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Summary 

Rice is one of the most important staple foods with an increasing demand, because of the rising 

world population. To reach the highest possible yield, rice is mostly cultivated under flooded 

conditions. The constant flooding of rice fields results in anoxic conditions in soil, providing 

an optimal habitat for anaerobic microorganisms. The occurrence of methane (CH4) producing 

Archaea leads to high methane emissions during rice cultivation. The produced methane is the 

main substrate for methanotrophic bacteria that oxidize it to carbon dioxide (CO2) and therefore 

represent a methane sink within rice fields. Nevertheless, the traditional cultivation of rice 

accounts for about 10% of the anthropogenic sources of methane emissions and requires high 

amounts of water for the irrigation of the fields.  

To decrease water consumption and minimize methane emissions, an altered crop rotation by 

introducing plants such as maize, cultivated under upland conditions, is considered. Rice 

farmers in the Philippines increasingly introduce maize as crop in the dry season, followed by 

rice in the wet season. However, previous studies observed that such a crop rotation promotes 

the development of desiccation cracks and due to that a leaching of carbon (C) and nitrogen 

(N), whereby an increased emission of nitrous oxide (N2O) is also observed. To prevent these 

losses, rice straw can be applied as mulch to conserve the soil moisture content and stabilize 

soil aggregates. 

The introduction of crop rotation and the straw application may lead to changes in the microbial 

community structure. Such changes can be induced by changes in the cultivation technique 

(from flooded to non-flooded conditions), by introduction of maize as crop in a former rice 

system as well as by provision of fresh organic matter in form of rice straw. How the microbial 

community responds to the introduction of crop rotation and straw application is a central 

question in this thesis. Furthermore, the analysis of the microbial community will indicate 

whether a combination of these two agricultural management practises reduces the problem of 

high methane emissions. Therefore, it is important to investigate the changes in microbial 

community structure in the dry season during maize cultivation.  

I analysed the microbial communities in rice field soils in comparison to rice-maize crop 

rotation soils. The microbial community of paddy soils is well studied and characterized by the 

presence of methanogens and methanotrophs. I additionally focussed on the rice phyllosphere 

and isolated methanotrophs that are potentially able to consume methane emitted by rice plants. 

To have a closer look at the impact of crop rotational changes on bacteria, archaea and fungi, I 

analysed the microbial communities during maize cultivation in rice monoculture soils, rice-

maize crop rotation soils and, as a control, in a maize monoculture soils, via amplicon 



Summary 

IV 
 

sequencing. This revealed that microbial communities in soils under crop rotation have a higher 

similarity to those in rice soils than in maize soils. However, differences between the 

communities in rice soils compared to crop rotational soils were mainly due to a depletion of 

anaerobic microbes in crop rotation soils.  

The impact of straw addition on the microbiota in the different cultivated soils was 

superimposed by other factors like crop rotation, compartment (bulk soil versus rhizosphere) 

and time. Therefore, I investigated the straw degrading community in more detail in a soil under 

crop rotation by applying highly labelled 13C-rice straw to the bulk soil and rhizosphere of 

maize and investigated the active straw-degrading labelled bacterial and fungal community with 

stable isotope probing (SIP) and further amplicon sequencing. The results showed that straw 

degradation was performed by aerobic microorganisms in soils under crop rotation and 

underwent a clear temporal succession. In the initial phase, mainly fast-growing bacteria 

became labelled and consumed readily degradable carbon compounds, followed by a labelling 

of mainly fungi that degrade more complex carbon compounds. In the rhizosphere I detected 

partly different microorganisms as labelled than in bulk soil, indicating that host plant specific 

taxa benefit from straw in the rhizosphere. Nevertheless, the lower label intensity in the 

rhizosphere indicates that rhizosphere organisms use straw as additional carbon source with 

lower efficiency besides using rhizodeposits. To investigate specifically the root exudate 

consuming microorganisms in the rhizosphere, I conducted a labelling experiment of maize 

with 13CO2 and subsequent phospholipid fatty acid (PLFA)-SIP analysis. The results confirmed 

that the addition of straw impacts the uptake of root exudates. Obviously, a simultaneous use 

of root exudates and straw takes place, because straw addition resulted in a decreased uptake of 

root exudates. 

This thesis provides evidence that the introduction of crop rotation leads to an altered microbial 

community in the bulk soil and rhizosphere of maize, which remains more similar to the 

community in paddy fields than in upland maize fields. Nevertheless, the investigated crop 

rotational soils were characterized by a depletion of anaerobic bacteria and methanogenic 

archaea in comparison to rice soils. The additional straw application leads only to a stimulation 

of aerobic microbes in the rhizosphere of maize as well as in bulk soil, whereas the straw 

application in paddy soils leads to a significant increase of methanogens in both compartments, 

as known from literature. The depletion of methanogens leads to the assumption that a crop 

rotation of rice, followed by maize, and straw addition during the dry season is a promising 

strategy to reduce methane emissions. Furthermore, it is known that the introduction of an 

upland crop in a paddy system reduces water consumption and that straw addition 

simultaneously conserves moisture and nutrients in soil.  
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Zusammenfassung 

Reis ist eines der Hauptnahrungsmittel weltweit, dessen Nachfrage aufgrund der wachsenden 

Weltbevölkerung immer weiter steigt. Um den höchstmöglichen Ertrag zu erzielen und somit 

den globalen Bedarf zu decken, wird Reis überwiegend unter gefluteten Bedingungen angebaut. 

Durch die kontinuierliche Flutung der Felder entstehen anoxische Bedingungen im Reisboden, 

die ein optimales Habitat für anaerobe Mikroorganismen bieten. Das Vorkommen von 

anaeroben Methan-produzierenden Archaea führt zu einer hohen Methanemission während der 

Reiskultivierung. Das produzierte Methan (CH4) ist das Hauptsubstrat für methanotrophe 

Bakterien, die dieses zu Kohlenstoffdioxid (CO2) oxidieren und somit die einzige Methansenke 

innerhalb der Reisfelder darstellen. Trotz dieser Methansenke macht der traditionelle Reisanbau 

ein Zehntel der anthropogen verursachten Methanemissionen aus. Außerdem werden zur 

Flutung der Felder beim Reisanbau hohe Mengen Wasser verbraucht. 

Eine Methode um den Wasserverbrauch und die Methanemission zu senken ist die Einführung 

eines Fruchtfolgewechsels mit Pflanzen, deren Kultivierung keiner Flutung bedarf. Auf den 

Philippinen wurde deswegen ein Fruchtfolgewechsel eingeführt zwischen Reisanbau in der 

Regenzeit und Maisanbau in der Trockenzeit. Studien, die sich mit der Untersuchung dieser 

Fruchtfolgewechselböden beschäftigten, belegten, dass dieses Kultivierungsverfahren zu der 

Entstehung von Trockenrissen im Boden führt. Durch die Trockenrisse kommt es wiederum zu 

einer vermehrten Auswaschung von Kohlenstoff (C) und Stickstoff (N) im Boden und zu einer 

erhöhten Emission von Distickstoffoxid (N2O). Um diese Verluste zu kompensieren, wird 

Reisstroh in den Boden inkorporiert und als Mulch verwendet. Dies verringert die Evaporation, 

hilft dadurch dabei die Feuchtigkeit im Boden zu halten und die Bildung von Trockenrissen zu 

verringern.  

Die Einführung von einem Fruchtfolgewechsel als auch die Strohapplikation kann zu einer 

Veränderung der mikrobiellen Gemeinschaft im Boden führen. Diese Veränderung der 

Gemeinschaft kann sowohl durch die Veränderungen der Bewirtschaftung (von gefluteten auf 

nicht gefluteten Bedingungen), durch die Einführung von Maispflanzen als auch durch das 

Bereitstellen von frischem organischem Material in Form von Stroh hervorgerufen werden. In 

wie weit sich die mikrobielle Gemeinschaft durch die Einführung von Fruchtfolgewechsel und 

Strohapplikation verändert ist eine zentrale Fragestellung in dieser Arbeit. Außerdem kann die 

Analyse der mikrobiellen Gemeinschaft einen Hinweis darauf geben ob eine Kombination von 

Fruchtfolgewechsel und Strohapplikation die Methanemission von Reisfeldern senken kann. 

Demzufolge ist es von Bedeutung, die mikrobielle Gemeinschaft in der Trockenzeit während 

der Kultivierung von Mais zu untersuchen.  
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Um dies zu ermitteln wurde die mikrobielle Gemeinschaft in Reisfeldern im Vergleich zu 

Feldern, die einen Fruchtfolgewechsel unterlagen, analysiert. Die mikrobielle Gemeinschaft 

von gefluteten Reisböden ist charakterisiert durch die Präsenz von methanogenen Archaeen und 

methanotrophen Bakterien. In dieser Arbeit wurde ebenfalls die Reisphyllosphäre näher 

betrachtet, wodurch Methanotrophe isoliert und beschrieben werden konnten, die potentiell in 

der Lage sind, das von der Reispflanze emittierte Methan zu konsumieren. Um den Einfluss 

von einem Fruchtfolgewechsel zwischen Reis und Mais auf die Bakterien, Archaeen und Pilze 

näher zu betrachten, wurde die mikrobielle Gemeinschaft während der Kultivierung von Mais 

in Reis- und Maismonokulturböden sowie in Fruchtfolgewechselböden mittels Amplicon 

Sequenzierung, analysiert. Die Ergebnisse zeigten, dass die mikrobielle Gemeinschaft in 

Fruchtfolgewechselböden mehr der Gemeinschaft in Reismonokultur Böden ähnelt als der in 

Maismonokultur Böden. Ein Unterschied zwischen der Gemeinschaft in 

Fruchtfolgewechselböden und Reisböden resultierte jedoch vor allem durch eine Reduzierung 

von anaeroben Mikroorganismen in Fruchtfolgewechselböden.  

Der Einfluss von Stroh auf die Mikrobiota war von anderen Faktoren wie Fruchtfolgewechsel, 

Bodenkompartiment (nicht durchwurzelter Boden versus Rhizosphäre) und Inkubationszeit 

überlagert. Um einen detaillierteren Einblick in die stroh-abbauende Mikrobiota zu erhalten, 

applizierte ich 13C-markiertes Reisstroh in einen Fruchtfolgewechselboden. Die markierte 

mikrobielle Gemeinschaft im nicht durchwurzelten Boden sowie in der Rhizosphäre von Mais 

wurde anschließend mit Hilfe der Stabilen Isotopen Beprobung (SIP) auf DNA Ebene und 

anschließender Amplicon Sequenzierung untersucht. Die Analysen zeigten, dass die 

Strohdegradation in dem Fruchtfolgewechselboden von aeroben Mikroorganismen 

durchgeführt wird. Außerdem konnte eine klare zeitliche Sukzession des Strohabbaus 

beobachtet werden. Der initiale Strohabbau erfolgte hauptsächlich durch schnell wachsende 

Bakterien, die einfach verfügbare Kohlenstoffverbindungen des Strohs konsumieren können. 

Anschließend degradierten hauptsächlich Pilze die schwerer verfügbaren 

Kohlenstoffverbindungen. In der Rhizosphäre waren zum Teil andere Taxa am Strohabbau 

beteiligt als im nicht durchwurzelten Boden. Dies weist darauf hin, dass in der Rhizosphäre 

wirtspflanzenspezifische Mikroben vom Stroh profitieren. Die geringere Markierungsintensität 

in der Rhizosphäre deutet darauf hin, dass diese Mikroorganismen das Stroh als zusätzliche 

Kohlenstoffquelle zur Rhizodeposition nutzen, allerdings mit geringerer Effizienz als im nicht 

durchwurzelten Boden. Um spezifisch die Wurzelexsudat konsumierende mikrobielle 

Gemeinschaft in der Rhizosphäre von Mais zu untersuchen, wurden die Maispflanzen mit 13CO2 

markiert und anschließend eine Phospholipid-Fettsäure (PLFA)-SIP durchgeführt. Die 

Ergebnisse bestätigten, dass die Applikation von Stroh die Aufnahme von Wurzelexsudaten 
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beeinflusst. Dies weist darauf hin, dass eine gleichzeitige Nutzung von Wurzelexsudaten und 

Stroh stattfindet, da durch die Strohapplikation ein verringerter Konsum von Wurzelexsudaten 

beobachtet werden konnte. 

Diese Arbeit zeigt, dass die mikrobielle Gemeinschaft von Böden, die einem 

Fruchtfolgewechsel unterliegen, mehr der mikrobiellen Gemeinschaft von Reisböden ähnelt als 

der Gemeinschaft von Maisböden. Allerdings sind die Fruchtfolgewechselböden im Vergleich 

zu Reisböden gekennzeichnet durch eine Reduktion Reisfeld-typischer anaerober 

Mikroorganismen und demzufolge auch durch eine Reduktion von Methanogenen. Dieser 

Trend konnte sowohl in der Rhizosphäre von Mais als auch im nicht durchwurzelten Boden 

beobachtet werden. Die zusätzliche Strohapplikation in diesen Böden führt zu einer Stimulation 

von aeroben Mikroorganismen sowohl in der Rhizosphäre von Mais als auch im nicht 

durchwurzelten Boden. Im Unterschied dazu geht aus der Literatur hervor, dass die Zugabe von 

Stroh in Reismonokulturen zu einem signifikanten Zuwachs an Methanogenen sowohl in der 

Rhizosphäre von Reis als auch im nicht durchwurzelten Boden führt. Demzufolge könnte die 

Kombination von Fruchtfolgewechsel und Strohapplikation in Reisböden eine 

vielversprechende Strategie zur Reduktion der Methanemission sein. Außerdem ist bereits 

bekannt, dass der Wasserverbrauch durch die Einführung von Mais reduziert wird und die 

Strohapplikation gleichzeitig die Feuchtigkeit im Boden konserviert sowie dazu führt, dass dem 

Boden Nährstoffe zurückgeführt werden. 
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1. Introduction 

1.1. Cultivation of rice and maize 

Rice and maize are the most important staple foods worldwide. Together with wheat they 

account for approximately 85 % of the world cereal exports (Parry et al., 2004). Because of 

that, the used agricultural area for the cultivation of these crops is immense. Especially in Asia 

these crops contribute highly to food security and income. The crop area of rice and maize in 

Asia makes up an area of about 64 million hectares (Mha) (55 Mha rice and 9 Mha maize) 

(Timsina et al., 2010). The upland agricultural system in Asia is already dominated by maize 

cultivation, not only for the food industry but also because of the increasing demand of maize 

for poultry fattening and biofuel production (Rosegrant, 2008; Weller et al., 2016).  

Nevertheless, the production of rice is still much higher in Asia and feeds more people than any 

other crop (Wassmann et al., 2009). In fact more than 3 billion people consume more than 100 

kg rice per person and year (Van Nguyen and Ferrero, 2006). Ninety percent of the worldwide 

rice is produced and consumed in Asia and most of it is cultivated under flooded conditions 

(Fuhrmann et al., 2018; Wassmann et al., 2009). Rice production under flooded conditions 

prevents land subsidence, leads to a lower soil erosion and a higher soil organic matter content 

in comparison with other production systems (Bouman et al., 2007). However, the 

environmental problems, which occur due to the traditional rice cultivation, are greater than its 

benefits. In comparison with other crops, rice requires two to three times more water per 

hectare, as the water consumption adds up to 3000 – 5000 l/kg rice. Especially in Asia, farmers 

need 50% of freshwater to irrigate paddy fields (Tuong et al., 2005). Because of the scarcity of 

global water resources for agriculture, the possibility to expand the area for further paddy 

systems will remain very limited (Van Nguyen and Ferrero, 2006). Further, rice cultivation 

comprises significant methane emissions, accounting for about 10% of all anthropogenic 

methane emission (Nazaries et al., 2013). Methane contributes with up to 20 – 30 % to the 

global warming effect and its atmospheric concentration increased from 0.7 p.p.m. (part per 

million) until the beginning of the 19th century to 1.778 p.p.m. in 2005 (Forster et al., 2007). It 

is the second most significant greenhouse gas after CO2 and is 25 times more potent than CO2 

as greenhouse gas (Forster et al., 2007; Nazaries et al., 2013).  
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1.2. Microbial habitats in rice and maize fields 

Methane is produced in the anoxic parts of paddy soils by methanogenic archaea as an end 

product of the anaerobic degradation of organic matter (Breidenbach and Conrad, 2015). 

Methanogens rely on the presence of a larger bacterial consortium including hydrolytic, 

fermenting, syntrophic and acetogenic bacteria, which constitute the prior steps of degradation 

of organic matter (Nazaries et al., 2013). The methane producing archaea can be classified into 

acetotrophic methanogens, which dismutate acetate to CH4 and CO2 and hydrogenotrophic 

methanogens, reducing CO2 with H2 to CH4 (Conrad, 2007).  

Methanogens inhabit the anoxic bulk soil (figure 1.1) of rice fields, whereas methanotrophic 

bacteria can be found in the oxic zones like in the oxic surface soil, in the rhizosphere as well 

as in the phyllosphere (figure 1.1) (Knief et al., 2012). Methanotrophs play an important role in 

attenuating the methane emission of rice field soils by up to 40 % (Conrad, 2009; Lüke et al., 

2010). The most important CH4 sink is the root-associated methane oxidation. This oxic-anoxic 

boundary develops due to oxygen (O2) diffusion from the atmosphere through the aerenchyma 

of the rice plant, resulting in a release of O2 into the soil around the rice roots and therefore 

supports the methane oxidation (Lüke et al., 2010). Methane produced in the anoxic bulk soil 

can also be emitted passively by plants through the aerenchyma, serving as transport way for 

methane to the atmosphere (Iguchi et al., 2012). Hence, the rice phyllosphere can also serve as 

habitat for methanotrophs (Knief et al., 2012). In rice soil and the rice rhizosphere genera like 

Methylocystis, Methylosinus, Methylomonas, Methylosarcina, Methylobacter or Methylosoma 

were found frequently by cultivation-independent methods (Conrad, 2007; Knief et al., 2012). 

Nevertheless, the isolation of methanotrophs from rice fields remains more challenging. The 

number of methanotrophs isolated from rice fields is rather low, mostly the common genera 

Methylocystis, Methylosinus and Methylomonas have been isolated from rice fields (Heyer et 

al., 2002; Ogiso et al., 2012). Especially in the rice phyllosphere the detection of methanotrophs 

with cultivation independent methods was possible, but the cultivation of those taxa remains 

challenging so far. In general, the majority of the methanotrophs detected in environmental 

samples was derived from cultivation-independent studies. Most of the cultured methanotrophs 

belong to the well-known genera Methylocystis, Methylosinus, Methylomonas, Methylobacter, 

Methylocaldum or Methylomicrobium. This means that only a small fraction of methanotrophic 

diversity is represented by cultivated strains (Knief, 2015). 
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Figure 1.1: Scheme of a rice field, illustrating the major habitats of methanogenic (anoxic bulk soil) and 
methanotrophic (oxic surface soil, rhizosphere, phyllosphere) microorganisms. Additionally, the redox cycling 
and methane emission pathways are shown. The diagram has been modified from Conrad (2007). 

Oxygen is one of the most important factors shaping habitats and therefore influencing the 

microbial community due to prevalent redox conditions. Whereas paddy fields consist of large 

anoxic parts so that the degradation of organic matter leads to a production of methane, upland 

fields as used for maize cultivation are well aerated. Due to the high redox potential, methane 

production and emissions in upland maize soils were rarely reported (Weller et al., 2015), and 

can only occur in small anoxic micro-niches to a generally small extent (Megonigal and 

Guenther, 2008). 

Maize fields are characterized by a higher production and emission of N2O than rice fields. The 

water-filled pore space of drained soils is about 50 – 70 %, and the maximum of N2O emissions 

was determined to be within this range (Davidson et al., 2000). The N2O production in upland 

soils is mainly related to rainfall or irrigation events as well as to increased fertilisation as a 

result of tight coupling of nitrification and denitrification processes by microbes (Snyder et al., 

2009; Weller et al., 2016). Due to fertilisation, ammonia, the substrate for nitrification, is 

available at high concentrations and high amounts of nitrate (NO3-) can be produced. Nitrate, 

again, can be used for denitrification in anoxic micro-niches. During this process, a variable 

portion of N is often emitted as N2O gas (Snyder et al., 2009). So, flushes of N2O can occur 

when previously well-aerated soils become moistened or saturated from precipitation or 

irrigation (Snyder et al., 2009). In contrast, the N2O emission from paddy fields are mostly 

negligible, because the anaerobic conditions in flooded rice systems favour complete 

denitrification to nitrogen gas (N2), and the necessary substrate nitrate cannot be regenerated 

under anoxic conditions (Fan et al., 2014; Weller et al., 2015, 2016).   
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1.3. Introduction of crop rotation in a paddy system 

The traditional rice cultivation causes major environmental problems as described before. The 

increasing demand of water in municipal and industrial sectors and the climatic changes 

necessitate revision of rice production systems considering the high water consumption and 

methane emissions. In the past, several management strategies have been developed to preserve 

water and to minimize methane emissions during rice cultivation, e.g. additional drainage 

periods in the fields, early timing of midseason drainage or intermittent drainage of the fields 

(Wassmann et al., 2000b, 2000a; Yagi et al., 1996)  

However, in consideration of the simultaneously increasing demand of maize for poultry 

fattening and biofuel production, farmers in subtropical and tropical Asia diversify their 

cropping systems by introducing a crop rotation system with rice in the wet season and maize 

as upland crop in the dry season (Weller et al., 2015). The seasonal changes between dry and 

wet conditions in the soil lead to the formation of desiccation cracks during maize cultivation, 

which causes the loss of water, dissolved organic carbon, and an additional risk of nitrogen 

losses due to the increased release of the greenhouse gas N2O (Fuhrmann et al., 2018; He et al., 

2015; Weller et al., 2015).  

N2O can be produced by at least three processes: i) during nitrification as by-product of the 

oxidation of hydroxylamine (NH2OH) to nitrite (NO2-), ii), during nitrifier denitrification, 

which is the reduction of NO2
- by ammonium oxidizing microbes under oxygen-limited 

conditions and iii) during denitrification under anoxic conditions by the reduction of nitrate, 

which is produced from nitrification or applied as fertiliser (Kool et al., 2011; Wu et al., 2018; 

Zhang et al., 2016). During maize cultivation in a rice-maize crop rotation soil, the conditions 

for all three processes are provided. Nitrification can take place in the aerated parts and nitrifier 

denitrification or denitrification can occur in anoxic water saturated micro-niches during maize 

cultivation or during rice cultivation in the anoxic bulk soil. The alternating moist-dry soil 

conditions after irrigation or heavy rainfall events stimulate the nitrification-denitrification 

processes and thus promote N2O production and emissions in a rice-maize crop rotation system 

(Breidenbach et al., 2015).  

The variances of cultivation under flooded conditions vs. non-flooded conditions will change 

the redox conditions in soils, because innate rice fields are exposed to long periods of drainage 

along with upland field conditions (Breidenbach et al., 2015). Aeration of soil during maize 

cultivation can cause oxygen stress for anaerobic microorganisms and enhance the activity of 

aerobic microorganisms at the same time (Breidenbach et al., 2015). Thus, the periodical 
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changes in oxygen availability in these soils are linked to a substantially different microbial 

carbon conversion process under the different conditions. In aerobic soils the mineralisation of 

organic matter leads to a production of CO2 due to the oxidation of carbon compounds by 

diverse microorganisms including bacteria as well as fungi (Kimura et al., 2004). In previous 

studies a significant increase of CO2 producing methanotrophs and a decrease of methanogens 

in drained rice soils was observed (Ma et al., 2013; Ma and Lu, 2011). Methane production in 

drained rice soils can only occur in anoxic micro-niches by methanogens and is generally of 

small extent (Megonigal and Guenther, 2008). Under anoxic conditions during rice cultivation, 

the degradation of organic matter is more complex (Liesack et al., 2000). After flooding, a 

cascade of alternative electron acceptors following the redox potential can be used instead of 

oxygen (nitrate, ferric iron, sulphate; figure 1.1). However, these oxidants are usually depleted 

after several days (Breidenbach et al., 2015). Nevertheless, these electron acceptors can be 

partly regenerated at oxic-anoxic interfaces (surface soil, rhizosphere) (Conrad and Frenzel, 

2003). After the complete depletion of these electron acceptors, especially in deeper soil layers, 

methanogenesis is initiated by reducing CO2 as a last step of the anoxic degradation of organic 

matter (Liesack et al., 2000). 

Soils undergoing crop rotation between upland-upland plants (like wheat-soybean) as well as 

between wetland-upland plants (like rice-mungbean or maize) harbour a significantly different 

bacterial community composition, diversity and abundance compared to monoculture soils 

(Lopes et al., 2014; Xuan et al., 2012; Yin et al., 2010). Especially in rice-maize crop rotation 

soils the archaeal community composition changed dramatically, characterized by a decrease 

of anaerobic methanogens and an increase of aerobic archaea (Breidenbach et al., 2015; Ma et 

al., 2011). Nevertheless, the knowledge about the development of the microbial community, 

including Bacteria, Archaea and Fungi, in a rice-maize crop rotation system is limited and has 

to be improved by investigating rice-maize crop rotation soils at different locations and by 

analysing the influence of crop rotation on the bulk soil and rhizosphere microbiota. The 

development of the microbial community is especially of interest for rice-maize crop rotation 

systems in order to reduce methane emissions and face the increasing water demands. 	
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1.4. Rhizosphere as habitat for microbes  

A crop rotation between rice and maize will not only lead to different soil properties due to the 

alteration from a flooded to a non-flooded system, but also due to changed soil characteristics, 

because of the different characteristic physiologies of the plants and their individual 

rhizodeposition patterns (Breidenbach et al., 2015). Each plant species possesses individual root 

exudates, and releases a different blend and a substantial amount of carbon into the soil via 

rhizodeposition (Bais et al., 2006). Microorganisms inhabiting the rhizosphere are largely 

controlled by these carbon compounds (Haichar et al., 2008). Thus, the rhizosphere microbiota 

of different plant species is distinct (Berg and Smalla, 2009). The seasonal changes due to crop 

rotation can therefore lead to a stimulation of specific taxa and are likely to contribute to 

alternations in the soil microbial community and, therefore, may change the seasonal pattern of 

carbon and nutrient cycling in the soil (Lu et al., 2004).  

The rhizosphere is defined as soil zone adjacent to and influenced by the roots of plants (Bais 

et al., 2006). In this region plant roots must compete with the invading root systems of 

neighbouring plants for space, water and mineral nutrients as well as with other soil organisms, 

including bacteria, fungi and insects feeding on the abundant source of organic material 

(Haichar et al., 2014). These interactions can be positive, including symbiotic associations with 

epiphytes and mycorrhizal fungi or root colonisation by plant growth-promoting bacteria 

(PGPR) (figure 1.2). Negative interactions can be competition or parasitism among plants, 

pathogenesis by bacteria or fungi and invertebrate herbivory (Bais et al., 2006). All these 

interactions are based on root-derived chemicals.  

