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Abbreviations 

AA Arachidonic acid 

2-AG 2-arachidonoyl glycerol 

AEA 

ANOVA 

Arachidonoyl ethanolamine (Anandamide) 

Analysis of variance 

ATP Adenosine triphosphate 

BCP Beta-caryophyllene 

BDNF Brain-derived neurotrophic factor 

bp Base pair 

BSA Bovine serum albumin 

CB1 

CB2 

Cannabinoid receptor 1 

Cannabinoid receptor 2 

CBD Cannabidiol 

CCL2 C-C motif chemokine ligand 2 

CCR2 C-C motif chemokine receptor 2  

CGRP Calcitonin-gene related peptide 

cm Centimeter 

CNS  Central nervous system 

contra Contralateral 

COX-2 Cyclooxygenase-2 

CX3CR1 Fractalkine receptor 

CYP Cytochrome P450 

DAG Diacylglycerol 

Daglα Diacylglycerol lipase α 

DAPI 4',6-diamidino-2-phenylindole 

dH2O Deionized H2O 
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DMEM Dulbecco’s modified eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DRG Dorsal root ganglia 

DSE Depolarization-induced suppression of excitation 

DSI Depolarization-induced suppression of inhibition 

eCB Endocannabinoid 

ECS Endocannabinoid system 

EDTA Ethylene glycol tetraacetic acid 

EtOH Ethanol 

ERK Extracellular signal-related kinase 

FAAH Fatty acid amid hydrolase 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanate 

FL Floxed (flanked by loxP sites) 

g Gravitational force 

g Gram 

GABA γ-aminobutyric acid 

GFP Green fluorescent protein 

GPCR G-protein coupled receptor 

h Hour 

HBSS Hank’s buffered salt solution 

HCl Hydrochloric acid 

Iba1 

IHC 

Ionized calcium-binding adapter molecule 1 

Immunohistochemistry 

IL Interleukin 

iNOS Inducible nitric oxide synthase 

i.p. Intraperitoneal 
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ipsi Ipsilateral 

IR Infrared 

JAK-STAT3 Janus kinase- signal transducer and activoator of transcription 3 

JNK c-JUN N terminal kinase 

kb Kilobase 

kDa Kilodalton 

kg Kilogram 

lig Ligated 

LOX Lipoxygenase 

loxP “locus of X-ing over” in phage P1 

LPS Lipopolysaccharide 

LTD Long-term depression 

LTP Long-term potentiation 

M Molar 

m Meter 

MAGL Monoacylglycerol lipase 

MAPK Mitogen-activated protein kinase 

mg Milligram 

min Minutes 

MIP Mirror-image pain 

Ml Milliliter 

mM Millimolar 

mRNA Messenger RNA 

ms Milliseconds 

MS Mass spectrometry 

n Number (sample size) 

NAPE N-acyl-phosphatidylethanolamine 

NAPE-PLD NAPE-phospholipase D 
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NeuN Neuronal nuclear antigen 

nM Nanomolar 

NMDA N-methyl-D-aspartate 

NO Nitroc oxide 

ns Not significant 

ng Nanogram 

PAG Periaqueductal grey 

PBS  Phosphate buffered saline 

PCR Polymerase chain reaction 

PE Phosphatidylethanolamine 

PEA Palmitoylethanolamide 

PFA Paraformaldehyde 

PG Prostaglandins 

PKA Protein kinase A 

PKC Protein kinase C 

PLC Phospholipase C 

PPAR Peroxisome-proliferator activated receptor 

PSNL Partial sciatic nerve ligation 

RNA Ribonucleic acid 

RT Room temperature 

RVM Rostral ventromedial medulla 

s Second 

SEM  Standard error of the mean 

SNRI Serotonin-noradrenaline reuptake inhibitor 

T Temperature 

TCA Tricyclic antidepressants 

THC Δ9-tetrahydrocannabinol 

TLR Toll-like receptor 
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Summary 

When normal nociceptive pain becomes chronic, it loses its protective function and causes 

a general pain hypersensitivity. Neuropathic pain is one type of chronic pain, which is 

caused by various diseases or physical injury of the somatosensory nervous system. The 

two main symptoms include hyperalgesia, describing increased sensitivity to pain, or 

allodynia, the sensation of pain after an innocuous stimulation. These symptoms result 

from a maladaptive plasticity of the nociceptive system. In recent years, many studies 

could confirm a contribution of the endocannabinoid system in nociception. In particular, 

the CB2 receptor is known be located on immune cells and to regulate inflammation. Since 

inflammation of the somatosensory nervous system is a key component of neuropathic 

pain, I was interested in the pain phenotype of mice with a constitutive or conditional CB2 

deletion. Previous studies demonstrated that mice with a constitutive CB2 deletion 

(CB2KO) develop increased mechanical allodynia on the non-injured side after induction 

of neuropathic pain through partial sciatic nerve ligation. 

 I analyzed neuropathic pain development in conditional CB2 knockout mice, 

lacking the CB2 receptor in myeloid cells (e.g. microglia and macrophages, CB2-LysM) or 

in neurons (CB2-Syn) only. CB2-LysM mice showed the same enhanced allodynia on the 

non-injured side as observed in CB2KO animals. This effect was not measured in CB2-Syn 

mice. I could confirm this finding through histological studies measuring microgliosis in 

the dorsal horn of the lumbar spinal cord. Microgliosis was increased on both sides of the 

spinal cord in CB2KO and CB2-LysM mice. To confirm the cellular distribution of CB2, I 

used CB2-GFP mice, which reveal a GFP signal in all CB2-expressing cells. A strong 

expression was found in the sciatic nerve, dorsal root ganglion and lumbar spinal cord 

that colocalized with microglial marker Iba1 but not with neuronal marker synapsin. 

These results indicate the expression of the CB2 receptor on microglia cells. 

 The CB2 receptor can be activated through the two main endocannabinoids 2-AG 

and anandamide. I investigated the contribution of Daglα the main synthesizing enzyme 

for 2-AG, in thermal, mechanical and neuropathic pain behavior. Contrary to our 

expectations, mice lacking Daglα showed the same pain phenotype as normal WT animals. 

I suspect an 2-AG independent activation of CB2 during neuropathic pain, which would 

serve to counteract the inflammation.   
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1 Introduction 

1.1 Pain 

Nociception is an essential process to warn the organism against tissue damage. In case 

of an injury, peripheral sensory nerve fibers, called nociceptors, transduce thermal, 

mechanical or chemical pain stimuli into an electrical signal, which is sent to the central 

nervous system (Basbaum et al. 2009). Peripheral nociceptors have their cell bodies 

located in the dorsal root ganglia (DRG) and branch into the periphery and the dorsal 

horn’s laminae I - V of the spinal cord. These nociceptors are called primary afferent 

neurons and have a pseudo-unipolar morphology, since their axonal branches are 

directed to the spinal cord and to the peripheral tissue. Three different types of 

nociceptors exist: Aδ nociceptors are myelinated and have a medium sized diameter, 

transmitting acute, fast mechanical, chemical, or thermal pain. This is in contrast to Aβ 

fibers, which have a large diameter and conduct mechanical innocuous stimuli such as 

light touch. The other type of nociceptors are C fibers. These fibers have a small diameter 

and are unmyelinated. Therefore, they conduct signals in a slow manner. C-fibers are 

polymodal and transduce heat or mechanical stimuli but do also react to innocuous 

sensations (see Figure 1) (Meyer et al. 2006). Each type of nociceptor expresses a 

different set of channels that are specific for a certain stimulus. Heat stimuli, for example, 

are transduced via the transient receptor potential vanilloid 1 (TRPV1) (Caterina et al. 

1997). Mechanical pain stimuli are thought to be transduced by TRPV4 and TRP Ankyrin 

1, but research to confirm these findings is still ongoing (Dubin & Patapoutian 2010). The 

principle pathway of pain transduction is as follows : in peripheral nerve terminals, the 

pain stimulus is transduced into an electrical signal or a so-called receptor potential, 

leading to the depolarization of the nociceptor. Thus, voltage-gated ion channels are 

activated and generate action potentials that are conveyed to synapses in the dorsal horn 

of the spinal cord. These synapses end at second order neurons, which transmit the signal 

to different regions of the brain, including the thalamus, somatosensory cortex, amygdala 

or the insular cortex (Kandel et al. 2000).  
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Figure 1 Pain circuit. Noxious or tactile stimuli are recognized by nociceptors in the periphery. The signal is then 
transferred via C-, Aδ, or Aβ- fibers to the dorsal spinal cord, where nociceptors signal to second order neurons. 
These neurons are directed to the thalamus and to the cortex via the spinoparabrachial tract or the lateral 
spinothalamic tract (modified from Kuner, 2010.) 

1.2 Neuropathic pain  

When pain exceeds its protective function and resides for months or longer, it transforms 

into chronic pain. Nowadays, up to 10% of the general population is affected by chronic 

neuropathic pain (Van Hecke et al. 2014). This type of persistent pain often results from 

injuries to the somatosensory nervous system or diseases such as diabetes mellitus, 

arthritis, multiple sclerosis or cancer (Treede et al. 2008). Many patients suffering from 

chronic neuropathic pain experience a general hypersensitivity, including symptoms such 

as spontaneous pain, an increased sensitivity to a painful stimulus (hyperalgesia), or a 

painful sensation to a normally innocuous stimulus (allodynia) (Woolf & Mannion 1999). 

Yet, current therapies still fail to completely abolish the pain but rather reduce the 

symptoms. Existing pharmacotherapies act by inhibiting nociceptor activity but do not 
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prevent disease progression. Additionally, most therapeutics induce severe side effects in 

patients (Attal et al. 2010). A better understanding of the molecular mechanisms is 

needed for the development of an adequate therapy.   

1.2.1 Pathophysiological mechanisms 

In case of a peripheral nerve injury, complex peripheral and central sensitization 

processes occur, rendering the nerve to an increased state of excitability and 

hypersensitivity. This is caused by the release of endogenous factors, such as 

neurotransmitters, lipids, cytokines, peptides or inflammatory mediators from injured 

neurons at the site of injury, which attract and activate resident and infiltrating immune 

cells. Moreover, proalgesic factors will bind nerve terminals surrounding the damaged 

neuron to increase their sensitivity, resulting in a reduced firing threshold and ectopic 

discharges of these neurons. This phenomenon is called peripheral sensitization and is in 

part responsible for the typical symptoms of spontaneous pain and allodynia. The 

elevated firing rate of peripheral primary afferent neurons overstimulates second order 

neurons in the spinal cord and induces synaptic plasticity, mainly through the activation 

of glutamate receptors (Maldonado et al. 2016). This maladaptive, neuroplastic change of 

the respective synapses between first and second order neurons is called central 

sensitization. The succeeding disruption in homeostasis in the spinal cord causes resident 

glia cell, like microglia to transform into their reactive state, including morphological 

changes and an increased transcription of inflammatory genes(Kierdorf & Prinz 2013).   

1.2.2 Neuroinflammation in neuropathic pain 

An important key player in the pathophysiological mechanisms of chronic pain, besides 

peripheral nociceptors and second-order neurons, is the innate immune system. In recent 

years, it has become of great interest in a majority of studies covering the mechanisms of 

neuropathic pain. Many components of the immune system are involved in the 

neuroinflammatory processes of this disease. In the following part, the most significant 

components regarding this study will be covered, although many more are involved in 

chronic pain pathology.  

Among the inflammatory mediators that are released by injured neurons are vasoactive 

molecules such as calcitonin gene- related peptide (CGRP), bradykinin, substance P and 
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nitric oxide, which cause hyperemia and swelling to support immune cell infiltration at 

peripheral sites (Scholz & Woolf 2007). Moreover, secreted cytokines activate the 

extracellular signal-related (ERK) mitogen-activated protein kinase (MAPK) in Schwann 

cells, which leads to a degradation of their myelin sheath (Napoli et al. 2012). This process 

is part of the Wallerian degeneration that occurs to the distal parts of the damaged axon 

to prepare for regrowth (Gaudet et al. 2011). Resident mast cells then start to degranulate 

and release histamine, serotonin, nerve growth factor, and leukotrienes, which in turn 

attract circulating neutrophils. This type of granulocyte recruits immune cells, like 

macrophages during the first 24h and is responsible for the early development of 

hyperalgesia in neuropathic pain (Perkins & Tracey 2000). The infiltration of immune 

cells at the site of nerve injury is critical to the development of neuropathic pain (Clark et 

al. 2013). Additionally, some proinflammatory factors like TNF-α are able to travel along 

the axon retrogradely to the DRG’s and anterogradely from the DRG to the spinal cord, 

where they can activate glia cells or induce disruption of the blood - spinal cord – barrier 

(Shubayev et al. 2010). This in turn facilitates the infiltration of immune cells, like 

macrophages and T lymphocytes to central sites. CCL2, (Kiguchi et al. 2010) as well as 

TNF-α, IL-1β, IL-10 (Üçeyler et al. 2007) were found to be upregulated in the DRG after 

nerve injury. Other signal molecules, like IL-6, brain-derived neurotrophic factor (BDNF), 

adenosine triphosphate (ATP), glutamate, substance P, and calcitonin gene-related 

peptide (CGRP) are also released into the dorsal horn (Ren & Dubner 2010).  

Glia cells of the spinal cord like microglia and astrocytes are consequently 

activated by the released signal molecules. IL-6 for example, activates microglia in the 

spinal cord via the Janus kinase-signal transducer and activator of transcription 3 (JAK-

STAT3) pathway (Dominguez et al. 2010). ATP on the other hand binds purinergic 

receptors, like the P2X4 receptor on microglia, which is upregulated after neuropathic 

pain induction (Tsuda et al. 2003). Activated microglia then secrete BDNF (Tsuda & Inoue 

2016) and IL-1β. Released IL-1β facilitates the phosphorylation of NMDA receptors in 

neurons, thereby changing synaptic strength and promoting hyperalgesia (Guo et al. 

2007). Microglia in the dorsal spinal cord can also be activated by fractalkine (CX3CL1), 

CCL2 or Toll-like receptors (TLR) (see Figure 2) (Scholz & Woolf 2007), which can induce 

an upregulation and release of proinflammatory cytokines (Trinchieri & Sher 2007).  
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Figure 2 Molecular mechanisms after peripheral nerve injury. a) Primed nociceptors release cytokines or 
transmitters that activate microglia, which are surveilling the spinal cord. Activated microglia release 
proinflammatory cytokines like interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), nitric 
oxide (NO), prostaglandins (PGs) or adenosine triphosphate (ATP) and express several receptors such as the 
ionotropic purinoceptor P2X4, Toll-like receptor 4 (TLR4), fractalkine receptor (CX3CR1), chemokine (C-C motif) 
receptor 2 (CCR2) and the cannabinoid receptor 2 (CB2R). Activation of some of these receptors induces an 
increase in calcium levels and activation of the p38 mitogen-activated protein kinase (MAPK), extracellular signal-
regulated kinase (ERK) pathway. b) Injured neurons release proinflammatory factors that recruit Schwann cells, 
mast cells, macrophages and T cells among others. These cells release IL-1β, TNFα, IL-6, NO, PGs and ATP to 
induce hypersensitivity in the injured nerve fibers. Eventually, proinflammatory factors are transported 
retrogradely to the neuronal cell bodies in the dorsal root ganglion (DRG) and further to the spinal cord to induce 
further inflammation and increased sensitivity. (modified from Marchand, 2005) 

 

Overall, many immunological processes at peripheral and central sites are contributing to 

the development of neuroinflammation and neuropathic pain. Moreover, innate immune 

cells play a significant role and regulation of these immune cells can determine 

development and progression of the disease.  

A recurring phenomenon of chronic pain is the so-called mirror-image pain (MIP), 

which only has been described in few publications so far. It was first described in 1990, 

when MIP was observed in rats after PSNL (Seltzer et al. 1990). A review by Koltzenburg 

described the mirror-image pain as a contralateral pain, with a lower magnitude and a 

briefer time course than on the injured, ipsilateral side (Koltzenburg et al. 1999). 

