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Zusammenfassung und Danksagung

Funktionen liefern einen der wichtigsten Bausteine innerhalb von Modellbeschreibungen
der Wirklichkeit. Zentraler Gegenstand dieser Arbeit ist die Diskretisierung bzw.
Approximation hochdimensionaler Funktionen mit dominierend gemischter Glattheit,
welchen u.a. eine wichtige Bedeutung innerhalb der Quantenchemie zugeschrieben
wird [I128]. Wir méchten solche Funktionen mittels der Kenntnis einzelner diskreter
Funktionswerte bestmoglich approximieren.

Im ersten Teil der Arbeit fiihren wir die Skalen der Besov-Triebel-Lizorkin Raume
ein, wiederholen elementare Eigenschaften und diskutieren spéater benotigte Charakter-
isierungsmoglichkeiten ebendieser. Im Anschluss verlagert sich unser Fokus im vierten
Kapitel auf das von G.Faber [38] 1908 eingefiihrte System von Hutfunktionen. Triebel
legte mit seinem 2010 erschienenen Werk [120] den Grundstein, Besov-Raume do-
minierend gemischter Glattheit mit Hilfe des Abfallverhaltens von Koeffizienten der
zugehorigen Faber-Schauder Entwicklungen zu beschreiben. Diese Theorie greifen wir
auf und erweitern sie um die Sobolev-Triebel-Lizorkin Raume. Neu entwickelte Tech-
niken erlauben es uns, die in [120] als Vermutung formulierten Charakterisierungsaus-
sagen zu belegen.

Schneidet man fiir eine hinreichend glatte Funktion eine solche Entwicklung iiber
Dilatationen und Translationen von Hutfunktionen endlich ab, so erhalten wir eine Ap-
proximation der Funktion, deren Koeffizienten auf Abtastwerten basieren. Im 5. Kapi-
tel nutzen wir die gewonnenen Charakterisierungsresultate um Diinngitterapproximation
[129] auf Basis des Faber-Schauder Systems zu untersuchen. Wir stellen fest, dass der
untersuchte Algorithmus der asymptotisch Optimale fiir Abtastwerte, gewonnen auf
Diinngitterpunkten, ist. Wir messen Approximationsfehler zum einen in der Norm
von Lebesgue-Riumen L,([0, 1]¢) als auch in der Energie-Norm H([0, 1]¢). Fiir letz-
tere beweisen wir Resultate auf Basis eines scharferen Optimalitatskriteriums, dem
sogenannten worst-case Fehler fiir Standard Information [84, 85, [86].

Im sechsten Kapitel verandert sich unser Fokus. Waéhrend wir in den bisheri-
gen Kapiteln weitestgehend lineare Approximationsmethoden betrachtet haben, ver-
lassen wir diese nun. Wir fragen nach der besten Approximation einer Funktionen-
klasse mittels Linearkombinationen von m translatierten und dilatierten Hutfunkti-
onen. Dies nennt man beste m-Term Approximation, beziiglich des Faber-Schauder
Systems. Interpretiert werden kann diese Quantitat unter anderem als ein Maflstab fiir
die Komprimierbarkeit von Funktionenklassen. Betrachten wir dieses Problem naher,
so ist es vorerst gar nicht mehr notwendig tiber den Begriff der Information zu reden.
Wir bewerten Linearkombinationen von Hutfunktionen anhand ihrer Grofie und des



zugehorigen Approximationsfehlers. Abhangig vom Fehlerkriterium im Zielraum liefern
nichtlineare Approximationsmethoden diinnere (sparse) Darstellungen bei geringeren
Approximationsfehlern, als dies vergleichsweise fiir lineare Diinngitterapproximatenmethoden
der Fall ist. Faber-Schauder Charakterisierungen erlauben uns, Probleme aus kom-
pliziert zu handhabenden Funktionenrdumen auf einfachere Folgenraume zu tibertragen.
Als besonders interessant erweisen sich so genannte kleine Glattheiten, bei denen die
asymptotische Approximationsrate nicht von der zugrundeliegenden Dimension des
Funktionenraumes abhéangt. Wir prasentieren konstruktive nichtlineare Verfahren, die
es in einem geeigneten Sinne erlauben, als Abtastalgorithmen interpretiert zu werden.
Im letzten Teil der Arbeit wechseln wir in den klassischen Fall mit periodischen
Randbedingungen. Wir beweisen neue trigonometrische Charakterisierungen, die weder
in der Glattheit nach oben, noch in der Integrierbarkeit der Modellfunktionen nach
unten beschrankt sind. SchlieBllich nutzen wir bestehende Resultate zum Verhalten di-
verser s-Zahlen [90], um die Optimalitét fur die L,-Approximation mittels Diinngitter-
sampling im Sinne des worst-case Fehlers fiir Standard Information zu bewerten und
einen Vergleich zur Approximation mittels allgemeinerer linearer Information herzustellen.
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Chapter 1

Introduction

Many applications in engineering, science, and statistics require inter- or extrapolation
from data. Generic examples are computer-based simulations [52], data mining [58], or
forecasting [92]. Indispensable foundation in every such situation is a mathematical or
statistical model. It allows to represent the underlying real-world phenomenon or at
least some simplification thereof in a way suitable for computation and mathematical
analysis. The model formulation very often involves multivariate functions

f(xy,.o2q), = (x1,...,04) € QCRY

where the dimension d may be very large. The problem of inter- and extrapolation then
is to find a function which fits the given data in a suitable sense. Problems of this kind
are so versatile that several mathematical disciplines are devoted to them. Each uses
its own language. In approximation theory and numerical analysis, the terms function
identification, function recovery, and function reconstruction are common. Statisticians
speak of regression, function estimation or function fitting. To learn a function is a
widely used phrase in machine learning and statistical learning theory.

1.1 Functions with bounded mixed derivative or
difference

A practically highly relevant model assumption is based on a bounded mixed derivative.
The most classical space of functions with bounded mixed derivatives is the Sobolev
space H!. . The space consists of Lo-functions f such that certain weak derivatives
DYf =0} ---9)¢f are bounded in Ly. The most natural norm on Hy;. is the classical

mix
Sobolev norm with dominating mixed smoothness,

1AW = > IDVFI3 < oo
0<y;i<r
i=1,...,d

Note that this space can be defined via other equivalent norms.
As we will see in this thesis forms of dominating mixed smoothness fit very well
to the application of sparse grid techniques [§]. Sparse grids are nowadays widely

1



CHAPTER 1. INTRODUCTION

applied to tackle high-dimensional approximation and recovery problems. Modern
examples include multivariate density estimation [51], reconstruction of manifolds [40],
and uncertainty quantification [13] [82].

The electronic Schrodinger equation. This is the most prominent example where
the regularity theory provides bounded mixed smoothness properties [128]. Numerical
solutions of the electronic Schrodinger equation are of growing interest in computational
chemistry. These allow to deduce chemical properties of molecules from computer
simulations with high scientific validity. In the Born-Oppenheimer model [52], the wave
functions depend on the spatial positions of the molecule’s electrons V), ..., ™) € R3.
The spatial positions of the molecule’s nuclei b(l), .., b%) ¢ R3 are fixed parameters.
Thus the dimension d = 3N of the wave function’s domain increases with the number of
electrons. This leads to very high-dimensional recovery problems already for molecules
of moderate size. The wave functions are determined by an eigenvalue problem which
represents the stationary Schrodinger equation,

Hf = \f (1.1.1)

with the electronic Hamilton operator

YRR 9) Srreee

=1 k=1

2 20 a2

| i#]

Some of the physically admissible eigenfunctions (solutions of (L.1.1))) do not possess
C*-regularity, but all have mixed hybrid type regularity H"* Where t > 0 governs

mix’

the mixed smoothness and s > 0 the isotropic regularity [12§].

Quasi-Monte Carlo methods. This methods are a second way to naturally take
benefit of a bounded mixed derivative. We consider the problem of approximating
the integral of a sufficiently often differentiable d—variate function f by an average
over function values taken at nodes X,, = {ti,...,t,} which are chosen in advance.
Hlawka-Zaremba [62] showed the following identity

- Jul
LSt - f@MmZEX—m{/ dise(X,, ) Tt P L) gy
"= [0,1]¢ [0,1]1u! ox,
k=1 uCld]
where

. 1
diseXov) =y oo 0= 3 xoai(t), @€ 011

is the discrepancy function. This leads to the well-known Ls-version of the Koksma-
Hlawka inequality

’%;f(wk) — /[o,l]df(w)dm‘ < |1 flla - disca(Xn),



where

£l = ( 3 / ‘%(mu, 1)‘2@“)1/2

and )
discq(X,) = / disc(X,, z,)%dx, ‘)
(2, disc )

uC|d)
Clearly, the summands on the right hand side access all mixed derivatives of order 1
in each direction. Assuming this regularity of the function it remains to study the
behavior of the discrepancy function for the convergence analysis.

Best m-term approximation. Finally a third way to motivate the concept of
bounded mixed derivatives/differences is best m-term approximation. Starting with
a univariate wavelet system {t;;} with sufficiently many vanishing moments and
smoothness we consider its d-variate tensorization over all scales represented by the
following dictionary

U = {wj,k = wjl,kl K- ®?/de,kd : J = (jh "'7.jd) € Ng7k = (kla "'7kd) S Zd} .

Now we ask for the best m-term approximation space A%(L,(R?)) defined by

Ag(Lp(Rd)) = {f € Lp(Rd) : (i[mo‘am(f, \I’)p]q%> v < OO}

m=0

Based on classical results for ¢, spaces, see Pietsch [89], DeVore [18] and also Temlyakov
[114], it was shown in [105], [54] that in the special case ¢ <p=2and a =1/q—1/2
this approximation space can be identified as follows

A (Ly(RY)) = S)a=12B(RY),

which represents a dominating mixed counterpart of an isotropic result by DeVore and
Popov [20]. The space on the right-hand side represents a space with bounded mixed
difference (Besov space with dominating mixed smoothness, see Chapter (3| below).

Best m-term approximation (also called sparse approximation) will also play a role
in this thesis. We consider indeed a wavelet type dictionary, the tensorized Faber-
Schauder system. In contrast to classical wavelet systems the Faber-Schauder system
does not provide vanishing moments, which causes severe technical difficulties. However
due to coefficient functionals based on discrete point evaluations this system is highly
relevant for applications.

1.2 Sparse grid approximation using the hierarchi-
cal Faber basis

Approximation of univariate functions. Already in 1909 G. Faber proved in
[38] that every univariate continuous function f on [0, 1] can be represented (uniform

3



CHAPTER 1. INTRODUCTION

convergence) as a superposition of hat functions v, ;, (see Definition in the following

way
291

f = F a0+ fvaa =3 3 Y A @R (121)
j€Ng k=0
The required information of the function f to compute such a series expansion is only
a discrete set of function values taken at the nodes {277k : j € Ny, k € Z}. Due to
limited storage and computing resources in real life applications we may work with a
truncated series

M

Fif =) > dialfvie (1.2.2)

j=-1 kJEDj
This requires a priori knowledge of the truncation error. For functions belonging to the
unit ball of the isotropic smoothness class W3 ([0, 1]) it is well-known [120, Theorem
4.11] that
sup || f — Fag fILa([0, 1)) = 27
F1W3 ([0,1])]I<1

holds, where n = 2 +1 is the number of sample points {k/2M : 0 < k < 2M} used by

FLF.

Approximation of d-variate functions. According to [106] the Sobolev space of
dominating mixed smoothness SiW (R?) can be written as the tensor product of uni-
variate isotropic Sobolev spaces

S;W(RY) = W3 (R) @ - - © W, (R),

which, in particular, contains linear combinations of functions of the form (rank-1-

tensor)
d

f(x) = Hfz‘(%), f; e WHR), x€R%

i=1
Dealing with tensorized hat functions

Uj,k(“’) .

Il
&
E
—

8
&3
S~—
8
m
o
=
. ISH

one may use the operator

Gif= Y Y dix(fvjx

5|00 <M kED;

to approximate the d-variate function f using samples on a so-called full grid QJJ\}“ =

{k2™M .0 < k; <2M i =1,...,d} with cardinality |G| < 2™ With techniques
presented in this thesis it is not hard to show that

If = G fllz s 27 (1.2.3)



Figure 1.1: Tensorized hat functions

holds for f belonging to the unit ball of S ([0,1]¢). Consequently, the asymptotic
rate of convergence (in terms of the number of sampling nodes) becomes worse (1/d)
with increasing problem dimensions d.

Smolyak’s algorithm. An approach which overcomes this issue to some extent goes
back to 1963 and started with Smolyak [108] who considered uniform approximation
of multivariate functions with mixed smoothness on the basis of function values. He
introduced an influential construction which is nowadays known as Smolyak’s algorithm

TulLlf == ) (Lj = Lj-1)®..® (L, — Lj,-1)f , MEN, (1.2.4)
jeNd
g1 <M

where the (L;),en, represent univariate approximation operators (put L_; := 0). For
more historical comments see [33, Sect. 5]. When applied to Fy this construction
yields a powerful sampling (interpolation) operator for the multivariate case taking
points from a so-called sparse grid. We obtain

Fipf(@) = TulF']f(@) = Y > dix(f)vjul@),

71 <M keD;

which means we take all Faber-Schauder levels with |j|; < M instead of |j|o < M.
This operator samples on a sparse grid Gy = {(279ky, ..., 277ky) : |41 < M,0 <
k; < 2% i =1,...,d}. The notion sparse grid is due to Zenger [129] and comes from
the fact that |G32°"*¢| < 2M M- instead of |G| =< 2M4,
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Figure 1.2: Sparse grid d =2, M =6

This construction allows to prove the approximation rate

sup || f = Fif1L2(0, 1)) S 27 MM
1155w (0,11 <1

Compared to (|1.2.3) the convergence rate in M behaves similar, even a little worse.
However, the sparse grid contains a significantly less number of sampling nodes n. In
fact, taking this into account, the error bound can be written as follows

sup |[f = F fILa([0, D] S n~tlog?tn(log? Tt n)z
IF153 W ([0,1]9)[|<1

whereas

=

sup If = G, fIL2(0, 1)) < n77.
7153w ([0,1]9)[|<1

Hence, using the Smolyak approach, the asymptotic rates depend only in the compar-
atively small logarithm of n on d. Considering a trigonometric sampling operator the
rate stated here was first observed by Sickel [I02] (d = 2). Later it was extended by
Sickel, Ullrich [T103, 104] to d > 2. For more general approximation problems effects
like this have been discovered much earlier in the former Soviet Union, [112, 41]. In
the context of the Faber-Schauder system a similar result was discovered in [8] for HZ,,
with a slightly worse log-exponent. The result above can be found as a special case in
[29], [107] and [120]. Let us additionally mention the following references dealing with
sparse grids in an applied context [87] 8, 47, [43].

New sparse grid error bounds in L,. The focus in the current thesis is on sparse
grid approximation with the hierarchical Faber basis in Sobolev spaces Sy ([0,1]%)
(including p # 2) where we measure approximation errors in spaces L, ([0, 1]%) with
1 < p < q < oo. Our main result reads as follows

sup If — F& fIL,([0,1]Y)] = o~ M(r—3+3)
I £1S5 W ([0,1]9)]I<1

for1<p<q<oo,%<r<2+%—é. The limiting case r = 2+ 1/p — 1/q can

be incorporated to the expense of an additional logarithmic term M9~'. We show

6



that our error analysis is optimal in the asymptotic sense and that all algorithms using
samples from a sparse grid can not beat this rate. Moreover, if 1 < p < ¢ < 2 or
2 < p < q < oo then the operator F{, is asymptotically optimal among all sampling
algorithms. Of special interest is the important case ¢ = co. Here we prove

SUp If — F& f|Loo(]0, 19| = 27 MO prtd=D0-3)
1S5 W ([0, 1)) <1

for 1 < p < oo and % <r <24 %. This improves on the rates for Faber-Schauder
approximation stated in [120] significantly, which were obtained via embeddings from
Besov spaces. Up to now Sobolev spaces S;W([0,1]%) with fractional smoothness r
were hard to handle directly in this context. We transferred the method of sparse
representations or sampling representations, originally introduced by Dinh Dung [29,
25, 26, 9] to Sobolev spaces, which allows for proving sharp estimates.

Reconstruction guarantees in the energy norm. Our second main interest in
this thesis are error bounds in the energy norm H'([0,1]%). The interest in this setting
is motivated by the numerical solution of PDEs using Galerkin methods. Assume we
have a PDE in variational notation

a(u,v) = (f,v), forallve H', (1.2.5)

with
a(u,v) < MulH'|||lv[H'| and  a(u,u) > pllulH|.

In order to get an approximate numerical solution we can consider the same problem
on a finite dimensional subspace V}, C H*

a(up,v) = (f,v), forallve V. (1.2.6)

The Lax-Milgram theorem [73] yields that the problems (|1.2.5)) and (1.2.6) have unique
solutions u* and uj, which by Céa’s lemma [12], satisfy the inequality

A
lu* = up HY| < = inf [u” — o[ H'].
ILL veVy
One can bound the H'(]0,1]¢) discretization error by best approximations from the
discretization subspace. The error of best approximation for the embedding

SyW (T4 — HY(T)

including the explicit dimensional dependence of the constants were investigated in [34].
We follow the approach in [8] and consider sampling approximation for this embeddings
in the non-periodic case and show for a sampling operator E¢, which samples functions
f on a energy sparse grid Gy % = {(27ky, ..., 274ky) |Gl — |Flee < M,0 < k; <

2% i =1,...,d} with cardinality |Gy;“"%| =< 97T the asymptotical rate
sup || = B3, fIH([0,1])] < 27,

If155W[0,14]|<1
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whenever 1/2 < r < 2. In other words, with n samples we produce an asymptotical
convergence rate of n~ =Y. This result has been first stated by Bungartz and Griebel
[8] (in case p = 2) but their proof contained some problematic arguments.

In addition, we show that this rate is optimal. Indeed, there is no better algo-
rithm (in the sense of below) using n samples having a better convergence rate
than F¢,. Actually we can prove even more, namely there is no algorithm using n
pieces of linear information of f providing a better convergence rate. In fact, optimal
approximation is realized by sampling.

1.3 Constructive m-term approximation with the
Faber-Schauder dictionary

Whereas for Smolyak sparse grid and energy sparse grid operators the (linear) infor-
mation map is fixed in advance for the whole class of functions we will also consider a
different approach. We are interested in approximation methods based on non-linear
algorithms especially with (adaptively) chosen samples. A possible way is to consider
best m-term approximation (or sparse approximation) with respect to a given dictio-
nary. For a given countable set D C Y, called dictionary, the algorithms we consider
map to a finite linear combination of elements contained in this dictionary. A first ob-
vious question is the convergence rate of such linear combinations measured in terms of
elements contained in this linear combination. This can be measured by the following
benchmark quantity

, (1.3.1)

om(F,D)y :== sup inf Hf — Z)\jbj Y
IfIF]I<1 y (bj)jenCD —
"(Aj)jencC J
called best m-term approximation. For general notions and results on non-linear ap-
proximation we refer to the survey [18]. In our case F' will be a Besov-Triebel-Lizorkin-
Sobolev space, Y a Lebesgue space and D the set containing all translated and dilated
Faber-Schauder hat functions. Then this quantity describes the (nonlinear) approx-
imability of functions f belonging to the unit ball of a Besov-Triebel-Lizorkin-Sobolev
space by linear combinations of m hat functions. From a numerical point of view
these quantities can be interpreted as benchmark results for data compression issues
which use only the function values used to compute the Faber-Schauder coefficients.
A possible strategy storing a function f in a computer is provided by decomposing
this function into (infinitely many) “simple” functions like wavelets or in our case hat
functions belonging to the Faber-Schauder dictionary and storing only a finite number
of the corresponding coefficients (e.g. the m biggest ones, all coefficients that are bigger
than a certain threshold,...). This means for a fixed dictionary decomposition the best
m-term approximation width serves as a benchmark quantity for the minimal error
of the approximation of f by a function build on the compressed data. In the first
sections it was already motivated that the Faber-Schauder dictionary F¢ is a proven
object in numerical analysis. In [44] and [45] it is used for (compressed) representation

8



of topographic and landscape data. A main advantage compared to most wavelet type
dictionaries is the simple structure of the single hat functions. It allows to write a
continuous multivariate function f € C([0,1]¢) as a series

f= Z Z dj k(v k

jEN‘il keD;

with (conditional) convergence in C'([0, 1]¢), where the coefficients d; (f) are tensorized
2nd order differences (see (4.1.2])). Indeed, each coefficient can be computed exactly by
the knowledge of at most 3¢ function values of f at certain points in [0, 1]¢. In contrast,
(hyperbolic) wavelet representations (cf. [19]) require the evaluation of Ly(R?) inner-
products, which means integrating and extending products of f over R?. Assuming
the real number model, in general this can be done only approximatively by numerical
integration, whereas it can be computed exactly in case of the Faber Schauder dictio-
nary. Nevertheless from a combinatorial point of view sequence spaces used to compute
results for wavelet type dictionaries are very similar to the discretization spaces for the
Faber-Schauder dictionary. For this reason our results are related to results known for
Daubechies wavelets [54], 55, [56], Dirichlet kernels [3], [4], de la Vallée Poussin kernels
[27, 28], Meyer wavelets [5] and Haar wavelets [109, 110]. A more detailed overview is
given in [33] Section 7.2]. A second very popular type of dictionary studied in literature
is the trigonometric system 7% = {e*® : k € Z9}. Here we refer to [115] 112} 95, 63, (6]
and [33] Section 7.5]. Studying am(S;W(Td), Td)Lq(Td) in case 1 < p < ¢ <2 it turns
out that this system is less powerful compared to wavelet type dictionaries.

The case of large smoothness. Based on the Faber-Schauder representations we
provide a constructive procedure depending on the parameters r, p, # and d below which
computes a m-term approximation realizing the following rates.

on(Sp P (0,10, F) oy =  sup onlf,Fa)r.,
/1S5 o F([0,1]9)]1<1 (1.3.2)

< m " (log? ! m)”(l_%)
in case of 0 < p,0 < oo and max{%, %} < r < 2. Furthermore,

(oo B0, 1), F) 1 ooy S m " (log™ ! m)"+1=7) (1.3.3)

in case max{%,% — 1} < r < 2. Note, that in case § = 2 and 1 < p < oo we may
identify
S;,GF([Oa 1]d) = S;W([Ou 1]d)

in the sense of equivalent norms which gives the important special case
Um(S;W(Rd)7 Fd)Loo([O,l]d) < m~"(log"™! m)rﬂ/z , (1.3.4)

whenever 1/p < r < 2. Surprisingly, we are able to extend the result to the limiting
case r = 2 on the expense of a additional logarithm and obtain

o (SaW(10,1]%),F). S m~2(log® ' m)3. (1.3.5)

9



CHAPTER 1. INTRODUCTION

The above mentioned procedure is constructive. Indeed, for a given function f
and a desired accuracy the following level-wise greedy strategy works. We take a
prescribed (finite) number of samples of the function at dyadic grid points. From
this data we compute a finite number of Faber-Schauder coefficients of f. Following
a levelwise greedy selection strategy we store the most important ones to build the
approximating m-term. The fact that only function values of f are used allows to
interpret the presented algorithm as a non-linear sampling algorithm. In [88] so called
spatially adaptive sparse grids were considered. The output of our algorithms allows an
interpretation as an approximant that contains samples generated on such a adaptively
refined sparse grid.

New results in the small-smoothness regime. Considering the class of Besov
functions in the quasi-Banach fine index range 0 < # < 1 the approximation rates
stated above can be complemented by the following surprising result

o (S5 9B([0,1]),F) 1 (oaja) < m ™"

in cases % < r < min{2,3 — 1} or ]l) < r =4 —1 < 2 without a d-dependent log-

arithmic term in the rate. Note that this result is sharp and is not even known for
wavelet dictionaries. To our knowledge this is one of the first known sharp results
concerning non-linear L..-approximation in the case of spaces with dominating mixed
smoothness. Furthermore, the asymptotic approximation rate coincides with that of
the univariate case, where one approximates B} ,([0, 1]) functions in L([0,1]) by the
univariate Faber-Schauder dictionary.

1.4 Optimal sampling recovery of multivariate func-
tions with higher regularity

The limited regularity of hat functions are responsible for the fact, that the convergence
rates can not exceed 2. These limitations do not apply to the periodic setting which has
been intensively studied in the former Soviet Union. We provide new trigonometric
characterizations that are able to overcome the regularity restrictions. Additionally
we focus towards information based complexity issues, i.e. sharp lower bounds. We
ask for the worst case error of the best possible approximation of a function f while
having standard information at n sampling nodes. A generalized quantity is provided
by (linear) sampling widths for a class F' < C/([0, 1]¢) into a (quasi)-Banach space Y,
which measure the minimal worst-case error for the (linear) sampling recovery problem
with n points. To be more precise, we compare the performance of a optimal sampling
algorithm with the linear sampling widths

lin : :
o, (F,Y) :=infinf sup
! Xn o fiF)<1

- if(mi)wi(')’YH . neN, (1.4.1)

where the sampling nodes X,, := {x'}"_, C [0, 1]¢ and associated (continuous) functions
U, := {4;}; determine a linear sampling recovery algorithm which is fixed in advance

10



for a class F' of multivariate functions on [0, 1]¢. Here the error is measured for instance
in Y = L,([0,1]%). Let us emphasize that in we restrict to linear recovery
algorithms, whereas we admit general recovery algorithms ¢ : C* — L, in the definition
of the (non-linear) sampling widths

on(F,Y) = inf sup |f —o(Xa(/))IY]] (1.4.2)

e Xn || f|F|<1

which is also denoted as the worst-case error for standard information, see [84], Sect.
4.1]. Here X, (f) := (f(z1), f(z2),..., f(x,)) denotes a linear information mapping
and ¢ : C" — Y a (non-linear) reconstruction map. This quantities are bounded from
below by Gelfand n-widths

co(F,Y):= inf ~ sup |[[f[Y]] (1.4.3)
BT f|Fl|<1
linear fexer

This widths describe the maximal distance of 2 functions f,g € F in Y for that a
non-trivial information mapping I, exists with

That means the information mapping does not see the difference between f and g. We
investigate the optimal sampling recovery problem for the embedding

id: ST oF(T%) — Ly(T%), (1.4.4)
where 0 < p < ¢ <o00,0< 6 <o0o0andr > 1/p. Without loss of generality we assume
r=ri=...=1r,<r,<...<rg<oo , p<d. (1.4.5)

One of the main results in this section is the sharp rate of convergence

1 u=1\ r—1/p+1/
M) T eN, (1.4.6)

O (S (T, Ly(T%) < (2
whenever 1 < p<¢g<2,1<f<oor2<p<qg<oo 2<6l<ooandr>1/p,
see Corollary [8.8| below. Our main contribution is the constructive upper bound which
holds true whenever 0 < p < ¢ < 00, 0 < 6 < oo and r > 1/p. This is complemented
by (see Theorem [8.4))

(log )~

r—1/p
) (logn)W=DA=P+ = pn e N. (1.4.7)
n

o (SpP(TY), Loo(T) 5 (
The upper bounds are realized by an explicit family of interpolation operators T'%
using n =< 2™m#*~! function values on a (anisotropic) Smolyak grid, where the param-
eter L € N refers to the polynomial decay of the univariate fundamental interpolant
(L = 1 Dirichlet kernel, L = 2 de la Vallée Poussin type kernels, L > 2 higher order
kernels). It turned out that, for the sampling recovery problem and the upper

11



CHAPTER 1. INTRODUCTION

bounds in (1.4.6), (1.4.7), (1.4.8)), (1.4.9), the condition L > 1/q is sufficient, which
means that Smolyak’s algorithm (1.2.4)) applied to the classical trigonometric interpo-
lation (based on the Dirichlet kernel (1.5.3)) does the job. For § = p =2 in this
has been already observed in [9, Rem. 6.12].

Let us emphasize the important special case (0 = 2), where it holds the identification
Sy yF(T?) = S;W(T?) with the space of functions with bounded mixed derivative. As
a corollary from (|1.4.6)) we obtain the new sharp rate of convergence

(log n)”_l ) r—1/p+1/q

o (S (T, Ly(1) = (252

, neN, (1.4.8)
incase l <p<qg<2or2<p<q<ooandr>1/pwhich was unknown before. The
upper bound is achieved with sparse grid interpolation based on classical univariate
trigonometric interpolation. In particular, this improves on the bounds stated by
Triebel in [120, Thm. 4.15, Cor. 4.16] in case r = 1. The parameter domain where
holds is shown in the left diagram, where the parameters o and S refer to the

following rate of convergence

(logn)*~*

on(F, L) = ( -

The precise statements can be found in Sections B.3

>a(10g n)(u—l)b"

1 . 1 .

¢ 0u(SpW, Ly) 0" (S5W, Ly) ¢ 0n(ShoB: Lg) 0" (S5 B, Ly)
1 s P 1d--mm - P

: ? o B=0 : ? B:% :

! a=r—141, a=r—141,
1 | 1) |
2 | 2 |

i e )\n = O<Qn) 3 e )\n = O(Qn) 3

: // B:O : // ﬁ=% :

| e=r—g4g l Joa=T—gtg l
ﬁ‘/ ———————————— e b L e e b L

1 17 1 1’
2 2

Figure 1.3: Linear and non-linear sampling widths.

We mainly contributed to the upper bounds in the left figure. Most of the results
illustrated in the right figure for Hélder-Nikolskij spaces S7 . B(T?) of mixed smooth-
ness are well-known. Note that Open Problem 5.3 in [33] refers to the lower triangle in
the right Figure A new approach of Malykhin and Ryutin [76] settled this ques-
tion for linear sampling recovery, cf. Corollary 8.12] We observed that their method
also bounds the Gelfand widths from below, cf. Theorem and Corollary [8.20]

12



(log 2)“71 )a.

Figure 1.4: The parameter « refers to the sharp rate (

This yields the optimal order also for the non-linear sampling widths (1.4.2)), which is
illustrated by the shaded lower triangles in Figure [I.3] The matching bound in the
right upper triangle for S} _ B(T?) were obtained by Dinh Dung [25] 26]. The neces-
sary benchmark results on linear widths were obtained by Galeev [41 42], Romanyuk
[94, 96], and the recent paper by Malykhin and Ryutin [76]. Note, that all sharp upper
bounds can be realized by Smolyak type operators , i.e. via linear interpola-
tion on sparse grids based on univariate Dirichlet interpolation, , . What
concerns Besov spaces with bounded mixed difference S7,B(T?) it is known that

(1Ogn>(u—1)(1/q—1/9)+ ., neN,

(1.4.9)
ifl<p<qg<2 1<60<ooandr >1/p, see 33, Thm. 4.47, 5.15] and the references
therein. With our method we can show the upper bound in case 0 < p < q < o0,
0 <0 < ooandr > 1/p, see Theorem , with interpolation operators providing
L > 1/q. Comparing to there is a extra log-term in in case of “large”
6 > q. There are still many open cases in this framework which actually lack the
suitable lower bounds. Let us refer to the works by Temlyakov [113, 117] and the more
recent papers Sickel, Ullrich [103], 104, [124], Dinh Dung [29, 30], [9], as well as [33] and
the references therein for upper bounds in case p > ¢ and the question-marked region.
We emphasize that our technique allows to reproduce all those results, including the
upper bound in [I13], within a few lines of proof.

(logn)+—t ) r—1/p+1/q

(S BT, Ly(T) = (2=

13



CHAPTER 1. INTRODUCTION

Figure 1.5: The parameters o and J refer to the sharp rate (%)O‘Oog”_:l n)®.

In Open Problem 18 in [84 Sect. 4.2.4] the authors conjecture the equivalence
oin < o, for all parameters 1 < p,q < oo in case of isotropic Sobolev spaces W7 (€2) on
bounded Lipschitz domains €2, see also Novak, Triebel [83] and Heinrich [59, Thms. 5.2,
5.3]. In the present paper we consider mixed smoothness periodic Sobolev embeddings.
In our case, the conjecture is true if 2 < p < ¢ < oo for both Sobolev and Hélder-
Nikolskij spaces, see the shaded regions in the diagrams above. In all other cases it
is not known. Our results also support the above conjecture in the mixed smoothness
setting. A similar statement as in [84) Rem. 4.18], namely the equivalence A, < o if

p < g are on the same side of 2 and \, = o(0™) if p < 2 < ¢ is also true in our case.

1.5 Characterization in terms of discrete function
evaluations

In Definition below we introduce periodic Besov-Lizorkin-Triebel spaces of mixed
smoothness via Fourier analytic building blocks d;[f] generated by a dyadic decom-
position of unity. In this thesis we aim for function space characterizations where we
replace the building blocks ¢;[f] by the blocks

Gl =Ly — L) ® ..U, —L,a)f , jeNg, (1.5.1)

used in the classical Smolyak algorithm (see ([1.2.4)) above). Here the operators (;);
are univariate interpolation operators

27 -1

IHf) = Z; f(Q;T—J@)Kﬁ,j( : —2;—]“) . (1.5.2)
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In a way we replace the usual convolution by a discrete one such that the building
blocks qf [f] are constructed out of =< 2Wl function values. The parameter L € N
refers to the decay of the fundamental interpolant Kﬁ ;» which represents a suitable
trigonometric polynomial of degree 27 and will be explicitly constructed in Section .
In case L = 1 we have the classical univariate nested trigonometric interpolation, where
K, ;:=277D;} with Dy = 1 and

127
61293_1

Di(a) = Dy (i) — ¢ 77 = e

, zeT, (1.5.3)
for 7 € N. The parameter L = 2 refers to de la Vallée Poussin type operators and
L > 2 to higher order kernels.

