
Scalable Algorithms for Parallel
Tree-based Adaptive Mesh Refinement

with General Element Types

Dissertation

zur
Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Johannes Holke

aus

Köln

Bonn, 22. März 2018

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Carsten Burstedde

2. Gutachter: Prof. Dr. Michael Griebel

Tag der Promotion: 06. Juli 2018

Erscheinungsjahr: 2018

3

Summary

In this thesis, we develop, discuss and implement algorithms for scalable parallel
tree-based adaptive mesh refinement (AMR) using space-filling curves (SFCs). We
create an AMR software that works independently of the used element type, such
as for example lines, triangles, tetrahedra, quadrilaterals, hexahedra, and prisms.
Along with a detailed mathematical discussion, this requires the implementation
as a numerical software and its validation, as well as scalability tests on current
supercomputers.

For triangular and tetrahedral elements (simplices) with red-refinement (1:4 in
2D, 1:8 in 3D), we develop a new SFC, the tetrahedral Morton space-filling curve
(TM-SFC). Its construction is similar to the Morton index for quadrilaterals/hexa-
hedra, as it is also based on bitwise interleaving the coordinates of a certain vertex
of the simplex, the anchor node. Additionally, we interleave with a new piece of
information, the so called type. The type distinguishes different simplices with the
same anchor node. To store the necessary information of a d-dimensional simplex,
we require 10 bytes per triangle and 14 bytes per tetrahedron, which is only one
byte more than used in the classical Morton index for quadrilaterals (9 bytes) and
hexahedra (13 bytes). For these simplices, we develop element local algorithms such
as constructing the parent, children, or face-neighbors of a simplex, and show that
most of them are constant-time operations independent of the refinement level.

With SFC based partitioning it is possible that the mesh elements that are parti-
tioned to one process do not form a face-connected domain. The amount of parallel
communication among processes with neighboring domains rises with the number of
face-connected components. We prove the following upper bounds for the number
of face-connected components of segments of the TM-SFC: With a maximum refine-
ment level of L, the number of face-connected components is bounded by 2(L− 1)
in 2D and 2L+ 1 in 3D. Additionally, we perform a numerical investigation of the
distribution of lengths of SFC segments.

Furthermore, we develop a new approach to partition and repartition a coarse
(input) mesh among the processes. Compared to previous methods it optimizes
for fine mesh load-balance and reduces the parallel communication of coarse mesh
data. We discuss the coarse mesh repartitioning algorithm and demonstrate that
our method repartitions a coarse mesh of 371e9 trees on 917,504 processes (405,000
trees per process) on the Juqueen supercomputer in 1.2 seconds.

We develop an AMR concept that works independently of the element type;
achieving this independence by strictly distinguishing between functions that oper-
ate on the whole mesh (high-level) and functions that locally operate on a single
element or a small set of elements (low-level). We define an application program-

5

ming interface (API) of low-level functions and develop the high-level functions such
that every element-local operation is performed by a low-level function. Thus, by
using different implementations of the low-level API for different meshes, or different
parts of the same mesh, we are able to use different types of elements.

Many numerical applications, for example finite element and finite volume solvers,
require knowledge of a layer of ghost elements. Ghost elements of a process are those
elements that lie on a different process but are (face-)neighbors of a process local
element. We discuss a new approach to generate and manage these ghost elements
that fits into our element-type independent approach. We define and describe the
necessary low-level algorithms. Our main idea is the computation of tree-to-tree
face-neighbors of an element via the explicit construction of the element’s face as
a lower dimensional element. In order to optimize the runtime of this method
we enhance the algorithm with a top-down search method from Isaac, Burstedde,
Wilcox, and Ghattas, and demonstrate how it speeds up the computation by factors
of 10 to 20 achieving runtimes comparable to state-of-the art implementations with
fixed element types.

With the ghost algorithm we build a straight-forward ripple version of the 2:1
balance algorithm. This is not an optimized version but it serves as a feasibility
study for our element-type independent approach.

We implement all algorithms that we develop in this thesis in the new AMR
library t8code, using the TM-SFC for simplicial and tetrahedral elements. Our
modular approach allows us to reuse existing software, which we demonstrate by
using the library p4est for quadrilateral and hexahedral elements. In a concurrent
Bachelor’s thesis by David Knapp (INS, Bonn) the necessary low-level algorithms
for prisms were developed. With t8code we demonstrate that we can create, adapt,
(re-)partition, and balance meshes, as well as create and manage a ghost layer. In
various tests we show excellent strong and weak scaling behavior of our algorithms
on up to 917,504 parallel processes on the Juqueen and Mira supercomputers using
up to 858e9 mesh elements.

We conclude this thesis by demonstrating how an application can be coupled
with the AMR routines. We implement a finite volume based advection solver
using t8code and show applications with triangular, quadrilateral, tetrahedral, and
hexahedral elements, as well as 2D and 3D hybrid meshes, the latter consisting of
tetrahedra, hexahedra, and prisms.

Overall, we develop and demonstrate a new simplicial SFC and create a fast and
scalable tree-based AMR software that offers a flexibility and generality that was
previously not available.

Acknowledgements

First of all, I want to thank my advisor Prof. Dr. Carsten Burstedde for his con-
stant support and feedback during the development of this thesis, various helpful
discussions and lessons in parallel C programming. I would like to thank Prof. Dr.

6

Michael Griebel for being the second reviewer of this thesis. Thank you to Prof. Dr.
Matthias Kreck for being a great mentor. I appreciate the enlightening atmosphere
at the INS and thank all my current and previous colleagues. Special thanks to
Jose Alberto Fonseca.

Additional thanks to Tobin Isaac for providing the interface to the MPI-3 shared
array functionality in the sc library.

I appreciate the financial support by the Bonn International Graduate School of
Mathematics (BIGS) and travel support by the Bonn Hausdorff Center for Mathe-
matics (HCM).

I gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing computing time through the
John von Neumann Institute for Computing (NIC) on the GCS Supercomputer
JUQUEEN at Jülich Supercomputing Centre (JSC). Additionally, this research used
resources of the Argonne Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under contract DE-AC02-06CH11357.

Danke an meine Familie für ihre Unterstützung. Vielen Dank an Felix Boes für
viele produktive und lustige Nachmittage und für außergewöhnliche Freundschaft.

Mein größter Dank gilt Clelia. Danke für alles, insbesondere für deine bedin-
gungslose Unterstützung, viel Geduld und dass du immer die richtigen Worte zur
Motivation findest. Non ti ringrazierò mai abbastanza per tutto il bene che mi hai
fatto.

7

www.gauss-centre.eu
www.gauss-centre.eu

Contents

1. Introduction 11

2. Adaptive Mesh Refinement 16
2.1. Uniform and adaptive mesh refinement 16

2.2. Motivation for AMR . 17

2.3. Unstructured AMR . 18

2.4. Block-structured AMR . 19

2.5. Tree-based AMR . 19

2.5.1. Overview . 20

2.5.2. Core algorithms . 22

2.5.3. Independence of the element type 23

3. Space-Filling Curves 26
3.1. Refinement spaces and refinements 26

3.2. Space-filling curves . 29

3.3. The Morton space-filling curve . 30

3.4. Space-filling curves on forests of trees 34

3.5. Partitioning with space-filling curves 35

4. The Tetrahedral Morton Index 37
4.1. Mesh refinement on simplices . 37

4.1.1. Bey’s refinement rule . 38

4.1.2. Removal of hanging nodes using red/green refinement 42

4.2. The tetrahedral Morton index . 42

4.2.1. The reference simplex . 43

4.2.2. The type and Tet-id of a d-simplex 43

4.2.3. Encoding of the tetrahedral Morton index 44

4.2.4. A different approach to derive the TM-index 47

4.2.5. Properties of the TM-index 48

4.2.6. The space-filling curve associated to the TM-index 51

4.3. Low-level algorithms on simplices . 53

4.3.1. The coordinates of a d-simplex 54

4.3.2. Parent and child . 55

4.3.3. Neighbor simplices . 57

4.3.4. The exterior of the root simplex 60

4.3.5. A consecutive index for uniform refinements 62

4.3.6. Successor and predecessor . 65

8

4.4. High-level AMR algorithms . 68

4.4.1. New . 69

4.4.2. Adapt . 70

4.5. Performance evaluation . 70

4.6. Conclusion . 71

5. Connected Components of the TM-SFC 74
5.1. Proof of Theorem 5.1 . 74

5.1.1. From uniform to adaptive meshes 80

5.1.2. From one tree to a forest . 80

5.2. Enumeration of face-connected segments 80

5.3. Conclusion . 81

6. Coarse Mesh Partitioning 83
6.1. Tree-based AMR . 84

6.1.1. The tree shapes . 85

6.1.2. Encoding of face-neighbors 86

6.1.3. Orientation between face-neighbors 87

6.2. Partitioning the coarse mesh . 88

6.2.1. Valid partitions . 89

6.2.2. Encoding a valid partition . 93

6.2.3. Ghost trees . 94

6.2.4. Computing the communication pattern 94

6.2.5. Face information for ghost trees 99

6.3. Implementation . 100

6.3.1. The coarse mesh data structure 102

6.3.2. Updating local indices . 103

6.3.3. Partition cmesh: Algorithm 6.3.1 104

6.4. Numerical results . 104

6.4.1. How to obtain example meshes 104

6.4.2. Disjoint bricks . 106

6.4.3. An example with a forest . 110

6.5. Conclusion . 114

7. Ghost 115
7.1. Element face-neighbors . 117

7.1.1. (i) Identifying the tree face 120

7.1.2. (ii) Constructing the face element 120

7.1.3. (iii) Constructing F ′ from F 123

7.1.4. (iv) Constructing E′ from F ′ 126

7.1.5. A note on vertex/edge-neighbors 127

7.2. Half-size face-neighbors . 127

7.3. Finding owner processes of elements 129

7.3.1. t8 forest owner . 130

9

7.3.2. Owners at a face . 130
7.4. The ghost algorithms . 133
7.5. Optimizing the runtime of Ghost . 134

7.5.1. The recursive top-down search 135
7.5.2. The optimized Ghost algorithm 137

7.6. Numerical comparison of the ghost versions 139

8. 2:1 Balance 142
8.1. Finding leaf descendants of an element 143
8.2. The Ripple-balance algorithm . 145
8.3. Numerical results . 147

8.3.1. The test case . 147
8.3.2. Strong scaling . 148
8.3.3. Weak scaling . 149

9. A Numerical Application 153
9.1. The advection equation . 153

9.1.1. Level-set functions . 153
9.2. Numerically solving the advection equation 154

9.2.1. Hanging faces and face-neighbors 156
9.2.2. The CFL number . 156
9.2.3. The refinement criterion . 157
9.2.4. Error measurement . 158

9.3. Handling application data . 158
9.3.1. Interpolation . 159
9.3.2. Repartitioning of data . 159
9.3.3. Ghost exchange . 159

9.4. Tests on a unit cube geometry . 160
9.4.1. The 2D test case . 160
9.4.2. The 3D test case . 160
9.4.3. Convergence tests . 161
9.4.4. Large scale tests . 166
9.4.5. Comparison to uniform meshes 170
9.4.6. A test with a larger coarse mesh 171

10.Conclusion 175

11.Outlook 178

A. The Low-Level API 180

10

1. Introduction

Numerical simulations for the solution of partial differential equations (PDEs) have
a wide range of applications in scientific and industrial computing. Almost all of the
common methods, including the finite difference method (FD), the finite element
method (FEM), the finite volume method (FV), and the discontinuous Galerkin
method (DG) use meshes to discretize a given domain on which to solve a PDE,
e.g. [20, 90,135].

Most commonly, meshes consist of quadrilaterals or triangles in 2D, and hexahe-
dra or tetrahedra in 3D. Triangles and tetrahedra are in general better suited to
accurately approximate complex domains [127, 128]. However, with quadrilaterals
and hexahedra we can use less elements to model the same domain size and many
numerical schemes can exploit a tensor product structure and are thus easier to
implement on these element types [113, 134, 136, 144, 159]. In some use cases, es-
pecially in industrial engineering applications, both advantages are needed, which
motivates the use of hybrid meshes with multiple element types. In this case, it
is necessary to use prisms or pyramids to transition between hexahedra and tetra-
hedra [77, 94, 95, 147]. Less common but also in use are hybrid meshes with two
element types, either hexahedra and prisms, or tetrahedra and prisms [45,76].

One of the most successful tools to improve the performance of numerical simu-
lations is the concept of adaptive mesh refinement (AMR), e.g. [6, 49, 133]. For all
numerical methods described above, a finer mesh resolution results in a reduction of
the computational error and AMR describes the concept of changing this resolution
locally; thus, it is possible to maintain fine resolutions in those parts of the mesh
where a smaller error is needed while keeping the mesh resolution coarse elsewhere.
For this decision process, we may utilize local error estimators [6,19,146,155]. Hence,
with AMR we can reduce the number of mesh elements—and thus the memory foot-
print and runtime of numerical solvers—significantly compared to uniform meshes,
which use the same mesh resolution in the whole mesh [33,79,102]. However, using
AMR, especially in a parallel high-performance computing (HPC) environment, in-
troduces a substantial overhead in mesh management. Particularly demanding tasks
include: mesh refining and coarsening, (re-)partitioning in parallel, the creation of
(off-process) ghost elements, random access of mesh elements, and more. There-
fore, the implementation of complete AMR frameworks is often outsourced into
AMR-specialized software libraries, such as BoxLib and its successor AMReX [4, 18],
Chombo [42], Enzo [22], libMesh [78], p4est [25], ParFUM [87], Peano [149], PUMI [68],
PYRAMID [106]. SAMRAI [151], Uintah [15], and others.

A main challenge for AMR on HPC systems is storing and load-balancing the
mesh in parallel, in particular when the mesh changes frequently during the com-

11

putation. Some examples are the simulation of earth mantle convection [33, 84],
blood flow [45, 105], two-phase flow and level-set methods [3, 48, 50, 80, 83, 99], and
molecular dynamics [5, 115].

One common method for storing the mesh is unstructured meshing, where the
element connectivity is modeled as a graph. Partitioning the mesh among parallel
processes is then delegated to graph based partitioning methods such as ParMETIS
or Scotch [39, 46, 75]. Well-known open source application codes that use unstruc-
tured meshes are FEniCS [93], PLUM [107,108], OpenFOAM [109], or MOAB from
the SIGMA toolkit [140]. While these methods allow for approximately optimal
mesh partitions (i.e. in terms of surface-to-volume ratio) and provide maximum
flexibility of element-to-element connections, their complexity results in slow run-
times of the meshing routines and a high demand in memory.

A different approach to efficiently store and partition meshes are space-filling
curves (SFCs) [9, 64, 123, 158]. Instead of heuristically solving NP-hard graph par-
titioning problems, SFCs are used to approximately solve the problem in linear
runtime. Starting with a single coarse element and a recursive refinement rule, pre-
scribing how we may replace an element with finer elements covering the same area,
we obtain a tree structure of all constructable elements. The tree’s root is the coarse
element. A particular adaptive mesh resulting from the coarse element corresponds
to the leaves of a subtree. An SFC is a linear order of these leaves. It allows us to
efficiently store elements and element data in a linear array according to these SFC
indices. Partitioning to P processes reduces to splitting up the linear order into P
equally sized pieces. This approach was used for quadrilaterals and hexahedra for
example in the Octor [144] and Dendro [124] codes, which demonstrated scaling to
tens of thousands of processes.

The SFC approach has then been extended to multiple coarse elements, forming
a forest of trees [10,34,134]. With this technique it is possible to model any complex
geometry as computational domain [10, 134]. The p4est code [25] is a particular
scalable example of this approach. p4est uses quadrilateral and hexahedral elements
with the Morton SFC and was shown to scale to up to 3.1 million processes [27,103,
122].

In the sam(oa)2 framework tree-based AMR with SFCs has been implemented
for triangles using the Sierpinski SFC [96] and was shown to scale to over a hundred
thousand MPI ranks [97]. Extensions of the 2D Sierpinski curve to 3D tetrahedra
exist [9,123], but we are not aware of a software utilizing them for tree-based AMR.

We begin this thesis with developing a new SFC index for triangular and tetra-
hedral elements (simplices) with red-refinement [16], the tetrahedral Morton index
(TM-index). Its construction is similar to the Morton SFC index for quadrilater-
als/hexahedra [101], as it is also based on bitwise interleaving the coordinates of a
certain vertex, the anchor node. Opposed to quadrilaterals/hexahedra, a simplex is
not uniquely determined by its anchor node and level. We identify a distinguishing
property, the type of a simplex. The TM-index is formed by bitwise interleaving

12

the anchor node coordinates and type of the simplex and all of its ancestors. To
store the necessary information of a simplex, we require only the coordinates of the
anchor node plus the type of the simplex, resulting in 10 bytes per triangle and 14
bytes per tetrahedron. We demonstrate that in terms of memory and runtime the
TM-SFC is comparable to the Morton SFC for quadrilaterals and hexahedra. We
prove upper bounds for the number of connected components of any segment of the
TM-SFC in 2D and 3D. The simplicial meshes obtained via red-refinement contain
so called hanging nodes, faces and edged. These occur at neighboring elements of
different refinement levels, where for example a node of the finer element does not
coincide with a node of the coarser element, but lies on an edge/face of it. So far,
hanging nodes are relatively uncommon for simplicial meshes. However, since they
are being successfully used with quadrilateral/hexahedral AMR [1, 34, 132], we are
certain that applications are able to incorporate them in their solvers when using
the TM-index.

Continuing, we introduce a new approach for partitioning the coarse mesh among
the parallel processes. With coarse mesh partitioning we are able to scale the size
and complexity of the geometry representation with the number of parallel processes.
Typically, such coarse meshes are generated using external tools, such as for example
Gmsh [57] or TetGen [128]. Opposed to previously used methods, we allow multiple
owner processes for each tree. We develop the necessary communication pattern
with a minimal number of senders, receivers, and messages. This technique enables
us to minimize the parallel communication during (re-)partitioning of the coarse
mesh while simultaneously maintaining an optimal load-balance of the leaf elements.
We also discuss the identification and communication of ghost trees. These are trees
that are not local to a process, but are face-neighbor to a process’s local tree.

Another contribution of this thesis is the development of a new algorithm to create
the ghost elements of the mesh. The main advantage of our method is that it works
independently of the used type of elements and thus readily applies, for example,
to triangular, tetrahedral, quadrilateral, hexahedral, and hybrid meshes. The core
idea is to construct d-dimensional tree-to-tree face-neighbor elements by explicitly
building the (d−1)-dimensional face and transforming its coordinates before building
the neighbor element from it. We optimize our algorithm by utilizing previously
published recursive search patterns [70] and obtain runtimes that are comparable
to state-of-the-art implementations with fixed element-type [70].

We implement the methods from this thesis in an element-type independent scal-
able tree-based AMR library, which we call t8code1. The core mesh handling algo-
rithms that we discuss are New for creating a uniform mesh on a given coarse mesh,
Adapt for refining and/or coarsening elements, Partition for redistributing the el-
ements to maintain a balanced load, Ghost for creating a layer of off-process ghost
elements, and 2:1 Balance to modify a mesh such that every element’s refinement
level differs from the level of any face-neighbor by at most ±1; see e.g. [34,70]. We
reformulate these algorithms in such a way that they do not explicitly use geomet-

1https://github.com/holke/t8code

13

https://github.com/holke/t8code

ric or topological information of the individual elements, thus being independent of
the element-type. A key technique is to strictly distinguish between functions that
operate on the whole mesh (high-level) and element-local functions (low-level).

We define a collection of low-level functions and develop the high-level functions
such that every element-local operation is performed by a low-level function. Thus,
by using different implementations of the low-level algorithms for different meshes,
or different parts of the same mesh, we are able to use different types of elements
or SFCs. We also directly obtain a dimension independent formulation. For exam-
ple, the difference between 2D computations with triangles and 3D computations
with tetrahedra is merely a change of the low-level implementation. The modu-
lar approach allows us to reuse existing software for the low-level implementations,
which we demonstrate by using the library p4est for quadrilateral and hexahedral
elements.

We perform extensive strong and weak scaling tests of our methods and verify
optimal scalability on up to 917,504 parallel processes on the Juqueen and Mira
supercomputers using up to 858e9 mesh elements.

This thesis is organized as follows:

In Chapter 2 we give an overview of currently existing adaptive mesh refinement
(AMR) techniques with emphasis on tree-based AMR. We continue this overview
in Chapter 3, where we discuss SFCs and their connection with tree-based AMR.
We present a novel approach to the theory of discrete SFCs that is suited for the
purpose of AMR.

In Chapter 4 we introduce a new SFC, the tetrahedral Morton (TM-) SFC for
triangular and tetrahedral red-refinement. The TM-SFC is similar to the Morton
SFC for hypercubes in that it takes advantage of bitwise interleaving techniques.
This chapter was first published in [29] in 2016 by the Society for Industrial and
Applied Mathematics (SIAM).

We continue the discussion of the TM-SFC in Chapter 5, where we prove bounds
for the number of connected components of segments of the TM-SFC. We show that
the number of connected components in a refinement with elements of maximum
level L is at most 2(L − 1) in 2D and at most 2L + 1 in 3D and conclude with
a numerical investigation of the distribution of the different numbers of connected
components occuring.

At the time of this writing the results from Chapter 5 have been submitted for
publication and are available as a preprint [32]. This publication also contains
results that were obtained by Burstedde and Isaac. However, Chapter 5 contains
those excerpts that are the author’s own work.

Chapter 6 is devoted to the discussion of the coarse mesh of trees with particular
emphasis of a partition technique for it. We describe an approach for the distribu-
tion of the trees to the processes that minimizes communication and maintains an
optimal load-balance of forest elements. This chapter was first published in [31] in
2017 by the Society for Industrial and Applied Mathematics (SIAM).

14

In Chapter 7 we discuss a version of the Ghost algorithm to create a layer of
ghost elements that works with our framework for arbitrary element types. We
then discuss a first non-optimized version of Balance to establish a 2:1 balance
condition among the elements in Chapter 8. We conclude these two chapters with
numerical experiments of Ghost and Balance on hexahedral and tetrahedral meshes.
We demonstrate scaling to the full system of JUQUEEN using 458k MPI ranks. We
are currently preparing Chapters 7 and 8 for future publication.

We conclude this thesis by presenting a numerical solver in Chapter 9 in order to
demonstrate the usability of the presented AMR algorithms for applications. We
solve the advection equation with a finite volume scheme on 2D and 3D non-hybrid
and hybrid meshes and show excellent strong scaling on up to 458k MPI ranks.

15

2. Adaptive Mesh Refinement

In this chapter we introduce uniform and adaptive mesh refinement (AMR). We
discuss advantages and disadvantages of both methods and motivate the usage of
AMR. We carry on by giving a brief overview of unstructured and block-structured
AMR, and conclude this chapter with a more detailed elaboration of tree-based
AMR.

2.1. Uniform and adaptive mesh refinement

Most numerical solvers use meshes to discretize an analytical domain on which to
solve a PDE. Common methods are finite differences, the finite element method
(FEM), the finite volume method (FV), and the discontinuous Galerkin method
(DG). See [20,90,135] for an overview.

For all these methods a finer mesh resolution results in a smaller computational
error. Thus, in order to increase the accuracy of the numerical solution, the com-
putational mesh is replaced with a finer mesh.

One method is to entirely remesh the whole domain with smaller elements with
no particular parent-child hierarchy between the old and new mesh. Another re-
finement method is to replace mesh elements by smaller elements covering the same
area as the initial element. In this case, we have a refinement hierarchy between
the meshes. The level of an element denotes the number of refinements that were
performed from a certain root mesh to that element.

We distinguish between uniform mesh refinement and adaptive mesh refinement
(AMR). The former means that each element is refined to the same level, result-
ing in an evenly structured mesh of same-level elements. With AMR we refine or
coarsen individual mesh elements to different levels according to a given refinement
criterion. In this way it is possible to concentrate the mesh elements in areas where
the computational error is large and maintain a coarse resolution in those regions
where the error is already small. In order to decide where to refine or coarsen the
mesh, local error estimators are usually taken into account [6,19,146,155]. See also
Figure 2.1 for an example of uniform and adaptive meshes.

When we consider time-dependent solvers, such as for example for the Navier-
Stokes equations [40, 83], uniform meshes do not change between time steps in
general. With AMR, on the contrary, the mesh often changes from one time step to
the next. In this case we also speak of dynamic AMR. Dynamic AMR also occurs
in static solvers when, for example, the problem is first solved on a coarse mesh in
order to estimate the local error according to which the mesh is then refined and
the solver started again.

16

Figure 2.1.: A uniform mesh (left) and an adaptive mesh (right). In a uniform mesh,
all elements have the same size or refinement level, while in adaptive
meshes the element’s refinement levels can differ.

First applications of AMR came up in the mid-80s [14], and using AMR in parallel
started in the late 90s, e.g. [59].

2.2. Motivation for AMR

The main advantage of uniform meshes is that they are easy to implement. The
uniform structure makes iterating over the mesh and finding neighbor elements,
etc., near trivial tasks. In parallel computations, load-balancing is straightforward
and does not change in time-dependent simulations.

A disadvantage of uniform meshes is that resolving to higher accuracy needs ex-
ponentially more elements. Such high element counts increase the memory demand
and runtime of an application. It may also happen that the number of elements
needed for a desired accuracy results in meshes that are too large to fit into memory.

AMR overcomes these disadvantages of uniform meshes by design. With adaptive
meshes it is often possible to use less mesh elements and thus less memory to reach
the same accuracy as with a uniform mesh [56]. This permits simulating problems
with AMR to an accuracy that cannot be reached with uniform meshes [33,79].

Another gain of AMR is that computations are faster in comparison to uniform
meshes, or reach an increased accuracy while maintaining the same runtime [102].

The main disadvantage of AMR is an increase in algorithmic complexity. For ex-
ample, for parallel uniform meshes assignment of elements to the processes can be
computed straightforwardly and usually does not change during a computation. Us-
ing AMR, the local count of elements on each process changes with each adaptation
step, which can be as frequent as every time step in a time-dependent simulation.
These changes make it necessary to repartition the mesh in order to load-balance
the parallel computation. Likewise, computing ghost elements and iterating through
the mesh are straightforward operations for uniform meshes, but pose a significant

17

Figure 2.2.: Three different AMR methods for refining a quadrilateral mesh along
a circular arc. From left to right: unstructured AMR, block-structured
AMR, and tree-based AMR. For block-structured AMR we outline the
boundaries of the rectangular uniform patches in black. For block-
structured and tree-based AMR, color refers to the refinement level of
an element. In these two methods hanging nodes regularly occur when
two elements of different refinement levels are neighbors.

challenge to implement for adaptive meshes.

Furthermore, in variations of AMR so called hanging nodes, edges, and faces may
occur. These are nodes (or edges, or faces) of elements that do not align with all
nodes of the neighboring elements. Hanging nodes rather lie on an edge or face of
at least one neighbor element as in the middle and right pictures in Figure 2.2. We
call meshes with hanging nodes non-conforming. When using AMR with hanging
nodes, the numerical solvers have to be adapted to handle them properly. See for
example [2, 53,82,85,120].

By design AMR introduces a computational overhead, since an application can-
not spend 100% of the computing time solving the actual problem, but has to invest
resources in managing the mesh. However, many experiments show that with mod-
ern computers the overhead introduced by AMR is significantly smaller than the
gain in runtime [27,50,121].

In conclusion, using AMR certainly involves more elaborate algorithms, and a sig-
nificant amount of extra research has to be put into the meshing routines compared
to uniform meshes. This is a main reason why AMR routines are often outsourced
to external libraries and provides a core motivation to implement the AMR library
t8code in the context of this thesis.

2.3. Unstructured AMR

The three most commonly used methods for AMR are unstructured, block-structured,
and tree-based AMR, which we briefly compare now.

In unstructured AMR there is no regular pattern of connections between the
elements, meaning that the connectivity relations among elements are arbitrary;

18

see also Figure 2.2 on the left. These meshes are usually conforming; that is, there
are no hanging nodes/faces/edges. Unstructured meshes can adapt arbitrarily well
to domain geometries. Therefore, they are often used when the domain is somewhat
complex [119].

However, the memory requirements for unstructured meshes are higher than for
other types of meshes. This is because for each element a list of its neighbors has to
be stored, as well as the coordinates of each vertex in the mesh. Memory usage can
be orders of magnitude higher compared to tree-based or block structured AMR,
where we store coordinates and connectivities only for the elements of a coarse root
mesh of trees that has significantly less elements [7].

Solvers using unstructured meshes often apply graph-based partitioning meth-
ods to load-balance the mesh. Among the most common partitioner libraries are
ParMETIS [75] and Scotch [39]. Although these methods have been applied to bil-
lions of elements on millions of processes, their runtime can be orders of magnitude
slower compared to partitioning structured meshes [37,119,131].

The most commonly used types of elements are triangles in 2D and tetrahedra in
3D, using the properties of Delaunay triangulations [58,66,127], but there also exist
unstructured mesh codes that use quadrilateral or hexahedral elements [78,114].

Commonly used libraries for unstructured AMR are libMesh [78], ParFUM [87],
PUMI [68], and PYRAMID [106]. Some notable application codes are FEniCS [93],
PLUM [107,108], OpenFOAM [109], and MOAB from the SIGMA toolkit [140].

2.4. Block-structured AMR

In block-structured (or patched) AMR—see [13,120,130] for example—the mesh is
refined in rectangular patches as in the middle picture in Figure 2.2 resulting in a
hierarchy of uniform rectangular meshes. Refinement to level l + 1 is only allowed
inside a patch of level l elements. Thus, with block-structured AMR one can use
some of the advantages of a uniform mesh within the patches. This comes at the
cost of flexibility of the refinement and possibly using more mesh elements than
mathematically required.

Block-structured AMR is mainly used with quadrilateral and hexahedral meshes
and some common software libraries and applications using block-structure AMR
are BoxLib and its successor AMReX [4,18], Chombo [42], Enzo [22], SAMRAI [151], and
Uintah [15].

2.5. Tree-based AMR

In this section we provide an overview over tree-based AMR. It is the AMR technique
that we use for the algorithms in this thesis.

We start with describing the main idea of tree-based AMR. We then present the
core mesh management algorithms and demonstrate in which order they may be

19

Figure 2.3.: A refined quadrilateral and the associated refinement tree. Starting
with the coarse quadrilateral (the root of the tree), we subdivide it into
four children (the second row in the tree). We then further subdivide
two of these level 1 children into four level 2 children each (the third
row in the tree). The final mesh elements correspond to the leaves of
the refinement tree.

called by an application. At the end of this section, we introduce our notion of
high- and low-level algorithm and the API for general element types in t8code.

2.5.1. Overview

The core idea of tree-based AMR is the following: Consider the unit square as
computational domain, meshed with a single quadrilateral coarse element. This
element represents the root of a refinement tree. We can refine it by replacing it
with four children and iterate this operation arbitrarily. Thus, the resulting mesh
can be represented as a refinement tree; see Figure 2.3. Assigning each element
a unique index, we encode the elements in the tree along a so-called space-filling
curve (SFC), We can thus store the elements linearly in an array in order of their
SFC index. Replacing an element with its children, or four children with its parent,
changes the order only locally. We discuss the theory of space-filling curves in more
detail in Chapter 3.

Suppose now that the computational domain is more complicated, for example the
wing of an airplane, or the mantle of the earth [27,119]. There are two approaches
to model such domains using tree-based AMR.

In the first approach, we completely embed the domain inside a single refinement
tree and then refine the elements along the domain boundary up to a desired ac-
curacy. All elements that lie outside of the domain are then not considered in the
computation [62,91]. See also Figure 2.4 on the left.

The second approach is to model the domain with an unstructured mesh of coarse
elements and then understand each coarse element as the root of one refinement tree,
giving rise to a forest of elements [10,133,134].

We call the unstructured mesh of tree roots the coarse mesh, which is created
a priori to map the topology and geometry of the domain with sufficient fidelity.

20

Figure 2.4.: Two ways to approximate a non-trivial domain using tree-based AMR,
in this case the region between a circular disk and a unit square. Left:
The domain is embedded in a single refinement tree. This tree is then
refined at the domain boundary. For a computation only the elements
within the domain and intersecting the domain boundary are consid-
ered. Color represents the refinement level. Right: The domain is
modeled with an unstructured coarse mesh of trees. Each element in
this coarse mesh represents one refinement tree. Color represents a
consecutive enumeration of the trees. We generated this unstructured
mesh with the Gmsh mesh generator [57].

Elements may then be refined and coarsened recursively, changing the mesh below
the root of each tree. See Figure 2.4 on the right. In extreme cases, for example
in industrial and medical applications, the coarse meshes may consist of billions
of trees [52, 68, 119]. The accuracy of the approximation of the domain may be
further increased by using curved tree edges with the help of higher order geometry
functions; see for example [67,150,154].

When an application uses the second approach with a large coarse mesh, this
mesh has to be partitioned between the processes in order to decrease the memory
used by each process. We will discuss coarse mesh partitioning in Chapter 6.

Thus, we have in fact two meshes: The (unstructured) coarse mesh that stores the
domain topology and the tree-to-tree connections and the fine mesh that stores the
actual computational mesh of refined trees. Usually, the coarse mesh is obtained as
the output of a mesh generator, or it is constructed manually for small tree numbers.

Since each coarse mesh element represents a refinement tree, we call the fine mesh
forest mesh. Consequently, the tree-based AMR approach is also often called forest-
of-trees approach [14, 34]. The forest mesh stores an array of (process local) trees,

21

and for each tree it stores the linear array of the process local fine elements. We
only store the finest elements of a forest and do not store any intermediate elements
between the coarse element and the finest elements. Since these elements form the
leaves of the refinement trees, we call them leaf elements.

Since each tree stores its own array of elements, the particular linear order (SFC)
used is local to the trees. It is thus possible to combine trees of different kinds to
form hybrid meshes, for example quadrilaterals and triangles in 2D, or hexahedra,
tetrahedra, prisms (and pyramids) in 3D. In theory it is also possible to use different
types of linear orders for the same kind of trees, for example Hilbert SFC [65] in one
quadrilateral tree and Morton SFC [101] in another. However, we do not discuss
such applications in this thesis.

2.5.2. Core algorithms

We identify several core algorithms for tree-based AMR.

• New – Generate a partitioned uniform mesh on a given geometry.

• Adapt – Refine and coarsen mesh elements according to a given criterion.

• Partition – Redistribute mesh elements among the processes in order to
maintain a balanced load. This has a version for the coarse mesh and one for
the fine mesh.

• Ghost – Construct and communicate a layer of ghost (halo) elements for each
process.

• Balance – Establish a 2:1 balance in a mesh. That is, after Balance, each
mesh element only has neighbors of the same refinement level or at most one
level higher or lower.

• Iterate – Iterate through the mesh, executing a callback on each element
and inter-element interface (faces, edges, or vertices).

We discuss the typical pipeline of these algorithms with a solver application as
in Figure 2.5. In a preprocessing step, the geometry of the domain is meshed with
a coarse mesh. For small coarse meshes we can construct them in the AMR library
itself by explicitly giving the tree-to-tree connections. This approach is not practical
for larger coarse meshes, however, which is why we usually use an external mesh
generator for this task and feed its output into the AMR library. Among the open
source mesh generators we advise the reader to consider enGrid [51], Gmsh [57],
NETGEN [125], TetGen [128], and Triangle [127]. In this step, we may already
distribute large coarse meshes among several processes.

After preprocessing, the first step is to create a partitioned uniform forest mesh
on top of the coarse mesh with New. The initial uniform refinement level depends
on the application. Since this mesh is uniform, the global number of elements
and the number of elements per tree is known. From this, each process p can

22

calculate the index Ep of its first element and then locally create the elements with
indices Ep, . . . , Ep+1 − 1. Thus, New is completely distributed and does not involve
communication.

The next step is usually an initial call to Adapt to create a first adapted mesh
according to an application’s initial refinement criterion. If a 2:1 balance condition
is necessary, we call Balance. We then often repartition the mesh with Partition.
This is necessary to maintain a balanced load, since the local element count of
several (or all) processes might change during Adapt and Balance. As a final AMR
step, we may call Ghost to create a layer of ghost elements.

At this point, the application carries out one or several solver steps, possibly using
Iterate to iterate through the mesh, for example to identify degrees of freedom to
assemble or apply matrices. After solving, we may continue again with Adapt using
an error estimator and start a new cycle.

Throughout this thesis, we describe theoretical concepts and implementation de-
tails of these algorithms. We describe our versions of New and Adapt in Sections 4.4.1
and 4.4.2. Partition is well-understood and we describe it in Section 3.5. Ghost

and Balance are more complex than the other algorithms and therefore we devote a
whole chapter for each of them. We describe different versions of Ghost in Chapter 7
and discuss Balance in Chapter 8. For Iterate see our remarks in Chapter 9.

Remark 2.1. Typically, the application stores data for each mesh element, for
example point values of an interpolated function. If the mesh changes because of
adaptation, the data has to be projected onto the new mesh, which for example
involves interpolating the function values to new finer mesh elements, or averaging
function values of elements that are coarsened into the new value for the parent.
See Chapter 9 for a more elaborate discussion.

Remark 2.2. The enumeration of the trees in the coarse mesh determines the order
in which they are stored and thus their possible partitioning to the processes. The
initial enumeration is given by the mesh generator and may be far from optimal
for partitioning. For example, if the order is completely random, the partitions
on the processes may contain arbitrarily many connected components. In order to
reduce the number of connected components and obtain more optimal partitions,
we may carry out one run of an unstructured mesh partitioner on the coarse mesh,
for example ParMETIS [74] or Scotch [39], as an additional preprocessing step. We
discuss the (re-)partitioning of the coarse mesh in detail in Chapter 6.

2.5.3. Independence of the element type

We distinguish between global (high-level) algorithms that operate on the complete
mesh, such as the core algorithms above, and local (low-level) algorithms that op-
erate on a single element. Examples for the latter type are computing the children
or parent of an element, computing the SFC index of an element, or computing
face-neighbors of an element.

23

Mesh generator/AMR lib

Build coarse mesh

��

AMR lib

New

��

AMR lib

Adapt

��

element-wise
callback

//

Application

Refinement
criterion

oo

AMR lib

(Balance)
Partition
(Ghost)

��

Application

Solve

//

element-wise
callback

//
AMR lib

Iterate

oo

(2.1)

Figure 2.5.: This diagram represents a typical call pipeline for the high-level AMR
algorithms of a solver application. At first a coarse mesh is constructed
which models the domain geometry. On top of this coarse mesh we
construct a distributed uniform forest mesh, which is then adapted
according to a refinement criterion provided by the application. We
can now balance and partition the mesh and create a layer of ghost
elements. Before the application starts the solver. If the solver requires
to readapt the mesh, the adapt/balance/partition/ghost cycle starts
again.

24

A main strategy for the algorithms and the code developed in this thesis is the
separation of the high-level algorithms from the low-level ones. Take for example
the algorithm Adapt. In Adapt, we iterate over all leaf elements and call a user-
provided function for each element and each family of elements. If the function
returns positive, we refine the (first) element, thus constructing its children. If
the function returns negative on a family of elements, we coarsen them, hence we
construct the parent for one of the elements. For an implementation of Adapt,
however, it is irrelevant how exactly the children or the parent are constructed. We
only need to know when to call the corresponding low-level algorithm and can use
it as a blackbox. In particular, the implementation of Adapt does not change for
different types of elements, for example 2D triangles and 3D hexahedra, as long as
we provide the appropriate low-level algorithms for the element type.

We carry out the separation of high- and low-level algorithms in the implementa-
tion by defining a low-level API, a set of low-level algorithm that define an element
type. In t8code this low-level API is encoded in form of an abstract C++ base class.
Each element type, such as quadrilaterals with Morton SFC index, or tetrahedra
with the TM-index, is an implementation of this base class. Hence, introducing a
new type of elements of SFC is achieved by simply implementing their low-level al-
gorithms. See for example the Bachelor’s thesis [81] in which prisms with a Morton
type SFC are implemented. For a detailed list of all low-level functions in t8code

see Appendix A.
Because of our separation of high- and low-level algorithms, the methods and core

algorithms can easily be applied to various kinds of elements and SFCs. Further-
more, mixing elements of different types in the same mesh is possible, allowing us
to use hybrid meshes.

25

3. Space-Filling Curves

In this chapter we introduce our notations for space-filling curves and demonstrate
their application to tree-based AMR. We discuss how SFCs offer us a way to effi-
ciently store and access the elements of a mesh in an array using the element’s SFC
index. Furthermore, we show how to partition a mesh in linear runtime to maintain
an ideal load-balance using SFCs.

When talking about SFCs, we have to distinguish between SFCs in the analytical
sense and SFCs in the numerical (or discrete) sense. In the analytical sense an
SFC is a continuous mapping f : I → Rn from a compact set I ⊂ R into Rn whose
image f(I) has a positive n-dimensional volume [9,158]. In most cases, I is the unit
interval.

However, when SFCs are used in a numerical sense they are considered as maps
from or into a finite index set, which is a discrete version of the analytical SFC.
A typical approach is to define an analytical SFC as a limit of some iteration rule
and then define an SFC in the numerical sense as a map resulting from only finitely
many iteration steps; see for example [9, 64,123] and the references therein.

In contrast to this indirect approach, we present a new formal definition of (numer-
ical) SFCs that is self-consistent and readily applies to adaptive mesh refinement.

3.1. Refinement spaces and refinements

In order to define SFCs, we introduce refinement spaces and refinements. As we
have seen in the previous chapter, in tree-based AMR we associate the elements
resulting from a root element via refinement with the leaves of a refinement tree. In
order to be independent of a particular geometric embedding of the mesh elements,
we define SFCs to be mappings on this refinement tree. More precisely, we start
with the set of all possible mesh elements, which naturally form the vertices of a
tree.

Definition 3.1. A refinement space is a rooted tree with countably many ver-
tices. Thus, it is a connected graph without circles and a distinguished vertex E ,
the root. We call the vertices of the tree the elements of the refinement space.

Definition 3.2. The level `(E) of an element E of a refinement space is its distance
from the root vertex. By S l we denote the set of all elements of level l.

The parent of an element E is the unique element P with which E shares an
edge and for which `(E) = `(P) + 1. The root element is the only element that has
no parent.

Vice-versa, we say that E is a child of P if and only if P is the parent of E.

26

Definition 3.3. Let l ≥ 0. The l-th refinement map Rl is a map Rl : S l →
P(S l+1), mapping an element E of level l to the set of its children Rl(E) (here P
denotes the power set). We say that E is refined into the elements Rl(E).

In fact, we can identify a refinement space solely from its elements, their levels
and the refinement maps.

Proposition 3.4. A refinement space is equivalent to a triple (S, `,R), where S is
a set, ` : S → N0 a map, and R =

{
Rl
∣∣ l ∈ N0

}
is a set of maps, Rl : S l → P(S l+1)

with S l = `−1(l), such that

• there exists exactly one element E ∈ S with `(E) = 0, and

• the image of Rl is a partition of S l+1:

Rl(E) ∩Rl(E′) = ∅ for E 6= E′ ∈ S l, (3.1)⋃
E∈Sl

Rl(E) = S l+1. (3.2)

Proof. Given such a triple, we build a graph by connecting two elements of S if one
is the refinement of the other. Properties (3.1) and (3.2) then directly imply that
the graph has no circles and is connected. It is thus a tree and E is a possible choice
for the root. The other direction of the equivalence follows from Definitions 3.2
and 3.3.

By abuse of notation we also write S instead of (S, `,R).

Remark 3.5. If a maximum level L = maxE∈S `(E) <∞ exists, then we obtain

S l = ∅ for all l > L, (3.3)

and because of (3.2), we get

S l 6= ∅ for all l ≤ L (3.4)

as well as RL(E) = ∅ for each level L element E ∈ S. In particular, such a maximum
level always exists if there are finitely many elements.

If a maximum level does not exist, then the set of elements must be infinite and
we can also conclude

S l 6= ∅ for all l ∈ N0. (3.5)

The refinement maps define a hierarchy of the elements within a refinement space.
We introduce several notations for the relationships among elements.

Definition 3.6. If E ∈ Rl(E′) in a refinement space, then we say that E is a child
of E′ and E′ is the parent of E.

27

Note that because of (3.2) each element except the root element has a parent and
because of (3.1) it is unique. It is generally not true that each element of level l < L
has a child, since we do not exclude the case Rl(E) = ∅.
Definition 3.7. We say that E is a descendant of E′ if E results from E′ via
successive refinement, thus E = E′, or `(E) ≥ `(E′) and E ∈ R`(E)−1 ◦ · · · ◦
R`(E

′)(E′), Furthermore, E′ is an ancestor of E if and only if E is a descendant of
E′.

Definition 3.8. A refinement of a refinement space S is a subset S ⊂ S of
elements that can be constructed from the root element via successively replacing
a parent with its children. Thus, starting with the set S0 = { E }, a refinement is a
set that can be constructed from it by applying the following rule recursively:

• If S is a refinement and E ∈ S , then S \ {E } ∪R`(E)(E) is a refinement.

Remark 3.9. Thus, in the language of trees, a refinement S consists of the leaves
of a subtree of the refinement space that contains the root element and for each
element either none or all of its children.

Definition 3.10. We call the tree from Remark 3.9 the refinement tree of S ,
and the elements of S are the leaves of the refinement.

With this notion, we think of a refinement as an adaptive mesh, as it could
arise from any tree-based adaptive mesh application. We display examples for 1:4
quadrilateral refinement in Figures 3.1 and 3.4.

Remark 3.11. Each set S l of level l elements is a refinement, since we can construct
it from S l−1 by applying the refinement rule to each element. This iteration starts
with S0 = { E }. We call the refinement S l the uniform refinement of level l.

We illustrate this definition with a geometrical example.

Example 3.12. As an example we discuss the 1:4 refinement of quadrilateral el-
ements. We fix a maximum level L and consider the scaled unit square [0, 2L]2.
Starting with the root element E = [0, 2L]2, all other elements in our refinement
space are constructed by dividing an element into four subelements as in Figure 3.1,
increasing their level by one. The resulting refinement tree is a quadtree; each ver-
tex of level l < L has exactly four children. To be formally correct, we describe the
refinement space in terms of the level and the refinement maps. Let S l be the set
of all subsquares of E of side length 2L−l with coordinates an integer multiple of
2L−l. We can identify such an element with its lower left corner C = (m2L−l, n2L−l)
and its level l. Here, m,n ∈ N0, 0 ≤ n,m < 2l. The set S is defined as the union
of all S l, 0 ≤ l ≤ L. We describe the refinement maps Rl in terms of the corner
coordinates by

Rl((m2L−l, n2L−l)) =
{

(2m2L−l−1, 2n2L−l−1),

(2m2L−l−1, (2n+ 1)2L−l−1),

((2m+ 1)2L−l−1, 2n2L−l−1),

((2m+ 1)2L−l−1, (2n+ 1)2L−l−1)
}
.

(3.6)

28

Rl

C

2L−l 2L−l−1

C 0 2L

Figure 3.1.: 1:4 refinement of quadrilateral elements. Left: The refinement rule for
an element of level l < L with anchor node C. The x and y coordinates
of C are integer multiples of 2L−l and lie within [0, 2L]2. Right: An
example for a refinement in the refinement space.

3.2. Space-filling curves

In short, an SFC index is a map from a refinement space into the natural numbers
that fulfills certain properties.

