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Abstract 
 

With swift advancements in next-generation sequencing technologies alongside of the voluminous 

growth of biological data, a diversity of various data resources such as databases and web services 

have been created to facilitate data management, accessibility, and analysis. However, the burden 

of interoperability between dynamically growing data resources is an increasingly rate-limiting 

step in biomedicine, specifically concerning neurodegeneration. Over the years, massive 

investments and technological advancements for dementia research have resulted in large 

proportions of unmined data. Accordingly, there is an essential need for intelligent as well as 

integrative approaches to mine available data and substantiate novel research outcomes. Semantic 

frameworks provide a unique possibility to integrate multiple heterogeneous, high-resolution data 

resources with semantic integrity using standardized ontologies and vocabularies for context-

specific domains. In this current work, (i) the functionality of a semantically structured 

terminology for mining pathway relevant knowledge from the literature, called Pathway 

Terminology System, is demonstrated and (ii) a context-specific high granularity semantic 

framework for neurodegenerative diseases, known as NeuroRDF, is presented. 

 

Neurodegenerative disorders are especially complex as they are characterized by widespread 

manifestations and the potential for dramatic alterations in disease progression over time. Early 

detection and prediction strategies through clinical pointers can provide promising solutions for 

effective treatment of AD. In the current work, we have presented the importance of bridging the 

gap between clinical and molecular biomarkers to effectively contribute to dementia research. 

Moreover, we address the need for a formalized framework called NIFT to automatically mine 

relevant clinical knowledge from the literature for substantiating high-resolution cause-and-effect 

models. 
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CHAPTER 1 
Introduction 

 
1.1 PREAMBLE	

	
This dissertation is not a single-scale research project, but instead, it is a 

collection of the diverse research questions that I have explored in the past 

four years of my thesis.   

The central objective of this dissertation is concerned with multi-scale, 

integrative modeling of neurodegenerative disease. Although there are many 

ways of approaching this objective, this work primarily focuses on three 

significant aspects through which it can be addressed. They are as follows: 

• A state-of-the-art integrative framework for assembling qualitative and 

quantitative data from a broad spectrum of data resources for 

answering complex biological questions across all scales of the disease 

domain  

• Essential role of biomedical ontologies for explicit characterization of 

a specific domain of interest and support for the formalization of 

heterogeneous data resources  

•   Multi-scale understanding of a disease mechanism using interoperable 

clinical/imaging ontologies and molecular data 	

The introduction of this thesis pertains to all of the preceding aspects. 
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1.2 HUMAN BRAIN:  THE MOST COMPLEX AND FASCINATING 

BIOLOGICAL ENIGMA OF THE UNIVERSE 

The human brain is the most remarkable, and correspondingly complex, organ of the 

human body. At about 1.4 kilograms, it accommodates one hundred billion nerve 

cells/neurons. For this reason, brains are compared to man-made computers for their 

astounding ability to not only process and communicate information, but also regulate 

unconscious bodily actions such as digestion and breathing [1]. According to the 

physicist, Roger Penrose,  

"If	you	look	at	the	entire	physical	cosmos,	our	brains	are	a	tiny,	tiny	part	of	it.	

But	they're	the	most	perfectly	organized	part.	Compared	to	the	complexity	of	a	

brain,	a	galaxy	is	just	an	inert	lump."	

Although the fields of neuroscience and neuroanatomy have substantially evolved 

over the years, unraveling the structural and functional complexity of the brain seem 

to remain an unattainable goal. This is partly because (i) our knowledge of 

neuroanatomy remains far from complete and (ii) the brain’s temporal, topological 

and spatial multi-scale networks give rise to elaborate molecular, cellular, and 

neuronal phenomena that regulate the basis of cognition ([2],[3]). 

Human Brain Architecture 

Over the past decade, the neuroimaging community has witnessed a paradigm shift 

attracting considerable attention from many disciplines of scientific investigation. 

Functional neuroimaging techniques provide a multi-level view of the brain’s intrinsic 

connections between neurons and individual brain regions, collectively known as 

connectomes ([4],[5]). The term “connectome” defines the concept of representation 
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of the human brain in the form of a complex, large-scale neural network ([6],[7]). 

Structural connectomes define the length and strength of the projections between 

brain regions whereas functional connectomes represent the alterations of anatomical 

projections based on functional properties such as cognition and behavior ([8],[9], 

[10], [11]). 

Various scales often characterize the hierarchical organization of these complex 

structural and functional networks. These are chiefly spatial, temporal as well as 

topological properties of the brain network. The spatial scale represents the 

granularity at which the nodes and edges are defined, ranging from individual 

cells/synapses (represented as nodes) to large-scale brain regions and the strength of 

interaction between the brain regions (edges) ([12],[13],[14]). A temporal scale 

represents the brain network at a given time, ranging from millisecond to the 

evolutionary changes occurring over several generations. The topological level of a 

brain network can be represented either as a single node or as a whole network, 

depending upon the region of interest. Altogether, the topological, spatial and 

temporal scales represent the axes of a three-dimensional space for any analysis 

performed on brain networks ([15], [16], [17]). Understanding the complexity of the 

human brain through connectomes is essential to elucidate the pathologies of complex 

brain related neurodegenerative disorders, such as Alzheimer disease (AD), thereby 

contributing to an arduous goal of developing enhanced diagnoses and treatment 

options. Until now, studies have primarily focused on single-scale architectures (the 

aforementioned spatial, temporal and topological scales, respectively).  
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However, newly emerging studies are primarily concerned with bridging these scales 

to one another to truly recognize the multi-scale, multi-modal nature of the human 

brain (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Three-dimensional scaling of the whole brain. The figure represents the 

various types of organizing brain networks across spatial, topological and temporal 

scales ranging from individual nodes to large-scale networks (Figure taken from [2], 

Last accessed on 30.01.2018) 
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1.3 EXPLORING THE COMPLEXITY IN NEURODEGENERATIVE 

DISEASES AND DEMENTIA 

Neurodegenerative diseases (NDDs), commonly characterized by an unrelenting 

deterioration in cognitive ability and capacity for independent living, has become an 

alarming healthcare priority across the globe. They embody a vast spectrum of 

heterogeneous disorders, which ultimately result in neuronal damage and death due to 

many anatomical and functional complications. Amongst NDDs, Alzheimer’s disease 

(AD) and Parkinson’s disease (PD) have been identified to be increasingly hazardous 

concerning human suffering and economic cost ([18],[19],[20]). According to a recent 

collaborative study between the World Health Organization (WHO), the World Bank 

and the Harvard School of Public Health, by the year 2020, dementia and other NDD 

will be the eighth leading cause of disease burden for developed countries 

(([21],[22]). Taking into consideration an aging population worldwide, the WHO has 

estimated that NDDs will become the world’s second leading cause of death 

overtaking cancer by the year 2050 ([23], [24]).  Although this fact is acknowledged 

by governments worldwide leading to significant investments in research programs to 

combat NDD, promising solutions to cure NDD remain lacking due to the 

heterogeneity of these diseases ([25],[26],[27],[28]). Therefore, it is imperative that 

the research community and governmental organizations systematically work towards 

early diagnosis and preventive measures against NDD by aligning the goals of the 

research community with those of the society. 

 

1.3.1 Alzheimer disease: A multifactorial challenge 

Amongst the common NDDs, AD is considered the most detrimental, affecting over 5 

million people worldwide ([29],[30],[31]). The etiology of AD includes loss of 
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neurons, the presence of abundant neurofibrillary tangles and extracellular deposits of 

amyloid plaques ([32],[33],[34]). Neuropathological observations conducted more 

recently suggest that the accumulation of amyloid beta is the initial trigger for various 

biochemical and pathophysiological alterations including neuroinflammation, 

synaptic dysfunction, astrogliosis, tauopathy and ultimately cell death 

([35],[36],[37],[38]). Although it is viewed as a first order neurodegenerative process, 

the terminal phase of AD patients is most often associated with a significant lapse of 

social and behavioral interactions, which are systemic manifestations beyond those 

occurring in the central nervous system (CNS) ([39],[40]). While the rate of physical 

decline has been observed in varying degrees during the earliest stage of AD, it is 

noteworthy that these are visible indicators which arise before the presence of any 

structural, functional and metabolic alterations. Furthermore, the classical diagnosis 

of the existence of hyperphosphorylated tau in AD is also found to be a hallmark for 

other related neurodegenerative diseases such as frontotemporal dementia with 

parkinsonism-17 (FTDP-17), Pick disease and progressive neural palsy 

([41],[42],[43]). Considering all of the above clinical indications, AD is regarded as a 

“multi-factorial syndrome” due to the involvement of multiple factors leading to the 

dysregulation of critical pathways on various levels resulting in varied clinical 

manifestations (Figure 2).  Less than 1% of AD cases are attributed to genetic 

mutations of three proteins, namely amyloid precursor protein (APP), presenilin 1 

(PSEN1) and presenilin 2 (PSEN2) ([44],[45],[46]). About 99% of reported AD cases 

are caused by sporadic forms of AD with several different etiopathogenic 

mechanisms, such as neuroinflammation, head trauma, and diabetes, but are not 

associated with any mutation ([47],[48],[49],[50]). Moreover, the presence of allele 

APOE4 has been found to increase the risk of the disease by several folds. 
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Figure 2: Multiple factors and processes linked to AD. This figure illustrates the various factors 

influencing AD namely genetic, metabolic and behavioral factors. (Figure is taken from [50], Last 

accessed 30.01.2018)  

 

The histopathological examination of amyloid plaques and neurofibrillary tangles 

(NFT) of hyperphosphorylated tau are not unique to AD patients. Studies on healthy 

individuals have also revealed the presence of amyloid plaques in equal proportions to 

those seen in AD cases ([51],[52]). Similarly, the presence of NFT of 

hyperphosphorylated tau without amyloid plaques has been observed in FTDP-17 and 

Pick disease. Besides, non-demented, active individuals are also at risk of harboring 

the underlying pathology which could eventually lead to dementia ([53],[54]). These 

observations indicate that the various biological and etiological processes driving the 

clinical manifestations of AD can differ distinctly from patient to patient ([55],[56]).  
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While dealing with such multifactorial, complex neurodegenerative diseases such as 

AD, it is of utmost importance to obtain profound knowledge about the various 

aspects of etiopathogenic mechanisms ([28],[57]). Such insight can not only lead to 

the identification of diagnostic biomarkers for early detection of the disease but also 

offer numerous possibilities for developing rational therapeutic drugs ([58],[59]). The 

development of drugs that can provide a cure requires an accurate diagnosis of the 

pertinent AD sub-type that takes into account clinical evaluations such as a patient’s 

medical history, physical examination, neuroimaging and neuropsychological 

assessments, and potentially, a postmortem examination for the presence of NFT or 

amyloid plaques ([60],[61]). These clinical indicators are collectively termed 

“biomarkers” which can be defined as an objective measure of a biological and 

pathogenic process and serve as an indicator of health or disease severity. An ideal 

biomarker would help in distinguishing AD from other types of dementia such as 

Mild Cognitive Impairment (MCI), Vascular Dementia (VaD) and Frontotemporal 

Lobe Dementia (FTLD), to name a few ([62],[63],[64]).   

 

1.3.2 Diagnostic pre-clinical biomarkers for patient stratification in AD 

a) Fluid biomarkers 

The cerebrospinal fluid (CSF) biomarkers are considered to be one of the well-

established intrusive as well as invasive diagnostic biomarkers for the early detection 

of AD ([65],[66]). They are intrusive because the CSF is obtained through a lumbar 

puncture which aggrieves elderly patients with nausea, severe backache and dizziness 

([67],[68]). However, CSF biomarkers are imperative in tracking disease progression 

because they are in direct contact with the brain and therefore, any minor physical or 

biochemical changes in the brain would inherently reflect in the altered composition 
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of the CSF ([69],[70]). Biomarkers such as amyloid-beta 42 (Aβ), total-tau (t-tau) and 

phosphorylated tau (p-tau) in the CSF are core indicators for characterizing patients as 

having early AD. It has been observed that patients with AD have reduced levels of 

CSF Aβ (1-42) in comparison to healthy individuals due to insufficient clearance of 

amyloid-beta from the brain ([71],[72]). This is hypothesized because the formation 

of Aβ (1-42) through the amyloidogenic pathway results in the accumulation of 

amyloid beta in the brain whereas activation of a non-amyloidogenic pathway in 

healthy individuals results in no such formation of Aβ (1-42) ([73],[74]).  

 

Similarly, NFT and dystrophic neurites are other pathological indicators of AD.  The 

primary constituent of NFTs is a hyperphosphorylated form of tau protein. These tau 

proteins are found to be synthesized within neurons, and, in the healthy state, play a 

role in enhancing axonal transport and providing stability to microtubules. However, 

during AD progression, tau proteins are hyperphosphorylated and subsequently 

disassociate themselves from microtubules, impairing axonal transport, and resulting 

in increased levels of p-tau in the CSF of AD patients in comparison to healthy 

controls. Apart from that, tau proteins have also been found to be a useful prognostic 

biomarker in tracing the progression from MCI to AD due to a consistent increase in 

CSF tau levels of patients during the disease ([75],[76],[77]).  

 

The blood-based biomarkers are another type of fluid biomarkers that are easily 

accessible and well suited for repeated sampling, when compared to the CSF 

biomarkers as mentioned above ([78]). Although the blood biomarkers are considered 

as a gold standard for the detection of disease progression, how these blood-based 

biomarkers can effectively measure pathological changes in the brain remains unclear. 
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Blood plasma has been observed to contain a wide range of low-level protein 

concentrations ([79],[80]).  However, the change in the level of the blood 

components, such as albumin and immunoglobulin, is detected in minute scales. 

Many studies have projected blood biomarkers, namely clusterin/apolipoprotein J, are 

involved in the clearance of cellular debris as an outcome of apoptosis in healthy 

individuals ([81]). Conversely, the increased concentration of clusterin in the blood 

denotes a higher accumulation of amyloid-burden in early stages of AD.  

b) Circulatory biomarkers 

microRNAs (miRNAs) are a small group of non-coding RNA molecules which are 

mainly responsible for regulating the silencing of post-transcriptional genes. 

Approximately 1-4% of human genes are known to encode miRNAs, and each of the 

controls 200 mRNAs ([82],[83]).  miRNAs are abundantly found to be circulating in 

various bio-fluids such as plasma, urine, tears, saliva, and CSF, and are thus 

considered to be highly reliable diagnostic biomarkers ([84],[85]). The dysregulation 

of miRNAs in the blood chronicles the various stages of disease progression in AD as 

well as other neurological disorders, which can be tracked experimentally by miRNA 

profiling technologies. hsa-miR-106, hsa-miR-153, hsa-miR-101, hsa-miR-29, and 

hsa-miR-107 have been identified to be prominent AD biomarkers that target APP 

and BACE1 proteins as they directly downregulate amyloid production in the brain 

([82]). The increased identification of miRNAs for specific biological processes 

underscores the potential therapeutic role of miRNAs for AD. 

 

d) Neuroimaging biomarkers 

The advent of state-of-the-art structural and functional imaging technologies offers an 

unprecedented prospect to directly observe brain structure and function, non-
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invasively monitor the progression of a disease over time, or track disease trajectories 

([96],[97]). Various imaging technologies have been developed over the years 

focusing on different aspects of the brain and its complexity. Similarly, several 

recently conducted longitudinal studies have revealed that imaging measures could 

potentially be used for distinguishing patient sub-groups/cohorts between those 

individuals who are at an elevated risk of AD through genetic mutations and those 

patients with MCI ([98],[99]).  

 

Magnetic Resonance Imaging (MRI) is one of the most popular non-invasive imaging 

techniques that are used for observing structural alterations of the brain.  Numerous 

studies have established that MRI techniques successfully demonstrated the decline 

from a normal state, to MCI and ultimately to AD through structural modifications of 

the medial temporal lobe resulting in atrophy, an early risk indicator of AD 

([100],[101],[102]). Apart from the visualization of altered structural changes, MRI 

studies have also been used to assess volumetric changes of particular brain regions. 

These methods are very efficient in distinguishing them between those individuals 

with normal cognition and MCI from AD patients.  

 

Diffusion Tensor Imaging (DTI) is a more recent and relatively advanced MR 

technique that helps in tracing the fiber tracts of the brain as well as the non-random 

movement of water molecules, known as “Brownian motion” or simply, “diffusion” 

([103],[104]).  These techniques allow for the detection of microstructural changes 

that can occur in fiber tracts, which cannot be so readily done using traditional MR 

techniques. These microstructural alterations prove to be an excellent indicator for 

predicting the progression of MCI to AD ([105],[106]).   
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Functional MRI (fMRI) is another type of MRI technique that is helpful in detecting 

functional abnormalities of the brain such as alterations in cerebral blood flow and 

blood oxygenation levels, which directly correspond to a cognitive shift in a patient’s 

task performance ([107],[108],[109]). The fMRI technique can detect increased blood 

flow via blood oxygen level dependent contrast imaging (BOLD) during a task 

performance done by healthy individuals. A delayed BOLD response indicates less 

coordinated activity in some regions of the hippocampus of MCI and AD patients. 

Taken together, fMRI provides powerful tools to investigate brain activation patterns 

of early detection, classification and prediction of AD ([110],[111]). 

 

Positron Emission Tomography (PET) is an advanced neuroimaging technique that 

allows for the quantification and measurement of physiological processes such as 

glucose metabolism and other neurotransmitter functionalities. The radioisotopic 

tracers used in PET imaging help in tracing the altering state of physiological 

processes such as the decline in cerebral glucose levels of a particular brain region. 

These tracers bind to pathological molecules, such as amyloid beta, and thereby, are 

detected in surplus in AD patients. These surrogate markers are known to be 

potentially sensitive in detecting the earliest changes that could occur in the 

progression of the disease ([112],[113]).  

 

Single Photon Emission Computed Tomography (SPECT) is one of the most advanced 

molecular imaging techniques for uncovering even the slightest chemical changes, 

which occur prior to any structural alterations of the brain. The SPECT radioactive 

tracers are highly lipophilic which facilitates the easy penetration of the blood-brain 
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barrier (BBB) ([114],[115]). SPECT techniques are widely used in clinical diagnosis 

for differentiating between (i) frontotemporal dementia and dementia with Lewy 

bodies as well as (ii) MCI and AD through cerebral perfusion patterns [116]. 

 

Despite the fact that clinical and molecular biomarkers have proven to be useful for 

the stratification of disease sub-groups, the use of CSF and imaging biomarkers is 

surprisingly undervalued in clinical diagnosis when compared to its usability in 

clinical trials and academic research [66]. 

 

This is because minimal efforts have been invested towards a multi-modal and 

integrative approach to different biomarkers. Furthermore, it has been particularly 

challenging to link the findings of molecular biomarkers with early disease 

progression and the real potential of imaging biomarkers in elucidating disease 

progression has also yet to bear fruitful results.      

    

1.3 Moving beyond biomarkers towards integrative mechanistic modeling 

In spite of the massive advancement in novel biomarker discovery approaches, the 

current diagnostic yardstick for clinical AD remains to be the abnormal accumulation 

of amyloid peptides in the brain. However, it is still unclear whether the collection of 

amyloid peptides or tau protein formation influences cognition and behavior or if they 

are merely the byproducts of a secondary etiopathogenic effect such as 

neuroinflammation or oxidative stress to name a few ([117],[118]). One alternative is 

taking a network-based approach, which has thus far been instrumental in 

systematically integrating and interpreting the context between various biomarkers 

which are represented as the individual “points/nodes” of the network ([119],[120]). 
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The idea of a network-based approach unfolds from the premise that alterations cause 

complex diseases such as NDD in more than one biomarker or a pool of candidate 

biomarkers comprising multiple biological pathways ([121],[122]). Here, the network 

consists of “nodes,” that represent individual biomolecules such as genes, proteins, 

miRNAs, non-coding RNAs, drugs or even diseases and “edges,” which represent a 

wide range of interactions including physical, genetic, metabolic and co-expression, 

as illustrated in Figure 3. 

 

 

Figure 3: Representation of a biological network with multiple interactions in a 

disease context. The right side of the figure represents the hub of a potential gene 

SNCA extracted from the network. The colors of the lines represent the types of 

interactions between the nodes and the strength of the associations between them 

(Figure adapted from [123], last accessed 30.1.2018).  

 

1.4 Pathway identification in AD through network-based approaches 
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The success of network-based approaches in precision medicine can mainly be 

accounted for by their ability to provide scientific rationales to uncover unexpected 

relationships between and within diseases, and they have been especially useful in 

deciphering molecular underpinnings in the context of AD ([124],[125]).  As an 

example, this approach has been utilized to identify and prioritize novel candidate 

susceptibility genes based on the principle that genes that are associated with a 

disease often participate in shared biological pathways which may be highly 

interconnected in a network ([126],[127]).  

 

The roles of the genes, PDCD4 in regulating neuronal apoptosis and ESCIT in 

oxidative stress and mitochondrial dysfunction, are considered to be significant 

breakthroughs of this approach ([128],[129]).  

 

Moreover, the combinatorial network studies of metabolomic and transcriptomic data 

have revealed various dysregulated pathways associated with AD, namely the 

MAPK/ERK pathway, along with the downregulation of genes such as CYC3 and p53 

([130],[131]). Similarly, a study by Thomas and Hallock in 2012 mechanistically 

deciphered that the cause of increased APP production in the brain was due to the 

disruption of a clathrin-mediated pathway in the context of AD ([132]).   

 

Network level differential co-expression analysis (DCA)  

Network level DCA is another advancement in network biology in which there lies 

the possibility of identifying causal factors of the disease through differential co-

expression networks, in contrast to the traditional method of differential gene 

expression. The advantage of DCA over differential gene expression analysis is that it 
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can help in deducing the co-expression patterns of genes even in the absence of 

differential gene expression. The DCA approach has been successfully used in the 

identification of candidate regulators (APBA2, SV2A, and FYN) of Late Onset 

Alzheimer Disease (LOAD) in APP endocytosis ([133],[134]). 

 

Weighted gene co-expression network analysis (WGCNA) 

WGCNA is a statistical network approach that is useful in detecting highly 

interconnected modules from large networks. The principle of WCGNA is that the 

modules of highly co-expressed genes participate in common biological processes. 

WCGNA based studies have proven instrumental in NDD research. This is especially 

true in uncovering modules related to microglial signaling cascades in LOAD, in 

which there is a significant up-regulation of the gene TYROBP, a potential biomarker 

for enhancing microglial phagocytosis in clearing amyloid beta from the brain 

([135],[136]). 

 

Genome-wide Association Studies (GWAS)  

GWAS have gained considerable momentum over the last decade in elucidating 

statistically robust associations between genetic variants and clinical phenotypes in an 

unbiased fashion. The advantage of GWAS is that they have conceded many 

significant findings that have been validated by independent studies with consistent 

accuracy in complex diseases including AD [137]. Naz et al. (2017), in their recent 

publication, have demonstrated the use of a GWAS approach to reveal molecular 

mechanisms with “genetic traits” based on the shared etiology of two diseases. The 

integrative approach established in work has resulted in the identification of shared 

pathophysiology between AD and PD [138].  
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Network biology and the approaches that subsequently followed offer an excellent 

platform to integrate and investigate the molecular underpinnings of complex diseases 

comprehensively. These approaches complement high-throughput gene profiling 

studies in bridging the gap between traditional and translational research, the 

combination of which can facilitate the accuracy of personalized medicine.  

 

1.5 Role of ontologies and terminologies in semantic integration 

Ontologies and terminologies can be defined as single taxonomic and knowledge 

representation schemas and are considered to be optimal solutions for biological 

interoperability [139]. They are conceptual models that aim to support consistent and 

unambiguous knowledge sharing and provide a formalized framework for knowledge 

integration. The field of text mining has predominantly exploited the use of ontologies 

as a means to retrieve domain-specific knowledge from literature and has further 

gained popularity in biomedical research.  For instance, Gene Ontology1 (GO) was 

one of the primordial ontologies developed in the field of biomedicine for producing a 

dynamic, controlled vocabulary for representing knowledge of all genes and proteins 

in Eukaryotes. Similarly, several ontologies for varying necessities, ranging from cell 

cycle ontology to a pathway and event ontology, have emerged and become an 

integral part of biological research [140]. 

Disease Ontologies such as SNOMED-CT2, International Classification of Diseases 

(ICD 3 ) and the human disease ontology contain human disease concepts for 

supporting the healthcare community to enrich the knowledge behind diseases. 

                                                        
1http://www.geneontology.org/ 
 
2https://www.snomed.org/snomed-ct 
 
3http://www.who.int/classifications/icd/en/ 
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However, these ontologies provide a high-level concept representation and do not 

provide the required granularity and depth of domain-specific concepts. This holds 

true for all diseases, especially NDD. ([78],[141]). Malhotra et al. (2014) have 

addressed this with the development of the Alzheimer Disease Ontology (ADO) to 

cover various aspects of AD, which includes concepts such as clinical, etiological and 

underlying cellular and molecular mechanisms [142]. Similarly, the Parkinson 

Disease Ontology (PDON) was developed for representing knowledge surrounding 

PD with concepts ranging from molecular biology to clinical readouts [143]. 

By cause of efficient knowledge retrieval using ontologies, biomedical databases are 

increasingly becoming semantically equipped for dynamic data integration and 

interoperability.  

 

1.5.1 Tackling the challenge of data integration in systems biology  

The advent of network biology has given rise to the unprecedented accumulation of 

high-throughput data from sources including genomics, proteomics, and 

metabolomics, amongst other. These data resources have not only provided a platform 

to seek answers for the most fundamental biological questions but also facilitate the 

formulation of novel hypotheses that arise from the accumulated wealth of data. A 

vast number of genes, proteins, enzymes, pathways and other biomolecules are 

identified, sequenced and stored in public repositories known as databases 

([144],[145]). These public databases served as the initial integrative framework that 

provided the platform to store, organize and integrate the vast amounts of data 

generated through reliable experiments. Such databases ensure the reproducibility of 

scientific experiments and analysis and facilitate better interpretation of scientific 
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discoveries.  On this note, the biological databases can be broadly classified into (i) 

sequence, (ii) structure and (iii) pathway databases ([146],[147]). 

 

Sequence databases are exclusively dedicated to capturing nucleotide sequences and 

their associated biological and bibliographic information. The major public databanks 

for sequence-related information are GenBank 4 , European Molecular Biology 

Laboratory (EMBL5) and DNA Databank of Japan (DDBJ6) ([148],[149]).   

Ensembl 7 is another primary database that serves to annotate the human genome and 

predict new genes automatically. Databases such as ArrayExpress 8  and Gene 

Expression Omnibus (GEO 9) are officially affiliated with the microarray gene 

expression data society that ensures the quality of data submitted to the repository 

([150],[151]).  

