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Introduction

This thesis consists of three chapters that analyze stability of financial institutions and

redistributive effects in health insurance markets based on the example of Germany. The

third chapter is based on joint work with my coauthor Benjamin Schickner. My analysis

of financial stability in the first two chapters considers financial institutions which borrow

short-term, liquid debt such as demand deposits and invest long-term in illiquid and risky

assets (maturity and liquidity transformation). These transformations make the financial

institution prone to a liquidity squeeze (run) by uninsured short-term debt investors. Runs

by debt investors may be driven by fears about low future asset returns but also by fears

that a large group of other debt investors might withdraw their deposits. The latter gives

rise to self-fulfilling or panic runs caused by miscoordination. The first two chapters are

concerned with modeling such self-fulfilling runs using the methodology of global games.

Imposition of a specific type of information structure allows the selection of a unique

equilibrium. Ex ante identical agents observe correlated, noisy and private signals before

choosing one out of two possible actions. As typical in global games, the equilibrium has

the nature of a trigger equilibrium. Agents choose action ’withdraw’ if they observe signals

below the trigger and choose action ’wait’ if they observe a signal above the trigger. The

size of the equilibrium trigger determines the expected number of agents choosing either

action. If the number of agents choosing action ’withdraw’ exceeds a critical threshold,

an event is triggered, the financial firm defaults. Chapter one and two are concerned with

how the equilibrium trigger and thus ex ante probability of runs change in the primitives

of the game.

In the first chapter, I analyze how miscoordination on panic runs among debt investors

changes under altering capital structure and market liquidity of firm assets. Investors

draw on a finite, common pool of liquidity. In case of a run, repayment to debt investors is

only partial and endogenous. Taking this endogeneity into account, I show that investors

coordinate in a way such that the probability of a run is in general non-monotone in both

debt and liquidity ratio. When liquidity dries up, increasing short-term financing may

decrease the probability of runs, more short-term debt can discipline debt investors to

better coordinate. If the firm is financed through short-term debt and equity only, the
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result implies that firm stability may decrease in equity. In detail, more short-term debt

financing can alter coordination and hence the probability distribution of debt becoming

due in the future in a way that runs become less likely. This implies, the probability of

runs is non-monotone in liquidity mismatch between assets and liabilities. As a result,

capital and liquidity regulation may harm stability. These results hold under partial asset

liquidation or collateralized borrowing and therefore apply to classic commercial banks but

also to shadow banks such as structured investment vehicles and asset backed commercial

paper conduits.

In the second chapter, I ask the question how national bankruptcy codes and interven-

tions of a lender of last resort impact coordination behavior of debt investors. National

bankruptcy codes and potential intervention by national central banks (lender of last re-

sort) during runs on financial firms impact recovery values after bankruptcy. But while

bankruptcy proceedings impose fixed costs, the intervention by a lender of last resort de-

pends on the scale of the run. As a consequence, recovery values are ex ante random

and endogenous to investors. The second chapter studies how recovery values influence

coordination behavior of uninsured debt investors and thus stability of financial firms. In

particular, the chapter analyzes how the composition of recovery values changes coordina-

tion when recovery value consists of a run-size dependent, endogenous part controlled by

the lender of last resort and a fixed component to model national differences in bankruptcy

code. I find that the composition of recovery value influences how firm stability changes

in capital structure and liquidity mismatch. Run probabilities are monotone in debt or

liquidity mismatch as long as recovery values are proportional to the size of the run. When

recovery values are independent of the magnitude of the run (no lender of last resort) or

include a fixed component independent of the size of the run (intercept), run probabilities

are non-monotone and have unique maxima. The non-monotonicity changes in composi-

tion of recovery value. As a consequence, drops in funding liquidity or capital can have a

stabilizing effect in country A but a destabilizing effect on a company with identical capital

structure in country B due to variations in national bankruptcy code. If a lender of last

resort intervenes more generous in country G compared to country I, liquidity regulation

in country G has to be stricter than in country I to guarantee the same minimum stability

level. These results have policy implications for capital and liquidity regulation under Basel

3 since member countries agree on regulation but firms underlie different bankruptcy codes.

Further, I show that high recovery values achieved by cost efficient bankruptcy proceedings

or generous government interventions are never desirable from a stability perspective and

only sometimes desirable from a consumer welfare perspective since high recovery values

increase the probability of runs.

In the third chapter, Benjamin and I study redistributional effects of competition between

2



private and public insurance on health insurance markets based on the example of Ger-

many. In Germany, health insurance is obligatory and provided by a budget-balancing

public insurance and a revenue-maximizing private insurance. Public insurance is regu-

lated, she may charge a fixed contribution rate from customers income up to a cap and

she must operate cost-covering. Public contributions do not depend on customers’ health

risk types. Customers with high income may opt out of public insurance. The regula-

tions and competition with a more flexible private insurance lead to difficulties for public

insurance to find a contribution rate which guarantees a balanced budget. We derive a

condition on the health income distribution of customers and regulator thresholds such

that a unique public contribution rate exists which balances budget. We show that in

equilibrium, healthy, high-income customers insure with private insurance. Further, pri-

vate insurance cream skims customers if possible, that is she selects good risk types. We

identify income redistribution streams in the population and argue that an increase in

the opt-out threshold decreases the costs of health insurance for all customers. Analyzing

changes in the underlying distribution, we show that the equilibrium contribution rate

rises as the positive correlation between health and income increases. We demonstrate,

even a systematic improvement of the populations health and income may lead to a higher

contribution rate. Welfare effects of switching from the contribution-based German sys-

tem to a premium- based flat payment system with only one type of insurance are discussed.

3
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Chapter 1

Capital Structure, Liquidity and

Miscoordination on Runs

1.1 Motivation

This paper is concerned with stability of financial intermediators (’firms’) against runs by debt

investors. Runs on financial institutions have been a recurrent phenomenon in economic history

up to the present. In September 2007, we witnessed a traditional run on UK bank Northern Rock

(Shin, 2009). In September 2008, withdrawals by customers forced a shut down of the US savings

and loan Washington Mutual. In summer 2015, Greek banks were closed in a bank holiday for

several weeks to prevent a run by depositors.

In a debt run, a large number of short-term debt investors rush to withdraw their funds from

the firm. Large cash withdrawals, in response, force the firm to liquidate assets on short notice.

If assets are illiquid1, the firm can sell assets quickly only at a large price discount compared to

their fair value. If the firm relies heavily on short-term financing, potential overall withdrawals

the firm might face in a run exceed total cash the firm can raise through liquidating all assets in

short time. Debt investors’ awareness of this potential liquidity squeeze and its implications for

firm stability and welfare are at the heart of this paper.

In our model, a financial firm finances an investment in a risky, illiquid asset through equity and

short-term debt. The firm promises fixed interest payments to debt investors and the residual

value of investment to equity investors.2 At an interim period, debt investors need to decide

whether to stay invested in the firm (roll over debt) or to withdraw their investment. They

do so after observing imperfect information about the asset’s random return. As debt investors

make their roll over decisions at the interim period, at the initial period the firm faces a random

1An asset’s market liquidity depends on several factor such as market size of the asset, potential
information asymmetries and current economic market conditions (Foucault et al., 2013).

2This is by the ownership structure and seniority of debt.
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withdrawal of short-term debt in the following period. To finance withdrawals of funds, the firm

liquidates a corresponding fraction of her investment in the illiquid asset and by this diminishes

future gross returns.3 If funds available through selling the asset (market liquidity) undercut the

overall amount of potential short-term debt claims the firm might face, the firm is prone to a

liquidity squeeze (run) in the interim period:4 When the number of debt investors claiming their

deposit exceeds a critical threshold, the firm cannot serve all its debt investors and goes into

default. The potential of a run gives rise to a coordination problem between debt investors. The

roll over decision of debt investors is not only based on inferences about the random asset return,

a solvency consideration, but also depends on the expected number of other debt investors rolling

over, a liquidity consideration. As a result, a debt investor might decide not to roll over, not

because the expected asset return is too low but because she expects a too large number of other

investors to not roll over. A panic run or self-fulfilling run occurs if too many investors fear other

investors will not roll over, withdraw, and cause the run.

In this setting, we analyze the question how coordination and the probability of a run by debt

investors depend on firm capital structure and market liquidity of firm assets. As main contri-

bution of the paper, we demonstrate that the probability of a run is in general non-monotone

in short-term debt and that non-monotonicity is in large parts affected by asset liquidity. This

implies, increases in equity financing may harm coordination and increase the probability of runs.

This stands in contrast to the classic literature on bank regulation (Cohen, 1970; Furlong and

Keeley, 1989; Kim and Santomero, 1988) which argues that equity always improves firm stability

by reducing insolvency risk. Firm insolvency occurs if asset value falls below value of debt. This

literature strand however assumes that the firm’s debt structure (maturity and amount outstand-

ing) is exogenous. As a consequence of this assumption, capital regulation decreases insolvency

risk since it guarantees a minimum equity cushion against shocks in asset’s market value when

balance sheets are marked to market.5 In this paper we make a point the other way around. We

assume asset liquidity is deterministic6 but the debt structure is random and in particular endoge-

nous. The probability distribution of short-term debt becoming due tomorrow depends on the

capital structure today. Under these changed assumptions we obtain that capital regulation may

alter coordination and thus the probability distribution of debt becoming due in the near future

in a way that runs become more likely - the illiquidity risk may increase.7 The general intuition

3Our results are robust to allowing the firm to borrow cash by pledging the asset as collateral. By this,
partial liquidation is avoided.

4This scenario is satisfied for ’sufficiently’ illiquid assets but also for liquid assets if promised interest
payments to debt investors are large and if the firm is financed through a proportionally large amount of
short-term debt.

5Insolvency risk is further reduced by capital regulation since banks respond to more ’skin’ (equity) in
the game by investing in less risky assets.

6The assumption that liquidity is deterministic is the major constraint of our model, similar to (Dia-
mond and Dybvig, 1983; Goldstein and Pauzner, 2005).It is however as strong an assumption as assuming
that short-term withdrawals of deposits or other liquid forms of debt are exogenous in maturity and
magnitude.

7In this paper, we follow the definition of illiquidity and insolvency risk by Morris and Shin (2009):
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that more short-term funding and hence exposure to investors having short-term claims lead to

higher short-term withdrawals and liquidity risk in the future is challenged in this article. We

show, more short-term debt can discipline debt investors to better coordinate if assets are illiquid.

A further contribution of our paper is of technical nature. The game structure analyzed here

exhibits only one-sided strategic complementarity between actions (Karp et al., 2007; Goldstein

and Pauzner, 2005) and hence differs from the classic global games structure where actions are

global strategic complements (Vives, 2014; Rochet and Vives, 2004; König et al., 2014; Morris

and Shin, 2009).

The first game structure evolves naturally in bank run games when closely modeling the real

world fact that in the incidence of a run, cash available by asset liquidation is insufficient to

satisfy claims by all debt investors. Investors are only partially repaid, and the payment depends

on the endogenous number of investors trying to withdraw, see Goldstein and Pauzner (2005):

This is because debt investors have a hard claim and draw on a common pool of liquidity. To

withdraw, investors queue in front of the firm and are served one after another. To serve an

investor the firm liquidates a fraction of the asset. The place in the queue is random. In a run,

not the entire queue can be served, service stops when all cash available from liquidating the

firm’s asset is distributed. The more investors try to withdraw the longer the queue and hence

the larger the probability to queue in a position which cannot be served.

As a consequence, the incentive to withdraw versus wait is not largest when all investors withdraw

but when only just as many investors withdraw that put the firm on the edge of a run. Then, the

entire queue is just served while investors who wait and roll over receive zero independently of

the size of the run.8 Conditional on a run, actions are strategic substitutes, in particular actions

are not global strategic complements.9

One-sided strategic complementarity is the key driver for the non-monotonicity results obtained

in this article. Comparative statics under global strategic complements (Morris and Shin, 2009;

Rochet and Vives, 2004; Vives, 2014) are all monotone in this strand of literature (see explicit dis-

cussion of literature and technique below). This article thus demonstrates that in global games,

monotonicity of bank run probability in debt is not robust to one-sided strategic complementarity

between actions.

’Insolvency risk’ is the probability of a default due to deterioration of asset quality conditional on the event
that no run occurs. Credit risk is the unconditional probability that the firm cannot repay debt at some
point in time. Illiquidity risk is the difference between credit and insolvency risk, that is the probability
of a default due to a run if the firm had been solvent in absence of the run. In our setting, illiquidity risk
is the risk that current liabilities realize such that they undercut asset value. For further discussion of the
distinction between insolvency risk and illiquidity risk, see Davydenko (2012)

8Conditional on a run, payoffs to investors who want to withdraw strictly decrease in the number of
investors trying to withdraw while payoff to investors who roll over is fixed at zero.

9Global strategic complementarity between actions implies, that the incentive for an agent to pick a
certain action A versus choosing the other action B increases in the number of other agents choosing that
same action A.
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We now give an intuition for why a departure from the previous literature leads to non-monotone

run probabilities in capital. In detail, the main driver of the non-monotonicity results, and the

main departure from the previous literature on the impact of capital structure and asset liquidity

on runs, is that we impose uncertainty on the action ’withdraw’. Debt investors who simulta-

neously decide to withdraw from the firm might receive zero. In the incidence of a run, when

debt claims by withdrawing investors exceed liquidation value of the asset, the firm may only

distribute the liquidation value of the asset, thus not all investors who want to withdraw can be

served. Consequently, the payoff to withdrawing becomes risky and sensitive to changes in capital

structure:10 In the incidence of a run, the more the firm is (proportionally) financed with equity,

the fewer debt investors have a claim on liquidation value (the shorter the maximum length of

the queue) and the higher the expected payoff from withdrawing. The latter is since positions

in the queue are random, the maximum queue length has decreases but the number of positions

in the queue that can be served at fixed liquidation value of the asset has remained constant.

Thus, equity sweetens withdrawal in uncertain times since it serves as cushion in the incidence

of a run. Equity also benefits debt investors who roll over. The change of equilibrium due to

a marginal change in equity is thus determined by marginal utilities. The following stylized ex-

ample demonstrates that debt investors who withdraw might benefit stronger from increases in

equity than investors who roll over. Thus, a marginal investor who is initially indifferent between

rolling over debt or withdrawing might, after an increase in equity, prefer to withdraw which

leads to increases in the run probability, explained now.

Example: A firm raises $5 in equity and short-term debt to finance a long-term investment in a

risky asset. At an interim period, after observing information about the random asset return debt

investors decide whether to roll over debt or to withdraw. The asset is illiquid, hence premature,

fast liquidation of the asset only yields $1. The firm promises fixed interest payments to debt

investors for every period invested. By the nature of equity, debt investors are paid first and all

remaining revenues go to equity investors.

Setting A) In order to finance the asset, the firm collects $1 equity and $4 short-term debt raised

from 4 different debt investors who each invests $1. At the interim stage markets can either be

up or down. Assume markets are up and the asset pays with high probability. Then, all debt

investors roll over debt, collect their interest payments with high probability in the following

period and all extra returns go to equity investors. If however markets are down and the asset

pays with low probability, all debt investors withdraw which forces the firm to liquidate the asset

at $1. Since 4 debt investors have a claim on this dollar, on average every debt investor receives

$1/4.

Setting B) Now assume, the firm increases her equity ratio by financing the same investment with

$2 equity and $3 debt collected from 3 debt investors. If markets are up, again all debt investors

roll over as they receive promised interest payments with very high probability. If markets are

10Under the assumption that withdrawing yields a safe payoff, changes in capital structure do not change
payoff from withdrawing, hence the payoff to withdrawing is insensitive to changes in capital.
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down however, all debt investors withdraw, the firm liquidates the asset at $1 and on average,

every debt investor receives $1/3 which is larger than $1/4.

Since debt investors’ interest payments are fixed, they do not benefit from the upside potential

of the asset, thus the financing structure of the firm has no impact on debt investors’ payoffs if

asset markets are up. The capital structure however does matter in bad times. If uncertainty

about asset returns is high and debt investors refuse to roll over, by illiquidity of assets cash

available through liquidation does not cover all withdrawals. Comparing both settings of the

example, conditional on a run, the payoff to withdrawing increases in equity from $1/4 to $1/3

since realized liquidation value is allocated among less debt investors. The intuition for this

example is related to the value of debt taking the form of an inverted hockey stick at expiry

(Holmstrom, 2015): conditional on a run, debt is information sensitive with respect to capital

structure and its value increases in equity. Conditional on no run (in good times), debt becomes

information insensitivity towards capital structure and its value is constant in equity.

The model we analyze in the paper has a unique equilibrium which is characterized by a trigger

signal about the asset return. Debt investors will find it optimal to withdraw when observing

signals below the trigger since this signals low asset returns and will roll over debt when observing

signals above the trigger, see Figure (??). Upon observing the trigger signal a debt investor is

indifferent between rolling over or withdrawing (marginal investor). Consider the signal of the

marginal investor in setting A). As the firm changes her financing structure from setting A) to

setting B), the immediate payoff from rolling over stays constant compared to the previous setting

since the financing structure does not impact the asset’s return probability and promised interest

payments to debt investors remain unchanged. But the payoff from withdrawing increases. Hence,

the signal that makes an investor indifferent in setting A) cannot make her indifferent in setting B),

see Figure (??). Instead, at the same signal in setting B) the investor tends towards withdrawing.

*

*

receive 1/3 receive fixed coupons

*

receive 1/3 receive fixed coupons

A

A

A

B
B

no equilibrium
receive 1/4 receive fixed coupons

Figure 1.1: Shift of equilibrium trigger signal due to change in equity

The equilibrium trigger in setting B) is thus larger, investors withdraw for a greater range of
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signals compared to setting A) which increases the ex ante probability of a run although the firm

is financed through more equity.11

As main result of the article, we obtain that the probability of a run is in general non-monotone in

short-term debt and that non-monotonicity is driven by asset illiquidity. When asset liquidity is

high, the probability of runs increases monotonically in debt. As liquidity dries up, the probability

of runs becomes non-monotone. Probability of runs increases in debt for low debt values but

decreases in debt for larger debt values. When the asset becomes perfectly illiquid, monotonicity

is restored but tilted: the probability of a run becomes monotone decreasing in debt and increasing

in equity.

Second, the non-monotonicity result expands to liquidity mismatch. If we measure liquidity

mismatch of assets and liabilities as the ratio of cash the firm can realize by selling the asset

over potential short-term withdrawals, we show that the probability of runs is not monotone in

liquidity mismatch.12

Third, as a consequence of these non-monotonicity results capital and liquidity regulation can

have adverse effects on firm stability depending on asset liquidity. We demonstrate, while capital

and liquidity regulation of financial institutions can improve stability when market liquidity of

assets is high, the identical policy rule can harm stability when liquidity is low or dries up

as its implementation deteriorates the coordination problem among short-term debt investors.

These results have policy implication with respect to Basel 3. Our results imply that capital

regulation should be tailored to particular scenarios for market liquidity or capital regulation

should distinguish between firms according to their target asset liquidity. Further we demonstrate,

under endogenous panic withdrawals by investors, liquidity mismatch is no reliable measure of

liquidity risk since the probability of runs is non-monotone in liquidity mismatch.

Fourth, the non-monotonicity results hold under partial asset liquidation but are robust to collat-

eralized borrowing, where the firm may pledge the asset in the money market and by this prevents

partial liquidation. Our results have thus policy implications with respect to regulation of classic

commercial banks but also structured investment vehicles (SIVs) and asset-backed commercial

paper conduits.

Last, we consider debt investors’ welfare from contracts, taking the coordination behavior of in-

vestors as given in subgames. We demonstrate, for every contract if asset liquidity is high debt

investor suffer from increases in debt ratio. If liquidity is however low, they might benefit from

11Note that while in the example game non-symmetric threshold equilibria might exist, the main game
introduced later will have a unique equilibrium which is a symmetric threshold equilibrium. Further, debt
investors’ signals will differ only by a small, random noise term. As the support of the noise becomes
small, debt investors observe the same signals and hence choose identical actions. For this example, we
have used pro rata shares but the same intuition applies for queuing where conditional on a run agents
receive fixed coupons but with varying probability.

12A liquidity mismatch exists if overall cash that can be raised through selling all assets on short notice
(market liquidity) undercuts the maximum sum of potential short-term cash claims by debt investors. In
this case, we define liquidity mismatch as the ratio of asset market liquidity to potential short-term claims.
An existing liquidity mismatch gives rise to the possibility of runs on the financial firm.
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higher debt ratios since these improve coordination and thus stability.

Related Literature

This paper adds to the growing literature on stability of maturity transforming financial inter-

mediators against runs by short-term debt investors. In a seminal paper, Diamond and Dybvig

(1983) analyze coordination behavior of depositors who share consumption risk by entering in

demand-deposit contracts with a bank. Due to maturity transformation and risk-sharing two

pure equilibria are shown to exist, a bank run and a no run equilibrium. An ex ante probability

for the emergence of each equilibrium cannot be calculated within the model. Postlewaite and

Vives (1987) analyze demand-deposit contracts using a game structure similar to the Prisoner’s

dilemma and deduce parameter constellations under which a unique equilibrium evolves with a

strictly positive probability of a ’run’. While in Diamond and Dybvig (1983), runs are purely due

to panic and always inefficient, Bryant (1980), Chari and Jagannathan (1988) and Jacklin and

Bhattacharya (1988) model information-based runs by introducing asset return risk and interim

information. Our set-up allows for both, runs caused by panic and self-fulfilling beliefs but also

efficient runs driven by bad news about firm solvency. Interim information on the asset return

can reveal a low return probability of the asset and running on the firm can be a dominant ac-

tion. Empirical evidence exists for both types of runs: Evidence for depositors withdrawing when

perceived asset risk is too high is provided by Goldberg and Hudgins (1996, 2002). Foley-Fisher

et al. (2015) investigate the run on U.S. life insurers during the summer of 2007 and find evidence

for self-fulfilling expectations.

To obtain a unique equilibrium, this paper employs technique from global games theory (Carlsson

and Van Damme, 1993; Morris and Shin, 1998, 2001). Private, asymmetric but correlated signals

serve as coordination device among agents and may lead to equilibrium uniqueness and definite

comparative statics.

The model closest to ours is Goldstein and Pauzner (2005) who embed the Diamond and Dybvig

(1983) model in a global game and are hence able to show optimality of risk-sharing even though

it increases the likelihood of runs. Their paper is the first to show equilibrium existence and

uniqueness under only one-sided strategic complementarity with partial, endogenous repayment

given default of the bank. We strongly draw on their existence and uniqueness proof in our

setting. The question we analyze here however differs. Goldstein and Pauzner (2005) analyze

contracts where the bank is fully financed by debt and invests in an asset which is liquid at the

interim period. We allow for a general capital structure, general asset market liquidity and focus

on the effects changes in capital structure and asset liquidity have on the probability of runs.

Further, we concentrate on optimal capital structure from debt investors point of view who take

contracts as exogenously given.

The question, how capital structure and asset liquidity impact coordination behavior of debt
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investors and probability of runs in a global game has been analyzed before in the context of

collateralized funding (Morris and Shin, 2009) and delegated decision making (Rochet and Vives,

2004; Vives, 2014; König et al., 2014). We depart from Rochet and Vives (2004); Vives (2014) and

König et al. (2014) in assuming that decisions are made directly by investors not fund managers.

We depart from Morris and Shin (2009) by assuming that in the incidence of a run the firm

can only partially repay and follows a sequential service constraint as modeled in Goldstein

and Pauzner (2005). This modeling feature changes the game structure and implies that in the

incidence of a run withdrawing investors do not receive their deposit for sure as they would in

Morris and Shin (2009). Hence, the action withdrawing is risky and its payoff becomes sensitive

to changes in capital structure. While Morris and Shin (2009), Rochet and Vives (2004); Vives

(2014) and König et al. (2014) allow the asset liquidation value to depend on the random state,

in our model the liquidation value is exogenous and deterministic.

From a theory perspective, while Morris and Shin (2009); Rochet and Vives (2004); Vives (2014)

and König et al. (2014) analyze a classic global game with global strategic complementarity

between actions (Bulow et al., 1985), the game analyzed here exhibits only one-sided strategic

complements as in Goldstein and Pauzner (2005) and Karp et al. (2007).

Further related papers are Eisenbach (2013) and Szkup (2015) who study roll-over decisions by

short-term debt investors in dynamic settings.

1.2 The Model

There are three periods of time 0, 1, 2 and one good (money). We assume no discounting between

periods. There is a financial intermediator, called ’the firm’, and two types of agents: a continuum

of short-term debt investors [0, δ], of measure δ ∈ (0, 1), and a single equity investor. Both types

of agents live for two periods.

At period 0, debt investors are symmetric and each endowed with one unit of the good. Debt

investors are risk-averse and can consume in either period.13 Their utility function u : R→ R is

twice continuously differentiable, strictly increasing, concave and we normalize u(0) = 0.

The equity investor is risk-neutral and can only consume in period 2. At time zero she is endowed

with measure 1 − δ units of the good. Hence, at time zero there is an aggregate endowment of

measure 1 unit of the good. Debt investors and equity investors finance the firm’s investment in

a risky asset. Agents are born either as equity investor or debt investor, agents may not split

their endowment to finance the firm in both ways.14

Investment There exists a storage technology and a risky, illiquid asset in the economy, T .

Storage yields the initial investment for sure in every period. For every unit invested in period 0,

the asset T yields 0 < l ≤ 1 units if the asset is sold prematurely in period 1. If the investment is

13This is in contrast to Diamond and Dybvig (1983) and Goldstein and Pauzner (2005) where a certain
proportion of agents has to consume in the first period.

14This assumption is for tractability reasons, actions are binary.

12



continued until period 2, T yields either payoff H > 1 with probability p or zero with probability

1− p, where p = p(θ) is random and determined by the random state θ ∈ [0, 1] (see information

structure below). The asset’s probability of return p(θ) is continuously differentiable in θ, strictly

increasing for θ ≤ θ and constant p(θ) = 1 on [θ, 1]. θ denotes the boundary to the upper

dominance region, introduced below.

We call l the (market) liquidity15 of the asset. We can also think of l as the fire sales price in the

secondary market in times of crises.16 Liquidity l is exogenously given and deterministic. Debt

investors have no access to asset T , only to storage. Debt investors gain indirect access to T

through investing in the firm. The expected asset return exceeds the return from storage

E[p(θ)]H > 1 (1.1)

The firm The economy has a representative financial intermediary - the firm. The firm’s

balance sheet size is normalized to 1. She raises funds of one unit and invests in asset T .17 The

firm finances an endogenous fraction δ ∈ (0, 1) of her funds through short-term debt and the

remaining fraction 1 − δ with equity. As funds are normalized, we call δ also the firm’s capital

structure or debt ratio and 1−δ the equity ratio.18 The firm is in perfect competition for deposits.

Debt contract and firm structure By entering in a debt contract with the firm, debt

investors can attain higher returns on their investment than through investing in storage. Every

debt contract is characterized by two exogenously given coupons, a period 1 coupon r > 1 and

period 2 coupon rk < H. We henceforth write (r, k) for the contract.

If a debt investor invests in contract (r, k), she hands her endowment to the firm in period 0. The

contract is liquid in the sense that a debt investor may decide spontaneously in period 1 whether

to claim short-term coupon r in period 1 or whether to wait, roll over debt and claim long-term

coupon rk in period 2. For k < 1, the game has the dominant action to withdraw early. To keep

the analysis interesting, in the remainder of the paper we concentrate on k > 1.19

In period 1, debt investor i chooses her action and decides whether to Ai ∈ {withdraw, roll over}
her investment. When a debt investor decides to withdraw, we will also say that she ’runs’ on

the firm. She cannot demand a fraction of her investment. The parameter k ∈ (1, H/r) can be

seen as an implicit forward interest payment which the firm pays to investors for leaving funds

15See Brunnermeier and Pedersen (2009)
16If the asset as a risky loan, due to information asymmetries a potential buyer is willing to only pay

l < 1 instead of a price that would reflect the fair value of the loan.
17By assumption, the firm commits to investing in the asset no matter how the state realizes. By this,

we exclude signaling in a global game and circumvent multiplicity of equilibria.
18By this normalization, in the analysis of this paper the firm always holds exactly one asset. But the

financing structure of the balance sheet, the composition of equity and short-term debt, changes. By the
normalization, an increase in debt (ratio) is always accompanied by a decrease in equity (ratio).

19The debt contract can be understood as a one-period zero coupon bond with price 1 and face value r
and the option to convert the bond in period 1 to a two period zero coupon bond with face value rk.
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invested for another period.20

Contract (r, k) and asset return probability function p(·) are such that the expected payoff from

rolling over exceeds payoff from withdrawing

E[p(θ)]u(kr) > u(r) (1.2)

Otherwise, running on the firm was a dominant action and the outcome of the game becomes

trivial. Note that r > 1 implies

E[p(θ)]u(kr) > u(1) (1.3)

that is, the expected period 2 payoff from the contract exceeds utility from storage and partici-

pation in the contract is individually rational.

Endogenous Liquidation If the firm has a debt ratio δ and offers contract (r, k) we call

(r, k, δ) the firm structure. At period 1, a firm with structure (r, k, δ) faces potential withdrawals

of short-term debt of value up to δr. As debt is more senior than equity, the firm is committed to

make the coupon payments under the premise of solvency. In this paper, we only consider firms

which are prone to runs. This is no constraint but keeps the game interesting. If the firm is not

prone to runs δr ≤ l, the coordination problem vanishes and the outcome is trivial. For a given

contract (r, k), let the proportion of short-term debt funds δ and promised short-term coupon r

be high such that ex ante a liquidity squeeze (run) cannot be excluded, i.e. it holds

δr > l (1.4)

Let n ∈ [0, 1] denote the endogenous, random equilibrium proportion of debt investors who decide

to withdraw in period 1 (aggregate action). Given the contract (r, k) and the measure of short-

term debt funds δ ∈ (0, 1) collected by the firm, in period 1 the firm needs to pay out the ex

ante random measure δrn of cash to withdrawing debt investors. The firm finances withdrawals

by liquidating the corresponding fraction nδr/l of the asset. A run occurs in period 1, if the

measure of short-term funds claimed back by withdrawing investors exceeds market liquidity of

the asset l, that is if n realizes such that

nδr > l (1.5)

Sequential Service Constraint In the incidence of a run, if asset liquidity undercuts debt

claims by withdrawing investors, the firm cannot honor her debt and goes into default. In that

case, the firm follows a sequential service constraint. Withdrawing investors are served one after

another in a queue and paid their promised coupon payments until all cash raised from liquidation

20The assumption k > 1 is necessary, otherwise we had r > kr and withdrawing early was a dominant
action.
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is distributed. By definition of a run, there are debt investors in the queue, trying to withdraw,

who will not be paid since the firm will run out of cash before it is their turn in the queue.21

There is mass l in cash available for distribution while there is a claim for cash of mass δrn > l.

Payoffs in case of a run to withdrawing debt investors are u(r) with probability l/(δnr) (prob-

ability of getting served in the queue) or 0 with probability 1− l/(δnr). Debt investors who roll

over receive zero in case of a run since all debt investors draw on the same pool of liquidity. We

assume zero recovery costs.

If the firm stays liquid in period 1, all withdrawing investors receive u(r) and the game proceeds

to period 2. In period 2, the return of the asset realizes as either H with probability p(θ) or

zero.22 In case of zero, remaining debt investors receive zero. Conditional on success, gross return

on remaining investment per debt investor equals

V (n) =
(1− δnr/l)H
δ(1− n)

(1.6)

By illiquidity of the asset, liquidation diminishes future gross returns. Thus, gross return per

debt investor V may undercut promised long-term coupon kr. Hence, our model allows for the

case where the firm is liquid but insolvent at the same time: In period 1, it might be that debt

claims and thus liquidation of assets at fire sales prices are so extensive, that the debt service

of all claims in the following period becomes a foreseeable impossibility. In period 2, if gross

return per debt investor undercuts kr, the firm is insolvent, and again follows a sequential service

constraint. Debt investor receive u(kr) only with probability

(1− δnr/l)H
δ(1− n)kr

< 1 (1.7)

and equity value is zero. If gross return exceeds kr, kr = min(V, kr), debt investors who roll over

receive payoffs u(kr) as promised in the contract, and equity investors obtain the residual value.

Payoffs Debt Investors We assign the following payoffs to agents:

Event/ Action withdraw roll-over

no run,

n ∈ [0, l/(δr)]
u(r)

{
u(kr) · q(n), p(θ)

0, 1− p(θ)
run,

n ∈ [l/(δr), 1]

{
u(r) , prob. l/(δnr),

0, , prob. 1− l/(δnr)
0

where

q(n) = min

(
1,

(1− δnr/l)H
δ(1− n)kr

)
(1.8)

21In particular, agents do not receive a pro rata share of their promised coupon for sure but receive their
full claims if they are served in the queue (with a probability strictly smaller one). This assumption is for
tractability reasons.

22For instance, a loan is paid back including interest H or the borrower defaults completely.
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is the probability to obtain period 2 coupon when queuing conditional on investment being suc-

cessful.

Debt investor’s random utility difference between withdrawing in period 2 versus withdrawing

early in period 1 is given by

v(θ, n) =

{
p(θ)u(kr) · q(n)− u(r) if n ≤ l

δr (no run)

− l
δnr u(r) if n > l

δr (run)
(1.9)

Information Structure Here we follow Goldstein and Pauzner (2005). In period zero, the

unobservable state θ ∼ U [0, 1] realizes and determines the return probability p(θ) of the asset.

Debt investors share a common prior about state θ in period 0. In period 1, debt investors observe

private, noisy and asymmetric signals about the state and hence asset return probability

θi = θ + εi, i ∈ [0, δ]

where εi are iid random noise terms, independent of θ and distributed according to U [−ε,+ε].
From the signal structure we see, signals convey information not only about the random asset

return probability p(θ) but also about other investors’ signals.

We assume, there exist states which yield dominant actions (dominance regions).23 There are

states θ and θ such that if θ < θ, withdrawing is a dominant action whereas if θ > θ rolling over

is the dominant action to debt investors. We refer to [0, θ] as the lower dominance region and

call [θ, 1] the upper dominance region. The bound θ depends on the specific contract (r, k) and

is given as the realization of θ such that24

u(r) = p(θ)u(kr)

The assumption of existence of the lower dominance region implies that function p(·) takes values

below u(r)/u(kr) > 0. For high states θ ≥ θ, we impose that the asset earns return H already in

period 1 with certainty, that is with p(θ) = 1. As a consequence of assumption H > kr > r, the

coordination problem vanishes for state realizations in the upper dominance region. To ensure

that debt investors may receive signals from which they can infer that the state has realized in

either of the dominance regions, we assume that noise ε is sufficiently small such that θ(r, k) > 2ε

and θ < 1− 2ε hold. In particular, the bounds to the dominance regions are independent of debt

ratio and asset liquidity.

23Dominance regions are crucial to obtain an equilibrium selection (Morris and Shin, 2001).
24Payoff u(kr) is the maximum payoff debt investors who roll over can obtain. By design of the contract,

if θ realizes below θ, even in the absence of a run the expected payoff to rolling over is smaller than u(r)
for every n ∈ [0, 1], while conditional on a run investors who roll over receive zero.
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Timing In period 0, the state θ and payoff probability p(θ) realize unobservably. Debt and

equity investors invest. In period 1, debt investors observe noisy, private signals and subsequently

choose actions. The aggregate action n (proportion of withdrawing debt investors) realizes and

determines whether the firm defaults due to a run or whether she stays liquid in period 1. In

case of a run, all debt investors receive payoffs according to chosen actions and the game ends.

If the firm stays liquid, the game proceeds to period 2 after paying debt investors who decide

to withdraw. In period 2, the success of the risky investment is determined. Payoffs to equity

investors and debt investors who roll over realize. Note that agents choose actions only in period

1.25

t0 t1 t2

θi private signals realize, 
actions are chosen
Run/ No run   

θ,p(θ) realize, 
investment

asset return
realizes

1.3 Equilibrium

In order to justify the imposition of the information structure described in the outline of the

model we briefly discuss equilibrium behavior in the absence of private, noisy and asymmetric

signals.

The Common Knowledge Game

Without signals, all debt investors share a common prior about state θ in period zero and receive

no further information about the state in period 1. By assumption (2.2), the ex ante expected

utility from rolling over exceeds the utility from withdrawing. The presence of the coordination

problem in period 1 gives rise to a Diamond and Dybvig (1983) type situation. There are two

pure equilibria: In the ’good’ equilibrium all debt investors roll over and there is no run. Due

to assumption (2.3) welfare in this equilibrium is higher than in the outcome where all debt

investors store their endowment. In the bad equilibrium all investors panic and withdraw early

which causes a run. In the run equilibrium, due to u(l) ≤ u(1), aggregate welfare is lower than

in the outcome where all debt investors store their endowment. There is no means to determine

the ex ante probability for selection of the Pareto-efficient no-run equilibrium within the model.

To achieve an equilibrium selection and definite comparative statics on stability we impose the

information structure given in the outline of the model.

