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Summary

THE RAPIDLY FILLING TREASURE TROVE of sequenced genomes from diverse
organisms allowed comparative genomics to shift from analyzing individual
genes towards investigating entire genomes and their components. The
comparison of gene and genome structures across species has the potential
to reveal major trends of genome evolution. However, this data deluge also
poses unprecedented problems, mostly related to computational requirements
like handling, quality assurance, and efficient analysis (MUIR et al., 2016).
Standardization is lagging behind, especially concerning the tools and
terminology to describe not one but all genes of a species. Consequently,
previously unattainable questions, such as “Which evolutionary mechanisms
and processes shape the composition of protein-coding gene repertoires?”, are
only now open to in-depth exploration.

In this work, I focus on the protein-coding gene repertoires of insects. Insects,
and especially Holometabola (species that undergo pupal development and
metamorphosis), are tremendously species-rich and diverse considering their
phylogenetic age. To understand the basis of their evolutionary success, it is
necessary to investigate the dynamics and evolvability of their genomes. My
thesis thus revolves around the extent of gene repertoire changes to eventually
address the central questions: are major evolutionary transitions within insects
(e.g., radiations) correlated to significant changes of the repertoire? How large
is the variation of gene structures within a repertoire? Are there classes of genes
that are prone to change? Large-scale analyses of gene repertoires to tackle these



themes are not trivial in that they require the application of clear definitions
and suitable tools, two prerequisites that were previously not fully appreciated.
Thus, to approach my focal questions, it was necessary to develop new methods
of data acquisition and evaluation.

THIS THESIS IS STRUCTURED in six parts as follows. Firstly, I provide a primer
for the reader, i.e., background information on genomes and protein-coding
repertoires (I). Having thus the field of comparative genomics introduced, a few
central terms are explained to prepare the ground for the following review of
the state of the art (including the deficits in relation to my research that existed
until now). The specific research questions addressed in my thesis are outlined
(section I.3.1).

IN THE FIRST RESULTS PART (II), I discuss the problem of lacking tools for
repertoire-wide gene structure analysis and present such a tool. This lack
and an observed inconsistency in the use of definitions called for a standard
at the descriptive level with an undeviating use of standardized terms, and
for software that infers the required data to structurally describe and analyze
protein-coding gene repertoires (e.g., lengths and counts of exons) under
these strict definitions. I developed a new open-source command-line tool:
COGNATE, the Comparative Gene Annotation Characterizer. As part of
this project, the standard definitions of gene and genome structures were
revised and provided as a working draft suggestion for further reference. The
developed tool has recently been published in BMC Genomics.

IN THE SECOND RESULTS PART (III), I employ the tool COGNATE to address
the question whether or not automatically generated gene predictions are
suitable to analyze general gene structure parameters. Attending to this
question was necessary, because annotation algorithms are not free of errors
and it has been argued that only human review of the predictions ensures
sufficient reliability. If this was true without exception, explorations of gene
repertoires would be stalled until all predicted genes had been manually
curated. Thus, after outlining the prospects and limits of both automated
and manual annotation, I analyzed the effect of manual curation on predicted
structural properties of protein-coding genes by comparing annotated gene sets



from seven insect species sequenced by the i5k initiative. The properties of
automatically generated gene models and their manually curated replacements
do not differ extensively, and major correlative trends regarding gene structures
can be recovered from both sets. From these results I conclude that gene models
yielded from unsupervised annotation procedures are a suitable data basis to
characterize structural gene features of a whole repertoire. This manuscript
has been submitted for publication to BMC Genomics and is currently under
review.

HAVING BOTH suitable tool and data at hand, the third results part (IV) turns
to the exemplary application of COGNATE and down-stream analysis methods
as means to structurally characterize gene repertoires of Hymenoptera (sawflies,
bees, wasps, and ants). This work is part of a large-scale project that examines
two newly sequenced genomes of non-apocritan “symphytans” with regard to
the major transition from phytophagous to parasitoid hymenopteran life styles
from various angles. One of these angles are protein-coding gene structure
variations within and between the repertoires. This analysis is a necessary first
step in comparative genomics to range in measured magnitudes of parameters
and to build expectations on hymenopteran protein-coding gene structures. The
two focal species possess small genomes and gene repertoires compared to the
range of hymenopteran genome and gene repertoire sizes, but a strikingly high
GC content of more than 41 % is found in both species; this is in stark contrast to
the honeybee. Although gene counts vary considerably among the analyzed
Hymenoptera (twelve species in total), their genomes harbor a very similar
amount of protein-coding sequences. Gene length and composition complexity
(reflected by the number of exons) appear to be slightly decreased in derived
wasp-waisted Hymenoptera, with the exception of the bumblebee. The findings
are discussed and provide a basis for a more comprehensive comparison in the
following part. My results will be included in a publication in Current Biology
following this year.

THE ANALYSIS APPROACH established by me is used in the last results
part (V) to address my original question of variability in protein-coding
gene repertoires in a characterization of the repertoires of a larger, unique
species sample. The sample covers a wide range of divergence times within



Hymenoptera, including the two previously analyzed “symphytans” and 16
other species, and allows the comparison to seven other insect and one
millipede outgroup species. Previous research suggested universal patterns of
conservation within a gene repertoire in relation to others by which it could
be partitioned: the highly conserved core gene set, the moderately conserved
shell genes with a patchy distribution across taxa, and the cloud that contains
genes shared by very few directly related or no other species. However, the
characteristics regarding structure and function of the genes classified within
partitions have previously not been examined, although this will help to answer
questions of how (a balance of) conservation (in the core) and variation (in the
cloud, the source of novelty) in gene repertoires is established and maintained.
Further research is required, but my results show that considerable differences
exist in gene structural parameters between conserved core-genes and the
lineage-specific cloud gene set.

THE LAST PART (VI) comprises a general discussion of my findings in context
of the state of the art, a general conclusion, and an outlook.
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GENERAL INTRODUCTION





1

Background – What is comparative
genomics?

HOW DOES BIODIVERSITY EVOLVE? How and why do species and their
genomes change during evolution? Which factors drive or restrain these
changes at the genomic level? These are the fundamental questions guiding
the quest to understand biological diversity. Research needs to address
these questions focusing on individual aspects like genome components, e.g.,
repertoires of non-coding, transposable, and protein-coding elements. In my
thesis, I focus on the protein-coding gene repertoires, analyzed in a comparative
genomics context. Here, I will shortly introduce the field of comparative
genomics, its terminology and history. In the subsequent two chapters, the state
of the art regarding several aspects of repertoire composition and dynamics
is reviewed, and the questions of my thesis, based on these premises, are
presented.



4 Chapter 1 Background – What is comparative genomics?

1.1 Genome deciphering and interpretation

The study of genomes was sparked by the discovery that chromosomes carry
the hereditary information of organisms (independently by Boveri, Sutton, and
DeVries in 1902 and 1903; WILSON, 1925). Further momentum was gained when
the structure of deoxyribonucleic acid (DNA), the chromosomal molecules, was
revealed (WATSON and CRICK, 1953). Since these early years, many terms
have been coined to designate genomic units. Some of these terms have been
moulded according to the advances of genetics and genomics. Unfortunately,
some are also frequently misused. To avoid confusion, the most important terms
shall be introduced here.

The designation ‘genome’ was introduced by WINKLER (1920, p. 165) and is
nowadays – after some modulation (e.g., MAHNER and KARY, 1997) – widely
understood as all genetic material (DNA) of an organism. The term ‘gene’,
invented by Wilhelm JOHANNSEN (1909) to designate units of heredity found
within chromosomesI.1, has been similarly challenged and adapted (FALK, 1986;
SNYDER and GERSTEIN, 2003). However, the definition of ‘gene’ is even today
somewhat malleable, as are the definitions of the genic subunits ‘exon’ (“regions
which will be expressed”) and ‘intron’ (“intragenic regions”); the latter two were
introduced by GILBERT (1978) to account for the mosaic nature of eukaryotic
genes. To be as clear as possible, I will use these terms according to the
reviewed definitions as they were formulated and published during my work
(WILBRANDT et al. (2017), see Table B.1.1).

In order to study genomes, a human- or machine-readable representation of the
actual molecules has to be generated. While ‘genome’ strictly speaking refers
to biological molecules – i.e., polynucleotides consisting of adenine, guanine,
thymine, and cytosine including their physical modifications (for example,
methylation) – a ‘genome assembly’ (the result of an assembly process) relates to
the representation of these molecules, a sequence of the letters A, G, T, and C. In
the context of genomics analyses, these terms are often used interchangeably for

I.1 Johannsen’s gene definition was based on eukaryotic nuclear chromosomes as carrier of
hereditary information. The DNA of mitochondria, plastids, prokaryotes, and archaea is
not necessarily organized chromosomal structures, and the term ‘linkage group’ might be
more appropriate.
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convenience. Most of the published assemblies of the last decade were obtained
using next generation sequencing (NGS)/‘shotgun’ approaches (reviewed by,
e.g., BAKER, 2012). These have in common that reads, fragments of genomic
DNA (in the case of genome sequencing) of a certain length, are sequenced and
afterwards assembled into contiguous sequences (i.e., contigs). Contigs can then
be ordered and linked into scaffolds, which may contain gaps. The less contigs
and scaffolds are obtained (assuming the absence of assembly errors), the
better – the minimum achievable number naturally equals the chromosome (or
equivalent DNA organizational unit) number of the given organism. Repetitive
regions, e.g., simple tandem repeats, telomeres, or transposable elements, can
obfuscate the assembly process due to their self-matching nature (MCCOY et al.,
2014). Techniques (reviewed by PHILIPS et al., 2017) that will hopefully allow
the error-free sequencing or assembly of whole chromosomes are currently
being developed, e.g., by Oxford Nanopore and PacBio. Until these are
widely employed, assembly quality (further discussed in section III.2.1) is
a confounding factor in down-stream analyses, because the actual size and
diversity of genomic component repertoires will be underestimated.

Even if the sequence of nucleotides along each DNA molecule is known, it
is yet impossible to directly infer and interpret this information to build a
living organisms in vitro. The complexity of processes leading from genotype
(makeup of heritable traits) to phenotype (result of genotype expression under
environmental influences, including behavior) is enormous. Reading and
labelling the information encoded in the genomic sequence using a computer
or human brain rather than the original cell is the task called ‘annotation’.

The value of a genome is only as good as its annotation. It is the
annotation that bridges the gap from the sequence to the biology of the
organism.

(STEIN, 2001)

Structural and functional annotation of protein-coding genes refers to the
delineation of beginnings and ends of gene structures and the identification
of the function(s) exerted by the gene’s protein product(s) (MQ ZHANG, 2002)
(for a more detailed introduction to functional and structural annotation, see
sections III.2 and C.1). Think of this analogy to illustrate (the problems of) gene
annotation: if the genome is similar to the magnetic tape of a music cassette,
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Figure I.1 – The cassette metaphor. (Continued on next page)
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Figure I.1 – The cassette metaphor.
(Continued)
This poster was presented at the N2 Science Communication Conference, where
the topics of PhD studies were to be presented in a manner understandable to
a laymen audience. The analogy of trying to read out the information encoded
on a magnetic tape of a cassette without the original device used to explain the
intricacies of protein-coding gene prediction in genomic sequences found broad
appreciation.

the protein-coding genes can be imagined as songs encoded on it. We want
to read the tape so that we can listen to the music, but cannot use a cassette
player (the cell). To locate and decode the stretches of tape carrying relevant
information, knowledge not only of the physical properties of the tape, but also
of the properties of the songs (e.g., start signal) is required (see also I.1).

Eukaryotic genomes comprise on average more than 20,000 protein-coding
genes (ELLIOTT and GREGORY, 2015b). These are too many to be located
individually by hand in reasonable time, thus the task of annotation demands
automation. Since the 1980s, software is constantly being developed and
improving (reviewed by, e.g., BRENT and GUIGÓ, 2004, see section C.1).
Automated annotation can make use of multiple lines of evidence, like the
formalized knowledge of gene properties (e.g., the ‘Kozak rules’, KOZAK, 1991)
and sequence similarity, but can be severely hampered by incomplete assembly.
In many cases, the review by human experts (referred to as ‘manual curation’)
can remedy such problems (MISRA et al., 2002). Thus it is often advocated as
the only way to obtain reliable annotations (GUIGÓ et al., 2006). The advantages
and problems of automated and manual annotation are further introduced and
discussed in chapter III.2.

1.2 Comparisons in biology

The nature of evolution directly implies a rationale for comparisons in biology.
Since all organisms are related, we expect to find commonalities, stemming from
a common ancestor. However, the similarity of two compared characters does
by itself not imply the descent from a common precursor. Similarity alone is
neither a sufficient nor a necessary criterion of evolutionary relatedness (EISEN,
1998). Nonetheless, it can be hypothesized that a relationship (homology)
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exists, i.e., the two characters are homologous, if the degree of similarity is
greater than expected by chance among unrelated characters (KUZNIAR et
al., 2008). However, convergent evolution can result in similarities that are
not a consequence of relatedness, termed homoplasies (EISEN, 1998). The
comparison of genomes in context of phylogenetic relationships showed that
the phylogenetic relationships of genes may be more complicated than those of
the species they belong to. Three cases of homology need to be distinguished:
(1) the relationship of two genetic elements originating from vertical descent, i.e.,
a speciation event, is called ‘orthology’ (FITCH, 1970); (2) the relationship by a
duplication event within the genome of an organism (within a species) is termed
‘paralogy’ (FITCH, 1970); (3) horizontal gene transfer (HGT; i.e., transmission
of genes between two organisms) leads to ‘xenology’ (GRAY and FITCH, 1983).
Subunits of genes may be subject to individual evolutionary trajectories (e.g.,
due to gene fission and fusion), thus the mentioned concepts are relevant at all
levels of genomic comparison (KOONIN, 2005).

Sequence similarity is frequently used to predict both homology relationships
among genes and genomic sequences as well as functional roles. Such
inferences are often based on the ‘ortholog conjecture’ a.k.a. ‘ortholog functional
conservation hypothesis’ (STUDER and ROBINSON-RECHAVI, 2009; PD THOMAS

et al., 2012). The conjecture states that orthologs are (functionally) more similar
to each other than paralogs (of the same age) (GABALDÓN and KOONIN, 2013).
The ortholog conjecture was challenged (e.g., by claims of higher functional
similarity among paralogs than among orthologs, NEHRT et al., 2011), but has
been vindicated by further evidence and bias control (e.g., ALTENHOFF and
DESSIMOZ, 2012; FORSLUND et al., 2011; HENRICSON et al., 2010; ROGOZIN and
ROGOZIN, 2014; PD THOMAS et al., 2012).

The high value of studying genomes for the life sciences is uncontested: only
by using genome data is it possible to trace gene loss events (i.e., confirm the
absence of a gene), to identify orthologs and paralogs without ambiguity (e.g.,
using three-way best reciprocal hits, ALTENHOFF and DESSIMOZ, 2012), and to
investigate genome organization and their evolution by rearrangements and
duplications (reviewed by, e.g., KOONIN, 2009). Indeed these are the main
questions tackled by early comparative genome studies (ELLEGREN, 2008). The
comparison of genomes furthermore allows to trace both micro- and macro-
evolutionary paths (e.g., BRANSTETTER et al., 2018) and helps to spotlight those
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species with special features in contrast to others that reward being individually
studied and questioned in detail.
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Year Organism Reference

1976 MS2 (first bacteriophage genome) FIERS et al. (1976)

1978 SV40 (first viral genome) FIERS et al. (1978)

1981 human mitochondrium (first eukaryotic
organellar genome)

ANDERSON et al. (1981)

1986 Nicotiana tabacum chloroplast (first
chloroplast genome)

SHINOZAKI et al. (1986)

1992 Saccharomyces cerevisiae chromosome III
(first chromosome)

OLIVER et al. (1992)

1995 Haemophilus influenzae (first bacterial
genome, first free-living organism),
Mycoplasma genitalium

FLEISCHMANN et al.
(1995) and FRASER et al.
(1995)

1996 Saccharomyces cerevisiae (first eukaryote
genome)

GOFFEAU et al. (1996)

1997 first genomes of archaea KLENK et al. (1997) and
DR SMITH et al. (1997)

1997 Escheria coli (first bacterial model-
organism)

BLATTNER et al. (1997)

1998 Caenorhabditis elegans (first multicellular
organism)

THE C. ELEGANS
SEQUENCING
CONSORTIUM (1998)

1999 Homo sapiens chromosome 22 (first human
chromosome)

DUNHAM et al. (1999)

2000 Drosophila melanogaster (first insect
genome)

ADAMS (2000)

2000 Arabidopsis thaliana (first plant genome) THE ARABIDOPSIS
GENOME INITIATIVE
(2000)

2001 Homo sapiens draft genomes LANDER et al. (2001) and
VENTER et al. (2001)

2002 Tetraodon rubripes draft genome (first fish
genome)

APARICIO et al. (2002)

2002 Mus musculus (first whole-genome
comparative analysis of mammals)

THE MOUSE GENOME
SEQUENCING
CONSORTIUM (2002)

Table I.1 – Early milestones of genome sequencing (after PEVSNER, 2009, 527 ff.)
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1.3 A small history of comparative genomics

The first completely sequenced genomes were those of bacteriophages and
viruses (FIERS et al., 1976, 1978), published in the late 1970s. The following 25
years were marked by an accelerating succession of milestones (see Table I.1),
for example, the first sequencing of an eukaryote (OLIVER et al., 1992), a
metazoan (THE C. ELEGANS SEQUENCING CONSORTIUM, 1998), and, finally,
of a human (VENTER et al., 2001). As soon as two sequenced genomes were
available, these were compared. In early comparisons of viral and prokaryotic
genomes, analyses were largely confined to protein-coding gene content and
order (e.g., GOLDBACH, 1987). Given the central role of protein-coding genes
in carrying information translated into cellular building blocks and the long-
matured foundations of analyses targeting them, this focus remained strong
when new genomes were added (e.g., RUBIN et al., 2000).

The term ‘comparative genomics’I.2 was used in its first instance to refer to gene
mapping analyses (O’BRIEN and STANYON, 1999) but was coined in the 1990s to
include any comparison of genomic data, when it became obvious that more and
larger genome sequencing projects would be feasible, successful, and facilitate
comparisons beyond the individual gene level (MS CLARK, 1999; ELGAR et al.,
1996). In other words, a broader understanding was adopted to “include any
approach where the composition of different genomes is related to each other”
(ELLEGREN, 2008).

Early comparative genomics research has focused on studies related to human
disease (e.g., identifying orthologs of disease genes and their network partners
across genomes to gain further insight in intact and disturbed pathways; MS
CLARK, 1999; NIERMAN et al., 2000; RUBIN et al., 2000). Since then, with the
advent and ever-increasing use of NGS techniques, taxon coverage increased
in depth (closely related species) and breadth (species from divergent lineages
across clades). This, combined with the inclusion of non-model organisms,
allowed to address questions of larger scope, and publications of genome
sequencing projects and comparative genomic studies amassed constantly (see

I.2 The term ‘genomics’ was coined in 1987 by Victor McKusick and Frank Ruddle as name for
their newly founded journal (LEDERBERG and MCCRAY, 2001)
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Figure I.2 – Publications per year with title containing either ’genome’ (yellow) or
’comparative genomics’ (red, excluding the term ’hybridization’). Data from NCBI
PubMed (https://www.ncbi.nlm.nih.gov/pubmed. Last accessed 30
March 2018.)

Figure I.2). Consequently, research in comparative genomics split up according
to the studied taxonomic groups, for example, bacteria (reviewed by LAND

et al., 2015), plants (reviewed by WENDEL et al., 2016), vertebrates (reviewed
by, e.g., HEDGES and KUMAR, 2002; KELLEY et al., 2016) and mammals (esp.
hominins, reviewed by MURPHY et al., 2004; ROGOZIN, 2014), and invertebrates,
(reviewed by BLAXTER et al., 2012; I5K CONSORTIUM, 2013; WURM, 2015) were
often studied independently. The fundamental questions addressed in all these
studies are nonetheless similar: which genomic features distinguish clades,
and which commonalities can be found (from the genomic characteristics of a
specific species down to the minimum gene set required to maintain a cell).

During the course of the last decade’s comparative genomics enterprises, central
tenets of (neo-) Darwinism have been re-evaluated; they were contextualized
with the universal regularities that emerged from genome comparisons and
gene expression profiling (surveyed by KOONIN, 2009). The major paradigm
shifts regarding the nature of evolution can be summed up as follows: (1)
evolution is not mainly driven by positive selection but rather the result of a
combination of neutral processes and purifying selection; (2) evolution is less
gradual than postulated (fueled by duplications, rearrangements, and HGT);
and (3) there is not a single Tree of Life in which the whole course of evolution
can be depicted (KOONIN, 2009, and references therein).

https://www.ncbi.nlm.nih.gov/pubmed
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Genomics just unfolds its power to improve our notion of evolution
(RICHARDS, 2015)I.3. In contrast to other comparative disciplines in biology,
comparative genomics is not yet mature enough to pinpoint diagnostic genomic
characteristics of species so that, comparable to morphological determination
keys, species can be told apart by regarding their genomic features alone (if this
is possible at all). Only recently, ELLIOTT and GREGORY (2015b) published a
study named “What’s in a genome?”, aiming at structural and compositional
features and thereby posing a question not only of great topical importance
and central interest but also previously severely neglected at the genomic scale.
This study exploited published data of over 520 species from four organism
kingdoms for a quantitative and qualitative overview of correlations between
a genome’s size and its structural features and components. Many conceivable
questions were left open by the authors, prompting the general and specific
questions I addressed during the years of pursuing a doctorate. These are
outlined in section I.3.1 and addressed in the parts II to V.

I.3 For a review of the history of insect phylogenetics and the integration of genomic data to
resolve long-standing problems, see KJER et al. (2016).
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State of the art

2.1 Genome components and genome size variation

THE WEALTH OF COMPONENTS that can be distinguished in a genome —
protein-coding and non-coding genes, repetitive and transposable elements,
and regulatory regions, just to name a few — and the diversity of their
direct and mediated interactions is staggering. Research on how much of
each component is contained within a genome is ongoing (e.g., ELLIOTT and
GREGORY, 2015b), and the question of whether there are amounts typical in a
clade is yet unanswered (a question comparable to “how many legs are typical
in each clade?” in a morphological context). The contribution of components to
genome size can be a relevant factor in the evolution of genomes and species,
either contributing building blocks or interfering with them.

Genome size and component sizes are described for a representative sample of
Hymenoptera in this thesis (part IV). The relevance of recording theses features
follows from previous work on genome size and its biological correlates, which
is introduced here.
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Each of the above components contributes to genome size. Research has focused
on genome size variation and the dynamics within the components contributing
most to it. Eukaryotic genome size (sometimes given as ‘C value’) ranges from
2.3 Mbp in the parasite Encephalitozoon intestinalis (CORRADI et al., 2010) to
ca. 152 Gbp in the monocot flower Paris japonica (PELLICER et al., 2010). This
tremendous variation, however, does not coincide with organismic complexity
in terms of, for example, cell type diversity (PETROV et al., 2000; ZACHARIAS et
al., 2004)I.1 — constituting the so-called C-value enigma (GREGORY, 2002b; CA
THOMAS, 1971).

Genome size does not consistently correlate with phenotypic traits. In
vertebrates, links to biological correlates have been observed, e.g., egg diameter
or habitat stability in fishes (HARDIE and HEBERT, 2004; EM SMITH and
GREGORY, 2009), or other phenotypic traits (PETROV, 2001). Contrastingly,
no such correlative patterns present themselves in 18 species of New Zealand
triplefin fishes (HICKEY and CLEMENTS, 2005), 115 spider species (GREGORY

and SHORTHOUSE, 2003), and 22 asselid isopods (LEFÉBURE et al., 2017). Smaller
genomes seem to be correlated to faster developmental rates (e.g., in aphids,
FINSTON et al., 1995; and birds, GREGORY, 2002a) and potentially also to
high metabolic rates (e.g., in intracellular parasites, CAVALIER-SMITH, 2005;
Arabidopsis, YF YANG et al., 2013; mammals, VINOGRADOV, 1995; birds, Q
ZHANG and EDWARDS, 2012; and fish, CHAURASIA et al., 2014). A recent study
showed that the comparatively small genome size of birds seems to be directly
related to flight-associated body-indices (WRIGHT et al., 2014). Only recently, a
study suggested that genome sizes of insects mainly depend on phylogenetic
relationships, potentially also developmental mode, while crustacean genome
size appeared to be more correlated to habitats and life cycle (ALFSNES et al.,
2017).

One component that contributes considerably to genome size and genome size
variation is that of transposable elements (CHÉNAIS et al., 2012; GREGORY,
2005b; PETROV, 2001). The proportion of insect genomes made up of
transposable elements ranges from as much as 60 % in the migratory locust
(Locusta migratoria), with a genome size of 6.5 Gbp (H WANG et al., 2014), to

I.1 Cell type diversity correlates with alternative splicing intensity (BUSH et al., 2017; L CHEN
et al., 2014).
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as little as 1 % in the tiny genome (90 Mbp) of the Antarctic midge Belgica
antarctica (KELLEY et al., 2014). Up to a genome size of 500 Mbp, a positive
correlation of genome size and the diversity (in terms of superfamilies) of
transposable elements has been documented across eukaryotes (ELLIOTT and
GREGORY, 2015a). Genome size increases have been shown to correlate with
accumulation of transposable elements in populations of small effective size due
to a reduced selection efficacy (LEFÉBURE et al., 2017). ELLIOTT and GREGORY

(2015b) documented that an average share of 23 % of animal genome size
is taken up by transposable elements, another ca. 27 % by other repetitive
elements. Another considerable contribution to genome size stems from introns,
as has been shown, e.g., for plants (WENDEL et al., 2002) and insects (X WANG

et al., 2014). Note that these studies may suffer from the ubiquitous bias towards
sequencing small genomes (as they are less expensive to sequence, deductions
are based on comparisons of small genomes) despite the inclusion of really large
genomes in the latter study: comparing two extremes to a rather homogeneous
baseline can result in a strong correlation.

Although the sizes of the compact genomes of bacteria and archaea mostly
vary due to differences in protein-coding gene count (K HAN et al., 2013), the
contribution of protein-coding genes to eukaryotic and especially insect genome
size variation is not extensively studied. According to ELLIOTT and GREGORY

(2015b), averagely 10 % of an animal genome consist of coding exons.

Most studies concerned with the mechanisms influencing genome size have
been performed on vertebrates. Thus, the following evidence refers mostly
to this clade. The main influencers of genome constriction seem to be large
segmental deletions (G ZHANG et al., 2014) and slower insertion rates (NEAFSEY

and PALUMBI, 2003; VINOGRADOV, 2004). DNA loss appears to be slower in
species with large genomes (e.g., salamanders compared to other vertebrates,
PETROV et al., 2000; SUN et al., 2012), but shrinkage is possibly limited by
functional constraints in comparatively small genomes (AHNERT et al., 2008;
GREGORY, 2005a). Recently, an ‘accordion’ model has been proposed to explain
the relatively constant genomes sizes despite varying accumulation rates of
transposable elements found in mammals and birds (KAPUSTA et al., 2017); it
suggests that genome expansions due to the activity of transposable elements
are counteracted by large segmental deletions. Genome size reductions are
accompanied by reduced repeat contents and shorter introns (MALMSTROM et
al., 2017; NEAFSEY and PALUMBI, 2003; G ZHANG et al., 2014), but also by losses
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of protein-coding genes (HUGHES and FRIEDMAN, 2008; MALMSTROM et al.,
2017; G ZHANG et al., 2014) and a lower rate of large-scale insertions (NEAFSEY

and PALUMBI, 2003).

2.2 Protein-coding gene repertoire evolution and dynamics

Protein-coding genes are the best studied elements among the genomic
components, but with a focus on individual genes or specific repertoires, for
example, the odorant receptor gene family (BRAND and RAMÍREZ, 2017), or
opsin genes (FEUDA et al., 2016). Consequently, there is only limited knowledge
on their repertoire dynamics and evolvability that leads to differences in the
abundance, composition, and structural configurations of genes and gene
classes. This problem has been well described by GRAUR (2015):

“The study of gene repertoire evolution is still in its infancy, and we
know very little about the effectors of gene repertoire change. In fact, every
time a new genome is published, one reads about the idiosyncrasies of that
genome and the importance of this or that gene for adaptation. For example,
much attention is given to autapomorphies. In particular, there exists a
large body of literature dealing with human autapomorphies, or what “make
us human” (e.g., MIKKELSEN, 2004; NEWTON, 2007; POLLARD, 2009).

Because we do not know much about the evolutionary forces driving
gene repertoire, genome sequence publications frequently promise but rarely
deliver coherent hypotheses concerning adaptation. For example, JIA et al.
(2013) promise in their title that the “Aegilops tauschii genome sequence
reveals a gene repertoire for wheat adaptation”. Sadly, the article bearing
this title mentions no gene involved in wheat adaptation, nor for that
matter what this adaptation consists of. Unfortunately, such dissonance
between promises made and promises kept is quite common in the genomic
literature.”

DAN GRAUR, 2015, p. 538

This gap of knowledge elicited my interest in the composition of gene
repertoires regarding conserved and lineage-specific genes. Structural
characterization had to be the starting point, since so little is known (addressed
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in all following parts of this thesis). A short survey of previous research is
exposed here as a primer.

The gene count in animal gene repertoires is very similar even in differently
sized genomes, averagely around 19,000 genes (ELLIOTT and GREGORY, 2015b).
Each repertoire contains a core of genes that are conserved across all members
of a clade (e.g., the insect-specific conserved core contains ca. 45 % of all genes,
WATERHOUSE, 2015).

Nonetheless, gene repertoires are not static: a large part of each repertoire
consists of taxon-restricted genes (e.g., HAHN, MV HAN, et al., 2007; HUANG

et al., 2013; RÖDELSPERGER et al., 2013; WATERHOUSE, 2015). For the set of
these lineage- or species-specific genes, no orthologs or homologs can be found
in the genus or clade. This set is sensitive to the given taxon sample during
orthology delineation and might thus shrink with a perfect sample (KHALTURIN

et al., 2009). However, this set also inevitably includes truly novel genes
(CARVUNIS et al., 2012; TAUTZ and DOMAZET-LOŠO, 2011; WISSLER et al., 2013).
It appears that there is undeniable turnover, i.e., (potentially balanced) gain and
loss, within the repertoire, merely masked by a relatively constant gene count
(HAHN, MV HAN, et al., 2007).

Previous studies of the C-value enigma focused on mechanisms of gaining or
losing non-coding DNA since this appears to be the part (mainly) responsible
for genome size. This means, however, that the coding part has been assumed to
be more or less invariable without controlling for the possibility of more subtle
changes in the coding repertoire. The following two sections thus sum up what
is generally known on gene structure and gene family composition as well as
their correlates and evolution.

2.2.1 Gene structure dynamics and correlates

The investigation of structural features of the gene repertoire (as done in part IV
and V), prompts that I offer results of previous research related to gene structure
here.

Studying gene structure, the arrangement of exons and introns, involves (com-
putational and conceptual) problems of intron and exon definition/recognition,
splice site signals, and homologization, among others. These areas have been
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objects of research since decades, focusing mainly on model organisms with
high-confidence gene annotations and will not be discussed here further. The
findings, however, were used in the development of automated annotation
algorithms. Thus, automated annotations allow to focus on the characterization
of lengths and densities of exons and introns (part IV).

