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Zusammenfassung und Danksagung

Funktionen liefern einen der wichtigsten Bausteine innerhalb von Modellbeschreibungen
der Wirklichkeit. Zentraler Gegenstand dieser Arbeit ist die Diskretisierung bzw.
Approximation hochdimensionaler Funktionen mit dominierend gemischter Glattheit,
welchen u.a. eine wichtige Bedeutung innerhalb der Quantenchemie zugeschrieben
wird [128]. Wir möchten solche Funktionen mittels der Kenntnis einzelner diskreter
Funktionswerte bestmöglich approximieren.

Im ersten Teil der Arbeit führen wir die Skalen der Besov-Triebel-Lizorkin Räume
ein, wiederholen elementare Eigenschaften und diskutieren später benötigte Charakter-
isierungsmöglichkeiten ebendieser. Im Anschluss verlagert sich unser Fokus im vierten
Kapitel auf das von G.Faber [38] 1908 eingeführte System von Hutfunktionen. Triebel
legte mit seinem 2010 erschienenen Werk [120] den Grundstein, Besov-Räume do-
minierend gemischter Glattheit mit Hilfe des Abfallverhaltens von Koeffizienten der
zugehörigen Faber-Schauder Entwicklungen zu beschreiben. Diese Theorie greifen wir
auf und erweitern sie um die Sobolev-Triebel-Lizorkin Räume. Neu entwickelte Tech-
niken erlauben es uns, die in [120] als Vermutung formulierten Charakterisierungsaus-
sagen zu belegen.

Schneidet man für eine hinreichend glatte Funktion eine solche Entwicklung über
Dilatationen und Translationen von Hutfunktionen endlich ab, so erhalten wir eine Ap-
proximation der Funktion, deren Koeffizienten auf Abtastwerten basieren. Im 5. Kapi-
tel nutzen wir die gewonnenen Charakterisierungsresultate um Dünngitterapproximation
[129] auf Basis des Faber-Schauder Systems zu untersuchen. Wir stellen fest, dass der
untersuchte Algorithmus der asymptotisch Optimale für Abtastwerte, gewonnen auf
Dünngitterpunkten, ist. Wir messen Approximationsfehler zum einen in der Norm
von Lebesgue-Räumen Lq([0, 1]d) als auch in der Energie-Norm H1([0, 1]d). Für letz-
tere beweisen wir Resultate auf Basis eines schärferen Optimalitätskriteriums, dem
sogenannten worst-case Fehler für Standard Information [84, 85, 86].

Im sechsten Kapitel verändert sich unser Fokus. Während wir in den bisheri-
gen Kapiteln weitestgehend lineare Approximationsmethoden betrachtet haben, ver-
lassen wir diese nun. Wir fragen nach der besten Approximation einer Funktionen-
klasse mittels Linearkombinationen von m translatierten und dilatierten Hutfunkti-
onen. Dies nennt man beste m-Term Approximation, bezüglich des Faber-Schauder
Systems. Interpretiert werden kann diese Quantität unter anderem als ein Maßstab für
die Komprimierbarkeit von Funktionenklassen. Betrachten wir dieses Problem näher,
so ist es vorerst gar nicht mehr notwendig über den Begriff der Information zu reden.
Wir bewerten Linearkombinationen von Hutfunktionen anhand ihrer Größe und des
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zugehörigen Approximationsfehlers. Abhängig vom Fehlerkriterium im Zielraum liefern
nichtlineare Approximationsmethoden dünnere (sparse) Darstellungen bei geringeren
Approximationsfehlern, als dies vergleichsweise für lineare Dünngitterapproximatenmethoden
der Fall ist. Faber-Schauder Charakterisierungen erlauben uns, Probleme aus kom-
pliziert zu handhabenden Funktionenräumen auf einfachere Folgenräume zu übertragen.
Als besonders interessant erweisen sich so genannte kleine Glattheiten, bei denen die
asymptotische Approximationsrate nicht von der zugrundeliegenden Dimension des
Funktionenraumes abhängt. Wir präsentieren konstruktive nichtlineare Verfahren, die
es in einem geeigneten Sinne erlauben, als Abtastalgorithmen interpretiert zu werden.

Im letzten Teil der Arbeit wechseln wir in den klassischen Fall mit periodischen
Randbedingungen. Wir beweisen neue trigonometrische Charakterisierungen, die weder
in der Glattheit nach oben, noch in der Integrierbarkeit der Modellfunktionen nach
unten beschränkt sind. Schließlich nutzen wir bestehende Resultate zum Verhalten di-
verser s-Zahlen [90], um die Optimalität für die Lq-Approximation mittels Dünngitter-
sampling im Sinne des worst-case Fehlers für Standard Information zu bewerten und
einen Vergleich zur Approximation mittels allgemeinerer linearer Information herzustellen.
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Chapter 1

Introduction

Many applications in engineering, science, and statistics require inter- or extrapolation
from data. Generic examples are computer-based simulations [52], data mining [58], or
forecasting [92]. Indispensable foundation in every such situation is a mathematical or
statistical model. It allows to represent the underlying real-world phenomenon or at
least some simplification thereof in a way suitable for computation and mathematical
analysis. The model formulation very often involves multivariate functions

f(x1, ..., xd), x = (x1, ..., xd) ∈ Ω ⊆ Rd,

where the dimension d may be very large. The problem of inter- and extrapolation then
is to find a function which fits the given data in a suitable sense. Problems of this kind
are so versatile that several mathematical disciplines are devoted to them. Each uses
its own language. In approximation theory and numerical analysis, the terms function
identification, function recovery, and function reconstruction are common. Statisticians
speak of regression, function estimation or function fitting. To learn a function is a
widely used phrase in machine learning and statistical learning theory.

1.1 Functions with bounded mixed derivative or

difference

A practically highly relevant model assumption is based on a bounded mixed derivative.
The most classical space of functions with bounded mixed derivatives is the Sobolev
space Hr

mix. The space consists of L2-functions f such that certain weak derivatives
Dγf = ∂γ1

x1
· · · ∂γdxdf are bounded in L2. The most natural norm on Hr

mix is the classical
Sobolev norm with dominating mixed smoothness,

‖f‖2
Hr

mix
:=

∑
0≤γi≤r
i=1,...,d

‖Dγf‖2
2 <∞.

Note that this space can be defined via other equivalent norms.
As we will see in this thesis forms of dominating mixed smoothness fit very well

to the application of sparse grid techniques [8]. Sparse grids are nowadays widely
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CHAPTER 1. INTRODUCTION

applied to tackle high-dimensional approximation and recovery problems. Modern
examples include multivariate density estimation [51], reconstruction of manifolds [40],
and uncertainty quantification [13, 82].

The electronic Schrödinger equation. This is the most prominent example where
the regularity theory provides bounded mixed smoothness properties [128]. Numerical
solutions of the electronic Schrödinger equation are of growing interest in computational
chemistry. These allow to deduce chemical properties of molecules from computer
simulations with high scientific validity. In the Born-Oppenheimer model [52], the wave
functions depend on the spatial positions of the molecule’s electrons x(1), . . . ,x(N) ∈ R3.
The spatial positions of the molecule’s nuclei b(1), . . . , b(K) ∈ R3 are fixed parameters.
Thus the dimension d = 3N of the wave function’s domain increases with the number of
electrons. This leads to very high-dimensional recovery problems already for molecules
of moderate size. The wave functions are determined by an eigenvalue problem which
represents the stationary Schrödinger equation,

Hf = λf (1.1.1)

with the electronic Hamilton operator

H = −1

2

N∑
i=1

∆i −
N∑
i=1

K∑
k=1

Zk

‖x(i) − b(k)‖
+
∑
i 6=j

1

‖x(i) − x(j)‖
.

Some of the physically admissible eigenfunctions (solutions of (1.1.1)) do not possess
C∞-regularity, but all have mixed hybrid type regularity H t,s

mix, where t > 0 governs
the mixed smoothness and s > 0 the isotropic regularity [128].

Quasi-Monte Carlo methods. This methods are a second way to naturally take
benefit of a bounded mixed derivative. We consider the problem of approximating
the integral of a sufficiently often differentiable d−variate function f by an average
over function values taken at nodes Xn = {t1, . . . , tn} which are chosen in advance.
Hlawka-Zaremba [62] showed the following identity

1

n

n∑
k=1

f(tk)−
∫

[0,1]d
f(x)dx =

∑
u⊂[d]

(−1)|u|
∫

[0,1]|u|
disc(Xn,xu)

∂|u|f(xu, 1)

∂xu
dxu

where

disc(Xn,x) := x1 · · · · · xd −
1

N

N∑
i=1

χ[0,x](ti), x ∈ [0, 1]d ,

is the discrepancy function. This leads to the well-known L2-version of the Koksma-
Hlawka inequality∣∣∣ 1

n

n∑
k=1

f(xk)−
∫

[0,1]d
f(x)dx

∣∣∣ ≤ ‖f‖d · discd(Xn) ,
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where

‖f‖d =
(∑
u⊂[d]

∫
[0,1]|u|

∣∣∣∂|u|f
∂xu

(xu, 1)
∣∣∣2 dxu)1/2

and

discd(Xn) =
(∑
u⊂[d]

∫
[0,1]u

disc(Xn,xu)
2dxu

) 1
2
.

Clearly, the summands on the right hand side access all mixed derivatives of order 1
in each direction. Assuming this regularity of the function it remains to study the
behavior of the discrepancy function for the convergence analysis.

Best m-term approximation. Finally a third way to motivate the concept of
bounded mixed derivatives/differences is best m-term approximation. Starting with
a univariate wavelet system {ψj,k} with sufficiently many vanishing moments and
smoothness we consider its d-variate tensorization over all scales represented by the
following dictionary

Ψ = {ψj,k = ψj1,k1 ⊗ · · · ⊗ ψjd,kd : j = (j1, ..., jd) ∈ Nd0,k = (k1, ..., kd) ∈ Zd} .

Now we ask for the best m-term approximation space Aαq (Lp(Rd)) defined by

Aαq (Lp(Rd)) =
{
f ∈ Lp(Rd) :

( ∞∑
m=0

[mασm(f,Ψ)p]
q 1

m

)1/q

<∞
}
.

Based on classical results for `p spaces, see Pietsch [89], DeVore [18] and also Temlyakov
[114], it was shown in [105], [54] that in the special case q < p = 2 and α = 1/q − 1/2
this approximation space can be identified as follows

Aαq (L2(Rd)) = S1/q−1/2
q,q B(Rd) ,

which represents a dominating mixed counterpart of an isotropic result by DeVore and
Popov [20]. The space on the right-hand side represents a space with bounded mixed
difference (Besov space with dominating mixed smoothness, see Chapter 3 below).

Best m-term approximation (also called sparse approximation) will also play a role
in this thesis. We consider indeed a wavelet type dictionary, the tensorized Faber-
Schauder system. In contrast to classical wavelet systems the Faber-Schauder system
does not provide vanishing moments, which causes severe technical difficulties. However
due to coefficient functionals based on discrete point evaluations this system is highly
relevant for applications.

1.2 Sparse grid approximation using the hierarchi-

cal Faber basis

Approximation of univariate functions. Already in 1909 G. Faber proved in
[38] that every univariate continuous function f on [0, 1] can be represented (uniform

3



CHAPTER 1. INTRODUCTION

convergence) as a superposition of hat functions vj,k (see Definition 4.1) in the following
way

f = f(0)v−1,0 + f(1)v−1,1 −
1

2

∑
j∈N0

2j−1∑
k=0

∆2
2−(j+1)f(2−jk)vj,k. (1.2.1)

The required information of the function f to compute such a series expansion is only
a discrete set of function values taken at the nodes {2−jk : j ∈ N0, k ∈ Z}. Due to
limited storage and computing resources in real life applications we may work with a
truncated series

F 1
Mf =

M∑
j=−1

∑
k∈Dj

dj,k(f)vj,k. (1.2.2)

This requires a priori knowledge of the truncation error. For functions belonging to the
unit ball of the isotropic smoothness class W 1

2 ([0, 1]) it is well-known [120, Theorem
4.11] that

sup
‖f |W 1

2 ([0,1])‖≤1

‖f − F 1
Mf |L2([0, 1]d)‖ � 2−M

holds, where n = 2M + 1 is the number of sample points {k/2M : 0 ≤ k ≤ 2M} used by
F 1
Mf .

Approximation of d-variate functions. According to [106] the Sobolev space of
dominating mixed smoothness S1

2W (Rd) can be written as the tensor product of uni-
variate isotropic Sobolev spaces

S1
2W (Rd) = W 1

2 (R)⊗ · · · ⊗W 1
2 (R),

which, in particular, contains linear combinations of functions of the form (rank-1-
tensor)

f(x) :=
d∏
i=1

fi(xi), fi ∈ W 1
2 (R), x ∈ Rd.

Dealing with tensorized hat functions

vj,k(x) :=
d∏
i=1

vji,ki(xi), x ∈ [0, 1]d,

one may use the operator

Gd
Mf :=

∑
|j|∞≤M

∑
k∈Dj

dj,k(f)vj,k

to approximate the d-variate function f using samples on a so-called full grid GfullM :=
{k2−M : 0 ≤ ki ≤ 2M , i = 1, . . . , d} with cardinality |GfullM | � 2Md. With techniques
presented in this thesis it is not hard to show that

‖f −Gd
Mf‖2 . 2−M (1.2.3)

4



Figure 1.1: Tensorized hat functions

holds for f belonging to the unit ball of S1
2W ([0, 1]d). Consequently, the asymptotic

rate of convergence (in terms of the number of sampling nodes) becomes worse (1/d)
with increasing problem dimensions d.

Smolyak’s algorithm. An approach which overcomes this issue to some extent goes
back to 1963 and started with Smolyak [108] who considered uniform approximation
of multivariate functions with mixed smoothness on the basis of function values. He
introduced an influential construction which is nowadays known as Smolyak’s algorithm

TM [L]f :=
∑
j∈Nd0
|j|1≤M

(Lj1 − Lj1−1)⊗ ...⊗ (Ljd − Ljd−1)f , M ∈ N , (1.2.4)

where the (Lj)j∈N0 represent univariate approximation operators (put L−1 := 0). For
more historical comments see [33, Sect. 5]. When applied to F 1

N this construction
yields a powerful sampling (interpolation) operator for the multivariate case taking
points from a so-called sparse grid. We obtain

F d
Mf(x) := TM [F 1]f(x) =

∑
|j|1≤M

∑
k∈Dj

dj,k(f)vj,k(x) ,

which means we take all Faber-Schauder levels with |j|1 ≤ M instead of |j|∞ ≤ M .
This operator samples on a sparse grid GsparseM := {(2−j1k1, . . . , 2

−jdkd) : |j|1 ≤ M, 0 ≤
ki ≤ 2ji , i = 1, . . . , d}. The notion sparse grid is due to Zenger [129] and comes from
the fact that |GsparseM | � 2MMd−1 instead of |GfullM | � 2Md.
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Figure 1.2: Sparse grid d = 2, M = 6

This construction allows to prove the approximation rate

sup
‖f |S1

2W ([0,1]d)‖≤1

‖f − F d
Mf |L2([0, 1]d)‖ . 2−MM

d−1
2 .

Compared to (1.2.3) the convergence rate in M behaves similar, even a little worse.
However, the sparse grid contains a significantly less number of sampling nodes n. In
fact, taking this into account, the error bound can be written as follows

sup
‖f |S1

2W ([0,1]d)‖≤1

‖f − F d
Mf |L2([0, 1]d)‖ . n−1 logd−1 n(logd−1 n)

1
2

whereas
sup

‖f |S1
2W ([0,1]d)‖≤1

‖f −Gd
Mf |L2([0, 1]d)‖ � n−

1
d .

Hence, using the Smolyak approach, the asymptotic rates depend only in the compar-
atively small logarithm of n on d. Considering a trigonometric sampling operator the
rate stated here was first observed by Sickel [102] (d = 2). Later it was extended by
Sickel, Ullrich [103, 104] to d > 2. For more general approximation problems effects
like this have been discovered much earlier in the former Soviet Union, [112, 41]. In
the context of the Faber-Schauder system a similar result was discovered in [8] for H2

mix

with a slightly worse log-exponent. The result above can be found as a special case in
[29], [107] and [120]. Let us additionally mention the following references dealing with
sparse grids in an applied context [87, 8, 47, 43].

New sparse grid error bounds in Lq. The focus in the current thesis is on sparse
grid approximation with the hierarchical Faber basis in Sobolev spaces SrpW ([0, 1]d)
(including p 6= 2) where we measure approximation errors in spaces Lq([0, 1]d) with
1 < p < q <∞. Our main result reads as follows

sup
‖f |SrpW ([0,1]d)‖≤1

‖f − F d
Mf |Lq([0, 1]d)‖ � 2−M(r− 1

p
+ 1
q

)

for 1 < p < q < ∞, 1
p
< r < 2 + 1

p
− 1

q
. The limiting case r = 2 + 1/p − 1/q can

be incorporated to the expense of an additional logarithmic term Md−1 . We show

6



that our error analysis is optimal in the asymptotic sense and that all algorithms using
samples from a sparse grid can not beat this rate. Moreover, if 1 < p < q ≤ 2 or
2 ≤ p < q < ∞ then the operator F d

M is asymptotically optimal among all sampling
algorithms. Of special interest is the important case q =∞. Here we prove

sup
‖f |SrpW ([0,1]d)‖≤1

‖f − F d
Mf |L∞([0, 1]d)‖ � 2−M(r− 1

p
)M (d−1)(1− 1

p
)

for 1 < p < ∞ and 1
p
< r < 2 + 1

p
. This improves on the rates for Faber-Schauder

approximation stated in [120] significantly, which were obtained via embeddings from
Besov spaces. Up to now Sobolev spaces SrpW ([0, 1]d) with fractional smoothness r
were hard to handle directly in this context. We transferred the method of sparse
representations or sampling representations, originally introduced by Dinh Dũng [29,
25, 26, 9] to Sobolev spaces, which allows for proving sharp estimates.

Reconstruction guarantees in the energy norm. Our second main interest in
this thesis are error bounds in the energy norm H1([0, 1]d). The interest in this setting
is motivated by the numerical solution of PDEs using Galerkin methods. Assume we
have a PDE in variational notation

a(u, v) = (f, v), for all v ∈ H1 , (1.2.5)

with
a(u, v) ≤ λ‖u|H1‖‖v|H1‖ and a(u, u) ≥ µ‖u|H1‖2.

In order to get an approximate numerical solution we can consider the same problem
on a finite dimensional subspace Vh ⊂ H1

a(uh, v) = (f, v), for all v ∈ Vh. (1.2.6)

The Lax-Milgram theorem [73] yields that the problems (1.2.5) and (1.2.6) have unique
solutions u∗ and u∗h, which by Céa’s lemma [12], satisfy the inequality

‖u∗ − u∗h|H1‖ ≤ λ

µ
inf
v∈Vh
‖u∗ − v|H1‖.

One can bound the H1([0, 1]d) discretization error by best approximations from the
discretization subspace. The error of best approximation for the embedding

Sr2W (Td)→ H1(Td)

including the explicit dimensional dependence of the constants were investigated in [34].
We follow the approach in [8] and consider sampling approximation for this embeddings
in the non-periodic case and show for a sampling operator Ed

M which samples functions
f on a energy sparse grid GenergyM := {(2−j1k1, . . . , 2

−jdkd) : r|j|1 − |j|∞ ≤ M, 0 ≤ ki ≤
2ji , i = 1, . . . , d} with cardinality |GenergyM | � 2

M
r−1 the asymptotical rate

sup
‖f |Sr2W [0,1d]‖≤1

‖f − Ed
Mf |H1([0, 1]d)‖ � 2−M ,

7



CHAPTER 1. INTRODUCTION

whenever 1/2 < r ≤ 2. In other words, with n samples we produce an asymptotical
convergence rate of n−(r−1). This result has been first stated by Bungartz and Griebel
[8] (in case p = 2) but their proof contained some problematic arguments.

In addition, we show that this rate is optimal. Indeed, there is no better algo-
rithm (in the sense of (1.4.2) below) using n samples having a better convergence rate
than Ed

M . Actually we can prove even more, namely there is no algorithm using n
pieces of linear information of f providing a better convergence rate. In fact, optimal
approximation is realized by sampling.