Important to note is the fact that an induction of MIP does not always occur and strongly 
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depends on the utilized experimental animal and pain model. For example, MIP was never 

observed in WT mice after partial sciatic nerve ligation and this is important to mention 

as in many studies investigating pain, WT mice serve as control animals. Moreover, only 

specific experimental models such as chronic construction injury can induce contralateral 

pain. It is believed, that the severeness of the pain model influences the development of 

MIP (Jancalek 2011). Models with an increased inflammatory response are more likely to 

induce mirror-image pain. In a study by Milligan, contralateral MIP was induced only 

through an intense immune activation at the ipsilateral sciatic nerve, which was blocked 

by addition of a glial inhibitor or antagonists for interleukin-1, tumor necrosis factor or 

interleukin-6 (Milligan et al. 2003). Whether the immune response happens only at 

central levels or as well at peripheral sites, remains unclear and is possibly as well 

dependent on the experimental model. Glia cells for example can be also active in MIP in 

the peripheral nervous system. Cheng and colleagues observed satellite glia cells that 

surround DRG neurons to be activated and release nerve growth factor (NGF) in the 

contralateral DRG after spinal nerve ligation in rats (Cheng et al. 2015). Many mechanisms 

are still vague and some findings are contradictory, as seen in a publication from 2015, 

which showed a inhibitory rather than a proinflammatory effect of microglia and IL-1. IL-

1β expression was colocalized with microglia in the spinal cord and increased after 

carrageenan injection, a mouse model to induce a peripheral inflammation. In contrast to 

the findings of Milligan, inhibition of microglial activation or IL-1 receptor induced an 

earlier development of MIP in these animals (Choi et al. 2015). An involvement of the 

immune system is evident but a clear mechanism of contralateral pain induction is still 

missing. 

 

1.2.3 Treatment 

Various therapies are available for patients suffering from neuropathic pain, including 

antidepressants, anticonvulsants, opioid analgesics, cannabinoids, NMDA antagonists, 

and topical medication (Szczudlik et al. 2014). Tricyclic antidepressants (TCA) and 

serotonin-noradrenaline reuptake inhibitors (SNRI) are among the antidepressant drugs. 

Inhibition of noradrenaline and serotonin reuptake results in an increased activation of 

the descending antinociceptive pathway, which is composed of inhibitory projections 

from the brainstem to the spinal cord (Marks et al. 2009). Anticonvulsants, like pregabalin 
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or gabapentin are used to diminish the hyperexcitability in neuropathic nociceptors. 

Through the antagonizing effects of pregabalin to voltage-gated Ca2+ channels, calcium 

influx is reduced and signal transmission of overactive sensory neurons is disturbed 

(Verma et al. 2014). Topical agents like lidocaine are used to block voltage-gated sodium 

channels and to stop propagation of action potentials in sensory neurons (Attal et al. 

2000). NMDA receptor antagonists, like ketamine are as well used to block signal 

transduction in hypersensitive nociceptors (Niesters et al. 2014). An overall inhibitory 

effect on sensory neurons that is causing a decrease in hypersensitivity, is induced by 

opioids, endogenous molecules that act on G-protein coupled receptors (GPCR) (Stein 

2013). Another class of endogenous molecules acting on GPCR are endocannabinoids. In 

the recent years, endocannabinoids were found to have many beneficial effects on various 

neurological diseases, like multiple sclerosis, Huntington’s disease, Alzheimer’s disease 

and chronic pain (Kendall & Yudowski 2017). A detailed view on the physiological and 

pathological mechanisms of the cannabinoid receptor 2 (CB2), will be given in the 

following parts.    

1.3 The Endocannabinoid System 

In recent years, the medical use of the Cannabis sativa plant has been approved in several 

European countries, as well as in more than half of the U.S. states (Bifulco & Pisanti 2015).  

Nowadays, medical marijuana is widely used to alleviate symptoms in chronic diseases 

such as multiple sclerosis, chronic pain, AIDS or cancer (Koppel et al. 2014). Cannabis 

sativa, which was used already for centuries not only for medical purposes but also for 

recreational use, acts through its components ∆9-tetrahydrocannabinol (THC) or 

cannabidiol (CBD). THC is known to activate the seven transmembrane G-protein coupled 

cannabinoid receptor 1 (CB1) (Devane et al. 1988) and cannabinoid receptor 2 (CB2) 

(Matsuda et al. 1990), the two main receptors of the endocannabinoid system.  
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Figure 3 The endocannabinoid system. A Exogenous cannabinoids like the plant-derived ∆9–
tetrahydrocannabinol (THC) or the endogenous cannabinoids N-arachidonoylethanolamine (AEA) and 2-
arachidonoylglycerol (2-AG) bind to the cannabinoid receptors 1 and 2. B Activation of these G-protein coupled 
receptors inhibits adenylate cyclase (AC) which leads to a reduction of cyclic AMP (cAMP) and inactivation of the 
protein kinase A (PKA) or stimulation of the mitogen-activated protein kinase (MAPK). Additional effects of CB1 
activation in neurons are the reduction of calcium levels and opening of inwardly rectifying K channels to reduce 
neurotransmitter release. C The CB2 receptor is most abundantly expressed in immune cells of the periphery like 
T cells or in the central nervous system on microglia. Expression of CB2 is generally low but gets upregulated 
after neuroinflammation (modified from Di Marzo, 2004; Di Marzo, 2015; Velasco, 2012) 

 

Both receptors are coupled to Gi/o or Gq/11 and elucidate an inhibitory action on the 

expressing cell. Activation of the receptor induces dissociation of the Gβγ subunit, which 

then results in phosphorylation of MAPK as well as ERK1/2, p38 MAPK, and JUN N-

terminal kinases (JNK). Interaction of the Gi/o protein with the activated CB1 or CB2 

receptor inhibits adenylyl cyclase, which reduces cyclic AMP-protein kinase A (PKA) 

signaling. Moreover, CB1 receptor activation leads to opening of inwardly rectifying K+ 

channels and inhibits L-, N- and P/Q-type voltage-gated Ca2+ channels (Howlett et al. 

2010). Both mechanisms reduce neurotransmitter release and signal transduction (see 

Figure 3).  

 These two receptors can be also activated by the endogenous ligands of the ECS, 2-

arachidonoylglycerol (2-AG) (Mechoulam et al. 1995) and N-arachidonoylethanolamine 

(anandamide, AEA) (Devane et al. 1992). Both endocannabinoids are synthesized on 

demand from membrane lipid precursors by specific enzymes. 2-AG is produced by 

diacylglycerol lipase (Dagl) α and β from arachidonic-acid containing diacylglycerol 

(DAG) (see Figure 4) (Sugiura et al. 2002). Anandamide is mainly synthesized by the N-

acyltransferase (NAT) and the N-acyl-phosphatidylethanolamine-specific phospholipase 

D (NAPE-PLD) from phosphatidylethanolamine (Di Marzo et al. 1994). 
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Figure 4 Synthesis and degradation of 2-AG. The diacylglycerol lipase (Dagl) or synthesizes 2-
arachidonoylglycerol (2-AG) from diacylglycerol through hydrolysis. 2-AG is afterwards degraded by 
monoacylglycerol lipase (MAGL) to arachidonic acid.(modified from Kohnz et al. 2014) 

 
Since the endocannabinoids are primarily produced at the postsynapse and bind to CB1 

receptors located at the presynapse, they are called retrograde messengers, causing 

depolarization-induced suppression of inhibition (DSI) and excitation (DSE) in short-

term synaptic plasticity as well as  long-term potentiation (LTP) or depression (LTD) 

during learning and memory (Chevaleyre et al. 2006). Endocannabinoid signaling is 

inactivated by receptor internalization of reuptake and degradation of the ligands. 2-AG 

is degraded by monoacylglycerol lipase (MAGL) to arachidonic acid (Dinh et al. 2002). 

Fatty acid amide hydrolase (FAAH) degrades AEA to arachidonic acid and ethanolamine 

(Di Marzo et al. 1994). Alternative routes of degradation include oxidation through 

cyclooxygenase-2 (COX-2), lipoxygenases (LOXs), and cytochrome P450 (CYPs).  Other 

possible components of the endocannabinoid system may be the orphan GPCR GPR55 and 

GPR18 as well as the peroxisome proliferator activated receptors (PPAR) α and γ 

transient receptor potential vanilloid type-1 (TRPV-1) (Maccarrone et al. 2014). 

 The CB1 receptor is expressed i. e. in the adrenal gland, heart, lung, prostrate, bone 

marrow, thymus, testis and tonsils but most abundantly in the central nervous system and 

on nociceptors in the periphery (Fine & Rosenfeld 2013).  In the CNS, CB1 is found in high 

levels in the spinal cord, the brainstem, basal ganglia, hippocampus, neocortex and 

cerebellum (Marsicano & Kuner 2008). CB1 receptors modulate synaptic plasticity and 

influence thereby learning and memory. Moreover, they play a role in homeostatic 
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functions such as sedation or appetite stimulation but CB1 regulates as well perception, 

motor control and mood (Hashimotodani et al. 2007). The CB2 receptor is found primarily 

on immune cells, like T lymphocytes or macrophages in the periphery or microglia in the 

central nervous system. Interestingly, CB2 receptor expression was recently proposed on 

neurons in the hippocampus (Stempel et al. 2016), where CB2 activation induced a long-

lasting hyperpolarization of hippocampal principle neurons in the CA2/ CA3 region. 

Nevertheless, the major functions of the CB2 receptors comprise pain modulation and 

regulation of the immune system. A detailed description of the CB2 receptor in 

neuroinflammation and neuropathic pain will be given in the following part. 

1.4 ECS in neuropathic pain and neuroinflammation 

The role of the endocannabinoid system in pain and neuroinflammation has been 

extensively studied in the recent years. For example, anandamide was shown to be a full 

agonist for TRPV1 and might induce pain modulating activity (De Petrocellis et al. 2001).  

1.4.1 The endocannabinoids in neuropathic pain 

Elevated anandamide and 2-AG levels were measured in spinal cord, periaqueductal grey 

(PAG), and rostral ventromedial medulla (RVM) in neuropathic rats (Petrosino et al. 

2007). Moreover, peripheral AEA levels but not 2-AG levels were as well increased in the 

ipsilateral hind paw after nerve ligation in rats (Jhaveri et al. 2007). In the CNS, AEA might 

act through the activation of the CB2 receptor on microglia. Malek and colleagues showed 

that anandamide induced a shift from the M1 phenotype to M2 in microglia culture after 

stimulation with LPS (Malek et al. 2015). Surprisingly, mice with a genetic deletion of the 

fatty acid amide hydrolase, the main degrading enzyme for anandamide, did not show any 

difference in neuropathic pain behavior, although pharmacological blockage of FAAH 

produced consistent analgesic effects (Nadal et al. 2013). Comparable to this was the 

discovery that MAGL knockout mice did not show atypical neuropathic pain, but 

pharmacological MAGL blockage induced antinociception (Schlosburg et al. 2010). MAGL 

blockage results in elevated 2-AG levels, which was shown to exhibit anti-hyperalgesic 

and anti-allodynic effects in the case of CNS injury (Panikashvili et al. 2001). Release of 2-

AG by DRG neurons can be stimulated by bradykinin (Gammon et al. 1989). Next to 
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neurons, microglia are as well able to secrete 2-AG. Microglial 2-AG levels is dependent 

on Ca2+ levels and P2X7 receptor activation by ATP (Witting et al. 2004). After 2-AG binds 

microglial CB2 receptors, microglial motility, proliferation and migration is induced 

(Carrier et al. 2004). 2-AG is synthesized by Daglα, which was highly expressed in the 

soma of TRPV1 – positive neurons after spared nerve injury (Giordano et al. 2012). The 

other 2-AG synthesizing enzyme is Daglβ. After inhibition of Daglβ, 2-AG levels are 

reduced and LPS-induced TNF-α release by macrophages is decreased (Hsu et al. 2012). 

To sum up, endocannabinoids and their synthesizing and degrading enzymes take an 

important role in regulation of neuropathic pain.  

1.4.2 The CB1 receptor in neuropathic pain 

Another interesting contributor of the endocannabinoid system for pain modulation 

might be the CB1 receptor, since it is expressed on nociceptors and in several CNS regions, 

such as the PAG, RVM, cortex, and spinal cord. Nevertheless, constitutive CB1 receptor 

knock-out mice did not develop increased neuropathic pain (Nadal et al. 2013) but did 

develop anxiety and depression during neuropathic pain (Rácz et al. 2015). Only when 

CB1 was conditionally deleted in nociceptors, increased neuropathic pain developed 

(Agarwal et al. 2007). These results were confirmed by the pharmacological activation of 

CB1 and CB2 receptor, which induced antinociceptive effects (Nadal et al. 2013). 

Additionally, administration of an inverse agonist of the CB2 receptor or blockage of the 

CB1 receptor showed an increased hypersensitivity (Rahn & Hohmann 2009). The 

disadvantage of CB1 receptor activation as an antinociceptive therapeutic lies in its side 

effects. Because of its wide distribution in the CNS, CB1 receptor activation induces 

psychomimetic effects, as seen after the consumption of THC  (Kalant 2004). Therefore, 

pharmacological treatment with CB1 receptor agonists are only recommended in severe 

cases, where the antinociceptive benefits outweigh the psychomimetic effects.  

 

1.4.3 The CB2 receptor in neuropathic pain 

Since the CB2 receptor has an important immunomodulatory role and is known to be 

upregulated in pathological tissue, it came into focus in several studies covering 

neuroimmunological diseases (Atwood & Mackie 2010). Indeed, CB2 activation was 
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shown to be analgesic and anti-inflammatory in several animal models of pain (Anand et 

al. 2009). One of the first studies proving the relevance of the CB2 receptor in the 

regulation of pain was performed by Calignano and colleagues in 1998. Systemic and 

intraplantar administration of palmitoylethanolamide (PEA) induced antinociception in 

the formalin test, which was blocked by a CB2 receptor antagonist (Calignano et al. 1998). 

This study confirmed the influence of the CB2 receptor, although PEA is no direct CB2 

agonist and possibly acts through a different mechanisms. Following studies utilizing CB2 

receptor agonists (i.e. HU308) further proved the antinociceptive effects induced by the 

CB2 receptor (Hanus et al. 1999). Moreover, systemic administration of the CB2 agonist 

GW405833, another CB2 for 3-5 weeks after PSNL, reduced mechanical hyperalgesia. 

Additionally, this effect was blocked after the addition of a CB2 receptor antagonist and 

absent in CB2 receptor knockout mice (Whiteside et al. 2005). More studies about the 

effects of CB2 receptor selective agonists in pain development are reviewed by Guindon 

and Hohmann (Guindon & Hohmann 2008). CB2 receptor expression in the CNS is 

relatively low in healthy tissue but upregulated after induction of pathological pain states. 

More specifically, upregulation of the CB2 receptor was detected in the lumbar spinal cord 

in microglia and astrocytes in neuropathic rats (Zhang et al. 2003) but as well in TRPV1-

positive nociceptors located in human DRG’s (Anand et al. 2008).  