The relationship of gene structure and expression level and breadth (number of
tissues and developmental stages) has been explored in model organisms (e.g.,
CAMIOLO et al., 2009; LI et al., 2007; PINGAULT et al., 2015; RAO et al., 2010), and
several models explaining them have been proposed (reviewed by WOODY and
SHOEMAKER (2011). Due to the focus of their studies, the gene repertoire-wide
trends of gene structure have not been addressed specifically.

The length of (coding) exons influences not only the resulting polypeptide
sequence but also the success of competing interaction factors and thus
expression levels (PETERSON et al., 1994). It is thus reasonable to assume that
their length is under selective pressure or even constraint. It has been shown
that exon length seems to be constrained in vertebrates (to < 300 bp, ELLIOTT

and GREGORY, 2015b; GELFMAN et al., 2012) and potentially in insects (when
comparing Drosophila melanogaster and Locusta migratoria, X WANG et al., 2014),
but the predominant hypothesis, that this is required for the identification of
exon boundaries, does not hold (IT CHEN and CHASIN, 1994). Rather, at
least in vertebrates, the strength of splice sites determines the recognizability
of exons flanked by long (with strong splice sites) or short (with weak splice
sites) introns (GELFMAN et al., 2012). The insertion of introns into existing exons
is independent of their length (RYABOV and GRIBSKOV, 2008), while exons
seem to be more often inserted into longer introns (> 1000 bp), with shorter
introns harboring older exons in mammals (M ROY et al., 2008). Another length
correlation has been found in humans: the longer an exon, the shorter is the next
upstream intron (MQ ZHANG, 1998).

In drosophilids, it has been shown that intron length correlates with ortholog
age and behaves clock-like (YANDELL et al., 2006), but it is open whether
this finding holds true in a broader scope. Positive as well as negative
correlations of recombination rate and intron size have been found, the former
in nematodes, the latter in fly and human (PRACHUMWAT et al., 2004). A
negative correlation of intron size, intron count as well as length of intergenic
stretches and recombination rate has also been confirmed in Hymenoptera (in
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Nasonia vitripennis, NIEHUIS et al., 2010; the honeybee seems to be an exception,
BEYE et al., 2006), in line with the suggestion that increasing intron length is
indirectly selected for by a low recombination rate (COMERON and KREITMAN,
2000). Furthermore, introns of highly expressed C. elegans genes are shorter
by tendency, potentially driven by selection towards minimal transcription
costs (CASTILLO-DAVIS et al., 2002). Plants seem to have a lower intron gain
rate than other eukaryotes in recent evolution (SW ROY and PENNY, 2007),
whereas nematode genes have a higher intron turn-over rate than those of
Drosophila or mammals (CUTTER et al., 2009). Most eukaryotic lineage evolution
appears to be characterized by intron loss with few spurts of massive intron
gain, possibly during major evolutionary steps; inference shows that the last
common ancestor of eukaryotes featured intron-rich genes (ROGOZIN et al.,
2012). This overall loss-trend has been specifically confirmed in flies (AG CLARK

et al., 2007; YANDELL et al., 2006) and mammals (COULOMBE-HUNTINGTON

and MAJEWSKI, 2007). Contrastingly, it has also been claimed that conserved
genes tend to gain and not loose introns in eukaryotes (CARMEL et al., 2007).
Proposed mechanisms of intron gain and loss have been reviewed by BELSHAW

and BENSASSON (2006), research on the direct and indirect roles of introns has
been summarized by JO and CHOI (2015). A detail rendition of their findings is
beyond the scope of this thesis.

2.2.2 Gene family dynamics

Gene repertoires consist of gene families. Members of gene families are
usually considered to be paralogous, although this is relative to the considered
phylogenetic split. For convenience, even a gene without identifiable
homologous genes in its genomic environment can be considered its own gene
family. What is known about gene family sizes, the relation to biological
diversity, and the impact on gene structure distributions in a repertoire?

Over 40 % of all gene families differ in size among twelve drosophilid species,
while the gene birth rate is similar to that of yeast and mammals (HAHN, MV
HAN, et al., 2007). Roughly 3 % evolved at significantly elevated rates, which
indicated non-neutral evolutionary processes and stimulated functional studies
(AG CLARK et al., 2007). It became apparent that the overall similar total gene
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number masked a strong turnover via individual gene gain and loss (HAHN,
MV HAN, et al., 2007).

There is no direct correlation between duplication and the evolution of species
diversity — note the disparity between time scales of the considered processes.
It has been proposed that the role of duplication is confined to the provision
of functional redundancy, thus increasing mutational robustness and reducing
the risk of extinction (CROW and WAGNER, 2006). The widely used hypothesis
(KONDRASHOV et al., 2002; NEMBAWARE et al., 2002) of increased mutation
rate due to relaxed selection pressure on paralogs implies that duplicates arise
from genes that are unbiased regarding their evolutionary rates, which is not
necessarily valid (DAVIS and PETROV, 2004). In contrast, the main source of
duplicates seems to be slowly evolving genes, a strongly biased set (DAVIS

and PETROV, 2004; JORDAN et al., 2004). Following a duplication, paralogs are
retained (FORCE et al., 1999), but selective pressure appears to be asymmetric,
facilitating thus biased gene loss and differing retention rates, at least in fish
and yeast (BRUNET et al., 2006; HOLLAND et al., 2017). Several models have
been suggested to describe the fates of duplicates (JIANG and ASSIS, 2017;
ZHAO et al., 2015) and to explain gene retention after duplication (gene dosage
balance, functional buffering, subfunctionalization; reviewed in EDGER and
PIRES, 2009).

Paralogous genes seem not to follow the general trend of prevalent intron loss.
In Plasmodium paralogs, accelerated rates of both intron gain and loss have been
found (CASTILLO-DAVIS et al., 2004), whereas other eukaryotic (plant) paralogs
seem to predominantly gain introns (but in restricted time frames) (BABENKO

et al., 2004; KNOWLES and MCLYSAGHT, 2006).

The observation of widely shared single-copy status (WATERHOUSE et al., 2011)
instigates the question of whether there is a functional class producing such
genes without paralogs. Potentially, dosage sensitivity plays a role, since
dosage-sensitive genes are less random and have characteristics that otherwise
help discern orthologs (less copy number variation, lower transposition
frequency, etc.; EDGER and PIRES, 2009).
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2.2.3 Gene and gene family turnover

When considering the differential conservation of genes within gene repertoires
(some ancient gene families can be found in all living organisms, while others
are either old, but lonely or arose as lineage-specific novelty) as in part V of
this thesis, investigations have to be built upon the state of the art. Thus, I will
shortly review what is known regarding the gain and loss of genes and gene
families.

Gene turnover, the change of a repertoire through time by gain and loss of genes
(and thereby also families), has been addressed previously. Interestingly, many
species of special interest have similar gene turnover rates (measured as gains
and losses per gene per million years [l, HAHN et al., 2005; alternatively birth
and death rate are given separately, e.g., ALMEIDA et al., 2014]): yeasts have a
l of 0.002 (HAHN et al., 2005; LYNCH and CONERY, 2003), slightly lower levels
have been found in fruit flies (l = 0.0012, HAHN, MV HAN, et al., 2007) and
mammals (l = 0.0016, DEMUTH et al., 2006; HAHN, DEMUTH, et al., 2007), and
slightly higher levels in plants (l = 0.003, CARRETERO-PAULET et al., 2015).
Also, gene turnover rates vary among lineages and gene families (ALMEIDA

et al., 2014).

There is evidence that lineage-specific gene family expansions can advance
an organism’s capacity to adapt by providing a source to diversify structures
or regulatory networks (FORÊT and MALESZKA, 2006; HAHN, MV HAN, et
al., 2007; KONDRASHOV et al., 2002; VIDAL et al., 2016; Z WANG et al.,
2012). For example, the response to pathogens and environmental stress
in eukaryotes was found to be connected to lineage-specific expansions
(LESPINET et al., 2002). Additionally, the expansion of some (super)families
is correlated with the number of cell types in eukaryotic organisms (VOGEL

and CHOTHIA, 2006). Finally, an expansion likely played a role in zebrafish
immunity (HOWE et al., 2016). Another recent study found that contractions
and expansions of transcription factor families correlate with species-specific
alterations of organ formation regulation in plants (CARRETERO-PAULET et al.,
2015). Hypothetically, specification of morphology (KHALTURIN et al., 2009)
as well as life-cycle adaptations (ZHAO et al., 2015) might be driven by taxon-
restricted genes. Thus, evidence is accumulating that gene turnover contributes
as an important factor to the evolution of diverse organisms.
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Despite the potentially significant role of gene turnover in genomic change,
studies were limited to a very small taxon sample or failed to sufficiently
address confounding factors, for example by accounting for species divergence
times in a convincing manner and using a robust phylogeny. A very basic
question is also still left open: does the gene turnover rate change over time
and between lineages, or is it time-constant as would be expected when a
classical birth-and-death model applies (HAHN et al., 2005). Evidence has been
reported that supports the rate changes over time, (e.g., CARRETERO-PAULET et
al., 2015; HAHN, DEMUTH, et al., 2007; RAPPOPORT and LINIAL, 2015; WISSLER

et al., 2013), but genomic factors facilitating and driving gene turnover rate
changes still have to be determined. Likely candidate mechanisms are whole
genome duplication (e.g., BLOMME et al., 2006) and ectopic (non-homologous)
recombination due to the existence and spreading of transposable elements
within a genome (e.g., ALBERTIN et al., 2015; S YANG et al., 2008). Is is also not
clear whether lineage-specific bursts of gene family size are evolutionary neutral
(potentially due to a cost in genomic stability, of regulation, or of expression) or
rather driven by positive selection (SCHIFFER et al., 2016). Another open point is
the extent of contribution of gene turnover and repertoire diversification to the
astonishing diversity of insects.

Investigations of gene turnover rates in hexapods are rare, despite the clade’s
significance as highly diverse group of extant organisms. There are studies that
compared gene repertoires of only few species from individual insect orders
(e.g., limited to Hymenoptera or Diptera) and others that focused on a limited
set of genes. Hymenoptera were studied with a focus on ants (e.g., BONASIO

et al., 2010; ROUX et al., 2014). Dipterans (apart from drosophilids, HAHN,
MV HAN, et al., 2007) were best covered with regard to midges (GUSEV et al.,
2014) and mosquitoes (NEAFSEY et al., 2015). A more comprehensive study was
conducted by ZDOBNOV and BORK (2007), covering the holometabolous ‘Big
Four’ (the four most secies-rich insect orders: Coleptera, Diptera, Hymenoptera,
Lepidoptera) with twelve species. Most notably, they reported less conservation
at the amino acid level among orthologous genes and less orthologs in synteny
than studies focused on vertebrates with roughly the same phylogenetic
age (ZDOBNOV et al., 2002, 2005). To my knowledge, only one study
investigated explicitly the gene turnover rates across Holometabola, namely
nine hymenopterans and six dipterans (compared to three outgroup species):
RAPPOPORT and LINIAL (2015) found that gains and losses of gene families
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were more frequent in hymenopterans than in dipterans. The above findings
also vindicate the impression that gene repertoire content is much more volatile
in insect genomes than in vertebrate genomes. Until now, however, drawing
general conclusions was forestalled by the difficulties of compiling datasets
from comparable methods that included accurate divergence time estimates
and thus reliable turnover rates and that covered a meaningful sample across
insects. Furthermore, none of these studies addressed the mechanistic causes of
the surprisingly high changeability of insect gene repertoires and genomes.

Thus, insect gene turnover and its correlates await exploration. Prerequisites
are reasonable taxon sample, a dated phylogeny, and reliable gene annotation,
as well as the means for primary gene repertoire characterization. It turned out
that these basic requirements were not fully available. My thesis focus and aims
thus oriented towards resourcing these requirements.





3

Thesis focus and aim

ENDOPTERYGOTA, or Holometabola, are insects that undergo metamorphosis
during their ontogeny (as opposed to a direct development by growth and
moulding in hemimetabolous insects and other arthropods). This group has the
highest extant species-richness and diversity among insects, with the highest
’concentration’ of diversity in the ’Big Four’, the orders Lepidoptera (butterflies
and moths), Coleoptera (beetles), Diptera (flies), and Hymenoptera (sawflies,
bees, wasps, and ants). Recently, comprehensive and reliable backbone (KJER

et al., 2015; MISOF et al., 2014) and crown group phylogenies (e.g., FOSTER

et al., 2017; PETERS et al., 2017; SANN et al., 2018; SQ ZHANG et al., 2018)
have been published. Given their phylogeny comprising both ancient and
recent divergence times and their diversity, holometabolous insects and insects
in general appear to be a rewarding group to study genome evolution in all
aspects.

The restricted taxon sample of previous repertoire evolution studies leaves open
whether they revealed global or lineage-specific patterns. Certainly, not only
gene repertoire and family variation may influence genome evolution, but also
the structure of genes themselves. Previous comparisons of gene repertoires
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and repertoire dynamics in insects were either focused on few genes, gene
expression correlates, few species, or depended on data collected with methods
of insecure comparability. Elucidating insect gene repertoire composition and
variability requires the investigation of presence and structures of single copy
genes, gene families, and their distributions among clades (i.e., identification
of widespread/taxon-restricted genes). Such a comprehensive approach is
unprecedented and thus well suited to tackle a considerable knowledge gap.

The most surprising gap of knowledge when exploring protein-coding gene
repertoires, however, is very basic: there were no standards and no standard
tools to describe the structure of genes across the whole gene repertoire found
in a genome, and no means to compare for example distributions of structural
parameters across species. Essentially, there is little known of what to expect
when looking at an insect gene repertoire: “What’s in a genome?”, the question
posed by ELLIOTT and GREGORY (2015b), guided my explorations.

3.1 Research questions

3.1.1 Hymenopteran gene repertoire structures?

What are features, structures, and variability of gene repertoires of hymenopteran
genomes?

The overarching topic – protein-coding gene repertoire evolution – is with this
question reduced to a more workable size, focusing only on hymenopteran
genomes. Hymenoptera are one of the most diverse animal groups on earth
(species-richness given their phylogenetic age), thus it can be expected that their
genomes show traces of diversification.

I aim to structurally characterize the repertoires of Hymenoptera and outgroup
insects with the goal to elucidate whether a phyletic pattern can be identified,
i.e., a combination of features that can be related to a group. This subtopic is
addressed in part IV.

Furthermore, I approach the above question by partitioning hymenopteran gene
repertoires according to their conservation across the phylogeny and according
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to the duplicability of identified gene families. With a characterization of
the partitions’ gene structures and domain diversity (as proxy for functional
diversity), I address the question of variability. This subject is presented in part
V.

3.1.2 Adequacy of automatically annotated gene models?

How suitable are automatically inferred models for uncovering taxon-specific gene
structural differences in gene repertoires?

My explorations critically depend on structural gene annotations. Automated
annotation procedures still produce false predictions and depend on assembly
quality. It has been shown that down-stream analyses can be severely misled.
This prompted the question whether the above study could be conducted
at all using solely automatically generated gene models. I investigate in
part III whether gene models that were generated automatically, i.e., using
unsupervised pipelines, are accurate enough to be used to address questions
of gene structure evolution.

3.1.3 A tool to characterize gene structure?

How can protein-coding genes be structurally described?

The first prerequisite to describe gene repertoires is a method to obtain the
necessary data, preferably in a manner comparable to previously published
data. However, there was no standard of data publication when a genome
and its repertoire is released. Also, no standard method to acquire this
data from own annotations was available. Thus, the first task is to identify
sensible parameters and to contrive a workflow to measure these efficiently.
Special attention is given to the implementation of clearly outlined definitions.
Problems of standardization and possible solutions including my newly
developed tool COGNATE are described in part II.
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3.2 Research map

The research map (Figure I.3) provides a schematic overview of the three main
aspects or research areas of protein-coding gene repertoires my work focused
on (sides of the triangle) and the used data types / topics (colored circles). The
small circles depict the research questions explored in the following parts of this
thesis. While the degrees of intersection among the topics are not accurately
represented, the figures nicely illustrates the focal points of the presented
work.

Figure I.3 – Research map. Research areas, data types, research questions
addressed in this thesis.
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Abstract

BACKGROUND: The comparison of gene and genome structures across species
has the potential to reveal major trends of genome evolution. However, such
a comparative approach is currently hampered by a lack of standardization
(e.g., ELLIOTT and GREGORY, 2015). For example, testing the hypothesis
that the total amount of coding sequences is a reliable measure of potential
proteome diversity (WANG et al., 2011) requires the application of standardized
definitions of coding sequence and genes to create both comparable and
comprehensive data sets and corresponding summary statistics. However, such
standard definitions either do not exist or are not consistently applied. These
circumstances call for a standard at the descriptive level using a minimum
of parameters as well as an undeviating use of standardized terms, and for
software that infers the required data under these strict definitions. The
acquisition of a comprehensive, descriptive, and standardized set of parameters
and summary statistics for genome publications and further analyses can thus
greatly benefit from the availability of an easy to use standard tool.
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RESULTS: We developed a new open-source command-line tool, COGNATE
(Comparative Gene Annotation Characterizer), which uses a given genome
assembly and its annotation of protein-coding genes for a detailed description
of the respective gene and genome structure parameters. Additionally, we
revised the standard definitions of gene and genome structures and provide
the definitions used by COGNATE as a working draft suggestion for further
reference. Complete parameter lists and summary statistics are inferred
using this set of definitions to allow down-stream analyses and to provide
an overview of the genome and gene repertoire characteristics. COGNATE
is written in Perl and freely available at the ZFMK homepage (https://
www.zfmk.de/en/COGNATE) and on github (https://github.com/ZFMK/
COGNATE).

CONCLUSION: The tool COGNATE allows comparing genome assemblies
and structural elements on multiple levels (e.g., scaffold or contig sequence,
gene). It clearly enhances comparability between analyses. Thus, COGNATE
can provide the important standardization of both genome and gene structure
parameter disclosure as well as data acquisition for future comparative
analyses. With the establishment of comprehensive descriptive standards and
the extensive availability of genomes, an encompassing database will become
possible.

KEYWORDS: Comparative genomics, Protein-coding genes, Gene annotation,
Gene repertoires, Gene structure, Standardization

https://www.zfmk.de/en/COGNATE
https://www.zfmk.de/en/COGNATE
https://github.com/ZFMK/COGNATE
https://github.com/ZFMK/COGNATE


2

Introduction

AS MORE AND MORE sequenced genomes become available, studying the
commonalities and differences in the structure of genes and genomes has
become an exciting and a rapidly expanding research field. Examples of
comparative studies of intron size are those published by YANDELL et al. (2006),
MOSS et al. (2011), and ZIMMER et al. (2013), who found that intron length
evolution behaves clocklike, that ancient bursts of repetitive elements can be
responsible for an unusual intron length distribution, and that there is a trend
towards shorter introns in the evolution of land plants, respectively. These
studies were restricted to a rather unrepresentative selection of animal, fish, and
plants species, respectively, due to the lack of genome sequences. Studies with
much larger species numbers and a broader taxonomic coverage are becoming
feasible.

2.1 A lack of standards in gene structure characterization

ELLIOTT and GREGORY (2015) recently published a seminal meta-analysis of
the genome and gene summary statistics of animals, land plants, fungi, and
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‘protists’, relying on 521 species. The large number of species and genomes
considered in their analysis allowed the authors to robustly detect statistical
trends in genome evolution, such as a positive correlation between genome
size and both gene and intron content, while taking phylogenetic relationships
into account. These trends have been previously observed (e.g., HOU and
LIN, 2009; Q ZHANG and EDWARDS, 2012), but were based on a much
smaller taxonomic sampling. Yet, despite the evidently improved availability
of sequenced genomes, ELLIOTT and GREGORY (2015) struggled with a lack of
standards in the disclosure of genome characteristics when compiling data for
their analyses; they evaluated 28 parameters of the genomes of 521 species (see
Supplement of ELLIOTT and GREGORY, 2015), for which only 48 % of all possible
values were provided in the publications to the respective genomes (cf. Fig. II.2)
and thus available for the meta-analysis.

The lack of standardization in the publication of gene structure characteristics is
a general problem. Not only are some basic gene content and structure statistics
frequently presented in a non-standardized manner, it often remains unclear
whether or not terms describing gene structure were consistently applied to
achieve comparability between analyses. For example, gene counts may or
may not be inferred from tallying all predicted transcripts, thus bearing the risk
of including alternative transcripts or isoforms as pseudo-replicates in meta-
analyses. Furthermore, GC content may be reckoned without respect to IUPAC
base-calling ambiguity in the total sequence lengths, which predicates the
resulting value on sequencing and assembly quality. Finally, it can be difficult
to trace inconsistencies in the use of terms, like ‘exon’ versus ‘coding sequence
(CDS)’ despite existing standard vocabularies like the Sequence Ontology
(EILBECK et al., 2005). Clearly, comparability and traceability of published data
can greatly benefit from standardized analyses of genome organization and
gene structure (see also GREGORY, 2005).

A partial explanation for the lack of a standardized analysis and presentation
of fundamental genomic features referring to protein-coding genes is a lack of
software that infers the desired statistics. Available tool suites like BEDtools
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(QUINLAN and HALL, 2010), genomeTools (GREMME et al., 2013), AEGeANII.1,
and gfftoolsII.2 are mostly intended for processing rather than describing
annotations. While various programming libraries, such as BioPerlII.3 and
SeqAn (DÖRING et al., 2008) provide suitable methods, their usage is demanding
to researchers without programming experience and fosters the development
of custom scripts by researchers with programming skills. The former likely
limits the number of scientists who can infer the desired statistics, while the
latter increases the risk of inferring incompatible results due to errors and/or
misconceptions in analyses and definitions. Thus, there is a need for easy to use
software that provides the facility to examine genome annotations for a wealth
of structural features of the protein-coding gene repertoire in a concise way
and that provides basic and standardized statistics as well as results suitable
for downstream applications.

2.2 Why another tool?

The tool COGNATE, a Comparative Gene Annotation Characterizer, fills the
above identified gap of software for structural characterization of the annotated
protein-coding gene repertoire of a genome. COGNATE allows a quick and easy
extraction of basic genome features and gene repertoire data; it is thus a tool to
primarily describe a genome and its annotated protein-coding gene repertoire,
which is an essential prerequisite for comparative analyses. Given the ongoing
genome sequencing efforts, especially by large consortia like 10 k (KOEPFLI et
al., 2015) and i5k (I5K CONSORTIUM, 2013), there is an increasing demand for a
standardization of large-scale comparisons of genome and gene structure.

II.1 Standage DS. AEGeAn: an integrated toolkit for analysis and evaluation of annotated
genomes. 2010-2015. http://standage.github.io/AEGeAn. Last accessed 20 March
2017

II.2 GitHub: Holmes I. gfftools. 2011. https://github.com/ihh/gfftools. Last accessed
20 March 2017

II.3 The BioPerl Project. 2016. http://bioperl.org. Last accessed 20 March 2017.

http://standage.github.io/AEGeAn
https://github.com/ihh/gfftools
http://bioperl.org
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Methods and implementation

WITH COGNATE, we promote a tool to simultaneously analyze a given
protein-coding gene annotation and the corresponding assembled sequences of
a genome, here referred to as scaffold or contig sequence (SCS). An overview of
the software’s input, work flow, analyzed parameters, and output is visualized
in Fig. II.1. A complete list of analyzed parameters is given in Additional file
??, a glossary with the definitions of all terms used in this publication and by
COGNATE is provided in Table B.1.1.

3.1 Input and running

COGNATE requires as input: (1) a gff file in GFF3 formatII.1 containing the
annotation of protein-coding genes; (2) a fasta file, containing the corresponding
genomic nucleotide sequences, which are exploited to infer the length, GC

II.1 The Generic Model Organism Database: GFF format definition. 2016.
http://gmod.org/wiki/GFF3. Last accessed 20 March 2017

http://gmod.org/wiki/GFF3
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annotation.gff3
Annotation of protein-coding genes of the genome

genome.fasta
Nucleotide sequences of the assembled genome

All 
SCSs

All
genes

All
CDSs per 
transcript

All 
exons per
transcript

All
introns per
transcript

GC %
CpG o/e
Total count
Individual length

One
transcript per gene

Genome
assembly

INPUT FILES

ANALYZED FEATURES

ANALYZED PARAMETERS

GC %
CpG o/e
Genomic length
Protein length
For all CDSs|exons|introns 
   per transcript:
         Median/Mean GC %, 
               CpG o/e, count, 
               length                 
         Added length          
         Coverage
         Density

OUTPUT FILES

Total count 
   of 3n, 3n+1,
   3n+2 introns

GC %, N %
CpG o/e
Total length
N50/75/90, L50/75/90
L90[genes]

For all transcripts|CDSs|
   exons|introns
         Median/Mean GC %, 
              CpG o/e, count, 
              length, coverage, 
              density  
For all CDSs|introns:
         Added length 

GC %
Total count
Individual length

For all transcripts|CDSs|
   exons|introns 
   per SCS:
         Count
         Coverage
         Density
For all CDSs|exons|introns 
   per SCS:
         Median/Mean GC %, 
              CpG o/e, count, 
              length, coverage, 
              density

11 - CDS ID, individual CDS data

12 - Exon ID, individual exon data07 - Transcript ID, indiv.
          transcript data

08 - Transcript ID, data: 
          CDSs per transcript

09 - Transcript ID, data:
          exons per transcript

10 - Transcript ID, data: 
          introns per transcript

02 - SCS ID, individual
          scaffold data

04 - SCS ID, data: 
          CDSs per SCS

05 - SCS ID, data:
          exons per SCS

06 - SCS ID, data: 
          introns per SCS

03 - SCS ID, data: 
          transcript per SCS

01 - Summary: Assembly 
          and annotation data 
          and general statistics

00 - Protein fasta

13 - Intron ID, individual intron data

14 - BATCH general assembly and annotation data

15 - BATCH SCS means

16 - BATCH SCS medians

17 - BATCH transcr. means

18 - BATCH transcr. medians

19 - BATCH component sizes

20 - BATCH bash commands

Figure II.1 – Overview of the information flow in the software package COGNATE.
(Continued on next page.)
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Figure II.1 – Overview of the information flow in the software package COGNATE.
(Continued)
The Perl script COGNATE requires two files per run as input (blue): a fasta file
containing the assembled nucleotide sequences and a GFF3 file with the protein-
coding gene annotation information. The input (blue) is used to analyze genomic
and genic features (green) on the level of assembly, SCSs, transcripts, CDSs,
exons, and introns. Each complex of analyzed features is evaluated individually
and the analyzed parameters are condensed in a step-wise manner by calculating
means and medians (red). As output (yellow), 21 files are generated, of which all
except two are in TSV format (the exceptions are: 00, protein fasta; 20, bash
commands). The output files are split according to the analyzed features and
parameters. All data files (02–13) are ordered by the ID of the respective feature.
BATCH files (14–20) contain one entry line per genome and thus data of multiple
COGNATE runs to facilitate direct comparisons of genomes.
CDS: CoDing Sequence; GFF: Generic Feature Format; SCS: Scaffold or Contig
Sequence; TSV: Tab-Separated Values

content, and amino acid sequences of the assembled SCSs and of the predicted
protein-coding genes, respectively. The gene annotation has to include at least
the features ‘gene’, ‘mRNA’, and ‘exon’, as provided by, for example, BRAKER1
(HOFF et al., 2016) and MAKER2 (HOLT and YANDELL, 2011). Thus, the analysis
of partial and pseudogenes depends on their annotation in the analyzed gff
file; non-coding genes (i.e., genes without mRNA) are not considered in the
analysis. Further technical requirements are several standard Perl libraries as
well as the GAL::Annotation and GAL::List libraries to allow gff-handling.
The latter two libraries are available from the Sequence Ontology ProjectII.2 and
are also included in the COGNATE software package. COGNATE is written in
Perl and has been tested under Ubuntu 12.04 and 14.04. COGNATE analyzes
one genome at a time. Providing multiple genomes (i.e., a batch) for serial
processing is possible with a special input file (see README in B.2.4). Serial,
single-threaded processing leads to a linear relationship of processed genomes
and required time. As a gauge, the analysis of the latest Apis mellifera gene set
(see II.4), which has a genome size of 250.3 Mb and 10,733 annotated protein-
coding genes, takes with COGNATE up to 4 h, using up to 600 MiB RAM.
For comparison, COGNATE requires a very similar amount of time for the

II.2 The Genome Annotation Library. 2016.
http://www.sequenceontology.org/software/GAL.html. Last accessed 20 March
2017

http://www.sequenceontology.org/software/GAL.html
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analysis of the gene setII.3 of Ixodes scapularis (genome size: 1765.4 Mb, 20,467
annotated protein-coding genes). A benchmark comparison of COGNATE to
other software, such as genomeTools (KOEPFLI et al., 2015), AEGeANII.1, or
gfftoolsII.2, is not meaningful due to major differences between these software
packages in focus and aim. At the moment, no tool yields the wide array of
metrics that COGNATE delivers by default.

3.2 Output

COGNATE infers the following major metrics (for a full list of the 296
parameters, see Additional file B.2.1):

• summary counts of the analyzed features, including L90pcGII.4, i.e., the
number of SCSs needed to cover 90 % of all annotated protein-coding
genes;

• strandedness of transcripts and features (CDSs, exons, and introns);
• lengths and length statistics (nucleotide/amino acid sequences), including

N50/L50, 75/L75, N90/L90;
• intron length distribution (ROY and PENNY, 2007);
• percental GC content statistics in two different ways, namely

II.3 Data of Ixodes scapularis: NCBI: FTP directory of the Ixodes scapularis genome version
JCVI_ISG_i3_1.0 and the corresponding protein-coding gene annotation (NCBI RefSeq).
2017. ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/208/615/GCF_
000208615.1_JCVI_ISG_i3_1.0/. Last accessed 20 March 2017.

II.4 L90pcG, the count of SCSs necessary to cover 90 % of the annotated protein-coding genes in
an assembly, is here, to our knowledge, explicitly termed for the first time. Similar metrics
have been described in other publications, for example, the “number of whole genome
CARs [Contiguous Ancestral Regions] that cover 90 % of one-to-one orthologous families”
(NEAFSEY et al., 2015, supplementary online material, p. 57). Although the notation of L for
a number (instead of a length) appears to be counter-intuitive, we deliberately decided to
follow the already established convention of N50 and L50, with N50 designating
“maximum length L such that 50 % of all nucleotides lie in contigs (or scaffolds) of size at
least L” (LANDER et al., 2001), and L50 designating the “number of sequences evaluated at
the point when the sum length exceeds 50 % of the assembly site” (Bradnam K. ACGT.
2015. http://www.acgt.me/blog/2015/6/11/
l50-vs-n50-thats-another-fine-mess-that-bioinformatics-got-us-into.
Last accessed 23 May 2017).

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/208/615/GCF_000208615.1_JCVI_ISG_i3_1.0/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/208/615/GCF_000208615.1_JCVI_ISG_i3_1.0/
http://www.acgt.me/blog/2015/6/11/l50-vs-n50-thats-another-fine-mess-that-bioinformatics-got-us-into
http://www.acgt.me/blog/2015/6/11/l50-vs-n50-thats-another-fine-mess-that-bioinformatics-got-us-into
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) using a calculation that explicitly considers IUPAC ambiguity codes
(G, C, S per total length excluding N, R, Y, K, M, B, D, H, V);

) using the previously prevailing calculation of GC per total length,
which is inappropriate for genome comparisons due to its depen-
dence on assembly quality;

• statistics of CpG dinucleotide depletion (CpG observed/expected),
normalized by C and G content of the respective region (ELANGO et al.,
2009);

• density statistics (ratio of the length of a feature covered by another,
number-wise);

• coverage statistics (ratio of the length of a feature covered by another,
length-wise).