1.3 Constructive m-term approximation with the

Faber-Schauder dictionary

Whereas for Smolyak sparse grid and energy sparse grid operators the (linear) infor-
mation map is fixed in advance for the whole class of functions we will also consider a
different approach. We are interested in approximation methods based on non-linear
algorithms especially with (adaptively) chosen samples. A possible way is to consider
best m-term approximation (or sparse approximation) with respect to a given dictio-
nary. For a given countable set D ⊂ Y , called dictionary, the algorithms we consider
map to a finite linear combination of elements contained in this dictionary. A first ob-
vious question is the convergence rate of such linear combinations measured in terms of
elements contained in this linear combination. This can be measured by the following
benchmark quantity

σm(F ,D)Y := sup
‖f |F ‖≤1

inf
λ,

(bj)j∈N⊂D
(λj)j∈N⊂C

∥∥∥f − m∑
j=1

λjbj

∣∣∣Y ∥∥∥, (1.3.1)

called best m-term approximation. For general notions and results on non-linear ap-
proximation we refer to the survey [18]. In our case F will be a Besov-Triebel-Lizorkin-
Sobolev space, Y a Lebesgue space and D the set containing all translated and dilated
Faber-Schauder hat functions. Then this quantity describes the (nonlinear) approx-
imability of functions f belonging to the unit ball of a Besov-Triebel-Lizorkin-Sobolev
space by linear combinations of m hat functions. From a numerical point of view
these quantities can be interpreted as benchmark results for data compression issues
which use only the function values used to compute the Faber-Schauder coefficients.
A possible strategy storing a function f in a computer is provided by decomposing
this function into (infinitely many) “simple” functions like wavelets or in our case hat
functions belonging to the Faber-Schauder dictionary and storing only a finite number
of the corresponding coefficients (e.g. the m biggest ones, all coefficients that are bigger
than a certain threshold,...). This means for a fixed dictionary decomposition the best
m-term approximation width serves as a benchmark quantity for the minimal error
of the approximation of f by a function build on the compressed data. In the first
sections it was already motivated that the Faber-Schauder dictionary Fd is a proven
object in numerical analysis. In [44] and [45] it is used for (compressed) representation
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of topographic and landscape data. A main advantage compared to most wavelet type
dictionaries is the simple structure of the single hat functions. It allows to write a
continuous multivariate function f ∈ C([0, 1]d) as a series

f =
∑
j∈Nd−1

∑
k∈Dj

dj,k(f)vj,k

with (conditional) convergence in C([0, 1]d), where the coefficients dj,k(f) are tensorized
2nd order differences (see (4.1.2)). Indeed, each coefficient can be computed exactly by
the knowledge of at most 3d function values of f at certain points in [0, 1]d. In contrast,
(hyperbolic) wavelet representations (cf. [19]) require the evaluation of L2(Rd) inner-
products, which means integrating and extending products of f over Rd. Assuming
the real number model, in general this can be done only approximatively by numerical
integration, whereas it can be computed exactly in case of the Faber Schauder dictio-
nary. Nevertheless from a combinatorial point of view sequence spaces used to compute
results for wavelet type dictionaries are very similar to the discretization spaces for the
Faber-Schauder dictionary. For this reason our results are related to results known for
Daubechies wavelets [54, 55, 56], Dirichlet kernels [3, 4], de la Vallée Poussin kernels
[27, 28], Meyer wavelets [5] and Haar wavelets [109, 110]. A more detailed overview is
given in [33, Section 7.2]. A second very popular type of dictionary studied in literature
is the trigonometric system T d = {eikx : k ∈ Zd}. Here we refer to [115, 112, 95, 63, 6]
and [33, Section 7.5]. Studying σm(SrpW (Td), T d)Lq(Td) in case 1 < p < q ≤ 2 it turns
out that this system is less powerful compared to wavelet type dictionaries.

The case of large smoothness. Based on the Faber-Schauder representations we
provide a constructive procedure depending on the parameters r, p, θ and d below which
computes a m-term approximation realizing the following rates.

σm(Srp,θF ([0, 1]d),Fd)L∞([0,1]d) = sup
‖f |Srp,θF ([0,1]d)‖≤1

σm(f,Fd)L∞

. m−r(logd−1m)r+(1− 1
θ

)

(1.3.2)

in case of 0 < p, θ ≤ ∞ and max{1
p
, 1
θ
} < r < 2. Furthermore,

σm(Srp,θB([0, 1]d),Fd)L∞([0,1]d) . m−r(logd−1m)r+(1− 1
θ

) (1.3.3)

in case max{1
p
, 1
θ
− 1} < r < 2. Note, that in case θ = 2 and 1 < p < ∞ we may

identify
Srp,θF ([0, 1]d) = SrpW ([0, 1]d)

in the sense of equivalent norms which gives the important special case

σm(SrpW (Rd),Fd)L∞([0,1]d) . m−r(logd−1m)r+1/2 , (1.3.4)

whenever 1/p < r < 2. Surprisingly, we are able to extend the result to the limiting
case r = 2 on the expense of a additional logarithm and obtain

σm(S2
pW ([0, 1]d),Fd)L∞ . m−2(logd−1m)3 . (1.3.5)

9



CHAPTER 1. INTRODUCTION

The above mentioned procedure is constructive. Indeed, for a given function f
and a desired accuracy the following level-wise greedy strategy works. We take a
prescribed (finite) number of samples of the function at dyadic grid points. From
this data we compute a finite number of Faber-Schauder coefficients of f . Following
a levelwise greedy selection strategy we store the most important ones to build the
approximating m-term. The fact that only function values of f are used allows to
interpret the presented algorithm as a non-linear sampling algorithm. In [88] so called
spatially adaptive sparse grids were considered. The output of our algorithms allows an
interpretation as an approximant that contains samples generated on such a adaptively
refined sparse grid.

New results in the small-smoothness regime. Considering the class of Besov
functions in the quasi-Banach fine index range 0 < θ < 1 the approximation rates
stated above can be complemented by the following surprising result

σm(Srp,θB([0, 1]d),Fd)L∞([0,1]d) � m−r

in cases 1
p
< r < min{2, 1

θ
− 1} or 1

p
< r = 1

θ
− 1 < 2 without a d-dependent log-

arithmic term in the rate. Note that this result is sharp and is not even known for
wavelet dictionaries. To our knowledge this is one of the first known sharp results
concerning non-linear L∞-approximation in the case of spaces with dominating mixed
smoothness. Furthermore, the asymptotic approximation rate coincides with that of
the univariate case, where one approximates Br

p,θ([0, 1]) functions in L∞([0, 1]) by the
univariate Faber-Schauder dictionary.

1.4 Optimal sampling recovery of multivariate func-

tions with higher regularity

The limited regularity of hat functions are responsible for the fact, that the convergence
rates can not exceed 2. These limitations do not apply to the periodic setting which has
been intensively studied in the former Soviet Union. We provide new trigonometric
characterizations that are able to overcome the regularity restrictions. Additionally
we focus towards information based complexity issues, i.e. sharp lower bounds. We
ask for the worst case error of the best possible approximation of a function f while
having standard information at n sampling nodes. A generalized quantity is provided
by (linear) sampling widths for a class F ↪→ C([0, 1]d) into a (quasi)-Banach space Y ,
which measure the minimal worst-case error for the (linear) sampling recovery problem
with n points. To be more precise, we compare the performance of a optimal sampling
algorithm with the linear sampling widths

%lin
n (F , Y ) := inf

Xn
inf
Ψn

sup
‖f |F ‖≤1

∥∥∥f − n∑
i=1

f(xi)ψi(·)
∣∣∣Y ∥∥∥ , n ∈ N , (1.4.1)

where the sampling nodesXn := {xi}ni=1 ⊂ [0, 1]d and associated (continuous) functions
Ψn := {ψi}ni=1 determine a linear sampling recovery algorithm which is fixed in advance
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for a class F of multivariate functions on [0, 1]d. Here the error is measured for instance
in Y = Lq([0, 1]d). Let us emphasize that in (1.4.1) we restrict to linear recovery
algorithms, whereas we admit general recovery algorithms ϕ : Cn → Lq in the definition
of the (non-linear) sampling widths

%n(F , Y ) := inf
ϕ,Xn

sup
‖f |F ‖≤1

‖f − ϕ(Xn(f))|Y ‖, (1.4.2)

which is also denoted as the worst-case error for standard information, see [84, Sect.
4.1]. Here Xn(f) := (f(x1), f(x2), . . . , f(xn)) denotes a linear information mapping
and ϕ : Cn → Y a (non-linear) reconstruction map. This quantities are bounded from
below by Gelfand n-widths

cn(F , Y ) := inf
B: F→Cn
linear

sup
‖f |F ‖≤1
f∈kerB

‖f |Y ‖ (1.4.3)

This widths describe the maximal distance of 2 functions f, g ∈ F in Y for that a
non-trivial information mapping In exists with

In(f) = In(g).

That means the information mapping does not see the difference between f and g. We
investigate the optimal sampling recovery problem for the embedding

id : Srp,θF (Td)→ Lq(Td) , (1.4.4)

where 0 < p < q ≤ ∞, 0 < θ ≤ ∞ and r > 1/p. Without loss of generality we assume

r = r1 = . . . = rµ < rµ+1 ≤ . . . ≤ rd <∞ , µ ≤ d. (1.4.5)

One of the main results in this section is the sharp rate of convergence

%lin
n (Srp,θF (Td), Lq(Td)) �

((log n)µ−1

n

)r−1/p+1/q

, n ∈ N , (1.4.6)

whenever 1 < p < q ≤ 2, 1 ≤ θ ≤ ∞ or 2 ≤ p < q < ∞, 2 ≤ θ ≤ ∞ and r > 1/p,
see Corollary 8.8 below. Our main contribution is the constructive upper bound which
holds true whenever 0 < p < q < ∞, 0 < θ ≤ ∞ and r > 1/p. This is complemented
by (see Theorem 8.4)

%lin
n (Srp,θF (Td), L∞(Td)) .

((log n)µ−1

n

)r−1/p

(log n)(µ−1)(1−1/p)+ , n ∈ N . (1.4.7)

The upper bounds are realized by an explicit family of interpolation operators TLm
using n � 2mmµ−1 function values on a (anisotropic) Smolyak grid, where the param-
eter L ∈ N refers to the polynomial decay of the univariate fundamental interpolant
(L = 1 Dirichlet kernel, L = 2 de la Vallée Poussin type kernels, L > 2 higher order
kernels). It turned out that, for the sampling recovery problem (1.4.4) and the upper
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CHAPTER 1. INTRODUCTION

bounds in (1.4.6), (1.4.7), (1.4.8), (1.4.9), the condition L > 1/q is sufficient, which
means that Smolyak’s algorithm (1.2.4) applied to the classical trigonometric interpo-
lation (based on the Dirichlet kernel (1.5.3)) does the job. For θ = p = 2 in (1.4.7) this
has been already observed in [9, Rem. 6.12].

Let us emphasize the important special case (θ = 2), where it holds the identification
Srp,θF (Td) = SrpW (Td) with the space of functions with bounded mixed derivative. As
a corollary from (1.4.6) we obtain the new sharp rate of convergence

%lin
n (SrpW (Td), Lq(Td)) �

((log n)µ−1

n

)r−1/p+1/q

, n ∈ N , (1.4.8)

in case 1 < p < q ≤ 2 or 2 ≤ p < q <∞ and r > 1/p which was unknown before. The
upper bound is achieved with sparse grid interpolation based on classical univariate
trigonometric interpolation. In particular, this improves on the bounds stated by
Triebel in [120, Thm. 4.15, Cor. 4.16] in case r = 1. The parameter domain where
(1.4.8) holds is shown in the left diagram, where the parameters α and β refer to the
following rate of convergence

%n(F , Lq) �
((log n)µ−1

n

)α
(log n)(µ−1)β.

The precise statements can be found in Sections 8.2, 8.3.
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Figure 1.3: Linear and non-linear sampling widths.

We mainly contributed to the upper bounds in the left figure. Most of the results
illustrated in the right figure for Hölder-Nikolskij spaces Srp,∞B(Td) of mixed smooth-
ness are well-known. Note that Open Problem 5.3 in [33] refers to the lower triangle in
the right Figure 1.3. A new approach of Malykhin and Ryutin [76] settled this ques-
tion for linear sampling recovery, cf. Corollary 8.12. We observed that their method
also bounds the Gelfand widths from below, cf. Theorem 8.19 and Corollary 8.20.
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Figure 1.4: The parameter α refers to the sharp rate ( (logn)µ−1

n
)α.

This yields the optimal order also for the non-linear sampling widths (1.4.2), which is
illustrated by the shaded lower triangles in Figure 1.3. The matching bound in the
right upper triangle for Srp,∞B(Td) were obtained by Dinh Dũng [25, 26]. The neces-
sary benchmark results on linear widths were obtained by Galeev [41, 42], Romanyuk
[94, 96], and the recent paper by Malykhin and Ryutin [76]. Note, that all sharp upper
bounds can be realized by Smolyak type operators (1.2.4), i.e. via linear interpola-
tion on sparse grids based on univariate Dirichlet interpolation, (1.5.2), (1.5.3). What
concerns Besov spaces with bounded mixed difference Srp,θB(Td) it is known that

%lin
n (Srp,θB(Td), Lq(Td)) �

((log n)µ−1

n

)r−1/p+1/q

(log n)(µ−1)(1/q−1/θ)+ , n ∈ N ,
(1.4.9)

if 1 < p < q ≤ 2, 1 ≤ θ <∞ and r > 1/p, see [33, Thm. 4.47, 5.15] and the references
therein. With our method we can show the upper bound in case 0 < p < q ≤ ∞,
0 < θ ≤ ∞ and r > 1/p, see Theorem 8.6, with interpolation operators providing
L > 1/q. Comparing to (1.4.6) there is a extra log-term in (1.4.9) in case of “large”
θ > q. There are still many open cases in this framework which actually lack the
suitable lower bounds. Let us refer to the works by Temlyakov [113, 117] and the more
recent papers Sickel, Ullrich [103, 104, 124], Dinh Dũng [29, 30], [9], as well as [33] and
the references therein for upper bounds in case p ≥ q and the question-marked region.
We emphasize that our technique allows to reproduce all those results, including the
upper bound in [113], within a few lines of proof.
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Figure 1.5: The parameters α and β refer to the sharp rate ( (logn)µ−1

n
)α(logµ−1 n)β.

In Open Problem 18 in [84, Sect. 4.2.4] the authors conjecture the equivalence
%lin
n � %n for all parameters 1 < p, q <∞ in case of isotropic Sobolev spaces W r

p (Ω) on
bounded Lipschitz domains Ω, see also Novak, Triebel [83] and Heinrich [59, Thms. 5.2,
5.3]. In the present paper we consider mixed smoothness periodic Sobolev embeddings.
In our case, the conjecture is true if 2 ≤ p < q < ∞ for both Sobolev and Hölder-
Nikolskij spaces, see the shaded regions in the diagrams above. In all other cases it
is not known. Our results also support the above conjecture in the mixed smoothness
setting. A similar statement as in [84, Rem. 4.18], namely the equivalence λn � %lin

n if
p < q are on the same side of 2 and λn = o(%lin

n ) if p < 2 < q is also true in our case.

1.5 Characterization in terms of discrete function

evaluations

In Definition 3.18 below we introduce periodic Besov-Lizorkin-Triebel spaces of mixed
smoothness via Fourier analytic building blocks δj [f ] generated by a dyadic decom-
position of unity. In this thesis we aim for function space characterizations where we
replace the building blocks δj [f ] by the blocks

qj [f ] = (Ij1 − Ij1−1)⊗ ...⊗ (Ijd − Ijd−1)f , j ∈ Nd0 , (1.5.1)

used in the classical Smolyak algorithm (see (1.2.4) above). Here the operators (Ij)j
are univariate interpolation operators

ILj [f ] =
2j−1∑
u=0

f
(2πu

2j

)
KL
π,j

(
· −2πu

2j

)
. (1.5.2)
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In a way we replace the usual convolution by a discrete one such that the building
blocks qLj [f ] are constructed out of � 2|j|1 function values. The parameter L ∈ N
refers to the decay of the fundamental interpolant KL

π,j, which represents a suitable
trigonometric polynomial of degree 2j and will be explicitly constructed in Section 7.
In case L = 1 we have the classical univariate nested trigonometric interpolation, where
K1
π,j := 2−jD1

j with D1
0 ≡ 1 and

D1
j (x) := D2j−1(x)− ei2j−1x = e−i(2

j−1−1)x e
i2jx − 1

eix − 1
, x ∈ T , (1.5.3)

for j ∈ N. The parameter L = 2 refers to de la Vallée Poussin type operators and
L > 2 to higher order kernels.

We will prove the following characterization for periodic Sobolev spaces of mixed
smoothness if r > max{1/p, 1/2} and 1 < p <∞

‖f |SrpW (Td)‖ �
∥∥∥(∑

j∈Nd0

22j·r|qLj [f ](·)|2
)1/2∣∣∣Lp(Td)∥∥∥ , (1.5.4)

where we may use L ≥ 1, i.e. Dirichlet type characterizations are admitted. This
result provides a powerful tool to deal with Sobolev embeddings SrpW (Td) in Lq(Td) .
Analyzing Smolyak’s algorithm (1.2.4) in this context has been a technical issue in the
past. With (1.5.4) and its counterpart for Triebel-Lizorkin spaces (1.5.5) it becomes a
straight-forward computation. Up to certain regularity restrictions this principle works
also in the non-periodic case for Faber-Schauder characterizations.

For Triebel-Lizorkin spaces we obtain the representation (see Theorem 7.14)

‖f |Srp,θF (Td)‖ �
∥∥∥(∑

j∈Nd0

2r·jθ|qLj [f ](·)|θ
)1/θ∣∣∣Lp(Td)∥∥∥ (1.5.5)

in case 0 < p < ∞, 0 < θ ≤ ∞, r > max{1/p, 1/θ} and L > max{1/p, 1/θ} (except
in the case θ = ∞ where L ≥ 2) . Note, that we encounter the well-known (and
infamous) condition r, L > max{1/p, 1/θ} (see also (1.5.4) for θ = 2), which is relevant
if p > θ. However, this condition is most likely optimal for the respective sampling
characterization. Note, that when replacing the classical smooth dyadic decomposition
of unity (see Def. 3.1) in the definition of the spaces (see Def. 3.2) by a non-smooth
variant like de la Vallée Poussin means, we would encounter the same condition on
L, which may not be improved as the recent findings in [14, 100, 101] indicate. In
addition, note, that in case of quasi-Banach spaces, where min{p, θ} < 1, we need to use
sampling kernels (1.5.2) of higher order L as the condition L > max{1/p, 1/θ} indicates.
Surprisingly, the de la Vallée Poussin type kernels work well for the characterization
(1.5.5) if 1/2 < p, θ <∞.

1.6 Structure of this thesis

This thesis is structured as follows. In Chapter 2 we provide the basic preliminar-
ies. In Chapter 3 we introduce Besov-Triebel-Lizorkin spaces with dominating mixed
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CHAPTER 1. INTRODUCTION

smoothness, state embedding results and provide equivalent ways of characterizing this
function spaces. Chapter 4 deals with the tensorized Faber-Schauder system as a basis
in C(Rd). Later in this chapter we provide characterizations of Besov-Triebel-Lizorkin
smoothness spaces by decreasing properties of the corresponding Faber-Schauder coef-
ficients. In Chapter 5 we use this characterizations to study sparse grid approximation
for Sobolev spaces. We consider optimality by computing sharp bounds for sparse grid
sampling widths. Additionally we deal with energy norm sampling and prove optimal-
ity in terms of the worst case error for standard information. In Chapter 6 we change
the point of view and consider best m-term approximation, first in sequence spaces and
later for Besov-Triebel-Lizorkin functions with respect to the Faber-Schauder dictio-
nary. We provide a new constructive approximation strategy dealing with the case of
small smoothness. Chapter 7 and 8 generalize the ideas obtained in Chapter 4 and 5 for
higher smoothness and broader function classes in the periodic context. We provide a
new class of periodic sampling kernels with arbitrary fast decreasing properties. We do
a intensive optimality consideration for sampling recovery using results for s-numbers.
We compare optimality for linear methods with optimality for non-linear methods.

