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ABSTRACT 

Tropical deforestation constitutes a major threat to the Amazon rainforest. Monitoring 

forest dynamics is therefore necessary for sustainable management of forest resources 

in this region. However, cloudiness results in scarce good quality satellite observations, 

and is therefore a major challenge for monitoring deforestation and for detecting subtle 

processes such as reforestation. Furthermore, varying human pressure highlights the 

importance of understanding the underlying forces behind these processes at multiple 

scales but also from an inter- and transdisciplinary perspective. Against this background, 

this study analyzes and recommends different methodologies for accomplishing these 

goals, exemplifying their use with Landsat time-series and socio-economic data. The 

study cases were located in the Central Ecuadorian Amazon (CEA), an area characterized 

by different deforestation and reforestation processes and socio-economic and 

landscape settings. Three objectives guided this research. First, processing and time-

series analysis algorithms for forest dynamics monitoring in areas with limited Landsat 

data were evaluated, using an innovative approach based in genetic algorithms. Second, 

a methodology based in image compositing, multi-sensor data fusion and post-

classification change detection is proposed to address the limitations observed in forest 

dynamics monitoring with time-series analysis algorithms. Third, the evaluation of the 

underlying driving forces of deforestation and reforestation in the CEA are conducted 

using a novel modelling technique called geographically weight ridge regression for 

improving processing and analysis of socio-economic data. The methodology for forest 

dynamics monitoring demonstrates that despite abundant data gaps in the Landsat 

archive for the CEA, historical patterns of deforestation and reforestation can still be 

reported biennially with overall accuracies above 70%. Furthermore, the improved 

methodology for analyzing underlying driving forces of forest dynamics identified local 

drivers and specific socio-economic settings that improved the explanations for the high 

deforestation and reforestation rates in the CEA. The results indicate that the proposed 

methodologies are an alternative for monitoring and analyzing forest dynamics, 

particularly in areas where data scarcity and landscape complexity require approaches 

that are more specialized.  
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KURZFASSUNG 

Landsat-basierte Analyse der Dynamik tropischer Wälder im Zentral-Ecuadorianischen 

Amazonasgebiet: Muster und Ursachen von Abholzung und Wiederaufforstung 

Die tropische Entwaldung stellt eine große Bedrohung für den Amazonas-Regenwald 

dar. Daher ist die Überwachung von Walddynamiken eine notwendige Maßnahme, um 

eine nachhaltige Bewirtschaftung der Waldressourcen in dieser Region zu 

gewährleisten. Jedoch verschlechtert Bewölkung die Qualität der Satellitenaufnahmen 

und stellt die hauptsächliche Herausforderung für  die Überwachung der Entwaldung 

sowie die Detektierung einhergehender Prozesse, wie der Wiederaufforstung, dar. 

Darüber hinaus zeigt der unterschiedliche menschliche Nutzungsdruck, wie wichtig es 

ist, die zugrundeliegenden Kräfte hinter diesen Prozessen auf mehreren Ebenen, aber 

auch inter- und transdisziplinär, zu verstehen. Variierender anthropogener Einfluss 

unterstreicht die Notwendigkeit, unterschwellige Prozesse (oder „Driver“) auf multiplen 

Skalen aus inter- und transdisziplinärer Sicht zu verstehen. Darauf basierend analysiert 

und empfiehlt die vorliegende Studie unterschiedliche Methoden, welche unter 

Verwendung von Landsat-Zeitreihen und sozioökonomischen Daten zur Erreichung 

dieser Ziele beitragen. Die Untersuchungsgebiete befinden sich im Zentral-

Ecuadorianischen Amazonasgebiet (CEA). Einem Gebiet, das einerseits durch 

differenzierte Entwaldungs- und Aufforstungsprozesse, andererseits durch seine 

sozioökonomischen und landschaftlichen Gegebenheiten geprägt ist. Das 

Forschungsprojekt hat drei Zielvorgaben. Erstens werden auf genetischen Algorithmen 

basierten Verfahren zur Verarbeitung der Zeitreihenanalyse für die Überwachung der 

Walddynamik in Gebieten, für die nur begrenzte Landsat-Daten vorhanden waren, 

bewertet. Zweitens soll eine Methode in Anlehnung an Satellitenbildkompositen, 

Datenfusion von mehreren Satellitenbildern und Veränderungsdetektion gefunden 

werden, die Einschränkungen der Walddynamik durch Entwaldung mithilfe von 

Zeitreihen-Algorithmen thematisiert. Drittens werden die Ursachen der 

Entwaldung/Abholzung im CEA anhand der geographischen gewichteten Ridge-

Regression, die zur einen verbesserten Analyse der sozioökonomischen Information 

beiträgt, bewertet. Die Methodik für das Walddynamik-Monitoring zeigt, dass trotz 
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umfangreicher Datenlücken im Landsat-Archiv für das CEA alle zwei Jahre die 

historischen Entwaldungs- und Wiederaufforstungsmuster mit einer Genauigkeit von 

über 70% gemeldet werden können. Eine verbesserte Analysemethode trägt außerdem 

dazu bei, die für die Walddynamik verantwortlichen treibenden Kräfte zu identifizieren, 

sowie lokale Treiber und spezifische sozioökonomische Rahmenbedingungen 

auszumachen, die eine bessere Erklärung für die hohen Entwaldungs- und 

Wiederaufforstungsraten im CEA aufzeigen. Die erzielten Ergebnisse machen deutlich, 

dass die vorgeschlagenen Methoden eine Alternative zum Monitoring und zur Analyse 

der Walddynamik darstellen; Insbesondere in Gebieten, in denen Datenknappheit und 

Landschaftskomplexität spezialisierte Ansätze erforderlich machen. 
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RESUMEN 

Análisis basado en la constelación Landsat para el análisis de la dinámica forestal en 

la Amazonía Central del Ecuador: patrones y causas de la deforestación y reforestación 

La deforestación en los trópicos constituye una de las mayores amenazas para los 

bosques húmedos amazónicos. Es por ello que el monitoreo de la dinámica forestal es 

necesaria para el manejo sustentable de los recursos forestales en la región. Sin 

embargo, la alta nubosidad limita la adquisición de información satelital y esto 

constituye un gran obstáculo y reto para el monitoreo de la deforestación y cambios 

sutiles como la reforestación. Por otro lado, distintas presiones humanas resaltan la 

importancia de entender los factores subyacentes de estos procesos en múltiples 

escalas, pero también desde una perspectiva inter- y transdisciplinaria. Por ello, este 

estudio analiza y recomienda diferentes metodologías para cumplir estos objetivos, 

ejemplificando su uso con series temporales de la constelación Landsat y datos socio-

económicos. Los estudios de caso se localizaron en la Amazonía Central Ecuatoriana 

(CEA), un área caracterizada por diferentes procesos de deforestación y reforestación; 

así como por diferentes entornos económicos y paisajísticos. Tres objetivos guiaron esta 

investigación. El primero, evalúa algoritmos de procesamiento y análisis de series 

temporales para el monitoreo de la dinámica forestal en áreas con poca información de 

la constelación Landsat, usando un innovador enfoque basado en algoritmos genéticos. 

El segundo, propone una metodología basada en composición de imágenes, fusión de 

datos de múltiples sensores, y la detección de cambios post-clasificación para superar 

las limitaciones observadas para el monitoreo de la dinámica forestal con algoritmos de 

análisis de series temporales. El tercero, evalúa las fuerzas conductoras subyacentes de 

deforestación y reforestación en la CEA, enfocándose en una nueva técnica llamada 

regresión de cresta ponderada geográficamente, para mejorar el procesamiento y el 

análisis de información socio-económica. La metodología de monitoreo de la dinámica 

forestal demostró que a pesar de los abundantes vacíos de información en el archivo 

Landsat en la CEA, los patrones históricos de deforestación y reforestación pueden aún 

ser reportados bianualmente con precisiones globales mayores al 70%. Por otro lado, la 

metodología mejorada para el análisis de las fuerzas conductoras subyacentes 
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identificaron determinantes locales y entornos socio-económicos específicos que 

mejoraron las explicaciones de las más altas tasas de deforestación y reforestación en 

la CEA. Estos resultados indican que las metodologías propuestas son una alternativa 

para el monitoreo y el análisis de la dinámica forestal, particularmente en áreas donde 

la escases de datos satelitales y la complejidad del paisaje requieren de métodos 

especializados. 
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1 INTRODUCTION 
 

1.1 Background 

1.1.1 Dynamics of tropical forests  

Tropical forests are fundamental for providing essential services to all forms of life, and 

play an unquestionable role in climate regulation, biochemical cycles and biological 

diversity (Joseph et al. 2011). With respect to their significant importance in achieving 

the Sustainable Development Goals (United Nations 2015) it is recognized that social 

and economic development depends on their sustainable management. Historical 

trends of land-use change have revealed the relationship between population growth, 

agricultural expansion and deforestation. This characterized the economic development 

in the temperate climatic regions until the 19th century; however, this relationship now 

has the greatest influence in the tropical climatic regions (Figure 1) (FAO 2016b). 

According to the FAO (2016a), tropical forests showed the highest deforestation rate 

between 1990 and 2015, where Africa (-0.49%), South America (-0.40%) and Asia (-

0.24%) came first. These regions are mainly represented by developing countries of low 

to middle incomes, growing rural populations and net gains in agricultural area (Sachs 

2001). The latter is associated with about 80% of the deforestation worldwide, where 

commercial agriculture, cattle ranching and subsistence agriculture are referred to as 

the most important causes (Kissinger et al. 2012).  

In contrast, reforestation is characterized by reduced pressure on forests that 

lead to net losses in agricultural areas (FAO 2016b). In this regard, forest spontaneously 

regenerates in abandoned lands leading to net gains in forest areas. This has been 

observed in high-income countries where pressure on forests has ceased such as Europe 

(0.01%), but also where afforestation policies (or forest planting) have been 

implemented (e.g. Asia and North America) (FAO 2016a). Nevertheless, there is 

evidence that some tropical countries are experimenting with similar trends (e.g. Ghana, 

Costa Rica, Vietnam) but not specifically by afforestation, as this implies policies for 

deliberately expanding forest cover (e.g. Bangladesh, China, India) (Rudel et al. 2005). 

Thus, economic growth, declining rural populations and agricultural intensification have 

been pointed out as being the main causes of spontaneous reforestation (FAO 2016a).  
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Figure 1. Annual net forest gain/loss by country, 1990 - 2015. Adapted from FAO, 2016. 

Both processes, i.e. deforestation and reforestation, define forest dynamics in 

this thesis. Identifying their patterns and discussing their causes is the base for 

sustainable land use and balanced decisions on forest conversion. Patterns thus refer to 

human footprints observable from satellite data that help us to monitor forest gains and 

losses. Causes also can be direct or indirect human activities and their complex socio-

economic interactions, which act as driving forces behind forest dynamics. Both aspects 

are challenging in regions such as the tropics, where data availability is poor and 

methodological transfer is not always applicable. The latter is related to the uneven 

distribution of the studies and methodologies developed, where the vast majority were 

carried out within the Brazilian region (Da Ponte et al. 2015). However, forest conversion 

is much more extreme in other countries, e.g. Paraguay, Nigeria, and Myanmar, but the 

small number of studies demonstrates the lack of concern and local expertise. Against 

this background, this study focuses on the Central Ecuadorian Amazon (CEA), a region 

located at the foothills of the Andean range as a study case. This region has been little 

investigated, but important land-cover changes have been reported since oil resources 

were discovered and the agrarian reform and colonization deeply reshaped its 

landscapes (Pierre et al. 1988). 

1.1.2 Central Ecuadorian Amazon  

Ecuador is considered as a country with one of the highest species and ecosystem 

diversities in the world (Sierra et al. 2002; Bass et al. 2010). Its geographic position and 

the Andean Range result in many different forest types including tropical rainforest, dry  
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Figure 2. Ecuador main exports for 2016, accounting for U$24.4 billon. Adapted from Simoes and 

Hidalgo (2011). Data from UN Comtrade Database (2012).  

forest and montane forest, among others (MAE 2012b). Moreover, most of the Ecuador 

territory forms part of two of the most important hotspots in the world known as 

Tumbes-Chocó-Magdalena and Tropical Andes corridors (Myers et al. 2000). However, 

these are seriously threatened by deforestation and Ecuador lost 0.6% of its forest cover 

annually for the period 1990 – 2015 (FAO 2016).  

Other sources focusing exclusively on the Amazon biome, where most of the 

intact forests are located in Ecuador (i.e. 97,530 km2), indicate that the country has 

suffered the fourth highest deforestation rate in South America. This represented a total 

10.7% forest loss for the period 2000 – 2013, and it is estimated that between 1970 and 

2013, 10.470 km2 of original forest were lost in the Ecuadorian Amazon (RAISG 2015). 

While reforestation areas are less known, the FAO (2016a) reported that forests 

expanded on average 33,000 ha year-1 for the period 1990 – 2010. 

As the Ecuadorian economy is based on raw material production and export, 

much depends on the use of natural resources. Extractive sectors include most 

prominently the oil industry, agriculture, fisheries, aquaculture and forestry 

representing 40% of gross domestic product and 80% of its exports (Figure 2) (Carrion & 

Chíu 2011; Simoes & Hidalgo 2011; United Nations 2012). Therefore, deforestation in 

the Ecuadorian Amazon has been associated with crude oil export and the agrarian 

reform and colonization, which promoted timber exploitation and changes in land-use 

practices (RAISG 2015). This was particularly important between 1964 and  
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                                               (a)                                                                                   (b) 

Figure 3. (a) Ecuador Forest Reference Emission Level Map of land-use change for the period 2001-2008 

with areas by land-use change category. Adapted from MAE, 2017. (b) Spatial spread of frontier 

settlements in the Ecuadorian Amazon. Adapted from Brown et al., 1994. Central Ecuadorian Amazon 

defined by dashed lines. 

1994, as oil discoveries motivated road construction, new settlements and migration of 

farmers pursuing agriculture and cattle ranching (Bass et al. 2010). Consequently, 

spontaneous and largely undirected colonization transformed the Ecuadorian Amazon, 

exacerbating land conflicts. In this regard, the northern part was one of the most 

deforested regions in the world (Myers 1993). This provoked unrestrained grabbing of 

lands considered as “vacant” from the traditional territories used by the Cofan, Siona-

Secoya and Huaorani people (Wasserstrom & Southgate 2013). Farther south, in the 

central part, deforestation was less intense since there was little or no oil there, but 

roads were built to encourage settlement (Figure 3). As these lands were the traditional 

territory of the Kichwa people, land conflicts with the new colonists ended in land 

claims. To avoid territory loss, the Kichwa people abandoned their traditional 

subsistence economy and subdivided their communal land into individual parcels. 

Transformed into pastures for cattle ranching, these lands could be titled and protected 
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(Macdonald 1981; Wasserstrom & Southgate 2013). Nevertheless, some studies suggest 

that after the agrarian reform and colonization had ended, reforestation characterized 

some regions of the Ecuadorian Amazon. For instance, the Shuar people, living in the 

south, abandoned land-extensive cattle ranching for land-intensive cash cropping, which 

was also combined with forestry in some cases (Rudel et al. 2002). To the best 

knowledge of the author, few studies have been conducted to confirm whether this was 

also the case in other regions of the Ecuadorian Amazon. 

Due to these massive social and environmental transformations in recent 

decades (Perreault 2001), an investigation focusing on the patterns of forest dynamics 

and the causes of changes in the Ecuadorian Amazon may reveal important aspects 

regarding protection of the remaining forests. In this regard, the CEA represents an 

interesting study case, as pressures on the forest either through agricultural expansion, 

oil extraction or population growth vary locally. This makes it difficult to provide a single 

explanation for the forest dynamics, while monitoring is not a straightforward task as 

explained in following sections. 

1.1.3 Challenges of monitoring tropical forest dynamics 

Monitoring tropical forest dynamics refers to evaluation of periodical information on 

the status of the forests. This requires continuous observations, normally costly and 

even impossible to collect in the field (Fragal et al. 2016). In this regard, satellite data 

offers a unique source as it covers large areas in different spectral, spatial, and temporal 

resolutions for characterizing forest cover. Thanks to the free and accessible data policy 

of the Landsat (USGS 2014) and Copernicus (ESA 2018) programs, it is today possible to 

access to global-scale medium spatial resolution satellite data (Hansen & Loveland 

2011), making near-real-time forest monitoring possible. In this context, remote sensing 

has played an important role as a scientific discipline providing methods for land-cover 

change monitoring. Methods range from simpler approaches based on comparing 

images of two different times (bi-temporal) to the time-series analysis that provides the 

entire spectral history of the pixel (Coppin et al. 2004). The number of algorithms can be 

overwhelming.  
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                                                              (a)                                                                                    (b) 

Figure 4. (a) USGS Landsat archive holdings as of January 1, 2015. Adapted from Wulder et al., 2012. (b) 

Approximate number of cloud-free observations acquired per year integrating Landsat, ResourceSat-2 

(AWIFS) and CBERS constellations. Adapted from Wulder et al., 2016. Central Ecuadorian Amazon point 

by the arrow. 

Nevertheless, deriving accurate estimates of forest change in the tropics is fraught with 

difficulties and uncertainties. From the conceptual discrepancies of what is a forest to 

the technical difficulties in the identification of forest boundaries, variation in estimates 

is a constant (Foody 2003). Moreover, persistent cloudiness over the year (Wulder et al. 

2016; Li et al. 2018) coupled with topographically complex landscapes (Asner et al. 2014) 

drastically reduce data quantity and quality of the satellite archives (Figure 4). While 

radar sensors could be more suitable in cloudy regions, their unavailability and scarce 

studies have placed more emphasis on optical sensors, where the Landsat family is the 

preferred option for tropical forest monitoring (Da Ponte et al. 2015). In this regard, the 

use of bi-temporal approaches has been mostly with Landsat data, where visual 

interpretation is a common procedure to derive land-cover maps and subsequently 

evaluate land-cover change. While the method is relatively simple and easy to 

implement, further development has included semi-automatic image classification 

(Matricardi et al. 2007), image thresholding (Greenberg et al. 2005) or post-classification 

change detection (Caldas et al. 2015) to reduce workload and facilitate interpretation.  

On the other hand, time-series analysis approaches have started to be applied 

more frequently in the tropical forests context (e.g. Müller et al. 2016; Ye et al. 2018; 
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Potapov et al. 2012), demonstrating to facilitate land-cover studies. Since spectral-

temporal trajectories are used for reconstructing forest disturbance and recovery, 

periods of several years can be observed. Moreover, analysis of large collections of 

images can be automated, and more informative and reliable results be obtained. 

However, more sophisticated algorithms and pre-processing procedures are required 

(Zhu 2017; Shimizu et al. 2018). 

As such approaches for tropical forest monitoring exist, selecting an 

appropriate method for the CEA requires evaluation under the abovementioned 

conditions. While most studies conducted in the Ecuadorian Amazon have been based 

on bi-temporal and multi-temporal analysis (Sierra 2000; MAE 2012a), new algorithms 

using time-series analysis remain to be tested. 

1.1.4 Challenges of analyzing the causes of tropical forest dynamics  

Beyond the need of refined measurements of forest dynamics, identification of the 

causes depends critically on the ability to model the socio-economic determinants 

(Wood & Skole 1998). This is due to human activities and actions directly impacting 

forest cover (proximate causes), which in turn are linked to complex interactions 

between social, economic, political, cultural and technological processes (underlying 

forces) (Kissinger et al. 2012). Thus, different combinations of proximate causes and 

underlying forces in varying geographical and historical contexts result in explanations 

that are not universal (Geist & Lambin 2002). Therefore, explaining the causes of forest 

dynamics is not a straightforward task. However, this is greatly needed for policies 

targeting sustainable management of forests. 

As proximate causes can mostly be identified through remote-sensing-based 

techniques (Da Ponte et al. 2015), underlying forces could be more complex as socio-

economic data is required. Therefore, proximate causes are more frequently reported 

in such analyzes (Armenteras et al. 2017; Mon et al. 2012; Samndong et al. 2018). This 

highlights the importance of identifying which limitations impede or complicate studies 

on the underlying forces. First, population and agricultural censuses are in the most 

cases the unique source of socio-economic data, but differences in the reporting units 

complicate their integration and analysis (Figure 5a) (Logan et al. 2014). Moreover, as  
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                             (a)                                                                           (b)                                                (c) 

Figure 5. (a) Three types of boundary changes in a census from 2000 (black) to 2010 (red). Adapted from 

Logan, Xu and Stults, 2014. (b) Scale effects induced by data aggregation. Adapted from Salmivaara et al. 

2015. (c) Spatial heterogenity patterns. Adapted from ESRI, 2010. 

aggregation of smaller units into larger observational units is a common practice for 

report census statistics, data loss and scale effects may lead to ecological fallacies 

(Figure 5b) (Holt et al. 1996; Salmivaara et al. 2015). Lastly, spatial heterogeneity has 

been regarded as an important issue in modelling relationships between variables 

(Figure 5c). Since global regression models are frequently used for analyzing the 

underlying forces of forest dynamics, it is assumed that the resulting parameter 

estimates are constant across space. This constitutes a disadvantage, as local variation 

is masked and results describe the study area as a single entity (Brunsdon et al. 2002).  

The abovementioned difficulties require innovative methodologies; however, 

these have hardly been investigated in the context of forest dynamics. Nevertheless, 

some contributions have been proposed in other fields. In this regard, for overcoming 

areal-data integration conflicts and aggregation effects, algorithms such as 

pycnophylactic interpolation and kriging-based disaggregation have been developed 

(Krivoruchko et al. 2011; Tobler 1979). While these only require areal data as input, 

other more complex algorithms based on dasymetric mapping can recalculate areal data 

using spatial data (Stevens et al. 2015; Mennis & Hultgren 2006). Moreover, to address 

spatial heterogeneity, new methodologies such as geographically weighted regression 

have been proposed (Brunsdon et al. 1996). The capability of this regression to derive 

local surface representation of regression estimates has been discussed as an advance 

in geostatistics. 
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All these methodologies need to be evaluated in order to contribute to the 

analysis of the causes of forest dynamics. While proximate causes are well known in the 

Ecuadorian Amazon (i.e. agricultural expansion, population growth and oil extraction) 

(Armenteras et al. 2017; RAISG 2015), the underlying forces remain to be better 

understood. 

1.2 Thesis structure  

1.2.1 Research problem 

The importance of monitoring tropical forest dynamics and understanding their causes 

is a necessary step forward to the Sustainable Development Goals, sustainable land use 

and balanced decisions on forest conversion (see section 1.1.1). However, there are 

important challenges in fulfilling this task. First, a remote sensing approach for tropical 

forest monitoring must be able to work with scarce data and topographically complex 

landscapes. While several methodologies exist for this task, their transferability still 

needs to be tested in regions like the CEA (see section 1.1.3). On the other hand, analysis 

of the causes of tropical forest dynamics requires integrating socio-economic data from 

various sources. This task faces challenges, as areal-based data inconsistencies and 

aggregation effects limit their analysis. Moreover, current approaches applying 

regression analysis ignore local differences, describing results as single entities (see 

section 1.1.4). This may not be suitable for regions such as the Central Ecuadorian 

Amazon, whose geographic particularities and contrasting socio-economic settings 

make it highly heterogeneous (see section 1.1.2). In this context, this research 

formulates the following three questions: 

Q1. Which methodology and processing steps are needed for monitoring long-

term forest dynamics in data-scarce and topographically complex regions of the 

Tropical Andes? 

Q2. How can census data processing and regression analysis of forces driving 

deforestation/reforestation in heterogeneous regions of the Tropical Andes be 

improved? 

Q3. Which are the patterns and causes of deforestation/reforestation in the CEA 

exemplified in a study case of the Tropical Andes? 
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1.2.2 Research objectives 

The overarching research purpose of this study is to develop a methodology for 

monitoring tropical forest dynamics and evaluating their causes, and exemplifying its 

use in the CEA for the period 2000-2010. More specifically, using the Landsat archive as 

the main source of satellite information, a processing chain will be developed for 

monitoring tropical forest dynamics considering limitations induced by data scarcity and 

topographically complex landscapes. Such system will deliver historical deforestation 

and reforestation maps for the CEA, which are later integrated into a second processing 

chain. There, socio-economic and biophysical data will be processed and integrated with 

deforestation and reforestation maps. Then, an analysis of driving forces will be 

conducted to discuss these as causes of tropical forest dynamics in the CEA. Since 

challenges with respect to data integration, aggregation effects and spatial 

heterogeneity remain issues to be solved, this processing chain must provide specific 

solutions. Thus, the methodology should be developed considering reproducibility and 

further development. This will enable its applicability in other regions. 