25Equity investors do not act in this paper since they hold the residual claim in period 2.
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1.3.1 The Coordination Game

Let (r, k, δ) the firm’s structure and let θi an investor’s private signal. A mixed strategy for

investor i is a measurable function si : [0 − ε, 1 + ε] → [0, 1] which assigns a probability that

the investor withdraws early (runs) as a function of her signal θi. A strategy profile is denoted

by {si}i∈[0,δ]. A fixed strategy profile generates a random variable ñ(θ) ∈ [0, 1] which represents

the aggregate action, the proportion of investors who withdraw early, if the unobservable state

realizes as θ. The equilibrium concept we use is Bayesian Nash Equilibrium.

Proposition 1.3.1 (Existence and Uniqueness). The coordination game played by debt investors

has a unique equilibrium. The equilibrium is in trigger strategies.

Denote by θ∗ = θ∗(r, k, δ, l,H, p(·)) ∈ [θ − ε, θ + ε] the equilibrium trigger signal. In the trigger

equilibrium, if an investor observes a signal θi < θ∗ she withdraws, if she observes a signal θi > θ∗

she rolls over debt. In case θi = θ∗ she is indifferent. For the equilibrium is a symmetric trigger

equilibrium played by a continuum of debt investors, the endogenous measure of investors who

withdraw is a deterministic function of the random state and the equilibrium trigger signal. Let

n(θ, θ∗) indicate the endogenous equilibrium proportion of investors demanding early withdrawal

in period 1 when the true state is θ and the trigger is θ∗. The function n(θ, θ∗) is given by the

proportion26 of investors who observe a signal below the trigger θ∗ when the true state is θ. By

the uniform distribution of the error term, we have

n(θ, θ∗) =


1
2 + θ∗−θ

2ε if θ ∈ [θ∗ − ε, θ∗ + ε]

1 if θ ≤ θ∗ − ε
0 if θ ≥ θ∗ + ε.

(1.10)

In Figure (2.2), we have plotted the proportion of investors withdrawing as a function of the

state for fixed trigger θ∗. Given state θ, investors observe signals in the range [θ − ε, θ + ε]. For

a state below θ∗ − ε, all investors obtain signals smaller than the trigger and hence withdraw,

n = 1. Vice versa, for a state above θ∗ + ε, all investors observe signals larger than the trigger

and hence roll over, n = 0.

Having established equilibrium uniqueness, the equilibrium trigger signal is pinned down by the

expected payoff difference between actions conditional on having observed the equilibrium trigger

θi = θ∗ when all investors use the same trigger θ∗,

D(θi, θ
∗) =

1

2ε

∫ θi+ε

θi−ε
v(θ, n(θ, θ∗)) dθ (1.11)

When observing a signal θi < θ∗, the expected payoff difference D(θi, θ
∗) is negative and the

investor withdraws. When instead she observes θi > θ∗, the payoff difference D(θi, θ
∗) is positive

and she rolls over. When observing a signal equal to the equilibrium trigger a debt investor’s

26As the continuum of debt investors has measure δ, the proportion of investors observing signals below
the trigger differs from its measure by factor δ.
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lower dominance
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range of states for potential 
miscoordination
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Figure 1.2: Proportion of debt investors who withdraw as a function of the state. Note that
while the bounds to the dominance regions, θ and θ, and the critical state θb are states, the
trigger θ∗ is a signal. We have included the trigger here, to give some intuition. Further,
the trigger θ∗ converges to the critical state θb as signals become precise, see Lemma 2.3.1.

posterior beliefs on the state and the proportion of withdrawing investors n need to be such

that in expectation utility from withdrawing equals utility from rolling over. The trigger is thus

implicitly defined by the payoff indifference equality (PIE)

D(θ∗, θ∗) = 0 (1.12)

Graphically, as signals become precise the trigger is located between the dominance regions [θ, θ]

in a way such that the area under the curve in Figure (2.1) equals zero in expectation conditional

on having observed a signal equal to the trigger. Conditional on observing the trigger signal

θi = θ∗, an investor’s belief about the proportion of withdrawing agents n is uniform over [0, 1]

(Laplacian Belief).27 Consequently, with slight abuse of notation we can write the PIE using

(2.9) and (2.11) as

0 = −
∫ 1

l/(δr)

l

δrn
u(r)dn+

∫ l/(δr)

h∗
p(θ(n, θ∗))

(1− nrδ/l)H
δ(1− n)kr

u(kr)− u(r) dn (1.13)

+

∫ h∗

0
p(θ(n, θ∗)) u(kr)− u(r) dn

where θ(n, θ∗) = θ∗ + ε (1− 2n) is the inverse of n(θ, θ∗) for θ ∈ [θ∗ − ε, θ∗ + ε]. The parameter

h∗ given in (1.20) denotes the proportion of withdrawing investors n for which gross return per

remaining debt investor V (n) intersects kr. For low withdrawals n ≤ h∗ the firm is liquid in

27We have P(n < z|θi = θ∗) = P
(
1
2 + εi

2ε < z
)

= z for z ∈ [0, 1]
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Figure 1.3: Payoff difference function v(θ, n) from equation (2.9) plotted for fixed θ as
function of the endogenous proportion of withdrawing debt investors n. The kink gives
rise to non-monotone comparative statics.

period 1 for sure and solvent in period 2 if investment is successful. For all larger proportions

of withdrawing investors n > h∗, debt investors who roll over cannot be repaid in full and the

firm becomes insolvent in period 2. If the proportion of withdrawing investors n is high and

lies in interval [l/(δr), 1] a run occurs in period 1 and the firm defaults due to illiquidity. For

intermediate withdrawals n ∈ [h∗, l/(δr)) the firm stays liquid in period 1 but the measure of

withdrawn funds is high such that remaining investment cannot earn sufficient interest to pay off

all investors in the next period even if the asset pays off. Hence, for withdrawals n ∈ [h∗, l/(δr))

the firm is liquid but insolvent in period 1.28

Denote by θ̃ the state at which asset liquidations occur to an extent that puts the firm on the

edge of staying solvent in period 2,

h∗ = n(θ̃, θ∗) (1.14)

Then h∗ is the critical measure of withdrawing investors at which investors who roll over debt

just receive their coupon payment u(kr) for sure conditional on successful investment. If the

state realizes such that measure of claimed funds nδr just equals available liquidity l, the firm is

on the edge of becoming illiquid in period 1. We call this state the critical state29 θb,

28By assumption, the firm needs to partially sell the asset and has no access to collateralized borrowing.
Here, our treatment is different from Morris and Shin (2009) who assume the that the firm may pledge
the asset at a hair cut. In a later section, we demonstrate robustness of our results under collateralized
borrowing. Also, we do not allow the firm to replace withdrawn deposits with other funds.

29Under collateralized borrowing, the critical state θb and state θ̃ would be equal. Hence, if the firm
stays liquid she can always repay all investors in period 2 if the asset pays.
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n(θb, θ
∗) = l/(δr) (1.15)

As depicted in Figure (2.2), for state realizations smaller than the critical state a run occurs

because the value of claimed funds exceeds market liquidity of the asset. In the sequel, we say

that signals become precise or noise vanishes, if the support of the idiosyncratic, random shock

collapses to a single point, ε→ 0.

As signals become precise, the critical state converges to the trigger, θb → θ∗ , thus the trigger

directly represents the firm’s risk to become illiquid or insolvent due to extensive asset liquida-

tions.30

Lemma 1.3.1. As signals become precise, the trigger equals both the probability of a run and the

probability of insolvency due to extensive asset liquidations.

To proof the Lemma - a run occurs if the random state realizes below threshold θb. By the

uniform distribution of θ and equation (1.15) the probability of a run is hence given as

P (θ < θb) = θb = θ∗ + ε

(
1− 2

l

δr

)
(1.16)

Equivalently, risk of insolvency due to extensive asset liquidations equals

P
(
θ < θ̃

)
= θ̃ = θ∗ − ε (2h∗(δ)− 1) (1.17)

In either case, when signals are precise the trigger converges to both the ex ante probability of

a run and to ex ante insolvency risk due to extensive asset liquidations. Further, any partial

derivative of the corresponding probability equals the partial derivative of the trigger θ∗ plus ε

times a constant. As noise ε vanishes, the partial derivative of the probability equals the partial

derivative of the trigger. �

As a consequence of Lemma 2.3.1, at the limit state realizations above the trigger lead to suc-

cessful coordination while realizations below the trigger lead to runs. The size of the equilibrium

trigger between the dominance regions determines the quality of coordination in the model. The

larger the trigger, the greater the ex ante risk of a run. Runs for signal realizations in the lower

dominance region are efficient since they are caused by fears about low asset returns, see Figure

(2.3). The range of states between the trigger and the lower dominance region however yields

panic or self-fulfilling runs, which cannot be attributed to asset return risk but failure of coordina-

tion. We are interested in the behavior of the trigger as capital structure and asset liquidity varies.

We say stability increases in debt ratio δ, if the trigger decreases in δ. We say liquidity risk

increases in δ, if the trigger increases in δ. For given contract (r, k) and fixed liquidity l, a debt

30Note that for calculating the general insolvency risk we would further need to take into account the
probability that the asset does not pay off. Capital structure endogenously affects the risk of insolvency
due to extensive asset liquidations but not the payoff probability of the asset.
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Figure 1.4: The size of the trigger determines the range of states for which panic runs
occur

ratio δ yields higher stability than debt ratio δ̃, if at liquidity l, the ex ante probability of a run

is lower under δ than under δ̃. That is, the trigger under δ is smaller than the trigger under δ̃.

1.3.2 Stability

We now state our main theorem. By the following result, for every contract (r, k) the change of

debt investors’ behavior due to a change in debt ratio depends on the according level of asset

market liquidity. We only consider debt ratios in the range (l/r, 1) since for ratios below l/r the

coordination problem vanishes and the firm is thus not prone to runs.

Theorem 1.3.1 (Stability against Runs). For given contract (r, k) there exist two contract de-

pendent thresholds l̃B(1), l̃A(1) ∈ [0, 1], l̃B(1) ≤ l̃A(1) for liquidity such that

i) If liquidity is high l ∈ (l̃A(1), 1], firm stability monotonically decreases in short-term debt.

ii) If liquidity is moderate l ∈ [l̃B(1), l̃A(1)], there are two disjoint, non-empty intervals for debt

ratio such that stability decreases in short-term debt for lower values δ ∈ (l/r, δu) and stability is

minimized at a higher debt ratio in [δu, 1).

iii) If liquidity is low l ∈ [0, l̃B(1)), there exist three non-empty, disjoint intervals for debt ratio

such that: stability decreases in short-term debt for small values in δ ∈ (l/r, δu) and stability

improves in short-term debt for larger values in δ ∈ (δd, 1). Stability is smallest at some interior

debt ratio in [δu, δd].

(iv) The smaller liquidity, the wider the interval (δd, 1) over which stability improves in short-

term debt and the lower the position of the interval [δu, δd] which contains the debt ratio yielding

lowest stability.

(v) As liquidity dries up, l→ 0, stability monotonically improves in short-term debt and deterio-

rates in equity.

The proof is conducted using the Implicit Function Theorem on the PIE. Direct comparative

statics of the trigger (stability) in debt ratio are non-monotone and depend on the general return

probability function p(·) of the asset. To prove Theorem 1.3.1 we proceed by deriving an upper

and lower bound for the slope of the trigger to cast off the general function p(·). The bounds for

slope have a very similar functional form. By analyzing the cross derivatives of these bounds in
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liquidity we see that both bounds satisfy single-crossing in debt ratio if liquidity is sufficiently

low. 31

Our main Theorem is in contrast to Morris and Shin (2009), Rochet and Vives (2004), Vives

(2014) and König et al. (2014). Rochet and Vives (2004) and Vives (2014) obtain monotone

comparative statics in the firm’s balance sheet decomposition: The probability of firm failure is

strictly decreasing in equity ratio. Similarly, König et al. (2014) obtain a default point that is

monotone in debt. Morris and Shin (2009) show that ex ante illiquidity risk decreases in liquidity

ratio and thus increases in short-term debt.

Figure 1.5: Stability as function of liquidity and debt ratio

Figure (1.5) depicts the results of Theorem 1.3.1. We have plotted market liquidity on the hori-

zontal axis and debt ratio on the vertical axis. As we only consider firms which are prone to runs,

we are interested in the behavior of the trigger for liquidity-debt combinations (l, δ) which satisfy

31As we work with bounds for the slope, a blind spot arises for behavior of the trigger when debt ratio
lies in interval [δu(l), δd(l)]. In this case, the lower bound for the slope is negative while the upper bound is
positive. The blind spot [δu(l), δd(l)] becomes smaller (the range of the interval goes to zero) as k decreases
for the bounds converge towards one another. Under collateralized borrowing, the blind spot vanishes and
for every asset liquidity we obtain a unique, interior stability minimizing debt ratio as well as two locally
stability maximizing debt ratios at the boundaries (see later discussion).
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δr > l. The curves δd(l) and δu(l) play a crucial role. For every liquidity l ∈ [0, 1], the curve

δu(l) lies below or at the curve δd(l). When fixing a specific asset liquidity on the horizontal axis,

we need to look at the vertical cross-section along the δ-dimension. The curves δu(l) and δd(l)

yield the bounds where monotonicity of stability in debt halts (δu(l)) or starts (δd(l)) at liquidity

value l: When at liquidity l the curve δu(l) exceeds value one, then liquidity is high and stability

is monotone in debt. If liquidity is sufficiently low l = l1, the line l1 intersects both curves δu(l)

and δd(l). Denote by δu(l1) and δd(l1) the corresponding values of debt at the intersection. Then,

stability deteriorates in debt for debt values in (l1/r, δu(l1)) and stability improves in debt for

debt values in (δd(l1), 1). The probability of a run at liquidity l1 reaches its global maximum (and

stability minimum) at some debt ratio in [δu(l1), δd(l1)]. The functions δu(l) and δd(l) monoton-

ically increase in liquidity32 and converge to zero as liquidity goes to zero (see Lemma 1.7.3 in

Appendix). The lower the asset’s market liquidity the greater the range of debt ratios (δd(l), 1)

for which stability improves in short-term debt and hence deteriorates in equity. Also, the lower

market liquidity, the smaller the debt ratios contained in interval [δu(l), δd(l)]. The debt ratio

which yields minimum stability is not necessarily monotone in liquidity. But since both interval

bounds δu(l), δd(l) increase in liquidity, the minimizing debt ratio lies below a bound which de-

creases as liquidity dries up. Vice versa, the equity ratio yielding minimum stability lies above

a bound which increases as liquidity decreases. Hence, especially for illiquid assets, the intuition

that less short-term financing leads to a lower risk of a liquidity squeeze through runs turns out

wrong since short-term debt can discipline depositors to coordinate.

Our analysis of a severe decline in liquidity is motivated by empirical evidence; Gorton and

Metrick (2009, 2012) document haircuts for structured products used as collateral in repo trans-

actions of 50-100% which corresponds to a sharp plummet in funding and hence market liquidity

(Brunnermeier and Pedersen, 2009) in the course of the financial crises 2007-2008.

1.3.3 Policy Implications

To determine the effect of capital regulation on stability,33 we pick a different, higher liquidity

value l2. To this purpose, assume firm’s current debt ratio is δ′ and asset risk based capital

regulation34 requires that debt ratio may not exceed δr < δ′. When we decrease short-term debt

ratio from δ′ to δr, the change of stability depends on the level of market liquidity of the asset,

see Figure 1.6.

When liquidity l2 is sufficiently high, the curves δu(l) and δd(l) do not take admissible values

32Debt ratios can only take values in [0, 1]. For larger liquidity values, the functions δu(l) and δd(l) take
values above one and are hence not attainable by any debt ratio. For such liquidity values the bounds for
monotonicity δu(l) and δd(l) cease to exist and stability is monotone in debt.

33Note that once we allow for long-term debt financing, the following discussion may take the form of
regulating the amount of short-term debt financing (see later subsection).

34Risk-based capital regulation in this paper corresponds to a specific asset return probability function
p(θ) and return H.
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Figure 1.6: Effect of capital regulation on stability depending on asset liquidity

at l2: Both debt ratios δ′ and δr lie below the δu(l) curve at l2, a decrease in debt ratio thus

improves stability, θ∗(δr) < θ∗(δ′) by Theorem 1.3.1 and Lemma 2.3.1. If instead liquidity is low

at l1 and debt ratios δ′ and δr lie above value δd(l1), the decrease in short-term debt will cause a

stability loss since coordination would deteriorate, θ∗(δr) > θ∗(δ′). By Lemma 2.3.1, the ex ante

probability of a run increases when reducing debt ratio from δ′ to δr.

Lemma 1.3.2. Assume signals are precise. If liquidity is high, capital regulation can reduce the

probability of runs. When liquidity is low, capital regulation can increase the probability of runs.

Note that Lemma 1.3.2 states, if liquidity is low, capital regulation might change the distribution

of debt to be withdrawn on short notice in a way, such that an exceedance of asset’s market liq-

uidity becomes more likely although the overall amount of short-term debt financing is decreased:

In our example in Figure (1.6), we have δr < δ′. But the probability of a run under debt structure

δr is higher than under debt structure δ′:

P(θ < θb(δ
′)) = θ∗(δ′) < θ∗(δr) = P(θ < θb(δr)) (1.18)

The results demonstrate that capital regulation and regulation of short-term debt financing can

have adverse effects on run behavior of agents and hence stability. Capital regulation needs take

into account the liquidity profile of firm assets. Further, capital and liquidity regulation should

not be separated.

During economic boom times asset liquidity is higher and capital regulation may have a positive

effect on coordination behavior and thus stability ex ante. During financial crises however,

liquidity dries up. Capital regulation may complicate coordination and thus increase illiquidity
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risk for ex ante the probability that claimed short-term debt exceeds available liquidity increases

although the overall exposure of the firm to short-term debt investors is decreased.

1.3.4 Liquidity Mismatch

Another implication of our result concerns liquidity regulation. To this purpose define the liquidity

ratio as the ratio of liquidity available through sale of the asset to potential short term debt claims

ξ =
l

δr
∈ [0, 1] (1.19)

Liquidity ratio measures liquidity mismatch between assets and short-term liabilities. The smaller

the liquidity ratio, the larger the liquidity mismatch between assets and liabilities. Liquidity mis-

match is generally perceived as a source of liquidity risk (Brunnermeier et al., 2014, 2011; Bai

et al., 2014; Basel III, 2013). We will next demonstrate that liquidity mismatch does not nec-

essarily aggravate coordination and hence increase probability of runs. When withdrawals are

endogenous, liquidity mismatch is no good indicator for liquidity risk driven by miscoordination

on runs.

If liquidity mismatch impaired coordination, liquidity ratio would be an indicator for liquidity

risk, the smaller liquidity ratio the larger liquidity risk. Theorem (1.3.1) however demonstrate

that stability is non-monotone in liquidity ratio: Liquidity ratio as defined in (1.19) decreases

in debt ratio δ when keeping liquidity fix. Fix a low liquidity value l1 ≤ l̃B(1) and consider the

ranges of debt ratios (l1/r, δu(l1)) and (δd(l1), 1). For fixed liquidity value l1, as debt ratio δ

increases within the interval (δd(l1), 1), liquidity ratio decreases by (1.19) while simultaneously

stability improves by Theorem (1.3.1). As debt ratio δ increases within the interval (l1/r, δu(l1)),

liquidity ratio still decreases but stability deteriorates by Theorem (1.3.1). A different way of

seeing this result is depicted in the Online Appendix.

Lemma 1.3.3. Stability is non-monotone in liquidity ratio (liquidity mismatch).

This result is in contrast to Morris and Shin (2009) and Rochet and Vives (2004) where stability

is monotone increasing in liquidity ratio. 35

1.4 Optimal Capital Structure

We next analyze utility debt investors infer from contract (r, k) as a function of firm debt ratio

and market liquidity of the asset. As signals become precise, we obtain

35Rochet and Vives (2004) have adapted a different notion of liquidity ratio in their model which comes
closer to the original definition of Liquidity Coverage Ratio (LCR) as defined in the Basel 3 framework
by the Basel Committee on Banking Supervision. The LCR is defined as the ratio of high quality liquid
assets (HQLA) over total expected net cash outflow in a stress scenario over 30 days.
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Proposition 1.4.1 (Optimality for Debt investors). Fix contract (r, k).

When liquidity is high, debt investor’s utility from the contract decreases monotone in firm debt

ratio. When liquidity is moderate or low, utility decreases in debt ratio for lower values of debt

ratio δ ∈ (l/r, δu). If however liquidity is very low, and debt ratio large, δ > δd(l), utility increases

in debt for all δ ∈ (δd(l), 1).

Corollary 1.4.1. If asset liquidity is high, debt investors’ utility from the contract reaches the

global maximum when the firm is financed through sufficient equity such that panic runs are

excluded δ = l/r. Utility reaches the global minimum if the firm is financed through debt only.

If asset liquidity is sufficiently low, debt investors utility from the contract is locally maximized

when the firm is financed through debt only.

Intuitively, debt ratio influences debt investors’ utility inferred from the contract in two ways.

An increase in debt ratio always has a direct, negative impact on immediate utility (assuming

the trigger would stay constant) from both withdrawing and rolling over since it goes hand in

hand with a decrease in equity ratio and thus a decrease in protective cushion.

A change in debt ratio has a further indirect influence on utility by a manipulation of the trigger

and hence a change in stability. Since stability can either improve or deteriorate in debt ratio,

the impact of changes in debt ratio on overall utility from the contract is in general not uniquely

pinned down.

If stability is impaired by an increase in debt the overall impact on utility is clearly negative. By

Theorem (1.3.1), that is the case if liquidity is high or when liquidity is moderate or low and debt

ratio sufficiently low. If however stability improves in debt ratio, by Theorem (1.3.1) that is the

case when liquidity is low and debt ratio is high, debt investors trade off stability gains against

immediate utility losses. When liquidity is sufficiently low and debt is increased, the increase in

stability outweighs the decrease in direct utility.36

1.5 Extensions

1.5.1 Robustness: Collateralized Borrowing

When allowing the firm to raise cash in the money market by pledging the asset as collateral in a

repurchase agreement (repo), partial liquidation of assets can be prevented. A repo transaction

involves two parties, the firm (the borrower) and a lender. The firm borrows cash from the lender

and agrees to repay the amount plus an interest payment (at repo rate) in period 2. In addition,

the firm posts a fraction of the asset as collateral which goes into physical possession of the lender

but is returned when the amount borrowed is paid back. If the firm cannot repay, she defaults

on the repo and the lender in the repurchase agreement may sell the collateral at market price.

36By Proposition (1.7.1) the assumption that stability increases in debt ratio for small liquidity is
consistent when debt ratio is sufficiently large, i.e. we do not talk about a zero measure set.
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The collateral hence reduces the risk of the transaction to the lender. What is the difference to

the case where the firm has to sell the asset in the market to raise cash (partial liquidation)?

If the firm can repay in period 2 and gains back the fraction of asset posted as collateral, the

asset’s accrued interest goes to the firm, including the interest which accrued on the collateralized

fraction. Under partial liquidation, the interest that accrues on the sold part of the asset goes to

the new owner. The payoff structure changes.

The exogenous amount of cash that can be raised when pledging one unit of the asset as collateral

is called funding liquidity and replaces the notion of market liquidity, the amount of cash that can

be raised by selling the asset at market price.37 Note in particular that funding liquidity is not the

market value of the collateral (asset) but the fraction of the ’true’ value participants in the money

market are willing to pay to accept the asset as collateral (overcollateralization). For the analy-

sis we assume a repo rate of zero but results can be extended to accommodate a general repo rate.

We can show that the non-monotonicity results are robust in this different setting. As a result

of the changed payoffs, the blind spot (area between curves δu(l) and δd(l)) vanishes and the

probability of runs is either monotone for large liquidity or is hump-shaped in debt for lower

liquidity values, i.e. is maximized at a unique interior debt ratio. Note that in the following

chapter, the setting just described is analyzed as a special case (a = 0, b = 1).

1.5.2 Long-term debt

So far the financing structure of the firm is composed of short-term debt and equity. We can

extend the structure by adding long-term debt. To keep the balance sheet normalized at 1, let δ

again the fraction of short-term debt, let τ(1 − δ), τ ∈ [0, 1] the fraction of long-term debt and

(1− τ)(1− δ) the fraction of equity. Long-term debt investors invest in period 0 and are paid in

period 2 prior to equity investors. At the interim period 1, they have no claims.

First, assume that long-term debt investors are less senior than short-term debt investors and

are hence paid in period 2 only after short-term debt investors were fully paid. Then long-term

debt is like equity to short-term debt investors. Thus, replacing equity with long-term debt

has no impact on coordination of short-term debt investors. The non-monotonicity results for

short-term debt derived in previous sections hold and have implications for liquidity regulation.

The interpretation however changes. In the previous section, when talking about debt we always

referred to short-term debt. This was unambiguous since short-term debt was the only form of

debt and the remaining financing source was equity. The statements on equity from previous

sections now hold for the combined sum of equity and long-term debt 1− δ.

If long-term debt is treated equally senior as short-term debt in period 2, long-term debt is no

37See Brunnermeier and Pedersen (2009)
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longer like equity to short-term investors. Coordination between short-term investors is altered

when replacing equity with long-term debt. The immediate payoff (assuming the trigger stayed

constant) from withdrawing early stays constant since long-term investors have no claim on

payment at the interim period. The payoff from rolling over however decreases since gross return

on the asset now has to be sufficiently high to cover remaining short-term investors and more

long-term investors. As long-term debt replaces equity, withdrawing becomes more appealing

relative to rolling over and the trigger (probability of runs) increases.

1.6 Conclusion

This paper studies stability of financial firms which conduct maturity and liquidity transformation

by investing long-term in risky and illiquid assets and financing through equity and liquid short-

term debt. We analyze the question, how the probability of runs on such firms depends on capital

structure and market liquidity of assets. While this question has been analyzed before (Morris

and Shin, 2009; Rochet and Vives, 2004; Vives, 2014)38 we allow for an incentive structure more

generic for settings where uninsured debt investors draw on a common pool of finite liquidity.

Since assets are illiquid, cash available through liquidating all assets on short notice is insufficient

to cover withdrawals by potentially all short-term debt investors. If the number of withdrawing

investors exceeds a critical threshold, the full deposit cannot be paid back. In this case, the firm

follows a sequential service constraint. Investors are served one after another until all cash is

distributed and some investors who try to withdraw cannot be served. We hence explicitly model

partial, endogenous repay in the incidence of a run, see Goldstein and Pauzner (2005). The

probability distribution of short-term debt to be withdrawn tomorrow depends on firm capital

structure and asset liquidity today. Relative incentives of choosing actions change in capital

structure in a way we, to the best of our knowledge, have not observed in the literature before:

As main contribution of the paper, we find that the probability of runs is non-monotone in debt

when liquidity dries up. In particular, the run probability is not monotone decreasing in equity

but can in fact increase in equity when liquidity is sufficiently low. More debt financing can

discipline debt investors to coordinate and may lead to lower probability of runs. Vice versa,

decreasing the exposure towards short-term debt investors today may alter the distribution of

debt to be withdrawn tomorrow in a way that runs become more likely ex ante. Liquidity

risk is increased although liquidity mismatch is lowered. These results stand in contrast to the

monotonicity results of previous papers on coordination behavior of debt investors under changes

in capital structure and asset liquidity (Rochet and Vives, 2004; Vives, 2014; König et al., 2014;

Morris and Shin, 2009)

The non-monotonicity results have consequences for evaluating regulation of capital and liquidity

mismatch under Basel 3. By raising quality and quantity of the regulatory capital base, the Basel

38Morris and Shin (2009) analyze collateralized borrowing, Rochet and Vives (2004); Vives (2014) model
delegated decision making by fund managers. In both cases actions are global strategic complements and
comparative statics are monotone.
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Committee intends to raise the ”resilience of the banking sector ” and states that ”strong capital

requirements are a necessary condition for banking sector stability” (Committee et al., 2010;

Basel III, 2013). Our results show, while capital regulation can improve stability when market

liquidity is high, the identical policy rule can harm stability when liquidity dries up for the

implementation of the rule may deteriorate the coordination problem among short-term debt

investors.39 Our results imply that capital regulation of firms financed by uninsured debt should

be tailored to particular scenarios for market liquidity or regulation should distinguish between

firms according to their target asset liquidity.

Our results hold under the assumption that the firm needs to partially liquidate assets to raise

cash but are robust to assuming that the firm has access to the money market and may borrow

by pledging the asset as collateral to avoid partial liquidation. The set-up here thus fits classic

commercial banks but also maturity transforming shadow banks such as structured investment

vehicles (SIVs) and asset-backed commercial paper conduits (ABCPs), see Gorton et al. (2010);

Adrian and Ashcraft (2012).

From a theory perspective, we depart from a model structure exhibiting global strategic comple-

mentarity between actions (Rochet and Vives, 2004; Vives, 2014; König et al., 2014; Morris and

Shin, 2009) and instead work with one-sided strategic complementarity as modeled in Goldstein

and Pauzner (2005) and Karp et al. (2007). One-sided strategic complementarity is the the key

driver for non-monotonicity in global games, as we will see in the following chapter.

As for the limitations of the model, we assume market liquidity of the asset is common knowledge

among or perfectly anticipated by debt investors prior to making their decisions. We however do

not account for correlation between market liquidity and the random state of the economy.

In the model, the firm commits to investing in a particular asset independently of the state re-

alization, which excludes moral hazard by firm managers. We abstract from observable, state

dependent investment choices since this would give rise to an endogenous public signal and hence

equilibrium multiplicity.

While we discuss optimality of capital structure from a debt investor’s point of view when the

firm is in perfect competition for deposits, optimal capital structure which maximizes ex ante

return on equity remains an interesting question to analyze.

We take contracts as exogenously given since the scope of the paper is on analyzing the impact of

capital structure and liquidity on coordination and optimal capital structure from debt investors

perspective. Since the non-monotonicity results hold for every contract, they also hold for the

optimal contract. Optimal contracts for a fully debt financed firm are analyzed in Goldstein and

Pauzner (2005).

39Our results are developed in a model lacking deposit insurance. Member countries of the Basel
Committee on Banking Supervision have partial deposit insurance in place. Our analysis on capital
regulation remains interesting since deposit insurance in the face of a global financial crises might not be
perfectly credible. Iyer and Puri (2008) find that deposit insurance is only partially effective in preventing
bank runs.
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1.7 Appendix

We have implicitly defined h∗ such that for n = h∗ a debt investor who rolls over receives her

full coupon just with probability one given that investment is successful. That is, (1−δnr/l)H
δ(1−n)kr = 1,

thus

h∗ =
H − δkr

δr(H/l − k)
(1.20)

Hence, for all n ≤ h∗ we have min(1, (1−δnr/l)H
δ(1−n)kr ) = 1 and debt investors who roll over receive the

full payoff u(kr) for sure if investment is successful. For n ≥ h∗, min(1, (1−δnr/l)H
δ(1−n)kr ) = (1−δnr/l)H

δ(1−n)kr

and debt investors who roll over receive a payoff only with a probability (1−δnr/l)H
δ(1−n)kr < 1 while

equity holders receive zero.

For δr > l the term (1−δnr/l)H
δ(1−n)kr is strictly decreasing in n. Moreover, h∗ < l/(δr) < 1, as δr > l.

We have h∗ > 0 for by assumption H > kr > δkr and δr > l, thus H > kl.

1.7.1 Appendix A: Existence and Uniqueness

Proof. [Theorem 2.3.1]

The existence and uniqueness proof of a trigger equilibrium and the proof that a non-threshold

equilibrium cannot exist is as in Goldstein and Pauzner (2005) with λ = 0. Uniqueness of a

threshold equilibrium alternatively holds due to Lemma 2.3 in Morris and Shin (2001) by the

single-crossing property of the payoff difference function v from equation (2.9) in the aggregate

action n (Figure (2.1) and the monotone likelihood ratio property for the uniform distribution of

noise since the function v is strictly decreasing in n whenever v is positive.

We give a short intuition here, why a unique trigger equilibrium exists: Given that all other

investors play a trigger strategy around signal θ∗, a trigger equilibrium exists if a single investor

also finds it optimal to withdraw for signals θi < θ∗ and to roll over for signals θi > θ∗. That is,

we demand (a) D(θi, n(·, θ∗)) < 0 for θi < θ∗ and (b) D(θi, n(·, θ∗)) > 0 for θi > θ∗. Continuity

of the integral D(θi, n(·, θ∗)) in signal θi holds by Lemma A1 (i) in Goldstein and Pauzner (2005)

and ensures indifference in θi = θ∗, D(θi = θ∗, n(·, θ∗)) = 0 if (a) and (b) hold. Existence of

a signal which satisfies D(θi = θ∗, n(·, θ∗)) = 0 follows by the existence of dominance regions

and continuity of D(θi = θ∗, n(·, θ∗)) in θ∗ by Lemma A1 (ii) in Goldstein and Pauzner (2005):

If the state realizes high enough in the upper dominance region and ε is small, the investor

observes a very high signal such that rolling over is optimal D(θi, n) > 0 independently of n,

similarly, if the state realizes low enough in the lower dominance region, the investor observes

a very low signal such that withdrawing is dominant D(θi, n) < 0. Uniqueness of a signal

satisfying D(θi = θ∗, n(·, θ∗)) = 0 holds since by Lemma A1 (iii) in Goldstein and Pauzner

(2005), D(θi = θ∗, n(·, θ∗)) strictly increases in θ∗ as long as signal θ∗ lies below θ̄ + ε since the

probability function p(·) strictly increases in the state for states below the bound to the upper

dominance region. Uniqueness follows since for signals above θ̄ + ε the definition of the upper
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dominance region yields D(θi, n) > 0. Therefore, a unique candidate for a threshold equilibrium

exists. To show that this candidate also satisfies (a) and (b), Goldstein and Pauzner (2005)

decompose the intervals [θi − ε, θi + ε] and [θ∗ − ε, θ∗ + ε], use D(θi = θ∗, n(·, θ∗)) = 0 and the

single crossing property of v(θ, n(θ, θ∗)) in θ, see (A8) and (A9) in their proof to Theorem 1 B.

The proof why a non-threshold equilibrium cannot exist is less intuitive, and fully given in

Goldstein and Pauzner (2005) proof of Theorem 1 C.

1.7.2 Appendix B: Main Theorem

Proof. [Theorem 1.3.1] Since the unique equilibrium of the game is a trigger equilibrium, the

trigger is pinned down by the payoff indifference equation. Upon observing the trigger θi = θ∗

an investors needs to be indifferent between rolling over or withdrawing. The PIE is given by

0 = D(θi = θ∗, n(·, θ∗)) =
1

2ε

∫ θ∗+ε

θ∗−ε
v(θ, n(θ, θ∗)) dθ (1.21)

or equivalently by equation (1.13)

0 = u (kr)

∫ h∗

0
p(θ(n, θ∗)) dn− u(r)

l

δr
(1 + ln(δr/l)) (1.22)

+

∫ l/δr

h∗
p(θ(n, θ∗))

(1− nrδ/l)H
δ(1− n)kr

u(kr) dn

where

θ(n, θ∗) = θ∗ + ε (1− 2n) (1.23)

is the inverse of n(θ, θ∗) for θ ∈ [θ∗ − ε, θ∗ + ε]. We define the function

f̂(θ∗, δ) ≡ u (kr)

∫ h∗

0
p(θ(n, θ∗)) dn− l

δr
u(r) (1 + ln(δr/l))

+

∫ l/δr

h∗
p(θ(n, θ∗))

(1− nrδ/l)H
δ(1− n)kr

u(kr) dn

(1.24)

The zeros of f̂ constitute equilibrium triggers of the game for different parameter constellations.

To determine the behavior of the trigger due to parameter changes it is sufficient to look at the

set of zeros of f̂ . We have

∂

∂θ∗
f̂(θ∗, δ) = u (kr)

∫ h∗(δ)

0
p′(θ(n, θ∗))

∂

∂θ∗
θ(n, θ∗) dn (1.25)

+

∫ l/δr

h∗(δ)
p′(θ(n, θ∗))

∂

∂θ∗
θ(n, θ∗)

(1− nrδ/l)H
δ(1− n)kr

u(kr) dn

= u (kr)

∫ h∗(δ)

0
p′(θ(n, θ∗)) dn+

∫ l/δr

h∗(δ)
p′(θ(n, θ∗))

(1− nrδ/l)H
δ(1− n)kr

u(kr) dn > 0
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since ∂
∂θ∗ θ(n, θ

∗) = 1 and where h∗ is given in (1.20). At the limit ε → 0, we have θ(n, θ∗) →
θ∗. Since p(·) is continuous and defined on a compact interval, p′(·) is bounded. In addition,

n(θ, θ∗) ≤ 1, hence with Lebesgue’s Dominated Convergence Theorem

lim
ε→0

∂

∂θ∗
f̂(θ∗, δ)→ p′(θ∗)u (kr)

(
h∗ +

H

δkr

∫ l/δr

h∗(δ)

1− nrδ/l
1− n

dn

)

=
p′(θ∗)

p(θ∗)

l

δr
u(r)

(
1 + ln

(
δr

l

))
(1.26)

where we have used trigger equation (1.35). Note that limε→0
∂
∂θ∗ f̂(θ∗, δ) = 0 if θ∗ = θ as by

definition of the function p(·), p′(θ) = 0.