1.7 Contributions of this thesis

This thesis is concerned with the representation and approximation of functions with
dominating mixed smoothness by sampling values. We supplemented to the picture
of several types of quantities measuring the performance of sampling approximation
in Sobolev-Triebel-Lizorkin and Hölder-Nikolskij spaces. Whereas classical theory is
mostly done in the periodic case the first part of this thesis presents results on the
d-variate unit cube. The contributions of this thesis can be summarized as follows.

• We extend the theory of sampling representations introduced by Dinh Dũng [25,
29] to technically difficult to handle Sobolev-Triebel-Lizorkin spaces Srp,θF ([0, 1]d).
We prove the main parts of Conjecture 3.20 in [120] concerning the Faber-
Schauder system.

• We study numerically important sparse grid approximation as an application of
Faber-Schauder sampling representations. This includes considerations for energy
norm sampling. Especially we provide a proof where we can prevent using some
critical arguments that were stated in [8, Theorem 3.8].

• We provide the exact rate for %n(SrpW (Td), Lq(Td)) in case 1 < p < q < 2, r > 1
p
.

• We study the Faber-Schauder dictionary in the context of best m-term approxi-
mation and achieve optimal rates in the case of small smoothness. We supplement
a new constructive approximation strategy.

• We present a new scale of trigonometric sampling kernels that can handle Srp,θF (Td)
for arbitrary small integrability, fine index parameters p, θ > 0 and arbitrary large
smoothness r > max{1

p
, 1
θ
}.
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Chapter 2

Preliminaries

2.1 Notation

As usual N denotes the natural numbers, N0 := N ∪ {0}, Z denotes the integers, R
the real numbers, and C the complex numbers. The letter d is always reserved for
the underlying dimension in Rd,Zd etc. With Td we denote the torus represented by
the interval [−π, π]d, where opposite points are identified. Elements x,y, r ∈ Rd are
always typesetted in bold face. We denote with x ·y the usual Euclidean inner product
in Rd. For a ∈ R we denote a+ := max{a, 0} and a− := min{a, 0}. For 0 < p ≤ ∞ and
x ∈ Rd we denote |x|p := (

∑d
i=1 |xi|p)1/p with the usual modification in the case p =∞.

By x = (x1, . . . , xd) > 0 we mean that each coordinate is positive. For j ∈ Nd0 we use
the notation 2j = (2j1 , . . . , 2jd), 2j = 2j1 · . . . · 2jd . If X and Y are two (quasi-)normed
spaces, the (quasi-)norm of an element x in X will be denoted by ‖x|X‖. If T : X → Y
is a continuous operator we write T ∈ L(X, Y ). The symbol X ↪→ Y indicates that the
identity operator from X to Y is continuous. For two sequences (an)∞n=1, (bn)∞n=1 ⊂ R
we write an . bn if there exists a constant c > 0 such that an ≤ c bn for all n. We will
write an � bn if an . bn and bn . an and use the Landau symbol (an)n = o((bn)n) :⇐⇒
limn→∞ an/bn = 0. We use In addition, we use the following notation [d] := {1, . . . , d},
Zd(e) := {k ∈ Zd : ki = 0 : i /∈ e}, Nd0(e) := {k ∈ Nd0 : ki = 0 : i /∈ e} where
e ⊂ [d], σp := max{0, 1

p
− 1}, σp,θ := max{0, 1

p
− 1, 1

θ
− 1}, where 0 < p, θ ≤ ∞.

For a ∈ Z and `, j ∈ Zd we use the notation ` > a :⇐⇒ `i > a for all i ∈ [d] and
` > j :⇐⇒ `i > ji for all i ∈ [d].

2.2 Distributions

Let Ω ⊂ Rd be a domain (meaning open connected set). We introduce the space of
test functions as the set of all compactly supported infinitely many times differentiable
functions f : Ω → C. We define a topology in D(Ω) by the convergence of sequences.
We say (fj)j∈N ⊂ D(Ω) converges to f ∈ D(Ω) if there is a compact set K ⊂ Ω such
that

(i) supp fj ⊂ K, j ∈ N

17
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(ii) Dαfj → Dαf uniformly for all multiindices α ∈ Nd0.

As the topological dual we define the space D′(Ω) as the set of all linear functionals

f : D(Ω) → C for that ϕj
D(Ω)−−−→ ϕ implies f(ϕj)

C−→ f(ϕ). We use the weak topology
for D′(Ω). That means (fj)j∈Nd0 ⊂ D′(Ω) converges to f in D′(Ω) if and only if

fj(ϕ)→ f(ϕ)

in C for all ϕ ∈ D(Ω). We introduce the locally convex Schwartz space of infinitely
times differentiable fast decreasing functions by

S(Rd) := {f ∈ C∞(Rd) : ‖f‖α,β <∞,∀α,β ∈ Nd0}

with

‖f‖α,β := sup
x∈Rd

d∏
i=1

(1 + |xi|)βi|Dαf(x)|.

A trivial extension by zero yields D(Ω) ↪→ S(Rd) with both a set theoretical and
topological interpretation. The topological dual of S(Rd) is denoted by S ′(Rd) and is
called the space of tempered distributions. It consists of all continuous linear mappings
f : S(Rd) → C. Such a mapping is continuous if and only if there exists α,β ∈ Nd0
and C > 0 such that

|f(ϕ)| ≤ C‖ϕ|S(Rd)‖α,β
for all ϕ ∈ S(Rd). The space S ′(Rd) is equipped with the weak topology. That means a
sequence (fj)j∈N ⊂ S ′(Rd) converges to f ∈ S ′(Rd) if and only if limj→∞ fj(ϕ) = f(ϕ)
in C for all ϕ ∈ S(Rd). A locally integrable function f is interpreted as a distribution
by

f(ϕ) =

∫
Rd
f(x)ϕ(x)dx. (2.2.1)

A distribution f is called regular if there is a locally integrable function f̃ such that
(2.2.1) holds with f̃ on the right hand side for all test functions ϕ. If f ∈ S ′(Rd) is
a tempered distribution then the restriction f |Ω denotes the restricted mapping f to
D(Ω).

Now we turn to the periodic situation on Td = [−π, π]d and introduce the space of
test functions D(Td). It consists of all infinitely times differentiable functions f on Rd
where opposite points are identified, i.e. f(x) = f(x+2πk) for all x ∈ Td and k ∈ Nd0.
It’s topology is generated by the family of norms

‖f |D(Td)‖N =
∑
|α|1≤N

‖Dαf |L∞(Td)‖, N ∈ N0.

A distribution f : D(Td) → C belongs to the class D′(Td) if and only if there exists
CN > 0 such that

|f(ϕ)| ≤ CN‖ϕ|D(Td)‖N , for all f ∈ D(Td).

Again we equip D′(Td) with the weak topology, meaning fn
n→∞−−−→ f in D′(Td) if and

only if fn(ϕ)
n→∞−−−→ f(ϕ) in C for all f ∈ D(Td).

18



2.3 Elementary function spaces, Fourier transform

and vector-valued spaces

For Ω ⊂ Rd the set of all bounded and continuous functions f : Ω → C is denoted by
C(Ω) equipped with the sup-norm ‖f |L∞(Ω)‖ = supx∈Ω |f(x)|. We denote by Lp(Ω),
0 < p ≤ ∞, the space of all measurable functions f : Ω → C where ‖f |Lp(Ω)‖ :=
(
∫

Ω
|f(x)|pdx)1/p is finite (with the usual modification if p = ∞). For f, g ∈ S(Rd)

the convolution is always defined as f ∗ g(x) :=
∫
Rd f(y)g(x − y) dy ∈ S(Rd). For

f ∈ S ′(Rd) and ϕ ∈ S(Rd) we define the convolution by ϕ∗f(x) = f(ϕ(x−·)) ∈ S ′(Rd),
which makes sense also pointwise. For f ∈ L1(Rd) and x, ξ ∈ Rd we define the Fourier
transform and its inverse by

Ff(ξ) :=
1

(2π)
d
2

∫
Rd
f(x)e−iξ·xdx and F−1f(x) :=

1

(2π)
d
2

∫
Rd
f(ξ)eiξ·xdξ. (2.3.1)

For f ∈ L1(Td) the k-th Fourier coefficient is defined by f̂(k) := 1/(2π)d
∫
Td f(x)e−ik·xdx.

More generally for f ∈ S ′(Rd) we define the Fourier transform by

Ff(·) := f(F·).

This makes sense for all f ∈ S ′(Rd). For periodic distributions f ∈ D′(Td) we define
the k-th Fourier coefficient by

f̂k := f(e−ik·).

Definition 2.1. Let ω = (ωj)j∈A ⊂ R be a sequence of weights, where A ⊂ Nd0
and let Ω ⊂ Rd be a (Lebesgue) measurable set. We define for 0 < p, θ ≤ ∞ the
spaces Lp(`θ(ω,A),Ω) and `θ(ω, Lp(Ω), A) as the collection of all sequences of func-
tions (fj)j∈A ⊂ Lp(Ω) with finite (quasi)-norm

‖fj|Lp(`θ(ω,A),Ω)‖ :=


∥∥∥(∑j∈A |ωjfj|θ

) 1
θ
∣∣∣Lp(Ω)

∥∥∥ : 0 < θ <∞,∥∥∥ supj∈A |ωjfj|
∣∣∣Lp(Ω)

∥∥∥ : θ =∞,

and

‖fj|`θ(ω, Lp(Ω), A)‖ :=


(∑

j∈A |ωj|θ‖fj |Lp(A)‖θ
) 1
θ

: 0 < θ <∞,
supj∈A |ωj|‖fj|Lp(Ω)‖ : θ =∞,

respectively.

For 0 < p, θ ≤ ∞ the (quasi-)norms ‖ · |Lp(`θ(ω,Nd0),Ω)‖ and ‖ · |`θ(ω, Lp(Ω), A)‖
fulfill a µ-triangle inequality with µ = min{p, θ, 1}. If the domain and summation
index set is clear from the context we drop it out of the notation and use the shorter
denotations

Lp(`θ(ω)) = Lp(`θ(ω,A),Ω) and `θ(ω, Lp) = `θ(ω, Lp(Ω), A).

In case ω = (1)j∈A we drop it in the notation and use

Lp(`θ) = Lp(`θ(ω,A),Ω) and `θ(Lp) = `θ(ω, Lp(Ω), A).
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Chapter 3

Besov-Triebel-Lizorkin spaces of
mixed smoothness

In this section we start with the classical Fourier analytical definition for Triebel-
Lizorkin spaces Srp,θF (Rd) and Besov spaces Srp,θB(Rd) with dominating mixed smooth-

ness defined on Rd. We state embedding results and describe equivalent norms char-
acterizing this function spaces. Furthermore we consider function spaces on domains
and periodic boundary conditions.

3.1 Basic definitions

We start introducing the following concept decomposing the Fourier image called res-
olution of unity.

Definition 3.1 (univariate resolution of unity). A system ϕ = (ϕj)
∞
j=0 ⊂ C∞0 (R)

belongs to the class Φ(R) if and only if

(i) It exists A > 0 such that suppϕ0 ⊂ [−A,A].

(ii) There are constants 0 < B < C, such that suppϕj ⊂ {ξ ∈ R : B2j ≤ |ξ| ≤ C2j}.

(iii) For all α ∈ N0 there are constants Cα > 0 such that

sup
ξ∈R,j∈N0

2α|Dαϕj(ξ)| ≤ Cα <∞.

(iv) For all ξ ∈ R
∞∑
j=0

ϕj(ξ) = 1.

Applying (iv) in Definition 3.1 we obtain the following decomposition of f ∈ S ′(Rd)

f =
∑
j∈Nd0

δj [f ]
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CHAPTER 3. BESOV-TRIEBEL-LIZORKIN SPACES

with convergence in S ′(Rd) where

δj [f ](x) := F−1(ϕjFf)(x), j ∈ Nd0 (3.1.1)

with

ϕj(ξ) =
d∏
i=1

ϕji(ξi), ξ ∈ Rd, j ∈ Nd0. (3.1.2)

Later we use the convention δj [f ] = 0 if there exists an i ∈ [d] with ji < 0. We introduce
the function spaces Srp,θF (Rd) and Srp,θB(Rd) using this Fourier-analytic building blocks.

Definition 3.2. Let ϕ = {ϕj(x)}∞j=0 ∈ Φ(R), and r ∈ Rd. Let further

(i) 0 < p <∞ and 0 < θ ≤ ∞. Then

Srp,θF (Rd) :=
{
f ∈ S ′(Rd) : ‖f |Srp,θF (Rd)‖ <∞

}
,

where
‖f |Srp,θF (Rd)‖ := ‖δj [f ]|Lp(`θ(2r·j))‖.

(ii) 0 < p, θ ≤ ∞. Then

Srp,θB(Rd) :=
{
f ∈ S ′(Rd) : ‖f |Srp,θB(Rd)‖ <∞

}
,

where
‖f |Srp,θB(Rd)‖ := ‖δj [f ]|`θ(2r·j , Lp)‖.

Remark 3.3. (i) Different resolutions of unity ϕ, ψ ∈ Φ(R) employed in (3.1.1) gen-
erate equivalent norms in Srp,θF (Rd) and Srp,θB(Rd), respectively, cf. [99, 2.2.3,
Proposition 1]

(ii) In case d = 1 the concepts of dominating mixed smoothness and isotropic smooth-
ness coincide. We use the notation

F r
p,θ(R) := Srp,θF (R) and Br

p,θ(R) := Srp,θB(R).

(iii) In case θ = 2 and 1 < p <∞ the space Srp,θF (Rd) coincides with the Sobolev space

of dominating mixed smoothness SrpW (Rd) including Lp(Rd) if r = 0. SrpW (Rd)
is classically normed by

‖f |SrpW (Rd)‖′ :=
∥∥∥F−1

( d∏
i=1

(1 + |ξi|)riFf(ξ)
)

(x)
∣∣∣Lp(Rd)∥∥∥. (3.1.3)

(iv) In case θ = 2, 1 < p <∞ and r ∈ N0 we have the equivalence

‖f |SrpW (Rd)‖ � ‖f |Lp(Rd)‖+
∑

0<|α|∞≤r

‖Dαf |Lp(Rd)‖, (3.1.4)

cf. [99, p. 104].
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3.2 Embeddings

We state the following embedding results without proof. For a reference see [99, 127]
and [57]. For a complete history of the non-trivial embedding in Lemma 3.5 we refer
to [33, Remark 3.8].

Lemma 3.4. (i) Let 0 < p ≤ ∞ (F -case: p <∞), 0 < θ ≤ ∞, r > σp. Then

Srp,θF (Rd) ↪→ Lmax{p,1}(Rd) and Srp,θB(Rd) ↪→ Lmax{p,1}(Rd) ,
which means Srp,θF (Rd) and Srp,θB(Rd) consist of regular distributions that allow
an interpretation as functions.

(ii) Let 0 < p ≤ ∞ (F -case: p <∞), 0 < θ ≤ ∞, r > 1
p
. Then

Srp,θF (Rd) ↪→ C(Rd) and Srp,θB(Rd) ↪→ C(Rd) ,
which means that we find in every equivalence class of Srp,θF (Rd) and Srp,θB(Rd)
a unique continuous representative making discrete point evaluations possible.

(iii) Let 0 < p ≤ ∞ (F-case: p <∞), 0 < θ1 < θ2 ≤ ∞ and r ∈ Rd. Then

Srp,θ1F (Rd) ↪→ Srp,θ2F (Rd) and Srp,θ1B(Rd) ↪→ Srp,θ2B(Rd).

(iv) Let 0 < p <∞, 0 < θ ≤ ∞ and r ∈ Rd. Then

Srp,min{p,θ}B(Rd) ↪→ Srp,θF (Rd) ↪→ Srp,max{p,θ}B(Rd).

(v) Let 0 < p ≤ ∞ (F -case: p < ∞), 0 < θ, ν ≤ ∞ and r1, r2 ∈ Rd with r1 > r2

Then
Sr1
p,θF (Rd) ↪→ Sr2

p,νF (Rd) and Sr1
p,θB(Rd) ↪→ Sr2

p,νB(Rd).

(vi) Let 0 < p < q <∞, 0 < θ, ν ≤ ∞ and r1, r2 ∈ Rd with r1 > r2 fulfilling

r1 −
1

p
= r2 −

1

q
.

Then
Sr1
p,θF (Rd) ↪→ Sr2

q,νF (Rd) and Sr1
p,θB(Rd) ↪→ Sr2

q,θB(Rd).
Observe that, in contrast to the diagonal Besov embedding in Lemma 3.4, (iv), the

fine index θ and ν play no role for the F -case.

Lemma 3.5 (Jawerth-Franke embedding). Let 0 < p < q ≤ ∞, 0 < θ ≤ ∞, r1, r2 ∈
Rd such that

r1 −
1

p
= r2 −

1

q

is fulfilled.

(i) Then
Sr1
p,θF (Rd) ↪→ Sr2

q,pB(Rd).

(ii) If additionally q <∞ then

Sr1
p,qB(Rd) ↪→ Sr2

q,θF (Rd).
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3.3 Further characterizations

In this section we describe equivalent ways of characterizing Besov-Triebel-Lizorkin
spaces. As a first approach we consider convolutions with so called local mean ker-
nels. Classically the Fourier analytical building blocks of a function f are bandlimited
functions that are generated as convolutions of the function f with bandlimited ker-
nels whose Fourier image is sufficiently smooth. Local mean characterizations allow
to replace this bandlimited kernels by for instance compactly supported ones. Let
Ψ0,Ψ1 ∈ S(Rd) such that

(i) |FΨ0(ξ)| > 0 for |ξ| < ε

(ii) |FΨ1(ξ)| > 0 for ε
2
< |ξ| < 2ε and

(iii) DαFΨ1(0) = 0 for all 0 ≤ α < L

(3.3.1)

hold for some ε > 0. As usual, the j-th dilation of Ψ1 is given by

Ψj := 2j−1Ψ1(2j−1x), j ≥ 2.

For j ∈ Nd0 we define by tensorization

Ψj(x) =
d∏
i=1

Ψji(xi), x ∈ Rd.

Remark 3.6. (i) Inserting the definitions, (iii) in (3.3.1) means∫
R
xαΨ1(x)dx = 0

for all 0 ≤ α < L. This condition is called L-th order moment condition.

(ii) There are local mean kernels fulfilling arbitrary (but finite) moment conditions
and have compact supports. Let us consider the function

g(t) = χ[− 1
2
, 1
2

](t)

and define
gk(t) = 2kg(2kt).

For the infinite convolution

ϕ = g ∗ g1 ∗ g2 ∗ . . .

one can show ϕ ∈ C∞0 (R), 0 ≤ ϕ ≤ 1, ‖ϕ‖1 = ‖g‖1 = 1 with suppϕ = [−1, 1].
The Fourier transform is given as the infinite product

Fϕ(ξ) =
∞∏
k=0

sinc (2−kξ).
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We define

Ψ0(x) := 2ϕ(2x),

Ψ1(x) :=
dL

dxL
(2Ψ0(2·)−Ψ0(·))(x).

Observing the identity

FΨ1(ξ) = (2πiξ)L(FΨ0(ξ/2)−FΨ0(ξ)),

it is easy to check that Ψ0,Ψ1 fulfill the conditions in (3.3.1). For further infor-
mation we refer to [97], [61, Section 6.1 ] and [121, p. 10].

Theorem 3.7. Let 0 < p, θ ≤ ∞ (F -case: θ <∞), (Ψj)j∈Nd0 as above with L+ 1 > r.
Then

‖f |Srp,θF (Rd)‖∗ := ‖Ψj ∗ f |Lp(`θ(2r·j))‖

describes an equivalent norm in Srp,θF (Rd) and

‖f |Srp,θB(Rd)‖∗ := ‖Ψj ∗ f |`θ(2r·j , Lp)‖

in Srp,θB(Rd).