Three research objectives are formulated to address the different stages of the 

development of this methodology: 

1. Evaluation of time-series analysis and pre-processing algorithms for monitoring 

tropical forest dynamics: Constitutes an exploration of different algorithms for 

data pre-processing and breakpoint detection using Landsat time-series. 

Applying genetic algorithms, experimental processing chains are created and 

optimized to determine best combination of algorithms and parameters. 

Moreover, time-series analysis suitability with Landsat data is evaluated for 

monitoring tropical forest dynamics in the CEA. Since a large of number of 

algorithms are analyzed, three test sites are studied to reduce processing and 

conclude results. 

2. Implementation of multi-date classification for long-term tropical forest 

dynamics monitoring with scarce data: Derivation of a suitable methodology 

using multi-decade Landsat data. This considers techniques such as image 

compositing, multi-sensor data fusion and post-classification change detection 
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to overcome limitations induced by data scarcity and topographically complex 

landscapes. Here, deforestation and reforestation patterns are identified and 

discussed for the Upper Napo Watershed as a study area in the CEA. 

3. Assessment of underlying causes of deforestation and reforestation through 

geographically weighted ridge regression: Completion of the methodology for 

evaluating the driving forces. In this regard, an innovative approach for 

integrating data and reducing aggregation effects with dasymetric mapping is 

presented. Moreover, using geographically weighted ridge regression, an 

analysis of local drivers is introduced to address spatial heterogeneity in the 

regression analysis. Finally, insights for explain causes of deforestation and 

reforestation in the CEA are discussed and concluded. 

1.2.3 Chapters published as articles 

This thesis includes one publication in a scientific journal (Chapter 2), one accepted for 

its publication in September 2018 (Chapter 3), and one submitted to consider its 

publication (Chapter 4). Minor changes have been made to the first publication to fit this 

thesis.  A synthesis of main findings is presented in Chapter 5, targeting the research 

objectives and questions formulated, finalizing with conclusions and outlook. 

 

Santos F., Dubovyk O. & Menz G., 2017. Monitoring forest dynamics in the Andean 

Amazon: The applicability of breakpoint detection methods using Landsat time-series 

and genetic algorithms. Remote Sensing, 9(1). 

 

Abstract: The Andean Amazon is an endangered biodiversity hotspot but its forest 

dynamics are less studied than those of the Amazon lowland and forests in middle or 

high latitudes. This is because landscape variability, complex topography and cloudy 

conditions constitute a challenging environment for any remote-sensing assessment. 

Breakpoint detection with Landsat time-series data is an established robust approach 

for monitoring forest dynamics around the globe but has not been properly evaluated 

for implementation in the Andean Amazon. We analyzed breakpoint detection-

generated forest dynamics in order to determine limitations when applied to three 
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different study areas located along an altitude gradient in the Andean Amazon in 

Ecuador. Using the available Landsat imagery for the period 1997–2016, we evaluated 

different pre-processing approaches, noise reduction techniques, and breakpoint 

detection algorithms. These procedures were integrated into a complex function called 

the processing chain generator. Calibration was not straightforward since it required 

defining values for 24 parameters. To solve this problem, we implemented a novel 

approach using genetic algorithms. We calibrated the processing chain generator by 

applying a stratified training sampling and a reference dataset based on high resolution 

imagery. After the best calibration solution was found and the processing chain 

generator executed, we assessed accuracy and found that data gaps, inaccurate co-

registration, radiometric variability in sensor calibration, unmasked cloud, and shadows 

can drastically affect the results, compromising the application of breakpoint detection 

in mountainous areas of the Andean Amazon. Moreover, since breakpoint detection 

analysis of landscape variability in the Andean Amazon requires a unique calibration of 

algorithms, the time required to optimize analysis could complicate its proper 

implementation and undermine its application for large-scale projects. In exceptional 

cases when data quality and quantity are adequate, we recommend the pre-processing 

approaches, noise reduction algorithms and breakpoint detection algorithms 

procedures that can enhance results. Finally, we include recommendations for achieving 

a faster and more accurate calibration of complex functions applied to remote sensing 

using genetic algorithms. 

 

Santos F., Meneses P. & Hostert P., 2018. Monitoring Long-Term Forest Dynamics 

with Scarce Data: A Multi-Date Classification Implementation in the Ecuadorian 

Amazon. European Journal of Remote Sensing (Manuscript accepted for publication). 

 

Abstract: Monitoring long-term forest dynamics is essential for assessing human-

induced land-cover changes, and related studies are often based on the multi-decadal 

Landsat archive. However, in areas such as the Tropical Andes, scarce data and the 

resulting poor signal-to-noise ratio in time-series data renders the implementation of 
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automated time-series analysis algorithms difficult. The aim of this research was to 

investigate a novel approach that combines image compositing, multi-sensor data 

fusion, and post-classification change detection that is applicable in data-scarce regions 

of the Tropical Andes, exemplified for a case study in Ecuador. We derived biennial 

deforestation and reforestation patterns for the period from 1992 to 2014, achieving 

accuracies of 82 ± 3% for deforestation and 71 ± 3% for reforestation mapping. Our 

research demonstrates that an adapted methodology allowed us to derive the forest 

dynamics from the Landsat time-series despite the abundant regional data gaps in the 

archive, namely across the Tropical Andes. This study therefore presents a novel 

methodology in support of monitoring long-term forest dynamics in areas with limited 

historical data availability. 

 

Santos F. & Graw V., 2019. Analyzing Underlying Causes of Deforestation and 

Reforestation in the Central Ecuadorian Amazon: A Geographically Weighted Ridge 

Regression Approach. PLOS ONE (Manuscript submitted for publication). 

 

Abstract: The Tropical Andes region encompasses endangered biodiversity hotspots 

with high conservation priority. Deforestation due to population growth and agriculture 

expansion is therefore one of the main threats to this region and thus highlights the 

importance of understanding the drivers of this process on multiple scales. On the other 

hand, the drivers of reforestation and their role in forest recovery are less known. 

Therefore, we propose an interdisciplinary approach to analyze both deforestation and 

reforestation drivers by applying geographically weighted ridge regression. This method 

evaluates spatial non-stationarity and provides surface representations of local 

parameter estimates to identify regions where drivers show higher significance for 

either deforestation or reforestation. Our analysis includes nine different variable 

groups and two predictors using socio-economic data from population censuses, 

accessibility models and biophysical features.  Information on deforestation and 

reforestation were based on remote sensing input data. We used dasymetric mapping 

in conjunction with land-cover maps to downscale areal-based data and improve the 
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spatial resolution of our analysis. We conducted our research in the Tropical Andes of 

the Ecuadorian Amazon, a highly heterogeneous region, within the time period 2000 - 

2010. Areas were highlighted where improved accessibility to palm oil, coffee, cacao and 

milk production facilities motivated deforestation, while reforestation seems to follow 

the opposite trend. Moreover, gender, ethnicity and household structure showed a high 

influence on untangled population dynamics and their relationship with forest change. 

This approach demonstrates the benefits of integrating remote sensing derived 

products and socio-economic data for understanding coupled socio-ecological systems 

from local to global scales. 
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2 MONITORING FOREST DYNAMICS IN THE ANDEAN AMAZON: THE 

APPLICABILITY OF BREAKPOINT DETECTION USING LANDSAT TIME-SERIES 

AND GENETIC ALGORITHMS 

 

Fabián Santos, Olena Dubovyk and Gunter Menz 

 

“Evolution continually innovates, but at each level it conserves the elements that are 

recombined to yield the innovations.” 

John Holland. 

2.1 Introduction 

Since an open data policy was adopted by the Landsat program, an increasing number 

of data-driven algorithms for monitoring forest dynamics using Landsat time-series (LTS) 

have been developed (Wulder et al. 2011). They highlight abrupt events (e.g., clear-

cutting, crown fires) or slower processes (e.g., degradation, succession dynamics) that, 

within a longer time span, cause deviations or illustrate longer-duration changes from a 

presumably stable condition (Kennedy et al. 2010b). Typically, these algorithms are 

called breakpoint detection algorithms (BDA), and according to Banskota et al. (2014), 

they can be classified according to their methodological basis and scope. This research 

establishes breakpoint detection as a useful implementation of LTS analysis; however, 

conditions in the Andean Amazon—high topographic relief, cloud cover that prevents 

the production of more than a few clear observations throughout the year, and 

landscape variability—complicate this type of analysis. 

Furthermore, pre-processing approaches and noise-reduction algorithms for 

Landsat have evolved in recent decades (Hansen & Loveland 2011), creating significant 

variation in preparing the data it generates to enhance breakpoint detection (Flood et 

al. 2013; Hermosilla et al. 2015a; Huang et al. 2010). For this reason, the interpreter’s 

experience plays an important role in selecting, calibrating, and applying an algorithm. 

Inappropriate selection or calibration can introduce systematic errors that can be 

difficult to detect. This problem is particularly overwhelming, with a large number of 

complex algorithms interlinked. Breakpoint detection requires a dense time-series of 

Landsat images that are radiometrically homogeneous, free of cloud and shadow, and 
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geometrically corrected. Achieving these levels of processing is challenging since 

parametrization of these algorithms is not an easy task, and computer processing LTS 

data is highly demanding. 

For these reasons, it has become necessary to optimize the complex processing 

chains that combine pre-processing, noise reduction, and BDA procedures. There is little 

research in this field. Nonetheless, optimization has been shown to be successful in 

remote sensing. Examples vary according to the field and the search algorithm applied 

(Li et al. 2015; Wang et al. 2012; Dou et al. 2015). Genetic algorithms (GA) have a long 

history of refinement since they became popular though the work of Holland (1973); 

extensive research has reported it as a robust and efficient optimization algorithm with 

a wide range of application in areas such as engineering, numerical optimization, 

robotics, classification, pattern recognition, and product design, among others (Gibbs et 

al. 2008; Balakrishnan et al. 1996). Therefore, we chose a GA as our methodological 

approach to designing a processing chain based in BDA and to evaluate if this procedure 

might be a feasible approach for monitoring forest dynamics in the Andean Amazon. 

Since this is our first step before exploring other complex optimization procedures that, 

according to Eberhart et al. (1998), should be emphasized in the new hybrid 

implementations, we avoid extending our discussion in search of new algorithms. Such 

discussion is beyond the scope of this paper. We therefore recommend that interested 

readers review the references mentioned throughout this paper. 

Our particular research objective focuses on conducting a GA optimization of 

different processing chains using different BDA in order to determine if it is possible to 

monitor the forest dynamics in the Andean Amazon. If the methodology is applicable, 

patterns of forest gain and forest loss should be evidenced during a period of time along 

a typical part of the Andean Amazon. Furthermore, since there are multiple methods of 

enhancing time-series quality, we also analyze different pre-processing approaches and 

noise reduction algorithms for improving breakpoint detection. In order to do this, we 

develop a function called a processing chain generator (PCG) to link these approaches 

as processing chains and evaluate if their results highlight patterns of forest dynamics. 

Since calibrating the PCG is not straightforward, due to the number of parameters 
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involved in algorithms calibration (24 parameters with a total of 5.7491 × 1020 possible 

combinations), GA was used as the basis for exploring and designing an optimal 

calibration for the PCG. For this reason, our research also constitutes a novel approach 

for solving the calibration of complex models in remote sensing by reducing 

uncertainties through parametrization. This method is different from other optimization 

approaches in remote sensing, where the principal application is classification and 

pattern recognition (Li et al. 2015; Wang et al. 2012; Dou et al. 2015); however, it is 

closer to the approach of Iovine et al. (2005) for calibrating a model of cellular automata. 

As this research considers landscape variability an important factor in 

monitoring the Andean Amazon, different study areas located in Ecuador were selected. 

They are characterized by frequent cloud cover, high topographic relief, and different 

forest management practices along a gradient of altitude. We found that these 

conditions mean the application of any remote sensing-based methodology is not 

straightforward. 

2.2 Materials and Methods 

In this section, we describe general aspects of the study area, the Landsat data acquired 

for conduct our experiments, and the validation datasets used. Moreover, since a highly 

accurate co-registration is required for breakpoint detection, we include an assessment 

of the Landsat standard terrain correction (Level 1T) to ensure that images used were 

properly co-registered. 

2.2.1 Study Area 

The study area covers in total 241 km2 distributed across three areas of 100, 52, and 89 

km2 termed A, B, and C, respectively. Their selection criteria were based on the different 

landscape configurations along a gradient of altitude and on forest management 

practices observed in the region. The areas studied are located in the central foothills of 

the Napo province in Ecuador (Figure 6), where mountainous terrain, foothills, and 

lowland evergreen forests constitute the main ecosystems (MAE 2013). The principal 

river is the Napo, which joins the Amazon River after 1800 km. The geomorphology is 

characterized by hilly (slopes 0°–26°) and mountainous (slopes greater than 26°) 

landscapes with high biodiversity (Beirne & Whitworth 2011). The altitude covers a 
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range of 300–3875 m.a.s.l. Therefore, the region is characterized by a distinct climatic 

gradient with annual precipitation of 2000 mm –4000 mm and a mean temperature of 

6 °C–24 °C. The main land-use systems are grasslands used for cattle grazing and 

croplands used for cacao, passion fruit, and corn production (Borja et al. 2015). The land-

cover change area, which included forest loss and gain classes for the period 2000–2014, 

covered 3862 ha (MAE 2012a). The respective study areas measured 324 ha (Area A), 

1575 ha (Area B), and 1963 ha (Area C) as a result of their different forest management 

practices. 

Area A (mountainous, 2300–750 m.a.s.l.) is located in the vicinity of a protected 

area where forest loss is rare and is mainly caused by natural events (landslides or river 

floods); Area B (mainly hilly, 750–500 m.a.s.l.) is located in the vicinity of a settlement 

where forest loss is common and caused principally by expansion of the agricultural 

land; and Area C (mainly flat, 500–350 m.a.s.l.) is located in a private forest reserve, 

whose borders suffer forest lost as a result of road construction but the interior is 

experiencing forest gain as a result of ecological success after some areas were acquired 

for conservation. 

 

                                               (a)                                                                                                           (b) 

Figure 6. (a) Location of study areas. (b) Photographs of A, B, and C study areas. A is located in the 

vicinity of a protected area, B is located close to a settlement, and C is located in a private forest reserve 

surrounded by agriculture. Map source: MAE 2008. 
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2.2.2 Landsat Data Acquisition and Geometry Correction Assessment 

For this study, we obtained 826 surface reflectance images for a subset of two Landsat 

footprints (path and row: 09–61 and 10–61; total area: ~4400 km2), which were 

processed through National Landsat Archive Processing System (LEDAPS) (Masek et al. 

2012). They were downloaded from the US Geological Survey through their Internet 

website (USGS 2014). After applying the cloud mask “cfmask” product (Zhu & Woodcock 

2012) 677 of these images were not used due to low image quality, including excessive 

no-data cover (>90%) (Figure 7). The remaining 149 images employed in this analysis 

were originally acquired for three Landsat sensors: 28 images by Thematic Mapper (TM), 

94 images by Enhanced Thematic Mapper Plus (ETM+), and 27 images by Operational 

Land Imager (OLI). All imagery was processed to the standard terrain correction (Level 

1T), and metadata reported a root mean square error (RMSE) of less than 7 ± 3 m. A 

summary of acquisition parameters for these images is shown in Table 1. The images 

selected for analysis covered an 18-year period (1996–2015) with a mean time interval 

between images of 47 days. 

 

(a)       (b) 

Figure 7. (a) No-data percentage observed for period 1996–2015 for the subset of two Landsat 

footprints used (149 images selected). (b) Spatial distribution of no-data frequency. 

 

 



20 

 

Table 1. Acquisition parameters of the used images. 

Parameter Range Average 
Standard 

Deviation 

Sun Azimuth 45°–132° 92° 38° 

Sun Elevation 53°–62° 58° 3° 

Crossing time 14:40:08–15:28:42 15:12:50 9 min 

Cloud cover (%) 19–89 68 16 

Time interval between images (days) 1–304 47 53 

Number of ground control points 9–240 75 49 

RMSE of geometric residuals (meters) 3–11 7 3 

 

As geometric accuracy of Landsat data is based on its footprint, we considered 

it necessary to evaluate it again for our study, as our research sites were less than a 

footprint. Therefore, we first applied a new co-registration to all images to evaluate if 

geometric accuracy would improve. For this, a Sobel filter was applied to the near-

infrared channel (band 4) for each image in the LTS. We selected this band because it 

was less affected by cloud contamination compared to other bands. Then, edge masks 

were created thresholding these outputs and applying a linear registration to obtain 

match points and their transformation matrix. We used an affine model that uses 12 

degrees of freedom to find match points and the nearest neighbor to resample images. 

This was done following the procedure and software R package NiftyReg (Clayden 

2016b). To establish a geometric reference, a Landsat 5 image acquired in November 

2000 was selected. For this image, the reported RMSE was 3.4 m with 240 points. To 

verify if co-registration improved results, displacements were calculated from control 

points to their new positions. Control points were identified in the reference image as 

stable areas during the 19 years of the LTS and they are described in Table 2. 

Table 2. Control points, new-coregister displacement and point matches with overlap 

Study Area 
Control Point 

Details 

X and Y Mean Displacements in 

New Co-Registration [m] 

Number of Point Matches 

with Overlap >80% 

A River confluence 81.2 62 

B Road  576.4 182 

C Property boundary 97.3 667 
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             (a)                                                        (b)                                                       (c) 

Figure 8. Edge mask from reference image (November 2000) and control, displacements, and matching 

points with overlap greater than 80% in: (a) Study area A, (b) Study area B, and (c) Study area C. 

The results of the described co-registration, however, did not improve the 

geometric accuracy of the images. On the contrary, the new co-registration increased 

displacements in the images; thus, this step was omitted from the analysis. In Figure 8, 

the results of the co-registration procedure displacements can be seen as red crosses, 

while control points as white dots. Results (Table 2) indicate that Area C was the easiest 

to co-register, but it was not enough to replace its existing geometric correction. 

Because of this, we applied another procedure for evaluating co-registration. It 

consisted of adding the edge masks created in the previous steps to observe if they 

overlapped along the LTS. Since the maximum overlap corresponded to areas where all 

images matched, it was normalized from 1 (no overlap) to 100 (all images in the LTS 

overlaps). Then, pixels whose overlap exceeded 80% were filtered. All three areas 

showed match points, except in areas where cloud cover was frequent or did not have 

relevant borders. As 20% of the images in the LTS remained uncertain, they were 

identified and visually inspected to manually improve their co-registration or eliminate 

them. 

2.2.3 Ancillary Data for Sampling, Validation, and Pre-Processing 

To establish a land-cover-change map (LCCM), two maps were created, i.e. forest and 

non-forest, based on years 1997 and 2015. Both maps were obtained using a trial-and-

error threshold approach to classify the Natural Burn Ratio (NBR) index derived from the 

first and last images in the LTS. After visual inspection and correction, these maps were 

finalized and changes between 1997 and 2015 were established corresponding to five 
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classes: stable non-forest, stable forest, forest lost, forest gain, and no data. This map 

was used later to extract the stratums needed for sampling (training and reference) and 

to perform visual assessments (see sections 2.5.3 and 2.6.4). 

To validate training and reference samples, a dataset comprised of high-

resolution imagery acquired from different sources was used. These images included 

aerial photos, RapidEye images, Google Earth, and ASTER imagery. These images were 

acquired for the years 1978, 1982, 2000, 2005, 2010, and 2015. Additionally, a field visit 

was done during the first semester of 2016 to corroborate the study area’s land cover. 

Finally, as topographic correction was indicated for Landsat pre-processing, we 

acquired a digital elevation model (DEM) from the Shuttle Radar Topography Mission 

(SRTM) (CGIAR - CSI 2008) with a resolution of 90 m, as its interpolation quality was 

better than the 30-m version, especially in areas with data gaps of hilly landscapes. 

2.3 Additional Landsat Pre-Processing Calculations  

Because we need to evaluate different Landsat pre-processing approaches to determine 

the best calibration of the PCG, we describe in this section all the procedures 

implemented. These were applied to the subset of two Landsat footprints; therefore, its 

extension was larger than the study areas. As we calculated different vegetation indices 

and composites ensembles from each Landsat pre-processing approach, we also provide 

an overview of the procedures.  

2.3.1 Topographic Correction and Radiometric Normalization 

Topographic correction is considered a fundamental preliminary procedure before 

multi-temporal analyzes because solar zeniths and elevation angles, as well as direct 

topographic effects, differ from image to image (Flood et al. 2013). Both Richter et al. 

(2009)  and Riaño et al. (2003) concluded that the C-correction method was preferred 

over other related topographic correction algorithms because it better preserves the 

spectral characteristics of the imagery. C-correction calculation incorporates the 

wavelength of each individual spectral band along with its diffuse irradiance. C-

correction was originally proposed by Teillet et al. (1982), and we applied it to our LTS 

using the DEM in combination with the solar and azimuth elevation angles described in 

the imagery metadata. 
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Then, for radiometric normalization, we followed a procedure described by 

Hajj et al. (2008). This approach applies a relative radiometric normalization based on 

calculations of linear regressions between target and reference images and uses 

invariant targets to obtain regression coefficients. An important advantage of this 

technique is based on its absolute calculations. Vermote et al. (1997) described this 

methodology within the context of the 6S model. The 6S model relies on atmospheric 

data to reduce the effects of atmospheric and solar conditions relative to a reference 

image. Another advantage of this procedure is its ease of implementation and 

computation. 

To implement radiometric normalization, a nearly cloud- and haze-free OLI 

surface reflectance image acquired by Landsat 8 on 2 September 2013 was used as 

reference. Its date corresponds to the low regional precipitation regime (with monthly 

rainfall below 250 mm) in the region (UNESCO 2010). As with all other images used, this 

reference image was cloud-masked and dimensionally homogeneous with the rest of 

the images. Afterwards, invariant target masks were generated from a Normalized 

Difference Vegetation Index (NDVI) ratio, where the NDVI of the target image was 

divided by the NDVI of the reference image (Rouse, R H Haas, et al. 1974). In most 

change-detection algorithms, the separation of no-change pixels is based on a histogram 

of outputs, where the mean or median value is used as the benchmark to define its range 

(Liu et al. 2004). This principle was observed in the NDVI ratio outputs and was 

implemented by computing different possible ranges in a loop calculation. This 

operation started from the mean value of the NDVI ratio, and the minimum and 

maximum values increased by a factor of 0.1% in each loop iteration. The process 

terminated when the number of pixels within the range exceeded 2% of the total 

number of pixels in the NDVI ratio. This percentage was considered sufficient to 

represent a wide diversity of features: primary forests, bare soils, water bodies, and 

urban infrastructures, among others. Hajj et al. (2008) and Mahiny et al. (2007) both 

applied percentages below 1% with the recommendation that this figure should be 

increased as much as possible. Finally, the range was used according to each image to 

reclassify and create the invariant target masks. After the calculation of invariant target 
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masks for each target image (148 in total), the regression coefficients were calculated 

using a linear regression. For this step, we applied the invariant target mask to the 

reference and target images and then calculated the regression coefficients for each 

image’s spectral band. In this procedure, each of the surface reflectance images 

normalizes its values according to the reference image. 

To evaluate the performance of topographic correction, radiometric 

normalization and other combinations of these pre-processing approaches, different 

time-series boxplots were made for each case (Figure 9a). These plots used a sample set 

of 1678 pixels taken with a precision of 99%. They were randomly taken from the 

predominantly sun-exposed (839 samples, azimuth range areas: 45°–132°) and 

shadowed areas (839 samples, azimuth range areas: 225°–313°) (Figure 9b). Since 

variance should be similar in both sun-exposed and shadow-exposed areas if LTS 

achieves its temporal homogeneity, the standard deviation was calculated for each case. 

We obtained measurements of 0.11 for surface reflectance (REF), 0.11 for topographic 

correction (TOPO), and 0.07 for radiometric normalization of surface reflectance (NREF); 

and 0.15 for radiometric normalization of topographic correction (NTOPO). Based on 

these values, it was established that the NREF pre-processing approach reduced LTS 

variability, while other approaches, such as REF, TOPO and NTOPO, increased it. 

    

(a)                                                                                          (b) 

Figure 9. (a) Examples of different pre-processing approaches using yearly composites and the NBR 

vegetation index. Boxplots were based on samples located in sun-exposed and shadow areas. Red lines 
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highlight mean values in the time-series. (b) Map of the samples used in boxplots. Blue dots identify 

shade-exposed samples while red dots identify sun-exposed samples. 

2.3.2 Vegetation Indices Derivatives 

With the pre-preprocessing outputs, a set of vegetation indices based on visible and 

infrared bands was calculated. Selection criteria were based on a literature review 

considering the atmospheric effects described by Myneni et al. and Matricardi et al. 