Definition 3.13. A space-filling curve index on a refinement space S is a map

I : S → N0 (3.7)

that fulfills the following properties for any E,E′, Ê ∈ S:

(i) The map I × ` : S → N0 × N0 is injective. Thus, the index and the level
uniquely determine an element of S.

(ii) If E is an ancestor of E′ then I(E) ≤ I(E′). Hence, refining an element cannot
decrease its SFC index.

(iii) If I(E) < I(Ê) and Ê is not a descendant of E, then I(E) ≤ I(E′) < I(Ê) for
all descendants E′ of E. Therefore, refining an element is a ’local’ operation
in terms of the index.

Restricted to the leaves of a refinement, an SFC index becomes injective:

Proposition 3.14. Let S be a refinement in a refinement space S with SFC index
I. Then any two leaves in S have different SFC indices, thus

E 6= E′ ∈ S ⇒ I(E) 6= I(E′). (3.8)

Proof. Let E 6= E′ ∈ S . Let P be the nearest common ancestor of E and E′,
that is, the element in S of greatest level that is both an ancestor of E and E′.
Since the root element is ancestor of all elements, P must exist and because each
element has a unique parent, P is also unique. Now P 6= E and P 6= E′ since
otherwise E′ would be a descendant of E or vice-versa, which is a contradiction

29

with S being a refinement. Furthermore, since P is the nearest common ancestor
of E and E′, P must have two children PE 6= PE′ that are ancestors of E and E′.
Since `(PE) = `(PE′) = `(P) + 1, we know from the injectivity of I × ` that the
indices of PE and PE′ are not equal. We assume I(PE) < I(PE′) without loss of
generality. From property (ii) of Definition 3.13 we conclude that I(PE′) ≤ I(E′)
and with property (iii) follows

I(PE) ≤ I(E) < I(PE′), (3.9)

and thus I(E) < I(PE′) ≤ I(E′), proving the claim.

Proposition 3.14 gives us the theoretical justification for the desired one-dimensional
storage scheme of a refinement. Since for any refinement the SFC index is injective
on the leaves, we can uniquely arrange the leaves in an array such that the order
induced by the SFC index is preserved.

Corollary 3.15. Let S be a refinement of S with SFC index I and let N = |S |
be the number of leaves. Then there exists a unique bijective map

IS : S → { 0, . . . , N − 1 } , (3.10)

that is monotonous under I, thus

IS (E) < IS (E′)⇔ I(E) < I(E′). (3.11)

The statement remains true if N = ∞, in which case the right-hand side of equa-
tion (3.10) is N0.

Definition 3.16. We call this IS the consecutive Index of S with regard to I.

3.3. The Morton space-filling curve

Most SFCs in use arise from a recursive pattern. The root element is a polytope;
most common are lines, triangles, quadrilaterals, tetrahedra, hexahedra, prisms, and
pyramids. This root element is then subdivided into children of the same polytope
type 1, which are then provided with a local order, i.e. per parent. This refinement
pattern is then applied recursively to the children, with the possibility of rotations
and/or reflections. See also Figure 3.2.

For a detailed overview of SFCs we refer the reader to [63,64] and the references
therein. Here, we discuss the Morton SFC for quadrilateral/hexahedral elements as
an example.

The Morton curve (or Z-curve) for quadrilateral (2D) and hexahedral (3D) el-
ements was first described by Lebesgue [88] and its applications to data storage
were discussed by G. M. Morton [101]. The refinement space for the Morton index

1With the exception of pyramids, which may be subdivided into pyramids and tetrahedra.

30

0 1

2 3

00 01

02 03

10 11

12 13

20 21

22 23

30 31

32 33

Figure 3.2.: The child-ids for the Morton index. We label the four children of a
quadrilateral with 0, 1, 2, 3 in Z-order (left). We recursively apply this
scheme to all descendants, appending the child-id on each level (right)
to compute the Morton index. This is an alternate method to the
bitwise interleaving (3.13). See also equation (3.16) and Figure 3.3.

results from 1:4 refinement in 2D and 1:8 refinement in 3D. In general, the Morton
index can be defined in any space dimension n on the n-dimensional hypercube
with 1:2n refinement. Let us now consider dimension n = 2. We already discussed
in Example 3.12 that each element Q of the refinement space S is identified with
its level and its lower left corner coordinates (x, y). We call this corner the anchor
node of Q. These coordinates are integers in [0, 2L) ∩N0 and as such they posses a
binary representation of length L:

x =
L−1∑
j=0

xj2
j = (xL−1xL−2 . . . x0)2, y =

L−1∑
j=0

yj2
j = (yL−1yL−2 . . . y0)2, (3.12)

with xj , yj ∈ { 0, 1 }. The Morton index m : S → N0 is defined by mapping these
coordinates to their bitwise interleaving,

m(Q) := (yL−1xL−1yL−2xL−2 . . . y0x0)2 ∈ [0, 22L). (3.13)

See also Figure 3.3. This scheme extends to higher dimensions n > 2 via bitwise
interleaving all n coordinates of the anchor node. The Morton index is an SFC
index in the sense of Definition 3.13 [136].

We also discuss a recursive way to describe the Morton index. We label the four
children of a single quadrant with 0, 1, 2, and 3 in Z-order, the so-called child-id.
Hence, the lower left child has id 0, the lower right child 1, the upper left child 2,
and the upper right child 3; see Figure 3.2.

Each element E in the refinement space is constructed from the root element via
successive refinement. These refinements are unique and thus we obtain a sequence
of child-ids (c1, c2, . . . c`(E)) describing this refinement process. It can be read as:
Start with the root element, take its child c1, from this child take the child c2, and
so forth. The element itself has child-id c`(E) with regard to its parent.

31

0
0 2L = 24

Q

10

4

1 2 3

(x, y) = (10, 4) = ((1010)2, (0100)2)

⇒ m(Q) = (01100100)2 = (100)10

(3.14)

m(Q) = (1210)4 = (100)10 (3.15)

Figure 3.3.: Two ways of computing the Morton index m(Q) of a quadrant Q in the
quadrilateral refinement with maximum level L = 4. The quadrant’s
anchor node has coordinates x = 10 and y = 4. We can compute the
Morton index via bitwise interleaving as in equation 3.14. A second way
to compute the m(Q) is via Q’s refinement path. We can construct Q
from the root element by taking its first child, then the second child of
that first child, and finally taking the first child of this quadrant. This
leads to the sequence (121) of child-ids. We append zeroes until we
reach the length L and interpret it as a quarternary number, leading to
m(Q) = (1210)4.

We can now extend this sequence up to length L by filling up with zeroes and
since ci ∈ { 0, 1, 2, 3 }, we can interpret it as a quarternary number:

(c1c2 . . . c`(E)0 . . . 0)4 ∈ [0, 4L) = [0, 22L). (3.16)

It is straightforward to show that this is exactly the Morton index of E, [34, 142]:

m(E) = (c1c2 . . . c`(E)0 . . . 0)4. (3.17)

From this we obtain the correspondence

(yixi)2 = cL−i, (3.18)

meaning that we can read of the child-id of E′s ancestor at level i + 1 from the
(L − i)-th bits of the anchor node coordinates. See also Figure 3.3. We refer to
Figure 3.4 for an example of the SFC arising from the Morton index.

Due to the bitwise interleaving, the Morton index of an element can be computed
in constant time and is efficient to implement. Since the index is given implicitly by
the anchor node coordinates, most algorithms that operate with the Morton code
do not have to carry out the actual bit interleaving but work with the coordinates
instead; see for example [34]. Another advantage of the Morton index is that it is
memory efficient, storing only the anchor node coordinates and level of an element.

32

Figure 3.4.: The SFC curve arising from the Morton code for quadrilateral 1:4 re-
finement. Left: A refinement of the root element together with the SFC
starting in the lower left corner and ending in the upper right corner.
Right: The associated refinement tree with the SFC passing the leaves
(top). Via the consecutive index, the SFC order induces a linear order
of the elements in the refinement, such that we can store these elements
in an array (bottom).

In addition, many low-level algorithms such as finding an element’s parent, refining
an element, or constructing its face-neighbors, etc. can be computed in constant
time, independent of the element’s level. Since the logic of the Morton code is the
same for 2D and 3D, one can implement both versions with the same source code,
carrying out all operations on the z-coordinate within an if-clause or a preprocessor
macro, such as it is implemented in the p4est library for example [25]. Due to these
advantages, the Morton index is chosen as SFC index by various AMR packages and
solvers [2, 34,137].

The greatest perceived disadvantage of the Morton index are the jumps in the
SFC. The Morton index does not possess the same locality properties such as for
example the Hilbert curve [65], which may lead to an increased runtime when iter-
ating over the mesh elements and can result in cache misses when locating neighbor
elements [35]. However, practical experiments show that this effect is not measur-
able [26]. Also, the Morton SFC may produce disconnected partitions, though the
number of connected components is shown to be at most two [9, 32].

It is notable that the Morton index is not only used for AMR applications. Ex-
amples for other use cases include fast matrix multiplication with the Strassen-
Algorithm [145], image encryption [38], and databases [118].

In Chapter 4 we develop a SFC for triangles and tetrahedra whose core idea is
based on the Morton SFC.

33

3.4. Space-filling curves on forests of trees

We do not want to restrict our meshes to single refinement trees, but include the
possibility to patch trees together to form more complex coarse meshes. Thus, from
the SFC point of view, we have a collection of refinements with individual SFCs on
them, which we consider together as a so-called forest.

Definition 3.17. Let {K0, . . . ,KK−1 } be refinements of respective refinement
spaces { S0, . . . ,SK−1 }. Then the forest F with trees {Kk }k<K is the set of
all leaves of the individual refinements paired with their tree number k:

F :=
K−1⋃
k=0

{ k } × Kk. (3.19)

The elements of F are the leaves of the forest.

Remark 3.18. The refinement spaces Sk do not have to be different from each
other. In most cases, all Sk are the same or there are only a few different types of
refinement spaces.

Remark 3.19. A forest with a single tree is isomorphic to a refinement.

Definition 3.20. If for a forest F each refinement space Sk has an SFC index Ik,
then we extend these to an index I on the leaves of F by

I : F −→ { 0, . . . ,K − 1 } × N0 (3.20)

(k,E) 7−→ (k, Ik(E)) (3.21)

with the order

(k, I) < (k′, I ′) :⇔ k < k′ or (k = k′ and I < I ′) (3.22)

on { 0, . . . ,K − 1 } ×N0, which extends the individual SFC orders across the trees.
By extension of notation we call I an SFC index of F .

Similarly, the levels of the individual refinement spaces extend to a level map for
the forest by `(k,E) := `(E).

With these definitions we form the analogon to Corollary 3.15 for forests.

Lemma 3.21. Let F be a forest with SFC index I and finite number N of leaves,
then there exists a unique bijective map

IF : F −→ { 0, . . . , N − 1 } (3.23)

that is monotonous under I, thus

(k, Ik(E)) < (k′, Ik(E′))⇔ IF (k,E) < IF (k′, E′). (3.24)

We call this map the consecutive index of F .

34

k0 k1

p0 p1 p1 p2

k0

k1

Figure 3.5.: SFCs naturally extend to multiple trees to model complex geometries.
Here, we show two trees k0 and k1 with an adaptive refinement. To
enumerate the forest mesh, we establish an a priori order between the
two trees and use an SFC within each tree. On the left-hand side of the
figure the refinement trees and their linear storage are shown. When
we partition the forest mesh to P processes (here, P = 3), we cut the
SFC in P equally sized parts and assign part i to process i.

Proof. Let Ok be the number of leaves in all trees of indices smaller than k:

Ok :=

k−1∑
i=0

|Kk|, (3.25)

and let IKk
be the consecutive index of the k-th tree. Then

IF (k,E) := Ok + IKk
(E) (3.26)

satisfies the desired property.

We illustrate this concept in Figure 3.5.

3.5. Partitioning with space-filling curves

In order to ensure the scalability of an application, it is necessary that each parallel
process is assigned (approximately) the same amount of work. This operation is
called load-balancing.

While SFCs offer us a way to effectively store and access the leaves of a forest, they
also suggest a straightforward method to load-balance these leaves across multiple
processes.

Supposing a load-balanced mesh changes due to adaptation, then the workload
may not be balanced anymore. It is thus necessary to migrate elements from those
processes with more elements to those with less. This procedure is called repar-
titioning. In order to fairly repartition the mesh, it is necessary to know which
elements have to be mapped to which process.

35

Let IF be the consecutive index of a forest F with N leaves that are to be
distributed among P processes with ranks 0, 1, . . . , P − 1. The partition should
respect the SFC order, thus if (k,E) is assigned to a process p and IF (k,E′) >
IF (k′, E) then we demand that (k′, E′) is assigned to a process q ≥ p.

We use the scheme presented in e.g. [34], assigning to process p the set of leaves

F (p) :=

{
(k,E) ∈ F

∣∣∣∣ ⌊pNP
⌋
≤ IF (k,E) <

⌊
(p+ 1)N

P

⌋}
. (3.27)

This ensures that the count of elements on different processes differs by at most
one. See also Figure 3.5 for an illustration of the partitioning.

In some cases the computational load differs between elements. We then may
assign a non-negative weight w(k,E) to each element that is proportional to the
computational load and demand from the assignment of elements to processes that
the sums of all weights of the processes’ elements are approximately equal, rather
than the count of elements. This is known as the weighted partitioning problem to
which several approximative solutions using SFCs exist [34,47].

An example where weighted partitioning occurs is the hp-adaptive finite element
method. Here, different elements have different numbers of degrees of freedom such
that elements with smaller polynomial degree p cause less computational load than
those with a larger degree [86].

In contrast to load-balancing using graph-based methods [46, 74], the partitions
resulting from SFCs can have more surface area and may be disconnected resulting
in an increase in parallel communication. However, the partition quality was shown
to be acceptable [27] and partitioning with SFC can be orders of magnitude faster,
since it reduces the NP-hard problem to an approximation using linear runtime.
For this reason SFC partitioning is a common choice when the mesh is repartitioned
frequently, e.g. in adaptive solvers for time-dependent PDEs; see for example [9,23,
60,62,123,156].

36

4. The Tetrahedral Morton Index

This chapter is based on the paper [29]. We edited it slightly in order to fit into
the general notations of this thesis, without changing its mathematical content.
Copyright © by SIAM. Unauthorized reproduction of this chapter is prohibited.

In this chapter, we develop a new SFC index for triangular and tetrahedral mesh
refinement that can be computed using bitwise interleaving operations similar to
the Morton index for cubical meshes; see Section 3.3. We demonstrate that this
index has many of the favorable properties known for hexahedra. To store sufficient
information for random access, we define a low-memory encoding using 10 bytes per
triangle and 14 bytes per tetrahedron.

Our starting point is to divide the simplices in a refined mesh into two (two di-
mensions, 2D), respectively six (three dimensions, 3D), different types and selecting
for each type a specific reordering for Bey’s red-refinement [16]. This type and the
coordinates of one vertex serve as a unique identifier, the Tet-id, of the simplex in
question. In particular, we do not require storing the type of all parent simplices
to the root, as one might naively imagine. We then propose a Morton-like coor-
dinate mapping that can be computed from the Tet-id and gives rise to an SFC.
Based on this logic, we develop constant-time algorithms (independent of an ele-
ment’s refinement level) to compute the Tet-id of any parent, child, face-neighbor,
and SFC-successor/predecessor and to decide whether for two given elements one
is an ancestor of the other. We conclude with scalability tests of mesh creation and
adaptation with over 850e9 tetrahedral mesh elements on up to 131,072 cores of the
JUQUEEN supercomputer and 786,432 cores of MIRA.

4.1. Mesh refinement on simplices

Our aim is to define and examine a new SFC for triangles and tetrahedra by
adding ordering prescriptions to the nonconforming Bey-refinement (also called red-
refinement) [16, 17, 153]. We briefly restate the red-refinement in this section and
contrast it with the well-known conforming (or red/green) refinement.

We refer to triangles and tetrahedra as d-simplices, where d ∈ { 2, 3 } specifies
the dimension. It is sometimes convenient to drop d from this notation. A d-
simplex T ⊆ Rd is uniquely determined by its d+ 1 affine-independent corner nodes
~x0, . . . , ~xd ∈ Rd. Their order is significant, and therefore we write

T = [~x0, ~x1, ~x2] in 2D, (4.1a)

T = [~x0, ~x1, ~x2, ~x3] in 3D. (4.1b)

37

~x0 ~x1

~x2

~x12
~x02

~x01

T0 T1

T2

T3 ~x0

~x2

~x1

~x3

~x13
~x03

~x12~x02

Figure 4.1.: Left: The refinement scheme for triangles in two dimensions. A triangle
T = [~x0, ~x1, ~x2] ⊂ R2 is refined by dividing each face at the midpoints
~xij . We obtain four smaller triangles, all similar to T . Right: The
situation in three dimensions. If we divide the edges of the tetrahedron
T = [~x0, ~x1, ~x2, ~x3] ⊂ R3 in half, we get four smaller tetrahedra (similar
to T) and an inner octahedron. By dividing the octahedron along any
of its three diagonals (shown dashed) we finally end up with partition-
ing T into eight smaller tetrahedra, all having the same volume. The
refinement rule of Bey is obtained by always choosing the diagonal from
~x02 to ~x13 and numbering the corners of the children according to (4.2).

Definition 4.1. We define ~x0 as the anchor node of T . By ~xij we denote the
midpoint between ~xi and ~xj , thus ~xij = 1

2(~xi + ~xj).

4.1.1. Bey’s refinement rule

Bey’s rule is a prescription for subdividing a simplex. It is one instance of the
so-called red-refinement, where all faces of a simplex are subdivided simultaneously.

Definition 4.2. Given a d-simplex T = [~x0, . . . , ~xd] ⊂ Rd, the refinement rule of
Bey consists of cutting off four subsimplices at the corners (as in Figure 4.1). In
3D the remaining octahedron is then divided along the diagonal from ~x02 to ~x13.
Bey numbers the 2d resulting subsimplices as follows.

2D :
T0 := [~x0, ~x01, ~x02], T1 := [~x01, ~x1, ~x12],
T2 := [~x02, ~x12, ~x2], T3 := [~x01, ~x02, ~x12],

(4.2a)

3D :

T0 := [~x0, ~x01, ~x02, ~x03], T4 := [~x01, ~x02, ~x03, ~x13],
T1 := [~x01, ~x1, ~x12, ~x13], T5 := [~x01, ~x02, ~x12, ~x13],
T2 := [~x02, ~x12, ~x2, ~x23], T6 := [~x02, ~x03, ~x13, ~x23],
T3 := [~x03, ~x13, ~x23, ~x3], T7 := [~x02, ~x12, ~x13, ~x23].

(4.2b)

38

Remark 4.3. If we apply the refinement rule from Definition 4.2 recursively to
the descendants of a d-simplex S, we obtain a refinement space in the sense of
Definition 3.1 with root element S. By a refinement of S we mean a refinement of
this refinement space.

Note, that the refinement rule explicitly allows nonuniform meshes and thus hang-
ing faces and edges.

We recall some basic definitions of relations among mesh elements in the simplicial
case.

Definition 4.4. The Ti from (4.2) are called the children of T , and T is called
the parent of the Ti, written T = P (Ti). Therefore, we also call the Ti siblings of
each other. If a d-simplex T belongs to a refinement of another d-simplex S, then T
is a descendant of S, and S is an ancestor of T . The number ` of refining steps
needed to obtain T from S is unique and called the level of T (with respect to S);
we write ` = `(T). Usually S is clear from the context, and therefore we omit it in
the notation. By definition, T is an ancestor and descendant of itself.

Consider the six tetrahedra S0, . . . , S5 ⊂ R3 displayed in Figure 4.2. These
tetrahedra form a triangulation of the unit cube. The results and algorithms in this
chapter rely on the following property [16].

Property 4.5. Refining the six tetrahedra from the triangulation of the unit cube
simultaneously to level ` results in the same mesh as first refining the unit cube to
level ` and then triangulating each smaller cube with the six tetrahedra S0, . . . , S5,
scaled by a factor of 2−` (see Figure 4.3). The same behavior can be observed in 2D
when the unit square is divided into two triangles.

Remark 4.6. A key motivation to use the refinement scheme of Bey is that it
produces numerically stable meshes. Thus, no matter how much we refine, the mesh
elements do not degenerate. The degeneracy of a mesh element T with volume v
and side lengths { li } may be measured by

η(T) =
12(3v)

2
3∑

l2i
> 0. (4.4)

If η(T) � 1 the element’s volume is small relative to the sum of its side lengths.
Imagine a very flat tetrahedron, or a triangle with one angle being close to π.

From Property 4.5 we conclude that for each tetrahedron T that is an ancestor
of one of the Si we have

η(T) = η(Sj) (4.5)

for some j ∈ { 0, . . . , 5 }. Hence, η(T) is bounded and any mesh resulting from Bey’s
refinement rule is numerically stable. See [92] and the references therein for a more
thorough discussion of this subject.

39

X

Y

S1

S0

c3 =

(
1
1

)
c2

c1
(

0
0

)
= c0

S0

S1

S2

S3

S5

X

Y

Z

S4

c1

c2

c3

c4

c5

c6

c7

c0

2D ~x0 ~x1 ~x2

S0 c0 c1 c3

S1 c0 c2 c3

(4.3a)

3D ~x0 ~x1 ~x2 ~x3

S0 c0 c1 c5 c7

S1 c0 c1 c3 c7

S2 c0 c2 c3 c7

S3 c0 c2 c6 c7

S4 c0 c4 c6 c7

S5 c0 c4 c5 c7

(4.3b)

Figure 4.2.: The basic triangle (2D) and tetrahedra types (3D) obtained by dividing
[0, 1]d into simplices of varying types, denoted by a subscript. Top left:
The unit square can be divided into two triangles sharing the edge from
(0, 0)T to (1, 1)T . We denote these triangles by S0 and S1. The four
corners of the square are numbered c0, . . . , c3 in yx-order. Top right:
The corner nodes of S0 and S1 in terms of the square corners. Bottom
left (exploded view): In three dimensions the unit cube can be divided
into six tetrahedra, all sharing the edge from the origin to (1, 1, 1)T .
We denote these tetrahedra by S0, . . . , S5. The eight corners of the
cube are numbered c0, . . . , c7 in zyx-order (redrawn and modified with
permission [16]). Bottom right: The corner nodes of the six tetrahedra
S0, . . . , S5 in terms of the cube corners.

40

refining the cube
//

triangulating the cube

��

triangulating each cube

��

refining each cube
//

triangulating each cube

��

refining

each tetrahedron
//

refining

each tetrahedron
//

Figure 4.3.: Triangulating a cube according to Figure 4.2 and then refining the tetra-
hedra via Bey’s refinement rule results in the same mesh as first refining
the cube into eight subcubes and afterward triangulating each of these
cubes. Each occurring tetrahedron is uniquely determined by the sub-
cube it lies in plus its type. The same situation can be observed in 2D
if we restrict our view to one side of the cube.

41

Figure 4.4.: To resolve hanging nodes we can execute an additional step of green-
or blue-refinement after the last refinement step [11,36]. Here we show
the 2D refinement rules. Left: green (1 hanging node). Right: blue (2
hanging nodes). If a triangle has 3 hanging nodes it is red-refined.

4.1.2. Removal of hanging nodes using red/green refinement

It is worth noting that, although the methods and algorithms presented in this
chapter apply to red-refined meshes with hanging nodes, it is possible to augment
them to create meshes without hanging nodes. For this we may use red/green or
red/green/blue refinement methods [11,36].

After the red-refinement step we may add an additional and possibly nonlocal
refinement operation that ensures a maximum level difference of 1 between neigh-
boring simplices. Such an operation is also called 2:1 balance [69, 136, 144]; we
describe it in detail in Chapter 8. Hanging nodes are then resolved by bisecting
those simplices with hanging nodes (green/blue refinement) [9, section 12.1.3]. The
2D case is shown in Figure 4.4.

If one of the newly created simplices shall be further refined, the bisection is
reversed, the original simplex is red-refined, and the balancing and green-refinement
is repeated. This may void the nesting property of certain discrete function spaces,
yet applications may still prefer this approach over the manual implementation of
hanging node constraints.

4.2. The tetrahedral Morton index

As we repeat in Section 3.3, the Morton index or Z-order for a cube in a hexahedral
mesh is computed by bitwise interleaving the coordinates of the anchor node of the
cube [101]. In this section we present an index for d-simplices that also uses the
bitwise interleaving approach, the tetrahedral Morton index (TM-index). To define
the TM-index we look at refinements of a reference simplex, which we discuss in
Section 4.2.1 below. For each d-simplex in a refinement of the reference simplex
we define a unique identifier, the so-called Tet-id, which serves as the input to
compute the TM-index and for all algorithms related to it. This Tet-id consists of
the coordinates of the anchor node of the considered simplex plus one additional
number, the type of the simplex. We define the Tet-id and type in Section 4.2.2.
We then define the TM-index in Section 4.2.3 and in the following subsections. We
show that the TM-index defines a SFC index in the sense of Definition 3.13 and
discuss properties of the resulting SFC.

42

One novel aspect of this construction lies in logically including the types of the
simplex and all its parents in the interleaving, while only using the type of the
simplex itself in the algorithms.

4.2.1. The reference simplex

Throughout the rest of this chapter, let L be a given maximal refinement level.
Instead of the unit cube [0, 1]d, we consider the scaled cube [0, 2L]d, ensuring that
all node coordinates in a refinement up to level L are integers. Suppose we are
given some d-simplex T ⊂ Rd together with a refinement S of T . By mapping T
affine-linearly to 2LS0 the refinement S is mapped to a refinement S ′ of 2LS0.
Therefore, to examine SFCs on refinements of T , it suffices to examine SFCs on
2LS0. Thus, we only consider refinements of the d-simplex T 0

d := 2LS0. Let Td be
the set of all possible descendants of this d-simplex with level smaller than or equal
to L; thus

Td =
{
T |T is a descendant of T 0

d with 0 ≤ `(T) ≤ L
}
. (4.6)

Td together with the refinement from Definition 4.2 and T 0
d as root element is a

refinement space in the sense of Definition 3.1.
Any refinement (up to level L) of T 0

d is a subset of Td, and for each T ∈ Td there
exists at least one refinement T of T 0

d with T ∈ T . In this context, we refer to
T 0
d as the root simplex. Furthermore, let Ld denote the set of all possible anchor

node coordinates of d-simplices in Td, thus

L2 =
{

[0, 2L)2 ∩ Z2 | y ≤ x
}
,

L3 =
{

[0, 2L)3 ∩ Z3 | y ≤ z ≤ x
}
.

(4.7)

Note that we could have chosen any other of the Si (scaled by 2L) as the root
simplex and we do not see any advantage or disadvantage in doing so.

4.2.2. The type and Tet-id of a d-simplex

Making use of Property 4.5, we define the following.

Definition 4.7. Each d-simplex T ∈ Td of level ` lies in a d-cube of the hexahedral
mesh that is part of a uniform level ` refinement of [0, 2L]d. This specific cube is
the associated cube of T and denoted by QT . The d-simplex T is a scaled and
shifted version of exactly one of the six tetrahedra Si that constitute the unit cube,
and we define the type of T as this number, type(T) := i.

The anchor node of a subcube of level ` is the particular corner of that cube with
the smallest x-, y- (and z-) coordinates. This means that for each simplex T in
the refinement from Figure 4.3 the anchor node of T and the anchor node of its
associated cube coincide. Any two d-simplices in Td with the same associated cube
are distinguishable by their type.

43

Ct Child

2D T0 T1 T2 T3

b
0 0 0 0 1
1 1 1 1 0

Ct Child

3D T0, . . . , T3 T4 T5 T6 T7

b

0 0 4 5 2 1
1 1 3 2 5 0
2 2 0 1 4 3
3 3 5 4 1 2
4 4 2 3 0 5
5 5 1 0 3 4

Table 4.1.: For a d-simplex T of type b the table gives the types
Ct(T0), . . . ,Ct(T2d−1) of T ′s children. The corner-children T0, T1, T2

(and in 3D also T3) always have the same type as T .

From Bey’s observation from Figure 4.3 it follows that any simplex in Td can be
obtained by specifying a level `, then choosing one level ` subcube of the root cube
and finally fixing a type. This provides motivation for the following definition.

Definition 4.8 (Tet-id). For T = [~x0, . . . , ~xd] ∈ Td we define the Tet-id of T as
the tuple of its anchor node and type; thus

Tet-id(T) := (~x0, type(T)). (4.8)

Corollary 4.9. Let T, T ′ ∈ Td. Then T = T ′ if and only if their Tet-ids and levels
are the same.

Note that in an arbitrary adaptive mesh there can be simplices with different levels
and each simplex T has an associated cube of level `(T). In particular, simplices
with the same anchor node can have different associated cubes if their levels are not
equal.

Since any simplex in Td can be specified by the Tet-id and level, the Tet-id provides
an important tool for our work. The construction of the TM-index in the next
section and the algorithms that we present in Section 4.3 rely on the Tet-id as the
fundamental data of a simplex. All information about a mesh can be extracted from
the Tet-id and level of each element.

Since the root simplex has type 0, in a uniform refinement more simplices have
type 0 than any other type. However, a close examination of Table 4.1 together
with a short inductive argument leads to the following proposition.

Proposition 4.10. In the limit L, ` → ∞ the different types of simplices in a
uniform level ` refinement of Td occur in equal ratios.

4.2.3. Encoding of the tetrahedral Morton index

In addition to the anchor coordinates the TM-index also depends on the types of all
ancestors of a simplex. In order to define the TM-index we start by giving a formal
definition of the interleaving operation and some additional information.

44

Definition 4.11. We define the interleaving a ⊥̇ b of two n-tuples a = (an−1,
. . . , a0) and b = (bn−1, . . . , b0) as the 2n-tuple obtained by alternating the entries of
a and b:

a ⊥̇ b := (an−1, bn−1, . . . , a0, b0). (4.9)

The interleaving of more than two n-tuples a1, . . . , am is defined analogously as the
mn-tuple

a1 ⊥̇ · · · ⊥̇ am := (a1
n−1, a

2
n−1, . . . , a

m
n−1, a

1
n−2, . . . , a

m−1
0 , am0). (4.10)

Remark 4.12. The TM-index of a d-simplex T ∈ Td that we are going to define is
constructed by interleaving d + 1 L-tuples, where the first d are the binary repre-
sentations of the coordinates of T ’s anchor node and the last is the tuple consisting
of the types of the ancestors of T .

Definition 4.13. Let T ∈ T3 be a tetrahedron of refinement level ` with anchor
node ~x0 = (x, y, z)T ∈ L3. Since x, y, z ∈ N0 with 0 ≤ x, y, z < 2L, we can express
them as binary numbers with L digits, writing

x =

L−1∑
j=0

xj2
j , y =

L−1∑
j=0

yj2
j , z =

L−1∑
j=0

zj2
j . (4.11)

We define the L-tuples X, Y , and Z as the L-tuples consisting of the binary digits
of x, y, and z; thus,

X = X(T) := (xL−1, . . . , x0), (4.12a)

Y = Y (T) := (yL−1, . . . , y0), (4.12b)

Z = Z(T) := (zL−1, . . . , z0). (4.12c)

In 2D we get the same definitions with X and Y , leaving out the z-coordinate.

Definition 4.14. For a T ∈ Td of level ` and each 0 ≤ j ≤ ` let T j be the (unique)
ancestor of T of level j. In particular, T ` = T . We define B(T) as the L-tuple
consisting of the types of T ’s ancestors in the first ` entries, starting with T 1. The
last L − ` entries of B(T) are zero:

B = B(T) :=

type(T 1), type(T 2), . . . , type(T)︸ ︷︷ ︸
` entries

, 0, . . . , 0

 , (4.13)

Thus, if we write B as an L-tuple with indexed entries bi

B = B(T) = (bL−1, . . . , b0) ∈ { 0, . . . , d!− 1 }L , (4.14)

then the ith entry bi is given as

bi =

{
type(TL−i) L − 1 ≥ i ≥ L− `,

0 L − ` > i ≥ 0.
(4.15)

45

Definition 4.15 (tetrahedral Morton Index). We define the tetrahedral Morton
index (TM-index) m(T) of a d-simplex T ∈ Td as the interleaving of the L-tuples
Z (for tetrahedra), Y , X and B. Thus,

m(T) := Y ⊥̇ X ⊥̇ B (4.16a)

for triangles and
m(T) := Z ⊥̇ Y ⊥̇ X ⊥̇ B (4.16b)

for tetrahedra.

This index resembles the well-known Morton index or Z-order for d-dimensional
cubes, which we denote by m̃ here. For such a cube Q the Morton index is usually
defined as the bitwise interleaving of its coordinates. Thus m̃(Q) = Z ⊥̇Y ⊥̇X,
respectively, m̃(Q) = Y ⊥̇X; see [34,101,136] as well as Section 3.3.

As we show in Section 4.3, the TM-index can be computed from the Tet-id of T
with no further information given. Thus, in an implementation it is not necessary
to store the L-tuple B.

The TM-index of a d-simplex builds up from packs of d bits zi (for tetrahedra),
yi, and xi followed by a type bi ∈ { 0, . . . , d!− 1 }. Since d! = 2 < 4 for d = 2, we
can interpret the 2D TM-index as a quarternary number with digits (yixi)2 and bi:

m(T) = ((yL−1xL−1)2, bL−1, . . . , (y0x0)2, b0)4

=
L−1∑
i=0

(
(2yi + xi)4

2i+1 + bi4
2i
)
.

(4.17a)

Similarly we can interpret it as an octal number with digits (ziyixi)2 and bi for
d = 3, since then d! = 6 < 8:

m(T) = ((zL−1yL−1xL−1)2, bL−1, . . . , (z0y0x0)2, b0)8

=
L−1∑
i=0

(
(4zi + 2yi + xi)8

2i+1 + bi8
2i
)
.

(4.17b)

The entries in these numbers are only nonzero up to the level ` of T , since xL−i =
yL−i = (zL−i =)bL−i = 0 for all i > `. The octal/quarternary representation (4.17)
directly gives an order on the TM-indices, and therefore it is possible to construct
an SFC from it, which we examine further in Section 4.2.6. We use m(T) to denote
both the (d+ 1)L-tuple from (4.16) and the number given by (4.17).

Let us look at Figure 4.5 for a short example to motivate this definition of the TM-
index. Since the anchor coordinates and the type together with the level uniquely
determine a d-simplex in Td, one could ask why we do not define the index to be
((Z ⊥̇)Y ⊥̇ X, type(T)), a pair consisting of the Morton index of the associated
cube of T and the type of T . This index was introduced for triangles in a slightly
modified version as semiquadcodes in [112] and would certainly require less infor-
mation since the computation of the sequence B would not be necessary. However,

46

Y

X

mT = Y ⊥̇X ⊥̇B

Figure 4.5.: Comparing a straightforward definition of a Morton-type SFC with our
approach. Left: The curve arising from taking the Morton order of
the quadrants and only dividing into triangles on the last level. Thus
the index is (Y ⊥̇X, type(T)). As we see on the two coarse triangles
that are shaded, the children of a level 1 triangle are not necessarily
traversed before any other triangle is traversed. Thus, it breaks the
locality property that is part of the definition of an SFC, and therefore
this index is not suitable for our purposes. Right: The curve arising
from the TM-index from our Definition 4.15. We see that for each level
1 triangle its four children are traversed as a group. Theorem 4.18 states
that the curve is in fact a proper SFC in the sense of Definition 3.13 and
thus the locality property holds for any parent triangle/tetrahedron.
The order in which the children are traversed depends (only) on the
type of the parent and is different from Bey’s order given by (4.2).

it results in an SFC that traverses the leaf cubes of a refinement in the usual Z-
order and inside of each cube it traverses the d! different simplices in the order
S0, . . . , Sd!−1. As a result, there can be simplices T whose children are not traversed
as a group, which means that there is a tetrahedron T ′, which is not an ancestor
or descendant of T , such that some child Ti of T is traversed before T ′ and T ′ is
traversed before another child Tj of T . Thus, this curve is not an SFC in the sense
of Definition 3.13. In contrast to this, Theorem 4.18 states that the TM-index is in
fact an SFC-index. Figure 4.5 compares the two approaches for a uniform level 2
refinement of T 0

2 .

4.2.4. A different approach to derive the TM-index

There is another interpretation of the TM-index, which is particularly useful for the
AMR algorithms presented in Section 4.3. In order to define it we introduce the
concept of the so-called cube-id. According to Figure 4.2 we number the 2d corners
of a d-dimensional cube by c0, . . . , c2d−1 in a zyx-order (x varies fastest). When
refining a cube to 2d children, each child has exactly one of the ci as a corner, and it
is therefore convenient to number the children by c0, . . . , c2d−1 as well. For the child

47

X

Y

c0

c2

c1

c3

0 1

2 3

X

Y

Z

c1
c3

c2

c6c4

c5

c0

4

5
6

7

0

1
2

3

c7

Figure 4.6.: Left: A square is refined to four children, each of which corresponds to
a corner of the square. The number of the corner is the cube-id of that
child. Right: In three dimensions a cube is refined to eight children.
Their cube-ids and corner numbers are shown as well.

ci we call the number i the cube-id of that child; see Figure 4.6 for an illustration.
Since each cube Q that is not the root has a unique parent, it also has a unique
cube-id. This cube-id can easily be computed by interleaving the last significant
bits of the z- (in 3D), y-, and x-coordinates of Q’s anchor node.

Definition 4.16. Because each d-simplex T ∈ Td of level ` has a unique associated
cube we define the cube-id of T to be the cube-id of the associated cube of T , that
is, the d-cube of level ` that has the same anchor node as T .

If X, Y (and Z) are as is in Definition 4.13 then we can write the cube-id of T ’s
ancestors as

cube-id(T i) = (yixi)2 in 2D,

cube-id(T i) = (ziyixi)2 in 3D,
(4.18)

and therefore using (4.17) we can rewrite the TM-index of T as

m(T) = (cube-id(T 1), type(T 1), . . . , cube-id(T `), type(T `), 0, . . . , 0)2d . (4.19)

This resembles the Morton index of the associated cube QT of T , since we can write
this as

m̃(QT) = (cube-id(Q1), . . . , cube-id(Q`), 0, . . . , 0)2d . (4.20)

4.2.5. Properties of the TM-index

In this section we show that the TM-index is an SFC-index. As a first result, we
show that m× ` is injective.

Proposition 4.17. Together with a refinement level `, the TM-index m(T) uniquely
determines a d-simplex in Td.

48

Proof. If ` = 0, then there is only one simplex of level ` in Td, which is T 0
d . So let

` > 0 and m = m(T) be given as in (4.16), and let ` be the level of T . From m we
can compute the x- ,y- (and z-) coordinates of the associated cube of T . We can
also compute the type of T from the TM-index. By Corollary 4.9 this information
uniquely determines T .

For the Morton index m̃ for cubes the following important properties are known
[136]:

(i) A Morton index of a cube Q is the prefix of an index of a cube P of higher
level than Q if and only if P is a descendant of Q.

(ii) The Morton indices of the descendants of a parent cube are larger than or
equal to the index of the parent cube.

(iii) Refining only changes the SFC locally. Thus, if Q is a cube and P is a cube
with m̃(Q) < m̃(P) and P is not a descendant of Q, then m̃(Q′) < m̃(P) for
each descendant Q′ of Q.

Property (iii) defines a hierarchic invariant of the SFC that is specific to our con-
struction (see Figure 4.5). We show below that properties (i), (ii) and (iii) hold for
d-simplices and the TM-index described by (4.16). Proposition 4.17 together with
(ii) and (iii) imply that the TM-index is an SFC-index in the sense of Definition 3.13.

Theorem 4.18. For arbitrary d-simplices T 6= S ∈ Td the TM-index satisfies the
following:

(i) If `(T) < `(S), then m(T) is a prefix of m(S) if and only if S is a descendant
of T .

(ii) If T is an ancestor of S then m(T) ≤ m(S).

(iii) If m(T) < m(S) and S is no descendant of T , then for each descendant T ′ of
T we have

m(T) ≤ m(T ′) < m(S). (4.21)

The proof of Theorem 4.18 requires some work and we need to show a technical
result first. Hereby, we consider only the 3D case, since for 2D the argument is
completely analogous. We define an embedding of the set of all TM-indices into the
set of Morton indices for 6D cubes. Since the properties (i)–(iii) hold for these cubes
it follows that they hold for tetrahedra as well. To this end, for a given tetrahedron
T ∈ T3 we interpret each entry bj of B(T) as a 3-digit binary number

bj = (b2j b
1
j b

0
j)2, (4.22)

which is possible since bj ∈ { 0, . . . , 5 }. We obtain three new L-tuples B2, B1, B0

satisfying
B = B2 ⊥̇ B1 ⊥̇ B0, (4.23)

49

and thus we can rewrite the TM-index as

m(T) = Z ⊥̇ Y ⊥̇ X ⊥̇ B2 ⊥̇ B1 ⊥̇ B0. (4.24)

Note that we can interpret each Bi as an L-digit binary number for which we have
0 ≤ Bi < 2L. Now let Q denote the set of all 6D cubes that are a child of the cube
Q0 := [0, 2L]6:

Q = {Q |Q is a descendant of Q0 of level 0 ≤ ` ≤ L} . (4.25)

Since a cube Q∈Q is uniquely determined by the six coordinates (x0, . . . , x5) of
its anchor node plus its level `, we also write Q = Q(x0,...,x5),`. Note that the
Morton index for a cube can be defined as the bitwise interleaving of its anchor
node coordinates [101]:

m̃(Q) = X5 ⊥̇ X4 ⊥̇ X3 ⊥̇ X2 ⊥̇ X1 ⊥̇ X0. (4.26)

Proposition 4.19. The map

Φ: T3 −→ Q,
T 7−→ Q(B0(T),B1(T),B2(T),x(T),y(T),z(T)),`(T)

(4.27)

is injective and satisfies

m̃(Φ(T)) = m(T). (4.28)

Furthermore, it fulfills the property that T ′ is a child of T if and only if Φ(T ′) is a
child of Φ(T).

Proof. The equation m(T) = m̃(Φ(T)) follows directly from the definitions of the
TM-indices on T3 and Q. From Lemma 4.17 we conclude that Φ is injective. Now
let T ′, T ∈ T3, where T ′ is a child of T . Furthermore, let ` = `(T). We know that
Q′ := Φ(T ′) is a child of Q := Φ(T) if and only if for each i ∈ { 0, . . . , 5 } it holds
that

xi(Q
′) ∈

{
xi(Q), xi(Q) + 2L−(`+1)

}
. (4.29)

Because of the underlying cube structure (compare Figure 4.3) we know that the
x-coordinate of the anchor node of T ′ satisfies

x(T ′) ∈
{
x(T), x(T) + 2L−(`+1)

}
, (4.30)

and likewise for Y (T ′) and Z(T ′). Therefore, (4.29) holds for i = 3, 4, 5. By
definition Bj(T ′) is the same as Bj(T) except at position L − (`+ 1), where

Bj(T ′)L−(`+1) = bjL−(`+1)(T
′) ∈ { 0, 1 } (4.31)

and

Bj(T)L−(`+1) = 0. (4.32)

50

Hence, we conclude that (4.29) also holds for i = 0, 1, 2. So Φ(T ′) is a child of Φ(T).

To show the other implication, let us assume that Φ(T ′) is a child of Φ(T). Since
`(T ′) = `(Φ(T ′)) > 0, T ′ has a parent and we denote it by P . In the argument
above we have shown that Φ(P) is the parent of Φ(T ′) and because each cube has a
unique parent the identity Φ(P) = Φ(T) must hold. Therefore, we get P = T since
Φ is injective; thus, T ′ is the child of T .

Inductively we conclude that T ′ is a descendant of T if and only if Φ(T ′) is a
descendant of Φ(T). Now Theorem 4.18 follows, because the desired properties
(i)–(iii) hold for the Morton index of cubes [136].

4.2.6. The space-filling curve associated to the TM-index

By interpreting the TM-indices as 2d-ary numbers as in (4.17) we get a total order
on the set of all possible TM-indices, and therefore it gives rise to an SFC for any
refinement S of T 0

d . In this section we further examine the SFC derived from the
TM-index. We give here a recursive description of it, similarly to how it is done for
the Sierpinski curve and other cubical SFC by Haverkort and van Walderveen [64].

Part (iii) of Theorem 4.18 tells us that the descendants of a simplex T are traversed
before any other simplices with a higher TM-index than T are traversed. However,
the order that the children of T have relative to each other can be different to the
order of children of another simplex T ′. In particular the order of the simplices
defined by the TM-index differs from the order (4.2) defined by Bey. We observe
this behavior in 2D in Figure 4.5 on the right-hand side: For the level 1 triangles of
type 0 the children are traversed in the order

T0, T1, T3, T2 (4.33)

and the children of the level 1 triangle of type 1 are traversed in the order

T0, T3, T1, T2. (4.34)

In fact, the order of the children of a simplex T depends only on the type of T , as
we show in the following Proposition.

Proposition 4.20. If T, T ′ ∈ Td are two d-simplices of given type b = type(T) =
type(T ′), then there exists a unique permutation σ ≡ σb of

{
0, . . . , 2d − 1

}
such

that
m(Tσ(0)) < m(Tσ(1)) < · · · < m(Tσ(2d−1)),

and

m(T ′σ(0)) < m(T ′σ(1)) < · · · < m(T ′
σ(2d−1)

).

(4.35)

Thus, the children of T and the children of T ′ are in the same order with respect to
their TM-index.

51

Proof. By ordering the children of T and T ′ with respect to their TM-indices, we
obtain σ and σ′ with

m(Tσ(0)) < m(Tσ(1)) < · · · < m(Tσ(2d−1)),

m(T ′σ′(0)) < m(T ′σ′(1)) < · · · < m(T ′
σ′(2d−1)

).
(4.36)

These permutations are well-defined and unique with this property because different
simplices of the same level never have the same TM-index; see Proposition 4.17. It
remains to show that σ′ = σ. Let ` = `(T) and `′ = `(T ′). Since the TM-indices of
the children of T do all agree up to level `, we see, using the notation from (4.17),
that their order σ depends only on the d+ 1 numbers (z is omitted for d = 2)

zL−(`+1)(Ti), yL−(`+1)(Ti), xL−(`+1)(Ti) and bL−(`+1)(Ti). (4.37)

The same argument applies to σ′ and `′. From now on we carry out the computations
for d = 3. Since type(T) = type(T ′) we can write

T = λT ′ + ~c, (4.38)

with

λ = 2`
′−`, ~c =

x(T)− x(T ′)

y(T)− y(T ′)

z(T)− z(T ′)

 . (4.39)

Since the refinement rules (4.2) commute with scaling and translation we also obtain

Ti = λT ′i + ~c (4.40)

for the children of T and T ′ and therefore

bL−(`+1)(Ti) = type(Ti) = type(T ′i) = bL−(`′+1)(T
′
i) (4.41)

for 0 ≤ i < 2d. Furthermore, we have

xL−(`+1)(Ti) = (x(Ti)− x(T))2−L+(`+1) (4.42)

from which we derive

xL−(`+1)(Ti) = λ(x(T ′i)− x(T ′))2−L+(`+1)

= 2`
′−`(x(T ′i)− x(T ′))2−L+(`+1)

= (x(T ′i)− x(T ′))2−L+(`′+1)

= xL−(`′+1)(T
′
i),

(4.43)

and analogously
yL−(`+1)(Ti) = yL−(`′+1)(T

′
i),

zL−(`+1)(Ti) = zL−(`′+1)(T
′
i).

