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ABSTRACT 

Hereditary spastic paraplegia (HSP) is an inherited disease characterized by progressive 

spasticity in the lower limbs, caused by axonal degeneration of corticospinal motor neurons. 

Spastic paraplegia 4 (SPG4) is the most frequent, autosomal dominant subtype, responsible 

for >50% of all pure HSP cases. Affected patients carry mutations in the SPAST gene encoding 

the microtubule-severing enzyme spastin. So far, no curative treatment for HSP is available 

and drug discovery screens are hampered by the lack of suitable model systems. While SPG4-

associated phenotypic alterations have been described in iPSC-derived neurons, development 

of these in vitro phenotypes typically requires several weeks of in vitro differentiation, limiting 

their exploitation for high-throughput assays. Therefore, developing a SPG4 model and 

enabling rapid phenotypic analyses within a few days is of great interest and became the focus 

of this study. To this end, fibroblasts of family members carrying a specific SPAST nonsense 

mutation were reprogrammed to a pluripotent state employing retroviruses or non-integrating 

Sendai viruses encoding OCT4, KLF4, SOX2 and c-MYC yielding in several fully validated 

SPG4 iPSC lines. IPSCs from three patients carrying heterozygous SPAST nonsense 

mutations were differentiated into highly enriched neuronal cortical cultures comprising >80% 

glutamatergic neurons expressing the layer V/VI markers CTIP2 and TBR1. Spastin levels in 

SPG4 neuronal cultures were reduced by approximately 50% compared to controls. Focusing 

on the identification of early neuronal HSP-related phenotypes, SPG4 neurons exhibited a 51% 

reduction in neurite length compared to controls already 24 hours after plating. At that time 

point, enlarged growth cones suggestive of a cytoskeletal imbalance were observed as well. 

Moreover, axonal swellings a hallmark of the HSP pathology, could be reliably detected already 

five days after plating of SPG4 iPSC-derived cortical neurons. Swellings were 1-7µm in 

diameter and stained positive for the axonal markers TAU1 and acetylated tubulin. 

Furthermore, these disease specific early phenotypes appeared to be cell type specific and 

could not be found in GABAergic SPG4 forebrain neurons, which might be due to a higher 

expression of M1 SPAST in this cell type. However, the application of different read-through 

inducing molecules did not lead to an up-regulation of spastin levels in patient cultures. To 

identify new potentially therapeutic compounds, counteracting SPG4-associated neuronal 

phenotypes, all three fast phenotypic assays were transferred to an automated or semi-

automated 96-well-setup. Indeed, the actin-destabilizing drug Latrunculin B and the liver X 

receptor (LXR) agonist GW3965 led to a significant increase in patient neurite length. And eight 

of the tested drugs achieved a significant reduction of patient growth cone areas, including 

Latrunculin B and GW3965. The most effective reduction of axonal swellings, accompanied by 

normal neuronal morphology was achieved by the bone morphogenetic protein (BMP) inhibitor 

DMH1 and the LXR agonist GW3965. In particular, GW3965 was able to rescue all three 

phenotypes of SPG4 neurons and had no effect on control neurons.  



VI 
 

In summary, in this thesis several rapid phenotypic assays for disease modeling and drug 

screening in SPG4 neurons have been developed. In addition, the cortical neurons generated 

in this thesis are cryopreservable and prepared cell batches are readily available for future 

screening purposes. Taken together, the findings of this thesis provide an excellent basis for 

studying the underlying pathomechanisms as well as for drug development in hereditary 

spastic paraplegia. 
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1 INTRODUCTION 

1.1 Neurite pathologies and axonal degeneration: common phenotypes in 

neurodegenerative diseases 

Hereditary spastic paraplegia (HSP) is characterized by retrograde degeneration of upper motor 

neurons and axonal swellings, cellular phenotypes which are common to several motor neuron 

and neurodegenerative diseases (Blackstone 2018). Amyotrophic lateral sclerosis (ALS) is one 

of the most prominent motor neuron diseases, caused by degeneration of upper motor neurons 

and spinal motor neurons (Fischer-Hayes et al. 2013; Moloney et al. 2014). ALS patients often 

display additional symptoms of frontotemporal dementia (FTD) (Zago et al. 2011; Ferrari et al. 

2011). In fact, these two neurodegenerative disorders seem to be closely related and can be 

caused by a hexanucleotide repeat expansion in the first intron of the same genomic locus: 

C9ORF72, which is the most common cause of ALS. This mutation can manifest in either ALS, 

FTD or both (Renton et al. 2011). In another motor neurons disease, spinal muscular atrophy 

(SMA), spinal motor neurons degenerate, leading to overall muscle weakness (Winkler et al. 

2005; Heesen et al. 2016). Charcot Marie Tooth can be caused by myelopathy leading to 

axonopathy, or primarily by axonal degeneration of spinal motor neurons as well as sensory 

neurons. This group of disorders is associated with mutations in different genomic loci and is 

considered to be the most common hereditary polyneuropathy (Krajewski et al. 2000; Hoyle et al. 

2015). Even though multiple sclerosis is mainly known to be caused by demyelination, evidence 

points towards a major role of axonal degeneration in disease onset, progression and severity 

(Su et al. 2009; Haines et al. 2011). Alzheimer’s disease is characterized by progressive axonal 

degeneration, accompanied by the formation of axonal tau accumulations (Mertens et al. 2013; 

Kanaan et al. 2013; Kneynsberg et al. 2017). Parkinson’s disease is caused by axonal and 

neuronal degeneration of dopaminergic neurons in the substantia nigra (Burke and O’Malley 

2013; Tagliaferro and Burke 2016). In vitro iPSC models of Parkinson’s disease could show 

additional neurite phenotypes, including reduced numbers of neurites, reduced neurite length and 

neurite arborization (Sánchez-Danés et al. 2012; Reinhardt et al. 2013). Overall, axonal 

degeneration and neurite pathologies are key pathological hallmark in a number of 

neurodegenerative diseases including HSP. 
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1.2 Hereditary spastic paraplegia (HSP) 

1.2.1 Introduction into HSP 

Hereditary spastic paraplegia is a group of disorders displaying a progressive degeneration of the 

upper motor neurons, manifesting by spastic weakness of the lower extremities (Tallaksen et al. 

2001; Salinas et al. 2008; Lo Giudice et al. 2014). The genetic causes associated with HSP are 

steadily growing. Until now, 78 different spastic paraplegia disease-loci and 60 spastic paraplegia 

genes have been identified (Lo Giudice et al. 2014; Novarino et al. 2014; Solowska and Baas 

2015; Estrada-Cuzcano et al. 2017). As indicated by the name, HSP is an inherited disease and 

has an overall prevalence of 1.8-9 /105, depending of the population at hand (Blackstone 2012; 

Ruano et al. 2014). The disease onset is highly variable, ranging from early childhood up to 70 

years of age. Depending on the affected gene and form, HSP can be passed on in an autosomal 

dominant, autosomal recessive, X-linked, or mitochondrial mode (Schüle and Schöls 2011; 

Finsterer et al. 2012). The most common forms of HSP: SPG4 (Hazan et al. 1999) and SPG3A 

(Zhao et al. 2001) are both pure, uncomplicated forms, affecting only the upper motor neurons 

without additional symptoms (e.g. dementia, cerebellar ataxia, thin corpus callosum). Whereas 

SPG11, (Martínez Murillo et al. 1999; Stevanin et al. 2007) which is the most common cause of 

autosomal recessive HSP, (Lo Giudice et al. 2014) presents as a complicated form with additional 

symptoms. 

1.2.2 Common molecular mechanisms of HSP 

Genes that are mutated in HSP play a role in several essential cellular processes, many of which 

are of particular importance in neurons, a specialized cell type with long axons and thus an 

enlarged membrane compartment and enhanced trafficking needs. One of these membrane 

compartments is the endoplasmic reticulum (ER), which stretches throughout the whole axon 

from the soma to the distal synapses. Besides the ER, several other cellular compartments or 

processes have been implicated in the formation of HSP. Amongst these are lipid metabolism, 

myelination, mitochondria, axonal transport, endosomal trafficking, inhibition of BMP signaling, 

microtubule interaction, autophagy and developmental errors. Thus, the proteins involved in HSP 

are localized at several different cellular sites (Figure 1.1) 
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Figure 1.1 Illustration of HSP proteins and their cellular compartments (Blackstone et al. 2012) 
 

Spastin (SPG4), atlastin (SPG3A), receptor expression-enhancing protein 1 (REEP1, SPG31) 

(Züchner et al. 2006), reticulon2 (SPG12) (Montenegro et al. 2012) and protrudin (SPG33) 

(Mannan et al. 2006; Hashimoto et al. 2014) are all located at the smooth tubular ER (Park et al. 

2010; Goyal & Blackstone 2013) and mutations in these proteins cause more than 50% of all HSP 

cases. One important function of the ER is lipid -synthesis and -distribution. The HSP proteins 

spartin (SPG20) (Patel et al. 2002; Eastman et al. 2009; Edwards et al. 2009), seipin (SPG17) 

(Windpassinger et al. 2004; Szymanski et al. 2007), REEP1 (SPG31) (Falk et al. 2014) and 

spastin (SPG4) (Papadopoulos et al. 2015) play a role in lipid droplet biogenesis. Whereas 

several other HSP proteins are involved in lipid biosynthesis. They include the acetyl-CoA 

transporter (SPG42) (Lin et al. 2008), DDHD1 (SPG28) (Tesson et al. 2012), DDHD2 (SPG54) 

(Schuurs-Hoeijmakers et al. 2012), fatty acid 2-hydroxylase (FA2H; SPG35) (Dick et al. 2010), 

CYP2U1 (SPG56) (Tesson et al. 2012), neuropathy target esterase (NTE; SPG39) (Rainier et al. 

2008; Read et al. 2009), cytochrome P450-7B1 (CYP7B1; SPG5) (Tsaousidou et al. 2008), β-

1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1; SPG26) (Boukhris et al. 2013), 

glucocerebrosidase GBA2 (SPG46) (Martin et al. 2013) and CPT1C (Rinaldi et al. 2015). The 

intracellular gap junction channel connexin–47 (SPG44) (Orthmann-Murphy et al. 2009), the 

proteolipid protein 1 (PLP1; SPG2) (Saugier-Veber et al. 1994) and FA2H (SPG35) on the other 

hand are expressed in oligodendrocytes and play an immediate role in the myelination process. 

Mitochondrial function is another common theme among HSP-causing proteins. Mutations in 

paraplegin (SPG7) (Hansen et al. 2002), heat shock protein 60 (HSP60; SPG13) (Casari et al. 

1998), acetyl-CoA transporter (SPG42) and DDHD1 (SPG28) (Tesson et al. 2012) lead to 

increased oxidative stress or alter mitochondrial form and function. 
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Mutations in the motor proteins KIF1A (SPG30) (Erlich et al. 2011) and KIF5A (SPG10) (Reid et 

al. 2002) lead to axonal transport abnormalities, which has in a more indirect manner also been 

implied for SPG4 (Kasher et al. 2009). 

Endosomes play a major role in trafficking of membrane and cargo. Several HSP proteins e.g. 

protrudin (SPG33), maspardin (SPG21) (Simpson et al. 2003) and NIPA1 (SPG6) (Rainier et al. 

2003) are known to be located at endosomes, even though their exact function is still unclear. 

Spatacsin (SPG11) (Stevanin et al. 2007), spastizin (SPG15) (Hanein et al. 2008) and KIAA0415 

(SPG48) (Słabicki et al. 2010) on the other hand are part of a protein complex involved in 

endosomal vesicle trafficking, which has also been implicated in DNA repair. Strumpellin (SPG8) 

(Valdmanis et al. 2007) is part of the Wiskott–Aldrich syndrome protein and scar homolog (WASH) 

complex, which regulates endosomal trafficking (Freeman, Seaman, and Reid 2013). 

Endosomal sorting complex required for transport (ESCRT) complexes also regulate trafficking 

of proteins from endosomes to lysosomes and other vesicles. HSP protein VPS37A (SPG53) 

(Zivony-Elboum et al. 2012) is part of the ESCRT–I complex, whereas spastin (SPG4) and spartin 

(SPG20) interact with the ESCRT–III complex (Renvoisé and Blackstone 2010; Allison et al. 2013) 

through a common microtubule interacting and trafficking (MIT) domain (Ciccarelli et al. 2003). 

Likely due to its function in endosomal sorting, spartin (SPG20) is also involved in epidermal 

growth factor receptor (EGFR) regulation (Bakowska et al. 2007). Endosomal sorting might also 

play a role in the inhibitory function of atlastin (SPG3A), spastin (SPG4), (SPG6) and Spartin 

(SPG20) on BMP signaling (Tsang et al. 2009).  

Tectonin beta propeller repeat containing protein 2 (TECPR2; SPG49) (Oz-Levi et al. 2012) was 

the first HSP protein discovered that is part of the autophagic machinery, a very important cellular 

degradation mechanism. Only recently two additional proteins spatacsin (SPG11) and spastizin 

(SPG15) have been implicated in impaired autophagy (Renvoisé et al. 2014; Chang et al. 2014; 

Varga et al. 2015). 

Only two forms of HSP are known, that are definitely due to developmental errors: NCAM (SPG1) 

(Jouet et al. 1994) plays an important role in axon pathfinding and MCT8 (SPG22) (Schwartz et 

al. 2005) is a membrane transporter involved in axon development. Besides SPG1 and SPG22, 

developmental involvement is only discussed for SPG3A which might play a role in axon 

elongation during development (Zhu et al. 2006). Overall, several important cellular functions are 

implicated in the disease mechanism of HSP, they include ER function, lipid biosynthesis, 

myelination, mitochondrial function, axonal transport, endosomal sorting and trafficking, BMP 

inhibition and autophagy. 

1.2.3 Spastic paraplegia 4 (SPG4): the most common form of HSP 

SPG4 is the most common form of hereditary spastic paraplegia (Finsterer et al. 2012; Ruano et 

al. 2014). Over 50% of the autosomal dominant and >25% of all HSP cases are due to mutations 
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in the SPAST gene (Schüle et al. 2016). SPG4 manifests as pure, uncomplicated form, affecting 

only the upper motor neurons without additional symptoms (e.g. dementia, cerebellar ataxia, thin 

corpus callosum). Patients display a spastic paraplegia of the lower limbs, leading to spastic gait 

and immobility. The age of onset is usually around 30 years of age, but it may vary from early 

childhood to old age, even if the same mutation is present. The SPAST gene is located on 

chromosome 2p22.3, spans a region of about 90 kb and contains 17 exons. 

SPG4 can be caused by a variety of mutations in the SPAST gene including missense, nonsense, 

splice site, deletions and insertions. Most of these mutations lead to a loss of protein expression, 

which indicates that the most common mode of action is haploinsufficiency. Only very few cases 

are reported where a dominant negative active mode of action is implied (Solowska et al. 2010). 

Remarkably, about 6% of individuals carrying a SPAST mutation are completely asymptomatic 

(Dürr et al. 2012). Genetic modifiers are likely to play a role but have not yet been discovered. 

1.2.4 The SPG4 protein spastin  

Spastin is one of the central HSP proteins, which is due to the frequency of SPG4 mutations, its 

various cellular functions and the fact that it interacts with several other HSP causing proteins.  

The main function of spastin is a severing of microtubules carried out by the AAA (ATPase 

associated with various cellular activities) enzyme domain (Figure 1.2). It is present in all isoforms, 

makes up most of the protein (spanning amino acids 342 – 599) and becomes active upon 

hexamerization (White et al. 2007). Especially negatively charged polyglutamylated tubulin 

stimulates spastin-mediated severing (Lacroix et al. 2010). Spastin has two different start codons 

leading to different isoforms of the protein. The first start codon is initiating the M1 isoform, 

expressed to a minor degree due to a weaker Kozak sequence (Claudiani et al. 2005). The 

predominantly and ubiquitously expressed spastin isoform is the shorter M87 isoform (Solowska 

et al. 2010). Besides the 616 amino acid (68 kDa) long M1 isoform and the 530 amino acid (60 

kDa) long M87 isoform, two additional isoforms, generated by mRNA splicing of exon 4 (shaded 

in black), exist (Figure 1.2). Although the M87 is in general more abundantly expressed, the M1 

isoform is thought to be predominantly expressed in the spinal cord (Solowska et al. 2010). 

 

 

Figure 1.2 Scheme of the microtubule severing protein spastin 

 



6 
 

Besides the AAA domain, a microtubule-binding domain (MTBD) spanning amino acids 270 to 

328, is essential for hexamerization of spastin and breaking of microtubules. The microtubule 

interacting and trafficking domain (MIT) made up of amino acids 120-197 on the other hand, is a 

protein interacting domain. Through the MIT domain spastin interacts with two ESCRT-III complex 

proteins: charged multi-vascular body protein 1B (CHMP1B) and the increased sodium tolerance 

(IST1) protein. ESCRT-III, CHMP1B and spastin act together to complete abscission during 

cytokinesis, which is delayed in HeLa KO lines (Reid et al. 2005; Connell et al. 2009). In vivo this 

effect cannot be observed, pointing towards a compensation mechanism. The interaction with 

IST1 on the other hand, seems to promote fission of recycling tubes from endosomes, controlling 

the balance between degradation and recycling of receptors in vitro in HeLa cells but also in vivo 

in zebrafish (Allison et al. 2013). This regulatory function might explain spastin’s role as inhibitor 

of BMP signaling (Tsang et al. 2009), a pathway involved in developmental patterning, 

differentiation, axonal guidance and axon outgrowth (Liu et al. 2005). However, it is yet unclear, 

through which mechanism spastin achieves a down-regulation of BMP signaling. 

In spastin, a hydrophobic region stretches from amino acids 57 to 77, which is unique to the longer 

M1 isoform and forms a hairpin that can intercalate as a wedge into the ER membrane (Park et 

al. 2010). In addition, this hydrophobic domain can interact with the hydrophobic hairpins of 

atlastin and REEP1, other HSP causing proteins, and the endoplasmic reticulum shaping protein 

reticulon 1 (RTN1) (Mannan et al. 2006). Together these proteins are involved in shaping the 

smooth endoplasmic reticulum. More specifically, they mediate the formation of three-way 

junctions responsible for the polygonal structure of the tubular ER (Park et al. 2010; Goyal et al. 

2013). Due to spastin’s role as a microtubule severing enzyme, it can in addition mediate lipid 

droplet formation and abscission from the ER (Papadopoulos et al. 2015). Furthermore, spastin 

is a binding partner of protrudin (SPG33) and promotes protrudin-dependent neurite outgrowth 

(Zhang et al. 2012). However, it is still uncertain if the M1 isoform, the M87 isoform or both 

isoforms are accountable for disease formation. 

1.2.5 Animal models and in vitro models of SPG4 

Several disease models with mutated spastin have been generated and described to further 

understand the molecular basis of SPG4. These disease models range from HeLa cell culture 

models, to zebrafish-, drosophila- and mouse models to more advanced human pluripotent stem 

cell-based cell culture models. Even a bovine model exists, carrying mutations in the SPAST gene 

and causing a recessive neurodegenerative disease called bovine spinal demyelination 

(Thomsen et al. 2010). 

In SPG4 patients, the most prominent molecular phenotype that could be found postmortem are 

axonal swellings in the spinal cord (Kasher et al. 2009). This phenotype was for the first time 

recapitulated in a mouse model expressing mutated spastin carrying a premature stop codon. 
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Even though the motor defects were mild, the mice exhibited axonal swellings with abnormal 

accumulation of organelles and cytoskeletal components (Tarrade et al. 2006). Axonal swellings, 

which contain cytoskeletal proteins can also be observed in another SPG4 mouse model, where 

pathogenic splice site mutations lead to a loss of protein (Kasher et al. 2009). In two human iPSC 

models with decreased spastin expression, axonal swellings filled with mitochondria, TAU protein 

(Denton et al. 2014) and disrupted microtubules (Havlicek et al. 2014) were found. In one of the 

mouse models and one of the iPSC models, a rescue of axonal swellings with low concentrations 

of microtubule targeting drugs Nocodazole, Vinblastine, Taxol (Fassier et al. 2013) or only 

Vinblastine (Denton et al. 2014) could be shown. The authors speculated, that the occurrence of 

axonal swellings might be due to insufficient microtubule severing by mutated spastin. 

Spastin’s ability to sever microtubules was first suspected due to its sequence homology with the 

microtubule severing enzyme katanin and its colocalization with microtubules (Connell et al. 

2009). This was confirmed by cell culture models, which could also show that mutations within 

spastin’s ATPase domain can severely impair microtubule severing (Evans et al. 2005). A 

proposed disease mechanism is a traffic jam caused by disrupted microtubules and axonal 

swellings that leads to impaired axonal transport. Evidence for this hypothesis could be found in 

a mouse model in 2009 and in three human SPG4 models. However, the results are somewhat 

controversial, since all studies show different impairments. In the mouse model a reduced 

anterograde transport was observed (Kasher et al. 2009). The first published iPSC disease model 

reported an overall decreased mitochondrial transport (Denton et al. 2014), whereas the second 

iPSC disease model could only show a slight imbalance of axonal transport with less retrograde 

movement (Havlicek et al. 2014). In a disease model using patient olfactory mucosa cells, 

marginally slower moving peroxisomes were observed (Abrahamsen et al. 2013), a phenotype 

that could be rescued by low concentrations of the microtubule binding drugs: Taxol, Vinblastine, 

EpothiloneD or Noscapine (Fan et al. 2014). Similar observations have been made in mouse 

neuroblastoma cells, which exhibited slightly reduced velocity of vesicles, upon overexpression 

of certain SPAST mutations (Fuerst et al. 2011). 

Comparable controversy prevails in the question whether reduced spastin levels lead to more or 

less of stable, acetylated tubulin. One would expect more stable microtubules, but for olfactory 

mucosa derived cells the opposite effect was reported, i.e. slight down-regulation of acetylated 

tubulin. This was explained by compensatory upregulation of stathmin, a microtubule-

destabilizing enzyme (Abrahamsen et al. 2013). Denton et al. found the expected upregulation of 

acetylated microtubule in patient iPSC derived neurons, however the sample size of one patient 

and one control is very low. In contrast Havlicek et al. did not see any difference regarding 

stabilized tubulin levels in their patient iPSC derived neurons compared to controls. Here, the 

difference to the expected result is explained by an observed upregulation of the microtubule 

severing enzyme p60 katanin. 
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In addition, spastin seems to have an impact on neurite length and morphology. Even though 

normal viability and neurite density were reported for cultured cortical neurons of the 2006 mouse 

model (Tarrade et al. 2006), spastin knockdown in developing zebrafish embryos led to dramatic 

defects in motor axonal outgrowth (Wood et al. 2006; Butler et al. 2010). Likewise, in cultured 

mouse hippocampal neurons, spastin depletion led to abnormal neuronal morphology, dystrophic 

neurites, axonal growth defects and reduced microtubule assembly rate (Riano et al. 2009). In 

human iPSC-derived neurons, reduced neurite complexity and neurite length was observed after 

6 weeks of culture, phenotypes that could be rescued by spastin overexpression (Havlicek et al. 

2014). However, the right spastin dose seems to be very important, indicated by decreased motor 

function in Drosophila and neurite outgrowth defects in primary rat cortical neurons upon 

overexpression of spastin (Solowska et al. 2014). 

Since there is no developmental aspect known for SPG4, a mechanism in which spastin is 

important for axon maintenance and regeneration seems likely. The only evidence regarding 

regeneration has been reported in a drosophila model (with one mutated spastin allele) where 

mutant  flies exhibited defective axon regeneration from the dendrite and the stump, but normal 

axon and dendrite outgrowth (Stone et al. 2012).  

One hypothesis to explain the selectivity and late onset of SPG4, is the differential isoform 

expression. In rats, spastin is highly expressed in all embryonic neural tissues but downregulated 

in the adult nervous system. Interestingly, in rats, the M1 isoform is almost absent from developing 

neurons and most adults neuron, but is more strongly expressed in the adult spinal cord 

(Solowska et al. 2008). From this observation the hypothesis was derived that the rare M1 isoform 

is responsible for disease formation. Due to its hydrophobic domain, the M1 isoform has some 

unique functions, it localizes to the early secretory pathway and the ER, where it can sort to pre- 

and mature lipid droplets. Since, downregulation of spastin led to decreased lipid droplet number 

in Drosophila nerves, spastin seems to play a role in lipid droplets formation (Papadopoulos et al. 

2015). In an overexpression scenario, the M1 isoform is believed to interrupt normal axon growth 

and inhibit fast axonal transport due to decreased microtubule dynamics caused by a gain of 

function mechanism of mutated M1 spastin (Solowska et al. 2008; Solowska et al. 2014). 

Membrane modeling might be another common theme in SPG4 pathology. HeLa cells and 

zebrafish lacking spastin exhibit increased tubulation of the endosomal tubular recycling 

compartments leading to defective receptor sorting (Allison et al. 2013). Through this mechanism, 

lack of spastin could lead to BMP receptor downregulation. Spastin’s role as inhibitor of BMP 

signaling has been shown previously in HeLa cells, together with NIPA1s ability to promote 

endocytosis and lysosomal degradation of the BMPRII (Tsang et al. 2009). 