 

Apart from human genome sequences, there are other databases, which are dedicated 

to capturing sequence-based information from other organisms such as mouse in 

Mouse Genome Database (MGD10), and yeast in Saccharomyces Genome Database 

(SGD11) for related gene expression data ([152], [153]).   

                                                        
4https://www.ncbi.nlm.nih.gov/genbank/ 
 
5https://www.embl.de/ 
 
6https://www.ddbj.nig.ac.jp/index-e.html 
 
7https://www.ensembl.org/index.html 
 
8https://www.ebi.ac.uk/arrayexpress/ 
 
9https://www.ncbi.nlm.nih.gov/geo/ 
 
10http://www.informatics.jax.org/ 
 
11https://www.yeastgenome.org/ 
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Structural databases comprise of those databases that are exclusively dedicated to 

capturing protein related data to understand the role of protein functions in complex 

mechanistic processes.  

 

Protein databases such as Protein Data Bank (PDB12), Pfam13 and UniProt14 are 

dedicated to the collection and storage of protein structures ([154],[155],[156]). The 

CATH15 database provides information on the hierarchical classification of protein 

structures. Proteins do not act independently but rather as a network of complicated 

molecular interactions [157]. Experimental techniques such as Yeast two-hybrid 

(Y2H) help in capturing the physical interaction of proteins and such information is 

primarily stored in databases such as BioGRID 16 , MIPS 17 , and 

STRING18([158],[159],[160]).  

 

Pathway databases are essential for successfully quantifying biological entities. 

Kyoto Encyclopedia of Genes and Genomes (KEGG19) has been the primary data 

                                                                                                                                                               
 
12https://www.rcsb.org/ 
 
13https://pfam.xfam.org/ 
 
14http://www.uniprot.org/ 
 
15http://www.cathdb.info/ 
 
16https://thebiogrid.org/ 
 
17http://mips.helmholtz-muenchen.de/proj/ppi/ 
 
18https://string-db.org/ 
 
19http://www.genome.jp/kegg/ 
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resource for storing computerized knowledge on molecular interaction networks, 

predominantly comprising of metabolic pathways [161].  

 

Ingenuity pathways knowledge database consists of data about gene regulatory and 

signaling pathways for various organisms including human, mouse, and rat [162].  

Reactome20 is a far more advanced and dynamically designed database that captures 

cell signaling and metabolic pathways. Their framework facilitates the ability to 

superimpose quantitative data that can be highly useful for experimental validation 

[163]. 

 

Early initiatives, such as the Human Genome Project (HGP) which generated over 2 

million data records per day, signified the importance of using databases not just as a 

storehouse but as a systematic framework for interlinking inter-related data resources 

[164].  Integration of data resources was perceived to have multiple advantages such 

as: 

• Providing a collective view of various heterogeneous resources in one location 

• Modeling biological systems at cellular, molecular, metabolic and systemic 

levels 

• Assimilation of literature and data-driven knowledge 

• Querying of the knowledge resource to answer fundamental questions 

• Formulation and test of novel hypotheses about disease mechanisms [165] 

1.5.2 Large-scale initiatives towards biological data warehousing 

                                                        
20https://reactome.org/ 
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Integration of disparate sources containing heterogeneous biological information has 

been a challenging task in the field of bioinformatics, though the outcomes of these 

approaches have contributed to many scientific discoveries over recent years. Early 

public data repositories would often focus on providing only a single type of data, for 

example, the Bimolecular Interaction Network Database (BIND) for retrieving 

molecular interactions, and BRENDA 21  for retrieving enzyme related data 

([166],[167]). However, current databases are not entirely suitable for sophisticated, 

system-wide research, which requires the integration of a large number of distinct 

existing resources. The bioinformatics field has seen a significant paradigm shift from 

single source databases to complex warehousing systems which aid in 

accommodating the wealth of “omics” data [166]. BioMart 22 , BioXRT 23 , and 

InterMine24 are generic genomic data warehousing systems with 28 data sources 

exclusively designed for integrating and querying genomic data [168]. In the systems 

biology front, PathwayTools25  is a rapidly growing pathway warehouse system 

leveraging on average 1,800 manually curated pathways from MetaCyC26 database 

[169]. The most sophisticated data integration platform that was widely popular 

amongst the research community was DBGET27. It was considered to be one of the 

largest integrated data retrieval systems containing an array of molecular biology 

                                                        
21https://www.brenda-enzymes.org/ 
 
22http://www.biomart.org/ 
 
23http://projects.tcag.ca/bioxrt/ 
 
24http://intermine.org/ 
 
25http://bioinformatics.ai.sri.com/ptools/ 
 
26https://metacyc.org/ 
 
27http://www.genome.jp/dbget/ 
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databases [170]. The visual representation of DBGET is in the form of an extensive 

web graph in which individual databases within the integrated platform are 

represented as “nodes” and are cross-referenced among other databases as edges, as 

illustrated in Figure 4. 

 

 

Figure 4: DBGET architecture28. This figure is an integrated database retrieval 

system for a major biological database (Link last accessed on 30.01.2018) 

Numerous large-scale initiatives towards a disease-specific warehousing system have 

been on the rise in recent years. The cancer Biomedical Informatics Grid (caBIG) is 

an open source, open access information network for secure data exchange on cancer 

research. The warehouse system offers the necessary accessibility for collecting, 

analyzing, integrating and disseminating information associated with cancer research 

[171].  

 

                                                        
28 http://www.genome.jp/linkdb/ 
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The Systematic Platform for Identifying Mutated Protein (SysPIMP 29 ) is a 

standardized data warehouse designed for studying human diseases caused by 

mutation. This database is an integrated resource of several known databases such as 

Protein Mutant Database (PMD30), Online Mendelian Inheritance in Man (OMIM31) 

and Human Gene Mutation Database (HGMD32), to name a few [172].  

Concerning NDD, the Global Alzheimer’s Association Interactive Network 

(GAAIN33) has provided a gateway to access the vast knowledge collection of AD 

research data facilitated by sophisticated analytical tools and databases. This 

warehouse system offers a federated network for data sharing with the community 

interested in dementia research [173].  

 

Despite the several advantages of data warehousing systems, there are major hurdles 

with this approach as it requires continuous and often human guided management to 

remain updated, resulting in high-cost maintenance as well as a distortion in the 

quality of data over time. The factors affecting the quality of data are majorly due to 

syntactic and semantic anomalies. Syntactic anomalies include the challenges of 

incomplete data, inaccuracy, lexical errors as well as formatting issues. Semantic 

anomalies include data ambiguity, data discrepancy, and redundancy ([139], [174]). 

 

                                                        
29https://omictools.com/systematic-platform-for-identifying-mutated-protein-tool 
 
30http://pmd.ddbj.nig.ac.jp/~pmd/pmd.html 
 
31https://www.omim.org/ 
 
32http://www.hgmd.cf.ac.uk/ac/index.php 
 
33http://www.gaain.org/ 
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Lack of semantic standardization in public data repositories makes it extremely 

difficult to interpret the real context and meaning of data that has been derived from 

multiple sources or synthetically generated by software technology. Thus, without a 

formalized structure, the burden of knowledge interpretation as well as determining 

the validity and meaning of the data remains a substantial constraint among data 

users.  

 

Semantic integration is a highly innovative concept that focuses on the use of 

metadata to describe the meaning of data, which is facilitated by standardized 

ontologies that enable easy interoperability of concepts from one domain to another.  

 

 

1.6 Formalization of biological networks in biomedicine: an insight into semantic 

web technology  

Current research in the life science necessitates the understanding of data at multiple 

levels, ranging from cells to whole biological systems, with accessibility across 

numerous species and various experimental conditions. To explore increasingly 

complex relationships, there is a constant need for leveraging and linking different 

types of information, while at the same time, challenges exist with fragmented 

resources and technologies. 

 

The notion of the semantic web is gaining significant momentum in the life sciences 

as it provides the necessary infrastructure for semantic and syntactic interoperability 

for efficient data integration through the World Wide Web. 

Sir Tim Berners Lee, who coined the term semantic web, defined it as the following:   
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“an extension of the current web in which the information is given well-defined 

meaning, better enabling computers and humans to work in cooperation.” 

 

Semantic web technologies (SWT) provide a standardized platform for expressing 

relationships between web resources, thereby easing the way for data and machine 

interoperability ([175],[176]). The concept of the semantic web can be well explained 

by a semantic-web architecture, commonly known as a “semantic web layer cake,” as 

displayed in Figure 5. 

 

Figure 5: Semantic Web Architecture34. This figure enables the standards and 

technologies needed to build a robust semantic framework for organizing knowledge. 

SWT works on three main aspects of data integration using: 

                                                        
34 https://www.researchgate.net/figure/The-Original-Semantic-Web-
Architecture_fig4_266375123 
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• Ontologies for the representation of domain-specific concepts  

•  Resource Description Framework (RDF) as the standardized representation of 

language 

• Accessibility of data through the web language, SPARQL Protocol and RDF 

Query Language (SPARQL) ([177],[178]). 

The usability of ontologies for semantic interoperability has been previously 

explained in detail (cf section 1.3). 

 

RDF is the standardized language for data representation and interchange on the 

World Wide Web. They provide a framework for creating statements about resources 

and their corresponding attributes. RDF makes use of a Universal Resource Identifier 

(URI) to identify every element represented in the RDF model ([179],[180]). The 

basic structure of RDF is in the form of a statement containing three elements, namely 

a “subject,” “predicate” and “object” collectively known as “triples” [181].  A 

collection of triples forms a network of interconnected nodes and edges that describes 

the nodes and their relationships with other nodes. A simple representation of a triple 

can be seen in Figure 5. The statement “APP is encoded by an amyloid beta peptide 

protein” is represented in the form of subject, predicate, and object. The literal 

represents the actual concept without the URI.  

 

http://identifiers.org/hgnc/APP http://www.uniprot.org/uniprot/
P05067

uniprot:encodedBy

“APP” “amyloid-beta	peptide	
protein”

rdfs:label rdfs:label

SUBJECT PREDICATE OBJECT

LITERAL LITERAL
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Figure 5: Representation of a triple in RDF data model. This figure illustrates a 

simple biological statement converted into a triple format.  

 

The RDF Schema (RDFS) is a standardized language for the representation of data 

properties and is based on RDF. This is achieved with the Web Ontology Language 

(OWL) for formally defining semantics through the concept of description logic for 

semantic consistency. 

Since the representation of RDF is in the form of a graph, accessing specific 

information is only possible through querying the graph using a specific language 

called SPARQL.   

 

1.6.1 Use of the semantic web in the biomedical domain 

The quickest method to search for information on websites is through efficient search 

engines, such as Google. The search leads to a set of HTML pages that are devoid of 

any context or semantics and demand human effort. An analogous scenario is present 

in the biomedical domain, specifically in the field of molecular medicine. The Entrez 

search engine, a core part of the NCBI portal, is one of the most extensive knowledge 

repositories, consisting of various databases ([78],[182],[183]). The major drawback 

of these search engines is that the content retrieved is not machine accessible. SWT 

has overcome these challenges through various methods, including upheaving the 

exchange of data without any loss of information, formalizing the data into 

computable knowledge, transforming integrated data into “smart data” for biomarker 

discovery and deriving novel hypotheses ([184],[185]). 
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BioGateway35 was amongst the earliest RDF based platforms built to aggregate 

biological ontologies and other knowledge resources such as OBO Foundry candidate 

ontologies, GO annotation files, SWISSPROT36 protein sets, and NCBI taxonomy. 

This framework acts as a single point of entrance to query the integrated knowledge 

using the SPARQL protocol [186].  

Similarly, RDFscape is another semantic framework that was developed to facilitate 

biological analyses with an ontology, where reasoning power can be applied [182]. 

 

Semantic Web Applications and Tools for Life Sciences (SWAT4LS37) is yet another 

promising initiative towards creating open source, linked data. This platform brings 

together researchers from various sectors, namely eHealth, medical and clinical 

informatics, bioinformatics, chemoinformatics and systems biology to exchange ideas 

in the application of semantic web in health care [187]. 

 

The Bio2RDF project revolutionized life science research by demonstrating the 

possibility of querying the life science knowledgebase through linking large-scale 

publicly accessible databases through SPARQL endpoints. Bio2RDF uses RDF 

documents as well as a rule-based approach for creating URIs that automatically 

create linked data. This framework provides access to the semantically normalized 

RDF documents that are generated from public resources. It contains over 163 million 

documents from 20 data resources.  Figure 6 represents the Bio2RDF framework 

([188],[189]). 

                                                        
35http://www.thebiogateway.org/ 
 
36https://web.expasy.org/docs/swiss-prot_guideline.html 
 
37http://www.swat4ls.org/ 
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Figure 6: Bio2RDF knowledge system architecture. A schematic representation of 

the Bio2RDF framework, depicting the processing of external data resources to 

standardized RDF documents (Figure adapted from [188], last accessed 30.1.2018).  

 

1.6.2 Use of semantic web in neuroscience 

The key to unraveling novel hypotheses from integrated data resources has been well 

tailored for clinical research. Diseases and adverse events are evolving phenomena, 

and therefore, the needs for innovative strategies to understand, diagnose and treat 

them also continue to grow simultaneously. AlzPharm38 was one such initiative 

launched to support research around NDD, especially AD actively. It is an e-

neuroscience framework that was designed to answer complex neuroscience-related 

questions through an integrated system of databases ([190],[191]). 

 

                                                        
38https://omictools.com/alzpharm-tool 
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The Semantic Web Application in Neuroscience (SWAN) framework was built 

primarily using Alzforum39 for aiding scientists in organizing, managing, sharing and 

comparing knowledge related to AD. SWAN has since evolved into a valuable source 

for hypotheses generation and experimental design ([107],[192]). 

 

With the advent of powerful platforms coupled with the availability of experimental 

data, multi-scale modeling has expanded in ways that facilitate the comprehensive 

investigation of biological phenomena systematically. With the standardization of 

concepts and knowledge resources using ontologies, it is now a simple task to 

integrate data resources on various scales and have a biologically consistent interface 

between them ([193],[194]). 

 

To fully exploit the power of semantic web or any integrative multi-scale modeling 

approach, it is important to first perform a check for the completeness of the available 

data resources ([195],[196]). One of the most significant challenges in the healthcare 

domain is the lack of accessibility to individual clinical records owing to the legal and 

ethical principles governed by hospitals. The importance of sharing and reusing data 

in biomedical research is invaluable as it empowers easy accessibility and 

interoperability of data between independent platforms in clinical practice 

([197],[198]). With the prevalence of electronic health records, it is now possible to 

explore individual patient health records, as well as there is a substantial increase in 

the volume of available data for conducting further experiments. This is highly 

valuable concerning diseases such as NDD, where there is always a shortage of 

available data ([199],[200]). 

                                                        
39https://www.alzforum.org/ 
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1.7 Emerging trend towards a transparent infrastructure for data sharing 

through public-private partnerships  

The era of personalized medicine aspires at establishing strong links between 

bimolecular characterizations, progressive indications of disease and effectiveness of 

treatment and drug effects as a collective diagnostic solution for individual patients 

([107], [201]). It is also a fact that major breakthroughs in the field of biomedicine, 

especially systems biology, have only transpired because of the substantial 

improvement in bimolecular knowledge, as well as technologies in the recent years. 

Research enthusiasts have welcomed the trend towards collaborative initiatives 

between pharmaceutical companies and research consortia as such an approach yields 

high research productivity, reduced research risk and fosters increased scientific 

innovation ([202],[203]). 

 

In this direction, tranSMART40 was one of the earliest public-private partnerships to 

render analytical tools invaluable for clinical and translational research. tranSMART 

heavily campaigns for data sharing and enables users to compare patterns of gene 

expression between healthy and diseased individuals, access clinical data as well as 

provide the possibility to integrate external public resources ([204],[205]). 

 

The Encyclopedia of DNA Elements (ENCODE41) consortia is an international 

collaboration between a community of academics and researchers and The National 

                                                        
40http://transmartfoundation.org/ 
 
41 https://www.encodeproject.org/ 
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Human Genome Research Institute (NHGRI42) aimed towards understanding the 

functional elements of the human genome ([206],[207]). 

 

In healthcare, the value of collaborative studies is beginning to impact the field of 

neuroscience. Indeed, there are numerous consortia in the AD research realm which 

aim at addressing different critical requirements and knowledge gaps through a 

collaborative framework. 

 

The Critical Path (c-Path43) has been one of the pioneering initiatives of the Food and 

Drug Administration (FDA) which launched focus on developing new technologies 

and methods to accelerate drug development for AD and PD. Their earliest 

achievements have been towards establishing Clinical Data Interchange Standards 

Consortium (CDISC44) standards of concepts across many leading diseases such as 

AD, PD, Schizophrenia, Multiple Sclerosis (MS) to name a few ([208],[209]). 

 

The current advancements in AD research owe a great deal of debt to the Alzheimer 

Disease Neuroimaging Initiative (ADNI45), one of the largest multi-site, longitudinal 

studies. This has created a profound impact in clinical research and holds great 

promise for future translational research as ADNI provides access to a broad spectrum 

of patient-centric records, namely clinical, genetic and imaging, as well as 

neuropsychological tests and bio-specimen markers through the process of healthy 

                                                        
42 https://www.genome.gov/ 
 
43 https://c-path.org/ 
 
44 https://www.cdisc.org/ 
 
45http://adni.loni.usc.edu/ 
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aging to MCI and eventually dementia. The rationale governing ADNI is that by 

employing an array of distinct biomarkers ranging from genetic to clinical, the best 

combination of biomarkers can be identified for determining the associated processes 

of the brain with AD ([210],[211]). 

 

The impact that the ADNI initiative has created in the field of AD research, both at 

the molecular as well as the clinical level, remains indisputable. Historically, AD was 

considered to be caused by the accumulation of abnormally folded proteins by 

pathologists and molecular biologists and regarded as a clinical disease by 

psychologists and neurologists. Therefore, bridging the gap between these two 

perspectives had been an elusive goal until the advent of ADNI. The current ADNI 

study comprises the largest patient cohort with 400 subjects with MCI, 200 with early 

AD and 200 healthy controls ([212],[213]). 

The Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL46) 

is one of the largest cohort-based studies launched in Australia, shadowing the 

success of ADNI. AIBL aims to assist the development of essential and robust 

techniques through the use of biomarkers, cognitive characteristics and health and 

lifestyle factors [214]. 

 

All of these research initiatives were launched to formalize the need for clean, 

interoperable and reliable datasets to form a clear path towards early disease diagnosis 

and treatment. They also mark an apparent paradigm shift that the scientific 

community is making towards identifying reliable diagnostic biomarkers and better 

therapeutic intervention. 

                                                        
46http://www.aibl.csiro.au/ 
 



	 35	

 

1.8 Emergence of clinical and imaging biomarkers: closing the gap and widening 

the scope of translational medicine and biomarker discovery 

The therapeutic patient selection for AD clinical trials is traditionally based on the 

presence of either MCI or AD. In spite of high-impact studies such as ADNI, there are 

still no clear distinctions between the testing of therapeutic agents targeting Early 

Onset Alzheimer Disease (EOAD) versus Late Onset Alzheimer Disease (LOAD). 

Although EOAD and LOAD are the earlier and the late manifestations of AD 

respectively, the current biomarkers are thus far inadequate to even minimally 

distinguish two diseases with entirely different etiologies. Additionally, many 

established studies have stated that the clinical onset of AD commences 10-20 years 

before the actual onset of the disease. It is also to be noted that current treatment 

therapies only provide symptomatic relief for patients but do not halt disease 

progression. This lends further credence to the fact that although there are evident 

advancements in the generation of clinical data, there is a substantial lack of insight 

about the course of the disease ([215],[216],[217],[218]). 

 

Although substantial financial and technological investments in collecting 

longitudinal biomarkers such as imaging and clinical readouts are necessary, they are 

only sufficient enough to perform retrospective data-driven associations with clinical 

phenotypes which, to an extent, may result in deriving empirical hypotheses 

([219],[220]). However, what is essentially needed are robust mechanism-based 

modeling approaches where existing knowledge on multi-scales can be formally 

integrated into systematic infrastructures like RDF upon which corresponding multi-
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level data-driven analytics can be applied for efficient and optimized drug 

development.  

 

The importance of clinical biomarkers, especially neuroimaging biomarkers in the 

field of systems biology, can be very efficient as they play a pivotal role in linking 

clinical outcomes with molecular underpinnings during AD progression. The result of 

such clinically relevant observations can not only corroborate the molecular and 

genetic consequences of the disease but also provide insights into social and 

behavioral alterations exhibited by individual patients ([99], [221],[222]).   

 

Thus, there is a clear need for integrative approaches which enable multi-scale 

modeling of both clinical and biological data with the aim of bridging the translational 

gap and expanding the capacity to find optimized treatment for patients. 
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Goal of the thesis 
 

Multi-scale modeling of brain disorders, especially AD, provides the possibility of 

bridging scales of clinical importance, which is inclusive of measures spanning from 

molecular alterations to cognitive deformities. However, constructing such a multi-scale 

modeling approach for AD has yet to be achieved due to: 

(i) The absence of an integrative platform to organize knowledge across all relevant 

scales  

(ii) Lack of comprehensive, quantitative datasets of a disease	

(iii)  Lack of an infrastructure to normalize the available public data resources 

(iv)  Non-availability of longitudinal clinical data 

 

Figure 8: General workflow of this thesis 
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The objective of this thesis: 

• To develop a formalized data integration platform for traversing across scales to 

retrieve biologically relevant mechanisms for AD 
 
Over the past few years, the use of biological databases by clinicians and research 

enthusiasts have increased manifold. This is mainly due to the emergence of web-

accessible databases across all biological scales ranging from genes to brain 

connectivity. However, accessing and integrating essential information can be 

challenging due to the availability of data in varying formats and structures, the 

possibility of data being distributed across various public repositories which may be 

inaccessible, as well as the potential for poor reliability of available resources. To 

address these challenges, a semantic framework was designed during this work that 

allows for the integration of public data repositories of AD. With this semi-automated 

framework, it is now possible to traverse across varying data layers and query the 

resource to answer informative biological questions pertinent to AD. 

 

• To develop a pathway inventory for multi-scale modeling underlying 

neurodegenerative diseases 

It has been firmly established that complex diseases are most likely caused by the 

alteration and dysregulation of different genes in a pathway resulting in varying 

manifestations of the disease. Therefore, pathways and networks provide an ideal 

basis for a framework to identify novel disease mechanisms and targets for drug 

therapy and treatment. These pathways and networks are often stored in databases 

such as Reactome and KEGG. Conversely, the overwhelming influx of knowledge in 

the form of publications and other knowledge resources have made it difficult for 

mining essential information from the literature. The usage of ontologies and 



 40 

terminologies in biomedical research triggered substantial interest in the research 

community for extracting domain-specific knowledge from the vast array of literature 

resources. Mining context specific pathway information provides new possibilities 

towards the identification of novel targets. However, extraction of pathway 

information from the literature via text mining remains a considerable challenge as 

the representation of pathways in publications has been through cartoons and static 

representations, which are often time-consuming and non-interoperable. To address 

this challenge, a pathway terminology system was developed to ensure broad 

coverage of pathways of the neurodegenerative diseases domain. 

 

• To revolutionize the mechanistic interpretation of AD through clinical 

biomarkers 

The recent clinical practice has seen an abundance of clinical biomarkers for early 

treatment and diagnosis. Clinical biomarkers, especially imaging biomarkers have 

gained significant recognition for predictive, diagnostic and prognostic treatment 

in dementia. However, these imaging biomarkers and other clinical biomarkers 

have so far been confined to monitor patients in clinics as well as in radiological 

assessments but have not yet made a significant impact in academic research. The 

proper inclusion of imaging biomarkers in a multi-modal approach might 

maximize the potential of these biomarkers to enhance our understanding of the 

disease and to help find effective treatments ([117],[226],[227]). 

During this work, a neuroimaging terminology was developed to organize 

measured parameters of neurodegeneration. This terminology system helps in 

retrieving information relevant to neuroimaging from the literature and has been 

further incorporated into a computational model for understanding the relationship 
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between molecular processes and clinical outcomes. The overall workflow of this 

thesis can be seen in Figure 8. 
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CHAPTER 1 
Heterogeneous data integration 
into a formalized framework 

and mining large-scale 
molecular data 
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 INTRODUCTION 

 
Integrative modeling approaches provide the capability to transcend boundaries 

between domains of varying granularity. They are highly optimized for 

investigating complex biological phenomena traversing multiple data domains as 

well as deriving novel hypotheses about complex biological processes, especially 

in the context of disease pathomechanisms. Constructing such a well-scalable 

framework requires robustness, homogenization of data across all scales as well as 

secures interoperability between disparate resources. However, with the 

indispensable growth of data resources combined with the varying quality and 

format of stored data, building such a heterogeneous framework is nearly 

impossible. 

The publication presented in this chapter emphasizes on a semantic integration 

approach using an RDF framework for formal representation and integration of 

disparate data of AD. This paper particularly highlights the importance of 

integrating highly curated knowledge resources along with experimentally reliable 

data for deriving novel hypothesis about AD. 
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Background: Neurodegenerative diseases are incurable and debilitating indications with huge social and
economic impact, where much is still to be learnt about the underlying molecular events. Mechanistic disease
models could offer a knowledge framework to help decipher the complex interactions that occur at molecular
and cellular levels. This motivates the need for the development of an approach integrating highly curated and
heterogeneous data into a disease model of different regulatory data layers. Although several disease models
exist, they often do not consider the quality of underlying data. Moreover, even with the current advancements in
semantic web technology, we still do not have cure for complex diseases like Alzheimer’s disease. One of the key
reasons accountable for this could be the increasing gap between generated data and the derived knowledge.