Comparative Statics of Trigger in delta

∂f̂

∂δ
= u(r)

l

δ2r
ln(

δr

l
) +

H

δ2
p(θ∗)

u(kr)

kr
ln

(
H − kl
H

)
(1.27)

since
∫ l/(δr)
h∗

(
− 1

1−n

)
dn = ln

(
1−l/(δr)

1−h∗
)

= ln
(
H−kl
H

)
< 0.

With (2.24) and the Implicit Function Theorem, it follows

∂θ∗

∂δ
= −

∂f̂
∂δ

∂f̂
∂θ∗

= −
u(r) l

δ2r
ln( δrl ) + H

δ2
p(θ∗) u(kr)

kr ln
(
H−kl
H

)
u (kr)

∫ h∗(δ)
0 p′(θ) dn+

∫ l/δr
h∗(δ) p

′(θ) (1−nrδ/l)H
δ(1−n)kr u(kr) dn

(1.28)

The denominator of (1.28) is positive while the numerator can change sign. For the numerator is

non-monotone in δ, to analyze the slope ∂θ∗

∂δ we work with boundaries of the numerator instead.

If at the limit ε → 0 θ∗ 6= θ, the denominator in (1.28) converges to a constant unequal to zero

and using (2.25) we can write

lim
ε→0

∂θ∗

∂δ
= −

∂f̂
∂δ

∂f̂
∂θ∗

= −
u(r) l

δ2r
ln( δrl ) + H

δ2
p(θ∗) u(kr)

kr ln
(
H−kl
H

)
p′(θ∗)
p(θ∗)

l
δru(r)

(
1 + ln

(
δr
l

)) (1.29)

Upper boundary: By (1.27) and using p(θ)u(kr) > u(r) for θ > θ

d

dδ
f̂(θ∗, δ) = u(r)

l

δ2r
ln(

δr

l
) +

H

δ2
p(θ∗)

u(kr)

kr
ln

(
H − kl
H

)
< u(r)

l

δ2r
ln(

δr

l
) +

H

δ2

u(r)

kr
ln

(
H − kl
H

)
=

1

δ2r
u(r) ln

[(
δr

l

)l (
1− l

E

)E]
(1.30)

where E ≡ H/k > 1. Thus, d
dδ f̂(θ∗, δ) < 0 if

(
δr
l

)l (
1− l

E

)E
< 1.
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Lower boundary:

d

dδ
f̂(θ∗, δ) = u(r)

l

δ2r
ln(

δr

l
) +

H

δ2
p(θ∗)

u(kr)

kr
ln

(
H − kl
H

)
> u(r)

l

δ2r
ln(

δr

l
) +

H

δ2

u(r)

r
ln

(
H − kl
H

)
=
u(r)

rδ2
ln

((
δr

l

)l (
1− l

(H/k)

)H)
(1.31)

for p ≤ 1 and u(kr)
kr < u(r)

r by concavity, k > 1 and u(0) = 0. Thus, d
dδ f̂(θ∗, δ) > 0 if(

δr
l

)l (
1− l

(H/k)

)H
> 1. We therefore conclude, that

d

dδ
f̂(θ∗, δ) ∈

[
u(r)

rδ2
ln(B(δ, l)),

u(r)

rδ2
ln(A(δ, l))

]
(1.32)

where we define

A(δ, l) =

(
δr

l

)l (
1− l

E

)E
(1.33)

B(δ, l) =

(
δr

l

)l (
1− l

(H/k)

)H
(1.34)

The functions A and B are both strictly increasing in δ for every fixed liquidity because 1− l
E > 0

and 1− l
(H/k) > 0.

The following Lemmata analyze monotonicity behavior of the bounds of ∂
∂δ f̂(δ, θ∗) in liquidity l

for every fixed δ ∈ (0, 1]. In our analysis, we treat δ as the fixed variable and let liquidity vary in

the admissible parameter space (0,min(1, δr)).

Lemma 1.7.1. For every δ ∈ (0, 1] there exists a unique l∗A(δ) ∈ (0,min(1, δr)) such that the

term A(δ, l) :=
(
δr
l

)l (
1− l

E

)E
is strictly increasing for l ∈ (0, l∗A(δ)) and strictly decreasing for

l ∈ (l∗A(δ),min(1, δr)). l∗A(δ) strictly increases in δ. For every δ, A(δ, l)→ 1 as l→ 0 and hence,

there exists a unique l̃A(δ) ∈ (l∗A(δ), 1] ∩ (l∗A(δ), δr) such that A(δ, l) > 1 for all l ∈ (0, l̃A(δ)) and

A(δ, l) < 1 for all l ∈ (l̃A(δ), 1] ∩ (l̃A(δ), δr). l̃A(δ) weakly increases in δ.

Proof. [Lemma 1.7.1] In online Appendix

Lemma 1.7.2. For every δ ∈ (0, 1] there exists a unique l∗B(δ) ∈ (0,min(δr, 1)) such that the

term B(δ, l) =
(
δr
l

)l (
1− l

(H/k)

)H
is strictly increasing for l ∈ (0, l∗B) and strictly decreasing for

l ∈ (l∗B,min(δr, 1)). l∗B(δ) strictly increases in δ. For every δ we have B(δ, l) → 1 as l → 0 and

there hence exists a unique l̃B(δ) ∈ (l∗B, 1] ∩ (l∗B, δr) such that B(δ, l) > 1 for all l ∈ (0, l̃B) and

B(δ, l) < 1 for all l ∈ (l̃B, 1]∩ (l̃B, δr). l̃B(δ) is weakly increasing in δ. It holds l∗B(δ) < l∗A(δ) and

l̃B(δ) ≤ l̃A(δ).
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Proof. [Lemma 1.7.2] In online Appendix

Proposition 1.7.1 (Comparative Statics in Equilibrium). For given contract (r, k) there exist

two contract dependent thresholds l̃B(1), l̃A(1) ∈ [0, 1], l̃B(1) ≤ l̃A(1) for liquidity such that

i) If l ∈ [0, l̃B(1)), there exist two boundaries δd, δu ∈ (l/r, 1), δu < δd such that the trigger

θ∗ strictly increases in debt ratio for debt ratio δ ∈ (l/r, δu), strictly decreases for debt ratio

δ ∈ (δd, 1) and takes its global maximum at some [δu, δd].

ii) If l ∈ [l̃B(1), l̃A(1)], there exists a boundary δu ∈ (l/r, 1) such that for δ ∈ (l/r, δu) the

trigger is strictly increasing in debt ratio and the global maximum of the trigger is reached at

some δ ∈ (δu, 1).

iii) If l ∈ (l̃A(1), 1], the trigger is strictly increasing in debt ratio δ for all δ ∈ (l/r, 1). Hence,

the trigger takes its supremum at δ = 1 and its infimum at δ = l
r .

Proof. (Proposition 1.7.1) Fix contract (r, k). By (2.24), ∂f̂
∂θ∗ > 0 for all δ. Hence, by the Implicit

Function Theorem the slope of the trigger ∂θ∗

∂δ = −
∂f̂
∂δ
∂f̂
∂θ∗

equals zero if and only if d
dδ f̂(θ∗, δ) equals

zero. As this expression is not easy to handle, we instead work with its boundaries. The upper

boundary of d
dδ f̂(θ∗, δ) equals zero if and only if A(δ, l) =

(
δr
l

)l (
1− l

E

)E
= 1.

Case 1: Let l ∈ (l̃A(1), 1] (assume liquidity is high). Then, by Lemma 1.7.1, A(δ = 1, l) =(
r
l

)l (
1− l

E

)E
< 1. For every fix l the function A(δ, l) is strictly increasing in δ for admissible

values in (l/r, 1). Hence, for all δ ∈ (l/r, 1) we have A(δ, l) < 1. As A determines the upper

bound of the slope, it follows d
dδ f̂(θ∗, δ) < 0 and ∂θ∗

∂δ > 0. Thus, the trigger gets minimized and

firm stability maximized in δ = l/r. By monotonicity, firm stability deteriorates as δ increases.

Case 2: Assume liquidity is small, that is fix l ∈ (0, l̃B(1)). By Lemma 1.7.2, l̃B(δ) ≤ l̃A(δ) and

thus B(δ = 1, l) > 1 and A(δ = 1, l) > 1.

For any l, the function A is continuous and strictly increasing in δ for all admissible values in

(l/r, 1). At δ → l/r we obtain A(δ = l/r, l) =
(
1− l

E

)E
< 1. Using continuity and strict

monotonicity of A in δ, by the Intermediate Value Theorem for fixed l there exists a unique

δu(l) ∈ (l/r, 1) such that in δ = δu we have A(δu, l) =
(
δur
l

)l (
1− l

E

)E
= 1. Moreover, for

δ < δu(l) it holds A(δ, l) =
(
δr
l

)l (
1− l

E

)E
< 1, d

dδ f̂(θ∗, δ) < 0 and ∂θ∗

∂δ > 0 as we are considering

the upper bound.

Using the same argument on the function B, for l there exists a unique δd(l) ∈ (l/r, 1) with

B(δd, l) =
(
δdr
l

)l (
1− l

E

)H
= 1. Further, when δ > δd(l) we have B(δ, l) > 1. As B determines

the lower bound of the slope we can follow d
dδ f̂(θ∗, δ) > 0 and ∂θ∗

∂δ < 0 for δ > δd(l).

Due to B(δ, l) < A(δ, l) for all δ ∈ (0, 1), when δd exists so does δu and we have δd(l) > δu(l) for

all l ∈ Id. Therefore, for fixed l ∈ Id the global maximum of the trigger in δ and hence the debt

ratio minimizing stability lies in interval [δu(l), δd(l)] ⊂ (l/r, 1).

Case 3: Let liquidity be moderate, fix l ∈ (l̃B(1), l̃A(1)). Then, by Lemma 1.7.1 and 1.7.2,

δu(l) ∈ (l/r, 1) exists but no δd. We can infer d
dδ f̂(θ∗, δ) < 0 and ∂θ∗

∂δ > 0 for δ ∈ (l/r, δu). Thus
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the trigger gets maximized at some δ ≥ δu(l).

To finish the proof of Theorem 1.3.1, by Lemma 2.3.1, at the limit the trigger equals ex ante risk

of runs. By Lemma (1.7.3), δu and δd are strictly increasing in l if they exist. Apply Proposition

1.7.1.

Lemma 1.7.3. Given that δu(l) and δd(l) exist, they are strictly increasing in liquidity. At the

limit l→ 0, the functions take limits δu(l)→ 0, δd(l)→ 0.

Proof. [Lemma 1.7.3] In online Appendix

Lemma 1.7.4. The trigger strictly increases in liquidity if and only if

u(r)
1

δr
ln(

δr

l
)−

∫ l/δr

h∗
p(θ(n, θ∗))u(kr)

(
Hn

l2k(1− n)

)
dn > 0

.

Proof. (Lemma 1.7.4) Online Appendix

1.7.3 Appendix C: Triggers explicit

Lemma 1.7.5. As noise vanishes, the trigger satisfies

lim
ε→0

p(θ∗) =
l
δr u(r) (1 + ln(δr/l))

u(kr)
(
h∗ +

∫ l/(δr)
h∗

(1−nrδ/l)H
δ(1−n)kr dn

) (1.35)

=
l
δr u(r) (1 + ln(δr/l))

u(kr)
(

1− H
δrk ( δrl − 1) ln

(
H

H−kl

)) (1.36)

Proof. (Lemma (1.7.5)) Online Appendix

1.7.4 Appendix D: Optimality - Debt Investors

Lemma 1.7.6 (Optimality for debt investors). Fix contract (r, k) and liquidity l. As noise

vanishes, if the firm’s stability decreases in debt ratio then also debt investor’s utility from the

contract decreases in debt ratio. If however firm stability increases in debt ratio and the asset’s

liquidity is sufficiently small, l < l̂, l̂ ∈ Id , investor’s utility from the contract can increase in

debt ratio.

Proof. (Lemma 1.7.6) Online Appendix

Proof. (Proposition 1.4.1) By Lemma (1.7.6 ) and Theorem (1.3.1), when liquidity is high, stabil-

ity decreases in debt ratio for all values of debt ratio in δ ∈ (l/r, 1). When liquidity is moderate
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or low, stability decreases in debt ratio for values of debt ratio in δ ∈ (l/r, δu). When liquidity

is sufficiently low, i.e. l ∈ (0, l̂), where l̂ ∈ (0, l̃B(1)) is low, stability improves in debt ratio and

investor’s utility increases in debt ratio.
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1.7.5 Proofs Lemmata

Proof. (Lemma 1.7.1) Fix contract (r, k) and let δ ∈ (0, 1]. By assumption we only consider firm

structures that are prone to runs and hence satisfy l ∈ (0,min(1, δr)).

∂

∂l
A(δ, l) :=

∂

∂l

[(
δr

l

)l (
1− l

E

)E]

=

(
δr

l

)l (
1− l

E

)E−1 [
(ln(

δr

l
)− 1)(1− l

E
)− 1

]
(1.37)

The constant
(
δr
l

)l (
1− l

E

)E−1
is positive by definition of E = H/k, because H > kr > kl.

Hence, A strictly increases in l if the square bracket in (1.37) is positive. That is the case if and

only if

ln

(
δr

l

)
> 1 +

E

E − l
(1.38)

The left hand side is positive, continuous and strictly decreasing in l. The right hand side

is continuous, bounded and increasing in l. For l → 0 the left hand side tends to infinity

while the right hand side approaches value 2 < ∞. Parameter l is bounded from above by

min(1, δr). Let min(1, δr) = 1 and l→ 1. Then the left hand side undercuts the right hand side,

ln (δr) < δr−1 ≤ r−1 < 1 < 1 + E
E−1 . Let min(1, δr) = δr and l→ δr. Again, the left hand side

undercuts the right hand side, ln (1) = 0 < 1 + E
E−δr . These inequalities hold for E − δr > 0 as

H > kr > δkr and r ≤ 2 is like the coupon payment of a zero coupon bond (principal + interest)

and interest rates are below 100 percent in most economically meaningful situations. Thus, in

either case the right hand side exceeds the left hand side at the upper boundary of l. Thus,

by strict monotonicity, continuity and the Intermediate Value Theorem for every fixed δ ∈ (0, 1]

there exists a unique l∗A(δ, r, k) ∈ (0,min(δr, 1)) for which both sides are equal,

ln

(
δr

l∗A(δ)

)
− 1− E

E − l∗A(δ)
= 0

We have ln
(
δr
l

)
> 1 + E

E−l and ∂
∂lA > 0 for l ∈ (0, l∗A(δ)) while ln

(
δr
l

)
< 1 + E

E−l and ∂
∂lA < 0

for l ∈ (l∗A(δ),min(1, δr)).

l∗A(δ) increases in δ for the left hand side in (1.38) decreases in l, increases in δ but the right hand

side increases in l and is independent of δ.

Next, observe that for all δ ∈ (0, 1] the function A(δ, l) converges to 1 as l → 0: We have(
1− l

E

)E → 1 as l→ 0, l ln(δr/l)→ 0 and thus by continuity of the exponential function
(
δr
l

)l →
1. As A(δ, l) is strictly increasing for l < l∗A and decreasing for l ∈ (l∗A, 1] with liml→0A(δ, l) = 1,

there exists a unique l̃A(δ) ∈ (l∗A, 1] such that A(δ, l) > 1 for all l ∈ (0, l̃A), A(δ, l) < 1 for

l ∈ (l̃A, 1].

In case min(δr, 1) = δr, we always have l̃A ∈ (l∗A,min(1, δr)) (interior) by the structure of

38



A(δ, l) :=
(
δr
l

)l (
1− l

E

)E
: the factor

(
1− l

E

)
is positive and strictly smaller one for every l ≤

δr < 1. Thus, at l = δr we already have A(δ, l = δr) < 1. Therefore, l̃A has to lie below δr. In

case min(δr, 1) = 1 we set l̃A = 1 if A(δ, l) > 1 for all l ∈ (0, 1]. In either case, l̃A < δr.

l̃A(δ) is weakly increasing in δ since A(δ, l) is positive and increasing in δ for every l. Concrete,

assume l̃A is interior: Then, A(δ, l̃A(δ)) = 1. A is strictly increasing in δ, and l̃A(δ) > l∗A. Hence,

A decreases in l at l̃A(δ) for every δ. By the Implicit Function Theorem A(δ, l̃A(δ)) = 1 to keep

the function A at value 1, l̃A(δ) increases in δ . If l̃A = 1, then A(δ, l) ≥ 1 for all l ∈ (0, 1]. Then

l̃A is constant (at value one) in δ as A increases in δ because A(δ, l) ≥ 1 already for all l ∈ (0, 1]

under the smaller δ.

Proof. (Lemma 1.7.2)

∂

∂l
B(δ, l) :=

∂

∂l

[(
δr

l

)l (
1− l

(H/k)

)H]

=

(
δr

l

)l (
1− l

(H/k)

)H−1 [
(ln(

δr

l
)− 1)(1− l

(H/k)
)− k

]

again for l ∈ (0,min(1, δr) and H > k the constant
(
δr
l

)l (
1− l

(H/k)

)H−1
is positive. So B is

strictly increasing in l if the bracket is positive. That is the case if and only if

ln

(
δr

l

)
> 1 + k

E

E − l

The remaining proof of the first part of the Lemma is as in Lemma (1.7.1). Next we show, for

every δ we have l∗B(δ) < l∗A(δ): For k > 1, 1 + E
E−l < 1 + k E

E−l holds for all l and ln(δr/l) is

strictly decreasing in l.

For every δ we have l̃B ≤ l̃A: For every δ ∈ (0, 1) and l ∈ (0,min(δr, 1)) we have B(δ, l) <

A(δ, l) as k > 1 and 1 − l/E < 1. Fix δ, and assume l̃B ∈ (0,min(δr, 1)) (interior). Then

1 = B(δ, l̃B(δ)) < A(δ, l̃B(δ)). By Lemma (1.7.1) above, A(δ, l) > 1 for all l ∈ (0, l̃A). Thus,

l̃B ∈ (0, l̃A). If l̃B = 1, then 1 ≤ B(δ, l) < A(δ, l) for all l ∈ (0,min(δr, 1)), thus l̃A = 1.

Proof. (Lemma 1.7.3) Let l̂ ∈ (0, l̃B(1)), then by Proposition (1.7.1) δu(l̂) and δd(l̂) exist and

are interior in (l̂/r, 1). That is A(δu(l̂), l̂) = 1, B(δd(l̂), l̂) = 1. The function A(δ, l) is strictly

increasing in δ for any δ ∈ (l/r, 1) so in particular in δ = δu(l̂). We want to show, that A(δu(l̂), l)

strictly decreases in l at l = l̂. By Lemma (1.7.1), that is exactly the case if l̂ > l∗A(δu(l̂)). By

the same Lemma, we know A(δu(l̂), l) > 1 for all l ∈ (0, l∗A(δu(l̂))]. But A(δd(l̂)), l̂) = 1, hence

l̂ > l∗A(δu(l̂)). Using the Implicit Function Theorem, for A strictly increases in δ at δ = δu(l̂) and

decreases in l at l = l̂, δu(l̂) strictly increases in l̂. By the same argument, δd(l̂) strictly increases

in l̂.

As l̂→ l̃B(1) there are two cases: If l̃B(1) < 1, we know B(1, l̃B(1)) = 1 by continuity and Lemma

(1.7.2). Hence, δd(l̂)→ 1 as l̂→ l̃B(1). If l̃B(1) = 1, B(1, l̃B(1)) ≥ 1, therefore δd(l̃B(1)) ≤ 1. By

Lemma (1.7.2), l̃B ≤ l̃A, therefore A(1, l̃B(1)) > 1 and δu(l̃B(1)) < 1.
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For l̂ < l̃B we can explicitly calculate δu as a function of l̂: A(δu(l̂)), l̂) =
(
δur
l

)l (
1− l

E

)E
= 1.

And hence, δu(l̂) = l̂
r

(
1− l̂

E

)−E
l̂ . By definition of the exponential function we have

(
1− l̂

E

)E
l̂ →

exp(− 1
E )E = 1

e as l̂→ 0 and hence δu → 0. Analogously, δd → 0 as l̂→ 0.

Proof. (Lemma 1.3.3) Another way of seeing the non-monotonicity of stability in liquidity ratio

is by looking at the derivative of the implicit function lf (δ) which for every debt ratio yields the

value of liquidity such that the trigger and hence stability would stay constant. Using the payoff

indifference equation (2.23), by the Implicit Function Theorem its derivative is given by

∂lf (δ)

∂δ
= −

∂f̂
∂δ

∂f̂
∂l

=
1
δr ln(δr/l)u(r) · lδ −

∫ l/(δr)
h∗ p(θ)u(kr)

kr
H

1−n
(

1
δ2

)
dn

1
δr ln(δr/l)u(r)−

∫ l/(δr)
h∗ p(θ)u(kr)

kr
H

1−n
(
nr
l2

)
dn

(1.39)

If stability improved monotonically in liquidity ratio, for fixed short-term coupon r the function

lf (δ) would need to be strictly increasing in debt ratio δ since the liquidity ratio decreases in debt

ratio. That is the case if and only if numerator and denominator in (1.39) have the same sign.

This is however not necessarily true although numerator and denominator look fairly similar:

The integration in (1.39) considers only values n < l/(δr) or equivalently nr/l2 < 1/(δl). As a

consequence, the following inequality holds

∫ l/(δr)

h∗
p(θ)

u(kr)

kr

H

1− n
1

δl
dn >

∫ l/(δr)

h∗
p(θ)

u(kr)

kr

H

1− n
nr

l2
dn (1.40)

which allows an analysis of the numerator and denominator in (1.39). By the proof of Proposition

1.7.1 and the comparative statics result in (1.29), stability strictly decreases in debt if and only if

the numerator in (1.39) is negative. Similarly, the denominator is negative if and only if stability

is increasing in liquidity, see Lemma (1.7.4). Therefore by (1.39), if stability improves in liquidity

then stability also decreases in debt ratio, numerator and denominator in (1.39) are negative, and

stability monotonically increases in liquidity ratio for the slope of the function lf (δ) is positive.

If instead stability improves in debt ratio, stability also decreases in liquidity, both numerator

and denominator are positive, and again stability improves in liquidity ratio.

The corresponding reverse directions do not hold. For every contract (r, k) there exist parameters

(l, δ) such that stability decreases in debt and liquidity simultaneously. For such parameters the

function lf (δ) has negative slope and stability decreases in liquidity ratio. By (1.39), this is exactly

the case if the numerator in (1.39) is negative but the denominator is positive or equivalently if
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u(r)

δr
ln(

δr

l
) ∈

(∫ l/(δr)

h∗

u(kr)

kr

p(θ)H

1− n
nr

l2
dn,

∫ l/(δr)

h∗

u(kr)

kr

p(θ)H

1− n
1

δl
dn

)
(1.41)

By Proposition 1.7.1, for low liquidity l ∈ Id all maxima of the trigger in debt ratio are interior in

the interval (δu(l), δd(l)). By continuity of the derivative ∂θ∗/∂δ, the slope equals zero at every

maximum point δ∗ or equivalently,∫ l/(δ∗r)

h∗
p(θ)

u(kr)

kr

H

1− n

(
1

δ∗l

)
dn =

u(r)

δ∗r
ln(δ∗r/l) (1.42)

For δ∗ is a maximum point, the derivative ∂θ∗/∂δ needs to be strictly positive on a small open

set (δ∗, δ
∗) below the maximum point or equivalently∫ l/(δr)

h∗
p(θ)

u(kr)

kr

H

1− n

(
1

δl

)
dn >

u(r)

δr
ln(δr/l) (1.43)

By (1.40) and continuity there exists an open subset (δl, δ
∗) ⊂ (δ∗, δ

∗) such that (1.41) holds.

Proof. (Lemma 1.7.4) By the Implicit Function Theorem ∂θ∗

∂l = −
∂f̂
∂l
∂f̂
∂θ∗

and ∂f̂
∂θ∗ > 0 by equation

(2.24) while

d

dl
f̂(θ∗, l) = −u(r)

1

δr
ln(

δr

l
) +

∫ l/δr

h∗
p(θ(n, θ∗))u(kr)

(
Hn

l2k(1− n)

)
dn (1.44)

Proof. (Lemma 1.7.5) The trigger is implicitly defined by PIE (1.22) or equivalently

l

δr
u(r)(1− ln(l/(δr))) =

∫ l/(δr)

h∗
p(θ(n, θ∗))

(1− nrδ/l)H
δ(1− n)kr

u(kr) dn

+

∫ h∗

0
p(θ(n, θ∗)) u(kr) dn

(1.45)

Taking limits, for ε→ 0 since n(θ) ≤ 1, p(θ) ≤ 1 we have by Lebesgue’s Dominated Convergence

Theorem

∫ l/(δr)

h∗
p(θ(n, θ∗))

(1− nrδ/l)H
δ(1− n)kr

dn→ p(θ∗)

∫ l/(δr)

h∗

(1− nrδ/l)H
δ(1− n)kr

dn (1.46)

and
∫ h∗

0 p(θ(n, θ∗)) u(kr) dn → h∗ p(θ∗) u(kr). By definition of the dominance regions and the

noisy signal, away from the limit the trigger lies in the interval [θ − ε, θ + ε]. As signals become
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precise, we have θ∗ ≤ θ and

lim
ε→0

p(θ∗) =
l
δr u(r) (1 + ln(δr/l))

u(kr)
(
h∗ +

∫ l/(δr)
h∗

(1−nrδ/l)H
δ(1−n)kr dn

) (1.47)

Using the definition of h∗ and (1−nrδ/l)
(1−n) = 1 + (δr/l − 1)(1 − 1

1−n) one may simplify this this

expression to the formula given in the Lemma.

Proof. (Lemma 1.7.6) Let δr > l. By Lemma 2.3.1, stability is directly related to the size of

the trigger. Let θb the state below which the firm defaults in period 1, i.e. n(θb) = l/δr. Let θ̃

the state at which debt investors who roll over receive their full payment kr for sure, n(θ̃) = h∗.

We have 0 < θ∗ − ε ≤ θb ≤ θ̃ ≤ θ∗ + ε ≤ θ < 1, therefore ex ante utility away from the limit is

given as

E[u(DD)] =

∫ θb

0
u(r)

l

δr
dθ

+

∫ θ̃

θb

n(θ, θ∗) u(r) + (1− n(θ, θ∗)) p(θ)
(1− δn(θ, θ∗)r/l)H

δ(1− n(θ, θ∗))kr
u(kr)dθ

+

∫ θ∗+ε

θ̃
n(θ, θ∗) u(r) + (1− n(θ, θ∗)) p(θ) u(kr)dθ

+

∫ θ

θ∗+ε
p(θ) u(kr) dθ +

∫ 1

θ
u(kr) dθ

(1.48)

Trigger θ∗ depends on δ, further θb = θ∗− 2ε
(
l
δr −

1
2

)
and θ̃ = θ∗− 2ε

(
h∗(δ)− 1

2

)
where h∗(δ) =

H−krδ
δr(H/l−k) . The bound to the upper dominance region θ is constant in δ. With n(θ̃, θ∗) = h∗ and

Leibniz rule for parameter integrals,

∂

∂δ
E[u(DD)]

= −
∫ θb

0
u(r)

l

δ2r
dθ +

∂n(θ, θ∗)

∂θ∗
· ∂ θ

∗

∂δ

∫ θ∗+ε

θ̃
(u(r)− p(θ) u(kr))dθ (1.49)

+
∂n(θ, θ∗)

∂θ∗
· ∂ θ

∗

∂δ

∫ θ̃

θb

(
u(r)− p(θ) (1− δnr/l)H

δ(1− n(θ, θ∗))kr
u(kr)

)
dθ (1.50)

+
H

δkr

∫ θ̃

θb

p(θ) u(kr) ·

(
(1− δr

l ) dn(θ∗)
dθ∗

∂θ∗

∂δ

1− n(θ, θ∗)
− 1

δ

)
dθ (1.51)

Here, we could draw the derivative ∂θ∗

∂δ out of the integral since the equilibrium θ∗ does not

depend on the state realization θ. Also, the derivative ∂n(θ,θ∗)
∂θ∗ is independent of θ. Using trigger
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condition (1.22), or equivalently

0 =

∫ θb

θ∗−ε
−u(r)

l

δrn(θ)
dθ +

∫ θ̃

θb

p(θ)
(1− δnr/l)H

δ(1− n(θ, θ∗))kr
u(kr)− u(r) dθ

+

∫ θ∗+ε

θ̃
p(θ) u(kr)− u(r) dθ (1.52)

equation (1.49) simplifies to

∂

∂δ
E[u(DD)] = −

∫ θb

0
u(r)

l

δ2r
dθ − ∂n(θ, θ∗)

∂θ∗
· ∂θ

∗

∂δ

(∫ θb

θ∗−ε
u(r)

l

δrn(θ)
dθ

)
+

H

δkr

∫ θ̃

θb

p(θ) u(kr) ·

(
(1− δr

l ) dn(θ∗)
dθ∗

∂θ∗

∂δ

1− n(θ, θ∗)
− 1

δ

)
dθ

(1.53)

Plugging in ∂
∂θ∗n(θ, θ∗) = 1

2ε for θ ∈ [θ∗ − ε, θ∗ + ε] and changing variables of integration to n, if

the limit limε→0
∂θ∗

∂δ exists, that is by equation (1.29) if limε→0 θ
∗ 6= θ̄, with n(θ) ≤ 1, p(θ) ≤ 1

by Lebesgue’s Dominated Convergence Theorem the derivative of expected utility converges to

lim
ε→0

∂

∂δ
E[u(DD)] = −θ∗ · u(r)

l

δ2r
− ∂θ∗

∂δ

l

δr
ln(δr/l)u(r) (1.54)

−
(
δr

l
− 1

)
H

δkr
p(θ∗) u(kr)

∂θ∗

∂δ

∫ l/(δr)

h∗

1

1− n
dn

Clearly, if ∂θ
∗

∂δ > 0 then due to δr > l the limits of all three terms are negative and lim
ε→0

∂
∂δE[u(DD)] <

0.

The limit limε→0
∂θ∗

∂δ does not exist if the trigger converges to the the bound of the upper dom-

inance region limε→0 θ
∗ = θ̄ and thus p′(θ∗) = 0. By continuity of all terms in equation (1.53)

in ε for ε > 0, when ∂θ∗(ε)
∂δ > 0 the derivative ∂

∂δE[u(DD)] however is defined and negative for

nonzero but sufficiently small noise ε.

If limit limε→0
∂θ∗

∂δ exists and ∂θ∗

∂δ < 0 instead, we rewrite equation (1.54) using

−
∫ l/(δr)

h∗

1

1− n
dn = ln

(
1− l/(δr)

1− h∗

)
= − ln

(
H

H − kl

)
and the explicit formula for p(θ∗) at the limit ε → 0 given in equation (1.36). Concretely, we

replace the term −H(δr/l−1)
δkr ln

(
H

H−kl

)
p(θ∗)u(kr) and obtain

lim
ε→0

∂

∂δ
E[u(DD)] = −θ∗ · u(r)

l

δ2r
+
∂θ∗

∂δ

(
l

δr
u(r)− p(θ∗)u(kr)

)
(1.55)

We have l
δru(r) − p(θ∗)u(kr) < 0 for δr > l and u(r) < p(θ∗)u(kr). With ∂θ∗

∂δ < 0, the second

term in (1.55) is positive and can be estimated from below to obtain a boundary independent of
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θ∗. We have

l

δr
u(r)− p(θ∗)u(kr) <

l

δr
u(r)− u(r) < 0 (1.56)

for l/(δr) < 1. Thus,

lim
ε→0

∂

∂δ
E[u(DD)] > −θ∗ · u(r)

l

δ2r
+
∂θ∗

∂δ
u(r)

(
l

δr
− 1

)
(1.57)

For l→ 0 the first term in (1.57) goes to zero since θ∗ ∈ [θ, θ] ⊂ [0, 1] is uniformly bounded. The

second term40 goes to −u(r)
(
liml→0

∂θ∗

∂δ

)
.

It remains to show, that the limit liml→0
∂θ∗

∂δ is unequal to zero. This is true, if the limit of the

upper bound for ∂θ∗

∂δ derived in the comparative statics part of the Appendix is strictly smaller

and bounded away from zero. For fix l and ∂θ∗

∂δ < 0, that is ∂f̂
∂δ > 0, we use the lower bound of

∂f̂
∂δ to derive an upper bound for ∂θ∗

∂δ . Using (1.32), (2.25) and since by assumption limε→0 θ
∗ 6= θ̄

for ε→ 0

∂θ∗

∂δ
< −

u(r)
δ2r

ln

[(
δr
l

)l (
1− l

H/k

)H]
p′(θ∗)
p(θ∗)

l
δru(r)

(
1 + ln

(
δr
l

)) = −

1
δ ln

[(
δr
l

)l (
1− l

H/k

)H]
p′(θ∗)
p(θ∗) l

(
1 + ln

(
δr
l

)) (1.58)

= −
l
δ ln

(
δr
l

)
+ H

δ ln
(

1− l
H/k

)
p′(θ∗)
p(θ∗) l

(
1 + ln

(
δr
l

)) (1.59)

= −1

δ

p(θ∗)

p′(θ∗)

 1(
1 + 1

ln( δrl )

) +
H ln

(
1− l

H/k

)
l
(
1 + ln

(
δr
l

))
 (1.60)

The bracket in (1.60) converges to one as l→ 0:

1(
1 + 1

ln( δrl )

) → 1 as l→ 0 (1.61)

Further, ln
(

1− l
H/k

)
→ 0 and l

(
1 + ln

(
δr
l

))
→ 0. Therefore, by Hôpital’s rule

lim
l→0

H ln
(

1− l
H/k

)
l
(
1 + ln

(
δr
l

)) = lim
l→0

∂
∂lH ln

(
1− l

H/k

)
∂
∂l l
(
1 + ln

(
δr
l

)) = lim
l→0

− k
1− l

H/k

ln(δr/l)
= 0 (1.62)

By assumptions on the lower dominance region and for p(·) is continuous and strictly increasing

with θ∗ ∈ [θ, θ] for ε → 0 we have liml→0 p(θ
∗) ≥ p(θ) > 0 and liml→0 p(θ

∗) ≤ p(θ) = 1. There-

fore, liml→0 p(θ
∗) = const > 0.

40In particular, by Proposition (1.7.1) the assumption ∂θ∗

∂δ < 0 for l → 0 is consistent when debt ratio
is sufficiently large, i.e. we do not talk about a zero measure set.
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Last, p′(·) is uniformly bounded as θ ∈ [0, 1] lies in a compact interval and p′(·) is continuous.

Precisely, we have p′(θ) ≤ c for all θ ∈ [0, θ) and p′(θ) = 0 for θ ∈ [θ, 1] by assumption on the

upper dominance region. For p′ is continuous and positive, liml→0 p
′(θ∗) ∈ (0, c] and the fraction

1
p′(θ∗) converges to a constant as by assumption limε→0 θ

∗ 6= θ̄. Therefore, the upper bound of ∂θ
∗

∂δ

converges to a negative constant. The limit of ∂θ
∗

∂δ is thus bounded away from zero as l approaches

zero. We therefore obtain the existence of an l̂ such that for all l < l̂ we have ∂
∂δE[u(DD)] > 0.

For l̂ needs to be such that ∂θ∗

∂δ < 0, that is stability needs to improve in debt ratio, we can infer

l̂ ∈ (0, l̃B(1)) by Theorem (1.3.1).

If limε→0 θ
∗ = θ̄, 1

p′(θ∗) diverges to infinity as ε→ 0. The upper bound in (1.60) thus also diverges

to minus infinity and ∂θ∗

∂δ cannot converge to zero. For noise sufficiently small but nonzero and l

sufficiently small, the derivative of expected utility is thus strictly positive.
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Chapter 2

The Impact of Recovery Value on

Coordination in Securitized Banking

2.1 Motivation

When a run on a financial firm takes place, national bankruptcy laws and interventions by central

banks (lender of last resort) impact recovery values1 of debt investments. I analyze how recovery

values after bankruptcy influence coordination behavior of uninsured debt investors and stability

of financial intermediators (firms) against debt runs. In particular, the paper analyzes how the

composition of recovery values changes coordination when recovery value consists of a run-size

dependent, endogenous part controlled by the lender of last resort and a fixed component to

model national differences in bankruptcy costs.

The set-up discussed is interesting in the light of Basel 3 capital and liquidity regulation since the

member countries of the Basel Committee on Banking Supervision have agreed upon following

the same regulatory framework on bank capital adequacy and market liquidity risk while corre-

sponding bankruptcy costs differ nationally:2

Country specific bankruptcy costs impact debt recovery rates given default of the firm through

various channels such as allocating different sets of control rights to creditors, demanding differ-

ent time periods the firm remains in bankruptcy and varying court-declared expenses (trustees,

accountants, attorneys), see Acharya et al. (2003). Chapter 11 of the U.S. bankruptcy code

leaves control over firm’s assets to some degree with management during debt renegotiations.