Especially in models where only one motor neuron exists, defects in neuromuscular junctions 

(NMJs) and synapses have been reported. Spastin-null Drosophila larvae have more numerous 

and clustered NMJ synaptic boutons and the adult flies cannot fly or jump and have fewer 
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microtubule bundles within the NMJs (Sherwood et al. 2004). Drosophila carrying a spastin knock-

out in neural cells show an excessive stabilization of microtubules in the NMJ synapse, which can 

be attenuated by Vinblastine treatment (Orso et al. 2005). Even flies that lack drosophila spastin 

and have a humanized heterozygous genotype (one active, one inactive human spastin), have 

an aberrant distal synapse morphology. Comparable to the drosophila knock-out, the synaptic 

boutons are more numerous and the microtubule distribution is altered (Du et al. 2010). In 

zebrafish, spastin knock-out leads to reduced growth cone activity in vivo combined with altered 

microtubule dynamics. However, Nocodazole a microtubule destabilizing substance similar to 

Vinblastine enhances the severity of the phenotype (Butler et al. 2010). 

Until now, there is no specific therapy known for SPG4. In cellular models only microtubule 

modulating drugs, which are approved as cancer treatments, were able to alleviate phenotypes. 

One other, rather surprising strategy proven successful in a drosophila SPG4 model was cooling 

of the organism. Decreased temperature improved mobility, survival and a synaptic phenotype in 

the flies (Baxter et al. 2014). 

1.3 Human pluripotent stem cells 

1.3.1 Embryonic stem cells 

Pluripotent cells have the ability to self- renew as well as the potential to differentiate into every 

cell of the organism, thus into all three germ layers. The concept of pluripotency was first 

discovered in teratocarcinoma (also named teratoma), tumors consisting of differentiated cells of 

all three germ layers. In 1964, Kleinsmith and Pierce identified embryonal carcinoma cells, 

capable of teratoma formation after single cell transplantation in mice (Kleinsmith et al. 1964). 

These cells were competent of both unlimited self-renewal and multilineage differentiation, thus 

fulfilling the definition of pluripotency. This was the foundation for the isolation of embryonic stem 

cells from the inner cell mass of mouse preimplantation blastocysts in 1981 (Evans and Kaufman 

1981; Martin 1981). These mouse embryonic stem cells (ESCs) were cultured on irradiated feeder 

cells (mouse embryonic fibroblasts) in the presence of leukemia inhibitory factor (Lif) and fetal call 

serum (FCS), grew in colonies and had a tightly packed dome-shaped morphology. The isolation 

of human embryonic stem cells from the blastocysts was finally achieved in 1998 (Thomson et al. 

1998). Even though mouse and human ESC lines are pluripotent, human ESC-colonies have a 

flattened morphology and are fibroblast growth factor (FGF) - rather than Lif -dependent. It is now 

believed, that human ESCs are actually derived from the post-implantation epiblast, which is one 

step further in embryogenesis, and are already primed towards a lineage. Human ESCs are 

randomly methylated and are now often referred to as epiblast derived stem cells (EpiSCs) or 

primed ESCs (Nichols and Smith 2009). Further understanding of pluripotency led to more defined 

medium and culture conditions. Human ESCs are now most commonly cultured in a feeder-free 
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manner on growth factor reduced (GFR) Matrigel (MG), a gelatinous extracellular matrix protein 

mixture derived from Engelbreth-Holm-Swarm (EHS) mouse sarcoma, consisting of 

approximately 60% laminin, 30% collagen IV, and 8% entactin (Xu et al. 2001). The dissociation 

reagent collagenase, that lifted whole colonies from the feeder layer, has been replaced by the 

much faster acting accutase in combination with a Rho-associated protein kinase (ROCK) 

inhibitor, that is used to increase survival of the gained single cells (Watanabe et al. 2007). The 

alternative EDTA acts even faster, but maintains small cell clumps that can survive without ROCK 

inhibitors (Beers et al. 2012). The most popular defined media for human ESCs are mTeSR and 

Essential 8 (E8), both based on the growth factors FGF2 and transforming growth factor beta 

(TGF-β) (Ludwig et al. 2006a; Ludwig et al. 2006b; Chen et al. 2011; Beers et al. 2012). FGF2 is 

acting as a survival factor for ESCs and promotes long-term self-renewal, whereas TGF-β 

promotes pluripotency by upregulating the pluripotency genes OCT4 and NANOG (Xu et al. 2005; 

Darr et al. 2006; Johnson et al. 2008). Besides OCT4 and NANOG, SOX2 belongs to the core 

pluripotency factors, which enforce each other through auto regulatory circuits, promote self-

renewal and pluripotency and down-regulate differentiation genes (Boyer et al. 2005; Kashyap et 

al. 2009). 

1.3.2 Induced pluripotent stem cells 

In 2006, the group of Yamanaka revolutionized the stem cell field by dedifferentiating mouse 

fibroblasts into pluripotent stem cells, called induced pluripotent stem cells (iPSCs), by lentiviral 

overexpression of four factors (Takahashi and Yamanaka 2006). These potent pluripotency 

inducing factors, now known as Yamanaka factors are Oct4, Sox2, Klf4 and c-Myc. Only one year 

later, reprogramming was also achieved in the human system generating human iPSCs, highly 

similar to human ESCs (Takahashi et al. 2007; Yu et al. 2007). This new development made a 

widespread research on human pluripotent stem cells and derived patient specific cells possible, 

since there was no longer a need for human blastocysts and the involved ethical concerns. 

Reprogramming started off with integrating viruses e.g. lentiviruses and retroviruses, which 

integrate randomly into the genome and might cause additional mutations in coding regions. To 

avoid genomic aberrations, incomplete silencing or reactivation of the transgenes in differentiated 

cells, non-integrating systems were developed. Early strategies like repeated plasmid transfection 

(Okita et al. 2008), protein mediated reprogramming (Zhou et al. 2009) and adenoviral 

transduction (Stadtfeld et al. 2008) were soon replaced by simpler and more efficient methods 

including transfection of synthetic modified mRNA (Warren et al. 2010) and Sendai virus 

transduction. Especially Sendai RNA viruses carrying the four Yamanaka factors are very efficient 

for reprogramming of primary cells (Fusaki et al. 2009). Human iPSCs are essentially 

indistinguishable from human ESCs, they can be cultured using the same media and coatings. 

However, to make sure that iPSCs are fully reprogrammed and truly pluripotent, they have to go 
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through a profound validation process. Since iPSCs are generated from adult somatic cells, 

clones have to be screened for pre-existing mutations as well as newly acquired ones, which 

might mask the cellular phenotype. To correct for minor mutations, that cannot be seen in 

standard genome analysis, e.g. karyotyping or single nucleotide polymorphism (SNP) analysis, 

disease modeling studies use two to three clones of one genetic background. Furthermore, iPSC 

clones are analyzed regarding morphology, growth rate, pluripotency marker expression, 

transgene silencing and their differentiation potential (Park and Daley 2009; Maherali and 

Hochedlinger 2008). Pluripotent cells should per definition be able to differentiate into all three 

germ layers; this can be tested in vivo by teratoma formation in mice or in vitro by directed or 

undirected differentiation followed by immunostaining or real-time qPCR analysis on a so-called 

scorecard array (Bock et al. 2011). Especially the possibility to differentiate iPSCs into all tissues 

of the body allows research on authentic cell types like neurons or cardiomyocytes, whose 

availability is otherwise very limited, with a wild type or disease genotype. Overall, the field of 

iPSC research offers exciting opportunities for disease modeling, drug screening and 

developmental research. 

1.4 Neural development 

The nervous system is derived from the ectoderm. First, the neural plate forms which invaginates 

to form the neural tube during neurulation. All cells of the central nervous system develop from 

the walls of the neural tube. The neural crest gives rise to the peripheral nervous system and lies 

adjacent to the neural tube. During early differentiation, three primary vesicles are formed, the 

prosencephalon (forebrain), the mesencephalon (midbrain) and the rhombencephalon 

(hindbrain), which is connected to the caudal neural tube (spinal cord). The prosencephalon 

develops further into the telencephalic vesicles, the diencephalon and the optic vesicles. The 

telencephalon gives rise to the cerebral cortex and the basal telencephalon, whereas the 

diencephalon forms the thalamus and the hypothalamus. The patterning into different brain 

regions is mediated by growth factors and their concentration gradients. In general, retinoic acid 

and FGF signaling posteriorize, BMP signaling dorsalizes and sonic hedgehog (Shh) signaling 

ventralizes (Bear et al. 2007; Briscoe and Novitch 2008). 

1.5 The motor pathway  

The motor pathway, also called the corticospinal pathway is responsible for voluntary movement. 

Movement instructions originate from the cerebral cortex, more specifically the layer V of the 

motor cortex and follow the corticospinal tract to the spinal cord to finally trigger muscle 

contraction and movement. The axons of the upper motor neurons are the longest in the human 

body and form glutamatergic, excitatory synapses. Originating in the motor cortex, they mostly 

cross over in the medula and descend down to the spinal cord, where they establish synapses 

either directly with lower motor neurons or with spinal interneurons, which then connect with the 
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lower, spinal motor neurons. These spinal or alpha motor neurons innervate the large skeletal 

muscle fibers. Due to extensive branching, one motor neuron can form countless neuromuscular 

junctions to excite up to several hundred muscle fibers. The length and complexity of the motor 

pathway is especially challenging for its components, particularly the upper motor neurons with 

their uniquely long axons (Guyton and Hall 2006; Blackstone 2012). 

1.6 Neuronal differentiation 

To effectively model human diseases with ESCs or iPSCs, it is necessary to differentiate a pure 

population of the affected neuronal subtype, to be able to exclude effects from contaminating cell 

types. When the concept of neural differentiation first emerged, undirected differentiating 

embryoid bodies (EBs) or neural lineage inducing stromal feeder cells were used. These protocols 

had a high variability of outcome and poor yield of the desired cell type. SMAD signaling, which 

is activated by members of the TGF-beta superfamily has been identified as a key factor during 

early neural development (Smith and Harland 1992; Sasai et al. 1994; Wrana and Attisano 2000). 

Accordingly, the BMP inhibitor noggin enhanced neural induction in early human ESC 

differentiation protocols (Lee et al. 2007; Elkabetz et al. 2008). Moreover, inhibition of nodal, 

another member of the TGF-beta family, promoted neural induction in an EB-based differentiation 

protocol (Smith et al. 2008). Combining noggin and SB431542, an inhibitor of nodal, led to almost 

complete neural induction and revolutionized the field of neural differentiation (Chambers et al. 

2009). Intrinsic differentiation propensities of pluripotent stem cells (PSCs) could be overcome to 

achieve an even better neural induction by replacing nodal with the small molecule inhibitor 

Dorsomorphin (Kim et al. 2010).  

1.7 Cortical development and differentiation 

The default program for neural differentiation is the forebrain fate, but specific induction of cortical 

neuroepithelial stem cells seems to be dependent on retinoid signaling (Shi et al. 2012). Complete 

cortical differentiation from human PSCs takes approximately 80 days and goes through different 

progenitor stages. By the means of paracrine signaling, the cells induce each other’s proliferation 

and dorsalization. Besides neuroepithelial stem cells, two later progenitor populations: the basal 

progenitor cells and the outer radial glial cells exist and lead to the formation of the cortex (Lui et 

al. 2011). The cortex consists mainly of glutamatergic, excitatory projection neurons and only to 

20% of GABAergic interneurons that are generated in the striatum and migrate into the cortex 

during development (Wonders and Anderson 2006). The six layers of cortical excitatory neurons 

are generated in a specific order, first the deep layer neurons (V and VI) followed by the upper 

layer neurons. Layer V and layer VI of the cortex are characterized by their expression of the 

marker CTIP2 and TBR1, respectively. Whereas, in the upper layers BRN2, SATB2 and CUX1 

expression is predominant (Hansen, Rubenstein, and Kriegstein 2011). 
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1.8 Pharmacological screening 

Traditionally, early drug discovery was based on historical knowledge, for example in the case of 

aspirin. Due to advances in molecular biology, animal models and overexpression systems were 

employed to find a candidate drug or to randomly test several hundred thousands of chemical 

compounds (Heilker et al. 2014). It turned out that candidates that were highly successful in early 

drug discovery phases often failed to show efficacy in clinical trials. Considering the time (>10 

years) and the immense costs (often exceeding $1 billion) invested into every drug candidate that 

reaches late stage drug development, it is essential to develop reliable preclinical biological 

models (Hughes et al. 2011). Here, a physiological human disease model for phenotypic 

screening which is nonetheless standardized, would be highly desirable. IPSC derived disease 

models could make this possible. However, it is crucial that the affected cell type is employed and 

that the readout is as close to the in vivo phenotype as possible. To exclude drugs that have 

random, disease unrelated effects, it is advisable to use more than one phenotypic assay. For 

high-throughput analysis it is essential that the assay is amenable to upscaling combined with an 

automated analysis (Heilker et al. 2014). But this alone is not enough, in addition the assay has 

to achieve low experimental variability and good separation between populations. Based on 

means and standard deviations of both the positive and negative controls, the z-factor can be 

calculated and provides information on whether or not the assay is amenable for high throughput 

screening (Figure 1.3). 

 

 

Figure 1.3 Formula for the z-factor 

The Z-factor is a statistical measure for assay performance often used in high-throughput 

screening. It is defined by four parameters: the means ( ) and standard deviations ( ) of 

both the posit ive (p) and negative (n) controls ( , , and , ). 

 

A set-up with a z-factor between 0.5 and 1.0 qualifies as an excellent assay worth pursuing further 

(Bray and Carpenter 2013). A z-factor below 0.5 would disqualify the assay, if the separation 

between populations is too low. However, if the Z-factor is below 0.5 due to a high experimental 

variability, the assay could be optimized further to achieve a reduction in the standard deviation. 

 

 

 

https://en.wikipedia.org/wiki/Standard_deviation
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1.9 Aim of the study  

HSP is a hereditary neurodegenerative disease, without a known disease mechanism and without 

curative treatment. Since corticospinal neurons are the affected cell type, accessibility of patient 

neurons for research is very limited. IPSC derived cortical neurons are a suitable tool to overcome 

the lack of SPG4 neurons and to accelerate research towards medical treatment. 

Thus, the aim of the study is the generation of a standardized human neuronal model for the most 

common form of hereditary spastic paraplegia, i.e. SPG4. 

For this purpose, fibroblasts of three patients will be reprogrammed into iPSCs. To ensure the 

quality of generated iPSCs, the cell clones will be extensively validated regarding their 

pluripotency and differentiation potential. To study SPG4 in authentic patient neurons, iPSCs 

have to be differentiated into the disease affected cell type, i.e. cortical deep layer projection 

neurons. Therefore, a neuronal differentiation protocol yielding high quality cortical neurons will 

be developed. Using these neurons, cellular phenotypes unique to SPG4 patient cortical neurons 

will be identified. These phenotypic assays can be further used to implement a drug screening to 

approach treatment. To make this possible, a standardized in vitro model showing early and 

severe phenotypes has to be implemented and adapted to automation. Overall, SPG4 iPSC-

derived cortical neurons might provide a unique opportunity to study cellular phenotypes in SPG4 

patient derived neurons in vitro and could be envisioned for drug screening and treatment.  
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2 MATERIALS & METHODS 

2.1 Cell culture 

2.1.1 Cell lines 

Cell line Description Source 

HSP22f Female SPG4 fibroblast cell line AG Schöls (Tübingen) 

HSP23m Male SPG4 fibroblast cell line AG Schöls (Tübingen) 

HSP24m Male SPG4 fibroblast cell line AG Schöls (Tübingen) 

HSP22f-1 iPSC clone 1 of patient HSP22f Generated during this thesis 

HSP22f-11 iPSC clone 11 of patient HSP22f Generated during this thesis 

HSP23m-1 iPSC clone 1 of patient HSP23m Generated during this thesis 

HSP23m-19 iPSC clone 19 of patient HSP23m Generated during this thesis 

HSP24m-3 iPSC clone 3 of patient HSP24m Generated during this thesis 

HSP24m-6 iPSC clone 6 of patient HSP24m Generated during this thesis 

Control 1 iPSC lines of control COII   
Generated by Swetlana Ritzenhofen 
Fibroblasts: AG Schöls (Tübingen) 

Control 2 iPSC lines of control COIII  
Generated by Swetlana Ritzenhofen 
Fibroblasts: AG Schöls (Tübingen) 

Control 3 iPSC lines of control AK1 Generated by Matthias Brandt 

HEK293T 
Human Embryonic Kidney 293 cells 
containing the SV40 Large T-antigen 

Life technologies 

Table 2.1 Cell lines 

2.1.1 Cell culture instruments 

Instruments Manufacturer 

Mr. Frosty 5100 Cryo 1°C Nalgene 

-150°C freezer Panasonic 

-80°C freezer U570 Premium New Brunswick 

Autoclave DX-150 Systec 

Axiovert 40C microscope Carl Zeiss  

Casey automatic cell counter Innovatis 

Cell counter VWR 

Digital Camera Canon Power Shot G5 Canon 

DMLL LED microscope Leica 

Fuchs-Rosenthal counting chamber Faust 

HERAguard horizontal cell culture hood Kendro 

HERAsafe vertical cell culture hood Kendro 

Incubator: HERAcell 150 Heraeus   

Megafuge 1.0R Kendro 

Megafuge 16R Thermo Fisher Scientific 

Refrigerator KGEE36A Bosch 

Table 2.2 Cell culture instruments 
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2.1.2 Cell culture materials 

Material  Manufacturer 

µ 96-well plate ibidi 

Cell scraper Costar/ Corning 

Cellsieve Cell Strainer 40µM Nylon BD Biosciences 

Cryovials (1ml, 1.8ml) Nunc 

Falcon tissue culture dish (3.5cm, 6cm) BD Biosciences 

Falcon tubes (15ml, 50ml) BD Biosciences, Corning, Greiner Bio 

Parafilm BRAND  

Plastic pipettes (5ml, 10ml, 25ml) Sarstedt 

Reaction tubes (0.5ml, 1.5ml) Sarstedt 

Syringe (10ml, 20ml, 50ml) BD Biosciences 

Syringe filter (0.2µm) PALL Corporation 

Syringe filter (0.45µm) Whatman Schleicher & Schuell 

Tissue culture dish (10cm) TPP 

Tissue culture flask (T75, T175) Corning 

Tissue culture plate (24-well, 96-well) Costar/ Corning 

Tissue culture plate (6-well, 12-well) Nunc 

Table 2.3 Cell culture materials 

2.1.3 Cell culture media 

MEF medium  Reprogramming medium 1 

88% DMEM (high glucose) 93% Advanced DMEM 
10% FCS 5% FCS 
1% NEAA 1mM L-Glutamine 
1% Sodium pyruvate 1% Pen/Strep 
  
Reprogramming medium 2 iPSC medium (feeder-cell culture) 

79% DMEM/F12 79% Knockout-DMEM 
19% KO Serum Replacement 20% KO Serum Replacement  
1% NEAA 1% NEAA 
400µM L-Glutamine 0.1mM β-Mercaptoethanol  
0.1mM β-Mercaptoethanol 1mM L-Glutamine 
1% Pen/Strep 10ng/ml FGF2  
7ng/ml FGF2  
  
iPSC medium (feeder-free cell culture) EDTA dissociation solution 

100% DMEM/F12 100% PBS 
19.4µg/ml Insulin 0.5M EDTA (pH 8.0) 
10.7µg/ml Holo-Transferrin 1.8mg/ml NaCl 
14ng/ml Sodium selenite  
64µg/ml L-Ascorbic-Acid-2-Phosphat Spontaneous differentiation medium 

2ng/ml TGFβ 79% Knockout-DMEM   
10ng/ml FGF2 20% KO Serum Replacement  
100ng/ml Heparin 1% NEEA  
 1mM L-Glutamine  
  
iPSC freezing medium (feeder-free cell culture) iPSC freezing medium 

80% iPSC medium 90% Serum replacement 
20% DMSO 10% DMSO 
  
Mesoderm medium 1 Mesoderm medium 2 

100% DMEM/F12 100% DMEM/F12 
19.4µg/ ml Insulin 19.4µg/ ml Insulin 
10.7µg/ml Holo-Transferrin 10.7µg/ml Holo-Transferrin 
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14ng/ml Sodium selenite 14ng/ml Sodium selenite 
64µg/ml L-Ascorbic-Acid-2-Phosphat 64µg/ml L-Ascorbic-Acid-2-Phosphat 
100ng/ml Activin A 10ng/mL BMP4 () 
2μM CHIR99021 3µM CHIR99021  
50nM PI-103  
  
Endoderm medium 1 Endoderm medium 2 

98% STEMdiff Definitive Endoderm Basal Medium 99% STEMdiff Definitive Endoderm Basal 
Medium 

1% STEMdiff Definitive Endoderm Supplement A 1% STEMdiff Definitive Endoderm Supplement B 
1% STEMdiff Definitive Endoderm Supplement B  
  
Ectoderm medium /  
Neuro induction medium (GABA) Neuro medium (GABA) 

100% Neuro medium (GABA) 49% DMEM/F12 
500nM LDN-193189 49% Neurobasal 
15µM SB431542 1% B27 supplement 
 0.5% NEAA 
 0.5mM L-Glutamine 
 1% Pen-Strep 
 50µM ß-Mercaptoethanol 
 0.5% N2 Supplement 
  
Neuro-medium (cortical) Neuro induction medium (cortical) 

49% DMEM/F12 100% Neuro medium 
49% Neurobasal 10µM SB431542 
1% B27 supplement 1µM Dorsomorphin 
0.5% NEAA  
0.5mM L-Glutamine Freezing medium 

1% Pen-Strep 90% Serum replacement 
50µM ß-Mercaptoethanol 10% DMSO 
10nM Progesterone  
50µM Putrescine Neuro freezing medium 

30nM Sodium selenite 70% Serum replacement 
50ng/ml Apo-Transferrin 20% Trehalose 
12,5µg/ml Insulin 10% DMSO 
0.8mg/ml Glucose  
  

Table 2.4 Cell culture media 

2.1.4 Cell culture reagents 

Reagent  Manufacturer Catalog number Stock Concentration  

2-Propanol Carl Roth AE73.2 ready to use 

Accutase Thermo Fisher Scientific A1110501 ready to use 

Activin A PeproTech AF-120-14E 100µg/ml 

Advanced DMEM Thermo Fisher Scientific 12634010 ready to use 

Amlexanox Tocris 4857 100mM 

Apo-Transferrin Sigma-Aldrich T2036 10µg/ml in H2O 

AraC Sigma-Aldrich C6645 10mM in H2O 

B27 supplement Thermo Fisher Scientific 17504044 50x 

BDNF Cell guidance GFH1 10µg/ml in 0.1% BSA 

BMP4 PeproTech 120-05 10μg/ml in 0.1% BSA 
(4mM HCl) 

CHIR 99021 Axon Medchem Axon 1386 10mM in DMSO 

Collagenase Typ IV Thermo Fisher Scientific 17104019 1mg/ml in KODMEM 

Cytochalasin B Sigma-Aldrich C6762 10mM in DMSO 

DAPT Tocris bioscience 2634 10mM in DMSO 
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D-Glucose Sigma-Aldrich G8270 160mg/ml 

DMEM (high glucose) Thermo Fisher Scientific 41965039 ready to use 

DMEM/F-12 Thermo Fisher Scientific 11320074 ready to use 

DMEM/F-12 (HEPES) Thermo Fisher Scientific 31330038 ready to use 

DMH1 Sigma-Aldrich D8946 10mM in DMSO 

DMSO Sigma-Aldrich 67-68-5 ready to use 

Dorsomorphin Sigma-Aldrich P5499 5mM in DMSO 

EDTA Sigma-Aldrich 60-00-4 0.5M in PBS 

FBS (fetal bovine serum) Thermo Fisher Scientific 10270106 ready to use 

FGF2 (iPSC medium) Thermo Fisher Scientific RFGFB50 10µg/ml in 0.1% BSA 

FGF2 (neural diff.) R&D systems 233-FB 1g/ml or 10µg/ml in 
0.1% BSA 

FuGENE HD Roche 04709713001 ready to use 

GDNF Cell guidance GFH2 10µg/ml in 0.1% BSA 

Gelatin Sigma-Aldrich 9000-70-8 0.1% in H2O 

Geltrex Thermo Fisher Scientific A1413202 1:100 in KO DMEM 

Gentamicin Thermo Fisher Scientific 15750060 50mg/ml 

GW3965 Sigma-Aldrich G6295 10mM in DMSO 

Heparin Sigma-Aldrich H3149 1mg/ml in PBS 

Holo-Transferrin Merck Millipore 616397 10µg/ml in H2O 

IGF-1 R&D Systems AFL291 100mg/ml 

Insulin Sigma-Aldrich 91077C 5mg/ml in 1% acetic 
acid (PBS) 

Jasplakinolide Millipore/Calbiochem 420107 100µM in DMSO 

Knockout DMEM Thermo Fisher Scientific 10829018 ready to use 

KO Serum Replacement Thermo Fisher Scientific A3181502 ready to use 

Laminin  Sigma-Aldrich L2020 1mg/ml 

L-Ascorbic-Acid-2-Phosphat Sigma-Aldrich A8960 64mg/ml in H2O 

Latrunculin B Sigma-Aldrich L5288 10mM in DMSO 

LDN-193189  Axon Medchem Axon 1509 2mM in DMSO 

L-Glutamine Thermo Fisher Scientific 25030081 100mM 

Matrigel BD Biosciences 354230 ready to use 

mTeSR™1 STEMCELL Technologies 05850 ready to use 

N2 supplement Thermo Fisher Scientific 17502001 100x 

NEAA Thermo Fisher Scientific 11140050 100x 

Neurobasal medium Thermo Fisher Scientific 21103049 ready to use 

Noscapine Sigma-Aldrich 363960 100mM in DMSO 

OptiMEM Thermo Fisher Scientific 31985062 ready to use 

PBS Thermo Fisher Scientific 14190094 ready to use 

PD0325901 Tocris bioscience 4192 10mM in ethanol 

Pen/Strep Thermo Fisher Scientific 15140122 100x 

PI-103 Tocris bioscience 2930 500µM in DMSO 

Progesteron Sigma-Aldrich P8783 20µM in ethanol 

PTC124 (Ataluren) Selleckchem S6003 35,2mM 

Putrescin Sigma-Aldrich P5780 100mM in H2O 

ROCK-Inhibitor (Y-27632) Tocris 1254 10mM in H2O 

SB431542 Axon Medchem 1661 50mM in DMSO 

Scriptaid Biomol Cay10572 10mM in  

Sodium selenite Sigma-Aldrich S5261 14µg/ml in H2O 

Taxol (Paclitaxel) Sigma-Aldrich T7191  30µM in DMSO 

TGFβ1 PeproTech 100-21 1µg/ml in 0.1% BSA 

TRO19622 Sigma-Aldrich T3077 0.5mM in DMSO 

Tryphan Blue Thermo Fisher Scientific T8154 ready to use 

TrypLE™ Express Thermo Fisher Scientific 12605010 ready to use 

Vinblastine Sigma-Aldrich V1377 1µM in DMSO 

β-Mercaptoethanol Thermo Fisher Scientific 21985023 50mM 

STEMdiff™ Definitive 
Endoderm kit 

STEMCELL Technologies 05110 For details go to cell 
culture media 
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Table 2.5 Cell culture reagents 

2.1.5 Cell culture coatings 

For culture on feeder cells, plates were first coated with gelatin for 30 minutes at 37°C and then 

covered with 3-4x104 feeder cells per cm² in MEF medium. 