Results: In this paper, we describe an approach, called as NeuroRDF, to develop an integrative framework for modeling
curated knowledge in the area of complex neurodegenerative diseases. The core of this strategy lies in the usage of well
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these resources to prioritize the plausible biomarker candidates. Among the 13 prioritized candidate genes, we identified
MIF to be a potential emerging candidate due to its role as a pro-inflammatory cytokine. We additionally report on the
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quality-controlled data.
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Background
Alzheimer's disease (AD), the most prominent neurode-
generative disease (NDD), has become a global threat to
the aging society, affecting nearly 115 million people by
2050 [1]. The imperfect understanding of the AD
etiology has created a large gap in translating the pre-
clinical findings into clinical trials dominantly observed
in high drug attrition rates [2]. Early diagnosis and pre-
ventive interventions could facilitate substantial reduc-
tion in the number of affected cases to 9 million by 2050
[3, 4]. Particularly, reliable biological markers of disease
and disease progression could assist in early diagnosis
and treatments catered to the patient [5]. In this direc-
tion, considerable global research efforts have been dedi-
cated to investigate molecular players underlying AD
pathogenic events, contributing to an ever-growing
wealth of disparate data. Refinement of this information
into actionable knowledge representations requires a
good interoperable and formalized framework, capable
of inferring potential biomarkers across different facets
of the molecular physiology. Additionally, in silico
disease models that integrate complementary data from
various resources are capable of recapitulating key
mechanisms for a given condition [6–8].
Among others, most widely used data integration

strategies include data warehousing (e. g., Pathway Com-
mons [9]), data centralization (e. g., UniProt [10], IntAct
[11]), and federated databases (e. g., BioMart [12]). An
example of a data integration framework is tranSMART
[13], which consists of a data warehouse covering vari-
ous types of data and related data mining applications
required for translational research and biomarker
discovery workflows. Such a harmonized aggregation of
heterogeneous data sources facilitates interpretation over
a large knowledge space [14].
However, one fundamental challenge with most of

these integration approaches is to cope with the variabil-
ity and heterogeneity in content, language, and formats
of incoming data from different source repositories.
Moreover, regular updates of these data resources are
necessary to keep up with newly added information and
to avoid incompleteness. The inaccessibility to the inte-
grated data resources, due to altered database structure
or change in the naming conventions is unavoidable
[15]. Semantic web technologies have overcome the
above described challenges up to an extent by revolu-
tionizing the lossless exchange of data and formalizing
the data format into a computable knowledge [16],
calling it “smart data" [17]. The capability of using rich
formal descriptions for data and its standardized map-
ping allows complex querying in a more efficient way
without information loss.
Resource Description Framework (RDF) is the World

Wide Web Consortium (W3C) proposed standard for

semantic integration and modeling of data. RDF uses the
syntax of Extensible Markup Language (XML) and im-
poses structural constraints to represent the meta-data
as a set of triples containing directed edges. One big ad-
vantage lies in the usage of common namespaces across
the different data domains encoded as Unified Resource
Identifiers (URIs). Initiatives such as Identifiers.org [18]
provide persistent official identifiers in the biomedical
domain, allowing sustained interlinking between distinct
data resources. This allows high levels of seamless inter-
operability between data sources and the capability to
access and map against additional related data unam-
biguously, called data federation. On the contrary, large
efforts are still needed during an initial definition of the
ontologies to build the schema for data representation.

Semantics in life sciences
The idea of semantic web prevails in various domains,
including life sciences. Recently, "The Monarch Initia-
tive" [19] has taken the semantic route to enable reason-
ing over genotype-phenotype equivalence within and
across species. They leverage on ontologies to link exter-
nal curated data resources for generating new hypothesis
and prioritizing candidates/variants based on the pheno-
typic similarity. Stevens et al. [20] launched TAMBIS,
multi-data application tool, which allows biologists to for-
mulate complex molecular biology questions to databases
such as Swiss-Prot [21], Enzyme [22], CATH [23], BLAST
[24], and Prosite [25] through well-defined semantics.
Among the early users of RDF, Lindemann et al. [26]

applied it to centralize and flexibly access the heteroge-
neous and varying quality of medical data obtained from
several clinical partners. The importance of semantic
mining in the life science domain was brought to lime-
light by the Bio2RDF project [27], which demonstrated
the possibility of querying life science knowledgebases
by linking public bioinformatics databases and providing
public SPARQL endpoints. Subsequently, Linking Open
Drug Data (LODD) [16] demonstrated linking drug data
information from DrugBank [28] and clinical trials
resources. Chem2Bio2RDF [29] demonstrates the poten-
tial usage of the above two mentioned RDF repositories
in the field of chemoinformatics.
Observing the immense advantage of linked open data,

several major publicly available life science databases
such as UniProt, DisGeNet [30], Protein Data Bank
Japan (PDBj) [17], and EBI resources such as Gene Ex-
pression Atlas [31], ChEMBL [32], BioModels [33],
Reactome [34], and BioSamples [35], have made their
data available in the form of RDF. Thus, the RDF plat-
form has been increasingly adopted as a standard for
data exchange. Amidst prime users of RDF in elucidating
disease pathophysiology, Shin et al. [36] demonstrated
systematic querying of linked experimental data to
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explore the effect of genes that are regulated by volatile
organic compounds in human blood. Qu et al. [6]
showed semantic framework capability in drug re-
purposing by proposing Tamoxifen, an FDA approved
drug for Breast Cancer, as a candidate drug for Systemic
Lupus Erythematosus. The above reported association
has already been tested in mice by Sthoeger et al. [37],
showing a leverage of semantic web in a real world sce-
nario. Furthermore, Willighagen et al. [38] presented the
linkage of several RDF technologies in molecular che-
moinformatics and proteochemometrics.
To our knowledge, there has been very limited applica-

tion of semantic web approaches to the research of neuro-
degenerative diseases. Linked Brain Data (LBD) [39] is an
upcoming initiative which focusses on understanding the
brain functionality by integrating resources such as gen-
omic, proteomic, anatomical and biochemical resources
with respect to neuroscience. Using such a multi-level
knowledgebase, they aim to understand the association
between cognitive functions and brain diseases. Lam et al.
[40] made the first attempt to develop an e-Neuroscience
data integration framework, AlzPharm [41]. They ex-
tracted AD-related drug information from BrainPharm
[42] to be further integrated with manually inferred
hypotheses from the scientific literature and published ar-
ticles (SWAN [43]). They demonstrated the usage of such
a model by clustering AD drugs based on their molecular
targets and to filter publications (claims and hypotheses)
specific to Donepezil effect on treatment of AD. Although
AlzPharm made use of manually inferred hypothesis, they
lack the validation of their findings with experimental data
such as gene expression and pathways.

Motivation
Despite the current advancements in semantic web tech-
nology, we still do not have cure for complex diseases like
AD. One of the key reasons accountable for this could be
the increasing gap between generated data and the derived
knowledge. In order to increase the probability of the
derived knowledge to be novel, data quality and data
reliability is highly desirable. Moreover, the contextual
specificity of the data is of paramount importance.
Compared to relational database management system

(RDBMS) technologies, in RDF the relations have expli-
cit meaning (expressiveness) in a given context and are
directly accessible; allowing the user to extract meaning-
ful knowledge from the data as opposed to an unstated
structured data. In addition, RDF structures are more
adaptive and flexible, allowing fluidity in the data rela-
tionships. This overcomes the fragility of RDBMS; where
if the underlying representation of the keys and flat table
changes, the tentacled connections are lost. Moreover,
triples from RDF can be transformed into RDBMS struc-
ture and vice-versa. One another advantage of RDF is its

graph representation that enables us to better explore
relations through network topological characteristics
such as relatedness, network perturbation, centrality, in-
fluence, etc. The usage of automated reasoners have
largely been beneficial to understand the semantics and
to expand the associated relations [44].
In this paper we propose NeuroRDF, an approach harnes-

sing the potential of RDF as a framework for modeling neu-
rodegenerative diseases to enable a close, biologically
sensitive integration of well curated, complementary, and
multi-faceted data. The fundamental principle of this strat-
egy is to take advantage of semantics to develop a context
specific, multi-layered in silico disease model, represented
as a formalized, and computationally processable domain
knowledge. A fine-grained analysis of the metadata from
various data resources empowers the user to ask more fo-
cused questions around a hypothesized pathomechanism
involving previously neglected or hidden candidates, further
leveraged for experimental investigations. Considerable ef-
forts have been invested to process and manually curate
huge amounts of data that is required to build such a
knowledge base around a specific indication. This includes
for example the in-depth assessment of the respective
phenotype, the type of tissue used in an experiment, and in-
formation around the donor of the tissue like gender, age,
and possible comorbidities. Querying such a highly curated
and focused knowledgebase increases the chances of unrav-
eling novel hypothesis, which could have been lost over
time or pave way to newly emerging knowledge.
We used SPARQL to traverse each of these knowledge

graphs (derived from distinct resources) in an integrative
manner, allowing highly disease specific analysis of the
underlying data. Using this approach, we demonstrate an
example on how to prioritize novel candidates in AD
mechanism.

Methods
The developed generic semantic web-based workflow in-
tegrating heterogeneous data resources is outlined in
Fig. 1. This multi-layered model integrates data from
various public resources such as databases, literature,
and gene expression information. The harmonization of
heterogeneous data to build RDF models was achieved
by using several data/file parsers. The workflow also
includes a pre-processing step to monitor the quality of
each incoming data type for specificity.

Data collection and resources
This subsection depicts briefly the different data re-
sources integrated into the NeuroRDF.

Database-derived interactions for healthy brain
A closer look into the healthy human brain interac-
tions could improve identification of the dysregulated
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mechanisms which further surges the plausibility of
identifying AD drugs in clinical trails [45, 46]. How-
ever, the mainstream AD research is biased towards
the well known disrupted events such as APP, and tau
rather than recognizing their role in normal brain
functions [47].
Several publicly available databases provide protein-

protein interactions (PPIs) and microRNA-target inter-
actions (MTIs), which can be derived using multiple
sources and methodologies. For instance, Human Pro-
tein Reference Database [48], Molecular INTeraction
database [49], and miRTarBase [50] focus on experimentally
verified interactions that are manually mined from litera-
ture by expert biologists. In addition to literature-derived
information, Biomolecular Interaction Network Database
[51] centralizes interactions from high-throughput tech-
nologies. Few other databases such as STRING [52], and
miRWalk [53] also provide predicted interactions.
However, none of these databases mine interactions
specific to a given context (for example AD pathology
or normal physiology).
A lot of published healthy state PPIs are not directly

measured in human cells but in artificial conditions such
as human cell lines, human genes transfected into yeast
cells, etc., missing out on the biological plausibility in
humans and context specificity [54]. Hence, considerable
effort by Bossi and Lehner [55] was invested to verify
the tissue specificity of PPI interactions from 21 data-
bases (including a few above mentioned) using human
gene expression data. Furthermore, this additional action
to ensure validity of the interactions in normal state aids
improved prediction of genes in disease state [56]. In
that direction, our group has extracted a subset of these

experimentally confirmed PPIs belonging to healthy
brain physiology [57]. Currently, the healthy brain PPI
network contains 7,192 genes and 45,001 PPIs.

Extracting AD-specific interactions from literature
The bridging factor between researchers and scientific
accomplishments are published as texts, warehoused in
large repositories like PubMed [58]. These biomedical
articles are the major information source of functional
factors such as proteins, genes, microRNAs (miRNAs),
etc. However, their functional descriptions are scattered
as unstructured text in literature [59]. Text-mining
methods could help us mine these articles and retrieve
the associated relations/evidence for a given context.
Since proteins are the chief players in almost all bio-
logical processes and miRNAs have been established in
the last decade as important regulators of gene expres-
sion, we focus our current research on MTIs and PPIs.
In order to harvest AD-specific knowledge from the

literature, we used our in-house state-of-the-art named
entity recognition (NER) system ProMiner [60] and the
semantic search engine SCAIView [61]. Identification of
genes/proteins and disease mentions was accomplished
using dictionaries. The disease dictionary was built using
MeSH [62], MedDRA [63], and Allie [64] databases.
Currently, it contains 4,729 concepts and 64,776 syno-
nyms [65], which are normalized to MeSH names.
Human Genes/Proteins dictionary [60] was compiled
from three different resources: SwissProt, EntrezGene
[66], and HGNC [67]. Currently, this dictionary consists
of 36,312 entries and 515,191 synonyms. All the identi-
fied gene/protein names were normalized to HUGO
gene symbols for maintaining homogeneity across all

Fig. 1 Overall workflow of NeuroRDF. The workflow illustrates the collection of data from various resources such as databases, and literature,
followed by steps taken to pre-process and prune the collected data. These high-quality data are represented semantically as RDF models and
stored in a triplestore. The stored knowledge can later be queried for biologically interesting questions
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data resources and also for future comparisons and
visualizations.
To identify MTIs from MEDLINE abstracts, we applied

our previously developed approach [65]. Here we ex-
tracted novel miRNA mentions using a regular expression.
These mentions were normalized to miRBase database
identifiers [68]. In addition, relation dictionary containing
the major classes of relationship terms between miRNAs
and their target genes/proteins was also developed. A tri-
occurrence based approach was used to extract the MTIs
(co-occurring with a relation term) at the sentence level.
Using the above-mentioned dictionaries, our group

previously harvested AD specific PPIs from MEDLINE
abstracts and full text articles [69]. Here we used the
interaction terms compiled by Thomas et al. [70]. A
state-of-the-art machine learning based approach [71]
was applied to retain true pairs of PPIs in a given sen-
tence. Both approaches have been optimized for recall.
Hence, the obtained relations have been manually fil-
tered for false positives. After manual inspection, 339
PPIs for 301 proteins and 99 MTIs for 36 microRNAs
that are specific to AD were obtained. Articles published
in languages other than English could lead to increased
information content, however a dedicated approach to
harvest them is needed. Moreover, separate parsers are
needed. Thus, for this work we extracted interactions
from the biomedical literature in English.

AD gene expression data
A standard approach to test any generated hypothesis is
to assess the gene expression of the involved candidates
between affected and healthy patients or in the absence of
human data we fall back to animal models or derived cell
cultures [72–75]. High-throughput technologies such as
microarray, RNA-seq provide potential to measure gene
expression simultaneously for different experimental/bio-
logical conditions. These studies are assembled in widely
adopted public archives: The NCBI Gene Expression
Omnibus (GEO) [76] and ArrayExpress [77].
For querying AD-specific gene expression data, we used

previously developed database, NeuroTransDB [78], which
contains highly curated meta-data information for eligible
AD studies. It assembles studies from public resources
namely, GEO and ArrayExpress, using a keyword based
search approach. Among the 45 prioritized AD human
studies, we filtered for microarray studies that measure
gene expression in brain tissue extracted from both AD
and healthy patients. In addition, availability of raw data
was a mandate for applying uniform pre-processing. In
total, we obtained eight microarray studies to be integrated
in NeuroRDF: GSE12685, GSE1297, GSE28146, GSE5281,
E-MEXP-2280, GSE44768, GSE44770, and GSE44771.
To assess the quality of the arrays we applied ArrayQuali-

tyMetrics [79] package. The selected studies (independent

of the platform type) were pre-processed using Bioconduc-
tor (Version 3.0) packages in R [80], by applying similar
methods for maintaining consistency by reducing variance.
All studies conducted on Affymetrix chips were normalized
by robust multi-array average method (rma) [81]. Similarly,
package limma [82] was applied on Rosetta/Merck Human
44 k 1.1 microarray chip. All the chips were normalized for
background correction and quantile normalization. The
normalized intensity values were log2-transformed
and duplicate probes were averaged. To identify the
differentially expressed genes between healthy and
Alzheimer’s patients we used limma package by ap-
plying Benjamini and Hochberg's method to control
for false discovery rate (adjusted p-value ≤ 0.05).

Data curation
Although the current text-mining methods have started
to leverage expert curators to extract PPIs, MTIs, etc.
from text, the extracted information are still prone to
false positives [83]. Moreover, it is not straightforward to
use these systems for retrieval of context-specific triples
due to technological limitations [84]. Hence, the meticu-
lousness of the identified triples to occur in a certain cell
type, disease state, or events captured in AD-specific
documents is not guaranteed. Thus, the need for manual
verification is unavoidable, especially when considering
the full text articles. The previously published test cor-
pus used for evaluating the constructed AD PPI network
contained AD-specific PPIs extracted by the machine
learning approach from 200 full text articles [69]. Man-
ual inspection by the authors resulted in retaining PPIs
from 38 articles that are truly specific to AD, thus dis-
carding 81 % of the originally retrieved articles. Similarly,
we retained only 68 abstracts from 250 articles (27 %)
that were retrieved using our tri-occurrence based ap-
proach for AD MTIs [65]. Thus, we can conclude that
only about 20–30 % of the (relation extraction based)
extracted PPIs and MTIs are truly relevant to AD, point-
ing out the need of manual curation.
Similarly, in our recent publication [78], we have

highlighted the key issues related to retrieval and reusabil-
ity of the datasets from public transcriptomics archives,
such as GEO and ArrayExpress. We showed that a simple
keyword based search not necessarily asserts the specifi-
city of the retrieved datasets to the queried disease or
organism. When manually inspected, we reported nearly
20 % of these retrieved studies to be irrelevant for AD
query. In addition, basic metadata annotations such as
age, gender, etc., which strongly contributes to the differ-
ential estimates, were observed to be incomplete. Brazma
et al. [85] had earlier reported that not all the data submit-
ted to GEO or ArrayExpress are MIAME compliant [86].
We additionally noticed these missing annotations being
scattered as unstructured prose in database webpages,
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publications, supplementary material, figures, etc., leading
to a steep increase in the needed curation effort. Al-
though the published research articles are rich in anno-
tations, a large number of experiments have missing
citations [87], which have to be added manually. More-
over, inconsistencies between the information stored in
the archives and in the associated publications were
also noted. On an average, about 30 min to 2 h of cur-
ation effort was needed to retrieve pertinent informa-
tion for a single dataset. The outcome of this work
resulted in a highly curated metadata database, Neuro-
TransDB, which is used in this work for extracting rele-
vant AD gene expression studies.

Generation of RDF models
RDF data model
RDF allows the generation of models for processed data
that exchanges information on the Web [82]. The RDF
data model stores all the relationships between different
entities as triples (subject-predicate-object). In RDF
terminology, the subject, the predicate and the object
are known as resources and are represented by a
unique “Uniform Resource Identifiers (URIs)" in order
to support global data exchange. Literals are constant
values such as numbers and strings mapped to the re-
sources. Literals can only be used as objects but never
as subjects or predicates.

RDF schemas
We constructed the RDF schemata by abiding the stand-
ard RDF graph notation where an ellipse represents
Resource, an arrow for Property, and rectangle for Literal.
In all the RDF schemas, we have maintained a common
resource representation for the “Gene" namespace adapted

from Bio2RDF that maps to the NCBI gene database. For
the namespaces with no available ontologies, we created
an internal namespace, called “SCAI". Some of the proper-
ties were described using URIs from Dubin Core Metadata
Element [88].
Four separate schemas (for each data resource) have

been generated that are centered on genes for interoper-
ability, associating each gene product to its official gene
symbol. In the AD PPI schema (see Fig. 2), proteins and
their interactions were represented using the Uniprot
Core Ontology [89]. Supporting literature evidence were
adapted to URIs from Bio2RDF namespaces. The article
resource was linked to its PubMed ID, sentence in which
the interaction has been mentioned, and the associated
journal. Experimental evidence that validates the given
interaction (if any) were mapped to BioPax [90], MGED
[91], ONTOAD [92], and SCAI namespaces. In the MTI
models (see Fig. 3), literature, genes, and proteins name-
spaces were adapted similarly to the PPIs. To represent
the miRNAs, we applied the Bio2RDF namespace that
links it to miRBase database [93].
For the PPI schema encoding the healthy state, as seen

in Fig. 4, we used the same ontologies as in case of AD
PPI. Additional interaction evidence such as brain
region, reference database, experimental evidence, and
literature information were described using Core, BioPax,
and Bio2RDF namespaces.
The microarray schema has two branches that are

linked to the experiment: sample details and differential
expression analysis. The majority of the resources and
properties are linked to URIs from EBI's Atlas (atlas) [94]
and MGED [91] namespaces, cf. Fig. 5. Gene expression
experiments could contain several samples that are
measured in different conditions. A detailed description of

Fig. 2 Schematic representation of the Diseased PPIs in RDF. The figure describes AD specific PPI interactions along with supporting evidence
mined from literature
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each sample is needed for accurate analysis. Thus, we
associated each sample to its meta-data annotations,
namely age, gender, organism, organism part, platform,
and phenotype. Organism under investigation is mapped
to NCBI Taxonomy URIs [95]. The factor value of each
sample, i.e., the phenotype information, is described using
the EFO ontology [96]. Each platform array is made up of
multiple probes that may represent a gene. To be able to
retain the expression values for individual probes, we
linked the probe ID resource to platform. However, for
better reasoning, quantitative values retrieved from
statistical analysis are linked to genes and not to probes.
The meta-analysis results, derived from limma [82], such

as differential expression value of a gene and its associated
p-value are all linked to the gene symbols.

Construction, validation and storage of RDF models
We modeled all the triples (represented in the schemas)
using the Apache Jena API [97]. Resources, and Proper-
ties as Java classes were created from the ontologies
using the corresponding in-built methods in the API
and with the help of Schemagen [98].
In order to check for the correctness of our generated

RDF models, we made use of the online service RDF
validator [99]. By using such a service, we verified the
models using their graph and triples representation.

Fig. 4 Schematic representation of Healthy PPIs in RDF. The figure represents PPIs of healthy subjects extracted from
literature and PPI specific databases. The schema also contains meta-information about these PPIs

Fig. 3 Schematic representation of MiRNA-target interactions in RDF. The figure encapsulates miRNA mentions along with their corresponding
gene identifier from literature

Iyappan et al. Journal of Biomedical Semantics  (2016) 7:45 Page 7 of 15



Triple stores, such as Virtuoso [100], provides an op-
portunity to store individual or integrated RDF models
in one endpoint. Taking advantage of this, we stored all
the generated RDF models as individual graphs in a sin-
gle Virtuoso instance. Using common URIs (e.g., “Gene"
identifier) as the connecting link between these models,
it is possible to traverse through them integratively.

Data mining and analysis
In RDF, all the stored triples are accessible using a com-
mon query language, SPARQL Protocol and RDF Query
Language (SPARQL) [101]. We generated a Java library
with embedded SPARQL queries to ask our endpoint
and the underlying networks biologically relevant ques-
tions. Queries were generated from individual models,
which were further integrated as nested queries to
traverse different graphs. Each query uses the common
Gene URI namespace (which is common across all
models) to pass on the results used to the next nested
query. One possibility to visualize the query results is
the SemScape Cytoscape [102], to represent the return
values as (sub-) graphs again.

Results and discussions
NeuroRDF covers a wide range of curated AD related
data resources, stored as four separate RDF models in a
single Virtuoso endpoint. It tries to address the main
concepts (complementary) that contributes significantly
to unraveling AD pathology.

Differentially expressed genes
For the eight selected microarray datasets, gene expres-
sion analysis was performed between healthy and
diseased patients. Among these, GSE1297, GSE28146,
and E-MEXP-2280 resulted in no differential genes for
adjusted p-value cutoff 0.05. From the remaining studies,
only genes that exhibited a log2 fold change of > 1.5
were selected for analysis. In total, GSE5281 resulted in
4,278 genes under p-value cutoff and 2 up-, and 48 down-
regulated genes for the defined fold change cutoff. Simi-
larly, GSE44770 provided 254 differentially expressed
genes, among which 16 up- and 11 down-regulated were
selected further. In case of GSE44771, we obtained 335
differential genes that contain 11 up and 11 down-
regulated genes that show > 1.5 log2 fold change. For both,
GSE12685 and GSE44768, we obtained 1 and 51 genes
under the p-value cut-off. However, there were no genes
that had log2 fold change of >1.5. The list of all the
differentially expressed genes that were selected for fur-
ther analysis is provided in Additional file 1.

RDF models
Table 1 summarizes the content of the generated triple
store by providing some statistics of all integrated
networks. In total, there are 8353 unique triples in AD
PPI, 1,204,194, 667 unique triples in Healthy PPI, and
20,454 unique triples in gene expression RDF models
(Additional file 2). The number of unique predicates
(relations) for AD and healthy PPIs are 11, whereas
for MTI there are 5 and the gene expression model

Fig. 5 Schematic representation of Gene Expression Data in RDF. This figure represents gene expression data obtained from public resources
such as GEO and ArrayExpress
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consists of 16. The number of entities present in
these models range from 300 to 78,852 (cf. Table 1).
In case of the gene expression data, to avoid large
triples we excluded the gene expression values of in-
dividual probes and included information only related
to differential expression. Uploading and querying these
models was not computationally expensive due to lower
set of predicates and relatively small file size.

Prioritization of AD candidates
To illustrate the potential of NeuroRDF approach and to
determine novel AD candidates from the high quality
integrated data, we exploit the underlying biological
association between the different data resources and
identify the previously unknown information.
Our prioritization criteria was based on the notion

that every data resource brings with it a piece of missing
biological information which is needed to understand
the mechanism of a certain candidate. We tried to
associate this distributed information by systematically
addressing the following questions:

(1)Whether candidates in the diseased network tend to
be associated with normal physiology. If yes, what
are the common players that could help us in the
differential estimates (called as causal candidates);

(2)Which microRNAs regulate the selected causal
candidates that could give insights into their post-
transcriptional dysregulation;

(3)Have any of the selected causal candidates assessed
for their level of differential expression in an
unbiased data source (e. g., gene expression data);

(4)How strong is the influence of the neighboring
genes on the casual candidates. This is based on the
assumption that strong candidates tend be
surrounded by dysregulated genes and have an
influence on the candidate itself;

(5)Is there any functional relatedness between the
causal candidates and their neighbors;

To answer these questions, we generated a set of
SPARQL queries. Figure 6 is an example SPARQL query
syntax used to obtain miRNAs that regulate the genes in
the AD networks. Similar querying has been applied to
build a system of faceted searches for the above de-
scribed questions. Firstly, we identified common genes
between the healthy and AD PPI networks. This query
resulted in 230 intersecting genes. Looking into the
MTIs, we found 13 of these genes to be regulated by at
least one microRNA (cf. Table 2). Among these 13
genes, 9 were observed to be differentially expressed:
APP, BACE1, ADAM10, IL1B, MAPK3, DLG4, LRP1
PTGS2, and TGFB1. Except for APLP2, and IL6, all the
other genes contained differentially expressed neighbors
either in AD or in healthy PPIs. There were no miRNAs
that were common to these 13 genes.
Sub-networks from the AD and healthy PPIs were ex-

tracted to investigate the prioritized candidates (see
Figs. 7 and 8). As observed from Fig. 8, for healthy PPIs
there was one larger sub-network (containing APP,
ADAM10, BACE1, MIF, MAPT, and LRP1) and a
smaller one containing two genes (PTGS2, and IL1B).
On the other hand, for diseased PPIs in Fig. 7, there
were two large sub-networks containing four (STAT4,
JUN, MAPK3, and STMN2) and five genes (APP, LRP1,
BACE1, DLG4, and TGFB1). The third sub-network was
made up of two genes (MAPT, and TUBA4A). Among
the prioritized candidates, APLP2 and IL6 had no com-
mon links to other prioritized candidates. Thus, they
were discarded for further analysis.