1Throughout the paper, I use the term ’recovery value’ as the average value a debt investor can recover
after a run, that is taking into account interventions of a lender of last resort during a run and bankruptcy
costs after a successful run.

2In 2008, the Basel Committee on Banking Supervision (BCBS) and the International Association
of Deposit Insurers (IADI) developed the ’Core Principles for Effective Deposit Insurance Systems’ (
Basel Committee on Banking Supervision and International Association of Deposit Insurers , 2009) as a
voluntary framework. Iyer and Puri (2008) however find that deposit insurance is only partially effective
in preventing bank runs.
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The Swedish bankruptcy law in contrast foresees a public auction where the firm is liquidated

either piecewise or survives as a going concern. Management and shareholders immediately lose

their control rights. Thorburn (2000) estimates recovery rates of Swedish firms as proportion of

debt’s face value3 at a median of 25% for piecewise liquidation and 38% if the firm is auctioned in

bankruptcy as going concerns. For the US, Franks and Torous (1994) report a median recovery

rate of 51% for firms reorganizing under Chapter 11, based largely on face values. Analyzing

US firms, Bris et al. (2006) show that creditors in Chapter 11 reorganizations fare significantly

better than those in Chapter 7 liquidations. They find mean recovery rates4 of 1% for unsecured

creditors of firms under Chapter 7 liquidations and 52% for unsecured creditors of firms under

Chapter 11.

Bankruptcy proceedings, the way bankrupt firms are liquidated or restructured, and legal costs

are fixed costs that diminish recovery values. Interventions by central banks on the other hand

depend on the severity of runs and increase the average value a debt investor may recover. Since

in real world the scale of a run is ex ante random and endogenous, in the presence of a lender

of last resort recovery values to debt investors are random and endogenous too. Differences in

debt recovery rates vice versa lead to an adaption of behavior by creditors ex ante. In an empiri-

cal study, Davydenko and Franks (2008) find that differences in creditors’ rights across countries

cause banks to adapt their lending practices at loan origination to companies in France, Germany

and the UK. Still, they find that recovery rates in default remain distinct across countries, due

to different levels of creditor protection.

Motivated by the study of Davydenko and Franks (2008), this article aims at answering the ques-

tion how debt investors (creditors) ex ante adapt their behavior to (not) roll over debt, taking into

account endogenous, random recovery values which depend on national differences in bankruptcy

fixed costs and generosity of national central banks when intervening as lender of last resort.

In the model, a financial firm5 finances an investment in a risky, illiquid asset through equity and

short-term debt. The firm promises fixed interest payments to debt investors and the residual

value of investment to equity investors. At an interim period, debt investors observe noisy, private

information about the asset’s return and then decide whether to stay invested in the firm (roll

over debt) or to withdraw their investment. Since debt investors make their roll over decisions at

the interim period, the measure of total short-term withdrawals is random in the initial period.

To finance withdrawals, the firm turns to the money market and pledges a proportion of the asset

to a third party in form of a repurchase agreement (repo). If funds available through pledging

the asset (funding liquidity) undercut the overall amount of potential short-term debt claims the

firm might face, the firm is prone to a liquidity squeeze (run): When the number of debt investors

demanding their deposit exceeds a critical threshold, the firm cannot serve all debt investors and

3Note that face values overstate market values.
4Here, recovery rate is measured as fraction of initial claim which is distributed by the court in the

case closure.
5Examples for such financial firms are asset backed commercial paper conduits, banks or structured

investment vehicles.
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goes into default. Given a default, not liquidity of the asset is available for distribution among

debt investors but a bankruptcy cost applies. After costs are withdrawn, the recovery value of

the asset remains for distribution to debt investors. Before choosing actions, debt investors take

into account the possibility of a run. The potential of a run gives rise to a coordination prob-

lem between debt investors. Debt investors base their roll over decision on inferences about the

random asset return (insolvency risk), and also on the expected number of other debt investors

rolling over (liquidity risk). The endogenous measure of agents rolling over influences whether

a run occurs or not and the size of recovery value if a run occurs. As a result, a debt investor

might decide not to roll over, not because the expected asset return is too low but because she

expects a too large number of other investors to not roll over. A panic run or self-fulfilling run

occurs if too many investors fear other investors will not roll over, withdraw, and cause the run.

A recovery value function determines the payoff of a debt investor given bankruptcy of the firm.

I model recovery value as an affine function which linearly depends on the scale of the run plus

a constant part (intercept). The intercept symbols a fixed fraction of asset liquidity which is

recovered after the firm declares bankruptcy. Acharya et al. (2003) provide empirical evidence

that a better liquidity position of industry peers of the defaulted firm implies higher recovery

at emergence from bankruptcy. The size dependent part (”slope parameter”) takes into account

that recovery value might be affected by the scale of the run. A negative slope parameter means

that larger runs are more costly and detrimental to recovery value. In this paper, the size of the

run directly depends on and is inversely related to the random state of the economy. Acharya

et al. (2003) find that recovery in a distressed state of the industry is lower than the recovery

in a healthy state of the industry by 10 to 20 cents on a dollar which suggests that scale of run

negatively affects recoveries. On the other hand, government interventions (bail-out) and actions

taken by the lender of last resort (central bank) such as Emergency Liquidity Assistance (ELA),

granted to prevent a financial panic and contagion to other financial firms, increasess debt values

during a run and hence average recovery values (pro rata shares) if the run is successful, see

(Rochet et al., 2008).

As main contribution of the paper, I find that both composition and size of recovery values after

bankruptcy have a large impact on stability of financial firms. Allover, I demonstrate that high

recovery values are never desirable from a stability or regulator perspective and only sometimes

desirable from a consumer perspective. Increases in recovery value through either increases in

slope parameter controlled by a lender of last resort or increases in intercept determined through

national bankruptcy proceedings both increase the probability of runs. Generosity of a lender

of last resort or more cost efficient bankruptcy proceedings harm financial stability since the

anticipation of greater recovery values increases incentives to withdraw.

Concerning the composition of recovery values, the probability of runs and ex ante welfare to debt

investors from contracts are monotone in liquidity mismatch if recovery values have no intercept.

In this case, I recover the results of Morris and Shin (2009) and Rochet and Vives (2004). With
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intercepts, probability of runs become hump-shaped in liquidity ratio. There exists a unique,

maximizing liquidity ratio which monotonically decreases in intercept and slope parameter of

recovery value.

Exploiting the non-monotonicity results, I demonstrate, that in two countries where intercepts

of recovery value differ due to differences in national bankruptcy proceedings, drops in funding

liquidity6 can have ambiguous effects on firm stability. While the drop in funding liquidity may

harm firm stability in one country, it may increase stability of a firm with identical capital struc-

ture in the other country. Regarding two further countries, where recovery values are purely

determined through interventions of a lender of last resort (zero intercept), I show that countries

with a more generous lender of last resort need to impose tighter liquidity and capital regulation

to guarantee the same level of stability as a country with less generous lender of last resort. These

result suggests that capital and liquidity regulation should take into account national differences

in bankruptcy costs and potential interventions by a lender of last resort.

Last, I analyze welfare debt investors infer from contracts under different recovery values. Higher

recovery values increase both payoffs conditional on a run but also probabilities of a run. There-

fore, greater recovery values in general do not lead to higher welfare to debt investors unless

liquidity ratio is sufficiently high.

As for the theory contribution, this paper analyzes the cause of the non-monotonicity of proba-

bilities of runs on financial institutions in liquidity coverage as first discovered in Schilling (2015).

The intercept of recovery value is responsible for the appearance of the interior maximizer of

probability of runs. As long as the intercept of recovery value is positive, conditional on a run

the game structure exhibits one-sided strategic substitutability between actions. In addition, the

size of the intercept of recovery value controls the extent of one-sided strategic substitutability

between actions and hence the size of the maximizer. As main theory contribution of the paper,

I show that the extent of strategic substitutability in the model, parametrized by the intercept of

recovery value, has an essential impact on the probability of runs and utility debt investors infer

from the contract. As the intercept of recovery value goes to zero, the game structure changes,

the one-sided strategic substitutability between actions vanishes, actions become global strategic

complements and the probability of runs becomes monotone in debt and liquidity mismatch. We

hence recover the results from Morris and Shin (2009) and Rochet and Vives (2004). One-sided

strategic substitutability between actions drives non- monotonicity.

Related Literature

This paper adds to the literature on stability of maturity transforming financial intermediators

against runs by short-term debt investors in the presence of self-fulfilling beliefs. Diamond and

6Drops in funding liquidity, the amount of cash that can be borrowed when posting the asset as
collateral, were documented in the course of the financial crises, see (Gorton and Metrick, 2012, 2009;
Dang et al., 2013).
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Dybvig (1983) analyze coordination behavior of depositors who share consumption risk by enter-

ing in deposit contracts with a bank. Risk-sharing among depositors yields proneness to panic

runs. Postlewaite and Vives (1987) analyze demand-deposit contracts and deduce parameter

constellations under which a unique equilibrium evolves with a strictly positive probability of a

’run’. Bryant (1980), Chari and Jagannathan (1988) and Jacklin and Bhattacharya (1988) model

information-based runs by introducing risk of asset returns and interim information. Empirical

evidence exists for both types of runs: Evidence for depositors withdrawing when perceived asset

risk is too high is provided by Goldberg and Hudgins (1996, 2002). Foley-Fisher et al. (2015)

investigate the run on U.S. life insurers during the summer of 2007 and find evidence for self-

fulfilling expectations.

To obtain a unique equilibrium, this paper employs technique from global games theory (Carlsson

and Van Damme, 1993; Morris and Shin, 1998, 2001). The models closest to ours are Goldstein

and Pauzner (2005) and Schilling (2015). Goldstein and Pauzner (2005) embed the Diamond and

Dybvig (1983) model in a global game. They show that risk-sharing through deposit contracts

is ex ante optimal although it increases the probability of runs. In their setting the bank is

fully financed by debt and invests in an asset which is liquid at the interim period. Their paper

is the first to show equilibrium existence and uniqueness under partial, endogenous repayment

given default of the bank. I strongly draw on their proof to show existence and uniqueness

in our setting. Schilling (2015) extends Goldstein and Pauzner (2005) to analyze the impact

of capital structure and asset liquidity on coordination and financial stability. She finds that

under partial, endogenous repayment, the probability of runs is in general non-monotone in

short-term debt if asset liquidity is sufficiently small. This paper extends Schilling (2015) by

introducing (endogenous) recovery values to discuss the impact of varying national bankruptcy

costs and interventions of a lender of last resort on coordination and financial stability. Further

this paper looks at financial stability under the interaction between recovery values and liquidity

mismatch. As a byproduct, this paper studies emergence and behavior of the non-monotonicity

of probability of runs as discovered in Schilling (2015). This paper shows, the non-monotonicity

alters in recovery value and may vanish completely if recovery values have no intercept. To the

best of my knowledge, this is the first paper that studies coordination behavior of debt investors

under varying, random and endogenous recovery values. A further difference to Goldstein and

Pauzner (2005) and Schilling (2015) is that here, debt investors are risk-neutral. By this, the

interpretation that in case of a run agents queue in front of the financial institution to obtain back

their fixed funds with certain probability (sequential service constraint) is equivalent to obtaining

a pro rata share for sure which simplifies the analysis.

Morris and Shin (2009); Rochet and Vives (2004); Vives (2014); König et al. (2014) study the im-

pact of capital structure and asset liquidity on coordination behavior of debt investors in a global

game in the context of collateralized funding or delegated decision making. While in these pa-

pers recovery values after default are fixed to one, I allow for variations and endogenous recovery

values and analyze its impact on miscoordination. Rochet and Vives (2004) derive policy recom-
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mendations by studying solvency and illiquidity risk of firms. Morris and Shin (2009) partition

credit risk in illiquidity and insolvency risk. Vives (2014) relates information structure, balance

sheet, and market stress parameters to the degree of strategic complementarity of investors ac-

tions and fragility. König et al. (2014) analyze optimal capital structure and portfolio choice.

While Morris and Shin (2009), Rochet and Vives (2004); Vives (2014) and König et al. (2014)

allow the asset liquidation value to depend on the random state, in our model the liquidation

value is exogenous and deterministic. In Rochet and Vives (2004); Vives (2014) and König et al.

(2014) debt investors delegate decisions to fund managers while in our model investors decide

directly.

From a theory perspective, this paper studies the impact on monotonicity when transitioning

from a game with global strategic complementarity between actions (Bulow et al., 1985; Morris

and Shin, 2009; Rochet and Vives, 2004; Vives, 2014; König et al., 2014) to a game exhibiting

one-sided strategic complementarity between actions (Goldstein and Pauzner, 2005; Karp et al.,

2007; Schilling, 2015).

Further related set-ups are Eisenbach (2013) and Szkup (2015) who study roll-over decisions by

short-term debt investors in dynamic settings. A different class of dynamic coordination models

analyzes strategic uncertainty induced by a time-varying fundamental rather than private noisy

signals. He and Xiong (2012) study how asset price volatility, debt maturity and credit lines affect

the risk of debt runs in intertemporal coordination problems between creditors of different debt

maturities. In a related model, Tourre (2015) studies the impact of portfolio liquidity composition

on run behavior of creditors.

2.2 The Model

There are three periods of time 0, 1, 2 an one good (money). There is no discounting between

periods. There is a financial intermediary, denoted by ’the firm’, and two types of agents: a

continuum of short-term debt investors [0, δ], of measure δ ∈ (0, 1), and a single equity investor.

Both types of agents live for two periods. In period 0, debt investors are symmetric and born

each endowed with one unit of the good. Debt investors are risk-neutral and can consume in

either period. The equity investor is risk-neutral and can only consume in period 2. At time zero

she is endowed with measure 1− δ units of the good. Hence, at time zero there is an aggregate

endowment of measure 1 units of the good. Debt investors and equity investors finance the firm’s

investment in a risky asset. Agents are born either as equity or debt investor, agents may not

split their endowments to finance the firm in both ways.7

Investment and Collateralized Borrowing There exists a storage technology and an

illiquid, risky asset in the economy, T . Storage yields the initial investment for sure in every

7This assumption is for tractability reasons.
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period. The risky asset costs one unit of money at the initial period. For every unit invested, it

pays a return H only in period 2 with likelihood p > 0 and pays zero with probability 1− p.
In period 1, the asset pays no return but can be used to raise cash: The firm can pledge fractions

of the asset as collateral to borrow from a third party in the money market. This is done in form

of a repurchase agreement (repo):

A repo transaction has two parties, the firm (the borrower) and a lender. The lender lends cash

to the borrower, the borrower pays interest (repo rate) on the borrowed amount. To reduce the

risk of the transaction to the lender, the borrower posts a collateral which goes into physical

possession of the lender. Borrower and lender agree on that the collateral is returned to the

borrower at a prespecified date if the borrowed amount and interest are paid back. If the collat-

eral accrues interest during maturity of the repo, and the borrower repays, accrued interest goes

to the borrower. If the borrower cannot repay, she defaults on the repo and the lender in the

repurchase agreement may sell the collateral at market price.8

Let fraction ψ ∈ (0, 1] the exogenous amount of cash that can be raised (funding liquidity) when

pledging one unit of the asset as collateral.9 Set the repo rate to zero.10 If the firm can repay

the counterparty of the repo in period 2, she collects interest on the entire investment including

the pledged fraction of the asset. Note that this leads to a major distinction in pay-off structure

compared to the case where the firm has no access to the money market and has to sell parts of

the asset to raise cash.11

The asset’s probability of return p = p(θ) is random and determined by the random state θ ∈ [0, 1]

(see information structure below). The asset’s return function p(θ) is continuously differentiable

in θ, strictly increasing for θ ≤ θ and constant p(θ) = 1 on [θ, 1]. θ denotes the boundary to the

upper dominance region, introduced below.

Debt investors have no access to asset T , only to storage. Debt investors gain indirect access to

T through investing in the firm. The expected asset return exceeds the return from storage

E[p(θ)]H > 1 (2.1)

The firm The firm is the representative financial intermediator of the economy. I normalize

the firm’s balance sheet size to one. Denote by δ ∈ (0, 1) the endogenous fraction of firm’s funds

financed by uninsured short-term debt. The remaining fraction 1 − δ is financed with equity.

This simplified capital structure is without loss of generality when allowing for long-term debt

investors who invest in period zero, have a claim on payments in period 2 and are less senior

8See Brunnermeier and Pedersen (2009)
9Note, ψ is not the ’true’ asset value of the collateral in period 1 but the fraction of the ’true’ value

participants in the money market are willing to pay to accept the asset as collateral (overcollateralization).
Fraction 1− ψ is called the haircut and corresponds to a safety margin to the lender.

10The model can easily be adapted to allow for a strictly positive repo rate, this however out of scope
of the paper.

11Sold parts of the asset do not accrue interest to the previous owner even if the asset is bought back.
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than short-term debt investors.12 By normalization of funds, call δ the firm’s capital structure

or debt ratio. Collected funds of one unit are invests in the risky asset T .13 The firm is in perfect

competition for short-term debt with other firms and maximizes utility to debt investors.

Debt contract I now describe the contracts between debt investors and the firm. By entering

in a debt contract with the firm, debt investors can attain higher returns on their investment

than through investing in storage. Every debt contract is characterized by two coupon payments,

the period 1 coupon r > 1 and period 2 coupon rk < H, k > 1. Henceforth, write (r, k) for the

contract. If a debt investor invests in contract (r, k), she hands her endowment to the firm in

period 0. The contract is liquid from the view of debt investors: In period 1, a debt investor

chooses her action and spontaneously decides whether to pull out (’withdraw ’) her investment

and earn coupon r or to roll over (wait) and earn coupon rk a period later. As a consequence, in

period 0 the number of debt investors who are going to withdraw in the following period is not

known to the firm. If a debt investor decides to withdraw, we will also say that she ’runs’ on the

firm. Debt investors cannot demand a fraction of their investment.14 The parameter k ∈ (1, H/r)

can be seen as an implicit forward interest payment which the firm pays to investors for leaving

funds invested for another period.15

The contract (r, k) and asset return probability function p(·) are such that the expected payoff

from rolling over exceeds payoff from withdrawing

E[p(θ)]kr > r (2.2)

Otherwise, running on the firm was a dominant action. By r > 1 this constraint implies that

expected period 2 payoff from the contract exceeds utility from storage,

E[p(θ)]kr > 1 (2.3)

the contract satisfies ex ante individual rationality.

Endogenous Liquidation At period 1, the maximum measure of withdrawals a firm with

debt ratio δ faces is δr. By seniority of debt, the firm is committed to make the coupon payments

12The capital structure of the firm can be extended to incorporate long-term debt. In this case, the
model needs to specify whether long-term debt investors are equally senior or less senior than short-term
debt investors in period 2. If they are less senior than short-term investors, that is all short-term investors
need to be paid first before long-term investors may be paid, the coordination game remains unchanged
since in that case long-term debt is like equity to short-term debt investors. If long-term debt investors
are equally senior or even more senior than short-term debt investors in period 2, the coordination game
will change compared to the case where long-term funds are financed through equity only since short-term
investors compete with long-term investors for repayments.

13I assume that the firm commits to investing in the asset no matter how the state realizes. By this
assumption, I exclude signaling in a Global Game and circumvent multiplicity of equilibria.

14This assumption is for tractability reasons.
15The assumption k > 1 is necessary, otherwise we had r > kr and withdrawing early was a dominant

action.

54



under the premise of solvency.

Let n ∈ [0, 1] denote the endogenous, ex ante random equilibrium proportion of debt investors

who decide to withdraw in period 1 (aggregate action). Given the contract (r, k) and the measure

of short-term debt funds δ ∈ (0, 1) collected by the firm, in period 1 the firm needs to pay out

measure δrn in cash to withdrawing investors. The firm finances withdrawals by pledging the

fraction nδr/ψ of the asset in the money market as collateral as part of a repo.

A run on the firm occurs, if in period 1 the measure of short-term funds claimed back by

withdrawing investors exceeds the amount that can be borrowed using the asset as collateral.

That is if n ∈ [0, 1] realizes such that

nδr > ψ (2.4)

If funding liquidity ψ is sufficiently high for a given capital structure δ and contract (r, k), the

occurrence of a run can be excluded ex ante. Since the proportion of investors who run on the

firm cannot exceed one, runs are excluded if δr ≤ ψ. We call such a firm run-proof. If instead a

run cannot be excluded ex ante, if δr > ψ, the firm is run-prone.

To shorten notation, define liquidity ratio as

ξ =
ψ

δr
(2.5)

By assumptions, we have δ ∈ (ψ/r, 1], ψ ∈ (0, 1] and ξ ∈ (0, 1) for a run-prone firm and a run

occurs for n > ξ.

Bankruptcy costs and Recovery Value In the incidence of a run, n ∈ (ξ, 1], the firm

cannot borrow enough money to satisfy all debt claims. Thus, she cannot honor her debt,

defaults and goes bankrupt. In this case, a bankruptcy cost for unwinding or reorganizing the

firm applies. I model bankruptcy cost as a multiplier of funding liquidity ψ.16 After bankruptcy

costs are withdrawn, the remaining value is available for distribution to debt investors. Denote

by

γa,b(n, ξ) =
a

ξ
n+ b, b ≥ 0, a ∈ R, 0 < a+ b ≤ 1

H
< 1 (2.6)

the recovery value function, where constants a, b and ξ are exogenous and common knowl-

edge to investors but recovery value γ(n, ξ) is endogenous and ex ante random since the aggregate

action n is random and endogenous. Function γ(n, ξ) should be seen as first order Taylor ap-

proximation in n of a more complex recovery value function in point zero.

16In real world, modeling bankruptcy cost as a multiplier of market liquidity (the amount of cash that
can be realized through selling the asset) is more adequate. This can however easily be integrated in
the model by assuming that market liquidity is a multiple of funding liquidity, see (Brunnermeier and
Pedersen, 2009)
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In case of a run, proceeds γ(n, ξ)ψ are available for distribution to remaining investors where17

γ(n, ξ)ψ < 1, n ∈ [ξ, 1] (2.7)

The constant b (intercept) denotes the part of recovery value which can be realized independently

of the size of the run n while a/ξ (slope) controls how much the scale of the run affects recovery

value. To address a directly, we will call a the slope parameter . A negative a indicates that larger

runs reduce the value to be recovered after bankruptcy compared to smaller runs. A positive a

instead indicates that recovery value increases in size of the run.

Note that recovery value γ might exceed one18, thus liquidity available given bankruptcy γψ

might exceed funding liquidity of the asset ψ if a is sufficiently large.

For a and b small, recovery value γ undercuts one so that 1 − γ has the interpretation of a

bankruptcy cost which corresponds to the percentage of funding liquidity that is lost to debt

investors due to bankruptcy proceedings and the event of a run. If recovery value exceeds one,

bankruptcy cost 1− γ is negative and has the interpretation of a subsidy to debt investors. The

constraint a + b > 0 guarantees that even for negative a and arbitrary liquidity ratio ξ recov-

ery value is strictly positive γ(n, ξ) > 0 for all values of n which imply the occurrence of a run

n ∈ (ξ, 1].19

For the case of a zero intercept b = 0, the recovery value function γ(n, ξ) = a
ξn, a > 0 is linear.

In the case with nonzero intercept b > 0, the function γ(n, ξ) = a
ξn+ b is affine. The distinction

between these two cases will become important later.

Payoffs In the incidence of a run the firm cannot pay the full coupon to withdrawing debt

investors but pays pro rata shares. Investors have a claim on r, nδ is the measure of investors

who withdraw and γψ is available for distribution after applying the bankruptcy cost. Thus, in

case of a run every withdrawing investor receives the share

γψ

δn
=
γξ

n
r (2.8)

17In case of a run 1 ≥ n ≥ ξ = ψ/(δr), a ∈ R, b ≥ 0, a + b > 0 the inequality γ(n, ξ)ψ = anδr + bψ ≤
(a+ b)nδr ≤ (a+ b)r < r/H < 1 holds since δ ∈ (0, 1] and r < rk < H.

18Within the euro area, Emergency Liquidity Assistance (ELA) can be granted to ’solvent financial
institutions’ which face ’temporary liquidity problems’ if refinancing via the interbank market or the facility
of the European Central Bank breaks down (European Central Bank). The emergency loan is provided by
the according national central bank in exchange for assets as collateral to ”prevent or mitigate potential
systemic effects as a result of contagion through other financial institutions or market infrastructures”.
ELA operations can be restricted by the Governing Council of the European Central Bank. Examples
for banks which received emergency loans (ELA) are the German bank Hypo Real Estate in 2008/2009,
Greek banks in 2015 and Cypriot Banks in 2013. The collateral banks post when using ELA may be of
lower average quality than is accepted by the ECB facility. If the liquidity assistance granted for collateral
by the national central bank exceeds the factual funding liquidity of the asset (determined by markets) we
have γ > 1.

19The constraint a+ b ≤ 1
H < 1 guarantees that recovery values in case of runs depend on asset payoffs

and cannot become too large, see the paragraph on payoffs below.
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by definition of ξ.20 Note that the pro rata share is independent of short-term coupon r. By

a+ b < 1, the pro rata share in case of a run undercuts one, γ(n, ξ) ξn = a+ b ξn < a+ b < 1 since

in case of a run n ∈ (ξ, 1]. Hence, withdrawing agents can never recover the full coupon r. Debt

investors who roll over receive zero in case of a run.21

The firm stays liquid in period 1 if she can borrow a sufficiently large amount in the money

market to honour her debt, i.e. if n ≤ ξ. In that case, all withdrawing investors receive r and

the game proceeds to period 2. In period 2, the return of the asset realizes as either H with

probability p(θ) or zero with probability 1 − p(θ).22 In case of zero, remaining debt investors

receive zero and the firm defaults on the repo, i.e. the counterparty of the repo is not paid back

and may sell the collateral at market price. Conditional on success, the firm earns gross return

H and can repay all remaining debt investors and the counterparty of the repo.23

Payoffs Debt Investors I assign the following payoffs to agents:

Event/ Action Withdraw Wait/roll-over

no run,

n ∈ [0, ξ]
r

{
kr , p(θ)

0 , 1− p(θ)
run,

n ∈ (ξ, 1]
γa,b(n, ξ)

ξ
nr 0

Note that we require parameters a and b to be such that γ(n, ξ) > 0 for n ∈ (ξ, 1], otherwise the

game has a dominant strategy to roll over and the coordination game vanishes.24

Debt investor’s utility difference between withdrawing in period 2 versus withdrawing early in

period 1 is given by

v(θ, n) =

{
p(θ) kr − r if n ≤ ξ (no run)

−γ(n,ξ)ξ
n r if n > ξ (run)

(2.9)

Note that for given contract (r, k), payoffs to debt investors are determined by funding liquidity

and short-term debt only through ξ, a ratio of funding liquidity and short-term debt.

20Compare to Schilling (2015) where agents have to queue but are risk-averse.
21Hence, I assume that conditionally on a run bankruptcy law prefers withdrawing investors over those

who extend the maturity of their debt by rolling over. Conditionally on a run, if we treated withdrawing
investors and investors who roll over equally the coordination problem vanishes. This is the case since
conditionally on no run rolling over is always optimal by condition (2.2).

22For instance, a loan is paid back including interest H or the borrower defaults completely.
23This is, since the firm’s net return is H−δ rn−δ(1−n)kr > 0 where she repays δrn to the counterparty

of the repo to obtain back possession of the pledged fraction of the asset and repays δ(1−n)kr to remaining
debt investors. We have H − δ rn− δ(1− n)kr > 0 since H > δkr.

24Avoiding dominant strategies in particular means, a > 0 if b = 0. I assume that the intercept b is
greater or equal to zero.
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Figure 2.1: Payoff difference function v(θ, n) from equation (2.9) plotted for fixed θ as
function of the endogenous proportion of withdrawing debt investors n.

Information Structure Here, I follow Goldstein and Pauzner (2005). In period zero, the

unobservable state θ ∼ U [0, 1] realizes and determines the return probability p(θ) of the asset.

Debt investors share a common prior about state θ in period 0. In period 1, debt investors observe

private, noisy and asymmetric signals about the state and hence the asset return probability

θi = θ + εi, i ∈ [0, δ]

where εi are iid random noise terms, independent of θ and distributed according to U [−ε,+ε].
From the signal structure we see, signals convey information not only about the random asset

return probability p(θ) but also about other investors’ signals.

I assume, there exist states which yield dominant actions (dominance regions).25 There are states

θ and θ such that if θ < θ, withdrawing is a dominant action whereas if θ > θ rolling over is the

dominant action to debt investors. I refer to [0, θ] as the lower dominance region and call [θ, 1]

the upper dominance region. The bound θ depends on the specific contract (r, k) and is given as

the realization of θ such that26

r = p(θ) kr (2.10)

The assumption of existence of the lower dominance region implies that function p(·) takes values

below r/kr = 1/k > 0. For very high states θ ≥ θ, I impose that the asset earns return H

already in period 1 with certainty27, that is with p(θ) = 1. By assumption H > kr > r, the

coordination problem vanishes for state realizations in the upper dominance region. To ensure

25Dominance regions are crucial to obtain an equilibrium selection (Morris and Shin, 2001).
26Payoff kr is the maximum payoff debt investors who roll over can obtain. By design of the contract,

if θ realizes below θ, even in the absence of a run the expected payoff to rolling over is smaller than r for
every n ∈ [0, 1], while conditional on a run investors who roll over receive zero.

27This assumption can be justified by assuming that the firm is an investment expert.
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that debt investors may receive signals from which they can infer that the state has realized in

either of the dominance regions, I assume that noise ε is sufficiently small such that θ(r, k) > 2ε

and θ < 1− 2ε hold. In particular, the bounds to the dominance regions are independent of debt

ratio and asset liquidity.

Note that the dominance regions are independent of funding liquidity ξ and debt δ and hence

independent of liquidity ratio ξ.

Timing In period 0, the state θ and payoff probability p(θ) realize unobservably. Debt and

equity investors invest. In period 1, debt investors observe noisy, private signals and subsequently

choose actions. The aggregate action n (proportion of withdrawing debt investors) realizes which

determines whether the firm defaults due to a run or whether it stays liquid in period 1. In case

of a run, all debt investors receive payoffs according to chosen actions and the game ends. If

the firm stays liquid, the game proceeds to period 2 after paying debt investors who decide to

withdraw. In period 2, the success of the risky investment is determined. In case of success, the

counterparty of the repo and remaining debt investors are repaid, the extra proceeds go to equity

investors. Note that agents choose actions only in period 1.

t0 t1 t2

θi private signals realize, 
actions are chosen
Run/ No run   

θ,p(θ) realize, 
investment

asset return
realizes

2.3 Equilibrium

In order to justify the imposition of the information structure described in the outline of the

model, I briefly discuss equilibrium behavior in the absence of private, noisy and asymmetric

signals.

2.3.1 The Common Knowledge Game

Without signals, all debt investors share a common prior about state θ in period zero and receive

no further information about the state in period 1. By assumption (2.2), the ex ante expected

utility from rolling over exceeds the utility from withdrawing. The presence of the coordination

problem in period 1 gives rise to a Diamond and Dybvig (1983) type situation. There are two

pure equilibria: In the ’good’ equilibrium all debt investors roll over and there is no run. Due

to assumption (2.3) welfare in this equilibrium is higher than in the outcome where all debt

investors store their endowment. In the bad equilibrium all investors panic and withdraw early

which causes a run. In the run equilibrium, due to (2.7) we have γψ ≤ 1, that is aggregate welfare
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is lower than in the outcome where all debt investors store their endowment. There is no means

to determine the ex ante probability for selection of the Pareto-efficient no-run equilibrium within

the model. To achieve an equilibrium selection and definite comparative statics on stability, I

impose the information structure given in the outline of the model.

2.3.2 The Coordination Game

Assume a firm with debt ratio δ offers contract (r, k), faces asset liquidity ψ and recovery value

function γa,b. Let θi an investor’s private signal. A mixed strategy for investor i is a measurable

function si : [0 − ε, 1 + ε] → [0, 1] which assigns a probability that the investor withdraws

early (runs) as a function of her signal θi. A strategy profile is denoted by {si}i∈[0,δ]. A fixed

strategy profile generates a random variable ñ(θ) ∈ [0, 1] which represents the aggregate action,

the proportion of investors who withdraw early, if the unobservable state realizes as θ. The

equilibrium concept I use is Bayesian Nash Equilibrium. All proofs can be found in the Appendix.

Proposition 2.3.1 (Existence and Uniqueness). The coordination game played by debt investors

has a unique equilibrium. The equilibrium is in trigger strategies.

Denote by θ∗ = θ∗(r, k, ξ(δ, ψ), γ,H, p(·)) ∈ [θ − ε, θ + ε] the equilibrium trigger signal. In the

trigger equilibrium, if an investor observes a signal θi < θ∗ she withdraws, if she observes a

signal θi > θ∗ she rolls over debt. In case θi = θ∗ she is indifferent. For the equilibrium is a

symmetric trigger equilibrium played by a continuum of debt investors, the endogenous measure

of investors who withdraw is a deterministic function of the state. The payoff structure to debt

investors (2.9) and hence trigger θ∗ depend on debt and funding liquidity only through liquidity

ratio since also the dominance regions (2.10) are independent of debt and funding liquidity.28 Let

n(θ, θ∗) indicate the endogenous equilibrium proportion of investors demanding early withdrawal

in period 1 when the true state is θ and the trigger is θ∗. The function n(θ, θ∗) is given by the

proportion29 of investors who observe a signal below the trigger θ∗ when the true state is θ. By

the uniform distribution of the error term, we have

n(θ, θ∗) =


1
2 + θ∗−θ

2ε if θ ∈ [θ∗ − ε, θ∗ + ε]

1 if θ ≤ θ∗ − ε
0 if θ ≥ θ∗ + ε.

(2.11)

Note that changes in parameters a and b of recovery value change the trigger θ∗ and by this

function n(θ, θ∗). In addition, changes in parameters a and b change recovery value directly but

also indirectly through the change in n(θ, θ∗).

In figure (2.2), I have plotted the proportion of investors withdrawing as a function of the state

28Introducing the liquidity ratio leads to a parameter reduction since it substitutes debt ratio and
funding liquidity in the model.

29As the continuum of debt investors has measure δ, the proportion of investors observing signals below
the trigger differs from its measure by factor δ.

60



for fixed trigger θ∗. Given state θ, investors observe signals in the range [θ− ε, θ+ ε]. For a state

below θ∗ − ε, all investors obtain signals smaller than the trigger and hence withdraw, n = 1.

Vice versa, for a state above θ∗+ ε, all investors observe signals larger than the trigger and hence

roll over, n = 0.

lower dominance
region

range of states for potential 
miscoordination

upper dominance
region

Figure 2.2: Proportion of debt investors who withdraw as a function of the state

Having established equilibrium uniqueness, the equilibrium trigger signal is pinned down using

the expected payoff difference between actions when all investors use the same trigger θ∗,

D(θi, θ
∗) =

1

2ε

∫ θi+ε

θi−ε
v(θ, n(θ, θ∗)) dθ (2.12)

When observing a signal θi < θ∗, the expected payoff difference D(θi, θ
∗) is negative and the

investor withdraws. When instead she observes θi > θ∗, the payoff difference D(θi, θ
∗) is positive

and she rolls over. When observing a signal equal to the equilibrium trigger a debt investor’s

posterior beliefs on the state and the proportion of withdrawing investors n need to be such

that in expectation utility from withdrawing equals utility from rolling over. The trigger is thus

implicitly defined by the payoff indifference equality (PIE)

D(θ∗, θ∗) = 0 (2.13)

Graphically, as signals become precise the trigger is located between the dominance regions [θ, θ]

in a way such that the area under the curve in figure (2.1) equals zero. Conditional on the

observation of the trigger signal θi = θ∗, an investor’s belief about the proportion of withdrawing

agents n is uniform over [0, 1] (Laplacian Belief).30 Consequently, with slight abuse of notation

I can write the PIE using (2.9) and (2.11) as

30We obtain P(n < z|θi = θ∗) = P
(
1
2 + εi

2ε < z
)

= z for z ∈ [0, 1] by (2.11).
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0 = −ξr
∫ 1

ξ

γ(n, ξ)

n
dn+

∫ ξ

0
p(θ(n, θ∗)) kr − r dn (2.14)

where θ(n, θ∗) = θ∗ + ε (1− 2n) is the inverse of n(θ, θ∗) for θ ∈ [θ∗ − ε, θ∗ + ε]. In period 1, a

run takes place if the measure of funds claimed by withdrawing debt investors nδr exceeds the

measure of funds the firm can raise by pledging the asset as collateral ψ, or equivalently if n

realizes such that n > ξ. The payoff difference between rolling over and withdrawing conditional

on a run is thus negative (integrand of first integral in (2.14)). If instead endogenous withdrawals

realize low, n ≤ ξ, the firm can borrow enough cash in the money market to satisfy all interim

debt claims and hence stays liquid. Further, if the asset pays in the second period, all debt

claims of investors who rolled over can be satisfied, the counterparty of the repo can be repaid

and equity value becomes strictly positive.31 Thus, conditional on no run, the payoff difference

is given by the integrand of the second integral in (2.14).