(4.44)

This shows that the tetrahedral Morton order of the children of T and T ′ are the
same and σ′ must equal σ.

52

Iloc Child

2D T0 T1 T2 T3

b
0 0 1 3 2

1 0 2 3 1

Iloc Child

3D T0 T1 T2 T3 T4 T5 T6 T7

b

0 0 1 4 7 2 3 6 5

1 0 1 5 7 2 3 6 4

2 0 3 4 7 1 2 6 5

3 0 1 6 7 2 3 4 5

4 0 3 5 7 1 2 4 6

5 0 3 6 7 2 1 4 5

Table 4.2.: The local index of the children of a d-simplex T according to the TM-
ordering. For each type b, the 2d children T0, . . . , T2d−1 of a simplex of
this type can be ordered according to their TM-indices. The position of
Ti according to the TM-order is the local index Iloc(Ti) = σb(i).

Definition 4.21. Let T ∈ Td such that T ’s parent P has type b and T is the ith
child of P according to Bey’s order (4.2), 0 ≤ i < 2d. We call the number σb(i) the
local index of the d-simplex T and use the notation

Iloc(T) := σb(i) (4.45)

to denote the child number in the TM-ordering, subsequently written TM-child. By
definition, the local index of the root simplex is zero, Iloc(T

0
d) := 0. Table 4.2 lists

the local indices for each parent type.

Thus, we know for each type 0 ≤ b < d! how the children of a tetrahedron of
type b are traversed. This gives us an approach for describing the SFC arising from
the TM-index in a recursive fashion [64]. By specifying for each possible type b the
order and types of the children of a type b simplex, we can build up the SFC. In
Figure 4.7 we describe the SFC for triangles in this way. In three dimensions it is
not convenient to draw the six pictures for the different types, but the SFC can be
derived similarly from Tables 4.1 and 4.2.

4.3. Low-level algorithms on simplices

In this section we present fundamental algorithms that operate on d-simplices in Td.
These algorithms include computations of parent and child simplices, computation
of face-neighbors and computations involved with the TM-index. To simplify the
notation we carry out all algorithms for tetrahedra and then describe how to modify
them for triangles. We introduce the data type Tet and do not distinguish between
the abstract concept of a Tet and the geometric object (tetrahedron or triangle)
that it represents. The data type Tet T has the following members:

• T.` — the refinement level of T ;

53

type = 0

R:

3

1

2

0 R
F

R

R

type = 1

F:

0

3
2

1 R

F

F F

Figure 4.7.: Left: Using the notation from [64] we recursively describe the SFC
arising from the TM-index for triangles. The number inside each child
triangle is its local index. R denotes the refinement scheme for type 0
triangles and F for type 1 triangles. This pattern can be obtained from
Tables 4.1 and 4.2. Right: The SFC for an example adaptive refinement
of the root triangle.

• T.~x = (T.x, T.y, T.z) — the x- ,y- and z-coordinates of T ’s anchor node, also
sometimes referred to as T.x0, T.x1, and T.x2;

• T.b — the type of T .

In 2D computations the parameter T.z is not present. To avoid confusion we use
the notation ~x to denote vectors in Zd and x (without arrow) for integers, thus
numbers in Z. From Corollary 4.9 we know that the values stored in a Tet suffice
to uniquely identify a d-simplex T ∈ T .

Remark 4.22 (Storage requirement). The algorithms that we present in this sec-
tion only need this data as input for a simplex resulting in a fixed storage size per
Tet. If, for example, the maximum level L is 32 or less, then the coordinates can
be stored in one 4-byte integer per dimension, while the level and type occupy one
byte each, leading to a total storage of

2× 4 + 1 + 1 = 10 bytes per Tet in 2D,
3× 4 + 1 + 1 = 14 bytes per Tet in 3D.

(4.46)

Remark 4.23 (Runtime). Most of these algorithms run in constant time indepen-
dent of the maximum level L. The only operations using a loop over the level L
or T.`, thus having O(L) runtime, are computing the consecutive index from a Tet

and initializing a Tet according to a given consecutive index. Hence, we show how
to replace repetitive calls of these relatively involved algorithms by more efficient
constant-time ones.

4.3.1. The coordinates of a d-simplex

The coordinates of the d+ 1 nodes of a d-simplex T can be obtained easily from its
Tet-id, the relation (4.3), and simple arithmetic: If T is a d-simplex of level `, type

54

b and anchor node ~x0 ∈ Zd, then

T = 2L−`Sb + ~x0. (4.47)

Hence, in order to compute the coordinates of T we can take the coordinates of Sb,
as given in (4.3), and then use relation (4.47). A closer look at (4.3) reveals that
it is not necessary to examine all coordinates of Sb in order to compute the xi, but
that they can also be computed arithmetically. This computation is carried out in
Algorithm 4.3.1.

Algorithm 4.3.1: Coordinates(Tet T)

Result: Array of coordinates of all of T ‘s vertices.
1 X ← (T.~x, 0, 0, 0)

2 h← 2L−`

3 i← bT.b
2
c /* Replace with i← T.b for 2D */

4 if T.b% 2 = 0 then
5 j ← (i+ 2) % 3
6 else
7 j ← (i+ 1) % 3

8 X[1]← X[0] + hei
9 X[2]← X[1] + hej /* Replace with X[2]← X[0] + (h, h)T for 2D */

10 X[3]← X[0] + (h, h, h)T /* Remove this line for 2D */

11 return X

4.3.2. Parent and child

In this section we describe how to compute the Tet-ids of the parent P (T) and of
the 2d children Ti, 0 ≤ i < 2d, of a given d-simplex T ∈ Td. Computing the anchor
node coordinates of the parent is easy, since their first T.` − 1 bits correspond to
the coordinates of T ’s anchor node and the rest of their bits is zero. For computing
the type of P (T), we need the function

Pt:
{

0, . . . , 2d − 1
}
× { 0, . . . , d!− 1 } −→ { 0, . . . , d!− 1 } ,
(cube-id(T), T.b) 7−→ P.b,

(4.48)

giving the type of T ’s parent in dependence of its cube-id and type. In Figure 4.8
we list all values of this function for d ∈ { 2, 3 }.

The algorithm Parent to compute the parent of T now puts these two ideas
together, computing the coordinates and type of P (T). Algorithm 4.3.3 shows an
implementation. It uses Algorithm 4.3.2 to compute the cube-id of a d-simplex.

For the computation of one child Ti of T for a given i ∈
{

0, . . . , 2d − 1
}

we look
at Bey’s definition of the subsimplices in (4.2) and see that in order to compute the
anchor node of the child we need to know some of the node coordinates ~x0, . . . , ~xd
of the parent simplex T . These can be obtained via Algorithm 4.3.1. However, it is
more efficient to compute only those coordinates of T that are actually necessary.

55

Pt(c, b) b

2D 0 1

c

0 0 1

1 0 0

2 1 1

3 0 1

Pt(c, b) b

3D 0 1 2 3 4 5

c

0 0 1 2 3 4 5

1 0 1 1 1 0 0

2 2 2 2 3 3 3

3 1 1 2 2 2 1

4 5 5 4 4 4 5

5 0 0 0 5 5 5

6 4 3 3 3 4 4

7 0 1 2 3 4 5

Z

Y
X

Figure 4.8.: The type of the parent of a d-simplex T can be determined from T ’s
cube-id c and type b. Left: The values of Pt from (4.48) in the 2D case.
Middle: The values of the function Pt in the 3D case. Right: Two
examples showing the computation in 3D. (1) The small tetrahedron in
the top left corner (orange) has cube-id 5 and type 4, and its parent
(green) can be seen to have type 5. (2) The small tetrahedron at the
bottom right (red) has cube-id 3 and type 3, and its parent (blue) has
type 2.

Algorithm 4.3.2: c-id(Tet T ,int `)

Result: The cube-id of T .

1 i← 0, h← 2L−`

2 i |= (T.x & h) ? 1: 0
3 i |= (T.y & h) ? 2: 0
4 i |= (T.z & h) ? 4: 0 /* Remove this line for 2D */

5 return i

Algorithm 4.3.3: Parent(Tet T)

Result: The parent P of T .

1 h← 2L−T.`

2 P.`← T.`− 1
3 P.x← T.x & ¬h
4 P.y ← T.y & ¬h
5 P.z ← T.z & ¬h /* Remove this line for 2D */

6 P.b← Pt(c-id(T, T.`), T.b) /* See (4.48) and Figure 4.8 for Pt */

7 return P

56

To compute the Tet-id of Ti we also need to know its type. The type of Ti depends
only on the type of T , and in the algorithm we use the function Ct (children type)
to compute this type. Ct is effectively an evaluation of Table 4.1. Algorithm 4.3.4
shows now how to compute the coordinates of the ith child of T in Bey’s order.

When we would like to compute the ith child of a d-simplex T of type b with
respect to the tetrahedral Morton order (thus the child Tk of T with Iloc(Tk) = i) we
just call Algorithm 4.3.4 with σ−1

b (i) as input. The permutations σ−1
b are available

from Table 4.2; see (4.45) and Algorithm 4.3.5.

Algorithm 4.3.4: Child(Tet T ,int i)

Result: The i-th child (in Bey’s order) Ti of T .
1 X ← Coordinates(T)
2 if i = 0 then j ← 0
3 else if i ∈ { 1, 4, 5 } then j ← 1
4 else if i ∈ { 2, 6, 7 } then j ← 2
5 else if i = 3 then j ← 3 /* If i = 3 then j ← 1 for 2D */

6 Ti.~x← 1
2
(X[0] +X[j])

7 Ti.b← Ct(T.b, i) /* See Table 4.1 */

Algorithm 4.3.5: TM-Child(Tet T ,int i)

Result: The i-th child of T in TM-order.

1 return Child (T , σ−1
T.b(i)) /* See Table 4.2 */

4.3.3. Neighbor simplices

Many applications—e.g., finite element methods—need to gather information about
the face-neighboring simplices of a given simplex in a refinement. In this section
we describe a level-independent constant-runtime algorithm to compute the Tet-id
of the same level neighbor along a specific face f of a given d-simplex T . This
algorithm is very lightweight since it only requires a few arithmetic computations
involving the Tet-id of T and the number f . In comparison to other approaches
to finding neighbors in constant time [21, 89], our algorithm does not involve the
computation of any of T ’s ancestors.

The d+ 1 faces of a d-simplex T = [~x0, . . . , ~xd] are numbered f0, . . . , fd in such a
way that face fi is the face not containing the node ~xi. To examine the situation
where two d-simplices of the same level share a common face, let T `d denote a uniform
refinement of T 0

d of a given level 0 ≤ ` ≤ L,

T `d :=
{
T |T is a descendant of T 0

d of level `
}
⊂ Td. (4.49)

Td can be seen as the disjoint union of all the T `d :

Td =

L⋃
`=0

T `d . (4.50)

57

Z

YX
Type 1

Type 4

Type 3 Type 0

Figure 4.9.: A tetrahedron T of type 5 (in the middle, red) and its four face-
neighbors (blue) of types 1, 0, 4, and 3, drawn with their associated
cubes (exploded view). We see that the type of T ’s neighbors depends
only on its type, while their node coordinates relative to T ’s depend
additionally on T ’s level.

Given a d-simplex T ∈ T `d and a face number i ∈ { 0, . . . , d }, denote T ’s neighbor
in T `d across face f = fi by Nf (T), and denote the face number of the neighbor
simplex Nf (T) across which T is its neighbor by f̃(T). Hence, the relation

Nf̃(T)(Nf (T)) = T (4.51)

holds for each face f of T .
Our aim is to compute the Tet-id of Nf (T) and f̃(T) from the Tet-id of T . Using

the underlying cube structure this problem can be solved for each occuring type of
d-simplex separately, and the solution scheme is independent of the coordinates of
T and of `. In Figure 4.9 the situation for a tetrahedron of type 5 is illustrated, and
in Tables 4.3 and 4.4 we present the general solution for each type.

Using these tables, a constant-time computation of the Tet-id of Nf (T) and of
f̃(T) from the Tet-id of T is possible, and the 3D case is carried out in Algo-
rithm 4.3.6. Note that this algorithm uses arithmetic expressions in T.b to avoid
the sixfold distinction of cases.

Remark 4.24. To find existing neighbors in a nonuniform refinement we use Algo-
rithm 4.3.6 in combination with Parent and TM-Child and comparison functions.

Of course it is possible that Nf (T) does not belong to T `d any longer. If this is
the case, then f was part of the boundary of the root simplex T 0

d . We describe in
the next section how we can decide in constant time whether Nf (T) is in T `d or not.

For completeness, we summarize the geometry and numbers of d-simplices tou-
ching each other via a corner (d = 2 or d = 3) or edge (only d = 3). In this chapter
we do not list these neighboring tetrahedra in detail.

For d = 3 each corner in the mesh T `3 has 24 adjacent tetrahedra; thus each
tetrahedron has at each corner 23 other tetrahedra that share this particular corner.
For d = 2 the situation is similar, with six triangles meeting at each corner. To
examine the number of adjacent tetrahedra to an edge we distinguish three types
of edges in T `d :

58

2D f 0 1 2

T.b = 0

Nf .b 1 1 1

Nf .x T.x+ h T.x T.x

Nf .y T.y T.y T.y − h
f̃ 2 1 0

T.b = 1

Nf .b 0 0 0

Nf .x T.x T.x T.x− h
Nf .y T.y + h T.y T.y

f̃ 2 1 0

Table 4.3.: Face neighbors in 2D. For each possible type b ∈ { 0, 1 } of a triangle
T and each of its faces f = fi, i ∈ { 0, 1, 2 }, the type, anchor node
coordinates, and corresponding face number f̃ of T ’s neighbor across f
are shown. In the 2D case we can directly compute N .b = 1 − T.b and
f̃ = 2− f . Here, h = 2L−` refers to the length of one square of level `.

3D f 0 1 2 3

T.b = 0

Nf .b 4 5 1 2

Nf .x T.x+ h T.x T.x T.x

Nf .y T.y T.y T.y T.y − h
Nf .z T.z T.z T.z T.z

f̃ 3 1 2 0

T.b = 1

Nf .b 3 2 0 5

Nf .x T.x+ h T.x T.x T.x

Nf .y T.y T.y T.y T.y

Nf .z T.z T.z T.z T.z − h
f̃ 3 1 2 0

T.b = 2

Nf .b 0 1 3 4

Nf .x T.x T.x T.x T.x

Nf .y T.y + h T.y T.y T.y

Nf .z T.z T.z T.z T.z − h
f̃ 3 1 2 0

3D f 0 1 2 3

T.b = 3

Nf .b 5 4 2 1

Nf .x T.x T.x T.x T.x− h
Nf .y T.y + h T.y T.y T.y

Nf .z T.z T.z T.z T.z

f̃ 3 1 2 0

T.b = 4

Nf .b 2 3 5 0

Nf .x T.x T.x T.x T.x− h
Nf .y T.y T.y T.y T.y

Nf .z T.z + h T.z T.z T.z

f̃ 3 1 2 0

T.b = 5

Nf .b 1 0 4 3

Nf .x T.x T.x T.x T.x

Nf .y T.y T.y T.y T.y − h
Nf .z T.z + h T.z T.z T.z

f̃ 3 1 2 0

Table 4.4.: Face neighbors in 3D. For each possible type b ∈ { 0, 1, 2, 3, 4, 5 } of a
tetrahedron T and each of its faces f = fi, i ∈ { 0, 1, 2, 3 } the type
Nf (T).b of T ’s neighbor across f , its coordinates of the anchor node
Nf (T).x, Nf (T).y, Nf (T).z and the corresponding face number f̃(T),
across which T is Nf (T)’s neighbor, are shown.

59

Algorithm 4.3.6: Face-neighbor(Tet T ,int f)

Result: The face-neighbor Nf (T) of T across f and the corresponding face f̃ .
1 b← T.b, x0 ← T.x0, x1 ← T.x1, x2 ← T.x2

2 if f = 1 or f = 2 then

3 f̃ ← f if (b% 2 = 0 and f = 2) or (b% 2 6= 0 and f = 1) then
4 b← b+ 1
5 else
6 b← b− 1

7 else

8 f̃ ← 3− f
9 h← 2L−T.`

10 if f = 0 then /* f = 0 */

11 i← b div 2
12 xi ← T.xi + h
13 b← b+ (b% 2 = 1 ? 2 : 4)

14 else /* f = 3 */

15 i← (b+ 3) % 6 div 2
16 xi ← T.xi − h
17 b← b+ (b% 2 = 0 ? 2 : 4)

18 N.~x← (x0, x1, x2)
19 N.`← T.`
20 N.b← b% 6

21 return (N, f̃)

1. edges that are also edges in the underlying hexahedral mesh;

2. edges that are the diagonal of a side of a cube in the hexahedral mesh;

3. edges that correspond to the inner diagonal of a cube in the hexahedral mesh.

Edges of the first and third kind have six adjacent tetrahedra each, and edges of
the second kind do have four adjacent tetrahedra each.

4.3.4. The exterior of the root simplex

When computing neighboring d-simplices it is possible that the neighbor in question
does not belong to the root simplex T 0

d but lies outside of it. If we look at face-
neighbors of a d-simplex T , the fact that the considered neighbor lies outside means
that the respective face was on the boundary of T 0

d . In order to check whether
a computed d-simplex is outside the base simplex, we investigate a more general
problem: Given anchor node coordinates (x0, y0)T ∈ Z2, respectively (x0, y0, z0)T ∈
Z3, of type b a level `, decide whether the corresponding d-simplex N lies inside or
outside of the root tetrahedron T 0

d : N ∈ T `d or N /∈ T `d . At the end of this section
we furthermore generalize this to the problem of deciding for any two d-simplices N
and T whether or not N lies outside of T . We solve this problem in constant time
and independent of the levels of N and T .

60

We examine the 3D case. Looking at T 0
3 we observe that two of its boundary faces

correspond to faces of the root cube, namely, the intersections of T 0
3 with the y = 0

and the x = 2L planes. The other two boundary faces of T 0
3 are the intersections

with the x = z and the y = z planes. Thus, the boundary of T 0
3 can be described

as the intersection of T 0
3 with those planes. We refer to the latter two planes as E1

and E2.

Let N be a tetrahedron with anchor node (x0, y0, z0)T ∈ Z3 of type b and level
` and denote with (xi, yi, zi)

T the coordinates of node i of N . Since (xi, yi, zi)
T ≥

(x0, y0, z0)T (componentwise), we directly conclude that if x0 ≥ 2L or y0 < 0 then
N /∈ T3. Because the outer normal vectors of T 0

3 on the two faces intersecting with
E1 and E2 are

~n1 =
1√
2

−1
0
1

 and ~n2 =
1√
2

 0
1
−1

 , (4.52)

we also conclude that N /∈ T3 if z0 − x0 > 0 or y0 − z0 > 0. Now we have already
covered all the cases except those where the anchor node of N lies directly in E1

or E2. In these cases we cannot solve the problem by looking at the coordinates
of the anchor node alone, since there exist tetrahedra T ′ ∈ T3 with anchor nodes
lying in one of these planes (see Figure 4.10 for an illustration of the analogous case
in 2D). This depends on the type of the tetrahedron in question. We observe that
a tetrahedron T ′ ∈ T3 with anchor node lying in E1 can have the types 0 ,1, or
2, and a tetrahedron with anchor node lying in E2 can have the types 0, 4, or 5.
We conclude that to check whether N is outside of the root tetrahedron we have
to check if any one of six conditions is fulfilled. In fact these conditions fit into the
general form below with xi = x, xj = y, xk = z, and T as the root tetrahedron;
thus T.x = T.y = T.z = 0 and T.b = 0.

These generalized conditions solve the problem to check for any two given tetra-
hedra N and T , whether N lies outside of T or not.

Proposition 4.25. Given two d-simplices N,T with N.` ≥ T.`, then N is outside
of the simplex T—which is equivalent to saying that N is no descendant of T—if
and only if at least one of the following conditions is fulfilled.

For 2D,

N.xi − T.xi ≥ 2T.`,

(4.53a)

N.xj − T.xj < 0, (4.53b)

(N.xj − T.xj)− (N.xi − T.xi) > 0, (4.53c)

N.xi − T.xi = N.xj − T.xj and N.b =

{
1 if T.b = 0,
0 if T.b = 1.

(4.53d)

61

T.b
2D 0 1

xi x y
xj y x

T.b
3D 0 1 2 3 4 5

xi x x y y z z
xj y z z x x y
xk z y x z y x

Table 4.5.: Following the general scheme described in this section to compute
whether a given d-simplex N lies outside of another given d-simplex
T , we give the coordinates xi, xj , and xk in dependence of the type of
T .

For 3D,

N.xi − T.xi ≥ 2L−T.`,

(4.54a)

N.xj − T.xj < 0, (4.54b)

(N.xk − T.xk)− (N.xi − T.xi) > 0, (4.54c)

(N.xj − T.xj)− (N.xk − T.xk) > 0, (4.54d)

N.xj − T.xj = N.xk − T.xk

and N.b ∈
{
{T.b+ 1, T.b+ 2, T.b+ 3 } , if T.b is even,
{T.b− 1, T.b− 2, T.b− 3 } , if T.b is odd,

(4.54e)

N.xk − T.xk = N.xi − T.xi

and N.b ∈
{
{T.b− 1, T.b− 2, T.b− 3 } , if T.b is even,
{T.b+ 1, T.b+ 2, T.b+ 3 } , if T.b is odd.

(4.54f)

N.xj − T.xj = N.xk − T.xk and N.xi − T.xi = N.xk − T.xk and N.b 6= T.b
(4.54g)

The coordinates xi, xj, and xk are chosen in dependence of the type of T according
to Table 4.5.

Proof. By shifting N by (−T.~x) we reduce the problem to checking whether the
shifted d-simplex lies outside of a d-simplex with anchor node ~0, level T.` and type
T.b. For d = 3 the proof is analogous to the above argument, where we considered
the case b = 0 and ` = 0. In two dimensions the situation is even simpler, since
there exists only one face of the root triangle that is not a coordinate axis (see
Figure 4.10).

4.3.5. A consecutive index for uniform refinements

In contrast to the Morton index for cubes, the TM-index for d-simplices does not
produce a consecutive range of numbers. Therefore, two simplices T and T ′ of level `

62

X

Y

Cases 3 and 4:
(N.x < N.y) or
(N.x = N.y and
N.b = 1)

Case 1:
N.x ≥ 2L

Case 2:
N.y < 0

b=0

b=1

Figure 4.10.: A uniform level 2 refinement of the triangle T 0 in 2D and triangles
lying outside of it with their anchor nodes marked. When deciding
whether a triangle with given anchor node coordinates lies outside of
T 0 there are four cases to consider, one for each face of T 0. For the
two faces lying parallel to the X-axis, respectively, Y -axis, it suffices
to check whether the x-coordinate is greater than or equal to 2L, or
whether the y-coordinate is smaller than 0. Similarly one can conclude
that the triangle lies outside of T 0 if its x-coordinate is smaller than
its y-coordinate. If both coordinates agree (and none of the previous
cases applies) then the given triangle is outside T 0 if and only if its
type is 1.

63

that are direct successors/predecessors with respect to the tetrahedral Morton order
do not necessarily fulfill m(T) = m(T ′) ± 2d(L−`) or m(T) = m(T ′) ± 1. For d = 3
this follows directly from the fact that each bj occupies three bits, but there are
only six values that each bj can assume, since there are only six different types. In
2D this follows from the fact that not every combination of anchor node coordinates
and type can occur for triangles in T2, the triangle with anchor node (0, 0) and type
1 being one example. This also means that the largest occurring TM-index is bigger
than 2dL − 1.

Constructing a consecutive index as in Definition 3.16 that respects the order
given by the TM-index is possible, as we show in this section. Since in practice it
is more convenient to work with this consecutive index instead of the TM-index,
our aim is to construct for each uniform refinement level ` a consecutive index
I`(T) ∈

{
0, . . . , 2d` − 1

}
, such that

∀ T, S ∈ T `d : I`(T) < I`(S) ⇔ m(T) < m(S). (4.55)

This index can also be understood as a bijection

I` :
{
m ∈ N0 |m = m(T) for a T ∈ T `d

} ∼=−→
{

0, . . . , 2d` − 1
}
, (4.56)

mapping the TM-indices of level ` d-simplices to a consecutive range of numbers.
See also Definition 3.16. It is obvious that I`(T 0

d) = 0. The index I`(T) can be
easily computed as the `-digit 2d-ary number consisting of the local indices as digits,
thus

I`(T) = (Iloc(T
1), . . . , Iloc(T

`))2d . (4.57)

Algorithm 4.3.7 shows an implementation of this computation. It can be done
directly from the Tet-id of T , and thus it is not necessary to compute the TM-index
of T first.

Algorithm 4.3.7: I(TetT)

Result: The consecutive index IT.`(T).
1 I ← 0, b← T.b
2 for T.` ≥ i ≥ 1 do
3 c← c-id(T, i)

4 I ← I + 8iIbloc(c) /* See Table 4.6; multiply with 4i for 2D */

5 b← Pt(c, b)

6 return I

The inverse operation of computing T from I`(T) and a given level ` can be
carried out in a similar fashion; see Algorithm 4.3.8. For each 0 ≤ i ≤ ` we look up
the type b and the cube-id of T i from Iloc(T

i) and the type of Parent(T i) = T i−1

(starting with type(T 0) = 0) via Tables 4.7 and 4.8. From the cube-ids we can build
up the anchor node coordinates of T . The last computed type is the type of T . The
runtime of this algorithm is O(T.`).

64

Algorithm 4.3.8: T(consecutive index I,int `)

Result: The simplex T with I`(T) = I.
1 T.x, T.y, T.z ← 0, b← 0
2 for 1 ≤ i ≤ ` do
3 Get Iloc(T i) from I /* See (4.57) */

4 c← c-id(T i), b← T i.b /* See Tables 4.7 and 4.8 */

5 if c & 1 then T.x← T.x+ 2L−i

6 if c & 2 then T.y ← T.y + 2L−i

7 if c & 4 then T.z ← T.z + 2L−i /* Remove this line for 2D */

8 T.b← b
9 return T

Similar to Algorithm 4.3.7 is Algorithm Is valid, which decides whether a given
index m ∈ [0, 26L)∩Z is in fact a TM-index for a tetrahedron. Thus, in the spirit of
Section 4.2.5 we can decide whether a given 6D cube is in the image of map (4.27)
that embeds T3 into the set of 6D subcubes of [0, 2L]6. The runtime of Is valid is
O(L).

Algorithm 4.3.9: Is valid(m ∈ [0, 26L) ∩ Z, `)
Result: True if there exists a simplex T with m(T) = m, false otherwise.

1 k ← 6(L − i)
2 for ` ≥ i ≥ 1 do
3 b← (mk,mk+1,mk+2)8

4 c← (mk+3,mk+4,mk+5)8

5 k ← 6(L − i+ 1)
6 if (mk,mk+1,mk+2)8 6= Pt(c, b) then /* Take (0, 0, 0)8 if i = 1 */

7 return False

8 return True

The consecutive index simplifies the relation between the TM-index of a simplex
and its position in the SFC. In the special case of a uniform mesh, the consecutive
index and the position are identical.

4.3.6. Successor and predecessor

Calculating the TM-index corresponding to a particular consecutive index is oc-
casionally needed in high-level algorithms. This is relatively expensive, since it
involves a loop over all refinement levels, thus some 10 to 30 in extreme cases.
However often the task is to compute a whole range of d-simplices. This occurs,
for example, when creating an initial uniform refinement of a given mesh (see Al-
gorithm New in Section 4.4.1). That is, for a given consecutive index I, a level `,
and a count n, find the n level-` simplices following the d-simplex corresponding to
the consecutive index I, that is, the d-simplices corresponding to the n consecutive
indices I, I + 1, . . . , I + n − 1. Ideally, this operation should run linearly in n, in-

65

Ibloc(c) cube-id c

2D 0 1 2 3

b
0 0 1 1 3

1 0 2 2 3

Ibloc(c) cube-id c

3D 0 1 2 3 4 5 6 7

b

0 0 1 1 4 1 4 4 7

1 0 1 2 5 2 5 4 7

2 0 2 3 4 1 6 5 7

3 0 3 1 5 2 4 6 7

4 0 2 2 6 3 5 5 7

5 0 3 3 6 3 6 6 7

Table 4.6.: The local index of a tetrahedron T ∈ T in dependence of its cube-id c
and type b.

cube-id(T) Iloc(T)

2D 0 1 2 3

P.b
0 0 1 1 3

1 0 2 2 3

cube-id(T) Iloc(T)

3D 0 1 2 3 4 5 6 7

P.b

0 0 1 1 1 5 5 5 7

1 0 1 1 1 3 3 3 7

2 0 2 2 2 3 3 3 7

3 0 2 2 2 6 6 6 7

4 0 4 4 4 6 6 6 7

5 0 4 4 4 5 5 5 7

Table 4.7.: For a tetrahedron T ∈ T of local index Iloc whose parent P has type
P.b we give the cube-id of T .

T.b Iloc(T)

2D 0 1 2 3

P.b
0 0 0 1 0

1 1 0 1 1

T.b Iloc(T)

3D 0 1 2 3 4 5 6 7

P.b

0 0 0 4 5 0 1 2 0

1 1 1 2 3 0 1 5 1

2 2 0 1 2 2 3 4 2

3 3 3 4 5 1 2 3 3

4 4 2 3 4 0 4 5 4

5 5 0 1 5 3 4 5 5

Table 4.8.: For a tetrahedron T ∈ T of local index Iloc whose parent P has type
P.b we give the type of T .

66

dependent of `, but if we used Algorithm 4.3.8 to create each of the n+ 1 simplices
we would have a runtime of O(nL). In order to achieve the desired linear runtime
we introduce the operations Successor and Predecessor that run in average O(1)
time. These operations compute from a given d-simplex T of level ` with consecu-
tive index I`(T) the d-simplex T ′ whose consecutive index is I`(T)+1, respectively,
I`(T)−1. Thus, T ′ is the next level ` simplex in the SFC after T (resp. the previous
one). Algorithm 4.3.10, which we introduce to solve this problem does not require
knowledge about the consecutive indices I`(T) and I`(T)± 1 and can be computed
significantly faster than Algorithm 4.3.8; see Lemma 4.26.

Algorithm 4.3.10: Successor(Tet T)

Result: The successor T ′ of T .
1 return Successor recursion(T, T, T.`)

Function Successor recursion(Tet T ,Tet T ′,int `)
1 c← c-id(T, `)

2 From c and b look up i := Iloc(T `) /* See Table 4.6 */

3 i← (i+ 1) % 8
4 if i = 0 then /* Enter recursion (in rare cases) */

5 T ′ ← Successor recursion (T, T ′, `− 1)

6 b̂← T ′.b /* b̂ stores the type of T ′`−1 */

7 else

8 b̂← Pt(c, b)

9 From b̂ and Iloc = i look up (c′, b′) /* See Tables 4.7 and 4.8 */

10 Set the level ` entries of T ′.x, T ′.y and T ′.z to c′

11 T ′.b← b′

12 return T ′

To compute the predecessor of T we only need to reverse the sign in Line 3 in the
Successor recursion subroutine of Algorithm 4.3.10.

Lemma 4.26. Algorithm 4.3.10 has constant average runtime (independent of L).

Proof. Because each operation in the algorithm can be executed in constant time,
the average runtime is nc, where c is a constant (independent of L) and n− 1 is the
number of average recursion steps. Since in consecutive calls to the algorithm the
variable i cycles through 0 to 2d − 1 we conclude that the recursion is on average
executed in every 2dth step, allowing for a geometric series argument.

We see in Algorithm 4.3.10 the usefulness of the consecutive index. Because we are
using this index instead of the TM-index, computing the index of the successor/pre-
decessor only requires adding/subtracting 1 to the given index. On the other hand,
computing the TM-index of a successor/predecessor would involve more subtle com-
putations.

67

4.4. High-level AMR algorithms

To develop the complete AMR functionality required by numerical applications, we
aim at a forest of quad-/octrees in the spirit of [34, 70]. Key high-level algorithms
are (see also Section 2.5.2):

• New. Given an input mesh of conforming simplices, each considered a root
simplex, generate an initial partitioned uniform refinement.

• Adapt. Adapt (refine and coarsen) a mesh according to a given criterion.

• Partition. Repartition a mesh among all processes such that the load is
balanced, possibly according to weights.

• Ghost. For each process, assemble the layer of directly neighboring elements
owned by other processes.

• Balance. Establish a 2:1 size condition between neighbors in a given refined
mesh. Thus, the levels of any two neighboring simplices must differ by at most
1.

• Iterate. Iterate through the local mesh, executing a callback function on
each element and on all inter-element interfaces.

Since partitioning via SFC only uses the SFC index as information, we refer to
already existing descriptions of Partition for hexahedral or simplicial SFCs; see
[34, 116] and Section 3.5. Ghost and Balance are sophisticated parallel algorithms
and require additional theoretical work. We describe them in Chapters 7 and 8. For
Iterate see our remarks in Section 9.

Here, we briefly describe New and Adapt. In the forest-of-trees approach we model
an adaptive mesh by a coarse mesh of level 0 d-simplices, the trees. Such a coarse
mesh could be specified manually for simple geometries, or obtained from executing
a mesh generator. Each level 0 simplex is identified with the root simplex T 0

d and
then refined adaptively to produce the fine and potentially nonconforming mesh of
d-simplices. These simplices are partitioned among all processes; thus each process
holds a range of trees, of which the first and last may be incomplete: Their leaves
are divided between multiple processes.

An entity F of the structure forest consists of the following entries

• F .C — the coarse mesh;

• F .K — the process-local trees;

• F .Ek — for each local tree k the list of process-local simplices in tetrahedral
Morton order.

We acknowledge that New and Adapt are essentially communication-free, but still
serve well to exercise some of the fundamental algorithms described earlier.

68

4.4.1. New

The New algorithm creates a partitioned uniform level ` refined forest from a given
coarse mesh. To achieve this, we first compute the first and last d-simplices belong-
ing to the current process p. From this range we can calculate which trees belong to
p and for each of these trees, the consecutive index of the first and last d-simplices
on this tree. We then create the first simplex in a tree by a call to T (Algorithm
4.3.8). In contrast to the New algorithm in [34] we create the remaining simplices
by calls to Successor instead of T to avoid the O(`) runtime of T in the case of
simplices. Our numerical tests, displayed in Figure 4.11, show that the runtime of
New is in fact linear in the number of elements and does not depend on the level `.
Within the algorithm, K denotes the number of trees in the coarse mesh and P the
number of processes.

Algorithm 4.4.1: New(Coarse Mesh C, int `)

Result: A partitioned uniform level ` forest with C as coarse mesh.

1 n← 2d`, N ← nK /* d-simplices per tree and global number of d-simplices */

2 gfirst ← bNp/P c, glast ← bN(p+ 1)/P c − 1 /* Global numbers of first and last..

*/

3 kfirst ← bgfirst/nc , klast ← bglast/nc /* ..local simplex and local tree range */

4 for t ∈ { kfirst, . . . , klast } do
5 efirst ← (t = kfirst) ? gfirst − nt : 0
6 elast ← (t = klast) ? glast − nt : n− 1
7 T ←T (efirst, `) /* Call Algorithm 4.3.8 */

8 Ek ← {T }
9 for e ∈ { efirst, . . . , elast − 1 } do

10 T ← Successor (T)
11 Ek ← Ek ∪ {T }

After New returns, the process local number of elements is known, and per-element
data can be allocated linearly in an array of structures, or a structure of arrays,
depending on the specifics of the application.

We point out, that the operations that require specific knowledge of simplices
are outsourced to the low-level algorithms T and Successor. If we replace, for
example, the implementation of these by the appropriate versions for quadrilater-
als/hexahedra with the Morton index, we obtain a partitioned uniform mesh with
these elements. Even further, we can model hybrid meshes, when we store the low-
level functions as part of the tree information, i.e. each tree has its own element
type.

Thus, this description of New fits into our general approach of separating high- and
low-level algorithms in order to handle different element types, which we describe
in Section 2.5.3

69

4.4.2. Adapt

The Adapt algorithm modifies an existing forest by refining and coarsening the d-
simplices of a given forest according to a callback function. It does this by traversing
the d-simplices of each tree in tetrahedral Morton order and passing them to the
callback function. If the current d-simplex and its 2d − 1 successors form a fam-
ily (all having the same parent), then the whole family is passed to the callback.
This callback function accepts either one or 2d d-simplices as input plus the index
of the current tree. In both cases, a return value greater than zero means that
the first input d-simplex should be refined, and thus its 2d children are added in
tetrahedral Morton order to the new forest. Additionally, if the input consists of 2d

simplices, they form a family, and a return value smaller than zero means that this
family should be coarsened, thus replaced by their parent. If the callback function
returns zero, the first given d-simplex remains unchanged and is added to the new
forest, and Adapt continues with the next d-simplex in the current tree. The Adapt

algorithm creates a new forest from the given one and can handle recursive refine-
ment/coarsening. For the recursive part we make use of the following reasonable
assumptions:

• A d-simplex that was created in a refine step will not be coarsened during the
same adapt call.

• A d-simplex that was created in a coarsening step will not be refined during
the same adapt call.

From these assumptions we conclude that for recursive refinement we only have
to consider those d-simplices that were created in a previous refinement step and
that we only have to care about recursive coarsening directly after we processed
a d-simplex that was not refined and could be the last d-simplex in a family. If
refinement and coarsening are not done recursively, the runtime of Adapt is linear
in the number of d-simplices of the given forest.

An application will generally project or otherwise transform data from the previ-
ous to the adapted mesh. This can be done within the adaptation callback, which
is known to proceed linearly through the local elements, or after Adapt returns if
a copy of the old mesh has been retained. In the latter case, one would allocate
element data for the adapted mesh and then iterate over the old and the new data
simultaneously, performing the projection in the order of the SFC. Once this is
done, the old data and the previous mesh are deallocated [28].

4.5. Performance evaluation

Given the design of the algorithms discussed in this chapter, we expect runtimes
that are precisely proportional to the number of elements and independent of the
level of refinement. To verify this, we present scaling and runtime tests1 for New

1Version v0.1 is available at https://bitbucket.org/cburstedde/t8code.git

70

and Adapt on the JUQUEEN supercomputer at the Forschungszentrum Jülich [73],
an IBM BlueGene/Q system with 28,672 nodes consisting of 16 IBM PowerPC A2
@ 1.6 GHz and 16 GB Ram per node. We also present one runtime study on the
full MIRA system at the Argonne Leadership Computing Facility, which has the
same architecture as JUQUEEN and 49,152 nodes. The biggest occurring number
of mesh elements is around 850e9 tetrahedra with 13 million elements per process.

The first two tests are a strong scaling (up to 131k processes) and a runtime
study of New in 3D, shown in Figure 4.11. For both tests we use a coarse mesh of
512 tetrahedra. We time the New algorithm with input level 8 (resp. level 10 for
higher numbers of processes). We execute the runtime study to examine whether
New has the proposed level-independent linear runtime in the number of generated
tetrahedra, which can be read from the results presented in the Table in Figure
4.11.

The last test is Adapt with a recursive nonuniform refinement pattern. The start-
ing point for all runs is a mesh obtained by uniformly refining a coarse mesh of
512 tetrahedra to a given initial level k. This mesh is then refined recursively using
a single Adapt call, where only the tetrahedra of types 0 and 3 whose level does
not exceed the fine level k + 5 are refined recursively. The resulting mesh on each
tetrahedron resembles a fractal pattern similar to the Sierpinski tetrahedron. We
perform several strong and weak scaling runs on JUQUEEN starting with 128 pro-
cesses and scaling up to 131,072. The setting is 16 processes per compute node. We
finally do another strong scaling run on the full system of the MIRA supercomputer
at the Argonne Leadership Computing Facility with 786,432 processes and again 16
processes per compute node. Figure 4.12 shows our runtime results.

4.6. Conclusion

We present a new encoding for adaptive nonconforming triangular and tetrahedral
mesh refinement based on Bey’s red-refinement rule. We identify six different types
of tetrahedra (and two types of triangles) and prescribe an ordering of the children
for each of these types that differs from Bey’s original order. By introducing an
embedding of the mesh elements into a Cartesian coordinate structure, we define a
tetrahedral Morton index that can be computed using bitwise interleaving similar to
the Morton index for cubes. This tetrahedral Morton index shares some properties
with the well-known cubical one and allows for a memory-efficient random access
storage of the mesh elements.

Exploiting the Cartesian coordinate structure, we develop several constant-time
algorithms on simplices. These include computing the parent, the children, and the
face-neighbors of a given mesh element, as well as computing the next and previous
elements according to the SFC.

In view of providing a complete suite of parallel dynamic AMR capabilities, the
constructions and algorithms described in this chapter are just the beginning. A
repartitioning algorithm following our SFC, for example, is easy to imagine, but

71

0.008

0.04

0.2

1

5

32 128 512 2048 8192 32768 131072

R
u
n
ti
m
e
[s
]

Number of processes

Strong scaling of New

New level 8
New level 10

Ideal strong scaling

Runtime tests for New

#Procs Level #Tetrahedra Runtime [s] Factor

64 7 1.073e9 0.059 –
8 8.590e9 0.451 7.64
9 6.872e10 3.58 7.94

10 5.498e11 28.6 7.99

256 8 8.590e9 0.116 –
9 6.872e10 0.898 7.74

10 5.498e11 7.15 7.96

Figure 4.11.: Runtime tests for New on JUQUEEN. Left: Two strong scaling studies.
A new uniform level 8 (circles) and level 10 (triangles) refinement of
a coarse mesh of 512 root tetrahedra, carried out with 16 up to 2,048
processes and 1,024 up to 131,072 processes with 16 processes per
compute node. Right: The data shows that the runtime of New is
linear in the number of generated elements and does not additionally
depend on the level. The uniform refinement is created from a coarse
mesh of 512 root tetrahedra. For the first computation on 64 processes
we use 1 process per compute node and for the computation on 256
processes we use 2 processes per node.

0.2

1

5

25

128 512 2048 8192 32768 131072 786432

R
u
n
ti

m
e

[s
]

Number of processes

Strong scaling of Adapt, refine types 0 and 3

Adapt from level 4 to 9
level 5 to 10
level 6 to 11
level 7 to 12

Ideal weak scaling
Ideal strong scaling

Figure 4.12.: Strong scaling for Adapt with a fractal refinement pattern. Starting
from an initial level k on a coarse mesh of 512 tetrahedra we refine
recursively to a maximal final level k + 5. The refinement callback is
such that only subtetrahedra of types 0 and 3 are refined. Left: Strong
and weak scaling on JUQUEEN with up to 131,072 processes and
strong scaling on MIRA with up to 786,432 processes. On both systems
we use 16 processes per compute node. The level 12 mesh consists of
858,588,635,136 tetrahedra. Right: An initial level 0 and final level
3 refinement according to the fractal pattern. The subtetrahedra of
levels 1 and 2 are transparent.

72

challenging to implement if the tree connectivity is to be partitioned dynamically,
and if global shared metadata shall be reduced from being proportional to the
number of ranks to the number of compute nodes, see Chapter 6. The present
chapter provides atomic building blocks that can be used in high-level algorithms for
2:1 balancing [69] and the computation of ghost elements and generalized topology
iteration [70]. We address these algorithms in Chapters 7 and 8. The choices
presented in this chapter are sustainable for maintaining extreme scalability in the
long term.

73

5. Connected Components of the
TM-SFC

This chapter is based on the preprint [32]. Since the preprint also contains contri-
butions of Burstedde and Isaac, we only present those parts of it that are work of
the author of this thesis. In particular, these are the results about the number of
face-connected components for the TM-SFC.

When we store a mesh in parallel, its elements are distributed among the processes
along the SFC. This means that each process is assigned a range of elements that
is contiguous with regards to their SFC index. See also Section 3.5.

In many numerical applications, the processes communicate with each other
across the boundaries of their partitions. See for example the construction of a
ghost layer in Chapter 7. The total volume of parallel communication is thus pro-
portional to the number of processes that share boundaries of a process’ domain
and proportional to the number of elements at this boundary. Hence, in order to
minimize the communication, the surface-to-volume ratio of these partitions should
be small. A good indicator for this is the number of face-connected components of
a process’ domain, and thus the number of face-connected components of a segment
of the SFC.

It is a known fact that the cubical Morton SFC can produce disconnected seg-
ments. However, the number of face-connected components was shown to be at
most two [9,32]. Similarly, the TM-SFC can produce disconnected domains (see for
example Figure 5.1). In this chapter, we prove the following bounds for the count
of face-connected components.

Theorem 5.1. A contiguous segment of a tetrahedral Morton curve through a uni-
form or adaptive tree of maximum refinement level L ≥ 2 produces at most 2(L−1)
face-connected subdomains in 2D and at most 2L+ 1 in 3D. For L = 1 there are at
most two face-connected subdomains.

We complete our study with numerical results to illustrate the distribution of
continuous vs. discontinuous segments. This supports the conjecture that the tetra-
hedral Morton curve is no worse in practice than the original cubical construction.

5.1. Proof of Theorem 5.1

We examine the number of face-connected components of a segment of the tetra-
hedral Morton SFC. As we show in Figure 5.1, there exist cases where the number

74

of face-connected components in a uniform 2D level L refinement can be as high as
2(L− 1). We show that this is in fact a sharp upper bound. We also show that in
three dimensions the number of face-connected components does not exceed 2L+1.
There exists an example with 2L face-connected components and we conjecture that
2L is in fact the sharp estimate. The proof of these bounds is fairly analogous to
the results for cubes from [32] and relies on a divide-and-conquer approach by split-
ting the segment into subsegments of which we know the number of face-connected
components.

Remark 5.2. In this chapter we sometimes refer to a TM-SFC on a type 1 root
triangle. By this we mean the SFC that would result from the construction in
Section 4.2 if we took the triangle 2LS1 as root triangle; see also Figure 4.2. We use
it since the geometry of this curve is the same as if we consider the original (type
0) TM-SFC and restrict it to the level 1 subtriangle of type 1.

Remark 5.3. For the cubical Morton curve, the proof that there are at most
two face-connected components uses a symmetry property of the Morton index
(see [32, equation (4)]). Given a d-dimensional cube q of level L with Morton index
Q, we can take the bitwise negation of Q

R(Q) = 2dL − 1−Q (5.1)

to obtain the index of a new cube q′. This q′ is the cube that results from traversing
the SFC Q steps in reverse.

We do not have such a strong symmetry property for simplices. However, in 2D it
holds that reversing the TM curve in a uniform refinement of a type 0 root triangle
results in the forward TM curve for a type 1 root triangle.

Using this Remark, we show a weaker form of Corollary 8 from [32].

Lemma 5.4. The following two properties hold for the TM-index in 2D, where we
consider a uniform level L refinement of an initial type 0 triangle T .

• Each type 1 subsimplex is face-connected to a type 0 subsimplex with a greater
TM-index.

• Each type 0 subsimplex that is also a descendant of the level 1, type 1 subtri-
angle T3 is face-connected to a type 1 subsimplex with a greater TM-index.

Proof. The respective face-neighbor is the top face-neighbor for the type 1 subsim-
plex and the face-neighbor along the diagonal face for the type 0 subsimplex; see
Figure 5.2. For type 0 we additionally require that the subsimplex is a descendant
of T3, since this ensures that the face-neighbor along the diagonal face is inside the
root triangle. Despite this detail, the proofs for both items are identical, and we
only present one for the first.