Relevance of prioritized AD candidates
The remarkability of complementing wet lab research
using the predictability and reproducibility of measured
outcomes is one of the core reasons why researchers are

Table 1 Statistics of generated RDF models stored in Virtuoso
endpoint

Models No. of triples No. of entries No. of
properties

Size (mb)

Alzheimer’s disease
PPI

8353 19900 11 0.894

Healthy State PPI 1204194 78852 11 99.102

MTI 667 300 5 0.095

Microarray 20454 9477 16 303.5

Fig. 6 Example SPARQL query for information retrieval from NeuroRDF. SPARQL query as seen in the figure retrieves the miRNAs for a given gene
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more inclined to the field of bioinformatics. Therefore,
in silico validation of predicted candidates for its rele-
vancy is of utmost importance. In this direction, we pin-
point the relevance of our prioritized candidates through
a literature survey.

AD established candidates
Although there are no FDA approved biomarkers for AD,
researchers focus on some of the key candidates that are
hypothesized to be involved in AD. In the current NDD
research practice, APP has been established as the widely
used biomarker candidate. The classical pathological hall-
mark of AD is formation of amyloid-beta aggregates (lead-
ing to plaques) in brain. This is reported to be caused by
faulty proteolytic processing of APP that releases amyloid-
beta [103]. Another hallmark of AD is tau pathology
(MAPT gene), regulated by amyloid-beta. Hyperphosphor-
ylation of tau causes accumulation of neurofibrillary tan-
gles due to the disrupted functioning of axonal transport
[5]. However, it is also interesting to note the paradigm
shift in AD research due to recently failed drug trails that
focused mostly around these hypotheses [2]. Never-
theless, several neuroscientists still believe in the po-
tential of APP and the tau hypothesis for elucidation
of the underlying pathomechanism. As observed from
our generated sub-networks, our largest sub-network
was established around the APP gene.
When compared to APP, BACE1 has not been so fre-

quently studied. However these genes often fall into the
"most interesting gene zone" as far as AD is concerned
since it is involved in the formation of amyloid-beta.
BACE1 is the major enzyme (beta secretase) involved in
the cleaving of APP at beta site and generating soluble
amyloid-beta [104]. However, increased BACE1 activity
has been reported to be associated with amyloid-beta ag-
gregation in AD patients [105]. Bu et al. have detailed out
the evidence that LRP1 is a receptor for APOE, a contrib-
uting factor to AD [106]. Furthermore, in 1993, Strittmat-
ter, Roses and colleagues [107] have identified APOE4 as
the major risk for late-onset AD. TGFB1 polymorphism
has been widely associated with an increased risk of late-
onset AD. Deficiency in TGFB1 signaling leads to neuro-
fibrillary tangle formation increasing the advancement of
mild cognitive impairment patients to AD, by increasing
the depressive symptoms [108]. DLG4 is a post-synaptic
scaffolding protein that interacts with postsynaptic recep-
tors such as NMDA receptors for efficient postsynaptic
response [109]. However, its impairment has largely con-
tributed to the synaptic degeneration in AD. Mutations in
ADAM10 gene have been associated to late-onset AD.
ADAM10 enzyme has alpha-secretase activity to cleave
amyloid-beta, however BACE1 competes with ADAM10
for cleavage. Thus, its decreased expression has been
implicated in AD pathogenesis [110].

Table 2 Prioritized AD candidate genes

Intersected genes
between healthy
and AD PPI

MiRNAs Differentially expressed
neighbors

Number of
literature articles
for intersected
genes

Healthy PPI AD PPI

APP MIR101-1, ADAM10, TGFB1,

MIR106A, MAPT, BACE1,

MIR106B, MIF, LRP1

MIR124-1, BACE1, 24550

MIR137, LRP1

MIR153-1,

MIR181-C,

MIR29A,

MIR520C,

MIR19-1

BACE1 MIR107,

MIR124-1, APP,

MIR145, APP LRP1 1883

MIR298,

MIR29A,

MIR29B1,

MIR328,

MIR9-1

ADAM10 MIR451,

MIR144,

MIR1306, APP - 231

MIR107,

MIR103

IL1B MIR146A,

MIR155 PTGS2 - 1099

MAPK3 MIR15A, - STMN2, 276

MIR155 JUN

MAPT MIR16-1, APP TUBA4A 3367

MIR132

APLP2 MIR153-1 - - 134

DLG4 MIR485 - LRP1 151

IL6 MIR27B - - 748

JUN MIR144 - STAT4, 142

MAPK3

LRP1 MIR205 APP DLG4, 305

APP,

BACE1

PTGS2 MIR146A IL1B - 474

TGFB1 MIR155 - APP 276

This table summarizes the literature based evidences of intersected genes
between healthy and AD PPI and their corresponding miRNAs and
differentially expressed genes
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AD emerging candidates
To identify emerging knowledge in the context of AD, we
performed an individual gene analysis using SCAIView for
publications in PubMed. Here, we measured the co-
occurrence of the causal genes (including its differential

neighbors) and AD over a period of last 10 years, see Fig. 9.
Since the number of articles for the APP gene was rela-
tively too high each year, we normalized the number of lit-
erature evidence of other candidates using the APP gene's
article count for that year. Hence, the normalized range
for the literature distribution is between 0 and 1, where 1
is the highest number of articles for that year (the APP
gene). Please refer to Additional file 3 for details of the lit-
erature counts. Inspecting literature evidence, we found
that all the prioritized causal candidates have been studied
in the context of AD. Moreover, among their differentially
expressed neighbors, STMN2 (8 articles), MAPK4 (1 art-
icle), TUBA4A (2 articles), and MIF (15 articles) contained
fewer articles related to AD. Among these genes, STMN2
and MIF have been recently studied in the context of AD,
whereas, MAPK4, STMN2, and TUBA4A were implicated
in AD nearly two decades before but failed to establish as
robust biomarker candidates.

MIF's role in AD
Macrophage Migration Inhibitory Factor (MIF) has for
long been known to participate in tumor proliferation
due to its pro-inflammatory cytokine functionality [111].
In general, MIF acts as a key regulator of inflammatory
activities such as innate and adaptive immunity [112].
Apart from that, it is also known to play a significant
role as an anti-apoptotic factor of neutrophils as well as
macrophages [113].
The MIF gene has been well studied in cancer and

inflammation. However, recent studies are emerging
around a plausible role of MIF in neurodegenerative dis-
eases, in particular AD. Moreover, Flex et al. [114] have
earlier reported that MIF polymorphisms are not linked

Fig. 7 Extracted sub-networks from AD PPIs network. This figure symbolizes the diseased sub-graphs that were generated using prioritized
candidates and their differentially expressed neighbors

Fig. 8 Extracted sub-networks from healthy PPIs network. This figure
symbolizes the healthy sub-graphs that were generated using
prioritized candidates and their differentially expressed neighbors
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to AD, but confirmed its complex immune and inflam-
matory activities. Although, APP and tau have been as-
sociated to play a key role in the pathophysiology of AD,
many researchers strongly believe in the role of inflam-
matory processes subsidizing to the pathology of AD.
This stems from the fact that activated microglial cells
discharge immunoregulatory cytokines which result in
various side-effects such as neuronal dysfunction and in-
hibition of hippocampal neurogenesis [115]. MIF is one
such pro-inflammatory cytokine which is known to bind
with amyloid-beta protein and enhance the plaque re-
moval and neuronal debris from the brain during normal
conditions [116]. Also, MIF has been identified to play a
role in neuronal survival by inhibiting the activation of
ERK-1/MAP kinases [117] (regulatory role in cell prolif-
eration and glucocorticoid action) as well as its ability to
surpass the p53 mediated apoptosis [118]. Although, the
precise molecular function of MIF in the context of AD
is unknown, it is known to play a role in inflammatory
processes around the plaque formation. MIF is also
highly expressed in the neurons of rat hippocampus, one
of the primary regions to be affected by AD [117]. Bryan
et al. [119] also report on the abnormal expression of
MIF in both microglia and in the hippocampal neurons
in human. This all makes MIF a plausible biomarker for
inflammatory responses in AD.

Conclusion
NeuroRDF approach has been designed to identify new
knowledge through semantic mining. The proposed inte-
grative approach takes advantage of the RDF technology
to integrate well-curated data from various sources
within a specific indication area. From our perspective,
it is necessary to focus on one indication or at least a

group of indications to build such a knowledge base for
precise modeling and analysis due to the high curation
effort one has to spend in order to reach the necessary
details. We showed how to harmonize three major het-
erogeneous resources (databases, gene expression data,
and literature) used in the research area to generate
hypotheses for underlying disease mechanisms. This ap-
proach supports identification of novel insights without
compromising over quality. Furthermore, new data re-
sources can be included without altering the overall
framework. The usage of well-accepted ontologies pro-
vides the advantage for further integration of external re-
sources and databases (e.g., federated queries). Using
such an approach, we were able to prioritize MIF gene
as an emerging candidate due to its role in inflammatory
processes implicated in AD pathogenesis.
The advantage of using an RDF schema is that it is

highly supportive for data interoperability. Although this
work represents the usage of the RDF schema specific
for AD, we have also extended the same to other disease
models such as Parkinson's and Epilepsy. However, the
curated data and the generated hypothesis for these two
diseases will be released in future under the terms of a
Neuroallianz agreement [120]. Also, these resources are
constantly kept up-to-date as they are transferred to
various upcoming projects such as AETIONOMY [121].

Additional files

Additional file 1: List of differentially expressed genes. This file contains
the list of differentially expressed genes (for each dataset used) that fall
under the adjusted p-value cutoff of 0.05. The differential expression
analysis was performed using limma package in R statistical environment.
The file is provided in an Excel format. (XLSX 68 kb)
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Additional file 2: The developed RDF models and the SPARQL queries
used are made available at: http://www.scai.fraunhofer.de/en/business-
research-areas/bioinformatics/downloads/neurordf.html. (ZIP 178 kb)

Additional file 3: Detailed count of literature evidences for prioritized
candidates. This file contains the detailed count of number of evidences
available for each prioritized candidate for each year since 2005 in
context of Alzheimer's disease. These statistics were retrieved using
SCAIView knowledge discovery tool (as of 18 May, 2016). (XLSX 35 kb)
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SUMMARY 
 
Earlier AD research was predominantly focused on the amyloid cascade and tau 

pathology hypotheses. However, recent developments in clinical trials indicate 

that more than 200 therapeutic trials targeting the above two assumptions have 

consistently failed to demonstrate any therapeutic recovery. This goes on to 

confirm that AD is not caused by a set of molecular dysregulations, but instead, it 

is a syndrome of multiple factors ranging from cellular to behavioral to lifestyle 

ones. This requires then a multi-modeling approach, which provides access to all 

multi-layer data in one platform such that meaningful insights into disease 

progression are attained. 

With the rapid advancements in next-generation sequencing technologies, data 

warehouses and continually expanding literature resources, the need for efficient 

data management and retrieval system is an absolute necessity. With the explosion 

of new data, a simultaneous challenge of assembling and maintaining a 

comprehensive platform that contains all relevant information also exists. 

Moreover, the era of digital health has made it inevitable for biologists and 

medical doctors to be equally competent in handling online technologies. Through 

data integration, it is now possible to intelligently mine the data and also ask 

meaningful, context-specific questions to the system to get better insights in 

addressing scientific problems. Efficient cross-talk between data resources can 

only be achieved when the data are semantically integrated across all data scales, 

namely genes, proteins, compounds, pathways, drugs, and diseases. 

Semantic web technology is one such framework which facilitates the smooth 

integration of heterogeneous data resources, ranging from cellular level data to 
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clinical level data, with the help of ontologies and terminologies. Using RDF data 

models, or graphical representations of integrated data, it is easily possible to 

traverse and bridge multiple layers of embedded knowledge and thereby augment 

the possibility to derive novel insights into AD pathomechanisms. Additionally, 

semantic web framework offers one practical solution to address the problem of 

multi-scale modeling as it enables the integration of all quantitative and qualitative 

data ranging from molecular targets to clinical readouts. This framework is 

represented in the form of a graphical network, which facilitates network 

traversing across scales along with the possibility of querying and retrieving 

relevant information from the system. 

 
 
The earliest usage of semantic web technology in the life sciences was done to 

prioritize human candidate genes from a pool of heterogeneous genomic and 

phenomic databases. Over the years, semantic web technology has been widely 

exploited for exploring complex biological phenomena, especially in the field of 

disease modeling such as in cancer and AD. 

 
 
The work presented in this section focuses extensively on state-of-the-art semantic 

web technologies used for developing contextually rich, heterogeneous models for 

NDD based diseases. This integrative framework, known as “NeuroRDF”, 

comprises of integrated data from three different domains, namely: Protein-protein 

interaction (PPI) databases, contextual knowledge from the literature on PPIs and 

transcriptomics data. The core objective of this work lies in the ability to get novel 

insights into complex disease mechanisms using an integrative framework through 

semantic mining. Another advantage of such an integrative framework is that the 
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existing framework can be reused for analyzing other diseases without altering the 

overall structure. Additionally, the framework can be easily extended to other data 

domains such as metabolomics and clinical data. 

One of the significant challenges that emerged during the extension of the 

NeuroRDF model to other data domains was the lack of reliable text-mining tools 

for harvesting domain-specific metabolomics and clinical data from the literature. 

These two challenges are addressed in Chapter 2 and 3, respectively. 
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CHAPTER 2 
Knowledge acquisition for 

elucidating novel dysfunctional 
pathways through domain specific 

semantic framework 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 69 

 
INTRODUCTION: 
 

The era of systems biology and genome-wide throughput technologies have 

revolutionized the approach for analyzing biological processes on a systematic 

level rather than at the level of individual molecular interactions. Pathways are the 

most preferred representatives of system level interaction information. In 

particular, molecular and signaling pathways comprise of the interactions of 

biomolecules that perform specific cellular and molecular functions. These 

processes are regulated by signals or chemical reactions, which can either enhance 

or disrupt the biological process, thereby becoming an exciting target for drug 

therapy and treatment. For this reason, biological pathway databases are often 

considered the most reliable source of knowledge. 

 

However, the initial step of constructing pathways is often very challenging as it 

involves extensive manual curation for intrinsic knowledge from the literature. 

With the exponential growth of scientific publications, it is nearly impossible to 

conduct manual curation without the assistance of text mining technologies.  In 

spite of significant advancements in biomedical ontology research, the semi-

automated process of extracting context-specific, pathway relevant information 

from the literature remains elusive. 

 

The publication presented in this section focuses on the need for a pathway 

inventory that can ensure broad coverage of the complete pathway knowledge 

domain on NDD. 
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INTRODUCTION

“Molecular pathways” represent a series of actions
among molecules in a cell. They encompass various
biochemical entities, such as enzymes, signaling pro-
teins, and DNA and RNA molecules, which interact
to perform certain cellular functions. A pathway can
be characterized based on the flow of information
(signal) or chemical reactions under a specific con-
dition at a specific time with the aim of regulating
cellular biological processes [1]. It is noteworthy that
the “pathway” term has been also used in the litera-
ture for describing anatomical connections between
two brain regions or two cellular organelles, and for
functional connectivity or connections (systematic
co-expression of physiological activity at two differ-
ent sites of the brain). This terminology is distinct
from molecular signaling pathways.

The role of signaling pathways in health and
disease has been massively investigated in the liter-
ature and specific databases have been dedicated to
categorizing and storing pathway information. Exam-
ples include the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [2], the BioCarta [3] database,
and WikiPathways [4]. Unfortunately, there is lit-
tle overlap in the pathway content of such databases
[5], the contextual information (e.g., condition- and
cell-specific information) is often missing, and their
content usability is limited by low resolution of inter-
actions and incomplete annotation [6]. Moreover,
depending on the actions they perform in the cell, the
functional output they regulate or the disease context
in which they occur, molecular signaling pathways
have been named and classified differently. However,
it was until recently that the Pathway Ontology (PW)
[7], developed at the Rat Genome Database (RGD)
[8], was introduced for representing all types of path-
ways under a single, standard framework [9]. This
ontology provides a valuable resource for annotation
of genes, drugs, and diseases to pathways but its appli-
cation can go beyond simple annotation of terms and
entities. Although terms and annotations in the PW
have been extracted from the literature, these pieces
of information are disconnected from the mechanistic
context and actual events underlying various normal
and disease conditions. For example, it would be
very interesting to mine the literature for signaling
pathways that collectively contribute to Alzheimer’s
disease (AD) pathology and compare their roles to
pathways active under the normal, healthy condi-
tion. We have recently shown that such a differential
analysis strategy can provide invaluable insights into

perturbed mechanisms that are unique to a disease
state [10].

In fact, reconstruction of pathway involvement
in the etiology of neurodegenerative diseases lays
the ground for a better understanding of the mech-
anisms that are involved in the pathophysiology of
those diseases. It ultimately bears the potential to
provide guidance for drug discovery strategies. Nev-
ertheless, before that, there is an urgent need to
delineate both structural and functional complexity
of the human brain. Several initiatives including the
Neuroscience Information Framework (NIF) [11] and
The Virtual Brain (TVB) [12] have undertaken efforts
to address structural and functional complexity of
the human brain, respectively, by building dedi-
cated resources. Even so, existing gaps between these
resources should be bridged and their integrative
application should be leveraged so that fundamen-
tal questions about the human brain under normal
and abnormal conditions can be answered. For exam-
ple, the lack of an overview on cellular pathways that
regulate region-specific functions of the human brain
hampers efforts to bridge the gap between structural
and functional characteristics of the brain. A few stud-
ies have attempted to identify pathways underlying
regional and cell type changes in neurodegenerative
diseases using differential gene expression profiles
(e.g., [13] and [14]); but systematic annotation of
pathways to human brain regions using published
knowledge has not yet been performed. Compilation
and study of a “human brain pathway map” under
healthy and diseased conditions will lend support to
mechanistic interpretation of disease progression at
spatial and temporal resolution.

A mechanistic understanding of disease etiology
is a particular challenge in the area of neurodegener-
ative diseases such as AD and Parkinson’s disease
(PD), as they are widely known as being “idio-
pathic”, i.e., their etiology is unknown. In order to
support the systematic gathering of pathway informa-
tion linked to brain anatomy and neurodegenerative
diseases, we have developed automated approaches
that build on dedicated terminologies, tools, and
text mining methods for the efficient extraction of
pathway information from the scientific literature.
In this paper, we present the Pathway Terminology
System (PTS), which integrates existing pathway
and biological event ontologies, and demonstrate its
applications to retrieving context-specific pathway
information from the literature. We generate an inven-
tory of pathways active in various regions and cell
types of the human brain under healthy and AD
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conditions, and analyze drug mode-of-action through
mechanistic model of targeted pathway in the con-
text of a large, brain-specific, drug-target-network,
the Human Brain Pharmacome (HBP).

MATERIALS AND METHODS

Generation of the Pathway Terminology System
(PTS)

Based on the PW, we created a pathway dictionary
and integrated terms from the INOH [15] event ontol-
ogy. Since we re-used events from INOH hierarchy
and pathways from PW, their original classifica-
tion hierarchies as well as their individual concept
annotations were preserved after merging these two
into PTS. For INOH event classes, we retained their
namespace (hereafter abbreviated “IEV”) and identi-
fiers, whereas for dictionary classes, we created stable
identifiers in their newly generated namespace. As

INOH event contains several unclassified upper-level
classes, we classified these classes inside the INOH
event hierarchy. Since we differentiate between
events and pathways, we moved the IEV:Pathway
class to be a sibling class of IEV:Event, that, in turn,
are both subclasses of SPAN:Processual entity [16]
(cf. Fig. 1). We furthermore enriched the pathways
with genes involved using an object property pointing
from a pathway to its genes. We achieved this enrich-
ment by downloading the necessary information from
KEGG using the BioConductor KEGGREST service
[17].

Moreover, the merged PTS was populated with
pathways from four popular public biomedical path-
way databases, namely KEGG, Reactome [18],
BioCarta, and Pathway Interaction Database [19].
The pathway names from KEGG and Reactome were
mapped to their identifiers using reactome.db and
KEGG.db packages in R, which enables an auto-
mated updating of the pathway dictionary on the

Fig. 1. Overall integration of HBP database with MySQL tables. This figure depicts the integration of pathways, genes, diseases, brain
regions and cells into the in-house HBP database, represented in red box. The figure also highlights the MySQL table linking the newly
generated information with the existing HBP database.
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basis of the pathway identifiers in different pathway
databases in the future.

Further enrichment of the PTS was achieved by
analysis of relevant scientific text. For this purpose,
the phrases (with frequency of occurrence) from
MEDLINE abstracts containing the word “pathway”
and three words preceding it were extracted using a
sub-corpus. If the pathway name inside the four-word
phrase was either absent from the pathway reference
name list or absent from the pathway synonym list, it
was added to the pathway reference name dictionary.
Meanwhile, the pathway synonym list was enriched
in two steps:

1. Synonym search through the Internet for each
term in the pathway dictionary (e.g., Google
Scholar).

2. Synonyms detected from a training set of
MEDLINE abstracts (300 manually annotated
MEDLINE abstracts).

Most of the synonyms were collected by scanning
diverse knowledge sources, which include review
articles, content of online books, standard knowledge
bases, encyclopedias, glossaries, and informative
online sources and websites.

Human Brain Pharmacome (HBP)

The HBP is our central knowledge base rep-
resenting our current knowledge on human brain
pharmacology. The HBP integrates data from known
drugs and developmental or experimental compounds
that are related to human brain disorders, their inter-
acting drug targets, pathways containing these drug
targets and the associated phenotypic data and brain
regions involved.

The HBP data represents multi-scale biological
and chemical knowledge, which has been extracted
from open source databases. This dataset has been
further enriched by a series of similarity computa-
tions performed over drugs and protein 3D structures.
Besides, complementary information extracted from
biomedical literature, patent documents, and elec-
tronic health records were also added to this resource
using ProMiner software [20] together with our own
pipeline programmed in Perl and Shell code to gen-
erate data on co-occurring entities in MEDLINE
abstracts. These co-occurrences were then manually
curated for validity, transformed into MySQL tables
and integrated with the HBP database as depicted in
Fig. 1. For instance, co-mentioning of brain drugs
with pathway information was used to annotate the

HBP with the pathway information related to drug
treatments.

A list of MeSH [21] terms for all brain disor-
ders, diseases and disease subtypes was used as a
query to search and retrieve data about drugs and
their drug targets. The external database resources
used include DrugBank [22], Comparative Toxi-
cogenomic Database (CTD) [23], Therapeutic Target
Database (TD) [24], EMBL-STITCH Database [25],
SIDER [26], ChEMBL [27], BindingDB [28], PDSP
KiDB [29], KEGG Database [30], and PhenomicDB
[31].

The HBP and the pathway annotation of the HBP
will be made publicly available in the course of the
IMI project EPAD [32]. Tailored for use in EPAD,
the HBP, together with pathway annotations, will
become part of the AETIONOMY [33] knowledge
base, which in turn will be part of the IT infrastructure
underlying EPAD.

Brain Region and Cell type Ontology (BRCO)

BRCO captures a wide range of key concepts
representing human brain neuroanatomical struc-
tures and integrates their corresponding cell types.
BRCO re-uses and connects to multiple existing
anatomical ontologies and terminologies, including
the NIF Standard ontology [34], the NeuroNames
terminology [35], and the Brenda Tissue Ontol-
ogy (BTO) [36]. The ontology was further enriched
with concepts and synonyms extracted from var-
ious web-based resources, e.g., Unified Medical
Language System (UMLS) [37]. Extensive manual
and computational curation was also employed to
merge duplicated or similar concepts from differ-
ent taxonomies and check for ambiguities. BRCO
was further tested with regard to formal consis-
tency using the FaCT++ Description Logic Reasoner
[38]. From BRCO, we derived a dedicated termi-
nology (BRCT) [39] that could be used to describe
and retrieve human brain anatomy concepts from
free text. By applying dictionary-based stemming
techniques and allowing rule-based lenient match,
the final dictionary extracted from BRCO showed
a satisfactory F-score of 0.80 in a named entity
recognition task using our in-house text mining tool
ProMiner on an independent testing corpus composed
of 100 manually annotated MEDLINE abstracts.
BRCT classes were mapped to pathway and dis-
ease mentions (AD, PD, ALS, EP, MS) wherever
this contextual link could be extracted from the
literature.
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Querying in the semantic search environment
SCAIView

We integrated the PTS into the literature-mining
environment SCAIView [40]. This environment
enabled us to perform very context-specific literature
searches based on combined semantics from multi-
ple ontologies and terminologies. Such queries are
listed in section 2.8. All terminologies and ontolo-
gies used in this work are publicly accessible through
SCAIView Academia [41].

PTS performance evaluation

We evaluated the performance of PTS based on
classical text-mining measures: Recall, precision
and F-score. For doing so, we used the following
formulas:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F-score = (2 ∗ Precision ∗ Recall)/

(Precision + Recall)

TP, number of true positive hits correctly found,
i.e., matching the annotation in the gold standard. FP,
number of false positive hits, i.e., hits found but not
contained in the gold standard. FN, number of false
negative hits, i.e., entities not found but contained in
the gold standard. Precision, proportion of correct hits
out of all hits. Recall, proportion of correct hits out
of all terms that should have been correctly found. F-
score, overall measure of accuracy (harmonic mean
of precision and recall).

We annotated a set of 300 independent MEDLINE
(U.S. National Library of Medicine) abstracts and a
small set of 9 full text articles relevant to pathways
using the Knowtator tool (BioNLP) [42]. These cor-
pora served as “gold standard” (expected result set)
that we subsequently used for evaluation. We also
calculated inter-annotator agreement (IAA) using the
Knowtator Protégé plugin [43] to determine the con-
sistency and quality of the annotations. During the
evaluation, abstracts and full text publications were
queried both for the expected “gold standard” named
entities and for entities contained in the PTS (class
labels and synonyms), using the ProMiner NER tool.
These runs were compared and precision, recall and
F-score were calculated for the two abstract runs and
the two full-text runs, respectively.

