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Zusammenfassung

Lokalisierung und Tracking mittels passiver Winkelmessungen (engl. Bearings-only
Tracking) spielt in vielen Anwendungsfeldern eine wichtige Rolle. Maßgeblich sind
Szenarien, in denen aus taktischen Gründen der Ort der eigenen Aufklärungsplattform
nicht preisgegeben werden darf und daher der Einsatz passiver Sensorik bevorzugt wird.
Herausforderungen sind dabei zum einen die Verwendung eines nichtlinearen Mess-
modells, so dass optimale Schätzverfahren nicht existieren. Zum anderen lässt sich
durch eine passive Winkelmessung nicht der gesamte Zielzustand bestimmen, da die
Messung keine Informationen über die Entfernung zum Ziel beinhaltet. Um Observa-
bilität herzustellen, d.h. den vollständigen Zielzustand bestimmen zu können, müssen
mehrere Winkelmessungen fusioniert werden. Die Messungen können entweder räum-
lich verteilt durch mehrere Sensorplattformen oder zeitlich verteilt durch eine sich be-
wegende Einzelplattform aufgenommen werden. Darüber hinaus können verschiedene
Signalarten – neben den elektromagnetischen auch z.B. akustische Signale – genutzt
werden, um durch Ausnutzung der verschiedenen Signallaufzeiten in einem heterogenen
Sensor-Setup den Zielzustand bestimmen zu können.

Forschungsaspekte der Dissertation Die Dissertation hat sowohl innovative Ergeb-
nisse in theoretischen Untersuchungen zur Lokalisierung und zum Tracking von manö-
vrierenden Zielen mittels passiver, heterogener Sensorik als auch Ergebnisse aus prak-
tischen Messkampagnen. Diese sollen im Folgenden zusammengefasst werden.

Theoretische Ergebnisse Die theoretischen Betrachtungen sind fokussiert auf Genau-
igkeits- undObservabilitätsanalysen. Beides spielt in praktischenAnwendungen dahinge-
hend eine wichtige Rolle, als dass die Performanz von passiven, verteilten Aufklärungs-
systemen vordergründig von der räumlichen Konstellation in Abhängigkeit der nicht-
linearen Sensormodelle abhängt. DieBewertung undAuswahl eines geeigneten Schätzal-
gorithmus ist daher ohne präzise Kenntnisse der entsprechenden Schätzfehlerschranken
(Cramér-Rao Lower Bound, CRLB) nicht sinnvoll [HO10, OH10, HO11a, HO11b,
HOK14]. Hierbei müssen die Arbeiten zur Observabilitätsanalyse hervorgehoben wer-
den, die aufzeigen, dass durch die Verwendung heterogener Sensorik, die beispielsweise
akustische und optische/elektromagnetische Signale desselben Ereignisses messen, eine
gesteigerteObservabiltät erreichtwerden kann. Der Schlüssel hierzu liegt in der geschick-
ten Ausnutzung der unterschiedlichen Signallaufzeiten [HGR+16,HK16].
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Zusammenfassung

Praktische Ergebnisse Die im theoretischen Teil untersuchten Schätzverfahren zur
Lokalisierung und Verfolgung von Zielen mittels verteilter, passiver Sensorik sind im
Rahmen des Eigenforschungsprojektes zum vernetzten, dezentralen Schutz von Plattfor-
men implementiert und verglichen worden. In diesem Rahmen wurde für die Fusion
verteilter Daten eine Kommunikationsinfrastruktur aufgebaut: Diese wurde mittels eines
dezentralenmobilenAd-hoc-Netzes (MANET) aufWLAN-Basis realisiert. Um robusten
Datenaustausch auch unter Abschattungs- bzw. Ausfallbedingungen zu gewährleisten,
wurde das Routing mittels OLSRv2 durchgeführt. Das komplexe Zusammenspiel der
heterogenen Sensorik und der Kommunikation stellt die wesentliche Forschungsleistung
dar. Die Ergebnisse zeigen, dass in diesem System eine Bedrohung erfolgreich lokalisiert
werden kann [HGR+16].
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Abstract

State estimation, i.e. determining the trajectory, of a maneuvering target from noisy
measurements collected by a single or multiple passive sensors (e.g. passive sonar and
radar) has wide civil and military applications, for example underwater surveillance,
air defence, wireless communications, and self-protection of military vehicles. These
passive sensors are listening to target emitted signals without emitting signals themselves
which give them concealing properties. Tactical scenarios exists where the own position
shall not be revealed, e.g. for tracking submarines with passive sonar or tracking an aerial
target by means of electro-optic image sensors like infrared sensors. This estimation
process is widely known as bearings-only tracking.

On the one hand, a challenge is the high degree of nonlinearity in the estimation process
caused by the nonlinear relation of angular measurements to the Cartesian state. On
the other hand, passive sensors cannot provide direct target location measurements, so
bearings-only tracking suffers from poor target trajectory estimation accuracy due to
marginal observability from sensor measurements. In order to achieve observability,
that means to be able to estimate the complete target state, multiple passive sensor
measurements must be fused. The measurements can be recorded spatially distributed
by multiple dislocated sensor platforms or temporally distributed by a single, moving
sensor platform. Furthermore, an extended case of bearings-only tracking is given
if heterogeneous measurements from targets emitting different types of signals, are
involved. With this, observability can also be achieved on a single, not necessarily
moving platform.

In this work, a performance bound for complex motion models, i.e. piecewisely ma-
neuvering targets with unknown maneuver change times, by means of bearings-only
measurements from a single, moving sensor platform is derived and an efficient estima-
tor is implemented and analyzed. Furthermore, an observability analysis is carried out
for targets emitting acoustic and electromagnetic signals. Here, the different signal prop-
agation velocities can be exploited to ensure observability on a single, not necessarily
moving platform.

Based on the theoretical performance and observability analyses a distributed fusion
system has been realized by means of heterogeneous sensors, which shall detect an event
and localize a threat. This is performed by a microphone array to detect sound waves
emitted by the threat as well as a radar detector that detects electromagnetic emissions
from the threat. Since multiple platforms are involved to provide increased observability
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Abstract

and also redundancy against possible breakdowns, a WiFi mobile ad hoc network is used
for communications. In order to keep up the network in a breakdown OLSR (optimized
link state routing) routing approach is employed.
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1 Introduction

State estimation, i.e. determining the trajectory, of a maneuvering target from noisy
measurements collected by a single or multiple passive sensors (e.g. passive sonar and
radar) has wide civil and military applications, for example underwater surveillance,
air defence, wireless communications, and self-protection of military vehicles. These
passive sensors are listening to target emitted signals without emitting signals themselves
which give them concealing properties. Tactical scenarios exists where the own position
shall not be revealed as it would be using a radar ping, e.g. for tracking submarines with
passive sonar [BH09,Li12], localizing shooters with acoustic sensors [LWGH09], inter-
ception and analysis of emitted signals in a warfare situation in order to exploit these for
military actions (electronic support measures – ESM) [GC82], or tracking an aerial target
by means of electro-optic image sensors like infrared sensors [Hu01]. This estimation
process is widely known as bearings-only tracking (BOT) [LSM08] since in most cases,
the measurements are line of sight (LoS) azimuth angle measurements corrupted by
noise. Such measurements are also called angle-only measurements [RA03], direction
of arrival (DoA), or angle of arrival (AoA) measurements [Far99]. An alternative term
for this estimation process is bearings-only target motion analysis (TMA or sometimes
BO-TMA) which is particularly used in the submarine domain [LG78,Bec01].

As the passive sensors cannot provide direct target location measurements, BOT or TMA
suffers from poor target trajectory estimation accuracy due tomarginal observability from
sensor measurements [LSM08]. In order to achieve observability, that means to be able to
estimate the complete target state, multiple passive sensor measurements must be fused.
The measurements can be recorded spatially distributed by multiple dislocated sensor
platforms or temporally distributed by a single, moving sensor platform. Depending on
the target’s motion behavior, the platform must even "outmaneuver" the target. This is
explained in [RA03] as "observer motion is one derivative higher than that of the target
and one component of the motion is perpendicular to the LOS [line of sight]". See
also [NA81, FG88,Bec93, JP96, LWBL16] for further reading. However, under certain
circumstances, for example a circular motion target (performing a constant turn) observed
by a non-maneuvering platform moving with constant velocity, observability conditions
can be met [CPPJ11, CPPJ13]1. An extended case of BOT is given if heterogeneous
measurements from, for example, targets emitting acoustic and electromagnetic signals,
1 The setting of BOT involving a circular motion target has already been treated by Gauss [Gau09] and
Laplace [Lap80] in the 18/19th century while observing the trajectory of an asteroid with a telescope. Gauss, and
independently Legendre [Leg06], invented the least squares method in this context [Sor70].
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1 Introduction

are involved [YNBS15]. Here, the different signal propagation velocities can be exploited
to ensure observability on a single, not necessarily moving platform [HK16].

As mentioned, the performance of such a passive system depends on the spatial constella-
tion of the sensors with strong relation to their nonlinear sensor models. Hence, a further
challenge is the high degree of nonlinearity in the estimation process caused by the non-
linear relation of angular measurements to the Cartesian state as well as complex motion
models considering maneuvering targets. In order to assess the best possible estima-
tion performance in such a nonlinear setting, estimation error bounds as the Cramér-Rao
lower bound (CRLB) have to be evaluated. These pose a lower limit on what an estimator
can achieve meaning that no estimator, on average, can provide better results than given
by the bound [Ker89].

Typically, one has to distinguish between Bayesian and non-Bayesian methods for state
estimation. Although both approaches are eligible and practically relevant today and
depending on the scenario, one has to thoroughly choose the appropriate technique, since
they have their origin in different philosophical views of probability, see e.g. [Tsc14].
The classical, non-Bayesian, method is preferred in economic and social sciences as well
as biology. In order to estimate a parameter or to test a hypothesis, it only uses the
sample of observations. In this context, the term probability means relative frequency
within a random experiment. Hence, classical statisticians are often called frequentists.
Transferred to state estimation, the state is modeled as an unknown constant and it
is estimated by assessing how likely the state is given all obtained measurements by
means of a likelihood function [BSLK01]. An important example is the maximum
likelihood estimator (MLE). On the other hand, the Bayesian interpretation of probability
is an expression of knowledge. The difference to the classical method is that one
assumes prior knowledge about the problem. By means of Bayes’ rule, established by
reverend Bayes in 1763 [Bay63], one can derive improved knowledge by including the
observations. For a popular science perspective on the Bayesian sphere, see [McG11].
The Bayesian statistic is preferred in the technical domain and in artificial intelligence.
A remarkable example is the description of the search for crashed flight MH370 using
Bayesian methods [DGH+16]2. Since fusion and tracking also lie in these domains, an
outsize number of papers uses Bayesian state estimation. Here, the state is modeled
as a random variable and associated with a prior density which subsumes the a priori
knowledge about the state. Using Bayes’ rule, a posterior density of the state can be
calculated which includes the information from motion and measurement. Such an
estimator is often called filter, its major representative is the Kalman filter [Kal60].

A fundamental disadvantage of many non-Bayesian state estimation methods is the
computational complexity: For the vast majority of nonlinear problems, a numerical
optimization algorithm has to be applied trying to find the optimal state considering the
2 Unfortunately, despite the Bayesian approach, the airplane wreck has not been found yet. The reason for the
accident that happened in March 2014 remains a puzzle.

2



1.1 Structure of this Thesis

Bearings-only Tracking

Ch. 1 BOT for Maneuvering Targets,
Section 1.3

BOT using Hetero-
geneous Sensors,

Section 1.4

Ch. 2 Piecewise Motion,
Section 2.4.3

CV Motion,
Section 2.4.1

Ch. 3 Cramér-Rao Lower Bound,
Section 3.2

Ch. 4 Observability,
Section 4.2

Ch. 5 Maximum Likelihood Estimator,
Section 5.6

Gaussian Mixture Filter,
Section 5.4

Ch. 6 Simulations,
Section 6.1

Field Tests,
Section 6.2

Summary and ConclusionsCh. 7

Figure 1.1: Structure of this thesis with vertical central themes differentiated by color and horizon-
tal chapters. In each chapter, the key sections relevant to the central themes are named.

complete observation batch. Bayesian filters have successfully tackled this problem by
using a recursive update scheme. Nevertheless, with the availability of higher computa-
tional power in recent times, batch calculations may undergo a renaissance. Focussing
on this thesis, both schools of thinking are reflected depending on their relevance on the
concrete estimation problem.
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1 Introduction

1.1 Structure of this Thesis

The structure of this thesis is illustrated in Fig. 1.1, where all key sections are addressed:
There are two central themes or estimation problems, depicted as left and right path,
namely bearings-only tracking for maneuvering targets focussing on motion models and
bearings-only tracking using heterogeneous sensors focussing on different measurement
types. The central themes formavertical partition of this thesis, whereas the chapters form
a horizontal organization and are ordered from theoretical backgrounds (performance
bound, observability), via theoretical, but nuts-and-bolts estimators, to practical results.

In the following sections, Section 1.3 and Section 1.4, both central themes are introduced
and motivated. Theory begins in Chapter 2, where fundamental properties of bearings-
only measurements and motion models for maneuvering targets are given. Regarding
the central themes, these are piecewise motion models, see Section 2.4.3, and constant
velocity (CV) motion, see Section 2.4.1. The subsequent Chapter 3 introducing a perfor-
mance bound, called Cramér-Rao lower bound (CRLB), is mostly related to maneuvering
targets since its contribution is that the aformentioned piecewise motion models are in-
corporated into the bound, see Section 3.2. In contrast to the CRLB, the observability
examination in Chapter 4 is for the most part related to heterogeneous tracking since
new aspects of exploiting different signal propagation velocities due to heterogeneous
signals are presented, see Section 4.2. However, also general observability criteria are
discussed which are especially relevant in bearings-only tracking. Since observability
has a strong connection to the CRLB, both nodes are connected in Fig. 1.1. In order
to provide tools to realize estimation, state estimation is covered in Chapter 5. Due to
its robustness for bearings-only tracking of maneuvering targets, a non-Bayesian batch
maximum likelihood estimator is presented in Section 5.6. A recursive filter solution,
the Gaussian mixture filter is closely examined and special aspects of Gaussian mixture
weight choice are discussed, see Section 5.4 with an application to heterogeneous track-
ing in mind. After having illuminated the two central themes from a more theoretical
perspective, the results of the application of the respective aforementioned estimators to
the two estimation problems are presented in Chapter 6. A simulative approach is chosen
for the maneuvering targets case along with an analysis of the CRLB, see Section 6.1.
The practical side is covered by field tests involving communications and acoustic and
electromagnetic sensors that have been carried out, see Section 6.2. The performance of
the Gaussian mixture filter is verified under these real conditions. Finally, in Chapter 7,
a summary of this thesis and further conclusions are given.

1.2 Contributions of this Thesis

Theoretical contributions This thesis makes the following theoretical contributions
which are beyond the state of art:

4



1.2 Contributions of this Thesis

1. Derivation of a performance bound (Cramér-Rao lower bound, CRLB) and im-
plementation and analysis of an efficient estimator for complex motion models,
i.e. piecewisely maneuvering targets with unknown maneuver change times, by
means of passively measuring bearing and bearing rate, see [HO10], © 2010
Gesellschaft für Informatik, [OH10], © 2010 IEEE, [HO11a], © 2011 IEEE,
and [HOK14], © 2014 IEEE. These topics are covered in Sections 2.4.3, 3.2, 5.6,
and 6.1. This corresponds to the left path in Fig. 1.1.

2. Observability analysis for distributed heterogeneous passive sensors by means of
exploitation of different signal propagation velocities [HK16], © 2016 IEEE: In-
formation from acoustic and electromagnetic sensors is considered. In contrast to
the case of homogeneous signals (e.g. electromagnetic radar signals) on a single
platform, where the target state can only be estimated under certain circumstances
(e.g. platform maneuvers), the state can always be estimated by means of ex-
ploitation of different signal speeds in a heterogeneous sensor setup.

3. Mathematically rigorous derivation of two Gaussian mixture likelihood approxi-
mation methods for bearing measurements from a general likelihood approxima-
tion approach that is linear in target state, see Section 5.5. The fact that these
approximations are linear in target state allows for a linear Gaussian mixture filter
to operate on the nonlinear problem of bearings-only tracking [Hör14], © 2014
IEEE. The two approximation methods are compared in simulations and with real
acoustic bearing data, see Section 6.2.3 and their properties are outlined.

Practical contributions Based on the theoretical performance and observability anal-
yses and the examined state estimation methods, a distributed fusion system which acts
as a proof of concept for the protection of platforms has been built up [HGR+16], ©
2016 IEEE. It has been realized by means of heterogeneous sensors, which shall detect
an event and localize a threat which caused the event. This is performed by a microphone
array to detect sound waves emitted by the threat and so obtain its direction (bearings-
only tracking) as well as a radar detector that detects electromagnetic emissions from
the threat. Since multiple platforms are involved to provide increased observability and
also redundancy against possible breakdowns, aWiFi mobile or vehicular ad hoc network
(MANET) is used for communications. In order to keep up the network in a breakdown of
a network node, sophisticated routing approaches, namely OLSRv2 (optimized link state
routing) are employed. The complex interaction of heterogeneous sensors and communi-
cations is one major practical contribution which is verified in field tests, see Sections 1.4
and 6.2. Furthermore, the Gaussian mixture filter based on likelihood approximation,
discussed in Section 5.4 is applied in this context for tracking a target emitting acoustic
signals.

5



1 Introduction

1.3 Bearings-only Tracking for Maneuvering Targets

This section shall motivate the first central theme of this thesis, bearings-only tracking
for maneuvering targets. One focus is on complex motion models incorporating target
maneuvers. The derivation of the Cramér-Rao lower bound for maneuvering targets in
Chapter 3 refers to this type of targets.

For stationary targets, measured bearings can be intersected to determine the range. This
is known as cross bearing or triangulation and has been used since the beginnings of
seafaring. In modern times, the need to obtain the range of moving targets has emerged,
leading to bearings-only target motion analysis which has been a research area for nearly
sixty years. Before the computational power to solve the connected optimization problem
was available, submarine operators performed this task manually by means of graphical
methods like Ekelund ranging [Eke58,Col94]: Ekelund’s proposition to obtain a target’s
range was to divide the difference between target and observer speeds across the line
of sight (LoS) by the difference between bearing rates. With the availability of faster
computers, non-Bayesian batch methods like maximum likelihood estimators (MLE)
and least squares methods have been preferred to tackle the TMA problem [NLG84].
Alternatively, Aidala et al. solved the BO-TMA problem by means of Bayesian filter
approaches like extended Kalman filters (EKF) both in Cartesian and modified polar
coordinates (MPC) [Aid79,AH83]. Within MP coordinates, the bearings-only measure-
ment equation is linear, but the motion is non-linear. However, this technique shows less
degradation than using Cartesian coordinates. Concluding, non-Bayesian batch methods
show a better performance and robustness than Bayesian filters especially for long-range
target scenarios [HAGL83, dVGM92, KBSL01]. Of course, the global optimization
implies the disadvantage of a high computational burden.

Considering target motion, one class of targets, particularly marine vessels (including
surface ships and submarines), preferably moves straight ahead and sometimes changes
its direction, also called course, which appears to occur instantaneously: The duration
of a maneuver, i.e. the length of the maneuver phase, relative to the sampling interval is
low [BSF88]. A typical example of such a scenario is depicted in Fig. 1.2. This kind
of motion is performed due to the heavy weight of the vessel and its consequent inertia.
In this thesis, this class of targets is modeled by means of inertial motion, also known
and constant velocity (CV) motion [LJ03]. A segment of CV and constant course is also
called leg. If course and/or speed changes (more general: a maneuver is performed) are
considered, an extended model, called piecewise inertial (or piecewise rectilinear motion
model [JPP10]), is considered.

Another class of target is not necessarily moving inertially but is partly strongly maneu-
vering. Examples are aircraft, especially jets, helicopters, and unmanned aerial vehicles,
which are more agile than marine vessels. Thus, aircraft often perform higher-order
motion maneuvers, such as turns and speed changes, which both imply the occurrence
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Figure 1.2: Typical scenario of bearings-only tracking for maneuvering targets: A maneuvering
observer tries to localize a maneuvering target based on angular measurements.

of accelerations. These target type can be characterized by the curvilinear motion
model [BN97] or its extension, the piecewise curvilinear motion model [Bec05a]. Alter-
natively, such motion patterns can be handled by the interacting multiple model (IMM)
approach, where multiple simple motion models are weighted depending on the mea-
surements [BSL95,KBSL01]. Furthermore, a hidden Markov model (HMM) has been
applied in this context [LCT98].

Since the focus is on maneuvering targets, the detection of a maneuver is commonly
a testing or decision problem [LJ02]. Based on, for example, chi-square or likelihood
ratio tests, a decision is taken whether a maneuver change has taken place. However, all
these approaches assume that the maneuver change times are not part of the estimation
problem. In contrast to that, our approach tries to estimate the maneuver change times.
Therefore, the target state is augmented by the maneuver change times. Furthermore,
another technique in [JPP10] also assumes unknown maneuver change times as part of
the estimation problem.

The CRLB formaneuvering targets has been evaluated with the limiting condition that the
maneuver change times and the number of maneuvers are exactly known [RA03,RAG04].
In this thesis, the CRLB is calculated with respect to the complete target state, especially
the maneuver change times modeling abrupt change. A similar investigation is done
in [JPP14]. In order evaluate the performance of the investigated approaches, we will
consider bearingmeasurements as well as additional bearing rate measurements [DW08].
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1 Introduction

1.4 Bearings-only Tracking in a Vehicular Ad hoc Network
Using Heterogeneous Sensors

This example shall introduce how bearings-only tracking can be practically used in ad hoc
Wi-Fi network involvingmultiple vehicles andmultiple heterogeneous sensors [HGR+16,
HK16]. A motivation and fundamental concepts are given here, whereas observability
aspects, state estimation techniques, and field test results are presented in the respective
chapters 4, 5, and 6.

The motivational background is that protection of personnel and platforms of armed
land forces during missions gains more and more importance. A possible approach to
strengthen safety is to equip military vehicles with automatic protection systems. These
systems provide data which lead to automatic or semi-automatic countermeasures by
triggering different kinds of effectors. Usually, these systems are self-contained and
often do not provide an interface to use the data externally. Thus, they only affect a
single, the own, platform. Hence, the objective of this example is to investigate how
sensor data from automatic protection systems contribute to the joint protection of a
military formation, e.g. convoy, patrol, or checkpoint. For that, we consider a line
formation of vehicles as a tactical scenario for our field tests and fuse sensor data from
their automatic protection systems by means of radio communication. These systems
are mounted on different platforms in order to present an up-to-date situation overview
of the formation. The formation commander shall then be able to decide whether his
subordinate vehicles shall engage, hold position, or retreat. This way, he will be enabled
to improve the safety of own forces and to accomplish operations successfully [PT08].

The prototypic concept of a mobile ad hoc network (MANET) including multiple, het-
erogeneous sensors is depicted in Fig. 1.3. Since the network nodes are able to move, one
can also refer to a vehicular ad hoc network (VANET). A subset of vehicles is equipped
with one or multiple sensors, whereas each vehicle carries a fusion center, and an ad hoc
routing capable radio device. Only the sensors with red background have been integrated
as hardware (see also Fig. 1.4), i.e., acoustic sensor (microphone array) and electronic
support measures (ESM) sensor (laser/radar detector). The threat is represented by a
sonic blast-shock cannon and a device emitting electromagnetic radiation in typical radar
bands (radar warner trigger). These reproduce a muzzle blast as an acoustic event as
well as a muzzle flash as an electromagnetic signal from a real weapon. The prototype
implementation is based on Wi-Fi but can later be exchanged by another ad hoc capable
military radio technologies. One vehicle is the designated formation lead, i.e. it has
the formation commander on board who decides further proceedings based on the fused
information. Concerning the fusion center, we propagate redundancy since each vehicle
shall be able to acquire formation lead if the designated vehicle has a breakdown. That
means, the measurements from all sensors are exchanged between all vehicles and each
vehicle fuses the measurements locally to obtain a localization result regarding the threat.

8
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Figure 1.3: Concept for military VANET in a formation including multiple, heterogeneous sensors
localizing a threat. The integration of sensors with red background is realized; the
integration of sensors with blue background is planned, see also [HGR+16], © 2016
IEEE.

In order to create a link between the vehicles for data exchange, we establish a MANET.
This network can also be characterized as aVANETdue to the following aspects [LSK06]:
Nodes are moving resulting in a possible high rate of topology changes, self-localization
is performed by means of global navigation satellite system (GNSS) receivers including
all their inaccuracies, and energy consumption can normally be neglected. One advantage
of a MANET is that it allows spontaneous linking of nodes, i.e., dynamic entry and exit
of the network at routing level. Additionally, it is able to respond to topology changes
caused by vehicle motion, vehicle breakdown, or jamming. A suitable MANET routing
protocol allows multi-hop transmissions via one or more relay nodes which especially
becomes important in military operations where it cannot be guaranteed that every time
arbitrary two nodes are in line of sight of each other. This is e.g. due to terrain or
buildings. In Fig. 1.5, the layer model for our proposed MANET is depicted. At the
lowest level, the data link layer, we apply IEEE 802.11 commonly known as Wi-Fi.
This is prototypical to emulate the properties of future tactical radios. For the network
layer, IPv4 is used. The transport protocol is UDP since TCP is only partly suitable for
MANETs. Especially in a data fusion context, the focus lies on on-time transmission
of the data, whereas errors, data loss, or duplication do not pose a fatal problem to the
system. If a high degree of reliability is desired, it could be realized at application level.
Based on UDP, optimized link state routing protocol, versions 1 and 2 (OLSRv1/v23),
3 For an implementation of OLSR, see [OLS].
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Figure 1.4: Hardware for field tests. Upper left: Microphone array, radar warner, XSens, and bul-
let mounted on car. Upper right: Power supplies and sound card mounted inside car.
Lower left: Sonic blast-shock cannon and radar warner trigger. Lower right: commer-
cial off-the-shelf radar and laser detector “Valentine One”, © 2016 IEEE.

described in RFC 3626 [CJ03] and RFC 7181 [CDJH14] is used for MANET routing.
Finally, at application layer, the exchanging of user data is performed. Furthermore, the
fusion center operates here where all incoming information is collected and combined to
provide a tactical situation overview.

The applied routing protocol must be able to determine the network topology and choose
suitable relay nodes for multi-hop transmission paths. Such a unicast MANET routing
protocol is OLSRv2 [BFK+15], the successor of OLSRv1 which is well-established in
the tactical and civil context. The following features are in particular advantageous for
the scenario in Fig. 1.3:

• Link state routing: The state of a local link is broadcast throughout the complete
network by means of HELLO and topology control (TC) messages. Hence, each
node has a global knowledge of the network topology and thus of the current
nodes. Thus, one always knows whether the fusion center is up and, if necessary,
can redirect the traffic to an alternative fusion center.