 Activation of the CB2 receptor results in reduced secretion of proinflammatory 

cytokines in macrophages and mast cells (Pacher & Mechoulam 2011) and simultaneously 

stimulates release of anti-inflammatory mediators. This was shown by the release of 

antinociceptive β-endorphins by keratinocytes after CB2 receptor activation through the 

agonist AM1241 (Ibrahim et al. 2005). In the spinal dorsal horn, CB2 receptor activation 

was shown to reduces MAPK phosphorylation, which affected BDNF levels and reduced 

allodynia (Landry et al. 2012). When CB2 receptor was overexpressed, mechanical 

hypersensitivity in neuropathic mice was attenuated. On the contrary, CB2 knockout mice 

develop a robust neuropathic pain and a mirror-image pain i.e. increased sensitivity on 

the hindpaw contralateral to the nerve ligation. Moreover, CB2KO mice showed an 

enhanced microgliosis on the contralateral dorsal horn (Racz et al. 2008a). This effect 

might have been triggered through microglia activation and interferon-γ release. Double 

knockout mice of interferon-γ and CB2 did not develop contralateral pain after nerve 

ligation. Additionally, cultured microglia decreased interferon-γ dependent upregulation 

of the proinflammatory gene iNOS and CCR2 after stimulation with the CB2 agonist JWH-
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133 (Racz et al. 2008b). These studies strongly suggest a regulation of microglia and 

inflammation in neuropathic pain by the CB2 receptor. In another study, the 

phytocannabinoid beta-caryophyllene (BCP) which is a natural agonist of the CB2 

receptor, induced reduction of mechanical allodynia and spinal neuroinflammation after 

PSNL and thereby could reduce the development of neuropathic pain. Besides, BCP also 

alleviated inflammatory pain responses in a formalin test and was more efficient than 

subcutaneously injected CB2 agonist JWH-133(Klauke et al. 2014). Overall, many studies 

hint towards an anti-inflammatory effect of the CB2 receptor, which is primarily induced 

by glia cells or immune cells of the innate immune system. Importantly, CB2 was able to 

alleviate inflammatory and chronic pain without inducing psychoactive side effects as 

seen after CB1 receptor activation (Ikeda et al. 2013)(Landry et al. 2012). 

1.4.4 Leptin in neuropathic pain 

In the last years, several studies revealed an impact of leptin on the immune system, the 

endocannabinoid system, and on neuropathic pain. Leptin is an adipokine, which is 

known to regulate food intake, body weight, and maintains energy homeostasis. ob/ob 

mice are deficient for the leptin gene “obese” (ob) and develop obesity and abnormalities 

in reproduction, hematopoiesis, insulin secretion, and in the immune system (La Cava & 

Matarese 2004). One of the first connections between leptin and the ECS was found in the 

regulation of food intake, where leptin was shown to negatively regulate 

endocannabinoid levels in the hypothalamus (Di Marzo et al. 2001). Independent from 

food intake, Maeda and colleagues discovered a link between leptin and neuropathic pain 

in 2009. Adipocytes released leptin in injured peripheral nerves, which then stimulated 

macrophages and supported neuropathic pain development. Additionally, macrophages 

were shown to express the leptin receptor. Administration and stimulation of peritoneal 

macrophages with leptin could restore the loss of allodynia in leptin-deficient ob/ob mice 

(Maeda et al. 2009). Just recently, leptin was as well linked to the CB2 receptor in 

traumatic brain injury, where the neuroprotective effects of leptin were reduced after 

administration of AM630, a CB2 receptor antagonist (Lopez-Rodriguez et al. 2016). 

Surprisingly in this study, leptin was shown to have anti-inflammatory effects, in contrast 

to the proinflammatory actions mediated by leptin in macrophages. Another connection 

between the CB2 receptor and leptin was discovered just recently, showing an 

upregulation of the leptin receptor in CB2 deficient mice at the ipsilateral sciatic nerve 
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after partial sciatic nerve ligation (unpublished observation). Whether leptin has a 

beneficial effect on neuropathic pain is still unclear, but a regulation between the CB2 

receptor and leptin in neuropathic pain is highly possible. 

 As a conclusion, it is not surprising that cannabinoids were used as pain 

medication already for the last 20 centuries by India, China, Greece, Rome and Israel 

(Iversen 2007). Nowadays, cannabis was proved in several studies and through different 

routes to be more or less effective for the treatment of chronic pain (Jensen et al. 2015). 

Most studies showed an improvement in pain as well as in sleep without severe side 

effects (Lynch & Campbell 2011). Actually, side effects of cannabis are stated to be not 

more severe than in other pain therapies (Ware et al. 2004), but cannabis should only be 

prescribed, if other pain medication fails to induce analgesia (see Reviews for more 

details: (Boychuk et al. 2015)(Maldonado et al. 2016)). 

1.5 Aim  

The aim of this thesis was to study the contribution of the CB2 receptor of mice in 

neuropathic pain. Previous studies showed the development of contralateral pain in 

CB2KO mice after nerve ligation. The cellular mechanisms involved in this effect are, 

however, unknown. Thus, I was aiming to reveal the cellular localization of CB2 that is 

important for the development of neuropathic pain and especially contralateral pain. One 

aim was therefore to analyze neuropathic pain in constitutional and conditional CB2 

knockout mice by measuring mechanical allodynia, microgliosis in the spinal cord and 

immune cell infiltration of the sciatic nerves. Since it is still under debate, which impact 

the cellular localization of CB2 has during neuropathic pain, I was also aiming to 

determine the cellular distribution of CB2 by analyzing nervous tissue of the recently 

generated CB2-GFP mouse strain. I hypothesize that CB2 is located on microglia and that 

mice, which have a microglial CB2 deletion exhibit a stronger inflammation, comparable 

to CB2KO mice. 

 The second part of my project concentrated on the contribution of the Daglα 

enzyme in the development of neuropathic pain. Daglα is the main synthesizing enzyme 

for 2-AG, one of the two endocannabinoids binding the CB2 receptor. It was shown before 

that 2-AG modulates neuropathic pain development in mice and therefore I was 

interested in the role of Daglα in neuropathic pain. My aim for this was to analyze pain 
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behaviour in Daglα KO mice. Therefore, I measured mechanical allodynia after PSNL, 

thermal pain, and inflammatory pain sensitivity in these mice. 
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2 Materials 

2.1 Equipment 
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Technical instrument Company 

Analgesia meter hot plate TSE Systems 

Analytical balance BP 121 S, Sartorius 

Animal shaver Isis GT420, Aesculap 

Cell strainer 40µm BD Falcon 

Centrifuges 

 

 

 

Biofuge fresco, Heraeus Instruments 

Biofuge pico, Heraeus Instruments 

Biofuge stratos, Heraeus Instruments 

Megafuge 1.0R, Heraeus Instruments 

Cold-light source KL1500 LCD, Schott 

Cryostat CM3050S, Leica GmbH 

Flow cytometer FACS Canto II, BD Biosciences 

Hargeaves apparatus Ugo Basile 

Incubator Be-Ed-Fd, Bindner 

Laminar flow hood Herasafe, Kendro 

Liquid handling platform Janus®, Perkin Elmer 

Magnetic stirrer MR 3001 K, Heidolph, Fisher  

Microscopes 

Light microscope 

Fluoresence microscope 

Confocal microscope 

 

Axioskop 40, Zeiss 

Axiovert Imager M2, Zeiss 

LSM SP8, DMI 6000 CS, Leica 

Needle 27G x 1/2 BD MicrolanceTM 3 

pH meter inoLab, WTW 

Perfusion pump Reglo Digital MS-4/8, Ismatec 

Real-time PCR cycler LightCycler® 480 Instrument II, Roche 

Scalpel Feather Safety Razor CO., LTD. 
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Technical instrument Company 

Spectrophotometer NanoDrop 1000, Thermo scientific 

Sterilizing oven Varioklav 25T, H+P Labortechnik 

Prolene suture 5-0, for wound closing Ethicon 

Braid silk suture 7-0, for nerve ligation Natsume Seisakusho 

Syringe 1 ml Clexane, Transcoject® 

Tissue homogenizer Precellys 24, Bertin Technologies 

Vaporizer for Isoflurane ISOFLO, Eickmeyer 

Vortexer Vortex-Genie 2, Scientific Industries  

Von Frey aesthesiometer Ugo Basile 

Von Frey filaments Touch Test Sensory Evaluators, Stoelting 

Von Frey grid Ugo Basile 

Fluosorber Table Top Single Animal Anaesthesia 

System, Harvard Apparatus 

2.2 Chemicals and reagents 

2.2.1 Chemicals 
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Chemicals Company 

0.9% Saline Braun 

Albumin Bovine Fraction V, pH 7.0 

standard grade, lyophil. (BSA) 

Serva 

 

APC Streptavidin Biolegend 

Betaisodona Mundipharma 

Citric acid monohydrate Promega 

Cooling Spray Roth 

DAPI Fluoromount-G® SouthernBiotech 

DMEM Gibco Life Technologies 

Donkey Serum VWR 

EDTA disodium salt, dehydrate Calbiochem 

Ethanol Otto Fischar GmbH &Co KG 

FC Block CD16/32 Biozol 

Fetal calf serum PAA cell culture company 

Fluoromount-G® SouthernBiotech 

HBSS Gibco Life technologies 

Hepes Sigma-Aldrich 

Hydrochloride acid Sigma-Aldrich 

Isoflurane Abott GmbH 

10% Ketamin Medistar 

2-Methylbutan/ Isopentan Sigma-Aldrich 

OCT Compound Sakura Finetek 

Oxygen Linde 

PapPen  Vector Laboratories  

Paraformaldehyd Sigma-Aldrich 
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Chemicals Company 

PercP-CyTM 5.5 Streptavidin BD Pharmingen 

Sucrose, for microbiology Sigma-Aldrich 

Triton X-100 Sigma Aldrich 

Tris Base Roth 

TRIzol® Reagent Thermo Fisher 

Tween20 Sigma-Aldrich 

2% Xylazine Ceva Tiergesundheit GmbH 

2.2.2 Buffers and solutions  

If not stated otherwise all buffers and solutions were prepared with dH2O and all 

chemicals were purchased from Applichem, Life Technologies, Merck, Carl Roth or Sigma-

Aldrich.  
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Buffers and solution Composition Application 

Blocking Solution 

 for GFP IHC 

 

 

 

 

 for Iba1 IHC 

 

10% (v/v) Normal Donkey Serum 

0.5% PBST 

0.33% FC Block  

in PBS  

 

10% (v/v) Normal Donkey Serum 

0.1% PBST 

in PBS 

Immunohisto-

chemistry 

Citrate buffer 10 mM Citric acid 

0.05% (v/v) Tween 20  

adjusted to pH 6.0 

Immunohisto-

chemistry 

Enzyme Mix for sciatic 

nerve tissue 

1 U/µl DNase I 

0.5% Collagenase type 4 

0.01 U/µl Elastase 

Flow Cytometry 

Collection Buffer 1 M HEPES 

in DMEM 

Flow Cytometry 

Facs Buffer 0.5 M EDTA  

in PBS 

Flow Cytometry 

Inactivation Buffer 20% FCS 

in HBSS 

Flow Cytometry 

Paraformaldehyde (PFA)   

4% 

4% (w/v) Paraformaldehyde 

in PBS 

Fixation of brain tissue 
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Buffers and solution Composition Application 

Permeabilization 

Solution  

0.5% PBST 

 

0.1% PBST 

 

 

 

0.5% (v/v) Triton X-100 

in PBS 

0.1% (v/v) Triton X-100 

in PBS 

Immunohistochemistry 

Phosphate buffered 

saline (PBS) 10x 

10.5 mM KH2PO4 

1551 mM NaCl 

29.6 mM Na2HPO4-7H2O 

adjusted to pH 7.4 

General Use 
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2.2.3 Enzymes and antibodies 

Antibody Type Host Product Number Company 

Anti-CD11b APC Monoclonal Rat 170112 eBioscience 

Anti-CD11b FITC Monoclonal Rat 101206 Biozol 

Anti-CD45 eFluor® 450 Monoclonal Rat 48-0451 eBioscience 

Anti-CD45 FITC Monoclonal Rat 103107 Biozol 

Anti-CD45 PE Monoclonal Rat 103106 Biozol 

Anti-CD45 PerCP/CyTM 

5.5 

Monoclonal Rat 103132 Biozol 

Anti-GFP Polyclonal Goat Ab6673 Abcam 

Anti-Iba1 Polyclonal Rabbit 019-19741 Wako 

Anti-Leptin Receptor Polyclonal Goat AF497 R&D Systems 

Anti-Ly-6B.2 APC Monoclonal Rat MCA771A647 AbD Serotec 

Anti-Ly-6C Biotin  Monoclonal Rat 557359 BD Pharmingen 

Anti-Ly-6G PE Monoclonal Rat 12-5931 eBioscience 

Anti-Mouse 

Macrophage (F4/80) 

Monoclonal Rat CL8940AP Cedarlane 

 

Anti-NeuN Biotin Monoclonal Mouse MAB377B Millipore 

 

Anti-Goat CyTM3 Polyclonal 

 

Donkey 705-166-147 Jackson 

ImmunoResearch, 

INC. 

Anti-Rabbit 

AlexaFluor® 647 

Polyclonal Donkey A31573 Life Technologies 

Anti-Rat AlexaFluor® 

488 

Polyclonal Donkey A21208 Life technologies 
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Serum / Enzyme Company 

Elastase Worthington 

Normal donkey serum (ab7475) Abcam 

Normal goat serum (ab7481) Abcam 

Proteinase inhibitor complete mini Roche 

Collagenase type 4 Worthington 

DNase I Roche 

2.3 Software 

Software Company 

Adobe Photoshop Adobe Systems, 2011, USA Cs5.1, Version 

12.1 

AxioVision LE Carl Zeiss, Germany, Version 4.8.2 

Flowjo Tree Stars Inc., USA, Version 9.5.2 

ImageJ Wayne Rasband, NIH, USA, Version 1.47 

Leica Application Suite X Leica, Germany, Version 3.0.0 

Mendeley Mendeley Ltd., USA, Version 1.16.3 

Microsoft Office Professional Plus 2013 Microsoft, 2012, USA 

NanoDrop NanoDrop 1000, Version 3.7 

Prism GraphPad Software, Inc., 2012, USA, 

Version 6.01 
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3 Methods 

3.1 Animals 

For the following experiments, constitutive and conditional CB2KO and DaglαKO mouse 

lines were used. Wildtype (WT) or floxed (FL) littermates were used as control animals. 

All animals were bred on a C57BL/6J background. Mice were kept under specific pathogen 

free conditions (SPF) and were housed with a 24 h light-dark circle (12 h light, 12 h dark). 

All mice were group-housed in cages with up to five littermates and had ad libitum access 

to food and water. All animals were 2 - 5 months of age at the time of the experiments.  

3.1.1 Constitutional and conditional CB2 deletion 

Used CB2KO mice had a deletion in the coding exon of the Cnr2 gene, thus inactivating the 

CB2 receptor, as described previously (Buckley et al. 2000). CB2KO mice were bred 

homozygously in our animal facility. In the CB2-Syn mouse, Cre recombinase is expressed 

under the synapsin 1 promoter, which is specifically expressed in neurons (Zhu et al. 

2001). As a consequence, the Cre recombinase is only active and excises parts of the Cnr2 

gene in neuronal cells (Stempel et al. 2016).  CB2-LysM mice have a conditional deletion 

in all myeloid cells, since the Cre recombinase is active in cells expressing the lysozyme M 

gene. This mouse line has a CB2 deletion in 30-40 % of microglia and macrophages  

3.1.2 CB2-GFP 

CB2-GFP mice were used to localize CB2 receptor expression. The GFP open reading 

frame was cloned downstream of a CB2 promoter (Schmöle et al. 2015). The resulting 

offspring expressed functional CB2 receptors and a strong GFP signal in all CB2 

expressing cells. CB2-GFP mice were backcrossed for at least five generations to a 

C57BL/6J background.  
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Table 1 Transgenic mice Used mouse strains with their official name, abbreviation, genetic modification and 
literature reference, if published. 

Name Abbreviation Modification Reference 

B6.cg Cnr2 tm1Zim CB2KO Deleted part in coding exon of 

Cnr2 

(Buckley et al. 

2000) 

B6.cg Cnr2 tm2Zim 

 

CB2-FL ORF in exon 2 of Cnr2 is 

flanked by two loxP sites 

(Stempel et al. 

2016) 

Lyz2 tm1(cre)lfo 

 

LysM-Cre Cre recombinase expressed 

under lysozym M gene 

promoter 

(Clausen et al. 

1999) 

Tg(Syn1-cre)671Jxm 

 

Syn-Cre Cre recombinase expressed 

under synapsin 1 gene 

promoter 

(Zhu et al. 2001) 

B6.cg Cnr2 tm2Zim x  

Lyz2 tm1(cre)lfo 

 

CB2-LysM CB2-FL crossed with LysM-Cre 

mice 

unpublished 

B6.cg Cnr2 tm2Zim x 

Tg (Syn1-cre)671Jxm 

 

CB2-Syn CB2-FL crossed with Syn-Cre 

mice 

(Stempel et al. 