Proof. Such characterizations for function spaces of dominating mixed smoothness were
studied first in [127]. For local mean representations with the assumptions from above
we refer to [123]. For more details on the interesting history of this characterization
we refer to [121, Remark 4.5].

Mixed B-spaces are classically defined as a space of functions with Lp-bounded mixed
differences. A related characterization by differences is also available for F -spaces.
Before we start we introduce some notation concerning iterated differences. For a
multivariate function f on Rd we denote the first order differences with stepwidth
h ∈ R acting in direction i ∈ [d] by

∆1,i
h f(x) := f(x+ hei)− f(x),

where ei = (0, . . . , 0, 1, 0, . . . , 0). m-th order differences can be defined iteratively by

∆m,i
h f(x) := ∆1,i

h ∆m−1,i
h f(x).

This allows us to define for e ⊂ [d] and h ∈ Rd the m-th order difference operator
acting in the directions contained in e by

∆m,e
h f(x) :=

(∏
i∈e

∆mi,i
hi

)
f(x). (3.3.2)

This allows us to state the characterization by rectangle means:
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Theorem 3.8. Let 0 < p < ∞, 0 < θ ≤ ∞ and m ∈ Nd0 such that σp,θ < r < m is
fulfilled. Then

‖f |Srp,θF (Rd)‖ �
∑
e⊂[d]

‖f |Srp,θF (Rd)‖e,m

holds with

‖f |Srp,θF (Rd)‖e,m :=

∥∥∥∥∥[ ∑
j∈Nd0(e)

2θr·j
((∏

i∈e

2ji
)∫
|hi|≤2−ji
i∈[d]

|∆m,e
h f(·)|dh

)θ] 1
θ

∣∣∣∣∣Lp(Rd)
∥∥∥∥∥

and the usual modification in case θ =∞.

Proof. We refer to [66, Theorem 3.7]. There the case for constant smoothness vector
r = (r, . . . , r) has been considered. The necessary modifications are straight forward.

Theorem 3.9. Let 0 < p, θ ≤ ∞ and m ∈ N such that σp < r <m is fulfilled. Then

‖f |Srp,θB(Rd)‖ �
∑
e⊂[d]

‖f |Srp,θB(Rd)‖e,m

holds with

‖f |Srp,θB(Rd)‖e,m :=

[ ∑
j∈Nd0(e)

2θr·j
∥∥∥(∏

i∈e

2ji
)∫
|hi|≤2−ji
i∈[d]

|∆m,e
h f(·)|dh

∣∣∣Lp(Rd)∥∥∥θ]
1
θ

and the usual modification in case θ =∞.

Proof. We refer to [122, Theorem 3.7.1 and Remark 3.7.1]. There the outer sum is an
integral. By decomposing this into dyadic blocks one obtains the form stated above.

3.4 Spaces on domains

In this section we deal with function spaces on domains. From a general point of view
we mean with a domain Ω ⊂ Rd a open connected set. Later dealing with continuous
functions trivial extensions allow us to deal with the compact set [0, 1]d.

Definition 3.10. Let Ω be a domain and r ∈ Rd.

(i) Let additionally 0 < p <∞ and 0 < θ ≤ ∞. Then we define

Srp,θF (Ω) := {f ∈ D′(Ω) : ∃g ∈ Srp,θF (Rd) with g|Ω = f}

where

‖f |Srp,θF (Ω)‖ := inf{‖g|Srp,θF (Rd)‖ : g ∈ Srp,θF (Rd), g|Ω = f}.
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(ii) Let additionally 0 < p, θ ≤ ∞. Then we define

Srp,θB(Ω) := {f ∈ D′(Ω) : ∃g ∈ Srp,θB(Rd) with g|Ω = f}

where

‖f |Srp,θB(Ω)‖ := inf{‖g|Srp,θB(Rd)‖ : g ∈ Srp,θB(Rd), g|Ω = f}.

On bounded domains Ω we have additionally the following embedding.

Lemma 3.11. Let 0 < q < p ≤ ∞ (F-case: p <∞), r ∈ Rd, 0 < θ ≤ ∞ and |Ω| <∞.
Then

Srp,θF (Ω) ↪→ Srq,θF (Ω)

and
Srp,θB(Ω) ↪→ Srq,θB(Ω).

Proof. The proof follows trivially by definition using the embedding

Lp(Ω) ↪→ Lq(Ω).

3.5 Hyperbolic representation of isotropic Sobolev

spaces

In this section we introduce isotropic Sobolev spaces and discuss their representation
in terms of Section 3.1. We start extending Definition 3.1 to a multivariate isotropic
version.

Definition 3.12 (Resolution of unity - isotropic). A system ψ = (ψj)
∞
j=0 ⊂ C∞0 (Rd)

belongs to the class Φ(Rd) if and only if

(i) It exists A > 0 such that suppψ0 ⊂ {ξ ∈ Rd : |ξ|2 < A}.

(ii) There are constants 0 < B < C, such that suppψj ⊂ {ξ ∈ Rd : B2j ≤ |ξ|2 ≤
C2j}.

(iii) For all α ∈ Nd0 holds

sup
ξ∈Rd,j∈N0

2j|α|1|Dαψj(ξ)| ≤ cα <∞ and

(iv) For all ξ ∈ Rd
∞∑
j=0

ψj(ξ) = 1.
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Again, applying (iv) in Definition 3.12 we obtain the following decomposition of f ∈
S ′(Rd). For ψ = {ψj}∞j=0 ∈ Φ(Rd) let

ηj[f ](x) := F−1(ψjFf)(x). (3.5.1)

Then it holds
f =

∑
j∈N0

ηj[f ]

with convergence in S ′(Rd).
Definition 3.13. Let 1 < p <∞ and r ∈ R. Then

W r
p (Rd) :=

{
f ∈ S ′(Rd) : ‖f |W r

p (Rd)‖ <∞
}
,

where
‖f |W r

p (Rd)‖ := ‖ηj[f ]|Lp(`2(2rj,N0),Rd)‖.
Lemma 3.14. Let 1 < p <∞ and r ∈ N0. Then we have

‖f |W r
p (Rd)‖ � ‖f |Lp(Rd)‖+

∑
|α|1≤r

‖Dαf |Lp(Rd)‖.

Proof. For more details on the proof we refer to [119, Theorem 2.5.6].

Remark 3.15. The next figure shows the different Fourier supports of the hyperbolic
and the isotropic resolutions of unity.

δ(5,4)δ(5,4)

δ(5,4) δ(5,4)

δ(5,5)δ(5,5)

δ(5,5) δ(5,5)

η5

η4

Figure 3.1: Fourier support of hyperbolic and isotropic resolution of unity

Theorem 3.16. Let 1 < p <∞ and r ∈ R. Then the space W r
p (Rd) can be equivalently

normed by
‖f |W r

p (Rd)‖ � ‖δj [f ]|Lp(`2(2r|j|∞ ,Nd0),Rd)‖,
where δj [f ] is as in (3.1.1). That means we use a hyperbolic resolution of unity to give
an equivalent norm for an isotropic space.

Proof. We refer to [126].

Remark 3.17. According to [126] a similar result for B-spaces can hold only in case
p = θ = 2.
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3.6 Periodic spaces

A function defined on Rd is 2π-periodic, if and only if for all x ∈ Td we have

f(x) = f(x+ 2πk)

for all k ∈ Zd. The function spaces defined in Section 3.1 are based on Lp functions
or even more general distributions, where in general no point evaluations are available.
We use periodic distributions f ∈ D′(Td). Based on this periodic distributions we
can define periodic Besov and Triebel-Lizorkin-Sobolev spaces. We need the following
building blocks. Let ϕ ∈ Φ(R) with ϕj as in (3.1.2) then we define

δπj [f ] :=
∑
k∈Zd

f̂kϕj(k)eik·, . (3.6.1)

This allows us to decompose f ∈ D′(Td) by

f =
∑
j∈Nd0

δπj [f ] (3.6.2)

with convergence in D′(Td).

Definition 3.18. Let ϕ = {ϕj}∞j=0 ∈ Φ(R), and r ∈ Rd.

(i) Let 0 < p <∞ and 0 < θ ≤ ∞. Then

Srp,θF (Td) :=
{
f ∈ D′(Td) : ‖f |Srp,θF (Td)‖ <∞

}
,

where
‖f |Srp,θF (Td)‖ := ‖δπj [f ]|Lp(`q(2r·j),Td)‖.

(ii) Let 0 < p, θ ≤ ∞. Then

Srp,θB(Td) :=
{
f ∈ D′(Td) : ‖f |Srp,θB(Td)‖ <∞

}
,

where
‖f |Srp,θB(Td)‖ := ‖δπj [f ]|`θ(2r·j , Lp(Td))‖.

Compared to Section 3.1 we integrate here over Td instead of Rd.

Remark 3.19. All aspects of this chapter have more or less obvious periodic counter-
parts. The embeddings of Lemma 3.4 hold in the periodic case including Lemma 3.11.
We refer to [99, Chap. 3]. For our purpose interestingly to mention, characterization
by differences in Theorems 3.8 and 3.9 work by replacing the Lp(Rd) integration by
Lp(Td), cf. [122].
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Chapter 4

The Faber-Schauder basis in
multivariate smoothness spaces

In this section we introduce the Faber-Schauder system as a basis in C([0, 1]d). Later
we proof equivalent characterizations of Srp,θF ([0, 1]d) and Srp,θB([0, 1]d) in terms of
decreasing properties for sequences of Faber-Schauder coefficients. They allow us to
deal with sampling approximation in terms of sequence spaces. Transferring complicate
approximation problems from the level of function spaces to the easier to handle level of
sequence spaces is a well known technique for several estimates of (pseudo) s-numbers
in approximation theory, see for instance [127, 77, 79, 81]. Quite new is the approach
to handle sampling with a similar method. This originally goes back to Dinh Dung [26,
29]. We extend this technique to construct and analyze (energy) sparse-grid sampling
operators for functions in SrpW (Rd).

4.1 The (tensorized) Faber-Schauder system

In this section we introduce the Faber-Schauder system. Faber proved in [38] that
every continuous function f in [0, 1] can be expanded into a basis of hat functions.
Introducing this system we refer to the notation of iterated differences ∆m,e

h f(x) given
in (3.3.2).

Definition 4.1. We define the univariate L∞-normalized hat function

v(x) = v0,0(x) :=


2x : 0 < x ≤ 1

2
,

2(1− x) : 1
2
< x < 1,

0 : otherwise.

The hat function of level j ∈ N0 and translation k ∈ Z is given by

vj,k(x) := v(2jx− k).

Additionally for k ∈ Z we use the notation

v−1,k(x) := v
(1

2
(x− k + 1)

)
.
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CHAPTER 4. THE FABER-SCHAUDER BASIS

Faber [38] originally considered the interval [0, 1]. Based on his arguments it is a
trivial exercise to show that every continuous function on R can be represented by the
series

f =
∑
j∈N−1

∑
k∈Z

dj,k(f)vj,k (4.1.1)

with conditional convergence in C(K), where K is an arbitrary compact subset of R.
The coefficients dj,k(f) are given by

dj,k(f) :=

{
f(xj,k) : j = −1,

−1
2
∆2

2−(j+1)f(xj,k) : j ≥ 0,

with

xj,k :=

{
k : j = −1

2−jk : j ≥ 0.

Definition 4.2. We introduce for j ∈ N0, k ∈ Z the overlapping hat functions

v∗j,k := v
(

2jx− k − 1

2

)
.

This allows us to give to following obvious refinement equation.

Lemma 4.3. For j ∈ N0, k ∈ Z we have

vj,k = v∗j,2k+1 =
1

2
(v∗j+1,4k+1 + v∗j+1,4k+3) + v∗j+1,4k+2.

Tensorization of the univariate hat functions yields a d-variate version of the Faber-
Schauder system. For j ∈ Nd−1 and k ∈ Zd we define the d-variate tensor hat function
by

vj,k(x) := vj1,k1(x1) · . . . · vjd,kd(xd)
with coefficients dj,k(f) given by

dj,k(f) :=
(
− 1

2

)|e(j)|
∆

2,e(j)

2−(j+1)f(xj,k) with xj,k := (xj1,k1 , . . . , xjd,kd) (4.1.2)

and
e(j) := {i ∈ [d] : ji ≥ 0}.

Since the convergence in (4.1.1) is conditional we have to say some words about the
order of summation. For µ ∈ N we define the open intervals

Ed
µ = (−µ, µ)d. (4.1.3)

Definition 4.4. Let

Bd
n := {(j,k) ∈ Nd−1 × Zd : j : |j|∞ ≤ n,k : supp vj,k ∩ Ed

n 6= ∅}.

Then we define for f ∈ C(Rd) the operator

F d
nf(x) :=

∑
(j,k)∈Bdn

dj,kvj,k(x). (4.1.4)
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Lemma 4.5. Applying the operator F 1
n to f ∈ C(R) gives a continuous function that

is piecewise linear in the intervals In,k := [2−(n+1)k, 2−(n+1)(k + 1)], k ∈ Z.

Proof. The proof is a simple consequence of Lemma 4.3. Applying it iteratively there
exists a sequence (λj,k)j,k ⊂ C such that we obtain a representation

F 1
nf(x) :=

∑
(j,k)∈B1

n

dj,kvj,k =
∑
k∈Z

λn,kv
∗
n,k.

We have
supp vn,k = [2−nk, 2−n(k + 1)]

and piecewise linearity in

Ln,k :=
[
2−(n+1)2k, 2−(n+1)(2k + 1)

]
and Rn,k :=

[
2−(n+1)(2k + 1), 2−(n+1)(2k + 2)

]
.

For each interval Ln,k (or Rn,k) there are only two translated hat functions v∗n,u and
v∗n,u+1, u ∈ Z with

|supp v∗n,u ∩ supp v∗n,u+1 ∩ Ln,k| > 0,

(or |supp v∗n,u ∩ supp v∗n,u+1 ∩ Rn,k| > 0). Both are piecewise linear in Ln,k (or Rn,k).
For that reason their sum λ1v

∗
n,u + λ2v

∗
n,u+1 is also piecewise linear in Ln,k (or Rn,k).

Applying this argument iteratively for each interval In,k, k ∈ Z proves the claim.

Lemma 4.6. F d
nf interpolates f ∈ C(Rd) in the nodes

Gint,dn := {(2−(n+1)k1, . . . , 2
−(n+1)kd) : |k|∞ ≤ n2n}

=
d×
i=1

( n⋃
j=0

{2−j(k +
1

2
) : −n2n−j ≤ k < n2n−j} ∪ {−n, . . . , n}

)
.

Proof. To avoid technical issues concerning the order of summation we proof this inter-
polation property only in the interval [−1, 1]. Additionally we restrict in the beginning
to the case d = 1. We use induction. The case n = 1 can be easily checked inserting
the definitions. Assuming the result holds for F 1

n−1 we prove that it holds also for F 1
n .

It suffices to prove

F 1
nf
(

2−n
(
u+

1

2

))
= f

(
2−n
(
u+

1

2

))
.

Since

F 1
nf
(

2−j
(
u+

1

2

))
= F 1

n−1f
(

2−j
(
u+

1

2

))
= f

(
2−j
(
u+

1

2

))
for 0 < j < n. We obtain

F 1
nf
(

2−n
(
u+

1

2

))
) = F 1

n−1f
(

2−n
(
u+

1

2

))
+

∑
−2j≤k<2j

dn,k vn,k

(
2−n
(
u+

1

2

))
︸ ︷︷ ︸

=1

= F 1
n−1f

(
2−n
(
u+

1

2

))
− 1

2
[f(2−nu+ 2−n)− 2f(2−nu+ 2−(n+1))

+f(2−nu)]. (4.1.5)
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From Lemma 4.5 we know that F 1
n−1 is piecewise linear in [2−(n−1) u

2
, 2−(n−1) u+1

2
]. That

gives

F 1
n−1f

(
2−n
(
u+

1

2

))
=
f(2−(n−1) u

2
) + f(2−(n−1) u+1

2
)

2
.

Inserting this into (4.1.5) yields the desired result. The result for F d
n can be obtained

by interpreting F d
n as an iterated application of F 1

n to each direction of f ∈ C(Rd)

Remark 4.7. The condition |k|∞ ≤ n2n in the definition of Gint,dn is due to the fact
that the order of summation in Definition 4.4 has the property that with increasing n
it covers not only refined dilations of hat functions it covers also new translations on
further intervals. This kind of property allows us to prove uniform convergence in the
next theorem.

Theorem 4.8. Every f ∈ C(Rd) can be represented by the series

f =
∑
j∈Nd−1

∑
k∈Zd

dj,k(f)vj,k

with (conditional) convergence in every C(K), where K is a compact subset of Rd. The
order of summation should be understood in the sense of F d

nf, n→∞.

Proof. Basically we extend the arguments in [120] (which are for [0, 1]2) to an arbitrary
compact set K ⊂ Rd. Without loss of generality we can assume K = [A,B]d, A,B ∈ Z
(K is a cube, since we can always embed a compact set K in such a cube). Let ε > 0.
Due to Lemma 4.6 F d

n interpolates a continuous function in the points

Gint,dn := {2−(n+1)k1, . . . , 2
−(n+1)kd)k : |k|∞ ≤ n2n}.

For n > n0 (sufficient large) the set IFn is a δ-net of K, that means

K ⊂
⋂

x∈Gint,dn

{y ∈ Rd : |x− y|∞ ≤ δ︸ ︷︷ ︸
:=B∞δ (x)

}.

Consequently, we find for every x ∈ K

x∗ := argminy∈Gint,dn ∩K |x− y|∞

with
|x− x∗|∞ < δ.

Continuity of f in Rd implies uniform continuity on K. That means we find δ > 0 such
that

|f(x)− f(y)| ≤ ε (4.1.6)

for all x,y ∈ K with |x− y| ≤ δ. This allows us to estimate

|f(x)− Fnf(x)| = |f(x)− f(x∗) + Fnf(x∗)− Fnf(x)|
≤ |f(x)− f(x∗)|+ |Fnf(x∗)− Fnf(x)|.
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The first summand is bounded by (4.1.6). We have to estimate the second term.
Lemma 4.5 gives piecewise linearity of

F d
nf(u1, . . . , ui−1, xi, ui+1, . . . , ud) = CF 1

nf(u1, . . . , ui−1, xi, ui+1, . . . , ud)

for fixed u ∈ Rd−1, i = 1, . . . , d and

xi ∈ [2−(n+1)k, 2−(n+1)(k + 1)],

where F 1
n is applied to the i-th direction. Linear functions are monotone. Using this

monotonicity iteratively in every single direction we find x∗∗ ∈ Gint,dn ∩ B∞δ (x∗) such
that

|Fnf(x∗)− Fnf(x)| ≤ |Fnf(x∗)− Fnf(x∗∗)|.

Hence,

|f(x)− Fnf(x)| ≤ |f(x)− f(x∗|+ |Fnf(x∗)− Fnf(x∗∗)|
= |f(x)− f(x∗)|+ |f(x∗)− f(x∗∗)|
≤ 2ε.

Since we can proceed in that way for every x ∈ K and the choice of δ does not depend
on x we obtain uniform convergence in K.

4.2 Sequence spaces

In this section we define discrete function spaces of f and b-type. For the first moment
the denotation discrete function space seems unusual, since they consist of sequences of
coefficients instead of functions. In the upcoming sections we use the Faber-Schauder
system to connect f ∈ Srp,θF (Rd) or f ∈ Srp,θB(Rd) with a corresponding sequence
λ ∈ srp,θf or λ ∈ srp,θb. For a simplified notation we introduce for j ∈ N−1, k ∈ Z the
intervals

Ij,k :=

{
[2−jk, 2−j(k + 1)) : j ≥ 0,

[k − 1
2
, k + 1

2
) : j = −1.

(4.2.1)

For j ∈ Nd−1 and k ∈ Zd we use the cross product

Ij,k =
d×
i=1

Iji,ki .