(1994; 2010). Moreover, because the time-series was based on the surface reflectance 

Landsat products, Tasseled Cap Transformations (TCTB, TCTG, and TCTW) were applied 

using the coefficients described by Baigab et al. (2014). The indices calculated can be 

classified in three groups:  

 Using red and infrared bands: the NDVI (Rouse, R H Haas, et al. 1974), Global 

Environmental Monitoring Index (GEMI) (Pinty & Verstraete 1992), and Modified 

Soil Adjusted Vegetation Index (MSAVI) (Qi et al. 1994); 

 Using only infrared bands: The NBR (Key & Benson 1999), the Aerosol Free 

Vegetation Index 1.6 µm band (AFRI16), and the Aerosol Free Vegetation Index 

2.1 µm band (AFRI21) (Karnieli et al. 2001); 

 Using the complete sensor bandwidth: Tasseled Cap Transformation Brightness 

(TCTB), Greenness (TCTG), and Wetness (TCTW) (Crist & Cicone 1984). 

The topographic correction procedure can negatively impact the detection of 

low-magnitude changes in the landscape (Chance et al. 2016). Therefore, all vegetation 

indices were calculated for each pre-processing approach (REF, TOPO, NREF, and 

NTOPO) to expand the PCG calibration alternatives. 

2.3.3 Composites Calculation 

Following the calculation of the vegetation indices from the different preprocessing 

approaches, output images were composited. The image acquisition dates and yearly, 

semesterly, and trimesterly time periods were the principal considerations in structuring 

the image composite. The one-year timeframe is appropriate for use with Landsat 

archive data considering data acquisition limitations and the 16-day satellite repeat 

cycle (Kennedy et al. 2010b). However, consideration of the shorter temporalities for 

composites was necessary to validate this affirmation. 
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Figure 10. Remaining no data percentages in composites temporalities. 

For this procedure, we followed recommendations described by Griffiths et al. 

(2013). Images were selected according to their acquisition date and the number of data 

gaps included in each. Images with fewer and less extensive data gaps are preferred 

within a particular time period. As each image is selected, any data gaps are filled with 

data from alternate images from the same time period. Twenty yearly composites, 37 

semesterly composites, and 64 trimesterly composites were obtained to establish 

different periodicities and time-series arrangements. Figure 10 shows that no data 

percentages that remained after the composites were calculated. 

2.4 Description of the PCG Function and Its Algorithms Integrated 

In this section, we describe each algorithm integrated in the PCG before its optimization 

with GA. Algorithms were executed in three steps, of which the workflow in shown in 

Figure 11. Starting with the time-series compilation, all steps are further described 

below. 

2.4.1 Step 1: Time-Series Compilation 

To construct a time-series, the PCG needs to define which of the pre-processing 

approaches, vegetation indices and composites temporalities is used in this operation. 

All these procedures were previously described (see section 2.3); therefore, we do not 

extend the discussion. For the first step in the PCG, by combining 4 pre-processing 

approaches, 9 vegetation indices, and 3 composites temporalities, a total of 108 time-

series compilation alternatives were available. With no clear reason to select a particular 

alternative, our decision was based on defining a combination of the three elements 

mentioned before. These combinations among others parameters required by the PCG 

are summarized in Table 3. 
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Figure 11. PCG workflow.  
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Table 3. Summary of PCG steps, methods, algorithms, packages, parameters, values, steps, and their search space size. 

Step Method Parameter 1 Value Step Total 2 

1: Time-series 

compilation 
Random selection 

P1: Pre-processing  

and composites temporality 

REF, TOPO, NREF, NTOPO - 

108 
Yearly, semesterly, trimesterly - 

P2: Vegetation indices 
AFRI16, AFRI21, GEMI, MSAVI, NBR, 

NDVI,TCTB, TCTG, TCTW 
- 

2: Outlier detection 

and removal 3 

Decision P3: Apply it? No, LOF, deviation - 

448 

Required for all P4: Window size 2–5 1 

Local outlier factor (LOF) P5: LOF factor 2–15 2 

Deviation-based test 

(deviation) 
P6: Threshold 0–14 1 

3: Gap-filling 

Decision P7: Which method? Interpolation, locf, mean imputation - 

54 

Interpolation P8: Type Lineal, spline, stine - 

Observation replacement 

(locf) 
P9: Direction Forward, backward - 

Mean imputation P10: Type Mean, median, mode - 

4: Signal smoothing 3 

Decision P11: Apply it? No, polynomial, convolution  

98 

Local polynomial 

regression fitting 

(polynomial) 

P12: Degree smoothing 0.5–3 0.19 

Savitzky–Golay filter 

(convolution) 
P13: Filter order 1–10 1.3 
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5: Breakpoint 

detection 

Decision P14: Which BDA package? Changepoint, BreakoutDetection, ECP - 

2.245 × 1012 

Required for all  P15: Segment size 3–10 1 

Changepoint 

P16: Statistical property Mean, variance, mean and variance - 

P17: Algorithm PELT, binary segmentation - 

P18: Max breakpoints 0–10 1 

P19: Penalty mode 
SIC, BIC, MBIC, AIC, Hannan-Quinn, 

Manual 
- 

P20: Penalty for manual 

mode 4 
0–1 0.01 

BreakoutDetection 

P21: Penalty percentage 4 0–1 0.01 

P22: Penalization 

polynomial 
0–2 1 

ECP 
P23: Significance level 4 0–1 0.01 

P24: Moment index 4 0.1–2 0.01 

1”P” and number indicate the code used in this manuscript for identifying parameters. 2 Refers to the total search space as number of alternatives. 3 Modules 

are optional in the processing chain. 4 Threshold parameter. 
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Following the stacked time-series, different noise reduction and gap-filling algorithms 

could be applied in the PCG. The following sub-sections summarize the available options, 

their characteristics, parameter space sizes, and developer references. 

2.4.2 Step 2: Noise Reduction and Gap-Filling 

As the PCG required us to define how and whether to enhance the quality of the 

compiled time-series, multiple algorithms were integrated in the PCG to enhance 

breakpoint detection: 

1. Outlier detection, which constitutes the detection and removal of anomalous values 

in the time-series. Typically, they constitute cloud and shadow pixels that were not 

properly masked. This step was considered optional and its principal parameters 

were window size, which defines the moving window to analyze the time-series, and 

the threshold for sensibility control. In total, 448 alternatives were available in the 

parameter search space. Two algorithms were available for this step: 

 Local analysis, using the local outlier factor algorithm (LOF) (Breunig M. M. et al. 

2000), which calculates for an object a metric to measure how isolated it is with 

respect to the surrounding neighborhood. 

 A deviation-based test using the Hampel filter, which calculates the median 

absolute deviation to find outliers (Borchers 2015). 

2. Gap-filling, which constitutes the procedure for filling data gaps in the time-series 

caused by cloud and shadow masking or the Landsat 7 ETM+ sensor scan line error. 

Gap-filling was a compulsory step to enable breakpoint detection. The parameters 

in this step refer to the different methods and options for its execution. Thresholds 

were not required, so parameter search space was limited to 54 alternatives. Three 

algorithms were available: 

 By interpolation, which estimates new data points with methods such as linear, 

spline, and stine interpolation (Moritz 2016).  

 Observation replacement, through which missing values are replaced with a 

temporally adjacent value—the last observation being carried forward or the 

subsequent observation carried backward. 
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 Mean imputation, which replaces missing values with either median, mean, or 

mode data values. 

3. Signal smoothing, which enables the increase of signal-to-noise ratio in a time-series 

and enhances the detection of breakpoints. This step was optional since it is not 

required in breakpoint detection. For all the algorithms included, only one 

parameter was required to define a threshold for sensibility control. In total, 98 

alternatives constituted the parameter search space. Two algorithms were available: 

 Local Polynomial Regression Fitting (Chambers 1992), which involves the local 

fitting of a polynomial surface determined by one or more data points. 

 Convolution, using the Savitzky–Golay filter (Savitzky & Golay 1964), which fits a 

linear least-squares low-degree polynomial to successive subsets of adjacent 

data points. 

2.4.3 Step 3: Breakpoint Detection 

The ultimate step in the PCG is the detection of breakpoints. After it is executed, the 

PCG gives as outputs the position of the breakpoints found within the time-series 

analyzed. For this purpose, three different BDA packages were considered since they 

were programmed in the open source R language (R Development Core Team 2017), 

and this made it possible to observe their codes and integrate them easily to the GA 

used (Scrucca 2013). Other alternatives, such as BFAST (Verbesselt et al. 2010), were 

discarded as our LTS was not extensive enough to fit a harmonic model. Based on 

different approaches, two types of BDA were considered: 

1. BDA based in parametric statistics: 

 Methods for Changepoint Detection R package (Changepoint) (Killick & Eckley 

2014), which implements the detection of changes in mean and/or variance 

values of a univariate time-series based on a normality test or cumulative sums. 

Additionally, Changepoint requires a penalty approach provided by any of five 

included automatic methods: Hannan-Quinn or Schwarz (SIC), Bayesian (BIC), 

Modified Bayesian (MBIC), and the Akaike information criterion (AIC). Finally, it 

includes three algorithms, but we focus on only two. The first one, called binary 

segmentation, applies a statistical test to the entire dataset and splits it if a single 
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breakpoint is identified. Afterwards, it repeats this operation until no 

breakpoints are found. The second, called PELT (pruned exact linear time), is 

based on the algorithm of Jackson et al. (2005) but it reduces computational cost 

and improves accuracy by using a dynamic programming approach. 

2. BDA based on non-parametric statistics: 

 Breakout detection via Robust E-statistics R package (BreakoutDetection) (James 

et al. 2014) is an algorithm based on energy statistics. It implements a novel 

statistical technique called energy divisive with medians (E-divise) for estimating 

the statistical significance of breakpoints through a permutation test. Its design 

aims to be robust against anomalies. 

 Non-Parametric Multiple Change-Point Analysis of Multivariate Data package 

(ECP) (James & Matteson 2015). This package constitutes an upgrade of the E-

divise algorithm developed by the authors of BreakoutDetection. Its novelty is 

the use of E-divise together with the E-agglomerative technique to reduce 

processing time by segmenting data before analyzing it. 

To avoid any bias caused by unequal search space sizes between BDA packages, 

threshold parameter ranges were set to similar sizes. Considering all parameters 

combinations, a total of 2.2 × 1012 alternatives were available in this step. 

2.5 Genetic Algorithm Implementation 

Since GA is the search algorithm for analyzing the PCG parameter search space, in this 

chapter we describe the concept behind it, the sampling needed for its implementation, 

the associated reference data, the fitness evaluation, and the calibration applied to GA. 

2.5.1 Genetic Algorithms 

GAs are a class of evolutionary algorithms that include scientific models of evolutionary 

process and search algorithms (Iovine et al. 2005). They became popular thanks to the 

work of John Holland and his colleges during the 1970s (Holland 1973), and are inspired 

by principles of natural selection and survival of the fittest. GAs have four principal 

advantages: the capability to solve complex problems, an emphasis on global searches, 

the provision of multiple solutions, and parallelism.  
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The workflow of GAs aims at evolving a population of feasible solutions for a 

target problem, or objective function. A fitness evaluation is then made in which each 

solution is executed and evaluated for its performance with respect to a validation 

dataset. This process involves an evolution-directed search in the parameter search 

space of the objective function to create new solutions. In each new generation, the 

best solutions are selected, reproduced, and mutated with respect to a set of operators 

used by the GA: 

 Selection: Controls the survival of the best chromosomes according to their 

fitness value and selects them as parents of a new generation. 

 Elitism: An optional selection rule that selects the best chromosomes directly for 

the next generations to guarantee their existence. 

 Crossover: An operator that creates offspring of the pairs of parents from the 

selection step. Its probability determines if the offspring will represent a blend 

of the chromosomes of the parents. 

 Mutation: Adds random changes to the chromosomes. 

To facilitate computation and gene representation, integer encoding is used by 

GA. This allows the transformation of discrete and continuous parameter values to 

integer codes and permits GA operators to experiment with them as if they were genes. 

Since discrete parameters are represented by an exact number of alternatives, their 

representation as integer codes is relatively easy. However, for continuous parameters, 

it is necessary to subset their ranges by steps in order to facilitate their operation. 

Therefore, this process should be carefully defined according to the sensibility behavior 

of the parameter and the instructions provided by the developer of the algorithm 

analyzed.  

Since GA terms require a homologation, the reader should keep in mind that 

the following terms refer to: (1) PCG as objective function; (2) all possible methods and 

parameter values in the PCG as search space; (3) accuracy assessment of detected 

breakpoints by the PCG as fitness evaluation; (4) any PCG calibration as chromosome 

and (5) a parameter value for any algorithm in the PCG as a gene. For a better 

understanding of these concepts, Figure 12 shows how the PCG is integrated with GA. 
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Figure 12. GA applied to PCG workflow. 

Depending on the complexity of the objective function, GA can be computing-

intensive. In this instance, the GA R package (Scrucca 2013), which allows for flexible 

manipulation and analysis of the GA, was used. This package was developed for a parallel 

computing environment and has been proven to solve different cases of optimization 

problems, such as the Rastringin function, Andrews Sine function, curve fitting, and 

subset selection, among others. 

There are other GA drawbacks. Convergence toward local rather than global 

optimization can be an infrequent problem. Larger populations and more generations 

are needed to obtain better results, but this demands large simulations. Moreover, due 

to GAs reliance on a stochastic search method, each run constitutes a different 

approximation to the solution as its initial population is randomly created (Maaranen et 
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al. 2007). This can affect solution finding as GA can become stuck in a subset of 

parameter search space, depending on its execution of a random mutation for exploring 

new parameter combinations. 

2.5.2 Training Sampling Design 

To get training samples for the GA task, an optimal allocation technique to perform a 

stratified sampling using a random scheme was applied. This method minimizes the 

variance of the estimated overall thematic accuracy of the dataset and is recommended 

for use when the number of map classes is relatively limited (Olofsson et al. 2014).  

To calculate sample sizes, the LCCM (see section 2.3) classes were used to 

extract two stratums, which we named change (merging forest gain and forest lost 

classes) and no-change (using stable forest class). The size of each strata was allocated 

according to its expected variances. For this step, we followed the sampling design 

procedure outlined by Olofsson et al. (2014), under which informed conjecture of the 

user´s accuracy can indicate these values. Applying a sampling precision of 70% and 

standard deviations of 1 and 4, the samples were calculated for all validation areas (100 

in total, 54 for no-change and 46 for change areas). Since sample size constitutes an 

important factor in GA, because it controls the amount of data that chromosomes 

should ingest to produce breakpoints in a manageable processing time (approximately 

5 to 15 min.) (Figure 13); we considered these samples sufficient, given our limited 

computing resources (4 cores, Intel i5 processor) for following the GA calibration 

recommendations (see section 2.5.4). 

 

Figure 13. Processing time measured for different sample size sets. The PCG was equally configured in 

all cases, executing GA for 10 times to average its processing time. For testing purposes, GA population 

size was set at 30 individuals and 10 generations. 
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2.5.3 Samples Interpretation and Fitness Evaluation 

The fitness evaluation includes the design and execution of a specific function for 

evaluating proposed solutions during the GA execution. The fitness evaluation in our 

case was formed by an accuracy assessment of the PCG outputs. Our implementation 

for this task again followed the recommendations of Olofsson et al. (2014) for two 

components: response design and accuracy analysis. 

Starting with the response design, we chose an array of 5 neighbor pixels 

arranged in an “x” shape as the sampling unit and applied the visual interpretative 

approach. For this purpose, we plotted yearly composites of 5, 4, and 3 Landsat bands, 

composed as color compositions, along with high-resolution images. This task was 

facilitated by a developed tool similar to the TimeSync system (Cohen W. et al. 2010) 

but with specific functionalities (Figure 14). The protocol for interpreting each sample 

unit can be summarized as follows. 

1. Any of four conditions was a basis for rejecting and replacing a sample, or in some 

cases, a neighbor pixel in the sample unit, if: 

 There was a lack of high-resolution images, obscuring most of the land-cover 

history of the sample unit; 

 Visual interpretation of the sample unit was compromised because of unmasked 

clouds, shadows, haze, or water bodies (Figure 14a); 

 A neighbor pixel exhibited a land-cover history different from the majority of 

pixels included in the sample unit; 

 The number of eliminated neighbor pixels in a sample unit exceeded 4 cases. 

2. To consider a sample unit as a forest gain, clear evidence of continuous regeneration 

was needed. According to Guariguata and Ostertag (2001), early forest development 

within the tropical forest environment is achieved approximately five years after the 

disturbance event. We followed this condition to accept samples as forest gain 

(Figure 14b) or reject samples and cast replacements. 

3. In the case of forest loss samples, an absence of the regeneration period was a 

necessary condition for validation (Figure 14c). 
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                                           (a)                   (b) 

 

                                           (c)                   (d) 

Figure 14. Interphase for samples interpretation. First row (from left to right) refers to high resolution 

imagery composed by aerial photos (1982) and images from ASTER (2001 and 2006), Rapid Eye (2011) 

and Google Earth (2015). The rest of the image chips correspond to the LTS as yearly RBG composites. 

Following protocols, we interpret these cases as follows: (a) Sample rejected by unmasked river, (b) 

Forest gain after disturbance observed in the 3rd row, (c) Forest lost with a short regrown period, and 

(d) Stable forest sample. 

4. For stable forest samples, the unique condition required was an absence of 

disturbances (such as clear cuts or fires) during the period analyzed (Figure 14d). 

As visual interpretation of breakpoints dates is not an easy task, we preferred 

to ensure that a sample unit belonged to the classes described in the protocol instead 

of introducing more uncertainties by subjective interpretation of disturbance dates. 

Subsequently, the samples were grouped into change and no-change classes to apply 

this information to training samples. 

For the accuracy analysis, using a straightforward matching procedure, the 

fitness value of our samples was based on the calculation of their overall accuracy. This 

measure helped us to overcome local optimal convergence experienced when R2 and 
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adjusted R2 were tested. Other measures such as kappa, omission and commission 

errors, etc., were avoided since only two classes were examined. 

2.5.4 GA Calibration Settings 

Following the interpretation of training samples, the GA was executed. The procedure 

for analyzing the search space of the PCG and calibrating GA according to its 

characteristics followed the recommendations of Kumar et al. (2012), and Eshelman et 

al. (1991). These recommendations guided the design of two types of searches. The first 

mode, called “explorative” was created to reduce the size of the search space of the 

processing chain and provide insights for its calibration as a whole. For this, BDA 

threshold parameters with a search space size of 100 alternatives were contracted, 

increasing step values and shortening its range to 12 alternatives (left side of Figure 15).  

Other specific GA calibration parameters were applied following the 

recommendations of Scrucca (2013). This application indicated an elitism rate of 0.05 

and a uniform crossover probability of 0.8. A random mutation rate was tested with 0.5 

and 0.1 for experimental purposes. The tournament selection was the mechanism set 

to favor the selection of better individuals, as suggested by Miller et al. (1995). 

The second mode, called “exploitation,” was created to analyze in detail BDA 

threshold parameters. Therefore, its step values were maintained as shown in Table 3, 

conserving its 100 alternatives in all cases (right side of Figure 15). 

 

Figure 15. Search space size allowed for the explorative and exploitation modes. 
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To codify each parameter value as genes, integer codes were applied to 

discrete and continuous parameters. Details of the steps and ranges applied to 

continuous parameters are shown in Table 3. With this codification of parameters, the 

“real-value” GA type was chosen. This allowed us to obtain floating-point 

representations of numbers, which can be converted into integer values and define a 

parameter value from the search space. 

2.6 Results 

After the calibration of GA, in this section we describe the procedures for exploring PCG 

parameter search space, the optimized PCG calibrations found, their execution for visual 

and accuracy assessment, and their processing time. 

2.6.1 GA Search Approaches and Calibrations Found 

To find the best solutions, different GA executions and experiments were implemented. 

For all BDA packages, these procedures were similar; however, two approaches were 

applied to consider different management of the PCG parameters search space. For this 

step, our approach was divided, according to the parameters, by analysis and the type 

of GA search applied. Two different approaches were considered, where the main 

difference was the application or non-application of noise-reduction algorithms and a 

predefined pre-processing input. 

1. Search with only BDA packages (reduced processing): 

 In this sequence, the BDA parameter search space (parameters P14-P24 as is 

noted in Table 3) is analyzed in detail, but the rest of parameters are defined by 

a default mode. 

 The default mode defined the NBR composites yearly, since short-wave 

infrared (SWIR) region metrics are more sensitive to forest changes (Kennedy et 

al. 2010b) and this composites temporality helped to reduce data gaps. They 

were calculated from the Landsat surface reflectance products for reducing 

uncertainties with respect to radiometric normalization and topographic 

correction performance. Noise reduction algorithms, including outlier detection 

and signal smoothing, were deactivated, which focused the GA on BDA 

parameter search space exclusively. 
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 For this approach, the GA was set to the “exploitation” mode, executing it 

twice with each BDA package. The first run had a mutation rate of 0.1 and the 

second run, a rate of 0.5 (enhanced diversity). Each GA execution had 120 

generations and 30 individuals. 

2. Search with pre-processing and noise reduction + BDA packages search (extended 

processing):  

 This search consisted of split search space, executing shorter GA runs, and 

splitting pre-processing and noise reduction parameter search space from each 

BDA. 

 To find a calibration solution for the pre-processing and noise reduction 

algorithms (parameters P1-P13 as noted in Table 3), GA was set to the 

“explorative” mode during a first run of 60 generations and 30 individuals. 

 After determining a pre-processing and noise reduction calibration, it was 

applied before the BDA parameters search space was analyzed in detail. For 

this step, a second GA run was applied, changing the search mode to 

“exploitation” but only for 60 generations of 30 individuals.  

 Hence, GA was executed four times: two for pre-processing and noise 

reduction, and two for the BDA parameters search space, considering again the 

two mutation rates applied in the first approach (0.1 and 0.5). 

Results from these sequences and the best solutions achieved are shown in 

Figure 16, where the fitness value and its peaks are highlighted as colored dots. These 

peaks suggest that the ECP and BreakoutDetection packages performed best when a 

reduced processing approach (left side of Figure 16) was applied. Furthermore, all 

packages improved their results drastically after applying the extended processing 

approach, which assigns a pre-processing and noise reduction calibration before the 

BDA is optimized by GA. The right side of Figure 16 shows the enhancement that 

Changepoint, BreakoutDetection, and ECP provided, increasing their overall accuracy: 

0.03, 0.11 and 0.13, respectively. This demonstrates that the extended processing 

approach was better for optimization, providing us with better calibration solutions, so 

we chose these enhancements for further analysis. 
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Figure 16. BDA fitness value evolution. 

Details for the extended processing calibration solutions are shown in Table 4. 

The time-series compilation step shows that yearly composites and vegetation indices 

based on infrared bands (NBR and AFRI16) were mostly preferred; however, is not clear 

which radiometric correction was most beneficial since topographic correction (TOPO), 

surface reflectance (REF) and radiometric normalization of topographic correction 

(NTOPO) were all present in the different calibrations. Noise reduction algorithms, such 

as outlier detection and signal smoothing, showed that calibrations using LOF and 

polynomial regression methods gave improved results. This was not the case for the 

gap-filling step, where different methods were selected. Regarding BDA calibrations, the 

segments size parameter showed different behaviors between BDA packages. Because 

of this, the number of breaks obtained by each BDA package differed, but we maintained 

them because of our experimental design. The rest of the BDA parameters were unique 

and incomparable, as each of them was specific to each BDA package parameters. 
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Table 4. Parameter selection by GA as best calibration solutions. 

PCG Step BDA Package 

Breakout Detection Changepoint ECP 

1: Time-series 

compilation 

TOPO, yearly, NBR NTOPO, yearly, MSAVI REF, Yearly, AFRI16 

2.1: Outlier 

detection 

LOF, window size 2,  

LOF factor 8 

LOF, window size 4, LOF 

factor 2 

LOF, window size 2, 

LOF factor 4 

2.2: Gap-filling 

Observation 

replacement, forward 

direction 

By interpolation, spline 

method 

By interpolation, 

linear method 

2.3: Signal 

smoothing 

Polynomial, degree 

smoothing 0.5 

Polynomial, degree 

smoothing 1.7 

Polynomial, degree 

smoothing 1.7 

3: Breakpoint 

detection 

Segment size 5, 

penalty percentage 

0.09, penalization 

polynomial 1 

Size segments 3, variance as 

statistical property, binary 

segmentation algorithm,  

7 breakpoints, manual 

penalty mode, penalty in 

manual mode 0.5 

Size segments 9, 

significance level 0.2, 

moment index 0.94 

Overall 

accuracy 
0.62 0.68 0.74 

 

2.6.2 Execution of Calibration Solutions and Visual Assessment 

After the best calibration profiles were determined, we proceeded to apply them to 

each study area (see Figure 17), considering that each LTS pixel must include a minimum 

of 10 observations (a full time-series pixel includes 20 observations). Therefore, it was 

possible to observe BDA performances under different conditions. Artifacts such as 

horizontal stripes indicated Landsat 7 scan-off error, while irregular patches showed 

areas of unmasked clouds and shadows. Despite these hindrances, some patterns of 

land-cover change were present in all outputs. In this regard, ECP (Figure 17, column d) 

looked less affected in comparison to the reference change 1997–2015 mask (Figure 17, 

column a). The rest of the BDA packages, such as Breakoutdetection and Changepoint, 

did not perform well in all areas as compared to the change 2000–2015 mask. Following  
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                                     (a)                               (b)                                 (c)                               (d) 

Figure 17. Spatial representations of the best BDA solutions. Study areas are shown in rows (A, B, C) and 

columns refer to (a) Change 1997–2015 mask, (b) BreakoutDetection, (c) Changepoint, and (d) ECP 

results. In all cases, no-forest areas before 1997 are shown in black, while areas not analyzed are shown 

in white. 

these initial insights, the ECP package was selected for further analysis and manual 

calibration described in the next section. 