2016) 

B6.cg Tg(Cnr2-

GFP)1Zim 

 

CB2-GFP GFP ORF cloned downstream 

of CB2 promoter 

(Schmöle et al. 

2015) 

B6.cg Dagla tm1Zim Daglα FL Exon 1 of Dagla gene is 

flanked by two loxP sites 

(Jenniches et al. 

2016) 

Tg(Pgk1-cre)1Lni PGK1-Cre Cre recombinase expressed 

under Pgk1 promoter 

(Lallemand et al. 

1998) 

B6.cg-Dagla tm1Zim x 

Tg(Pgk1-cre)1Lni 

Daglα KO Daglα FL crossed with Pgk1-

Cre mice 

(Jenniches et al. 

2016) 
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3.1.3 Daglα KO 

Constitutive Daglα KO mice were tested for pain sensitivity. Daglα KO mouse resulted 

from crossing mice containing two loxP sites flanking the exon 1 of the Dagla gene (Daglα 

FL) (Ternes 2013) with mice expressing the Cre recombinase ubiquitously under the Pgk1 

promoter (Pgk1-Cre) (Lallemand et al. 1998). Consequently, Daglα KO mice have a 

constitutive deletion of the Dagla gene (Jenniches et al. 2016).  

 

All animal experiments were approved by the local committee for animal health (LANUV 

NRW) and followed the guidelines of the German Animal Protection Law. (AV 84-

02.04.2014.A258, AV 87-51.04.2014.A393, AV 84-02.04.2014.A443) 

3.2 Behavioral Experiments 

3.2.1 Partial sciatic nerve ligation (PSNL)  

To induce a sciatic nerve injury, the partial sciatic nerve ligation (PSNL) method was used, 

as described previously (Rácz et al. 2015). Mice were anesthetized with 2-3% isoflurane 

gas and ⅓ - ⅔ of the left sciatic nerve was tightly ligated with a 7-0 braid silk suture. This 

resulted in a robust development of mechanical allodynia with its peak on day 14 post 

ligation. Sham operated mice underwent the surgery without ligation of the sciatic nerve 

to serve as controls (see Figure 5 A/B).    

3.2.2 Von Frey 

Mechanical allodynia was tested with manual von Frey filaments (Stoelter) using the up-

down method described previously (Dixon 1965) or the automated von Frey 

aesthesiometer (Ugo Basile) . Mice were habituated on a metal grid for 1 h on three days 

prior to the first measurement and 1 h directly before each assessment (see Figure 4 C). 

All mice were tested before and 3, 7, 10 and 14 days after PSNL. Either von Frey filaments 

of different strengths were applied against the plantar surface of both hind paws until the 

filament bent (see Figure 4 D) or the automated aesthesiometer was placed under the 

plantar surface of the hind paw and a filament elevated with increasing force. Shaking, 

licking or paw withdrawal was considered as a nociceptive response. The aesthesiometer 

automatically calculated the force at which the animal reacted. In case of the manual von 
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Frey filaments, force was calculated using the up-down method by Chaplan (Chaplan et 

al. 1994). 

 

 

Figure 5 Neuropathic pain model. Mice were anesthetized to perform a sham surgery (A) or a partial sciatic 
nerve ligation (B) to induce neuropathic pain. Mechanical allodynia was assessed for each mouse in both hind 
paws (C) with von Frey filaments (D) (modified from Danmic Global, LLC). 

3.2.3 Up-down method  

In the up-down method, measurement was started with a filament of medium strength 

(3.61). Depending on the response, filaments with a higher or lower strength were varied. 

In case of a positive nociceptive response, weaker filaments were taken. Consequently, 

stronger filaments were used in case of no response. The measurement was finished after 

the fourth filament used, following a positive response. By recording the sequence of 

responses and the value of the last used filament, the force could be calculated, at which 

in 50% of the cases a reaction would occur (Chaplan et al. 1994). 

3.2.4 Hot Plate 

The hot plate test (Eddy & Leimbach 1953) was used to assess thermal nociception in 

Daglα KO and WT mice. Mice were placed on a hot surface (52°C) and trapped by a round 

plastic cylinder. Latency (s) until the first signs of nociceptive behavior such as shaking, 

licking or jumping was measured. Either after jumping, which was considered as a sign 

for most painful behavior, or after 30 s, the experiment was stopped and the mouse was 

transferred back to its cage. Latency until the first sign of pain and until each of the 

different behaviors was calculated and compared between genotypes with Graphpad 

Prism. 
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3.2.5 Formalin Test 

In the formalin test, the acute inflammatory reaction of the mice was assessed (Walker et 

al. 1999). Mice were habituated in small transparent boxes for 15 – 30 min prior to the 

experiment. To induce inflammation, 20 µl of 5% formalin was injected into the left hind 

paw of the animal. For comparison and as a control, the same amount of a vehicle (saline) 

was injected into the right hind paw as well. Subsequently, the mouse was placed into a 

small plastic box and recorded with a camera for 45 min. After the experiment, all mice 

were sacrificed to prevent further suffering of the animals. The video material was then 

analyzed for nociceptive behavior of the mice: the video was stopped every ten seconds 

and nociceptive behavior, such as shacking, licking or jumping was considered as a 

positive value (1). No reaction to the injection was documented as a negative value (0). 

All values were added for every minute and the mean was calculated for each genotype. 

The results were divided into the early and acute inflammatory phase (0 – 5 min) or the 

late and tonic inflammatory phase (15 – 40 min).  

3.2.6 Hargreaves test 

To analyze thermal hypersensitivity, Daglα KO and WT mice underwent the Hargreaves 

test (Hargreaves et al. 1988). Mice were habituated one day before testing and on the day 

of the experiment for 1 h on a plantar setup in small Plexiglas chambers. The mobile 

infrared heat source of the Hargreaves apparatus (Ugo Basile) was placed under the hind 

paw of a mouse and a radiant heat beam (infrared) with an intensity of 40 IR induced 

thermal pain in the plantar surface of the hind paw. After retraction, the device measured 

automatically the withdrawal latency (s). Both sides were assessed each three times and 

the mean withdrawal latency was calculated. All values from both genotypes were 

compared in Graphpad Prism.   

3.3 Immunohistochemistry 

3.3.1 Tissue Preparation 

For the immunohistological experiments, tissue was collected at 14 days post-surgery 

using the same procedure. Ligated and sham operated animals were anaesthetized with 

a mixture of 10% ketamine and 5% xylazine, diluted in 0.9% saline. Mice were 
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intracardially perfused with ice-cold phosphate-buffered saline (PBS) for 5 min and with 

4% paraformaldehyde (PFA) for 15 min at a speed of 4 ml / min. The tissue samples 

(lumbar spinal cord, sciatic nerves, DRGs, spleen or brain) were isolated and post fixated 

overnight at 4°C in 4% PFA. On the next day, tissue was transferred to 30% sucrose and 

incubated again up to one week at 4°C for cryopreservation. Tissue samples were then 

embedded in O.C.T. compound, cooled down on dry ice and frozen to -80°C. Subsequently, 

14 µm thick sections were cut at a cryostat, collected on object slides and stored at -20°C 

until use. 

3.3.2 Iba1 staining 

To measure microgliosis in the dorsal horn, lumbar spinal cord sections of CB2KO, CB2-

LyM, CB2-Syn and floxed CB2 animals were used. Frozen slides were dried at 37°C for 30 

min, encircled with a PapPen and washed for 5 min in PBS buffer. For permeabilization, 

slides were incubated in 0.1% PBST for 15 min at room temperature (RT). To block 

unspecific binding sites of the secondary antibody, slides were transferred to a blocking 

solution (Blocking solution for Iba, see 2.2.2 ) for 2 h at RT. Primary anti-Iba1 antibody 

was diluted 1:500 in 10% donkey serum and 0.1% PBST, added to the tissue and left for 

incubation overnight at 4°C. To increase antibody binding, slides were heated on the next 

day to 37°C for 2 h and consequently washed 3 times, 10 min each with 0.1% PBST. Bound 

primary antibodies were visualized by addition of a fluorophore coupled secondary 

antibody (anti-rabbit AlexaFluor® 647), which was diluted 1:1000 in 0.1% PBST and 

incubated for 2 h at RT in the dark. Unbound antibodies were washed off 3 times with 

each 10 min of PBS. Before mounting, slides were washed in MilliQ water to remove any 

remaining salts. Slides were then mounted in DAPI Fluoromount G, covered and sealed. 

Stained slides were stored at -20°C until analysis. 

3.3.3 GFP staining 

Since the expression of CB2 is generally low and thus GFP is only weakly expressed, we 

used anti-GFP antibodies to amplify the GFP signal. To localized the expression of GFP, a 

double staining of GFP with either Iba1 or NeuN was performed. In the beginning, slides 

were dried at 37°C for 30 min and encircled with a PapPen. After a 5 min washing step 

with PBS, antigen retrieval was achieved by incubating the slides in citrate buffer for 40 
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min at 70°C. Slides were then washed again for 5 min in PBS and cell membranes were 

permeabilized with 0.5% PBST for 1 h at RT. Next, slides were washed again for 3 times 

10 min each with PBS and unspecific binding sites were blocked with blocking buffer 

(Blocking buffer for GFP, see 2.2.2) for 2 h at RT. Afterwards, slides were washed 3 x 10 

min with PBS, and incubated with the primary antibodies (anti-GFP, 1:1000 with either 

anti-Iba1, 1:500 or anti-NeuN-Biotin, 1:200) diluted in 0.025% PBST, at 4°C overnight. On 

the next day, primary antibodies were washed off 3 times, 10 min each, with PBS. The 

secondary antibodies were diluted in 0.025% PBST (anti-goat CyTM3, 1:1000 with either 

anti-rabbit AlexaFluor® 647, 1:1000 or APC Streptavidin, 1:300), added to the slides and 

incubated in the dark for 2 h at RT. Unbound secondary antibody was washed off again by 

3 times PBS washing, 10 min each and a final washing step in MilliQ water. Slides were 

then mounted in DAPI Fluoromount G, covered and sealed. Stained sections were stored 

at -20°C until analysis. 

3.3.4 Leptin staining 

To stain the spinal cord and sciatic nerves for the leptin receptor, a similar protocol as for 

the Iba1 staining was used. Primary antibodies against leptin receptor (diluted 1:40) and 

against F4/80 (diluted 1:100), a common macrophage marker, were used. Utilized 

secondary antibodies comprised anti-Goat CyTM (diluted 1:250) and anti-Rat AlexaFluor® 

488 (diluted 1:250). Stained tissue was stored at -20°C until analysis. 

3.3.5 Image acquisition and analysis 

Iba1 staining in spinal cord tissue of WT, CB2KO, CB2-LysM and CB2-Syn mice was 

analyzed with ImageJ software. For this, sections of both dorsal horns in the lumbar spinal 

cord were imaged with a confocal laser microscope (LSM SP8, DMI 6000 CS, Leica) using 

the same settings for laser intensities and gain in all spinal cord slides. Images were then 

imported to ImageJ and the green channel, representing the Iba1 signal, was analyzed. 

The threshold was adjusted once per genotype until most microglia but least background 

was visible and these threshold values were then applied for all images of the same 

genotype. To quantify the stained area, all particles with size > 1 – infinity and a circularity 

of 0 - 1 were analyzed. The resulting values represented stained Iba1 area in percent and 
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were compared between both treatments within the same genotype. Per genotype, 3-4 

animals were analyzed with each 3-4 sections of the dorsal horn on each side. 

3.4 Flow Cytometry 

3.4.1 Isolation of cells 

For the analysis of macrophages and neutrophils in the sciatic nerves and spinal cord of 

WT and CB2KO animals, a slightly adapted protocol from Nadeau (Nadeau et al. 2011) 

was used. In this procedure, mice were anaesthetized and quickly perfused with 20 ml 

ice-cold PBS solution to wash out most blood cells. Both sciatic nerves were isolated and 

cut into small segments. Tissue samples were transferred to tubes containing collection 

buffer and were kept light-protected on ice during the whole procedure. All tubes were 

centrifuged at 4500 rpm and the supernatant was discarded. Cell pellets were dissolved 

in a collagenase/ DNase- / elastase mix for sciatic nerve tissue (see 2.2.2 Buffers and 

solutions). Samples were incubated at 37°C for 60-90 min. The reaction was stopped with 

inactivation buffer and samples were further dissolved either by pipetting or applying the 

solution through a small needle. To filter the samples, a 40 µm cell strainer was used twice 

and washed with FACS buffer afterwards. Filtered samples were centrifuged at 6000 rpm 

for 5 min. The remaining pellet was washed with PBS and centrifuged again.  

3.4.2 Flow cytometry staining 

Samples were centrifuged and the remaining pellet was blocked for 15 min with Fc Block. 

After an additional centrifugation step, cells were stained with antibodies against the 

surface markers in a dilution of 1:200. Antibodies incubated for 15 min and were washed 

with FACS buffer by an additional centrifugation step. Pellets (except for single stained 

cells) were incubated for another 15 min in secondary antibodies or Streptavidin solution 

and washed again in FACS buffer with an additional centrifugation step. All cell pellets 

were dissolved in FACS buffer, measured at a FACS Canto II flow cytometer and analyzed 

with FlowJo software.  



Results 

44 
 

3.5 Measurement of endocannabinoids 

Spinal cords of ligated and sham operated Daglα KO, CB2KO and WT animals were 

collected 14 days post ligation and immediately frozen to -80°C. Extraction and 

quantification of endocannabinoids was performed by Dr. Laura Bindila (Prof. Beat Lutz, 

Institute of Physiological Chemistry, University Medical Center, Mainz) as previously 

described (Lomazzo et al. 2015). Endogenous 2-AG, AEA and AA levels were measured 

employing a 5500 QTrap® triple-quadrupole linear ion trap mass spectrometer (AB 

SCIEX). The endocannabinoid levels were quantified and normalized according to the 

relative protein weight, which was isolated.  

3.6 Statistical Analysis 

All data are presented as mean ± standard error of the mean (SEM). Data was calculated 

and analyzed by ImageJ (v1.47), Microsoft Excel (Office 2013) or Graphpad Prism (v.6.0c). 

If not stated otherwise, statistical analysis was calculated through multiple t-tests using 

the Holm-Sidak method or two-way ANOVA followed by a Bonferroni’s post-hoc test or a 

Tukey’s post-hoc test. Significance levels were set to p ≤ 0.05 . Stars represent statistical 

significance as followed: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 . 

4 Results 

4.1 Localization of CB2 receptor expression 

An important aim of this study was to localize the expression of the CB2 receptor in 

healthy and inflamed nervous tissue of mice. Since expression of CB2 is known to be 

relatively low in healthy nervous tissues (Schmöle et al. 2015) and existing antibodies 

against CB2 are not specific enough (Marchalant et al. 2014), many experiments failed to 

determine specific cellular location of CB2 receptor expression. Recently, the CB2 

receptor was detected via RNAscope ISH in hippocampal neurons (Stempel et al. 2016). 

To determine, whether the CB2 receptor is expressed on neurons or microglia (or both) 

with regard to neuropathic pain, I utilized the simple approach of analyzing the CB2-GFP 
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mouse line. For this, I concentrated on tissue that is relevant for the pain processing, such 

as the spinal cord, DRG and sciatic nerves  

4.1.1 Expression of GFP under the CB2 promoter 

The GFP-CB2 mouse expresses GFP under the CB2 receptor promoter and was previously 

shown to help identifying CB2 receptor expressing tissue (Schmöle et al. 2015). To 

validate and localize the expression of CB2 receptors in mice suffering from 

experimentally induced neuropathic pain, I stained for GFP in tissue slices of CB2-GFP 

mice 14 days after PSNL (Figure 6-9). First, I analyzed spleen tissue, as I expected a higher 

expression of CB2 in the spleen than in nervous tissue. The high expression of the CB2 

receptor in spleen tissue was described before (Buckley et al. 2000) and was used here to 

validate the GFP expression in CB2-GFP mice. In contrast to WT mice, CB2-GFP mice 

display a strong expression of GFP in the spleen, independent from ligation or sham 

surgery (Figure 6). Subsequently, pain relevant tissue was analyzed to detect any 

differences in CB2-GFP expression resulting from PSNL procedure (Figure 7). Tissue from 

WT mice served as a negative control to validate the GFP signal in CB2-GFP mice. A strong 

GFP signal was detected in ipsilateral sciatic nerve (SN) tissue of ligated CB2-GFP animals, 

whereas contralateral sciatic nerves or nerves of sham treated animals exhibited a weak 

or no GFP signal. 