We will prove the following characterization for periodic Sobolev spaces of mixed
smoothness if » > max{1/p,1/2} and 1 < p < o0

s )= (X 2 igdnor)

. d
JENG

Ly(T)|

: (1.5.4)

where we may use L > 1, i.e. Dirichlet type characterizations are admitted. This
result provides a powerful tool to deal with Sobolev embeddings S;W (T?) in Ly(T).
Analyzing Smolyak’s algorithm ([1.2.4]) in this context has been a technical issue in the
past. With and its counterpart for Triebel-Lizorkin spaces it becomes a
straight-forward computation. Up to certain regularity restrictions this principle works
also in the non-periodic case for Faber-Schauder characterizations.

For Triebel-Lizorkin spaces we obtain the representation (see Theorem

155 P @)= (3 2

jeNd

Lp(qrd)H (1.5.5)

in case 0 < p < 00,0 <0 < o0, r>max{l/p,1/0} and L > max{1/p,1/0} (except
in the case § = oo where L > 2). Note, that we encounter the well-known (and
infamous) condition 7, L > max{1/p,1/0} (see also for 6 = 2), which is relevant
if p > 6. However, this condition is most likely optimal for the respective sampling
characterization. Note, that when replacing the classical smooth dyadic decomposition
of unity (see Def. in the definition of the spaces (see Def. by a non-smooth
variant like de la Vallée Poussin means, we would encounter the same condition on
L, which may not be improved as the recent findings in [I4) 100} 101] indicate. In
addition, note, that in case of quasi-Banach spaces, where min{p, #} < 1, we need to use
sampling kernels of higher order L as the condition L > max{1/p, 1/6} indicates.

Surprisingly, the de la Vallée Poussin type kernels work well for the characterization

[[5.3) if 1/2 < p, 0 < .

1.6 Structure of this thesis

This thesis is structured as follows. In Chapter 2 we provide the basic preliminar-
ies. In Chapter 3 we introduce Besov-Triebel-Lizorkin spaces with dominating mixed
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smoothness, state embedding results and provide equivalent ways of characterizing this
function spaces. Chapter 4 deals with the tensorized Faber-Schauder system as a basis
in C(RY). Later in this chapter we provide characterizations of Besov-Triebel-Lizorkin
smoothness spaces by decreasing properties of the corresponding Faber-Schauder coef-
ficients. In Chapter 5 we use this characterizations to study sparse grid approximation
for Sobolev spaces. We consider optimality by computing sharp bounds for sparse grid
sampling widths. Additionally we deal with energy norm sampling and prove optimal-
ity in terms of the worst case error for standard information. In Chapter 6 we change
the point of view and consider best m-term approximation, first in sequence spaces and
later for Besov-Triebel-Lizorkin functions with respect to the Faber-Schauder dictio-
nary. We provide a new constructive approximation strategy dealing with the case of
small smoothness. Chapter 7 and 8 generalize the ideas obtained in Chapter 4 and 5 for
higher smoothness and broader function classes in the periodic context. We provide a
new class of periodic sampling kernels with arbitrary fast decreasing properties. We do
a intensive optimality consideration for sampling recovery using results for s-numbers.
We compare optimality for linear methods with optimality for non-linear methods.

1.7 Contributions of this thesis

This thesis is concerned with the representation and approximation of functions with
dominating mixed smoothness by sampling values. We supplemented to the picture
of several types of quantities measuring the performance of sampling approximation
in Sobolev-Triebel-Lizorkin and Holder-Nikolskij spaces. Whereas classical theory is
mostly done in the periodic case the first part of this thesis presents results on the
d-variate unit cube. The contributions of this thesis can be summarized as follows.

e We extend the theory of sampling representations introduced by Dinh Dung [25]
29] to technically difficult to handle Sobolev-Triebel-Lizorkin spaces Sy o F'([0, 1]%).
We prove the main parts of Conjecture 3.20 in [120] concerning the Faber-
Schauder system.

e We study numerically important sparse grid approximation as an application of
Faber-Schauder sampling representations. This includes considerations for energy
norm sampling. Especially we provide a proof where we can prevent using some
critical arguments that were stated in [8, Theorem 3.8].

e We provide the exact rate for o, (S;W (T?), Ly(T?)) in case 1 <p < q < 2,7 > %.

o We study the Faber-Schauder dictionary in the context of best m-term approxi-
mation and achieve optimal rates in the case of small smoothness. We supplement
a new constructive approximation strategy.

e We present a new scale of trigonometric sampling kernels that can handle S} o F' (T9)
for arbitrary small integrability, fine index parameters p, § > 0 and arbitrary large
smoothness r > max{_, 5}.
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Chapter 2

Preliminaries

2.1 Notation

As usual N denotes the natural numbers, Ny := N U {0}, Z denotes the integers, R
the real numbers, and C the complex numbers. The letter d is always reserved for
the underlying dimension in R, Z? etc. With T¢ we denote the torus represented by
the interval [—m, 7]?, where opposite points are identified. Elements x,y,r € R? are
always typesetted in bold face. We denote with « -y the usual Euclidean inner product
in R%. For a € R we denote a, := max{a,0} and a_ := min{a,0}. For 0 < p < oo and
x € R we denote |z, := (320, |#;|P)"/? with the usual modification in the case p = oo.
By = (x1,...,74) > 0 we mean that each coordinate is positive. For 7 € N¢ we use
the notation 279 = (271, ...,2/4) 29 =201 . .24 If X and Y are two (quasi-)normed
spaces, the (quasi-)norm of an element = in X will be denoted by ||z|X||. T : X — Y
is a continuous operator we write 7' € £(X,Y). The symbol X — Y indicates that the
identity operator from X to Y is continuous. For two sequences (a,)5%, (b,)22, C R
we write a,, < b, if there exists a constant ¢ > 0 such that a,, < ¢b, for all n. We will
write a,, < by, if a,, < b, and b, < a, and use the Landau symbol (a,), = o((by)n) <=
lim,, 00 @ /b, = 0. We use In addition, we use the following notation [d] := {1,...,d},
Ze) ={ke€Z : k;=0: i¢e}, Nie):={keNl:k =0: i¢ e} where
e C [d], o, == max{0, — 1}, 059 := max{0,; — 1,5 — 1}, where 0 < p,0 < oo,
For a € Z and £,j € Z% we use the notation £ > a <= {; > a for all i € [d] and
£>j:<={;>j forall i €[d].

2.2 Distributions

Let Q C R? be a domain (meaning open connected set). We introduce the space of
test functions as the set of all compactly supported infinitely many times differentiable
functions f : 2 — C. We define a topology in D(2) by the convergence of sequences.
We say (fj)jen C D(€2) converges to f € D() if there is a compact set K C 2 such
that

(1) Suppfj - Ka.] eN
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(ii) D*f; — D*f uniformly for all multiindices o € N¢.

As the topological dual we define the space D'(2) as the set of all linear functionals

f: D(Q) — C for that ¢, L@, ¢ implies f(¢;) 5 f(p). We use the weak topology

for D'(Q2). That means (f;);ena C D'(§2) converges to f in D'(€2) if and only if

filw) = f(p)

in C for all ¢ € D(©2). We introduce the locally convex Schwartz space of infinitely
times differentiable fast decreasing functions by

SR :={f € C¥(R?) : || fllap < o0, Vex, B € N§}
with )
I llavs = sup JJ(1+ [a:))*|D* f ()]

z€Re
A trivial extension by zero yields D(Q)) < S(R?) with both a set theoretical and
topological interpretation. The topological dual of S(R?) is denoted by S’(R?) and is
called the space of tempered distributions. It consists of all continuous linear mappings
f: S(R?) — C. Such a mapping is continuous if and only if there exists a, 3 € N
and C' > 0 such that
[f(@)] < CllelSRY)]|ays

for all p € S(R?). The space S’'(R?) is equipped with the weak topology. That means a
sequence (f;)jen C S'(R?) converges to f € S'(R?) if and only if lim;_, f;(p) = f(p)
in C for all ¢ € S(R?). A locally integrable function f is interpreted as a distribution
by

flp) = g f(x)p(z)dz. (2.2.1)

A distribution f is called regular if there is a locally integrable function f such that
holds with f on the right hand side for all test functions ¢. If f € S'(R%) is
a tempered distribution then the restriction f|g denotes the restricted mapping f to
D(Q).

Now we turn to the periodic situation on T¢ = [, 7]¢ and introduce the space of
test functions D(T?). It consists of all infinitely times differentiable functions f on R?
where opposite points are identified, i.e. f(x) = f(z+2nk) for all x € T? and k € N¢.
It’s topology is generated by the family of norms

IFID(TY v = Y IDfILa(TH)], N € No.

la[1 <N

A distribution f : D(T9) — C belongs to the class D'(T?) if and only if there exists
Cy > 0 such that

F(9)] < CnlleD(TY)||x,  for all f e D(T?).
Again we equip D’(T?) with the weak topology, meaning f, —— f in D'(T¢) if and
only if f,(p) == f(¢) in C for all f € D(T%).
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2.3 Elementary function spaces, Fourier transform
and vector-valued spaces

For © C R? the set of all bounded and continuous functions f : Q — C is denoted by
C(€) equipped with the sup-norm || f|Loo(2)|| = supgeq | f(2)]. We denote by L,(€2),
0 < p < oo, the space of all measurable functions f : Q@ — C where || f|L,(Q)| :=
(fo, | f(x)|Pda)'/? is finite (with the usual modiﬁcation if p = o). For f,g € S(R?)
the convolution is always defined as f  g(x) = [54 f( —y)dy € S(RY). For
f € S'(R?) and ¢ € S(R?) we define the convolutlon by gp*f( ) = f(p(x—-)) € S'(R?),
which makes sense also pointwise. For f € L;(R%) and x, & € R? we define the Fourier
transform and its inverse by

1 , 1
Ff&):= f(x)e ®®dx and Flf(zx):=
© = G L@ @)=
For f € L;(T?) the k-th Fourier coefficient is defined by f(k) := 1/(2m)? [y, f(x)e **da.
More generally for f € S’(R?) we define the Fourier transform by
FfC) = f(F).

This makes sense for all f € S'(R?). For periodic distributions f € D'(T¢) we define
the k-th Fourier coefficient by

f(&)e*=de. (2.3.1)

d
2 Rd

fei=fle™™).
Definition 2.1. Let w = (wj)jea C R be a sequence of weights, where A C Ng
and let Q C R be a (Lebesque) measurable set. We define for 0 < p,0 < oo the
spaces L,(lg(w, A), Q) and lp(w, L,(2), A) as the collection of all sequences of func-
tions (fj)jea C L,(Q) with finite (quasi)-norm

||f]|L (69( H( jeA ’waJ ) H : 0<9<OO,
[wumpen s |)]
and
0 6\ 7
I1£;10(w, Ly(9), A)|| == (ZjeA jws 1Nl f5] Lp(A) | ) o 0<b <oo,
supjea |w;s [ /5Ly (Q)]] p =00
respectively.

For 0 < p,0 < oo the (quasi-)norms || - | L,(¢y(w, NZ), Q)| and || - [¢g(w, L,(92), A)]|
fulfill a p-triangle inequality with g = min{p,0,1}. If the domain and summation
index set is clear from the context we drop it out of the notation and use the shorter
denotations

L,(ly(w)) = Ly(lo(w,A), Q) and {lp(w,L,) = lop(w, L,(2), A).
In case w = (1)jea we drop it in the notation and use

Ly(ls) = Ly(lo(w, A), Q) and (lo(L,) = ly(w, Ly (), A).
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Chapter 3

Besov-Triebel-Lizorkin spaces of
mixed smoothness

In this section we start with the classical Fourier analytical definition for Triebel-
Lizorkin spaces S7 ,F(R?) and Besov spaces S/, ; B(R?) with dominating mixed smooth-
ness defined on R?. We state embedding results and describe equivalent norms char-
acterizing this function spaces. Furthermore we consider function spaces on domains
and periodic boundary conditions.

3.1 Basic definitions

We start introducing the following concept decomposing the Fourier image called res-
olution of unity.

Definition 3.1 (univariate resolution of unity). A system ¢ = (¢;)52, C C*(R)
belongs to the class ®(R) if and only if

(1) It exists A > 0 such that supp ¢y C [—A, Al.
(i) There are constants 0 < B < C, such that supp ¢; C {£ € R: B2 < [¢] < C27}.

(111) For all a € Ny there are constants C,, > 0 such that

sup 29 D%;(&)| < Cy < 0.
£eR,je€Ny

(iv) For all§ € R
D @) =1
=0

Applying (iv) in Definition we obtain the following decomposition of f € S'(R%)

f=> 5lf]

: N
JENg
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with convergence in S'(R?) where
05l f(x) = F e Ff)(=), 5 €NG (3.1.1)
with
d
i€ =[] eil&), €cR! jeN; (3.12)
i=1
Later we use the convention 0;[f] = 0 if there exists an ¢ € [d] with j; < 0. We introduce
the function spaces 7, F(R?) and S} , B(R?) using this Fourier-analytic building blocks.
Definition 3.2. Let ¢ = {@;(2)}32, € ®(R), and r € R?. Let further
(1)) 0 <p<ooand 0 <@ <oo. Then
SyoF(RY) = {f € SR : || 1S, FRY| < o0},
where .
17185 0 F R = 11011 Ly (L(27))
(i) 0 < p,0 < oo. Then
S1BRY) = { [ € SR :||f|S5,BRY)|| < 0o},

where '
/1550 BRY) | == [16;[f11€0(277, Ly)||-

Remark 3.3. (i) Different resolutions of unity @, € ®(R) employed in (3.1.1]) gen-
erate equivalent norms in St F(R?) and S ,B(R?), respectively, cf. [99, 2.2.3,
Proposition 1]

(i) In case d = 1 the concepts of dominating mized smoothness and isotropic smooth-
ness coincide. We use the notation

(iii) In case§ =2 and 1 < p < oo the space St ,F(R?) coincides with the Sobolev space
of dominating mized smoothness SyW(R?) including L,(R?) if 7 = 0. STW(R?)
15 classically normed by

LISy W R|) = Hf—l(f[u +1&) " FHO)@)|L®Y[. (313

i=1
(iv) In case 0 =2, 1 < p < 0o and r € Ny we have the equivalence

IFIS;W @R = ALY+ D IDYfIL R, (3.1.4)

0<|at]oo <1
of. [99, p. 104].
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3.2 Embeddings

We state the following embedding results without proof. For a reference see [99] 127]
and [57]. For a complete history of the non-trivial embedding in Lemma 3.5 we refer
to [33, Remark 3.8].

Lemma 3.4. (i) Let 0 < p < oo (F-case: p<o00), 0 <8 < oo, r>oc, Then
SroF(RY) < Liaxgpa3(RY)  and ST yB(R?) < Liaxgp13 (RY),

which means S%,F(R?) and S} ,B(R?) consist of regular distributions that allow
an interpretation as functions.

(11) Let 0 < p < oo (F-case: p<o0), 0 <l <00, r> Il). Then
SroF(RY) < C(RY) and S5,B(R?) < C(R?),

which means that we find in every equivalence class of S;”’@F(]Rd) and SI’;’@B(Rd)
a unique continuous representative making discrete point evaluations possible.

(iii) Let 0 < p < oo (F-case: p < 00), 0 < 0; <6y < oo andr € RY. Then

"o F(RY) — STy F(RY)  and S5, B(RY) < ST, B(R?).

(iv) Let 0 < p < oo, 0 <6 <oo andr € RY Then

ST B(R?) — S;;ﬂF(Rd) — s;ymax{pﬁ}B(Rd).

p,min{p,0}

(v) Let 0 < p < 0o (F-case: p < 00), 0 < 0,v < oo and 11,75 € R with r; > 1y
Then
SIyF(RY) — S F(RY)  and  S),B(RY) — 572 B(RY).

(vi) Let 0 <p<q<oo,0<6,v<o00 andry,ry € R with vy > 7y fulfilling

1 1
T—— =79 — —.
q

Then
STUF(RY) — S F(RY)  and S)yB(RY) — 572 B(RY).
Observe that, in contrast to the diagonal Besov embedding in Lemma [3.4] (iv), the
fine index 6 and v play no role for the F-case.

Lemma 3.5 (Jawerth-Franke embedding). Let 0 < p < ¢ < 00, 0 < § < 00, 71,79 €
RY such that
1 1
™ ——=T9 — —
p q
is fulfilled.
(i) Then
S F(RY) — Si2 B(RY).
(i) If additionally ¢ < oo then

SpLB(RY) — ST2F(R?).
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CHAPTER 3. BESOV-TRIEBEL-LIZORKIN SPACES

3.3 Further characterizations

In this section we describe equivalent ways of characterizing Besov-Triebel-Lizorkin
spaces. As a first approach we consider convolutions with so called local mean ker-
nels. Classically the Fourier analytical building blocks of a function f are bandlimited
functions that are generated as convolutions of the function f with bandlimited ker-
nels whose Fourier image is sufficiently smooth. Local mean characterizations allow
to replace this bandlimited kernels by for instance compactly supported ones. Let
Vg, Uy € S(RY) such that

(i) 1FW6(€)] > 0 for [¢] < e
(ii) [FE(&)] > 0 for § <[] < 2¢ and
(ili) D*F¥(0) =0forall0<a < L
(3.3.1)
hold for some € > 0. As usual, the j-th dilation of W, is given by

W= 2071 (277 ), 5> 2.

For j € N¢ we define by tensorization

V() =[] ) (z:), @ecR”

i=1

Remark 3.6. (i) Inserting the definitions, (iit) in (3.3.1) means

/ Wy (z)dz =0
R
for all 0 < a < L. This condition is called L-th order moment condition.

(ii) There are local mean kernels fulfilling arbitrary (but finite) moment conditions
and have compact supports. Let us consider the function

9(t) = Xy ()

and define
gr(t) = 2"g(2").

For the infinite convolution
P=g*g1*ga*...

one can show ¢ € CP(R), 0 < ¢ <1, |l = |lgli = 1 with suppp = [—1,1].
The Fourier transform is given as the infinite product

Fp&) = H sinc (27%¢).
k=0
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We define
Uo(z) := 2p(2x),

(@) = - 2w0(2) — () ).

Observing the identity
FU(€) = (2mi)" (Fo(£/2) — F¥o(€)),

it 1s easy to check that Vo, V1 fulfill the conditions in (3.3.1). For further infor-
mation we refer to [97], [61, Section 6.1 | and [121, p. 10].

Theorem 3.7. Let 0 < p,0 < oo (F-case: § < 00), (Vj)jena as above with L+1 > r.
Then

1S5 F RN = [0 % FILy(Co(27))l|
describes an equivalent norm in S, F(R?) and

1F1S5 o BRA™ = 105 fEo(277, Ly)|
in St oB(RY).

Proof. Such characterizations for function spaces of dominating mixed smoothness were
studied first in [127]. For local mean representations with the assumptions from above
we refer to [123]. For more details on the interesting history of this characterization
we refer to [121, Remark 4.5]. O

Mixed B-spaces are classically defined as a space of functions with L,-bounded mixed
differences. A related characterization by differences is also available for F'-spaces.
Before we start we introduce some notation concerning iterated differences. For a
multivariate function f on R? we denote the first order differences with stepwidth
h € R acting in direction ¢ € [d] by

A f(@) = f(z+ he) — f(@),
where e; = (0,...,0,1,0,...,0). m-th order differences can be defined iteratively by
AT f(x) = A ATV f ().

This allows us to define for e C [d] and h € R? the m-th order difference operator
acting in the directions contained in e by

AT f () = (H A;j) f(x). (3.3.2)

ice
This allows us to state the characterization by rectangle means:
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CHAPTER 3. BESOV-TRIEBEL-LIZORKIN SPACES

Theorem 3.8. Let 0 < p < 00, 0 < 6 < 0o and m € NI such that 0,9 < T < m is
fulfilled. Then

171550 E RN = D 111550 F (R le.m

eC|d]
holds with
IIf|S 9F<Rd)||em = ‘ [ Z 29r~j<<H2J1) /h |<2 . | AT ('>|dh>9]9 Lp(Rd)
FENG(e) ice €[d]

and the usual modification in case 6 = oo

Proof. We refer to [66, Theorem 3.7]. There the case for constant smoothness vector

r = (r,...,r) has been considered. The necessary modifications are straight forward.
O

Theorem 3.9. Let 0 < p,0 < 0o and m € N such that 0, < r < m s fulfilled. Then

1150 BRDI = D 11F1S}0BR) llesm

eC|d]

holds with

=

()|

I£1s GB<Rd>||@m.:[ > 2|(T2) [ 187570

FENG(e) ice i€ld]

and the usual modification in case 6 = oo

Proof. We refer to [122, Theorem 3.7.1 and Remark 3.7.1]. There the outer sum is an
integral. By decomposing this into dyadic blocks one obtains the form stated above. [

3.4 Spaces on domains

In this section we deal with function spaces on domains. From a general point of view
we mean with a domain Q C R? a open connected set. Later dealing with continuous
functions trivial extensions allow us to deal with the compact set [0, 1]<.

Definition 3.10. Let Q be a domain and r € R<.

(i) Let additionally 0 < p < 0o and 0 < 6 < 0o. Then we define
SroF(Q) == {f € D'(Q) : 3g € S} ,F(R?) with glq = [}
where
1£1550F Q)] == mt{[lg] S} F(RY)] = g € S;oF(RY), gla = f}-
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(11) Let additionally 0 < p,0 < co. Then we define
SryB(Q) == {f € D'(Q) : 3g € S} ,B(R?) with glq = f}
where

1£1556B()]| = inf{llg|S; s BRY)|| - g € S;B(R?), gla = f}.

On bounded domains €2 we have additionally the following embedding.

Lemma 3.11. Let 0 < ¢ < p < 0o (F-case: p< o), r € R4, 0 < § < o0 and |Q < 0.
Then

STF(Q) = ST,F(Q)

and
S;QB(Q) s S;(,B(Q).

Proof. The proof follows trivially by definition using the embedding
Lp(€) = Lg(Q).

]

3.5 Hyperbolic representation of isotropic Sobolev
spaces

In this section we introduce isotropic Sobolev spaces and discuss their representation

in terms of Section [3.1] We start extending Definition [3.1] to a multivariate isotropic
version.

Definition 3.12 (Resolution of unity - isotropic). A system ¢ = (1;)72, C C5°(RY)
belongs to the class ®(R?) if and only if

(i) It exists A > 0 such that supp iy C {€ € R?: |€], < A}

(ii) There are constants 0 < B < C, such that suppy; C {€ € R?: B2 < €], <
C27}.

(iii) For all a € N& holds

sup 271911 D% (€)] < co < 00 and
£€Rd,j€N0

(iv) For all ¢ € R?
Z%(E) =1
=0
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CHAPTER 3. BESOV-TRIEBEL-LIZORKIN SPACES

Again, applying (iv) in Definition we obtain the following decomposition of f €
S'(RY). For v = {¥;}2, € B(RY) let

nilf1(x) = F ;. Ff)(x). (3.5.1)
Then it holds
£=Y " nlf]
Jj€Ng

with convergence in S'(R).

Definition 3.13. Let 1 < p < oo and r € R. Then
Wy RY = {f € S®RY : || /W (R < o0},
where ‘
LF Wy R = [lns[f]| Lp(£2(277, No), RY)].
Lemma 3.14. Let 1 <p < oo and r € Nyg. Then we have
LFIW R = (1 ILpRAI + D (1D FILp(RY)].

i <r
Proof. For more details on the proof we refer to [119, Theorem 2.5.6]. [

Remark 3.15. The next figure shows the different Fourier supports of the hyperbolic
and the isotropic resolutions of unity.

Tttt T T T oo [ I _ - T~ o

| (R | ~
! | [l ! -7 ~

i i I . ~.
S5 | | S5 | ‘ 5
: (5a5) | : .: :. | (5a5) : N
! L | , o '
| I | 1ll | | // -7 77 S \

| | 4 \

064 | i 0(5,4) ; / \ \
————== e s ol el i i / PR \ \
| | i h 1 | ! , N \ \
\______T::--T_"TL"_F"':: -------- | ! i s, \ \ |
== At 11 A e e | | G |
Too-=-== — - oo - z | I
S Al N 2 5 A s SRR ‘ ' | NN b '
! 1 ||r‘| | ‘ ! / / !
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I (5 i T (5 | \ . , .
C 0G| ] (54) ! \ . ,
N I \ :
| | [ |
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Figure 3.1: Fourier support of hyperbolic and isotropic resolution of unity

Theorem 3.16. Let 1 < p < oo andr € R. Then the space W;(Rd) can be equivalently
normed by

LF W, (RO = 1185[f11Lp(62(2791=, NG), RY) |,
where §;(f] is as in (3.1.1)). That means we use a hyperbolic resolution of unity to give
an equivalent norm for an isotropic space.

Proof. We refer to [126]. O

Remark 3.17. According to [126] a similar result for B-spaces can hold only in case
p=0=2.
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3.6 Periodic spaces
A function defined on R? is 27-periodic, if and only if for all x € T¢ we have
f(x) = [z + 2mk)

for all k € Z?. The function spaces defined in Section are based on L, functions
or even more general distributions, where in general no point evaluations are available.
We use periodic distributions f € D'(T¢). Based on this periodic distributions we
can define periodic Besov and Triebel-Lizorkin-Sobolev spaces. We need the following

building blocks. Let ¢ € ®(R) with ¢; as in (3.1.2]) then we define

311 =D fupi(R)e™ . (3.6.1)

kczd

This allows us to decompose f € D'(T¢) by

fF=> 067 (3.6.2)

jeNd
with convergence in D’(T?).
Definition 3.18. Let ¢ = {p;}32, € ®(R), and r € R%.
(i) Let 0 < p < o0 and 0 < 6 < oco. Then
SyoF(T%) == { f € D'(T%) : || f1S5,F(TY)]| < o0},

where '
1£1S5 o F (T = 107 [f|1Lp(£y(277), T

(11) Let 0 < p,8 < oco. Then
S7oB(T") == { f € D(T?) : || £S5, BT)]| < oo},

where

11850 BT = 167 [f116(277, L (T))]I.
Compared to Section we integrate here over T¢ instead of R?.

Remark 3.19. All aspects of this chapter have more or less obvious periodic counter-
parts. The embeddings of Lemma hold in the periodic case including Lemma |3.11].
We refer to [99, Chap. 3]. For our purpose interestingly to mention, characterization

by differences in Theorems and work by replacing the L,(R?) integration by
L,(T%), of. [123]
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Chapter 4

The Faber-Schauder basis in
multivariate smoothness spaces

In this section we introduce the Faber-Schauder system as a basis in C([0,1]9). Later
we proof equivalent characterizations of S} ,F([0,1]%) and S} ,B([0,1]%) in terms of
decreasing properties for sequences of Faber-Schauder coefficients. They allow us to
deal with sampling approximation in terms of sequence spaces. Transferring complicate
approximation problems from the level of function spaces to the easier to handle level of
sequence spaces is a well known technique for several estimates of (pseudo) s-numbers
in approximation theory, see for instance [127, [77, [79, [8T]. Quite new is the approach
to handle sampling with a similar method. This originally goes back to Dinh Dung [26],
29]. We extend this technique to construct and analyze (energy) sparse-grid sampling
operators for functions in S;W (R?).

4.1 The (tensorized) Faber-Schauder system

In this section we introduce the Faber-Schauder system. Faber proved in [38] that
every continuous function f in [0,1] can be expanded into a basis of hat functions.
Introducing this system we refer to the notation of iterated differences A" f(x) given
in (3.3.9).

Definition 4.1. We define the univariate Lo,-normalized hat function

2x : O<ax< %,
v(x) =voo(r) = 42(1—z) : F<z<l,
0 : otherwise.

The hat function of level j € Ny and translation k € Z is given by
vir(r) = v — k).
Additionally for k € Z we use the notation

v_g () = v(%(:v —k+ 1)>
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CHAPTER 4. THE FABER-SCHAUDER BASIS

Faber [38] originally considered the interval [0, 1]. Based on his arguments it is a
trivial exercise to show that every continuous function on R can be represented by the

series
f= Z Zdj,k(f)vj,k (4.1.1)

JEN_1 k€Z

with conditional convergence in C'(K), where K is an arbitrary compact subset of R.
The coefficients d;;(f) are given by

oy L) - J=-t
dj,k(f) = {_%Ag(jJrl)f(xj’k) 3 2>0,

k g =-1
Tik :=— .
Y2k s >0

Definition 4.2. We introduce for j € Ny, k € Z the overlapping hat functions

. ' k—1
Vg = v<2]:c — T)

This allows us to give to following obvious refinement equation.

with

Lemma 4.3. For j € Ny, k € Z we have

1
_ * _ * * *
Uik = Vjok+1 = §(vj+1,4k+1 + Uj+1,4k+3) T Vi1 a2

Tensorization of the univariate hat functions yields a d-variate version of the Faber-
Schauder system. For j € N¢, and k € Z¢ we define the d-variate tensor hat function
by

Uch(IE) = Ujl,k1<33'1) Tl vjd,kd(xd>
with coefficients d; x(f) given by

N .
djx(f) = (— 5) AZD Flwin) with @ i= (@, Tik)  (41.2)

and

e(g):={ield: ji =0}
Since the convergence in (4.1.1)) is conditional we have to say some words about the
order of summation. For y € N we define the open intervals

E = (—p, p)". (4.1.3)
Definition 4.4. Let
B = {(4,k) €N x Z*: § : |j|oo <,k :suppuvjp N EL # 0},
Then we define for f € C(R?) the operator

Fif(@):= Y djxvju(@). (4.1.4)

(4.k)eBg
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Lemma 4.5. Applying the operator F} to f € C(R) gives a continuous function that
is piecewise linear in the intervals I, = [27"TVk, 2~ ”+1 Wk +1)], k € Z.

Proof. The proof is a simple consequence of Lemma [£.3] Applying it iteratively there
exists a sequence (A\jg)jr C C such that we obtain a representation

Z d; kvjk_z)\nkvnk

(j,k)eBL kEeZ
We have
SUpp Un gk = 27"k, 27" (k + 1)]

and piecewise linearity in
Loy = [2—<”+1>2k, 9= (n+D) (9 1 1)] and Ry = 270D (2K + 1), 270D (2k + 2)]

For each interval L, (or R,j) there are only two translated hat functions v}, , and
Up w1, W € Z with

|supp v;, ,, N supp Up g1 L, >0,
(or |supp vy, Nsupp ;.1 N Ruxl > 0). Both are piecewise linear in Ly (or Ry).
For that reason their sum Alvfw + Aguy, 41 18 also piecewise linear in Ly, (or Ry)-
Applying this argument iteratively for each interval I, ;, k € Z proves the claim. [

Lemma 4.6. F¢f interpolates f € C(R?) in the nodes

gintd .— (=g, 27 DE Y k| < n2")

n

= X (U@ + ) 02 <k <02} U{on, o)),

i=1

Proof. To avoid technical issues concerning the order of summation we proof this inter-
polation property only in the interval [—1,1]. Additionally we restrict in the beginning
to the case d = 1. We use induction. The case n = 1 can be easily checked inserting
the definitions. Assuming the result holds for F! | we prove that it holds also for F!.

It suffices to prove
R (o 1)) = (o 1)

Rip(a (s 3)) = Bt (2 (k) =1 (2 (04 )

for 0 < 7 < n. We obtain

Ri (e ) = B e D) X dewlz (o D)

—20<k<2J ~~

Since

= F;_1f<2—" <u + %)) - %[f(T"u +277) = 2f (27 u 4 27H)

+f(27"u)]. (4.1.5)
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CHAPTER 4. THE FABER-SCHAUDER BASIS

Erom Lemma [4.5( we know that F)_, is piecewise linear in [27 ("D % 2=(n=Dutl] That
gives

R (ue ) = ()

Inserting this into (4.1.5)) yields the desired result. The result for F¢ can be obtained
by interpreting F¢ as an iterated application of F} to each direction of f € C(RY) O

Remark 4.7. The condition k|, < n2" in the definition of G™? is due to the fact
that the order of summation in Definition [{.4] has the property that with increasing n
it covers not only refined dilations of hat functions it covers also new translations on
further intervals. This kind of property allows us to prove uniform convergence in the
next theorem.

Theorem 4.8. Every f € C(R?) can be represented by the series

F=Y Y din(fvim

JjeN? | kezd

with (conditional) convergence in every C(K), where K is a compact subset of RY. The
order of summation should be understood in the sense of F4f, n — oo.

Proof. Basically we extend the arguments in [120] (which are for [0, 1]?) to an arbitrary
compact set K C R%. Without loss of generality we can assume K = [A, B]¢, A, B € Z
(K is a cube, since we can always embed a compact set K in such a cube). Let € > 0.
Due to Lemma F? interpolates a continuous function in the points

gintd .— {om i 2D E VR - (k| < 02"}

For n > ngy (sufficient large) the set I'F,, is a -net of K, that means

Ec () {yeR’:|z—ylo <d}

megzl'mf,d

=B (x)
Consequently, we find for every @ € K
x" = argming _gintd g [T — Yloo

with
|z — x| < 6.

Continuity of f in R? implies uniform continuity on K. That means we find § > 0 such
that

|f(x) — fy) <e (4.1.6)
for all x,y € K with | — y| < 4. This allows us to estimate

[f(x) = Fof(z)| [f(@) = f(®) + Fuf(z") — . f()]
< f(@) = f&)] + [Fuf(2") — Fuf(2)].

8
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The first summand is bounded by (4.1.6). We have to estimate the second term.
Lemma [4.5| gives piecewise linearity of

F;ff(ul, ey Ui, in,ui+1, Ce ,Ud) = CFnl'f(ul, Ce ,ui,l,xi,qu, Ce ,ud)
for fixed u € R!, i =1,...,d and
x; € [27 Vg 2= (D (k 4 1),

where F! is applied to the i-th direction. Linear functions are monotone. Using this
monotonicity iteratively in every single direction we find ** € G4 N B (x*) such
that

Hence,
[f(@) = Fof(e)| < |f(z) — f(&"] + [Fnf(x") — Fuf(2)]

= |f(x) = f(@)] + [f(z") = f(=™)|
2¢e.