2.6.3 Manual Optimization of ECP Calibration Solution and Execution of the PCG for a 

Larger Area  

As GA provided us with a preliminary calibration of the ECP processing chain, we started 

to play with different parameters in order to see if we could improve results. After 

experimenting with different configurations, we observed that the only parameter that 

enhanced results was segment size, since it affected the number of breakpoints 

detected in the time-series. Therefore, we redefined this parameter into 5 (with the 

condition that the first breakpoint detected should be observed from the 2001 data) but 

we kept the other parameters as shown in Table 4. We then executed the PCG, but now 

applied to a larger area that contained the three study areas (Figure 18, column c). To 

differentiate forest dynamics classes (forest gain and forest loss), the breakpoints 

identified by the PCG were used to isolate two segments: (1) the “before-change” 

segment, which takes the segment in the time-series that happens before the first  
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                                 (a)                          (b)                                                           (c) 

Figure 18. Application of the ECP-optimized processing chain. Study areas are shown in rows (A, B, C) 

and columns refer to (a) LCCM, (b) The forest dynamics map obtained, and (c) its application to a larger 

area. 

breakpoint was detected; and (2) the “after-change” segment, which takes the segment 

in the time-series that happens after the last breakpoint was detected. With each of 

them, the mean value was calculated and subtracted to obtain a residual. This was 

classified into 5 natural breaks classes for enhancing different levels of greening and 

browning patterns, which are associated with forest gain and forest loss dynamics [6] 

(Figure 18, column b). As this layer highlights these dynamics, it was used for accuracy 

assessment using the reference samples extracted from the LCCM (Figure 18, column 

a). This procedure is explained in the next section.  

2.6.4 Accuracy Assessment 

The accuracy assessment followed a similar procedure for training (see sections 2.5.2 

and 2.5.3) but emphasized the results obtained for the forest dynamics map. To 

determine a sample size, we used a sampling precision of 75% and standard deviations 

of 1, 4, and 4 for the classes stable forest, forest gain and forest loss, respectively. The 

stratums were again extracted from the LCCM and this gave us a total of 551 samples, 

divided into 226 stable-forest, 159 forest-gain and 166 forest-loss samples. Reference  
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Table 5. Confusion matrix for the forest dynamics map. 

Assigned Classes 
Referenced Classes 

User Accuracy 
Stable-Forest Forest Gain Forest Loss 

Stable-Forest 691 165 121 0.70 

Forest Gain 230 278 23 0.52 

Forest Loss 81 35 346 0.74 

Producer Accuracy 0.68 0.58 0.70 Overall Accuracy: 0.66 

 

information for interpreting the samples follows the same criteria explained in training 

samples interpretation (see section 2.5.3). Since the forest dynamics map contains five 

classes, it was reclassified for match the categories of the LCCM. This led to merging 

intense and slightly greening as forest gain, intense and slightly browning as forest loss, 

and stable class as stable forest. Results from the confusion matrix using the evaluated 

pixels (1970 in total) for each sample are shown in Table 5. 

Overall accuracy for the three study areas indicates that this map achieved an 

overall accuracy of 0.66, where stable forest and forest loss were less inaccurate than 

forest gain (Table 5). This was less than we predicted (≥0.74 of overall accuracy) based 

on GA accuracy results. Continuing with the accuracy assessment, other measures were 

calculated for each study area to evaluate its specific precision. This is shown in Table 6. 

Table 6. Accuracy measures for the three study areas. 

Study Area Class 

Measure 
Overall 

Accuracy Sensitivity Specificity 
Balanced 

Accuracy 

A 

Stable forest 0.58 0.58 0.58 

0.56 Forest gain 0.34 0.71 0.52 

Forest loss 0.50 0.88 0.69 

B 

Stable forest 0.59 0.70 0.64 

0.62 Forest gain 0.56 0.83 0.69 

Forest loss 0.70 0.89 0.80 

C 

Stable forest 0.85 0.72 0.78 

0.76 Forest gain 0.63 0.89 0.76 

Forest loss 0.72 0.97 0.84 
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These results show that overall accuracies were particularly poor for study 

areas A and B, but better for Area C, so we further describe that section’s accuracy 

results by class. By class, stable-forest and forest-loss classes are shown to be easier to 

detect, as sensitivity and specificity were greater than 0.7; but forest gain is harder, since 

sensitivity was below 0.7. As balanced and overall accuracy was greater than 0.75, 

breakpoint detection seems to have worked better for this unique case. 

2.6.5 Speed Performance 

As we considered processing time a key issue in breakpoint detection, average 

times were measured for each BDA calibration solution, running each 10 times with a 

sample set of 100 pixels on an Intel i7-processor-based personal computer with 8 cores. 

The results are shown in Figure 19a: the ECP optimized processing chain took the longest 

(6.5 s), followed by the Changepoint and BreakoutDetection packages (5.11 and 5.03 s, 

respectively). Applied to our larger area (~4400 km2, ~5 million pixels), processing time 

is estimated at ~4.9 h for BreakoutDetection, ~5.06 h for Changepoint and ~6.4 h for 

ECP. However, this depends on the algorithms associated to their processing chains and 

not on the breakpoint detection packages themselves. 

Total time for optimization using the two GA approaches are shown in Figure 

19b. It was observed that extended processing (0.5–1 h) more than doubles the time 

required by the reduced processing approach (0.13–0.27 h). This was partly because in 

the extended processing approach, GA must run the BDA packages twice, as well as 

running the rest of the algorithms included for noise reduction. 

 

Figure 19. Execution time for: (a) Each BDAs optimized processing chain, running 10 times with a sample 

set of 100 pixels. (b) Total GA execution time obtained for each BDA package and approaches applied. 

Acronyms used for BDAs are: BRE for BreakoutDetection; CHP for Changepoint; and ECP for the package 

of the same name. 
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2.7 Discussion 

In this paper, we present the application of a GA for optimizing a processing chain and 

evaluate if breakpoint detection is applicable for monitoring forest dynamics in the 

Andean Amazon in Ecuador. We tested this procedure on three different study areas 

characterized by limited data availability, high topographic relief, and landscape 

variability. To organize this discussion, we divide this chapter into three subsections.  

2.7.1 Objections Regarding Breakpoint Detection and Its Applicability in the Andean 

Amazon 

Our results show that breakpoint detection using LTS failed for the study areas A and B 

since breakpoints were not properly detected, while in Area C, results were better 

despite the fact that the forest-gain class was imprecise, as sensitivity was below 0.7. 

Furthermore, breakpoint dates detected by the ECP-optimized processing chain do not 

clearly reveal change events. Forest dynamics patterns we observed through the 

calculated metric constitute an approximation based on assumed dates of detected 

changes that could not be real. This contrasts the position of DeVries et al. (2015) using 

BFAST, where forest dynamics monitoring was applied to a tropical montane forest in 

Ethiopia. In that research, breakpoint dates and magnitudes allowed researchers to 

track down and classify forest changes, indicating; however, that excessive unmasked 

clouds and shadows, and limited data for fit a history model, would restrict the use of 

the algorithm. Both sources of errors impacted our case, since data availability in some 

areas was less than 41 images (reddish areas, see Figure 7b) with some of those affected 

by unmasked clouds and shadows, in some cases resulting in one or no usable 

observations for a year or more. This prevented our using that algorithm, supporting our 

objection regarding breakpoint detection and its applicability in some areas of the 

Andean Amazon. 

On the other hand, our exercise of calibrating the PCG and implementing 

breakpoint detection with scarce and noisy data conditions introduced additional 

problems since parametrization was complex and had to be solved by a GA. On this 

point, if we consider the implementation of breakpoint detection for a larger area in the 

Andean Amazon, calibration could be a problem since parametrization will be unique to 

each landscape configuration and its specific data conditions. For this reason, the 
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processing time required to optimize such processing chains also constitutes a 

drawback. As we have seen, GA is a computing-intense simulation the implementation 

of which was only possible when a small training sample size was applied to optimize 

the PCG. This certainly affected the effectiveness of the optimization, since overall 

accuracy between training and reference samples differed significantly (0.74 against 

0.66, respectively, for the ECP-optimized processing chain). Finally, even if the 

calibration problem is solved, a complete Landsat footprint could require 49 h of 

processing time using a personal computer with 8 cores (Intel i7 processor) and the ECP-

optimized processing chain. Considering these results, processing time is certainly 

excessive for a single Landsat footprint, whose noisy outputs, applied on a relatively 

larger scale in our research, did not satisfy our expectations regarding its use in the 

Andean Amazon. 

2.7.2 Considerations When Data Quantity Allows the Implementation of Breakpoint 

Detection 

Despite these objections, some results deserve to be mentioned as they seem to 

diminish the effect of some problems and improve breakpoint detection in some specific 

cases observed in our study areas. First of all, as Area C obtained an improved result, 

data quantity and geometric accuracy are the first factors to consider for a successful 

implementation. As seen in Figure 7b, the spatial distribution of no-data frequency in 

Area C was almost homogeneous. This suggests that the threshold required for using 

the ECP-optimized processing chain was around 55 to 71 observations. However, these 

observations should be distributed along the time-series in order to have yearly 

composites almost free of gaps and properly co-registered in order to allow breakpoint 

detection (Roy et al. 2010). As data quantity requirements are not always made explicit 

by developers of BDAs, and geometric accuracy of image subsets could be different than 

the value reported on its metadata, it is worth knowing these aspects before a BDA is 

considered for its use. 

To diminish the effects of atmospheric contamination, the aerosol-free 

vegetation index (AFRI), and other indices derived from shortwave infrared bands using 

only the Landsat surface reflectance products seem to ameliorate this effect and 

enhance analysis of forest dynamics as Matricardi et al. (2010) also found. However, it 
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is seen in Figure 18c that the application of the ECP-optimized processing chain for a 

larger area was affected by radiometric differences between Landsat footprints. This 

was concluded after observing the asymmetries between the left and right sides of the 

metric calculated. Therefore, users of Landsat surface reflectance products should note 

that sensor calibration is not homogeneous and radiometric normalization should be 

applied. In our case, the relative radiometric normalization procedure applied does not 

seem to reduce this effect; therefore, the authors do not recommend its application, 

and a better method independent from the footprint area should be considered. 

Furthermore, as cloud and shadow masks fail from time to time, improve masking is our 

first recommendation. However, as outlier detection with a local outlier factor algorithm 

helped to reduce the incidence of these pixels as false-positive breakpoints, its 

application should be considered but carefully calibrated, as forest changes could be 

erroneously interpreted as outliers in some cases. 

With regard to enhancing the calibration sensibility of BDAs, signal smoothing 

with a local polynomial regression-fitting algorithm helped us to improve it, especially 

when threshold parameters did not react and a subtle sensibility to breakpoint detection 

is required. Other researchers found this procedure useful when LTS is used and the 

adjustment of models requires an improvement of their signal quality (Goodwin & 

Collett 2014; Powell et al. 2010). 

Finally, it was seen that a non-parametric breakpoint algorithm behaved better 

in our case than parametric algorithms. Apparently, the absence of assumptions of data 

normality in the ECP package seemed to improve our results. This is also becoming an 

important research field, since non-parametric algorithms in remote sensing are more 

flexible for solving tasks where data quality and quantity are not exceptional 

(Mountrakis et al. 2011; Atkinson & Tatnall 1997). However, as other assumptions could 

exist, knowledge is a must for proper implementation of these algorithms. 

2.7.3 Some Advice for Improved Optimization of Complex Functions with GA 

As GA constitutes our innovative contribution to this body of research, some advice 

regarding its implementation should be considered. First, splitting the search space into 

modules is a useful strategy to avoid becoming stuck in local optimization and to 
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produce relatively quickly. This is corroborated by Garibay et al. (2003), who indicate 

the benefits of splitting a search space into small modules instead of analyzing large and 

complex search spaces as a single module.  

Regarding calibration, we found that GA was sped up when a higher mutation rate was 

applied. This condition predefines a more diverse population, consequently producing 

more diverse combinations of parameters. This conclusion is also supported by Montana 

et al. (1989) and Haines et al. (2014), wherein exhaustive GA experiments were 

conducted and similar results, i.e., where mutation rate and crossover probability 

significantly influenced GA success, were found. However, as calibration of GAs implies 

many other parameters, the authors recommend implementing other approaches, such 

as those analyzed by El-Mihoub et al. (2006), which can simplify this task. 

Finally, because GA is computationally demanding, it is obvious but nonetheless 

important to mention that the workload introduced by the objective function and its 

training data should be carefully examined. If any of these elements introduce 

bottlenecks or code bugs during execution, GA will result in an overflow. This condition 

can limit calibration to small population sizes and lead to premature convergence 

(Eshelman et al. 1991) and less than satisfactory results. Therefore, processing time 

should be evaluated with different training data sizes and the objective function should 

be optimized as much as possible. 

2.8 Conclusions 

This research demonstrated that breakpoint detection should be carefully evaluated 

before its application for monitoring forest dynamics in the Andean Amazon using LTS, 

since insufficient data availability, inaccurate co-registration, radiometric variability in 

sensor calibration, and unmasked cloud and shadow pixels compromise its 

implementation in most areas of the Andean Amazon. Moreover, since landscape 

diversity in the Andean Amazon includes heterogeneous conditions, which require 

specific calibrations for breakpoint detection, its optimization could be compromised as 

more processing chains will be required for each specific landscape configuration. This 

is certainly costly in terms of software development and processing but also inefficient 

for large-scale monitoring projects in the region. Therefore, users should consider these 
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limitations and suggestions before implementing breakpoint detection in similar 

landscape conditions. 
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3 MONITORING LONG-TERM FOREST DYNAMICS WITH SCARCE DATA: A 

MULTI-DATE CLASSIFICATION IMPLEMENTATION IN THE ECUADORIAN 

AMAZON 

 

Fabián Santos, Pablo Meneses and Patrick Hostert 

 

“Adapt what is useful, reject what is useless, and add what is specifically your own.” 

Bruce Lee. 

3.1 Introduction 

The Amazon rainforest constitutes one of the biologically most diverse, structurally 

complex, and carbon-rich bioregions of the world (Asner et al. 2014). It performs 

essential global-scale functions and provides a multitude of ecosystem services (Paula 

et al. 2014). Tropical deforestation is a major threat to the region and a driver of climate 

change with potentially critical impacts on the biosphere (Fearnside 2005). Large-area 

deforestation assessments indicate that the Amazon Basin lost 13.3% of its forest from 

2000–2013, where the headwater basins suffered most of the pressure (RAISG 2015). 

This is also particularly alarming for the region itself, as the highland Amazon (or Tropical 

Andes) is highly susceptible to global warming (Karmalkar et al. 2008), while being 

under-researched in deforestation studies (Armenteras et al. 2011). Moreover, only 

little is known about forest succession (Barbosa et al. 2014) or land-cover intensities 

(Kuemmerle et al. 2013) in this sub-region, which are also important components for 

understanding the impacts on ecological services (e.g., on biodiversity, carbon 

sequestration, or nutrient sinks) (Brown & Lugo 1990; Edwards et al. 2017; Poorter et 

al. 2016). Monitoring forest dynamics in the Tropical Andes therefore plays a key role 

for informing policymakers and resource managers in their decision making processes 

over the next few years (Angelsen & Wertz-Kanounnikoff 2008; De Koning et al. 2011). 

While lowland tropical forests have been well researched, closing the remaining 

knowledge gaps on forest dynamics in Andean tropical forests is of prime importance 

(Spracklen & Righelato 2014; Oliveira et al. 2014; Armenteras et al. 2017; Da Ponte et al. 

2015). 
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Comprehensive forest dynamics monitoring has traditionally implied decades 

of field observations (Fragal et al. 2016). Such observations are costly and it might even 

be impossible to collect the necessary data in the field. Remote sensing offers a unique 

alternative for supplying this information for large areas and in different spectral, 

spatial, and temporal resolutions. Terra and Aqua on board of the Moderate Resolution 

Imager Spectroradiometer (MODIS) have regularly been used for broad-scale mapping 

of forest dynamics (Hansen et al. 2008). However, the spatial resolution of MODIS data 

is limited when fine-scale disturbance regimes prevail such as from selective logging, 

skid trails, or disturbances related to landslides or local wind throw. The Landsat sensor 

family with its 30-m spatial resolution and its 45-year observation record is better suited 

for capturing long-term and fine-scale processes. It is the most widely used observation 

system for Land-Cover and Land-Use Change (LCLUC) assessments and forest dynamics 

monitoring programs (Camara 2013; Hansen & Loveland 2012). Since the launch of 

Landsat-1 in 1972, the Landsat Program has continuously collected data across the globe 

and—since the launch of the Landsat Thematic Mapper in 1982—in six spectral bands 

covering the optical, near-infrared, and shortwave infrared wavelength regions. For 

these reasons, it is the most long-term medium-resolution Earth observation satellite 

archive available. Due to the open data policy since 2008, Landsat data is available free-

of-charge as a standard high-level product for long-term LCLUC analysis (Wulder et al. 

2016). This development allowed major improvements in automated time-series 

analysis, leading to a range of novel algorithms such as TIMESAT, LandTrendr, BFAST, 

and CCDC (Eklundh & Jönsson 2015; Kennedy et al. 2010a; Verbesselt et al. 2010; Zhu & 

Woodcock 2014) that allow for extracting forest dynamics information. However, in 

some regions around the globe, the archive data density is considerably lower, mostly 

due to persistent cloudiness (Chance et al. 2016; Arvidson et al. 2001) reduce data 

quantity and quality. This result in time-series with poor signal-to-noise ratio, due useful 

information about forest status is weak and not significant to differentiate from random 

noise. This is a limitation for transferring these novel algorithms to data scarce regions, 

such as the Tropical Andes (Santos et al. 2017), as time-series analyzes require rather 

dense data stacks over time. 
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Conceptual approaches including those based on image compositing, multi-

sensor fusion, and post-classification change detection have demonstrated their 

potential to overcome these limitations (Potapov et al. 2012; Hansen et al. 2013; 

Griffiths et al. 2014). Multi-date classification (Zhu 2017) has the advantage to cope with 

noise-prone observations, especially when based on cloud-free composites that not only 

allow identifying deforestation or reforestation processes, but also characterize land-

use intensities from post-deforestation dynamics (Rufin et al. 2015). For these reasons, 

multi-date classification is the methodology of choice for monitoring long-term forest 

dynamics in areas such as the Tropical Andes. However, implementing a multi-date 

classification scheme under specific regional conditions can still be challenging, e.g. due 

to poor data availability in the past depending on historical data receiving strategies or 

increased cloudiness due to topography. Consequently, we applied this methodology to 

a study case located in the Amazon region of Ecuador, the Upper Napo Watershed 

(UNW), where heavy rainfall regimes (Espinoza et al. 2015) and complex landscapes 

(Asner et al. 2014) are major impediments. Our overarching objective was to monitor 

long-term forest dynamics and identify deforestation/reforestation for the period 

between 1992 and 2014. We pose the following research questions related to these 

objectives:  

 Which processing steps and techniques are needed to implement multi-date 

classification in a data sparse region as exemplified in the UNW? 

 How well does a multi-date classification approach perform when monitoring 

long-term forest dynamics in the environments of the Tropical Andes? 

3.2 Study Area 

The UNW is located between 78°25´W and 76°25´W longitude, and 0°10´N and 1°30´S 

latitude (Figure 20a). It covers an area of about 12,500 km2 in the Ecuadorian Amazon, 

spreading across the three provinces Napo (63% of the watershed), Orellana (26%), and 

Pastaza (9%). The altitudinal gradient of the Andes covers ~260 to 5,600 m.a.s.l. Mean 

temperatures vary from -0 to 26 °C and annual precipitation from 1,100–5,300 mm (MAE 

2013). The core rainy season extends from December to May, but fog and clouds are 

abundant throughout the year, especially at higher elevations (Ramírez et al. 2017). The 
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complex geology creates diverse edaphic conditions that in combination with 

topographic gradients and climatological impacts result in a multitude of extremely 

species-rich ecosystems (Hoorn et al. 2010).  

The percentage of natural vegetation in the UNW was estimated to be 79% in 

2014, with 76% forest, 2% shrub-dominated landscapes, and 1 % grasslands (MAE 2017). 

Forests are generally evergreen, but forest ecosystems vary substantially in tree 

composition, flood regimes, and topographic and bioclimatic boundary conditions (MAE 

2013). According to Guariguata and Ostertag (2001), reforestation occurs as quickly as 

in five years after a disturbance in the evergreen forest ecosystems of the Ecuadorian 

Amazon, with variations depending on past land-use practices and abiotic site 

conditions. This was verified during fieldwork in May 2017 at three reforestation sites in 

the UNW, where 46 hemispherical photographs were acquired. We followed Pueschel 

et al. (2012) to binarize these photographs and derive the canopy closure index. We 

found that canopy closure after five years can be greater than of a 20-year-old forest 

(Figure 20b). We accordingly used a time threshold of five years as a reference for 

mapping reforestation (see section 3.3). Four National Protected Areas, mainly created 

during the 1990s, are present in the UNW and cover 25% of the total area. 78,300 ha of 

native forest were reported to be converted to pastures and croplands between 2000 

and 2014, resulting in an average annual deforestation rate of ~6,300 ha or 0.5% of the 

forested land (MAE 2017). While these numbers vary, deforestation rates do not exceed 

1.2–1.6% yr-1 (Sierra 2000). 
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                                                                                 (a)  

   

                                                                                 (b)  

Figure 20. (a) The UNW study area, localization in the context of the Amazon Basin and Tropical Andes. 

Data from The National Information System of Ecuador (2017) and digital elevation model of the UNW. 

(b) Boxplot of the canopy closure index and estimated forest age; and hemispherical photographs with 

derived canopy closure index for different forest development stages. 

3.3 Materials and Methods  

We organized the processing in five main steps (Figure 21) when implementing our 

multi-date classification. All procedures were developed in the R language (R 

Development Core Team 2017) and different strategies were applied to improve the 

processing (e.g., parallelization, vectorization, c-code libraries) (Revolution Analytics & 

Weston 2015; Hijmans 2016; Bengtsson 2016; Clayden 2016a; GDAL Development Team 

2017) in complex computations. 
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Figure 21. Methods and workflow for implementing the multi-date classification. 

3.3.1 Data and Pre-Processing 

For this study, we downloaded 1,350 images for four Landsat footprints (09-60, 09-61, 

10-60, and 10-61) and for the period 1989–2016. They were processed to surface 

reflectance and acquired from the United States Geological Survey (USGS) Global 

Archive, sourced through the Earth Resources Observation and Science (EROS) Center 

Science Processing Architecture (ESPA) (USGS 2014). This dataset included Landsat 

Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+), and the Operational 

Imager (OLI) data. This ready-to-use dataset is radiometrically calibrated by the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et al. 2012), and 

orthorectified using a digital elevation model (DEM) and ground control points (NASA 
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2011). The percentage of masked areas (or no-data pixels) for each image was calculated 

using C code based on the Function of Mask (Fmask) algorithm (CFmask) (Zhu & 

Woodcock 2012) and LEDAPS by merging cloud, cloud shadow, glacier, and water areas 

into a unique class (Figure 22a). Images with percentages above 90% of no-data pixels 

and images without orthorectification according to their metadata were omitted, 

reducing the time-series of 27 years to effectively 23 years since 1991 (section 3.3.4). In 

total, 288 images were used (i.e., 68, 79, 74, and 67 images per Landsat footprint, 

respectively) to complete the multitemporal composites. Data was mostly available 

during the dry season (67% of images, Figure 22b) while the fewer images acquired 

during the rainy season avoid additional data gaps in single years for our forest dynamics 

analyzes (Lunetta et al. 2004; Kimes et al. 1998). This is in contrast to other studies, 

which selected images from specific periods within a year (Müller et al. 2016). However, 

we preferred to maintain all images as a strategy to reduce data loss in this data-sparse 

environment. The average time interval between consecutive images for each footprint 

was 141, 122, 130 and 154 days, respectively. Nevertheless, in all footprints, a data gap 

from August 1992 to July 1996 in the Landsat archive introduced an interruption of 3.9 

years in our time-series. Finally, a set of vegetation indices, band ratios, and Tasseled 

Cap transformation derivatives were calculated from the Landsat images (Table 7) 

following recommendations from similar forest dynamics studies (Kennedy et al. 2010a; 

Müller et al. 2016; Potapov et al. 2012). To overcome the topographic effects, a c-

correction algorithm (Riaño et al. 2003) was applied to Landsat bands and its derivatives 

to evaluate if it contributed to improving classification results (Section 3.4.2).  
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                                     (a)                                   (b) 

Figure 22. (a) Spatial distribution of no-data pixel frequencies and (b) no-data percentage of selected 

images. Gray areas in the plots refer to the 1992–1996 data gap and dashed lines to effective 23-year 

time-series. 