Plants are able to secrete a wide range of rhizodeposits. Rhizodeposits can be classified into 

four categories: i) secretions, considered as compounds actively released as a result of metabolic 

processes including antimicrobial, insecticide and nematicide compounds ii) lysates include 

compounds released by autolysis of older rhizodermal cells iii) border cells that detach from 

roots as they grow and iv) root exudates, which are compounds passively leached from internal 

root tissue into the soil matrix (figure 1.2) (Bais et al., 2006; Baudoin et al., 2001; Haichar et 

al., 2014).  
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Figure 1.2: Interaction between plant and the rhizosphere microorganisms mediated by rhizodeposits. Positive 
interactions are represented on the left side and negative interactions are shown on the right side. PGPR: Plant 
growth promoting rhizobacteria, N: Nitrogen, P: Phosphate, QS: Quorum sensing (Haichar et al., 2014).  

The passive leaching of root exudates is driven by i) diffusion due to a concentration gradient 

between root and soil ii) the permeability of the plasma membrane of the plant and iii) the 

spatial location of the solutes in the root tissue (e.g. epidermis versus stem) (Jones et al., 2009). 

Root exudates (figure 1.3) contain compounds of low molecular weight (amino acids, organic 

acids, sugar phenolic and other secondary metabolites) and high molecular weight (mucilage 

(polysaccharides) and proteins) (Bais et al., 2006). About 5 – 40% of the total 

photosynthetically fixed carbon is transferred into the rhizosphere through root exudates (Bais 

et al., 2006; Derrien et al., 2005; Haichar et al., 2008; Nguyen, 2003) and between 40 and 90% 

of the excreted carbon is metabolized by root-associated microorganisms (Lynch and Whipps, 

1990). According to that, root exudates are efficiently used as carbon source by rhizosphere 

inhabiting microorganisms and, thus, induce a rhizosphere priming effect (PE). This PE 

supports microbial degradation of organic matter and results in a specific rhizosphere 

microbiota compared to bulk soil samples (Baudoin et al., 2002; Berg and Smalla, 2009; 

Haichar et al., 2014). 
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Figure 1.3: Light microscopic image showing the large amount of root exudates (blue halo surrounding the roots) 
and border cell production on a Zea mays root tip. A) Indicates the root centre, B) the main root elongation zone 

and C) the mucilage halo in which the border cells are embedded (Jones et al., 2009). 

The amount and chemical composition of exudates differs depending on various factors 

including plant species, plant age and environmental conditions (Badri and Vivanco, 2009; Bais 

et al., 2006; Baudoin et al., 2001). These varying types and quantities of exudates influence the 

density and diversity of rhizosphere microorganisms and indicate a close evolutionary link 

between rhizosphere microbiota and plant species (Badri and Vivanco, 2009). The rhizosphere 

microbiota in turn plays an important role in the mobilisation or mineralisation of soil organic 

matter and is therefore responsible for modulating soil fertility (Kusliene et al., 2014). 

Therefore, the interaction between plant and microorganisms plays a central role in carbon and 

nutrient cycling in the rhizosphere (Lu et al., 2004). Nevertheless, Haichar et al. (2008) 

observed that not only plant specific species were involved in the consumption of exudates, but 

also some generalists, which can be detected as active exudate feeders in the rhizosphere of 

four different plants (maize, wheat, rape and barrel clover). 

A close interaction between rice plants and microbes was also reported in paddy soils. In 

contrast to the bulk soil, the rice rhizosphere is characterized by the availability of oxygen. 

Oxygen diffuses via the rice aerenchym into the root zone, thus providing a habitat for both, 

anaerobic and aerobic microorganisms, which can inhabit the rice rhizosphere. The O2 

concentration decreases with increasing distance from the roots, because of the lower root 

density and consequently lower availability of root derived O2, while the methane availability 

increases with distance from the rice roots (Shrestha et al., 2008). Due to the simultaneous 

presence of O2 and methane, the rice rhizosphere provides an optimal habitat for methane 

oxidizing bacteria and is therefore the most important methane sink in rice fields. With 
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increasing distance from the roots other oxidized chemical compounds like sulphate and ferric 

iron are used as electron acceptors. This leads to the occurrence of genera like Geobacter or 

Pelobacter as well as of members of the families Desulfobacteriaceae, Desulfovibrionaceae 

(Scheid et al., 2004; Scheid and Stubner, 2001). Additionally, methanogens can be observed in 

the rhizosphere in regions where O2 is more limited, where they consume plant-derived carbon 

compounds like acetate, which plays a key role in CH4 production (Breidenbach et al., 2016; 

Lu and Conrad, 2005). 

While the different oxygen availability in the bulk soil and rhizosphere of rice causes 

additionally different conditions, the availability of oxygen in the rhizosphere of maize is quite 

the same as in the bulk soil. Therefore the main impact factor shaping the rhizosphere 

microbiota of maize is the additional nutrient supply by the root exudates. Li et al. (2014) 

observed that the rhizosphere of maize is preferentially colonized by Proteobacteria, 

Bacteriodetes and Actinobacteria, with one or two dominating subsets of bacterial groups in 

each phylum. However, several studies observed that maize has different specific bacterial 

communities, depending on parameters like soil properties, genotype, crop management (such 

as fertiliser application) and growth stage (Aira et al., 2010; Baudoin et al., 2001; Castellanos 

et al., 2009; Li et al., 2014; Peiffer et al., 2013). These different parameters influence the quality 

and composition of root exudates, leading to differences in the composition of the rhizosphere 

microbiota (Aira et al., 2010; Baudoin et al., 2003; Butler et al., 2003). At earlier growth stages 

genera like Massilia, Flavobacterium and Arenimonas were observed at high abundance, while 

Bulkholderia, Ralstonia, Dynella, Sphingobium, Bradyrhizobium and Varivorax were dominant 

in the rhizosphere of maize at later growth stages (Li et al., 2014). The maize rhizosphere is 

also a habitat for diverse fungi, especially endophytes including arbuscular mycorrhizal fungi 

(Na Bhadalung et al., 2005; Wang et al., 2006), whereas the rhizosphere of rice as a flooded 

and partly anoxic habitat is less important for fungi (Murase et al., 2006). 

Due to the fact that rhizodeposits have a high impact on the rhizosphere microbiota, it is 

presumable that changes in cultivation systems like the introduction of crop rotation will have 

an impact on the rhizosphere community composition and diversity. In a soil under crop rotation 

a specific rice rhizosphere microbiota will develop during rice cultivation and a specific maize 

rhizosphere microbiota will develop during maize cultivation. Those different communities will 

partly remain in the soil, which could also have an impact on the next generation of the 

rhizosphere microbiota. However, it is still unclear whether the introduction of crop rotation 

will induce specific microbial responses in the bulk soil and rhizosphere of maize.  
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1.5. Agricultural aims of rice straw application 

As crop rotation results in an increasing nitrogen, carbon and water loss due to the formation 

of desiccation cracks, rice straw application is a common method to compensate these losses 

(Asari et al., 2007; Cabangon and Tuong, 2000). Especially the use of rice straw as mulch after 

drainage of the rice fields helps to conserve the moisture in the soil and therefore compensates 

the high water loss and the development of desiccation cracks (Cabangon and Tuong, 2000). 

Due to rice straw application, a total organic matter supply of 60 – 90 % is returned to the field 

(Kimura et al., 2004). The addition of rice straw as an additional carbon source can induce a 

PE. The PE is the stimulation of the decomposition of soil organic matter (SOM), following the 

supply of energy rich fresh organic matter (FOM) (Kuzyakov, 2010; Pascault et al., 2013).  

Such FOM inputs create hotspots of microbial activity, in which the turnover rates of carbon 

are much higher than outside of these zones and where an acceleration of the degradation of 

SOM can be observed (Fontaine et al., 2003; Kuzyakov, 2010). The lifetime of such hotspots 

is limited until the FOM is degraded (Pausch and Kuzyakov, 2011).  

The quality of FOM influences the composition of the FOM- and SOM-degrading communities 

strongly, with important consequences on PE intensity and thereby mineralization of soil 

organic C (Pascault et al., 2013). FOM, which is readily degradable, offers optimal growth 

conditions and due to that an increase in microbial biomass (Pascault et al., 2013). The resulting 

community can synthesize more exoenzymes to make FOM-substrate available, which may 

also help to decompose SOM and thus stimulate the SOM degrading community. Readily 

degradable FOM is decomposed by copiotrophic organisms. Copiotrophics preferentially 

consume labile soil organic C, have high nutrient requirements and can exhibit high growth 

rates when resources are abundant (Fierer et al., 2007). The relative abundance of those 

organisms increases with the availability of easy degradable FOM and decreases with time and 

increasing availability of recalcitrant FOM compounds during the decomposition process 

(Bernard et al., 2007; Pascault et al., 2013). A rapid and durable stimulation of copiotrophic 

organisms was observed previously after addition of straw, e.g. taxa of the classes Beta- and 

Gammaproteobacteria (Bernard et al., 2007; Pascault et al., 2013). In contrast, oligotrophic 

microorganisms like Acidobacteria, Deltaproteobacteria and fungi such as Basidiomycota 

(Bastian et al., 2009; Fierer et al., 2007) exhibit slower growth rates and are likely to outcompete 

copiotrophs under conditions of low nutrient availability due to their higher substrate affinities 

(Fierer et al., 2007). Bastian et al. (2009) confirmed this by their observation of an increased 

abundance of oligotrophic microorganisms during the decomposition process of straw, along 

with a decline in substrate quality and quantity over time. In summary, the PE depends on the 
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interactions between copiotrophic and oligotrophic organisms. The succession of microbial 

FOM degraders is an important driver of the PE and, therefore, of the carbon dynamics in soils 

(Pascault et al., 2013). 

The degradation process of straw also depends on the environmental and agricultural 

conditions. So, this process differs between flooded rice soils and non-flooded maize soils. The 

main differences occur due to the availability of oxygen. The degradation process of straw 

differs between oxic and anoxic soils. In rice fields the decomposition of straw leads to an 

increased CH4 production and a changed bacterial and archaeal community composition 

(Conrad et al., 2012a; Glissmann and Conrad, 2002; Shrestha et al., 2011). A complex microbial 

assemblage is involved in the anaerobic straw decomposition process consisting of hydrolytic, 

fermenting, homoacetogenic, syntrophic and methanogenic microorganisms (Rui et al., 2009). 

The first step of the degradation process under anaerobic conditions is the hydrolysis of 

polysaccharides by extra-cellular enzymes. The released monomers are further degraded by 

fermentation to fatty acids, alcohols, CO2 and hydrogen (H2) and a syntrophic conservation of 

fatty acids and alcohols to acetate, resulting in an accumulation of H2 and acetate. Hydrogen is 

than consumed by respiratory processes (e.g. sulfates (SO4
2-) reduction), so that 

hydrogenotrophic methanogenesis sometimes becomes substrate limited, but acetate is still 

accumulated and can be utilized by acetoclastic methanogens (Conrad et al., 2012b, 2012a; 

Glissmann and Conrad, 2002). Further, Conrad et al. (2012b) detected that straw degradation 

causes a negative priming effect on the methanogenic degradation of soil organic matter. 

Meaning that less SOM was utilized for CH4 production when straw was available as substrate 

(Conrad et al., 2012b). Besides methanogens, several bacterial taxa like Firmicutes (mainly 

Clostridia and Negativicutes), Actinobacteria, Spirochaetes, Bacteriodetes, Chlorobi and 

Proteobacteria have been detected as straw degraders in rice soils (Asari et al., 2007; Lee et 

al., 2011; Rui et al., 2009). Rui et al. (2009) postulate that taxa that appear at the early stage of 

straw application like Clostridia are responsible for the degradation of easily degradable 

fractions of straw, whereas members of Bacteriodetes and Chlorobi were abundant in later 

successional stages and may be more important for the decomposition of complex straw 

compounds. Several studies indicate that Clostridia are mainly involved in the straw 

degradation process in bulk soil as well as in the rice rhizosphere (Lee et al., 2017; Shrestha et 

al., 2011). The rice rhizosphere as an oxic-anoxic interface provides different conditions 

compared to the anoxic bulk soil, thus microorganisms responsible for straw degradation in the 

rhizosphere differ from those in bulk soil (Shrestha et al., 2011). Besides Clostridia, mainly 

methanogens like Metharnosarcina and Methanobacteriaceae are dominant straw degraders in 

the rice rhizosphere, whereas Proteobacteria, Actinobactera and Bacteriodetes, which are 
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responsible for straw degradation in bulk soil, could not be detected in the rhizosphere (Shrestha 

et al., 2011). Thus, the additional input of carbon by straw enhances the abundance of anaerobic 

microorganisms, especially methanogens and, therefore, increases methane production and 

emissions in paddy fields, which is a further problem in the context of global warming.  

In comparison to anoxic soils, the composition of straw degrading microbes under oxic 

conditions is largely different. In oxic soils rice straw derived carbon compounds are primarily 

oxidised to CO2, while under anoxic conditions mainly CH4 is produced. Even in drained paddy 

soils, a growth of methanogens can be observed after straw addition (Lee et al., 2012). 

Nevertheless, it can be assumed that different microbial communities are responsible for the 

degradation of straw in fields managed under different water regimes (Lee et al., 2017).  

In contrast to paddy soils, strictly anaerobic straw degraders like members of Clostridia, 

Negativicutes or methanogens cannot be found in oxic soils. Gram-positive bacteria, which 

belong to Actinobacteria as well as Bacilli, are dominant members of the straw degrading 

community in rice soils under oxic conditions (Lee et al., 2011, 2017). However, some members 

of Gram-negative bacteria like Proteobacteria and Bacteriodetes are commonly found under 

both conditions (Bernard et al., 2007; Lee et al., 2017). In oxic soils, the fungal community is 

also involved in the degradation of plant residues, but depending on the quality and composition 

of plant residues, different fungal taxa are stimulated (España et al., 2011; Nakamura et al., 

2003). Previous studies observed that slow growing fungal decomposers (i.e. Penicillium, 

Aspergillus) were stimulated after addition of maize residues, while relatively fast-growing 

fungi (i.e. Fusarium, Mortierella) were dominant after addition of soybean residues (España et 

al., 2011; Murase et al., 2012). In contrast to oxic soils, a stimulation of fungi by straw addition 

in flooded soils was not observed, presumably due to the mainly anoxic conditions (Kimura et 

al., 2001; Nakamura et al., 2003). 

The different conditions in agricultural soils influence the process of straw decomposition and 

therefore the straw degrading community. The straw degrading community in paddy soils as 

well as in upland soils has already been studied as mentioned before, but until now it has not 

been investigated what kind of microorganisms are responsible for straw decomposition in soils 

undergoing a rice-maize crop rotation and how this community develops due to the continuous 

changes between flooded and non-flooded conditions. Furthermore, it is unknown whether the 

application of straw in crop rotation soils impacts the microbial community in the rhizosphere 

of maize to the same extent as in bulk soil and whether the same microorganisms are involved 

in the straw degradation process in the different compartments. Additionally, it has not been 
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investigated so far whether straw addition impacts the uptake of root exudates by rhizosphere 

microorganisms in a rice-maize crop rotation system. 
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1.6. Aims of the study 

Methanotrophic bacteria represent a methane sink in the different habitats of rice fields. 

Previously, methanotrophs were mostly detected by cultivation-independent methods in the rice 

soil, in the rice rhizosphere and in the rice phyllosphere (Conrad, 2007; Iguchi et al., 2012; 

Knief et al., 2012; Lüke et al., 2010), but the cultivation of methanotrophs remains challenging. 

Despite the occurrence of methanotrophs in rice fields, most of the methane produced in rice 

field is emitted into the atmosphere. Therefore, alternative field management strategies have to 

be developed to reduce the methane emissions. One prevention strategy is the introduction of 

upland maize into a rice monoculture. However, this agricultural management practice results 

in a lowered release of CH4, but causes a great loss of C, N and water. To counteract these 

problems, rice straw is applied to fields under crop rotation. 

It is known that agricultural management practises like crop rotation or straw addition influence 

the microbial community composition, but how the introduction of both practises in a rice 

paddy system influences the microbial community is unclear. The introduction of a crop 

rotation regime between flooded rice and non-flooded maize leads to dramatic changes in field 

conditions, because of the completely different redox conditions and the different rhizosphere 

microbiota of rice and maize that will partly remain in the soil. These aspects will induce a 

specific microbial response. But it is unknown to what extent the change of the flooding regime 

and the plant variation between rice and maize impacts the microbial communities in bulk soil 

as well as in the rhizosphere of maize.  

The application of straw in differently managed fields causes changes in microbial community 

composition and diversity in rice and maize field soils, respectively. It stimulates the activity 

and growth of specific taxa that benefit from the supply of FOM. Several previous studies 

observed an increased CH4 production in flooded rice fields and an increased CO2 production 

in maize fields after straw addition. Even in drained paddy fields, which were managed under 

rice monoculture, a growth of methanogens was detected (Asari et al., 2007; Conrad et al., 

2012b; Lee et al., 2012, 2017; Rui et al., 2009; Shrestha et al., 2011). Based on these 

observations the following hypotheses arise and the research areas are summarized in figure 

1.4.  
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1. The cultivation of aerobic methanotrophic bacteria from the phyllosphere of rice is 

possible. Therefore, this compartment represents a potential methane sink in rice 

systems (manuscript 1). 

2. The introduction of a rice-maize crop rotation regime affects the bacterial, archaeal 

and fungal community in the bulk soil and rhizosphere of maize. The microbial 

community in soil under crop rotation will be more similar to a community typical 

for rice monoculture soils than to a community typical for maize monoculture soil 

(manuscript 2). 

3. The straw application in soils with different cultivation history (rice monoculture, 

maize monoculture or rice-maize crop rotation soil) will cause changes in microbial 

communities (manuscript 2). In rice-maize crop rotation soils with straw application 

mostly aerobic microorganisms will degrade the straw during maize cultivation 

because of the predominantly non-flooded conditions. Further, a specific response 

due to straw addition on the microbial community can be expected in the bulk soil 

and rhizosphere of maize (manuscript 3). 

4. The rhizosphere microbiota is influenced by root exudates of maize. Nevertheless, 

an effect of straw addition on the rhizosphere microbiota is expected and leads to an 

altered uptake of root exudates by microbes, because of the additional benefit from 

straw (manuscript 2, 3 & 4).  

This thesis resulted as part of a scientific consortium answering the question if rice-maize crop 

rotation in combination with straw addition can significantly lower greenhouse gas emissions 

and reduce water loss during maize cultivation. Therefore, the analyses of microbial community 

shifts due to these management strategies were mandatory.  
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Figure 1.4: Graphical summary of the research objects presented in this doctoral thesis. Numbers represent the 
single manuscripts and correspond to the chapters in the results section. The experiments corresponding to number 
1 were performed in the rice phyllosphere. Investigations for the second manuscript were conducted in bulk soil 
and rhizosphere of rice monoculture soil, maize monoculture soil (not included in this figure) and rice-maize crop 
rotation soil treated with and without straw. Experiments corresponding to number 3 were performed in the bulk 
soil and rhizosphere of rice-maize crop rotation soil treated with straw, and the experiments corresponding to 
manuscript 4 were conducted in the rhizosphere of maize in a rice-maize crop rotation soil treated with and without 
straw.  
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2. Results 

2.1. Characterization of the first rice paddy cluster I isolate, Methyloterricola 
oryzae gen. nov., sp. nov. and amended description of Methylomagnum 
ishizawai (manuscript 1) 
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Abstract 

Three gammaproteobacterial methanotrophic strains (73aT, 175 and 114) were isolated from 

stems of rice plants. All strains are Gram-negative, motile and grow on methane or methanol 

as sole carbon source. They oxidize methane using the particulate methane monooxygenase. 

Strains 114 and 175 possess additionally a soluble methane monooxygenase. All strains contain 

significant amounts of the cellular fatty acids C16:0, C16:1ω6c and C16:1ω7c, typical for type 

Ib methanotrophs. Characteristic for strains 114 and 175 are high amounts of C14:0 and C16:1 

ω 6c, while strain 73aT contains high quantities of C16:1ω5c. 16S rRNA gene sequence 

analyses showed that strains 114 and 175 are most closely related to Methylomagnum ishizawai 

(≥99.6 % sequence identity). Strain 73aT is representing a new genus within the family 

Methylococcaceae, most closely related to Methylococcus capsulatus (94.3 % sequence 

identity). Phylogenetic analysis of the PmoA sequence indicates that strain 73aT represents rice 

paddy cluster I (RPCI), which has almost exclusively been detected in rice ecosystems. The GC 

content of strain 73aT is 61.0 mol%, while strains 114 and 175 have a GC-content of 63.3 mol%. 

Strain 73aT (= LMG 29185, VKM B-2986) represents the type strain of a novel species and 

genus, for which the name Methyloterricola oryzae gen. nov., sp. nov. is proposed and a 

description provided. Strains 175 (= LMG 28717, VKM B-2989) and 114 are members of the 

species Methylomagnum ishizawai. This genus was so far only represented by one isolate, so 

that an emended description of the species is given. 
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Aerobic methanotrophic bacteria (MOBs) inhabit diverse environments. They are found in 

aquatic ecosystems like sediments or the water column of oceans and lakes, as well as in 

terrestrial habitats like upland soils, peatlands, rice fields or permafrost soils [1]. In most of 

these ecosystems, MOBs are abundant in redox transition zones, where methane enters from an 

anoxic and oxygen from the oxic zone. In rice fields, MOBs are present at this oxic-anoxic 

interface in the soil column, as well as in the rhizosphere of rice plants, where oxygen is 

diffusing from the atmosphere via the aerenchymatic tissue of the plant [2]. MOBs act as sink 

for methane in rice fields and reduce the release of this greenhouse gas to the atmosphere 

substantially [3, 4]. Recently published in situ methane consumption rates indicate 

methanotrophic activity on the emerged parts of rice plants [5], raising the question whether 

MOBs reside on and can be isolated from the above-ground parts of plants.  

MOBs are often divided into type I (corresponding to Gammaproteobacteria) and type II 

(Alphaproteobacteria), whereby in particular type I MOBs are often further differentiated into 

type Ia to Id [1]. In rice field soils and the rice rhizosphere, members of well-known genera 

such as Methylocystis, Methylosinus, Methylomonas, Methylosarcina, Methylobacter or 

Methylosoma have frequently been detected. Besides, cultivation-independent studies have 

revealed the presence of several uncultured groups, including type Ia methanotrophs and in 

particular type Ib methanotrophs. Among the latter are methanotrophs of rice paddy cluster 1 

(RPC1), which is quite consistently found in rice ecosystems [1, 6]. Remarkably, a rather low 

number of different genera of MOBs have been isolated from rice fields so far, encompassing 

mostly the common genera Methylocystis, Methylosinus and Methylomonas [7, 8]. Only 

recently, further novel taxa of type I MOBs were described, including Methylogaea (soil-water 

interface, Uruguay), Methylomagnum (rice rhizosphere, Japan) and the Methylococcaceae 

strains BRS-K6 (rice field soil, Bangladesh) and Sn6-10 (rice rhizosphere, India) [9–11]. 

However, in cultivation-independent studies, these were not very frequently detected [1], 

indicating that the isolation of representative taxa remains challenging. 

In this study, we aimed specifically at the isolation of type I methanotrophs living in association 

with rice plants. For the enrichment of MOBs, the basal aerial parts of rice stems were collected 

from Oryza sativa subsp. indica cv. IR-72 or cv. Angelica grown in a paddy field at the 

International Rice Research Institute (IRRI) in Los Baños, Philippines. The stems were used 

for imprints on nitrate mineral salts (NMS, ATCC medium 1306) and ammonium mineral salts 

(AMS, ATCC medium 784) media agar plates [12], which were incubated at 28°C for 6 weeks 

under a 20 - 30 % [v/v] methane-containing atmosphere. To stimulate growth, a vitamin 

solution was added [7]. Individual colonies were repeatedly picked, restreaked and incubated 
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for 3 to 4 weeks until pure cultures were obtained. If isolation failed via this way, individual 

colonies were resuspended in liquid AMS or NMS medium and serially 10-fold diluted in 

microtiter plates. Upon growth in the plates for 5 to 7 days, an aliquot of cell suspension from 

the highest positive dilution was spread on an agar plate and incubated until colonies appeared. 

These were picked, restreaked, grown and evaluated for purity. Purity was assessed 

microscopically and by cultivation on Nutrient Broth and Reasoner's 2A agar. No growth was 

detected on these plates in case of pure cultures.  

To differentiate the methanotrophic isolates, the pmoA gene sequence was analyzed, as it serves 

as a valuable molecular marker due to its broad occurrence in methanotrophic bacteria and its 

largely congruent phylogeny compared to the 16S rRNA gene [1]. To differentiate type I and 

II methanotrophic isolates, a restriction fragment length polymorphism analysis of pmoA PCR-

products was performed. Cell biomass was transferred into a 0.2 ml PCR tube, filled with 100 

μl of 50mM NaOH and 0.1 g of zirconium-silica beads of 0.1mm diameter. Cells were thermally 

lysed by incubating the suspension for 10 min at 99 °C, followed by mechanical lysis for 60 s 

in a bead beater (CapMixTM, 3M ESPE, Seefeld, Germany). Between 1 and 2 µl of cell extract 

were used as template in a PCR assay as described earlier [13]. Four µl of PCR product were 

digested overnight in 10 µl assays with BclI (Fermentas) and the band patterns visualized on 3 

% agarose gels. The pmoA PCR products of Methylocystaceae were specifically cut at 290 bp. 

After classification into type I and II MOBs, the pmoA PCR products of type I isolates were 

sequenced. This revealed the isolation of Methylococcus, Methylomonas and some isolates 

without closely related cultivated strains. The latter were further differentiated at strain level 

based on BOX-PCR, as described earlier [14]. It revealed the presence of three different groups 

(Figure S1), of which strains 73aT, 114 and 175 were selected as representatives and 

characterized in detail. In all subsequent experiments, strains 114 and 175 were cultured on 

AMS medium and strain 73aT on NMS medium. 

Cell morphology was assessed via bright field, fluorescence (Leica DMRB, Wetzlar, Germany) 

and phase-contrast microscopy (Zeiss Axio Imager M2, Jena Germany). Cell inclusions were 

analyzed microscopically via cell staining with nile blue for poly-β-hydroxybutyrate (PHB) and 

counterstaining with 4',6-diamidino-2-phenylindole (DAPI, 0.1 µg mL-1), which visualizes 

polyphosphate granules [15,16]. Electron microscopy was performed after embedding cells in 

a drop of 10 % agarose solution. Thin slices were fixed after [17] and stained with 1 % 

osmiumtetroxide solution. Microscopic preparations were observed under an EM 109 electron 

microscope (Zeiss).  
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Motility was tested by spotting cell suspension on a 10-fold diluted medium agar plate and 

observation of the spreading upon growth. Oxidase was tested with a 1 % N,N,N,N-tetramethyl 

p-phenylenediamine solution, while catalase activity was assessed by exposing cells to 3 % 

H2O2. Gram testing behavior was evaluated by placing a loop of fresh cell material into a drop 

of 3 % potassium hydroxide [18]. The growth of the strains on different carbon sources was 

tested by using a final concentration of 0.05 % of the following carbon compounds: acetate, 

succinate, methanol, ethanol, isopropanol, methylamine, formamide, formic acid, glycine, 

pyruvate, sucrose, fructose, glucose, ribose, urea, malic acid, fumaric acid, oxalic acid and yeast 

extract. The use of different nitrogen sources was tested with 1 and 10 mM of lysine, urea, 

sodium nitrate, ammonium chloride, formamide, methylamine, arginine, glycine, asparagine 

and glutamine. To test for nitrogen fixation potential, a nitrogen-free medium was prepared. 