IN

Since we can proceed in that way for every & € K and the choice of § does not depend
on x we obtain uniform convergence in K. O

4.2 Sequence spaces

In this section we define discrete function spaces of f and b-type. For the first moment
the denotation discrete function space seems unusual, since they consist of sequences of
coefficients instead of functions. In the upcoming sections we use the Faber-Schauder
system to connect f € 5] F (RY) or f € S;(QB(R‘[) with a corresponding sequence
A€ spgf or A € spyb. For a simplified notation we introduce for j € N_y, k € Z the
intervals

I

Js

k:{[2—jk,2—j(k+1)) L j>0, 21)

k-3 k+1) : j=-1

For j € N4, and k € Z% we use the cross product
d

Lig = X Lk
i=1

This notation allows us to define the characteristic function

( ) 1 : =xe€ Ich,
() =
Xik 0 : otherwise.
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CHAPTER 4. THE FABER-SCHAUDER BASIS

Definition 4.9. We define for 0 < p,0 < oo (f-case: p < ), r € R? the spaces spof
and s, 4b as the space of all sequences of coefficients ()\ng)jeNg’kezd C C with finite
(quasi)-norms

1
g
H>\'k’5T f” o ‘ <216Nd 29 |Zkgzd>‘]kx_7k| > H : O<9<OO,
7, p,0 T
‘ supjend, 27| 3 peza i, H = o0,
and
%
i ls” bl = <ZjeNi 207 || 3 keza Aj,ka,k‘LpaRd)He) o 0<0< oo,
sl 0 : 2 :
supjent, 277 2 keza Ag kX | Lp(RY)]] AR
respectively.

Analogously to Lemma the following embedding results hold for discrete func-
tion spaces.

Lemma 4.10. (i) Let 0 < p < 0o (f-case: p < 00), 0 < 0; < 0y < 00 and r € R%.
Then

r r T
Sp. elf =S, 92f and Sp,elb s 3p792b.

(ii) Let 0 < p < o0, 0 <6 <oo andr € R Then

Sz,min{pﬂ}b — 8;,9f — Sz,max{pﬂ}b'
(iii) Let 0 <p < oo (f: p<oa), 0<0,v< oo and ri,ry € R with vy > ry Then

T1 9 T1 T2
Spof = spa S and s lb = sp2b.

(iv) Let 0 <p < q<oo,0<6,v<o0andry,ry, €R? fulfilling

1 1
™ —— =T9 — —.
q
Then

spof = sqaf and  s7pb = sihb.
Proof. The proofs are similar to that in the references of Lemma [3.4 For the proof of

(iv) we refer to [53, Prop. 5.3.3, Prop. 5.3.1]. The proof there adapts the proof in [99]
for the diagonal embedding with respect to the Fourier analytical definition. O]
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4.3 Equivalent characterizations on R

In this section we prove equivalent norm characterizations for S7 ,F(R?) and S} , B(R?)

by (decreasing) properties of Faber-Schauder coefficients d; (f). For Sy 4 B([0,1]?) such
a characterization was considered in [120]. First we give a characterization for spaces
based on R?. We start with the following technical lemma.

Lemma 4.11. Let j € No, k € Z, { € Z with j +¢ > —1 and R > 0 then for local
means with supp ¥y C [—%, %] and supp ¥; C [—279,277] (as in Remark @) with
L > 2 the following estimate holds.

(i) There is a Cr > 0 such that

W % vy ()] < Cr27 (1 4+ 2000 g — gy i )R,

21 rejinea version o € tmequanitty avbove 1s proviae Yy
i) A refined version of the inequality above is provided b
|\Ijj * Uj+f7k(x)| < C2_|Z|XAj+e,k (ZE),

where Ajor with |Ajyer| < 277 is a set that fulfills

A € U Lt (4.3.1)

lu—k| <24+

Proof. First we prove the case j > 0. The compact supports of ¥; and v, yield for a
non-vanishing integrand of

0y % vpseale)] = | [ 2707 @ - )o@y — Ry
R

the necessary conditions
[z —y| <27

and additionally for fixed k € Z
|y — zjpen] < 27070,
Triangle inequality implies for a non vanishing integrand
2 — 20n] < o=yl + |y — 25500 < 2max{277, 2700}, (4.3.2)
Defining A; ¢y := {z € R: |z — 2,4 < 27™UH4532} we obtain the identity
W5 % vpen(@)| = W5 00k () XA, 10 (7).

We proceed considering the case ¢ < 0. Here the support of v, is larger than the
support of W;. The assumption that ¥; fulfills moment conditions of order 2 and due
to the fact that v, is piecewise linear allows us to shrink the set A; . to a set
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Afypr C© Ajpy fulfilling [A%,, | < D277, To be more precise A%, ,, is the union of 3
intervals of size < 277 centered in the non-smooth locations of v;,¢). A simple change
of variable yields

W s vpeca@)] = | [ 2@ =)oy~ By
R
= [V xuop(2 ) xar,,  (2).

The characterization of B,  (R) by differences easily yields that voo € Bl . (R),
cf. |60, Proposition 3.5]. Since VU, is a local mean with L > 2 we can interpret the
convolution as a part of the Bl (R) norm of vg. We obtain

W % vjpep(r)] < ||UOk|B (Rd)HQHlXA;;M()

We continue with the case ¢ > 0 and obtain

2-G+0 (k4 1)

W5 % vj0nl(@) < OV ||ool|vjsaklloo / | Ldyxa,...(x)
2—(G+O)

= D2 XA, +£k<) (433>

Recognizing the (piecewise) interval structure of A3, ,, and A; . then the inclusion in
- follows by simple volume arguments. Flnally, concerning the weaker estimate
in (i), |[Ajex] < 27 ™04} yields that we find for every R > 0 a constant Cy such
that

XA ok (z) < XAjyon () < Cr(1+ 2min{j,j+€}|x - xj’k)iR

holds. The case j = 0 (where no moment conditions are available) can be estimated
with the arguments used to estimate (4.3.3)). Formally this computations are for the
case j + ¢ > 0. In case j + ¢ = —1 the slightly shifted translation of the hat function
has to be considered. That finishes the proof. O

Lemma 4.12. Let 5 € N¢, k € Z%, £ € Z% with 5 +£ > —1 and R > 0 then

(1)
d
|0 % vjep(@)| < Cr2 0 T (1 + 2minted

=1

)

2]

(ii) A sharper version of the inequality above is provided by

|0j * vjeen(@)| < C27 0y 0, (@),

where Ajip is the cross product of the sets in Lemma (11) with |Aj1er] <
2*|j|1 .

Proof. Since ¥; and v;4¢ are tensor products of univariate functions Fubini’s theorem
allows to write W; x vj 0 as a product of d univariate convolutions. Applying the
arguments in Lemma to every single factor yields the Lemma stated above. [
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For the rest of the paper we use the convention
vjk =0
if there exists i € [d] with j; < —1.
Definition 4.13. Let v € {0,1}¢. For (\jx)jr € sy of we define the linear operator
Ty shof — Lyp(lg,277)

given by
(Ajk)jend, keza < Z Z Njeke Vs * Uj+e,k>

jeNd
£€B(v) keZd I&0

where
Bv):={€cZ: >0+ v; =1}

For a sign vector v € {0,1}4 and an integer vector £ we define

= (05,09

= 6o v =1,
0 : wv,=0.

Additionally, we define the complement of v by

where

vii=1-—w.
Lemma 4.14. Let 0 < p,0 < oo (0 = 00), v € {0,1}¢ and r € R? fulfilling
ri > 0opg if v; =1 (4.3.4)

and

respectively. Then there is a C' > 0 such that
IToAI Ly (£a(27))[| < ClIAIsp o -
Proof. First we choose a parameter a < min{p,d,1} such that r, > % — 1 holds

for all ¢ € [d] with v; = 1. We start applying u-triangle inequality in L,(¢p) with
w:=min{p, d,1}.

ITME @D < (3 (3 297 [ 3 Woseal 105 % vyeal] )

LeB(v)  jeNd kezd

D=
g |-

L®Y||")"
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Lemma [1.12] (i) yields

ITAL (6@ S (3 27

LeB 'u)

H ( Z 2097 [ Z | Ajrel H (1+ gmin{ji,ji

jend kezd

LS|,
=

)

(E[)"

with R > % Proceeding by applying Lemma m gives

ITAL (L@ S (D 27 iehpueshse
LeB(v)

‘ ( Z QGHHM‘ Z g+, Xj+0k (:B)} i](;) ’ )11‘

jeNd
We observe the trivial identity ||(M|f;|*)«|L,(¢o)| = H(M]fj]“)|L§(€g)H5. The fact
min{?2, g} > 1 allows us to apply Theorem which yields

L,(R%)

ITAIL (L) S ( Z gulthguit+i/a

LeB(w
0
Z )‘j+€,k:Xj+£,k<w) ‘ >
kezd

D=
2=

.

< Z 05T

: ~Nd
JENG

Ly(R?)

Extending the summation index implies

1
HT'U)\|LP(‘€0(2JT))H < H)\’8;79f||< Z 27ufv.(7-7(é71))2u£1}c(177’)>u.

LeB(v)

Due to the choice of r in (4.3.4) and (4.3.5) the sum converges to a constant if a is
chosen sufficient close to min{p, 6, 1}. That finishes the proof. O

Lemma 4.15. Let 0 < p,0 < 0o, v € {0,1}¢ and r € R? fulfilling
i >0p, v;=1 (4.3.6)

and

1
ri<l+—  v;,=0. (437)
p

Then '
[T Ao (27", Ly)[| < [[A]sp0bl]-

Proof. We restrict our proof to the case p,0 < oo, the modifications in case p,0 = oo
are obvious. For a shorter notation we define

Ge(k) = {u ez |u; — k| < C2%)+ i e [d]},
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where C' > 0 is the constant (4.3.1). We start applying u-triangle inequality in
lp(297, L,(RY)) with u := min{p, 1}.

TN (297 I ( 3 (Z 90dr

LeB(v) jeNg

2 Pose

Applying Lemma yields
||Tv)‘|€0(2j.r7 Lp(Rd)) ||

( Z 9- u|£|1(2293'f

JEN

Z |)‘J+£ k’XAg+E k( )

(4.3.8)

The fact Ajiox C U|u-—k-\<24‘,+ Ii1¢,n allows to decompose
P
[ Z |)‘.7+€ k|XAJ+ek } [Z |)‘J+f k| Z XTI +£-Uu } :
kezd kezd ’LLEGg

Interchanging summation yields

[Z|/\J+£k| > Xijyeu(®@ :|p:|:ZXIj+Zv,u(w) 3 P\j-i-&k’]p.

kEZd ’U.EGg k) ’LLEZd k: UEG[(IC)

Disjoint supports of Ie, o, for different u € Z? yield

[Z XIjieyu() Z |>‘j+£k] Z XIjieyul [ Z |>\j+z,k|]p-

uezZd k: ueGge(k) uezd k: ueGge(k)

Taking the structure of Gy(k) into account with |Gy(k)| < 21 then Hélder’s in-
equality in case p > 1 or simply the embedding ¢, < ¢; in case p < 1 respectively,
implies

[Z |)" j+e,k(m)] < 2p\£ o= 7)+ Z XI +lvu Z |/\j+e,k|p-

kezd ucZd k: ueGy(k)

Furthermore it yields

Z Z |)\j+e,k|p < 2lth Z [Ajrekl”.

u€Zd k: ueGy(k keZd

Considering the L,(R%) norm gives

p y - —
| 37 Pserlaseen@)| LR S 27t gk =s sl 57 s
kezd kez?
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Inserting this into yields
ITuACe(27, Ly(RY)|

< Z que ro—(1-1) }2uzc 141 —rye [22 (j+8)- rﬁ)<z|)\ +ek|>

LeB(v jeNd kezd

(SEES

ole
"
&=

|

Finally extending the summation index gives

I Ty Ag(297, L, (R? ( > ol <;1)+]2“v°'[1+$’“])“||>\|S;795||,

LeB(v)

Due to the choice of the parameters in (4.3.6) and (4.3.7) the sum converges to an

absolute constant. That proves the claim. O

Theorem 4.16. Let 0 < p,f < oo (0 = o0) and forr >1

11 : i 0} > 1 0} <1
temin {11 >{ i 03 = 1o maxdp 03 <1 (g

12—3] + min{p,0} <1 <max{p,6},

or in case r < 1 simply
1>r>o0p0

being fulfilled. Further let A € sp 4f. Then

(i)
= > > Nwviel)

jeN? | kezd

converges unconditionally in every S;;,EF(R‘[) with 0 < v < oo and e > 0. In
case 0 < oo there is unconditional convergence in S;ﬁF(Rd), itself.

(ii) Additionally, there is a constant C' > 0 such that
11850 F R < ClIAsp o £l (4.3.10)
holds.

Proof. Step 1. We assume the unconditional convergence of f in at least L;(R?) and
prove (ii). We start representing the norm in terms of local means, cf. Theorem

11550 @RI = || (D2 2701wy £17) |Lo(RY|
jend
1 us L
< Z H<Z29|J|lr‘ Z Z)‘Jﬂkq’ *%Hk’ )6 Lp(Rd) )
ve{0,1}4 jeNd LeB(v) keZd
1
= (X IBALGEI)ILE))
ve{0,1}4
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with v = min{p, 0, 1}. In case 0,9 < r < 1 applying Lemma finishes the proof. In
case max{l,o,9} <7 <1+ min{%, 5} we use complex interpolation of quasi Banach
spaces, cf. [127] and the references therein, to prove the boundedness of

IToAlspof = Ly(ls(27))].

The basic idea is borrowed from [120, Proposition]. We distinguish two cases. First
we consider the case % < %, where we use the interpolation identities (Banach case: cf.
[118, Sec. 1.18.1 and 1.18.4], quasi-Banach case: [127, Chap. 4])

spof = [speol sbaflus Lo(la(2717)) = [Lyy (6o(277)), Lo(Lo(27™))),

for a v € (0,1), 0 < pg < oo such that

1 1—-v v
- = + = 4.3.11
p  p 0 ( )
and
rl=(1—-v)ro+vry,
where 7y, r; € R? such that
i > 0p00 1€ [d] withv; =1 q ri > o : 1€ [d withvy; =1
: an :
ry <1 . i€ [d withwv; =0 ri<l+g : ieldwithy=0

are fulfilled. For convenience of the reader we explain how to choose these interpolation
parameters. We set

- 1
r§:1+5—5>r,

where ¢ is sufficient small, for all i € [d] with v; = 0. Additionally, we fix

i

for all ¢ € [d] with v; = 0. From this we determine v € (0,1). Clearly, since 3 < % we

will find pg € (0, p) such that
I 1-v

+V
p Po 6

It remains to choose rj and r} for all i € [d] with v; = 1. py can be become very small.
For that reason we choose r > i = gy + ¢ with ¢ sufficient small such that

<

- T

(I

> 1 (4.3.12)

S
S IE
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24,
T1:1+1/0—5
r
14
ry =1 = ‘
| A | 1
11 ' 1 p

SR

11 1L 9>1,
r>—-———-—09= 11) 0 -
s—1 0 <1.

In case % <; <1 (4.3.12)) is always fulfilled since we are in case r > 1. (4.3.12))

guarantees to find r > 0, 9 = 0, fulfilling

1

r=(1—v)ri+uvr

for all ¢ € [d] with v; = 1, since the derivation of o, is smaller or equal to 1 in po. This
finishes the case % < %. The case % > ]l) works similar. Here we interpolate,

3;,9f = [S;,Oeo 75;,1pb]w Lp(eb‘@lj'lr)) = [Ly(La, (Qj'ro))a Lp(gp(Qj'rl))]V-

The parameters are chosen analogously, where the role of pq is replaced by 6y. Step 2.
We show the unconditional convergence of f in S} ,F(R?). We prove (i) in case § < co.
To begin with, we denote the set of Faber indices by V = {(j, k) : 7 € N¢  k € Z4}.
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Based on this we define the set of sequences with finite index sets given by
¢ = {5 = (Enen: EaC V. €l =1, E CEnrforalln e N, and | JE, = v}.
n=1

Every sequence in € defines an order of summation. Furthermore for £ € & we define
Fe, =" j k)ee, NikVik- We take a second sequence A € € and consider Fg, — Fla,,.

This difference can be written as a sum with finitely many A; . This fulfills the
assumptions necessary in Step 1 and yields

1
r r|g 9
IFe, — FalSpo FROIS || S0 2000 x)
(J,k)€(EnUAR)\(EnNAm)

Lp(Rd)H.

Due to the disjoint support of x;x, and x;, for k; # ks we obtain that

1

Z 2r‘j|10|)\j,k|9Xj,k> 0

(],k) S (EnU-AnL)\(gnm-AnL)

. oy b
= ( IRADY Amvj,k‘ )9 € Ly(R?)
kezd

jent,;

holds almost everywhere. Therefore Lebesgue’s dominated convergence theorem yields
that we find for every € > 0 a ng € N such that

IFe, — Fa,|S;0F(RY| < e

for all m,n > ng. Finally this implies unconditional convergence in S} 4 F' (R%). In case
0 = oo we stress on the embeddings

S F(RY) — ST, F(R?)
and
[Alsp 1 Il S IALSp 0 f ]
where r > s > 0,,, s > 7 and 0 < v < co. Applying the arguments from above to

S5 F(R?) yields the result for S7 ,F(R?). O

Remark 4.17. The conditions on r in Theorem look partly unnatural and are
probably not sharp. This seems to be a technical issue of the interpolation technique.
One would expect that this result holds for all 0,9 < r < 1+min{%, %} with 0 < p, 0 < 00
(6 = o0). Nevertheless our technique works for all 0 < p,§ < oo (0 = oo0) with
r such that max{%, %} <r <1+ min{%, %}, which is important for an equivalent
characterization we will give later.

The next Theorem is the B-case analog of Theorem [£.16]

Theorem 4.18. Let 0 < p,0 < oo and o, <r <1+ ]13. Further let X\ € s, pb. Then
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(i)
= > > Navik()

jeN? | kezd

converges unconditionally in every S;;aF(]Rd) with 0 < v < oo and e > 0. In
case max{p, 0} < oo there is unconditional convergence in Sy sB(R?), itself.

(i1) Additionally, there is a constant C > 0 such that
17156 BRI < ClIAls}, gb]]l- (4.3.13)
holds.

Proof. The proof is a trivial B-case modification of Theorem [4.16, The inequality in
(ii) can be obtained in the following way

17186 BERE| = (3 2wy« £15)°

jend
O\ &\ L
< (T (T T X vt el )}
ve{0,1}¢  jeNd LeB(v) kezd
— (X TG L)L)
ve{0,1}4
Inserting the estimate from Lemma finishes the proof. O

Theorem 4.19. (i) Let 1 < p,§ < oo (p < ) andmax , 5} <r <2 Then for
fes OF(Rd) the inequality

i k(F)lspofll S 11 F1Sy 0 F(RY
holds.

(it) Let 0 < p,0 < oo (p>3) and <r <2. Then for f € S ,B(R?) the inequality

s ()]s 00l S 11£1S) e BRY|
holds.

Proof. The proof provided here is a trivial modification of [60, Proposition 3.4], where
the B-case was considered in the periodic setting. We prove the F-case. We use for
fixed 5 € N¢, the pointwise decomposition

F=""0ielf)

Le74
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with d;44[f] as in and restrict first to the F-case. This allows us to estimate

N
lds s (Dlspof | = H( ST 2 S g xaa)] ) [La®Y|
jeN?, kezd
o L1 uN L+
= (Z H< > 2 Z dj k(95 elf Xj,k(')‘ )0 Ly(R?) ) :
Lezd  jeNd,
(4.3.14)
where u = min{p, 0, 1}. We consider
)= > djk(G54el/)Xj().
kezd
Clearly, whenever x € I; ; we have
IFye(@)] < |dia(054l/)| S 185581 Ogsel ], @58 (4.3.15)

We estimate the iterated differences A; e(ﬁl) (0j+e]f], x; k) one by one now. Let g;,44,(t)

be an univariate bandlimited function with frequencies in [—A27i % B2Jit4] We start
with the case i € e(g) (j; > 0). Here, Lemma yields
|A§ Z(h+1) (ngi—fzv Jisk )| 5 min{la 22&} maX{lv QZia}Pﬂi”i,aliger& (Ijivki)'

Obviously, z; € I, 5, implies |z, », — x;] < 27U+, For that reason Lemma m gives

| ZZQ,H)(%ZMN Tjo )| S 2litii ali i+t (@). (4.3.16)
In case i ¢ e(g) we have j; = —1 and
|95+, (% + 1)
Gji+e: ()| < sup |gji1e,(x +y)| S sup =2———— < Poji gi9j,+0, (). 4.3.17
156 K)] € 500 L -+ ) S sup RSN < Py g (0). (817
Additionally, assuming ¢; > 0 then Lemma [B.12] (ii) yields
’gjiJrei (k)‘ < 2Z¢GP2ji+ei7a‘igji+gi (SC) (4318)

Applying iteratively pointwise estimates (4.3.18|) and (4.3.16) to the right hand of
(4.3.15)) yields

|Fje(@)] S Paess el f)(z) [] min{2%,1} max{2", 1}. (4.3.19)

ice(g)

Inserting this into (4.3.14]) we obtain
Idia(F)lspafll S (0 (D2 2

d : oNd
Y4<y/ JjeN,

P2£+j7a6j+e H A[
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where

L2 <o
"S>,

Note, d;.¢[f] are bandlimited functions with frequencies in [—A271T4 B2i+h] x . x
[— A2Jatta B2jatta] We fix a > 0 such that

11
2>r>a>max{—,—}. (4.3.21)
p 0

Under these conditions we are allowed to apply Theorem that yields

iz = Yoy
L,(RY) )i

(S (T =

Furthermore the choice of a in (4.3.21)) together with the assumptions on r implies that
there is a § > 0 such that A,, < 27°"l and hence

RY)

P2E+_1 ]+£ HA[

1
0

dj+elf] ‘9>

( <HA£) I( Z 25ty 1] )é LP(Rd>||u)i
< Z g-uieh ) ||f|5;,eF(Rd)|l
S fISpeF(RY) (4.3.22)

holds. In B-case inserting the estimate from (4.3.19)) gives

ldj i (f)|sh bl < (Z( Z orlil:0 ngk el )Xk Lp(Rd)H9>‘5)

Lezd  jeNd |

u 1

< (Z < Z orlateho Paevs o050l f HAe Ly(RY) H >9>u
Le74 JGN‘i

Applying Theorem yields
d
ldsuDlspabll < (3 (TT4) (20 29 laselfllly)’
eezd i=1 jeNd,
Finally the calculations in (4.3.22)) show
1 e (H)lspebll S 11F1Spe BRY|-

That proves the claim. O

e

>i
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Theorem 4.20. (i) Let 3 <p,0 < oo (§ =o00) and max{%, p<r< 1+min{}—1),% .
Then f € S;‘,@F(Rd) can be represented by

F=YY din(fvim

jeN? | kezd

with unconditional convergence in every S;EEF(Rd) with € > 0. Additionally, if
0 < oo the unconditional convergence holds in the space S;',@F(Rd), itself. The
following norms are equivalent

s (Nlspaf | = 1111556 F (R (4.3.23)
(it) Let 0 < p,§ < oo (p > %) andzl) <r< 1+§. Then f € Si,B(RY) can be
represented by
f= Z Z dj ke (f)vjk
jeN? | keZd

with unconditional convergence in every S;fB(Rd) with € > 0. Additionally, if
0 < oo the unconditional convergence holds in the space S;’QB(Rd), itself. The
following norms are equivalent

15 (F)lspebll =< 11 £1S5 e BRY)]. (4.3.24)

Proof. We prove the F-case here. The B-case can be obtained by replacing Theorem
by Theorem and the usual modifications. We restrict to the case 6 < oo, the
modifications in case § = oo are analogous to the proof of Theorem Theorem
4.19) implies that for f € Sy F(R?) the sequence (djx)jk is in s} ,f. Theorem m

yields that
Z Z dech,k (4325)
jeN? | kezd

converges unconditionally in ST ,F(R?) to some element g € S7 ,F(R?). It remains to
show f(z) = g(z) for all z € R%. Let K C R? (K compact). We use the order of
summation provided by F? (cf. Definition 4.1.4). Let € > 0. Then

IF =glctl < |- Firjew)||+ |[Fir - o)
< | = Eirlew)||+ |Eir - g[Sy
< 2e.

This follows immediately by Theorem and the unconditional convergence of the
series (4.3.25) in S} 5 F (R4). The equivalence of the norms follows by Theorem m
and Theorem 19 O
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Remark 4.21. We should remark some facts about the sharpness of the smoothness
restrictions in the theorem above. Theoretically, for r > % one deals with continuous

functions, this is required to gie a sense to function evaluations in Sy ,F (RY) and
Sy ¢B(RY). The upper bound 1 + 117 in B-case seems also to be sharp, since v ¢
S;yaB(]Rd) forr > 1+ %, 0 < oo. The F-case becomes more exciting in case 0 < 6 < p.
Recently, Seeger and Ullrich proved in [100, Rem. 7.5], [101) that the close related Haar
system is not an unconditional basis in W (R) = F,(IR) in case 1—1)— 1<r<gz—1. The
Faber-Schauder hat function v(z) can be written as the integral of the Haar function
h(xz). We have the identity

where

Hence, the properties of the Faber-Schauder representation can be interpreted in some
sense as a 1-lifted Haar basis representation. This indicates that the condition r >
max{%, 5} is also sharp.

4.4 Equivalent characterizations on the unit cube

In this section we study the Faber-Schauder system as an unconditional basis for
Sy oF([0,1]%) and Sy, B([0,1]%). In section we define domains as open connected
sets. This is required for instance since our spaces S} ,B(€2) and S o F(2) are based on
distributions f € D'(£2) which require an open set to be well defined. For that reason
we formally deal with the open unit cube € := (0,1)? and consider the index set

V:={(j,k) € N, x Z*: suppv; N (0,1)* # 0}. (4.4.1)

For fixed level j all translates with the property suppv;jx N (0,1)? are contained in
d
D; = X D;, (4.4.2)
i=1

which is defined as the tensor product of the sets

j .

 J{keNy: 0<k <2} |, j>0
{01} . j=-—1

This allows us to define the following sequence spaces.

Definition 4.22. We define for 0 < p,0 < oo (s;’f;f: p < o0) the spaces s;’ﬁf
and s;’ygb as the space of all sequences of coefficients ()‘j,k)jeNil,keDj C C with finite
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(quasi)-norm

1
jl1r 9 ]
INjklsog fl| = (ZieNfld 20T 3 e, Aj,ka,kW) LP<Q)H 1 0<0 <o,
J> p,@ T .
SUPjend | 2lihr| Zk;EDj Aj kX k| LP(Q)H = o0,
and
- !
arlsr2) o= 4 (Saent, 2071 Sep daaxsal (@) 5 0<0 < oc,
’ p, N X
SUPjend | 2IJ|1r|| ZkEDj Nj kX gl Lp()| . 0= o0,
respectively.

Lemma 4.23. Let 0 < ¢ < p < o0 (f-case: p < >0) and 0 < § < co. Then

and

Q Q
Spod = Sgof

T

r,Q Q
Sp b— Sq0 b

Proof. The proof follows trivially by definition using the embedding

Ly((0, 1)) = Lq((0,1)7).

O

Remark 4.24. According to the definition of the spaces in Section the functions
[ (distributions) in S} , X (), X € {B, F} can be extended to functions f* belonging
to S; X (R). Forr > % this space is continuously embedded into C(R?) (cf. Lemma
[3.4,(i1)). In fact, this implies that there is an unique extension from f on (0,1)
to [0,1]¢ giving us an continuous function on [0,1]%. Since the norms are based on

L, expressions that do not care about boundary values we denote (identify) the space
Sr X () with S} ,X([0,1]%) in case r > ;lo'

Theorem 4.25. (i) Let 5 <p,0 < 00 (p < 00) and max{;, 5} <r < 1+min{}, 5}.

Then f € Sy 4F([0,1]%) can be represented by

f: Z Z dj,k(f)vj,k (443)

jENcil keD;

with unconditional convergence in every S} 5 F([0,1]%) with € > 0. Additionally,
if 0 < oo the unconditional convergence holds in the space S} ,F (|0, 1]9), itself.
The following norms are equivalent

ldj ()l 1l = NLF1S56F (10, 1]l (4.4.4)
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CHAPTER 4. THE FABER-SCHAUDER BASIS

(it) Let 0 < p,6 < oo (p > 3) and é <r<l+ Il]. Then f € Sy ,B([0,1]%) can be
represented by
f= Z Z dj e (f)vjk
jeN?, keD;

with unconditional convergence in every S5 B([0,1]%) with € > 0. Additionally,

if max{p, 0} < oo the unconditional convergence holds in the space S}, ,B([0,1]%),
itself. The following norms are equivalent

Id.(f)1s55011 = 111556 B0, 1] (4.4.5)

Proof. As usual, we prove only the F-case. The B-case works with obvious modifica-
tions and was considered in [120] and [125]. Let f € Sy, F([0,1]?). By definition we
find a g* € S} o F(R?) with g*|o = f and

1£155.6F (0, 1D < llg*[Sy0F (R < 2] £1550F([0, 1] ).
Expanding ¢* into the Faber-Schauder system restricted to €2, then

=Y > dinlg)vjn € SpF(RY)

jeNe | keD;

is also a function with the property g|q = f. Theorem yields

H( Zd 20rldh Z dj,k(Q*)Xj,k‘ )1

= g 1S5 F (R = [1£155,4F([0,1])]].

It remains to show

(5

JGN

®RY)|| = llglS; o F (R

ngk ng‘)l

Due to the definition of djvk(g*) we obtain that for (g, k) € V only function values of
g* in ) are considered. Since

LR < Idiu( DI Al (4.46)

for all € () we have the identity

djn(9") = djs(f)-
Finally we show that it suffices for an equivalent norm to integrate over () instead of
R?. The direction ”>" in (4.4.6) is obvious. The core of the matter for the direction

7<” is also very easy to see. To prevent further notation we prove only the case d = 1.
We recognize supp g C [—1,2]. That yields

=

u<3§1w»kgd ) |
- (S ] st ol - )

JeN_1 k‘eD
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Splitting the integral in three parts gives

(e
(S 75 auin
A 2 S i

Je

1
0

([~ 5 2| = Ml
)= 3D
) s3]

The term integrating over [ oL O} breaks down to
or|j| 0 %
(52 2] 3 dsutomae] ) ([ - 30]) | =
jeN_; kEDj

Symmetry of x_;o(x) yields

o([= 50D = 1N 0l L 0.1 S e DIE AL

o)

1
0

1 0 )X—1,0

L([-z o)l

Hd—l,O(f)X—l,O

5] can be estimated. Sure,

With the same arguments the term integrating over [1, 5

d
similar arguments can be applied in case d > 1. Here the decomposition of [— %, 5]

w

causes further technical consideration. That finishes the proof.

Theorem 4.26. (i) Let 1 < p,§ < oo (p < o) and max{i, 5} <r <2 Then for
f e8] 4F([0,1]%) the inequality

ldjae(f)lsyig SIS 171550 F ([0, )]

holds.
(it) Let 0 < p,0 < oo (p > 3) and% < r < 2. Then for f € S} ,B([0,1]%) the
inequality
Id; £ (F)Isyg Il S 11£1556B(0, 11|
holds.

Proof. We prove only the F-case, the B-case works with well known modifications. Let
€ S} 4F(R?) be an arbitrary extension of f, i.e. glo = f. Then Theorem yields

sl = (3 2] 3 dutr Frul ) [Eato
JGN
< H( > 2l Zdjk ng’ >é L (Rd)H
JEN
= oIS, F(®).
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Finally, taking the infimum over all [|g|S} ,F'(R?)|| with glo = f yields

Idi ()l /1l < 11F1S50 F ([0, 1]

That finishes the proof. n
Lemma 4.27. Let 0 < p < 00 and A = (Ajiek)jend ke, € sgz?f. Then there is a

C > 0 such that

| 32 3 dawes

jeNgl keD;

L,(0,1)| < CINsp 1

holds.

Proof. The non-trivial point are the levels j; = —1, since the supports of v_;( and
v_1,1 have some overlap. Additionally the support of the corresponding characteristic
function y; is only half of the size of the support of v;;. We introduce the auxiliary
characteristic function
Yo, = X-10 : k=1,
T I xls 2 k=0.

and use the following simple decomposition estimate for = € [0, 1]

o1kl < X = Xo1h + X1

To prevent further notation we estimate only the case d = 2. The modifications for
d > 2 are obvious.

P
D> Niwvik|Lu([0,1])
jEN2_1 kEDj
p
< D0 D sl | Lp(0,11%)
j€N2_1 kEDj
p
S Y ‘ > /\j,kaJc‘ Ly([0, 1]2)H
JENZ,  keD;
p
+ Z Z |A(*l,jz),(kl,kz)X—l,hij,k’z| Lp([ov 1]2)H
72€Ng k:ED(_L]-Q)
p
+ Z Z |)‘(jl,—1),(k1,k2)Xj1,k1X71,k2| LP([071]2)

jleNo kED(jl,fl)

* *
+ E A1 1), () X 1 X |
k€D(-1,-1)

Ly(0.13)|"

The term

Z Z A 10,01 Je2) X 1 ey (1) Xk (22) |

72€No k€D (—1,j5)

o4



is for fixed xo € [0, 1] a step function. Interchanging the interval of the integration we
obtain

HZ > k) X 1k Xiaka || L

j2€No kED(_4 )

‘ Z Z —1,52),(k1,k2) X — 1k2X]2k2|

]2€N0 kGD( 1 32)

P> \Zwak1

g€N2 keD;

(0.1

»([0,1]%)

([0, 17%)].

The remaining terms can be estimated similarly. O
With similar arguments we obtain the following b-space counterpart.

Lemma 4.28. Let 0 < p < 00 and A = (Ajtek)jend  kep; € Sp Qb Then there is a
C > 0 such that

Ly(0,11%)]| < ClAIsy b

|55 o

jeNd, keD;
holds.