Fingerprinting of patents

We used the PTS to fingerprint patents based on
pathway terms that occur in the patent text. We used
the semantic distances (Wu & Palmer similarity: 2H/
(2H + D1 + D2) [44] between pathways to calculate
the similarity values of pathway mentions in patents.
We chose the Wu & Palmer similarity metric because
(i) it is computationally not too expensive and (ii)
it calculates similarities by allocating higher similar-
ity values to classes lower down the class hierarchy
than to top-level classes. The patent corpus for the
fingerprinting approach was generated from PatBase
[45]. Using the following formulated query, 4,285 PD
relevant patents were retrieved:

(((FT = (Parkinson)) and ((FT = (therapy
OR compound OR formulation OR molecule
OR drug OR agent OR inhibit OR target
OR structure OR treat)) and
(PD = 20070101 : 20121231) and
(IC = (A61P25/16)))),

where FT represents search for the defined terms
in the patent’s “full text” that are published
between 2007 and 2012 (abbreviated as “PD”) and
are tagged to a specific International Patent Classi-
fication (IC) hierarchy. Similarly, 1572 AD relevant
patents were retrieved with slight query modification
(FT = (Alzheimer) and IC = (A61P25/28)), and
patents related to Epilepsy were received via (FT =
(epilepsy) or FT = (seizure) and IC = (A61P25/08)).

Among these, 100 patents for each query were
manually selected based on high relevancy to the
disease. Selected patents were downloaded from Pat-
Base and converted to.xmi format using ChemoCR
[46] (for image PDF’s) and PDFBox [47] (for text
PDFs). Patent fingerprinting and subsequent simi-
larity calculation were implemented using a Java
program that runs as a UIMA [48] pipelet. The pipelet
uses the input patent.xmi files, starts a ProMiner run
on them that annotates the.xmi files with PTS path-
way mentions, and creates a further annotation for
each patent.xmi file that contains a vector of [0|1]’s
(see Fig. 2). These vectors have the length of the sum
of all PTS classes (over 6,000), the position in the
vector corresponds to the specific PTS class. A “1”
indicates occurrence of the respective class (or a syn-
onym) in the patent; a “0” indicates non-occurrences.
These vectors are, in a second step, compared to each
other and similarities among the patent documents are
calculated, resulting in a matrix of similarity values.
A value of 1.0 indicates a perfect match, i.e., the same
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Fig. 2. Patent fingerprinting workflow. The patent fingerprinting works by providing ProMiner dictionary and patents as inputs and the
output is a binary vector of 0 and 1, which represents occurrence/non-occurrence of terms.

PTS mentions were found in both patents, a value
of 0.0 reflects total dissimilarity of the respective
patents. Inter-class similarity is calculated using the
Wu & Palmer similarity scoring whereas inter-patent
similarity (as each patent may contain 1 . . . n class
mentions) is based on the mean value of maximum
similarities calculated for the single classes:

sim(patx, paty) = mean (sum (max(sim WuPalmer
(class X path x all classes pat y))))

Based on the similarity scores in the matrix, the
most dissimilar patents (i.e. those patents containing
pathway mentions other than very well-known path-
ways involved in AD pathogenesis) were selected
(Supplementary File 1). The content of these patents
was submitted to the Count-text online tool [49] and
the average sentence length was calculated so that the
distance of 138 characters was determined for sen-
tence extraction. Within this distance, co-mentions

of pathway-gene and pathway-drug were identified
and their relationships were manually checked by an
expert.

Pathway map of the human brain

To build the pathway map of the human brain,
we used a tri-occurrence approach to automatically
extract pathways, events and brain region men-
tions from the literature using PTS and BRCT
(Fig. 3). We, then, performed a comparative anal-
ysis of pathways between the healthy and AD
conditions by finding co-occurrences of path-
way mentions with brain regions and cell types
in the literature. We targeted the hippocampus
region, as it is a critical area for memory and
learning affected under AD condition. We made
use of the following query for retrieving arti-
cles specific to AD: (((([BRCT:“Hippocampus”])
AND [Organism:“Homo sapiens”]) AND [MeSH
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Fig. 3. Brain density map. This figure depicts the tri-occurrence based workflow for capturing pathways and events and mapping them to
the anatomy of brain regions.

Disease:“Alzheimer Disease”]) AND [Interaction])
AND [PTS:“Pathway”]. We used the Interaction dic-
tionary for capturing “qualifiers” of pathways such
as perturbed, increased or inhibited and manually
curated the list of resulting pathway – brain region
co-occurrences. Similarly, we used the following
query for retrieving articles pertaining to healthy
brain: “((([BRCT:“Hippocampus”]) AND [Organ-
ism:“Homo sapiens”]) NOT [MeSH Disease]) AND
[PTS:“Pathway”]”.

Drug mode of action analysis

We performed a tri-occurrence search using PTS,
a dictionary file from the HBP database along with
the MeSH ontology to find relevant pathways in the
literature in the context of AD and PD. Once we
identified the top ranking drugs for both disease sce-
narios, we searched for the mechanism of action of
those drugs in DrugBank. Although our initial analy-
sis was focused on AD, we did not find any drugs
with unclear mechanism of action. Therefore, we
shifted our focus to PD. We identified Rasagiline to

have an unclear mechanism of action. Consequently,
we searched SCAIView using the query “(([Drug
Names: “Rasagiline”]) AND [PTS]) AND [MeSH
Disease: “Parkinson Disease”]”. Figure 4 provides
a schematic representation of a drug and a pathway
dictionary, when combined can help in understand-
ing the mode of action of a drug and its effect on the
pathways resulting in diseases.

RESULTS

PTS system description and evaluation

The PTS consists of 6,596 classes, organized
in a hierarchical structure. Each class has been
annotated, whenever available, with additional infor-
mation such as definition, source identifiers, and
synonyms. Figure 5 illustrates the PTS root classes,
their organization and exemplary annotations inside
the Protégé environment. Figure 6 shows an overview
on the PTS class provenance and the contribution of
the integrated ontologies and terminologies. The PTS
file in OWL format can be freely accessed, browsed
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Fig. 4. Finding the mode of action through tri-occurrence approach. This figure is a cartoon representation of the drug, pathway and MeSH
disease dictionary. The figure explains how the combination of three dictionaries can help in understanding the effect of the drugs on pathways
resulting in different diseases.

Fig. 5. Representation of PTS in Protégé. This figure is a snapshot of the PTS, displayed in Protégé ontology editor, illustrating hierarchical
organization of the PTS in the left and annotation field of the JAK-STAT Pathway, as an example, in the right.

and downloaded through the BioPortal repository at
http://bioportal.bioontology.org/ontologies/PTS.

The performance of the PTS system was evaluated
as described in the Methods section. For abstracts, the
evaluation resulted in a recall of 0.83, a precision of

0.83, and an F-score of 0.83. These values are accept-
ably high for the system to be used for applications
based on PubMed abstracts. For full texts, recall was
0.8, precision 0.63, and F-score 0.71. The overall IAA
rate was at a satisfactory level of 81.51% (74.58%

http://bioportal.bioontology.org/ontologies/PTS
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Fig. 6. Top: Provenance of PTS classes. The figure shows the contribution of the integrated ontologies and terminologies to the PTS. 45%
of classes come from INOH, 27% from the Pathway Ontology, 18% come from text mining, and 10% from pathway databases. Bottom:
Number of classes in the PTS and its contributing ontologies/terminologies, split up into pathway and event classes. After merging and
re-organizing classes under their pathway and event parent classes, the PTS consists of 3,310 pathways and 3,286 events. Please note that
the Pathway dictionary already includes Pathway Ontology classes, classes from text mining and public databases and is an interim step
towards the PTS.

for “Event” classes versus 90.21% for “Pathway”
classes). For comparison, our separate evaluation of
the Pathway Ontology integrated with pathway men-
tions from public databases and text mining alone
(i.e., without our integration in the PTS and INOH,
thus without any events that participate in the path-
ways) resulted in an F-score of 0.76 (recall: 0.74,
precision: 0.77).

Applications of the PTS system

Mapping cellular pathways to the anatomy
of human brain

Query of the literature for cellular pathways rel-
evant to the brain anatomy in both healthy and
AD conditions, as described in the Methods sec-
tion, resulted in retrieval of 209 documents for AD
and 122 documents for healthy state, respectively

(last accessed as of August 18, 2015). Out of the
209 documents, 39 documents contained informa-
tion about the mode of regulatory pathways. The
extracted documents were further manually curated
for relevant pathway – brain region co-occurrences
for both healthy and disease states. The results are
summarized in Tables 1 and 2. Table 1 represents
evidence supporting pathway-brain associations in
healthy state (6 associations) whereas Table 2 rep-
resents similar associations for the disease state plus
the type of pathway perturbations under the disease
condition (16 associations).

Following the comparative analysis of cellular
pathways associated to healthy and diseased brain
cells and regions, we tried to visualize the obtained
results in association with brain regions. Therefore,
we made use of the TVB environment [50]. Figure 7
shows the BRCO brain regions and cell types together
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with their mapped PTS pathways uploaded in the
TVB tool. A mapping from the TVB brain regions
to the BRCO brain regions empowers the integra-
tion of the latter into a TVB project. Please note that
the hierarchical structure reflects part-of or located-in
(not is-a) relationships in many cases. Figure 8 illus-
trates pathways in the diseased brain with their state
of perturbation as indicated by arrows based on the
“interaction” column from Table 2.

Mechanistic analysis of pathways targeted
by drugs

During drug discovery and development, knowing
which disease-related pathways are to be modified by
the candidate drug is the key for successful efficacy
and safety outcomes. Despite this, it is surprising that
the mechanism of action for 18% of FDA-approved
drugs is not clear [51]. On one hand, well-established
drug databases such as DrugBank do not provide
sufficient information about the mechanistic inter-
ference of drugs with their targeted pathways, and,

Table 1
Overview of brain-specific cells and regions associated with cel-
lular pathways in the healthy human brain. Each association is
supported by a reference to PubMed identifier of the published

evidence

Brain Region Pathway PMID

Hippocampus PKA signaling 21483429
Hippocampus Neuronal pathway 24655332
Hippocampus Long-term potentiation 1350592
Hippocampus CA3 Long-term potentiation 19596521

pyramidal cell
Dentate gyrus Glutamatergic pathways 21035522
Cornu ammonis Glutamatergic pathways 21035522

on the other hand, information on the mode of
action of drugs is often buried under the exponen-
tially growing number of publications. The following
proof-of-concept application demonstrates the poten-
tial use of the PTS system to extract relevant pieces
of evidence from the literature that unravel the mode
of action of the drug Rasagiline, which is a top sell-
ing drug prescribed for PD and does not have a clear
mode of action reported in DrugBank.

The existing information in DrugBank suggests
that this drug exerts an inhibitory effect on the MAO-
B target protein, which leads to increased dopamine
levels and enhanced dopaminergic activity in striatum
(Fig. 9). However, the precise molecular mechanism
behind this effect is unclear. In order to assemble rel-
evant publications for pathways involved in the mode
of action of this drug, we retrieved 81 relevant articles
using the query mentioned in the Methods section that
report substantial experimental evidence on the mode
of action of Rasagiline. As illustrated in Fig. 10, we
were able to considerably increase the resolution of
pathway information describing the mode-of-action
of Rasagiline when compared to Fig. 9. Neuronal
death (apoptosis) underlies many neurodegenerative
diseases such as PD and AD, which is triggered
by a couple of perturbations, particularly in mito-
chondrial functioning [52]. The monoamine oxidases
are known to be involved in the process of apop-
totic signaling in mitochondria. According to the
improved pathway model in Fig. 10, monoamine oxi-
dase A (MAO-A) induces neural apoptosis by binding
to a dopaminergic neurotoxin while monoamine
oxidase B (MAO-B) produces hydrogen peroxide
by oxidizing dopamine in brain, which results in

Table 2
Overview of brain-specific cells and regions associated with cellular pathways in the Alzheimer’s disease state. Each association is supported

by a reference to PubMed identifier of the published evidence

Brain Region Pathway Interaction PMID

Hippocampus CA Pyramidal Cell Mitochondrial Biogenesis Pathway Disrupted 24448779
Hippocampus Energy Metabolism Reduced 9689449
Hippocampal Neurons Nogo-A to Nogo-66 receptor (NgR)Pathway Overexpressed 22139298
Superior Temporal Cortex Glucose Metabolism Diminished 1719135
Hippocampus Protein phosphorylation Associated 21515431
Hippocampus Leptin Signaling Decreases 23383396
Hippocampus Glucose Metabolism Decreases 23383396
Hippocampus PI3K/Mtor Pathway Decreases 23383396
Hippocampus JAK/STAT Pathway Decreases 23383396
Hippocampus ERK Pathway Decreases 23383396
Hippocampus p38 MAPK pathway Significant Increase 11677259
Hippocampal Neurons APP Processing Increased neuritic “branching” 10723071
CA3 Tau Phosphorylation Tau aggregation 21677375
Hippocampus Oxidative stress pathway Induces 20863531
Hippocampal neurons Endocytosis pathway Downregulation of flotillin-2 18337418
Hippocampal formation Glutamatergic pathway Increase in GluR1 and GluR2/3 8773259



A. Iyappan et al. / Towards a Pathway Inventory of the Human Brain for Modeling Disease Mechanisms 1353

Fig. 7. Visualization of the BRCO brain regions and cells together with the PTS pathways in the TVB’s Brain Activity Visualizer. Note that
the hierarchy of terms reflects both is-a and located-in or part-of relationships.

Fig. 8. Cellular pathways active in AD brain, visualized using TVB’s Brain Activity Visualizer. Visualization of altered cellular pathways
in the affected hippocampal (yellow) and superior temporal (blue) cortices in AD brain. Arrows denote upregulation (↑) or downregulation
(↓) of pathways under disease condition in these brain regions.
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Fig. 9. Representation of mode of action of Rasagiline from DrugBank. A cartoon version of the description provided in the DrugBank for
the mode of action of Rasagiline, a top-selling Parkinsonian drug.

Fig. 10. Representation of mechanistic inference of mode of action of Rasagiline with neurodegenerative processes. The processes colored
in red summarize the mechanistic role of MAO genes in neurodegeneration whereas those in green explain how Rasagiline mechanistically
interferes with neurodegenerative processes in PD.

oxidative damage to neurons in PD. Rasagiline and
other MAO-B inhibitors prevent the apoptotic cas-
cade by inducing genes such as bcl-2 and glial
cell derived neurotrophic factor [53]. The Rasagi-
line effect is primarily mediated by the suppression
of the cell death cascade initiated by pro-apoptotic
mitochondrial proteins. Furthermore, the bind-
ing of Rasagiline with propargylamine derivatives

protects mitochondrial viability. This association
causes the activation of neurotrophic factors such
as Brain derived neurotrophic factor (BDNF) and
Growth derived neurotrophic factor (GDNF), which
further activate nuclear factor kappa B (NF-�B),
P3K and PKC/MAPK pathways, leading to reduced
apoptosis and increased neuroprotective effects
[54].
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Discovery of pathway knowledge
by fingerprinting patents

Patents are major sources of novel research find-
ings and they contain rich information on new data
and innovative technologies so that they have been
previously exploited for analysis of technological
change impact on informatics advances [55], extrac-
tion of chemical interactions [56], and identification
of competitors information for drug discovery and
development [57]. Here, we show that the PTS lexi-
con in combination with our fingerprinting method
can be successfully applied to mining patents for
cellular pathways that have been reported in the
context of AD and their corresponding genes and
drugs.

Using the similarity matrix described in the Meth-
ods section, we selected those patents with high
dissimilarity scores (i.e., patents that contain pathway
information other than the two well-known pathways
“APP processing” and “Amyloidogenic pathway”) so
that we could identify potentially novel, less known
pathways that are linked to a gene or drug action
in the context of AD. As a result, we were able
to retrieve 22 pathway-gene/drug co-mentions from
three patents, respectively. Out of the 22 pathway-
gene co-mentions, there were 6 pathways with
gene and drug co-mentions, namely malate-aspartate
shuttle, Glucuronidation, Ubiquitin mediated prote-
olysis, Homeostasis, Calcium signaling pathway, and
Acetylcholine signaling pathway (Table 3). These
pathways have been less investigated in the context
of AD; for example, we found only one publication
(PMID: 25766789 published in 2015) reporting on a
potential role for malate-aspartate shuttle pathway in
AD. Similarly, for the role of NGF in acetylcholine
signaling pathway under AD conditions, we found
only one publication that explicitly relates NGF activ-
ity to acetylcholine (PMIDs: 24948063).

Qualitative pathway analysis versus quantitative
pathway enrichment

Current pathway analysis methods, including
GSEA, provide an overview of pathways for which
differentially expressed genes are enriched. How-
ever, the biological interpretation of expression data
does often not go beyond pathway identification
at an abstract level so that further details on how
these individual genes contribute to tissue-specific
perturbed signaling under disease condition remains
unclear. In this scenario, our aim is to demonstrate
how a knowledge-based pathway analysis approach
compared to the popular statistically driven GSEA
method brings more biological context and infor-
mation resolution to mechanistic interpretation of
biological data. We used the work of [58] who ana-
lyzed differentially expressed genes in various brain
regions of AD subjects. Accordingly, the authors
report the following pathways and processes as top
hits for expressed genes in entorhinal cortex (EC)
and hippocampus (HIP): Cellular physiological pro-
cess (EC & HIP), transport (EC), cellular process
(EC), synaptic transmission (EC), intracellular trans-
port (HIP), establishment of cellular localization
(HIP), cellular localization (HIP), and metabolism
(HIP). We picked the top 30 genes from their list
of statistically significant genes for EC and HIP
regions, and performed both, GSEA analysis and
PTS-based literature analysis. GSEA results indi-
cated that differentially expressed genes in EC were
statistically enriched for the Neuroactive ligand-
receptor interaction pathway with only 4 genes in
overlap and in HIP for the Neurotransmitter release
cycle pathway with 5 genes in overlap. In con-
trast, our PTS-based search in the literature led to
identification of specific pathways for 9 genes from
the EC list and 8 genes from the HIP list. These
results are summarized in Table 4 and supported by

Table 3
Unique pathway-gene/drug co-mentions from patent fingerprinting

Patient ID Pathway Gene Drug

US20100279943 Malate aspartate shuttle MDH1
US20100279943 Malate aspartate shuttle SOD1
US20110130392 Glucuronidation N-acetylcysteine
US20110130392 Glucuronidation UGT1A7
US20110130392 Glucuronidation UGT1A7
US20110130392 Glucuronidation UGT1A10
WO2013004527A1 Ubiquitin-mediated proteolysis IDE
WO2009133142A1 Homeostasis ATP2B1
WO2009133142A1 Calcium signaling pathway APP
WO2009012571A1 Acetylcholine signaling pathway NGF
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Table 4
Gene expression analysis using PTS

Brain Region Differentially Expressed Genes PTS Results

EC ITPKB (upregulated) Neuronal cell apoptosis, APP processing pathway (PMID: 24401760); Calcium
signaling pathway (PMID: 16257224)

EC GRIN1 (downregulated) Long-term potentiation (PMID: 24858312)
EC ALDOA (downregulated) Glucose metabolism (PMID: 20866111)
EC G6PD (downregulated) Pentose phosphate pathway (PMIDs: 10510282; 10392540)
EC CHRM1 (downregulated) APP processing pathway (PMID: 20335454; 11193170; 19906975)
EC EEF1A2 (downregulated) Glucose metabolism (PMID: 16782585)
EC NTSR2 (downregulated) Energy homeostasis (PMID: 20858966)
EC MIF (downregulated) Extracellular signal-regulated kinase-1/2 MAP kinases pathway (PMID: 18786268)
EC SRSF3 (downregulated) Cholesterol homeostasis (PMID: 20232416)
HIP THRA (upregulated) Amyloidogenic pathway (PMID: 20403092)
HIP MAGI2 (upregulated) Protein degradation pathway (PMID: 19668339)
HIP HRK (upregulated) Neuronal cell death (PMID: 24420784, 16524368)
HIP MAP1B (upregulated) Neuronal death pathway (PMID: 16234245, 12376528)
HIP RTN3 (downregulated) APP processing pathway (PMID: 17032350)
HIP FABP3 (downregulated) Fatty acid metabolism and lipid transport (PMID: 24088526)
HIP SNAP25 (downregulated) Neurotransmitter secretion (PMID: 11923424, 18194215, 11515747)
HIP HSPA8 (downregulated) Chaperone mediated autophagy pathway (PMID: 20697033, 22277499)

publication identifiers as references to the corre-
sponding evidence.

These results indicate that the PTS-based path-
way analysis provides context-sensitive information
on involvement of differentially expressed genes in
various signaling pathways underlying the disease
mechanism.

DISCUSSION

Physiological pathways act as key players in under-
standing the etiology of disease. Although several
databases host information of such pathways, their
content is either devoid of biological context (e.g.,
cell type- or tissue-specific activity, disease-specific
alterations) or biased toward a particular disease
condition (e.g., cancer). Consequently, when inves-
tigating pathways perturbed under brain disorders,
particularly neurodegenerative diseases, researchers
often face difficulties interpreting their data in the
right context. Thus, biomedical literature is an
alternative resource to obtain context-sensitive infor-
mation of such pathways and their components. But
finding key pathway mechanisms in the literature is
often challenging due to the unstructured nature of
textual information. Moreover, many pathways are
not explicitly mentioned as ‘pathway’ in the litera-
ture but as biological processes or chains of events.
This prompted us to address this challenge by adding
cellular events to the PTS, which provides a pow-
erful lexicon for identification of these entities in
the text. Beside various types of pathways that have
been classified under different categories, biological

events such as cellular, molecular and physiological
events have been also included to ensure the coverage
of all possible cellular or molecular processes that are
not explicitly considered as pathways in the literature
but represent similar chains of interactions. The func-
tional evaluation of the PTS lexicon indicated that
its performance for detecting pathways and events in
publications was good enough to be used for infor-
mation retrieval and extraction. The reasonably high
values of F-scores verify that the PTS lexicon has a
good coverage of pathway-related terms, which can
be captured with a good precision in the text. We are
aware that using a combination of dictionaries as we
did in our analyses (e.g., the PTS together with the
BRCO) lowers the combined F-score. We suppose,
however, that the co-occurrence of important entities
will usually be found in more than one abstract, so
recall will not be affected so much for the important
term combinations.

After evaluation, the PTS was applied to mining
the literature including biomedical publications and
patents. We believe that the first step toward systems
analysis of disease data is to set the cellular or tis-
sue context by which such data become biologically
meaningful. To the best of our knowledge, there is
no reference compendium or inventory of pathways
specific to human brain anatomic regions neither for
normal nor for disease conditions. The importance
of a pathway inventory for the normal brain lies in
the fact that any conclusions drawn from a disease
model without comparison with a baseline, normal
functioning model is inconclusive. Hence, genera-
tion of a brain pathway map for both healthy and
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diseased states provided us with an opportunity to
perform a comparative analysis. We observed that
out of several pathways that are active in the healthy
state, glutamatergic pathway has been reported to
be perturbed in the disease state. Glutamatergic
pathways are main excitatory neurotransmitters; par-
ticularly NMDA glutamate receptors are reported
to be involved in regulating hippocampal plasticity.
These receptors are sites of constant transmission of
Ca2+ and Mg2+ ions, which help in maintaining the
brain plasticity. However, in the disease state, glu-
tamate receptors induce constant activation of the
NMDA receptor resulting in continuous influx of
Ca2+ ions, and ultimately neuronal injury and death
[59].

In the disease state, our results indicate that a
set of different pathways are reported to be per-
turbed, which mainly affect signaling and energetics
at hippocampus. For instance, the leptin signaling
pathway has been found to play a role in amyloid-
� accumulation in AD. In fact, the leptin signaling
pathway functions by binding the leptin receptor
and this binding modulates other pathways such as
JAK/STAT, ERK, and PI3K/Akt/mTOR pathways,
thereby downregulating amyloid-� production and
tau phosphorylation [60]. It has been shown that high
levels of leptin in blood is associated with a lower
risk of AD, which is in line with the downregula-
tion of leptin signaling pathway in the hippocampus
of AD brains. Moreover, [61] have identified lep-
tin signaling pathway at the core of 7 converging
hormone-signaling pathways that are perturbed under
dementia and functionally validated its role. Accord-
ingly, leptin signaling pathway appears to be a
candidate target for interfering with the disease pro-
gression.

In contrast to the above scenario, the process of
drug discovery often starts with screening for lead
compounds and thereby mechanisms behind target
candidates remain unknown. Thus, prior knowledge
about mechanistic action of the candidate drug and
its interference with possible molecular pathways
that regulate disease-related processes and outcomes
becomes highly valuable. Collecting, curating, and
modeling this knowledge helps to understand drug
mode-of-action and to support existing hypotheses
on the mode-of-action with a high-resolution causal
model. As we demonstrated in the case of Rasagi-
line, the poor annotation of mode-of-action for drugs
in public databases such as DrugBank can be sig-
nificantly improved when contextual information is
added to the current understanding of mechanism of

action. This proof-of-concept demonstration implies
that the wealth of hidden knowledge in the literature
can be systematically collected and modeled using
the PTS lexicon to shed light on mechanistic aspects
of targeted pathways and biological processes.

Indeed, the value of systematic collection and mod-
eling of the pathway knowledge in the literature can
go beyond re-construction of known pathways from
the scientific publications so that the aim will be to
perform knowledge discovery in patents for those dis-
ease pathways that are less known to the public. The
idea behind this notion is that novel findings reported
in patents may serve as sources of information for
filling the gaps in our understanding about disease
mechanism. As demonstrated by application of the
PTS to patents relevant to AD, there is a chance to
find pathways and mechanistic information in patents
that can provide new insights into the underlying
pathophysiology. For instance, in our study it was
interesting to note that apart from acetylcholine sig-
naling pathway and ubiquitin mediated proteolysis,
other pathways such as malate aspartate shuttle and
glucouronidation pathway are not widely reported
in association with AD. In fact, malate dehydroge-
nase (MDH) plays a key role in the malate/aspartate
shuttle by catalyzing the interconversion of malate
and oxaloacetate in cytoplasm and mitochondria [62].
In case of AD, the catalytic enzyme MDH forms
complex with protein mutants such as SOD1 and
MDH1, which are associated with neurodegenera-
tive diseases. When we tried to support our findings
with published data, we only found one recently pub-
lished article that indirectly addressed the role of the
malate aspartate shuttle in AD [63]. These results sug-
gest that the PTS-based fingerprinting of patents in
a systematic manner provides an opportunity to find
new directions in the AD research and get away from
heavily researched genes and pathways. We have pre-
viously shown that, on the basis of chronological
analysis of literature, AD research is biased to a hand-
ful of genes and pathways such as MAPT and the APP
processing pathway [64].