2.3.3 Probability of Runs

Before stating the main results, I briefly explain why the equilibrium trigger signal θ∗ and the ex

ante probability of runs coincide when signals become arbitrarily precise.

If the state realizes such that in the interim period claimed withdrawals just equal available

liquidity, the firm is on the edge of becoming unable to repay debt investors in period 1. I call

this state the critical state θb implicitly defined by

n(θb, θ
∗) = ψ/(δr) = ξ (2.15)

Since n is a weakly decreasing function of state θ, the larger the critical state θb, the smaller the

proportion of investors necessary to cause a successful run. Vice versa, if liquidity ratio ξ is large,

the firm can bear a larger proportion of investors deciding to withdraw without being subject to

a run, hence the critical state must become smaller as ξ increases (see figure 2.2). By equation

(2.11) and (2.16), the critical state depends on noise and trigger, and is given as

θb = θ∗ + ε

(
1− 2

ψ

δr

)
= θ∗ + ε (1− 2 ξ) (2.16)

As depicted in figure (2.2), for state realizations smaller than the critical state a run occurs because

the value of claimed funds exceeds funding liquidity of the asset. By the uniform distribution of

states the probability of a run equals

P(run occurs) = P(θ ≤ θb) = θb (2.17)

31I exclude that the firm may replace withdrawn deposits with other funds to simplify the analysis.
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In the sequel, we say that signals become precise or noise vanishes, if the support of the idiosyn-

cratic, random shock collapses to a single point, ε → 0. As signals become precise, the critical

state converges to the trigger, θb → θ∗ as ε → 0, thus as noise vanishes the trigger directly

represents the firm’s liquidity risk (ex ante probability of runs).

Lemma 2.3.1. As noise vanishes, the trigger θ∗ coincides with the ex ante probability of a run

θb.

*

RUNS
NO RUNS

PANIC RUNS

Figure 2.3: The size of the trigger determines the range of states for which panic runs
occur

Note that by (2.16) at the limit any partial derivative of the run probability equals the partial

derivative of the trigger θ∗.

As a consequence of Lemma 2.3.1, at the limit state realizations above the trigger lead to successful

coordination while realizations below the trigger lead to runs. The greater the trigger, the greater

the ex ante risk of a run. The bound to the lower dominance region θ is independent of capital

structure, liquidity ratio or recovery value. Next, I analyze how the trigger θ∗ changes for varying

constellations of those three parameters. This is interesting since the range of state realizations

between the lower dominance region and the trigger yield panic or self-fulfilling runs, which

cannot be attributed to asset return risk.

2.3.4 Recovery Value after Bankruptcy

In Schilling (2015) we have seen that probabilities of runs are non-monotone in liquidity ratio

under partial repay if recovery value is fixed at b = 1, a = 0. In this section I analyze, how proba-

bilities of runs change in recovery value and how probabilities behave in liquidity ratio depending

on composition of recovery value as introduced in equation (2.6).

Liquidity ratio ξ, by equation (2.5), measures the liquidity gap (mismatch) between firm assets

and short-term liabilities. If liquidity ratio is low, the amount of debt that could be claimed

on short notice by withdrawing investors is much higher than the amount of cash the firm can

raise through pledging assets. Hence, the smaller the liquidity ratio, the greater the liquidity

mismatch, that is the wider the gap between liquidity available by pledging the asset and po-

tential short-term liquidity withdrawals by debt investors. Conversely, if liquidity ratio is one,
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the amount of short-term debt that could be claimed equals the asset’s funding liquidity and the

possibility of a run due to a liquidity squeeze vanishes. In that case the firm is ’run-proof’, and

the outcome is trivial, investors always roll over unless they observe signals in the lower domi-

nance region. To keep the analysis interesting, in the remaining paper the firm is run-prone, ξ < 1.

Monotonicity versus Non-Monotonicity

Proposition 2.3.2 (Probability of runs in recovery value). Fix contract (r, k) and let noise

vanish.

i) If the recovery value function is linear γ(n, ξ) = n
ξ a > 0, b = 0, a > 0, then as noise vanishes

the probability of a run is monotone decreasing in liquidity ratio ξ.

ii) If the recovery value function is affine γ(n, ξ) = n
ξ a+ b with b > 0, the probability of a run is

a hump-shaped function of liquidity ratio: the probability of a run takes its unique maximum at

interior liquidity ratio ξ∗(a, b, r, k, (H, p(·))) ∈ (0, 1), strictly increases in liquidity ratio on (0, ξ∗)

and strictly decreases on (ξ∗, 1).

Proof. Appendix

Note in particular, that in the affine case the maximizer ξ∗ does not depend on debt ratio or

funding liquidity. Debt ratio and funding liquidity impact liquidity ratio but not the maximizing

liquidity ratio.

Corollary 2.3.1. Let noise vanish. If the recovery value function is linear, stability improves

monotonically in liquidity ratio and deteriorates in liquidity mismatch. The probability of a run

is minimized in ξ = 1 and has its supremum in ξ = 0.

*

Figure 2.4: For b > 0, the trigger and hence probability of runs is a hump-shaped function
of liquidity ratio ξ and takes its unique interior maximum in ξ∗

Both liquidity ratio and bankruptcy costs impact coordination. Unless the intercept of recovery

value b is zero, by Proposition (2.3.2) there exists a unique, interior, run probability- maximizing

liquidity ratio ξ∗. Thus in this case, the intuition that a higher liquidity ratio (lower liquidity

mismatch) in general leads to more stability turns out wrong. If liquidity ratio lies below ξ∗, the
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trigger and hence run probability increase as liquidity mismatch becomes smaller (liquidity ratio

increases) since coordination among debt investors is worsened. Only for liquidity ratios above

maximizer ξ∗ (case b > 0) or in the case where the intercept of recovery value is zero b = 0, the

intuition that smaller liquidity mismatch (larger liquidity ratio) leads to lower run probability

holds.

Result ii) in Proposition (2.3.2) was developed in Schilling (2015) for the special case of zero

bankruptcy costs a = 0, b = 1. I briefly give two examples to improve the understanding of the

non-monotonicity result and then proceed to explaining why the case of general recovery values is

interesting from a theory perspective but also from an applied perspective when thinking about

supranational capital and liquidity regulation under varying national bankruptcy law and hence

costs.

For a given asset (H, p(·)), I call stability θ∗ attainable at contract (r, k) if there exists a liquidity

ratio ξ ∈ (0, 1) which achieves stability θ∗, θ∗ = θ∗(r, k, (H, p(·)), γa,b, ξ).
Since ξ is a ratio, every equilibrium θ∗ can be attained by infinitely many combinations of debt

and funding liquidity. In particular, two assets with same risk profile (H, p(·)) but different

funding liquidity can achieve the exact same stability level if debt ratios are sufficiently adjusted:

Example 2.3.4.1 (Indeterminacy of stability in funding liquidity). At contract (r, k) and asset

(H, p(·)) denote the pairs of debt and funding liquidity by (ψ1, δ1) = (0.8, 0.72) and (ψ2, δ2) =

(0.2, 0.18) and assume δ1r > ψ1, δ2r > ψ2 (e.g. r ≥ 1.12) such that the firm is prone to runs

under each pair. Then both pairs yield the same equilibrium and hence stability since

ξ1 =
0.8

0.72r
=

0.2

0.18r
= ξ2 (2.18)

and hence θ∗(ξ1) = θ∗(ξ2).

By Proposition 2.3.2, for affine recovery value functions γa,b with b > 0 the function θ∗(ξ) is not

one-to-one. Therefore, every equilibrium θ∗(ξ) and its corresponding stability level is not uniquely

attainable with respect to liquidity ratio. For given attainable θ∗ there can exist liquidity ratios

ξ1 6= ξ2 with θ∗(ξ2) = θ∗(ξ1).

Similarly, at contract (r, k) and asset (H, p(·)), by Proposition 2.3.2, a decrease in debt ratio alone

does not allow a qualified statement about the change of stability if the recovery value function

is affine. How the trigger θ∗ reacts to changes in debt ratio depends on funding liquidity and

whether the change causes liquidity ratio to move towards or away from the trigger maximizing

liquidity ratio:

Example 2.3.4.2 (Indeterminacy of stability: Drops in funding liquidity). Fix contract (r, k) =

(1.03, 1.15) and recovery value function γ(n, ξ), b > 0. Assume, the trigger θ∗(ξ) is uniquely

maximized at ξ∗(γ) = 0.4 and consider two distinct debt ratios δ1 = 0.6 and δ2 = 0.3.

i) Assume funding liquidity of the asset is ψ = 0.25. In this setting the firm is prone to runs
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under both debt ratios δ1, δ2 >
ψ
r = 0.24. Changing debt ratio from δ1 to δ2 causes a change in

liquidity ratio from 0.25
0.6×1.03 = 0.41 to 0.25

0.3×1.03 = 0.81. Since both values exceed the maximizer ξ∗

and the change in debt causes liquidity ratio to increase and move away from the maximizer, by

Proposition 2.3.2 the trigger (probability of a run) falls and stability increases.

ii) Now assume instead funding liquidity is ψ = 0.1. Maximizer ξ∗ is not affected by this change.

Again both debt ratios satisfy the new condition δ1, δ2 >
ψ
r = 0.1. Changing debt ratios from δ1

to δ2 causes a change in liquidity ratio from 0.1
0.6×1.03 = 0.16 to 0.1

0.3×1.03 = 0.32. This time both

liquidity ratios undercut the maximizer. Hence, the change in debt ratio has led to an increase in

the trigger and thus a decrease in stability.32

These stylized examples demonstrate that debt ratio or funding liquidity alone are not sufficient

to make a statement about firm stability. Only the combination of debt and funding liquidity

uniquely pins down equilibrium behavior of debt investors.

The impact of recovery value on stability

I next analyze the interaction of non-monotonicity and recovery values after bankruptcy.

Proposition 2.3.3. At the limit, for every liquidity ratio ξ ∈ (0, 1) the probability of runs θ∗

increases in both parameters of recovery value, slope parameter a and intercept b

By the Proposition, more cost efficient bankruptcy proceedings lead to ex ante higher run prob-

abilities and lower stability independently of capital structure or asset funding liquidity.

As a consequence of the Proposition, increases in parameters a or b in fact lead to pointwise

increases in recovery value function γ(n(θ, θ∗), ξ) for every state θ and every liquidity ratio ξ if

a is nonnegative: An increase in a or b increases recovery value γ directly in a first order effect.

In addition, an increase in a or b increases the trigger und thus weakly increases the aggregate

action n(θ, θ∗) pointwise for every state θ which again increases γ in a second order effect for

every θ. Thus, if a and b are positive, increases of these parameters translate to increases in bank

run probability and recovery value. In addition, increases in bank run probability translate to

increases in recovery value if a is positive.

If a is negative, an increase in b not necessarily leads to an increase in recovery value γ. This is

since increasing b on the one hand increases γ directly but also leads to a decrease in γ through

an increases of the trigger θ∗ and hence function n(θ, θ∗) in every point (state) θ.

Corollary 2.3.2. Let a ≥ 0 and let noise vanish. An increase in recovery value through either

an increase in intercept b or slope parameter a monotonically increases the ex ante probability of

runs.

In particular, the more generous a lender of last resort intervenes, the larger a, the larger the

probability of runs since debt investors anticipate larger recovery values which increases incentives

32The size of maximizer ξ∗(γ) = 0.4 is an out of equilibrium assumption.

66



to run. Similarly, the more efficient national bankruptcy proceedings, i.e. the smaller bankruptcy

fixed costs, the larger b and the greater the probability of runs.

Next, we are interested in how maximizer ξ∗(a, b) changes as the recovery value function varies

in slope parameter a and intercept b.

Proposition 2.3.4 (Non-monotonicity varies in recovery value). Fix contract (r, k). Assume the

recovery value function is affine. At the limit, the liquidity ratio ξ∗(a, b) which maximizes the

probability of a run strictly decreases in both recovery value determining parameters a and b.

Proof. Appendix

Figure 2.5: For every b > 0, the trigger θ∗ is maximized at interior liquidity ratio ξ∗b .
As b declines, the maximizer increases. For b → 0, the maximizer converges to the right
boundary and the trigger becomes a monotone increasing function in ξ. By Proposition
(2.3.3), for every given liquidity ratio ξ the trigger increases pointwise in parameter b of
recovery value.

Let us now look at how different bankruptcy laws in countries affect how changes in funding

liquidity impact stability:

Example 2.3.4.3 (Stability under distinct bankruptcy laws). A financial firm offers contract

(r, k) = (1.05, 1.02), invests in asset (H, p(·)) and has capital structure δ = 0.6. There are two

countries, where in country A due to different bankruptcy laws recovery value γA is smaller than

recovery value γB in country B, 0 < γA < γB with slope parameters aA = aB but intercepts

bB > bA > 0, that is in country B the fixed fraction of recovery value is larger.

i) Assume the financial firm is based in country A , asset funding liquidity is ψ1 = 0.2 and the

maximizing liquidity ratio is ξ∗(γA) = 0.4. The liquidity ratio of the firm is ξ1 = 0.2
1.05×0.6 = 0.32

which is below ξ∗(bA), see Figure 2.6. Now assume funding liquidity drops to ψ2 = 0.1. The new

liquidity ratio becomes ξ2 = 0.1
1.05×0.6 = 0.16 and has thus moved away from ξ∗. By Proposition

2.3.2 the firm has become more stable, the bank run probability is decreased.

ii) Now assume, the firm moves to country B where due to different bankruptcy law recovery value
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is increased. By Proposition 2.3.4 the maximizer in country B has to be smaller at ξ∗(γB) = 0.1

than in country A. Before the drop of funding liquidity, the firms’ liquidity ratio ξ1 = 0.32 lies

above the new maximizer ξ∗(γB). After the drop of funding liquidity the firm’s liquidity ratio

ξ2 = 0.16 is still above but has decreases towards maximizer ξ∗(bB). The bank run probability has

increased.33

Figure 2.6: The change in stability depends on whether the change in liquidity ratio ξ
leads to a move towards or away from the maximizer ξ∗. In country A, the drop in funding
liquidity causes liquidity ratio to move away from maximizer ξ∗A while in country B the
same drop in liquidity induces a move towards the maximizer in country B, ξ∗B.

A similar example can be constructed using changes in debt instead of changes in funding liquid-

ity. Country specific bankruptcy costs affect the size of maximizer ξ∗ by Proposition 2.3.4. For

fixed funding liquidity, changes in debt influence the size of liquidity ratio. To determine how

stability changes in debt the direction of movement and position of liquidity ratio relative to the

maximizer are both decisive. Hence, for the same change of debt and hence liquidity ratio it can

be that liquidity ratio moves away from the maximizer in country A but towards the maximizer

in country B.

The last example in particular demonstrates that capital and liquidity regulation should take into

account differences in fixed costs associated with national bankruptcy proceedings. Regulation

that is stability enhancing in one country may have a destabilizing effect in another country with

different bankruptcy laws. The next example concerns differences in costs that depend on the

scale of the run such as interventions by a lender of last resort. The example demonstrates that

countries in which a lender of last resort acts more generously should impose tighter liquidity

and capital regulation on financial firms.

Example 2.3.4.4. Imagine two countries G and I where the corresponding national central bank

acts as lender of last resort in case of a run. Assume the central bank in country G intervenes

33The size of maximizers ξ∗(γA) = 0.4 and ξ∗(γB) = 0.1 are out of equilibrium assumptions.
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more generously during a run than country I, slope parameters satisfy aG > aI > 0 with intercept

bG = bI = 0. Assume both countries agree on liquidity regulation, that is balance sheets of

financial firms in both countries must be composed in a way that liquidity ratio is larger or

equal than ξ. By Propositions 2.3.2 and 2.3.3, at every liquidity ratio ξ the recovery value and

probability of runs is higher in country G compared to country I. In particular at the lower bound

on liquidity ratio imposed by regulation ξ, stability level in country G undercuts stability level in

country I. Hence, to guarantee the same minimum level of stability in country G as in country

I, liquidity regulation in country G needs to be tighter at some liquidity ratio ξ
G

, see Figure

2.7. Assuming that funding liquidity for the specific asset in both countries coincides, the lower

bounds ξ > ξ
G
> ξ

I
for liquidity ratio by equation (2.5) transfer directly to upper bounds for

capital structure δ < δG < δI . To guarantee the same minimum level of stability in country G as

in country I, capital regulation in country G needs to be tighter.

Figure 2.7: Since recovery value after runs is higher in country G compared to country
I, country G needs to impose tighter liquidity regulation ξ

G
> ξ to guarantee the same

minimum level of stability as in country I, θ∗ ≤ θ∗I (ξ) = θ∗G(ξ
G

).

Capital Structure and Recovery Value

I now connect the results on recovery value with the firm’s capital structure. Note that for given

contract (r, k) and funding liquidity ψ the value of liquidity ratio ξ = ψ
δr is pinned down by

capital structure δ. As a corollary of Propositions 2.3.2 and 2.3.4, I obtain a result already seen

in Schilling (2015) for the special case of no bankruptcy costs b = 1, a = 0.

Corollary 2.3.3 (Probability of runs and debt). Fix contract (r, k), parameters of recovery value

(a, b), funding liquidity ψ and let noise vanish.

i) If recovery value function is linear γ(n, ξ(δ)) = n
ξ(δ)a with b = 0, a > 0, the probability of a run

monotonically increases in debt.

ii) If recovery value function is affine γ(n, ξ(δ)) = n
ξ(δ)a + b, b > 0, the probability of a run
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increases in debt for smaller debt values δ ∈ (ψr , δ∗(a, b)), decreases in debt for large debt values

δ ∈ (δ∗(a, b), 1) and is maximized at interior debt ratio

δ∗(a, b) =
ψ

ξ∗(a, b)r
∈
(
ψ

r
, 1

)

The probability of a run is locally minimized at debt ratios δ = 1 (full debt financing) and δ = ψ
r

(no proneness to runs).

Applying the result on comparative statics of the maximizer ξ∗(a, b) in recovery value, by Propo-

sition 2.3.4, I obtain

Proposition 2.3.5. Fix (r, k, a, b, ψ) and let noise vanish. If recovery value is affine γ(n, ξ(δ)) =
n
ξ(δ)a+ b, b > 0, the debt ratio which maximizes the probability of a run δ∗(a, b) increases in both

recovery value determining constants a and b.

Figure 2.8: For b > 0, the trigger and hence probability of runs is a hump-shaped function
of debt ratio δ and takes its unique interior maximum in δ∗. Note that by Proposition
2.3.3, for every given debt ratio δ the trigger monotonically increases in parameter b of
recovery value. Thus, the curve θ∗b1(δ) for instance lies above curve θ∗b2(δ).

Combining Proposition 2.3.5 with Proposition 2.3.3, we see very nicely that for slope parameter

a ≥ 0 an increase in intercept of recovery value function in a first effect increases the probability

of runs at every liquidity ratio and hence for given funding liquidity at every debt ratio δ. In a

second effect, the increase in intercept shifts the maximizing debt ratio δ∗ upwards.

If the intercept is zero, the probability of runs is monotone. However, increases in slope parameter

also increase the probability of runs at every debt ratio as seen in Figure 2.7.
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2.3.5 Intuition

By Proposition 2.3.2, a strictly positive intercept of recovery value b > 0 is responsible for the

occurrence of a non-monotonicity in the probability of a run. This result is due to a change in the

game structure when recovery value has zero intercept b = 0 compared to a game where recovery

value has intercept b > 0:

Both games for b > 0 and b = 0 have in common that conditional on no run n ≤ ξ the incentive to

withdraw versus roll over is constant in the proportion of other agents who withdraw (aggregate

action n), see equation (2.9) and figure (2.1). The game structures differ when conditioning on

the occurrence of a run. For b > 0, conditional on a run occurring, the payoff difference from

withdrawing versus rolling over depends on and strictly decreases in the aggregate action n,

(γξ/n) r = (a + b ξn) r. This holds since the payoff from rolling over is fixed at zero if a run has

happened. For a recovery value function with b = 0, the payoff difference from withdrawing from

the firm versus rolling over conditional on a run is constant i.e. independent of the aggregate

action n: Conditional on a run, a withdrawing agent receives (γξ/n) r = a r.

Figure 2.9: Payoff difference function v(θ, n) from equation (2.9) plotted for varying values
of b. For the special case b = 0, function v becomes a step function and is particularly con-
stant in n for n ≥ ξ which gives rise to a game structure with global strategic complements
in actions.

The intercept b of recovery value controls how fast the incentive to withdraw decreases relative to

rolling over since it influences the slope of the payoff difference function v(θ, n) in n as well as the

values of v in n = ξ and n = 1. The smaller b, the more clinched and flatter the curve v for n > ξ

and the slower the change of relative incentives, see Figure 2.9. Further, by Proposition 2.3.4,

the smaller b, the larger maximizer ξ∗ and hence the larger the range of liquidity values (0, ξ∗)
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for which the probability of runs increases in liquidity ratio and decreases in liquidity mismatch.

As b goes to zero, the curve v for n > ξ approaches the constant −ar and the change of v in n

goes to zero.

From a theory perspective, the game with recovery value b > 0 is such that there is one-sided

strategic substitutability between actions (see Goldstein and Pauzner (2005); Karp et al. (2007);

Schilling (2015)) conditional on a run. Further, there is (weak) one-sided strategic complemen-

tarity between actions conditional on no run independently of the size of b. In Figure 2.1, we

see for b > 0, conditional on a run i.e. for n > ξ the payoff difference function v(n) jumps from

positive constant p(θ)kr − r > 0 to the negative value −(a+ b)r and becomes upward sloping in

n.

The intercept of recovery value b controls the extent of strategic substitutability between actions

through the slope of v and by this controls the non-monotonicity. As the intercept of recovery

value b goes to zero, strategic substitutability between actions vanishes since the payoff difference

becomes constant in n while strategic complementarity between actions conditional on no run

remains. Actions become global strategic complements. As b → 0 the maximizer ξ∗ vanishes

and the probability of a run becomes monotone decreasing in liquidity ratio. Thus, for b → 0 I

recover the results by Morris and Shin (2009) and Rochet and Vives (2004) which were obtained

in games exhibiting global strategic complementarity between actions. 34

Schilling (2015) suggests that partial repay of deposits to debt investors in case of a run and

the corresponding one-sided strategic substitutability in actions is responsible for the arise of

the non-monotonicity of the probability of runs in debt. In this paper I show, monotonicity can

be achieved under partial repay as long as the recovery value function is such that one-sided

strategic substitutability in actions vanishes and actions are global strategic complements. We

obtain monotonicity under partial repay as soon as recovery value solely depends (linearly) on

size of the run and has no intercept.

In an economic context these results imply, as soon as we believe that recovery values after runs

are to some extent determined by a constant independent of the size of the run (intercept b > 0),

we have to deal with non-monotonic probabilities of runs not only in liquidity ratio but also in

debt.

2.3.6 Welfare

In this subsection I analyze, how parameters of recovery value impact debt investors ex ante

utility (consumer welfare) inferred from a contract (r, k).

Proposition 2.3.6 (Welfare in Recovery Value). Let noise vanish. For every contract (r, k) and

every slope a ≥ 0 there exists a bound for liquidity ratio ξ
b

such that debt investors’ utility from

34Note that b = 0 requires a > 0 since for fixed ξ I demand recovery value γ to be strictly positive for
all n ∈ [ξ, 1].
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the contract strictly increases in recovery value intercept b when liquidity ratio exceeds the bound

ξ ≥ ξ
b
.

For every contract (r, k) and every intercept b ≥ 0 there exists a bound for liquidity ratio ξ
a

such

that debt investors’ utility from the contract strictly increases in recovery value slope parameter

a when liquidity ratio exceeds the bound ξ ≥ ξ
a
.

In general, greater recovery values do not necessarily improve debt investors’ welfare from con-

tracts. Intuitively, this is since recovery values larger in intercept b or slope parameter a make the

event of a run more likely, see Proposition 2.3.3. Conditional on a run, however, greater recovery

values benefit investors. When determining how recovery values impact welfare, investors trade

off higher probability of no run under low recovery values versus higher payoffs conditional on

a run under higher recovery values. As the analysis shows, the effect is unambiguous only if

liquidity ratios are sufficiently high since in this case the probability of a run becomes close to

constant in recovery values.

2.4 Conclusion

This paper is to the best of my knowledge the first to analyze the impact of size and composition

of endogenous recovery values after bankruptcy on stability of financial firms against runs by

debt investors. When financial firms invest in illiquid, long-term assets and finance by liquid,

uninsured debt, the potential of a liquidity squeeze arises: When tomorrow too many investors

prematurely demand back their deposits the firm needs to transform illiquid assets to cash quickly.

If the number of withdrawing agents is too large, due to asset illiquidity the firm cannot satisfy

all claims and goes into default (run). If the firm defaults, agents who did not claim their deposit

receive zero. Knowing this in advance, uninsured debt investors face a coordination problem.

Invoking the theory of global games, I derive a unique equilibrium of the game which allows us

to study ex ante probability of runs as a function of the primitives such as capital structure,

liquidity mismatch and composition of recovery value.

After a run, the firm goes into bankruptcy for liquidation or reorganization. This process is

in general associated with costs. Therefore, not asset liquidity but the recovered value after

bankruptcy is distributed back to debt investors. I model recovery value as an affine function

of the endogenous, random size of the run (slope) plus a size independent constant (intercept).

While the intercept is associated with fixed costs caused by the bankruptcy proceedings, the slope

can be interpreted as an intervention by a lender of last resort in the course of a run on the firm.

As main contribution of the paper, I show that high recovery values achieved by cost efficient

bankruptcy proceedings or generous government interventions are never desirable from a stability

perspective and only sometimes desirable from a consumer perspective. I show, the probability

of runs increases in both, slope and intercept of recovery value. Thus, larger recovery values are

detrimental to firm stability since it increases incentives to run on the firm. The composition
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of recovery values effects run probabilities differently. The presence of the intercept makes run

probabilities hump-shaped in debt and liquidity ratio, where the non-monotonicity alters in the

intercept. With zero intercept, run probabilities are monotone as in Morris and Shin (2009) and

Rochet and Vives (2004). Also, greater recovery values in general do not lead to higher wel-

fare to debt investors unless liquidity ratio is sufficiently high, since recovery values increase run

probabilities. As a consequence of the non-monotonicity, drops in funding liquidity or changes in

capital structure can both decrease or increase the run probability depending on national differ-

ences in recovery value after bankruptcy. Countries with a more generously intervening lender

of last resort need to impose tighter capital and liquidity regulation to guarantee same stability

levels as countries where a lender of last resort intervenes more restrained. These findings are

interesting since agreements on supranational capital and liquidity regulation (Basel 3) do not

take into account differences in national bankruptcy proceedings and costs.

The most crucial constraint of this paper is, that funding liquidity ψ is assumed to be exogenous

and common knowledge. In real world, liquidity varies according to macroeconomic parameters

and asymmetric information. Further, slope and intercept of recovery value are assumed to be

common knowledge. Knowledge of the intercept can be justified since several empirical stud-

ies provide estimates on recovery values such as Thorburn (2000), Franks and Torous (1994),

Acharya et al. (2003) and Bris et al. (2006). Information about ELA, in connection to the slope,

is more difficult to obtain.35 I model recovery values as affine function of the size of the run.

This choice can be seen as first order Taylor approximation of a more complex recovery value

function.

35Bank of Cyprus and Laiki Bank obtained a combined volume of around 11 bn euro in 2013, see
Attalides et al. (2015). To obtain the slope parameter, knowledge of the volume of withdrawn funds in the
course of the runs on both banks and liquidity of assets posted as collateral to obtain ELA is necessary.

74



2.5 Appendix

Appendix A: Existence and Uniqueness of Equilibrium

Proof. [Proposition 2.3.1] The existence and uniqueness proof of a trigger equilibrium and the

proof that a non-threshold equilibrium cannot exist is as in Goldstein and Pauzner (2005) with

λ = 0 and u(·) = id. Uniqueness of a threshold equilibrium alternatively holds due to Lemma 2.3

in Morris and Shin (2001) by the following properties: i) The payoff difference function v from

equation (2.9) satisfies single-crossing in the aggregate action n (figure (2.1), ii) the monotone

likelihood ratio property holds for the uniform distribution of noise, iii) state monotonicity holds,

the function v(θ, n) is monotone in θ, iv) there is limit dominance, either action can be dominant

if the state realizes sufficiently high or low, v) the expected payoff difference is continuous in the

signal θi and vi) it can be shown that there exists a unique signal at which the expected payoff

difference is zero.

I give a short intuition here, why a unique trigger equilibrium exists for the general recovery value

function γ(n, ξ) with b ≥ 0: Given that all other investors play a trigger strategy around signal

θ∗, a trigger equilibrium exists if a single investor also finds it optimal to withdraw for signals

θi < θ∗ and to roll over for signals θi > θ∗. That is, we demand (a) D(θi, θ
∗) < 0 for θi < θ∗ and

(b) D(θi, θ
∗) > 0 for θi > θ∗. Continuity of the integral D(θi, θ

∗) in signal θi holds by Lemma A1

(i) in Goldstein and Pauzner (2005) and ensures indifference in θi = θ∗, D(θ∗, θ∗) = 0 if (a) and

(b) hold. Existence of a signal which satisfies D(θ∗, θ∗) = 0 follows by the existence of dominance

regions and continuity of D(θ∗, θ∗) in θ∗ by Lemma A1 (ii) in Goldstein and Pauzner (2005): If the

state realizes high enough in the upper dominance region and ε is small, the investor observes a

very high signal such that rolling over is optimal D(θi, n) > 0 independently of n, similarly, if the

state realizes low enough in the lower dominance region, the investor observes a very low signal

such that withdrawing is dominant D(θi, n) < 0. Uniqueness of a signal satisfying D(θ∗, θ∗) = 0

holds since by Lemma A1 (iii) in Goldstein and Pauzner (2005), D(θ∗, θ∗) strictly increases in θ∗

as long as signal θ∗ lies below θ̄ + ε since the probability function p(·) strictly increases in the

state for states below the bound to the upper dominance region. Uniqueness follows since for

signals above θ̄+ε the definition of the upper dominance region yields D(θi, θ
∗) > 0. Therefore, a

unique candidate for a threshold equilibrium exists. To show that this candidate also satisfies (a)

and (b), Goldstein and Pauzner (2005) decompose the intervals [θi− ε, θi + ε] and [θ∗− ε, θ∗+ ε],

use D(θ∗, θ∗) = 0 and the single crossing property of v(θ, n(θ, θ∗)) in θ, see (A8) and (A9) in

their proof to Theorem 1 B.

The proof why a non-threshold equilibrium cannot exist is less intuitive, and fully given in

Goldstein and Pauzner (2005) proof of Theorem 1 C. We can apply Theorem 1 C since the

necessary characteristics of the functions for the proof to hold remain valid: due to γ(n, ξ) > 0

for all n ∈ (ξ, 1], the payoff difference function v(θ, n) satisfies single-crossing and is monotone

in n when it is nonnegative for every b ≥ 0. Further, v remains strictly negative for all n > ξ.
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A difference to the model in Goldstein and Pauzner (2005) is that here the function v jumps in

n = ξ from p(θ)rk− r to −(a+ b)r. This however does not impact continuity of the integral over

v.

Appendix B: Comparative Statics

Proof. [Proposition 2.3.2] Let n(θ, θ∗) the measure of agents demanding early withdrawal in

period 1 when all agents use trigger θ∗ and the state of the world is θ. The payoff indifference

equality which implicitly determines the trigger θ∗(r, δ) as a function of the firm’s primitives

(r, k, δ, ψ, γa,b) away from the limit is given by D(θ∗, θ∗) = 0. By the proof of Theorem 1 and

changing variables from θ to n using (2.11) I obtain

D(θ∗, θ∗) =
1

2ε

∫ θ∗+ε

θ∗−ε
v(θ, n(θ, θ∗)) dθ =

∫ 1

0
v(θ(n, θ∗), n) dn (2.19)

where

θ(n, θ∗) = θ∗ + ε (1− 2n) (2.20)

is the inverse of n(θ, θ∗) for θ ∈ [θ∗ − ε, θ∗ + ε]. Hence,

0 = D(θ∗, θ∗) =

∫ 1

0
v(θ(n, θ∗), n) dn (2.21)

Plugging in for the function v from (2.9) I obtain the payoff indifference equation

0 = −ξr
∫ 1

ξ

γ(n, ξ)

n
dn+

∫ ξ

0
(p(θ(n, θ∗)) kr − r) dn (2.22)

Set

f̂(θ∗, ξ) = −ξr
∫ 1

ξ

γ(n, ξ)

n
dn+

∫ ξ

0
p(θ(n, θ∗)) kr − r dn (2.23)

We have

∂

∂θ∗
f̂(θ∗, ξ) = kr

∫ ξ

0
p′(θ(n, θ∗))

∂

∂θ∗
θ(n, θ∗) dn

= kr

∫ ξ

0
p′(θ(n, θ∗)) dn > 0 (2.24)

since ∂
∂θ∗ θ(n, θ

∗) = 1. For ε → 0 we have θ(n, θ∗) → θ∗. Since p(·) is continuous and defined on

a compact interval, p′(·) is bounded. Thus, with Lebesgue’s Dominated Convergence Theorem,

∂

∂θ∗
f̂(θ∗, ξ)→ ξ p′(θ∗) kr (2.25)
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Comparative Statics of Trigger in liquidity ratio

To obtain ∂θ∗

∂ξ , I use the Implicit Function Theorem and need to calculate ∂f̂
∂ξ . Then,

∂θ∗

∂ξ
= −

∂f̂
∂ξ

∂f̂
∂θ∗

(2.26)

For γ(n, ξ) > 0 for all n ∈ [0, 1], ξ ∈ (0, 1) using Leibniz’ rule

∂

∂ξ
f̂(θ∗, ξ) = −r

1− γ(ξ, ξ) +

∫ 1

ξ

γ(n, ξ) + ξ
(
∂
∂ξγ(n, ξ)

)
n

dn

 (2.27)

+ p(θ(ξ, θ∗)) kr (2.28)

As ε → 0, we have θ(n, θ∗) → θ∗ and thus p(θ(ξ, θ∗)) → p(θ∗) independently of ξ. Further,

p(θ∗)kr ≥ r by definition of the lower dominance region and since θ∗ ≥ θ for ε → 0. Hence, a

sufficient condition for limε→0
∂
∂ξ f̂(θ∗, ξ) > 0 for all ξ ∈ (0, 1) is

∫ 1

ξ

γ(n, ξ) + ξ
(
∂
∂ξγ(n, ξ)

)
n

dn < γ(ξ, ξ) for all ξ ∈ (0, 1) (2.29)

Since limξ→1 |γ(n, ξ)| ≤ |a|n + b ≤ |a| + b < ∞, a ∈ R, b > 0 and limξ→1 | ∂∂ξγ(n, ξ)| = n|a| ≤
|a| <∞ and n ∈ [ξ, 1], the integrand on the left hand side of (2.29) is bounded. Hence, using the

Intermediate Value Theorem for integrals, we see that for ξ → 1

lim
ξ→1

∫ 1

ξ

γ(n, ξ) + ξ
(
∂
∂ξγ(n, ξ)

)
n

dn = 0 < lim
ξ→1

γ(ξ, ξ) (2.30)

since γ(n, ξ) is strictly positive for all n ∈ [ξ, 1]. Hence, for ξ → 1, ε → 0 we have ∂f̂
∂ξ > 0 and

therefore ∂θ∗

∂ξ < 0 for all strictly positive, continuously differentiable recovery value functions

γ(n, ξ) since ∂f̂
∂θ∗ > 0 for all ξ by (2.24).

Plugging in for the function γ(n, ξ) = n
ξ a+ b I obtain

∂

∂ξ
f̂(θ∗, ξ) = −r

(
1− (a+ b) + b

∫ 1

ξ

1

n
dn

)
+ p(θ(ξ, θ∗)) kr

= −r (1− (a+ b)− b ln(ξ)) + p(θ(ξ, θ∗)) kr (2.31)
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and taking the limit noise to zero

lim
ε→0

∂

∂ξ
f̂(θ∗, ξ) = −r (1− (a+ b)− b ln(ξ)) + p(θ∗) kr (2.32)

The sufficient condition for limε→0
∂
∂ξ f̂(θ∗, ξ) > 0 for all ξ ∈ (0, 1) becomes

−b ln(ξ) < a+ b for all ξ ∈ (0, 1) (2.33)

As the intercept of recovery value b goes to 0, the sufficient condition becomes

0 < a (2.34)

Hence, for γ(n, ξ) = n
ξ a, a > 0 we have limε→0

∂
∂ξ f̂(θ∗, ξ) > 0 for all ξ ∈ (0, 1) and thus ∂θ∗

∂ξ < 0.