During feeder-free iPSC culture, plates were coated with Geltrex. Plates were prepared at least 

30 minutes before splitting by diluting one 200µl Geltrex aliquot quickly in 18ml ice-cold KnockOut-

DMEM and spreading 1ml solution per well of a 6-well plate. Plates were incubated at 37°C for 

30-60 minutes and stored at 4°C for up to one week. 

Neurons and differentiating neural cultures were cultured on Matrigel (MG) coated plates. MG-

coated plates were prepared at least one day prior to splitting. One 1ml aliquot of MG was thawed 

slowly on ice at room temperature (RT) for at least three hours or at 4°C over-night. Pipetted with 

a pre-cooled 5ml plastic pipette, the MG was diluted in 30ml ice-cold DMEM-F12 (without Hepes) 

and used to cover the desired plates and dishes (1ml on one well of a 6-well plate). MG-coated 

plates were stored at 4 °C for up to two weeks. 

2.1.6 Cell counting 

Cells were mostly counted in a Fuchs-Rosenthal counting chamber. 20µl cell solution was mixed 

with 20µl Tryphan blue in a 1.5ml tube. 20µl of this solution were transferred to a counting 

chamber. A minimum of four large squares (1mm²) were counted manually under a bright field 

microscope. The counted cell number was divided by the number of squares, times the depth of 

the chamber (0.1mm) times the dilution factor to acquire the cell number per microliter. In some 

instances, the CASEY cell counter was employed for automated counting. 10µl cell suspension 

were diluted in 10ml CASEY buffer and measured with a suitable protocol that was generated 

according to the manual. 

2.1.7 Reprogramming of patient fibroblasts  

Patient fibroblasts were cultured in MEF medium supplemented with 10ng/ml FGF2 prior to 

reprogramming. The youngest possible passage was used and cells were cultured at densities 

between 50% and 90%. One day prior to infection, 150,000 fibroblasts were plated on one MG-

coated well of a 12-well cell culture plate in MEF medium. All four Sendai virus preparations, each 

containing one of the Yamanaka reprogramming factors: OCT4, SOX2, KLF4 and c-MYC, were 

diluted in 4ml Reprograming medium 1. 0.5ml of this virus solution was centrifuged on one well 

of the previously seeded fibroblasts for 45 minutes at 32°C and 1,500xg. Starting the next day, 

the medium was changed daily to fresh Reprogramming medium 1 for six days. After seven days, 

fibroblasts already changed morphology and were harvested with 0.025% TrypLE™ Express 
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reagent. Cells were resuspended in Reprogramming medium 1 supplemented with 5µM ROCK 

inhibitor, counted and 100,000 infected fibroblasts were seeded on previously prepared feeder 

covered 10cm cell culture dishes. The next day, the medium was switched to Reprogramming 

medium 2. Subsequently, the medium was changed every other day for 3-6 weeks until the 

appearing colonies were large enough for manual picking. To establish clonal lines, 100µl pipette 

tips were used to transfer single colonies into wells of a feeder-covered 12-well plate. From 

thereon, medium was changed daily to fresh Reprogramming medium 2. After the clonal cell lines 

were successfully established, coating was switched to Geltrex and medium to iPSC medium for 

feeder-free culture. 

2.1.8 Human pluripotent stem cell culture 

At the beginning of this work, human pluripotent stem cells were cultured on irradiated mouse 

fibroblasts, called feeder cells, in iPSC medium based on KnockOut DMEM. The splitting 

procedure was done enzymatically, by incubating the cells in 1mg/ml Collagenase Typ IV solution 

at 37°C. After one hour, the colonies were washed off carefully with medium and centrifuged for 

3 minutes at 800rpm in a 15ml Falcon tube. Subsequently, the cell pellet was crushed by 

resuspension with a 1000µl micropipette, further diluted with fresh iPSC medium and plated on 

feeder coated 6-well tissue culture plates that were prepared on the previous day. 

For feeder-free iPSC cultivation, cells were cultured on Geltrex-coated tissue culture plates in 

self-made E8 medium (Chen et al. 2011) or mTeSR medium. The iPSC medium was changed 

daily and the cells were grown until they reached 70-80% confluence. 

The cultures were split every 3-4 days with EDTA dissociation solution by washing once with PBS, 

adding 1ml EDTA dissociation solution per well and incubating for 3-5 minutes at room 

temperature, while check the progress of dissociation under the microscope. When the cultures 

started to dissociate, EDTA dissociation solution was removed, the cells were washed off with 

medium and transferred onto a new Geltrex-coated plate using a split ratio of 1:3-1:5 without 

centrifugation.  

For experiments that required single cell solutions, or homogeneous monolayer cultures, feeder-

free iPSC cultures were split enzymatically using accutase. The cultures were washed once with 

PBS and then dissociated by incubating accutase for 10 minutes at 37°C. The cells were washed 

off with medium, transferred into a Falcon tube and centrifuged for 5 minutes at 1200rpm. During 

centrifugation, the cell number was determined using a Fuchs-Rosenthal counting chamber. The 

iPSCs were resuspended in iPSC medium supplemented with 10µM ROCK inhibitor and seeded 

in the desired density on the desired plate format. 

To generate backups, iPSCs were cryopreserved. After splitting and centrifugation, cells were 

resuspended in ice-cold SR-based iPSC freezing medium and quickly filled in previously prepared 

cryovials. Following an EDTA split, cells were rinsed off with 0.5 ml medium per well and then 
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quickly mixed with 0.5ml iPSC freezing medium (feeder-free) and filled in previously prepared 

cryovials. The cryovials were placed in Mr. Frosty cryo containers, stored at -80°C over-night and 

moved to -150°C freezers or into liquid nitrogen tanks on the next day.  

2.1.9 Undirected differentiation  

Human iPS cell colonies were lifted enzymatically by collagenase treatment, without further 

dissociation of the colonies with a micropipette. Colonies were transferred to a falcon tube and 

centrifuged at 800xg for 3 minutes followed by careful resuspension in EB1 medium and transferal 

to a Petri dish to promote embryoid body (EB) formation. The medium was changed every other 

day by collecting the EBs in a 15ml tube, letting them settle at the bottom of the tube, carefully 

aspirating the supernatant, gently resuspending the EBs in fresh EB1 medium and returning the 

solution to a Petri dish. Seven days after colony detachment, EBs were plated on gelatin-coated 

tissue culture dishes in either EB1 medium (ectoderm) or MEF medium (endoderm and 

mesoderm) to promote outgrowth of differentiated cells. The medium was changed every other 

day and cultures were fixed for immunocytochemistry after seven days. 

2.1.10 Teratoma assay 

One six-well plate of undifferentiated iPSCs was pre-incubated with 10µM ROCK inhibitor for one 

hour. IPSCs were dissociated with collagenase and carefully washed off the plate with 0.5 ml 

medium without breaking up the colonies. Cell suspension was quickly transferred to the mouse 

house for transplantation in the testis of SCID beige mice. Three mice per cell line were 

transplanted by Anke Leinhaas. 

2.1.11 Directed differentiation into all three germ layers 

For directed differentiation into all three germ layers, iPSCs were cultured in mTeSR medium for 

one week to enable endoderm differentiation. Reaching 80% confluency, the cultures were 

dissociated with accutase, centrifuged and counted. The iPSCs were resuspended in mTeSR 

medium supplemented with 10µM ROCK inhibitor and 1 mio cells were seeded per well of a MG-

coated 12-well plate. The following day, one well of each cell line was treated with endoderm 

medium, one with ectoderm medium and one with mesoderm medium 1. After 24 hours, medium 

was changed to endoderm medium 2, mesoderm medium 2 and fresh ectoderm medium. The 

medium was exchanged daily and the cells were harvested after five days for RNA preparation. 

Cultures were washed off with ice-cold PBS and the ectoderm, mesoderm and endoderm 

differentiation of every cell line was pooled and centrifuged for 5 minutes at 1400 rpm. The cell 

pellets were frozen at -80 °C for later RNA isolation. 
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2.1.12 Quality control of cell lines 

Cell lines in culture were checked every day regarding contaminations, purity and normal cell 

growth. Contaminated cultures and cell lines with an abnormal morphology or growth rate were 

immediately discarded. Mycoplasma tests were performed every two weeks using DNA prepared 

with quick extract and subsequent PCR analysis.  

2.1.13 Differentiation into glutamatergic cortical neurons 

For the cortical differentiation, iPSCs were cultured in mTeSR or StemBrew medium. 

Undifferentiated iPSCs were split two days prior to initial seeding at a split ratio of 1:2 to acquire 

a large amount of high quality iPSCs. To induce neural fate, a homogenous, very high-density 

culture is beneficial. Thus, iPSC cultures were split using accutase and 7-10 mio cells were 

seeded on one well of a 6-well plate in iPSC medium supplemented with 10µM ROCK inhibitor. 

The next day, an over-confluent cell layer had formed and the cortical differentiation was started 

by switching the medium to neural induction medium (day 0). The medium was changed daily and 

the volume was increased, depending on the metabolic activity, indicated by a pH sensor in the 

medium. On day 10, the neural induction medium was supplemented with 20ng/ml FGF2 to 

promote proliferation. On the next day, the cultures were washed once with PBS and dissociated 

as clumps using accutase treatment for 7 minutes at 37°C. The cells clumps were carefully rinsed 

off, transferred to a falcon tube and centrifuged for 3 minutes at 1200rpm. After centrifugation, the 

cell pellet was carefully resuspended in neuro medium supplemented with 20ng/ml FGF2 and 

10µM ROCK inhibitor and seeded at a split ratio of 1:3 onto MG-coated 6-well plates. The cultures 

were cultivated in neuro medium supplemented with 20ng/ml FGF2 until day 13, with daily 

medium changes. Starting on day 14, the medium was switched to Neuro medium supplemented 

with 10ng/ml FGF2 and 100ng/ml heparin and was changed every other day. On day 17, the 

cultures were dissociated as clumps using accutase treatment for 6 minutes and seeded at a split 

ratio of 1:2 on fresh MG-coated plates in neuro medium supplemented with 10ng/ml FGF2, 

100ng/ml Heparin and 10µM ROCK inhibitor. The medium was replaced with medium without 

ROCK inhibitor the next day. The same splitting procedure was repeated on day 22. On day 31, 

the cultures were dissociated by incubating accutase supplemented with 10µM ROCK inhibitor 

for 20 minutes at 37°C. The cells were washed off with medium and collected in one 50 ml Falcon 

tube to freeze the cultures down as one batch. After centrifugation for 3 minutes at 1400rpm, the 

cell pellet was resuspended in ice-cold freezing medium (one ml per well). 1ml cell solution was 

quickly filled in previously prepared cryovials, placed in Mr. Frosty cryo containers and stored at 

-80°C over-night. The next day, the cryovials were moved to -150°C freezers or into liquid nitrogen 

tanks. 
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For maturation of the precursors, one vial was thawed quickly in a 37°C water bath until only a 

small clump of ice remained. The cell solution was diluted with 9ml medium, transferred to a 15ml 

falcon tube and centrifuged for 3 minutes at 1200rpm. Subsequently the pellet was resuspended 

in neuro medium supplemented with 10µM ROCK inhibitor and seeded on 3 wells of a MG-coated 

6-well plate. The medium was replaced with neuro medium without ROCK inhibitor the next day 

and cultures were cultivated with medium changes on every other day until day 44. On day 44, 

cultures contain a large fraction of neurons and can be dissociated for final maturation by treating 

the cultures with 0.75ml accutase supplemented with 10µM ROCK inhibitor for 60-75 minutes at 

37°C. Tapping against the plate promotes the dissociation further. Cells were washed off with 

medium and carefully dissociated by pipetting up and down with a 10ml plastic pipette. The 

solution was transferred to a 15ml falcon tube and centrifuged at 1300rpm for 5 minutes. At the 

same time the cell number was determined by counting manually or employing the CASEY cell 

counter. After centrifugation, the cell pellet was carefully resuspended in neuro medium 

supplemented with 10µM ROCK inhibitor and the cells were seeded in the desired cell number 

on different MG-coated plates. For immunocytochemical analysis, 1-2mio cells were seeded on 

one 3.5cm dish and 0.02-0.2mio cells on one well of a 96-well plate. For protein, DNA or RNA 

harvest 10mio cells were plated per well of a 6-well plate. On the next day, the medium was 

changed to neuro medium supplemented with 10µM PD0325901 and 10µM DAPT to force 

differentiation of remaining precursors. The same medium was refreshed on day 47. On day 49, 

the cultures were mitotically inactivated by treatment with 5µM AraC (Cytosine β-D-

arabinofuranoside hydrochloride), to prevent further proliferation. The medium was removed from 

the cultures on the following day and discarded in a specialized waste container. Until analysis, 

the cells were cultured further in neuro medium with medium changes every other day, without 

aspirating the medium completely. 

2.1.14 Differentiation into GABAergic forebrain neurons 

For the GABAergic forebrain differentiation, iPSCs were cultured in E8 medium. Undifferentiated 

iPSCs were split using accutase and 2 mio cells were seeded on one well of a 6-well plate in 

iPSC medium supplemented with 10µM ROCK inhibitor. The next day, a confluent cell layer had 

formed and the GABAergic differentiation was started by switching the medium to neural induction 

medium (d0). The medium was changed daily. On day 9, the neural induction medium was 

supplemented with 20ng/ml FGF2 to promote neural rosette formation. On the next day, the 

cultures were washed once with PBS and dissociated as clumps using accutase treatment for 7 

minutes at 37°C. The cells clumps were carefully rinsed off, transferred to a Falcon tube and 

centrifuged for 3 minutes at 1200rpm. After centrifugation, the cell pellet was carefully 

resuspended in neuro medium supplemented with 20ng/ml FGF2 and 10µM ROCK inhibitor and 

seeded at a split ratio of 1:3 onto MG-coated 6-well plates. The cultures were cultivated in neuro 
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medium supplemented with 20ng/ml FGF2 until day 12, with daily medium changes. Starting on 

day 13, the medium was switched to neuro medium and was changed every other day. On day 

20, the cultures were dissociated by incubating accutase supplemented with 10µM ROCK 

inhibitor for 20 minutes at 37°C. The cells were washed off with medium and collected in one 50ml 

Falcon tube to freeze the cultures down as one batch. After centrifugation for 3 minutes at 

1400rpm, the cell pellet was resuspended in ice-cold freezing medium (one ml per well). 1 ml cell 

solution was quickly filled in previously prepared cryovials, placed in Mr. Frosty cryo containers 

and stored at -80°C over-night. On the next day, the cryovials were moved to -150°C freezers or 

into liquid nitrogen tanks. 

For maturation of the frozen precursors, one vial was thawed quickly in a 37°C water bath until 

only a small clump of ice remained. The cell solution was diluted with 9ml medium, transferred to 

a 15ml falcon tube and centrifuged for 3 minutes at 1200rpm. Subsequently the pellet was 

resuspended in neuro medium supplemented with 10µM ROCK inhibitor and seeded on 3 wells 

of a MG-coated 6-well plate. The medium was replaced with neuro medium without ROCK 

inhibitor the next day and cultures were cultivated with medium changes on every other day until 

day 27. On day 27, cultures contain a large fraction of neurons and can be dissociated for final 

maturation by treating the cultures with 0.75ml accutase supplemented with 10µM ROCK inhibitor 

for 60-75 minutes at 37°C. Tapping against the plate promotes the dissociation further. Cells were 

washed off with medium and carefully dissociated by pipetting up and down with a 10ml plastic 

pipette. The solution was transferred to a 15ml Falcon tube and centrifuged at 1300rpm for 5 

minutes. At the same time, the cell number was determined by counting manually or employing 

the CASEY cell counter. After centrifugation, the cell pellet was carefully resuspended in neuro 

medium supplemented with 10µM ROCK inhibitor and the cells were seeded in the desired cell 

number on different MG-coated plates. For example, 2 mio cells on one 3.5cm or 0.2 mio cells on 

one well of a 96-well plate for immunocytochemical analysis and 10 mio per well of a 6-well plate 

for protein/ DNA or RNA harvest. On the next day, the medium was changed to neuro medium 

supplemented with 10µM PD0325901 and 10µM DAPT to force differentiation of remaining 

precursors. The medium was refreshed on day 30 and day 32. On day 33, the cultures were 

mitotically inactivated by treatment with 5µM AraC to prevent further proliferation. The medium 

was removed from the cultures on the following day and discarded in a specialized waste 

container. Until analysis, the cells were cultured further in neuro medium with medium changes 

every other day. 
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2.2 Phenotypical assays 

2.2.1 Neurite outgrowth and growth cone assay 

The neurite outgrowth assay was performed on cortical glutamatergic cultures on day 57 and 

GABAergic cultures on day 37, thus on post-mitotic neurons of 2 weeks of age. Neuronal cultures 

were washed once with 1ml PBS and were subsequently incubated with 0.75ml accutase 

supplemented with 10µM ROCK Inhibitor for a minimum of 60 minutes at 37°C. The status of 

dissociation was checked regularly by tapping against the plate. When the neuronal network had 

dissociated into small clumps and single cells, the cells were rinsed off with neuron medium 3 to 

4 times to further dissociate remaining cell clumps. The cell solution was transferred into a falcon 

tube and centrifuged at 200xg for 5 minutes at 4°C. In the meantime, the number of viable cells 

was counted via Tryphan blue staining in a Fuchs-Rosenthal counting chamber. After 

centrifugation, the cells were resuspended in neuro medium supplemented with 10µM ROCK 

Inhibitor and passed through a 40µm cell strainer before seeding. To achieve low density cultures 

with single neurons, 200.000 or 20.000 cells were seeded on MG-coated 3.5cm dishes or 96-well 

plates, respectively. Control and patient cell lines were split and plated simultaneously to avoid 

time differences. Cells were evenly distributed on dishes or plates and returned to the incubator. 

After exactly 24 hours, cultures were fixed with 4% PFA and stained with DAPI and ActinRed 555 

and against beta-III-tubulin. Images were acquired with a 20x objective. For the analysis of neurite 

length, initially ImageJ together with the NeuronJ plugin were used (Popko et al. 2009). This semi-

automated analysis was later replaced by image acquisition with the INCell Analyzer 2200 and 

the image analysis software INCell Developer toolbox. Growth cone analysis was performed in a 

semi-automated manner with the CellProfiler software or automated with the InCell Developer 

toolbox.  

2.2.1 Axonal swellings 

Axonal swellings were analyzed by immunocytochemical stainings against axonal TAU1. To 

achieve an expression of axonal TAU1 in young neurons, cortical cultures were seeded in neuro 

medium supplemented with 3nM Taxol and 10µM ROCK inhibitor after dissociation on day 44. 

The medium was removed the next day and replaced by neuro medium supplemented with 10µM 

PD0325901 and 10µM DAPT, with was renewed on day 47. Cultures were fixed with 4% PFA 

and stained against TAU1 and Map2 on day 50. Random images were taken with a 20x objective 

and used to quantify TAU1 positive swellings >1µm. counted numbers were normalized to length 

of TAU1 positive axons, acquired by ImageJ with the Neurite tracer macro (Pool et al. 2008) or 

the InCell Developer toolbox. 
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2.3 Molecular biology 

2.3.1 Molecular biology instruments 

Instruments Manufacturer 

-80°C freezer U570 Premium New Brunswick 

Centrifuge 5424 R Eppendorf 

Centrifuge: Megafuge 1.0r Heraeus 

Chemidoc XRS+  Bio‐Rad  

Eppendorf realplex 4  Mastercycler ep gradient Eppendorf 

Fluorescence microscope: Axio Imager.Z1 Carl Zeiss  

Fluorescence microscope: Axioskop 2 Carl Zeiss  

Fluorescence microscope: Axiovert 200M Carl Zeiss 

GelDoc 2000  Bio‐Rad  

INCell Analyzer 2200 GE Healthcare 

Inverse light microscope: Axiovert 40 CFL Carl Zeiss 

Microbial incubator  Heraeus  

Micro‐tabletop‐centrifuge Biozym  

Microwave 800 Severin  

Mini tabletop centrifuge 5424  Eppendorf  

NanoDrop UV/Vis spectral photometer 1000  Thermo Fisher Scientific 

Overhead shaker Rotoshake Genie  Scientific Industries 

Plate reader Envision Multi label Perkin Elmer  

Power  supply  Standard power pack P25  Biometra  

Power supply Power Pac 300  Bio‐Rad 

Refrigerator G 2013 Comfort Liebherr 

T3 Thermo cycler  Biometra  

Thermomixer Compact Eppendorf 

ViiA™ 7 Real-Time PCR System Thermo Fisher Scientific 

Western  blot  running  chamber Mini Trans‐Blot Cell  Bio‐Rad  

XCell SureLock® Mini-Cell Electrophoresis System Thermo Fisher Scientific 

Table 2.6 Molecular biology instruments 

2.3.1 Molecular biology materials 

Material  Manufacturer 

96‐well qPCR plate PEQLAB 

Falcon tubes (15ml, 50ml) BD Biosciences, Corning, Greiner 

NuPAGE™ Novex™ 10% Bis-Tris Protein Gels, 1.5mm, 15-well Thermo Fisher Scientific 

NuPAGE™ Novex™ 4-12% Bis-Tris Protein Gels, 1.5mm, 15-
well 

Thermo Fisher Scientific 

Parafilm BRAND  

PCR reaction tubes Carl Roth 

PCR cooler  Eppendorf 

PCR plate seal PEQLAB 

PCR stripes, 0.2ml  Biozym  

Plastic pipettes (5ml, 10ml, 25ml) Sarstedt 

Reaction Tubes (0.5ml, 1.5ml) Sarstedt 

Table 2.7 Molecular biology materials 
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2.3.2 Molecular biology reagents 

Reagent  Manufacturer Catalog number 

Bromphenolblue NaCl Carl Roth A512. 