In summary, the output parameters can be classified as computations of the
eight above major metrics or feature types, some with child types (e.g., added
length), of six structural entities (e.g., assembly/annotation, SCSs, introns). In
other words, parameters are inferred on several levels. For example, the total
count of CDSs in analyzed transcripts is given for the entire assembly as well
as on a per transcript basis. For the latter, COGNATE also calculates the mean
and median count of CDSs per transcript as well as the mean/median of these
medians over all transcripts. As another example, the intron density of a gene
is calculated as the total number of introns divided by the length of the gene
(i.e., genomic length of the transcript, including introns and exons) and also
given as mean/median intron density per gene over the whole annotation. For
each gene, only one representative (optionally the longest [default], shortest,
or median-length) transcript is evaluated. The analysis is independent of
homology hypotheses (i.e., not limited to gene families), thus comprising
information on a genome’s entire annotated protein-coding gene repertoire.

As output, COGNATE provides various result tables in TSV format:

• a concise overview (summary) of measured variables;
• lists of all measured variables referring to features of

) a given SCS, transcript, or individual CDSs, exons, or introns,
respectively;

) summary, the output parameters can be classified
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• ‘batch’ files, which contain one line of summary statistics per analyzed
genome. There are individual files for general genome data and means
and medians of SCS and transcript data, respectively;

• a component size overview (i.e., the added length [in bp] of all coding and
intron sequences, respectively), which offers a basis for a comparison of
these values with statistics of other genomic features inferred with other
tools, for example non-coding elements.

All above specified files (except the ones providing an overview) facilitate tests
for correlations between parameters within and among genomes. The output
files are formatted specifically to allow easy import in statistical software, such
as R (R CORE TEAM, 2017) and SPSS (IBM SPSS Statistics for Windows 2013).
COGNATE also provides a fasta file (’analyzed_transcripts’) containing
the predicted amino acid sequences inferred from the CDSs of the one analyzed
transcript per gene. This file can be used, for example, as input for BUSCO
(SIMÃO et al., 2015) to test for the completeness of the gene set, which is
facilitated by the ready-made bash commands supplied in the ’bash commands’
text file. The generation of all output files can be controlled directly by the
user. The output of COGNATE can be used in manifold analyses, ranging
from a descriptive characterization to an in-depth comparative analysis of
gene organization across multiple genomes. This is further exemplified in the
discussion.
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Results and discussion

4.1 Applicability of COGNATE

IT IS AN ESSENTIAL FEATURE of COGNATE to provide not only descriptive
statistics but also the complete primary data, since “an over-reliance on simple
summary statistics [...] can obscure real biological trends and differences”
(MOSS et al., 2011, p. 1191). Apart from other already mentioned potential
applications, COGNATE output can be used to study the variability of gene
structure within a genome and to compare it with that in other genomes. In
such an instance, the list of transcript features can be exploited to analyze the
range of exon lengths, intron lengths, and their distribution over genes of a
certain GC content. Another example would be a comparison of GC content
in coding and non-coding regions of genes across a genome. Having the
characteristics of a gene repertoire at hand, they can be compared to those of
other species and used in phylogenomic analyses (e.g., NIEHUIS et al., 2012).
COGNATE results can also serve as a starting point to find genes of interest
and relate them to functions, e.g., looking for very long or short genes or
investigating genes containing exactly two CDSs. Hypotheses like “Flying birds
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have shorter introns than birds of non-volant sister lineages due to energetic
demands of powered flight” (Q ZHANG and EDWARDS, 2012), “Evolutionary
changes in intron lengths correlate with co-expression of genes” (KEANE and
SEOIGHE, 2016), or “Strategies of splice-site recognition are influenced by
differences in GC content between exons and introns” (AMIT et al., 2012) could
thereby be tested in more detail. Thus, COGNATE provides data to facilitate
downstream analyses, and in addition, provides summary statistics that can
help standardizing genome parameter disclosure.

4.2 Standardization problems: missing values, fuzzy
terminology, and inaccuracy

Missing standardization in comparative genomics can easily lead to problems
in meta-analyses and consequently result in biased conclusions. As ELLIOTT

and GREGORY (2015) noted during their tremendous effort of data compilation,
there are problems of standardization in terms of parameter listing and source
disclosure as well as of definitions of descriptive terms. Some of these subtle
and sometimes deemphasized problems are elucidated here in more detail to
raise and sustain the awareness for them.

One problem in compiling data for meta-analyses are missing values. The data
matrix compiled by ELLIOTT and GREGORY (2015) (Supplement of ELLIOTT and
GREGORY, 2015II.1) contains overall 52 % missing values due to incomplete data
disclosure by publications or missing entries in databases. This lack of data
introduces a potential bias in correlative analyses of genome structures, which
has not been systematically investigated. Thus, without in-depth parameter
disclosure, the enormous effort of collecting data from open sources for genome
and gene structure comparison potentially yields unreliable results. The general
distribution of missing data in the matrix compiled by ELLIOTT and GREGORY

(2015) is noteworthy in that the GC content is almost always given while values

II.1 Supplement 1 – Genome data used in the analyses. 2015.
http://rstb.royalsocietypublishing.org/highwire/filestream/32237/
field_highwire_adjunct_files/0/rstb20140331supp1.xlsx. Last accessed 20
March 2017

http://rstb.royalsocietypublishing.org/highwire/filestream/32237/field_highwire_adjunct_files/0/rstb20140331supp1.xlsx
http://rstb.royalsocietypublishing.org/highwire/filestream/32237/field_highwire_adjunct_files/0/rstb20140331supp1.xlsx
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related to gene structure including intron size values are missing for half of
the genomes in the data matrix (see Fig. II.2). It is surprising to find that for
38 % of the genomes in their dataset no assembly genome size was included
in the original publications or databases. To further illustrate the problem of
missing data in comparative genomics, we analyzed the genome (version 4.5,
downloaded 31 August 2015, from NCBIII.2) and latest protein-coding gene
annotation (release 103, downloaded 20 March 2017 from NCBIII.3) of Apis
mellifera. Compared to the 144 values recorded by COGNATE that can readily
be given as a single number, the publications covering the official gene sets 1
(MORIOKA et al., 2006) and 3.2 (ELSIK et al., 2014) offer only eight and nine
comparable values, respectively; NCBI offers a report siteII.4 for the most recent
annotation release (103), where we found 14 comparable values (Additional file
B.2.1, sheet 2). The obtained values differ on a small scale (for example, the
count of protein-coding genes differs by 5 for a total of circa 10,730), most likely
due to the different annotation versions or deviating definitions. Generally,
COGNATE can help to mitigate the problem of missing values by easing their
acquisition and has the benefit of providing tractable values with a transparent
method.

Problems of fuzzy terminology become apparent when, for example, the coding
amount (i.e., the total length of protein-coding sequences within a genome)
is given in exonic megabases (Mb) (Fig. II.2; ELLIOTT and GREGORY, 2015).
Given the functional and structural similarity of exons and CDSs and their
often complete overlap in automated annotations, it is an understandable, yet
potentially misleading lack of differentiation. In contrast to CDSs, annotated
exons can include untranslated regions (UTRs) and stop codons; not every exon
is a coding sequence (MQ ZHANG, 2002). Most of the automated annotations

II.2 NCBI: FTP directory of the Apis mellifera genome version 4.5 (NCBI RefSeq). 2016.
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/195/GCF_
000002195.4_Amel_4.5/. Genome file downloaded 31 August 2015. Last accessed 20
March 2017

II.3 NCBI: FTP directory of the Apis mellifera annotation release 103. 2017.
ftp://ftp.ncbi.nlm.nih.gov/genomes/Apis_mellifera/GFF/. Annotation file
downloaded 20 March 2017. Last accessed 20 March 2017

II.4 NCBI: NCBI Apis mellifera Annotation Release 103 report site. 2016. https:
//www.ncbi.nlm.nih.gov/genome/annotation_euk/Apis_mellifera/103. Last
accessed 20 March 2017

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/195/GCF_000002195.4_Amel_4.5/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/195/GCF_000002195.4_Amel_4.5/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Apis_mellifera/GFF/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Apis_mellifera/103
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Apis_mellifera/103
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Figure II.2 – Comparison of means and medians of exon and intron length in the
genome of Apis mellifera. We applied COGNATE with default options (thus
using the longest of each gene’s alternative transcripts) to the genome and gene
annotation of A. mellifera, version 4.5. The respective data were downloaded from
NCBIII.2 II.3 and constitute a RefSeq annotation, predicted by the NCBI Eukaryotic
Genome Annotation Pipeline. Shown is the comparison between the mean and
median values of the exon length and of the intron length per transcript in bp,
respectively. COGNATE considered 10,733 transcripts, comprising of 76,276
exons and 65,543 introns. N = 10,733 for mean and median exon lengths and N
= 10,240 for mean and median intron lengths. The means of exon lengths are
355.32 (medians) and 452.99 (means) bp, means of intron lengths are 613.08
(medians) and 1502.31 (means) bp. The primary data are provided in Additional
file B.2.3

do not include UTRs, which are difficult to delineate de novo (e.g., GRIFFITH et
al., 2008; MIGNONE et al., 2005); nevertheless, a future project is to include the
analysis of UTR annotations in COGNATE. Thus, in this instance, it remains
unclear in which form exons and CDSs were evaluated and contributed to
a summary statistic. With the above example, we are illustrating why we
stress the importance of clear definitions and applications of these to genome
and gene structure characterizations. Accordingly, COGNATE differentiates
between CDSs and exons, but it can only be as accurate as the given annotation.
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For a complete list of our definitions, compared to Sequence Ontology termsII.5,
see the glossary in section B.1.1. The problems of defining a universally needed
term such as ‘gene’ (described in GERSTEIN et al., 2007) as well as the various
ways and needs of gene annotation (MUDGE and HARROW, 2016) render the
ongoing efforts of finding precise and useful definitions both essential and
exacting.

Another problem of terminological and methodological nature is the
widespread use of means as descriptive summary statistic. Since many gene
structure features are not normally distributed within a genome, the mean is an
inappropriate summary statistic of these features. Yet, in many investigations,
only the mean is calculated as a summary statistic of gene structure features (see
(ELLIOTT and GREGORY, 2015) as well as the publications cited therein). Doing
so can bias analyses and severely mislead comparisons between genomes,
especially when one is represented by a mean, the other by a median. To
illustrate this, we used results of COGNATE from analyzing the latest gene set
of Apis mellifera (see above) and compared the obtained values of mean and
median of exon size and intron size per transcript, respectively (Fig. II.3, data
in Additional file B.2.3). In normally distributed data, means and medians are
expected to be (nearly) identical, which is clearly not the case in A. mellifera.
COGNATE calculates both means and medians for a wealth of parameters.

A third example of unclear usage of terms relates to the evaluation of intron
density. The two above evaluated parameters – exon size and intron size per
transcript – together with intron density per transcript can be understood as a
proxy for gene structure, as demonstrated by YANDELL et al. (2006), and are thus
of great interest in structural gene characterization. Note however that intron
density as calculated by YANDELL et al. (2006) relates to protein length (i.e., count
of introns/protein length). We advocate (and implemented in COGNATE) the
relation of intron density to gene length as described above, since proteins as
well as mature mRNAs are spliced and thus intron-free.

II.5 The Sequence Ontology. 2016. http://www.sequenceontology.org. Last accessed 20
March 2017.

http://www.sequenceontology.org
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Figure II.3 – Amount of missing data [%] in nine selected parameters analyzed by
ELLIOTT and GREGORY (2015). We selected nine parameters evaluated by
ELLIOTT and GREGORY (2015), namely those that are directly comparable to the
parameters evaluated by COGNATE. These parameters are: (1) the size of the
assembled genome (in Mb); (2) the GC content of the assembled genome in %
(COGNATE provides here two values, taking Ns in the sequence into account and
excluding them, respectively); (3) gene number (total gene count in COGNATE);
(4) average coding size/gene in exonic bp (mean added CDS length per transcript
in COGNATE); (5) coding amount (total added length of all CDSs in COGNATE);
(6) the average exon size in bp (mean exon length in COGNATE); (7) the average
intron size in bp (mean intron length in COGNATE); (8) intron number (total
intron count in COGNATE); (9) intron amount (total added length of all introns
in COGNATE). Please note that we applied the same parameter terminology in
the figure as ELLIOTT and GREGORY (2015).
Values of these parameters were taken from the supplement of ELLIOTT and
GREGORY (2015), including all genomes of the original set and partitioned by
kingdoms (animals, red; land plants, orange; fungi, light blue; ‘protists’, dark blue).
Values referring to all genomes are depicted by a black line.
The plot shows the amount of missing data, i.e., for each parameter, the count
of missing values per count of potential values was determined. Thus, 0 % of
missing data means that all values of the genome set under scrutiny were present,
as is nearly the case for GC content. bp: basepairs; CDS: CoDing Sequence; Mb:
Megabases
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4.3 Standardization suggestions

Aside from reporting important insights, ELLIOTT and GREGORY (2015)
advocated the need for standardization in large-scale comparisons of genomes.
The inevitable problems of analyzing datasets with missing data could, in the
future, be extenuated by a common, comprehensive set of basic parameters
published together with genomic data. When publishing a genome and its
annotation of protein-coding genes, it would be most beneficial to attach the
complete set of COGNATE results to it to avoid problems resulting from
changing versions of genomes and/or annotations. A set of standard metrics
to advance standardization of parameter publishing was proposed by ELLIOTT

and GREGORY (2015), including “details of base pair composition, gene number,
intron number and size, total repeat content, and TE abundance, diversity and
activity” (ELLIOTT and GREGORY, 2015, p. 8). Many other parameters can and
should be used to describe the features of a genome completely, most of which
go beyond the scope of COGNATE (e.g., properties of repetitive elements).
Regarding protein-coding genes, we suggest to cover the descriptive parameters
more broadly and to provide the following parameters as a minimum:

• assembly size (i.e., total added length of all SCSs, with and without Ns),
• assembly GC content (with and without ambiguity),
• gene count,
• median transcript length (tallying one representative transcript per gene),
• median CDS length,
• median CDS count per transcript (i.e., density),
• median CDS length per gene (i.e., coverage),
• coding amount (i.e., total added length of all CDSs),
• intron count,
• median intron length,
• median intron count per transcript (i.e., density),
• median intron length per gene (i.e., coverage),
• intron amount (i.e., total added length of all introns).

Following the establishment of standard parameters of gene model properties
and the institution of a standard tool to acquire these, the next desirable step
is the constitution of a “curated, user-friendly, open-access database [to] make
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this information accessible and usable in large-scale comparative analyses”
(ELLIOTT and GREGORY, 2015, p. 8).

Finally, we would like to draw the readers’ awareness also to a frequently
encountered problem in comparative genomics: the source of primary sequence
data or the version of gene annotations are often not clearly stated, which
hampers reproducibility of the published analyses. Therefore, we emphasize
the need for disclosing used databases, genome versions, and other source
information in combination with data and results.



5

Conclusion

COMPARATIVE META-ANALYSES of gene and genome characteristics, testing,
for example, whether potential proteome diversity is reliably reflected by the
total amount of coding sequences (WANG et al., 2011), rely on descriptive
statistics of primary genome sequences and gene annotations. However,
comprehensive standard statistics of genome organization and gene structure
have not been fully or consistently defined with the effect that they are
inconsistently collected or often incomplete. Due to this problem, comparative
meta-analyses of gene and genome characteristics can be severely handicapped
and are potentially unreliable. Obviously, this problem can be solved with
the routine application of standard tools. The here presented software
COGNATE allows effortless and flexible parameter disclosure as well as
genome comparisons within its designated scope. Its merits include the
comprehensive evaluation of an extensive set of standard and non-standard
parameters of protein-coding genes, the provision of both primary data and
summary statistics, and the use of explicit term definitions. COGNATE was
developed in the hope to further promote and ease comparative studies, which
should eventually yield insights into the evolution of genomes and gene
repertoires.
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Additional publication information

6.1 Availability and requirements

COGNATE is provided as a package, including source code, helper scripts
(e.g., to check the presence of required Perl libraries), example data, GAL
libraries, and manual at the ZFMK website and together with this publication
as Additional file B.2.4.

Project name: COGNATE
Project home page: https://www.zfmk.de/en/COGNATE

and https://github.com/ZFMK/COGNATE
Operating system(s): platform independent
Programming language: Perl
Other requirements: GAL libraries (included)
License: GNU GPLv3

The datasets analyzed during the current study are available in the NCBI
RefSeq repositoriesII.2 II.3 and from the supplementII.1 of ELLIOTT and GREGORY

(2015).

https://www.zfmk.de/en/COGNATE
https://github.com/ZFMK/COGNATE
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1

Abstract

BACKGROUND: The location and modular structure of eukaryotic protein-
coding genes in genomic sequences can be automatically predicted by gene
annotation algorithms. The resulting predictions are the basis for comparative
studies on gene structure, gene repertoires, and genome evolution. However,
such algorithms do not perform perfectly and it has been argued that
only human review of the predictions ensures reliability. This implies that
comparative genomics is futile until the enormous effort of manual curation of
on average 21,500 gene models per eukaryotic species can be handled.

RESULTS: Here we outline the prospects and limits of both automated and
manual annotation in a comparative study focused on gene structure variability
between species. Specifically, we compare the effect of manual curation on
predicted structural properties of protein-coding genes by analyzing annotated
gene sets from seven insect species sequenced by the i5k initiative. We find
that the properties of automatically generated gene models and their manually
curated replacements do not differ extensively, and major correlative trends
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regarding gene structures can be recovered from both sets. This holds even
when comparing the results of different algorithms.

CONCLUSIONS: Our analyses indicate that research questions and data
quality should be guideposts for the extent to which manual curation is
fruitful and necessary. We anticipate further developments and benchmarks
of prediction routines to improve the basis for protein-coding gene repertoire
analyses.

KEYWORDS: Gene prediction, annotation, manual curation, exon-intron
structure, insects



2

Introduction

EUKARYOTIC PROTEIN-CODING GENE STRUCTURE is characterized by a mod-
ular organization of introns and exons (the latter being composed of a
combination of coding sequence [CDS] and/or untranslated regions [UTRs];
MQ ZHANG, 2002), which are commonly identified in genome sequences using
automated in silico gene annotation procedures (Supplementary Note C.1.2).
The configuration of exons and introns — GC content, length, and number
of exons and introns — varies among and within species, as well as by gene
type. Various hypotheses have been proposed to explain the evolutionary
persistence and variance of gene structure organization. For example, it has
been hypothesized that in regions of low GC content in mammalian genomes,
differential GC content of exons and introns constitutes a marker for exon
recognition during splicing and is thus a factor in the stabilization of exon-
intron boundaries (AMIT et al., 2012; GELFMAN and AST, 2013). Further example
hypotheses on gene structure organization evolution state that introns are
generated by the insertion of non-autonomous DNA-transposons (HUFF et al.,
2016) and that in the case of birds intron size selection is driven by the evolution
of powered flight (Q ZHANG and EDWARDS, 2012). The foundation of these
propositions and observations is the structural description of protein-coding
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gene repertoires derived from automated annotation, with all its strength and
limits.

2.1 Prevalence of automated annotation and its problems

The development of automated procedures for unsupervised annotation of gene
structures has been pursued since the 1980s and constantly improved (reviewed
by, for example, BRENT, 2005, 2008; BURGE and KARLIN, 1998), but it is still
not error free (KÖNIG et al., 2016; X ZHANG et al., 2012). The most commonly
encountered errors are false positive and false negative identifications of
protein-coding sequences (DENTON et al., 2014; GOODSWEN et al., 2012), non-
coding sequence retention in coding exons (DRĂGAN et al., 2016), wrong
exon and gene boundaries (GOODSWEN et al., 2012; GUIGÓ et al., 2000), and
fragmented or merged genes (DRĂGAN et al., 2016; GUIGÓ et al., 2006; HARROW

et al., 2009). With increasing gene size and complexity (i.e., increasing exon
count), these errors are more likely to occur and automated annotations can thus
be expected to be increasingly less accurate (FRANCIS and WÖRHEIDE, 2017;
GUIGÓ et al., 2000; PANFILIO et al., 2017). Another factor negatively influencing
the results of automated annotation is draft assembly quality (TREANGEN and
SALZBERG, 2012). The more fragmented an assembly is, the less likely it is
to find a complete gene on one fragment (FRANCIS and WÖRHEIDE, 2017;
YANDELL and ENCE, 2012). This problem becomes exacerbated as the size of
the sequenced and analyzed genome increases, since larger genomes harbor
a greater repetitive content load (GREGORY, 2005). The gene set predicted by
automated annotation procedures also depends on whether or not extrinsic
evidence (i.e., alignments of homologous proteins and other amino acid or DNA
sequences from species other than the one being annotated) is used for gene
sequence delineation: algorithms that incorporate extrinsic evidence will likely
more reliably predict genes with conserved coding or amino acid sequence
(YANDELL et al., 2005). However, genes that do not resemble the provided
extrinsic evidence, being potentially taxon-specific and/or fast evolving, could
be missing from the annotation, as such algorithms may demand a certain
amount of evidence support for prediction (CANTAREL et al., 2008). Annotation
results thus depend on the availability and quality of evidence in terms
of sequence diversity, sequencing approach, and taxonomic coverage. This
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dependence becomes a problem when little evidence is available, for example,
when annotating genome sequences of previously unsequenced taxa. Despite
these caveats, advantages of automated gene annotation are the speed and
ease of application on (multiple) genome assemblies, error consistency, and
the theoretical feasibility of error tracking due to the application of explicit
algorithms. With an expected average number of 21,500 protein-coding genes in
a eukaryotic genome (ELLIOTT and GREGORY, 2015), the automated approach is
the method of choice to comprehensively annotate gene repertoires despite the
risk of erroneous models.

2.2 Manual curation as corrective

Structural annotation errors can pose a serious problem in comparative
analyses and have been held responsible for false positive detection of clade-
specific genes (BÁNYAI and PATTHY, 2016), inference of incorrect gene copy
numbers (DENTON et al., 2014), and misleading functional annotations based
on erroneous coding sequences (PROSDOCIMI et al., 2012). Consequently, many
authors rely on manual curation, that is, the critical review and correction by
hand, of automatically generated gene annotations, to study gene structure
evolution (e.g., GOODSWEN et al., 2012; HARROW et al., 2009; MISRA et al., 2002;
PANFILIO et al., 2017; YANDELL et al., 2005). Accordingly, manual curation is
often termed the ‘gold standard’ in annotation, as coined by GUIGÓ et al. (2006).
However, manual curation is not free of problems either. Although curators
follow guidelines (as stated, for example, by i5kIII.1), their personal background
knowledge, training, experience, and interpretation likely influence the result.
Manual curation thus depends on individual proficiency, on the underlying
research questions and aims, as well as on the (sometimes implicit) use of
additional evidence. This can lead to potentially high variation in quantity
and reliability of curated gene annotations (MISRA et al., 2002). Additionally,
a limited number of experts involved in many different annotation projects
might bias the selection and revision of curated genes. The impact of curator

III.1 i5k Workspace @ NAL. Manual Curation Overview.
https://i5k.nal.usda.gov/manual-curation-overview. Accessed 18 December
2017

https://i5k.nal.usda.gov/manual-curation-overview
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experience and diversity within an annotation project has to our knowledge
not been systematically addressed. This impact is especially interesting in
cases of conflicting evidence, when curators are confronted with dilemmas and
(in)consistent decisions can bias annotation results. Finally, the often incomplete
documentation of the review processes, including records of changes and
used sources, hampers tracking annotation errors. Nonetheless, automatically
annotated models generally benefit from manual curation (MISRA et al., 2002;
PANFILIO et al., 2017).

2.3 Implication of ‘gold standard’ manual curation

The prevalence of manual curation as the gold standard goes to such lengths
that some researchers endorse the view that only manually curated protein-
coding gene models are of sufficient quality and thus imperative to infer
hypotheses on the evolution of genomes and genes (e.g., AMID et al., 2009;
MISRA et al., 2002). Typically only a minor, most likely specifically selected,
fraction of the gene repertoire is manually curated. Thus, the implied limitation
of comparative genomics to only manually curated gene models for all
approaches would confine this research area to meaninglessness. Consequently,
it is vital to assess the reliability of the currently available automated structural
annotation approaches and to investigate the differences between automated
and manual curation in a systematic way.

2.4 Benchmarking manual versus automated annotation

Fifteen years ago, MISRA et al. (2002) assessed the effects of manual curation
in comparison to the previous, computationally generated gene annotation
of the fruit fly Drosophila melanogaster (Diptera). Although their seminal
findings regarding the shortcomings of gene prediction, including inaccurate
structures and failure to delineate complex genes, most likely influenced the
development of prediction algorithms thereafter, comparable studies of the
current state of the art are lacking. To our knowledge, there has been no
benchmark study published that compares properties or quality of manual
versus automated structural annotation of protein-coding genes across species
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and that includes recent algorithmic developments. In contrast, in addressing
the reliability of automatically generated functional annotations, ŠKUNCA et
al. (2012) documented an improvement of automated functional assignments
to a quality comparable to that of manually curated functional annotations.
Functional annotation considers the role or function of a gene’s protein product,
while structural annotation regards solely the location of a gene’s components
within the genome (see Supplementary Note C.1.2).

In summary, automated structural annotations are suspected to mislead or
reduce the power of analyses of gene repertoire evolution, while manual
curation, although being considered the gold standard, is not only labor-
intensive and restricted to a fraction of a species’ protein-coding gene
set but is also potentially afflicted with subjectivity. Beyond spot-check
vetting of automatically predicted models, the decision of when to invest in
manual curation requires background knowledge not only on the error-based
limitations of automated annotation, but also on the effects of manual curation
(and factors influencing it, like personal experience). Using available data,
we can provide first insights into the potential impact of manual curation on
structural annotations of protein-coding genes, and thus also on downstream
analyses, and illustrate in which cases the expenditure of human review appears
to be not only fruitful but necessary.

2.5 Comparing automatically generated and manually
curated gene models

In this study, we present a comparative analysis of manually curated gene
models and their automatically annotated predecessors as well as of the gene
sets containing these. We examine the extent of manual curation effects on
the structural properties of protein-coding gene sets of seven insect species
(Supplementary file III.1) generated within the i5k initiative (I5K CONSORTIUM,
2013). The scrutinized species represent taxonomically distant insect clades
(last common ancestor ca. 370 million years ago; MISOF et al., 2014) and
differ in genome size and assembly quality from each other (Supplementary
Note C.1.2). Furthermore, only for these species were both automated and
manually curated gene sets available, with on average 5.3 % of the original
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genes having been manually curated (Table III.1. As our aim is to investigate
global properties of protein-coding gene sets, we focus this analysis deliberately
on structural features (i.e., we disregard protein functions or roles) in insect
genomes. Genomes of insects appear to be more difficult to assemble and
annotate than those of vertebrates due to the faster pace with which insect
genomes seem to evolve, resulting in a comparatively low similarity between
insect genomes in general (ZDOBNOV and BORK, 2007, but see SIEPEL et al.,
2005].

Here, we survey the potential influence of individual human experts on the
whole process of manual curation and highlight the curators’ dilemmas. We also
check the degree to which gene models selected for curation are representative
for the whole gene repertoire regarding structural parameters. Following this,
we assess the general changes in five structural parameters of gene models
induced by manual curation. Furthermore, to substantiate the universality
of our findings, for three insect species we additionally compare our primary
data set of automatically predicted gene models and manually curated versions
with automated re-annotations from a second pipeline. Finally, we explore
whether reported correlations of gene counts and coverages (from ELLIOTT and
GREGORY, 2015) as well as of gene composition (from ZHU et al., 2009) can be
recovered using uncurated and curated annotations alike.

Although manual validation of models adds value to annotations, the limitation
by work force requires a directed allocation of efforts. We argue that
uncurated annotations can be sufficient to investigate certain research questions,
especially regarding properties of protein-coding genes on the structural level in
large-scale repertoire-wide comparisons irrespective of functional classification.
Examples of such questions are: ’Can we identify and explain evolutionary
patterns of exon length variation (cf. YANDELL et al., 2006) across insect orders?’
or ’Is there a reduction of structural gene complexity in accordance with small
genome size in parasites?’.
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Results

3.1 Curator experience varies

A SYSTEMATIC ASSESSMENT of the diversity and proficiency of curators and
their effects on manual curation processes is difficult, as there is no formalization
or standardized documentation of this aspect to rely on. Similarly, it is currently
not feasible to systematically quantify quality gain due to manual curation.
For now, we decided to gauge the potential impact of personal experience in
reviewing protein-coding gene models by evaluating the number of annotation
projects in which each curator participated (section III.5).

For our sample of seven species, 7.6 % of all curators participated in four or more
of the analyzed projects (here regarded as being ’experienced’) and provided
24.4 % of all curated models. One of the two curators who participated in all
projects handled 22 times more gene models than the average of all curators
(Fig. III.1 a; detailed results in Supplementary Note C.1.3, Additional File
C.2.2). Our results suggest that few experienced curators have a relatively large
influence on selection and handling of gene models during curation.
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Figure III.1 – Curator experience and dilemmas. (Continued on next page.)
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Figure III.1 – Curators. (Continued)
a) Curator experience and relative contributions. Percentage of curators that
participated in a given number of projects (i.e., an ’experience group’) in relation
to the total number of curators in all projects (n = 132) (gray), and the percentage
of manually curated gene models that were revised by the curators of a given
’experience group’ in relation to the total count of curated gene models (n = 6057)
(red). Numbers (blue) indicate the average count of genes revised per curator in
the respective group. The two curators that participated in all seven annotation
projects contributed 643 and 67 gene model revisions, respectively. Data in the
inserted table refers to individual projects.
b) Examples of curator’s dilemmas. Theoretical gene X consists of ten exons,
split across two scaffolds in the genome assembly. Protein-coding regions are
represented by light blue boxes, untranslated regions (UTRs) by thinner, dark
blue boxes. Curation option I retains a correct exon structure, but thereby induces
a frame shift with a premature stop codon and 3’UTR, losing ORF and protein
information within the model on Scaffold 1. Option II retains ORF and protein
information, but necessitates the use of an incorrect, non-canonical acceptor
splice site. Option III, splitting the model in two parts, also retains correct
exon structure and ORF information, but yields incomplete models, where the
functional protein domain may be split or only occur in one part, which limits
domain/homology recognition. Curation option IV implies that the true exons are
included in the official gene set, but within a model that lacks start/stop codons
and UTRs and may lack conserved protein sequence for homology recognition,
inflating the gene count and potentially the number of apparent lineage-specific
proteins. Option V, ignoring exons 4-5 by not annotating a de novo model or
actively deleting automatic predictions, leads to fewer incomplete models in the
annotation, but also to information loss regarding protein-coding regions.

3.2 Curator’s dilemmas

Experience from i5k genome annotation projects discloses not only that
automatically generated gene models can be grossly wrong, but also under
which circumstances both automated and manual annotation meet their limits.
Problems during manual curation and decision consequences are rarely made
visible (but see PANFILIO et al., 2017). Thus, we highlight here an example
dilemma with multiple possible outcomes, stemming from intron phase shift
combined with mis-assembly of a realistic gene model, within the confines of
manual edits that can be documented within gff files for assembled scaffolds
(Fig. III.1 b).

We observed that the MAKER pipeline allows non-canonical translation start
codons (results in Additional File C.2.3). Of the proteins encoded by MAKER-
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predicted gene models, between 11.8 % (in Cimex lectularius, Hemiptera) and
29.9 % (in Frankliniella occidentalis, Thysanoptera) do not start with methionine
(M). In almost all species, some protein sequences even start with X (IUPAC
ambiguity code serving as a wild-card for any amino acid). While uncurated
MAKER models retain non-canonical start codons, the act of curation through
the Apollo graphical web interface automatically reconfigures the predicted
ORF (open reading frame) to strictly require a methionine start, which may
be inappropriate for a fragmented gene model and thus necessitate advanced
curator actions.