Proof. The proof follows by a simplification of the arguments presented in the proof of
Lemma [4.27] 0

4.5 Bounded second order weak derivatives

In this section we follow the idea of Bungartz, Griebel [§] and consider functions with
bounded second order mixed weak derivatives in connection with hat functions. As a
preparation we need the following lemma.

Lemma 4.29. Let 1 < p < oo. Then there exists a constant C' > 0 such that

(2 1wF)” < clfBL®)|

1

holds for all f € B, (R).
Proof. We refer to [98, Proposition 2]. O
Now we are able to prove the following theorem as an analog of Theorem [4.19]

Theorem 4.30. For every function [ € SzW(Rd) it holds

2
sup 2 ld1 g dik(f)Xjk
]eNd ke7zd

L®RY)|| S 17152 (Y] (45.1)
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Proof. For technical reasons we state the proof for d = 2 here. The methods we use
can be easily extended to dimensions d > 2. Step 1. Assume we have proven the above
inequality for functions from D(R?). Let us denote the norm on the left-hand side with

1152 BR) | i= sup 2290 | 37 da(f) x| LB

JENT keD;

According to (3.1.4)) the norm on the right hand side in (4.5.1)) is equivalent to

L,(R?) L,(R?)

IA1SH@)] = 1L, B+ 2f o(B2)|.

(4.5.2)
Assume we have a sequence (¢;)jen, € D(R?) such that ¢; ——e€ SZW(R?) in the

j—00
norm || - [S2W(RR?)||. Then

|+,

+ H 0x10x

lo; = @il Sy BRI S llps — @il ;W <&, forall i, j > M.

This implies that (¢,); is a Cauchy sequence in SiOOB (R?) and hence convergent. This
implies convergence in L,(R?) (and even C(R?)). Hence, we have

p; —— f€SWR?Y) in || - [S;W(RY)]
j—o0

and
p; — [*€ C(R*) in || - |52 B(R?)].

j—)

Therefore f = f*. Further

31550 BRI S lls| SyW (R?)]]-
Taking the limit on both sides yields

1£15;  BRH| S [1£1S;W (R

Hence, it remains to prove the theorem for functions from D(R?). Step 2. Let ¢ €
D(R?). We consider the left hand side and decompose it into the regions

sup ...=sup ...+ sup ...+ sup ...+ sup ....
JENZ J1€No J1==1 J1€Ng n=-1
J2€Np J2€Np Je=-1 Je=-1

We show that the corresponding supremum are bounded by the S2WW (R?)-norm. We
start with j; = jo = —1

H > D din(@in Lp(Rz)H
k1€Z ko €Z
= H Z Z 90(161,/?2>X71,k1 (371))(717,{2((%) Lp(RQ)
leZkQEZ
S (Z Z |90(k1,/<:2)|p>;_
k1€Z ko €Z
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Lemma allows to estimate this by

| 223 diatehanr (3 el B @)

k1€Z ko €Z k1€Z

Applying Lemma (remember: ST ,B(R) = By(R)) yields

| 5 3 dateron| @) < (3 etk mz@Ir).

k1E€Z ko €Z k1€Z

Repeating the last two steps for the first variable we obtain

H Z Z dj k()X k

k1€EZ ko €Z

LE)| < [lete, m)m2@)|mE®).

Finally the cross norm property of S;W(R?) (cf. [107, Theorem 2.1]) or alternatively
inserting the equivalent norm known from Lemma (3.14) immediately gives

|5 5 diatomn| L@ < lelszw ).
k1€Z4 kocZd
In case j; = —1, jo € Ny we argue as follows. We use the property that x; » has disjoint
supports for different k and obtain
P
sup 22]2?” Z Z dg k XJ k (RQ)
72€No k1€ ka€Z
. . p
= sup 22”’/ / Z X1,k (1) Z Xjoska (T2) A (1) g0 (K1, 2772 ko | diydzs
72€No ' kiez ko€Z

S./ sup 22j2p/ Z ‘ Z Xja k2 $2)A2 (J2+1) 290(]{1’2 Dk?)) d.ﬁlﬁg

72€No X €7 ko€l

. p
= sup 22]2:0 Z / ‘ Z AQ (J2+1) Qw(kjla 2k2)Xj27k2(x2)

dJTg.

J2€No K€z =% kyez
2
< sup 2¥%P g E ‘AQ (arv) 9P (K1, 27 2ky) da:Q
J2€No

ki1€Z kocZ

(4.5.3)

Using partial integration we can easily check the identity

ﬁwwmrwwzré/ Ui (092 ()t

IJ’QJCQ

for g being a 2-times continuously differentiable function. Hélder’s inequality provides

A2 g (2P Ry)P < 272227 / FRIGILA (4.5.4)

IjquQ
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Returning to gives

B53) < sup 2% Z Z A Gyen) (K1, 2772k )P

72€No k1 E€Z ko€l
T 0 T

32€N0 47 ko7 Y Tin ks

I 1O o)t

SOy ORI

k1€Z
- / > 1O (k) Pat.

k€7

Clearly, for fixed t € R Lemma yields

D 1
> 1602 (ks t)|” S 12 OB S 1602 (IR

ki1€Z

Inserting the equivalent norm from gives

‘szgk X]k

k1E€Z ko €Z

sup 92j2p
J2€No

p
(B S el R

The case (ji, —1) works analogous and for (ji, j2) € N2 we do not need Lemma [4.29]
Applying (4.5.4]) in both directions provides

Z dj k() X5k

keZ2

JEN?

Ly(R)|| S lplS2W (R2)].

That finishes the proof. O

Remark 4.31. Compared to Theorem we have in the limiting case r = 2 a B-
type sequence space with fine index 6 = oo on the left hand side in . Later in
Chapter [ we will see that this issue causes an additional logarithmic factor in some
approximation rates we have to pay.

An argumentation analogously to the proof of Theorem provides the following
estimate on the unit cube.

Corollary 4.32. For every function f € S2W([0,1]) it holds

2
sup 29111y " dj e (f) Xk
jeNd, keD,;

O s Inswo Y. (455)
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4.6 A norm estimate for atomic superpositions

The limited regularity of the Faber-Schauder system restricts the smoothness range
of Theorem and [4.18 Later, constructing locally supported fooling functions
for sampling quantities we aim to overcome the restriction r < 1 + % (F-case: r <

1 + min %,% ) and cover at least the smoothness range r < 2 (cf. Theorem D or
even more. For that purpose we consider smoother functions, that allow estimates in
in b and f-type sequence spaces. We introduce the concept of atoms according to [127,

p. 25].

Definition 4.33. Let K, L +1 € Ny and v > 1. A K-times differentiable complex
valued function a(x) is called [K, L]-atom centered at Iy, (defined in (4.2.1)) if

(i)

suppa C v/

(i)

|ID%a(x)] < 2% for |a|s <K
(iii)
/x;"a(x)dxi:() if i=1,....,d and m=0,...,L.
R
for j € N<.

Using the notation Sy , X where X € {B, F'} and s} gz with x € {b, f} allows us to
state the following theorem.

Theorem 4.34. Let 0 < p,§ < 00, (p < oo in the F-case) and r € R. Fiz K € Ny
and L + 1 € Ny with

K>+ and L>max(~1, 5,6~ r])

(L > max(—1, [o,—7]) in the B-case). If X € s, ya and {a;x}jend peze are [K,L]-atoms
centered at Iy, then the sum

D> Nikajw(x)

jENG keZd
converges in S'(R), its limit f belongs to the space S}, X (R?) and
1£1556X R < ClIA[s}, gz, (4.6.1)
where the constant C is universal for all admissible X and a; .
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Proof. We refer to [127, Theorem 2.4]. We should mention, that the proof of this
theorem is based on convolution inequalities as in Lemma [4.12| Here for [K, L]-atoms
(@jk)jend peze the convolution can be estimated by

10, % ajyen(r)| < Cr2~ 1+ 1Ko=le-|(L+2) H (1+ 2min{ji7ji+€i}|xi — 2_(ji+€i)ki|)_R'

Then the technique presented in Lemma [4.14] (F-case) and Lemma [4.15] (B-case) to-
gether with the simple estimate

IAISE @RI S (0 ITAILy (629, NE), RY|L,(RY ") * S 1 \lsp |
ve{0,1}4
proves the claim (obvious changes in B case). Here

Ty :shof = Ly(lg,27T)

v

is given by

(Njke) jend | keza ( D> Nrewyix aj+e,k>
LeB(v) kezd

. d :
JENO

[]

Remark 4.35. Obviously, if additionally supp a;y C I for all j € N& k € D; then
(4.6.1) can be refined to

|33 risasalspoato.un]| < Ixsygall

jeNg keD;

That means we obtain a related estimate on the domain [0, 1]%.
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Chapter 5

(Energy-)Sparse grid approximation

The upcoming two chapters deal with approximation aspects of the Faber-Schauder
system in spaces with non-periodic boundary conditions. A sparse grid with asymp-
totically M9=12M points is the set

d
Sharse = {27 ky, ..., 27ky) k€ XA{0,...,27}, |5l < M}. (5.0.1)

i=1
We use samples generated on G3/*"* to approximate functions f € S;W([0,1]?) in the
L,([0,1]%)-norm. The Faber-Schauder system has a restricted regularity that causes
attention concerning smoothness, fine index and integrability of the function classes
we consider. For a improved visibility of this effects we restrict to model spaces
SyW([0,1]%) in this chapter. In Chapter 9, the requirements for the trigonometric
sampling representation are less critical. There we point out more general approxima-
tion results for the periodic setting. The second half of this chapter is about measuring
the error in the energy norm H'([0, 1]¢). It turns out that a modification of Smolyak’s
algorithm which generates a so called energy sparse grid yields optimal sampling rates.

5.1 Hierarchical sparse grid approximation

First we deal with the approximation of functions where the error is measured in
L,([0,1]%), 1 < q < oc0.

Definition 5.1. We define for f € C([0,1]%) the (linear) Smolyak Faber-Schauder

sampling operator
Inf= Z Z dj k()05 k- (5.1.1)

71 <M keD;

By construction this operator samples a continuous function f on Gy (defined
in (5.0.1))). One can easily check that the cardinality of G7*"* can be described by

sparse| __ I - d—1aoM
G = Y 2= i,
lili<M

cf. Lemma
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CHAPTER 5. (ENERGY-)SPARSE GRID APPROXIMATION

Lemma 5.2. For f € C([0,1]%) and M > 0 we have
Iy f(x) = f(=)

for all x € G*"°.

Proof. The interpolation property of the (at level M truncated) univariate Faber-
Schauder series expansion on [0, 1] immediately gives an interpolation property of the
|7 ]so < M-truncated multivariate expansion on a “full grid” (see Lemmal[4.€]). Arguing
similar as in [I07, Lem. 4.3] we obtain the interpolation property on sparse grids Gy
stated above for I;,. O

Lemma 5.3. Let M > 0. Then
rank I, = M4 12M,

Proof. The direction rank I; < M9-12M is obvious, since Ij; samples by construction
on a sparse grid Gi*" with |QSp e =< Ma12M sampling nodes. The lower bound
comes from the fact that I, reproduces the set

Vi :span{vjyk : |J|1 < M,k € DJ}

with dim Vy; = M4 12M (cf. Lemma [5.2). This type of arguments are well known
for Smolyak type algorithms in the periodic context and transfer one-to-one to hat
functions. O

To improve the length of presentation in the upcoming proofs we use the conventions
uj =Y dijgvje and uj =Y djxXjk
kEDj kEDj

and start proving some approximation rates. First we consider the case where we have
less (or equal) integrability in the target space than in the source space.

Theorem 5.4. Let 1 < g < p < 0o and max } <r < 2. Then we obtain

If = In 1L ([0, 1)) S M7= 2 M”IIfIS” ([0, 11

for all M € N.

Proof. The expansion in ([.4.3)), the embedding L,([0,1]¢) < L,([0,1]¢) and Lemma
together with Holder’s inequality yield

1= 3 wltaos|| < || 32 wlzoo 19|

[Fh<M |3 >M
S (X ) k) Lo )|
[gli>M [gli>M

The estimate for the sum in Lemma [C.20] together with Theorem [4.26] yields
oM oy gt .
lr=> | s 2 M 18w (0, 1)l

l7li<M
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Next we proof a result where the integrability in the target space is greater than in
the source space.

Theorem 5.5. Let 1 < p < q < oo and % <r<?2+4 % — %. Then we obtain

If = T fILg([0, ]| S 27052 715w (0,119

for all M € N.

Proof. The expansion in (4.4.3)) together with Lemma yield

|- 3 wlLato || 5 sup 27C=GmaEh|| ST 90 GmiEl g 1 ([0, 1))
gl< a2t 1> M

We choose ¢* with p < ¢* < ¢ close to ¢ with r — (% — qi*) < 2. Applying the diagonal
embedding stated in Lemma [4.10] (iv) gives

sup 2" -(3-% \J|1|u
|3[1>M

w| L0, 1) < 27 G

- (0,29

711 <M

Applying Theorem yields

[7= 3 wlrao| < 2 G p1s E T R0, ),

lFl1<M

Finally the diagonal embedding

r (;11) q* ) d
ST (0,11 < 855 (o, 119
(cf. Lemma [3.4] (vi)) finishes the proof. O

The proof of Theorem shows that this approximation rate holds for a bigger class
of functions namely the mixed Triebel-Lizorkin space with fine index § = oo. Finally
we investigate the special case ¢ = oo

Theorem 5.6. Let 1 < p < oo and ]l) <r<2+ ]lj. Then

(1= )M (r—1 .
If = Tl Lo ([0, ]| S M DO=D27 M0 lSriw (RY))|

holds for all M € N.
Proof. Step 1. We prove

1f = Tarf1Lao([0, U S 11 £1S50 B([0, 1)) M=) 27 M5, (5.1.2)
Expanding into (4.4.3]) then Lemma yields
I = Tas el = | 3 wlEe0 91 S D2 lzati0, 291

|7l1>M |Fla>M
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CHAPTER 5. (ENERGY-)SPARSE GRID APPROXIMATION

We apply Holder’s inequality with 1 = = + L and obtain

1

I = D090 5 (32 270 (32 2 o, 1)

l7li>M l31>M

Lemma yields
1

I = T f1Loo ([0, 1)) | § MU0 D27 MO (57 923 s L (0,1])7)

711 >M

Applying Theorem yields (5.1.2)).

Step 2. The Jawerth-Franke type embedding implies
po1
Sy ([0.117) < S5g B0, 11
(cf. Lemma [3.5)). Applying this we obtain
d (d-1)(1-1)qg—M(@r-1) r d
If = I f1Loo ([0, 1)) S M P2 2| F1S,W ([0, 1],

which proves the claim. O

The next Theorem was obtained in [8, Proposition 3.8] for p = 2. A close related
version for 1 < p < oo in the context of spline interpolation is stated in [I07), Corollary
5.3]. We use the Faber-Schauder sampling characterizations to reproduce such a result.

Theorem 5.7. Let 1 < ¢ < p < oo. Then we obtain
1f = Lo f1Lg([0. 1) < M2 M FIS3W ([0, 1))
for all M € N.

Proof. Applying the expansion in (4.4.3) then Lemma yields

I =3 wlraoh| < | 32 wslraio.n)]

|7l <M [Fli>M

< D luglLy(0, 1%

7)1 >M

< sup 22903 |L,([0,1]%)

l7l1>M

Z 9—2lilt

7l >M

We apply Theorem and obtain

Hf_ > uj‘Lq([o, Ud)H S IFSEwfo, Y S 2%l

|71 <M |Fl1>M
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The estimate for the sum in Lemma yields
Hf DIRC

That concludes the proof. O

Lo([0, 1Y) S 2724 202 1152 (0,117

Remark 5.8. Comparing the estimate for the convergence rate in Theorem with
the limiting case r = 2 considered in Theorem we observe an additional factor M5
for the limiting case. It is unknown whether this additional factor is seriously required
or only caused by a technical issue.

Finally we consider the case p < ¢ with smoothness r =2 + = — %.

Theorem 5.9. Let 1 < p < q < oo. Then we obtain

_ _ 2+1-1
1f = I F1Lg ([0, U] S 272 MY f1S, 7 W ([0, 1))|]
where rank I, = M4 12M

Proof. The expansion in (4.4.3)) and Lemma yield
lr= 3 wlzous] £ 3 hulzgo.us).

|7l <M |3l1>M

S sup 22900 lu[Ly([0, 1)) Y 27

The estimate for the sum in Lemma gives

|- > wlza@un| s sup 220 Ly 0, 1) 272 pr

lglh<M lgh>M
Theorem provides
[£= >0 wlzao. || < 22 giszw(jo, 1))
7l <M

We apply the diagonal embedding stated in Lemma [4.10| and obtain

lr= 32 wltao | s 28w (o, ).

g1 <M
That concludes the proof. n

Remark 5.10. Here we obtain an additional factor M9=' compared to the non-limiting
case.
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5.2 Optimal sparse grid approximation

Let X,Y be (quasi-)Banach spaces with X < Y N C([0,1]¢). Then we define the
quantity

SG . 3 sparse
0, (X,Y) = inf sup ||f —o(f Y, 5.2.1
(XY= g s = G(fGEIV 620)
p:C"—Y

which we call sparse grid sampling width. It denotes the best worst-case error for the
approximation of functions belonging to the unit ball of X by algorithms that can be
described as a composition of a (possibly non-linear) reconstruction map ¢ : C* — Y
and an information map, which are in our case simply the functions values of f on a
sparse grid G with |G7""*°| < n. This quantity is a special restriction of the IBC
worst case error for standard information [84] 85, 86]. They were introduced in [35],
where the focus is on X = 57 o B([0,1]%) and Y = L,([0,1]%). We use this results for the
case X = ST ([0,1]%) and Y = L,([0,1]%). The following Lemma describes a method
to bound this quantity from below.

Lemma 5.11. For1 <p,q < oo (q=00) and r > i a lower bound is provided by

SG( ar d d - d
on (SW([0,1]%), Ly([0,1]%)) 2 inf sup £ Lq ([0, D).
’ ' MENIGH " Sn | fispw (o<t
f(@)=0yzegirerse
Proof. Let ¢ : C" — Ly([0,1]%) be an arbitrary reconstruction map and || f|S;W ([0, 1]%)]| <
1 with f(x) = 0,Vx € G7*"° with |G1/""*°| < n. Then
1 1
1AL = |50 = #(0) = 5(=F = (0)
1 1
< S = (O[O0, 0% + Sl = f = 9 (0)[ Lg([0, 1))

Finally either ||f — ¢(0)|Lq([0, 1]/l > [If1Zq([0, 1] or || = f — @(0)[Lq([0, 1] >
1f1L4([0,1]%|. That proves the claim. O

Ly([0. 1)

Remark 5.12. The sparse grid structure plays no essential role in the proof provided
i Lemma |5.11. Later the same arguments will be applied to obtain lower bounds for
the worst case error for standard information.

Remark 5.13. [t is easy to check that nestedness properties of the points xjy (for
different levels 3 ) allow us to write the sparse grid of order M as

d
sparse = (27, ..., 270ky) k€ X A0,..., 2%}, |51 = M}. (5.2.2)
i=1

Theorem 5.14. Let 1 < ¢ < p < 00 and max{%, %} < r < 2. Then we can estimate
as follows
1 g 41
0nC (S ([0, 1]7), Le[(0, 1)]F) =< sup [|f=IarfLg([0, 1]7]] = (™' log®™' )" log 2
I£1SpW ([0,1]4)]]

with rank Iy =< n =< M4 12M,
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Proof. Inserting the relation n := |G**| < M?12M into Theorem gives the
upper bound. Next we prove the lower bound. For that purpose we consider the bump

function

b(z) = e T Tl (5.2.3)

which is a L..-normalized Cg°-function. We denote by

d
bjw = | [ 02 a; — k) (5.2.4)

its g-th dilation and k-th tensorized translation. Obviously

d
supp bj,k = >< [Q_jik'i, 2_%(1{?1 + 1)]
i=1
with ' ‘
bj}k(Qijl (kl + Vl); c. ,27”(]{70{ + Vd)) =0 (525)
for v € {0,1}%, k € D;. 1t is easy to check that,
_lilh
165,61 Lq ([0, 1)) || =< 27 (5.2.6)
and that due to disjoint supports
H 3 bilL 1]d)H =1 (5.2.7)
kGDj
holds. Defining
Q1 = Co~Mr =5 Z Z bj k
‘]ll Mk:ED

we can estimate using Theorem

([0, 1]¢ H<1

2S5 wal) e

lili=M keD;

s 1Sy W ([0, 1)1 <

=1

(bjr: L =—1, K =00). By construction ¢;(x) = 0 for all & € G7*"* (cf. (5.2.5)) and

the definition of G in (5.0.1))). This allows us to estimate
o (SyW ([0, 1)), Ly([0,1])) = [lepa | Zg([0, D) = lleoa| L ([0, 1))
The relation in (5.2.7)) yields

7,k

SO (ST ([0, 1]%), Ly([0, 1) Z 277

L101)’

7= MkGD
A

J/

Vv
=<Md-1
d—1

= oMy < (n"tlog®™ n) (log™* n)=

That finishes the proof.
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Theorem 5.15. Letl<p<q<ooand%<r<2+%—éthen

BSCSW (0,119, Ly([0,1)%) = sup |[f=Larf|Ly (10,11 < (0~ log™ n) G
1715w (0,141

with rank Iy < n =< M4 12M,

Proof. Inserting the relation n < |GF*"*¢| < 2M M94=1 into Theorem proves the
upper bound. We prove the lower bound now. Let b;; as in (5.2.4)). We define

— r—l)M

pg 1= 2 ( P
Theorem together with (5.2.6)) yields
ol SyW ([0, 1] < 1.
Again, by construction po(x) = 0 for all x € SG(M). This allows us to estimate

2 (S ([0,1)%), Le([0,1]) = leall,
< 2 b0, 00,0 La([0, 1]

b(rr41,0....,0),(0,...,0) (5.2.8)

Finally inserting the estimate in [5.2.6| gives
B ((0,1]Y), Ly([0,1]1) 2 27075 M < (n7 log?m) 67,
That proves the claim. O

Theorem 5.16. Let 1 < p < oo and % <r<2+ %. Then
0a (S ([0,1]9), Lo ([0, 1]7)) = sup || f = T fILg([0,1]%)]
I£1SpW ([0,1]4)]]
= (n'log®! n)r_% (log™* n)l_%
with rank Iy < n =< M4 12M,
Proof. Inserting the relation n < |GF**¢| < 2MM4=1 into Theorem proves the
upper bound. We prove the lower bound now. Let b;; as in (5.2.4)). We define
A=l (oL
p3:=M P 2 M(r=3) Z bj (0,....0) (5.2.9)
ljli=M

and distinguish the cases 1 <p <2and 2 < p < co. In case 1 < p <2 Lemma|[3.4 and
Theorem yield

RS

_d-1
leslSyw ([0, U1 S sl Sy, B0 s M5 (30 1) 51,

|7li=M

<pd—1
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In case 2 < p < oo the non-compact embedding in Lemma and Theorem yield

- r+lf% _d=1 %
sl SpW (0,11 S lleslS," B0 S M5 (30 1) 51
l7li=M
st—l

Again, by construction ¢s(x) = 0 for all € SG(M). This allows us to estimate

o (S ([0, 1)7), Lao([0,1]) 2> sl
11—y M(r—1
=< MEDER MO 1 0 o[ Leo([0, 1)) -

Finally inserting the relation n =< M4~12M gives

2

—(r—1 )11
ol (SyW ([0, 1]%), Loo([0,1]%)) 2 27 Cm)Mpm00=)

= (n"tlog®™ n)r_% (log®™* n)l_%.

That proves the claim. O

Remark 5.17. In the limiting case with r = 2 and p > q (orr =2+ % - é m case

p < q) we are not able to prove sharp bounds for

sup || = Zar fIZq([0, 1))
1715w (0,11

We obtain logarithmic gaps between the upper bounds and the lower bounds for sparse
grid sampling widths obtained in Theorems and (which are valid also for
r>2).

5.3 Sampling recovery in the energy-norm

For the rest of this chapter we are interested in measuring sampling errors in the
energy norm H'([0, 1]¢) := W4(]0,1]%). The interest in this setting is motivated by the
convergence analysis of Galerkin methods. Energy sparse grids depend on the ratio of
the smoothness in the model and the target space. This point sets can be defined as

Ga o = (27 ky, ..., 277k,) : k€ Dj, 5 €N aljli — Blilee < M},

where o and § are the mentioned degrees of freedom. The first reference where we
could find this approach is the PhD thesis of Knapek [67]. Sampling in combination
with measuring the error in the energy norm was also considered in [], [9], [10], [30]
and [48]. We continue considering the sampling operator

Insonf@) =Y Y dix(fvjx (5.3.1)

jEAaﬁ(M) kGDj
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with
Aap(M) = {5 € Ng: aljly - Blile < M}. (5.3.2)

Let Qenergy denote the grid of sampling nodes used by Ia_ ,a)f. Inserting the defi-
nition one can easily verify that

energy - |_7\1
|gAa[3 M)| Z 2
_’]EAQ’B(M)

which gives under the conditions of Lemma

M

energy =
|gAD¢,B(M) | ’

For this operator we can prove the following convergence theorem.

Theorem 5.18. Let 1 < p < oo and

1 1 1 1
(ol crcan (Bl
p 2+ p  2/+

Then there ezists a constant C. > 0 (independent of f and M ) such that

If = Iao sn ([0, 1] < C27M|| £S5, W ([0, 1]9) | (5.3.3)
with .
a=r-— (Z—?—§>+—5 and [B=1—¢
where

0<e<l.

Proof. We expand f into the series (4.4.3)
1 = Lawuon IO S || D0 32 danless| (0,19

J¢Aq (M) kED;

Triangle inequality yields

1 = awpon IO < 30 || 32 danlusa| (0,19

J¢Aq (M)  keD;

Indeed, for fixed j € N¢, we easily check that

| S diaryusal o, 00| < Z () Pl sl H (0, 1)1
keD;
holds (the finite overlap of directions ig with j;, = —1 causes no problems). According

to Lemma |3.14] we have

d
Josal O] = o5l (0, 1)+ D [ v 2ll0, 11|
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Obviously,
_liln
lvg | L2([0, 1) =< 27 =
Similar elementary calculations as above yield

\3\1

L ([0, 1) H<2ﬂz

|z

Combining both estimates gives
Ll
okl H'([0, 1)%)]] S 211"
Inserting this and applying Hoélder’s inequality yields

I - IAaﬁ(M FIHY([0,1]9)]

1
y 1
< 9o~ T( S Idj,k(f)|2>2- (5.3.4)
jgéAaﬁ(M) keD;
1 1
< ( 3 2—2[<r—<§—%)+)|j|1—\j\oo]>2( 3 92(r=3=(;=3)+)lih S ‘djk(f>’2>2-
j¢Aa,B(M) j¢Aa,B(M) keDj

Inserting the estimate from Lemma gives
I = Iapsan /O] < 27( 30 2D S ),
j%Aa,ﬁ (M) keD
We apply Theorem and obtain
_1
)+
-2

If = I, son JHHNO, D) S 27M1f1S, 0,109

In case p = 2 we are done. In case p > 2 we finish with the trivial embedding
S ([0,1]%) < S5 ([0, 1]%.
In case p < 2 we apply Lemma [3.4] (vi) (diagonal embedding) that yields
1f = La, ;o0 10, D] < 27 FIS;W ([0, 1]9)]].
O

Remark 5.19. The parameter € in Theorem can be interpreted as a degree of
freedom. Its explicit choice influences the constant C. and in the other way around the
constant for the number of sampling nodes used by Ia, ,(m) according to Lemma|C. 2 .

Finally we state a result dealing with r = 2 + (— — 5) This result was originally
obtained in [8, Theorem 3.8] for p = 2. Nevertheless the arguments there seem to
contain a problematic step. We provide an alternative proof using Faber-Schauder

sampling representations.
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Theorem 5.20. There exists a constant C. > 0 (independent of f and M ) such that

24+(3—3)+

1 = Ian son FIEN0, 1)) < G2 15275~ w0, 119 (5.3.6)
holds with L1
a:2—<}—j—§>+—5 and pB=1—¢
where
0<e<l.

Proof. We proceed similar as in the proof of Theorem and obtain the equivalent

formulation of (5.3.4)
I = Laason IO 5 30 29| ST dyaFnia

J¢Da,5(M) keD;

La ([0, 1]d)H.

This can be estimated by

If = Ia, 500 FIH([0,1]%)]
< osup 270 Zdj,k(f)Xj,k’Lz([O,l]d)H Z 9~ (l3li=lileo)

3#8a,p(M) keD; 3 8a,5(M)

We apply Theorem [4.30] and obtain

If = In o fIHENO. U S IASSW (0,09 Y 27 @bl

J¢8a,5(M)
The estimate for the sum in Lemma (C.23)) gives
1f = In.sonfHHNO0, D < 277 1S3 ([0, 1])]].

~

In case p = 2 we are done. In case p > 2 we finish with the trivial embedding
Sy ((0,1]%) = S3w ([0, 1)%).
In case p < 2 we apply Lemma [3.4] (vi) (diagonal embedding) that yields
_ 2453
1f = La, son fIH(0, N S 27Y 1S 7 2w ({0, 1]

That finishes the proof. O

5.4 Optimality for standard information

The dependence on the smoothness of an energy sparse grid makes it to a very specific
and non-general point set. Therefore, it does not seems to be useful to consider a
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benchmark quantity similar to (5.2.1)). We consider a more general quantity allowing
arbitrary point sets. This quantity is defined as

oa(S;W([0,1]%), H'([0,1]%)) == inf sup Lf = o(F (X)) H ([0, ]I,
XnC[0A]% | Xnl=n || f|STW ([0,1]4)[|<1
©:C™—H1([0,1]9)

which we call worst case error for standard information (sampling width). It describes
the H'([0, 1]%)-best worst-case error for the approximation of functions in the unit ball
of S;W ([0, 1]4) by algorithms that can be expressed as a composition of a non-linear
reconstruction map ¢ with vector of samples, where the sampling nodes are fixed. A
simpler quantity to measure the performance of linear sampling algorithms is the linear
sampling width,

(5.4.1)
n € N, where the sampling nodes X,, := {x;}7_, C [0,1]¢ and associated (continuous)
functions W,, := {¢ }}_, determine a linear sampling recovery algorithm which is fixed
in advance for the class S;W([0,1]%). Let us emphasize that in (5.4.1) we restrict to
linear recovery algorithms, whereas we admit general recovery algorithms ¢ : C" — L,
in (T.4.1).

o (SyW([0,1)%), H'([0,1)%)) :=infinf  sup
KXo ¥n | 155w (0,19 <1

£ =D F@own()|H ([0.1)%)

Remark 5.21. (i) Obuviously,

on(SW ([0, 1), H'([0,1]%)) < 03" (S, W ([0,1]%), H'([0,1]%)).

(11) Similar arguments as in Lemma yield that a lower bound for o, is provided
by
inf sup  [[FIH([0, 1)) < en(SyW([0,1)9), H'([0,1]%)).

@Rk CIONT | pispw ((0,1]9) <1,
F(wx)=0, k€[n])

Theorem 5.22. Let 1 + (Il7 —3)s<r<2+ (i — )4+ and 1 < p < oo. Then it holds

on(SyW([0,1]%), H'([0,1])) = oy (S;W([0,1]%), H'([0,1]%))

= sup [|f = I, sn fH ([0, 1]
1715w (0,114 1<1

= 1=
with
1 1
a:r—(———) —e, [B=1—¢ and 0<e<l.
p 24

and

n < rank Ia, ;) X |ggfj;9(g4)|.
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Proof. The upper bound follows from Theorem and the trivial inequality g, < oli®
(limiting case: Theorem [5.20) E According to Remark n a lower bound can be proven
by constructing for every arbitrary point set of size n a fooling function that vanishes
in all this sampling nodes. For n given sampling nodes X = (z;)?_, C [0,1]¢ we find
j* € N, with

217l = QliTle < 9 (5.4.2)

Since we have C2n translations in Dj« and only Cn sampling nodes we find a set of
translation indices 7;+(X) such that

{a: S [0, 1]d : bj*yk(m) 7é O} N {[L’z} =10

for all i = 1,...,n and k € T;<(X). We have to distinguish two different cases. We
start considering the case p < q. Here we consider the fooling function

where k* € T;,(X). Theorem yields
LA 1w (0, 1)) < 20—,

We stress on the equivalent norm

A O] = (X 1D A1La(o, 1) )

|OL‘1<1
and observe
| =i 2210, 1) | = 22 |2 — )220, 1)) | = €28, (5.4.3)
Then finally Fubini’s Theorem yields
a aaz
1D 4l La([0, 11 —HH bt | L2((0, 1) (5.44)

Using the identity in (5.4.2)) we obtain for the single tensor bump function

[FalR

(0,19 227

165+
That yields

A0 DN 1=l
1115 W ([0, 1]9)]]
In case p > ¢ we consider the fooling function

> b

keT;«(X)

~(r-1-(2-3))

n
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Here, due to disjoint supports for different k& Theorem yields

1RSI (0D S 20| S e

kETj* (X)

= 2N g alLy(0, 1I17)

keT; (X)

Ly((0,119)]

= orldxh,

Additionally, we estimate

IRl (0] = (2 1D falLa(l0, 1))

|ee[1<1

< Z Z ”Dabj*,k:|L2([0,1]d)|’2)é

a1 <1 kETjx (X)

X

2 (XX 10l YE) . (549

|1 =1 k€T« (X)
Inserting together with into provides
I f2lE ([0, 1)) 2 2097 (5.4.6)
Altogether, we obtain

| f2| H' ([0, 1]9)]] > o= (=Dl - (1)
[ f2|SyW ([0, 1) |

This concludes the proof. O

Remark 5.23. Theorem shows that energy sparse grid sampling provides the
optimal asymptotic rate in the sense of the worst case error for standard information
(sampling width,).
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Chapter 6

Best m-term approximation with
respect to the Faber-Schauder
dictionary

In this chapter we study a concept of nonlinear approximation, so called best m-term
approximation with respect to the Faber-Schauder dictionary. Let X,Y be quasi-
Banach spaces and D C Y be a countable set called dictionary. For x € X we define
its best m-term approximation by

om(z, D)y = inf Hx — Zcibi

(C’L‘)le C(C,(bi);ll cD

Y

For the space X we define the best m-term approximation with respect to the dictionary
D by
Um(Xa D)Y ‘= sup Om(xa D)Y

llzllx <1

Let T : X — Y be alinear operator. Then we define the the best m-term approximation
of T' by
om(T: X = Y,D):= sup 0,(Tz,D)y.

llzllx <1

6.1 Properties of best m-term widths o,,(T, D)

We use the notation
S(D) = {ZMM‘ N eC,q,€D,i= 1,...,m}
i=1

for the set of all m-terms in D and start with the following lemma proving some
elementary properties of ¢,,(7T, D) that we call pseudo s-number properties, cf. [90, p.
74].
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CHAPTER 6. BEST M-TERM APPROXIMATION

Lemma 6.1. Let W, XY, Z be v-Banach spaces (0 <v <1) and D CY be a dictio-
nary.

