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Introduction

This dissertation is built up of four essays in Microeconomic Theory. In these essays, I
analyze strategic disclosure of information to a committee and strategic communication
of information within an organization. All four Chapters deal with the overall question
how transmitted information influences the decisions of individuals in the presence of an
underlying conflict of interest. The Chapters differ in the credibility of the transmitted
information. While Chapters 1 and 2 allow the person who discloses information (the
sender) to commit to a policy that specifies in which event which information is dis-
closed, in Chapters 3 and 4 the sender is missing this power to commit to a predefined
communication scheme. The absence of this commitment power is crucial when it comes
to how the receiving individuals update their beliefs and act afterwards. In the first
Chapter of this thesis, which is joint work with Nina Bobkova, we characterize how an
interested party can persuade an informed committee to vote for her preferred outcome
by strategically disclosing decision relevant information. Chapter 2 is an extension of
Chapter 1 and deals with the question how results change when the interested party is
clueless in the sense that she no longer has access to superior information and is thus
reliant on the information the committee possesses. Chapter 3 deals with the ques-
tion whether an uninformed principal should delegate a decision to her better informed
agent or whether the principal should consult the agent and keep the decision rights.
In Chapter 4, I analyze whether a centralized organization form should be chosen over
a decentralized form when important information is distributed across divisions which
have different interests than the overall organization. In the following, I will provide a
short summary of each chapter.

In Chapter 1, we analyze how an interested party (information designer) should
optimally disclose decision relevant information to a group of imperfectly informed
voters to obtain her preferred outcome. Given that voters know about the designer’s
manipulation efforts, why do voters act according to the designer’s recommendations
or even listen to the disclosed information? The reason is rooted in the information
designer’s informational advantage. In contrast to the voters, she has access to perfect
information about the decision relevant subject. Since the information designer can
commit to condition her recommendations on that information, voters expect to profit
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from following the recommended action. This way voters can be swayed in their voting
behavior. We study to which extent this is possible.

Formally, we consider a biased sender that tries to persuade a committee to vote
for a proposal by providing public information about its quality. Each voter has some
private information about the proposal’s quality. We characterize the sender-optimal
disclosure policy under unanimity rule when the sender can versus cannot ask voters
for a report about their private information. We find that the sender can only profit
from asking agents about their private signals when the private information is suffi-
ciently accurate. For all smaller accuracy levels, a sender who cannot elicit the private
information is equally well off.

In Chapter 2, I extend this analysis to an information designer who has no informa-
tional advantage over voters. That is, all information about the quality of the proposal
stems from the voters. Given that voters know all that, why is there still room for
persuasion? The fact that voters are nonetheless sometimes willing to follow the rec-
ommendations of somebody uninformed is rooted in the aggregation of information: If
the information designer is able to aggregate the private but imperfect knowledge of all
voters, she can make recommendations based on more meaningful information. This
equips the information designer with some persuasion power and leads to the question
to which extent she can persuade the decision makers.

I compare a setting in which the sender is informed about the voters’ signals with
a setting in which the sender has to first elicit these private signals from voters. It
turns out that the uninformed sender who has to ask voters for their private informa-
tion is sometimes no worse off than a sender who can observe the signals of voters.
Besides this, I show that the information designer cannot profit from disclosing recom-
mendations privately to each voter. She is just equally well off when she discloses the
recommended action in public.

Chapter 3 deals with the optimal allocation of decision rights when relevant infor-
mation is asymmetrically distributed within the organization. Without a conflict of
interest, the answer would be simple: The decision should be delegated to the person
with the best knowledge. However, in the presence of a conflict of interest and in the
absence of commitment power the question is no longer trivial: Is it more advantageous
for a principal to delegate a decision to a better informed employee or to consult the
employee and make the decision by herself? The vital point here is that there exists a
trade-off between a loss of control and a loss of information. The loss of control is due
to the transfer of authority to someone who has different objectives and thus will act in
his full self-interest. The loss of information comes from the principal’s and the agent’s
missing commitment power. If the principal consults the employee without being able
to contract upon a predefined decision and communication protocol, the employee will
adjust or withhold his information.

2



To address this challenging question, I analyze the decision making in an organi-
zation when there is an uninformed principal who owns the decision rights and an
informed agent with a state-dependent bias. In particular, I investigate whether it is
better for the principal (i) to delegate the decision to his agent, who is perfectly in-
formed about the decision relevant state of the world, or (ii) to keep all decision rights
and only consult the agent. I find that when the agent reacts significantly more sen-
sitive to changes in the state of the world than the principal, the principal is best off
when she communicates with the agent and keeps the decision rights.

In Chapter 4, I analyze which organizational form should be chosen when a company
is forced to coordinate decisions for both of its divisions. That is, when a company can
only make one decision that has to be implemented in both divisions. Each division
manager holds a piece of decision relevant information and wants to adapt the decision
more to his private information. In contrast, the principal is uninformed and wants
to match the decision to the average of both pieces of information. I compare the
principal’s expected payoff under centralization and decentralization. Under central-
ization, the principal keeps the decision rights and the division managers communicate
their private information to the principal. Under decentralization, division managers
communicate their private information to each other and the principal delegates the de-
cision to one of the division managers. I find that centralization performs better than
decentralization in terms of maximizing the principal’s expected payoff independent of
how biased division managers are.

3
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Chapter 1

Persuading an Informed Committee

1. Introduction

In voting or collective decision making, the persuasion of decision makers through a
biased party plays a crucial role. To which extent a biased party can persuade decision
makers might depend on how much decision-relevant knowledge they already possess.
Consider for example a CEO who tries to convince a board of directors to vote for a
new proposal. While the CEO wishes to always implement the proposal to improve
short-term firm performance, directors only want to approve the proposal if it increases
long-term performance. If directors already have some private knowledge about the
long-term effects of the proposal, what is the most promising way to convince them to
vote for the proposal? This is the question of this paper.

In our model an information designer requires a unanimous approval of a group of
voters to implement a proposal. Depending on the proposal’s unknown binary quality,
voters either like or dislike the proposal. If the quality was known, all voters would
agree on the optimal decision. In contrast, the information designer is biased in that
she always wants the proposal to be implemented, irrespective of its quality. Each
voter receives a private signal about the proposal having a high or low quality and is,
according to his private signal, either optimistic or pessimistic. The information de-
signer chooses a disclosure policy: she sends a public recommendation that is correlated
with the quality of the proposal. The term public means that the information designer
cannot make different recommendations to different voters. After having received the
recommendation of the information designer, each voter decides on whether to vote for
or against the proposal based on his updated belief. Although voters are aware of the
information designer’s interest in the proposal, they might nevertheless want to follow
her recommendation. This is because the recommendation is based on the true quality
of the proposal.

The main contribution of this paper is to unveil the extent to which an information
designer can persuade informed voters by choosing the optimal disclosure policy. We
characterize when the private information of voters restricts the information designer
in her scope for persuasion.

In our benchmark case we consider an omniscient information designer who can
observe the private signal realizations of all voters. We show that the omniscient in-
formation designer recommends to vote for the proposal with probability one when the
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proposal is of high quality. In the state where the proposal is of low quality, she uses a
threshold policy: she recommends the proposal with probability one for any number of
optimists above a certain cutoff, and recommends the status quo with certainty below
the cutoff. The cutoff is such that a pessimistic voter is indifferent between the proposal
and the status quo after the recommendation to vote for the proposal.

Next, we consider an eliciting information designer who cannot observe the private
information of voters but can ask them for reports about their signal realizations. We
show that the eliciting information designer cannot implement the optimal disclosure
policy from the omniscient benchmark case and is always worse off compared to the
omniscient information designer. This is caused by the optimists having a profitable
deviation through misreporting to be pessimists. As a consequence, the eliciting in-
formation designer has to give sufficient incentives for truthful reporting by providing
voters with more information. This limits the scope of the information designer for
persuasion. If the probability of receiving the correct signal is below a lower threshold,
the eliciting information designer always recommends to vote for the proposal in the
state where voters prefer the proposal. In the state in which voters want to implement
the status quo, the probability with which she recommends the proposal is stochastic
and decreasing in the accuracy of the private information of voters. This optimal policy
of the information designer is equivalent to maximizing the probability of a pessimist
to vote for the proposal. In contrast, if the probability of receiving the correct signal
is above an upper threshold, the information designer’s optimal policy is to maximize
the probability of an optimist to vote for the proposal.

Finally, we consider a non-eliciting information designer who can neither observe the
signal realizations of voters nor ask voters for reports about their private information.
If the probability of receiving the correct signal is below the same lower threshold as
in the eliciting case, the optimal disclosure policy of an eliciting and of a non-eliciting
information designer are equivalent. Thus, an information designer cannot profit from
the ability to ask voters for their private information if the accuracy of voter’s private
information is not sufficiently high.

We find that voters are better off in the presence of a biased information designer
compared to the situation in which they have to decide under unanimity rule only based
on their private exogenous information as in Feddersen and Pesendorfer (1998).

2. Related Literature

Our paper belongs to the rapidly growing literature on information design (see Rayo
and Segal, 2010; Kamenica and Gentzkow, 2011). While in Kamenica and Gentzkow
(2011) there is only one agent that is uninformed, we consider persuasion of a committee
of agents that is informed.

Amongst the vast emerging literature on information design, the two strands bearing
most resemblance to our paper are first, private information on the receiver’s side, and
second, persuasion of multiple receivers. Multiple papers extend information design to
a setting with many receivers. In these papers (Taneva, 2019; Bardhi and Guo, 2018;
Alonso and Câmara, 2016; Wang, 2015; Chan et al., 2018; Heese and Lauermann, 2018)
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agents are aware of the payoff types of each other. There is no uncertainty about the
committee constellation, and voters possess no private information about the payoff-
relevant state of the world. A crucial difference between these papers and our approach
is that in our model, the payoff type of each committee member bears information
about the state of the world and is private information. If the committee constellation
was known, all voters in our model would agree on the same election outcome.

Taneva (2019) extends the approach of a Bayes correlated equilibrium from Berge-
mann and Morris (2016a) to a class of Bayesian Persuasion problems with multiple
receivers. She fully characterizes a binary-binary1 model with two receivers and shows
that the optimal information structure involves public signals or correlated private sig-
nals (not conditionally independent signals). Alonso and Câmara (2016) analyze how
a biased sender can influence an uninformed heterogeneous committee of voters with a
public signal, as in our model. They outline the scope for persuasion under different vot-
ing rules, and show when agents are worse off.2 Chan et al. (2018) consider persuading
a heterogeneous committee under the restriction to minimal winning coalitions. Wang
(2015) compares private persuasion (under the restriction of conditionally independent
signals) to public persuasion in collective decision making. She shows, that public per-
suasion performs weakly better and reveals less information than private persuasion.
The closest related to our paper is Bardhi and Guo (2018). They analyze persuasion
of a heterogeneous committee, and study a unanimous voting rule. They consider two
persuasion regimes: general persuasion (conditional on everybody’s payoff type), and
individual persuasion (conditional only on own payoff type). Persuasion is private in
their model: each agent does not see the messages sent to voters, neither under general
nor under individual persuasion. They show that under unanimity, a restriction to a
public or private persuasion regime is without loss under some assumptions. Heese and
Lauermann (2018) consider persuasion of a heterogeneous committee of voters. They
show that the information designer can almost surely guarantee the implementation of
her preferred outcome in the limit, as the size of the committee grows sufficiently large.

Amongst the papers considering private information on the side of the receiver are
Kolotilin et al. (2017), Kolotilin (2016), Bergemann and Morris (2016b) and Bobkova
(2018). Kolotilin et al. (2017) study persuasion of one privately informed receiver, who
is privately informed about his payoff type. They show that eliciting persuasion is
equivalent to non-eliciting persuasion under some conditions3. Bergemann et al. (2018)
consider a similar environment as Kolotilin et al. (2017) but add monetary transfers,
which we do not allow in our framework. Kolotilin (2016) considers an information
designer who tries to persuade an informed receiver. Persuasion is non-eliciting: the
information designer cannot ask the receiver for his type prior to her information disclo-
sure. Bobkova (2018) considers a stream of short-lived and privately informed buyers,
that an information designer (seller) seeks to persuade into buying her product. The
seller is restricted in her ability to construct experiments, and has to rely on the private
information of previous receivers, that she has to elicit truthfully.

1Binary states and binary actions.
2See also Schnakenberg (2015, 2017). For example, Schnakenberg (2015) studies a cheap talk model,

i.e., the expert advises the voting body by sending public cheap talk messages.
3Kolotilin et al. (2017) refer to eliciting and non-eliciting persuasion as public versus private per-

suasion. See Bergemann and Morris (2017) for a unified terminology, that we follow in this paper.
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To the best of our knowledge, our framework is the first to introduce private infor-
mation into persuasion of a group. We analyze the problem of an information designer
when she first has to squeeze the private information out of multiple agents before she
can condition her disclosure policy on it.

The idea of omniscient persuasion and private persuasion of one privately informed
receiver can be found in Bergemann and Morris (2016b). We extend their discussion by
providing a comparison of the cases in which the information designer is omniscient and
in which the information designer has to first elicit the private signals from multiple
agents. A unified perspective of the existing literature on Bayesian Persuasion and
information design can be found in Bergemann and Morris (2017).

Finally, our paper relates to the literature on information aggregation in strate-
gic voting, following Austen-Smith and Banks (1996) and Feddersen and Pesendorfer
(1998). Feddersen and Pesendorfer (1998) show that when voters vote strategically, vot-
ing truthfully according to one’s own private information is not an equilibrium. Voters
condition their strategy on pivotality events, and a unanimous voting rule is a ‘uniquely
bad’ voting rule: it implements the inferior inefficient outcome with a higher probability
than any other majority rule. In the model of Feddersen and Pesendorfer (1998), voters
have to make their decision based on their private exogenous information only. In our
model, we allow the designer to provide further correlated information to all agents,
conditional on the true state of the world.

The paper is organized as follows. First, we introduce our model in section 3. In
section 4, we first analyze the benchmark case of an omniscient information designer
and characterize her optimal disclosure policy. In the subsequent section 5, we analyze
information design with elicitation and show that an eliciting information designer can-
not implement the optimal disclosure policy from the omniscient benchmark case. We
characterize the optimal disclosure of an eliciting information designer and establish
two equivalence results. In section 6 we deal with the analysis of a non-eliciting infor-
mation designer and prove the equivalence of optimal disclosure policies of an eliciting
and a non-eliciting information designer if the accuracy of voters’ signals is below some
threshold. The last section 7 deals with further remarks on a comparison to Feddersen
and Pesendorfer (1998) and on the case where the omniscient sender faces only one
voter whose private signal can have four (instead of two) different realizations.

3. Model

There are three voters which have to decide whether to vote for a proposal or for a
status quo. An information designer tries to influence voters to vote for the proposal.
In the following we use information designer and sender synonymously. The proposal
requires unanimity to pass. When a voter i votes for the proposal we write ai = 1, and
ai = 0 for the status quo. When the outcome of the ballot is the proposal we write
a = 1, and a = 0 when the status quo is chosen. For example, under unanimity rule
the outcome is a = 1 if ai = 1 for all i.

Whether a voter likes or dislikes the proposal depends on an uncertain state of the
world θ ∈ {B,G}, where Pr(θ = G) = 1

2 . Voters have the following utility function:
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ui(a, θ) =

1{θ=G} − 1
2 if a = 1

0 if a = 0

Hence, all voters agree on the optimal decision if the state was known: when θ = G
all voters want to implement the proposal, while when θ = B, all agree on the status
quo. In contrast, the sender always prefers the proposal over the status quo independent
of the state of the world. The sender’s utility function is given by uS(a) = a.

Each voter receives a private signal zi ∈ {b, g} that is correlated with the true state
of the world in the following way: Pr(zi = g|θ = G) = Pr(zi = b|θ = B) = p ∈ (1

2 , 1).
A voter i with a signal zi = g (referred to as a good signal) is more optimistic about
the state of the world being θ = G than a voter with signal zi = b (referred to as a bad
signal). Likewise, a voter with bad signal zi = b considers θ = B more likely.4

Denote the set of signal realizations by Z = {g, b}3 with a typical element z =
(z1, z2, z3) ∈ Z. Let k(z) be the number of g-signals in a typical signal realization z.
By z−i ∈ Z−i we refer to the signals of all voters except voter i, where Z−i is the set of
all signal realizations except voter i’s signal. In the following we use the shortcut k to
refer to k(z) and k−i to refer to k(z−i).

4. Omniscient Information Design

We first analyze the benchmark case in which the sender is omniscient, i.e., observing
each voter’s private signal. The sender’s problem is then to choose a disclosure policy
d : Θ×Z →4(R) with public recommendations r ∈ R to maximize the probability of
the event that all voters vote for the proposal. We restrict the analysis to anonymous
disclosure policies, which take only the number of good and bad signals into account
and not which voter has which signal.

Assumption 1. The sender’s disclosure policy is anonymous, i.e., the probability of
sending any recommendation is the same for all z, z′ with k(z) = k(z′).

This assumption allows us to restrict attention to disclosure policies which only
condition on the state of the world and on the number of good signal in the population.

The next assumption specifies how a voter behaves under indifference.5

Assumption 2. If a voter is indifferent between his actions, he follows the recommen-
dation of the sender.

The following proposition says that we can restrict the sender to only two recom-
mendations r ∈ {0̂, 1̂} without loss of generality. These two recommendations are direct
voting recommendations, 1̂ in favor of the proposal, and 0̂ in favor of the status quo.

4For notational convenience we will sometimes use gi and bi respectively as a short cut for voter i
having received signal zi = g and zi = b respectively.

5Note the difference to the sender-preferred equilibrium in Kamenica and Gentzkow (2011): they
assumed that if indifferent, their agent votes for the sender-preferred outcome, in our case the proposal.
We are interested in partial implementation, and such a one-sided tie-breaking rule pro proposal would
be with loss of generality in our setting. We will see that in the optimum the sender sometimes wants
voters to vote for the status quo if indifferent to achieve the highest outcome. This is driven by
pivotality considerations and does not arise in Kamenica and Gentzkow (2011).
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Proposition 1. Under unanimity, it is without loss of generality to restrict the recom-
mendation set of the omniscient sender to R = {0̂, 1̂}.

All omitted proofs are in the appendix. The disclosure policy of the sender is:

d : Θ× {0, 1, 2, 3} → 4{0̂, 1̂}. (1.1)

That is, we are looking for a vector with 8 components {d[1̂|θ, k]}k∈{0,1,2,3},θ∈{B,G} ∈
[0, 1]8. After the sender sends her recommendation, voters have to update their belief
about θ and only follow the sender’s recommendation if this yields a higher expected
utility than disobeying.

Since the decision has to be made under unanimity, after recommendation 1̂ a voter
is pivotal with probability one and after recommendation 0̂ he is never pivotal. This
is because in equilibrium after r = 1̂ all voters follow the recommendation 1̂ which
is why from the perspective of an individual voter his vote determines the outcome.
Similarly, a voter will never be pivotal after r = 0̂ because all other voters already voted
against the proposal which in turn makes one single vote irrelevant under unanimity.
As a consequence, a voter will always follow the recommendation 0̂ and follow the
recommendation 1̂ if his obedience constraint holds:

Pr(θ = G|1̂, zi) ≥
1
2 (OB1̂

zi
)

⇔ Pr(θ = G|zi)
2∑

k−i=0
d[1̂|θ = G, k−i + k(zi)] Pr(k−i|θ = G)

≥ Pr(θ = B|zi)
2∑

k−i=0
d[1̂|θ = B, k−i + k(zi)] Pr(k−i|θ = B)

The omniscient sender’s maximization problem is then given by:

max
d

Pr(a = 1) = max
d

Pr(1̂) =
∑

θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ)

s.t. 0 ≤ d[r|θ, k] ≤ 1, ∀r ∈ {0̂, 1̂}, θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (1.2)
d[0̂|θ, k] + d[1̂|θ, k] = 1, ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (1.3)

Pr(θ = G|1̂, zi)−
1
2 ≥ 0, ∀zi ∈ {b, g} (OB1̂

zi
)

The following lemma states that for the sender it is always optimal to send the
recommendation to vote for the proposal when θ = G.

Lemma 1. In any optimal disclosure policy, d[1̂|θ = G, k] = 1 for all k.

To give some intuition for Lemma 1, notice that for θ = G voters agree on the
proposal being the more appropriate choice, independent of their private signal. Hence,
the sender does not have to convince voters so that she can simply send 1̂ for θ = G.
Assume that the conjecture is false. Then, the sender could increase the probability of
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implementing the proposal and at the same time relax the voters’ obedience constraints
by simply increasing d[1̂|θ = G, k] for those k for which d[1̂|θ = G, k] 6= 1.

The probability of sending a recommendation 1̂ for the sender is:

Pr(1̂) =0.5 Pr(1̂|θ = B) + 0.5 Pr(1̂|θ = G)︸ ︷︷ ︸
=1

(1.4)

=0.5
3∑

k=0
d[1̂|k, θ = B] Pr(k|θ = B) + 0.5 (1.5)

Now, consider the obedience constraint for the g-type. It is easy to see that it is
always satisfied if Lemma 1 holds.

Lemma 2. The obedience constraint of the g-type is satisfied in any disclosure policy
in which d[1̂|θ = G, k] = 1 for all k.

Proof. The obedience constraint of the g-type is:

0.5p ≥ 0.5(1− p)
2∑

k−i=0
d[1̂|θ = B, k−i + 1] Pr(k−i|θ = B) (1.6)

Note that due to feasibility of the disclosure policy, d[1̂|θ, k] ≤ 1 for all θ and all k.
Thus,

2∑
k−i=0

d[1̂|θ = B, k−i + 1]︸ ︷︷ ︸
≤1

Pr(k−i|θ = B) (1.7)

≤
2∑

k−i=0
Pr(k−i|θ = B) = 1

Using this in the obedience constraint, we see that it is always satisfied as 0.5p ≥
0.5(1− p) ≥ RHS always holds.

The next lemma states the optimal disclosure policy if all voters have a g-signal:

Lemma 3. In any optimal disclosure policy d, it holds that d[1̂|θ = B, k = 3] = 1.

Proof. The probability d[1̂|θ = B, k = 3] does not show up in the obedience constraint
of the b-type, as it only applies when all voters have a g-signal. Therefore, it has no
effect on the obedience of the b-type. By Lemma 2 the obedience constraint of the
g-type holds in any disclosure policy that sends recommendation 1̂ whenever the state
is θ = G. Therefore, setting d[1̂|θ = B, k = 3] increases the probability of the proposal
being implemented without harming any obedience constraints.

Using the above findings, the maximization problem of the omniscient designer
becomes:
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max
d

1
2

3∑
k=0

d[1̂|θ = B, k] Pr(k|θ = B) + 1
2 Pr(k = 3|θ = B) + 1

2 (1.8)

d[0̂|θ, k] + d[1̂|θ, k] = 1, ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (1.9)

s.t. (1− p) ≥ p
2∑

k−i=0
d[1̂|θ = B, k−i)] Pr(k−i|θ = B) (OB1̂

b )

By using that pPr(k−i|θ = B) = Pr(k|θ = B)3−k
3 we can rewrite OB1̂

b :

(1− p) ≥ p
2∑

k−i=0
d[1̂|θ = B, k−i] Pr(k−i|θ = B)

(
2
k−i

)
(1.10)

⇔ (1− p) ≥
3∑

k=0
d[1̂|θ = B, k] Pr(k|θ = B)3− k

3 . (1.11)

Increasing d[1̂|θ = B, k] for any k ∈ {0, 1, 2} affects the obedience constraint and the
objective function of the designer differently. While an increase in d[1̂|θ = B, k] for any
particular k ∈ {0, 1, 2} is weighted by the sender with Pr(k|θ = B), the b-type weighs
this increase with Pr(k|θ = B)3−k

3 . In the terminology of the fractional knapsack6,
this means that different k have different value-weight ratios. As a consequence, it will
matter for which k the sender will increase the probability of sending recommendation
1̂ until the constraint binds. The next proposition states that the optimal disclosure
policy of the omniscient sender is a monotone threshold policy.

Proposition 2. The unique optimal disclosure policy of the omniscient sender is a
monotone cutoff policy with

d[1̂|θ = G, k] = 1 ∀k, d[1̂|θ = B, k]


= 1 if k > k̃,

∈ [0, 1] if k = k̃,

= 0 if k < k̃,

(1.12)

where k̃ is such that OB1̂
b binds.

Figure 1 shows the optimal policy of the omniscient sender for p = 0.7. If θ = G, she
sends with the certainty the recommendation 1̂ irrespective of the number of g-signals.
If θ = B, the sender uses a monotone cutoff policy, where she sends 1̂ with certainty
whenever there are at least two voters with a g-signal, mixes whenever there is one
voter with a g-signal, and never sends 1̂ when all have a b-signal.

5. Eliciting Information Design

In the previous section the sender could construct any experiment on the true state
of the world and was able to see the private signal realizations of each voter. In this

6See appendix for the terminology.
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Figure 1.1: optimal disclosure policy for p = 0.7.

section we assume that the sender cannot see the private information of the voters,
but can elicit it in an incentive compatible way. When the sender is eliciting, honesty
constraints arise, and we have to check for double deviations: if an agent misreports,
does he have a profitable deviation? After misreporting, the agent should not be strictly
better off from any possible action after the misreport.

Each voter i sends a message to the sender, a report about his private signal realiza-
tion: ẑi ∈ {ĝ, b̂}. The complete profile of reported signals is then given by ẑ ∈ Ẑ. We
employ the same notation as above, with the restriction, that now the sender conditions
not on the number of g-signals in the true signal realizations z, but on the number of
ĝ-reports in the reported signal realization ẑ. Hence, k(ẑ) denotes now the number of
ĝ-reports in the reported signal realization ẑ.

As for the omniscient sender, only two signals suffice for the sender to achieve her
highest implementable payoff.

Proposition 3. Under unanimity, it is without loss of generality to restrict the recom-
mendation set of the eliciting sender to R = {0̂, 1̂}.

The sender commits to a disclosure policy d : k ∈ {0, 1, 2, 3} → ∆{0̂, 1̂}. Let
U(zi, ẑi, ai(0̂, zi), ai(1̂, zi)) be the expected utility of a voter with signal zi, who reports
being type ẑi, and votes with probability ai(0̂, zi) for the proposal after recommendation
0̂, and with probability ai(1̂, zi) for the proposal after recommendation 1̂.

We refer to a disclosure policy d of an eliciting sender as implementable if and only
if it satisfies the obedience and the honesty constraints.

The next observation establishes, that the omniscient sender is strictly better off
than the eliciting sender.

Observation 1. The optimal disclosure policy of the omniscient sender is not imple-
mentable when the sender is eliciting.

It is straightforward that with the optimal disclosure policy in Proposition 2 the
g-type will have a profitable deviation from misreporting b̂ and following the recom-
mendation. Let U(zi, ẑ′i, ai(0̂, zi), ai(1̂, zi)) be the expected utility of a voter with signal
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zi, who reports being type ẑ′i, and votes with probability ai(0̂, zi)) for the proposal after
recommendation 0̂, and with probability ai(1̂, zi)) for the proposal after recommenda-
tion 1̂. If the g-type is truthful and obedient, his expected utility is

U(gi, ĝi, 0, 1) = Pr(θ = G|gi)
1
2 − Pr(θ = B|gi)

1
2 Pr(k−i = 2|θ = B) (1.13)

−Pr(θ = B|gi)
1
2

1∑
k−i=0

d[1̂|θ = B, k−i + 1] Pr(k−i|θ = B).

Consider the following deviation: misreport b̂ and follow the recommendation. Then, a
g-type prevents the event in which all voters have reported a g-signal, the state is θ = B
and the sender sends 1̂ with probability 1. In all other states, the misreporting does
not matter for the disclosure policy of the sender when θ = G because when θ = G the
sender sends 1̂ with probability one for all k ∈ {0, 1, 2, 3}. When θ = B, the g-type voter
profits from misreporting since d[1̂|θ = B, k] is decreasing k. Hence, the misreporting
g-type will receive recommendation 1̂ with a (weakly) smaller probability than when
being honest in the unfavorable state θ = B. This follows because the disclosure policy
is a cutoff policy: misreporting a g-signal gets a more ‘favorable’ cutoff than when
reporting truthfully. The voter’s expected payoff when being dishonest is given by

U(gi, b̂i, 0, 1) = Pr(θ = G|g)1
2 (1.14)

−Pr(θ = B|gi)
1
2

2∑
k−i=0

d[1̂|θ = B, k−i] Pr(k−i|θ = B).

Recommendation 1̂ is sent less frequently if θ = B, hence U(gi, b̂i, 0, 1) > U(gi, ĝi, 0, 1).
The omniscient sender is strictly better off than the eliciting sender under information
design. This is in line with the literature. Bergemann and Morris (2016b) show that
the implementable set of equilibria is larger for an omniscient than an eliciting sender
in a bank run game with one sender and one receiver. Similarly, Bobkova (2018) shows
that an omniscient sender has a strictly higher probability of selling a good to a buyer
when the sender is omniscient than when she is eliciting. Since an optimal disclosure
policy of the omniscient sender is not implementable for the eliciting sender, we need
to solve her maximization problem by taking into account the honesty constraints. The
obedience constraint of the g-type after being truthful is

U(gi, ĝi, 0, 1) = Pr(θ = G|gi)
2∑

k−i=0
d[1̂|θ = G, 1 + k−i] Pr(k−i|θ = G) (OB1̂

g)

− Pr(θ = B|gi)
2∑

k−i=0
d[1̂|θ = B, 1 + k−i] Pr(k−i|θ = B) ≥ 0 = U(gi, ĝi, 0, 0)
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and the obedience constraint of the b-type after being truthful is

U(bi, b̂i, 0, 1) = Pr(θ = G|bi)
2∑

k−i=0
d[1̂|θ = G, k−i] Pr(k−i|θ = G) (OB1̂

b )

− Pr(θ = B|bi)
2∑

k−i=0
d[1̂|θ = B, k−i] Pr(k−i|θ = B) ≥ 0 = U(bi, b̂i, 0, 0).

The honesty constraint of a g-type who is obedient is then given by

U(gi, ĝi, 0, 1) =
2∑

k−i=0
d[1̂|θ = G, 1 + k−i] Pr(k−i|θ = G)p (Hg)

− d[1̂|θ = B, 1 + k−i] Pr(k−i|θ = B)(1− p)

≥
2∑

k−i=0
d[1̂|θ = G, k−i] Pr(k−i|θ = G)p

− d[1̂|θ = B, k−i] Pr(k−i|θ = B)(1− p) = U(gi, b̂i, 0, 1)

and the honesty constraint of a b-type who is obedient is then given by

U(bi, b̂i, 0, 1) =
2∑

k−i=0
d[1̂|θ = G, k−i] Pr(k−i|θ = G)(1− p) (Hb)

− d[1̂|θ = B, k−i] Pr(k−i|θ = B)p

≥
2∑

k−i=0
d[1̂|θ = G, k−i + 1] Pr(k−i|θ = G)(1− p)

− d[1̂|θ = B, k−i + 1] Pr(k−i|θ = B)p = U(bi, ĝi, 0, 1).

Note that after recommendation r = 0̂, a voter is never pivotal and hence it does not
matter whether he follows or disobeys the recommendation after misreporting. That
is, U(zi, ẑi, 1, 1) = U(zi, ẑi, 0, 1). If a voter is not obedient after recommendation 1̂,
i.e., ai(1̂, zi) = 0, then his expected utility is simply U(zi, ẑi, 0, 0) = U(zi, ẑi, 1, 0) = 0.
This takes care of all double-deviations, since the obedience constraints guarantee a
non-negative payoff. The maximization problem of the eliciting sender is

max
d

∑
θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (1.15)

s.t. 0 ≤ d[r|θ, k] ≤ 1, ∀r ∈ {0̂, 1̂}, θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (1.16)
d[1̂|θ, k] + d[0̂|θ, k] = 1 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (1.17)
U(gi, ĝi, 0, 1) ≥ U(gi, ĝi, 0, 0) = 0 (OB1̂

g)
U(bi, b̂i, 0, 1) ≥ U(bi, b̂i, 0, 0) = 0 (OB1̂

b )
U(gi, ĝi, 0, 1) ≥ U(gi, b̂i, 0, 1) (Hg)
U(bi, b̂i, 0, 1) ≥ U(bi, ĝi, 0, 1). (Hb)
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Lemma 4. If OB1̂
b and Hg hold, then OB1̂

g is satisfied.

Next, we reformulate the Primal of the eliciting sender.

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

∑
θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (1.18)

s.t.
2∑

k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G) ≤ 0, (OB1̂

b )

3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0,
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0,

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3}. (1.19)

Observation 2. The information designer’s maximization problem is equivalent to
maximizing 1

2

(
Pr(1̂|b) + Pr(1̂|g)

)
.

After rewriting 1
2

(
Pr(1̂|b) + Pr(1̂|g)

)
into

3∑
k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)1

2 + d[1̂|θ = G, k] Pr(k|θ = G)1
2

)(
k

3 + 3− k
3

)
︸ ︷︷ ︸

=1

(1.20)

one can directly see that maximizing the ex-ante type is equivalent to the objective
function of the eliciting designer.

Proposition 4. The optimal disclosure policy of the eliciting information designer for
p ≤ p and ∀k is

d[1̂|θ = G, k] = 1, d[1̂|θ = B, k] = (1− p)
p

,

where p = 1√
2 .

The optimal disclosure policy of the eliciting sender for this interval of accuracy
levels does not condition on the information reported by voters. The eliciting sender
sends 1̂ in each state of the world with a constant probability, i.e., independent of how
many g-signals there were reported. Figure 1.2 shows the optimal disclosure policy of
the eliciting sender for p = 0.6.

16



0 1 2 3
k

0

0.2

0.4

0.6

0.8

1.0
d(

1|
,k

)

= B
= G

Figure 1.2: optimal policy for p = 0.6.
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Figure 1.3: optimal policy for p = 0.75.
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Figure 1.4: optimal policy p = 0.9.

Proposition 5. The optimal disclosure policy of the eliciting information designer for
p ≤ p ≤ p is

d[1̂|θ = B, k] =


(1−p)
p

(2p− 1) if k = 0

2(1− p) if k 6= 0
, d[1̂|θ = G, k] =


0 if k = 0

1 if k 6= 0,

where p = 1√
2 and p = 1+

√
13

6 .

In contrast to the previous proposition, for this intermediate interval of accuracy
levels, the sender starts to use the information reported by voters. That is, when the
private information of voters is more accurate, the sender conditions her disclosure
policy on the number of reported g-signals. Moreover, the eliciting sender’s optimal
disclosure policy is monotone, i.e., she increases the probability with which she sends
the recommendation 1̂ when the number of reported g-signals increases. Figure 1.3
shows the disclosure policy for p = 0.75. If θ = G and at least one ĝ-report, the sender
increases the probability of sending 1̂ from 0 to 1. Similarly, she sends 1̂ in θ = B more
often when there is at least one ĝ-report.

Proposition 6. The optimal disclosure policy of the eliciting information designer for
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p ≤ p < 1 is

d[1̂|θ = B, k] =


0 if k = 0,
(p− 1

2 )(3−p)
2(2p−1) if k = 1,

1 if k ∈ {2, 3},

d[1̂|θ = G, k] =


0 if k = 0,
(p− 1

2 )(p+2)
2(2p−1) if k = 1,

1 if k ∈ {2, 3},

for p = 1+
√

13
6 .

As for the previous interval of accuracy levels, the sender makes use of the informa-
tion reported by voters: she changes the probability with which she sends 1̂ depending
on how many g-signals were reported. Moreover, the sender uses a monotone disclosure
policy. Figure 3.4 shows the optimal disclosure policy of the eliciting sender for p = 0.9.
Note the bang-bang structure of the optimal disclosure policy: In both states of the
world, the eliciting sender recommends 1̂ with certainty whenever there are at least two
ĝ-reports, she mixes between 0̂ and 1̂ when there is exactly one ĝ-report, and never
recommends 1̂ when there is no ĝ-report.

Proposition 7. For p ≤ p, the information designer’s optimal disclosure policy is
equivalent to maximizing Pr(1̂|b).

Proposition 8. For p ≤ p < 1, the information designer’s optimal disclosure policy is
equivalent to maximizing Pr(1̂|g).

While Proposition 7 says that the information designer maximizes the probability of
a b-type to vote for the proposal if p ≤ p, Proposition 8 says that her optimal disclosure
policy is equivalent to maximizing the probability of a g-type to vote for the proposal if
p ≥ p. Note that the expected utility of the sender is strictly decreasing in the accuracy
of the voters’ private signals, that is, the more convinced the voters, the less scope for
persuasion. This is depicted in Figure 1.5.

Figure 1.5: expected payoff of the eliciting sender.
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6. Non-Eliciting Information Design

In this section the sender cannot ask voters for their private information. In this case
the sender is not able to condition her disclosure policy on the private signals or reports
of the voters. The following lemma restricts the sender’s recommendation set.

Lemma 5. Under unanimity, it is without loss of generality for optimality to restrict
the recommendation set of the non-eliciting sender to R = {0̂, 0̂1, 1̂}.