Let S denote an arbitrary type 1 subsimplex of level L and let S′ be its neighbor
across the top face. If S and S′ share the same parent P then there are two cases,

75

Figure 5.1.: Left: A segment of the 2D SFC on a level 4 refinement of T 0
2 with

six face-connected components (shaded pink). The number of face-
connected components in 2D can be as high as 2(L− 1); this estimate
is sharp. Right: a 3D level 2 refinement of T 0

3 with four (= 2L) face-
connected components. We prove that an upper bound on the number
of face-connected components is 2L+1 and conjecture that 2L is sharp.

which we also see in Figure 4.7: Either type(P) = 0, then the local index of S
is 2 and that of S′ is 3, or type(P) = 1, in which case the local index of S is 0
and that of S′ is 1. Thus, in both cases the TM-index of S must be smaller than
that of S′. We suppose now that S and S′ have different parents, which implies
L ≥ 2, and denote these different level L − 1 subsimplices by P and P ′. The only
possible combination is that type(P) = 1 and type(P ′) = 0, and that P and P ′ are
neighbors along P ’s top face. Therefore, by an induction argument, m(P) < m(P ′),
and since the TM-index preserves the local order under refinement, each child of P
has a smaller TM-index than each child of P ′; see Theorem 4.18. In particular we
find m(S) < m(S′).

We can now prove a first connectivity result for the 2D case.

Lemma 5.5. Consider a triangle T that is uniformly refined to level L. If T has
type 0, then a contiguous segment of the SFC ending in the last level L subsimplex
has just one face-connected component. If T has type 1, then this holds for segments
starting in the first level L subsimplex.

Proof. We present the proof for type(T) = 0, since we can then use the symmetry
of the 2D curve (Remark 5.3) to obtain the result for the case type(T) = 1. We
proceed by induction over L.

For L = 0 there is only one possible segment and it is face-connected. For L = 1
we obtain the result by investigating all 10 cases. For L > 1, let j ∈ {0, 1, 2, 3} be
the local index of the level 1 subtree T ′ of T in which the first level L subsimplex of
the segment lies. If j ∈ {0, 1, 3}, then the type of T ′ is 0 and the statement follows
by induction. Thus, let j = 2, i.e., the segment starts in the type 1 subtree of T .
The part of the segment that is not inside T ′ is the full last subtree of T (local
index 3) and thus it is face-connected in itself. With Lemma 5.4 we conclude that

76

S1

S1’

S0
S1

S0’

S0

Figure 5.2.: Illustration of Lemma 5.4. In 2D, choose any subsimplex S∗. If its
neighbor along the top face S′∗ is inside the root triangle, then m(S∗) <
m(S′∗). This condition is always fulfilled by any type 1 triangle and by
type 0 triangles that are descendants of the middle level 1 subtriangle.

each subsimplex in the subsegment in T ′ is face-connected to a simplex with greater
TM-index. Iterating this process, we conclude that each of these subsimplices is face-
connected to a subsimplex of the full last subtree of T . Thus, the whole segment is
face-connected.

For all other segments beginning with the first or ending in the last level L
subsimplex, and notably for all of those segments in 3D, we obtain an upper bound
of L+ 1 face-connected components, which we show in the next two lemmas.

Lemma 5.6. Let a segment of the TM-SFC for a uniform level L refined d-simplex
consist of several full level 1 subsimplices plus one single level L simplex either
at the end or at the beginning, then this segment has at most two face-connected
components.

Proof. Similarly to the proof of Proposition 9 in [32], we can show this claim by
enumerating all possible cases. There is no induction necessary.

Lemma 5.7. If a d-simplex is uniformly refined to level L, then any segment of
the TM-SFC ending in the last subsimplex or starting in the first has at most L+ 1
face-connected components.

Proof. Consider the case that the segment starts in the first simplex. For L = 0
there is only one possible segment consisting of the unique level 0 subsimplex and
it is thus face-connected. Let now L > 0. Since the segment begins at the very
first level L subsimplex, we can separate it into two parts. The first part at the
beginning consists of 0 to 2d − 1 full level 1 subtrees, and the second part is one
possibly incomplete level 1 subtree.

By the induction assumption, the second part has at most L face-connected com-
ponents. From Lemma 5.6 we obtain that the first part together with the first level

77

L subsimplex of the second part has at most two face-connected components. Since
this first level L subsimplex is contained in one of the components of the second
part, we obtain

L+ 2− 1 = L+ 1 (5.2)

components in total.
If the segments ends in the last simplex, the order of parts is reversed. The first

part of the segment is the part in the level 1 subtree where the segment starts, and
the second part consists of the remaining full level 1 subtrees. We obtain the bound
on the number of face-connected components using the same inductive reasoning as
above.

We have so far argued the connectivity of specific kinds of SFC segments. This
suffices to proceed to arbitrary segments of the tetrahedral Morton SFC.

Proposition 5.8. Any contiguous segment of the TM-SFC of a uniform level L ≥ 2
refinement of a type 0 simplex has at most 2(L − 1) face-connected components in
2D and 2L+ 1 face-connected components in 3D. For L = 1, there are at most two
face-connected components, and one for L = 0 (this applies to both 2D and 3D).

Proof. Again, the cases L = 0 and L = 1 follow by inspecting all cases. Thus, let
L ≥ 2. We first show that for d ≤ 3 the number of face-connected components is
bounded by 2L+1: If a given segment is contained in a level 1 subtree, we are done
by induction. Otherwise we can divide the segment into three (possibly empty)
pieces: First, the segment in one incomplete level 1 subtree ending at its last level
L subsimplex, then one contiguous segment of full level 1 subtrees and finally a
segment in one (possibly incomplete) level 1 subtree that starts at its first level L
subsimplex. Lemma 5.7 implies that the first and the last piece have at most L
face-connected components each. By Lemma 5.6, the second piece has one or two
face-connected components, and if the number is two, then it is face-connected to
the first or to the third piece. Thus, it adds only one face-connected component to
the total number, and we obtain at most

L+ 1 + L = 2L+ 1 (5.3)

face-connected components.
Let us now specialize to 2D. We conclude from Lemma 5.5 that the first subseg-

ment only adds more than one face-connected component if it is contained in the
only level 1 subtree of type 1 (local index 2). Similarly, the third subsegment only
adds more than one face-connected component if it is contained in a level 1 sub-
tree of type 0. In particular, if both subsegments add more than one face-connected
component, the third subsegment is contained in the last level 1 subtree (local index
3). Thus, the second subsegment is empty in this case.

If both of these subsegments have less than L face-connected components, there
is nothing left to show since the overall number of components is then less than or
equal to 2(L − 1). So suppose that one of the subsegments has L face-connected

78

Figure 5.3.: An illustration of the 2D case in the proof of Proposition 5.8 for L =
4. The bottom segment has the maximal number of L face-connected
components. Since its first and second triangle (on the left, shaded in
pink) are face-connected with the top segment, the possible number of
face-connected components is reduced by two. If the second segment
has L face-connected components as well, then its last two triangles
(on the right) are face-connected with the bottom segment. Thus, the
number of face-connected components is less than or equal to 2L− 2.

components and the other one has at least L − 1. We depict this situation in
Figure 5.3. We observe that the first and second level L simplex in this first segment
are face-connected to the first and second level L simplex in the second segment.
If, however, the second subsegment has L face-connected components then its last
two level L simplices are face-connected to the last two level L simplices of the first
subsegment.

We thus can subtract two face-connected components from the total count, which
leads to at most

L+ L− 2 = 2(L− 1) (5.4)

face-connected components in total.

We briefly discuss whether we can sharpen these bounds. In 2D, this is not
possible by counterexample; see Figure 5.1. In 3D, we construct a segment with 2L
face-connected components using the consecutive SFC-indices 22–25 of a uniform
level 2 refinement of a type 0 tetrahedron. We believe that the case that the first
and the last piece described in the proof of Proposition 5.8 have L face-connected
components each and that additionally the middle piece adds one component does
not occur.

Conjecture 5.9. In 3D, the number of face-connected components is bounded by
2L. This estimate is sharp.

79

5.1.1. From uniform to adaptive meshes

We close this section with the extension of the proof from uniform to adaptive
meshes, which is the remaining step to establish Theorem 5.1,

We have completed the necessary proofs for a uniform space division for triangular
and tetrahedral refinement (see 5.1). As we state in this section, an adaptive space
division does not require any more effort (see also [32] and [9, page 176]).

Proof of Theorem 5.1. Any adaptive tree of simplices with level l ≤ L can be refined
into level L simplices exclusively. This operation does not change the connectivity
between boundaries of the designated subdomain. In particular, the number of
face-connected subdomains remains unchanged and the proof reduces to applying
Proposition 5.8 above.

5.1.2. From one tree to a forest

If we consider a forest of octrees as in Section 3.4 or in [10, 34, 134], a contiguous
segment of the TM curve may traverse more than one tree. In this case, the segment
necessarily contains the last subsimplex of any predecessor tree, as well as the first
subsimplex of any successor tree in the segment. For the simplicial case, we may
use Lemmas 5.5 and 5.7 to use the bounds L + 1 (2D) and 2L + 1 (3D) for the
respective parts of the segment, not counting the transitions between full trees.

5.2. Enumeration of face-connected segments

We would like to examine not only how many pieces an SFC segment can have, but
also how frequently segments of different numbers of pieces occur. To this end, we
supply numerical studies for the TM-SFCs and compare the results with the cubical
Morton curve.

We enumerate all possible TM-SFC segments for a given uniform refinement level
and compute the number of their face-connected components. We also compute the
relative counts of face-connected and non-connected segments for the cubical Morton
curves. We achieve this by performing a depth-first search on the connectivity graph
of the submesh generated by the segment1.

In an application, all possible lengths of SFC segments can occur. On the one
hand, we could have a forest consisting of a single tree. If the number of participating
processes is of the same magnitude than the number of elements in that tree, then
very small lengths of segments occur, possibly even segments consisting only of a
single element. On the other hand, consider a setting where we have many trees,
possibly as many or more trees than processes. In this case, the lengths of SFC
segments within a single tree can be arbitrarily large, reaching up to the maximum
of the full tree. See for example our discussion in Section 6.4.

1https://github.com/holke/sfc_conncomp

80

https://github.com/holke/sfc_conncomp

Level 5 Level 8

Quads Cubes Triangles Tets Quads Triangles

Face-connected 71.6% 60.0% 63.9% 61.0% 71.4% 63.7%
Non-connected 28.4% 40.0% 36.1% 39.0% 28.6% 36.3%

Table 5.1.: The relative counts of face-connected and non-connected segments across
all possible SFC segments of a uniform level 5 and level 8 (2D only)
refinement.

We now compute the fraction of face-connected segments of any length among
all possible segments. More precisely, we compute for each possible count of face-
connected components the chance that any randomly choosen SFC segment (with
a random length) has exactly this number of face-connected components.

For a uniform level 5 refined tetrahedron we obtain that 61% of all SFC segments
are face-connected and only 7% have four or more face-connected components. For a
uniform level 8 refined triangle, about 64% of the segments are face-connected with
2% of the segments having four or more components. For cubes and quadrilaterals,
the respective ratios of face-connected segments are 60% and 71% (here we know
that the disconnected segments have exactly two components). Thus, comparing
cubical and TM curve, we see that in 2D more segments of the quadrilateral Morton
curve are face-connected, and in 3D more segments of the TM curve are face-
connected.

We collect these results in Figure 5.4 and Table 5.1.

5.3. Conclusion

We show that the bound for the TM-SFC is of order L and thus growing with the
level of refinement. Yet, we can demonstrate numerically that the fraction of face-
connected to non-connected segments is close to the cubical case. In practice, we
may expect both approaches to behave similarly.

Our result would appear relevant to make informed choices about the type of
space-filling curve to use, for example in writing a new element-based parallel code
for the numerical solution of partial differential equations, or any other code that
benefits from a recursive subdivision of space. Our theory and experiments support
the existing numerical evidence that a fragmentation of the parallel partition is not
observed.

81

Figure 5.4.: The relative count of SFC segments (left y-axis) by number of face-
connected components and the average length (right y-axis) of these
segments. Left: the distribution for a uniform level 8 refined trian-
gle. We observe that almost 98% of all SFC segments have three face-
connected components or less. 63.7% are face-connected, 29.7% have
two face-connected components and 4.4% have three face-connected
components. Right: the distribution for a uniform level 5 refined tetra-
hedron. Here, more than 93% of the segments have three face-connected
components or less. 61.0% have exactly one face-connected component,
22.1% two face-connected components and 10.7% three face-connected
components. The highest number of segments occuring are 14 = 2(8−1)
in 2D, and 10 = 2 · 5 in 3D. This is in agreement with Proposition 5.8
(2D) and Conjecture 5.9 (3D).

82

6. Coarse Mesh Partitioning

This chapter is based on the paper [31]. We edited it slightly in order to fit into
the general notations of this thesis, without changing its mathematical content.
Copyright © by SIAM. Unauthorized reproduction of this chapter is prohibited.

As we discuss in Chapters 2 and 3, a technique to model complex domain shapes
is to patch multiple trees together in an unstructured coarse mesh, giving rise to
a forest of elements. The number of trees per process is limited by the available
memory to roughly 1e5 to 1e6 [34]. In industrial and medical meshing however,
numbers in the range of one billion or more trees are not uncommon [52, 68, 119].
In order to support such cases, we need to partition the coarse mesh among the
parallel processes.

Two main approaches for partitioning a forest of elements have been discussed
[157], namely (a) assigning each tree and thus all of its elements to one owner
process [24,71,126], or (b) allowing a tree to contain elements belonging to multiple
processes [10, 34]. The first approach offers a simpler logic but may not provide
acceptable load balance when the number of elements differs vastly between trees.
The second allows for perfect partitioning of elements by number (the local numbers
of elements between processes differ by at most one) but presents the issue of trees
that are shared between multiple processes.

We choose paradigm (b) for speed and scalability, challenging ourselves to solve an
n-to-m communication problem for every coarse mesh element. Thus the objective
of this chapter is to develop how to do this without handshaking (i.e., without having
to determine separately which process receives from which) and with a minimal
number of senders, receivers, and messages. Our main contribution is to avoid
identifying a single owner process for each tree and instead treat all its sharer
processes as algorithmically active, under the premise that they produce a disjoint
union of the information necessary to be transferred. In particular, each process
shall store the relevant tree meta data to be readily available, eliminating the need
to transfer this data from a single owner process.

In this chapter, we also integrate the parallel transfer of ghost trees. The reason
for this is that each process will eventually collect ghost elements, i.e., remote ele-
ments adjacent to its own. We discuss the ghost algorithm on elements in Chapter 7.
Ghost elements of any process may be part of trees that are not in its local set. To
disconnect the ghost element transfer from identifying and transferring ghost trees,
we perform the latter as part of the coarse mesh partitioning, presently across tree
faces. We study in detail what information we must maintain to reference neighbor
trees of ghost trees (that may themselves be either local, ghost, or neither) and

83

propose an algorithm with minimal communication effort.

We have implemented the coarse mesh partitioning for triangles and tetrahedra
using the TM-SFC designed in Chapter 4, and for quadrilaterals and hexahedra
exploiting the logic from [34]. To demonstrate that our algorithms are safe to use, we
verify that (a) small numbers of trees require run times on the order of milliseconds
and thus present no noticeable overhead compared to a serial coarse mesh, and
(b) the coarse mesh partitioning adds only a fraction of run time compared to the
partitioning of the forest elements, even for extraordinarily large numbers of trees.
We show a practical example of 3D dynamic AMR on 8e3 processes using 383e6
trees and up to 25e9 elements. To investigate the ultimate limit of our algorithms,
we partition coarse meshes of up to 371e9 trees on JUQUEEN using 917e3 processes,
obtaining a total run time of about 1.2s and a rate of 340e3 trees per second per
process. On 131e3 processes with half as many ranks per compute node we obtain
rates as high as 750e3 trees per second per process.

We may summarize our results by saying that partitioning the trees can be made
even less costly than partitioning the elements and often executes so fast that it does
not make a difference at all. This allows a forest code that partitions both trees and
elements dynamically to treat the whole continuum of forest mesh scenarios, from
one tree with nearly trillions of elements on the one extreme to billions of trees that
are not refined at all on the other, with comparable efficiency.

6.1. Tree-based AMR

We repeat some of the concepts from Chapters 2 and 3.

A forest F consist of a coarse mesh of trees and a fine mesh of elements that
resides from refining the trees. We use SFCs to order the elements within each
tree. SFCs map the d-dimensional elements of a refinement tree to an interval by
assigning a unique integer index IF (E) to each element E, see Lemma 3.21. Thus,
we can order all elements of that refinement tree linearly in an array. As in [136],
we do not store the internal (non-leaf) nodes of the tree.

The choice of SFC affects the ordering of these elements of the forest mesh and
thus the parallel partition of elements. Possibilities include, but are not limited to,
the Hilbert, Peano, or Morton curves for quadrilaterals and hexahedra [65,101,113,
149], as well as the Sierpiński curve for triangles [8,129] and the tetrahedral Morton
curve for triangles and tetrahedra from Chapter 4.

As of equation (3.22), a global order of elements is established first by tree and
then by their index with respect to an SFC (see also [9]): We enumerate the K
trees of the coarse mesh by 0, . . . ,K − 1 and call the number k of a tree its global
index. With the global index we naturally extend the SFC order of the leaves: Let
a leaf element of the tree k have SFC index I (within that tree); then we define the
combined index (k, I). This index compares to a second index (k′, J) as

(k, I) < (k′, J) :⇔ k < k′ or (k = k′ and I < J). (6.1)

84

Figure 6.1.: A mesh consists of two structures, the coarse mesh (left) that represents
the topology of the domain, and the forest mesh (right) that consists of
the leaf elements of a refinement and is used for computation. In this
example the domain is a unit square with a circular hole. The color
coding in the coarse mesh displays each tree’s unique and consecutive
identifier, while the color coding in the forest mesh represents the re-
finement level of each element. In this example we choose an initial
global level 1 refinement and a refinement of up to level 3 along the
domain boundary.

In practice we store the mesh elements local to a process in one contiguous array
per locally nonempty tree in precisely this order.

The algorithms and techniques discussed in this chapter assume an SFC induced
order among the elements, but they are not affected by the particular choice of SFC.
In the t8code software used for the demonstrations in this thesis, we have so far
implemented Morton SFCs for quadrilaterals and hexahedra via the p4est library
[25] and the tetrahedral Morton SFC for tetrahedra and triangles. These curves
compute the index m(E) of an element via bitwise interleaving the coordinates of
its lower left vertex in a suitable reference tree; see also Figure 6.2 for an illustration
of the curve on triangles. Other SFC schemes may be added to the t8code in a
modular fashion, see Section 2.5.3.

6.1.1. The tree shapes

The trees of the coarse mesh can be of arbitrary shape as long as they are all of
the same dimension and fit together along their faces. In particular, we identify the
following tree shapes:

85

k0 k1

p0 p1 p1 p2

k0

k1

Figure 6.2.: We connect multiple trees to model complex geometries. Here, we show
two trees k0 and k1 with an adaptive refinement. To enumerate the
forest mesh, we establish an a priori order between the two trees and
use an SFC within each tree. On the left-hand side of the figure the
refinement tree and its linear storage are shown. When we partition the
forest mesh to P processes (here, P = 3), we cut the SFC in P equally
sized parts and assign part i to process i.

Coarse mesh Conforming mesh of tree roots
Tree An element of the coarse mesh

Forest mesh The adaptive mesh of elements (leaves of the trees)
Element/leaf Each element of the forest mesh is the leaf of a tree

Table 6.1.: The basic definitions for the coarse mesh and the forest mesh and their
elements. Throughout, we refer to the neighbor information of the trees
as connectivity.

• Points in 0D.

• Lines in 1D.

• Quadrilaterals and triangles in 2D.

• Hexahedra and tetrahedra in 3D.

• Prisms and pyramids in 3D.

Coarse meshes consisting solely of prisms or pyramids are quite uncommon; these
tree shapes are used primarily to transition between hexahedra and tetrahedra in
hybrid meshes.

6.1.2. Encoding of face-neighbors

The connectivity information of a coarse mesh includes the neighbor relation be-
tween adjacent trees. Two trees are considered neighbors if they share at least
one lower dimensional face (vertex, face, or edge). Since all of this connectivity
information can be inferred from codimension-1 neighbors, we restrict ourselves to

86

f0f1

f2
0

2

1

0 1

2 3

f0 f1

f2

f3

4

10

32f0 f1f2

f3

f4f0

f1

f2

f3

0

1

2
3

0 1

2 3

4 5

6 7

f0 f1

f2

f3

f4

f5

f2

0 2

3 5

1

4

f0

f1f3

f4

Z

Y

X

Figure 6.3.: The vertex and face labels of the 2D (left) and 3D (right) tree shapes.

those, denoting them uniformly by face-neighbors. This choice does not lessen the
generality of the partitioning algorithms to follow and avoids a significant jump in
complexity of the element-neighbor code.

An application often requires a quick mechanism to access the face-neighbors of a
given forest mesh element. If this neighbor element is a member of the same tree, the
computation can be carried out via the SFC logic, which involves only a few bitwise
operations for the hexahedral and tetrahedral Morton curves [29, 34, 101, 136]. If,
however, the neighbor element belongs to a different tree, we need to identify this
tree, given the parent tree of the original element and the tree face at which we
look for the neighbor element. It is thus advantageous to store the face-neighbors
of each tree in an array that is ordered by the tree’s faces. To this end, we fix the
enumeration of faces and vertices relative to each other as depicted in Figure 6.3.
We discuss the computation of element face-neighbors in Chapter 7.

6.1.3. Orientation between face-neighbors

In addition to the global index of the neighbor tree across a face, we describe how
the faces of the tree and its neighbor are rotated relative to each other. We allow all
connectivities that can be embedded in a compact 2- or 3-manifold in such a way
that each tree has positive volume. This includes the Moebius strip and Klein’s
bottle and other quite exotic meshes, e.g., a hexahedron whose one face connects
to another in some rotation. We obtain two possible orientations of a line-to-line
connection, three for a triangle-to-triangle connection, and four for a quadrilateral-
to-quadrilateral connection.

We would like to encode the orientation of a face connection analogously to the
way it is handled in p4est: At first, given a face f , its vertices are a subset of
the vertices of the whole tree. If we order them accordingly and renumerate them
consecutively starting from zero, we obtain a new number for each vertex that
depends on the face f . We call it the face corner number. If now two faces f and
f ′ meet, the corner 0 of the face with the smaller face number is identified with a

87

face corner k in the other face. In p4est this k is defined to be the orientation of
the face connection.

In order for this operation to be well-defined, it must not depend on the choice
of the first face when the two face numbers are the same, which is easily verified
for a single tree shape. When two trees of different shapes meet, we generalize to
determine which face is the first one.

Definition 6.1. We impose a semiorder on the 3-dimensional tree shapes as follows:

Hexahedron
<

Prism < Pyramid.

Tetrahedron
<

(6.2)

This comparison is sufficient since a hexahedron and a tetrahedron can never
share a common face. We use it as follows.

Definition 6.2. Let t and t′ denote the tree shapes of two trees that meet at a
common face with respective face numbers f and f ′. Furthermore, let ξ be the face
corner number of f ′ matching corner 0 of f, and let ξ′ be the face corner number of
f matching corner 0 of f ′. We define the orientation of this face connection as

or :=

{
ξ if t < t′ or (t = t′ and f ≤ f ′),
ξ′ otherwise.

(6.3)

We now encode the face connection in the expression or · F + f ′ from the per-
spective of the first tree and or · F + f from the second, where F is the maximal
number of faces over all tree shapes of this dimension.

6.2. Partitioning the coarse mesh

As outlined above, tree-based AMR methods partition mesh elements with the help
of an SFC. By cutting the SFC into as many equally sized parts as processes and
assigning part i to process i, the repartitioning process is distributed and runs in
linear time. Weighted partitions with a user-defined weight per leaf element are also
possible and practical [34, 117].

If the physical domain has a complex shape such that many trees are required
to optimally represent it, it becomes necessary to also partition the coarse mesh in
order to reduce the memory footprint. This is even more important if the coarse
mesh does not fit into the memory of one process, since such problems are not even
computable without coarse mesh partitioning.

Suppose the forest mesh is partitioned among the processes. Since the forest mesh
frequently references connectivity information from the coarse mesh, a process that
owns a leaf e of a tree k also needs the connectivity information of the tree k to its
neighbor trees. Thus, we maintain information on these so-called ghost neighbor
trees.

88

There are two traditional approaches to partition the coarse mesh. In the first
approach [24, 152], the coarse mesh is partitioned, and the owner process of a tree
will own all elements of that tree. In other words, it is not possible for two different
processes to own elements of the same tree, which can lead to highly imbalanced
forest meshes. Furthermore, if there are fewer trees than processes, there will be
idle processes assigned zero elements. In particular, this approach prohibits the
frequent special case of a single tree.

The second approach [157] is to first partition the forest mesh and then deduce the
coarse mesh partition from that of the forest. If several processes have leaf elements
from the same tree, then the tree is assigned to one of these processes, and whenever
one of the other processes requests information about this tree, communication is
invoked. This technique has the advantage that the forest mesh is load-balanced
much better, but it introduces additional synchronization points in the program
and can lead to critical bottlenecks if a lot of processes request information on the
same tree.

We propose another approach, which is a variation of the second, that overcomes
the communication issue. If several processes have leaf elements from the same tree,
we duplicate this tree’s connectivity data and store a local copy of it on each of the
processes. Thus, there is no further need for communication, and each process has
exactly the information it requires. Since the purpose of the coarse mesh is not
to store data that changes during the simulation but to store connectivity data
about the physical domain, the data on each tree is persistent and does not change
during the simulation. Certainly, this concept poses an additional challenge in the
(re)partitioning process, because we need to manage multiple copies of trees without
producing redundant messages.

As an example, consider the situation in Figure 6.4. Here the 2D coarse mesh
consists of two triangles 0 and 1, and the forest mesh is a uniform level 1 mesh
consisting of 8 elements. Elements 0, 1, 2, 3 belong to tree 0 and elements 4, 5, 6, 7
to tree 1. If we load-balance the forest mesh to three processes with ranks 0, 1, and
2, then a possible forest mesh partition arising from an SFC could be

rank elements

0 0, 1, 2
1 3, 4, 5
2 6, 7,

(6.4)
leading to the coarse
mesh partition

rank trees

0 0
1 0, 1
2 1.

(6.5)

Thus, each tree is stored on two processes.

6.2.1. Valid partitions

We allow arbitrary partitions for the forest, as long as they are induced by an SFC.
This gives us some information on the type of coarse mesh partitions that we can
expect.

Definition 6.3. In general, a partition of a coarse mesh of K trees { 0, . . . ,K − 1 }

89

e0 e1

e2

e3

e7

e6

e5 e4

0

1

0

2

1

01

2

Figure 6.4.: A coarse mesh of two trees and a uniform level 1 forest mesh. If the
forest mesh is partitioned to three processes, each tree of the coarse
mesh is requested by two processes. The numbers in the tree corners
denote the position and orientation of the tree vertices, and the global
tree ids are the numbers in the center of each tree. As an example
SFC we take the triangular Morton curve from [29], but the situation
of multiple trees per process can occur for any SFC.

to P processes { 0, . . . , P − 1 } is a map f that assigns each process a certain subset
of the trees,

f : { 0, . . . , P − 1 } −→ P { 0, . . . ,K − 1 } , (6.6)

and whose image covers the whole mesh:

P−1⋃
p=0

f(p) = { 0, . . . ,K − 1 } . (6.7)

Here, P denotes the set of all subsets (power set). We call f(p) the local trees of
process p and explicitly allow that f(p)∩ f(q) may be nonempty. If so, the trees in
this intersection are shared between processes p and q.

The above definition includes all possibilities of attaching trees to processes. In
particular, we allow the same tree to reside on multiple processes. For example, it is
a partition in the above sense if all trees are partitioned to all processes, expressed by
f(p) = { 0, . . . ,K − 1 } for all p. Any other arbitrary mapping is possible, with no
restriction on the number of trees per process, where empty processes with f(p) = ∅
are included.

For our method, we will not consider every possible partition of a coarse mesh.
Since we assume that a forest mesh partition comes from an SFC, we restrict our-
selves to a subset of partitions. In particular, the SFC order of a forest imposes the
restriction that the order of trees is linear among the processes. Thus if tree k is on
process p, then every tree l > k must be partitioned to a process q ≥ p.
Definition 6.4. Consider a partition f of a coarse mesh with K trees. We say that
f is a valid partition if there exist a forest mesh with N leaves and a (possibly
weighted) SFC partition of it that induces f . Thus, for each process p and each
tree k, we have k ∈ f(p) if and only if there exists a leaf e of the tree k in the forest
mesh that is partitioned to process p. Processes without any trees are possible; in
this case f(p) = ∅.

90

We denote by kp the local tree on p with the lowest global index and denote by
Kp the local tree with the highest global index.

This, for example, excludes meshes where the processes are not mapped to the
trees in ascending order. A simple example of a partition of two trees on two
processes that is not valid is given by f(0) = { 1 } and f(1) = { 0 }.

The definition of valid partitions requires a forest mesh and a specific SFC-induced
partition of it. Since this is not convenient for theoretical investigations, we deduce
three properties that characterize valid partitions independently of a forest mesh
and SFCs.

Proposition 6.5. A partition f of a coarse mesh is valid if and only if it fulfills
the following properties.

(i) The tree indices of a process’s local trees are consecutive; thus

f(p) = { kp, kp + 1, . . . ,Kp } or f(p) = ∅. (6.8)

(ii) A tree index of a process p may be smaller than a tree index on a process q
only if p ≤ q:

p ≤ q ⇒ Kp ≤ kq (if f(p) 6= ∅ 6= f(q)). (6.9)

(iii) The only trees that can be shared by process p with other processes are kp and
Kp:

f(p) ∩ f(q) ⊆ { kp,Kp } for p 6= q. (6.10)

Proof. We show the only-if direction first. Let an arbitrary forest mesh with SFC
partition be given such that f is induced by it. In the SFC order the leaves are
sorted according to their SFC indices. If (i, I) denotes the leaf corresponding to the
I-th leaf in the i-th tree and tree i has Ni leaves, then the complete forest mesh
consists of the leaves

{ (0, 0), (0, 1), (0, N0 − 1), (1, 0), . . . , (K − 1, NK−1 − 1) } . (6.11)

The partition of the forest mesh is such that each process p gets a consecutive range{
(kp, ip), . . . , (Kp, i

′
p)
}

(6.12)

of leaves, where (kp+1, ip+1) is the successor of (Kp, i
′
p) and the kp and the Kp form

increasing sequences with Kp ≤ kp+1. The coarse mesh partition is then given by

f(p) = { kp, kp + 1, . . . ,Kp } for all p, (6.13)

which shows properties (i) and (ii). To show (iii) we assume that f(p) has at least
three elements; thus f(p) = { kp, kp + 1, . . . ,Kp }. However, this means that in the
forest mesh partition each leaf of the trees { kp + 1, . . . ,Kp − 1 } is partitioned to p.

91

Since the forest mesh partitions are disjoint, no other process can hold leaf elements
from these trees, and thus they cannot be shared.

To show the if-direction, suppose the partition f fulfills (i), (ii), and (iii). We
construct a forest mesh with a weighted SFC partition as follows. Each tree that is
local to a single process is not refined and thus contributes a single leaf element to
the forest mesh. If a tree is shared by m processes, then we refine it uniformly until
we have more than m elements. It is now straightforward to choose the weights of
the elements such that the corresponding SFC partition induces f .

We directly conclude the following.

Corollary 6.6. In a valid partition, each pair of processes can share at most one
tree; thus

|f(p) ∩ f(q)| ≤ 1 (6.14)

for each p 6= q.

Proof. Supposing the contrary, with (6.10) we know that there would exist two
processes p and q with p < q such that f(p) ∩ f(q) = { kp,Kp } = { kq,Kq } and
kp 6= Kp. Thus Kp > kp = kq, which contradicts property (6.9).

Corollary 6.7. If in a valid partition f of a coarse mesh the tree k is shared between
processes p and q, then for each p < r < q,

f(r) = { k } or f(r) = ∅. (6.15)

Proof. We can directly deduce this from (6.8), (6.9), and Corollary 6.6.

In order to properly deal with empty processes in our calculations, we define start
and end tree indices for these as well.

Definition 6.8. Let p be an empty process in a valid partition f; thus f(p) = ∅.
Furthermore, let q < p be maximal such that f(q) 6= ∅. Then we define the start
and end indices of p as

kp := Kq + 1, (6.16a)

Kp := Kq = kp − 1. (6.16b)

If no such q exists, then no rank lower than p has local trees, and we set kp = 0,
Kp = −1. With these definitions, (6.8) and (6.9) are valid if any of the processes
are empty.

From now on, all partitions in this chapter are assumed valid even if not stated
explicitly.

92

6.2.2. Encoding a valid partition

A typical way to define a partition in a tree-based code is to store an array O

of tree offsets for each process, that is, the global index of the first tree local to
each process. The range of local trees for process p can then be computed as
{ O[p], . . . , O[p+ 1]− 1 }. However, for valid partitions in the coarse mesh setting,
this information would not be sufficient because we would not know which trees are
shared. We thus modify the offset array by adding a negative sign when the first
tree of a process is shared.

Definition 6.9. Let f be a valid partition of a coarse mesh, with kp being the index
of p’s first local tree. Then we store this partition in an array O of length P + 1,
where for 0 ≤ p < P,

O[p] :=

 kp
if kp is not shared with the next smaller
nonempty process or f(p) = ∅,

−kp − 1 if it is.

(6.17)

Furthermore, O[P] shall store the total number of trees.

Because of the definition of kp, we know that O[0] = 0 for all valid partitions.

Lemma 6.10. Let f be a valid partition, and let O be as in Definition 6.9. Then

kp =

O[p] if O[p] ≥ 0,

|O[p] + 1| if O[p] < 0,
(6.18)

and
Kp = |O[p+ 1]| − 1. (6.19)

Proof. The first statement follows since (6.17) and (6.18) are inverses of each other.
For (6.19) we distinguish two cases. First, let f(p) be nonempty. If the last tree of
p is not shared with p+ 1, then it is kp+1− 1 and O[p+ 1] = kp+1, and thus we have

Kp = kp+1 − 1 = |O[p+ 1]| − 1. (6.20)

If the last tree of p is shared with p+ 1, then it is kp+1, the first local tree of p+ 1,
and thus O[p+ 1] = −kp+1 − 1 and

Kp = kp+1 = | − kp+1| = |O[p+ 1]| − 1. (6.21)

Now let f(p) = ∅. If kp+1 is not shared, then kp+1 = kp = Kp + 1 by Definition 6.8,
and O[p+ 1] = kp+1 by (6.17). Thus,

Kp = kp − 1 = kp+1 − 1 = |O[p+ 1]| − 1. (6.22)

If kp+1 is shared, then again by Definition 6.8, kp+1 = kp − 1 = Kp and O[p + 1] =
−kp+1 − 1 such that we obtain

Kp = kp+1 = kp+1 + 1− 1 = |O[p+ 1]| − 1. (6.23)

93

Corollary 6.11. In the setting of Lemma 6.10 the number np of local trees of process
p fulfills

np = |O[p+ 1]| − kp =

{
|O[p+ 1]| − O[p] if O[p] ≥ 0,

|O[p+ 1]| − |O[p] + 1| else.
(6.24)

Proof. This follows from the identity np = Kp − kp + 1.

Lemma 6.10 and Corollary 6.11 show that for valid partitions, the array O carries
the same information as the partition f .

6.2.3. Ghost trees

A valid partition provides information on the local trees of a process. These trees
are all trees of which a forest has local elements. In many applications it is common
to collect a layer of ghost (or halo) elements of the forest to support the exchange of
data with neighboring processes. Since these ghost elements may be descendants of
nonlocal trees, we store their trees as ghost trees. We want to confine this logic to
the coarse mesh to be independent of a forest mesh, and thus we propose to store
each nonlocal face-neighbor tree as a ghost tree. This means possibly storing more
ghost trees than needed by a particular forest. However, this only affects the first
and the last local tree of a process, which bounds the overhead. Since we restrict the
neighbor information to face-neighbors, we also restrict ourselves to face-neighbor
ghosts in this chapter. However, an extension to edge and vertex neighbor ghosts is
planned for the future. These will prompt a somewhat more elaborate discussion,
since an arbitrary number of trees can be neighbored across a vertex/edge. There
exist known algorithms for quadrilaterals and hexahedra [70], which we believe can
be modified to extend to simplices, prisms, and pyramids.

Definition 6.12. Let f be a valid partition of a coarse mesh. A ghost tree of a
process p is any tree k such that

• k /∈ f(p), and

• there exists a face-neighbor k′ of k such that k′ ∈ f(p).

If a coarse mesh is partitioned according to f , then each process p will store its
local trees and its ghost trees.

6.2.4. Computing the communication pattern

Suppose a coarse mesh is partitioned among the processes { 0, . . . , P − 1 } according
to a partition f . The input of the partition algorithm is this coarse mesh and a
second partition f ′, and the output is a coarse mesh that is partitioned according
to the second partition.

Apart from these partitions being valid, no other restrictions are imposed on the
partitions f and f ′. Thus, we include the trivial case f = f ′ as well as extreme cases.

94

An example for such a case is an f that concentrates all trees on one process and an
f ′ that assigns them to another (or distributes them evenly among all processes).
For dynamic forest repartitioning it is not unusual for almost all of the elements
to change their owner process [28, 100]. We expect similar behavior for the trees,
especially when the number of trees is on the order of the number of processes or
higher.

We suppose that in addition to its local trees and ghost trees, each process knows
the complete partition tables f and f ′, for example, in the form of offset arrays.
The task is now for each process to identify the processes to which it needs to send
local and ghost trees and then to execute the sending. A process also needs to
identify the processes from which it receives local and ghost trees and to execute
the receiving. We discuss here how each process can compute this information from
the offset arrays without further communication.

It will become clear in section 6.2.5 that ghost trees need not yet be discussed at
this point. Thus, it is sufficient to concentrate on the local trees for the time being.

Ownership during partition

The fact that trees can be shared between multiple processes poses a challenge
when repartitioning a coarse mesh. Suppose we have a process p and a tree k with
k ∈ f ′(p), and k is a local tree for more than one process in the partition f . We do
not want to send the tree multiple times, so how do we decide which process sends
k to p?

A simple solution would be that the process with the smallest index to which
k is a local tree sends k. This process is unique and can be determined without
communication. However, suppose that the two processes p and p−1 share the tree
k in the old partition, and p will also have this tree in the new partition. Then p−1
would send the tree to p even though this message would not be needed.

We resolve this issue by only sending a local tree to a process p if this tree is not
already local on p.

Paradigm 6.13. When repartitioning with k ∈ f ′(p), the process that sends k to p
is

• p if k already is a local tree of p, or else

• q with q minimal such that k ∈ f(q).

We acknowledge that sending from p to p in the first case is just a local data
movement not involving communication.

Definition 6.14. When repartitioning, given a process p we define the sets Sp and
Rp of processes to and from which p sends and receives local trees, respectively, and
thus

Sp :=
{

0 ≤ p′ < P | p sends local trees to p′
}
, (6.25a)

Rp :=
{

0 ≤ p′ < P | p receives local trees from p′
}
. (6.25b)

95

Both sets may include the process p itself. Furthermore, we establish the notation
for the smallest and largest ranks in these sets, understanding that they depend on
p:

sfirst := minSp, slast := maxSp, (6.26a)

rfirst := minRp, rlast := maxRp. (6.26b)

If Sp is empty, we set sfirst = −1 and slast = −2, and likewise for Rp.
Sp and Rp are uniquely determined by Paradigm 6.13.

An example

We discuss a small example; see Figure 6.5. Here, we repartition a partitioned
coarse mesh of five trees among three processes. The initial partition f is given by

O = { 0,−2, 3, 5 } (6.27)

and the new partition f ′ by

O’ = { 0,−3,−4, 5 } . (6.28)

Thus, initially tree 1 is shared by processes 0 and 1, while in the new partition,
tree 2 is shared by processes 0 and 1, and tree 3 is shared by processes 2 and 3.
We arrange the local trees that each process will send to every other process in a
table, where the set in row i, column j is the set of local trees that process i sends
to process j:

0 1 2

0 { 0, 1 } ∅ ∅
1 { 2 } { 2 } ∅
2 ∅ { 3 } { 3, 4 }

(6.29)

This leads to the following sets Sp and Rp:

S0 = { 0 } , R0 = { 0, 1 } , (6.30a)

S1 = { 0, 1 } , R1 = { 1, 2 } , (6.30b)

S2 = { 1, 2 } , R2 = { 2 } . (6.30c)

We see that process 1 keeps the tree 2 that is also needed by process 0. Thus,
process 1 sends tree 2 to process 0. Process 0 also needs tree 1, which is local on
process 1 in the old partition. But, since it is also local to process 0, process 1 does
not send it.

Determining Sp and Rp

In this section we show that each process can compute the sets Sp and Rp from the
offset array without further communication.

96

Figure 6.5.: A small example. The coarse mesh consists of five trees (numbered)
and is partitioned among three processes (color coded). Left: the initial
partition O. Right: the new partition O’. The colors of the trees encode
the processes that have a tree as local tree. Process 0 is drawn in blue,
process 1 in green, and process 2 in red. Initially, tree 1 is shared among
processes 0 and 1, while in the new partition, tree 2 is shared among
processes 0 and 1, and tree 3 is shared among processes 1 and 2. In
(6.27)–(6.30) we list the sets O and O’, the trees that each process sends,
and the sets Sp and Rp.

Proposition 6.15. A process p can calculate the sets Sp and Rp without further
communication from the offset arrays of the old and new partitions. Once the first
and last elements of each set are known, process p can determine in constant time
whether any given rank is in any of those sets.

We split the proof into two parts. First, we discuss how a process can compute
sfirst, slast, rfirst, and rlast, and then show how it can decide for two processes p̃ and
q whether q ∈ Sp̃. In particular, we will apply this decision to each of the process
numbers between the first and last elements of Sp and Rp.

We begin by determining sfirst and slast for Sp 6= ∅. For sfirst we consider two
cases. First, if the first local tree of p is not shared with a smaller rank, then sfirst

is the smallest process q that has this tree in the new partition and either is p itself
or did not have it in the old one. We can find q with a binary search in the offset
array.

Second, if the first tree of p is shared with a smaller rank, then p only sends it in
the case that p keeps this tree in the new partition. Then sfirst = p. Otherwise, we
consider the second tree of p and proceed with a binary search as in the first case.

To compute slast, we notice that among all ranks that have p’s old last tree in the
new partition and did not already have it, slast is the largest (except when p itself
is this largest rank, in which case it certainly had the last tree). We can determine
this rank with a binary search as well. If no such process exists, we proceed with
the second-to-last tree of p, for which we know that such a process must exist.

Remark 6.16. The special case Sp = ∅ occurs in the following situations:

1. p does not have any local trees.

97

2. p has one local tree that is shared with a smaller rank, and p does not have
this tree as a local tree in the new partition.

3. p has two trees, the first of which case 2 holds for. The second (last) tree is
shared with a set Q of bigger ranks, and there is no process q /∈ Q that has
this tree as a local tree in the new partition.

These conditions can be queried before computing sfirst and slast. To check condition
3, we need to perform one binary search, while we evaluate conditions 1 and 2 in
constant time.

Similarly, to compute Rp, we first look at the smallest and largest elements of
this set. These are the first and last processes from which p receives trees. rfirst is
the smallest rank that had p’s new first tree as a local tree in the old partition, or
it is p itself if this tree was also a local tree on p. Also rlast is the smallest rank
greater than or equal to rfirst that had p’s new last local tree as a local tree in the
old partition, or p itself. We can find both of these with a binary search in the offset
array of the old partition.

Remark 6.17. Rp is empty if and only if p does not have any local trees in the
new partition.

Lemma 6.18. Given any two processes p̃ and q, the process p can determine in
constant time whether q ∈ Sp̃. Moreover, p can determine for a given tree k whether
p̃ sends k to q. In particular, this includes the cases p̃ = p and q = p.

Proof. Let k̂p̃ be the first non-shared local tree of p̃ in the old partition. If such a
tree does not exist, then Sp̃ = ∅ or Sp̃ = { p̃ }. Let K̂p̃ be the last local tree of p̃ in
the old partition if it is not the first local tree of q in the old partition, and let it be
the second-to-last local tree otherwise. If such a second-to-last local tree does not
exist, we conclude that p̃ has only one tree in the old partition, and q also has this
tree in the old partition. Thus q /∈ Sp̃. Furthermore, let k̂q and K̂q be the first and

last local trees of q in the new partition. We add 1 to k̂q if q sends its first local tree
to itself, and this tree is also the new first local tree of q. We claim that q ∈ Sp̃ if
and only if all of the four inequalities

k̂p̃ ≤ K̂p̃, k̂p̃ ≤ K̂q, k̂q ≤ K̂p̃, and k̂q ≤ K̂q (6.31)

hold. The only-if direction follows, since if k̂p̃ > K̂p̃, then p̃ does not have trees to

send to q. If k̂p̃ > K̂q, then the last new tree on q is smaller than the first old tree on

p̃. If k̂q > K̂p̃, then the last tree that p̃ could send is smaller than the first new local

tree of p. Also if k̂q > K̂q, then q does not receive any trees from other processes.
Thus, p̃ cannot send trees to q if any of the four conditions is not fulfilled. The
if-direction follows, since if all four conditions are fulfilled, there exists at least one
tree k with

k̂p̃ ≤ k ≤ K̂p̃ and k̂q ≤ k ≤ Kq. (6.32)

98

Any tree with this property is sent from p̃ to q. Process p can compute the four
values k̂p̃, K̂p̃, k̂q, and K̂q from the partition offsets in constant time.

Remark 6.19. Let p be a process that is not empty in the new partition. For
symmetry reasons, Rp contains exactly those processes p̃ with rfirst ≤ p̃ ≤ rlast and
p ∈ Sp̃.

Thus, in order to compute Sp, we can compute sfirst and slast and then check for
each rank q in between whether or not the conditions of Lemma 6.18 are fulfilled
with p̃ = p. For each process this check takes only constant run time.

Now, to compute Rp we can compute rfirst and rlast and then check for each rank
q in between whether or not p ∈ Sq.

These considerations complete the proof of Proposition 6.15.

6.2.5. Face information for ghost trees

We identify the following five different types of possible face connections in a coarse
mesh:

1. Local tree to local tree.

2. Local tree to ghost tree.

3. Ghost tree to local tree.

4. Ghost tree to ghost tree.

5. Ghost tree to nonlocal and
non-ghost tree.

There are several possible approaches to which of these face connections of a local
coarse mesh we could actually store. As long as each face connection between any
two neighbor trees is stored at least once globally, the information of the coarse
mesh over all processes is complete, and a single process could reproduce all five
types of face connection at any time, possibly using communication. Depending
on which of these types we store, the pattern for sending and receiving ghost trees
during repartitioning changes. Specifically, the tree that will become a ghost on the
receiving process may be either a local tree or a ghost on the sending process.

When we use the maximum possible information of all five types of connections,
we have the most data available and can minimize the communication required. In
particular, from the nonlocal neighbors of a ghost and the partition table, a process
can compute which other processes this ghost is also a ghost of and of which it is a
local tree. With this information we can ensure that a ghost is sent only once and
only from a process that also sends local trees to the receiving process.