This notation allows us to define the characteristic function

χj,k(x) :=

{
1 : x ∈ Ij,k,
0 : otherwise.
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Definition 4.9. We define for 0 < p, θ ≤ ∞ (f -case: p <∞), r ∈ Rd the spaces srp,θf
and srp,θb as the space of all sequences of coefficients (λj,k)j∈Nd0,k∈Zd ⊂ C with finite
(quasi)-norms

‖λj,k|srp,θf‖ :=


∥∥∥(∑j∈Nd−1

2θjr|
∑
k∈Zd λj,kχj,k|θ

) 1
θ
∣∣∣Lp(Rd)∥∥∥ : 0 < θ <∞,∥∥∥ supj∈Nd−1

2jr|
∑
k∈Zd λj,kχj,k|

∣∣∣Lp(Rd)∥∥∥ : θ =∞,

and

‖λj,k|srp,θb‖ :=


(∑

j∈Nd−1
2θjr‖

∑
k∈Zd λj,kχj,k|Lp(Rd)‖θ

) 1
θ

: 0 < θ <∞,
supj∈Nd−1

2jr‖
∑
k∈Zd λj,kχj,k|Lp(Rd)‖ : θ =∞,

respectively.

Analogously to Lemma 3.4 the following embedding results hold for discrete func-
tion spaces.

Lemma 4.10. (i) Let 0 < p ≤ ∞ (f-case: p < ∞), 0 < θ1 < θ2 ≤ ∞ and r ∈ Rd.
Then

srp,θ1f ↪→ srp,θ2f and srp,θ1b ↪→ srp,θ2b.

(ii) Let 0 < p <∞, 0 < θ ≤ ∞ and r ∈ Rd. Then

srp,min{p,θ}b ↪→ srp,θf ↪→ srp,max{p,θ}b.

(iii) Let 0 < p ≤ ∞ (f : p <∞), 0 < θ, ν ≤ ∞ and r1, r2 ∈ Rd with r1 > r2 Then

sr1
p,θf ↪→ sr2

p,νf and sr1
p,θb ↪→ sr2

p,νb.

(iv) Let 0 < p < q <∞, 0 < θ, ν ≤ ∞ and r1, r2 ∈ Rd fulfilling

r1 −
1

p
= r2 −

1

q
.

Then

sr1
p,θf ↪→ sr2

q,νf and sr1
p,θb ↪→ sr2

q,θb.

Proof. The proofs are similar to that in the references of Lemma 3.4. For the proof of
(iv) we refer to [53, Prop. 5.3.3, Prop. 5.3.1]. The proof there adapts the proof in [99]
for the diagonal embedding with respect to the Fourier analytical definition.
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4.3 Equivalent characterizations on Rd

In this section we prove equivalent norm characterizations for Srp,θF (Rd) and Srp,θB(Rd)
by (decreasing) properties of Faber-Schauder coefficients dj,k(f). For Srp,θB([0, 1]d) such
a characterization was considered in [120]. First we give a characterization for spaces
based on Rd. We start with the following technical lemma.

Lemma 4.11. Let j ∈ N0, k ∈ Z, ` ∈ Z with j + ` ≥ −1 and R > 0 then for local
means with supp Ψ0 ⊂ [−1

2
, 1

2
] and supp Ψj ⊂ [−2−j, 2−j] (as in Remark 3.6) with

L ≥ 2 the following estimate holds.

(i) There is a CR > 0 such that

|Ψj ∗ vj+`,k(x)| ≤ CR2−|`|(1 + 2min{j,j+`}|x− xj+`,k|)−R.

(ii) A refined version of the inequality above is provided by

|Ψj ∗ vj+`,k(x)| ≤ C2−|`|χAj+`,k(x),

where Aj+`,k with |Aj+`,k| � 2−j is a set that fulfills

Aj+`,k ⊂
⋃

|u−k|.2`+

Ij+`+,u. (4.3.1)

Proof. First we prove the case j > 0. The compact supports of Ψj and vj,k yield for a
non-vanishing integrand of

|Ψj ∗ vj+`,k(x)| =
∣∣∣ ∫

R
2j−1Ψ1(2j−1(x− y))v(2j+`y − k)dy

∣∣∣.
the necessary conditions

|x− y| ≤ 2−j

and additionally for fixed k ∈ Z

|y − xj+`,k| ≤ 2−(j+`).

Triangle inequality implies for a non vanishing integrand

|x− xj+`,k| ≤ |x− y|+ |y − xj+`,k| . 2 max{2−j, 2−(j+`)}. (4.3.2)

Defining Aj+`,k := {x ∈ R : |x− xj+`,k| ≤ 2−min{j+`,j}2} we obtain the identity

|Ψj ∗ vj+`,k(x)| = |Ψj ∗ vj+`,k(x)|χAj+`,k(x).

We proceed considering the case ` < 0. Here the support of vj+`,k is larger than the
support of Ψj. The assumption that Ψj fulfills moment conditions of order 2 and due
to the fact that vj+`,k is piecewise linear allows us to shrink the set Aj+`,k to a set
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A∗j+`,k ⊂ Aj+`,k fulfilling |A∗j+`,k| ≤ D2−j. To be more precise A∗j+`,k is the union of 3
intervals of size � 2−j centered in the non-smooth locations of vj+`,k. A simple change
of variable yields

|Ψj ∗ vj+`,k(x)| =
∣∣∣ ∫

R
2j−1Ψ1(2j−1(x− y))v(2j+`y − k)dy

∣∣∣
= |Ψ−` ∗ v0,k(2

j+`x)|χA∗j+`,k(x).

The characterization of B1
∞,∞(R) by differences easily yields that v0,0 ∈ B1

∞,∞(R),
cf. [60, Proposition 3.5]. Since Ψj is a local mean with L ≥ 2 we can interpret the
convolution as a part of the B1

∞,∞(R) norm of v0,k. We obtain

|Ψj ∗ vj+`,k(x)| ≤ ‖v0,k|B1
∞,∞(Rd)‖2`+1χA∗j+`,k(x)

≤ C2`χA∗j+`,k(x).

We continue with the case ` ≥ 0 and obtain

|Ψj ∗ vj+`,k|(x) ≤ C2j‖Ψ1‖∞‖vj+`,k‖∞
∫ 2−(j+`)(k+1)

2−(j+`)k

1dyχAj+`,k(x)

= D2−`χAj+`,k(x). (4.3.3)

Recognizing the (piecewise) interval structure of A∗j+`,k and Aj+`,k then the inclusion in
(4.3.1) follows by simple volume arguments. Finally, concerning the weaker estimate
in (i), |Aj+`,k| < 2−min{j+`,j} yields that we find for every R > 0 a constant CR such
that

χA∗j+`,k(x) ≤ χAj+`,k(x) ≤ CR(1 + 2min{j,j+`}|x− xj,k)−R

holds. The case j = 0 (where no moment conditions are available) can be estimated
with the arguments used to estimate (4.3.3). Formally this computations are for the
case j + ` ≥ 0. In case j + ` = −1 the slightly shifted translation of the hat function
has to be considered. That finishes the proof.

Lemma 4.12. Let j ∈ Nd0, k ∈ Zd, ` ∈ Zd with j + ` ≥ −1 and R > 0 then

(i)

|Ψj ∗ vj+`,k(x)| ≤ CR2−|`|1
d∏
i=1

(1 + 2min{ji,ji+`i}|xi − xji+`i,ki)−R.

(ii) A sharper version of the inequality above is provided by

|Ψj ∗ vj+`,k(x)| ≤ C2−|`|1χAj+`,k(x),

where Aj+`,k is the cross product of the sets in Lemma 4.11, (ii) with |Aj+`,k| �
2−|j|1.

Proof. Since Ψj and vj+`,k are tensor products of univariate functions Fubini’s theorem
allows to write Ψj ∗ vj+`,k as a product of d univariate convolutions. Applying the
arguments in Lemma 4.11 to every single factor yields the Lemma stated above.
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For the rest of the paper we use the convention

vj,k := 0

if there exists i ∈ [d] with ji < −1.

Definition 4.13. Let v ∈ {0, 1}d. For (λj,k)j,k ∈ srp,θf we define the linear operator

Tv : srp,θf → Lp(`θ, 2
j·r)

given by

(λj,k)j∈Nd−1,k∈Zd 7→
( ∑
`∈B(v)

∑
k∈Zd

λj+`,kΨj ∗ vj+`,k
)
j∈Nd0

where

B(v) := {` ∈ Zd : `i ≥ 0⇐⇒ vi = 1}.

For a sign vector v ∈ {0, 1}d and an integer vector ` we define

`v := (`∗1, . . . , `
∗
d)

where

`∗i :=

{
`i : vi = 1,

0 : vi = 0.

Additionally, we define the complement of v by

vc := 1− v.

Lemma 4.14. Let 0 < p, θ <∞ (θ =∞), v ∈ {0, 1}d and r ∈ Rd fulfilling

ri > σp,θ if vi = 1 (4.3.4)

and

ri < 1 if vi = 0, (4.3.5)

respectively. Then there is a C > 0 such that

‖Tvλ|Lp(`θ(2jr))‖ ≤ C‖λ|srp,θf‖.

Proof. First we choose a parameter a < min{p, θ, 1} such that ri >
1
a
− 1 holds

for all i ∈ [d] with vi = 1. We start applying u-triangle inequality in Lp(`θ) with
u := min{p, θ, 1}.

‖Tvλ|Lp(`θ(2jr))‖ ≤
( ∑
`∈B(v)

∥∥∥(∑
j∈Nd0

2θj·r
[ ∑
k∈Zd
|λj+`,k||Ψj ∗ vj+`,k|

]θ) 1
θ
∣∣∣Lp(Rd)∥∥∥u) 1

u
.
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Lemma 4.12, (i) yields

‖Tvλ|Lp(`θ(2jr))‖ .
( ∑
`∈B(v)

2−u|`|1

×
∥∥∥(∑

j∈Nd0

2θj·r
[ ∑
k∈Zd
|λj+`,k|

d∏
i=1

(1 + 2min{ji,ji+`i}|xi − 2−jiki|)−R
]θ) 1

θ
∣∣∣Lp(Rd)∥∥∥u) 1

u
.

with R > 1
a
. Proceeding by applying Lemma B.13 gives

‖Tvλ|Lp(`θ(2jr))‖ .
( ∑
`∈B(v)

2−u|`|12u|`+|1/a

×
∥∥∥(∑

j∈Nd0

2θj·r
[[
M
∣∣∣ ∑
k∈Zd

λj+`,kχj+`,k

∣∣∣a(x)
] 1
a
]θ) 1

θ
∣∣∣Lp(Rd)∥∥∥u) 1

u
.

We observe the trivial identity ‖(M |fj|a)
1
a |Lp(`θ)‖ = ‖(M |fj|a)|L p

a
(` θ

a
)‖ 1

a . The fact

min{ p
a
, θ
a
} > 1 allows us to apply Theorem B.6 which yields

‖Tvλ|Lp(`θ(2jr))‖ .
( ∑
`∈B(v)

2−u|`|12u|`+|1/a

×
∥∥∥(∑

j∈Nd0

2θj·r
∣∣∣ ∑
k∈Zd

λj+`,kχj+`,k(x)
∣∣∣θ) 1

θ
∣∣∣Lp(Rd)∥∥∥u) 1

u
.

Extending the summation index implies

‖Tvλ|Lp(`θ(2jr))‖ . ‖λ|srp,θf‖
( ∑
`∈B(v)

2−u`v ·(r−( 1
a
−1))2u`vc (1−r)

) 1
u
.

Due to the choice of r in (4.3.4) and (4.3.5) the sum converges to a constant if a is
chosen sufficient close to min{p, θ, 1}. That finishes the proof.

Lemma 4.15. Let 0 < p, θ ≤ ∞, v ∈ {0, 1}d and r ∈ Rd fulfilling

ri > σp, vi = 1 (4.3.6)

and

ri < 1 +
1

p
, vi = 0. (4.3.7)

Then
‖Tvλ|`θ(2j·r, Lp)‖ . ‖λ|srp,θb‖.

Proof. We restrict our proof to the case p, θ < ∞, the modifications in case p, θ = ∞
are obvious. For a shorter notation we define

G`(k) := {u ∈ Zd : |ui − ki| ≤ C2(`i)+ , i ∈ [d]},
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where C > 0 is the constant (4.3.1). We start applying u-triangle inequality in
`θ(2

j·r, Lp(Rd)) with u := min{p, 1}.

‖Tvλ|`θ(2j·r, Lp)‖ ≤
( ∑
`∈B(v)

(∑
j∈Nd0

2θj·r
∥∥∥ ∑
k∈Zd
|λj+`,k||Ψj ∗ vj+`,k|

∣∣∣Lp(Rd)∥∥∥θ)uθ ) 1
u
.

Applying Lemma 4.12 yields

‖Tvλ|`θ(2j·r, Lp(Rd))‖

≤
( ∑
`∈B(v)

2−u|`|1
(∑
j∈Nd0

2θj·r
∥∥∥ ∑
k∈Zd
|λj+`,k|χAj+`,k(x)

∣∣∣Lp(Rd)∥∥∥θ)uθ ) 1
u
.

(4.3.8)

The fact Aj+`,k ⊂
⋃
|ui−ki|≤2`i,+ Ij+`v ,u allows to decompose[ ∑

k∈Zd
|λj+`,k|χAj+`,k(x)

]p
≤
[ ∑
k∈Zd
|λj+`,k|

∑
u∈G`(k)

χIj+`v ,u(x)
]p
.

Interchanging summation yields[ ∑
k∈Zd
|λj+`,k|

∑
u∈G`(k)

χIj+`v ,u(x)
]p

=
[ ∑
u∈Zd

χIj+`v ,u(x)
∑

k: u∈G`(k)

|λj+`,k|
]p
.

Disjoint supports of Ij+`v ,u for different u ∈ Zd yield[ ∑
u∈Zd

χIj+`v ,u(x)
∑

k: u∈G`(k)

|λj+`,k|
]p

=
∑
u∈Zd

χIj+`v ,u(x)
[ ∑
k: u∈G`(k)

|λj+`,k|
]p
.

Taking the structure of G`(k) into account with |G`(k)| � 2|`+|1 then Hölder’s in-
equality in case p > 1 or simply the embedding `p ↪→ `1 in case p < 1 respectively,
implies[ ∑

k∈Zd
|λj+`,k|χAj+`,k(x)

]p
. 2p|`v |1(1− 1

p
)+
∑
u∈Zd

χIj+`v ,u(x)
∑

k: u∈G`(k)

|λj+`,k|p.

Furthermore it yields∑
u∈Zd

∑
k: u∈G`(k)

|λj+`,k|p ≤ 2|`v |1
∑
k∈Zd
|λj+`,k|p.

Considering the Lp(Rd) norm gives∥∥∥ ∑
k∈Zd
|λj+`,k|χAj+`,k(x)

∣∣∣Lp(Rd)∥∥∥p . 2−|j+`|12−|`vc |12|`v |1[(p−1)++1]
∑
k∈Zd
|λj+`,k|p.
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Inserting this into 4.3.8 yields

‖Tvλ|`θ(2j·r, Lp(Rd))‖

.
( ∑
`∈B(v)

2−u`v ·
[
rv−( 1

p
−1)+

]
2u`vc ·

[
1+ 1

p
−rvc

][ ∑
j∈Nd0

2θ(j+`)·(r−
1
p

)
(∑
k∈Zd
|λj+`,k|p

) θ
p
]u
θ
) 1
u
.

Finally extending the summation index gives

‖Tvλ|`θ(2j·r, Lp(Rd))‖ .
( ∑
`∈B(v)

2−u`v ·
[
r−( 1

p
−1)+

]
2u`vc ·

[
1+ 1

p
−r
]) 1

u‖λ|srp,θb‖.

Due to the choice of the parameters in (4.3.6) and (4.3.7) the sum converges to an
absolute constant. That proves the claim.

Theorem 4.16. Let 0 < p, θ <∞ (θ =∞) and for r ≥ 1

1 + min
{1

p
,
1

θ

}
> r >

{
σp,θ : min{p, θ} > 1 or max{p, θ} < 1,∣∣1
p
− 1

θ

∣∣ : min{p, θ} ≤ 1 ≤ max{p, θ},
(4.3.9)

or in case r < 1 simply
1 > r > σp,θ

being fulfilled. Further let λ ∈ srp,θf . Then

(i)

f :=
∑
j∈Nd−1

∑
k∈Zd

λj,kvj,k(·)

converges unconditionally in every Sr−εp,ν F (Rd) with 0 < ν ≤ ∞ and ε > 0. In
case θ <∞ there is unconditional convergence in Srp,θF (Rd), itself.

(ii) Additionally, there is a constant C > 0 such that

‖f |Srp,θF (Rd)‖ ≤ C‖λ|srp,θf |‖. (4.3.10)

holds.

Proof. Step 1. We assume the unconditional convergence of f in at least L1(Rd) and
prove (ii). We start representing the norm in terms of local means, cf. Theorem 3.7

‖f |Srp,θF (Rd)‖ =
∥∥∥(∑

j∈Nd0

2θ|j|1r|Ψj ∗ f |θ
) 1
θ
∣∣∣Lp(Rd)∥∥∥

≤
( ∑
v∈{0,1}d

∥∥∥(∑
j∈Nd0

2θ|j|1r
∣∣∣ ∑
`∈B(v)

∑
k∈Zd

λj+`,kΨj ∗ vj+`,k
∣∣∣θ) 1

θ
∣∣∣Lp(Rd)∥∥∥u) 1

u

=
( ∑
v∈{0,1}d

‖Tvλ|Lp(`θ(2|j|1r))|Lp(Rd)‖u
) 1
u
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with u = min{p, θ, 1}. In case σp,θ < r < 1 applying Lemma 4.14 finishes the proof. In
case max{1, σp,θ} ≤ r < 1 + min{1

p
, 1
θ
} we use complex interpolation of quasi Banach

spaces, cf. [127] and the references therein, to prove the boundedness of

‖Tvλ|srp,θf → Lp(`θ(2
|j|1r))‖.

The basic idea is borrowed from [120, Proposition]. We distinguish two cases. First
we consider the case 1

θ
≤ 1

p
, where we use the interpolation identities (Banach case: cf.

[118, Sec. 1.18.1 and 1.18.4], quasi-Banach case: [127, Chap. 4])

srp,θf = [sr0
p0,θ

f, sr1
θ,θf ]ν , Lp(`θ(2

|j|1r)) = [Lp0(`θ(2
j·r0)), Lθ(`θ(2

j·r1))]ν

for a ν ∈ (0, 1), 0 < p0 <∞ such that

1

p
=

1− ν
p0

+
ν

θ
(4.3.11)

and
r1 = (1− ν)r0 + νr1,

where r0, r1 ∈ Rd such that{
ri0 > σp0,θ : i ∈ [d] with vi = 1

ri0 < 1 : i ∈ [d] with vi = 0
and

{
ri1 > σθ : i ∈ [d] with vi = 1

ri1 < 1 + 1
θ

: i ∈ [d] with vi = 0

are fulfilled. For convenience of the reader we explain how to choose these interpolation
parameters. We set

ri1 = 1 +
1

θ
− ε > r,

where ε is sufficient small, for all i ∈ [d] with vi = 0. Additionally, we fix

ri0 =
1

2

for all i ∈ [d] with vi = 0. From this we determine ν ∈ (0, 1). Clearly, since 1
θ
< 1

p
we

will find p0 ∈ (0, p) such that
1

p
=

1− ν
p0

+
ν

θ
.

It remains to choose ri0 and ri1 for all i ∈ [d] with vi = 1. p0 can be become very small.
For that reason we choose r > ri1 = σθ + ε with ε sufficient small such that

r − ri1
1
p
− 1

θ

≥ 1 (4.3.12)
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1
p

r

1

1

r = 1
p

•
•

•

1
p

r

1
θ

r1 = 1 + 1/θ − ε

1
p0

ri0 = 1
2

2

2

1
p

r

1

r = σp

•
•

•

1
p

r

1
θ

1
p0

ri0

2

is fulfilled. This implies the condition

r >
1

p
− 1

θ
− σθ =

{
1
p
− 1

θ
, θ ≥ 1,

1
p
− 1 , θ < 1.