10
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Figure 1.5: Layer model for proposed MANET, © 2016 IEEE.

• Pro-active routing: Routes are pre-calculated and therefore they are available
without delay, e.g. caused by route finding. This means the data to be fused is at
the fusion center on time without avoidable delay affecting the currentness of the
situation picture.

• The extensible packet format described in RFC 5444 [CDDA09] allows transmis-
sion of additional data, e.g. routing metrics. This helps ensuring a stable quality
of the network.

• Link quality and link speed aware routing metric. The directional airtime met-
ric [RB13] assesses the links based on their quality in terms of the estimated
number of retransmissions needed and the current data rate of the link. This way,
links at low rates creating bottlenecks are automatically avoided so that the data to
be fused is transmitted to the fusion center as fast as possible.
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2 Measurement and Motion Models

This chapter deals with fundamental models required for state estimation, namely mea-
surement and motion models. Beginning with the Gaussian density in Section 2.2, which
is the base for all following models, we examine bearings-only and bearing rate mea-
surements in Section 2.3 which are the essence of this thesis. The motion model part
in Section 2.4 begins with a simple, widely used model, namely the constant velocity
model. Since this thesis focuses on maneuvering targets, models which can deal with this
type of motion are presented. These include piecewise motion models, where motion
segments are concatenated in order to represent maneuvers.

2.1 Probability Density Function

The probability density function (PDF), often simply called density, of a d-dimensional
(continuous) random vector x is an integrable, non-negative function p : Rd → [0,∞).
It is used to describe the probability for the event that x takes values in the d-dimensional
set D as follows:

Pr(x ∈ D) =
∫
D

p(u) du . (2.1)

One often also uses x instead of u as the integration variable, which makes the terms
easier to read. A PDF has the property that its integral over Rd equals one representing
the certain event that x is in Rd . The expected value or mean of a random vector x with
respect to its PDF p is defined as

x̂ = E{x} =
∫
Rd

x p(x) dx . (2.2)

Furthermore, the covariance matrix of a random vector x with respect to p describing its
uncertainty is given by

Cov{x} = E
{
(x − x̂)(x − x̂)T

}
. (2.3)

2.2 Gaussian Distribution

One of the most important density in state estimation and filtering and thus the central
density employed in this thesis is the Gaussian or normal distribution. Its multivariate
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Figure 2.1: Visualization of a univariate Gaussian density with x̂ = 0 and σ = 1.

probability density function, also called Gaussian density in the following, with respect
to a d-dimensional random vector x is defined as

p(x) = N(x; x̂,P) =
1√

(2π)d det P
e−

1
2 (x−x̂)TP−1(x−x̂) (2.4)

with mean and covariance in vector and matrix form, respectively, according to (2.2)
and (2.3) given by

x̂ = E{x} =
∫
Rd

xN(x; x̂,P) dx , (2.5a)

P = Cov{x} = E
{
(x − x̂)(x − x̂)T

}
. (2.5b)

Here, the covariance matrix P is symmetric and positive semi-definite and its shape is
d × d. Positive semi-definiteness is also expressed by the term P ≥ 0. This is a shortcut
for the fact that positive semi-definiteness is defined as aTPa ≥ 0 for all a. The factor√
(2π)d det P in (2.4) is used for normalization and therefore ensures that the integral of

the density is equal to one. If a random vector x is Gaussian distributed with mean x̂ and
covariance matrix P, i.e. p(x) = N(x; x̂,P), then we also write the term x ∼ N(x̂,P).

The univariate (one-dimensional) Gaussian density is given by

p(x) = N(x; x̂, σ) =
1

σ
√

2π
e−
(x−x̂)2

2σ2 (2.6)

with mean x̂ and standard deviation σ, which is also denoted as variance σ2. It is
depicted in Fig. 2.1. Furthermore, Fig. 2.2 shows the multivariate Gaussian density (2.4)
for d = 2.
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Figure 2.2: Visualization of a multivariate Gaussian density from different perspectives: (a) side
view and (b) top view.

2.2.1 Product Formula for Gaussians

Key to the derivation of many state estimation methods is the solution of the product
of two Gaussians. For matrices and vectors with compatible dimensions, the following
holds:

N(z; Hx,R)N(x; x̂,P) = N(z; Hx̂,S)N(x; y,Y) (2.7)

with
S = R +HPHT

y = x̂ +K(z −Hx̂)

Y−1 = P−1 +HTR−1H

K = PHTS−1 .

(2.8)

A formal proof as well as alternative representations can be found in [Koc14].

2.3 Measurement Models

A measurement model is a technique to relate a measured quantity taken by a sensor to
an internal state one is interested in. The measurements can be observed directly, but the
state cannot. Measurements are error-prone due to the limited resolving capabilities of a
sensor, so that measurement noise is attached to the model to take these perturbations into
account. The process to systematically derive a state, named xk , from noise corrupted
measurements {z0, . . . ,zk } is called state estimation and is further outlined in Chapter 5.
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Figure 2.3: Geometry for an bearings-only tracking (BOT) scenario with maneuvering target and
maneuvering observer. The angle αk is the true target line-of-sight azimuth, © 2014
IEEE.

In general, the (nonlinear) measurement model equation with additive noise νk is given
by

zk = h(xk ) + νk , (2.9)

where zk is the measurement received at the sensor a time tk and h(·) is an arbitrary
function mapping the state to the measurement. The measurement noise is assumed to be
white and Gaussian distributed with zero mean and a sensor-specific covariance matrix
Rk , i.e. νk ∼ N(0,Rk ).

An important special case is a linear measurement equation

zk = Hkxk + νk , (2.10)

which differs from the nonlinear case by using a linear measurement function Hkxk
replacing the general transformation h(·). It should be clear that linear models are easier
to handle than nonlinear ones. In particular, state estimation problems with linear models
can be solved in an optimal way, see e.g. the Kalman filter in Chapter 5 and [BSLK01],
which is not the case for nonlinear problems. However, most state estimation problems
are nonlinear and this thesis will focus on an important type of nonlinear measurements,
namely bearings-only measurements.

2.3.1 Bearings-only Measurements

Line of sight angular measurements are also called bearings-only measurements as
outlined in Chapter 1. The angle can be measured in various ways, for example in the
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Figure 2.4: Illustration of obtaining bearing rate by an angular motion model. Taken from confer-
ence presentation of [HO10].

mathematical sense. If the reference direction is true north, and this is the way we deal
with angles throughout this thesis, we also refer to the term azimuth. According to the
general nonlinear measurement model (2.9) and illustrated in Fig. 2.3, the bearings-only
measurement equation including a noise corrupted azimuth measurement is given by

zk = α(xk ) + νk . (2.11)

Here, α(·) is the (noise free) measurement function obtaining the true azimuth described
by

h(xk ) = α(xk ) = αk = arctan
∆xk
∆yk

, (2.12)

and νk is assumed to be white and Gaussian distributed measurement noise with zero
mean and standard deviation σα. We assume that target state xk and sensor state
xs
k
comprise at least the respective position components, i.e., xk = [xk, yk, . . .]T and

xs
k
= [xs

k
, ys

k
, . . .]T. Then, ∆xk = xk − xs

k
and ∆yk = yk − ys

k
are the corresponding

distance vectors between target and sensor position.

2.3.2 Bearing Rate Measurements

A further measurement quantity discussed in this thesis is bearing rate or azimuth
rate characterizing the rate as measured line of sight angle changes, see also [HO10].
Certainly, simple differentiation of bearing measurements will not lead to any additional
information about target kinematics. Thus, the bearing rate will typically be obtained
by joint processing of sensor array signals. Several estimation approaches have been
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Figure 2.5: Geometry for bearing and bearing rate tracking scenario with maneuvering target and
maneuvering observer, © 2014 IEEE.

proposed: E.g., a subspace-based approach including an initialization technique has
been established in [MBS05]. Furthermore, a maximum likelihood approach, e.g., for
linear array geometries to obtain azimuth angles and azimuth rate has been presented
by Wigren and Eriksson [WE95]. They mention that this approach can be also applied
for planar arrays to capture additional elevation angles and the corresponding rate. The
key idea of all these approaches is to use a direction finding approach with an embedded
angular motion model, see Fig. 2.4. This way, stationary assumptions on the target
signals are avoided.

By defining

∆Ûxk =

∆ Ûxk

∆ Ûyk

 = Ûxk − Ûxs
k (2.13)

as difference velocity between sensor and target, and r2
k
= | |∆xk | |2 = ∆x2

k
+ ∆y2

k
as

squared distance (range) between sensor and target, we obtain

h(xk ) = Ûα(xk ) =
∆ Ûxk∆yk − ∆ Ûyk∆xk

r2
k

=
∆ÛxT

k
ek

rk
. (2.14)

Note that (2.14) can be derived from (2.12) by using the notation xk = x(tk ) and

Ûα(xk ) =
∂α(xk )
∂tk

=
∂α(x(t))
∂t

����
t=tk

, (2.15)
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where the latter form of the derivative is the mathematical exact one. However, the
former one will be used throughout this thesis due to readability. Referring again
to (2.14), we assume that target and sensor state at least contain position and velocity,
thus xk = [xk, yk, Ûxk, Ûyk, . . .]T and xs

k
= [xs

k
, ys

k
, Ûxs

k
, Ûys

k
, . . .]T. In (2.14), ek , obtained

by ek = [∆yk,−∆xk ]T/rk , is a unit vector orthogonal to the vector ∆xk . Hence, the
inner product ∆ÛxT

k
ek in (2.14) is a scalar projection of ∆Ûxk in the direction of ek , i.e. in

the direction orthogonal to ∆xk , see Fig. 2.5. Finally, the equation for noise corrupted
bearing rate measurements is given by

zk = Ûα(xk ) + νk (2.16)

where we assume that νk is white and Gaussian distributed measurement noise with zero
mean and standard deviation σ Ûα.

2.4 Motion Models

Amotion or systemmodel describes a target’s future (or past) behavior by state prediction
(or retrodiction). It consists of a deterministic part representing the transition of the state
according to the physicalmodel and, optionally, a stochastic part subsuming any occurring
disturbances. The stochastic part is also referred to as process or system noise and is due
to the fact that no model can be considered perfectly appropriate. However, especially
when only selective disturbances, e.g. in terms of target maneuvers, occur as it is the case
for ships, the state trajectory is often modeled deterministically [Aid79,NLG84,NG97].

2.4.1 Constant Velocity Motion

The state of a target moving with constant velocity, which is also called inertially moving
target, at time tk is described by the following Cartesian state vector

x(tk ) = xk = [xk, yk, Ûx, Ûy]T . (2.17)

Since the target velocities are assumed constant, the time index k is omitted there. Using
the aforementioned Cartesian state vector, a deterministic equation describing a linear
state transition from the state at some reference time tr to the state at time tk can be
expressed by

xk = Φ(tk, tr)xr . (2.18)
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The state at time tr is written shortly as xr = x(tr). The corresponding state transition
matrix Φ(tk, tr) for the constant velocity motion case is given by

Φ(tk, tr) =

I2 (tk − tr) I2

0 I2

 . (2.19)

Usually in Bayesian tracking approaches (see Chapter 5), the state transition is expressed
by the usage of process noise which models the stochastic perturbations due to e.g. small
velocity changes. However, in this case, the model is not deterministic any more. Since
for Bayesian tracking, the state is commonly predicted to the following time scan, the
linear motion equation is usually given by

xk+1 = Fk︸︷︷︸
=Φ(tk+1 ,tk )

xk + wk (2.20)

with state transition matrix Fk and white process noise wk which is assumed to be
Gaussian distributed with zero mean and covariance matrix Qk . In the literature, this
model is referred to as (nearly) constant-velocity motion model (CV) model [LJ03].

There are different approaches to define the process noise. We will highlight two of them
here: The first option is to assume the acceleration as white noise. This leads to the
following process noise covariance matrix Qk [BSLK01]:

Qk = q2
k


T3/3 I2 T2/2 I2

T2/2 I2 T I2

 , (2.21)

where T = tk+1 − tk is the sampling time and the factor qk affects the process noise level.
This model is often referred to as continuous white noise acceleration model (CWNA).
In [BSLK01], there is also a guideline on how to reasonably choose the process noise
intensity "fudge" factor qk .

If the acceleration is assumed to be constant during a sampling period [tk, tk+1], we
obtain the discrete white noise acceleration model (DWNA), see e.g. [BSLK01, LJ03],
with Qk given by

Qk = q2
k


T4/4 I2 T3/2 I2

T3/2 I2 T2 I2

 . (2.22)

However, this model has several weaknesses: If the sampling period is long, i.e. T is
big, the assumption of a constant acceleration is at least questionable. Furthermore,
Qk is a singular matrix which will be problematic as soon as its inverse shall be used,
which is, for example, the case when a special performance bound shall be calculated,
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Figure 2.6: Spiral-shaped curvilinear motion trajectory. Tangential and normal acceleration at and
an are simultaneously active, © 2014 IEEE.

see [TMN98]. In fact, this bound is not covered in this thesis. Nevertheless, the CWNA
model will be the preferred one for Bayesian state estimation in this work .

2.4.2 Deterministic Curvilinear Motion

Consider a target moving deterministically along a trajectory with speed vk , heading ϕk ,
constant tangential acceleration at, as well as constant normal acceleration an according
to [BN97]. See Fig. 2.6 for an example with both tangential and normal acceleration un-
equal to zero which results in a spiral-shaped trajectory. The state of such a curvilinearly
moving target can be completely described by position and velocity components given
by 

Ûxk

Ûyk

 = vk


sin ϕk
cos ϕk

 , (2.23)

as well as acceleration components at and an. The special cases of inertial motion
(at = an = 0, see also Subsection 2.4.1), straight-line acceleration (at , 0, an = 0),
and circular motion (at = 0, an , 0) are included in this model. Note that in (2.23) the
heading angle ϕk is defined with respect to the north. All target parameters are comprised
in the parameter vector

xk = [xk, yk, vk, ϕk,at,an]
T . (2.24)

In contrast to the inertial motion case from the previous subsection, where a Cartesian
state leads to a linear motion model, the consideration of polar velocity and accelera-
tion components is preferred here. The advantages are constant tangential and normal
accelerations and thus easy conversion from speed (along-track velocity) to tangential
acceleration. The drawback of such modeling is the non-linearity of the motion equation.
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Using polar velocities and accelerations, a mathematical model of the target motion can
be specified by the non-linear differential equation

Ûxk =



0 0 sin ϕk 0 0 0

0 0 cos ϕk 0 0 0

0 0 0 0 1 0

0 0 0 0 0 v−1
k

0 0 0 0 0 0

0 0 0 0 0 0


xk . (2.25)

An approximate solution of the curvilinearmotion equationwith the form xk = Φ(tk, tr) xr
can be found in [BN97]. However, an exact solution of the initial value problem (2.25)
with xr as initial value is needed in order to calculate the CRLB (see also Subsection
3.2.2). The solution is given by the non-linear motion equation

xk = f (xr; tk, tr) (2.26)

which describes the temporal transition of the target state from any reference time tr to
time tk . In order to provide a solution of the curvilinear motion equation, we define

ca =
1

4a2
t + a2

n
(2.27a)

S(t) = (2at sin ϕ(t) − an cos ϕ(t)) v2(t) (2.27b)

T(t) = (2at cos ϕ(t) + an sin ϕ(t)) v2(t) (2.27c)
∆tk = tk − tr (2.27d)
∆Sk = S(tk ) − S(tr) (2.27e)
∆Tk = T(tk ) − T(tr) . (2.27f)

22



2.4 Motion Models

With this, the components of f(xr; tk, tr) are specified by

xk =

{
xr + ca∆Sk for at , 0 or an , 0
xr + vr sin ϕr∆tk for at = 0 and an = 0

(2.28a)

yk =

{
yr + ca∆Tk for at , 0 or an , 0
yr + vr cos ϕr∆tk for at = 0 and an = 0

(2.28b)

vk = vr + at∆tk , (2.28c)

ϕk =

{
ϕr +

an
at

ln
���1 + at

vr
∆tk

��� for at , 0

ϕr +
an
vr
∆tk for at = 0

. (2.28d)

2.4.3 Piecewise Deterministic Motion Models

For maneuvering targets, piecewise motion models are introduced in the following two
subsections. A piecewise motion consists of several maneuver segments where in each
segment, the target performs either inertial motion or curvilinear motion. Thus, these
models are called piecewise inertial motion model and piecewise curvilinear motion
model, respectively. The second, more general, model established by Becker [Bec05a]
has also been used in our former publication [OH10]. The model using inertial motion
can be seen as special case of the piecewise curvilinear motion model.

For each model, the maneuver segments are concatenated by maneuver change points
where the constant parameters in a segment abruptly change. This has the effect that
the state is not continuous over time. For the piecewise inertial motion presented in
Subsection 2.4.4, the segment parameters are the Cartesian velocities Ûx and Ûy, whereas
for the piecewise curvilinear motion discussed in Subsection 2.4.5, these parameters are
the tangential and normal accelerations at and an. The time when a maneuver change
takes place is called maneuver change time and is part of the target state. More precisely,
the target state is modeled in such a way that all past segment parameters and maneuver
change times are contained. This leads to a non-constant dimension of the target state:
With each maneuver change, the state dimension increases by the number of segment
parameters as well as the maneuver change time for the new segment.

2.4.4 Piecewise Deterministic Inertial Motion

For piecewise inertial motion, the target state is expressed by a Cartesian vector with
constant velocities and maneuver change times per segment. In Fig. 2.7 an example
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Figure 2.7: Piecewise inertial motion trajectory with M = 3 maneuver segments (legs). In each
segment, inertial motion with different Cartesian velocities is performed. The maneu-
ver change times t̃1 and t̃2 concatenate the maneuver segments, © 2014 IEEE.

t0

t̃0

tr

t̃M+1t̃Mt̃M−1t̃m−1 t̃m t̃m+1

t

Figure 2.8: Relative displacements of time tk compared with the maneuver change times, and the
reference time tr, © 2014 IEEE.

trajectory with three maneuver segments is depicted. The target state for M maneuver
change times is given by

xk =
[
xk, yk,vT, t̃T

]T
∈ R(4+3M)×1 , (2.29)

where the v comprises the Cartesian velocities. Thus,

v = [ Ûx0, Ûy0, Ûx1, Ûy1, . . . , ÛxM , ÛyM ]
T ∈ R2(M+1)×1 . (2.30)

The vector t̃ consists of the maneuver change times, so one has

t̃ = [t̃1, . . . , t̃M ]T ∈ RM×1 . (2.31)

Parameters Ûxm and Ûym denote the Cartesian velocities in the interval [t̃m, t̃m+1] for
m=0, . . . ,M if we consider two notional maneuver change times t̃0 and t̃M+1 such that
t̃0 = t0 and t̃M+1 = tk . Note that we define the components of maneuver segment m−1
to be active at maneuver change time t̃m.

Based on the inertial motion model discussed in Subsection 2.4.1, we have chosen
Cartesian velocities since they lead to a linear motion equation. This has the effect that
the state dimension increases by two elements with each maneuver change point.
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2.4 Motion Models

The target state with respect to the M maneuver change times t̃1, . . . , t̃M can be expressed
by

xk =



Φ(tk, t̃1)x1 for t0 ≤ tk ≤ t̃1
...

...

Φ(tk, t̃m)xm for t̃m−1 ≤ tk ≤ t̃m
...

...

Φ(tk, t̃M )xM for t̃M−1 ≤ tk ≤ t̃M
Φ(tk, tr)xr for t̃M ≤ tk ≤ tr

(2.32)

with xm = x(t̃m). For t̃m−1 ≤ tk, τ ≤ t̃m, m = 1, . . . ,M , i.e., tk and τ are in the same
maneuver segment, the state transition matrix Φ(tk, τ) ∈ R(4+3M)×(4+3M) is defined
element by element by

[Φ(tk, τ)]i, j =


1 for i = j
tk − τ for i = 1, j = 2m + 1
tk − τ for i = 2, j = 2m + 2
0 else

. (2.33)

Fig. 2.8 shows typical relative displacements for time tk , the maneuver change times, and
the reference time. Hence, the state at time tk is related to the reference state at time tr as
follows:

xk = Φ(tk, t̃m) · · ·Φ(t̃M−1, t̃M )Φ(t̃M , tr)︸                                        ︷︷                                        ︸
=Φ(tk ,tr)

xr (2.34)

for tk ≤ t̃m ≤ t̃M ≤ tr. Moreover, the cumulative state transition matrix Φ(tk, tr) from
time tr to tk , which is the product of the individual state transition matrices in the above
equation, can be expressed by

Φ(tk, tr)=


I2 02×(m−1) ∆Tm 02×M

0(2+3M)×2 I2+3M

 (2.35)

with
∆Tm =

[
(tk− t̃m)I2 . . . (t̃M−1− t̃M )I2 (t̃M−tr)I2

]
, (2.36)

where ∆Tm ∈ R2×(2(M+1)−(m−1)). For the simple case M = 0 (no maneuver change),
we obtain Φ(tk, tr) from (2.19) in Subsection 2.4.1.
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Figure 2.9: Piecewise curvilinear motion trajectory with M = 3 maneuver segments. In each
segment, curvilinear motion with different tangential and normal accelerations is per-
formed. The maneuver change times t̃1 and t̃2 concatenate the maneuver segments, ©
2014 IEEE.

2.4.5 Piecewise Deterministic Curvilinear Motion

In the case of piecewise curvilinear motion, the target state is given by a state vector
consisting of constant tangential and normal accelerations and maneuver change times.
See Fig. 2.9 for an example trajectory. So, the state for M maneuver change points is
specified by

xk =
[
xk, yk, vk, ϕk,aT, t̃T

]T
∈ R(6+3M)×1 . (2.37)

For the acceleration components for each maneuver segment we have

a =
[
at,0,an,0, . . . ,at,M ,an,M

]T
∈ R2(M+1)×1 (2.38)

and for the maneuver change times

t̃ = [t̃1, . . . , t̃M ]T ∈ RM×1 . (2.39)

Obviously, the dimension of the target state increases by three components with each
maneuver change point, since two acceleration components and the maneuver change
time are added to the state with each maneuver change. The parameter t̃m is the m-th
maneuver change time and at,m and an,m denote the tangential and normal acceleration
in the time interval [t̃m, t̃m+1] for m = 0, . . . ,M with t̃0 = t0 and t̃M+1 = tr. Similar to
the previous subsection, it is defined that the components of maneuver segment m − 1
are active at maneuver change time t̃m.

26



2.5 Summary of the Chapter

Since the reference state is commonly the current target state, the target state for M
maneuver change points at the times t̃1, . . . , t̃M in the interval [t0, tr] is given by

xk =



f0 (x1; t, t̃1) for t0 ≤ tk ≤ t̃1
...

...

fm−1 (x(t̃m); tk, t̃m) for t̃m−1 ≤ tk ≤ t̃m
...

...

fM−1 (x(t̃M ); tk, t̃M ) for t̃M−1 ≤ tk ≤ t̃M
fM (xr; tk, tr) for t̃M ≤ tk ≤ tr

. (2.40)

For t̃m−1 ≤ tk, τ ≤ t̃m, i.e., tk and τ are both in the maneuver segment m − 1, fm−1 :
R(6+3M)×1 → R(6+3M)×1 is defined by the motion function (2.26) according to

fm−1 (x(τ); tk, τ) = f (x(τ); tk, τ)
��� at=at,m−1
an=an,m−1

. (2.41)

This means, we have to replace at by at,m−1 and an by an,m−1 in (2.28). Fig. 2.8 shows
typical relative displacements for time tk , the maneuver change times, and the reference
time. Altogether, we obtain for the relation of the target state at some arbitrary time tk to
the reference state

xk = fm−1 (fm (· · · fM (xr; t̃M , tr) ; · · · ) ; tk, t̃m) (2.42)

with t̃m−1 ≤ tk ≤ t̃m ≤ t̃M ≤ tr.

2.5 Summary of the Chapter

In this chapter, we have introduced or recapped fundamental concepts used in this thesis
such as the Gaussian density and measurement and motion models. Bearings-only or
angle-only measurements are essential in this thesis since both central themes base on
them. Furthermore, we sketched the basics of bearing rate measurements which are
used as additional measurements to evaluate the performance of the state estimator, see
Chapter 6.

Regarding motion models, we have presented a simple but widespread model considering
only constant velocity. In this context, we discussed the usage of process noise which is
on the one hand featured for Bayesian approaches, but on the other hand often avoided
for non-Bayesian methods due to its non-deterministic nature. Furthermore, a more com-
plex motion model incorporating accelerations called curvilinear motion model has been
introduced. To model maneuver changes, segments of basic motion can be concatenated
in a piecewise manner. In this context, two types of piecewise motion have been intro-
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2 Measurement and Motion Models

duced and investigated: The first one is piecewise inertial motion, where targets move
in segments of constant velocity and heading. The second one is piecewise curvilinear
motion, where targets move in segments of constant tangential and normal acceleration.
These models will be employed in the performance bound derivation in the following
Chapter 3.
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3 Performance Bound for Bearings-only
Tracking of Maneuvering Targets

A performance bound shall help to gauge the maximum achievable performance for
an estimation problem. The most widespread bound is the Cramér-Rao lower bound
(CRLB) which is named after the pioneering papers of Cramér [Cra46] and Rao [Rao45]
who both derived the inequality (3.3) later entitled Cramér-Rao inequality. Neverthe-
less, for special problems, other, to some extent tighter bounds exist as, for example,
the Bhattacharyya [Bha48], Bobrovsky-Zakai [BZ75], Weiss-Weinstein [WW88], or
Barankin [Bar49] lower bounds. Also refer to [RN05] for a comparison. These bounds
are not part of this thesis as we concentrate on the CRLB. Thus, the CRLB is derived
in a general manner in Section 3.1. Subsequently, it is shown in Section 3.2 how the
piecewise motion models can be incorporated into the bound and finally in Section 3.3
how also passive measurement models are considered. So, the result of this chapter will
be a CRLB for tracking problems involving highly maneuvering targets under passive
measurements. This is also the main contribution of the own paper [HOK14].

3.1 Cramér-Rao Lower Bound

In order to judge an estimation problem it is important to know the maximum mean
estimation accuracy, i.e. the best mean performance, that can be attained given all
available measurements up to a reference time tk . Hence, the Cramér-Rao lower bound
(CRLB) provides a lower bound on the mean-square estimation error achievable for any
unbiased estimator and its parameter dependencies reveal characteristic features of the
estimation problem. That means, no matter what estimator is used, none, on average,
can do better than what the CRLB specifies [Ker89]. Thus, it serves as a general and
powerful benchmark for the performance of an estimator.