3.3 Gene models selected for manual curation are
representative

The very restricted number of experienced curators together with the small
number of gene models selected for manual revision in comparison to the whole
gene set raises concerns that this selection may not be representative regarding
certain gene structure parameters (e.g., if manual annotation was focused on
models with very long introns, as suggested by DRĂGAN et al., 2016).
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Median of ‘analyzed’ set

Assembly
size (%
det. nucs)

Curated
models:
count (% of
OGS)

Curation
actions: #
of splits
merges

Transcript
length: a /
m

Protein
length: a /
m

Exon
count: a /
m

Exon
length: a
/ m

Anoplophora

glabripennis

707.7
(85.1)

771 (3.5) 45 / 61 6,183 /
5,789.5

358 / 389 4 / 4 1,210 /
1345.5

Coleoptera
Leptinotarsa

decemlineata

1170.2
(58.0)

933 (3.8) 22 / 125 8,562.5 /
9,280

255 / 300 4 / 4 984 /
1127

Athalia rosae 163.8
(95.7)

163.8 (95.7) 825 (6.9) 28 / 34 4,340 /
3,208

445 / 423 6 / 5

H
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Hymenoptera
Orussus abietinus 201.2

(92.7)
672 (6.1) 17 / 41 5,200 /

3,996
430 / 419 5 / 5.5 2,151 /

1,828

Cimex lectularius 650.5
(79.0)

780 (5.5) 23 / 95 4,362 /
4,360

358 /
372.5

5 / 5 1,200 /
1,194.5

Hemiptera
Oncopeltus

fasciatus

1098.7
(70.4)

945 (4.8) 14 / 160 9,324 /
11,244

257 / 320 4 / 4 1,086 /
1,347
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Thysanoptera Frankliniella

occidentalis

415.8
(63.4)

1,127 (6.3) 39 / 64 5,001.5 /
4064

419.5 /
419

6 / 6 1,807.5 /
1,755

Table III.1 – Overview of basic parameters.
Basic data on assemblies and manual curation actions for each species and selected parameter values of each
‘analyzed’ set regarding gene models that were manually cirated (‘manual’) and their predecessors (‘automatic’).
Assembly size is given in Mb, transcript length and exon length in bp, and protein length in aa; exon count and exon
length are given as (median) per transcript. ‘a’ is short for ‘automatic’, ‘m’ for ‘manual’
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Using correlative plots (section III.5), we observed that genes selected for
manual curation (subsets termed ‘analyzed automatic’) generally show a similar
distribution of exon count per transcript (pre-mRNAa) in relation to transcript
length as the entire automatically predicted set (‘complete automatic’ sets) (Fig.
III.2 a: left column; Supplementary Note C.1.3). Likewise, the curated gene
models (‘analyzed manual’ subsets) cover the data cloud of annotations in the
complete official gene set (OGS, non-redundant merge of automatic and manual
models) (‘complete manual’ sets) for these parameters, although with a (minor)
enrichment in curated models with few exons and large transcripts, notably
in the Hemiptera (Fig. III.2 a: right column, example highlighted with black
circle). Evidently, the subset of manually curated gene models within the i5k
project is in general not biased to certain structural parameter values, compared
to the entire set of genes within each OGS. This holds also for comparisons of
count, GC content, and lengths of introns and exons (Fig. III.2 b–e). The sole
exception, an inversion of the trend line (smoothed conditional mean) of intron
count vs. intron length in ‘analyzed’ subsets in comparison to ‘complete’ sets
in the Asian long-horned beetle Anoplophora glabripennis, indicates that gene
models chosen for curation were not representative in this species for these
features (Fig. III.2 e, black brace).

3.4 The effect of manual curation on structural parameters
of gene repertoires

We analyzed five parameters to compare automatically generated and manually
curated gene models: transcript length, protein length, exon count per
transcript, and median exon and intron lengths per transcript (see section III.5).
Following the expectations outlined in the introduction, it is predicted that
manual curation leads to an increase of transcript, protein, intron, and exon
length as well as intron/exon count that is more pronounced in gene models
from large genomes than in those from small genomes. Our data provide some
support for this: manual curation in the two species with the largest genome
assemblies in our dataset, Leptinotarsa decemlineata (Coleoptera; 1,170.2 Mb) and
Oncopeltus fasciatus (Hemiptera; 1,098.7 Mb), led to a slight increase in the counts
of longer transcripts, of transcripts with more exons, and of longer proteins
compared to the statistics inferred from the automatically generated gene set;
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Figure III.2 – Automatically generated and manually curated annotation compari-
son I. (Continued on next page.)
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Figure III.2 – Automatically generated and manually curated annotation compari-
son I. (Continued)
a) Species’ gene sets and subsets affected by curation. Logarithmic display
of transcript length vs exon count per transcript as dispersion coverage plot. The
values of automatically generated models that overlap manually curated versions
as well as their manually curated versions (‘analyzed’, gray) are distributed within
the range of values of the complete gene model sets including these subsets
(‘complete’, red). Note that the outer rims of the data clouds are not covered
by ‘analyzed’ gene models, indicating that models with extreme values were
generally not manually annotated, although there are exceptions (e.g., several
gene models with many exons in A. rosae and O. abietinus that were apparently
removed or split into several curated models). Values are given for the longest
transcript per gene.
b) – e) Correlative trends of exon-intron structure variation. Logarithmic
display of exon/intron count per transcript vs median exon/intron GC content per
transcript (b, d) and median exon/intron length per transcript (c, e) as dispersion
coverage plots. Values are given for the longest transcript per gene.
f) Phylogenetic orders. Color codes represent the insect orders Coleoptera
(yellow), Hymenoptera (orange), Hemiptera (burgundy), and Thysanoptera
(brown). The right side tree illustrates the order-level phylogenetic relationships
(after MISOF et al., 2014).
Lines represent the smoothed conditional mean for the ‘analyzed’ (gray)
and ‘complete’ (red) set. Facets show the two annotations (‘automatic’
and ‘manual’) as columns and the seven species in rows (Anoplophora

glabripennis [Coleoptera], Athalia rosae [Hymenoptera], Frankliniella occidentalis

[Thysanoptera], Leptinotarsa decemlineata [Coleoptera], Oncopeltus fasciatus

[Hemiptera], Orussus abietinus [Hymenoptera]). Black tags indicate special
cases described in the text.

note that due to the small number of manually curated models, this effect is only
visible in the subsets of ‘analyzed’ models (Fig. III.3 a and b, left column).

The most pronounced increase is found in median protein length (from 250 to
ca. 320 aa; Table III.1). Contrariwise, in the two species with the smallest genome
sizes in our sample, manual curation led to antagonistic results (Fig. III.3
b): after manual curation the repertoire-wide median exon count decreased
in Athalia rosae (Hymenoptera; 163.8 Mb) and increased in Orussus abietinus
(Hymenoptera; 201.2 Mb), while the median transcript length and median
protein length decreased for both species. Note that the two hymenopterans
do not only stand out by having the smallest genomes in our sample, but
also because most of the curators involved in the manual curation of their
annotations had only participated in at most two other projects of our sample
(Supplementary Note C.1.3, Additional File C.2.4).
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Figure III.3 – Automatically generated and manually curated annotation compari-
son II. (Continued on next page.)
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Figure III.3 – Automatically generated and manually curated annotation compari-
son II. (Continued)
a) The effect of manual curation on structural parameters of gene
repertoires. Density distributions of four gene structure parameters per genome
(semi-logarithmic): transcript length [bp], protein length [aa], exon count p.t.,
median exon length p.t. [bp], median intron length p.t. [bp].
b) Correlations of assembly size (without Ns, in Mb) to (in rows from top to
bottom) median transcript length [bp], median protein length [aa], median exon
count p.t., median median exon length p.t. [bp], and median median intron length
p.t. [bp] (logarithmic).
c) Correlations of assembly size (without Ns, in Mb) to (in rows from top to
bottom) coding proportion [%] (i.e., the summed lengths of all coding sequences
in the annotation in relation to genome size), intronic proportion [%] (i.e., the
summed lengths of all intronic sequences in the annotation in relation to genome
size), total gene count, total exon count, and assembly GC content without
ambiguity [%]. Most pronounced changes due to manual curation are found in
transcript and protein lengths of the ‘analyzed’ set. Values are derived from the
longest predicted transcript per gene.
Line types in (a) indicate the annotation type (‘automatic’, solid; ‘manual’,
dashed), in (b) and (c) lines types indicate the smoothed conditional mean
for each annotation type. Facets show the two sets (‘analyzed’ and
‘complete’) as columns and in (a) the seven species in rows (Anoplophora

glabripennis [Coleoptera], Athalia rosae [Hymenoptera], Cimex lectularius

[Hemiptera], Frankliniella occidentalis [Thysanoptera], Leptinotarsa decem-

lineata [Coleoptera], Oncopeltus fasciatus [Hemiptera], Orussus abietinus

[Hymenoptera]). Taxonomic orders are color-coded according to Fig. III.2 f. aa:
amino acids; bp: basepairs; Mb: megabasepairs; p.t.: per transcript.

3.5 Comparison to another automated annotation
procedure

We investigate whether using a different tool to predict primary gene models
leads to changes in our conclusions regarding the structural similarity to
manually curated genes. For this, we compared the automatically predicted
gene repertoires derived from a re-annotation using the BRAKER pipeline
(HOFF et al., 2016) with the original gene repertoires derived from application of
the MAKER pipeline (HOLT and YANDELL, 2011) as used within i5k projects and
with the MAKER-derived manually curated gene models (5), detailed results in
Supplementary Note C.1.3). The genomes of three of the seven species in our
sample (A. rosae, O. abietinus [both Hymenoptera], and O. fasciatus [Hemiptera])
were chosen for re-annotation with BRAKER due to data availability and
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to represent a balance of small holometabolan and larger hemimetabolan
genomes.

Where BRAKER and MAKER gene predictions overlap, the models are very
similar in structure as measured by transcript, protein, intron, and exon
length as well as exon count (Fig. III.4 a, Additional File C.2.5), although on
average only a third of these models is predicted with identical exon count
by both tools (Fig. III.4 c). Additionally, manually curated versions of these
overlapping MAKER gene models are also in general structurally similar to both
automatically predicted versions (Fig. III.4 a). However, it is conspicuous that
BRAKER predicts a large number of genes not found by MAKER (Fig. III.4 b).
About half of these BRAKER-only gene models consist of a single exon (Fig. III.4
c). Most of these single-exon BRAKER predictions were not well supported
gene models judged from ab initio, RNA expression, and/or protein homology
evidence (Supplementary Note C.1.3, Additional File C.2.6). Some differences
between the annotations by both tools seem to correlate with genome assembly
properties. Specifically, in the two small genomes we observed in some cases of
BRAKER-only gene models that both BRAKER and MAKER predicted genes on
both sides of the region it lies in. In the large genome of O. fasciatus, in contrast,
the BRAKER-only models often occurred in poorly assembled scaffold regions
comprised of very short contigs and many assembly gaps. It will be interesting
to disentangle the effect of lineage-specificity from genome size, gene density,
and assembly quality on automated gene prediction (see chapter III.4).

Despite the outlined systematic differences between the predicted gene sets of
the compared tools, we find that overall structural parameters do not differ
extensively from those of manually curated gene models. We thus claim that our
comparisons and conclusions especially on the following previously reported
trends (see below) are valid not only when using MAKER as the primary
automated prediction pipeline.

3.6 Correlative trends of gene counts and coverages are
not altered by manual curation

ELLIOTT and GREGORY (2015) detected a statistically well supported negative
correlation between coding proportion (i.e., total length of respective DNA
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Figure III.4 – Comparison of different annotation pipelines. (Continued)
a) Parameter distributions for species’ gene sets and subsets comparing
results of two annotation tools and manual curation. Semi-logarithmic
display of 625 gene structure parameters (transcript length [bp], protein length
[aa], exon count p.t., median exon length p.t., median intron length p.t.) for three
annotation types (automatically predicted by BRAKER and MAKER, manually
curated). BRAKER predicts more short genes with fewer exons than MAKER
(median transcript length ca. 1,995 bp; ca. 3,980 bp with MAKER).
b) Gene count per tool. Euler diagrams of the number of genes predicted by
MAKER and BRAKER, including overlapping gene models.
c) Exon count of overlapping gene models predicted by the two tools.
Bi- directional comparison of gene complexity. Given in pies, counts and
percentages is how many of the query genes, that have either one (single-exon
gene) or more (multi-exon gene) exons, overlap what kind of gene in the target
annotation (either no gene at all, one with the same exon count, or with more or
less exons). The full pie charts give the total N for each automated annotation of
each species.
The rows in all three figure parts refer to (from top to bottom) the species
Athalia rosae, Orussus abietinus (both Hymenoptera), and Oncopeltus fasciatus

(Hemiptera). The taxonomic orders are color-coded according to Fig. III.2 f. aa:
amino acid; bp: basepairs; p.t.: per transcript.

sequences relative to genome size) and genome size among analyzed eukaryotic
genomes, as well as a positive correlation between gene count and intronic
proportion.

We compared the sets of automated and manually curated genes with respect
to these correlations (coding proportion µ 1/genome size, gene count µ intronic
proportion) (5). The analysis shows that the coding proportion in the genomes
of our seven insect species is negatively correlated with genome size (Fig. III.3 c,
first row). In conflict with the positive correlation between intronic proportion
and genome size determined across eukaryotes by ELLIOTT and GREGORY

(2015), we find no or only a weakly negative correlation of these parameters
(Fig. III.3 c, second row). These trends are observed not only when all
automatically generated models or the whole OGS are examined (Fig. III.3 c,
right column), but also irrespective of whether only the subsets of manually
curated gene models or their automatically inferred predecessors are taken into
account (Fig. III.3 c, left column).
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3.7 Correlative trends of gene composition found in
uncurated and curated models

ZHU et al. (2009) studied the variation of intron-exon structures (e.g., intron
and exon lengths, ordinal position, GC content) in 13 eukaryotic genomes
and consistently observed, among others, a negative correlation between exon
and intron count per gene and both their respective lengths and GC content.
Additionally, they detected that introns and exons shorter than average had
either a higher or lower than average GC content. The GC content of
introns/exons longer than average was intermediate. As explanations, ZHU

et al. (2009) tentatively offered splicing requirements, a relation to the isochore
structure of the genome, and “common factor(s) [. . . ] shaping exons and
introns” (ZHU et al., 2009, p. 11).

Comparing the count of exons and introns per transcript with their median
length and GC content per transcript (see section III.5), we can corroborate
some of the proposed correlations (e.g., increasing exon count correlates with
decreasing median exon length), but we find mixed trends regarding others (e.g.,
the relationship of intron count to median intron length) (Fig. III.2 b–e; detailed
results in Supplementary Note C.1.3). We thus cannot corroborate all patterns
of exon-intron composition regarding correlations between length and count as
proposed by ZHU et al. (2009). However, these results hold for manually curated
gene models (Fig. III.2 b–e, left columns) as well as their uncurated predecessors
(Fig. III.2 b–e, right columns).
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Discussion

ERRORS IN AUTOMATED ANNOTATIONS can mislead analyses of gene family
evolution (DENTON et al., 2014), protein innovation rates (BÁNYAI and PATTHY,
2016), or the interpretation of gene function (PROSDOCIMI et al., 2012).
Algorithms and pipelines to annotate protein-coding genes are still unable to
find and delineate all genes in a genome with perfect accuracy, thus their
improvement is an important goal of comparative genomics. Meanwhile,
manual curation can identify and correct many errors in automatically
generated gene models, but this is costly. The aim of our investigation was
to check whether automatic annotations are reliable enough to be the basis
of (certain) comparative genomic analyses. Before we review this general
problem, we discuss critical aspects of manual curation as well as the influence
of manual curation on gene structure and of tool choice on the universality of
our findings.
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4.1 Reflections on manual curation

The curators’ experiences and gene (family) specific knowledge, which are
difficult to formalize, will have an influence on annotation quality after manual
curation. However, the extent of their effects is difficult to assess, as several
facets remain elusive: which person executed the curations indicated by a
(shared) owner-tag, how many projects did this person participate in, and
how much effort was expended to ensure the correctness of the annotations?
Besides this, curation results may be difficult to incorporate into annotations.
In complex cases, as exemplified in Fig. III.1 b, where part(s) of a gene lie
on another scaffold and the annotation could be improved by re-assembly,
thorough documentation of sequences and models to reflect their split nature
is often infeasible. Manual revision of a given gene model can in such cases
help to overcome assembly problems that currently inhibit correct automated
prediction.

We observed in our study that assembly size and quality determines the
frequency of split or merged gene models after manual curation insofar that
in large genomes automatically predicted gene models are more likely to be
split and thus require merging via manual curation (Table III.1). Setting the
potential cause of this effect aside, it becomes clear that automatic annotation
procedures need to be aware of assembly/genome size to be adjusted for the
observed systematic error. This can be summed up as ‘know your genome
before you start annotating it’. Furthermore, given recently identified trends
in gene structure (exon size and intron number) that distinguish different insect
orders (PANFILIO et al., 2017), taxonomy could also inform starting assumptions
for gene prediction.

It is open how often reading frame errors occur in automatically predicted
gene models and how often they are corrected by manual curation. Given
the importance of a correct coding sequence for downstream analysis of, for
example, protein function (MUDGE and HARROW, 2016; PROSDOCIMI et al.,
2012), further research on this aspect is required. As exemplified in Fig. III.1
b, the correction of phase shifts may lead to the loss of ORF information for a
gene model. The resulting dilemma forces a decision that will in either case
lead to a partly incorrect gene model. Thus, the curator’s experience as well
as decision consistency can bias manually curated annotations, depending on
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whether structural or functional correction is prioritized in resolving dilemmas.
We observed that the MAKER pipeline as used by i5k permits non-canonical
start codons (Supplementary Note C.1.4, Additional File C.2.3), which may lead
to decision-problems if setting a canonical start codon leads to the loss of the first
exon. A low dilemma frequency should be a major goal of annotation pipeline
development as well as a benchmarking criterion.

4.2 The influence of manual curation on gene structure

We analyzed the effects of manual curation on five structural parameters
(transcript and protein length, exon count, median length of introns and exons
per transcript) in seven species of four insect orders. Note that models that were
selected for manual curation are representative regarding structural parameters
of the whole repertoire before and after curation (Fig. III.2), but probably
not representative regarding functions or roles (e.g., PANFILIO et al., 2017).
Furthermore, the small sample size and small taxonomic coverage as well as
the non-normal distribution of parameter values limits statistical power of our
analysis. However, we aimed for methodological uniformity when selecting the
sample: for the seven analyzed species, genome sequencing and annotation had
been performed consistently and gene sets before and after manual curation
were available to us at the time of writing. All annotations and the derived
statistics are based on more or less fragmented assemblies and thus can only be
considered preliminary (as reviewed by FRANCIS and WÖRHEIDE, 2017). Since
assessing the biological correctness of gene models remains difficult without
a validated benchmark set (GUIGÓ et al., 2000; REESE et al., 2000), we based
our comparisons on the assumption that manually curated gene models are
correct. Encouragingly, we find that the overall gene structure of the gene
models predicted by automated pipelines is very similar to that resulting from
manual curation (Figs. III.2, III.3). Thus, the influence of manual curation on
overall gene structure parameter distributions – insofar as curator changes can
be documented in genome gff files – is rather small, even if individual models
may be significantly changed in detail (e.g., by adding an exon or by merging
with another model, Table III.1). We conclude that automated annotation
by MAKER is reliable regarding gene structure, when investigating structural
parameters of the protein-coding gene repertoire in general.
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4.3 The influence of tool choice

We investigated whether different automated annotation approaches yield
structural predictions deviating to different degrees from manually curated
models. For that goal, we compared the automated predictions generated by
the MAKER pipeline within i5k to those generated by the BRAKER pipeline.
The MAKER pipeline (HOLT and YANDELL, 2011) incorporates extrinsic
evidence (see III.2 for implications) and is expected to yield conservative gene
predictions, while the BRAKER pipeline (HOFF et al., 2016) relies solely on
intrinsic evidence (alignments of RNA sequences from the same species), which
should result in more lineage-specific gene predictions. We observed systematic
differences between the predictions of both tools, outlined in the following.

As expected, the BRAKER pipeline predicts consistently more protein-coding
genes in the re-annotated genome assemblies (Fig. III.4). However, it is currently
not possible to reliably differentiate between false positives and adequate
additional gene annotations in this approach. It is suspicious that many of
the BRAKER-predicted gene models do not overlap with gene models that
are part of the MAKER-inferred gene set. Of these ‘BRAKER-only’ models,
about half are single-exon genes. Some of these lie in regions devoid of
supporting evidence, while others are flanked by gene models predicted by both
pipelines. Such cases highlight the importance of making algorithm-specific
cutoffs, thresholds, and gene discrimination criteria available to facilitate
comparative quality assessment of gene prediction. As both tools predict
genes not found by the other, we underline that the comparison of gene sets
from different automated prediction routines and the elucidation of reasons
for these differences may facilitate further algorithm developments. To date,
the vast majority of sequenced insect genomes are for the Holometabola
(Diptera and Hymenoptera). For hemimetabolous species (e.g., Hemiptera
and Thysanoptera), limited extrinsic evidence may indeed be a consideration
until denser genome sequencing sampling is achieved, while large genome size
will be an increasingly important challenge for hemimetabolous insect genome
projects (HANRAHAN and JOHNSTON, 2011; PANFILIO and ANGELINI, 2017,
p. 7).

Generally, apart from the set of BRAKER’s single-exon gene predictions, the
overall gene structures predicted by both tools are rather similar (Fig. III.4 a).
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Also, parameter distributions of gene sets from either annotation tool are similar
to those of manually curated gene models. We conclude that choice of tools for
gene prediction is not of primary importance when the goal is a comparative
analysis of gene structures.
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4.4 Elucidating trends using automatically predicted gene
models

Given the general reliability of automatically predicted gene structures (by
MAKER and BRAKER, likely also by other tools), we are confident that the
observed corroborations and disparities from previously reported correlations
of structural parameters are not an artifact of the annotation procedure. ELLIOTT

and GREGORY (2015) reported a negative correlation of coding proportion and
genome size, which was corroborated by FRANCIS and WÖRHEIDE (2017) and
which we also observe in our data (Fig. III.3 c). This fits the hypothesis that
genome size is mainly driven by increasing content of repetitive elements
rather than by an increase of the gene count (GREGORY, 2005). On the other
hand, ELLIOTT and GREGORY (2015) as well as FRANCIS and WÖRHEIDE

(2017) found a correlation between intronic proportion and genome size,
which we do not observe in our insect-specific data. However, the original
observations were made across four (GREGORY, 2005) and six (FRANCIS and
WÖRHEIDE, 2017) phyla of Eukaryota, respectively, and thus an insect-specific
deviation cannot be excluded. If a different pattern of intron evolution can be
corroborated in insects, assumptions on general genome evolution would have
to be re-evaluated. Elucidating the exact relationships thus requires further
investigation with a larger, denser, and more insect-specific taxon sample.

ZHU et al. (2009) reported that intron count negatively correlates with intron
length and that exon count negatively correlates with exon length in a similar
manner. Accordingly, the authors (ZHU et al., 2009) proposed common
selective pressures that shape both exon and intron structure within genes in
similar directions. The similarity (or consistent presence) in correlations is not
corroborated by our investigation in insect genomes (Fig. III.2 c and e), which
might again point towards insect-specific modes of evolution. The vertebrate-
biased taxon sample of ZHU et al. (2009) (nine vertebrates, two plants, one
worm, and one insect, namely D. melanogaster) barely allowed generalizations
for insects. While an amniote-specific positive correlation of intron and genome
size has been shown and discussed in relation to avian powered flight (Q
ZHANG and EDWARDS, 2012), it has yet to be unveiled whether intron size
evolves neutrally in insects or is afflicted by other constraints than in amniotes.
We conclude that elucidating commonalities, differences, and driving forces of
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gene structure evolution requires a denser taxon sample but not necessarily
manual curation: the trends are clearly visible in both automatically generated
predictions (BRAKER and MAKER), as well as in manually curated models.

4.5 Conclusion

The impact of many potentially confounding factors affecting annotation
quality remains to be assessed: automated predictions critically depend on
assembly quality, algorithm criteria, training data, and the use of intrinsic and
extrinsic evidence (FRANCIS and WÖRHEIDE, 2017; Q ZHANG and EDWARDS,
2012); manual curation quality, in contrast, depends not only on the underlying
data (automatically generated models), but also on selection criteria (which
genes are curated) and curator experience (who curated).

Detailed studies that are based on, for example, intron position homology (e.g.,
KEANE and SEOIGHE, 2016; PANFILIO et al., 2017) or protein function (e.g.,
SIMAKOV et al., 2015), depend on exact gene models, as achieved by manual
curation. We show, however, that for the study of gene structure in a framework
of comparative genomics, such as further research to explain the described
insect-specific patterns, automated annotations can be considered sufficiently
reliable. However, the goal remains to automatically infer biologically correct
gene models and thus to eliminate the unresolved problems of automated
annotation.

4.6 Future directions

We propose two questions to serve as guides for improving automated
annotations of protein-coding genes and their usability.

(1) How can annotations be improved? Ideally, additional annotation informa-
tion could be given as header of the gff file and should include declarations
on data generation, prediction rationales (e.g., alternative transcripts handled
as individual genes), and applied criteria (e.g., coding sequence begins with
translation start codon). Distinguishing UTRs from coding sequence and the
explicit usage of definitions will be worthwhile to consider (FRANCIS and
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WÖRHEIDE, 2017; WILBRANDT et al., 2017). Integrating annotations from
different pipelines can further enhance accuracy (ZICKMANN and RENARD,
2015).

(2) Which criteria can be used to establish confidence in automatically generated
gene models? Algorithm benchmarks to estimate accuracy depend on the
provision of verified gene sets. For each gene model, confidence can be
estimated with an index of the amount of supporting evidence (MISRA et al.,
2002), which is represented as the annotation edit distance in some pipelines
(HOLT and YANDELL, 2011). Confidence should increase when characterizing
criteria of coding sequence (MUDGE and HARROW, 2016) and protein structure
(DRĂGAN et al., 2016) are met. To assess the completeness of annotated gene
sets, which is a priori difficult (FRANCIS and WÖRHEIDE, 2017), only few metrics
have been proposed: the ratio of present single-copy orthologs (PARRA et al.,
2007; SIMÃO et al., 2015) or conserved domains (DOHMEN et al., 2016) expected
in all organisms, the ratio of RNAseq reads mapping to the annotation (FRANCIS

and WÖRHEIDE, 2017), and the ratio of intronic to intergenic regions (FRANCIS

and WÖRHEIDE, 2017). Further research will show whether additional metrics
and criteria can be applied to gauge the quality of gene annotations.
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Material and Methods

5.1 Data sample

WE ANALYZED ANNOTATIONS AND ASSEMBLIES of seven insect species of
four orders (Coleoptera: Anoplophora glabripennis, Leptinotarsa decemlineata;
Hemiptera: Cimex lectularius, Oncopeltus fasciatus; Hymenoptera: Athalia rosae,
Orussus abietinus; Thysanoptera: Frankliniella occidentalis; Additional file C.2.1)
that were sequenced and annotated within the i5k initiative (I5K CONSORTIUM,
2013). Additional file C.2.1 lists the sources of primary datasets.

5.2 Set preparation

We prepared four (sub)sets of data from the available annotations of each
species. The set ‘complete automatic’ corresponds to the original annotation
produced by the i5k initiative, while ‘complete manual’ refers to the official
gene set (OGS, the non-redundant merge of manually curated gene models and
unmodified predictions). ‘Analyzed automatic’ designates the subset of gene
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models within the original annotation that overlap with the manually curated
gene models (‘analyzed manual’).

5.3 Non-canonical start positions in MAKER predictions

A custom script was used to determine the frequencies of those amino acids,
proteins encoded by gene models predicted by MAKER started with. The
amino acid fasta files of the version BCM_version_0.5.3-Primary_Gene_Set
were obtained for all seven species from https://i5k.nal.usda.gov/
content/data-downloads. Results are displayed in Additional file C.2.3.

5.4 Curator experience analysis

Participating curators were identified by the owner-tag in their reviewed
models in the OGS file. For each annotation project, we counted the number of
participating curators and the number of gene models reviewed by them using a
custom script. We assessed the number of projects any contributor participated
in by hand. The count of curated gene models refers to the subsets ‘analyzed
manual’ of each species.

5.5 Structural parameter and correlative trend analysis

Values of genic structural properties for each set of each species were obtained
using COGNATE (WILBRANDT et al., 2017) version 1.0 with default parameter
(i.e., COGNATE considered only the longest transcript per gene). Additional
file C.2.7 holds all COGNATE result sets generated during the current study,
except those of F. occidentalis, which are available upon request. Comparative
plots were generated using custom scripts (R, R CORE TEAM, 2017; ggplot2,
WICKHAM, 2009).

https://i5k.nal.usda.gov/content/data-downloads
https://i5k.nal.usda.gov/content/data-downloads
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5.6 BRAKER-vs-MAKER analysis

We re-annotated the two hymenopteran species in our dataset, Athalia rosae
and Orussus abietinus, as well as the hemipteran Oncopeltus fasciatus for a
balancing of genome size, assembly quality, and curation efforts. We identified
overlapping predictions lying on the same strand using a custom script. We
spot-checked the annotation situation for single-exon genes using the Apollo
web browser interface hosted by i5K@NAL. Values of genic structural properties
for each set of each species were obtained as described above.
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Additional publication information

6.1 Availability of data and materials

All primary data (assemblies, annotations, RNA-seq reads) analyzed during
this study are available from repositories as listed in Additional file C.2.1. All
datasets generated during this study (except of F. occidentalis) are included in
this published article and its supplementary information files (Additional files
C.2.2–C.2.6) or available from the Dryad repository (IDIII.1). The datasets of
F. occidentalis generated during the current study are not publicly available
due to ongoing research but are available from the corresponding author on
reasonable request.

III.1 A Dryad repository will be made available upon publication.
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1

Introduction

A BASIC STEP IN COMPARATIVE GENOMICS is the analysis of genomic and
genetic structural features like genome size, protein-coding gene length, and
exon count. The description of genome and gene structure allows exploring
the relationships between these structural properties and other parameters with
the aim of identifying drivers of these structural features. The descriptive
and comparative approach is crucial to facilitate research on the basic genome
parameters of a species, to range in measured magnitudes with known
parameters from the same taxon or clade, and to build hypotheses regarding
genome dynamics and evolution.

A seminal study in this direction was published by ELLIOTT and GREGORY

(2015), which was a meta-analysis of genome and gene summary statistics
across more than 520 species. Considering this large number of genomes and
the phylogenetic relationships of the respective species allowed the authors
the robust detection of statistical trends and of genomic differences between
organismic kingdoms; the study shows, i.a., that genome size is positively
correlated to gene number and negatively correlated to the proportion of coding
sequences. However, the reliance on published results for their study could
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have influenced the statistical power of tests due to missing data and/or
inconsistent term usage. Furthermore, ELLIOTT and GREGORY (2015) did not
analyze genomic differences within the organismic kingdoms, thus leaving
open whether there are variations of genome structure relationships between
the taxonomic orders of analyzed animals, for example.