Chromatography paper (whatman paper) Whatman  3030917 

Complete™, Mini Protease Inhibitor Cocktail Roche 11836153001 

DABCO Carl Roth 0718.1 

DNA ladder 100 bp NEB  N3231L 

DNAse  Qiagen  79254  

dNTPs peqGOLD PEQLAB 20‐2011 

ECL Classico Millipore WBLUC0100 

ECL Crescendo Millipore WBLUR0100  

ECL SuperSignal Thermo Fisher Scientific 34095  

EDTA Carl Roth X986.3 

Ethanol Carl Roth  9065.4  

Ethidium bromide Carl Roth 2218.2  

FBS (fetal bovine serum) Thermo Fisher Scientific 10270106 

Fluorescein BioRad 170‐8780 

Glutaraldehyde Carl Roth 4995 

Glycerin Carl Roth 3783 

Glycine  Carl Roth 3908.3  

HCl (37%)  Carl Roth X942.1  

Leupeptin Sigma-Aldrich L2884 

Methanol  Carl Roth HN41.2  

Milk powder Carl Roth T145.3  

Mowiol 4-88 Carl Roth 0713.1 

NaCl  Carl Roth 9265.2  

Nitrocellulose (0.2µM) Protran membrane  Whatman  1037353 

Tergitol® NP-40 Sigma-Aldrich 127087-87-0 

NuPAGE® LDS Sample Buffer (4X) Thermo Fisher Scientific NP0007 

NuPAGE® MOPS SDS Running Buffer (20X) Thermo Fisher Scientific NP0001 

PBS Life technologies 14190-094 

PeqGOLD Agarose  PEQLAB 35‐1020 

PFA Sigma-Aldrich P6148 

Phenylmethylsulfonylfluorid (PMSF) Sigma-Aldrich P7626 

Ponceau solution  Sigma-Aldrich P7170‐1L  

QuickExtract DNA Extraction Solution Biozym 101094 (QE09050) 

Sharp Novex prestained Ladder   Thermo Fisher Scientific LC5800  

Sodium deoxycholate Sigma-Aldrich D6750 

Sodium fluoride (NaF) Carl Roth 4503 

Sodium phosphate (Na3PO4) Sigma-Aldrich 342483 

SYBR Green nucleic acid gel stain Sigma-Aldrich S‐9430 

TRIS Carl Roth  5429.3  

TRIS base  Carl Roth  5429.1 

TRIS‐HCl  Carl Roth  9090.3  

Triton X-100 Sigma-Aldrich 9002-93-1 

Trypsin Inhibitor Thermo Fisher Scientific  17075-029 

Tween‐20  Carl Roth  9127.1  

Xylencyanol Carl Roth  A513 

β-mercaptoethanol  Sigma-Aldrich  M7522  

Table 2.8 Molecular biology reagents 
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2.3.3 Molecular biology kits 

Kit Manufacturer Catalog number 

DNeasy Blood & Tissue kit Qiagen 69504 

GoTaq Flexi DNA polymerase kit Promega  M8305  

iScript reverse transcriptase kit Bio‐Rad 170‐8891  

Pierce BCA kit Thermo Fisher Scientific PI‐23228 

QIAquick Gel Extraction Kit Qiagen 28704 

RNeasy Mini Kit Qiagen 74104 

Taq DNA polymerase kit  Thermo Fisher Scientific 18038042 

TaqMan® hPSC Scorecard™ Kit, 384-well Thermo Fisher Scientific A15872 

Table 2.9 Molecular biology kits 

2.3.1 Molecular biology buffers 

Supermix for semiquantitative PCR Supermix for quantitative PCR (GoTaq) 

30.4% ddH2O 30.23% ddH2O 
40% 5x GoTaq Flexi buffer (green) 40% 5x GoTaq buffer (clear) 
20% MgCl2 (25mM) 20% MgCl2 (25mM) 
1.6% dNTPs (100mM, 0.4% each) 8% DMSO 
8% DMSO 1.6% dNTPs (100mM, 0.4% each) 
 0.15% SYBR green (1000x) 
 0.02% Fluorescein (100µM) 
  
Supermix for quantitative PCR (Taq) 10x DNA loading buffer 

65.03% ddH2O 70% ddH20 
20% 10x PCR buffer 30% Glycerin 
12% MgCl2 (50mM) 1mg/ml Bromphenolblue NaCl 
1.6% dNTPs (100mM, 0.4% each) 1mg/ml Xylencyanol 
0.15% SYBR green (1000x)  
0.02% Fluorescein (100µM)  
  
50x TAE buffer TE-4 buffer (pH 8) 

242g/l TRIS base 10mM TRIS base  
10% 0.5M EDTA (pH 8.0) 0.1mM EDTA 
5.71% Acetic acid  
  
RIPA buffer (pH 7.4) 10x Western transfer buffer 

50mM TRIS-HCL 29g/l Glycine 
150mM NaCl 59g/l TRIS base 
1mM EDTA  
1% NP-40 1x Western transfer buffer 

0.25% Sodium deoxycholate 10% 10x Western transfer buffer 
Add freshly: 20% Methanol 
1mM Na3PO4 70% ddH2O 
1mM NaF  
10µg/ml Leupeptin Western blocking solution 

10µg/ml Trypsin Inhibitor 5% milk powder 
1mM PMSF 95% TBS-T 
1x Complete™, Mini Protease Inhibitor Cocktail  
  
10x TBS buffer (pH 7.6) 1x TBS-T buffer (pH 7.6) 

24g/l TRIS HCl 10% 10x TBS  
5.6g/l TRIS base 89.9% ddH2O 
88g/l NaCl 0.1% Triton X-100 
  

Table 2.10 Molecular biology buffers 
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2.3.2 Primary antibodies and dyes 

Antigen  Host Manufacturer Catalog number Dilution  

Acetylated tubulin ms IgG Sigma T7451 1:1000 

AFP rb IgG Dako A0008 1:200 

Brn2 gt IgG Santa Cruz sc-6029 1:500 

CTIP2 rat IgG abcam ab18465 1:500 

FEZF2 rb IgG antikoerper-online ABIN1386712 1:500 

FOXG1 rb, IgG abcam ab18259 1:500 

GABA ms IgG Sigma A0310 1:1000 

GABA rb IgG Sigma A-2052 1:1000 

GFAP rb IgG DAKO A000829-2 1:1000 

MAP2 rb IgG Millipore AB5622 1:500 

MAP2ab ms IgG Sigma M1406 1:500 

Nestin ms IgG Millipore AB5922 1:300 

SMA ms IgM Dako M0851 1:200 

Spastin ms IgG Santa Cruz sc-81624 1:1000 

TAU1 ms IgG Millipore MAB3420 1:500 

TAU rb IgG Millipore MAB10417 1:300 

TBR1 rb IgG proteintech 20932-1-AP 1:1000 

TRA1-60 ms IgM Millipore MAB4360 1:500 

TRA1-81 ms IgG Millipore MAB4381 1:500 

TUJ1 (TUBB3) ms IgG Covance MMS-435P 1:1000 

TUJ1 (TUBB3) rb IgG Covance PRB-435P 1:2000 

TUJ1 (TUBB3) chk IgY Millipore AB9354 1:500 

vGlut1 rb IgG synaptic systems 135303 1:1000 

ActinRed 555 
ReadyProbes reagent 

 Life technologies R37112 According to 
manual 

Vector® Blue AP 
Substrate Kit 

 Vector laboratories SK-5300 According to 
manual 

DAPI  Sigma‐Aldrich  D9542 1:10000 

Table 2.11 Primary antibodies and dyes 

2.3.1 Secondary antibodies 

Fluorophore  Target species Manufacturer Catalog number Dilution  

Alexa Fluor® 488 ms IgG Thermo scientific A11001 1:1000 

Alexa Fluor® 488 rb IgG Thermo scientific A11008 1:1000 

Alexa Fluor® 555 ms IgG Thermo scientific A21424 1:1000 

Alexa Fluor® 555 rb IgG Thermo scientific A21429 1:500 

Alexa Fluor® 555 rat IgG Thermo scientific A21434 1:1000 

Alexa Fluor® 555 gt IgG Thermo scientific A21432 1:1000 

Alexa Fluor® 555 ms IgM Thermo scientific A21426 1:1000 

Alexa Fluor® 647 ms IgG Thermo scientific A21235 1:500 

Alexa Fluor® 647 chk IgG Thermo scientific A21449 1:500 

HRP-linked ms IgG Cell Signaling #7076 1:1000 

Table 2.12 Secondary antibodies 

2.3.1 Primer sequences 

Primer target  Sequence Originator 

18S forward TTCCTTGGACCGGCGCAAG  Lodovica Borghese 

18S reverse GCCGCATCGCCGGTCGG   Lodovica Borghese 

c-MYC endogenous forward TTCGGGTAGTGGAAAACCAC Johannes Jungverdorben 

c-MYC endogenous reverse CCTCCTCGTCGCAGTAGAAA Johannes Jungverdorben 
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c-MYC total forward AAGACTCCAGCGCCTTCTCT Johannes Jungverdorben 

c-MYC total reverse TCTTGTTCCTCCTCAGAGTCG Johannes Jungverdorben 

CTIP2 forward AGAACTGCAGCAACTTGACG Kristina Rehbach 

CTIP2 reverse GTACACCTCCTTGCCGATCT Kristina Rehbach 

FEZF2 forward ACCAACTGTGGCGTGTGC Kristina Rehbach 

FEZF2 reverse GAGGTGGCCGCTGAGGA Kristina Rehbach 

FOXG1 forward CTGGCGGCTCTTAGAGAT Lodovica Borghese 

FOXG1 reverse CCCTCCCATTTCTGTACGTTT Lodovica Borghese 

GAD1 forward CTTGTGAGTGCCTTCAAGGAG Lodovica Borghese 

GAD1 reverse TGCTCCTCACCGTTCTTAGC Lodovica Borghese 

GAD2 forward CTCGAAGGTGGCTCCAGTG Vesselina Semkova 

GAD2 reverse CTCCCAAGGGTTGGTAGCTG Vesselina Semkova 

KLF4 endogenous forward GACCAGGCACTACCGTAAACA Johannes Jungverdorben 

KLF4 endogenous reverse CTGGCAGTGTGGGTCATATC Johannes Jungverdorben 

KLF4 total forward CCCAATTACCCATCCTTCCT Johannes Jungverdorben 

KLF4 total reverse ACGATCGTCTTCCCCTCTTT Johannes Jungverdorben 

M1 spastin forward ACCCGCTGTTTGTAGGCTTC Kristina Rehbach 

M1 spastin reverse TCTCATCCTCATCGATGCGC Kristina Rehbach 

M87 spastin forward GCGTCCGAGTCTTCCACAAA Kristina Rehbach 

M87 spastin reverse CCATTCCACAGCTTGCTCCT Kristina Rehbach 

OCT4 endogenous forward GACAGGGGGAGGGGAGGAGCTAG Johannes Jungverdorben 

OCT4 endogenous reverse GTTCCCTCCAACCAGTTGCCCCAAAC Johannes Jungverdorben 

OCT4 total forward GTGGAGGAAGCTGACAACAA Johannes Jungverdorben 

OCT4 total reverse TTCTCCAGGTTGCCTCTCA Johannes Jungverdorben 

SOX2 endogenous forward GTATCAGGAGTTGTCAAGGCAGAG Johannes Jungverdorben 

SOX2 endogenous reverse TCCTAGTCTTAAAGAGGCAGCAAAC Johannes Jungverdorben 

SOX2 total forward GCCGAGTGGAAACTTTTCTCG Johannes Jungverdorben 

SOX2 total reverse GCAGCGTGTACTTATCCTTCTT Johannes Jungverdorben 

SPAST forward GACAAGGGGTTGTGCTCCT Kristina Rehbach 

SPAST reverse GCCTTTCTTCTTCCCTCGTC Kristina Rehbach 

SPAST Seq forward CCACAACACCTGGCCTAAAG Kristina Rehbach 

SPAST Seq reverse ACAGAGCAAGCGTCCATCTC Kristina Rehbach 

TBR1 forward TCTCGACCACTGACAACCTG Kristina Rehbach 

TBR1 reverse CCGTCCAAGACAGGAGAGAG Kristina Rehbach 

vGlut1 forward GGGCCATGACTAAGCACAAG Lodovica Borghese 

vGlut1 reverse CTCCTCGCTCATCTCCTCAG Lodovica Borghese 

vGlut2 forward TCAGATTCCGGGAGGCTACA Vesselina Semkova 

vGlut2 reverse TGGGTAGGTCACACCCTCAA Vesselina Semkova 

Table 2.13 Primer Sequences 

2.3.1 Analysis software 

Software  Purpose Manufacturer 

Axiovision LE Image acquisition Carl Zeiss 

CellProfiler Image analysis The Broad Institute Imaging 
Platform 

CLC Sequence Viewer 7 DNA sequence analysis CLC bio 

CorelDraw Graphics Suite X5 Figure design Corel 

GenomeStudio SNP analysis Illumina 

GraphPad Prism 6 Statistical analysis Graphpad 

Image Lab Western Blot quantification Bio-Rad 

ImageJ Image analysis Wayne Rasband, NIH 

INCell Analyzer 2200 software Automated image acquisition GE Healthcare 

INCell developer toolbox Automated image analysis GE Healthcare 

Neurite Tracer Image J macro (Pool et al. 2008) 

NeuronJ Image J plugin (Ho et al. 2011) 

Powerpoint Figure design Microsoft 
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Primer3Plus Primer design Andreas Untergasser 

Quantity One Agarose gel documentation Bio-Rad 

Table 2.14 Analysis software 

2.3.2 DNA preparation 

DNA was usually extracted from one well of a 6-well plate using the Qiagen DNeasy Blood & 

Tissue kit according to the manual. To prepare DNA for mycoplasma tests, 20µl of cell solution 

that was left over during routine splitting procedures were mixed with 100µl quick extract in a 

0.5ml PCR reaction tube followed by heating in a PCR cycler. DNA concentration was measured 

with the NanoDrop 1000. 

Temperature Time 

68°C 15min 
95°C 8min 

Table 2.15 Quick Extract cycle program 

2.3.3 RNA preparation 

RNA was usually extracted from one well of a 6-well plate and prepared with the Quiagen RNeasy 

Mini Kit according to the manual including on column DNAse treatment. RNA concentration was 

measured with the NanoDrop 1000. 

2.3.4 Complementary DNA (cDNA) preparation 

RNA was transcribed into cDNA with iScript reverse transcriptase according to the manual.  

Reverse transcription reaction mix Reverse transcription cycle program 

2µg RNA 5min at 25°C 
8µl 5x iScript reaction mix 30min at 42°C 
2µl iScript reverse transcriptase 5min at 85°C 
Fill up with ddH20 to 40µl ∞ at 4°C 

Table 2.16 Reverse transcription 

2.3.5 SNP analysis 

For SNP analysis, DNA was prepared with the Qiagen DNeasy Blood & Tissue kit and eluted in 

100µl TE-4 buffer. The DNA concentration was measured with the NanoDrop 1000 and 

subsequently adjusted to 60ng/ml. The samples were processed by members of the AG Nöthen 

at the Institute of Human Genetics at the University of Bonn on the Illumina BeadChip 

HumanOmniExpress-12v1.0. The generated SNP data was analyzed with the Illumina Genome 

Studio and Genome Viewer. 
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2.3.6 Genotyping 

Genotyping of the patient iPSC lines was done via Sequencing PCR. For this purpose, a PCR 

reaction flanking the mutation was designed using the SPAST Seq primer pair.  

 

Sequencing PCR cycle program 

Sequencing PCR reaction mix Cycle number Time Temperature 

1µl DNA (100ng) 1 1min 98°C 
2.5µl Primer mix (3.33µM each) 2 30s 98°C 
31µl ddH20 3 30s 60°C 
10µl HF 5x buffer 34x from cycle 2 30s 72°C 
4µl DMSO 5 5min 72°C 
1µl dNTPs (10mM) 6 ∞ 4°C 

0.5µl Phusion DNA polymerase    

Table 2.17 Sequencing PCR 

The PCR product was mixed with 10x DNA loading buffer run via gel electrophoresis on a 1% 

agarose gel with 1µg/ml ethidium bromide in 1x TAE buffer. Subsequently, the band of the PCR 

product was cut out with a scalpel under UV-light and purified with the QIAquick Gel Extraction 

Kit according to the manual. 5,3µl eluted DNA (>700ng) were mixed with 1µl forward SPAST Seq 

primer (10µM) and 0.7µl 100mM TRIS-HCl pH 8 and sent to Seqlab for extended Hotshot 

sequencing. Sequence data was analyzed with the CLC Sequence viewer. 

2.3.7 Scorecard analysis 

The Scorecard analysis is a TaqMan array, which analyses the expression of genes associated 

with pluripotency and differentiation of all three germ layers. To determine the differentiation 

potential of analyzed iPSC lines, the acquired data can be compared to pluripotent and 

differentiated reference profiles online (Bock et al. 2011). The Scorecard kit includes one 384-

well plate, already prepared with primers, a TaqMan Master Mix and an optical adhesive film. 

For this assay, RNA from directed differentiations was prepared and transcribed into cDNA. In 

each vial of one 8x PCR stripe, 2µl cDNA were mixed with 68µl ddH2O and 70µl TaqMan Master 

Mix. Of this solution, 10µl were loaded into each well of the first six columns of the 384-well plate. 

This procedure was repeated three times per plate. The PCR was performed with the ViiA™ 7 

Real-Time PCR System. 

Scorecard PCR reaction mix (12 wells) Cycle number Time Temperature 

2µl cDNA 1 20s 50°C 
70µl TaqMan Master Mix 2 60s 95°C 
68µl ddH20 39x from cycle 2 20s 60°C 

Table 2.18 Scorecard PCR 
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2.3.8 Semi-quantitative PCR 

For semi-quantitative PCR, cDNA was prepared and diluted 1:30 with ddH2O. The PCR solution 

was prepared with the GoTaq Flexi Kit using the green buffer, that already contains loading buffer 

and 18S was used as a loading control. The reaction was run according to the Semi-quantitative 

PCR cycle program on a T3 Thermo cycler. Subsequently, the PCR was analyzed via gel 

electrophoresis on a 1% agarose gel with 1µg/ml ethidium bromide in 1x TAE buffer. A picture 

was acquired with the Chemidoc XRS+. 

 Semi-quantitative PCR cycle program 
Semi-quantitative PCR reaction mix Cycle number Time Temperature 

1µl cDNA 1 5min 95°C 
1µl Primer mix (3.33 µM each) 2 60s 95°C 
10.375µl ddH20 3 60s 60°C 
12.5µl Supermix 20x-34x from cycle 2 40s 72°C 
0.125µl GoTaq Flexi DNA polymerase 5 5min 72°C 

Table 2.19 Semi-quantitative PCR (GoTaq) 

2.3.9 Quantitative PCR 

For quantitative PCR, cDNA was prepared and diluted 1:30 with ddH2O. For the silencing PCR, 

the PCR solution was prepared with the GoTaq Flexi Kit using the translucent buffer. The M1 

spastin, M87 spastin, vGlut1 and GAD PCR reactions were performed by Monika Veltel using the 

Taq polymerase kit. All PCRs were run in triplicates on the Eppendorf realplex 4 Mastercycler and 

analyzed using 18S as reference gene. 

 quantitative PCR cycle program 
Quantitative PCR reaction mix Cycle number Time Temperature 

1µl cDNA 1 5min 95°C 
1µl Primer mix (3.33 µM each) 2 60s 95°C 
10.375µl ddH20 3 60s 60°C 
12.5µl Supermix 39x from cycle 2 40s 72°C 
0.125µl GoTaq Flexi DNA polymerase 5 5min 72°C 

Table 2.20 quantitative PCR (GoTaq) 

Quantitative PCR reaction mix Cycle number Time Temperature 

1µl cDNA 1 3min 95°C 
0.8µl Primer mix (3.33 µM each) 2 15s 95°C 
7.08µl ddH20 3 20s 60°C 
10µl Supermix 39x from cycle 2 30s 72°C 
0.12µl Taq polymerase 5 60s 95°C 

Table 2.21 quantitative PCR (Taq) 

2.3.10 Immunocytochemistry 

Cell cultures were washed once with PBS and fixed with 4% PFA for 10-15 minutes at room 

temperature under a laminar flow hood designated for PFA work. For the fixation of GABA, the 

PFA solution was supplemented with 0.04% Glutaraldehyde. Subsequently, PFA was replaced 

by PBS and removed from the flow hood. Prior to staining, cultures were blocked with 10% FBS 
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in PBS + 0.1% Triton X-100 for one hour. The primary antibodies were diluted in 10% FBS in PBS 

+ 0.1% Triton X-100 and incubated over night at 4°C. Subsequently, the cultures were washed 

three times with PBS for 2-5 minutes each. Afterwards, adequate secondary antibodies were 

diluted in 10% FBS in PBS + 0.1% Triton X-100 and incubated for one hour. Following, the 

cultures were incubated with DAPI solution for 3 minutes and afterwards washed three times with 

PBS for 2-5 minutes each. 96-well plates were kept at 4°C covered with PBS and wrapped in 

parafilm. Cultures on 3.5cm dishes were mounted in Mowiol with DABCO and covered with a 

glass cover slip and subsequently stored at 4°C. 

2.3.1 Automated image acquisition and image analysis 

To acquire large amounts of images of many cell lines or different condition, cells were seeded 

on 96-well plates. Positive and negative conditions were included on every plate. After fixation 

and staining, at least 10-20 images were acquired per well and subsequently analyzed. DAPI 

positive nuclei were segmented by object recognition. To separate nuclei within close proximity, 

an erosion image of the recognized nuclei was used as nuclear seed. Dead cells were excluded 

via size exclusion of nuclei. Neurites were identified by intensity segmentation of the TUBB3 

channel. To avoid exclusion of fine neurites, the TUBB3 signal was enhanced prior to analysis. 

To exclude the soma and to count the length of single neurites and not the total neurite length of 

the cell, the nuclei signal was dilated and subtracted from the neurite channel. Neurite length was 

determined with an algorithm included in the INCell Developer toolbox. 

For growth cone analysis, object recognition was used on the actin channel. Only the area of 

signals, that co-localized with the TUBB3 signal, but did not co-localize with a dilated nucleus 

were included in the analysis. 

For the quantification of layer markers, DAPI, TBR1 and CTIP2 were segmented via object 

recognition and separated with a nuclear seed. Only TBR1 and CTIP2 signals, which co-localized 

with DAPI nuclei were counted. TBR1 and CTIP2 double positive cells were determined by co-

localization of both with DAPI.  
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Figure 2.1 INCell analysis 
Automated analysis was performed with the INCell Analyzer and Developer system. To ensure 
comparability, control and HSP cell lines were plated on the same thin-bottom 96-well plate. For analysis, 
the plates were fixed after 24 hours and stained against TUBB3 and the DAPI. Images were taken on the 
INCell Analyzer 2200. An analysis protocol was established on the INCell Developer platform, containing 
seeding and measuring of nuclei and enhancement, abstraction of nuclei, segmentation and measurement 
of neurites. 

2.3.2 Western blot 

For protein analysis, cells were washed off with ice-cold PBS and centrifuged at 4000rpm for 10 

minutes and 4°C. The pellet was resuspended in 50-100 µl RIPA buffer, homogenized with a 

100µl pipette and transferred to a 1.5ml tube. The cells were further lysed on an overhead shaker 

for 30 minutes at 4°C. Subsequently, the probes were centrifuged at 16000rpm for 30 minutes at 

4°C. The supernatant was transferred to a new 1.5ml tube and weighed to determine the volume. 

For protein measurement was performed on 96-well plates with the Pierce BCA kit. Triplicates of 

the protein probes (1µl each) and a BSA dilution series (10µl each) were mixed with 200µl of the 

BCA solution and incubated at 37°C for 30 minutes. Following, the absorbance at 595nm was 

measured with a plate reader. Protein lysates were diluted with RIPA buffer and 4x LDS buffer 

was added to obtain a final concentration of 2µg/µl. The samples were incubated for 10 minutes 

at 70°C and afterwards aliquoted a 20µl and stored at -80°C. 

For SDS-PAGE, precast NUPAGE Novex 4-12% Bis-Tris Mini Gels were used with MOPS 

running buffer. The samples were slowly thawed on ice and vortexed before loading. For spastin 

40µg protein were loaded per lane, for all other western blots, 10µg. A protein marker was always 

included. The electrophoresis was performed with 200V for 45 minutes. Subsequently, the gels 

were incubated in western transfer buffer for 10-15 minutes together with the western blot 

membrane. Blotting sandwiches were assembled in western transfer buffer, starting on the dark 
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plastic side: Sponge, 2x whatman paper, gel, membrane, 2x whatman paper, sponge. During the 

assembly, the components were kept moist and air bubbles were carefully squeezed out The 

sandwiches were positioned in the western blot running chamber, which was filled with western 

transfer buffer and was placed in an ice box. The protein transfer was carried out at 100V for one 

hour. After blotting, membranes were washed with TBS-T. To visualize the proteins on the 

membrane, they were stained with ponceau solution for 30 s and afterwards, rinsed off with 

ddH2O. The membrane was placed in foil and imaged with the Chemidoc. The remaining Ponceau 

staining was washed off with TBS-T. The membranes were blocked for one hour with blocking 

solution on the rotator. The primary antibody was diluted in blocking solution and transferred with 

the membrane to a 50ml falcon tube and place on a rotator at 4°C over-night. Afterwards, the 

membrane was washed 3x for 5 minutes with TBS-T. The HRP-coupled secondary antibody was 

likewise diluted in blocking solution and incubated on the membrane for one hour at room 

temperature. Afterwards, the membrane was washed 3x for 5 minutes with TBS-T. Before 

detection, the membrane was rinsed off with ddH2O. The imaging was performed on the 

Chemidoc after incubating the membranes with ECL substrate. The signal was first detected with 

the ECL substrate Classico, which has the lowest sensitivity, then with Crescendo and as a last 

resort with a two-component substrate Femto super signal. 

The quantification of western blot signals was performed with the Image lab software using the 

lanes and bands tool. To account for differentially loaded lanes, the signals were normalized 

against Ponceau, which was quantified using the volume tool of the image lab software. 
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3 RESULTS 

3.1 Generation and validation of SGP4 iPSCs 

To establish a patient specific SPG4 model, patient fibroblasts were reprogrammed into iPSCs. 