Furthermore, salt tolerance [0.1, 0.2, 0.5 and 1 %], pH [2.3, 4.6, 5.0, 5.5, 6.1, 6.6, 7.1, 7.5, 7.8] 

and temperature range [4, 8, 15, 20, 27, 30, 37, 40°C, 45 and 50°C] were evaluated. To study 

the lysis behavior of strain 175, copper sulfate was added in concentrations of 0, 20, 40, 60 and 

89 µM to liquid medium cultures and cell appearance was analyzed microscopically over time. 

DNA from all strains was extracted using the MasterPure™DNA Purification Kit (Epicentre). 

The GC content was determined based on melt-curve analysis in a qPCR cycler (CFX Connect, 

Biorad) as described [19]. Phylogenetic classification was done based on 16S rRNA gene 

sequence analysis. The gene of strain 114 was PCR amplified and sequenced using the 9f/1492r 

primer set [20]. For strains 73aT and 175, sequences were taken from draft genome sequence 

datasets [21]. 16S rRNA gene sequences were aligned using the SINA aligner [22], imported 

into the SSU Ref NR 99 database, the alignment manually controlled and a phylogenetic tree 

constructed in ARB. Likewise, a PmoA based phylogenetic tree was calculated in ARB using 

a customized PmoA database (Knief, 2015). Information about the presence of genes involved 

in one-carbon and nitrogen metabolism such as mmoX, mxaF, nifH as well as of the ribulose-

1,5-bisphosphat-carboxylase (RuBisCO) and the ribulose monophosphate (RuMP)-pathway 

was taken from the draft genome sequence analysis [21]. 

Whole cell fatty acids were extracted from the three strains and the reference strains 

Methylogaea oryzae E10T (DSM 23452), Methylococcus capsulatus Bath (LMG 26900), 

Methyloparacoccus murrellii R 49797T (LMG 27482) and Methylocaldum gracile 14LT 

(NCIMB 11912) according to [23] and analyzed by GC-MS [24]. 

Two-week-old colonies of strain 73aT grown on agar plates appeared white, round and slimy, 

while colonies of strains 114 and 175 were white and round. Older cultures of strain 73aT were 

slightly pink, while colonies of strains 114 and 175 became beige-brownish. Cells of strain 73aT 
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were small cocci with a size range between 1.6 and 1.9 µm x 1.2 and 1.4 µm (length x width). 

Strains 114 and 175 appeared as large short thick rods with a size range between 3.6 to 4.8 µm 

x 2.6 to 3.5 µm. Upon aging, cells of strains 114 and 175 became larger, very fragile and they 

divided incompletely, i. e. formed chains often consisting of four to six cells (Figure 1G), 

similarly as previously described for Methylobacter chroococcum strain G by Whittenbury et 

al. [12]; a strain that has been lost over time. The fragility of the aged cells could be reduced by 

increasing the copper concentration in the medium. After 6 weeks of growth, fragile and 

irregular shaped cells were found in media with copper concentrations of 0 - 40 µM, while cells 

in media with 60 µM and 89 µM copper appeared normally shaped. This may be linked to a 

higher membrane stability at higher copper concentrations, as proposed by for Methylococcus 

capsulatus [25]. 

All strains had intracytoplasmic membrane systems, which appeared as bundles of vesicular 

disks in transmission electron micrographs (Figure 1C, H and I); a characteristic feature of all 

type I MOBs [26]. Cell inclusions were clearly visible under the light microscope for strains 

114 and 175. The number of inclusions increased in cells that had reached the stationary phase.  

They could be fluorescently stained in red with nile blue (Figure 1F) or in combination with 

DAPI in orange (Figure 1G), indicating the presence of PHB. In strain 73aT, nile blue staining 

for PHB inclusion bodies was negative, while DAPI staining revealed the presence of 

polyphosphate (Figure 1B). In comparison, the draft genomes contain genes known to be 

involved in polyphosphate storage in both strains (73aT and 175) and for PHB synthesis in strain 

175 [21], suggesting that not all potential storage compounds were accumulated at the same 

time in these cells under the given conditions. Moreover, the genome data predict glycogen as 

storage compound in both strains.  
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Figure 1: Photographs of strains 73aT (A – C) and 175 (D-I) captured using bright field microscopy (A, D and G), 
epifluorescence microscopy (B, E, and F) and transmission electron microscopy (C, H and I). Cells of fresh cultures 
are shown in A and D (DIC objective), cells of a 6-week old culture of strain 175 are shown in G (phase contrast). 
DAPI staining revealed yellow stained polyphosphate granules in strain 73aT (B). In strain 175, DAPI staining was 
negative, i.e. polyphosphate was not detected, while nile blue staining indicated the presence of PHB inclusion 
bodies (E and F; E shows the merged picture of DAPI and nile blue staining). The intracellular membrane system 
of strain 175 is highlighted by a circle (I). 

The cells of all three strains were gram negative and motile. They exhibited no catalase activity 

and only 73aT was cytochrome c oxidase positive. In comparison, the genome sequences 

revealed the presence of catalase in strain 175 and a cytochrome c oxidase in both strains [21]. 

Strains 73aT and 175 grew only on methane and methanol as carbon sources, while strain 114 

did not even grow on methanol under the given conditions. Besides the presence of a particulate 

methane monooxygenase, genome analysis revealed that strain 175 possesses a soluble methane 

monooxygenase [21]. Formaldehyde assimilation is predicted to occur via the RuMP pathway, 

likewise as in other type I MOBs. Moreover, genes encoding RuBisCO and enzymes involved 

in the Calvin cycle are present, suggesting that the strains may also use this pathway for carbon 

fixation [21]. The presence of RuBisCO has also been reported for other type Ib methanotrophs 

such as Methylococcus or Methylocaldum [27]. 
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All isolates used urea, nitrate, ammonium, or formamide as nitrogen source and grew on 

nitrogen-free medium. In agreement with the latter observation, nif genes were present in the 

genomes of strains 73aT and 175 [21]. Growth was also detected with 1 mM of glycine and 

glutamine as nitrogen sources, but not with 10 mM of these substrates. Strains 114 and 175 

grew with up to 0.2 % sodium chloride, while strain 73aT tolerated only 0.5 % salt in the growth 

medium. Strain 73aT showed optimal growth within a pH range from 7.0 - 7.5 and at 

temperatures between 27°C and 37°C. Strains 175 and 114 grew best at pH values ranging from 

6.0 - 6.6 and temperatures between 15°C – 37°C (Table 1). All three strains are thus mesophilic, 

supporting the recent statement that not all type Ib MOBs are specifically adapted to thermal 

habitats [28]. 
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The cellular fatty acid composition of the strains revealed high abundances of C16 chain fatty 

acids, which are typical for most type I MOBs [1, 26, 29]. The strains contained high 

percentages of C16:0, especially in strain 73aT it represented 30 % of all fatty acids (Table 2). 

All strains contained a significant proportion of C16:1ω7c, likewise as the other type Ib 

reference strains. High amounts (> 20 %) of C16:1ω5c and C16:1ω6c were characteristic for 

strain 73aT (> 8 %). The strains 114 and 175 also contained C16:1ω6c (7 - 10 %) and a high 

percentage of C14:0 (> 30 %), which has so far only been reported for some Methylomonas 

strains [29]. In contrast to strain 73aT, strains 114 and 175 showed more variability in their fatty 

acid composition in temporarily replicated experiments. 
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Phylogenetic analysis of the 16S rRNA gene confirmed that all three strains are 

Gammaproteobacteria, representing type Ib MOBs. While the sequences of strains 114 and 175 

were closely related to sequence of Methylomagnum ishizawai RS11D-PrT (maximum 0.4 % 

sequence difference), strain 73aT clustered distinctly from other type Ib type strains (Figure 2). 

 
Figure 2: Phylogenetic tree based on 16S rRNA gene sequences, calculated using the maximum-likelihood 
algorithm PHYML and describing the phylogenetic position of strains 73aT, 114 and 175. 16S rRNA gene 
sequences of Methanosaeta species were used to root the tree, but were excluded from the picture. The bar 
indicates 0.1 substitutions per nucleotide position. 

The next cultured relatives were Methylococcus capsulatus with a sequence identity of 94.3 %, 

Methylocaldum szegediense (91.5 %), Methyloparacoccus murrellii (91.2 %) and 

Methylomagnum ishizawai (91.1 %). PmoA analysis largely confirmed the results of the 16S 

rRNA gene sequence analysis and indicated that strain 73aT is an isolate of the RPC I cluster 

(Figure 3). This cluster is found with broad distribution in Eurasia, and almost exclusively in 

paddy soils [1,6,30,31]. The PmoA sequence of strain 73aT was most closely related to 

Methyloparacoccus murrellii (85.8 %) and Methylococcus capsulatus (85.4 %). The PmoA 

sequences of strains 114 and 175 showed no or only minor differences (2.8 %) to the amino 

acid sequence of Methylomagnum ishizawai. Genome analysis revealed that strains 73aT and 

175 possess the pmoA-related gene pmxA [21]. Remarkably, the PmxA sequences were most 
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closely related to that of Methylocystis rosea, rather then to sequences of other type I MOBs 

(Figure 3). 

 
Figure 3: Phylogenetic tree of PmoA sequences, constructed using the maximum-likelihood algorithm PHYML 
with the JTT substitution model. PmxA sequences were used to root the tree. The bar indicates 0.1 substitutions 
per amino acid position. 

Description of Methyloterricola gen. nov. 

Methyloterricola (Me.thy.lo.ter.ri’co.la. N.L. n. methylum the methyl group; N.L. pref. 

methylo- pertaining to the methyl radical; L. fem. n. terra earth; LO. Suff. -cola (from L.n. 

incola) inhabitant; N.L. fem. n. Methyloterricola a terrestrial methyl-using bacterium). Cells 

are gram negative, aerobic, motile cocci. They show the typical intracellular membrane 

structures described for type I MOBs. The genus is obligate methanotrophic and cells can only 

use methane or methanol as carbon source. They are able to fix nitrogen and perform methane 

oxidation using the particulate methane monooxygenase. The major fatty acids are C16:1ω5c, 

C16:1ω6c and C16:1ω7c. The genus is most closely related to Methylococcus and 
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Methylocaldum in the class of Gammaproteobacteria. The type species is Methyloterricola 

oryzae. 

Description of Methyloterricola oryzae sp. nov. 

Methyloterricola oryzae (o.ry’ zae. L. fem. n. Oryza genus name of rice; L. gen. n. oryzae of 

rice), referring to the fact, that the type strain was isolated from rice stems). Additionally to the 

genus description, the type strain displays the following properties. Cells have a size of 1.6 µm 

- 1.9 µm x 1.2 µm - 1.4 µm. The strain grows on NMS medium supplemented with urea, nitrate, 

ammonium, formamide, glycine or glutamine as nitrogen source. The growth temperature is 

between 15°C and 45°C (optimum is between 27 °C and 37 °C) and optimum pH ranges from 

7.0 to 7.5. The strain is salt tolerant up to 0.5 %. The GC content is 61.0 %. Strain 73aT (= LMG 

29185, VKM B-2986) is the type strain and was isolated from rice stems of a rice field at the 

Philippines.  

Amended description of the species Methylomagnum ishizawai  

The size of the cells of this genus extend to a range between 1.5 µm and 3.5 µm x 2.0 µm and 

4.8 µm. Cells in the stationary phase increase in size, accumulate different types of storage 

granula and can form cell chains. Cells can become very fragile when grown in standard media, 

a phenomenon that can be compensated by increasing the copper concentration. Cells have the 

ability to produce PHB and potentially polyphosphate and glycogen as storage compounds. 

They grow optimal between 15°C and 37°C and have an optimum pH range between 6.0 and 

7.4. Some but not all strains possess nif genes for nitrogen fixation. Besides using the RuMP 

pathway for formaldehyde fixation, the strains have the potential to assimilate CO2 via 

RuBisCo and the Calvin cycle.  
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Supplementary material 

 
Figure S1: Box-PCR pattern of all type I methanotrophic isolates, which were distantly related to cultivated MOBs 
according to pmoA sequence analysis. Strains 48, 49, 51, 178 and 175 show very similar patterns, as well as strains 
52 and 114 and strains 73a and 73b, suggesting that these are clonal isolates, respectively. Strains 114, 175 and 
73a were selected as representatives from each of these groups for a detailed characterization characterization. A 
DNA size marker indicating molecule length in base pairs is shown on the first lane (L2). 
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Abstract 

Rice is one of the most important nourishments and its cultivation binds large agricultural areas 

in the world. Its cultivation leads to huge water consumption and high methane emissions. To 

diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but 

can lead to losses of carbon and water by the formation of desiccation cracks. To counteract 

these problems rice straw can be applied. We analysed soil microbial responses to different 

crop rotation systems (rice-rice (RR), maize-maize (MM), rice-maize (MR)) and to rice straw 

application in the soil and rhizosphere of maize. Zea mays was grown in microcosms using soils 

from different field locations, each including different crop rotation regimes. The bacterial and 

fungal community composition was analysed by 16S rRNA gene and ITS based amplicon 

sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from 

the different field locations (ANOSIM: R = 0.516 for the bacterial community; R = 0.817 for 

the fungal community). Within the field locations, crop rotation contributed differently to the 

variation in microbial community composition. Strong differences were observed in 

communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for 

the bacterial and R = 0.714 for the fungal community), while the communities in soils 

undergoing MR crop rotation were more similar to those of the corresponding RR soils 

(ANOSIM: R = 0.111 – 0.175). The observed differences could be explained by altered oxygen 

availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, 

and the presence of the different crops, leading to the enrichment of host-plant specific 

microbial communities. The responses of the microbial communities to the application of rice 

straw in the microcosms were rather weak compared to the other factors. The taxa responding 

in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the 

different agricultural management practices affect microbial community composition to 

different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial 

responses in bulk soil and rhizosphere are distinct. 
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Introduction 

Rice is one of the most important staple foods worldwide and has an increasing demand because 

of the rising world population (Van Nguyen and Ferrero, 2006). Traditional rice cultivation 

causes major environmental problems as flooded rice fields represent a major source of 

atmospheric methane, a greenhouse gas that contributes 20 – 30 % to global warming (Conrad, 

2009; Forster et al., 2007). Moreover, rice cultivation under flooded conditions demands two 

to three times more water than the cultivation of other crops (Tuong et al., 2005). Especially in 

Asia, farmers need 50 % of the freshwater to irrigate their paddy fields (Tuong et al., 2005). 

Because of these facts, farmers in tropical and subtropical Asia diversify their cropping systems 

by introducing a crop rotation system with rice cultivation in the wet season and maize in the 

dry season (Weller et al., 2015). Maize already dominates the upland agricultural systems in 

the Philippines, because the requirement of water is much smaller and a simultaneous increasing 

demand of maize for poultry fattening and biofuel production has been reported (Weller et al., 

2015).  

The seasonal change between wet and dry conditions in the soil leads to the formation of 

desiccation cracks during maize cultivation, which cause loss of water, dissolved organic 

carbon and an increased release of the greenhouse gas N2O (He et al., 2015; Weller et al., 2015). 

To prevent crack formation and to stabilize the soil texture, rice straw can be incorporated into 

the soil at the end of the rice-cropping season. Additionally, surface-application of straw 

reduces evaporation and thus crack formation (Cabangon and Tuong, 2000). Moreover, straw 

application is known to improve the physical and biological conditions by preventing soil 

degradation and increasing soil organic carbon stocks and crop productivity (Chen et al., 2010; 

Liu et al., 2014).  

The conversion of a rice monosuccession system into a rice-maize crop rotation system leads 

to altered conditions for soil microbial communities; especially the period of anoxic conditions 

in soil is considerably reduced. The archaeal community composition has been reported to show 

dramatic changes upon introduction of rice-maize crop rotation. A decrease of anaerobic 

methanogenic lineages and an increase of aerobic Thaumarchaeota was observed in the rotated 

soil during the rice growing season, whereas the bacterial community was only little affected 

(Breidenbach et al., 2015). In a different study, Lopes et al., (2014) reported responses of the 

bacterial community in a paddy soil undergoing crop rotation by introducing alfalfa as upland 

plant. Crop rotation may specifically affect microorganisms within microbial hot-spot regions 

of the soil such as the rhizosphere, as plant roots recruit their associated microbiota from the 
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soil. This has not yet been studied in detail, especially for plants grown in paddy soils under 

upland conditions. 

A modified crop rotation regime will lead to changes in soil carbon supply. All plants release a 

substantial amount of carbon into the soil via rhizodeposition (Badri and Vivanco, 2009; Bais 

et al., 2006). Due to the cultivation of maize in a rice cropping system, a different blend of 

carbon compounds will be released into the soil and a different, plant-host specific microbial 

community will develop in the rhizosphere (Berg and Smalla, 2009; Edwards et al., 2015; 

Peiffer et al., 2013). Over time, these changes may contribute to the development of an altered 

soil microbial community in rice-maize crop rotation systems compared to rice monosuccession 

systems.  

The application of rice straw provides a valuable carbon source for soil microorganisms, and 

rice straw degradation has been studied in paddy soils under oxic as well as anoxic conditions. 

Chen et al., (2010) and Conrad et al., (2012) showed that the addition of straw leads to changes 

in the bacterial and archaeal community composition in paddy soils. An effect was also seen in 

the rice rhizosphere (Shresta et al 2011). Different bacterial and fungal taxa were identified as 

part of the straw degrading community (Lee et al., 2011; Murase et al., 2012; Rui et al., 2009; 

Shrestha et al., 2011). However, the impact of rice straw addition on microbial communities in 

paddy soils was mostly studied in soils of rice monosuccession systems, while information 

about the short-term effects of rice straw in crop rotation systems is scarce, where the applied 

rice straw is mostly degraded under oxic conditions during the period of upland cropping. 

The objective of this study was to investigate how agricultural management practices affect soil 

microbial communities, focussing on the longer-term effects of crop rotation and the short-term 

responses of straw application. Responses of bacterial and fungal communities were analysed 

in bulk and rhizosphere soil. We hypothesized that 1.) long-term monosuccession of rice and 

maize leads to the development of clearly distinct microbial communities in these soils, while 

the implementation of a rice-maize crop rotation will cause moderate shifts, leading to 

communities with intermediate appearance. Crop rotation will induce specific microbial 

responses in the bulk soil and the rhizosphere of the cultivated crop. 2.) The application of rice 

straw will change microbial community diversity and composition. We expect to see stronger 

responses in the bulk soil microbial communities than in the rhizosphere microbiota, as the 

latter is expected to profit predominantly from plant root derived carbon. To address these 

points, we analysed the composition of bacterial and fungal communities in soils subjected to 

different crop rotation regimes, i.e. we compared maize monosuccession (MM) or rice-maize 

crop rotation (MR) to rice monosuccession (RR). Soils were collected from different field sites 
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and used in microcosm experiments, in which maize was cultivated in the presence or absence 

of rice straw. Bulk soil samples as well as rhizosphere samples were collected at different time 

points during the maize growth period. 

Material and Methods 

Sampling sites 

Field locations for soil sample collection were at the International Rice Research Institute 

(IRRI) in Los Banos, Philippines (14°11’N, 121°15’E), in Tarlac, Philippines (15°32´N, 

120°37´E) and Zeme, Pavia, Italy (45°11´N,8°40´E). From each study site, we took soil from 

two neighbouring fields, which were under different crop rotation regimes for different periods 

of time (table 1). Each site included a field under rice monosuccession, to which the respective 

alternative cropping regimes (MR or MM) were compared. Soils with different periods of maize 

rice crop rotation were taken from IRRI (MR crop rotation since 4 years) and Tarlac (MR crop 

rotation since 20 years). Soil under maize monosuccession (> 30 years) from Italy was included 

to compare the impact of MR crop rotation to differences developing under long-term 

monosuccession regimes. At the Philippine sites, soil samples were taken at the end of the wet 

season after the rice cultivation period and thus before rice and maize planting. Likewise, the 

Italian soils were collected in spring before rice/maize planting. All samples were taken from 

drained soils after plowing. Upon collection, the soil was immediately air-dried and 

homogenized before the start of the experiment. Basic soil properties including soil type, 

maximum water holding capacity, pH, nitrogen and carbon content, and the C:N ratio were 

determined using standard methods (supplementary table 1). 

Setup of the microcosm experiment 

For the microcosm experiments, the soil was moistened, half of it mixed with chopped rice 

straw (2 – 5 cm pieces; 6 kg straw m-³), filled into plastic pots (1.2 L pots for sample collection 

form young plants, 7 L pots for plants older than 21 days), and maize seeds were sown. For 

bulk soil sampling, pots remained unplanted. The experimental setup included four replicates 

for all treatments (i.e. for maize with straw, maize without straw, bulk soil with straw and bulk 

soil without straw) and every time point. The first rhizosphere samples were taken 8 days after 

sowing, while bulk soil sampling started at the day of sowing; further sampling was performed 

as listed in table 1. The pots were watered every day and received basal fertilisation of 50 kg 

P2O5 ha-1 and 30 kg K2O ha-1 at seeding. Nitrogen was applied in three split applications with 

30 kg urea ha-1 basal at seeding and 50 kg urea ha-1 at 29 and 50 days after seeding. The 

greenhouse experiments with the soils from Italy were conducted in Bonn (Germany), while 
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the experiments with soils from Tarlac and IRRI were conducted at IRRI, Philippines. For the 

Italian soils, sampling was performed with high temporal resolution until day 85 to evaluate 

time-dependent responses in detail, while a lower temporal resolution was chosen for the 

Philippine samples (Table 1). 

Table 1: Experimental setup of the microcosm experiment.  

Field location Crop rotation Experimental site 

for microcosm 

experiment 

Maize 

variety 

Time (sample 

collection time points, 

days after sowing) 

Italy Rice (RR)  

since > 30 years 

Bonn, Germany NC358 0, 8, 15, 29, 43, 85 

Italy Maize (MM)  

since > 30 years 

Bonn, Germany NC358 0, 8, 15, 29, 43, 85 

IRRI, 

Philippines 

Rice (RR) 

since > 50 years 

IRRI, Philippines Pioneer 

30T80 

0, 15, 43 

IRRI, 

Philippines 

Rice-maize (MR)  

since 4 years 

IRRI, Philippines Pioneer 

30T80 

0, 15, 43 

Tarlac, 

Philippines 

Rice (RR)  

since 1 year 

IRRI, Philippines Pioneer 

30T80 

0, 15, 43 

Tarlac, 

Philippines 

Rice-maize (MR) 

since > 20 years 

IRRI, Philippines Pioneer 

30T80 

0, 15, 43 

 

Rhizosphere and bulk soil sample collection 

About 10 g of bulk soil were taken with a sterile spatula from unplanted pots after mixing the 

soil in the pot and immediately frozen at -20 °C. For rhizosphere sampling, plants were removed 

from the pots and hand shaken to remove large soil aggregates and loosely adhering soil. The 

soil remaining attached on the roots was considered to be rhizosphere soil and was collected 

using a modified protocol of Lundberg et al. (2012). Roots with associated rhizosphere soil 

were placed into a sterile 50 mL tube and submerged with 25 mL 1x phosphate buffered saline 

(PBS; 1.36 M NaCl, 100 mM Na2HPO4, 20 mM KCl, 17 mM KH2PO4, 0.02 % Silwet L-77, 

pH 7.4). Larger samples, collected from plants older than 28 days, were transferred into a sterile 

720 mL glass and filled with 300 mL 1x PBS. Thirty or fifty grams (for the larger samples) of 

sterile glass beads (Ø 4 mm) were added and the samples shaken at 420 rpm for 20 min. The 

resulting turbid solution was filtered through a 500 µm nylon mesh into new 50 mL tubes to 
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separate soil and roots. The filtrate was centrifuged for 20 min at 3200 x g. The supernatant was 

removed and the pellet stored at -20°C until further processing. 

Nucleic acid extraction and amplicon sequencing 

Soil DNA extraction was performed using the NucleoSpin Soil Kit (Macherey Nagel, Düren, 

Germany) following the manufacturer’s instructions with the following modifications. 

Microbial cells in 0.3 g of soil were mechanically disrupted by beat beating (TissueLyser, 

Qiagen, Germany) in the presence of SL1 buffer solution and enhancer solution. The final 

resuspension of DNA was done in 30 µL PCR-grade water.  

16S rRNA genes were amplified using the primer set 515F-806R, targeting a 291 bp product of 

the V4-V5 region of the 16S rRNA gene from Bacteria and Archaea (Bates et al., 2011). The 

fungal ITS1 region was amplified using the primer set ITS1F-ITS2 (Gardes and Bruns, 1993; 

White et al., 1990), resulting in a 180 bp product. We used a two-step PCR approach in which 

conventional PCR primers without barcodes were applied to amplify the target region during 

30 cycles in the first step. In the second step, the obtained amplicons served as template in a 5 

cycle PCR using sample-specific barcode primers. The forward primer included an 8-bp 

barcode plus a 3-5 bp stagger sequence to increase sequence variability for the Illumina 

platform. PCR reactions were carried out in technical triplicates and pooled for sequencing. 

Each replicate 25-µL assay contained 1x Herculase II reaction buffer, 0.25 U Herculase II 

Fusion DNA Polymerase (Agilent Technologies, Santa Clara, USA), 0.25 mM dNTPs, 0.25 

µM of forward and reverse primer, 1 mM MgCl2, 0.8 mg mL-1 BSA and 1 µL template DNA. 

The thermal cycling protocol consisted of an initial denaturation step at 95 °C for 2 min, 

followed by repeated cycles of denaturation at 95 °C for 20 s, annealing at 52 °C for the 16S 

rRNA gene and 50 °C for the ITS1 region for 20 s, elongation at 72 °C for 20 s and a final 

elongation step for 3 min.  

The PCR products were quantified using the QuantiFluor dsDNA System (Promega, Madison, 

USA) on an Infinite 200 Pro plate reader (Tecan, Männedorf, Switzerland) at 490 nm excitation 

and 530 nm emission wavelength. Afterwards, PCR products were pooled at equimolar 

concentrations. Pooled PCR products were cleaned using the CleanPCR magnetic bead system 

(CleanNA; Alphen aan den Rijn, Netherlands) according to manufacturer’s instructions. 

Library preparation and sequencing on an Illumina HiSeq system generated paired-end reads 

(2x250 bp) and was performed by the Max Planck-Genome-centre Cologne. Read files obtained 

after the quality filtering step were submitted to the EBI SRA public database under the project 

accession number PRJEB23682. 
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DNA sequence analysis 

Sequence data were assembled with the USEARCH paired-read assembler (Edgar and 

Flyvbjerg, 2015) to create consensus sequences with a consensus of at least 90 % and a quality 

score of Q = 2. Sequences were trimmed to remove the reverse primer and sequences < 200 bp 

were removed (cutadapt) (Martin, 2011). Reverse complementary sequences were identified 

and turned (fastx_reverse_complement). The sequences were demultiplexed according to their 

barcode sequences using an own written perl script. The forward primer was removed after 

demultiplexing, because barcode sequences are located in front of the forward primer. 