For insects, there are few in-depth studies of comparative genomics. Most
studies focus on functional gene annotation and compare functional repertoires,
while those concerned with structural differences are restricted to a subset of
genome properties. For example, it has been shown that the genomes of twelve
insect species of several orders are more diverse than genomes of vertebrates
(covering a comparable range divergence times) in terms of protein-coding gene
arrangements and orthologous protein sequence identity (ZDOBNOV and BORK,
2007). A comparison of base composition revealed that the honey bee (Apis
mellifera), the solitary parasitioid jewel wasp Nasonia vitripennis, and the ants
Pogonomyrmex barbatus and Linepithema humile show a tendency for genes to
occur in GC-poor regions of the genome, while no such tendency appears in the
leaf cutter ant Atta cephalotes (SUEN et al., 2011). The overall genome composition
is considered to be quite conserved within twelve closely related Drosophila
species, judging from genome size and the amount of coding and intronic
sequences (CLARK et al., 2007). Overall, little is known about the structure of
protein-coding genes in insects, what can be considered to be ‘within a usual
range’ and which measured parameters of genomic and gene structure are
notable exceptions.

Here, two newly sequenced genomes of non-apocritan “symphytans”, namely
the parasitoid wood wasp Orussus abietinus and the turnip sawfly Athalia
rosae, are examined with respect to the details of gene structure within their
repertoires of protein-coding genes. This study is embedded in a large-scale
project (OEYEN et al., in prep.), which presents the two genomes and examines
them from various angles (e.g., diversity of transposable elements, presence of
key protein families) with regard to the major transition from phytophagous
to parasitoid Hymenoptera. Parasitoid Hymenoptera are highly diverse, while
“symphytan” lineages are rather species-poor. Here, O. abietinus and A. rosae
are highly interesting species: the former belongs to the parasitoid family
Orussidae, the sister lineage to the also primary parasitoid Apocrita. A. rosae
represents the phytophagous Eusymphyta, a lineage that diverged ca. 40 million
years earlier from the ancestor of Apocrita and Orussidae.
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I implemented analyses to identify patterns of changes in gene structure,
protein family composition, and other aspects that might have played a
role in facilitating or inhibiting diversification of the scrutinized lineages.
Consequently, basic differences of gene structure between the early-divergent
hymenopterans A. rosae and O. abietinus and the more derived, partially
eusocial, Apocrita are elucidated and discussed with respect to the evolutionary
relationships.

To describe and compare the genome and protein-coding gene structure of the
parasitoid wood-wasp O. abietinus and the turnip sawfly A. rosae, I extracted and
analyzed numerous (standard) parameters from their structural protein-coding
gene annotations and compared them to our analysis of published annotations
of ten apocritan hymenopterans and one outgroup insect species.
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Methods

2.1 Species

THE PROTEIN-CODING GENE ANNOTATIONS (gffs) of 13 species were ana-
lyzed (see also Tab. IV.1). These species comprise twelve hymenopterans
(two species of “Symphyta”, the following ten are apocritan species):
Orussus abietinus (parasitoid wood-wasp), Athalia rosae (turnip sawfly), Apis
mellifera (honey bee), Bombus terrestris (large earth bumblebee), Megachile
rotundata (leafcutter bee), Dufourea novaeangliae (sweat bee), Lasioglossum albipes
(white-footed sweat bee), Acromyrmex echinatior (Panamanian leafcutter ant),
Camponotus floridanus (Florida carpenter ant), Harpegnathos saltator (Jerdon’s
jumping ant), Polistes dominula (European paper wasp), and Nasonia vitripennis
(jewel wasp); and one outgroup species: Tribolium castaneum (red flour beetle).
An overview of the used files and respective references can be found in
Supplementary table D.1.1 a.

The genomes of A. rosae and O. abietinus have been sequenced for the first time
by the i5k initiative (I5K CONSORTIUM, 2013). Analysis of the assemblies was
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Species Assembly
size

L75 L90pcG Gene
count

Apis mellifera 234.1 152 373 15,314

Bombus terrestris 248.7 14 1,708 10,400

Megachile rotundata 272.7 106 161 12,770

Dufourea novaeangliae 291.0 88 150 12,453

Lasioglossum albipes 336.5 352 991 13,421

Acromyrmex echinatior 297.5 175 322 17,271

Camponotus floridanus 234.9 365 1,884 17,013

Harpegnathos saltator 296.8 344 1,505 18,518

Polistes dominula 208.0 86 130 11,815

Nasonia vitripennis 295.8 215 184 13,185

Orussus abietinus 201.2 68 126 10,959

Athalia rosae 163.8 79 127 11,894

Tribolium castaneum 165.9 8 10 12,863

Table IV.1 – Species sample. The species are ordered according to phylogenetic
relationships, see Fig. IV.1; this figure also includes a visualization of assembly
sizes. Assembly size (including Ns/gaps) is given in Mbp (megabasepairs).

committed to our working group; thus, evaluating the quality of assemblies and
annotations focuses on these two species, taking the remaining ones as given.

2.2 Analysis

I counted and calculated more than 280 metrics of the gene annotations
using COGNATE v1.0 (WILBRANDT et al., 2017) with default parameters, i.e.,
analyzing only the longest transcript for each gene. For this, also the genomic
fasta file for each species was used. For an overview of the measured metrics, I
refer to WILBRANDT et al. (2017). An overview of summary values, medians,
and component sizes is given in Supplementary table D.1.1. The complete
COGNATE result sets for all species can be found in Supplementary file D.1.2.
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Component sizes, i.e., the combined length (in Mbp) of all coding and intron
sequences within one genome, obtained by COGNATE, were compared with
component sizes of transposable elements and other repeats (values obtained
from TE annotation by MALTE PETERSEN, pers. comm., March 2018).

The features of one, the longest, annotated transcript were analyzed for all
predicted protein-coding genes of the 13 species. These features are, among
others, GC contents and lengths of transcripts themselves, exons and introns as
well as the number of introns and exons per transcript and the coverage and
density of exons and introns on transcripts. It was suggested by YANDELL et al.
(2006) to measure intron lengths, exon lengths and intron density as a proxy
for gene structure. Thus, a special focus was put on these metrics, although
differing from the suggested approach by calculating intron density as the count
of introns of a transcript per length of the same transcript in base pairs (instead
of protein length).

Features of transcripts, CDSs, exons, and introns were evaluated in density
plots, hereafter called distributions. Furthermore, several parameters were
plotted against each other (e.g., GC content versus length, see below). Plots
were obtained by custom R scripts using the ggplot2 library (WICKHAM, 2009)
and the wesanderson libraryIV.1.

IV.1 GitHub: KARTHIK et al.. 2018. R package wesanderson,
https://github.com/karthik/wesanderson. Last accessed 30 March 2018.

https://github.com/karthik/wesanderson
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Results

3.1 Assembly features

THE ASSEMBLIES of the A. rosae and O. abietinus genomes have low values of
L75, L90 and L90pcG compared to the median of all species for these metrics.
This indicates a high assembly quality. L75 and L90 represent the number of
scaffolds, beginning to count at the longest, that are required to encompass
at least 75 % and 90 % of the total assembly length, respectively. The smaller
this number is, the less fragmented is the assembly. Similarly, L90pcG is the
number of scaffolds, beginning to count at the longest, that bear at least 90% of
all annotated protein-coding genes on them.

The annotation of protein-coding genes for both genomes does not have flaws
that could be identified via intron length distribution skews. Introns are
expected to occur not only in multiples of three bases (three bases are one
codon triplet; 3n introns), but also with a similar probability in multiples of
three plus one or two bases; finding more or less 3n introns than expected
hints to systematic errors in mistaking exons for introns or introns for exons,
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respectively (ROY and PENNY, 2007). The respective data can be found in
Supplementary table D.1.1 b.

3.2 Component sizes

The genomes of A. rosae and O. abietinus are smallest among the compared
Hymenoptera and harbor less intronic and repetitive sequences in absolute
numbers (Fig. IV.1). Conversely, the relative amount of coding sequences is large
in both genomes compared to the remaining species and the relative amount
of introns is close to the overall median (Supplementary table D.1.1 c). The
protein-coding amount is in all species in the comparison very similar (between
16 and 20 Mbp). Further correlations to assembly size (excluding gaps/Ns)
are illustrated in Fig IV.2, where values of P. dominula, B. terrestris, and the
Formicidae are often outliers. In some cases O. abietinus closely resembles the
outgroup (T. castaneum), while A. rosae appears to be relatively extreme in some
instances (e.g., the absolute amount of transposable elements being the smallest
of all considered species, 10 % of that of A. echinatior; Fig. IV.1).

Apparently, introns as well as transposable and other repetitive elements
contributed to an increase in genome size within the Apocrita.

3.3 Structural features

3.3.1 Transcripts

The two non-apocritan Hymenoptera O. abietinus and A. rosae have decidedly
longer transcripts (genomic transcript length, includes introns and exons) than
Apocrita: the median genomic transcript length is almost doubled compared
to the apocritan median (Fig. IV.3). Looking at the distributions of transcript
lengths (Fig. IV.4, Supplementary figure D.1.3, p.1), Halictidae (D. novaeangliae,
L. albipes) and Formicidae (A. echinatior, C. floridanus, H. saltator) are distinctive
because of their pronounced bimodal distribution, peaking around 250 and 2500
bp. The transcript lengths of A. mellifera are similarly distributed, although with
considerably less transcripts of ca. 250 bp length. The distribution of transcript
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Figure IV.1 – Genome and component sizes.
A summary of the annotations of protein-coding genes and transposable
elements. Amounts [Mbp] refer to the cumulative sequence length of the genomic
regions annotated as one of the components. The coding component (amount of
CDSs per species) is surprisingly constant across species, while the amounts of
introns, transposable elements, and the rest contribute most to genome size.
The phylogenetic tree illustrates the relationships between the analyzed species,
branch lengths correspond to divergence time. A few taxonomic labels are
indicated for reference from the text.
Ma: Million years ago; Mbp: megabasepairs
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Figure IV.2 – Trends of assembly size and genomic and gene structure parameter
correlations
Several genome parameters and gene structure parameters are compared in
relation to assembly size (size here excludes gaps/Ns, to the effect that, for
example, T. castaneum appears to be smaller than A. rosae.
Coding and intronic proportion refer to the component sizes indicated in Fig. IV.1.
Black line and grey are indicate smoothed conditional mean. The scales
are transformed to log-scales, the values are not. Species coloration follows
phylogenetic relationships, see Fig. IV.1
Mbp: megabasepairs
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lengths of P. dominula and N. vitripennis are both unimodal and very similar
with most transcripts being ca. 2510 bp long. A. rosae and O. abietinus appear to
have more long transcripts (around 5600 bp) than any other species (Fig. IV.4).
Thus, a decrease of gene length is observed within Apocrita, where B. terrestris
is an exception. This pattern is reflected in protein length distributions, which
are also right-skewed, but more narrow and show a less pronounced bimodality
(Supplementary figure D.1.3, p.2). The median protein length of A. rosae (406 aa)
and O. abietinus (384 aa) is considerably longer than the hymenopteran (345.5 aa)
and apocritan (329.5 aa) as well as overall (356 aa) median; actually, A. rosae has
the second largest median protein length in our sample (largest: B. terrestris, 429
aa).

3.3.2 Exons and CDSs

The distribution of median exon length per transcript (Supplementary figure
D.1.3, p.10) is very similar across all species (max around 180 bp); only
A. echinatior deviates slightly with an increased number of transcripts with
longer median exon length (Fig. IV.4). Median exon and CDS length, both
individual and the median per transcript, is in A. rosae and O. abietinus very close
to all species-summarizing medians (apocritan, hymenopteran, and overall),
while the median coverage and density of exons and CDSs per transcript are
lower compared to the other species. The median exon count is between 3 and
6 in all species. All considered ants have a median exon count of 3, while no
clear pattern of count and phylogenetic relationship can be discerned for the
remaining species. Note, however, that the five earlier-divergent species have
very few transcripts with only one exon, opposing all later-diverged species
(except B. terrestris) (indicated by solid-line rectangles in Fig. IV.4).

Most transcripts (averaged Q1 and Q3, respectively) have an added exon length
of 695–2440 bp, a median exon length of 159-306 bp (both ranges are slightly
lower for CDSs), harbor 2–7 exons, and have an exon density of 0.0009-0.003
(Supplementary file D.1.1 e). A. rosae has a mean coding gene size (introns and
exons) of 6.5 kbp (median 3.9 kbp), and a mean intron size of 0.6 kbp (median
0.1 kbp). O. abietinus has a mean coding gene size (introns and exons) of 7.3 kbp
(median 4.2 kbp), and a mean intron size of 0.8 kbp (median 0.1 kbp).
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Figure IV.3 – Comparison of median lengths and counts of gene elements.
(Continued on next page)
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Figure IV.3 – Comparison of median lengths and counts of gene elements.
(Continued)
For each species and for each of their genes (as analyzed by COGNATE, longest
transcript per gene), the median of each of the four length parameters and the
exon count was recorded; then, the median for all transcript was calculated and
plotted here.
The phylogenetic tree illustrates the relationships between the analyzed species,
branch lengths correspond to divergence time.
bp: basepairs; Ma: Million years ago

3.3.3 Introns

A. rosae’s and O. abietinus’s median intron lengths are small compared to
those of Apocrita, while T. castaneum has very short introns (in a notable
bimodal distribution of intron lengths with much less long introns than any
hymenopteran) (Fig. IV.3). It is also noticeable that there are more very short
introns in the studied Formicidae (A. echinatior, C. floridanus, H. saltator) than
in any other species (Supplementary figure D.1.3, p.17), resulting in a bimodal
distribution which peaks are very far apart considering the other distributions
(indicated by a rectangle in Fig. IV.4). Most transcripts (average Q1–Q3,
Supplementary table D.1.1 e) have an added intron length of 486-5108 bp, a
median intron length of 81-328 bp, and have an intron coverage of 0.3–0.7 and
an intron density of 0.0006–0.02.

3.4 Distributions and correlations of GC content

Concerning the distribution of GC content per transcripts, A. mellifera stands out
with a left-shifted distribution (max at 25 %), followed by P. dominula (peak at
ca. 28 %) and B. terrestris (max at ca. 29 %); for M. rotundata, A. echinatior, and
C. floridanus, the distributions are nearly congruent (max around 30 %); the rest
of the species falls into a third group of similar distribution with a maximum
close to 40 % (Fig. IV.5, Supplementary figure D.1.3, p.3). The distributions of
median exon and intron GC content per transcript follow a very similar motif.
Hence, a pattern of continuous GC content decrease can be postulated, from
high GC contents in species that diverge early in the hymenopteran phylogeny
to lower GC contents in later-diverging social and eusocial species.
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Figure IV.4 – Comparison of lengths and counts of gene elements for all genes.
(Continued on next page)
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Figure IV.4 – Comparison of lengths and counts of gene elements for all genes.
(Continued)
For each species, the five gene structure parameters were recorded for each of
their genes (as analyzed by COGNATE, longest transcript per gene). Vertical
lines indicate the 25 %, 50 % (median), and 75 % quantile of the respective
parameter distribution.
Note the blue rectangles that indicate conspicuous distribution features: the solid
rectangles mark the low number of transcripts with only one exon; the dashed
rectangle highlights the peaks of transcripts with very short introns only found in
Formicidae.
The phylogenetic tree illustrates the relationships between the analyzed species,
branch lengths correspond to divergence time.
bp: basepairs; Ma: Million years ago

When comparing the GC content of exons or introns with the count of exons or
introns per transcript, respectively, there appears to be a normal distributions
of GC content over exon count; for introns, however, distributions are right-
skewed, which means that the introns of transcripts with more introns have
a lower GC content (Fig. IV.6). Note that the centers of data-gravity (i.e.,
the highest concentration of data points) lie at small introns with rather low
GC content. These findings resemble those mentioned above (introns having
generally a lower GC content than exons or transcripts as a whole). Again,
the observed trend increases within Apocrita, while a higher median intron GC
content appears at the base of the considered phylogeny.

Additional data (e.g., more parameters like coverages and densities of gene
elements, correlative plots, and median overviews) can be found in the
Appendix (Supplementary file D.1.1, Supplementary figure D.1.3).
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Figure IV.5 – Comparison of GC content across species. (Continued on next page)
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Figure IV.5 – Comparison of GC content across species.
(Continued)
For each species, the distribution of GC content per transcript is given as value
for each transcript itself as well as for the median of all exons and introns per
transcript, respectively.
The list of species is ordered according to phylogenetic relationships (see
Fig. IV.1).
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Figure IV.6 – Comparison of median GC content to count of gene element across
species. (Continued on next page)
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Figure IV.6 – Comparison of median GC content to count of gene element across
species.
(Continued)
For each species, the count of the respective gene element (exon and intron)
is recorded per transcript and plotted against the median GC content of the
respective element per transcript. The count of data points (data gravity) is
indicated by the shade of each data record cell, the darker, the more transcripts
have the indicated characteristics.
The list of species is ordered according to phylogenetic relationships (see
Fig. IV.1).
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Discussion

4.1 Component sizes

PREVIOUS GENOME PUBLICATIONS provided only a limited set of summary
statistics to describe the protein-coding gene repertoire, like the mean gene,
exon, and intron length. As outlined by WILBRANDT et al. (2017), gene structure
parameters are rarely normally distributed, thus the mean is rarely an adequate
summary statistic. Furthermore, it is important to not only provide the full
dataset for future reference, but also to consider the whole distribution of
data rather than a summary statistic alone. This study aimed to capture
the diversity of gene structures within a repertoire by analyzing the whole
parameter distributions in concordance with summary statistics.

When comparing the absolute and relative amounts of coding, non-coding and
repetitive genome content and regarding this in context of genome size, it
becomes apparent that the absolute amount of protein-coding sequences is quite
stable across all compared species (median of ca. 19 Mbp). Conversely, genome
size differences appear to be partly driven by content differences of introns,
transposable elements and a varying amount of other sequences. It appears
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that a small intron component of the genome might have been the ancestral
state in hymenopterans, increasing towards Apoidea (with the exception of
N. vitripennis, which diverged earlier but comprises more introns than the other
considered Apocrita). It is easy to assume here that protein-coding gene content
is thus overall conserved in Hymenoptera. However, constant numbers may
mask a considerable gene turnover, as suggested by (HAHN et al., 2007). Here,
further studies, namely gene family annotation and turnover rate estimation,
are worthwhile.

4.2 Tentative inference of gene structure evolution trends

It is difficult to establish hypotheses on ancestral gene configuration, because
this would require to reconstruct the ancestral state of continuously varying
traits. Thus, the proposed inferences are tentative.

Taking together the results of the COGNATE analysis comparisons, three
trends appear to be present. Firstly, median exon length and transcript
length seem to decrease while intron length increases along the phylogeny
of the considered Hymenoptera, suggesting that the ancestral gene repertoire
might have harbored more long transcripts, consisting of (in the median)
five long exons and relatively short introns. However, whether this trend
is statistically significant cannot be examined yet (it involves problems of
phylogenetic interdependence and non-normal distribution). Secondly, within
Formicidae, genes with very short introns have been established as discernible
class, and the median exon count is consistently lower than in all other
considered species. A detailed investigation of these short-intron genes in
comparison to the remaining gene repertoire, including functional annotation
appears to be rewarding. Thirdly, GC content is increasing along the considered
hymenopteran phylogeny with high values (of, e.g., assembly GC content)
in A. rosae and O. abietinus of over 40 % to low values around 30 % in the
remaining Apocrita. A. mellifera and P. dominula are especially noticeable with
their strongly right-skewed distributions of GC contents across transcripts (as
also discussed by STANDAGE et al., 2016).

The strong bias towards a low GC content (as found in A. mellifera and
P. dominula, and to a lesser extent in B. terrestris) has been suggested to be
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driven by “a bias in DNA mismatch repair and other genome maintenance
mechanisms, as well as the possibility of historically high levels of CpG
methylation and cytosine deamination” (STANDAGE et al., 2016). at the same
time, P. dominula has been reported to have a reduced methylation system
and low genomic levels of DNA methylation overall compared to other
Hymenoptera (STANDAGE et al., 2016). It has been speculated that the overall
low GC content of A. mellifera is a result of a mutational bias towards a
predominance of adenosine and thymidine in the DNA sequence, possibly
part of a distinct mutational pattern, and accompanied by a codon usage bias
(JØRGENSEN et al., 2007). Another line of evidence indicates that regions of high
GC content also show high recombination rates (KENT et al., 2012; NIEHUIS et al.,
2010; ROSS et al., 2015); recombination rates are overall very high in A. mellifera
(BEYE et al., 2006). The distribution of GC contents across transcripts is very
broad, thus it is possible that genes with a high GC content (usually also located
in high-GC DNA environments, JØRGENSEN et al., 2007) lie in regions with
exceptionally high recombination rates. It remains unknown how the overall
low GC content of A. mellifera can be explained. Taken together, this indicates
that the shift of GC distributions towards low GC contents as well as the high
recombination rates found in A. mellifera and other apoid Hymenoptera are
derived traits with a mechanistic correlation. The modes of evolution leading to
these phenomena are yet open to further elucidation.
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Conclusion

THE STRUCTURAL CHARACTERIZATION of eusocial Hymenoptera (represen-
tative samples of Apoidae, Formicidae, and a vespid species) in comparison
to non-social (P. dominula) and non-apocritan (“Symphyta”) species revealed
that the considered ants have distinct gene structures (few exons, long introns,
resulting in short proteins). Furthermore, a distinctive class of genes with
extremely short introns appears to have been established in the ant lineage.
The ancestral gene structure of Hymenoptera appears to be rather complex and
feature long exons as well a a high GC content.

This primary gene structure characterization lays the foundation for future
research on the evolution of gene structure and gene repertoire composition.
Additionally, it is an integral part of the description of Hymenopteran genomes
in concordance with a detailed study of the evolution of olfactory receptors and
other gene families important in the evolution of hymenopteran parasitoidism
and eusociality.
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1

Summary

GENES HAVE DIFFERENT FATES — some are ancient and their orthologs can
be found in distant taxa, while others are quickly gained and lost — and thus
the gene repertoire of a species can be partitioned according to the genes’
conservation in comparison to other repertoires/species. This can be summed
up as ‘universality’ (how many species share a gene family/ortholog group)
and ‘duplicability’ (how many family members does each species have).

THE GENE REPERTOIRES of 26 newly sequenced species were obtained and
analyzed to determine whether the conservation classification into core, shell,
and cloud according to gene family universality produces a pattern similar
to the proposed universal patterns (KOONIN, 2011; WATERHOUSE, 2015). In
a second step, the analysis was extended to respect duplicability of the gene
families. The gene sets of the different conservation classes and copy states were
characterized using five central gene structure parameters as well as protein
domain diversity to answer the question whether these repertoire subsets
differed from one another in the distributions and medians of the characterized
aspects.



158 Chapter 1 Summary

HERE IT IS SHOWN that core, shell, and cloud classes can be established as
proposed. Furthermore, genes of distinct classes and copy states consistently
differ in gene structure and domain diversity. Genes of the core are longer
and more complex than shell and cloud genes (in line with previous evidence;
CLARK et al., 2007; LIPMAN et al., 2002), and those core genes not being
universal single-copy orthologs are astonishingly domain-rich. This indicates
that the high costs associated with maintaining complex genes is balanced by a
tremendous advantage that yet needs to be characterized.

THESE RESULTS POINT OUT that there is considerable variation present within
protein-coding gene repertoires and related to gene conservation as well as
species evolution. Thus, the categorization according to universality and
duplicability seems to be a relevant aspect to consider when studying protein-
coding gene repertoire evolution.
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Introduction

THE COMPARISON of whole gene repertoires across species has revealed
considerable gene and gene family turnover (BEMM et al., 2016; CARRETERO-
PAULET et al., 2015; HAHN et al., 2007; KEITH et al., 2015). On the other
hand, minimal sets of housekeeping genes necessary for cell survival have
been delineated (KOONIN, 2003; MUSHEGIAN and KOONIN, 1996), and sets of
universally present genes have been described (HARRIS et al., 2003; OUZOUNIS

et al., 2006; PARRA et al., 2009; SIMÃO et al., 2015). In other words, genes have
different fates – some are ancient and their orthologs can be found in distant
taxa, while others are quickly gained and lost in a “genomic ‘revolving door’
of gain and loss” leading to high turnover (DEMUTH et al., 2006; PALMIERI

et al., 2014). Young, taxon-restricted genes likely play a role in the evolution
of biological novelties (JOHNSON and TSUTSUI, 2011; KHALTURIN et al., 2009;
SIMOLA et al., 2013; ZHAO et al., 2015), while the loss of ancient orthologs
appears to be tolerable (WYDER et al., 2007).

As the knowledge on insect genomes culminates, patterns of duplicability and
universality of ortholog groups have been postulated to be ubiquitous in gene
repertoires (WATERHOUSE, 2015; WATERHOUSE et al., 2011). Duplicability is the



160 Chapter 2 Introduction

tendency of a gene family (ortholog group) to comprise few (low duplicability)
or many (high duplicability) members; universality reflects the conservation
of a gene family, whether it is present in many (high universality) or few
(low universality) species. The finding that most universal ortholog groups
are either highly duplicable or not at all led to the coining of ‘single-copy
control’ and ‘multicopy license’ to describe evolutionary modes governing gene
conservation (WATERHOUSE et al., 2011).

A closely related pattern was posited to be an omnipresent, even fractal
(present at all levels of comparison regarding taxonomic membership and the
number of species compared) feature of the “gene universe” (KOONIN, 2011).
When analyzing the number of species and the number of gene families (and
gene family sizes) shared by them, a characteristic bowl plot can be drawn,
irrespective of how many or which species are compared (KOONIN, 2011). The
bowl plot corresponds to the landscape plot put forward by WATERHOUSE

(2015), namely when looking from the landscape’s universality plane and
adding all counts across the single-copyness axis; this is illustrated in Fig. V.4
using our data.

Basically, three conservation partitions or classes can be established according
to the ‘conservation distribution’ of genes (KOONIN, 2011, p. 71): (1) the
core, comprising universal and highly conserved genes shared by all species;
(2) the shell, including moderately conserved genes shared by some species,
representing a broad variety of the genome but not the majority of genes; (3)
the cloud, a large number of poorly conserved genes shared by very few or no
other species. In bacteriology, other names have been put forth for core and
cloud, namely ‘persistent genes’ of the ‘paleome’ (core) and ‘orphan genes’ of
the ‘cenome’ (cloud) (DANCHIN, 2009). There are also studies simply referring
to young and old genes, e.g., CAI and PETROV (2010).

It has been suggested that a large part of the minimal gene set a cell requires
to live is conserved in the core (KOONIN, 2003). Essentiality, expression
level, and the number of partners in protein-protein interaction networks also
correlate with the tendency of a gene family to be small and conserved (KRYLOV

et al., 2003; WATERHOUSE et al., 2011). Evidence has been collected that
old orthologous genes (descendants from a gene present in the last common
ancestor of a set of species) are longer than species-specific genes (CLARK et
al., 2007; LIPMAN et al., 2002; WASMUTH et al., 2008). However, these studies
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were limited by small species sample sizes, they considered only the average
of length parameters, and did not assess the full diversity of gene structures
across the complete gene repertoire. Although the description of conservation
patterns was accompanied by a detailed description of evolutionary traits
like sequence divergence and essentiality, an intriguing route of investigation
was left untouched: the structural characteristics of the genes found in either
conservation class were not fully disclosed.

These studies raised my interested in the three following questions.

. First, can I reproduce the pattern of conservation shown by WATERHOUSE

(2015)? This is interesting, because data was not disclosed for all insects
of the set used by WATERHOUSE (2015), although it can be assumed to be
representative. I would like to explore the variability.

. Second, what are the gene structural features of the repertoire partitions,
split to conservation classes and copy status, considering not only
averages but full parameter distributions? Since structural parameter
distributions are often omitted (not always, see LIPMAN et al., 2002),
it is intriguing to examine them. Additionally, since previous studies
were either limited in methods (e.g., determining conservation by simple
sequence similarity to any database entry, LIPMAN et al., 2002) or sample
size, and did not consider the repertoire partitions according to both
conservation and copy status, this approach is interesting.

. Third, do the repertoire partitions differ in protein domain diversity?
Although the protein domain signatures of ortholog groups have been
investigated, this was a sophisticated assessment based on an inference of
relationships among ortholog groups (WATERHOUSE et al., 2011). Domains
can be considered building blocks of genes, and it is expected that domain
shuffling is the predominant route to expand protein space, rather than de
novo domain creation (APIC and RUSSELL, 2010; MOORE and BORNBERG-
BAUER, 2012). Thus, I am interested to explore whether core, shell, and
cloud differ in domain diversity and domain arrangement diversity.

To approach the three posed questions, a sample of 26 newly sequenced
arthropod species is analyzed. It comprises a dense sampling of Hyme-
noptera (sawflies, bees, and wasps) together with six species representing
holometabolous (insects with an ontogenetic pupal stage) outgroup orders,
one hemimetabolous (insects with direct ontogeny) outgroup species, and
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one millipede as non-insect outgroup. The gene repertoires of these species
are consistently annotated de novo, orthology relationships are inferred, and
genes are structurally characterized and annotated with protein domains. The
obtained parameter distributions as well as domain annotations are analyzed in
detail with respect to the ten repertoire partitions put up between conservation
classes and copy states. Also, a general description of these new gene repertoires
is provided.



3

Methods

THE FOLLOWING STEPS of data compilation were conducted within the
Leibniz Graduate School on Genomic Biodiversity Research of the Zoological
Research Museum Alexander Koenig, Bonn, over the course of several years.
The work was done not only by me but also by many co-workers (indicated in
the respective sections) and the genome assemblies and parts of the meta-data
are used in the dissertations of several other doctoral researchers as well.

3.1 Species sample

The species sample was selected under guidance of the phylogenetic backbone
tree of insects (MISOF et al., 2014) to cover the extant diversity of Holometabola
with a focus on groups not well captured in previously published studies.
The majority of holometabolan orders is covered by 24 species by including
representatives of Diptera (two species), Mecoptera (one species), Megaloptera
(one species), Coleoptera (one species), Strepsiptera (one species), Hymenoptera
(18 species). Two outgroups were added: Psocodea (one species) and Glomerida
(one species). The species sample is depicted in Table V.1 and Figure V.1.
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Figure V.1 – Phylogenetic relationships between species of the sample. (Contin-
ued on next page)
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Figure V.1 – Phylogenetic relationships between species of the sample.
(Continued)
Numbers in grey circles are node IDs. Each species has a unique ID prepending
its name.
Pink numbers indicate estimated approximate divergence times in Ma (Million
years ago) referring to MISOF et al. (2014), while blue numbers mark estimated
approximate divergence times from the publication by PETERS et al. (2017).
Coloring of taxonomic names follows the scheme red for “Symphyta” and the
comprised lineages, green for Apocrita and descending lineages, and blue for
other Holometabola than Hymenoptera. Branch lengths are arbitrary.
Mya: million years ago.

This taxonomic sampling covers ancient divergences (roughly 550 million years
(My) between Glomerida and the sampled insects) as well as rather recent
radiations (less than 70 My between species of the jewel wasps (Chalcidoidea)),
(MISOF et al., 2014; PETERS et al., 2017). Furthermore, the species set comprises
a large range of genome sizes (63–1.2 Mbp).

3.2 Sequencing of genomes and transcriptomes

Library preparation and the actual sequencing steps were outsourced. Genome
sequencing was done using Illumina HiSeq 2000 and HiSeq 4000 sequencing
technology (Illumina, San Diego, CA, USA) to obtain a set of four libraries for
each species: (1) 250 bp insert size paired-end library, minimum base coverage
depth 40x, 150 bp read length; (2) 800 bp insert size paired-end library, minimum
base coverage depth 10x, 150 bp read length; (3) 3 kbp insert size mate-pair
library, minimum base coverage depth 10x, 100 bp read length; (4) 8 kbp insert
size mate-pair library, minimum base coverage depth 10x, 100 bp read length.