As before, obedient voters vote for the proposal after 1̂ and for the status quo after
0̂. After 0̂1, only g-types vote for the proposal, and the b-types reject the proposal.
To give some intuition for Lemma 3, observe that there exist only three possible cases
that can occur after any recommendation: either both types weakly favor the proposal,
only the g-type favors for the proposal, or both types strictly dislike the proposal. A
g-type never votes against the proposal while a voter with a bad signal strictly prefers
the proposal. This is because a voter with a g-signal is more optimistic about θ = G
than a b-type voter. As a consequence, the above three recommendations are sufficient
to capture all the possible cases that can occur.

The disclosure policy of a non-eliciting sender is:

d : Θ→ ∆{0̂, 0̂1, 1̂}. (1.21)

The obedience constraints for each type of voter after 1̂ are given by:

Ui(gi, ai(1̂, gi) = 1) =
∑

θ∈{B,G}
d[1̂|θ] Pr(θ|gi)(1θ=G −

1
2) ≥ 0 = Ui(gi, ai(1̂, gi) = 0)

(OB1̂
g)

Ui(bi, ai(1̂, bi) = 1) =
∑

θ∈{B,G}
d[1̂|θ] Pr(θ|bi)(1θ=G −

1
2) ≥ 0 = Ui(bi, ai(1̂, bi) = 0)

(OB1̂
b )

The obedience constraints for each type of voter after 0̂1 are given by:

Ui(gi, ai(0̂1, gi) = 1) =
∑

θ∈{B,G}
d[0̂1|θ] Pr(k = 3|θ) Pr(θ)(1θ=G −

1
2)

≥ 0 = Ui(gi, ai(1̂, gi) = 0), (OB0̂1
g )

Ui(bi, ai(0̂1, bi) = 1) =
∑

θ∈{B,G}
d[0̂1|θ] Pr(k = 2|θ) Pr(θ)(1θ=G −

1
2)

≤ 0 = Ui(bi, ai(1̂, bi) = 0). (OB0̂1
b )
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The sender’s maximization problem becomes:

max
d

∑
θ∈{B,G}

(d[1̂|θ] + d[0̂1|θ] Pr(k = 3|θ)) Pr(θ) (1.22)

s.t. 0 ≤ d[r|θ] ≤ 1, ∀r ∈ {0̂, 0̂1, 1̂}, θ ∈ {B,G} (1.23)
d[1̂|θ] + d[0̂1|θ] + d[0̂|θ] = 1 ∀θ ∈ {B,G} (1.24)
Ui(gi, ai(1̂, gi) = 1) ≥ Ui(gi, ai(1̂, gi) = 0) = 0 (OB1̂

g)
Ui(bi, ai(1̂, bi) = 1) ≥ Ui(bi, ai(1̂, bi) = 0) = 0 (OB1̂

b )
Ui(gi, ai(0̂1, gi) = 1) ≥ Ui(gi, ai(0̂1, gi) = 0) (OB0̂1

g )
Ui(bi, ai(0̂1, bi) = 1) ≤ Ui(bi, ai(0̂1, bi) = 0) (OB0̂1

b )

The next result shows the solution to the above problem of a non-eliciting information
designer.

Proposition 9. The optimal disclosure policy of the non-eliciting sender for p ≤ p̃ is

d[1̂|θ = G] = 1, d[1̂|θ = B] = 1− p
p

,

d[0̂|θ = G] = 0, d[0̂|θ = B] = 2p− 1
p

.

The optimal disclosure policy of the non-eliciting sender for p ≥ p̃ is

d[1̂|θ = G] = 1− (2p− 1)(1− p)3

(p4 − (1− p)4) , d[1̂|θ = B] = 1− (2p− 1)p3

p4 − (1− p)4

d[0̂1|θ = G] = (2p− 1)(1− p)3

p4 − (1− p)4 , d[0̂1|θ = B] = (2p− 1)p3

p4 − (1− p)4 ,

where p̃ = 4
√

1
2 .

Note that for any p, the optimal disclosure policy of the designer never contains
more than two messages. When comparing the optimal disclosure policy of an eliciting
and a non-eliciting information designer, it becomes apparent that they are equivalent
for p ≤ p = 1√

2 . The eliciting information designer has no advantage from asking voters
about their private information when the accuracy of signals is sufficiently small.

Corollary 1. Let p = 1√
2 . For p ≤ p, the eliciting sender’s optimal disclosure policy is

equivalent to the non-eliciting sender’s optimal disclosure policy.
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Figure 1.6: non-eliciting sender’s expected payoff.

7. Further Remarks

7.1 Eliciting Sender: Comparison to Feddersen and Pesendorfer (1998)

Next, consider the error probabilities of a wrong decision when θ = B (i.e., Pr(a =
1|θ = B)) and implementing the status quo when θ = G (i.e., Pr(a = 0|θ = B)) under
the optimal disclosure policy d of the sender.

We compare the probabilities of making each type of error in our setting to the
corresponding probabilities of making each type of error in Feddersen and Pesendorfer
(1998), where voters have to act based on their private signals without any coordination
device or sender, and the decision rule is unanimity. Applied to our setting, the following
is a Nash equilibrium in their model: a voter with a g-signal always votes in favor of the

reform, and a b-signal voter in favor of the reform with probability
√
p

(
p+
√
p(1−p)−1

)
p

3
2−(1−p)

3
2

.
First, the probability of choosing the proposal when θ = B in our setting is bigger

for all p ∈ (1
2 , 1) (Figure 1.7). Second, the probability of choosing the status quo when

θ = G in our setting is smaller for all p ∈ (1
2 , 1) (Figure 1.8).

Taken together, while in Feddersen and Pesendorfer (1998) the proposal is more
often implemented when θ = B, in our setting the proposal is more often implemented
when θ = G. A manipulative information designer strictly decreases the probability of
rejecting the proposal when the proposal is efficient while increasing the probability of
rejecting the status quo when the status quo is efficient.

Overall, the ex-ante type (a voter whose private signal has not yet realized) receives
a strictly higher expected payoff in our model than in Feddersen and Pesendorfer (1998).

Proposition 10. Under unanimity, voters have a strictly higher expected utility with
an eliciting information designer than in a symmetric equilibrium as in Feddersen and
Pesendorfer (1998).
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Figure 1.7: error probabilities if θ = B. Figure 1.8: error probabilities if θ = G.

Hence, even with a manipulative sender, voters are better off in expectations com-
pared to the situation in which they have to decide on their own under unanimity.

7.2 Omniscient Sender: One Agent and Four Signal Realizations

In this section we are comparing our previous results from Section 3.1 to the case where
the omniscient sender faces only one voter which receives a signal s ∈ {0, 1, 2, 3}. One
possible interpretation for this setting is the following: Imagine voters could communi-
cate with each other and exchange their private signals before the information designer
sends her public recommendation. In this case every voter has exactly the same in-
formation, i.e., knows how many g-signals there are. As a consequence, the sender’s
problem is equivalent to persuading one representative voter that can possibly have four
different signals realizations which correspond to the number of g-signals. Formally, the
sender’s problem becomes

max
d

∑
θ∈{B,G}

3∑
k=0

d[1̂|θ, k] Pr(k|θ) Pr(θ) (1.25)

s.t. Pr(θ = G|1̂, s)− 1
2 ≥ 0 ∀s ∈ {0, 1, 2, 3}. (OB1̂

s )

The obedience constraint of the representative voter can be rewritten into

Pr(θ = G|1̂, s)− 1
2 ≥ 0 (1.26)

⇔ Pr(1̂|θ = G, s) Pr(θ = G, s)
Pr(1̂, s)

≥ 1
2 (1.27)

⇔ d[1̂|θ = G, k] Pr(k|θ = G) Pr(θ = G)
Pr(1̂, k)

≥ 1
2 (1.28)

⇔ d[1̂|θ = G, k] Pr(k|θ = G) ≥ d[1̂|θ = B, k] Pr(k|θ = B) (1.29)
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In contrast to before, the omniscient sender who faces only one agent which has
one out of four signal realizations, has to take four obedience constraints into account,
one for each s ∈ {0, 1, 2, 3}. Due to the perfect alignment of interests of the sender
and the representative voter in θ = G, the omniscient sender will optimally send 1̂ in
θ = G with certainty for each s ∈ {0, 1, 2, 3}. Simple calculations show that the voter’s
obedience constraint is slack if the omniscient sender also sends 1̂ with probability one
for s ∈ {2, 3} in θ = B. For s ∈ {0, 1} and θ = B she will choose d[1̂|θ = B, k] such
that the obedience constraint just binds. That is

3p2(1− p) = d[1̂|θ = B, k = 1]3p(1− p)2 (1.30)

⇔ d[1̂|θ = B, k = 1] = (1− p)
p

(1.31)

and

p3 = d[1̂|θ = B, k = 0](1− p)3 (1.32)

⇔ d[1̂|θ = B, k = 0] = (1− p)3

p3 . (1.33)

Hence, when the omniscient sender faces only one representative voter who knows
the number of g-signals, she optimally uses the following disclosure policy

d[1̂|θ = G, k] = 1 ∀k, d[1̂|θ = B, k] =


1 if k ∈ {2, 3}
(1−p)
p

if k = 1
(1−p)3

p3 if k = 0.

(1.34)

The omniscient sender’s expected payoff in this case is given by 1
2 + 1

2(2−2p). This is
always lower than the omniscient sender’s expected payoff facing three informed voters
who cannot communicate. Since the omniscient sender’s optimal disclosure policy in
θ = G is exactly the same in both settings and the total probability with which she
sends 1̂ in θ = B is smaller when voters know the signals of each other, voters are better
off if they know each other’s signals.

8. Conclusion

We study a biased sender who tries to persuade three voters to vote for a proposal by
sending public recommendations. Voters receive some private signals about the quality
of the proposal and only want to approve the proposal if it is of high quality. We
characterize the optimal disclosure policy under unanimity rule of a 1. omniscient,
2. eliciting, and 3. non-eliciting sender. We find that the eliciting sender can only
profit from her ability to ask voters for their private signals when the accuracy of their
private information is sufficiently high. Whenever the accuracy level is below some
lower threshold the eliciting sender is just equally well of as the non-eliciting sender
who cannot ask voters for reports about their private signals.

We show that depending on the accuracy level of the private signals of voters the
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optimal disclosure policy of the eliciting sender solves two other related maximization
problems: For accuracy levels below some lower threshold, the eliciting sender max-
imizes the probability that a pessimistic voter votes for the proposal. For accuracy
levels above some upper threshold, the eliciting sender maximizes the probability of an
optimistic voter approving the proposal. Voters are better off in the presence of a biased
information designer than in a setting where they have to vote under unanimity based
on their private exogenous information only as in Feddersen and Pesendorfer (1998).

In this work we consider a sender who knows the true quality of the proposal.
Extending the analysis to a restricted sender who is uninformed about the true quality
and can only send public recommendations on the basis of the reports made by voters
is a potential avenue for future research.
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A. Appendix

A.1 Proof of Proposition 1

Proof. We show that given any outcome of disclosure policy d′, the sender can im-
plement an outcome equivalent policy d consisting of only two recommendations R =
{0̂, 1̂}. Message 0̂ is the recommendation to vote with probability 1 for the status quo
irrespective of the private signal, and 1̂ is the recommendation to vote with probability
1 for proposal irrespective of the private signal.

Consider any arbitrary disclosure policy of the sender d′ : Θ× {0, . . . , 3} → ∆(R′),
with R′ being any arbitrary message set. Denote r′ ∈ R′ an element of the message
space. Let a(r′, zi) be the probability of a voter i with signal zi voting for the proposal
after seeing recommendation r′ under disclosure policy d′.7

Now consider a filtering d of the original information disclosure policy d′ of the
following form.

d : R′ ×K → ∆[0̂, 1̂].

The new disclosure policy takes the realized message r′ in the original disclosure
policy and the number of g-signals k of the voters, and maps them into a binary voting
recommendation. With slight abuse of notation, denote by d(1̂|r′, k) the probability of
sending recommendation 1̂ in favor of the proposal.

Consider the following construction for the new disclosure policy d:

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k. (1.35)

It is immediate that this policy yields the same expected utility to the sender (if
implementable), as the probability with which she sends signal 1̂ corresponds to the
probability with which her preferred outcome would have been elected under the original
disclosure policy d′.

Furthermore, this disclosure policy is designed to be proportional to the original
probability of being pivotal for both voter types. In particular, for k−i ∈ {0, 1, 2}, we
have Pr(piv|r, k−i, b) = Pr(piv|r, k−i, g) = a(r′, g)k−ia(r′, b)2−k−i and hence,

d(1̂|r′, k = k−i) = a(r′, g)k−ia(r′, b)3−k−i = a(r′, b) Pr(piv|r′, k−i)

and

d(1̂|r′, k = k−i + 1) = a(r′, g)k−i+1a(r′, b)3−(k−i+1) = a(r′, g) Pr(piv|r′, k−i).

It is left to show that the obedience constraints are also satisfied under the new
disclosure policy d′. After public recommendation 0̂ no voter is ever pivotal. It suffices
to show, that both private information types have an incentive to follow the recommen-
dation 1̂ by voting for the proposal. The obedience constraint of a voter with private
signal zi is:

7We assume that voters with the same signal react symmetrically to the same recommendation,
ai(r′, zi) = aj(r′, zj) if zi = zj . Hence, we drop index i.
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Pr(θ = G|1̂, zi, piv) ≥ 1
2 ∀zi ∈ {gi, bi} (1.36)

This can be rewritten into

Pr(θ = G|zi) Pr(1̂|θ = G, zi) Pr(piv|1̂, θ = G, zi)︸ ︷︷ ︸
=1

≥ Pr(θ = B|zi) Pr(1̂|θ = B, zi) Pr(piv|1̂, θ = B, zi)︸ ︷︷ ︸
=1

.

Thus, the two obedience constraints can be expressed as

pPr(1̂|θ = G, gi) ≥ (1− p) Pr(1̂|θ = B, gi), (OB1̂
g)

(1− p) Pr(1̂|θ = G, bi) ≥ pPr(1̂|θ = B, bi). (OB1̂
b )

We can invoke the construction of the new disclosure policy d from d′ to rewrite:

Pr(1̂|θ, gi) =
∑
r′∈R′

Pr(1̂, r′|θ, gi) (1.37)

=
∑
r′∈R′

2∑
k−i=0

Pr(1̂, r′, k−i|θ, gi) (1.38)

=
∑
r′∈R′

2∑
k−i=0

Pr(k−i|θ, gi) Pr(r′|k−i, θ, gi) Pr(1̂|r′, k−i, θ, gi) (1.39)

=
∑
r′∈R′

2∑
k−i=0

Pr(k−i|θ, gi) Pr(r′|k−i, θ, gi)d(1̂|r′, k = k−i + 1) (1.40)

Analogously, for zi = b we have

Pr(1̂|θ, bi) =
∑
r′∈R′

2∑
k−i=0

Pr(k−i|θ, bi) Pr(r′|k−i, θ, bi)d(1̂|r′, k = k−i) (1.41)

We can use this to rewrite the obedience constraints under the new disclosure policy:

∑
r′∈R′

2∑
k−i=0

pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)d(1̂|r′, k = k−i + 1)

≥
∑
r′∈R′

2∑
k−i=0

(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)d(1̂|r′, k = k−i + 1)
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⇔
∑
r′∈R′

2∑
k−i=0

d(1̂|r′, k = k−i + 1)[pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)] ≥ 0. (OB1̂
g)

Using the construction of the new disclosure policy, we can rewrite

∑
r′∈R′

a(r′, gi)
2∑

k−i=0
Pr(piv|r, k−i, bi)[pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)] ≥ 0. (1.42)

Analogously, for zi = b we have

∑
r′∈R′

a(r′, bi)
2∑

k−i=0
Pr(piv|r′, k−i, bi)[(1− p) Pr(k−i|θ = G, bi) Pr(r′|k−i, θ = G, bi)

−pPr(k−i|θ = B, bi) Pr(r′|k−i, θ = B, bi)] ≥ 0.
(OB1̂

b )

Note that the original disclosure policy d′ is implementable, i.e., the obedience
constraint holds for each type zi ∈ {gi, bi} and each message r′ ∈ R′, when ai(r′, zi) > 0.
That is,

2∑
k−i=0

Pr(piv|r′, k−i, gi)[pPr(k−i|θ = G, gi) Pr(r′|k−i, θ = G, gi)

−(1− p) Pr(k−i|θ = B, gi) Pr(r′|k−i, θ = B, gi)] ≥ 0. (OBr′
g )

2∑
k−i=0

Pr(piv|r′, k−i, bi)[(1− p) Pr(k−i|θ = G, bi) Pr(r′|k−i, θ = G, bi)

−pPr(k−i|θ = B, bi) Pr(r′|k−i, θ = B, bi)] ≥ 0. (OBr′
b )

The inner sums in the obedience constraints under the new disclosure policy d, OB1̂
b

and OB1̂
g , correspond to the original obedience constraints, OBr′

g and OBr′
b , under the

former disclosure policy d′. This establishes that the filtering d satisfies both obedience
constraints and yields the same payoff to the designer.
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A.2 Proof of Lemma 1

Proof. We prove this by contradiction. Assume that the disclosure policy d is optimal
and that there exists k′ such that d[1̂|θ = G, k′] 6= 1. Then, construct a new disclosure
policy d′ that is equal to the old disclosure policy d for all k 6= k′ and θ. For k = k′ and
θ = G, it sends recommendation 1̂ with probability 1. That is d′[1̂|θ = B, k] = d[1̂|θ =
B, k] ∀k′, d′[1̂|θ = G, k] = d[1̂|θ = G, k] ∀k′ 6= k and d′[1̂|k′] = 1 6= d[1̂|k′]. Next we
check whether the new disclosure policy d′ still fulfills the voters’ obedience constraints.
Note that if the recommendation 0̂ was sent, no voter is ever pivotal, which is why this
does not influence the obedience constraints. Sending the recommendation 1̂ for any k
when θ = G increases the left hand side of the voters’ obedience constraints and thus
makes them easier to satisfy. The new disclosure policy relaxed the voters’ obedience
constraints and sends 1̂ with a strictly higher probability.

A.3 Proof of Proposition 2

Proof. The only part of above proposition that we have not proven is d[1̂|θ = B, k 6= 3].
In the following we will use the greedy algorithm (Dantzig, 1957) to solve this problem.
We have a fractional knapsack problem of the following form:

Find 0 ≤ xk = d[1̂|θ = B, k] ≤ 1 for k ∈ {0, 1, 2} s.t.

1)
2∑

k=0
xkwk ≤ (1−p)

p
holds and

2)
2∑

k=0
xkvk is maximized,

where wk = 3−k
3 Pr(k|θ = B) and vk = Pr(k|θ = B) · 1. We refer to wk as the weight

and to vk as the value of k.

Next we calculate the value-per-weight ratio ρk = vk
wk

for k ∈ {0, 1, 2}:

ρk = Pr(k|θ = B)
3−k

3 Pr(k|θ = B)
= 3

3− k (1.43)

Variable ρk is increasing in k. Hence, if we sort the k’s by decreasing ρk, we get the
following order 2, 1, 0. How much probability mass we can place on each k until the
obedience constraint of the b-signal voter is binding, will depend on the accuracy level
of the voters’ private signals p.
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A.4 Proof of Proposition 3

Proof. Consider the same filtering of the original disclosure policy d′ into d as in the
proof of Proposition 1:

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k.

It remains to be shown that this disclosure policy d satisfies the honesty constraints
for each type. The proof of optimality for the designer, and the validity of the obedi-
ence constraints were already established in Proposition 1. We prove that the above
filtering satisfies the honesty constraints of the g-type. The argument for the b-type is
accordingly, and therefore omitted.

Expected utility in equilibrium with d and d′. First, we show that the old
disclosure policy d′ and new disclosure policy d yield exactly the same expected utility
to the g-type in equilibrium, when reporting truthfully. Let R be the message set of
the designer with d′.8

EU(gi, ĝi; d′) =
∑
r∈R

Pr(r|gi, ĝi)(Pr(θ = G|r, gi, ĝi; d′)−
1
2) Pr(a = 1) (1.44)

=
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)ai(r, g)k−i+1ai(r, b)2−k−iq(r, gi, ĝi, k−i),

(1.45)

where q(r, gi, ĝi, k−i) = (Pr(θ = G|r, gi, ĝi, k−i) − 1
2) is the expected net utility from

implementing the proposal if a g-type voter reported truthfully, k−i others also have a
g-signal and the designer sent recommendation r. The factor ai(r, g)k−i+1ai(r, b)2−k−i

accounts for the probability of being pivotal (ai(r, g)k−iai(r, b)2−k−i) times the probabil-
ity of the g-type voter i voting for the reform ai(r, g) in equilibrium.

Next, consider the expected utility under the new disclosure policy d. Whenever
the information designer sends recommendation 1̂ (which happens with probability
ai(r, g)k−i+1ai(r, b)2−k−i if recommendation r would have been sent in d′) the reform is
implemented.

EU(gi, ĝi; d) =
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)d(1̂|r, k = k−i + 1)q(r, gi, ĝi, k−i)

=
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)ai(r, g)k−i+1ai(r, b)2−k−iq(r, gi, ĝi, k−i).

(1.46)

This coincides with the utility under the original disclosure policy in Equation 2.41,
EU(gi, ĝi; d) = EU(gi, ĝi; d′).

8For convenience of notation, we assume that R is finite.
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Expected utility from misreporting in d′. Next, consider the utility of a g-voter
who reports b̂ in the original disclosure policy d′. To account for double deviations, we
denote by ãi(r, gi, b̂i) his action after observing r when reporting b̂.

EU(gi, b̂i; d′) =
∑
r∈R

max
ãi(r,gi,b̂i)∈[0,1]

ãi(r, gi, b̂i)· (1.47)

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′)ai(r, g)k−iai(r, b)2−k−iq(r, gi, b̂i, k−i).

For simplicity of notation, denote by EU(r|gi, b̂i) the optimal utility after misreporting
and observing recommendation r. Note that EU(r|gi, b̂i) ≥ 0 for all r, as a voter can
always derive zero utility by voting against the reform. Hence,

EU(gi, b̂i; d′) =
∑
r∈R

EU(r|gi, b̂i). (1.48)

Expected utility from misreporting in d. Finally, consider the expected utility
after misreporting in the new disclosure policy d. The voter optimizes over his action
ã(1̂, gi, b̂i) after recommendation 1̂ after misreporting. For simplicity, we assume that
the voter votes for the reform with probability ã(1̂, gi, b̂i) after both recommendations
1̂ and 0̂, as his utility after recommendation 0̂ yields utility 0 irrespective of his action.
The difference to d′ is that he might not know which r lead to the recommendation 1̂.

EU(gi, b̂i; d) = max
ã(1̂,gi,b̂i)∈[0,1]

ã(1̂, gi, b̂i)·

∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′) ai(r, g)k−iai(r, b)3−k−i︸ ︷︷ ︸
=Pr(1̂|r,k=k−i)

q(r, gi, b̂i, k−i).

(1.49)

If the voter knew which r of the original disclosure policy d′ led to recommendation
1̂, he would be better off: he could adapt his voting decision ã(1̂, r, gi, ĝi) to each r
(instead of choosing the same ã(1̂, gi, ĝi) for all r that led to 1̂). Thus,

EU(gi, b̂i; d) ≤
∑
r∈R

max
ã(1̂,r,gi,b̂i)∈[0,1]

ã(1̂, r, gi, b̂i)·

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′) ai(r, g)k−iai(r, b)3−k−i︸ ︷︷ ︸
=d(1̂|r,k=k−i)

q(r, gi, b̂i, k−i)

(1.50)
=
∑
r∈R

ai(r, b) max
ã(1̂,r,gi,b̂i)∈[0,1]

ã(1̂, r, gi, b̂i)·

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′)ai(r, g)k−iai(r, b)2−k−iq(r, gi, b̂i, k−i),

(1.51)
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where the last inequality follows by putting the non-negative factor ai(r, b) outside the
maximum. But then note that the maximization problem point-wise after each r is
exactly the same as in Equation 2.47 for the original disclosure policy, EU(r|gi, b̂i),
which is non-negative. Hence, the optimal deviation utility is bounded above by

EU(gi, b̂i; d) ≤
∑
r∈R

ai(r, b)︸ ︷︷ ︸
∈[0,1]

EU(r|gi, b̂i)︸ ︷︷ ︸
≥0

(1.52)

≤
∑
r∈R

EU(r|gi, b̂i) (1.53)

= EU(gi, b̂i; d′). (1.54)

The payoff after a misreport and an optimal best response is weakly lower than in
the original disclosure policy. Note that the original disclosure policy d′ by assumption
satisfied all constraints, including the honesty constraint of the g-type. Hence, we
established that the honesty constraint of the g-type holds by proving

EU(gi, ĝi; d) = EU(gi, ĝi; d′) ≥ EU(gi, b̂i; d′) ≥ EU(gi, b̂i; d).

A.5 Proof of Lemma 4

Proof. First, we rewrite the honesty constraint of g-type to sum over k instead of k−i.

3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0

⇔
3∑

k=1

k

3(d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G)︸ ︷︷ ︸
OB1̂

g

≤
3∑

k=1

k

3(d[1̂|θ = B, k − 1] Pr(k|θ = B)− d[1̂|θ = G, k − 1] Pr(k|θ = G)︸ ︷︷ ︸
∗

.

Observe that we have rewritten Hg such that the LHS of Hg is just OB1̂
g . We

rewrite (∗), i.e., the RHS of Hg, into

2∑
k=0

k + 1
3 (d[1̂|θ = B, k] Pr(k + 1|θ = B)− d[1̂|θ = G, k] Pr(k + 1|θ = G). (1.55)

Next, we subtract
2∑

k=0

3−k
3 (d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k]) Pr(k|θ = G) ≤
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0, which is just OB(b) ≤ 0 rewritten, and get

2∑
k=0

(d[1̂|θ = B, k](3− k
3 Pr(k + 1|θ = B)− k

3 Pr(k|θ = B)) (1.56)

− d[1̂|θ = G, k](3− k
3 Pr(k + 1|θ = G)− k

3 Pr(k|θ = G)).

Rewriting yields

2∑
k=0

(d[1̂|θ = B, k]p2−k(1− p)k(1− 2p)− d[1̂|θ = G, k]pk(1− p)2−k(2p− 1) ≤ 0.

Thus, we have that for all k ≤ 2 the expression above is negative. Note that
(∗) − OB1̂

b is the sum of these negative terms and is thus also negative. Moreover,
OB1̂

g ≤ 0 implies that (∗) ≤ 0. Since OB1̂
g ≤ (∗) by equation (1.55), we have that

OB1̂
g ≤ 0, which proves the lemma.

A.6 Proof of Proposition 4

Proof. First, we take the Dual of the Primal and get

min
λ
OB1̂

b

≥0, λHg≥0, λHb≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑
k=0

µθ=B, k +
3∑

k=0
µθ=G, k (1.57)

s.t. p3−k(1− p)k 1
2

(
−
(

3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(1.58)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1
2

(
−
(

3
k

)
− (λ

OB1̂
b
− λHb)

(
2
k

)
− λHg

(
2

k − 1

))
(1.59)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and
{~λ, ~µ} feasible vector for the dual. Necessary and sufficient conditions for them to be
optimal are
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λ
OB1̂

b
·
( 2∑
k=0

(
2
k

)
(d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k] Pr(k|θ = G)1
2)
)

= 0

(1.60)

λHg · (
3∑

k=1

(
2

k − 1

)
((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (1.61)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

λHb · (
2∑

k=0

(
2
k

)
((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (1.62)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (1.63)

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (1.64)

d[1̂|θ = B, k] · (p3−k(1− p)k
(
−
(

3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(1.65)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k
(
−
(

3
k

)
− (λ

OB1̂
b

+ λHb)
(

2
k

)
− λHg

(
2

k − 1

))
(1.66)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}.

The dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1

p

λHg = 1
λHb = 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}

µθ=G, k = pk−1(1− p)2−k ·
(
p(1− p)

((
3
k

)
+
(

2
k−1

))
+ (1− p− p2)

(
2
k

))
∀k ∈ {0, 1, 2, 3}


(1.67)
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and the disclosure policy d[1̂|θ = G] = 1, d[1̂|θ = B] = (1−p)
p

fulfill the above com-
plementary slackness conditions for all p ≤ 1√

2 .

After inserting d[1̂|θ = G] = 1 and d[1̂|θ = B] = 1−p
p

in 1.60-1.62 and 1.63, one
can easily see that the terms in brackets are zero. Thus, we get that λ

OB1̂
b
≥ 0, λHg ≥

0, λHb ≥ 0 and µθ=G,k ≥ 0 ∀ k ∈ {0, . . . , 3}. Since d[1̂|θ, k] > 0 ∀ θ ∈ {B,G}, k ∈
{0, 1, 2, 3}, the terms in brackets must be zero. By using that(

p3
(
−1 + λ

OB1̂
b

+ λHb

)
− λHgp2(1− p) + µθ=B, k=0

)
= 0 and (1.68)(

(1− p)3
(
−1 + λHg

)
− λHbp(1− p)2 + µθ=B, k=3

)
= 0 (1.69)

we can solve for λ
OB1̂

b
= 1

2p and λHb = (1−p)(λHg−1)
p

. For λHb ≥ 0 we need that λHg ≥ 1
2 .

Choosing λHg = 1
2 implies that λHb = 0. Inserting these values for λ

OB1̂
b
, λHg and λHb

and solving for µθ=G, k=0 yields µθ=G, k=0 = (1− p)2
(

1−2p2

p

)
, which is ≥ 0 if and only if

0.5 < p ≤ 1√
2 . For k ∈ {1, 2} we get that

µθ=G, k = pk−1(1− p)2−k ·
(
p(1− p)(

(
3
k

)
+
(

2
k − 1

)
) + (1− p− p2)

(
2
k

))
≥ 0 (1.70)

for all p ≤ 1√
2 .

A.7 Proof of Proposition 5

Proof. The disclosure policy in Proposition 5 and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1

p

λHg = 1
λHb = 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}
µθ=G,k=0 = 0

µθ=G,k=1 = 2(1− p)(1 + p− 3p2)
µθ=G, k=2 = p(1− p)(5p+ 1)− p3

µθ=G, k=3 = 2p3



(1.71)

fulfill the above complementary slackness conditions for all p ≤ p.
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A.8 Proof of Proposition 6

Proof. The disclosure policy in Proposition 6 and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 3(3p2−3p+1)

2(2p−1)

λHg = 3p(1−p)
2p−1

λHb = 0
µθ=B,k = 0 ∀k ∈ {0, 1}

µθ=B,k=2 = 3p(1−p)2(3p(1+p)−1)
2(2p−1)

µθ=B,k=3 = (1− p)3
(
p(3p−1)−1

2p−1

)
µθ=G,k = 0 ∀k ∈ {0, 1}

µθ=G,k=2 = 3p2(1−p)(p(5−3p)−1)
2(2p−1)

µθ=G,k=3 = p3
(
p(5−3p)−1

2p−1

)



(1.72)

fulfill the above complementary slackness conditions for all p ≤ p < 1.

A.9 Proof of Proposition 7

Proof. We prove this proposition by the standard Primal-Dual-technique. The primal
of the related problem of maximizing Pr(1̂|b) is given by:

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

3∑
k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)1

2 + d[1̂|θ = G, k] Pr(k|θ = G)1
2

) 3− k
3

(1.73)

s.t.
2∑

k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)− d[1̂|θ = G, k] Pr(k|θ = G)) ≤ 0 (OB1̂

b )

3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G) (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)) ≤ 0

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (1.74)

Then, we take the Dual of the Primal and get:
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min
λ
OB1̂

b

≥0, λHg≥0, λHb≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑
k=0

µθ=B, k +
3∑

k=0
µθ=G, k (1.75)

s.t. p3−k(1− p)k 1
2

(
−3− k

3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(1.76)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1
2

(
−3− k

3

(
3
k

)
− (λ

OB1̂
b
− λHb)

(
2
k

)
− λHg

(
2

k − 1

))
(1.77)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}.

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and
{~λ, ~µ} feasible vector for the dual. Necessary and sufficient conditions for them to be
optimal are

λ
OB1̂

b
·
( 2∑
k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k] Pr(k|θ = G)1
2)
)

= 0

(1.78)

λHg · (
3∑

k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1
2 (1.79)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

λHb · (
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (1.80)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (1.81)

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3} (1.82)

d[1̂|θ = B, k] · (p3−k(1− p)k 1
2

(
−3− k

3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(1.83)
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− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k 1
2

(
−3− k

3

(
3
k

)
− (λ

OB1̂
b

+ λHb)
(

2
k

)
− λHg

(
2

k − 1

))
(1.84)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}

The disclosure policy

d[1̂|θ = G] = 1, d[1̂|θ = B] = (1− p)
p

(1.85)

and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1

λHg = 0
λHb = 0

µθ=B,k = 0 ∀k ∈ {0, . . . , 3}
µθ=G,k=0 = 2(1− p)3

µθ=G, k = 4pk(1− p)3−k ∀k ∈ {1, 2}
µθ=G, k=3 = 0


(1.86)

fulfill the above complementary slackness conditions for all p ∈ (1
2 , 1].

A.10 Proof of Proposition 8

Proof. The primal of the related problem of maximizing Pr(1̂|g) is given by:

max
{d[1̂|θ,k]≥0} θ∈{B,G}

k∈{0,1,2,3}

3∑
k=0

(
d[1̂|θ = B, k] Pr(k|θ = B)1

2 + d[1̂|θ = G, k] Pr(k|θ = G)1
2

)
k

3
(1.87)

s.t.
2∑

k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k]) Pr(k|θ = G)1
2 ≤ 0 (OB1̂

b )
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3∑
k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k] Pr(k|θ = G)1
2) (Hg)

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) ≤ 0

2∑
k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (Hb)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2) ≤ 0

d[1̂|θ, k]− 1 ≤ 0 ∀θ ∈ {B,G}, k ∈ {0, 1, 2, 3} (1.88)

Then, we take the Dual of the Primal and get

min
λ
OB1̂

b

≥0, λHg≥0, λHb≥0

{µθ, k ≥ 0}θ∈{B,G}, k∈{0,1,2,3}

3∑
k=0

µθ=B, k +
3∑

k=0
µθ=G, k (1.89)

s.t. p3−k(1− p)k 1
2

(
−k3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))
(1.90)

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k ≥ 0 ∀k ∈ {0, 1, 2, 3}

pk(1− p)3−k 1
2

(
−k3

(
3
k

)
− (λ

OB1̂
b
− λHb)

(
2
k

)
− λHg

(
2

k − 1

))
(1.91)

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k ≥ 0 ∀k ∈ {0, 1, 2, 3}.

Let {d[1̂|θ, k] ≥ 0}θ∈{B,G},k∈{0,1,2,3} be a feasible disclosure policy for the primal, and
{~λ, ~µ} feasible vector for the dual. Necessary and sufficient conditions for them to be
optimal are

λ
OB1̂

b
·
( 2∑
k=0

3− k
3 (d[1̂|θ = B, k] Pr(k|θ = B)1

2 − d[1̂|θ = G, k] Pr(k|θ = G)1
2)
)

= 0

λHg · (
3∑

k=1

k

3((d[1̂|θ = G, k − 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1
2

− (d[1̂|θ = B, k − 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0
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λHb · (
2∑

k=0

3− k
3 ((d[1̂|θ = G, k + 1]− d[1̂|θ = G, k]) Pr(k|θ = G)1

2 (1.92)

− (d[1̂|θ = B, k + 1]− d[1̂|θ = B, k]) Pr(k|θ = B)1
2)) = 0

µθ=B, k ·
(
d[1̂|θ = B, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3}

µθ=G, k ·
(
d[1̂|θ = G, k]− 1

)
= 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = B, k] · (p3−k(1− p)k 1
2

(
−k3

(
3
k

)
+ (λ

OB1̂
b

+ λHb)
(

2
k

)
+ λHg

(
2

k − 1

))

− λHgp2−k(1− p)k+1
(

2
k

)
− λHbp4−k(1− p)k−1

(
2

k − 1

)
+ µθ=B, k) = 0 ∀k ∈ {0, 1, 2, 3}

d[1̂|θ = G, k] · (pk(1− p)3−k 1
2

(
−k3

(
3
k

)
− (λ

OB1̂
b

+ λHb)
(

2
k

)
− λHg

(
2

k − 1

))

+ λHgp
k+1(1− p)2−k

(
2
k

)
+ λHbp

k−1(1− p)4−k
(

2
k − 1

)
+ µθ=G, k) = 0 ∀k ∈ {0, 1, 2, 3}.

The disclosure policy

d[1̂|θ = B, k] =


0 if k = 0
(p− 1

2 )(3−p)
2(2p−1) if k = 1

1 if k ∈ {2, 3}

, d[1̂|θ = G, k] =


0 if k = 0
(p− 1

2 )(3p2+5p−2)
2(6p2−5p+1) if k = 1

1 if k ∈ {2, 3}.
(1.93)

and the dual variables

{~λ, ~µ} =



λ
OB1̂

b
= 1+3p(p−1)

2(2p−1)

λHg = p(1−p)
2p−1

λHb = 0
µθ=B,k = 0 ∀k ∈ {0, 1}

µθ=B,k=2 = 3p(1−p)23(p2+p−1)
2(2p−1)

µθ=B,k=3 = (1− p)3
(
p2+p−1

2p−1

)
µθ=G,k = 0 ∀k ∈ {0, 1}

µθ=G,k=2 = 3p2(1−p)(3p−p2−1)
2(2p−1)

µθ=G,k=3 = p3
(

3p−p2−1
2p−1

)



(1.94)
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fulfill the above complementary slackness conditions for all p ≤ p < 1.