Quality filtering and dereplication were conducted using USEARCH v9 (Edgar, 2013) 

(USEARCH parameter: remove reads with expected number of base call errors exceeding p = 

0.01 and Q = 20). The sequences were binned into operational taxonomic units (OTUs) at a 

threshold of 97 % similarity (corresponding to genus level resolution) using the UPARSE 

algorithm (Edgar, 2013). This command included chimera filtering. An additional identification 

of chimeric sequences was done using the uchime2 algorithm (Edgar, 2016b) on USEARCH 

9.0 against a reference database. 16S rRNA gene based OTUs were annotated based on 

representative sequences according to the RDP 16S rRNA training set v16 (Edgar, 2016a; 

Maidak et al., 2000), while ITS OTUs were taxonomically identified according to the UNITE 

ITS database (version 7.1; Abarenkov et al., 2010). For taxonomy prediction, a cut-off value of 

0.8 was chosen. Finally, 16S rRNA gene sequences identified as chloroplasts were removed 

from the 16S rRNA gene sequence dataset (0.5 % of the sequences). 

Statistical analysis 

Statistical analyses were conducted in STAMP (Parks and Beiko, 2010) and in R using the 

packages Vegan (Oksanen et al., 2016) and Phyloseq (McMurdie and Holmes, 2013). For all 

OTU based analyses, the original OTU table was filtered to contain only sequences that were 

taxonomically classified as Fungi or Bacteria and Archaea and OTUs represented by a 

maximum of only two reads in one or more samples were discarded. Estimation of Alpha-

diversity was based on an evenly rarefied OTU table and included calculation of the observed 

richness via Chao1. To test for significant differences in bacterial and fungal Alpha-diversity 

between groups of samples, non-parametric Kruskal-Wallis tests were performed, as Shapiro-

Wilk test revealed non-normal data distribution.  

The structure of the microbial communities was evaluated at high taxonomic resolution (97% 

sequence identity) and ordinated in non-metric multidimensional scaling (NMDS) plots based 

on Bray-Curtis dissimilarity matrices. For NMDS ordination, the OTU tables were pre-



Results 

44 
 

processed, so that sparse OTUs were removed. The sparsity threshold was 0.5, meaning that an 

OTU not found in at least 50 % of the samples was removed as statistically uninformative. To 

test for significant differences between groups of samples, an analysis of similarity (ANOSIM) 

was performed in Vegan with 999 permutations based on Bray-Curtis distances between 

samples. In case of multiple comparisons, P-values were Bonferroni-Holm corrected. NMDS 

and ANOSIM were performed on successively reduced datasets, beginning with an overall 

analysis (including all locations, compartments, time points and straw treatments). This was 

followed by the analysis of subsampled datasets to assess the impact of crop rotation and straw 

treatment in more detail. Crop rotation was evaluated i) within each field location (including 

compartments, time points and straw treatments)), ii) within each compartment (including time 

points and straw treatments), iii) at different time points (including straw treatments). For straw 

treatment, the data were completely dissected. This procedure followed the succession from the 

most significant to the least significant impact factor, enabling to evaluate the effect of each 

treatment more specifically and to exclude effects of co-variants.  

The impact of different treatments on individual taxa was analysed using the program STAMP 

(Parks and Beiko, 2010). First, genera were identified that responded to crop rotation within 

each field location. The datasets were then further subsampled by compartment to compare crop 

rotation responsive taxa between bulk soil and rhizosphere. To identify genera that were 

significantly impacted by straw addition, the datasets were subsampled according to field 

location, crop rotation and compartment. Significant differences between groups of samples 

were tested with Kruskal-Wallis H test and multiple comparison corrections were done with 

Benjamini-Hochberg FDR.  
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Results 

Identification of major factors affecting diversity and composition of bacterial and fungal 

communities 

Bacterial and fungal communities were analysed in soil and rhizosphere samples by 16S rRNA 

gene and ITS1 amplicon sequencing, respectively. After pre-processing and quality filtering, 

about 16,500 reads per sample of 16S rRNA gene sequences and 13,900 reads per sample of 

the ITS1 region remained. In a first instance, the data of all samples were combined to identify 

major factors that influenced microbial diversity and community composition. The effects of 

crop rotation, straw treatment, field location and compartment as well as variation due to 

incubation time were evaluated. A comparison of OTU richness and Chao 1 diversity indices 

revealed that all factors had a significant influence on bacterial and fungal diversity 

(supplementary table 2). The diversity was most strongly influenced by crop rotation and least 

by straw application (in case of bacteria) and compartment (in case of fungi).  

In all soils the bacterial communities were dominated by the phyla Acidobacteria, Chloroflexi 

and Proteobacteria (classes Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria), while fungal communities consisted mainly of members of the classes 

Sordariomycetes, Dithideomycetes, Eurotiomycetes and Agaricomycetes (supplementary figure 

1). Differences in the composition of the microbial communities between all samples based on 

NMDS plots in combination with ANOSIM revealed that field location and crop rotation were 

the most relevant factors explaining dissimilarities between samples (figure 1). ANOSIM 

showed that field location affected in particular the fungal communities, as evident from the 

high R-value of 0.817 (P < 0.001), while variation in bacterial communities due to field location 

resulted in an intermediate R-value of 0.516 (P < 0.001). The effect of crop rotation on bacterial 

communities was also intermediate (R = 0.545; P < 0.001), while it was lower for fungal 

communities (R = 0.359; P < 0.001). The factors compartment, time and straw had a weaker 

effect on the overall microbial community composition. These findings were confirmed by a 

cluster analysis, performed at class level resolution (supplementary figure 2). Because of the 

strong differences due to field location, the samples from each location were analysed 

separately to assess the impact of crop rotation and straw application in more detail. 
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Figure 1: Ordination plots showing the influence of field location and crop rotation on bacterial (A) and fungal (B) 
community composition. NMDS plots based on Bray-Curtis dissimilarities were calculated from relative OTU 
abundances. Results of ANOSIM are shown with P < 0.05 *, P < 0.01**, P < 0.001*** for all grouping factors. 

Impact of crop rotation on microbial diversity and community composition within field 

locations 

Strongest differences in diversity in response to crop rotation were observed in the Italian soil 

samples (figure 2), where the diversity of bacteria and fungi was 1.3-fold to 1.5-fold higher in 

RR soil than in MM soil (P < 0.001). This was observed in the bulk soil as well as in the 

rhizosphere. In IRRI and Tarlac soils, crop rotation affected microbial diversity less 

consistently. The fungal diversity was modulated by crop rotation in the rhizosphere of IRRI 

soil and the bacterial diversity in the bulk soil of Tarlac (P < 0.05).  
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Figure 2: Box plots showing the influence of crop rotation on bacterial (column A) and fungal alpha diversity 
(column B) within each field location and compartment. Each box plot shows alpha diversity based on the Chao1 
diversity index and includes all samples treated with or without straw and collected at different time points. The 
median as well as the 25th and 75th percentile of the samples is presented, individual data points outside of this 
range are given as mean ± standard deviation of four replicate samples. Significant differences due to crop rotations 

within one compartment (bulk soil or rhizosphere) are noted.  
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Field location specific NMDS ordinations along with ANOSIM (figure 3) revealed that crop 

rotation had a very strong impact on the bacterial (R = 0.923; P < 0.001) and fungal (R = 0.714; 

P < 0.001) community composition in the Italian soils, where rice and maize were grown in 

monosuccession for > 30 years, respectively. A further clear structuring of the communities in 

these soils was evident according to compartment (R = 0.302 for bacteria, R = 0.258 for fungi; 

both P < 0.001), while the factors time and straw application explained less variation. In the 

Philippine soils, which were managed under RR or MR, crop rotation explained less of the 

variation in microbial community composition (R-values between 0.111 and 0.175) and was in 

most cases less important compared to the impact of compartment and time (R-values between 

0.112 and 0.361). As the impact of crop rotation was covered by compartment and time in these 

soils, it was evaluated more specifically by ANOSIM within each compartment and at each 

time point (supplementary table 3). This revealed a significant response of the microbial 

community to crop rotation in all individual cases. The response remained strongest for the soils 

from Italy and was of equal strength in the soils from IRRI and Tarlac. Moreover, crop rotation 

had as stronger effect on the bacterial than the fungal community (P < 0.005). Responses in the 

bulk soil and rhizosphere were of comparable strength, and a trend over time was not evident. 
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Figure 3: NMDS plots of 16S rRNA (column A) and ITS1 (column B) community composition in soils from 
different field locations. NMDS plots based on Bray-Curtis similarities were calculated from relative OTU 
abundances. ANOSIM was applied to test for differences in community composition due to compartment, crop 
rotation, time and straw treatment. R-values are shown with P < 0.05*, P < 0.01**, P < 0.001***. 
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We performed analyses in STAMP to identify bacterial and fungal genera that responded to 

crop rotation within each field location. In agreement with the clear impact of crop rotation at 

the Italian site, the highest number of responsive genera (361 bacterial and 94 fungal) was 

observed here (listed in supplementary tables 6 A, B), while the numbers were much lower in 

soils from IRRI and Tarlac (25 and 41 bacterial genera, 4 and 5 fungal genera). More than half 

of the genera that were identified as responsive in a Philippine soil showed a similar response 

in soils from Italy. Most responses were observed within the phyla Actinobacteria, 

Acidobacteria, Firmicutes and Proteobacteria. Genera of the classes Actinobacteria, 

Alphaproteobacteria, Gammaproteobacteria and Bacilli were predominantly enriched in the 

Italian MM soil (figure 4). Likewise, genera of Actinobacteria, Bacilli, and 

Gammaproteobacteria were enriched in the Philippine MR soils. In contrast, genera of 

Deltaproteobacteria, including sulfate and iron reducers, were consistently enriched in all RR 

soils. Moreover, diverse genera of Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes and 

the class Alphaproteobacteria were specifically enriched in some of the RR soils. In the fungal 

communities, most differences were observed within the phyla Ascomycota and Basidiomycota. 

Especially genera of the class Sordariomycetes and Agaricomycetes were enriched in the Italian 

RR or MM soil (figure 4). 
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Figure 4: Radar charts showing the number of bacterial (A), (B), (C) and fungal (D) genera in different classes that 
were identified as significantly enriched by crop rotation in the different field locations (Italy, IRRI, Tarlac) based 
on STAMP analysis. Displayed are classes for which at least three different genera were identified as specifically 
enriched in one or the other soil. Fungal responses to crop rotation at IRRI and Tarlac were weak and are therefore 
not included in the figure. 

Because compartment-specific responses to crop rotation were of particular interest, an 

additional analysis in STAMP was done with datasets separated further by compartment. 

Overall, the analysis resulted in a comparable number of responsive genera in MM, MR and 

RR soils at the respective field locations (listed in supplementary tables 6 C, D). Thus, the 

further dissection of the datasets according to compartment did not result in the identification 

of a higher number of responsive taxa in the Philippine soils, where compartment masked the 

effect of crop rotation to some extent. As before, differences were most evident in soils from 

Italy and more differences were observed for bacterial than fungal communities. Focussing on 

compartment-specific responses to crop rotation in the Italian soils, the analysis revealed a 

higher number of responsive bacterial genera in the bulk soil (165 specific for MM and 176 for 

RR) than in the rhizosphere (143 specific for MM and 126 for RR). The percentage of bacterial 

genera that responded in both compartments was high, with 45 % and 60 % for MM and RR 

soils, respectively (supplementary figure 3). The same trends were observed in most Philippine 

soils. Fungal communities showed less overlap (maximum 25%) between compartments. 

Among the genera that were enriched in the Italian MM soils, members of Bacilli and 
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Gammaproteobacteria were more specifically found in the bulk soil, while Betaproteobacteria 

were more specifically responding to crop rotation in the rhizosphere (supplementary figure 4). 

In the Italian RR soil, genera of Actinobacteria, Clostridia, Alphaproteobacteria and 

Deltaproteobacteria were more responsive to crop rotation in the bulk soil, likewise as the 

fungal genera of the class Sordariomycetes. 

Impact of straw application on microbial communities 

In comparison to the other factors, straw application had the weakest impact on the bacterial 

and fungal diversity (supplementary table 2) and community composition (figure 3). ANOSIM 

revealed that a straw effect was most evident in the fungal community in Tarlac soils (R = 

0.135, P < 0.001), but was hardly detectable in the bacterial communities. To evaluate the effect 

of straw application more specifically, the datasets were completely dissected so that samples 

representing one field location, one type of crop rotation and one compartment were analysed 

individually per time point. This revealed a straw effect in the majority of cases (approx. 70% 

of all datasets) according to ANOSIM (supplementary table 4). More significant and higher R-

values were observed for fungal than bacterial communities, indicating a stronger response of 

fungal communities to straw application (figure 5). Remarkably, responses to straw were 

stronger in the rhizosphere than in bulk soil. This was also seen when applying ANOSIM to 

less dissected datasets (supplementary table 5). A clear trend over time concerning the 

responses of bacterial and fungal communities to straw application was not evident. 
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Figure 5: Influence of straw treatment on the bacterial (16S) and fungal (ITS1) community composition in the 
rhizosphere and bulk soil. Data from each field, each compartment and of every time point were analyzed 
separately by ANOSIM. All significant R-values from this analysis (as shown in supplementary table 4) are 
included in this plot. Between 62 and 78 % of the R-values were significant (P < 0.05) per group displayed.  

To identify bacterial and fungal genera that showed a significant increase in relative abundance 

due to straw application, we performed an analysis in STAMP. Samples with straw application 

were compared to those without straw application, resolved for each field location, crop rotation 

regime and compartment (full list of genera in supplementary tables 6 E, F). A specific 

enrichment of bacterial and fungal genera due to straw application was predominantly observed 

in the Italian soils and in the rhizosphere of Tarlac MR soil. Between 5 and 32 different bacterial 

genera and 2 to 4 fungal genera were identified per compartment (Table 2). More than 80% of 

these genera were either specifically detected in the rhizosphere or in bulk soil, but not in both 

compartments of a soil. Most consistently detected across compartments and field locations 

were members in the classes Alphaproteobacteria, Actinobacteria and Verrucomicrobiae. In 

the fungal communities, genera belonging to the Sordariomycetes responded most consistently. 

Remarkably, several fungal taxa showed a significantly higher relative abundance in 

rhizosphere and bulk soil samples without straw application, including members of the 

Eurotiomycetes, Microbotryomycetes, Leotiomycetes, Pezizomycetes and Sordariomycetes 

(supplementary table 6 F). 
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Discussion 

Relevance of crop rotation and straw application on soil microbial communities in relation to 

field location, compartment and time  

The effect of two agricultural management practices on soil microbial communities was 

evaluated, i. e. responses due to the introduction of a crop rotation regime in RR soils and short-

term responses to rice straw application. We assessed the effects of these management practices 

in relation to the impact of field location, compartment and over time, as these factors are known 

to affect microbial communities in the bulk soil and rhizosphere (Castellanos et al., 2009; Lee 

et al., 2011; Peiffer et al., 2013). Our data revealed that diversity as well as community 

composition were significantly influenced by all these factors. Overall, community composition 

was most different in samples from different field locations and least affected by straw 

application. The influence of crop rotation on soil microbial community composition was 

intermediate compared to the impact of the other factors. 

The finding that field location had the strongest impact and that soils from Italy harboured the 

most distinct microbial communities is in good agreement with the fact that fields in different 

geographic regions and climatic zones are known to contribute to differences in microbial 

community composition (Brockett et al., 2012; Castellanos et al., 2009; Neufeld and Mohn, 

2005; Peiffer et al., 2013). Differences may also be due to variation in soil physicochemical 

characteristics. Variation was observed with regard to soil type, clay content, organic carbon 

content, pH and water holding capacity (supplementary table 1), factors that are known to 

influence soil microbial community composition (Bai et al., 2017; Brockett et al., 2012; Zhao 

et al., 2014, 2016). Besides, the experimental setup has possibly contributed to the observed 

differences between Italian and Philippine soils to some extent. The experiment with Italian soil 

was performed in a different greenhouse and with a different maize variety compared to the 

Philippine soils (table 1). To assess the possible impact related to this difference, a control 

experiment with RR soil from IRRI was included in the microcosm experiment that was 

performed with the Italian soils. It revealed that the methodological difference was not the 

major factor for the observed differences between Italian and Philippine soils, because this IRRI 

soil remained clearly different from the Italian soils and similar, though not identical, to the 

other IRRI soils (supplementary figure 5). 

Besides field location, compartment contributed substantially to the overall differences in soil 

microbial community composition and diversity, though the impact was weaker compared to 

field location (figure 3), likewise as observed in previous studies (Castellanos et al., 2009; 
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Peiffer et al., 2013). Moreover, differences in community composition between rhizosphere and 

bulk soil were smaller for fungal communities than for bacterial communities, as reported 

earlier (Granzow et al., 2017; Pausch et al., 2016; Uroz et al., 2016). The factor time also caused 

variation in fungal and bacterial community composition and diversity (figure 3, supplementary 

table 2). The variation over time was lower in bulk soil than in the rhizosphere (supplementary 

table 5). This was expected, as microbial communities are known to develop in the rhizosphere 

over time along with the plant (Qiao et al., 2017; Smalla et al., 2001; Wang et al., 2016). 

Changes in the bulk soil can be explained by the straw degradation process, which induces 

successional changes in microbial community composition during residue decomposition 

(Bastian et al., 2009; Conrad et al., 2012; Tardy et al., 2015). This process may also have 

contributed to the time-dependent changes observed in the rhizosphere. 

Impact of crop rotation on microbial community composition and diversity 

The effect of crop rotation on microbial community composition and diversity was evident in 

soils from all three field locations, but strongest in the Italian soils, where rice and maize were 

cultivated in monosuccession in adjacently located fields for more than 30 years (figure 3, 

supplementary table 2). In the Philippine soils, where the impact of MR crop rotation was 

evaluated in comparison to RR, changes in the crop rotation regime occurred for shorter periods 

of time, so that microbial communities may not yet have fully adapted to the altered conditions. 

Nevertheless, effects of crop rotation on microbial community composition were evident 

(figure 3). Responses to crop rotation were reported in previous studies, in which the soil 

bacterial and fungal community composition was analysed in paddy soils under different crop 

rotation regimes such as winter wheat – rice or alfalfa – rice, (Lopes et al., 2014; Zhao et al., 

2014). Moreover, our findings are in agreement with Breidenbach et al. (2015), who showed 

that the introduction of a MR crop rotation practice does not change the structure of the bacterial 

community drastically within the first three years after introducing a MR crop rotation regime.  

Two major factors may have contributed to the crop rotation dependent differences, the regular 

flooding of the fields, leading to periodically anoxic conditions, and the influence of crops that 

were repeatedly cultured in the soil. Host plant specific rhizosphere communities are known to 

develop due to plant species specific rhizodeposition processes (Berg and Smalla, 2009; 

Ladygina and Hedlund, 2010). The long-term release of plant species specific carbon 

compounds under maize versus rice monosuccession has probably supported the enrichment of 

a specific microbial community in soil. Moreover, the soil microbiota may have been affected 

by crop rotation specific management practices such as fertilisation regimes, plant residue input 

or pest control treatments (Dick, 1992; Geisseler and Scow, 2014; Hussain et al., 2009; Thiele-
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Bruhn et al., 2012). In particular the regular change between oxic and anoxic conditions in RR 

and MR soils vs. MM soils, which limits oxygen availability in soil, has to be considered, 

because oxygen availability is a well-known factor shaping microbial community composition 

(Kikuchi et al., 2007; Noll et al., 2005; Zhao et al., 2014). The relevance of this factor is 

confirmed by the finding that diverse facultative and obligate anaerobic microorganisms were 

enriched in all RR soils and were not in all cases strongly depleted in MR soils (figure 4). When 

comparing the differences in microbial community composition between soils under different 

crop rotation regimes, it is obvious that MR soils are still largely similar to RR soils, while MM 

soils are clearly distinct from the corresponding RR soil (figure 1). The introduction of flooding 

periods in an upland soil has obviously a much stronger impact on the microbial community 

composition than the extension or reduction of recurring flooding periods, as it occuring in RR 

and MR soils. Other studies also suggest that periodically anoxic conditions in MR crop rotation 

systems help to maintain a community structure similar to those in RR soils (Breidenbach and 

Conrad, 2015; Zhao et al., 2014).  

Microbial taxa responding to crop rotation 

In response to crop rotation, the highest numbers of bacterial and fungal genera were identified 

in the Italian soils, which is in agreement with the strong differences observed in NMDS plots 

and ANOSIM analyses for these soils (figure 3). In the RR soils, diverse facultative and obligate 

anaerobic bacterial genera were significantly enriched (figure 4, supplementary tables 6 A, B), 

many of them well-known as colonizers in rice field soils (Ahn et al., 2012; Edwards et al., 

2015; Itoh et al., 2013; Knief et al., 2012; Lopes et al., 2014; Lu et al., 2006). These include 

members of the phylum Verrucomicrobia (Prosthecobacter, Opitutus) as well as members of 

the classes Anaerolineae, Ignavibacteria, Negativicutes and Clostridia. Moreover, several 

genera of deltaproteobacterial sulphate and iron reducers (Geobacter, Anaeromyxobacter), 

methanotrophic bacteria (Methylocaldum, Methylomonas) and methanogenic archaea 

(Methanobacterium, Methanomassiliicoccus) were specifically enriched in RR soils.  

In MM and MR soils, several genera belonging to the classes Alphaproteobacteria, 

Gammaproteobacteria, Bacilli and Actinobacteria were specifically enriched (figure 4). These 

are commonly detected in soil, including maize field soils (Benitez et al., 2017; Li et al., 2014; 

Zhao et al., 2016) or crop rotation systems with maize (Zhao et al., 2014). Interestingly, the 

nitrifying bacterial genera Nitrospira and Nitrosococcus were enriched in the Italian RR soil, 

while the archaeal genus Nitrososphaera was enriched in the corresponding MM soil. Thus, a 

switch from bacterial to archaeal nitrification appears to be linked to RR versus MM 

monosuccession. Similarly, Breidenbach et al., (2015) observed that members of the genus 
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Nitrososphaera were enriched in a MR soil compared to RR soil. However, in some other 

studies, ammonium oxidizing archaea were found to be more abundant and active under the 

oxygen-limiting conditions in rice field soils (Azziz et al., 2016; Ke et al., 2015; Wang et al., 

2014, 2015, 2017).  

The number of fungal genera that were influenced by crop rotation was lower, which 

corresponds to the lower richness in the fungal communities. Among the fungi enriched in the 

Italian MM soil were Leotiomycetes and Glomeromycetes. Members of Leotiomycetes are 

known as maize endophytes (Wang et al., 2006) and Glomeromycetes are well-known as 

arbuscular mycorrhizal symbionts of maize, including the enriched genus Entrophospora 

(Colombo et al., 2017; Na Bhadalung et al., 2005). Actually, the genus Entrophospora was 

enriched in the MM bulk soil rather than in the rhizosphere (supplementary table 6 B). This 

fungus obviously did not undergo a symbiotic interaction with maize in our microcosm 

experiment, possibly because we applied fertiliser to provide sufficient nutrients for plant 

growth (Na Bhadalung et al., 2005). Moreover, Piriformospora was significantly enriched in 

MM bulk soil and the RR rhizosphere soil. The specific enrichment in RR rhizosphere soil 

rather than in the maize rhizosphere is surprising, as this fungus is better known for its 

association with maize (Qiang et al., 2012). Further genera known as plant endophytes were 

enriched in RR or MM soil, including Pyrenochaetopsis, Exophiala, Penicillium, Paecilomyces 

and Preussia (Bilal et al., 2017; Papizadeh et al., 2017). Besides the enrichment of beneficial 

fungi, a maize pathogen, Ustilago, was found in the maize rhizosphere in MM soil (Brefort et 

al., 2009). Taken together, these findings demonstrate very well that crop monosuccession 

regimes lead to the enrichment of host-plant specific beneficial as well as pathogenic 

microorganisms.  

Members of the Dothideomycetes and Chytridiomycetes were more specifically detected in the 

Italian RR soil than in MM soil. The Dothideomycetes are a diverse class of fungi, including 

saprobic and aquatic organisms (Hyde et al., 2013). Similarly, the RR enriched genera 

Delfinachytrium, Aquamyces, Betamyces and Udeniomyces, representing Chytridiomycetes and 

Tremellomycetes, are usually known from aquatic habitats (Brizzio et al., 2007; Letcher et al., 

2008; Vélez et al., 2013; Zhang et al., 2016). These genera are obviously capable to establish 

populations in paddy rice ecosystems. Several further genera that were significantly enriched 

in RR or MM soils and are involved in the degradation of organic material, e. g. Thermomyces, 

Chaetosphaeria, Mrakia or Udeniomyeces (Brizzio et al., 2007; Reblova and Winka, 2000; 

Zhang et al., 2015). In conclusion, these findings suggest that the specific enrichment of fungal 

taxa in MM or RR soils is partly driven by the flooding regime during rice cultivation, leading 
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to the enrichment of fungi that are known from aquatic environments, as well as by the plant, 

leading to the enrichment of plant-host specific symbionts and pathogens. Moreover, 

saprotrophic fungi are affected, probably by the supply of organic carbon compounds, which 

differ to some extent in dependence on the cultivated crop. 

Compartment-specific responses to crop rotation 

Differences in response to crop rotation were not only evident in the bulk soil, but seen to a 

similar extent in the maize rhizosphere according to ANOSIM results. Even over time, i.e. up 

to 43 or 85 days of plant development, the maize rhizosphere microbiota remained clearly 

distinct in the soils under different crop rotation regimes (supplementary table 3). This 

demonstrates that crop rotation regimes do not only affect bulk soil microbial communities, but 

also those in the plant rhizosphere. The compartment-specific analysis in STAMP revealed that 

more genera responding to crop rotation were identified in the bulk soil than in the rhizosphere 

(supplementary figure 3). However, the rhizosphere microbiota is less diverse compared to bulk 

soil (Peiffer et al., 2013), resulting in a lower number of potentially responsive taxa. A very 

clear response of the rhizosphere microbiota was not necessarily expected, because these 

microorganisms are largely controlled by plant root released carbon, which is known to shape 

the rhizosphere microbiota (Berg and Smalla, 2009, Bulgarelli et al., 2013). The high overlap 

of responsive genera in the bulk soil and rhizosphere (supplementary figure 3) indicates that 

part of the rhizosphere response is identical to that in bulk soil. This may to some extent be 

attributed to bulk soil organisms residing in the rhizosphere. Bacterial taxa occurring in bulk 

soil probably inhabit to some extent the rhizosphere without being part of a very specific plant-

supported rhizosphere microbiota, especially when considering that the transition from 

rhizosphere to bulk soil is continuous. With increasing distance from the plant root surface, the 

number of plant-supported microorganisms will gradually decrease and bulk soil 

microorganisms will increase in relative abundance. 