(i) ForT € L(X,Y) we have
1T X =-Y|[[=00(T: X —=Y,D)>0(T:X—=>Y,D)>0(T: X —>Y,D)>....

(ii) For Ty, Ts, ..., T, € L(X,Y) and my,my,...,m, € N such that m = """ m; we

have . .
Um(ZTi’ D)V < Z om, (T;, D)".
i=1 i=1

(1) ForT € L(Z,Y), Ae L(X,Z), Be L(Y,W) we have
on(BTA, B(D)) < ||Bllon(T, D)|| A
Proof. (i) is obvious by definition. (i) We prove the case n = 2 in detail. n > 2 follows

by iterating the arguments. Let 2 € X with ||z|X|| < 1. Then for arbitrary (¢;)7, C C
and (b;)7"; C D we obtain

(T + B)e, D)y < (T + Ta)e = Y|y
i=1
my v ma v

1= 1=mi1+

Taking infimum over (¢;)%; C C,(b;)~; C D and supremum over all x € X with
|z| X || <1 finishes the proof of (ii). We consider (iii). By definition we find g € ¥,,(D)
with ¢’ = B(g) for every ¢’ € %,,(B(D)) such that
om(BTA,B(D)) = su inf BTAx — B
(BTABD) = sp ot | (@)l

< ||B:Y - W]| sup inf : |TAx — ¢'||y

]| x <1 9'€Zm (D

— IBlow(TA,D).
We continue estimating
om(TA, D) = su e T A
! ) ||xpr§1 g'E€Zm (D) I Jly

< sup inf ||Tz—d|y
2l z<||A|| 9'€EEm (D) | I

= su inf AlT(z) = ¢
s IAI7G) ~ o

= sup inf ClIAITC) = llAlg"lly

l|2]]<1 9" €Em (D

= ||A: X = Z||low(T, D).
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6.2 Sparse approximation in (vector-valued) sequence
spaces

Let us now discuss specific situations. The following lemma is well-known and usually
referred as Stechkin’s lemma. For our knowledge the first reference for the stated
generality is [I12, Lemma 2.1, p. 97], see also [33, Section 7.4] and the references given
there.

Lemma 6.2. Let 0 < p < g < 00 and (ay)nen C C be a sequence of complex numbers
with the property
|a1| = |az| = |as| > ...
Then
(32 Jat)" <+ 1) 603 fanl)’ (6.2.1)
n=m-+1 n=1
holds for all m € Ny. As usual, for ¢ = co the sum on the left hand side is replaced by

a supremum.

Let us now turn to the vector-valued situation. Here we have X, Y, quasi-Banach
(p-Banach) spaces, T, € £(X,,Y,) linear operators and I be an index set. Let D,
denote a dictionary in Y, and

D:=J (J {0,...,0,¢,0,...,0)}.
n€l e €Dy,

Definition 6.3. Let I be an index set and (X,).cr be a sequence of quasi-Banach
(¢-Banach) spaces. We define the following sequence space

1

(X I) = {‘T = (@p)per : 2u € X, 12l (x,.0) = (Z ||'TM|XM||p> "< oo}

pel
with the usual modifications in case p = 0.
Theorem 6.4. Let 0 <p < q < oo and T = (T,)per : {p( Xy, 1) = £y(Yy, I). Then

om(T,D) < sup sup

pel 0<s<m

(s+1
m—+1

11
) 04(T,, D,).

Proof. We have T' = (T},),er with T, : X,, — Y,. Let m be given. Define m, =
| (m4+1)||z,|X,||P] for some x = (x,,) e With ||2|€,(X,,)|| < 1. Using m,-approximation
in the component 7),x,, we obtain the relation

om(Tx, D)y, (Zamuwa Y )1,

nel

since

> omy < (m+1)) [l XullP < m+ 1.

nel pel

79



CHAPTER 6. BEST M-TERM APPROXIMATION

We proceed estimating as follows

1_1

(m + D), Py oG-3) mtl  \Go)
om(Tz, D < ( <—M> ( )
(T, D)oy < (D (g RSV ENEA

ne

Om, (Tua Du)qll%lXullq) !

< <Z (mu+1>Q(;—},)( m+ 1 >q(§,—},)
- m+ 1 (m + 1) ||z, | X [P
‘

pel
Oy (s D)l X,17)

Note, that in case m,, = 0 the respective summand will be replaced by || T}, |?||z,|X,||¢ =
oo(T), D)z, X, ]|7. We obtain

s+1\r s 7
ol T8, D)y < sup sup (Z)" o (1, D) (D el Xul?) ' (6.22)
pel 0<s<m M +1 el
s+1\r 7
< sup su ( ) os(T,,D,).
uell?ogsgm m+1 ( H N)
In case m, = 0 we simply write
2 Xull® = [ Xl ll2ul Xul?
a—p
= ([l Xull?) 7 el Xull?
1\
< (m—H) [l Xl
since because of m,, < 1 we have ||lz,|X,||P < mLH The result above holds for ||z|X|| <
1. It remains to consider the case ||z|X| = 1. Let 2 € X with ||z|X]| = 1 and

additionally A > 1. We use a limiting argument together with (6.2.2)). Obviously
|£|X]| < 1. For that reason we obtain

om(T2,D)eyv,) = Aom (Tl’/)\,p)e v (6.2.3)
q(Yu
s+1\5 3 T P\ 3
< Asu;;oiuf (m—i— 1) US(T#7DM)<Z’ TH X, )
ne <s<m uel
_p s+1\:"3
< A sup sup (m+ 1) o4(T,, D,.) (6.2.4)
I <s<m

This holds for all A > 1 arbitrary close to 1. We obtain

<3+1

1_1
mH)” “0y(T1, D,.).

Om(Tx, D)y, v,y < sup sup
pel 0<s<m

Finally, taking the supremum over ||z|¢,(X,)| < 1 on both sides proves the theorem.
[
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This theorem has some consequences. We consider some special cases and start
with Lemma . Choosing X,, = Y, = C we can prove a similar result having the
same convergence rate as in immediately by applying Theorem This gives
us a slightly different selection procedure for the m terms in the m-term approximation.

Corollary 6.5. Let 0 < p < q < 00 and
A(m,a) :={i € N:m; :=|a;]P(m + 1) > 1}.

Then we have

Ly
sup )a— aeillyl| < (—)
laltyll <1 i@%ﬂ) T Am 1
which implies
1 1 1
0'm<€p,E)gq S (m—H>p q. (625)

Proof. Choosing X,, =Y, = C we can prove the upper bound in (6.2.1)) immediately
by applying Theorem . Let a € £, with [|a|ly[| < 1. Then >, s, ,) @:€i is a m-term
approximation of a, since

A(m,a)] < i) < (m+1) D Jail” = (m+ al6,]]” < m+ 1

i=1

The arguments provided in (6.2.4)) yield the case

lal ]l = 1.
This gives (6.2.5)). O
Remark 6.6. The case ||a|l,|| = 1 is based on a limiting argument. The above algo-
rithm may not work in case ||ally|| = 1. Replacing the definition of m; by m; = |a;[Pm
mn and accepting a constant C' > 1 in the approximation rates then we obtain an
explicit algorithm that generates a m-term approzimation for the case ||all,| = 1. Sim-

ilarly my, in Theorem [6.4 can be replaced by my, = ||z,|X,|[Pm. This gives us a more
transparent approrimation strateqy. The price to pay is constant C' > 1.

Next we consider 7" = (T,...,T) with T' = id, X, = ¢4, Y, = {4 so X, = X,
Y, =Y independent of u, u < r. The next corollary generalizes [54, Theorem 4].

Corollary 6.7. Letu <7, p < qand0 < %—% < %—é. Let further T = (Ty, ..., Ty) =
id and b,d € N. Then we have for the dictionary D = (e;;)icp)jea of unit vectors

1_1
(ﬁ) L 1<m<d,
) 1_1 1_1
om(id : G)(L3) — £5(49), D) < (ﬁ) G) "L d<m<bd,
0 : m > bd.
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Proof. The case m > bd is trivial, since dim ¢}(¢}) = bd. We consider the remaining
cases. We apply Theorem [6.4] This gives

s+1\r 3
om(T,D) < sup su ( ) oy(id : 1% — (* D).
( )< z‘:l,.l?,bogsgm m+1 ( )
By Lemma [6.4] we have
o (id : 04— 04 D) < (s+ 1))
if 1 <s<dand
oy(id : % — (% D) =0,
otherwise. Hence we have for m < d
s+1\s g *(l*l>
(T.D) < ( ) 1y e
o )_Oiggm 1) Gt
_ (m_i_l)—(%—%)(m_f_l)(p -1
— my 1D
In case d < m < db we have
s+1\3 3 11
on(T, D) < su ( )p “(d+1)"G7)
( ) < ogsggq m+ 1 ( )
d+1\r 3 (1_1
= (y)” e
This gives the corollary. ]

Now we consider a more complicated situation. In a sense this represents a vector
valued framework suitable for function space embeddings. Let

Xﬂ = g;lz)w# (dffgi“)’

Y, = £ (dyei), (6.2.6)

where d,,, b, are natural numbers which are growing with p and a, 8 > 0. Let us now
study

om(id : Ep(Xu) — £y(Y,), D),

where

1
lalleyx = (2 laalXall”) "

nel

1
ey = (3 lalal) "

nel
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We define D as the set of unit vectors in £,(X,). We are interested in the following
special case

1 1 1 1
———<-—- (6.2.7)
u r-p q
with 11 11 1
(Y easl oy 628)
u T P q r
Corollary 6.8. Leta—6<——a—(%—%) wz’th%—%ﬁ%—%. Then we have

1 \(@=B+(E-1)
omid : 0)( X, 1) — (Yo, 1), D) < (ﬁ)
m

ifm+12>sup,ed,. IC N¢ denotes the index set of the outer sequence spaces.

Proof. Due to m > sup,,¢; d,, we have

1y
Oulid: (X, 1) = oY, 1)) < sup sup (7211) o,(id: X, = Y, D,)
m <s<m

s+1vima_ .
< sup sup < ) os(id : X, = Y,,D,)
pel 0<s<d, \m +1

INs—a
+sup sup <8+ ) os(id : X, = Y,,D,).

pel dy<s<m M+ 1 o
(6.2.9)
Inserting the result from Corollary [6.7] the first term can be estimated by
I\sg=a/ 1 \u7
sup sup <S+ )p q( ) d;(a—ﬁ)
pel 0<s<d, \m+1 s+ 1
_ ( 1 )é—éd;—;—Q—i)—(a—ﬁ)_
m+1 .
Taking the supremum with respect to p we obtain
1 1_1
sup sup ( i )p q os(id: X, = Y,,D,) < (m+ 1)’[(‘“’5)*(%’%)].
pel 0<s<d, \m + 1
Finally estimating the second term in gives
s+1 >;17 5 .
sup su os(id: X, = Y,, D
,U,EII) dHSSIS)m <m +1 ( K . H)
11 11 11
< sup sup <S+1 >p q( d )p q(i)“ Td;(afﬁ)
pel dy<s<m \M + 1 s+1 d,
L1l 3 1 (1 _1y_ (g
< sup( 1 >p " s~ (G—7)—(a=h)
pel N +1
< (m41)"ed-Gm),
O
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Corollary 6.9. Let 0 < o — [ with % - % < =z — %. Then we have

1
P

: 1 (a=B)+(5—1)
O'm('ld : gp(X#, I) — gq(Yua I),D) < (m——|—1>
ifm+1<inf,erd,. I C N¢ denotes the index set of the outer sequence spaces.

Proof. We fix pn € I. Due to m + 1 < d,, Corollary [6.7] gives

s+1 ;—§< 1 )i—i o 11 1\ (a=B)+(E-1)
d, ) < 1)~ GRd e < (—) .
Ozlslé)m (m+1> s+1 H — <m+ ) =

Corollary 6.10. Let p, q,u,r as in (6.2.7), (6.2.8)) and X,, Y, asin (6.2.6). I[fa—pF >

0 we have L

oulid 0,(X,) = 1), D) 5 ()T

for all m € N.

Proof. The proof follows immediately by Corollary and using for v = min{q, 1}
the decomposition

Tom(1d : Up(X,) = 0g(Y,), D) < op(id : 0py( X, [1) = £4(Y,, [1), D)?
+om(id : 0y(X,,, I2) = £y(Y,, I2), D)?

where
L={peNi:d, <m+1} and L:={peNl:d, >m+1}.
O

Next we consider best m-term approximation for discrete function spaces s;’ o f and

s;’ygb with © = [0,1]¢. We need some further notation. We introduce for p € Ny the
following sets and quantities

M(p,d) = {J cN¢ . Zmax{ji,()} = ,u}, (6.2.10)
Snd) = M@dl,

Vi = {(d,k):5 € M(p,d), k € D},
N(pd) = |V,

Definition 6.11. We define the projection of the sequence a := (aj k) kev to indices
of the hyperbolic cross layer M (u,d) by

R,a = Z Za]kejk,

FEM (11,d) k€D
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where ej are the unit vectors with index (j,k). Such a projection fulfills the
following properties.

Lemma 6.12. Letz € {b,f}, 0<p<qg<oo (q=o0:x=0b, ), 0<0<v <00 and
t <r. Then the following inequalities hold

(i) o
1Rualsygell < S(u,d)o ¥ || Ryalsyyal,
(ii)
IRualsyg el < | Rualsyyll,
(iii)

1Rualsygz]l < llalsygell.

(iv) Additionally the identity
id s’ ex—>s ex—ZR

holds.

Proof. (i) and (ii) can be proven using Holder’s inequality. The estimates in (74) and
(iv) are obvious. O

The case of large smoothness

The following result is due to Hansen and Sickel [56, Proposition 5.4]. We provide an
alternative proof using pseudo s-number properties. D denotes the set of unit vectors
in sequence spaces s;’g f

Theorem 6.13. Let z,y € {b, f},0<p,g< o0 p=c0:x=b,g=00:y=">b) and
0<6,v < oco. We denote by vy = min{p, 0} and 6, = max{v,q}. Further let r,t >0

with r —t > max{(), vi — —} then

T,Q — — — r— — 1_1
Um(sp,GLD)sg;‘,}y = C(m " log® m) ' (log"t m)v~7. (6.2.11)
Proof. For the lower bound we refer to [56]. We give a new proof for the upper bound
We start with the case 79 < d;. We denote by D, the set of unit vectors in s’ 00 f
restricted to the hyperbolic layer with |j|; = p. Let a € s; gv with [[a|s] pz|| <1 then
Lemma [6.1] (i) with u := min{q, v, 1} provides the decomposmon

M L
am(a,D)Zgﬁy < Zamu(Rﬂa’D“)sgg‘jy—'_ Z O’mH(RMa,DN)Zz,Qy (6.2.12)

q,v
n=0 pu=M+1

o
u
+ § UmM(Ruavpu)sma
qvy
p=L+1

(6.2.13)
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where
2! c 0<pu<M,
my, < Q [2mWM=mkyd=1] o M4 1< p < L,
0 : otherwise,
with k > 1,
= oM pyd-t
and

I {Mﬂﬁ—(d—l)logM—l“.

k—1

First show that m 2 Zﬁzo my,. Obviously

[e'e) M L
Zmu 5 Zlud—12u + 2Ml$ Z 2(1—H)ulud—1 5 Md—12M =m
n=0 n=0 pu=M+1

The first sum in (6.2.13)) vanishes, since |V,| < p?12%. So this part can be approxi-
mated exactly. We continue dealing with the second sum. Applying Lemma [6.12} (i)
gives

G, (R, D,,) T 0y, (R, D)

A
ey
RS
&

t,Q
Sq.vy 851 51b

S S ) R o, (Rt 502 b 5% b, D) | Ryal s

"/0 Y0
= S(u,d)%_HQ_N(T—t (55~ 51))0m#<R# : g%l Lou gﬂd 12u’ u)

IRualsty, el

70, ’YO ||

Corollary [6.5] yields

< QYR gur—t=( =), ~ G
Umu(RHa7 D,U')SZ"SBy S(M? ) 12 "0 1 m,u‘ ||R a’S’yo YO H

Lemma [6.12| allows to estimate this by

t\H
>
H\H

!
Um#(R“a’DM)st’Qy S S(pd) +%_52_M(r_t_(%_%))mu(

~

) 1Ryalsygal.

Choosing x > 1 close to 1 such that /f(%o — %1) < r —t then summing up yields
L
Z Omy, (Rua’ Du)sff%y 5 2_MR Z M(d 1) Z_’)UQ“( (*—T) (r=t)u
H=M+1 | p=M+1
< 2 7" t uM d 1 ;77)74
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We estimate the last sum in (6.2.13)). The choice of L yields m, = 0 for u > L. Lemma

together with gives
Omy(Rut D)o, S [ Rualsiyll < 604 | R st

< ’u(d—l)(%—ln2—(T—t—l+$))uHR a|sT’QbH

< ,u(d DI(E-D++(— )+}2—(7‘—t—7 uHR a|sp9m||.

Summing up with L > M yields

> onRua, D)e, S Y p TG g
,U«:LJrl o /’L:L+1

< 9 GoiNLu L DIG =D+l

Finally, if x is choosen close enough to 1 then L is sufficent large such that

Z Umu(Ru% D,u)gt,ﬂy < 2*(7*( ))LUL(d DI —)++(—5)+]u < o—Mru pr(d=1)(;~5)u
p=L+1 "
holds. Altogether, we obtain

1
v

Sy

O-m(aalp)sff}y < 2—M(r—t)M(d—1)(%—%) — (m—l logd_l m)r—t(logd—l m)

Finally we consider the case d; < 79. Here we use (linear) hyperbolic cross approxima-
tion. Again we choose M such that

= oM pd=1
and
_juttr s p <M,
My = )
0 :  otherwise.
Obviously
Zmu < oM ppd-t,
p=0
Lemma yields
d-1)( -+
IRualstSyll < w750 Ryal sy o]
— ,U/(d 1)(V 51)2/>‘(t 51)||R a[|£l-lvd 12“”
< U ) (et Rl |
d—1)(L-L _
= PR Ryl b
< PG H | R a0
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Inserting this into the following estimate gives

o0

0m(a, D), < Zam“ (R,a,D,) Z o(R,a,D,)
M= 0\ 1 ZM "~ -
=0 fHRua\SZSJyII“
S Y AU Ryl |
p=M+1
< -G 59— M(r—t)
= (m 'log®tm) (log** m)%’%.
This concludes the proof. ]

Remark 6.14. Compared to [56] the analysis here uses ideas known from the Maiorov
discretization technique, cf. [75], which is very well known for estimates on several
s-numbers of classical function space embeddings (F and B spaces). The choice of para-
meters is borrowed from [127, Theorem 3.19] where entropy numbers have been studied.

The case of small smoothness

In this section we consider the so called case of small smoothness. The small smoothness
range is given by %—% <r< %— l% Here we recover some interesting effects concerning
the logarithm. The next result originally goes back to [56]. In fact, it was obtained
in a non-constructive way using interpolation theory. We contribute a constructive
approximation method.

. Then

Theorem 6.15. Let0<p<q§oo,0<0<1/§ooand}—lj—%<r—t§§—

N

om(id sg’fgb — sg”gb, D) =m . (6.2.14)

Proof. For the lower bound we refer to [56, Corollary 5.11]. We prove the upper
bound with a constructive method in case of the compact embedding with 0 < ¢ <
r—t— (Il? — 1), For the non-compact embedding r —t = ;lo — % we refer to the comments

in Remark IBqE] We set Al
L= [ (r = t)logm W (6.2.15)

I, 1
r—t—-+-—¢
p+q

Defining u := min{q, v,1} then Lemmal[6.1] (i) together with Lemma [6.12] (iv) yields

om(id : erb—>sthD < Um(ZRu srﬂb—>st9b D>

(6.2.16)
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We consider the first term in (6.2.16[). By Corollary we have
L
om (D R D) oy = i (X)) 5 6(X,)) SmTCT (6:217)
pu=0 S
where

X, =0 (240702 and Y, = 4 (20D,

Finally we deal with the last sum in (6.2.16). Let a € s/'yb with [la|s;yb]| < 1, then
applying Lemma (i) together with Lemma [6.12] gives

(i1 Q
Uo(Ru%Du)sé‘ﬁb = ’|Rua|sff§b” Sﬂ(d R ”)||Ru@\32,eb|\

(A y—(r—t—141L "
M(d (3 U)2 (r—t p+q)”||Rua|Sp72bH

AR AN

(A=) (5—3)g—(r—t=g+n.

,u

Taking supremum over Ha|s;’$b]| < 1 and summing up yields

oo oo
ST 0o(Ru:sigh = st 2, D) < N pe @G (6.2.18)
p=L+1 p=L+1
< DGt =) Iu,

(6.2.19)
The choice of L in gives
i oo(Ry. : s)b — s, D) <m0, (6.2.20)
p=L+1
Inserting the estimates from ((6.2.20), (6.2.17)) into yields
om(id : S;’f;b — 5600, D) < m~ .
That proves the claim. O
Theorem 6.16. Let 0 < p < g < 00 and0<9<1/§oowith]%—%§r—t§%—%
and q > v or@ <p<q<v. Then
om(id : s;’ygb — sfﬁf, D) = m~ . (6.2.21)

Proof. For the lower bound we refer to [54], Proposition 5.1. Similarly to Theorem
[6.15] we prove the upper bound with a constructive method in case of the compact
embedding with r» > % — . For the non-compact embedding r = % — = we refer to
the comments in Remark . The case ¢ > v follows from Theorem using the
decomposition provided in Figure [6.1] with Lemma |6.1} (iii). We prove the case ¢ < v

with p > 6. Let
N = |logm] and L as in (6.2.15]).
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ud £

7,0
_—
Spo b Sqw

) vd
sbSt
Figure 6.1: Trivial embedding in case ¢ > v.
Defining u := min{q, v, 1} then Lemma [6.1] (ii) yields

Oom (id : s;:?b — sy f D)t < Um(Z R, s, Qb — 5y f, D>u (6.2.22)

( Z R, : STQb—>s f,D)u

p=N+1

+ Z oo(R,, srﬂb—>s [ D))"

p=L+1
(6.2.23)
Yo R S Ry
ry e st s;:?b —e st
N . L :
2 =0 B id > u-n+1 B id
syb shb

Figure 6.2: Decomposition of )| R,, in the b — f case.

In the first sum we apply the decomposition provided in the left commutative
diagram of Figure[6.2] Lemma (iii) yields

0m<ZRu STQb—>s fD) (ZRH srﬂb—>st9b D> lid : s5b — st fl -

<1

The choice of N gives
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Additionally, we have r —t < % — % This allows us to apply Corollary which yields

N
o (30 B 50— 20, D) = o(id s £,(X,) > 6,(%,), D) Sm ™00, (62.24)
n=0

where ) )
-1 " - _1y oup
X,= 07 @270 and Y, =07 (20002,

We estimate the second sum in (6.2.23) by using the right commutative diagram in
Figure . Notice, that ]lj — % <r—t<gj-— %. This allows us to apply Corollary
which yields

N
o—m<z Ry % — 5%, D) = omlid : 0,(X,) = £,(Y,), D) <m~,  (6.2.25)
p=0

where ) )
d-1 r_l a-1 _1
X,=0" 2"72¢) and Y, =" (2002,
Finally we deal with the last sum in (6.2.23)). Let a € s;’gb with ||a|s;’72b|| < 1
Proceeding by applying Lemma (i) and Lemma [6.12] gives

u d-1)(3-1 Q
0o(Rut, D)o, S I Rualsht Il < p 00| Ryalsgn|
DG DT R a5

@GPt b bn,

AR AN

I

Taking supremum over a and summing up shows

o0 o0

5 sl gD 5 3 et
pu=L+1 p=L+1
< A=D1 g-(r—t-(11)Lu

Finally, the choice of L yields

oo
1 1

ST 0o(Ry b — st f, D) < LMV Dot Gk < gm0 (6.2.26)
p=L+1

Inserting the estimates from (6.2.25)), (6.2.24), (6.2.26]) into (6.2.23)) yields

o (id : s;’f;b — sf]’ﬁf, D) <m0,
This proves the claim. O

91



CHAPTER 6. BEST M-TERM APPROXIMATION

L

f—>s

id id
T’,Qb

Figure 6.3: Trivial embedding in case 6 > p.

Theorem 6.17. Let0<p<q§oocmd0<0<1/§oowith%—%<r—t§%—}/
and 0 >porf <p<q<v. Then
om(id : s 0f—>stﬂb D) =m 1, (6.2.27)

Proof. For the lower bound we refer to [54], Proposition 5.1. Again, we prove the upper

bound with a constructive method in case of the compact embedding with r > l -1

q
1

For the non-compact embedding r = we refer to the comments in Remark 6 19(.
The case 6 > p follows from Theoremiusmg the decomposition provided in Figure
with Lemma (iii). We prove the case ¢ < v with p > 6. Let

N = |logm] and L as in (6.2.15).

Defining v := min{q, v, 1} Lemma (ii) yields

oom(id : 52 f = 552, D) < am<ZRu SAf — sh0, D)

+O‘m< Z R“:s f—>sth D)

p=N+1

+ Z oo(R,, spef—>sthD)
p=L+1
(6.2.28)

We consider the first sum where we use the decomposition presented in the left com-
mutative diagram of Figure
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N L
rQ Zy,:(] R:U‘ rQ M:N+1 RM

) t,0Q \ t,Q
Spve f § aVb Spﬁ f S 7yb
N L
ud u=0 Ru id u=N+1 Ru
r,Q rQ
50,0 b Spp b

Figure 6.4: Decomposition of ) R, in the f — b case.

Then Lemma[6.1], (iii) provides

N N
R AY) t,Q2 A Y t,Q I X V] 7,0
am( g Ry :syyf — 55,0, D) S am< g Ryt sppb— sy,b, D) lid : spp f — sp40ll -
p=0 p=0

The choice of N gives

Additionally we have r —t < % — % This allows us to apply Corollary which yields
N

o (30 R 551 = $590.D) S omlid s (5(X,) = G.V,), D) S w0, (62.29)
u=0

where - 1 ) )
X, =0 (292" and Y, =" (2",

We estimate the second sum in ([6.2.28) by using the decomposition provided in the
right commutative diagram in Figure . Note that ]lg — (11 < r —t. This allows us to

apply Corollary that yields
N
o (30 Ryt 5550 = 596, D) S i+ £,(X,) > £,(¥;), D) Sm 0, (62.30)
p=0

where ) )
-1 _1 o -1 _1 m
X, =07 (20702 and Y, = o (200 2,

Finally we deal with the third sum in (6.2.23). Let a € sy f with [la|s)5 f] < 1.
Applying Lemma [6.1] (i) and Lemma [6.12] gives

—1) (1=t
00(Rua, D)lsa, < | Rualsgnfl < p V5| Ryals 50

R N A VBl

“D(E-LH5—(r—t—141 r
pl VGO | R alsTE
e

N N

<1
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Taking supremum over a and summing up shows

S ool 1 D) < S by
pu=L+1 p=L+1

1A= (=) 9= (r=t—(5 =) Lu

AN

Finally, the choice of L yields

ST 0o(Ru: shSf - 820, D) < LG Gt < gm0 (6.2.31)
pu=L+1

Inserting the estimates from (6.2.30)), (6.2.29)), (6.2.31)) into (6.2.28)) yields

om(id : s;’vgb — sg”gf, D) < m~ b,

which concludes the proof. O
Theorem 6.18. Let 0 < p < g < and0<6<u§oowz’thé—%<r—t§%—%
andp <60, v<qorf<p<qg<v. Then

om(id s sl f — sb2f, D) <m0, (6.2.32)

Proof. For the lower bound we refer to [54], Proposition 5.1. We prove the upper bound

in case r > 1 — L with a constructive way. For the case r = 110 . % we refer to Remark

6.19] The case 6 > p, ¢ > v follows from Theorem [6.15| using the the commutative
diagram provided in Figure together with Lemma (iii). We prove the case

rQ id £.0

_
Spue Sq7V

id id
s;’gb o stAMD
Figure 6.5: Trivial embeddings in case p < 6, v < gq.

g < v with p> 6. Let

N = |logm] and L as in (6.2.15)).
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Defining u := min{q, v, 1} Lemma , (ii) yields

Oomid : T3 f — sE2f, D) < am<ZRu SIF = b f,D)u (6.2.33)

+0m( Z R, : s;’gf — sZ’f,}f, D)

p=N+1

o0
7Q ,Q
+ Z oo(Ry = s,9f — sqf, D).
pu=L+1

(6.2.34)

Concerning the first sum we consider the left commutative diagram in Figure [6.6]

N L
0 2= £, rQ 2up=n41 T £,
—_— b ) bl
Sﬂef S%V Snﬂf S%V
id id id id
N L
Y=o R > R
7,82 p=0"r t,Q r,Q p=N+HLTR 40
Sppb Sy spb ————— sii b

Figure 6.6: Decomposition of ) R,, in the f — f case.
Lemma [6.1] (iii) provides
am<ZRH S0 — st f,D) < lid: S50 - sy bHam(ZRM i — 58, D)

<1

x lid : s, f—>s 20|

1
The choice of N gives
= e s ad s e T
Additionally we have r — ¢ < + — =. This allows us to apply Corollary that yields

N
am(ZRH SOf = st f,D)Sam(idzﬁg(Xﬂ)%ﬁ,,(Yu),D) <m~ (6.2.35)

where o . L .
X, =0 (282 and Y, = 07 (240702,
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We estimate the second sum in (6.2.34)) by using the right commutative diagram in
F.igllére . We recognize % — % < r —t. This allows us to apply Corollary which
yields

L
am< N Ry s s, D) < oplid : 0,(X,) = £,(Y,), D) <m~, (6.2.36)

pu=N+1

where L ) L )
X, =07 2002y and Y, = 0 (200D 2,

Finally we deal with the last sum in (6.2.23). Let a € s’ f with [ja|siyf| < 1.
Applying Lemma [6.1] (i) and Lemma [6.12] gives

_ 1_1
| Rualst2f|| < p @G| R, alst2 f |

S pEGmD T O Ryal s f .

00<RMQ,D) Q

u
t
squ f

Taking supremum over a and summing up shows

i o
1,1
Y oo(Ruisyof = s Sf D) S Y G
p=L+1 p=L+1

< puld=D(5=3)g=(r—t=(G=g)Lu.

Finally, the choice of L yields

S 00(Ry s f — 562, D) < LHNG R Goi <y =-0 - (6.2.37)
p=L+1

Inserting the estimates from (6.2.36)), (6.2.35)), (6.2.37)) into (6.2.34]) yields

om(id : s;gf — s;’ﬁf, D) <m0,

which concludes the proof. O]

Remark 6.19. Setting L = oo the proofs of Theorems [6.13, [6.16], [6.17 and [6.1§
work also in case r —t = * — % (non-compact embedding). The price to pay is the
constructivity of the underlying algorithm. The algorithm needs full knowledge of the
coefficients on infinitely many hyperbolic layers M (u,d).

6.3 Explicit algorithms

The results in Theorems[6.13],[6.15] [6.16] [6.17] and [6.18 are constructive. A constructive
algorithm that approximates a € s;’f;x is an algorithm, that needs for its evaluation
only partial (finite) knowledge of the coefficients of a. Algorithm [I| and Algorithm
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describe the method that constructs the approximants for the approximation rates
provided in the mentioned theorems for series a € 3;”?b, x € {f,b} with Ha\s;”?xﬂ <1
These algorithms are obtained by inserting the approximation methods from Section[6.2]
into the corresponding estimates in this section. Note, that the algorithms presented
here are modified due to Remark so that they can handle ||a|s;’§b|| = 1 directly.
Algorithm [2] considers the small smoothness b — b situation, which means where the
source and the target space is a Besov type sequence space. The underlying methods
of Theorems [6.17] [6.16] and [6.18] are based on Algorithm [2 Here one has to divde a
into two parts

N o)
a = E: E a5 k€55 + E E a5 k€5 k

|j|1=0k€Dj |j|1=N+l kEDj

where Algorithm [2)is applied to each of these parts with different embedding parameters
p,q,0,v.

6.4 Best m-term approximation with respect to the
Faber-Schauder system

We denote by
F' = {vjx: (4, k) € V}

the Faber-Schauder dictionary on [0,1]¢. In this section we consider best m-term
approximation in function spaces with respect to F¢

om (S0 X, F) s v = omlid : Sy p X — S) Y, F).

Lower bounds

The next theorem is our main result concering lower bounds for best m-term approxi-
mation with respect to the Faber-Schauder dictionary.

Theorem 6.20. Let 0 < p < ¢ < 00, 0 < 0 < oo (B-case: p < q =00) and r > 119
(F-case: r > max{%,% —1}. Then

UM(S;,G'B([O? 1]d)7 Fd)Lq 2 m-"

and

(S o F([0,1]),F), 2 m™
for all m € N.