A.11 Proof of Lemma 5

Proof. Let the designer follow a disclosure policy d′, that sends messages r′ ∈ R′, and
voters responding optimally to this disclosure policy. Denote by ai(r′, zi) the probability,
that voter i with private signal zi ∈ {g, b} votes 1̂ after receiving message r′.

The first step is to show, that the g-type is always weakly more optimistic than
the b-type for any signal that is sent with strictly positive probability in some state
θ. The following formulation makes use of the fact that Pr(r′|θ, zi) = Pr(r′|θ) and
Pr(piv|r′, θ, zi) = Pr(piv|r′, θ), as the designer cannot use or elicit the private informa-
tion of the agents.

Lemma 6. Under any non-eliciting disclosure policy, in any equilibrium, the g-type is
more optimistic than the b-type: Pr(θ = G|r′, g, piv) ≥ Pr(θ = G|r′, b, piv).

Proof.

Pr(θ = G|r′, g, piv)

= Pr(θ = G|g) Pr(r′|θ = G) Pr(piv|r′, θ = G)
Pr(θ = G|g) Pr(r′|θ = G) Pr(piv|r′, θ = G) + Pr(θ = B|g) Pr(r′|θ = B) Pr(piv|r′, θ = B)

=
1
2pPr(r′|θ = G) Pr(piv|r′, θ = G)

pPr(r′|θ = G) Pr(piv|r′, θ = G) + 1
2 (1− p) Pr(r′|θ = B) Pr(piv|r′, θ = B)

≥
1
2 (1− p) Pr(r′|θ = G) Pr(piv|r′, θ = G)

(1− p) Pr(r′|θ = G) Pr(piv|r′, θ = G) + 1
2pPr(r′|θ = B) Pr(piv|r′, θ = B)

= Pr(θ = G|r′, b, piv)

Using Lemma 6, the following is a complete partition of the designer’s messages:

1. R′(0̂) := {r′ ∈ R′ : ai(r′, g) = ai(r′, b) = 0}

2. R′(1̂) := {r′ ∈ R′ : ai(r′, g) > 0 ∧ ai(r′, b) > 0}

3. R′(0̂1) := {r′ /∈ R′(0̂) ∪R′(1̂)}.

Consider the following alternative policy d, that takes the old disclosure policy d′
and maps it into a message space R = {0̂, 0̂1, 1̂}, for all states θ ∈ {B,G}:
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d(0̂|θ, r′) =


1 if r′ ∈ R′(0̂)
1− ai(r′, g)n−1 if r′ ∈ R′(0̂1)
1− Pr(piv|r′, θ) if r′ ∈ R′(1̂)
0 otherwise.

(1.95)

d(0̂1|θ, r′) =

ai(r′, g)n−1 if r′ ∈ R′(0̂1)
0 otherwise.

(1.96)

d(1̂|θ, r′) =

Pr(piv|θ, r′) if r′ ∈ R′(1̂)
0 otherwise.

(1.97)

Consider the following equilibrium under the new disclosure policy d:

ai(r, b) =


0 if r = 0̂
0 if r = 0̂1
1 if r = 1̂

and ai(r, g) =


0 if r = 0̂
1 if r = 0̂1
1 if r = 1̂

(1.98)

First, we establish that the above policy together with the voting behavior in Equa-
tion 1.98 is an equilibrium. Then, we show that the designer weakly prefers the disclo-
sure policy d with the restricted message set to the original disclosure policy d′.

Under the new disclosure policy d, after recommendation 0̂, no agent is ever pivotal;
he therefore has no profitable deviation from voting for the status quo.

After realization 1̂, each agent is pivotal with probability 1. The next lemma is
useful in establishing the obedience constraints of voters after realization 1̂.
Lemma 7. For r′ ∈ R′(1̂), we have Pr(θ = G|r′, 1̂, b) = Prd′(θ = G|r′, piv, b).

For r′ ∈ R′(0̂1) and zi ∈ {b, g}, we have Pr(θ = G|r′, piv, 0̂1, zi) = Prd′(θ =
G|r′, piv, zi).

Proof. Simple calculation show for r′ ∈ R′(1̂):

Pr(θ = G|r′, 1̂, b) = Pr(θ = G|r′, b) Pr(1̂|r′, θ = G)
Pr(θ = G|r′, b) Pr(1̂|r′, θ = G) + Pr(θ = B|r′, b) Pr(1̂|r′, θ = B)

(1.99)

and

Prd′(θ = G|r′, piv, b) = Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G)
Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G) + Prd′(θ = B|r′, b) Prd′(piv|r′, θ = B)

(1.100)

The lemma follows by construction of the new disclosure policy d, where Pr( ˆ1|r′, θ = G)
= Pr(piv|r′, θ = G) and Pr( ˆ1|r′, θ = B) = Pr(piv|r′, θ = B). Analogously, for r′ ∈
R′(0̂1):

Prd′(θ = G|r′, piv, b) = Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G)
Prd′(θ = G|r′, b) Prd′(piv|r′, θ = G) + Prd′(θ = B|r′, b) Prd′(piv|r′, θ = B)
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and

Pr(θ = G|r′, 1̂, b) = (1.101)
Pr(θ = G|r′, b) Pr(0̂1|r′, θ = G) Pr(piv|θ = G, 0̂1)

Pr(θ = G|r′, b) Pr(1̂|r′, θ = G) Pr(piv|θ = G, 0̂1) + Pr(θ = B|r′, b) Pr(1̂|r′, θ = B) Pr(piv|θ = B, 0̂1)

Under the old disclosure policy, we have Prd′(piv|r′, θ = G) = pn−1ai(r′, g)n−1. With
the new disclosure policy, we have Pr(0̂1|θ = G, r′)︸ ︷︷ ︸

=ai(r′,g)n−1

Pr(piv|θ = G, 0̂1)︸ ︷︷ ︸
=pn−1

, which is exactly

equal to Prd′(piv|r′, θ = G). By the same argument, we have Prd′(piv|r′, θ = B) =
Pr(0̂1|θ = B, r′), which proves the lemma.

Lemma 8. For r′ ∈ R′(1̂), we have: ∑r′∈R′(1̂) Pr(r′|1̂, b) = 1. For r′ ∈ R′(0̂1), and
zi ∈ {g, b}, we have ∑r′∈R′(1̂) Pr(r′|1̂, piv, zi) = 1.

Proof. First, consider r′ ∈ R′(1̂).

∑
r′∈R′(1̂)

Pr(r′|1̂, b) =
∑

r′∈R′(1̂)

Pr(r′, 1̂|b)
Pr(1̂|b)

=
∑
r′∈R′(1̂) Pr(r′, 1̂|b)∑

r′∈R′(0̂)∨R′(0̂1)∨R′(1̂) Pr(1̂, r′|b)

=
∑
r′∈R′(1̂) Pr(r′, 1̂|b)∑

r′∈R′(0̂) Pr(1̂, r′|b)︸ ︷︷ ︸
=0

+∑
r′∈R′(0̂1) Pr(1̂, r′|b)︸ ︷︷ ︸

=0

+∑
r′∈R′(1̂) Pr(1̂, r′|b)

= 1

The last step follows, because 1̂ is only send with strictly positive probability if
r′ ∈ R′(1̂).

Next, consider r′ ∈ R′(0̂1).

∑
r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi) =
∑

r′∈R′(0̂1)

Pr(r′, piv|0̂1, zi)
Pr(piv|0̂1, zi)

=

=
∑
r′∈R′(0̂1) Pr(r′, piv|0̂1, zi)∑

r′∈R′(0̂) Pr(piv, r′|0̂1, zi)︸ ︷︷ ︸
=0

+∑
r′∈R′(0̂1) Pr(piv, r′|0̂1, zi) +∑

r′∈R′(1̂) Pr(piv, r′|0̂1, zi)︸ ︷︷ ︸
=0

= 1.

The last step follows because 0̂1 is only send with strictly positive probability if
r′ ∈ R′(0̂1).
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The belief of each voter after 1̂ about the state being good, Pr(θ = G|1̂, zi), is a con-
vex combination of the beliefs under the old disclosure policy {Pr(θ = G|r′, piv, zi)}r′∈R(1̂),
as the following calculation shows.

Pr(θ = G|1̂, piv, b) = Pr(θ = G|1̂, b)
=

∑
r′∈R′(1̂)

Pr(r′|1̂, b) Pr(θ = G|r′, 1̂, b)

Lemma 7=
∑

r′∈R′(1̂)

Pr(r′|1̂, b)
d′

Pr(θ = G|r′, piv, b)︸ ︷︷ ︸
≥ 1

2

≥ 1
2 .

We have Prd′(θ = G|r′, piv, b) ≥ 1
2 , because ai(r

′, b) > 0 in the original equilibrium
for d′: the b-type (weakly) prefers the proposal to the status quo.

Because the g-type is more optimistic under any disclosure policy (Lemma 6), we
also have Pr(θ = G|1̂, g) ≥ Pr(θ = G|1̂, b) ≥ 1

2 . The g-type prefers the proposal to
the status quo after observing 1̂. Both voters have hence no profitable deviation from
voting for the proposal.

Finally, consider a signal 0̂1. Using Lemma 6, as the g-type is always more optimistic
than the b-type, we have ai(r′, b) = 0 and ai(r′, g) > 0 for any recommendation r′ ∈
R′(0̂1). As both voter types are pivotal with non-zero probability (by assumption, r’ is
sent with strictly positive probability), we have

Pr(θ = G|0̂1, piv, zi) =
∑

r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi) Pr(θ = G|r′, 0̂1, piv, zi) (1.102)

=
∑

r′∈R′(0̂1)

Pr(r′|0̂1, piv, zi)
d′

Pr(θ = G|r′, piv, zi)︸ ︷︷ ︸
≥(≤) 1

2 if zi=g(=b)

(1.103)

≥
1
2 if zi = g

≤ 1
2 if zi = b

(1.104)

Lemma 8 establishes, that the above is a convex combination; lemma 7 binds each
summand below 1

2 for zi = b, and above 1
2 for zi = g. Therefore, no voter has a profitable

deviation: after 0̂1, the g-type prefers the proposal, and the b-type the status quo.
The last remaining step is to show, that under the alternative constructed policy

d′, the designer is no worse off than under the disclosure policy d with an arbitrary
message space. We prove this by showing that under the new disclosure policy d, the
implementation probability of the proposal weakly increases for each r′.

Take r′ ∈ R′(0̂). Under both the old and the new disclosure policy, the proposal is
implemented with zero probability.

Take r′ ∈ R′(0̂1). Under the old disclosure policy, the proposal was implemented
with probability pnai(r′, g)n if θ = G, and (1 − p)nai(r′, g)n if θ = B. Under the new
disclosure policy, the proposal is being implemented with probability pnai(r′, g)n−1 if
θ = G, and (1 − p)nai(r′, g)n−1 if θ = B. The probabilities are higher under the new
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disclosure policy, because ai(r′, g)n−1 ≥ ai(r′, g)n.
Finally, take r′ ∈ R′(1̂). Under the old disclosure policy, the proposal was imple-

mented with probability Pr(piv|θ = G, r′)[pai(r′, g) + (1 − p)ai(r′, b)] if θ = G, and
with probability Pr(piv|θ = B, r′)[pai(r′, b) + (1− p)ai(r′, g)] if θ = B. Under the new
disclosure policy, the proposal is implemented with probability Pr(piv|θ, r′), which is
weakly higher.

A.12 Proof of Proposition 9

Proof. The primal of the sender’s problem is

max
{d[r|θ]≥0}

r∈{0̂1,1̂},θ∈{B,G}

∑
θ∈{B,G}

(d[1̂|θ] + d[0̂1|θ] Pr(k = 3|θ)) Pr(θ) (1.105)

s.t. d[1̂|θ] + d[0̂1|θ]− 1 ≤ 0 ∀θ ∈ {B,G} (1.106)
d[1̂|θ = B](1− p)− d[1̂|θ = G]p ≤ 0 (OB1̂

g)
d[1̂|θ = B]p− d[1̂|θ = G](1− p) ≤ 0 (OB1̂

b )
d[0̂1|θ = B](1− p)3 − d[0̂1|θ = G]p3 ≤ 0 (OB0̂1

g )
d[0̂1|θ = B]p(1− p)2 − d[0̂1|θ = G]p2(1− p) ≤ 0 (OB0̂1

g )

Next, we take the dual of the primal and get:

min
λOBg(1̂)≥0, λOBb(1̂)≥0
λ
OBg(0̂1)

≥0, λ
OBb(0̂1)

≥0
µθ=B≥0, µθ=G≥0

µθ=B + µθ=G (1.107)

s.t. − 1
2(1 + λOBg(1̂)p+ λOBb(1̂)(1− p)) + µθ=G ≥ 0 (1.108)

− 1
2(1 + λOBg(1̂)(1− p)− λOBb(1̂)p) + µθ=B ≥ 0 (1.109)

− 1
2p

2(p+ λOBg(0̂1)p− λOBb(0̂1)(1− p)) + µθ=G ≥ 0 (1.110)

− 1
2(1− p)2((1− p)− λOBg(0̂1)(1− p) + λOBb(0̂1)p) + µθ=B ≥ 0 (1.111)

Let {d[r|θ] ≥ 0}r∈{0̂1,1̂} be a feasible disclosure policy for the primal, and {~λ, ~µ}
feasible vector for the dual. Necessary and sufficient conditions for the optimal are:
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λOBg(1̂) ·
(
d[1̂|θ = B](1− p)− d[1̂|θ = G]p

)
= 0,

λOBb(1̂) ·
(
d[1̂|θ = B]p− d[1̂|θ = G](1− p)

)
= 0,

λOBg(0̂1) ·
(
d[0̂1|θ = B](1− p)3 − d[0̂1|θ = G]p3

)
= 0,

λOBb(0̂1) ·
(
d[0̂1|θ = B]p(1− p)2 − d[0̂1|θ = G]p2(1− p)

)
= 0,

µθ=B ·
(
d[1̂|θ = B] + d[0̂1|θ = B]− 1

)
= 0,

µθ=G ·
(
d[1̂|θ = G] + d[0̂1|θ = G]− 1

)
= 0,

d[1̂|θ = G] ·
(
−1

2(1 + λOBg(1̂)p+ λOBb(1̂)(1− p)) + µθ=G

)
= 0,

d[1̂|θ = B] ·
(
−1

2(1 + λOBg(1̂)(1− p)− λOBb(1̂)p) + µθ=B

)
= 0,

d[0̂1|θ = G] ·
(
−1

2p
2(p+ λOBg(0̂1)p− λOBb(0̂1)(1− p)) + µθ=G

)
= 0,

d[0̂1|θ = B] ·
(
−1

2(1− p)2((1− p)− λOBg(0̂1)(1− p) + λOBb(0̂1)p) + µθ=B

)
= 0.

It can be easily checked by substitution that the disclosure policy

{d[r|θ] ≥ 0}r∈{0̂1,1̂},θ∈{B,G} =



d[1̂|θ = G] = 1

d[1̂|θ = B] = (1−p)
p

d[0̂1|θ = G] = 0

d[0̂1|θ = B] = 0

(1.112)

and the dual variables

{~λ, ~µ} =



λOBg(1̂) = 0
λOBb(1̂) = 1

p

λOBg(0̂1) = 1 + λOBb(0̂1)
p

1−p

λOBb(0̂1) = (2p4− 1
2 )(1−p)

p3(1−2p)

µθ=B = 0
µθ=G = 1

2p


(1.113)

fulfill the above complementary slackness conditions for all p ≤ 1
4√2 = p̃.

Analogously, for p > p̃, the disclosure policy from Proposition 10 and the duals
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{~λ, ~µ} =



λOBg(1̂) = 0

λOBb(1̂) = 1
p
− (1−p)3(2p4−1)

p(p4−(1−p)4)

λOBg(0̂1) = 1− 2p4−1
p4−(1−p)4

λOBb(0̂1) = 0

µθ=B =
1
2 (1−p)3(2p4−1)
p4−(1−p)4

µθ=G = 1
2

(
1
p
− (1−p)4(2p4−1)

p(p4−(1−p)4)

)



(1.114)

fulfill the above complementary slackness conditions.

A.13 Proof of Proposition 10

Proof. The error probabilities lG (probabilities of convicting the innocent) and lB (ac-
quit the guilty) of a wrong decision are found in Feddersen and Pesendorfer (1998).
The expected utility of an uninformed voter in Feddersen and Pesendorfer (1998) is

1
2 (1− lG − lB) = 1

4
(2p− 1)3

(p3/2 + p
√

1− p−
√

1− p)2 . (1.115)

With a manipulative information designer the expected utility of a voter is

1
2 Pr(1̂|θ = G)1

2 + 1
2 Pr(1̂|θ = B)

(
−1

2

)
. (1.116)

Next, we show that the optimal disclosure policy of the designer in each of the three
intervals for p yields a strictly higher utility to the voter.

Case 1: 1
2 < p ≤ 1√

2 . Using the optimal disclosure policy in Proposition 4, the utility
of the ex ante type is 1

41 − 1
4

1−p
p

= 1
4

2p−1
p

. Comparing this with Equation 1.115 shows
that the utility in case 1 is strictly higher for all p ∈ (1

2 , 1).
Case 2: 1√

2 < p ≤ 1+
√

13
6 . With the optimal disclosure policy in Proposition 5,

Pr(1̂|θ = G) = 1 − (1 − p)3 and Pr(1̂|θ = B) = (p − 1)(p2 − 2). A voter’s expected
utility is 1

4(2p−1)(2−p), which can be again easily checked to be larger than Equation
1.115 for all p ∈ (1

2 , 1).
Case 3: 1+

√
13

6 ≤ p < 1. In this case, the probabilities of choosing the proposal are
Pr(1̂|θ = G) = 1

4p (3p3 − 8p2 + 3p+ 6) and Pr(1̂|θ = B) = 1
4(p− 1) (3p3 − p2 − 4p− 4).

This yields an expected utility of 1
8 [(2p− 1)(p+ 1)(2− p)] . This is higher than the

expected utility in Feddersen and Pesendorfer (1998) in Equation 1.115.
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Chapter 2

Clueless Persuasion

1. Introduction

Attempting to influence the beliefs of people to affect their decisions in one’s own favor
is common behavior. Interested parties try to persuade others by providing information
and making recommendations. Often, these interested parties are clueless in the sense
that they have no superior or even no knowledge about decision relevant issues at all,
while each decision maker privately happens to be better informed. The fact that
decision makers are nonetheless sometimes willing to follow the recommendations of
somebody uninformed is rooted in the aggregation of information: If the interested
party is able to aggregate the private but imperfect knowledge of all decision makers,
she can make recommendations based on more meaningful information. This equips
the interested party with some persuasion power and leads to the question to which
extent she can persuade the decision makers.

Consider for example a CEO who tries to convince a board of directors to vote for a
new proposal. The CEO wishes to always implement the proposal to improve short-term
performance. Directors, however, only want to approve the proposal if it increases long-
term performance. While the CEO has no information about the proposal’s long-term
consequences, directors have superior, private knowledge about the long-term effects of
the proposal. We are interested in how the CEO can elicit this private information from
each director and then use the aggregated information in order to convince directors to
vote for the proposal.

In our model an information designer attempts to convince a committee of voters
to approve a proposal with unanimity. The proposal’s quality is unknown and can be
either high or low. The information designer and all voters share the same prior about
the proposal having a high quality. If voters knew the quality, they would agree on the
optimal decision: If the quality was high, the committee would want to approve the
proposal, while if it was low, the committee would want to reject it. In contrast, the
information designer aims for the approval of the proposal irrespective of its quality.
Each voter receives a binary signal about the quality that determines whether he is
optimistic or pessimistic about the proposal. This signal is a voter’s private information.
The information designer does not possess any information about the quality of the
proposal but she can ask voters for reports about their private information. Based on
these reports, the information designer sends a public recommendation to all voters.
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Upon observing the information designer’s recommendation, voters update their beliefs
about the quality and either vote for or against the proposal. Although voters are
aware of the information designer’s interest in the proposal, they might nevertheless
want to follow her recommendation. This is because the recommendation is based on
the aggregated information of all voters’ private signals, which is a better indicator of
the quality than each voter’s private signal alone.

The main contribution of this paper is to unveil the extent to which an uninformed
information designer can persuade imperfectly informed voters by first asking for reports
about their private information and sending public recommendations based on these
reports afterwards. We characterize in how far the private information of voters restricts
the information designer in her scope for persuasion. In contrast to Bobkova and Klein
(2019), the information designer in this paper has initially no informational advantage
over voters.

In this paper, we consider restricted information design. In contrast to unrestricted
information design, a restricted information designer is not able to condition his dis-
closure policy on the true state of the world. In our benchmark case we consider an
omniscient information designer who can observe the private signal realizations of all
voters. We show that the omniscient information designer uses a threshold policy: she
recommends the proposal with probability one for any number of optimists above a
certain cutoff, mixes at the cutoff, and recommends the status quo with certainty be-
low the cutoff. The cutoff is such that a pessimistic voter is indifferent between the
proposal and the status quo after the recommendation to vote for the proposal.

Next, we consider an eliciting information designer who cannot observe the private
information of voters but can ask them for reports about their signal realizations. We
show that the eliciting information designer is sometimes able to achieve the persuasion
benchmark of the omniscient information designer: for a large range of precision levels
and ex-ante probabilities, the eliciting sender can implement the optimal disclosure
policy from the omniscient benchmark case and is no worse off. That is, despite the
omniscient sender having the superior knowledge about the signal realizations of all
voters, she has no larger scope for persuasion than the eliciting sender. Within this
range of precision levels and ex-ante probabilities, the private information of voters
does not restrict the eliciting information designer in her scope for persuasion. Beyond
this range, the eliciting sender is no longer able to implement the omniscient sender’s
optimal disclosure policy.

We characterize the eliciting sender’s optimal disclosure policy for the area of non-
implementability of the omniscient benchmark case. One of the main observations for
this area is that the eliciting sender recommends the proposal less often when there are
more optimistic voters but more often when there are more pessimistic voters compared
to the omniscient sender. The reason for this is that under the threshold policy of
the omniscient sender, optimistic voters would always have a profitable deviation by
misreporting their private signal. To counteract this effect, the eliciting sender starts to
recommend the proposal more often in states with less optimistic reports of voters to
increase the expected loss from misreporting. This shift in probability mass is such that
optimistic voters are just indifferent between reporting truthfully and misreporting. For
very high precision levels and ex-ante probabilities this even forces the eliciting sender
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to use non-monotone disclosure policies. That is, the sender uses policies in which she
recommends the proposal with a higher probability in states where less good than bad
signals have been reported.

We find that allowing the sender to make her recommendations privately to each
voter and to discriminate between voters does not extend her scope for persuasion.
Instead, she uses the same disclosure policy as the sender who makes her recommenda-
tions publicly and treats each voter symmetrically.

2. Related Literature

Our paper can be classified into the literature on information design and on incomplete
information correlated equilibrium.

In their seminal paper Kamenica and Gentzkow (2011) solve the persuasion prob-
lem of an information designer who faces one agent that has no private information.
While Kamenica and Gentzkow (2011) analyze unrestricted information design where
the information designer is unrestricted in her ability to construct experiments condi-
tional on the true state of the world, we focus on restricted information design where
the information designer cannot condition her messages on the true state of the world.
In our model all information stems from the agents, and the information designer has
no informational advantage over these agents.

Unrestricted information design makes the additional assumption that the informa-
tion designer can commit herself to any experiment with an arbitrary precision level
about the true state of the world. Many authors have contributed to the unrestricted
information design literature with multiple receivers; examples include Wang (2015),
Chan et al. (2018), Alonso and Câmara (2016), and Bardhi and Guo (2018). Alonso
and Câmara (2016) analyze how a biased politician can persuade a committee of het-
erogeneous voters to vote for a reform and how the voting rule in use alters the results.
Chan et al. (2018) also study the persuasion of multiple voters with heterogeneous vot-
ing costs. They show that the designer is better off under private persuasion than under
public persuasion as she is able to exploit the heterogeneity in voting cost when she
privately communicates with the voters.

The paper that shares the most similarities to ours is Bardhi and Guo (2018). They
study persuasion of a committee consisting of uninformed voters with heterogeneous but
correlated payoff types under unanimity rule. They consider two different persuasion
modes: under general persuasion the designer’s message depends on every voter’s payoff
type while under individual persuasion the message that is sent to a voter depends only
on that voter’s payoff type. While they focus on an information designer who sends
messages to each agent in private, we set priority to public messages. Bardhi and Guo
(2018) find that restricting the information designer to public messages is without loss
under some conditions. This finding is in line with our result on public versus private
persuasion. A comparison of private and public persuasion in a collective decision
making environment is conducted by Wang (2015). While in Wang (2015) signals are
drawn independently under private persuasion, signals are correlated in our analysis of
private persuasion. Wang (2015) finds that the information designer is weakly better
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off when she uses public instead of private signals.
Besides the designer’s access to an arbitrary precise experiment, a further crucial

difference between the above research and the present paper is that all of the above
mentioned papers do not allow for private information on the receiver’s side. The payoff
types of all agents are common knowledge and do not carry any further information.
In our model each agent possesses some private signal that is correlated with the payoff
relevant state of the world. Our information designer does not know which committee
constellation she is facing which is why she has to first elicit this information from the
agents in an incentive compatible way.

Among the papers that add private information on the receiver side, the following are
most related to ours. In a recent paper, Kolotilin et al. (2017) study the persuasion of
one receiver that has private information about his own payoff type. They characterize
the designer’s payoff maximizing disclosure rule for the case where she elicits the agent’s
private information and for the case where she does not. They find that in a binary
setting with two states of the world and two actions of the agent the information
designer cannot profit from eliciting the agent’s private information before persuading
him. Since in our model all information stems from the agents, the information designer
is forced to elicit this private information first. Although their work relates to ours with
respect to the private information on the receiver’s side, in contrast to them, we study
the persuasion of multiple privately informed receivers.

Bergemann et al. (2018) characterize the revenue maximizing solution to an infor-
mation design problem with elicitation and monetary transfers. In contrast to them,
we do not allow for monetary transfers. Heese and Lauermann (2018) analyze the per-
suasion of large electorates in which voters are heterogeneous and privately informed
about their payoff type. They show that when the size of the electorate grows infinitely
large, the information designer is able to achieve the implementation of her preferred
outcome with probability one. While they are interested in limit results and do not
study the elicitation of voters’ private information, we focus on small committees where
the elicitation of the voters’ private signals is essential.

Bergemann and Morris (2016b) motivate the concept of omniscient and private
unrestricted persuasion of one agent that possesses some private information.1 We
extend their analysis to a setting in which the information designer is restricted and
faces multiple privately informed agents. For an extensive overview of the existing
literature on information design and its link to other literature streams see Bergemann
and Morris (2017).

Our paper relates to the literature on strategic voting (see e.g. Austen-Smith and
Banks, 1996; Coughlan, 2000; Feddersen and Pesendorfer, 1997, 1998; Gerardi and
Yariv, 2007). Feddersen and Pesendorfer (1998) show that there does not exist an
equilibrium under unanimity rule in which strategic voters vote sincerely (i.e., vote
truthfully according to their own private signals). The reason for that is that strategic
voters only take the events into account in which they are pivotal. They show that under
unanimity rule the error probability of implementing the inefficient decision is higher
than under any other majority rule. We extend the work of Feddersen and Pesendorfer
(1998) by adding a manipulative information designer to their model and analyze how

1Their terminology private corresponds to information design with elicitation.
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the designer can influence the agents’ voting behavior by giving recommendations based
on the aggregated information of all agents.

3. Model

There is one information designer and three voters. Each voter has to make a decision
between voting for a proposal or voting for a status quo. The biased information
designer tries to persuade voters to vote for the proposal. If voter i ∈ {1, 2, 3} votes for
the proposal, we write ai = 1, and ai = 0 if he votes for the status quo. The proposal
requires unanimity and we write a = 1 if ai = 1 ∀i and a = 0 if ∃i s.t. ai = 0.

The utility a voter receives from the proposal depends on an uncertain state of the
world θ ∈ {B,G}, where Pr(θ = G) = q ∈ (0, 1). That is,

ui(a, θ) =

1{θ=G} − 1
2 if a = 1

0 if a = 0.

Voters share a common interest: when θ = G all voters want to implement the
proposal, while when θ = B, all agree on the status quo. In contrast, the sender is biased
towards the proposal and always wants the proposal to be implemented independent of
the state of the world. uS(a) = a depicts the sender’s utility function.

Each voter receives a private signal zi ∈ {b, g} that is correlated with the true state
of the world, i.e., Pr(zi = g|θ = G) = Pr(zi = b|θ = B) = p ∈ (1

2 , 1). While a voter i
with a good signal zi = g believes that θ = G is more likely than θ = B and thus is
more optimistic about the proposal, a voter with a bad signal zi = b considers it more
likely that θ = B and is thus rather pessimistic about the proposal. For notational
convenience we will sometimes use gi and bi respectively as a short cut for voter i
having received signal zi = g and zi = b respectively. We assume that p + q ≥ 1 and
p ≥ q . This assumption guarantees that if a voter had to make a decision on his own,
he would want to follow his own private signal.

Let Z = {g, b}3 be the set of signal realizations with typical element z = (z1, z2, z3) ∈
Z and let k(z) be the number of g-signals in a typical signal realization z. By z−i ∈ Z−i
we denote the signals of all voters except voter i, where Z−i is the set of all signal
realizations except voter i’s signal. We use k as a shortcut to refer to k(z) and k−i to
refer to k(z−i). Denote by Z+ the set of approval states, that is, states in which voters
would want to implement the proposal if z was known. Since Pr(θ = G|k) > 1

2 for all
k ∈ {2, 3}, all states z with k(z) ∈ {2, 3} belong to Z+. Likewise, denote by Z− the
set of rejection states, that is, states in which voters wouldn’t want to implement the
proposal. Since Pr(θ = G|k) < 1

2 for all k ∈ {0, 1}, all states z with k(z) ∈ {0, 1}
belong to Z−, where Z+ = {z| k ≥ 2} and Z− = {z| k < 2}.

4. Restricted Information Design

4.1 Restricted Omniscient Information Designer

We begin our analysis with the benchmark case of an omniscient sender. The sender
is omniscient in that she is able to observe the true signal realizations of all voters and
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can condition her recommendations on z. The problem of the omniscient sender is to
design a disclosure policy d : Z → ∆(R) which maximizes the probability of all voters
voting for the proposal, where R is the set of all possible public recommendations. We
restrict the sender to anonymous disclosure policies, i.e., disclosure policies that do not
discriminate between voters and only condition on k(z) but not on z.

Assumption 3. The sender’s disclosure policy is anonymous, i.e., the probability of
sending any recommendation is the same ∀z, z′ with k(z) = k(z′).

We impose the following assumption on the voting behavior of indifferent voters.

Assumption 4. If a voter is indifferent between his actions, he follows the recommen-
dation of the sender.

Given these two assumptions, we find that it is without loss of generality to restrict
the omniscient sender to use only two recommendations 0̂ and 1̂. 0̂ corresponds to the
public recommendation that every voter, independent of his private signal, should vote
for the reform, while after 1̂ every voter should vote for the proposal.

Proposition 11. Under unanimity, it is without loss of generality to restrict the rec-
ommendation set of the restricted and omniscient sender to R = {0̂, 1̂}.

All omitted proofs are in the appendix. In the information design literature, it
is a well-known result that if the agent has only two available actions, it is without
loss of generality to restrict the recommendation set to two recommendations that
correspond to the agent’s actions. Note that in our setting we are persuading with
one recommendation a group of voters with heterogeneous private information. As the
voters hold a private piece of information (signal g or b), one might conjecture that the
sender requires strictly more than two signals. After all, there are three possibilities
after any recommendation: (i) both types vote for the proposal; (ii) both types vote for
the status quo; (iii) only one private information type votes for the proposal, and the
other against it. However, it turns out that a third message can never strictly improve
the payoff of an omniscient sender under unanimous voting.

Taking everything into account we can define the disclosure policy of the sender in
the following way

d : {0, 1, 2, 3} → 4{0̂, 1̂}. (2.1)

That is, we aim at characterizing a vector with 4 components {d[1̂|k]}k∈{0,1,2,3} ∈
[0, 1]4. Upon receiving the sender’s recommendation, voters update their beliefs about
θ according to Bayes Rule. Voters follow the recommendation of the sender if they
receive a weakly higher expected utility from obeying than from disobeying.

Note that under unanimity rule a voter is always pivotal after recommendation
r = 1̂ and never pivotal for r = 0̂. This is because after r = 1̂, given that obedience
constraints hold, all voters vote for the proposal which is why a single vote determines
the outcome. In contrast, after r = 0̂, everyone vote for the status quo which is why the
status quo is implemented irrespective of what one single voter is doing. As a result,
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a voter always obeys the recommendation 0̂ and obeys the recommendation 1̂ if the
following obedience constraint holds

Pr(θ = G|1̂, zi)−
1
2 ≥ 0 (OB1̂

zi
)

⇔
2∑

k−i=0
Pr(k−i|zi, 1̂) Pr(θ = G|zi, k−i)−

1
2 ≥ 0 ∀zi ∈ {g, b}.

For a voter with zi = g further rewriting yields2

2∑
k−i=0

d[1̂|k−i, gi] · Pr(k−i, gi) ·
[
Pr(θ = G|k−i, gi)−

1
2

]
≥ 0

⇔
2∑

k−i=0
d[1̂|k−i + 1] · Pr(k−i + 1)k−i + 1

3 ·
[
Pr(θ = G|k−i + 1)− 1

2

]
≥ 0 ∀zi = g

(OB1̂
g)

and for a voter with zi = b

2∑
k−i=0

d[1̂|k−i, bi] · Pr(k−i, bi) ·
[
Pr(θ = G|k−i, bi)−

1
2

]
≥ 0

⇔
2∑

k−i=0
d[1̂|k−i] · Pr(k−i)

3− k−i
3 ·

[
Pr(θ = G|k−i)−

1
2

]
≥ 0 ∀zi = b. (OB1̂

b )

The omniscient sender’s problem is then given by

max
d

3∑
k=0

d[1̂|k] · Pr(k) (2.2)

s.t. 0 ≤ d[r|k] ≤ 1 ∀r ∈ {0̂, 1̂} and k ∈ {0, 1, 2, 3} (2.3)
d[1̂|k] + d[0̂|k] = 1 ∀k ∈ {0, 1, 2, 3} (2.4)

2∑
k−i=0

Pr(k−i|zi, 1̂) Pr(θ = G|zi, k−i)−
1
2 ≥ 0 ∀i, zi ∈ {g, b}. (OB1̂

zi
)

The next Lemma says that it is optimal for the sender to recommend the proposal
in all approval states, that is, for all z ∈ Z+, with probability one.

Lemma 9. It is optimal for the sender to choose d[1̂|k] = 1 for all k ≥ 2.

Lemma 9 appears to be very intuitive when one notices that for all z ∈ Z+ = {z ∈
Z| k ≥ 2} voters agree on the proposal being the better choice. Hence, the sender
optimally recommends to vote for the proposal in all approval states and voters opti-
mally want to follow this recommendation. Assume that d[1̂|k] 6= 1 for some k′ with

2Pr(k = k−i + 1) =
( 3

k−i+1
)
(q(pk−i+1(1 − p)3−(k−i+1)) + (1 − q)(p3−(k−i+1)(1 − p)k−i+1)) =

k−i+1
3 Pr(k−i, gi) = k−i+1

3
( 2

k−i

)
(q(pk−i+1(1− p)3−(k−i+1)) + (1− q)(p3−(k−i+1)(1− p)k−i+1))
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k′ ≥ 2. Then, by increasing d[1̂|k′], the voters’ obedience constraints become more re-
laxed due to a higher probability of the proposal being implemented in approval states
and the sender’s expected utility rises due to the higher probability of the proposal be-
ing elected. Note that if the omniscient sender discloses 1̂ with certainty for all z ∈ Z+,
the obedience constraint of a g-type will always be fulfilled, independent of what the
sender is recommending for k ∈ {0, 1}.

The next Lemma says that if the obedience constraint of a voter with zi = b is
satisfied, then the obedience constraint of a voter with zi = g holds as well.

Lemma 10. If OB1̂
b holds, then OB1̂

g holds as well.

As a consequence of Lemma 9 and 10 the sender’s problem reduces to

max
d

1∑
k=0

d[1̂|k] · Pr(k) + Pr(k = 2) + Pr(k = 3) (2.5)

s.t. 0 ≤ d[r|k] ≤ 1 ∀r ∈ {0̂, 1̂} and k ∈ {0, 1, 2, 3} (2.6)
d[1̂|k] + d[0̂|k] = 1 ∀k ∈ {0, 1, 2, 3} (2.7)

2∑
k−i=0

Pr(k−i|bi, 1̂) Pr(θ = G|bi, k−i)−
1
2 ≥ 0 ∀i (OB1̂

b )

Note that an increase in d[1̂|k] for any k ∈ {0, 1} enters the obedience constraint
of a b-type and the objective function of the sender differently. The sender weighs an
increase of d[1̂|k] for any k ∈ {0, 1} with Pr(k), whereas the b-type attaches the weight
of Pr(k)3−k

3 to this increase. Due to this different effect on the sender’s objective
function and on the b-type’s obedience constraint, it is crucial how the sender chooses
the probability of sending recommendation 1̂ for k ∈ {0, 1} until OB1̂

b binds. It turns
out that the optimal disclosure policy of the omniscient sender is unique and a monotone
cutoff policy.

