions for correct
relic density (cyan points) change place, getting to the minimal value of MDM ∼ 200 GeV
for κ123 = −0.4; and also for a straight band of points which increases in κ123 as MDM

decreases, having at κ123 ∼ −0.05 its last point. We can also notice green regions (together
with cyan lines) that extend from left to right as MDM increases, and the reason behind
these is the resonances of I2, I3 (which decrease as κ123 increases) and R3 (which increases).
Therefore, one can conclude that the correct relic density, before MDM ∼ 500− 600GeV,
may only be reached through resonances of the lightest singlet particles of our spectrum.

Direct Detection

Other important constraints on DM candidates come from the current experiments [67,
138,152] which aim to directly detect WIMP dark matter by measuring the kinetic energy
transferred to a nucleus after it scatters o� a DM particle. All of these experiments have
imposed limits on the WIMP scattering cross section o� the nuclei. In general, the
WIMP-nucleus interactions can be either spin-independent (SI) or spin-dependent (SD).
Currently, the most constraining limits come from the Large Underground Xenon (LUX)
experiment [?] which has set bounds on the SI WIMP-nucleon elastic scattering with a
minimum upper limit on the cross section of 7.6×10−10 pb at a WIMP mass of 33 GeV/c2.
We have veri�ed that, for NDM considered here, the dominant interactions are SI. Thus,
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Figure 5.4: 2-D �gure displaying the behavior of ΩDMh
2 as one continuously varies both

κ123 in the range [−0.4, 0], with κH2 = 0.1, and MDM in the range [10, 1000] GeV. The
cyan points represent correct relic density ΩDMh

2, within experimental errors; the green
ones indicate ΩDMh

2 below the Planck result; and the gray ones mean ΩDMh
2 above Planck

constraint and thus ruled out.

we calculate (using the MicrOMEGAs package) the SI elastic scattering cross section per
nucleon, σSI-nucleon, and the results are shown in �g. 5.5. Actually, we scale the σSI-nucleon
cross sections with the calculated relic density relative to that measured by PLANCK in
order to properly compare the predicted cross sections with those given by direct detection
experiments, which present their results assuming the observed density at the time of the
experiment. The experimental limits on SI cross sections are also shown in �g. 5.5. We
have not shown results for SD cross sections because we found that those are generally
several orders of magntiude below the SI current limits, see refs. [153, 154] which state a
minimum upper bound of ∼ 5× 10−3 pb at a WIMP mass of 24GeV/c2.
From �g. 5.5, it can be seen that the smaller the value of κH2, the smaller the value of

σSI-nucleon. For κH2 = 10−2, the σSI-nucleon is below the LUX upper bound for all values of
MDM. For κH2 = 10−1 andMDM . 500 GeV, σSI-nucleon is below the LUX limit only around
the resonances. In contrast, forMDM & 500 GeV, the LUX limits are satis�ed for all cases
shown in �g. 5.5. This implies that σSI-nucleon mainly depends on κH2. This fact is easily
understood by realizing that, in our case, the relevant interactions for direct detection
are mostly mediated via Higgs in the t-channel . Thus, these interactions depend on the
mixings between the Higgs scalar (R1) and rest of Ri scalars. These mixings strongly
depend on the κH2 value, as was already discussed. In addition, we can see from �g. 5.5
that although σSI-nucleon (actually σSI-nucleon × ΩDMh

2/0.1193 ) does not depend directly
on other scalars, there is clearly indirect dependence on them because these scalars a�ect
the relic abundance through the annihilation cross section.
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Figure 5.5: Figures displaying the curves representing the SI cross section per nucleon,
σSI-nucleon, asa function of MDM, for the NDM elastic scattering o� nucleon. Cases for
κ123 = −0.4; −0.1 and κH2 = 10−1, 10−2 are shown. In these �gures, we also display the
SI upper limits coming from LUX (dashed), XENON100 (dot-dashed) and SuperCDMS
(dotted). All σSI-nucleon curves in the gray region are ruled out by the LUX upper limit.

Finally, from �gs. 5.2 and 5.5 we can conclude that, provided κH2 . 10−2, the con-
straints coming from only ΩDMh

2 determine whether a set of parameters leads to a viable
dark matter candidate or not.
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6 Outside the standard relic freezout
scenario

Up to now, we worked in a context where the considered particle species χ is in thermal
equilibrium with the relativistic plasma up to the point ∼ xf , after which its comoving
number density becomes constant. In the present chapter, after giving a theoretical
introduction to the subject in the �rst section, we provide an example study in which
non-thermal dark matter has been considered, alongside entropy dilution issues. and the
important problem of uplifting within Supergravity background.

6.1 Framework

The idea behind non-thermal relics production is that a feebly interacting particle be
introduced into the standard scheme of freezout. In other words, additionally to the
SM content (radiation) and the dark matter candidate species χ, the extra �eld φ is
introduced. The latter can possibly decay into radiation and dark matter, increasing the
radiation energy density ρR and the dark matter number density nχ. Di�erently from
the standard treatment where only one Boltzmann equation is considered (3.4.1), here we
have to keep track of the radiation energy density, theχ number density and the φ energy
density ρφ. Thus, neglecting signi�cant thermal interactions between φ and SM or χ, it
yields [155,156]

dρφ
dt

= −3Hρφ − Γφρφ , (6.1.1)

dρR
dt

= −4HρR + (1−Bχ) Γφρφ + 〈σv〉 2 〈Eχ〉
[
n2
χ −

(
neqχ
)2
]

, (6.1.2)

dnχ
dt

= −3Hnχ +BχΓφρφ − 〈σv〉
[
n2
χ −

(
neqχ
)2
]

. (6.1.3)

The symbol 〈Eχ〉 '
√
m2
χ + 3T 2 stands for the average energy per χ particle when in

kinetic equilibrium with the radiation at temperature T ; Bχ

(
= Γχφ/Γφ

)
is the braching

ratio of φ decays into χ; 〈σv〉 is the thermally averaged cross section of the species χ. The
Hubble parameter is given by

H2 =
8π

3M2
Pl

(ρφ + ρR + ρχ) , (6.1.4)
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where MPl ' 1.22 · 1019 GeV is the Planck mass. The equilibrium number density for
particles obeying Maxwell-Boltzmann statistics can be expressed in terms of the bessel
function of the second kind K2,

neqχ =
gχT

3

2π2

(mχ

T

)2

K2 (mχ/T ) . (6.1.5)

The quantities Γφ, ρφ, Bχ, 〈σv〉 and 〈Eχ〉 are model-dependent. 〈Eχ〉 (or basically mχ)
is a free parameter in most models of particle physics; ρφ (which is the oscillation energy
density of the �eld φ) depends on the φ massMφ and on the epoch at which the oscillation
started, i.e. H ∼ Mφ. Since φ interacts very feebly and has a very high mass, it is
usually supposed to stem from UV-complete theories, and therefore its decay rate is
Planck suppressed:

Γφ = α
M3

φ

M2
Pl

, (6.1.6)

where α is a coe�cient which depends on the high energy theory. A natural consequence
of a high energy φ is that one can safely assume mχ � Mφ. As well as α, the ratio Bχ

and 〈σv〉 depend on the model and parametrization one uses. Notice again that a term
with 〈σv〉φ does not exist since we assume φ never thermalizes.
This is the most basic scenario where an extra �eld φ can be introduced to increase ρR

and nχ, and modify the standard thermal framework wherein nχ interacts solely with the
SM plasma. Next, we present an example study within a speci�c model.

6.2 Dark matter and entropy production in the ISS model

Now we describe an example [157] of a model in which the additional �elds are introduced
into the picture of standard thermal freezout of relics. In the next subsection, we �rst
introduce the general features of the model, including �elds and the achievement of up-
lifting, leaving oscillations and decays of the ISS �elds as well as dark matter production
for the next subsections.

6.2.1 Fields and uplifting

The �eld content of the model is given by the KL modulus, the ISS �elds, the in�aton
and the MSSM �eld content. For this study, we work within the Supergravity framework,
thus both Kähler potential K and Superpotential W must be provided for the full theory
description. As a consequence of working with Supergravity, all considered �elds have
superpartners.

KL modulus
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6 Outside the standard relic freezout scenario

The KL modulus arises as a consequence of compacti�cation in string theory and corre-
sponds to the volume modulus1, which is massless at this stage. More speci�cally, it stems
from the type II String Theory compacti�ed on an orientifolded Calabi-Yau threefold M
with the presence of �uxes [158, 159], which yields the following Kähler potential and
superpotential for the KL modulus:

WKL = W0 + Ae−aρ −Be−bρ , (6.2.1)

KKL = −3 ln (ρ+ ρ̄) . (6.2.2)

W0 is a tree level contribution from the �uxes. The exponential terms Ae−aρ and Be−bρ

arise either from euclidean D3 branes or from gaugino condensation on D7 branes [158];
also A, B, a, b > 0. In order to discuss the KL modulus further, we need to introduce
here the scalar potential of the N = 1 Supergravity:

V = eK
(
Kab̄DaWDb̄W − 3WW

)
, (6.2.3)

where DaW = ∂aW + (∂aK)W and Kab̄ = ∂a∂b̄K, with a and b̄ being �eld and conjugate
�eld indices, respectively. This equation will be used later on when we discuss the uplifting
and interactions among scalars. If one would consider the KL modulus alone within eq.
(6.2.3), the largest supersymmetric minimum of the potential is the Minkowski vacuum2

VKL = 0, which demands WKL = 0. For a dS vacuum, V > 0, additional terms must
be introduced, for example non-perturbative terms from the addition of several anti-D3-
branes that do not add further moduli to the discussion. Also as solutions, one might add
F-terms from the O'KKLT model [160] or the ISS dynamical sector [161]; this is called
uplifting.
It is worthwhile to comment that the �rst version of the KL model, the KKLT model

[158], had a quite serious inconvenience. When one breaks supersymmetry covariance,
thus DaW 6= 0, the gravitino mass achieved in the KKLT model is ∼ mρ/60 [162], where
mρ is the modulus mass. This means that for gravitino masses of O (TeV), the volume
stabilization in the KKLT is very soft (i.e. small mρ), which demands low scale in�ation
H . m3/2 in order for the volume stabilization and compacti�cation of extra dimensions
to apply. Of course, one could opt for gravitino masses of O (MPl), thus opening the
possibility of a high scale in�ation also with H . m3/2, however supersymmetry breaking
at the Planck scale is not desired. On the other hand, in the KL model the ρ mass is
not linked to the ψ3/2 mass any longer, which provides high scale in�ation with low scale
supersymmetry breaking. Further details will be provided when discussing uplifting of
the AdS vacuum.

1All the complex structure moduli and the dilaton are �xed at the very large mass scale m ∼ T−1/R3,
where T is the string tension and R is the radius of the orientifolded Calabi-Yau threefold M .

2For a supersymmetric vacuum, one must ensure DρWKL = 0.
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ISS sector

In the scenario we consider in this work, the �elds which will accomplish the uplifting,
via spontaneous symmetry braking, will be the �elds contained in the ISS model [161].
The use of strong gauge dynamics in dynamical SUSY breaking that can explain the

hierarchy between the Planck scale and the weak scale is known [163]. A variety of models
discussing dynamical SUSY breaking in a stable ground state exist, but nonetheless create
complicated issues for model building and phenomenology [164]. One of the theoretical
issues is the non-zero Witten index of N = 1 Yang-Mills theory: it implies that any
N = 1 supersymmetric gauge theory with massive, vector-like matter has supersymmetric
vacua, therefore theories with no supersymmetric vacua must be either chiral or massless
non-chiral. The satisfaction of these requirements and dynamical SUSY breaking turn
theories rather complicated. In the original work of the ISS model, much simpler and
phenomenologically viable models were constructed by allowing dynamical SUSY breaking
to take place in metastable long-lived vacua.
The ISS sector we deal with here consists of a theory which arises in the so-called

free magnetic dual range Nc + 1 ≤ Nf < 3Nc/2 of SU (Nc) N = 1 SUSY QCD with
con�nement scale Λ coupled to Nf chiral multiplets (�avours) Qi in the Nc representation
and N̄f (= Nf ) chiral multiplets Q̃i in the N̄c representation, where i, ĩ = 1, . . . , Nf . The
anomaly free global symmetry of SUSY QCD is

SU (Nf )L × SU (Nf )R × U (1)B × U (1)R . (6.2.4)

The transformations for the quarks Q and Q̃ are given by

Q (Nf , 1, 1, 1) , (6.2.5)

Q̃
(
1, N̄f ,−1, 1

)
. (6.2.6)

The original description of SUSY QCD is the free non-Abelian electric phase in terms of
electric variables, which is an SU (Nc) gauge theory with Nf chiral multiplets. The dual
description is the free non-Abelian magnetic phase in terms of magnetic variables, which
is an SU (N) theory, where N = Nf −Nc, with Nf �avours and N2

f extra gauge invariant
massless �elds. As expected, when one theory is weakly coupled, the other theory is
strongly coupled in the sense of Seiberg duality [165]. For Nf ≥ 3Nc, the original electric
theory is free in the IR and the magnetic one is in�nitely strongly coupled, whereas for
Nc + 1 ≤ Nf < 3Nc/2 the behaviour is reversed, with the magnetic theory being free in
the IR and the electric one in�nitely coupled.
Therefore, when the ISS model is mentioned, it is meant as the IR free, low energy

e�etive theory of the magnetic dual of SU (Nc) N = 1 SUSY QCD in the range Nc + 1 ≤
Nf < 3Nc/2 , N = Nf −Nc.
More precisely, the ISS model consists of ISS �elds φISS, which collectively denote the
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chiral super�elds3 qai , q̃
j
b and S

i
j, where i, j = 1, . . . , Nf are �avour indices; a, b = 1, . . . , N ,

and Nf > N = Nf −Nc. The global symmetry group is given by

SU (N)× SU (Nf )L × SU (Nf )R × U (1)B × U (1)
′ × U (1)R . (6.2.7)

The �elds transformations for q, q̃ and S are given by

q
(
N, N̄f , 1, 1, 1, 0

)
, (6.2.8)

q̃
(
N̄ , 1, Nf ,−1, 1, 0

)
, (6.2.9)

S
(
1, Nf , N̄f , 0,−2, 2

)
. (6.2.10)

The Kähler potential and the tree-level superpotential - without gauging SU (N) - for the
magnetic dual theory of SUSY QCD can be written as

KISS = |q|2 + |q̃|2 + |S|2 = qai q̄
i
a + q̃ia ¯̃qai + SijS̄

j
i , (6.2.11)

WISS = h
(
Trq̃Sq −M2TrS

)
= h

(
q̃iaS

j
i q
a
j −M2Sji δ

i
j

)
, (6.2.12)

where h is a dimensionless coupling and M �MP is the energy scale of the ISS model4.