Consider the following nonlinear estimation problem with a deterministic motion model
and a measurement model with additive white Gaussian noise

xk = fk−1(xk−1) (3.1a)
zk = hk (xk ) + νk . (3.1b)

The noise term νk is zero mean and has a covariance matrix denoted by Rk . An
important equation is the likelihood function p(zk |xk ), which describes how likely the
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∆xT
k

P−1
k |k
∆xk = κ

∆xT
k

Jk ∆xk = κ

Figure 3.1: Visualization of the Cramér-Rao inequality by concentration ellipses.

state is given the measurements and therefore serves as a measure of the evidence from
the data [BSLK01]. For the examined Gaussian case it is given by

p(zk |xk ) = N(zk ; hk (xk ),Rk ) . (3.2)

This Gaussian case is already a special case, but we will not consider more general
cases with non-additive or non-Gaussian noise in this thesis, see [RAG04] for details.
Furthermore, also a bound for non-deterministic, i.e. stochastic state dynamics, exists
which is referred to as posterior CRLB first formulated by Van Trees [VT68] and refined
by Tichavský et al. [TMN98,ŠKT01]. This bound is not covered in this work either.

Let x̂k |k be an unbiased estimate of the d-dimensional state vector xk based on the mea-
surement sequence Z1:k = {z1, . . . ,zk } (see also Section 5.6), and Pk |k the covariance
matrix of x̂k |k . Then the CRLB denoted by J−1

k
is given by the expected value [VT68]

in the following inequality

Pk |k = E
{(

xk − x̂k |k
) (

xk − x̂k |k
)T

}
≥ J−1

k , (3.3)

where the inequality means that the matrix difference Pk |k −J−1
k

is positive semidefinite.
The inverse of the CRLB denoted by Jk is named Fisher information matrix (FIM). If
the estimator covariance attains the CRLB the estimator is called efficient.

3.1.1 Visualization of the Cramér-Rao Lower Bound

Geometrically, the covariance matrix Pk |k can be illustrated by a concentration el-
lipse [Sch91,Bec92]

∆xT
k P−1

k |k ∆xk = κ , (3.4)
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3.1 Cramér-Rao Lower Bound

CRLB estimation errors
sample mean sample cov

Figure 3.2: Visualization of estimation errors showing an unbiased and nearly efficient estimator
since the sample covariance attains the CRLB and the sample mean is zero. Also refer
to Chapter 6, © 2014 IEEE.

where ∆xk = xk − x̂k |k denotes the estimation error and κ is a constant determining the
size of the enclosed volume V with

V = Vd

√
det

(
κ Pk |k

)
, (3.5)

where Vd is the volume of the d-dimensional unit sphere. Analogously, the CRLB can
be visualized by a concentration ellipse as follows:

∆xT
k Jk ∆xk = κ , (3.6)

The ellipses are depicted in Fig. 3.1. One can see that theCRLBconcentration ellipse (3.6)
completely lies inside the covariance concentration ellipse (3.4) which is the geometric
interpretation of the CR inequality Pk |k ≥ J−1

k
(3.3). The FIM defines the smallest

concentration ellipse that can be achieved for any consistent estimator.

If an estimator is evaluated in several (for example hundreds of) Monte Carlo runs,
the distribution of the estimates and, since it is an additive relation, equivalently the
distribution of the estimate errors forming its sample covariance tends to the covariance
of the estimate. If the estimator is efficient, the covariance is equal to the CRLB. If
the estimator is unbiased, the mean of the estimation error is zero. Fig. 3.2 shows the
distribution of estimation errors after 500 Monte Carlo runs. It turns out to be a nearly
unbiased and efficient estimator for two parameters since the sample covariance is very
similar to the CRLB and the sample mean is zero. This illustration is borrowed from the
results in Chapter 6. Refer to that chapter for further details.
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3.1.2 Derivation of the Cramér-Rao Lower Bound

In order to derive the CRLB based on all past information, we have to consider a
sequence of target states: Let X̂k |k be an unbiased estimate of the target state sequence
(or trajectory) {x0,x1, . . . ,xk } identified by the stacked vector

X0:k =
[
xT

0 ,x
T
1 , . . . ,x

T
k

]T
∈ R(k+1)d (3.7)

based on the measurement sequence Z1:k . Then the covariance matrix of X̂k |k has a
CRLB given by the following expected value:

E
{(

X0:k − X̂k |k

) (
X0:k − X̂k |k

)T
}
≥ J−1(X0:k ) . (3.8)

In [RAG04], J is called trajectory information matrix and has shape (k +1)d ×(k +1)d.
It is defined as [TMN98]:

J(X0:k ) = E
{(
∇X0:k log p (Z1:k |X0:k )

) (
∇X0:k log p (Z1:k |X0:k )

)T
}

(3.9)

or equivalently as [VT68,BSLK01]

J(X0:k ) = −E
{
∇X0:k

(
∇X0:k log p (Z1:k |X0:k )

)T
}
. (3.10)

Here, ∇X0:k is the first-order partial derivative operator with respect to X0:k defined as

∇X0:k =

[
∂

∂x0
, . . . ,

∂

∂xk

]T
(3.11)

with dimension (k +1)d. Furthermore, p (Z1:k |X0:k ) is the trajectory likelihood function
which is related to the single-state likelihood function p(zk |xk ) by [Tay79]

p (Z1:k |X0:k ) = p(x0) ·
k∏
j=1

p(zj |xj ) . (3.12)

Note that the likelihood (3.12) is used in (3.9) and (3.10) instead of the joint probability
distribution p (X0:k,Z1:k ). This is allowed due to the deterministic trajectory [RAG04]
or non-random parameter [VT68] assumption. If no prior p(x0) is given, we can either
omit p(x0) or set p(x0) = 1 which is algebraically equivalent. Taking the logarithm of
both sides, we can express the log-likelihood as

log p (Z1:k |X0:k ) = log p(x0) +
k∑
j=1

log p(zj |xj ) . (3.13)
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3.1 Cramér-Rao Lower Bound

Due to the Gaussian assumptions, the likelihood p(zk |xk ) is given as in (3.2) and its
logarithm, using the definition of a Gaussian (2.4), by

log p(zk |xk ) = ck −
1
2
(zk − hk (xk ))T R−1

k (zk − hk (xk )) (3.14)

with a constant ck . If a prior p(x0) is given, we assume that x0 is Gaussian distributed
with mean µ0 and covariance matrix P0. Hence, p(x0) = N(x0, µ0,P0) and thus we
have,

∂ log p(x0)

∂x0
=

∂

∂x0

(
c0 −

1
2

(
x0 − µ0

)T P−1
0

(
x0 − µ0

) )
= −P−1

0
(
x0 − µ0

)
. (3.15)

Otherwise, if no prior is given, we can set ∂ log p(x0)/∂x0 = 0. For k > 0, we have

∇X0:k log p (Z1:k |X0:k ) =

[
∂ log p (Z1:k |X0:k )

∂x1
, . . . ,

∂ log p (Z1:k |X0:k )

∂xk

]T
. (3.16)

Due to the sum in (3.13), the components of (3.16) are given by

∂ log p (Z1:k |X0:k )

∂xi
=

k∑
j=1

(
∂hj (xj )
∂xi

)T
R−1
j

(
zj − hj (xj )

)
(3.17)

for i = 1, . . . , k.

3.1.3 Computation of the Fisher Information Matrix

In [VT68, Tay79] the FIM for the state xk at time tk is given by the d × d right-lower
block of J(X0:k ) denoted by Jk , i.e.,

Jk = E

{(
∂ log p (Z1:k |X0:k )

∂xk

) (
∂ log p (Z1:k |X0:k )

∂xk

)T
}
. (3.18)

Inserting (3.17) and (3.15) into (3.18) and taking the expectation yields

Jk =
(
∂x0
∂xk

)T
P−1

0
∂x0
∂xk
+

k∑
j=1

(
∂hj (xj )
∂xk

)T
R−1
j

∂hj (xj )
∂xk

, (3.19)

where the first term is zero if no prior is given. The partial derivatives in (3.19) with
respect to time tk are calculated by means of the chain rule as follows:

∂hj (xj )
∂xk

=
∂hj (xj )
∂xj

·
∂xj
∂xk

. (3.20)
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Following the deterministic state transition equation (3.1a), we define F̃k as

F̃k =
∂fk (xk )
∂xk

=
∂xk+1
∂xk

=

(
∂xk
∂xk+1

)−1
=

(
F̃−1
k

)−1
. (3.21)

Hence, the backward state transition from time tk+1 to time tk is expressed by matrix
F̃−1
k
. For the state transition from an arbitrary time tj to time tk with tj ≤ tk , we can

apply the chain rule,

∂xj
∂xk
=

∂xj
∂xj+1

· · ·
∂xk−1
∂xk

= F̃−1
j · · · F̃

−1
k−1 , (3.22)

where this decomposition is also known as continuity property [Tay79]. Subsequently,
we define Φ̃(tj, tk ) for tj ≤ tk as

Φ̃(tj, tk ) =
k−1∏
i=j

F̃−1
i =

∂xj
∂xk

, (3.23)

which is similar to the definition of Φ in Chapter 2. Finally, by letting

H̃j =
∂hj (xj )
∂xj

, (3.24)

we can reformulate the FIM (3.19) as

Jk =
k∑
j=0
Φ̃(tj, tk )

TH̃T
j R−1

j H̃jΦ̃(tj, tk ) (3.25)

by explicitly choosing H̃0 andR0 so that H̃T
0 R−1

0 H̃0 = P−1
0 . The FIMwill also play a role

for observability aspects in Chapter 4 since it is strongly connected to the observability
Gramian which can be used to figure out whether a system is observable.

If the dimensionality of the state vector remains constant – and that is important, since for
piecewise motion the state vector dimension increases, see Subsection 2.4.3 – a recursive
FIM update formula can easily be deduced from (3.25):

Jk =
(
F̃−1
k−1

)T
Jk−1F̃−1

k−1 + H̃T
kR−1

k H̃k . (3.26)

If the state vector dimension is not constant, (3.25) has to be used to calculate the FIM.
All summands have to be re-evaluated using the current state vector dimension. That
means, the advantages of recursive calculation, e.g. less computational burden, do not
apply.
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3.2 Incorporating Piecewise Motion Models into the CRLB

As an alternative to (3.26), one can calculate the FIM by denoting Jk by the inverse of a
covariance matrix of an efficient filter, P−1

k |k
, and by applying the matrix inversion lemma

P−1
k |k =

(
F̃k−1Pk−1 |k−1F̃T

k−1

)−1
+ H̃T

kR−1
k H̃k , (3.27)

which is algebraically identical to the inverse covariance update of the extended Kalman
filter (EKF) if no process noise is assumed [VTB07], see also Chapter 5.

In the following Section 3.2, we will derive a CRLB for unknown maneuver change times
tackling the motion part of the FIM (3.25). How to incorporate bearing, bearing rate,
and range measurements into (3.25) is explained in Section 3.3.

3.2 Incorporating Piecewise Motion Models into the CRLB

In this section, details about incorporating both piecewise motion models introduced
in Chapter 2 are outlined. Precisely, the calculation of the state transition matrix
Φ̃(tj, tk ) (3.23) is performed by means of applying the chain rule under the condi-
tions of an increasing state vector dimension due to the maneuver change times. These
calculations have first been established by Becker [Bec05a] for the piecewise curvilinear
motion model. Here, it is extended to the piecewise inertial motion model. Also refer to
the own papers [OH10,HO11b,HOK14] as well as the thesis [Ois14] for a reference on
the following derivations.

3.2.1 Piecewise Deterministic Inertial Motion

In order to compute the CRLB for piecewise deterministic inertial motion introduced
in Subsection 2.4.4, we recall the (4 + 3M)-dimensional target state (2.29) assuming M
maneuver change times:

xk =
[
xk, yk,vT, t̃T

]T
(3.28)

with position rk = [xk, yk ]T, velocities

v = [ Ûx0, Ûy0, Ûx1, Ûy1, . . . , ÛxM , ÛyM ]
T , (3.29)

and maneuver change times
t̃ = [t̃1, . . . , t̃M ]T . (3.30)

Due to the maneuver change times, we have to express the state transition Φ̃(tj, tk ) from
time ti to a reference time tk described by the Jacobian matrix ∂xi/∂xk (cf. (3.22))
with respect the maneuver change times enclosed in the vector t̃ as well as the segment
velocities in vector v. Since we assume the reference time tk to be the current time,
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t0 tk

t̃M

ti

a) b) c)b)t0 tk

t̃Mt̃M−1t̃m−1 t̃m t̃m+1

ti

Figure 3.3: Relative displacement of time ti and reference time tr. Upper case: ti and tk lie in
the same maneuver segment. Lower case: the segment containing ti occurs before the
segment containing tk , © 2014 IEEE.

the relative displacement of ti and tk regarding the maneuver change times makes it
necessary to distinguish between two different cases, see Fig. 3.3:

1) ti and tk lie in the same maneuver segment, and

2) the segment containing ti occurs before the segment containing tk .

Considering both cases, the structure of the (4+3M)×(4+3M) Jacobian matrix ∂xi/∂xk
is given by

Φ̃(ti, tk ) =
∂xi
∂xk
=



∂ri
∂rk
= I2

∂ri
∂v

∂ri
∂ t̃
= 0

∂v
∂rk
= 0

∂v
∂v
= I2M+2

∂v
∂ t̃
= 0

∂ t̃
∂rk
= 0

∂ t̃
∂v
= 0

∂ t̃
∂ t̃
= IM


. (3.31)

Case 1) In case of t̃M ≤ ti ≤ tk , the measurement time ti and the reference time tk are
in the same maneuver segment. Here, no maneuver change points have to be considered.
Thus,

∂xi
∂xk
=


I2 ∂ri/∂v ∂ri/∂ t̃

0 I2M+2 0

0 0 IM

 . (3.32)
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3.2 Incorporating Piecewise Motion Models into the CRLB

In the above matrix, we use appropriately dimensioned zero block matrices. The only
non-zero or non-identity block matrix is the Jacobian matrix ∂ri/∂v given by

∂ri
∂v
=

[
02×2M

∂ri
∂ ÛxM

∂ri
∂ ÛyM︸           ︷︷           ︸

=(ti−tk )I2, see Appendix A.1.

]
∈ R2×(2M+2) . (3.33)

For the special case of M = 0 we obtain

∂xi
∂xk
= Φ(ti, tk ) . (3.34)

So, this Jacobian matrix is equal to the state transition matrix for inertial motion (2.19).

For Case 2 we assume that ti ≤ t̃m ≤ t̃m+1 ≤ t̃M ≤ tk . That means, we consider several
maneuver change times, see also Fig. 3.3. By applying the chain rule similar to (3.22),
the Jacobian matrix can be written as

∂xi
∂xk
=

∂xi
∂xm︸︷︷︸
2a)

∂xm
∂xm+1

· · ·
∂xM−1
∂xM︸                  ︷︷                  ︸

2b)

∂xM
∂xk︸︷︷︸
2c)

. (3.35)

It can be recognized that the above equation contains three qualitatively different classes
of matrices which will be handled in the subsequent cases 2a), 2b), and 2c).

Case 2a) ∂xi/∂xm is the Jacobian matrix describing the transition from ti to the first
maneuver change time t̃m. It has the following form

∂xi
∂xm

=


I2 ∂ri/∂v ∂ri/∂ t̃

0 I2M+2 0

0 0 IM

 (3.36)

with appropriately dimensioned zero block matrices. The Jacobian matrix ∂ri/∂v is
obtained by

∂ri
∂v
=

[
0 . . . 0

∂ri
∂ Ûxm−1

∂ri
∂ Ûym−1︸                ︷︷                ︸

=(ti−t̃m)I2

0 . . . 0
]
∈ R2×(2M+2) , (3.37)
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where 0 ∈ R2×2. For ∂ri/∂ t̃ we have

∂ri
∂ t̃
=

[
0 . . . 0

∂ri
∂ t̃m

0 . . . 0
]
∈ R2×M (3.38)

with 0 ∈ R2×1. Here, ∂ri/∂ t̃m = − [ Ûxm−1, Ûym−1]
T holds, see Appendix A.1.

Case 2b) ∂xm/∂xm+1 is the Jacobian matrix describing the transition from maneuver
change time t̃m to the following maneuver change time t̃m+1. It can be written as

∂xm
∂xm+1

=


I2 ∂rm/∂v ∂rm/∂ t̃

0 I2M+2 0

0 0 IM

 (3.39)

with appropriately dimensioned zero block matrices where ∂rm/∂v is denoted as

∂rm
∂v
=

[
0 . . . 0

∂rm
∂ Ûxm

∂rm
∂ Ûym︸          ︷︷          ︸

=(t̃m−t̃m+1)I2

0 . . . 0
]
∈ R2×(2M+2) (3.40)

with 0 ∈ R2×2. The Jacobian matrix ∂rm/∂ t̃ is given by

∂rm
∂ t̃
=

[
0 . . . 0

∂rm
∂ t̃m

∂rm
∂ t̃m+1

0 . . . 0
]
∈ R2×M , (3.41)

where 0 ∈ R2×1. Here, ∂rm/∂ t̃m = −∂rm/∂ t̃m+1 = [ Ûxm, Ûym]T holds.

Case 2c) Finally, ∂xM/∂xk is the Jacobian matrix describing the transition from the
last maneuver change time t̃M to the reference time tk . It is given by

∂xM
∂xk

=


I2 ∂rM/∂v ∂rM/∂ t̃

0 I2M+2 0

0 0 IM

 (3.42)

with appropriately dimensioned zero block matrices. The Jacobian matrix ∂rM/∂v is
given by

∂rM
∂v
=

[
02×2M

∂rM
∂ ÛxM

∂rM
∂ ÛyM︸           ︷︷           ︸

=(t̃M−tk )I2

]
∈ R2×(2M+2) . (3.43)
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3.2 Incorporating Piecewise Motion Models into the CRLB

Furthermore, for ∂rM/∂ t̃ we have

∂rM
∂ t̃
=

[
02×1 . . . 02×1

∂rM
∂ t̃M

]
∈ R2×M , (3.44)

where ∂rM/∂ t̃M = [ ÛxM , ÛyM ]T.

3.2.2 Piecewise Deterministic Curvilinear Motion

Here, we recall the target state for piecewise deterministic curvilinear motion (2.37) from
Subsection 2.4.5 considering M maneuver change times:

xk =
[
xk, yk, vk, ϕk,aT, t̃T

]T
∈ R(6+3M)×1 (3.45)

with accelerations
a =

[
at,0,an,0, . . . ,at,M ,an,M

]T (3.46)

and maneuver change times
t̃ = [t̃1, . . . , t̃M ]T . (3.47)

Analogous to the previous subsection, the Jacobian matrix ∂xi/∂xk has to be calculated
with respect to several target maneuver change times in order to compute the CRLB. We
define yk as vector comprising the Cartesian position and polar velocity components of
the curvilinear motion state xk

yk = [xk, yk, vk, ϕk ]T . (3.48)

Since here, we also assume the reference time tk to be the current time, the relative
displacement of ti and tk regarding themaneuver changesmake it necessary to distinguish
between two different cases also here (cf. Subsection 3.2.1), see Fig. 3.3:

1) ti and tk are in the same maneuver segment, and

2) the segment containing ti lies before the segment containing tk .

For both cases, the (6+3M) × (6+3M) Jacobian matrix ∂xi/∂xk has the following form

Φ̃(ti, tk ) =
∂xi
∂xk
=



∂yi
∂yk
= I4

∂yi
∂a

∂yi
∂ t̃
= 0

∂a
∂yk
= 0

∂a
∂a
= I2M+2

∂a
∂ t̃
= 0

∂ t̃
∂yk
= 0

∂ t̃
∂a
= 0

∂ t̃
∂ t̃
= IM


. (3.49)
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Case 1) If t̃M ≤ ti ≤ tk , which means the measurement time ti and the reference time
tk are in the same maneuver segment, no maneuver changes have to be considered. Thus,

∂xi
∂xk
=


I4 ∂yi/∂a ∂yi/∂ t̃

0 I2M+2 0

0 0 IM

 (3.50)

with appropriately dimensioned zero block matrices. The partial derivative ∂yi/∂a is
obtained by

∂yi
∂a
=

[
04×2M

∂yi
∂at,M

∂yi
∂an,M

]
∈ R4×(2M+2) . (3.51)

See Appendix A.2 for the partial derivatives ∂yi/∂yk , ∂yi/∂at,M , and ∂yi/∂an,M .
These derivations are calculated by replacing t with ti , at with at,M , and an with an,M
in the equations given there.

For Case 2 we assume that ti ≤ t̃m ≤ t̃m+1 ≤ t̃M ≤ tk . Hence, we consider several ma-
neuver changes, see Fig. 3.3. Analogously to Subsection 3.2.1 we have three qualitatively
different classes of matrices recalling (3.35):

∂xi
∂xk
=

∂xi
∂xm︸︷︷︸
a)

∂xm
∂xm+1

· · ·
∂xM−1
∂xM︸                  ︷︷                  ︸

b)

∂xM
∂xk︸︷︷︸
c)

. (3.52)

Case 2a) ∂xi/∂xm is the Jacobian matrix describing the transition from ti to the first
maneuver change time t̃m. It has the same form as matrix (3.49) and is given by

∂xi
∂xm

=


I4 ∂yi/∂a ∂yi/∂ t̃

0 I2M+2 0

0 0 IM

 (3.53)

with appropriately dimensioned zero block matrices. For the Jacobian matrix ∂yi/∂a we
have

∂yi
∂a
=

[
0 . . . 0

∂yi
∂at,m−1

∂yi
∂an,m−1

0 . . . 0
]
∈ R4×(2M+2) (3.54)

with 0 ∈ R4×2. Furthermore, ∂yi/∂ t̃ can be expressed as

∂yi
∂ t̃
=

[
0 . . . 0

∂yi
∂ t̃m

0 . . . 0
]
∈ R4×M , (3.55)
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where 0 ∈ R4×1. The above partial derivatives are given in Appendix A.2. In order to
perform these derivations, one has to replace yk by ym, tk by t̃m, t by ti , at by at,m−1,
and an by an,m−1.

Case 2b) ∂xm/∂xm+1 is the Jacobian matrix describing the transition from maneuver
change time t̃m to the following maneuver change time t̃m+1. It can be written as

∂xm
∂xm+1

=


I4 ∂ym/∂a ∂ym/∂ t̃

0 I2M+2 0

0 0 IM

 (3.56)

with appropriately dimensioned zero block matrices. The partial derivative of ∂ym/∂a ∈
R4×(2M+2) is given by

∂ym
∂a
=

[
0 . . . 0

∂ym
∂at,m

∂ym
∂an,m

0 . . . 0
]

(3.57)

with 0 ∈ R4×2. For ∂ym/∂ t̃ ∈ R4×M we have

∂ym
∂ t̃
=

[
0 . . . 0

∂ym
∂ t̃m

∂ym
∂ t̃m+1

0 . . . 0
]

(3.58)

with 0 ∈ R4×1. Also here, Appendix A.2 contains the above partial derivatives. The
current replacement rules are: substitute yk by ym+1, tk by t̃m+1, t by t̃m, at by at,m, and
an by an,m.

Case 2c) Finally, ∂xM/∂xk is the Jacobian matrix describing the transition from the
last maneuver change time t̃M to the reference time tk . It is given by

∂xM
∂xk

=


I4 ∂yM/∂a ∂yM/∂ t̃

0 I2M+2 0

0 0 IM

 (3.59)

with appropriately dimensioned zero blockmatrices. Here, the partial derivative ∂yM/∂a
is denoted as

∂yM
∂a
=

[
04×2M

∂yM
∂at,M

∂yM
∂an,M

]
∈ R4×(2M+2) . (3.60)
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For ∂yM/∂ t̃ we have

∂yM
∂ t̃
=

[
04×1 . . . 04×1

∂yM
∂ t̃M

]
∈ R4×M . (3.61)

When performing the above partial derivatives using Appendix A.2, one has to substitute
t by t̃M , at by at,M , and an by an,M .

3.3 Incorporating Measurements into the CRLB

We recall the measurement functions for bearing (2.12) and bearing rate measure-
ments (2.14),

α(xk ) = arctan
∆xk
∆yk

(3.62a)

Ûα(xk ) =
∆ Ûxk∆yk − ∆ Ûyk∆xk
∆x2

k
+ ∆y2

k

, (3.62b)

where ∆ denotes the respective state component’s difference from the target to the ob-
server, and define a range measurement function as follows:

ρ(xk ) =
√
∆x2

k
+ ∆y2

k
. (3.63)

Recapping the FIM equation (3.25)

Jk =
k∑
j=0
Φ̃(tj, tk )

TH̃T
j R−1

j H̃jΦ̃(tj, tk ) , (3.64)

the measurement matrix H̃j (3.24) is given by the derivative of the measurement function
h(·) including all three measurement types with respect to xj :[

∂α(xj )
∂xj

,
∂ Ûα(xj )
∂xj

,
∂ρ(xj )
∂xj

]T
, (3.65)

where
h(xj ) =

[
α(xj ), Ûα(xj ), ρ(xj )

]T . (3.66)

Note that the partial derivatives of the measurement functions are outlined in Ap-
pendix A.3.

We further assume that the measurement errors are uncorrelated leading to a mea-
surement covariance matrix R = diag

(
σ2
α, σ

2
Ûα, σ

2
ρ

)
with the individual measurement
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variances on its diagonal. With this, the inverse covariance matrix is given by R−1 =

diag
(
σ−2
α , σ−2

Ûα , σ−2
ρ

)
. Due to the diagonal structure of R, we can write

H̃T
j R−1H̃j = Dαj + D Ûαj + Dρ

j
(3.67)

with

Dαj =
1
σ2
α

(
∂α(xj )
∂xj

)T ∂α(xj )
∂xj

(3.68)

and D Ûα
j
and Dρ

j
defined analogously.

Due to the sum in (3.67), the FIMs for the measurement types can be calculated inde-
pendently and added up to an overall FIM. This also holds for arbitrary combinations of
the measurement types leading to

Jk =


Jα(xk ) for bearings-only (BO)
Jα(xk ) + J Ûα(xk ) for bearing and bearing rate (B-BR)
Jα(xk ) + Jρ(xk ) for bearing and range (BR)

, (3.69)

which will be the three cases investigated in a simulation study in Section 6.1.

Finally, the resulting FIM incorporating the complex piecewise motion models as well as
nonlinear bearing, bearing rate, and range measurements follows the following scheme
according to (3.20) and (3.25)

Jψ(xk ) =
1
σ2
ψ

k∑
j=1

(
∂ψ(xj )
∂xj

∂xj
∂xk

)T ∂ψ(xj )
∂xj︸  ︷︷  ︸

see also Appendix A.3

∂xj
∂xk︸︷︷︸

see Section 3.2

(3.70)

for ψ = {α, Ûα, ρ}. Note that the applicability of the recursive FIM update formula (3.26)
is not possible at this time, but remains an open question. This is since the state vector
dimension increases with each maneuver change and thus the FIM dimension increases,
too.