Proof. We consider the bump function
1 1
b(x) =e =0-ves
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CHAPTER 6. BEST M-TERM APPROXIMATION

Algorithm 1 Large smoothnes algorithm

Input: m,r,t degrees of freedom, smoothness
Yo :=min{p, 0}, parameters
91 1= max{q, v}
(ajr), i1 < L,k € D; finite part of a.
choose k with
r—t
<k <5g—.
% &

choose M such that
m = Ma-1oM,

set

L. {Mﬁ%—(d—l)logM—l"’

k—1
Ay 1=
for each 1 €0,...,L do
set
et 0 pu<M,
M) |2r2M s pd=t s M 1 < < L
for each j with |j|; = p do
for each k € Dj do
’Lf |aj’k,|'70m“ Z 1 then
set
Ay, = am+aj,kej7k
end if
end for
end for
end for
Output:  a,, m-term approximation to a
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Algorithm 2 Small smoothness algorithm b-b-case

Input: m,r,t degrees of freedom, smoothness
b, 4q, 07 v, parameters
(ajr), |7 < L,k € Dj finite part of a.
choose
L as in (6.2.15)
Set
E

for each n€0,...,L do

Q
my, = || Ryalss5b]|m

for each j with |j|; = p do

My = 2" |lal6y | Om,,

for each k € D; do
’Lf |aj,k|pmu7j 2 1 then

set
Aoy := gy, + aj k€5 k
end if
end for
end for
end for
Output:  ay, best m-term approximation to

a
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CHAPTER 6. BEST M-TERM APPROXIMATION

which is a Lo-normalized C§° function. We denote by
bix =b(2x — k)

its j-th dilation and k-th translation. Taking a linear function it is obvious that

|b(x) — ax +m|L,([0,1])]| > C4 (6.4.1)
holds. The bumps (b k) jeng reze are (K, —1)-atoms. According to Theorem W the
relation

| 323 Aata
jEN kED;

holds for every sequence (\j) of complex numbers with finite (RHS) in (6.4.2]). Let

us define
fu(e) =D 27y (),

kEDj

The relation in (6.4.2)) easily allows to prove

121556 X ([0, )| < 11 Far S o X RN < 11270 s jan) ke, 5ot ] < 1.

SpoX (0,11 S INs el (6.4.2)

We consider a 2-term from the dictionary F¢ given by

am = Z Aj,kvj,k:

(7.k)EANM

where Ay, C V (cf. (4.4.1])) with [Ay] = 2M. We decompose the approximation of f,
by g as follows

1£3 = ga | Lq([0, )| = luar — anr|Lo([0, 1)) (6.4.3)

where
Upr = fM — E /\j7kvj7k and apyr = E )\j,kvj,k'

(d,k)EAN (J,k)EANM
|71 >M+1 l7l1<M+1

Furthermore, let
I 1 = suppvj k.
Additionally, we decompose the domain

Q=10,1"= U Ey

k€D (41, M+1)

into elementary cells Eyg := Iy,
Uy, yield that uy, can differ from f,; only in 2

M+1),k- Simple volume arguments for the support of
(M+1)d=1 elementary cells. As a consquence

.....

fu(x) =uy(x) foral ze U E}.
kecA
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We continue estimating (6.4.3]) by
3 = gar| Lo([0, 0N =D 1 far — ane| Lo(Br) |1 (6.4.4)

kecA

Considering a single summand we obtain

1 ar — ane|Lo(B) ¢ = / ar(®@) — ans ()| 'd
Ex
[ e 00) ~ (ol ) — ) Y
T4 x1

where a and m are functions mapping R?~! — C. This representation is possible since
ayy consists of frequencies smaller M + 1 in every direction, which means it is piecewise
linear in every single direction of an elementary cell Fj. Change of variable gives

[far — an|Lq (Ek)Hq
/ / Hb $2, "7Id) ’ _m*(x%"'7'rd>)|Lq(IM+17k1)||qd‘r2"'dxd

9~ (M+1)r—M

Applying the observation in (6.4.1)) yields

| far — ane|Ly(ER)||T 2 012—<M+1>7"-M/ / ldxy ... dxg
Tq 2

- 2—(M+1)d2—(M+1)7"

Inserting this into gives

N |—=
y

e — |

Im+1,k1

1far = garl Lo([0,1))[17 2 Y 20Dty
keA

_ |A|2(M+1)(d—1)2—(M+1)7’
— 27(M+1)T
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CHAPTER 6. BEST M-TERM APPROXIMATION

This yields

O'QAI(S;ﬂX, F)Lq Z A inf

MiAj k

fu= Y Nrvik d)H Z 27

(3.k)EAM

Simple monotonicity arguments finally show,

om (S, X, F)r, Zm™".

Upper bounds

In this subsection we apply the sequence space results from the last section to obtain
estimates for best m-term approximations in function spaces.
Theorem 6.21. Let 1<p<q< o0, 0<6,v<o00and 210 <r < min{3 — m,%
07"]% <r:é— mln{ql} < 2. Then

om(S0oB(0,1]7),F), < m™".
Proof. The lower bound is due to Theorem [6.20] We prove the upper bound. Theorem

4.25) allows us to write f € S7 ,B([0, 1]%) as a Faber-Schauder series. Let u = min{g, 1}.
This gives

Um<5;,9B([07 1] ) ]Fd) Lg([0,1]4)
= swp o inf HZ S (i f) = Aga)viae] Lo ([0, 119"

s7 B([0,1]4)[|<1 ACV k)CC
1155 0B(ONSTRET, | GaR)EE 1 send, keb,

u-triangle inequality yields

am(Sp o B((0, 1)), F)} 0,170

u

S sup inf inf H k)X k| Lq([0,1]%)
17157 g B0 [<1 ATV (Agk)CC 2 keD; Yok X[ L
2 [AISm \; o £0=(j,k)eA TENL,
. _ulih %
= sup inf inf q ( (djr(f)— A yk)q)
17187 4B(0,)D) <1 AV (Aix)CC kZD ! ’
P, [A|I<m Aj, k7é0:>(.7 k)EAJEN 1 el

Applying Theorem yields
om (S5 oB([0,1]%),F) 1, (0,119
_ulih
L DD DE SR O BICHRS L)

||a|sp’9f|| 1 |A\<m)\ K A0=>(j, k)GAJEN keD;

= O’m(S;Sgb, D)nggb

Qe

N

Inserting the estimate from Theorem [6.15| proves the claim. O]
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Remark 6.22. This is one of the very rarely known situations where one knows the
ezact rate for non-linear approzimation with target space Lu([0,1]%).

Theorem 6.23. Let % <p<qg<oo,0<0< o0 and
(1) max{%,% — M} <r <2 then

m™" < 0w (S, B([0,1)%),F)p, $ m " (logm) D7),
(it) In case max{%, 5} <r <2 we have
m S’ O—m(S;ﬂF([O? 1]d>7Fd)Lq S mﬂ"(log m)(dfl)(”rl*%

Proof. The lower bound is due to Theorem [6.20f We prove the upper bound. Theorem
allows us to write f € S7 ,X([0,1]%) as a Faber-Schauder series. This gives

UW(S;,GX([()? 1]d)7 ]Fd)Lq

= sup Arclfv m)fcc H Z Z k() = Ajk) ik Lg([0, 1]d)H-
||f|Sp79X([011} <1 [A|<m A #03:’:(] k)eA JEN?  keD;
Lemma [4.27| provides
(850X ([0,1]%),F9)s,
S g e 2 oL | 30|32 i) = i Latlo, 1Y)
17155, X (OUDI<T | § 1<y, 7,50:}(] kjeA JeNi, keD;
Applying Theorem ylelds
o (850X ([0,1]%),F)s,
< SUP AHleV mf H Z ) Z gk — Njge) Xg k|| Lq ([0, 1]d)H
lals, Sp, (9fH<1 [A|I<m Aj #0:(3 k)eA JENd keD;
= am(spﬂx, D)sgj?f'
Inserting the estimate from Theorem [6.13] proves the claim. [

Theorem allows us to state the following result for the limiting case r = 2.
Theorem 6.24. Let 1 < p < oo. Then
m=? < an(S;W([0,1]),F) . $m ?(log*™ m)?

Lo S

Proof. The lower bound is due to Theorem [6.20, We prove the upper bound. Analo-
gously to the proof of Theorem applying Theorem and Lemma gives

o (S2W([0,1]4,F) 1. S om(stb, D).
Theorem allows to bound this from above by
am(S]fW([O, 1]”1,11?‘1))%o < m2(log™ m)?

which concludes the proof. O
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Finally we consider situations with smoothness in the target spaces.

Theorem 6.25. Let 0 < p,qg < o0, 0 < 0, v < oo with max{(), min%p a7 : } <

max{q,v}
r—t and

(i) max{%, Sp<r<il+ min{%, 18 max{%, l<t<1+ min{%, 2}, Then
C(r D ((r—t)—(L_1
om (S, 6 F ([0, 1]d)7Fd)sg,,,F([o,1]d) =< m~ " (logm)@-Dr=0=(G=),
(i1) %<T<1+%, %<t<1+%. Then
C(r () (11
Um(S;,HF([Oa1]d)7IFd)S};7VB([0,1]‘i) =< m~ " (logm) - D=D=G=)),
(ii1) max{%, p<r<i —i—min{%,% , % <t<1l+ 5. Then
C(r () (11
Um(S;,GFqu1]d)7IFd)SfLVB([0,1]d) =< m~ " (logm) - D=D=G=2),
(iv) % <r<l+ %, max{%, <t<1 —I—min{é, 1}, Then
C(r () (L1
Um(S;,HB([Oa1]d)7Fd>SL§7DF([O,1]d) =< m~ "D (logm) D=,

Proof. Let X|Y € {F,B} and z,y € {f,b}. Theorem allows us to write f €
Sy ¢X([0,1]%) as a Faber-Schauder series. The equivalent norms in Theorem M pro-
vide

Jm(S;,GX([O’ 1]d)’ Fd)sé,yy([ozl]d))
= sup inf H Z Z (djk(f) = Ajw)vjk

ST X 071d <1 ACV,|A\§m .
15X o<t AGvIMem WL S

Aj k#0=>(J,k)EA

St Y ([0,1]9)

~ sup inf a— \st%y
llals™ Sz ||<1 ACV,|A|I<m H ‘ q,v H
PO (Mj,e)CC

)\j7k7é0:>(j,k)EA

= Jm(s;)’,gx, D)Sf{?y'

Inserting the estimate from Theorem [6.13| proves the claim. [
Remark 6.26. Applying Theorems [6.15, [6.16, [6.17 and [6.1§ similar results can be
formulated for the case of small smoothness, i.e. + —1 <r —t < % — % Since this

translation is straight forward we leave this to the reader.

Remark 6.27. Applying Algorithm cmd to approzimate a function f € Sy, X ([0,1]%)
means approrimating a finite part of the sequence of Faber-Schauder coefficients of f
by m Faber-Schauder coefficients. Faber-Schauder coefficients are build on point evalu-
ations, cf. . For that reason our results can be interpreted as non-linear adaptive
sampling approximations of f. The input of our method is a finite number of samples
of f from which we choose the Faber-Schauder coefficients.
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6.5 Important special cases

Let us explicitely discuss some special cases hidden in the scales of Besov-Triebel-
Lizorkin spaces in the last section. First of all we discuss the probably most natural
case S5W([0,1]%) — Lo([0, 1]%) where both, the model and the target spaces are Hilbert
spaces. The space S5W ([0, 1]¢) equals the space H”. ([0, 1]¢) which is well known in

numerical analysis, cf. for instance [8], [9]. Theorem [6.23] yields the following:
Corollary 6.28. Let % <r <2. Then

NI

m™" < o (SEW([0,1]9),F) L, < (m~og? ™ m)" (log? ! m) (6.5.1)

holds for all m € N.

This means we can prove the same upper bound as for sparse grid approximation
in Theorem . For dictionaries consisting out of Daubechies wavelets D? it is known
that

om(S3W([0,1]%), DY), =< (m tlog? ' m)"

holds, cf. [56]. Due to missing moment conditions of the Faber-Schauder system which
go together with missing Ls-orthogonality we expect slower or at least equal approxi-
mation rates as in the case of Daubechies wavelets. So the open problem for the gap in
the corollary above reduces in some sense to the question whether (log™* m)% is necce-
sary for the upper bound in or not. This is closely related to an open problem
for linear sampling recovery discussed in Section . For D¢ being the dictionary
of Daubechies wavelets it is well known that one does not benefit from the available
non-linearity in the algorithms. The rate can be obtained by simple hyperbolic cross
approximation [19]. Next we discuss the embedding S5W ([0, 1]) — Lo ([0, 1]¢). Again,
Theorem [6.23] yields

Corollary 6.29. Let max{2,1} <r <2. Then
p

m™" < o (S5W ([0, 14, F) . < (m " log? ™ m)" (log? "t m)? (6.5.2)
holds for all m € N.

Obviously we have the same bounds as above, where we measure the error in
Ly([0,1]%) with the difference that L., ([0,1]?) is a much stronger error criterion. The
comparison of both corollaries shows us a general effect for non-linear approximation
in the sense of best m-term widths. The asymptotic main rates do not depend on the
integrability in the source and target spaces as it is the case for linear approximation
(cf. Section [5.2] where we have

958 (S5W ([0,1]%), Lo ([0, 1)%)) = (m ™ log?~! m)" =2 (log®~" )2

for sparse grid widths. In case of best m-term approximation with respect to the Faber-
Schauder dictionary the main rate depends only on the difference of the smoothness
between both spaces. Studying Sobolev spaces S;W ([0, 1]4), p # 2 the last corollary
extends to:
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Corollary 6.30. Let 1 < p < oo (q = o0) with max ]%, 1} <r <2 Then

m" S o (SIW([0,1]%),F) . < (mtlog?™ m) (log® " m)?

e}

It turns out that it is important to study best m-term approximation with se-
quence spaces of Triebel-Lizorkin type directly. In case p > 2 the simple embedding
S;W ([0, 1]4) — Sy .B([0, 1]4) would yield

o (STW([0,1]%), F) . < 0,0 (S5, B([0, 114, F4) . < (m ™ log® m) (log?~' m)'

e}

which can be improved as stated in the corollary above. Finally we leave behind even
the Banach space setting in the model space and consider smaller spaces S} ,B([0,1]%)
with # < 1. Remember, for fine index § = 2 we have the identity S5W ([0, 1]¢) =
S5,B([0,1]%) = H};, ([0,1]7) in the sense of equivalent norms. Due to Lemma
modifications in the fine index cause the smallest changes within the scale of Besov-
Triebel-Lizorkin spaces. Theorem [6.21] provides for this spaces:

Corollary 6.31. Let 0 < § <1 with 3 <7 <min{3 —1,2} or 1 <r=3—-1<2.
Then
o (S50 B0, 1]%), T, = m~".

We observe two important effects. First there is no d-dependent logarithm in the
rate which means this result behaves asymptotically like a univariate one. Second, our
lower bound in Theorem becomes sharp. For sampling recovery or even linear ap-
proximation sharp rates are unknown in literature for this parameter constellation. For
that reason we compare to the sampling width for sparse grid approximation obtained
in [35, Theorem 5.1]:

957 (85,4B((0,11%), Loo((0,1]%) = (m ™M log™ " m)"™2, 0 <0< 1.

Here we have a main rate that depends on the integrability in the target space and
additionally a d-dependent logarithm in m. In fact, the non-periodic approximation in
the sense of best m-term approximation guarantees much faster approximation rates
than sparse grid approximation. Last but not least we obtain from Theorem the
following corollary for the well known space S5W ([0,1]¢) = H". ([0, 1]¢) with smooth-
ness r = 2.

Corollary 6.32. We have
m? S on(S3W([0,1]9),F) ., S m~*(log"" m)?
for all m € N.

In fact, we proved an upper bound with a worse behaving d-dependent loga-
rithm compared to the situation where r < 2. In Section [6.3| we presented approx-
imation strategies in sequence spaces. Finally, let us present for the special case
SEW([0,1]* — Loo([0,1]) the corresponding sampling strategy which generates the
m-term approximations for functions f € S2W([0,1]¢ with || f[S2W ([0, 1]%)| < 1.
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Algorithm 3 S2W — L., m-term approximation

Input: m degrees of freedom,

choose M such that
m = M3 1M,

set
L= [2M+(d— 1)log M — 1],
fm :=0.
sample
{f(zjr) : |31 < L,k € Dj}.
compute

{djr(f) 13 < L,k € D;}.
according to (4.1.2).
for each n€0,...,L do
set
2m 41 o 0<u <M,
M.
P [2e22Mmmydst) s M+ 1< p< L
for each j with |j|, = p do
for each k € D; do
if |d; ()P, > 1 then

set
fm = fm + dj,k(f)vj,k-
end if
end for
end for
end for
Output:  f, best m-term approximation to

1.
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Chapter 7

Discrete Littlewood-Paley type
characterizations of multivariate
periodic functions

In the last part we had to deal with several restrictions concerning regularity and
integrability of the considered model and target spaces. In the upcoming chapter
we restrict to the periodic setting and prove a new kind of trigonometric sampling
representation that is able to overcome most of this restrictions. This part is already
published in [T1].

7.1 Univariate fundamental interpolants

In this section we construct univariate sampling operators of type based on
bandlimited kernels K : R — C with suitable decay. Here K,f’j denotes the 2m-
periodization of KX (27(-)) which we will call fundamental interpolant. The following
construction allows to arrange any prescribed polynomial decay (of order L) of the
kernel K, which is crucial for our analysis. In addition the operator I ]L is supposed to
reproduce trigonometric polynomials of a degree related to < 2’/. The sampling kernels
we study are constructed from a finite product of dilated sinc functions. As a starting
point we define for L € N,

L
K*(z) := Hsinc (27%), reR,
=1
with .
' sin(z) : x 7& O,
sinc (z) :=4  ° _
1 . otherwise.
The next step is a 2m-periodization of dyadic dilations of K*(x) given by
K@) = Y KM% (x+2nk)). (7.1.1)
k=—0o0
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CHARACTERIZATIONS
In case L = 1 the summation in (7.1.1) is replaced by
21-1_1
1 P S DR ika
K} j(z):=27D}(x):=27 Y et
k=-—21-1

This kernel represents an exception and requires some extra attention in the next
chapters. It is a convenient modification of the classical Dirichlet kernel that provides
a nested set of zeros as j increases, cf. [33] (2.6)]. For j € Ny we define the interpolation

operator
2i—1—

D S AR (o ),

where in case j = 0 we put I§'[f](z) := f(0)K%y(z). The kernel defined in con-
sists of a sum with infinitely many summands. For practical reasons such a deﬁmtlon
is not useful. For every fixed L € N we can compute an explicit representation of the
kernel. Beginning from the definition we obtain the following identity

Z HSID 23 Z x+27T]€))
20~z + 2mk)

k=—o00 (=1

Obviously, in case x mod m = 0 we obtain
L L
K (0) = K"(0) =1.

In case 0 < |z| < 7 an elementary calculation shows

Kl R L sin(29x) cos (249 k) + sin (2444 k) cos(20 )
@ = 2 1l 5+ 27h)
k=—o0 /=1
B Z H sin(2~fz)  sin(27'z)...sin(2" ) i 1
Pty 27=4( x—|—27rk) 9jLo—EHDE P (x+ 2mk)E

Using the so-called Herglotz-trick (Eisenstein series) (cf. [1]) we find the identity

1 > 1
g ! (%) - kz v+ 27k (7.1.2)

Taking L — 1 derivatives yields

[% cot (3] = :Z (+ 27rk

(L-1)
Computing [% cot <§>] and inserting this identity in (7.1.2)) gives us a closed

representation of the kernel Kﬁj(x) For L = 2 and L = 3 we obtain the explicit
representations

2% sin’(3) (7.1.3)
1 . otherwise,

2sin(27~'x)sin(2922) |
— : o mod 27 # 0,
K2 ,(x) = { ’
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and

237 sing(%)

sin(279 1) sin(29 ~2x) sin(279~3x) cos(Z
K3 () {85 @ z)sin(@ o) sin(@w)eoslz) ., mod 27 # 0,
m\t) =
1

otherwise.

Remark 7.1. K%, L > 1, consists of products of dilated sinc functions. The convolu-
tion property of the Fourier transform yields

L
= [ [ sinc (22) = VorF [XF_Q,I,Q,H . 2L*1X;_2,L’2,L](.)] (@) (7.1.4)
/=1

Altogether FKL is a locally supported L — 2 times continuously differentiable function
fulfilling

V2 € < 2k
.FKL<€> —_ n ‘6’ — 2 .
FKL
Vor
: : | ' ¢
Lemma 7.2. Let L > 1, j € Ny and f € C(T).
(i) Then for { € Z

e 1 2! 2mu

L _ L i2mee

B0 = =FK ( >§ 1f< )er (7.1.5)

holds true.

(ii) If additionally 3., |f(€)| < 00 is fulfilled. Then

0 = 2=FK(55) S fe+ 20
keZ

holds.

Proof. We compute the ¢-th Fourier coefficient of f and obtain by the translation
property the following identity

TL 7 - 21— U 7 onu g 2mu iz
T - % (e (- EY -/ Y (e
u=—2i—1 u=—27-1
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CHARACTERIZATIONS

Lemma together with the dilation property of the Fourier transform yields

Tin = e (g) X a5

u=—2 J_

If the Fourier coefficients are absolutely summable we get

/L\ 1 o sz _j2mu
L = \/%QJFKL<2J> 2. (Zf ' ) i

u=—27-1 kEZ

Interchanging the order of summation yields

21-11

— 1 / ~ §2mu

u=—23-1

The formula for geometric partial sums tells us

" e {2]‘ . k—f mod2 =0
Z e 2 ==

il 0 : otherwise.
u=—

Finally, we obtain

— 1 l ~
L — L~ J
L) = =FK (2]) (0 +27k)
keZ
]
Definition 7.3. We define for j, L € Ny the dyadic blocks

1 .

PL = {k cZ: k| < Q—Lzﬂ}. (7.1.6)

Additionally, we denote the set of trigonometric polynomials with frequencies in PjL by
L .__ ikx L
T;" = span{e™ 1 k € P;}.
Corollary 7.4. Let L € N and f € C(T).
(i) Then it holds I*[f] € T?.
(i) If additionally f € T" then I}[f] = f.

Proof. Assertion (i) is an easy consequence of ([7.1.5)) together with the support prop-
erties of K. For assertion (ii) we may use

0 = 2=FK(55) S fe+2m
kEZ

which equals f(¢) for all £ if f € Tr. O
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The next lemma provides the reason for calling K #J a fundamental interpolant for

the equidistant grid G; := {_27;31.71 e %(2;1_1)}.

Lemma 7.5. Let f € C(T) and L > 1. Then

2ruN g (27U -1 -1

Proof. Obviously, it is sufficient to proof

21y
L —
Kri(5) = du
In case L =1 this is a trivial consequence of (1.5.3]). In case L > 1 we have according
to our definition for u € {—2/-1 ... /2771 — 1}

K,@(%@) - i KE(2r(u+ 27k)) = 6y -
k=—o00

O

Lemma 7.6. Let j € Ny and L > 1. Then there are constants C,C* > 0 (independent
of x and j) such that

1 1
e Y R L

holds for all x € [—m, ].

Proof. The second inequality of the chain is trivial. We prove the first one. Starting
for x € [—m, 7] the estimate with

KL (2)] = ‘ 3 KL(2j(:(:+27rk))‘ < KM 2x)| 4+ ) [KH (2« + 27k))|
k=—0c0 [k|>0
L 1
< e (99 ' . A
< g|smc( x)|+|§>:023L|x+27rk|L (7.1.7)

Clearly, the first summand is uniformly bounded. Estimating the second summand in
(7.1.7) we use the fact that || < 7 implies |27k + x| > |7k| for every integer k € Z
and obtain

1 1 1
. < — —_—
Z 23L|23—|—27Tk"L — 2]L7TL Z ‘k|L’

|k[>0 |k|>0

which is known to be finite for L > 2. Using |z| < 7 yields

> ST E S 5]
2L | + 2mk| L ™~ 29L|z|L
|k|>0
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Considering again the first summand in (7.1.7]) gives

L 1 1
. j—
gl_[lls1nc(2 r)] < ST E QL[]

which concludes the proof. O]

7.2 Multivariate interpolation

Based on the univariate interpolation scheme from the previous subsection we are now

able to define the building blocks used for the Smolyak algorithm, cf. (1.2.4)),

: . F—It,  ji>o0,
)= (@u)te) win af o= {1710 270y
We may write qf [f] as follows
Gl= D aljulf] (7.2.2)

be{-1,0}¢

with suitable signs £. The definition of the operators I}, ,[f](z) requires some more
notation.

azf;:(xill,...,xiﬁ . ueZzZt,
where 2/ = 2ru /2’ for u € Z. For & € R? let further
Aj(@) = Ay (1) X oo X Ay (20) (7.2.3)

with Aj(x) ={u€Z : 2J € [x — 7,z + )} and put 4; := A;(0). We further let

d
L L
KL =[] KL (x:)
i=1
and define the tensorized interpolation operator by

U= Y S KL e ad).

’LLEAJ'

Lemma 7.7. Let A C N be a solid finite set meaning that j € A and k < j implies
ke A. Then ZjeA qJL[f] reproduces trigonometric polynomials with frequencies in

i =Py,

JeEA
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Proof. We refer to [9, Lem. 6.1]. O

Lemma 7.8. Let A C N¢ be a solid finite set (i.e. k < j and j € A implies k € A).
Then T f := D jea qJL[f] interpolates f on the grid

G4 = U{m{t cueA;} o, (7.2.4)
jea
that means
flx) =Txf(z)

for all x € G&.

Proof. The interpolation property of the univariate operator [ jL in Lemma imme-

diately gives an interpolation property of the multivariate sampling operator [ (1)

on a “full grid” Qf{ij <my- Choosing m such that A C {7 < m} and arguing similar as
in Lemma [107, Lem. 4.3] gives the result. O

Definition 7.9. For j € N& and L € N we tensorize the dyadic blocks defined in

GIIHE’ by
7)L . 7)L 1)L
Jj - a

Jd’

and define the set of trigonometric polynomials with frequencies in ij by
L. __ ik-x . L
T;" = span {e™" 1 k € Pj'}.
Proposition 7.10. Let L € N and f € T} then q[f] # 0 implies £ > j.

Proof. The proof follows immediately from the definition of ¢j[f] in (7.2.1) and the
univariate reproduction property in Corollary [7.4] O

7.3 Superposition of trigonometric polynomials

In this section we provide periodic counterparts for Theorems and We want
to estimate the norm of a superposition of trigonometric polynomials

F=> 1

: ~Nd
JENG

where f; are trigonometric polynomials of degree < 27. In contrast to the usual
Littlewood-Paley building blocks 7 [f] which are ‘almost® orthogonal, we only need to
restrict the degree of the polynomial in the sequel.

As a main tool we introduce the following componentwise variant of the Hardy-
Littlewood maximal operator, see [127, (1.14),(1.15)], [122, (10)] and the references
therein.

Let us now state the main result of this subsection.
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Theorem 7.11. Let 0 <p < o0, 0 < < oo, r € R with r > 0,4 and (f3)jene such
that f; € T} and 1279 ;| Ly(€o)|| < 00 Then

(i) ZjeNg fi converges unconditionally in SJ o F(T?) if < oo and in every S, F(T?)
with 0 <v <oo and T < 7.

(i) There is a constant C' > 0 (independent of f) such that

|35

: ~Nd
JGNO

SpaF(T%)|| < Cl[279 13| Ly(6o)|

holds.

Proof. Step 1. We assume the unconditional convergence of ZeeNg fein S} F (T?) (or
in case @ = oo at least in S}, F(T?)) and prove the inequality

H;fe

d
eNg

S ()| S 11277 15| Lo o))

We mimic Step 1 of the proof of [122, Theorem 3.4.1]. This is rather technical in the
multivariate situation. For that reason we give a proof for the univariate situation first.
Later we explain the necessary modifications for the multivariate situation. We prove

1A1E5a (DS (127 £5] Lo (o (No) )|

by using methods from difference characterization of Triebel-Lizorkin spaces. We start
by switching to the difference norm in F,(T) with m > r

12 ne S [ a3 )]

27

—J

From| = | 3 Ly(T)|
£eNg

(7.3.1)
First we estimate the Ly,-norm of f and obtain trivially using either Holder’s inequality
(in case # > 1) or the embedding ¢y < ¢; (in case 0 < 6 < 1) the estimate

I
LNy

Let a > 0 be a positive real number such that a > max{_, 5} is fulfilled. Additionally
choose in case min{p, 0} <1

Lm)|| 5| (X 2s17)”

j€Ng

Ly(m)|

0 < A < min{p, 0} (7.3.2)

such that
r>(1—=Xa > op,p. (7.3.3)

This is possible since
11
1A 1= Mmax{-, 2}
( Ja > ( ) max i
. 11
> (1 —min{p, 0, 1}) max {—, 5} = 0pg.
p

116



In case min{p, 8} > 1 we simply choose A = 1. Fix j € Ny and use the identity

Sfe=> fie

JAS) LeZ

with fj,, = 0 for j + ¢ < 0. The unconditional convergence of ), ., fjrr in FJo(T)
implies (by Lemma[3.4) an unconditional convergence also in L;(T). Therefore we can
estimate the integral means as follows

9i /2_ Am[ZfMH h<22j/_ AT £ o(z)|d. (7.3.4)

273 £€Ny ez

We split the sum over /¢

S o / AT fypoa)|d

LeZ
ST ST REITES e I
>0 £<0
(7.3.5)
and prove
. 27 . QKmP‘eaf' y . 6207
2]/ AT fje(@)dh S 47 e L . (7.3.6)
—2- 2 [Poiveafjre " M| fie® = £<0.

First we prove the case ¢ > 0. Applying Lemma immediately gives
. 277
2 [ AT @il S 2 Pyiea(o)
—2—J
In case £ < 0 with A < 1 we estimate as follows
. 27]’ . 27]’
Y [ IAflalldh S 2 [ AT G PIAT fysa(o)
—2—7J —2-7J
Applying Lemma to the second factor yields
2—J

2—J
23/ AR five(@)[dh S 26(1_”‘1[P2j+l,afj+e($)]l_A2j/ | AR fize(@) | dh

—92—J —2-J

S 2Py fio(@)] M fe M),

Attention in case min{p, #} > 1 with A = 1 the estimate in case ¢ < 0 simplifies to the
Hardy-Littlewood maximal function of |f;;¢|. Inserting the decomposition in (7.3.5))
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together with the estimates obtained in ([7.3.6)) into the last term on the right hand side
of (7.3.1) then we obtain by u-triangle inequality in L,(¢y(N)) with g := min{p, 6,1}

H [gofﬁ ([ || > f] )]’

S [Z gré(m=r) "2(j+€)TP2j+é,afj+€<x> | Lp (L6 (No)) ||

>0

Ly(T)|

+ 37 20N 9GO [Py e ()] (@)

£<0

X M| fie ()| Lyllo(No)) 1]

T =

(7.3.7)
To estimate the first summand we apply Theorem which gives
129497 Pyise o five(@) | Ly (Lo(No)) | S 1129797 fve(2) 1L (4o (No)) .
An index shift yields
29507 Pyt eI Lp (Nl S 127 @I LN (7.38)

In case min{p, 0} < 1 with A < 1 we apply to the norm expression in ((7.3.7)) Holder’s

inequality with ﬁ, % twice and obtain

12997 [Pysee g fi0(2)) M| 1461 ()| Ly (£ (No)) |
<129 Pyjie o f () | Ly (Lo (No)) '
X 2950 (M| fr46lM()) ¥ | Ly (€o (No)) 1
(7.3.9)
We skip this in case A = 1. Considering the factors in ((7.3.9) separately we obtain by
applying Theorem
129597 Pyive o fire(@)| Ly (Lo(No) )| S 129497 fie(a) | L (6o (No) )| (7.3.10)

For the second factor we rewrite the L,({s(No))-norm as a L (¢
allows for applying Theorem [B.14]

(Ng))-norm. This

8
X

12097 (M| 10 (@) Y Ly (Co(No)) | = (129 M] £ ()| L (€ (No)) || ¥
S 12980 fa(@) P L (L (No)) IS
= 29497 (@) Ly (No))[|. (7.3.11)

Inserting the estimates from (7.3.10) and ([7.3.11)) into ([7.3.9) implies
129597 [Py o fype(a)] M| f1 ()| Lp (o (No)) | < (129797 f40(2) | L (£o(No)) I
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A similar index shift as above yields
12997 [Pyse o fyse(a)] =AM | e ()| Lp (o (No)) | < 11277 ()| Ly (Lo(No)) |- (7-3.12)
We continue estimating (7.3.7)) and insert (7.3.8]) and ((7.3.12) to obtain

ISt [ o[ ) sco]

1
S 127 Fi|Lp(Co(No)) || D2 2040m0) 4 3 pulet=n=r1) 7,

>0 £<0

Finally, the choice of the parameters m, a, A in ([7.3.3)) yields that the series in (7.3.13)
converge to a constant. Altogether we obtain the desired bound

H Z Je|F,
€N

Step 2. We explain the modifications in the multivariate situation. This time we start
computing the norm of 3_,cya fe € Sy pF (T?) in terms of differences, cf. the periodic
counterpart of Theorem [3.§]

|5 s

LeNd

T)| S 127 51 Lol M) (7.313)

JWWAZW|wwmm

For each e C [d] we have to show that

|5

£eNd

o (T S 1127 fi| Ly (Lo (N))

€, m

holds. A full proof consists in applying the arguments from above to every single
direction contained in e. Here the directionwise Hardy-Littlewood maximal function
and corresponding maximal inequality come into play, see Definition [B.7] and Thms.
[B.15] Since this requires an extensive case study in e and £ we refer to the proof
given in detail in [122] Thm. 3.4.1, Step 1] where we have to replace the decomposition
of f used there by the representation ), ,a fj1e-

Step 3. We prove (i) in case 6 < co. To begin with, we define the set of sequences with
finite index sets given by

¢ .= {5 = (Eulnen: Ea CNE |El =1, &, C Epuy foralln €N, and | J &, = Ng}.