Table 7. Landsat bands and derivatives. 

Name Abbreviation 
Wavelength 

region 
Reference 

Normalized Difference 

Vegetation Index 
NDVI VIS, NIR 

(Rouse, Haas, Scheel, & 

Deering, 1974) 

Aerosol Free Vegetation 

Index 1.6 µm band 
AFRI16 NIR 

(Karnieli, Kaufman, Remer, 

& Wald, 2001) 

Normalized burn ratio NBR NIR (Key & Benson 2006) 

Landsat bands 1-7 Bands 1-7 VIS, NIR, SWIR - 

Band ratios: TM4/TM3, 

TM5/TM4, TM5/TM7 
R43, R54, R57 VIS, NIR, SWIR (Krishna Bahadur 2009) 

Tasseled cap: 

brightness, greenness, 

and wetness 

TCB, TCG, TCW VIS,NIR, SWIR (Crist & Cicone 1984) 

 

We collected 872 image chips from different sources acquired between April 

2000 and August 2016 from high- and very high-resolution data for validating our 

medium-resolution remote sensing outputs (Olofsson et al. 2014): aerial photography 

(1 m spatial resolution), pan-sharpened images from the Advanced Land Imager (ALI, 

10 m), Sentinel-2a (10 m), and Advanced Spaceborne Thermal Emission and Reflection 
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Radiometer (ASTER) imagery (15 m). The latter is available for free (National Institute of 

Advanced Industrial Science and Technology & Geological Survey Japan 2017) and we 

downloaded the whole archive to densify our high-resolution validation dataset. All 

images were pre-processed including manual co-registration (using Landsat imagery as 

a reference) and cloud masking including shadows (applying simple thresholds and 

manual screening in some cases). Finally, multispectral imagery was stacked, i.e., ASTER, 

ALI and Sentinel, for displaying them as false-color composites during the construction 

of validation sample plots (section 3.3.5). 

To guide our implementation (section 3.3.4), the information used for the 

establishment of Ecuador´s Forest Reference Emission Level  (MAE 2017) were collected. 

This dataset constitutes a series of land-cover and vegetation maps based on Landsat, 

ASTER, and Rapid Eye imagery that were visually interpreted with accuracies around 

70% for different periods between 1990 and 2014. 

For the elevation source, we used the three arc-second (90 m) digital elevation 

model from the Shuttle Radar Topography Mission (SRTM) (CGIAR - CSI 2008). This 

dataset corrected for data gaps and its quality is, especially for mountainous regions of 

Ecuador, higher than the one arc-second (30 m) resolution product. We derived 

elevation, slope, aspect, roughness, the topographic position index (TPI), and the terrain 

ruggedness index (TRI) (Wilson et al. 2007) to evaluate their contribution to classification 

performance.  

3.3.2 Standardized Biennial Compositing 

For compositing, we discarded Landsat bands 1 and 2 as they are known to be more 

sensitive to atmospheric effects (Zhang et al. 1999), while Landsat bands 3, 4, 5 and 7 

and the calculated derivatives described in Table 7 were grouped in biennials according 

to the acquisition date of the image used in their calculation. The biannual time step was 

chosen as it resulted in 5 ± 2 images being available for most composite cases. This 

arrangement resulted in a no-data percentage average of 34 ± 13% (Figure 23). 
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              (a)                   (b) 

Figure 23. (a) Number of images used for compositing and no-data percentage in resulting composites 

and (b) Tasseled Cap Wetness (TCW) mean value of composites with (Matched) and without histogram 

matching (Raw). Gray areas in the plots refer to the 1992–1996 data gap and dashed lines to effective 

23-year time-series. 

All biannual input pixels were z-transformed for the compositing: 

Ζ�� = ��� −	�� ��⁄                               (1) 

with ��� being the pixel vector at position i and for date j, and � and � being the pixel’s 

mean and standard deviation at date �. We then calculated the median Ζ�� value for each 

vector Ζ� as this metric is known to be less affected by atmospheric contamination or 

phenological variation in image compositing (Potapov et al. 2012). Other metrics (e.g. 

quantiles, maximum, minimum, variance) that are regularly applied in similar studies 

(De Fries et al. 1998) were also tested. However, the scarce data situation required a 

conservative approach using the median. Finally, we normalized Ζ�� and stored it as the 

output value β for a given biennial composite according to: 

β =
�������	(���:�)

���	(���:�)�	���	(���:�)
                                                  (2) 

As residual radiometric offsets occurred in the overlap areas between 

footprints, we required a pixel-level radiometric alignment (Pflugmacher et al. 2012). 

We selected the 2002 composite from path-row 09-60 and 09-61 as reference 

composites, as they had few no-data values and a low atmospheric aerosol load. Values 

in the overlapping footprints (10-60 and 10-61) were aligned based on histogram 
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matching across the overlap areas to neighboring footprints. The same procedure was 

then applied across the time-series within each footprint. In total, 52 biennial 

composites were aligned with references footprints, reducing for example the variance 

of the Tasseled Cap Brightness (TCB) from 0.1 to 0.01 after histogram matching (Figure 

23b). 

3.3.3 Model Training 

We defined four classes to map permanent forest cover and deforested/reforested 

areas. Permanent forests included on the one hand, evergreen forests, (encompassing 

montane, foothill, lowland, and flooded forests) and on the other hand, Guadua spp. 

forests with their spectrally distinct patterns due their different species composition, 

canopy height, and overall lower biomass (Silman et al. 2003). Other non-forest 

vegetation above 3300 m.a.s.l. such as grasslands or shrubs, were not considered in this 

research. Conversely, change classes included human land use for agricultural 

production, i.e. pastures and croplands (including early revegetation, commercial, and 

subsistence plantations); and non-vegetated areas, i.e. bare soils and urban areas. We 

gained initial knowledge of the approximate class distribution by running a first and non-

validated image classification with a few training samples, which built the basis for 

distributing the training samples for training in a guided fashion (Table 8): 

Table 8. Classes considered and training sample size. 

Type Classes 
Approximate 

Area [km2] 

Samples  

[no.] 1 

Example 

photograph 

Permanent 

classes 

Evergreen 

forest 
8053 307 

 

 

Guadua spp. 

forest 
181 122 

 

 

Change 

classes 

Pastures / 

croplands 
2047 279 
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Bare soil / 

urban areas 
653 221 

 

 

1 A class-wise standard deviation of 0.9 and a confidence interval of 0.9 were considered to 

obtain a reasonable class-wise sample size.  

We then interpreted the almost 1000 training samples on-screen based on a 

mosaicked, biennial color composite from 2002 and on a recent vegetation map (MAE 

2017). Since the four classes represented a complex spectral feature space and their 

visual separation was challenging (Figure 24a), we tested different classifiers using the 

Caret package (Kuhn 2016). This software applies a parameter tuning of classifiers, and 

bootstraps training samples to determine their effect on performance and decide which 

model perform best. As most classifiers provided similar out-of-bag errors (Figure 24b), 

we decided to use a least squares support vector machine with polynomial kernel 

(svmPoly) (Karatzoglou et al. 2004), as it achieved the highest overall correlation (0.697) 

with the land-cover reference maps (MAE 2017). Other classifiers including Random 

Forest (rf, 0.684), Stochastic Gradient Boosting (gbm, 0.682) or Neural Networks 

(pcaNNet, 0.680) showed good correlations, but they were not higher than svmPoly. 

     

                                                  (a)                                                                                  (b) 

Figure 24. (a) The feature space of the training samples using the first and second principal components 

(PC1 and PC2) obtained from Landsat bands, derivatives, and terrain parameters. (b) Boxplots of 

classifiers out-of-bag error using training samples. 
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3.3.4 Post-classification change detection 

By classifying biennial composites, 13 land-cover maps were obtained for each footprint, 

covering the period 1989–2016. A 3 x 3 median filter was applied to eliminate spurious 

pixels within a land-cover map, but for data gaps, values were input calculating the per-

pixel time-series mode from all land-cover maps. While random noise and 

discontinuities were eliminated, artefacts from clouds and cloud shadow remnants, 

sensor noise, or simply misclassified pixels were still present in the data. We therefore 

further applied a temporal filter with transition rules (Clark et al. 2010) to identify 

illogical land-cover and land-cover change patterns, and reclassified errors according to 

a set of rules based on contextual knowledge. For example, it is impossible for bare soil 

to become an evergreen forest in one year and return to the bare soil class the next year 

again. Instead, this may represent either cropped land (bare soil or cropped land in one 

year) in the case of agricultural land, or it simply may be a misclassification. In any case, 

it will not represent land change associated with forest cover. We accordingly 

implemented a temporal filter based on a moving window of three consecutive 

observations and a set of allowed transition rules (Table 9).  

Since the first and the last land-cover maps could not be temporally filtered 

according to this scheme, we omitted those years (i.e. 1989–1991 and 2015–2016 

periods), thereby reducing our time-series to the period 1992–2014, i.e. 11 observations 

for each footprint. We then derived deforestation and reforestation dates from the 

series of land-cover maps. We flagged the first year of a forest pixel being mapped as 

one of the non-forest classes as the deforestation year. Reforestation, though, is a 

continuous process that can only be mapped from satellite data once a certain threshold 

Table 9. Transition rules. 

Observation year / Class 

year � + � 

Evergreen 

forest 

Guadua spp. 

forest 

Pastures / 

croplands 

Bare soil / 

urban areas 

 Evergreen forest Yes No No No 

years �  Guadua spp. forest No Yes No No 

and � + � Pastures/croplands No No Yes Yes 

 Bare soil/urban areas No No Yes Yes 
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of “forestedness” has transgressed, i.e. a previously non-forested pixel spectrally 

resembles a forest class for a minimum period of time (defined in this paper in five years 

as described in section 3.2). 

Finally, the outputs of the post-classification change detection were mosaicked 

and the UNW area extracted, considering the treeline (3300 m.a.s.l.) to exclude non-

forested areas. As our aim was to evaluate different algorithms for multi-date forest 

change classification, we iterated all these steps for each pre-processing approach (i.e. 

surface reflectance or topographic correction) and omitted/applied temporal filtering to 

evaluate their individual contribution to the overall accuracies of these maps. 

3.3.5 Accuracy Assessment 

We calculated confusion error matrices for deforestation and reforestation maps 

(Olofsson et al. 2014; Thomas et al. 2011; Cohen et al. 2017). We employed a stratified 

random sampling based on the deforestation and reforestation classes, arranging 

samples of 5-3 pixels in a cross shape (Figure 25a). We sampled a minimum of 50 

samples per class, and 100 for the larger classes of stable forest and stable non-forest. 

Since reforestation stable classes could be affected during post-classification change 

detection due to its assigned regrowth-time threshold, we sampled these classes 

independently to ensure their performance. Finally, as spatial autocorrelation can bias 

the accuracy assessment (Congalton 1991), a minimum threshold distance between 

samples of the same class was applied (Table 10). 

Table 10. Classes, minimum distances, and sample sizes. 

Map Class name 
Distance threshold 

[m] 

Sample size 

[pixel] 

Deforestation map 

Stable-forest 2500 100 

Stable-non forest 2500 100 

Deforestation year 2500 50/year 

Reforestation map 

Stable-forest 2500 100 

Stable-non forest 2000 100 

Reforestation year 1500–2000 50/year 
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Figure 25. Example of a forest-loss sample (3 pixels). (a) Location of the sample in the map. (b) High-

resolution image chips from ASTER (2001–2008 and 2012), and aerial color photography (2010). (c) 

Landsat color composites image chips (1992–2014, with a data gap in 1996), and (d) overview showing 

sample area and analysis period. 

Each sample was interpreted on-screen based on high-resolution imagery 

(Figure 25b) and Landsat color composites (Figure 25c and Figure 25d). We calculated 

the overall accuracy, the kappa index, and class-wise commission and omission errors. 

3.4 Results 

3.4.1 Variable Importance and svmPoly Optimization Report 

We decomposed the svmPoly model to observe which variables contributed to the 

respective results. Figure 26a reveals that Landsat bands 4–7 and Tasseled Cap 

brightness, wetness, and greenness yielded an importance above 90% in all classes. 

Conversely, vegetation indices and band ratios as well as terrain parameters were 

overall less significant, but contributed to separating pastures/croplands from the 

Guadua spp. forests. These overlapped spectrally, but separability improved when 

integrating terrain derivatives in the classification process. Regarding optimization, the 

Caret software explored three parameters of the svmPoly classifier (degree, scale, and 

cost) to maximize its classification accuracy (Figure 26b). Its final calibration yielded 274 

support vectors with a cost of constraints (C) of one and the hyperparameter values 

were set to a degree of three, scale of 0.001, and a default offset of one. 
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                                                              (a)                                                                                   (b)  

Figure 26. (a) Variable importance by class during classification with svmPoly. (b) Optimization of the 

svmPoly classifier during the model-training phase. 

3.4.2 Accuracy Metrics Results 

Deforestation and reforestation maps based on different filtering techniques varied 

substantially (Table 11). Overall accuracies were significantly better when applying 

surface reflectance and temporal filtering to land cover classifications, achieving 82 ± 

3% and 71 ± 3% (calculated with a 95% confidence interval) for deforestation and 

reforestation maps, respectively. Topographic correction led to poorer overall 

accuracies by 13 ± 2% in both maps when compared to the best result. Temporal filtering 

improved accuracies substantially by 21 ± 1% for both deforestation and reforestation 

maps. Commission and omission errors for stable and change classes are shown for the 

Table 11. Overall accuracy of deforestation and reforestation maps by processing approaches. 

Map 
Accuracy 

metrics 

Processing approaches 

Surface 

reflectance– 

not filtered [%] 

Topographic 

correction– 

filtered [%] 

Surface 

reflectance– 

filtered [%] 

Deforestation  
Overall 62 70 82 

Kappa 58 65 80 

Reforestation  
Overall 48 56 71 

Kappa 39 47 67 
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Table 12. Commission and omission errors for the surface reflectance – filtered approach. 

Class name 

Deforestation Reforestation 

Commission 

[%] 

Omission 

[%] 

Commission 

[%] 

Omission 

[%] 

Stable-forest 1 8 5 7 

Stable-non forest 11 1 7 5 

C
h

an
ge

 y
ea

r 

 

1992-1996 14 4 44 7 

1996-1998 20 13 44 3 

1998-2000 20 17 34 20 

2000-2002 16 2 42 19 

2002-2004 30 5 28 22 

2004-2006 26 3 28 10 

2006-2008 28 5 44 12 

2008-2010 20 0 36 9 

2010-2012 24 5 46 10 

2012-2014 24 0 - - 

Overall mean 19.5 5.25 32.54 11.27 

 

filtered product (Table 12). The overall commission and omission errors were lower for 

the deforestation map (mean of 19% and 5%, respectively) than for the reforestation 

map (mean 32% and 11%, respectively). Moreover, stable classes were less prone to 

commission and omission errors (mean 1 – 11%) compared to change classes (mean 0 – 

46%). 

3.4.3 Deforestation and reforestation maps 

Maps of deforestation and reforestation years are shown in Figure 27a and Figure 28a. 

In general, the patterns follow the description of Wasserstrom and Southgate (2013) for 

the Ecuadorian Amazon during its oil-related colonization (1964-1994). For instance, 

deforested areas along the E45 highway (built in 1975) and the banks of the Napo River 

relate to settlements that already existed before the period we analyzed. The age of the 

deforestation patches along the E20 highway (built in 1983) decreased with increasing 

distance from the highway (Figure 27b-1). In the mountainous areas, the detection of 

landslide scars (Figure 27b-2) was accurate, and topographic shadows did not apparently 

inhibit the change detection. However, false-positive errors were observed in areas with  
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                                        (a)                                                                             (b) 

Figure 27. (a) Deforestation year map for the UNW. (b) Magnified areas show: (1) Linear deforestation 

along the E45 highway; (2) landslide scars; and (3) false-positive errors in the mixed forest and pasture 

areas. 

 

                                         (a)                                                                          (b) 

Figure 28. (a) Reforestation year map for the UNW. (b) Magnified areas show: (1) Jatun-Sacha Biological 

Reserve, which is known for reforestation since the 1990s; (2) forest succession after landslides; and (3) 

false-positive errors in a stable-forest area. 

many mixed pixels where mostly evergreen forests and pasture/cropland occurred 

(Figure 27b-3), but also in areas with no-data values due to the occurrence of sparse 

observations, or an inaccurate water mask. 
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Areas of reforestation seemed to be more prominent along the E45 highway, 

where deforestation was less intense. Known areas of reforestation since the 1990s 

were well represented (Figure 28b-1), as was forest succession after landslides in 

mountainous areas (Figure 28b-2). Overall, the reforestation year map was more 

affected by mixed pixel problems and mask errors than the map of deforestation year 

(Figure 28b-3). 

Following Rudel et al. (2002), we calculated overall deforestation and 

reforestation by applying a buffer distance of 3 km along the two main highways E45 

and E20 in the UNW to corroborate our observations. Accumulated deforestation along 

highway E45 summed up to an area of 3320 ha, and 11,403 ha along highway E20. In 

contrast, reforestation along highway E45 accumulated to 7458 ha, and 5415 ha along 

highway E20. 

3.4.4 Comparison with other sources  

We compared our implementation with two different sources: Forest Loss Year (FLY) 

according to Hansen et al. (2013) and 2) Ecuador´s Forest Reference (EFR) Emission Level 

information (MAE 2017). Both sources were cropped with the UNW and re-labeled to 

match our classes (Figure 29). Results are similar across the three classifications. 

However, differences specifically exist with FLY for specific time periods such as 2000 – 

2002 and 2010 – 2012 (Figure 29a), or EFR reforestation between 2008 – 2014 (Figure 

29b). On average, deforestation was 2,757 ha year-1 for the period from 2000 to 2014,  

 

                                    (a)                          (b)                                                        (c) 

Figure 29. (a) GFC2015 and Multi-date deforestation areas by biennials for the period 2000 – 2014. (b) 

MLUX and Multi-date deforestation and reforestation areas for the periods 2000 – 2008 and 2008 – 

2014, together with their (c) stable classes areas. 
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in FLY data and 4,394 ha year-1 in EFR. Our estimates are comparably conservative with 

2,319 ha year-1. According to FAO (Puyravaud 2003), these values represented annual 

deforestation rates of -0.35%, -0.57% and -0.31% respectively.  

Furthermore, reforestation summed up to 574 ha year-1 for the 2000-2014 

period in FLY, indicated 2277 ha year-1 in EFR and 1504 ha year-1 in our analysis, 

representing annual reforestation rates of 0.07%, 0.28% and 0.19%, respectively in EFR, 

796,982 ha stayed unchanged, while our analysis yielded 748,688 ha of stable forests 

(Figure 29c). 

3.5 Discussion 

3.5.1 Biennial Image Compositing and Pre-Processing Effects on Results 

Our image compositing technique was based on the standardization and median 

calculation, which is an effective strategy to maximize information extraction when the 

number of observations is limited. We chose a biennial classification scheme (Griffiths 

et al., in review). We thereby improved the signal-to-noise-ratio, as one-year composites 

may be inferior in data-scarce conditions (Potapov et al. 2011). Composites from longer 

time periods, though, may not be adequate to monitor subtle processes such as 

reforestation (Bustamante et al. 2016). 

The histogram matching algorithm that we used for radiometrically aligning 

the composites enabled a regional-scale classification, and at the same time created 

consistency across the time-series. This was supported by the high consistency between 

the land-cover classifications from different years and the results after applying our 

post-classification change detection algorithm. However, cloud-free composites as 

references and sufficient spatial overlap between the target and reference footprints 

are mandatory for the proper functioning of the histogram matching (Benjamin & 

Leutner 2017). 

We also accommodated for correcting the radiometric distortions due to 

topography. In our case, the c-correction algorithm principally improved the 

homogeneity of the imagery across sunlit and shaded slopes. However, commission 

errors increased after applying the topography correction. This is in line with the findings 

of Chance et al. (2016), who reported negative effects of a topographic correction on 
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change detection analysis. Others found that the application of topography correction 

generally had a smaller influence on the overall accuracy of a classification when 

compared to the selection of a classifier (Vanonckelen et al. 2015). Future work should 

further improve the results from topographic correction by employing the best digital 

elevation models available (Pimple et al. 2017; Chance et al. 2016). 

3.5.2 Post-Classification Change Detection Performance  

Our post-classification change detection strategy was based on land-cover maps (MAE 

2017) as reference to validate model training and classifier outputs. This allowed the 

selection of the most precise classifier based on the correlation between the 

classification and the land cover maps. While the limited size of our sampling set may 

not be representative for some classifiers (Zhu et al. 2016), support vector machines 

(SVMs) apparently performed well, as SVMs support small training samples (Wieland et 

al. 2016).  

The original Landsat bands and derived Tasseled Cap components had a 

considerable predictive power (Figure 26). This was specifically true for bands 3–7, 

which are known to be important predictor variables in forest/non-forest classifications 

in the tropics (Potapov et al. 2012), but also in dry regions of the world (Mellor et al. 

2013). Spectral mixtures and spectral similarity of land cover types (see Figure 24a) limit 

the separability at 30-m Landsat spatial resolution. In this regard, elevation and terrain 

derivatives from the digital elevation model (slope, aspect) contributed to class 

separation, despite their predictive power not being as high as that of the Landsat bands 

or Tasseled Cap components.  

While some gaps related to cloud and cloud shadow remnants remained after 

the classification, we were able to demonstrate that temporal filtering is a powerful 

technique for removing these artefacts and considerably improving the results 

(comparison in Table 11). The set of transition rules allowed us to filter most of the 

illogical class transitions; however, some highly dynamic events were still missed due to 

the data-scarce setting and accordingly introduced omission errors.  
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3.5.3 Multi-Sensor Fusion Benefits and Landsat Archive Limitations 

As long-term forest dynamics analyzes require historical satellite archives to observe 

land-surface changes retrospectively, multi-sensor fusion is an inevitable approach. In 

this respect, the Landsat archive and its surface reflectance products was demonstrated 

to be a valuable (and actually the only medium to high spatial resolution) source 

covering our observation period of interest. The Landsat sensor family effectively 

integrates multiple sensors and thereby provides the best possible data coverage over 

time, even in regions of high cloud cover. Two limitations, however, affected our results. 

First, the global data gap between 1991 and 1996 limited the quality of our findings for 

the mid-1990s, despite the time period not exceeding the forest-regrowth time 

threshold of five years that we defined for this study. It may specifically have affected 

the detection of relatively fast deforestation events (e.g. infrastructure construction, 

blown-downs, landslides). The second drawback was the lower geometric quality of 

single images in the Landsat archive, which were not always possible to identify from 

the metadata on image quality alone. These errors are related to the limitation of 

ground control-based geometric adjustments in cloud-prone areas. It will be easier to 

avoid ingesting critical imagery in the processing chain in the future as the new Landsat 

collection handles data quality more rigorously (Micijevic et al. 2017; Roy et al. 2014). 

3.5.4 Long-Term Forest Dynamics in the UNW and Feasibility of Multi-Date Classification 

in the Andean Amazon 

Despite the remaining limitations of our multi-date classification implementation, the 

spatially explicit forest dynamics patterns in the UNW allow novel insights beyond what 

was already known from previous satellite data analyzes relying on only two or just a 

few points in time (Sierra 2000), or only on spectral information (Stephen J. Walsh et al. 