In�aton and MSSM

In this work, we use the canonical Kähler potential for the MSSM �elds

KMSSM = φφ̄ , (6.2.13)

where we collectively denote the MSSM �elds by φ. Also, whenever the MSSM superpo-
tential is mentioned later in the text, its symbol will be written as WMSSM. Additionally,
we introduce a Giudice-Masiero term [166]

KGM = cHH1H2 + h.c. , (6.2.14)

where H1 and H2 are the MSSM Higgs super�elds and cH is a constant with no mass
dimension. This term is often phenomenologically required for the solutions of tanβ and
µ to lie in an acceptable range of values (for example, µ being real and tanβ real and
positive), within the four-dimensional e�ective low-energy theory context [162, 167, 168].
Also, in the original paper of Giudice and Masiero's, the µ-term problem was tackled.
For the in�aton, we need a �eld which accomplishes in�ation and does not decay into

gravitinos. The latter requirement makes for simplicity and is dealt with in sec. 6.2.4.
Therefore, despite not explicitly using its Kähler potential and superpotential throughout
this work, two expressions that accomplish what we require of the in�aton can be found

3The Sij is the extra gauge invariant massless �eld mentioned earlier.
4MP is the reduced Planck mass, related to the Planck mass MPl by MP = MPl/

√
8π.
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in [169], given by

Wη = Sf (η) , (6.2.15)

Kη = K
(
(η − η̄)2 , SS̄

)
, (6.2.16)

where the scalar S is called a stabilizer �eld.

Vacuum uplifting

As we have seen above, the most positive vacuum achieved with the KL model only is
a Minkowski one, i.e. Λ = 0, where Λ is the cosmological constant. As we know, our
universe has a positive cosmological constant, Λour/M

2
P ∼ 10−120. Therefore the KL sector

needs uplifting, which in our work comes from the ISS model. This means we consider
the following combinations

KKL-ISS = −3 ln (ρ+ ρ̄) + |q|2 + |q̃|2 + |S|2 , (6.2.17)

WKL-ISS = W0 + Ae−aρ −Be−bρ + h
(
Trq̃Sq −M2TrS

)
, (6.2.18)

for the Kähler potential and superpotential, where A, B, a, b > 0.
For the vacuum structure of KL alone, let Imρ = 0 and Reρ = σ, which means we

search for a vacuum in the real part of ρ. Furthermore, let σ0 be the value of ρ at its
minimum. The supersymmetric Minkowski vacuum VKL (σ0) = 0 must satisfy

Dρ WKL|σ=σ0
= ∂ρWKL|σ=σ0

+ (∂ρKKL)WKL|σ=σ0
= 0 , (6.2.19)

WKL (σ0) = 0 . (6.2.20)

AllowingWKL (σ0) 6= 0, namelyWKL (σ0) ≡ ∆, shifts the minimum to the supersymmetric
AdS minimum

VKL (σ0) ' −3m2
3/2 ' −

3∆2

8σ3
0

. (6.2.21)

Note that for the supersymmetric vacuum to apply, one must ensure DρWKL|σnew = 0,
which can be done for σnew = σ0 + δσ, where δσ � σ0 [170].
Now to the uplifting of the KL vacuum. As said before, it is accomplished by the

ISS model. By working out the �rst derivative of the e�ective four-dimensional N = 1

supergravity scalar potential with no D-terms (6.2.3), namely ∂φISSVKL-ISS = 0, the ISS
vacuum (S0, q0, q̃0) is given by

(S0)ij = 0 , (6.2.22)

(q0)ai = Mδai , (6.2.23)

(q̃0)jb = Mδjb . (6.2.24)
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From a matrix viewpoint, q0 and q̃0 can be written as

q0 =

(
MIN×N

0(Nf−N)×N

)
, (6.2.25)

q̃0 =
(
MIN×N 0N×(Nf−N)

)
. (6.2.26)

These are the VEVs responsible for spontaneous symmetry breaking in the ISS model that
allow for a possible uplifting of the AdS vacuum from the KL sector (6.2.21). As a matter
of fact, from terms eKKL-ISS∂{q,q̃,S}WKL-ISS∂{q̄,¯̃q,S̄}WKL-ISS in eq. (6.2.3), these VEVs imply

that the minimum of the KL-ISS scalar potential yields (with MP = 1)

Vmin =
e2NM2

(2σ0)3

[
∆2
(
−3 + 2NM2

)
+ h2M4 (Nf −N)

]
. (6.2.27)

Since M � MP, we neglect the term 2NM2 compared with −3 in the �rst brackets of
eq. (6.2.27) unless a huge N = Nf − Nc of O (1010) is considered. The scalar potential
minimum must equal the small but positive cosmological constant. From that equality
we obtain a constraint for the parameter ∆, namely

|∆| '
√
Nf −N

3
hM2 . (6.2.28)

The expected gravitino mass due to the supersymmetry breaking sector (the ISS sector
with parameters h and M) and the value σ0 = Reρ|min is given by

m3/2 =
〈
eK/2W

〉
' |∆|

(2σ0)3/2
eNM

2 ' eNM
2

(2σ0)3/2

√
Nf −N

3
hM2 . (6.2.29)

Restoring the reduced Planck mass MP, it yields

m3/2 '
eNM

2/M2
P

(2σ0/MP)3/2

√
Nf −N

3
h

(
M

MP

)2

MP . (6.2.30)

SinceM is assumed to be well belowMP � recall the smallness ofM due to the dynamical
nature of the ISS sector � we set eNM

2/M2
P = 1 throughout the work. Also, unless

otherwise stated, we work with a set of units where MP = 1. We will see later that σ0

depends on the parameters a, b , A and B from WKL, therefore the gravitino mass ends
up as a function of a, b , A, B, h and M .
As a �nal note, the kind of uplifting we do here is the so-called F-term uplifting, where

the uplifting contributions stem only from the F-term (6.2.3) in the scalar potential. If
the ISS model was gauged, D-term uplifting would be possible.
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6.2.2 Masses, symmetry breaking and decay rates

In the previous section, we focused on the �elds motivations, their Kähler potential and
superpotential, as well as the F-term upli�tng of the KL vacuum by the ISS sector. Now
we discuss the properties of the modulus ρ and the ISS �elds φISS, which will be relevant
to the cosmological analysis of the primordial universe. From this subsection on, we write
the ISS �elds only with lowered indices for an easy display.

Masses and symmetry breaking

To obtain the masses for the ISS and modulus �elds, we �rst compute the 8 × 8 non-
diagonal mass matrix for ρ, ρ̄, S, S̄, q, q̄, q̃, ¯̃q from the scalar potential (6.2.3) in our
scenario and then diagonalize it, yielding the following masses:

• The modulus scalar �eld ρ

It is possible to obtain the following mass (with MP = 1) for the real and imaginary
components of the modulus scalar �eld ρ:

m2
ρ =

2

9
AaBb (a− b)

[
Aa

Bb

]−a−b
a−b

ln
(
aA

bB

)
+O

(
M2
)

. (6.2.31)

If we set for example a = 0.1, b = 0.05, A = 1, B = 1, we obtain mρ ' 2.19 · 10−3 (in
MP units). This value is much heavier than the in�aton reference mass we will use in
this work, namely mη = 10−5.5 As shown in [169], one of the conditions to ignore the
dynamics of the modulus �eld during in�ation is that its mass must be much heavier
than the in�aton mass. Following this procedure, ρ and η decouple and can be studied
separately. This implies that the modulus �eld does not receive contributions from the
in�aton potential during and after in�ation, which in turn leads to a vanishing oscillation
amplitude of ρ. This point will be developed further in sec. 6.2.3.
For completeness, the ρ value at the minimum of the potential is given by the VEV of

its real part Reρ, namely σ0, which we compute to be σ0 = 1
a−b ln

(
aA
bB

)
+ O (M2); also

the parameter W0 from the KL superpotential can be expressed as W0 = −A
(
aA
bB

) a
b−a +

B
(
aA
bB

) b
b−a+O (M2). Using the same parameters we used to obtainmρ, it yields σ0 ' 13.86

and W0 ' 0.25.

• The ISS scalar �elds φISS

We continue the analysis for the ISS �elds. We write the following combinations Q1, Q2,
Q3, Q4 for q, q̄, q̃, ¯̃q �rstly with i = 1, . . . , N and a = 1, . . . , N ,

5In the simplest chaotic in�ation models, mη ∼ 6 · 10−6.
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Re, Im [Q1] =
1

2
(qai ± q̄ai + q̃ia ± ¯̃qia) , (6.2.32)

Re, Im [Q2] =
1

2
[qai ± q̄ai − (q̃ia ± ¯̃qia)] , (6.2.33)

and secondly with i = N + 1, . . . , Nf and a = 1, . . . , N ,

Re, Im [Q3] =
1

2
(qai ± q̄ai ± q̃ia + ¯̃qia) , (6.2.34)

Re, Im [Q4] =
1

2
[qai ± q̄ai − (±q̃ia + ¯̃qia)] . (6.2.35)

We show in table 6.1 the number of real or imaginary components as well as the mass
eigenvalues for each of the 6 kinds of mass eigenstates constructed from the ISS �elds
S, S̄, q, q̄, q̃, ¯̃q after diagonalization of the mass matrix.

ISS scalar mass eigenstate NumberRe/Im Mass

S1 ≡ Sij (i⊗ j ∈ N2) N2
√

6
Nf−N

(
MP

M

)
m3/2

S2 ≡ Sij
(
i⊗ j ∈ N2

f −N2
)

(Nf +N) (Nf −N) O
(
m3/2

)
Q1 ≡ Lc [qia, q̃ai] (i⊗ a ∈ N2) N2

√
6

Nf−N

(
MP

M

)
m3/2

Q2 ≡ Lc [qia, q̃ai] (i⊗ a ∈ N2) N2 0

Q3 ≡ Lc [qia, q̃ai] (i⊗ a ∈ NfN −N2) (Nf −N)N
√

6
Nf−N

(
MP

M

)
m3/2

Q4 ≡ Lc [qia, q̃ai] (i⊗ a ∈ NfN −N2) (Nf −N)N 0

Table 6.1: Tree level largest contributions to the masses of the ISS scalar mass eigenstates.
For the �rst column, the notation is such that N2 is the cartesian product N ⊗ N with
N = {1, . . . , N}; N2

f is the cartesian product Nf ⊗ Nf , with Nf = {1, . . . , Nf}; and
NfN with N = {1, . . . , N} and Nf = {1, . . . , Nf}. Furthermore, Lc stands for the linear
combinations given in eqs. (6.2.32) to (6.2.35), and the second column gives the number
of real or imaginary components for each type of ISS scalar mass eigenstates.

In [161] massless Goldstone modes were predicted to exist. In our analysis this would
correspond to both ReQ4 and ImQ4 as well as to ImQ2. At tree level, one is unable to
notice that ReQ2 is actually a pseudo-Goldstone whose mass is given by higher order
corrections, as we comment next. The reason why the scalar mass spectrum yields N2 +

2 (Nf −N) = 2NfN − N2 massless bosons is that the VEVs of q, q̃ break the original
symmetry SU (N) × SU (Nf )V × U (1)B with N2 + N2

f + 1 generators into SU (N)V ×
SU (Nf −N)V ×U (1)B′ with N

2+(Nf −N)2−1 generators, where SU (Nf )V breaks into
SU (N)V ×SU (Nf −N)V ×U (1)B′ , whereas the original SU (N)×U (1)B is completely
broken since, in the region i⊗ a = N2, there exists Q2 with null VEV. Furthermore, the
S �eld transforming as a singlet under SU (Nf )V gives no contribution to the massless
Goldstone mode analysis.
As to quantum corrections to the masses, we recall that one-loop calculations in [161]

generate an additional O
(
m3/2

MP

M

)
mass to the real and imaginary parts of S

′
2 (a subset
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of S2, namely Sij with indices i, j > N) as well as to the real part of Q2. More precisely,

eK/2m1-loop

S
′
2

= eK/2
(
ln (4)− 1

8π2

)1/2√
Nh2M

=

(
3 (ln (4)− 1)

8π2

)1/2
√

N

Nf −N
h

(
Mp

M

)
m3/2 , (6.2.36)

eK/2m1-loop
Q2

= eK/2
(
ln (4)− 1

8π2

)1/2√
Nf −Nh2M

=

(
3 (ln (4)− 1)

8π2

)1/2

h

(
Mp

M

)
m3/2 . (6.2.37)

Since M �MP, we can safely consider the one-loop contribution to yield the mass of the
real and imaginary components of S

′
2, as well as of the real component of Q2.

For a better understanding of the mass matrices for the ISS �elds S and Q after diag-
onalization, we display them below in a diagramatic form.