Every sequence in & defines an order of summation. Furthermore for £ € & we define
Fe, = Zjeen fj- We take a second sequence A € € and consider Fg, — Fl4,,. This
difference can be written as a sum with finitely many f;. This fulfills the assumptions
necessary in Step 1 and yields

S

IFe, = Fa 5P s | (>0 271l
FEEUAR\(EnNAm)

Ly(T)||
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Obviously,

S

> ) = (X ) e nm

FEERUAR\(EnNAm) jend

holds almost everywhere. Therefore Lebesgue’s dominated convergence theorem yields
that we find for every € > 0 a nyg € N such that

IFe, — Fa,|SpoF(T)] < e

holds for all m,n > ng. Finally this implies unconditional convergence in S7,F' (T9).
In case 6 = co we stress on the embeddings

S F(T?) — ST F(T?)

and

11257 f5| Lp ()| S 11277 £51 Ly (o)
where r > s > 0,,, s > 7 and 0 < v < co. Applying the arguments from above to
S5 F(T?) yields the result for Sy, F(T%). O

We will also need the following diagonal embedding relation which is the periodic
counterpart of [99, Prop. 2.4.1], see also the diagonal embedding in Lemma (vi)
and Lemma [£.10 above.

Lemma 7.12. Let0<p<qg<oo and 0 < 6,v < oo. Then

IS ] < (S o)

jeng jeng

Ly(T)|

holds for all (f;)jena such that f; € TP
Let us finally state the counterpart of Theorem for the B-case.

Theorem 7.13. Let 0 < p < 00, 0 < 0 < oo, r € R with v > 0, and (f;)jena such
that f; € T; and 1279 f;|¢o(Ly)|| < 00. Then

(i) ZjeNg f; converges unconditionally in S;veB(Td) if max{p, 0} < oo and in every
Sy, B(T%) with 0 < v < co and T < 7.

(i) it holds

|35

- oNd
JENG

SpaBT)|| S 1279 f3 6o (Ly(T]|.
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Proof. We follow the proof of Theorem line by line and point out the necessary
modifications for the B-case. To convince the reader we explain this modifications for
(ii) in the univariate case. Again, we prove

Hg;ﬂ@%@MSHWﬁMNMM»H

by using methods from difference characterization. We start by switching to the dif-
ference norm in B} ,(T) with m > r

00 2—J
15 afrom]| = || 3 alnm] + (S /|
£eNy ¢eNy =0 -2

=

y
(7.3.14)

First we estimate the L,-norm of f and obtain trivially using either Holder’s inequality
(in case min{p,0} > 1 or p < min{l,0}) or the embedding ¢y — ¢; (otherwise) the

estimate .
| > sefeom| £ (2 2 Is1L,m17) "
VA

JE€No

A;y[ée% fg} ’dh

Let a > 0 be a positive real number such that a > ]13 is fulfilled. Additionally, in case
p > 1 we choose A = 1. Whereas in case p < 1 we choose

0<A<p

such that

P> (1= MNa> (1) 2(1—p)%:gp.

For the second term in ((7.3.14)) the estimates in ((7.3.4)), ((7.3.5) and (7.3.6) yield
o0 ‘ . 2-J 0 %

<229jr 21/ A;ﬂ[ZfN”dh )

j=0 -2 (ezd P

< [0 2200 By fy @) (LT (7:3.15)

>0

SRR

1
+ 37 e 0N 9G0Py, o ()] X M fye* () [€a(Ly(T)) ||

£<0

with g = min{p, 8, 1}. The L,(T)-norm is now the inner norm in the sequence spaces.
For that reason it suffices to use simpler (non-vector valued) maximal inequalities. We
apply Theorem to the first summand, which gives

126%9" Py o fea () o (L D) S 120% fre() o (L(T)) .
An index shift yields
2907 Py o fy) o (L (D) S 1127 f32) o Ly(D)]| (7.3.16)
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In case p < 1 we apply Holder’s inequality to the second summand in ((7.3.15)) with

11 .
T 3 and obtain

126497 (P o)) M fya (@) oLy (T

< (D 20 Parie o fyal@) Ly (DO ¢ (M1 f @) L (D)

J€Np

D=

This can be skipped in case p > 1. Applying the maximal inequalities stated in
Theorem and Theorem (together with a trick similar to (7.3.11))) yields

S

260" Pysse o fy (@] MUfsee @) oL S (30 20497 fya@) Ly(T) )

J€No

S 11277 (@) e (Lp(T))I-

Hence, the estimates from (7.3.16) and (7.3.17) imply
00 2—J
(2|2 [ Jaw [ sy an
=0 -2 =

< [ X2 4 S 2N 7 @)l Ly (D)

£>0 £<0

Z)é (7.3.17)

The choice of A\,a and m relatively to r ensures the convergence of the series to an
absolute constant. This concludes the proof in the univariate case. For the multivariate
situation see the comments in Step 2 of Theorem [7.11] O

7.4 'Trigonometric sampling representations

Analogously to Theorem [4.25( we provide theorems that allow for replacing the Fourier
analytic building blocks d;[f] used to define the spaces S7,F(T?) and S} ,B(T%) (cf.
Definition [3.18)) by building blocks ¢f[f] based on function evaluation. Using the short

notation L,(fg) = L,(¢s(NZ), T?) we will prove the following main results.

Theorem 7.14. Let 0 <p < oo, 0 <0 < oo, L > max{]l?, %} (L =1 requires 0 < c0)

and r > max{i, 5} then the (quasi-)norms
LF1S50F (T = 11277 g (f)| L (o)
are equivalent for all f € ST ,F(T?).

Proof. The result is a consequence of Theorem together with Theorem [7.11} For
the case L = 1 we refer to Theorem [7.26] O

For the B-case weaker conditions on r and L are sufficient.
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Theorem 7.15. Let 0 < p,0 < oo, L > % (L =1 requires p < o0) and r > IlJ then the
(quasi- )Jnorms

1F1S5.6 BT = 11277 g5 (f)|Co(Ly)
are equivalent for all f € ST ,B(T?).

Proof. The proof is a consequence of Theorem together with Theorem [7.21] For
the case L = 1 we refer to Theorem [T.271 O

Remark 7.16. In case of S7,B(T%) with p > 1 and r > 1/p similar characterizations
were proved by Dinh Dung [25, (26, [27] using the following variant of the de la Vallée-

Poussin kernel <2A . ) (32 . )
sin(2? " x) sin(32 "'z
‘/](x) = 2§19 (T ’

2273 sin”(3)

(7.4.1)

which yields to an interpolation operator on 3-27 equidistant nodes. We can reproduce
and extend this result to the Triebel-Lizorkin scale as well as to p > 1/2 with straight-
forward modifications of the arguments used in Theorems below. Note, that our
proof only uses a reproduction and a decay property of the kernel. Also the de la Vallée
Poussin sampling operator R,, used by Temlyakov in [117, 1.6] is admissible here.

7.5 The case of quadratically decaying kernels

Let us first deal with kernels providing at least a quadratic decay according to Lemma
. We introduce the characteristic function x7,, of the dyadic interval [27u/ 27 27 (u+
1)/27] indexed by j € Ny and u € Z. For j € N and u € Z? we denote with

d
(@) = X (@)
i=1

the characteristic function of the respective parallelepiped. We remember the definition
of Aj() in (7.2.3) and state the following lemma.

Lemma 7.17. Let 0 < A < 1 and L > % For any sequence (Au)uea;(=) Of complex
numbers and every j € N& we have

d 1
S Pl [T+ 2l — i)t < C[M’ 3 Aj,ux;,ur(a:)} > (7.5.1)

INYA i=1 ucZ

with a constant C independent of 3, (Nju)u and .
Proof. This Lemma is a special case of Lemma [B.13] We refer to the prove there. [

Proposition 7.18. Let £,7 €e N¢, 0 < A <1, L € N with L > % and a > 0. Let
further f € C(T?).

(i) Then
17 [)(@)] S 290 [M] Pysve o f ) ()] 3
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(ii) and furthermore
a7 [f](2)] S 290 [M | Pysie o f | ()] %

holds with a constant independent of £,3,x and f.

Proof. We start proving (i). Recall the notation from ([7.2.3)). Periodicity of f and
KE - yields

i) = > fal)KE (x—ad)

’MGAj
= > f@)EL (x— i)
Lemma [7.6| with |2; — 2% | < 7 gives
d
) < > |fl) [[ KL (2 —al)
ueA;(z) i=1
S Z |)\JU|H 1+2h '_'7331 )_ )
ucza
where we used the notation
Aju::: Sup |f(y>y
y:‘yz xu1|<
i€[d]

Applying Lemma gives

I f(a [ ’ZAMXM’ w} . (7.5.2)

ucZd

>

Taking z € supp xj - gives for any a > 0

|3 Naxiul2)| = Pl = sup V@)
u€zd yilyi—a < 2T
zem]

|f(y)]

sup 7 - :
yilyi—zil| < Hi:l(l + 20ily; — z|)e
i€[d]

AN

Finally, Lemma yields

|3 Nagu(®)] S 20 Py 1 (2). (75.3)

ucZ4
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Inserting ([7.5.3)) into (7.5.2)) finishes the proof of (7). The bound in (i) is a trivial
consequence of applying triangle inequality to ([7.2.2)) and (%)

G@ < Y @) (7.5.4)
be{—1,0}¢
[

The following two theorems are the trigonometric counterparts of Theorem and
Theorem .18 There is no smoothness limitation from above as it is in the case of the
Faber-Schauder expansion. Nevertheless we should mention that the sampling kernels
need a certain decreasing property that depends on the integration and fine index
parameters of the underlying function spaces.

Theorem 7.19. Let 0 < p,0 < 00 (p < 00), L > max{;, 5,1} and r > max{,

)9

(i) Then every [ € Sh,F(T%) admils the representation

f=> 4l (7.5.5)

. ~Nd
JENO

with unconditional convergence in S;',eF(Td) in case 0 < 0 < oo and with un-

conditional convergence in S;VF(’]Td) for every r > 7 and 0 < v < o0 in case
0 = oo

(i) There is a constant C' > 0 independent of f such that

1277 g5 () Ly (Co) ]| < CIIF1S5 o F (T7)

| (7.5.6)
holds for all f € S;ﬁF(Td).

Proof. Step 1 We prove . To begin with we choose a > 0 such that » >

a > max{— =1 is fulfilled. Let f e SryF(T%). We start for j € N§ with the Fourier

decomp081t10n
=) 5Tlf (7.5.7)

Le74

cf. ([3.1.1)), where §;[f] := 0 for j € Z*\NZ . This series converges unconditionally in
C(T?), due to the embedding S7 ,F(T?) < C(T%). That yields the point-wise estimate

af 1@ <> laf 157, f1) ()]
Lc74

For the sake of simplicity we assume that the constants A, B, C' in Definition are
chosen in such a way that d;[f] € 7;* is fulfilled for all 5 € N§. Then Proposition

implies
a7 (@) < D laf [0 e[ /N ()].
£>0
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Applying Proposition [7.18), (i) we obtain

=

@) S 320 M| Pysse 107l @)

£>0

Multiplying with the weight 277 we find the point-wise estimate

>

29 |gk [ f](@)] < ZQ(al—r)-ezr.(jH) [M|P21+¢,a5;r+e[f]|)\($)} _ (7.5.8)

£>0

where X is chosen as L > § > m (A =1 in case min{p, 8} > 1). The parameter
a will be fixed later. Now we take the L,({y) (quasi)-norm on both sides. Due to

u-triangle inequality in L,(fp) with u = min{p, 6, 1} we obtain

(7.5.9)

129 gF LA (o)l] S (D 20t ’

£>0

or-(3+£) [M|P2j+eya5;'r+e [f] |)\}

Lp (69)

Since A < min{p, 8} in case min{p, #} <1 a trick similar to [7.3.11] yields

1
X

1
27"(j+£) |:M|P2j+e7a§;—+£[f] |A] "

Llo)|| = 29 OM|Pysie 57l 11| Ly (Cg)

This allows us to apply Fefferman-Stein maximal inequality (Theorem [B.14))

Next we choose a such that » > a > max %, %} holds. Then applying Peetre maximal
inequality (Theorem [B.17)) gives

1
21“.(.7.4-@ |:M|P2j+i’a5;'r+e[f] |>\i| '

Ly(o)|| S 127940 Pysse 87, ALy (80)]]

1275+ Pyevs uBesg U Lo(@0)]) S 112794050411 L, (60)])
Obviously, we have
208y, (AL (e < 1127983(1]1L(to)]

Inserting this into ((7.5.9) yields

|29 AIL G| S 127985y (00) | (3 20
£>0

S 127985 (1L, (L),

where the choice of a ensures the convergence of the series to an absolute constant.
Step 2. We prove (i). The equation ((7.5.6|) implies

1279 gE (11 Ly(4o)]| < oo
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Then Theorem yields unconditional convergence of the series jend qj[f]. We
show in case 0 <0 < oo

Hf— > gflf)

|71 <M

s;ﬁF(MH 50 (M = ).

As a consequence of Definition [3.2| trigonometric polynomials are dense in S F' (T?) if
0 < oco. For that reason we find for every € > 0 a trigonometric polynomial ¢ such that

1f = t1SoF (Tl <e.

The u-triangle inequality gives

|= > ain|spor@|” < Ir—uspeRa+||le= X2 a1 sper)|”
lFlh<M lgli<M
For n sufficiently large we obtain by Lemma
t= > glfl= ) at-5)
lili<M lgli<M
Applying Theorem we have
1
| > de-nlsperay|| s ||( X 2 ek - 1)’ )|

il <M 3l <M
Finally, Step 1 yields

[( 3 2olgt - pp)’

|7l <M

] e F18pF (T

and hence, there is a constant C' > 0 independent of M, f and t such that

Hf - > 4l

|7li<M

s;ﬁm’]rd)” < C2.

The case § = oo is based on the embedding

Sy F(T?) < S8 F(TY) — S, F(T%)

with » > s > 1—17, s > 7 and 0 < ¥ < oo where the density argument from above is
applied to S5 F(T?). O

Remark 7.20. According to Remark|4.21| the recent result in [100, Rem. 7.3/, see also
[101], indicates that a corresponding characterization in case of small smoothness, i.e.
%D <r< % may fail.

Theorem 7.21. Let 0 < p,0 < oo, L > max{]lg, 1}, r> ]l).
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i) Then every f € ST ,B(T?) can be represented by
p,0

F=Ya ).

jeng

with unconditional convergence in S, ,B(T?) in case max{p,0} < oo, and with

unconditional convergence in S;VB(Td) for every r > 7 and 0 < v < oo in case
max{p, 0} = oo.

(i) There is a constant C' > 0 independent of f such that
1279 g7 [f][€o(Lp(T)|| < CIfIS5oB(T)]|
holds for all f € S} ,B(T?).

Proof. Concerning representation and unconditional convergence we follow the proof of
Theorem line by line with the obvious modifications for the B-case. The inequality
in (7i) can be proven by the following arguments. We take the £5(L,(T?)) (quasi)-norm
on both sides of the estimate in (7.5.8). Due to u-triangle inequality in lo(L,(T%)) with
u = min{p, 0,1} we obtain

1 us L
1279 g Mo (Ly(TN S (D0 2007270 [ M| Pyree 167, 111 |6 Lo ()|
£>0
(7.5.10)
with r» > a > % and 0 <A <p(A=1ifp>1). Incase p <1 a trick similar to (7.3.11))

yields

= (32 270 M| Py 57, o1 L (T

; d
JENG

1
X

2040 | M| Pysve 0711

{o(Ly(T) |

6 1
>\>9

This allows us to apply Hardy-Littlewood maximal inequality (Theorem . We
obtain

2r.(j+£) |:M|P2j+£7a5;:r+l[f:| ‘A} g

< ( Z 2r~<j+£>9HP2j+e,a5§+e[f |

jeNd

lo(Ly(T)

)"

Inserting this into ((7.5.10)) and applying (non-vector valued) Peetre maximal inequality
(Theorem [B.16)) gives
1

2oL (T S (3028 2m 405, 4 Aln( LT )

£>0

< (2wt 2mig £l (L, (TY)))

£>0
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where the term inside the ¢y(L,(T%)) norm does not depend any longer on ¢. Therefore
the sum over £ converges to a constant depending only on a, r and the dimension d.
Finally, we obtain

1277 g [ 116 (Lp (T < 111550 B(TYI-
O

Remark 7.22. We strongly conjecture the optimality of the condition on L in the
above theorems, see also Remark[3.5,(ii) above.

7.6 The case of the Dirichlet kernel

In this subsection we study sampling representations based on the Dirichlet kernel K }r i
Its slow decay causes some difficulties. We define an auxiliary kernel

sin (§x) sin (lx)

K2(Z1}') =V 271'.771 (4X*_§ 57 % X*_l 1 )(I’) =16 8 8 € Ll(Rd)
[—%5] [—%5 T2
and its periodization
K2 ( Z K227 (z + 2k)).

k=—o00

Similar to Lemma we can show for |z| < 7 the following decay property

1
(1+27]z])*

K20 S (7.6.1)

Note, that the corresponding operator I ]2 defined via (1.5.2)) is a sampling but not an
interpolation operator. However, Lemma still holds true. According to Subsection
we define the multivariate sampling operator [ f f based on the tensorized kernel

KZ
The following formula is a counterpart of a similar formula used by Temlyakov in
[117, Lem. 1.6.2] . Taking (L into account we denote
1 _pl 1 . d

D;=D;, ®---®D;, , JeENg.

Lemma 7.23. Let f € C(T%). Then
1 —dpl , 72

for all j € Ng.

Proof. We prove the identity by comparing the Fourier series for arbitrary continuous

functions f. ((7.1.5) implies
fm:{,,
< | I X[gii-1 g1 -1y ) E fad)e e, (7.6.3)

i€(d] ucAj
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Additionally, the same computation as used in Lemma [7.2] shows

Emw:@%%(ﬂfk(%»§:fy il

Clearly,

(2m) 7D}« I2f(€) = ( )12 f(e (0) > flal)e —iad, £ (7.6.4)

ucA;
since ’
.7:[(2(2;_) =V2r

for ¢; € [—29:,27%),i € [d]. Comparing (7.6.3]) and (7.6.4]) yields the claim. O
Lemma 7.24. Let £,5 € Nd, a > 0 and 1/2 < X\ < 1. Furthermore, let f € C(TY).
Then

L 1f)(@)] S 2V M| Py o f )3
holds with a constant independent of £,73,x and f.

Proof. We refer to the proof of Proposition [7.1§ Recognizing, that the only property
of I 32 we need is the decay of the underlying kernel Kfrd p provided in (7.6.1)). n

Remark 7.25. (i) The estimates in Lemmas are pointwise and very useful
for L,(T? ly) estimates. In case one is interested in (scalar) L, estimates, similar as
in (117, Lem. 1.6.2], then Lemmas and together with the mazimal inequalities
Theorems B.4, imply for 0 < p < oo, L > max{1/p,1} and any a > 1/p

17 FILo(T) Sea 29 FILy(TO, f € T (7.6.5)
(similar for f;)

(ii) There is a different technique based on periodic versions of Plancherel-Polya
inequalities (Marcinkiewicz-Zygmund inequalities) for 0 < p < oo, see [98, Thms.
6,10]. A straight-forward modification of the argument in [98, Lem. 13,(ii)] gives for
0<p<ooand L >max{l/p, 1}

127 FILp (T p 29 IFILG(TO, f € Tie (7.6.6)

(similar for fJQ) In case L =2 (de la Vallée Poussin) this yields an extension of [117,
Lem. 1.6.2] to the range 1/2 < p < occ.

(iii) By Lemma and the uniform boundedness of the multivariate Fourier partial

sum operator in L,(T?), 1 < p < oo, we obtain from (7.6.5)) and (7.6.6) corresponding
estimates also for || 1 f||, -

Theorem 7.26. Let 1 < p,0 < oo and r > max{%,%
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(i) Then every f € St ,F(T?) admits the representation
F=Y_qlfl
jeNd
with unconditional convergence in ST o F(T?).

(i) There is a constant C' > 0 independent of f such that
1279 g5 (F)| Lp(Lo)ll < CI£1S5,0F (TY)]]
holds for all f € S ,F(T?).

Proof. The proof of ( i ) is similar to Theorem [7.19] (i). We prove (ii) here. Inserting

the decomposition (|3 , applying triangle inequality and afterwards Prop081t10n
gives

1279 g5 [F11 Lo LNV S D 2747127 T g5 (67 o[ f111 L (o (NG)) 1

£>0

The relation in ([7.5.4)) shows

127G AL NI > D 2712 IO L b [oF LG (NG))

be{—1,0}¢ £>0

Hence, Lemma yields

29U M S 32 S22 D B 057 Ly o)

be{—1,0}¢ £>0
(7.6.7)
Lizorkin presented in [74, p. 241, Thm. 5] a theorem on Fourier multipliers for the
L,(¢y) situation. The result in [99, Thm. 3.4.2] transfers this to the periodic setting.
Referring to a comment in [I19 2.5.4] the Fourier partial sum with respect to a par—

allelepiped fulfills the requirements of this theorem and we get rid of D +b in .
This gives

129G (NN S Y D 2 T l2m IO o7 o[ 1Ly (Ca(NG)) -

be{—1,0}4 £>0

Lemma with A =1 yields

1279 g} [FILp (LN S D 25127 UM | Pysve o f el ()| Ly (€o(NG)) |-

£>0

We finish the proof by following the estimates in the proof of Theorem beginning
from ([7.5.9). [

Theorem 7.27. Let 1 <p <o00,0< 60 <00 andr > %.
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(i) Then every f € St ,B(T?) can be represented by
F=Y"af),
jeNd

with unconditional convergence in SI’;’@B(Td) in case 0 < oo, and with uncondi-
tional convergence in Sy ,B(T?) for every v > ¥ and 0 < v < 0o in case 6 = oo.

(ii) There is a constant C' > 0 independent of f such that
1279 g5 [11€o(Lp(T)I < C| f1S56 BT
holds for all f € ST ,B(T?).

Proof. To prove (i) we follow the proof of Theorem (i). The assertion (7i) can
be obtained following the proof of Theorem where we replace || - |L,(€p(No))|| by

| - [€g(L,(T?))||. Now we use the estimates in Remark (7.6.5)), (7.6.6) from Remark
[(.23]. [

Remark 7.28. Similar (but not nested) Dirichlet kernels were studied in [9] connected
with sampling representations in case p =0 = 2.
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Chapter 8

Optimal sampling recovery

In this section we generalize the sparse grids results known from Section[, We deal with
the case of vector smoothness in the scale of Triebel-Lizorkin. We compare optimality
in the sense of linear sampling recovery with optimality in the sense of the worst case
error with respect to standard information known from Information Based Complexity,
see [84, [85], 86] and the references therein.

8.1 Multivariate interpolation on periodic Smolyak
grids
This time we study function spaces with vector smoothness r € R? fulfilling
r=ri=...=1r,<r,<...<rg<oo , p<d. (8.1.1)

For that reason we analyze a direction-wise modified version of Smolyak’s algorithm,

f. (T:2), given by
Thp = Y ). (8.1.2)

The parameter n > 0 allows to control the level of refinement in single directions. A
comparatively large value of i in the s-th component ends up in a small refinement in
the s-th direction. The interpolation operator T]\L/’ f maps a continuous function to a
trigonometric polynomial with frequencies in an anisotropic hyperbolic cross

AH}@’;7 = U PpY.

J
{g: syma<M}

According to Lemma the operator T’ ]Lw’" interpolates functions on an anisotropic
sparse grid

AGEN = U {iDL cueZl, —VT <y <2 -1 e [d]} (8.1.3)

L7",-j<M
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0

Lemma 8.1. Let n € R? with
O<m=...=0, <M1 < ... <1g < 00.

Then
|AGE™ < Mr—toM (8.1.4)

holds for all M > 1.
Proof. Due to (8.1.3) an upper bound for the cardinality of AG?Z\’;' is provided by

AGHT < ) 2l

1o
sy mIsM

Hence, Lemma in the appendix provides the upper bound in (8.1.4]). A trivial
lower bound of 2™ is provided by simply counting the sampling nodes of ¢;[f] of
the level j = (M,0,...,0). A sharp bound can be obtained by using reproduction
properties of T]\Lj" for trigonometric polynomials (cf. Lemma with frequencies in
AH®". The dimension of AH%" is given by Zﬁn-jSM il O

Remark 8.2. Comparing this estimate to uniformly refined sparse grids (m = 1, cf.

Theorems we recognize that the underlying dimension of the space plays
no role for the asymptotic bound. The dimension dependence is replaced by the u largest

refinement directions. Such effects are known at least since the 1970s in the former
Soviet Union. In modern context they were rediscovered and applied in [27, (50, [49] and

[32]).

Theorem 8.3. Let 0 < p < g < oo and 0 < 0 < oco. Additionally let L > % and the
smoothness vector r > % with (8.1.1). Then

If = Ti"fIL(T S 273 flsy o (T

~

holds for all M > 0. The operator generating vector n € R is chosen asm = r — ]l) + %.
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Proof. We start expanding f into the series ((7.5.5)). This allows us to estimate

1f =T AL < || X laslfll|Zo(1)|
Srmd>M
< 2TV 3D o g | (1)
jend

We choose some parameters. Since L > % we find ¢ € R with p < ¢ < ¢ such that
L> % is fulfilled. Let 7 :=r — % + %. Applying Lemma m yields

If = TET L (TH| S 27t

sup 2795 )] |
jeNg q

Theorem yields
1f = Tai fILo(TH| S 27t DM 7157 (T
Finally, using the diagonal embedding stated in Lemma [3.4] (vi) gives
—(ri—141 r
1f = T FILg(T| S 27t DM £S5, F (T4,
which finishes the proof. O

For 6§ = 2 we can reproduce a generalized form of a result due to Temlyakov [I13].

Theorem 8.4. Let0 < p < 00, 0 < 6 < co. Additionally, let L > 1 and the smoothness

vector r > % with (8.1.1). Then

1f = TE I Loo(TH]| < MUDO=Reg= M=) rgm ()|

holds for all M > 0. The operator generating vector n € R% is chosen asm = v — +

p7
where v € RY with
rs="Vs, S=1,....04 and 7 <vs<rs, S=pu+1,...,d.
Proof. Step 1. We prove
1 —M(r1—3) .
L -1l 2 p o 0<p<l,
1 = T Lo (T S 117155, BOTY)| {M(w)(l;)gmw o
(8.1.5)

where p is chosen such that max{p, 1} < p < oo is fulfilled. Expanding into (7.5.5)) and

using triangle inequality yields

1 =T LT = | > b1 LeetT)|
Frmi>M

<Y e
Grmi>M
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We have to distinguish the cases 0 < p < 1 and the case p > 1. We start with
0 < p < 1. The elementary embedding ¢,(N3) < ¢;(N¢) yields

|f = T flLao( T < 2700 3 o) gh [ ]| Lo (T

E’?J>M

1
CM(r 1 r—1y.5 p
< MO (S BTG )| Lo (TY)7)

1 .
En-g>M

In case p > 1 we apply Holder’s inequality with 1 = = —|— L and obtain

1

< (X 2 (T AL

1,0 1
HnJ>M n1n‘7>M

If = T3 | Loo(T7)

Lemma yields
If — TE™ | Lo (T4)|| < MU=D0-plg=Mlri—y ( ST gk ]|Loo(Td)||”)p-

H?}J>M

Nikolskij’s inequality (special case of Lemma [7.12)) gives

I = T4 Lo T S MDD MO0 (87 =503 gk f] L(T)|?)

Hn_1>M

In both cases Theorem yields (8.1.5)).
Step 2. The Jawerth-Franke type embedding implies

SryF(T9) s S Z ”B(Td)

pb,p

(cf. Lemma [3.5)). Applying this we obtain

|f = T3 flLoo(T)]| S MUDE00 2 MO 157, (T,

which proves the claim. O]

Remark 8.5. It is remarkable that Theorem [8.5 allows to use the Smolyak algorithm
based on the classical (nested) trigonometric interpolation (Dirichlet kernel) in case

1 < g < oo although p < q may be less than one. A similar observation has been made
recently in [9, Rem. 6.12].

In the remainder of this section we deal with Besov spaces S} B (T?). A similar
result as stated here was obtained by Dinh Dung in [29], see also [27]. We contribute
the case min{p,0} < 1 for the Fourier analytical approach and allow the Dirichlet
kernel (L = 1) for ¢ > 1.
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Theorem 8.6. Let 0 < p < g < oo and 0 < 0§ < oco. Additionally let L > % and the
smoothness vector r > % with (8.1.1). Then

If = T fILy(TH]| S 27 MOt M 0G0 flsr, B(TY)|

~Y

holds for all M > 0. The operator generating vector n € R? is chosen asn = V—%—Fé,
where v € RY with

rs="Vs, S=1,....0u and r <vs<rs, S=pu+1,...,d.

Proof. First we prove the case ¢ > 1 with 0 < oo. We find ¢ < ¢ such that L > % > %
holds. The Jawerth-Franke embedding S; ;EB (T?) C Ly(T?) (cf. Lemma yields

1f = Tof " FIL((THI S NS = Tai" 157, " B(TY)l|

Expanding f into the series ([7.5.5) and applying Theorem gives

1

If =T AL S (D 296 D lgs AL TIl) (8.1.6)

HT[‘1>M

In case oo > 6 > q this can be estimated by using Holder’s inequality

If =T L) 5 (> 2 F D)

n—ng>M

< Z ofi-(r=(5—7) ”qJ[ ]|Lq(Td)|]9>9_

HT]]>M

Q=
D=

=

The estimate for the sum in Lemma gives

1
~M(ri—1 11y 11 7
| f=Ti" FIL(T)| S 270 DG ( > 27D g5 )| Le(T))° )9

HT[J>M

In case 0 < ¢ we use the embedding ¢y — ¢, and obtain

If = T IL(TY | S 27 M (%0 290G gy ] (7).

ﬁn j>M
Theorem [7.21] allows to estimate
1f = THTFIL(TY | S 270340 =G0 57,57 p(re)) .
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Finally, the diagonal embedding stated in Lemma (vi) yields
CM(r 141 y(i_1 -
If = Tai" fILg(T| S 2710 @ DG=0) % pl57, B(TY)).

The case ¢ < 1 is simpler. We expand f into the series (7.5.5). Then g¢-triangle
inequality yields

1

15 =751 (32 asllL (i)

R pS]
mn‘7>M

The same case study as in the lines after (8.1.6) with ¢ = ¢ finishes the proof. As usual
in case # = oo we have to replace the corresponding sum by sup. O
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8.2 Linear sampling recovery

In this section we consider the optimality of convergence rates for linear sampling algo-
rithms in case of Triebel-Lizorkin and Holder-Nikolskij spaces with mixed smoothness,
we abbreviate by F. As a benchmark quantity we study linear sampling widths, cf.
(1.4.1) in the introduction,

QEH(F, Lq(’]I‘d)) = inf sup
(€)= CTY | f|F|I<1
($i)7 CLg(T?)

/- if@m Ly(T%)

This quantity can be interpreted as the minimal worst case error for the approximation
of functions from the unit ball of F' by linear algorithms using n function evaluations
and where the error is measured in Ly(T?). In case of F = S7,F(T?) with § = 2 and
1 < p < oo we have the coincidence S;W(T?) = S F(T?). This case is of special
interest in this section because it denotes the probably most famous representative
of the F-scale. Choosing m in such that n > m#~'2™ an upper bound for
oin(F, L,(T%)) is provided by

o (F, Ly(T%)) S sup ||f = T f|Ly(T)]).

IF1F|<1

Approximation with general linear information in case of mixed order Sobolev spaces
SpW(T?) and Holder-Nikolskij spaces Sy . B(T?) has been intensively studied in the
past. We recall the concept of linear n-widths:

M(F,Ly(T) = inf sup || f — A(f)|Le(T)]- (8.2.1)
A:FzgqéTd> I fIF|I<1

In comparison to @i"(F, L,(T%)) this quantity allows to benchmark linear operators

using n pieces of linear information. Function evaluations are also linear information.
Therefore, we have the relation

M(F, Ly(TY)) < 03" (F, Ly(T%).
That means linear n-widths can serve as lower bounds for linear sampling n-widths.

Corollary 8.7. Let 0 < p < q < 00 and 0 < 0 < oo. Additionally, the smoothness
vector r > ]% is supposed to satisfy (8.1.1). Then

1,1

o (SpaF (T, Ly(T)) S (n~ M log ™Y n)" 75"
holds for all n > 0.

Proof. The proof follows by Theorem with the estimate from Lemma for the
number of function evaluations used by 77" O
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Corollary 8.8. Let r > % fulfilling (8.1.1). Furthermore, let 1 <p <q<2,1<0<
0 or2<p<qg<oo,2<60<oco. Then

An(ST o F (T, Ly(T%) = 0f™(ST o F(T), Ly(T) = (n~ " log® =V )=+
for alln € N.

Proof. The upper bound for ¢ follows by Corollary . The lower bound on A, is
referred in Theorem in the Appendix. O

Remark 8.9. The result stated above is not completely new. In case 2 < p,0 < q,
(0 =q)and 1 < p,q < 2 with 6 < q the upper bounds can be obtained with the help
of Besov space results proven by Dinh Ding in [29, [30] using the embedding relation
SpoF(T?) — S Q}B(Td). Nevertheless, the cases 1 < p < q¢ < 2 with § > q and
2 <p<q<0 are new. Compared to Besov spaces in that range of parameters we do
not observe an additional logarithmic factor in the convergence rate. This parameter

range includes the situation of Sobolev spaces in case 1 < p < q < 2.