Impact of straw application on microbial community composition and diversity in bulk soil and 

rhizosphere  

The short-term responses to straw application were rather weak compared to the other factors 

in soils from all three field locations (figures 1 and 3). They became evident only after excluding 

the variation caused by field location, compartment, crop rotation (supplementary table 5) and 

time (supplementary table 4). In contrast to our results, Tardy et al. (2015) observed that straw 

application had a stronger impact than crop rotation when comparing grassland with cropland 

soil. The higher impact of crop rotation in our study can in case of the Italian soils be explained 
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by the highly different cropping conditions for rice versus maize, which induced substantial 

changes in the microbial communities. At the Philippine sites, the strength of the impact of crop 

rotation and straw application was roughly equal, at least for the fungal communities, largely 

due to the lower impact of crop rotation at these sites (figure 3). After the complete dissection 

of the datasets, the response of the microbial community to straw application became more 

evident (supplementary table 4). 

Straw application affected the fungal communities more strongly than the bacterial 

communities (figure 5, supplementary table 5). Saprotrophic fungi are known as effective 

decomposers contributing to the decomposition of organic matter and thus boost carbon 

mineralisation in soil (Crowther et al., 2012; Dini-Andreote et al., 2016; Kjøller and Struwe, 

2002). Moreover, fungi have been reported to be the dominant group involved in rice straw 

degradation in RR soils under oxic conditions (Nakamura et al., 2003). We observed a straw-

dependent enrichment of genera in the classes Sordariomyces and Dothideomycetes (family 

Sporormiaceae) in the Italian soils. These are known to play a role in the degradation of plant 

residue (Phukhamsakda et al., 2016; Tardy et al., 2015; Zhao et al., 2013). Remarkably, the 

number of fungal genera that were identified as significantly enriched was higher in treatments 

without straw than in treatments with straw (supplementary table 6 F). This was observed in 

the rhizosphere as well as in bulk soil. Selective grazing may have affected the fungal 

populations in straw-supplemented soils due to the presence of high amounts of organic 

substrate and thus higher overall biological activity, possibly leading to a decrease in relative 

abundance of fungal taxa in the straw-supplemented soils. To elucidate this phenomenon in 

more detail, absolute abundances of selected taxa would have to be evaluated and 13C-straw 

labelling experiments could be performed to study the flow of carbon into the microbial food 

web in more detail.  

In the bacterial community, straw application resulted in an enrichment of diverse bacterial 

genera (Table 2). Several of them are known as straw or plant residue degrading organisms, 

including members of Verrucomicrobiae, Actinobacteria, Bacteroidetes or the different classes 

of Proteobacteria (Bernard et al., 2007; Fan et al., 2014; Pascault et al., 2013; Semenov et al., 

2012). The bacterial genera that were enriched by straw in the rhizosphere belong to phyla and 

classes that are well known to colonize the (maize) rhizosphere (Bulgarelli et al., 2013; Da 

Rocha et al., 2013; Hernández et al., 2015; Peiffer et al., 2013). Most genera were detected in 

either the rhizosphere or the bulk soil of a soil, but not in both compartments. This compartment 

specific response indicates that rhizosphere-inhabiting microorganisms may profit from plant-

derived carbon as well as carbon available from straw application. This was proposed earlier 
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by Shrestha et al. (2011), who studied the assimilation of rice straw in the rhizosphere of rice 

plants.  

ANOSIM results suggested that the application of straw can induce stronger changes in the 

rhizosphere microbial communities than in bulk soil communities (Figure 5, supplementary 

table 5). STAMP analysis confirmed this in case of the Tarlac MR soil by identifying a higher 

number of genera being significantly enriched in the rhizosphere (Table 2). A stronger response 

to straw in the rhizosphere would not necessarily be expected, as the rhizosphere microbiota is 

considered to be mainly influenced by the plant (Berg and Smalla, 2009; Bulgarelli et al., 2013). 

However, the availability of easy to degrade plant root exudates may have stimulated rice straw 

degradation in the rhizosphere. These processes may have resulted in stronger shifts in the 

microbial community composition upon straw application in the rhizosphere. Such rhizosphere 

priming effects are well known and can improve the plant nutrient status by releasing nutrients 

upon mineralization of more difficult to degrade organic carbon compounds (Huo et al., 2017). 

Conclusions 

Field location, followed by crop rotation, incubation time and compartment were identified as 

main factors influencing microbial community composition and diversity, while the addition of 

straw had a minor effect. The analysis of the Italian soils revealed that long-term 

monosuccessionally managed soils developed substantial differences in microbial community 

composition, which could be well explained by alterations in oxygen availability in soil and the 

different cultivated crops, leading to the enrichment of plant species-specific microbial 

mutualists as well as pathogens. Moreover, the plant species-specific carbon supply into the 

soil most likely influenced the heterotrophic soil microbial community. Soils under MR crop 

rotation harboured microbial communities that were more alike those in rice soil than in maize 

soil. Obviously, the anaerobic microbial population is largely maintained in MR soils. 

Nevertheless, differences between RR and MR were mostly due to a depletion of anaerobic 

microorganisms in the MR soils. This is in agreement with the expectation that the ecologically 

more friendly MR crop rotation practice in comparison to rice monosuccession leads to a 

reduction of greenhouse gas emissions (Weller et al., 2015). The short-term responses to the 

addition of straw became most evident after exclusion of all other factors assessed in this study. 

The fungal community responded more strongly than the bacterial community, but in contrast 

to the bacterial community more taxa of the fungal community were depleted in relative 

abundance in the presence of straw than enriched. It will be of interest to assess in the future 

also the longer-term responses of the soil and rhizosphere microbiota to recurring straw 

applications and microbial carbon cycling in such agricultural systems. Both management 
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practices, crop rotation and straw application, affected not only the microbial community in the 

bulk soil, but to roughly similar extent those in the rhizosphere. This indicates that the 

rhizosphere microbiota is influenced by crop rotation and may not only profit from root-derived 

carbon. Actually, this influence may increase with decreasing distance to the root, as the 

transition from the rhizosphere to bulk soil is continuous. 
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Supplementary figures and tables 

Supplementary figures 

 
Supplementary Figure 1: Stacked bar diagrams showing the relative abundance of bacterial phyla (A) and fungal 
classes (B) in samples from fields undergoing different crop rotation regimes. Phyla and classes with < 2 % relative 
abundance are grouped and displayed as “Other”. 
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Supplementary figure 2: Sample clustering of bacterial (A) and fungal (B) communities according to the UPGMA 
algorithm based on Bray-Curtis dissimilarities between groups of samples. The heat maps show log(x+1) 
transformed relative abundances of the bacterial and fungal classes, sorted by decreasing relative abundance. For 
the heat map, the OTUs were grouped at class level. Samples representing different time points were grouped and 
relative abundances were calculated based on summarized read numbers. Unclassified OTUs were excluded from 
the analysis. The heatmap was constructed in R using the package Heatmap3.  

The clustering of groups of samples reveals that bacterial and fungal communities were well 
separated according to field location, and the most distinct samples were those from the Italian 
field sites. A clear separation according to field location was also observed for the bacterial 
communities in the soils from the two different Philippine sites, but this separation was weaker 
for the fungal communities. The impact of crop rotation was of particular strength in the Italian 
soils. The differences between compartments are evident, especially in the Italian soils.  
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Supplementary Figure 3: Venn diagrams displaying numbers of compartment specific and compartment-
independently enriched bacterial and fungal genera in dependence on crop rotation. The impact of crop rotation 
was analyzed in MM versus RR (Italy) or MR versus RR soils (IRRI and Tarlac) using the STAMP algorithm (list 
of genera in supplementary tables 6 C, D). 

  



Results 

78 
 

 

Supplementary Figure 4: Radar charts showing the number of bacterial (A), (B) and fungal (C), (D) genera in the 
different classes that were identified as significantly enriched by crop rotation in the different compartments (BS 
= bulk soil, RH = rhizosphere) based on STAMP analysis. Plots are shown for Italian MM soil (A), (C) and RR 
soil (B), (C). Displayed are classes for which at least three different genera were identified as specifically enriched 
in one or the other soil. 
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Supplementary Figure 5: Ordination plots showing the influence of field location, crop rotation, compartment, 
straw treatment and time on bacterial (A) and fungal (B) community composition. NMDS plots based on Bray-
Curtis similarities were calculated based on relative OTU abundance. Results of ANOSIM are shown with P < 
0.05*, P < 0.01**, P < 0.001*** for all grouping factors.  

In comparison to figure 1, these plots include results obtained from “IRRI (Germany)” samples, 
which were collected earlier at the IRRI site from RR soils, shipped to Germany and included 
in the microcosm experiment performed with soils from Italy. This was done to evaluate the 
potential impact of the experimental study site location and the maize cultivar. The plots reveal 
that IRRI (Germany) samples cluster distinctly but still closely to those from IRRI, especially 
in case of the bacterial community. This demonstrates that we cannot exclude that the 
conductance of the microcosm experiments at two different locations has contributed to some 
extent to the observed differences between the Italian and Philippine field sites. However, the 
still very distinct clustering of IRRI (Germany) samples from Italy samples demonstrates that 
other site-specific factors contributed more substantially to the site-specific differences. A 
major effect of the maize cultivar can be excluded, as the rhizosphere samples clustered in all 
cases very closely together with the corresponding bulk soil samples in these plots. 
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Supplementary tables 

Supplementary Table 1: Soil parameters of homogenized soil samples, analysed before the start of the experiment. 
Measurements of Nmin, C/N and clay fraction were performed in duplicates. Mean values ± standard error are 
shown. 

  pH  Nmin 
(mg/kg) 

N 
(%) 

C 
(%) 

C:N Corg 
(%) 

Soil 
type 

Clay 
fraction 
(%) 

Water 
holding 
capacity 
(%) 

Italy RR 4.9 24.97 
± 1.79 

0.07 0.98 12.71 
± 0.24 

0.98 loam  9.51 
±0.47 

41.8 

Italy MM 4.2 27.63 
± 0.46 

0.06 0.74 11.11 
± 0.89 

0.75 sandy 
loam 

13.22 
±0.34 

43.9 

IRRI RR  5.7 6.81 
± 0.14 

0.14 1.73 11.89 
± 0.51 

1.74 silty 
clay 

59.56 
±0.35 

79.9 

IRRI MR 5.7 4.71 
± 0.05 

0.15 1.81 11.94 
± 0.86 

1.82 silty 
clay 

60.17 
± 0.04 

72.7 

Tarlac RR  5.8 3.89 
± 0.02 

0.06 0.77 11.67 
± 0.22 

0.77 loam 10.19 
± 0.08 

60.3 

Tarlac MR 5.2 4.40 
± 0.09 

0.06 0.95 13.96 
± 0.01 

0.96 silty 
loam 

12.87 
± 0.09 

53.9 
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Supplementary Table 3: Influence of crop rotation on microbial community composition according to R-values 
derived from an ANOSIM. P < 0.001***, P < 0.01**, P < 0.05*. 

 Time 0 8 15 29 43 85 

16
S

 r
R

N
A

 g
en

e 
se

q
u

en
ce

 d
at

a 

Italy bulk soil 1*** 1*** 1*** 1*** 1*** 1*** 

Italy 
rhizosphere  1*** 1*** 0.936*** 1*** 1*** 

IRRI bulk soil 0.456**  0.531***  0.536***  

IRRI 
rhizosphere   0.826***  0.287**  

Tarlac bulk 
soil 0.442**  0.486***  0.143*  

Tarlac 
rhizosphere   0.462***  0.510***  

IT
S

1 
se

q
u

en
ce

 d
at

a 

Italy bulk soil 0.509*** 0.882*** 0.793*** 0.865*** 0.843*** 0.714*** 

Italy 
rhizosphere  0.119* 0.514*** 0.950*** 0.428*** 0.766*** 

IRRI bulk soil 0.153*  0.164*  0.174*  

IRRI 
rhizosphere   0.282**  0.310**  

Tarlac bulk 
soil 0.189**  0.217**  0.214**  

Tarlac 
rhizosphere   0.222**  0.436***  

 

The calculation of mean R-values from this table and comparison by ANOVA demonstrated 
that the response to crop rotation was significantly stronger in Italian soils than in Philippine 
soils (P < 0.001) and that fungal communities showed a stronger response than bacterial 
communities (paired t-test, P < 0.005).  
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Supplementary Table 4: Influence of straw mulching on microbial community composition according to R-values 
derived from an ANOSIM. P < 0.05*. 

 
 

Time 0 8 15  29 43 85 
16

S
 r

R
N

A
 g

en
e 

se
q

u
en

ce
 d

at
a 

B
u

lk
 s

oi
l 

Italy RR 0.073 0.583* 0.438*  0.198* 0.219* 0.677* 

Italy MM 0.063 0.542* 0.406*  0.260* 0.260* 0.468* 

IRRI RR 0.260* 
 

0.031  
 

0.960* 
 

IRRI MR 0.239* 
 

-0.125  
 

0.510* 
 

Tarlac RR 0.146 
 

0.125  
 

-0.010 
 

Tarlac MR 0.615* 
 

0.072  
 

0.135 
 

R
h

iz
os

p
h

er
e 

 

Italy RR 
 

-0.021 0.844*  0.448* 0.388* 0.760* 

Italy MM 
 

0.406* 0.635*  0.698* 0.593* 0.135 

IRRI RR 
  

0.292*  
 

-0.063 
 

IRRI MR 
  

-0.073  
 

0.844* 
 

Tarlac RR 
  

0.615*  
 

0.427* 
 

Tarlac MR 
  

1*  
 

0.885* 
 

IT
S

1 
se

q
u

en
ce

 d
at

a B
u

lk
 s

oi
l 

Italy RR 0.583* 0.729* 0.854*  0.365* 0.323* 0.385* 

Italy MM 0.083 0.500* 0.395*  0.177* 0.562* 0.281 

IRRI RR 0.970* -0.031  0.948* 

IRRI MR 0.281* 
 

0.521*  
 

0.447* 
 

Tarlac RR 0.896* 
 

0.354  
 

0.656* 
 

Tarlac MR 0.875* 
 

0.348  
 

-0.021 
 

R
h

iz
os

p
h

er
e 

Italy RR 
 

0.479* 0.062  -0.166 0.479* 1* 

Italy MM  0.656* 0.604*  1* 0.875* 1* 

IRRI RR  
 

0.646*  
 

0.156 
 

IRRI MR  
 

0.177*  
 

1* 
 

Tarlac RR 
  

0.218  
 

0.083 
 

Tarlac MR 
  

0.792*  
 

1* 
 

 

The calculation of mean R-values from this table (including only significant and thus reliable 
R-values) and comparison by ANOVA demonstrated that fungal communities showed a 
stronger response than bacterial communities (P < 0.05) and that responses were stronger in the 
rhizosphere than in bulk soil (P < 0.01). 
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Supplementary Table 5: Influence of straw treatment and time point of sampling on bacterial and fungal 
community composition. R-values based on ANOSIM are presented with P < 0.001***, P < 0.01**, P < 0.05*.  

Bacteria Fungi  
Straw Time  Straw Time  

Italy RR bulk soil 0.088** 0.472*** 0.304*** 0.145*** 

Italy RR rhizosphere 0.107** 0.684*** 0.330*** 0.326*** 

Italy MM bulk soil 0.109** 0.444*** 0.181*** 0.045 

Italy MM rhizosphere 0.051 0.691*** 0.645*** 0.222*** 

IRRI RR bulk soil 0.055 0.569*** 0.191** 0.352** 

IRRI RR rhizosphere 0.001 0.696** 0.046 0.119** 

IRRI MR bulk soil -0.011 0.579*** 0.223** 0.188** 

IRRI MR rhizosphere 0.075 0.913*** 0.410** 0.312** 

Tarlac RR bulk soil 0.050 0.229*** 0.320** 0.249** 

Tarlac RR rhizosphere 0.175* 0.605*** 0.103 0.479*** 

Tarlac MR bulk soil 0.085 0.310*** 0.374*** 0.139* 

Tarlac MR rhizosphere 0.528** 0.806*** 0.694*** 0.463*** 

 

The Supplementary table 6 of this article can be found online at: 

https://www.frontiersin.org/articles/10.3389/fmicb. 2018.01295/full#supplementary-material.  
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Abstract 

Crop rotation between paddy rice and maize is of increasing relevance because of ecological 

and economic reasons. However, introduction of upland crops in paddy fields often leads to 

carbon and nitrogen loss due to desiccation crack formation. Straw application can reduce crack 

formation and acts as fertilizer. The temporal dynamics of straw degradation under oxic 

conditions in paddy soils undergoing crop rotation have been scarcely studied. We identified 

the straw degrading microorganisms comparatively in the bulk soil and rhizosphere of maize 

by DNA-stable isotope probing with 13C-labelled rice straw and amplicon sequencing of the 

16S rRNA gene and ITS1 region. Moreover, the degradation process in bulk soil was 

investigated over time. Straw degradation was performed by aerobic microorganisms and 

showed a clear temporal succession. In the initial phase, fast growing bacteria became labelled, 

followed by the labelling of fungi, known to degrade more complex carbon compounds. In the 

rhizosphere, partly different microorganisms were identified as labelled than in bulk soil, 

indicating that the rhizosphere hosts specific taxa that benefit from straw. The label intensity in 

the rhizosphere was lower than in bulk soil, indicating that rhizosphere microorganisms use 

straw as additional carbon source with lower efficiency besides the rhizodeposits. 
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Introduction 

Crop rotation regimes alternating between rice cultivation during the wet season and maize 

cultivation during the dry season represent an interesting alternative to rice monoculture 

systems in Asia. They allow to reduce water consumption and methane emissions and to meet 

the increased demand of maize for poultry fattening and biofuel production (Fuhrmann et al., 

2018; Qiu et al., 2009; Tuong et al., 2005). However, crop rotation can lead to crack formation 

and hence to increasing emissions of the greenhouse gas nitrous oxide as well as a loss of water, 

carbon and nitrogen (He et al., 2015; Weller et al., 2015). Straw mulching is considered to 

reduce crack formation and thus to maintain soil moisture (Cabangon and Tuong, 2000).  

The effect of rice straw application on microbial communities has been investigated in paddy 

soils under rice monoculture, as rice straw application is a traditional fertilization practice 

(Asari et al., 2007).  Shrestha et al., (2011) and Conrad et al. (2012) showed that the introduction 

and degradation of rice straw in paddy soil under flooded conditions leads to increased methane 

(CH4) production and an alteration in bacterial and archaeal community composition. The 

degradation of rice straw under anoxic conditions results in the formation of acetate, formate 

and H2 as intermediate products (Shrestha et al., 2011). Further degradation of these products 

leads to the formation of carbon dioxide (CO2) and CH4 as final products through various 

fermenting bacteria and methanogenic archaea. A significantly higher CH4 production by 

methanogens was observed upon straw addition in bulk soil of paddy soil as well as in the rice 

rhizosphere in comparison to soil incubated without straw (Shrestha et al., 2011; Watanabe et 

al., 1998). Besides methanogens, several bacterial taxa like Clostridium, Proteobacteria, 

Bacteroidetes, Chlorobi, Acidobacteria, Actinobacteria, Sphingobacteria, Cyanobacteria and 

Bacilli were identified as part of the straw degrading community in bulk soil of flooded rice 

soils (Rui et al., 2009). Interestingly, Lee et al. (2012) observed growth of acetoclastic and 

hydrogenotrophic methanogens in rice field soil even under non-flooded conditions upon rice 

straw application. The microbial community involved in straw degradation in paddy soil 

undergoing crop rotation, which is exposed to non-flooded conditions for a longer period of 

time than paddy soil managed under monoculture, was not investigated yet. Thus, the question 

about the microorganisms involved in the straw degradation process arises and whether 

anaerobic microorganisms are still involved in this process in such soils. 

Rice straw consists of rather easily degradable carbon compounds, e. g. polysaccharides such 

as cellulose and hemicellulose, which serve as valuable carbon source for different soil 

microorganisms, as well as of more complex compounds such as lignin, which is only degraded 

by specialized microorganisms (Watanabe et al., 1993). Pascault et al. (2013) and Bernard et 
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al. (2007) observed that the addition of straw leads to a rapid and durable stimulation of 

copiotrophic fresh organic matter (FOM) degrading populations. Copiotrophs induced the straw 

degradation process, because they preferentially consume labile organic carbon and show high 

growth rates when resources are abundant. In contrast, oligotrophs became involved in the straw 

decomposition process at later time points, because they exhibit slower growth rates and are 

able to degrade more complex straw components, which are not readily metabolised by the 

copiotrophs (Fierer et al., 2007; Meyer, 1994). Thus, microbial groups involved in FOM 

degradation undergo a temporal succession. To identify the microorganisms involved in straw 

degradation in non-flooded paddy soil, it is thus important to investigate the process at different 

time points. 

The bulk soil and rhizosphere are characterized by different physicochemical conditions, and it 

is generally accepted that rhizosphere microorganisms benefit from root released carbon 

(Hinsinger et al., 2009; Philippot et al., 2013). Shrestha et al. (2011) were the first who analysed 

the straw degrading bacterial and archaeal community in the rhizosphere of rice and observed 

that mainly members of Clostridium cluster I, III and XIVa as well as methanogens like 

Methanosarcina were responsible for straw degradation in the rhizosphere. It can be expected 

that microorganisms involved in rice straw degradation in the rhizosphere are to some extent 

different to those in bulk soil, but studies evaluating this aspect are lacking.  

The aim of this study was to investigate the identity and temporal succession of the straw 

degrading bacterial and fungal communities in a paddy soil undergoing rice-maize crop rotation 

during the period of maize cultivation. Moreover, we addressed the question whether the 

rhizosphere microbiota profits from straw derived carbon and whether a different community 

is involved in the process in comparison to the bulk soil. We hypothesized that i) straw 

degradation under oxic conditions in a paddy soil undergoing crop rotation is mainly conducted 

by aerobic microbes and to less extent by anaerobic microorganisms ii) straw degradation 

undergoes a temporal succession and can be classified into different stages, according to the 

stimulation of different taxa at different stages of straw degradation iii) the active straw 

degrading community in the rhizosphere differs from that in the bulk soil. To verify these 

hypotheses, we performed a microcosm experiment, in which we added >97 atom-% labelled 
13C rice straw to soil from a paddy field undergoing rice-maize crop rotation since four years. 

The active straw degrading microbial community in bulk soil and rhizosphere samples was 

identified using a DNA stable isotope probing (SIP) approach in combination with amplicon 

sequencing of the bacterial and fungal marker genes, i. e. the 16S rRNA gene and ITS1 region, 

respectively. 
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Material and methods 

Study site and experimental set up 

The soil sampling site was located at the International Rice Research Institute (IRRI) in Los 

Banos, Philippines (14°11’N, 121°15’E). For the microcosm experiment, soil was taken from 

a field that was managed under crop rotation for four years, with maize (variety Pioneer 90T80) 

in the dry season and paddy rice (variety RC 222) in the wet season. The microcosm experiment 

was conducted in a greenhouse at IRRI during the dry season in December 2016. Before the 

start of the experiment, soil was air dried and well homogenized. The soil was re-moistened, 

mixed with unlabelled milled rice straw (6 kg straw * m-3) and used to fill plastic pots up to 1.2 

L. For the bulk soil labelling experiment, 20 g of dry weight soil was mixed with 0.13 g 

(corresponding to 6 kg straw * m-3) 13C-labelled straw and put into a nylon bag (11 µm mesh 

size). Bags were buried in the middle of the pots, which had been filled with the homogenized 

soil and unlabelled straw. Nearly fully labelled 13C-straw (Oryza sativa straw, > 97 atom % 13C, 

C : N ratio = 40) was obtained from Isolife bv (Wageningen, The Netherlands). For the 

rhizosphere samples, pots were filled with 1.2 l soil, which was mixed with either 13C-labelled 

straw or unlabelled straw, and maize (variety Pioneer 90T80) was sown. Rhizosphere samples 

were collected 21 days after seeding. Bulk soil sampling started at time point 0, followed by 

sampling after 3, 7, 14, 21, 28 and 35 days. The experiment was conducted in triplicates for all 

treatments (maize with 13C-labelled and unlabelled straw, bulk soil with 13C-labelled and 

unlabelled straw) and every time point. The maize plants and bulk soil pots were watered every 

day and received basal fertilization of 50 kg P2O5 ha-1 and 30 kg K2O ha-1 at seeding. Nitrogen 

was used for fertilization in three split applications with 30 kg urea ha-1 basal fertilization at 

seeding and 50 kg urea ha-1 at 29 days after seeding. Collection of the soil and rhizosphere 

samples and storage until further analyses was done as described before (Maarastawi et al., 

2018). 

Nucleic acid extraction  

DNA extraction from soil samples was performed using a modified phenol chloroform protocol 

according to Töwe et al. (2011). To obtain sufficient DNA for DNA-SIP from the soil samples, 

which had a very high clay content, a pre-extraction with sodium metaphosphate (SMP) was 

performed according to (Pietramellara et al., 2001). Therefore, 0.6 g of moist soil was mixed 

with 700 µL of nuclease-free water, 100 µL of 0.1 M SMP and 0.5 g of zirconium silicon beads. 

Beat beating was performed for 2 min at 1800 rpm using a Fastprep96TM instrument (MP 

Biomedicals, Germany). After centrifugation for 1 min at 10.000 x g and  
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4 °C, the supernatant was transferred to a new tube, while the pellet was resuspended in 600 µL 

of nuclease-free water and 100 µL of 0.1 M SMP. Beat beating was repeated for 1 min, the 

sample centrifuged and the supernatant transferred to a fresh tube, resulting in two extracts per 

sample. For the further extraction according to Töwe et al. (2011), 550 µL of 

hexadecyltrimethylammonium bromide (CTAB) extraction buffer, 55 µL of 10 % sodium 

dodecyl sulfate, 55 µL of 10 % lauroyl sarcosine, 550 µL of phenol: chloroform: isoamyl 

alcohol (25:24:1) (pH 7.5) and 0.5 g of zirconium silicon beads were added to the supernatant. 

After another beat beating step for 1 min at 1800 rpm, which was introduced to increase DNA 

recovery, the samples were centrifuged for 10 min at 16.000 x g and 4°C. The upper, aqueous 

phase was transferred into a new tube and the chloroform extraction as well as the precipitation 

step was conducted according to Töwe et al. (2011). Pellets of the same sample were combined 

during the ethanol washing step. Therefore, one of the two pellets was resuspended in 700 µL 

ice cold 96 % ethanol and the suspension transferred to the second tube. To ensure complete 

transfer of the DNA, the procedure was repeated with 400 µL of ice cold 70 % ethanol. After 

centrifugation (10 min at maximum speed) and removal of the supernatant, the pellets were air-

dried, the DNA resuspended in 30 µL of nuclease-free water and stored at -20 °C.  

Isopycnic centrifugation, gradient fractionation and DNA precipitation 

Gradient preparation and density centrifugation were performed according to Lueders et al., 

2004. DNA was spun in a CsCl gradient with an average density of 1.72 g mL-1. The 

centrifugation medium consisted of 4.8 mL CsCl (1.85 g mL-1), 1 mL gradient buffer (1 mM 

EDTA, 0.1 M Tris-HCL (pH 8.0) and 0.1 M KCl) and DNA extract (2 µg DNA). The samples 

were centrifuged in 5.1 mL polypropylene quick-seal tubes in a VTI 65.2 vertical rotor using 

the Optima XPN 80 centrifuge (all from Beckmann Coulter Inc., USA). Centrifugation was 

performed for 39 h at 177.000 x g and 20 °C. Soil samples from triplicate 12C-treatments were 

pooled, extracted and fractionated as a composite sample, likewise as done by Kramer et al. 