2008) ideally in the Tropical Andes. Dynamics along the E45 highway after 1992 mostly 

related to reforestation on peripheral lands, while deforestation rates were comparably 

low in that region (Figure 30a). This may be explained by the population census, where 

the population in the urban centers of Tena and Archidona increased by 233% between 

1990–2010 (INEC 2010), suggesting a rearrangement in the population distribution 

between the rural and the urban areas. This assumption is supported by similar findings 

by Rudel et al. (2002) in the southern Ecuadorian Amazon. In contrast, deforestation was  
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                                                 (a)                                                                                        (b) 

Figure 30. Deforestation / reforestation area for the period 1992-2014 (a) along the highway E45 and (b) 

along the highway E20. 

principally identified along the E20 highway. Since this highway was constructed more 

recently, new settlements and commercial activities linked to oil extraction have 

triggered deforestation (Wasserstrom & Southgate 2013) (Figure 30b). 

A comparison with other sources revealed further details. For instance, 

deforestation was seen to be more similar to FLY than to EFR, most likely because the 

FLY dataset is also based on a multi-date classification, while the EFR is based on an 

object-based classification that generalized deforestation patches. In the case of 

reforestation, all results differed markedly. Different conceptualizations of reforestation  

(Hansen et al. 2013; MAE 2017) and confusion with secondary forests are likely to be 

the main reasons. According to Cohen et al. (2017), it is not surprising that forest 

disturbance maps differ due to semantic and methods differences. Different accuracies 

and results accordingly relate to multiple factors such as differences in the change 

detection algorithm, in the quality of specific satellite imagery used, metrics and training 

information, the time-series density, or the thresholds applied to identify change.  

Overall, our multi-date classification implementation was demonstrated to be 

far less sensitive to data scarcity and atmospheric contamination than other approaches 

using automated time-series analysis algorithms (Santos et al. 2017).  
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3.6 Conclusions and outlook 

Forest dynamics in the complex and vulnerable regions of the Tropical Andes are still 

under-researched considering remote sensing data analyzes (Oliveras et al. 2014; Da 

Ponte et al. 2015). To the best of our knowledge, this was the first study of its kind that 

specifically focused on the challenges related to scarce data and the poor signal-to-

noise-ratio in a long time-series for automated forest change analyzes in the Tropical 

Andes. We demonstrated that an adapted implementation of multi-date classification 

based on image compositing, multi-sensor fusion, and post-classification change 

detection could mitigate most of these limitations. Our findings add to the expanding 

body of literature on such approaches with a focus on data-scarce situations and 

highlight the importance of the Landsat archive for monitoring decadal land-cover 

change even in cloudy regions of the world. 

Future research should focus on diversifying data sources and predictors, as 

our findings provide further evidence that classification results, specifically when using 

machine learners, will improve in data-rich environments. Moreover, the increasing 

web-based availability of high- and very high-resolution data will in the future allow 

further improving sample quantity and quality, while semi-automatic approaches 

(Huang et al. 2015) and temporal-spectral profiles sampling (Senf et al. 2015) are also 

promising alternatives. Furthermore, since our methodology requires a reforestation 

time threshold, it would be beneficial considering specific thresholds for different forest 

communities. This should ideally be based on forest growth models such as FORMIND 

(Paulick et al. 2017) that support specifying distributions for reforestation time 

thresholds. Additionally, improvements may well be possible with further refined 

transitioning rules in post-classification filtering or automated solutions with more 

complex transition rules with an increasing number of land cover classes (Abercrombie 

& Friedl 2016; Ahlqvist 2008). 

As other areas may experience similar or even more severe data scarcity than 

the UNW, image compositing might be limited to lower observation frequencies. In this 

regard, regions such as north-central Africa and northern Russia, which have the 

sparsest Landsat coverage compared to Ecuador (Wulder et al. 2016) may constrain 
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multi-date classification usability to frequencies greater than biennials. Such limitations 

may for example constrain its usability in the frame of Reducing Emissions from 

Deforestation and Forest Degradation (REDD+), which requires biennial updates reports 

for forest reference level information specially in developing countries (UN-REDD 

Programme 2015). Finally, implementing such a multi-date classification for larger study 

areas requires cloud-based or high-performance computing (HPC) environments, as the 

processing is demanding and it is more effective to “bring the algorithm to the data” 

than to download massive datasets. Currently, some alternatives are available (e.g. 

EODC, 2018; Gorelick et al., 2017; Open Foris, 2015), which allow implementing similar 

methodologies for large areas. Cloud-based or HPC environments also provide novel 

opportunities to develop monitoring systems based on sensor constellations, such as 

Landsat and Sentinel-2 (Wulder et al. 2015).  

As optical remote sensing of the core tropics regularly suffers from high cloud 

cover, integrating newly available imagery will increase change map reliabilities. Linking 

the vast Landsat archive with the quickly expanding Sentinel-2 archive is therefore one 

of the cornerstones for future improvements (Drusch et al. 2012; Wulder et al. 2016). 

Such a strategy will also allow extending the applicability of our approach to larger 

regions such as the entire Tropical Andes, and to ecosystems with more diverse land 

cover. 
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4 ANALYZING UNDERLYING CAUSES OF DEFORESTATION AND REFORESTATION 

IN THE CENTRAL ECUADORIAN AMAZON: A GEOGRAPHICALLY WEIGHTED 

RIDGE REGRESSION APPROACH 

 

Fabián Santos and Valerie Graw 

 

“Sadly, it´s much easier to create a desert than a forest” 

James Lovelock 

4.1 Introduction 

The Tropical Andes is a mountainous region at the base of the Andes ridge. Due to its 

altitudinal gradient it is characterized by 23 ecoregions and 8 bioregions (Olson et al. 

2001) providing important economic and ecological services to almost 40 million people 

(Armenteras et al. 2011). Recognized as an endangered biodiversity hotspot with a high 

conservation priority (Brooks et al. 2006; Myers et al. 2000), population growth and 

agriculture expansion (Cincotta et al. 2000; Armenteras et al. 2017) are the major driving 

forces of deforestation contributing to potential impacts of climate change (Buytaert et 

al. 2011). On the other hand, large-scale reforestation has been detected in some areas 

of Latin America (Grau & Aide 2008), especially along old colonization fronts (Rudel et 

al. 2002). However, these areas are less studied or understood, and their role in forest 

recovery and restoration of important environmental services is ignored (Nagendra 

2007; Rudel et al. 2005). Therefore, the analysis of forest dynamics drivers (FDD) in the 

Tropical Andes is of prime importance for conservation, climate change adaptation and 

sustainability. This knowledge is decisive for countries like Ecuador, where most of the 

remaining native forests are located in the Tropical Andes and the deforestation rate 

has been the highest in South America for some years (Mosandl et al. 2008; FAO 2007).  

Forest dynamics are shaped by complex societal and ecological interactions 

known as “causes”, “drivers” or “determinants”. Geist and Lambin (2002) proposed a 

conceptual framework to facilitate their understanding, classifying them into:  

1) proximate causes (local level, direct agents);  

2) underlying causes (different levels, socio-economic processes); and  
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3) other causes (determined by environmental factors and social trigger 

events).  

Commonly adopted by countries participating in the Reducing Emissions from 

Deforestation and Forest Degradation (REDD+), recent research recognized that 

underlying causes are less frequently analyzed in Latin America  (Armenteras et al. 2017; 

Salvini et al. 2014). Proximate causes are more easily identified through remote-sensing-

based techniques (Da Ponte et al. 2015), while underlying causes could be more complex 

and rely on socio-economic data. This data is frequently not available or reliable at the 

scale needed (Grainger 2008). Moreover, impacts of globalization (Meyfroidt et al. 2013) 

and economic development (Mertens et al. 2000; Rudel et al. 2005) generate more 

complex scenarios that challenge their understanding.  

In Ecuador, previous studies combined remote-sensing products and socio-

economic data to identify the influencing FDD. For instance, Southgate et al. (1991) 

analyzed thematic cartography and census data in a regression analysis identifying 

agricultural rents, spontaneous settlements, and land tenure insecurity as deforestation 

drivers in eastern Ecuador. Following a similar approach but adding survey data, Rudel 

et al. (2002) discussed reforestation drivers observed among ethnic groups and their 

relationships between land-use practices, cultural background and distance to roads in 

southern Ecuador. More recently, Mena et al. (2006) used thematic cartography, census 

and survey data in a spatial regression model to conclude road accessibility and 

population density as the most important deforestation drivers in northern Ecuador. 

Similarly, Walsh et al. (2008) identified here that reforestation drivers were motivated 

by land security and distance to roads. From these studies, it can be observed that 

deforestation is commonly not studied together with reforestation. However, results 

suggest contrasting driving forces such as population increase vs. decrease, closeness to 

vs. remoteness from roads, better vs. worse land security, etc. Therefore, their 

integration and evaluation with regard to possible linkages defines a pending research 

gap which will be addressed in this study. 

Integration, analysis and visualization of multi-source data is an important 

challenge in FDD analysis. Due to data aggregation, it is a required procedure to analyze 



79 

 

areal-based data (such as census), where statistical bias can be introduced with 

significant impacts on the results. This is known as the modifiable areal unit problem 

and frequently has been a reason to criticize statistical hypothesis testing when spatial 

data is used (Holt et al. 1996). Moreover, boundary changes in areal units across time 

introduce additional inconsistencies that complicate analysis even more (Mennis 2003). 

Nevertheless, different approaches have been proposed to overcome these issues 

(Krivoruchko et al. 2011; Tobler 1979; Stevens et al. 2015; Semenov-Tian-Shansky 1923). 

However, dasymetric mapping is probably the most popular (Semenov-Tian-Shansky 

1923; Petrov 2012). Furthermore, previous studies on FDD used linear regression 

models to generalize relationships between forest change and driving forces. These 

studies failed to capture the variability of these relationships over space (Deilami et al. 

2016). Therefore, an approach for extending the traditional regression framework and 

considering spatial information is most desirable for FDD analysis. In this regard, 

approaches such as geographically weighted ridge regression (GWRR) (Fotheringham et 

al. 1998; Wheeler 2007) have demonstrated satisfying this objective (Pineda Jaimes et 

al. 2010; Clement et al. 2009; Mas et al. 2013). 

As the Tropical Andes constitutes a complex mosaic of landscapes, a workflow 

to analyze FDD is presented in this paper. Applying the abovementioned procedures, we 

conducted an analysis in the Central Ecuadorian Amazon (CEA), which is characterized 

by different colonization fronts with different socio-economic and biophysical settings. 

Our main objective is the exploration of a set of variable groups related to population 

growth and agricultural expansion to observe how they react with deforestation and 

reforestation rates during 2000-2010. Two research questions guided our analysis: 

 Can dasymetric mapping and GWRR improve our understanding of the 

underlying causes of deforestation and reforestation? 

 How do population growth/loss and agriculture expansion/reduction affect 

deforestation and reforestation in the CEA? 

To answer these questions, we (i) explain how we calculated forest change 

rates, (ii) conducted dasymetric mapping for inter-census data processing, and (iii) 

further briefly describe the variable groups before we (iv) explain our implementation 
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of GWRR. The discussion of the results will consider the benefits and limitations of the 

proposed approach and its contribution to the current knowledge of FDD in the CEA. 

4.2 Study area 

The CEA covers 21857 km2 over an altitudinal gradient from 200 to 2800 m.a.s.l on the 

western slopes of the Andean Range (Figure 31a). It includes 16 cantons, i.e. second-

level administrative units in Ecuador, which are used in this research for identifying 

specific zones in the CEA (Figure 31b). According to Olson et al. (2001), two ecoregions 

exist in the CEA, i.e. the Napo moist forests and Eastern Cordillera real montane forest. 

The latter has one of the highest conservation priorities in Ecuador as it covers less than 

33% of its original area (Sierra et al. 2002). Moreover, the CEA is characterized by an 

extraordinary biodiversity, intense annual precipitation (1500-4500 mm), and a 

multitude of ecosystems (MAE 2013). Most of the soils are ferralitic with low fertility 

and high aluminium toxicity, although volcanic and alluvial soils can be an exception 

(Huttel et al. 1999; Eberhart 1998). Under these conditions, the agriculture limitations 

are well known; however, this does not prevent the native people from co-evolving with 

their natural environment (Coq-Huelva et al. 2017). Dramatic changes began in the 

1970´s with the exploration and extraction of oil generating accelerated economic 

growth and industrialization (Pierre et al. 1988). Extensive road construction and the 

Agrarian and Colonization Reform of 1964 stimulated in-migration and rapid settlement 

over the whole Ecuadorian Amazon. According to Brown et al. (1994), the population 

grew by 432% by the end of 1990 resulting in an urban system that followed petroleum 

discovery and the related economic opportunities. This led to a disorganized and 

arbitrary colonization where land conflicts between the colonos (mestizos colonists) and 

native people were common. According to Perrault (2001), colonization of lands 

considered uninhabited by the reform but used ancestrally by the native people 

replaced traditional land-use practices with extensive agriculture and cattle ranching to 

secure land tenure.  
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(a) 

                       

                                                     (b)                                                                      (c) 

Figure 31. (a) Study area in the Amazon basin. (b) Cantons. (c) Land cover for 2008. Data from MAE, 

2013.  

Forest clearing in the Ecuadorian Amazon thus peaked during 1970 - 1990 when the 

deforestation rate was one of the highest in South America (Mosandl et al. 2008). In the 

CEA, the forest areas reduced to 80.4%, i.e. 4130 km2, by the end of 2014, principally 

due to pasture expansion for cattle ranching (MAE 2017) (Figure 31c). However, this was 

less intense than in the northeast of the CEA where oil fields were located (Sierra 2000).  

The declaration of protected areas, which accounted for 29% of the area and few oil 

discoveries (Wasserstrom & Southgate 2013) probably contributed to a reduced interest 

in colonization and to deforestation. Nevertheless, improved road connections between 

Quito and Nueva Loja and recent oil discoveries motivated further colonization of 
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remote areas (Barrera 2014). Despite this, reports indicate a drop in deforestation rates 

from 92,800 to 74,000 ha year-1 (FAO 2015) in Ecuador since 1990.  

Later, financial instability led to a crisis that ended with the dollarization of the 

Ecuadorian economy in September of 2000.  A reduction in the inflation rate from 96 to 

7% was seen as an important sign of economic stabilization for the period 2000-2014 

(Anderson 2016). However, Ecuador experienced an unprecedented wave of 

emigration, especially between 2000 and 2007 (around 483.000 migrants) (Bertoli et al. 

2011). Nevertheless, the effects of migration and remittances through land-use change 

have been associated with a positive effect on agriculture rather than land 

abandonment and forest transition in the Andean region of Ecuador (Gray & Bilsborrow 

2014). 

4.3 Materials and Methods  

This research was implemented in the R language (R Development Core Team 2017) 

using specific libraries for spatial data analysis (Pebesma et al. 2017; Hijmans et al. 2017), 

GWRR (Gollini et al. 2013; Bivand et al. 2017), database management (Dowle et al. 

2017), parallel processing (Revolution Analytics & Weston 2015), and data visualization 

(Wickham & Chang 2016). For GIS analysis, we used ArcGis 10.3 software (ESRI 2010). 

4.3.1 Deforestation and reforestation maps 

We used maps from previous research that analyzed land-cover change in the CEA for 

the period 1990 - 2014. They were generated from a novel approach for monitoring 

long-term forest dynamics with scarce data (Santos et al. 2018), reporting overall 

accuracies around 78 ± 7%. Specifically, this method applies a post-classification change 

detection algorithm to a set of 13 biennial land-cover maps to derive deforestation and 

reforestation areas. In the case of deforestation, the algorithm looks for the date of 

conversion from forest to a human land use (i.e. pastures, croplands, infrastructures) 

while excluding areas identified as non-forest at the beginning of the time-series. 

Conversely, to identify reforestation, the algorithm looks for the date of conversion from 

human land use to forest considering that the area should be classified as forest for at 

least two consecutive observations (i.e. four years) before the time-series ends. From 

these maps, we derived the annual rate of deforestation and reforestation according to 
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the FAO (Puyravaud 2003). We used an analysis grid with a cell size of 400 ha and 

extracted the forested area in 2000 and its change until 2010 to determine the rate. This 

time frame was selected in order to match the census databases described later. The 

cell size for the grid was selected to achieve an acceptable processing time during 

subsequent calculations. Moreover, it was able to represent our data and implement 

our analysis. These deforestation and reforestation rates constituted the set of 

dependent variables analyzed in this research (Figure 32a and Figure 32b). A boxplot of 

cell rates (Figure 32c) illustrates the average deforestation and reforestation rates for 

each canton in the CEA. 

 
                                                (a)                                                        (b)  

 
                                                                                                (c) 

Figure 32. (a) Cells of deforestation and (b) reforestation rates for 2000 - 2010 in the CEA. Deforestation 

rates sign were inverted to establish a common scale in the maps. (c) Boxplots of annual rates for each 

canton in the CEA with mean deforestation (values with negative sign at the left side) and reforestation 

(value with positive sign at the right side) rates. 
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Following Kennedy et al. (2015), we removed cells from the analysis grid where 

the deforestation or reforestation areas were less than 1 ha, and also cells associated to 

events not relevant to this study, e.g. landslides, local wind throw, floods (Table 13). 

Table 13. Descriptive statistics for deforestation and reforestation cells 

Forest change 

dynamics 

Total 

area 

[ha] 

Prefix Variable 

Cells statistics 

Min. Mean Max. SD2 
Total 

count 

Deforestation 

2000-20101 
29,341.7 D1 

Annual 

deforestation 

rate3 

-100 -1.02 -0.02 2.7 2264 

Reforestation 

2000-2010 
28,253.1 R1 

Annual 

reforestation 

rate3 

0,02 1.18 100 2.9 2375 

1 To avoid negative values and facilitate the reading of GWRR maps, absolute deforestation rates 

were considered.  2 SD = Standard deviation. 3 Together, these variables are referred as annual forest 

change rate. 

4.3.2 Dasymetric mapping and population allocation algorithm 

We used the 2001 and 2010 population censuses produced by the National Institute of 

Statistics and Census of Ecuador (INEC 2010) and processed them with a population 

allocation algorithm. These censuses are organized according to the administrative 

divisions of Ecuador, and focus on the demographic aspects of the surveyed households. 

For our analysis, we extracted the most detailed level of information, i.e. census blocks 

for reducing bias effects caused by the modifiable areal unit problem (Holt et al. 1996). 

Moreover, since rural population better explains conversion from forest to agriculture 

land (Carr 2009), we only used census blocks from rural areas and data from the 

population of the working age (15-72 years). Following Mennis (2003), we derived 

surface representations of censuses by dasymetric mapping and areal weighting. This 

technique allows redistributing population counts from a set of areal units into a grid 

using land cover maps. Therefore, we first identified habitable areas by reclassifying the 

deforestation map into two non-forest masks, each one for each census year. As non-

habitable areas such as water bodies, rock surfaces and cliffs may introduce errors, we 

masked these areas before using non-forest masks. Consequently, we added a road  



85 

 

Table 14. Road accessibility time and weights assigned 

Travel time class 

[hours] 

Road accessibility 

[weight] 

0-0.08 1 

0.08-0.25 1/2 

0.25-0.5 1/3 

0.6-1 1/4 

1-3 1/5 

>3 1/6 

 

accessibility map (SIGTIERRAS 2015) to non-forest masks in order to better represent 

habitable areas according to travel costs and geographic barriers (Pan et al. 2007). To 

simplify calculations, we reclassified the road accessibility map into six travel time 

classes � = {1,… ,6} and assigned to each one a unique weight � = {1,… ,
�

�
} (Table 14). 

These road accessibility weights follow a logarithmic growth, as deforestation 

and population density has been demonstrated in previous studies (Laurance et al. 2009; 

Barber et al. 2014). We rasterized census blocks according to the analysis grid 

considering all its cells (5635 cells in total) for calculating the accessible habitable area 

�� for each � = {1,… , �} cell within the census block through: 

�� = ∑ ���
�
���                                                             (3) 

Then we applied the road accessibility weights �� to recalculate areas in �� by: 

�′� = 	�� ×��                                                           (4) 

Since the sum of �′� does not match the total area � in the census block, we transformed 

it to a percentage applying: 

�′� = 	 (��
� 	× 100 × ���)	(��)

��                                       (5) 

Hence, �′� is the weight as a percentage for each cell and travel time class in the census 

block. As its sum represents �, it was summed to derive a unique weight ��� for each 

cell. Finally, ���	was applied to the population � count in the census block to 

redistribute it through: 

�� = 		��� × � × 100��                                               (6) 
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                                               (a)                                                     (b)  

 

                                                                                               (c) 

Figure 33. (a) Total population for the census 2010 (age 15 - 72) and (b) after allocation. (c) Boxplot of 

allocated population and sum for each canton. 

In consequence, ��  represents the allocated population in a census block cell, 

whose sum is the total population count.  This algorithm was applied to each census 

year variable; an example is given in Figure 33. As during rasterization some census 

blocks with areas below 400 ha cell area in the analysis grid were omitted, we added the 

population to the overlapping census block cell before executing the algorithm. 

Moreover, incomplete census blocks (located at study area boundaries) were 

considered as complete units in the calculations to avoid erroneous allocations. The set 

of census variables processed with this algorithm are described in section 4.3.3. 

4.3.3 Socio-economic, accessibility, proximity and biophysical variables 

We derived 17 socio-economic variables from the processed censuses. Following the 

approach of Gray et al. (2008), they were selected according to cross-cultural aspects of 

the population in the Ecuadorian Amazon. Consequently, we classified them into 6 
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variable groups to describe household and families structure (Household), population 

age groups (Age), gender structures of households and total population sex (Gender), 

most frequently spoken languages in the CEA (Language), educational level by groups 

(Education), and work activities classified by economy sectors (Work). Since variables 

were from two different census years, we differentiated them to highlight areas of 

variable change in all cases. Furthermore, we collected an additional set of 11 variables 

following previous studies on the subject (Armenteras et al. 2017; Mena et al. 2006; 

Pineda Jaimes et al. 2010). These were classified into 3 additional variable groups 

describing travel time to collection centers and processing facilities to agricultural 

products (Accessibility), and Euclidean distance to oil infrastructures, mining sites and 

paved/dirt roads (Proximity). The latter variable group included biophysical features to 

describe specific landscape elements (Biophysical). Sources included different 

Ecuadorian government agencies and a digital elevation model. As these variables 

needed to be included in the analysis grid, we applied the average for each cell in the 

analysis grid. Moreover, as variables had different units and distributions, we 

standardized them before the GWRR was applied. This allowed us to compare outputs 

and discuss them as effect size according to standard deviations (SD) of the variables 

(see section 4.4.2 and 4.4.3). However, some variables were transformed from 

categorical to continuous, and recoded accordingly to the feature observed. A total 28 

variables were available (Table 15; Annex 1). 

Table 15. Descriptive statistics of variable groups obtained for deforestation cells 

Variable group Prefix Variable 
Cells statistics  

Source 
Min. Mean Max. SD 

Accessibility 

[hours] 

 

A1 

Accessibility to oil 

palm extraction 

facilities 1 

0-0.08 1-3 >3 - 

(SIGTIE

RRAS 

2015) 
A2 

Accessibility to 

coffee and cacao 

collection centers 1 

0-0.08 0.5-1 >3 - 

A3 
Accessibility to fruit 

collection centers 1 
0.08-0.25 1-3 >3 - 
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A4 

Accessibility to milk 

products collection 

centers 1 

0-0.08 1-3 >3 - 

Age 

[people] 

 

D1 
Younger population 

(age 15 - 25) 
-27 0.8 253 8 

(INEC 

2001; 

INEC 

2010) 

D2 

 

Adult population 

(age 26 - 45) 
-20 1.1 246 8 

D3 

Older adult 

population  

(age 45 - 72) 

-19 0.7 152 4 

Biophysical 

[m.a.s.l.] 2 

[unitless] 

[mm] 

B1 Altitude 251 623 3007 471 

(SNI 

2017) 
B2 

Soil fertility (>2% 

organic matter at 

max. value) 

0 3 4 - 

B3 Annual rainfall 1372 3576 5892 621 

Education 

[people] 

E1 
Basic education 

(1 - 6 years) 
-65 -0.4 53 3 

(INEC 

2001; 

INEC 

2010) 

E2 

Secondary 

education (7 - 12 

years) 

-29 2.1 439 14 

E3 

 

Higher education 

(>13 years) 
0 1.3 267 8 

Gender 

[people] 

 

G1 
Chief male 

household 
-9 0.8 156 5 

(INEC 

2001; 

INEC 

2010) 

G2 
Chief female 

household 
-18 0.2 56 2 

G3 Male population -33 1.4 319 11 

G4 Female population -34 1.3 333 11 

Household 

[people] 

H1 

Mothers with 1 - 2 

children (small 

families) 

-4 0.2 46 1 (INEC 

2001; 

INEC 

2010) H2 

Mothers with 3 - 5 

children (medium 

families) 

-8 0.4 98 3 
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H3 

Mothers with more 

than 5 children 

(large families) 

-61 -0.3 26 2 

Language 

[people] 

L1 Speak Spanish 3 -30 3.1 668 22 (INEC 

2001; 

INEC 

2010) 

L2 Speak Kichwa 4 -27 1.6 715 16 

L3 
Speak other  

languages 5 
-250 -0.5 43 6 

Proximity 

[meters] 

P1 
Distance to oil 

infrastructures 
198 8670 46804 6879 

(SNI 

2017) 
P2 

Distance to mining 

sites 
167 8084 59025 8507 

P3 
Distance to paved 

and dirt roads 
45 2072 28749 3031 

Work 

[people] 

W1 
Agriculture related 

workers 
-36 0.5 47 3 

(INEC 

2001; 

INEC 

2010) 

W2 
Industry related 

workers 
-17 0.1 72 2 

W3 
Services related 

workers 
-12 0.1 85 2 

1 Categorical variable ordered and recoded as continuous. 2 Meters above sea level. 3 Most spoken 

language by colonos in the CEA. 4 Second most spoken language and ethnicity in the CEA. 5 Includes 12 

different native languages except Kichwa.  