Haploid genome sizes were estimated by OLIVER NIEHUIS using the program
Jellyfish (MARÇAIS and KINGSFORD, 2011) and an in-house script with a 17-mer
frequency distribution of reads in the 250-bp library.

Whole-body transcriptomes were sequenced on a Illumina HighSeq 2000
sequencing platform. Libraries contained after read quality trimming and
adapter clipping at least 40 million 100 bp long paired-end read pairs. These
transcriptomes (hereafter referred to as RNAseq) were used in the annotation of
protein-coding genes.
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ID Abbrev. Species Genome
size

Gene
count

01 SEFU Sepsis fulgens 211 16,146

02 SEOR Sepsis orthocnemis 202 14,141

03 PAGE Panorpa germanica 1,066 27,083

04 SILU Sialis lutaria 564 18,165

05 PRSE Priacma serrata 994 32,528

06 STOV Stylops ovinae 63 9,592

07 ODSP Odynerus spinipes 242 13,222

08 CEAR Cerceris arenaria 482 27,352

09 AMCO Ampulex compressa 374 19,080

10 CHVI Chrysis viridula 209 17,474

11 CHME Chrysis mediata 228 18,959

12 PSNE Pseudochrysis neglecta 223 18,038

13 PAGR Parnopes grandior 189 13,170

14 HENO Hedychrum nobile 204 14,863

15 CLSP Cleptes splendidus 571 14,580

16 CETA Cephalonomia tarsalis 184 14,081

17 STSE Stephanus grandior 1,173 30,725

18 TOBE Torymus bedeguaris 918 31,685

19 MEAC Melittobia acasta 246 20,111

20 GOAS Gonatocerus ashmeadi 324 40,451

21 OABI Orussus abietinus 247 14,049

22 SINO Sirex noctilio 244 17,609

23 AROS Athalia rosae 170 14,319

24 XYAL Xyela alpigena 325 23,597

25 LIBO Liposcelis bostrychophila 542 37,281

26 GLMA Glomeris marginata 324 20,472

Table V.1 – Species sample. The species are ordered according to phylogenetic
relationships, see V.1. Genome size (as estimated using Jellyfish) is given in Mbp.
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3.3 Assembly and repeat masking

Genome assemblies were produced by ALEXANDER DONATH and LARS

PODSIADLOWSKI. They also developed the method to select the best assembly,
supported by MALTE PETERSEN, who also did the repeat masking steps.

In order to obtain the optimal assembly, an internal assemblathon was
conducted. The assembler Platanus (version 1.2.4, KAJITANI et al., 2014) was
used with varying read library combinations for each of the three steps (contig
assembly, scaffolding, gap closing) and compared with a single run of the
assembler Allpaths-LG (version 52488, BUTLER et al., 2008). The best assembly
was chosen using a custom script based on a combination of standard assembly
quality metrics (closeness to estimated genome size, scaffold N50), BUSCO
values (SIMÃO et al., 2015), and mapping of reads (using CLC Genomics
Workbench, version 8.5V.1). The assembler calls and library combinations can
be found in the Appendix (E.1.1), the custom script for quality assessment is
available upon request from MALTE PETERSEN.

It is required for gene annotation with the BRAKER pipeline (HOFF et al.,
2016) that the assembled genome sequences are softmasked, i.e., transposable
elements and other repetitive or low complexity regions are ‘hidden’ from the
searching algorithm. This is usually done by encoding softmasked sequences in
lower-case letters, while unmasked sequences remain capitalized (done with
fastasoftmask from Exonerate version 2.2, SLATER and BIRNEY, 2005). To
acquire the information, which sequences should be softmasked, a custom
pipeline based on RepeatModeler (versions 1.0.8-1.0.10, SMIT and HUBLEY,
2015) and RepeatMasker (versions 4.0.5-4.0.7, SMIT et al., 2015) developed by
MALTE PETERSEN was employed.

V.1 CLC Genomics Workbench: https:
//www.qiagenbioinformatics.com/products/clc-genomics-workbench/. Last
accessed 30 Mar 2018.

https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
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3.4 MySQL database setup

To store the results specifically for the following analyses and to allow fast
querying, I established a relational mySQL database. The following scheme was
built using custom Perl scripts as well as direct mySQL commands (documented
in the Appendix, E.2.1).

3.5 Protein-coding gene annotation and structural
characterization

Protein-coding gene annotation and structural characterization was done by
me.

The BRAKER pipeline (HOFF et al., 2016) requires that intrinsic evidence,
i.e., species-specific RNAseq data, is provided with the information where it
aligns to the genome (in a sorted .bam file). To obtain RNAseq alignments,
the softmasked genome assemblies and raw RNA reads of each species were
provided as input to HISAT2 version 2.1.0, KIM et al., 2015). The HISAT
output was modified using bamTools version 2.3.0 (BARNETT et al., 2011)
and samTools version 1.7 (LI et al., 2009). HISAT was run (including output
modification) locally with the following call scheme (SPECIES needed to be
changed accordingly).

hisat2-build SPECIES.fasta.softmasked \
SPECIES_hisat_index

hisat2 -x SPECIES_hisat_index -1 RNASEQ_1.fq.gz \
-2 RNASEQ_2.fq.gz -S SPECIES_hisat2.sam

samtools view -bS SPECIES_hisat2.sam \
> SPECIES_hisat2.bam

bamtools sort -in SPECIES_hisat2.bam \
-out SPECIES_hisat2_sorted.bam
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The softmasked genome assemblies and species-specific RNAseq alignments
were used as input for the BRAKER2 pipeline (version 2.0.6, HOFF et al., 2016;
using GeneMark version 4.33, BESEMER and BORODOVSKY, 2005; Augustus
version 3.3, STANKE et al., 2004; bamTools version 2.3.0, BARNETT et al., 2011;
samTools version 1.7, LI et al., 2009; and NCBI BLAST+ version 2.6.0, CAMACHO

et al., 2009) and run on the ZFMK HPC cluster with the following call scheme
(enclosed in a submission script written in bash; SPECIES needed to be changed
accordingly).

/BRAKER\_v2.1.0/braker.pl \
--species=SPECIES \
--genome=SPECIES.fasta-softmasked \
--bam=SPECIES_hisat2_sorted.bam \
--workingdir=SPECIES_DIR \
--UTR=off --gff3 --softmasking \
--overwrite \
--AUGUSTUS_CONFIG_PATH=/Augustus/3.3/config \
--AUGUSTUS_BIN_PATH=/Augustus/3.3/bin \
--AUGUSTUS_SCRIPTS_PATH=/Augustus/3.3/scripts \
--BAMTOOLS_PATH=/bamtools/2.5.1/bin \
--GENEMARK_PATH=/GeneMark/4.33/ \
--SAMTOOLS_PATH=/samtools/1.7/bin/ \
--BLAST_PATH=/blast/2.6.0+/

Note that the UTR option was toggled off, because it is according to the
Augustus 3.3 documentation currently not working for annotating insect
genomes.

The gene annotation output (hints.augustus.gff3 file) was, together
with the softmasked genome assembly, given to COGNATE version 1.01
(WILBRANDT et al., 2017) for analysis under default parameters (analyzing the
longest transcript per gene and producing all possible files).

Since COGNATE analyzes the longest transcript per gene, these transcripts
can be viewed as representing directly their respective gene. Thus, in this
manuscript, the terms are used interchangeably for convenience.
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To characterize gene structure, five central parameters were chosen to be further
analyzed. These are the same as in my previous projects (see parts III and
IV): (median) genomic transcript length (including introns and exons), (median)
protein length, (median) exon and intron length, (median) exon count for each
transcript or as median over all transcripts (of a set). The results were stored in
the MySQL database (table Transcript_COGNATE_general).

3.6 Assessment of gene space coverage

To asses the gene space coverage with benchmark single-copy orthologs
(BUSCOs, SIMÃO et al., 2015) based on OrthoDB by ZDOBNOV et al. (2017), I
employed the tool BUSCO version 3.0.2 (using NCBI BLAST+ 2.6.0, CAMACHO

et al., 2009, HMMER version 3.1b2V.2, and Augustus version 3.3, STANKE

et al., 2004), running it locally with the lineage dataset insects_odb9 in
protein mode (see command below). The lineage dataset contains 1,658 BUSCO
genes.

python scripts/run_BUSCO.py \
-i ./SPECIES_PROTEINS.fa \
-o SPECIES \
-l insecta_odb9/ \
-m proteins \
-c 1

3.7 Protein domain annotation and analysis

Protein domain annotations were provided by PANAGIOTIS PROVATARIS, I
analyzed the data.

Protein domains were annotated for all species based on the amino acid
sequences of the longest transcript per gene as given by COGNATE. To this

V.2 HMMER: hmmer.org. Last accessed 30 Mar 2018.

hmmer.org
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end, HMMER (version 3.1b2) was applied using the Pfam-A database (version
31.0V.3) in the following call (where -domtblout determines the output format
and -cut_ga causes the use of gathering cutoffs set by Pfam curators to set all
thresholding for domain identification).

hmmscan --domtblout $OUTFILE --cut_ga Pfam-A.hmm $INPUTFILE

Since the annotation with HMMER predicts any hit of a domain to the query
sequence, it is possible that hits overlap and actually constitute a single domain.
To collapse these hits, cath_resolve_hits version 0.16.2V.4 was applied with the
following call.

cath-resolve-hits.untuntu14.04 \
--input-format hmmer_domtblout \
--hits-text-to-file $OUTPUT $INPUT

The output was parsed so that for each transcript, the information of annotated
domains in order of appearance (in reading direction of the transcript) was
available as tab-separated list using a custom awk script.

The protein domain distribution across conservation classes was assessed
as follows. For each gene, the ordered domain annotations were recorded
individually (counting all as well as only unique domains) and screened for
arrangements of two (pairs), three (triplets), or four (quartets) domains in a
row with a sliding window approach implemented in a custom perl script. For
example, a gene annotated with five domains could at maximum harbor five
individual domains, four pairs, three triplets, and two quartets (illustrated in
Fig. V.14). Of each category there will be less unique combinations depending
on the number of repeated domains.

Following this step of recording the arrangements per gene, individual domains
and arrangements were counted according to the gene’s belonging to either

V.3 Pfam database: https://pfam.xfam.org. Last accessed 30 Mar 2018.
V.4 GitHub: ORENGO et al. 2018. Cath_resolve_hits from the cath-tools suite,

https://github.com/UCLOrengoGroup/cath-tools/releases/tag/v0.16.2-
Last accessed 30 March 2018.

https://pfam.xfam.org
https://github.com/UCLOrengoGroup/cath-tools/releases/tag/v0.16.2
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of the three conservation classes. The resulting lists were stored in the
MySQL database and evaluated using Venn diagrams drawn using a custom
R script and the VennDiagram packageV.5 in combination with Inkscape version
0.91V.6.

3.8 Phylogenetic tree

I gathered the phylogenetic relationships between the 26 species of the sample
from the publications by MISOF et al. (2014) and PETERS et al. (2017). Also,
as many estimated divergence times as available for the present sample were
extracted and mapped to the obtained tree from these publications. Note that
not all nodes could be assigned an age. Thus, the tree topology shown here has
arbitrary branch lengths (Fig. V.1).

For each node, I determined the subtree, i.e., which species descended from it,
and stored this information in the MySQL database (table ‘Species_at_nodes’).
For future quick reference, another MySQL table was laid out, containing the
count of species descending from each node (table ‘Count_at_nodes’).

3.9 Orthology prediction and partitioning of repertoires

The orthology prediction was provided by ROBERT M WATERHOUSE. He
employed the stand-alone pipeline of OrthoDB9 (ORTHOPIPE version 6.2.5;
dependencies: BRHCLUS version 2.2.2_debugfV.7; NCBI BLAST version 2.2.24,
SWIPE version 2.0.12, ROGNES, 2011; and cd-hit version 4.6.8-2017-1208, FU et
al., 2012). This was done to ensure that the unpublished genome data remained
offline. As general parameters, the minimum overlap for pair-wise alignments

V.5 GitHub: CHEN H. 2018. R package VennDiagram,
https://github.com/cran/VennDiagram. Last accessed 30 March 2018.

V.6 Inkscape: https://inkscape.org/en/. Last accessed 30 March 2018.
V.7 ORTHOPIPE and BRHCLUS are available from www.orthodb.org/?page=software.

Last accessed 30 Mar 2018.

https://github.com/cran/VennDiagram
https://inkscape.org/en/
www.orthodb.org/?page=software
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(in the BRHCLUS algorithm) was set to 30 basepairs, and the maximum e-
value considered in clustering of best reciprocal hits was 1.0e-3. The minimum
percentage ID (select_ID) as cutoff for clustering intra-species sequences was set
to 97.

The partitioning of the repertoires according to orthology prediction followed
loosely the core-shell-cloud terminology as used by KOONIN (2011). The core
partition corresponds to node 1 (see Fig. V.1 for node IDs). The shell consists
of all nodes above node 1 that comprise more than two species (nodes 2–8, 12–
16, 18–20, 22–24). The cloud comprises all nodes combining exactly two species
(five nodes: 9, 10, 17, 21, 25) and all nonOG genes. Furthermore, the following
analyses also respect duplicability, hereafter given as copy status, as the scheme
is different from the orthology types described by WATERHOUSE et al. (2011).
Based on the count of gene family members contributed by each species to the
gene family in comparison to all other contributing species (obtained using a
custom Perl script, see Appendix, E.2.3), four states are discriminated:

1. All species descending from the considered node have exactly one copy
of the considered gene family. These genes are universal single-copy
orthologs, or short USCs.

2. The considered species has exactly one copy of the gene family, while
other species descending from the considered node have either more or
no copies. Thus, the gene family may be not present in all species. These
genes are called species-specific single-copy orthologs (sSCs).

3. The opposite case, where the considered species has more than one copy,
while other species descending from the considered node have either no
or exactly one copy, causes genes to be termed species-specific multicopy
(sMC ).

4. Lastly, if no orthologous gene is found in any other species of the sample,
the gene is assigned the status nonOG.

I partitioned the resulting orthology prediction data (/Cluster/seqs.og) ac-
cording to the presence of ortholog groups at the nodes of the tree (it was taken
care that each OG was only considered once, at the highest node it occurred
at), according to the conservation class (core/shell/cloud) and according to the
copy status (single-copy in all/single-copy in species/multicopy in species).
This was done using custom scripts written in Perl (E.2.3). The partition



174 Chapter 3 Methods

information was also stored in the MySQL database (table ‘Transcript_at_node’;
MySQL calls and queries: see Appendix, E.2.2).

Note that the requirement of USCs to include members from all species from the
node is very strict, not accounting for potential artifacts of incomplete assembly
and/or annotation (as, for example, done by WATERHOUSE et al., 2011). Such
cases fall into the copy states sSC and sMC. The genes assigned to copy status
sMC might be universal, i.e., present and multi-copy in all species.

3.10 Plotting

All plots were generated using R (R CORE TEAM, 2017) with the following main
packages: ggplot2 (WICKHAM, 2009), wesandersonV.8, RColorBrewerV.9, ggtree
(YU GUANGCHUANG et al., 2017), ggridgesV.10. The respective R scripts can be
found in the Appendix, E.2.3. Plot finalization was done using Inkscape.

V.8 GitHub: KARTHIK et al.. 2018. R package wesanderson,
https://github.com/karthik/wesanderson. Last accessed 30 March 2018.

V.9 GitHub: NEUWIRTH E. 2014. R package RColorBrewer,
https://github.com/cran/RColorBrewer. Last accessed 30 March 2018.

V.10 GitHub: WILKE K. 2018. R package ggridges, https://github.com/cran/ggridges.
Last accessed 30 March 2018.

https://github.com/karthik/wesanderson
https://github.com/cran/RColorBrewer
https://github.com/cran/ggridges
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Results

SINCE THIS WORK FOCUSED on the characterization of gene repertoires, I will
regard the assemblies as given and not discuss results of assembly or masking
of transposable and repetitive elements steps in detail. In general, assembly
quality of the assessed species is very good considering standard metrics.
Details on assembly quality are available upon request from ALEXANDER

DONATH.

In total (i.e., summing up the gene counts of all repertoires), 535,983 genes
were analyzed. The size of the conservation classes is illustrated in Fig. V.2
(rectangles). Of the total gene count, 206,019 are assigned to the core class,
122,475 are shell genes, and 207,444 are classified as cloud; the cloud includes
200,890 genes being lineage-specific without orthologs in any other species, i.e.,
have the copy status nonOG. Thus, examining the gene conservation across the
considered species yields the same pattern as described by KOONIN (2011) and
WATERHOUSE (2015): a large (comprising many genes) core, a smaller shell, and
a cloud of similar size as the core.
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4.1 The complete repertoires

4.1.1 Gene counts and BUSCO assessment

The species differ tremendously in their gene counts; the contribution to
gene count by genes of the three conservation classes and four copy states is
also variable (Fig. V.2, left side). However, all Aculeata (species IDs 10–17)
have similar repertoire sizes of less than 20,000 genes. S. ovinae, the species
with the smallest genome of the sample size, also has the smallest annotated
gene repertoire. However, genome size does not correlate with gene count,
as becomes obvious when comparing the gene count and genome sizes of
G. ashmeadi (40,451/324 Mbp) and P. grandior (30,725/1,173 Mbp).

The predicted gene models cover the expected gene space very well, especially
within the studied Hymenoptera (right side of Fig. V.2). No gene repertoire of
these Hymenoptera contains less than 90 % of the complete benchmark single-
copy orthologs (BUSCOs).

4.1.2 Overall gene structure parameter distributions

The distributions of five general gene structure parameters were recorded for
the whole gene repertoires per species as ridge plots (Fig. V.3). These serve as
baseline for comparisons with the same parameter distributions split according
to conservation class and copy status (section V.4.3.2).

Overall, no outstanding general pattern regarding phylogenetic relationships is
obvious among the structural parameter distributions. Small-scale deviations
occur, like the following example. The median intron lengths of the two Sepsis
species are bimodally distributed in a relatively small range compared to all
other species.

4.2 Universal landscapes of ortholog groups

The assessment of ortholog groups, their composition as well as distribution in
the landscape defined by universality and duplicability is done using a two-
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Figure V.2 – Gene repertoire and BUSCO values. (Continued on next page)
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Figure V.2 – Gene repertoire and BUSCO values.
(Continued)
The phylogenetic tree is the same as given in Fig. V.1 and species abbreviations
correspond to those given in Tab. V.1.
Gene repertoire – Conservation: This barplot shows the count of genes in
each repertoire of the 26 species. Bar segments are colored according to their
copy status (ivory: present and single-copy in all species sharing the respective
ortholog group (OG), also termed USC, universal single-copy; orange: OG is
present in some of the species of the respective node and single-copy in this
species, also termed sSC, species-specific single-copy; grey: OG is present in
some or all of the species of the respective node and multicopy in this species,
also termed sMC, species-specific multicopy; red: not related to any OG, lineage
specific genes).
The copy status directly depends on the highest, i.e., last common ancestral node
at which the ortholog group is present. For example, a group found to have
members in species 001 (S. fulgens) and species 024 (X. alpigena) is mapped
to node 3, the last common ancestor of both species. Thus, the first three colors
of the copy status repeat for each node at which orthologs have been found within
the respective repertoire. NonOG genes (red) are not assigned to any node, but
to the tips, i.e., the species.
The gene repertoires were partitioned according to conservation. The core
partition (solid rectangle) corresponds to node 1. The shell (dashed rectangle)
consists of all nodes above node 1 that comprise more than two species. The
cloud (pink rectangle) comprises all nodes combining exactly two species (five
nodes) and all nonOG genes.
BUSCO values: The barplot illustrates the percentage of the benchmark
universal single-copy orthologs (expected to be present in all species; lineage
insecta_odb9, n: 1658) retrieved in full length only once (complete single-copy)
in the scrutinized species (light green), in full length but multiple times (complete
duplicated, dark green), not in full length (fragmented, light blue), or not at all
(missing, dark blue).

dimensional representation of the previously proposed (WATERHOUSE, 2015)
landscape plots. To illustrate that these two graph types correspond closely,
both were compared for the example of C. viridula (Fig. V.4).

Consistent patterns can be observed in all three heatmap types (A, B, C; Fig. V.5)
across all species. In the original type (A; as proposed by WATERHOUSE, 2015),
the pattern shown in the original publication for Drosophila melanogaster is
recovered: many universal single-copies (top right corner) and many lineage-
specific single-copies (bottom right corner) are present. This pattern fits the
proposition of KOONIN (2011), the universal ‘bowl’: many core genes [top],
few shell genes, and many cloud genes [bottom] can be distinguished. The
two additional heatmap types (B, C) illustrate additional transformations of
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Figure V.3 – Gene structural parameters for all transcripts. (Continued on next
page)
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Figure V.3 – Gene structural parameters for all transcripts.
(Continued)
Five parameters (genomic transcript length [including exons and introns] in
basepairs [bp], yellow; protein length in aa, dark green; exon count, khaki; median
exon length in bp, turquoise green; median intron length in bp, red) compared for
all transcripts of each species, ordered according to the phylogenetic tree (see
also Fig. V.1).
Sample sizes (i.e., the count of analyzed transcripts) correspond to the gene
counts given in Tab. V.1.

Figure V.4 – Comparison of two plot types illustrating the universality and
duplicability of ortholog groups.
Both plots depict the same data for the species C. viridula. The left graph
(landscape plot) shows the group count on the z axis, while the right graph
(heatmap) flattened the landscape to two dimensions while preserving the color
code. This serves to illustrate how both types correspond.
Perl code for the landscape plot was kindly provided by Robert M Waterhouse
(pers. comm. Mar 2018).

the analyzed data to get a more detailed understanding of the peculiarities of
ortholog group phenomenology. Type B, which depicts copy counts instead
of group counts by the color code, shows an expected pattern given the
observation made in type A: there are higher counts of genes summed up for
all ortholog groups present in the respective species in areas of lower single-
copyness (left side). The third type (C) shows in how many ortholog groups the
respective species contributes most to the total gene counts in each bin defined
by universality and copy-contribution. As would be expected, group counts are
highest (red), where the species contributes copies to the count of an ortholog
group that is shared by many species (top) but also highly duplicable (left).



4.2 Universal landscapes of ortholog groups 181

Figure V.5 – Ortholog groups show similar patterns of universality and single-
copyness. (Continued on next page)
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Figure V.5 – Ortholog groups show similar patterns of universality and single-
copyness.
(Continued)
For each species (ordered according to the phylogeny given in Fig. V.1; note that
the subtree of Apocrita (following node 13) is expanding on the right side), three
heatmaps were generated: A, B, and C. B and C differ from A in one of two
variables (Single-copyness/Copy-contribution, and Count). Each grid cell of the
plot corresponds to a bin defined by the respective x and y values; counts include
all ortholog groups (OGs) that meet the criteria defined by the bin.
A – Original: Following the landscape plot proposed by WATERHOUSE (2015),
universality is calculated as the count of species sharing this OG divided by
all species in the considered set (here, 26). Single-copyness (duplicability) is
calculated as count of species that have one copy of this OG divided by the count
of species sharing this OG (i.e., have any number of copies). Count (depicted in
log10 by the color scale) represents the count of OGs per bin, where the bin is
defined by a value of universality between 0 (not shared between any species)
and 1 (shared between all species) on the y axis, and a value of single-copyness
between 0 (many species have many copies, this OG is highly duplicable) and 1
(all species sharing this OG have one copy, this OG is not duplicable) on the x
axis.
B – Copy counts: The axes (universality, single-copyness) are the same as in A.
Count now gives the number of genes in all OGs of a specific bin instead of the
count of OGs.
C – Copy contribution: The y axis (universality) and the count (OG count) are
the same as in A. The x axis now depicts the copy contribution, which is calculated
as the count of copies in this OG and this species divided by the count of copies
in this OG (totaling all species’ OGs). Values close to 0 mean that the species
contributed few copies to the bin, 1 that all copies stem from this species.
For further interpretation, see text.

4.3 Comparing core, shell, and cloud

4.3.1 General gene structure medians

Using the medians over all transcripts, the five central gene structure
parameters were compared between three conservation classes and the four
copy states (Fig. V.6). Genes of the core have (in the median) longer transcripts
and proteins than their copy status counterparts of the shell and core, but shorter
exons and introns. This is the result of a higher median exon count. Thus,
core genes seem to be complex and could in principle give rise to more splice
variants. Comparing the three copy states within the core class, this pattern
becomes apparent again: the universal single-copy orthologs, highly conserved
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Figure V.6 – Medians of five structural gene parameters compared across
conservation classes and copy states.
The same parameters as depicted in Fig. V.3, but given as median over all
transcripts (i.e., over all species) belonging to one of the three conservation
classes (core, shell, cloud; for a definition refer to Fig. V.2) and one of the four
copy states (USC: universal single-copy, sSC: species-specific single-copy, sMC:
species-specific multicopy, nonOG: not in any ortholog group). The sample sizes
are given for each set.
Note that median genomic transcript length (including introns and exons) is given
as divided by 10 to allow a convenient, comparative overview.

genes present with only one copy in all of the 26 species in the sample, are
longest and have the most introns.

Lineage-specific genes (cloud: nonOG) are (considering the median) the shortest
compared to all other conservation class/copy status sets, and produce the
shortest proteins, but have relatively long exons and introns (Fig. V.6).

4.3.2 Species-specific gene structure distributions

To elucidate differences between the three conservation classes (core, shell, and
cloud) and between genes of different copy status (USC, sSC, sMC, nonOG), the
five central gene structure parameters were analyzed in their full distribution
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for each species’ repertoire split into the according partitions. The following
ridge plots allow to compare the distribution of one gene structure parameter
for all species, conservation classes, and copy states at a time.

At the ridge plots, several interesting things can be noted. First, there is no
clear pattern following taxonomy in all five parameters, although there are
exceptions (for example very few genes with one exon in all core copy states
in all Apocrita except G. ashmeadi, the species which diverged first from the
remaining apocritans). Second, USC genes differ from sSC and sMC genes even
in the core, and more so in the shell and cloud. Note that in the shell, sample
sizes (transcript counts) of USC genes are rather small. For most species, there
are only nonOG genes present in the cloud — except for those belonging to a
node with two species at the tips.

A few further examples shall be highlighted. When comparing the distributions
of transcript length (Fig. V.7) and protein length (Fig. V.8) of the core, G. ashmeadi
is a striking case, in that a unimodal USC transcript length distribution results in
a bimodal protein length distribution. This is most likely a result of marked exon
count differences between the different transcripts balanced by exon and/or
intron length effects.

It is also noticeable that most genes of the core class in all species have exons
(Fig. V.9) and introns (Fig. V.11) of a very narrow length range (first to third
quantile within 100–500 [exons]/80–200 [introns] base pairs) compared to the
shell and cloud class genes (wider length distributions).

Another striking ridge deviation can be found when comparing exon counts
(Fig. V.10) in the shell. Especially between USC genes of the different species,
the distributions are highly dissimilar. Although the sSC and sMC exon
count distributions among the species diverging from node 14 (Aculeata and
S. serrator) can be considered a group by virtue of their similarity in comparison
to other distributions, their USC distributions are astonishingly diverse. This
is even more astonishing when considering that the largest USC exon count
distribution difference can be found between the very recently diverged Chrysis
species. However, it should be kept in mind that the sample size of USC genes
is generally small in the shell class.

A final distinctive example are the differences between the cloud genes of the
two recently diverged Sepsis species. The cloud genes of S. fulgens are in general
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Figure V.7 – Transcript lengths of three conservation classes and three copy
states. (Continued on next page)
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Figure V.7 – Transcript lengths of three conservation classes and three copy
states.
(Continued)
Ridge plot (also as caption for Figs. V.8, V.9, V.10, V.11): Compares the gene
structure parameter for each species according to the transcript’s assignment to
one of the three conservation classes (i.e., whether it belongs to an ortholog
group [OG] shared at the core, shell, or cloud — for definitions of these, refer
to Fig V.2), depicted in the facet columns, and its copy status (USC: universal
single-copy, sSC: species-specific single-copy, sMC: species-specific multicopy,
nonOG: lineage-specific genes without orthologs), depicted as rows within the
species-specific row facets.
Vertical lines in each ridge indicate quantiles, the middle one is the ridge-specific
median. For each ridge, the sample size is indicated.
Species are ordered according to the depicted phylogeny, see also Fig. V.1.
Note that 16 of the 26 species only have nonOG-genes in the cloud, since they do
not belong to one of the five nodes ending in two tips. Note also that the outgroup
species G. marginata does not posses any shell genes, since these are shared
only among the ingroup species.

(also regarding the median) longer and produce longer transcripts, which is a
result of a higher exon count compared to the cloud genes of S. orthocnemis. This
is striking, because the difference in the distributions is larger than between any
other species pair of the cloud.

4.3.3 Protein domain counts and arrangement diversity

In total (i.e., across all species and ortholog groups), 144,766 genes (27 % of all
genes) were annotated with one or more protein domains. Of these genes with
domain annotation, 108,305 genes (74.8 % of genes with domains) are assigned
to the core class, 26,421 (18.2 %) are shell genes, and 10,043 (6.9 %) are classified
as cloud (9,515 [94.7 %] of these are nonOG genes).

The ratio of domains per gene is highest in the core: 1.83 domains/gene, while
a ratio of 1.52 is found in the shell, and 1.28 in the cloud.

Figure V.12 illustrates the frequency of transcripts annotated with any number
of domains, including consecutively repeated domains, between the three
conservation classes and the four copy states. It becomes apparent that the
universally conserved single-copy orthologs of the core do not have more than
14 domains in one transcript.
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Figure V.8 – Protein lengths of three conservation classes and three copy states.
(Details see caption of Fig. V.7)
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Figure V.9 – Exon lengths of three conservation classes and three copy states.
(Details see caption of Fig. V.7)
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Figure V.10 – Exon counts of three conservation classes and three copy states.
(Details see caption of Fig. V.7)
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Figure V.11 – Intron lengths of three conservation classes and three copy states.
(Details see caption of Fig. V.7)



4.3 Comparing core, shell, and cloud 191

Figure V.12 – Protein domain count per transcript.
The frequency (y axis) of transcripts with x domains (x axis) is presented for each
copy status (rows; USC: universal single-copy, sSC: species-specific single-
copy, sMC: species-specific multicopy, nonOG: lineage-specific genes without
orthologs) and each conservation class (columns; core, shell, and cloud).
The axes are logarithmically transformed, the values are not. Note the sample
size information given for each facet.
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Contrarily, the less strongly conserved subsets of the core, genes that can be
absent in ingroup species and are either single- or multicopy in the specific
species, are the ones with the highest domain count per transcript (up to 86
domains in sSC) in the whole comparison. The largest share of core genes with
high domain count can be found in genes belonging to ortholog groups shared
by 24–26 species (Fig. V.13).

Shell and cloud harbor much less transcripts with many domains, and the
maximum domain count is clearly lower (15–25). It is interesting to note,
though, that this maximum domain count is higher than in core USC genes.

To assess the diversity of protein domains and domain arrangements between
the three conservation classes, unique individual domains and three kinds of
arrangements (pairs, triplets, quartets) were analyzed for their presence in all
transcripts assigned to either core, shell, or cloud. The ratio of unique domains
per gene is highest in the cloud (0.54), while both shell (0.13) and core (0.05)
have strikingly smaller ratios. This indicates a higher repetition of domains in
core genes.