The outline of the sending/receiving phase then looks like the following:

1. For each q ∈ Sp, send local trees that will be owned by q (following Paradigm
6.13).

2. Consider sending a neighbor of these trees to q if it will be a ghost on q. Send
one of these neighbors if either p = q or both of the following conditions are
fulfilled:

99

• p is the smallest rank among those that consider sending this neighbor
as a ghost, and

• p 6= q and q does not consider sending this neighbor as a ghost to itself.

3. For each q ∈ Rp, receive the new local trees and ghosts from q.

In item 2 a process needs to know, given a ghost that is considered for sending to
q, which other processes consider sending this ghost to q. This can be calculated
without further communication from the face-neighbor information of the ghost.
Since we know for each ghost the global index of each of its neighbors, we can check
whether any of these neighbors is currently local on a different process p̃ and will
be sent to q by p̃. If so, we know that p̃ considers sending this ghost to q.

Using this method, each local tree and ghost is sent only once to each receiver,
and only those processes send ghosts that send local trees anyway, leading to min-
imal message numbers and message sizes. Storing less information would increase
either the number of communicating processes or the amount of data that is com-
municated.

Supposing we did not store the face connection type 5, for ghost trees we would
not have the information about to which nonlocal trees they connect. With this
face information we could use a communication pattern such that each ghost is
received only once by a process q, by sending the new ghost trees from a process
that currently has it as a local tree (taking into account Paradigm 6.13). However,
that process might not be an element of Rq, in which case additional processes
would communicate.

If we stored only the local tree face information (types 1 and 2), then we would
have minimal control over the ghost face connections. Nevertheless, we could define
the partition algorithm by specifying that if a process p sends local trees to a process
q, it will send all neighbors of these local trees as potential ghosts to q. The process
q is then responsible for deleting those trees that it received more than once. With
this method the number of communicating processes would be the same but the
amount of data communicated would increase.

In Figure 6.6, we give an example comparing the three choices. To minimize the
communication and overcome the need for postprocessing steps, we propose to store
all five types of face connection.

6.3. Implementation

Let us begin by outlining the data structures for trees, ghosts, and the coarse mesh,
and continue with a section on how to update the local tree and ghost indices. After
this we present the partition algorithm to repartition a given coarse mesh according
to a precalculated partition array. We emphasize that the coarse mesh data stores
pure connectivity. In particular, it does not include the forest information, i.e.,
leaf elements and per-element payloads, which are managed by separate, existing
algorithms.

100

0 1

1

0 1

2

0 1

2

0,1 1

2

1, 2 1, 2, 3, 4 1, 2, 3, 4, 5

p 0 1 2 0 1 2 0 1 2

0 0(1,2) 0(2) — 0 0 (0) 0(1,2) 0 —

1 — 1(2) 2(0,1) (1,2) 1(2) 2(1) — 1(2) 2 (0,1)

Figure 6.6.: Repartitioning example of a coarse mesh showing the communication
patterns controlled by the amount of face information available. Top: A
coarse mesh of three trees is repartitioned. The numbers outside of the
trees are their global indices. The numbers inside of each tree denote
the processes that have this tree as a local tree. At first process 0 has
tree 0, process 1 has trees 1 and 2, and process 2 has no local trees.
After repartitioning process 0 has tree 0, process 1 has trees 0 and 1, and
process 2 has tree 2 as local trees. Bottom: The table shows for each
usage of face connection types which processes send which data. The
row of process i shows in column j which local trees i sends to j, and—
in parentheses—which ghosts it sends to j. Using face connection types
1–4 we use more communication partners (process 0 sends to process 2
and process 1 to process 0) than with all five types. Using types 1 and
2 only, duplicate data is sent (process 0 and process 1 both send the
ghost tree 2 to process 1).

101

6.3.1. The coarse mesh data structure

Our data structure cmesh that describes a (partitioned) coarse mesh has the follow-
ing entries:

• O: An array storing the current partition table; see Definition 6.9.

• np: The number of local trees on this process.

• nghosts: The number of ghost trees on this process.

• trees: A structure storing the local trees in order of their global indices.

• ghosts: A structure storing the ghost trees in no particular order.

We use 64-bit integers for global counts in O and use 32-bit signed integers for the
local tree counts in trees and ghosts. This limits the number of trees per process
to 231−1 ∼= 2×109. However, even with an overly optimistic memory usage of only
10 bytes per tree, storing that many trees would require about 18.6 GB of memory
per process. Since on most distributed machines the memory per process is indeed
much smaller, choosing 32-bit integers does not effectively limit the local number
of trees. In presently unimaginable cases, we could still switch to 64-bit integers.

We call the index of a local tree inside the trees array the local index of this tree.
Analogously, we call the index of a ghost in ghosts the local index of that ghost.
On process p, we compute the global index k of a tree in trees from its local index
` and compute the global index kp of the first local tree and vice versa, since

k = kp + `. (6.33)

This allows us to address local trees with their local indices using 32-bit integers.
Each tree in the array trees stores the following data:

• eclass: The tree’s shape as a small number (triangle, quadrilateral, etc.).

• tree to tree: An array storing the local tree and ghost neighbors along this
tree’s faces. See section 6.1.2 and the text below.

• tree to face: An array encoding for each face the face-neighbor’s face num-
ber and the orientation of the face connection. See section 6.1.3.

• tree data: A pointer to additional data that we store with the tree, for exam-
ple, geometry information or boundary conditions defined by an application.

The i-th entry of tree to tree encodes the tree number of the face-neighbor at
face i using an integer k with 0 ≤ k < np + nghosts. If k < np, the neighbor is the
local tree with local index k. Otherwise, the neighbor is the ghost with local index
k − np.

We do not allow a face to be connected to itself. Instead, we use such a connection
in the face-neighbor array to indicate a domain boundary. However, a tree can be

102

connected to itself via two different faces. This allows for one-tree periodicity, as
say in a 2D torus consisting of a single quadrilateral tree.

The tree data field can contain arbitrary data. An application can use these,
for example, to store higher-order geometry data per tree in order to account for
curved boundaries of the coarse mesh. Refined elements in the forest can then be
snapped to the curved boundaries by evaluating the tree data field [27]. tree data

is partitioned to the processes together with the trees; thus possible duplicate copies
of it can exist.

Each ghost in the array ghosts stores the following data:

• Id: The ghost’s global tree index.

• eclass: The shape of the ghost tree.

• tree to tree: An array giving for each face the global number of its face-
neighbor.

• tree to face: As above.

Since a ghost stores the global number of all its face-neighbor trees, we can lo-
cally compute all other processes that have this tree as a ghost by combining the
information from O and tree to tree.

6.3.2. Updating local indices

After partitioning, the local indices of the trees and ghosts change. The new local
indices of the local trees are determined by subtracting the global index of the first
local tree from the global index of each local tree. The local indices of the ghosts
are given by their positions in the data array.

Since the local indices change after repartitioning, we update the tree to tree

entries of the local trees to store those new values. Because a neighbor of a tree
can be either a local tree or a ghost on the previous owning process p̃ and become
either local or a ghost on the new owning process p, there are four cases that we
shall consider.

We handle these four cases in two phases, the first phase being carried out on
process p̃ before the tree is sent to p. In this phase we change all neighbor entries of
the trees that become local. The second phase executes on p after the tree has been
received from p̃. At this point we change all neighbor entries belonging to trees that
become ghosts.

In the first phase, p̃ has information about the first local tree on p̃ in the old
partition, its global number being kp̃. Via O’ it also knows knew

p , the global index

of p’s first tree in the new partition. Given a local tree on p̃ with local index k̃ in
the old partition, we compute its new local index k on p as

k = kp̃ + k̃ − knew
p , (6.34)

103

which is its global index minus the global index of the new first local tree. Given a
ghost g on p̃ that will be a local tree on p, we compute its local tree number as

k = g.Id− knew
p . (6.35)

In the second phase, p has received all its new trees and ghosts and thus can
give the new ghosts local indices to be stored in the neighbors fields of the trees.
We do this by parsing its ghosts for each process p̃ ∈ Rp (in ascending order) and
incrementing a counter. For each ghost, we parse its neighbors for local trees, and
for any of these we set the appropriate value in its neighbors field.

Note that these four cases apply in the special case p̃ = p as well.

6.3.3. Partition cmesh: Algorithm 6.3.1

The input is a partitioned coarse mesh C and a new partition layout O’, and the
output is a new coarse mesh C ′ that carries the same information as C and is
partitioned according to O’.

This algorithm follows the method described in section 6.2.5 and is separated into
two main phases, the sending phase and the receiving phase. In the former we
iterate over each process q ∈ Sp and decide which local trees and ghosts we send to
q. Before sending, we carry out phase one of the update of the local tree numbers.
Subsequently, we receive all trees and ghosts from the processes in Rp and carry out
phase two of the local index update.

In the sending phase we iterate over the trees that we send to q. For each of
these trees we check for each neighbor (local tree and ghost) whether we send it to
q as a ghost tree. This is the second item in the list of section 6.2.5. The function
Parse neighbors decides for a given local tree or ghost neighbor whether it is sent
to q as a ghost.

6.4. Numerical results

The run time results that we present here have been obtained with version 0.2 of
t8code1 using the JUQUEEN supercomputer at Forschungszentrum Jülich, Ger-
many. It is an IBM BlueGene/Q system with 28,672 nodes consisting of IBM
PowerPC A2 processors at 1.6 GHZ with 16 GB RAM per node [73]. Each com-
pute node has 16 cores and is capable of running up to 64 MPI processes using
multithreading.

6.4.1. How to obtain example meshes

To measure the performance and memory consumption of the algorithms presented
above, we would like to test the algorithms on coarse meshes that are too big to
fit into the memory of a single process, which is 1 GB on JUQUEEN if we use 16

1https://github.com/cburstedde/t8code

104

https://github.com/cburstedde/t8code

Algorithm 6.3.1: Partition cmesh(cmesh C, partition O’)

Result: A cmesh C′ that consists of the same trees as C and is partitioned according to
O’.

1 p← this process
2 From C.O and O’ determine Sp and Rp. /* see section 6.2.4 */

/* Sending phase */

3 for each q ∈ Sp do
4 G← ∅ /* trees p sends as ghosts to q */

5 s← first local tree to send to q.
6 e← last local tree to send to q.
7 T ← {C.trees[s], . . . , C.trees[e] } /* local trees p sends to q */

8 for k ∈ T do
9 Parse neighbors (C, k, q, G, O’, s, e)

10 update tree ids phase1 (T ∪G) /* see equations (6.34) and (6.35) */

11 Send T ∪G to process q

/* Receiving phase */

12 for each q ∈ Rp do
13 Receive T [q] ∪G[q] from process q

14 C′.trees←
⋃
Rp

T [q] /* new array of local trees */

15 C′.ghosts←
⋃
Rp

G[q] /* new array of ghost trees */

16 update tree ids phase2 (C′.ghosts)
17 C′.O← O’

18 return C’

/* decide which neighbors of k to send as a ghost to q */

1 Function Parse neighbors(cmesh C, tree k, process q, ghosts G, partition O’,
tree indices s, e)

2 for u ∈ k.tree to tree\ { s, . . . , e } do
3 if 0 ≤ u < np and Send ghost(C, ghost(u), q, O’) then
4 if u+ kp /∈ f ′(q) then
5 G← G ∪ { ghost(u) } /* local tree u becomes ghost of q */

6 else /* np ≤ u */

7 g ← C.ghosts[u− np]
8 if g.Id /∈ f(q) and Send ghost(C, g, q, O’) then
9 G← G ∪ { g } /* g is a ghost of q */

/* Subroutine to decide whether to send a ghost or not */

1 Function Send ghost(cmesh C, ghost g, process q, partition O’)
2 S ← ∅
3 for u ∈ g.tree to tree do
4 for q′ with u is a local tree of q′ do
5 if q′ sends u to q then /* See Lemma 6.18 */

6 S ← S ∪ { q′ }
7 if q /∈ S and p = minS then
8 return true /* p is the smallest rank sending trees to q */

9 else
10 return false

105

MPI ranks per node. We consider the following three approaches to construct such
meshes:

1. Use an external parallel mesh generator.

2. Use a serial mesh generator on a large-memory machine, transfer the coarse
mesh to the parallel machine’s file system, and read it using (parallel) file I/O.

3. Create a large coarse mesh by forming the disjoint union of smaller coarse
meshes over the individual processes.

Due to a lack of availability of parallel open source mesh generators, we restrict
ourselves to the second and third methods. These have the advantage of being
started with initial coarse meshes that fit into a single process’s memory such that
we can work with serial mesh generating software. In particular, we use gmsh,
TetGen, and Triangle [57, 127,128].

The third method is especially well suited for weak scaling studies, since the in-
dividual small coarse meshes can be created programmatically and communication-
free on each process. They may be of the same size or different sizes among the
processes.

We discuss two examples below. In the first we examine purely the coarse mesh
partitioning without regard for a forest and its elements (using hexahedral meshes),
and in the second we drive the coarse mesh partitioning by a dynamically changing
forest of elements (using tetrahedral meshes). The latter example produces shared
trees and thus fully executes the algorithmic ideas put forward above.

6.4.2. Disjoint bricks

In our first example we conduct both strong and weak scaling studies of coarse
mesh partitioning and test the maximal number of (hexahedral) trees that we can
support before running out of memory. For our weak scaling results, we keep the
same per-process number of trees while increasing the total number of processes,
which we achieve by constructing an nx × ny × nz brick of trees on each process
using three constant parameters nx, ny, and nz. We repartition this coarse mesh
once, by the rule that each rank p sends 43% of its local trees to the rank p + 1
(except the biggest rank P − 1, which keeps all its local trees). We choose this
odd percentage to create nontrivial boundaries between the regions of trees to keep
and trees to send. See Figure 6.7 for a depiction of the partitioned coarse mesh
on six processes. The local bricks are created locally as p4est connectivities with
p4est connectivity new brick and are then reinterpreted in parallel as a dis-
tributed coarse mesh data structure.

We perform strong and weak scaling studies on up to 917,504 MPI ranks and
display our results in Figures 6.8 and 6.9 and Table 6.2. We show the results of
one study with 16 MPI ranks per compute node, thus 1 GB available memory per
process, and one with 32 MPI ranks per compute node, leaving half of the memory
per process. In both cases we measure run times for different mesh sizes per process.

106

Figure 6.7.: The structure of the coarse mesh that we use to measure the maximum
possible mesh sizes and scalability for an example with six processes.
Before partitioning, the coarse mesh local to each process is created as
one nx×ny×nz block of hexahedral trees. We repartition the mesh such
that each process sends 43% of its local trees to the next process. The
picture shows the resulting partitioned coarse mesh with parameters
nx = 10, ny = 18, and nz = 8 and color coded MPI rank.

107

0.115

0.23

0.37

0.62

1.12

16384 32768 65536 131072 262144 458752

R
u
n
ti
m
e
[s
]

Number of MPI ranks

weak scaling with 16 ranks/node

0.115

0.23

0.37

0.62

1.12

16384 32768 65536 131072 262144 458752

R
u
n
ti
m
e
[s
]

Number of MPI ranks

weak scaling with 16 ranks/node

K/P = 50625
K/P = 101250
K/P = 202500
K/P = 405000
K/P = 810000

0.166

0.28

0.41

0.75

1.19

32768 65536 131072 262144 524288 917504

R
u
n
ti
m
e
[s
]

Number of MPI ranks

weak scaling with 32 ranks/node

0.166

0.28

0.41

0.75

1.19

32768 65536 131072 262144 524288 917504

R
u
n
ti
m
e
[s
]

Number of MPI ranks

weak scaling with 32 ranks/node

K/P = 50625
K/P = 101250
K/P = 202500
K/P = 405000

Figure 6.8.: Weak scaling of Partition cmesh with disjoint bricks. Left: 16 ranks
per node. Right: 32 ranks per node. We show the run times for the
baseline on the y-axis and provide graphs for different ratios between
total coarse cellsK and MPI processes P . On the left-hand side the time
for the largest 458,752 process run is 0.72 seconds; on the right-hand
side the time for the largest 917,504 process run is 1.19 seconds. We
obtain efficiencies of 0.62/0.72 = 86% and 0.75/1.19 = 63% compared
to the baselines of 16,384/32,768 MPI ranks, respectively (yellow lines).
The time for the 262, 144 process run with 810e3 trees per process (black
line) increases from 1.12 to 1.15 seconds, which translates into a weak
scaling efficiency of 97.4%. (See online version for color.)

0.3

0.5

0.75

1

16384 32768 65536 131072 262144 458752

P
ar

al
le

l
effi

ci
en

cy
[%

]

Number of MPI ranks

0.3

0.5

0.75

1

16384 32768 65536 131072 262144 458752

P
ar

al
le

l
effi

ci
en

cy
[%

]

Number of MPI ranks

K = 1.33e10
K = 2.65e10
K = 5.31e10

0.8

1

2

4

8

16384 32768 65536 131072 262144

S
p
ee
d
u
p

Number of MPI ranks

0.8

1

2

4

8

16384 32768 65536 131072 262144

S
p
ee
d
u
p

Number of MPI ranks

K = 1.33e10
K = 2.65e10
K = 5.31e10
ideal speedup

Figure 6.9.: Strong scaling of Partition cmesh for the disjoint bricks example on
JUQUEEN with 16 ranks per compute node, for three runs with 13.3e9,
26.5e9, and 53.1e9 trees. We show the parallel efficiency on the left and
the speedup on the right. The absolute run times for 262,144 processes
are 0.21, 0.27, and 0.38 seconds.

108

Run time tests for Partition cmesh

131,072 MPI ranks (16 ranks per node)

Mesh size Per rank Trees (ghosts) sent Time [s] Factor

6.635e9 50,625 21,767 (3,414) 0.13 –
13.27e9 101,250 43,536 (5,504) 0.20 1.53
26.54e9 202,500 87,074 (6,607) 0.31 1.56
53.08e9 405,000 174,149 (11,381) 0.57 1.85
106.2e9 810,000 348,297 (22,335) 1.08 1.89

917,504 MPI ranks (32 ranks per node)

Mesh size Per rank Trees (ghosts) sent Time [s] Factor

46.45e9 50,625 21,768 (3,413) 0.64 –

92.90e9 101,250 43,537 (5,504) 0.72 1.13

185.8e9 202,500 87,075 (6,607) 0.84 1.12

371.6e9 405,000 174,150 (11,383) 1.19 1.42

Table 6.2.: The run times of Partition cmesh for 131,072 processes with 16 pro-
cesses per node (top) and 917,504 processes with 32 processes per node
(bottom). The largest coarse mesh that we created during the tests has
371e9 trees. In the middle column we list the average number of trees
(ghosts) that each process sends to another process. The last column is
the quotient of the current run time divided by the previous run time.
Since we double the mesh size in each step, we expect an increase in run
time of a factor of 2, which hints at parallel overhead becoming negligible
in the limit of many trees per process.

109

#MPI ranks #trees Run time [s]

1,024 4,096 0.00136
1,024 8,192 0.00149
1,024 16,384 0.00142

64 105 0.00122
32 105 0.00789

64 3,200 0.000293
64 19,200 0.000865

Table 6.3.: Run times for Partition cmesh for relatively small coarse meshes. The
bottom two rows of the table was not computed on JUQUEEN but on
a local institute cluster of 78 nodes with 8 Intel Xeon CPU E5-2650 v2
@ 2.60GHz each.

We observe that even for the biggest meshes of 405e3 and 810e3 trees per process
the absolute run times of partition are below 1.2 seconds. Furthermore, we measure
a weak scaling efficiency of 97.4% for the 810e3 mesh on 262,144 processes and
86.2% for the 405e3 mesh on 458,752 processes. The biggest mesh that we created
is partitioned between 917,504 processes and uses 405e3 trees per process for a total
of over 371e9 trees.

We notice a drop off in the scaling behavior when the number of trees per process
is about 100e3 and smaller. At this stage the time for local computation is small
relative to the time for communication. Since in many cases the number of trees
per process will likely be even smaller, we add Table 6.3. It documents running
Partition cmesh with small coarse meshes, using a number of trees on the order of
the number of processes. These tests show that for such small meshes the run times
are on the order of milliseconds. Hence, for small meshes there is no disadvantage
in using a partitioned coarse mesh over a replicated one (i.e., each process holding
a full copy).

6.4.3. An example with a forest

In this example we partition a tetrahedral coarse mesh according to a parallel forest
of fine elements. While we pushed the maximum number of trees in the previous
example, we now consider mesh sizes that occur in more common usage scenarios.

110

When simulating shock waves or two-phase flows, there is often an interface along
which a finer mesh resolution is desired in order to minimize computational errors.
Motivated by this example, we create the forest mesh as an initial uniform refinement
of the coarse mesh with a specified level ` and refine it in a band along an interface
defined by a plane in R3 up to a maximum refinement level `+k. As the refinement
rule we use 1:8 red refinement [16] together with the tetrahedral Morton SFC [29].
We move the interface through the domain with a constant velocity. Thus, in each
time step the mesh is refined and coarsened, and therefore we repartition it to
maintain an optimal load balance. We measure run times for both coarse mesh and
forest mesh partitioning for three time steps.

Our coarse mesh consists of tetrahedral trees modeling a brick with spherical
holes in it. To be more precise, the brick is built out of nx×ny×nz tetrahedralized
unit cubes, and each of those has one spherical hole in it; see Figures 6.10 and 6.11
for a small example mesh.

We create the mesh in serial using the generator gmsh [57]. We read the whole
file on a single process, and thus use a local machine with 1 terabyte memory for
preprocessing. On this machine we partition the coarse mesh to several hundred
processes and write one file for each partition. This data is then transferred to
the supercomputer. The actual computation consists of reading the coarse mesh
from files, creating the forest on it, and partitioning the forest and the coarse mesh
simultaneously. To optimize memory while loading the coarse mesh, we open at
most one partition file per compute node.

The coarse mesh that we use in these tests has parameters nx = 26, ny = 24, nz =
18 and thus 11,232 unit cubes. Each cube is tetrahedralized with about 34,150
tetrahedra, and the whole mesh consists of 383,559,464 trees. In the first test, we
create a forest of uniform level 1 and maximal refinement level 2, and in the second,
we create a forest of uniform level 2 and maximal refinement level 3. The forest
mesh in the first test consists of approximately 2.6e9 elements. In the second test,
we also use a broader band and obtain a forest mesh of 25e9 tetrahedra.

In Table 6.4 we show the run time results and further statistics for coarse mesh
partitioning and in Table 6.5 show results for forest partitioning . We observe that
the run time for Partition cmesh is between 0.10 and 0.13 seconds, and that about
88% or 98%, respectively, of all processes share local trees with other processes. The
run times for forest partition are below 0.22 seconds for the first example and below
0.65 seconds for the second example.

We also run a third test on 458,752 MPI ranks and refine the forest to a maximum
level of four. Here, the forest mesh has 167e9 tetrahedra, which we partition in
under 0.6 seconds. The coarse mesh partition routine runs in about 0.2 seconds.
Approximately 60% of the processes have a shared tree in the coarse mesh. In Table
6.6 we show the results from this test.

111

Figure 6.10.: The coarse mesh connectivity that we use for the partition tests mo-
tivated by an adapted forest. It consists of nx × ny × nz cubes,
with each cube having one spherical hole. For this picture we use
nx = 4, ny = 3, nz = 2, and each cube is triangulated with approxi-
mately 7,575 tetrahedra. For illustration purposes we show some parts
of the mesh as opaque and other parts as invisible.

Figure 6.11.: An illustration of the band of finer forest mesh elements in the example.
The region of finer mesh elements moves through the mesh in each
time step. From left to right we see t = 1, t = 2, and t = 3. In this
illustration, elements of refinement level 1 are blue and elements of
refinement level 2 are red.

112

t Trees (ghosts) sent Data sent [MiB] |Sp| Shared trees Run time [s]

1 25,117 (11,948) 4.95 2.27 7,178 0.103
2 34,860 (16,854) 6.88 2.75 7,176 0.110
3 36,386 (17,568) 7.18 2.82 7,182 0.112

1 39,026 (18,334) 7.67 2.97 8,096 0.128
2 38,990 (18,268) 7.66 2.95 8,085 0.129
3 38,942 (18,074) 7.64 2.93 8,085 0.128

Table 6.4.: Partition cmesh with a coarse mesh of 324,766,336 tetrahedral trees
on 8,192 MPI ranks. We measure the duration of mesh repartitioning
for three time steps. For each one, we show process average values of
the number of trees (ghosts) and the total number of bytes that each
process sends to other processes. The average number of other processes
to which a process sends (|Sp|) is below three in each test. We also
provide the total number of shared trees in the mesh, where 8,191 is the
maximum possible value.

t Mesh size Elements sent Data sent [MiB] Run time [s]

1 2,622,283,453 203,858 3.49 0.215
2 2,623,842,241 281,254 4.82 0.215
3 2,626,216,984 293,387 5.03 0.214

1 25,155,319,545 3,013,230 46.6 0.642
2 25,285,522,233 3,008,800 46.5 0.640
3 25,426,331,342 2,991,990 46.2 0.645

Table 6.5.: Forest mesh partition on 8,192 MPI ranks. For the same example as in
Table 6.4 we display statistics and run times for the forest mesh partition.
We show the total number of tetrahedral elements and the average count
of elements and bytes that each process sends to other processes (their
count is the same as in Table 6.4).

t Trees (ghosts) sent Data sent [MiB] |Sp| Shared trees Run time [s]

1 704 (2,444) 0.267 2.99 280,339 0.207
2 707 (2,456) 0.269 3.00 281,694 0.204
3 708 (2,458) 0.269 3.00 281,900 0.204

t Mesh size Elements sent Data sent [MiB] Run time [s]

1 167,625,595,829 362,863 5.55 0.522
2 167,709,936,554 364,778 5.58 0.578
3 167,841,392,949 365,322 5.59 0.567

Table 6.6.: Coarse and forest mesh partitions on 458,752 MPI ranks. Run times for
coarse mesh (top) and forest mesh (bottom) partition for the brick with
holes on 458,752 MPI ranks. The setting and the coarse mesh are the
same as in Table 6.4 except that for the forest we use an initial uniform
level three refinement with a maximum level of four.

113

6.5. Conclusion

In this chapter we propose an algorithm that executes dynamic and in-core coarse
mesh partitioning. In the context of tree-based adaptive mesh refinement (AMR),
the coarse mesh defines the connectivity of tree roots, which is used in all neighbor
query operations between elements. This development is motivated by simulation
problems on complex domains that require large input meshes. Without partitioning
of the tree meta data, we will run out of memory around one million trees, and with
static or out-of-core partitioning, we might not have the flexibility to transfer the
tree meta data as required by the change in process ownership of the trees’ elements,
which occurs in every AMR cycle. With the approach presented here, this can be
performed with run times that are significantly smaller than those for partitioning
the elements, even considering that SFC methods for the latter are exceptionally
fast in absolute terms. Thus, we add little to the run time of all AMR operations
combined.

Our algorithm guarantees that each process can provide the tree meta data for
each of its fine mesh elements that are themselves distributed using a SFC. We
handle the communication without handshaking and develop a communication pat-
tern that minimizes data movement. This pattern is calculated by each process
individually, reusing information that is already present.

Our implementation scales up to 917e3 MPI processes and up to 810e3 trees per
process, where the largest test case consists of 371e9 trees. What remains to be
done is extending the partitioning of ghost trees to edge and corner neighbors, since
only face-neighbor ghost trees are presently handled. It appears that the structure
of the algorithm will allow this with little modification.

114

7. Ghost

For many algorithms we need to know information about all neighbors of a forest
mesh element. A typical example is if an application needs to calculate the fluxes
in a finite volume solver or to compute integrals in a finite element setting; see for
example [20,119,149] and our own discussion in Chapter 9. Other examples include
a refinement criterion that takes the size of neighboring elements into account or
the gradient of an approximated function.

If the forest mesh is partitioned among multiple processes, then a neighbor el-
ement of a leaf element owned by process p may be owned by a different process
q 6= p. We call this neighbor a ghost element of p.

In this section we describe how we create a layer of ghost elements for a partitioned
forest. Thus, each process obtains information about all of its ghost elements.

As before, we restrict the algorithm to face-neighbors.

Definition 7.1. A ghost element (or ghost for short) of a process p in a forest
F is a leaf element G of a process q 6= p, such that there exists a face-neighbor E
of G that is a local leaf element of p.

Definition 7.2. We call a local element E boundary element if it has at least
one face-neighbor that is a ghost element. The remote processes of E are all
processes q 6= p that own ghost elements of E. The union of all remote processes of
all local elements of p are the remote processes of p.

Definition 7.3. By Rqp we denote the set of boundary elements of process p that
have process q as a remote process.

Throughout this section we assume that we can access the coarse mesh informa-
tion of each neighbor tree of a local tree. We can do this, since the coarse mesh is
either replicated or stores a layer of ghost trees; see Section 6.2.3.

In the following, we need the definition of a (2 : 1)-balanced forest.

Definition 7.4. We call a forest F balanced if each pair E,E′ of face-neighboring
leaf elements of F satisfies

`(E)− 1 ≤ `(E′) ≤ `(E) + 1. (7.1)

Here, E and E′ may belong to different processes. Thus, any two face-neighbors
differ by at most one in their refinement levels. If the condition is not fulfilled, we
say that F is unbalanced.

Remark 7.5. In some publications graded is used instead of balanced [41, 104].

115

We describe a basic version of a Balance algorithm that transforms an unbalanced
forest into a balanced one by successively refining elements in Chapter 8.

In this chapter we discuss three steps of implementing Ghost, which we denote by
Ghost v1, Ghost v2, and Ghost v3. Ghost v1 is a relatively straight-forward ver-
sion that only works with balanced forests. Ghost v2 is a more sophisticated version
that works on arbitrary forests, and we optimize its runtime in Ghost v3. For the
first two versions we orient ourselves to the p4est implementations for quadrilater-
al/hexahedral meshes [34, 70]. However, we discuss them in our new, element-type
independent framework, which not only extends to triangular/tetrahedral meshes,
but also to hybrid meshes consisting of different element types. To this end, we out-
source all operations that require specific knowledge of the element type as low-level
functions (c.f. Section 2.5.3). Changing the element type is equivalent to changing
the low-level implementation. In this chapter, we discuss implementations for line,
quadrilateral, and hexahedral elements with the Morton index, as well as for tri-
angular and tetrahedral elements with the TM-index. This implicitly gives us an
implementation of prism elements, since we can model these as the cross product
of a line and a triangle; see [81].

The basic idea of Ghost v1 and Ghost v2 is to first identify all boundary elements
and their remote processes, thus building the sets Rqp and identifying the non-empty
ones. In a second step, each process p sends all elements in Rqp to q.

In the first step we iterate over all local leaves and for each over all of its faces.
We then have to decide for each face F of a leaf E which processes own leaves that
touch this face. The difference between Ghost v1 and Ghost v2 lies in this decision
process.

A new improvement, Ghost v3, replaces the iteration over all leaves with a top-
down search. With this approach, we exclude portions of the mesh from the it-
eration, if they lie entirely within a process’s domain, which improves the overall
runtime by at least one order of magnitude. In p4est the runtime is optimized by
performing a so called (3 × 3)-neighborhood check of an element [70]. For a local
hexahedral (or quadrilateral, in 2D) element, we check whether all same-level face-
(or edge-/vertex-)neighbors are also process local and if so, the element is excluded
from the iteration. Since this check makes explicit use of the Morton code and
its properties, it is difficult to generalize for general element types. Therefore, we
choose a different ansatz by exploiting the top-down search, which directly leads to
an element-type independent algorithm.

Note that for unbalanced forests the number of neighbors of an element E that
are ghosts can be arbitrarily large and is only bounded by the number of elements
at maximum refinement level that can touch the faces of E. Therefore, also the
number of remote processes is unbounded as well.

116

7.1. Element face-neighbors

An important part of Ghost is to construct the same-level face-neighbor of a given
element E across a face f . As long as such a face-neighbor is inside the same tree as
E, this problem is solved by the corresponding low-level function t8 element face-

neighbor inside. We describe its version for the TM-index in Algorithm 4.3.6;
see [34] for an implementation for the hexahedral Morton index.

The challenging part is to find element face-neighbors across tree boundaries.
This is particularly demanding for hybrid meshes since multiple types of trees exist
in the same forest; this is for example the case if a hexahedron tree is neighbor of
a prism tree. We thus aim for a general type-independent algorithm to compute
face-neighbors across tree boundaries.

To detect whether an element’s face f is also a tree boundary, we assume the
existence of a low-level algorithm element neighbor inside root1 that returns
true if and only if the face f is an inner face and thus not on the tree boundary.
For the TM-index we can derive such an algorithm from the methods that we present
in Section 4.3.4.

Remark 7.6. In the following we will denote all functions that are part of the
t8code low-level API with a t8 element prefix. See Appendix A for a complete
list.

The core idea for the face-neighbor algorithm across tree boundaries is to explicitly
build the face as a lower dimensional element.

Our notation convention is to use capital letters (T,E, F,G) for entities, such
as trees, elements and faces, and to use lower case for indices (t, e, f, g) of those
entities.

We are concerned with the following issue:

Given a d-dimensional element E in a tree K and a face F of E of which we know
that it is a subface of a face G of K, construct the same-level face-neighbor element
E′ of E across F .

We display this situation for a quadrilateral-triangle tree connection in Figure 7.1.

Remark 7.7. We emphasize that neither the original element E nor its face-
neighbor E′ need to be leaves in the forest. Even if E is a leaf in the forest,
E′ does not necessarily have to be a leaf, since E′ has the same refinement level as
E.

Since the trees can be rotated against each other, their coordinate systems may
not be aligned. We must properly transform the (d− 1)-dimensional coordinates of
the faces between the two systems.

In order to compute the face-neighbor E′ we consider the corresponding face G
of the tree K as a (d − 1)-dimensional root tree. We then explicitly construct the

1In t8code this function is part of t8 element face neighbor inside; see Appendix A

117

K

K’

E E’

G G’

F F’

Figure 7.1.: We show a tree K, an element E, and a face F of E that is a subface of
a tree face. The task is to find the face-neighbor element E′. A subtask
is to identify the tree faces G and G′, and the face F ′.

face F of E as a (d− 1)-dimensional element descendant of G. The next step is to
transform the coordinates of F accordingly to build the (d−1)-dimensional element
F ′ as a descendant of G′, the face’s root tree. In a final step, we construct the
element E′ from the given face element F ′.

We thus identify four major substeps in the computation of face-neighbors across
tree boundaries:

(i) Identify the face number g of the tree face.

(ii) Construct the (d− 1)-dimensional face element F .

(iii) Transform the coordinate system of F to obtain the neighbor face element F ′.

(iv) Extrude F ′ to the d-dimensional neighbor element E′.

We show these steps in Algorithm 7.1.1 and describe their details in the following
sections. See Figure 7.2 for an illustration of steps (ii), (iii), and (iv).

Remark 7.8. We deliberately choose this method of using lower dimensional enti-
ties over directly transforming the tree coordinates from one tree to the other—as
it is done for example in [34]—since our approach allows for maximum flexibility
of the implementations of the different element and SFC types. This holds since
all intermediate operations are either local to one element type or only change
the dimension (i.e. hexahedra to quadrilaterals, tetrahedra to triangles, and back).
Therefore, even if, for example, a hexahedron tree is neighbor to a prism tree,
no function in the implementation of the hexahedral elements relies on knowledge
about the implementation of the prism elements. Hence, it is possible to exchange
different implementations of SFC of one element type without changing the others.

118

K K ′G G′

E E′

x

y

z

x
y

z

The starting point

K G

F

x

y

z

x

y

(ii)

G G′

F F ′

x

y

x
y

(iii)

G′ K ′

F ′
x

y x
y

z

(iv)

Figure 7.2.: Two hexahedral elements that are face-neighbors across tree boundaries
(exploded view). Constructing the face-neighbor E′ of E across the
face amounts to computing its anchor node (black) from the anchor
node of E and the coarse mesh connectivity information about the tree
connection. Here, the coordinate systems of the two trees are rotated
against each other. Top right: In step (ii) we construct the face element
F from the element E. The coordinate system of the face root is inferred
from that of the left tree. Bottom left: In step (iii) we transform the
face element F to the neighbor face element F ′. Bottom right: In the
last step (iv) we extrude the face-neighbor E′ from the face element F ′.

Algorithm 7.1.1: t8 forest face neighbor (Forest F, tree T,
element E, face number f)

Result: The same-level face-neighbor E′ of E across f .
1 if element neighbor inside root (E, f) then
2 E′ ← t8 element face neighbor inside (E, f)
3 return E′

4 g ← t8 element tree face (E, f) /* (i) The face number of G */

5 F ← t8 element boundary face (E, f) /* (ii) Construct the face element */

6 o← face orientation (F , T, g) /* The orientation of the tree face connection

*/

7 F ′ ← t8 element transform face (F, o) /* (iii) Obtain the neighbor face

element */

8 g′ ← tree neighbor face (F , T, g) /* The face number of G′ */
9 E′ ← t8 element extrude face (F ′, g′) /* (iv) Build the neighbor from F ′ */

10 return E′

119

7.1.1. (i) Identifying the tree face

The first subproblem is to identify the tree face G, respectively its face index g,
from E, f , and K. For this task we define a new low-level function:

• t8 element tree face (element E, face index f)

If f is a subface of a tree face, return the face index g of this root tree face.

The function t8 element tree face returns the root tree face index of the root
face of an element’s face f , provided this face is a boundary face. Its return value
thus depends on the enumeration of the faces of an element in relation to the faces
of its root tree.

For lines, quadrilaterals and hexahedra with the Morton index, the root tree face
indices are the same as the element’s face indices [34] and thus t8 element tree face

always returns f .
For simplices with the TM index, the enumeration of their faces depends on their

simplex type. Face number i refers to the unique face that does not contain the
vertex ~xi. We show the vertices of the different types in Figure 4.2.

We observe that for triangles of type 0, the face number is the same as the face
number of the root tree (since triangles of type 0 are scaled copies of the root tree).
Triangles of type 1 cannot lie on the boundary of the root tree and thus we never
call t8 element tree face with a type 1 triangle.

For tetrahedra of type 0 the same reasoning holds as for type 0 triangles,
t8 element tree face returns f . Tetrahedra of type 3 cannot lie on the boundary
of the root tree. For each of the remaining four types there is exactly one face that
can lie on the root tree boundary. Face 0 of type 1 tetrahedra is a descendant of
the root face 0; face 2 of type 2 tetrahedra is a descendant of the root face 1; face
1 of type 4 tetrahedra is a descendant of the root face 2. Finally, face 3 of type 5
tetrahedra is a descendant of the root face 3. We list these indices in Table 7.1.

Note that for face indices f of faces that cannot lie on the root boundary, the
return value of t8 element tree face is undefined. This behavior is legal, since
we ensure in Algorithm 7.1.1 that the function is only called if the face f does lie on
the root boundary. We do so by calling element neighbor inside root beforehand
which queries whether the face-neighbor across f is in the root tree or not.

7.1.2. (ii) Constructing the face element

As a next step, we build the face F as a (d − 1)-dimensional element. We do this
via the low-level function

t8 element boundary face (element E, face index f)

Return the (d − 1)-dimensional face element F corresponding to the face index
f .

Thus, the lower dimensional face element F has to be created from E. For the
Morton index this is equivalent to computing the coordinates of its anchor node

120

Tetrahedron

type(T) f g type(T) f g

0 i i 3 - -

1 0 0 4 1 2

2 2 1 5 3 3

Table 7.1.: g = t8 element tree face (T, f) for a tetrahedron T and a face f of
T that lies on a tree face. Depending on T ’s type, all, exactly one, or
none of its faces can be a subface of a face of the root tetrahedron tree.
We show the tetrahedron’s face number f and the corresponding face
number g in the root tetrahedron. Type 3 tetrahedra can never have a
subface of the root tetrahedron as face. For type 0 tetrahedra, each of
their faces can be a subface of the root tetrahedron’s face with the same
index.

K G

E
F

Figure 7.3.: Constructing the face element F to an element E at a tree face G. We
can interpret the face of the 3D tree K as a 2D tree G. The face F of
E is an element in this tree.

and additionally its type for simplices. Hereby we interpret the tree face G as a
(d−1)-dimensional root tree of which F is a descendant element. See also Figure 7.3.

Remark 7.9. Since we construct a lower-dimensional element as the face of a
higher-dimensional one, there are two conditions that need to be satisfied for the
implementations of the two element types involved.

1. The refinement pattern of a face of the higher dimensional elements must
match the lower dimensional refinement pattern.

2. The maximum possible refinement level of higher dimensional elements must
not exceed the one of the lower dimensional elements.

If one, or both, of these conditions are not fulfilled, then there exist faces of the
higher dimensional elements for which an interpretation as a lower dimensional ele-
ment is not possible. For Morton-type SFCs these conditions are naturally fulfilled.

121

Quad

f F.x

0 Q.y

1 Q.y

2 Q.x

3 Q.x

Hexahedron

f (F.x, F.y) f (F.x, F.y)

0 (Q.y,Q.z) 3 (Q.x,Q.z)

1 (Q.y,Q.z) 4 (Q.x,Q.y)

2 (Q.x,Q.z) 5 (Q.x,Q.y)

Table 7.2.: t8 element boundary face for quadrilaterals and hexahedra. Left: For
a quadrilateral Q with anchor node (Q.x,Q.y) and a face f , the corre-
sponding anchor node coordinate F.x of the face line element. Right:
For a hexahedron Q with anchor node (Q.x,Q.y,Q.z) and a face f , the
corresponding anchor node coordinates (F.x, F.y) of the face quadrilat-
eral element. In either case, computing the coordinates is equivalent to
a projection.

Remark 7.10. For the simplicial and hexahedral Morton SFC with maximum
refinement level L , the anchor node coordinates of an element of level ` are integer
multiples of 2L−`. Suppose, the maximum level of hexahedral elements is L1 and
the maximum level of a face boundary quadrilateral element is L2 ≥ L1, then we
will have to multiply a hexahedral coordinate with 2L2−L1 to transform it into a
quadrilateral coordinate. We will assume in this section without loss of generality
that all element types have the same maximum possible refinement level. Hence,
we omit the scaling factor from our equations.

Quadrilaterals and hexahedra

Let a quadrilateral Q with anchor node (Q.x,Q.y) and level ` be given. Let fur-
thermore a face index f be given such that the face is a subface of the root tree.
The face element is a line F with level `. The Computation of its anchor node (F.x)
is a mere coordinate projection, depending on f . If f is 0 or 1, then F.x = Q.y,
otherwise f is 2 or 3 and we obtain F.x = Q.x.

In 3D we have similar projections, which we list in Table 7.2.

Triangles and tetrahedra

Since we only construct these face elements for tree boundary faces, we do not need
to consider all combinations of element and face number, but only those that occur
on the tree boundary. In particular, all possible faces are subfaces of the faces of
the root simplex S0.

Triangles of type 1 never lie on the root tree boundary, hence we only need to
consider type 0 triangles. Let T be a type 0 triangle with anchor node coordinates
(T.x, T.y) and level `. Furthermore, let a face index f of a subface of the root tree
be given. The corresponding face element F is a line with level ` and anchor node
coordinate F.x. We compute this F.x from T ’s anchor node as follows. If f = 0,

122

Triangle

type (T) f F.x

0 0 T.y
1 T.x
2 T.x

Tetrahedron

type (T) f Cat. type (F) (F.x, F.y)

0 0 1 0 (T.z, T.y)
1 1 0 (T.z, T.y)
2 2 0 (T.x, T.z)
3 2 0 (T.x, T.z)

1 0 1 1 (T.z, T.y)

2 2 1 1 (T.z, T.y)

3 - - - −
4 1 2 1 (T.x, T.z)

5 3 2 1 (T.x, T.z)

Table 7.3.: t8 element boundary face (T, f) for triangles and tetrahedra. Left:
The x coordinate of the anchor node of the boundary line F at face f of
a triangle T in terms of T ’s coordinates. Right: The category and the
type of the boundary triangle F at a face f of tetrahedron T as well as
the anchor node coordinates (F.x, F.y).

then F.x = T.y. If f = 1, then F.x = T.x. Finally, if f = 2 then F.x = T.x = T.y.
We show these cases in Table 7.3.

A tetrahedron that lies on the root tree boundary has type different from 3. In
order to compute the boundary face, we further distinguish two categories of such
tetrahedra.

Definition 7.11. For a tetrahedron T with type(T) 6= 3, we identify two cat-
egories of root face indices g regarding how the anchor node (F.x, F.y) of the
corresponding face triangle F is computed from T ’s anchor node (T.x, T.y, T.z):

Faces g = 0 and g = 1 of S0 lie in the (x = 0)-plane or the (x = z)-plane of the
coordinate system and form category 1. In this case (F.x, F.y) = (T.z, T.y).

Category 2 are the faces g = 2 and g = 3 of S0. These lie in the (y = 0)-plane or
the (y = z)-plane and the anchor node of F is given by (F.x, F.y) = (T.x, T.z).

Depending on the type of a parent tetrahedron its faces fall in one of these cate-
gories and have a distinguished triangle type 0 or 1 as subface of g ∈ { 0, 1, 2, 3 }.

We display the various categories of faces depending on the type of a simplex in
Table 7.3. We also list the anchor node coordinates of the face elements in this
table.

7.1.3. (iii) Constructing F ′ from F

If we know the tree face index g, we can look up the corresponding face index g′ of
the face in K ′ from the coarse mesh connectivity; see Section 6.3.

In order to transform the coordinates of F to obtain F ′ we need to understand how
the vertices of the face g connect to the vertices of the face g′. Each face’s vertices

123

form a subset of the vertices of the trees as in Figure 6.3. Let { v0, . . . , vn−1 } and{
v′0, . . . , v

′
n−1

}
be these vertices for g and g′ in ascending order, thus vi < vi+1 and

v′i < v′i+1. The face-to-face connection of the two trees determines a permutation
σ ∈ Sn such that vertex vi connects to vertex v′σ(i). In theory, there are n! possible
permutations. However, not all of them occur.

Definition 7.12. Since we exclude the possibility of trees with negative volume,
there is exactly one combination in which the vertices v0 and v′0 are connected (c.f.
Section 6.1.3). We call the corresponding permutation σ0.

All the other possible permutations result from rotating the face g′ in this position.
This rotation is encoded in the orientation information of the coarse mesh; see
Definition 6.2.

Thus, in order to understand the permutation σ, it suffices to know the initial
permutation σ0 and the orientation. σ0 is determined by the types of K and K ′

and the face indices g and g′. In fact, since the orientation encodes the possible
rotations, the only data we need to know is the sign of σ0.

Definition 7.13. Let K and K ′ be two trees of types t and t′, and let g, g′ faces
of K and K ′ of the same element type. We define the sign of g and g′ as the sign
of the permutation σ0.

signt,t′(g, g
′) := sign(σ0). (7.2)

Remark 7.14. Note that this definition does not depend on the order of the faces
g and g′. Since if we switch their roles, the permutation changes to its inverse σ−1

0 ,
thus

signt′,t(g
′, g) = sign(σ−1

0) = sign(σ0) = signt,t′(g, g
′). (7.3)

Remark 7.15. For hexahedra we can compute the sign of two faces via the tables
R,Q,P from [34, Table 3] as

signhex,hex(g, g′) = sign
(
i 7→ P

(
Q(R(g, g′), 0), i

))
= ¬R(g, g′). (7.4)

The permutation in the middle is exactly the permutation σ0. The argument 0 of
Q is the orientation of a face-to-face connection, but the result is independent of it,
and we could have chosen any other value.