Prof. Ludger Schöls (Department for Neurodegenerative Diseases, University of Tübingen) kindly 

provided skin fibroblasts of three SPG4 patients. The classic reprogramming approach is based 

on the introduction of the four Yamanaka factors OCT4, SOX2, KLF4 and C-MYC into fibroblast 

resulting in the generation of iPSCs in vitro (Takahashi et al. 2007). These factors can be 

delivered into the cell using integrating viruses, or non-integrating systems. Initially, iPSCs from 

the female patient HSP22f were generated using four FLAG-tagged retro-viruses containing the 

Yamanaka factors. Later, non-integrating Sendai RNA viruses have been chosen for 

reprogramming of fibroblasts from two male family members, i.e. HSP23m and HSP24m (as 

developed by Fusaki et al. 2009). The patients participating in this study belong to one family and 

carry an identical nonsense mutation in the SPAST gene. Interestingly, the age of onset differs, 

which might be either due to diagnostics or to actual differences in disease severity. An overview 

of generated iPSC clones, including the patient age at which the fibroblasts were retrieved, the 

gender, the mutation, the age of onset, the number of derived clones, the number of clones which 

failed to meet the quality control (QC) criteria and the virus vectors used for reprogramming is 

presented in Table 3.1. 

Name Age Gender Mutation Age of 
Onset 

Derived 
Clones 

Failed 
QC 

Virus 
Vector 

Validation 

HSP22f 40 female 
UAG in exon 3 
of the SPAST 
gene (Q193X) 

18 12 3 Retro 
2 validated 

clones 

HSP23m 44 male 
UAG in exon 3 
of the SPAST 
gene (Q193X) 

32 16 5 Sendai 
1 validated 

clones 

HSP24m 69 male 
UAG in exon 3 
of the SPAST 
gene (Q193X) 

40 7 5 Sendai 
2 validated 

clones 

Table 3.1 Generation of SPG4 patient iPSC clones 

3.1.1 Validating genomic integrity of generated iPSC lines 

To ensure the suitability of the generated clonal iPSC lines, an extensive validation had to be 

performed. First of all, additional genomic aberrations had to be excluded. This is often done 

using simple G-banding. To achieve a higher resolution and detect smaller mutations, single 

nucleotide polymorphism (SNP)-array analysis was employed. Two measures, namely Log R 

ratio (LRR) and B allele frequency (BAF) allow the analysis of copy number changes and 

homozygosity (Simon-Sanchez et al. 2007). LRR visualizes the logged ratio of the observed 

versus the expected hybridization intensity, which is around 0 in diploid SNPs. Deletions lead to 
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a lower ratio, whereas duplications result in a LRR larger than 0. The BAF visualizes the 

proportion of a specific allele, the B allele and thus its variations. The expected proportion in a 

normal sample is 0.0 (A/A), 0.5 (A/B) and 1.0 (B/B), hence deviant numbers are indicative of copy 

number variations, whereas loss of heterozygosity leads to a missing 0.5 value.  

 

Figure 3.1 SNP analyses of HSP22f iPSC lines 
SNP-array analyses of DNA from patient HSP22f, showing the iPSC SNP-array analysis in the upper panels 
and the fibroblast SNP-array analysis (passage 11) in the lower panels, to directly compare for aberrations. 
Chromosomes 1-22 and the X and Y chromosomes are displayed separately. The chromosome Y is being 
empty, due to the female nature of the samples. (A) LRR and (B) BAF of iPSC clone HSP22f-1 passage 9 
show no major aberrations or differences to the SNP-array analysis of the fibroblast. (C) LRR and (D) BAF 
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of iPSC clone HSP22f-11 passage 8 show no major aberrations or differences to the SNP-array analysis 
of the fibroblast.  

 

 

Figure 3.2 SNP analysis of HSP23m iPSC line 
SNP-array analyses of DNA from patient HSP23m. Chromosomes 1-22 and the X and Y chromosomes are 
displayed separately, chromosome X displaying a Log R ratio below 0, which is due to the male nature of 
the samples. SNP-array analyses of (A) HSP23m fibroblast DNA passage 7 and (B) HSP23m-1 iPSC DNA 
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passage 8 are depicted, showing the BAF in the upper panels and the LRR in the lower panels, to directly 
compare these two modes of display. IPSC clone HSP23m-1 shows no major aberrations or differences to 
SNP-array analysis of the fibroblast.  

 

 

Figure 3.3 SNP analyses of HSP24m iPSC lines 
SNP-array analyses of DNA from patient HSP24m. Chromosomes 1-22 and the X and Y chromosomes are 
displayed separately. The chromosome X displays a Log R ratio below 0, which is due to the male nature 
of the samples. SNP-array analyses of (A) HSP24m fibroblast DNA passage 12, (B) HSP24m-3 iPSC DNA 
passage 6 and (C) HSP24m-6 iPSC DNA passage 7 are depicted, showing the BAF in the upper panels 
and the LRR in the lower panels, to directly compare these two modes of display. IPSC clones HSP24m-3 
and HSP24m-6 show no major aberrations or differences to the SNP-array analysis of the fibroblast.  
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SNP genotyping of iPSC clones HSP22f-1, HSP22f-11 (Figure 3.1), HSP23m-1 (Figure 3.2), 

HSP24m-3  and HSP24m-6 (Figure 3.3) showed no major aberrations (> 300 kb) or copy number 

variations, whereas several other clones (Table 3.1) that displayed deletions and duplications 

were discarded from further use (data not shown). 

3.1.2 Confirmation of the SPG4 mutation in generated iPSC lines 

To ensure that generated iPSC clones carry an HSP causing mutation in the SPAST gene, the 

affected genomic region was analyzed via Sanger sequencing. All five lines were found to carry 

the heterozygous nonsense mutation in exon 3 at position 577 C>T, leading to a change in amino 

acids from glutamine (Q) to a termination codon at position 193 of the protein spastin. 

 

Figure 3.4 Sequencing analysis of mutated region in the SPAST gene 
Sanger sequencing confirms the HSP causing nonsense mutation in the SPAST gene of all five iPSC lines. 

3.1.3 Assessment of pluripotency of generated iPSC lines 

A basic step in confirming pluripotency, is the presence of stem cell and pluripotency markers. 

The enzyme alkaline phosphatase is active in all stem cells, but is especially highly expressed in 

pluripotent stem cells (Štefková et al. 2015). In addition, pluripotent stem cells express a distinct 

marker set associated with pluripotency, such as the core pluripotency factors OCT4, SOX2 and 

NANOG as well as pluripotency associated transcription factors REX1 and LIN28 and the enzyme 

telomerase, which elongates telomeres in stem cells. In addition, the two cell surface antibodies 

TRA-1-60 and TRA-1-81, which bind to proteoglycans that are specifically expressed on the 

surface of pluripotent stem cells are widely used to show pluripotency (Andrews et al. 1984; 

Wright and Andrews 2009). All iPSC lines used in this study show alkaline phosphatase activity 

and stain positive for TRA-1-60 and TRA-1-81 (Figure 3.5). 
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Figure 3.5 Pluripotency-associated markers 
The iPSC clones HSP22f-1, HSP22f-11, HSP23m-1, HSP24m-3 and HSP24m-6 show alkaline 
phosphatase activity (bright field staining) and stain positive for the pluripotency associated surface markers 
TRA-1-60 and TRA-1-81 (Immunofluorescence staining). Nuclear DAPI staining is shown in the upper right 
corner. IPSC lines HSP22f-1 and HSP22f-11 were cultivated on mouse irradiated feeder cells in KOSR-
medium, whereas iPSC lines HSP23m-1, HSP24m-3 and HSP24m-6 were cultivated on MG in E8 medium. 
Scale bar: 200µm.  

While the expression of pluripotency markers is a strong indicator of pluripotency, the 

differentiation potential of the cells has to be verified. The gold standard for proving pluripotency 

in mouse pluripotent stem cells is the tetraploid complementation assay, where an embryo is 

formed solely out of iPSCs (De Los Angeles et al. 2015). Since this test is not possible with human 

iPSCs, the closest approximation is the test of teratoma formation in mice. For teratoma formation, 
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potentially pluripotent stem cells are transplanted into the testis of mice and analyzed for tumor 

formation after 6 to 10 weeks. If these tumors contain tissues of all three germ layers and thus 

qualify as teratomas, the donor iPSCs are considered to be pluripotent. Over the last years, it was 

discovered that assessing in vitro differentiation potential can give comparable results without the 

need for time-consuming and ethically arguable animal experiments. Hence embryoid body (EB) 

in vitro differentiation followed by immunofluorescence stainings or quantitative TaqMan analysis 

were established as alternatives to teratoma analysis (Bock et al. 2011). 

For the first two retrovirally generated iPSC lines, i.e. HSP22f-1 and HSP22f-11, teratomas were 

generated, which contained endodermal gland structures, mesodermal cartilage and ectodermal 

neural rosettes (Figure 3.6).  

 

Figure 3.6 In vivo differentiation potential of SPG4 iPSCs 
The iPSC clones HSP22f-1, HSP22f-11 were transplanted into the testis of SCID/beige mice to assess their 
differentiation potential in vivo. After 6-8 weeks, teratomas were harvested, embedded in paraffin and 
stained against HE. Teratomas of both iPSC lines formed teratomas, which contained endodermal gland 
structures, mesodermal cartilage and ectodermal neural rosettes and thus demonstrated that they contain 
cells of all three germ layers. 

Furthermore, differentiation potential of generated iPSCs was tested in vitro, employing 

undirected EB formation. The iPSC clones were differentiated as EBs in the absence of FGF for 

5 days, followed by an additional two weeks of adherent differentiation. Resulting cultures 

contained cells that stained positive for endodermal α-fetoprotein (AFP), mesodermal smooth 

muscle actin (SMA) and ectodermal β-III-tubulin (TUBB3). Thus, all tested iPSC lines gave rise 

to cells of all three germ layers in vitro (Figure 3.7). 
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Figure 3.7 In vitro differentiation potential of SPG4 iPSCs 
The iPSC clones HSP22f-1, HSP22f-11 were differentiated in the absence of FGF as EB structures for 5 
days followed by an additional two weeks of adherent differentiation. Both cell lines gave rise to all three 
germ layers: α-fetoprotein (AFP)-positive endoderm, smooth muscle actin (SMA)-positive mesoderm and 
β-III-tubulin (TUBB3)-positive ectoderm. Scale bar: 200µm. 

These teratoma-validated iPSC lines were used as control for the evaluation of the novel TaqMan-

based Scorecard assay, which is in contrast to the teratoma and EB formation a quantitative 

measurement that might replace the traditionally used assays. In the first trial, the iPSC lines were 

differentiated as EBs in FGF-free basic medium for two weeks, followed by RNA preparation and 

cDNA generation, which was used for the Scorecard assay. However, in this undirected 

differentiation, endoderm and ectoderm were detectable but underrepresented and did not meet 

the cut-off values of the internal Scorecard assay quality control (data not shown). Thus, another 

differentiation approach had to be used to generate enough material to overcome these cut-off 

values. To that end, short directed differentiation protocols were established. Starting with 

confluent iPSCs, differentiation into each germ layer was induced in parallel for just five days. 

Afterwards, all three layer-specific directed differentiations of one line were pooled and subjected 

to the Scorecard assay. The previously tested lines HSP22f-1 and HSP22f-11 as well as the later 

generated lines HSP23m-1, HSP24m-3 and HSP24m-6 all successfully down-regulated 

pluripotency associated genes and self-renewal genes while upregulating germ-layer specific 

genes upon differentiation (Figure 3.8A). The expression of pluripotency genes and differentiation 

genes, was compared to the data of a large pool of undifferentiated PSCs, represented in Figure 

3.8B by gray boxes. All tested iPSC lines achieved values that reside outside of the parameters 

for undifferentiated cells indicating that they were able to downregulate self-renewal markers and 

upregulate differentiation markers and are thus pluripotent. In addition to the differentiation 

potential, the Scorecard also tests whether residual Sendai virus is present in the samples, which 

would appear as a red flag in Figure 3.8B. No Sendai signal could be detected in the later three 
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iPSC lines, which were generated with Sendai viral vectors. In conclusion, this improved method 

leads to a fast and quantitative readout regarding the pluripotency of iPSC lines. 

 

Figure 3.8 Scorecard analysis  
The iPSC lines HSP22f-1, HSP22f-11, HSP23m-1, HSP24m-3 and HSP24m-6 were differentiated for five 
days in a directed manner into all three germ layers. Derived cell material of each cell line was pooled, to 
prepare RNA and cDNA, which was analyzed with the TaqMan® hPSC Scorecard™ Assay. (A) All tested 
iPSC lines showed an upregulation of markers of all three germ layers and downregulation of self-renewal 
markers. (B) Compared to a large pool of undifferentiated PSCs, represented by the gray box-whisker plots, 
the tested iPSC lines are able to downregulate self-renewal markers and upregulate differentiation markers 
and are thus defined pluripotent. Furthermore, the Scorecard is able to detect the presence of Sendai virus. 
Since no red flag appeared, all of the tested iPSC lines are free of Sendai virus. 

3.1.4 Transgene silencing 

Sendai virus is a non-integrating RNA virus and the temperature sensitive variants used for 

reprogramming, are usually eliminated upon cell division. On the contrary, retroviruses integrate 

as provirus into the host genome and will persist in the generated iPSC lines. However, the 

retroviral genes are usually inactivated through epigenetic silencing during the first ten passages 

(Hotta and Ellis 2008). In the retrovirally generated iPSC clones HSP22f-1 and HSP22f-11, 

transgene silencing was assessed by qPCR analysis with primers binding in the 5’-UTR of the 

endogenous reprogramming factors, and another set of primers detecting the total amount of 
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OCT4, SOX2, KLF4 and C-MYC, respectively. Both iPSC lines show comparable amounts of 

endogenous and total transcripts, therefore confirming transgene inactivation through silencing 

(Figure 3.9). 

 

Figure 3.9 Validation of transgene silencing 
QPCR analysis of iPSC clones HSP22f-1 (A) and HSP22f-11 (B) was performed to check for residual 
retroviral activity. Total (blue) versus endogenous (red) expression levels of OCT4, SOX2, KLF4 and C-
MYC were analyzed and normalized to the expression levels of the ESC line H9 and GAPDH. Error bars 
show SEM of triplicates. 

3.2 Differentiation and validation of cortical neurons 

The main phenotype of hereditary spastic paraplegia is a retrograde degeneration of the 

corticospinal motor neurons - glutamatergic projection neurons which reside in the layer V of the 

motor cortex. Other neuronal subtypes seem to be unaffected. Since the disease phenotype is 

restricted to such a specialized cell type, it is crucial to generate an almost similar neuronal cell 

type in vitro to be able to observe disease related phenotypes. For the generation of cortical 

neurons, a protocol published by Shi and colleagues in 2012 (Shi et al. 2012) was adapted (Figure 

3.10). It is important to know, that the cortical differentiation in vitro resembles the in vivo 

development. This means, that the cortical layer V and layer VI are generated early on, followed 

by the upper cortical layers. 

 

Figure 3.10 Cortical differentiation scheme 

It is crucial to start the in vitro differentiation with homogeneous iPSCs to achieve a complete 

neuro induction. Therefore, the quality of the used iPSCs was determined by morphology and 

exemplary by staining for pluripotency marker TRA1-81 (Figure 3.11). Prior to differentiation, cells 

were singularized with Accutase and seeded at very high density to generate a monolayer. 

Neuroectoderm was induced by dual SMAD inhibition (Chambers et al. 2009) for 11 days. The 
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generated neural precursors were kept in a proliferative state with FGF2-treatment starting from 

day 10 and regular splitting starting on day 11. During this time, neural precursors had a 

homogeneous rosette-like morphology and stained positive for the neural stem cell marker nestin 

and the forebrain marker FOXG1 (Figure 3.11). On day 31 late cortical precursors were frozen 

down as one batch to ensure comparability between vials. Cultures were differentiated for 13 

days without additional factors, dissociated on day 44 with Accutase and seeded in the desired 

final density. To avoid generation of higher cortical layers and astrocytes, complete differentiation 

was induced by treating the cultures with growth factor inhibitors targeting the FGF and Notch 

pathways (10µM PD0325901 and 10µM DAPT, respectively) for four days. For final analysis, 

neurons were matured until day 57 (Figure 3.10).  

 

Figure 3.11 Differentiation of iPSCs to cortical progenitors and neurons 
Overview over different stages in the cortical differentiation. (A) Bright field images show the typical 
morphology of iPSCs, early rosette and late rosette progenitors, which produce cortical neurons. (B) 
Differentiation is started with TRA-1-81 positive iPSCs, early progenitors are positive for the forebrain 
marker FOXG1 and the neural stem cell marker nestin. Cortical neurons produced by late rosettes are 
positive for the layer markers TBR1 and CTIP2 and the neuronal marker TUBB3. 

Due to growth factor inhibition at a time when layer V is being generated, the cultures consisted 

almost entirely of cortical neurons positive for the layer V marker CTIP2 and the layer VI marker 

TBR1. The layer IV marker BRN2 was barely detectable (Figure 3.12A). Furthermore, almost all 

neurons stained positive for the vesicular glutamate transporter 1 (vGLUT1), which is only 

expressed in glutamatergic neurons, as well as the forebrain marker FOXG1. In addition, the even 

more specific marker FEZF2, which specifies corticospinal motor neurons (CSMN) (Lodato et al. 

2014), was expressed in the majority of neurons (Figure 3.12B). The cortical identity of the 

generated neurons was further confirmed by semiquantitative RT-PCR analysis of FOXG1, 

FEZF2, CTIP2 and TBR1 expression (Figure 3.12C).  
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Figure 3.12 Validation of iPSC-derived cortical neurons 
Cortical neurons of SPG4 patients and controls were fixed, stained and analyzed on day 57. (A) Cortical 
neurons stained positive for the layer VI marker TBR1, the layer V marker CTIP2 and the neuronal marker 
TUBB3, while the cultures were nearly devoid of the layer IV marker BRN2. (B) Immunofluorescence 
staining against vesicular glutamate transporter 1 (vGLUT1) confirms glutamatergic identity of cortical layer 
neurons, which are also positive for the forebrain marker FOXG1 and FEZF2, a marker expressed in 
corticospinal neurons. Scale bar: 50µm. (C) In addition, cortical forebrain identity of SPG4 patient and 
control neurons was confirmed by semiquantitative RT-PCR against FOXG1, FEZF2, CTIP2 and TBR1, 
using 18S as loading control. (D) Q-PCR analysis confirms VGLUT1 expression (control: n=6, HSP: n=6). 
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On day 57, every cortical batch generated from either SPG4 patient iPSCs or iPSCs of three 

healthy controls, was validated for the fraction of TUBB3 positive neurons and to confirm the 

absence of astroglia and other contaminating cell types. Since non-neuronal cells can introduce 

a lot of experimental variation, batches with less than 85% neurons were discarded from further 

use. However, most batches consisted typically of almost 100% TUBB3 positive neurons 

(control1: 99.9%, control2: 97.3%, control3: 88.8%, HSP22f: 98.8%, HSP23m: 100%, HSP24m: 

99.5%) (Figure 3.13A). To estimate the amount of deep layer projection neurons present in the 

cultures, CTIP2 and TBR1 were quantified. Only cultures with at least 80% CTIP2 and/or TBR1 

positive neurons were used for later analysis to ensure comparability between patient and control 

cell lines (control1: 97.3%, control2: 94.1%, control3: 81.5%, HSP22f: 92.0%, HSP23m: 93.1%, 

HSP24m: 90.3%) (Figure 3.13B).  

 

Figure 3.13 Marker quantification of cortical neurons 
Immunofluorescence stainings of the neuronal marker TUBB3 and the layer markers TBR1 and CTIP2 
were quantified to validate cortical cultures on day 57. (A) Control and SPG4 cortical cultures were highly 
enriched for neurons. (B) Cortical differentiation yields large fractions of CTIP2-positive neurons and even 
more either CTIP2 and/or TBR1 positive deep layer neurons. (C-61f: n=4, C-62m: n=3, C-31f: n=3, HSP-
22f: n=6, HSP-23m: n=4, HSP-24m: n=3). Error bars show SD.  

On day 57 most of the generated cortical neurons are double-positive for the layer VI marker 

TBR1 and the layer V marker CTIP2. However, at this early stage the neurons are still considered 

to be embryonal and not yet electrophysiological active. There is evidence that such double-

positive neurons exist in the human fetal brain, but it is unknown if one of the transcription factors 

is down-regulated in the adult brain (Ip et al. 2011). To obtain mature functional neurons which 

are able to fire action potentials, the neurons were cultured on chemically inactivated mouse 

astrocytes for three months. Thereafter, neurons displayed arborized dendritic trees and still co-

expressed the transcription factors CTIP2 and TBR1 (Figure 3.14). 
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Figure 3.14 Layer identity of cortical neurons after three months on mouse astrocytes 
In preparation for electrophysiology analysis, cortical neurons were dissociated and seeded on chemically 
inactivated mouse astrocytes on day 54. After two months, neurons stained positive for the cortical layer 
markers TBR1 and CTIP2 and thus conserved their deep layer cortical identity. Scale bar: 100µm. 

To confirm that the neurons show functional properties, electrophysiological activity was 

assessed after three months of maturation on astrocytes (data obtained by Dr. Jaideep Kesavan). 

Current-clamp recording uses a current that is injected into the cell to induce membrane potential 

changes, which can be subsequently recorded. During current-clamp, both control and SPG4 

neurons fired repetitive action potentials in response to 500 ms depolarizing current. Using whole-

cell voltage-clamp, voltage-gated sodium and potassium channels were studied by controlling the 

voltage, while measuring the current through a cell membrane. The fast inactivating inward 

current was reversibly blocked by the application of Tetrodotoxin. In addition, spontaneous 

postsynaptic currents could be measured, confirming the presence of synapses and 

demonstrating an active neuronal network (Figure 3.15). 

 

 

Figure 3.15 Electrophysiological properties of cortical neurons 
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Cortical neurons were cultured on mouse astrocytes for three months to mature in vitro. (A) Repetitive 
traces of action potentials recorded from cortical neurons in response to 500 ms depolarizing current 
injection. (B) Representative trace of fast inactivating inward current and sustained outward current in 
response to depolarizing voltage steps. Fast inactivating inward current and sustained outward current 
were blocked upon application of Tetrodotoxin (TTX) and recovered after washout. (C) Representative trace 
of spontaneous postsynaptic currents.  

3.3 SPG4 neurons show reduced spastin levels 

Spastin is the protein encoded by the gene SPAST, the genetic basis of the disease SPG4. Two 

translational start sites exist generating two main isoforms: M87 and the longer M1 isoform, which 

has an additional membrane binding domain. Splice variants of both isoforms exist, where exon 

4 (shaded in black) is missing; those are called M87* and M1* (Figure 3.16A). The patient cells 

used in the study carry a premature stop codon at position 193 in exon three of the spastin gene, 

which is responsible for disease penetrance. Haploinsufficiency and a dominant negative mode 

of action have been discussed as disease mechanisms. To evaluate expression levels of spastin 

and shed a light on the disease mechanism, western blot analysis was performed with protein 

samples of control and SPG4 neurons. The M87 isoforms (60kDa) and its splice variant were 

detectable after a short exposure time, whereas the M1 isoform (68 kDa) and its splice variant 

are only visible after prolonged exposure. To be able to show both isoforms despite the close 

proximity, the M1 image had to be cut at the height of 60kDa, to separate them from the 

overexposed M87 bands (Figure 3.16B). Thus, the M87 isoforms are expressed at much higher 

levels compared to the M1 isoforms. A quantification of spastin M87 and M1 bands, normalized 

to ponceau, which labels the total protein, reveals an approximately 50% reduction of spastin 

levels in SPG4 neurons compared to levels in control neurons (Figure 3.16C). This reduction and 

the fact that signals of truncated spastin could never be detected on western blot, support 

haploinsufficiency as disease mechanism. Furthermore, semiquantitative RT-PCR and 

quantitative PCR analysis exhibit a reduction of SPAST mRNA levels of both isoforms in SPG4 

neurons, a sign of nonsense-mediated mRNA decay (Figure 3.16D, E). Since the M87 SPAST 

isoform shares 100 % identity with the M1 isoform, primers designed to detect the M87 isoform, 

will always detected the M1 isoform as well, therefore the data is referred to as M87+M1. 

However, the M87 SPAST isoform is more abundant and contributes the majority of the signal.  
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Figure 3.16 Assessment of spastin expression 
Spastin expression in control and SPG4 neurons. (A) Spastin is expressed as two major isoforms resulting 
from alternative translational start sites (M1 and M87) and two splice variants, in which exon 4 is missing 
(M1* and M87*, exon 4 is shaded in black). (B) The spastin isoforms M87 and M87* can be visualized via 
western blot after a short exposure time, whereas the M1 and M1* isoforms are only visible after prolonged 
exposure and are therefore analyzed separately to compare spastin expression levels between neurons 
from SPG4 patients and controls. (C) Quantification of isoforms M1 and M87 confirmed that spastin 
expression is reduced by about 50 % in SPG4 neurons compared to controls. Unpaired t-test, **: p < 0.01. 
Error bars show SD. (D) Semiquantitative RT-PCR generated with primers binding at the 5’ end of the 
respective mRNA transcript, visualizes a reduction of SPAST RNA in SPG4 neurons compared to control. 
(E) Q-PCR of the M87+M1 and M1 isoform of SPAST normalized to 18S levels and control (control: n=6, 
HSP: n=6). 2way Anova, **: p < 0.01, ***: p < 0.001. Error bars show SD. 
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3.4 Assessment of disease-specific early phenotypes in cortical SPG4 

neurons 

3.4.1 Cortical SPG4 neurons display an impaired neurite outgrowth 

Spastin is a microtubule severing enzyme, thus a difference on the neurite level can be expected 

between SHP-SPG4 and control neurons. Concentrating on early phenotypic analysis, neurite 

outgrowth was investigated after 24 hours on day 58, after replating the neurons at single cell 

density on day 57. (Figure 3.17A). After staining against TUBB3, short patient neurites were 

already evident (Figure 3.17B). Quantification revealed that the neurite outgrowth within 24 hours 

ranged from 39µm to 75µm in control neurons and from 17µm to 39µm in patient neurons, 

depending on the experiment (Figure 3.17C). In general, the mean length of patient neurites 

clustered very closely together, whereas there was more variation in controls. Overall, neurite 

length in patient neurons was drastically decreased by 51%. In numbers, the mean neurite length 

of control neurons was 61µm and that of HSP neurons 29µm, respectively (Figure 3.17D). 