3.4 Summary of the Chapter

This chapter reflects the central theme of bearings-only tracking of maneuvering targets.
A performance bound involving the piecewise motion models introduced in Chapter 2
is needed. For this reason, the Cramér-Rao lower bound (CRLB) which is the best
achievable error performance that can be attained for any estimator has been derived,
initially in a general manner. It has been mentioned and illustrated that an estimator
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is called efficient if it attains the CRLB. Based on this, the CRLB has been derived
in a rigorous manner for the piecewise motion models. The challenge has been the
non-constant dimensionality of the state vector since it increases with the number of
maneuver segments. The resulting formula for the CRLB (3.70) gives information about
the maximum achievable performance of all segment velocities or accelerations as well
as maneuver change times which is the main result of this chapter and a fundamental
contribution of this thesis.
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4 Observability in Heterogeneous
Bearings-Only Tracking

This chapter introduces the concept of observability. It means that a state can be de-
termined from measurements, see for example [Che99]. Especially for bearings-only
tracking an analysis of observability is inevitable since angular measurements do not
provide any range information. In this context, only if the measurements are provided
spatially distributed by multiple dislocated sensor platforms or temporally distributed by
a single, moving sensor platform, observability can be ensured. In Fig. 4.1, an illustration
of the problem is given: If observer and target are both moving with constant velocity, an
infinite number of compatible target trajectories is possible based on the given bearings-
only measurements meaning the target is not observable. If the observer is performing a
maneuver, only one target trajectory is possible which means the target is observable.

Nevertheless, when focussing on heterogeneous sensors, different signal propagation
velocities can be exploited. For example, electronic and acoustic sensors can be used in
conjunction to localize objects emitting electromagnetic waves and sound, see also the
practical example in Section 1.4 and the results in Chapter 6. Thus, this chapter serves as
the theoretical foundation for this example and is based on the own work [HK16], which
has been inspired by [YNBS15]: They present a tracking method for heterogeneous
bearings-only tracking, but no observability analysis.

Fundamental observability criteria are recapped in Section 4.1 for linear continuous-time
systems as well as linear and nonlinear discrete-time systems. This section serves as
educational introduction into observability in order to understand the following anal-
ysis. Nonlinear continuous-time systems are omitted, but can be studied for example
in [KET73,BZ83]. Also the strong connection to the Cramér-Rao lower bound is pointed
out, see also [Far99, Jau07] meaning that a non-invertible FIM is equivalent to non-
observability which is very easy to see after having defined the observability Gramian.

In order to complete this chapter, these insights are applied in Section 4.2 for a hetero-
geneous passive sensor setup involving electromagnetic detection and acoustic bearing
sensors. The observability is studied, even for the case that the signals are not emitted
simultaneously. It is shown that observability can be established and target maneuvers are
not necessary. Finally, a numerical analysis of the Cramér-Rao lower bound is performed
to verify the results.
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(a)

observer

choice of 3 possible target trajectories

(b)

maneuvering observer

only 1 possible target trajectory

Figure 4.1: Observability for bearings-only tracking with moving observer and target. (a) No ob-
servability: If observer and target are both moving with constant velocity, an infinite
number of compatible target trajectories is possible based on the given bearings-only
measurements, three of them are depicted. (b) If the observer is performing a maneu-
ver, only one target trajectory is possible.

4.1 Observability Criteria

In this section, wewill recall the basics of several observability criteria in continuous-time
as well as discrete-time systems which are strongly connected.

4.1.1 Linear Continuous-time Systems

Consider the noise-free, input-free, continuous-time linear system

Ûx(t) = Ax(t), x(t0) = x0 (4.1a)
z(t) = H(t)x(t) (4.1b)

with state x(t) ∈ Rn, measurement z(t) ∈ Rp , system matrix A ∈ Rn×n, and measure-
ment matrix H(t) ∈ Rp×n. We call the system observable on [t0, t1] if any initial state
x(t0) = x0 can be uniquely determined from z(t) on [t0, t1] [Che99]. The knowledge of
x(t0) is sufficient to determine x at any time t. Solving the differential equation (4.1a)
yields

x(t) = eA(t−t0)x(t0) = Φ(t, t0)x(t0) . (4.2)

with state transition matrixΦ(t, t0), as defined in Chapter 2. Furthermore, define a matrix
M(t) ∈ Rp×n as [Son96]

M(t) = H(t)Φ(t, t0) . (4.3)
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4.1 Observability Criteria

Especially, a relation between z(t) and x(t0) is then given by

z(t) =M(t)x(t0) . (4.4)

Observability Gramian It can be proven [Che99, JP96] that system (4.1a)-(4.1b) is
observable on [t0, t1] if and only if the observability Gramian

B(t1, t0) =
∫ t1

t0
M(t)TM(t) dt

=

∫ t1

t0
Φ(t, t0)

TH(t)TH(t)Φ(t, t0) dt
(4.5)

is positive definite for any t1 > t0. This equation is used by Becker [Bec93] as well as
Jauffret and Pillon [JP96]. If M(t) is identified as matrix-valued function, the observ-
ability Gramian is formed by the inner product of functions over the domain [t0, t1]. In
order that B(t1, t0) is positive definite, the following must hold:

∀ξ , 0 : ξTB(t1, t0)ξ > 0 . (4.6)

In [JP96], an equivalent expression is formulated:

∀ξ , 0 :
∫ t1

t0
| |M(t)ξ | |2 dt > 0 . (4.7)

To let this integral be greater than zero, it is sufficient that there is one t ∈ [t0, t1]
for which M(t)ξ is non-zero (for all ξ , 0). This leads directly to the following
Theorem [Bec93, JP96]:

Theorem 1 System (4.1a)-(4.1b) is observable on [t0, t1] if and only if for any n-
dimensional vector ξ , 0, there exists some t ∈ [t0, t1] such that

M(t)ξ , 0 . (4.8)

Note that Theorem 1 makes a statement on observability on the complete interval [t0, t1].
If observability is established at time tm with t0 < tm < t1, e.g. by an observer
maneuver, this criterion is not suitable: It would result in non-observability which is
correct considering the complete interval [t0, t1].

An equivalent formulation of the theorem is its contrapose [JP96]:
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Theorem 2 System (4.1a)-(4.1b) is observable on [t0, t1] if and only if the following
statement holds:

{∀t ∈ [t0, t1] : M(t)ξ = 0, ξ = const.} ⇒ {ξ = 0} (4.9)

Note that ξ must be constant for any t, i.e. it must not depend on t. In other words,
Theorem 2 means that the system is observable if and only if the columns in M(·)
are linearly independent over [t0, t1] [Kai80]. If only stationary targets are considered,
Φ(t, t0) = In Thus, Φ can, as well as the time t, be omitted in above theorems.

Observability Matrix Consider a time-invariant system, i.e. H(t) = H = const.
in (4.1b). Then, an alternative approach to observability is the following: Remem-
ber that we want to uniquely determine x(t0) from all the measurements z(t) on [t0, t1].
For continuous-time systems, we can apply a technique which involves repeatedly taking
the derivatives of the measurement equation (4.1b), which corresponds to a time shift in
the discrete-time domain (see Subsection 4.1.2):

z(t0) = Hx(t0)
Ûz(t0) = HÛx(t0) = HAx(t0)

Üz(t0) = HÜx(t0) = HA2x(t0)
...

z(n−1)(t0) = Hx(n−1)(t0) = HAn−1x(t0)

. (4.10)

The aforementioned equations can be transformed to matrix form as

Z(t0) = Onx(t0) (4.11)

with

Z(t) =



z(t)

Ûz(t)

Üz(t)
...

z(n−1)(t)


and On =



H

HA

HA2

...

HAn−1


. (4.12)

Here, On ∈ R(np)×n is called continuous-time observability matrix . Since

x(t0) =
(
OT
nOn

)−1
OT
nZ(t0) , (4.13)
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we conclude that x(t0) can be uniquely determined from measurements z(t0) if and
only if OT

nOn has full rank, i.e. rankOn = n. This statement is equivalent to Theo-
rem 1 [Che99] using the observability Gramian. The smallest number ν that satisfies
rankOν = rankOν+1 is called observability index [Che99].

4.1.2 Linear Discrete-time Systems

In contrast to the previous subsection, consider now the following discrete-time, noise-
free, input-free linear system:

x(tk ) = xk = Φ(tk, tk−1)xk−1 (4.14a)
z(tk ) = zk = H(tk )xk (4.14b)

with xk ∈ Rn, zk ∈ Rp , Φ ∈ Rn×n, and H ∈ Rp×n. Based on Brogan [Bro74],
Le Cadre and Jauffret [LCJ97] use this discrete-time formulation for their observ-
ability analysis of a bearings-only TMA setting, whereas Goshen-Meskin and Bar-
Itzhack [GMBI92] use it more generally to point out the connection between observability
and estimability.

Observability Matrix Following [Che99,LCJ97,GMBI92] we can, analogous to Sub-
section 4.1.1, formulate an equation:

Zk = Okx0 (4.15)

with ZT
k
=

[
zT

0 , . . . ,z
T
k

]
and the (k + 1)p × n-dimensional discrete-time observability

matrix

Ok =



M(t0)

M(t1)
...

M(tk )


=



H(t0)

H(t1)Φ(t1, t0)
...

H(tk )Φ(tk, t0)


, (4.16)

which corresponds to stacking matrices M(·) (4.3) evaluated at discrete time scans. The
difference to the procedure in Subsection 4.1.1 is that we perform time shifts here which
correspond to the repeated differentiation in the continuous-time domain. Also here, x0
can be uniquely determined from Zk if and only if rankOk = n, where n is the state
dimension and k ≥ n. In this case, the aforementioned discrete-time linear system is
observable. The observability index is defined exactly as in Subsection 4.1.1, i.e. it is
the smallest number ν for which rankOν = rankOν+1. In other words, it answers the
question how many measurements are at least needed to ensure observability.
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Observability Gramian Also for the discrete-time case, an observability Gramian can
be found [GMBI92,Che99] given by

Bk =

k∑
j=0

M(tj )TM(tj )

=

k∑
j=0
Φ(tj, t0)

TH(tj )TH(tj )Φ(tj, t0) ,

(4.17)

which obviously is the discretized version of (4.5). Further examination reveals that
the Gramian can be constructed from the discrete-time observability matrix as standard
matrix inner product by

Bk = O
T
k Ok , (4.18)

cf. to functional inner product (4.5).

Connection to the Cramér-Rao Lower Bound To elucidate the connection to the
CRLB, consider the linear measurement equation (4.14b) and substitute the following
noisy measurement equation

z∗k = H(tk )xk + vk . (4.19)

Here, vk is white measurement noise which is assumed to be Gaussian distributed with
zero mean and covariance matrix Rk . According to the derivations in Chapter 3, the FIM
at time t0 based on the information up to time tk , denoted by J0 |k , is given by

J0 |k =
k∑
j=0
Φ(tj, t0)

TH(tj )TR−1
j H(tj )Φ(tj, t0) . (4.20)

Comparing (4.20) to (4.5), we can recognize that the FIM equals the observability
Gramian besides the measurement noise covariance Rk . One can easily prove that if Bk

is positive definite, then J0 |k is also positive definite and vice versa. Thus, the CRLB can
be used for an observability analysis. However, the noise-free FIM a.k.a. observability
Gramian is preferable since no noise has to be considered. A formal proof of the link
between FIM invertibility and observability is presented by Jauffret [Jau07].

4.1.3 Nonlinear Discrete-time systems

Now consider the discrete-time, noise-free, input-free nonlinear system:

xk = f(xk−1)

zk = h(xk )
(4.21)
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with state xk ∈ Rn, measurement zk ∈ Rp , state transition function f : Rn → Rn, and
measurement function h : Rn → Rp .

Observability matrix Similar to the linear observability matrix (4.16), we define an
observability mapHk : Rn → Rp(k+1) as

Hk (x) =



h(x)

h(f(x))

h(f(f(x)))
...

h(fk (x))


, (4.22)

so that Zk = Hk (x0). We can then say that system (4.21) satisfies the observability
rank condition at x0 if the rank of map Hk equals n [Son84,SG92]. Since the rank of a
nonlinear mapping at x0 is defined as the rank of its Jacobian at x0, we form the derivative
ofHk by applying the chain rule,

∂Hk

∂x
(x0) =



∂h
∂x (x0)

∂h
∂x (x1)

∂f
∂x (x0)
...

∂h
∂x (xk )

∂f
∂x (xk−1) · · ·

∂f
∂x (x0)


. (4.23)

Furthermore, (4.23) can also be expressed by

Õk =
∂Hk

∂x
(x0) =



H̃(t0)

H̃(t1)Φ̃(t1, t0)
...

H̃(tk )Φ̃(tk, t0)


, (4.24)

where
H̃(ti) =

∂h
∂x
(xi) (4.25)

and

Φ̃(tj, ti) =
j−1∏
`=i

∂f
∂x
(x`) (4.26)
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with i, j = 0, . . . , k. Thus, Õk is the linearized equivalent to the linear observability
matrix (4.16), see also [Fit72], and is denoted as nonlinear observability matrix. Sys-
tem (4.21) satisfies the observability rank condition at x0 if rank Õk = n.

Observability Gramian Analoguous to the linear case, an observability Gramian can
be found by

B̃k = Õ
T
k Õk

=

k∑
j=0
Φ̃(tj, t0)

TH̃(tj )TH̃(tj )Φ̃(tj, t0) .
(4.27)

Local Observability

In contrast to the linear case, satisfying the observability rank condition does not neces-
sarily imply observability [HK77] meaning h is a one to one mapping fromRn to h(Rn).
Fitts [Fit72] presents some conditions on Hk for which fulfilling the observability rank
condition and observability are equivalent. However, checking for these conditions seems
to be cumbersome. Hence, we stick to the local observability approach used by Hermann
and Krener [HK77] as well as Nijmeijer [Nij82]. First, we have to introduce the term
indistinguishability as follows: A pair of points x and x̄ is said to be indistinguishable if
they realize the same output, i.e. h(fk (x)) = h(fk (x̄)) for all k ∈ N0 [Nij82]. Let I(x) be
the set of indistinguishable points of x. Then, a system is observable at x if I(x) = {x}
and it is observable if I(x) = {x} for all x ∈ Rn. That means, a system is observable if
for any point, the only indistinguishable point is the point itself.

We define a system to be locally observable at x if there exists a neighborhood U of x
such that for any x̄ ∈ U, h(fk (x)) = h(fk (x̄)) for k = 0, . . . ,n implies x = x̄. The system is
locally observable if the aforementioned condition holds for each x ∈ Rn [Nij82]1. Intu-
itively, local observability means that one can instantaneously distinguish each point from
its neighbor. The advantage of local observability is that it leads to a simple algebraic test
which is the main statement of this subsection: If system (4.21) satisfies the observability
rank condition, i.e. rank Õk = n, then the system is locally observable [Nij82].

Further insights on local (and global) observability for nonlinear systems are also given
in [DM85,BM88]. An analysis of the extended Kalman filter (EKF) as a state observer
(which is the noise-free version of a filter) for non-linear systems is performed in [SG92,
RGYU99, SS85]. These papers reveal further properties of nonlinear observability and
also a strong connection to the EKF, cf. with the connection of CRLB and EKF in
Chapter 3.
1 Note that the terms are not unique: Nijmeijer [Nij82] defines this as strongly locally observable, whereas
Hermann and Krener [HK77] use the term locally weakly observable. To keep things simple, we will stick to
locally observable here.
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Connection to the Cramér-Rao Lower Bound Altering the nonlinear measurement
equation from (4.21) with a white noise term vk which is Gaussian distributed, has zero
mean and covariance matrix Rk , i.e.

z∗k = h(xk ) + vk , (4.28)

and using the definition of the FIM (3.18), leads to a FIM for time t0 based on the
information up to time tk as follows:

J0 |k =
k∑
j=0
Φ̃(tj, t0)

TH̃(tj )TR−1
j H̃(tj )Φ̃(tj, t0) , (4.29)

which is structurally equivalent to the FIM for the linear case (4.20). Here, H̃ and Φ̃ are
the partial derivatives of h and f, respectively, as given in (4.25) and (4.26). Analogous
to the linear case, the observability Gramian (4.27) is the noise-free variant of the FIM2.

4.2 Observability Analysis Exploiting Different Signal
Propagation Velocities

The previous section 4.1 has provided a toolbox of observability criteria for linear and
nonlinear discrete-time problems. This section deals with applying these approaches to
practical scenarios involving acoustic bearing and electromagnetic detection sensors so
that different signal propagation velocities are exploited. We consider two cases: First, the
electromagnetic and the acoustic signal are emitted simultaneously and secondly, there
is a certain time, denoted as emission delay, between the emission of the electromagnetic
and the acoustic signal.

4.2.1 Acoustic and Electromagnetic Signal Emitted Simultaneously

Assume a stationary observer with an acoustic bearing and an electromagnetic detection
sensor at coordinates [xo, yo], see Fig. 4.2 for an illustration. Furthermore, the target
moves with constant speed along a deterministic trajectory xk = [x(tk ), y(tk ), Ûx, Ûy]T with
CV state transition matrix (cf. (2.19))

Φ(tk, tk−1) =


I2 (tk − tk−1)I2

02 I2

 . (4.30)

2 Also note the structural equivalence of the FIM to the covariance update step of the extended Kalman filter
(EKF) [RAG04] and the connection between EKF and nonlinear local observability pointed out by Song and
Grizzle [SG92].
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y

x

target trajectory

observer

te ts

signal

Figure 4.2: Schematic scenario for the case acoustic and electromagnetic signal emitted simultane-
ously: An acoustic and an electromagnetic signal are emitted from the moving target
at time te. The electromagnetic signal is received by the stationary observer at time te

and the acoustic signal at time ts, © 2016 IEEE.

te ts arrival time

te

emission time

em acoustic

τ

Figure 4.3: Time line illustration for the case acoustic and electromagnetic signal emitted simulta-
neously: An acoustic and an electromagnetic (em) signal are emitted from the moving
target at time te. The electromagnetic signal is received by the stationary observer at
time te and the acoustic signal at time ts, © 2016 IEEE.

At time te the target emits an acoustic and an electromagnetic signal which is received
at the observer at times ts and te, respectively. This is depicted in Fig. 4.3. We ignore
the electromagnetic signal speed (see also [YNBS15]) which is the speed of light, so
that emission time of the electromagnetic signal equals its arrival time. On the other
hand, the acoustic signal speed must be considered: It is denoted by c. Without loss of
generality, we assume that [xo, yo] = [0,0] in order to simplify calculations.
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Since the target has constant speed,
x(tk )

y(tk )

 =

x0

y0

 +

Ûx

Ûy

 tk (4.31)

holds with x0 = x(t0) and y0 = y(t0). Therefore, it is sufficient to estimate the target
state vector x0 = [x0, y0, Ûx, Ûy]T. A measurement batch zk = [α(tk ), τ(tk )]T consists of
an acoustic bearing α(tk ) and a time difference of arrival (TDoA) measurement τ(tk )
between the arrival times of the electromagnetic and the acoustic signal:

The acoustic bearing at time ts is given by

α(ts) = arctan
x(te) − xo(ts)

y(te) − yo(ts)
, (4.32)

which simplifies to

α(ts) = arctan
x(te)

y(te)
(4.33)

due to the assumption of a stationary observer at [0,0].

The time difference between acoustic signal emission time te and its arrival time ts,
which is also the measurement equation for the TDoA measurements, is given by

τ(ts) = ts − te =
r(te)

c
(4.34)

with r(te) denoting the distance between observer and target at time te, i.e.

r(te) =
√

x(te)2 + y(te)2 =
√
(x0 + Ûxte)2 + (y0 + Ûyte)2 . (4.35)

In terms of the acoustic signal arrival time ts, we have
x(te)

y(te)

 =

x0

y0

 +

Ûx

Ûy

 ts −


Ûx

Ûy


r(te)

c
. (4.36)

In order to form the nonlinear observability matrix according to (4.24), we have to
calculate the partial derivatives of α with respect to x0 leading to

∂α

∂x0
=

[
∂α

∂x0
,
∂α

∂y0
,
∂α

∂ Ûx
,
∂α

∂ Ûy

]
, (4.37)
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where
∂α

∂x0
(te) =

y(te)

r(te)2
∂α

∂y0
(te) = −

x(te)

r(te)2

∂α

∂ Ûx
(te) =

y(te)te

r(te)2
∂α

∂ Ûy
(te) = −

x(te)te

r(te)2

. (4.38)

with

The partial derivatives of the TDoA measurement equation (4.34) are expressed via the
partial derivatives of r since τ is proportional to r yielding

∂τ

∂x0
=

1
c

[
∂r
∂x0

,
∂r
∂y0

,
∂r
∂ Ûx
,
∂r
∂ Ûy

]
, (4.39)

where
∂r
∂x0
(te) =

x(te)

r(te)

∂r
∂y0
(te) =

y(te)

r(te)

∂r
∂ Ûx
(te) =

x(te)te

r(te)

∂r
∂ Ûy
(te) =

y(te)te

r(te)

. (4.40)

Assume two signal emissions at times te
0 and te

1 and thus two measurement batches,
[α(te

0), τ(t
e
0)] and [α(t

e
1), τ(t

e
1)]. We then create the following observability matrix:

Õ1 =


H̃(te

0)

H̃(te
1)Φ̃(t

e
1, t

e
0)

 (4.41)

with

H̃ =

∂α/∂x0

∂τ/∂x0

 ∈ R2×4 . (4.42)

With this, the observability matrix can also be expressed as

Õ1 =



∂α0
∂x0

∂α0
∂y0

∂α0
∂ Ûx

∂α0
∂ Ûy

∂τ0
∂x0

∂τ0
∂y0

∂τ0
∂ Ûx

∂τ0
∂ Ûy

∂α1
∂x0

∂α1
∂y0

∂α1
∂x0
∆t + ∂α1

∂ Ûx
∂α1
∂y0
∆t + ∂α1

∂ Ûy
∂τ1
∂x0

∂τ1
∂y0

∂τ1
∂x0
∆t + ∂τ1

∂ Ûx
∂τ1
∂y0
∆t + ∂τ1

∂ Ûy


, (4.43)
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y

x

target trajectory

observer 1 observer 2

te ta

em acoustic

Figure 4.4: Schematic scenario for the case acoustic and electromagnetic signal emitted with emis-
sion delay: An electromagnetic signal (em) is emitted from the moving target at time
te and an acoustic signal at time ta. Observer 1 carries an electromagnetic detection
sensor as well as an acoustic bearing sensor, whereas observer 2 only has an acoustic
bearing sensor, © 2016 IEEE.

where αj = α(te
j
), τj = τ(te

j
) ( j = 0,1), and ∆t = te

1 − te
0. Using (4.38) and (4.40), we

can identify Õ1 as matrix made up of the following four 2 × 2 submatrices:

Õ1 =


A0 A0te

0
A1 A1∆t + A1te

1

 . (4.44)

Since the lower left and lower right block of Õ1 commute, the determinant is given by

det Õ1 = det
[
A0

(
A1∆t + A1te

1

)
− A0te

0A1
]
= 4∆t2 det (A0) det (A1) (4.45)

The target state x0 is locally observable given two measurement batches iff Õ1 has full
rank 4, i.e. its determinant is non-zero. This is the case iff te

1 , te
0 and det Aj =

1
cr(te

j )
,

0 ( j = 0,1), which is always the case.

4.2.2 Acoustic and Electromagnetic Signal Emitted with Emission Delay

Now, assume two stationary observers at positions [xo, yo] = [0,0] and [xs, ys], re-
spectively. The first observer carries an acoustic bearing as well as an electromagnetic
detection sensor. Furthermore, the second observer is only equipped with a acoustic
bearing sensor. As in Subsection 4.2.1, the target travels with constant speed along a
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te to arrival time

te ta

emission time

em acoustic

δ

τo

Figure 4.5: Time line illustration for the case acoustic and electromagnetic signal emitted with
emission delay at observer 1: An electromagnetic signal (em) is emitted from the mov-
ing target at time te and an acoustic signal at time ta with emission delay δ. The elec-
tromagnetic signal is received by the stationary observer at time te and the acoustic
signal at time to, © 2016 IEEE.

deterministic trajectory so that the respective formulae also apply here. An illustration is
given in Fig. 4.4.

We assume that the electromagnetic signal is emitted by the target at time te and the
acoustic signal at time ta with time difference ta − te = δ, denoted as emission delay.
The acoustic signal is received by observer 1 located at [0,0] at time to and by observer 2
with coordinates [xs, ys] at time ts, see Fig. 4.5. Furthermore, the electromagnetic signal
is received by observer 1 at time te. Hence, ta (or equivalently δ) is unknown3 and must
be estimated. Note that we assume a constant delay δ.

The augmented target state to be estimated is then given by

x∗0 = [x0, y0, Ûx, Ûy, δ]
T = [x0, δ]

T . (4.46)

For the measurement equations for the acoustic bearings at the respective observers, we
obtain

αo(te) = arctan
x0 + Ûxta

y0 + Ûyta (4.47)

regarding observer 1 and

αs(te) = arctan
x0 + Ûxta − xs

y0 + Ûyta − ys (4.48)

3 However, we make extensive use of ta in the following. Simply see it as an abbreviation for te + δ.
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for observer 2. Furthermore, r (cf. (4.35)) can be expressed by

r(te) =
√
(x0 + Ûxta)2 + (y0 + Ûyta)2 . (4.49)

Similarly, s is given by

s(te) =
√
(x0 + Ûxta − xs)2 + (y0 + Ûyta − ys)2 . (4.50)

The partial derivatives of αo and αs are analogous to the equations in (4.38): For
∂αo/∂x0, replace te by ta. For ∂αs/∂x0, replace x(te) and y(te) by x(ta) − xs and
y(ta) − ys, respectively, and r(te) by s(ta). Additionally, the partial derivative of αo with
respect to the delay δ is given by

∂αo

∂δ
(te) =

Ûxy(ta) − Ûyx(ta)

r(ta)2
, (4.51)

In order to calculate ∂αs/∂δ, replace x(ta) and y(ta) by x(ta) − xs and y(ta) − ys and r
by s.