(2016), whereas samples treated with 13C-rice straw were kept as individual replicates per time 

point and compartment. Before 12C-sample pooling, the homogeneity of the replicates was 

validated based on denaturing gradient gel electrophoresis (DGGE) (data not shown). 

Gradient fractionation was performed according Neufeld et al., (2007) with minor 

modifications. Gradients were fractionated using a peristaltic pump (ISM850, Ismatec, 

Switzerland) with a flow of approximately 480 µL min-1 to fractionate samples into 12 equal 

fractions of approximately 400 µL. Displacement of the gradient medium was done by injecting 

nuclease-free water coloured with loading dye (0.25% bromphenol blue, 5 mM NaOH, 4 M 
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urea). The density was measured refractometrically with an AR200 digital refractometer 

(Reichert, USA) using 50 µl of each fraction.  

For DNA precipitation, all fractions were mixed with two volumes of PEG solution (30 % PEG 

6000, 1.6 M NaCl) and 1 µL of nuclease free glycogen from mussels (Sigma-Aldrich, 

Germany), which had been tested for the absence of nucleic acids before via PCR. After 2 h of 

incubation at room temperature, samples were centrifuged for 30 min at maximum speed, 

supernatants were removed and pellets were washed with 150 µl of ice cold 70 % ethanol. 

Finally, pellets were resuspended in 30 µL of nuclease-free water. To ensure complete 

resuspension of the pellets, tubes were shaken at 1400 rpm on a mixing block (MB-102) 

(BIOER, China) for 1 min at 30 °C. Subsequently, the DNA concentration of all fractions was 

quantified using the QuantiFluor dsDNA System (Promega, Madison, USA) on a Qubit® 2.0 

Fluorometer (ThermoFisher, USA). 

Polymerase chain reactions (PCR) and DGGE of gradient fractions 

For the comparison of the bacterial and fungal community composition in the individual SIP 

gradient fractions via DGGE, the bacterial 16S rRNA gene and the fungal ITS1 region were 

PCR amplified. The 50-µL PCR reaction contained 1x Herculase II reaction buffer, 50 mM 

MgCl2, 250 µM dNTPs, 0.8 µg µL-1 BSA, 1 U Herculase Fusion DNA Polymerase (Agilent 

Technologies, Santa Clara, USA), 1 µL DNA template and 0.25 µM of the primers 341fgc and 

907r (Muyzer et al., 1995) or ITS1fgc and ITS2 (Gardes and Bruns, 1993; White et al., 1990). 

The thermal cycling protocol consisted of  an initial denaturation at 95°C for 2 min, denaturation 

at 95 C for 20 s, annealing at 54 °C for the 16S rRNA gene and 50 °C for the ITS1 region for 

20 s, elongation at 72 °C for 20 s and final elongation at 72 °C for 3 min.  

DGGE was performed using a DCode™ system (BioRad Laboratories GmbH; Munich, 

Germany). A 6.5 % polyacrylamide gel (acrylamide:bisacrylamide 37.5:1) with a denaturing 

gradient of formamide and urea ranging from 35 to 70 % for 16S rRNA gene amplicons and 

from 20 to 45 % for ITS1 amplicons was used. Electrophoresis was carried out in 0.5x TAE 

buffer (pH 7.4) for 16.5 h at 60 °C and 80 V (Muyzer et al., 1993). The gel was stained with 5 

µl of GelGreen (1:10.000) in 50 mL of 1 x TAE buffer for 60 min and images were taken using 

the GelDocTM XR system (BioRad Laboratories GmbH; Munich, Germany). 
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Amplicon sequencing and DNA sequence analysis  

For amplicon sequencing 16S rRNA genes were amplified using the primer set 515F and 806R, 

targeting a 291 bp product of the V4-V5 region of the 16S rRNA gene from Archaea and 

Bacteria (Bates et al., 2011). The fungal ITS1 region was amplified using the primer set ITS1F 

and ITS2 (Gardes and Bruns, 1993; White et al., 1990) to amplify a 180 bp product of the ITS1 

region of fungi. Illumina amplicon sequencing was performed with one heavy and one light 

DNA-SIP fraction of each sample, as identified via DGGE. In each case, we selected the heavy 

and light fraction with the highest DNA concentration. This was always fraction 9 (light 

fraction) and 4 (heavy fraction). Amplicon sequencing and DNA sequence analysis were 

performed as described in Maarastawi et al. (2018). Only quality filtering was slightly modified 

by removing reads with an expected number of base call errors exceeding 0.3. Read files 

obtained after quality filtering were submitted to the European Nucleotide Archive (ENA) 

database under the project accession number PRJEB23769. 

Identification of enriched taxa 

To identify 13C-labelled genera, the relative abundance of each genus in each analysed gradient 

fraction was used to calculate the enrichment factor (EF) according to Kramer et al. (2016): 

EF = 13C-heavy / 13C-light – 12C-heavy / 12C-light. 

Taxa that showed an EF ≥ 1 and a relative abundance of ≥ 0.1 % in the 13C-labelled heavy 

fraction were considered as 13C-labelled. Three further criteria were applied to ensure that taxa 

were indeed labelled, as postulated in Dallinger and Horn (2014): i) the relative abundance of 

a taxon in the 13C-heavy fraction had to be higher than the relative abundance in the 13C-light 

fraction, ii) the relative abundance of a taxon in the 13C-heavy fraction had to be higher than 

the relative abundance in the 12C-light fraction, III) the EF calculated for a taxon at day 0 had 

to be lower than the EF at the other sample time points. 

Statistical analysis 

Statistical analyses were conducted in R using the packages Vegan (Oksanen et al., 2008) and 

Phyloseq (McMurdie and Holmes, 2013). For all OTU-based analyses (i.e. Chao1, NMDS 

plots, ANOSIM), the original OTU table was filtered to contain sequences that were 

taxonomically classified as Fungi, or Bacteria and Archaea. OTUs that appeared with one or 

two reads in only one sample were discarded. For alpha-diversity estimation, evenly rarefied 

OTU tables were used. Chao1 indices were calculated and significant differences in bacterial 

and fungal alpha-diversity between the different incubation periods or compartments (bulk soil 
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versus rhizosphere at time point 21) were tested with non-parametric Kruskal-Wallis tests, as 

the data were non-normally distributed according to a Shapiro-Wilk test. 

The microbial community composition was analysed by ordination of samples in NMDS plots 

based on Bray-Curtis dissimilarity matrices. For NMDS plots, the rarefied OTU tables were 

further pre-processed, so that sparse OTUs were removed. Therefore, a threshold of 0.3 was 

chosen, meaning that an OTU not found in at least 30 % of the samples was removed as 

statistically uninformative. To test for significant differences between groups of samples, 

ANOSIM was performed in Vegan with 999 permutations based on Bray-Curtis distances.  

Differences between the EFs from different time points and between fungal and bacterial data 

were tested using a two-way analysis of similarity (ANOVA). A one-way ANOVA was used 

to further evaluate the differences between individual time points within one domain. Likewise, 

differences in the EFs of different compartments were evaluated based on one-way ANOVA. 

All ANOVAs were conducted after performing a Shapiro-Wilk test to check the data for normal 

distribution and Levene´s test to evaluate homogeneity of variances.   
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Results 

Evaluation of successful 13C-labelling of the bacterial and fungal community 

In microcosm experiments, 13C-labelled rice straw was added to soil from a paddy field 

undergoing rice-maize crop rotation. Bulk soil samples were retrieved after 3, 7, 14, 21, 28 and 

35 days of incubation time, while rhizosphere samples were taken after 21 days. The 

incorporation of 13C-carbon from labelled rice straw into the DNA of bacterial and fungal 

populations and the selection of representative heavy and light fractions for further detailed 

analyses after ultracentrifugation and gradient fractionation was done based on denaturing 

gradient gel electrophoresis  using the 16S rRNA gene  and ITS1 region  as markers.  

For all time points and compartments, distinct DGGE bands were observed in the heavy versus 

light fractions of the 13C-samples. Such a shift was not observed in DGGE patterns of the 

corresponding 12C-controls. A comparison of DGGE pattern between 13C-heavy faction and 
12C-heavy fraction revealed an enrichment of specific bands in the 13C-heavy fraction, 

confirming successful labelling (supplementary Figure 1). In order to identify the rice straw 

degrading bacterial and fungal taxa in the bulk soil samples and the rhizosphere of maize, 

amplicon sequencing was performed with a representative heavy and light fraction per 13C-

labelled and 12C-labelled sample targeting the 16S rRNA gene and ITS1 region, respectively. 

After quality filtering and pre-processing, about 18.500 reads per fraction of 16S rRNA gene 

sequences and about 18.100 reads per fraction of the ITS1 region were used for further analyses.  

Evaluation of the effect of time and compartment on straw degrading communities 

Detailed analysis of the microbial community composition in samples treated with labelled 

straw indicated that the bacterial and fungal community composition of the active straw 

degrading microorganisms, detected in the 13C-heavy fractions, changed significantly over time 

(bacteria: R = 0.704, P < 0.001; fungi: R = 0.714, P < 0.001), while this effect was minor in 
13C-light fractions (bacteria R = 0.21, P < 0.05; fungi R = 0.103, P < 0.05, Figure 1). In contrast, 

the samples of the 13C-light fractions were mainly separated according to compartment 

(rhizosphere and bulk soil) in NMDS plots (bacteria: R = 0.731, P < 0.001; fungi: R = 0.968, P 

< 0.001; Figure 1).  
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Figure 1: Ordination plots showing the influence of compartment and time on the active straw degrading (13C-
heavy fraction) and non-straw degrading (13C-light fraction) bacterial (A, B) and fungal (C, D) community 
composition in 13C-straw incubated samples. NMDS plots are based on Bray-Curtis dissimilarities, which were 
calculated from relative OTU abundances. Results of ANOSIM are shown with P < 0.05* and P < 0.001*** for 
the grouping factors. 

As expected, the Chao1 richness was consistently lower in the 13C-heavy fractions compared to 

the corresponding 13C-light fractions for bacterial as well as for fungal communities. 

Noteworthy, the bacterial richness was higher than the fungal richness (Table 1). A comparison 

of the Chao1 richness of bulk soil and rhizosphere revealed that the bacterial richness in the 

rhizosphere of the 13C-heavy fraction was slightly higher than in bulk soil (P = 0.049). The 

opposite, a slightly but not significant higher Chao1 richness in the bulk soil, was observed for 

fungal communities (P = 0.126). Furthermore, richness underwent a temporal dynamic in 

bacterial as well as in fungal communities in the 13C-heavy fractions (P = 0.036 and P = 0.018, 

respectively; Table 1) with increasing richness in the 13C-heavy fractions over time, before it 

decreased again. This was not evident in the 13C-light fraction.  
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Identification of the straw degrading microorganisms based on enrichment factor analysis  

To identify the active straw degrading microbial taxa, the EF was calculated according to 

Kramer et al. (2016) for each genus based on read abundances in all four analysed fractions 

(12C-heavy, 12C-light, 13C-heavy and 13C-light). The EF reflects the ratio between labelled and 

unlabelled members of a specific taxon. The higher the EF of a taxon, the more members of its 

population were labelled and retrieved from the heavy fraction of the SIP gradient. We applied 

very stringent conditions (EF ≥ 1; relative read abundance in the 13C-heavy fraction ≥ 0.1 %) 

for the identification of labelled genera, focussing on those with a notable DNA enrichment in 

the 13C-heavy fraction. Three further conditions had to be fulfilled to consider a genus as 

“labelled”, which were postulated before (Dallinger and Horn, 2014). Applying these 

conditions, about 25 % (109 of 438) of all detected bacterial genera and 9 % (17 of 185) of the 

fungal genera were considered as labelled and were included in the following analyses (a 

complete list of labelled genera is provided in supplementary Tables 1 and 2).  

Overall, the EFs of bacteria versus fungi (including all time points and labelled genera) were 

not significantly different, indicating no major differences in the intensity of label incorporation 

between these groups. However, we detected significant differences over time in both groups, 

especially for bacteria (ANOVA for bacteria: P < 0.05; Figure 2). After 3 days of incubation, 

we observed a stronger increase in bacterial EFs compared to fungal EFs. The EFs of bacteria 

remained high during the first two weeks of incubation before they declined, whereas the EFs 

of fungi increased to maximum levels after three to four weeks of incubation.  
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Figure 2: Variation of EFs of 13C-labelled bacterial (blue) and fungal (orange) genera over time. The box plot 
shows the median values, 25th and 75th percentile and the standard error. 

Identity of the straw degrading microorganisms and their temporal dynamics in bulk soil  

Over time, the number of bacterial classes with labelled genera increased from 7 to 14. Most of 

the 13C-incorporating bacterial genera belonged to the Alpha-, Beta-, Gammaproteobacteria, 

Actinobacteria and Bacilli (Figure 3 A and B). The relative abundance of labelled Bacilli 

increased over time (up to 58 %), especially after the first week of incubation (Figure 3 A). 

Remarkably, the number of labelled genera within the class Bacilli remained quite stable 

(Figure 3 B), indicating that only a few genera of Bacilli formed a large population of labelled 

organisms over time. Labelled genera of Actinobacteria were low abundant at the beginning, 

but increased consistently in relative abundance (up to 15 %) (Figure 3 A) and with regard to 

diversity (Figure 3 B) over time. In contrast, the relative abundance of labelled 

Gammaproteobacteria decreased substantially from approx. 32 % to less than 2 % between 7 

and 14 days of incubation. A similar shift was observed for the Betaproteobacteria, while the 

relative abundance and diversity of labelled Alphaproteobacteria remained quite stable over 

time.  

The temporal dynamics were evaluated in more detail at genus level (Figure 3 C). This revealed 

that the prominent labelling of Bacilli was due to three abundant (> 1 %) genera, i. e. Bacillus, 
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Paenibacillus and Cohnella (Figure 3 C). Paenibacillus and Cohnella were detected at all time 

points, while Bacillus was detected as labelled at day 14 for the first time. Overall, 20 % of all 

labelled genera were detected at most or all time points. Some of them were additionally highly 

abundant, e. g. Rhizobium, Paenibacillus and Cohnella. Rhizobium and Cohnella were the only 

taxa that showed high relative abundances as well as high EFs (EF > 5) and contributed thus 

substantially to straw metabolisation. Other genera that were strongly labelled and detected at 

most time points include Arthrobacter, Asticcacaulis, Caulobacter, Devosia, Microvirga and 

Pseudoxanthomonas, but these had lower relative abundances (Figure 3 C). Most of these 

genera represent Alphaproteobacteria. Although this class had a lower relative abundance, it 

had a higher diversity of labelled genera compared to the Bacilli (Figure 3 A, B). Genera that 

were only labelled at the beginning of the experiment had often high EFs but low relative 

abundances (e. g. Brevundimonas, Sphingobium and Simplicispira). Only Cellvibrio and 

Pseudoduguanella were strongly labelled and highly abundant at the beginning of the 

experiment. Genera that appeared after 14, 21 or 28 days (e. g. Agromyces, Aquicella, 

Arenimonas, Burkholderia, Dynella, Gemmata, Haliangium, Kribbella) were all of rather low 

relative abundance.  
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Figure 3: 13C-labelled bacterial classes (A, B) and genera (C) identified after 3, 7, 14, 21, 28 and 35 days of 
incubation with 13C-labelled rice straw in bulk soil samples. For each class, the labelled genera identified in the 
13C-heavy fraction belonging to one class were counted (B) or their relative abundances were summed up (A). The 
EFs of the labelled genera are presented in (C) as log10 transformed values on the x-axis, while the relative 
abundance of each genus in the 13C-heavy fraction is displayed via bubble size. For reasons of clarity, we excluded 
bacterial genera that were identified as labelled at only one time point from (C). The complete dataset is available 
in supplementary Table 1. 
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The diversity of labelled fungal taxa was much lower and limited to six classes. Most of them 

belonged to the classes Sordariomycetes and Agaricomycetes, which were detected consistently 

at nearly all time points and with high relative abundances (Figure 4 A, B). The detection of 

members of the other classes was limited to a few or only one time point. Strongly involved in 

straw metabolisation were Thielavia as well as Piriformospora, members of the classes 

Sordariomycetes and Agaricomycetes, respectively, which were detected at almost every time 

point and with high relative abundance. Further strongly labelled genera (EF > 10) that 

belonged to the class Sordariomycetes were Zopfiella, Myrothecium and Conlarium (Figure 4 

C). The highest number of labelled fungal genera was detected after three days of incubation (9 

genera, representing 5 classes). Several of these genera were not detected at later time points, 

even some with high EFs or high relative abundance at the early time point (Malassezia, 

Conlarium, Fusarium). At the later time points (14 days or later), other genera including 

Myrothecium and Cladorhinum appeared. 
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Figure 4: 13C-labelled fungal classes (A, B) and genera (C) identified after 3, 7, 14, 21, 28 and 35 days of incubation 
with 13C-labelled rice straw in bulk soil samples. For each class the labelled genera identified in the 13C-heavy 
fraction belonging to one class were counted (B) or their relative abundances were summed up (A). The EFs of 
the labelled genera are presented in (C) as log10 transformed values on the x-axis, while the relative abundance of 
each genus in the 13C-heavy fraction is displayed via bubble size.  
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Comparison of labelled microorganisms in bulk soil and rhizosphere 

To evaluate differences in the straw metabolising communities between the rhizosphere and the 

bulk soil, we focussed on a comparison of the rhizosphere sample with the bulk soil sample 

taken at the same day, i. e. day 21. Other time points were excluded due to the temporal shift in 

the labelled microbial community in the bulk soil. In total, we identified 41 labelled bacterial 

genera in the rhizosphere, 20 of these were labelled in the bulk soil as well (Figure 5, Table 2).  

Table 2: Identity of bacterial and fungal genera that were exclusively labelled in the rhizosphere after 21 days of 
incubation. Genera that were uniquely labelled in the rhizosphere even when compared to all bulk soil samples are 
highlighted in bold. Relative abundance was calculated in relation to all genera identified in the 13C heavy fraction. 

Bacterial genera Rhizosphere EF Rhizosphere relative abundance 
(%) 

Altererythrobacter 10.47 0.11 
Alterococcus 3.57 0.12 
Candidatus_Solibacter 1.31 0.12 
Cystobacter 5.29 0.34 
Gemmatimonas 1.81 0.77 
Gp3 2.95 0.61 
Haliangium 6.96 1.07 
Kribbella 6.42 0.19 
Labilithrix 2.28 0.13 
Lysobacter 11.33 0.13 
Marmoricola 7.87 0.45 
Mesorhizobium 6.85 0.13 
Microbacterium 5.28 0.11 
Micromonospora 7.16 0.64 
Unclassified Caldilineaceae 1.00 0.28 
Nocardioides 6.83 0.19 
Pseudolabrys 20.18 0.11 
Roseomonas 3.58 1.50 
Sorangium 10.33 1.81 
Zavarzinella 1.24 0.10 
Zoogloea 7.93 0.14 
Fungal genera   
Ascobolus 14.40 0.22 
Conlarium 122.25 0.25 
Piriformospora 26.66 1.08 

 

Although the number of labelled fungal genera was nearly 10-fold lower, the degree of overlap 

with the bulk soil compartment was roughly comparable.  
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Figure 5: Venn diagrams displaying numbers of compartment-specific and -independently labelled bacterial and 
fungal genera. The upper Venn diagrams show the number of labelled genera after 21 days of incubation with 13C-
labelled straw. The lower diagrams show a more stringent comparison including all time points (3, 7, 14, 21, 28 
and 35 days) for the bulk soil samples. 

The overall label intensity of all labelled bacterial taxa was significantly higher (P < 0.05) in 

the bulk soil with an average EF of 15 than in the rhizosphere (average EF of 6) (Figure 6 A). 

Among the bacterial genera that were detected in both compartments, Planctopirus was the 

genus with the strongest labelling, but the EF was four times higher in bulk soil (EF = 120) than 

in the rhizosphere (EF = 30). Fourteen further genera, which were labelled in both 

compartments, were more strongly labelled in the bulk soil than in the rhizosphere, whereas six 

genera had higher EFs in the rhizosphere (Agromyces, Bacillus, Bradyrhizobium, Gemmata, 

Sphingomonas, Vampirovibrio). Especially Badyrhizobium was labelled threefold more 

strongly in the rhizosphere. Likewise, Altererythrobacter, Lysobacter, Pseudolabrys and 

Sorangium showed a stronger labelling in the rhizosphere (EFs > 8). Only five genera of fungi 

were labelled after 21 days of incubation in the rhizosphere, with Thielavia and Zopfiella being 

labelled in both compartments (Figure 6 B). The label intensity and relative abundance of these 

genera was slightly higher in the bulk soil. The genera Ascobolus, Conlarium and 

Piriformospora were identified as exclusively labelled in the rhizosphere at day 21 (Table 2).  
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Figure 6: 13C-labelled bacterial (A) and fungal (B) genera identified in rhizosphere and bulk soil samples after 21 
days of incubation. The EFs of labelled taxa are presented as log10 transformed values on the x-axis, while the 
relative abundance of the 13C-heavy fraction of each genus is displayed via bubble size.  
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A more stringent comparison including all bulk soil sampling time points revealed that eight 

bacterial genera and one fungal genus remained uniquely labelled in the rhizosphere (Figure 5, 

Table 2). Focussing specifically on those taxa that were identified as labelled in the rhizosphere, 

the comparison of EFs between compartments revealed that 46 % of all bacterial genera and 60 

% of all fungal genera showed higher EFs in the rhizosphere (supplementary Figures 2 and 3), 

pointing to a stronger involvement in straw metabolisation of these genera in the rhizosphere 

than in bulk soil. Remarkably, bacterial and fungal taxa exclusively labelled in the rhizosphere 

were not even detected in the unlabelled fraction of the bulk soil communities at the different 

days (i. e. in the 13C-light as well as in the 12C-heavy and 12C -light fractions), indicating that 

they became specifically enriched in the rhizosphere.  

Discussion 

Temporal succession of the rice straw degradation process in bulk soil 

We investigated the rice straw degradation process in a paddy soil under rice-maize crop 

rotation during the period of maize cultivation by DNA-SIP. Analysis of the 13C-labelled 

bacterial and fungal genera over time showed that the straw degrading microbial community 

underwent a strong temporal dynamic with changes in composition as well as in richness. This 

is in good agreement with previous studies reporting a temporal dynamic of the degradation of 

FOM, like plant residue or cellulose (Bernard et al., 2007; Haichar et al., 2007; Lee et al., 2017). 

The richness of the bacterial and fungal straw degraders increased during the first weeks of 

incubation, before it declined again slightly (Table1). In contrast, the richness of the unlabelled 

communities (light fraction) was constant over time, indicating that only the straw degrading 

community underwent this dynamic. The lower richness of the active straw degrading 

microorganisms (Table 1) indicates that only a few soil inhabiting taxa profited from the FOM 

as carbon source, as described in Bastian et al. (2009) for the degradation of wheat straw in oxic 

soils. Actually, approximately 25 % of all detected bacterial and 9 % of all detected fungal 

genera were identified to be involved in straw degradation.  

The labelling of bacterial taxa was already strong at the beginning of the experiment after three 

days of incubation, whereas fungal taxa were more strongly labelled at later time points of the 

experiment, i. e. after 21 days (Figure 2), indicating that the addition of FOM leads to 

differential growth responses of bacterial and fungal genera. These differential responses can 

be related to changes in the availability of different carbon compounds during the degradation 

process (Bastian et al., 2009). The straw degradation process has been described to be induced 

by copiotrophic, fast growing bacteria. Such taxa show a strong label incorporation at the 
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beginning of the experiment and take advantage of the readily degradable carbon compounds 

in the FOM (Pascault et al., 2013). Members of the classes Alpha-, Beta-, 

Gammaproteobacteria (e. g. Rhizobium, Pseudoduganella, Cellvibrio), which we identified in 

our study as early straw degraders, were also previously proposed to be copiotrophic (Bernard 

et al., 2007; Fierer et al., 2007) (Figure 3). In contrast, the fungal community was less diverse 

at the beginning of the experiment with only a few taxa being labelled, with the exception of 

day 3. Over time, further bacterial and fungal taxa became involved in the straw degradation 

process (Figure 2). Several of them are known as oligotrophs e.g. bacteria belonging to 

Actinobacteria (Agromyces, Kribella) or Deltaproteobacteria (Haliangium) and fungal taxa 

like Zopfiella, Pestalotiopsis, Myrothecium and Cladorrhinum (Bastian et al., 2009; Bernard et 

al., 2007; Fierer et al., 2007), The delayed label incorporation by Actinobacteria as well as by 

the fungal community (Figure 2) may thus result from a more oligotrophic life style, probably 

linked to the capability to decompose more complex carbon compounds, which might not be 

degraded by the early degrading bacterial taxa (Fan et al., 2014; Panikov, 1995; Tardy et al., 

2015). This indicates that more difficult to degrade carbon compounds may have served as 

substrates after 2 – 3 weeks of straw addition. An additional possible explanation for the later 

stimulation of some fungal taxa might be the bacterial production of growth factors essentially 

needed for fungal growth, as proposed for some vitamins (De Boer et al., 2005). Remarkably, 

the bacterial activity increased a second time (Figure 2) at the latest sampling date. It thus 

followed the increased fungal activity after 21 days. Fungal activity may have led to an 

additional release of straw breakdown products, potentially stimulating the bacterial population 

again (De Boer et al., 2005). Moreover, the second increase in bacterial activity may have 

occurred due to cross-feeding of carbon compounds released by the fungi or the availability of 

labelled dead biomass of primary degraders (Uhlík et al., 2009). 

In summary, the analysis of the straw degradation process in bulk soil at high temporal 

resolution enabled us to identify different phases of bacterial and fungal activity. The shifts in 

richness of labelled taxa over time corresponded well to the activity of different microbial 

groups that became involved in the straw degradation process over time: i) copiotrophic 

organisms in the initial phase ii) oligotrophic fungi and bacteria after two to three weeks, and 

iii) microorganisms that used breakdown products of fungi or cross feeders at the latest time 

points. 
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Identification of active straw degrading microorganisms in paddy soil under crop rotation  

Most of the labelled bacterial genera belonged to the classes Alpha-, Beta- and 

Gammaproteobacteria (Figure 3) and about 90% of these genera are known to be obligate 

aerobic. The mentioned classes were previously identified as degraders of plant residue in 

different oxic soils (Bastian et al., 2009; Bernard et al., 2007; Cleveland et al., 2007). Further 

taxa like Actinobacteria (e.g. Arthobacter) and Bacilli (e.g. Bacillus) were also previously 

detected in different oxic soils as degraders of fresh plant residue. Both genera, Arthrobacter 

and Bacillus, are known to be able to synthesize extracellular enzymes to degrade complex 

carbon compounds (Fan et al., 2014; Mau et al., 2015; Panikov, 1995; Zhao et al., 2016). 