 

Figure 3.17 Neurite outgrowth assay 
(A) Cortical cultures were triturated to single cells and replated at single cell density on day 57. (B) Cells 
were fixed and stained for TUBB3 after 24 hours on day 58. Scale bar: 100µm. (C) Neurite outgrowth was 
quantified using at least ten images with 200-2000 neurons. Analysis was performed with ImageJ and the 
NeuronJ plugin or the INCell Developer software. (D) Overall, SPG4 neurons exhibit a highly significant 
reduction in neurite length after 24 hours compared to controls (control: n=18, mean HSP: n=28). Unpaired 
t-test, ****: p < 0.0001. Error bars show SD. 
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3.4.2 Growth cones of cortical SPG4 neurons are significantly enlarged 

After observing such a striking phenotype early on, the question arose whether other cytoskeletal 

compartments were affected as well. Therefore, the focus was on the actin cytoskeleton, which 

is closely connected to the microtubules. Thus, neurons were treated analogue to the neurite 

assay and stained against TUBB3 and actin with ActinRed 555 after 24 hours (Figure 3.18A). In 

neurons, ActinRed 555 stains specifically the growth cones: extensions of growing neurites filled 

with actin filaments, which provide shape and support. Morphologically, it was already noticeable 

that some of the growth cones of patient neurons were enlarged compared to those of controls 

(Figure 3.18B). Quantification revealed that the average growth cone area after 24 hours ranged 

from 3.9µm2 to 17.1µm2 in control neurons and from 20.0µm2 to 37.2µm2 in patient neurons 

(Figure 3.18C). The overall growth cone area of patient neurons was dramatically enlarged. The 

mean growth cone area of controls was 11.2µm2 and of the SPG4 neurons 27.9µm2, respectively 

(Figure 3.18D). 

 

 

Figure 3.18 Growth cone area of SPG4 neurons 
(A) Cortical cultures were singularized and replated on day 57. (B) After 24 hours cells were fixed and 
stained for TUBB3 and incubated with ActinRed 555 on day 58. Scale bar: 50µm. Insets show 
magnifications of typical growth cones. Scale bar: 10µm. (C) Quantification of actin positive growth cone 
area in SPG4 and control neurons. (D) SPG4 neurons exhibit a significant increase in growth cone area 
after 24 hours (control: n=15, mean HSP: n=25). Unpaired t-test, ****: p < 0.0001. Error bars show SD. 
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3.4.3 Taxol treatment leads to rapid induction of TAU1-positive axons 

Since retrograde degeneration of the corticospinal neurons is the main symptom of SPG4, it can 

be classified as an axonopathy. Consequently, the axonal marker TAU1 was chosen to 

investigate axonal integrity in SPG4 and control neurons. However, on day 50 no TAU1 positive 

axonal structures could be detected in the generated neuronal cultures. After prolonged 

maturation until day 75, a large number of TAU1-positive axons and MAP2-positive dendrites 

were present and formed very dense neuronal networks (Figure 3.19A). Unfortunately, these 

networks were so dense, that single axons were hardly distinguishable and were thus not suited 

for quantitative analysis.  

 

Figure 3.19 Taxol induces Tau1-positive axonal structures 
(A) Immunofluorescence staining against TAU1 (red) in day 50 cortical neurons demonstrates a lack of 
TAU1 positive structures, only dendritic MAP2 positive (green) structures are present. By day 75, TAU1 
positive axons have been formed by control and SPG4 for neurons and built a very dense neuronal network. 
To be able to analyze cultures of less density earlier, Taxol was used on day 44 to induce TAU1 positive 
axonal structures within one week. (B) For Taxol treatment, cortical progenitors were dissociated on day 
44, followed by overnight treatment with 3nM Taxol. Scale bar: 100µm. 

This was resolved by inducing axonal structures early on by using low concentrations of Taxol, 

while the network was still thin enough to be analyzed. Treatment with low doses of the 

microtubule stabilizing drug Taxol, also known as Paclitaxel, was reported to lead to a four-fold 

increase of the axonal marker TAU1 in mouse hippocampal neurons compared with control 

neurons (Witte et al. 2008). Remarkably, overnight treatment of our cultures with 3nM Taxol on 
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day 44 led to induction of TAU1 positive axons within five days (Figure 3.19). Two beneficial side 

effects for the readout assay were that the analysis could be performed very early on and that the 

neurons are faced with the challenge of producing a lot of axons within a short time span, leading 

to an early visible phenotype. 

3.4.4 Cortical SPG4 neurons show axonal swellings 

Neurons were treated with Taxol on day 44 to form a complex but low-density neuronal network 

containing MAP2 positive dendrites and TAU1 positive axons by day 50. Those cultures were 

used as basis to investigate an axonal phenotype in the SPG4 cortical neuronal cultures (Figure 

3.20B). Indeed, in patient neurons but not in control neurons, axonal swellings, a hallmark of 

SPG4 pathology, which has been previously found in SPAST-deficient patients and mouse 

models, were visible (Figure 3.20A). These swellings in patient axons varied in diameter from 1 

to 7 µm and were mostly located at the very distal end of the axon. The swellings counted in 

control neurons only reached a diameter of 1 to 2 µm and were located throughout the axon. Only 

swellings in otherwise intact axons were considered. Defragmentation of axons, a normal side 

effect of in vitro cell culture, was likewise present in patient and control neurons and was not 

included in this analysis. For standardization purposes, every axon thickening was counted as 

swelling and normalized to the total length of TAU1-positive axons, which was determined using 

ImageJ. A minimum of 10 pictures per data point were analyzed. The number of TAU1 positive 

axonal swellings in patient neurons was significantly higher (1.54 /mm) compared to that of control 

neurons (0.07 /mm). Interestingly, more swellings were detected in neurons of patients HSP23m 

and HSP24m: 1.65 /mm and 2.06 /mm, respectively – compared to neurons of patient HSP22f, 

where 0.96 swellings /mm were observed (Figure 3.20C). 
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Figure 3.20 Analysis of axonal swellings in cortical HSP and control neurons 
(A) Cortical neurons were fixed and stained for the dendrite marker MAP2 and the axon marker TAU1. 
SPG4 neurons exhibit prominent TAU1 positive axonal swellings. Scale bar: 100µm. (B) Timeline of 
differentiation and stimulation: Neurons were stimulated with 3nM Taxol on day 44 and cultivated until day 
50. (C) Quantification of TAU1 positive axonal swellings (control1: n=7, control2: n=7, control3: n=4, 
HSP22f: n=10, HSP23m: n=7, HSP24m: n=9). Unpaired t-test, ****: p < 0.0001. Error bars show SD. 

3.5 Generation and validation of GABAergic neurons 

So far SPG4 specific phenotypes were investigated in glutamatergic cortical deep layer projection 

neurons, a cell type that is also affected in patients. To address the questions, whether the 

phenotypes are subtype specific or if they are also present in other in vitro cell types and only 

masked in vivo, an alternative neuronal population was employed. To this end, the neuronal 

differentiation protocol was modified to yield mostly GABAergic forebrain neurons, which was 

achieved by using different dual smad inhibitor concentrations and shortening the proliferation 

phase (Figure 3.21A). In analogy to the glutamatergic protocol, late precursors were frozen down 

as one batch to ensure comparability. Due to the shortened proliferation phase, this was done on 

day 20 instead of day 31. Furthermore, late precursors did not keep on proliferating as extensively 

as the cortical precursors did after thawing, they started to generate neurons already after one 

week. Therefore, late precursors were dissociated and prepared for complete neuronal 

differentiation using FGF and Notch signaling inhibition with 10µM PD0325901 and 10µM DAPT 

on day 27. A complete neuronal network, comparable in age to d57 glutamatergic neuronal 
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cultures, was formed by day 37, consisting of almost 100% TUBB3 positive neurons. These 

neurons were TBR1 negative, mostly GABAergic and positive for the forebrain marker FOXG1 

and for CTIP2, which is also expressed in other brain regions besides the cortex, for example the 

striatum (Figure 3.21B). The cellular identity was further illuminated using Affymetrix expression 

data obtained from control GABAergic neurons. The expression data is presented log2 

transformed and is usually interpreted as follows: 0-4: not expressed, 4-8: medium expression, 

>8: highly expressed. The Affymetrix expression data confirmed the expression of GABA 

producing enzymes GAD1 and GAD2 and the absence of vGLUT1. The generated GABAergic 

neurons expressed the GABAergic subtype marker somatostatin (SST), but did not express 

Calbindin2 (CALB2), Parvalbumin (PVALB) or vasoactive intestinal peptide (VIP) (Kelsom and Lu 

2013; Darmanis et al. 2015), which might be due to the early time point of differentiation (Figure 

3.21C). Among other expressed markers were the forebrain marker FOXG1, the striatal markers 

distal-less homeobox 1 (DLX1), DLX2, DLX5, LIM homeobox 6 (LHX6), the migration markers  

aristaless related homeobox (ARX) and roundabout homolog 1 (ROBO1) and the transcription 

factor CTIP2, which can be present in the cortex in glutamatergic or GABAergic neurons as well 

as in the striatum (Leid et al. 2004; Nikouei, Muñoz-Manchado, and Hjerling-Leffler 2016). Two 

typical makers of glutamatergic cortical progenitors and neurons, TBR1 and 

Eomesodermin/TBR2 (EOMES), were not expressed (Figure 3.21D). In conclusion, this 

alternative neuronal population consists of forebrain interneurons, displaying a marker profile, 

which overlaps with classical cortical glutamatergic neurons and is thus an excellent neuronal 

population for comparison of disease phenotype expression. 
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Figure 3.21 Derivation of GABAergic neurons 
(A) Upon shortening of the proliferation phase of the neuronal differentiation, neural progenitors start to 
generate neurons from day 20 onwards. The cultures are completely neuronal after 30 days, upon addition 
of FGF and Notch inhibitors. (B) The generated TUBB3 positive neurons are almost exclusively GABAergic 
and mostly co-stain for CTIP2. Scale bar: 100µm. (C, D) Affymetrix expression data (log2) of two control 
GABAergic differentiations on day 37, confirms the expression of the GABA producing enzymes GAD1 and 
GAD2 and the absence of the vesicular glutamate transporter vGLUT1. Of the GABA subtype markers, 
only Somatostatin (SST) is expressed at this time point. (D) The GABAergic cultures express the forebrain 
marker FOXG1, the striatal markers DLX1, DLX2, DLX5, ARX and LHX6, the migration marker ROBO1 
and the transcription factor CTIP2, which is both present in the cortex and the striatum. The forebrain 
markers TBR1 and EOMES are not expressed. 

In order to assess the functionality, GABAergic neurons were matured for three months on mouse 

astrocytes to evaluate the electrophysiological activity. At this time point, both the control and the 

SPG4 neurons fired repetitive action potentials in response to 500ms depolarizing current 

interaction and exhibited fast inactivating inward current and sustained outward current in 

response to depolarizing voltage. In addition, spontaneous pre-synaptic currents could be 

measured, which is a sign of an active neuronal network (the electrophysiology data was obtained 

by Dr. Jaideep Kesavan) (Figure 3.22). 
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Figure 3.22 Electrophysiological properties of GABAergic neurons   
GABAergic neurons were cultured on mouse astrocytes for three months to mature in vitro. (A) Repetitive 
traces of action potentials recorded from GABAergic neurons in response to 500ms depolarizing current 
injection. (B) Representative trace of fast inactivating inward current and sustained outward current in 
response to depolarizing voltage steps. Inset shows magnified view of the boxed area. (C) Representative 
trace of spontaneous postsynaptic currents. Expanded view of the boxed region is shown in the inset. 

3.6 GABAergic SPG4 neurons do not show disease-associated phenotypes 

These generated forebrain GABAergic neurons, which represent a population with an alternative 

neurotransmitter type, were used to investigate whether GABAergic SPG4 neurons also exhibit 

disease-associated phenotypes such as shorter neurites, enlarged growth cones and axonal 

swellings. 

First, we set out to investigate the neurite outgrowth and the growth cone phenotypes in 

GABAergic forebrain neurons. The GABAergic neuronal network was grown for 10 days before 

dissociation on day 37. The dissociated neurons were plated at single cell density and plated for 

24 hours (Figure 3.23A). Subsequently, control and SPG4 neurons were stained for TUBB3 and 

actin, via ActinRed 555 (Figure 3.23B). Surprisingly the mean neurite length of control neurons 

was 53.3 µm and the mean neurite length of patient neurons 64.4µm after 24h (Figure 3.23C). 

Thus, GABAergic SPG4 neurites were slightly longer than GABAergic control neurons. Especially 

neurites of patient HSP22f were significantly prolonged compared to control2. To confirm this 

finding, the neurite length was investigated again after 48 hours. The mean neurite length of 

control (59.8µm) and patient (75.6µm) neurons was slightly longer after 48 hours and neurites of 

SPG4 neurons were still significantly longer than those of controls. 

Next, the growth cones of GABAergic neurons were stained using ActinRed 555 and quantified 

with the INCell Developer toolbox (Figure 3.23D). The mean growth cone area of control neurons 
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was 17.6µm2 compared to 19.5µm2 of patient growth cones after 24 hours. Even though growth 

cones of patient neurons were slightly larger, the difference was not significant.  To confirm this 

finding, the growth cone area was investigated again after 48 hours. The mean area of control 

(19µm2) and patient (20µm2) growth cones was slightly larger after 48 hours but did not 

significantly differ between patient and control neurons. 

  

 

Figure 3.23 Analysis of neurite outgrowth and growth cone area in GABAergic neurons 
(A) GABAergic cultures were triturated to single cells and replated on day 37. (B) After 24 hours and 48 
hours cells were fixed, stained for TUBB3 and incubated with ActinRed 555. Scale bar: 50µm. Insets show 
magnifications of typical growth cones. Scale bar: 10 µm. (C) Neurite outgrowth was quantified using at 
least ten TUBB3 images. Analysis was performed with the INCell Developer software (control: n=8, HSP: 
n=12). Neurite length after 24 hours and 48 hours was not reduced in SPG4 neurons, but instead enhanced 
in one patient. (D) Actin positive growth cone area was quantified with the INCell Developer Software. 
Growth cone area of SPG4 GABAergic neurons did not differ after 24 hours or 48 hours (control: n=8, HSP: 
n=10). 2way ANOVA, *: p < 0.05. Error bars show SD. 

For fast induction of axonal structures, cultures were treated with 3nM Taxol overnight on day 27 

(Figure 3.24B). However, although the neurons stained positive for MAP2, no TAU1 positive 
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axons could be detected in the cultures after 10 days. This was surprising, since the glutamatergic 

cultures expressed TAU1 positive axons already 5 days after Taxol treatment. Since the 

quantification of axonal swellings was not possible, the neurons were stained against normal TAU 

and acetylated tubulin, a more stable form of tubulin associated with axons (Figure 3.24). Indeed, 

the cultures expressed TAU and acetylated tubulin and displayed occasional thickenings in the 

otherwise smooth neurites. After quantification of the swellings and normalization against the total 

filament length no difference between control and SPG4 cultures could be detected (Figure 

3.24C). The mean number of TAU positive swellings in controls was 0.2/mm, compared to patient 

cultures, which exhibited 0.1 swellings/mm TAU filament. Consistently, the mean numbers of 

acetylated tubulin positive swellings were only slightly higher with 0.3/mm in controls and 0.2 

swellings /mm in patient cultures. 

 

Figure 3.24 Assessment of swellings in GABAergic neurons 
(A) GABAergic cultures were fixed and analyzed on day 37. Despite Taxol treatment on day 27, GABAergic 
cultures are devoid of TAU1 positive structures 10 days later. However, normal TAU, acetylated tubulin, a 
stable form of tubulin and dendritic MAP2 are expressed. (B) Timeline of differentiation and stimulation. (C) 
Both control and SPG4 neurons are nearly devoid of TAU positive and acetylated tubulin positive swellings 
(control: n=4, HSP: n=6). Scale bar: 100µm. Error bars show SD. 

In conclusion, disease specific phenotypes that were present in glutamatergic neurons could not 

be confirmed in SPG4 GABAergic forebrain neurons.  
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3.7 GABAergic neurons display elevated M1 SPAST levels 

Considering the different results obtained in the phenotypic assays with glutamatergic or 

GABAergic neurons, we set out to compare the populations further to find an explanation. The 

cDNA of different differentiations of two control lines and all three patient lines were used to 

analyze differences in expression levels of SPAST between glutamatergic and GABAergic 

cultures on day 57 or day 37, respectively. As expected, control and patient GABAergic cultures 

express the GABA producing enzymes glutamate decarboxylase (GAD) 1 and GAD2, which were 

nearly absent in glutamatergic cultures, whereas the vesicular glutamate transporter vGLUT1 is 

only expressed in glutamatergic cultures (Figure 3.25A). Since the basis of SPG4 in our patients 

is a haploinsufficiency of spastin, the levels of M87 and M1 SPAST in the glutamatergic and 

GABAergic cultures were investigated. QPCR of the highly expressed M87 isoform confirmed the 

expected reduction of SPAST in glutamatergic and GABAergic patient cultures compared to 

control. Since the M87 SPAST isoform shares 100 % identity with the M1 isoform, when targeting 

M87 in qPCR, M1 is always detected as well. However, the M87 SPAST isoform is more abundant 

and therefore contributes the majority of the signal.  

 

Figure 3.25 Comparative qPCR analysis of cortical and GABAergic neurons 
QPCR of cortical glutamatergic cultures and GABAergic cultures was performed to identify differences in 
expression levels. (A) Control and SPG4 GABAergic cultures display higher levels of GABA synthesizing 
enzymes GAD1 and GAD2, whereas control and SPG4 glutamatergic cultures exhibit VGLUT1 expression. 
(B) The M 87 isoform of SPAST is significantly reduced in both glutamatergic and GABAergic SPG4 
neurons. Glutamatergic vs. GABAergic cultures however exhibit no difference. Expression of the longer M1 
SPAST isoform on the other hand is significantly increased in GABAergic SPG4 neurons compared to 
glutamatergic SPG4 neurons. Indeed, there is no difference in M1 SPAST expression between 
glutamatergic control neurons and GABAergic SPG4 neurons. 2way ANOVA, *: p < 0.05, **: p < 0.01, ****: 
p < 0.0001. Error bars show SEM of triplicates. 
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The M87+M1 SPAST levels in GABAergic cultures of both patient and control were slightly, but 

not significantly higher compared to glutamatergic cultures. Analysis of the membrane-bound M1 

isoform revealed drastically elevated SPAST levels in patient and control GABAergic cultures 

compared to glutamatergic cultures. Especially the SPAST M1 level is significantly increased in 

GABAergic compared to glutamatergic patient cultures; its expression level is in fact comparable 

to glutamatergic control cultures (Figure 3.25B). An elevated level of M1 SPAST in GABAergic 

patient cultures might explain the missing phenotype in GABAergic patient cultures and would 

point towards a central role of M1 spastin rather than M87 spastin in SPG4. 

3.8 Compound evaluation in cortical SPG4 neurons   

3.8.1 Read-through molecules fail to upregulate spastin levels 

The reduced spastin expression level in patient neurons seems to be crucial for the development 

of a disease phenotype in vivo and in vitro. To counteract phenotypes in cortical patient neurons, 

an upregulation of spastin in glutamatergic patient cultures should be beneficial. Since all three 

patients are carrying nonsense mutations in the SPAST gene, a read-through of the premature 

stop codon might be a promising strategy. 

The aminoglycoside Gentamycin is an antibiotic that mediates translational read-through by 

binding to the small ribosomal subunit. It induces a conformational change that leads to 

incorporation of a random amino-acid at the premature termination codon position (Malik et al. 

2010). PTC-124 acts through the same mechanism but is more specific (Welch et al. 2007). The 

usual working concentrations of Gentamycin are 1mg /ml (2.1mM), whereas 10µM PTC-124 are 

sufficient. In a disease model of retinitis pigmentosa, PTC-124 restored up to 20% of endogenous, 

full length RP2 protein (Schwarz et al. 2015). Amlexanox has been reported to induce the 

synthesis of full-length proteins by stabilizing mRNAs containing nonsense mutations (Gonzalez 

et al. 2012). Specifically for spastin, it has been reported that FGF and IGF influence its 

expression due to an unknown mechanism (Qiang et al. 2010; Korulu and Karabay 2011).  

To test the above-mentioned small molecules for their ability of spastin upregulation, neuronal 

cultures of two patients and two controls were treated daily for 7 days with either 1mg/ml 

Gentamycin, 10µM PTC-124, 10µM Amlexanox, 10µM PTC-124 and Amlexanox or 100ng/ml 

FGF2 and IGF1. Subsequently, proteins were harvested and analyzed via western blotting. 

However, no upregulation of spastin in drug treated patient cultures compared to untreated 

controls could be detected. 
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Figure 3.26 The effect of read-through molecules on spastin expression 
Evaluation of the effect of the read-through molecules Gentamycin, PTC-124, Amlexanox and the growth 
factors FGF and IGF on spastin level in SPG4 neurons carrying a nonsense mutation. (A) SPG4 neurons 
were treated daily for one week followed by western blot analysis of spastin isoform M87 and M87*. (B) 
Quantification of spastin levels shows no upregulated of spastin upon drug treatment. Error bars show SD. 

3.8.2 Automated analysis and selection of candidate compounds 

All three described phenotypic assays described show a good separation between control and 

patient populations, which makes them amenable for drug testing. The advantage of testing drugs 

on three disease specific early phenotypes is the possibility to exclude drugs which might have a 

random non-disease-related mechanism. Another strength of this iPSC disease model is the 

possibility to test drugs on cells of three different patients with different genetic backgrounds. The 

testing was performed on 96-well plates, making sure that the same conditions of all three patient 

and all three control lines were on the same plate, in order to reduce experimental variability. The 

plates were fixed and stained manually, followed by automated image acquisition with the INCell 

Analyzer 2200 and automated or semi-automated image analysis with the INCell Developer and 

the CellProfiler software. 

Promising substances were selected for drug testing based on literature inquiry, choosing 

substance classes that have been implicated in SPG4 or other neurodegenerative diseases 

(Table 3.2). The microtubule targeting drugs Vinblastine and Taxol have been successfully used 

to counteract axonal swellings, for instance in a mouse model of SPG4 and were thus chosen for 

this drug testing (Fassier et al. 2013). Taxol is a microtubule binding reagent used as a 

chemotherapeutic for cancer treatment. It stabilizes microtubules by binding to the incorporated 

β-tubulin subunits and therefore prevents depolymerization (Gornstein et al. 2014). While high 

concentrations of Taxol interfere with microtubule disassembly during cell division and lead to cell 

cycle arrest and cell death (Zhang et al. 2014), low doses of Taxol induce the formation of multiple 

axons in neurons (Witte et al. 2008). Like Taxol, Vinblastine is an anticancer drug inhibiting mitosis 

by binding to microtubules. But contrary to Taxol, Vinblastine inhibits the assembly of 

microtubules, leading to destabilization. Low concentrations of Vinblastine suppress microtubule 
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dynamics while high concentrations lead to a reduction in microtubule polymer mass (Jordan et 

al. 2004). 

In a disease model using patient olfactory mucosa cells, marginally slower moving peroxisomes 

could be rescued by Noscapine, a drug that acts similar to Vinblastine, but is able to cross the 

blood-brain barrier (Ye et al. 1998; Fan et al. 2014). 

Since we discovered a novel phenotype in patient neurons, i.e. the enlargement of growth cones 

and thus revealed a so far unknown dysregulation of actin in SPG4, we included actin modulating 

drugs in this drug test. Jasplakinolide is an actin modulating drug, that stabilizes F-actin by 

polymerization of actin filaments (Holzinger 2009). On the contrary, the actin destabilizing drugs 

Cytochalasin B and Latrunculin B inhibit actin polymerization mainly by blocking monomer 

addition at the fast-growing end of F-actin filaments (MacLean-Fletcher et al. 1980; Wakatsuki et 

al. 2001). In addition, Latrunculin B has been reported to promote neurite elongation (Bradke et 

al. 1999). 

Spastin is an inhibitor of BMP signaling, therefore a BMP inhibitor might rescue the lack of BMP 

inhibition and the associated phenotypes caused by reduction of spastin. We decided to test the 

small molecule BMP inhibitor Dorsomorphine and its highly selective, small molecule analogue 

DMH1 (Hao et al. 2010; Neely et al. 2012). 