Regarding the TDoA measurements, we define τo as the time difference of the arrival
of the electromagnetic signal to the audio signal at the first observer and τs as the time
difference of arrival of the electromagnetic signal at the first observer to the audio signal
at the second observer, see Fig. 4.5:

τo(te) = to − te =
r(ta)

c
+ δ (4.52)

τs(te) = ts − te =
s(ta)

c
+ δ . (4.53)

A complete measurement zk batch is then composed of the quadruple[
αo(tk ), α

s(tk ), τ
o(tk ), τ

s(tk )
]T . (4.54)

Analogous to (4.40), the partial derivative of τo with respect to x0 is given by

∂τo

∂x∗0
=

1
c

[
∂r
∂x0

,
∂r
∂y0

,
∂r
∂ Ûx
,
∂r
∂ Ûy
,
∂r
∂δ
+ c

]
(4.55)

and the partial derivative of τs by

∂τs

∂x∗0
=

1
c

[
∂s
∂x0

,
∂s
∂y0

,
∂s
∂ Ûx
,
∂s
∂ Ûy
,
∂s
∂δ
+ c

]
. (4.56)
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4 Observability in Heterogeneous Bearings-Only Tracking

We can express ∂τo/∂x0 by replacing te by ta in (4.40). For ∂τs/∂x0, replace te by ta,
x(te) and y(te) by x(ta)− xs and y(ta)− ys, respectively, and r(te) by s(ta). The remaining
partial derivatives with respect to δ are then obtained by

∂r
∂δ
(te) =

Ûxx(ta) + Ûyy(ta)

r(ta)
(4.57)

∂s
∂δ
(te) =

Ûx(x(ta) − xs) + Ûy(y(ta) − ys)

s(ta)
. (4.58)

Finally, we can formulate the measurement matrix H̃∗ as

H̃∗ =



∂αo/∂x∗0
∂αs/∂x∗0
∂τo/∂x∗0
∂τs/∂x∗0


∈ R4×5 . (4.59)

Since the 4×5 matrix cannot have a full rank of 5, we have to add a further measurement
batch. For this purpose, assume the electromagnetic signal emission times te

0 and te
1,

which are also the arrival times of the electromagnetic signal, and the (unknown) acoustic
signal emission times ta

0 and ta
1. Here, δ = ta

0 − te
0 = ta

1 − te
1 is constant. Hence, this leads

to the following observability matrix:

Õ∗1 =


H̃∗(te

0)

H̃∗(te
1)Φ̃
∗
(te

1, t
e
0)

 (4.60)

with state transition matrix

Φ̃
∗
(tk, tk−1) =


Φ̃(tk, tk−1) 0

0 1

 . (4.61)

One can show that the 8× 5 observability matrix Õ∗1 has at least rank 5, so that the target
state x∗0 is locally observable with two measurement batches. One can even prove that
the first six rows of Õ∗1 have rank 5 given te

0 , te
1 and [xs, ys] , [0,0]. This means, to

achieve local observability, it is sufficient to take a full measurement batch of acoustic
bearings and TDoA measurements and additional acoustic measurements regarding both
observers. However, a constant emission delay δ has to be ensured. In case of a non-
constant delay, it must be added to the target state so that its size will increase by one
with each measurement batch.
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4.3 Numerical Cramér-Rao Analysis

det J 0 1.8248 × 10−24 8.1610 × 10−8

CRLB pos ∞ 7.0886 × 104 m 504.5711 m
CRLB vel ∞ 639.3733 m/s 2.1420 m/s
Cond pos 1.0628 × 105 6.9909 × 104 15.9675
Cond vel ∞ 6.0270 3.5094

k = 0 k = 1 k = 100

Table 4.1: CRLB for acoustic and electromagnetic signal emitted simultaneously, © 2016 IEEE.

det J 0 1.1926 × 10−18 0.0019
CRLB pos ∞ 387.7655 m 94.1605 m
CRLB vel ∞ 361.3013 m/s 0.9085 m/s

CLRB delay ∞ 0.9804 s 0.1952 s
Cond pos 2.8699 2.9187 8.9031
Cond vel ∞ 6.5198 3.7166

k = 0 k = 1 k = 100

Table 4.2: CRLB for acoustic and electromagnetic signal emitted with emission delay, © 2016
IEEE.

4.3 Numerical Cramér-Rao Analysis

In order to verify the results of the observability study, we perform a numerical Cramér-
Rao analysis. For that, we assume observer 1 carrying an acoustic and a detection sensor
at [xo, yo] = [0 m,0 m] and observer 2 equipped with an acoustic sensor only at [xs, ys] =
[200 m,0 m]. The initial target state is x∗0 = [200 m,200 m,3 m/s,0 m/s,0.5 s]T, see
Fig. 4.4. The bearing standard deviation is assumed to be σα = 1°, and the TDoA
detection standard deviation στ = 1 s. This way, the measurement covariance matrix
corresponds to the identity matrix. Furthermore, we assume that te

0 = 1 s and te
1 = 2 s

and the speed of sound c = 340 m/s.

The results for the presented cases of acoustic and electromagnetic signal emitted si-
multaneously and with emission delay are shown in Tables 4.1 and 4.2. The results are
exhibited after one measurement batch (k = 0), two measurement batches (k = 1), and
at the end of the simulation (k = 100). The CRLB for position and speed is calculated
by

√
C1,1 + C2,2 and

√
C3,3 + C4,4, respectively with C = J−1. The indices denote the
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4 Observability in Heterogeneous Bearings-Only Tracking

particular line and column of the matrix. Furthermore, κ is the matrix condition number
given by

κ = |λmax(J)/λmin(J)| , (4.62)

where λmax(J) and λmin(J) represent the maximum and minimum eigenvalues of J,
respectively. The matrix condition number indicates whether a matrix is nearly singular.
One has a well-conditioned matrix if the value is near one.

In both cases, the results show no observability for the first time step since the CRLB is
infinity. As pointed out by the observability analyses, observability is only achieved in
the second time step when two measurement batches are available. This clearly verifies
the results from Section 4.2. Of course, using only one observer, see Table 4.1, the
accuracy at time step k = 1 is low compared to the case where two observers are active,
see Table 4.2.

4.4 Summary of the Chapter

This chapter is embedded into the central theme of heterogeneous bearings-only tracking.
Its first objective has been to recapitulate observability criteria for different types of
systems, i.e. linear continuous-time, linear discrete-time, and nonlinear discrete-time
systems. These share the same general result: A system is observable if and only if
the observability Gramian is positive definite or equivalently has full rank. Naturally,
this leads to the practical bearings-only observability criteria, where an observer must
outmaneuver a target. Another important insight is that the observability Gramian is
strongly connected to the Cramér-Rao lower bound as it is algebraically equal to the
CRLB without noise. This means that from a non-invertible FIM, we can directly
conclude non-observability. Returning to heterogeneous bearings-only tracking, we have
applied the observability findings in a setting including heterogeneous sensors, namely
passive acoustic and electromagnetic sensors. It has been shown that the combination
of different measurement types achieves observability even on a single platform and a
moving target due to the exploitation of different signal propagation velocities. This is
another main result of this thesis. Additionally, it shows the advantages of heterogeneous
bearings-only tracking.
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5 State Estimation for Bearings-only
Tracking

State estimation is needed when the internal state of a system at time tk , denoted by
x(tk ) = xk , shall be retrieved, but can only observed by measurements of the state,
denoted by the set Zk = {z0,z1, . . . ,zk }, which comprises all measurements zi until
time tk . This chapter is clearly based on the previous chapters, since observability, as
pointed out in Chapter 4, is a requirement for state estimation, since without the state
being observable, it cannot be estimated uniquely. Additionally, the Cramér-Rao lower
bound, discussed in Chapter 3 indicates the maximum performance an estimator can
achieve given the scenario with target-observer geometry and the measurement errors.

In Fig. 5.1 an overview over different kinds of estimators is given as hierachical tree
structure. Of courese, this illustration is not exhaustive, since the estimator "zoo" contains
many more variations. The colors in this figure are alike to the colors in Fig. 1.1
representing the two central themes of this thesis. This means that red indicates being
part of the central theme of bearings-only tracking for maneuvering targets and blue
indicates being part of the central theme of bearings-only tracking for heterogeneous
sensors. Furthermore, green and gray mean that this entity is explained in this thesis for
educational reasons or rather is solely mentioned for informational purposes.

Generally, estimators can be partitioned into non-Bayesian and Baysian estimators and.
Non-Bayesian estimators usually take the form of batch methods, i.e. all measurements
are considered at all time scans in order to minimize a certain optimization function. The
most common estimator of this type is maximum likelihood estimator (MLE) explained
in Section 5.6 particularly for the problem of bearings-only tracking of maneuvering
targets.

On the other hand, Bayesian estimators always take the recursive filter form, i.e. the state
is updated step-by-step with each observation based on the information from the previous
time scan. This is also dictated by the Bayes’ theorem, see (5.1). Hence, all Bayesian
filters comprise of two steps: Prediction and filtering. The prediction step predicts the
state at the previous time scan to the current time using the motion model and the filtering
step updates the predicted state by the current observation using the mesurement model.
A general form of such a filter is shown in Section 5.1.1.

Depending on the structure of the measurement and the motion equation, one can dif-
ferentiate between linear and nonlinear filters. Hence, if the measurement and motion
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Estimators

Non-Bayesian
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Local
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Figure 5.1: Overview (not exhaustive) over non-Bayesian batch estimators and recursive Bayesian
filters. Red: Estimators covered for bearings-only maneuvering target tracking. Blue:
Filters used in the domain of heterogeneous tracking. Green: Filters explained in this
thesis. Gray: Filters mentioned, but not handled in this thesis.

model are both linear, one can stick to the linear branch, otherwise one has to choose a
nonlinear filter. The optimal filter for linear models and zero mean and Gaussian noise1 is
the Kalman filter, named after Rudolf Kalman [Kal60], which is a closed-form solution.
In case of a nonlinear state transition or measurement equation, there is generally no
analytical solution to the Bayesian filtering and prediction equations. Thus, one has to
use approximate techniques for Bayesian state estimation. In [SDŠ11], Straka et al. dis-
tinguish between local and global state estimation methods especially in the domain of
bearings-only tracking. Additionally, Daum [Dau05] provides an interesting overview
paper over different classes of nonlinear filtering algorithms with a slightly different and
more fine-grained classification than Straka. However, Straka’s approach seems to be
reasonable to be absorbed in this thesis.

1 which is assumed throughout this thesis
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5.1 Bayesian State Estimation

Following [SDŠ11], local state estimationmethods try to approximate the first tomoments
of the densities, i.e. mean and covariance, and therefore provide estimates which are valid
only locally. They have an identical structure to the Kalman filter and include:

• Extended Kalman filter (EKF) [Jaz70, BSLK01] with its special variations for
bearings-only tracking using modified polar coordinates (MPC-EKF) [AH83] and
using a bank of EKFs conditioned on specific ranges [Pea95, Kro98]. See also
Subsection 5.3.2.

• Unscented Kalman filter (UKF) [JUDW95, JU04,LJ08],

• Shifted Rayleigh filter (SRF), a moment matching filter designed specifically for
bearings-only tracking [CVY07,ACV07].

On the other hand, global state estimation methods provide estimates which are valid in
almost the whole state space. This is achieved by trying to approximate the densities on
the whole. Examples are

• Sequential Monte-Carlo methods like particle filters (PF) [GSS93, DdFG01,
AMGC02,GGB+02],

• Gaussian sum (or Gaussian mixture) methods [SA71, TPH99, ME06, ALS07,
Muš09,Hub15], which are featured in this thesis for the cental theme of bearings-
only tracking with heterogeneous sensors. See also Section 5.4.

Comparisons between different methods as EKF, pseudomeasurement filter, and PF for
bearings-only tracking is for example given in [LKBSM02], The pseudomeasurement
filter is special form of linearization based on coordinate transformation. However, this
results in non-Gaussian noise and subsequently in biased estimates [AN82]. Further-
more, different forms of EKFs are compared in [AR00] including a Cartesian EKF, the
pseudomeasurement filter, a modified gain EKF [SS85], an MPC-EKF, and a RP-EKF.
The results of both investigations reveal that the EKF shows the worst performance,
especially when the initial estimate error is high.

5.1 Bayesian State Estimation

The foundation for Bayesian state estimation is the Bayes’ theorem:

p(x |z) =
p(z |x)p(x)

p(z)
=

p(z |x)p(x)∫
U

p(z |x)p(x) dx
, (5.1)

which has been described byReverendBayes in his originalmanuscript from1763 [Bay63].
Here, the prior density p(x) reflects an initial degree of belief, which may be subjective.
Combining this with the evidence from the data, the PDF of the observation z conditioned
on the state or likelihood p(z |x) (which is also vital for the CRLB, see Chapter 3), results
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5 State Estimation for Bearings-only Tracking

in the posterior density p(x |z) [BSLK01]. This makes a statement on the probability
density of x given the observation z.

5.1.1 General Bayesian Estimator

Based on Bayes’ theorem (5.1), Bayesian state estimation, also named general Bayesian
filter [Hau05], is the following iterative update scheme to calculate a density p

(
x`

��Zk
)
.

This density incorporates the complete knowledge of the target state x` at time t` condi-
tioned on all available measurementsZk . Depending on the time t` at which target state
estimates x` are needed, the related density iteration process is referred to as prediction
(t` > tk ), filtering (t` = tk ), or retrodiction (t` < tk ) (also called smoothing [Sär13]).
Retrodiction exceeds the scope of this thesis and is therefore not discussed here. See for
example [Gov13,Koc14] for further information.

Prediction To obtain the prediction (or prior) density p
(
xk

��Zk−1
)
, the previous filter-

ing density p
(
xk−1

��Zk−1
)
has to be combined with the transition density p (xk |xk−1)

representing a first-orderMarkovian evolution model, commonly the motion model of the
target of interest, see also Chapter 2. This results in the Chapman-Kolmogorov [Pap84]
equation as follows:

p
(
xk

���Zk−1
)
=

∫
Rd

p(xk |xk−1)︸       ︷︷       ︸
evolution model

p
(
xk−1

���Zk−1
)

︸             ︷︷             ︸
previous filtering

dxk−1 . (5.2)

Filtering Using Bayes’ theorem, the likelihood function p(zk |xk ) representing the sen-
sor model with respect to the current measurement zk , as well as the prediction density
p
(
xk

��Zk−1
)
from the previous step, the filtering (or posterior) density p

(
xk

��Zk
)
is

given by

p
(
xk

���Zk
)
=

sensor model︷    ︸︸    ︷
p(zk |xk )

prediction︷          ︸︸          ︷
p
(
xk

���Zk−1
)∫

Rd p(zk |xk )p
(
xk

��Zk−1) dxk
. (5.3)

Since the denominator is constant, the filtering equation is commonly expressed by

p
(
xk

���Zk
)
= ck p(zk |xk ) p

(
xk

���Zk−1
)

(5.4)
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with
ck =

1∫
Rd p(zk |xk )p

(
xk

��Zk−1) dxk
. (5.5)

Generally, the aforementioned Bayesian prediction and filtering equations cannot be
solved analytically. If both measurement and motion model are linear and Gaussian
densities are assumed, an analytic solution, called Kalman filter, can be derived. This is
outlined in the next section. On the other hand, for nonlinear models, there are various
non-analytic, approximative approaches discussed in Section 5.3.

5.2 Linear Bayesian State Estimation

Assume a pure linear state transition and measurement model

xk = Fk−1xk−1 + wk

zk = Hkxk + νk
(5.6)

with state transition matrix Fk and process noise wk , cf. (2.20), as well as measurement
matrix Hk with measurement noise νk . The noise parts are assumed to be Gaussian dis-
tributed with zero mean. Therefore, the transition density p(xk |xk−1) and the likelihood
p(zk |xk ) can be expressed by the Gaussians

p(xk |xk−1) = N(xk ; Fk−1xk−1,Qk ) (5.7)

with process noise covariance matrix Qk and

p(zk |xk ) = N(zk ; Hkxk,Rk ) , (5.8)

where Rk is the measurement noise covariance matrix.

5.2.1 Kalman Filter

Due to the aforementioned linear and Gaussian system, one receives the following Gaus-
sian prediction and filtering densities by inserting (5.7) and (5.8) into (5.2) and (5.3),
respectively, and applying the well-known product formula for Gaussians, see Subsec-
tion 2.2.1:

p
(
xk

���Zk−1
)
= N(xk ; x̂k |k−1,Pk |k−1)

p
(
xk

���Zk
)
= N(xk ; x̂k |k,Pk |k ) .

(5.9)
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5 State Estimation for Bearings-only Tracking

Prediction The predicted state x̂k |k−1 and its corresponding covariance Pk |k−1 are
calculated by

x̂k |k−1 = Fk−1x̂k−1 |k−1

Pk |k−1 = Fk−1Pk−1 |k−1FT
k−1 +Qk .

(5.10)

Filtering For the estimated state x̂k |k and covariance Pk |k , we have

x̂k |k = x̂k |k−1 +Kk (zk −Hk x̂k |k−1︸     ︷︷     ︸
=ẑk |k−1

)

Pk |k = Pk |k−1 −KkHkPk |k−1

(5.11)

with gain matrix

Kk = Pk |k−1HT
k

(
Rk +HkPk |k−1HT

k

)−1
. (5.12)

This step is also called corrector step since it corrects the predictions with the information
from the current measurement.

This iterative update scheme is called Kalman filter, named after the pioneering work
of R. E. Kalman [Kal60]. For further reading and more detailed discussions, also
refer to [Sor70, May82]. Under the presented linear and Gaussian assumptions, the
Kalman filter is the optimal estimator in the MMSE (minimum mean square error)
sense [BSLK01].

5.3 Nonlinear Bayesian State Estimation

Consider the following nonlinear state transition and measurement equation:

xk = fk−1(xk−1) + wk

zk = hk (xk ) + νk ,
(5.13)

where fk (·) and hk (·) represent a nonlinear state transition and a nonlinear measurement
function, respectively, see also Chapter 2. As for the linear case, the noise terms wk

and νk are assumed to be Gaussian distributed with zero mean and covariance matrices
Qk and Rk , respectively. This leads to the transition density p(xk |xk−1) and likelihood
p(zk |xk ) as follows:

p(xk |xk−1) = N(xk ; fk−1(xk−1),Qk ) (5.14a)
p(zk |xk ) = N(zk ; hk (xk ),Rk ) . (5.14b)
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5.3 Nonlinear Bayesian State Estimation

5.3.1 Generic Local Filter

Since local state estimation methods have an identical structure to the Kalman filter
described in Subsection 5.2.1, one can formulate a generic local filter as a special case of
the general Bayesian estimator from Subsection 5.1.1 targeting only the first twomoments
according to [SDŠ11]:

Prediction The predicted state estimate and covariance are given by the relations

x̂k |k−1 = E
{
fk−1(xk−1)

���Zk−1
}

Pk |k−1 = E
{
(fk−1(xk−1) − x̂k |k−1)(fk−1(xk−1) − x̂k |k−1)

T
���Zk−1

}
.

(5.15)

Filtering The predicted state estimate is updated with respect to the current measure-
ment zk according to

x̂k |k = x̂k |k−1 +Kk (zk − ẑk |k−1)

Pk |k = Pk |k−1 −KkPz,k |k−1KT
k ,

(5.16)

where Kk is the filter gain given by

Kk = Pxz,k |k−1P−1
z,k |k−1 (5.17)

and ẑk |k−1 denotes a predicted measurement given by

ẑk |k−1 = E
{
hk (xk )

���Zk−1
}
. (5.18)

Finally, the remaining covariance matrices are given by the expected values

Pz,k |k−1 = E
{
(hk (xk ) − ẑk |k−1)(hk (xk ) − ẑk |k−1)

T
���Zk−1

}
+ Rk

Pxz,k |k−1 = E
{
(xk − x̂k |k−1)(zk − ẑk |k−1)

T
���Zk−1

} (5.19)

5.3.2 Extended Kalman Filter

A well-known linearization technique to approximate the nonlinear functions in (5.15)–
(5.19) is to use the first-order Taylor expansion, see e.g. [RAG04]. This leads to following
equations for prediction and filtering, called extended Kalman filter (EKF):
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Prediction For prediction, the state and covariance are given by

x̂k |k−1 = fk−1(x̂k−1 |k−1)

Pk |k−1 = F̃k−1Pk−1 |k−1F̃T
k−1 +Qk

(5.20)

with the Jacobian matrix resulting from first-order Taylor expansion at the previous
estimate x̂k−1 |k−1

F̃k−1 =
∂fk−1(x̂k−1 |k−1)

∂x̂k−1 |k−1
. (5.21)

Filtering The following terms for filtering can be derived:

ẑk |k−1 = hk (x̂k |k−1)

Pz,k |k−1 = H̃kPk |k−1H̃T
k + Rk

Pxz,k |k−1 = Pk |k−1H̃T
k

(5.22)

which have to be inserted into (5.16) to complete the update scheme. Here,

H̃k =
∂hk (x̂k |k−1)

∂x̂k |k−1
, (5.23)

is the Jacobian matrix of the measurement function evaluated at the predicted estimate
resulting from the first-order Taylor approximation.

Rewriting the covariance update equations in information matrix form, i.e. the inverse
form using the matrix inversion lemma, yields

P−1
k |k =

(
F̃k−1Pk−1 |k−1F̃T

k−1 +Qk

)−1
+ H̃T

kR−1
k H̃k , (5.24)

which is structurally identical to the recursive update of the Fisher information ma-
trix (3.27) for calculating the CRLB. The differences are the presence of process noise
due to matrix Qk and that the partial derivatives are evaluated at the predicted/estimated
states instead of the true states.

Especially in bearings-only tracking scenarios, the presented Cartesian coordinate EKF
is known to diverge. This is due to the non-observability of target range before the
first observer maneuver and subsequent collapse of the covariances which leads to am-
plification of estimation errors finally causing divergence [Aid79]. Alternatively, one
can track in a different coordinate system so that the measurement equation is linear
as performed in the modified polar coordinate (MPC) approach, where observable and
unobservable states are decoupled [HJC78,HAGL83,Bec01]. The drawback is that the
motion equation is nonlinear. However, using MPC has led to less filter divergence com-
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Figure 5.2: Gaussian mixture with 3 components. Each component is illustrated by different col-
ors.

pared to the (Cartesian) EKF [AH83,vHF98]. Pseudo-linearization of the bearings-only
measurement equation is another approach [LG78]. However, it leads to non-Gaussian
measurement noise causing biased estimates [AN82]. Another variant is the range pa-
rameterized extended Kalman filter (RPEKF) [Kro98, KG05]. It consists of a bank of
individual EKFs, each tuned to a certain range and is thus similar to following approach
of bearings-only tracking via a Gaussian mixture filter using likelihood approximation.

5.4 Gaussian Mixture Filtering

The idea of Gaussian mixture filtering is that since the Bayesian recursions cannot
generally be solved in closed-form when the system is nonlinear (see Subsection 5.3),
density approximations based on Gaussian mixtures (or Gaussian sums) have been pro-
posed [SA71]. Mušicki [Muš09] presents a Gaussian mixture likelihood approximation
for bearings-only measurements which is intensively studied in this paper. Furthermore,
in [DK10], a Gaussian mixture approximation has been developed which is used to lo-
calize emitters by means of time difference of arrival (TDoA) measurements as well as
to estimate target altitude in a multistatic passive radar scenario.

5.4.1 Gaussian Mixture

A Gaussian mixture density is defined by a convex weighted sum of Gaussian densi-
ties (2.4) according to

p(x) =
N∑
i=1

wi N(x; x̂i,Pi) . (5.25)

See Fig. 5.2 for an illustration of a Gaussian mixture with three components. The
described Gaussian mixture has N components, which are themselves Gaussian densities
with means x̂i and covariances Pi . To assure that this Gaussian mixture is a valid
probability density function, the weights wi must be non-negative and add up to one.
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5 State Estimation for Bearings-only Tracking

One advantageous property of Gaussian mixtures is that they can be considered as
universal approximator for an arbitrary density function, i.e. any density function can be
approximated by means of a Gaussian mixture as closely as required [MS96, Hub15].
This property is exploited in the Gaussian mixture filter based on approximating the
likelihood presented later in this section.

The overall mean and covariance of a Gaussian mixture can be calculated in closed form
and are obtained by

µ = E {x} =
N∑
i=1

wi x̂i ,

C = Cov {x} =
N∑
i=1

wi

(
Pi + x̂i x̂T

i

)
− µ µT .

(5.26)

5.4.2 Multi Hypothesis GM Filter Based on Likelihood Approximation

Gaussian mixture filtering can be classified into two groups, see also [Hub15]: Model
approximation tries to approximate the transition density or the likelihood by means
of a Gaussian mixture. Transition density approximation is, for example, covered
in [HBH06], whereas likelihood approximation is the more common approach since
in many practical filtering problems, the motion model is linear while the measurement
model is nonlinear. Thus, likelihood approximation is proposed in this thesis as well as
in [ME06,ALS07,Muš09]. On the other hand, density approximation approaches focus
on directly approximating the true predicted or posterior density by means of Gaussian
mixtures, as, for example, presented in [HF03].

Multi hypothesis tracking (MHT) has been attracted much interest for many practical
applications in the past years. It is numerically very fast and flexible due to its mixture
representation of a PDF [KvK97]. It certainly has the drawback that many parameters
have to be modeled or estimated such as probability of detection pD and spatial clutter
density ρF . In this thesis, we assume that a single target shall be tracked. However, due
to disturbances, false or missing detections can occur.

Asmentioned above, consider for themulti hypothesis likelihood approximationGaussian
mixture filter (GMF) a linear state transition equation and a nonlinear measurement
equation:

xk = Fk−1xk−1 + wk

zk = hk (xk ) + νk .
(5.27)

Hence, the state transition density p(xk |xk−1) is a Gaussian according to (5.7).
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In contrast to the beginning of this chapter, we assume that now multiple measurements
per time scan are allowed which means that the set of measurements up tp time tk is
given by

Zk = {Z0, Z1, . . . , Zk } . (5.28)

Here, the measurement set at time tk comprises mk ambiguous measurements

Zk =
{
z1
k,z

2
k, . . . ,z

mk

k

}
(5.29)

related to a single target. That means, at most one measurement originates from the target
and the other measurements arise from imperfect detections or false measurements as
from unwanted objects or clutter. Hence, (5.29) represents mk + 1 hypotheses covering
the case that each measurement comes from a hypothetical target location plus the case
of no target measurement.