 

 
 
Figure 6 Expression of the CB2 receptor in spleen. Representative GFP expression under a CB2 promoter is 
shown in ligated and sham treated CB2-GFP mice 14 days post PSNL. Ligated WT animals served as a control. GFP 
was stained with green fluorescent antibody in spleen and is detectable in ligated (Lig) and sham CB2-GFP 
animals. Cell nuclei were stained by DAPI (blue) (scale = 100µm). 
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Figure 7 Expression of the CB2 receptor in nervous tissue. Representative stainings of GFP (green) in the sciatic 
nerve (A), dorsal root ganglia (B) and lumbar spinal cord (C). GFP expression under a CB2 promoter is shown in 
ligated and sham treated CB2-GFP mice 14 days post PSNL. Ligated WT animals served as a control. Cell nuclei 
were stained with DAPI (blue) (scale = 100µm). 

 

 

Figure 8 Coexpression of GFP with Iba1. Representative staining of ligated GFP-CB2 animals 14 days post PSNL 
in ipsilateral sciatic nerve, ipsilateral DRG, and ipsilateral lumbar spinal cord. GFP (green) colocalized with Iba1 
(red), shown by white arrows. Some cells did express GFP but not Iba1 (white stars). Cell nuclei were stained with 
DAPI (blue) (scale = 100µm, Zoom scale = 10µm). 
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A weak expression of CB2-GFP was detected in ligated CB2-GFP mice sections of dorsal 

root ganglia (DRG) (Figure 7 B) or the dorsal horns of lumbar spinal cord (SC) (Figure 7 

C). Control stainings of WT mice in sciatic nerves, DRG or spinal cord showed no GFP 

signal in any sections (Figure 7). 

4.1.2 Localization of CB2-GFP in nociceptive tissue 

After validating the GFP expression in CB2-GFP mice, a double staining of GFP with Iba1 

or NeuN was performed to analyze colocalization of GFP with either myeloid cells (Iba1), 

such as macrophages and microglia, or neurons (NeuN) (Figure 8 and 9, respectively). 

Since GFP signal was strongest in ligated, ipsilateral tissue (see Figure 7), I only stained 

for colocalization in ipsilateral SN, DRG and SC tissue of ligated CB2-GFP mice 14 days 

after PSNL. Double staining with Iba1 (Figure 8) revealed a colocalization of GFP and Iba1 

in sciatic nerves, DRG and spinal cord tissue.  

 

 

Figure 9 Coexpression of GFP with NeuN. Representative staining of ligated GFP-CB2 animals 14 days post PSNL 
in ipsilateral sciatic nerve, ipsilateral DRG, and ipsilateral lumbar spinal cord. GFP (green) did not colocalize with 
NeuN (red). Arrows show GFP expressing cells. Cell nuclei were stained by DAPI (blue) (scale = 100µm, Zoom 
scale = 10µm). 
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When I co-stained GFP with NeuN (Figure 9), I detected no colocalization in any of the 

three tissue types (see zoomed images). Additionally, some cells displayed a strong GFP 

signal but were lacking any Iba1 or NeuN staining. Control stainings of ligated WT animals 

with GFP and Iba1 or NeuN did not reveal any GFP signal or colocalization (Figure 10).  

 

Figure 10 Control stainings of GFP with Iba1 or NeuN in ligated WT animals 14 days post PSNL. Ipsilateral sciatic 
nerves, ipsilateral dorsal root ganglia and ipsilateral lumbar spinal cord were stained for GFP (green) with Iba1 
(red, left panel) or with NeuN (red, right panel). Cell nuclei were stained with DAPI (blue) (scale = 10 µm). 

4.2 Cellular CB2 receptor expression in inflammatory 
tissue  

To further prove the significance of CB2 receptor expression on microglia and 

macrophages, in contrast to neurons, I evaluated different conditional CB2KO mice for 

their behavior during inflammation. Therefore, I analyzed mechanical allodynia after 

PSNL in complete CB2KO mice and conditional CB2-LysM or CB2-Syn mice, lacking the 

CB2 receptors in myeloid cells or neurons, respectively. 

4.2.1 Behavioral analysis of neuropathic pain development in CB2KO mice 

First I compared mechanical allodynia of WT with CB2KO animals. Beginning on day 3 

after PSNL, all ligated mice showed nociceptive responses on the ipsilateral hind paw 

(Figure 11). WT mice displayed a strong treatment effect [F1,60 = 292.1, p < 0.0001] and a 
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treatment x time interaction [F4,60 = 21.81, p < 0.0001]. Mechanical threshold of ligated 

WT mice decreased on day 3 and stayed constant until day 14. 

 

 

Figure 11 Mechanical allodynia of WT and CB2KO mice assessed with von Frey filaments basal and during 14 
days post PSNL in ipsi- and contralateral hind paws. Ligated CB2KO and WT mice showed increased ipsilateral 
hypersensitivity. Additionally, ligated CB2KO mice developed contralateral hypersensitivity in contrast to ligated 
WT mice. When compared to sham treated animals, ligated CB2KO animals showed a significant decreased 
mechanical threshold on both, ipsi- and contralateral side. n = 7-8 Statistical significance was determined with a 
two-way ANOVA and a Bonferroni’s post-hoc test. Stars represent differences between ligated and sham 
animals. *p < 0.05, ** p < 0.01, ***p < 0.001, Error bars show SEM 

 
Ligated CB2KO mice also developed an increased mechanical allodynia on the ipsilateral 

side that lasted for 14 days (Figure 11) [treatment F1,70 = 1063, p < 0.0001]. Additionally, 

the contralateral hind paw of ligated CB2KO mice displayed signs of neuropathic pain as 

well, beginning on day seven [treatment F1,70 = 92.41, p < 0.0001]. Both sides displayed 

significant treatment x time interaction [ipsi: F4,70 = 80.45, p < 0.0001; contra: F4,70 = 26.56, 

p < 0.0001]. In contrast, ligated WT animals did not develop any signs of contralateral 

mechanical allodynia at any time point. No treatment effect was detectable [F1,60 = 1.114, 

p = 0.2955]. Sham treated animals did not develop any mechanical allodynia on the ipsi- 

or contralateral side.  

4.2.2 Behavioral analysis of neuropathic pain development in CB2-LysM 
mice 

After validation of the pain phenotype in CB2KO mice, which showed increased 

mechanical allodynia on the contralateral side, I was interested to further specify the 

cellular localization of CB2 in neuropathic pain. Since the immunohistochemical data of 

CB2-GFP mice indicated an expression on microglia and macrophages, I generated mice 

with a myeloid-specific CB2 deletion using the Cre/ loxP recombination system. In this 

system, the Cre recombinase excises a DNA sequence, which is flanked by two loxP sites 
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through site-specific recombination (Hoess & Abremski 1984). Floxed CB2 mice (CB2-FL) 

contain two loxP sequences that flank the open reading frame of exon 2 in the Cnr2 gene 

(Stempel et al. 2016). For the generation of conditional CB2-LysM mice, CB2-FL mice were 

crossed with mice that express the Cre recombinase under the myeloid–specific promoter 

for the lysozyme gene M (LysM). The resulting offspring has a conditional CB2 deletion in 

microglia, macrophages and granulocytes (Clausen et al. 1999). 

 

 

Figure 12 Mechanical allodynia of CB2-FL and CB2-LysM mice measured in ipsi- and contralateral hind paws 
basal and during 14 days post PSNL. Ligated CB2-LysM mice developed increased ipsilateral hypersensitivity 
when compared to ligated CB2-FL animals. Moreover, ligated CB2-LysM animals showed signs of contralateral 
mechanical allodynia. Compared to sham treated animals, ligated CB2-LysM mice displayed significant reductions 
of mechanical threshold on ipsi- and contralateral sides. n = 7 on day 0, 7, 14 and n = 4 on day 3, 10. Statistical 
significance was determined with a two-way ANOVA and a Bonferroni’s post-hoc test. Stars represent differences 
between ligated and sham animals. * p < 0.05, ** p < 0.01, ***p < 0.001, Error bars show SEM 

 

At the age of 8-12 weeks, mechanical allodynia of CB2-LysM mice was tested after PSNL. 

Neuropathic pain development in CB2-LysM mice was similar to CB2KO animals (Figure 

12). Increased ipsilateral mechanical allodynia started on day 3 and was constant until 

day 14. A strong treatment effect was revealed for the ipsilateral hind paw [CB2-LysM: 

F1,48 = 427.9, p < 0.0001; CB2-FL: F1,48 = 249.7, p < 0.0001]. The contralateral side 

developed a similar pain response as seen in CB2KO mice, starting on day 7 after nerve 

ligation until day 14 [treatment F1,48 = 45.69, p < 0.0001]. Both sides showed a significant 

time x treatment effect [ipsi: F4,48 = 41.46, p < 0.0001; contra: F4,48 = 20.42, p < 0.0001]. 

Again, mechanical allodynia in control mice only developed on the ipsilateral side 

[treatment F1,48 = 249.7, p < 0.0001] and remained on basal levels on the contralateral 

side [treatment F1,48 = 2.225, p = 0.1423].  
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4.2.3 Behavioral analysis of neuropathic pain development in CB2-Syn 
mice 

To determine whether CB2 on neurons is relevant for the development of neuropathic 

pain, CB2-Syn mice were analyzed as well for mechanical allodynia. 

 

 

Figure 13 Mechanical allodynia of CB2-FL and CB2-Syn mice. Hind paws were measured ipsi- and contralateral, 
basal and during 14 days post PSNL. Ligated CB2-Syn mice and CB2-FL mice developed ipsilateral hypersensitivity 
starting on day 3 after PSNL. These reductions were statistical significant when compared to sham treated mice 
No change in mechanical allodynia was observed on the contralateral side for both genotypes. n = 8 Statistical 
significance was determined with a two-way ANOVA and a Bonferroni post-hoc test. Stars represent differences 
between ligated and sham animals. *p < 0.05, ** p < 0.01, ***p < 0.001, Error bars show SEM 

 
In CB2-Syn mice (Fig 13), mechanical allodynia was detected only on the ipsilateral side, 

similar as in ligated CB2-FL mice [treatment CB2-Syn: F1,70 = 294.3, p < 0.0001; CB2-FL: 

F1,70 = 534.1, p < 0.0001] and remained constant until day 14. The interaction of time x 

treatment revealed a significant effect for the ipsilateral hind paw of both genotypes [CB2-

Syn: F4,70 = 27.23, p < 0.0001; CB2-FL: F4,70 = 28.63, p < 0.000]. There was no significant 

treatment effect for the contralateral sides of both genotypes [CB2-Syn: F1,70 = 0.1315, p = 

0.7180; CB2-FL: F1,70 = 0.4214, p = 0.5184].  

4.2.4 Comparison of the behavioral analyses between all genotypes 

Finally, von Frey data of all analyzed CB2 knockout mice was compared, to display 

phenotypic differences. When comparing mechanical allodynia of all ligated genotypes, 

the differences on the ipsi- and contralateral sides between all genotypes become obvious 

(Figure 14). Moreover, a strong genotype effect was revealed by two-way ANOVA for both 

sides [ipsi: F3,124 = 29.35, p < 0.0001; contra: F3,124 = 59.21, p < 0.0001]. 
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Figure 14 Mechanical allodynia measured in ligated WT, CB2KO, CB2-LysM and CB2-Syn mice on both sides 
basal and during 14 days post PSNL. Mechanical threshold of previous experiments from CB2KO, CB2-LysM and 
CB2-Syn were combined to be compared between genotypes. CB2KO and CB2-LysM mice showed a significant 
decreased mechanical threshold on both, ipsi- and contralateral side, compared to WT animals. n = 4 - 8 Statistical 
significance was determined with a two-way ANOVA and multiple t-tests using the Holm-Sidak method for each 
day. Stars represent differences between CB2KO and WT mice. Hashtags indicate significance between CB2-LysM 
and WT mice. *p < 0.05, **p < 0.01, ***p < 0.001 # p < 0.05, ## p < 0.01 ### p < 0.001, Error bars show SEM. 

 
CB2KO and CB2-LysM mice developed an increased mechanical allodynia on the 

ipsilateral side after nerve ligation. Multiple t-tests showed statistical significance for 

CB2-LysM and CB2KO throughout all days on the ipsilateral side, when compared to WT 

animals [CB2KO: Day 3 p = 0.00353, Day 7 p = 0.00034, Day 10 and Day 14 p < 0.0001; 

CB2-LysM: Day 3 p = 0.03875, Day 7 p = 0.00564, Day 10 p = 0.02194, Day 14 p = 0.00445]. 

After analyzing the contralateral side with multiple t-tests, a significant difference for 

CB2KO compared to WT mice was revealed [Day 7, Day 10 and Day 14 p < 0.0001]. A 

similar significant reduction of mechanical threshold on the contralateral side was 

observed in CB2-LysM mice [Day 7 p = 0.00423, Day 10 and Day 14 p < 0.0001]. 

4.2.5 Molecular analysis of neuropathic pain development in cell-specific 
CB2 receptor KO mice 

To confirm the stronger development of neuropathic pain in CB2KO and CB2-LysM mice, 

I analyzed Iba1 expression, as a marker for microgliosis, in the dorsal horn of the lumbar 

spinal cord in WT, CB2KO, CB2-LysM and CB2-Syn mice (Figure 15).  
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Figure 15 Expression of microglia in the dorsal horn . Microglia were stained with Iba1 (green) in both sides of 
the dorsal horn in the lumbar spinal cord. Representative stainings of Iba1 in CB2KO, WT, CB2-LysM and CB2-Syn 
mice 14 days after PSNL (lig) or sham surgery (sham). Cell nuceli were stained with DAPI (blue). Arrows indicate 
Iba1 expressing cells (scale = 75µm). Analysis of Iba1 stained area in percent shows increase of Iba1 expression 
after ligation ipsilateral (WT, CB2KO and CB2-LysM) and contralateral (CB2KO, CB2-LysM). n = 3-4. Statistical 
significance was determined with multiple t-tests using the Holm Sidak Method. Stars represent differences 
between ligated and sham animals. *p < 0.05, **p < 0.01, ***p < 0.001, Error bars show SEM. 
 

When I analyzed Iba1 stained areas, all mice showed a profound increase in Iba1 signal 

on the ipsilateral side after nerve ligation [WT p = 0.0076; CB2KO p = 0.0032; CB2-LysM 

p < 0.0001; CB2-Syn p = 0.0598], whereas CB2-Syn mice failed to induce a statistical 

significant difference of Iba1 expression post PSNL. Additionally, CB2KO as well as CB2-

LysM mice displayed increased expression of the microglia marker Iba1 on both sides, 

ipsilateral and contralateral [CB2KO p = 0.0175; CB2-LysM p = 0.0425]. This was in 

contrast to WT mice, which did not exhibit an increased Iba1 signal on the contralateral 

side following nerve ligation [WT p = 0.9301]. Sham treated animals did not display any 

increased expression of Iba1 in both, ipsi- and contralateral sides of the dorsal horns.  

 To confirm the different development of neuropathic pain in WT and CB2KO mice, 

I analyzed infiltrating immune cells in the sciatic nerve on day 3 after PSNL (Figure 16).  

First, expression of CD45 as a marker for leukocytes was analyzed. Around 65% - 75% of 

all viable cells in ipsilateral ligated samples were found to be CD45⁺ (Figure 17 B). 