Lipid homeostasis and insufficient lipid droplet formation have been implicated in the disease 

formation of SPG4 (Papadopoulos et al. 2015). The Liver X Receptor (LXR) agonist GW3965 

induces and expands lipid droplets and is able to cross the blood-brain barrier and was therefore 

chosen for this testing (Donkin et al. 2010; Lei et al. 2013). Furthermore, GW3965 showed 

neuroprotective properties in ischemia models (Cui et al. 2013), where it improved functional 

outcome by increasing synaptic protein expression and axonal density, possibly by blockade of 

nuclear factor-kappaB activation and the subsequent suppression of Cyclooxygenase-2 (COX-2) 

in the post-ischemic brain (Cheng et al. 2010). Moreover, GW3965 improved memory and 

reduced β-Amyloid levels in mouse models of Alzheimer’s disease (AD) and improved cognitive 

recovery and suppressed axonal damage after traumatic brain injury by upregulation of 

Apolipoprotein E (ApoE) and ATP-binding cassette transporter (ABCA1) (Donkin et al. 2010; 

Namjoshi et al. 2013). In addition, LXRs regulate cholesterol metabolism and transport, 

lipogenesis and protect from cholesterol overload (Prüfer et al. 2007). 

Another common theme in HSP besides lipid metabolism are mitochondria. TRO19622, also 

known as Olesoxime, has a cholesterol-like structure and acts as inhibitor of the mitochondrial 

permeability pore (mPTP) preventing a response to oxidative stress (Bordet et al. 2010). It has 

been proven to be neuroprotective in several disease models and is currently tested in phase III 

clinical trials for the treatment of spinal muscular atrophy, a disease affecting the spinal motor 

neurons and amyotrophic lateral sclerosis (ALS), a disorder disturbing both the upper and lower 
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motor neurons, which is somewhat similar but more severe than HSP (Martin et al. 2010; Zanetta 

et al. 2014). 

The histone deacetylase inhibitor Scriptaid has neuroprotective properties and has been proven 

to be beneficial in models of ALS and models of the most common neurodegenerative diseases: 

Parkinson disease and Alzheimer's disease (Corcoran, Mitchison, and Liu 2004; Traynor et al. 

2006). Furthermore Scriptaid provides protection of motor and cognitive functions in a mouse 

model of traumatic brain injury (Wang et al. 2013). 

Substance class Mode of action Name  Concentrations 

Microtubule 

modulation 

Microtubule stabilization Taxol 3nM 

Microtubule destabilization Vinblastine 10nM 

Microtubule destabilization Noscapine 10µM 

Actin modulation Actin stabilization Jasplakinolide 1nM, 3nM, 10nM 

Actin destabilization Cytochalasin B 1nM, 3nM, 10nM 

Actin destabilization Latrunculin B 1nM, 3nM, 10nM 

BMP signaling BMP inhibition DMH1 1µM 

BMP inhibition Dorsomorphin 1µM 

Lipid homeostasis  Liver X receptor agonist GW3965 5µM, 10µM 

Mitochondria Mitochondrial pore inhibitor TRO19622  3µM, 10µM 

Histone modification Histone deacetylase 

inhibition 

Scriptaid 1µM 

Table 3.2 Overview of tested small molecules 

3.8.3 Modulation of neurite outgrowth and growth cone area with small molecules 

The effect of the selected drugs on neurite outgrowth and growth cone area was tested 

simultaneously on 96-well plates. Neuronal cultures of three patients and three controls were 

dissociated on day 57 and seeded in single cell density on 96-well plates, preloaded with the 

drugs of interest, obtaining duplicates of each condition (Figure 3.27). Each plate was fixed and 

stained against TUBB3, actin and DAPI after 24 hours.  

 

Figure 3.27 Timeline for drug treatment in the neurite outgrowth and growth cone assay 
Cortical neurons were dissociated and singularized on d57 and seeded on 96-well plates preloaded with 
drugs. After 24 hours, plates were fixed and stained against TUBB3, actin and DAPI. 
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In this drug test, the neurite length was quantified automatically employing the INCell Developer 

software. The mean neurite length of all control samples (n=10) was used as positive control, 

whereas the mean neurite length of all patient samples (n=14) was used as negative control. The 

reference neurite lengths of untreated neurons in numbers were 63.9µm and 36µm, respectively.  

The actin destabilizing drug Latrunculin B led to a significant increase in patient neurite length, 

which reached a length of 48.9µm after treatment with 1nM, 50.6µm after treatment with 3nM and 

50.2µm after treatment with 10nM Latrunculin B. 5µM of the LXR agonist GW3965 also caused a 

significant increase in patient neurite length, it reached 50.01µm. The drugs Taxol, low doses of 

Jasplakinolide, low doses of Cytochalasin B, 1µM DMH1, 1µM Dorsomorphin, 10µM GW3965 

and 3µM TRO19622 had no significant effect on the neurite length of either patient or control 

neurons. However, 10nM Vinblastine, 10nM Jasplakinolide, 10nM Cytochalasin B and 1µM 

Scriptaid led to decrease of neurite length in controls and are thus unsuitable due to neurotoxicity 

(Figure 3.28). 

 

Figure 3.28 Neurite outgrowth modulation in SPG4 neurons 
Neurite length of control (control1, control2, control3) and SPG4 (HSP22f, HSP23m, HSP24m) neurons 
and the effects of drug treatments after 24 hours were quantified using the INCell Developer software. 
Drugs that significantly increase neurite length of SGP4 neurons were underlined. Neurotoxicity can be 
identified by a decrease of neurite length in control neurons. 2way ANOVA, *: p < 0.05, **: p < 0.01, ****: p 
< 0.0001. Error bars show SD. Control: n=10, HSP: n=14. 
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For the analysis of the growth cone areas after drug treatment, a semi-automated approach was 

chosen in order to yield high accuracy and an unbiased analysis. With the CellProfiler software, 

randomly acquired actin images were converted to binary images followed by automated area 

quantification of the signal. Due to some residual actin-positive astrocytes and staining artifacts, 

which had to be excluded from analysis, the data of growth cone areas was picked out of the total 

pool of quantifications manually. For this purpose, merged images of TUBB3, DAPI, actin and the 

automatically generated quantification data were generated.  

The obtained quantification data showed a good separation between populations in all 

experiments. However, the overall growth cone area differed between experiments. Thus, the 

growth cone area was normalized to the mean of the untreated controls to determine the relative 

differences between SPG4-, control- and drug-treated-growth cones. 

As a result of analysis and normalization, the relative mean of the growth cone area in controls 

representing the positive control was 1, whereas the relative mean of the growth cone area in 

patients, the negative control and reference was 2.76.  

Several of the tested drugs achieved a significant reduction of patient growth cone areas. 3nM 

Taxol reduced the relative patient growth cone area to 2.04, 1nM Jasplakinolide to 1,78, 3nM 

Jasplakinolide to 0.87, 3nM Latrunculin B to 2.03, 1µM DMH1 to 1.89, 1µM Dorsomorphin to 1.9, 

5µM GW3965 to 1.83, 3µM TRO19622 to 1.98, and 1µM Scriptaid to 1.65. The strongest 

reduction of patient growth cone area could be observed after treatment with 3nM Jasplakinolide. 

However, it also caused a disorganization of actin in control neurons, which developed actin 

positive spots in the cell body (Figure 3.30). The higher concentration of 10nM Jasplakinolide 

completely diminished all growth cones in control and patient neurons. Vinblastine had no 

significant effect on the growth cone area of neither patient nor control neurons. On the contrary, 

10nM Cytochalasin B led to a significant increase in growth cone area of control neurons, which 

could also be observed as a trend in lower concentrations of Cytochalasin B and Taxol (Figure 

3.29).  
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Figure 3.29 Growth cone area modulation in SPG4 neurons 
Growth cone area in control (control1, control2, control3) and HSP (HSP22f, HSP23m, HSP24m) neurons 
and the effects of drug treatments after 24 hours. Drugs that significantly reduce growth cone area of SGP4 
neurons were underlined. 2way ANOVA, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Error bars 
show SD. Control: n=10, HSP: n=14. 

 

Summarizing the results of the drug testing on neurite outgrowth assay and the growth cone 

assay, only two drugs achieved a phenotype improvement in both assays. 3M Latrunculin B and 

5µM GW3965 were both able to induce an increase of neurite length and a reduction of growth 

cone area in patient neurons, while maintaining normal neuronal morphology in patient and 

control neurons. (Figure 3.30). 
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Figure 3.30 Examples for successful neurite outgrowth and growth cone area modulation 
Representative immunofluorescence images of TUBB3 (green), actin (red) and DAPI (blue) stainings of 
cortical control and SPG4 neurons after the drug testing on day 58. Scale bar: 50µm. Insets show 
magnifications of typical neurites and growth cones. Scale bar: 10 µm. 
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3.8.4 Modulation of axonal swellings using small molecules  

For the axonal swelling assay, TAU1 was induced on day 44 with 3nM Taxol, leaving the swellings 

six days to form, before fixation on day 50. For the drug testing the timeline was kept and the drug 

treatment was applied daily from day 45 to day 50 (Figure 3.31). Only Vinblastine and Noscapine 

were applied for 24 hours from day 49 to day 50, according to published reports (Denton et al. 

2014). 

 

Figure 3.31 Timeline for drug treatment in the axonal swelling assay 

On day 50 cortical cultures were fixed and stained for the axonal marker TAU1 and the dendritic 

marker MAP2. TAU1 positive axonal swellings were counted manually, whereas the total length 

of TAU1 positive filament which was used for normalization, was quantified automatically using 

the INCell Developer software.  

The mean number of swellings per mm TAU1 positive axon of all control samples (n=9) was used 

as positive control and the mean number of swellings per mm TAU1 positive axon of all patient 

samples (n=14) was used as negative control. The swelling numbers of untreated neurons control 

and patient neurons used as reference were 0.066/mm axon and 1.127/mm axon, respectively.  

All tested drugs led to a significant reduction of axonal swellings in SPG4 cultures. However, 

some led to an only moderate reduction of axonal swelling frequency: 1µM Dorsomorphin reduced 

swellings to 0.451/mm, 3µM TRO19622 to 0.438 /mm and 1µM Scriptaid to 0.708/mm. Other 

drugs almost completely eliminated axonal swellings: 1µM DMH1 reduced the frequency of 

axonal swellings in SPG4 neurons to 0.16 /mm, 5µM GW3965 to 0.105/mm and 10µM TRO19622 

to 0.202/mm. Noscapine and Vinblastine treatment for 24 hours decreased axonal swellings in 

SPG4 neurons moderately to 0.407/mm and 0.45/mm, respectively (Figure 3.32). However, 

treatment with Vinblastine for 5 days showed neurotoxic effects and diminished, along with the 

axonal swellings, nearly all neuronal structures.  
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Figure 3.32 Overview of axonal swelling modulation in SPG4 neurons  
Axonal swellings in control (control1, control2, control3) and SPG4 (HSP22f, HSP23m, HSP24m) neurons 
and the effects of drug treatments after five days or 24 hours, respectively. All tested drugs reduced axonal 
swellings significantly in SPG4 neurons. However, the drugs with the best effect, combined with normal 
neuronal morphology are underlined. 2way ANOVA, ***: p < 0.001, ****: p < 0.0001. Error bars show SD. 

Hence, the most effective reduction, accompanied by normal neuronal morphology was achieved 

by 1µM DMH1 and 5µM GW3965 treatment (Figure 3.33). 
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Figure 3.33 Examples of axonal swelling modulation in SPG4 neurons 
Representative immunofluorescence images of TAU1 (red), MAP2 (green) and DAPI (blue) stainings of 
cortical control and SPG4 neurons after the drug testing on day 50. White arrows mark axonal swellings. 
Scale bar: 50µm. 

In summary, the LXR agonist GW3965 was able to rescue all three phenotypes of SPG4 neurons. 

It induced an increase of neurite outgrowth, a decrease of growth cone area and a reduction of 

axonal swellings. Importantly, GW3965 had no effect on control neurons, but acted specifically 

on pathophenotypes (Table 3.3). 
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Tested small 

molecule 

Concentration

s 

Neurite 

outgrowth 

Growth cone 

area 

Axonal 

swellings 

Taxol 3nM 0.9952 0.0138 n.d. 

Vinblastine 10nM 0.9953 0.3379 <0.0001 

Noscapine 10µM n.d. n.d. <0.0001 

Jasplakinolide 1nM 0.4392 0.0002 n.d. 

 3nM 0.2471 <0.0001 n.d. 

 10nM 0.3052 n.d. n.d. 

Cytochalasin B 1nM 0.4641 0.9993 n.d. 

 3nM 0.9611 0.9996 n.d. 

 10nM 0.7768 0.5652 n.d. 

Latrunculin B 1nM 0.0080 0.0991 n.d. 

 3nM 0.0010 0.0122 n.d. 

 10nM 0.0017 0.0877 n.d. 

DMH1 1µM 0.0964 0.0013 <0.0001 

Dorsomorphin 1µM 0.0933 0.0016 <0.0001 

GW3965 5µM 0.0038 0.0005 <0.0001 

 10µM 0.9997 n.d. n.d. 

TRO19622  3µM 0.9989 0.0440 <0.0001 

 10µM n.d. n.d. <0.0001 

Scriptaid 1µM 0.9209 <0.0001 0.0005 

Table 3.3 Overview of tested small molecules and p-values obtained for SPG4 neurons 
Shown p-values for treated SPG4 neurons against untreated SPG4 neurons were obtained with Dunnett's 
multiple comparisons test after ANOVA. Positive effects were shaded green, effects on the control neurons 
were shaded in red. Data points that were not determined (n.d.) were labeled with: n.d. 

3.8.5 Cryopreservation of the SPG4 neurite phenotype 

For high-throughput drug screening, a large batch of readily available neurons would be most 

feasible. This was achieved by investigating whether the neurons are amenable for freezing and 

can be used for to the neurite outgrowth assay after cryopreservation. Control and SPG4 neurons 

were dissociated on day 57 in analogue to the described neurite outgrowth assay and frozen 

down as single cells in a specially developed neuronal freezing medium containing Trehalose in 

addition to DMSO. Trehalose is a natural disaccharide that prevents protein denaturation and 

crystallization (Traynor et al. 2006). After a few days of storage at -150°C, the frozen neurons 

were thawed and cultured for 24 hours before fixation and TUBB3 staining. The separation after 

thawing needs to be further optimized to prevent cell clumps, but in concurrence with previous 

experiments, automated analysis revealed significantly reduced neurite outgrowth in SPG4 

neurons. The mean neurite length of control neurons was 61.3µm, whereas the mean neurite 

length of patient neurons was only 32.7µm (Figure 3.34).  
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Figure 3.34 Neurite outgrowth assay using cryopreserved neurons 
(A) Cortical cultures were singularized and frozen in neuronal freezing medium. (B) Cells were thawed, 
seeded at single cell density and grown for 24 hours. They were fixed and stained for TUBB3 after the next 
day. Scale bar: 100µm. (C) Neurite outgrowth was quantified based on at least ten images. Analysis was 
performed with the INCell Developer software. (D) Overall, HSP neurons exhibit 46% reduction in neurite 
length 24 hours after thawing compared to controls. Unpaired t-test, ****: p < 0.0001. Error bars show SD. 
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4 DISCUSSION 

SPG4 is the most common form of HSP however, the disease mechanism is still unknown and a 

treatment has not yet been developed. Furthermore, research is hampered by limited access to 

the affected cell type, cortical neurons. IPSCs provide the possibility of in vitro differentiation into 

all somatic cell types and have thus opened up new possibilities for disease modeling, especially 

of neuronal diseases, where human samples are hard to obtain. The aim of this thesis was the 

generation of an iPSC-based disease model for SPG4 to analyze disease specific phenotypes in 

vitro and to develop assays that provide a platform for drug discovery. To this end, a human iPSC-

based SPG4 model was developed and very early phenotypes, which emerged within a few days 

could be identified. Cortical SPG4 neurons exhibited reduced neurite outgrowth, enlarged growth 

cones and axonal swellings, a hallmark of the HSP pathology. All three fast phenotypic assays 

were transferred to an automated or semi-automated 96-well-setup and potentially therapeutic 

compounds counteracting SPG4-associated neuronal phenotypes were identified. 

4.1 Generation and quality control of iPSCs 

While generating an iPSC disease model, it is important to ensure the suitability of the generated 

iPSC lines. To this end, iPSC clones were extensively validated regarding their genomic integrity, 

pluripotency, differentiation potential and absence of virus transcript. 

The genome integrity is of utter importance, since additional mutations can be acquired during 

reprogramming or the reprogramming process can select for pre-existing mutations in the 

parental fibroblasts pool (Hussein et al. 2011; Abyzov et al. 2012). These newly acquired or pre-

existing somatic mutations might mask the initial disease-causing point mutation and thus need 

to be excluded to draw disease relevant conclusions. To detect these additional genomic 

aberrations, single nucleotide polymorphisms (SNP) analysis was performed. Every individual 

has unique SNPs within the genome, which can be analyzed with microarray chips. On the basis 

of missing or duplicated SNPs, copy number variations (CNVs) can be detected (Spits et al. 

2008). In contrast to classical karyotyping such as G-banding, SNP analysis has a much higher 

resolution and can detect duplications and deletions as small as 300kb in comparison to 10Mb in 

karyotyping (Bickmore 2001; Shaffer and Bejjani 2004). The disadvantage is that whole balanced 

chromosomal translocations cannot be identified. However, major aberrations lead most likely to 

changes in growth rate and morphology, which are closely monitored during cell culture. Thus, 

newly generated iPSC clones, which display abnormalities during cell culture are immediately 

discarded. For this project fourteen iPSC clones of patient HSP23m and HSP24m had to be 

analyzed to identify three lines with an intact genome. Thus over 70% of the picked iPSC clones 

carried additional mutations, which is more than expected. This was most likely due to pre-existing 

mutations already present in a subset of fibroblasts, since SNP analysis of HSP23m and HSP24m 
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fibroblasts already revealed partial duplications or deletions on several chromosomes. These 

somatic mosaics are fairly common within primary fibroblasts and can be accelerated by extensive 

culturing time in vitro (Abyzov et al. 2012; Rouhani et al. 2016), which applies to the fibroblasts 

used in this study. Primary fibroblast with a high passage number usually show signs of 

senescence and are more difficult to reprogram. Therefore, an efficient reprogramming method 

had to be employed. 

The fibroblasts of the first patient (HSP22f-1) were reprogrammed by the means of integrating 

FLAG-tagged retroviruses (Aasen et al. 2008). Integrating viruses like retro-viruses have a high 

reprogramming efficiency and the transgene expression was silenced within the first passages of 

the generated iPSC line. However, integration into the genome can lead to insertional 

mutagenesis and the silencing can be incomplete, leading to a defect in differentiation potential. 

These disadvantages can be overcome by the use of non-integrating Sendai viruses (Fusaki et 

al. 2009), which were used to reprogram fibroblasts of patients HSP23m and HSP24m.  

To exclude any remaining clone specific effects interfering with disease-associated phenotypes, 

two clones of every patient were used in this study. Unfortunately, although two clones of patient 

HSP23m passed the validation process, one of them showed no neurogenic potential but was 

only able to generate glial cells and thus could not be included in the study. This reduced 

differentiation potential was likely due to one or several small mutations below the resolution of 

SNP analysis or epigenetic changes.  

To confirm the identity of the patient iPSC lines after reprogramming, the mutated area of the 

SPAST gene was sequenced. All patient lines did indeed contain a point mutation, leading to a 

premature stop codon at position 577 of the SPAST gene. The three patients selected for this 

study are relatives and thus carry the same point mutation. Remarkably, on a clinical level they 

have disease onsets that vary between age 18, 32 and 40. This variation might either be caused 

by a different level of awareness of the patient and the physician or by other factors within the 

genome that might modulate the disease onset. Thus, it is of great interest to evaluate whether 

the severity of in vitro phenotypes differs between patient lines. 

Pluripotency of the iPSC lines was determined on immunofluorescence level by visualizing the 

enzyme alkaline phosphatase and staining with the antibodies TRA-1-60 and TRA-1-81 which 

detect two proteoglycans specifically present on human pluripotent stem cells. Whereas alkaline 

phosphatase is a rather unspecific marker, TRA-1-60 and TRA-1-80 identify fully reprogrammed 

iPSCs (Chan et al. 2009).  

Besides the expression of pluripotency markers, pluripotent stem cells have the potential to give 

rise to all three germ layers. Teratoma analysis, an assay in which cells differentiate in vivo after 

transplantation into the testis of immunocompromised mice, used to be the gold standard to 

determine the differentiation potential of human PSCs. However, the drawbacks are the need of 

test animals and the long differentiation time of ten weeks in vivo. The complementary in vitro 
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assay is the undirected differentiation of EBs for three weeks with subsequent 

immunofluorescence staining for germ layer markers. This method is faster but for feasibility 

reasons restricted to very few markers, giving a highly biased picture of the differentiation 

potential. To overcome these restrictions, the suitability of a novel pluripotency test, the Scorecard 

assay was evaluated using two iPSC lines that were already successfully validated with an in vivo 

teratoma analysis and an in vitro EB assay. Initially, iPSCs were subjected to undirected EB 

differentiation for two weeks followed by TaqMan analysis of several markers of the three germ 

layers. However, for the first clone the ectodermal- and for the second clone the mesodermal- 

and endodermal markers did not overcome the threshold, even though the clones were clearly 

able to generate all three germ layers in the classical teratoma and EB assays. Since each germ 

layer differentiates best under certain conditions, I established short directed differentiation 

protocols for each germ layer. After five days of directed differentiations, the iPSC lines showed 

a robust marker expression of all three germ layers in the Scorecard assay. Employing this fast 

assay to evaluate the differentiation potential and to explore the suitability of a certain line for 

directed in vitro differentiation, the other generated iPSC lines were validated. All tested lines 

showed an upregulation of all three germ layers upon differentiation. In the meantime a similar 

protocol has been published by the originators of the Scorecard assay (Tsankov et al. 2015). In 

addition, the scorecard panel contains primers to detect transcripts of Sendai origin. Sendai virus 

is a replication incompetent, non-integrating RNA virus, which is usually eliminated from iPSCs 

within a few passages, however persistence of Sendai virus transcripts has been reported (Ban 

et al. 2011). Thus, it is important to confirm the absence of virus transcripts after reprogramming. 

Since no Sendai signal could be detected in the Scorecard, the virus has been fully eliminated. 

Furthermore, the epigenetic silencing of the transgenes transduced with retroviruses was 

confirmed by qPCR against the endogenous and the total expression of the used reprogramming 

factors. We observed minor variability between the signal of total and endogenous primers which 

was already observed in the publication originally describing this method (Yu et al. 2007). 

However, the total expression level of the reprogramming factors was not elevated compared to 

endogenous levels, indicating absence of transgene expression.  

In conclusion, all selected iPSC lines met the quality control criteria, including an intact genome, 

expression of pluripotency markers, differentiation potential and absence of transgene expression 

and can be considered as high-quality iPSC lines. 

4.2 Derivation of highly enriched neuronal cultures with cortical identity 

In hereditary spastic paraplegia, upper motor neurons, which reside in the motor cortex, 

degenerate, leading to spastic motor deficits. In order to model SPG4 successfully, iPSCs had to 

be differentiated into a disease relevant cell type, i.e. cortical projection neurons. Since no 

protocol for the generation of upper motor neurons exists so far, a published protocol was adapted 
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to generate cortical neurons highly enriched for layers V and VI, the layers where cortical 

projection neurons are localized.  

The differentiation procedure into cortical neurons was based on a protocol published in 2012 

(Shi et al. 2012). Complete neural induction was achieved by dual SMAD inhibition using the small 

molecules SB431542 to inhibit the TGFβ pathway and Dorsomorphin to inhibit the BMP pathway 

(Chambers et al. 2009). At a later stage of this project, the BMP inhibitor Dorsomorphin was 

replaced with the more specific inhibitor LDN-193189 (Cuny et al. 2008), to ensure a complete 

neural induction across different cell lines and to avoid non-neural cells in the cultures.  

After neural induction, the precursors were kept under proliferative conditions by addition of FGF2. 

Cortical precursors were frozen down as one batch on day 31 in order to have a standardized 

starting point for final neuronal differentiation. To avoid continuing proliferation of cortical 

progenitors upon growth factor withdrawal and thus the generation of higher cortical layers, the 

FGF and Notch pathways - which drive proliferation of cortical progenitors (Lui et al. 2011; Rash 

et al. 2011) – were blocked using the inhibitory small molecules PD0325901 and DAPT, 

respectively (Borghese et al. 2010). To ensure cell identity and comparability between cell lines, 

the cultures were extensively validated and only used if a very high percentage of deep layer 

projection neurons (>80%) and only very few contaminating cells were present, which was almost 

always the case.  