With mk measurements at time tk , we assume that each measurement zj
k
is approximated

by a Gaussian mixture with L j
k
components that is linear in state xk .Incorporating

probability of detection pD and spatial clutter density ρF [Koc14] leads to the following
multi hypothesis Gaussian mixture likelihood approximation:

p(Zk |xk ) ≈ (1 − pD)ρF + pD
mk∑
j=0

L
j
k∑

i=1
γ
i, j
k
N

(
yk ; ŷi, j

k
,Σ

i, j
k

)
. (5.30)

Since only single targets are considered – so that no trackmanagement is necessary which
would mean that an association between hypotheses and per-measurement components
must be kept – we can simplify the likelihood as follows:

p(Zk |xk ) ≈ (1 − pD)ρF + pD
Nk∑
j=1

γ
j
k
N

(
yk ; ŷj

k
,Σ

j
k

)
(5.31)

with Nk =
∑mk

j=0 L j
k
. A detailed discussion and analysis on how to determine the weights

γ
j
k
, means ŷj

k
, and covariances Σ j

k
in case of bearings-only measurements is provided in

Section 5.5. Note that yk linearly depends on xk and is obtained by a suitable coordinate
transformation mapping from measurement to state coordinates. We assume, for now,
that this transformation is possible, ignoring non-observable states as for bearings-only
tracking. A solution to this problem will be presented later – it does not affect the general
description of the GMF.
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Filtering If we assume that the prior density p
(
xk

��Zk−1
)
is given as a Gaussian

mixture with Gk−1 components, then according to the Bayes’ theorem (5.3), we have for
the filtering density

p
(
xk

���Zk
)
= ck p(Zk |xk )

(
Gk−1∑
i=1

wi
k−1N

(
xk ; x̂i

k |k−1,P
i
k |k−1

))
︸                                        ︷︷                                        ︸

=p(xk |Zk−1)

. (5.32)

Component-wise multiplication and subsequent application of the product formula for
Gaussians (see Subsection 2.2.1) leads to

p
(
xk

���Zk
)
=

Nk∑
j=0

Gk−1∑
i=1

w
i, j
k
N

(
xk ; x̂i, j

k |k
,Pi, j

k |k

)
(5.33)

with unnormalized weights

w̄
i, j
k
=

{
(1 − pD)ρF · wi

k−1 if j = 0
pD · wi

k−1γ
j
k
N

(
ŷj
k

; Hk x̂i
k |k−1,S

i, j
k

)
if j > 0

(5.34)

and their normalization
w
i, j
k
=

1∑Nk

j=0
∑Gk−1
i=1 w̄

i, j
k

. (5.35)

The innovation covariance Si, j
k

is given by

Si, j
k
= HkPi

k |k−1HT
k + Σ

j
k
. (5.36)

Furthermore, in (5.33) each of the Gk−1 components of the predicted Gaussian mixture
is updated with Nk components of the Gaussian mixture likelihood performed by means
of the standard Kalman filter update equations. Hence, for each component i of the prior
and each component j of the likelihood, we update as follows:

x̂i, j
k |k
=


x̂i
k |k−1 if j = 0

x̂i
k |k−1 +Ki, j

k

(
ŷj
k
−Hk x̂i

k |k−1

)
if j > 0

(5.37a)

Pi, j
k |k
=


Pi
k |k−1 if j = 0(
I −Ki, j

k
Hk

)
Pi
k |k−1 if j > 0

(5.37b)
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with gain matrix

Ki, j
k
= Pi

k |k−1HT
k

(
Si, j
k

)−1
. (5.38)

Note that j = 0 reflects the "no measurement" case. Thus, state and covariance cannot
be updated.

Component control According to (5.33), we obtain the posterior density as a Gaussian
mixture of the form

p
(
xk

���Zk
)
=

Gk−1∑
i=1

Nk∑
j=1

w
i, j
k
N

(
xk ; x̂i, j

k |k
,Pi, j

k |k

)
, (5.39)

which can be rearranged and thus expressed in a simpler way as

p
(
xk

���Zk
)
=

Gk∑
i=1

wi
kN

(
xk ; x̂i

k |k
,Pi

k |k

)
(5.40)

withGk = Gk−1 ·Nk . Since the number of components (hypotheses) grows exponentially
in time, there will be a combinatorial disaster. In order to prevent this, the number if
components has to be reduced [ME06]. A number of techniques exists to perform this task
including pruning of components with low weight as well as sophisticated methods for
merging several components. For details refer to [Sal89,BP99,Koc01,WM03,Run07].

Prediction According to the Bayesian prediction formula (5.2) and by means of the
rearranged posterior (5.40) as well as the Gaussian state transition density (5.7), we
receive for the predicted density

p
(
xk

���Zk−1
)
=

∫
Rd
N (xk ; Fk−1xk−1,Qk ) ·(

Gk−1∑
i=1

wi
k−1N

(
xk−1; x̂i

k−1 |k−1,P
i
k−1 |k−1

))
dxk−1 (5.41)

with state transition matrix Fk−1 and noise matrix Qk−1. Applying the product formula
for Gaussians separates xk and xk−1 leading to

p
(
xk

���Zk−1
)
=

Gk−1∑
i=1

wi
k−1N

(
xk ; x̂i

k |k−1,P
i
k |k−1

) ∫
Rd
N (xk−1, ·, ·) dxk−1︸                        ︷︷                        ︸

=1

, (5.42)
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so that each component of the Gaussian mixture is predicted according to the standard
Kalman filter prediction formulae, i.e.

x̂i
k |k−1 = Fk−1x̂i

k−1 |k−1 ,

Pi
k |k−1 = Fk−1Pi

k−1 |k−1FT
k−1 +Qk−1 .

(5.43)

Track output Having determined each component’s estimated state and covariance, the
overall estimate µk |k and covariance Ck |k are found by means of (5.26).

5.5 Likelihood Approximation for Bearings-only Tracking

In this section, a discussion and analysis is given on how to determine a Gaussian mixture
that is linear in target state and that approximates the likelihood (5.31) considering
nonlinear bearings-only measurements. Also refer to the own paper [Hör14].

First, Streit’s [SW09] likelihood function decomposition leading to a representation of
the likelihood that is linear in target state is analyzed. Subsequently, Gaussian mixture
approximations inspired by [Muš09] and Kronhamn [Kro98] are derived from Streit’s
likelihood decomposition. Both approaches are then analyzed.

5.5.1 Likelihood Function Decomposition

Here, we recap the likelihood function decomposition following Streit et al. [SW09]. Let
f ,g : Rd → Rd be continuously differentiable bijective functions with f = g−1, i.e. f
is the inverse of g. We assume that gmaps state coordinates to measurement coordinates,
so that for a d-dimensional state x and a d-dimensional measurement ζ we have ζ = g(x).
Let the measurement errors be Gaussian distributed, then we can express the likelihood
for state x as

p(ζ |x) = N(ζ ; g(x),N) , (5.44)

where g(x) denotes themeanmeasurement in the absence of errors andN is the covariance
matrix of the measurement errors. It can be shown (see Appendix B.1 or [SW09]) that

p(ζ |x) ≈ det (D f (ζ )) N ( f (ζ ); x,Σ) , (5.45)

which is the decomposed likelihood that is linear in target state and has a Gaussian kernel.
Here,

D f (ζ ) =
∂ f (ζ )
∂ζ

(5.46)
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is the Jacobian of f evaluated at ζ , see Appendix B.1 and

Σ = D f (ζ )ND f (ζ )T (5.47)

is the converted covariance matrix, where det (Σ) = det(N) det(D f (ζ ))2 holds.

Now additionally suppose that we have a measurement z of lower dimension than the
state, i.e. z is s-dimensional, whereas x is d-dimensional, as above, with s ≤ d. That
means, x is not necessarily observable (see also Chapter 4). Furthermore, assume that z is
a sub-vector of ζ defined above, i.e. z comprises some, but not necessarily all elements of
ζ . With this, let z∗ be the vector of elements which are in ζ , but not in z. Furthermore, let
h : Rd → Rs be the continuously differentiable measurement function, so that z = h(x).

Using (5.45) and the technique of marginalizing out the elements in z∗, we find an
approximate term for the likelihood p(z|x) which is linear in target state as

p(z|x) = N (z; h(x),R) ≈
∫
U

det (D f (ζ )) N ( f (ζ ); x,Σ) dz∗ = p̃(z|x) , (5.48)

where R is the covariance matrix of the measurement noise. The generally unbounded
set U = g

(
Rd−s

)
has dimension d − s and denotes the image of g restricted to the

elements of z∗.

Note that the integral over p̃(z|x) with respect toR has a finite value. Hence, in order to
preserve this value if the approximation p̃(z|x) shall be restricted to a compact set C, we
have to normalize it:

p̃C (z|x) =
1
k

∫
C

det (D f (ζ )) N ( f (ζ ); x,Σ) dz∗ , (5.49)

where the normalization factor k is given by [SA71]

k =
∫
C

z∗ dz∗ . (5.50)

77



5 State Estimation for Bearings-only Tracking

Bearings-only measurements To conduct the likelihood decomposition for bearings-
only measurements, let

x = [x, y]T

ζ = [r, θ]T

z = θ

g(x) =
[√

x2 + y2,arctan(x/y)
]T
,

f (ζ ) = [r sin θ,r cos θ]T

h(x) = arctan(x/y)

N = diag[σ2
r , σ

2
θ ]

R = σ2
θ

(5.51)

with target position [x, y], range r , and azimuth bearing θ. Obviously, z∗ = r and since χ
and g correspond to locally orthogonal coordinate systems [SW09], D f (ζ ) = TD with
rotation matrix

T =

sin θ cos θ

cos θ − sin θ

 (5.52)

and D = diag[1,r] leading to det(D f (ζ )) = r . Then the approximation of the bearings-
only likelihood that is linear in target state is given by using (5.48) with marginalization
of range r

N(z; h(x),R) ≈
∫ ∞

0
rN ( f (ζ ); x,Σ) dr , (5.53)

which is the general approximation scheme for a bearings-only likelihood. Furthermore,
using (5.52), we can express Σ as

Σ = TDNDTTT = T

σ2
r 0

0 r2σ2
θ

 TT . (5.54)

5.5.2 Gaussian Mixture Likelihood Approximations

Similar toMušicki [Muš09], the aim is to approximate the likelihood p(z|x) by aGaussian
mixture with N components that is linear in target state, i.e.,

p(z|x) =
N∑
i=1

γiN(y; ŷi,Σi) , (5.55)
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where y = [x, y]T = Hx = f (ζ ) denotes the target position and depends linearly on the
target state x by means of the projection matrix H. Furthermore, ζ and the coordinate
transformation f are defined as in Subsection 5.5.1. The component weights, means,
and covariances are denoted by γi , ŷi , and Σi , respectively. We demand that the weights
add up to one.

Concerning range, we assume a compact range interval [rmin,rmax] limited by minimum
and maximum distance from sensor to target. Let r1 = rmin < r2 < . . . < rN < rN+1 =
rmax be an arbitrary partition of the interval [rmin,rmax] into N subintervals. Length and
mean range of any subinterval [ri,ri+1] are defined as

∆ri = ri+1 − ri (5.56)

and
r̄i = (ri+1 + ri)/2 . (5.57)

Mušicki [Muš09] defines themeans and covariances of the Gaussianmixture components
depending on bearing θ and bearing standard deviation σθ as

ŷi = r̄i


sin θ

cos θ

 (5.58)

and

Σi = T

∆r2

i /4 0

0 r̄2
i σ

2
θ

 TT , (5.59)

where T is given according to (5.52). Thus, we can interpret the likelihood (5.55) as a
Gaussian mixture where each component is tuned to a certain range. That means, each
component represents a range hypothesis. For Mušicki, the component weights denote
the probability that subinterval i contains the target. Hence, he determines the weights
to be proportional to the area covered by Gaussian mixture component i,

γM
i =

√
detΣi∑N

j=1
√

detΣ j
. (5.60)

Note that the weights do not depend on σθ since it can be reduced.

On the other hand, Kronhamn [Kro98] defines the weights as proportional to the length
of the range subinterval covered by Gaussian mixture component i, proposing

γK
i =

∆ri∑N
j=1 ∆rj

. (5.61)
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Figure 5.3: Gaussian mixture representation of bearings-only measurement likelihood for geomet-
ric (left) and equidistant (right) partition with N = 50, rmin = 0.1 m, rmax = 2000 m,
θ = 45°, and σθ = 3°, © 2014 IEEE.

After some calculations involving telescoping series, the weights can be transformed to

γM
i =

r2
i+1 − r2

i

r2
max − r2

min
and γK

i =
ri+1 − ri

rmax − rmin
. (5.62)

With this, we can identify Mušicki’s weights as a "quadratic version" of Kronhamn’s
weights. A relation between γM

i and γK
i can be established by

γM
i = γ

K
i

2r̄i
rmax + rmin

. (5.63)

Note that γM
i and γK

i are defined for an arbitrary partition of the interval [rmin,rmax].
In the following, we will examine two types of partitions, a geometric partition and an
equidistant partition of [rmin,rmax].

Geometric partition Both Kronhamn and Mušicki use a common partition of the
interval [rmin,rmax] which is also employed in the RPEKF [KG05]: The range interval
is divided into N subintervals in a geometric progression

ri+1 = ρri (5.64)

so that
ρN =

rmax
rmin

. (5.65)

Fig. 5.3 shows such Gaussian mixture representation of the bearings-only measurement
likelihood using geometric partition. With this approach, the non-linear effects are the
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same for all subintervals and each ellipse has the same eccentricity which is an important
numerical aspect [Kro98,Muš09].

Using geometric partition, the weights can be expressed as

γ
M,g
i
=

r2
i∑N

j=1 r2
j

= ρ2(i−1) ρ
2 − 1

ρ2N − 1
(5.66)

and
γ

K,g
i
=

ri∑N
j=1 rj

= ρ(i−1) ρ − 1
ρN − 1

. (5.67)

Furthermore, γM,g
i
= c(N, ρ)

(
γ

K,g
i

)2
holds. The proportionality constant c which only

depends on N and ρ is given by

c(N, ρ) =

(
ρN − 1

)
(ρ + 1)(

ρN + 1
)
(ρ − 1)

. (5.68)

Equidistant partition Alternatively, one can divide the range interval into equidistant
subintervals, see Fig. 5.3, so that the interval length ∆r is constant, i.e.,

∆r = ∆ri = ri+1 − ri =
rmax − rmin

N
= const . (5.69)

With this, Mušicki’s weights can be transformed to

γ
M,q
i
=

r̄i∑N
j=1 r̄j

. (5.70)

Kronhamn’s weights are constant and given by

γ
K,q
i
=

1
N

. (5.71)

5.5.3 Derivation of the Likelihood Approximations

In this section, Mušicki’s and Kronhamn’s Gaussian mixture likelihood approximations
will be derived from Streit’s formulation of the approximate bearings-only likelihood
which is linear in target state. If we restrict the range to the interval [rmin,rmax], we can
write (5.53) due to the symmetry of the Gaussian distribution as

p̃(z|x) =
1
k

∫ rmax

rmin
rN (y; f (ζ ),Σ) dr , (5.72)
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where the definitions from Subsections 5.5.1 and 5.5.2 hold. According to (5.50), the
normalizing factor k is given by

k =
∫ rmax

rmin
r dr =

1
2

(
r2
max − r2

min

)
. (5.73)

It is well known that (5.72) can be approximated by a Riemann sum.

Riemann sum Let f : D→ R be a function defined on a subset D ofR. Let [a, b] ⊆ D
be a closed interval contained in D and let

P = {[x1, x2), [x2, x3), . . . , [xN , xN+1]} (5.74)

be a partition of [a, b], where

a = x1 < x2 < x3 < . . . < xN < xN+1 = b . (5.75)

The Riemann sum of f over [a, b] with partition P is defined as

S =
N∑
i=1

f (x∗i )(xi+1 − xi), xi ≤ x∗i ≤ xi+1 . (5.76)

Note that partition P is arbitrary as long as it complies with the condition given in (5.75).
Especially it need not to be equidistant. Note further that the choice of x∗i in [xi, xi+1] is
also arbitrary. If x∗i = (xi+1 + xi)/2, S is called a middle Riemann sum.

Therefore, expressing (5.72) as a middle Riemann sum leads to

S =
2

r2
max − r2

min

N∑
i=1

r̄iN
©­«y; ŷi,T


σ2
r 0

0 r̄2
i σ

2
θ

 TTª®¬∆ri (5.77)

with ŷi , r̄i , and ∆ri defined as in Subsection 5.5.2. Setting σr = ∆ri/2 and transforming
the weights according to

2r̄i∆ri
r2
max − r2

min
=

r̄i∆ri∑N
j=1 r̄j∆rj

=
σθ r̄i∆ri/2∑N
j=1 σθ r̄j∆rj/2

=

√
detΣi∑N

j=1
√

detΣ j
,

(5.78)

we exactly obtain the parameters ofMušicki’sGaussianmixture approximation, see (5.60).

On the other hand, to gain Kronhamn’s weights, we observe the following: Since the
probability density function of the normal distribution is always greater than zero, we
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can apply the mean value theorem for integration to (5.72) which says that there exists a
ξ(y) ∈ [rmin,rmax] such that

1
k

∫ rmax

rmin
rN (y; ŷ,Σ) dr = ξ(y)

1
k

∫ rmax

rmin
N (y; ŷ,Σ) dr = ψ(z|x) . (5.79)

Expressing (5.79) as middle Riemann sum yields

S =
2ξ(y)

r2
max−r2

min

N∑
i=1
N

©­«y; ŷi,T

σ2
r 0

0 r̄2
i σ

2
θ

 TTª®¬∆ri (5.80)

with ŷi , r̄i , and ∆ri defined as in Subsection 5.5.2. If we choose ξ to be

ξ(y) =
rmax + rmin

2
, (5.81)

i.e., ξ is the interval center of [rmin,rmax], and σr = ∆ri/2, then we obtain the weights
as equal to Kronhamn’s approach (5.61):

2ξ(y)∆ri
r2
max − r2

min
=

∆ri
rmax − rmin

=
∆ri∑N
j=1 ∆rj

. (5.82)

Choosing ξ as above to approximate (5.80) is one possibility. However, it leads to an
approach which is widely used so that it is worth investigating. In the following section,
we will highlight some convenient properties of this approach.

5.5.4 Analysis

In Section 5.5.3 we have chosen ξ(y) = (rmax + rmin)/2 to derive Kronhamn’s weights.
The open question is: Why is this reasonable? Due to (5.79) we can write

ξ(y) =

∫ rmax
rmin

rN (y; ŷ,Σ) dr∫ rmax
rmin
N (y; ŷ,Σ) dr

. (5.83)

In Fig. 5.4 ξ(y) is visualized as a contour plot for θ = 45°, rmin = 0.1 m, and rmax =
2000 m. The figure indicates the following hypothesis: Let

ξ+(y) = ξ(y)

sin θ

cos θ

 . (5.84)
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Figure 5.4: Left: Contour plot of ξ(y). The red dot is plotted at coordinates (rmax +
rmin)[sin θ, cos θ]T/2 with θ = 45°, rmin = 0.1 m, rmax = 2000 m. The function
value at that coordinate is (rmax + rmin)/2. Right: Visualization of Eψ as centroid of
the isosceles triangle and Ep̃ as interval center, © 2014 IEEE.

Then

y∗ =
rmax + rmin

2


sin θ

cos θ

 (5.85)

is a fixed point of ξ+, i.e., ξ+(y∗) = y∗ or equivalently ξ(y∗) = (rmax + rmin)/2. The
further analysis as well as the simulation study will support this hypothesis.

The expected value of p̃(z|x) (5.72) with respect to z is given by

Ep̃{z} =
2
3

r3
max − r3

min
r2
max − r2

min


sin θ

cos θ

 ≈
2
3

rmax


sin θ

cos θ

 (5.86)

for small rmin. For a derivation, see Appendix B.2. Due to the calculations in Sec-
tion 5.5.3, this is also the expected value for p̃(z|x), the approximated likelihood using
Mušicki’s method. Considering ψ(z|x) (5.79) the expected value with respect to z is

Eψ{z} = ξ(y)

sin θ

cos θ

 =
rmax + rmin

2


sin θ

cos θ

 , (5.87)

which is due to (5.81).

Interpreted geometrically, the expected value ofMušicki’s Gaussian mixture corresponds
to the centroid of an isosceles triangle spanned by σθ and rmax, see Fig. 5.4, since
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Figure 5.5: Gaussian mixture component weights (a) and Gaussian mixture probability density
(b) vs. range for Mušicki’s and Kronhamn’s approach with geometric and equidistant
partition, © 2014 IEEE.

Mušicki’s approach considers the ellipses’ areas. On the other hand, expected value of
the Gaussian mixture with Kronhamn’s weights is the center of the interval [rmin,rmax].

For the further analysis, we assume that the number of Gaussian mixture components
is N = 50, the minimum and maximum ranges are rmin = 0.1 m and rmax = 2000 m,
respectively, and the bearing θ is fixed to 45° with standard deviation σθ = 3°.

Fig. 5.5 shows the Gaussian mixture component weights γM,g
i

, γK,g
i

, γM,q
i

, and γK,q
i

versusmean range r̄i forMušicki’s andKronhamn’s approachwith geometric and equidis-
tant partition. As indicated by the equations, Mušicki’s weights with geometric partition
increase quadratically. For equidistant partition we have a linear growth. Kronhamn’s
weights increase linearly with a geometric partition and are constant in the equidistant
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case. Visually, the graphs of both approaches intersect at the center of the considered
interval [rmin,rmax]. Analytically, for the intersection point in Fig. 5.5 γM

i = γ
K
i holds.

Using (5.63), this is solved by an r∗ with

r∗ =
rmin + rmax

2
, (5.88)

which is equal to ξ(z∗) supporting the fixed point hypothesis.

Let
p̃θ (r) = p̃(θ | r[sin θ,cos θ]T) = p̃(z|x) (5.89)

be the PDF of the Gaussian mixture approximation depending only on range r with a
fixed bearing θ. In Fig. 5.5, p̃θ (r) is plotted against range for Mušicki’s and Kronhamn’s
approach with geometric and equidistant partition. There are only slight differences
between geometric and equidistant partition: Towards rmax, the graphs using equidistant
partition show a higher probability density. This is because the last geometric subinterval
covers a big range whereas the same subinterval is covered by several segments using
equidistant partition, see also Fig. 5.3. Comparing Mušicki’s and Kronhamn’s approach,
we can see that the former initially has high probability density which is monotonically
decreasing, whereas the latter basically remains constant over the whole range, close
to a uniform distribution over [rmin,rmax]. Also here, we have an intersection meaning
equal probability density at the interval center. This follows directly from the fixed point
hypothesis.

Define
dθ (z) = p̃M(z|x) − p̃K(z|x) (5.90)

as difference between the likelihoods of Mušicki’s and Kronhamn’s approaches which is
defined for geometric as well as equidistant partition. Fig. 5.6 depicts the difference dθ (z)
for geometric and equidistant partition as contour plot, respectively. Here, dark colors
illustrate negative and bright colors positive values. The arcs show maximum range
and the interval center. In both cases, the difference is negative in the first half of the
interval and positive in the second half. Since Kronhamn’s approach puts more weight
on targets with a small range and Mušicki’s approach does so with targets with a high
range regarding cross-over point r∗ (see also Fig. 5.5), we can conclude that Kronhamn’s
approach provides a better approximation of the bearings-only likelihood (5.53) if the
target range is less than r∗ and Mušicki’s approach is superior when the target range is
greater than r∗.

5.5.5 Simulation Study

The scenario is depicted in Fig. 5.7. A single sensor mounted on a vehicle follows a
constant velocity trajectory for 50 s starting at position [65 m,55 m]with speed 18 m/s and
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Figure 5.6: Contour plot of difference dθ (z) from Mušicki’s to Kronhamn’s approach with geo-
metric (left) and equidistant (right) partition. rmax and the interval half are depicted by
the arcs, © 2014 IEEE.

heading 326°. The sensor scan time is 1 s and, as in the above sections, it is assumed that
rmin = 0.1 m and rmax = 2000 m. The measurements noise is assumed to be white and
Gaussian distributed with zero mean and σθ = 3°. Here, no missed and false detections
are assumed, thus pD = 1 and ρF = 0. In order to evaluate the performance of both
approaches, two experiments are conducted: the first one with a static target near rmin at
[250 m,100 m] and the second one with a static target near rmax at [1400 m,1400 m].

The Gaussian mixture likelihood approximation is performed with N = 50 components.
1000 Monte Carlo runs are carried out to produce the root mean square estimation
error (RMSE) results illustrated in Fig. 5.8a for the nearby target and Fig. 5.8b for the
distant target. Considering the nearby target, Kronhamn’s approach clearly outperforms
Mušicki’s approach as predicted by the analysis in Section 5.5.4. TheRMSE for geometric
and equidistant partition which behave similarly is about 25 m after the initial phase.
Mušicki’s approach with geometric partition has an RMSE of about 70 m. An inferior
performance is achieved by Mušicki’s approach with equidistant partition which has an
RMSE of about 600 m and is not depicted here. The situation is different for the distant
target. Here, Mušicki’s approach shows a better performance than Kronhamn’s approach.
Furthermore, equidistant partition has a slight advantage with an RMSE of about 110 m
compared to the geometric partition with an RMSE of about 230 m. The results of this
simulation study confirm the fixed point hypothesis. Furthermore, a similiar study is
performend in Section 6.2.3 based on real sensor data and thus assuming a probability
of detection pD lower than one and a non-zero clutter density ρF since false and missed
detections could occur when using a real sensor.
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Figure 5.7: Scenario for GMF simulation study, © 2014 IEEE.

5.6 Non-Bayesian State Estimation

This section is dedicated to the central theme of bearings-only tracking for maneuvering
targets as it introduces the maximum likelihood estimator which will be applied to the
piecewise motion models presented in Chapter 2.

5.6.1 Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) provides an estimate x̂` |` of a d-dimensional
state vector x` at time t` based on a measurement sequence up to time tk ≥ t` , namely
Z1:k = {z1, . . . ,zk }, by maximizing the likelihood function p(Z1:k |x`), i.e.,

x̂` |` = arg max
x`

p(Z1:k |x`) . (5.91)

In contrast to the Bayesianmethod, no prior of the state x` is needed – the state is modeled
as an unknown constant and not as a random variable. The estimate is solely based on the
likelihood including a batch of all past measurements. Therefore, MLE approaches are
often referred to as batchmethods since the entire data has to be processed simultaneously
for every time ti . This makes batch methods computationally demanding. On the
other hand, it does not need a proper initialization which is often the reason that filters
diverge when applied for estimation problem which are not observable initially [LZJ02,
HAGL83].
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Figure 5.8: (a) RMSE for target at [250 m, 100 m] and (b) RMSE for target at [1400 m, 1400 m], ©
2014 IEEE.

The maximum likelihood method has been introduced by Fisher in 1912 [Fis12] based on
the least squares techniques by Gauss and Legendre. The MLE has been successfully ap-
plied in the domain of bearings-only tracking, see e.g. [HAGL83,Bec05b,Bec92,NLG84].
Similar to the pseudomeasurement filter, there is also a coordinate transformation tech-
nique leading to a pseudo-linear estimator (PLE) [LG78,HH93,NG97]. This results in a
linear measurement equation so that the optimization can be performed in closed-form2.
However, the PLE suffers from bias problems so that bias compensation techniques have
been developed [Doğ06]. Regarding maneuvering targets, Kirubarajan et al. [KBSL01]
have designed aMLE solution including the interacting multiple model (IMM) approach,
until then only incorporated into recursive filters. The technique in this thesis is an al-
ternative approach since we use a motion models that imply most other motion types as
special cases, rather than different switching models.
2 Under the assumption that the motion equation is also linear which is not the case in this thesis.