The following result is based on an observation by Novak/Triebel [83] for the uni-
variate situation.

Theorem 8.10. Let 1 < p <2 < g < oo and

T >
{max{%, 1-— %}
with (8.1.1). Then

An(SpoF(T?), Lo(T)) = 0(0,"(SpoF(T), Lg(T))),

=
QY= =
VARVAY

o0
oo,

—_ =
—_ =
[VANVAN
> D

+
+

Q= =
IN IV

or more precisely
A(STF(T?), L,(T%) 5 0~ =348 < glin(s7, P(T4), L,(T%)
holds for all n > 0.
Proof. The bounds for A,(S74F(T%), Ly(T%)) come from the embedding S} ,F(T%) —
Sy B(T?) that yields
M(STo (T, Ly(TY) < Ay(ST o B(T?), L,(T%).

and the results from [42], see also [33 Thm. 4.46]. The proof for the (non-sharp) lower
bound of g} (574 F(T?), Ly(T?)) follows from the univariate situation considered in [83,
Theorem 23]. O

Remark 8.11. The fact that the exponents of the main rate and the exponent of the
logarithm in the upper bound obtained in Corollary coincide and additionally the
main rate is sharp seems to be a strong indication for the conjecture

1

0" (SyaF (1), Ly(T) = (1~ log! ™ )"t
incasel <p<g<oo,1<6< 00 andr>%wz’th (8.1.1)).
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Sharp lower bounds for A, (S7 . B(T%), Ly(T%)) obtained in [76] yield the following
observation for Holder-Nikolskij spaces.

Corollary 8.12. Let 1l <p<g<2o0r2<p<qg<ooandr > ]lg 15 supposed to

satisfy (8.1.1). Then

ri—141 p=1
O o BT, Ly(TD) = Moo BT, Ly(TD) = (0 Tog )5+ (log m) 7"
holds for all n > 0.

Proof. The upper bound was originally obtained by Dinh Dung in [25]. The lower
bound for linear widths is due to Galeev [42]. In our context the upper bound for gh®
follows by Theorem [8.6] with the estimate from Lemma [8.1] for the number of function

evaluations used by T,;". The lower bound for A, in the second case was proven

recently by Malykhin and Ryutin [76], see also [42] and [33, Thm. 4.46]. O
; ste>1,

Corollary 8.13. Letl1<p<2<g<oocandr > <P . . b
max{];,l—a} 5+a<1,

fulfilling (8.1.1). Then
An(Sh oo B(T?), Lo(T?) = 004" (Sy,0o B(T?), Ly(T7))),
or more precisely
A (ST B(TY), Ly(Th) 5 n~ 7370 < glin(ST__B(TY), L,(T*))
holds for all n > 0.

Proof. The bounds for A, (S5  B(T%), Ly(T%)) come from [42]. The proof for the (non-
sharp) lower bounds for th(S’" B(T%), L,(T%)) follow from the univariate situation
considered in [83, Theorem 23]. O

Corollary 8.14. Let 0 < p,0 < oo (§ = o0) and the smoothness vector v > - L which
is supposed to satisfy (8.1.1] - be given. Then

lm(sreF<Td), Loo(Td)) S (nfl log#—l ) log(” 1)( %)Jr n
holds for all n > 0.

Proof. The upper bound follows by Theorem with the estimate from Lemma
for the number of function evaluations. O

Based on a recent observation of Nguyen in [78, Theorem 2.15] we can state the
following theorem:

Corollary 8.15. Let 1 <p <2 and r > 1 fulfilling (8.1.1). Then
Aa(SyW(TY), Loo(T)) = 0(0,"(S;W(TY), Loo(T7))),
or more precisely
Aa(S5W(T), Lo (T%) = 0=~ 8) (log ' n)"™ 5 070 < g (SpW(TY), Lo (T%))
holds for all n > 0.
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Proof. The bound for A, (S;W(T?), Loo(T?)) comes from Theorem . The proof
for the (non-sharp) lower bound for g™ (S;W (T?), Leo(T)) follows from the univariate
situation considered in [83, Theorem 23]. O

The next result was originally observed by Temlyakov, [I13]. Sampling representa-
tions allow to reproduce it.

Corollary 8.16. Let r > 1 fulfilling (8.1.1). Then
0on(SEW(TY), Loo(T%)) = Ay (SEW(T?), Lo (T?)) < n= =2 log? ' ny
holds for all n > 0.

Proof. The bound for A, (S;W(T%), Loo(T)) comes from Theorem and the upper
bound for g, (STW (T9), LOO(Td)) from Theorem [8.4] O

8.3 Sampling recovery and Gelfand n-widths

The considerations above cover linear algorithms in the classical sense. Last but not
least we consider an extension of this concept, so-called approximation using standard
information, cf. [84) 85]. This means we consider algorithms that are defined as
a composition of a linear information map and a possibly non-linear reconstruction
operator. To avoid further technicalities we restrict to Banach spaces F' that are either
Sobolev spaces S7W (T?) or Hélder-Nikolskij spaces S7 . B(T?) in this subsection. The
non-linear sampling widths were defined in - The followmg relation clearly holds
true

Qn(Fan(Td) < erlzn<F’ Lq(Td>) ‘

Therefore (possibly non-sharp) upper bounds for sampling widths are always provided
by linear sampling widths. To consider questions on optimality of these bounds we
consider Gelfand n-widths

cn(F, Ly(T%) := inf sup || f| Ly (T (8.3.1)

B F=C ) f1F| <1
linear feker B

Here B denotes a general linear mapping B : F' — C™. This means ¢, measures the
minimal (over all information mappings) worst case distance of elements in the unit ball
of F which can not be distinguished by the information mapping B. This immediately
gives

Cn(F’Lq(Td» S on(F, Lq(Td))~

Note that is actually the definition of the nth “Gelfand numbers”, which we call
“Gelfand n-width” here. For a thorough discussion on the relation between Gelfand
numbers and suitable worst-case errors we refer to the recent paper [21, Rem. 2.3].
Since Gelfand widths for embeddings id : STW (T?) — L,(T?) are not studied directly
we use a duality relation to Kolmogorov n-widths, cf. (D.1)).
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Lemma 8.17. The following duality relation holds true
do(T: X - Y)=c,(T": Y — X'),

where T" denotes the adjoint operator of T and X', Y’ the topological dual spaces of X
and Y .

Proof. We refer to [91, Theorem 6.2]. O]
5 l<p<q<2,
Corollary 8.18. Let 1 < p,q < o0 and r > 1—% p<2<yq,
11 : -
(13 — E)Jr : otherwise,
with
r=...=1,<r,1 <...<rg<oo. (8.3.2)
Then L
a5 (T, L(T%) = (n~"log™" m)rt~int3) =+
for all n € N.

Proof. The proof follows by the duality relation stated in Lemma [8.17] and a lifting ar-
gument. The topological dual spaces of S;W(T?) and L,(T?) are the spaces S,,"W (T¢)

and Ly (T?) with 1 = >+ > = -+ . Lemma yields
Cn(SyW(TY), Ly(T?)) = dy(Lg (T?), S, "W (T?)).
Finally we show the identity
dy(Lg (T?), S),"W(T?)) = dn (S5 W (T?), Lyy (T?)).

For that reason we consider the lifting operator I, in D’(T?) given by

d

Luf::E:f@ﬁ%mh>z:ﬂkm11ﬂ+ﬂhﬂ‘%%@?

kczd kczd =1

It is easy to check that this is an isometry that maps f € SyW to I.f € S;*WV,
a € R with (I)~! = I_,.. Therefore we may use the commutative diagram,

Ly (T —2 557w (T?)

q

-

ida

SEW(TY) —=— Ly(T)
which allows to describe the operators id;, idy by
idy=1_,0tdyol, and idy=1,014dyol_,.
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Kolmogorov widths are s-numbers and fulfill a multiplicativity property that yields
dy(idy) = dp(I_y 0idy o I,.) < || I_p||dy(ido) || I1]| < dy(id2)

and

d,(idy) = dp(Ly 0 idy o L_y) < || Lyp||dy (idy) || || < dy(idy).
Inserting the result from Theorem finishes the proof. O

Surprisingly, a new result in [76] allows us to prove the following results for Gelfand
n-widths of Holder spaces S7_ B(T?).

Theorem 8.19. Let 1 < p < q < o0 and r with
I/p—1/g)s <m=...=r, <rp <...<rg<o0

then

_ r—141 _
(W) ne (logn)#T1 2<p<q.

Proof. The upper bounds follow from the results for linear widths in [42]. The lower
bounds are new. Malykhin and Ryutin proved in [76] the following bound on Kol-
mogorov n-widths for finite dimensional normed spaces Ei‘f (Zév )

1 1
1og”1n)T_2+q (logn)s : 141 1
gn)q . + <1,p§2,7‘1>1 )
ea(SToo B(TY), L,(T%) = ( » T q

sy (00X, 61 (3)) = M. CEE)

In the first case the technique for the lower bounds on linear widths presented in [42]
works well also for Gelfand n-widths. The discretization stated there yields

en(ST  B(T?), Ly(T) 2 24270, (0271 (637), 022,
The duality relation in Lemma [8.17] gives
en(ST o B(T), Ly(Th) Z 24 2a)d, (02" e (62")).

Applying Holder’s inequality in finite dimensional spaces £)/(£)) yields the following
estimate
H—ll

(800 B(T?), Ly(T%) 2 24270y~ d, (027 (63), 6" (3")).
Choosing n < u*~12% then the relation in (8.3.3)) implies

1

en(Spoe B(T?), Ly(T%) 2 2427007 < (

1 1
— r—5+=
logh~tn\ 277 =
n

The second case is obtained by the embedding

2,00

r—(3—3) d » d
Syeo’ " B(T?) < S}  B(T°)

together with the result from the first case. m
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Corollary 8.20. Let 2 <p < g < oo and r > 113 fulfilling (8.1.1). Then
(i)
ou(STW (T, Ly(T) = ca(STW (T, Ly(T%) < o (STW (T, L,(T%)

1

= A (STW(TY), Ly(T%) = (n~ logh ™' n)" 5+,
(i)
0 (ST B(T?), Ly(TY) = (ST B(T), Ly(T%) = o"(S"  B(T%), L,(T%)

= (n"'loghtn)"

holds for all n € N.
Proof. The proof follows by Theorems [8.3] [8.6] and Corollary O

Remark 8.21. In the parameter range 2 < p < q < oo permitting non-linear re-
construction operators does not yield better results. Optimal rates can be achieved by
completely linear sampling algorithms.

We obtain the following counterpart of Theorem for non-linear sampling.

Corollary 8.22. Let 1 < p <2< g < o0 and r > max{%, - %} fulfilling (8.1.1)).
Additionally let F denote either S;W(T%) or ST B(T%). Then

cn(F, Ly(T?)) = o(0u(F, Ly(T))),
or more precisely
ea(F, Ly(T?) 50~ 7773 S 0u(F, Ly(T%)
holds for all n € N.

Proof. The proof can be obtained by following the construction of the lower bound for
the univariate situation in [83], where we recognize that the stronger inequality

Qn(F7 Lq(Td)) > inf sup ||f|Lq(r]Td)||
(€)ia CT¢ I |F<1
f(€k)=0, k=1,...,n

holds. The estimates for ¢, (S;W(T%), Ly(T%)) were obtained in Corollary [8.18 For
S;’OOB(Td) we refer to Theorem . Gelfand numbers for more general Besov spaces
were studied in [80]. O

Remark 8.23. As a consequence of the lower bound in Corollaryfor on(F, L,(T?)),
we obtain that in the parameter range 1 < p < 2 < q < 0o even linear approximation
behaves significantly better than sampling recovery with a possibly non-linear recon-
structing operator.
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Chapter 9

Outlook and open problems

We discuss some research aspects and questions that were left open at the end of our
studies and require further research.

9.1 Sampling: same integrability in target and source
space

Using a trigonometric sparse grid sampling operator Temlyakov [I17] proved for r > %,
1 < p < oo that

00" (S50 B(T), Ly(T%)) S (n™ log™™" )" (log"™" n) (9.1.1)

holds. Later, Sickel [102} [103] contributed to the 2-dimensional case and Sickel, Ullrich
[104] for general d > 1 with 1 < 6 < oo the (best) today known upper bounds

. 1
o (S" ,B(TY), Ly(T%)) < (n Hog? n) (log 1 n) 5, 7> 5

: 11
an(S;W(Td), L,(T%) < (n " log? ! n)"(log® n)%, r > max {5, 5} (9.1.2)

The upper bounds in (9.1.1)) and (9.1.2)) have in common that the sharp estimates for
linear widths A, (defined in (8.2.1)))

M(Sh BT, Ly(T?) = (n~‘log?™'n)"(log ' n)2, p>2, cf. [I16]
)\n(S;W(']I‘d),Lp(']I‘d)) = (n 'log™'n)", 1<p<oo, cf Theorem D.24

do not coincide with the estimates for o, which are typically used to obtain lower
bounds for gli". A logarithmic gap appears. In fact, it is unknown whether linear
approximation based on information generated by general linear functionals behaves
better as linear approximation by sampling values. As a consequence of Chapter

(Theorem [5.14)) we know that linear operators which sample functions on sparse grids
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behave worse compared to approximation with general linear information. For general
point sets we have no indication concerning this phenomenon. Considering the limiting
case r = 2 Bungartz, Griebel [§] proved for the Faber-Schauder sparse grid operator
I defined in the convergence rate

1f = Ine fIL2([0, 1)

| < MR fSEw ([0, 1))

~

< (n~Vlog® n)? log® nll FIS2W ([0, Y]

see also Theorem [5.7] The method for the lower bound in Theorem [5.14] allows to prove
for the sparse grid width

d—1

g2 (S3W([0,1]9), Lo[(0,1)]) Z (™" log*™" n)* log = .

In fact there is a gap of log% n for the knowledge of the exact asymptotic approxi-
mation rate of Ip;. It would be interesting to know whether the limited regularity of
the hat functions causes a little worse approximation rate in the limiting case.

9.2 Higher smoothness in the non-periodic case

In the first (non-periodic) part of this thesis we are restricted to a maximal smoothness
at around 2. This is caused by the limited smoothness of the Faber-Schauder system.
To be more precise the Faber-Schauder hat functions belong to the spaces S;W with
r < 1—1—%. In fact, it is interesting that we can overcome this smoothness limitation up to
a certain degree in our approximation results and benefit in the convergence rate from
r > 1+% up to a certain level. Nevertheless, these possibilities are limited. Dealing with
significantly more smoothness would require us to switch to smoother basis functions.
Triebel suggested in [120] so called Faber splines. They generalize the integration step
going from Haar to Faber-Schauder bases. The idea is to start with a (£ — 1)-times
continuous differentiable spline function hf(x). Representing the (¢ + 1)-th derivative
of f in terms of this system. Then integrating (¢4 1)-times gives an expansion of f by
2( times continuous differentiable Faber splines v*(z) which allow a representation with
coefficients generated by function evaluations of f. In [120] this theory was considered
as an outlook. We do not know about further research in this direction. Another
related approach are B-Splines introduced by I.J. Schoenberg (see also [16]). They are
generated as an iterated convolution of characteristic functions. Dinh Dung took up
this concept and studied them successfully as a basis in S} ,B([0,1]), cf. [29,30]. (B-
)splines of higher order have the property that the supports of different translation are
generally not disjoint as it is the case for the Faber-Schauder system. There is some
overlap. Dealing with Sobolev spaces S;W (R?) the L,(R?) integration in the norm
runs over all dilation levels. This makes a careful analysis much harder than in case of
Besov spaces 5 ,B (R?) and requires non-trivial tools from harmonic analysis. Based
on approaches from an early preprint of the current thesis [31] was created. Here the
author proves sampling representations using B-splines for periodic spaces S;W(Td).
Nevertheless, the conditions stated there seem to be not sharp and can be improved
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with methods presented in this thesis. A carefully proven B-spline representation for
SrW([0,1]%) would allow to lift the results in Chapter and@to any smoothness r > 2.
A further approach for higher smoothness is the interpolation scheme by Deslauriers
and Dubuc 24 17, 23]. In [22] a result discretizing univariate Triebel-Lizorkin and
Besov spaces using this interpolation scheme was stated. An extension to the case of
dominating mixed smoothness would be interesting. As a last approach we mention
higher order hierarchical basis introduced by Bungartz [7] which also use piecewise
polynomials as basis functions.

9.3 Tractability and preasymptotics for standard
information

In the present thesis convergence rates of type Ccﬂn_’"(logd_1 m)" appeared at several
points. The constants Cy or at least their behavior for growing problem dimension
d was mostly not calculated explicitly To approximate a function and estimate the
number of information we have to spend to achieve a given accuracy the size of Cy will
be very important to obtain useful estimates. The notion tractability from the math-
ematical area of information based complexity studies a quantity called information
based complexity, which is defined as the minimal number of information required to
approximate the compact embedding id : X — Y up to a certain given accuracy e.
One distinguishes in standard (samples) and general information (linear information)

nan(e) = inf{n € N:¢,(Bx)y < ¢},
nStd(z—:) = inf{n € N: 9,(Bx)y < ¢},

(for the definition of Gelfand widths ¢, see (1.4.3)), sampling widths g, see (1.4.2))).
Based on the behavior of n*(g), x € {all,std} in d we assign the approximation prob-

lem to a tractability class. If n*(e) increases exponentially in d then we speak about
the curse of dimensionality see [84], [85] [86] and the references therein. For sampling ap-
proximation in spaces of dominating mixed smoothness nearly nothing is known in this
direction. Explicit knowledge of the constants would allow us to translate our conver-
gence rates into bounds for the information based complexity quantity. In [70, [71] [15]
approximation with linear information in the sense of linear widths was considered. It
turned out that tractability issues heavily depend on the explicit choice of the norm
in the space of functions we consider, since different equivalent norms can essentially
modify the unit ball of the respective norm with respect to d. Let us have a look on
a closely related problem. Considering the function fy(t) = ¢t " log® V"¢ (related to
our convergence rates) we recognize that this function is monotonically increasing for
t € [1,e?!] and decreasing on [e?"!, 00). Much later this function becomes smaller
than 1. In fact, for n < e?~! samples the estimates make little sense, since they are
increasing. In [70L [71] [69] the authors study so called preasymptotic rates. Conver-
gence rates that are valid only for small degrees of freedom but that provide in this
range decreasing with explicitly known constants. Concerning Monte-Carlo sampling
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approximation such an approach was considered in [68]. It would be of great interest
to have similar results in the deterministic worst case setting which is considered in
this thesis.

9.4 Sharp bounds for best m-term approximation

In Section we studied best m-term approximation with respect to the Faber-
Schauder system. The lower bounds

on(S0o X, F), Z2m™, X €{B,F},

provided in Theorem is our exclusive source to bound the corresponding best m-
term quantity from below. The fooling argument in the proof is basically an univariate
one, that is not able to generate d-dependent logarithms. Actually we saw in Theorem
that this provides sharp results for the small smoothness case, so we do not have
to expect logarithms in general. For the large smoothness case (cf. Theorem our
upper bounds contain d-dependent logarithms

M < oS0, X ([0,1]%),F), < m " (logm) @ V-9 X € {B, F}.

Comparing this to sharp results for Daubechies wavelets obtained by Hansen, Sickel
[56], a logarithm seems to be required. In fact, we need an improved lower bound
for the case of large smoothness. In case of Daubechies Wavelets vanishing moments
allow to discretize L, spaces into corresponding sequence spaces. Hence, lower bounds
obtained in sequence spaces imply lower bounds for best m-term approximation. Our
upper bounds for best m-term approximation with respect to the Faber-Schauder sys-
tem use as a vehicle the discretization of the space 52,13 ([0, 1]¢) which is embedded
into L,([0,1]%). Hence, our upper bounds coincide with wavelet upper bounds that
are calculated for fine index v = 1 in the target space. Littlewood-Paley (wavelet)
theory shows that fine index v = 2 is the optimal one to discretize L,([0, 1]). For that
reason the upper bonds in the large smoothness case we obtained behave by a factor
(log®™* m)% worse compared to the large smoothness results for Daubechies Wavelets.
It is not clear whether this is a technical difficulty or a serious deficiency comparing best
m-~term approximation for Daubechies Wavelets to best m-term for the Faber-Schauder
dictionary.

9.5 Optimal sampling recovery in case 1 < p < 2 <
g < 00

Groundbreaking innovations [46], [64] for the approximation of sequence spaces in the
1980s allowed Galeev [41], 42] to prove an interesting behavior of linear widths for the

embedding S;W(T%) — Ly(T%) in the parameter region 1 < p <2 < ¢ < 0.
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Figure 9.1: The parameter « refers to the sharp rate ( ).

< q < oo the approximation rates are of
. Hence, they are the smoothness minus the
< p <2< g < oo one integrability gets stuck

Incase 1 < p < g < 2o0r2 <
type (n~'log? ' n)* with o = r — i +
difference of the integrabilities. In case

at 2, cf. Theorem

p
1
q

1

n

(lo n)d—l r—1/p+1/2
d d (g—> 1/p+1/€721761>2,7“>1/p7
A(SIIV (T, Ly(T%) =

n

_iNr—1/241/q
<M> S 1/p+1/g<1, p<2 r>1-1/q.

This provides an improved rate. In case of linear sampling recovery (cf. Section |8.2)
such an effect does not happen or at least not in the main rate. In Theorem [8.10| we
show for 1 < p < 2 < ¢ < oo the relation

Au(SyW (T, Ly(T) £ 0”003 < g (S;W (T, Ly(T%) £ (" log™™" )5,
The lower bound in the middle is based on a univariate fooling function argument by
Novak, Triebel [83]. We conclude that approximation by linear information behaves
significant better than sampling approximation. What remains unknown is the exact
order of the logarithm for gi"(SyW (T), Ly(T%)).

n
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Chapter 10

Appendix

A Quasi-Banach spaces

Definition A.1 (Quasi norm). Let X be a vector space. We call the mapping || - || :
X — R quasi norm if and only if

(i) 2] =0=2=0
(i) || Az]] = [All|]

(i13) 3C > OVzx,y € X :
2 +yll < Cllz ]l + [lyl)-

Definition A.2 (p-norm). Let X be a vector space. We call the mapping ||| : X — R
a p-norm if and only if

(i) |z =0=2=0
(i) Azl = ALl

(1) 30 < p < 1Vz,y € X :

[z +ylI” < l=]|” + [lyl*.
Definition A.3. The tuple (X, || - ||) where X is a vector space with either || - || is a
quasi or p-norm is called quasi-Banach (p-Banach) space if and only if every Cauchy

sequence (x;) C X converges (in the sense of || - ||) to an element x € X .

Theorem A.4 (Aoki-Rolewicz). For every quasi norm ||-|| exists an equivalent p-norm
and the other way around.

Proof. This result is due to Aoki [2] and Rolewicz [93]. O
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B Basics from Fourier analysis

Fourier analysis on R

Definition B.5. Let f € L'°(RY). Then we define the Hardy-Littlewood maximal
operator as

M f(x) —sup‘Q|/]f x)|dx

Q>x

where the () are axis parallel squares that are centered in .

Theorem B.6 (Fefferman-Stein maximal inequality). Let 1 < p < 0o, 1 < 0 < 0o and
(fi)k C Lyp(ly, RY). Then we have

1M fiel Ly (Co, R S 1 fel Ly (Co, RY) .
Proof. We refer to [39, Theorem 1]. O

As a main tool we introduce the following componentwise variant of the Hardy-
Littlewood maximal operator, see [127, (1.14),(1.15)], [122], (10)]

Definition B.7. Let i € [d] and f € L¥(R?) then we define the Hardy-Littlewood
mazimal operator in the i-th direction as

M, f(x) —sup—/ \f(x1, . Tim1, T + Y, Tiga, - -, Ta)|dy. (B.1)
>0 21

Theorem B.8. Let 1 < p,q < 0o and (fi)r C L,(T% {y) and i € [d). Then we have
1M fil Ly (o, R < .fil Lp(bo, RY).

Definition B.9 (Peetre maximal operator). Let a > 0 and b > 0 then we define for
feo(m)

B |flx+y)l
Foaf(®) = 52115 (1 +bufya))® .. (1 + balyal)*

Additionally we define for e C [d] a component wise Peetre mazimal operator by

|f(z+y)l
Py f(x) = sup )
| yerie) [Lice(1 + bilyil)®

Lemma B.10. Let a,b > 0 and f € Li(R) with supp Ff C [—b,b]. Then there exists
a constant C > 0 such that

A} f(x)] < Cmin{1, [bh[™} max{1, |bh|*} Pyo f(2) (B.2)
holds.

Proof. We refer to [122, Lemma 3.3.4]. O
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Theorem B.11. Let 0 < p < 00, 0 < 6 < 00 and (fj)jeN(d) be a sequence of bandlimited
functions with

supp f; C [—b, ]

and a > max{]lg, 5}. Then there is a constant C > 0 (independent of f and b;) such
that
|1 Pog.afs 1 Lp(Lo, RYI < CL 5] Ly(lo, RY)|

holds.
Proof. We refer to [99, 1.6.4] and Theorem [B.14] O
Lemma B.12. Leta >0, b >0 and f € C(R).

(i) If |z — wo| < § then
[ (z0)| < 2°Pyaf ()
holds.

(i1) Furthermore let b’ > b > 0. Then

b\
< |- / .
Pb,af<x> = (b> Pb,af(x)
Proof. The following estimation yields (i)
| f (o) | f(o)]
< 1+ |z — x|b)* < 2° =2Py, )
|f($0)| = (1—|—|.T—l‘0|b)a( |$ LC()’ ) = f(}le% (1+|£—$0|b)a b, f(l’)

p+1
q+1

_ /() Wl Qv e
Pb@f(af) - ?el]g (1+b|:1:—|—y])“ Szlelﬂg (1—i—b’\x—|—y\)a (1+b|$—{—y‘)a < <b> Pb/,af(l‘).

We prove (ii). The trivial estimation < § for p > ¢ > 0 yields

]

Lemma B.13. Let 0 < a <1 and R > L. For any sequence (Ajk)jend weza of complex
numbers and any £ € 72, j € N& with j + £ > —1 we have

d

> el [T+ 2mmt0odt b gy — gy g )7 S 2R/ [M’ D AjrerXsiek
kezd i=1 keZd

Q=

(B.3)
Here M denotes the Hardy-Littlewood mazimal operator, cf. Definition [B.3.

Proof. The proof is taken from [126, Lemma 4.3]. Which is a “hyperbolic” version of
[65, Lem. 3, 7]. The lemma is originally due to Kyriazis [72, Lem. 7.1]. Let

1
§=R--.
a
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We introduce for p € N the sets
Qu(z) ={k € Z 2"t < ominlitbid |y — g pp| < 24}

and
Qo(z) :={k € Z: 2mnUtedd g — g < 1}

For p € N¢ and = € R? we define
Q@) = (1) .- = Q0.

We start estimating

d
ind i o4 p. _ _ 1
D Prerl [T+ 27009 8 gy — i )RS D Y g2 ORD
kezd i=1 pENd keQ, (x)

_ul
S osup Y esl2Te

d
HENG ke, (z)

1
S sup Z |)\j+z,k|a2_‘ml>a

d
HENG ke, (z)

(B.4)
It is easy to verify that
D ekl Xiren(@)dy < 27T NN
Unmeou @) litem ke, (@) keQ, (x)
holds. Inserting this into (B.4)) gives
d
D el [T+ 2003y — g )" (B.5)
kezd =1
1
S (2‘j+£‘1 Sup 2_’“/ Z \)\j+e,k|an+e,k(y)dy>a
peng Unmeap (@) li+em keq, (x)
(B.6)
Defining
Q(ﬂf) = U Ij-i—ﬂ,m
meQ, (x)
we observe

1Q(z)| = 2lHho=lite-
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Hence, inserting this into allows to estimate

d

Z |>‘j+€,k:| H(l —+ 2min{ji7ji+fi}

kezd =1

1 1
5 <2|£+‘1 Sup / >\ ax. y dy) @
Q@] Jo > )| jek|“Xjrek(y)

d
HeNg keQ,(z

)—R

Li = LjitLy ks

1

)

1411
<2 a (M’ Z Aj ek Xj+ek

keQy(x)

Fourier analysis on T¢

The Hardy-Littlewood maximal function and Peetre maximal function are defined as
in the last subsection, by interpreting f € L;(T%) as a 27-periodic function on R¢.
There is a corresponding variant of the Fefferman-Stein theorem, see [122, Thm. 4.1.2]

and the references therein.

Theorem B.14 (Fefferman-Stein maximal inequality). Let 1 < p < 00, 1 < 0 < o0

and (fx)i C Ly(Ly, T?). Then we have
1M fi| Ly (€T | S 1| frl L (Co, T
Proof. We refer to [99, Proposition 3.2.4].

Similarly to the non-periodic case we have:

Theorem B.15. Let 1 < p,q < 0o and (fx)x C Ly(T% ly) and i € [d]. Then we have

1M fil Ly (o, T S 1| fiel Ly (Lo, T

Theorem B.16. Let 0 < p < oo and f be a trigonometric polynomial with

f= 2 fk)e*e

and a > ]%. Then there is a constant C' > 0 (independent of f and b) such that

1 Poaf |Lp(TY|| < C|l fILp(TY]]
holds.

Proof. We refer to [99, 3.3.5] and Theorem
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Theorem B.17. Let 0 < p < 00, 0 < 6 < 00 and (fj)jeNg be a sequence of trigono-

metric polynomaials with
fi= Y fk)e*®

and a > max{é, 5}. Then there is a constant C > 0 (independent of f and b;) such
that
1Pog.afsLp(Lo, T < ClL S Ly Lo, T

holds.
Proof. We refer to [122, Thm. 4.1.3]. O

The next result is well known in harmonic analysis. We state it for completeness.

~

Lemma B.18. Let f € Ly(T) with )", | f(£)| < co. Then
fO) = _F(0e*

LeZ

in C(T).
Lemma B.19 (Poisson summation). Let f € Li(R). Then its periodization ), ., f(-+

27k) converges absolutely in the norm of Li([—m,x|). Furthermore its formal Fourier
series is given by

S” S+ 2mk) = \/% S Fr(o)et

keZ tez
Proof. We refer to [I11, p. 252]. O

C Some multi-indexed geometric sums
Lemma C.20. Letr,n € R with0 <1 =1 = = =Ny < Tppr < ..o < 1q and
ry<mns<rsfors=pu+1,...,d. Then
Z 9md < pp-lgrim
Grmd>m
holds for all m > 1.
Proof. We refer to [112, p. 9, Lemma B]. O
Lemma C.21. Let r € R? with
O<r=...=rm<rp <...<rg<oo
and pp < d. Then
D 2l <t
sprd<m

holds for all m > 1.
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Proof. We refer to [112, p. 10, Lemma D). O
Lemma C.22. Let a > 0, > 0, such that o > 3. Then
Z olili = 957
J€Aq 5(M)
holds for all M > o — f5.
Proof. We refer to [9, Lemma 6.3]. O

Lemma C.23. Let 0 < e < v < « then

$ pRelivhiile) < oM
j%Aafs,st(M)

holds for all M € N.
Proof. We refer to [9, Theorem 4.1, 2nd step]. O]

D Known results on linear and Kolmogorov-widths

Theorem D.24. Let 1 < p < oo, 1 < qg< oo andr > (1/p—1/q)+ with (8.1.1]).
Then we have

i\ r1—(/p-1/g)
(Cos )™ g <2 onp 22,
(aognw-l

» ri—1/p+1/2
(S (T4, Ly(T4) = )

c1/p+1/g>1, ¢>2, r>1/p,

n

_ 7"71/2+l/q
<M> S 1p+1/g<l, p<2 r>1-1/q
\

n

Proof. The case 1 < g < oo was proven by Galeev[4ll 42], see also [30], 37]. The
case ¢ = 1 by Romanyuk [96]. Additionally we refer to [33, Theorem 4.39] and the
comments therein. O

Theorem D.25. Let r as in (8.3.2)). Let additionally 1 <p <q<2and1 <6 < o0
or2<p<q<ooandf > 2. Then we have

(log n),u—l ri—1/p—1/q
n ) ’

(S5, Ly(T) = (

for all m € N.

Proof. The upper bound can be obtained for instance by sampling recovery, cf. The-
orem 8.7, We focus on lower bounds. In case § > 2 the embedding S;W(R?) —
Sy o' (RY) yields

An(Sp o (T), Ly(T?)) = Aa(S;W(T?), Ly (T7)
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The results stated in Theorem provide the correct order. In case # < p the
embedding S}, B(R?) < S} ,F(R?) yields

An(Sp o (T), Ly(T?)) = Au(SypB(TY), Lg(T?))-

This gives the right order in cases 1 < p < ¢ < 2 and 2 < ¢ < p, cf. [94]. Finally for
6 > p we stress on the embedding

Sy B(T?) < 5o yF(T?)
with
M (ST F(T%), Ly(TY) > A (SE, BTY), L,(T").
This provides the lower bound in case 1 < p < ¢ < 2. We refer again to [94]. ]

The following is known for Kolmogorov widths in case of Sobolev spaces S7 W (R%)
defined by

dn(SyW (TY), Ly(T?)) = inf sup inf ||f — g|Ly(T?)]|. (D.1)
g@gﬁ‘i) £S5 W (Td)||<1 9€A

Theorem D.26. Let 1 < p,q < oo and

. (%_%ﬁ D 1<p<qg<L2orl<g<p<oo,
max %’zl?} . otherwise,

as in (8.3.2). Then
dn(STW(T), L(T%) = (m~ " logh ™t m)r=Gmedz g

Proof. The proof with every single case has a history of more than 20 years. For an
overview we refer to [33, Section 4.3]. O

Theorem D.27. Let 1 < p <2 and r > 1 satisfying (8.3.2). Then
An(STW (TY), Loo(T%) = 05 log=bri g,

Proof. We refer to [78, Theorem 2.14] and the references therein. O
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