Anaerobic bacteria that are known to be involved in rice straw degradation in paddy soils under 

anoxic conditions such as Clostridia or methanogens like Methanosarcina (Conrad et al., 2012; 

Lee et al., 2012) were not among the labelled organisms in our study. This suggests that straw 

degradation occurs by a distinct microbial community in paddy soil when fields are periodically 

managed under non-flooded conditions. The absence of labelled methanogens is remarkable, 

because Shrestha et al. (2011) and Lee et al. (2012) identified an increased relative abundance 

of methanogens upon residue addition in paddy soils even when soil was incubated under oxic 

conditions. In contrast, our data show that methanogens do not profit from rice straw carbon 

when rice is incorporated during the phase of maize cultivation. The absence of metabolically 

active methanogens profiting from rice straw indicates that decreased methane emissions can 

be expected upon rice straw application, when this is done in a field managed under crop 

rotation.  

The low number of labelled fungal taxa (Table 1, Figure 5) suggests that fungi are less important 

for the degradation of straw in paddy soils undergoing rice-maize crop rotation, even though 

their EFs are comparable to those of bacteria. From paddy soils under rice monoculture, it is 

known that fungi are of little relevance for the straw degradation process (Nakamura et al., 

2003). It is assumed that the flooded and thus anoxic conditions inhibit the colonization by 

fungi (Lumini et al., 2011; Murase et al., 2006; Nakamura et al., 2003). The periodically oxic 

conditions during rice-maize crop rotation may have supported the growth of some fungal 

genera. Most of the labelled fungal genera in our study belong to the classes Sordariomycetes 

(Zopfiella, Cladorrhinum, Pestalotiopsis) and Agaricomycetes (Piriformospora) (Figure 4). 

Piriformospora was highly abundant and appeared at almost all time points. Moreover, it was 

strongly labelled in both compartments, bulk soil and rhizosphere. Members of this genus have 

a saprophytic live style (Bokati and Craven, 2016), are known to occur in mutualistic 

association with plants such as maize (Qiang et al., 2012) and were detected in maize field soil 
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and paddy soil before (Maarastawi et al., 2018). Sordariomycetes are known to be the key 

players in organic residue decomposition in agricultural soils (España et al., 2011; Kjøller and 

Struwe, 2002; Murase et al., 2012; Niu et al., 2015). Some of the labelled genera of this class 

are often described as plant endophytes e.g. Cladorrhinum and Pestalotiopsis (Gasoni and 

Stegman de Gurfinkel, 1997; Strobel et al., 1996) or are known from aquatic ecosystems like 

Zopfiella (Daferner et al., 2002), which may explain the occurrence in rice paddies, which 

undergo periodic flooding.  

In conclusion, the straw degrading microbial community was found to represent a typical straw 

degrading community as known from oxic soils, though with little diversity concerning the 

fungal players. Anaerobic microorganisms did not respond to straw application. This is 

remarkable because our previous study showed that rice-maize crop rotation soils host bacterial 

communities that are more similar to those of flooded soils than to those of non-flooded soils 

(Maarastawi et al., 2018), and an involvement of anaerobic microorganisms in straw 

degradation even under oxic incubation conditions has been reported for paddy soils (Lee et al., 

2012).  

Differences between straw degrading communities in bulk soil and rhizosphere 

Even though the rhizosphere microbiota is known to live from root released carbon compounds, 

it has been shown that microbes residing in the rice rhizosphere profit from straw derived 

carbon compounds in paddy soils (Shrestha et al., 2011). However, it remained unknown 

whether the straw-degrading taxa in the rhizosphere are the same as in bulk soil or whether 

different microorganisms are profiting from rice straw in the rhizosphere. To address this 

question, we directly compared the straw degrading microbial community in the bulk soil and 

rhizosphere. Overall, labelled bacterial taxa in the bulk soil had higher EFs than in the 

rhizosphere, while it was almost the same label intensity for the fungal taxa. This indicates less 

intensive straw utilization in the rhizosphere, where microorganisms encounter a continuous 

carbon input via rhizodeposition processes (Kuzyakov, 2010; Lu et al., 2004). Further, we 

observed that some taxa were specifically labelled in the rhizosphere but not in bulk soil (Table 

2), indicating that a specialized community benefits from straw derived carbon in the 

rhizosphere. Many of the taxa we identified as straw degraders exclusively in the rhizosphere 

are known to inhabit the rhizosphere of plants, e. g. Zoogloea, Roseomonas, Zavarzinella, 

Microbacterium, Lysobacter and Mesorhizobium (Chung et al., 2015; Jilani et al., 2007; Naz et 

al., 2014; Smalla et al., 2001; Yang and Crowley, 2000) (Figure 6), suggesting that these 

organisms are able to use root exudates as well as carbon derived from additional resources. 

Lysobacter and Mesorhizobium were described before as inhabitants of the maize rhizosphere 
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with strong lytic abilities to degrade macromolecules (Fan et al., 2014; Postma et al., 2011; 

Sanguin et al., 2006). We also identified organisms labelled in both compartments but with 

higher relative abundances and EF in the 13C-heavy fraction of the rhizosphere sample like 

Vampirovibrio and Sphingomonas. This indicates that these taxa decompose straw 

preferentially in the rhizosphere, possibly due to the additional supply of root exudates or better 

life circumstances. Interestingly, Vampirovibrio is known as predatory cyanobacterium (Soo et 

al., 2015). Thus, it may be a cross feeder, profiting from primary straw-degraders. This is further 

substantiated by the fact that Vampirovibrio is found strongly labelled at later time points.  

Likewise as in bulk soil, we found a lower number of labelled fungal than bacterial genera in 

the rhizosphere (Figure 6). The genera Piriformospora, Conlarium and Ascobolus, which were 

identified as specifically labelled in the rhizosphere, were previously detected as rhizosphere 

organisms of maize and as inhabitants of paddy soil (Maarastawi et al., 2018; Qiang et al., 

2012), as rhizosphere organisms of Huperzia serrata (Wang et al., 2016) or as rhizosphere 

organisms of tobacco (Li et al., 2017; Li et al., 2017b), respectively. One genus of arbuscular 

mycorrhizal (AM) fungi was present in the rhizosphere (Entrophospora), but was not labelled, 

indicating that AM fungi use mainly root derived carbon. 

The detection of specially labelled microbial taxa in the rhizosphere suggests that a 

subpopulation of the rhizosphere microbiota benefits from straw addition. As several of these 

taxa were not detected in the bulk soil, even not in the unlabelled fractions, it appears that these 

microorganisms use both, root released carbon as well as organic carbon from the straw 

residues. Alternatively or additionally, their specific growth in the rhizosphere might have been 

supported by other soil physicochemical or biological parameters that are different in the 

rhizosphere compared to the bulk soil, e. g. soil pH or availability of specific substances such 

as vitamins, needed for growth. Interestingly, some of the labelled bacterial and several fungal 

genera that were labelled in the rhizosphere are known to have a rather oligotrophic lifestyle 

and are known to be able to grow on recalcitrant carbon compounds, e.g. Roseomonas or 

Zoogloea (Bais et al., 2006; Furuhata et al., 2008; Zhang and Zhou, 2016). The presence of 

straw as additional carbon source may have supported the development of these genera in the 

rhizosphere.  
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Conclusion 

Straw degradation in paddy soil is a highly dynamic process undergoing a temporal succession. 

Some bacterial taxa began immediately with the decomposition of readily degradable straw 

compounds, while fungal genera were most active at later stages, probably profiting from more 

complex carbon compounds. Only a small subpopulation of the whole bacterial and fungal 

community became labelled, indicating that only a small part of the soil inhabiting taxa used 

the straw as carbon source. The most prominent straw degraders were aerobic bacterial taxa 

belonging to Alpha-, Beta-, Gammaproteobacteria and Bacilli as well as fungal taxa belonging 

to Sordariomycetes and Agaricomycetes, i. e. taxa that were shown to be involved in straw 

degradation in oxic soils. In contrast, anaerobic taxa, which are known to be involved in rice 

straw degradation in paddy soil under flooded conditions, but even in paddy soil incubated 

under oxic conditions, were not labelled. Thus, straw degradation in paddy soil undergoing crop 

rotation appears to be an aerobic process, even though the total microbial community in these 

soils remains similar to that of rice monoculture soils, characterised by the presence of diverse 

anaerobic microorganisms (Breidenbach et al., 2016; Maarastawi et al., 2018). Crop rotation 

management will therefore contribute to a reduction of methane emissions when rice straw is 

returned to the soil. Whether the rice straw degradation process is fully aerobic from the 

beginning on even under field conditions remains to be evaluated. Straw is not only metabolized 

by microorganisms in the bulk soil, but also in the maize rhizosphere. Our study clearly showed 

that microorganisms specifically enriched in the rhizosphere do profit from this additional 

carbon source. In general, label intensity was lower in the rhizosphere, even though some 

genera were uniquely or more strongly labelled in the rhizosphere compared to bulk soil. This 

indicates that rhizosphere-inhabiting microorganisms are less dependent on straw derived 

carbon than those in the bulk soil.  
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Supplementary figures and tables 

Supplementary figures 

 

Supplementary figure 1: DGGE fingerprints of the 16S rRNA gene (A) and ITS1 region (B) PCR products 
amplified from density fractionated DNA of the rhizosphere samples after 21 days of incubation with unlabelled 
or 13C-labelled straw. Gradient fractions with increasing buoyant density from light (fraction 9) to heavy (fraction 
4) were loaded for one pooled 12C-sample and the three individual replicate 13C-samples. The gels show differences 
between I.) 12C-heavy and 13C-heavy fractions and II.) 13C-light and 13C-heavy fractions and thus label 
incorporation. Red arrows highlight bands with higher intensity in the 13C-heavy fractions. 
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Supplementary figure 2: 13C-labelled bacterial genera identified in rhizosphere and bulk soil samples after different 
incubation periods. Bulk soil samples are displayed with differently shaped brown symbols according to the days 
of incubation and rhizosphere sample as green dots. EFs were log10 transformed and are shown on the y-axis. To 
reduce complexity, 62 genera that were only detected in bulk soil samples but not in the rhizosphere were excluded 
from the diagram. 
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Supplementary figure 3: 13C-labelled fungal genera identified in rhizosphere and bulk soil samples after different 
incubation periods. Bulk soil samples are displayed with differently shaped brown symbols according to the days 
of incubation and rhizosphere sample as green dots. EFs were log10 transformed and are shown on the y-axis. To 
reduce complexity, 12 genera that were only detected in bulk soil samples but not in the rhizosphere were excluded 
from the diagram. 
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Abstract 

Straw application is a common agricultural fertilizer practice, providing an additional carbon 

and nutrient source for soil microorganisms. We investigated the influence of rice straw 

application on root exudate consuming microorganisms in the rhizosphere of Zea mays based 

on 13CO2 pulse labelling and phospholipid fatty acid stable isotope probing (PLFA-SIP). The 

application of straw resulted in approx. 51 % decrease in labelling of PLFAs in the rhizosphere 

of 30 and 40 day old plants. This decrease was partially explained by a lower rate of CO2 

assimilation by the plant in the presence of rice straw. Additionally, the uptake of root exudates 

by rhizosphere organisms was decreased in the presence of rice straw, which can obviously 

serve as additional carbon source for rhizosphere microorganisms.  
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The rhizosphere is defined as the thin soil layer surrounding plant roots (Baudoin et al., 2003; 

Peiffer et al., 2013). Due to the release of rhizodeposits a physically, chemically and 

biologically different environment develops in the rhizosphere in comparison to bulk soil, along 

with different functional abilities of the microbial communities residing in these two 

compartments (Baudoin et al., 2003; Bowen and Rovira, 1999). Rhizodeposition encompasses 

the release of exudates as well as of dead cell material by plant roots (Baudoin et al., 2001; 

Lynch and Whipps, 1990). This leads to a higher carbon concentration in the rhizosphere than 

in bulk soil, which supports a higher microbial activity (Baudoin et al., 2002; Bowen and 

Rovira, 1999). The composition of rhizodeposits varies in quantity and quality in depending on 

plant species or variety, developmental stage and plant growth conditions (Badri and Vivanco, 

2009; Schilling et al., 1998; Swinnen et al., 1994; van Veen et al., 1991). This variation leads 

to the development of specific microbial communities (Badri and Vivanco, 2009; Berg and 

Smalla, 2009; Bulgarelli et al., 2012).  

Straw application is discussed as effective management practice in rice paddies under crop 

rotation to return nutrients and reduce crack formation (Asari et al., 2007; Cabangon and Tuong, 

2000). The addition of straw leads to changes in the microbial community, not only in the bulk 

soil, but also in the rhizosphere (Maarastawi et al., 2018), suggesting that rhizosphere 

microorganisms benefit from rhizodeposits as well as from straw-derived carbon. However, it 

is unclear to what extent the application of rice straw may influence the uptake of root exudates 

by microorganisms. To address this question and to identify root exudate metabolizing 

microbial groups that respond to straw application, we performed 13CO2 stable isotope labelling 

of maize plants, cultivated in paddy fields under rice-maize crop rotation with and without rice 

straw, respectively. Label incorporation in the microbial community was analysed using 

phospholipid fatty acids (PLFA) as marker. 

The study site was located at the International Rice Research Institute in Los Baños, Philippines 

(14°11’N, 121°15’E). Two fields managed under maize-rice crop rotation since 4 years were 

chosen. The straw was applied in two steps to prevent crack formation efficiently: 300 g*m-3 

of dried and chopped rice straw was incorporated into the soil, and 300 g*m-3 of straw were 

applied as mulch on the soil surface six weeks later. Maize was planted one day after the second 

straw application in the dry season (at the beginning of December 2015). The maize plants were 

watered every day and received basal fertilization according to Maarastawi et al. (2018).  

The 13CO2 labelling of maize plants was conducted in triplicates for each treatment (i. e. with 

and without straw). Cylindrical chambers (50 cm) consisting of an aluminium frame covered 

with a transparent polyethylene foil (thickness: 180 µm; light transmission: 90%), were used to 
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cover one plant each. The volume of the chambers was 100 or 200 dm³, depending on the 

growth stage of the plant. A fan was positioned inside the chamber to ensure air circulation. 

The release of 13CO2 from 99 % 13C-enriched 0.3 M Na2CO3 solution in the chambers was 

induced by addition of 2 M H2SO4. Several pulses were applied per day, depending on the 

growth stage of the plant, to reach a CO2 concentration of approximately 400 ppmv. Plants were 

labelled 15, 25 or 35 days after seeding on three consecutive days for six hours per day. 

Rhizosphere samples were collected 2.5 days after the last labelling event (i. e. 20, 30 and 40 

days after seeding). 

Rhizosphere samples were collected according to Maarastawi et al., (2018). PLFA extraction 

was done according to Knief et al. (2003). Fatty acid methyl esters (FAMEs) were separated 

by gas chromatography, identified and quantified using a flame ionization detector and an 

isotope ratio mass spectrometer (IRMS) was used for the quantification of 13C-label 

incorporation according to (Morriën et al., 2017). For each PLFA, 13C-label incorporation was 

calculated according to Knief et al. (2003). Thereby, the δ13C values of the FAMEs were 

corrected for the addition of the extra carbon atom introduced during methylation (-33.46 ± 

0.02). The complete biomass of the labelled and unlabelled plants was dried and ground to a 

fine powder. The δ13C [‰] isotopic signature was determined with an elemental analyser 

coupled with a Delta V Advantage isotope ratio mass spectrometer according to He et al., 

(2015). To quantify the assimilation rate and incorporation of 13C into the plant biomass, we 

calculated the 13C excess according to Epron et al. (2011).  

Label incorporation into the plant biomass was influenced by the plant developmental stage. 

Plants with an age of 30 days incorporated significantly more 13C into their biomass than 20 

and 40 day old plants (two-way ANOVA with Tukey post-hoc tests, P < 0.001; Figure 1A). 

Previous studies with maize conducted without straw addition confirm these results, showing 

the highest growth rate of maize in the same developmental stage (Bu et al., 2013; Plénet et al., 

2000). Straw application had a low impact on label incorporation into the maize plants, a 

significant decrease in labelling was only observed after 30 days (one-way ANOVA, P < 0.01) 

(Figure 1A). This indicates that the applied straw reduces the metabolic activity of the plant 

specifically at this growth stage. Straw application will stimulate the growth of microorganisms 

(Fontaine et al., 2003; Kuzyakov, 2010), which may lead to a stronger competition for nutrients 

between plants and microorganisms in the rhizosphere, becoming a disadvantage for the plant 

at this stage of high biomass production (Kuzyakov and Xu, 2013).  

The detected 13C-excess in the plants correlated well with the amount of label incorporated into 

the PLFAs of the rhizosphere microbiota (Figure 1B). The highest labelling of root exudate 
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consuming microbes was detected after 30 days. At this time point, the label incorporation into 

the rhizosphere microbiota made up about 1/15 - 1/20 of the plant label (Figure 1C), suggesting 

that plants had the highest root exudation rates at this stage or released a blend of carbon 

compounds that could be more rapidly metabolized by the rhizosphere microbiota than that 

released at the other time points (Baudoin et al., 2003; Butler et al., 2003). In the presence of 

straw, the incorporation and ratio of 13C-label into the rhizosphere microbiota was significantly 

lower (two-way ANOVA, P < 0.001; Figure 1B, C) at all time points. This indicates that the 

addition of straw stimulates the rhizosphere microbiota to use carbon derived from straw as 

additional source and simultaneously reduces the uptake of root exudates. 
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Figure 1: Label intensity of plant biomass (A) and of PLFAs of rhizoshere microorganisms (B). Label intensity is 
presented as mean of three samples ± standard error, with exception of the samples taken at day 20. These were 
pooled to get adequate amounts of material for PLFA extraction. Ratio of 13C-label intensity between microbial 
PLFAs and plant biomass, were calculated from the values of 13C-excess in plants (µg 13C g biomass-1) and of 13C-
label in rhizosphere microorganisms (µg 13C g PLFA-1) (C) ± standard error.   
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Analysis of the individual PLFAs (Figure 2) revealed that only a few PLFAs showed a lower 

labelling in the presence of straw in the rhizosphere of 20-day old plants. Especially 16:0 and 

18:1ω9c, which showed the strongest label reduction in dependence on straw, are quite common 

PLFAs in diverse microorganisms (Lange et al., 2014; Willers et al., 2015). Several other 

PLFAs showed a slightly higher labelling in the presence of straw, including 18:0, and 18:2ω6c, 

which suggests that the corresponding microorganisms profited more efficiently from root 

exudates. The shift of some root exudate consuming microbes to carbon compounds derived 

from straw may have led to a lowered competition pressure for some other root exudate 

consuming microbes and therefore to a higher label incorporation.  

At the later time points, all PLFAs showed a reduced labelling in the presence of straw, 

indicating that diverse microorganisms in the rhizosphere were affected by the straw addition, 

leading to a reduced use of root exudates. At these later time points, a broad range of carbon 

compounds from straw might have been available. Straw degradation is known to follow a 

temporal succession with a rapid degradation of labile substances within the initial phase, 

followed by a slower degradation of more complex compounds by oligotrophic organisms, 

which again release breakdown products that support the growth of further microorganisms 

(Bastian et al., 2009; Bernard et al., 2007). Thus, microorganisms in the rhizosphere may have 

profited from the more complex carbon compounds provided by the straw incorporated into the 

soil, as well as from degradation products, at the later time points.  
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Figure 2: PLFA profiles of the rhizosphere microbiota displaying the relative abundance of all PLFAs (left panel, 
community profile) compared to the 13C-labelled PLFAs (right panel; activity profile) after (A) 20 days, (B) 30 
days and (C) 40 days. The incorporation of 13C in µg per g PFLA was calculated with the relative abundance and 
δ13 C value. Data of relative abundance and label incorporation are means of three samples ± standard error, with 
exception of the 20 day old samples. 20 day old rhizosphere soil samples were pooled to get adequate amounts 
of material for the PLFA extraction. 
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The PLFA 16:1ω5c, which is characteristic for arbuscular fungi (Willers et al., 2015), showed 

a labelling pattern that reflects very closely the labelling of the plant biomass (Figure 1). Those 

fungi are known to be strongly influenced by plant derived carbon (Bais et al., 2006), which 

explains the comparable labelling pattern. However, mycorrhizal fungi are also known as 

oligotrophs being able to decompose complex carbon compounds in soil (Hodge et al., 2001). 

The strong reduction in labelling at day 30 indicates that they were affected by the straw 

application, possibly profiting to some extent from the straw derived carbon (Bais et al., 2006; 

Nakamura et al., 2003). 

Similarly, the PLFAs 16:0, 18:2ω6c, and a15:0 showed the strongest decrease in labelling in 

dependence on straw at day 30 (Figure 2), when plant carbon assimilation was most strongly 

affected by straw application (Figure 1). The PLFA a15:0 is indicative for Gram-positive 

bacteria (Willers et al., 2015), while 18:2ω6, 9c, is an indicator for saprotrophic fungi (Hannula 

et al., 2012), often discussed as marker in combination with 18:1ω9c (Balasooriya et al., 2014). 

The reduced labelling of these PLFAs suggests that these bacteria and fungi have probably 

shifted to some extent from root exudate to rice straw carbon, as they may possibly be less 

competitive compared to bacteria in taking up root exudates.  

In summary, our study shows that the temporal dynamic of CO2 assimilation by plants is 

reflected by the rhizosphere microbiota assimilating root exudates. However, decrease in 

microbial PLFA labelling cannot fully be explained by reduced plant carbon assimilation 

(Figure 1C). An additional reduction in labelling is resulting from the use of straw as additional 

carbon source. The uptake of root exudates is thus influenced by additional carbon sources in 

the rhizosphere. 
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3. Overall discussion 

Traditional rice cultivation under flooded conditions is a major source of the global 

anthropogenic methane emissions (Cheng et al., 2013). The methane emissions from rice fields 

are linked to the physical, chemical and biological characteristics of flooded soils, which 

provide suitable niches for methane producing methanogenic archaea as well as for methane 

oxidizing bacteria (Wassmann et al., 2000a). Moreover, the cultivation of rice under flooded 

conditions leads to huge water consumption (Bouman et al., 2007; Tuong et al., 2005). To 

preserve water and minimize the release of methane, an increased number of farmers shift to a 

crop rotation system with rice cultivation in the wet season and maize cultivation in the dry 

season. The impact of introducing a crop rotation between rice and maize was investigated in 

the first phase of the multidisciplinary research project “Introduction of non-flooded crops in 

rice-dominated landscapes and its impact on carbon, nitrogen and water cycles (ICON)”. It was 

observed that the seasonal change between wet and dry conditions in soils leads to a formation 

of desiccation cracks during maize cultivation, which causes loss of water, dissolved organic 

carbon and a greater release of the greenhouse gas N2O (He et al., 2015; Weller et al., 2015, 

2016). However, numerous questions remain open, especially about the biogeochemistry during 

the maize cultivation period in the dry season. As a second agricultural strategy, rice straw was 

introduced to compensate for the nutrient and water loss after drainage of the rice fields, because 

straw is known to reduce the evaporation and to contribute to the total supply of organic matter 

(Cabangon and Tuong, 2000; Kimura et al., 2004). 

To investigate whether methanotrophs can inhabit the rice phyllosphere and therefore can be a 

potential sink for methane in flooded fields, a cultivation-dependent approach was used to 

enrich methanotrophic bacteria (manuscript 1). Microbial communities inhabiting the bulk soil 

and rhizosphere in paddy fields are well known, but knowledge about the influence of crop 

rotation on the microbial community is scarce. Therefore, the analysis microbial communities 

inhabiting drained rice fields under maize cultivation was mandatory to explore significant 

changes in comparison to monoculture rice and maize soils due to crop rotation (manuscript 

2). Straw application was introduced as a further agricultural management strategy to prevent 

high water loss due to crack formation during maize cultivation. First, a comparative analysis 

of the impact of straw addition on bacterial and fungal communities in the bulk soil and 

rhizosphere of maize from soils with different management histories (rice monoculture, maize 

monoculture and rice-maize crop rotation (MR) soil) was conducted (manuscript 2). The active 

straw degrading community was identified in more detail in a paddy soil undergoing rice-maize 

crop rotation (manuscript 3). Furthermore, the influence of straw on the root exudate 
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consuming microbiota in the rhizosphere of maize was investigated in more detail during 

different developmental stages of the plant (manuscript 4).   
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3.1. Crop rotation 

Despite the environmental problems that occur due to rice cultivation, the advantage of the 

highest possible yield and therefore the possibility to meet the increasing demand for rice is the 

reason to continue the cultivation of rice under flooded conditions (Conrad, 2007). This creates 

several anoxic niches in rice fields, which provide habitats, e.g. for methanogenic archaea that 

produce methane as end product of the anaerobic degradation of organic matter (Breidenbach 

and Conrad, 2015). Due to the methane production, rice fields provide an ideal habitat for 

methanotrophic bacteria utilizing methane as energy and carbon source and therefore acting as 

methane sink. Methanotrophs live at the interfaces between anoxic and oxic zones and attenuate 

the methane emissions of rice fields by up to 40 % (Conrad, 2007, 2009). Furthermore, the rice 

phyllosphere can serve as habitat for methanotrophs. Methanotrophs, which are living in 

association with rice plants, can use methane released from the water phase of flooded rice 

fields and by the rice plant itself, because of the ability of rice to passively transport methane 

to the atmosphere through its aerenchym. Previous studies identified type-I as well as type-II 

methanotrophs in the phyllosphere of rice with cultivation-independent studies (Iguchi et al., 

2012; Knief et al., 2012). To test whether methanotrophic bacteria can be successfully isolated 

from aboveground plant parts, rice stems from monoculture rice fields were used for selective 

cultivation experiments. Methanotrophic bacteria belonging to type-I methanotrophs were 

successfully isolated (Frindte et al., 2017; manuscript 1). Interestingly, a representative of the 

previously uncultivated rice paddy cluster (RPC1) and a new strain of Methylomagnum 

ishizawai were described. This cluster is found in aquatic ecosystems and rice fields from 

various geographical origins (Knief, 2015). PmoA sequences are usually derived from the bulk 

soil or the rhizosphere of rice fields (Knief, 2015; Lüke et al., 2010). This leads to the 

assumption that the newly described representative of RPC1, Methyloterricola oryzae, and the 

new Methylomagnum ishizawai strain could possibly oxidize methane at the aboveground plant 

parts, which would represent a seldom regarded methane sink in monoculture rice fields.  

Anyway, the activity of methanotrophs cannot fully mitigate the methane emissions, so that rice 

monoculture accounts for about 10 % of all anthropogenic methane emissions (Nazaries et al., 

2013). Therefore, other strategies have to be developed, which still meet the increasing demand 

for stable food supply. Asian farmers use a crop rotation system between rice and upland crops 

to diminish water consumption (Bouman et al., 2005). In the Philippines, farmers usually 

cultivate maize as upland crop in the dry season, because of the simultaneous increasing 

demand for maize for poultry fattening and biofuel production (Bertomeu, 2012; Weller et al., 

2015). The alteration between flooded and non-flooded conditions also results in reduced 
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methane emissions compared to flooded rice fields. The impact of the introduction of an upland 

crop like maize in rice soils on the inhabiting microbial communities is rarely studied and 

mostly focused on one compartment, i. e. either bulk soil or, to a less extent, the rhizosphere, 

and either on the bacterial or on the fungal community.  