In case 1
θ
< 1

p
≤ 1 (4.3.12) is always fulfilled since we are in case r ≥ 1. (4.3.12)

guarantees to find ri0 > σp0,θ = σp0 fulfilling

r = (1− ν)ri0 + νri1

for all i ∈ [d] with vi = 1, since the derivation of σp0 is smaller or equal to 1 in p0. This
finishes the case 1

θ
< 1

p
. The case 1

θ
≥ 1

p
works similar. Here we interpolate,

srp,θf = [sr0
p,θ0
f, sr1

p,pb]ν , Lp(`θ(2
|j|1r)) = [Lp(`θ0(2j·r0)), Lp(`p(2

j·r1))]ν .

The parameters are chosen analogously, where the role of p0 is replaced by θ0. Step 2.
We show the unconditional convergence of f in Srp,θF (Rd). We prove (i) in case θ <∞.

To begin with, we denote the set of Faber indices by ∇ = {(j,k) : j ∈ Nd−1,k ∈ Zd}.
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Based on this we define the set of sequences with finite index sets given by

E :=
{
E = (En)n∈N : En ⊂ ∇, |En| = n, En ⊂ En+1 for all n ∈ N, and

∞⋃
n=1

En = ∇
}
.

Every sequence in E defines an order of summation. Furthermore for E ∈ E we define
FEn :=

∑
(j,k)∈En λj,kvj,k. We take a second sequence A ∈ E and consider FEn − FAm .

This difference can be written as a sum with finitely many λj,k. This fulfills the
assumptions necessary in Step 1 and yields

‖FEn − FAm|Srp,θF (Rd)‖ .
∥∥∥( ∑

(j,k)∈(En∪Am)\(En∩Am)

2r|j|1θ|λj,k|θχj,k
) 1
θ
∣∣∣Lp(Rd)∥∥∥.

Due to the disjoint support of χj,k1 and χj,k2 for k1 6= k2 we obtain that( ∑
(j,k)∈(En∪Am)\(En∩Am)

2r|j|1θ|λj,k|θχj,k
) 1
θ

≤
( ∑
j∈Nd−1

2r|j|1θ
∣∣∣ ∑
k∈Zd

λj,kvj,k

∣∣∣θ) 1
θ ∈ Lp(Rd)

holds almost everywhere. Therefore Lebesgue’s dominated convergence theorem yields
that we find for every ε > 0 a n0 ∈ N such that

‖FEn − FAm|Srp,θF (Rd)‖ ≤ ε

for all m,n > n0. Finally this implies unconditional convergence in Srp,θF (Rd). In case
θ =∞ we stress on the embeddings

Ssp,1F (Rd) ↪→ S r̃p,νF (Rd)

and
‖λ|ssp,1f‖ . ‖λ|srp,∞f‖,

where r > s > σp,ν , s > r̃ and 0 < ν ≤ ∞. Applying the arguments from above to
Ssp,1F (Rd) yields the result for S r̃p,νF (Rd).

Remark 4.17. The conditions on r in Theorem 4.16 look partly unnatural and are
probably not sharp. This seems to be a technical issue of the interpolation technique.
One would expect that this result holds for all σp,θ < r < 1+min{1

p
, 1
θ
} with 0 < p, θ <∞

(θ = ∞). Nevertheless our technique works for all 0 < p, θ < ∞ (θ = ∞) with
r such that max{1

p
, 1
θ
} < r < 1 + min{1

p
, 1
θ
}, which is important for an equivalent

characterization we will give later.

The next Theorem is the B-case analog of Theorem 4.16.

Theorem 4.18. Let 0 < p, θ ≤ ∞ and σp < r < 1 + 1
p
. Further let λ ∈ srp,θb. Then
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(i)

f :=
∑
j∈Nd−1

∑
k∈Zd

λj,kvj,k(·)

converges unconditionally in every Sr−εp,ν F (Rd) with 0 < ν ≤ ∞ and ε > 0. In
case max{p, θ} <∞ there is unconditional convergence in Srp,θB(Rd), itself.

(ii) Additionally, there is a constant C > 0 such that

‖f |Srp,θB(Rd)‖ ≤ C‖λ|srp,θb|‖. (4.3.13)

holds.

Proof. The proof is a trivial B-case modification of Theorem 4.16. The inequality in
(ii) can be obtained in the following way

‖f |Srp,θB(Rd)‖ =
(∑
j∈Nd0

2θ|j|1r‖Ψj ∗ f‖θp
) 1
θ

≤
( ∑
v∈{0,1}d

(∑
j∈Nd0

2θ|j|1r
∥∥∥ ∑
`∈B(v)

∑
k∈Zd

λj+`,kΨj ∗ vj+`,k
∣∣∣Lp(Rd)∥∥∥θ)uθ ) 1

u

=
( ∑
v∈{0,1}d

‖Tvλ|`θ(2|j|1r, Lp)|Lp(Rd)‖u
) 1
u

Inserting the estimate from Lemma 4.15 finishes the proof.

Theorem 4.19. (i) Let 1
2
< p, θ ≤ ∞ (p < ∞) and max{1

p
, 1
θ
} < r < 2. Then for

f ∈ Srp,θF (Rd) the inequality

‖dj,k(f)|srp,θf‖ . ‖f |Srp,θF (Rd)‖

holds.

(ii) Let 0 < p, θ ≤ ∞ (p > 1
2
) and 1

p
< r < 2. Then for f ∈ Srp,θB(Rd) the inequality

‖dj,k(f)|srp,θb‖ . ‖f |Srp,θB(Rd)‖

holds.

Proof. The proof provided here is a trivial modification of [60, Proposition 3.4], where
the B-case was considered in the periodic setting. We prove the F -case. We use for
fixed j ∈ Nd−1 the pointwise decomposition

f =
∑
`∈Zd

δj+`[f ]
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with δj+`[f ] as in (3.1.1) and restrict first to the F -case. This allows us to estimate

‖dj,k(f)|srp,θf‖ =
∥∥∥( ∑

j∈Nd−1

2r|j|1θ
∣∣∣ ∑
k∈Zd

dj,k(f)χj,k(·)
∣∣∣θ) 1

θ
∣∣∣Lp(Rd)∥∥∥

≤
(∑
`∈Zd

∥∥∥( ∑
j∈Nd−1

2r|j|1θ
∣∣∣ ∑
k∈Zd

dj,k(δj+`[f ])χj,k(·)
∣∣∣θ) 1

θ
∣∣∣Lp(Rd)∥∥∥u) 1

u
.

(4.3.14)

where u = min{p, θ, 1}. We consider

Fj,`(x) :=
∑
k∈Zd

dj,k(δj+`[f ])χj,k(x).

Clearly, whenever x ∈ Ij,k we have

|Fj,`(x)| ≤
∣∣∣dj,k(δj+`[f ])

∣∣∣ . |∆2,e(j)

2−(j+1)(δj+`[f ],xj,k)|. (4.3.15)

We estimate the iterated differences ∆
2,e(j)

2−(j+1)(δj+`[f ],xj,k) one by one now. Let gji+`i(t)

be an univariate bandlimited function with frequencies in [−A2ji+`i , B2ji+`i ]. We start
with the case i ∈ e(j) (ji ≥ 0). Here, Lemma B.10 yields

|∆2,i

2−(ji+1)(gji+`i , xji,ki)| . min{1, 22`i}max{1, 2`ia}P2`i+ji ,a|igji+`i(xji,ki).

Obviously, xi ∈ Iji,ki implies |xji,ki − xi| ≤ 2−(ji)+ . For that reason Lemma B.12 gives

|∆2,i

2−(ji+1)(gji+`i , xji,ki)| . min{22`i,1}max{2`ia, 1}P2`i+ji ,a|igji+`i(x). (4.3.16)

In case i /∈ e(j) we have ji = −1 and

|gji+`i(k)| ≤ sup
|y|≤1

|gji+`i(x+ y)| . sup
|y|≤1

|gji+`i(x+ y)|
(1 + 2ji |y|)a

≤ P2ji ,a|igji+`i(x). (4.3.17)

Additionally, assuming `i ≥ 0 then Lemma B.12, (ii) yields

|gji+`i(k)| ≤ 2`iaP2ji+`i ,a|igji+`i(x) (4.3.18)

Applying iteratively pointwise estimates (4.3.18) and (4.3.16) to the right hand of
(4.3.15) yields

|Fj,`(x)| . P2`+j ,aδj+`[f ](x)
∏
i∈e(j)

min{22`i , 1}max{2`ia, 1}. (4.3.19)

Inserting this into (4.3.14) we obtain

‖dj,k(f)|srp,θf‖ .
(∑
`∈Zd

∥∥∥( ∑
j∈Nd−1

2r|j+`|1θ
∣∣∣P2`+j ,aδj+`[f ](x)

d∏
i=1

A`i

∣∣∣θ) 1
θ
∣∣∣Lp(Rd)‖u) 1

u

(4.3.20)
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where

An =

{
2(2−r)n : n < 0

2(a−r)n : n ≥ 0.

Note, δj+`[f ] are bandlimited functions with frequencies in [−A2j1+`1 , B2j1+`1 ]× . . .×
[−A2jd+`d , B2jd+`d ]. We fix a > 0 such that

2 > r > a > max

{
1

p
,
1

θ

}
. (4.3.21)

Under these conditions we are allowed to apply Theorem B.17 that yields(∑
`∈Zd

∥∥∥( ∑
j∈Nd−1

2r|j+`|1θ
∣∣∣P2`+j ,aδj+`[f ]

d∏
i=1

A`i

∣∣∣θ) 1
θ
∣∣∣Lp(Rd)∥∥∥u) 1

u

.
(∑
`∈Zd

( d∏
i=1

A`i

)u∥∥∥( ∑
j∈Nd−1

2r|j+`|1θ
∣∣∣δj+`[f ]

∣∣∣θ) 1
θ
∣∣∣Lp(Rd)∥∥∥u) 1

u
.

Furthermore the choice of a in (4.3.21) together with the assumptions on r implies that
there is a δ > 0 such that An ≤ 2−δ|n| and hence(∑

`∈Zd

( d∏
i=1

A`i

)u∥∥∥( ∑
j∈Nd−1

2r|j+`|1θ
∣∣∣δj+`[f ]

∣∣∣θ) 1
θ
∣∣∣Lp(Rd)‖u) 1

u

.
(∑
`∈Zd

2−uδ|`|1
) 1
u‖f |Srp,θF (Rd)‖

. ‖f |Srp,θF (Rd)‖ (4.3.22)

holds. In B-case inserting the estimate from (4.3.19) gives

‖dj,k(f)|srp,θb‖ ≤
(∑
`∈Zd

( ∑
j∈Nd−1

2r|j|1θ
∥∥∥ ∑
k∈Zd

dj,k(δj+`[f ])χj,k

∣∣∣Lp(Rd)∥∥∥θ)uθ ) 1
u

.
(∑
`∈Zd

( ∑
j∈Nd−1

2r|j+`|1θ
∥∥∥P2`+j ,aδj+`[f ]

d∏
i=1

A`i

∣∣∣Lp(Rd)∥∥∥θ)uθ
p

) 1
u
.

Applying Theorem B.11 yields

‖dj,k(f)|srp,θb‖ .
(∑
`∈Zd

( d∏
i=1

A`i

)u( ∑
j∈Nd−1

2r|j+`|1θ‖δj+`[f ]‖θp
)u
θ

p

) 1
u
.

Finally the calculations in (4.3.22) show

‖dj,k(f)|srp,θb‖ . ‖f |Srp,θB(Rd)‖.

That proves the claim.
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Theorem 4.20. (i) Let 1
2
< p, θ <∞ (θ =∞) and max{1

p
, 1
θ
} < r < 1+min{1

p
, 1
θ
}.

Then f ∈ Srp,θF (Rd) can be represented by

f =
∑
j∈Nd−1

∑
k∈Zd

dj,k(f)vj,k

with unconditional convergence in every Sr−εp,θ F (Rd) with ε > 0. Additionally, if

θ < ∞ the unconditional convergence holds in the space Srp,θF (Rd), itself. The
following norms are equivalent

‖dj,k(f)|srp,θf‖ � ‖f |Srp,θF (Rd)‖. (4.3.23)

(ii) Let 0 < p, θ ≤ ∞ (p > 1
2
) and 1

p
< r < 1 + 1

p
. Then f ∈ Srp,θB(Rd) can be

represented by

f =
∑
j∈Nd−1

∑
k∈Zd

dj,k(f)vj,k

with unconditional convergence in every Sr−εp,θ B(Rd) with ε > 0. Additionally, if

θ < ∞ the unconditional convergence holds in the space Srp,θB(Rd), itself. The
following norms are equivalent

‖dj,k(f)|srp,θb‖ � ‖f |Srp,θB(Rd)‖. (4.3.24)

Proof. We prove the F -case here. The B-case can be obtained by replacing Theorem
4.16 by Theorem 4.18 and the usual modifications. We restrict to the case θ <∞, the
modifications in case θ = ∞ are analogous to the proof of Theorem 4.16. Theorem
4.19 implies that for f ∈ Srp,θF (Rd) the sequence (dj,k)j,k is in srp,θf . Theorem 4.16
yields that ∑

j∈Nd−1

∑
k∈Zd

dj,kvj,k (4.3.25)

converges unconditionally in Srp,θF (Rd) to some element g ∈ Srp,θF (Rd). It remains to

show f(x) = g(x) for all x ∈ Rd. Let K ⊂ Rd (K compact). We use the order of
summation provided by F d

n (cf. Definition 4.1.4). Let ε > 0. Then

‖f − g|C(K)‖ ≤
∥∥∥f − F d

nf
∣∣∣C(K)

∥∥∥+
∥∥∥F d

nf − g
∣∣∣C(K)

∥∥∥
≤

∥∥∥f − F d
nf
∣∣∣C(K)

∥∥∥+
∥∥∥F d

nf − g
∣∣∣Srp,θF (Rd)

∥∥∥
< 2ε.

This follows immediately by Theorem 4.8 and the unconditional convergence of the
series (4.3.25) in Srp,θF (Rd). The equivalence of the norms follows by Theorem 4.16
and Theorem 4.19.
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Remark 4.21. We should remark some facts about the sharpness of the smoothness
restrictions in the theorem above. Theoretically, for r > 1

p
one deals with continuous

functions, this is required to give a sense to function evaluations in Srp,θF (Rd) and

Srp,θB(Rd). The upper bound 1 + 1
p

in B-case seems also to be sharp, since vj,k /∈
Srp,θB(Rd) for r ≥ 1 + 1

p
, θ <∞. The F -case becomes more exciting in case 0 < θ < p.

Recently, Seeger and Ullrich proved in [100, Rem. 7.3], [101] that the close related Haar
system is not an unconditional basis in W r

p (R) = F r
p,2(R) in case 1

p
−1 < r < 1

θ
−1. The

Faber-Schauder hat function v(x) can be written as the integral of the Haar function
h(x). We have the identity

v(x) =

∫ x

0

h(t)dt

where

h(t) =

{
1 , 0 ≤ t ≤ 1

2

−1 , 1
2
< t ≤ 1.

Hence, the properties of the Faber-Schauder representation can be interpreted in some
sense as a 1-lifted Haar basis representation. This indicates that the condition r >
max{1

p
, 1
θ
} is also sharp.

4.4 Equivalent characterizations on the unit cube

In this section we study the Faber-Schauder system as an unconditional basis for
Srp,θF ([0, 1]d) and Srp,θB([0, 1]d). In section 3.4 we define domains as open connected
sets. This is required for instance since our spaces Srp,θB(Ω) and Srp,θF (Ω) are based on
distributions f ∈ D′(Ω) which require an open set to be well defined. For that reason
we formally deal with the open unit cube Ω := (0, 1)d and consider the index set

∇ := {(j,k) ∈ Nd−1 × Zd : supp vj,k ∩ (0, 1)d 6= ∅}. (4.4.1)

For fixed level j all translates with the property supp vj,k ∩ (0, 1)d are contained in

Dj :=
d×
i=1

Dji , (4.4.2)

which is defined as the tensor product of the sets

Dj :=

{
{k ∈ N0 : 0 ≤ k < 2j} , j ≥ 0

{0, 1} , j = −1.

This allows us to define the following sequence spaces.

Definition 4.22. We define for 0 < p, θ ≤ ∞ (sr,Ωp,θ f : p < ∞) the spaces sr,Ωp,θ f

and sr,Ωp,θ b as the space of all sequences of coefficients (λj,k)j∈Nd−1,k∈Dj ⊂ C with finite
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(quasi)-norm

‖λj,k|sr,Ωp,θ f‖ :=


∥∥∥(∑j∈N−1d 2θ|j|1r|

∑
k∈Dj λj,kχj,k|

θ
) 1
θ
∣∣∣Lp(Ω)

∥∥∥ : 0 < θ <∞,∥∥∥ supj∈Nd−1
2|j|1r|

∑
k∈Dj λj,kχj,k|

∣∣∣Lp(Ω)
∥∥∥ : θ =∞,

and

‖λj,k|sr,Ωp,θ b‖ :=


(∑

j∈Nd−1
2θ|j|1r‖

∑
k∈Dj λj,kχj,k|Lp(Ω)‖θ

) 1
θ

: 0 < θ <∞,
supj∈Nd−1

2|j|1r‖
∑
k∈Dj λj,kχj,k|Lp(Ω)‖ : θ =∞,

respectively.

Lemma 4.23. Let 0 < q < p ≤ ∞ (f-case: p <∞) and 0 < θ ≤ ∞. Then

sr,Ωp,θ f ↪→ sr,Ωq,θ f

and

sr,Ωp,θ b ↪→ sr,Ωq,θ b

Proof. The proof follows trivially by definition using the embedding

Lp((0, 1)d) ↪→ Lq((0, 1)d).

Remark 4.24. According to the definition of the spaces in Section 3.4 the functions
f (distributions) in Srp,θX(Ω), X ∈ {B,F} can be extended to functions f ∗ belonging

to Srp,θX(Rd). For r > 1
p

this space is continuously embedded into C(Rd) (cf. Lemma

3.4,(ii)). In fact, this implies that there is an unique extension from f on (0, 1)d

to [0, 1]d giving us an continuous function on [0, 1]d. Since the norms are based on
Lp expressions that do not care about boundary values we denote (identify) the space
Srp,θX(Ω) with Srp,θX([0, 1]d) in case r > 1

p
.

Theorem 4.25. (i) Let 1
2
< p, θ ≤ ∞ (p <∞) and max{1

p
, 1
θ
} < r < 1+min{1

p
, 1
θ
}.

Then f ∈ Srp,θF ([0, 1]d) can be represented by

f =
∑
j∈Nd−1

∑
k∈Dj

dj,k(f)vj,k (4.4.3)

with unconditional convergence in every Sr−εp,θ F ([0, 1]d) with ε > 0. Additionally,

if θ < ∞ the unconditional convergence holds in the space Srp,θF ([0, 1]d), itself.
The following norms are equivalent

‖dj,k(f)|sr,Ωp,θ f‖ � ‖f |S
r
p,θF ([0, 1]d)‖. (4.4.4)
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(ii) Let 0 < p, θ ≤ ∞ (p > 1
2
) and 1

p
< r < 1 + 1

p
. Then f ∈ Srp,θB([0, 1]d) can be

represented by

f =
∑
j∈Nd−1

∑
k∈Dj

dj,k(f)vj,k

with unconditional convergence in every Sr−εp,θ B([0, 1]d) with ε > 0. Additionally,

if max{p, θ} <∞ the unconditional convergence holds in the space Srp,θB([0, 1]d),
itself. The following norms are equivalent

‖dj,k(f)|sr,Ωp,θ b‖ � ‖f |S
r
p,θB([0, 1]d)‖. (4.4.5)

Proof. As usual, we prove only the F -case. The B-case works with obvious modifica-
tions and was considered in [120] and [125]. Let f ∈ Srp,θF ([0, 1]d). By definition we

find a g∗ ∈ Srp,θF (Rd) with g∗|Ω = f and

‖f |Srp,θF ([0, 1]d)‖ ≤ ‖g∗|Srp,θF (Rd)‖ ≤ 2‖f |Srp,θF ([0, 1]d)‖.

Expanding g∗ into the Faber-Schauder system restricted to Ω, then

g :=
∑
j∈Nd−1

∑
k∈Dj

dj,k(g∗)vj,k ∈ Srp,θF (Rd)

is also a function with the property g|Ω = f . Theorem 4.20 yields∥∥∥( ∑
j∈Nd−1

2θr|j|1
∣∣∣ ∑
k∈Dj

dj,k(g∗)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp(Rd)∥∥∥ � ‖g|Srp,θF (Rd)‖

� ‖g∗|Srp,θF (Rd)‖ � ‖f |Srp,θF ([0, 1]d)‖.