For any arbitrary small b > 0, there exists a ξ∗(b, a) such that in (2.32) ∂
∂ξ f̂(θ∗, ξ) < 0 and ∂θ∗

∂ξ > 0

for ξ ∈ (0, ξ∗(b, a)) since ln(ξ) goes to minus infinity as ξ → 0. In addition, for b > 0 the function
∂
∂ξ f̂(θ∗, ξ) is strictly increasing and continuous in ξ. Thus, by (2.29) and the Intermediate Value

Theorem ∂
∂ξ f̂(θ∗, ξ) satisfies single-crossing in ξ which implies that for every b > 0, ξ∗(b, a) is the

unique maximizer of the function θ∗(ξ).

Proof. [Lemma 2.3.3] I show that the probability of runs strictly increases in recovery value

parameters a and b: Plugging γ(n, ξ) into (2.23), we have

f̂(θ∗, a, b) = −r (ξ + (1− ξ)a− ξb ln(ξ)) + kr

∫ ξ

0
p(θ(n, θ∗)) dn (2.35)

And thus for ξ ∈ (0, 1)

∂f̂(θ∗, a, b)

∂a
= −(1− ξ) r < 0 (2.36)

∂f̂(θ∗, a, b)

∂b
= ξ ln(ξ) r < 0 (2.37)

Thus, with (2.25) and the Implicit Function Theorem we have for ξ ∈ (0, 1)

lim
ε→0

∂θ∗

∂b
= − r ln(ξ)

krp′(θ∗)
= − ln(ξ)

k p′(θ∗)
> 0 (2.38)

lim
ε→0

∂θ∗

∂a
=

r(1− ξ)
ξkr p′(θ∗)

=
(1− ξ)
ξk p′(θ∗)

> 0 (2.39)

Proof. [Proposition 2.3.4] Let γ(n, ξ) = n
ξ a + b > 0 with b > 0. We know by the single crossing

property of function limε→0
∂
∂ξ f̂(θ∗, ξ) in ξ for b > 0, shown in proof of Proposition 2.3.2, that at
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the limit ε→ 0 for given b > 0, a ∈ R, 0 < a+ b < 1/H < 1 the maximizer ξ∗(b, a) of the trigger

θ∗ exists, is unique and is implicitly defined as the zero of equation (2.32):

lim
ε→0

∂

∂ξ
f̂(θ∗, ξ) = −r (1− (a+ b)− b ln(ξ)) + p(θ∗) kr = 0

Applying the Implicit Function Theorem to equation (2.31) (away from the limit) and taking the

limit ε→ 0 gives us the behavior of the maximizer ξ∗ in parameters a, b: We have

∂ξ∗

∂b
= −

∂
∂b
∂f̂
∂ξ

∂
∂ξ

∂f̂
∂ξ

∣∣∣
ξ=ξ∗

,
∂ξ∗

∂a
= −

∂
∂a

∂f̂
∂ξ

∂
∂ξ

∂f̂
∂ξ

∣∣∣
ξ=ξ∗

Here, away from the limit using (2.31) I obtain with (2.20)

∂

∂ξ

∂f̂

∂ξ

∣∣∣
ξ=ξ∗

=
rb

ξ∗
+ kr p′(θ(n, θ∗))

(
∂θ(n, θ∗)

∂n

∣∣∣
n=ξ∗

+
∂θ(n, θ∗)

∂θ∗
∂θ∗

∂ξ

∣∣∣
ξ=ξ∗

)
=
rb

ξ∗
+ kr p′(θ(n, θ∗))

(
−2ε+

∂θ∗

∂ξ

∣∣∣
ξ=ξ∗

)
Since ξ∗ exists and maximizes θ∗ when ε→ 0, we have ∂θ∗

∂ξ∗ = 0 and thus taking the limit

lim
ε→0

∂

∂ξ

∂f̂

∂ξ

∣∣∣
ξ=ξ∗

=
rb

ξ∗

Further, with (2.38) and (2.39) at the limit

lim
ε→0

∂

∂b

∂f̂

∂ξ

∣∣∣
ξ=ξ∗

= r (1 + ln(ξ∗)) + kr p′(θ∗) lim
ε→0

∂θ∗

∂b

= r (1 + ln(ξ∗)) + kr p′(θ∗)

(
− ln(ξ∗)

kp′(θ∗)

)
= r
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lim
ε→0

∂

∂a

∂f̂

∂ξ

∣∣∣
ξ=ξ∗

= r + kr p′(θ∗) lim
ε→0

∂θ∗

∂a

= r + kr p′(θ∗)
(1− ξ∗)
ξ∗k p′(θ∗)

= r

(
1 +

1− ξ∗

ξ∗

)
=

r

ξ∗

Finally,

lim
ε→0

∂ξ∗

∂b
= −

limε→0
∂
∂b
∂f̂
∂ξ

limε→0
∂
∂ξ∗

∂f̂
∂ξ

= − r

rb/ξ∗
= −ξ

∗

b
< 0

lim
ε→0

∂ξ∗

∂a
= −

limε→0
∂
∂a

∂f̂
∂ξ

limε→0
∂
∂ξ∗

∂f̂
∂ξ

= −
1
ξ∗ r

rb/ξ∗
= −1

b
< 0

Proof. [Proposition 2.3.3] By equation (2.22), the trigger depends on debt ratio δ and funding

liquidity ψ only through liquidity ratio. By its definition (2.5), for every recovery value function

γ(n, ξ) = n
ξ a+ b with a, b such that γ(n, ξ) > 0 liquidity ratio ξ = ψ

δr strictly increases in funding

liquidity ψ and decreases in debt.

Fix a, b and (r, k, ψ). If b = 0, by Proposition 2.3.2 the trigger monotonically decreases in liquid-

ity ratio ξ an thus for given ψ monotonically increases in debt δ.

If b > 0, the trigger maximizing liquidity ratio ξ∗(a, b) ∈ (0, 1) is uniquely pinned down as a

function of a, b, r, k. We have ξ(δ) < ξ∗(a, b) if and only if

δ >
ψ

rξ∗(a, b)
(2.40)

Thus, as δ increases within [ ψ
rξ∗(a,b) , 1), ξ(δ) = ψ

δr decreases and moves away from ξ∗(a, b). Since

ξ∗(a, b) uniquely maximizes the probability of a run, the probability of a run has to decrease in

δ. Equivalently, we have ξ(δ) > ξ∗(a, b) if and only if

δ <
ψ

rξ∗(a, b)
(2.41)

As δ increases within (ψl ,
ψ

rξ∗(a,b)), ξ(δ) decreases and approaches ξ∗(a, b) from above. Thus, the

probability of a run increases in δ for δ in (ψl ,
ψ

rξ∗(a,b)).
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Appendix C: Welfare

Proof. [Proposition 2.3.6] Debt investors’ ex ante utility from the contract equals

EU(ξ) =

∫ θb(ξ)

0
n(θ, θ∗(ξ))

γ(n(θ, θ∗), ξ)ξ

n(θ, θ∗(ξ))
r + (1− n(θ, θ∗(ξ))) · 0 dθ (2.42)

+

∫ θ∗(ξ)+ε

θb(ξ)
n(θ, θ∗(ξ))r + (1− n(θ, θ∗(ξ)))p(θ) kr dθ (2.43)

+

∫ θ

θ∗(ξ)+ε
p(θ) kr dθ +

∫ 1

θ
kr dθ (2.44)

=

∫ θb(ξ)

0
γ(n(θ, θ∗), ξ) · ξ r dθ (2.45)

+

∫ θ∗(ξ)+ε

θb(ξ)
n(θ, θ∗(ξ))r + (1− n(θ, θ∗(ξ)))p(θ) kr dθ (2.46)

+

∫ θ

θ∗(ξ)+ε
p(θ)kr dθ + (1− θ)kr (2.47)

Using Leibniz rule and γ(n(θ, θ∗), ξ) = a
ξn(θ, θ∗) + b, the change in utility due to a change in

slope parameter a is

∂

∂a
EU =

∂

∂a

∫ θb(ξ)

0

(
a

ξ
n(θ, θ∗) + b

)
· ξ r dθ (2.48)

+
∂

∂a

∫ θ∗(ξ)+ε

θb(ξ)
n(θ, θ∗(ξ))r + (1− n(θ, θ∗(ξ)))p(θ) kr dθ (2.49)

=

∫ θb(ξ)

0

∂

∂a

(
a

ξ
n(θ, θ∗) + b

)
· ξ r dθ (2.50)

+
∂θb
∂a

(a+ b) ξr (2.51)

+

∫ θ∗(ξ)+ε

θb(ξ)

∂

∂a
[n(θ, θ∗(ξ))r + (1− n(θ, θ∗(ξ)))p(θ) kr] dθ (2.52)

− ∂θb
∂a

[ξr + (1− n(θb, θ
∗))p(θb)kr] (2.53)

=

∫ θb(ξ)

0

(
1

ξ
n(θ, θ∗) +

a

ξ

∂n(θ, θ∗)

∂θ∗
∂θ∗

∂a

)
· ξ r dθ (2.54)

+
∂θb
∂a

(a+ b) ξr − ∂θb
∂a

[ξr + (1− ξ)p(θb)kr] (2.55)

+

∫ θ∗(ξ)+ε

θb(ξ)

∂n(θ, θ∗)

∂θ∗
∂θ∗

∂a
[r − p(θ) kr] dθ (2.56)

since n(θb, θ
∗) = ξ. Next, due to definition of θb, since n(θ∗ − ε, θ∗) = 1, n(θ∗ + ε, θ∗) = 0, and

ξ ∈ (0, 1) θb > θ∗−ε. Also, for all θ ≤ θ∗−ε we have n(θ, θ∗) = 1 and hence ∂n(θ,θ∗)
∂θ∗ = 0. Further

∂n(θ,θ∗)
∂θ∗ = 1

2ε for θ ∈ [θ∗ − ε, θ∗ + ε] by (2.11). The integral (2.54) therefore simplifies to
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∫ θ∗−ε

0

(
1

ξ
n(θ, θ∗) +

a

ξ

∂n(θ, θ∗)

∂θ∗
∂θ∗

∂a

)
· ξ r dθ (2.57)

+

∫ θb(ξ)

θ∗−ε

(
1

ξ
n(θ, θ∗) +

a

ξ

∂n(θ, θ∗)

∂θ∗
∂θ∗

∂a

)
· ξ r dθ (2.58)

= (θ∗ − ε)r +

∫ θb(ξ)

θ∗−ε

(
1

ξ
n(θ, θ∗) +

a

ξ

1

2ε

∂θ∗

∂a

)
· ξ r dθ (2.59)

Changing variables to n with (2.11), (2.59) becomes

(θ∗ − ε)r +

∫ 1

ξ

(
1

ξ
n 2ε+

a

ξ

∂θ∗

∂a

)
· ξ r dn

−→
ε→0

θ∗r +

∫ 1

ξ
a
∂θ∗

∂a
· r dn

For integral (2.56), changing variables to n and then applying the PIE (2.22) in a second step,

the integral becomes

∂θ∗

∂a

∫ ξ

0
[r − p(θ(n, θ∗)) kr] dn

= −∂θ
∗

∂a

∫ 1

ξ

γ(n, ξ)ξ

n
r dn = −∂θ

∗

∂a

∫ 1

ξ
(a+

b

n
ξ) r dn

where I can draw out ∂θ∗

∂a since the trigger only depends on the primitives of the game, not the

random state and θ(n, θ∗) is as in (2.20). Altogether, with θb → θ∗ for ε→ 0 and (2.16)

lim
ε→0

∂

∂a
EU = θ∗r − lim

ε→0

∂θ∗

∂a

∫ 1

ξ

b

n
ξ r dn (2.60)

+ lim
ε→0

∂θ∗

∂a
[(a+ b− 1) ξr − (1− ξ)p(θ∗)kr] (2.61)

= θ∗r + lim
ε→0

∂θ∗

∂a
[(a+ b− 1 + b ln(ξ)) ξr − (1− ξ)p(θ∗)kr] (2.62)

We have θ∗r ≥ θr > 0. Since a+ b < 1 and ln(ξ) < 0 for ξ ∈ (0, 1), the bracket is always strictly

negative. By Proposition 2.3.3, limε→0
∂θ∗

∂a > 0 for ξ ∈ (0, 1). However, by (2.39) as ξ → 1,

lim
ξ→1

lim
ε→0

∂θ∗

∂a
= lim

ξ→1

(1− ξ)
ξk p′(θ∗)

= 0 (2.63)

where limξ→1 p
′(θ∗) is bounded from below, in particular limξ→1 p

′(θ∗) ≥ p′(θ) > 0 since p(·) is
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strictly increasing for all θ ∈ [0, 1], p′(·) is continuous and limξ→1 θ
∗ > θ > 0. In addition, the

bracket is bounded for ξ → 1 as p(·) is bounded. Therefore,

lim
ξ→1

lim
ε→0

∂

∂a
EU = lim

ξ→1
θ∗r > θr > 0 (2.64)

By continuity of limε→0
∂
∂aEU , there exists ξ

a
such that for all ξ ≥ ξ

a
, we have limε→0

∂
∂aEU ≥ 0.

By an identical argument,

lim
ε→0

∂

∂b
EU = θ∗ξr − lim

ε→0

∂θ∗

∂b

∫ 1

ξ

b

n
ξ r dn (2.65)

+ lim
ε→0

∂θ∗

∂b
[(a+ b− 1) ξr − (1− ξ)p(θ∗)kr] (2.66)

= θ∗ξr + lim
ε→0

∂θ∗

∂b
[(a+ b− 1 + b ln(ξ)) ξr − (1− ξ)p(θ∗)kr] (2.67)

Note that the bracket equals the bracket in (2.62) and is hence negative. By Proposition 2.3.3,

limε→0
∂θ∗

∂b > 0 for ξ ∈ (0, 1) but by (2.38) as ξ → 1,

lim
ξ→1

lim
ε→0

∂θ∗

∂b
= lim

ξ→1
− ln(ξ)

k p′(θ∗)
= 0 (2.68)

where still limξ→1 p
′(θ∗) is bounded from below, limξ→1 p

′(θ∗) ≥ p′(θ) > 0. Therefore,

lim
ξ→1

lim
ε→0

∂

∂b
EU = lim

ξ→1
θ∗ξr = lim

ξ→1
θ∗r > θr > 0 (2.69)

By continuity of limε→0
∂
∂bEU , there exists ξ

b
such that for all ξ ≥ ξ

b
, we have limε→0

∂
∂bEU ≥

0.
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Chapter 3

Redistributional Effects of Health

Insurance in Germany: Private and

Public Insurance, Premia and

Contribution Rates

3.1 Motivation

In a model of obligatory health insurance, we study redistributional effects when public and pri-

vate insurances coexist and compete for profitable customers. In Germany, systemic competition

between public and private insurance is regulated by requiring public insurance to operate cost

covering1 and to finance health expenditures via an only income dependent contribution2 with

a price cap. Private insurance maximizes profits and premia may depend on health risk. Public

insurance is available to every citizen. Sufficiently wealthy customers may opt out of the public

system and insure privately.

The opportunity to opt out of the redistributive, public system was originally granted to en-

hance consumer choice and stimulate competition between insurers (Wissenschaftlicher Beirat

beim BMF, 2004; Jacobs and Schulze, 2004; Fehr et al., 2006). Thomson and Mossialos (2006)

however find that choice of public or private health insurance coverage (systemic competition)

creates incentives for private insurers to select risks (cream skimming3) and leads to risk seg-

mentation, thereby increasing the financial risk borne by public insurers. In Germany, cream

skimming by private insurance is a result of regulation. Solidary public insurance may condition

the contribution rate not on health risk but on income only (Pauly, 1984). As a result, healthy

1That is she balances budget: Public insurance charges a contribution such that health expenses payable
to customers on average equal overall collected contributions.

2The current contribution (”Beitragssatz”) is 14.6% of income in 2015. The contribution is split equally
between employer and employee such that 7.3% of income are payable by the employee.

3Selection of customers who in expectation cause a profit to the insurer.
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and wealthy individuals opt out attracted by low, private health premia. Since private insurance

operates profit maximizing, health premia paid by privately insured customers are lost for the

redistributive public system which affects the health contribution charged by the budget balanc-

ing public insurance. The public contribution rate vice versa impacts the customers’ final choice

for a contract and thus the selection of risk by private insurance.

In a model where customers are characterized by health and income, we study how the German

opt-out option4 and the price cap5 on public health premia affect cream skimming of profitable

customers by private insurances and thus health premia of all customers, publicly and privately

insured.

We further analyze, how improvements in the health income distribution or increases in cor-

relation between health and income affect redistribution streams between customer groups and

health premia when opt-out and price caps exist. Our analysis is motivated by a study by Deaton

and Paxson (1998). Using US data from the National Health Interview Survey (NHIS) and the

Panel Study of Income Dynamics (PSID), they provide empirical evidence that for more recently

born cohorts the correlation between income and health is increased. Health shocks may have a

larger impact on future income and social security, vice versa income increasingly affects choice

of lifestyle and according risk factors such as smoking, drinking and obesity.

The question how to optimally organize the market for health insurance provision remains rele-

vant in many countries - not only in Germany. Political parties in Germany discuss changes of

the health insurance system to a system financed by flat premia (’Kopfpauschale’). This system

demands that private and public insurances offer equal health benefits at flat, income and health

independent premiums to every agent, see Worz and Busse (2005). Insurances would compete in

price for customers and customers may choose between insurances unrestrictedly.

When changing the model to a flat premium system, we analyze the customer groups who win

and lose compared to the current German system. Last and most interesting, we analyze optimal

health and income dependent premia under a budget balancing constraint. Further, we analyze

optimal premiums constrained to depend not on health risk but on income only.

To conduct our analysis, we model three types of agents: A population of customers, a public and

a private insurance. Customers are characterized by a two-dimensional random but observable

type for health h and income e. Health and income are assumed to be positively correlated.

Taking the health-income distribution of types as given, the public insurer endogenously sets the

percentage of income she charges as the premium. We assume that the public insurer commits

to operate cost-covering instead of maximizing profits. In contrast, the private insurer sets a

4The income threshold to opt out (”Versicherungspflichtgrenze”) is 56,250 euro in yearly income in
2016.

5The income threshold to determine the maximum public premium (”Beitragsbemessungsgrenze”) is
50,850 euro in yearly income in 2016.
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profit-maximizing premium as a function of the customer’s health and income type, taking the

public premium as given. We assume both insurance contracts offer equivalent maximum health

benefits and hence equally high partial coverage.

A customer decides on her insurance contract after observing her type. Customers hence face no

uncertainty about future net income. The motive to insure is imposed by regulation of obligatory

health insurance. Also, since customer types are observable by insurances, the model features no

asymmetric information and hence no adverse selection problem.

As first main result we demonstrate, under voluntary health insurance no insurance company

offers a contract to any potential customer and the market collapses. This result is not driven by

adverse selection and is hence fundamentally different from the collapse of insurance markets as

described in Rothschild and Stiglitz (1976). Instead, regulation of public insurances to condition

public insurance premiums on income only and the budget balancing constraint in combination

with continuity and multi-dimensionality of types make it impossible for public insurance to

finance the system. Public insurance contributions are based on income but actual health costs

depend on customers’ health types. Only those agents will insure voluntary whose health costs

to the insurance company will exceed benefits receivable from her insurance. As a consequence,

running a balanced budget becomes impossible to the public insurance.

Under obligatory insurance, we give a constraint under which a unique public insurance contri-

bution exists charged as percentage of income. In addition, we give a closed form solution of the

private premium offered to customers. Existence requires that average income of customers who

must insure with public insurance exceeds health costs caused by the entire customer population.

The constraint thus reflects the difficulty for public insurance to run a balanced budget in the

face of the opt-out opportunity for rich customers. Monopolistic private insurance discriminates

between profitable and unprofitable customers, i.e. customers for whom the health premium

payable exceeds or undercuts expected health costs. She attracts healthy customers by setting

a premium slightly below the public insurance premium and tries to chase away unhealthy cus-

tomers by setting the maximum premium possible (cream skimming). Given this behavior, a

sufficient condition for existence of an equilibrium is that the opt-out threshold is high enough

such that the public insurance insures sufficiently many healthy customers and thereby can oper-

ate cost-covering. In that case, the public insurance contribution is unique and publicly insured

customers pool along the health dimension in the sense that customers with equal income type

but varying health type pay the same premium. The public insurance system is solidary (Hin-

richs, 1995), publicly insured customers with equal health type but varying income pay different

premiums.

Looking at variations of opting out, we demonstrate that increasing the opt-out threshold up to

the level of the contribution cap decreases health premiums for all customers, public and private.

This is since the private insurance can cream skim customers with earnings between these cut-

offs. By equating them, cream skimming is prevented.
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As next main result, we show that systematic improvements of the population’s health and income

distribution in the sense of first-order stochastic dominance, not necessarily lead to decreases in

public contribution rates. Contribution may increase due to migration from public to private

insurance since private insurance pockets the gains instead of redistributing them.

Increasing correlation between health and income may lead to an increase in public contribution

rate. This result is again due to the opt-out threshold. Under higher positive correlation, pub-

licly insured, low income customers on average will cause higher health costs while higher income

customers have improved health but opt out. To quantify increases in correlation we use the

notion of supermodular stochastic order (Shaked and Shanthikumar, 2007).

Last, we apply our model to study changes in welfare6 when changing the health system to a flat,

health and income independent premium system. If the opt-out threshold is sufficiently high,

the current German system yields higher welfare than the premium system. This is, since in the

German, income tax resembling system customers with high income pay more than customers

with low income which accounts for the concave utility function. Introducing a simple, budget-

balanced income redistribution scheme (income tax) into the flat premium system however allows

to obtain the same level of welfare as the current German system may achieve.7 This implies that

a change of the current system to a premium system should be accompanied by an appropriate

change in income taxation.

Going one step further, we derive the welfare-maximizing pricing scheme which may depend on

health and income. The optimal pricing scheme requires every customer to pay the health costs

she imposes on the system plus the deviation of her net income from average net income of the

population if there was no insurance. By this, the optimal pricing scheme entails a redistribution

but not in form of an income tax but by deviation from mean.

Analyzing the welfare-maximizing pricing scheme constrained to depend on income only, we show

that the current public redistribution system financed via an income tax fails to be optimal since

it does not take into account the correlation between health and income.

Literature

The classic paper by Rothschild and Stiglitz (1976) demonstrates that insurance markets can

fail as a consequence of asymmetric information about risk types and adverse selection. In the

context of adverse selection, Neudeck and Podczeck (1996) analyze regulation of health insurance

markets in a Rothschild Stiglitz type model where agents can opt out of social public insurance

and insure privately.

As Neudeck and Podczeck (1996), our paper analyzes competition between public and private

6We study utilitarian welfare, where health enters a customer’s utility function since health costs and
insurance affect her comsumption.

7Note that factually in Germany, income taxation is in addition to income dependent health premiums
while here in our model we do not model income taxation in addition to income dependent premiums. In
Germany, a budget balancing income dependent redistribution scheme is thus already in place.
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health insurance under regulation and opt out. Our paper differs, since in our model types are

revealed before the choice of insurance is made. The motive for agents to insure is thus not by

uncertainty and desire for risk-sharing but by regulation. In addition, types are publicly observ-

able, information is symmetric which excludes adverse selection. In particular, our results on

market failure under voluntary insurance and cream skimming under obligatory insurance are

not driven by adverse selection but by regulation of the health insurance market.

Our analysis focuses on systemic competition between public and private insurance under regu-

lation. As opposed to Neudeck and Podczeck (1996), our model distinguishes agents not only by

their health risk type but also by an income type. In Neudeck and Podczeck (1996) social public

insurance is financed by a lump-sum tax on endowments, all agents pay the same flat premium.

In our model, agents’ premium payment for the same public insurance coverage may vary since

agents differ in income types and public insurance charges an income dependent contribution.

As a consequence here, not only high risk types are subsidized by low risk types but also healthy

very low income types are subsidized by healthy higher income types. The latter is, since our

model contains the feature that the maximum compensation payment agents may obtain from

their insurance cannot be larger than the health costs they impose on the system. In Neudeck

and Podczeck (1996) all agents may opt out of public insurance, while in our model only agents

with income above the opt-out threshold have this option. Pooling is thus enforced on low income

types by regulation and the obligation to insure.

Our model features cream-skimming by private insurance, but not driven by asymmetric infor-

mation and flat premiums as in Barros (2003) but by regulation as described in Pauly (1984). In

our model, public insurance premiums may only depend on income while private insurance may

condition the premium on a customer’s risk type.

Kemnitz (2013) studies differences in consumer welfare between an income tax financed and a flat

premium financed health insurance system under competition and switching costs. As opposed

to our setting, the model does not allow for opt-out and regulated, systemic competition between

public and private insurance.

Our analysis of optimal social insurance premiums when individuals differ in productivity and

health is related to the work by Blomqvist and Horn (1984), Rochet (1991) and Cremer and

Pestieau (1996). Rochet (1991) and Cremer and Pestieau (1996) study welfare under social, in-

come tax financed insurance and budget balancing in a model synthesizing Mirrlees (1971) and

Rothschild and Stiglitz (1976). As in our paper, agents have two-dimensional types that affect

consumption. As opposed to our model, agents face uncertainty about falling ill and in Rochet

(1991) private insurance may be chose in addition to public insurance. In our model, all uncer-

tainty is resolved before customers choose contracts, hence when calculating optimal premiums

we also condition on health types.
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Besley (1989), Blomqvist and Johansson (1997) and Petretto (1999) study efficiency of systems

with coexisting public and private insurance under moral hazard when public insurance is com-

pulsory and agents buy additional private insurance to top up services. While in our paper public

and private insurance coexist, insurances compete for customers and are mutually exclusive. Fur-

ther, our model does not feature moral hazard.

The paper is organized as follows. In Section 2 we give a formal description of the organizational

structure of the health insurance market. Section 3 starts by describing the general insurance

problem and then proceeds with solving the benchmark case with equal benefits. Thereafter,

comparative statics in the primitives and distribution are discussed.

3.2 Model

In the health insurance market a population of customers purchases health insurance contracts

from either of two insurances: a private health insurance and a public health insurance.

3.2.1 Population

The population consists of a unit mass continuum of customers. Every customer is characterized

by her health type h and her income type e; a high value of h corresponds to a good state of health.

Types are distributed according to distribution function F (h, e) with compact and connected

support Hb × Eb = [0, h̄] × [0, ē]. The distribution has a strictly positive, twice differentiable

density f(h, e). Health and income types are affiliated,8 that is, for all points (h1, e1) and (h2, e2),

the density f satisfies

f(max(h1, h2),max(e1, e2)) · f(min(h1, h2),min(e1, e2)) ≥ f(h1, e1)f(h2, e2) (3.1)

The condition means that large values for health make income more likely to be large than small

and vice versa. Associated with a customer’s health type h are health costs c(h) where c(·) is

a continuous, positive, and strictly decreasing function. Customers’ utility function is strictly

increasing, strictly concave, and twice continuously differentiable in consumption w, where for an

uninsured customer consumption is the difference between income and health costs

w = e− c(h). (3.2)

Customers’ health and income types are observable by all agents in the market. In the course of

the paper we refer to high income types as wealthy and high health types as healthy.

8Affiliation is a strong form of positive correlation and widely used in Auction Theory, see Milgrom
(1982).
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Choice of Insurance

Health insurance is compulsory, every customer must choose a contract. A customer has to insure

with the public insurance if her income is less than the opt-out threshold K1; otherwise, she is

eligible to choose between private and public insurance. Neither insurance is allowed to exclude

customers from their services, both insurances have to offer a contract to every eligible customer

(open enrollment).

Contracts

A health insurance contract is defined by its payment p(h, e) and the maximum monetary reim-

bursement of health costs, benefit level L. As a consequence, health insurance provides only partial

coverage. We assume that both insurances offer the same fixed benefit level L.9 Denote by C(h, e)
the set of contracts available to a type-(h, e) customer. Upon signing a contract, a customer pays

p(h, e) and receives a monetary, health type dependent reimbursement of min(c(h), L), referred to

as health benefit. Applying the minimum function allows us to model overinsurance, i.e., the case

of L > c(h). A customers net benefit from contract C(h, e) is then given as min(c(h), L)− p(h, e).
Formally, type-(h, e)’s decision problem is to choose (L, p(h, e)) such that

(L, p(h, e)) ∈ arg max
(L,p)∈C(h,e)

u(e+ min(L− c(h), 0)− p(h, e)). (3.3)

3.2.2 Public Health Insurance

The public health insurance (PU) charges its customers a fixed percentage α, the contribution

rate, of their income. Above income threshold K2, however, the payment to PU remains constant;

we refer to K2 as the contribution cap. The public payment is therefore

pPU(e) = αmin(K2, e). (3.4)

and does not explicitly depend on a customer’s health type.

PU commits to operate with a balanced budget, i.e., she equates revenues and expenditures.

Formally, PU’s objective is to set α ∈ [0, 1] such that

α E[min(K2, e)|(h, e) ∈ PU(α)] = E[min(L, c(h))|(h, e) ∈ PU(α)] (3.5)

where PU(α) denotes the set of PU’s customers, and the expectation is taken with respect to F (·).

9See a later section for a relaxation of this assumption.
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3.2.3 Private Health Insurance

The private health insurance (PR) charges each customer a payment pPR(h, e) that may depend

on the customer’s health type and income. We call the function pPR(·) PR’s payment scheme.

PR is by assumption obliged to set a payment below αK2, pPR(h, e) ≤ αK2, for all health and

income types. We refer to a payment pPR(h, e) satisfying this requirement as feasible payment

and to pPR(·) as feasible payment scheme. PR aims at maximizing profit, i.e., payments collected

less health benefits to pay. Thus, PR’s objective is to choose pPR(·) such that

pPR(·) ∈ arg max
p(·) feasible

E
[
(p(h, e)−min(L, c(h))) 1PR(α)

]
(3.6)

where PR(α) denotes the set of PR customers.

3.3 Equilibrium

3.3.1 Timing and Equilibrium Concept

We study the health insurance market as a two-period game. In the first period PU and PR

simultaneously devise payments for all customer types; in the second period every customer

chooses from her set of contracts. We solve for pure-strategy subgame-perfect equilibria:

Definition 3.3.1. For given distribution F (h, e) and benefit level L, a pure-strategy subgame-

perfect equilibrium of the health insurance game is a tuple (α∗, p∗PR(·), (L, p∗(h, e))) such that

(i) α∗ satisfies (3.5) given p∗PR(·) and (L, p∗(h, e)),

(ii) p∗PR(·) solves (3.6) given α∗ and (L, p∗(h, e)),

(iii) (L, p∗(h, e)) solves (3.3), for all α ∈ [0, 1], feasible pPR(·), and (h, e).

In the sequel, we refer to a tripel (α∗, p∗pr, (L, p
∗(h, e))) satisfying the conditions of Definition

3.3.1 simply as an equilibrium of the health insurance market.

3.3.2 Voluntary Health Insurance

Before establishing equilibrium existence, we study the health insurance market when insurance

is voluntary. In this case, instead of purchasing contracts from PU or PR, every customer may

choose to be uninsured and bear health costs herself. As is not uncommon in models of insurance,

voluntary insurance leads to a complete unraveling of the health insurance market:

Proposition 3.3.1. Under voluntary insurance, for any positive benefit level there exists no

equilibrium in the health insurance market.
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Note that this result is not due to adverse selection since customer types are observable. Instead,

the combination of budget balancing, multi-dimensional continuous types and regulation that

public insurance must condition her contribution rate on income only (Pauly, 1984) leads to

market collapse. We provide intuition for Proposition 3.3.1 here, all proofs can be found in the

Appendix.

If health insurance is voluntary, a customer is willing to insure only if a contract offers her a

net benefit, that is, if the difference between health benefits and payment is weakly positive.

All customers whose contract set contains only contracts with negative net benefit decide to

remain uninsured. A net benefit for the customer translates one-to-one in a loss in profits for

the insurance. Hence, only customers who inflict a (weak) loss on a health insurance company

choose to be insured. PR can avoid the loss on most parts of the population as it can finetune

its contract to customer’s health and income. PR may only incur a loss if the upper bound on

its payment binds. As a consequence, PR might fail to deter unprofitable customers who are rich

but unhealthy.

PU is less flexible than PR since it only discriminates along the income dimension. As a con-

sequence, for strictly positive benefit level PU cannot avoid a loss on comparatively poor and

unhealthy customers who want to insure. Since such customers’ income is sufficiently low, PR

can deter these from insuring privately. Thus, they insure with PU. Customers who are indiffer-

ent between insuring or not, with zero net benefit, might decide to insure with PU but do not

generate profits either. In addition, since types are continuous, for every contribution rate PU

might set, customers with negative net benefit who would prefer insuring with PU over remaining

uninsured do exist. This causes PU to be unable to run a balanced budget and consequently to

a failure of equilibrium existence.

To sum up, if health insurance is voluntary, customers who are attractive from the insurances’

perspective remain uninsured, leaving insurances with unprofitable customers. This makes health

insurance non-viable. Hence, Proposition 3.3.1 provides a rationale for why health insurance is

obligatory in Germany and more generally in many health insurance markets.

3.3.3 Equilibrium Existence

Retaining obligatory health insurance, we prove existence of equilibrium in the health insur-

ance market. We proceed backward from the second period, first studying customers’ optimal

insurance choice.

Lemma 3.3.1. Given any contribution rate set by PU and any feasible payment scheme of PR,

it is optimal for customers to choose the insurance which offers the contract with the lowest

payment.

This result is immediate since both insurances offer contracts with equivalent benefit level L.

Customers whose income is below the opt-out threshold can only choose PU’s contract. All other

customers have the choice between PU and PR. As the utility function is strictly increasing, every
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customer chooses the contract which offers her the largest net benefit. Since the benefit level is

fixed and equal for PU and PR, it is the contract’s payment that determines the net benefit and,

thereby, its attractiveness for customers.

In the following, we assume that customers choose PR when they are indifferent, i.e., if both

insurances charge the same payment.10

Having determined the population’s optimal insurance choice, we analyze PR’s optimal payment

scheme. We call a customer profitable at a given PU contribution rate, if the payment charged

by PU exceeds health benefits payable to the customer; otherwise, we call the customer unprof-

itable.11

Lemma 3.3.2. Given customer’s optimal contract choice and an arbitrary contribution rate set

by PU, it is optimal for PR to set its payment equal to PU’s payment if a customer is profitable

and to set the highest possible payment if a customer is unprofitable.

For a profitable customer, PR faces the trade-off between attracting the customer and charging a

high payment. If PR’s payment exceeds PU’s payment, the customer turns down PR’s contract

and chooses PU. If PR’s payment is strictly less than PU’s payment, PR can increase profits by

increasing its payment slightly without losing the customer. Hence, it is optimal for PR to set

its payment exactly equal to PU’s payment for all profitable customers.

If a customer is unprofitable and PR sets a payment below PU’s payment, PR incurs a loss since

she attracts the customer. Since PR may not reject customers, PR tries to deter unprofitable

customers by setting its payment as high as possible. Note that PR may not deter all unprofitable

customers because of the upper bound on its payment (feasibility constraint).

In contrast to PU, PR sets a flexible payment and discriminates based on both health and income.

The above argument shows that PR exploits its greater flexibility to cream skim all profitable

customers with sufficiently high income, i.e., with income exceeding the opt-out threshold. In

fact, without an opt-out threshold, PR would cream skim all profitable customers in the pop-

ulation which would make it impossible for PU to run a balanced budget. Hence, the opt-out

threshold is essential for the existence of equilibrium in the health insurance market.

This observation motivates the following assumption which we maintain throughout the paper.

Assumption 1. (Viable health insurance market.) The aggregated income of customers with

income below the opt-out threshold and below the contribution cap exceeds the entire population’s

health benefits:

E[min(L, c(h))] < E[e1{e<min(K1,K2)}].

10See also the remarks following Theorem 3.3.1.
11Note that such a situation may only arise since insurance is obligatory.
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Roughly, Assumption 1 says that the total income of all customer who must insure with PU

covers the health costs of the whole population. It guarantees that the population structure is

such that at least potentially PU can run a balanced budget. There are several reasons why

Assumption 1 may be satisfied; some of those may be under direct control of an exogenous

regulator (benefit level, opt-out threshold, contribution cap) but some of those may not (health

costs). In particular, for a given health income distribution F Assumption 1 holds if the benefit

level is sufficiently low or the opt-out threshold and contribution cap are sufficiently high. With

this assumption in place, we obtain the following theorem:

Theorem 3.3.1. Assume that the health insurance market is viable. Then the health insurance

market has an equilibrium and the equilibrium contribution rate α∗ is unique.

The proof of Theorem 3.3.1 relies on the intermediate value theorem. The key step is to establish

continuity of PU’s objective in the contribution rate. See the Appendix for details.

In equilibrium, customers with income below the opt-out threshold choose PU. Above the opt-out

threshold customers who are profitable insure with PR; unprofitable customers insure with PU.

However, all customers, profitable or unprofitable, with income above the contribution cap and

above the opt-out threshold choose PR. See Figure 3.1 for a graphical illustration.