Proposition 12. The unique optimal disclosure policy of an omniscient sender is a
monotone cutoff policy with

d[1̂|k] =


1 if k ∈ {2, 3}
∈ [0, 1] if k = k̃

0 if k < k̃,

where k̃ ∈ {0, 1} and d[1̂|k̃] are designed such that OB1̂
b binds.

The optimal disclosure policy of the omniscient sender is monotone in the number
of good signals, that is, the higher k, the higher the probability with which she sends
the recommendation to vote for the proposal. For states in which the preferences of the
sender and the voters are aligned, i.e., for k ∈ Z+, the omniscient sender recommends
the proposal with certainty. For signal realizations with exactly k̃ good signals, the
sender mixes between recommending the proposal and the status quo and recommends
the status quo with certainty for all signal realizations with strictly less than k̃ good

54



0 1 2 3
k

0.0

0.2

0.4

0.6

0.8

1.0

d(
1|

k)

d(1|k)

Figure 2.1: policy for q = 0.5 and p = 0.7.
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Figure 2.2: policy for q = 0.8 and p = 0.9.

signals. The cutoff k̃ depends on the specific (p, q) values and is decreasing in p and
q. Figure 2.1 illustrates a case for which k̃ = 1 and Figure 2.2 for which k̃ = 0.
When we think of the voters’ obedience constraints in terms of budget constraints, it
is more expensive to persuade the more pessimistic b-types. Thus, the information
designer provides just sufficiently precise information to make these pessimistic b-types
indifferent between the proposal and the status quo. In contrast, the g-type always
strictly prefers the reform after having received the recommendation to vote for the
proposal. This implies that while the b-type’s expected utility is zero, the g-type receives
a strictly positive expected utility from following the recommendation 1̂.

4.2 Restricted Eliciting Sender

In the previous section, the sender was omniscient: she knew all signal realizations of
the voters without having to elicit them. In this section, a sender does not know the
private signal realizations, but can ask voters for a report regarding their information.
The restricted eliciting sender can neither construct any experiment she wants about
the true state of the world nor observe the agents’ signal realizations. All information
she acquires has to be elicited in an incentive compatible way. If the designer has to
elicit the voters’ private signals, we need to impose honesty constraints and take care
of double deviations: the agent must not be able to profit from any possible action, not
only the obedient one, after a misreport. Each voter i makes a report ẑi ∈ {ĝ, b̂} about
his private signal realization to the sender. Denote by ẑ ∈ Ẑ = {ĝ, b̂}3 the profile of all
reported signals. Note that the sender only can condition her recommendations on the
number of ĝ-reports in the reported signal realization ẑ but not on the number of g-
signals in the true signal realizations z. This is why we have to adjust our notation and
denote now by k(ẑ) how many ĝ-reports have been reported by the voters. Restricting
the eliciting sender to use only two recommendations with the same meaning as before
is without loss of generality as in the omniscient sender’s case.

Proposition 13. Under unanimity, it is without loss of generality to restrict the rec-
ommendation set of the eliciting sender to R = {0̂, 1̂}.
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The eliciting sender designs her disclosure policy d : {0, 1, 2, 3} → ∆{0̂, 1̂} to maxi-
mize the probability of the proposal being implemented. Let U(zi, ẑi, ai(0̂, zi), ai(1̂, zi))
denote the expected utility of a voter with signal zi, who reports to have signal realiza-
tion ẑi and who votes with probability ai(0̂, zi) for the proposal after recommendation
0̂ and with probability ai(1̂, zi) for the proposal after recommendation 1̂. We say that
the eliciting sender’s disclosure policy d is implementable if it satisfies the obedience
and the honesty constraints. The obedience constraint for r = 1̂ after reporting truth-
fully his private signal is given by OB1̂

g for a g-type and by OB1̂
b for a b-type. Note

that these constraints correspond to U(gi, ĝi, 0, 1) ≥ U(gi, ĝi, 0, 0) for a g-type and
U(bi, b̂i, 0, 1) ≥ U(bi, b̂i, 0, 0) for a b-type when using our new terminology. The honesty
constraint of a g-type who is obedient is given by

U(gi, ĝi, 0, 1) =
2∑

k−i=0
d[1̂|k−i + 1] · Pr(k = k−i + 1)k−i + 1

3 ·
[
Pr(θ = G|k−i + 1)− 1

2

]

≥
2∑

k−i=0
d[1̂|k−i] · Pr(k = k−i + 1)k−i + 1

3 ·
[
Pr(θ = G|k−i + 1)− 1

2

]

=U(gi, b̂i, 0, 1). (Hg)

Likewise, the honesty constraint of a b-type who is obedient is given by

U(bi, b̂i, 0, 1) =
2∑

k−i=0
d[1̂|k−i] · Pr(k = k−i)

3− k−i
3 ·

[
Pr(θ = G|k−i)−

1
2

]

≥
2∑

k−i=0
d[1̂|k−i + 1] · Pr(k = k−i)

3− k−i
3 ·

[
Pr(θ = G|k−i)−

1
2

]

=U(bi, ĝi, 0, 1). (Hb)

So far we only considered single deviations, that is, misreporting the private signal and
being obedient afterwards. Note that after recommendation r = 0̂, a voter is never
pivotal which is why it does not matter whether he follows or disobeys the recommen-
dation after misreporting. That is, U(zi, ẑi, 1, ai(1̂, zi)) = U(zi, ẑi, 0, ai(1̂, zi)). If a voter
is not obedient after recommendation 1̂, i.e., ai(1̂, zi) = 0, then his expected utility is
simply U(zi, ẑi, ai(0̂, zi), 0) = 0. Since by imposing the obedience constraint for each
type of voter, we make sure that the expected payoff of an obedient voter is nonneg-
ative. Hence, the obedience constraints together with the above honesty constraints,
capture all possible profitable deviations.
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The eliciting sender’s maximization problem is then given by

max
d

3∑
k=0

d[1̂|k] · Pr(k) (2.8)

s.t. 0 ≤ d[r|k] ≤ 1 ∀r ∈ {0̂, 1̂} and k ∈ {0, 1, 2, 3} (2.9)
d[1̂|k] + d[0̂|k] = 1 ∀k ∈ {0, 1, 2, 3} (2.10)
U(bi, b̂i, 0, 1) ≥ U(bi, b̂i, 0, 0) = 0 ∀ i (OB1̂

b )
U(gi, ĝi, 0, 1) ≥ U(gi, b̂i, 0, 1) ∀ i (Hg)
U(bi, b̂i, 0, 1) ≥ U(bi, ĝi, 0, 1) ∀ i (Hb)

Note that Lemma 10 also holds when the sender is eliciting. We find that the
eliciting sender is able to implement the same disclosure policy as the omniscient sender
if a certain condition on p and q is met. In results of Bergemann and Morris (2016b)
and our companion paper Bobkova and Klein (2019), an omniscient sender does strictly
better than an eliciting sender.

Proposition 14. The eliciting sender is able to achieve the persuasion benchmark of
the omniscient sender if and only if q ≤ 2+p

5 . For all q ≤ 2+p
5 the restricted sender’s

optimal disclosure policy is given by

d[1̂|k] =


1 if k ∈ {2, 3}
p+q−1
2(p−q) if k = 1
0 if k = 0.

Note that for all q ≤ 2+p
5 the cutoff k̃ from Proposition 12 is one, that is, there are

no (p, q) values which fulfill q ≤ 2+p
5 and k̃ = 0. The reason for this is the following: If

k̃ = 0 in the omniscient sender’s optimal policy, then d[1̂|k = 0] ∈ (0, 1), d[1̂|k = 1] = 1
and d[1̂|k = 2] = 1. Under this policy, a g-type always has a profitable deviation. Since
d[1̂|k = 0] ∈ (0, 1), a g-type learns after misreporting (ẑi = b̂i) with a positive proba-
bility when there is no other voter with a g-signal and still learns with certainty when
there is at least one other voter with a g-signal due to d[1̂|k = 1] = 1. Put differently,
by misreporting he decreases the probability of receiving the recommendation 1̂ when
he would prefer the status quo (k = 1) by (1− d[1̂|k = 0]) and leaves the probability of
receiving 1̂ when he prefers the proposal (k = 2) unchanged. Hence, by misreporting
he can only gain but never lose in expectation.

In contrast, when k̃ = 1 in the omniscient sender’s optimal policy, then d[1̂|k = 0] =
0, d[1̂|k = 1] ∈ (0, 1) and d[1̂|k = 2] = 1. While a g-type learns from misreporting
when no other voter has received a g-signal, he no longer learns with certainty when
there is a further voter with a g-signal. In other words, by misreporting he decreases the
probability of receiving 1̂ when he would prefer the status quo (k = 1) by d[1̂|k = 1] but
at the same time he decreases the probability of receiving 1̂ when he prefers the proposal
(k = 2) by (1− d[1̂|k = 1]). As long as this loss outweighs the gain from misreporting,
which is the case for all q ≤ 2+p

5 , the omniscient sender’s optimal disclosure policy is
implementable.
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The maximum probability with which the sender can recommend the proposal when
k = 1 is 3

4 and is reached when q = 2+p
5 .3 Only in this case the g-type is indifferent

between reporting truthfully and misreporting. For all q < 2+p
5 , he strictly prefers to

report his private signal truthfully, which means that the honesty constraint of the
g-type is slack. When this honesty constraint becomes binding, the g-type starts to
gain in expectation from misreporting and it is no longer possible to implement the
omniscient sender’s optimal disclosure policy.

Figure 2.3: implementability

As long as q ≤ 1
2 , the eliciting sender is able to implement the optimal omniscient

disclosure policy independent of the precision level p of voters’ private signals. If q ∈
(1

2 ,
3
5), the implementability of the optimal omniscient disclosure policy depends on p.

For all q > 3
5 and independent of p, the eliciting sender is no longer able to achieve

the omniscient benchmark case. This implies that for precision levels and ex-ante
probabilities fulfilling q ≤ 2+p

5 , neither the omniscient sender has a larger scope for
persuasion compared to the eliciting sender, nor voters can profit from their private
information with respect to enforcing more informative signals from the eliciting sender.

So why is it that under restricted information design and three voters, the sender
is equally well off being omniscient and being eliciting? The difference stems from the
preference alignment in the case when k ∈ {2, 3}. When θ = G, both the sender and
the voters, agree on the best action: implementing the proposal. When θ = B, the
sender and the voters disagree. However, when the sender is restricted, she has no
access to any precise experiment about θ beyond k. Therefore, whenever k ∈ {2, 3},
this is the strongest possible signal that θ = G, and both the sender and the voters
agree on implementing the proposal. Having access to an experiment about θ generates
a misalignment of preferences, that does not arise under restricted persuasion.

3 q = 2+p
5 ⇒ p+ 2+p

5 −1
2(p− 2+p

5 ) = 3
4 .
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Figure 2.4: E[US] for implementable area.

Figure 2.3 illustrates the area of implementability and Figure 2.4 the sender’s ex-
pected payoff in that area. The white areas in Figure 2.3 consist of all those precision
levels and ex-ante probabilities we excluded in the beginning by our two assumptions
on q and p. The blue shaded area shows the set of (p, q) values for which the omniscient
sender’s optimal policy is implementable for the eliciting sender. The red shaded area
shows the set of (p, q) values in which the eliciting sender is no longer able to do so.
In the following we will further characterize how the optimal disclosure policy of the
eliciting sender looks like for (p, q) values within this red area.

Proposition 15. The optimal disclosure policy of an eliciting sender for 2+p
5 < q < 1

and p ≤ p(q) is given by

d[1̂|k] =


1 if k ∈ {2, 3}

∈ (0, 1) if k ∈ {0, 1},

where d[1̂|k = 1] > d[1̂|k = 0]. p(q) > 0.9 and is defined in the appendix. Under
this disclosure policy OB1̂

b and Hg bind.

As in the omniscient benchmark case, the eliciting sender’s optimal disclosure policy
for 2+p

5 < q < 1 and p ≤ p(q) is monotone in k and the proposal is recommended with
certainty whenever k ∈ Z+. In contrast to the omniscient benchmark case, the honesty
constraint of the g-type is binding, that is , he is indifferent between reporting truthfully
and misreporting his private signal. The b-type is still indifferent between voting for the
proposal and the status quo after having received the recommendation 1̂ and strictly
prefers to report his private signal truthfully.

Figures 2.5 and 2.6 compare the optimal policies of the omniscient and the eliciting
sender. While for q = 0.7 and p = 0.9 the omniscient sender can persuade voters with
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probability one to vote for the proposal when k ≥ 1, the eliciting sender decreases the
probability with which she recommends 1̂ when k = 1. More specifically, the eliciting
sender shifts probability mass from d[1̂|k = 1] to d[1̂|k = 0]. This is necessary since
under the optimal omniscient disclosure policy the g-type can always strictly gain by
misreporting to have a b-signal: he increases the probability with which he learns that
there are no other g-types around and still learns with certainty whenever k ∈ {2, 3}.
For the above (p, q) values, this expected gain of a g-type from misreporting grows too
large and the eliciting sender can no longer implement the optimal omniscient policy.

Thus, the eliciting sender shifts probability mass from d[1̂|k = 1] to d[1̂|k = 0] in
order to increase the g-type’s expected loss from misreporting: If d[1̂|k = 1] < 1, the
g-type no longer receives with certainty the recommendation to vote for the reform
when k−i = 1, which increases his expected loss from misreporting.

Figure 2.7 shows the threshold p(q) which is always greater than 0.9 and strictly
increasing in q. The next proposition characterizes the sender’s optimal disclosure
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Figure 2.5: domniscient for q = 0.7, p = 0.9.
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Figure 2.6: deliciting for q = 0.7, p = 0.9.

Figure 2.7: threshold p(q).

policy when voters’ private information is sufficiently precise, that is, when a voter’s
private signal is almost fully revealing about the true state of the world.
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Proposition 16. The optimal disclosure policy of an eliciting sender for 2+p
5 < q ≤ q(p)

and p > p(q) is given by

d1[1̂|k] =



1 if k = 3

∈ (0, 1) if k ∈ {1, 2}

0 if k = 0,

and for q(p) < q < 1 and p > p(q) by

d2[1̂|k] =


1 if k ∈ {1, 3}

∈ (0, 1) if k ∈ {0, 2},

where d2[1̂|k = 2] > d2[1̂|k = 0]. q(p) is defined in the appendix. Under both
disclosure policies OB1̂

b and Hg bind.

In Proposition 16, the following holds

1. if q ≤ q(p), then d1[1̂|k = 1] ≤ 1 and d2[1̂|k = 0] < 0 or

2. if q > q(p), then d1[1̂|k = 1] > 1 and d2[1̂|k = 0] ≥ 0.

This means that if one of the two above disclosure policies is feasible in the range of
2+p

5 < q < 1 and p > p(q), the other one cannot be feasible.
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Figure 2.8: d1[1̂|k] for q = 0.63, p = 0.95.
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Figure 2.9: d2[1̂|k] for q = 0.7, p = 0.95.

In contrast to the previous analysis, the eliciting sender’s optimal disclosure policy
for 2+p

5 < q ≤ 1 and p > p(q) isn’t always monotone in k (see Figure 2.9). The non-
monotonicity occurs at k = 2: The sender mixes between recommending the proposal
and the status quo when k = 2 and recommends with certainty the proposal when
k = 1. At a first glance this is surprising since preferences of the sender and the voters
are aligned when k = 2 but not when k = 1.
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Our explanation for this observation is the following: The sender shifts probability
mass from d[1̂|k = 2] to d[1̂|k = 1] to make misreporting unprofitable for the g-type.
Since Pr(θ = G|k = 3) > Pr(θ = G|k = 2), shifting probability mass from d[1̂|k = 2] to
d[1̂|k = 1] increasingly hurts a misreporting g-type. He no longer learns with certainty
when ki = 2 (k = 3) but instead learns with a strictly higher probability when ki = 1
(k = 2) from which he benefits strictly less. This way the eliciting sender reduces the
g-type’s expected gain from misreporting until he’s indifferent between misreporting
and telling the truth. When q(p) < q < 1 and p > p(q) this even forces the sender to
recommend the proposal with certainty for k = 1 and with a strictly smaller probability
for k = 2.

Welfare Analysis

In all of the above cases, the sender’s expected payoff is increasing in q and decreasing
in p. The more likely θ = G is ex-ante, the easier it is for the sender to convince voters
to vote for the proposal. When the precision of voters’ private information increases,
voters become more convinced of their private signal indicating the true state of the
world. This means that while g-types become even more optimistic towards θ = G,
b-types become more pessimistic and thus increasingly difficult to convince. Since the
proposal needs unanimity to pass, the sender is worse off with a higher accuracy of
voters’ private information.

We find that the b-type is always made indifferent between voting for the proposal
and the status quo after he has received the recommendation 1̂, i.e., Pr(θ = G|bi, 1̂) = 1

2 .
That is, no matter whether the sender is omniscient or eliciting and independent how
accurate the voters’ private information is, a b-type never receives any information rent.
In contrast, the expected payoff of the g-type is always strictly positive and increasing
in p and q.

Consider the probabilities of making a wrong decision in the sense of implementing
the proposal when θ = B (Pr(a = 1|θ = B)) and implementing the status quo when
θ = G (Pr(a = 0|θ = G)), given the sender’s optimal disclosure policy d. If we
compare the probabilities of making each type of error in our setting for q = 1

2 to the
corresponding probabilities of making each type of error in Feddersen and Pesendorfer
(1998), we find the following: First, the probability of choosing the proposal when
θ = B is greater for all p ∈ (1

2 , 1) in our setting. Second, the probability of choosing
the status quo when θ = G is smaller for all p ∈ (1

2 , 1) in our setting.
Figures 2.10 and 2.11 illustrate the comparison of error probabilities in both settings

and the error probabilities of a benevolent sender who sends 1̂ for all k ∈ {2, 3} and
0̂ for all k ∈ {0, 1}. While in Feddersen and Pesendorfer (1998) the proposal is more
often implemented when θ = B, in our setting the proposal is more often implemented
when θ = G than in Feddersen and Pesendorfer (1998). In other words, a manipulative
information designer strictly decreases the probability of rejecting the proposal when
the proposal is indeed efficient but at the same time strictly increases the probability
of rejecting the status quo when the status quo is efficient.4 This is not surprising since
the manipulative sender always wants to push voters towards voting for the proposal,

4By efficient we mean efficient from a voter’s point of view.
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Figure 2.10: Pr(a = 1|θ = B) for q = 0.5. Figure 2.11: Pr(a = 0|θ = G) for q = 0.5.

irrespective of the state of the world. Hence, when θ = B we make a strictly greater
error than without the manipulative sender, while when θ = G, preferences are aligned
and we strictly decrease the probability of implementing the status quo.

When we compare the expected utility of each type of voter in Feddersen and Pe-
sendorfer (1998) and in our model, we find that the g-type is strictly better off while
the b-type is slightly worse off. The ex-ante type, that is, a voter who’s private signal
has not yet realized, receives a strictly higher expected payoff in our model than in
Feddersen and Pesendorfer (1998). This means that even with a manipulative sender,
voters are ex-ante better off compared to the situation in which they have to decide
just on their own under unanimity.

5. Private versus Public Persuasion

5.1 Omniscient Sender

Can the designer do better by using private instead of public recommendations. In this
section we analyze whether an omniscient sender has a larger scope for persuasion if
she recommends to every voter privately whether he should vote for the proposal or for
the status quo given the signal realization. We consider the case in which the sender’s
private recommendations to voters are correlated. That is, a private disclosure policy
d is defined as a function d : Z → 4{0̂, 1̂}3 that maps signal realizations z ∈ Z into
probability distributions over recommendation profiles r ∈ {0̂, 1̂}3. Note that the only
private recommendation profile that leads to the approval of the proposal, given that all
voters are obedient, is the recommendation profile where the sender recommends every
voter to vote for the proposal. All other recommendation profiles in which at least one
voter is recommended to vote for the status quo will lead to the rejection of the proposal.
Thus, the only two events in which a voter happens to be pivotal is the recommendation
profile in which the sender recommends everybody to vote for the proposal, that is, 1̂i∀i
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and the recommendation profile in which she recommends everybody the proposal but
voter i, that is, 1̂j ∀j 6= i. We denote the former recommendation profile by ra and the
latter by rri . Rewriting Pr(θ = G|1̂i, piv, zi) yields

Pr(θ = G|1̂i, piv, zi) =
∑
z−i Pr(ra|zi, z−i) Pr(θ = G|zi, z−i) Pr(zi, z−i)

Pr(ra, zi)
. (2.11)

The only two obedience constraints which arise for each voter under private persuasion
are

∑
z−i∈Z−i

d[ra|z] Pr(zi, z−i)(Pr(θ = G|zi, z−i)−
1
2) ≥ 0 ∀i, zi ∈ {g, b} (OB1̂i

zi
)

∑
z−i∈Z−i

d[rri|z] Pr(zi, z−i)(Pr(θ = G|zi, z−i)−
1
2) < 0 ∀i, zi ∈ {g, b}. (OB0̂i

zi
)

The omniscient sender’s maximization problem in the private persuasion case is then
given by

max
d

∑
z∈Z

d[ra|z] · Pr(z) (2.12)

s.t. 0 ≤ d[r|z] ≤ 1 ∀r ∈ {0̂, 1̂}3 and z ∈ Z (2.13)∑
r∈{0̂,1̂}3

d[r|z] = 1 ∀z ∈ Z (2.14)

∑
z−i∈Z−i

d[ra|z] Pr(z−i, zi)(Pr(θ = G|zi, z−i)−
1
2) ≥ 0 ∀i, zi ∈ {g, b} (OB1̂i

zi
)

∑
z−i∈Z−i

d[rri |z] Pr(z−i, zi)(Pr(θ = G|zi, z−i)−
1
2) < 0 ∀i, zi ∈ {g, b}. (OB0̂i

zi
)

By the same reasoning as in the public persuasion case it is optimal for the sender
to send ra with certainty for all z ∈ Z+, that is, Lemma 9 goes through and we have
d[ra|z] = 1 ∀z ∈ Z+. As before, if the omniscient sender recommends the proposal to
everybody for all z ∈ Z+, the obedience constraint of a g-type will always be fulfilled,
independent of what the sender is recommending for z ∈ Z−. Likewise, Lemma 10
still applies.5 A further observation is that OB0̂i

zi
will always be fulfilled given that

d[ra|z] = 1 ∀z ∈ Z+. Since the sender will only send rri for a signal realization z ∈ Z−,
voter i realizes that when he receives the private recommendation 0̂i it must be the
case that z ∈ Z−. Thus, voter i wants to follow the recommendation of the sender and
votes for the status quo. The problem reduces to

5The proof of Lemma 10 is exactly the same as before and thus left out here.
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max
d

∑
z∈Z−

d[ra|z] · Pr(z) (2.15)

s.t. 0 ≤ d[r|z] ≤ 1 ∀r ∈ {0̂, 1̂}3 and z ∈ Z− (2.16)∑
r∈{0̂,1̂}3

d[r|z] = 1 ∀z ∈ Z− (2.17)

∑
b−i∈Z−i

d[ra|bi, z−i] Pr(z−i, bi)(Pr(θ = G|bi, z−i)−
1
2) ≥ 0 ∀i (OB1̂i

bi
)

Note that the private recommendation profile ra corresponds to the public recom-
mendation r = 1̂ and the private recommendation profile rri can be substituted by the
public recommendation r = 0̂ ∀i. This is due to the fact that the private recommen-
dation profile rri with 1̂j ∀j 6= i and the private recommendation profile rr with 0̂i ∀i
result in the same outcome, that is, in the rejection of the proposal. Whether the sender
uses rri or rr = (0̂1, 0̂2, 0̂3) does not make any difference, neither for the obedience con-
straint of any voter nor for the sender’s expected payoff. Given that the sender only
uses these two perfectly correlated private recommendation profiles ra and rr, voter i
who observes 1̂i knows that all other voters j 6= i also observed 1̂j, and likewise, if he
observes 0̂i, he knows that all others also observed 0̂j. As a consequence, the private
maximization problem of the sender becomes just equivalent to the public one which is
why the omniscient sender cannot profit from using private persuasion instead of public
persuasion.

Proposition 17. Under unanimity the omniscient designer can achieve the same ex-
pected payoff with public as with private persuasion. The optimal private disclosure
policy of the omniscient sender is given by

d[ra|k(z)] =


1 if k(z) > k̃

∈ (0, 1) if k(z) = k̃

0 if k(z) < k̃,

where k̃ is such that the OB1i
bi

binds for all i. This is the same disclosure policy as in
the public case.

The omniscient sender cannot profit by discriminating between different voters. In
her optimal disclosure policy she only takes the number of g signals into account but
not who is having them. Why this is optimal can easily be seen. Suppose q = 1

2 and the
sender would want to make the obedience constraint of voter 1 with signal realization
z1 = b binding. She could choose for example

d[ra|z] =

1 if z ∈ Z+ ∪ (b1b2g3)
0 if z ∈ Z−\(b1b2g3).

Under this disclosure policy, the obedience constraint of the b-type voter 1 and the
b-type voter 2 after recommendation ra are binding. However, the obedience constraint
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of the b-type voter 3 is slack. The omniscient sender could extract more surplus by
adjusting her disclosure policy such that the obedience constraint of every b-type binds.
The following anonymous disclosure policy does the job

d[ra|z] =


1 if z ∈ Z+
1
2 if z ∈ Z−\(b1b2b3)
0 if z = (b1b2b3).

This reasoning applies to all other q ≤ p in the same way. By treating each voter
equally, the omniscient sender can make the obedience constraint of all b-types binding
and extract all surplus from pessimistic voters this way. In contrast, by discriminating
between voters, she can extract all of the surplus from some b-types, but leaves some
surplus on the table for at least one b-type voter.

The equivalence result is driven by the pivotality considerations of voters. If the
designer sends her recommendation to each voter privately conditional on the signal
realization profile, each voter takes only the events into account in which he is pivotal.
In the private persuasion case, the only two events in which a voter happens to be
pivotal are the recommendation profiles in which the sender recommends everybody
to vote for the proposal, that is, 1̂i ∀i, and the recommendation profile in which she
recommends everybody the proposal but voter i, that is, 1̂j ∀j 6= i. As pointed out
above, the sender’s problem then becomes equivalent to the public persuasion case (see
also Bardhi and Guo, 2018).6

5.2 Eliciting Sender

When the sender is eliciting we have to check whether the above optimal omniscient
private policy is still implementable for q ≤ 2+p

5 as in the public persuasion case. It
turns out that our line of argumentation from the public persuasion case also goes
through in the private persuasion case. Thus, we can apply the same proof as before.
Since the sender’s expected payoff under the optimal omniscient policy is the highest
achievable payoff for the eliciting sender, we don’t have to check whether she can do
better by using a different private disclosure policy for q ≤ 2+p

5 .
The remaining question is whether the eliciting sender can profit from using a pri-

vate disclosure policy instead of a public one for q > 2+p
5 . As before, when the sender

is eliciting, honesty constraints arise for each agent in addition to the obedience con-
straints. In contrast to the public persuasion case, double deviations can no longer be
ruled out easily. Since under private persuasion there are two recommendation profiles
after which a voter is pivotal, he has more alternatives for double deviations. Yet,
one possible double deviation can be ruled out immediately. If a voter, after having
misreported his private signal, always votes for the status quo independent of the rec-
ommendation he has received, he receives a utility of zero. By the obedience constraints
we ensure that each voter receives at least a utility of zero if he is truthful and obedient.

6Note that the same line of argumentation goes through when we consider independent private
disclosure policies, that is, mappings from the set of signal realizations Z to the set of probability
distributions over the recommendations for each voter: d : Z →4{0̂, 1̂} ∀i.
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Hence, misreporting and always voting for the status quo cannot be a profitable double
deviation. The following three honesty constraints capture all remaining cases.

Let c = Pr(zi, z−i)(Pr(θ = G|zi, z−i) − 1
2). First, being truthful and obedient must

yield a voter a higher expected utility than misreporting and being obedient in the
events in which he’s pivotal

∑
z−i∈Z−i

d[ra|zi, z−i] · c ≥
∑

z−i∈Z−i
d[ra|ẑi, z−i] · c ∀i, zi ∈ {g, b}, ẑi ∈ {ĝ, b̂} (Hzi)

Second, being truthful and obedient must yield a voter a higher expected utility than
misreporting and always voting for the proposal in the events in which he’s pivotal

∑
z−i∈Z−i

d[ra|zi, z−i] · c ≥ (H 0̂1̂
zi
)

∑
z−i∈Z−i

(d[ra|ẑi, z−i] + d[rri |ẑi, z−i]) · c ∀i, zi ∈ {g, b}, ẑi ∈ {ĝ, b̂}

Third, being truthful and obedient must yield a voter a higher expected utility than
misreporting and voting for the proposal after 0̂i and for the status quo after 1̂i in the
events in which he’s pivotal

∑
z−i∈Z−i

d[ra|zi, z−i] · c ≥
∑

z−i∈Z−i
d[rri |ẑi, z−i] · c ∀i, zi ∈ {g, b}, ẑi ∈ {ĝ, b̂} (H 0̂

zi
)

The eliciting sender’s maximization problem under private persuasion is

max
d

∑
z∈Z

d[ra|z] · Pr(z) s.t. (2.18)

0 ≤ d[r|z] ≤ 1 ∀r ∈ {0̂, 1̂}3 and z ∈ Z (2.19)∑
r∈{0̂,1̂}3

d[r|z] = 1 ∀z ∈ Z (2.20)

∑
z−i∈Z−i

d[ra|z] Pr(bi, z−i)(Pr(θ = G|bi, z−i)−
1
2) ≥ 0 ∀i (OB1̂

bi
)

∑
z−i∈Z−i

d[rri |z] · c ≤ 0 ∀i, zi ∈ {g, b} (OB0̂
zi
)

∑
z−i∈Z−i

(d[ra|zi, z−i]− d[ra|ẑi, z−i]) · c ≥ 0 ∀zi ∈ {g, b}, ẑi ∈ {ĝ, b̂} (Hzi)∑
z−i∈Z−i

(d[ra|zi, z−i]− d[ra|ẑi, z−i]− d[rri |ẑi, z−i]) · c ≥ 0 ∀zi ∈ {g, b}, ẑi ∈ {ĝ, b̂} (H 0̂1̂
zi
)

∑
z−i∈Z−i

(d[ra|zi, z−i]− d[rri|ẑi, z−i]) · c ≥ 0 ∀zi ∈ {g, b}, ẑi ∈ {ĝ, b̂} (H 0̂
zi
)
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Proposition 18. Under unanimity, the eliciting sender cannot profit from disclosing
her recommendation to each voter privately. The optimal private disclosure policy of
an eliciting sender is given by

d[ra|z] =



d[1̂|k = 3] if z = (ggg)
1
3 · d[1̂|k = 2] if z ∈ {(ggb), (gbg), (bgg)}
1
3 · d[1̂|k = 1] if z ∈ {(bgb), (bbg), (gbb)}

d[1̂|k = 0] if z = (bbb),

, d[rr|z] = 1− d[ra|z],

where d[1̂|k] corresponds to the optimal public disclosure policy of the eliciting sender
from section 4.2.

Under the optimal disclosure policy the eliciting sender only uses the two recom-
mendation profiles ra and rr, which correspond to our public recommendations 1̂ and
0̂ as explained above. Although we allow the eliciting sender to target voters with
distinct recommendations, she does not make use of it. Under her optimal disclosure
policy she treats each voter symmetrically by only taking the number of g signals into
account but not who is having them. As a consequence, the eliciting sender who dis-
closes her recommendation profile in public is just equally well off as an eliciting sender
who discloses her recommendations to each voter privately. The intuition behind this
result is the same as in the omniscient sender case. By treating each voter symmetri-
cally, the eliciting sender can extract all surplus from the b-types. The possibility to
target individual voters under private persuasion does not help the eliciting sender in
extending her scope for persuasion. As a consequence, it is without loss of generality for
optimality to restrict the sender in the private persuasion case to anonymous disclosure
policies.

6. Conclusion

We study a restricted information designer who tries to persuade three voters to vote
for a proposal. The information designer is restricted in that she cannot condition her
public recommendations on the true quality of the proposal. Voters are privately but
imperfectly informed about the quality of the proposal. In contrast to the designer,
voters only want the proposal to be implemented if it is of high quality.

We characterize the optimal public disclosure policy under unanimity rule of an
omniscient and an eliciting designer. We find that the eliciting designer is able to
achieve the persuasion benchmark of the omniscient designer when the prior of the
quality being high is sufficiently low. More precisely, whenever the prior is below
some threshold which depends on the accuracy of the voters’ private information, the
eliciting designer is just equally well of as the omniscient designer who can observe the
voters’ signals. For prior beliefs above this threshold, the eliciting designer is worse
off and her optimal disclosure policy changes depending on the accuracy of the voters’
private information. While the omniscient designer’s optimal disclosure policy is always

68



monotone in the number of optimistic voters, the eliciting designer’s optimal disclosure
policy is sometimes non-monotone. That is, she recommends the proposal with a higher
probability when there are less optimistic voters. This is necessary to provide optimistic
voters with sufficient incentives to report their private signal truthfully.

We show that allowing the designer to make her recommendations privately to
each voter does not extend the designer’s scope for persuasion. The designer does not
discriminate between different voters - even though she could. Instead, she uses the
same disclosure policy as the designer who makes her recommendations in public and
treats voters symmetrically. In this work we consider an information designer who does
not know the true quality of the proposal. In Bobkova and Klein (2019) we analyze an
unrestricted information designer who is informed about the true quality and can send
public recommendations on the basis of the reports made by voters and on the true
quality of the proposal.

69



A. Appendix

A.1 Proof of Proposition 11

Proof. We show that given any outcome of disclosure policy d′, the sender can im-
plement an outcome equivalent policy d consisting of only two recommendations R =
{0̂, 1̂}. Message 0̂ is the recommendation to vote with probability 1 for the status quo
irrespective of the private signal, and 1̂ is the recommendation to vote with probability
1 for proposal irrespective of the private signal.

Consider any arbitrary disclosure policy of the sender d′ : {0, 1, 2, 3} → ∆(R′), with
R′ being any arbitrary message set. Denote r′ ∈ R′ an element of the message space.
Let a(r′, zi) be the probability of a voter i with signal zi voting for the proposal after
seeing recommendation r′ under disclosure policy d′.7

Now consider a filtering d of the original information disclosure policy d′ of the
following form.

d : R′ ×K → ∆[0̂, 1̂].

The new disclosure policy takes the realized message r′ in the original disclosure
policy and the number of g-signals k of the voters, and maps them into a binary voting
recommendation. With slight abuse of notation, denote by d(1̂|r′, k) the probability of
sending recommendation 1̂ in favor of the proposal.

Consider the following construction for the new disclosure policy d

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k. (2.21)

It is immediate that this policy yields the same expected utility to the sender (if im-
plementable), as the probability with which she sends signal 1̂ corresponds to the prob-
ability with which her preferred outcome would have been elected under the original
disclosure policy d′.

Furthermore, this disclosure policy is designed to be proportional to the original
probability of being pivotal for both voter types. In particular, for k−i ∈ {0, 1, 2}, we
have Pr(piv|r, k−i, b) = Pr(piv|r, k−i, g) = a(r′, g)k−ia(r′, b)2−k−i and hence,

d(1̂|r′, k = k−i) = a(r′, g)k−ia(r′, b)3−k−i = a(r′, b) Pr(piv|r′, k−i)

and

d(1̂|r′, k = k−i + 1) = a(r′, g)k−i+1a(r′, b)3−(k−i+1) = a(r′, g) Pr(piv|r′, k−i).