S =

 (S1)N×N
(
Snd

2

)
N×(Nf−N)(

Snd
2

)
(Nf−N)×N

(
S
′
2

)
(Nf−N)×(Nf−N)

 , (6.2.38)

Q =
(

(Q1 &Q2)N×N (Q3 &Q4)N×(Nf−N)

)
. (6.2.39)

Here we see the splitting of S2 into non-diagonal pieces
(
Snd

2

)
N×(Nf−N),

(
Snd

2

)
(Nf−N)×N

and the subset S
′
2 which receives mass through one-loop calculations beyond its tree-level

mass of O
(
m3/2

)
as presented above. Additionally, we see that Q1 and Q2 as well as Q3

and Q4 mix in the block forms sketched above. The indices here refer to the size of the
cartesian product set.
A further comment is in order. When one considers the ISS model alone, the VEVs

(6.2.22), (6.2.23) and (6.2.24). However, when the modulus �eld ρ contribution is included,
i.e. WKL = ∆, the �rst derivatives of the ISS �elds change according to

∂VKL-ISS
∂ (q, q̃)ia

= O
(
m2

3/2MP 〈q, q̃〉ia
)

, (6.2.40)

∂VKL-ISS
∂Sij

= O
(
m2

3/2MP

)
. (6.2.41)

To cancel these e�ects, the VEVs of qia, q̃ai and Sij (assuming the VEVs to be diagonal)
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should obtain corrections. This is translated as

〈qia, q̃ai〉 =
(
M −O

(
M3M−2

P

))
δia , (6.2.42)

〈Sij〉 =

((
M

MP

)2

MP +O
(
M4M−3

P

))
δij for i, j ≤ N , (6.2.43)

〈Sij〉 =

(
16π2 (Nf −N)

3 (ln (4)− 1)Nh2

(
M

MP

)2

MP +O
(
M4M−3

P

))
δij (6.2.44)

'
(

(Nf −N)

3N

408.79

h2

(
M

MP

)2

MP +O
(
M4M−3

P

))
δij for i, j > N .

The last correction is dominated by one-loop contributions. Notice that these corrections
cancel the term 2NM2 in eq. (6.2.27).
An observation about the sign of ∆ must be made. When we calculate the modi�ed

VEVs, written in the last set of eqs., one must assume either that h < 0 or ∆ < 0 for the
equation ∂VKL-ISS/∂φISS to vanish. We decide to restrain the sign freedom of ∆ and take
it to be negative, while opting for h > 0.

• The ISS fermion �elds χφISS

We now present the masses and eigenstates of the fermionic parts of the ISS super�elds.
For i⊗ a ∈ N2 and i⊗ j ∈ N2, for i = a and i = j, the eigenstates are

χB1 =
1√
5

(
21/2χai + 21/2χ̃ia + χij

)
+O (M) (6.2.45)

χB2 =
1√
5

(
21/2χai + 21/2χ̃ia − χij

)
+O (M) (6.2.46)

χS1 = 2−1/2 (χai − χ̃ia) (6.2.47)

For i 6= a and i 6= j, one �nds

χS3 =
1

2
(χi>a + χ̃a<i − χi<a − χ̃a>i) (6.2.48)

χS4 =
1

2
(χi>a − χ̃a<i + χi<a − χ̃a>i) (6.2.49)

χB3 =
1

2
√

2

(
χi>a − χ̃a<i − χi<a + χ̃a>i −

√
2χi<j +

√
2χi>j

)
+O (M) (6.2.50)

χB4 =
1

2
√

2

(
χi>a + χ̃a<i + χi<a + χ̃a>i −

√
2χi<j −

√
2χi>j

)
+O (M) (6.2.51)

χB5 =
1

2
√

2

(
χi>a − χ̃a<i − χi<a + χ̃a>i +

√
2χi<j −

√
2χi>j

)
+O (M) (6.2.52)

χB6 =
1

2
√

2

(
χi>a + χ̃a<i + χi<a + χ̃a>i +

√
2χi<j +

√
2χi>j

)
+O (M) (6.2.53)

For example, if N = 2, we have (χS3)N=2 = 1
2

(χ21 + χ̃12 − χ12 − χ̃21), and similarly for
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the other states. For i⊗ a ∈ NfN −N2 and i⊗ j ∈ N2
f −N2, the mass eigenstates are

χM1 = 2−1/2 (χia − χ̃ai) (6.2.54)

χM2 = 2−1/2 (χia + χ̃ai) (6.2.55)

χS2 = χij , for i 6= j (6.2.56)

= 2−1/2 (χqq − χij) , for i = j (6.2.57)

where q ≡ N + 1. As an example, for N = 2 and Nf = 5 and i = j, we obtain the

possibilities χS2 =
{

1√
2

(χ33 − χ44) , 1√
2

(χ33 − χ55)
}
. The Goldstino has already been

subtracted out and is given by

χGoldstino =
1√

Nf −N

Nf−N∑
i=1

χii +O
(
M2
)

(6.2.58)

Regarding the masses of the above eigenstates, the main contribution stems from the term(
eG/2

Wij

W

)
χ̄RχL + h.c. . Their mass values are written in tables 6.2 and 6.3.

ISS fermion mass eigenstate Number Mass

χB1 ≡ Lc [qai, q̃ia] (i⊗ a ∈ N2) N
√

6
Nf−N

(
MP

M

)
m3/2

χB2 ≡ Lc [Sij, qai, q̃ia] (i⊗ a ∈ N2, i⊗ j ∈ N2) N
√

6
Nf−N

(
MP

M

)
m3/2

χS1 ≡ Lc [Sij, qai, q̃ia] (i⊗ a ∈ N2, i⊗ j ∈ N2) N m3/2

χS3 ≡ Lc [qai, q̃ia] (i⊗ a ∈ N2) N (N − 1) /2 m3/2

χS4 ≡ Lc [qai, q̃ia] (i⊗ a ∈ N2) N (N − 1) /2 m3/2

χB3 ≡ Lc [Sij, qai, q̃ia] (i⊗ a ∈ N2, i⊗ j ∈ N2) N (N − 1) /2
√

6
Nf−N

(
MP

M

)
m3/2

χB4 ≡ Lc [Sij, qai, q̃ia] (i⊗ a ∈ N2, i⊗ j ∈ N2) N (N − 1) /2
√

6
Nf−N

(
MP

M

)
m3/2

χB5 ≡ Lc [Sij, qai, q̃ia] (i⊗ a ∈ N2, i⊗ j ∈ N2) N (N − 1) /2
√

6
Nf−N

(
MP

M

)
m3/2

χB6 ≡ Lc [Sij, qai, q̃ia] (i⊗ a ∈ N2, i⊗ j ∈ N2) N (N − 1) /2
√

6
Nf−N

(
MP

M

)
m3/2

Table 6.2: Tree-level largest contributions to the masses of the ISS fermion eigenstates
within the index space i ⊗ a ∈ N2 and i ⊗ j ∈ N2. The notations i ⊗ a and i ⊗ j are of
the same kind as the ones for the ISS scalar masses table 6.1. Furthermore, Lc stands for
the linear combinations given from eqs. (6.2.45) to (6.2.53), and the second column gives
the number of each type of ISS fermion mass eigenstate in the considered index space.

We should write some words in respect to the generation of soft terms via F-term SUSY
breaking from the ISS sector and the resulting particle spectrum. This has been analyzed
extensively in [162]. In general, for models with strong moduli stabilization, the generated
A-terms and the gaugino masses are very small at tree level. This happens because, for
example S̄DS̄WKL-ISS ∝ M2WISS � WISS (and similar terms with respect to q and q̃),
and the strong condition DρWKL-ISS � WKL-ISS after SUSY breaking.
Indeed the tree-level value for A is A ∝ m3/2

mρ
m3/2 � m3/2 since mρ � m3/2. Further-

more, the condition DρWKL-ISS � WKL-ISS and mρ � m3/2 also imply that the gaugino
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ISS fermion mass eigenstate Number Mass

χM1 ≡ Lc [qai, q̃ia]
(
i⊗ a ∈ N2

f −N2
)

N (Nf −N) 16π2

(ln[4]−1)h2m3/2

χM2 ≡ Lc [qai, q̃ia]
(
i⊗ a ∈ N2

f −N2
)

N (Nf −N) 16π2

(ln[4]−1)h2m3/2

χS2 ≡ Lc [Sij]
(
i⊗ a ∈ N2

f −N2
)

N2
f −N2 − 1 0

Table 6.3: Tree-level largest contributions to the masses of the ISS fermion eigenstates
within the index space i⊗ a ∈ NfN −N2 and i⊗ j ∈ N2

f −N2. The notations i⊗ a and
i ⊗ j are of the same kind as the ones for the ISS scalar masses table 6.1. Furthermore,
Lc stands for the linear combinations given from eqs. (6.2.54) to (6.2.57), and the second
column gives the number of each type of ISS fermion mass eigenstate in the considered
index space.

masses are undesirably small, namely m1/2 ∝ m3/2

mρ
m3/2∂ρlnhA � m3/2, where hA denotes

the gauge kinetic functions. Therefore, one should apply a one-loop level calculation to
generate both A-terms and gaugino masses, resembling anomaly mediated models. For
acceptable gaugino masses, m3/2 is forced to assume high values O (10− 1000 TeV) in or-
der to compensate for suppressed loop pre-factors. The resulting spectrum then resembles
split supersymmetry, with light gaugino masses and soft scalar masses of O

(
m3/2

)
.

Decay rates

Here we discuss the interaction terms of the ISS �elds to the MSSM �elds, as well as to
the ISS �elds themselves. More speci�cally, we provide the largest decay rates of the ISS
scalars real parts, since the ISS scalar imaginary parts do not oscillate after in�ation and
therefore do not contribute signi�cantly at that stage. The decay rates ΓiReφISS of each
ReφISS play a very important role in the following sections 6.2.3 and 6.2.4.
If Γφi

ISS
is su�ciently small, the ISS �elds decay quite late, well after in�aton decays

reheat the universe. The ISS �elds must decay before the onset of BBN in order not to
jeopardize the successful BBN predictions of the Standard Model. Note that not only the
ISS �elds themselves but also their decay products should decay before the onset of BBN.
ISS �elds decaying well before BBN may release a large amount of entropy. In fact, some

versions of A�eck-Dine baryogenesis [171,172] require a lot of late entropy production in
order to yield a baryon asymmetry that matches the asymmetry observed today, nB −
nB̄/s0 ∼ 10−10. However, baryogenesis can also be accomplished for a small ISS entropy
production through the mechanisms given in e.g. [173,174]. In this work, we will consider
the latter option. We thus require that the decay of the ISS �elds release less entropy
than in�aton decays do; this minimizes the di�erence between our scenario and standard
cosmology.
To compute the decay rates, we considered both two-body decays (φISS → 1 + 2) and
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three-body decays (φISS → 1 + 2 + 3),6 and used the following expressions

dΓ
12

φISS

dΩCM
=

∣∣∣M12

φISS

∣∣∣2
64π2

S12

m3
φISS

S , (6.2.59)

Γ
123

φISS
=

1

mφISS64π3

ˆ mφISS
2

0

dE2

ˆ mφISS
2

mφISS
2
−E2

dE1

∣∣∣M123

φISS

∣∣∣2 , (6.2.60)

where dΩCM is the phase space di�erential element, M12

φISS

(
M123

φISS

)
is the amplitude

(summed over helicity states, thus the `overline') of the two(three)-body decay. S12 =[
m2
φISS
− (m1 −m2)2]1/2 [m2

φISS
− (m1 +m2)2]1/2, mφISS is the mass of the decaying ISS

scalar, s is the symmetry factor for indistinguishable �nal states. Since the ISS �elds are
much heavier7 than their decay products, we consider all �nal particles to be massless for
simplicity.
Before writing the results for the decay rates, we must comment on an important

detail. Within the set (q, q̃), we will write the decay rates for ReQ1 and ReQ2. Despite
the oscillation amplitude of the latter being zero, its decay rate is important since it is a
decay product of ReQ1 itself. For the set S, we write the decay rates for ReS1 and ReS2,
which have non-vanishing oscillation amplitudes after in�ation.
For a complete list of possible decay rates, we refer the reader to the ref. [157], where

we calculated the decay rates of the ISS �elds into di�erent channels. For �nal MSSM
and/or ISS particles, we studied: two or three scalars; two fermions; two fermions plus
one scalar; two gauginos or two gauge bosons. Also decay rates for two �nal gravitinos
were evaluated.
Assuming N = 1 and Nf = 4, we observe the largest contributions to the total decay

rates of the ISS �elds originate from their decays to

• gravitinos via (S2, Q1, Q2)→ ψ3/2 + ψ3/2 ;

• two ISS fermions via S1 → χ̄S1 + χS1 ;

• and two ISS fermions plus one ISS scalar via both Q1 → χ̄S1 +χS1 +{ReQ2, ImQ2}
and Q2 → χ̄S1 + χS1 + ImQ2.

6To write the decay rates of ReφISS, we use for convenience the symbol φISS rather than ReφISS for the
real ISS scalars parts.