Concerning the effects of crop rotation, the main results of this thesis were that two major 

factors contribute to crop rotation dependent differences in microbial and fungal community 

composition: i) the altered oxygen availabilities in the different soils induced by the regular 

flooding of rice monoculture and rice-maize crop rotation soils, which leads to anaerobic 

conditions in soil, whereas in a maize monoculture the aerobic conditions remained stable and 

ii) the influence of crops and their specific rhizodeposits. Because of these factors, the long 

term maize and rice monoculture managed soils developed substantial differences in the 

microbial community composition. In monoculture soils, I observed common rice field or 

maize field soil bacterial and fungal taxa, respectively, as well as host-plant specific beneficial 

and pathogenic fungi. In comparison to those strong differences, the variation of the microbial 

communities between rice monoculture soils and MR soils was rather weak (manuscript 2). In 

previous studies, it was also detected that continuous crop rotation between paddy rice and 

maize, alfalfa or winter-wheat does not change the structure of the microbial community 

drastically (Breidenbach et al., 2015; Breidenbach and Conrad, 2015; Lopes et al., 2014; Zhao 

et al., 2014). Obviously, the temporally elongated drainage phase in crop rotation soils has only 

little impact on the microbial communities.  

The higher similarity of the microbial community in MR soils to rice monoculture than to maize 

monoculture is due to the maintenance of an anaerobic microbial community in rice-maize crop 

rotation soils, even during maize cultivation (manuscript 2). The maintenance of an anaerobic 

community was also observed in a study investigating microbial communities in paddy soils, 

which were under crop rotation with alfalfa (Lopes et al., 2014). Likewise, Zhao et al. (2014) 

observed a higher relative abundance of anaerobic bacteria in soils of winter wheat-rice crop 

rotation than in soils of winter wheat-maize crop rotation. Even when paddy rice was introduced 

in an upland system (pasture) for the first time, an anaerobic microbial community established 

and remained stable during the pasture cultivation and even when the wetland conditions were 

followed by 4 years of upland conditions (Scavino et al., 2013). A stable methanogenic 

microbial community developed directly after the first introduction of paddy rice in the pasture 

system and tended to withstand periods of drainage once established (Scavino et al., 2013). The 

similarity of the microbiota inhabiting crop rotation soils to the microbiota that inhabits rice 

monoculture soils is promoted due to the previously mentioned regular changes between oxic 
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and anoxic conditions (Noll et al., 2005). Additionally, the paddy rice and MR soils in the 

Philippines that were investigated in this thesis have a high clay content and water holding 

capacity, which supports the maintenance of anaerobic micro-niches. Presumably, anaerobic 

microorganisms maintain their activity in these niches (Breidenbach et al., 2015; manuscript 

2).  

Nevertheless, the detected differences in the microbial communities between rice monoculture 

and the MR soil were mainly due to the reduction of anaerobic microorganisms in the MR soils 

(Maarastawi et al., 2018; manuscript 2). Liu et al. (2018) observed that methanogens persisted 

during the cultivation of upland crops in a paddy system, but their activity drastically decreased. 

This is caused due to the longer dry period and, therefore, higher oxygen availability in those 

soils, which causes oxygen stress for the soil inhabiting anaerobic microorganisms. Several 

previous studies detected also a decrease of anaerobic bacteria and archaea, especially 

methanogens, by introducing a crop rotation with different upland crops in a paddy soil system 

(Breidenbach et al., 2015; Breidenbach and Conrad, 2015; Liu et al., 2015; Lopes et al., 2014).  

The smaller numbers of methanogens in crop rotation soils compared to rice soils indicates that 

crop rotation between rice and maize can be expected to be more ecologically friendly, because 

the main producers of methane are depleted or are suppressed. In agreement, reduced methane 

emissions in the same MR systems was observed previously (Weller et al., 2015, 2016). Less 

methane production in crop rotation soils also leads to a decrease of methanotrophs in 

comparison to rice monocultures (manuscript 2).  

Besides the reduction of anaerobic bacterial taxa, I also detected a reduction of specific fungal 

taxa in MR as well as in rice monoculture soils in comparison to maize soils. The temporally 

or constantly flooded and therefore anoxic conditions in MR and rice soils suppressed the 

colonisation and the special enrichment of fungi in these soils. The reduction of anaerobic 

bacteria and archaea and the depletion of fungi in MR soils strongly indicates that the change 

from wetland to upland conditions causes the main differences in microbial community 

composition.  

In contrast, the plant type and their rhizodeposits play a less important role and causes minor 

changes in microbial community composition. Even over time, i.e. up to 43 days of plant 

development, stronger differences between the crop rotation regimes (rice monoculture, maize 

monoculture, rice-maize crop rotation) were observed than between the different compartments 

(manuscript 2). Obviously, the amount and blend of carbon compounds released by maize 

have an inferior impact on the rhizosphere microbiota than the rice-maize crop rotation regime, 
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going along with different oxygen availabilities in the soils. Nevertheless, more genera 

responded to crop rotation in bulk soil than in the rhizosphere (manuscript 2), indicating that 

rhizosphere organisms are additionally controlled by plant root released carbon and are 

therefore less influenced by crop rotation than bulk soil microorganisms. 

Taken together, it was shown that the establishment of crop rotation between rice and maize in 

a rice monoculture did not lead to dramatic changes in fungal and bacterial communities, as it 

was observed between rice and maize monoculture soils. The observed minor changes are 

mostly explained by oxygen availability, which is limited in MR soil as well as in rice 

monoculture soil during the wet season, whereas the soil under maize monoculture is 

characterized by predominantly oxic conditions. Therefore, the communities of MR soils are 

more similar to those in rice monoculture soils than to those in maize monoculture soils. 

Consequently, the oxygen availability is the driving factor causing the reduction of anaerobic 

species in MR soils, resulting in the main differences observed between the rice monoculture 

and MR soils.  

3.2. Straw degradation in crop rotation bulk soil 

The introduction of maize in a flooded rice system is known to lead to desiccation cracks and, 

therefore, to nutrient loss during the dry season (He et al., 2015; Weller et al., 2015, 2016). 

High nutrient removal due to high-yielding maize further contributes to the high nutrient loss 

during maize cultivation (Timsina et al., 2010). To compensate these losses, an application of 

rice straw, which remains as left-over from rice cultivation, was introduced in the rice-maize 

crop rotation soils after drainage. The return of rice straw to the fields contributes to the supply 

of organic matter and additionally conserves the moisture in soils, if it is applied as mulch 

(Cabangon and Tuong, 2000; Kimura et al., 2004). The combustion of rice straw and use of the 

ashes to fertilise the fields is another common practise (Gadde et al., 2009). However, the 

combustion ends up in a further high CO2 production, so that the application of chopped rice 

straw into the drained field could be more ecological friendly.  

The degradation of rice straw has been intensively studied in paddy soils under rice cultivation. 

In these cultivation systems, rice straw application is a common fertilisation practice, because 

it was shown that the use of chemical fertilisers results in a decrease of soil fertility (Asari et 

al., 2007; Ponnamperuma, 1984). In previous studies, the researchers investigated the straw 

degradation process under anoxic conditions in rice soils and observed a change in the bacterial 

and archaeal community composition over time. They showed that anaerobic bacteria like 

Clostridia and methanogenic archaea like Methanosarcina are the major rice straw degraders. 
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The increased occurrence of methanogens caused an increase in methane emissions (Asari et 

al., 2007; Conrad et al., 2012a, 2012b; Lee et al., 2017; Rui et al., 2009; Shrestha et al., 2011). 

In contrast to the increased number of anaerobic taxa, the occurrence of aerobic straw degrading 

bacteria was reduced (Rui et al., 2009) and the fungal community was even less important for 

the straw degradation process in anoxic rice soils (Murase et al., 2006; Nakamura et al., 2003). 

Lee et al. (2011, 2012) observed also an increase of methanogens over time, although they 

investigated the straw degradation process in rice soils under oxic conditions, but they 

additionally found aerobic bacterial genera belonging to Proteobacteria, Bacilli and 

Actinobacteria as straw degraders. 

In contrast to flooded soils, the degradation of straw in upland soils is mainly conducted by 

aerobic bacteria as well as fungi, resulting in a rapid increase of CO2 flux and, additionally, a 

change in bacterial and fungal community composition in comparison to upland soils without 

straw (Bastian et al., 2009; Bernard et al., 2007; Cleveland et al., 2007; Fan et al., 2014). 

Although much is known about straw or plant residue degradation in non-flooded soils or 

monoculture flooded soils, the community involved in the rice straw degradation process in rice 

soils undergoing crop rotation with maize has not yet been investigated. Especially the 

application of rice straw in a drained paddy soil during maize cultivation and the influences this 

has on the microbial community composition were investigated in this thesis for the first time. 

The longer exposure of MR soils to oxic conditions in comparison to paddy soils is one of the 

main differences between these two cultivation practices. Based on our findings that the 

microbial community in crop rotation soils is mainly shaped by oxygen availability 

(manuscript 2), the changes between flooded and non-flooded conditions are assumed to have 

also a major impact on the straw degrading community. In soils with rice monoculture and MR 

soils, where the flooding of soils is a reoccurring event, the impact of crop rotation and straw 

application was roughly equal (Maarastawi et al., 2018; manuscript 2). These results confirm 

our previous assumption that oxygen is the main factor that influences the microbial 

community. Nevertheless, an impact of straw was evident in all investigated soils, indicating 

that straw addition leads to a shift in the microbial community composition in soils, regardless 

of the cultivation practice (rice or maize monoculture and MR soil). A previous study showed 

that changes of the microbial community composition due to straw application are correlated 

with the total abundance of carbon degradation genes and, therefore, affect the quantity and 

quality of carbon turnover in the soil (Zhao et al., 2016).  

A stronger impact of straw addition was observed on the fungal than on the bacterial community 

composition in all investigated soils. Remarkably, the number of fungal genera that were 
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identified as significantly enriched was higher in treatments without straw than in treatments 

with straw (manuscript 2). This finding was confirmed by an analysis of the active straw 

degrading community in an experiment with labelled rice straw, where I observed that fungi 

were less involved in straw degradation than bacteria in MR soil (manuscript 3). The 

frequently flooded and, thus, anoxic conditions in MR soils seem to inhibit the degradation 

potential of fungi, likewise as observed in flooded rice fields under monoculture (Nakamura et 

al., 2003). A reason for that might be that straw degrading fungi are mostly aerobic, like the 

detected straw degraders Cladorrhinum, Pestalotiopsis and Piriformospora (Gasoni and 

Stegman de Gurfinkel, 1997; Qiang et al., 2012; Strobel et al., 1996; manuscript 3). This 

assumption is in agreement with the findings of Murase et al. (2012), who detected that fungi 

play a predominant role in the decomposition of fresh organic matter in rice soil under oxic 

conditions.  

Compared to the fungal community, the bacterial community showed a different response to 

the application of straw. It resulted in an increase of bacterial diversity over time and in a special 

enrichment of diverse bacterial genera in all different soils (manuscript 2, 3). Such a 

development was also observed in other paddy soil studies performed under oxic as well as 

under anoxic conditions (Cleveland et al., 2007; Lee et al., 2017). The main bacterial straw 

degraders found in MR soils were similar to those in upland soils, i.e. genera of Proteobacteria, 

Actinobacteria and Bacilli (Bastian et al., 2009; Bernard et al., 2007; Cleveland et al., 2007; 

manuscript 2, 3). This is remarkable, because the results of manuscript 2 showed that MR 

soils harbour bacterial communities more similar to flooded soils than to non-flooded soils. 

However, the main differences observed between microbial communities in rice monoculture 

and MR soils occurred due to a depletion of methanogens and Clostridia in MR soils 

(manuscript 2). These taxa are known to be the main straw degraders in flooded rice fields and 

were not among the active straw degraders in the investigated MR soil (manuscript 3). This 

finding is in line with the extended oxic phase in MR soil due to the maize cultivation period 

and indicates that the straw degrading microbial community was determined by the applied 

water regime in paddy fields. Our results showed that the degradation process of straw in a rice-

maize crop rotation soil was mainly conducted by aerobic taxa, although previous studies 

showed that the degradation of straw in rice soils is mainly conducted by anaerobic bacteria 

and methanogenic archaea (Conrad et al., 2012a; Shrestha et al., 2011; Yuan et al., 2014). The 

absence of methanogens in fields managed under rice-maize crop rotation and treated with 

straw in comparison to rice fields leads to decreased methane production and emissions.  
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The straw degradation process is characterized by a temporal succession in upland soils, as well 

as in drained and flooded rice soils (Bernard et al., 2007; Lee et al., 2011, 2017; Rui et al., 2009; 

Sugano et al., 2005). This temporal dynamic is characterized by the degradation of easy 

degradable carbon compounds in an initial phase and the degradation of more complex carbon 

compounds in the later phase (Bernard et al., 2007; Lee et al., 2011; Peng et al., 2008; Rui et 

al., 2009; manuscript 3). This temporal succession was also seen in MR soils, with an 

immediate response of bacterial taxa and a delayed response of fungi to straw additions, 

indicating different lifestyles (copiotrophic vs. oligotrophic) of the straw degrading bacteria and 

fungi (manuscript 3). As different microbial communities are involved in the straw 

degradation process in the different soils, it is obvious that the phases of degradation are 

accomplished by different microbes in rice, upland or MR soils. In MR soils as well as in upland 

soils, aerobic copiotrophic bacteria like members of the classes Alpha-, Beta- and 

Gammaproteobacteria utilize easy-to-degrade straw compounds and immediately respond 

upon straw addition (Bernard et al., 2007; Fierer et al., 2007, manuscript 3). In the later phase, 

oligotrophic members of Actinobacteria as well as members of Deltaproteobacteria and in 

particular several fungal taxa were involved in the straw degradation process in the MR soil, 

likewise as observed in other upland soils (Fan et al., 2014; Tardy et al., 2015; manuscript 3).  

In paddy soils the main straw degraders in the early phase are anaerobic members of the 

clostridial clusters I and III (Lee et al., 2017; Rui et al., 2009), which are not involved in straw 

degradation in upland soils and the MR soil studied here (Bernard et al., 2007; manuscript 3). 

The degradation of easy-to-degrade compounds in paddy soils causes a rapid accumulation of 

fatty acids and acetate (Rui et al., 2009). This accumulation leads to a stimulation of 

methanogens during the later phase, so that a burst of methane production occurs. During the 

late succession, the gradual depletion of acetate results in a slowdown of methane production 

and a decrease of methanogens in paddy soils (Peng et al., 2008; Rui et al., 2009). During this 

phase, other groups of Clostridia (like clostridial cluster XIVa) as well as members of 

Bacteroidetes, Chlorobi, and Actinobacteria are involved in the straw degradation process in 

paddy soils (Lee et al., 2017; Rui et al., 2009). In contrast to MR and upland soils, fungi were 

not found to be involved in the straw degradation process in paddy soils, as they are suppressed 

by anoxic conditions. Only in rice soils incubated under oxic conditions, straw degrading fungi 

could be observed previously (Nakamura et al., 2003; Sugano et al., 2005). The main difference 

between the straw degradation process in MR or upland soils compared to paddy soils is that in 

MR and in upland soils aerobic microorganisms are responsible for the degradation in the early 

and in the late phase, whereas in rice fields the straw degradation is mainly conducted by 

anaerobic bacteria and methanogens in both phases. 
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In general, the effect of straw application on the microbial community residing in the MR soil 

was rather weak, only specific members responded to straw addition. Despite the weak impact 

on the microbiota, this process is important, because straw addition increases soil fertility and 

the water holding capacity (Cabangon and Tuong, 2000). The studies described in this thesis 

demonstrate that the whole straw decomposition process in MR soils is conducted by aerobic 

microorganisms and differs in that aspect from straw degradation in paddy soils under rice 

monoculture. In rice monoculture soils mainly anaerobic bacteria and methanogens are 

involved in straw degradation, whereas in MR soils a depletion of anaerobic bacteria and 

methanogens involved in the straw degradation was observed. Therefore, straw application in 

MR soils does not only lead to a soil fertilising effect, but also does not contribute to an increase 

in methane emissions as it is known for the straw application in paddy soils. The straw 

decomposition in MR soils showed a clear temporal succession with an instantaneous response 

of aerobic bacteria and a delayed response of fungi. Especially the copiotrophic bacteria 

decompose easy to degrade carbon compounds in the early phase, while oligotrophic fungi 

degrade predominantly the more complex carbon compounds in a later phase.  

3.3. Straw degradation in the rhizosphere  

In comparison to bulk soil, the rhizosphere is characterized by a continuous carbon input 

through the release of rhizodeposits (Bowen and Rovira, 1999; Peiffer et al., 2013). Especially 

root exudates are of prime importance for microorganisms, since root exudates are readily 

assimilable and therefore create a hot spot of microbial activity (Baudoin et al., 2003). Root 

exudates stimulate growth and lead to distinct microbial communities in the rhizosphere 

compared to the bulk soil (Baudoin et al., 2003).  

Recent studies on straw application investigated the effect on the microbial community 

composition focusing on soils with the same cultivation history (e.g. flooded or non-flooded), 

either in the rhizosphere (Peng et al., 2016; Shrestha et al., 2011) or in bulk soil (Conrad et al., 

2012a; Lee et al., 2017; Rui et al., 2009). However, a direct comparison of the straw degrading 

process and the involved microbes in bulk soil versus rhizosphere of crop rotation soil was 

lacking so far. Furthermore, it is unknown whether and to what extent the rhizosphere 

microbiota uses additional carbon sources like straw. 

In soils treated with straw a comparison of microbial communities between bulk soil and 

rhizosphere showed that straw induced a stronger change in rhizosphere communities than in 

bulk soil (manuscript 2). This was not necessarily expected because the rhizosphere microbiota 

is considered to be mainly influenced by root exudation (Berg and Smalla, 2009; Bulgarelli et 
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al., 2013). The detailed analysis of the active straw degrading community with 13C-labelled rice 

straw in the MR soil showed a detection of specially labelled microbial taxa in the rhizosphere. 

This suggests that a subpopulation of the maize rhizosphere microbiota benefited from straw 

addition (manuscript 3). Surprisingly, several taxa of this subpopulation were not involved in 

straw degradation in the bulk soil and were not even detectable there. The appearance of those 

taxa being exclusively labelled in the rhizosphere induced the strong change in microbial 

community composition due to straw addition in comparison to bulk soil (manuscript 2, 3).  

Most of the straw degrading taxa that were only found in the rhizosphere of maize but not in 

bulk soil were previously detected in the rhizosphere of different plants (Jilani et al., 2007; Naz 

et al., 2014; Smalla et al., 2001; Yang and Crowley, 2000). The detection of exclusively straw 

degrading taxa in the rhizosphere and the detection of taxa, which were detected in rhizosphere 

samples before, indicate that these organisms are able to use root exudates as well as carbon 

derived from additional sources like straw. 

In general the straw degrading microorganisms, which I found in these studies in bulk soil and 

rhizosphere of MR soil, were mainly aerobic bacteria and fungi. Additionally, the taxa that 

where exclusively labelled in the rhizosphere but not in bulk soil were mainly detected before 

in the rhizosphere of plants, which are cultivated in upland soils. Only Roseomonas was isolated 

before from the rhizosphere of rice in a flooded soil (Chung et al., 2015; Jilani et al., 2007; Naz 

et al., 2014; Smalla et al., 2001; Yang and Crowley, 2000). The predominant appearance of 

aerobic organisms as straw degraders showed that the straw degrading community of the maize 

rhizosphere in MR soil is more alike to the community found in oxic soils than in anoxic soils. 

This trend was also observed in the work of this thesis for the straw degrading community in 

the bulk soil (manuscript 3) as discussed before. In contrast, Shrestha et al. (2011) analysed 

the straw degrading community in the rhizosphere of flooded rice and observed an increase of 

mostly anaerobic microbes, e.g. methanogens and Clostridia.  

Although the straw application induced a stronger community shift and a higher diversity in the 

rhizosphere, which can be explained by the stimulation of specialized straw degraders, the 

utilization of straw in bulk soil was more intensive (manuscript 2, 3). This was shown by a 

higher number of labelled taxa and higher label intensity in bulk soil samples (manuscript 3). 

As the rhizosphere is a hotspot for microbial activity, induced by the continuous carbon input, 

rhizosphere microorganisms are not necessarily reliant on an additional carbon source. 

Furthermore, the rhizodeposits are easier bioavailable than plant residues and therefore 

preferentially used (Kuzyakov, 2010). Both, the less intensive use of straw in the rhizosphere 

and the detection of some taxa, which degrade straw preferentially in the rhizosphere compared 
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to the bulk soil, indicate a synergistic effect in the rhizosphere, i. e. the use of root exudates and 

straw. Previously, Kuzyakov et al. (2007) showed a similar effect by detecting a small but 

significant increase in litter decomposition after adding easy degradable root exudates to a 

rhizosphere model system.  

I additionally investigated the effect of straw addition on active exudate-using microbes by 

labelling maize plants with 13CO2 (manuscript 4). Thereby a stronger utilization of root 

exudates in the presence of straw than in the absence was observed 20 days after maize seeding 

(manuscript 4). After this time of incubation, I detected a predominant straw degradation by 

oligotrophic organisms in manuscript 3, because more complex straw compounds were 

available at this time. Transferred to the results of manuscript 4, I conclude that the strong 

utilization of root exudates 20 days after maize seeding in treatments with straw was due to the 

fact that mainly complex straw compounds were available and these compounds could only be 

degraded by a few oligotrophic organisms. Therefore, most rhizosphere organisms use root 

exudates as carbon source (manuscript 4) and just a few oligotrophic rhizosphere 

microorganisms use straw as an additional source 20 days after seeding of maize. This is in 

agreement with the lower incorporation of carbon derived from straw by rhizosphere 

microorganisms than by bulk soil organisms after 20 days, which I observed in the experiment 

with 13C-labelled straw (manuscript 3). The degradation of complex compounds by 

microorganisms leads to the release of more easily-available carbon compounds derived from 

straw (De Boer et al., 2005), so that rhizosphere organisms may partly switch their carbon 

source utilization pattern and use relatively more straw instead of root exudates at later time 

points. In agreement, I detected a lower use of root exudates by microbes in treatments with 

straw than without straw in the rhizosphere of 30 and 40 day old maize plants (manuscript 4). 

This is in agreement with the observations in the bulk soil of maize in manuscript 3. There I 

detected a second increase of bacterial label intensity due to straw addition after 35 days of 

incubation, which indicates that the bacteria could use the released easy-available straw 

compounds after this time of incubation. Taken together, these observations show that straw 

addition influences the uptake of root exudates. I suggest that this effect depends on the 

temporal succession of straw decomposition, which was also observed in bulk soil of MR soil 

(manuscript 3). This means that the temporal succession of straw decomposition in the 

rhizosphere is similar to that in bulk soil.  

Altogether, it was shown that the microbial community of the rhizosphere is more strongly 

affected by straw addition than the bulk soil inhabiting community, due to a straw degrading 

community that exclusively occurs in the rhizosphere. Several of the fungal and bacterial taxa 



Overall discussion 

156 
 

degrading straw detected at the investigated time point (20 days after maize seeding) formed a 

specific subpopulation in the rhizosphere and are known to have an oligotrophic lifestyle. Those 

are able to use recalcitrant straw compounds and can therefore outcompete the copiotrophic 

microorganisms in the rhizosphere. The simultaneous utilization of carbon derived from root 

exudates and straw affected the uptake of root exudates, but this effect was dependent on the 

stage of straw decomposition.  

3.4. Final conclusion 

The reduction of methane emissions and water consumption is an important goal to achieve a 

more environmental friendly rice cultivation practise in Asia. The introduction of a crop rotation 

system with rice in the wet season and maize in the dry season is a promising alternative to rice 

cultivation in monoculture under flooded conditions. Additionally, the generated rice straw can 

be incorporated into the soil and applied as mulch in the dry season. This causes a fertilising 

effect by returning carbon and nutrients to the soil and helps to conserve the moisture in soil. 

Therefore, crop rotation and straw application are management strategies that save resources 

(water and fertiliser) and furthermore reduce the global warming effect by decreased CH4 

emissions in comparison to the cultivation of rice in monoculture. Methane is mainly produced 

in flooded rice fields and despite the activity of methanotrophs in rice fields, the methane 

emissions of flooded rice fields are much higher than of MR or upland fields.  

The extended drainage period in MR soils causes only little changes in microbial communities, 

because the regular change between oxic and anoxic conditions remains in both, rice 

monoculture and MR systems. Nevertheless, an important difference between the microbial 

communities in rice monoculture and MR soils is the suppression of anaerobic microorganisms 

(figure 3.1). The longer aeration period in soils under crop rotation compared to those under 

rice monoculture causes a suppression of the soil inhabiting anaerobic microorganisms, 

indicating that oxygen is the main driving factor for shaping the microbial community 

composition.  

The degradation of straw in MR soil is mainly accomplished by aerobic bacteria in the bulk soil 

as well as in the rhizosphere. Additionally, fungi have a delayed response to straw addition. 

They are predominantly involved in the degradation of complex carbon compounds. In contrast, 

the degradation in the anoxic bulk soil and in the rhizosphere of rice is mainly conducted by 

anaerobic Clostridia and methanogenic archaea, and is characterized by the absence of fungi. 

The straw degradation process follows a temporal succession, in which different microbial taxa 

are involved over time. The decomposition stage of straw also influences the uptake of root 
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exudates by rhizosphere microorganisms, because some root exudate consuming microbes are 

able to use straw as additional carbon source.  

In conclusion, the establishment of crop rotation in combination with straw addition is a 

promising strategy to reduce the methane emissions of paddy soils and, simultaneously, to 

preserve soil moisture and soil quality by straw addition, because the microorganisms 

responsible for methane production in paddy soils are depleted under these conditions. In MR 

soils treated with straw, no active straw degrading methanogens were detected, leading to the 

conclusion that despite straw addition no increase in methane production will occur, as it was 

found previously for rice soils treated with straw.  
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Figure 3.1: Graphical summary of main results achieved from the studies of this thesis.  

 

1: Methane emitted 
from rice plants can 
potentially be used by 
methanotrophs 
inhabiting 
aboveground plant 
parts and therefore 
may represent an 
underestimated 
methane sink in 
flooded 
environments.  

2: Rice-maize crop rotation 
soils harbour microorganisms 
more alike to those in paddy 
soils. Differences between MR 
and paddy soils are mainly due 
to the depletion of anaerobic 
microorganisms. Straw 
fertilisation has a weak impact 
on microbial communities in 
comparison to the effect of crop 
rotation, compartment and time. 

3: The straw degrading 
community in crop rotation soil 
consists mainly of aerobic 
microbes. Methanogens are 
depleted, leading to a decrease 
in methane emissions. Straw 
degradation follows a temporal 
succession, mainly induced by 
copiotrophic bacteria and later 
followed by oligotrophic fungi 
and bacteria. 

4: Straw application 
influences the uptake of root 
exudates by microbes in MR 
soil. The strength of the 
impact depends on the phase 
of the straw decomposition 
process. 
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