Figure 3.1: Customers’ insurance choice by customer type. The function of renormalized
health benefits, min(c(h),L)

α
, takes values on the e-axis.

Interestingly, independent of their choice of insurance, all PR customers pay the same amount

they would pay if they insured with PU. That is, PR’s payment is coupled to PU’s payment in

equilibrium. Intuitively, its monopolistic power allows PR to charge customers a payment that

makes them indifferent to choosing their outside option which is insuring with PU.12 Attract-

ing profitable customers entails two positive effects for PR: Firstly, there is an immediate gain in

profits. Secondly, if PU loses profitable customers to PR, PU has to increase the contribution rate

leading to a higher payment for all customers. This in turn allows PR to increase payments for

all its customers as their outside option has become less attractive. In fact, note that if profitable

customers with income above the opt-out threshold would collectively choose to insure with PU

12We study the case of competing private insurances in subection 5.3.
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instead of PR, PU could adjust the contribution rate downward leading to a lower payment for

the entire population. Intuitively, PR prevents this by slightly undercutting PU’s payment.

What are the redistributional effects of the health insurance market? Profitable customers with

income below the opt-out threshold subsidize all unprofitable customers with income below the

contribution cap. Furthermore, the relative profitability of these two customer groups determines

the payment for the entire population through their effect on the contribution rate. The surplus

of profitable customers with high income above the opt-out threshold is transformed one-to-one

into a profit for PR and is lost for the population. PR may incur a loss on unprofitable customers

with income above the contribution cap and above the opt-out threshold. However, as a con-

sequence of the organizational structure of the health insurance market, PR obtains an overall

profit: PU runs a balanced budget; relative to PU, PR attracts customers with higher income.

As health and income are positively correlated, a higher income entails also a better health type.

Thus, PR draws upon a more lucrative part of the population and earns positive profits. See the

proof of Theorem 3.3.1 for details.

A couple of technical remarks are in order: Firstly, as can be seen from the proof of Theorem

3.3.1, the assumption that health and income are affiliated is not required for the existence of

equilibrium.

Secondly, note that PU’s contribution rate is only unique given the behavior of PR and customers.

However, customers indifference behavior is not unique. Our specification that customers choose

PR if they are indifferent resolves existence issues for profitable customers with income exceeding

the opt-out threshold: If these customers would choose PU when they are indifferent, PR would

like to set a payment arbitrarily close but not equal to PU’s payment. However, one could imagine

different specifications for unprofitable customers with income above the contribution cap and

above the opt-out threshold. For these specifications an analogous analysis applies.

Relatedly, PR’s optimal payment scheme may not be unique (even on a set with positive measure):

In order to deter unprofitable customers with income between the opt-out threshold and the

contribution cap, PR can set any payment that exceeds PU’s payment. Note, however, that this

does not change customers decisions and thus the equilibrium contribution rate is the same as

under Lemma 3.3.2. Furthermore, our specification is particularly robust against tremble-like

errors in the behavior of customers.

3.3.4 Comparative Statics in Policy Parameters

Having established existence of equilibrium, we analyze how changes in the opt-out threshold,

the contribution cap, and the benefit level affect the equilibrium in the health insurance market.

As these three parameters might be controlled by an exogenous regulator, we refer to them as

“policy” parameters.

Proposition 3.3.2. An increase of the opt-out threshold decreases the contribution rate.
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First, consider the case where both the former and the new opt-out threshold are below the

contribution cap. Recall that PR cream skims the part of the population with income above the

opt-out threshold but below the contribution cap, i.e., profitable customers with income in this

range insure with PR whereas unprofitable customers in this range insure with PU. An increase

in the opt-out threshold limits PR’s possibility to cream skim since some profitable customers

are consequently forced to insure with PU under the new opt-out threshold. No additional un-

profitable customers join PU because they insured with PU already under the former opt-out

threshold. Thus, all new PU customers are profitable, allowing PU to adjust the contribution

rate downward.

Next consider the case where the former and the new opt-out thresholds lie above the contribution

cap. In this case the cream skimming area for PR has vanished. All customers with income below

the the opt-out threshold insure with PU; customers with income above the opt-out threshold

insure with PR. An increase in the opt-out threshold forces additional customers to insure with

PU. In contrast to the first case, some of these customers might be unprofitable. However,

compared to existing PU customers, the new customers have a higher income. As income and

health are correlated, a higher income entails (on average) also a better health type. These two

factors allow PU to decrease the contribution rate.

Surprisingly here, limiting choices of customers benefits them in that it decreases the contribution

rate and thus their payments. As PR’s payment is coupled to PU’s payment, in equilibrium not

only PU customers benefit from the lower contribution rate but all customers do. Intuitively,

with a higher opt-out threshold more profitable customers are forced to insure with PU rather

than being cream skimmed by PR. These profitable customers’ surplus is redistributed to all

other customers in the population (including themselves) rather than translated into a profit for

PR. PR’s profits decrease because PR loses profitable parts of the population to PU and has to

charge a lower payment to attract customers. Observe that from the customers’ perspective it

would be desirable to set the opt-out threshold as high as possible, essentially eliminating PR

from the market.

Proposition 3.3.3.

(i) If the contribution cap is above the opt-out threshold, a decrease of the contribution cap to

a level that is still above the opt-out threshold decreases the contribution rate.

(ii) If the contribution cap is below the opt-out threshold, a decrease of the contribution cap

increases the contribution rate.

Consider first the case where the former and the new contribution cap lie above the opt-out

threshold. In this case, lowering the contribution cap decreases the range of income in which

PR can cream skim customers because PR faces a lower upper bound on its payment (feasibility

constraint). As a result, PR can deter fewer unprofitable customers from its service. Furthermore,

PR does not attract any new profitable customers. Regarding it from PU’s perspective, PU loses
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unprofitable customers while retaining all profitable customers. Also, note that the payments all

remaining PU customers make are not reduced by the change since these customers have income

below the contribution cap. Therefore, PU can adjust the contribution rate downward.

Intuitively, after the decrease in the cap profitable customers with income below the opt-out

threshold subsidize a smaller number of unprofitable customers which allows for a decrease in the

contribution rate. Consequently, all customers pay less, and PR’s profits decrease.

Now consider the case where both the former and the new contribution cap lie below the opt-out

threshold. In this case, customer sets do not change through the decrease of the contribution cap.

PU is however forced to reduce demanded payments for those customers for whom the former

contribution cap was binding. To compensate this loss, PU has to adjust the contribution rate

upward. Thus, customers’ payments increase, and PR’s profits increase.

Proposition 3.3.4. An increase of the benefit level increases the contribution rate.

An increase in the benefit level L affects PU in two ways. Firstly, existing PU customers for

whom the former benefit level was binding13 become less profitable since the income dependent

contribution remains the same. Additionally, if the opt-out threshold is below the contribution

cap, there is an income range where PR cream skims. Some of the customers with income in

this range are profitable under the former benefit level but become unprofitable under the new

benefit level. Under the new benefit level, PR deters these customers who thus join PU. As a

result of these two effects, PU has to adjust the contribution rate upward to cover the increased

health benefits of its customers. The effect on customers’ utility is twofold. On the one hand, all

customers face a higher payment; on the other hand, some customers enjoy more health benefits.

Accordingly, PR can charge a higher payment but also needs to cover higher health benefits.

3.3.5 Structural Population Changes

Changes in a populations health-income distribution may occur over time due to immigration,

advances in technology, better education or rise and fall of national economies. In this section we

study how structural changes in the population’s health and income affect the health insurance

market. To this end, we analyze two different changes in the underlying distribution of health and

income: a systematic improvement of health and income and an increased correlation between

health and income.

Systematic Improvement of Health and Income

First, we investigate the effect of a systematic improvement of the population’s income and health

on the contribution rate and PR’s profit. Technically, we consider a stochastic improvement of

f(h, e) to a distribution with density function f̃(h, e) in the sense of (multivariate) first-order

13These are customers who are underinsured, whose health type causes health costs in equal or larger
extent to the maximum benefit level written down in the contract c(h) ≥ L.
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stochastic dominance.14 Intuitively, as the population’s income and health improve, the popu-

lation should spend a lower percentage of its income on health insurance given that the benefit

level stays constant. Indeed, if the entire population was insured with the budget-balancing PU,

the contribution rate could be adjusted downward. To account for the precise organizational

structure of the insurance market a more thorough analysis is needed.

We start by analyzing how customer sets change as the distribution changes. It is instructive to

divide the population into four subgroups and study the effect of a systematic improvement on

each of these subgroups separately.

Profitability and unprofitability are defined relative to the original distribution and the corre-

sponding contribution rate α∗. Let PU+(α∗) be the set of profitable PU customers and PU−(α∗)

the set of unprofitable PU customers. Analogously, let PR+(α∗) be the set of profitable PR

customers and PR−(α∗) the set of unprofitable PR customers.

Firstly, consider the effect on the subgroup of unprofitable PU customers, PU−(α∗). As health

and income improve, PU’s profits on this subgroup unambiguously increase: customers who

remain in the group even after the improvement are less unprofitable than before; additionally,

some unprofitable customers leave PU−(α∗) to join one of the other subgroups.

Second, consider how PR’s profit is affected on the set of its unprofitable customers, PR−(α∗).

Customers remaining in the group even after the improvement are less unprofitable than before,

and some unprofitable customers join PR+(α∗). This effect increases PR’s profit. On the other

hand, there is an inflow of new unprofitable customers from PU−(α∗). These customers are un-

profitable before and after the change of distribution but had income lower than the contribution

cap before the change and income exceeding the contribution cap after the change. This effect

decreases PR’s profit. Which of the two effects dominates depends on the precise change in health

and income.

Third, we analyze the effect on PR’s profit generated from PR+(α∗): Customers remaining in

the group are more profitable than before. Additionally, there is an inflow of new profitable

customers from all other subgroups. Thus, PR’s profit from this subgroup increases.

Finally, consider PU+(α∗). Again, customers remaining in this group are more profitable than

before. Also, there is an inflow of new profitable customers from PU−(α∗). These two effects

suggest that PU’s profit should increase. There is a countervailing effect though. Profitable PU

customers whose income exceeds the opt-out threshold after the change are attracted by PR,

decreasing PU’s profit on PU+(α∗). Therefore, the overall change in profit depends on the exact

changes in health and income.

In general, we cannot determine the sign of the change in profits on PR−(α∗) and PU+(α∗). We

can however derive an upper bound on a potential loss. In fact, a negative change in profits on

14See the Appendix for a definition and technical details.
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PR−(α∗) never outweighs the increase in profits on PU−(α∗). To see this, observe that the loss

in profit on PR−(α∗) is caused by unprofitable customers switching from PU−(α∗) to PR−(α∗).

Thus, the loss on PR−(α∗) corresponds to a one-to-one gain in profit on PU−(α∗). All other

effects increase profit. Put differently, profit on PR−(α∗) ∪ PU−(α∗) increases. An analogous

argument applies to the change in profit on PU+(α∗).

Our analysis reveals that the systematic improvement of health and income may affect the overall

profit of PU and PR positively or negatively, depending on the precise inflow and outflow in

PU+(α∗) and PR−(α∗). As noted above, the overall effect is however positive. Thus, it cannot

be that both PU’s and PR’s profits decrease. The change in PU’s profit determines whether PU

adjusts the contribution rate upward or downward in response to the systematic improvement.

As PR’s profit is increasing in the contribution rate, this effect may reinforce or counteract the

initial change in PR’s profit. The following proposition summarizes our findings.

Proposition 3.3.5. Consider a systematic improvement of the population’s health and income.

Then exactly one of the following three scenarios arises:

(i) If the loss in PU’s profit on PU+(α∗) outweighs the gain in profit on PU−(α∗), the con-

tribution rate increases and PR’s profit increases.

(ii) If the loss in PR’s profit on PR−(α∗) outweighs the gain in profit on PR+(α∗), the con-

tribution rate decreases and PR’s profit decreases.

(iii) Else the contribution rate decreases and the private insurance may profit or lose.

Proposition 3.3.5 sorts the wide range of possible systematic improvements of health and income

into three categories according to their effect on the contribution rate and PR’s profit. Given

that the class of improvements we consider unambiguously increase health and income for the

entire population, these categories are surprisingly manifold. In particular, there exist cases in

which customers have to pay a higher percentage of their income for health insurance. Intuitively,

this is because an improvement might allow PR to absorb profitable PU customers, urging PU

to increase the contribution rate in order to run a balanced budget.

This observation has important implications. The current organization of the health insurance

market might mitigate policy programs and campaigns targeted to improve the population’s

health in order to decrease the contribution rate.

Increase in Correlation Between Health and Income

Motivated by empirical studies (Deaton and Paxson, 1998) which document an increase in cor-

relation between health and income, we investigate how changes in correlation affect the health

insurance market. For a meaningful comparison of correlations, we consider distributions ranked
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by correlation according to the supermodular order which have identical marginal distributions

of health and income.15

Start with a distribution f and consider a distribution g that is larger than f in the supermodular

order. For the case when the opt-out threshold exceeds the contribution cap, we obtain the

following clear-cut result.

Proposition 3.3.6. If the opt-out threshold exceeds the contribution cap, an increase in correla-

tion between health and income increases the contribution rate.

Note that in Germany, in fact since 2003 the opt-out threshold exceeds the contribution cap

and there is hence ’no cream skimming’. To gain intuition for our result, it is instructive to

decompose the transition from f to g into several sub steps. Consider the two-dimensional space

of health and income types. Start with the health income distribution f . Now fit a rectangle

into the health income space and consider a transformation that shifts probability mass from the

bottom right corner of the rectangle to the bottom left corner and the same probability mass

from the upper left corner to the upper right corner.16 This transformation increases correlation

between health and income while keeping the marginal distributions of health and income fixed.

Intuitively, we can construct g from f by applying several of these transformations to f .

e

h

K1K2

Figure 3.2: Mass shift not affecting the contribution rate

If the correlation-increasing mass transformation is such that all four corners of the rectangle

lie within the set of PR customers (see figure ??), PU is unaffected and the contribution rate

remains the same. Similarly, in case the four corners of the rectangle lie within the set of PU

customers, PU does not need to adjust the contribution rate because the marginal distributions

of health and income conditional on being a PU customer are unchanged.

Lastly, consider the case when the left corners of the rectangle are in the set of PU customers

whereas the right corners of the rectangle lie within the set of PR customers (see figure ??). As a

consequence of this transformation, the income distribution of PU customers is not altered since

income is on the x-axis and marginals are held constant by the transformation. But the health

distribution of PU customers worsens. Therefore, PU has to increase the contribution rate to run

a balanced budget. Taking all three cases together, we see that PU increases the contribution rate

15See the Appendix for a formal definition.
16This probability mass shift corresponds to an ’elementary transformation’ as described and analyzed

in Meyer and Strulovici (2015) to characterize the supermodular stochastic order.
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Figure 3.3: Mass shift affecting the contribution rate

if correlation between health and income increases. From a broader perspective, PU customers

have comparatively low income whereas PR customer have comparatively high income. If the

correlation between health and income increases, PU’s low-income customers have also a worse

health type, forcing PU to increase the contribution rate.

If the opt-out threshold lies below the contribution cap, there exists an income range where

PR cream skims. Graphically, PU and PR customers are not separated any longer by a single

cut-off in the income dimension. Thus, we have to consider additional correlation-increasing

transformations. Consider the transformation where only the upper right corner of the rectangle is

in the set of PR customers; all other corners lie in the set of PU customers. For this transformation

there are two conflicting effects. On the one hand, the income distribution of PU customers

worsens. On the other hand, unprofitable customers leave PU. It depends on the distribution

f which of the two effect dominates, and, consequently, whether PU adjusts the contribution

rate upward or downward. All other transformations entail a decrease in the contribution rate.

Overall, in this case it depends on the specific increase in correlation and on how much weight is

put on which transformation whether PU adjusts the contribution rate upward or downward.

3.4 Applications

We apply our model to address two policy questions. First, we study how customers’ welfare

changes if the health insurance market changes from the current contribution-based system to a

premium-based system. We identify the population subgroups that benefit from such a change

and the population subgroups that suffer. Second, we characterize the theoretically welfare-

optimal payments. Understanding the properties of welfare-optimal payments yields additional

insights into how to adjust the organization of health insurance markets to improve customer

welfare.

3.4.1 Health Premia

In recent years, discussions to change the health insurance market in Germany have centered

around two ideas. First, an abolishment of the difference between private and public insurances.

102



Second, a change from an income-dependent contribution-based payment scheme to a premium-

based payment scheme, i.e., a scheme in which payments are flat and do not depend on the

customer’s income or health.

We adjust the model outlined in Section 3.2 to accommodate these two features of a premium-

based health insurance market. Subsequently, we apply our two models to compare the premium-

based to the contribution-based health insurance market. To make the two models comparable,

we alter only the insurance provision sector and leave all other characteristics unchanged such as

the population’s health and income distribution or the customers’ objective.

In the premium-based health insurance market any customer must insure with either of two

identical premium insurances, henceforth PMi, i ∈ {1, 2}.17 Customers can choose freely between

PM1 and PM2, independently of their income and health. PM1 and PM2 offer the same benefit

level and face the same health costs. Each PMi aims at balancing its budget by charging all its

customers premium Ai, i.e.,

E[min(c(h), L)1{PMi(Ai)}] = E[Ai1{PMi(Ai)}], (3.7)

where {PMi(Ai)} denotes the set of PMi’s customers given premium Ai.
18 The timing of the

game is unchanged. First, PM1 and PM2 simultaneously set their premium, then customers

choose their preferred insurance. Again, we are interested in subgame-perfect equilibria.

Proposition 3.4.1. There exists an equilibrium in the premium-based health insurance market.

In every equilibrium, all customers pay the premium

A∗ = E[min(c(h), L)]. (3.8)

As before, customers choose the insurance that gives them a higher net benefit. Because the

benefit level written down in the contracts is equal, customers choose the insurance with lower

payment, i.e., the insurance with lower premium. Thus, if PMi’s premium is strictly lower than

PM−i’s premium, all customers choose PMi. As a result of budget balancing and competition for

customers, all PMi demand the same premium and insure on average identical pools of health

risks (identical PMi) or there is only one PM . In either case, the equilibrium premium is equal

to the average health benefit of the population, i.e., (3.8).

How does the change to a premium-based system affect redistribution in the population? Proposi-

tion 3.4.1 reveals that in a premium-based system every customer pays the average health benefit

of the population, independently of her income. This implies that redistribution occurs only

17Analogous results hold if there are more than two premium insurances.
18We model premium insurances in the spirit of the public insurance in the contribution-based system.

Results are virtually unchanged if we assume that premium insurances maximize profits.
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along the health dimension, i.e., customers with a good health type subsidize customers with a

bad health type. In contrast to the contribution-based system, there is no redistribution along

the income dimension. Thus, the premium-based system disentangles the mixture of redistribu-

tion across health and redistribution across income which is inherent to the contribution-based

system. As a consequence, we obtain the following corollary

Corollary 3.4.1. There exists an income threshold such that all customers with income below

the threshold have higher utility in the contribution-based system, and all customers with income

above the threshold have higher utility in the premium-based system.

Ceteris paribus, customers with higher income pay more in the contribution-based system and

customers with lower income pay less in the contribution-based system. As health benefits remain

equal, in the contribution-based system customers with higher income have a lower utility and

customers with lower income have a higher utility.

To maintain the current level of income redistribution the introduction of a premium-based sys-

tem would thus have to be accompanied by an adjustment of income taxation.

We next assess the impact of a change in the insurance system on the population’s welfare. We

adopt the utilitarian welfare criterion, i.e., our welfare function is the sum (integral) of utilities

of all customers in the population. Recall from Proposition 3.3.2 that an increase of the opt-out

threshold decreases the contribution rate and consequently the payment of all customers in the

population. Thus, as the opt-out threshold increases, all customers enjoy a higher utility, i.e.,

welfare increases. Welfare in the contribution-based system reaches its maximum once the opt-

out threshold is so high that the entire population must insure with PU. We refer to this specific

contribution-based system as “contribution-based system without PR”.

Proposition 3.4.2.

(i) For high levels of the opt-out threshold, the contribution-based system has higher welfare

than the premium-based system.

(ii) In the premium-based system, there exists a budget-balanced income redistribution scheme

(income tax) such that welfare is the same as in the contribution-based system without PR.

To understand the result, observe that there are two opposing effects. First, in the contribution-

based system PR makes profits and thereby extracts surplus that is not used to cover the pop-

ulation’s health benefits. In the premium-based system neither insurance makes profits.19 This

effect reduces welfare in the contribution-based system compared to the premium-based system.

Second, concavity of the population’s utility function favors the income-dependent payment of

the contribution-based system compared to the flat payment of the premium-based system be-

cause low-income customers pay relatively less and high-income customers pay relatively more.

19Recall, that this is true even if we assume that both premium insurances are profit-maximizing.
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With a higher opt-out threshold, PR extracts less surplus which attenuates the first effect. Thus,

for a sufficiently high opt-out threshold, the second effect dominates, and the contribution-based

system yields higher welfare. Conversely, combining the introduction of a premium-based system

with a redistribution of income from high incomes to low incomes compensates for the second

effect. Consequently, the premium-based system accompanied by an appropriate income redis-

tribution scheme yields higher welfare than the contribution-based system.

We conclude that an easy-to-implement policy recommendation to improve welfare is to in-

crease the opt-out threshold. If the health insurance market is changed more fundamentally to a

premium-based system, an accompanying explicit redistribution of income via an adjustment of

income taxation favoring low incomes would increase welfare and make up for the lack of implicit

redistribution inherent in the contribution-based system. 20

3.4.2 Welfare - Optimal Payments

In view of Proposition 3.4.2, we are now interested in welfare-optimal payment schemes to finance

a given level of health benefits. Understanding why these payment schemes maximize welfare,

gives us further insights into how to adjust the health insurance market in order to increase wel-

fare. Specifically, we consider the following problem: Health insurance is exclusively provided by

a benevolent authority that chooses a payment scheme to maximize welfare subject to the con-

straint of providing a given benefit level. First, we explicitly derive the welfare-optimal payment

scheme that may condition on both health and income.

Proposition 3.4.3. For given health benefits the welfare-maximizing payment scheme that may

condition on health and income, popt(h, e), is given by

popt(h, e) = min(c(h), L) + e− c(h)− E [e− c(h)] . (3.9)

Observe that popt(h, e) conditions on customer’s health. Intuitively, popt(h, e) consists of two

components. The first component charges each customer the health benefits she consumes. The

second component associates to every customer the difference between her factual and her ex-

pected net income, i.e., her income less health costs. If a customer’s net income is high relative to

the average net income of the population, her payment is augmented by the difference. Otherwise,

her payment is reduced by the difference. The first component guarantees that the population’s

health benefits are covered; the second component is a budget-balanced redistribution scheme

from customers with high net income to customers with low net income. The redistribution

scheme accounts for the positive effect of equating utility across customers on welfare, which

stems from the concavity of customers’ utility function.

20For arguments in favor of this clear separation of income redistribution and distribution across health
types see Wissenschaftlicher Beirat ??.
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In the contribution-based system PU’s payments only depend on income. Therefore, we are

now interested in the properties of welfare-optimal payment schemes which are restricted to only

depend on income. Further, we investigate whether PU’s payment satisfies these properties.

Also, recall that welfare in the premium-based system can be increased, if the introduction of a

premium-based system is combined with an appropriate redistribution in the income dimension.

Studying characteristics of welfare-optimal payments which depend on income only translates

one-to-one into studying the characteristics of welfare-optimal income redistribution schemes in

the premium-based system. Technically, we assume for the next result that the density of the

distribution of health conditional on income is continuously differentiable.

Proposition 3.4.4. The welfare-maximizing payment scheme p̂opt(e) restricted to depend on

income only satisfies
dp̂opt(e)

de
≥ 1.

Clearly we have that welfare under popt(h, e) is higher than welfare under p̂opt(e). Nevertheless,

Proposition 3.4.4 shows that p̂opt(e) takes into account the correlation between higher income and

better health. An increase in a customer’s income by one unit increases her net income by more

than a unit since by correlation higher income is associated with better health and thus lower

health costs. Payment p̂opt(e) tries to balance net incomes across customers. Thus, it not only

neutralizes the increase of income but also balances out the positive effect of an income increase

on health. Hence, p̂opt(e) increases faster in income than income itself.

Observe that the last result stands in marked contrast to PU’s factual payment: PU’s payment

increases at a rate equal to the contribution rate, which is less than one, and remains constant

above the contribution cap. This indicates that a reform to adjust PU’s payment scheme to

take the positive correlation of health and income into account has the potential of increasing

welfare. On a similar note, if the introduction of a premium-based system is combined with

an adjustment of income taxation to compensate for the redistribution that is lost through the

abolishment of the contribution-based system, an adjustment of income taxation to account for

correlation between health and income would be welfare enhancing.

3.5 Extensions

3.5.1 Health Signals

To single out the effect of the organizational structure of the health insurance market, we assume

that insurances perfectly observe customers’ characteristics such as their health types. By this

we shut down confounding channels like adverse selection as a result of asymmetric information.

Nevertheless, to demonstrate robustness of our findings to private information of customers, we

consider the following variation of our model. In addition to her income and health type, each

customer is characterized by a health signal. We can interpret the signal, as the customer’s
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answer to a health questionnaire. The customer’s health signal is positively correlated with her

health type.21 Insurances observe customers’ health signal but not their health type. As PU

discriminates only based on income, PU is not directly affected by the change in modeling. PR’s

ability to discriminate across health types is however hampered; PR has to devise a payment

scheme that only depends on income and health signal to maximize profits.

We can reproduce our findings from Section 3.3 following the same steps: As before, customers

choose the insurance which offers the lower payment. For insurances, observe that we can replicate

our analysis by replacing the health benefit by the expected health benefit conditional on income

and health signal. Intuitively, as PR cannot observe customers’ health, it estimates health using

income and health signal. Due to positive correlation, high income and a favorable health signal

are indicative of a good health type. Consequently, PR partially retains its ability to distinguish

profitable and unprofitable customers.

3.5.2 Endogenous Health Benefits

So far we have assumed that insurances provide the same maximum benefit level L in their con-

tracts. A careful inspection of the arguments in the proof of Lemma 3.3.1 reveals that customers

choose the insurance which offers the higher net benefit, i.e., health benefit minus payment. We

had conveniently set equal benefit levels of public and private insurance contracts to focus on

payments. The analysis is however unchanged if, PR provides an exogenously higher benefit level.

In equilibrium PR will charge higher payments such that the net benefit is unchanged. Does this

conclusion remain true if PR chooses the benefit level endogenously?

To answer this question, consider the following variant of our model. PR offers customers two

contracts: a simple contract reminiscent of PU’s contract and a more elaborate contract tailored

to its customers. Specifically, the first contract provides the same benefit level as PU, and the

contract’s payment corresponds to the highest payment which PU charges, i.e., contribution rate

times contribution cap.22 For the second contract, PR chooses a benefit level and devises an

income- and health-dependent payment scheme.

The equilibrium in this health insurance market parallels the equilibrium derived in Section 3.3.

The sets of PU and PR customers are unchanged. PR finetunes the elaborate contract to cream

skim profitable customers with income above the opt-out threshold. Unprofitable customers

with income above the opt-out threshold and the contribution cap choose PR’s simple contract.

In equilibrium only the net benefit of the elaborate contract is uniquely determined echoing

the remarks made at the beginning of this section. Thus, without additional assumptions no

prediction about the relative benefit level of PU and PR can be made.

21Specifically, we assume that health signal and health type are affiliated.
22In the German health insurance system, private insurances have to offer this baseline contract to every

customer.
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3.5.3 Private Competition

We are now interested in how redistribution streams change if we introduce competition among

private insurances. Assume that in addition to PU and the population there are two private

insurances, PR1 and PR2.23 All insurances offer contracts with equal maximum benefit level

L. PR1 and PR2 maximize profits by devising a payment scheme that conditions on customers’

health and income. In the first period insurances simultaneously design their type dependent

contracts. In the second period customers choose the contract that maximizes their utility. For

simplicity assume that customers randomize with equal probability if they are indifferent between

PR1 and PR2.

In equilibrium, the set of PU customers is unchanged. By budget balancing thus, public health

contribution remains the same. Former PR customers split equally between PR1 and PR2 and

private health premia change. The payments of PR1 customers and PR2 customers are equal to

the minimum of their health benefit from the contract and the upper bound on PR’s payment.

In particular, they pay less than before. Intuitively, competition pushes the premiums payable

by PR1 and PR2 customers down to the cost they impose on the insurance, i.e., their health

benefit. Redistribution streams are as follows. Profitable customers with income below the opt-

out threshold have to insure with PU. and pay more than their health benefits. They subsidize

unprofitable parts of the population insured with PU. Profitable customers with income above

the opt-out threshold opt out of the redistribution scheme by insuring with one of the PRs and

pay an amount equal to or less than their health benefit. As a consequence, they do not generate

a gain to the PRs. Unprofitable customers with income above the opt-out threshold but below

the maximum price the PR may set are deterred from entering either of the PRs and insure with

PU. Unprofitable customers with income above the maximum price for insurance enter either of

the PRs.24

3.6 Conclusion

This paper studies redistributional effects of competition between private and public insurance

on health insurance markets based on the example of Germany. Public and private insurance co-

exist and are mutually exclusive. Private insurance maximizes profits. Public insurance balances

budget and is financed by an income tax with a cap. In addition, customers of public insurance

have the option to opt out once income is sufficiently large.

On a more abstract level, we study a two-dimensional linear taxation problem with price cap,

23Analogous results hold if there are more than two private insurances.
24Note that as a consequence, PRs do not survive competition with other PRs since very wealthy but

unprofitable customers cannot be deterred from entering and cause a loss to the insurance.
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opt-out for high types under a budget balancing constraint and regulation. Public health premia

may only depend on income types but health costs depend on health types of customers. This

regulation in combination with the potential of opt-out gives rise to cream skimming (risk selec-

tion) by a competing private insurance.

Private insurance discriminates between healthy and unhealthy customers. If possible, she de-

ters unprofitable customers while attracting customers who will generate a gain by varying the

premium. In the face of cream skimming, opt-out by rich customers and budget balancing, the

public insurance sets the public contribution rate.

As first result, we derive a condition under which a unique, redistributive, budget balancing

public contribution rate exists. We show, increasing the opt-out threshold up to the level of

the public insurance’s price cap decreases the premium for all customers, public and private,

since the type area where the private insurance may cream skim vanishes. Increasing the opt-out

threshold further, leads to even lower public and private premia since health and income types

are positively correlated.

Considering a systematic improvement of the population’s health and income25, we show that

even though the change clearly improves the population’s characteristics, the public contribution

rate might increase. Healthy and wealthy customers may opt out and insure privately so that an

improvement does not benefit all customers via redistribution in the public insurance but instead

is pocketed by private insurance.

Increases in correlation between income and health may increase public health prices to keep a

balanced budget: On the one hand, less wealthy types insure publicly and become on average

less healthy which causes additional costs to public insurance. On the other hand, higher earning

types become more healthy after the increase in positive correlation but may opt out so that the

gain in health and decrease in costs is lost to private insurance.

While some characteristics of our model are Germany specific (opt-out and price cap), simpler

versions still constitute a contribution to the literature: Health and income types are continuous

which in combination with regulation of public insurance and budget balancing leads insurance

markets to collapse under voluntary insurance. In particular, this result is not due to adverse

selection and may deliver a rationale for why health insurance is compulsory in Germany, France

and Switzerland.

In addition, continuous types allow for modeling of maximum and factual health benefit levels

and thus over insurance which drives customers’ contract choice.

In Germany as in Italy, customers have the choice between public and private insurance. When

setting the opt-out threshold at infinity our model corresponds to a completely public, non-profit,

earnings-based redistributive health insurance system as in France.

25In the sense of first-order stochastic dominance
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We formulate the model under the assumption that private insurance perfectly observes cus-

tomers’ health types. We believe this is plausible since private insurances in Germany often

require potential customers to fill out binding questionnaires about their medical history. More-

over, insurances can draw on internal statistics to precisely estimate the likelihood that a customer

falls sick with a certain disease. We think of an agents’ health type as average health over her life

time rather than a reflection of a particular moment. By modeling health types as observable and

fix over lifetime, we circumvent the moral hazard problem in health insurance: Insured agents

do not overuse their insurances. The motive to insure is hence not by risk-sharing but imposed

by regulation to redistribute along the income and health dimension. Public health premium as

percentage of income is set at an ex ante stage by the public insurance for we implicitly assume

that the general income-health risk distribution of the population is known to both public and

private insurance.

In our model, the public insurance commits to running a balanced budget rather than maximiz-

ing profits. We offer two possible justifications for this behavior. First, we may assume that a

benevolent government sets up a health insurance fund to provide large parts of the population

with health insurance at lowest possible costs.26 Second, we can regard public insurance as a

representative for an entire competitive public insurance market in which every public health in-

surance operates at her (identical) costs.27 Either explanation motivates the objective to balance

budget.

26In fact, in years in which German public health insurances make significant profits, customers obtain
a refund in form of a price deduction.

27In Germany, for example, customers can choose from several similar public health insurances, and
switching insurances within the public sector is simple.
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3.7 Appendix: Proofs

3.7.1 Proofs for Voluntary Health Insurance

Proof of Proposition 3.3.1. If health insurance is voluntary, every customer type’s contract

set contains, in addition to PU’s and PR’s contract, contract (0, 0), i.e., (0, 0) ∈ C(h, e), ∀(h, e).
Assume there exists an equilibrium (α∗, p∗pr, (L

∗, p∗(h, e))). Optimal choice of customers requires:

u(e+ min(L∗ − c(h), 0)− p∗(h, e)) ≥ u(e+ min(L′ − c(h), 0)− p(h, e)),

for all contracts (L′, p(h, e)) ∈ C(h, e). As the utility function is strictly increasing this is equiva-

lent to

min(L∗, c(h))− p∗(h, e) ≥ min(L′, c(h))− p(h, e),

for all contracts (L′, p(h, e)) ∈ C(h, e). In particular, with voluntary health insurance we have

that

min(L∗, c(h))− p∗(h, e) ≥ 0. (3.10)

(3.10) implies that PU and PR incur a weak loss for every insured customer. We will now argue

that (3.10) holds with strict inequality on a set of PU customers with positive measure. Thus,

PU’s equilibrium condition

α∗ E[min(K2, e)1PU(α∗)] = E[min(L, c(h))1PU(α∗)]

does not hold, a contradiction. Let α∗ PU’s equilibrium contribution rate under voluntary insur-

ance. Consider the part of the population with e < K2 and

α∗min(K2, e)−min(L, c(h)) < 0.

These are (strictly) unprofitable customers. Because K2, L, c(h) > 0 and the support of income is

continuous [0, ē] this part of the population has positive measure for every α∗. These customers

prefer being insured with PU over remaining uninsured. Also, PR does not want to attract this

part of the population because PR would need to set pPR(h, e) ≤ α∗min(K2, e), incurring a loss

on these customers. As e < K2, PR can and will set p∗PR(h, e) ≥ α∗min(K2, e) to deter these

unprofitable customers. We have argued that this strictly unprofitable part of the population

will insure with PU. The strictly profitable part of the population will decide to remain unin-

sured. How the part of the poplulation that is indifferent between insuring or not, i.e. for which

α∗min(K2, e)−min(L, c(h)) = 0 (zero profit zero loss), decides is irrelevant for PU, PR and the

outcome since they neither bring a loss or a profit. To sum up, we have shown that for any

contribution rate PU might set strictly unprofitable customers exist, insure with PU and cause a

loss, while zero profit zero loss customers may insure with PU but do not generate a profit either.

Hence, PU cannot run a balanced budget for any contribution rate α it might set.
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3.7.2 Proofs for Equilibrium Existence

Proof of Lemma 3.3.1. Given any contribution rate α ∈ [0, 1] and any feasible choice of pPR(·),
the contract set of a customer with type (h, e) is

C(h, e) =

{(L,αmin(K2, e))} if e < K1,

{(L,αmin(K2, e)), (L, pPR(h, e))} else.

It is optimal for a type-(h, e) customer to choose (L, p∗(h, e)) ∈ C(h, e) if and only if

u(e+ min(L− c(h), 0)− p∗(h, e)) ≥ u(e+ min(L− c(h), 0)− p(h, e)),

for all (L, p(h, e)) ∈ C(h, e). As u(·) is strictly increasing, this is equivalent to

min(L, c(h))− p∗(h, e) ≥ min(L, c(h))− p(h, e),

for all (L, p(h, e)) ∈ C(h, e). Because health benefits L are equal, the latter expression reduces to

p∗(h, e) ≤ p(h, e),

which concludes the proof.

Proof of Lemma 3.3.2. Fix any contribution rate α. Consider a feasible payment scheme p(·).
Optimal customer choice, Lemma 3.3.1, implies that the set of PR customers is given by

PR(α) = {(h, e) : e ≥ K1, p(h, e) ≤ αmin(K2, e)}.