We display the sign for two example tree-to-tree connections, namely tetrahedron
to tetrahedron and hexahedron to prism, in Table 7.4.

Using the orientation, the sign, and the face index g′, we transform the coordinates
of F to obtain the corresponding face F ′ as a subface of the face G′ of K ′. For this
task we introduce the low-level function

t8 element transform face (face element F, orientation o, sign s)

Return the transformed face element F ′.

124

K and K ′ tetrahedra

g
0 1 2 3

g′

0 -1 1 -1 1
1 1 -1 1 -1
2 -1 1 -1 1
3 1 -1 1 -1

K hexahedron, K ′ prism

g
0 1 2 3 4 5

g′

0 1 -1 -1 1 1 -1
1 -1 1 1 -1 -1 1
2 1 -1 -1 1 1 -1

Table 7.4.: signt,t′(g, g
′) from Definition 7.13 for two possible tree-to-tree connec-

tions. We obtain these values from Figure 6.3. We do not show the
remaining three cases of K and K ′ both being hexahedra or prisms, and
K being a tetrahedron and K ′ a prism, which can be obtained similarly.

Line

o
(
F ′.x

)
0

(
F.x
)

1
(
2L − F.x− h

)
Quadrilateral

o

(
F ′.x
F ′.y

)
o

(
F ′.x
F ′.y

)
0

(
F.x
F.y

)
2

(
F.y

2L − F.x− h

)
1

(
2L − F.y − h

F.x

)
3

(
2L − F.x− h
2L − F.y − h

)
Triangle

type(F) o

(
F ′.x
F ′.y

)
type(F) o

(
F ′.x
F ′.y

)
0 0

(
F.x
F.y

)
1 0

(
F.x
F.y

)
1

(
2L − F.y − h
F.x− F.y

)
1

(
2L − F.y − h
F.x− F.y − h

)
2

(
2L − F.x+ F.y − h

2L − F.x− h

)
2

(
2L − F.x+ F.y
2L − F.x− h

)
Table 7.5.: t8 transform face (F, o, s = 1) for lines (top left) , quadrilaterals

(top right) and triangles (bottom) with sign 1. For values with s = −1
see Table 7.6 and Remark 7.16.

125

Triangle

type(F)

(
F ′.x
F ′.y

)
0

(
F.x

F.x− F.y

)
1

(
F.x

F.x− F.y − h

)

Quadrilateral(
F ′.x
F ′.y

)
(
F.y
F.x

)

Table 7.6.: t8 transform face (F, o = 0, s = -1) for triangles (left) and
quadrilaterals (right). We compute any arbitrary combination of val-
ues for o with s = −1 by first applying t8 transform face (F, 0, -1)

and then t8 transform face (F, o, 1) from Table 7.5.

Remark 7.16. The transformation o = i, s = −1 is the same as first o = 0, s = −1
followed by o = i, s = 1. We thus only need to compute the cases with s = 1 and
the specific case o = 0, s = −1.

Because of σ0(0) = 0, the sign is always 1 for vertex faces and line faces. Hence,
the sign argument is not relevant for the computation of 1D and 2D tree connections.

For the classical and tetrahedral Morton indices we need to compute the anchor
node of F ′ from the anchor node of the input face F . We show the computation
o = i, s = 1 cases for lines, triangles and quadrilaterals in Table 7.5. Since we
transform faces, it is not necessary to discuss the routine for 3 dimensional face
element types. We describe the formulas for o = 0, s = −1 for triangles and quadri-
laterals in Table 7.6. As we mention in Remark 7.16, we can compute all o and
s combinations from these two tables. Note that for quadrilaterals and hexahedra
t8 element transform face is equivalent to the internal coordinate transformation
in p4est transform face of the p4est library due to (7.4).

7.1.4. (iv) Constructing E ′ from F ′

We now have E,F, F ′,K and K ′ and can construct the neighbor element E′. For
this we use the function

t8 element extrude face (Face element F’, Tree K’, face index g’)

Return the element E′ that is a descendant of K ′ and has the face F ′ at the tree
face g′.

t8 element extrude face has as input a face element and a root tree face index
and as output the element within the root tree that has as a boundary face the given
face element. How to compute the element from this data depends on the element
type and the root tree face. For quadrilaterals, triangles, hexahedra, and tetrahedra
with the (TM-)Morton index we show the formulas to compute the anchor node

126

coordinates of E′ in Table 7.7.

7.1.5. A note on vertex/edge-neighbors

Despite the restriction to face-neighbors in this thesis, we are certain that for tree-
to-tree neighbors the same method of constructing the lower dimensional element,
transforming it into its neighbor and then extruding it to the neighbor element can
be applied to vertex and edge neighbors as well. The challenge with these neighbors
compared to face-neighbors is that at a single vertex/edge an arbitrary number of
trees can be connected. Identifying the correct neighbor trees is, however, a task
that entirely relies on the coarse mesh connectivity. Once this is accomplished,
the neighbor elements can be constructed by using the techniques described in this
section.

7.2. Half-size face-neighbors

In order to implement the ghost algorithm for balanced forests from [34], we need
to compute half face-neighbors of an element. That is, given an element E and a
face f , construct the neighbors2 of E across f of refinement level `(E) + 1.

We construct the half face-neighbors in three steps:

(i) Construct the children Cf of E that have a face in f .

(ii) For each child Cf [i] compute the face index fi of the face that is a child of f
and a face of Cf [i].

(iii) For each child Cf [i] compute its face-neighbor across fi.

(i) and (ii) are performed by low-level algorithms:

t8 element children at face (Element E, face index f)

Returns an array of children of E that share a face with f .

t8 element child face (Element E, child index i, face index f)

Given an element E, a child index i, and a face index f of a face of E, compute
the index of the i-th child’s face that is a subface of f .

A typical implementation of t8 element children at face would look up the
child indices of these children in a table and then construct the children with these
indices. The child indices can be obtained from the refinement pattern. For the
quadrilateral Morton index, for example, the child indices at face f = 0 are 0 and
2. For a hexahedron the child indices at face f = 3 are 2, 3, 6, and 7. For the TM

2These do not need to be of half the size. If for example refinement is 1:9 Peano refinement, the
neighbors are one third the size.

127

Quadrilateral from line F ′

g′
(
E′.x
E′.y

)
g′

(
E′.x
E′.y

)
0

(
0

F ′.x

)
2

(
F ′.x

0

)
1

(
2L − h
F ′.x

)
3

(
F ′.x

2L − h

)

Triangle from line F ′

g′
(
E′.x
E′.y

)
g′

(
E′.x
E′.y

)
0

(
2L − h
F ′.x

)
2

(
F ′.x

0

)
1

(
F ′.x
F ′.x

)
Hexahedron from quadrilateral F ′

g′

E′.xE′.y
E′.z

 g′

E′.xE′.y
E′.z

 g′

E′.xE′.y
E′.z


0

 0
F ′.x
F ′.y

 2

F ′.x0
F ′.y

 4

F ′.xF ′.y
0


1

2L − h
F ′.x
F ′.y

 3

 F ′.x
2L − h
F ′.y

 5

 F ′.x
F ′.y

2L − h


Tetrahedron from triangle F ′

Coordinates

g′

E′.xE′.y
E′.z

 g′

E′.xE′.y
E′.z


0

2L − h
F ′.y
F ′.x

 2

F ′.x0
F ′.y


1

F ′.xF ′.y
F ′.x

 3

F ′.x0
F ′.y



Tetrahedron from triangle F ′

Type

g′ type(F ′) type(E′)

0 0 0
1 1

1 0 0
1 2

2 0 0
1 4

3 0 0
1 5

Table 7.7.: The computation of E′ = t8 element extrude face (F’, T’, g’) for
T ′ a quadrilateral (top left), triangle (top right), hexahedron (middle),
or tetrahedron (bottom). Depending on the anchor node coordinates
of F ′ and the tree face index g′, we determine the anchor node of the
extruded element E′. For tetrahedra, we additionally need to compute
the type of E′ from g′ and the type of the triangle F ′ (bottom right). In
the case of a triangle, the type of E′ is always 0, since type 1 triangles
cannot lie on a tree boundary. h refers to the length of the element E′

(resp. F ′) and is computed as 2L−` where ` is the refinement level of E′

and F ′.

128

Triangle

f

type(T) 0 1 2

0 1,3 0,3 0,1
1 2,3 0,3 0,2

Tetrahedron

f

type(T) 0 1 2 3

0 1, 4, 5, 7 0, 4, 6, 7 0, 1, 2, 7 0, 1, 3, 4
1 1, 4, 5, 7 0, 5, 6, 7 0, 1, 3, 7 0, 1, 2, 5
2 3, 4, 5, 7 0, 4, 6, 7 0, 1, 3, 7 0, 2, 3, 4
3 1, 5, 6, 7 0, 4, 6, 7 0, 1, 3, 7 0, 1, 2, 6
4 3, 5, 6, 7 0, 4, 5, 7 0, 1, 3, 7 0, 2, 3, 5
5 3, 5, 6, 7 0, 4, 6, 7 0, 2, 3, 7 0, 1, 3, 6

Table 7.8.: The child indices of all children of an element touching a given face.
These indices are needed for t8 element children at face. Left: The
indices for a triangle T in dependence on its type and the face index f .
Right: The same data for a tetrahedron T .

index these indices additionally depend on the type of the simplex. We list all cases
in Table 7.8.

The low-level algorithm t8 element child face can also be described via lookup
tables. Its input is a parent element E, a face index f and a child index i, such that
the child Ei of E has a subface of the face f . In other words, Ei is part of the output
of t8 element children at face. The return value of t8 element child face is
the face index fi of the face of E[i] that is the subface of f .

For the classical Morton index, the algorithm is the identity on f , since the faces
of child quadrilaterals/hexahedra are labeled in the same manner as those of the
parent element. For the TM index for triangles, the algorithm is also the identity,
since only triangle children of the same type as the parent can touch a face of the
parent and for same type triangles the faces are labeled in the same manner.

For tetrahedra, the algorithm is the identity on those children that have the same
type as the parent. However, for each face f of a tetrahedron T , there exists a child
of T that has the middle face child of f as a face. This child has not the same type
as T . For this child the corresponding face value is computed as 0 if f = 0, 2 if
f = 1, 1 if f = 2, or 3 if f = 3.

7.3. Finding owner processes of elements

For the ghost algorithm, after we have successfully constructed an element’s (half)
face-neighbor, we need to identify the owner process of this neighbor.

Definition 7.17. Let E be an element in a (partitioned) forest. A process p is an
owner of E if there exists a leaf L in the forest such that

1. L is in the partition of p, and

2. L is an ancestor or a descendant of E.

129

Note that the owner of an arbitrary element is not unique. Unique ownership is,
however, guaranteed for leaf elements and their descendants. Also, each element
has at least one owner.

In his section, we describe how to find all owner processes of a given element and
how to find those processes that own leaf elements sharing a given face with an
element.

7.3.1. t8 forest owner

We begin with the algorithm t8 forest owner that determines all owner processes
of a given forest element.

Definition 7.18. The first/last descendant of an element E is the descendant
of E of maximum refinement level with smallest/largest SFC index.

Since first/last descendants cannot be refined further, they are either a leaf or
descendants of a leaf. Hence, they have a unique owner process. See also Figure 7.4
for an illustration. We denote these owners by pfirst(E) and plast(E). Since a forest
is always partitioned along the SFC in ascending order, it must hold for each owner
process p of E that

pfirst(E) ≤ p ≤ plast(E). (7.5)

On the other hand, if a process p fulfills inequality 7.5 and its partition is not empty,
then it must be an owner of E. Furthermore, we conclude that an element has a
unique owner if and only if pfirst(E) = plast(E).

Each process can compute the SFC index of the first descendant of its first local
element. From these SFC indices we build an array of size P , which is the same on
each process. We can then determine the owner process of a first or last descendant
by performing a binary search in this array if we combine it with the array of tree
offsets. This is the same approach as in [34].

Hence, we can compute all owner processes of an element by constructing its first
and last descendant and computing their owners. When we know that an element
has a unique owner—for example when it is a leaf element—it suffices to construct
its first descendant and compute its owner.

7.3.2. Owners at a face

For the Ghost v2 algorithm that works on an unbalanced forest—as described
in [70] for cubical elements—we will have to identify all owners of leaves at a
face of a face-neighbor element of a given element. In contrast to the algorithm
find range boundaries that the authors of [70] use, we introduce the algorithm
t8 owners at face. Given an element E and a face f , t8 owners at face deter-
mines the set PE of all processes that have leaf elements that are descendants of E
and share a face with f . It is a recursive algorithm that we now describe in detail.

130

first descendant

last descendant

Figure 7.4.: An element E and its leaf elements. We depict its first descendant
(bottom left) and last descendant (top). Their owners are unique and
we denote them by pfirst(E) (pink) and plast(E) (light green). For all
other owners p—in this case, the process owning the blue leaves—we
have pfirst(E) ≤ p ≤ plast(E).

Definition 7.19. The first/last face descendant of an element E at a face f is
the descendant of E of maximum refinement level that shares a subface with f and
has smallest/largest SFC index.

We denote the owner processes of an element’s first and last face descendants by
pfirst(E, f) and plast(E, f). If these are equal to the same process q, we can return
q as the single owner at that face.

As opposed to the owners of an element, not all nonempty processes in the range
from pfirst(E, f) to plast(E, f) are necessarily owners of leaves at the face of E; see
for example face f = 0 in Figure 7.5. Here, pfirst(E, 0) = 0, plast(E, 0) = 2, and the
owners at the face are { 0, 2 } despite process 1 being nonempty.

It is thus not sufficient to determine all nonempty processes between pfirst(E, f)
and plast(E, f). Hence, if pfirst(E, f) < plast(E, f)− 1, we enter a recursion with all
children of E that lie on the face f . Thus, the recursion is guaranteed to terminate
if the input element has only descendants owned by a single process, which happens
at the latest when the input element is a leaf. However, it could terminate earlier
for elements whose descendants at the face f are all owned by a single process, or
by two processes whose ranks differ by 1.

We outline the algorithm in Algorithm 7.3.1 and illustrate an example in Fig-
ure 7.5.

131

p = 0

p = 1

p = 2 f = 0f = 1

f = 2

0

2
f = 1

first face descendant

last face

0

0

1

2

descendant

Figure 7.5.: An example for Algorithm 7.3.1, t8 forest owners at face. Left: A
triangle element E with the TM-index as SFC whose descendants are
owned by three different processes: 0 (red), 1 (blue), and 2 (green).
The owners at the faces are { 0, 2 } at face 0, { 0, 1, 2 } at face 1, and
{ 0 } at face 2. Right: The iterations of t8 forest owners at face

at face f = 1. At first the first and last descendant of E at f are
constructed. We compute their owner processes 0 and 2, and since
their difference is greater one, we continue the recursion. In the second
iteration the algorithm is called once for the lower left child and once for
the upper child of E. We determine their first and last descendants at
the respective subface of f . For the lower left child, the recursion stops
since both face descendants are owned by process 0. For the upper child
the owner processes are 1 and 2 and since there are no other possible
owner processes in between, we stop the recursion as well.

132

Algorithm 7.3.1: t8 owners at face (Forest F, element E,
face index f)

Result: The set PE of all processes that own leaf elements that are descendants of E
and have a face that is a subface of f .

1 PE ← ∅
2 fd← t8 element first desc face (E, f) /* First and last descendant of E at f

*/

3 ld← t8 element last desc face (E, f)
4 pfirst ← t8 forest owner (F, fd) /* The owners of fd and ld */

5 plast ← t8 forest owner (F, ld)

6 if pfirst ∈ { plast, plast − 1 } then /* Only pfirst and plast are owners of leaves at f */

7 return { pfirst, plast }
8 else /* There may be other owners. Enter the recursion. */

9 Cf []← t8 element children at face (E, f)
10 for 0 ≤ i <t8 element num face children (E, f) do
11 j ←child index (Cf [i]) /* The child number relative to E. */

12 f ′ ← t8 element child face (E, j, f) /* The face number of the child */

13 PE ← PE ∪ t8 owners at face (F , Cf [i], f ′) /* Recursion */

14 return PE

Notes on the implementation

In our implementation of t8 owners at face we take into account that the first and
last owners pf and pl at the current recursion step form lower and upper bounds
for the first and last owners in any upcoming recursion step. Thus, we restrict the
binary searches in t8 forest owner to the interval [pf , pl] instead of [0, P − 1].

We also exploit that the first descendant of an element E at a face f is also the
first face descendant of E’s first child at f . The same holds for the last descendant
and the last child at f . Thus, we reuse the first/last face descendants and owners
of E when we enter the recursion with the first/last child at f .

7.4. The ghost algorithms

For Ghost v1 we assume that the forest is balanced and hence we know that all
face-neighbor leaf elements of E have a refinement level between `(E) − 1 and
`(E) + 1. Therefore, all neighbor elements of E with level `(E) + 1 must have
a unique owner process. Thus, to identify the remote processes of E at F it
suffices to construct the face-neighbors of E across F of level `(E) + 1 and de-
termine their owner processes. We construct these face-neighbors via the func-
tion t8 forest half face neighbors; see Section 7.2. We present the complete
Ghost v1 algorithm in Algorithm 7.4.1.

For Ghost v2 we drop the assumption of a balanced forest and thus there is no
a priori knowledge about the face-neighbor leaves of E. To compute E’s remote
processes across F , we first construct the corresponding face-neighbor E′ of the
same-level as E. For this element we know that it is either a descendant of a forest

133

leaf, which then has a unique owner, or an ancestor of multiple forest leaves, which
could all have different owners. We need to compute only the owners of those
descendant/ancestor forest leaves of E′ that touch the face F . We achieve this with
Algorithm 7.3.1 t8 forest owners at face that we describe in Section 7.3.2. We
show the complete Ghost v2 Algorithm in 7.4.2. It uses the function dual face

which, given an element E and a face index f , simply returns the face index f ′ from
the neighboring element.

Algorithm 7.4.1: Ghost v1 (Forest F) (for balanced forests only)

Result: The ghost layer of F is constructed.
1 Ghost init ()
2 for K ∈ F.trees do
3 for E ∈ K.elements do
4 for 0 ≤ f < t8 element num faces(E) do
5 E′[]← t8 forest half face neighbors (F , E, f)
6 for 0 ≤ i <t8 element num face children(E, f) do
7 q ←t8 forest owner (F , E′[i])
8 if q 6= p then
9 Rq

p = Rq
p ∪ {E }

10 Ghost communicate ()

/* We outsource the init and communication routine, for later reuse */

1 Function Ghost init

2 for 0 ≤ q < P do
3 Rq

p = ∅
4 Function Ghost communicate

5 F .ghosts← ∅
6 for

{
q |Rq

p 6= ∅
}
do

7 Send Rq
p to q

8 Receive Rp
q from q

9 F .ghosts← F .ghosts∪Rp
q

7.5. Optimizing the runtime of Ghost

The Ghost v1 and Ghost v2 algorithms that we present here both iterate over all
local leaf elements to identify the boundary leaves on the process’s boundary. For
each leaf we generate all (half) face-neighbors and compute their owners. However,
for most meshes only a portion of the leaf elements actually are boundary elements,
depending on the surface-to-volume ratio of the process’s partition. Since the surface
of a volume grows quadratically while the volume itself grows cubically, the number
of boundary leaves can become arbitrarily small in comparison to the number of all
leaves.

We thus aim to improve the runtime of the algorithms by excluding inner leaves
from the iteration. In p4est the inner leaves are excluded from the iteration by

134

Algorithm 7.4.2: Ghost v2 (Forest F)

Result: The ghost layer of F is constructed.
1 Ghost init ()
2 for K ∈ F.trees do
3 for E ∈ T.elements do
4 for 0 ≤ f < t8 element num faces (E) do
5 E′ ← t8 forest face neighbor (F , E, f)
6 f ′ ← dual face(E,E′, f)
7 PE′ ←t8 forest owners at face (F , E′, f ′)
8 for q ∈ PE′ do
9 if q 6= p then

10 Rq
p = Rq

p ∪ {E }

11 Ghost communicate ()

checking for each quadrilateral/hexahedron whether its 3 × 3 neighborhood, thus
all same-level face-(edge-/vertex-)neighbors, are process local. Since this approach
particularly uses geometrical properties of the quadrilaterals/hexahedra and of the
Morton SFC, it is not practical for our element-type independent approach.

To exclude the inner leafs, we exchange the leaf iteration with a top-town search
using the recursive approach from [70]. Starting with a tree’s root element, we check
whether it may have boundary leaf descendants, and if so, we create the children of
the element and continue recursively. If we reach a leaf element, we check whether
it is a boundary element—and if so for which processes—in the way described in
the previous section. This approach allows us to terminate the recursion as soon as
we reach an element that lies completely within the process’s partition, thus saving
the iteration over all descendant leaves of that element.

We now discuss the details of the top-down search and how we use it to improve
the ghost algorithm.

7.5.1. The recursive top-down search

In [70] the authors present the general recursive search algorithm for octree AMR,
which easily extends to arbitrary tree-based AMR. The setting is that we search
a leaf or a set of leaves in a forest that satisfy given conditions. One numerical
example for such a search arises in semi-Lagrangian advection solvers [3, 99]. To
interpolate the values of an advected function φt at time t, each grid point xi is
tracked back in time to its previous position x̂i at t−∆t. This point x̂i lies in a leaf
element Ei of the forest and an element-local Hermite interpolation with the values
of φt−1 is used to determine the value φt(xi). Thus, in each time step, we have to
search the forest for the leaf elements {Ei } given the points { x̂i }.

In our case, we apply search to the problem of identifying all leaf elements at a
process’s boundary. The search algorithm has been shown to be especially efficient
when looking for multiple matching leaves at once [70], which is the case in our

135

setting.

As presented in [70] the idea of search is to perform a recursive top-down traversal
for each tree by starting with the root element of that tree and recursively creating
its children until we end up with a leaf element. On each intermediate element we
call a user-provided callback function which returns true only if the search should
continue with this element. If the callback returns false, the recursion for this
element stops and its children are excluded from the search. If the search has
reached a leaf element, the callback also performs the desired operations if the leaf
matches the search.

For our ghost algorithm the callback returns false for elements that lie entirely
within the process’s domain, thus excluding possibly large areas from the search
and hence speeding up the computation. Once a leaf element is reached, we check
whether it is a boundary element or not. Thus, we iterate over the leaf’s faces
and compute the owners at the respective neighbor faces as in the inner for loop of
Algorithm 7.4.2.

We show our version of search in Algorithm 7.5.1. It is a simplified version
of Algorithm 3.1 in [70] without queries, since we do not need these for Ghost.
We also use the function split array from [70]. This function takes as input an
element E and an array L of (process local) leaf elements in E, sorted in SFC order.
split array returns a set of arrays {M [i] }, such that for the i-th child Ei of E
the array M [i] contains exactly the leaves in L that are also leaves of Ei. Thus,
L =

⋃̇
iM [i].

For a search of the complete forest, we iterate over all trees and in each tree we
compute the finest element E such that all tree leaves are still descendants of E.
We compute E as the nearest common ancestor of the first and last leaf element of
the tree. With this E and the leaf elements of the tree, we call element search.
See Algorithm 7.5.2.

Algorithm 7.5.1: element search (Element E, Leaf elements L, Callback
Match) [See Algorithm 3.1 in [70]]

Result: Match is called with E as input. If the result is true, we continue recursively
with E’s children.

1 if L = ∅ then
2 return

3 isLeaf ← L = {E } /* Boolean to determine whether E is a leaf element */

4 if Match(E, isLeaf) and not isLeaf then /* Decide whether to continue

recursion */

5 M []← split array (L, E)
6 C[]← t8 element children (E)
7 for 0 ≤ i <t8 element num children (E) do
8 element search (C[i], M [i], Match)

136

Algorithm 7.5.2: t8 forest search (Forest F , Callback Match)

Result: element search is called on each tree.
1 for K ∈ F .trees do
2 E1 ← first tree element (F ,K) /* First and last local leaf */

3 E2 ← last tree element (F ,K) /* in the tree */

4 E ← t8 element nearest common ancestor (E1, E2)
5 L← tree leaves (F ,K) /* Array of tree leaves */

6 element search (E,L, Match)

7.5.2. The optimized Ghost algorithm

We use forest search for an optimized version of Ghost. When iterating over all
leaves of the forest and checking the neighbors for each one, a lot of these elements
are in the interior domain of the process. By using search we can exclude a set of
interior leaves as soon as the search recursion enters an ancestor that is completely
in the interior of the domain.

We show our callback algorithm t8 ghost match in Algorithm 7.5.3, which works
as follows. If the element E which is passed to t8 ghost match is not a leaf ele-
ment, we check whether the element and all of its possible face-neighbors are owned
by the current process. For the element’s owners, we do not call the function
t8 forest owner, but instead save runtime by computing the first and last process
that own leaves of the element and checking whether they are equal. For these com-
putations we construct E’s first and last descendant. Analogously, for the owners
at the neighbor faces we compute the first and last owner processes. If for E the
first and last process is p and at each face-neighbor the first and last owner at the
corresponding face is also p, E is an inner element and cannot have any boundary
leaves as descendants. Thus, we return 0 and the search does not continue for the
descendants of E.

If E is a leaf element, then it may or may not be a boundary element. We thus
compute all owner processes for all face-neighbors using t8 forest owners at face

and add E as a boundary element to all of these that are not p.

Implementation details

For each child C of an element E the ranks pfirst(E), plast(E), pfirst(E, f), and plast(E, f)
serve as lower and upper bounds for the corresponding ranks for C. Thus, in our
implementation of ghost match in t8code, we store these ranks for each recursion
level reducing the search range for the binary owner search for C from [0, P − 1] to
[pfirst(E), plast(E)], and to [pfirst(E, f), plast(E, f)] for the faces. To compute these
bounds it is necessary to always enter the for-loop in Line 14, even though we do
not exercise this in Algorithm 7.5.3.

137

Algorithm 7.5.3: t8 ghost match (Element E, Bool isLeaf)

Result: If E is a leaf, compute the owners of the face-neighbors and add to the sets Rq
p.

If not, query whether all descendants of E and all face-neighbors are owned by p.
1 if isLeaf then /* E is a leaf. Compute the owners at */

2 for 0 ≤ f < t8 element num faces (E) do /* the face and add E as boundary.

*/

3 E′ ← t8 forest face neighbor (F , E, f)
4 f ′ ← dual face(E,E′, f)
5 PE′ ← t8 forest owners at face (F , E′, f ′)
6 for q ∈ PE′ do
7 if q 6= p then
8 Rq

p = Rq
p ∪ {E }

9 else /* E is not a leaf. */

10 pfirst(E)← t8 element first owner (E)
11 plast(E)← t8 element last owner (E)
12 if pfirst(E) > p or plast(E) < p then /* No leaf of E is owned by p */

13 return 1

14 for 0 ≤ f < t8 element num faces (E) do
15 E′ ← t8 forest face neighbor (F , E, f)
16 f ′ ← dual face(E,E′, f)
17 pfirst(E

′, f ′)← t8 first owner at face (F , E′, f ′)
18 plast(E

′, f ′)← t8 last owner at face (F , E′, f ′)
19 if pfirst(E

′, f ′) 6= p or plast(E
′, f ′) 6= p then

20 return 1 /* Not all face-neighbor leaves are owned by p */

21 if pfirst(E) = plast(E) = p then
22 return 0

23 return 1

Algorithm 7.5.4: Ghost v3 (Forest F)

Result: The ghost layer of F is constructed.
1 Ghost init ()
2 t8 forest search (F , t8 ghost match)
3 Ghost communicate ()

138

7.6. Numerical comparison of the ghost versions

To verify that the additional complexity of implementing the top-down search is
worth the effort, we perform runtime tests of the different ghost methods.

We perform tests with hexahedral and tetrahedral elements, each time on a unit
cube geometry. For hexahedra the unit cube is modeled with a single tree and for
tetrahedra with six trees with a common diagonal as in Figure 4.2. For each element
type we run two types of tests, one with a uniform mesh and one with an adaptive
mesh, where we use a regular refinement pattern, refining every third element (in
SFC order) recursively from level ` up to a level `+ k; see Figure 7.6.

Since we are interested in comparing the algorithms and not in their particular
extreme scaling behavior, we run the tests on 1024 MPI ranks on JUQUEEN [73].
We refer to Chapter 8 for more elaborate scaling tests of Ghost on significantly
more ranks (up to 458k). For the tests in this section we use 64 compute nodes
with 16 cores and 16 GB memory each. We use 1 rank per core, thus 16 MPI ranks
per node. We display our results in Table 7.9 showing runtime results for uniform
levels ` equal to 9, 8 and 4, and adaptive levels ` equal to 8, 7, and 3 (tetrahedra),
respectively 4 (hexahedra), with k = 2.

As expected, the iterative versions of Ghost scale linearly with the number of
elements. The improved version of Ghost, however, scales with the number of ghost
elements, which grows less quickly compared to the number of elements. From
this we conclude that we indeed skip most of the elements that do not lie on the
boundary of a process’s domain. The improved version shows overall a significantly
better performance and is up to a factor of 23.7 faster (adaptive tetrahedra, level
8) than the iterative version. For smaller or degraded meshes where the number of
ghosts is on the same order as the number of leaf elements, the improved version
shows no disadvantage compared to the iterative version. This shows that we do not
loose runtime to the Search overhead, even if each element is a boundary element.
For small meshes all algorithms show negligible runtime on the order of milliseconds.

We conclude that the ghost version with top-down search is the ideal choice among
the three version that we discuss. From now on, we use this algorithm for all tests.

139

Figure 7.6.: We compare the different implementations of Ghost by testing them on
a unit cube geometry with 1024 MPI ranks. Left: The adaptive mesh
with minimum level ` = 3 for hexahedra. We refine every third element
in SFC order and repeat the process once with the refined elements.
Right: For an adaptive computation with 4 MPI ranks, we show the
local leaf elements of the process with MPI rank 1 (red) and its ghost
elements (blue, transparent).

140

tetrahedra

uniform adaptive

` 9 8 4 8–10 7–9 3–5

elements/proc 786,432 98,304 24 1,015,808 126,976 31

ghosts/proc 32,704 8,160 30 31,604 8,137 56

Ghost v1 [s] 172.3 21.64 7.99e-3 - - -

Ghost v2 [s] 129.6 16.19 5.93e-3 167.94 20.88 8.10e-3

Ghost v3 [s] 7.41 1.75 5.01e-3 7.08 1.69 8.12e-3

hexahedra

uniform adaptive

` 9 8 4 8–10 7–9 4–6

elements/proc 131,072 16,384 4 169,301 21,162 41

ghosts/proc 8,192 2,048 8 7,681 1,913 30

Ghost v1 [s] 29.51 3.742 2.87e-3 - - -

Ghost v2 [s] 18.25 2.302 2.32e-3 23.79 2.964 8.01e-3

Ghost v3 [s] 3.14 0.711 2.90e-3 2.81 0.649 8.12e-3

Table 7.9.: Runtime tests for the three different Ghost algorithms that we describe
in this chapter. We run the tests on JUQUEEN with 1024 MPI ranks
and 16 MPI ranks per compute node. The domain geometry is a unit
cube modeled by one tree in the hexahedral case and six trees in the
tetrahedral case. With each element type we test a uniform level `
mesh and a mesh that adapts every third element of a uniform level `
mesh up to level ` + 2; see Figure 7.6. The different Ghost methods
are: Ghost v1 that works on balanced forests only; Ghost v2 that works
also on unbalanced forests; Ghost v3 that utilizes search to improve
the runtime. Since the adaptive forests are not balanced, we do not
test Ghost v1 in that case. The table at the top shows the mesh sizes
and runtimes for tetrahedra while the bottom table shows the data for
hexahedra. We observe that our new Ghost v3 is superior to the other
versions by a factor of up to 23 and scales with the number of ghosts
and not with the number of elements.

141

8. 2:1 Balance

It is common for AMR applications, such as finite element and finite volume solvers,
to rely on a forest mesh that is 2:1 balanced, meaning that each element only
has neighbors whose levels differ by at most one (±1) from the element’s level
[33,41,85,104]; see also Definition 7.4. This restricts the number and configurations
of hanging nodes/edges/faces that can occur, simplifying the necessary interpolation
schemes and reducing the number of neighboring processes.

However, mesh refinement and coarsening in applications is usually driven by
some kind of error estimator and/or geometric constraints and such adaptation
rules may not produce balanced meshes on their own. It can become a significant
challenge to change the adaptation rule such that it produces balanced meshes that
still respect the desired constraints.

We thus aim to decouple the operation of balancing a forest from the adaptation
routine. An application can then call Adapt to modify the mesh and optionally call
the algorithm Balance afterwards to reestablish a balanced mesh. In this section
we discuss our implementation of Balance.

Note that there are also applications that can handle arbitrarily hanging nodes
at elements with refinement level difference greater than one [61,132]. In general it
is up to an application whether to use Balance or not.

The algorithm Balance gets as input a forest that may be unbalanced and modi-
fies it by successively refining leaf elements such that it becomes balanced. Balance
should not coarsen any elements in order to guarantee that an application can keep
its desired accuracy.

As with Ghost, we distinguish between corner-balance, edge-balance, and face-
balance, regarding the different possible neighbor connections. As we mention be-
fore, we restrict ourselves to face-neighbors and thus we consider face-balance here,
sometimes also referred to as 1-balance [69].

In Balance, a leaf element with a large refinement level that is surrounded by
leaves of smaller refinement levels can trigger refinement of leaves over large regions
that may stretch across multiple process boundaries; see Figure 8.1. This is one of
the reasons why Balance was shown to be the most expensive high-level algorithm
[34]. The relatively high run time costs of Balance have sparked efforts to optimize
and speed up the algorithm [69].

In this thesis, we restrict ourselves to a straightforward implementation of Balance
via the existing algorithms Adapt and Ghost. The idea is similar to the ripple al-
gorithm from [143,144]. We see the implementation that we give here as a feasibil-
ity study of Balance for meshes with arbitrary element types and do not claim to
achieve an optimal runtime. We thus also refer to our algorithm as Ripple-balance.

142

Figure 8.1.: An example for face-balance with a triangular forest and 5 MPI ranks.
Left: An unbalanced and fairly equally partitioned forest with two trees.
Right: After balancing the forest, each leaf is refined in such a way
that no two face-neighboring leaf elements have a level difference of
more than one. Note that the finest leaf elements reside on rank 2 and
influence the refinement of leaves on ranks 0, 3, and 4. We also observe
that the load-balance has been disturbed. To prevent this, we may add
additional partition steps during and/or after Balance.

Implementing an optimized algorithm in the spirit of [69] remains a challenge for
future work.

8.1. Finding leaf descendants of an element

A key ingredient of our primitive—yet functional—version of Balance is to identify
those leaves that have neighbors of greater refinement level than the leaf’s level
plus one. We thus need to query for a leaf element E in a forest F whether there
exists a face-neighbor leaf of E in F with larger refinement level than `(E) + 1. To
this end, we construct E’s face-neighbor elements of level `(E) + 1 via the function
t8 element half face neighbors from Section 7.2. For each of these half face-
neighbors E′, we check whether there exists a true descendant—i.e. a descendant
that is not E′ itself—that is a local leaf element or ghost element in F .

In order to perform this check, we create the last descendant D of E′ and search

143

for an element L ∈ F .elements∪F .ghosts such that

I(E′) < I(L) ≤ I(D). (8.1)

Here, I is the forest wide SFC index as in Section 3.4. Such an L, if found, is a
descendant of E′ because of the properties of I. Also, L is not E′ itself since then
I(E′) = I(L) ≮ I(L). If no such L exists, we know that E′ does not have a true
descendant in the leaves or ghosts.

We show the algorithm t8 forest leaf desc exists in Algorithm 8.1.1. To
search for an L that fulfills (8.1) in Lines 2 and 5 we need to perform a binary
search for an element D in a sorted (in SFC-order) array A of n elements, where
we cannot guarantee that D ∈ A, but expect as result the largest integer i such
that I(A[i]) ≤ I(D). If we assume that I(A[0]) ≤ I(D), this binary search is
possible: Choose bounds l = 0, h = n − 1 and a guess g = (l + h + 1)/2; if
I(A[g]) > I(D) then set h = g − 1, else I(A[g]) ≤ I(D) and we set l = g. Start
again with g = (l + h + 1)/2 and iterate. We show this operation in the function
binary search in Algorithm 8.1.1.

If the assumption I(A[0]) ≤ I(D) is not fulfilled, an L that satisfies equation (8.1)
does not exist. We can check this in constant time and the search returns L = A[0],
for which the check I(E′) < I(L) ≤ I(D) from Line 3 or Line 6 fails as expected.

Algorithm 8.1.1: t8 forest leaf desc exists (Forest F , Element E′)

Result: True if a leaf in F .elements or F .ghosts exists that is a true descendant of
E′. False otherwise.

1 D ← t8 element last descendant (E′)
2 L← binary search (F .elements, D) /* Search in the local elements */

3 if I(E′) < I(L) ≤ I(D) then
4 return True

5 L← binary search (F .ghosts, D) /* Search in the ghost elements */

6 if I(E′) < I(L) ≤ I(D) then
7 return True

8 return False

Function binary search (Array A, Element D)
Result: If I(A[0]) ≤ I(D), A[i] for the largest index i such that I(A[i]) ≤ I(D),
otherwise A[0].

1 if I(A[0]) > I(D) then
2 return A[0]

3 l← 0
4 h← A.length − 1
5 while l < h do
6 g ← l+h+1

2

7 if I(A[g]) ≤ I(D) then l = g
8 else h = g − 1

9 return A[g]

144

8.2. The Ripple-balance algorithm

Our ripple version of Balance (Algorithm 8.2.1) is an iterative one. In each iteration,
we construct a new forest Fi+1 from the current forest Fi, starting with the original
forest F0 that we want to balance. In each iteration, we check for each leaf E of
Fi whether there are face-neighbors of E in the local leaves or ghosts of Fi with a
larger refinement level than `(E) + 1. If so, we refine the element E and add the
children to the new forest Fi+1, otherwise, we add the element E to Fi+1. For this
check we use the function t8 element leaf desc exists that we describe in the
previous Section. We repeat these refinement steps until the forest mesh on each
process does not change anymore.

We use the ghost layer of Fi to take into account that a local leaf may need to
be refined if a face-neighbor leaf on a neighboring process has a larger refinement
level. Thus, in each iteration, we call Ghost for the newly constructed forest Fi.
Note that we need the unbalanced version of Ghost here (Ghost v2 or Ghost v3).

In Algorithm 8.2.1 we explicitly write down the element loop; however, in the
actual implementation we replace it by a call to Adapt with the appropriate callback
function.

Proposition 8.1. Algorithm 8.2.1 terminates and produces a balanced forest F ∗.

Proof. The algorithm terminates, if on each process no leaf element is refined any
longer. We now show that we eventually reach this status. Let mi be the maximum
refinement level of all global leaf elements in Fi (across all processes). We claim
mi = m0. Each leaf E in Fi is either a leaf element of Fi−1 or a child of a leaf
element Ê in Fi−1. In the first case `(E) ≤ mi−1 by definition. Let us consider
the second case: The element E of Fi is a child of Ê which is refined in iteration
i − 1. Hence, `(E) = `(Ê) + 1. Since Ê is refined in iteration i − 1, there exists a
face-neighbor E′ of Ê in Fi−1 with `(E′) > `(Ê) + 1 = `(E). Since mi−1 ≥ `(E′)
we obtain mi−1 ≥ mi and since no leaf is coarsened, we get the equality mi−1 = mi,
proving our claim.

Therefore, the maximum refinement level of Fi is bounded by m0 and because
no leaf is coarsened there must exist a final step i∗ in which no element is refined
anymore. Hence, the algorithm terminates after i∗ steps.

Let F ∗ = Fi∗ be the result of Ripple-balance. Since in the last step no element
is refined, F ∗ is an exact copy of Fi∗−1. Thus, for each leaf E in F ∗ we know that
there exists no face-neighbor E′ with level `(E′) > `(E)+1, since otherwise E′ would
be refined in iteration i∗ and thus the algorithm would continue with i∗+1. Suppose
that a leaf E exists in F ∗ with a face-neighbor leaf E′ with level `(E′) < `(E)− 1,
then E′ has a face-neighbor E′′ = E in F ∗ with `(E′′) > `(E′) + 1, which is a
contradiction.

Thus, F ∗ fulfills the balance condition.

Remark 8.2. As we observe in Figure 8.1, repartitioning of the forest may be nec-
essary after Ripple-balance. In order to prevent the algorithm to produce largely

145

Algorithm 8.2.1: Ripple-balance (Forest F0)

Result: A new forest F ∗ consisting of (possibly) refined elements of F0, such that F ∗

fulfills the face-balance condition.
1 done ← 0
2 i← 0
3 while not done do
4 done ← 1 /* We are done if no element has to be refined any more */

5 Fi ← Partition (Fi) /* Partition the forest (optional) */

6 Ghost (Fi) /* Create the ghost layer */

7 Fi+1 ← Fi

8 for E ∈ Fi.elements do
9 refine flag ← 0

10 for 0 ≤ f <t8 element num faces (E) do
11 E′[]←t8 forest half face neighbors (Fi, E, f)
12 for 0 ≤ i <t8 element num face children (E, f) do
13 if t8 forest leaf desc exists (Fi, E

′[i]) then
14 refine flag ← 1 /* Mark E for refinement */

15 goto 16 /* No need to check the remaining neighbors */

16 if refine flag then /* Refine E if necessary */

17 Fi+1.elements ← Fi+1.elements\ {E }∪ t8 element children (E)
18 done ← 0

19 i← i+ 1
20 MPI Allreduce (done, MPI LAND) /* Logical ‘and’ of all values of done */

/* on the different MPI ranks */

21 return Fi

146

imbalanced loads on the different ranks, we may also repartition each intermediate
forest before we start the next iteration as we do in Line 5 of the algorithm. The
resulting forest F ∗ is then partitioned as a consequence.

Remark 8.3. Even though we might not refine local elements of a process p in
one iteration, thus keeping the variable done set to true, changes of the forest in
neighboring processes may render it necessary that we need to refine elements on p
in later iterations. For this reason we need to compute the logical ’and’ of all done
values on all processes, hence the MPI Allreduce call in Line 20. Figure 8.1 shows
an example for this situation. Here, the elements on process p = 4 (in dark red)
do not change in the first two iterations of Ripple-balance, but they are refined
multiple times eventually.

8.3. Numerical results

In this section, we present numerical results for the Ghost and Ripple-balance

routines. All results are obtained with the t8 time forest partition example of
t8code version 0.3. We perform the tests on the JUQUEEN supercomputer [73]
and use 16 MPI ranks per compute node throughout.

8.3.1. The test case

In the test we use a similar setting to the test in Section 6.4.1 for coarse mesh
partitioning. We start with a uniform forest of level ` and refine it in a band along
an interface defined by a plane to level ` + k. We then call Ripple-balance to
establish a 2:1 balance among the elements and we create a layer of ghost elements
with Ghost afterwards. The interface moves through the domain in time in direction
of the plane’s normal vector. In each time step we adapt the mesh, such that we
coarsen elements outside of the band to level ` and refine within the band to level
`+k. We then repeat the Ripple-balance and Ghost calls. As opposed to the test
in Section 6.4.1, we take the unit cube as our coarse mesh geometry. We run the
test once with a hexahedral mesh consisting of one tree and once with a tetrahedral
mesh of six trees forming a unit cube as in Figure 4.2 in Section 4.1.1.

We choose the normal vector 3
2

(
1, 1, 1

2

)t
, and we choose 1

4 as width of our
refinement band. We move the refinement band with speed v and scale the time
step ∆t with the refinement level as

∆t(`) =
C

2`v
, (8.2)

C being the CFL-number. It is a measurement for the width of the band of level `
elements that will be refined to level k in the next time step. We set C = 0.8 and
choose v such that 1

v = 0.64. We start the band at position x0(`) = 0.56− 2.5∆t(`)
and measure up to 5 time steps.

Thus, for level ` and band width k, we use the program call t8 time forest partition

-c MESH -n1 -l` -rk -x x0(`) -X x0(`) + 0.25 -C 0.8 -T 6∆t(`) -gbo. Here,

147

Figure 8.2.: We test Ghost and Ripple-balance on a unit cube geometry consisting
of six tetrahedral trees (left) or one hexahedral tree (right). Starting
with a uniform level `, we refine the forest in a band around a plane
to level ` + k. We then balance the forest and create the ghost layer.
In the next time step, the band moves in the direction of the plane’s
normal vector and we repeat the steps, coarsening previously fine forest
elements if they now reside outside of the band. We show the forest
after Ripple-balance at time step t = 2∆t(`) for two different configu-
rations. Left: Tetrahedral elements with ` = 3, k = 2. In total we have
56,566 tetrahedral elements. Right: Hexahedral elements with ` = 4,
k = 2, summing up to 78,100 hexahedral elements in total. The color
represents the refinement level. We draw level ` elements opaque.

MESH stands for a file storing the coarse mesh, i.e. either the tetrahedralized unit
cube or the unit cube of one hexahedron tree. These coarse meshes can also be
generated with the t8 cmesh new hypercube function of t8code. The settings -g

and -b tell the program to construct the ghost layer, and to balance the forest mesh
after adaptation. The -o setting disables output of visualization files. We refer to
Figure 8.2 for an illustration of the setting.

8.3.2. Strong scaling

We run a strong scaling test with tetrahedral elements and refinement parameters
` = 8, k = 2 on 8,192 up to 131,072 MPI ranks, increasing the process count
by a factor of 2 in each step. We list the runtimes at time t = 4∆t for Ghost and
Ripple-balance in Table 8.1, and plot them together with Partition in Figure 8.3.

Since the runtime of Ripple-balance depends on the number of process-local
leaf elements, we expect it to drop by a factor of 2 if we double the number of
processes and thus divide the number of elements per process in two. In particular,

148

Tetrahedral case with ` = 8, k = 2, C = 0.8 at t = 4∆t

Ripple-balance Ghost

P E/P G/P Time [s] Par. Eff. Time [s] Par. Eff.

8,192 234,178 17,946 687.0 100.0% 3.25 100.0%
16,384 117,089 11,311 336.2 102.1% 2.12 96.6%
32,768 58,545 7,184 161.2 106.5% 1.27 102.4%
65,536 29,272 4,560 78.3 109.6% 0.79 104.5%

131,072 14,636 2,859 37.7 113.8% 0.52 99.5%

Table 8.1.: The results for strong scaling of Ripple-balance and Ghost with tetra-
hedral elements. The problem parameters are ` = 8, k = 2, and C = 0.8
with ∆t according to (8.2). We show the runtimes of time step t = 4∆t.
After Ripple-balance the mesh consists of approximately 1.91e9 Tetra-
hedra. In addition to the runtimes, we show the number of elements per
process, E/P , and ghosts per process, G/P . We also compute the paral-
lel efficiency of Ripple-balance and Ghost according to (8.3) and (8.4)
in reference to the run with 8,192 processes. We observe a more than
ideal scaling for Ripple-balance and a nearly ideal scaling for Ghost.
See also Figure 8.3 for a plot of these runtimes.

consider two different runs with process counts P1 and P2, local element counts E1

and E2 and runtimes T1 and T2. We compute the parallel efficiency e of the run
with P2 processes in relation to the P1 run as the fraction

eRipple-balance =
T1E2

T2E1
. (8.3)

As wee see in Table 7.9 in the previous chapter, the runtime of Ghost depends
linearly on the number of ghost elements per process. The number of ghosts is
proportional to the surface area of a process’s partition and thus ideally scales with
O((N/P)

2
3), with N the global number of elements [70]. Consider two runs with P1

and P2 processes as above and let G1 and G2 denote the numbers of ghost elements
per process, then the parallel efficiency of the second run in relation to the first run
is

eGhost =
T1G2

T2G1
. (8.4)

We achieve ideal strong scaling efficiency for Ghost and even more than ideal
efficiency for Ripple-balance, which hints at the runtime of Ripple-balance being
slightly worse than O(N). We also observe that this basic variant of Balance is
indeed by far the slowest of the AMR algorithms as we already hinted above.