7Exceptions are the �elds ImQ2 and Q4. However we will see later that these �elds do not oscillate
after in�ation, thus they do not yield important contributions to the energy content of the universe,
at least before the ISS oscillating �elds decay, after which ImQ2 and Q4 might emerge and carry a
fraction of energy from the before-oscillating �elds.
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Put in another way, we have

Γtotal
S1

' Γ
χχ

S1
, (6.2.61)

Γtotal
S2

' Γ
2ψ3/2

S2
, (6.2.62)

Γtotal
Q1

' Γ
2ψ3/2

Q1
+ Γ

χχReQ2

Q1
+ Γ

χχImQ2

Q1
, (6.2.63)

Γtotal
Q2

' Γ
2ψ3/2

Q2
+ Γ

χχImQ2

Q2
. (6.2.64)

Notice the notation Q1, Q2, S1, S2 instead of ReQ1, ReQ2, ReS1, ReS2 for the initial
states. χ stands for χS1 or χ̄S1, appearing in pairs. The partial decay rates are given
by

Γ
χχ

S1
' 5.63 · 10−2

m3
3/2

M2
P

(
MP

M

)5

, (6.2.65)

Γ
2ψ3/2

S2
' 2.31 · 10−9

m3
3/2h

5

M2
P

(
MP

M

)5

, (6.2.66)

Γ
2ψ3/2

Q1
' 3.13 · 10−3

m3
3/2

M2
P

(
MP

M

)3

, (6.2.67)

Γ
χχReQ2

Q1
, Γ

χχImQ2

Q1
' 4.90 · 10−11

m3
3/2h

2

M2
P

(
MP

M

)5

, (6.2.68)

Γ
2ψ3/2

Q2
' 1.44 · 10−8

m3
3/2h

5

M2
P

(
MP

M

)3

, (6.2.69)

Γ
χχImQ2

Q2
' 2.57 · 10−14

m3
3/2h

5

M2
P

(
MP

M

)5

. (6.2.70)

The decay rates of the remaining products, ψ3/2 and χS1, are discussed now. The
gravitino decay rate is given by [175]

Γ3/2

(
ψ3/2 → MSSM

)
=

193

384π

m3
3/2

M2
P

. (6.2.71)

The gravitino decays predominantly into R-parity even MSSM particle and its supersym-
metric partner8, since its R-parity is R = −1 [176]. We assumed that m3/2 � mMSSM

with mMSSM being the mass of any MSSM particle. The factor 193
384π

counts the number of
MSSM gaueg bosons, fermions (leptons and quarks) and Higgs scalars. More speci�cally,
we have the following relation 193

384π
= 1

384π

(
12gaugeprefactor · 12gauge + 3families · 15fermions + 4Higgs

)
.

The χS1 decay rate,

ΓχS1
(χS1 → ImQ2 + χMSSM + φMSSM) = 2.38 · 10−4

m5
3/2

M4
P

(6.2.72)

' 1.12 · 10−8
m3

3/2

M2
P

h2

(
M

MP

)4

, (6.2.73)

8The decay channels are given by ψ3/2 → λ + Am, ψ3/2 → φm + χ̄m, ψ3/2 → φ∗m + χm, where λ are
gauginos, Am are gauge bosons, φm are scalars, and χm are left-handed fermions.
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is obtained from the term eG/2 (1/3 (Kqia +Kq̄ia)KMSSM) χ̄iaRχ
MSSM
L within the scalar poten-

tial. Again m3/2 � mMSSM was assumed, and the counting over the scalars and fermions
has been done, i.e. 49 = 3 · 15 + 4, and over the contribution from the GM term, which
yields 2cH ≡ 2.
The latter decay rate is smaller than the gravitino's and can pose problems to BBN if

the lifetime of χS1 exceeds ∼ 1 second, or temperature T ∼ 1 MeV. This will be dealt
with in secs. 6.2.3 and 6.2.4, where we obtain constraints on h andM imposed by entropy
dilution and dark matter production.

6.2.3 Post inflation dynamics and entropy production

So far we have shown the masses for the relevant �elds considered in this work (the
modulus, the gravitino and the ISS �elds), as well as the largest ISS decay rates. In
this section, we set these masses and decay rates against the constraints of small entropy
dilution.

Oscillations

We start with a detailed study os oscillations from the in�aton η and the ISS �elds ReφISS.
We determine which of the ISS �elds are relevant for the subsequent analysis and discuss
the decay epochs of η and the relevant ReφISS, together with entropy constraints.
The procedure is to study possible modi�cations to the ISS model due to the in�aton

�eld (which has been neglected in our analysis so far), in comparison with the situtation
of the ISS �elds after in�ation has already occurred.
Recall the VEVs of the ISS �elds without contributions from the in�aton η (eqs.

(6.2.42), (6.2.43) and (6.2.44))

〈qia, q̃ai〉 ' Mδia ,

〈Sij〉 '
(
M

MP

)2

MPδij for i, j ≤ N , (6.2.74)

〈Sij〉 '
(Nf −N)

3N

408.79

h2

(
M

MP

)2

MPδij for i, j > N .

We now add contributions from the in�aton, which means that we introduce the following
term to the ISS scalar potential [172,177,178]

∆V
(
φISS, φ̄ISS

)
∼ eK(φISS,φ̄ISS)V (η) = cH2φISSφ̄ISS + · · · , (6.2.75)

where H is the Hubble parameter, and generically c = 3 for KISS = φISSφ̄ISS [178], which
is the case for the �elds {Sij, qia, q̃ai}, eq. (6.2.11). The e�ect of ∆V

(
φISS, φ̄ISS

)
is to

make the VEVs during in�ation, which we de�ne as 〈Sij〉ins, 〈qia〉ins and 〈q̃ai〉ins, to assume
smaller values compared with their true minimum given in eq. (6.2.74), which we call
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from now on 〈Sij〉min, 〈qia〉min and 〈q̃ai〉min. In fact, one obtains for S

〈Sij〉ins ' 〈Sij〉min
(

1 +
cH2

2h2M2

)−1

' 2h2M4

cH2MP
� 〈Sij〉min for i, j ≤ N , (6.2.76)

〈Sij〉ins ' 〈Sij〉min
(

1 +
8π2cH2

(ln (4)− 1)h4M2

)−1

' 2h2M4

cH2MP
� 〈Sij〉min for i, j > N .

(6.2.77)

We have assumed high-scale in�ation in these equations, i.e. H � M . And for q and q̃,
it yields

〈qia, q̃ai〉ins '
{

1
h

√
h2M2 − cH2 for cH2 ≤ h2M2 ,

0 for cH2 > h2M2 .
(6.2.78)

The 〈Sij〉ins and 〈qia, q̃ai〉ins now evolve into the direction of the minima 〈Sij〉min and
〈qia, q̃ai〉min.
A comment can be done. The in�aton potential introduces the mass contribution

cH2φISSφ̄ISS to the ISS �elds, which yields a mass ∼ √cH for all the ISS �elds during
in�ation (H �M), including the mass of the Goldstone modes ImQ2, ReQ4 and ImQ4.
Although the Sij retain a small VEV, it cannot keep the Goldstone particles from being
massive.
Now take some generic �eld ϕ. The �elds ϕ that start oscillating after in�ation are the

ones which possess a non-vanishing di�erence between the VEV during in�ation 〈ϕ〉ins
and the VEV well after in�ation 〈ϕ〉min, i.e.

〈ϕ〉amp = |〈ϕ〉ins − 〈ϕ〉min| 6= 0 . (6.2.79)

From this observation, we notice there are Nf oscillating �elds in the Sij sector, N for
i j ≤ N and (Nf −N) for i, j > N . The linear combinations responsible for their
oscillations are ReS1 and ReS2. Furthermore, assuming that q and q̃ have the same VEV
due to their symmetric placement within the superpotential, there are no oscillations for
ReQ2 due to its de�nition given by eq. (6.2.33). Since Q3 and Q4 are de�ned in the region
i ≤ N and N < a ≤ Nf , they do not contribute with oscillations due to (6.2.74), (6.2.34)
and (6.2.35). Thus, there are only N oscillating �elds from q and q̃, corresponding to the
mass eigenstate ReQ1.
After the end of in�ation, η starts to osccillate about its true minimum [178�180] and,

since it dominate the energy density of the univrse, this constitutes a matter-dominated
period. The energy density of the in�aton η and the Hubble parameter after in�ation are
given by

ρη =
1

2
m2
ηη

2 =
1

2
m2
η 〈η〉2amp

(
Rη

R

)3

=
4

3
m2
ηM

2
P

(
Rη

R

)3

, (6.2.80)

H =

√
1

M2
P

ρ

3
=

2

3
mη

(
Rη

R

)3/2

. (6.2.81)
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Here we take the in�aton amplitude to 〈η〉amp = 〈η〉ins =
√

8/3MP after in�ation because
〈η〉min = 0 now. Furthermore, R denotes the cosmological scale factor of the FLRW
metric, and Rη denotes the cosmological scale factor at the onset of the η oscillations.
The post-in�ationary oscillation amplitude of the modulus ρ yields 〈ρ〉amp = 0 since
〈ρ〉ins = 〈ρ〉min. As a matter of fact, the in�aton and the modulus (following discussion
after eq. (6.2.31)) decouple, which means that the ρ VEV during and after in�ation are
the same. The evolution of ρ will thus be neglected.
Within the matter-dominated period after in�ation with oscillations from η, the Hubble

parameter decreases to the point where 〈qia, q̃ai〉ins > 0. When this happens, the ISS �elds
q and q̃ adiabatically track their instantaneous minimum9 (6.2.78) [178�180] until they
reach the point where H ∼ mϕ where they start damped oscillations about their true
minimum (6.2.74).
To understand the relation of the Hubble parameter with the mass of ϕ and the be-

ginning of oscillations, we recall the equation for the time evolution of the generic �eld
ϕ:

ϕ̈+ 3Hϕ̇+m2
ϕ (ϕ− ϕmin) = 0 , (6.2.82)

where mϕ is the ϕ mass (the third term stems solely from the ϕ mass term, i.e. no
interactions are assumed). Solving the di�erential equation, it yields

ϕ (t) = ϕmin − e−
3
2
Ht
(
C1 e

−
√
f t + C2 e

√
f t
)

, (6.2.83)

where f = f (H, mχ) = 9H2 − 4m2
χ; C1 = ϕi ·

(
−3H +

√
f
) (

2
√
f
)−1

and

C2 = ϕi ·
(
3H +

√
f
) (

2
√
f
)−1

are determined by the initial conditions ϕ (0) = ϕmin−ϕi
and ϕ̇ (0) ' 0, where t = 0 is de�ned at the beginning of ϕ oscillations. If f > 0,
the �eld behaves as ϕ − ϕmin ∼ −e−αt where α > 0. If f < 0, we have ϕ = ϕmin −
ϕi · e−

3
2
Ht
(
cos
(∣∣√f ∣∣ t)+ i 3H√

f
sin
(∣∣√f ∣∣ t)), where its behaviour is oscillatory with an ef-

fective amplitude ϕi · e−
3
2
Ht that decreases with time. As it is clear, at f ' 0 the �eld turns

quite high since the `sine' term explodes. Also we note that right at f = 0∴H = 2
3
mϕ

the term ϕi (roughly at the end of in�ation) is approximately zero, thus the sine term is
not a physical problem.
From the last paragraph, at t = 0 (or f = 0) we have H = 2

3
mϕ, which is the relation

we use from now on to determine the start of oscillations.
The cosmological factor at the onset of ReφISS oscillations is then given by

RφISS =

(
mη

mφISS

)2/3

Rη . (6.2.84)

9The condition h2M2 & cH2
∣∣
H=2mφISS/3

implies that 〈φISS〉ins > 0 and consequently ReφISS can indeed

start oscillations. This condition is satis�ed for any h and M , with c = 3.
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For the cases of ReQ1, ReS1 and ReS2, we have

RQ1 =

(
Nf −N

6

)1/3(
M

MP

mη

m3/2

)2/3

Rη , (6.2.85)

RS1 =

(
Nf −N

6

)1/3(
M

MP

mη

m3/2

)2/3

Rη , (6.2.86)

RS2 =

(
Nf −N

3N

)1/3(
8π2

(ln (4)− 1)h2

)1/3(
M

MP

mη

m3/2

)2/3

Rη . (6.2.87)

From this time on, the ISS �elds start to oscillate about their true minimum. This may
happen before or after the in�aton oscillations have decayed.
The energy densities for the N oscillating �elds ReQ1 and the Nf oscillating ReS1 and

ReS2 are given by

ρQ1 = N · 1
2
m2
Q1
〈Q1〉2amp

(
RQ1

R

)3

, (6.2.88)

ρS1 = N · 1
2
m2
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〈S1〉2amp

(
RS1

R

)3

, (6.2.89)

ρS2 = (Nf −N) · 1
2
m2
S2
〈S2〉2amp

(
RS2

R

)3

. (6.2.90)

Inserting the relevant quantities, the last equations translate to

ρQ1 =
12N
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, (6.2.91)

ρS1 = N
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)2(
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We write below the decay rate of the in�aton and recall the relevant decay rates of the
ISS �elds (along with ReQ2 which will be needed later):

Γη ' a2
η

m3
η

M2
P

, (6.2.94)

Γtotal
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' 5.63 · 10−2
m3
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M2
P

(
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)5

, (6.2.95)

Γtotal
S2

' 2.31 · 10−9
m3

3/2h
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(
MP
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)5

, (6.2.96)

Γtotal
Q1

' 3.13 · 10−3
m3

3/2

M2
P

(
MP
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)3

+ 9.80 · 10−11
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3/2h
2
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, (6.2.97)

Γtotal
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' 1.44 · 10−8
m3

3/2h
5
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P

(
MP
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)3

+ 2.57 · 10−14
m3

3/2h
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P

(
MP
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)5

. (6.2.98)
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We assumed that η decays thorugh gravitational interactions. The quantity aη in the
�rst equation quanti�es the couplings of η to matter. For example, this quantity can be
very small under the conditions assumed in [169], namely that the gauge kinetic function
depends linearly on the in�aton, which thus decays into two MSSM gauge bosons with
coupling dη, yielding the decay rate Γ = 3

64π
d2
η
m3
η

M2
P

∼ 10−2d2
η
m3
η

M2
P

≡ a2
η
m3
η

M2
P

. The coupling aη
is given by

aη = 10−1dη . (6.2.99)

Next we study the evolution of the oscillations along with the decays of the ISS oscillating
�elds.

Evolution of the universe

Now we discuss how the oscillations and decays referred to in the previous item account
for the evolution of the universe. In order to study the evolution of the �elds ReQ1, ReS1,
ReS2 and η, a some issues must be taken care of.

• We assume, as we already mentioned, that the energy of the universe after the end
of in�ation is dominated by η oscillations � and by η decay products after it decays;

• we must know whether the ISS �elds decay in the η oscillation era or in the η decay
products era, since this has an important impact on the energy densities of their
products;

• the relativistic decay products may turn non-relativistic as the universe cools down,
which means their energy evolves di�erently than radiation, i.e. ρrad/ρnon ∼ R−1;

• decay products which are massless ISS particles should be carefully studied since
they contribute to the present relativistic degrees of freedom Ne�, which is Ne� =

3.15± 0.23 [45];

• decay products with small decay rates should be also carefully studied, since they
should not decay after the BBN epoch, i.e. T ∼ 1 MeV.