Results 

54 
 

Whereas the contralateral sides contained almost no CD45⁺ cells, I detected around 20% 

of these cells in ipsilateral sham samples. When I analyzed the results for statistical 

significance with a two-way ANOVA, I measured a significant treatment effect for the 

ipsilateral side [F1,12 = 96.96, p < 0.0001] but no genotype effect [F1,12 = 0.0867, p = 

0.7741]. This was in contrast to the contralateral side, which showed a statistical 

significant genotype effect [F1,12 = 5.999, p = 0.0306] but not treatment effect [F1,12 = 4.603, 

p = 0.0531]. Multiple comparisons between the samples on the ipsilateral side revealed 

that the amount of CD45+ cells significantly increased after nerve ligation for both 

genotypes [WT p < 0.0001; CB2KO p = 0.0003] but did not show any statistical significance 

between the genotypes [WT vs. CB2KO p = 0.8605].  

 

Figure 16 Analyzing for CD45+ cells in sciatic nerves three days post PSNL. A) Scatter blot of measured events. 
Cells were differentiated through forward scatter and a CD45 marker. The same gate was applied to all samples. 
B) Statistical comparison of cell percentages between treatment and genotype. Highest amount of CD45+ cells 
were measured in ligated ipsilateral samples for both genotypes. Data is shown in mean +/- SEM. Statistical 
analysis with 2-way ANOVA and a Tukey’s post-hoc test. * p < 0.05; *** p < 0.001; * equals difference between 
treatments. # < 0.05; # shows difference between genotypes. n = 4 

 
Moreover, the amount of CD45+ cells increased significantly on the contralateral side for 

WT but not for CB2KO animals [WT p = 0.0486; CB2KO p > 0.9999], which led to a 
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significant difference between genotypes for the ligated contralateral nerve [WT vs. 

CB2KO p = 0.035]I further analyzed all CD45+ cells for CD11b and Ly-6B. CD11b is also 

known as Integrin αM and is involved in adherence of monocytes, macrophages and 

granulocytes. It serves as a more specific marker for macrophages or dendritic cells 

(Murray & Wynn 2011). Ly-6B on the other hand, is found on neutrophils or M1 

monocytes and is lost upon differentiation into resident M2 macrophages. Therefore, it 

can be used to separate cell populations into neutrophils and M1 macrophages (Ly-6Bhigh) 

or into M2 macrophages (Ly-6Blow). I found two populations of CD45+ cells; CD11b+ and 

Ly-6Blow expressing cells and CD11b+ Ly-6Bhigh expressing cells (Figure 17 A). In sham 

contralateral samples of WT and CB2KO mice, amount of Ly-6Blow cells was around 11 – 

13% for both genotypes (Figure 17 B). In WT animals, the ipsilateral side contained higher 

numbers of Ly-6Blow cells than on the contralateral side. Ligated ipsilateral levels reached 

up to 35% of all CD45+ cells but did not differ statistically between treatment nor 

genotype, since CB2KO ipsilateral samples contained similar amounts of CD45+ cells 

[treatment F1,12 = 0.9151, p = 0.3576; genotype F1,12 = 0.3511, p = 0.5645].  
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Figure 17 Percentage of different immune cells in sciatic nerves three days after PSNL. A) Scatter blot of cells 
analyzed for CD11b and Ly-6B in ligated ipsilateral and contralateral samples of both genotypes. Blots show a 
clear difference of cell percentages between ipsi- and contralateral sides. B) Differences in percentage of CD11b+ 
and Ly-6Blow cells. Ipsilateral and contralateral ligated samples showed an increased amount of cells, whereas 
both contralateral nerve samples of CB2KO animals revealed only reduced amounts of CD11b+ and Ly-6Blow cells. 
C) CD11b+ and Ly-6Bhigh cell percentages of all samples. Ipsilateral samples show an equal increase after ligation, 
which was not observed for the contralateral side. Further analysis for Ly-6G and Ly-6C revealed populations of 
M1 macrophages (D) and neutrophils (E). This analysis was only possible on the ligated ipsilateral side, since 
other samples contained too few cells to analyze. For both cell populations, percentages were increased after 
nerve ligation in WT and CB2KO animals. Data is expressed as mean +/- SEM. Statistical analysis was performed 
with a two-way ANOVA and a Tukey’s post-hoc test. ** p < 0.01; *** p < 0.001 * shows differences in treatment. 
# p < 0.05 # indicates differences between both genotypes. n = 4 

 
This was in contrast to the ligated, contralateral side, where Ly-6Blow cell number 

significantly increased in WT animals after nerve ligation [p = 0.0057] but remained on 

basal levels in CB2KO mice [treatment F1,12 =10.37, p = 0.0073; genotype F1,12 = 14.70, p = 

0.0024]. 

 I detected an equal increase on the ipsilateral side for CD11b+ Ly-6Bhigh cells in both 

genotypes after nerve ligation (Figure 17 C). Around 30% of all CD45+ cells in ligated, 
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ipsilateral sciatic nerves expressed Ly-6B and CD11b. This rise was independent from the 

genotype but dependent from treatment [treatment F1,12 = 67.10, p < 0.0001 ; genotype 

F1,12 = 0.0113, p = 0.9170], as sham operated animals exhibited only minor increase in Ly-

6Bhigh cells on the ipsilateral side and almost no change on the contralateral side. 

Contralateral ligated nerve samples of WT animals contained three times more Ly-6Bhigh 

cells than their respective sham controls [WT p = 0.0463] and two times more than CB2KO 

mice. Therefore, I detected a statistical significant genotype [F1,12 = 4.828, p = 0.0484] and 

treatment [F1,12 = 9.455, p = 0.0096] effect but no interaction of these two. 

 I further analyzed CD11b+ and Ly-6Bhigh cells for the markers Ly-6C and Ly-6G to 

differentiate M1 macrophages and neutrophil populations among the analyzed cells 

(Figure 17 D, E). Ly-6G is a common marker for neutrophils and Ly-6C is expressed in 

both, macrophages and neutrophils. (Rose et al. 2012). Ly-6Chigh and Ly-6Ghigh cells could 

be assigned as neutrophils and the percentages of these cells were increased in ipsilateral 

samples after ligation for both genotypes but significantly differed only in WT mice 

(Figure 17 E) [WT p = 0.0024]. Ipsilateral nerves of sham treated CB2KO mice exhibited 

a higher percentage of these cells than in WT animals [p = 0.0350]. Overall, I found a 

significant treatment [F1,11 = 23.39, p= 0.0005] and genotype effect [F1,11 = 5.836, p = 

0.0343] for neutrophil populations in ipsilateral samples. Additionally, the interaction of 

these two effects was significant, too [F1,11 = 5.354, p = 0.0410]. Cell number of CD11b+ 

Ly-6Bhigh cells was too low in contralateral samples for further analysis. M1 macrophages 

were determined as Ly-6Chigh and Ly-6Glow cells and represented 60% – 66% of all 

previously analyzed CD11b+ and Ly-6Bhigh cells in ligated, ipsilateral samples. Sham 

ipsilateral nerves comprised only around 20% of these cell populations and were 

statistical significant to the ligated samples [WT lig p < 0.0001; CB2KO lig p < 0.0001]. 

Therefore, I detected a treatment [F1,12 = 162.6, p < 0.0001] but no genotype effect [F1,12 = 

0.5388, p = 0.4770] when analyzing the results with a two-way ANOVA. Again, 

contralateral samples did not contain enough cells to be analyzed.  

 Overall, I detected a statistical difference only for the contralateral samples 

between CB2KO and WT mice on day 3 after PSNL, showing a reduced amount of immune 

cells in contralateral nerves of CB2KO mice. I was further interested in this difference and 

since the contralateral pain in CB2KO animals is robust from day 8 on (see Figure 11), I 

evaluated immune cells on day 8 after nerve ligation in sciatic nerves of both genotypes.  
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 After analyzing all living cells for CD45, a difference between treatments became 

obvious (Figure 18 A). Again, ipsilateral samples of ligated animals contained most of all 

analyzed CD45+ cells and were significantly increased after nerve ligation [WT p = 0.0001 

; CB2KO p = 0.0003 ], but the overall amount of CD45+ cells (30-40%) was less than on 

day 3 (60-70%; see Figure 16 B). Consequently, I detected a treatment [F1,12 = 81.22, p < 

0.0001] but no genotype effect [F1,12 = 0.2219, p = 0.6460] when analyzing the results with 

a two-way ANOVA. Ligated contralateral or both sham treated samples did not comprise 

more than 10% of these cell populations and showed no significant effect for treatment 

or genotype. This was in contrast to CD45+ cell numbers on day 3, when even ipsilateral 

sham samples showed an increased amount of CD45+ cells.  

 

 

Figure 18 Analysis of viable CD45+ cells in sciatic nerves eight days after PSNL. A) Scatter blot of measured 
events. Cells were differentiated through forward scatter and a CD45 marker. The same gate was applied to all 
samples. B) Statistical comparison of cell percentages between treatment and genotype. Highest amount of 
CD45+ cells were measured in ligated ipsilateral samples for both genotypes. Data is shown in mean +/- SEM. 
Statistical analysis with two-way ANOVA and a Tukey’s post-hoc test. *** p < 0.001; * equals difference between 
treatments. n = 4 
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Because of the low amount of CD45+ cells measured on day 8, further analysis of CD11b 

and Ly-6B was difficult. Analysis of these two markers was only possible in ligated 

ipsilateral samples, as other nerve samples did not contain enough CD45+ cells (Figure 

19). CD11b+ and Ly-6Blow cells reached a percentage of around 18 - 21% in both, WT and 

CB2KO samples. CD11b+ and Ly-6Bhigh cells only comprised 12 - 13% of all CD45+ cells. 

Unfortunately, the amount of analyzed cells was too low to further analyze for Ly-6G and 

Ly-6G, as on day 3. Again, I did not detect any statistical differences between WT and 

CB2KO animals in measured cell percentages. 

 

 

Figure 19 Amount of different immune cells in sciatic nerves eight days after PSNL. A) Scatter blot of cells 
analyzed for CD11b and Ly-6B in ligated ipsilateral and contralateral samples of both genotypes. Blots show a 
clear difference of cell percentages between ipsi- and contralateral sides. B) No statistical differences in 
percentage of CD11b+ and Ly-6Blow cells in ligated ipsilateral samples between WT and CB2KO animals C) CD11b+ 
and Ly-6Bhigh cell percentages in ligated ipsilateral samples. There was no significant difference of cell 
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percentages between both genotypes. Data is expressed as mean +/- SEM. Statistical analysis was performed 
with student’s t-test. n = 4 

4.3 Leptin receptor expression in the sciatic nerve of 
ligated mice 

Previous studies showed a relation between leptin and the CB2 receptor (Lopez-

Rodriguez et al. 2016). To investigate this relation, leptin receptor expression was 

analyzed by immunohistochemistry in the ipsi- and contralateral sciatic nerve of WT and 

CB2KO mice (Figure 19).  

 

 

Figure 16 Coexpression of leptin receptor (red) with F4/80 (green) 14 days post PSNL in the sciatic nerve in WT 
and CB2KO mice. Leptin receptor signal was highest and colocalized with the macrophage marker F4/80 in 
ipsilateral sciatic nerve of CB2KO mice compared to WT mice. Cell nuclei were stained with DAPI (blue). Arrows 
show coexpressing cells. (scale = 250 µm, zoom scale = 50 µm). 

 

Signal of leptin receptor was increased in the ipsilateral sciatic nerve of CB2KO mice, in 

contrast to WT animals, which did not show any staining of the leptin receptor. Moreover, 

leptin receptor signal overlapped with F4/80, showing a coexpression of these two 
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proteins. F4/80 signal was increased as well on the ipsilateral side of CB2KO mice 

compared to the contralateral side or to samples from WT animals. 

 

 

 

Figure 170 Coexpression of leptin receptor (red) with F4/80 (green) 14 days post PSNL in the sciatic nerve in 
WT, CB2-LysM and CB2-Syn mice. Leptin receptor signal was highest in ipsilateral sciatic nerve of CB2-LysM mice 
compared to WT or CB2-Syn mice and colocalized with the macrophage marker F4/80 (see white arrows). Cell 
nuclei were stained with DAPI (blue) Ipsilateral ruptures of the nerve indicate the site of ligation. (scale = 250 
µm, 63x zoom scale = 50 µm). 

 
To examine if conditional CB2 knock-out mice share this phenotype, leptin receptor 

expression was analyzed by immunohistochemistry in the ipsi- and contralateral sciatic 
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nerve of WT, CB2-LysM and CB2-Syn mice (Figure 20). Similar to the previous findings of 

CB2KO mice, leptin receptor expression increased on the ipsilateral side of CB2-LysM 

animals. Moreover, signal of leptin receptors colocalized with the common macrophage 

marker F4/80. As expected, CB2-Syn and WT mice did not show any differences in leptin 

receptor expression.  

4.4 Daglα in neuroinflammation and pain 

Since Daglα is the main enzyme in the biosynthesis of 2-AG, a major ligand for the CB2 

receptor, I suspected this enzyme to have an important role in inflammation and pain. 

Therefore, Daglα KO mice were as well analyzed for their phenotype in neuropathic pain 

processing. 

4.4.1 Daglα in neuropathic mice 

To investigate the relation between the two main endocannabinoids AEA and 2-AG, the 

CB2 receptor and the synthesizing enzyme Daglα, I measured endocannabinoid levels in 

WT, CB2KO and Daglα KO mice (Figure 21). Spinal cord tissue was analyzed ipsi- and 

contralateral, 14 days after nerve ligation for 2-AG, arachidonic acid and anandamide 

levels.  

 Levels of 2-AG did not differ between both sides or between treatments in CB2KO 

animals. Ligated Daglα KO mice showed a tendency of higher 2-AG amounts compared to 

sham mice, which was more obvious on the contralateral side [p = 0.0507]. When 

analyzed with a two-way ANOVA, I detected an overall significant treatment effect for 

these samples [F1,4 = 27.02 p = 0.0065]. Nerve ligation in WT mice increased 2-AG levels. 

After analysis with a two-way ANOVA, I detected a clear treatment effect [F1,4 = 9.127 p 

= 0.0391]. Moreover, WT animals contained over three times more 2-AG than Daglα mice.  

 Arachidonic acid levels were equally changed as 2-AG. Again, I could not detect any 

differences in CB2KO mice. Levels of Daglα KO animals were reduced but did not differ 

between treatments. Arachidonic acid levels slightly increased after nerve ligation in WT 

mice on the ipsilateral side of the spinal cord and significantly increased on the 

contralateral side [p = 0.0155]. Consequently, I detected a small treatment effect for AA in 

WT mice [F1,4 = 10.88 p = 0.0300].   
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Figure 181 Endocannabinoid levels measured in the ipsi- and contralateral spinal cord of CB2KO, Daglα KO and 
WT mice 14 days after nerve ligation or sham surgery. Anandamide, 2-AG and arachidonic acid levels were 
measured with mass spectrometry and compared between treatments and sides of the spinal cord. In general, 
nerve ligation induced increased levels of all endocannabinoids in WT and Daglα KO mice but failed to induce a 
difference in CB2KO animals. Overall, levels were reduced in Daglα KO mice. Statistical significance was measured 
with multiple t-tests using the Holm-Sidak method and a two-way ANOVA. * p < 0.05, Data is expressed in mean 
+/- SEM. n = 2 

 
The endocannabinoid anandamide did not change in CB2KO mice after nerve ligation, but 

overall levels of anandamide were higher than in WT or Daglα KO animals. Daglα KO and 

WT mice both showed significant differences of anandamide levels between treatments 

[treatment effect in Daglα KO F1,4 = 8.706 p = 0.0419; WT F1,4 = 62.91 p = 0.0014]. Daglα 

KO mice revealed significant increases in anandamide on the contralateral side [p = 

0.0172]. In WT mice, both sides showed a significant increase of anandamide levels after 

nerve ligation [ipsi p = 0.0158; contra p = 0.0414].  
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 Overall, endocannabinoid levels of CB2KO mice were not changed. Daglα KO mice 

showed reduced levels of all three measured endocannabinoids, whereas levels of WT 

mice always increased after nerve ligation. Endocannabinoid levels could not be analyzed 

statistically between each genotype, since the measurements of endocannabinoids were 

performed in different experiments. 