Thus, spelling out the expectation, we can rewrite PR’s objective as

pPR(·) ∈ arg max
p(·) feasible

∫
E

∫
H

(
p(h, e)−min(L, c(h)

)
1{e≥K1, p(h,e)≤αmin(K2,e)}(h, e) f(h, e) dh de.

Because PR’s objective involves no derivatives of p(h, e), we can solve it pointwise. Carefully

inspecting (
p(h, e)−min(L, c(h)

)
1{e≥K1, p(h,e)≤αmin(K2,e)}(h, e) f(h, e)

reveals that

pPR(h, e) =

αmin(K2, e) if αmin(K2, e) ≥ min(L, c(h)),

αK2 else,

is an optimal policy.
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Proof of Theorem 3.3.1. Let customers’ and PR’s behavior be as described in Lemma 3.3.1

and Lemma 3.3.2, respectively. Fix a contribution rate α. Formally, the set of PU customers is

PU(α) = {(h, e) : e < K1}∪̇{(h, e) : K1 ≤ e < K2, αe < min(L, c(h))},

and the set of PR customers is

PR(α) ={(h, e) : e ≥ K1, αmin(K2, e) ≥ min(L, c(h))}

∪̇{(h, e) : e ≥ max(K1,K2), αK2 < min(L, c(h))}.

PU seeks a contribution rate α∗ such that

α∗ E[min(K2, e)1PU(α∗)] = E[min(L, c(h))1PU(α∗)].

Reformulating gives

α∗ =
E[min(L, c(h))1PU(α∗)]

E[min(K2, e)1PU(α∗)]
.

Define the function T (α):

T (α) :=
E[min(L, c(h))1PU(α)]

E[min(K2, e)1PU(α)]
.

An equilibrium contribution rate α∗ corresponds to a fixed point of T (·). First, we show that

T (·) is well-defined, i.e., that the denominator cannot become zero:

E
[
min(K2, e)

(
1{e<K1} + 1{K1≤e<K2, αe<min(L,c(h))}

)]
≥ E

[
e1{e<min(K1,K2)}

]
> 0,

where the last inequality follows from the assumption that f(h, e) has full support and the fact

that K1 and K2 are strictly positive.

Existence. We prove existence of a fixed point using the intermediate value theorem. Firstly,

note

T (0) =
E[min(L, c(h))

(
1{e<K1} + 1{K1≤e<K2}

)
]

E[min(K2, e)
(
1{e<K1} + 1{K1≤e<K2}

)
]
> 0.

The inequality follows from both numerator and denominator being strictly positive because of

full support of f(h, e) and K1,K2, L, c(·) > 0. Secondly, we have

T (1) =
E[min(L, c(h))

(
1{e<K1} + 1{K1≤e<K2, e<min(L,c(h))}

)
]

E[min(K2, e)
(
1{e<K1} + 1{K1≤e<K2, e<min(L,c(h))}

)
]
≤ E[min(L, c(h))]

E[e1{e<min(K1,K2)}]
< 1,

where the last inequality follows from Assumption 1. It remains to be shown that T (·) is contin-

uous.28 First, consider the numerator of T (·). The first addend does not depend on α, thus, we

28Continuity does not follow from standard results for parameter integrals because these require that
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only need to check continuity of

g(α) :=

∫
H

∫
E

min(L, c(h))
(
1{K2>e≥K1, αe<min(L,c(h))}

)
f(h, e) de dh .

Fix α and α̃, and assume without loss of generality that α > α̃.

|g(α)− g(α̃)|

≤
∫
H

∫
E

min(L, c(h)) 1{K2>e≥K1}
∣∣1{αe<min(L,c(h))} − 1{α̃e<min(L,c(h))}

∣∣f(h, e) de dh

=

∫
H

∫
E

min(L, c(h)) 1{K2>e≥K1} 1{α̃<min(L,c(h))
e

≤α} f(h, e) de dh. (3.11)

Because f(h, e) has no atoms, the integrand converges pointwise to zero as α̃→ α. Thus, by the

dominated convergence theorem, (3.11) converges to zero as α̃→ α. Continuity of the denomina-

tor follows from an analogous argument. Hence, T (·) is continuous, and the existence of a fixed

point follows from the intermediate value theorem.

Uniqueness. If K1 ≥ K2, T (·) is constant in α and thus the fixed point is unique. For K2 > K1

we argue that

(i) T (·) is increasing left of the first fixed-point,

(ii) T (·) is decreasing right of the first fixed-point,

together with the existence result above, this yields uniqueness of α∗. Note the following elemen-

tary equivalence for a, b, c, d > 0
a+ c

b+ d
<
a

b
⇔ a

b
>
c

d
. (3.12)

For (i) recall that T (0) > 0. Let α̃, α be left of the first fixed-point and α̃ > α, then T (α̃) > α̃ > α.

We argue that T (α̃) > T (α):

T (α̃)− T (α)

=

∫
H
∫
E min(L, c(h))

(
1{e<K1} + 1{K2>e≥K1, α̃<

min(L,c(h))
e

}
)
f(h, e) de dh∫

H
∫
E e
(
1{e<K1} + 1{K2>e≥K1, α̃<

min(L,c(h))
e

}
)
f(h, e) de de

−

∫
H
∫
E min(L, c(h))

(
1{e<K1} + 1{K2>e≥K1}

(
1{α<min(L,c(h))

e
≤α̃} + 1{α̃<min(L,c(h))

e
}
))
f(h, e) de dh∫

H
∫
E e
(
1{e<K1} + 1{K2>e≥K1}

(
1{α<min(L,c(h))

e
≤α̃} + 1{α̃<min(L,c(h))

e
}
))
f(h, e) de dh

.

(3.13)

Analyzing the indicator functions, we see that

α ≤

∫
H
∫
E min(L, c(h)) 1{K2>e≥K1, α<

min(L,c(h))
e

≤α̃}f(h, e) de dh∫
H
∫
E e1{K2>e≥K1, α<

min(L,c(h))
e

≤α̃}f(h, e) de dh
≤ α̃. (3.14)

the integrand is a continuous function of α for almost all h, e.
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Using T (α̃) > α̃ and (3.14), we apply (3.12) to obtain T (α̃) > T (α).

For (ii) assume that T (α) is not decreasing right of the first fixed-point. Because T (1) < 1 and

T (·) is continuous, there exist α̃, α, α̃ > α, such that α > max(T̃ (α̃), T̃ (α)) and T̃ (α̃) > T̃ (α).

However, replicating the computations in (3.13) and (3.14), we observe

T̃ (α̃)− T̃ (α) ≤ 0,

a contradiction. We conclude that there exists a unique contribution rate α∗ that balances PU’s

budget.

Profits of PR. Start by observing that

1PR(α) = 1{e≥max
(
K1, min

(
min(L,c(h))

α
, K2

))
}

is increasing in h and e. Analogously,

1PU(α) = 1{e<max
(
K1, min

(
min(L,c(h))

α
, K2

))
}

is decreasing in h and e. Furthermore, min(K2, e) is increasing in e, and min(L, c(h)) is decreasing

in h. These observations together with the fact that f(h, e) is affiliated, i.e., log-supermodular,

allow us to apply the Fortuin-Kasteleyn-Ginibre (FKG) inequality to obtain:

E
[
min(L, c(h))1PR(α)

]
≤ E [min(L, c(h))] E

[
1PR(α)

]
,

E
[
min(K2, e)1PR(α)

]
≥ E [min(K2, e)] E

[
1PR(α)

]
,

E
[
min(L, c(h))1PU(α)

]
≥ E [min(L, c(h))] E

[
1PU(α)

]
,

E
[
min(K2, e))1PU(α)

]
≤ E [min(K2, e)] E

[
1PU(α)

]
.

The four inequalities above yield

E
[
min(L, c(h))1PR(α)

]
E
[
min(K2, e)1PR(α)

] ≤ E [min(L, c(h))]

E [min(K2, e)]
≤

E
[
min(L, c(h))1PU(α)

]
E
[
min(K2, e)1PU(α)

] . (3.15)

In equilibrium we have

E
[
min(L, c(h))1PR(α∗)

]
E
[
min(K2, e)1PR(α∗)

] ≤ E
[
min(L, c(h))1PU(α∗)

]
E
[
min(K2, e)1PU(α∗)

] = α∗.

Rearranging terms gives

E
[
(α∗min(K2, e)−min(L, c(h))) 1PR(α∗)

]
≥ 0,

which concludes the proof.
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3.7.3 Proofs for Comparative Statics in Policy Parameters

Proof of Proposition 3.3.2. Consider an increase of K1 to K̃1, K1 ≤ K̃1. For this proof, we

make the dependence of T (·) on K1 explicit and write TK1(·). Similarly, we denote the set of PU

customers by PUK1(α). Let the contribution rates α∗ and α̃∗ be the unique fixed points of TK1(·)
and TK̃1

(·) respectively. We argue that TK1(α̃∗) ≥ TK̃1
(α̃∗) which implies α∗ ≥ α̃∗ because the

fixed point is unique. Spelling out TK1(α̃∗) ≥ TK̃1
(α̃∗), we obtain

E[min(L, c(h))1PUK1
(α̃∗)]

E[min(K2, e))1PUK1
(α̃∗)]

≥
E[min(L, c(h))1PUK̃1

(α̃∗)]

E[min(K2, e))1PUK̃1
(α̃∗)]

. (3.16)

We distinguish two cases.

Case 1. First, let K1 ≤ K̃1 ≤ K2. Observe that

1PUK1
(α̃∗) = 1{e<K1} + 1{K1≤e<K2, α̃∗e<min(L,c(h))}

= 1{e<K1} + 1{K1≤e<K̃1} − 1{K1≤e<K̃1, α̃∗e≥min(L,c(h))} + 1{K̃1≤e<K2, α̃∗e<min(L,c(h))}

= 1PUK̃1
(α̃∗) − 1{K1≤e<K̃1, α̃∗e≥min(L,c(h))}.

Hence, we can rewrite (3.16) as

E[min(L, c(h))(1PUK̃1
(α̃∗) − 1{K1≤e<K̃1, α̃∗e≥min(L,c(h))})]

E[min(K2, e)(1PUK̃1
(α̃∗) − 1{K1≤e<K̃1, α̃∗e≥min(L,c(h))})]

≥
E[min(L, c(h))1PUK̃1

(α̃∗)]

E[min(K2, e))1PUK̃1
(α̃∗)]

. (3.17)

Similarly as in (3.12), we have
a− b
c− d

≥ a

c
⇔ b

d
≤ a

c

for c− d > 0, a, b, c, d ≥ 0. Therefore, (3.17) is equivalent to

E[min(L, c(h))1{K1≤e<K̃1, α̃∗e≥min(L,c(h))}]

E[min(K2, e)1{K1≤e<K̃1, α̃∗e≥min(L,c(h))}]
≤

E[min(L, c(h))1PUK̃1
(α̃∗)]

E[min(K2, e))1PUK̃1
(α̃∗)]

.

Exploiting the indicator function of term on the left side of the above inequality and the fact

that α̃∗ is a fixed point of TK̃1
(·), we obtain

E[min(L, c(h))1{K1≤e<K̃1, α̃∗e≥min(L,c(h))}]

E[min(K2, e)1{K1≤e<K̃1, α̃∗e≥min(L,c(h))}]
≤ α̃∗ =

E[min(L, c(h))1PUK̃1
(α̃∗)]

E[min(K2, e))1PUK̃1
(α̃∗)]

.

Thus, (3.16) holds in this case.
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Case 2. Second, consider the case K2 ≤ K1 ≤ K̃1. (3.16) becomes

E[min(L, c(h))1{e<K1}]

E[min(K2, e)1{e<K1}]
≥

E[min(L, c(h))(1{e<K1} + 1{K1≤e<K̃1})]

E[min(K2, e)(1{e<K1} + 1{K1≤e<K̃1})]
.

Using (3.12), the latter inequality is equivalent to

∫ K̃1

0

∫ h
h min(L, c(h))1{e<K1}f(h, e) dh de∫ K̃1

0

∫ h
h min(K2, e)1{e<K1}f(h, e) dh de

≥

∫ K̃1

0

∫ h
h min(L, c(h))1{K1≤e}f(h, e) dh de∫ K̃1

0

∫ h
h min(K2, e)1{K1≤e}f(h, e) dh de

. (3.18)

Now, we proceed as in the proof Theorem 3.3.1 where we showed that PR’s profit is positive.

Note that 1{e<K1} is a decreasing function of h, e, and that 1{K1≤e} is an increasing function of

h, e. Together with the affiliation of f(h, e) and the monotonicity of min(L, c(h)) and min(K2, e),

these observations imply, using the FKG inequality,

∫ K̃1

0

∫ h
h min(L, c(h))1{K1≤e}f(h, e) dh de∫ K̃1

0

∫ h
h min(K2, e)1{K1≤e}f(h, e) dh de

≤

∫ K̃1

0

∫ h
h min(L, c(h))f(h, e) dh de∫ K̃1

0

∫ h
h min(K2, e)f(h, e) dh de

and ∫ K̃1

0

∫ h
h min(L, c(h))f(h, e) dh de∫ K̃1

0

∫ h
h min(K2, e)f(h, e) dh de

≤

∫ K̃1

0

∫ h
h min(L, c(h))1{e<K1}f(h, e) dh de∫ K̃1

0

∫ h
h min(K2, e)1{e<K1}f(h, e) dh de

.

Thus, (3.18) holds, implying that (3.16) holds also in this case which concludes the proof.

Proof of Proposition 3.3.3. We proceed similar as in the proof of Proposition 3.3.2. Consider

a decrease of K2 to K̃2, K̃2 ≤ K2. For this proof, we make the dependence of T (·) on K2 explicit

and write TK2(·). Similarly, we denote the set of PU customers by PUK2(α). Let the contribution

rates α∗ and α̃∗ be the unique fixed points of TK2(·) and TK̃2
(·) respectively.

Proof of (i). First, consider the case K1 ≤ K̃2 ≤ K2. We argue that TK2(α̃∗) ≥ TK̃2
(α̃∗) which

implies α∗ ≥ α̃∗ because the fixed point is unique. Spelling out TK2(α̃∗) ≥ TK̃2
(α̃∗), we obtain

E[min(L, c(h))1PUK2
(α̃∗)]

E[min(K2, e))1PUK2
(α̃∗)]

≥
E[min(L, c(h))1PUK̃2

(α̃∗)]

E[min(K̃2, e))1PUK̃2
(α̃∗)]

. (3.19)

Observe that

1PUK2
(α̃∗) = 1{e<K1} + 1{K1≤e<K2, α̃∗e<min(L,c(h))}

= 1{e<K1} + 1{K1≤e<K̃2, α̃∗e<min(L,c(h))} − 1{K̃2≤e<K2, α̃∗e<min(L,c(h))}

= 1PUK̃2
(α̃∗) − 1{K̃2≤e<K2, α̃∗e<min(L,c(h))}.
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Hence, we can rewrite (3.19) as

E[min(L, c(h))(1PUK̃2
(α̃∗) + 1{K̃2≤e<K2, α̃∗e<min(L,c(h))})]

E[e(1PUK̃2
(α̃∗) + 1{K̃2≤e<K2, α̃∗e<min(L,c(h))})]

≥
E[min(L, c(h))1PUK̃2

(α̃∗)]

E[e1PUK̃2
(α̃∗)]

, (3.20)

where we used the indicator functions to simplify the denominators. The latter inequality is

equivalent to

E[min(L, c(h))1{K̃2≤e<K2, α̃∗e<min(L,c(h))})]

E[e1{K̃2≤e<K2, α̃∗e<min(L,c(h))}]
≥

E[min(L, c(h))1PUK̃2
(α̃∗)]

E[e1PUK̃2
(α̃∗)]

by (3.12). Exploiting the indicator function of term on the left side of the above inequality and

the fact that α̃∗ is a fixed point of TK̃2
(·), we obtain

E[min(L, c(h))1{K̃2≤e<K2, α̃∗e<min(L,c(h))})]

E[e1{K̃2≤e<K2, α̃∗e<min(L,c(h))}]
≥ α̃∗ =

E[min(L, c(h))1PUK̃2
(α̃∗)]

E[e1PUK̃2
(α̃∗)]

.

Thus, (3.19) holds.

Proof of (ii). Second, consider the case K̃2 ≤ K2 ≤ K1. Observe that T (·) is constant in α in

this case. We argue that TK̃2
(·) ≥ TK2(·) which implies α̃∗ ≥ α∗. Spelling out TK̃2

(·) ≥ TK2(·),
we obtain

E[min(L, c(h))1{e<K1}]

E[min(K̃2, e))1{e<K1}]
≥

E[min(L, c(h))1{e<K1}]

E[min(K2, e))1{e<K1}]
,

which holds as K̃2 < K2.

Proof of Proposition 3.3.4. Consider an increase of L to L̃, L ≤ L̃. For this proof, we

make the dependence of T (·) on L explicit and write TL(·). Similarly, we denote the set of PU

customers by PUL(α). Let the contribution rates α∗ and α̃∗ be the unique fixed points of TL(·)
and TL̃(·) respectively. We argue that TL̃(α∗) ≥ TL(α∗) = α∗ which implies α̃∗ ≥ α∗ because the

fixed point is unique. TL̃(α∗) is given by

E[min(L̃, c(h))1PUL̃(α∗)]

E[min(K2, e))1PUL̃(α∗)]
.

Consider the numerator of this fraction

E[min(L̃, c(h))(1{e<K1} + 1{K1≤e<K2, α∗e<min(L̃,c(h))})]

= E[min(L̃, c(h))(1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h))} + 1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))})]

≥ E[min(L̃, c(h))(1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h))})] + E[α∗e1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))})]

≥ E[min(L, c(h))(1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h))})] + E[α∗e1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))})].
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To get from the second to the third line, we exploit the third indicator function. From the third

to the fourth line we use min(L, c(h)) ≤ min(L̃, c(h)). Thus, we obtain

TL̃(α∗)

≥
E[min(L, c(h))(1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h))})] + E[α∗e1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))})]

E[e (1{e<K1} + 1{K1≤e<K2, α∗e<min(L̃,c(h)})]

=
E[min(L, c(h))(1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h))})] + E[α∗e1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))})]

E[e (1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h)})] + E[e1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))}]
.

Observe that

E[min(L, c(h))(1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h))})]

E[e (1{e<K1} + 1{K1≤e<K2, α∗e<min(L,c(h)})]
= TL(α∗) = α∗

and
E[α∗e1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))})]

E[e1{K1≤e<K2, min(L,c(h))≤α∗e<min(L̃,c(h))}]
= α∗.

Because
a+ b

c+ d
=
a

c
⇔ a

c
=
b

d
.

for a, b, c, d > 0, we conclude that

TL̃(α∗) ≥ α∗.

3.7.4 Proofs for Structural Population Changes

Proofs for Systematic Improvement of Health and Income

Preliminaries. We make the dependence of the expectation operator on the distribution f

explicit and write Ef [·]. Throughout the proof we use the following characterization of (multi-

variate) first-order stochastic dominance, cf. Shaked and Shanthikumar (2007),

Theorem 3.7.1. Consider two probability distributions over Rn with densities f̃ and f respec-

tively. f̃ first-order stochastically dominates f if and only if Ef̃ [φ] ≥ Ef [φ] for all increasing

functions φ : Rn → R for which the expectations exist.

Let f̃(h, e) first-order stochastically dominate f(h, e). Other than that, we assume that f̃(h, e)

satisfies the same assumptions as f(h, e). As before, we are interested in fixed-points of the

function

Tf (α) =
Ef [min(c(h), L)1PU(α)]

Ef [min(K2, e)1PU(α)]
, (3.21)
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where we made the dependence of T (·) on the distribution explicit. By the proof of Theorem

3.3.1, Tf (α) has a unique fixed-point α∗ and is increasing for α ≤ α∗ and decreasing for α ≥ α∗.
Denote by α∗ the equilibrium contribution rate associated with f(h, e) and by α̃∗ the equilibrium

contribution rate associated with f̃(h, e). If we argue that

Tf̃ (α∗) ≥ (≤)Tf (α∗) = α∗,

then we know that α̃∗ ≥ (≤)α∗.

Start by observing that

Ef̃ [α∗min(K2, e)−min(c(h), L)] ≥ Ef [α∗min(K2, e)−min(c(h), L)] = 0. (3.22)

because α∗min(K2, e)−min(c(h), L) is an increasing function of (h, e). Hence, if the entire popu-

lation would insure with PU, the contribution rate could be adjusted downward. Also, note that

PR’s profit from an (h, e)-type customer, (αmin(K2, e) − min(c(h), L))1PR(α), is an increasing

function of α, for all h, e.

Formally, the decomposition outlined in the text is given by

PU+(α∗) = {(h, e)| α∗min(K2, e)−min(c(h), L) ≥ 0, e < K1}, (3.23)

PU−(α∗) = {(h, e)| α∗min(K2, e)−min(c(h), L) < 0, e < max(K1,K2)}, (3.24)

PR+(α∗) = {(h, e)| α∗min(K2, e)−min(c(h), L) ≥ 0, e ≥ K1}, (3.25)

PR−(α∗) = {(h, e)| α∗min(K2, e)−min(c(h), L) < 0, e ≥ max(K1,K2)}. (3.26)

See also Figure ??. Define Ef̃−f [·] := Ef̃ [·] − Ef [·]. Consider the difference in insurances’ profit

under f̃(h, e) and f(h, e) on each set of customers (3.23)-(3.26),

Ef̃−f [(α∗min(K2, e)−min(c(h), L))1PU+(α∗)], (3.27)

Ef̃−f [(α∗min(K2, e)−min(c(h), L))1PU−(α∗)], (3.28)

Ef̃−f [(α∗min(K2, e)−min(c(h), L))1PR+(α∗)], (3.29)

Ef̃−f [(α∗min(K2, e)−min(c(h), L))1PR−(α∗)]. (3.30)

By (3.22) we have

(3.27) + (3.28) + (3.29) + (3.30) ≥ 0. (3.31)

We verify the statements about the impact of customers’ movements on insurances’ profit from

each subgroup made in the main body of the text. Checking monotonicity of the appropri-

ate functions and applying Theorem 3.7.1 yields (3.28)≥ 0, (3.28)+(3.30)≥ 0, (3.29)≥ 0, and

(3.29)+(3.27)≥ 0.
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Proof of Proposition 3.3.5.

Proof of (i). By assumption (3.27)+(3.28)≤0, which is equivalent to

α∗ = Tf (α∗) ≤ Tf̃ (α∗),

hence, α̃∗ ≥ α∗. Furthermore, by (3.27)+(3.28)≤0 and (3.31), we have 0≤(3.29)+(3.30), i.e.,

Ef̃ [(α∗min(K2, e)−min(c(h), L))1PR(α∗)]− Ef [(α∗min(K2, e)−min(c(h), L))1PR(α∗)] ≥ 0.

(3.32)

(3.32) and α̃∗ ≥ α∗, together with monotonicity of PR’s profit in α show that PR’s profit increase

under f̃ .

Proof of (ii). By assumption (3.29)+(3.30)≤ 0. This implies (3.27)+(3.28)≥ 0, i.e.,

α∗ = Tf (α∗) ≥ Tf̃ (α∗),

therefore, α̃∗ ≤ α∗. Also, by (3.29)+(3.30)≤ 0,

Ef̃ [(α∗min(K2, e)−min(c(h), L))1PR(α∗)]− Ef [(α∗min(K2, e)−min(c(h), L))1PR(α∗)] ≤ 0.

(3.33)

(3.33) and α̃∗ ≤ α∗ show that PR’s profit decreases.

Proof of (iii). By assumption (3.27)+(3.28)≥ 0, which is equivalent to

α∗ = Tf (α∗) ≥ Tf̃ (α∗),

and hence, α̃∗ ≤ α∗. Furthermore, (3.29)+(3.30)≥ 0, i.e.,

Ef̃ [(α∗min(K2, e)−min(c(h), L))1PR(α∗)]− Ef [(α∗min(K2, e)−min(c(h), L))1PR(α∗)] ≥ 0.

(3.34)

The positive effect of the shift from f to f̃ on PR’s profit, (3.34), may be mitigated by the

decrease of the equilibrium contribution rate. The exact effect on PR’s profit depends on the

specific shift f̃ .

Proofs for Increase in Correlation Between Health and Income

Preliminaries. We make the dependence of the expectation operator on the distribution f

explicit and write Ef [·]. Throughout the proof we use the following characterization of the

supermodular order, see Shaked and Shanthikumar (2007).

Definition 3.7.1. A function f : R2 → R is called supermodular if for every two points
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(x1, y1), (x2, y2) ∈ R2 it holds

f(max(x1, x2),max(y1, y2)) + f(min(x1, x2),min(y1, y2)) ≥ f(x1, y1) + f(x2, y2) (3.35)

Theorem 3.7.2. Consider two probability distributions over Rn with respective densities g and

f which coincide on their marginal distributions. g is larger than f in the supermodular order if

and only if Eg[φ] ≥ Ef [φ] for all supermodular functions φ : Rn → R for which the expectations

exist.

Proof of Proposition 3.3.6. Assume that g(h, e) is larger than f(h, e) in the supermodular

order. As before, we are interested in fixed-points of the function

Tf (α) =
Ef [min(c(h), L)1PU(α)]

Ef [min(K2, e)1PU(α)]
, (3.36)

where we made the dependence of T (·) on the distribution explicit. By the proof of Theorem

3.3.1, Tf (α) has a unique fixed-point α∗ and is increasing for α ≤ α∗ and decreasing for α ≥ α∗,
i.e. for every density f the according operator Tf is maximized in the fixed point. Denote by α∗

the equilibrium contribution rate associated with f(h, e) and by α̃∗ the equilibrium contribution

rate associated with g(h, e). If we argue that

Tg(α
∗) ≥ Tf (α∗) = α∗,

then we know that α̃∗ ≥ α∗. Observe that if K1 ≥ K2, the patient set of PU reduces to the set

{e < K1} and we have

Tg(α) =
Eg[min(c(h), L)1{e<K1}]

Eg[min(K2, e)1{e<K1}]
. (3.37)

First, consider the denominator of the latter expression

Eg[min(K2, e)1{e<K1}] =

∫ ē

0
min(K2, e)1{e<K1}g(e) de = Ef [min(K2, e)1{e<K1}], (3.38)

where the last equality follows from the fact that g and f have the same marginals. Second, we

analyze the numerator of (3.37). Let e′ ≥ e and h′ ≥ h, then

min(c(h′), L)1{e′<K1} + min(c(h), L)1{e<K1} ≥ min(c(h′), L)1{e<K1} + min(c(h), L)1{e′<K1}

holds since in case 1{e′<K1} = 0 we have min(c(h), L)1{e<K1} ≥ min(c(h′), L)1{e<K1} because

min(c(h), L) is decreasing in h and in case 1{e′<K1} = 1 both sides are equal as 1{e′<K1} decreases

in e. Consequently, min(c(h), L)1{e<K1} is a supermodular function, and by definition of the

supermodular order we obtain

Eg[min(c(h), L)1{e<K1}] ≥ Ef [min(c(h), L)1{e<K1}]. (3.39)
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Putting (3.38) and (3.39) together, we get

Tg(α
∗) =

Eg[min(c(h), L)1{e<K1}]

Eg[min(K2, e)1{e<K1}]
≥

Ef [min(c(h), L)1{e<K1}]

Ef [min(K2, e)1{e<K1}]
= Tf (α∗) = α∗

which concludes the proof.

3.7.5 Proofs for Applications

Proofs for Health Premia

Proof of Proposition 3.4.1. Fix any two premia A1 and A2 set by PM1 and PM2 respectively.

The contract set C(h, e) of a customer with type (h, e) is

C(h, e) = {(L,A1), (L,A2)}.

Because health benefits are equal, it is optimal for every customer to choose contract (L,Ai) with

Ai = min(A1, A2).

Start by observing that the following is an equilibrium: A1 ≥ A2, A2 = E[min(c(h), L)] and all

customers choose PM2. We now deduce more generally that the premium paid by all customers

is E[min(c(h), L)] in any equilibrium of the premium-based health insurance market. It is conve-

nient to denote by β(h, e) ∈ {0, 1} customer-(h, e)’s choice of insurance, where β(h, e) = 1 means

that the customer chooses PM1, and β(h, e) = 0 means that the customer chooses PM2. Let

(A∗1, A
∗
2, β
∗(h, e)) be an equilibrium of the premium-based health insurance market.

Case 1. If A∗1 > A∗2, then β∗(h, e) = 0, for all (h, e). PM2’s equilibrium condition requires

A∗2 = E[min(c(h), L)]. The case A∗1 < A∗2 is symmetric.

Case 2. If A∗1 = A∗2, PM1’s and PM2’s equilibrium condition requires

E [β∗(h, e) min(c(h), L)] = E [A∗1β
∗(h, e)] (3.40)

and

E [(1− β∗(h, e)) min(c(h), L)] = E [A∗2(1− β∗(h, e))] . (3.41)

Adding up (3.40) and (3.41) and using A∗1 = A∗2 yields

E [min(c(h), L)] = A∗1 = A∗2,

which concludes the proof.29

29Strictly speaking, we restrict attention to equilibria where β(·, ·) is measurable with respect to (h, e).
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Proof of Corollary 3.4.1. Comparing the income-increasing payment of the contribution-based

system

α∗min(K2, e)

to the income-constant payment of the premium-based system

E[min(L, c(h))]

yields the existence of a threshold e∗ ∈ [0, ē] such that for all e < e∗ we have α∗min(K2, e) <

E[min(L, c(h))], and for all e > e∗ we have α∗min(K2, e) > E[min(L, c(h))]. As health benefits

are equal in both system customers with income e > e∗ enjoy a higher utility and customers with

income e < e∗ enjoy a lower utility in the premium-based system.

We now argue that e∗ ∈ (0, ē). Firstly, observe that

α∗ =
E[min(L, c(h))1PU(α∗)]

E[min(K2, e)1PU(α∗)]
≥ E[min(L, c(h))]

E[min(K2, e)]
,

where the equality follows from α∗ being a fixed point of T (·), and the inequality follows from

(3.15). Therefore, we can conclude that

α∗min(K2, ē) ≥
E[min(L, c(h))]

E[min(K2, e)]
min(K2, ē) > E[min(L, c(h))].

Secondly, note that

α∗min(K2, 0) = 0 < E[min(L, c(h)],

which concludes the proof.

Proof of Proposition 3.4.2. Fix a payment p(h, e) for each customer type. Given this set of

payments, welfare is

W(p(h, e)) = E [u(min(c(h), L)− c(h) + e− p(h, e))] . (3.42)

Proof of (i). SetK1 = ē. Recall that the payment in the contribution-based system is α∗min(K2, e),

whereas it is A∗ = E[min(L, c(h))] in the premium-based system. As K1 = ē, PU insures all cus-

tomers, 1PU = 1 and budget-balancing of PU implies

α∗ E[min(K2, e)] = E[min(L, c(h))] = A∗. (3.43)

Note that the result still holds if customers are allowed to randomize, i.e., if β(h, e) ∈ [0, 1] denotes the
probability that customer-(h, e) chooses PM1.
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To save on notation define ψ(h, e) = min(c(h), L) − c(h) + e and note that ψ(·, ·) is increasing

in both arguments. Consider the welfare difference between the premium-based system and the

contribution-based system, with (3.43)

E [u (ψ(h, e)− α∗ E[min(K2, e)])]− E [u (ψ(h, e)− α∗min(K2, e))]

< E
[
u′ (ψ(h, e)− α∗min(K2, e)) (α∗min(K2, e)− α∗ E[min(K2, e)])

]
, (3.44)

where the inequality follows from strict concavity of u(·) . Observe that

1. u′ (ψ(h, e)− α∗min(K2, e)) is decreasing in (h, e) because u′(·) is decreasing and ψ(h, e)−
α∗min(K2, e) is increasing in (h, e) as α∗ ≤ 1.

2. α∗min(K2, e)− α∗ E[min(K2, e)] is weakly increasing in (h, e).

Hence, the FKG inequality implies that (3.44) is bounded from above by the constant

E
[
u′ (ψ(h, e)− α∗min(K2, e))

]
E [α∗ (min(K2, e)− E[min(K2, e)])] = 0,

where the last equality follows from

E [α∗ (min(K2, e)− E[min(K2, e)])] = 0. (3.45)

Therefore, the contribution-based system with K1 = ē gives the population a strictly higher

welfare than the premium-based system. Recall that welfare is increasing in K1. Thus, for suffi-

ciently high K1 the contribution-based system is welfare-dominant.

Proof of (ii). Consider the income redistribution scheme that is defined by the transfer τ(e) to

agent with income e, where

τ(e) = α∗ E[min(K2, e)]− α∗min(K2, e).

By definition the premium-based system together with this income redistribution scheme gives the

population the same welfare as the welfare-optimal contribution-based system, i.e., the system

with K1 = ē. Furthermore, (3.45) implies that the income redistribution scheme is budget-

balanced.

125



Proofs for Welfare-Optimal Payments

Proof of Proposition 3.4.3. Let A := E [min(c(h), L)] be the aggregate health benefits of the

population. Formally, we consider the problem

max
p(h,e)

E [u(min(c(h), L)− c(h) + e− p(h, e))] , (3.46)

s.t. A ≤ E [p(h, e)] . (3.47)

The Lagrangian

E [u(min(c(h), L)− c(h) + e− p(h, e)) + λ(p(h, e)−A)]

yields the first-order condition

u′(min(c(h), L)− c(h) + e− p(h, e)) = λ. (3.48)

Note that u′(·) is strictly decreasing. Solving for p(h, e) and inserting into the constraint, (3.47),

gives

A = E
[
−u′−1(λ) + min(c(h), L)− c(h) + e

]
.

Using the definition of A, we obtain

λ = u′ (E [e− c(h)]) . (3.49)

Equating (3.48) and (3.49) yields

u′(min(c(h), L)− c(h) + e− p(h, e)) = u′ (E [e− c(h)]) . (3.50)

Again exploiting that u′(·) is strictly decreasing and after rearranging terms we obtain

popt(h, e) = min(c(h), L) + e− c(h)− E [e− c(h)] .

Proof of Proposition 3.4.4. We start by rewriting (3.46) to account for the fact that the

payment may not depend on h. For clarity we spell out all expectations explicitly.

max
p(e)

∫
E

∫
H
u(min(c(h), L)− c(h) + e− p(e)) f(h|e) dh f(e) de, (3.51)

s.t. A ≤
∫
E
p(e)f(e) de. (3.52)

The Lagrangian for the problem is∫
E

∫
H
u(min(c(h), L)− c(h) + e− p(e))f(h|e) dh+ λ(p(e)−A)f(e) de.
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Using Leibniz’s integral rule we obtain the first-order condition∫
H
u′(min(c(h), L)− c(h) + e− p(e))f(h|e) dh− λ = 0. (3.53)

(3.53) defines p as an implicit function of e. Denote the left side of (3.53) by G(e, p). Then

∂G(e, p)

∂p
=

∫
H
−u′′(min(c(h), L)− c(h) + e− p)f(h|e) dh > 0, (3.54)

where the last inequality follows from strict concavity of u(·). Furthermore

−∂G(e, p)

∂e
=
∂G(e, p)

∂p
+

∫
H
−u′(min(c(h), L)− c(h) + e− p) ∂f(h|e)

∂e
dh. (3.55)

Rewrite the second term on the right side of inequality (3.55) as∫
H
−u′(min(c(h), L)− c(h) + e− p) ∂ log f(h|e)

∂e
f(h|e) dh.

Observe that:

1. By affiliation ∂ log f(h|e)
∂e is increasing in h. Indeed, we have

0 ≤ ∂2 log f(h, e)

∂e ∂h
=
∂2 log(f(h|e)f(e))

∂e ∂h
=

∂

∂h

(
∂ log f(h|e)

∂e

)
.

2. −u′(min(c(h), L)− c(h) + e− p) is increasing in h because min(c(h), L)− c(h) is increasing

and −u′(·) is increasing by concavity.

Neglecting the argument of −u′(·) for convenience and applying the FKG inequality we get∫
H
−u′(·) ∂ log f(h|e)

∂e
f(h|e) dh ≥

∫
H
−u′(·) f(h|e) dh

∫
H

∂ log f(h|e)
∂e

f(h|e) dh. (3.56)

Rewriting the second term on the right hand side of inequality (3.56) and using Lebesgue’s

dominated convergence theorem we see that∫
H

∂ log f(h|e)
∂e

f(h|e) dh =

∫
H

∂f(h|e)
∂e

dh =
∂

∂e

(∫
H
f(h|e) dh

)
= 0.

since
∫
H f(h|e) dh = 1. Consequently, note that∫

H
−u′(·) ∂ log f(h|e)

∂e
f(h|e) dh ≥ 0. (3.57)

Applying the implicit function theorem, we conclude that

dp̂opt
de

=
−∂G(e,p)

∂e
∂G(e,p)
∂p

=

∂G(e,p)
∂p

∂G(e,p)
∂p

+

∫
H−u

′(·) ∂ log f(h|e)
∂e f(h|e) dh

∂G(e,p)
∂p

≥ 1,
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where the inequality follows from (3.54) and (3.57).
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