We start with the �rst point. The combined φISS oscillation energy is given by

ρφISS = ρQ1 + ρS1 + ρS2

=

(
m3/2

MP

)2

M4
P

{
12N

Nf −N

(
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)3

+N

(
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MP

)2(
RS1
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)3

(6.2.100)

+
(Nf −N)2

N

(
16π2

3 (ln (4)− 1)h2

)(
M

MP

)2(
RS2

R

)3
}

.

In order to compare ρφISS and ρη, we need to rearrange the energy expression of the former.
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We rewrite it as

ρφISS = m2
ηM

2
P

{
2

(
M

MP

)2

+
1

2

(
M

MP

)4

+
2.51 · 105

h4

(
M

MP

)4
}(

Rη

R

)3

, (6.2.101)

where we have used the eqs. (6.2.85), (6.2.86) and (6.2.87) with N = 1 and Nf = 4.
When compared to the energy density of η, namely

ρη =
4

3
m2
ηM

2
P

(
Rη

R

)3

for Rη < R < Rdη , (6.2.102)

we obtain ρη > ρφISS at the end of in�ation only if

M

MP
< 4.80 · 10−2h . (6.2.103)

This requirement will be further discussed in �gs. 6.3 and 6.4 with entropy production
constraints.
Now we turn to the question of the decay epoch of φISS, which depends on whether

they decay before or after η reheating, i.e. when η decays itself. For the former and the
latter, we obtain respectively

RdφISS

Rdη
= a4/3

η

(
MP

ΓφISS

)2/3(
mη

MP

)2

,

RdφISS

Rdη
=

2√
3
aη

(
MP

ΓφISS

)1/2(
mη

MP

)3/2

,

where RdφISS is the scale factor at φISS decay and similarly for η. Here we have used
H = aΓ to obtain the decay epochs � a = 2/3 for matter domination and a = 1/2

for radiation domination � as well as Rη/Rdη = a
4/3
η

(
mη
MP

)4/3

. If
RdφISS
Rdη

< 1 (> 1), φISS
decays before (after) the in�aton does. We show in �g. 6.1 how the parameters M and h
determine the time of their decays. Since we want the η oscillation energy to be greater
than the one of φISS, production of entropy from the latter �elds will only be problematic
if one or more of them decays after η has already decayed. The energy density of the
decay products of η is given by

ρrη = ρdη

(
Rdη

R

)4

=
4

3
a4
ηM

4
P

(
mη

MP

)6(
Rdη

R

)4

for Rη < R < Rdη , (6.2.104)

where ρdη is the energy density ρη at the moment of η decay.
Now, assuming ρrφISS is the energy density of radiation from Q1, S1 and S2, we can

de�ne a scale factor R1 where ρrη (R1) = ρrφISS (R1). Finding R1 means there exists a limit
on the entropy produced by these ISS �elds such that sη > sφISS is satis�ed, where for
any �eld i the following relation holds, si/sj ∼

(
ρri/ρ

r
j

)3/4
. The energy density ρrφISS (R)
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Figure 6.1: The curves of ΓiφISS = Γη, where i = Q1, S1, S2 for small (large) coupling
aη = 10−3 (aη = 10−1). Above the curves, the decay rates ΓiφISS become larger, implying
a smaller scale factor at the time of φISS decay.

is given by

ρrφISS (R) = ρdQ1

(
RdQ1

R

)4

+ ρdS1

(
RdS1

R

)4

+ ρdS2

(
RdS2

R

)4

. (6.2.105)

If ρrη (R1) > ρrφISS (R1), then most entropy comes from η decays; otherwise, the ISS decays
would provide the most entropy. When ρrφISS is evaluated at R1, the latter is necessary
equal to the scale factor of the last decaying �eld, since otherwise the ISS energy density (if
considering matter and radiation together) would overcome ρrη again, since ρrad/ρmatter ∼
R−1.
For example, assuming RdQ1 < RdS1 < RdS2 , one would obtain

ρrφISS (R1) = ρdQ1

(
RdQ1

R1

)4

+ ρdS1

(
RdS1

R1

)4

+ ρdS2 , (6.2.106)

where R1 = RdS2 for S2 as the latest decaying particle. Taking these details into account,
in the �g. 6.2 we plot numerically the bound sη > sφISS . A comment is in order. For the
region at which the curve is drawn, S2 dominates the energy density compared with the
ones from either Q1 or S1 because it has the longest lifetime and a sizable VEV. Both Q1

and S1 become important only for smaller M and larger h, i.e. in the lower right corner
of both �gures. In addition, there is a noticeable step at the right upper corner for both
cases aη = 10−3 and aη = 10−1. They form at the point at which S2 turns from decaying
after η to decaying before η. This introduces a dip in the S2 energy density function. The
step is quite steep only because our analysis assumes instantaneous decays.
To this discussion we must add the bahaviour of the decay products of Q1, S1 and S2.

These decay products can turn from relativistic to non-relativistic at some point, which
could render their energy bigger than ρrη. Below we �nd onstraints such that their energy
density do not surpass ρrη. For this, we start by displaying the decay products of each
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Figure 6.2: The curve of sφISS = sη numerically obtained from eq. (6.2.106) at the decay
epoch of S2, the last decaying particle, for small (large) coupling aη = 10−3 (aη = 10−1).
Above the curve, the energy density ρrφISS becomes larger, implying also a larger total
entropy density at the decay time of S2.

�eld,

ReS1 : (χS1 + χ̄S1) , (6.2.107)

ReS2 :
(
ψ3/2 + ψ3/2

)
, (6.2.108)

ReQ1 :
(
ψ3/2 + ψ3/2, χS1 + χ̄S1 + ImQ2, χS1 + χ̄S1 + ReQ2

)
, (6.2.109)

ReQ2 :
(
ψ3/2 + ψ3/2, χS1 + χ̄S1 + ImQ2

)
. (6.2.110)

Additionally, we recall the masses of the �nal particles,

mχS1
= m3/2 ,

mReQ2 =

√
3 (ln (4)− 1)

8π2
h

(
MP

M

)
m3/2 , (6.2.111)

mImQ2 = 0 .

Since mImQ2 = 0, ImQ2 can never become non-relativistic. For massive particles, the scale
factor at which they turn non-relativistic Rnon is related to the scale factor at the decay
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of the initial particle. We have the following relations:

ReS1 :
RdS1

RχS1
non

=
2mχS1

mReS1

,

ReS2 :
RdS2

R
ψ3/2
non

=
2mψ3/2

mReS2

,

ReQ1 :
RdQ1

R
ψ3/2
non

=
2mψ3/2

mReQ1

,
RdQ1

RχS1
non

=
3mχS1

mReQ1

,
RdQ1

RImQ2
non

=
3mImQ2

mReQ1

,
RdQ1

RReQ2
non

=
3mReQ2

mReQ1

,

ReQ2 :
RdQ2

R
ψ3/2
non

=
2mψ3/2

mReQ2

,
RdQ2

RχS1
non

=
3mχS1

mReQ2

,
RdQ2

RImQ2
non

=
3mImQ2

mReQ2

.

(6.2.112)

These were computed via fϕiΦ · ρdΦ · (RdΦ/R
ϕi
non)

4 = ρϕi (T = mϕi), where Φ is the mother-
particle which decays into ϕi +ϕj (+ϕk); and f

ϕi
Φ is the share of energy of each Φ particle

given to a product-particle ϕi, e.g. fϕiΦ = 1, for Φ = ReQ2 and ϕi = ψ3/2. We have
also considered that the masses of the products are much smaller than the masses of the
decaying particles, which leads to the numerical factors in these expressions.
If the decay rate of a particle is su�ciently large, it decays before it can turn non-

relativistic. In that case, there would be no change to the curve we obtained in �g. 6.2.
On the other hand, if its decay rate is small, we must change the energy density quations
accordingly,

ρnoni =
∑
j

ρdi

(
Rdi

Rj
non

)4(
Rj
non

R

)3

=
∑
j

ρdi

(
Rdi

Rj
non

)(
Rdi

R

)3

. (6.2.113)

Regarding the decay rates of the products themselves, the one for ReQ2 is written in eq.
(6.2.98) and the ones for ψ3/2 and χS1 in eqs. (6.2.71) and (6.2.73), respectively. We
calculate again the entropy production upper bound, now taking into account the non-
relativistic behaviour of the products χS1, ψ3/2 and ReQ2. The obtained bound is shown
in the red curve in �g. 6.3. It was numerically obtained from eq. (6.2.113).
As one can notice, the deviation from the blue dashed curve becomes more pronounced

for lower values of M and h. This is because the products from ISS decays turn non-
relativistic earlier as M and h take such values. At h & 0.1 and for aη = 10−3, the ISS
products decay when they are still relativistic, thus the agreement on the curves. For
aη = 10−1, the same happens for h & 0.4. From now on, we thus consider the constraint
on the entropy production from the curve.
We address now the issue of ImQ2 relativistic degrees of freedom since they are the only

massless products in the relevant decays. First we obtain an expression for the energy
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Figure 6.3: The curves of sφISS = sη numerically obtained from eq. (6.2.106) and the
magenta dashed curve from eq. (6.2.103) for small (large) coupling aη = 10−3 (aη = 10−1).
The blue curve is evaluated at the S2 decay epoch , the last ISS deaying particle as already
seen in �g. 6.2; and the red dashed curve is evaluated at the decay time of χS1, which
is the last product to decay. We write legends just for the latter because the one for the
blue curve has already been given in �g. 6.2.

density from ImQ2,

ρImQ2 =
ΓχχReQ2

Q1

Γtotal
Q1

[
1

3

(
RdQ1

R

)4

+
1

3
· 1

3

ΓχχImQ2

Q2

Γtotal
Q2

(
RdQ1

RReQ2
non

)4(
RReQ2
non

RdQ2

)3(
RdQ2

R

)4
]
ρdQ1

=
ΓχχReQ2

Q1

Γtotal
Q1

[
1

3
+

1

9

ΓχχImQ2

Q2

Γtotal
Q2

(
RdQ2

RReQ2
non

)]
ρdQ1

(
RdQ1

R

)4

'
ΓχχReQ2

Q1

Γtotal
Q1

[
1

9

ΓχχImQ2

Q2

Γtotal
Q2

(
RdQ2

RReQ2
non

)]
ρdQ1

(
RdQ1

R

)4

≤ 1

18

(
RdQ2

RReQ2
non

)
ρdQ1

(
RdQ1

R

)4

, (6.2.114)

where the ratios 1
3
and 1

3
· 1

3
correspond to the energy share carried by ImQ2 for the two

respective sources, Q1 → χ̄S1 + χS1 + ImQ2 and Q1 → χ̄S1 + χS1 + ReQ2 followed by
ReQ2 → χ̄S1 + χS1 + ImQ2, assuming massless products when compared to ReQ1. We
used

RdQ2

R
ReQ2
non

> 100 (which can be proven for the parameter ranges M ∈ [10−6, 1] and

h ∈ [10−3, 1]) from the second to the third line; also from the third to the fourth line,

we used the maximum values for the branching ratios, i.e.
Γ
χχReQ2
Q1

ΓtotalQ1

= 1
2
and

Γ
χχImQ2
Q2

ΓtotalQ2

= 1,

for simplicity. Next, we know dark radiation (neutrinos plus other unknown degrees of
freedom) to be parametrized by the e�ective degrees of freedom Ne�, which yields the
energy density for dark radiation (for T � 1MeV),

ρdark = Ne�
7

8

(
4

11

)4/3

ργ , (6.2.115)
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where ργ is the photon energy density. The observational parameter Ne� = 3.15±0.23 [45]
allows for a signi�cant additional radiation density, if one takes the contribution from the
SM three neutrinos to be Nν ' 3.046 [101]. Comparing the two last equations, one can
obtain that for the allowed parameter space shown in �g. 6.4, ρImQ2 < ρdark − ρSM ν .
To summarize the constraints regarding entropy production obtained in this section

which will be important for the next section, we collect them in table 6.4 with their
legend in �g. 6.4.

Location Constraint Meaning Legend
Eq. (6.2.103) M

MP

< 4.80 · 10−2h ρη > ρφISS magenta curve
at the end of in�ation

Eq. (6.2.106) Numerical sη > sφISS at decay epoch blue dashed curve
of last decaying product S2

Eq. (6.2.106) Numerical sη > sφISS at decay epoch red curve
of last decaying product χS1

Table 6.4: The constraints on the ISS parameters M and h obtained in this section in
order to have acceptable entropy production; their location in the text; their meaning;
and their depiction in the �gures.