Currently a major limitation in neurodegeneration
research is the lack of an inventory or compendium of
well-curated, context-sensitive, and disease-specific
signaling pathway models that can be used for the
interpretation of molecular data such as gene expres-
sion data. In the absence of such an inventory, there is
always the danger of data misinterpretation and bias
towards predominant cancer mechanisms when using
existing pathway information in public repositories.
Moreover, our knowledge about pathways in the
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brain is limited and a systematic comparison of gene
expression data combined with GSEA and the path-
way inventory—as demonstrated earlier at a smaller
scale—should give us a clue on how much informa-
tion we have or lack about signaling pathways in the
human brain. Indeed, the caveat of statistical meth-
ods such as GSEA is identification of pathways in a
very abstract level from a combination of deregulated
genes, which may under-represent mechanistic signa-
tures (i.e., disease-specific processes); for instance,
we have been able to detect under-represented sig-
natures of hormone signaling in pathways enriched
for dementia-related proteins. In contrast, annotation
of pathways to individual expressed genes not only
clearly links genes to their specific role in the dis-
ease context (e.g., in hippocampus the gene HRK is
involved in the neuronal cell death pathway) but also
correlates expression levels of those genes to their
corresponding pathways (e.g., HRK is upregulated
in hippocampus and triggers the neuronal cell death
pathway).

The advantage of having such an inventory is
manifold: It represents our current knowledge about
known signaling pathways in various regions of the
brain; it can serve as a baseline for connecting dots
(i.e., unknown parts) between signaling pathways
using signals from experimental data such as gene
expression data in a certain brain region or cell type
for which no prior knowledge exists in the liter-
ature; it provides curators of pathway information
with the possibility to quickly find detailed infor-
mation in the literature for construction of pathway
cartoons and their deposition into pathway databases;
and finally, it prepares the ground for mechanistic,
cause-and-effect representation of pathways that go
beyond static, cartoon-like representation. Presently,
signaling pathways and cellular events are mainly
represented in cartoons and drawings so that they are
not much interoperable and amenable to computa-
tional analysis (e.g., reasoning and simulation). As
the launch of several initiatives such as the Human
Connectome Project [65] in the US and AETION-
OMY as well as EMIF-AD [66] projects in EU
indicate, research on brain and neurodegenerative
diseases is moving toward integrative analysis of
structural, functional, and clinical aspects of the brain
system and its disorders. To this end, we see a need
for a compendium that maps signaling pathways to
their underlying anatomical structure of brain. Such
a reference map can have important implications for
bridging the gap between clinical outcomes (e.g.,
measured by imaging technologies) and molecular

data (e.g., OMICs data). We have undertaken the
effort to use the pathway mining strategy described
in this work for retrieving and extracting signaling
information from biomedical text and consolidating
this information for possible future use in cause-and-
effect network models that are computer-processable.
Moreover, we plan to build a dedicated database
for depositing these pathway models and propose a
new paradigm in enrichment analysis of gene sets
or other sets of biological entities using these causal
models.
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SUMMARY 
 
Biological knowledge is fundamentally complicated, and over time, a high volume 

of correspondingly complex and highly heterogeneous data has been generated 

using high-throughput technologies. The use of ontologies and terminologies is 

prevalent to a greater extent in the life sciences domain as these can be used for 

collecting, organizing and storing the vast volume of biological data in a 

standardized manner. The advantages of using biomedical ontologies are: (i) it 

enables easy interoperability of resources between linked databases, (ii) an 

efficient search and query of different resources are possible, (iii) it allows for 

context-specific information retrieval, and (iv) automatic reasoning of data can be 

performed. 

However, with the growing number of molecular databases, one major challenge 

for the ontology community is in the lack of semantic mapping from a database to 

an ontology. For instance, there are more than 170 pathway databases which vary 

widely in form and content; with the multiplicity of information stored in these 

databases concordant with a lack of quality check over them, raising simple 

questions often becomes a daunting task for researchers. Furthermore, there also 

exists a lack of order in the existing pathway ontologies, which motivated us to 

develop the pathway terminology system (PTS), which combines signaling 

pathways and biological events to ensure broad coverage of the entire pathway 

knowledge domain. We have also demonstrated the usability of this system to 

answer complex questions in any context, especially in the field of NDD. 

Molecular pathways consist of the interactions of bimolecular entities triggering a 

flow of chemical chain-like reactions for regulating or disregarding a biological 

process. Hence, pathways become an essential target for monitoring disease 
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progression and for optimized drug treatment. Moreover, they form an integral 

part of complex, multi-scale modeling approaches, mainly due to the full range of 

functionality of specific chemical reactions where the effect of genetic and 

proteomic alterations can forcibly alter metabolic and biochemical reactions, and 

trespassing of the blood-brain barrier is rendered possible. Additionally, 

incorporation of context-specific pathway models is highly relevant for gaining 

more profound insight into bridging the molecular underpinnings of biological 

processes with significant impact on clinical modalities of the brain. 
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 CHAPTER 3 
Mechanistic interpretation of 

clinical biomarkers in AD 
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INTRODUCTION 
 

The multimodality of AD is complex and time-dependent, and therefore it has 

been nearly impossible to accurately diagnose the occurrence of AD with the 

present  genetic, molecular and cellular biomarkers. This is mainly because these 

biomarkers often are not indicators of the actual state of the disease, but instead, 

they signify a pathological process (which does not necessarily pinpoint to the 

actual state of disease progression). 

 

The significance of clinical biomarkers for accurate decision-making in clinical 

practice has gained considerable momentum in recent years mainly due to global 

big data initiatives such as ADNI and AIBL. Until recently, clinical readouts and 

behavioral assessments were confined to clinics and radiological labs for ethical 

reasons and lack of a reliable platform for enabling data sharing. Such landmark 

initiatives are primarily launched to address the longstanding problem of linking 

dynamic clinical outcomes of individual patients to static molecular observations 

to foster an enhanced understanding of the complex pathology of AD. 

 

This section focuses entirely on exploring the importance of imaging readouts and 

other clinical biomarkers, bringing order into clinical imaging readouts and the 

design of a state-of-the-art knowledge model. By integrating clinical biomarkers 

in a multi-scale computable model, understanding disease mechanisms at a 

molecular level can allow for accurate diagnosis and treatment of AD. 
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Introduction
Neurodegenerative disorders are often classified as a “multifactorial 

syndrome” as they share similarities between many genetic, clinical, 
psychological as well as environmental factors [1,2]. They are highly 
debilitating clinical conditions that result in progressive neuronal 
degeneration.  Alzheimer Disease (AD) in particular is characterized 
by progressive neuronal dysfunction and regular decline in cognition 
and behavior.  The cause of AD is broadly classified into two categories: 
sporadic and familial. The most common form of familial mutations 
is due to three major genes namely APP, PSEN1 and PSEN2 [3-5]. 
However, the sporadic form of AD is a complex amalgamation of genetic 
polymorphisms, environment as well as social lifestyle [6-8]. Although 
it has been decades since the search for novel biomarkers commenced, 
there is still no proper diagnosis and treatment for AD [9-11]. Barrett 
and Hunter’s   team report that the lack of efficient treatment for AD 
could be primarily due to a sort of careless misdiagnosis of the disease 
by physicians [12,13]. Such errors could be an act of lack of attention 
in routine medical examinations.  The existing health care treatment 
for AD is symptomatic relief [14,15]. However, it is widely disputed 
that the altering neurodegenerative patterns actually commence much 
earlier than the actual clinical manifestation of the disease. Therefore, 
early detection would not only improve the diagnostic accuracy in the 
clinics but also aid clinicians to offer better and earlier treatment for 
cognitive and behavioral problems [16,17] as well as better quality of 
life and economic outcomes.

State-of-the-art brain imaging technologies provide high-resolution 
information of structural and functional alterations. Therefore, they 
offer unprecedented early diagnosis; they also provide the opportunity 
for regular monitoring of a progressive clinical condition such as AD. 
Furthermore, imaging techniques aid in tracing the transition between 
diagnostic states such as Mild Cognitive Impairment (MCI) and AD. 

Depending on brain complexity, imaging techniques reveal 
different dimensions of brain structure and function. They can be 
broadly classified into three groups namely [18,19]:

• Structural Neuroimaging 

• Functional Neuroimaging

• Molecular Neuroimaging

Structural neuroimaging
Magnetic Resonance Imaging (sMRI), Computed Tomography 

(CT) and Diffusion Tensor Imaging (DTI) are some of the prominent 
structural neuroimaging techniques. Structural MRI is widely used to 

examine the shape, size and structural alterations in the brain regions 
[20,21]. DTI is an advanced MR technique that helps in understanding 
structural connectivity between brain regions [22,23]. These techniques 
primarily help in observable indicators such as “tissue damage” or loss 
of brain regions as well as measurable indicators such as white or gray 
matter changes and morphological changes such as cortical thinning 
[24,25].  These indicators are collectively classified as neuroimaging 
biomarkers as they are quantitative tracers of the disease progression. 
Some important neuroimaging biomarkers are listed below:

Atrophy
Brain atrophy is one of the most prominent neuroimaging 

biomarker for AD.  Atrophy refers to the loss of nerves and tissue, 
which ultimately results in the shrinkage of the brain [26,27]. It 
has been previously estimated that whole brain atrophy affects 2% 
of AD patients while the rate of atrophy in normal ageing does not 
exceed beyond 0.7% per year [28].  According to Frisoni, et al., the 
earliest MRI based atrophic changes can be detected in entorhinal 
cortex, hippocampus and cingulate cortex resulting in early memory 
dysfunction [29,30].

Cortical thinning
Many histopathological studies have proposed that AD are often 

related to damage of specific cortical layers such as neocortex and 
entorhinal cortex [31,32]. The latest MRI techniques still are not capable 
of examining individual layers of the cortex. However, there are many 
semi-automated surface reconstruction tools such as FreeSurfer, 3D 
MPRAGE that aid in cortex examination [33-35].

Fractional anisotropy     
 DTI techniques tracts the water diffusion in various tissues which 

provide vital information. They help in measuring the structure of white 
matter as well as fiber connectivity within and across brain regions [36-
38]. Fractional anisotropy is a numerical measure of fiber integrity.  
This index is sensitive enough to detect the white matter degradation in 
aging and other neurodegenerative diseases [39-41] (Figure 1).
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Functional neuroimaging 
Functional neuroimaging techniques help in determining the 

severity of brain injury which reflects on the cognitive and behavioral 
changes amongst patients [42,43]. The most commonly used functional 
neuroimaging techniques include functional MRI, Positron Emission 
Tomography (PET), Single Photon Emission Computed Tomography 
(SPECT), Electroencephalography (EEG) and Transcranial Magnetic 
Simulation (TMS) [44,45] and MR Spectroscopy (MRS).

MRS is a widely used non-invasive imaging technique that helps in 
measuring the metabolites found in brain tissues. It also facilitates in 
measuring the chemical composition of tissues such as myo-inositol, 
choline, n-acetyl aspartate as well as choline.  The advanced MRS 
imaging techniques help in identifying patients much ahead of the 
clinical onset of AD [46,47].

Brain glucose metabolism
Recent advancements in functional imaging studies have 

contributed significantly to identification of patterns amongst patients, 
who are at the risk of developing AD [48,49]. The earliest PET imaging 
abased studies were used to detect altering glucose metabolic changes 
amongst patients who were at a genetic risk of developing AD [50-
52]. PET-based radioisotopes such as oxygen (015) aid in tracing 
changes in cerebral blood flow which are often caused due to increased 
neuronal activity [53-55]. Similarly, [18  F] fludeoxyglucose-positron 
emission tomography (FDG-PET) detects bilateral temporoparietal 
hypometabolism [56-58]. They have been widely used as a diagnostic 
differential biomarker discriminating between patients with AD 
dementia and vascular dementia [59,60]. Another radioisotope based 
biomarker that is widely used in diagnostic studies is C-labeled 
Pittsburgh Compound-B ([(11)C]PIB). The increased binding potential 
of PiB was found to be common amongst MCI patients whereas 
decreased FDG uptake was observed only with patients with AD, thus 
serving a crucial diagnostic biomarker [61,62] (Figure 2).

Perfusion
Imaging techniques such as SPECT and DTI enable early detection 

of hypoperfusion in the white matter and cortex [63,64]. Abnormal 
cerebral perfusion are clear indicators of diagnostic transition from 
MCI to AD [65,66]. Borroni and Chao et al., has demonstrated patterns 
of hypoperfusion in parietal, temporal and posterior cingulate cortex 
in all those patients who are progressing from MCI to AD [67,68]. 
Another study performed by Caroli et al., compared three diagnostic 
groups namely CN, MCI and AD. The outcome of this study reported 
that hippocampal hypoperfusion pattern was found across patients 
with amnestic MCI in transition to AD [69] (Figure 3).

Emerging combinatorial biomarkers for AD
Clinical neuroimaging biomarkers are useful resources for AD 

diagnosis. However, the characteristics of these imaging biomarkers are 
not yet adequate for diagnosis of patients at an individual level. This is 
largely due to the lack of longitudinal imaging data [70,71]. Combining 
known genetic biomarkers with imaging data could improve the 
prediction pattern across all patients [72-74]. Neuroimaging genetics is 
an emerging field in which quantitative phenotypic features from brain 
imaging are used as readout to inspect the role of genetic variation in 
brain function [75,76].

Large scale GWAS studies have contributed to the identification 
of many risk mutations associated with AD such as CLU, PICALM, 
BIN1, CR1 and so on [77-79]. These studies have created a substantial 
shift in the mundane AD detection through standard cognitive tests. Of 
all the above mentioned genes, CLU is the most significant gene used 
in combinatorial imaging analysis. The risk variant rs11136000 have 
been associated with reduction in hippocampal volume in patients with 
Late Onset Alzheimer Disease (LOAD) [80-82]. Apart from CLU, the 
risk variant rs541458 of PICALM was found to be associated with CSF 
Abeta 42 levels [83-85]. Similarly, large scale initiatives across the globe 
have already started investing in the direction of combining genetic 
and imaging derived biomarkers for better AD diagnosis (Table 1).  

Large scale initiatives on neuroimaging and genetics
Here, we summarize the various initiatives that are focusing on 

integrating multi-scale data such as imaging and genetics for efficient 
diagnosis and treatment.

ADNI
ADNI is considered as one of the biggest ongoing multicenter 

study for developing longitudinal clinical, imaging, genetic and 
neuropsychological biomarkers for early detection of AD. The initial 
phase (ADNI-1) study had the greatest enrollment of participants 
comprising of 400 early MCI subjects, 200 AD and 200 Controls. 
Owing to its success, the study was further extended into the next 

 

NIFT: Ventricular enlargement 

Figure 1. T13D MP-RAGE scan of structural neuroimaging. This figure illustrates the image 
scan of an AD patient with ventricular enlargement annotated using NIFT terminology.

  

NIFT: Glucose hypometabolism 

Figure 2. Functional Neuroimaging using FDG [18] PET. This figure represents an AD 
patient scan with excessive excessive glucose hypometabolism.

 

NIFT: Amyloid burden 

Figure 3. Molecular neuroimaging using [18F] AV 45 PET. This figure displays the amyloid 
burden in coronal, sagittal regions of AD patient.
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Study type Cohort Snps Imaging readouts Outcome

Voineskos, et al. [86] Philadelphia Neurodevelopmental cohort rs12148337 White matter fractional 
anisotropy

The mutation had a polygenic risk score with 
white matter FA in schizophrenic population

Louwersheimer, et al. [87] Amsterdam  Dementia Cohort rs2070045-G (SORL1) Hippocampal atrophy SORL1 SNP rs2070045-G allele was related 
to CSF-tau and hippocampal atrophy, 2 
endophenotype markers of AD, suggesting that 
SORL1 may be implicated in the downstream 
pathology in AD.

Benussi, et al. [88] Brescia Cohort Leu271LeufsX10 (PGRN) Multiple System Atrophy PGRN mutations were shown in familial FTLD, 
75% in Corticobasal syndrome

Morris, et al. [89] Cohort of 355 stroke survivors rs1799983, p.Asp298Glu Cerebral perfusion The presence of TT genotype increased risk of 
incident dementia compared with GG genotype; 
hazard ratio, 3.14 (95% confidence interval, 1.64-
5.99; p = 0.001). 

Schuur M, et al. [90] Dutch family based cohort rs1699102, rs3824968, 
rs2282649, rs1010159

Microbleeds The association of SORL1 with microbleeds 
suggests that the amyloid cascade is involved in 
the aetiology of microbleeds in populations with 
hypertension.

 Inkster, et al. [91] AD cohort rs10868366 Gray matter volume The greater effect size in AD patients also suggests 
that the GG genotype could be a risk factor for the 
expression of cognitive deficits in AD.

Lyall, et al. [92] Lothian Birth Cohort
rs10524523

Hippocampal volume

Assareh, et al. [93] Longitudinal Sydney Older Persons 
Study

rs4935774-T, rs2298813-G, 
rs1133174-G

Hippocampal atrophy The most common haplotype (H1), comprising 
rs4935774-T, rs2298813-G, and rs1133174-G 
alleles (T/G/G) was associated with whole brain 
atrophy in both males and females (p=0.012 & 
p=0.013; respectively). 

Oliveira-Filho, et al. [94] Boston Cohort
rs20417

White matter 
hyperintensity volume

 rs20417 polymorphism was associated with 
increased WMHv (P = .037),not cardioembolic 
stroke patients.

Table 1. Represents a sample of cohort-based studies done using combinations of biomarkers for early AD detection.

phase (ADNI-2) with additional 550 participants. This study aimed at 
developing a standardized protocol for data integration and collection 
for MRI, PET and CSF biomarkers in a global environment [95,96]. 
The outcome of this study produced interesting hypotheses which 
went beyond conventional understanding of the AD pathology.  One 
of the earlier studies demonstrated that image derived biomarkers 
such as “atrophy” and “hypometabolism” exhibited a pattern based on 
the disease progression and severity [97,98]. Many successive studies 
also demonstrated the importance of CSF biomarkers, PET based 
biomarkers as early indicators of pre-clinical AD [99-101]. Another 
sister initiative of ADNI is called ADNI Genetics Core, which provides 
the possibility for researchers to estimate the genetic alterations using 
imaging features for understanding disease progression over time 
[102-104].

The European Alzheimer’s disease Neuroimaging Initiative 
(E-ADNI)

The overall goal of the E-ADNI initiative was to apply the 
standardized protocol of collecting images, genetics, and clinical as 
well as psychological data by adapting the European Centers of the 
Alzheimer ’s disease Consortium (EADC). This initiative was propelled 
to encourage the academic EADC centers to adopt the ADNI protocol 
for enrolling participants [105,106].

The Italian Alzheimer’s Disease Neuroimaging Initiative 
(I-ADNI)

The I-ADNI initiative was launched in succession to US-ADNI 
study for validating the acquisition and processing protocol of 
structural MRI scans obtained from different clinics across Italy by 
following the procedure from the original ADNI study [107,108]. 

The Australian Imaging Biomarkers and Lifestyle Study of 
Aging (AIBL)

The AIBL (https://aibl.csiro.au/about/) initiative consists of 1,200 
Australian participants who were longitudinally assessed for over 
5 years. This study was launched in 2006 to identify biomarkers, 
cognitive assessments, genotype, biomarkers such as APOE, social and 
health factors for monitoring AD progression and early AD treatment. 
The AIBL initiative has given rise to lot of insights such as AD patients 
are prone to be more anemic than patients with MCI [109,110]. 
Participants enrolled in this initiative are continuously assessed every 
18 months for any clinical indication of the disease.

EPAD
EPAD (http://ep-ad.org/) stands for European Prevention of 

Alzheimer’s Dementia Consortium. It is a major European initiative 
for developing systematic and flexible approaches to clinical trials of 
drugs for preventing Alzheimer’s dementia. The adaptive trial design 
in EPAD promises a faster and low cost drug production in the market. 
The imaging protocol of EPAD is adapted from the AMYPAD initiative 
which brings together the academic and private research groups for 
PET based studies to explore amyloid-beta as a therapeutic marker for 
AD [111,112].

AMYPAD
AMYPAD (http://www.amypad.eu/) stands for Amyloid Imaging 

to Prevent AD. This project was initiated to investigate the beta-
amyloid biology through PET scans from pre-symptomatic population 
as a diagnostic and therapeutic biomarker for AD. The AMYPAD 
project is funded by the Innovative Medicine Initiative (IMI) program 



Iyappan A (2017)  Complexity across scales: a walkthrough to linking neuro-imaging readouts to molecular processes

J Syst Integr Neurosci, 2017        doi: 10.15761/JSIN.1000151  Volume 3(2): 4-11 

and will run initially over 5 years. In the course of this project, patients 
susceptible to AD will be scanned for beta-amyloid through PET 
imaging. The initiative aims at improving the diagnostic standards 
for AD treatment and prevention (http://www.alzheimer-europe.org/
News/EU-projects/Thursday-17-December-2015-AMYPAD-project-
progresses-to-second-stage-of-applications-for-IMI2-Call-5).

PPMI
The Parkinson’s Progressive Markers Initiative (PPMI) (http://

www.ppmi-info.org/) is an observational longitudinal clinical study 
designed for examining patients with Parkinson’s Disease (PD), healthy 
controls and also participants who have higher chances of developing 
PD. This study comprises of 1000 participants examined regularly over 
8 years and the patients are enrolled in 33 clinical sites in the US, in 
Europe, and in Asia. The PPMI data resource comprises of clinical and 
behavioral assessments, imaging data and biospecimen such as CSF, 
DNA, RNA, plasma, urine and cell line samples. PPMI is funded by 
the Michael J Fox Foundation in collaboration with 18 biotech and 
pharmaceutical companies [113].

ENIGMA
ENIGMA (http://enigma.ini.usc.edu/) stands for Enhancing 

NeuroImaging Genetics Through Meta-Analysis.  This consortium is 
an effort towards bringing researchers from diverse domains such as 
imaging genomics, neurology and psychiatry together to understand 
brain structure and function through MRI, DTI, fMRI, genetic as 
well as patient data. This study has so far analyzed 12,826 subjects. 
The preliminary project of ENIGMA was to identify common genetic 
variants in hippocampal or intracranial volume using Genome Wide 
Association Studies (GWAS). ENIGMA2 was the next project to 
explore genetic variants associated with subcortical volumes and 
ENIGMA-DTI was designed to explore genetic variants associated with 
white matter microstructures. Apart from meta-analysis based studies, 
the consortia are also focusing on understanding, how psychiatric 
conditions such as schizophrenia, bipolar disorder, depression affect 
brain functionality [114,115].

NeuroImage
NeuroImage (http://www.neuroimage.nl/) is an International 

Multiscale Attention-Deficit/Hyperactivity Disorder (ADHD) 
Genetics Initiative (IMAGE) funded by the National Institute of Mental 
Health. The goal of the study is to gather and analyze endophenotypic, 
phenotypic and genetic information about ADHD. This study is 
based on a collection of 5,578 subjects from 8 European countries.  
In the course of this project, structural and functional MRI scans are 
performed on patients, along with neuropsychological assessments and 
GWAS analysis in order to detect functional abnormalities underlying 
ADHD [116,117].

Initiatives such as ADNI and PPMI have largely invested in 
systematically harvesting genetic and imaging data. Studies like ADNI 
and PPMI form the basis for the association of imaging readouts 
with genetic variation information and may facilitate the generation 
of hypotheses about mechanistic links between genes and imaging 
features.

Mining links between neuroimaging readouts and mo-
lecular processes from literature

High-throughput imaging technologies have been employed to 
understand the molecular mechanisms underlying clinical conditions. 

Such efforts have led to the identification of novel biomarkers for 
all disease domains, especially AD [118,119]. However, the rapid 
growth of the literature around these combinatorial studies has made 
it increasingly difficult to aggregate and mine the reported findings 
[120]. Obviously, new technologies enabling automated text processing 
(“text-mining”) may help to retrieve relevant documents and to extract 
relevant knowledge from text. 

Ontologies and terminologies
One of the most efficient ways to address the challenge of 

unstructured information mining is with the efficient usage of ontologies 
and controlled terminologies. Ontologies are formal representations of 
knowledge that can represent entire research domains. They are helpful 
when concepts need to be shared across research communities in an 
unambiguous fashion. This is very crucial as it enables different research 
groups to communicate with each other without misinterpretation 
of the biological context [121-123]. Ontologies do also facilitate the 
exchange of data and knowledge between machines; they are in fact 
readable by both, human experts and machines. When transformed 
into terminologies (dictionaries), they can readily be integrated into 
text-mining systems and are very useful for information extraction and 
knowledge representation. Furthermore, ontologies bear the potential 
to enable automated reasoning over knowledge representations 
[124,125].

Existing ontologies in the field of neuroimaging
Similar to other biological domains, the field of neuroimaging 

research has advanced semantically by generating various 
terminologies and ontologies in the past. Some of the more 
widely recognized neuroimaging ontologies are listed below: 

Quantitative Imaging Biomarker Ontology (QIBO)
QIBO ontology was developed to standardize quantitative imaging 

biomarkers for better therapeutic intervention. This ontology consists 
of 488 terms and they consist of classes such as imaging agent, imaging 
instrument or biological intervention. QIBO represents concepts 
across several fields, including imaging physics and biology [126].

Magnetic Resonance Imaging Ontology (MRIO)
This ontology captures all concepts needed to describe the outcome 

of MRI scans. It has been designed to overcome the heterogeneity in 
MRI readouts. The authors mainly capture measured data coming 
from T1, T2, tissue as well as other factors, such as temperature. The 
MRIO ontology focusses mainly on two MRI representations namely 
MRI simulators and DICOM images and conceptualize all possible 
terms that can be observed using these scanned images [127,128].

NeuroLog
The NeuroLog consortium was established in the year 2006 for 

sharing and reusing data and tools for neuroimaging studies. This 
software architecture aids in efficient integration of neuroimaging data 
and tools from various neuroimaging research centers. This consortium 
also takes charge of the autonomous data management from each 
center to maintain the confidentiality of the neuroimaging data.  
Furthermore, the usage of semantically annotated tools inbuilt in the 
system architecture provides better standardization of neuroimaging 
datasets and therefore offers better accessibility through the federated 
schema based ontology [129,130].
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NeuroImage Feature Terminology (NIFT) 
Although there are so many ontologies established in the area of 

neuro-imaging, there is still a lack of a terminology which facilitates a 
systematic representation and retrieval of measured indices with high 
relevance for neurodegenerative diseases. All the existing ontologies 
represent what the imaging scan capture, but they do not contain 
concepts that link imaging readouts to disease pathology. Motivated 
by the apparent need for such a terminology, we have developed 
NIFT, the “neuro-image feature terminology”. NIFT represents a wide 
spectrum of terms linked to radiological, neuropsychological as well 
as measured indices highly relevant to neurodegenerative diseases (e.g. 
AD and PD) [131]. The NIFT terminology comprises highly generic 
concepts describing common neuroimaging features, but at the same 
time it is very specific and represents disease-centric pathological 
measures used in imaging scans in the domain of Alzheimer ’s disease 
and Parkinsonism. NIFT can act as a potential resource to capture 
molecular as well as clinical readouts, which are crucial in bridging 
these two domains as well as retrieving relevant documents which can 
be further used in a multi-layered disease models. As such, NIFT is well 
suited to support the identification of novel mechanisms underlying 
the etiology of AD and PD.