Regarding individual protein domains, a high diversity can be observed in all
three conservation classes, although much of the shell’s diversity is shared,
while most of the diversity found in core and cloud is specific to these classes
(Fig. V.14). Thus, the lineage- and species-specific genes of the cloud harbor
many domains not found in the remaining species of the analyzed species
sample and can be considered novel. Conversely, domains found in the core
can be considered old, their origin most likely dates back to at least 557 million
years ago. Almost two thirds of these old domains are also found in the cloud
(core-cloud-overlap). Matching the line of evidence that shell and cloud genes
generally have less domains (Fig. V.12), the diversity in arrangements is much
smaller in shell and cloud than in the core. Thus, the potential arrangement
diversity is more constrained by the count of domains per gene than by the
uniqueness of novel domains. Note that repetitive domain arrangements
decrease the actually observable count of unique arrangements in comparison
to the theoretically possible given the count of individual domains.
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Figure V.13 – Core-specific protein domain count per transcript, split by number
of species sharing the respective ortholog group. (Continued on next page)
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Figure V.13 – Core-specific protein domain count per transcript, split by number
of species sharing the respective ortholog group.
(Continued)
The same data that is also displayed in the first row of Fig. V.12 (i.e., comprising
only genes of the core class) is split according to the count of species sharing the
respective ortholog group each transcript is affiliated to (facet rows; 2 species at
the top, 26 at the bottom).
The frequency (y axis) of transcripts with x domains (x axis) is presented for each
copy status (columns; USC: universal single-copy, sSC: species-specific single-
copy, sMC: species-specific multicopy). Per definition, the USC copy state is
only present in the last facet row, as these genes are shared by all 26 species of
the sample.
The axes are logarithmically transformed, the values are not. Note the sample
size information given for each facet.
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Figure V.14 – Protein domain and arrangement diversity. (Continued on next page)
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Figure V.14 – Protein domain and arrangement diversity.
(Continued)
The Venn diagrams portray the diversity of unique domains (left) and
arrangements (right; top: pairs, middle: triplets, bottom: quartets) at each
conservation class (green: core, red: shell, blue: cloud). Additionally, an
example of domain composition and the resulting arrangements is given (bottom
left box).
For each Venn diagram, the total count of unique domains/arrangements is given
below the title. The total count of these belonging to either of the conservation
classes is given in the class color below the class name. Percentages refer to
the all-embracing total count (not the class-specific).
Note that domains can be repeated along a gene, and depending on the amount
of repetition, the amount of unique domains and arrangements found per gene
decreases.



5

Discussion

IN THE QUEST TO UNDERSTAND the generation of novelty from the viewpoint
of gene repertoire changes, one specific route was followed in this study.
The protein-coding gene repertoires of 26 newly sequenced species in a
Hymenoptera-centric sample were analyzed with respect to their conservation
across the phylogeny. This required the prediction of orthology relationships
among the gene repertoires, whereafter genes could be classified according to
their affiliation to an ortholog group, being a member of the core, shell, or cloud
and being present in one or more copies in the considered species.

Potential sources of bias in this analysis are (1) sequencing and assembly;
(2) repeat masking; (3) protein-coding gene and protein domain annotation;
and (4) orthology prediction. Sequencing and assembly might influence the
here presented results, because the fragmentation/completeness of a genome
assembly directly affects the annotation of genes: for example, genes split across
scaffolds falsely increase the count of shorter genes (see also Fig. III.1). RNAseq
sequencing also affects the annotation of protein-coding genes: lowly expressed
or highly tissue-specific genes might be less well covered and thus missing
from the annotation. Repeat masking also might induce a falsely increased
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gene count if repetitive sequences were left unmasked. Gene and domain
annotations themselves can introduce bias depending on cutoff thresholds (see
also Fig. III.4). Orthology prediction is a source of potential bias in that the
count and size of ortholog groups depends on clustering settings: how coarse
or fine-grained is the setting to constitute separate groups.

Applying the same methods for all species in the set ensures that all errors
are systematic and the data is comparable. Thus, confidence is high that the
observed patterns are consistent even if bias is present, although individual
genes are likely missing or split.

5.1 Universal patterns of conservation

My analyses corroborate the proposed universality of distribution patterns
of ortholog groups across a landscape of duplicability and universality
(WATERHOUSE, 2015). Even when analyzed in more detail (i.e., using the
copy count of orthologs instead of the group count, and using the contribution
of copies instead of the single-copyness) the observed patterns hold for all
analyzed species. These findings vindicate the assumption that underlying laws
of gene repertoire evolution and conservation are universal. Formulating these
laws will be a future challenge.

5.2 Characteristics of conservation classes

Orthology is always established relative to the considered node and its
identification depends on the available data basis, i.e., genes from different
species to compare. Note that a gene with the copy status nonOG is not
necessarily a young gene. Many very old lineages are represented only by
one species in our Hymenoptera-centric sample, for example, nonOG-genes of
S. noctilio may be as old as the lineage, 264 million years (MISOF et al., 2014). It is
likely that within the Siricoidea, orthologs for many of the ‘orphan’ genes in my
analysis can be found when using a denser species sample for comparison, and
thus are actually ‘taxon-restricted genes’ (KHALTURIN et al., 2009). Nonetheless,
the nonOG genes certainly comprise also very young genes, as becomes obvious
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when regarding the count of nonOG genes in the Chrysis species (5,315 in
C. viridula, 5,916 in C. mediata), which diverged less than 70 million years ago.

5.2.1 Gene structures

I find that genes classified as core are generally longer and produce longer
proteins due to a higher complexity (more, but relatively short, exons and
introns) than genes of the cloud. This is in line with previous evidence (CLARK

et al., 2007; LIPMAN et al., 2002; WASMUTH et al., 2008; WOLF et al., 2009; YANG

et al., 2013), but note that previous research also revealed deviations from this
‘universal length difference’ (TATARINOVA et al., 2016).

New, compared to previous studies, are the following findings: (1) the
differences in (almost all) structure distributions are considerable between copy
states; (2) there is astonishing variation in the distributions of transcript and
protein lengths as well as in exon count, but not in exon and intron length in the
core, when comparing species and copy states; (3) the variation of distributions
of transcript and protein lengths is large in the cloud, while exon count variation
is smaller compared to shell and core, and the breadth of exon and intron length
distributions is wider than in the core.

The correlation of protein length and conservation has been vaguely accredited
to functional relevance (LIPMAN et al., 2002). No clear hypothesis explaining
the rise and maintenance of the observed patterns has been proposed. Hence,
I will outline some general thoughts regarding possible explanations of
the relationship of length and complexity to conservation of protein-coding
genes.

It can be expected that aging genes (i.e., genes that are retained after their
origination) become longer over time. This is based on the assumption that new
genes are less likely to be long and/or complex when originating (TAUTZ and
DOMAZET-LOŠO, 2011; WISSLER et al., 2013). However, it can also be assumed
that there are natural limits to gene growth, imposed by physical limits like cell
space and by cost limitations related to transcription, replication, or product
toxicity (e.g., DRUMMOND and WILKE, 2008). It has been suggested that intron
gain is adaptive (CARMEL et al., 2007), thus playing a role in the elongation of
retained genes.
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Another naive hypothesis is that core genes are (functionally) important,
otherwise they would not be (detectably) conserved over very large time
scales as observed (e.g., JORDAN et al., 2002). The high complexity and
length of these apparently important genes has benefits and drawbacks. One
advantage is the possibility to produce more alternative splice variants, thereby
improving the ratio of proteins that can be encoded to the required nucleotide
sequence length (similar to a case study in Volvox, KIANIANMOMENI et al.,
2014). It has been shown that long genes tend to have more splice forms (in
combination with high expression and low duplication rates; GRISHKEVICH

and YANAI, 2014; ROUX and ROBINSON-RECHAVI, 2011). A disadvantage of
high complexity and length is the theoretically higher probability of deleterious
mutations and insertions of transposable elements. Furthermore, the sheer
length of a gene theoretically also impacts replication and transcription speed
and accuracy (here, reduced intron size is advantageous; CASTILLO-DAVIS et
al., 2002). Additionally, it has been found that the most conserved orthologs
show also the highest DNA methylation levels in insects, potentially playing
a role in reducing transcriptional noise (PROVATARIS et al., 2018). This is in
line with the suggestion that DNA methylation and gene expression regulation
are interconnected and (partially) drive gene length evolution (ZENG and YI,
2010).

Intuitively, it seems that the costs of maintaining the integrity of long and
complex genes (so that orthology can be established even after 550 million years
of species divergence) are high and require considerable selective pressure.
This implies that the advantages must outweigh the costs. Future work will
have to elucidate both sides of the trade-off in detail to formulate a hypothesis
explaining the maintenance of complex orthologs over long time spans.

5.2.2 Protein domains

In my analysis, a large share of unique domains is only found in the cloud
and can be considered novel in the respective lineage. Note, however, that
this might change with a denser species sample in which each lineage is
represented by more than one species (KHALTURIN et al., 2009; WASMUTH et
al., 2008); currently, there are single species representing very old lineages, e.g.,
L. bostrychophila represents Psocodea, the order split 359 million years ago from
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Holometabola (MISOF et al., 2014). Contrastingly, I find few unique domain
arrangements in the cloud; the highest arrangement diversity is confined to
the core. This seems to contradict the pattern observed by GABALDÓN (2005),
stating that most protein domains are ancient, while most combinations are
lineage-specific. However, domain arrangements (just like genes) become
longer over evolutionary time scales, as well as more diverse (BJÖRKLUND et al.,
2005; EKMAN et al., 2005; ITOH et al., 2007; M WANG and CAETANO-ANOLLÉS,
2009; Z WANG et al., 2012). My finding reflects the larger ratio of annotated
domains per gene in the core, although universal single-copy orthologs appear
to be restricted to comparatively few domains per gene (less than most cloud
genes).

The circumstance that the maximum domain count is higher in shell genes than
in core-USC genes is surprising, as it is expected that novel genes are short.
It is conceivable, though, that the novel genes with many domains originated
de novo from fusion of other genes (KUMMERFELD and TEICHMANN, 2005).
Alternatively, the genes with many domains might actually be core genes of,
for example, Diptera (in the case of the two compared Sepsis species); note that
the genes with most domains in the cloud-USC set are sepsid genes. Future
work including a denser sample of sister species will allow to disentangle core,
shell, and cloud genes at a higher resolution.

The here described differences of domain diversity in core, shell, and cloud
provide not only an indication that variability in gene structure and domain
content is related to a gene’s conservation and to species evolution, but provide
also starting points to study these relationships in detail.

5.3 Future directions

It will be interesting to study the diversity of protein domains and domain
arrangements with respect to domain identity to see, for example, whether the
domains of the universal single-copy orthologs of the core belong to a specific
functional class or how the restriction to the comparatively few domains per
gene in this subset could be explained.

Another line of research will be the incorporation of gene family size variation
along the phylogeny – gene turnover – and the reconstruction of ancestral gene
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(family) content to allow tracing of gene repertoire change along the phylogeny.
This requires a fully dated tree, which will be available for this species set very
soon.

The estimation of gene turnover rates along the phylogeny also allows to
correlate turnover to other genomic phenomena, which will permit to elucidate
their role in facilitating repertoire change. Namely large segmental duplications
and direct and indirect effects of transposable element activity are promising
potential drivers of change in protein-coding gene repertoires.



6

Conclusion

THE COMPARISON OF THE PREVIOUSLY PROPOSED conservation classes (core,
shell, and cloud) in the aspects of gene structure and protein domain diversity
provides first footholds for a detailed investigation of gene repertoire changes
with respect to conservation/variation mechanisms.

Here it is shown that the conservation classes differ in gene structure and protein
domain diversity, and that differences regarding these characteristics even
extend to the copy status of gene family members. The underlying mechanisms
and driving forces are yet to be discovered. When analyzing gene repertoires in
evolutionary context, universality and duplicability of gene families should be
taken into account.

Further research on gene family evolution based on turnover estimation and
considering protein functions will help to elucidate mechanisms and drivers of
evolutionary change in protein-coding gene repertoires.
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GENERAL DISCUSSION &
CONCLUSION





1

General discussion

I SET OUT TO ADDRESS several general questions: are major evolutionary
transitions in Hymenoptera shadowed by structural changes in their gene
repertoires? What is the magnitude of structural variation in hymenopteran
gene repertoires? And finally, are there classes of genes more variable and thus
prone to change than others?

Here, I shortly review the results of my research and discuss how they
contribute to our understanding of gene repertoire evolution. Following this,
future perspectives are highlighted and a general conclusion is drawn.

1.1 Prerequisites

To approach the posed questions, it was necessary to unlock gene structures
of complete repertoires in an efficient and traceable manner. I developed the
tool COGNATE (see part II) to facilitate comparative analyses of gene repertoire
structural parameters, and it has been stable and useful throughout my further
work. When asked how to describe a gene repertoire structurally, I advocate the
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use of several metrics (outlined in section II.4.1), which can be summarized as
GC content, cumulative sizes, counts, and lengths of exons, coding sequences
(if discriminated during annotation from exons), and introns. Furthermore, I
would like to highlight the importance of taking the full parameter distribution
into account in addition to summary statistics. Frequently, distributions are
omitted and statistical tests are applied that are not necessarily suitable for data
in non-normal distributions, as I found them to be the norm in gene structure
parameters (except in GC contents).

Before the focal biological questions could be explored, another prerequisite
had to be met, namely knowing whether the available data basis, i.e.,
structural parameter records of gene repertoires from unsupervised automated
annotation, was suitable (part III). I surveyed the impact of manual curation
on automatically predicted gene models. The results are reassuring: overall,
gene structure is only marginally changed and general trends of gene structure
correlations to other genomic parameters were not influenced. Note, however,
that the sample size of manually curated genes was small and the effect on
protein sequence was not investigated. Further research is required to fully
benchmark not only annotation tools but also manual curation to obtain a
guideline of the cases that require manual curation. Based on these findings,
I decided that the investigation of full protein sequences to characterize the
functions comprised by the different gene repertoires would not be reliable
enough without in-depth vetting of gene models to ensure model correctness.

1.2 Gene repertoires of Hymenoptera

Although COGNATE delivers measurements of a plethora of parameters, I
decided to focus on the analyses on five key parameters to characterize gene
structures (the full datasets are provided in the Appendix, B.2.4, C.2.7, D.1.2,
E.2.4).

1.2.1 Gene structure variation along the phylogenetic tree

The first opportunity to compare gene structure parameters across whole
protein-coding gene repertoires was created in part III. In this study, I



1.2 Gene repertoires of Hymenoptera 217

analyzed seven insect species including the two “Symphyta” that are a constant
component of my species samples. I observed a pronounced difference in
the parameter distributions of the two beetle species (more short proteins,
more long introns) compared to the remaining species (Fig. III.3); the sawfly
distributions resembled each other, but the two hemipteran species differed
from each other considerably in intron length. I took these observations as
foothold: there is variation between insect orders, but also within orders; a
larger species sample is required to elucidate the magnitude of these inter- and
intra-ordinal variations.

In part IV, gene structure variation over the whole protein-coding repertoires of
twelve selected Hymenoptera were investigated in an evolutionary context. The
most striking observed trend in concordance with phylogenetic relationships
was a pronounced overall reduction of gene complexity in the gene repertoires
of the three compared ants. Additionally, these three gene repertoires featured
a distinctive, albeit small, class of genes with extremely short introns.

Although ants are a highly interesting model system to study the genomic basis
of sociality (reviewed by GADAU et al., 2012; LIBBRECHT et al., 2013), the focus
on gene structure is rare and not addressed in the genome publications (e.g.,
CR SMITH et al., 2015, 2011; CD SMITH et al., 2011; SUEN et al., 2011; WURM

et al., 2011). Given previous observations of correlations, the genes of the short-
intron class might reside in a region of very high recombination (COMERON

and KREITMAN, 2000; NIEHUIS et al., 2010), or are highly expressed (CASTILLO-
DAVIS et al., 2002). It has also been argued that the ‘minimal introns’ found in
humans are under selective pressure and enhance the RNA-export rate from the
nucleus (YU et al., 2002). It will be very interesting see whether the same class
can be found in other ant genomes, to annotate these genes functionally and
test whether these hypotheses hold. Potentially, the short-intron genes play an
important role in ant evolution.

Comparing the covariance of genome and gene structure parameter summary
statistics with assembly size between the sample of four taxonomic orders (Fig.
III.3 b and c) and the Hymenoptera-centric sample (Fig. IV.2), it is striking that
the relationship between assembly size and assembly GC content is reversed:
within Hymenoptera, the correlation is slightly positive, while variation is
larger than in the four-order sample (which comprises less species). This
relationship can be found in previous studies (e.g., STANDAGE et al., 2016),
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but has to my knowledge not been addressed in its own right specifically in
insects. However, GC content has been shown to be related to recombination
rates in Hymenoptera (NIEHUIS et al., 2010). GC content has been largely
addressed in the context of vertebrate isochore structure and evolution (e.g.,
BERNARDI, 2007; COSTANTINI et al., 2009; EYRE-WALKER and HURST, 2001) and
shown to influence DNA bendability (ORTIZ and PABLO, 2011; VINOGRADOV,
2001). In plants, the biological significance of the relationship of GC content
and genome size emerges from the higher thermal stability of GC-rich DNA
(YAKOVCHUK et al., 2006), which might confer an advantage during cell freezing
and desiccation (ŠMARDA et al., 2014). An additional selective advantage of GC-
rich DNA in plants might be that it plays a role in facilitating more complex
gene regulation (ŠMARDA et al., 2014). The present data does not allow to
test whether GC content variation in Hymenoptera correlates with habitat
temperature and humidity or with gene regulation and other epigenomic
aspects (e.g., chromosome packaging, as suggested for vertebrates COSTANTINI

et al. (2009)).

I conclude here that the study of genome composition and gene structure can
provide highly exciting investigative leads for future research addressing more
specific questions like: what is the biological role of the miniature introns in
ants? Is a high GC content an ancestral state of Hymenoptera and did it play a
role in diversification?

1.2.2 Gene structure variation within repertoire partitions

From my previous analyses, it became apparent that there might be partitions
or modules of the protein-coding gene repertoire that evolve in a partition-
specific way and which can be identified not only via functional assessment
or gene expression analysis but also by their structural configuration. Thus,
my subsequent project (described in part V) aimed to explore the variation of
repertoire partitions based on conservation of ortholog groups.

I included an assessment of the gene structure parameter distributions of the
whole repertoires (Fig. V.3) to compare it to previous results (Fig. IV.4). It
became apparent that there exist differences between the two studies in the
gene structure distributions across the whole gene repertoires of O. abietinus and
A. rosae. These might result from the different annotation procedures. In part IV,
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protein-coding genes were annotated by the i5k community with a customized
MAKER-workflow, while the data analyzed in part V results from BRAKER
runs. As demonstrated in part III, the tools produce different gene annotations.
To date it is not possible to quickly and reliably assess which of the annotations
(as a whole or which individual models) are a more correct representation of
the biological reality. Although MAKER appears to produce more conservative
models, it might miss lineage-specific genes, which can be expected to be
included by BRAKER (see section III.4 for a detailed discussion).

Assessing my results, what can I say about the variability of gene repertoires?
It became apparent that there is high variability of gene complexity (in terms
of exon count) and compactness (lengths of exons and introns) within the
repertoires of protein-coding genes of insects, co-varying with the conservation
and duplicability of gene families (e.g., Fig. V.7). Furthermore, apparently close-
to-universal constraints (e.g., in median intron length, Fig. V.11) can be found in
the core class that are relaxed in less conserved gene families of the shell and
cloud classes, even within those gene families that are universal single-copy
orthologs of a clade. Potentially, the best evolutionary and mechanistic models
explaining these findings are related to gene expression; the most prominent of
these are ‘selection for economy’, ‘genome complexity’, and ‘mutational bias’,
reviewed by WOODY and SHOEMAKER (2011). Showing the variability among
repertoire partitions in full detail without a precedent assessment of and relation
to gene expression levels (as, for example, in studies of plants, CAMIOLO et
al., 2009; PINGAULT et al., 2015; and chicken, RAO et al., 2010) allows to form
testable hypothesis and identify gene classes of interest independently. For
example, we can now ask whether the genes shared by all species, evolving
under multicopy license, and comprising numerous domains (core-sMC-26 in
Fig. V.13) also represent a special class with regard to sequence composition,
gene expression patterns, and functional roles. Thereby, another route to test
the expression-related models of evolution opens.

My work is a contribution towards the unification of our knowledge on
gene structure, gene expression, and essentiality with repertoire evolution. It
includes the notion of single-copy control and multicopy license, similar to the
example of studying single-copy control acting on housekeeping genes in plants
(DE SMET et al., 2013) and in human (ACHARYA et al., 2015). This inclusion
adds a relevant aspect to the view on gene repertoires. With this, I lay here the
foundations for future work.
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1.3 Future prospects

1.3.1 Methodological aspects

The presented work relied on a widely accepted method of orthology inference
(ZDOBNOV et al., 2017; the five publications describing the OrthoDB database
and its developments of the last ten years have been cited at least 338 timesVI.1;
still, alternatives are being developed and potentially reward testing to assess
the extent of artifact observations). However, it has been argued that the
nature of protein architecture, being build from domains that may be added
to ‘unrelated’ genes (by e.g., processes of gene fission and fusion), might lead
to actually reticulate orthology-relationships among genes (GABALDÓN and
KOONIN, 2013; SONNHAMMER et al., 2014). It will be interesting to investigate
gene repertoire dynamics within a domain-aware framework of orthologous
relationships.

1.3.2 Repertoire dynamics: the role of gene turnover

When thinking about the variability of protein-coding gene repertoires, it is easy
to arrive at questions regarding the dynamics, i.e., how changes over time occur
and manifest. Along the same line, further questions are whether anything
can be inferred about evolutionary dynamics of a repertoire from structural
characteristics. In other words, what can we learn about genome evolution and
gene repertoire evolution from analyzing gene structure and family content? Is
there a connection between a gene’s structure, its conservation (similarity across
species), and its evolutionary path? Does gene structure, function, or domain
content influence its evolvability beyond selective effects? Do gene turnover
rates change, why, and how? Are rate changes specific to organismic kingdoms
or other clades?

Approaches to these questions have to use robust estimates of gene turnover
rates on the lineages leading to the studied gene repertoires/genomes.

VI.1 OrthoDB citation counts obtained from PubMed.
https://www.ncbi.nlm.nih.gov/pubmed. Last accessed 30 March 2018.

https://www.ncbi.nlm.nih.gov/pubmed
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These can only be obtained with some reliability when a sufficiently dense
and representative sample of species is used — where sufficiency and
representativeness have to be subject to further discussion and research. In
addition to an adequate genome sample, a dated phylogeny (i.e., known
divergence times and phylogenetic relationships) as well as genome assemblies
and annotations obtained from comparable and reliable methods, are required.
The ever-filling and expanding treasure trove of sequenced genomes only now
allows to tackle issues related to gene turnover and its rate(s).

It is possible to hypothesize on the drivers of gene turnover. The mechanisms
that most likely influence changes in repertoire composition are large segmental
or whole-genome duplications as well as direct and indirect effects of
transposable element activity.

It has been demonstrated that whole genome duplication has been a factor in
the evolution of eukaryotes (reviewed by LI et al., 2018). The mechanisms and
consequences of whole genome duplication have been addressed (e.g., FORCE

et al., 1999; WATERHOUSE et al., 2011), but not fully elucidated, for example
it is open whether whole genome duplication leads to increased substitution
rates within the whole genome (reviewed by RAES and VAN DE PEER, 2003;
TAYLOR and RAES, 2004). The large variation in genome size in insects could be
a result of ancient whole genome duplication (GREGORY and JOHNSTON, 2008;
GREGORY and HEBERT, 2003; LI et al., 2018). Segmental duplications have been
identified in the genomes of ants (BONASIO et al., 2010) and can be the source of
arthropod taxon-restricted genes (WISSLER et al., 2013). The impact of (ancient)
whole genome duplication on gene turnover rates as a driving force remains
uncertain, though, and would warrant further research.

In contrast to the vestigial evidence of whole genome duplication driving gene
turnover, the body of evidence documenting that transposable elements can
influence turnover directly (by transposition, ALBERTIN et al., 2015; MAUMUS et
al., 2015) and indirectly (by constituting potential sites of ectopic recombination,
ALBERTIN et al., 2015; GRAY, 2000; LIM et al., 2008) is growing (KAZAZIAN,
2004). In addition, transposable elements can be the source of de novo-recruited
genes originally encoded by transposable elements that become integrated
in the organism’s genome and gain a ‘relevant’ function (called ‘molecular
domestication’), as has been shown to occur in insects (BIEDLER and TU, 2003;
CASOLA et al., 2007; KAPITONOV and JURKA, 2004). In ants, one eight (12.4 %)
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of species-specific genes might have been domesticated from transposable
elements (WISSLER et al., 2013). It will be worthwhile to explore in how far
abundance, diversity, and historical activity of transposable elements might
drive gene turnover rates and thereby foster the evolution of diversity.

1.3.3 A window to the past leading to the future

If we can estimate historical gene turnover rates that governed gene repertoire
composition during the evolution of Holometabola and insects, it will also be
possible to reconstruct the gene repertoire of the ancestral species. One specific
goal comes within reach: the characterization of HANS, the Holometabolan
ANcestral SpeciesVI.2.

The fully characterized HANS will allow to trace the genomic autapomorphies
of Holometabola and serve as a guideline to explore and understand the
evolution of insect biodiversity.

VI.2 I invented the term HANS following the scheme used for LECA (last eukaryotic ancestor,
MARGULIS et al., 2006), and LUCA (last universal common ancestor, GLANSDORFF et al.,
2008).



2

General conclusion

THE HERE PRESENTED gene repertoire analyses are outstanding as they are
based on three previously unavailable prerequisites: (1) a new tool (COGNATE)
was developed and used that records all parameters instead of relying on
summary metrics; (2) it was ensured that automatically generated gene models
are suitable for gene structure analyses; and (3) a unique species sample was
employed (in part V), which covers representatively the younger radiation of
Chrysididae and simultaneously allows the comparison of holometabolous and
hemimetabolous insects to a millipede outgroup.

Equipped with the means to describe a gene repertoire on the structural level,
I explored whether the vast majority of currently available data — annotations
that have been generated automatically and not been curated by human experts
— are adequate to study gene repertoire dynamics with respect to structure.
The comparison of around 1,000 manually curated genes with their overlapping
uncurated counterparts in each of seven insect species showed that in the
context of gene repertoire-wide structural assessments, automatically generated
gene models are sufficiently reliable. COGNATE was used in two further
pursuing analyses. The first was a characterization of the protein-coding
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gene repertoires of twelve hymenopteran species, which bespoke ant-specific
miniature introns. My study of structural characteristics of the gene repertoires
partitioned by conservation and duplicability revealed an unexpected variation
between and among conservation classes.

My work provides a solid baseline of expectations on insect gene structure
variation as well as manifold investigative leads prompting further exciting
studies.

This is only the beginning.
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APPENDICES





A

Posters

Apart from the poster shown in the Introduction (Fig. I.1), I prepared two
more posters to present current states of my work to a larger audience. One
of them (Fig. VII.1) was displayed in September 2015 at the Third Leibniz
PhD Symposium held at the Leibniz Institute for Zoo- and Wildlife Research
in Berlin and provides an overview of early results and plans. The second
poster (Fig. VII.2) was put up at the 110th Annual Conference of the German
Research Society in Bielefeld (2017) as a teaser for the publication “How suitable
are automatically inferred gene models for uncovering taxon-specific gene
structural differences in gene repertoires?” (included here as part III).
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Figure VII.1 – Towards a better understanding of gene repertoire alterations.
(Continued on next page)
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Figure VII.1 – Towards a better understanding of gene repertoire alterations.
(Continued)
This poster was presented at the Third Leibniz PhD Symposium held at the
Leibniz Institute for Zoo- and Wildlife Research in Berlin.
The shown data and plans were not all used/realized, but the rationale described
was followed throughout this thesis. Thus, this piece should be perceived as a
fossil of my working progress.
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Figure VII.2 – Data basis, tool choice, and human review: influences on predicted
gene structures. (Continued on next page)
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Figure VII.2 – Data basis, tool choice, and human review: influences on predicted
gene structures.
(Continued)
This poster was presented at the 110th Annual Conference of the German
Research Society in Bielefeld.
The shown data do not fully match with those used in this thesis: the
species Ceratitis capitata was removed from the sample due to technical
incompatibilities during analyses; and the analysis of frame-shifts by curation
was not included in the final manuscript because it was only based on gene
starts where an analysis of exon boundaries would have been more conclusive
but were not feasible within reasonable time.
This piece should be perceived as a fossil of my working progress, not
presenting the final results and conclusions as described in this thesis (part
III).





B

Appendix to part II

B.1 Supplementary tables

B.1.1 Definitions
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Term (Structural
entities)

COGNATE definition Sequence ontology terma

Transcript An RNA synthesized on a DNA
or RNA template by an RNA
polymerase [SO:0000673]. In case
of protein-coding genes, the RNA
includes all exons (i.e., the 5’ and
the 3’ UTRs and all CDSs) and all
introns of the gene; the transcript
requires modifications (RNA mat-
uration) to be ready for translation
into a protein. The transcript thus
represents pre-mRNA.

SO:0000673 transcript: An RNA
synthesized on a DNA or RNA
template by an RNA polymerase.
SO:0000185 primary_transcript: A
transcript that in its initial state
requires modification to be func-
tional.

mRNA (messen-
ger RNA)

Transcript of a protein-coding
gene that has been post-
transcriptionally modified. In
eukaryotes, the modification
typically includes 5’-capping,
polyadenylation, and the splicing
(removal) of introns, which can
result in alternative transcripts
(recombination of all or some
exons). Naturally occurring
mature mRNA typically consists
of a 5’ cap, 5’ UTR, concatenated
CDSs, 3’ UTR, and a poly-A
tail. In structural annotations,
5’ cap and poly-A-tail are not
indicated. Only the concatenated
CDS between start codon and stop
codon is translated into amino
acid sequence.

SO:0000233 mature_transcript: A
transcript which has undergone
the necessary modifications, if any,
for its function. In eukaryotes
this includes, for example, pro-
cessing of introns, cleavage, base
modification, and modifications to
the 5’ and/or the 3’ ends, other
than addition of bases. In bacteria
functional mRNAs are usually not
modified. SO:0000234 mRNA:
Messenger RNA is the intermedi-
ate molecule between DNA and
protein. It includes UTR and
coding sequences. It does not
contain introns.

Exon Any part of a gene that becomes
part of the mature mRNA. Exons
can be classified by their position
within the mRNA and contain
UTRs and CDSs in various com-
binations [2]. Thus, neither all
exons nor all parts of them are
necessarily coding. In structural
annotations, UTRs and exons may
be separately annotated and not
overlapping; in these cases, exons
coincide with CDSs.

SO:0000147 exon: A region of the
transcript sequence within a gene
which is not removed from the
primary RNA transcript by RNA
splicing.

Table VII.1 – Definitions part I. Glossary and definitions used by COGNATE. This
table contains the definitions used by COGNATE and in this manuscript for
structural entities. Where available, we added matching Sequence Ontology
terms.

a The Sequence Ontology Browser.
http://www.sequenceontology.org/browser/obob.cgi. Accessed 15 November
2016.

http://www.sequenceontology.org/browser/obob.cgi
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Term (Structural
entities)

COGNATE definition Sequence ontology terma

CDS (CoDing Se-
quence)

Any part of a gene that becomes
translated, i.e., contains informa-
tion for synthesizing an amino acid
sequenceb. All CDSs are exonicc.

SO:0000195 coding_exon: An
exon whereby at least one base
is part of a codon (here, ‘codon’
is inclusive of the stop_codon).
SO:0000316 CDS: A contiguous
sequence which begins with, and
includes, a start codon and ends
with, and includes, a stop codon.