4.4.2 Behavioral analysis of Daglα KO mice in pain 

To analyze inflammatory pain in Daglα KO mice, I performed the formalin test (Figure 22). 

Pain responses such as licking or shaking were counted in Daglα KO and Daglα FL mice 

after formalin injection.  

 

Figure 192 Inflammatory pain in Daglα KO and Dala FL mice. A) Pain responses were recorded and averaged for 
every minute over a total of 45 minutes. Except for the first minute, no statistical difference was observed 
between both genotypes. B) Differentiation into early and late phase did not reveal any statistical differences 
between Dagla KO and FL mice. n = 7 Statistical significance was calculated using 2-way ANOVA and multiple t 
tests. * p < 0.05 

 
Overall, I could not detect any differences between both genotypes but only found a strong 

time effect [time F34,420 = 6.158 p < 0.0001 genotype F1,420 = 0.3375 p = 0.5616]. Even after 

separating the two inflammatory phases into early (0-7 min) and late (15-45 min) phase, 

no statistical significant difference was found between Daglα KO and Daglα FL mice. 

 Thermal nociception was studied with a hot plate test in Daglα KO and Daglα FL 

animals (Figure 23). Mice were placed on a hot surface and nociceptive responses such as 

shacking, licking or jumping were measured. Latency until the first reaction did not differ 

significantly between genotypes [p = 0.3495], whereas Daglα KO mice had a slightly 

reduced latency. When comparing between the different reactions, I detected a significant 
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difference in the licking reaction between both genotypes [p = 0.0231]. Daglα KO mice 

seemed to response in a different way to thermal pain as Daglα FL mice. 

 

Figure 23 Thermal nociception in Daglα KO and Daglα FL mice. Latency in seconds was measured on a 52°C hot 
surface for 30 seconds or until a jumping reaction. Daglα KO mice showed a slight increased preference for licking 
behavior as a nociceptive response but overall did not differ significantly to Daglα FL mice in the latency for the 
first sign of pain. Data is expressed as mean +/- SEM. Statistical significance was analyzed with multiple t-tests 
using the Holm-Sidak method or an unpaired t-test for first sign of pain. * p < 0.05; n = 13 (WT), n = 18 (KO) 

 
Since I could not determine a strong genotype effect in the hot plate test, I analyzed the 

thermal nociceptive threshold via a plantar test (Hargreaves method) (Figure 24). This 

method allows mice to react to increasing thermal stimuli on the hind paw and is more 

sensitive.  

 In contrast to the results of the hot plate test, Daglα KO mice seemed to react 

slower than Daglα FL mice. Their withdrawal latency was slightly increased, but this 

difference was not statistical significant when analyzed with an unpaired t-test [ p = 

0.0833]. 

 

 

Figure 204 Hargreaves test for thermal nociception in Daglα KO and FL mice. Latency in seconds was measured 
until first nociceptive behavior. There was no statistical significant difference between both genotypes. Statistical 
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analysis was calculated with an unpaired t-test. Data is expressed as mean +/- SEM n = 28 (Daglα FL) n = 32 (Daglα 
KO). 

 

Finally, mechanical allodynia was assessed with an aesthesiometer in Daglα KO and Daglα 

FL animals after PSNL (Figure 25). I measured the applied force of an automated filament, 

which elevated with increasing strength against the hind paw of the animal. Basal values 

before the surgery were set as 100%. The ipsilateral hind paw of ligated animals, both 

Daglα KO and FL, reacted already to low levels of applied force. Consequently, I detected 

a significant treatment effect for the ipsilateral side [Daglα KO F1,92 = 29.70 p < 0.0001; 

Daglα FL F1,92 = 21.20 p < 0.0001]. The increased mechanical allodynia after PSNL was 

observed for the whole period of 14 days. Therefore, both genotypes showed a significant 

time effect when measured with a two-way ANOVA [Daglα KO F3,92 = 5.323 p = 0.002; 

Daglα FL F3,92 = 7.627 p = 0.0001]. Neither Daglα FL nor Daglα KO mice showed any 

contralateral mechanical allodynia [treatment effect: Daglα FL F1,92 = 0.4804 p = 0.4900; 

Daglα KO F1,92 = 2.979 p = 0.0877]. Additionally, sham treated mice did not show any signs 

of neuropathic pain after nerve ligation.  

 Overall, Daglα KO mice did not react different than control Daglα FL mice and 

showed no abnormal pain phenotype. 

 

Figure 25 Mechanical allodynia in Daglα KO and Daglα FL mice assessed with an aesthesiometer basal and 
during 14 days post PSNL in ipsi- and contralateral hind paws. Ligated animals showed increased ipsilateral 
allodynia compared to sham treated mice. No statistical significant difference between genotypes, nor an 
increased mechanical allodynia on the contralateral side was detected. n=7-15 Statistical significance was 
determined with a two-way ANOVA and Bonferroni post-hoc test. Stars represent differences between ligated 
ipsilateral and ligated contralateral paws. *p<0.05, ** p<0.01, ***p<0.001 Error bars show SEM. 

5 Discussion 

In this study, different transgenic CB2 receptor mouse lines were used to address the role 

of CB2 in neuroinflammation and neuropathic pain induced by PSNL. The localization of 
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the CB2 receptor on microglia and macrophages was confirmed in colocalization studies 

of CB2-GFP mouse tissue with Iba1 or NeuN antibodies. Moreover, it was shown that the 

development of contralateral pain is not limited to constitutive CB2KO animals but 

appears in a similar manner in myeloid-specific CB2-LysM mice. Additionally, these 

contralateral effects were absent in neuron-specific CB2-Syn animals. According to this, 

CB2KO and CB2-LysM mice exhibited the same phenotype in mechanical allodynia of their 

hind paws and in microgliosis of the lumbar spinal cord, indicating a stronger 

inflammation on the ipsilateral side and a weak but consistent contralateral inflammation. 

On top of this, CB2-LysM animals showed the same increase in leptin receptor signal in 

the sciatic nerve as seen before in CB2KO mice. In the second part, the influence of DAGLα, 

the main synthesizing enzyme for 2-AG, was investigated on thermal, mechanical and 

inflammatory pain.  

5.1  CB2-GFP expression in microglia and neurons 

Using the CB2-GFP mouse strain that was recently generated (Schmöle et al. 2015), is an 

elaborate way to visualize CB2 receptor expression. As known since some years ago, the 

CB2 receptor is detected on peripheral immune cells, with the highest expression in B 

cells and natural killer cells, to a lesser extent in monocytes and neutrophils and with the 

lowest expression found in T lymphocytes (Fernández-Ruiz et al. 2007, Galiègue et al. 

1995). Analysis of GFP expression revealed a generally low level in nervous tissue but 

showed an increase of GFP signal after PSNL, with the highest levels found in the 

ipsilateral ligated sciatic nerve. An increase of GFP signal after nerve ligation was 

expected, as several studies already showed an inflammation dependent upregulation of 

the CB2 receptor in the spinal cord after chronic pain (Zhang et al. 2003) and after 

brachial plexus avulsion (Paszcuk et al. 2011). Through colocalization studies with Iba1 

and NeuN antibodies, I could detect CB2 receptor expression in nervous tissue on 

microglia and macrophages but not on neuronal cells. Expression of the CB2 receptor on 

microglia was proposed before, through ISH in the spinal cord (Zhang et al. 2003) or 

through analysis of CB2 expression in microglia and macrophage cell culture. In the latter 

study, CB2 mRNA and protein was detected in activated monocytes (Carlisle et al. 2002). 

CB2 mRNA was also found in DRG and spinal cord tissue, as well as in microglia cells 

cultured from the spinal cord (Beltramo et al. 2006). A study by Wotherspoon suggested 



Discussion 

68 
 

CB2 protein expression on sensory neurons in the proximal side of the sciatic nerve 

(Wotherspoon et al. 2005), but since the efficiency of CB2 antibodies is highly debatable 

(Ashton 2011, Marchalant et al. 2014), these results have to be interpreted with caution. 

In contrast to previous studies, analysis of CB2-GFP animals successfully confirmed Iba1-

colocalized GFP signal in the DRG, spinal cord and sciatic nerves through 

immunohistochemistry. Additional to GFP-Iba1 positive cells, a GFP signal was detected 

in cells, which were negative for Iba1 and NeuN. These other GFP positive cells can be T 

lymphocytes, as they are known to infiltrate the inflamed tissue, too and CB2 expression 

was confirmed on T cells before (Schatz et al. 1997). Other possible CB2 – expressing cell 

types would include Schwann cells, where CB2 expression was not confirmed yet. 

Neutrophils are as well known to express the CB2 receptor but are vanished 8 days after 

nerve injury (Perkins & Tracey 2000).   

 By utilizing the CB2-GFP mouse strain, CB2 expression was specifically located to 

microglia and macrophages in DRG, spinal cord and sciatic nerve tissue after induction of 

neuropathic pain. In contrast, no colocalization of CB2 was found with the neuronal 

marker NeuN. Moreover, an upregulation of the CB2 receptor after nerve injury was 

confirmed, which was most profound in the ipsilateral sciatic nerve.  

5.2 Mechanical allodynia in constitutional or conditional 
CB2KO mice 

In accordance to the immunohistological findings, a distinguishable phenotype after 

nerve ligation was detected in myeloid-specific CB2-LysM mice that was similar to the 

previously reported phenotype of CB2KO animals (Racz et al. 2008a).  

CB2-LysM animals have a cell-sepcific deletion of the Cnr2 gene in monocytes, 

mature macrophages, microglia and granulocytes. Even though it was shown that the 

promoter is only active in ~40% of all microglia (Goldmann et al. 2013), I could still detect 

a distinct phenotype. This indicates a strong response of the CB2 deletion, as already a 

40% loss of CB2 induces increased mechanical allodynia. It should be noted, that the LysM 

Cre is also active in neutrophils. Whether CB2 is expressed on neutrophils, is still under 

debate. Some studies did not find any CB2 protein expression in neutrophils (Deusch et 

al. 2003), but others did detect CB2 cell surface expression in human samples by flow 

cytometry (Kurihara et al. 2006). Further analysis of CB2 on neutrophils is still needed. 
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As I expected the CB2 expression on microglia and macrophages to be more relevant in 

the development of neuropathic pain, I concentrated on the aspect of microglial (and 

macrophage) CB2 deletion.  

After induction of neuropathic pain, both CB2KO and CB2-LysM mice developed 

significant mechanical allodynia on the contralateral side and showed increased 

ipsilateral pain compared to WT mice as well. A detectable increase in pain 

hypersensitivity on the ipsilateral side of WT mice after partial sciatic nerve ligation was 

described earlier by Malmberg and Basbaum (Malmberg & Basbaum 1998), but an 

increased sensitivity on the contralateral hind paw was first detected in 2008 in CB2KO 

mice (Racz et al. 2008a). In this study, I could confirm the contralateral allodynia in 

CB2KO mice and even detect a slightly increased ipsilateral pain as well. Moreover, CB2-

LysM mice developed the same phenotype as seen in CB2KO animals. Additionally, 

behavioral results obtained by the neuronal-specific CB2-Syn mice confirm the 

hypothesis that CB2 expression on neurons has no relevance for the development of 

contralateral pain. 

5.3 Microglia expression in the dorsal spinal cord  

Before, I could demonstrate that CB2-LysM mice developed a similar neuropathic pain 

reaction as seen in CB2KO animals. Meanwhile, CB2-Syn mice showed no distinct pain 

phenotype, comparable to the WT controls. To address the phenotype of both conditional 

CB2 mouse lines further, I analyzed microgliosis in the lumbar dorsal horn after nerve 

lgation. Since previous studies showed an increase in microgliosis of CB2KO animals on 

the contralateral side (Racz et al. 2008a), I hypothesized to see the same appearance of 

contralateral microgliosis in CB2-LysM animals, too. When analyzing the ipsi- and 

contralateral dorsal horns 14 days after nerve ligation, Iba1 signal was increased on the 

ipsilateral side of all measured genotypes (WT, CB2KO, CB2-LysM and CB2-Syn) and 

additionally increased on the contralateral side of CB2KO and CB2-LysM mice. It was 

shown before that microglia signal is increased in the ipsilateral dorsal horn after 

neuropathic pain, since this cell type is essential for the induction and persistence of 

chronic pain (Zhang et al. 2003). After peripheral nerve damage, signal molecules that 

activate microglia are released from injured neurons in the spinal cord. This results in a 

shift of the inflammation from peripheral to central sites and the development of a chronic 
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disease (Scholz & Woolf 2007). The contralateral increase in microglial signal confirms 

the development of contralateral neuroinflammation in CB2KO and CB2-LysM mice, as it 

was detected before by an increased mechanical allodynia on the contralateral side.  

 The phenomenon of contralateral or mirror-image pain, which was detected in 

CB2KO and CB2-LysM mice, has already been described in humans and rodents in several 

publications (Huang & Yu 2010, Koltzenburg et al. 1999). Even though the molecular 

mechanism are still unclear, studies suggested a role of microglia in the development of 

mirror-image pain (Milligan et al. 2003, Schreiber et al. 2008). It is important to note that 

all studies on mirror-image pain so far were conducted on wild-type mice or rats, which 

were missing any transgenic modification. This proves the fact that contralateral pain is 

generally able to develop independently from any modification of the CB2 receptor. It also 

should be noted that mirror-image pain was never observed in WT animals who 

developed neuropathic pain through a partial sciatic nerve ligation but rather after spinal 

nerve ligation, chronic construction injury or unilateral construction of the infraorbital 

nerve (ARGUIS et al. 2008, Chichorro et al. 2006, Paulson et al. 2000). It is highly plausible 

that these pain models induce a stronger inflammation than the partial sciatic nerve 

ligation, which then causes the mirror-image pain even in WT animals. A possible 

explanation for the observed contralateral pain in CB2KO and CB2-LysM mice might be 

an increased inflammation to the nerve ligation as a consequence of a missing anti-

inflammatory CB2 response. Our results suggest that the absent suppression of 

inflammation by CB2 enhances the inflammation and consequently induces contralateral 

pain. Moreover, I suspect an important role for microglia in this process, since 

contralateral pain was observed in the microglia-specific KO mice (CB2-LysM) as well. 

 The anti-inflammatory effects of CB2 receptor activation were already described 

before. In 1996, Coffey observed a reduced production of proinflammatory nitric oxide 

(NO) by macrophages, after stimulation with THC (Coffey et al. 1996). A similar reduction 

of NO release by microglia and an increased expression of M2 markers was observed in 

response to anandamide treatment (Malek et al. 2015). Furthermore, selective CB2 

activation reduced extracellular signal-regulated kinase, tumor necrosis factor alpha 

(TNF-α) expression, and microglial migration (Romero-Sandoval et al. 2009). Since CB2 

receptor activation acts anti-inflammatory on macrophages and microglia, an increase of 

inflammation in mice lacking CB2 was suspected. Indeed, several studies demonstrated 

an increased inflammation in CB2KO mice, comprising an increase of TNF-α, inducible 
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nitric oxide synthase (iNOS), and intercellular adhesion molecule 1 mRNA. Additionally, 

CB2KO mice showed an increased permeability of the blood-brain barrier after traumatic 

brain injury (Amenta et al. 2014). After myocardial ischemia-reperfusion injury, CB2KO 

animals developed a stronger inflammation and an increased infiltration of macrophages 

(Duerr et al. 2015). In a study of trinitrobenzene sulfonic acid (TNBS) – induced colitis, 

CB2KO animals produced a stronger colitis reaction and an increased secretion of TNF-α 

and interleukin-β (Engel et al. 2010). Overall, clear evidence supports the hypothesis that 

the induction of contralateral pain is promoted by the lack of the anti-inflammatory CB2 

receptor. 