Retrieval of relevant publications using the nift 
terminology

The main purpose for developing ontologies and terminologies 
is to retrieve relevant publications and automatically extract relevant 
information from the literature. To enable specific retrieval and 
information extraction in the imaging domain, we integrated the 
NIFT terminology into our in-house text-mining system SCAIView 
[132,133]. SCAIView was developed at Fraunhofer SCAI to enable 
biologists and clinical researchers to perform semantic search and 
information extraction from the scientific literature. A free version of 
this literature mining environment, SCAIView academia, allows free 
access to the semantically annotated PubMed abstracts. For PubMed 
Central (PMC) full text publications, SCAIView allows a full-text 
search as well. We have integrated NIFT in SCAIView and used the 
system to systematically retrieve relevant documents containing useful 
information on imaging readouts linked to molecular entities. The 
resulting literature corpus was then used for mechanistic modeling 
purposes.

Mechanistic modeling of neuroimaging indices
We wanted to understand the significance of a measured index 

obtained from imaging techniques and their association with clinical 
tests to improve the prediction an underlying neurodegenerative 
disease, in this case, AD. For this, we performed an optimized search 
query using our literature-mining environment SCAIView. 

We used the query “[Neuroimaging Feature]) AND [MeSH 
Disease: “Alzheimer Disease“]) AND [Alzheimer Ontology Node: 
“Evaluation“]) AND [BRCO]) AND [PTS]) AND [Organism: ”Homo 
sapiens“]” to retrieve relevant publications that comprises disease-
specific terms, brain region and cell-type information (BRCO) and that 
comprise pathway mentions (PTS). The Alzheimer Ontology (ADO) 
concept “evaluation” provides a wide spectrum of entities that describe 
various clinical tests that are significant for diagnosing AD. Once the 
articles were retrieved, we tried to model them in order to identify 
underlying the molecular mechanisms.

Mechanistic modeling of neuroimaging features with 
molecular pointers

One major motivation to develop the NIFT terminology was 
to support the generation of cause-and-effect models in the area of 
neurodegenerative diseases. With the integration of imaging features 
in cause-and-effect models, we hope to bridge between the molecular 
level (genome, pathways) and the macroscopic anatomical level of 
brain structures such as brain regions and the entire organ.

Using the query described above, we generated a literature corpus 
highly enriched for mentions of interesting imaging features together 
with interesting molecular processes. One of the resulting models that 
link imaging features to the molecular pathophysiology of AD deals 
with the influence of cerebral blood flow on cognitive impairment in 
AD. The overall workflow applied is shown in Figure 4.

NIFT application example
Hypothetical model for linking high-level cerebral blood flow 
with molecular processes:

The scientific community has long been interested in the vascular 
biology, in which the human physiology is represented as large and 
small blood vessels which might play a role in AD progression 
[134,135].  Although clinical studies conducted on AD patients reveal 
substantial evidences of vascular lesion being the biggest factor of AD, 
the fundamental understanding of the molecular mechanism behind 
that remains unexplained [136,137]. Therefore, here we establish our 
first hypothetical model that links high level complex biology such as 
cerebral blood flow with molecular processes.  This model is highly 
putative due to the lack of experimental validation and lack of clinical 
resources to support the hypothesis.

AD is highly diverse and complex in terms of the various 
cellular and molecular players that together result in the disease 
pathology. Apart from the molecular deposits such as plaques and 
tangles, increasing supporting evidences on the role of vascular 
abnormalities in AD pathology, so much so that these co-morbid 
conditions are classified under the term “vascular dementia” [138-140]. 
The links between vascular lesions and cognition impairment are based 
on observations that have been captured using advanced neuroimaging 
techniques such as SPECT [141,142].  By using radioisotopic tracers, 
depletion of blood flow can be traced by reduced glucose consumption 
in a particular brain region [143,144]. Apart from SPECT, MRI tensors 

Figure 4. Schematic representation of the workflow to extract links between imaging 
features and molecular mechanisms in a disease context.
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are constantly tuned to detect early neoplasms and altered blood flow 
detection with high-resolution quality [145,146].

Hypothetical mechanism for cerebral blood flow in AD
SIRT1 stands for “Silient Information Regulator 2 homolog 1”.  

In general, their role is to maintain cellular functions and promote 
longevity of the cells in humans as well as other model organisms 
[147,148]. Sirtuins have been reported to protect the brain from 
infarction by regulating the blood flow to all parts of the brain, 
especially the cerebral region [149-151].  In normal conditions, SIRT1 
has been reported to play a protective role by enhancing the non-
amyloidogenic cleavage of amyloid-beta protein (APP) through NF-
kb inhibition. The inhibition of NF-kb contributes to the clearance 
of amyloid plaques from the brain [152,153]. However, in case of 
AD, SIRT1 genes are reported to be under expressed which in turn 
activates the accumulation of amyloid beta in cerebral cortex through 
NF-Kb activation.  The accumulation of APP in the cerebral region 
could further lead to the depletion of nutrients such as oxygen from 
the blood, resulting in the inhibition of cerebral blood flow. Lack of 
oxygen and other nutrients to the brain, various mental and psychiatric 
abnormalities and could lead to cognitive impairment [154,155].

Also, we hypothesize that the overexpression of SIRT1 co-activates 
a regulator, which transcribes ADAM10 [156-158]. This could trigger 
ADAM10 to partially compete with the gamma-secretase for APP 
fragment resulting in the activation of Notch signaling pathway 
which is well-known for neuronal repair [159-161]. However, in case 
of AD ADAM mutant Q170H and R181G does not compete with 
alpha-secretase, therefore the beta-secretases accumulate in the brain 
resulting in impaired cerebral blood flow [162-164].

Another plausible mechanism of reduced cerebral blood flow is 
due to APOE activity. Increased expression of APOE also facilitates the 
molecular interaction between amyloid beta and Butyrylcholineesterase 
(BCHE) gene which results in the formation of a complex BCHE-Abeta-
APOE (BaβA) complex [165-167]. This complex alters the structure 
of BCHE which accelerates the catalytic activity of the enzyme. This 
results in the formation of amyloid plaques [168-170] as seen Figure 5. 
Increased expression of APOE also disrupts the neuronal activity in the 
hippocampus resulting in atrophy. Hippocampal atrophy is also one of 
the causative factor of cognitive decline in AD [171-173].

Apart from the well-known genes of AD, recently, PICALM gene 
has been emerging as a potential AD candidate. PICALM plays a 
crucial role in intracellular trafficking of endothelial proteins resulting 
in endocytosis. The protective allele of PICALM, rs3851179 facilitates 
the amyloid beta clearance through endocytosis [174-176]. LRP1 is 
another crucial protein whose major function is cholesterol transport 
and transcytosis of various molecules including amyloid beta across the 
BBB [177-179]. As PICALM plays a major role in the internalization 
of the endothelial proteins, it also internalizes the sLRP1 and amyloid-
beta complex by trafficking through two other proteins Rab5 and 
Rab11. These further results in amyloid transcytosis and clearance 
from entering the BBB [180-182]. Also, LRP1 activates another protein 
called GLUT1 which is another major glucose transporter across 
the BBB [183-185]. During normal conditions, there is a free flow of 
glucose and other nutrients across BBB. However, during AD, GLUT 
function is altered by Gly286Asp resulting in inhibition of glucose 
metabolism [186-188]. 

Here, we have demonstrated a hypothetical mechanism around 
cerebral blood flow in AD. We call this model as “putative” and 

“hypothetical” because they lack individual causal proof and substantial 
experimental validation. The overall workflow of the altered regulation 
of cerebral blood flow can be seen in Figure 5.  
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Abstract. Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among
interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole
such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers
the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the
Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features
in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging
biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features
and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of
measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates
neuroimaging features with molecular processes.
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INTRODUCTION

Brain imaging technologies have revolutionized
the way that neurodegenerative diseases, such as
Alzheimer’s disease (AD), are diagnosed and tracked.
Since the human brain is largely inaccessible for
direct sampling, neuroimaging provides an alterna-
tive for measuring in vivo structural and functional
features that can be used as biomarkers of disease
onset and progression. The quantitative nature of
imaging biomarkers, their potential to assess disease-
modifying effects, and the ability to monitor the
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safety of candidate drugs all make neuroimaging
readouts an extensively used, measurable endpoint
in clinical trials for neurodegenerative diseases [1].
Parameters and features that are clinically measured
using neuroimaging biomarkers reflect biological or
pathological changes underlying disease in the brain
of patients; for example, positron emission tomogra-
phy (PET) imaging measures the load of amyloid-�
(A�) neuritic plaques through the uptake and binding
of a particular radioligand in the living brain [2]. But
such measurements at the clinical level are often dis-
connected from their underlying mechanistic causes,
on one hand, and from their corresponding patient
clinical tests, on the other hand.

The importance of neuroimaging in the new era of
systems neurology is highlighted by its pivotal role
in linking clinical readouts to underlying mechanis-
tic changes [3]. Thus, there is a need for integrative
approaches that enable multiscale modeling of both
biological and clinical data with the aim of bridg-
ing the translational gap [4]. The first step toward
this goal is, however, the collection and standardiza-
tion of disparate and scattered data and knowledge
across many resources available for research. Among
several efforts in this direction, ApiNATOMY corre-
lates brain imaging diagnostics to affected anatomical
regions of the brain through the Foundational Model
of Anatomy ontology (FMA) [5]; the OntoNeu-
roLOG ontology covers the domain of imaging
datasets and their processing methods [6]; RadLex
provides a lexicon of terms relevant to diagnostic
and interventional radiology [7]; and the quantita-
tive imaging biomarker ontology (QIBO) represents
a series of heterogeneous concepts across several
fields including imaging physics, contrast agents,
biology, and quantitation techniques [8]. Neuroimag-
ing Data Model and Taskforce (NIDM) facilitates
the exchange of large publication corpus and other
relevant metadata such as provenance information
related to the neuroimaging research for establish-
ing the reproducibility of research experiments as
well as overcoming the challenge of data sharing
(http://nidm.nidash.org/specs/nidm-overview.html).

In parallel to the generation of imaging datasets,
an increasing amount of imaging information is pub-
lished within literature articles which often report
on measured features in patients with AD [9, 10].
Such studies typically try to correlate neuroimag-
ing readouts with defined disease stages or subtypes.
As an example, Whitwell and co-workers utilized
magnetic resonance imaging (MRI) in patients with
atypical variants of AD and were able to categorize

these patient groups, based on measuring patterns
of atrophy in medial temporal and cortical grey
matter, into hippocampal sparing AD, limbic pre-
dominant AD, and typical AD subtypes [11]. This
example clearly shows the importance of harvesting
neuroimaging feature information from literature not
only for monitoring critical imaging findings but also
for stratification of patients based on their diagnostic
status.

To this end, UMLS metathesaurus vocabularies
were used to annotate and index radiology journal
figure captions from more than 9000 articles for
image information retrieval [12]. Similarly, RadLex
was applied to the biomedical imaging literature and
annotated more than 385,000 figures with RadLex
terms [13]. However, when the National Cancer Insti-
tute Thesaurus (NCIT), Radiology Lexicon (RadLex;
http://www.radlex.org/), Systemized Nomenclature
of Medicine (SNOMED-CT), and International Clas-
sification of Diseases (ICD-9-CM) were evaluated for
retrieval of radiology reports containing critical imag-
ing findings, it was found that no single terminology
is optimal for retrieving radiology reports with critical
findings [14].

Biomedical terminologies and ontologies have
proven their role in namespace harmonization and
mediation of semantic interoperability in numer-
ous examples [15]. One of the main application
domains of shared semantics (ontologies and ter-
minologies) lies in metadata annotation as well as
data integration and knowledge retrieval [16]. The
neuroimaging community has not yet come up with
a consensus for commonly used and shared meta-
data. However, over the past decades, many initiatives
have made their primary data publicly available [17].
Out of those, the Alzheimer Disease Neuroimag-
ing Initiative (ADNI) (http://adni.loni.usc.edu/) and
Parkinson’s Progression Markers Initiative (PPMI)
(http://www.ppmi-info.org/) have gained increasing
momentum for creating an impact on data sharing
across the scientific community. Despite the ongoing
efforts, the significant lack of structural and seman-
tic interoperability impedes the momentum of data
sharing [18] and lack of an established framework
hampers the merging of imaging data from other
resources [8]. The heterogeneous data such as cortical
thickness or neuropsychological assessments of indi-
vidual patients that are stored in ADNI/PPMI datasets
do not follow a standard nomenclature, which makes
them difficult to interpret or use for validation.

Motivated by the obvious need for a terminology
that enables a systematic representation and retrieval
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of features derived from neuroimaging techniques,
we aimed at developing a Neuro-Imaging Feature
Terminology (NIFT) to capture and organize the
knowledge domain of structural and functional brain
features as measured and represented by neuroimag-
ing technologies in the domain of neurodegeneration.
In this study, we demonstrate the value of NIFT
for the identification and extraction of neuroimaging
features in both Medline abstracts and full-text pub-
lications in the context of neurodegenerative disease
pathology. We also demonstrate the applicability of
NIFT for the annotation of imaging readouts in MRI
and CT scans. Furthermore, we go beyond retrieval
and annotation of imaging concepts by providing
an example of how extracted neuroimaging features
can be utilized for mechanistic modeling of disease
pathology.

MATERIALS AND METHODS

The NIFT terminology is built based on a hierarchi-
cal knowledge representation system by organizing
higher level concepts as root nodes followed by spe-
cific sub-classes organized under them; however, it is
not an ontology as it uses simple hierarchical rela-
tionships but is capable of being leveraged to an
ontology in the future. However, to be leveraged to an
ontology, NIFT should undergo major changes in the
current hierarchical structure based on ontology for-
malism definitions. NIFT in its current form provides
a first substrate for the scientific community to elab-
orate its conceptual complexity and structure. The
Protégé OWL editor was used to build this hierarchi-
cal terminology (http://protege.stanford.edu/). This
terminology was constructed using the OWL lan-
guage for two reasons: firstly, the hierarchical edition
and annotation of concepts in OWL language facil-
itates creation of such a granular terminology: and
secondly, the OWL format of NIFT ensures the inter-
operability of the terminology file. The concepts that
are included under this terminology were examined
by experts from the clinical research domain.

Generation of NIFT

The NIFT terminology concepts were gathered
by collecting and reading relevant publications,
e-books, websites, and medical blogs related to
imaging in neurodegeneration. Following the initial
literature search, we also adapted some concepts from
already published, highly relevant ontologies such as
QIBO [19] and Radlex. Ontologies such as QIBO and

Radlex had well-structured concepts such as Imaging
Techniques and Imaging Agents, which were contex-
tually relevant for the development of NIFT. Essential
entities used in the ADNI (http://adni.loni.usc.edu/)
were also included in our terminology system.

Consequently, we enriched the NIFT with mea-
sured biomarkers obtained from the Biomedical
Imaging Group Rotterdam (BIGR) pipeline, UMC
Rotterdam [20] and neuGRID platform (http://www.
neugrid4you.eu). The BIGR pipeline consists of six
image processing pipelines such as FreeSurfer (http://
freesurfer.net/), BIGR Tissue Segmentation [21],
BIGR hippocampus segmentation [22], BIGR SAM-
Sco [23], BIGR diffusion imaging pipeline [24],
and Human Connectome Mapper [25]. The neu-
GRID platform consists of three image processing
pipelines including: FreeSurfer, Adaboost, and SPM-
grid. This platform was used to extract measured
imaging indices to be added to the terminology.

For the sake of covering brain-specific anatomical
structures in NIFT, we made use of the Brain Region
& Cell Type Terminology (BRCT) which was
initially developed to capture a wide range of key
concepts representing human brain neuroanatomical
structures and integrate their corresponding cell types
(http://bioportal.bioontology.org/ontologies/BRCT).
Alzheimer Disease Ontology [26] was also re-used
to enrich NIFT. Pathway concepts were derived from
the pathway Terminology System, that was developed
with the intention to support the extraction of path-
way information specific to the neurodegenerative
disease domain [27].

Upon completion, this terminology system was
reviewed by a clinical imaging expert team (Profes-
sor Frisoni’s team at the University Hospitals Geneva)
which further improved the quality and relevance of
the classification.

Natural language processing (NLP)-based
assessment of NIFT performance

In order to assess the relevancy of the NIFT
terminology, we compared the performance of our
terminology with the two already well-established
imaging ontologies, QIBO and Biomedical Image
Ontology (BIM) [28]. This comparison was per-
formed at the level of terminologies found in those
ontologies as they claim to capture the knowledge of
image annotations and imaging biomarkers, respec-
tively. To perform this, we used an NLP–based
approach and ran the PDF tagger over the previ-
ously selected full-text publications (PMC1, PMC2,

http://protege.stanford.edu/
http://adni.loni.usc.edu/
http://www.neugrid4you.eu
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PMC3, and PMC4) using all the three ontol-
ogy/terminology systems and validated the retrieval
of the maximum annotation of terms specific to neu-
roimaging domain. The validation of the terminology
using PDF tagger was performed using the formula:

mjk =
∑nk

i=1
ai

where a, frequency of single term; j, document num-
ber; mj, overall frequency in document j; nk, number
of items in dictionary k; k, dictionary number.

This index sums up the recall of relevant terms cap-
tured using the relevant terminology over all the terms
found in the document. This sum gives an overall
count of different concepts and terms captured from
the given document.

This analysis was done to demonstrate the usability
of NIFT in extracting relevant context from publica-
tions of interest.

Correlating clinical diagnosis with imaging
features for staging AD

For bridging the clinical indices with imaging
readouts, we systematically harvested relevant publi-
cations using the query “(((([Neuroimaging Feature])
AND [MeSH Disease “Alzheimer Disease”]) AND
[Alzheimer Ontology: “Cognitive tests”]) AND
[Organism: “Homo sapiens”]) AND [BRCT]” in
SCAIView.

Retrieval and mining figure captions and full-text
from PubMed

Following the curation and further refinement
of the terminology, NIFT was integrated into our
in-house literature mining environment SCAIView
[29]. SCAIView enables the users to efficiently
retrieve context specific articles from the litera-
ture using standardized terminologies and ontologies.
NIFT in its SCAIView integrated form can be
freely accessed using this link (http://academia.scai
view.com/academia//).

We performed an overall coverage analysis of
NIFT by running it over figure captions and full-text
articles using SCAIView. For this, we converted the
OWL file into a dictionary (.syn) file using a java
program. The resulting dictionary was incorporated
in ProMiner, which is a rule-based entity recognition
system [30]. The hierarchical structure of the OWL
file was converted into an XML tree so that NIFT
can be navigated within the SCAIView environment

and faceted search becomes feasible. The ProMiner
program was subsequently run over the five figure
captions which were enriched with imaging indices
from PubMed articles and four full-text publications
from PubMed Central (PMC), which generated an
abstract with markup of the terms specific for NIFT.

We also performed an analysis of full-text publica-
tions using a special PDF tagger (http://publica.fraun
hofer.de/eprints/urn nbn de 0011-n-936860.pdf). In
order to perform this task, we chose four full-text
publications, which were relevant to the neurodegen-
erative context as well as reported imaging findings
namely PMC1 [31], PMC2 [32], PMC3 [33], and
PMC4 [34]. The PDF tagger was run over these pub-
lications for validation of the coverage of NIFT and
results were stored in a dedicated directory. The PDF
tagger first makes use of the documents in the direc-
tory as an input to create a term list from all the
PDF files. Following the complete annotation of the
PDF files, an output file was automatically gener-
ated with the original PDF file containing additional
annotations highlighted through markup of terms.

Annotation of image scans using NIFT

In order to annotate brain scans with NIFT, we
chose three groups of patients with different diag-
nostic features, namely: ADNI 016 S 4952 Control
(CN), ADNI 002 S 4171 Mild Cognitive Impair-
ment (MCI), and ADNI 003 S 4136 AD from the
ADNI dataset (http://adni.loni.usc.edu/). ADNI is a
large-scale, multicenter study which has been struc-
tured to develop molecular, clinical, and biochemical
biomarkers from longitudinal patient data for early
detection of AD. We processed PET (F18-AV-45
and FDG [18]) and T13D MPRAGE scans using the
neuGRID platform with different pipelines, such as:
SPMgrid to detect hypo-metabolism as well as amy-
loid burden; Freesurfer to highlight cortical thickness
measurements and subcortical morphological differ-
ences; and Adaboost to quantify the hippocampal
differences among the three diagnostic groups. The
morphological changes observed from the patient
scans were further annotated manually using the
NIFT terminology.

Mechanistic modeling of image-derived indices
in the context of AD

Yet another important aspect of this paper is to
identify the role of molecular mechanisms, which
bring about clear diagnostic outcomes captured by

http://academia.scaiview.com/academia//
http://academia.scaiview.com/academia//
http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-936860.pdf
http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-936860.pdf
http://adni.loni.usc.edu/
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imaging techniques. For this purpose, we generated
the following query in SCAIView: “(([Neuroimaging
Feature]) AND [MeSH Disease: “Alzheimer Dis-
ease”]) AND [Organism: “Homo sapiens”]” and
filtered for Human Genes/Proteins. Next, we devel-
oped a “global map” of brain-region image-derived
features along with molecular readouts, such as
genes linked to a neuroimaging feature. We stud-
ied mechanisms of hippocampal atrophy in detail
at molecular and cellular level. This knowledge was
transformed into a cause-and-effect model using Bio-
logical Expression Language (BEL) platform (http://
openbel.org/). BEL is a platform for representing
causal and correlative relationships from biologi-
cal context in a computer readable form. Then, we
performed a high-resolution modelling of the mech-
anism underlying hippocampal atrophy. The outcome
of this analysis will be further discussed in the Results
section.

RESULTS

Often, literature resources misclassify an imaging
technique as a biomarker while many others denote
the derived indices as a biomarker. Owing to this,
NIFT was constructed to represent, integrate, and har-
monize heterogeneous knowledge across the domain
of imaging biomarkers in the context of neurodegen-
eration.

Structure and content

NIFT comprises of 7 major classes namely Algo-
rithms, Brain Region, Clinical indices, Clinical trial
information, Imaging technique, Measured Feature,
and finally Radiopharmaceutical compound. There
are in total 1,221 terms in NIFT. The root concepts
of NIFT include

(i) Algorithms which contains 4 children nodes
namely: Image acquisition, MR-image analy-
sis, PET-image analysis, and Post-processing
algorithm. This concept contains all the
brain imaging features that are automatically
detected using various imaging pipelines such
as FreeSurfer.

(ii) The second root concept in NIFT is Clinical
Indices which has two children concepts
namely AD and Parkinson’s disease. This
includes all the genetic, proteomic biomark-
ers mentioned in the literature for AD and
Parkinson’s disease.

(iii) The third root concept is Clinical trial infor-
mation which contains three children concepts
namely adverse effects observed in patients
with neurodegeneration, neuropsychological
assessments and scores such as Mini-Mental
Status Examination score, Alzheimer’s Dis-
ease Assessment Scale-Cog test, and clock
draw test to name a few.

(iv) The fourth root concept of NIFT is Imaging
Technique. This contains 7 children concepts,
each of them represents the different imaging
techniques used to study the various struc-
tural and functional dimensionality of the
brain.

(v) The fifth root concept consists of measured
features. This concept covers a wide range
of “observable indicators” that determine the
state of the brain and disease progression
observed using various imaging techniques.
This concept includes structural features
such as cortical thickness, cerebral atrophy
and functional features such as glucose
metabolism, blood oxygenation level depen-
dent signal.

(vi) The last root concept consists of radiopharma-
ceutical compounds. This concept contains all
the radioactive tracers that are induced in the
brain to diagnose dysfunction.

NIFT is available in OWL format and can be
accessed from the following link (https://www.scai.
fraunhofer.de/en/business-research-areas/bioinform
atics/downloads.html). The hierarchical structure of
NIFT is illustrated in Fig. 1.

NIFT evaluation

The content evaluation of NIFT in comparison
to QIBO and BIM ontologies showed that NIFT
performed comparatively better than QIBO and sig-
nificantly better than BIM in capturing relevant
terminology (see Fig. 2). For the first document
(PMC1), we found 97 relevant terms annotated by
BIM, 204 with NIFT, and 113 with QIBO. The second
document (PMC2) was annotated with 308 relevant
terms by BIM, 1334 terms by NIFT, and 1056 terms
by QIBO. The third document (PMC3) retrieved 153
terms for BIM, 552 terms for NIFT, and 495 terms
for QIBO. The fourth and final document (PMC4)
retrieved 87 terms for BIM, 303 terms for NIFT, and
217 terms for QIBO. The PMC documents can be
found in the Supplementary File 1.

http://openbel.org/
http://openbel.org/
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html
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Fig. 1. Hierarchical structure of NIFT as visualized in the Protégé
OWL Editor. This figure depicts the higher level concepts the
terminology namely Algorithms, Brain Region, Clinical Indices,
Clinical trial information, Imaging Technique, Measured Feature,
and Radiopharmaceutical compound.

Fig. 2. Cross-validation of NIFT terminology against QIBO and
BIM. The figure illustrates the evaluation of NIFT by comparing
the term relevancy from NIFT, QIBO, and BIM against four full-
text PubMed Central articles (PMC1, PMC2, PMC3, and PMC4).

The usability of well-annotated terminology sys-
tems can only be considered useful if they are
applicable to relevant research. To assess the appli-
cability of NIFT, we have studied the role of image

derived indices for diagnosis and how they com-
plement the clinical assessments for better disease
prognosis. One of our aims was to establish a (plau-
sible) bridge between clinical, imaging, and cognitive
tests which is not only multi-modal, but should enable
disease sub-type identification and classification. Our
hope is that linking imaging with anatomical as well
as diagnostic readouts in AD can help to gain better
insight into disease progression and thereby provide
more accurate diagnoses.

However, imaging-derived indices information is
often scattered throughout the largely unstructured
scientific literature, which needs to be analyzed in a
systematic manner. Using NIFT, we retrieved 4,029
publications. Out of the 4,029 publications, we fil-
tered 1000 documents that contained at least one
quantitative imaging feature, one neuropsychologi-
cal test at clinic, and a diagnosed stage of AD in
corresponding patients (see the query in the Meth-
ods section). To exclude false positive documents,
we manually curated all the 1000 publications and
we found 101 articles that were relevant. For manual
curation of documents, we followed a 3-step proce-
dure which are as following:

(i) Only those articles that had informa-
tive relationship between neuropsychological
assessment and radiological finding were con-
sidered for further analysis.