It is left to show that the obedience constraints are also satisfied under the new
disclosure policy d′. After public recommendation 0̂ no voter is ever pivotal. It suffices
to show, that both private information types have an incentive to follow the recommen-
dation 1̂ by voting for the proposal. The obedience constraint of a voter with private

7We assume that voters with the same signal react symmetrically to the same recommendation,
ai(r′, zi) = aj(r′, zj) if zi = zj . Hence, we drop index i.
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signal zi is:

Pr(θ = G|1̂, zi, piv) ≥ 1
2 ∀zi ∈ {gi, bi} (2.22)

This can be rewritten into

Pr(piv|1̂, θ = G, zi)︸ ︷︷ ︸
=1

Pr(1̂, θ = G, zi) ≥
1
2 Pr(piv|1̂, zi)︸ ︷︷ ︸

=1

Pr(1̂, zi) (2.23)

⇔
2∑

k−i=0
Pr(1̂|θ = G, zi, k−i) Pr(θ = G, zi, k−i) ≥

1
2 Pr(1̂|zi, k−i) Pr(zi, k−i) (2.24)

⇔
2∑

k−i=0
Pr(1̂|zi, k−i) Pr(zi, k−i)(Pr(θ = G|zi, k−i)−

1
2) ≥ 0 (2.25)

Thus, the two obedience constraints are

2∑
k−i=0

Pr(1̂|k−i + 1) Pr(k = k−i + 1)(Pr(θ = G|k−i + 1)− 1
2)k−i + 1

3 ≥ 0 (OB1̂
g)

2∑
k−i=0

Pr(1̂|k−i) Pr(k = k−i)(Pr(θ = G|k−i)−
1
2)3− k−i

3 ≥ 0 (OB1̂
b )

We can invoke the construction of the new disclosure policy d from d′ to rewrite:

Pr(1̂|k−i, gi) =
∑
r′∈R′

Pr(1̂, r′|k−i, gi) (2.26)

=
∑
r′∈R′

Pr(1̂, r′|k−i, gi) (2.27)

=
∑
r′∈R′

Pr(r′|k−i, gi) Pr(1̂|r′, k−i, gi) (2.28)

=
∑
r′∈R′

Pr(r′|k−i, gi)d(1̂|r′, k = k−i + 1) (2.29)

Analogously, for zi = b we have

Pr(1̂|bi) =
∑
r′∈R′

Pr(r′|k−i, bi)d(1̂|r′, k = k−i) (2.30)

We can use this to rewrite the obedience constraints under the new disclosure policy:

∑
r′∈R′

2∑
k−i=0

Pr(r′|k = k−i + 1)d(1̂|r′, k = k−i + 1) Pr(k = k−i + 1)· (OB1̂
g)

(Pr(θ = G|k−i + 1)− 1
2)k−i + 1

3 ≥ 0
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∑
r′∈R′

2∑
k−i=0

Pr(r′|k = k−i)d(1̂|r′, k = k−i) Pr(k = k−i)(Pr(θ = G|k−i)−
1
2)3− k−i

3 ≥ 0

(OB1̂
b )

Using the construction of the new disclosure policy, we can rewrite

∑
r′∈R′

a(r′, gi)
2∑

k−i=0
Pr(piv|r, k−i) Pr(r′|k = k−i + 1) Pr(k = k−i + 1)· (OB1̂

g)

(Pr(θ = G|k = k−i + 1)− 1
2)k−i + 1

3 ≥ 0.

Analogously, for zi = b we have

∑
r′∈R′

a(r′, bi)
2∑

k−i=0
Pr(piv|r, k−i) Pr(r′|k = k−i) Pr(k−i)· (OB1̂

b )

(Pr(θ = G|k = k−i)−
1
2)3− k−i

3 ≥ 0.

Note that the original disclosure policy d′ is implementable, i.e. the obedience constraint
holds for each type zi ∈ {gi, bi} and each message r′ ∈ R′, when ai(r′, zi) > 0. That is,

2∑
k−i=0

Pr(piv|r, k−i) Pr(r′|k = k−i + 1) Pr(k−i + 1)· (OBr′
g )

(Pr(θ = G|k = k−i + 1)− 1
2)k−i + 1

3 ≥ 0.

2∑
k−i=0

Pr(piv|r, k−i) Pr(r′|k = k−i) Pr(k = k−i)· (OBr′
b )

(Pr(θ = G|k = k−i)−
1
2)3− k−i

3 ≥ 0.

The inner sums in the obedience constraints under the new disclosure policy d, OB1̂
b

and OB1̂
g , correspond to the original obedience constraints, OBr′

g and OBr′
b , under the

former disclosure policy d′. This establishes that the filtering d satisfies both obedience
constraints and yields the same payoff to the designer.
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A.2 Proof of Lemma 9

Proof. We prove this lemma by contradiction. We start by rewriting the voters’ obedi-
ence constraints for the recommendation r = 1̂. We rewrite Pr(k−i|k(zi), 1̂) into

Pr(k−i|k(zi), 1̂) = d[1̂|k(zi), k−i] · Pr(k−i|k(zi)) · Pr(k(zi))
Pr(1̂, k(zi))

(2.31)

= d[1̂|k(zi), k−i] · Pr(k(zi), k−i)
2∑

k−i=0
d[1̂|k(zi), k−i] · Pr(k(zi), k−i)

(2.32)

Then, we can rewrite a voter’s obedience constraint for the recommendation r = 1̂ in
the following way

2∑
k−i=0

Pr(k−i|k(zi), 1̂) Pr[θ = G|k(zi), k−i] ≥
1
2 (2.33)

⇔
2∑

k−i=0
d[1̂|k(zi), k−i] · Pr(k(zi), k−i) ·

[
Pr(θ = G|k(zi), k−i)−

1
2

]
≥ 0. (2.34)

Next assume that the disclosure policy d is optimal and that there exists k′ with
k′ ≥ 2 such that d[1̂|k′] 6= 1. Then, construct a new disclosure policy d′ that is equal
to the old disclosure policy d for all k 6= k′ but sends recommendation 1̂ for k′ with
probability 1. That is d′[1̂|k] = d[1̂|k] ∀k 6= k′ and d′[1̂|k′] = 1 6= d[1̂|k′]. Next we
check whether the new disclosure policy d′ still fulfills the voters’ obedience constraints.
Note that if the recommendation 0̂ was sent, no voter is ever pivotal, which is why this
does not influence the obedience constraints. If recommendation 1̂ was sent, the voters’
obedience constraints are now easier to satisfy since

[
Pr(θ = G|k(zi), k−i)− 1

2

]
≥ 0

holds for all k ≥ 2. In other words, we just increased the probability with which a
voter receives a positive utility from following the sender’s recommendation and as a
consequence relaxed the voter’s obedience constraint. This is a contradiction. The old
disclosure policy d couldn’t have been optimal, because we just found a strictly better
one which implements the proposal with a strictly higher probability than the old one.
This proves that the sender will optimally choose d[1̂|k] = 1 for all k ≥ 2 to maximize
the probability of implementing the proposal.

A.3 Proof of Lemma 10

Proof. Formally we want to show that

2∑
k−i=0

d[1̂|k−i + 1] · Pr(gi, k−i)
k−i + 1

3 ·
[
Pr(θ = G|gi, k−i)−

1
2

]
(2.35)

≥
2∑

k−i=0
d[1̂|k−i] · Pr(bi, k−i)

3− k−i
3 ·

[
Pr(θ = G|bi, k−i)−

1
2

]
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First, note that Pr(θ = G|zi, k−i) is increasing in k−i.
[
Pr(θ = G|zi, k−i)− 1

2

]
is neg-

ative for all k−i < 1 and positive for all k−i > 1 for all zi ∈ {b, g}. For k−i = 1,[
Pr(θ = G|zi, k−i)− 1

2

]
is positive for zi = g and negative for zi = b. This means that

the summands in the obedience constraint of a good-type voter (OB1̂
g) are positive for

all k−i ≥ 1 and that the summands in the obedience constraint of a bad-type voter
(OB1̂

b ) are positive for all k−i ≥ 2. Note that the obedience constraints can equivalently
be written as

3∑
k=1

d[1̂|k] · Pr(k)k3 ·
[
Pr(θ = G|k)− 1

2

]
(OB1̂

g)

2∑
k=0

d[1̂|k] · Pr(k)3− k
3 ·

[
Pr(θ = G|k)− 1

2

]
(OB1̂

b )

Next, we subtract OB1̂
b from OB1̂

g and split the resulting difference into the following
parts:

2∑
k=1

d[1̂|k] · Pr(k) ·
[
Pr(θ = G|k)− 1

2

]
︸ ︷︷ ︸
<0 if k=1;>0 if k=2

·
[
k

3 −
3− k

3

]
︸ ︷︷ ︸
≤0 if k=1;≥0 if k=2︸ ︷︷ ︸

>0

≥ 0, (2.36)

+ d[1̂|k = 3] · Pr(k = 3) ·
[
Pr(θ = G|k = 3)− 1

2

]
︸ ︷︷ ︸

>0

≥ 0, (2.37)

− d[1̂|k = 0] · Pr(k = 0) ·
[
Pr(θ = G|k = 0)− 1

2

]
︸ ︷︷ ︸

<0

≥ 0 (2.38)

Adding 2.36, 2.37 and 2.38 up yields that the OB1̂
g − OB1̂

b is positive. This proves the
lemma.

A.4 Proof of Proposition 12

Proof. Sender’s problem is a Fractional Knapsack Problem. In the following we will
use a greedy algorithm to solve this problem. The obedience constraint for a voter with
a bad private signal and the recommendation r = 1̂ can be written as:

2∑
k=0

d[1̂|k] · Pr(k)3− k
3 ·

[1
2 − Pr(θ = G|k)

]
≤ 0 (2.39)
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We have already proven that it’s optimal for the sender to choose d[1̂|k] = 1 for k ∈
{2, 3}. By using this result, the above obedience can be written as:

1∑
k=0

d[1̂|k] · Pr(k)3− k
3 ·

[1
2 − Pr(θ = G|k)

]
(2.40)

≤ Pr(k = 2)
[1
2 − Pr(θ = G|k = 2)

]
= 1

2p(1− p)(p+ q − 1)

Note that the sender wants to put as much weight on the recommendation 1̂ as the
voters’ obedience constraints allow. We showed that the sender will optimally set
d[1̂|k] = 1 for k ∈ {2, 3}. When the sender chooses d[1̂|k] for k ∈ {0, 1}, she can
increase d[1̂|k] for k ∈ {0, 1} as long as the voters’ obedience constraints are fulfilled.
We solve the problem for the obedience constraint of a b-type voter, since by Lemma
10 the obedience constraint of g-type voter holds then as well.We have a problem of the
following form

Find 0 ≤ xk = d[1̂|k] ≤ 1 for k ∈ {0, 1} s.t.

1)
1∑

k=0
xkwk ≤ 1

2p(1− p)(p+ q − 1) holds and

2)
1∑

k=0
xkvk is maximized,

where wk = Pr(k)3−k
3 ·

[
1
2 − Pr(θ = G|k)

]
and vk = Pr(k) · 1. We refer to wk as the

weight and to vk as the value of z−i. Next we calculate the value-per-weight ratio
ρk = vk

wk
for k ∈ {0, 1}:

ρ1 = v1

w1
= Pr(k = 1)

Pr(k = 1)2
3 ·
[

1
2 − Pr(θ = G|k = 1)

] = 3(p+ q − 2pq)
p− q

ρ0 = v0

w0
= Pr(k = 0)

Pr(k = 0) ·
[

1
2 − Pr(θ = G|k = 0)

] = 2((1− q)p3 + q(1− p)3)
(1− q)p3 − q(1− p)3

We sort the k’s by decreasing ρk. Since ρ1 > ρ0 for all 1
2 < p < 1 and ρ1 = ρ0 for

p = 1, we get the ordering 1, 0. Next we check whether the maximal allowed weight,
i.e., 1

2p(1− p)(p+ q − 1) from the right hand side of the obedience constraint is bigger
or smaller than the weight of k = 1. If it is smaller, we set d[1̂|k = 1] = 1 and perform
the same step with k = 0. If it is bigger, we set d[1̂|k = 1] = p(1−p)(p+q−1)

2p(1−p)(p+q) = p+q−1
2(p−q)

and d[1̂|k = 0] = 0. Note that this procedure implies that the obedience constraint
of bad-type voter and the recommendation r = 1̂ is binding for this disclosure policy,
i.e., a voter with a bad private signal and the recommendation 1̂ is indifferent between
voting for the reform and voting for the status quo.
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A.5 Proof of Proposition 13

Proof. Consider the same filtering of the original disclosure policy d′ into d as in the
proof of Proposition 11:

d(1̂|r′, k) = a(r′, g)ka(r′, b)3−k.

It remains to be shown that this disclosure policy d satisfies the honesty constraints
for each type. The proof of optimality for the designer, and the validity of the obedi-
ence constraints were already established in Proposition 11. We prove that the above
filtering satisfies the honesty constraints of the g-type. The argument for the b-type is
accordingly, and therefore omitted.

Expected utility in equilibrium with d and d′. First, we show that the old
disclosure policy d′ and new disclosure policy d yields exactly the same expected utility
to the g-type in equilibrium, when reporting truthfully. Let R be the message set of
the designer with d′.8

EU(gi, ĝi; d′) =
∑
r∈R

Pr(r|ĝi, gi)(Pr(θ = G|r, ĝi, gi)−
1
2) Pr(a = 1) (2.41)

=
∑
r∈R

(Pr(θ = G, r|ĝi, gi)−
1
2 Pr(r|ĝi, gi)) Pr(a = 1) (2.42)

=
∑
r∈R

2∑
k−i=0

(Pr(θ = G, r, k−i|ĝi, gi)−
1
2 Pr(r, k−i|ĝi, gi))· (2.43)

a(r, g)k−i+1a(r, b)2−k−i

=
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|θ = G, k−i, ĝi, gi)· (2.44)

(Pr(θ = G|k−i, gi)−
1
2)a(r, g)k−i+1a(r, b)2−k−i

=
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)ai(r, g)k−i+1ai(r, b)2−k−iq(gi, k−i),

(2.45)

where q(gi, k−i) = (Pr(θ = G|k−i, gi)− 1
2) is the expected net utility from implementing

the proposal if a g-type voter reported truthfully, k−i others also have a g-signal and the
designer sent recommendation r. The factor ai(r, g)k−i+1ai(r, b)2−k−i accounts for the
probability of being pivotal (ai(r, g)k−iai(r, b)2−k−i) times the probability of the g-type
voter i voting for the reform ai(r, g) in equilibrium.

Next, consider the expected utility under the new disclosure policy d. Whenever the
designer sends recommendation 1̂ (which happens with probability ai(r, g)k−i+1ai(r, b)2−k−i

8For convenience of notation, we assume that R is finite.
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if recommendation r would have been sent in d′) the reform is implemented.

EU(gi, ĝi; d) =
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)d(1̂|r, k = k−i + 1)q(gi, k−i)

=
∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, ĝi, k−i; d′)ai(r, g)k−i+1ai(r, b)2−k−iq(gi, k−i).

(2.46)

This coincides with the utility under the original disclosure policy in Equation 2.41,
EU(gi, ĝi; d) = EU(gi, ĝi; d′).

Expected utility from misreporting in d′. Next, consider the utility of a g-voter
who reports b̂ in the original disclosure policy d′. To account for double deviations, we
denote by ãi(r, gi, b̂i) his action after observing r when reporting b̂.

EU(gi, b̂i; d′) =
∑
r∈R

max
ãi(r,gi,b̂i)∈[0,1]

ãi(r, gi, b̂i)· (2.47)

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′)ai(r, g)k−iai(r, b)2−k−iq(gi, k−i).

For simplicity of notation, denote by EU(r|gi, b̂i) the optimal utility after misreporting
and observing recommendation r. Note that EU(r|gi, b̂i) ≥ 0 for all r, as a voter can
always derive zero utility by voting against the reform. Hence,

EU(gi, b̂i; d′) =
∑
r∈R

EU(r|gi, b̂i). (2.48)

Expected utility from misreporting in d. Finally, consider the expected utility
after misreporting in the new disclosure policy d. The voter optimizes over his action
ã(1̂, gi, b̂i) after recommendation 1̂ after misreporting. For simplicity, we assume that
the voter votes for the reform with probability ã(1̂, gi, b̂i) after both recommendations
1̂ and 0̂, as his utility after recommendation 0̂ yields utility 0 irrespective of his action.
The difference to d′ is that he might not know which r lead to the recommendation 1̂.

EU(gi, b̂i; d) = max
ã(1̂,gi,b̂i)∈[0,1]

ã(1̂, gi, b̂i)·

∑
r∈R

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′) ai(r, g)k−iai(r, b)3−k−i︸ ︷︷ ︸
=Pr(1̂|r,k=k−i)

q(gi, k−i).

(2.49)

If the voter knew which r of the original disclosure policy d′ led to recommendation
1̂, he would be better off: he could adapt his voting decision ã(1̂, r, gi, ĝi) to each r
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(instead of choosing the same ã(1̂, gi, ĝi) for all r that led to 1̂). Thus,

EU(gi, b̂i; d) ≤
∑
r∈R

max
ã(1̂,r,gi,b̂i)∈[0,1]

ã(1̂, r, gi, b̂i)·

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′) ai(r, g)k−iai(r, b)3−k−i︸ ︷︷ ︸
=d(1̂|r,k=k−i)

q(gi, k−i)

(2.50)
=
∑
r∈R

ai(r, b) max
ã(1̂,r,gi,b̂i)∈[0,1]

ã(1̂, r, gi, b̂i)·

2∑
k−i=0

Pr(k−i|gi) Pr(r|gi, b̂i, k−i; d′)ai(r, g)k−iai(r, b)2−k−iq(gi, k−i),

(2.51)

where the last inequality follows by putting the non-negative factor ai(r, b) outside the
maximum. But then note that the maximization problem point-wise after each r is
exactly the same as in Equation 2.47 for the original disclosure policy, EU(r|gi, b̂i),
which is non-negative. Hence, the optimal deviation utility is bounded above by

EU(gi, b̂i; d) ≤
∑
r∈R

ai(r, b)︸ ︷︷ ︸
∈[0,1]

EU(r|gi, b̂i)︸ ︷︷ ︸
≥0

(2.52)

≤
∑
r∈R

EU(r|gi, b̂i) (2.53)

= EU(gi, b̂i; d′). (2.54)

The payoff after a misreport and an optimal best response is weakly lower than in the
original disclosure policy. Note that the original disclosure policy d′ by assumption
satisfied all constraints, including the honesty constraint of the g-type. Hence, we
established that the honesty constraint of the g-type holds by proving

EU(gi, ĝi; d) = EU(gi, ĝi; d′) ≥ EU(gi, b̂i; d′) ≥ EU(gi, b̂i; d).

A.6 Proof of Proposition 14

Proof. For ∀q ≤ 2+p
5 the omniscient sender’s optimal disclosure policy looks as follows:

d[1̂|k] =


1 if k ∈ {2, 3}
p+q−1
2(p−q) if k = 1
0 if k = 0

Consider first the b-type voter. If misreporting to be a g-type is not a profitable
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deviation, we must have that

2∑
k=0

(d[1̂|k]− d[1̂|k + 1]) · Pr(k)3− k
3 ·

[
Pr(θ = G|k)− 1

2

]
≥ 0. (Hb)

Given the above omniscient disclosure policy, this becomes

−p+ q − 1
2(p− q)︸ ︷︷ ︸
≤0

·Pr(k = 0) ·
[
Pr(θ = G|k = 0)− 1

2

]
︸ ︷︷ ︸

≤0

(2.55)

+ (p+ q − 1
2(p− q) − 1)︸ ︷︷ ︸

≤0

·Pr(k = 1)2
3 ·
[
Pr(θ = G|k = 1)− 1

2

]
︸ ︷︷ ︸

≤0

≥ 0. (2.56)

Hence, the b-type’s honesty constraint is trivially fulfilled. Consider next the g-type
voter. For misreporting not being a profitable deviation for the b-type, we must have
that

3∑
k=1

(d[1̂|k]− d[1̂|k − 1]) · Pr(k)k3 ·
[
Pr(θ = G|k)− 1

2

]
≥ 0. (Hg)

Given the above omniscient disclosure policy, this becomes

(1− p+ q − 1
2(p− q) ) Pr(k = 2)2

3 ·
[
Pr(θ = G|k = 2)− 1

2

]
(2.57)

+ p+ q − 1
2(p− q) Pr(k = 1)1

3 ·
[
Pr(θ = G|k = 1)− 1

2

]
≥ 0. (2.58)

Further rewriting yields

p(1− p)︸ ︷︷ ︸
≥0

(p+ q − 1)︸ ︷︷ ︸
≥0

(
p+ 2− 5q
4(p− q)

)
≥ 0. (2.59)

Hence, the g-type voter has no profitable deviation if

p+ 2− 5q
4(p− q) ≥ 0 (2.60)

⇔ q ≤ 2 + p

5 . (2.61)

Since double deviations are neither profitable for the g-type, this proves that the g-type
cannot profit from misreporting and being obedient afterwards.
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A.7 Proof of Proposition 15

Proof. The precise optimal disclosure policy of an eliciting sender for 2+p
5 < q < 1 and

p ≤ p(q) is given by

d[1̂|k] =



1 if k ∈ {2, 3}
(p+q−1)(p3+p2(1−5q+(5p−2)q))

p4+q(−4p3−p2(5q−11)+p(5q−9)−q+2) if k = 1
(1−p)p(p+q−1)(p4−2p3(4q−1)+q(3p2(5q−1)−5p(3q−1)+5q−2))

(p3+(−3p2+3p−1)q)(q(4p3+p2(5q−11)−p(5q−9)+q−2)−p4) if k = 0,

We prove this Proposition by the standard primal-dual-technique. We first formulate
the primal and then the dual of the eliciting sender’s problem.

max
d

3∑
k=0

d[1̂|k] · Pr(k) (2.62)

s.t. 0 ≤ d[r|k] ≤ 1 ∀r ∈ {0̂, 1̂} and k ∈ {0, 1, 2, 3} (2.63)
d[1̂|k] + d[0̂|k] = 1 ∀k ∈ {0, 1, 2, 3} (2.64)

2∑
k=0

d[1̂|k] · Pr(k)3− k
3 ·

[1
2 − Pr(θ = G|k)

]
≤ 0 ∀ i (OB1̂

b )

3∑
k=1

(d[1̂|k − 1]− d[1̂|k]) · Pr(k)k3 ·
[
Pr(θ = G|k)− 1

2

]
≤ 0 ∀ i (Hg)

2∑
k=0

(d[1̂|k + 1]− d[1̂|k]) · Pr(k)3− k
3 ·

[
Pr(θ = G|k)− 1

2

]
≤ 0 ∀ i (Hb)

min
λ
OB1̂

b

≥0, λHg≥0, λHb≥0, {λk ≥ 0}k∈{0,1,2,3}

3∑
k=0

λk (2.65)

s.t. − Pr(k = 0)− (λ
OB1̂

b
+ λHb)

1
2(q(1− p)3 − (1− q)p3 (2.66)

+ λHg
1
2p(1− p)(q − p) + λk=0 ≥ 0

− Pr(k = 1)− (λ
OB1̂

b
+ λHb + 1

2λHg)p(1− p)(q − p) (2.67)

+ λHgp(1− p)(p+ q − 1) + λHb
1
2(q(1− p)3 − (1− q)p3) + λk=1 ≥ 0

− Pr(k = 2)− (λ
OB1̂

b
+ λHb + 2λHg)

1
2p(1− p)(p+ q − 1) (2.68)

+ λHg
1
2(qp3 − (1− q)(1− p)3) + λHbp(1− p)(q − p) + λk=2 ≥ 0

− Pr(k = 3)− λHg
1
2(qp3 − (1− q)(1− p)3) (2.69)

+ λHb
1
2p(1− p)(p+ q − 1) + λk=3 ≥ 0.
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The complementary slackness conditions are given by

d[1̂|k = 0] · (−Pr(k = 0)− (λ
OB1̂

b
+ λHb)

1
2(q(1− p)3 − (1− q)p3) (2.70)

+ λHg
1
2p(1− p)(q − p) + λk=0) = 0

d[1̂|k = 1] · (−Pr(k = 1)− (λ
OB1̂

b
+ λHb + 1

2λHg)p(1− p)(q − p) (2.71)

+ λHgp(1− p)(p+ q − 1) + λHb
1
2(q(1− p)3 − (1− q)p3) + λk=1) = 0

d[1̂|k = 2] · (−Pr(k = 2)− (λ
OB1̂

b
+ λHb + 2λHg)

1
2p(1− p)(p+ q − 1) (2.72)

+ λHg
1
2(qp3 − (1− q)(1− p)3) + λHbp(1− p)(q − p) + λk=2) = 0

d[1̂|k = 3] · (−Pr(k = 3)− λHg
1
2(qp3 − (1− q)(1− p)3) (2.73)

+ λHb
1
2p(1− p)(p+ q − 1) + λk=3) = 0

λ
OB1̂

b
· (

2∑
k=0

d[1̂|k] · Pr(k)3− k
3 ·

[1
2 − Pr(θ = G|k)

]
) = 0 (2.74)

λHb · (
2∑

k=0
(d[1̂|k + 1]− d[1̂|k]) · Pr(k)3− k

3 ·
[
Pr(θ = G|k)− 1

2

]
) = 0 (2.75)

λHg · (
3∑

k=1
(d[1̂|k − 1]− d[1̂|k]) · Pr(k)k3 ·

[
Pr(θ = G|k)− 1

2

]
) = 0 (2.76)

λk · (d[1̂|k]− 1) = 0 ∀k ∈ {0, 1, 2, 3}. (2.77)

The disclosure policy from Proposition 15 and the following dual variables fulfill the
above complementary slackness conditions for 1

2 < p < p(q):

{~λ} =



λ
OB1̂

b
= λHgp(1−p)(q−p)−2(q(1−p)3+(1−q)p3)

q(1−p)3−(1−q)p3

λHb = 0

λHg = 6(q+p−2qp)(q(1−p)3−(1−q)p3)−4(q−p)(q(1−p)3+(1−q)p3)
(q(1−p)3−(1−q)p3)(3p+q−2)−2p(1−p)(q−p)2

λk=0 = 0

λk=1 = 0

λk=2 = 3p(1− p)(1− 2qp− p− q) + (λ
OB1̂

b
+ 2λHg)1

2p(1− p)(p+ q − 1)
−λHg 1

2(qp3 − (1− q)(1− p)3)

λk=3 = qp3 + (1− q)(1− p)3 + λHg
1
2(qp3 − (1− q)(1− p)3)


(2.78)
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and p(q) solves λk=2 = 0.

A.8 Proof of Proposition 16

Proof. The precise optimal disclosure policy of an eliciting sender for 2+p
5 < q ≤ q(p)

and p > p(q) is given by

d[1̂|k] =



1 if k = 3
(p−q)(qp3−(1−q)(1−p)3)

p(1−p)(1−p−q)(1−2.5q−0.5p)+(p−q)(qp3−(1−q)(1−p)3) if k = 2
(1−p−q)(p−q)(qp3−(1−q)(1−p)3)

2(q−p)(p(1−p)(1−p−q)(1−2.5q−0.5p)+(p−q)(qp3−(1−q)(1−p)3)) if k = 1

0 if k = 0,

and for q(p) < q < 1 and p > p(q) by

d[1̂|k] =



1 if k ∈ {1, 3}
2(−p2(1−p)2(q−p)2+(q(1−p)3−(1−q)p3)(p(1−p)(1.5p+0.5q−1)−0.5(qp3−(1−q)(1−p)3))
2(q(1−p)3−(1−q)p3)(p(1−p)(p+q−1)−0.5(qp3−(1−q)(1−p)3))+p2(1−p)2(p+q−1)(q−p) if k = 2
d[1̂|k=2]·p(1−p)(1−p−q)−2p(1−p)(q−p)

q(1−p)3−(1−q)p3 if k = 0,

The disclosure policy from Proposition 16 and the following dual variables fulfill the
above complementary slackness conditions for 2+p

5 < q ≤ q(p) and p > p(q):

{~λ} =



λ
OB1̂

b
= λHg ( 3

2p+ 1
2 q−1)−3(q+p−2qp)

q−p

λHb = 0

λHg = 6p(1−p)(q−p)(1−p−q+2qp)−3p(1−p)(p+q−1)(q+p−2qp)
(qp3−(1−q)(1−p)3)(q−p)−p(1−p)(p+q−1)( 5

2 q−
1
2p−1)

λk=0 = 0

λk=1 = 0

λk=2 = 0

λk=3 = qp3 + (1− q)(1− p)3 + λHg
1
2(qp3 − (1− q)(1− p)3)



(2.79)

where p(q) solves −(q(1− p)3 + (1− q)p3)− λ
OB1̂

b

1
2(q(1− p)3 − (1− q)p3) + λHg

1
2p(1−

p)(q − p) = 0 and q(p) solves d[1̂|k = 1] = 1. This p(q) is the same as in Proposition
15. The disclosure policy from Proposition 16 and the following dual variables fulfill
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the above complementary slackness conditions for q(p) < q < 1 and p > p(q):

{~λ} =



λ
OB1̂

b
= λHgp(1−p)(q−p)−2(q(1−p)3+(1−q)p3)

q(1−p)3−(1−q)p3

λHb = 0

λHg = 6p(1−p)(1+2qp−p−q)(q(1−p)3−(1−q)p3)−2p(1−p)(p+q−1)(q(1−p)3+(1−q)p3)
(q(1−p)3−(1−q)p3)(qp3−(1−q)(1−p)32p(1−p)(p+q−1))−p2(1−p)2(q−p)(p+q−1)

λk=0 = 0

λk=1 = 3p(1− p)(q + p− 2qp) + (λ
OB1̂

b
+ 1

2λHg)p(1− p)(q − p)
−λHgp(1− p)(p+ q − 1)

λk=2 = 0

λk=3 = qp3 + (1− q)(1− p)3 + λHg
1
2(qp3 − (1− q)(1− p)3)



(2.80)

where p(q) solves λk=1 = 0 and q(p) solves d[1̂|k = 0] = 0. p(q) and q(p) are identical
to the terms we calculated in the first part of the proof of Proposition 16.

A.9 Proof of Proposition 18

Proof. We prove this Proposition by the standard primal-dual-technique. We first
formulate the primal and then the dual of the eliciting sender’s problem. Let c =
Pr(zi, z−i)(Pr(θ = G|zi, z−i)− 1

2).

max
{d[r|z]≥0} z∈Z

r∈R

∑
z∈Z

d[ra|z] · Pr(z) (2.81)

s.t. d[ra|z] + d[rr1|z] + d[rr2|z] + d[rr3|z]− 1 ≤ 0 ∀z ∈ Z (2.82)∑
z−i∈Z−i

Pr(bi, z−i)d[ra|z](1
2 − Pr(θ = G|bi, z−i)) ≤ 0 ∀i (OB1̂i

bi
)

∑
z−i∈Z−i

d[rri |z] · c ≤ 0 ∀i, zi ∈ {g, b} (OB0̂i
zi
)

∑
z−i∈Z−i

(d[ra|zi, z−i]− d[ra|ẑi, z−i]) · (−c) ≤ 0 (Hzi)∑
z−i∈Z−i

(d[ra|zi, z−i]− d[ra|ẑi, z−i]− d[rri |ẑi, z−i]) · (−c) ≤ 0 (H 0̂1̂
zi
)

∑
z−i∈Z−i

(d[ra|zi, z−i]− d[rri |ẑi, z−i]) · (−c) ≤ 0 ∀zi, ẑi ∈ {g, b} (H 0̂
zi
)
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min
λ
OB1̂

bi

≥0, λHzi≥0, λ
H0̂1̂
zi

≥0, λ
H0̂
zi

≥0, {λz ≥ 0}z∈Z

∑
z∈Z

λz (2.83)

s.t. − Pr(ggg) + λggg +
∑
i

(λHgi + λH 0̂1̂
gi

+ λH 0̂
gi

) Pr(ggg)(1
2 − Pr(θ = G|ggg))

−
∑
i

(λHbi + λ
H 0̂1̂
bi

) Pr(bigg)(1
2 − Pr(θ = G|bigg)) ≥ 0 (k = 3)

− Pr(bigg) + λbigg + (λ
OB1̂

bi

+
∑
j 6=i

(λHgj + λH 0̂1̂
gj

+ λH 0̂
gj

)) Pr(bigg)(1
2 − Pr(θ = G|bigg))

− (
∑
j 6=i

(λHbj + λ
H 0̂1̂
bj

− λ
H 0̂
bj

)− λ
H 0̂
bi

− λH 0̂
gi

) Pr(bigg)(1
2 − Pr(θ = G|bigg))

− (λHgi + λH 0̂1̂
gi

) Pr(ggg)(1
2 − Pr(θ = G|ggg)) ≥ 0 (zi = b, k = 2)

− Pr(gibb) + λgibb − (
∑
j 6=i

(λHgj + λH 0̂1̂
gj

)) Pr(gibb)(
1
2 − Pr(θ = G|gibb))

+ (λHgi + λ
H 0̂,1̂
gi

+ λH 0̂
gi

) Pr(gibb)(
1
2 − Pr(θ = G|gibb))

+ (
∑
j 6=i

(λ
OB1̂

bj

+ λHbj + λ
H 0̂1̂
bj

− λ
H 0̂
bj

)) Pr(gibb)(
1
2 − Pr(θ = G|gibb))

− (λHbi + λ
H 0̂1̂
bi

) Pr(bbb)(1
2 − Pr(θ = G|bbb)) ≥ 0 (zi = g, k = 1)

− Pr(bbb) + λbbb +
∑
i

(λ
OB1̂

bi

+ λHbi + λ
H 0̂1̂
bi

) Pr(bbb)(1
2 − Pr(θ = G|bbb))

−
∑
i

(λHgi + λH 0̂1̂
gi

) Pr(gibb)(
1
2 − Pr(θ = G|gibb)) ≥ 0 (k = 0)

λggg + λOB0̂
gi

Pr(ggg)(Pr(θ = G|ggg)− 1
2)

− (λ
H 0̂1̂
bi

+ λ
H 0̂
bi

) Pr(bigg)(1
2 − Pr(θ = G|bigg)) ≥ 0 (rri , zi = g, k = 3)

λgigb + λOB0̂
gi

Pr(gigb)(Pr(θ = G|gigb)−
1
2)

− (λ
H 0̂1̂
bi

+ λ
H 0̂
bi

) Pr(bigb)(
1
2 − Pr(θ = G|bigb)) ≥ 0 (rri , zi = g, k = 2)

λgibb + λOB0̂
gi

Pr(gibb)(Pr(θ = G|gibb)−
1
2)

− (λ
H 0̂1̂
bi

+ λ
H 0̂
bi

) Pr(bbb)(1
2 − Pr(θ = G|bbb)) ≥ 0 (rri , zi = g, k = 1)
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λbbb + λ
OB0̂

bi

Pr(bbb)(Pr(θ = G|bbb)− 1
2)

− (λH 0̂1̂
gi

+ λH 0̂
gi

) Pr(gibb)(
1
2 − Pr(θ = G|gibb)) ≥ 0 (rri , zi = b, k = 0)

λbibg + λ
OB0̂

bi

Pr(bibg)(Pr(θ = G|bibg)− 1
2)

− (λH 0̂1̂
gi

+ λH 0̂
gi

) Pr(gibg)(1
2 − Pr(θ = G|gibg)) ≥ 0 (rri , zi = b, k = 1)

λbigg + λ
OB0̂

bi

Pr(bigg)(Pr(θ = G|bigg)− 1
2)

− (λH 0̂1̂
gi

+ λH 0̂
gi

) Pr(ggg)(1
2 − Pr(θ = G|ggg)) ≥ 0. (rri , zi = b, k = 2)

Let czi,z−i = Pr(zi, z−i)(Pr(θ = G|zi, z−i)− 1
2). The complementary slackness conditions

are the following:

d[ra|ggg] · (−Pr(ggg) + λggg +
∑
i

(λHgi + λH 0̂1̂
gi

+ λH 0̂
gi

) · (−cggg)

−
∑
i

(λHbi + λ
H 0̂1̂
bi

) · (−cbigg)) = 0 (k = 3)

d[ra|bigg] · (−Pr(bigg) + λbigg + (λ
OB1̂

bi

+
∑
j 6=i

(λHgj + λH 0̂1̂
gj

+ λH 0̂
gj

)) · (−cbigg)

− (
∑
j 6=i

(λHbj + λ
H 0̂1̂
bj

− λ
H 0̂
bj

)− λ
H 0̂
bi

− λH 0̂
gi

) · (−cbigg)

− (λHgi + λH 0̂1̂
gi

) · (−cggg)) = 0 (zi = b, k = 2)

d[ra|gibb] · (−Pr(gibb) + λgibb − (
∑
j 6=i

(λHgj + λH 0̂1̂
gj

)) · (−cgibb)

+ (λHgi + λ
H 0̂,1̂
gi

+ λH 0̂
gi

) · (−cgibb)

+ (
∑
j 6=i

(λ
OB1̂

bj

+ λHbj + λ
H 0̂1̂
bj

− λ
H 0̂
bj

)) · (−cgibb)

− (λHbi + λ
H 0̂1̂
bi

) · (−cbbb)) = 0 (zi = g, k = 1)

d[ra|bbb] · (−Pr(bbb) + λbbb +
∑
i

(λ
OB1̂

bi

+ λHbi + λ
H 0̂1̂
bi

) · (−cbbb)

−
∑
i

(λHgi + λH 0̂1̂
gi

) · (−cgibb)) = 0 (k = 0)

d[rri |ggg] · (λggg + λOB0̂
gi
· cggg − (λ

H 0̂1̂
bi

+ λ
H 0̂
bi

) · (−cbigg)) = 0 (rri , zi = g, k = 3)

d[rri |gigb] · (λgigb + λOB0̂
gi
· cgigb − (λ

H 0̂1̂
bi

+ λ
H 0̂
bi

) · (−cbigb) = 0 (rri , zi = g, k = 2)

d[rri |gibb] · (λgibb + λOB0̂
gi
· cgibb − (λ

H 0̂1̂
bi

+ λ
H 0̂
bi

) · (−cbbb)) = 0 (rri , zi = g, k = 1)

d[rri |bbb] · (λbbb + λ
OB0̂

bi

· cbbb − (λH 0̂1̂
gi

+ λH 0̂
gi

) · (−cgibb)) = 0 (rri , zi = b, k = 0)

d[rri |bibg] · (λbibg + λ
OB0̂

bi

· cbibg − (λH 0̂1̂
gi

+ λH 0̂
gi

) · (−cgibg)) = 0 (rri , zi = b, k = 1)
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d[rri|bigg] · (λbigg + λ
OB0̂

bi

· cbigg − (λH 0̂1̂
gi

+ λH 0̂
gi

) · (−cggg)) = 0 (rri , zi = b, k = 2)

λz · (d[ra|z] + d[rr1|z] + d[rr2|z] + d[rr3|z]− 1) = 0 ∀z ∈ Z (F)

λ
OB1̂

bi

· (
∑

z−i∈Z−i
Pr(bi, z−i)d[ra|z](1

2 − Pr(θ = G|bi, z−i)) = 0 ∀i (OB1̂
bi
)

λOB0̂
zi
· (

∑
z−i∈Z−i

d[rri |z] · c) = 0 ∀i, zi ∈ {g, b} (OB0̂
zi
)

λHzi · (
∑

z−i∈Z−i
(d[ra|zi, z−i]− d[ra|ẑi, z−i]) · (−c)) = 0 (Hzi)

λH 0̂1̂
zi
· (

∑
z−i∈Z−i

(d[ra|zi, z−i]− d[ra|ẑi, z−i]− d[rri |ẑi, z−i]) · (−c)) = 0 (H 0̂1̂
zi
)

λH 0̂
zi
· (

∑
z−i∈Z−i

(d[ra|zi, z−i]− d[rri|ẑi, z−i]) · (−c)) = 0 ∀zi, ẑi ∈ {g, b} (H 0̂
zi
)

The modified disclosure policy of the eliciting sender from the public persuasion
case and the following modified dual variables from the public persuasion case fulfill
the above complementary slackness conditions:

{~λ} =



λ
OB1̂

bi

= λ
OB1̂

b
∀i ∈ {1, 2, 3}

λHbi = λHb ∀i ∈ {1, 2, 3}

λHgi = λHg ∀i ∈ {1, 2, 3}

λbbb = λk=0

λgibb = 1
3λk=1 ∀i ∈ {1, 2, 3}

λbigg = 1
3λk=2 ∀i ∈ {1, 2, 3}

λggg = λk=3

λH 0̂1̂
zi

= λH 0̂
zi

= λOB0̂
zi

= 0 ∀zi ∈ {b, g}, i ∈ {1, 2, 3}



(2.84)

and p(q) solves λk=2 = 0.
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Chapter 3

Communication versus Delegation for
State-Dependent Biases

1. Introduction

One of the most crucial challenges an organization faces is how decisions should be made
when the decision relevant information is asymmetrically distributed across the different
organization levels. To address this challenge, we analyze the decision making in an
organization when there is an uninformed principal who owns the decision rights and
an informed agent. In particular, we investigate whether it is better for the principal to
delegate the decision to his agent, who is perfectly informed about the decision relevant
state of the world, or to keep all decision rights and only consult the agent.