It remains to show∥∥∥( ∑
j∈Nd−1

2θr|j|1
∣∣∣ ∑
k∈Dj

dj,k(g∗)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp(Rd)∥∥∥ � ‖dj,k(f)|sr,Ωp,θ f‖. (4.4.6)

Due to the definition of dj,k(g∗) we obtain that for (j,k) ∈ ∇ only function values of
g∗ in Ω are considered. Since

f(x) = g∗(x),

for all x ∈ Ω we have the identity

dj,k(g∗) = dj,k(f).

Finally we show that it suffices for an equivalent norm to integrate over Ω instead of
Rd. The direction ”&” in (4.4.6) is obvious. The core of the matter for the direction
”.” is also very easy to see. To prevent further notation we prove only the case d = 1.
We recognize supp g ⊂ [−1, 2]. That yields∥∥∥( ∑

j∈N−1

2θr|j|
∣∣∣ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp(R)

∥∥∥
=

∥∥∥( ∑
j∈N−1

2θr|j|
∣∣∣ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp([− 1

2
,
3

2

])∥∥∥.
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Splitting the integral in three parts gives∥∥∥( ∑
j∈N−1

2θr|j|
∣∣∣ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp([− 1

2
,
3

2

])∥∥∥ . ‖dj,k(f)|sr,Ωp,θ f‖

+
∥∥∥( ∑

j∈N−1

2θr|j|
∣∣∣ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp([− 1

2
, 0
])∥∥∥

+
∥∥∥( ∑

j∈N−1

2θr|j|
∣∣∣ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp([1, 3

2

])∥∥∥.
The term integrating over

[
− 1

2
, 0
]

breaks down to∥∥∥( ∑
j∈N−1

2θr|j|
∣∣∣ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp([− 1

2
, 0
])∥∥∥ = Cr

∥∥∥d−1,0(f)χ−1,0

∣∣∣Lp([− 1

2
, 0
])∥∥∥.

Symmetry of χ−1,0(x) yields∥∥∥d−1,0(f)χ−1,0

∣∣∣Lp([− 1

2
, 0
])∥∥∥ = ‖d−1,0(f)χ−1,0|Lp([0, 1])‖ . ‖dj,k(f)|sr,Ωp,θ f‖.

With the same arguments the term integrating over
[
1, 3

2

]
can be estimated. Sure,

similar arguments can be applied in case d > 1. Here the decomposition of
[
− 1

2
, 3

2

]d
causes further technical consideration. That finishes the proof.

Theorem 4.26. (i) Let 1
2
< p, θ ≤ ∞ (p < ∞) and max{1

p
, 1
θ
} < r < 2. Then for

f ∈ Srp,θF ([0, 1]d) the inequality

‖dj,k(f)|sr,Ωp,θ f‖ . ‖f |S
r
p,θF ([0, 1]d)‖

holds.

(ii) Let 0 < p, θ ≤ ∞ (p > 1
2
) and 1

p
< r < 2. Then for f ∈ Srp,θB([0, 1]d) the

inequality

‖dj,k(f)|sr,Ωp,θ b‖ . ‖f |S
r
p,θB([0, 1]d)‖

holds.

Proof. We prove only the F -case, the B-case works with well known modifications. Let
g ∈ Srp,θF (Rd) be an arbitrary extension of f , i.e. g|Ω = f . Then Theorem 4.19 yields

‖dj,k(f)|sr,Ωp,θ f‖ =
∥∥∥( ∑

j∈Nd−1

2|j|1rθ
∣∣∣ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp([0, 1]d)

∥∥∥
≤

∥∥∥( ∑
j∈Nd−1

2|j|1rθ
∣∣∣ ∑
k∈Zd

dj,k(g)χj,k

∣∣∣θ) 1
θ
∣∣∣Lp(Rd)∥∥∥

� ‖g|Srp,θF (Rd)‖.
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Finally, taking the infimum over all ‖g|Srp,θF (Rd)‖ with g|Ω = f yields

‖dj,k(f)|sr,Ωp,θ f‖ . ‖f |S
r
p,θF ([0, 1]d)‖.

That finishes the proof.

Lemma 4.27. Let 0 < p < ∞ and λ = (λj+`,k)j∈Nd−1,k∈Dj ∈ s0,Ω
p,1 f . Then there is a

C > 0 such that ∥∥∥ ∑
j∈Nd−1

∑
k∈Dj

λj,kvj,k

∣∣∣Lp([0, 1]d)
∥∥∥ ≤ C‖λ|s0,Ω

p,1 f‖

holds.

Proof. The non-trivial point are the levels ji = −1, since the supports of v−1,0 and
v−1,1 have some overlap. Additionally the support of the corresponding characteristic
function χj,k is only half of the size of the support of vj,k. We introduce the auxiliary
characteristic function

χ∗−1,k :=

{
χ−1,0 : k = 1,

χ−1,1 : k = 0.

and use the following simple decomposition estimate for x ∈ [0, 1]

|v−1,k| ≤ χ[0,1] = χ−1,k + χ∗−1,k.

To prevent further notation we estimate only the case d = 2. The modifications for
d > 2 are obvious. ∥∥∥ ∑

j∈N2
−1

∑
k∈Dj

λj,kvj,k

∣∣∣Lp([0, 1]d)
∥∥∥p

≤
∥∥∥ ∑
j∈N2

−1

∑
k∈Dj

|λj,kvj,k|
∣∣∣Lp([0, 1]2)

∥∥∥p
.

∥∥∥ ∑
j∈N2

−1

∣∣∣ ∑
k∈Dj

λj,kχj,k

∣∣∣∣∣∣Lp([0, 1]2)
∥∥∥p

+
∥∥∥ ∑
j2∈N0

∑
k∈D(−1,j2)

|λ(−1,j2),(k1,k2)χ
∗
−1,k1

χj2,k2|
∣∣∣Lp([0, 1]2)

∥∥∥p
+
∥∥∥ ∑
j1∈N0

∑
k∈D(j1,−1)

|λ(j1,−1),(k1,k2)χj1,k1χ
∗
−1,k2
|
∣∣∣Lp([0, 1]2)

∥∥∥p
+
∥∥∥ ∑
k∈D(−1,−1)

|λ(−1,−1),(k1,k2)χ
∗
−1,k1

χ∗−1,k2
|
∣∣∣Lp([0, 1]2)

∥∥∥p.
The term ∑

j2∈N0

∑
k∈D(−1,j2)

|λ(−1,j2),(k1,k2)χ
∗
−1,k2

(x1)χj2,k2(x2)|
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is for fixed x2 ∈ [0, 1] a step function. Interchanging the interval of the integration we
obtain ∥∥∥ ∑

j2∈N0

∑
k∈D(−1,j2)

|λ(−1,j2),(k1,k2)χ
∗
−1,k2

χj2,k2|
∣∣∣Lp([0, 1]2)

∥∥∥
=
∥∥∥ ∑
j2∈N0

∑
k∈D(−1,j2)

|λ(−1,j2),(k1,k2)χ−1,k2χj2,k2|
∣∣∣Lp([0, 1]2)

∥∥∥
≤

∥∥∥ ∑
j∈N2

−1

∣∣∣ ∑
k∈Dj

λj,kχj,k

∣∣∣∣∣∣Lp([0, 1]2)
∥∥∥.

The remaining terms can be estimated similarly.

With similar arguments we obtain the following b-space counterpart.

Lemma 4.28. Let 0 < p ≤ ∞ and λ = (λj+`,k)j∈Nd−1,k∈Dj ∈ s0,Ω
p,1 b. Then there is a

C > 0 such that ∥∥∥ ∑
j∈Nd−1

∑
k∈Dj

λj,kvj,k

∣∣∣Lp([0, 1]d)
∥∥∥ ≤ C‖λ|s0,Ω

p,1 b‖

holds.

Proof. The proof follows by a simplification of the arguments presented in the proof of
Lemma 4.27.

4.5 Bounded second order weak derivatives

In this section we follow the idea of Bungartz, Griebel [8] and consider functions with
bounded second order mixed weak derivatives in connection with hat functions. As a
preparation we need the following lemma.

Lemma 4.29. Let 1 ≤ p <∞. Then there exists a constant C > 0 such that( ∞∑
k=−∞

|f(k)|p
) 1
p ≤ C‖f |B

1
p

p,1(R)‖

holds for all f ∈ B
1
p

p,1(R).

Proof. We refer to [98, Proposition 2].

Now we are able to prove the following theorem as an analog of Theorem 4.19.

Theorem 4.30. For every function f ∈ S2
pW (Rd) it holds

sup
j∈Nd−1

22|j|1
∥∥∥ ∑
k∈Zd

dj,k(f)χj,k

∣∣∣Lp(Rd)∥∥∥ . ‖f |S2
pW (Rd)‖. (4.5.1)
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Proof. For technical reasons we state the proof for d = 2 here. The methods we use
can be easily extended to dimensions d > 2. Step 1. Assume we have proven the above
inequality for functions from D(R2). Let us denote the norm on the left-hand side with

‖f |S̃2
p,∞B(R2)‖ := sup

j∈Nd−1

22|j|1
∥∥∥ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣Lp(R2)
∥∥∥.

According to (3.1.4) the norm on the right hand side in (4.5.1) is equivalent to

‖f |S2
pH(R2)‖ := ‖f |Lp(R2)‖+

∥∥∥ ∂2

∂x2
1

f
∣∣∣Lp(R2)

∥∥∥+
∥∥∥ ∂2

∂x2
2

f
∣∣∣Lp(R2)

∥∥∥+
∥∥∥ ∂2

∂x1∂x2

f
∣∣∣Lp(R2)

∥∥∥.
(4.5.2)

Assume we have a sequence (ϕj)j∈N0 ∈ D(R2) such that ϕj −−−→
j→∞

∈ S2
pW (R2) in the

norm ‖ · |S2
pW (R2)‖. Then

‖ϕj − ϕi|S̃2
p,∞B(R2)‖ . ‖ϕj − ϕi|S2

pW‖ < ε, for all i, j > M.

This implies that (ϕj)j is a Cauchy sequence in S̃2
p,∞B(R2) and hence convergent. This

implies convergence in Lp(R2) (and even C(R2)). Hence, we have

ϕj −−−→
j→∞

f ∈ S2
pW (R2) in ‖ · |S2

pW (R2)‖

and
ϕj −−−→

j→∞
f ∗ ∈ C(R2) in ‖ · |S̃2

p,∞B(R2)‖.

Therefore f = f ∗. Further

‖ϕj|S̃2
p,∞B(R2)‖ . ‖ϕj|S2

pW (R2)‖.

Taking the limit on both sides yields

‖f |S̃2
p,∞B(R2)‖ . ‖f |S2

pW (R2)‖.

Hence, it remains to prove the theorem for functions from D(R2). Step 2. Let ϕ ∈
D(R2). We consider the left hand side and decompose it into the regions

sup
j∈N2

−1

. . . = sup
j1∈N0
j2∈N0

. . .+ sup
j1=−1
j2∈N0

. . .+ sup
j1∈N0
j2=−1

. . .+ sup
j1=−1
j2=−1

. . . .

We show that the corresponding supremum are bounded by the S2
pW (R2)-norm. We

start with j1 = j2 = −1∥∥∥∑
k1∈Z

∑
k2∈Z

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥

=
∥∥∥∑
k1∈Z

∑
k2∈Z

ϕ(k1, k2)χ−1,k1(x1)χ−1,k2(x2)
∣∣∣Lp(R2)

∥∥∥
.

(∑
k1∈Z

∑
k2∈Z

|ϕ(k1, k2)|p
) 1
p
.
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Lemma 4.29 allows to estimate this by∥∥∥∑
k1∈Z

∑
k2∈Z

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥ .

(∑
k1∈Z

‖ϕ(k1, ·)|B
1
p

p,1(R)‖p
) 1
p
.

Applying Lemma 3.4 (remember: Srp,θB(R) = Br
θ(R)) yields∥∥∥∑

k1∈Z

∑
k2∈Z

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥ .

(∑
k1∈Z

‖ϕ(k1, ·)|W 2
p (R)‖p

) 1
p
.

Repeating the last two steps for the first variable we obtain∥∥∥∑
k1∈Z

∑
k2∈Z

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥ .

∥∥∥‖ϕ(x1, x2)|W 2
p (R)‖

∣∣∣W 2
p (R)

∥∥∥.
Finally the cross norm property of SrpW (R2) (cf. [107, Theorem 2.1]) or alternatively
inserting the equivalent norm known from Lemma (3.14) immediately gives∥∥∥ ∑

k1∈Zd

∑
k2∈Zd

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥ . ‖ϕ|S2

pW (R2)‖.

In case j1 = −1, j2 ∈ N0 we argue as follows. We use the property that χj,k has disjoint
supports for different k and obtain

sup
j2∈N0

22j2p
∥∥∥∑
k1∈Z

∑
k2∈Z

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥p

= sup
j2∈N0

22j2p

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∑
k1∈Z

χ−1,k1(x1)
∑
k2∈Z

χj2,k2(x2)∆2
2−(j2+1),2

ϕ(k1, 2
−j2)k2

∣∣∣pdx1dx2

. sup
j2∈N0

22j2p

∫ ∞
−∞

∑
k1∈Z

∣∣∣∑
k2∈Z

χj2,k2(x2)∆2
2−(j2+1),2

ϕ(k1, 2
−j2k2)

∣∣∣pdx2

= sup
j2∈N0

22j2p
∑
k1∈Z

∫ ∞
−∞

∣∣∣∑
k2∈Z

∆2
2−(j2+1),2

ϕ(k1, 2
−j2k2)χj2,k2(x2)

∣∣∣pdx2.

. sup
j2∈N0

22j2p
∑
k1∈Z

∑
k2∈Z

∣∣∣∆2
2−(j2+1),2

ϕ(k1, 2
−j2k2)

∣∣∣pdx2.

(4.5.3)

Using partial integration we can easily check the identity

∆2
2−(j2+1)g(2−j2k2) = 2−j2

∫
Ij2,k2

vj2,k2(t)g(2)(t)dt

for g being a 2-times continuously differentiable function. Hölder’s inequality provides

|∆2
2−(j2+1)g(2−j2k2)|p . 2−2j22

j2
p

∫
Ij2,k2

|g(2)(t)|pdt. (4.5.4)
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CHAPTER 4. THE FABER-SCHAUDER BASIS

Returning to (4.5.3) gives

(4.5.3) . sup
j2∈N0

22j2p
∑
k1∈Z

∑
k2∈Z

|∆2
2−(j2+1),2

ϕ(k1, 2
−j2k2)|p

. sup
j2∈N0

∑
k1∈Z

∑
k2∈Z

∫
Ij2,k2

|ϕ(0,2)(k1, t)|pdt︸ ︷︷ ︸
.
∫∞
−∞ |ϕ(0,2)(k1,t)|pdt

.
∑
k1∈Z

∫ ∞
−∞
|ϕ(0,2)(k1, t)|pdt

=

∫ ∞
−∞

∑
k1∈Z

|ϕ(0,2)(k1, t)|pdt.

Clearly, for fixed t ∈ R Lemma 4.29 yields∑
k1∈Z

∣∣∣ϕ(0,2)
(
k1, t

)∣∣∣p . ‖ϕ(0,2)(·, t)|B
1
p

p,1(R)‖p . ‖ϕ(0,2)(·, t)|W 2
p (R)‖p.

Inserting the equivalent norm from (4.5.2) gives

sup
j2∈N0

22j2p
∥∥∥∑
k1∈Z

∑
k2∈Z

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥p . ‖ϕ|S2

pW (R2)‖.

The case (j1,−1) works analogous and for (j1, j2) ∈ N2
0 we do not need Lemma 4.29.

Applying (4.5.4) in both directions provides

sup
j∈N2

0

22|j|1
∥∥∥∑
k∈Z2

dj,k(ϕ)χj,k

∣∣∣Lp(R2)
∥∥∥ . ‖ϕ|S2

pW (R2)‖.

That finishes the proof.

Remark 4.31. Compared to Theorem 4.16 we have in the limiting case r = 2 a B-
type sequence space with fine index θ = ∞ on the left hand side in (4.5.1). Later in
Chapter 5 we will see that this issue causes an additional logarithmic factor in some
approximation rates we have to pay.

An argumentation analogously to the proof of Theorem 4.26 provides the following
estimate on the unit cube.

Corollary 4.32. For every function f ∈ S2
pW ([0, 1]d) it holds

sup
j∈Nd−1

22|j|1
∥∥∥ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣Lp([0, 1]d)
∥∥∥ . ‖f |S2

pW ([0, 1]d)‖. (4.5.5)
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4.6 A norm estimate for atomic superpositions

The limited regularity of the Faber-Schauder system restricts the smoothness range
of Theorem 4.16 and 4.18. Later, constructing locally supported fooling functions
for sampling quantities we aim to overcome the restriction r < 1 + 1

p
(F -case: r <

1 + min{1
p
, 1
θ
}) and cover at least the smoothness range r < 2 (cf. Theorem 4.19) or

even more. For that purpose we consider smoother functions, that allow estimates in
in b and f -type sequence spaces. We introduce the concept of atoms according to [127,
p. 25].

Definition 4.33. Let K,L + 1 ∈ N0 and γ > 1. A K-times differentiable complex
valued function a(x) is called [K,L]-atom centered at Ij,k (defined in (4.2.1)) if

(i)

supp a ⊂ γIj,k

(ii)

|Dαa(x)| ≤ 2α·j for |α|∞ ≤ K

(iii) ∫
R
xmi a(x)dxi = 0 if i = 1, . . . , d and m = 0, . . . , L.

for j ∈ Nd.

Using the notation Srp,θX where X ∈ {B,F} and srp,θx with x ∈ {b, f} allows us to
state the following theorem.

Theorem 4.34. Let 0 < p, θ ≤ ∞, (p < ∞ in the F-case) and r ∈ R. Fix K ∈ N0

and L+ 1 ∈ N0 with

K ≥ (1 + dre)+ and L ≥ max(−1, dσp,θ − re)

(L ≥ max(−1, dσp−re) in the B-case). If λ ∈ srp,θa and {aj,k}j∈Nd0,k∈Zd are [K,L]-atoms
centered at Ij,k, then the sum ∑

j∈Nd0

∑
k∈Zd

λj,kaj,k(x)

converges in S ′(Rd), its limit f belongs to the space Srp,θX(Rd) and

‖f |Srp,θX(Rd)‖ ≤ C‖λ|srp,θx‖, (4.6.1)

where the constant C is universal for all admissible λ and aj,k.
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CHAPTER 4. THE FABER-SCHAUDER BASIS

Proof. We refer to [127, Theorem 2.4]. We should mention, that the proof of this
theorem is based on convolution inequalities as in Lemma 4.12. Here for [K,L]-atoms
(aj,k)j∈Nd0,k∈Zd the convolution can be estimated by

|Ψj ∗ aj+`,k(x)| ≤ CR2−|`+|K2−|`−|(L+2)
∏

i=1,...,d

(1 + 2min{ji,ji+`i}|xi − 2−(ji+`i)ki|)−R.

Then the technique presented in Lemma 4.14 (F -case) and Lemma 4.15 (B-case) to-
gether with the simple estimate

‖f |Srp,θF (Rd)‖ .
( ∑
v∈{0,1}d

‖T ∗vλ|Lp(`θ(2|j|1r,Nd0),Rd)|Lp(Rd)‖u
) 1
u
. ‖λ|srp,θf‖

proves the claim (obvious changes in B case). Here

T ∗v : srp,θf → Lp(`θ, 2
j·r)

is given by

(λj,k)j∈Nd−1,k∈Zd 7→
( ∑
`∈B(v)

∑
k∈Zd

λj+`,kΨj ∗ aj+`,k
)
j∈Nd0

.

Remark 4.35. Obviously, if additionally supp aj,k ⊂ Ij,k for all j ∈ Nd0,k ∈ Dj then
(4.6.1) can be refined to∥∥∥∑

j∈Nd0

∑
k∈Dj

λj,kaj,k|Srp,θA([0, 1]d)
∥∥∥ . ‖λ|sr,Ωp,θ a‖.