Figure 6.4: The curves sφISS = sη summarizing the constraints obtained in this setion,
see table 6.4, for small (large) coupling aη = 10−3 (aη = 10−1). The allowed region is
shaded in blue. It also appears in the next section with the label �sec. 4�, where apart
from these constraints on entropy production we also consider constraints on dark matter
production. Notice that the blue shaded region would be extended to larger values of
M/MP and lower values of h if the entropy of the gravitino is not considered (thus just
χS1). More details on how to ignore the gravitino constraint in the next section.
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6.2.4 Dark matter production

After �nding a protocol for �nding solutions to negligible ISS entropy production, we
turn now to dark matter production within that scenario. We consider both the pro-
duction from gravitinos produced thermally within the reheating phase of the in�aton
η, and purely non-thermal production from the chain of decays from the ISS �elds
φISS = {ReQ1, ReS1, ReS2} going through gravitinos ψ3/2, small mass fermions χS1, the
real scalar ReQ2, and then �nally into the neutralino dark matter candidate (for this
case, the late thermalization of neutralinos will also be studied). The overproduction of
non-thermal dark matter is known to be a delicate issue for moduli, of which the Polonyi
model [181�183] is an important example.
We can comment a little more speci�cally on the script and background we have to

respect. From decay rate results in sec. 6.2.3, we know that S1, S2and Q1 can decay
into ψ̄3/2 + ψ3/2. When this is the case, we have the following relation between the
number density of ISS particles niφISS and the number density n3/2 of the �nal gravitinos:

n3/2 = 2
∑

i n
i
φISS
·Br

(
φiISS → ψ̄3/2 + ψ3/2

)
, where Br

(
Φi →

∑
j ϕj

)
is the branching ratio

of Φi into a particular channel
∑

j ϕj. As another source of gravitinos, one should consider
the in�aton either through direct decay or through thermal freezout after η-reheating10

. After the gravitinos are produced, they decay when H ∼ Γ3/2 into an odd number of
lightest supersymmetric particles (LSPs), which we assume to be the neutralino.
On the other hand, the ISS �elds can also decay into χS1 +χ̄S1. In this case, the relation

between number densities is a little more diverse. They can be however11 nχS1
/2 or nχS1

/4

depending on the path one looks in. For example, the path ReQ1 → χS1 + χ̄S1 +ReQ2 →
χS1 + χ̄S1 + ImQ2 leads to nχS1

/4, while ReS1 → χS1 + χ̄S1 yields nχS1
/2. Every path

will be weighed by the respective branching ratio. Each χS1will in turn contribute to the
production of one neutralino at the epoch H ∼ ΓχS1

.
If the ISS decays into gravitinos or χS1 are too e�cient or if η reheating temperature is

su�ciently high, the high gravitino or χS1 density may generate an LSP abundance which
may overclose the universe. Since we assume that the LSP is a neutralino, its production
via direct decays of φISS is negligible compared to its production after the ISS �elds have
�rst decayed into gravitinos or χS1.

Thermal gravitino production

10For an exact treatment, one should consider ISS-reheating, since when the ISS �elds decay, they could
generate a thermal bath with temperature T ISS

R , which would produce gravitinos. We assumed up to
now that the in�aton η is the �eld responsible for the current particle content of the universe and
the ISS entropy production could never be greater than the one from η decay products. Therefore,
constraining entropy production means one does not need to be concerned theoretically about the
ISS-reheating gravitino production. Its thermal production comes predominantly from the in�aton
decay.

11In the case of S1, ReS1 decays directly to χS1 + χ̄S1. For Q1, ReQ1 decays into χS1 + χ̄S1 +
{ReQ2, ImQ2}, where ReQ2can subsequently decay to χS1 + χ̄S1 + ImQ2. In the case of Q2, ReQ2

decays only into χS1 + χ̄S1 + ImQ2.
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We start the analysis of dark matter production via the thermal gravitino source [184],
from the thermal plasma created by the decayof the in�aton �eld η. This production
depends on the reheating temperature of the universe dominated by the in�aton after its
decay,

TR =

(
40

π2gη

)1/4

aη

(
mη

MP

)3/2

MP , (6.2.116)

where gη is the number of thermalized relativistic degrees of freedom at temperature TR.
We assume the in�aton to decay mainly into MSSM particles. If the MSSM and the

ISS sector ever had sizeable interactions with each other, that would mean the ISS �elds
could thermalize with a temperature TR, and that would pose a problem if TR > MP,
since the reheating temperature would then melt the condensed ISS sector (recall that
the ISS sector considered here is a description of SQCD at low temperatures) and then
one would have to deal with the original quarks, squarks, gauge bosons and gauginos.
Neither of the two hypothesis are true: the ISS sector and the MSSM do not have as a
sizeable interaction as to thermalize the latter with a temperature TR; second, we note
that TR . 10−9MP for aη ≤ 10−1, gη = 100 and mη = 10−5MP, therefore TR is below the
energy scale of M/MP considered in the �gures of sec. 6.2.3 and further in this section
plots.
The ratio of the gravitino number density to the entropy density in the reheating phase

is given by, for m1/2 � m3/2 � TR [185] (m1/2 stands for the gaugino masses),

(n3/2

s

)
rh

= 2.3 · 10−12

(
TR

1010 GeV

)
= 2.5 · 10−11aηg

−1/4
η

(
mη

10−5MP

)3/2

. (6.2.117)

For high values of TR, this ratio may potentially overclose the universe.
If one assumes the number density of neutralinos is given by12 nχ ' n3/2, their mass

density in units of the critical density ρc will be given by

Ωrh
χ h

2
d '

7nγ
s

mχn3/2

ρc
h2
n ' 2.78 · 1010

( mχ

100 GeV

)(n3/2

s

)
rh

, (6.2.118)

where today's photon number density is related to today's entropy density by 7nγ '
s0, and hd = H0/

(
100 km s−1MPc−1

)
is the dimensionless Hubble parameter with H0

being today's dimensionful Hubble parameter. Therefore, for Ωrh
χ h

2
d . 0.12, the allowed

gravitino to entropy ratio is(n3/2

s

)
rh
> 4.32 · 10−12

(
100 GeV
mχ

)
. (6.2.119)

12This assumption is feasible. The R-parity of the gravitino is odd, thus its largest decay rates are the
channels φoddi +φevenj , φoddi +φevenj +φevenk , φoddi +φoddj +φeoddk , where φi represents any possible particle
respecting the energy constraint of the initial m3/2. However, given a number n of �nal particles,
(2n− 3) �nal particles can be fermions since ψ3/2 has mass dimension 3/2. The lowest order process

is ψ3/2 → φoddi + φevenj , which leads to nχ = n3/2.
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By combining eqs. (6.2.117) and (6.2.119), we have the upper bound

aηg
−1/4
η

(
mη

10−5Mp

)3/2 ( mχ

100 GeV

)
> 0.17 . (6.2.120)

This bound can be evaded in two distinct situations, namely:

• when th in�aton decays into a gravitino plus an in�atino. However, this channel
may be kinematically forbidden if |mη −mη̃| < m3/2 (where η̃ is the in�atino) or
kinematically suppressed if the in�aton(ino) scale is much higher than the gravitino
scale, O

(
m3/2

)
� O (mη, mη̃) [186];

• when the in�aton decays into a pair of gravitinos through the interaction term

L3/2
η = − i

8
εµνρσψ̄µγνψρ (Gη∂ση −Gη∗∂ση

∗)

+
i

4
(1 +K (η, η̄))m3/2

(
2 +

W (η)

W

)
MPψ̄µσ

µνψν , (6.2.121)

whereW = WKL-ISS+WMSSM+W (η) is the total superpotenttial, Gη is the derivative
of G = K + ln

(
WW̄

)
with respect to η, and K = K (η, η̄) + KKL-ISS + KMSSM is

the total Kähler potential. As we mentioned before in sec. 6.2.1, we take [169]
as an example of how (6.2.121) can yield a null decay rate η → 2ψ3/2. There
K (η, η̄) ⇒ K

(
(η − η̄)2 , SS̄

)
, where S is a stabilizer with null expectation value.

This implies that the Kähler potential yields null interaction couplings for both
terms in (6.2.121). As for W (η), it is de�ned as W (η) ⇒ Sf (η), which implies a
zero interaction term between η and ψ3/2.

• When gravitinos decay at a temperature which is higher than the freezout temper-
ature of the neutralinos T fχ ∼ mχ/20.

Therefore, the condition (6.2.120) (which has to be satis�ed for the neutralino χ not to
close the universe) applies if none of the conditions discussed above applies. In this work,
we assume the production of gravitinos via direct in�aton/in�atino decays is negligible,
and thus from η-reheating we consider only gravitinos which are thermal, i.e. have gone
through standard freezout.

Thermal and non-thermal production

We now study the dark matter production via a mixture of thermal and non-thermal
processes, from gravitinos produced during the reheating phase of η and from φISS, decays
respectively.
First we study the production of neutralinos from φISS decays. The number density of

neutralinos χ di�ers whether RdφISS > Rdη or RdφISS < Rdη. since in the former scenario
each φISS decays are withn the η-reheated universe, and in the latter scenario the universe
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is dominated by matter from η oscillations. However, the same ratios of ψ3/2 and χS1

number densities, n3/2 and nχS1
, to entropy density s are produced in the end. They are

given by

n3/2

s
= aηg

−1/4
η

(
mη

MP

)3/2(
MP

m3/2

)(
M

MP

)3

× (6.2.122){
2.26

(
Γ

2ψ3/2

Q1

Γtotal
Q1

+
ΓχχReQ2

Q1

Γtotal
Q1

Γ
2ψ3/2

Q2

Γtotal
Q2

)
+

5.72 · 106

h5

(
M

MP

)2 Γ
2ψ3/2

S2

Γtotal
S2

}
,

nχS1

s
= aηg

−1/4
η

(
mη

MP

)3/2(
MP

m3/2

)(
M

MP

)3

× (6.2.123){
2.26

ΓχχReQ2

Q1

Γtotal
Q1

(
Γ

2ψ3/2

Q2

Γtotal
Q2

+ 2
ΓχχImQ2

Q2

Γtotal
Q2

+ 1

)
+ 0.56

(
M

MP

)2 ΓχχS1

Γtotal
S1

}
,

where we used n3/2 ' 2
(

Γ
2ψ3/2

φISS
/Γtotal

φISS

)
nφISS with nφISS = ρφISS/mφISS and similarly for

χS1. Furthermore, we use ΓImQ2

Q1
' ΓReQ2

Q1
. Notice that, for Q1, there is a possibility

of a decay chain generating nχS1
, which we also take into account, translated in the

term ∝ Γ
χχReQ2
Q1

ΓtotalQ1

Γ
2ψ3/2
Q2

ΓtotalQ2

. With nχ ' n3/2 and nχ ' nχS1
applied in (6.2.122) and (6.2.123)

separately, the neutralino relic densities from both sources are then given by

Ω3/2
χ h2

d '
7nγ
s

mχn3/2

ρc
h2
d

' 0.12 ·
( aη

10−2

)(100

gη

)1/4(
mη

10−5MP

)3/2 ( mχ

100 GeV

)
fψ3/2

(h,M) , (6.2.124)

ΩχS1
χ h2

d '
7nγ
s

mχnχS1

ρc
h2
d

' 0.12 ·
( aη

10−2

)(100

gη

)1/4(
mη

10−5MP

)3/2 ( mχ

100 GeV

)
fχS1

(h,M) , (6.2.125)

where we have de�ned the functions fi as

fψ3/2
(h,M) = 406.56

(
1

h

)(
M

MP

)
×{

2.26

(
Γ

2ψ3/2

Q1

Γtotal
Q1

+
ΓχχReQ2

Q1

Γtotal
Q1

Γ
2ψ3/2

Q2

Γtotal
Q2

)
+

5.72 · 106

h5

(
M

MP

)2
}

, (6.2.126)

fχS1
(h,M) = 406.56

(
1

h

)(
M

MP

)
×{

2.26
ΓχχReQ2

Q1

Γtotal
Q1

(
Γ

2ψ3/2

Q2

Γtotal
Q2

+ 2
ΓχχImQ2

Q2

Γtotal
Q2

+ 1

)
+ 0.56

(
M

MP

)2
}

. (6.2.127)

They yield fψ3/2
(αh, αMMP) = 1 and fχS1

(αh, λMMP) = 1 for αh, λM and αM . The latter
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parameters respect the following relations:

406.56α−1
h αM

2.26

[
Γ

2ψ3/2

Q1

Γtotal
Q1

+
ΓχχReQ2

Q1

Γtotal
Q1

Γ
2ψ3/2

Q2

Γtotal
Q2

]M=αMMP

h=αh

+ 5.72 · 106α
2
M

α5
h

 = 1 ,

406.56α−1
h λM

2.26

[
ΓχχReQ2

Q1

Γtotal
Q1

(
Γ

2ψ3/2

Q2

Γtotal
Q2

+ 2
ΓχχImQ2

Q2

Γtotal
Q2

+ 1

)]M=λMMP

h=αh

+ 0.56λ2
M

 = 1 .

(6.2.128)

Numerically, we can obtain αM = 3.72 · 10−8 and λM = (1.74 · 10−2, 1.48 · 10−6, 2.12 · 10−6)

for αh = 10−2; and αM = 1.99 · 10−4 and λM = (8.05 · 10−2, 1.48 · 10−4, 2.12 · 10−4) for
αh = 1. One should use h = αh and M = (αM ; λM)MP to obtain Ωi

χh
2
d ' 0.12, where

M admits three solutions for χS1. We replaced m3/2 by its function depending on both h
and M via eq. (6.2.29). These equations will be later on drawn in �g. 6.5 for comparison
with the cosmological constraints obtained so far.
We digress a little about the possibility of dark matter constituted by χS1. For χS1 to

decay before BBN happens (T ∼ 1 MeV), M has to satisfy

M

MP
& 1.75 · 10−3h−1/2MP , (6.2.129)

which implies a quite heavy gravitino mass, since ψ3/2 from the constraint of decaying
before T ∼ 1 MeV yields similarly

M & 3.82 · 10−6h−1/2MP . (6.2.130)

If χS1 is allowed to decay after the present time ∼ 108 s, we have to asssume M .

2.3 · 10−5h−1/2MP. The relic density in that case is written as (rearranging eq. (6.2.125)
and using mχS1

= m3/2)

ΩχS1
h2
d '

7nγ
s

m3/2nχS1

ρc
h2
d

' 0.12 ·
( aη

10−2

)(100

gη

)1/4(
mη

10−5MP

)3/2

vχS1
(h,M) , (6.2.131)

where we have de�ned the function vχS1
as vχS1

(h,M) = 1.67 · 1014h
(
M
MP

)2

fχS1
(h,M).