5.4 Analysis of immune cells in the sciatic nerve  

To compare immune cells in inflamed sciatic nerve tissue between WT and CB2KO 

animals, nerve samples were isolated and immune cells were measured by flow 

cytometry. I suspected to see a large difference in cell amount and types three days after 

nerve ligation, as the first symptoms of neuropathic pain were already measured after 

three days. Since the CB2 receptor is important for immune cell activation and migration 

(Turcotte et al. 2016), a lack of CB2 should interfere with the profile of measured cells in 

the inflamed sciatic nerve. The percentage of CD45+ cells showed a strong increase on the 

ipsilateral side after nerve ligation but were on equally high levels in both genotypes. In 

general, an increase of CD45+ cells, like monocytes or neutrophils, at the site of 

inflammation was shown before (Nadeau et al. 2011). Surprisingly, ipsilateral samples of 

sham treated mice also contained around 20% of CD45+ cells, which might be a result of 

the surgical procedure itself. A small increase was as well observed in contralateral 

samples of WT mice after ligation, which was significantly higher than in CB2KO animals.  

Cells were further analyzed for “M1 and M2“ monocytes and neutrophils. The clear 

definition of M1 or M2 macrophages rather reflects the case in vitro but cannot be applied 

to the real situation in vivo. Research in the past years has discovered many more 

activation states in between the M1 and M2 states (M2a, M2b,..), whereas cells with a M1-

like state express more proinflammatory genes and M2-like cells induce rather anti-

inflammatory responses (Martinez & Gordon 2014). Recent publications suggest a new 

nomenclature that reflects the spectrum of different activation states more efficiently. In 

this nomenclature, macrophages should be named according to their stimulation factors 
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(in case of in vitro experiments) or characterized markers (for ex vivo samples)(Murray 

et al. 2014). For convenience, the analyzed cells in the following paragraph will be still 

called M1-like or M2-like but at the same time referring to the markers, which 

characterized these cell populations.  

A distinguishable difference of all measured cells was detected between both 

genotypes. Independent of the treatment, ipsilateral samples contained increased 

amounts of CD11b+ and Ly-6Blow (M2-like) cells compared to their respective 

contralateral samples In CB2KO animals, no differences between ligated and sham 

treatment were measured. In contrast, an increase of M2-like cells was measured after 

nerve ligation in WT mice. Infiltration of M2-like as well as M1-like macrophages to a 

peripheral nerve after nerve injury was published before by Komori and colleagues 

(Komori et al. 2011). Surprisingly, an increased amount of M2-like cells was measured as 

well on the contralateral side of ligated WT samples. These levels were above the basal 

amount of resident M2-like cells, which was around 10% of all measured cells. On the 

contrary, the amount of M2-like cells in contralateral ligated samples of CB2KO mice 

remained on basal levels. A possible explanation for the elevated M2-like cell levels in WT 

mice may be a CB2 receptor promoted shift from M1-like to M2-like, which would be 

lacking in CB2 deficient mice. A CB2-dependent shift from M1 to M2 was already observed 

in liver macrophages after stimulating with the CB2 agonist JWH-133 (Tomar et al. 2015). 

In another study, a favor of the M2 state in microglia culture after addition of 

endocannabinoids and on the contrary a lack of M2 markers in microglia of CB2KO mice 

supports a CB2-dependent shift to the M2 state (Mecha et al. 2015). 

In contrast to this hypothesis are the relatively high levels of M2-like cells in ligated 

ipsilateral samples of CB2KO mice, which would be expected to be reduced as well. 

Additionally, I would expect more M1-like cells in CB2KO mice, which would reflect in 

increased cell percentages of CD11b+ and Ly-6Bhigh cells, but this increase was not 

detected. The levels of CD11b+ and Ly-6Bhigh cells were generally lower in CB2KO mice 

compared to WT animals. On the contralateral side, WT mice showed even an increase of 

CD11b+ and Ly-6Bhigh cells after nerve ligation. In general, this cell population includes 

M1-like macrophages and neutrophils. Neutrophils are known to be one of the first type 

of infiltrating immune cells after peripheral nerve injury (Perkins & Tracey 2000). After 

release of cytokines, like CCL2 or macrophage inflammatory protein-1α from neutrophils 

and damaged neurons, infiltration of macrophages into the inflamed tissue follows 
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(Scholz & Woolf 2007). Therefore, this augmentation was surprising, since no sign of 

contralateral hypersensitivity was measured in WT animals. After characterizing for the 

marker Ly-6G, which differentiates between M1-like macrophages and neutrophils, no 

statistical difference between WT and CB2KO animals was detected in any ligated, 

ipsilateral samples. Contralateral sciatic nerve tissue contained not enough cells to 

further differentiate between these two cell types and was neglected.  

 Immune cells were also investigated 8 days after nerve ligation but contained less 

cells than on day 3. CD45+ cells were as well increased in ipsilateral ligated samples but 

showed much lower amounts than on day 3. Because of the overall reduced cell numbers, 

further analysis was only possible for ligated ipsilateral samples. In general, cell 

percentages of monocytes and neutrophils were lower than on day 3 and did not show 

any statistical difference between both genotypes. It is highly possible that the amount of 

immune cells decreases already from day 3 to day 8 after nerve injury, since infiltrating 

immune cell start to phagocyte cell debris and resolve the inflammation for further 

regeneration of the nerve (Gaudet et al. 2011). Nevertheless, chronic neuropathic pain 

endures even after resolution of the inflammatory environment at the sciatic nerve, since 

inflammation spreads to central sites, and thereby promoting a general hypersensitivity. 

The lack of a genotype difference in immune cell infiltration between WT and CB2KO mice 

on day 3 and day 8 in the sciatic nerve is an indicator for a different mechanism, which is 

leading to an increased inflammation in CB2KO mice. Possibly, inflammation is only 

stronger on central rather than peripheral sites in CB2KO mice, which is reflected in the 

increased Iba1 signal that was measured in the spinal cord of C2KO mice.    

5.5 Leptin receptor expression in sciatic nerves 

Just recently, a contribution of leptin and leptin receptor in the development of 

neuropathic pain was discovered in CB2KO animals. After nerve ligation, protein 

expression of the leptin receptor drastically increased on the ipsilateral sciatic nerve of 

CB2KO mice but not in WT control nerves (unpublished results). A link between leptin 

and neuropathic pain was already shown before (Maeda et al. 2009). In this study, 

neuropathic pain development was promoted by leptin-stimulated macrophages that 

were shown to express the leptin receptor as well. Furthermore, administration and 

stimulation of peritoneal macrophages with leptin could restore the loss of allodynia in 
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leptin deficient ob/ob mice (Maeda et al. 2009). In a different study, leptin induced 

neuroprotective effects in a model of traumatic brain injury that in turn were attenuated 

after administration of the CB2 antagonist AM630 (Lopez-Rodriguez et al. 2016). Our 

study suggests, that an increased expression of the leptin receptor is somehow related to 

an increased inflammation in CB2KO mice. This increase in expression is normally 

missing under physiological conditions or in WT mice. The measured upregulation of the 

leptin receptor in CB2-LysM mice similar to CB2KO mice supports the hypothesis of a 

CB2-dependent mechanism in microglia and macrophages, which increases inflammation 

in neuropathic pain. 

5.6 Daglα in neuroinflammation and pain 

In section 4, I could show that the endocannabinoid system has an important impact in 

the regulation of neuropathic pain. Therefore, the effect of nerve ligation on the 

endocannabinoid levels in the spinal cord was analyzed. Surprisingly, no significant 

differences in endocannbinoid levels were detected between ligated and sham CB2KO 

mice. In contrast to this, levels of all measured endocannabinoids were increased in 

ligated WT animals, compared to sham treated WT mice. An increase in the spinal cord of 

anandamide after chronic construction injury (Starowicz et al. 2013) or of 2-AG after 

nerve ligation in rats (Petrosino et al. 2007) was shown before. Increased 

endocannabinoid levels in chronic pain models were as well measured in the affected hind 

paw (Jhaveri et al. 2007) or the dorsal root ganglion (Mitrirattanakul et al. 2006). The dual 

roles of anandamide and 2-AG in inflammation were shown in several studies. Whereas 

2-AG was proven to induce proinflammatory effects, like microglial migration (Walter et 

al. 2003) or T cell adhesion (Gasperi et al. 2014), AEA increased production of the anti-

inflammatory cytokine IL-10 (Correa et al. 2010) or mitogen-activated protein kinase 

phosphatase- 1 in microglia (Eljaschewitsch et al. 2006). Contradictory to this, 

anandamide levels were much lower in WT than in CB2KO mice, even though WT animals 

showed less mechanical allodynia and microgliosis than CB2KO mice. Since the 

endocannabinoid levels were never measured in neuropathic CB2KO mice before, no 

literature exists yet to explain this observation. It is possible that endocannabinoid levels 

are dysregulated in CB2KO mice, resulting in generally elevated levels compared to WT 
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animals. Potentially, the active CB2 receptor in WT mice contributes to the regulation of 

the endocannabinoid levels in neuropathic pain conditions.  

One of the main ligands for the CB2 receptor is 2-AG, which is synthesized by the 

enzyme Daglα (Sugiura et al. 2002). Therefore, Daglα KO mice were as well investigated 

for their endocannabinoid levels and later on for their pain phenotype. As already 

published, 2-AG levels were strongly decreased in Daglα KO mice. Arachidonic acid, the 

breakdown product of 2-AG was as well decreased, when compared to levels of WT mice. 

A reduction of 2-AG and AEA in the brain of Daglα KO mice was published earlier 

(Jenniches et al. 2016). It is therefore not surprising, that the similar reductions were 

detected in the spinal cord, too. An interesting result is the small increase of all measured 

endocannabinoids on both sides of Daglα KO mice after nerve ligation. The same 

elevations on both sides after induction of neuropathic pain were measured in WT mice 

as well, even though not all differences were statistically significant. This finding could 

imply a regulatory function of endocannabinoids, which even appear on the contralateral 

side. Possibly, regulatory changes do appear on the non-injured side after nerve ligation 

but do not develop into an inflammation.  

Since the observed dysregulation of endocannabinoid levels in CB2KO mice was 

not seen in Daglα KO mice, the mechanism behind this observation is likely to be located 

downstream of the CB2 receptor and thereby unaffected by the 2-AG reduction in Daglα 

KO animals. The enzyme Daglα was therefore neither expected to be relevant in pain 

processing nor would deletion of Daglα induce contralateral pain as observed in CB2KO 

mice. To prove this hypothesis, Daglα KO mice were analyzed through different 

behavioral pain tests, regarding physiological and pathological pain processing.  

Naïve Daglα KO and FL mice were analyzed in a formalin test to observe their 

reaction to inflammatory pain. Inflammation of the nerve is an essential process in the 

development of neuropathic pain. Since the CB2 receptor is highly involved in 

inflammatory processes and showed a clear phenotype in the formalin test before (Klauke 

et al. 2014), the behavior of Daglα KO mice was of interest, too. Even though Daglα KO 

mice showed less pain responses than control FL mice in the first minute, the overall 

reaction was not statistical different between both genotypes. Since mice treated with a 

CB2 agonist showed a reduced reaction in the formalin test (Beltramo et al. 2006), an 

increased reaction to inflammatory pain in Daglα KO mice would have been expected. The 
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observed result supports the hypothesis, that a 2-AG independent mechanism is 

regulating pathological pain processing in CB2KO animals.  

When analyzing Daglα KO mice for thermal pain processing in the hot plate test, 

no statistical difference between both genotypes was measured. The only difference 

observed was an increased licking reaction in Daglα KO mice, without affecting the overall 

pain reaction. The Hargreaves test was further used as a more sensitive approach to 

analyze thermal pain. Daglα KO mice appeared to have a slightly increased withdrawal 

latency, which would represent a reduced pain perception but overall did not show a 

significant different response to Daglα FL mice. Previous publications supported this 

finding, revealing no difference in thermal pain perception between Daglα KO mice and 

WT animals (Jenniches et al. 2016). In contrast to this, latency of mice stimulated with a 

CB2 receptor agonist increased significantly in the Hargreaves test, indicating less 

thermal pain in these animals (Ibrahim et al. 2005). It is highly possible, that thermal pain 

perception is 2-AG independent as well, which would explain the missing phenotype of 

Daglα KO mice.  

Finally, I measured neuropathic pain development induced by PSNL in Daglα KO 

and FL mice, to test for the contralateral pain as seen before in CB2KO mice. Daglα KO 

mice did neither show an increased mechanical allodynia on the ipsilateral side nor on 

the contralateral side. It is worth mentioning that due to a change in the experimental 

setup, mechanical allodynia in Daglα KO mice was assessed with an automated 

aesthesiometer, instead of the manual von Frey filaments, used for CB2KO animals. 

Manual von Frey filaments are thought to be more sensitive in detecting small differences 

in mechanical allodynia, but the overall result is supposed to be equal to an automated 

aesthesiometer (Nirogi et al. 2012).  

As a conclusion, Daglα KO mice did not develop any pain phenotype in thermal, 

inflammatory or induced neuropathic pain. This finding adds to the hypothesis of a 2-AG 

independent mechanism for CB2 regulation of pain processing. As mentioned earlier, the 

endocannabinoid anandamide is known to induce anti-inflammatory effects and was 

shown before to promote the M2 state of microglia by activating the microglial CB2 

receptor (Malek et al. 2015). Therefore, an anandamide–dependent mechanism in CB2 

pain processing is highly possible. Another possible explanation may derive from Daglβ, 

the second enzyme known to synthesize 2-AG. The reduced levels of 2-AG in Daglα KO 
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mice may have still been high enough to activate the CB2 receptor. To test this hypothesis, 

a dual inhibition of Daglα and Daglβ would be necessary.  

6 Conclusion 

In this study I could confirm the microglial expression of the CB2 receptor. Through 

behavioural experiments, I demonstrated a similar pain phenotype of the myeloid-

specific CB2 deletion in CB2-LysM mice as seen in CB2KO mice. This observation was 

confirmed by an equal increase of microgliosis in the spinal cord of both mouse strains. 

Through immunohistological analysis of CB2-GFP mice, microglial expression of CB2 in 

the spinal cord, sciatic nerve and DRG was confirmed as well. Therefore, a role of the 

microglial CB2 receptor in neuropathic pain processing is strongly suggested. 

 Additional to the CB2 localization, a specific CB2 pain phenotype was revealed. 

CB2KO and CB2-LysM mice both showed increased ipsilateral and contralateral 

mechanical allodynia after PSNL. One hypothesis is that neuroinflammation is increased 

in CB2KO and CB2-LysM animals, which in turn would induce the observed contralateral 

pain. This phenomenon was not detected in WT or CB2-Syn mice and is therefore specific 

for CB2 on myeloid cells. To test the increased neuroinflammation in CB2KO and CB2-

LysM mice, further analysis of immune cells in the sciatic nerves and spinal cord on day 

14 are needed. Moreover, a conditional deletion of CB2 in cells expressing the CX3CR1 

promoter is useful, to exclude any interference of a CB2 deletion in neutrophils.

 Interestingly, the leptin receptor was shown to be modulated after PSNL in CB2KO 

and CB2-LysM mice as well. I hypothesize that the CB2 receptor on myeloid cells 

interferes with leptin receptor expression. The exact mechanism and connection between 

the leptin receptor and the CB2 receptor still has to be revealed. 

 When I analyzed pain behavior in Daglα KO mice, which are lacking the main 2-AG 

producing enzyme, no pain phenotype was detected. This suggests that the modulation of 

CB2 in pain processing is 2-AG independent or at least Daglα independent. To further 

confirm this, Daglβ KO mice are needed to be analyzed after PSNL as well. Moreover, it 

would be interesting to see the contribution of the other main endocannabinoid, AEA. 

Therefore, mice with reduced AEA levels could be also investigated after PSNL. In 

conclusion, our results suggest that CB2 receptors on myeloid cells but not on neurons 

are essential for neuropathic pain development.  
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