89



5 State Estimation for Bearings-only Tracking

If we consider the nonlinear system (3.1) with deterministic trajectory and Gaussian
measurement noise assumptions repeated here

xk = fk−1(xk−1) (5.92a)
zk = hk (xk ) + νk , (5.92b)

the likelihood turns out to beGaussian. To simplifymatters, butwithout loss of generality,
we assume that ` = 1, i.e. the earliest state in chronologically order is estimated. Since
the motion equation is deterministic, the state at tk can be reconstructed uniquely by
repeated application of the state transition function (cf. (2.42)),

xk = f(x1; tk, t1) = fk−1(fk−2(· · · f1(x1))) . (5.93)

Since the exponent of a Gaussian is negative and since a Gaussian can be simplified using
its logarithm, the MLE is equal to minimizing a cost function Q(x1),

x̂1 |k = arg min
x1

Qk (x1) , (5.94)

where the scalar Qk (x1) is given by a quadratic form

Qk (x1) = ηk (x1)
TW−1

k ηk (x1) . (5.95)

Thus, it can be recognized that the MLE complies with the least squares solution [Sor70]
for x̂1 |1. Here, ηk (x1) is the stacked vector of residuals

ηk (x1) =



z1 − h1(x1)

z2 − h2(f1(x1))
...

zk − hk (f(x1; tk, t1))


, (5.96)

where Wk is a diagonal stacked matrix of measurement covariance matrices assuming
that the measurements are uncorrelated,

Wk =



R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · Rk


. (5.97)
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Due to the diagonal form of Wk , the cost function can also be expressed as sum:

Qk (x1) =
k∑
j=1

[
zj − hj (f(x1; tj, t1))

]T R−1
j

[
zj − hj (f(x1; tj, t1))

]
. (5.98)

In general, there is no closed-form solution available to find the minimum in (5.94) since
nonlinear functions are involved. Therefore, numerical optimization methods have to be
applied. Popular examples are the Levenberg-Marquardt algorithm [Mor78], the Nelder-
Mead simplex algorithm [NM65], or the the Gauss-Newton method [Wed74]. A more
sophisticated approach is to find a coarse global optimum, for example by using controlled
random search (CRS) with local mutation [Pri83, KA06] and polish this value to a
greater accuracy with local optimization algorithms on a smaller region [Joh14]. Here,
BOBYQA (bound optimization by quadratic approximation) [Pow09], a local derivative-
free method, or MMA (method of moving asymptotes) [Sva02], a local gradient-based
algorithm, can be applied. See also Chapter 6.

5.6.2 MLE for Bearings-only Tracking of Maneuvering Targets

We recall the measurement functions for bearing (2.12), bearing rate (2.14), and range
measurements (3.63),

α(xk ) = arctan
∆xk
∆yk

(5.99a)

Ûα(xk ) =
∆ Ûxk∆yk − ∆ Ûyk∆xk
∆x2

k
+ ∆y2

k

(5.99b)

ρ(xk ) =
√
∆x2

k
+ ∆y2

k
, (5.99c)

where ∆ denotes the respective state component’s difference from the target to the ob-
server. Furthermore, αm

k
, Ûαm

k
, and ρm

k
are the respective measurements, which are related

to the measurement equations by means of a noise term with zero mean and standard
deviations σα, σ Ûα, and σρ, respectively.

As the measurements are assumed to be uncorrelated, the structure of the cost function
Qk (5.98) for the different measurement combinations (see also Section 3.3) is as follows:

Qk (x1) =


Qα
k
(x1) for bearings-only (BO)

Qα
k
(x1) +Q Ûα

k
(x1) for bearing and bearing rate (B-BR)

Qα
k
(x1) +Qρ

k
(x1) for bearing and range (BR)

, (5.100)
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where the individual cost functions are specified by

Qψ
k
(x1) =

1
σ2
ψ

k∑
j=1

[
ψm
j − ψ(f(x1; tj, t1))

]2
(5.101)

for ψ = {α, Ûα, ρ}.

Applying the piecewise inertial or piecewise curvilinear motion model from Chapter 2,
the unknownmaneuver change times are clearly part of the estimation problem. Note that
with each maneuver change, the dimension of the state increases by three components,
namely velocity in x- and y-direction and the maneuver change time in case of piecewise
inertial motion, and tangential and normal acceleration as well as the maneuver change
time for piecewise curvilinear motion.

In the literature, maneuver handling is commonly a testing or decision problem [LJ02]. In
contrast to that, our approach tries to estimate the maneuver change time like estimating
the target position or speed. As shown in Chapter 3, the CRLB can provide an estimation
accuracy for the maneuver change time. This is an advantage over a decision-based
approach where an explicit, hard decision about a maneuver change is taken without the
possibility to provide an accuracy. Nevertheless, estimation and decision are strongly
connected with each other [LJ02] since they both try to deduce an unknown quantity
from available information. The difference is that decision uses a discrete set of possible
solutions, whereas estimation is based on a continuous set. Hence, when assuming
a discrete-time tracking problem, a decision-based approach has been preferred in the
literature [BSLK01,BSF88,RJLB09] especially when a Bayesian estimator is used. In
the own paper [HO11a] we have employed a decision-based method to detect course
changes along with a Bayesian estimator, the particle filter. In this work, maneuver
change time estimation is applied to a discrete-time tracking problem in order to evaluate
its accuracy. Estimation is performed with a non-Bayesian approach.

For piecewise inertial or piecewise curvilinear motion, the aforementioned cost function
is parameterized by a state vector with dimensions (4 + 3M) or (6 + 3M), respectively.
including the unknown maneuver change times. It should be clear that the choice of the
correct state vector dimension requires the knowledge of the number of maneuver change
points M . However, in practice, this number is unknown. For the sake of simplicity,
we assume that M is known a priori but the maneuver change times are unknown. This
is a restricting condition, but it eases the estimation process since the estimation can
be performed with a fixed sized state dimension. We emphasize that a state estimation
concerning the target state with an increasing dimension when M is unknown is a hard
and challenging task that is not covered in this thesis. Additionally, it is not necessary for
a comparison with the CRLB. This estimator is a proof of concept to show that especially
the maneuver change times can be estimated. The estimation results in Section 6.1 are
based on this concept.
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Alternatively, an estimation technique can be used that only considers one maneuver
change. Thus, it tries to estimate the respective parameters from the current maneuver
segment m (including the maneuver change time) and the parameters from the segment
m−1. In the equations below, only the boxed elements are therefore part of the estimation
process and the state dimension is constant. For piecewise inertial motion, we consider

xk =
[

xk, yk ; Ûx0, Ûy0, . . . , Ûxm−1, Ûym−1, Ûxm, Ûym ; t̃1, . . . , t̃m
]T

(5.102)

and analogously, in case of piecewise curvilinear motion

xk =
[

xk, yk, vk, ϕk ; at,0,an,0, . . . ,

at,m−1,an,m−1,at,m,an,m ; t̃1, . . . , t̃m
]T

. (5.103)

The specific parameters of the other maneuver segments are regarded as nuisance pa-
rameters and are not estimated in this approach. Furthermore, it is not necessary to
know the number of maneuver change points a priori. The algorithm detects the m-th
maneuver change if the accuracy of the maneuver change time estimates is sufficiently
precise and/or the acceleration estimates between the segments are sufficiently different.
Finally, the results can be used as an initialization to estimate the full target state vector.

5.6.3 Combination of Bayesian and Non-Bayesian Estimation: Filter
Initialization

We have learned that a Bayesian filter must be properly initialized by a prior density since
it is a recursive scheme. More specifically, as only Gaussian assumptions are made in this
thesis, an initial mean x̂0 |0 and covariance P0 |0 has to be found somehow. As filters react
"sluggish", meaning that outlying measurements do not affect a filter to a great extent
since they are fused to a motion model, good initialization is crucial. Otherwise, the filter
could diverge quickly. Hence, several techniques have been developed based on a small
number of measurements, for example one-point or two-point initialization [BSLK01].
However, especially for bearings-only tracking this kind of initialization is not appropriate
since the state is not observable before the first observer maneuver. To overcome this, one
can use a batch MLE approach until the first observer maneuver and use the estimate as
well as the CRLB for an initial mean and covariance [KBSL01]. This guarantees the best
possible initialization for a recursive filter. On the other hand, likelihood approximation
techniques as presented in Section 5.5 can be used without an initialization technique.
However, a maximum range assumption needed for a finite number of Gaussian mixture
components has to be made.
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5.7 Summary of the Chapter

This chapter again combines the two central themes of this thesis. In the first part,
several Bayesian filtering methods for linear and nonlinear systems have been derived
which all base on the same scheme given by Bayes’ rule which emerges into an itera-
tive update scheme, called Kalman filter, for linear, Gaussian systems. Especially with
bearings-only tracking in mind, the Gaussian mixture filter has been examined with its
natural extension to multi-hypothesis tracking to account for missing and false obser-
vations. These usually occur in field tests. In order to find a strategy how to choose
the Gaussian mixture components, two approaches based on the work of Kronhamn and
Mušicki have been studied. The contribution is here that both approaches can be derived
from a more general likelihood approximation introduced by Streit. The results of this
comparison is that Kronhamn’s and Mušicki’s approaches are suitable for near and far
targets, respectively. In the second part, non-Bayesian state estimation methods, namely
the maximum likelihood estimator has been presented. It is intended for bearings-only
tracking of maneuvering targets due to its robustness. Hence, similar to the CRLB in
Chapter 3, the incorporation of piecewise motion models has been investigated. Having
covered state estimation leads to its application to simulative as well as real scenarios in
the following Chapter 6.

94



6 Experimental Results

6.1 Simulation Results for Bearings-only Tracking of
Maneuvering Targets

In this section, the simulation results for a piecewise inertial and a piecewise curvilinear
motion scenario are illustrated based on the aforementioned measurement combinations,
bearings-only (BO), bearing and bearing rate (B-BR), and bearing and range (BR). For
both motion models, first the CRLB is presented, and then the results of the estimation
process using the maximum likelihood approach from Section 5.6 are presented. Here,
500 Monte Carlo runs are carried out in order to study the performance of the estimator.
Finally, CRLB and estimation results are compared.

6.1.1 Piecewise Inertial Motion

For piecewise inertial motion we consider the 2D scenario depicted in Fig. 6.1. The
target trajectory is given for 600 s by the initial state

[x(t0), y(t0)] = [1 km,5.5 km] (6.1)

and the following maneuver segments:

[t0, v0, ϕ0] = [0 s,15 m/s,60°]
[t̃1, v1, ϕ1] = [200 s,15 m/s,150°]
[t̃2, v2, ϕ2] = [400 s,15 m/s,90°] .

(6.2)

Thus, the target moves in three legs with a constant speed and performs two maneuver
changes at times t̃1 = 200 s and t̃2 = 400 s. Note that the maneuver segment parameters
are given in polar coordinates due to readability. The observer moves according to the
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Figure 6.1: Piecewise inertial motion: Scenario and corresponding CRLB for BO, B-BR, and BR.
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depicted trajectorywith four legs for 630 s from starting point [0 km,0 km]with a constant
speed of 8 m/s and the following maneuver segments:

[t0, ϕO] = [0 s,100°]

[t̃O,1,aO,n] = [110 s,−0.87 m/s2]

[t̃O,2, ϕO] = [130 s,335°]

[t̃O,3,aO,n] = [320 s,0.87 m/s2]

[t̃O,4, ϕO] = [340 s,100°]

[t̃O,5,aO,n] = [530 s,−0.56 m/s2]

[t̃O,6, ϕO] = [550 s,20°] .

(6.3)
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The observer’s normal acceleration is zero in the segments 0, 2, 4, and 6. The observer
collects measurements each second. Therefore, about 200 measurements are taken per
target maneuver segment with the assumption that there are no missed detections. The
standard deviations of the azimuth, the azimuth rate, and the range measurements are as
follows:

σα = 1° , σ Ûα = 1 mrad/s ≈ 0.057 °/s , σρ = 1000 m . (6.4)

Since the observer performs several maneuvers, the observability condition is fulfilled
after the first observer maneuver in case of passive measurements (BO and B-BR).

Cramér-Rao Analysis

In Fig. 6.1, the CRLB for the target position using BO, B-BR, and BR is shown. The
bounds are illustrated by means of uncertainty ellipses which are scaled in order to fit into
the figures. The CRLB of BO, B-BR, and BRwith respect to time is visualized in Fig. 6.2
and 6.3. This is carried out for the complete target state, namely position x, y, segment
velocities, Ûx0, Ûy0, Ûx1, Ûy1, Ûx2, Ûy2, and maneuver change times t̃1, t̃2 . Additionally, for
clarification, the true maneuver change times of the target and the observer are shown
in the referenced figures. The depicted bounds equal the square root of the respective
diagonal elements of the inverted FIMs.

It can be recognized from Fig. 6.1, Fig. 6.2, and Fig. 6.3 that for all three segments of
the target motion the estimation accuracy for the BO case is the lowest. Considering
additional bearing rate measurements leads to an information gain, so that for the B-BR
case, a better performance illustrated by smaller ellipses and bounds can be identified.
For B-BR, the position accuracy is about 2 times higher than for BO, the velocity accuracy
is at least 3 times higher, and the maneuver change time accuracy about 1.3 to 1.5 times.
The highest accuracy is achieved when using bearing and range measurements (BR). It
is about 13 times higher than for BO regarding position accuracy, at least 5 times higher
regarding velocity accuracy, and about 1.5 to 3 times higher regarding maneuver change
time accuracy. This makes clear that it is crucial whether range information is obtained
directly (BR) or whether it has to be derived from passive measurements by means of a
target motion analysis (BO and B-BR). Additionally, Fig. 6.2 and 6.3 illustrate that for
BO and B-BR, a sufficient localization is possible only after the first observer maneuver.
Before the first observer maneuver, the FIM is not invertible so that a reasonable bound
cannot be provided. In contrast to that, for BR, observability is guaranteed from the
beginning due to available range measurements. Therefore, a CRLB can be provided
over the complete time.

At the target maneuver change times, the position CRLB rapidly increases for all three
cases. This is because the state vector is augmented by three elements, namely the
segment velocities in x and y direction as well as the maneuver change time, which
contribute zero value entries to the FIM initially. Thus, only minimal information
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Figure 6.2: Piecewise inertial motion: Visualization of CRLB for target state components x, y,
Ûx0, and Ûy0 regarding BO, B-BR, and BR. The solid vertical lines denote the observer
maneuvers, the dashed vertical lines the target maneuvers, © 2014 IEEE.

about the current velocities is provided at the target maneuver change times. Due to
the fact that the velocities could have arbitrary (high) values in theory, the uncertainty
about the target position is high. Since no further constraints with respect to the target
motion are considered, the target position might be unobservable shortly after a target
maneuver. Mathematically, the inversion of the FIM with very small current segment
velocity elements leads to a rapidly increasing position CRLB since all entries influence
the position entries when performing the inversion. Since the segment velocities and
the maneuver change times are constant estimation parameters and therefore they do not
change with time, their bounds necessarily decrease monotonically. The velocities for
segmentm are not constant after the target hasmoved to segmentm+1. One can recognize
in Fig. 6.2 and 6.3 that the velocities from previous segments are nearly constant in later
segments. The most variation can be seen for the B-BR case. This is because a bearing
rate measurement carries information about the velocities which is not the case for BO
and BR. Since we consider all past measurements for the CRLB, there is an influence on
the velocity accuracy concerning a previous segment. However, the nearly constancy of
the velocities shows that there is no absolute need to estimate them in later segments: they
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Ûx2, Ûy2, t̃1, and t̃2 regarding BO, B-BR, and BR. The solid vertical lines denote the
observer maneuvers, the dashed vertical lines the target maneuvers, © 2014 IEEE.

can be identified as nuisance parameters and the estimation problem is therefore easier
to solve. This approach has also been proposed in Section 5.6, see (5.102) and (5.103).

State Estimation

Here, the results of state estimation using a maximum likelihood estimator are compared
to the CRLB.We assume the scenario illustrated in Fig. 6.1. For the considered scenario,
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∆xk and ∆yk ∆xk and ∆ Ûx1

BO 1.9777 2.1987

BO bias corrected 1.9545 2.1094

B-BR 1.8752 1.9637

B-BR bias corrected 1.8328 1.9224

BR 2.0097 2.1297

BR bias corrected 2.0052 1.9910

Table 6.1: Piecewise inertial motion: NEES for BO, B-BR, and BR regarding the cases depicted in
Fig. 6.4 and 6.5, © 2014 IEEE.

Monte Carlo simulations with 500 runs are carried out to study the performance of the
ML estimator given in Section 5.6. In our simulations, we use the simplex method of
Nelder and Mead [NM65] to find the minima of the respective cost functions (5.101) and
we initialize every search with the true value. The results have been determined at time
t = 400 s which equals the first maneuver change time t̃2.

The scattering of theMonte Carlo estimates around the true values is visualized in Fig. 6.4
and 6.5 by scatter plots of the estimation error. Thatmeans, estimation results are depicted
as estimation errors so that the true target state is at [0,0]. Here, the position error in x-
direction, defined as ∆xk = x1 − x̂1, i.e. the difference between true and estimated value,
is compared to the position estimation error in y-direction, ∆yk , as well as the segment
velocity estimation error in x-direction, ∆ Ûx1, is shown regarding all three investigated
tracking cases BO, B-BR, and BR. Assuming normally distributed estimation errors,
the ellipse parameters have been chosen in such a way that the estimation error ellipses
enclose 95.4% (2σ ellipse) of the sample values. We can recognize that the estimation
error ellipses (sample covariance) and CRLB ellipses have a similar orientation and
expansion, so the CRLB is mostly attained in the presented cases.

In Table 6.1 the normalized estimation error squared (NEES) for the cases depicted in
Fig. 6.4 and 6.5 is given. The NEES indicates whether the estimator is efficient. The
(single run) NEES at time tk is defined as [BSLK01]

εk = ∆xT
k Jk ∆xk , (6.5)
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Figure 6.4: Piecewise inertial motion: Scatter plots of Monte Carlo estimation errors, correspond-
ing estimation error ellipses, and CRLB ellipses plotted for ∆xk versus ∆yk regarding
BO, B-BR, and BR at time t = t̃2 = 400 s. The true target state is at [0, 0], © 2014
IEEE.

where ∆xk comprises the errors of the respective parameters (in this case: ∆xk , ∆yk ,
and ∆xk , ∆ Ûx1) and Jk is the FIM containing the respective entries. For N Monte Carlo
runs, one has a sample average NEES as

ε̄k =
1
N

N∑
i=1

ε ik , (6.6)

where ε i
k
is the NEES (6.5) at time tk for the i-th Monte Carlo run. The quantity N ε̄k

is chi-square distributed with Nd degrees of freedom, where d is the dimension of the
parameter set. Practically, one divides these values by N so that ε̄k hat to lie in an
interval around d for the estimator to be efficient. Hence, if we consider a two-sided
95% acceptance region given by the interval (1.8285,2.1790) for two dimensions and
N = 500 Monte Carlo runs, it can be seen that most NEES values, in particular all bias
corrected NEES values, are within this range. That means that our estimator is consistent
regarding the illustrated cases. The bias correction has been carried out in a way that the
mean error over all Monte Carlo runs has been subtracted from the respective error for
all parameters.
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BO, B-BR, and BR at time t = t̃2 = 400 s. The true target state is at [0, 0], © 2014
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6.1.2 Piecewise Curvilinear Motion

In this section, we consider the piecewise curvilinear motion scenario in Fig. 6.6. The
target starts with the initial state

[x(t0), y(t0), v(t0), ϕ(t0)] = [−9 km,12 km,50 m/s,90°] (6.7)

and performs the maneuvers described by the following maneuver segments:

[t0,at,0,an,0] = [0 s,0 m/s2,0 m/s2]

[t̃1,at,1,an,1] = [400 s,0 m/s2,0.5 m/s2]

[t̃2,at,2,an,2] = [600 s,0 m/s2,0 m/s2] .

(6.8)

So, the target moves inertially in the first and the last segment and performs a constant
turn motion in the second segment. The maneuver change times are at t̃1 = 400 s and
t̃2 = 600 s. With each maneuver change the state dimension increases by three elements.
Hence, the state consists of 6 elements at t0 and 12 elements at tmax = 1000 s. The
observer moves for 1100 s counterclockwise along a circular path with a constant velocity.
This is parameterized by rO(t0) = [0 km,0 km]T, | ÛrO(t0)| = 50 m/s, ϕO(t0) = 0°, and
aO,n = −1.25 m/s2. The observer collects measurements each second with no missed
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detections. Hence, 400 measurements are taken in the first and the last segment and
200 in the middle segment. The standard deviations for bearing, bearing rate, and range
measurements are the same as in Subsection 6.1.1,

σα = 1° , σ Ûα = 1 mrad/s ≈ 0.057 °/s , σρ = 1000 m . (6.9)

From the observability condition established in [Bec96], it follows that the state of an
inertial moving target can be determined from azimuth measurements obtained from
a sensor moving on a circular path. So, for the considered scenario the uniqueness
condition is already fulfilled in the first segment of the target trajectory.
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Cramér-Rao Analysis

In Fig. 6.6, the ellipses representing the CRLB for target position considering BO, B-BR,
and BR are depicted. Fig. 6.7 and 6.8 show the CRLB of BO, B-BR, and BR for the full
target state with respect to time. This includes target position, speed, and course, as well
as the tangential accelerations at,0, at,1, at,2, the normal accelerations an,0, an,1, an,2,
and the maneuver change times t̃1 and t̃2 regarding the three segments. The depicted
lines are the square roots of the respective diagonal elements of the inverted FIMs.
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regarding BO, B-BR, and BR. The dashed vertical lines denote the target maneuvers,
© 2014 IEEE.

Since BO exploits the smallest amount of information, it carries the lowest estimation
accuracy. If additional bearing rate measurements (B-BR) are considered, we can recog-
nize a certain accuracy gain. This gain is about factor 3 to 4 for position, speed, course,
tangential and normal accelerations as well as maneuver change times, see Fig. 6.7
and 6.8. Comparing BO and B-BR, a further accuracy gain can be identified. Here, the
accuracy is about 15 times higher for position and course, about 7 times higher for speed,
about 5 times higher for the segment accelerations, and about 4 to 7 times higher for the
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maneuver change times. The figures show that no observability issues exist. Due to the
circular motion of the observer, observability is ensured from the beginning regarding
all three types of measurements.

It can be recognized that the estimation accuracy generally increases with a growing
number of measurements. This is clear since the Fisher information is added up over
all previous measurements, see also (3.19). At maneuver change points, particularly the
position, speed, and course estimation accuracies decrease. This is due to a high uncer-
tainty because the new segment accelerations are unknown. See also Subsection 6.1.1
for a similar explanation concerning the piecewise inertial case. Another effect is that
the acceleration components as well as the respective maneuver change time stay nearly
constant in the segment where they are not active any more. According to the last section,
this supports an estimation approach which does not consider the complete (6 + 3M)-
dimensional state with its M + 1 segments, but only the current segment and the segment
before.

State Estimation

Here, the results of state estimation using a maximum likelihood estimator are compared
to the CRLB. We assume the scenario illustrated in Fig. 6.6. Also here, Monte Carlo
simulations with 500 runs are carried out and the minima of the respective cost functions
are determined by the simplex method of Nelder and Mead [NM65]. We initialize every
search with the true value. The time where the results are determined is t = 600 s which
is equal to the second maneuver change time t̃2.

The scattering of theMonte Carlo estimates around the true values is visualized, by scatter
plots of the estimation error. That means, estimation results are depicted as estimation
errors so that the true target state is at [0,0]. The resulting 2D estimation error ellipses
(sample covariance) are compared with the corresponding CRLB ellipses. The ellipse
parameters were chosen in such a way that, assuming normally distributed estimation
errors, the ellipses enclose 95.4% (2σ ellipse) of the sample values.

In Fig. 6.9 and 6.10 the BO, B-BR, and BR case is shown for the target position error
in x-direction, ∆xk , with respect to the target position error in y-direction, ∆yk as well
as with respect to the estimation error of the first maneuver change time, ∆t̃1. The
estimation error ellipses and bound ellipses have a similar orientation and expansion.
The scatter plots display that the estimation results are mostly biased: The sample mean
of the estimation errors (red quad) is only near [0,0]. However, it is well-known that the
MLE is asymptotically efficient: The estimates can be biased in the presence of noise
and for a finite number of measurements N , but asymptotically they are not. Also here,
the BR case shows the best performance with a negligible bias. Furthermore, the scatter
plots prove that the target maneuvering time can be estimated, even if the error ellipse
slightly deviates from the bound ellipses in the BO and B-BR case.
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∆xk and ∆yk ∆xk and ∆t̃1

BO 2.0405 1.7917

BO bias corrected 1.9690 1.6788

B-BR 1.9106 1.7937

B-BR bias corrected 1.8531 1.6939

BR 1.8947 1.9186

BR bias corrected 1.8926 1.9176

Table 6.2: Piecewise curvilinear motion: NEES for BO, B-BR, and BR regarding the cases de-
picted in Fig. 6.9 and 6.10, © 2014 IEEE.

In Table 6.2 the NEES (6.6) for the cases depicted in Fig. 6.9 and 6.10 is specified.
Considering a two-sided 95% acceptance interval which is (1.8285,2.1790) for two
dimensions and 500 Monte Carlo runs, it can be seen that the NEES values for ∆xk and
∆yk are all within that interval which means estimator consistency. However, besides the
BR case, the NEES regarding ∆t̃1 is below the lower bound and therefore the estimator
is pessimistic.

107



6 Experimental Results

-2 0 2
-0.5

0

0.5

∆
y
k
/
km
→

CRLB est. errors
sample mean sample cov

BO

-2 -1 0 1 2

-0.2

0

0.2

∆
y
k
/
km
→ B-BR

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
−200
−100

0
100
200

∆xk/km→

∆
y
k
/
km
→ BR
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2014 IEEE.
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6.2 Field Test Results for BOT in a Vehicular Ad hoc
Network Using Heterogeneous Sensors

In order to verify the BOT approach in a vehicular ad hoc network using heterogeneous
sensors, several field tests have been carried out. First of all, communications and self-
localization has been tested, see Subsection 6.2.1. In this context, all sensor input has
been simulated. In a later phase, real sensors, namely a microphone array and a laser
and radar detector, have been applied, see Subsection 6.2.2. The own reference paper
is [HGR+16].

6.2.1 Communications Tests

The concept for the proposed mobile ad hoc network (MANET) includes a fusion center
on each vehicle for reliability, see Section 1.4 and Fig. 1.3. The network architecture
facilitates a full mesh of point-to-point connections, i.e. sending sensor data (plots) from
each participant to another each time step a measurement is taken. With this, the setup
for the vehicle-to-vehicle communications tests is as follows, see Fig. 6.11:

• A formation of two (later four) cars moves around a circuit with varying distances
between 30 m and 200 m at speed 20 km/h to 40 km/h or stand at certain positions,
see Fig. 6.12.