If the preferences of the principal and the agent coincided, they would always agree
on the best possible decision and no problem would arise. However, the agent usu-
ally has different objectives and the principal cannot commit on anything except for
the delegation of decision rights. In this case, strategic considerations take place and
information about the state of the world will never be fully revealed by the agent.
Thus, the question whether it is more advantageous for the principal to delegate or to
communicate requires an elaborate comparison of these two organizational structures.

Dessein (2002) conducts a comparison of delegation and communication for constant
biases of the agent. A constant bias implies that the difference in preferences between
the principal and the agent does not change with the state of the world. The vital
point in Dessein (2002) is that there exists a trade-off between a loss of control and
a loss of information. The loss of control is due to the transfer of authority to the
biased agent. As in this case the principal commits to never overrule any decision,
the agent acts in his full self-interest without internalizing the principal’s preferences.
Hence, the principal always experiences a loss due to the discrepancy in objectives.
On the other hand, if the principal only consults the agent, she keeps the control but
faces a loss of information due to the agent’s retention of information. This loss of
information is not apparent when decision rights have been delegated because in this
case all available information is used by the agent. Dessein (2002) finds that in the
context of the uniform-quadratic example of Crawford and Sobel (1982) full delegation
always beats communication whenever the latter is informative.

However, differences in preferences might not be constant but can vary. This impor-

87



tant aspect is neglected in the analysis of Dessein (2002) and has not been investigated
for the classic principal-agent model in existing literature. We seek to address this
limitation by modeling the agent’s bias as state-dependent and investigate whether
Dessein’s (2002) result still holds. That is, we analyze whether delegation still outper-
forms communication when the difference in preferences of the principal and the agent
varies with the state of the world. This analysis requires a distinction between two
different types of biases, that is, biases for which the agent reacts either more or less
sensitive than the principal to changes in the state of the world. Our findings run con-
tradictory to Dessein (2002) as we show that communication can in fact beat delegation
if the agent reacts more sensitive than the principal.

Our resulting communication equilibria correspond to partition equilibria, where the
agent divides the state space into subintervals and only communicates the subinterval in
which his privately observed state lies. Unlike the results of Crawford and Sobel (1982),
in our model (i) communication is always informative and (ii) there does not exist an
upper bound on the size of the partition equilibrium whenever the agent’s degree of
sensitivity is higher than the principal’s. When the agent reacts relatively less sensitive
than the principal to changes in the state, there do no longer exist partition equilibria
of every size for every bias of the agent.

We illustrate that when the agent reacts significantly more sensitive to changes in
the state than the principal, increasing the equilibrium size predominantly refines the
transmitted information around the state of the world for which preferences coincide.
The impact on the quality of the transmitted information for states further away from
the point of agreement is significantly smaller and almost negligible for large enough
biases. However, the limit-equilibrium in which we let the partition size converge to
infinity yields the principal and the agent a higher expected payoff than any other
partition equilibrium of a smaller size. Thus, it is the best partition equilibrium the
principal and the agent can agree upon.

We show that if the agent’s bias exceeds a certain threshold, the principal’s ex-
pected payoff under communication is higher than under delegation. Consequently,
Dessein’s (2002) result, that for the uniform-quadratic example delegation always beats
communication whenever the latter is informative, does not hold for state-dependent
biases.

2. Related Literature

This paper builds upon different streams of existing literature.
First and foremost, this paper is related to the work of Crawford and Sobel (1982)

(henceforth CS). Their seminal paper ‘Strategic Information Transmission’ analyzes
cheap talk, that is, costless, non-binding and unverifiable communication (Alonso et al.,
2008). More specifically, in the context of a sender-receiver game CS analyze how
information about a payoff relevant parameter gets transmitted when there is only one
informed agent whose preferences are different from those of an uninformed decision
maker. They show that all communication equilibria must take the form of partitions
and that there exists an upper bound on the equilibrium size that gets determined
by the agent’s bias. The smaller the difference in preferences, the more elements a
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partition can have. Additionally, they find that the communicated information gets
more precise as the number of partition elements increases, or equivalently, as the bias
of the agent decreases. The main technical difference between their and our analysis
lies in the nature of the agent’s bias. While they assume the agent’s bias to be constant,
we consider a state-dependent bias and let the difference in preferences of the principal
and the agent vary with the state of the world.

Since the seminal paper of CS, many authors have contributed to the cheap talk
literature (e.g., Aumann and Hart, 2003; Deimen and Szalay, 2019b; Melumad and
Shibano, 1991; Krishna and Morgan, 2004; Stein, 1989). In particular, Stein (1989)
studies how the Federal Reserve releases private information about its policy objectives.
Due to the Federal Reserve’s incentive to manipulate the public’s expectation, full
revelation of its future policy cannot take place. As in our model, the conflict of
interest is not constant but can change. This allows for the existence of infinitely many
partition equilibria. Stein (1989) further points out that the amount of information
that can be transmitted via cheap talk is nevertheless still bounded as described in CS.

An extension of the classic cheap talk model is done by Melumad and Shibano
(1991). They extend the model of CS by introducing, in addition to the unconditional
(or constant) bias, a conditional (or state-dependent) preference divergence which allows
for preferences to coincide. As they include both, a constant and a state-dependent bias,
their model is more general than ours. However, as they concentrate on analyzing finite
equilibria, they do not consider the expected payoff in the limit-equilibrium.

Dimitrakas and Sarafidis (2005) modify the classic model of CS by adding uncer-
tainty among the receiver about the sender’s bias and analyze how this modification
affects the quality of information transmission. They find that there exists an infinity
of partition equilibria that converge very fast towards a limit-equilibrium. However,
while they only seek to answer the question how uncertainty about the sender’s bias
influences the quality of communication, we are interested in how a state-dependent
bias influences the quality of communication.

Besides these rather specific differences, the common difference between these pa-
pers and our work is manifested in the analysis of how the expected payoff under
delegation compares to the expected payoff under communication.1 As such this pa-
per also contributes to the literature on delegation and the comparison of delegation
and communication (e.g., Alonso and Matouschek, 2008; Dessein, 2002; Holmström,
1984; Ludema and Olofsgård, 2008). In particular, this paper is related to the work of
Dessein (2002). Dessein (2002) also analyzes for the uniform-quadratic example of CS
whether delegation or communication is the better choice for the principal if the agent
has a constant bias.2 One of Dessein’s (2002) findings is that for the uniform-quadratic
example, delegation always beats communication whenever the latter is informative.
We also compare communication with delegation, but in contrast to Dessein (2002), we
model the agent’s bias as state-dependent and allow for preferences to coincide.

Alonso et al. (2008) analyze decision making in an organization where an uninformed

1Only Li et al. (2016) briefly discuss that for their model communication and delegation are outcome
equivalent, which significantly differs from our results.

2Harris and Raviv (2005) use an analogous model, but in contrast to Dessein (2002), they assume
that both, the principal and the agent, have some private information.
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headquarter manager can either consult his two perfectly informed, but biased, division
managers and make the decision for both divisions on his own (centralization) or fully
delegate the decisions to them (decentralization). Since in Alonso et al.’s (2008) model
the decisions of the two divisions need to be coordinated, the two division managers also
need to communicate with each other under decentralization. Division managers are
biased in that they care more about maximizing their own division’s than the over-all
organization’s payoff. Analogous to our model, the incentive to misrepresent private
information varies with the state of the world and a full alignment of preferences is pos-
sible in exactly one state of the world. Alonso et al. (2008) find that the communication
equilbria are equivalent to partitions which can possibly have infinitely many elements.
They show that vertical communication is in general more efficient than horizontal
communication.3 However, they find that whether centralization or decentralization
performs better depends on the coordination parameter. In other words, if the need for
coordination between the two divisions increases, decentralization can perform better
than centralization. While in Alonso et al. (2008) there exists a trade-off between coor-
dination and adaption when decisions have to be made, in our model there is no need
for coordination.

In addition to the above paper, Alonso and Matouschek (2008) analyze how the
optimal delegation scheme should be designed by the principal when the agent is bi-
ased.4 Since they allow for any continuous difference of preferences, the state-dependent
preference divergence as analyzed in this paper is included in their analysis. However,
in contrast to us, they concentrate on the mere delegation problem. More specifically,
they investigate how much discretion should be given to the agent without considering
the option of engaging in cheap talk communication with the agent.

A further comparison of communication and delegation for constant biases is done
by Ottaviani (2000). He introduces a varying degree of strategic sophistication for the
receiver. If the receiver is fully sophisticated, cheap talk takes place and the resulting
equilibria correspond to the partition equilibria from CS. If, however, the receiver is
totally unsophisticated, communication takes the form of delegation because the re-
ceiver simply implements everything the sender advises him to do. Since the main goal
of Ottaviani (2000) is to show how the degree of sophistication influences the sender’s
strategies and the resulting equilibria, our work differs significantly from his.

A recent paper that is related to ours is Deimen and Szalay (2019a). They study
a decision maker that is reliant on the information acquisition of one expert. The
conflict of interest between the decision maker and the expert is state-dependent and
endogenously influenced by the information the expert acquires. They compare two
settings: one in which the decision maker delegates the decision to the expert and one
in which she keeps the decision rights and only communicates with the expert. While
in Deimen and Szalay (2019a) the analysis of how the delegation of authority influences
the information acquisition of the expert is crucial, in our paper the agent already has

3Note that vertical and horizontal communication correspond to centralization and decentralization,
respectively.

4Their paper builds strongly on the work of Holmström (1984) who was the first to examine this
delegation problem. In contrast to Holmström (1984), Alonso and Matouschek (2008) do not impose
any restrictions on the feasible delegation sets. As a consequence, they are able to derive more general
characterization results for the delegation problem.
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all relevant information and his bias is known by the principal.

3. Model

An organization consists of an uninformed principal (she) and a perfectly informed agent
(he). The principal has to decide which project the organization should undertake.
There is an infinite number of possible projects available and all of them differ only
in one dimension. Suppose that each project can be represented by a real number
y ∈ [−1, 1]. Furthermore, the project decision needs to be adapted to the current state
of the world θ, a random variable which is uniformly distributed on [−1, 1]. While the
principal cannot observe the decision relevant state and thus only holds a prior belief
about its realization, the agent is perfectly informed about θ. Except for the state of
the world, everything is common knowledge. The principal’s and the agent’s utility
functions are given by

UP (y, θ) = −(y − θ)2 (3.1)

UA(y, θ, b) = −(y − bθ)2. (3.2)

These utility functions have a unique maximizer for each θ, denoted by y∗P (θ) = θ
and y∗A(θ, b) = bθ. We refer to them as the principal’s and the agent’s preferred project
decisions. The scalar b ∈ (0, 1)∪ (1,∞) is a parameter that measures how sensitive the
agent reacts to changes in the state of the world. We call b the agent’s state-dependent
bias. The principal’s sensitivity is normalized to one. We exclude b = 1 in our analysis
since in this case preferences perfectly coincide and both the principal and the agent
agree on the best possible project choice for every state.

At θ = 0 a reversal of preferences takes place: If b > 1, the agent prefers smaller
projects relative to the principal for θ ∈ [−1, 0) and larger projects than the principal
for θ ∈ (0, 1]. To put this in formal terms, if b > 1, then y∗A(θ, b) < y∗P (θ) for θ ∈ [−1, 0)
and y∗A(θ, b) > y∗P (θ) for θ ∈ (0, 1]. For b ∈ (0, 1) the statement inverts and it holds
that y∗A(θ, b) > y∗P (θ) for θ ∈ [−1, 0) and y∗A(θ, b) < y∗P (θ) for θ ∈ (0, 1]. At θ = 0,
preferences coincide, that is, y∗A(0, b) = y∗P (0) = 0 (Melumad and Shibano, 1991).

This latter aspect is crucial for our analysis and distinguishes our work from that of
CS as they do not allow for preferences to coincide. In the model of CS the agent’s utility
function is given by UA(y, θ, b) = −(y − (θ + b))2, where b > 0, and the principal’s
utility function is identical to ours. The preferred choices of the agent and the principal
are y∗A(θ, b) = θ + b and y∗P (θ) = θ, respectively, and the difference in optimal actions
(i.e., y∗A(θ, b) − y∗P (θ)) is constantly b. Hence, the agent always prefers larger project
decisions relative to the principal independent of the state of the world. Instead, in our
model the difference in optimal actions is (b − 1)θ. This implies that the conflict of
interest is smaller, the smaller |θ| is and vanishes completely at θ = 0.

We assume that contracts are incomplete and consider a setting with no transfers.
These assumptions imply that the principal can neither commit to a decision rule that
depends on the transmitted information nor commit to pay transfers to the agent.
However, we assume that the principal and the agent can contract upon the allocation
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of the ex-ante decision rights. In other words, the principal might transfer all authority
to the agent in the beginning. In this case the agent is free to choose his preferred project
and does not need to obtain a final approval by the principal. As a result, under full
delegation the agent will make the decision in his best self-interest and will not take
the principal’s preferences into account when choosing a project. As the principal has
irrevocably lost the control over the decision, she cannot overrule the decisions made
by the agent and thus will always experience a loss due to the agent’s bias (except for
θ = 0).

Instead, if the principal keeps the authority in the beginning, she has the option
of consulting the agent. In this case the agent gives the principal an advice what to
do, which means that the agent sends the principal a costless, unverifiable message
with information about the state of the world. Upon receiving the agent’s message the
principal needs to extract the embedded information in order to subsequently choose a
project based on her updated beliefs about θ. Since the principal cannot commit to a
decision rule conditional on the received message, the agent correctly anticipates that
the principal will adjust the advice for his bias. Thus, communication takes the form
of cheap talk, which is why the agent will never fully reveal his private information.
Hence, relevant information gets lost and cannot be used by the principal when she
makes the decision.

From this line of reasoning, it becomes clear that there exists a trade-off between
a loss of control and a loss of information (Dessein, 2002). Should the principal fully
delegate the decision rights in order to make use of all the available information, while
losing the control over the project choice? Or should she just consult the agent and
make the decision on her own, while facing a loss of information? In order to answer
this question, we calculate the principal’s expected payoff under both organizational
structures and compare them afterwards.

4. Communication versus Delegation

4.1 Delegation

After having introduced the model, in this section we calculate the principal’s expected
payoff when she decides to delegate full authority to the agent ex-ante. Since we assume
that the principal can only delegate all decisions rights, the agent is free to choose every
available project. After the decision has been made, the principal cannot overrule the
agent’s choice anymore. Therefore, the agent will choose the decision that maximizes
his payoff given θ, that is, y∗A(θ) = bθ. Given the agent’s strategy, the expected payoff
of the principal under full delegation is

E[UD
P ] = −

1∫
−1

(bθ − θ)2 1
2 dθ = −1

2(b− 1)2
1∫
−1

θ2 dθ = −1
3(b− 1)2. (3.3)

While the loss the principal expects under delegation is very small for biases close
to one, the principal’s expected loss increases very fast as the agent’s bias increases.
This is not surprising as the difference in preferred project choices of the principal and
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the agent, i.e., (b− 1)θ, is smaller the closer b is to one. There exists a threshold b̄ such
that for all b > b̄ the principal never delegates the decision rights to the agent in the
beginning. This is due to the fact that for biases greater than this threshold, delegation
always performs worse than making a totally uninformed decision. The principal can
do better than delegating the decision rights by simply implementing her prior of θ,
i.e., yP = E[θ] = 0. Her expected payoff in this case is

E[UP ] = −
1∫
−1

(0− θ)2 1
2 dθ = −1

3 . (3.4)

Hence, if −1
3(b − 1)2 < −1

3 or, respectively, if b > 2 = b̄, the principal will never
transfer full authority to the agent as in this case making an uninformed decision
always yields her a higher expected payoff. Note that this result implies that also
communication performs better than delegation for all b > b̄. Even if the agent’s
message is uninformative and no information at all is transmitted, the principal’s beliefs
stay unchanged and she would just implement her prior of θ. We derive the following
proposition (see also Dessein, 2002).

Proposition 19. If θ is uniformly distributed on [−1, 1] and b > 0, then there exists a
threshold b̄ such that the principal will never delegate all decision rights to the agent if
b > b̄ = 2.

4.2 Communication for b > 1

The advantage of communication compared to delegation is that the principal keeps the
authority and is not forced to implement the biased project choice of the agent. Instead,
after having received the message of the agent, the principal can choose the project that
maximizes her expected payoff given her updated beliefs about the state of the world.
In this sender-receiver game, the agent, as the sender, first privately observes the state
of the world which is relevant for both. After having observed the state he sends a
possibly noisy signal to the principal, the receiver, who then makes a decision based
on the received information. This decision determines the welfare of both. Similar
to Alonso et al. (2008), we use the concept of a Perfect Bayesian Nash Equilibrium.
This concept requires that the agent’s message maximizes his expected payoff given the
principal’s decision rule, and that the principal’s project choice maximizes her expected
payoff given the agent’s signaling rule and her belief function. The next definition puts
these characteristics in formal terms.

Definition 1. An equilibrium consists of a family of signaling rules q(·) for the agent,
where for each θ ∈ [−1, 1], q(m|θ) is the conditional probability of sending a message
m given the state θ, a belief function g(·) for the principal, where g(θ|m) denotes the
probability of θ given message m, and a decision rule y(·) for the principal, where y(m)
is a mapping from the set of feasible signals M to the set of actions [−1, 1], such that:

(i) for each θ ∈ [−1, 1], if q(m|θ) > 0, then m maximizes the expected utility of the
agent, given the principal’s decision rule y(·), and
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(ii) for each m, y(m) maximizes the expected utility of the principal given her belief
function.

(iii) the belief function g(θ|m) is derived from q(m|θ) using Bayes Rule whenever pos-
sible.

As shown by CS for constant biases and by Melumad and Shibano (1991) for state-
dependent biases, the resulting equilibria of the communication game are partition
equilibria. This means that each equilibrium is characterized by a partition aN =
(a0, a1, . . . , aN) of the state space, where [−1, 1] is divided into N ∈ N intervals. To
be qualified as an equilibrium partition, the dividing thresholds must be monotonically
ordered and have to lie in between the limits of the state space, that is, −1 = a0 <
a1 < · · · < aN = 1. We call these two conditions the monotonicity and the boundary
condition. In such a partition equilibrium, the agent introduces noise into his signal by
solely revealing in which interval the observed state lies. That is, he reports the same
signal for all states that belong to the same partition element. Consequently, relevant
information gets lost. After having received the agent’s message, the principal updates
her prior belief about θ by using the information transmitted by the agent. That is,
the principal forms her expectation about θ conditional on knowing to which interval
θ belongs. Given her updated belief about θ, the principal subsequently chooses the
project that maximizes her expected payoff. The following proposition summarizes the
characteristics of partition equilibria for our setting.5

Define for all a, a ∈ [−1, 1], a < a,

y(a, a) ≡ argmax
y

a∫
a

UP (y, θ)1
2dθ = a+ a

2 .

Proposition 20. If b > 1, then there exists at least one equilibrium (y(·), q(·), g(·)) for
every N ∈ N, where

(i) q(m|θ) is uniform, supported on [ai, ai+1] if θ ∈ (ai, ai+1)

(ii) g(θ|m) is uniform, supported on [ai, ai+1] if m ∈ (ai, ai+1)

(iii) y(m) = y(ai, ai+1) for all m ∈ (ai, ai+1)

(iv) ai+1 − ai = ai − ai−1 + 4(b− 1)ai for i = 1, ..., N − 1

(v) a0 = −1 and aN = 1.

Given a partition of size N , an arbitrary threshold ai is defined by

ai = xi(1 + yN)− yi(1 + xN)
xN − yN

for 0 ≤ i ≤ N, (3.5)

5Proposition 20 is a modified version of Theorem 1 from CS and Proposition 1 from Alonso et al.
(2008).
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where x =
√

(1− 2b)2 − 1 + 2b− 1 and y = −
√

(1− 2b)2 − 1 + 2b− 1. These thresholds
fulfill the monotonicity and the boundary conditions for every partition size N if b > 1.

The difference equation from part (iv) of Proposition 20 determines the length of
each interval in our equilibrium. In particular, the length of the interval [ai, ai+1] equals
the length of the preceding interval [ai−1, ai] plus 4(b− 1)ai. In contrast, the difference
equation in CS is given by ai+1− ai = ai− ai−1 + 4b for which successive intervals grow
by a constant term 4b. In our model, the rate at which the intervals increase depends in
addition to the agent’s bias also on the threshold ai. Since 4(b−1) > 0 for all b > 1, the
length of successive intervals decreases if ai < 0, and increases if ai > 0. This implies
that intervals are small around zero and increase towards the lower and upper interval
limit of [−1, 1]. The rate at which intervals decrease and increase is higher, the larger
the agent’s bias and the greater |ai|. We find that −ai = aN−i for each i ≤ N , that
is, intervals are symmetrically distributed around zero. Two different cases can arise:
Either N = 2n, which means that the partition has an even number of elements, or
N = 2n+ 1, meaning that the partition has an odd number of elements, where n ∈ N.
In the first case it holds that aN

2
= 0, whereas in the latter aN−1

2
and aN+1

2
form a

symmetric interval around zero where the principal’s expected value of θ is zero.6
There is a rational for these observations: If b > 1, the agent reacts more sensitive

to changes in the state of world relative to the principal and thus always prefers more
extreme projects than the principal. This means that when the difference in optimal
actions (i.e., y∗A(θ, b)− y∗P (θ) = θ(b− 1)) is positive, the agent wants to lie to the right
of the true state, while when the difference is negative, he wants to lie to the left of
θ. This difference in optimal actions is greater, the greater |θ|. As a consequence, the
agent introduces more noise the farther away states are from zero if b > 1.

Figure 3.1: a5(b) for N = 5 and b > 1

Figure 3.1 illustrates these characteristics for a partition equilibrium of size N = 5.
All thresholds are depicted as functions of the bias, that is, ai(b) for i ∈ {0, . . . , 5}, and

6We share these characteristics of the agent’s signaling strategy with Alonso et al. (2008).
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a0 = −1 and a5 = 1 are represented by the two dotted lines. It can easily be seen that
−1 = a0 < a1 < a2 < a3 < a4 < a5 = 1 holds for all b > 1. Hence, the monotonicity
and boundary conditions are fulfilled and a partition equilibrium of size N = 5 exists
for all b > 1.

As stated above, the characteristics of the partition equilibria for state-dependent
biases differ from those for constant biases. In CS the size of a partition equilibrium
is bounded and the maximum number of partition elements is determined by the dif-
ference in preferences b. They find that the greater the agent’s bias, the larger are
the intervals and thus, the smaller is the maximum number of intervals. Note that
this further implies that in equilibrium also the amount of transmittable information
is bounded. In contrast, in our model there does not exist an upper bound on the
equilibrium size. This difference is due to two characteristics of our model: (i) the
possibility of full aligned preferences at θ = 0 and (ii) the agent’s preference for rela-
tively more extreme projects compared to the principal. For θ converging to zero, the
conflict of interest vanishes and at the same time the agent’s incentive to exaggerate
or understate, his private information decreases (see also Alonso et al., 2008). These
two effects combined allow intervals around zero to get arbitrarily small and equilibria
with any, possibly infinite, number of partition elements to arise. At a first glance, this
seems to contradict the findings of CS, who show that there exists a limit on how much
information can be transmitted in equilibrium. Even though, there does not exist a
limit on the equilibrium size in our setting, the amount of transmittable information is
still limited if the preferences of the principal and the agent are not too closely aligned.

Figure 3.2: a10(b) for b > 1. Figure 3.3: a20(b) for b > 1.

Figures 3.2 and 3.3 display the thresholds ai as a function of the agent’s bias b
for partitions of size N = 10 and N = 20. When comparing figures 3.2 and 3.3, it
becomes apparent that the additional thresholds partition the intervals close to zero to a
greater extent than those that are farther away from zero. As the agent’s bias increases,
the impact of additional partition elements on the outer intervals has relatively low
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influence. For example, for b ∈ (1.1,∞), the length of outer intervals in a partition of
size N = 20 is approximately the same as the length of outer intervals in a partition
of size N = 10, despite having ten more elements. While these two partitions differ
significantly in the small neighborhood of zero, they are almost identical in the area
farther apart from zero (see Figure 3.4 and 3.5). This implies that if the conflict of

Figure 3.4: a10(b) for b > 1.1. Figure 3.5: a20(b) for b > 1.1.

interest is severe enough, increasing the number of partition elements has a negligible
effect on the precision of the transmitted information for states farther away from
zero but refines the transmitted information for states close to zero. Observations
do not change if we further increase N . For significantly large biases the length of
outer intervals remains almost the same whereas the length of intervals in the small
neighborhood of zero gets infinitesimal small. Hence, even for partitions with infinitely
many elements there exists an upper bound on the amount of information that can be
communicated given that the agent’s bias is severe enough.7

The following proposition states that the expected payoffs of the principal and the
agent are increasing the size of the partition equilibrium.8

Proposition 21. In the limit equilibrium, that is, (q(m|θ), y(m)) for N →∞ and b >
1, the expected payoffs E[UC,∞

P ] and E[UC,∞
A ] are higher than in any other equilibrium

with a finite N . The principal’s expected payoff in the limit equilibrium is given by

E[UC,∞
P ] = 1

3

(
1− b
4b− 1

)
. (3.6)

7We have this feature in common with Stein (1989). He finds that there exists a limit on the
precision with which information is communicated when the Fed’s target value is not too small.

8Proposition 21 is based on Proposition 2 from Alonso et al. (2008) and adjusted to our setting.
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and the agent’s expected payoff is given by

E[UC,∞
A ] = 1

3

(
b(4b− 3)(1− b)

4b− 1

)
. (3.7)

For the proof that the limit of strategies and beliefs constitutes a Perfect Bayesian
equilibrium we refer the reader to Alonso et al. (2008) as this proof also applies to our
setting.

4.3 Comparison of Expected Payoffs for b > 1

To answer the question whether it is better for the principal to delegate the decision
or to communicate with the agent, we compare the expected payoff of the principal for
both organizational structures. It is reasonable to assume that the principal and the
agent coordinate on the limit-equilibrium as it gives both the highest possible payoffs.
Comparing the principal’s expected payoffs under communication and delegation yields

E[UC,∞
P ] = 1

3

(
1− b
4b− 1

)
≥ −1

3(b− 1)2 = E[UD
P ] (3.8)

⇔ b ≥ 5
4 . (3.9)

Proposition 22. While delegation beats communication ∀b ∈ (1, 5
4), communication

beats delegation for all b ∈ [5
4 ,∞).

We conclude that full delegation strictly dominates communication for all b ∈ (1, 5
4).

That is, the principal receives a strictly higher expected payoff if she fully delegates
all decision rights to the agent for all b ∈ (1, 5

4). In contrast, for all b ∈ (5
4 ,∞),

the principal is strictly better off if she communicates with the agent and uses the
transmitted information to make the decision by herself. At b = 5

4 the principal is just
equally well off under both organizational forms. Since b = 5

4 < 2 = b̄ (see section
3.1), delegation also beats making a totally uninformed decision for b ∈ (1, 5

4). This
observation contradicts Dessein’s (2002) finding that for the uniform-quadratic-example
with a constant bias full delegation always strictly dominates communication whenever
the latter is informative. We conclude that the changes in results follow from the perfect
alignment of preferences at θ = 0 as well as from the agent reacting relatively more
sensitive to changes in the state of the world than the principal.

Figure 3.6 shows the principal’s expected payoff under communication and delega-
tion. It can easily be seen that both expected payoffs are decreasing as the agent’s bias
increases and that they only intersect once at b = 5

4 . While delegation performs better
than communication for biases b < 5

4 , communication beats delegation for all biases
b > 5

4 . For biases to the left of the intersection point the difference in expected payoffs
is small, whereas for biases to the right of the intersection point the expected payoffs
diverge very fast and delegation performs significantly worse than communication.
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Figure 3.6: comparison of expected payoffs for N →∞ and b > 1

4.4 Communication for b ∈ (0, 1)

In this section, we discuss the characteristics of partition equilibria when the agent
reacts less sensitive than the principal to changes in the state, that is, when b ∈ (0, 1).
As starting point, we take the difference equation ak+1 − ak = ak − ak−1 + 4(b − 1)ak
from section 4.2 which determines how the length of succeeding intervals evolves.9 If a
partition equilibrium of size N exists for b ∈ (0, 1), then the growth rate (i.e., 4(b−1)ak)
is negative if ak > 0 and positive if ak < 0. This implies that the length of intervals
decreases as intervals approach the limits of [−1, 1] and increases as they approach zero.
This differs from our findings for b > 1, where the length of intervals increases in the
direction of the interval limits of [−1, 1].

The reason for this is analogous to the one in section 4.2. If b ∈ (0, 1), the agent
responses less sensitive to the state and therefore prefers less extreme projects than the
principal. Thus, when b ∈ (0, 1) the agent’s incentive to lie inverts and - in contrast
to the case where b > 1 - the agent introduces more noise the closer states are to zero.
This explains why intervals increase towards zero for b ∈ (0, 1). Note that the difference
in optimal actions of the principal and the agent is smaller the closer θ is to zero. That
is, the effect of the agent’s sensitivity level and the effect of the preference alignment
at zero work in opposite directions. Hence, for b ∈ (0, 1) we expect the rate at which
intervals increase to be smaller than for b > 1 where both of the above effects work in
the same direction.

Since the derivation of ak for b ∈ (0, 1) requires a case distinction, we get different
threshold equations for b ∈ (0, 1

2) and b ∈ (1
2 , 1). For mathematical tractability we do

9For notational convenience, we use k instead of i as subscript.
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not consider the case b = 1
2 . Let q = arctan

(√
1−(1−2b)2

2b−1

)
. For b ∈ (0, 1

2) we get

ak =− cos((q + π)k) + 1 + cos((q + π)N)
sin((q + π)N) sin((q + π)k)

and for b ∈ (0.5, 1) we obtain

ak =− cos(q · k) + 1 + cos(q ·N)
sin(q ·N) sin(q · k).

In section 4.2 we find that if b > 1 partitions of every size N fulfill the monotonicity and
boundary condition. This is no longer true if b ∈ (0, 1). Subsequently, we discuss how
the thresholds evolve in partitions of different sizes N . We check for which b ∈ (0, 1)
partitions of different size N ≥ 2 fulfill the monotonicity and the boundary constraints,
that is, when −1 = a0 < a1 < · · · < aN−1 < aN = 1 holds. In order to cope with this
simultaneously we use the graphical illustration of the thresholds for different partition
sizes and different biases. Figures 3.7 to 3.11 illustrate ak as a function of b in partitions
of different size N ∈ {2, 3, 4, 5, 10}. The dotted lines depict a0 = −1 and aN = 1.

Figure 3.7: a2(b) for b ∈ (0, 1). Figure 3.8: a3(b) for b ∈ (0, 1).

Since for N = 2 the threshold a1 equals zero for all b ∈ (0, 1), the state space is
partitioned into two equally sized and symmetrically distributed intervals around zero.
The monotonicity and the boundary conditions are trivially fulfilled and communication
is informative for all b ∈ (0, 1

2) ∪ (1
2 , 1). Note that, for b > 1 we also obtain that a1

equals zero independent of b. Thus, for N = 2 the partition equilibria for b > 1 and
b ∈ (0, 1) are equivalent.

For all N > 2 we find that the thresholds depend on the agent’s bias (see Figures
3.8-3.11). This has a considerable influence on the existence of a partition equilibrium.
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For example, if N = 3, then for all b ∈ (0, 1
2) both thresholds a1 and a2 do not lie in

(−1, 1) which is why there does not exist a partition equilibrium for this interval of
biases. In contrast, for all b ∈ (1

2 , 1) it holds that −1 < a1 < a2 < 1 and a1 = −a2.
Hence, for all b ∈ (1

2 , 1) there exists a partition equilibrium of size N = 3, in which the
intervals are symmetrically distributed around zero.

Figure 3.9: a4(b) for b ∈ (0, 1). Figure 3.10: a5(b) for b ∈ (0, 1).

Figure 3.11: a10(b) for b ∈ (0, 1).

From Figures 3.8-3.11 we can see, that the range of biases for which a partition
equilibrium exists decreases in N . The greater N , the smaller is the range of biases for
which thresholds fulfill the monotonicity constraint as well as the boundary conditions.
For example, in the partition equilibrium of size N = 4, either the monotonicity con-
straint is violated as a1 > a2 > a3 or the boundary condition is violated for b ∈ (0, 0.75).
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Only for b ∈ (0.75, 1) a partition equilibrium of size N = 4 exists in which intervals
remain symmetrically distributed around zero. The analysis of greater sized equilibria
is analogous and shows that the interval of biases for which both existence conditions
are fulfilled decreases in N .

We find that the boundary condition determines the lower interval limit of biases
for which an equilibrium of size N ≥ 3 exists. For each N , the lower interval limit
is determined by the last time where threshold a1 crosses −1 and starts to lie within
the boundaries. Let b(N) be such that a partition equilibrium of size N exists for all
b ∈ [b(N), 1). This lower interval limit is given by b(N) = max{b | a1(b) = −1}.10 As
depicted by figures 3.9-3.11, b(N) is increasing inN and converges to one asN increases.
This means that a greater sized partition requires preferences of the principal and the
agent to be almost perfectly aligned such that an equilibrium of this size exists.

This result stands in contrast to our previous findings that an equilibrium of every
size always exists for biases greater than 1. A rational for this is the following: In both
cases, for b > 1 and for b ∈ (0, 1), the difference in preferences is smaller, the closer
θ is to zero. As a consequence, while for b > 1 the effects of the agent’s sensitivity
and of the state-dependent preference divergence trigger increasingly small intervals in
the direct neighborhood of zero, for b ∈ (0, 1) they work in opposite directions. This
hinders partition equilibria of a greater size N to exist for small sensitivity levels of the
agent and only allows them to exist when preferences are almost aligned.

4.5 Comparison of Expected Payoffs for b ∈ (0, 1)

Analogous to the case b > 1, we compare the expected payoffs under communication
and delegation for b ∈ (0, 1

2) ∪ (1
2 , 1). In section 4.4 we find that there does not exist

a partition equilibrium of every size N for every b ∈ (0, 1). To perform a reasonable
analysis, we need to adjust the range of biases when comparing the two organizational
forms. As calculated in Section 4.1, the expected payoff of the principal under delegation
is given by E[UD

P ] = −1
3(b − 1)2. We start our comparison by considering the smallest

partition for which communication is just informative, that is, for N = 2. We find in
section 4.4 that in this case a1 = 0 for all b ∈ (0, 1

2) ∪ (1
2 , 1). Thus, for N = 2, the

principal’s expected payoff under communication is constant and given by

E[UC,2
P ] =

2∑
i=1

ai∫
ai−1

−(yi − θ)2 1
2 dθ = − 1

12 . (3.10)

Solving −1
3(b− 1)2 < − 1

12 for b ∈ (0, 1) yields b < 1
2 . Since E[UD

P ] is strictly increasing
in b for all b ∈ (0, 1), we conclude that communication is the better choice for the
principal for all b ∈ (0, 1

2). If b ∈ (1
2 , 1), the principal is better off if she delegates the

decision rights to the agent (see Figure 3.12). Subsequently, we illustrate graphically
how the expected payoffs under communication and delegation compare for N > 2.
Each figure depicts the comparison of both organizational forms for a different partition
size N ∈ {3, 4, 5} and the adjusted interval of biases (b(N), 1).