Deep layer projection neurons reside in the layer V and VI of the cortex, are glutamatergic and 

usually express either the layer V marker CTIP2 or the layer VI marker TBR1. Most of the neurons 

generated here express both markers CTIP2 and TBR1, which is most likely due to the fact that 

the differentiation was forced at a time point were the development was on the verge between 

layer V and VI. Co-expression of both of those markers has also been observed during human 

development in vivo (Ip et al. 2011; Aevermann et al. 2017). In addition, both markers are typical 

for cortical deep layer projection neurons and the in vitro expression remains stable over a 

prolonged differentiation time of at least three months. The generated cells are very 

homogeneous and thus suitable for the single cell assay that were performed in this study. In 

addition to the expression of CTIP2 and TBR1, the neurons expressed the glutamatergic marker 

vGlut1, the forebrain marker FOXG1 and the projection neuron marker FEZF2. General neuronal 

identity itself is characterized by the typical neuronal morphology with a small cell body, multiple 

dendrites and one long axon and a positive staining against TUBB3. However, the most important 

quality of a mature neuron is the functionality, such as synaptic transmission and the ability to fire 

action potentials. Since the neurons were generated from pluripotent stem cells, they are 

comparable to embryonic to fetal stage neurons and thus are initially immature. To promote 

maturation, the generated deep layer projection neurons were co-cultured with astrocytes for 

three months (Johnson et al. 2007; Prè et al. 2014). Indeed, after this time span, the analyzed 

neurons were electrophysiological active and fired action potentials. However, for the anticipated 
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screening assays, a maturation time of three months in addition to two months differentiation is 

not feasible, especially since a re-plating after maturation, would lead to stress responses and 

massive cell death. The presence of the astrocytes layer would further complicate read-outs and 

introduce variability. Therefore, all following experiments were performed between days 50 and 

60, after confirmation of the cortical projection neuron cell fate. In conclusion, high-quality cortical 

cultures with at least 80% deep layer projection neurons were generated for disease modeling 

and drug screening purposes. 

4.3 Spastin loss of function in SPG4 neurons 

Due to the premature stop codon in the SPAST gene, cortical neurons of SPG4 patients have a 

lower expression level of the spastin protein. Since no truncated protein could be detected, 

haploinsufficiency is the most likely disease mechanism of the patients included in this study. 

Only very few SPAST mutations have been associated with a dominant negative mode of action 

(Pantakani et al. 2008; Solowska et al. 2010; Solowska et al. 2014). In this study, the SPAST 

reduction can already be seen on mRNA level indicating that the truncated mRNA is degraded 

via nonsense-mediated mRNA decay. Interestingly, patient HSP22f appears to have a slightly 

lower expression level of spastin, which correlates with an earlier age of onset. This might be a 

causative correlation or a coincidence caused by other modifying factors. 

Two major spastin isoforms exist, a shorter M87 isoform and a longer M1 isoform, which holds 

an additional N-terminal membrane domain. The M87 isoform is ubiquitously expressed and has 

the most abundant expression. This does not necessarily mean that this isoform is more 

important, since the enzyme functions as a hexamer, which could consist of various combinations 

of M87 and M1 isoforms. However, only the membrane domain of the M1 isoform can localize the 

hexamer to the ER membrane. Furthermore, expression of the M1 isoform is elevated within the 

corticospinal pathway of rats and has thus been reported to be the more disease relevant isoform 

(Solowska et al. 2008). Since the M87 isoform is more abundantly expressed, the M1 isoform 

might be the limiting factor, which is not easily compensated. Overall, the level of spastin protein 

seems to be most critical for the development of disease phenotypes. For this study, patients with 

nonsense mutations were chosen, providing the opportunity to test a possible read-through of the 

premature stop codon in the SPAST gene. However, a seven-day treatment with read-through 

inducing molecules did not lead to an up regulation of spastin. For this assay five different 

conditions were tested and evaluated on protein level. Although this readout is informative, it is 

also very time-consuming and laborious and thus not suitable to test a larger number of conditions 

or small molecules.  
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4.4 Identification of early, rapid phenotypes in SPG4 neurons 

SPG4 patient iPSC-derived neurons were analyzed via immunocytochemical stainings and three 

very early phenotypes could be identified. Within two weeks, SPG4 neurons exhibited a neurite 

outgrowth deficit, enlarged growth cones and axonal swellings. 

In this study, SPG4 neurite outgrowth was reduced by 51% after 24 hours. In a previously 

published iPSC disease model, a decrease in neurite length of 40% could only be detected after 

6 weeks in culture (Havlicek et al. 2014). The observation of such a strong phenotype after just 

24 hours at this early stage in development is quite unexpected, since it takes decades until HSP 

patients develop clinical symptoms. However, the emergence of early phenotypes might be 

explained by the fact that the neurons were cultured in a reduced environment lacking the 

endogenous niche, which is composed of different cell types such as astroglia, which provide 

trophic support and nutrients to the neurons. This lack of support and the comparably high oxygen 

level might render the neurons stressed during in vitro cultivation. Thus, phenotypes like the 

neurite outgrowth deficit that might never develop in vivo can emerge in vitro due to the absence 

of compensating factors and supporting cells. The neurite outgrowth deficit itself can be explained 

by overly stabilized microtubule, due to spastin haploinsufficiency. However spastin also plays a 

role in lipid metabolism and BPM inhibition and both of these mechanisms are very important for 

neurite outgrowth (Ko et al. 2005; Bond et al. 2012; Hegarty et al. 2014).  

The enlarged growth cone phenotype described here has so far not been reported in any other 

disease model of HSP. And there might even be a connection between the neurite outgrowth 

deficit and the enlarged growth cones. Overly stabilized growth cones might inhibit microtubule 

protrusion leading to shorter neurites or vice versa, overly stabilized microtubule might not be 

able to push the growth cones forward, which, in consequence, grow larger. 

The neurite outgrowth deficit and enlarged growth cones identified here for the first time in vitro, 

have so far not been described in vivo. However, they might also be present in patients without 

generating a noticeable phenotype or might be compensated by other cell types in the more 

supportive in vivo environment. An in vitro neurite outgrowth deficit is often found in 

neurodegenerative iPSC disease models and it might be a phenotype linked to many 

neurodegenerative diseases (Ozeki et al. 2003; Sánchez-Danés et al. 2012; Reinhardt et al. 

2013a).  

Axonal swellings on the other hand are also found in HSP patients post mortem (Kasher et al. 

2009). To analyze axonal swellings in iPSC-derived HSP neurons in vitro, axons had to be 

specifically visualized. For this, TAU1, an antibody detecting only axonal TAU, was used, as it is 

more specific than the commonly used acetylated tubulin, which is found in all stabilized neurites. 

To induce axonal TAU1 expression early on, low doses of Taxol were used, which stabilizes β-

tubulin and thus accelerates axon formation (Amos and Löwe 1999; Witte et al. 2008). In the 
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SPG4 disease model presented here, axonal swellings, an authentic HSP phenotype can be seen 

after five days in vitro. In two other previously published iPSC disease models, swellings could 

also be detected, however only acetylated tubulin positive swellings, which emerged at a late time 

point after several weeks in culture (Denton et al. 2014; Havlicek et al. 2014). The emergence of 

axonal swellings is most likely due to the missing microtubule severing caused by spastin 

haploinsufficiency, which might lead to an abundance of disorganized microtubule. These 

disorganized microtubule in swellings were previously demonstrated using electron microscopy 

(Havlicek et al. 2014). 

Interestingly, the data presented here shows that the neurons from patient HSP22f exhibited 

slightly less swellings compared to neurons from other patients, even though this patient has the 

earliest age of onset. This in vitro finding might be explained by higher culture densities in the 

swelling assay, which were caused by an increased proliferation rate of HSP22f neuronal 

progenitors. Another explanation could be the contribution of other cell types present in vivo, 

which might contribute to a more severe phenotype in the patient. 

The combination of all three phenotypes builds a strong disease model suitable for the 

identification of therapeutic substances. The in vitro phenotypes observed here aim at several 

possible disease mechanisms, i.e. stabilized and disorganized microtubule, an overly stabilized 

actin skeleton, lack of BMP inhibition or a lipid imbalance due to dysregulation at the smooth ER. 

4.5 Subtype specificity of described phenotypes 

The protein spastin is ubiquitously expressed, but the patient phenotype is caused by 

degeneration of a very distinct set of neurons, i.e. cortical deep layer projection neurons. This 

points towards a subtype specificity regarding phenotype development in neurons. To test 

whether this is also the case in vitro and whether the neurotransmitter subtype has an influence, 

we generated a distinctly different but related neuronal population to analyze disease related 

phenotypes. Inhibitory forebrain neurons were generated by slightly alternating the differentiation 

protocol, in particularly by shortening the proliferation phase. These GABAergic neurons 

expressed the forebrain marker FOXG1 and the marker CTIP2 but not the layer VI marker TBR1 

and were electrophysiological active after three months of maturation on astrocytes. The 

combination of CTIP2, FOXG1 and GABA expression in vivo is found in interneurons of the cortex 

and the striatum, which is adjacent to the cortex during development (Arlotta et al. 2008; Ma et 

al. 2013). The expression of other striatal markers like DLX1 and DLX2 points towards a striatal 

localization of these GABAergic forebrain neurons. This neuronal population is distinctly different 

due to GABAergic neurotransmitter expression, but has an overlapping marker profile, which is 

optimal to proof cell-type specificity of the observed phenotypes. Thus, this population is a useful 

tool to investigate whether cortical deep layer projection neurons are the only cell type affected 

by the lack of spastin or if this population is just most severely affected.  
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Since the GABAergic neurons were post-mitotic weeks before the glutamatergic neurons during 

differentiation, GABAergic neurons on day 37 were comparable in age to glutamatergic neurons 

on day 57. Interestingly, GABAergic patient neurons did not show shorter neurites, enlarged 

growth cones or swellings in the established assays. Thus, the observed phenotypes are specific 

to glutamatergic cortical neurons, which is in line with a predominant degeneration of corticospinal 

neurons in SPG4 patients. 

One hypothesis of SPG4 disease development is that only the longest axons are affected, e.g. 

corticospinal neurons. In our neurite assay, the neurite length of control glutamatergic and 

GABAergic neurons after 24 hours was comparable. The GABAergic SPG4 neurites were able to 

grow more than 60µm within 24 hours, whereas the glutamatergic SPG4 neurons only achieved 

30µm compared to 60µm in controls. GABAergic neurites of one patient grew even significantly 

longer compared to one control. And GABAergic SPG4 neurites were even longer than 

glutamatergic control neurites. 

In GABAergic neurons, the growth cone area did not differ between SPG4 and control growth 

cones. The area of GABAergic growth cones was intermediate between the area of control and 

patient glutamatergic growth cones. Thus, the importance of axon length alone does not explain 

the reduced outgrowth.  

Surprisingly, Taxol treatment of GABAergic cultures was not able to induce TAU1 positive axons. 

Interestingly, so far axon induction with Taxol has only been reported for glutamatergic neurons 

of either cortical or hippocampal origin (Witte, Neukirchen, and Bradke 2008). This indicates 

fundamental differences in TAU sorting and axon generation between glutamatergic and 

GABAergic neurons. Since the quantification of swellings in TAU1 positive axons of GABAergic 

neurons was not possible at a time point where glutamatergic neurons were analyzed, alternative 

markers for stabilized neurites were used to quantify swellings, such as TAU and acetylated 

microtubule. In these structures there was no difference between patient and control cultures in 

the overall swelling frequency. Comparing glutamatergic and GABAergic control cultures, the 

amount of TAU-positive swellings in control neurites was with 0.2/mm much higher in GABAergic 

neurons in contrast to glutamatergic control neurons, which had a swelling frequency of 0.07/mm 

TAU1-positive axon. 

One explanation of the selectivity of the observed phenotypes to glutamatergic cortical neurons, 

might be the total level of SPAST expression in these neuronal subtypes. We found increased 

levels of M1 SPAST in GABAergic SPG4 cultures, comparable to levels found in glutamatergic 

control cultures. This dosage phenomenon might explain the absence of a phenotype in 

GABAergic patient cultures and points toward a critical role of M1 spastin in SPG4 pathology. 



DISCUSSION 

85 
 

4.6 Assay automation for compound screening 

With this SPG4 iPSC disease model at hand, it is now possible to test compounds on authentic 

patient neurons. To establish a successful high-throughput screening, fast, reliable phenotypes, 

with a good separation between control and patient population, a small experimental variability 

and a fast, automated analysis are needed. Multiparametric assays, with more than one 

phenotype, are especially useful to elucidate complex diseases where multiple pathways could 

be involved. These multiparametric assays increase the chance of discovering disease relevant 

molecules. 

The three very early phenotypes presented here, are a good start and could represent the basis 

of an even larger multiparametric screening platform. Due to the single cell density of the cultures 

during the neurite outgrowth and growth cone assay, these assays were especially amenable to 

automation. Immunocytochemical stainings can be performed on multiwell plates followed by 

(semi-) automated image acquisition and analysis. Furthermore, due to the short timeframe of 

just twenty-four hours a large number of molecules can be tested within a short amount of time. 

Even though the swellings themselves could not be analyzed automatically, the overall axon 

length, which was used for normalization was detected automatically.  

Before switching the neurite outgrowth assay and the growth cone assay to an automated setup, 

both assays displayed little experimental variability and good separation between populations, 

which calculated to a z-factors above 0.5, qualifying them for high-throughput screening. During 

the screening process however, the assays showed a relatively high experimental variability, 

which led to a z-factor below 0.5. This is probably due to manual handling of 96-well plates and 

should be avoidable with a robotic handling system. Nevertheless, the assays showed a good 

separation between populations and were therefore suitable for screening of selected small 

molecules.  

4.7 Identification of hit compounds rescuing SPG4 pathophenotypes 

Different cellular mechanisms have been proposed to be associated with HSP pathology. Thus, 

small molecules were tested that modulate potentially HSP-associated disease pathways or that 

have been shown to act against neurodegeneration in general.  

Within the substance class of microtubule modulation, Taxol was chosen as prominent 

microtubule stabilizer and Vinblastine and Noscapine as microtubule destabilizers, since they 

have been shown to counteract HSP phenotypes such as swellings and reduced peroxisome 

velocity (Denton et al. 2014; Fan et al. 2014). Taxol was only tested in the neurite assay and the 

growth cone assay and not tested as treatment against axonal swellings, since it was used for 

induction of TAU1 and therefore enabled the formation of swellings. Taxol did lead to a significant 

reduction of growth cone area in SPG4 neurons but had no significant effect on neurite outgrowth. 



86 
 

Vinblastine in comparison, significantly reduced axonal swellings, but had a toxic effect on control 

neurites in the neurite outgrowth assay.  

For actin modulation, Jasplakinolide acts as a stabilizer, whereas Cytochalasin B and Latrunculin 

B destabilize actin. Furthermore Latrunculin B has been reported to increase neurite outgrowth in 

mouse neurons (Bradke et al.  1999). Jasplakinolide reduced the growth cone area of SPG4 

neurons, but did not have an effect on neurite outgrowth, whereas Latrunculin B had a positive 

effect on both, neurite outgrowth and growth cone area. This leaves Latrunculin B as a promising 

drug candidate, which should be tested further in the axonal swelling assay. 

Data obtained in HeLa cells suggested that spastin acts as BMP inhibitor, however this finding 

has not yet been confirmed. Nevertheless, treatment with the BMP inhibitors DMH1 and 

Dorsomorphin led to a decrease in growth cone area and a reduction of axonal swellings in SPG4 

neurons but were not able to rescue the neurite outgrowth phenotype. It would be interesting to 

follow up on role of spastin as a BMP inhibitor in human neurons, even though, the disease 

manifestation is probably not caused by missing BMP inhibition alone. 

The small molecule GW3965, the only molecule tested that rescued all three phenotypes, is a 

liver X receptor (LXR) agonist and regulates lipid homeostasis. Two LXR receptors are known, 

LXR-alpha and LXR-beta, of which LXR-alpha is restricted to tissues rich in lipid metabolism, like 

the liver (Lu et al. 2001; Collins et al. 2002), whereas LXR-beta is expressed ubiquitary and thus 

also in the brain. GW3965 is especially suitable as drug candidate, since it has a higher affinity 

to the ubiquitously LXR-beta compared to the LXR-alpha. The function of LXRs includes the 

regulation of reverse cholesterol transport, which leads to a raise in HDL cholesterol levels. 

However, LXR agonists can also cause increased hepatic triglyceride synthesis, 

hypertriglyceridemia, and hepatic steatosis in by the stimulation of lipogenesis the liver. Due to 

its selectivity of the LXR-beta however, GW3965 is a very weak LXR activator in human hepatoma 

and only induces minor lipogenesis (Miao et al. 2004). In cells, activation of LXR leads to 

upregulation of pathways involved in cholesterol synthesis, and to an even higher extend to 

cholesterol efflux out of the cells (Hong et al. 2014). Thus, LXR activation might be required to 

drain excess sterols and lipids from the central nervous system to prevent an overload. 

The identification of GW3965 as small molecule, that rescues all three phenotypes, may point 

towards a central role of cholesterol metabolism in SPG4. This is remarkable, since 

Hydroxycholesterol-27 accumulates in SPG5, a related disease, which is a phenocopy of SPG4, 

and causes neurotoxicity of corticospinal neurons. The accumulation of Hydroxycholesterol-27 in 

SPG5 is caused by mutations in CYP7B1 and is predominantly found in the cerebrospinal fluid 

(Schüle et al. 2010). Hydroxycholesterol-27 itself, is a weak LXR agonist and only its derivate, 

24-Hydroxycholesterol can be transported over the blood brain barrier for clearing (Wójcicka et 

al. 2007). Within the brain, the spinal cord seems to be a specialized compartment regarding 

cholesterol homeostasis. Only in the spinal cord, a different cholesterol excretion pathways 
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besides 24-Hydroxycholesterol plays a role, which functions through the ABC binding cassettes 

G5 and G8, located at various cellular membranes (Yu et al. 2003). Possibly, spastin’s roles in 

lipid droplet formation and endosomal transport interfere with an efficient cholesterol regulation in 

the spinal cord, based on this pathway.  

Several lines of evidence suggest an important role for cholesterol homeostasis in the cortex and 

the spinal cord. First of all, it has been reported that the spinal cord exhibits a higher cholesterol 

concentration compared to residual CNS. Secondly, mice with inactivated LXR-beta exhibit lipid 

accumulation in the spinal cord accompanied by motor neuron degeneration, mimicking ALS 

(Andersson et al. 2005). Moreover, it has been shown, that cortical neurons have less cholesterol 

and also tolerate only low levels of cholesterol fluctuation. Higher or lower cholesterol levels lead 

to decreased neurite outgrowth in mouse cortical neurons. This effect is specific to cortical 

neurons and was not found to be true for hippocampal neurons (Ko et al. 2005). Furthermore, 

growth cones also represent a specialized compartment and are sensitive to cholesterol 

concentrations, they contain less cholesterol than the normal plasma membrane (Sbaschnig-

Agler et al. 1988). Mechanistically, in SPG4 patients, accumulation of cholesterol derivatives in 

the spinal cord could damage the axons of the particularly sensitive corticospinal neurons, leading 

to retrograde degeneration.  

4.8 Outlook 

During this thesis, a very promising drug candidate for the treatment of SPG4 has been identified. 

The liver X receptor agonist GW3965 represents a suitable lead substance for further drug testing 

and can be used as basis for a more detailed evaluation of the molecular mechanism of SPG4.  

To be certain of the specificity of GW3965, different other LXR agonists should be tested. The 

LXR agonist BMS-779788 would be a good candidate, since it has already completed a phase I 

clinical trial for safety evaluation for the treatment of atherosclerosis (Hong and Tontonoz 2014). 

To exclude another mode of action of GW3965 besides LXR activation, the effect of a LXR 

antagonist, e.g. Geranylgeranylpyrophosphate (GGPP) on neurite outgrowth, growth cone area, 

axonal swellings of healthy control neurons could be investigated (Wójcicka et al. 2007). In case 

of specificity of the inhibitors, a mimic of SPG4 phenotypes in control neurons would be expected. 

One possibility of an alternative mode of actin for GW3965, besides lipid homeostasis and 

cholesterol metabolism, is an upregulation of spastin upon GW3965 treatment, which is worth 

investigating. However, a mechanism involving upregulation of cholesterol synthesis and efflux 

acting on SPG4 disease formation is more probable. To illuminate the connection between spastin 

haploinsufficiency, lipid homeostasis and cholesterol metabolism, lipidomics analysis in neuronal 

control and patient cultures with and without GW3965 treatment should be performed. 

Furthermore, additional cellular mechanisms, like endosomal trafficking in which spastin is 

involved should be evaluated. Especially, since vesicle trafficking might be a common pathway 

connecting motor neuron diseases like ALS, SMA and HSP (Ikenaka et al. 2012). ALS2 is caused 
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by mutations in the protein alsin, which controls endosomal dynamics (Otomo et al. 2003), 

whereas mutations in the synaptobrevin-associated membrane protein B (VAPB), which plays a 

role in ER to Golgi trafficking lead to ALS8 or SMA (Nishimura et al. 2004). ALS17 however, is 

caused by mutations in CHMP2B, a component of the vesicular trafficking complex ESCRTIII, 

which also interacts with spastin (Reid et al. 2005; Parkinson et al. 2006; Cox et al. 2010). 

To further improve the screening assays, like the neurite assay, it would be beneficial to include 

more parameters. Quantification of the number of neurite branches is one option, since spastin is 

reported to have an impact on branching (Riano et al. 2009). An upscaling from 96-well to 384-

well format would further increase the throughput. Furthermore, to lower the experimental 

variability, a liquid handling system should be employed. To become completely independent of 

the neural differentiation timeline, freezing of neurons that are readily available for screening 

should be optimized to prevent clumping and enable single cell analysis. 

In this study, three unrelated, healthy controls and three patients were used for compound 

screening. This has the advantage of testing the effect of drugs on six different genetic 

backgrounds. However, constantly using 12 cell lines including two clones of each individual, is 

not compatible with a high-throughput approach. To advance the setup further, isogenic controls 

are needed. Due to new developments, these can be generated by using the clustered regularly 

interspaced short palindromic repeats (CRISPR)-Cas9 technology, which consists of two 

components, the guide RNA (gRNA) and the CRISPR-associated endonuclease Cas9. The gRNA 

guides the Cas9 endonuclease to a specific genomic target and enables a double strand break 

(Jinek et al. 2012). This technology can be used to efficiently knock-out genes in human 

pluripotent stem cells or to correct diseased cells via homologous recombination (Cong et al. 

2013; Mali et al. 2013). To avoid off-target effects, a Cas9 nickase can be used instead of a Cas9 

endonuclease (Ran et al. 2014). Generating knock-outs in control cell lines is easier than repairing 

a mutation, however, the influence of the genomic background on disease formation would be 

unpredictable. Thus, a repair of the disease mutation would be preferable, especially in this case, 

where the disease is caused by a point mutation, which can be more easily repaired than larger 

mutations. However, two or more isogenic pairs are optimal, to control for differences in the 

genetic background (Musunuru 2013). Due to time limitations, the generation of isogenic controls 

could not be realized in this thesis but should be performed to develop the screening further. 

Nevertheless, the SPG4 disease model and the fast phenotypic assays, proved to be applicable 

for drug screening and the identification of a lead substance.
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8 APPENDIX 

8.1 Abbreviations 

Abbreviation Full name 

AAA ATPase associated with various cellular activities 

ABCA1 ATP-binding cassette transporter 

AD Alzheimer’s disease 

AFP α-fetoprotein 

ALS amyotrophic lateral sclerosis 

ApoE apolipoprotein E 

AraC  Cytosine β-D-arabinofuranoside hydrochloride 

B4GALNT1 β-1,4-N-acetyl-galactosaminyl transferase 1 

BAF B allele frequency 

BAF B allele frequency 

BMP bone morphogenetic protein 

CHMP1B charged multi-vascular body protein 1B 

CNVs copy number variations 

COX-2 cyclooxygenase-2 

CRISPR clustered regularly interspaced short palindromic repeats 

CSMN corticospinal motor neurons 

CYP7B1 cytochrome P450-7B1 

DNA deoxyribonucleic acid 

E8 essential 8 

EBs embryoid bodies 

EGFR epidermal growth factor receptor 

EHS Engelbreth-Holm-Swarm 

EpiSCs epiblast derived stem cells 

ER endoplasmic reticulum 

ESCRT endosomal sorting complex required for transport 

ESCs embryonic stem cells 

FA2H fatty acid 2-hydroxylase 

FCS fetal call serum 

FGF fibroblast growth factor 

GAD glutamate decarboxylase 

GFR growth factor reduced 

GGPP geranylgeranylpyrophosphate 

gRNA guide RNA 

HSP hereditary spastic paraplegia 

HSP60 heat shock protein 60 

IPSC Induced pluripotent stem cell 

IST1 increased sodium tolerance 

Lif leukemia inhibitory factor 

LRR Log R ratio 

LXR liver X receptor 

MG Matrigel 

min minutes 

MIT microtubule interacting and trafficking 

mPTP mitochondrial permeability pore 

MTBD microtubule-binding domain 

NEAA Non-essential amino acids 

NMJ neuromuscular junction 

PBS phosphate buffered saline 

PLP1 proteolipid protein 1 

PSCs pluripotent stem cells 

QC quality control 

REEP1 receptor expression-enhancing protein 1 

RNA ribonucleic acid 

ROCK Rho-associated protein kinase 
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RT room temperature 

RTN1 reticulon 1 

s seconds 

Shh sonic hedgehog 

SMA smooth muscle actin 

SNP single nucleotide polymorphism 

SPG4 Spastic paraplegia 4 

TECPR2 tectonin beta propeller repeat containing protein 2 

TGF-β transforming growth factor beta 

TTX tetrodotoxin 

TUBB3 β-III-tubulin 

vGLUT1 vesicular glutamate transporter 1 

VAPB synaptobrevin-associated membrane protein B 

WASH Wiskott–Aldrich syndrome protein and scar homolog 
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