It yields vχS1
(αh, βMMP) = 1 for αh and βM , which respect the equation:

6.80 · 1016 β3
M

2.26

[
ΓχχReQ2

Q1

Γtotal
Q1

(
3−

Γ
2ψ3/2

Q2

Γtotal
Q2

)]M=βMMP

h=αh

+ 0.56 β2
M

 = 1 . (6.2.132)

For instance, we obtain βM = 8.64 · 10−7 for αh = 10−2 and βM = 8.05 · 10−7 for αh = 1.
When aη = 10−2, gη = 10−2 and mη = 10−5MP, we have ΩχS1

h2
d ' 0.12. Here we have

replaced Γtotal
Q2
−Γ

2ψ3/2

Q2
= ΓχχImQ2

Q2
. From the last equation, it is possible to obtain that χS1
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does not close the universe only for M values (within aη ∈ [10−3, 10−1] and h ∈ [10−2, 1])
which are below the bound on the gravitino decay rate in eq. (6.2.130). Therefore this
scenario is impossible and we then assume the scenario ΓχS1

> t−1
BBN (i.e. χS1 decays

before BBN).
The eqs. (6.2.124) and (6.2.125) depend on whether the entropy production from ψ3/2

and χS1 is negligible. As discussed in sec. 6.2.3, we work within the blue shaded parameter
region of �g. 6.4, which implies no signi�cant entropy production from all φISS.
We now compare the neutralino comoving number produced by φISS decays and by η

reheating. We can obtain

(nχ/s)φISS decays

(nχ/s)η reheating

' 1.83 · 105

(
1

h

)(
M

MP

){
2.26

(
1 +

ΓχχReQ2

Q1

Γtotal
Q1

)
+

5.72 · 106

h5

(
M

MP

)2
}

,

(6.2.133)

where the right-hand side yields 1 at h = αh and M = γMMP, since αh and γM are
constrained by

1.83 · 105α−1
h γM

2.26

[
1 +

ΓχχReQ2

Q1

Γtotal
Q1

]M=γMMP

h=αh

+ 5.72 · 106γ
2
M

α5
h

 = 1 . (6.2.134)

For example, γM = 7.87 · 10−9 for αh = 10−2 and γM = 1.61 · 10−6 for αh = 1. Here we
have replaced Γ

2ψ3/2

Q1
= Γtotal

Q1
− 2ΓχχReQ2

Q1
. Furthermore we neglected the last term in eq.

(6.2.123) when compared to eq. (6.2.122). Thus unless M assumes very small values, in
violation of the bound from eq. (6.2.122), (nχ/s)φISS decays is dominant over the on from
thermal gravitinos. Therefore, we assume the neutralino number density to be given by
φISS decay from now on.
An important issue we have to treat now is the annihilation of neutralinos after their

production [177]. If the number density of neutralinos produced from ψ3/2 or χS1 decays
is high enough, they can annihilate each other and in turn decrease their number density.
Technically stated, nχ is governed by the Boltzmann equation

dnχ
dt

+ 3Hnχ = −〈σv〉n2
χ , (6.2.135)

where 〈σv〉 is the thermally averaged annihilation cross section (as previously explained
in sec. 3.4) of the neutralinos. The equilibrium number density nχ, eq was neglected since
we look at the epoch soon after they decouple, for which nχ > nχ, eq is satis�ed.
If nχ ∼ H/ 〈σv〉, we see that the Hubble term 3Hnχ and the annihilation term 〈σv〉n2

χ

are of the same order of magnitude. In this case, the neutralino freezes out. If nχ >

H/ 〈σv〉, the neutralino annihilates after gravitino or χS1 decays, and will freeze out when
nχ ∼ H/ 〈σv〉. On the other hand, if nχ < H/ 〈σv〉, the neutralino �nal density is given
at the time of decay of ψ3/2 or χS1. An approximate expression for the �nal nχ/s can be
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written as (nχ
s

)−1

'
(nχ
s

)−1

decay
+

(
H

s 〈σv〉

)−1

decay

, (6.2.136)

where the lower index decay means evaluation at the time of ψ3/2 or χS1 decay. Therefore,
we have an upper limit on nχ/s, i.e. nχ/s . H 〈σv〉−1 /s. The following ratio compares
both quantities on the right-hand side of the last equation (both for ψ3/2 and χS1),(
H 〈σv〉−1 /s

n3/2/s

)
ψ3/2

'
(

10−2

aη

)(
10−5MP

mη

)3/2(
10−7GeV−2

〈σv〉

)
w−1
ψ3/2

(h,M) , (6.2.137)

(
H 〈σv〉−1 /s

nχS1
/s

)
χS1

'
(

10−2

aη

)(
10−5MP

mη

)3/2(
10−7GeV−2

〈σv〉

)
w−1
χS1

(h,M) , (6.2.138)

with the de�nitions wψ3/2
(h,M) = 6.64 · 1012h3/2

(
M
MP

)3

fψ3/2
(h,M) and wχS1

(h,M) =

2.49 · 1016h5/2
(
M
MP

)5

fχS1
(h,M). These functions yield 1 when evaluated at h = αh and

M = (κM ; δM)MP, which in turn are constrained by

2.70 · 1015α
1/2
h κ4

M

2.26

[
Γ

2ψ3/2

Q1

Γtotal
Q1

+
ΓχχReQ2

Q1

Γtotal
Q1

Γ
2ψ3/2

Q2

Γtotal
Q2

]M=κMMP

h=αh

+ 5.72 · 106κ
2
M

α5
h

 = 1 ,

1.01 · 1019α
3/2
h δ6

M

2.26

[
ΓχχReQ2

Q1

Γtotal
Q1

(
Γ

2ψ3/2

Q2

Γtotal
Q2

+ 2
ΓχχImQ2

Q2

Γtotal
Q2

+ 1

)]M=δMMP

h=αh

+ 0.56 δ2
M

 = 1 .

(6.2.139)

Taking some reference values, we obtain δM = 3.00 · 10−2 and κM = 1.61 · 10−6 for αh =

10−2; and δM = 8.42 · 10−3 and κM = 3.31 · 10−5 for αh = 1. These values yield the lhs
ratio equal to 1.
Therefore, ifM . (δM , κM)MP and for 〈σv〉 = 10−7GeV−2, we obtain nχ/s . H 〈σv〉−1 /s.

In this case, χ do not annihilate themselves and (nχ/s)decay stays constant. Therefore,
eqs. (6.2.122) and (6.2.123) are valid for obtaining the neutralino relic density. However,
if M & (δM , κM)MP and for 〈σv〉 = 10−7GeV−2, it yields nχ/s & H 〈σv〉−1 /s. In this
case, the neutralinos annihilate themselves until they reach nχ/s ∼ H 〈σv〉−1 /s. The
neutralino relic density would then be written as

(
for i = ψ3/2, χS1

)
Ωi
χh

2
d =

7nγ
s

mχn
i
χ

ρc
h2
d (6.2.140)

' 0.12

(
100

gη

)1/4 (αh
h

)ci/2(εiMMP

M

)ci ( mχ

100 GeV

)(10−7GeV−2

〈σv〉

)
.

ci stands for the exponents associated with h andM for ψ3/2 or χS1 and assume the values
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cψ3/2
= 3 and cχS1

= 5. The parameters εi respect the equations

3.33 · 10−16
(
α

1/2
h ε

ψ3/2

M

)−3

= 1 , (6.2.141)

7.25 · 10−8
(
α

1/2
h εχS1

M

)−5

= 1 . (6.2.142)

Putting in some numerical values , we have εχS1

M = 4.17 · 10−2 and ε
ψ3/2

M = 6.93 · 10−5 for
αh = 10−2; and εχS1

M = 4.17 · 10−3 and ε
ψ3/2

M = 6.93 · 10−6 for αh = 1. The dependence on
h and M stems from m3/2 which comes from RdχS1

and Rd3/2. In other words, replacing

niχ/s ∼ H 〈σv〉−1 /s by (Hη/sη)|Rdi ∝
(
m3/2

)−ci/2 ∝ h−ci/2M−ci .

There are four kinds of neutralinos, namely Wino, Bino and two neutral Higgsinos,
which possess the following thermally averaged annihilation cross sections13

〈σv〉Wino '
g4

2

2π

1

m2
χ

(1− x2
W )

3/2

(2− x2
W )

2

mχ=100 GeV−→ 3.33 · 10−7 GeV−2 , (6.2.143)

〈σv〉Bino '
g4

1

16π

1

m2
χ

(
6Tχ
mχ

)
mχ=100 GeV−→ 1.79 · 10−9 Tχ GeV−3 , (6.2.144)

〈σv〉Higgsino '
g4

2

32π

1

m2
χ

(1− x2
W )

3/2

(2− x2
W )

2

mχ=100 GeV−→ 2.08 · 10−8 GeV−2 , (6.2.145)

where xW = mW/mχ, and g1 and g2 are the couplings of the U (1)Y and SU (2)L gauge
groups, respectively. The Wino and Higgsino mainly annihilate from an s-wave initial
state, while the Bino does through the p-wave, thus the thermally averaged square velocity
〈v2〉 = 6T

m
is important in this last case. Wino pairs annihilate into W± pairs through the

mediation of charged Winos14. Bino pairs annihilate into lepton pairs via right-handed
slepton mediation15. Finally, Higgsino pairs annihilate mainly into W± and Z pairs.
Before we summarize the constraints obtained so far, we derive weak constraints. They

are upper bounds on M such that ψ3/2 and/or χS1 do not decay before the neutralino
freezes out of the η plasma. This, together with the bounds Γ3/2 > t−1

BBN and ΓχS1
> t−1

BBN

from eqs. (6.2.130) and (6.2.129), form two bands in which the particle can decay so that
its decay is safe (related to BBN) and in principle non-negligible (the particle decays after
tfreezoutχ ). For the thermal cross sections of the Wino, Bino and Higgsinos, we know that
they freeze out at the values T fχ ' (3.69, 4.27, 4.10) GeV, respectively [61]. However,
without damaging our conclusions, we take the reference value 〈σv〉 = 10−7 GeV−2, which
yields T fχ = 3.86 GeV. Therefore, for both χS1 and ψ3/2 to decay after the neutralino

13The Wino thermal cross section can be found from anomaly mediated SUSY breaking [187], while the
Bino and the Higgsinos cross sections have been given in [188].

14We disregard coannihilations. If one does consider them, they end up increasing 〈σv〉 (though not
necessarily for Winos) which in turn decreases their relic density.

15We de�ned the right-handed slepton mass ml̃R
to be equal to mχ. Considering a greater ml̃R

decreases
its 〈σv〉, increasing thus its relic density.
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Location Constraint Meaning Legend

Eq. (6.2.130) M
MP
& 3.82 · 10−6h−1/2 ψ3/2 decays before BBN

and and and upper yellow band

eq. (6.2.147) M
MP
. 2.56 · 10−5h−1/2 ψ3/2 decays after neutralino freezout

Numerical sη > sφISS
Fig. 6.4 and and blue shaded region

M
MP

< 4.80 · 10−2h ρη > ρφISS
Eq. (6.2.129) M

MP
& 1.75 · 10−3h−1/2 χS1 decays before BBN

and and and lower yellow band

eq. (6.2.146) M
MP
. 9.12 · 10−5h−1/2 χS1 decays after neutralino freezout

Table 6.5: All constraints on the ISS parameters M and h we take into account in this
section. Their location in the text; their meaning; and their depiction in this section
�gures are also given. Again, notice that the blue shaded region enlarges for the plots
of χS1 when the entropy production from gravitinos is not considered. The latter case is
discussed in the text.

freezout, M must assume the upper values, respectively16,

M

MP
. 9.12 · 10−3h−1/2 , (6.2.146)

M

MP
. 2.56 · 10−5h−1/2 . (6.2.147)

For a better understanding of the constraints on the parameter space in �g. (6.5) and
(6.6), we bring them into table (6.5) and take them into account for the next �gures of
this section.
In the remainder of this section, we discuss the �gures 6.5 and 6.6, which comprise

basically dark matter generation and entropy constraints (for aη = 10−3 and aη = 10−1),
theoretically introduced in secs. 6.2.3 and 6.2.4. A general thing �rst: the blue shaded
regions stand for regions which respect small ISS entropy production, i.e. the regions
below the orange line (χs1 case on the upper sub�gures) and the red-dashed line (ψ3/2

case on the lower sub�gures). We start the discussion by �g. 6.5.

• Upper sub�gures: They deal with both the χ production from χS1 as well as the
entropy density sχS1

produced from the decays of χS1.

� Left corner (aη = 10−3). The black line (6.2.123) stands for χ production
directly after the χS1 particles decay; the green one (6.2.140) is not evaluated
right after χS1 decays, but after χ annihilations which take place after χS1

decays; and the blue dashed curve (6.2.138) measures if either the black or
the green line are valid (above it, the green line should be used, whereas the
black line should be used below). The yellow band comprises the epoch after

16These results come from ρrη (Rdi) = π
30gη

(
T fχ
)4
, for i = ψ3/2, χS1 . One should replace the left-

hand side by either ρη (Rdη/Rdi)
4
, and the M dependence will show up once we replace Rdη/Rdi ∝

(Γi/Γη)
1/2

.
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χ standard thermal freezout (6.2.146) and before BBN (6.2.129), expressed
in terms of ΓχS1

(or equivalently h and M). Having de�ned the elements,
we may comment on their consequences: χ can attain Ωχh

2
d ' 0.12 either

from the black or the green line since (i) χ from χS1 decays must be within
the (yellow+blue=green) band; (ii) within the green band and above the blue
dashed line, χ production following the green line (valid from the blue dashed
line argument) is Ωχh

2
d < 0.12 above the green line, being 0.12 on the latter;

(iii) similarly, within the green band, but now below the blue dashed line, χ
production directly from χS1 decays respects Ωχh

2
d < 0.12 below black line,

being 0.12 on the latter. Finally, the orange line (now above M = MP, but
visible for aη = 10−1) is the upper bound on the entropy density produced by
χS1 decays, i.e. sη = sχS1

. The entropy density s3/2 from the gravitino decays
is not considered in and above the χS1 yellow band because in this regions
ψ3/2 would decay before neutralino freezout, thus χ production from gravitino
sources are negligible.