Intron Every transcribed non-coding (in
respect of this gene) part of a gene
that is removed by RNA splicing
during RNA maturation.

SO:0000188 intron: A region of
a primary transcript that is tran-
scribed, but removed from within
the transcript by splicing together
the sequences (exons) on either
side of it.

UTR
(UnTranslated
Region)

mRNA sequence of a protein-
coding gene that is non-coding
(i.e., remains untranslated) and lies
5’- or 3’-adjacent to sequences in
the same mRNA that are translated
(CDSs). UTRs are parts of exonsd .

SO:0000203 UTR: Messenger RNA
sequences that are untranslated
and lie five prime or three prime to
sequences which are translated.

Table VII.2 – Definitions part II. Glossary and definitions used by COGNATE. This
table contains the definitions used by COGNATE and in this manuscript for
structural entities. Where available, we added matching Sequence Ontology
terms.

a The Sequence Ontology Browser.
http://www.sequenceontology.org/browser/obob.cgi. Accessed 15 November
2016.

b JM MUDGE and J HARROW (2016). The state of play in higher eukaryote gene annotation.
Nature Reviews Genetics 17.12, pp. 758–772. DOI: 10.1038/nrg.2016.119

c MQ ZHANG (2002). Computational prediction of eukaryotic protein-coding genes. Nature
Reviews Genetics 3.9, pp. 698–709. DOI: 10.1038/nrg890

d ZHANG, 2002

http://www.sequenceontology.org/browser/obob.cgi
https://doi.org/10.1038/nrg.2016.119
https://doi.org/10.1038/nrg890
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Term (Measured parameters) Definition

GC content Amount of guanine and cytosine in a given DNA
sequence, in percent.

GC content without ambiguity Amount of guanine, cytosine, and S (G or C
IUPAC ambiguity base) in a given DNA sequence,
excluding ambiguous bases (NRYKMBDHV), in
percent.

CpG o/e CpG dinucleotide depletion, normalized by the GC
content of the region under scrutiny. The CpGo/e
for each sequence is defined as the frequency
(count/total length) of CpG dinucleotides divided
by the product of the frequencies of C nucleotides
and G nucleotides in the sequencea

Length Total count of nucleotide bases/amino acids in a
DNA/protein sequence, respectively.

Count Total count of features.

Coverage Ratio of the length of a feature covered by another,
length-wise. For example, ‘exon coverage of a
transcript’ translates to the added length of all
exons divided by the length of their corresponding
annotated transcript.

Density Ratio of the count of features found along another
feature. E.g., the count of exons divided by the
length of their corresponding annotated transcript.

Table VII.3 – Definitions part III. Glossary and definitions used by COGNATE. This
document contains the definitions used by COGNATE and in this manuscript for
measured parameters.

a N ELANGO et al. (2009). DNA methylation is widespread and associated with differential
gene expression in castes of the honeybee, Apis mellifera. Proceedings of the National
Academy of Sciences 106.27, pp. 11206–11211. DOI: 10.1073/pnas.0900301106

https://doi.org/10.1073/pnas.0900301106
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B.2 Electronic supplements

B.2.1 Additional file 1: Parameter table

List of parameters recorded by COGNATE. The first sheet of this table contains
all 296 parameters evaluated by COGNATE, including the output file in which
to find them and explanatory comments. Sorting for parameters, the individual
feature (‘of’) or the feature location (‘per’), and files allows to quickly find a
parameter of interest. The second sheet contains a comparison of the values
recorded by COGNATE when analyzing the latest annotation of the Apis
mellifera genome (genome version 4.58, annotation release 1039) to those values
given in the publications of the official gene sets version 1 (MORIOKA et al.,
2006) and 3.2 (ELSIK et al., 2014) and in the annotation report by NCBIVII.1. As an
addition, we included the results of GenomeTools’ gt stat command applied
to the annotation release 103 GFF file for comparison. (XLSX, 43 kB)

Please find this table on the attached CD at
./electronic_supplement/Chapter_II/Additional_file_1.xlsx

B.2.2 Additional file 2: Definition table

Glossary and definitions used by COGNATE (see also tables in section B.1.1).
This document contains the definitions used by COGNATE and in this
manuscript for structural entities and measured parameters. Where available,
we added matching Sequence Ontology terms. (PDF, 110 kB)

VII.1 NCBI: NCBI Apis mellifera Annotation Release 103 report site. 2016. https:
//www.ncbi.nlm.nih.gov/genome/annotation_euk/Apis_mellifera/103. Last
accessed 20 March 2017

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Apis_mellifera/103
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Apis_mellifera/103
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Please find this document on the attached CD at
./electronic_supplement/Chapter_II/Additional_file_2.pdf

B.2.3 Additional file 3: Result table

COGNATE results of analyzing exon and intron lengths of Apis mellifera. This
data sheet contains the mean and median lengths of exons and introns, which
are part of the 10,733 transcripts analyzed by COGNATE (default run, i.e., using
the longest of each gene’s alternative transcripts). In total, 76,276 exons and
65,543 introns were taken into account. The data is visualized in Fig. II.2. (XLSX,
225 kB)

Please find this table on the attached CD at
./electronic_supplement/Chapter_II/Additional_file_3.xlsx

B.2.4 Additional file 4: The COGNATE package

This archive file contains the COGNATE package, including Perl scripts,
Additional file 1: Parameter table, README, example data and output, and
the GAL library. (ZIP, 566 kB)

Please find this file on the attached CD at
./electronic_supplement/Chapter_II/Additional_file_4.zip
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Appendix to part III

C.1 Supplementary Notes

C.1.1 Species Set

Terrestrial animal diversity is largest in insects. Genome and gene research has
been focused strongly on humans and vertebrates. Analyses as well as problems
in assembly and annotation reveal that insect genomes differ from those of
vertebrates, requiring specifically tailored parameter adjustments and open-
minded descriptions. The seven species chosen for the present study represent
four of the larger insect orders, spanning a wide range of genome sizes and life
styles. For these species, manual curations have been completed within the i5k
project (I5K CONSORTIUM, 2013), which ensures basically similar methods of
sequencing, gene annotation, and curation.
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C.1.2 Annotation

Finding, or locating, protein-coding genes within genomic sequence comprises
the delineation of canonical coding sequences (CDSs) (gene prediction sensu
stricto, BRENNER, 1999) as well as the more general delineation of gene
structures including exons and untranslated regions (UTRs), often aided by the
inclusion of transcriptomic or proteomic evidence. The result is a structural
annotation of genes. Despite previous struggles of differentiated delineation
(e.g., ZHANG, 2002, the terms ‘prediction’ and ‘annotation’ are often used
interchangeably, reflecting the latest development in gene finding algorithm
implementation, which perform both steps in one run (e.g., MAKER, HOLT

and YANDELL, 2011). Attaching further information on the function or role
of the gene product (protein) results in ‘functional annotation’ (more detailed
definition in WILBRANDT et al., 2017). The success of both structural and
functional annotation critically depends on assembly quality. The outcomes
depend on the aim (which kind of genes will be analyzed) and decisions on
procedures, databases, and evidence used.

Gene definition

The operational definition of ‘gene’ has been changed and adapted in the face
of incoming data and knowledge (reviewed by GERSTEIN et al., 2007). The
Sequence Ontology (EILBECK et al., 2005) defines the term ‘gene’ (SO:0000704
VII.1) as follows: “A region (or regions) that includes all of the sequence elements
necessary to encode a functional transcript. A gene may include regulatory
regions, transcribed regions and/or other functional sequence regions.” It is
important to note that there can be protein-coding and non-coding genes (i.e.,
that will be transcribed but not translated, e.g., tRNAs) (GERSTEIN et al., 2007).
In the following text, we will refer exclusively to protein-coding genes, using
the term as delineated in WILBRANDT et al. (2017).

VII.1 The Sequence Ontology Browser.
http://www.sequenceontology.org/browser/obob.cgi. Accessed 15 November
2016.

http://www.sequenceontology.org/browser/obob.cgi
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Automated structural annotation of protein coding genes

The history and development of automated gene predictors and annotators has
been reviewed by BRENT (2005, 2008) and BRENT and GUIGÓ (2004), while
principles and guidance are provided by, for example, YANDELL and ENCE

(2012). Thus, only a few words on the underlying rationales will be issued
here.

The basic assumption of structural gene prediction is that a gene differs from
the surrounding genomic sequence by specific traits, such as codon usage, and is
marked by recognizable sequence patterns or signals (BURGE and KARLIN, 1997,
1998; c.f. ’Kozak rules’, HUANG et al., 2016; KOZAK, 1991). The application of
(derived) Markov Models to model such traits improved ab initio predictions(i.e.,
based on the to be analyzed sequence alone), BURGE and KARLIN, 1998.
However, these traits can be species-specific, calling for individual training
(model-adjustment) of gene finders (KORF, 2004). Furthermore, pure ab initio
approaches tend to over-predict (COGHLAN and DURBIN, 2007). Corroborating
an identified potential gene sequence with RNAseq (i.e., aligned transcripts) or
protein evidence either by sequence or profile similarity helps in more reliable
prediction (BURSET and GUIGO, 1996; FICKETT, 1996), but includes a potential
bias brought forth by database completeness (including taxon coverage and
biases therein) and correctness (BURSET and GUIGO, 1996). Further quality
control is desirable, e.g., by measuring the congruency between prediction and
evidence (such as implemented by MAKER as AED, HOLT and YANDELL, 2011;
EILBECK et al., 2005).

Manual curation of structural gene models

Manual curation of protein-coding gene models is conducted by experts who
ideally know the structure and characteristics of the gene under review from
previous experience or who are acquainted with reliable evidence supporting
the modeled structure. This process is made possible by visualization tools (e.g.,
WebApollo, KÖNIG et al., 2016), to which the original gene models/predictions
are given as well as evidence.

As stated previously, automated annotation depends on species-specific
training (KORF, 2004) to improve model parameters and thus gene delineation.
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It helps, generally speaking, to know whether the analyzed genome is large with
a low gene density or rather the opposite. This becomes visible in the relative
frequencies of required curator actions. For example, in the annotation of the
large, ‘diffuse’ genome of Oncopeltus fasciatus were many genes wrongly split,
thus “curation involved merging automatic predictions far more often (6.8x)
than splitting them into separate models” (PANFILIO et al., 2017). In contrast,
the ‘compact’ Strigamia maritima genome showed “in a significant number of
cases, the automated annotation [...] fused adjacent genes, largely on the basis
of confounding RNASeq evidence” (Supplement p.3 of CHIPMAN et al., 2014).
Required curation actions may not only depend on assembly size, but also on
assembly quality, as it directly influences gene prediction accuracy.

MISRA et al. (2002) provided several examples of challenging gene structures
and highlighted the need for common curation rules and vocabularies as well
as an in-depth documentation of curation actions. Especially when facing
complicated models and contradictory evidence of barely conserved genes, it
is possible that the model is deteriorated by curation.

Functional annotation of protein-coding genes

The goal of protein-coding gene prediction is to find those stretches of
genomic DNA that are translated into peptides (a sequence of amino acids)
and folded into functional proteins. Describing their biological properties in
categories (rather than assigning one specific function) is the aim of functional
annotation (SASSON et al., 2006). The most reliable approach to determine these
properties is experimental, but since this is largely unfeasible (limitations of
time and workforce in the face of a deluge of predictions also in non-model
organisms), automated workarounds, i.e., automated annotation, are used
(GABALDÓN, 2006; MAO et al., 2005; MORIYA et al., 2007; reviewed by JUNCKER

et al., 2009). The main rationale of functional annotation (similar sequence
implies similar function; ‘ortholog conjecture’) has been strongly debated (e.g.,
ALTENHOFF et al., 2012; NEHRT et al., 2011; ROGOZIN, 2014). During automated
annotation, error propagation and lacking manual curation have been identified
as confining issues (BORK and KOONIN, 1998; BRENNER, 1999; SCHNOES

et al., 2009), although recent developments in integrating multiple methods
(FORSLUND and SONNHAMMER, 2008; HUYNEN et al., 2000; SJÖLANDER, 2004)
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and reciprocal control (RENTZSCH and ORENGO, 2009) have led to considerable
quality improvements (ŠKUNCA et al., 2012). Currently, Gene Ontology terms
(ASHBURNER et al., 2000; THE GENE ONTOLOGY CONSORTIUM, 2001, 2009)
are most widely used to describe functional roles or properties of proteins,
where Evidence Codes provide a qualitative confidence measure (FORSLUND,
2011), while pathway affiliations are described using the system of the Kyoto
Encyclopedia of Genes and Genomes (KEGG, KANEHISA et al., 2006; OGATA et
al., 1999).

C.1.3 Extended results

Curator experience and participation

In total, 132 annotators participated in the seven annotation projects under
scrutiny and curated 6057 gene models. A third of all curators (46, 34.8 %) took
part in two or more projects and provided 3368 of all curated models (56.1 %).
Only ten curators (7.6 %) participated in four or more of the projects in our
data set (henceforth treated as being ’experienced’ irrespective of the number
and quality of contributed models) and supplied together 1468 of the 6057
curated gene models, a share of 24.4 %. Since these curators handled on average
ca. 147 gene models, 5x more than the overall average of ca. 28 genes/curator
(III.1 a, Additional file C.2.2: Table 2b), it is likely that their experience and
selection of genes for annotation has a strong influence on curation results.
This is underlined by the counts of curators shared between only two projects
(Additional file III.2: Table 2c); the most extreme example is the comparison
of annotation projects of the hymenopterans Athalia rosae (33 curators) and
Orussus abietinus (28 curators), which share 23 curators (including 15 that only
participated in these two projects).

Comparison of BRAKER and MAKER annotations

BRAKER predicts substantially more short gene models resulting in shorter
proteins (Fig. III.4, Additional file C.2.5). This is not due to a decreased length
of exons or introns, but results from a much larger fraction of single-exon genes
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predicted by BRAKER in comparison to MAKER. Only up to 4 % of these single-
exon genes map to multi-exon genes predicted by MAKER (‘single-exon gene’
! ‘larger exon count’ in Fig. III.4 c, Additional file C.2.5: Table 5b). In contrast,
one-fifth of all BRAKER gene predictions have no MAKER counterpart, and
more than half of these are single-exon genes. This indicates that although
iterative training in combination with extrinsic evidence (as used by MAKER)
may help to bridge long or ‘confusing’ introns, the majority of single-exon genes
in BRAKER does not consist of ‘MAKER-fragments’. It is possible that MAKER
ignores single-exon genes as they are either under-represented in its training
sets or because they do not reach a certain cutoff or support threshold. To check
whether the single-exon genes predicted by BRAKER might constitute an entire
class of gene models missed by MAKER, we spot-checked the predicted genes
for underlying evidence and their mapping to the assembled genome. It appears
that some of these cases were not supported by evidence, while other single-
exon genes were found in an area where MAKER predicted one or two models
in close proximity (Additional file C.2.6).

Correlative trends of gene composition

In the seven analyzed species, we find a negative correlation of exon/intron
count and median GC content of exons/introns (Fig. III.2 b, d). This includes
that gene models with many exons/introns are more restricted/less variable, in
their GC content than models with simpler structure. There is also a negative
correlation of exon count and median exon length along with a restriction to a
certain median exon length class (ca 190 bp) in gene models with many exons
(Fig. III.2 c). In contrast to ZHU et al. (2009), we observe mixed trends regarding
the correlation of intron count and median intron length: some species exhibit
a (slightly) positive correlation (A. rosae, L. decemlineata, O. fasciatus), some a
(slightly) negative correlation (C. lectularius, F. occidentalis, O. abietinus) in all
sets (‘complete’, ‘analyzed’, ‘automatic’, ‘manual’). Interestingly, there is a
discrepancy between the trends found for the ‘analyzed’ and ‘complete’ sets
in A. glabripennis (Fig. III.2 e, black brace). In all species it appears that gene
models with extremely short introns have been removed/modified (Fig. III.2
e), but the majority of curated models still covers the general dispersion of the
complete data sets. Despite the close phylogenetic relationship of A. glabripennis
and L. decemlineata (both Chrysomelidae), there appear to be differences in the
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distributions of transcript and median intron length (Fig. III.3 a) as well as
between correlations of intron count and median intron length per transcript
(Fig. III.2 e), which might indicate high plasticity of insect or coleopteran gene
structures.

C.1.4 Extended material and methods

Data sample

Download sources and used files are listed in Additional File C.2.1. Descriptions
of the i5k procedures for sequencing and annotation can be found in
the respective supplementary notes of the publications on A. glabripennis
(MCKENNA et al., 2016), C. lectularius (BENOIT et al., 2016), L. decemlineata
(SCHOVILLE et al., 2017), and O. fasciatus (PANFILIO et al., 2017). Publications
for the remaining species are in preparation, the procedures were very
similar/identical.

Data set preparation

Not all annotations included UTRs, thus these are not considered in the present
study. Prior to set preparation, all non-coding genes (i.e., models without
mRNA) were removed. Note that due to current limitations of data formats,
we count gene parts on different scaffolds as separate genes. Furthermore, all
our analyses comparing the location of gene models delineated by different
algorithms or by manual curation are based on overlaps of whole genes rather
than subunits of these. For the comparison of manually curated gene models
with their overlapping predecessors, we excluded deleted models and newly
created models, as both do not have a predecessor. Up to 42 % of the manually
curated genes is new, i.e., has no overlapping predecessor in the automatic
annotation (Additional File C.2.4). This implies a relatively high rate of false
negatives, contrary to the intuitive expectation of dominating false positives. It
will be interesting to fully explore, why these genes have not been found by
the automatic annotation tool and which criteria lead to the manual de novo
annotation, as discussed, for example, in the supplement of the A. glabripennis
genome publication (MCKENNA et al., 2016). The authors stated low RNAseq
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support and rapid divergence (i.e., a lack of protein alignments) as factors
influencing the low prediction rates of receptor gene families by MAKER.

Of the four sets used in our analyses, two do not need modification as they
are given (original automated annotation, OGS). To congregate the two subsets
’analyzed manual’ and ’analyzed automated’, the following steps were executed
for each species:

• grep manually curated genes from OGS (indicated as source or tag
“ManualCuration”)

• remove from this set all genes without mRNA
• use the resulting file with an in-house script to

) find all gene models in the automated annotation (target) that overlap
the manually curated models (query) and lie on the same strand

) produce gff3 output files, excluding manually curated models
without overlapping predecessors (de novo models)

To extract descriptive parameters used in the following analyses, we ran
COGNATE with default parameters on all four (sub)sets.

Non-canonical start positions in MAKER predictions

A custom script was used to determine the frequencies of those amino acids,
proteins encoded by gene models predicted by MAKER started with. The
amino acid fasta files of the version BCM_version_0.5.3-Primary_Gene_Set
were obtained for all seven species from https://i5k.nal.usda.gov/
content/data-downloads. Results are displayed in Additional File C.2.3.

BRAKER-vs-MAKER analyes

For the re-annotations, transcriptomic data (RNAseq, Additional File C.2.1)
obtained within the respective i5k projects was mapped to the genomes of the
two hymenopterans using HISAT version 2.1.0 (KIM et al., 2015). The overall
alignment rate was 83.96 % for A. rosae and 80.87 % for O. abietinus. The
output was transformed into sorted .bam format (bamtools, BARNETT et al.,
2011) and used as intrinsic evidence for the annotation with BRAKER version
1.9 (HOFF et al., 2016) using default parameters. When studying O. fasciatus,

https://i5k.nal.usda.gov/content/data-downloads
https://i5k.nal.usda.gov/content/data-downloads
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we directly used aligned RNAseq-evidence (i5k used TopHat2, KIM et al.,
2013). BRAKER predicted a total of 14,319 protein-coding genes in A. rosae,
14,049 in O. abietinus, and 75,389 in O. fasciatus. To assess the differences
between the annotation derived from BRAKER and MAKER (i.e., the original
i5k annotation), we analyzed the new BRAKER annotations with COGNATE
version 1.0 (WILBRANDT et al., 2017) with default parameters and compared
the results to the COGNATE results on the i5k annotations (see above). We
identified overlapping predictions lying on the same strand along with the
number of exons in query and target gene model using a custom script in
both directions (i.e., BRAKER ! MAKER and MAKER ! BRAKER) (Fig. III.4).
We spot-checked the annotation situation for 55 single-exon genes predicted
by BRAKER but not MAKER using the Apollo web browser interface hosted
by i5k@NALVII.2 with appropriate annotation and evidence tracks (MAKER,
Augustus, expression evidence for assembled transcriptomes and/or mapped
raw reads, depending on the availability for each species) for the following
criteria:

• presence of evidence (RNAseq, Augustus / SNAP model),
• proximity to MAKER models (±10 kbp and/or <1.5x of the gene locus size

off),
• N content of CDS nucleotide sequence,
• blastn (CAMACHO et al., 2009) (mapping to target and other scaffolds),
• proximal MAKER models, overlapping BRAKER models.

Results are given in Additional File C.2.6.

C.2 Electronic supplements

C.2.1 Additional file 1: Data sources and used files

List of publications, download sources, and used files for all seven species.
(XLSX, 6.7 kB)

VII.2 i5k Workspace @ NAL: https://i5k.nal.usda.gov. Last accessed 10 January 2018.

https://i5k.nal.usda.gov
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Please find this table on the attached CD at
./electronic_supplement/Chapter_III/Additional_file_1.xlsx

C.2.2 Additional file 2: Curators

Includes a table of counts of curators and curated gene models per individual
project (Supplementary Table 2a) and per ‘experience group’ (Supplementary
Table 2b) as well as a table of counts of curators shared between pairwise
compared projects (Supplementary Table 2c). In the latter table, counts of
curators that participated exclusively in the compared two projects and no other
are given in parentheses. (XLSX, 6.2 kB)

Please find this table on the attached CD at
./electronic_supplement/Chapter_III/Additional_file_2.xlsx

C.2.3 Additional file 3: Non-canonical start codons

List of start codons of automatically generated gene models given in per-
centages and absolute numbers, including median, minimum, and maximum
percentages. (XLSX, 8.2 kB)

Please find this table on the attached CD at
./electronic_supplement/Chapter_III/Additional_file_3.xlsx
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C.2.4 Additional file 4: Automated vs manually curated gene models

Counts of gene models that were subjected to manual curation and their
overlapping automatically generated gene models, as well as counts of non-
coding and de novo gene models that were not considered in this study. (XLSX,
6.2 kB)

Please find this table on the attached CD at
./electronic_supplement/Chapter_III/Additional_file_4.xlsx

C.2.5 Additional file 5: BRAKER vs MAKER

Includes as Supplementary Table 5a counts of gene models with x exons in BRA-
KER/MAKER overlapping gene models with y exons in MAKER/BRAKER,
respectively. In Supplementary Table 5b, an excerpt of COGNATE summary
statistics is given for an overview of structural parameters of gene models
generated by BRAKER and MAKER. (XLSX, 8.1 kB)

Please find this table on the attached CD at
./electronic_supplement/Chapter_III/Additional_file_5.xlsx

C.2.6 Additional file 6: BRAKER-only single-exon gene models

For the three re-annotated species (A. rosae, O. abietinus, O. fasciatus), an excerpt
of 50 gene models that were annotated only by BRAKER (no overlapping
gene model in the respective MAKER annotations) and consist only of a
single exon are checked for length and number of Ns. Supporting evidence
and flanking/opposite MAKER predictions are listed for some of these genes.
(XLSX, 18.7 kB)
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Please find this table on the attached CD at
./electronic_supplement/Chapter_III/Additional_file_6.xlsx

C.2.7 Additional file 7: COGNATE results

COGNATE results of all species (except F. occidentalis) and all four sets used
to compare automatically generated and manually curated gene models (‘com-
plete automatic’ [‘auto_compl’], ‘complete manual’ [‘man_compl’], ‘analyzed
automatic’ [‘auto’], ‘analyzed manual’ [‘man’]) as well as COGNATE results
of the three re-annotated species (A. rosae, O. abietinus, O. fasciatus) for the
new automatically generated gene models (analogous to ‘complete automatic’
[‘braker_compl’] and ‘analyzed automatic’ [‘ManCvB’]). (ZIP, 170.6 MB)

Please find this file on the attached CD at
./electronic_supplement/Chapter_III/Additional_file_7.xlsx
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Appendix to part IV

D.1 Electronic supplements

D.1.1 Additional file 1: Species and COGNATE median data

Supplementary table with data version information and an ordered representa-
tion of COGNATE batch results; comprising several sheets:

a) Sources
b) COGNATE - Assembly parameters
c) COGNATE - Component sizes
d) COGNATE - Median transcript features
e) COGNATE - Summary statictics

(XLSX, 128 kB)
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Please find this table on the attached CD at
./electronic_supplement/Chapter_IV/Additional_file_1.xlsx

D.1.2 Additional file 2: COGNATE results

Complete COGNATE result sets for the 13 analyzed species. (ZIP, 113.7 MB)

Please find this file on the attached CD at
./electronic_supplement/Chapter_IV/Additional_file_2.zip

D.1.3 Additional file 3: Density plots

Density plots of selected parameters measured by COGNATE. (PDF, 631 kB)

Please find this document on the attached CD at
./electronic_supplement/Chapter_IV/Additional_file_3.pdf
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Appendix to part V

E.1 Supplementary Notes

E.1.1 Assembly calls and library combinations

For the internal assemblathon, 22 assemblies were generated with the tools
Platanus and AllPaths-LG as described below. Both tools used quality trimmed
reads.

For each species, 21 different assemblies were generated with Platanus version
1.2.4 (KAJITANI et al., 2014). These differed in the library combinations used in
the three consecutive steps of assembly, as outlined in Table VII.4.

The three steps for the Platanus assembly (contig assembly, scaffolding, and
gap closing) were called as follows (this is a schematic call example and would
require adaption to run).
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# contig assembly
platanus assemble -o SPECIES_ASSEMBLY_ID \

-n 0 -t $NSLOTS -m 60 \
-f LIB_A_1.fq LIB_A_2.fq LIB_B_1.fq LIB_B_2.fq \

LIB_C_1.fq LIB_C_2.fq LIB_D_1.fq LIB_D_2.fq

# scaffolding
platanus scaffold -o SPECIES_ASSEMBLY_ID \

-t $NSLOTS -c SPECIES_ASSEMBLY_ID_contig.fa \
-b SPECIES_ASSEMBLY_ID_contigBubble.fa \
-IP1 LIB_A_1.fq LIB_A_2.fq \
-IP2 LIB_B_1.fq LIB_B_2.fq \
-OP3 LIB_C_1.fq LIB_C_2.fq \
-OP4 LIB_D_1.fq LIB_D_2.fq

# gap closing
platanus gap_close -o SPECIES_ASSEMBLY_ID \

-t $NSLOTS -c SPECIES_ASSEMBLY_ID_scaffold.fa \
-IP1 LIB_A_1.fq LIB_A_2.fq \
-IP2 LIB_B_1.fq LIB_B_2.fq \
-OP3 LIB_C_1.fq LIB_C_2.fq \
-OP4 LIB_D_1.fq LIB_D_2.fq

In each of the three steps, between two and four libraries could be employed
(indicated in the above call by libraries A, B, C, and D). In the table indicating
the different combinations for each step and each assembly run (Table VII.4), the
four libraries are encoded as follows:

1. 250 bp, paired-end reads
2. 800 bp, paired-end reads
3. 3 kbp, mate-pair reads
4. 8 kbp, mate pair reads

The platanus-assemblies were compared to a single Allpaths-LG (version 52488,
BUTLER et al., 2008) assembly. This tool proceeds in a two-step process of
configuration and running. For the configuration step, two files are required
to indicate locations and specifications of used libraries. These files follow this
scheme:
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Assembly ID Step 1 Step 2 Step 3

0 1,2 1,2,3 1,2,3,4

1 1,2 1,2,3,4 1,2

2 1,2 1,2,3,4 1,2,3

3 1,2 1,2,3,4 1,2,3,4

4 1,2 1,2,3,4 2,3,4

5 1,2 2,3,4 1,2

6 1,2 2,3,4 1,2,3

7 1,2 2,3,4 1,2,3,4

8 1,2,3 1,2,3,4 1,2

9 1,2,3 1,2,3,4 1,2,3

10 1,2,3 1,2,3,4 1,2,3,4

11 1,2,3 2,3,4 1,2

12 1,2,3 2,3,4 1,2,3

13 1,2,3,4 2,3,4 1,2,3,4

14 1,2,3,4 2,3,4 1,2

15 1,2 2,3 1,2

16 1,2 2,3 1,2,3

17 1,2 1,2,3 2,3

18 1,2 1,2,3 1,2,3

19 1,2,3 2,3 1,2,3

20 1,2,3 1,2,3 1,2,3

Table VII.4 – Assembly with Platanus: library combinations. For each assembly ID
and each step of the Platanus assembly process (contig assembly, scaffolding,
and gap closing), a combination of DNA read libraries is given. See text for a
disclosure of the libraries.
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# library locations: in_groups.csv
group_name, library_name, file_name
PE1, illumina1, /DIR/SPECIES_250_trimmed_paired_*.fq
Jump1, illumina2, /DIR/SPECIES_800_trimmed_paired_*.fq
Jump2, illumina3, /DIR/SPECIES_3kb_trimmed_paired_*.fq
Jump3, illumina4, /DIR/SPECIES_8kb_trimmed_paired_*.fq

# library specifications: in_libs.csv
library_name, project_name, organism_name, type, paired, \

frag_size, frag_stddev, insert_size, insert_stddev, \
read_orientation, genomic_start, genomic_end

illumina1, SPECIES, SPECIES_FULL, fragment, 1, 250, 20, \
, , inward, ,

illumina2, SPECIES, SPECIES_FULL, jumping, 1, 800, 80, \
, , inward, ,

illumina3, SPECIES, SPECIES_FULL, jumping, 1, 3000, 300, \
, , outward, ,

illumina4, SPECIES, SPECIES_FULL, jumping, 1, 8000, 800, \
, , outward, ,

The steps of configuration and assembly with Allpaths-LG were run with the
following call scheme. Note that the SIZE_BP parameter was adjusted for
each species based on the genome size estimation using Jellyfish (MARÇAIS and
KINGSFORD, 2011).
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# configuration
PrepareAllpathsInputs.pl \

DATA_DIR=/DIR/SPECIES_trimmed/allpaths/mydata \
PICARD_TOOLS_DIR=/DIR/picard-tools-2.0.1/ \
PHRED_64=1 \
PLOIDY=2 \
GENOME_SIZE=SIZE_BP

# run assembly
RunPathsLG PRE=./SPECIES_trimmed \
REFERENCE_NAME=allpaths \
DATA_SUBDIR=mydata \
RUN = myrun \
TARGETS=standard \
THREADS=$NSLOTS
OVERWRITE=TRUE

E.2 Electronic supplements

E.2.1 Additional file 1: MySQL database

MySQL database scheme and database dump. (ZIP, 168.3 MB)

Please find this file on the attached CD at ./electronic_supplement/
Chapter_V/Additional_file_1.zip

E.2.2 Additional file 2: MySQL commands

MySQL commands. (TXT, 7 kB)
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Please find this file on the attached CD at
./electronic_supplement/Chapter_V/Additional_file_2.txt

E.2.3 Additional file 3: Perl and R scripts

Custom scripts in Perl (data handling, etc.) and R (plotting). (ZIP, 36 kB)

Please find this file on the attached CD at
./electronic_supplement/Chapter_V/Additional_file_3.zip

E.2.4 Additional file 4: COGNATE results

Complete COGNATE data for the 26 analyzed species. (ZIP, 346.8 MB)

Please find this file on the attached CD at
./electronic_supplement/Chapter_V/Additional_file_4.zip
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