 

4.3.4 Geographically weighted ridge regression 

GWRR is a statistical method to model spatial relationships under the assumption of 

spatial non-stationarity and location interdependency. It can be conceived as an 

extension of ordinary regression analysis while incorporating local estimates and surface 

representations of relationships among dependent and independent variables. 

According to Brudson et al. (1996), GWRR incorporates additional parameters in the 

linear regression referring to the spatial location (��, ��) of a prediction point � in order 
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                                            (a)                                                                                                  (b) 

Figure 34. (a) Gaussian kernel function schema and (b) correlation plot for deforestation variables  

to model its spatial relationships through: 

�� = ��(��, ��) + ∑ ��	(��, ��) ∙ 	��� +	��
�
��� 			                         (7) 

where �� is the dependent variable, � is a vector of � = {1,… ,�} independent 

variables, �� is the estimated intercept, �� is a vector of regression coefficients, and � is 

the error term of the estimation.  As GWRR is spatially weighted, it applies a function to 

observations near to � in such way that closer ones influence more than those further 

away. Therefore, the weight function is defined by: 1) the type of distance between � 

and its neighbors, 2) a kernel function specifying the weighting scheme, and 3) the 

bandwidth distance to control the number of observations within the kernel. Following 

previous studies (Gao & Li 2011; Su et al. 2012), we used Euclidean distance to measure 

distances between � and its neighbors and a Gaussian kernel function (Figure 34a) as the 

weighting scheme, which is defined by: 

��� = exp �−
�

�
	�

���

�
�
�

�                                               (8) 

where ��� is the weight assigned to observation � for the estimation of �, ���  is the 

distance between � and �, and �	is the bandwidth. The latter is a sensible parameter in 

GWRR calibration as large values result in global regression estimates, while small ones 

introduce randomness (Cahill & Mulligan 2009). To define �, we tried different 

bandwidth sizes as automatic procedures (Bivand 2017) failed with our data. Therefore, 

local condition numbers (LCN) were used for validation considering that regression 

coefficients do not exceed a recommended threshold of 30 LCN (Brunsdon et al. 2012), 
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otherwise collinearity problems could be expected. In this regard, bandwidth size was 

defined as 15 km using around 172 observations within the kernel. This value 

represented around 7% of the total observations in the deforestation and reforestation 

datasets. Following Gollini et al. (2013), we applied ridge regression (Hoerl et al. 1975). 

This procedure can be perceived as an extended linear regression, which adds a penalty 

to regression estimates in order to reduce collinearity effects (Figure 34b). For this, it 

minimizes the equation: 

�� = min
�

∑ (�� −	���)
��

��� + 	� ∑ ��
��

���                                        (9) 

where ��  is the ridged regression estimate, � is the raw estimate, �� is the dependent 

variable, and ��� its predicted value. In other terms, the summation on the left 

corresponds to the residual sum of squares of the linear regression, while the 

summation on the right corresponds to the sum of square of coefficients multiplied by 

the penalty parameter �. The latter controls the size of regression estimates, decreasing 

the influence of correlated variables in the model (Wheeler 2007). For defining it, a 

cross-validation approach was applied. This is an iterative process that finds � according 

to the best prediction result for ���. Thus, we found that � worked in the range [1.5×10-

5, 0.07] with our data. Since ��  becomes biased after its penalization, standard errors, t-

values and associated p-values are no longer available. Therefore, to determine the 

relative importance of variables, we ran a different model for each variable group and 

extracted the predicted values to calculate accuracy metrics (i.e. r-square, root mean 

square error and Akaine information criterion). This allowed us to identify models that 

best predicted forest change rates and focused on their variables interpretation. To 

reduce uncertainty, observations that exceeded 30 LCN and predicted values with a 

cross-validation score outside the range [1, -1] SD were removed from the regression 

coefficients reports. Finally, to summarize them (28 in total), we followed the approach 

of de Freitas et al. (2013), and identified spatial regimes for deforestation and 

reforestation. Consequently, we clustered the regression coefficients, applying the k-

means algorithm (Steinhaus 1957) and 3 clusters for both rates after evaluating the 

optimal number through the approach of Charrad et al. (2014). 
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4.4 Results  

4.4.1 GWRR collinearity assessment, filtering and regression models 

We produced nine models, one for each variable group, to filter suspicious observations 

among them. In this regard, most models reached LCN < 30. However, the models for 

gender and biophysical models were more affected by collinearity in both deforestation 

and reforestation (Figure 35a). We filtered them together with other observations with 

extreme predictions (i.e. outside the cross-validation score range [1, -1] SD). Island and 

channel patterns showed high removal frequency (Figure 35b and Figure 35c). 

As the cantons CH, GZ and AJ were more prone to collinearity, regression 

coefficients reports were not used from these areas for most models (see also sections 

4.4.2 and 4.4.3). In this regard, gender and biophysical models were the most filtered 

models, as they maintained 69 ± 5% of their observations. However, collinearity and  

 
    (a) 

 
                                                   (b)                                                     (c)  

Figure 35. (a) LCN boxplot obtained for each GWRR model and variable group. The red dotted line 

indicates the 30 LCN threshold. Observation removal frequency from GWRR models in (b) deforestation 

and (c) reforestation cells 



93 

 

 

extreme predictions were less intense for the remaining models, which kept 89 ± 6% of 

their observations (Table 16). The R-square values showed that accessibility was the 

most accurate model for deforestation and reforestation (R2 = 0.495). The education and 

household models also indicated importance for both rates but explained reforestation 

rates better (R2 = 0.45) than deforestation rates (R2 = 0.375). Results differed in all other 

models, and the proximity model in deforestation (R2 = 0.37) and the biophysical model 

in reforestation (R2 = 0.38) were the most notable. Accordingly, the Akaike information 

criterion (AIC) indicated that the accessibility model achieved the lowest values (AIC < 

6300) in both rates meaning that it was the model with the best performance. 

Moreover, the language and gender models in deforestation and language in 

reforestation were also highlighted as relevant models by the AIC. Finally, the root-

mean-square errors (RMSE) indicate values less than 50% of one SD of their 

corresponding dependent variable for the models (RMSE = 0.295). This represents an 

error in rates predicted by the models of ± 0.9% for both deforestation (2.7%) and 

reforestation (2.9%) SD.  

Table 16. Results of GWRR models for variable groups 

Model 
Variable 

[number] 

Observation 

kept  

[%] 

R-square AIC 1 RMSE 2 

Def. 3 Ref. 4 Def. Ref. Def. Ref. Def. Ref. 

Accessibility 4 84.0 83.8 0.50 0.49 6158 6118 0.30 0.31 

Age 3 84.6 87.1 0.34 0.31 6313 6438 0.30 0.31 

Biophysical 3 74.4 72.4 0.24 0.38 6309 6289 0.27 0.31 

Education 3 88.5 86.0 0.37 0.45 6321 6376 0.29 0.30 

Gender 4 64.6 75.8 0.33 0.36 6298 6416 0.31 0.31 

Household 3 91.1 89.2 0.38 0.45 6300 6359 0.29 0.28 

Language 3 88.6 88.5 0.34 0.32 6244 6352 0.30 0.30 

Proximity 3 95.3 94.3 0.37 0.32 6317 6368 0.29 0.32 

Work 3 91.6 90.4 0.34 0.27 6307 6442 0.29 0.32 

1 Akaine Information Criterion (AIC).2 Root-mean-square-error (RMSE). 3 Deforestation cells.  

4 Reforestation cells. 
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4.4.2 Forest change rates and regression coefficients  

After ensuring that the regression coefficients were free of outliers, we derived boxplots 

to facilitate reporting. Additionally, to observe the interaction of the coefficients with 

forest change rates, we added them as colored points behind the boxplots (Figure 36), 

where each model is plotted at each facet and grouped according to its information 

type. Since data was spread in gender and reached a range of [-8, 6] SD, the Y axis was 

zoomed to a fixed range of [-2, 2] SD (see Annex 2 for regression coefficients). 

It is shown that improved accessibility to oil palm, coffee and cacao facilities 

(A1 and A2) influenced deforestation (upper section of Figure 36), while there was only 

a marginal impact of accessibility on fruit and almost none on milk facilities (A3 and A4). 

This is underlined by reduced proximity to roads (P3) but greater distance to oil and 

mine infrastructures (P1 and P2). As oil palm cultivation is suitable below 1500 m.a.sl., 

typically in flat but not waterlogged areas (Pirker et al. 2016), the biophysical model 

describes the tree’s demands, i.e. reduced altitude and annual rainfall (B1 and B3) but 

fertility increase (B2), which may suggest that the model indicates optimal 

requirements. Looking into the census-related models with regard to deforestation 

rates, increase in secondary education (E2) can be highlighted. Nevertheless, older  

 

Figure 36. Boxplots of regression coefficients for deforestation (upper plot) and reforestation (lower 

plot) cells, together with their correspondent annual forest change rate (colored points). 
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adults and chief male households (D3 and G1) show an even higher increase with regard 

to the regression coefficients. The sharp decrease in the female population (G4) 

compared to the increase in the male population (G3) could further refer to population 

growth and its associated deforestation in the CEA linked to gender asymmetry, where 

the variable ‘educated males above 25 years’ dominates (D2 and D3). Additionally, 

models for medium families, Spanish language and agricultural workers (H2, L1 and W1) 

stand out. In this regard, deforestation in the CEA seems to be mainly associated with 

new medium-sized colonos families, whose principal activity was agriculture. 

For reforestation (lower section of Figure 36), accessibility to oil palm and fruit 

facilities (A1 and A3) shows an opposite behavior when compared to deforestation. This 

suggests that reforestation was more prone to take place in areas with limited 

agricultural capabilities or where soils were depleted. This is also confirmed in the data, 

as decrease in soil fertility (B2) but increase in annual rainfall (B3) may describe 

landscape areas not suitable for oil palm but more suitable for coffee, cacao and cattle 

ranching. This may also explain why improved accessibility to the latter (A2 and A4) 

characterizes reforestation in the CEA. Regarding the census-related models, we 

observed marginal to negative population growth related to reforestation in most 

variables. Therefore, we will focus on this aspect, as rates seem to be higher here where 

a younger population (male and female), basic education and large families decreased 

(D1, E1, G3, G4 and H3). This may suggest migration or land-abandonment processes, 

which could have triggered reforestation. Moreover, as other languages decrease (L3), 

these people may belong to ethnicities other than the colonos and Kichwa. However, 

since industry workers also decrease (W2), another reading is possible as this can be 

linked to young workers with short-term contracts with oil companies or at mining sites. 

This could explain why considerable reforestation took place nearer to oil and mining 

infrastructures (P1 and P2) but also to roads (P3). 

4.4.3 Regression coefficient surfaces – globally and locally influencing variables 

To spatially describe underlying driving forces, regression coefficients surfaces are 

presented in Figure 37 and Figure 38. These were classified according to their influence 

on deforestation [>1, <-1] SD, and a distinction between those acting globally or almost  



96 

 

 

Figure 37. Surface regression coefficients and variance for variables behaving more locally or globally in 

deforestation cells 

equally was made calculating their variance. Therefore, regression coefficient surfaces 

with high variances are plotted in the upper part (local behavior) and those with lower 

variances in the lower part of the figures (global behavior). 

We observed that the variables distance to oil infrastructures (P1) (�� = 0.19), 

large families (H3) (�� = 0.21) and Spanish language (L1) (�� = 0.22) achieved the 

lowest variance and behaved as the most globally influencing variables. On the other 

hand, the variables speak Kichwa (L2) (�� = 1.09), female population (G4) (�� = 1.04) 

and age 26-46 (D2) (�� = 0.81) achieved the highest variance and behaved as the most 

locally influencing variables.  
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Figure 38. Surface regression coefficients and variance for variables behaving more locally or globally in 

reforestation cells 

With respect to reforestation, we observed that the variables large families 

(H3) (�� = 0.02), basic education (E1) (�� = 0.23), and access to coffee and cacao (A2) 

(�� = 0.24) achieved the lowest variance and behaved as the most globally influencing 

variables. Furthermore, the variables female population (G4) (�� = 0.82), age 15-25 

(D1) (�� = 0.82) and annual rainfall (B3) (�� = 0.81) achieved the highest variance and 

behaved as the most locally influencing variables. 

4.4.4 Spatial regimes and underlying causes 

We clustered the regression coefficients to determine the spatial regimes of 

deforestation and reforestation. For this, we also filtered suspicious regression 

coefficients from observations before reporting averaged regression coefficients for 

each cluster. However, we used all observations in the mapping to facilitate their 

localization and descriptions (deforestation Figure 39; reforestation Figure 40).  
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Figure 39. Regression coefficients for deforestation clusters and their localization in the CEA 

It is shown that regression coefficients contrast gradually in clusters; however, for this 

discussion we focus only on cluster 1, as it achieved the highest deforestation average 

(-2.4% annual, C:1, red in Figure 39). In this regard, cluster 1 highlights a section of the 

colonization front related to oil fields in the CEA (Sierra 2000), whose proximity to oil 

infrastructures and roads (P1 and P3) is clearly evident. Moreover, an increased 

accessibility to all agriculture facilities (A1, A2 and A3) including cattle ranching (A4) 

indicates an intense land use besides oil extraction. Since this accessibility is located at 

low altitudes (B1) and on high-fertility soils (B2), its improved suitability for commercial 

agriculture seems to have attracted deforestation more than other areas of the CEA. 

Furthermore, variable groups related to population indicate similar patterns to those 

described for deforestation (section 4.4.2). In this regard, an increase in older adults, 

secondary education, chief male household, medium families, Spanish language and 

agricultural farmers (D3, E2, G1, H2, L1 and W1) seems to reinforce these findings. 
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Nevertheless, increases in higher education and small families (E3 and H1) add new 

features to population related to deforestation. Here, highly qualified workers in agro-

industry or oil extraction companies may explain this association. 

With respect to reforestation, a similar contrasting behavior between 

regression coefficients and clusters is observed. For this, we also focus on cluster 1 (1.9% 

annual, C:1, red in Figure 40), since it achieves the highest reforestation rate. Therefore, 

its localization is related to an old colonization front, which converges with territories of 

historical occupation (Muratorio 1998) of mainly Kichwa communities (L2). Since this 

area was not found suitable for oil extraction, increasing distances to infrastructures (P1) 

are observed; however, these are greater when related to mining sites (P2). 

Furthermore, poorer accessibility is representative in oil palm (A1) and slightly in fruit 

(A3) facilities, while it is otherwise minimal or even zero (A2 and A4). This may indicate 

that reforestation were more related to areas not suitable for commercial agriculture, 

 

Figure 40. Regression coefficients for reforestation clusters and their localization in the CEA 
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as higher altitudes, lower soil fertility and intense annual rain (B1, B2 and B3) are the 

limiting factors. With respect to population, a slightly similar picture to that of 

deforestation can be observed (compare Figure 39 and Figure 40); however, there are 

some differences. On the one hand, the increase in the young to adult population 

related to industry and services works (D1, D2, W2 and W3) may indicate how this 

setting could be specifically related to reforestation when the population increases. On 

the other hand, the decrease in basic education, large families and other languages (E1, 

H3 and L3) may indicate a different setting similar to that described in section 4.4.2, 

which also favors reforestation but when population decreases. Since both processes 

may be related to land abandonment rather than to specific actions towards 

reforestation, migration from rural to urban areas may be a driving force. 

4.5 Discussion 

4.5.1 Achievements of dasymetric mapping for census data processing 

Previous studies applying dasymatric mapping have shown its effectiveness and 

improved performance regarding interpolating population numbers (Lo & Yang 2002; 

Reibel & Agrawal 2007). This advantage was also experienced in this study, as multiple 

inconsistencies between boundaries of census blocks were solved using this approach. 

Moreover, inter-census analysis allowed us to identify areas of population change using 

the most detailed census information (INEC 2001; INEC 2010). This improved spatial 

resolution from an averaged census block area of 5547 ± 10525 ha to grid cells of 200 

ha in resampled censuses. This increased the number of observations from 394 ± 81 

census blocks to 5695 observations in the analysis grid. Therefore, GWRR improved 

performance as datasets with fewer observations are prone to errors (Páez et al. 2011). 

The use of land-cover and land-use change products is thus crucial to improve areal-

based data processing, which could not be limited to population census but also to 

similar data sources (e.g. agricultural and migration censuses). However, researchers 

should be aware of those areas to be targeted to allocate respective census counts (e.g. 

croplands or pastures in agricultural censuses). Furthermore, as we used a road 

accessibility model to enhance our population allocation model, some observations are 

worth mentioning. First, this input data incorporates restrictions with regard to areas 
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less probable to be inhabited. Therefore, its use is recommended when the assumption 

of the logarithmic relationship between population, roads and deforestation is valid. 

While this link was demonstrated in our study area (Etter et al. 2006; Pan et al. 2004), 

we cannot guarantee that errors are not present in the land-cover maps or in the road 

accessibility model. This certainly introduced noise in our results, which were expressed 

as anomalous populated areas in remote sites that required elimination. Moreover, 

since deforestation is caused not only by human activities but also by natural events (not 

focused on in this study), an automatic procedure to differentiate among them may 

reduce errors induced by their confusion. Several studies exist in this regard (Kennedy 

et al. 2015; Hermosilla et al. 2015b; Oeser et al. 2017) but to the best knowledge of the 

authors, its implementation is still pending evaluation in the Tropical Andes. 

Additionally, characterization of forest disturbances may also extend FDD analysis to 

specific land-cover change dynamics (de Freitas et al. 2013), of which the underlying 

forces are better understood when based on socio-economic data. 

4.5.2 GWRR advantages and limitations 

Our results indicate that despite some limitations, GWRR reduced collinearity effects 

and provided useful outputs for FDD analysis. Other similar studies have suggested 

alternative approaches, including analysis of one variable at a time (Tu 2011) or reducing 

variable redundancy by principal component analysis (PCA) (Pineda Jaimes et al. 2010). 

Both approaches were tested before: In the first case, we experienced a time-consuming 

task calibrating and verifying each model, while in the second case, interpretation of 

regression coefficients and their effect over forest change rates were not clear after PCA. 

Therefore, GWRR offered the best alternative in terms of accuracy, error identification 

and implementability. In this way, the FDD analysis benefited from a set of regression 

coefficients and spatial representations that better explained influence and behavior 

(local or global) of variables over forest change rates. However, the method has 

disadvantages worth mentioning. First, according to Myers (1990), ridge regression is a 

biased estimation technique where � (i.e. penalty parameter) defines how much 

stability should be arbitrarily assigned to regression coefficients. Additionally, as GWRR 

requires defining the bandwidth size of its moving window, once again, an arbitrary 
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decision must be taken regarding its size. While both parameters can be found through 

cross validation, a first attempt applying it to bandwidth parameter created collinearity 

problems and degraded our results. According to Cho et al. (2010), this may be caused 

by spatial autocorrelation induced by its selection, which is not properly adressed in 

GWRR and is currently object of further research. Nevertheless, our procedure, i.e. 

exploring different bandwidths, worked better for the definition of this parameter, while 

cross validation helped to identify � in our case. Future implementations should 

consider that not only these parameters but also others such as bandwidth function and 

its type are the object of critisism, and data-driven approaches may not be the best 

choice in some cases. Moreover, as ridge regression may not be able to report the 

relative importance of variables, its implications should be considered if the objective of 

the study is to determine them according to conventional hypothesis testing (i.e. 

deriving p-values or significances). While we fill this gap with the presented approach, 

researchers applying GWRR should consider Bayesian spatially varying coefficients, 

which offer a richer inferential framework (Finley 2011; Wheeler & Calder 2007). 

4.5.3 Forest dynamics drivers, population growth and agricultural expansion in the CEA  

Our most significant contribution in this research demonstrates that despite the nature 

of the drivers and the region studied local differences exist that diversify and multiply 

FDD explanations. While other studies report these drivers (represented here as variable 

groups) as forces acting in the whole region (RAISG 2015), we highlighted which of them 

impacted among different areas and how much. Here, variable impacts could be 

differentiated in each cell compared to higher or lower influence with regard to 

deforestation and reforestation rates. Identifying this variable complexity offers the 

potential to design more precise strategies on the adminsitrative level to target 

deforestation reduction or reforestation encouragement. 

Furthermore, our analysis reveals certain factors that deserve mentioning. 

Related to deforestation, an important effect of gender asymmetries in population could 

be observed, i.e. a higher number of males over females showed a link to higher 

deforestation rates. This relationship was also confirmed in other studies (Moran et al. 

2003; Barbieri & Carr 2005). However, this aspect has been less investigated and should 
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be included, not only in research but also in policy making. Nevertheless, it is 

recommended that gender is subject of different interpretations regarding ethnicity. 

Therefore, our approach applying language as a proxy of gender does not reveal 

anything already known in literature, i.e. colonos population growth was more related 

to deforestation. Combining gender and ethnicity could be a more valuable approach 

also integrating different roles with regard to different beliefs and ethnicity (Hutchison 

& Vallejo 2016; Villamor et al. 2015). For those variable groups not related to population, 

we observed that accessibility to palm oil facilities, followed by coffee, cacao and milk 

products, were the main attractors of deforestation in the CEA. Therefore, they 

represent a strong agriculturally but also economically important variable. High fertility 

of soils together with closer distance to roads and oil extraction infrastructures further 

demonstrated a contribution to increased deforestation rates. Nevertheless, our 

analysis highlights these areas especially in the northeast of the CEA, where other 

studies have concluded similar drivers (Mena et al. 2006; Sierra 2000).  

In contrast, the south-western part of the CEA showed higher reforestation 

rates. In this regard, small to almost zero population growth was mostly observed but 

also variables with important decreases. A decrease in number of people with basic 

education, large families and other etnicities (as assumed from other native languages 

spoken) showed a relationship with high reforestation rates. This suggests specific 

processes related to depopulation or land-use change of specific ethnicites, not well 

known but observed in other regions of the Ecuadorian Amazon (Stephen J. Walsh et al. 

2008). Contrary to deforestation, poor accessibility to palm oil facilities indicated higher 

reforestation rates, while other accessibility values tended to be of little or zero 

importance. This is also linked to areas not suitable for commercial agriculture such as 

higher altitudes, lower soil fertility and intense annual rain characterizing reforestation. 

However, closer distance to roads indicates a similar behavior with respect to 

deforestation. While this could be seen as being contradictory, Rudel et al. (2002) found 

different patterns between distance and reforestation among colonos and Shuar 

ethnicities in Ecuador. In this study, reforestation in the first case was more prone to 

happen at greater distances, while in the second only at shorter distances. In our case, 
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this may imply that the Kichwa ethnicy may behave similarly to the Shuar, as our findings 

highlight areas inhabited mostly by these communities, and land-use practices could be 

similar (Torres et al. 2015). Nevertheless, overexplotation and soil degradation may be 

another explanation of such patterns (Rey Benayas 2007). Future approaches analyzing 

FDD may consider studying each ethnicity separately to gain more conclusive results. 

4.6 Conclusions 

This research underlines the importance of downscaling global problems to the local 

scale and assessing individual drivers of land-use change in coupled socio-ecological 

systems. Applying dasymetric mapping together with GWRR supported the analysis of 

the spatial distribution of population and forest dynamics in the Ecuadorian Amazon. 

Integrating forest dynamics with socio-economic variables helped to identify complex 

interactions among them.  While at the global scale, key drivers can be identified and 

variable groups show their impact on forest dynamics, at the local scale they can differ 

significantly. Here, individual drivers can play more important roles than those at global 

scales. This is demonstrated in this study, as variable groups played different roles in 

forest change varying in magnitude and effect within different regions in the CEA. In this 

regard, accessibility to collection centers and processing facilities to agricultural 

products showed the most influential role in both deforestation and reforestation. 