(ii) Articles that only had information about either
neuropsychological assessment or radiologi-
cal findings were not considered for further
analysis

(iii) Articles that contained both neuropsycholog-
ical assessment as well as radiological finding
but did not have any meaningful relationship
between them, were not considered for further
analysis.

The resulting overview shows a pattern based
on which imaging technologies and measured fea-
tures derived from these technologies can be used
to categorize the underlying clinical manifestations
of patients and thereby links clinical and imaging
readouts with the stage of the patient (see Table 1).
The overall relation between the quantitative imaging
feature, psychological feature, and diagnosis can be
found in Supplementary File 2.

We also conducted a systematical analysis of the
heterogeneous imaging techniques and readouts and
combining them with the anatomical correlates and
clinical endpoints. According to our analysis (as seen
in Table 1), the medial temporal atrophy (MTA) as
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e. such is a common phenomenon observed in all the
three diagnostic classes; however, they could be bet-
ter distinguished as AD when the MTA score is the
highest (5.39). Similarly, the atrophy could be clas-
sified as vascular dementia when the MTA score is
2.16 and in case of healthy patients, MTA could still
occur, but with a very minimal score (0.56).

Analysis of literature for neuroimaging features

Mining image captions from literature
Although a fair amount of information on the

image-derived findings is usually reported in the
abstract of publications, specific features and inter-
pretations gained from brain imaging experiments are
often described in the caption of imaging figures that
accompany the abstract text in PubMed. We, there-
fore, tested the relevance and performance of NIFT
by applying it to a text mining scenario for analysis
of figure legends extracted from publications. A typi-
cal example of figure captions annotated using NIFT
terms that were extracted from PubMed abstracts
is shown in Fig. 3. This figure highlights impor-
tant quantitative biomarkers such as cortical ribbon
which occurs due to the hyperintensity of the cortex
observed in patients with early MCI and AD. This
radiological sign can be detected using a diffusion
tensor imaging technique and fractional anisotropy
which is an important measure that demonstrates the
connectivity of the brain as well as the tissue charac-
teristics such as myelination and fiber density.

Mining full-text publications
In a separate experiment, we annotated a large

corpus of full-text publications in order to exam-
ine the coverage of NIFT. A typical example for the
automated annotation of a section of a full-text pub-
lication is shown in Fig. 4. This figure highlights the
coverage of the NIFT terms from the full-text publica-
tion which includes neuropsychological assessments,
brain regions, imaging technique as well as imag-
ing biomarkers. This application demonstrates the
usability of NIFT in mining context-specific, full-
text publications in the field of neurodegeneration.
Retrieval of context-specific, full-text publications
can further be used to build a gold-standard corpus
in the neurodegeneration domain for generation of
novel hypotheses.

Annotation of image scans using NIFT
In a separate experiment, we tested, to what

extend NIFT terms are suitable for the annotation of
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Fig. 3. Annotation of an assembly of figure captions with NIFT terminology. This figure showcases the figure captions extracted from
publications using NIFT terminology. The red box indicates the NIFT terms present in the figure captions.

Fig. 4. Annotation of a section of a full-text article using the NIFT terminology. The ProMiner tagger was used to identify NIFT terms in
full text; matching terms are marked up in red.

primary neuroimaging data (brain scans). Figure 5
depicts the comparison between control, MCI, and
AD patient brain scans based on: the amyloid burden
through [18] AV45-PET, the regional pattern of hypo-
metabolism through FDG-PET, and hippocampal

volumetry as well as cortical thickness through T13D
MP-RAGE brain scans. The top part of the figure
shows the amyloid burden and the hypometabolic
clusters across the different brain regions. As it can
be seen in Fig. 5, the control does not have any
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amyloid deposit cluster and no hypometabolism
detected, while in MCI, hypometabolic pattern starts
to appear in the left hemisphere and more extensively
in AD. The expected hypometabolic topography
spread across the temporo-parietal regions, pre-
cuneus, and posterior cingulate cortex. All the
patient-derived image scans can be found in Supple-
mentary File 3.

Mechanistic modeling of imaging features in the
context of AD pathology

Generating links between molecular entities and
imaging modalities, even if very demanding and
complex, could provide interesting insights into the
disease progression as well as help to raise our
understanding of the underlying pathology. On that
note, we tried to establish that link by querying
our in-house SCAIView tool for genes/proteins rele-
vant to imaging features (See Methods section). We
retrieved 1,853 gene/protein entities, out of which we
identified the top 20 entities confined to interesting
brain regions such as cortex, hippocampus, temporal
lobe,and cerebrum. Using these entities, we produced
the ‘global map’ of genes and imaging features (See
Fig. 6). We also inferred from this model that these top
ranking genes play a role in cortical thickness, hip-
pocampal atrophy, temporal lobe atrophy, grey matter
atrophy and cerebral atrophy, as follows.

Cortical thickness

Our systematic analysis of the literature revealed
that many key players contributed to thinning of the
cortex, which is a strong indicator of AD progression.
In the following, we demonstrate lines of evidence
about factors causally involved in or correlated with
cortical thinning and exemplify their corresponding
BEL codes:

• Increased expression of APP results in the accu-
mulation of A�, which affects the thinning of the
cortex [35, 36].

p(HGNC:APP) -> a(“Amyloid beta-Peptides”)
a(“Amyloid beta-Peptides”) – a(NIFT: “Cortical

thinning”)
a(NIFT: “Cortical thinning”) -> path(MESHD:

“Alzheimer Disease”)

• Increased expression of CHI3L1, a gene responsi-
ble for inflammatory response [37, 38], was found
to be correlated with cortical thickness [39].

p(HGNC:CHI3L1) -> bp(GO:“inflammatory
response”)

bp(GO:“inflammatory response”)
negativeCorrelation a(NIFT: “Cortical

thickness”)

• PSEN1 was found to cause neuronal loss [40, 41],
which results in the shrinkage of the cortex due
to neuronal injury [42, 43].

p(HGNC:PSEN1) -> bp (GO:“neuronal loss”)
bp(GO:“neuronal loss”) -> a(NIFT: “Cortical

thinning”)

• Well-known genes such as APOE4 along with
APOE4 and BCHE carriers contributed to the
structural alteration of the cortex, resulting in cor-
tical thinning [44–47].

p(HGNC:APOE) -> a(NIFT: “Cortical
thinning”)

p(HGNC:BCHE) -> a(NIFT: “Cortical
thinning”)

• Some genes can be linked to cortical thin-
ning through genetics approaches: genes such
as FJ10357 [48], TOMM40 [49], and BDNF
[50, 51] play a protective role in preserving the
structure of the cortex, however, their genetic
alteration results in cortical thinning–rs3748348,
rs10524523 and rs6265, respectively.

p(HGNC: FJ10357) -> a(NIFT: “Cortical
thickness”)

g(dbSNP: rs3748348) – a(NIFT: “Cortical
thinning”)

p(HGNC: TOMM40) -| a(NIFT: “Cortical
thickness”)

g(dbSNP: rs10524523) – a(NIFT: “Cortical
thinning”)

p(HGNC: BDNF) -> a(NIFT: “Cortical
thickness”)

g(dbSNP: rs6265) – a(NIFT: “Cortical
thinning”)

Temporal lobe atrophy

We investigated two genes, APOE ε4 and TREM2,
which mainly contribute to the atrophy of tem-
poral lobes. TREM2 is an inflammatory response
gene predominantly found in microglia [52, 53].
They are known to enhance phagocytosis as well
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Fig. 5. Manual annotation of brain image scans using NIFT. This figure represents different biomarkers captured using three different imaging
techniques in control, mild cognitive impairment (MCI), and AD respectively. A) [18] AV-45 PET scan: this figure captures the increased
amount of amyloid burden (p-value threshold 0.001; voxel extend 10; smoothing kernel [8-8-8]) during the disease progression across CN,
MCI, and AD, respectively. B) FDG [18] PET: this figure captures no hypometabolism in control, increased hypometabolic pattern in case of
MCI, and extensive hypometabolic topography in the temporo-parietal regions, precuneus, and posterior cingulate cortex (p-value threshold
0.001; voxel extend 10; smoothing kernel [8-8-8]). C) T13D MP-RAGE: the first row of the figure demonstrates the progressive ventricular
enlargement among control, MCI, and AD respectively. The second row represents progressive hippocampal atrophy across control, MCI,
and AD. The third row represents progressive cortical shrinkage in the temporal-parietal lobe, posterior cingulate and precuneus area.
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Fig. 6. Integrative view of literature-derived associations between molecular and clinical indices in AD through image-derived features.
This figure illustrates the complex interaction of genetic players playing a causative/protective role in underlying disease pathology through
neuroimaging indices. Top left part of the figure key genetic factors that play a role in shrinking of the cortex eventually leading to AD; top
right part of the figure consists of genes involved in neuro-inflammation and temporal lobe atrophy; Bottom left part of the figure displays
genes involved in cerebral atrophy; bottom right part consists of genes playing a role in hippocampal and gray matter atrophy. The red color
symbol (-|) indicates perturbation of a gene. The red color arrow indicates the function of a gene in disease condition. The green arrow
represents the normal process.

as maintaining cytokine production so that inflam-
matory responses can be triggered by TREM-1, a
novel receptor expressed on neutrophils and mono-
cytes [54, 55]. However, the genetic mutation of
TREM2, rs75932628, causes the atrophy of tempo-
ral lobes through enhancing oxidative stress [56],
which in turn causes the reduction of cerebral
blood flow leading to reduction in regular sup-
ply of oxygen, glucose, and other nutrients to the
temporal lobe, and finally the shrinkage of the tem-
poral lobe [57, 58]. On the other hand, increased
expression of APOE εe4 allele affects the flow
of cerebral blood, further contributing to atrophy
[59, 60].

Hippocampal atrophy

Through our work, we identified an interesting
gene, CALHM1 which was known to regulate A�
clearance [61] through the activation of insulin-
degrading enzyme [62]. However, a genetic mutation
by rs2986017 results in (i) loss of hippocampal neu-
rons further causing atrophy as well as (ii) increased
A� levels and altered calcium homeostasis which

could result in reduced synaptic integrity and mito-
chondrial dysfunction [63].

Grey matter atrophy

Here, we identified a gene namely NXPH1, which
was found to play a role in adhesion of dendrites
and axons and maintaining synaptic integrity. How-
ever, the mutation of the gene, rs6463843, affects
the synaptic integrity and results in loss of grey
matter density leading to atrophy [64]. Apart from
that, EPHA4 was also found to play a protective
role in the glial glutamate transport that ultimately
regulates hippocampal function as well as the main-
tenance of grey matter density [65, 66].

Cerebral atrophy

Cerebral atrophy was found to be regulated by two
key players—Transferrin as well as ACHE. Trans-
ferrin was found to play a significant role in iron
homeostasis [67]. However, the alteration of the gene
could result in iron overload which causes damage to
the cerebral structure, ultimately leading to cerebral
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atrophy [68, 69]. On the other hand, the altered func-
tion of ACHE in the cholinergic system could result
in the loss of cerebral neurons leading to cerebral
atrophy [70]. The computer readable BEL version of
this model is found in Supplementary File 4.

DISCUSSION

A “biomarker” is an accurately measured medical
sign that indicates the medical state of the patient.
However, in the field of imaging, this term is often
misinterpreted due to the lack of standardization of
terminology and concepts. Often, literature resources
misclassify an imaging technique as a biomarker
while many others denote the derived indices as
a biomarker [71, 72]. Owing to this, NIFT was
constructed to represent, integrate, and harmonize
heterogeneous knowledge across the domain of imag-
ing biomarkers in the context of neurodegeneration.
NIFT serves as a single resource of the standard ter-
minology that describes the domain of neuroimaging
biomarkers in a hierarchical manner and has been
designed to capture relevant image-derived features
(“indices”) with high specificity and granularity. As
shown by our analysis, what distinguishes NIFT from
other existing resources is the inclusion of various
concepts ranging from algorithms that automate the
process of measuring features to radiological trac-
ers that help in revealing functional alterations of
the brain. Such a standard reference terminology has
the potential not only to support organization and
exchange of imaging information among neurolo-
gists and clinical researchers but also to provide a
useful tool for annotation of brain scan metadata as
detection of meta-information in brain scans helps
inferring neuroanatomical relationships present in
imaging data [73]. With such an inventory, it is indeed
possible to automatically extend the annotation of
scans by incorporating NIFT in image annotation
tools. Since NIFT combines specificity and granular-
ity of imaging features in the context of neurology
knowledge domain, users can intuitively navigate
through different levels of concept granularity within
a search engine and for instance, perform faceted
search in literature mining environments.

With respect to the contextual specificity, as bench-
mark analysis of NIFT against two other highly
domain-specific, relevant terminologies showed the
overall granularity of medical relevant terms and cog-
nitive tests in NIFT was comparably high, making
NIFT a reference terminology resource specific to

neuroimaging. The applicability of NIFT could be
extended toward information retrieval and extraction.
As demonstrated earlier, using NIFT for literature
mining improves retrieval of the relevant, informa-
tive neuroimaging publications and supports curation
and extraction of captured information from unstruc-
tured text. In the presence of other terminology
sources, powerful filtering for faceted searches can
be implemented. For instance, we can combine NIFT
with HypothesisFinder [74] to systematically harvest
speculative statements linked to imaging features;
or combination of NIFT terms with ADO terms
will allow us to systematically harvest factual state-
ments that link imaging readouts to aspects of AD
progression in literature; and finally, we also have
the possibility of mining “shared imaging features”
amongst other diseases by making use of the already
integrated Parkinson Disease Ontology [75] and Mul-
tiple Sclerosis Ontology [76]. This could lead to
domain specific imaging feature identification across
disease scales.

Importantly, the usage of NIFT is not limited to
information retrieval and extraction. Since the major
mission of the neuroscience community currently is
to bridge the gap between molecular mechanisms
and imaging readouts, NIFT can be used to address
this challenge by bringing context to computational
modeling efforts. To demonstrate this possibility, we
showed how NIFT serves as a valuable resource to
support mechanistic modeling of complex AD path-
omechanisms. As highlighted in Fig. 6, this high
resolution mechanistic model captures novel genetic
players such as CALHM1, NXPH1, and ADAM10,
which cause hippocampal atrophy through neuronal
loss. Here, we identified the various roles played by
CALHM1 in AD pathology, ranging from control-
ling cytosolic Ca(2+) concentrations and A� levels to
increased oxidative stress through glutamatergic neu-
rotransmission inhibition [77, 78]. Similarly, another
two novel genetic biomarkers were CHI3L1 and
CAND1. CHI3L1, a protein that encodes YKL-40,
was found to be associated with cortical thinning
and was found to play a role in neuroinflammatory
response. They were found to play a role in cell
morphology and behavior; however, their associa-
tion with susceptibility to AD has only been recently
studied [79].

The current neuropathological studies on AD sug-
gest that the clinical onset of the disease goes decades
before the formation of neurofibrillary tangles and
A� plaques [80, 81]. This brings up the need for
heterogeneous measurable indicators that can aid
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systematic tracing of alternative patterns of disease
progression. ADNI have positioned themselves as
pioneers in assembling patient records with cognitive
and longitudinal assessments along with genetic and
fluid sample measures. This interesting combination
of measured metadata could provide unique insights
into measurable signs before the expected onset of the
disease. However, the challenge still remains to iden-
tify those patterns at an earlier stage through the use
of combinatorial features. Furthermore, we foresee
the option to perform systematic association studies
in the literature between SNPs and mutations on one
side and imaging features on the other side (Iyap-
pan et al., in preparation). The multi-level association
between genetic factors and clinical readouts can be
directly used for modeling and mining across scales in
the neurology and psychiatry field. A first attempt of
demonstrating such systematic harvesting approach
is the association of imaging features with cogni-
tion readouts (refer to Table 1). Such associations
lead to comprehensive analysis of imaging features
correlating with cognition.

To the best state of our knowledge, NIFT is the first
reference compendium, which apprehends the vari-
ous aspects of the derived quantitative measures from
neuroimaging scans. We invite the scientific commu-
nity to contribute to edition and enrichment of NIFT
so that it can be leveraged to the level of a formal
ontology in future.

Conclusion

To our knowledge, there have been little efforts
invested so far in the direction of standardizing and
capturing observable clinical imaging features, par-
ticularly in the neurology domain. Through this work,
we attempted to bridge “omics” and imaging/clinical
level data. This type of integration across scales is
often regarded as the “holy grail” of integrative mod-
eling and mining. Future approaches should be able
to represent and model the disease progression in
a longitudinal model by integrating molecular pro-
cesses and imaging features over time, provided that
longitudinal data capture would be extended to other
omics data types beside imaging. For this purpose, we
obviously need trajectories. Currently, the BEL mod-
eling framework does not deliver this time dimension.
However, we are working towards the extension of
BEL by a time dimension. A long term perspective of
this extension is the vision of a virtual patient cohort
that comprises several such longitudinal “trajecto-
ries” representing the dynamics of important imaging

features. The link between imaging and genetics will
be a cornerstone for the construction of the vir-
tual cohort; the generation of a “virtual dementia
cohort” has recently been made a task in IMI-project
AETIONOMY and we will see first results of the sim-
ulation of entire trials based on a “virtual dementia
cohort” in the near future. The imaging derived fea-
tures captured through NIFT will have a major role in
that “virtual dementia cohort”. We believe it would be
desirable to generate a “metadata atlas” of the brain
populated with NIFT concepts. Such an atlas could
serve as a template for qualitative models that inte-
grate imaging features from different, heterogeneous
studies.
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[54] Průcha M, Zazula R, Müller M, Hyánek T, Dostál M,
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SUMMARY 
 
There is ample clinical evidence to support the fact that the pathophysiological onset 

of AD commences much earlier than the clinical manifestation of the disease. 

However, current diagnostic and therapeutic approaches are only symptomatic; 

therefore, they are not capable yet to slow cognitive decline or the pathological 

progression. With the recent advent of neuroimaging techniques and their capacity to 

provide non-invasive, high-resolution information about the physiological and 

anatomical aspects of the brain, this measurable outcome can play a significant role in 

clinical trials for early diagnosis and treatment.  Although current disease-modifying 

treatments are based on cognitive and behavioral assessments, such as ADAS-Cog or 

the caretaker’s observation of the patient, these measurements are not yet robust 

enough to determine the reason for cognitive decline or alter behavior, which can 

differ from patient-to-patient. This is because such trials require large patient cohorts 

and continuous assessments of patients for a minimum of five years. 

 

Unlike other biomarkers, neuroimaging biomarkers can be measured much more 

frequently and are highly non-invasive, enabling them to track the progression of the 

disease across varying stages. These imaging biomarkers are invaluable in linking and 

validating existing molecular hypotheses with clinical outcome measures of the 

disease, making them widely prevalent in the field of neurodegeneration. 

 

Nonetheless, with the growing popularity of imaging technologies in scientific 

research, the amount of knowledge derived and data produced from multiple 

experiments are primarily on the rise. This has eventually given rise to independently-

developed platforms for collecting, describing and storing data, resulting in the lack 
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of a standardized and reliable framework for reusing the generated data. Furthermore, 

the data derived from raw image scans are not human readable.  

 

Biomedical ontologies have often proven to be valuable in extracting domain relevant 

information from brain image scans, and other software generated imaging readouts. 

However, the amount of knowledge and information published in the literature based 

on imaging analysis often goes unnoticed.  

 

Moreover, neuroimaging readouts are predominantly used in disease-specific 

investigations for tracking or observing disease progression of individuals/groups of 

patients. For this purpose, the NIFT terminology was constructed to represent, 

integrate and harmonize “neuroimaging pointers/readouts” in the context of NDD 

with high specificity and granularity. This terminology provides a broad scope of 

usage in NDD research for efficient data interoperability and exchange amongst 

clinicians and scientific researchers making it a gold standard reference for 

apprehending clinical readouts from brain scans. The next aspect of the publication 

highlights on how relevant knowledge extracted using the NIFT terminology can be 

successfully integrated into a knowledge model for deriving a deeper understanding 

of mechanistic processes across all scales involved in the disease. The final aspect of 

the manuscript focuses on the integration and formalization of “big data” such as 

ADNI and PPMI, which are largest cohort, based longitudinal studies for efficient 

data sharing of patient-centric data. With access to real-time longitudinal patient data, 

it is now possible to garner a realistic understanding of pathophysiological processes 

involved in NDD and find effective treatment therapies, which can be custom-made 

for patients.  
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CHAPTER 4 
Conclusion and Outlook 

 
 
Alzheimer’s disease (AD) is estimated to quadruple in the coming years, posing a 

severe challenge to the healthcare community for early prevention and treatment. 

Much of the research in the field of neurodegeneration has traditionally been 

conducted on animal-based experiments with the intention of gaining enhanced 

insights into the pathophysiological mechanisms of the disease. However, it is 

increasingly becoming evident that earlier research efforts have not been 

successful in translating scientific findings into successful therapies and 

treatments for patients suffering from NDDs. The translational failure of these 

approaches implicates that the sporadic form of AD is multifactorial, requiring the 

intervention of experts coming from multiple research domains. The advancement 

of technology in recent years has empowered the research world, particularly in 

the field of NDD, to generate, collect and store massive amounts of data in 

disparate data repositories. However, the problem of data redundancy, as well as a 

lack of standardized means for data representation, has made it nearly impossible 

to exploit the full potential of the data resources effectively. 

 

4.1.1 Need for shared semantics 
 
The first section of this dissertation is dedicated to advocating the need for a more 

comprehensive approach when dealing with large-scale heterogeneous datasets to 
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elucidate a better understanding of disease pathology. The heterogeneity amongst 

various data resources as well as a lack of transparency has been hindrances for 

the research community for many decades. The evolution of semantic web 

technology has fostered the possibility of integrating heterogeneous data through a 

consistent framework but has also enabled mining “useful” information from the 

embedded resources. The lack of semantic web approaches dedicated to 

neurodegeneration research resulted in the high-resolution, semantic framework 

known as NeuroRDF, a platform for asking complex, scientific questions on 

neurological diseases. 

 

4.1.2 Effect of dominant ontologies and terminologies for enriching knowledge 

models 

The second section of this dissertation is directed towards the vital usability of 

ontologies and terminologies to aggregate scattered knowledge from literature. 

The systems biology community is often challenged by the massive influx of 

research publications in PubMed. The text-mining community has primarily 

grown over the years by providing systematic and automated support for 

extracting domain-specific knowledge from the literature. Although such 

terminologies and ontologies are useful for extracting valuable insights from the 

literature, they still do not contribute directly towards understanding the 

pathomechanisms of a particular disease. 

During this thesis, a pathway terminology system (PTS) terminology was developed 

to extract disease-specific, pertinent pathway information from the literature, 

particularly for NDD. With the help of this terminology, it is now possible to integrate 
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pathway relevant knowledge from the literature into computable models, thereby 

enriching and adding value to existing knowledge resources. 

 

4.1.3 Clinical data – a potential goldmine for deriving novel hypothesis 

The third section of this dissertation is devoted toward exploring the unchartered 

territories of clinical data in the field of NDD. Data privacy and ethical boundaries 

have often hindered the research community from getting access to real-time 

patient data. With the growing recognition of the open source framework 

community, the need for data sharing is becoming of utmost importance, 

especially in the field of NDD. Despite the encouragement and facilitation of 

ongoing research efforts as well as funding agencies, the medical domain remains 

inaccessible due to ethical, political as well as technical barriers that prevent them 

from outreach to the research community. 

Although the fruits of data sharing were widely acknowledged by the scientific 

community, only after the boom of global initiatives like ADNI, PPMI, and BIRN, 

was the idea of comprehensive data sharing cemented. The free accessibility of 

“big data” has opened up possibilities for various scientific organizations to come 

together to solve specific biological problems, such as the big data DREAM 

challenge. The goal of the Alzheimer's Disease Big Data DREAM was to apply an 

open science approach to rapidly identify accurate predictive AD biomarkers that 

could be used by the scientific, industrial and regulatory communities to improve 

AD diagnosis and treatment. It was also the first in a series of AD Data 

Challenges to leverage genetics and brain imaging in combination with cognitive 

assessments, biomarkers and demographic information from cohorts ranging from 

cognitively normal to mild cognitively impaired to individuals with AD. 
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Although the challenge overwhelmed the community with the amount of data 

gathered, it also gave insight into two important aspects: 

(i) The quality of data present which was not harmonized or curated across 

different scales and measurements 

(ii) The need for bridging the gap between molecular and genetic factors with 

clinical and radiological features 

The lack of order in the representation of clinical data led to the construction of a 

framework called NIFT to assist in standardizing the diagnostic as well as 

measured indices observed using neuroimaging techniques. NIFT not only 

supports organization and exchange of imaging information among neurologists 

and clinical researchers but is also a useful tool for annotation of brain scan 

metadata. 

Importantly, the usage of NIFT is not only restricted to data retrieval and extraction, 

but it also acts as a potential tool for the neuroscience community to bridge the gap 

between scales ranging from the level of molecular mechanisms to imaging readouts. 

This can only be achieved through a contextual and mechanistic understanding 

between the latter two scales, rather than association-based studies, which are 

statistically significant, but lack in providing this more in-depth understanding. For 

this purpose, a computational model was constructed around the molecular features 

and clinical outcomes. This type of integration across scales is often regarded as the 

“holy grail” of integrative modeling and mining. 
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4.2 Outlook 

The goal of this thesis was, (i) to demonstrate the possibility of harmonizing 

context-specific knowledge resources and data derivatives into a semantic 

framework to facilitate the identification of potential biomarkers in NDD, (ii) to 

organize and structure pathway relevant information from the literature and to use 

them for various data mining applications, and (iii) to initiate an effort in 

exploring and organizing clinically relevant knowledge and determine their 

potential role in deciphering the disease pathophysiology of NDD. The efforts 

undertaken during this dissertation have only begun to reveal the possibilities for 

dementia treatment and intervention. With the growing appreciation for sharing 

big data from the medical community, the future of neuroscience research, 

particularly for AD, appears to be promising. The availability of patient-specific 

longitudinal data from ADNI is revolutionary as it opens new doors for building 

stage-specific longitudinal disease models using real-time patient data.  

 

One futuristic approach with real-time patient data could be directed towards 

generating virtual patient cohorts for improvising personalized care and treatment for 

patients. Computational models are often considered a unique platform for providing 

customized solutions, and when they can be coupled with mathematical models, they 

can often lead to simulations of real-time patients into virtual patients with varying 

inter and intrapatient parameters. Such combinatorial approaches could be used for 

validating in-silico approaches for testing different protocols without restrictive legal 

and ethical conflicts. 
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