• Each car is equipped with a commercial-off-the-shelf (COTS) Wi-Fi device.
Specifically, we employ Ubiquiti Bullet M5 Wi-Fi radios [Ubi11] operating at
5 GHz with an omni-directional antenna. The radios provide an IEEE 802.11n
Wi-Fi and have OpenWRT installed as operating system. The nodes form a mo-
bile wireless ad hoc network (MANET). As routing protocol OLSRv1 is used.
Although a routing protocol is not mandatory when only two nodes are involved,
we use this setup for performance evaluations considering different node-to-node
distances and obstacles.

• Additionally, for self-localization purposes, each car is equipped with a GPS
receiver. During these tests, we used both NovaTel and Garmin GPS receivers.

• On each car, a bearings-only sensor is simulated which generates angle-only mea-
surements of a simulated threat.

• Communications device and GPS receiver are connected to a laptop on each car
which acts as visualization device aswell as a fusion center fusing information from
the simulated sensors. The visualization software is based on NASA WorldWind
Java SDK [Nat].

The first objective was to measure the communications performance for different vehicle
distances. Therefore, the test has been carried out using two cars in four scenarios:
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Figure 6.11: Formation of four cars during communications field tests with mounted commu-
nication devices (left), laptop with visualization and fusion software (center), and
Ubiquiti Bullet M5 Wi-Fi radio device (right), © 2016 IEEE.

Figure 6.12: Schematic overview of test area and scenarios for communications tests with two
cars (orange and green). The different shapes represent the scenarios S1-S4, © 2016
IEEE.

During the first two scenarios (S1 and S2), the cars move with low distances with an
average of around 30 m to 50 m. For the third scenario (S3), we have chosen medium
distances of about 100 m, and finally during the fourth run (S4), the maximal distance
inside the test area of about 200 m has been used. Results for the scenarios S1 to S4
are shown in Fig. 6.13. Here, signal strength, bitrate, ETX, and car distance based
on GPS measurements are depicted over time considering the communication between
the first and the second car of the formation. ETX is the abbreviation for expected
transmission countmetric on (multi-hop)wireless networks and denotes expected number
of transmissions required to send a packet successfully to its destination [DCABM05]
used in OLSRv1. The plots clearly show that with low distances (S1 and S2) the signal
strength and the bitrate are high while the ETX is one meaning only a single transmission
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Figure 6.13: Results of communications tests for different scenarios S1-S4, © 2016 IEEE.

is needed for each packet indicating optimal connectivity. With higher distances (S3),
the signal strength and the bitrate deteriorates while the ETX slightly increases. This
is because of shadowing effects of a building depicted in Fig. 6.12. When the distance
is maximized inside the test area (S4), and buildings are obstacles, the connectivity is
interrupted, especially betweenminute 15 and 20 shown by nomeasurable signal strength
and bitrate as well as indefinite ETX. This way we have evaluated the communications
performance of the available hardware as a prerequisite for further tests.

The next test objectivewas to evaluate the performance of the distributed fusion algorithm
over this wireless network in a simulated sensor environment. For that, we have chosen
another test area north of Wachtberg-Werthhoven with no obstacles/buildings disturbing
communications, see Fig. 6.14. Since a high bandwidth scenario is considered, where
the bandwidth is sufficient to transmit most of the produced sensor data to the fusion
centers on the different vehicles. This approach is called measurement-to-track fusion
(M2TF). In Fig. 6.14, one can also recognize the location of the four cars, which have
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vehicle 1

vehicle 4

vehicle 3

vehicle 2

threat

Figure 6.14: Fusion results from communications field tests with simulated sensors. Four vehi-
cles with maximum distance at the test area. The estimated threat location (red) is
near the true threat location. Screenshot from software based on NASA WorldWind
Java SDK [Nat]. The test area is between the Fraunhofer campus Wachtberg and the
village of Wachtberg-Werthhoven, © 2016 IEEE.

maximized their distance over the circuit, the current (simulated) angular measurements,
and the fusion result for the simulated threat which is clearly near the true threat location.

6.2.2 Sensor Tests

After the communications test with simulated sensors have been carried out successfully,
the next steps were to integrate several real sensors into the system. According to the
scheme in Fig. 6.15, we have chosen two sensors to be integrated. Therefore the setup for
these tests is given by the following changes to the setup described in Subsection 6.2.1:

• Two cars in a stationary and mobile scenario, see Fig. 6.16.

• Regarding the communications subsystem, no changes except an upgrade to
OLSRv2 has been made.

• For the self-localization subsystem, we use u-blox EVK-6T GPS receivers on each
car. Furthermore, since the GPS receivers cannot provide heading information
while not in motion, we employ XSens MTi-G 700 INS devices. Vehicle heading
is important to transform measurements from a sensor coordinate system to a
global coordinate system.

• The following real sensors have been integrated:
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Figure 6.15: Schematic overview of components and subsystems mounted on a car, © 2016 IEEE.

Figure 6.16: Two cars fully mounted, © 2016 IEEE.

1. Eight-channel microphone array with eight channel TASCAM sound card
which is able to provide an angularmeasurement to an object emitting sounds,
in particular, acoustic shocks, e.g. from a gun or RPG. See Fig. 1.4 for an
illustration.

2. COTS radar and laser detector “Valentine One”, see [Val12] and Fig. 1.4.
Usually, this device1 is used to detect traffic radars in various bands: X, K,

1 The inventor describes it as “a civilian version of what the military calls Electronic Warfare Support Measures
(ESM)” [Val12]
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Figure 6.17: Field tests scenario and results using Kronhamn’s weights.

Ka, and Ku band as well as laser between 820 nm and 950 nm. We are using
it for detecting electromagnetic emissions from the simulated threat.

• In order to simulate a threat emitting sound as well as electromagnetic waves, we
use the following trigger devices:

1. Gas-powered stationary sonic blast-shock cannon “Purivox Triplex V”, see
Fig. 1.4 (right). This device is used to emulate a gun blast or similar. Usually,
this cannon is used to expel birds from crops.

2. Trigger device for the radar and laser detector. This device is commercially
available for testing a traffic radar detector after installing it in a car. It is
able to emit radar frequencies in X, K, Ka, and Ku band as well as laser.

6.2.3 Fusion Results from Sensor Tests

For each angular measurement of the threat produced by the microphone array by means
of audio data processing, a plot message is generated which comprises the angular value
of the bearing measurement as well as its standard deviation. The fusion center approxi-
mates the measurement likelihood (5.31) determined by the two transmitted parameters
by means of a Gaussian mixture, where each mixture component represents a range hy-
pothesis, see the analysis in Section 5.5 and applies a multi hypothesis Gaussian mixture
filter in order to estimate the threat’s location under potential missing detections and false
alarms, see Section 5.4.
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Figure 6.18: Field tests scenario and results using Kronhamn’s weights (screenshot).

The test area is located north of Grafschaft-Oeverich and about 2 km south of the Fraun-
hofer campus Wachtberg, directly south of the border to the state of Rheinland-Pfalz,
see Fig. 6.18 and 6.20. One vehicle equipped with a microphone array aligned to the
right of the driving direction (see also Fig. 6.16) travels along a country road in northern
direction and turns right at an intersection, see Fig. 6.17 and 6.19. The sonic blast-shock
cannon is deployed at coordinates 50.599 183° N and 7.120 728° E about 150 m east of
the starting position of the vehicle and is used as the source for audio measurements.

The first objective of this test is to verify the performance of the audio signal processing
algorithm which calculates bearing measurements from the sound waves arriving at the
microphone array. Nevertheless, signal processing is not part of this thesis, so that only
the second objective is evaluated here: Verify the performance of the multi hypothesis
Gaussian mixture filter with bearing-only measurements from a single platform. Of
course, this strongly depends on the quality of the audio bearings which is high as we
will see later. Due to these narrow test objectives, two other aspects have not been
considered in these sensor tests: Multiple vehicles in order to test the communication
and the detection of electromagnetic signals as intended by means of the laser/radar
detector. The communications aspect has already been handled in the communications
tests, see Subsection 6.2.1. However, the "fusional" integration of the detector stays an
open question: It has only been considered for observability, see Chapter 4.

Hence, with the availability of audio bearings, the two likelihood approximation ap-
proaches from Section 5.5, namely Kronhamn’s and Mušicki’s approach, are compared
in a real scenario. We remember that Kronhamn determined the Gaussian mixture com-
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Figure 6.19: Field tests scenario and results using Mušicki’s weights.

ponent weight as proportional to the length of the range subinterval covered by a Gaussian
mixture component, whereas Mušicki proposed a method where the component weights
are proportional to the area covered by a Gaussian mixture component. The simulations
in Subsection 5.5.5 already have shown that, if the target is near, relative to the maximum
range, Kronhamn’s approach delivers better results, whereas Mušicki is more appropriate
when the target is far away relative to the maximum range. For these tests, we have set the
minimum range rmin = 0.1 m and the maximum range rmax = 2000 m, the probability of
detection pD = 0.98 and the clutter density ρF = 1/2π, the bearing standard deviation to
σ = 3°. The results are as expected and predicted by the simulation in Subsection 5.5.5:
For Kronhamn’s approach, the position estimates are near the target, with a slight bias,
see Fig. 6.17, whereas for Mušicki weights, the filter seems to diverge with position
estimates around 200 m east of the true target location, see Fig. 6.19. Furthermore, the
position error epos

k
and the filter standard deviation in position coordinates σpos

k
(cf. with

root mean trace of the covariance, RMTC [DNK12]) given by

epos
k
=

√(
xtrue
k
− x̂k |k

)2
+

(
ytrue
k
− ŷk |k

)2
(6.10a)

σ
pos
k
=

√
tr

(
Pk |k

)
(6.10b)

is illustrated in Fig. 6.21. The bias corrected position error for time tk is calculated
by subtracting the median position error over time (which is about 10.27 m) from the
respective position error at time tk . The figure clearly reflects the findings. In both
cases, the covariance is lower than the position error. This indicates problems with
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Figure 6.20: Field tests scenario and results using Mušicki’s weights (screenshot).
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Figure 6.21: Position error and covariance using Kronhamn’s (above) and Mušicki’s (below)
weights.

filter consistency, meaning the filter is optimistic. For Kronhamn’s approach, there
exist a certain estimation bias which seems to be explainable by a small measurement
bias caused in the audio processing. Thus, the bias correction has been applied. With
this, the bias corrected position error is lower than the covariance, so that for unbiased
measurements, the filter shows appropriate performance. For Mušicki’s approach, the
general divergence is the cause. Thus, a bias correction makes no sense. Apparently, the
audio signal processing algorithm has provided the filter with stable and mostly proper
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6 Experimental Results

Figure 6.22: Acoustic bearings with false alarms for car speed v = 40 km/h (screenshot from
visualization software), © 2016 IEEE.

bearing measurements. It was able to suppress the most false detections, for example
caused by driving about 40 km/h over a gravel path. This has been experienced in earlier
campaigns, see Fig. 6.22, and has been successfully factored in. Nevertheless, there is
always surrounding sound in an open area, so that false measurements may occur.

6.3 Summary of the Chapter

In this chapter, results for both central themes of this thesis have been presented. Con-
cering the first theme, bearings-only tracking for maneuvering targets, a simulation study
has been carried out. A major contribution is the ability to estimate a state with increas-
ing dimensions due to the piecewise motion models especially including the maneuver
change times. Furthermore, the presented estimator, which is in a proof of concept state,
turned out to be predominantly efficient as it attained the CRLB for most of the state
components. For the second central theme of this thesis, we have conducted field tests
including several platforms interconnected by a wireless network. Putting the different
technical components as sensors and their connection to the overall system to work has
been a challenge itself. Thus, the field tests with fusion results have been narrowed to
fuse bearings from an acoustic source in order to localize a threat. However, these real
data experiments have been successful and were able to show the performance of the
Gaussian mixture filter.
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7 Summary and Conclusions

This thesis presented advances in two sub-themes of bearings-only tracking, namely
bearings-only tracking for maneuvering targets, and bearings-only tracking using hetero-
geneous sensors. Both topics constitute the central themes which group this thesis into
two vertical strands. In each chapter, the respective subject is discussed related to the
central themes.

In Chapter 2 measurement and motion models essential for this thesis have been intro-
duced and recapped. This includes bearings-only and bearing rate measurements, which
play a role as additional measurements to improve the state estimation results. The
presented motion models span different stages of complexity: From a simple constant-
velocity model to the complex piecewise motion models, more specifically, piecewise
inertial motion for maritime targets, and piecewise curvilinear models for agile targets
like aircraft. These models are required to derive a Cramér-Rao lower bound for ma-
neuvering targets, see Chapter 3, which is able to consider different maneuver segments
as well as the times when a new maneuver segment is initiated. This is the first major
theoretical contribution of this thesis.

The observability analysis in Chapter 4 is primarily related to the central theme of
bearings-only tracking using heterogeneous sensors. However, it is strongly connected
to the Cramér-Rao lower bound since the observability Gramian as main tool for any
observability analysis has turned out to be algebraically equivalent to the Fisher informa-
tion matrix as inverse of the CRLB besides the noise terms. Here, the proposed idea of
heterogeneous bearings-only tracking, exploiting different signal propagation velocities
has been investigated using acoustic and electromagnetic signals. The results showed that
observability can be ensured for passive measurements involving moving targets from
a single stationary observer using these heterogeneous sensor setup. This is in contrast
to simple bearings-only tracking where an observer usually must maneuver to track a
moving target and thus the second major contribution of this thesis.

With observability as requirement for state estimation and the CRLB as indication for
maximum achievable estimator performance, state estimation methods have been pre-
sented in Chapter 5. We have distinguished between Bayesian and non-Bayesian state
estimation methods. The non-Bayesian approach, namely the maximum likelihood es-
timator, has been the choice for bearings-only tracking of maneuvering targets. This
is due to its robustness and the non-observability of the state before the first observer
maneuver. Bayesian methods often diverge under these circumstances since a proper
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initialization is challenging. If the filter is ill-initialized, all following estimates will
base on these values due to the recursive Bayesian update scheme leading to divergence
of the filter. On the other hand, non-Bayesian method often operate in batch mode for
nonlinear problems so that they consider all past measurements for each estimate. This
makes them more robust against divergence but also computationally demanding. For
heterogeneous bearings-only tracking, Bayesian methods are used. The choice has been
a linear Gaussian mixture filter which is based on a Gaussian mixture approximation of a
bearings-only likelihood that is linear in target state. This likelihood approximation has
been derived from a general technique for likelihood approximation. It turned out that
the weights of the Gaussian mixture components can be obtained in two different ways
which have been compared. This resulted in recommendations for the choice of weights
depending on the target distance as third main theoretical contribution of this thesis.

Results for both central themes have been presented in the final technical chapter of
this thesis, Chapter 6. Concerning the maneuvering target case, we have shown in a
simulation study that a batch estimator can be specified which can estimate a state with
increasing dimensions due to the target maneuvers modeled by the piecewise motion
models. Furthermore, it has attained the CRLB, so it is predominantly efficient. Field
tests featuring real sensors, i.e. a microphone array and a radar/laser detector have been
conducted regarding the heterogeneous tracking part of this thesis. A system has been
built up which is able to present a situation picture by means of modern communication
and routing technology. The interaction of communication and data fusion has been
shown. Furthermore, the performance of theGaussianmixture filter has successfully been
proven in these field tests for acoustic bearings-only measurements using a microphone
array. Having set up and implemented such a system with relevance to distributed data
fusion and communication is practical contribution of this thesis.

Future work Hence, in both central themes, relevant contributions have been made.
However, there is always future work left. Concerning the maneuvering tracking part,
the state estimation can be improved methodologically. At the moment it is in a proof of
concept state. Since the state dimension is increasing with each maneuver segment, and
therefore the computational complexity, one could research on methods to reduce that
complexity. This could include identification of linear substructures, e.g. by means of
appropriate coordinate transformations or further methods so that parts of the problem
are linear and can be solved analytically. Concerning the heterogeneous tracking domain,
the laser/radar detector must be integrated into the fusion process. This has only been ex-
amined theoretically for observability. Of course, exploiting different signal propagation
velocities, using acoustic and electromagnetic signals ensures observability in situations
where using only one signal type would suffer from non-observability. This alone would
create a benefit for state estimation and possibly improve estimation accuracy. But there is
even another item to think about: Since the detector only roughly detects direction, i.e. it

120
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can give information whether the target is in front of the observer, at the side, or behind
it, it could be used to pre-filter the acoustic bearings and thus suppress false detections
from surrounding audio sources. Since the field test infrastructure with platforms and
sensors is available, tests on this topic can be performed with real data.
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A Partial Derivatives for Cramér-Rao Lower
Bound

A.1 Partial Derivatives of Target Position for Inertial Motion

The target position is denoted as rk = [xk, yk ]T. For tk and tr in the maneuver segment
m−1, i.e., t̃m−1 ≤ tk, tr ≤ t̃m, we can express rk by means of rr:

rk = rr + (tk − tr)

Ûxm−1

Ûym−1

 . (A.1)

Therefore, the partial derivatives of the target position with respect to the velocities which
are active in the maneuver segment m−1 are given by

∂xk
∂ Ûxm−1

=
∂yk
∂ Ûym−1

= tk − tr . (A.2)

The partial derivative of the target position at time t with respect to t can be expressed by

∂r(t)
∂t
= Ûr(t) =


Ûxm−1

Ûym−1

 . (A.3)

Since tr is subtracted in (A.1), the partial derivative of the target position at time t with
respect to the reference time tr yields

∂r(t)
∂tr
= −


Ûxm−1

Ûym−1

 = −
∂r(t)
∂t

. (A.4)
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A.2 Partial Derivatives of Target State for Curvilinear Motion

Using following definition from Chapter 2,

ca =
1

4a2
t + a2

n
(A.5a)

S(t) = (2at sin ϕ(t) − an cos ϕ(t)) v2(t) (A.5b)

T(t) = (2at cos ϕ(t) + an sin ϕ(t)) v2(t) (A.5c)
∆tk = tk − tr (A.5d)
∆Sk = S(tk ) − S(tr) (A.5e)
∆Tk = T(tk ) − T(tr) . (A.5f)

The derivative of the target state at time tk with respect to the target state at reference
time tr is given by the following Jacobian matrix

∂xk
∂xr
=
∂f(xr; tk, tr)

∂xr
, (A.6)

which can be expressed by

∂f(xr; tk, tr)
∂xr

=



1 0 ∂xk
∂vr

∂xk
∂ϕr

∂xk
∂at

∂xk
∂an

0 1 ∂yk
∂vr

∂yk
∂ϕr

∂yk
∂at

∂yk
∂an

0 0 1 0 ∆tk 0

0 0 ∂ϕk

∂vr
1 ∂ϕk

∂at
∂ϕk

∂an

0 0 0 0 1 0

0 0 0 0 0 1


. (A.7)

For the partial derivatives of ϕk (2.28d) we have

∂ϕk
∂vr
= −

∆t an
vr(vr + ∆tk at)

, (A.8a)

∂ϕk
∂at
=


an
at

(
−
∂ϕk

∂vr
+

∆tk
vr+∆tk at

)
for at , 0

−
∆t2

k
2

an
v2

r
for at = 0

, (A.8b)

∂ϕk
∂an

=

{
1
at

ln
���1 + at

vr
∆tk

��� for at , 0
1
vr
∆tk for at = 0

. (A.8c)
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Moreover, the derivatives of xk (2.28a) are given by

∂xk
∂vr
=

{
ca

(
2 S(tk )

vk
+
∂ϕk

∂vr
T(tk ) − 2 S(tr)

vr

)
for at , 0 or an , 0

∆tk sin ϕr for at = 0 and an = 0
, (A.9a)

∂xk
∂ϕr
=

{
ca ∆Tk for at , 0 or an , 0
∆tk vr cos ϕr for at = 0 and an = 0

, (A.9b)

∂xk
∂at
=

{
−8atc2

a ∆Sk + caP(tk ) for at , 0 or an , 0
∆t2

k
2 sin ϕr for at = 0 and an = 0

, (A.9c)

∂xk
∂an
=

{
−2anc2

a ∆Sk + caQ(tk ) for at , 0 or an , 0
∆t2

k
2 cos ϕr for at = 0 and an = 0

, (A.9d)

where

P(tk ) =
2∆tk
vk

S(tk ) +
∂ϕk
∂at

T(tk ) + 2v2
k sin ϕk − 2v2

r sin ϕr , (A.10a)

Q(tk ) =
∂ϕk
∂an

T(tk ) − v
2
k cos ϕk + v2

r cos ϕr . (A.10b)

Finally, we obtain for the partial derivatives of yk (2.28b) by

∂yk
∂vr
=

{
ca

(
2T (tk )

vk
+
∂ϕk

∂vr
S(tk ) − 2T (tr)

vr

)
for at , 0 or an , 0

∆tk cos ϕr for at = 0 and an = 0
tc (A.11a)

∂yk
∂ϕr
=

{
−ca∆Sk for at , 0 or an , 0
−∆tk vr sin ϕr for at = 0 and an = 0

, (A.11b)

∂yk
∂at
=

{
−8atc2

a∆Tk + caU(tk ) for at , 0 or an , 0
∆t2

k
2 cos ϕr for at = 0 and an = 0

, (A.11c)

∂yk
∂an
=

{
−2anc2

a∆Tk + caV(tk ) for at , 0 or an , 0
∆t2

k
2 sin ϕr for at = 0 and an = 0

, (A.11d)

with

U(tk ) =
2∆tk
vk

T(tk ) +
∂ϕk
∂at

S(tk ) + 2v2
k cos ϕk−2v2

r cos ϕr , (A.12a)

V(tk ) =
∂ϕk
∂an

S(tk ) − v
2
k sin ϕk + v2

r sin ϕr . (A.12b)
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Finally, the derivative of y(t) with respect to t is given by

∂y(t)
∂t
=

[
v(t) sin ϕ(t), v(t) cos ϕ(t),at,

an
v(t)

]T
, (A.13)

If t and tr are in the same maneuver segment, i.e., t̃m−1 ≤ t, tr ≤ t̃m, the derivative of y(t)
with respect to tr is given by

∂y(t)
∂tr

= −
∂y(t)
∂t

. (A.14)

A.3 Partial Derivatives of Measurement Equations

In case of bearing measurements, the measurement equation (2.12) only depends on the
position components pk = [xk, yk ]T of the state. Thus, the partial derivatives with respect
to the other components are zero and therefore omitted here. Thus, the partial derivative
of α(xk ) with respect to the position components of the state is given by [RA03]

∂α(xk )
∂pk

=
1
r2
k

[
∆yk,−∆xk

]
=

1
rk
[cosα(xk ),− sinα(xk )] , (A.15)

where rk denotes the distance between observer and target.

For bearing rate measurements, the measurement equation (2.14) depends on the position
and the velocity components of the state. Due to different motion models, we have
to consider the partial derivatives with respect to both Cartesian and polar velocity
components here. For the other components, the partial derivatives yield zero and are
therefore not considered. Hence, the partial derivative of Ûα(xk ) with respect to the
position components of the state is given according to

∂ Ûα(xk )
∂pk

=
1
r2
k

©­«

−∆ Ûyk

∆ Ûxk

 − 2 Ûα(xk )

∆xk

∆yk

ª®¬
T

. (A.16)

Furthermore, for the partial derivative with respect to the Cartesian velocity compo-
nents Ûpk = [ Ûxk, Ûyk ]T, we easily obtain the result from (A.15) since ∂ Ûα(xk )/∂ Ûpk =
∂α(xk )/∂pk . Note that in case of piecewise inertial motion and t̃m−1 ≤ tk ≤ t̃m,
[xk, yk ]T = [xm−1, ym−1]

T for m = 1, . . . ,M + 1. With respect to polar velocity compo-
nents υk = [vk, ϕk ]T, the partial derivative is given by

∂ Ûα(xk )
∂υk

=
1
r2
k

©­«∆yk


sin ϕk
vk cos ϕk

 + ∆xk


− cos ϕk
vk sin ϕk

ª®¬
T

. (A.17)
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Finally, if range measurements are considered, the measurement equation (3.63) only de-
pends on the position components so that the derivationswith respect to other components
yield zero. Hence, we have

∂ρ(xk )
∂pk

= −
∆pT

k

rk
, (A.18)

where ∆pk =
[
∆xk,∆yk

]T.
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B Calculations for Likelihood Decomposition

B.1 Derivation of the Decomposed Likelihood

Let h : Rn → Rn be a continuously differentiable functionwith h(x) = [h1(x), . . . , hn(x)]
and let Dh(x) be the Jacobian of h evaluated at x

Dh(x) =


∂h1(x)
∂x1

· · ·
∂h1(x)
∂xn

...
. . .

...
∂hn(x)
∂x1

· · ·
∂hn(x)
∂xn


(B.1)

with x = [x1, . . . , xn]. Then the first-order (linear) multivariate Taylor series expansion
of h around a is given by

h(x) = h(a) +Dh(a)(x − a) + O
(
(x − a)2

)
. (B.2)

The following equation holds with f and g defined in Section 5.5.1:

ζ − g(x) = g( f (ζ )) − g(x) (B.3)
≈ {Dg( f (ζ ))}( f (ζ ) − x) (B.4)

= {D f (ζ )}−1( f (ζ ) − x) , (B.5)

where (B.4) is due to applying the Taylor expansion of g around f (ζ ) and truncating it
after the linear term. We receive (B.5) by using the generalized chain rule. With this, we
can approximate the likelihood (5.44) by

p(ζ |x) = c exp
(
−(ζ − g(x))TN−1(ζ − g(x))/2

)
(B.6)

≈ c exp
(
−( f (ζ ) − x)TΣ−1( f (ζ ) − x)/2

)
(B.7)

= det(D f (ζ ))N( f (ζ ); x,Σ) , (B.8)

where
c = (2π)−n/2 det(N)−1/2 (B.9)

and
Σ = D f (ζ )ND f (ζ )T . (B.10)
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The step from (B.6) to (B.7) is due to inserting (B.5) into (B.6). Furthermore, (B.8) holds
since

det(Σ) = det(N) det(D f (ζ ))2 . (B.11)

B.2 Derivation of Expected Values

The expected value of p̃(z|x) (5.72) with respect to z is given by

Ep̃{z} =
∫ ∞
−∞

z p̃(z|x) dz . (B.12)

Thus, with Σ from (5.54) we have

Ep̃{z} =
∫ ∞
−∞

z
1
k

∫ rmax

rmin
rN ©­«z; r


sin θ

cos θ

 ,Σª®¬ dr dz (B.13)

=
1
k

∫ rmax

rmin
r
∫ ∞
−∞

zN ©­«z; r

sin θ

cos θ

 ,Σª®¬ dz︸                              ︷︷                              ︸
=r[sin θ,cos θ]T

dr (B.14)

=
2

r2
max − r2

min


sin θ

cos θ


∫ rmax

rmin
r2 dr (B.15)

=
2
3

r3
max − r3

min
r2
max − r2

min


sin θ

cos θ

 . (B.16)

The expected value of ψ(z|x) (5.79) with respect to z can be calculated in a similar way.
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