8.3.3. Weak scaling

For weak scaling we increase the global number of elements while also increasing
the process count, keeping the local number of elements nearly constant. Since with

149

0.01

0.1

1

10

100

1000

8192 16384 32768 64536 131072

R
u
n
ti
m
e
[s
]

Number of MPI ranks

Ripple-balance
c · E/P

Ghost
C ·G/P

Partition

Figure 8.3.: Strong scaling with tetrahedral elements. We show the runtimes of
Ripple-balance, Ghost, and Partition for the test case from Sec-
tion 8.3.1 with ` = 8, k = 2 at time step t = 4∆t. The forest mesh
consists of approximately 1.9e9 tetrahedra. We use 8,192 up to 131,072
processes on JUQUEEN with 16 processes per compute node. Ide-
ally, Ripple-balance scales with the number of elements per process,
N/P , and Ghost with the number of ghost elements per process, G/P .
We show these measures scaled by a constant in black lines. As we
observe in the plot and in Table 8.1, we achieve perfect scaling for
Ripple-balance and nearly perfect scaling for Ghost. The runtime of
Partition is below 0.1 seconds even for the largest process count.

each refinement level ` the number of global elements grows by a factor of 8, we
multiply the process count with 8 as well. We test the following configurations:

• Tetrahedral elements with 8,192 processes, 65,536 processes, and 458,752 pro-
cesses, with refinement levels ` = 8, ` = 9, ` = 10. This amounts to about
235k elements per process. Thus, the largest run has about 107.8e9 elements.

• Tetrahedral elements with 2,048 processes, 16,384 processes, and 131,072 pro-
cesses, with refinement levels ` = 8, ` = 9, ` = 10. Here we have about 155k
elements per process, summing up to 20.3e9 elements on 131,072 processes.

• Hexahedral elements with the same process counts and level increased by one
(162e9 elements in total).

Note that 458,752 is actually 7 times 65,536. We choose it since it is the maximum
possible process count on JUQUEEN with 16 processes per node, using all 28,672
compute nodes. The number of elements per process is thus about 14% greater
than on the other process counts in the configuration. However, (8.3) and (8.4) still
apply for computing the parallel efficiency.

The largest test case that we run is for hexahedra on 458,752 process with ` = 11
amounting to 162e9 elements.

We show the results in Table 8.2 and Figure 8.4. We notice that Ghost for tetra-
hedra is faster than Ghost for Hexahedra, which we explain by the smaller number

150

Tetrahedral case with k = 2, C = 0.8 at t = 4∆t

Ripple-balance Ghost

P ` E/P G/P Time [s] Par. Eff. Time [s] Par. Eff.

8,192 8 234,178 17,946 687.0 100.0% 3.25 100.0%
65,536 9 233,512 18,282 732.5 93.5% 3.76 88.2%

458,752 10 266,494 20,252 913.5 85.5% 3.79 96.8%

2,048 7 117,630 10,999 305.5 100.0% 1.99 100.0%
16,384 8 117,089 11,311 336.2 90.4% 2.12 96.5%

131,072 9 116,756 11,478 360.8 84.0% 2.18 95.2%

Hexahedral case with k = 2, C = 0.8 at t = 2∆t

Ripple-balance Ghost

P ` E/P G/P Time [s] Par. Eff. Time [s] Par. Eff.

8,192 9 309,877 34,600 268.5 100.0% 6.79 100.0%
65,536 10 310,163 35,136 272.8 98.5% 6.85 100.7%

458,752 11 354,746 38,833 313.0 98.2% 7.86 96.9%

2,048 8 156,178 21,536 131.4 100.0% 4.18 100.0%
16,384 9 155,702 22,036 132.7 98.7% 4.25 100.6%

131,072 10 155,460 22,284 134.4 97.2% 4.36 98.9%

Table 8.2.: Weak scaling for Ripple-balance and Ghost with tetrahedral (top) and
hexahedral (bottom) elements. We increase the level by one and mul-
tiply the process count by eight to maintain the same number of local
elements per process. Notice that the highest process count of 458,752 is
only seven times 65,536 resulting in ∼ 14% more local elements. For hex-
ahedra Ripple-balance has an overall better performance while Ghost

performs better on tetrahedra, which we expect due to the lower number
of faces per element. Both algorithms show good scaling with efficien-
cies greater than 85% (tetrahedra) and 96.9% (hexahedra). See also
Figure 8.4. The maximum global number of elements is 107.8e9 with
tetrahedra and 162e9 with hexahedra.

151

1

10

100

1000

10000

8192 65536 458752

R
u
n
ti
m
e
[s
]

Number of MPI ranks

Ripple-balance (tet)
Ghost (tet)

Ripple-balance (hex)
Ghost (hex)
ideal scaling

50

80

100

8192 65536 458752

E
ffi

ci
en

cy
[%

]

Number of MPI ranks

Ripple-balance eff. (tet)
Ghost eff. (tet)

Ripple-balance eff. (hex)
Ghost eff. (hex)

Figure 8.4.: Weak scaling results for tetrahedra with refinement levels 8, 9, and 10,
and for hexahedra with refinement levels 9, 10, and 11. This amounts to
about 233k elements per process for tetrahedra and 310k elements per
process for hexahedra. This number increases for the 458,752 process
runs, since 458,752 is only seven times 65,536, while we increase the
number of mesh elements by the factor 8. On the left-hand side we plot
the runtimes of Ghost and Ripple-balance with the ideal scaling in
black. For Ripple-balance the ideal scaling line is based on the number
of elements per process while for Ghost it is based on the number of
ghost elements per process. On the right-hand side we plot the parallel
efficiency in %. We display all values in Table 8.2

of ghosts due to less faces per element. Ripple-balance on the other hand is slower
for tetrahedra than for hexahedra. The main part of Ripple-balance is a loop over
all local elements. Thus, the overall slower performance of the tetrahedral Morton
code compared to the cubical Morton code is probably the reason for this differ-
ence in runtime. We observe this behavior also in the weak parallel efficiency of
Ripple-balance for tetrahedra which drops to 85.5% compared to the 98.2% effi-
ciency for hexahedra. We even observe a strong scaling efficiency of more than 100%
for tetrahedral Ripple-balance, which means that for tetrahedra the algorithm’s
runtime is not perfectly linear in the number of elements per process. This is also a
hint that there is further potential to optimize Ripple-balance, which we expected,
since there exist more efficient algorithms for 2:1 balancing on hexahedra [69].

For hexahedral Ripple-balance, and for hexahedral and tetrahedral Ghost, how-
ever, we observe excellent strong and weak scaling with efficiencies in the order of
95%.

152

9. A Numerical Application

In this chapter we discuss how an application could use the AMR routines described
in this thesis. We implement a finite volume (FV) solver for the advection equation
and discuss important data handling algorithms, such as communicating ghost data
and interpolating data after changing the mesh.

We show that the solver works with different element types, in particular triangles
and tetrahedra with the TM index described in Chapter 4 and quadrilaterals and
hexahedra with the Morton index using the p4est implementation [25]. We also
show runs on hybrid meshes consisting of triangles and quadrilaterals in 2D and
of hexahedra, tetrahedra and prisms in 3D. For the low-level implementation of
the prism elements we use the work from [81], which models a prism as the cross
product of a line with Morton index and a triangle with TM-index.

9.1. The advection equation

We consider the d-dimensional advection equation. It describes how a quantity φ
is advected with a given flow u over time. For a compact domain Ω ⊂ Rd and a
time-dependent flow function u : Ω × R≥0 → Rd, we are interested in the solution
φ : Ω× R≥0 → R of the PDE

∂φ

∂t
+∇ · (φu) = 0 (9.1)

with initial condition

φ(·, 0) = φ0 (9.2)

and appropriate boundary conditions. We assume that the flow u is divergence free,
simplifying equation (9.1) to

∂φ

∂t
+ u · ∇φ = 0. (9.3)

9.1.1. Level-set functions

In this section we discuss level-set functions as a possible interpretation of φ. There
are various examples in which the advection equation is used to keep track of the
movement—under the advection of the flow u—of a (d − 1)-dimensional interface
between two disjoint subsets Ω1 and Ω2 with Ω1 ∪ Ω2 = Ω [3, 80, 99, 110, 111]. A
typical example is two-phase flow [80,138], where Ω1 marks the region occupied by

153

the first phase of a fluid (i.e. liquid) and Ω2 the region occupied by the second (i.e.
gaseous). We pick the initial condition φ0 such that it is continuous and satisfies

φ0(x) ≥ 0, for all x ∈ Ω1, (9.4a)

φ0(x) < 0, for all x ∈ Ω2. (9.4b)

A common choice for φ0 is the signed distance to the interface Γ = Ω1 ∩ Ω2, thus

φ0(x) =

{
dist(x,Γ), x ∈ Ω1,

−dist(x,Γ), x ∈ Ω2.
(9.5)

Let us define for each time step t the sets Ωi
t as the collection of all points in Ωi

after they have been transported with u,

Ω1
t := {x ∈ Ω |φ(x, t) ≥ 0 } , (9.6a)

Ω2
t := {x ∈ Ω |φ(x, t) < 0 } . (9.6b)

Furthermore, we define Γt as the interface between Ω1
t and Ω2

t :

Γt := Ω1
t ∩ Ω2

t = {x ∈ Ω |φ(x, t) = 0 } = φ−1(0, t). (9.7)

For a two-phase flow we interpret Ωi
t as the region of Ω that is occupied by fluid i

at time t. We can use the sign of φ(x, t) to decide whether x ∈ Ω1
t or x ∈ Ω2

t .

Remark 9.1. Over the simulation time the approximated solution φ may loose its
signed distance property. A common observation is that the norm of the gradient at
the zero level-set approaches zero, resulting in numerical irregularities when recon-
structing the interface. A way to restore the signed distance property at a time step
t is to replace φ with a new level-set function φ∗ which is obtained as the solution
to the Hamilton-Jacobi equation

∂φ∗

∂τ
= sign(φt)(1− |∇φ∗|) (9.8)

with pseudo-time τ . We omit this reinitialization process in our solver, since it does
not affect the AMR routines. We refer the reader to [80,98] for more details.

9.2. Numerically solving the advection equation

The numerical method we choose to solve the advection equation is a finite volume
method with polynomial degree 0. This method leads to a rather simple solver
that is easy to implement and provides first order convergence rates. We are well
aware that far more accurate solvers exist. However, since we use the application
as a proof-of-concept to show the coupling of application and AMR routines, we
use degree 0 for the sake of simplicity. In fact, a cheap numerical solver is most

154

challenging for the AMR routines and their absolute runtimes. For a detailed de-
scription of the method, see [135] and the references therein. Although in practical
applications the flow u could be the (discrete) solution of a fluid solver, we assume
for our computations that u is given analytically.

Integrating equation (9.3) over a volume V ⊂ Ω and applying the Gauss diver-
gence theorem we obtain

∂

∂t

∫
V
φ(x, t) dx+

∫
∂V
φ(s, t)u(s, t) · ~n(s) ds = 0, (9.9)

with ~n(s) being the outward pointing normal vector to V at s ∈ ∂V .
With the finite volume ansatz, we discretize the domain with mesh elements

and consider equation (9.9) on each mesh element E. We model the approximate
solution of φ at time t with a constant value φE,t on each element E. We interpret
this value as an approximation to φ at the midpoint mE of E, thus φE,t ≈ φ(mE , t).
The initial condition at t = 0 is then φE,0 = φ0(mE).

The boundary integral is an integral over the faces of E.

Definition 9.2. Let

ω(E) :=
{

(E′, F)
∣∣E′ is face-neighbor of E across face F

}
(9.10)

be the set of all pairs (E′, F) of face-neighbors E′ of E together with the respective
face F of E.

Using this notation we obtain from equation (9.9) with V = E:

0 =
∂

∂t

∫
E
φdx+

∫
∂E
φu · ~n ds =

∂

∂t

∫
E
φdx+

∑
(E′,F)∈ω(E)

∫
F
φu · ~n ds. (9.11)

We now discretize the equation in time using a constant time step ∆t and addi-
tionally discretize the right-hand side integrals as fluxes ψ(E,E′;F). For the latter
approximation we use an upwind method [44,55]. To this end, let A(F) be the area
of the face F . Furthermore, let û be the flow u evaluated at the midpoint of F . We
then define

ψ(E,E′;F) :=

{
φE,t(~n · û)A(F) if ~n · û ≥ 0,

φE′,t(~n · û)A(F) if ~n · û < 0;
(9.12)

see also Figure 9.1, left. Note, that for a non-hanging face-connection we have

ψ(E,E′, F) = −ψ(E′, E, F). (9.13)

We use the fluxes ψ and the approximation of φ in equation (9.11) and discretize
the time derivative in order to obtain

0 = vol(E)
φE,t+∆t − φE,t

∆t
+

∑
(E′,F)∈ω(E)

ψ(E,E′;F) (9.14a)

⇒ φE,t+∆t = φE,t −
∆t

vol(E)

∑
(E′,F)∈ω(E)

ψ(E,E′;F). (9.14b)

155

Thus, in each time step t+∆t we iterate over the (process local) elements and for
each element E we iterate over all of its faces F with face-neighbors E′ computing
ψ(E,E′;F). We then compute the value φE,t+∆t according to (9.14) and continue
with the next element. We store the values ψ(E,E′;F) in order to reuse them for
the computation of φE′,t+∆t.

Remark 9.3. This iterating over the elements is a primitive version of the Iterate
functionality. It remains a future project to implement a recursive version of
Iterate as in [70] into t8code.

9.2.1. Hanging faces and face-neighbors

Since we use adaptive forests with non-conforming refinement methods, it is possible
that an element E has more than one face-neighbor across a face F . Let E′ be such
a face-neighbor and let F ′ be the corresponding face of E′. Hence, F ′ is a subface
of F . In this case, we must compute the face integral of (9.11) only over the part
of the face of E that coincides with F ′. Thus we set

ψ(E,E′;F) = −ψ(E′, E;F ′) =

{
−φE′,t(~n′ · û′)A(F ′) if ~n′ · û′ ≥ 0,

−φE,t(~n′ · û′)A(F ′) if ~n′ · û′ < 0.
(9.15)

See the right-hand side of Figure 9.1 for an illustration.

Hence, given a leaf element E in the forest and a face F of it, we need to compute
all face-neighbor leaf elements E′ of E across the face F . This neighbor finding poses
a challenge for adaptive forests when the face-neighbors of E are not of the same level
` as E. If we assume that the forest is 2:1 balanced the possible refinement levels for
face-neighbors restrict to `− 1, `, and `+ 1. In particular, all face-neighbors across
the same face have the same refinement level. Using this, we can find the face-
neighbors in the forest with the t8 forest half face neighbors function from
Section 7.2 and appropriate binary searches in the arrays of leaf elements and ghost
elements.

Remark 9.4. Since we assume 2:1 balance of the forest to compute the face-
neighbor leaves we call Ripple-balance after we adapt the forest to ensure the
balance property.

9.2.2. The CFL number

In order for our explicit FV scheme to be numerically stable, we have to choose the
time step ∆t appropriately. If we choose it too big, the method becomes unstable.
However, decreasing the time step increases the computational load, and thus in-
creases the overall runtime. A well-known way to control the time step is the CFL
number [43].

156

E E′

F

mE m′E

û

~n

E E′

F

mE

m′E

û′

E′′
m′′E

û′′

F ′

F ′′

Figure 9.1.: Illustration of our notations for computing the fluxes as in (9.12)
and (9.15). Left: A non-hanging face connection of a triangle element
E across face F . Depending on the vector product û·~n we either use the
value of φ on E or on E′ for the numerical flux and multiply with the
area A(F) of the face F . Right: A hanging face connection of a triangle
element E across face F (exploded view). In order to compute the flux
across F , we sum up the two fluxes across the neighbor elements’ faces
F ′ and F ′′.

Definition 9.5. The CFL-number of an element E at time t is

CE,t := u(mE , t)
∆t

vol(E)
1
d

, (9.16)

and the global CFL-number is

Ct = max
E

CE,t. (9.17)

In our solver, we choose an initial global CFL-number C and then compute ∆t
such that C0 = C. We use this time step throughout the simulation, but it would
be possible to change the time step during the simulation [72].

The FV theory states that the method is numerically stable for small values of
C, i.e. C < 1 [148]. In practice, we observe that we may need lower values in order
to ensure stability. One reason is that vol(E) changes over time when the mesh is
readapted.

9.2.3. The refinement criterion

In order to properly decide for a point x whether x ∈ Ωi
t it is important to resolve

Γt as accurately as possible. This motivates refining the forest close to Γt, or rather
its approximation {E | |φE,t| < ε }, as in [3]. Consider a leaf element E and let

h = vol(E)
1
d be an approximation of its diameter and b > 0 a given parameter, then

we refine E at time step t if

|φE,t| < bh. (9.18)

157

The parameter b controls the width of the refinement band around Γt. We coarsen
a family of elements if the equation does not hold for each of its members. Further-
more, we do not refine more than a specified maximum refinement level and do not
coarsen above a minimum refinement level. This does not lead to element volume
inbalances at the finest or coarsest level, since all trees have approximately the same
volume.

9.2.4. Error measurement

In our examples we use level-set functions with closed zero level-sets for the initial
function φ0, for example a circle, or a sphere. Since the flow u is divergence free,
the volume of the sets Ωi

t remains constant over time, if we do not have inflow or
outflow. It is a typical behavior of FV solvers that we numerically loose or gain
volume in Ωi

t over the computation. Whereby volume loss occurs in the convex
region, which is the case for Ω2

t with our choices of initial conditions. Hence, we use
the amount of lost volume in Ω2

t as a measurement for the computational error,

Evol
t := 1− vol(Ω2

t)

vol(Ω2
0)
. (9.19)

We compute vol(Ω2
t) by summing up the volumes of those elements for which φE,t <

0.

Remark 9.6. It is an inherent property of the method that, provided we have no
in- or outflow, the integral of the level-set function∫

Ω
φ(t, x) dx (9.20)

does not change over time (up to computational errors). This is due to the fact
that the numerical flux (9.12) from element E to E′ is exactly the negative as from
element E′ to E.

9.3. Handling application data

For each leaf element E we store some application specific data. In particular,
this includes the value φE,t of the approximated solution inside the element at the
current time step. We store these data in an array which has one entry for each
local leaf element and one for each ghost element. The data for the local elements is
stored in order of their SFC index, while the order of the ghost elements is implicitly
given by the Ghost algorithm.

In addition to the main mesh handling algorithms New, Adapt, Partition, Ghost,
and Balance from the list in Section 2.5.2, we need subroutines in order to manage
the application data. These perform the interpolation of data to a new forest
after the mesh changes, the redistribution of the data after Partition, and the
exchange of data of the ghost elements. These routines are common in AMR, see
for example [28,141], and we briefly summarize them in this section.

158

9.3.1. Interpolation

After we have computed the values φE,t for each local element, we may modify the
forest with Adapt to refine and coarsen the forest and Balance to reestablish the
2:1 balance. Thus, the current forest F is changed to a new forest F ′. For all new
elements in F ′ we need to calculate an interpolated value of φ, which we do in the
following way as described in [28]. We restrict to non-recursive refinement. Hence,
all elements in F ′ result from an element in F by either refining once, coarsening
once, or keeping the element as it is. In the first case, an element E in F is refined
into n children Ei, 0 ≤ i < n, and we set the value of the new elements to the one
of the parent:

φEi,t = φE,t (9.21)

for all 0 ≤ i < n. In the second case, a family {Ei } of n elements is coarsened into
their parent E. We assign the average of the values of the Ei, thus

φE,t =
1

n

∑
i

φEi,t. (9.22)

If an element is unchanged, we also do not change the value of φ.

The challenge is to identify the corresponding pairs of new and old elements. In
order to do so, we iterate simultaneously through the leaf elements of F and F ′

with indices i and j, starting with i = j = 0. Let `i and `j be the refinement
levels of the i-th element in F and the j-th element in F ′. If `i = `j , they are
the same element, hence we do not change the φ value and increase both indices by
1. If `i = `j − 1, we know that the element was refined into n children. We carry
out the interpolation (9.21) and increment i by 1 and j by n. If `i = `j + 1, the
element is the first in a family of n elements that was coarsened and we compute
the average (9.22). We then increment i by n and j by 1.

We refer to this routine as Interpolate.

9.3.2. Repartitioning of data

After the forest is adapted and the new element values are interpolated, we may
repartition the forest via Partition in order to maintain a balanced load. After
Partition the element data needs to be partitioned as well. Partitioning the ele-
ment data follows the same logic as partitioning the elements. We call the routine
Partition data.

9.3.3. Ghost exchange

Before every new time step, we need to update the function values in the ghost ele-
ments. Thus, each process has to send the values φE,t for its inter-process boundary
leaf elements to all processes that have face-neighbors of this boundary element.
This operation is called Ghost exchange [30].

159

Its input is the data array with valid entries φE,t for all process local leaf elements.
On output the values in the data array corresponding to the ghost elements are filled
with the entry of the respective owner process.

The implementation is straight-forward if we store the indices of boundary ele-
ments and of which remote processes these are ghosts at the time of creation of the
ghost layer, hence during Ghost.

9.4. Tests on a unit cube geometry

We run tests in 2D and 3D with Ω = [0, 1]d, the d-dimensional unit cube with
periodic boundary conditions for φ.

9.4.1. The 2D test case

For the 2D tests, we use a flow u that simulates a rotation around the midpoint
(0.5, 0.5) of Ω,

u(x, y) = 2π

(
y − 0.5
−(x− 0.5)

)
. (9.23)

This u is divergence free and chosen such that for the analytical solution at time
t = 1 we obtain

φ(·, 1) = φ0. (9.24)

As level-set function φ0 we choose the signed distance to a circle of radius 0.25 with
midpoint (0.6, 0.6), hence

φ0(x, y) =
√

(x− 0.6)2 + (y − 0.6)2 − 0.25. (9.25)

We compare three different coarse meshes of [0, 1]2, which we show in the top
part of Figure 9.2. The first one consists of one quadrilateral tree; for the second
one we divide the square along a diagonal into two triangle trees; for the third one
we use a hybrid coarse mesh of four triangle trees and two quadrilateral trees. For
the refinement levels our solver accepts two arguments: ` and r. ` describes the
minimum refinement level and r the maximum number of additional refinement
levels. Thus, we start with a uniform level ` forest and refine it up to level ` + r
before starting the computation. We depict adaptive forests with an initial adaptive
refinement along the zero-level set of φ0 in Figure 9.2.

We show a computation of the hybrid forest with ` = 4 and r = 3 in Figure 9.3.
This figure also shows the flow field u.

9.4.2. The 3D test case

For computations on the 3D unit cube geometry, we construct a specific flow func-
tion.

160

Definition 9.7. Let f ∈ C2([0, 1]) with f(0) = f(1) = 0. We define the vector field
uf : [0, 1]3 → R3 as

uf1(x, y, z) = f(x)(f ′(y)− f ′(z)) (9.26a)

uf2(x, y, z) = −f ′(x)f(y) (9.26b)

uf3(x, y, z) = f ′(x)f(z). (9.26c)

uf has the following properties:

Lemma 9.8. uf is divergence free and has no outflow from the unit cube, thus
uf · ~n = 0 at each face of [0, 1]3.

Proof. The first part follows from computing the partial derivative of uf and the
second part follows since

uf1(0, y, z) = uf2(x, 0, z) = uf3(x, y, 0) = 0, and (9.27a)

uf1(1, y, z) = uf2(x, 1, z) = uf3(x, y, 1) = 0. (9.27b)

For our test case we use f(x) = sin(πx) and consider the time-dependent flow

u : [0, 1]3 × R≥0 → R3, (9.28a)

(x, y, z, t) 7→
{

uf (x, y, z), t < 0.5,

−uf (x, y, z), t ≥ 0.5.
(9.28b)

In analogy to the 2D case, the analytical solution to the advection equation satisfies
φ(·, 1) = φ0, which allows us to compute the numerical error at time t = 1. We
show the flow uf in Figure 9.4.

For the initial level-set function φ0 we use a signed distance to a sphere of radius
0.25 and midpoint (0.6, 0.6, 0.6), hence

φ0(x, y, z) =
√

(x− 0.6)2 + (y − 0.6)2 + (z − 0.6)2 − 0.25. (9.29)

We use three different coarse meshes of [0, 1]3. Firstly, one singular hexahedral
tree; secondly, six tetrahedral trees as in Figure 4.2; and thirdly, a hybrid mesh of
six tetrahedral trees, six prism trees, and four hexahedral trees, which we depict
in Figure 9.4. Figure 9.5 additionally shows a detailed cut out view of the hybrid
mesh, displaying refined forest elements within the unit cube.

9.4.3. Convergence tests

We perform uniform and adaptive runs for quadrilaterals, triangles, hexahedra,
tetrahedra, and hybrid meshes on Ω = [0, 1]d (d being the dimension) with small
values of ` and r in order to verify the convergence of our method in terms of Evol

t .

161

Figure 9.2.: Adapting three different unit square meshes at a circle with midpoint
(0.6, 0.6) and radius 0.25, modeled as the zero level-set of a function φ.
We show the coarse mesh in the top row and the adapted forest mesh
in the bottom row at time t = 0. We model the unit square using one
quadrilateral tree (left, red), two triangle trees (middle, blue), and as
a hybrid mesh of four triangular and two quadrilateral trees (right).
Starting from a uniform forest, we use six refinement levels. The initial
uniform forest has level 2 in the quadrilateral and triangle case, and
level 1 in the hybrid case. In the bottom row the color represents the
values φE,t of the approximated level-set function.

162

Figure 9.3.: A simulation of the 2D test case on the 2D hybrid mesh. Top left: The
rotational flow u from (9.23). Top right, bottom left, bottom right:
Times t = 0, t = 0.5, and t = 1 of the simulation with initial refinement
level ` = 4, and with r = 3 adaptive refinement levels. The maximum
refinement level is 7 and there are about 20,000 elements. The number
of elements in an equivalent uniform level 7 forest is 98,304. We depict
the zero-level set of the analytical solution in white and the zero-level
set of the computed solution in purple.

163

Figure 9.4.: Illustrations of our 3D test case. Top row: The 3D hybrid coarse mesh
of the unit cube consisting of six tetrahedra (blue), six prisms (orange),
and four hexahedra (red). The right-hand side picture shows an ex-
ploded view of the coarse mesh. Bottom left: Streamlines of the flow
uf from (9.28) with f(x) = sin(πx); the colors serve the purpose of
distinguishing the streamlines. Bottom right: Some flow vectors uf (x);
color and size of the arrows indicate the magnitude ‖uf (x)‖ of the flow.
We observe that the flow rotates around a diagonal line through the
cube and that there is no outflow, as shown by Lemma 9.8.

164

Figure 9.5.: A view inside the hybrid 3D mesh modelling the unit cube (cf. Fig-
ure 9.4). The picture shows the region near the center of the unit cube
where tetrahedra (blue), prisms (orange), and hexahedra (red) are close
to each other. We see in detail how the prisms serve to transition from
tetrahedra to hexahedra. We use parameters ` = 2 and r = 5 to gener-
ate this picture, thus the finest elements are of refinement level 7.

165

For each coarse mesh type we fix a CFL number C. Hence, each time we increase
the level by one, ∆t is divided by two, doubling the number of time steps. We
expect a first order convergence of the error at the final time. In Table 9.1 we
display the results for the 2D and 3D test cases above and we indeed observe a
first order convergence rate. We additionally display the number of elements, which
is constant over all time steps in the uniform case and an average over all time
steps for the adaptive runs. We see that with the adaptive runs we may achieve
approximately the same error as with uniform runs of the same maximal level while
using significantly less mesh elements.

9.4.4. Large scale tests

In this section We investigate the runtimes and scaling behavior of the solver with
the 3D tests with tetrahedra on the JUQUEEN supercomputer [73]. For all of
the following runs we use 16 MPI ranks (processes) per compute node, thus 1 per
compute core.

Firstly, we compare the amount of runtime spent in the AMR routines with the
actual time spent using the FV solver. To this end, we perform a strong scaling tests
with 16,384 processes, 32,768 processes, and 65,536 processes and an average number
of tetrahedra over all time steps of 8,344,140. We display the results in Figure 9.6,
where we show the runtimes of the different AMR routines and their respective
proportion of the overall runtime. We exclude the runtime of the Ripple-Balance

routine here, since it is non-optimized and would distort the results. We notice
that the percentage of time spent in the AMR routines increases with decreasing
number of elements per process from around 35% to 50%, which is expected for
strong scaling with small numbers of elements per process. Using a more involved
numerical solver—for example higher order FV or DG—would certainly decrease
these percentages, since then the amount of solver time per mesh element would
increase while the time spent in AMR routines would remain the same.

Secondly, we perform strong scaling tests with 131,072 processes, 262,144 pro-
cesses, and 458,752 processes, each case consisting of about 2.3e9 mesh elements.
The equivalent uniform mesh would have more than 50e9 elements. We use a short
simulation time of T = 0.0005 to keep the overall runtimes below 100 seconds.
We display the scaling results in Figure 9.7—not counting the runtime of the non-
optimized Ripple-Balance—split up into runtime of the AMR routines only and
total runtime (AMR + solver). Furthermore, we list the exact runtimes in Table 9.2
and compute the parallel efficiency. Compared to the base-line run with 131,072
processes we obtain an ideal strong scaling efficiency on 458,752 processes if we do
not take Ripple-Balance into account. Including Ripple-Balance, the efficiency
is still above 90% for 262,144 processes, and 86.2% (AMR), respectively 89.6% (to-
tal), for 458,752 processes. We conclude that providing a state-of-the-art Balance

has the potential to increase the scaling behavior to the full 100%.

166

2D quadrilaterals, C = 0.5

` r mesh size Evol
1

4 0 256 95.7%
5 0 1,024 60.2%
6 0 4,096 33.7%
7 0 16,384 18.2%

3 3 3,613 34.0%
4 3 7,475 21.9%

2D triangles, C = 0.1

` r mesh size Evol
1

4 0 512 70.4%
5 0 2,048 41.2%
6 0 8,192 22.5%
7 0 32,768 11.4%

3 3 5,358 23.5%
4 3 11,542 15.0%

2D hybrid, C = 0.1

` r mesh size Evol
1

3 0 384 93.8%
4 0 1,536 60.9%
5 0 6,144 34.1%
6 0 24,576 18.7%

2 3 3,948 35.8%
3 3 8,323 24.9%

3D hexahedra, C = 0.25

` r mesh size Evol
1

4 0 4,096 94.2%
5 0 32,768 63.2%
6 0 262,144 34.5%
7 0 2,097,152 18.1%

3 3 113,851 34,8%
4 3 393,079 19.44%

3D tetrahedra, C = 0.1

` r mesh size Evol
1

4 0 24,576 70.3%
5 0 196,608 41.0%
6 0 1,572,864 21.8%
7 0 12,582,912 11.3%

3 3 652,615 22.0%
4 3 2,305,350 12.1%

3D hybrid, C = 0.1

` r mesh size Evol
1

3 0 8,192 93.4%
4 0 65,536 63.7%
5 0 524,288 34.7%
6 0 4,194,304 18.1%

2 3 173,635 35.1%
3 3 559,860 19.8%

Table 9.1.: We verify convergence of the advection solver in terms of volume loss
of Ω2 at time t = 1. We test six different coarse meshes: 2D quadri-
lateral (top left), 2D triangles (top middle), 2D hybrid (top right), 3D
hexahedra (bottom left), 3D tetrahedra (bottom middle), and 3D hybrid
(bottom right); see also Figures 9.4 and 9.2. In each case the domain Ω
is the unit cube of the corresponding dimension. In 2D we use as flow u
a rotation around the center of the cube from equation (9.23), see also
the top left of Figure 9.3; in 3D we use the flow u from equation (9.28)
with f(x) = sin(πx); see Figure 9.4 for an illustration. In the top part
of each table, we list a uniform level ` test with increasing values of `.
We fix the CFL number C, which results in doubling the number of time
steps each time the level increases. In the bottom part of each table, we
show the results for adaptive refinement to level `+3. For the refinement
criterion (9.18) we use a band width of b = 4. In each case we verify a
first order convergence rate.

167

0

20

40

60

80

100

120

140

160

16384 32768 65536

R
u
n
ti
m
e
[s
]

Number of MPI ranks

FV Solver
Adapt

Partition
Partition data

Ghost
Ghost exchange

Interpolate

0

20

40

60

80

100

16384 32768 65536

R
u
n
ti
m
e
[%

]

Number of MPI ranks

Figure 9.6.: Strong scaling with tetrahedral elements. Using ` = 4 and r = 4,
the maximum refinement level is 8. The CFL number is C = 0.1 and
the band-width parameter for refinement is b = 4. The average count
of elements is 8,344,140. Left: Total runtime of the different AMR
routines and the solver. Right: Relative runtimes of the same methods.
We observe that with decreasing number of elements per process the
relative runtime of AMR routines increases from approximately 35% to
50%. Since the CFL number is 0.1 we only change the mesh in every
10-th time step. Thus, Adapt, Partition, Partition data, Ghost, and
Interpolate are only called in these time steps, while Ghost exchange

is called in every time step, explaining the relatively large portion of
runtime taken up by Ghost exchange.

168

7.5

15

30

45

75

131072 262144 458752

R
u
n
ti
m
e
[s
]

Number of MPI ranks

AMR (w/o Ripple-Balance)
FV Solver

Total (w/o Ripple-Balance)
Ideal scaling

Figure 9.7.: Strong scaling results with tetrahedra with 131,072 processes, 262,144
processes, and 458,752 processes. We use ` = 5, r = 6, resulting
in 2.3e9 mesh elements. In order to decrease the overall runtime,
we pick a simulation end time of T = 0.0005 and adapt every 10-th
time step. We show the runtime split between the FV solver (green
triangles pointing up) and the AMR routines (red dots), as well as
the total runtime (blue triangles pointing down). The AMR routines
are Adapt, Partition, Ghost, Ghost exchange, Partition data, and
Interpolate. The black line represents the ideal scaling behavior. We
reach this ideal behavior on 458,752 MPI ranks with a parallel efficiency
of 100% compared to the baseline with 131,072 MPI ranks. See also
Table 9.2 where we explicitly list the runtimes.

169

Runtime (without Ripple-Balance) par. efficiency
P AMR Total AMR Total

131,072 45.5s 74.7s – –
262,144 23.3s 37.9s 97.6% 98.5%
458,752 13.0s 21.3s 100.0% 100.0%

Runtime (including Ripple-Balance) par. efficiency
P AMR Total AMR Total

131,072 75.1s 104.4s – –
262,144 41.4s 56.0s 90.7% 93.2%
458,752 24.9s 33.3s 86.2% 89.6%

Table 9.2.: In this table we present the runtimes and compute the parallel efficiency
of the AMR routines and the total runtime of the advection solver for the
tetrahedral strong scaling test on 131,072 up to 458,752 processes. See
also Figure 9.7. The top part of the table shows the runtimes without
Ripple-Balance, we obtain a parallel efficiency of 100% for the run on
458,752 processes compared to the base line run with 131,072 processes.
In the bottom part, we include Ripple-Balance. The overall parallel
efficiency is then 86.2% for the AMR routines and 89.6% for the total
runtime.

9.4.5. Comparison to uniform meshes

It is sensible to ask whether we profit from using AMR at all. When we omit the
adaptive refinement and use the initial level ` uniform mesh in the solver, there is
no overhead due to AMR algorithms and all of the compute time is used to solve
the actual numerical equation. However, to reach the same accuracy, more mesh
elements are needed, which in turn results in a higher memory usage and possibly
larger overall runtime.

In Table 9.3 we compare adaptive and uniform runs on tetrahedral meshes with
32,768 and 65,536 processes. In the uniform case we use a refinement level of ` = 8
and in the adaptive tests we use an initial level ` = 4 mesh which we adapt r = 4
further levels, such that the finest elements are of level 8 as well. First of all we notice
that the adaptive meshes only use 8.3% as many elements as the uniform meshes
(8.3e6 and 100.6e6 elements) while resulting only in a slightly larger computational
error of 7.6% volume loss compared to the 5.8% volume loss in the uniform case.
This large reduction in the number of elements points to a significant decrease in
memory usage.

Furthermore, we observe that the adaptive runs need less than half the runtime
as the uniform runs. These are total runtimes that include the relatively slow
Ripple-balance routine and thus we can expect that the overall gain would be
even better with an optimized Balance routine. For applications with more highly
localized physics, adaptivity may reduce the number of elements in relation to uni-

170

P ` r mesh size Evol
1 time steps Runtime

32,768 8 0 100,663,296 5.8% 5,196 469.9s
32,768 4 4 8,336,500 7.6% 3,445 159.3s

65,536 8 0 100,663,296 5.8% 5,196 240.3s
65,536 4 4 8.339,130 7.6% 3,445 102.3s

Table 9.3.: We compare adaptive and uniform runs of the same problem, once with
32,768 and once with 65,536 processes. The finest refinement level in all
cases is 8. The adaptive runs only use 8.3% as many mesh elements as
the uniform runs and need less that half the runtime to obtain an only
slightly larger computational error. The runtimes in the last column
are the total runtimes of the solver and in particular include the non-
optimized Ripple-balance routine in the adaptive cases.

form meshes by over three orders of magnitude, which will lead to proportionally
higher savings.

9.4.6. A test with a larger coarse mesh

We close this section with an application of the solver on a non-trivial domain with
a medium sized coarse mesh. We use the example of two-dimensional potential flow
around a disk [12]. This flow is an analytical solution to the flow of an incompressible
fluid without viscosity around a disc with radius R and midpoint at the origin, with
the flow being constant 1 in x-direction and 0 in y-direction far outside of the disc.
In polar coordinates the flow field u is given by

u(r, φ)r =

(
1− R2

r2

)
cos(φ), (9.30a)

u(r, φ)φ =

(
−1− R2

r2

)
sin(φ). (9.30b)

As radius we chose R = 0.15, and we illustrate the flow in Figure 9.8.
Since the flow is symmetric around the x-axis, we restrict our attention to the re-

gion with y-coordinates greater or equal zero. As domain Ω we choose the rectangle
[−0.5, 1]× [0, 0.75] with the disk cut out.

We model this domain with a hybrid coarse mesh of 238 triangles and 351 quadri-
laterals as in Figure 9.9. The purpose of the quadrilaterals is to properly resolve
the flow close to the curved boundary. In order to do so, we use a boundary layer of
thin quadrilaterals that are stretched in the direction of the flow, which we display
in Figure 9.9 on the right.

Remark 9.9. We modify our refinement criterion. It is still sensible to refine in
a band around the zero level-set as in (9.18). However, the sizes of the coarse
mesh elements differ largely. In particular the quadrilateral elements at the circle
boundary are very small compared to the triangular elements filling the rest of the

171

Figure 9.8.: Streamlines (white) of the flow (9.30) around a disk with radius R =
0.15. The arrows on the left-hand side indicate the inflow vector (or-
ange) while the background color indicates the magnitude of the flow
velocity.

Figure 9.9.: Left: We model the rectangle [−0.5, 1]× [0, 0.75] with the disk of radius
0.1 cut out as a hybrid triangle/quadrilateral mesh with 238 triangles
and 351 quadrilaterals. Right (zoomed in): We use the quadrilaterals
(red) to resolve the flow close to the curved boundary and triangles
(blue) to mesh the remaining domain. This mesh was created with
Gmsh [57]. Throughout the mesh the sizes of the coarse elements differ
by several orders of magnitude, which motivates taking the volume of
an element into account when refining according to (9.18).

172

Figure 9.10.: Zoomed in: The different refinement levels close to the zero level-set
(white). We refine an element if it is close to the zero level-set and its
volume is larger than a given lower bound. Thus, the finest elements
close to the zero level-set all have comparable volumes. The difference
in refinement levels is observed when we compare the level 5 triangles
(red) in the top part of the image with the level 2 quadrilaterals (light
blue) in the bottom part.

domain. In the final refined mesh, all elements close to the zero level-set should
have approximately the same size. In order to achieve this, we refine an element
if it fulfills criterion (9.18) only if its volume is above a certain threshold, which is
determined by the volume of the smallest elements in the mesh; see Figure 9.10 for
an illustration. We thus replace the coarsest and finest level restriction decribed in
Section 9.2.3 by a largest and smallest volume restriction.

As initial level-set function φ0 we choose the signed distance function to a circle
with radius 0.1 and midpoint

(
0.2, 0.11

)t
. In particular, this means that the zero

level-set is advected close to the curved boundary.
In Figure 9.11 we show six different time steps of the computation with initial

uniform level ` = 1 and r = 4 adaptive refinement levels. It is clearly visible how
close the zero level-set is to the circular hole.

173

Figure 9.11.: Six different time steps of the numerical solution to the advection of a
circular interface with the flow (9.30) and maximum refinement level 5.
The interface moves very close to the circular domain boundary. This
movement is well resolved since we use flat quadrilaterals close to this
boundary. In the more orange region to the left of the zero level-set
we observe the effect that φ looses its signed distance property, which
we addressed in Remark 9.1. This results in elements keeping a finer
level than necessary.

174

10. Conclusion

In this thesis we are concerned with the development of a new space-filling curve
(SFC) for parallel simplicial adaptive mesh refinement, as well as scalable data
structures and algorithms for parallel tree-based adaptive mesh refinement (AMR)
with general element types (such as for example triangles, tetrahedra, quadrilaterals,
hexahedra, and prisms) and support for hybrid meshes.

Existing libraries for tree-based AMR focus on a single type of element and SFC,
such as for example p4est [34] for quadrilaterals/hexahedra with the Morton SFC.
A major contribution of this thesis is the development of an element-type inde-
pendent approach by separating the high-level AMR algorithms from the low-level
element-type implementation. By modifying and restructuring the existing meshing
algorithms we extend the AMR functionality to arbitrary element types. In partic-
ular, to the best of our knowledge, we present the first discussion and applications
of tree-based AMR on tetrahedral and hybrid meshes.

While we applied our concept with little effort to mesh refinement and coarsening,
as well as partitioning, significant work was necessary to establish the construction
of a layer of ghost elements. Additionally, we devised a new communication reducing
algorithm for coarse mesh partitioning.

Besides a thorough theoretical investigation, we implemented the t8code AMR
library to demonstrate practicability and verified strong and weak scaling to hun-
dreds of thousands of parallel processes on current supercomputing systems. To
confirm that our algorithms provide all features required for a basic numerical ap-
plication, we implemented a finite volume solver for the advection equation. We find
that our implementation supports face-based numerical applications in a modular
and non-intrusive way.

A starting motivation for this thesis was to find an SFC for triangles and tetra-
hedra that has similar properties to the Morton SFC for quadrilaterals and hexa-
hedra, such as fast computation via bitwise interleaving and constant-time, level-
independent low-level algorithms (constructing children, face-neighbors, parents,
etc.). Though it was not certain that such an SFC exists, we were able to find
a suitable construction leading to the tetrahedral Morton (TM-) SFC. In order to
transfer the bitwise interleaving concept to simplices, we introduced the type of a
simplex as additional information, and used the types of an element’s ancestors to
interleave with the anchor node coordinates. Despite its similarities to the Mor-
ton SFC, segments of the TM-SFC can produce more connected components when
partioning the mesh in parallel, possibly increasing the amount of parallel com-
munication. We investigated this further and proved upper bounds for the possible

175

counts and demonstrated that in practical applications less than 7% of the segments
have more than three connected components. Throughout this thesis we observed
that the performance of the TM-SFC is comparable to that of the Morton SFC.
Our discussions and examples show that the TM-SFC is an excellent choice for an
SFC for triangles and tetrahedra and is a competitive addition to the multitude of
existing SFCs.

In order to model complex domain geometries with arbitrarily large numbers of
trees, we investigated parallel partitioning of the coarse mesh. We devised a new
approach that reduces parallel communication while maintaining the load-balance
of the fine mesh. Because we duplicate a tree’s data on all processes that have local
elements of this tree, repartitioning requires the solution of an n-to-m communica-
tion problem. We developed a sophisticated repartitioning algorithm to ensure that
despite information being duplicated, no data is sent multiple times. Additionally,
we incorporated the communication of ghost trees and demonstrated scaling on up
to 917e3 processes with tetrahedral and hexahedral tree types and meshes of up to
371e9 trees with faster execution times than the fine mesh partitioning.

For our development of element-type independent high-level AMR algorithms,
the Ghost algorithm to create a layer of ghost elements at each process turned out
to be the most challenging. The most complex step in this algorithm is constructing
the face-neighbors of a given element for which we formulate a new element-type in-
dependent algorithm. With our approach we gain maximum flexibility with regards
to the implementations of the SFCs used in the neighboring trees. We optimized
our Ghost routine by using recently developed recursive search routines for tree-
based AMR. This algorithm has optimal strong and weak scaling behavior and we
obtain runtimes comparable to current state-of-the-art implementations with fixed
element-types [70].

We concluded our investigation of element-type independent AMR by showing
that we can implement a scalable straightforward version of the 2:1 Balance routine
based on a ripple algorithm [143, 144], using the available functionalities such as
Ghost.

By implementing and investigating a finite volume solver we demonstrated that
t8code can easily be integrated in numerical solvers and maintains excellent run-
times and scaling behavior in a practical application setting. We underlined the
flexibility in terms of element-types by performing tests on different types of meshes
including 2D and 3D hybrid meshes.

Concluding, we developed a new SFC for simplicial mesh refinement and a com-
plete software library for element-type independent tree-based AMR that supports
different types of elements as well as hybrid meshes. We demonstrated excellent
strong and weak scaling behavior on current high-performance computing systems
and showed that our software can be directly used by numerical applications.

Our modular approach of separating the high-level and low-level algorithms proved
to be very succesful and leads to a strong flexibility, allowing us to reuse the same
high-level algorithms for different element types and SFCs. We demontrate this for

176

example by testing Ghost and Balance with hexehadral and with tetrahedral ele-
ments and by applying the advection solver to various different meshes including 2D
and 3D hybrid meshes. With the definition of an API for the low-level algorithms,
we enable users of t8code to reuse existing implementations for an element-type,
such as we did throughout this thesis by using the p4est implementation for the
quadrilateral and hexahedral Morton SFC. This can greatly reduce the amount of
work when extending existing applications with the tree-based AMR functionality
from t8code. Another advantage is that additional element-types can be added
to t8code with little effort, such as shown in a Bachelor’s thesis that includes the
support for prisms into t8code without any necessary changes to the high-level
algorithms [81].

We are hopeful that the techniques presented in this thesis can lead to tree-based
AMR being used in areas that are currently dominated by unstructured meshing,
such as large-scale engineering applications with hybrid meshes; for example [77,95,
147].

177

11. Outlook

Our results and algorithms provide a significant improvement in tree-based AMR
techniques, especially considering their generality and flexibility. Nevertheless, there
are various possibilities for further research and improvement, of which we briefly
discuss some examples here.