� Right corner (aη = 10−1). The de�nitions of the black, green and blue-dashed
lines are the same as for aη = 10−3, as well as the yellow band. Similarly to the
left upper sub�gure, χ can yield Ωχh

2
d ' 0.12 either from the black line or the

green line where due to analogical arguments, however the intersection point
among the black, green and blue-dashed curves is at h ' 7 · 10−2, opposed
to h ' 10−2. This di�erence is due to aη. Notice the orange line, explained
above, appears here below M = MP; it does not however constrain much of
the parameter space.

The red dashed curve is shown for reference.

• Lower sub�gures: They deal with both the χ production from ψ3/2 as well as the
entropy density s3/2 + sχS1

.

� Left corner (aη = 10−3). The de�nitions of the black, green and blue-dashed
lines are similar to the ones used for χS1, and are governed by eqs. (6.2.122),
(6.2.140), (6.2.137). The yellow band comprises the epoch after χ standard
thermal freezout (6.2.147) and before BBN (6.2.130), expressed in terms of
Γ3/2 (or equivalently h and M). The conclusion is: if we considered just ψ3/2

as the product of ISS decays, we could obtain Ωχh
2
d ' 0.12 for both black

and green lines roughly at the intersection of those with the blue-dashed curve
(h ' 0.17), since above the latter the green one can provide Ωχh

2
d ' 0.12, and

below it the black one also can provide Ωχh
2
d ' 0.12. However, we have to

deal with the whole picture, ψ3/2 and χS1. In this case, if we are within the
gravitino yellow band, χS1 decays after BBN and this is problematic, since as
we have seen in eq. (6.2.131) ΩχS1

h2
d cannot be ignored.

� Right corner (aη = 10−1). The de�nitions of the black, green and blue-dashed
lines as well as the yellow band are the same as for aη = 10−3. Also, the
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6 Outside the standard relic freezout scenario

conclusions are the same: though taking into account just ψ3/2 could provide
enough neutralino relic density, χS1 relic density is non-negligible after BBN.

After �nding suitable solutions for neutralino dark matter within the parameter set
used in �g. 6.5, now we turn to 6.6 where we allowed the neutralino thermal cross section
to have a lower value 〈σv〉 = 10−10 GeV−2, thereby studying its consequences.
For the lower sub�gures, the problem we discussed for ψ3/2 (aη = 10−3 and 10−1) still

stands, i.e. χS1 cannot decay before BBN while at the same time ψ3/2 generates the right
relic density Ωχh

2
d ' 0.12. For the upper part of �g. 6.6, the three lines intersection

moves to h ' 7 · 10−2 (for aη = 10−3) and to h ' 4 · 10−1 (for aη = 10−1), however above
the green band. This fact implies that the green line stays above the green band (i.e. χS1

decays while χ has not yet frozen out), which means that Ωχh
2
d ≤ 0.12 from χ production

via subsequent annihilations only happens above the green line and is therefore irrelevant.
On the other hand, below the blue-dashed line, we have Ωχh

2
d ' 0.12 on the black line

and < 0.12 below it. Still, notice that in this case, for the χ production via direct decays
to be relevant, the parameters (M,h) must be in the green band.
Along with nonthermal production of neutralinos, we have to discuss their thermal

production from freezout. The contributions, due to purely thermal neutralino freezout
from the η plasma, assumes the values for Wino, Bino and Higgsino [60,61,189]:

Ωfreezout
Wino h2

d ' 7.03 · 10−4 , (6.2.148)

Ωfreezout
Bino h2

d ' 0.0261 , (6.2.149)

Ωfreezout
Higgsinoh

2
d ' 0.010 . (6.2.150)

Notice then that for mχ = 100 GeV, the Bino and Wino relic densities yield ∼ 0.1

of the required ΩCDMh
2
d ' 0.12. In these cases, this means that if one wants to obtain

Ωχh
2
d ' 0.12 for mχ = 100 GeV, he has to consider (h,M) points slightly o� the black and

green lines so that ΩχS1
χ h2

d ∼ 0.9 ·ΩCDMh
2
d. In the end, we would have Ωfreezout

χ h2
d+ΩχS1

χ h2
d '

ΩCDMh
2
d.

For the case when χS1 decays above the green band, that means the thermal freezout
must account for all dark matter density, hence Ωfreezout

χ h2
d ' 0.12. This can be accom-

plished considering e.g. a Bino LSP, if one considers ml̃R
' 220 GeV.
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6 Outside the standard relic freezout scenario

Figure 6.5: All the constraints on the ISS parametersM and h for dark matter production
from either decays DMdec or decays followed by annihilations DMann for χS1 and ψ3/2 �
for a thermal cross section 〈σv〉 = 10−7 GeV−2 and for small (large) coupling aη = 10−3

(aη = 10−1). Notice that the blue shaded regions combined with the yellow bands for χS1

or ψ3/2 yield the green regions. The yellow band for χS1 does not appear separately from
the green region separately, but is �hidden� behind the green region, whereas for ψ3/2 that
is not the case. The arrows for the green and black lines point in the direction where
Ωχh

2
d < 0.12, whereas the arrow for the blue-dashed line points in the direction where

nχ/s > H 〈σv〉−1 /s, hence neutralino production DMann via ISS decays and subsequent
annihilation is important. Below that line, we have nχ/s < H 〈σv〉−1 /s, thus neutralino
production must be studied with DMann.
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6 Outside the standard relic freezout scenario

Figure 6.6: All the constraints on the ISS parametersM and h for fark matter production
from either direct decays DMdec or decays followed by annihilations DMann for χS1 and
ψ3/2 � for a thermal cross section 〈σv〉 = 10−10 GeV−2 for a large (small) parameter
aη = 10−3 (aη = 10−1). The arrows directions were explained in �g. 6.5.
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7 Summary and Conclusions

In this work the Dark Matter subject has been studied mainly from a theoretical point of
view. It is known that dark matter has not been observed as of yet, thus we present the
most stringent experimental detection limits, direct and indirect upper bounds. Although
its existence has not been con�rmed, the evidences for it were several along the years, the
�rst observation was carried by Fritz Zwicky at 1933 probing star velocities pro�les, as
we discussed in detail along other evidence examples.
For the theoretical description of particle dark matter, important concepts and frame-

works have to be introduced. When we look at the universe at MegaParsec scales, one
inevitably stumbles onto the observation that our universe is approximately isotropic and
homogeneous, which requires understanding of general relativity and more speci�cally the
FLRW cosmology. Still within the general theory for dark matter related calculations, we
discussed the thermodynamics of the early universe as well as the Boltzmann equation
for relic density evaluation alongside a related standard example for the sake of clarity.
For the remainder of the thesis, we then focused on thermal and non-thermal dark

matter studies, which aim to generate the required amount of DM relic density, ΩDMh
2 '

0.12. On the �rst of the three works, we have computed (using recent lattice QCD results
for the equation of state) the energy and entropy densities of the Standard Model with
emphasis on temperatures around the decon�nement transition at Tc = 154 MeV. These
results are described by the functions g (T ) and h (T ); the function g

1/2
∗ (T ) was also

carefully treated, since it depends on the �rst derivative of h, and can be used in public
codes for computing the relic density, e.g. DarkSUSY, MicrOMEGAs and SuperIso. Our
predictions for the WIMP relic density di�er from earlier treatments by up 9% (12%) for
a thermal annihilation cross section 〈σv〉 which is constant (∝ T ), for masses between
3 and 15 GeV, for which range the QCD e�ects are most prominent and for which our
detailed treatment of g1/2

∗ di�ers the most from the earlier treatments.
In special, we used our improved treatment of the thermodynamics of the early uni-

verse to update the calculation of the required 〈σv〉 to reproduce the observed DM
relic density, assuming the former to be independent on the temperature. The required
value for 10 GeV < mχ < 10 TeV is closer to 2 · 10−26 cm3s−1 than to the often cited
3 · 10−26 cm3s−1, whereas for mχ . 3 GeV it exceeds 4 · 10−26 cm3s−1. In the �nal part,
we compared the required constant 〈σv〉 with upper bounds on indirect detection that
come from searches for energetic γ rays in WIMP annihilation as well as from CMB
anisotropy constraints. The strongest bounds come from γ ray searches, which assume
WIMP annihilation into hadronic or τ+τ− states. We �nd that, for the most stringent
channel uū, the WIMP withmχ > 100GeV is allowed, while yielding the right relic density
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amount.
For the other case study, we explained the evaluation of the DM relic density within a

non-supersymmetric BSM model, assuming a majorana dark matter. The model is based
on the local gauge symmetry SU (2)L ⊗ U (1)Y ′ ⊗ U (1)B−L and there are four singlet
scalars φi, one doublet scalar Φ and three right-handed neutrinos besides the SM �eld
content. We �nd that one right-handed neutrino NDM naturally transforms according
to a global Z2 symmetry, following the equations of minimum. In the model rich scalar
sector, we �nd a massless Goldstone boson J within the physical spectrum. Following the
constraints of energy loss in stars through γ+e− → e−+J ; relativistic degrees of freedom
Ne� of the universe; Z and Higgs invisible decay widths, the most important results were:
the ratio of the new doublet VEV and the VEV of the four extra singlet scalars has to
be in the range ε ≡ vΦ/vφ . 3.8 · 10−4; and couplings κH2

(
coupling of H†Hφ†2φ2

)
and

κ123

(
coupling of φ1φ2 (φ∗3)2) have to be in the ranges κH2 < 0.2 and −0.442 . κ123 ≤ 0.

In addition, for ε � 1 one is able to obtain analytical expressions for the scalar masses,
largely simplifying the analysis.
For the DM production, we have worked basically with the free parameters κH2, κ123

andMDM, which have been chosen because they play a very important role in determining
both the NDM annihilation cross section and the NDM elastic scattering o� the nucleon.
Roughly speaking, we �nd that for MDM . 500 GeV, the right relic density is achieved
around the resonance regions. For MDM > 500 GeV, regions other than resonances yield
the correct relic density, due to the fact that the couplings DM-scalars are ∝ MDM/vφ.
κ123 strongly controls the trilinear scalar interactions, thus by making it bigger, it is
possible to lower the DM relic pro�le curve and obtain more intersection points with the
line ΩDMh

2 ' 0.12. For DM direct detection (DD), the parameter κH2 is the most relevant
since it is the only one which e�ectively couples NDM to the quarks in our model. We
found that if we choose κH2 = 10−2, our entire curves are below LUX data, the most
stringent limits upper bounds on spin-independent DD. If one takes however κH2 = 0.1,
it can still be lower than LUX, but this time the right relic density is only achieved above
MDM ∼ 500− 600 GeV or at the resonances below 500 GeV.
Finally, after providing a brief framework on a deviation of the standard thermal WIMP

scenario, we explore an example model where very massive particles might decay into
electroweak particles, thus (roughly said) providing the necessary DM relic density. More
speci�cally, we analyzed the production of neutralino (Wino, Bino and Higgsinos) DM
candidates within a setup mixing the MSSM with the string theory motivated KL moduli
sector whose AdS vacuum energy is uplifted with the help of the ISS model (a dual
description to SQCD) as an F-term SUSY breaking. After an extensive description of the
combined model, we obtain constraints on the ISS sector parametersM and h by imposing
the condition of small entropy production (sη > sφISS) on the ISS oscillating �elds S1, S2

and Q1. The small entropy requirement enables mainstream baryogenesis mechanisms to
work besides easing the analysis on the �elds time evolutions.
The main decay rates of the oscillating �elds are found to be into: (gravitino pairs)

(Q1, Q2, S2) → ψ3/2 + ψ3/2; (χS1 pairs) S1 → χ̄S1 + χS1; (χS1 pairs plus scalar) Q1 →
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χ̄S1 + χS1 + (ReQ2, ImQ2) and Q2 → χ̄S1 + χS1 + ImQ2. A detailed study of oscillations
from the in�aton η and the ISS �elds φISS was then performed, where we noted S1, S2

and Q1 as the relevant �elds for the subsequent analysis in entropy dilution. (M, h) were
then constrained to be within the triangle region formed approximately by the points
(10−6, 2 · 10−2), (10−6, 1) and (5 · 10−2, 1), where the non-relativistic behaviour of the ISS
products have been taken into account. As an important side issue, we treated the e�ect of
the massless scalar ImQ2, whose relativistic degrees of freedom contribute to the quantity
Ne� which measures the e�ective number of relativistic degrees of freedom of today, and
obtained that its contribution can still be accounted in the observational uncertainty of
Ne�.
Considering a neutralino dark matter χ, expressions for DM production via direct

decays from gravitinos or χS1 were obtained, as well as expressions for the subsequent
decays of ψ3/2 or χS1 followed by neutralino annihilations. We compare these expressions
with the constraints for small entropy production as well as constraints on the decay
epochs of ψ3/2 and χS1 (so that they decay before BBN). The parameter space of M and
h has been severely constrained, mainly because of the extremely small χS1 decay rate
(much smaller than the gravitino one). Through �g. 6.6, it can be noticed that this
feature enables before-BBN decays for both particles while generating enough DM relic
density in a reduced area of the parameter space, i.e. practically the region where χS1

decays before BBN and after χ freezout. As discussed previously in more detail, while the
gravitino could generate enough neutralinos, the before-BBN constraint for χS1 forbids
that solution. For χS1 decays before BBN, su�cient DM can be generated, either through
direct decays of χS1 or through the subsequent annihilation of neutralinos. We conclude
that formχ = 100 GeV, the standard thermal scenario yields at most ∼ 0.1 of the required
DM relic density, hence the nonthermal scenario is able to provide the remaining ∼ 0.9

DM content.
With this work, we believe a substantial understanding of the Dark Matter subject has

been conveyed, providing the general and the expert reader with the main foundations of
the topic as well as some speci�c current research studies on DM generation.
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A Minimization equations

The general minimization conditions coming from ∂VB−L/∂Ri = 0, where VB−L is the
scalar potential in eq. (5.2.2) and Ri = {H0

R, Φ0
R, φ1R, φ2R, φ3R, φXR} are the neutral

real components of the scalar �elds, can be written as:
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