10Note that by the symmetry of the thresholds we could have defined b(N) also by b(N) =
max{b | aN−1(b) = 1}.
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Figure 3.12: N = 2 and b ∈ (0, 1). Figure 3.13: N = 3 and b ∈ (b(3), 1).

Figure 3.14: N = 4 and b ∈ (b(4), 1). Figure 3.15: N = 5 and b ∈ (b(5), 1).

We find that for b ∈ (1
2 , 0.66) the principal’s expected payoff under communication

for N = 3 is even smaller compared to her expected payoff for N = 2. This is contrary
to our findings for b > 1, as in this case the expected payoff is increasing in N for
all b > 1. This difference is due to the fact that for N = 3 and b ∈ (1

2 , 0.66) the
thresholds a1 and a2 are too far apart from each other, such that the information loss
in the interval [a1, a2] outweighs the information gain resulting from the additional
interval (see Figure 3.8). As a consequence, the expected payoff in the partition of size
N = 3 cannot increase for b ∈ (1

2 , 0.66). Only for b ∈ (0.66, 1) when the precision of
the transmitted information improves as the thresholds a1 and a2 move closer to each
other, the expected payoff in the equilibrium of size N = 3 exceeds the expected payoff
for N = 2. Nevertheless, this improvement does not suffice for communication to beat
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delegation (see Figure 3.13).
For greater sized partitions we observe the same. For example, the principal’s ex-

pected payoff in a partition equilibrium of size N = 3 is greater than her expected
payoff in a partition of size N = 4 for all b ∈ (b(4), 081). Likewise, the principal
is better off in an equilibrium of size N = 4 than in one equilibrium of size N = 5
for all b ∈ (b(5), 088). Only when preferences become more aligned, the greater sized
communication equilibria yield the principal a higher expected payoff than the smaller
once.

The dominance of delegation over communication persists also for greater sized
partitions. The reason for this is that for greater sized partition equilibria to exist,
preferences must be increasingly aligned and a comparison of both organizational forms
is only possible for b ∈ (b(N), 1). However, when preferences are close to alignment,
delegation yields the principal expected payoffs close to her highest achievable payoff
and communication cannot beat delegation as illustrated in Figures 3.14 and 3.15.

5. Conclusion

We study the comparison of delegation versus communication for state-dependent bi-
ases. More precisely, we address the question whether an uninformed principal should
delegate a decision to her perfectly informed but biased agent or whether she is better
off when she only consults the agent and makes the decision on her own. Our work
extends the analysis of Dessein (2002) who addresses this problem for constant biases.
However, contrary to Dessein (2002), we model the agent’s bias as state-dependent so
that the difference in preferences of the principal and the agent changes as the state
of the world changes. This modification changes results significantly. While Dessein
(2002) shows that for the uniform-quadratic example of CS, delegation always performs
better than communication if the latter is informative, we find that communication can
beat delegation for a large range of biases. We illustrate that communication always
performs better than delegation when the agent’s bias exceeds a certain threshold (i.e.,
b > 5

4). If, instead, the agent reacts less sensitive to changes state of the world, results
are similar to Dessein’s (2002) findings and delegation is generally the better choice for
the principal. The differing results are due to our consideration of a state-dependent
preference divergence and the resulting possibility of full aligned preferences. In case of
an agent that reacts more sensitive to changes in the state of the world than the prin-
cipal, the consideration of a state-dependent bias allows for communication equilibria
of an infinite size to exist. This way the precision of the transmitted information im-
proves significantly. As a result, the principal’s expected payoff under communication
outperforms her expected payoff under delegation for a sufficiently sensitive reacting
agent. In contrast, when the agent reacts less sensitive to changes in the world than
the principal, delegation is in general the better choice for the principal.

The characteristics of the communication equilibria as illustrated in this paper par-
ticularly complement the findings of Alonso et al. (2008). However, a comparison of
their results regarding the analysis of centralization versus decentralization with our re-
sults regarding the analysis of communication versus delegation for the setting with one
agent is not quite applicable. This is due to the fact that they consider a sender-receiver
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game with two senders, and, additionally, introduce a need for coordination. Thus, their
main findings are formulated for different combinations of the division manager’s bias
and an additional coordination parameter. Even if we set the coordination parameter
to zero and only take one division manager into account, results are not comparable:
the preferences of the headquarter manager and the division manager would be per-
fectly aligned for every state of the world. Thus, our analysis of state-dependent biases
advances the current understanding of the literature on the comparison of delegation
and communication in the context of the classic principal-agent model.
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A. Appendix

A.1 Proof of Proposition 20

Proof. In the following we will illustrate that the described strategies constitute a par-
tition equilibrium of the communication game and we will characterize it for the case
b > 1.

First, we have to show that the principal’s decision y(ai, ai+1) is a best response
to the agent’s message m ∈ (ai, ai+1),∀i. Since the agent uniformly randomizes his
message over [ai, ai+1] if θ ∈ (ai, ai+1), the principal’s best response upon receiving
m ∈ (ai, ai+1) is

argmax
y

ai+1∫
ai

UP (y, θ)1
2dθ = ai + ai+1

2 = y(ai, ai+1). (3.11)

Second, in order for the agent’s signaling rule to be a best response to the principal’s
decision ȳ(ai, ai+1),∀i, the agent must not have an incentive to lie about the interval
in which the true θ lies. This requires that the agent is indifferent between sending
messages mi ∈ (ai−1, ai) and mi+1 ∈ (ai, ai+1) when θ coincides with the threshold ai.
Formally this means that

UA(yi, ai, b) = UA(yi+1, ai, b), (3.12)

or

−
(
ai−1 + ai

2 − bai
)2

= −
(
ai + ai+1

2 − bai
)2
, (3.13)

where yi = y(ai−1, ai) and yi+1 = y(ai, ai+1). Rearranging this indifference condition
yields

ai+1 − ai = ai − ai−1 + 4(b− 1)ai. (3.14)

Next, we need to solve the difference equation. Rearranging the above indifference
condition yields

ai+1 + (2− 4b)ai + ai−1 = 0. (3.15)

The characteristic equation of this second-order linear difference equation is given by

z2 + (2− 4b)z + 1 = 0. (3.16)

The respective roots of the characteristic equation are

x =
√

(1− 2b)2 − 1 + 2b− 1 and y = −
√

(1− 2b)2 − 1 + 2b− 1, (3.17)

where xy = 1 and x > 1. Consequently, the general solution of the difference equation
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is

ai = λxi + µyi. (3.18)

In order to determine λ and µ we use the two initial conditions, a0 = −1 and aN = 1,
and solve the corresponding equations (i) a0 = λ+µ = −1 and (ii) aN = λxN +µyN = 1
for λ and µ. This yields

λ = 1 + yN

xN − yN
and µ = − 1 + yN

xN − yN
− 1. (3.19)

Finally, we substitute for λ and µ in the general solution and obtain the solution of the
difference equation. That is,

ai = xi(1 + yN)− yi(1 + xN)
xN − yN

for 0 ≤ i ≤ N. (TH)

After inserting x =
√

(1− 2b)2 − 1 + 2b−1 and y = −
√

(1− 2b)2 − 1 + 2b−1 it can
easily be checked that −ai = aN−i for each i ≤ N and that aN

2
= 0 if N is even. If N

is odd, then aN−1
2

and aN+1
2

form a symmetric interval around zero.

A.2 Proof of Proposition 21

Proof. In order to prove Proposition 21 for our setting we will first calculate the ex-
pected payoffs of the principal and the agent for a finite N and then let N converge
towards infinity. Given the equilibrium strategies and beliefs, the principal’s expected
payoff in a partition equilibrium of size N can be expressed in terms of the residual
variance of θ (Crawford and Sobel, 1982). That is,

E[UN
P ] = E[−(yi − θ)2] = −

N∑
i=1

ai∫
ai−1

(yi − θ)2 1
2 dθ = −

N∑
i=1

ai∫
ai−1

(
ai−1 + ai

2 − θ
)2 1

2 dθ.

(3.20)

Analogously, the agent’s expected payoff is given by

E[UN
A ] = E[−(yi − bθ)2] = −

N∑
i=1

ai∫
ai−1

(
ai−1 + ai

2 − bθ
)2 1

2 dθ. (3.21)

We use the following Lemma to calculate the expected payoffs. This Lemma is based
on Lemma 1, A1 and A2 from Alonso et al. (2008) and adjusted to our setting.

Lemma 11.

(i) E[yiθ] = E[y2
i ],

(ii) E[y2
i ] = 1

4

[
(x3N−1)(x+1)2

(xN−1)3(x2+x+1) −
xN (x+1)2

x(xN−1)2

]
,
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(iii) E[y2
i ] is strictly increasing in N , and

(iv) lim
N→∞

E[y2
i ] = (x+1)2

4(x2+x+1) = b
4b−1 .

Proof. We use the same approach as in Alonso et al. (2008). (i) Given that yi =
ai−1+ai

2 = E[θ|θ ∈ (ai−1, ai)], we can use the law of iterated expectation and obtain

E[yiθ] = E[E[yiθ|θ ∈ (ai−1, ai)]] = E[yiE[θ|θ ∈ (ai−1, ai)]] = E[y2
i ]. (3.22)

To prove part (ii) and (iii) we need to calculate E[y2
i ] which can be expressed as

follows

E[y2
i ] =

N∑
i=1

ai∫
ai−1

(yi)2 1
2 dθ =

N∑
i=1

ai∫
ai−1

(
ai−1 + ai

2

)2 1
2 dθ (3.23)

= 1
8

N∑
i=1

(ai − ai−1)(a2
i + 2aiai−1 + a2

i−1)

After substituting equation 4.16 for ai, we obtain

E[y2
i ] = 1

8

N∑
i=1

(xi(1 + yN)− yi(1 + xN))3

(xN − yN)3 − (xi−1(1 + yN)− yi−1(1 + xN))3

(xN − yN)3 (3.24)

+ (xi(1 + yN)− yi(1 + xN))2(xi−1(1 + yN)− yi−1(1 + xN))
(xN − yN)2(xN − yN)

− (xi(1 + yN)− yi(1 + xN))(xi−1(1 + yN)− yi−1(1 + xN))2

(xN − yN)(xN − yN)2 .

Rewriting yields

E[y2
i ] = 1

8(xN − yN)3

N∑
i=1

x3i(1 + yN)3 − 3x2i(1 + yN)2yi(1 + xN) (3.25)

+ 3xi(1 + yN)y2i(1 + xN)2 − y3i(1 + xN)3 + x3i−1(1 + yN)3

− x2i(1 + yN)2yi−1(1 + xN) − 2x2i−1(1 + yN)2yi(1 + xN)

+ 2xi(1 + yN)y2i−1(1 + xN)2 + xi−1(1 + yN)y2i(1 + xN)2

− y3i−1(1 + xN)3 − x3i−2(1 + yN)3 + 2x2i−1(1 + yN)2yi−1(1 + xN)

− xi(1 + yN)y2(i−1)(1 + xN)2 + x2(i−1)(1 + yN)2yi(1 + xN)

− 2xi−1(1 + yN)y2i−1(1 + xN)2 + y3i−2(1 + xN)3

− x3(i−1)(1 + yN)3 + 3x2(i−1)(1 + yN)2yi−1(1 + xN)

− 3xi−1(1 + yN)y2(i−1)(1 + xN)2 + y3(i−1)(1 + xN)3.
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Now we use that xy = 1 and get the following expression

E[y2
i ] = 1

8(xN − yN)3

N∑
i=1

(1 + yN)3x3(i−1)(x+ 1)2(x− 1) (3.26)

+ (1 + xN)3y3(i−1)(y + 1)2(1− y)
+ (1 + yN)(1 + xN)yi−1(y2 − 1)(x+ 1)
− (1 + yN)2(1 + xN)xi−1(x2 − 1)(y + 1).

Rearranging and performing some calculations yields

E[y2
i ] =(1 + yN)3(x+ 1)2(x− 1)

8 (xN − yN)3 x3

(
x3(1− x3N)

1− x3

)
(3.27)

+(1 + xN)3(y + 1)2(1− y)
8 (xN − yN)3 y3

(
y3(1− y3N)

1− y3

)

+(1 + yN)(1 + xN)2(y2 − 1)(x+ 1)
8 (xN − yN)3 y

(
y(1− yN)

1− y

)

+−(1 + yN)2(1 + xN)(x2 − 1)(y + 1)
8 (xN − yN)3 x

(
x(1− xN)

1− x

)
.

Next, we use that y = 1
x
, and simplify the above expressions. That is,

E[y2
i ] =− (xN + 1)3(x+ 1)2(1− x3N)

8 (x2N − 1)3 (x2 + x+ 1)
+ (1 + xN)3(x+ 1)2(x3N − 1)

8 (x2N − 1)3 (1 + x+ x2)
(3.28)

− (1 + xN)3(x+ 1)2(xN − 1)xN

8x (x2N − 1)3 + (1 + xN)3(x+ 1)2(1− xN)xN

8x (x2N − 1)3 .

= (1 + xN)3(1 + x)2(x3N − 1)
4(x2N − 1)3(x2 + x+ 1) + (xN + 1)3(x+ 1)2(1− xN)xN

4x(x2N − 1)3 (3.29)

= 1
4

[
(x3N − 1)(x+ 1)2

(xN − 1)3(x2 + x+ 1) −
xN(x+ 1)2

x(xN − 1)2

]
. (3.30)

After having calculated E[y2
i ], we continue by showing that E[y2

i ] is strictly increasing
in N . For this purpose we define

f(p) = 1
4

[
(p3 − 1)(x+ 1)2

(p− 1)3(x2 + x+ 1) −
p(x+ 1)2

x(p− 1)2

]
(3.31)
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and calculate the derivative of f(p)

f ′(p) = 1
4

[
(x+ 1)2

(x2 + x+ 1)

(
3p2(p− 1)3 − 3(p3 − 1)(p− 1)2

(p− 1)6

)]
(3.32)

−1
4

[
(x+ 1)2

x

(
(p− 1)2(p+ 1)

(p− 1)4

)]

= 1
4

[
(p+ 1)(x4 − 2x2 + 1)
(p− 1)3(x2 + x+ 1)x

]
.

The derivative of f(p) is strictly positive for all p > 1. Since E[y2
i ] = f(xN) and xN > 1,

it follows that E[y2
i ] is strictly increasing in N . Finally, the we calculate the value of

E[y2
i ] in the limit-equilibrium. That is,

lim
N→∞

E[y2
i ] = lim

N→∞

1
4

[
(x3N − 1)(x+ 1)2

(xN − 1)3(x2 + x+ 1) −
xN(x+ 1)2

x(xN − 1)2

]
= (x+ 1)2

4(x2 + x+ 1) . (3.33)

After substituting for x =
√

(1− 2b)2 − 1 + 2b− 1 and rewriting, we obtain

lim
N→∞

E[y2
i ] =

4b(
√

(1− 2b)2 − 1 + 2b− 1)

4(4b− 1)(
√

(1− 2b)2 − 1 + 2b− 1)
= b

4b− 1 . (3.34)

The expected payoff of the principal can then be written as

E[UN
P ] = −E[(yi − θ)2] = −E[θ2] + E[y2

i ]. (3.35)

In the limit-equilibrium, that is for N →∞, the principal consequently expects to get

E[U∞P ] = −E[θ2] + lim
N→∞

E[y2
i ] = −σ2 + b

4b− 1 = 1
3

(
1− b
4b− 1

)
. (3.36)

In an analogous way we can rewrite the agent’s expected payoff as

E[UN
A ] = E[−(yi − bθ)2] = −b2E[θ2] + (2b− 1)E[y2

i ]

and calculate his expected payoff in the limit-equilibrium. That is,

E[U∞A ] = −b2E[θ2] + lim
N→∞

(2b− 1)E[y2
i ] = −b2σ2 + (2b− 1)b

4b− 1 (3.37)

= 1
3

(
−4b3 + 7b2 − 3b

4b− 1

)
.

Since E[y2
i ] is increasing in N according to Lemma 1, the principal’s and the agent’s

expected payoffs in the limit-equilibrium are higher than in any other finite partition
equilibrium.
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A.3 Solution of the Difference Equation for b ∈ (0, 1)

Proof. The roots of the characteristic equation are

x =
√

(1− 2b)2 − 1 + 2b− 1 and y = −
√

(1− 2b)2 − 1 + 2b− 1. (3.38)

It is obvious that for b ∈ (0, 1) these roots are complex numbers, that is,

x = 2b− 1 + i
√

1− (1− 2b)2 and y = 2b− 1− i
√

1− (1− 2b)2. (3.39)

Expressing these complex numbers in polar coordinates gives

x = r(cos(ϕ) + i sin(ϕ)) and y = r(cos(ϕ)− i sin(ϕ)), (3.40)

where,

r =
√

(2b− 1)2 +
(√

1− (1− 2b)2
)2

= 1 (3.41)

and

ϕ =


arctan

(√
1−(1−2b)2

2b−1

)
+ π for b ∈ (0, 0.5)

arctan
(√

1−(1−2b)2

2b−1

)
for b ∈ (0.5, 1).

(3.42)

In the following we exclude b = 0.5 for mathematical tractability. Consequently, for
b ∈ (0, 0.5) the polar coordinates of the complex numbers are then given by

cos((arctan

√

1− (1− 2b)2

2b− 1

+ π))± i sin((arctan

√

1− (1− 2b)2

2b− 1

+ π)) (3.43)

and for b ∈ (0.5, 1) by

cos(arctan

√

1− (1− 2b)2

2b− 1

)± i sin(arctan

√

1− (1− 2b)2

2b− 1

). (3.44)

As general solution of the difference equation we then obtain for b ∈ (0, 0.5)

ak =λ cos((arctan

√

1− (1− 2b)2

2b− 1

+ π)k) + µ sin((arctan

√

1− (1− 2b)2

2b− 1

+ π)k)

(3.45)
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and for b ∈ (0.5, 1)

ak =λ cos(arctan

√

1− (1− 2b)2

2b− 1

 k) + µ sin(arctan

√

1− (1− 2b)2

2b− 1

 k). (3.46)

Note that 3.45 and 3.46 are real-valued. We use the initial conditions a0 = −1 and
aN = 1 in order to determine λ and µ. This yields for b ∈ (0, 0.5)

λ = −1 and µ =
1 + cos((arctan

(√
1−(1−2b)2

2b−1

)
+ π)N)

sin((arctan
(√

1−(1−2b)2

2b−1

)
+ π)N)

and for b ∈ (0.5, 1)

λ = −1 and µ =
1 + cos(arctan

(√
1−(1−2b)2

2b−1

)
N)

sin(arctan
(√

1−(1−2b)2

2b−1

)
N)

. (3.47)

Consequently, the solution of the difference equation for b ∈ (0, 0.5) is

ak =− cos((arctan

√

1− (1− 2b)2

2b− 1

+ π)k) (3.48)

+
1 + cos((arctan

(√
1−(1−2b)2

2b−1

)
+ π)N)

sin((arctan
(√

1−(1−2b)2

2b−1

)
+ π)N)

sin((arctan

√

1− (1− 2b)2

2b− 1

+ π)k)

and for b ∈ (0.5, 1)

ak =− cos(arctan

√

1− (1− 2b)2

2b− 1

 k) (3.49)

+
1 + cos(arctan

(√
1−(1−2b)2

2b−1

)
N)

sin(arctan
(√

1−(1−2b)2

2b−1

)
N)

sin(arctan

√

1− (1− 2b)2

2b− 1

 k).
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Chapter 4

A Note on Centralization versus
Decentralization

1. Introduction

Multi-divisional organizations can be forced to perfectly coordinate their decisions. In
such a case, a principal makes one decision that will be valid for all divisions, as ex-
tending the scope of decision making in such multi-divisional organizations would create
more harm than good. This can, for example, be due to managerial considerations with
respect to diseconomies of scope, brand image or cost saving motives. Even though
this decision might be optimal on the firm-level, for each division it can be suboptimal
as divisions usually make more profit when they adopt the decision to their local envi-
ronment (e.g., specific customer taste). Compared to the principal, division managers
are typically better informed about their division-specific environment and biased in
that they care more about maximizing their division-specific profit than the overall
organization’s profit.

In the context of these information asymmetries and conflicts of interest, we seek to
answer the question which organizational form should be chosen when a company faces
a need to coordinate decisions and, importantly, is forced to perfectly coordinate its
decisions. Given that only one decision can be made and that the optimal decision de-
pends on all division-specific environments which are only known by the biased division
managers: Should decision making be centralized in a headquarter or decentralized in
the divisions? To answer this question we analyze a two-divisional organization with
one principal and two division managers, henceforth agents. There are two environ-
mental states of the world, one for each division. Each division manager is perfectly
informed about his own division-specific environment, whereas the principal is totally
uninformed. We assume that only one decision can be made and must be implemented
in both divisions. The principal wants to maximize the organizations overall profit -
the sum of both divisions’ profits - which requires matching the final decision to the
average of both pieces of information. In contrast, agents are biased in the sense that
they care more about the payoff of their own division and thus want to adapt the final
decision more to their private information. We analyze two different organizational
forms: centralization and decentralization. Under centralization agents communicate
their private information vertically to the principal who then makes the final decision.
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Under decentralization agents exchange their private information horizontally with each
other and the decision rights are delegated to one of the agents.

We find that centralization performs strictly better than decentralization in terms
of maximizing the principal’s expected payoff for all adaption biases of the agents. This
result continues to hold even when we allow agents to have biases that differ in their
level of intensity.

Our model builds on the framework of Alonso et al. (2008), but differs in the fol-
lowing two ways: First, although in Alonso et al. (2008) the organization faces a need
to coordinate their decisions, the organization is nevertheless allowed to make different
decisions for its divisions. Second, Alonso et al. (2008) analyze for which adaption
and coordination biases which organizational form performs best. In our model only
one decision is made and implemented in both divisions. Thus, we ask whether cen-
tralization or decentralization performs better when a company is forced to coordinate
its decisions. As coordination is prescribed and thus only one decision is made in our
model, we do not have the need for coordination bias as in Alonso et al. (2008). These
differences in the payoff functions of the principal and the agents change results in the
following way: While Alonso et al. (2008) find that decentralization can dominate cen-
tralization even when the need for coordination is very high, we find that centralization
always performs better for all adaption biases of the agents.

The driving force behind our result is the quality of communication. The quality
of communication is the highest under vertical communication while under horizontal
communication the quality of communication is lower for all biases of the agents. This
is also in general true for Alonso et al. (2008) - However in their setting the difference in
quality vanishes as their need for coordination bias converges to infinity. In our model
there always exists a conflict of interest between the principal and the division managers
due to the agents’ bias. Thus, the loss of authority under decentralization always leads
to a loss in the principal’s payoff due this conflict of interest. In Alonso et al. (2008) the
optimal decisions of the headquarter manager and division managers become the same
when the need for coordination bias converges to infinity. This alignment of interests
causes decentralization and centralization to perform equally well for coordination biases
converging to infinity in their model. For arbitrarily high but finite coordination needs
and small biases of the agents Alonso et al. (2008) find that decentralization even
outperforms centralization. In contrast, our result implies that when coordination is
prescribed ex ante, the principal is always better off when she makes the decision herself.

2. Related Literature

This paper belongs to the literature on strategic information transmission (e.g. Crawford
and Sobel, 1982; Li et al., 2016; Melumad and Shibano, 1991; Rantakari, 2013, 2019;
Deimen and Szalay, 2019b) and on organizational design (e.g. Alonso et al., 2008, 2015;
Athey and Roberts, 2001; Deimen and Szalay, 2019a; Dessein et al., 2010; Liu and
Migrow, 2019). Crawford and Sobel (1982) analyze how information about a payoff
relevant state of the world gets transmitted from an informed agent (sender) to an
uninformed decision maker (receiver) when there is an underlying conflict of interest.
One of their main findings is that all communication equilibria are partitions of the state
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space and that the size of these partitions is bounded. They show that the smaller the
conflict of interest between the sender and the decision maker, the more elements a
partition can have and the more precise is the transmitted information. In contrast to
Crawford and Sobel (1982), we analyze a setting with two senders and two states of the
world and allow for the conflict of interest to change with the state of the world.

Another related paper is Rantakari (2019). He studies a principal who receives
recommendations from two agents regarding which project to implement. Each agent
is perfectly informed about the quality of his own project and biased towards his own
project. The principal is totally uninformed but can evaluate the agents’ projects
against some cost. While Rantakari (2019) is interested in how the quality of informa-
tion transmission is influenced by the principal’s possibility of additional investigations,
we do not allow for the possibility of further information acquisition.

In a similar model as in Rantakari (2019), Li et al. (2016) study competitive cheap
talk without allowing for the principal to acquire further information. While in their
model the principal is faced with the decision which of the two available projects should
optimally be implemented, the principal in our model has to match the decision to the
private information of both agents equally. Due to this difference in the nature of
decision making and in the payoff structures, the analysis of communication equilibria
in Li et al. (2016) is different from ours.

A common difference between the above mentioned papers and our work lies in the
comparison of two different organizational forms, that is, the comparison of centraliza-
tion and decentralization.1 Within the literature of organizational design, Alonso et al.
(2008) analyze decision making in an organization where an uninformed headquarter
manager can either consult his two perfectly informed, but biased, division managers
and make the decision for both divisions on his own (centralization) or fully delegate the
decisions to them (decentralization). In Alonso et al. (2008) two decisions are made and
the organization faces a need to coordinate these two decisions. While the headquarter
manager wants to maximize the over-all organization’s payoff, division managers care
more about maximizing their own division’s payoff. Alonso et al. (2008) demonstrate
that the performance of centralization and decentralization depends on the severity of
the need for coordination and on how biased agents are towards maximizing their own
division’s profit. For example, they show that if the need for coordination between the
two divisions increases, decentralization can perform better than centralization. While
in Alonso et al. (2008) there exists a trade-off between coordination and adaption, in
our model coordination is prescribed as only one decision is made and implemented in
both divisions. In contrast to Alonso et al. (2008), we find that centralization always
beats decentralization independent of the agents’ bias.

Recently, Liu and Migrow (2019) analyze how a multi-divisional organization should
optimally allocate its decision making rights when operating in volatile markets. As in
Alonso et al. (2008) there exists a trade-off between coordinating decisions and adapting
decisions to local conditions. Division managers can acquire decision relevant informa-
tion against some cost and are able to verify the information acquired. They compare
the performance of a centralized and a decentralized organization form. While the

1Only Li et al. (2016) briefly discuss that communication and delegation are outcome equivalent.
This significantly differs from our results.
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quality of communication is the same under both organizational forms, the division
manager’s acquisition of information is better under decentralization. They find that
when the need for coordination is very high, decentralization can beat centralization in
volatile markets. In contrast, in our setting it is ex-ante known that each division con-
tributes equally to the organizations overall profit and each division manager is perfectly
informed about his local conditions but cannot verify his transmitted information.

Deimen and Szalay (2019a) consider a decision maker who depends on decision
relevant information that can only be acquired by a biased expert. The conflict of
interest between the decision maker and the expert is endogenous and affected by the
expert’s information acquisition. They analyze whether the decision maker is better off
if he delegates the decision to the expert or if he communicates with him and makes
the decision on his own. In contrast, we study a setting with two experts, each of them
carrying only a piece of relevant information and whose biases are common knowledge.
In Deimen and Szalay (2019a) the delegation of authority has a significant influence on
the information acquisition of the expert. In our paper the agents already possess the
relevant information and the focus lies on how the allocation of authority influences the
information that is transmitted.

3. Model

There is one organization which consists of two divisions i ∈ {1, 2}. Each division is
managed by a division manager, which we denote by agent i ∈ {1, 2}. The principal
of the organization has to decide which project y ∈ [0, 1] the organization should un-
dertake. The profit of division i is given by −(y − θi)2. That is, the profit division
i generates depends on how well the project choice y matches its local condition θi,
where θi is uniformly and independently distributed on [0, 1]. While the principal can-
not observe the decision-relevant local conditions (i.e. states of the world), agent i is
perfectly informed about θi. The principal wants to maximize the overall profit of the
organization, which is simply given by the sum of both divisions’ payoffs. We assume
that the organization is forced to perfectly coordinate the decisions of its divisions by
prescribing that only one project is chosen and implemented in both divisions. This
assumption distinguishes our work from Alonso et al. (2008) who allow the organization
to make two different decisions, one for each division.

Since the organization’s profit is composed of the sum of both divisions’ payoffs,
the principal wants to adapt this project choice equally to both local conditions. In
contrast, each agent is biased towards maximizing the profit of its own division and
wants to adjust the decision more to his local conditions. The principal’s and the
agents’ utility functions are given by

UP (y, θ1, θ2) = −(y − θ1)2 − (y − θ2)2 (UP )

U1(y, θ1, θ2, λ) = −λ(y − θ1)2 − (1− λ)(y − θ2)2 (U1)

U2(y, θ1, θ2, λ) = −(1− λ)(y − θ1)2 − λ(y − θ2)2. (U2)
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These utility functions have a unique maximizer for each (θ1, θ2) combination, which
are given by y∗P (θ1, θ2) = 1

2(θ1 + θ2) for the principal and y∗1(θ1, θ2, λ) = λθ1 + (1− λ)θ2
and y∗2(θ1, θ2, λ) = (1 − λ)θ1 + λθ2 for agent 1 and agent 2, respectively. We refer to
them as the principal’s and the agents’ preferred project decisions. The scalar λ ∈
(1

2 , 1) measures how biased each agent is towards adapting the decision to his private
information. That is, each agent puts more weight on his private information than on
the information of the other agent. It is obvious that when λ = 1

2 , preferences of the
principal and the agents are perfectly aligned. Except for the local conditions everything
is common knowledge. In the following we study two different organizational forms and
analyze which form performs best when the organization is forced to coordinate on one
decision that is implemented in both of its divisions.

4. Centralization versus Decentralization

4.1 Centralization

Under centralization agents communicate their private information vertically to the
principal; the principal then makes the final decision. Except for the allocation of
decision rights, nothing can be contracted upon ex ante. Neither the principal can
commit to a predefined decision scheme nor the agents can commit to a communication
scheme. The timing in this cheap talk game is as follows: After the decision rights
have been allocated to the principal, agent 1 and agent 2 simultaneously send their
messages m1 and m2, respectively, to the principal. The principal then chooses a
project based on those messages. The advantage of centralization is rooted in the
fact that the principal keeps the authority rights. This way she can perfectly adjust
the final decision to the information she has received from the agents. The downside of
centralization is that agents have an incentive to misrepresent their private information.
More specifically, agents tend to either exaggerate or understate the information about
their local conditions. This is due to the fact that agents want the principal’s posterior
of θi to be more extreme than the actual realization of θi. To see this, consider the
agent 1’s expected utility given the principal’s decisions yP

E[U1(yP , θ1, θ2, λ)|θ1] = E[−λ(yP − θ1)2 − (1− λ)(yP − θ2)2|θ1]. (4.1)

After having received the agents’ messages, the principal will optimally choose the aver-
age of both posteriors, that is, yP (m1,m2) = E[θ1|m1]+E[θ2|m2]

2 . Denote by ρ1 = E[θ1|m1]
the principal’s posterior of θ1 given the message of agent 1. If agent 1 was able to
determine ρ1 by sending message m1, he would want the principal to hold a posterior
belief of θ1 that maximizes his expected utility. That is,

ρ∗1 = arg maxE[−λ(yP − θ1)2 − (1− λ)(yP − θ2)2|θ1]. (4.2)

Using in advance that in equilibrium Em2 [E[θ2|m2]] = E[θ2] = 1
2 will hold, we can cal-

culate that ρ∗1 = 1
2 + 2λθ1 − λ. This relationship reveals that for θ1 >

1
2 , it holds that

ρ∗1 > θ1, implying that the agent wants the principal’s posterior of θ1 to be greater
than the true θ1. This means that the agent has an incentive to exaggerate his private
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information for all θ1 >
1
2 . In contrast, when θ1 <

1
2 , it holds that ρ∗1 < θ1 and the

agent has an incentive to understate his private information to decrease the principal’s
posterior of θ1. Only at θ1 = 1

2 , the agent is willing to report his private information
truthfully as in this case ρ∗1 = θ1 holds.2 For agent 2, the incentives to misrepresent his
private information are analogous. Hence, under centralization, agents either want to
exaggerate or understate their private information, which causes a loss of decision rele-
vant information. The characteristics of a Perfect Bayesian communication equilibrium
under centralization are summarized in the subsequent definition.

Definition 2. An equilibrium consists of a signaling rule qCi (·) for each agent i ∈ {1, 2},
where for each θi ∈ [0, 1], qCi (mi|θi) is the conditional probability of sending a message
mi ∈ Mi given the local condition θi, two belief functions gi(·) for the principal, where
gi(θi|mi) denotes the probability of θi given message mi, and a decision rule yP (·) for
the principal, where yP (m1,m2) is a mapping from the sets of feasible signals M1 and
M2 to the set of actions [0, 1], such that:

(i) for each θi ∈ [0, 1], if qCi (mi|θi) > 0, then mi maximizes the expected utility of
agent i given the principal’s decision rule yP (·),

(ii) for each (m1,m2), yP (m1,m2) maximizes the expected utility of the principal given
her belief functions g1(θ1|m1) and g2(θ2|m2), and

(iii) each belief function gi(θi|mi) is derived from qCi (mi|θi) using Bayes Rule whenever
possible.

We show that there always exist a partition equilibrium of any size N ∈ N (see
Appendix). In these partition equilibria the domain of local conditions (i.e., [0, 1]) is
broken down into (sub)intervals and each agent only communicates the (sub)interval his
true local condition lies in. Let aC,N = (ai,0, . . . , ai,k, . . . , ai,N) denote a partition of [0, 1]
for agent i under centralization, where 0 < k < N . Define for all a, a, b, b ∈ [0, 1], a < a,
and b < b,

y(a, a, b, b) ≡ argmax
y

a∫
a

b∫
b

UP (y, θ1, θ2)dθ1dθ2 = 1
2

(
a+ a

2 + b+ b

2

)
.

The following proposition specifies the characteristics of partition equilibria under cen-
tralization.

Proposition 23. Let λ ∈ (1
2 , 1), then for every N ∈ N, there exists at least one

equilibrium (yP (·), q1(·), q2(·), g1(·), g2(·)), where

(i) qi(mi|θi) is uniform, supported on [ai,k, ai,k+1] if θi ∈ (ai,k, ai,k+1), i ∈ {1, 2}

(ii) gi(θi|mi) is uniform, supported on [ai,k, ai,k+1] if mi ∈ (ai,k, ai,k+1), i ∈ {1, 2}

(iii) yP (m1,m2) = y(a1,k, a1,k+1, a2,l, a2,l+1) if m1 ∈ (ai,k, ai,k+1), m2 ∈ (ai,l, ai,l+1)
2The above described incentives of the agents to misrepresent their private information are analogous

to the ones described in Alonso et al. (2008).
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(iv) ai,k+1 − ai,k = ai,k − ai,k−1 + 4(2λ− 1)(ai,k − 1
2) for k = 1, ..., N − 1, i ∈ {1, 2}

(v) ai,0 = 0 and ai,N = 1, i ∈ {1, 2}.

All omitted proofs are in the appendix. Analyzing part (iv) from Proposition 23,
i.e.,

ai,k+1 − ai,k = ai,k − ai,k−1 + 4(2λ− 1)(ai,k −
1
2)︸ ︷︷ ︸

≥0 iff ai,k≥ 1
2

, (4.3)

reveals how intervals evolve for the optimal signaling strategy of agent 1 and agent 2 in
this equilibrium. The length of successive intervals decreases if ak < 1

2 , and increases if
ak >

1
2 . This implies that intervals are small around 1

2 and increase towards the lower
and upper interval limit of [0, 1]. The rate at which the intervals decrease or increase
is higher, the larger the agent’s bias λ and the larger the larger |ai,k − 1

2 |. We find that
1
2 − ai,k = ai,N−k − 1

2 for each k ≤ N , which means that intervals are symmetrically
distributed around 1

2 . Two different cases can arise: When the partition has an even
number of elements (i.e., N = 2n), it holds that aN

2
= 1

2 . Instead, if the partition has
an odd number of elements (i.e., N = 2n − 1), there is a symmetric interval around 1

2
where the principal’s expected value of θ1 is 1

2 .
The intuition for this result is rooted in the above discussed interest of the agents to

either exaggerate or understate their private information when θi 6= 1
2 . When sending

their message agents internalize that the principal will adjust her decision equally to
both received messages. Remember that each agent’s prior belief of the other division’s
local condition is 1

2 . As a consequence, if θ1 >
1
2 = E[θ2], then y∗1 > y∗P and agent

1 lies to right of θ1 to increase the principal’s posterior of θ1. In contrast, if θ1 <
1
2 ,

then y∗1 < y∗P and agent 1 lies to left of θ1 to decrease the principal’s posterior of θ1.
By overemphasizing his private information, agent 1 makes the principal implement a
more extreme project choice either to the left or right of the true θ1. The incentive
to overemphasize his private information is larger the larger the agent’s bias and the
further away θ1 is from 1

2 . Only at θ1 = 1
2 , preferences of the agent and the principal

are aligned (i.e.,y∗1 = y∗P ) and the agent has no incentive to lie. This line of reasoning
explains why intervals are small around 1

2 and increase towards the extremer project
decision 0 and 1.3 The intuition for agent 2’s signaling strategy is analogous.