A first possible extension is to develop an SFC for pyramidal refinement and
establish the necessary low-level algorithms. This extends the functionality to fully
hybrid meshes consisting of tetrahedra, hexahedra, prisms, and pyramids and thus
allows for complex engineering applications as for example described in [77,147]. A
similar possible extension are 4D elements such as hypercubes and 4D simplices.
These are for example used to model 4D space-time [54].

Also, if we consider the history of development of tree-based quadrilateral/hexa-
hedral AMR, with particular emphasis on the p4est library, we see several future
research opportunities:

As we discuss in Sections 8 and 9, Balance is the most expensive high-level
algorithm in t8code, which was also the case for the original implementation in
p4est. Thus, developing a state-of-the art version along the lines of [69] would
significantly reduce the runtime and improve the overall scaling behavior of Balance.
A particular challenge in this development will be the generalization of an element’s
insulation layer to arbitrary element types and across trees of different types.

A second high-level algorithm to improve is Iterate to execute a user provided
callback on all mesh elements and element-to-element interfaces. In this thesis we
use a basic loop; however, a sophisticated implementation using search algorithms
that handles hanging nodes automatically is possible. Such a universal mesh topol-
ogy iterator for quadrilaterals/hexahedra is described in [70], and we believe these
techniques can be transferred to the general approach presented in this thesis.

Other points are the extension of the geometry handling to edge and vertex neigh-
bors and the development of a vertex numbering scheme [70]. This can then be
utilized by application codes that are vertex based, such as for example finite ele-
ment solvers. A starting point could be the implementation of the Nodes algorithm
from [34], which would require handling of hanging edges and the computation of
edge neighbors as a low-level function and in the coarse mesh.

Furthermore, it would be interesting to use higher order geometry representations
for the coarse mesh. Each tree in the coarse mesh is equipped with geometry
interpolation points, which allows to use curved geometries for each tree; see for
example [150, 154]. This technique can improve the overall geometric accuracy
while decreasing the number of coarse mesh trees. An implementation into t8code

would be straightforward, utilizing the existing data managment algorithms of the

178

coarse mesh.

179

A. The Low-Level API

In this appendix we list all low-level functions from the t8code library. In order
to introduce a new element type, all of these functions have to be implemented for
this element type. Currently, t8code supports the following element types.

• 0D Vertices

• 1D Lines with Morton order

• 2D Quadrilaterals with Morton order using the p4est library [25]

• 3D Hexahedra with Morton order using p4est

• 2D Triangles with Tetrahedral-Morton order

• 3D Tetrahedra with Tetrahedral-Morton order

• 3D Prisms as a cross product of Lines and Triangles [81]

We list all low-level functions together with a brief description of their effect in Ta-
ble A.1. For more details, we refer the reader to the documentation of t8code [139].

Function name effect

t8 element maxlevel Return the maximum possible
refinement level

t8 element child eclass Return the element type of the i-th
child

t8 element level Return an element’s level
t8 element copy Copy an element
t8 element compare Compare the SFC indices of two

elements

t8 element parent Compute the parent of an element
t8 element sibling Compute the i-th sibling (child of

parent)
t8 element num corners Return the number of vertices of an

element
t8 element num faces Return the number of faces of an

element
t8 element max num faces Return the maximum number of faces

of any descendant of an element

180

t8 element num children Return the number of children of an
element

t8 element num face children Return the number of children at a
given face

t8 element get face corner Given a face f and an index i return
the element local index of the i-th

corner of f
t8 element get corner face Given a corner i and an index j return

the j-th face sharing corner i
t8 element child Construct the i-th child of an element

t8 element children Construct all children of an element
t8 element child id Return the child-id of an element
t8 element ancestor id Return the child-id in the level `

ancestor
t8 element is family Given a collection of elements, query

whether they form a family (that is,
they form the output of

t8 element children for some
elemnet)

t8 element nca Construct the nearest common
ancestor of two elements

t8 element face class Return the element type of the i-th
face

t8 element children at face Construct all children that share the
i-th face

t8 element face child face Given a face of an element and the i-th
child of that face, return the face

number of the child of the element that
matches the child face.

t8 element face parent face Given a face of an element, return the
face number of the parent of the

element that matches the element’s
face

t8 element tree face If a given face lies on the tree
boundary, return the face number of

the respective tree face

t8 element transform face Transform the coordinates of a
(d− 1)-dimensional element across a

d-dimensional tree-to-tree face
connection

181

t8 element extrude face From a (d− 1)-dimensional element at
a d-dimensional tree boundary,

construct the respective d-dimensional
element within the tree.

t8 element boundary face From a d-dimensional element and a
face f construct the

(d− 1)-dimensional element
representing the face

t8 element first descendant face Construct the first descendant at a
given face

t8 element last descendant face Construct the last descendant at a
given face

t8 element is root boundary Query whether an element lies at its
root tree’s boundary across a given face

t8 element face neighbor inside Construct the face-neighbor of an
element within the same tree

t8 element set linear id Construct an element given a SFC
index

t8 element get linear id Return the SFC index of a given
element

t8 element first descendant Construct the first descendant of an
element

t8 element last descendant Construct the last descendant of an
element

t8 element successor Construct the successor (w.r.t. the
SFC index) of a given element

t8 element anchor Return the (integer) coordinates of the
anchor node of an element

t8 element root len Return the (integer) length of the root
tree of an element

t8 element vertex coords Return the (integer) coordinates
of a given vertex of an element

Table A.1.: All low-level functions provided by t8code with a brief description.

182

Bibliography

[1] Mark Ainsworth and Katia Pinchedez. hp-approximation theory for bdfm and
rt finite elements on quadrilaterals. SIAM Journal on Numerical Analysis,
40(6):2047–2068, 2003.

[2] Volkan Akçelik, Jacobo Bielak, George Biros, Ioannis Epanomeritakis, Anto-
nio Fernandez, Omar Ghattas, Eui J. Kim, Julio Lopez, David R. O’Hallaron,
Tiankai Tu, and John Urbanic. High resolution forward and inverse earth-
quake modeling on terascale computers. In SC03: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage,
and Analysis. ACM/IEEE, 2003.

[3] Clelia Albrecht. Parallelization of Adaptive Gradient Augmented Level Set
Methods. Master’s thesis, University of Bonn, 2016.

[4] AMReX. https://ccse.lbl.gov/AMReX/index.html.

[5] Axel Arnold, Olaf Lenz, Stefan Kesselheim, Rudolf Weeber, Florian Fahren-
berger, Dominic Roehm, Peter Košovan, and Christian Holm. ESPResSo 3.1:
Molecular dynamics software for coarse-grained models. In M. Griebel and
M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations
VI, volume 89 of Lecture Notes in Computational Science and Engineering,
pages 1–23. Springer, September 2012.

[6] I. Babuska and W. C. Rheinboldt. Error estimates for adaptive finite element
computations. SIAM Journal on Numerical Analysis, 15(4):736–754, 1978.

[7] M. Bader, H.J. Bungartz, and T. Weinzierl. Advanced Computing. Lecture
Notes in Computational Science and Engineering. Springer Berlin Heidelberg,
2013.

[8] M. Bader and Ch. Zenger. Efficient Storage and Processing of Adaptive Tri-
angular Grids Using Sierpinski Curves, pages 673–680. Springer, 2006.

[9] Michael Bader. Space-Filling Curves: An Introduction with Applications
in Scientific Computing. Texts in Computational Science and Engineering.
Springer, 2012.

[10] Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. deal.II – a general-
purpose object-oriented finite element library. ACM Transactions on Mathe-
matical Software, 33(4):24, 2007.

183

https://ccse.lbl.gov/AMReX/index.html

[11] Randolph E. Bank, Andrew H. Sherman, and Alan Weiser. Some refinement
algorithms and data structures for regular local mesh refinement. In Robert S.
Stapleman, editor, Scientific Computing, Applications of Mathematics and
Computing to the Physical Sciences, volume 1. IMACS/North-Holland Pub-
lishing Co., 1983.

[12] George Keith Batchelor. An introduction to fluid dynamics. Cambridge uni-
versity press, 2000.

[13] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydro-
dynamics. Journal of Computational Physics, 82:64–84, May 1989.

[14] Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of Computational Physics, 53(3):484–
512, 1984.

[15] M. Berzins, J. Luitjens, Q. Meng, T. Harman, and C. A. Wight. Uintah: a
scalable framework for hazard analysis. In Proceedings of the 2010 TeraGrid
Conference, 2010.

[16] Jürgen Bey. Der BPX-Vorkonditionierer in drei Dimensionen: Gitterver-
feinerung, Parallelisierung und Simulation. Universität Heidelberg, 1992.
Preprint.

[17] Jürgen Bey. Simplicial grid refinement: on Freudenthal’s algorithm and the
optimal number of congruence classes. Numerische Mathematik, 85(1):1–29,
2000.

[18] Boxlib. https://ccse.lbl.gov/BoxLib/index.html.

[19] D. Braess and R. Verfürth. A posteriori error estimators for the raviart-thomas
element. SIAM Journal on Numerical Analysis, 33(6):2431–2444, 1996.

[20] Dietrich Braess. Finite Elements. Theory, Fast Solvers, and Applications in
Solid Mechanics. Cambridge University Press, Cambridge, New York, 1997.

[21] Kolja Brix, Ralf Massjung, and Alexander Voss. Refinement and connectivity
algorithms for adaptive discontinuous Galerkin methods. SIAM Journal on
Scientific Computing, 33(1):66–101, 2011.

[22] G. L. Bryan, M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise, M. J.
Turk, D. R. Reynolds, D. C. Collins, P. Wang, S. W. Skillman, B. Smith,
R. P. Harkness, J. Bordner, J.-h. Kim, M. Kuhlen, H. Xu, N. Goldbaum,
C. Hummels, A. G. Kritsuk, E. Tasker, S. Skory, C. M. Simpson, O. Hahn,
J. S. Oishi, G. C. So, F. Zhao, R. Cen, Y. Li, and The Enzo Collaboration.
ENZO: An Adaptive Mesh Refinement Code for Astrophysics. ApJS, 211:19,
April 2014.

184

https://ccse.lbl.gov/BoxLib/index.html

[23] Hans-Joachim Bungartz, M. Mehl, and T. Weinzierl. A parallel adaptive
Cartesian PDE solver using space-filling curves. Euro-Par 2006 Parallel Pro-
cessing, pages 1064–1074, 2006.

[24] A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger. An efficient imple-
mentation of an adaptive and parallel grid in DUNE, pages 67–82. Springer,
2006.

[25] Carsten Burstedde. p4est: Parallel AMR on forests of octrees, last accessed
November 30, 2017. http://www.p4est.org/.

[26] Carsten Burstedde, Martin Burtscher, Omar Ghattas, Georg Stadler, Tiankai
Tu, and Lucas C. Wilcox. ALPS: A framework for parallel adaptive PDE
solution. Journal of Physics: Conference Series, 180:012009, 2009.

[27] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Tobin Isaac, Georg
Stadler, Tim Warburton, and Lucas C. Wilcox. Extreme-scale AMR. In SC10:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM/IEEE, 2010.

[28] Carsten Burstedde, Omar Ghattas, Georg Stadler, Tiankai Tu, and Lucas C.
Wilcox. Towards adaptive mesh PDE simulations on petascale computers. In
Proceedings of Teragrid ’08, 2008.

[29] Carsten Burstedde and Johannes Holke. A tetrahedral space-filling curve
for nonconforming adaptive meshes. SIAM Journal on Scientific Computing,
38(5):C471–C503, 2016.

[30] Carsten Burstedde and Johannes Holke. p4est: Scalable algorithms for paral-
lel adaptive mesh refinement. In Dirk Brömmel, Wolfgang Frings, and Brian
J. N. Wylie, editors, JUQUEEN Extreme Scaling Workshop 2016, number
FZJ-JSC-IB-2016-01 in JSC Internal Report, pages 49–54. Jülich Supercom-
puting Centre, 2016.

[31] Carsten Burstedde and Johannes Holke. Coarse mesh partitioning for tree-
based AMR. SIAM Journal on Scientific Computing, 39(5):C364–C392, 2017.

[32] Carsten Burstedde, Johannes Holke, and Tobin Isaac. Bounds on the number
of discontinuities of Morton-type space-filling curves. Submitted. Preprint
available at http://arxiv.org/abs/1505.05055, 2017.

[33] Carsten Burstedde, Georg Stadler, Laura Alisic, Lucas C. Wilcox, Eh Tan,
Michael Gurnis, and Omar Ghattas. Large-scale adaptive mantle convection
simulation. Geophysical Journal International, 192(3):889–906, 2013.

[34] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. p4est: Scalable
algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM
Journal on Scientific Computing, 33(3):1103–1133, 2011.

185

http://www.p4est.org/
http://arxiv.org/abs/1505.05055

[35] Paul M. Campbell, Karen D. Devine, Joseph E. Flaherty, Luis G. Gerva-
sio, and James D. Teresco. Dynamic octree load balancing using space-filling
curves. Technical Report CS-03-01, Williams College Department of Com-
puter Science, 2003.

[36] C. Carstensen. An adaptive mesh-refining algorithm allowing for an H1 stable
L2 projection onto Courant finite element spaces. Constr. Approx., 20(4):549–
564, 2004.

[37] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and
L.A. Riesen. Hypergraph-based dynamic load balancing for adaptive scien-
tific computations. In Proc. of 21st International Parallel and Distributed
Processing Symposium (IPDPS’07). IEEE, 2007.

[38] Henry Ker-Chang Chang and Jiang-Long Liu. A linear quadtree compres-
sion scheme for image encryption. Signal Processing: Image Communication,
10(4):279–290, 1997.

[39] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph
ordering. Parallel Computing, 34(6-8):318–331, July 2008.

[40] Alexandre Joel Chorin. Numerical solution of the navier-stokes equations.
Mathematics of computation, 22(104):745–762, 1968.

[41] Albert Cohen, Sidi Mahmoud Kaber, Siegfried Müller, and Marie Postel. Fully
adaptive multiresolution finite volume schemes for conservation laws. Math.
Comput., 72(241):183–225, January 2003.

[42] Phillip Colella, Daniel T. Graves, Noel Keen, Terry J. Ligocki, Daniel F. Mar-
tin, Peter W. McCorquodale, David Modiano, Peter O. Schwartz, Theodore D.
Sternberg, and Brian Van Straalen. Chombo Software Package for AMR Ap-
plications. Design Document. Applied Numerical Algoirthms Group, NERSC
Division, Lawrence Berkeley National Laboratory, Berkeley, CA, May 2007.

[43] Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die partiellen dif-
ferenzengleichungen der mathematischen physik. Mathematische annalen,
100(1):32–74, 1928.

[44] Richard Courant, Eugene Isaacson, and Mina Rees. On the solution of non-
linear hyperbolic differential equations by finite differences. Communications
on Pure and Applied Mathematics, 5(3):243–255, 1952.

[45] Gianluca De Santis. Novel mesh generation method for accurate image-based
computational modelling of blood vessels. PhD thesis, Ghent University, 2011.

[46] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courte-
nay Vaughan. Zoltan data management services for parallel dynamic applica-
tions. Computing in Science and Engineering, 4(2):90–97, 2002.

186

[47] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson,
James D. Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio. New
challenges in dynamic load balancing. Appl. Numer. Math., 52(2–3):133–152,
2005.

[48] Stefan Donath, Klaus Mecke, Swapna Rabha, Vivek Buwa, and Ulrich Rüde.
Verification of surface tension in the parallel free surface lattice Boltzmann
method in waLBerla. Computers & Fluids, 45(1):177–186, 2011. 22nd In-
ternational Conference on Parallel Computational Fluid Dynamics (ParCFD
2010) ParCFD.

[49] Willy Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM
Journal on Numerical Analysis, 33(3):1106–1124, 1996.

[50] Florence Drui, Alexandru Fikl, Pierre Kestener, Samuel Kokh, Adam Larat,
Vincent Le Chenadec, and Marc Massot. Experimenting with the p4est library
for amr simulations of two-phase flows. ESAIM: Proceedings and Surveys,
53:232–247, 2016.

[51] enGrid. https://github.com/enGits/engrid.

[52] Daming Feng, Christos Tsolakis, Andrey N Chernikov, and Nikos P Chriso-
choides. Scalable 3d hybrid parallel delaunay image-to-mesh conversion algo-
rithm for distributed shared memory architectures. Computer-Aided Design,
85:10–19, 2017.

[53] Paul F. Fischer, Gerald W. Kruse, and Francis Loth. Spectral element meth-
ods for transitional flows in complex geometries. Journal of Scientific Com-
puting, 17(1-4):81–98, December 2002.

[54] Panagiotis Foteinos and Nikos Chrisochoides. 4d space—time delaunay mesh-
ing for medical images. Eng. with Comput., 31(3):499–511, July 2015.

[55] R. A. Gentry, R. E. Martin, and B. J. Daly. An eulerian differencing method
for unsteady compressible flow problems. Journal of Computational Physics,
1:87–118, August 1966.

[56] Kai Germaschewski, Amitava Bhattacharjee, Rainer Grauer, and Barry
Smith. Using krylov-schwarz methods in an adaptive mesh refinement en-
vironment. In Adaptive Mesh Refinement - Theory and Applications, pages
115–124. Springer Science & Business Media, 2003.

[57] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element
mesh generator with built-in pre- and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[58] N.A. Golias and R.W. Dutton. Delaunay triangulation and 3D adaptive mesh
generation. Finite Elements in Analysis and Design, 25(3-4):331–341, 1997.
Adaptive Meshing, Part 2.

187

https://github.com/enGits/engrid

[59] M. Griebel and G. Zumbusch. Parallel multigrid in an adaptive PDE solver
based on hashing. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, and
U. Trottenberg, editors, Parallel Computing: Fundamentals, Applications and
New Directions, Proceedings of the Conference ParCo’97, 19–22 September
1997, Bonn, Germany, volume 12, pages 589–600. Elsevier, North-Holland,
1998.

[60] Michael Griebel and Gerhard W. Zumbusch. Parallel multigrid in an adaptive
PDE solver based on hashing and space-filling curves. Parallel Computing,
25:827–843, 1999.

[61] Arthur Guittet, Maxime Theillard, and Frédéric Gibou. A stable projection
method for the incompressible navier-stokes equations on arbitrary geometries
and adaptive quad/octrees. Journal of Computational Physics, 292:215 – 238,
2015.

[62] Frank Günther, Miriam Mehl, Markus Pögl, and Christoph Zenger. A cache-
aware algorithm for PDEs on hierarchical data structures based on space-
filling curves. SIAM Journal on Scientific Computing, 28(5):1634–1650, 2006.

[63] Herman Haverkort. Sixteen space-filling curves and traversals for d-
dimensional cubes and simplices. arXiv preprint arXiv:1711.04473, 2017.

[64] Herman Haverkort and Freek van Walderveen. Locality and bounding-box
quality of two-dimensional space-filling curves. Computational Geometry,
43(2):131–174, 2010.

[65] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück.
Mathematische Annalen, 38:459–460, 1891.

[66] Ø. Hjelle and M. Dæhlen. Triangulations and Applications. Mathematics and
Visualization. Springer, 2006.

[67] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. CMAME,
2005.

[68] Daniel A. Ibanez, E. Seegyoung Seol, Cameron W. Smith, and Mark S. Shep-
hard. Pumi: Parallel unstructured mesh infrastructure. ACM Trans. Math.
Softw., 42(3):17:1–17:28, May 2016.

[69] Tobin Isaac, Carsten Burstedde, and Omar Ghattas. Low-cost parallel al-
gorithms for 2:1 octree balance. In Proceedings of the 26th IEEE Inter-
national Parallel & Distributed Processing Symposium. IEEE, 2012. http:

//dx.doi.org/10.1109/IPDPS.2012.47.

[70] Tobin Isaac, Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. Recur-
sive algorithms for distributed forests of octrees. SIAM Journal on Scientific
Computing, 37(5):C497–C531, 2015.

188

http://dx.doi.org/10.1109/IPDPS.2012.47
http://dx.doi.org/10.1109/IPDPS.2012.47

[71] Yasushi Ito, Alan M Shih, Anil K Erukala, Bharat K Soni, Andrey Chernikov,
Nikos P Chrisochoides, and Kazuhiro Nakahashi. Parallel unstructured mesh
generation by an advancing front method. Mathematics and Computers in
Simulation, 75(5):200–209, 2007.

[72] Claes Johnson. Error estimates and adaptive time-step control for a class of
one-step methods for stiff ordinary differential equations. SIAM Journal on
Numerical Analysis, 25(4):908–926, 1988.

[73] Jülich Supercomputing Centre. JUQUEEN: IBM Blue Gene/Q supercom-
puter system at the Jülich Supercomputing Centre. Journal of large-scale
research facilities, A1, 2015.

[74] George Karypis and Vipin Kumar. METIS – Unstructured Graph Partitioning
and Sparse Matrix Ordering System, Version 2.0, 1995.

[75] George Karypis and Vipin Kumar. A parallel algorithm for multilevel graph
partitioning and sparse matrix ordering. Journal of Parallel and Distributed
Computing, 48:71–95, 1998.

[76] Aly Khawaja and Yannis Kallinderis. Hybrid grid generation for turbomachin-
ery and aerospace applications. International Journal for Numerical Methods
in Engineering, 49(1-2):145–166, 2000.

[77] Andrew C Kirby, Michael J Brazell, Zhi Yang, Rajib Roy, Behzad R Ahrabi,
Dimitri J Mavriplis, Michael K Stoellinger, and Jay Sitaraman. Wind farm
simulations using an overset hp-adaptive approach with blade-resolved turbine
models. In 23rd AIAA Computational Fluid Dynamics Conference, page 3958,
2017.

[78] Benjamin S. Kirk, John W. Peterson, Roy H. Stogner, and Graham F. Carey.
libMesh: A C++ library for parallel adaptive mesh refinement/coarsening
simulations. Engineering with Computers, 22(3–4):237–254, 2006.

[79] Richard I. Klein. Star formation with 3-d adaptive mesh refinement: the
collapse and fragmentation of molecular clouds. Journal of Computational
and Applied Mathematics, 109(1):123 – 152, 1999.

[80] M. Klitz. Numerical Simulation of Droplets with Dynamic Contact Angles.
PhD thesis, Institut für Numerische Simulation, University of Bonn, December
2014.

[81] David Knapp. Adaptive Verfeinerung von Prismen. Bachelor’s thesis, Univer-
sity of Bonn, 2017.

[82] David A. Kopriva, Stephen L. Woodruff, and M. Yousuff Hussaini. Com-
putation of electromagnetic scattering with a non-conforming discontinuous
spectral element method. International Journal for Numerical Methods in
Engineering, 53(1):105–122, 2002.

189

[83] F. Koster, M. Griebel, N. Kevlahan, M. Farge, and K. Schneider. Towards
an adaptive wavelet-based 3D Navier-Stokes solver. In E.H. Hirschel, editor,
Numerical flow simulation I, Notes on Numerical Fluid Mechanics, Vol. 66,
pages 339–364. Vieweg-Verlag, Braunschweig, 1998.

[84] Martin Kronbichler, Timo Heister, and Wolfgang Bangerth. High accuracy
mantle convection simulation through modern numerical methods. Geophys-
ical Journal International, 191(1):12–29, 2012.

[85] Michael Lahnert, Carsten Burstedde, Christian Holm, Miriam Mehl, Georg
Rempfer, and Florian Weik. Towards lattice-Boltzmann on dynamically
adaptive grids—minimally-invasive grid exchange in ESPResSo. In M. Pa-
padrakakis, V. Papadopoulos, G. Stefanou, and V. Plevris, editors, ECCO-
MAS Congress 2016, VII European Congress on Computational Methods in
Applied Sciences and Engineering, pages 1–25. ECCOMAS, 2016.

[86] Andras Laszloffy, Jingping Long, and Abani K. Patra. Simple data man-
agement, scheduling and solution strategies for managing the irregularities in
parallel adaptive hp finite element simulations. Parallel Computing, 26:1765–
1788, 2000.

[87] Orion S. Lawlor, Sayantan Chakravorty, Terry L. Wilmarth, Nilesh Choud-
hury, Isaac Dooley, Gengbin Zheng, and Laxmikant V. Kalé. ParFUM: a
parallel framework for unstructured meshes for scalable dynamic physics ap-
plications. Engineering with Computers, 22(3):215–235, 2006.

[88] Henri Léon Lebesgue. Leçons sur l’intégration et la recherche des fonctions
primitives. Gauthier-Villars, 1904.

[89] M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in
hierarchical tetrahedral meshes. In SMI 2001 International Conference on
Shape Modeling and Applications, pages 286–295, May 2001.

[90] Randall J. LeVeque. Finite volume methods for hyperbolic problems. Cam-
bridge University Press, 2002.

[91] Z. Li and K. Ito. The Immersed Interface Method. Society for Industrial and
Applied Mathematics, 2006.

[92] Anwei Liu and Barry Joe. Quality local refinement of tetrahedral meshes
based on 8-subtetrahedron subdivision. Math. Comput., 65(215):1183–1200,
July 1996.

[93] Anders Logg, Kent-Andre Mardal, and Garth N. Wells, editors. Automated
Solution of Differential Equations by the Finite Element Method, volume 84
of Lecture Notes in Computational Science and Engineering. Springer, 2012.

190

[94] David Marcum. Generation of unstructured grids for viscous flow applications.
In 33rd Aerospace Sciences Meeting and Exhibit, page 212, 1995.

[95] DG Martineau, Sean Stokes, SJ Munday, AP Jackson, BJ Gribben, and Niek
Verhoeven. Anisotropic hybrid mesh generation for industrial rans applica-
tions. AIAA Paper, 534(2006):39, 2006.

[96] Oliver Meister, Kaveh Rahnema, and Michael Bader. A software concept for
cache-efficient simulation on dynamically adaptive structured triangular grids.
In PARCO, pages 251–260, 2011.

[97] Oliver Meister, Kaveh Rahnema, and Michael Bader. Parallel memory-
efficient adaptive mesh refinement on structured triangular meshes with bil-
lions of grid cells. ACM Trans. Math. Softw., 43(3):19:1–19:27, September
2016.

[98] Chohong Min. On reinitializing level set functions. Journal of Computational
Physics, 229(8):2764 – 2772, 2010.

[99] Mohammad Mirzadeh, Arthur Guittet, Carsten Burstedde, and Frédéric Gi-
bou. Parallel level-set methods on adaptive tree-based grids. Journal of Com-
putational Physics, 322:345–364, 2016.

[100] William F. Mitchell. A refinement-tree based partitioning method for dy-
namic load balancing with adaptively refined grids. Journal of Parallel and
Distributed Computing, 67(4):417–429, 2007.

[101] G. M. Morton. A computer oriented geodetic data base; and a new technique
in file sequencing. Technical report, IBM Ltd., 1966.

[102] Andreas Müller, Jörn Behrens, Francis X. Giraldo, and Volkmar Wirth. Com-
parison between adaptive and uniform discontinuous galerkin simulations in
dry 2d bubble experiments. Journal of Computational Physics, 235:371 – 393,
2013.

[103] Andreas Müller, Michal A. Kopera, Simone Marras, Lucas C. Wilcox,
Tobin Isaac, and Francis X. Giraldo. Strong scaling for numerical
weather prediction at petascale with the atmospheric model NUMA.
http://arxiv.org/abs/1511.01561, 2015.

[104] Siegfried Müller and Youssef Stiriba. Fully adaptive multiscale schemes for
conservation laws employing locally varying time stepping. Journal of Scien-
tific Computing, 30(3):493–531, 2007.

[105] J. Müller, O. Sahni, X. Li, K. E. Jansen, M. S. Shephard, and C. A. Taylor.
Anisotropic adaptive finite element method for modelling blood flow. Com-
puter Methods in Biomechanics and Biomedical Engineering, 8(5):295–305,
2005. PMID: 16298851.

191

[106] Charles D. Norton, Greg Lyzenga, Jay Parker, and Robert E. Tisdale. De-
veloping parallel GeoFEST(P) using the PYRAMID AMR library. Technical
report, Jet Propulsion Laboratory, National Aeronautics and Space Adminis-
tration, 2004.

[107] Leonid Oliker and Rupak Biswas. PLUM: Parallel load balancing for adap-
tive unstructured meshes. Journal of Parallel and Distributed Computing,
52(2):150–177, 1998.

[108] Leonid Oliker, Rupak Biswas, and Harold N. Gabow. Parallel tetrahe-
dral mesh adaptation with dynamic load balancing. Parallel Computing,
26(12):1583–1608, November 2000.

[109] OpenCFD. OpenFOAM – The Open Source CFD Toolbox – User’s Guide.
OpenCFD Ltd., United Kingdom, 1.4 edition, 11 2007.

[110] S. Osher and J. Sethian. Fronts propagating with curvature dependent speed:
Algorithms based on Hamilton Jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988.

[111] Stanley J. Osher and Ronald P. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces. Springer, 2002.

[112] Ekow J. Otoo and Hongwen Zhu. Indexing on spherical surfaces using semi-
quadcodes. In David Abel and Beng Chin Ooi, editors, Advances in Spatial
Databases, volume 692 of Lecture Notes in Computer Science, pages 510–529.
Springer, 1993.

[113] Guiseppe Peano. Sur une courbe, qui remplit toute une aire plane. Math.
Ann., 36(1):157–160, 1890.

[114] Daniel Peter, Dimitri Komatitsch, Yang Luo, Roland Martin, Nicolas Le Goff,
Emanuele Casarotti, Pieyre Le Loher, Federica Magnoni, Qinya Liu, Celine
Blitz, Tarje Nisson-Meyer, Piero Basini, and Jeroen Tromp. Forward and ad-
joint simulations of seismic wave propagation on fully unstructured hexahedral
meshes. Geophysical Journal International, 186(2):721–739, 2011.

[115] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad
Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant
Kalé, and Klaus Schulten. Scalable molecular dynamics with namd. Journal
of Computational Chemistry, 26(16):1781–1802, 2005.

[116] John R. Pilkington and Scott B. Baden. Partitioning with spacefilling curves.
Technical report, Dept. of Computer Science and Engineering, University of
California, San Diego, 1994.

[117] Ali Pinar and Cevdet Aykanat. Fast optimal load balancing algorithms for 1D
partitioning. Journal on Parallel and Distributed Computing, 64(8):974–996,
August 2004.

192

[118] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt,
Rudolf Bayer, Bayerisches Forschungszentrum, and Tu München. Integrat-
ing the ub-tree into a database system kernel. In Proceedings of the 26th
International Conference on Very Large Data Bases, pages 263–272, 2000.

[119] M. Rasquin, C. Smith, K. Chitale, E. S. Seol, B. A. Matthews, J. L. Martin,
O. Sahni, R. M. Loy, M. S. Shephard, and K. E. Jansen. Scalable implicit flow
solver for realistic wing simulations with flow control. Computing in Science
Engineering, 16(6):13–21, Nov 2014.

[120] Werner C. Rheinboldt and Charles K. Mesztenyi. On a data structure for
adaptive finite element mesh refinements. ACM Transactions on Mathematical
Software, 6(2):166–187, 1980.

[121] RC Ripley, F-S Lien, and MM Yovanovich. Adaptive unstructured mesh re-
finement of supersonic channel flows. International Journal of Computational
Fluid Dynamics, 18(2):189–198, 2004.

[122] Johann Rudi, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael
Gurnis, Peter W. J. Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni,
and Omar Ghattas. An extreme-scale implicit solver for complex pdes: highly
heterogeneous flow in earth’s mantle. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
page 5. ACM, 2015.

[123] Hans Sagan. Space-Filling Curves. Springer, 1994.

[124] Rahul S. Sampath, Santi S. Adavani, Hari Sundar, Ilya Lashuk, and George
Biros. Dendro: Parallel algorithms for multigrid and AMR methods on 2:1 bal-
anced octrees. In SC’08: Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis. ACM/IEEE,
2008.

[125] Joachim Schöberl. Netgen an advancing front 2d/3d-mesh generator based on
abstract rules. Computing and Visualization in Science, 1(1):41–52, Jul 1997.

[126] P. M. Selwood and M. Berzins. Parallel unstructured tetrahedral mesh adap-
tation: algorithms, implementation and scalability. Concurrency: Practice
and Experience, 11(14):863–884, 1999.

[127] Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh gener-
ator and Delaunay triangulator. In Ming C. Lin and Dinesh Manocha, editors,
Applied Computational Geometry: Towards Geometric Engineering, volume
1148 of Lecture Notes in Computer Science, pages 203–222. Springer, 1996.
From the First ACM Workshop on Applied Computational Geometry.

193

[128] Hang Si. TetGen—A Quality Tetrahedral Mesh Generator and Three-
Dimensional Delaunay Triangulator. Weierstraß Institute for Applied Analy-
sis and Stochastics, Berlin, 2006.

[129] Wac law Sierpiński. Sur une nouvelle courbe continue qui remplit toute une
aire plane. Bulletin de l’Académie des Sciences de Cracovie, Séries A:462–478,
1912.

[130] William Skamarock, Joseph Oliger, and Robert L Street. Adaptive grid re-
finement for numerical weather prediction. jcp, 80(1):27 – 60, 1989.

[131] C. W. Smith, M. Rasquin, D. Ibanez, K. E. Jansen, and M. S. Shephard.
Application specific mesh partition improvement. Technical Report 2015-3,
Rensselaer Polytechnic Institute, 2015.

[132] Pavel Šoĺın, Jakub Červenỳ, and Ivo Doležel. Arbitrary-level hanging nodes
and automatic adaptivity in the hp-fem. Mathematics and Computers in
Simulation, 77(1):117 – 132, 2008.

[133] David A Steinman, Jaques S Milner, Chris J Norley, Stephen P Lownie, and
David W Holdsworth. Image-based computational simulation of flow dynam-
ics in a giant intracranial aneurysm. American Journal of Neuroradiology,
24(4):559–566, 2003.

[134] James R. Stewart and H. Carter Edwards. A framework approach for devel-
oping parallel adaptive multiphysics applications. Finite Elements in Analysis
and Design, 40(12):1599–1617, 2004.

[135] E. Suli, C. Schwab, and P. Houston. Discontinuous Galerkin Methods. Theory,
Computation and Applications, chapter hp-DGFEM for partial differential
equations with nonnegative characteristic form, pages 221–230. Lecture notes
in Computational Science and Engineering. Springer-Verlag, 2000.

[136] Hari Sundar, Rahul Sampath, and George Biros. Bottom-up construction and
2:1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific
Computing, 30(5):2675–2708, 2008.

[137] Hari Sundar, Rahul S. Sampath, Santi S. Adavani, Christos Davatzikos, and
George Biros. Low-constant parallel algorithms for finite element simula-
tions using linear octrees. In SC’07: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage, and Analysis.
ACM/IEEE, 2007.

[138] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for
computing solutions to incompressible two-phase flow. Journal of Computa-
tional Physics, 114:146–159, 1994.

[139] t8code. https://github.com/holke/t8code.

194

https://github.com/holke/t8code

[140] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst. MOAB:
A mesh-oriented database. SAND2004-1592, Sandia National Laboratories,
April 2004. Report.

[141] Timothy J Tautges, Jason A Kraftcheck, Nathan Bertram, Vipin Sachdeva,
and John Magerlein. Mesh interface resolution and ghost exchange in a par-
allel mesh representation. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pages
1670–1679. IEEE, 2012.

[142] Herbert Tropf and H. Herzog. Multidimensional range search in dynamically
balanced trees. Angewandte Informatik, 2:71–77, 1981.

[143] Tiankai Tu and David R O’Hallaron. Balance refinement of massive linear
octree datasets. Technical Report CMU-CS-04, Carnegie Mellon University,
Pittsburgh, 2004.

[144] Tiankai Tu, David R. O’Hallaron, and Omar Ghattas. Scalable parallel octree
meshing for terascale applications. In SC ’05: Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Anal-
ysis. ACM/IEEE, 2005.

[145] Vinod Valsalam and Anthony Skjellum. A framework for high-performance
matrix multiplication based on hierarchical abstractions, algorithms and op-
timized low-level kernels. Concurrency and Computation: Practice and Expe-
rience, 14(10):805–839, 2002.

[146] David A. Venditti and David L. Darmofal. Adjoint error estimation and grid
adaptation for functional outputs: Application to quasi-one-dimensional flow.
Journal of Computational Physics, 164:204–227, 2000.

[147] Samir Vinchurkar and P Worth Longest. Evaluation of hexahedral, prismatic
and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput-
ers & Fluids, 37(3):317–331, 2008.

[148] Timothy Warburton and Thomas Hagstrom. Taming the cfl number for dis-
continuous galerkin methods on structured meshes. SIAM Journal on Numer-
ical Analysis, 46(6):3151–3180, 2008.

[149] Tobias Weinzierl and Miriam Mehl. Peano—a traversal and storage scheme for
octree-like adaptive Cartesian multiscale grids. SIAM Journal on Scientific
Computing, 33(5):2732–2760, October 2011.

[150] Lucas C. Wilcox, Georg Stadler, Carsten Burstedde, and Omar Ghattas. A
high-order discontinuous Galerkin method for wave propagation through cou-
pled elastic-acoustic media. Journal of Computational Physics, 229(24):9373–
9396, 2010.

195

[151] A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. S. Ellion.
Large scale structured AMR calculations using the SAMRAI framework. In
Proceedings of Supercomputing, ACM/IEEE 2001 Conference. ACM/IEEE,
Nov. 10-16 2001.

[152] Yusuf Yılmaz, Can Özturan, Oğuz Tosun, Ali Haydar Özer, and Seren Soner.
Parallel mesh generation, migration and partitioning for the elmer application.
Technical report, PREMA-Partnership for Advanced Computing in Europe,
2010.

[153] S. Zhang. Successive subdivisions of tetrahedra and multigrid methods on
tetrahedral meshes. Houston Journal of Mathematics, 21(3), 1995.

[154] YM Zhang, Y Gu, JT Chen, et al. Boundary layer effect in BEM with high
order geometry elements using transformation. Computer Modeling in Engi-
neering and Sciences (CMES), 45(3):227, 2009.

[155] O. C. Zienkiewicz, D. W. Kelley, J. Gago, and I. Babuska. Hierarchical fi-
nite element approaches, error estimates and adaptive refinement. In J. R.
Whiteman, editor, The Mathematics of Finite Elements and Applications IV,
MAFELAP 1981, pages 313–346. Academic Press, London, New York, 1982.

[156] G. Zumbusch. Dynamic load balancing in a lightweight adaptive parallel
multigrid PDE solver. In B. Hendrickson, K. Yelick, C. Bischof, I. Duff,
A. Edelman, G. Geist, M. Heath, M. Heroux, C. Koelbel, R. Schrieber,
R. Sinovec, and M. Wheeler, editors, Proceedings of 9th SIAM Conference on
Parallel Processing for Scientific Computing (PP ’99), San Antonio, Texas,
ISBN 0-89871-435-4, page 10, Philadelphia, PA, 1999. SIAM.

[157] G. Zumbusch. Parallel Multilevel Methods. Adaptive Mesh Refinement and
Load Balancing. Teubner, 2003.

[158] Gerhard W. Zumbusch. On the quality of space-filling curve induced parti-
tions, 2000. Zeitschrift für Angewandte Mathematik und Mechanik.

[159] Gerhard W. Zumbusch. Load balancing for adaptively refined grids. Proceed-
ings in Applied Mathematics and Mechanics, 1(1), 2002.

196

List of Tables

4.1. The types of the children of a simplex 44

4.2. The local index of the children of a simplex 53

4.3. Face neighbors for triangles . 59

4.4. Face neighbors for tetrahedra . 59

4.5. The coordinates xi, xj , and xk for the computation whether a simplex
is ancestor of another. 62

4.6. The local index of a tetrahedron . 66

4.7. The cube-id in dependence of the local index and the type of the parent 66

4.8. The type in dependence of the local index and the type of the parent 66

5.1. The relative counts of face-connected and non-connected segments of
Morton SFCs . 81

6.1. Basic definitions . 86

6.2. Runtimes for Partition cmesh on JUQUEEN 109

6.3. Runtimes for Partition cmesh with small meshes 110

6.4. Runtimes of coarse mesh repartitioning with 8,192 MPI ranks 113

6.5. Runtimes of forest mesh repartitioning with 8,192 MPI ranks 113

6.6. Runtimes of coarse and forest mesh repartitioning with 458,752 MPI
ranks . 113

7.1. Face number and type for tetrahedral subfaces 121

7.2. t8 element boundary face for quadrilaterals and hexahedra. 122

7.3. Coordinates and types for the faces of simplices 123

7.4. signt,t′(g, g
′) from Definition 7.13 for two possible tree-to-tree con-

nections. 125

7.5. t8 transform face (F, o, s = 1). 125

7.6. t8 transform face (F, o = 0, s = -1). 126

7.7. The computation of t8 element extrude face (F’, T’, g’) . . . 128

7.8. The child indices of all children of an element touching a given face. 129

7.9. Runtime tests for the three different Ghost algorithms. 141

8.1. Strong scaling with tetrahedral elements. 149

8.2. Weak scaling with tetrahedral and hexahedral elements. 151

9.1. Verifying convergence of the advection solver 167

9.2. Parallel efficiency of the advection solver 170

9.3. Comparing uniform and adaptive meshes. 171

197

A.1. All low-level functions provided by t8code with a brief description. . 182

198

List of Figures

2.1. Uniform and adaptive mesh . 17
2.2. Three different AMR methods . 18
2.3. A refined quadrilateral and the associated refinement tree. 20
2.4. Two ways to approximate a non-trivial domain. 21
2.5. AMR algorithms pipeline . 24

3.1. 1:4 refinement of a quadrilateral element. 29
3.2. Child-ids for the cubical Morton index 31
3.3. Computing the Morton index of a quad. 32
3.4. The SFC curve arising from the Morton code for quadrilateral 1:4

refinement . 33
3.5. Complex geometries with multiple trees 35

4.1. The Bey refinement schemes for triangles and tetrahedra 38
4.2. The triangle and tetrahedra types 40
4.3. First refining and then triangulating a cube is the same as first tri-

angulating it and then refining the tetrahedra 41
4.4. Resolving hanging nodes . 42
4.5. The TM curve preserves locality . 47
4.6. The cube-id . 48
4.7. A recursive description of the TM curve 54
4.8. The type of the parent of a simplex 56
4.9. The face-neighbors of a tetrahedron 58
4.10. Determining when a triangle is outside of the root triangle 63
4.11. Runtime tests for New on JUQUEEN 72
4.12. Strong scaling for Adapt on JUQUEEN 72

5.1. Two example segments of the TM curve 76
5.2. Illustration of Lemma 5.4 . 77
5.3. The 2D case in the proof of Proposition 5.8 79
5.4. The relative count of TM-curve segments by number of face-connected

components . 82

6.1. Coarse and fine mesh . 85
6.2. Complex geometries with multiple trees 86
6.3. Vertex and face labels of the different tree types 87
6.4. A partitioned coarse mesh with shared trees 90
6.5. An example for coarse mesh repartitioning 97

199

6.6. The communication patterns for the different types of face information101
6.7. The coarse mesh of disjoint bricks 107
6.8. Weak scaling of coarse mesh repartitioning 108
6.9. Strong scaling of coarse mesh repartitioning 108
6.10. A coarse mesh that models a brick with holes 112
6.11. The refined forest on the brick with holes mesh 112

7.1. Element face-neighbor . 118
7.2. Two hexahedral elements that are face-neighbors across tree bound-

aries. 119
7.3. Constructing the face element F to an element E at a tree face G. . 121
7.4. An element E and its leaf elements. 131
7.5. An example for t8 owners at face 132
7.6. Comparing the different implementations of Ghost. 140

8.1. An example for face-balance with a triangular forest and 5 MPI ranks.143
8.2. Testing Ghost and Ripple-balance on a unit cube geometry. 148
8.3. Strong scaling with tetrahedral elements. 150
8.4. Weak scaling with tetrahedral and hexahedral elements. 152

9.1. Illustration for flux computations. 157
9.2. 2D unit square for advection (quad/triangle/hybrid). 162
9.3. Simulation of the 2D test case on a 2D hybrid mesh. 163
9.4. Illustration of a 3D flow. 164
9.5. A cutout view of a hybrid 3D mesh 165
9.6. Strong scaling results for the advection solver 168
9.7. Strong scaling results for the advection solver (full JUQUEEN) . . . 169
9.8. 2D flow around a disk. 172
9.9. The coarse mesh that we use to model the domain with a disk cut out.172
9.10. Refinement criterion with different coarse mesh element sizes. 173
9.11. Solutions to the advection around a disk and the adapted mesh. . . 174

200

	Introduction
	Adaptive Mesh Refinement
	Uniform and adaptive mesh refinement
	Motivation for AMR
	Unstructured AMR
	Block-structured AMR
	Tree-based AMR
	Overview
	Core algorithms
	Independence of the element type

	Space-Filling Curves
	Refinement spaces and refinements
	Space-filling curves
	The Morton space-filling curve
	Space-filling curves on forests of trees
	Partitioning with space-filling curves

	The Tetrahedral Morton Index
	Mesh refinement on simplices
	Bey's refinement rule
	Removal of hanging nodes using red/green refinement

	The tetrahedral Morton index
	The reference simplex
	The type and Tet-id of a d-simplex
	Encoding of the tetrahedral Morton index
	A different approach to derive the TM-index
	Properties of the TM-index
	The space-filling curve associated to the TM-index

	Low-level algorithms on simplices
	The coordinates of a d-simplex
	Parent and child
	Neighbor simplices
	The exterior of the root simplex
	A consecutive index for uniform refinements
	Successor and predecessor

	High-level AMR algorithms
	New
	Adapt

	Performance evaluation
	Conclusion

	Connected Components of the TM-SFC
	Proof of Theorem 5.1
	From uniform to adaptive meshes
	From one tree to a forest

	Enumeration of face-connected segments
	Conclusion

	Coarse Mesh Partitioning
	Tree-based AMR
	The tree shapes
	Encoding of face-neighbors
	Orientation between face-neighbors

	Partitioning the coarse mesh
	Valid partitions
	Encoding a valid partition
	Ghost trees
	Computing the communication pattern
	Face information for ghost trees

	Implementation
	The coarse mesh data structure
	Updating local indices
	Partition_cmesh: Algorithm 6.3.1

	Numerical results
	How to obtain example meshes
	Disjoint bricks
	An example with a forest

	Conclusion

	Ghost
	Element face-neighbors
	(i) Identifying the tree face
	(ii) Constructing the face element
	(iii) Constructing F' from F
	(iv) Constructing E' from F'
	A note on vertex/edge-neighbors

	Half-size face-neighbors
	Finding owner processes of elements
	t8_forest_owner
	Owners at a face

	The ghost algorithms
	Optimizing the runtime of Ghost
	The recursive top-down search
	The optimized Ghost algorithm

	Numerical comparison of the ghost versions

	2:1 Balance
	Finding leaf descendants of an element
	The Ripple-balance algorithm
	Numerical results
	The test case
	Strong scaling
	Weak scaling

	A Numerical Application
	The advection equation
	Level-set functions

	Numerically solving the advection equation
	Hanging faces and face-neighbors
	The CFL number
	The refinement criterion
	Error measurement

	Handling application data
	Interpolation
	Repartitioning of data
	Ghost exchange

	Tests on a unit cube geometry
	The 2D test case
	The 3D test case
	Convergence tests
	Large scale tests
	Comparison to uniform meshes
	A test with a larger coarse mesh

	Conclusion
	Outlook
	The Low-Level API