However, a biophysical variable group cannot be minimized since it is an ancillary source 

that supports and corroborates findings focusing on it, i.e. describing suitable conditions 

for cultivation. Furthermore, gender, ethnicity and household structure showed high 

influence regarding untangling population dynamics and their relationship with forest 

change. However, this made interpretation of the results challenging and final 

statements more fuzzy. Nevertheless, combining forest dynamics and socio-economic 

information in a geospatial environment underlined variable complexity and their 

extent. Combination of individual aspects of livelihood patterns can be more meaningful 

than a proxy selected to represent one aspect of a livelihood. The results of this study 

also highlight the role of women and ethnicity in forest dynamics, which is more studied 

in social sciences. Interdisciplinary expertise and transdisciplinary exchange is needed 

to foster the understanding of coupled socio-ecological systems from local to global 
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scales. With regard to the “underlying causes” as stated by Geist and Lambin (2002), the 

findings of this study show that analysis on small scales still needs further assessment to 

guide local actions carried out at larger administrative scales such as the Tropical Andes. 

This can only be facilitated by inter- and transdisciplinary research. 
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5 RESEARCH SYNTHESIS AND CONCLUSIONS 

5.1 Summary 

In this thesis, a methodological framework for monitoring tropical forest dynamics and 

evaluating its causes in a case study in the CEA are presented. A processing chain was 

developed for accomplishing these tasks. The main challenges data scarcity, topographic 

complexities and landscape heterogeneity were not an impediment for accomplishing 

the three research objectives. The first objective focused on the evaluation of time-

series analysis and pre-processing algorithms in test sites. The second objective on the 

implementation of the multi-date classification in the Upper Napo Watershed. Finally, 

the third objective assessed the causes of deforestation and reforestation in the CEA.  

5.1.1 Objective I: Evaluation of time-series algorithms for monitoring forest dynamics 

with genetic algorithms  

An exploration of different time-series algorithms for forest monitoring was conducted. 

Empirical evidence led us to conclude that these were not adequate for the conditions 

of the study case. Despite testing several processing chains with different ensembles of 

algorithms, noise induced by atmospheric contamination and scarce data limited 

performance. Nevertheless, important insights and advances in the design and coding 

of the processing chain were achieved, which were later processed in a software 

(TFDynamics) for forest dynamics monitoring in the R language (Annex 3).  

An alternative approach for designing processing chains in remote sensing was 

proposed. Genetic algorithms were demonstrated to be a powerful framework for test 

algorithms ensembles and for solving parametrization problems. While time-series 

analysis was concluded as not applicable in the CEA, some optimized processing chains 

resulted in prototypes that effectively detected deforestation/reforestation events in 

areas of dense Landsat time-series stacks. Their examination revealed specific routines 

that were later considered in this research. Findings that were more obvious indicated 

that radiometric normalization was a required processing step; however, topographic 

correction required further revision as degraded breakpoint detection. Moreover, 

indices based on shortwave infrared bands reduced atmospheric contamination effects 

better than those based on visible bands. On the other hand, less obvious findings 

indicate that image compositing with temporalities around a year produced the best 
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results, while application of noise reduction routines enhanced breakpoint detection. In 

this regard, detection of outliers in Landsat time-series seems to reduce the effects of 

unmasked cloud and shadows, while gap-filling methods varied in all breakpoint 

detection algorithms. This indicated that gap-filled results were similar despite the 

algorithm applied; therefore, it was the less sensible processing step in the time-series 

analysis approach. However, this was different for the signal-smoothing algorithm, 

which enhanced detection of deforestation/reforestation events in all breakpoint 

detection algorithms. Concerning the latter, non-parametric statistics-based algorithms 

produced improved results; however, the number of detected breakpoints varied 

among them.  Segment size seems to determine this difference, indicating that each 

algorithm has its own capability to detect changes. It is therefore concluded that 

optimization is an important processing step that is not frequently considered in time-

series analysis and remote sensing. Additional research findings indicate that 

radiometric alignment between adjacent composites footprints were required for large-

area processing, while the cloud cover filtering criteria needed to be adjusted as it was 

not rigorous enough. 

Optimization with genetic algorithms required demanding computation 

simulations and Darwin evolution theory knowledge. Strategies such as ‘divide and 

conquer’, modular design, and application of functional and parallel coding paradigms 

were relevant in the first case. This stimulating and important learning experience led 

to a better implementation of the processing chain and improved coding practices in the 

following research objectives. With respect to the second case, genetic algorithms 

opened the door to a different programming paradigm, where evolution became a 

discovery engine of software improvements. While its specific terminology required a 

complicated abstraction in the context of remote sensing, admitting its flexibility to 

adapt to any optimization problem was not less important. Nevertheless, calibration and 

experimentation required to run multiple simulations before an algorithm was 

considered as ‘optimized’. This is due the stochastic basis of genetic algorithms, which 

rely on random variables (e.g. choosing chromosomes during tournament selection or 

during setting up the initial population). Therefore, optimization results varied from run 
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to run, implying some uncertainty in the results. This involved a time-consuming 

calculation, especially in low-performance computing environments. 

Finally, this research focused on specific testing sites in the CEA. Hence, forest 

dynamics and landscape diversity were observed at specific locations, but no conclusive 

patterns were identified at this point (Q3: third research question). Nevertheless, this 

research contributed to refining a methodology, identifying the processing steps for 

monitoring long-term forest dynamics, and coding the processing chain (Q1: first 

research question). Moreover, field data collection (interviews, field visits, collection of 

thematic maps, aerial photographs and documents, etc.) provided ancillary sources to 

better contextualize and validate the results of this research. 

5.1.2 Objective II: Implementation of multi-date classification for long-term forest 

dynamics monitoring with scarce data 

After identifying the limitations of time-series algorithms for forest dynamics 

monitoring, a new approach was implemented considering a different strategy. Defined 

as multi-date classification, it derived successfully deforestation and reforestation maps 

for the UNW. Its development followed findings discussed in the first research objective. 

Therefore, a more careful filtering of atmosphere-contaminated images was applied 

fusing Fmask (Zhu & Woodcock 2012) with LEDAPS (Masek et al. 2012) cloud mask to 

provide a more conservative masking approach. Moreover, only indices related to 

shortwave infrared bands were calculated, while additional derivatives such as Tasseled-

Cap transformation bands were also calculated. Furthermore, the compositing 

algorithm was modified considering standardization and median calculation from the 

composite images set. This avoided applying radiometric normalization, which was done 

in the first research objective (i.e. linear regression with invariant features) but 

discarded in this work, as some erroneous images cases were found as high cloud cover 

impeded obtaining sufficient invariant features to perform regression. Additionally, a 

larger time step was considered (i.e. biennials), as more images per composite were 

available and derivation of “best pixel” value improved reducing residual noise. Since 

three reforestation sites were visited during field work for taking hemispherical 

photographs, it was found that this compositing time step was adequate, as canopy 

closure reached its maximum mostly after 3 to 5 years. Regarding radiometric 
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alignment, histogram match algorithm allowed matching the four footprints needed to 

complete the UNW mosaic, while it enabled working at regional scales. These 

procedures completed the pre-processing of Landsat time-series and prepared them for 

the change detection step. 

Data scarcity, atmospheric contamination and topographically complex 

regions were the main challenges that the multi-date classification algorithm aimed to 

solve. It first classified composites to later derive change from the semantic values; 

therefore, it did not depend on the dense images stacks time-series algorithms require. 

Due to this, a classifier was had to be trained and a set of samples for four different land-

cover types (i.e. two forest and two non-forest classes) were interpreted and labelled. 

While, out-of-bag errors indicated that trained classifiers were above 90% accuracy, a 

test based on a correlation with a reference forest/non-forest map (MAE 2017) 

indicated that supporting vector machines were the more appropriate option for this 

dataset. Consequently, all composites were classified into land-cover maps; however, 

these still showed remaining noise from unmasked clouds and other artefacts. To 

eliminate it, a temporal filtering function was developed to recode illogical land cover 

transitions identified from a set of rules defined a-priori. Since the function worked 

pixel-wise, moreover considering a moving window of three consecutive observations, 

it had the disadvantage of removing end dates from the time-series in the analysis (i.e. 

all observations before 1992 and after 2014). Nevertheless, its application using not 

topographically corrected images resulted in enhanced overall accuracies from 62 to 

82% in deforestation and from 48 to 71% in reforestation maps. The latter was identified 

as areas in a continuous process of “forestedness”, which were classified at least twice 

as forest (i.e. four years to accomplish the reforestation time threshold) after the area 

was deforested. In contrast, deforestation was flagged as the first year of a forest pixel 

being mapped as one of the non-forest classes. 

Applying multi-classification in the most challenging areas of the UNW (i.e. 

almost permanent cloud cover and topographically irregular) was therefore qualified as 

successful considering the scarce data and difficulties experienced (Q1: first research 

question). Nevertheless, some of these difficulties were also highlighted as limitations 
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for this research objective. In this regard, multi-classification requires training a classifier 

for deriving land cover maps, as its sampling is not fully automatized. Therefore, a proper 

interpretation and labeling of a large number of samples is required to achieve good 

results. This is a time-consuming task and not easily done due its on-screen 

interpretation. Furthermore, topographic correction with C-correction algorithms 

showed a visual reduction of topographic shadows; however, radiometric bias and 

accuracy reduction compared with not-corrected inputs (i.e. 82 to 70% in deforestation 

and from 71 to 56% in reforestation maps) were observed. This may be due to the low 

resolution of the digital elevation model (90 m) but a conclusive reason was not 

determined. 

With respect to deforestation and reforestation patterns, the results of this 

study show for the first time the long-term forest dynamics in the UNW (Q3: third 

research question). Areas with deforestation can be observed mainly along the E20 

highway, and reforestation along the E45 highway. A comparison with other sources 

indicates similar trends; however, figures indicate that these results are more 

conservative for deforestation (2,319 ha year-1) compared to other sources (2,757 ha 

year-1 and 4,394 ha year-1) (Hansen et al. 2013; MAE 2017). This is similar for 

reforestation, where results indicate a lower figure (1,504 ha year-1) than the Ecuador 

Forest Reference Emission Level (2,277 ha year-1) (MAE 2017). Finally, these maps reveal 

two different regions where deforestation was more frequent, i.e. in the north-eastern 

part, and reforestation was higher, i.e. in the south-western part. These regions are of 

interest as forest change in the CEA suggests different driving forces (Chapter 4). 

5.1.3 Objective III: Assessment of underlying causes of deforestation and reforestation 

through geographically weighted ridge regression 

A methodology for assessing census data processing and regression analysis was 

developed for analyzing the driving forces of deforestation and reforestation in the CEA 

based on two regional-based analyzes.  

The first analysis focused on overcoming the boundary change problem in 

inter-census analysis and the modifiable areal unit problem in data aggregation, both 

with dasymetric mapping. Following this approach, an algorithm was designed to re-

distribute census counts according to a weighting function and ancillary maps. This 
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algorithm assumed that population density can be modeled according to the logarithmic 

relationship between road distance and deforestation areas. Using non-forest masks 

calculated for the Objective II (section 5.1.2) and a road accessibility model (SIGTIERRAS 

2015), a weighted layer was derived to guide the algorithm to re-distribution of census 

counts. Since this operation required a common data structure to rasterize data inputs, 

an analysis grid was created to integrate results. Consequently, the two censuses (i.e. 

2001 and 2010) were processed, and as they were calculated on the basis of the re-

distributed census counts, their boundary inconsistencies were no longer a problem. 

Moreover, because they were not aggregated into larger units as the most detailed 

census level was used, the modifiable areal unit problem was minimized. This allowed 

operating them and obtaining population change for each of the census variables 

considered for the 2001 – 2010 period. This improved the spatial resolution of this 

processing task, increasing the number of observation from 394 ± 81 census blocks to 

5695 cells in the analysis grid (Q2: second research question). An integration of these 

values with accessibility, proximity, and biophysical datasets resulted in a multivariate 

spatial database for regression analysis. Regarding the limitations, anomalous populated 

areas indicated that this approach was sensitive to misclassification errors introduced in 

non-forest masks. Moreover, deforestation caused by natural events and not properly 

masked on these added additional uncertainty. 

The second analysis targeted the limitations of conventional regression 

analysis in studies on the driving forces of deforestation/reforestation. Motivated by the 

increasing number of studies using geographically weighted regression, an 

implementation using ridge regression was applied. This methodology allowed the 

identification of spatial variability of regression coefficients, reducing the collinearity 

effects attributed to other geographically weighted regression approaches based on 

ordinary linear regression. The results indicate that the driving forces of 

deforestation/reforestation are diverse in the CEA, and it was possible to identify which 

of them behaved more globally or locally. Moreover, a further clustering of regression 

coefficients allowed identifying spatial regimes of highest deforestation/reforestation 

rates. These clusters facilitated the description and discussion of underlying drivers 
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considering similar socio-economic and biophysical settings in the study region (Q2: 

second research question). Nevertheless, there were some limitations. First, 

parametrization of bandwidth size in geographically weighted regression was not 

straightforward, and required careful evaluation before it was finally set. While 

automatic approaches exist (e.g. cross validation), the results obtained were not 

satisfying and required a manual approach for definition. Furthermore, as ridge 

regression is not able to report variable importance according to conventional 

hypothesis testing, some uncertainty could be expected. Since most of the studies on 

the driving forces of deforestation/reforestation reported drivers as p-values or 

significances, in this approach their absence is a disadvantage. 

Two regions with specific socio-economic settings associated with high 

deforestation and reforestation rates were identified. The first was in the north-western 

part of the CEA . Here, an important effect of gender asymmetries in the population was 

identified, i.e. a higher number of males than females was linked to higher deforestation 

rates, specially among the colonos ethnicity. Moreover, better accessibility to palm oil 

facilities, followed by coffee, cacao and milk products enhanced the effect. Other 

aspects such as high soil fertility and shorter distance to roads and oil extraction 

infrastructures also contributed. In the second region, i.e. the south-western part of the 

CEA reforestation rates were higher. In contrast to deforestation, a low to almost zero 

population growth was associated. Nevertheless, decrease in the number of people with 

basic education, large families and etnicities other than colonos or Kichwas were related 

to reforestation. Moreover, low accessibility to palm oil facilities showed higher rates, 

while others accessibilities, i.e. to coffee, cacao, fruits and milk products, tended to be 

neither better nor worse. This allowed further association to areas not suitable for 

commercial agriculture, as higher altitudes, lower soil fertility and intense annual rain 

characterized reforestation. On the other hand, shorter distance to roads indicated a 

similar behavior to that of deforestation; however, a difference in ethnicity was found, 

indicating that Kichwas were more prone to reforestation activities than the colonos. 

These findings improved the explanation of causes of deforestation/reforestation in the 

CEA (Q3: third research question); however, not as definitive reasons as some 
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limitations were observed. In this regard, further inter- and transdisciplinary research is 

required to better interpret the results. While contributions from different authors 

during this research are important here, a discussion with local experts is pending to be 

integrated. Moreover, as this study does not split the analysis by ethnicity, non-

conclusive reasons can be associated to the different groups present in the CEA and the 

land-use practices observed.   

5.2 Conclusions and outlook 

Evaluating the patterns and drivers of forest dynamics in tropical regions is fundamental 

for balanced decisions on forest conversions, land planning and policy making. Limited 

data quantity and quality (e.g. satellite images, socio-economic training/validation data) 

increase the uncertainty with respect to the observation of deforestation or 

reforestation processes. The methodology presented in this study is capable of 

producing a series of products for facilitating this objective. In the first case, forest 

dynamics monitoring was partly automatized in a processing chain. When including 

routines for pre-processing, this can transform Landsat surface reflectance products into 

median composites for specific periods with diminished or even zero cloud cover. 

Moreover, a post classification change-detection algorithm, together with a temporal 

filtering technique, can further a synthesis of forest dynamics frontiers derived from 

land-cover maps collections. This data reveals patterns and landscape trajectories with 

an improved temporal frequency. However, accuracy depends on multiple factors (e.g. 

cloud masking, co-register precision, composite quality, algorithm training), which were 

documented and evaluated in this thesis. Although the results fulfill the monitoring 

objective of the study case, more research is needed for further improvements. 

Replication at other sites and development of improved routines (e.g. improved pixel 

selection in compositing, automatization of sample collection, and implementation of 

topographic correction) are recommended. Development of this methodology into a 

cloud-based or high-performance computing environment, which facilitates data 

processing but also integration with other archives (e.g. Sentinel 1-2, SPOT, ASTER) 

should be also considered in future research. 
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Furthermore, limitations regarding analysis of drivers of forest dynamics were 

identified and recommendations made. By applying dasymetric mapping and areal 

weighting, socio-economic data were integrated into a common spatial structure with 

increased spatial resolution, which solved border inconsistencies and aggregation 

effects. Accessibility, distance, biophysical and inter-census variables were collected and 

classified to derive nine regression models. Evaluated in a geographically weighted ridge 

regression, surfaces representations of regression coefficients were obtained. These 

layers summarized the effect and magnitude of model variables, and their clustering 

helped to identify spatial regimes. The latter were characterized by common socio-

economic and biophysical settings, and this input facilitated discussion of the causes of 

deforestation and reforestation. In this regard, colonist migration, gender asymmetries, 

infrastructure accessibility to commercial crops and agricultural suitability are important 

drivers for high deforestation rates. This was observed where the influence of the oil 

industry and associated infrastructures was higher, i.e. in the north-eastern part of the 

CEA. This is in contrast to the high reforestation rates where low or zero population 

growth, poor accessibility to commercial crops facilities (especially oil palm) and 

agricultural limitations were the driving forces. While less related to the oil industry, 

road and mining industry were found to be somehow related to reforestation in the 

south-western part of the CEA. However, not all these findings can be considered as 

definitive “causes” as more inter- and transdisciplinary research is required. Future steps 

will consider integrating additional datasets derived from remote sensing (e.g. land 

cover trends) and socio-economic data (e.g. migration and agricultural census) to 

identify other relationships and extend the presented methodology. 

Finally, this research contributes to the ongoing development of a national 

REDD+ Program in Ecuador and its efforts in reducing deforestation. As a country highly 

vulnerable to climate change, the next decades will be challenging and actions are 

crucial to guarantee the human right to a sustainable environment for future 

generations. 
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SUPLEMENTARY MATERIAL 

Annex 1. Descriptive statistics of variable groups obtained for reforestation cells 

Variable 

groups 
Prefix Variable 

Cells statistics 

Source 
Min. Mean Max. SD 

Accessibility 

[hours] 

A1 
Accessibility to oil palm 

extraction facilities 1 
0-0.08 1-3 >3 - 

(SIGTIERRAS 

2015) 

A2 

Accessibility to coffee 

and cacao collection 

centers 1 

0-0.08 0.5-1 >3 - 

A3 
Accessibility to fruit 

collection centers 1 
0-0.08 1-3 >3 - 

A4 

Accessibility to milk 

products collection 

centers 1 

0-0.08 0.5-1 >3 - 

Age 

[people] 

D1 
Younger population (age 

15 - 25) 
-27 0.9 123 5 

(INEC 2001; 

INEC 2010) 

D2 

 

Adult population 

(age 26 - 45) 
-20 1.2 134 6 

D3 
Older adult population  

(age 45 - 72) 
-19 0.7 48 3 

Biophysical 

[m.a.s.l.] 2 

[unitless] 

[mm] 

B1 Altitude 250 662 3177 478 

(SNI 2017) B2 
Soil fertility (>2% organic 

matter at max. value) 1 
1 3.2 4 0.4 

B3 Annual rainfall 1372 3647 5892 647 

Education 

[people] 

E1 
Basic education 

(1 - 6 years) 
-64 -0.8 53 3 

(INEC 2001; 

INEC 2010) 
E2 

Secondary education (7 - 

12 years) 
-29 2.3 161 9 

E3 

 

Higher education 

(>13 years) 
0 1.6 100 6 

Gender 

[people] 

 

G1 
Chief male 

household 
-9 0.8 76 3 

(INEC 2001; 

INEC 2010) G2 
Chief female 

household 
-18 0.2 56 1 

G3 Male population -33 1.4 136 8 
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G4 Female population -34 1.3 161 7 

Household 

[people] 

H1 
Mothers with 1 - 2 

children (small families) 
-4 0.2 28 1 

(INEC 2001; 

INEC 2010) 

H2 

Mothers with 3 - 5 

children (medium 

families) 

-13 0.5 63 2 

H3 

Mothers with more than 

5 children (large 

families) 

-33 -0.4 26 2 

Language 

[people] 

L1 Speak Spanish 3 -28 3.4 242 14 
(INEC 2001; 

INEC 2010) 
L2 Speak Kichwa 4 -27 2.2 245 11 

L3 Speak other languages 5 -102 -0.7 22 4 

Proximity 

[meters] 

P1 
Distance to oil 

infrastructures 
198 8972 47460 8051 

(SNI 2017) P2 Distance to mining sites 167 7016 55977 7819 

P3 
Distance to paved and 

dirt roads 
45 1749 28749 2534 

Work [people] 

W1 
Agriculture related 

workers 
-36 0.5 52 4 

(INEC 2001; 

INEC 2010) W2 Industry related workers -17 0.09 34 1 

W3 Services related workers -12 0.17 26 1 

1 Categorical variable ordered and recoded as continuous. 2 Stands for meters above sea level. 3 First spoken 

language by colonos in CEA. 4 Second spoken language and ethnicity at CEA. 5 Includes 12 different languages 

except Kichwa. 

Annex 2. Descriptive statistics of regression coefficients obtained for deforestation and reforestation 

cells 

Variable 

groups 
Prefix 

Regression coefficients statistics  

Deforestation cells Reforestation cells 

Min. Mean Max. SD Min. Mean Max. SD 

Accessibility 

A1 -1.34 -0.15 1.44 0.40 -0.38 0.21 0.92 0.32 

A2 -0.99 -0.26 0.32 0.28 -1.44 -0.51 0.06 0.37 

A3 -1.29 0.085 1.03 0.35 -0.30 0.28 1.55 0.37 

A4 -0.33 0.17 1.01 0.28 -1.16 -0.14 0.45 0.36 

Age 

D1 -1.63 -0.39 0.55 0.50 -4.02 -0.15 0.52 0.51 

D2 -0.34 0.24 1.32 0.40 -0.61 0.19 4.37 0.48 

D3 -0.47 0.56 2.04 0.59 -0.70 0.14 1.51 0.39 
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Biophysical 

B1 -2.48 -0.09 0.29 0.40 -1.89 -0.36 0.31 0.35 

B2 -0.15 0.11 0.46 0.11 -0.51 0.042 0.23 0.12 

B3 -0.42 -0.051 0.53 0.13 -1.92 0.035 0.66 0.44 

Education 

E1 -0.32 -0.04 0.17 0.08 -0.60 -0.19 0.26 0.13 

E2 -0.84 0.43 1.25 0.45 -0.81 0.18 0.80 0.20 

E3 -0.92 0.09 3.43 0.37 -0.79 0.11 3.66 0.34 

Gender 

G1 -0.46 1.74 6.97 1.19 -0.63 0.69 2.98 0.56 

G2 -1.02 0.34 1.54 0.38 -0.28 0.085 1.18 0.24 

G3 -0.36 0.015 1.08 0.25 -2.25 -0.20 0.80 0.43 

G4 -8.64 -1.73 0.68 1.70 -3.51 -0.39 0.61 0.66 

Household 

H1 -0.33 0.23 2.78 0.44 -0.95 0.23 0.94 0.19 

H2 -1.40 0.20 1.52 0.41 -0.48 0.060 0.88 0.16 

H3 -0.97 -0.27 0.01 0.26 -0.88 -0.31 -0.07 0.14 

Language 

L1 -0.55 0.42 2.43 0.43 -0.31 0.17 1.06 0.21 

L2 -1.28 0.10 2.97 0.61 -0.49 0.020 0.57 0.19 

L3 -0.62 0.08 3.68 0.59 -1.29 -0.19 0.12 0.15 

Proximity 

P1 -0.24 0.05 0.38 0.08 -0.81 -0.062 0.35 0.17 

P2 -0.34 0.04 0.85 0.19 -0.84 -0.14 0.25 0.23 

P3 -1.03 -0.22 -0.003 0.22 -1.70 -0.24 -0.007 0.26 

Work 

W1 -0.18 0.18 0.58 0.13 -0.32 0.043 0.47 0.14 

W2 -1.51 0.02 0.61 0.27 -0.69 -0.050 1.25 0.18 

W3 -0.60 0.10 3.53 0.46 -1.26 0.14 0.72 0.25 
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Annex 3. Reference manual of TFDynamics Version 0.9
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