4.2 Decentralization

Under decentralization, the principal delegates the decision rights to one of the agents
and the other agent communicates horizontally his information to this authorized agent.
We allow the principal to use a random delegation policy where agent 1 makes the
decision with some probability α and agent 2 with the residual probability 1−α. Note,
however, that such a random assignment of authority does not influence the signaling
strategies of the agents. This is due to the fact, that each agent realizes that his
message only matters when the other agent makes the decision. That is, when an agent

3See also Alonso et al. (2008) for these characteristics and the intuition for the results.
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i is authorized to make the decision he can perfectly adjust the decision to his true θi.
In contrast, when the other agent makes the decision, his message is important as it
influences the posterior belief of the authorized agent about θi. Since every random
delegation scheme will result in the same signaling strategies of the agents, it is without
loss of generality to restrict attention to deterministic delegation policies. Note that due
to the symmetry in our model, it is irrelevant for the principal’s expected payoff which
agent makes the final decision. We conduct the analysis for agent 1 making the final
decision and agent 2 communicating to agent 1. The analysis for agent 2 making the
final decision and agent 1 communicating to agent 2 is analogous. The characteristics of
a Perfect Bayesian communication equilibrium under decentralization are summarized
in the next definition.

Definition 3. An equilibrium consists of a family of a signaling rule qD2 (·) for agent 2,
where for each θ2 ∈ [0, 1], qD2 (m2|θ2) is the conditional probability of sending a message
m2 given agent 2’s local condition θ2, a belief function g2(·) for agent 1, where g2(θ2|m2)
denotes the probability of θ2 given message m2, and a decision rule y1(·) for agent 1,
where y1(m2) is a mapping from the set of feasible signals M2 to the set of actions [0, 1],
such that:

(i) for θ2 ∈ [0, 1], if qD2 (m2|θ2) > 0, then m2 maximizes the expected utility of the
agent 2 given agent 1’s decision rule y1(·), and

(ii) for each m2, y1(m2) maximizes the expected utility of agent 1 given his belief
function g2(θ2|m2), and

(iii) the belief function g2(θ2|m2) is derived from qD2 (m2|θ2) using Bayes Rule whenever
possible.

Due to the delegation of decision rights to agent 1 under decentralization, agent 1
is free to choose the decision that maximizes his expected utility. Since this optimal
decision from agent 1’s point of view differs from the principal’s optimal decision, the
principal incurs a loss. Despite this disadvantage, there is also the advantage that
the principal no longer experiences a loss due to noisy communication about θ1 under
decentralization. Agent 1 has perfect knowledge about θ1 and can use all this informa-
tion when making the decision. However, note that when the principal delegates the
decision to one of her agents, she still faces a loss of information. Since the optimal
decision depends on both pieces of information, agent 1 is reliant on the information
transmitted by agent 2. By the same reason we gave in the previous section, agent 2
will introduce noise into his communication which causes a loss of information about
θ2. Let ρ2 = E[θ2|m2]. Then, agent 2 wants agent 1 to have a posterior of θ2 that
maximizes his expected utility, i.e.,

ρ∗2 = arg maxE[−λ(y1 − θ1)2 − (1− λ)(y1 − θ2)2|θ2], (4.4)

where y1 = λθ1 + (1 − λ)ρ2. For the optimal posterior from agent 2’s perspective we
get that ρ∗2 =

1
2−λ+λθ1

1−λ . Since either ρ∗2 > θ2 >
1
2 or ρ∗2 < θ2 <

1
2 holds, agent 2 wants to

either exaggerate or understate his private information whenever θ2 6= 1
2 . At θ = 1

2 , it
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holds that ρ∗2 = 1
2 and agent 2 has no incentive to misrepresent his private information.

Hence, the loss the principal incurs under decentralization is a mixture of the loss of
control - due to the biased agent 1 making the decision - and the loss of information -
due to agent 2’s incentive to misrepresent decision relevant information to agent 1.

We find that also under decentralization there always exist a partition equilib-
rium of any size N ∈ N. The next proposition summarizes this result. Let bD,N =
(b0, . . . , bj, . . . , bN) denote a partitioning of [0, 1] for agent 2 under decentralization,
where 0 < j < N , and define for all b, b ∈ [0, 1], b < b,

y(b, b) ≡ argmax
y

b∫
b

U1(y, θ1, θ2, λ)dθ2 = λθ1 + (1− λ)b+ b

2 .

Proposition 24. Let λ ∈ (1
2 , 1), then for every N ∈ N, there exists at least one

equilibrium (y1(·), q2(·), g2(·)), where

(i) q2(m2|θ2) is uniform, supported on [bj, bj+1] if θ2 ∈ (bj, bj+1)

(ii) g2(θ2|m2) is uniform, supported on [bj, bj+1] if m2 ∈ (bj, bj+1)

(iii) y1(m2) = y(bj, bj+1) for all m2 ∈ (bj, bj+1)

(iv) bj+1 − bj = bj − bj−1 + 4(2λ−1)
1−λ (bj − 1

2) for j = 1, ..., N − 1

(v) b0 = 0 and bN = 1.

Figure 4.1: aC,10(b) for N = 10. Figure 4.2: bD,10(b) for N = 10.

Part (iii) of Proposition 24 shows that the characteristics of intervals under decen-
tralization are the same as under centralization. We refer the reader to section 4.1,
where we discuss these characteristic in detail. Also the intuition for these properties
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of intervals is analogous to before. The difference under decentralization is that instead
of the principal, agent 1 makes the decision. Since the conflict of interest between
agents is more severe than between the principal and the agents, agent 2’s incentive
to overemphasize his private information is even stronger under decentralization than
under centralization. That is, y∗2 > y∗P > y∗1 if θ2 >

1
2 and y∗2 < y∗P < y∗1 if θ2 <

1
2 . At θ2

the preferences of both agents are aligned and there is no need for agent 2 to lie to the
right or left of 1

2 . Figures 4.1 and 4.2 depict how intervals evolve under centralization
and decentralization in an equilibrium of size N = 10.

4.3 Expected Payoff under Centralization and Decentralization

In this section we analyze under which organizational form the principal is better off.
For this purpose we calculate the principal’s expected payoff under centralization and
decentralization and analyze how it changes with an increasing partition size.

Proposition 25. In the centralized limit equilibrium (qC1 (·), qC2 (·), g1(·), g2(·), yP (·)) and
the decentralized limit equilibrium (qD2 (·), g2(·), y1(·)) for N → ∞, the principal’s and
the agents’ expected payoffs E[U∞P ] and E[U∞Ai ] are higher than in any other equilibrium
with a finite N ∈ N. The expected payoff of the principal in the limit equilibrium under
centralization is

E[UC,∞
P ] = − 5λ− 1

6(8λ− 1) (4.5)

and under decentralization

E[UD,∞
P ] = λ((9− 8λ)λ− 6) + 2

6(5λ− 1) . (4.6)

Proposition 25 says that the greater N , that is, the more messages the agents use
in equilibrium, the greater is the principal’s and the agents’ expected payoff.4 Hav-
ing established that under both organizational it is best for the principal and the
agents to coordinate on the limit equilibrium, we are now ready to analyze under
which organizational form communication is more meaningful. That is, which organi-
zational form allows for a higher quality of communication. As Alonso et al. (2008), we
measure the quality of communication by the residual variance E[(θi − E[θi|mi])2] =
E[(θ2

i − 2θimi +m2
i )] = 1

3 − E[m2
i ] for i ∈ {1, 2}.

Proposition 26. The quality of communication is always strictly higher under central-
ization than under decentralization. The residual variances under both organizational
forms is given by

E[(θi − E[θi|mi])2] =


1
3 −

10λ−1
4(8λ−1) if centralization

1
3 −

6λ−1
4(5λ−1) if decentralization.

4The proof that the limit of strategies and beliefs constitute a Perfect Bayesian Equilibrium in
Alonso et al. (2008) applies to our setting. For the proof we refer the reader to Alonso et al. (2008).
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We find that the quality of communication is always higher (i.e., the residual variance
is always smaller) under centralization than under decentralization. Under centraliza-
tion each agent transmits more precise information to the principal than agent 2 to
agent 1 under decentralization. This result is driven by the misalignment of interest
between the principal and the agents. The conflict of interest between the agents is
more severe than the mismatch of preferences between the principal and the agents.
As a consequence, agents introduce less noise when communicating information to the
principal than when communicating to each other. Aside from communication under
centralization always having a smaller residual variance than under decentralization,
the difference in residual variances grows larger as the agents’ biases increase. A higher
bias has a more detrimental effect on the precision of the transmitted information un-
der decentralization than under centralization (see also Figures 4.1 and 4.2). This is
in line with Alonso et al. (2008). In Alonso et al. (2008), vertical communication to
a headquarter is in general more efficient than the horizontal communication between
division managers. However, the difference in the quality of communication vanishes
as their need for coordination bias converges to infinity. In our setting coordination is
prescribed. Thus, the difference in the quality of communication always exists. Fig-
ure 4.3 shows the residual variance of both, communication under centralization and
decentralization.

Figure 4.3: residual variance

Note that although the transmitted information is less precise for one local condi-
tion under decentralization, there is perfect knowledge about the local condition of the
authorized agent. This means that under decentralization more information is lost for
one state of the world but no information is lost for the other state of the world. As a
consequence, under centralization the principal suffers from a higher loss of information
but profits from a better quality of communication. Under decentralization she experi-
ences a loss of authority and a lower quality of communication but benefits from agent
1’s perfect knowledge about his local condition. We find that when the principal and
the agents coordinate on the limit equilibrium, centralization beats decentralization for
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all possible biases λ ∈ (1
2 , 1).

Proposition 27. Let N → ∞. Centralization yields the principal a higher expected
payoff than decentralization for all λ ∈ (1

2 , 1).

This contrasts the results of Alonso et al. (2008), who find that decentralization can
dominate centralization even when the coordination of decisions is extremely important.
When the need for coordination bias in Alonso et al. (2008) converges to infinity, both
organizational forms perform equally well. In contrast, we find that when decisions must
be coordinated, decentralization cannot dominate centralization even if the agents’ bias
is small. While for small biases (λ close to 1

2) the difference in the principal’s expected
payoff under centralization and decentralization is small, this difference grows larger
as λ increases. More specifically, as the agents’ bias increases, the principal’s expected
payoff under centralization decreases far more slowly than her expected payoff under
decentralization. While under centralization the principal does not suffer significantly
from larger biases, under decentralization she is even as worse off as in the case where
she makes a totally uninformed decision. Figure 4.4 illustrates the principal’s expected
payoff under the three different organizational forms: centralization, decentralization
and uninformed decision making for all λ.5

Figure 4.4: principal’s expected payoff

Why can decentralization never perform better than centralization in our model?
Our explanation is the following: In Alonso et al. (2008) the optimal decisions of the
headquarter manager and division managers are the same when the need for coordina-
tion converges to infinity. That is, they all want to perfectly coordinate their decisions.
At the same time the difference in the quality of communication vanishes as the need

5When the principal makes an uninformed decision she chooses yP = 1
2 (E[θ1 + θ2]). This yields her

a constant expected payoff of 1
12 .
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for coordination parameter converges to infinity. As a consequence, centralization and
decentralization perform equally well in the limit. In our model, in contrast, the prin-
cipal and the agents’ optimal decisions can never match. The principal always wants
to choose the average of the posteriors whereas the agents always want to choose the
weighted average of posteriors. Since agents communicate to the principal with less
noise than to each other and the principal keeps the authority, centralization dominates
decentralization even for very small biases of the agents. The perfect adaption to the
true θ1 under decentralization does not outweigh the loss due to more noisy commu-
nication by the agent 2 and the biased decision making of agent 1. Even when the
preferences of the principal and the agents are close to alignment, the delegation of
decision rights to the agents is never optimal.

Considering Different Biases

Next, we allow for agent 1 and agent 2 to have different biases λ1, λ2 ∈ (1
2 , 1). That is

U1(y, θ1, θ2, λ1) = −λ1(y − θ1)2 − (1− λ1)(y − θ2)2 (U1)

U2(y, θ1, θ2, λ2) = −(1− λ2)(y − θ1)2 − λ2(y − θ2)2. (U2)

The analysis for centralization and decentralization proceeds in the same way as
before. However, the corresponding cutoffs for the communication equilibria under
both organizational forms change as the agents are now differently biased. Our setting
is no longer symmetric. Thus, it is no longer without loss of generality to focus on
delegating the decision to one agent with certainty. Given the random delegation scheme
(α, 1− α), both agents communicate their private information to each other and agent
1 makes the final decision with probability α and agent 2 with probability 1− α. Note
that the randomness does not affect the cutoffs of the agent’s signaling strategy since
they condition their message on the event of being pivotal, i.e., the event in which
their message matters. Hence, for the calculation of the communication cutoffs under
decentralization we can again focus on agent 2 communicating to agent 1 and agent
1 making the decision with probability one.6 We find that when agents differ in their
biases, our previous results still hold. The principal’s and the agents’ expected payoffs
are increasing in the equilibrium size and centralization beats decentralization for all
biases of the agents.

Proposition 28. If agents have different biases λ1, λ2 ∈ (1
2 , 1), then Proposition 25 still

holds. The expected payoff of the principal in the limit equilibrium under centralization
is

E[UC,∞
P ] = − 1

48 +
2∑
i=1

1
32(8λi − 1)

6In order to get the thresholds for the case in which agent 1 communicates to agent 2 and agent 2
makes the final decision with probability one, we just have to switch λ1 and λ2 in the formulas.
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and under decentralization

E[UD,∞,α
P ] = −1

3

+ 2
2∑
i=1

(1i=1α + 1i=2(1− α))( 1
12(1− 2λi + 2λ2

i ) + λi(1− λi)
5λ−i + λi − 1

4(4λ−i + λi − 1)),

where E[UD,∞,α
P ] is strictly increasing in the probability with which the less biased agent

makes the decision. Centralization yields the principal a higher expected payoff than
decentralization for all λ1, λ2 ∈ (1

2 , 1).

Figure 4.5: E[UC,∞
P ]. Figure 4.6: E[UD,∞, 1

2
P ].

Figure 4.7: E[UC,∞
P ]− E[UD,∞,1

P ].

Figure 4.5 illustrates the principal’s expected payoff under centralization if the
agents have different biases. Figure 4.6 illustrates the principal’s expected payoff under
decentralization for α = 1

2 , that is, when both agents make the decision with probability
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1
2 . The principal’s expected payoff under decentralization increases in the probability
with which the less biased agent makes the decision. As a consequence, the principal
optimally chooses α = 1 when λ1 ≤ λ2 and α = 0 when λ2 < λ1. Assume without loss
of generality that 1

2 < λ1 ≤ λ2 < 1. Comparing the principal’s expected payoff under
centralization with his expected payoff under decentralization for α = 1 shows that
centralization beats decentralization for all biases of the agents. Figure 4.7 illustrates
the difference in expected payoffs under centralization and decentralization and α = 1.

5. Conclusion

In the context of information asymmetries and conflicting interests, we analyze which
organizational form should be chosen by a principal - given that her company is forced
to coordinate the decisions of its two divisions. The optimal decision depends on two
pieces of information and each division manager is privately informed about one piece.
While the principal wants to adapt the decision to both pieces of information equally,
the division managers are biased towards matching the decision more to their private
information. The principal can either communicate with both division managers and
make the decision herself (centralization) or delegate the decision to one of the division
managers and let division managers exchange their information with each other (de-
centralization). We find that centralization outperforms decentralization for every bias
of the division managers.

Our work extends the analysis of Alonso et al. (2008) who address this problem for
a company that is free to choose two different decisions, one for each division, but that
also faces a need for coordination. In contrast to our result, in Alonso et al. (2008), de-
centralization can dominate centralization even when the need for coordination is highly
important. When the need for coordination converges to infinity, both organizational
forms perform equally well. In this case the quality of communication under centraliza-
tion and decentralization is essentially the same and the interests of the principal and
the division managers are aligned. Our model differs in two ways: First, the quality
of of communication under centralization is always better than under decentralization.
Second, there always exists a conflict of interest between the principal and the agents.
These two differences change results such that centralization always performs strictly
better than decentralization when the organization can only make one single decision.
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A. Appendix

A.1 Proof of Proposition 23

In a first step we have to show that the principal’s decision y(ak, ak+1, bj, bj+1) is a best
response to the agents’ messagesm1 ∈ (ak, ak+1) andm2 ∈ (bj, bj+1), ∀k, j ∈ {0, . . . , N}.
Since agent 1 uniformly randomizes his message over [ak, ak+1] if θ1 ∈ (ak, ak+1) and
agent 2 over [bj, bj+1] if θ2 ∈ (bj, bj+1), the principal’s best response upon receiving
m1 ∈ (ak, ak+1) and m2 ∈ (bj, bj+1) is

argmax
y

ak+1∫
ak

bj+1∫
bj

UP (y, θ1, θ2)dθ1dθ2 = 1
2

(
ak + ak+1

2 + bj + bj+1

2

)
. (4.7)

Second, in order for an agent’s signaling rule to be a best response to the principal’s
decision ȳ(ak, ak+1, bj, bj+1),∀k, j ∈ {0, . . . , N}, no agent may have an incentive to lie
about the interval in which the true θi lies. We conduct this analysis for agent 1.
By the symmetry of agents in our model the analysis for agent 2 is exactly the same.
As before, agent 1 must be indifferent between sending messages mk ∈ (ak−1, ak) and
mk+1 ∈ (ak, ak+1) when θ1 coincides with the threshold ak.7 Define mk = ak−1+ak

2 ,
mk+1 = ak+ak+1

2 , mj = bj−1+bj
2 , and mj+1 = bj+bj+1

2 .
Formally this means that

U1(yk,j, ak, θ2, λ) = U1(yk+1,j, ak, θ2, λ), (4.8)

⇔ − λ
N∑
j=0

bj∫
bj−1

(1
2(mk +mj)︸ ︷︷ ︸

yk,j

−ak)2dθ2 − (1− λ)
N∑
j=0

bj∫
bj−1

(1
2(mk +mj)︸ ︷︷ ︸

yk,j

−θ2)2dθ2 (IC1)

= − λ
N∑
j=0

bj∫
bj−1

(1
2(mk+1 +mj)︸ ︷︷ ︸

yk+1,j

−ak)2dθ2 − (1− λ)
N∑
j=0

bj∫
bj−1

(1
2(mk+1 +mj)︸ ︷︷ ︸

yk+1,j

−θ2)2dθ2,

(4.9)

where yk,j = y(ak−1, ak, bj−1, bj) and yk+1,j = y(ak, ak+1, bj−1, bj). After some calcula-
tions we get that this indifference condition yields

ak+1 + 8(1
4 − λ)ak + ak−1 = 2(1− 2λ) (4.10)

⇔ ak+1 − ak = ak − ak−1 + 4(2λ− 1)(ak −
1
2) (4.11)

Next we solve the inhomogeneous second-order difference equation 4.22 to get the
thresholds for agent 1’s signaling strategy. The characteristic equation of the homoge-

7Likewise, agent 2 must be indifferent between sending mj ∈ (bj−1, bj) and mj+1 ∈ (bj , bj+1) when
θ2 coincides with the threshold bj .
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neous difference equation is given by

z2 − 8(λ− 1
4)z + 1 = 0. (4.12)

The respective roots of this characteristic equation are

x =
√

16(λ− 1
4)2 − 1 + 4(λ− 1

4) and y = −
√

16(λ− 1
4)2 − 1 + 4(λ− 1

4), (4.13)

where xy = 1 and x > 1. A particular solution φ to the inhomogeneous indifference
equation is given by φ = 1

2 . Consequently, the general solution of the difference equation
is

ak = νxk + µyk + 1
2 . (4.14)

In order to determine ν and µ we use the two initial conditions, a0 = 0 and aN = 1, and
solve the corresponding equations (i) a0 = ν+µ+ 1

2 = 0 and (ii) aN = νxN+µyN+ 1
2 = 1

for ν and µ. This yields

ν = 1 + yN

2(xN − yN) and µ = − 1 + xN

2(xN − yN) . (4.15)

Finally, we substitute for ν and µ in the general solution and obtain the solution of the
difference equation. That is,

ak = 1
2

(
xk(1 + yN)− yk(1 + xN)

xN − yN
+ 1

)
for 0 ≤ k ≤ N. (4.16)

As stated before, the analysis for agent 2 is analogous and we get exactly the same
thresholds for the signaling strategy of agent 2. That is,

bj = 1
2

(
xk(1 + yN)− yk(1 + xN)

xN − yN
+ 1

)
for 0 ≤ j ≤ N. (4.17)

A.2 Proof of Proposition 24

First, we have to show that agent 1’s decision y(bj, bj+1) is a best response to agent
2’s messages m2 ∈ (bj, bj+1) ∀j. Since agent 2 uniformly randomizes his message over
[bj, bj+1] if θ2 ∈ (bj, bj+1), agent 1’s best response upon receiving m2 ∈ (bj, bj+1) is

argmax
y

bj+1∫
bj

U1(y, θ1, θ2, λ)dθ2 = λθ1 + (1− λ)bj + bj+1

2 . (4.18)

Second, in order for agent 2’s signaling rule to be a best response to agent 1’s
decision ȳ(bj, bj+1) ∀j, agent 2 must not have an incentive to lie about the interval in
which the true θ2 lies. This requires that agent 2 is indifferent between sending messages
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mj ∈ (bj−1, bj) and mj+1 ∈ (bj, bj+1) when θ2 coincides with the threshold bj.

Formally this means that

U2(yj, θ1, bj, λ) = U1(yj+1, θ1, bj, λ), (4.19)

or

− (1− λ)
1∫

0

(λθ1 + (1− λ)mj︸ ︷︷ ︸
yj

−θ1)2dθ1 − λ
1∫

0

(λθ1 + (1− λ)mj︸ ︷︷ ︸
yj

−bj)2dθ1 (4.20)

=− (1− λ)
1∫

0

(λθ1 + (1− λ)mj+1︸ ︷︷ ︸
yj+1

−θ1)2dθ1 − λ
1∫

0

(λθ1 + (1− λ)mj+1︸ ︷︷ ︸
yj+1

−bj)2dθ1, (4.21)

where yj = y(bj−1, bj) and yj+1 = y(bj, bj+1). After some calculations we get that this
indifference condition yields

bj+1 −
2(3λ− 1)

1− λ bj + bj−1 = 2(1− 2λ)
1− λ (4.22)

⇔ bj+1 − bj = bj − bj−1 + 4(2λ− 1)
1− λ (bj −

1
2)︸ ︷︷ ︸

≥0 iff bj≥ 1
2

(4.23)

Next we solve the difference equation. The characteristic equation of this inhomo-
geneous second-order linear difference equation 4.22 is given by

z2 − 2(3λ− 1)
1− λ z + 1 = 0. (4.24)

The respective roots of the characteristic equation are

x =

√√√√(3λ− 1
1− λ

)2

− 1 + 3λ− 1
1− λ and y = −

√√√√(3λ− 1
1− λ

)2

− 1 + 3λ− 1
1− λ , (4.25)

where xy = 1 and x > 1. An individual solution φ to the inhomogeneous indifference
equation is given by φ = 1

2 . Consequently, the general solution of the difference equation
is

bj = νxj + µyj + 1
2 . (4.26)

In order to determine ν and µ we use the two initial conditions, a0 = 0 and aN = 1, and
solve the corresponding equations (i) a0 = ν+µ+ 1

2 = 0 and (ii) aN = νxN+µyN+ 1
2 = 1

for ν and µ. This yields

ν = 1 + yN

2(xN − yN) and µ = − 1 + xN

2(xN − yN) . (4.27)
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Finally, we substitute for ν and µ in the general solution and obtain the solution of the
difference equation. That is,

bj = 1
2

(
xj(1 + yN)− yj(1 + xN)

xN − yN
+ 1

)
for 0 ≤ j ≤ N. (4.28)

A.3 Proof of Proposition 25

Proof. To prove Proposition 25 we first calculate the expected payoff of the principal for
a finiteN and then letN converge towards infinity. Given the equilibrium strategies and
beliefs, the principal’s expected payoff in the centralized communication equilibrium of
size N can be expressed in terms of the residual variance of θ1 and θ2 (Crawford and
Sobel, 1982). That is,

E[UC,N
P ] = −E[(yk,j − θ1)2 + (yk,j − θ2)2] (4.29)

= −(E[(1
2(mk +mj)− θ1)2] + E[(1

2(mk +mj)− θ2)2]) (4.30)

= −

 N∑
k=1

N∑
j=1

ak∫
ak−1

bj∫
bj−1

(1
2(mk +mj)− θ1

)2
+
(1

2(mk +mj)− θ2

)2
dθ1dθ2

 .
(4.31)

Analogously, the principal’s expected payoff in the decentralized communication
equilibrium of size N is given by8

E[UD,N
P ] = −E[(yj − θ1)2 + (yj − θ2)2] (4.32)

= −

 N∑
j=1

1∫
0

bj∫
bj−1

(λθ1 + (1− λ)mj − θ1)2 + (λθ1 + (1− λ)mj − θ2)2 dθ1dθ2

 .
(4.33)

To calculate the expected payoffs under centralization and decentralization we need
the following Lemma which is based on Lemma 1, A1 and A2 from Alonso et al. (2008)
and adjusted to our setting.

Lemma 12.

(i) E[mkθ1] = E[m2
k] and E[mjθ2] = E[m2

j ],

(ii) E[m2
k] = E[m2

j ] = 1
16

[
(x3N−1)(x+1)2

(xN−1)3(x2+x+1) −
xN (x+1)2

x(xN−1)2 + 4
]
,

(iii) E[m2
k] is strictly increasing in N , and

8Note that we focus here without loss of generality on the decentralized communication equilibrium
in which only agent 2 communicates his private information to agent 1 and agent 1 makes the decision
afterwards
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(iv) lim
N→∞

E[m2
k] = 1

16

(
(x+1)2

4(x2+x+1) + 4
)

=


10λ−1

4(8λ−1) if centralization

6λ−1
4(5λ−1) if decentralization

.

Proof. Note that the approach is the same as the one used in Alonso et al. (2008). Given
that mk = ak−1+ak

2 = E[θ1|θ1 ∈ (ak−1, ak)], we can use the law of iterated expectation
and obtain

E[mkθ1] = E[E[mkθ1|θ1 ∈ (ak−1, ak)]] = E[mkE[θ1|θ1 ∈ (ak−1, ak)]] = E[m2
k]. (4.34)

This proves part (i). To prove part (ii) and (iii) we need to calculate E[m2
k] which can

be expressed as follows

E[m2
k] =

N∑
i=1

ak∫
ak−1

(mk)2 dθ =
N∑
i=1

ak∫
ak−1

(
ak−1 + ak

2

)2
dθ (4.35)

= 1
4

N∑
i=1

(ak − ak−1)(a2
k + 2akak−1 + a2

k−1) (4.36)

= 1
4

N∑
i=1

(a3
k + a2

kak−1 − aka2
k−1 − a3

k−1) (4.37)

Next we substitute equation 4.16 for ak and get

E[m2
k] = 1

32

N∑
i=1

(
xi(1 + yN)− yi(1 + xN)

xN − yN
+ 1

)3

(4.38)

+
(
xi(1 + yN)− yi(1 + xN)

xN − yN
+ 1

)2

·
(
xi−1(1 + yN)− yi−1(1 + xN)

xN − yN
+ 1

)
(4.39)

−
(
xi(1 + yN)− yi(1 + xN)

xN − yN
+ 1

)
·
(
xi−1(1 + yN)− yi−1(1 + xN)

xN − yN
+ 1

)2

(4.40)

−
(
xi−1(1 + yN)− yi−1(1 + xN)

xN − yN
+ 1

)3

(4.41)

Let c = 1
32

1
(xN−yN )3 , d = 1

8
1

(xN−yN )2 and e = 1
8

1
xN−yN . After several rewriting and

calculation steps we get

E[m2
k] =

c · [ (1 + yN)3(x− 1)(x+ 1)2(x3N − 1)
x3 − 1 − (1 + xN)3(y − 1)(y + 1)2(y3N − 1)

y3 − 1 (4.42)

− (1 + yN)2(1 + xN)(x+ 1)2x(xN − 1)
x2 + (1 + xN)2(1 + yN)(y + 1)2y(yN − 1)

y2 ]

+ d · [(1 + yN)2(x2N − 1) + (1 + xN)2(y2N − 1)] (4.43)
+ e · [(1 + yN)(xN − 1)− (1 + xN)(yN − 1)] (4.44)

By using that y = 1
x
and xy = 1 and by performing similar calculations as in the
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proof of Lemma 11, we obtain

E[m2
k] = 1

16

[
(1 + xN)3(1 + x)2(x3N − 1)

(x2N − 1)3(x2 + x+ 1) − (xN + 1)3(x+ 1)2(1− xN)xN
x(x2N − 1)3 + 4

]
(4.45)

= 1
16

[
(x3N − 1)(x+ 1)2

(xN − 1)3(x2 + x+ 1) −
xN(x+ 1)2

x(xN − 1)2 + 4
]
. (4.46)

This proves part (ii).
To prove part (iii) we use the same approach as in the proof of Lemma 11 part (iii).

First, we define

f(p) = 1
16

[
(p3 − 1)(x+ 1)2

(p− 1)3(x2 + x+ 1) −
p(x+ 1)2

x(p− 1)2 + 4
]

(4.47)

and then calculate the derivative of f(p)

f ′(p) = 1
16

[
(x+ 1)2

(x2 + x+ 1)

(
3p2(p− 1)3 − 3(p3 − 1)(p− 1)2

(p− 1)6

)]
(4.48)

= 1
16

[
(x+ 1)2

x

(
(p− 1)2(p+ 1)

(p− 1)4

)]

= 1
16

[
−3(x+ 1)2 − (p+ 1)
(x2 + x+ 1)(p− 1)3 + (x+ 1)2(p+ 1)

x(p− 1)3

]

= 1
16

[
(p+ 1)(x4 − 2x2 + 1)
(p− 1)3(x2 + x+ 1)x

]
.

The derivative of f(p) is strictly positive for all p > 1. Since E[m2
k] = f(xN) and

xN > 1, it follows that E[m2
k] is strictly increasing in N .

To show part (iv) we calculate the value of E[m2
k] in the limit-equilibrium under

centralization and decentralization. That is,

lim
N→∞

E[m2
k] = lim

N→∞

1
16

[
(x3N − 1)(x+ 1)2

(xN − 1)3(x2 + x+ 1) −
xN(x+ 1)2

x(xN − 1)2 + 4
]

(4.49)

= 1
16

(
(x+ 1)2

(x2 + x+ 1) + 4
)
. (4.50)

We substitute for the root of the characteristic equation of the homogeneous dif-
ference equation under centralization, i.e., x =

√
16(λ− 1

4)2 − 1 + 4(λ− 1
4), to get the

corresponding value of lim
N→∞

E[m2
k] under centralization.

lim
N→∞

E[m2
k] = 10λ− 1

4(8λ− 1) . (4.51)

Analogously, substituting for the root of the characteristic equation of the homogeneous
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difference equation under decentralization, i.e., x =
√(

3λ−1
1−λ

)2
− 1 + 3λ−1

1−λ , yields the
value of lim

N→∞
E[m2

k] under decentralization. That is,

lim
N→∞

E[m2
k] = 6λ− 1

4(5λ− 1) . (4.52)

Using Lemma 12, the expected payoff of the principal under centralization is given
by

E[UC,N
P ] = − 5

12 + E[m2
k]. (4.53)

Since E[m2
k] is strictly increasing in N , E[UC,N

P ] is strictly increasing in N and thus
the highest in the limit equilibrium, i.e., for N →∞. Substituting for E[m2

k] = 10λ−1
4(8λ−1) ,

yields the principal’s expected payoff in this centralized limit-equilibrium.

E[UC,∞
P ] = − 5

12 + lim
N→∞

E[m2
k] = − 5λ− 1

6(8λ− 1) . (4.54)

Analogously, by applying Lemma 12, the principal’s expected payoff under decen-
tralization can then be written as

E[UD,N
P ] = −1

6(1 + 2λ− 2λ2) + 2λ(1− λ)E[m2
j ]. (4.55)

By Lemma 12, E[UD,N
P ] is strictly increasing in N . As a consequence, the principal

achieves the highest expected payoff in the decentralized limit-equilibrium. That is,

E[UD,∞
P ] = −1

6(1 + 2λ− 2λ2) + 2λ(1− λ) lim
N→∞

E[m2
j ] = λ((9− 8λ)λ− 6) + 1

6(5λ− 1) .

(4.56)

The calculation of the agents’ expected payoffs under both organizational forms is
analogous. Under centralization, the agents’ expected payoff is the same as the prin-
cipal’s expected payoff. Under decentralization, the agent who is making the decision
receives an expected payoff of

E[UD,∞
A ] = E[m2

k](1− λ)2 − 1
6(λ− 1)(λ− 2) (4.57)

and the agent who is only communicating to the decision making agent expects to get

E[UD,∞
A ] = E[m2

k](1− λ)(3λ− 1) + 1
6(3λ2 − 5λ− 1). (4.58)
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A.4 Proof of Proposition 26

Proof. Since 1
3 −

10λ−1
4(8λ−1) <

1
3 −

6λ−1
4(5λ−1) holds for all λ ∈ (1

2 , 1), we conclude that the
quality of communication under centralization is always higher than the quality of
communication under decentralization.

A.5 Proof of Proposition 27

Proof. Comparing E[UC,∞
P ] with E[UD,∞

P ] shows that − 5λ−1
6(8λ−1) >

λ((9−8λ)λ−6)+1
6(5λ−1) for all

λ ∈ (1
2 , 1).

A.6 Proof of Proposition 28

Proof. After conducting the same analysis as above, we get for the centralized limit
equilibrium the following respective roots of the characteristic equation for agent i ∈
{1, 2}

x =
√

16(λi −
1
4)2 − 1 + 4(λi −

1
4) and y = −

√
16(λi −

1
4)2 − 1 + 4(λi −

1
4). (4.59)

For the decentralized communication equilibrium we then get the following respective
roots of the characteristic equation

x =

√√√√(1− λ1 − 2λ2

1− λ1

)2

− 1− 1− λ1 − 2λ2

1− λ1
and (4.60)

y = −

√√√√(1− λ1 − 2λ2

1− λ1

)2

− 1− 1− λ1 − 2λ2

1− λ1

The expected payoff of the principal under centralization can then be written as

E[UC,N
P ] = −1

3 + 1
2(E[m2

k] + E[m2
j ]). (4.61)

By the same reasoning as in the proof of Proposition 25, the principal and the agents’
expected payoffs are increasing in N . In the limit-equilibrium, that is for N →∞, the
principal then receives an expected payoff of

E[UC,∞
P ] =− 1

3 + 1
2 lim
N→∞

(E[m2
k] + E[m2

j ]) = −1
3 + 1− 10λ1

8− 64λ1︸ ︷︷ ︸
lim
N→∞

E[m2
k]

+ 1− 10λ2

8− 64λ2︸ ︷︷ ︸
lim
N→∞

E[m2
j ]

(4.62)

⇔ − 1
48 + 1

32(8λ1 − 1) + 1
32(8λ2 − 1) .
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The expected payoff of the principal under decentralization can then be written as

E[UD,N
P ] =− 1

3 + 1
6(α(1− 2λ1 + 2λ2

1) + (1− α)(1− 2λ2 + 2λ2
2)) + 2αλ1(1− λ1)E[m2

j ]
(4.63)

+ 2(1− α)λ2(1− λ2)E[m2
k].

In the limit-equilibrium, that is for N → ∞, the principal consequently expects to
get

E[UD,∞
P ] =− 1

3 + 1
6(α(1− 2λ1 + 2λ2

1) + (1− α)(1− 2λ2 + 2λ2
2)) (4.64)

+ 2αλ1(1− λ1) lim
N→∞

E[m2
j ] + 2(1− α)λ2(1− λ2) lim

N→∞
E[m2

k]

=− 1
3 + 1

6(α(1− 2λ1 + 2λ2
1) + (1− α)(1− 2λ2 + 2λ2

2)) (4.65)

+ αλ1(1− λ1) 5λ2 + λ1 − 1
2(4λ2 + λ1 − 1)︸ ︷︷ ︸

lim
N→∞

E[m2
j ]

+(1− α)λ2(1− λ2) 5λ1 + λ2 − 1
2(4λ1 + λ2 − 1)︸ ︷︷ ︸

lim
N→∞

E[m2
k]

.

Assume without loss of generality that λ1 < λ2. Since E[UD,∞
P ] is increasing in α,

the principal is best off if she fully delegates the decision to the less biased agent, i.e.,
α = 1, and lets agent 2 communicate his private information to agent 1.

Comparing E[UC,∞
P ] with E[UD,∞

P ] for α = 1 shows that − 1
48 + 1

32(8λ1−1) + 1
32(8λ2−1) >

−1
3 + 1

6(1− 2λ1 + 2λ2
1) + λ1(1− λ1) 5λ2+λ1−1

2(4λ2+λ1−1) for all 1
2 < λ1 < λ2 < 1.
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