That means we obtain a related estimate on the domain [0, 1]d.
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Chapter 5

(Energy-)Sparse grid approximation

The upcoming two chapters deal with approximation aspects of the Faber-Schauder
system in spaces with non-periodic boundary conditions. A sparse grid with asymp-
totically Md−12M points is the set

GsparseM := {(2−j1k1, . . . , 2
−jdkd) : k ∈

d×
i=1

{0, . . . , 2ji}, |j|1 ≤M}. (5.0.1)

We use samples generated on GsparseM to approximate functions f ∈ SrpW ([0, 1]d) in the
Lq([0, 1]d)-norm. The Faber-Schauder system has a restricted regularity that causes
attention concerning smoothness, fine index and integrability of the function classes
we consider. For a improved visibility of this effects we restrict to model spaces
SrpW ([0, 1]d) in this chapter. In Chapter 9, the requirements for the trigonometric
sampling representation are less critical. There we point out more general approxima-
tion results for the periodic setting. The second half of this chapter is about measuring
the error in the energy norm H1([0, 1]d). It turns out that a modification of Smolyak’s
algorithm which generates a so called energy sparse grid yields optimal sampling rates.

5.1 Hierarchical sparse grid approximation

First we deal with the approximation of functions where the error is measured in
Lq([0, 1]d), 1 < q ≤ ∞.

Definition 5.1. We define for f ∈ C([0, 1]d) the (linear) Smolyak Faber-Schauder
sampling operator

IMf =
∑
|j|1≤M

∑
k∈Dj

dj,k(f)vj,k. (5.1.1)

By construction this operator samples a continuous function f on GsparseM (defined
in (5.0.1)). One can easily check that the cardinality of GsparseM can be described by

|GsparseM | �
∑
|j|1≤M

2|j|1 �Md−12M ,

cf. Lemma C.21.

61



CHAPTER 5. (ENERGY-)SPARSE GRID APPROXIMATION

Lemma 5.2. For f ∈ C([0, 1]d) and M > 0 we have

IMf(x) = f(x)

for all x ∈ GsparseM .

Proof. The interpolation property of the (at level M truncated) univariate Faber-
Schauder series expansion on [0, 1] immediately gives an interpolation property of the
|j|∞ ≤M -truncated multivariate expansion on a “full grid” (see Lemma 4.6). Arguing
similar as in [107, Lem. 4.3] we obtain the interpolation property on sparse grids GsparseM

stated above for IM .

Lemma 5.3. Let M > 0. Then

rank IM = Md−12M .

Proof. The direction rank IM .Md−12M is obvious, since IM samples by construction
on a sparse grid GsparseM with |GsparseM | � Md−12M sampling nodes. The lower bound
comes from the fact that IM reproduces the set

VM = span {vj,k : |j|1 ≤M,k ∈ Dj}

with dimVM = Md−12M (cf. Lemma 5.2). This type of arguments are well known
for Smolyak type algorithms in the periodic context and transfer one-to-one to hat
functions.

To improve the length of presentation in the upcoming proofs we use the conventions

uj =
∑
k∈Dj

dj,kvj,k and u∗j =
∑
k∈Dj

dj,kχj,k

and start proving some approximation rates. First we consider the case where we have
less (or equal) integrability in the target space than in the source space.

Theorem 5.4. Let 1 < q ≤ p <∞ and max{1
p
, 1

2
} < r < 2. Then we obtain

‖f − IMf |Lq([0, 1]d‖ .M
d−1

2 2−Mr‖f |SrpW ([0, 1]d)‖

for all M ∈ N.

Proof. The expansion in (4.4.3), the embedding Lp([0, 1]d) ↪→ Lq([0, 1]d) and Lemma
4.27 together with Hölder’s inequality yield∥∥∥f − ∑

|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ ≤ ∥∥∥ ∑

|j|1>M

uj

∣∣∣Lp([0, 1]d)
∥∥∥

.
( ∑
|j|1>M

2−2|j|1r
) 1

2
∥∥∥( ∑
|j|1>M

22r|j|1|u∗j |2
) 1

2
∣∣∣Lp([0, 1]d)

∥∥∥.
The estimate for the sum in Lemma C.20 together with Theorem 4.26 yields∥∥∥f − ∑

|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ . 2−rMM

d−1
2 ‖f |SrpW ([0, 1]d)‖.
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Next we proof a result where the integrability in the target space is greater than in
the source space.

Theorem 5.5. Let 1 < p < q <∞ and 1
p
< r < 2 + 1

p
− 1

q
. Then we obtain

‖f − IMf |Lq([0, 1]d)‖ . 2−M(r− 1
p

+ 1
q

)‖f |SrpW ([0, 1]d)‖

for all M ∈ N.

Proof. The expansion in (4.4.3) together with Lemma 4.27 yield∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ . sup

|j|1>M
2−(r−( 1

p
− 1
q

))|j|1
∥∥∥ ∑
|j|1>M

2(r−( 1
p
− 1
q

))|j|1|u∗j |
∣∣∣Lq([0, 1]d)

∥∥∥.
We choose q∗ with p < q∗ < q close to q with r − (1

p
− 1

q∗
) < 2. Applying the diagonal

embedding stated in Lemma 4.10, (iv) gives∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ ≤ 2−(r−( 1

p
− 1
q

))M
∥∥∥ sup
|j|1>M

2r−( 1
p
− 1
q∗ )|j|1 |u∗j|

∣∣∣Lq∗([0, 1]d)
∥∥∥.

Applying Theorem 4.26 yields∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ ≤ 2−(r−( 1

p
− 1
q

))M‖f |S
r−( 1

p
− 1
q∗ )

q∗,∞ F ([0, 1]d)‖.

Finally the diagonal embedding

SrpW ([0, 1]d) ↪→ S
r−( 1

p
− 1
q∗ )

q∗,∞ F ([0, 1]d)

(cf. Lemma 3.4, (vi)) finishes the proof.

The proof of Theorem 5.5 shows that this approximation rate holds for a bigger class
of functions namely the mixed Triebel-Lizorkin space with fine index θ = ∞. Finally
we investigate the special case q =∞.

Theorem 5.6. Let 1 < p <∞ and 1
p
< r < 2 + 1

p
. Then

‖f − IMf |L∞([0, 1]d)‖ . M (d−1)(1− 1
p

)2−M(r− 1
p

)‖f |SrpW (Rd)‖

holds for all M ∈ N.

Proof. Step 1. We prove

‖f − IMf |L∞([0, 1]d)‖ . ‖f |S
r− 1

p
∞,p B([0, 1]d)M (d−1)(1− 1

p
)2−M(r− 1

p
). (5.1.2)

Expanding into (4.4.3) then Lemma 4.28 yields

‖f − IMf |L∞([0, 1]d)‖ =
∥∥∥ ∑
|j|1>M

uj

∣∣∣L∞([0, 1]d)‖ .
∑
|j|1>M

‖u∗j|L∞([0, 1]d)‖.
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We apply Hölder’s inequality with 1 = 1
p

+ 1
p′

and obtain

‖f − IMf |L∞([0, 1]d)‖ .
( ∑
|j|1>M

2−p
′(r− 1

p
)|j|1
) 1
p′
( ∑
|j|1>M

2p(r−
1
p

)|j|1‖u∗j|L∞([0, 1]d)‖p
) 1
p
.

Lemma C.20 yields

‖f − IMf |L∞([0, 1]d)‖ .M (d−1)(1− 1
p

)2−M(r− 1
p

)
( ∑
|j|1>M

2p(r−
1
p

)|j|1‖u∗j|L∞([0, 1]d)‖p
) 1
p
.

Applying Theorem 4.26 yields (5.1.2).
Step 2. The Jawerth-Franke type embedding implies

SrpW ([0, 1]d) ↪→ S
r− 1

p
∞,p B([0, 1]d)

(cf. Lemma 3.5). Applying this we obtain

‖f − IMf |L∞([0, 1]d)‖ .M (d−1)(1− 1
p

)2−M(r− 1
p

)‖f |SrpW ([0, 1]d)‖,

which proves the claim.

The next Theorem was obtained in [8, Proposition 3.8] for p = 2. A close related
version for 1 < p <∞ in the context of spline interpolation is stated in [107, Corollary
5.3]. We use the Faber-Schauder sampling characterizations to reproduce such a result.

Theorem 5.7. Let 1 < q ≤ p <∞. Then we obtain

‖f − IMf |Lq([0, 1]d‖ .Md−12−2M‖f |S2
pW ([0, 1]d)‖

for all M ∈ N.

Proof. Applying the expansion in (4.4.3) then Lemma 4.28 yields∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ ≤ ∥∥∥ ∑

|j|1>M

uj

∣∣∣Lp([0, 1]d)
∥∥∥

.
∑
|j|1>M

‖u∗j|Lp([0, 1]d)‖

≤ sup
|j|1>M

22|j|1‖u∗j |Lp([0, 1]d)‖∑
|j|1>M

2−2|j|1 .

We apply Theorem 4.30 and obtain∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ . ‖f |S2

2W ([0, 1]d)‖
∑
|j|1>M

2−2|j|1 .
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The estimate for the sum in Lemma C.20 yields∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ . 2−2MMd−1‖f |S2

pW ([0, 1]d)‖.

That concludes the proof.

Remark 5.8. Comparing the estimate for the convergence rate in Theorem 5.4 with
the limiting case r = 2 considered in Theorem 5.7 we observe an additional factor M

d−1
2

for the limiting case. It is unknown whether this additional factor is seriously required
or only caused by a technical issue.

Finally we consider the case p < q with smoothness r = 2 + 1
p
− 1

q
.

Theorem 5.9. Let 1 < p < q <∞. Then we obtain

‖f − IMf |Lq([0, 1]d)‖ . 2−2MMd−1‖f |S
2+ 1

p
− 1
q

p W ([0, 1]d)‖

where rank IM = Md−12M .

Proof. The expansion in (4.4.3) and Lemma 4.28 yield∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ .

∑
|j|1>M

‖u∗j |Lq([0, 1]d)‖.

. sup
|j|1>M

22|j|1‖u∗j |Lq([0, 1]d)‖
∑
|j|1>M

2−2|j|1 .

The estimate for the sum in Lemma C.20 gives∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ . sup

|j|1>M
2|2j|1‖u∗j |Lq([0, 1]d)‖2−2MMd−1.

Theorem 4.30 provides∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ . 2−2MMd−1‖f |S2

qW ([0, 1]d)‖.

We apply the diagonal embedding stated in Lemma 4.10 and obtain∥∥∥f − ∑
|j|1≤M

uj

∣∣∣Lq([0, 1]d)
∥∥∥ . 2−2MMd−1‖f |S

2+ 1
p
− 1
q

p W ([0, 1]d)‖.

That concludes the proof.

Remark 5.10. Here we obtain an additional factor Md−1 compared to the non-limiting
case.

65



CHAPTER 5. (ENERGY-)SPARSE GRID APPROXIMATION

5.2 Optimal sparse grid approximation

Let X, Y be (quasi-)Banach spaces with X ↪→ Y ∩ C([0, 1]d). Then we define the
quantity

%SG
n (X, Y ) := inf

M∈N:|GsparseM |≤n
ϕ:Cn→Y

sup
‖f |X|‖≤1

‖f − ϕ(f(GsparseM )|Y ‖, (5.2.1)

which we call sparse grid sampling width. It denotes the best worst-case error for the
approximation of functions belonging to the unit ball of X by algorithms that can be
described as a composition of a (possibly non-linear) reconstruction map ϕ : Cn → Y
and an information map, which are in our case simply the functions values of f on a
sparse grid GsparseM with |GsparseM | ≤ n. This quantity is a special restriction of the IBC
worst case error for standard information [84, 85, 86]. They were introduced in [35],
where the focus is on X = Srp,θB([0, 1]d) and Y = Lq([0, 1]d). We use this results for the

case X = SrpW ([0, 1]d) and Y = Lq([0, 1]d). The following Lemma describes a method
to bound this quantity from below.

Lemma 5.11. For 1 < p, q <∞ (q =∞) and r > 1
p

a lower bound is provided by

%SGn (SrpW ([0, 1]d)), Lq([0, 1]d)) & inf
M∈N:|GsparseM |≤n

sup
‖f |SrpW ([0,1]d)‖≤1

f(x)=0,∀x∈GsparseM

‖f |Lq([0, 1]d)‖.

Proof. Let ϕ : Cn → Lq([0, 1]d) be an arbitrary reconstruction map and ‖f |SrpW ([0, 1]d)‖ ≤
1 with f(x) = 0,∀x ∈ GsparseM with |GsparseM | ≤ n. Then

‖f |Lq([0, 1]d)‖ =
∥∥∥1

2
(f − ϕ(0))− 1

2
(−f − ϕ(0))

∣∣∣Lq([0, 1]d
∥∥∥

≤ 1

2
‖f − ϕ(0)|Lq([0, 1]d‖+

1

2
‖ − f − ϕ(0)|Lq([0, 1]d‖.

Finally either ‖f − ϕ(0)|Lq([0, 1]d‖ ≥ ‖f |Lq([0, 1]d‖ or ‖ − f − ϕ(0)|Lq([0, 1]d‖ ≥
‖f |Lq([0, 1]d‖. That proves the claim.

Remark 5.12. The sparse grid structure plays no essential role in the proof provided
in Lemma 5.11. Later the same arguments will be applied to obtain lower bounds for
the worst case error for standard information.

Remark 5.13. It is easy to check that nestedness properties of the points xj,k (for
different levels j) allow us to write the sparse grid of order M as

GsparseM = {(2−j1k1, . . . , 2
−jdkd) : k ∈

d×
i=1

{0, . . . , 2ji}, |j|1 = M}. (5.2.2)

Theorem 5.14. Let 1 < q ≤ p < ∞ and max{1
p
, 1

2
} < r < 2. Then we can estimate

as follows

%SGn (SrpW ([0, 1]d), Lq[(0, 1)]d) � sup
‖f |SrpW ([0,1]d)‖

‖f−IMf |Lq([0, 1]d‖ � (n−1 logd−1 n)r log
d−1

2

with rank IM � n �Md−12M .
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Proof. Inserting the relation n := |GsparseM | � Md−12M into Theorem 5.4 gives the
upper bound. Next we prove the lower bound. For that purpose we consider the bump
function

b(x) = e−
1

x(1−x) e
1
4 (5.2.3)

which is a L∞-normalized C∞0 -function. We denote by

bj,k =
d∏
i=1

b(2jixi − ki) (5.2.4)

its j-th dilation and k-th tensorized translation. Obviously

supp bj,k =
d×
i=1

[2−jiki, 2
−ji(ki + 1)]

with
bj,k(2−j1(k1 + ν1), . . . , 2−jd(kd + νd)) = 0 (5.2.5)

for ν ∈ {0, 1}d, k ∈ Dj . It is easy to check that,

‖bj,k|Lq([0, 1]d)‖ � 2−
|j|1
q (5.2.6)

and that due to disjoint supports∥∥∥ ∑
k∈Dj

bj,k

∣∣∣Lq([0, 1]d)
∥∥∥ � 1 (5.2.7)

holds. Defining

ϕ1 := C2−MrM− d−1
2

∑
|j|1=M

∑
k∈Dj

bj,k

we can estimate using Theorem 4.34

‖ϕ1|SrpW ([0, 1]d)‖ .M− d−1
2

∥∥∥( ∑
|j|1=M

∣∣∣ ∑
k∈Dj

χj,k︸ ︷︷ ︸
=1

∣∣∣2) 1
2
∣∣∣Lp([0, 1]d)

∥∥∥ . 1

(bj,k : L = −1, K =∞). By construction ϕ1(x) = 0 for all x ∈ GsparseM (cf. (5.2.5) and
the definition of GsparseM in (5.0.1)). This allows us to estimate

%SG
n (SrpW ([0, 1]d), Lq([0, 1]d)) ≥ ‖ϕ1|Lq([0, 1]d)‖ ≥ ‖ϕ1|L1([0, 1]d)‖.

The relation in (5.2.7) yields

%SG
n (SrpW ([0, 1]d), Lq([0, 1]d)) & 2−MrM− d−1

2

∥∥∥ ∑
|j|1=M

∑
k∈Dj

bj,k

∣∣∣L1([0, 1]d)
∥∥∥︸ ︷︷ ︸

�Md−1

� 2−MrM
d−1

2 � (n−1 logd−1 n)r(logd−1 n)
d−1

2 .

That finishes the proof.
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Theorem 5.15. Let 1 < p < q <∞ and 1
p
< r < 2 + 1

p
− 1

q
then

%SGn (SrpW ([0, 1]d), Lq([0, 1]d)) � sup
‖f |SrpW ([0,1]d)‖

‖f−IMf |Lq([0, 1]d)‖ � (n−1 logd−1 n)r−( 1
p
− 1
q

)

with rank IM � n �Md−12M .

Proof. Inserting the relation n � |GsparseM | � 2MMd−1 into Theorem 5.5 proves the
upper bound. We prove the lower bound now. Let bj,k as in (5.2.4). We define

ϕ2 := 2−(r− 1
p

)Mb(M+1,0,...,0),(0,...,0) (5.2.8)

Theorem 4.34 together with (5.2.6) yields

‖ϕ2|SrpW ([0, 1]d)‖ . 1.

Again, by construction ϕ2(x) = 0 for all x ∈ SG(M). This allows us to estimate

%SG
n (SrpW ([0, 1]d), Lq([0, 1]d)) ≥ ‖ϕ2‖q

� 2−(r− 1
p

)M‖b(M+1,0,...,0),(0,...,0)|Lq([0, 1]d)‖.

Finally inserting the estimate in 5.2.6 gives

%SG
n (SrpW ([0, 1]d), Lq([0, 1]d)) & 2−(r− 1

p
+ 1
q

)M � (n−1 logd−1 n)r−( 1
p
− 1
q

).

That proves the claim.

Theorem 5.16. Let 1 < p <∞ and 1
p
< r < 2 + 1

p
. Then

%SGn (SrpW ([0, 1]d), L∞([0, 1]d)) � sup
‖f |SrpW ([0,1]d)‖

‖f − IMf |Lq([0, 1]d)‖

� (n−1 logd−1 n)r−
1
p (logd−1 n)1− 1

p

with rank IM � n �Md−12M .

Proof. Inserting the relation n � |GsparseM | � 2MMd−1 into Theorem 5.6 proves the
upper bound. We prove the lower bound now. Let bj,k as in (5.2.4). We define

ϕ3 := M− d−1
p 2−M(r− 1

p
)
∑
|j|1=M

bj,(0,...,0) (5.2.9)

and distinguish the cases 1 < p ≤ 2 and 2 < p <∞. In case 1 < p ≤ 2 Lemma 3.4 and
Theorem 4.34 yield

‖ϕ3|SrpW ([0, 1]d)‖ . ‖ϕ3|Srp,pB([0, 1]d)‖ .M− d−1
p

( ∑
|j|1=M

1︸ ︷︷ ︸
.Md−1

) 1
p
. 1.
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In case 2 < p <∞ the non-compact embedding in Lemma 3.5 and Theorem 4.34 yield

‖ϕ3|SrpW ([0, 1]d)‖ . ‖ϕ3|S
r+ 1

2
− 1
p

2,p B([0, 1]d)‖ .M− d−1
p

( ∑
|j|1=M

1︸ ︷︷ ︸
.Md−1

) 1
p
. 1.

Again, by construction ϕ3(x) = 0 for all x ∈ SG(M). This allows us to estimate

%SG
n (SrpW ([0, 1]d), L∞([0, 1]d)) ≥ ‖ϕ3‖∞

� M (d−1)(1− 1
p

)2−M(r− 1
p

) ‖bj,(0,...,0)|L∞([0, 1]d)‖︸ ︷︷ ︸
=1

.

Finally inserting the relation n �Md−12M gives

%SG
n (SrpW ([0, 1]d), L∞([0, 1]d)) & 2−(r− 1

p
)MM (d−1)(1− 1

p
)

� (n−1 logd−1 n)r−
1
p (logd−1 n)1− 1

p .

That proves the claim.

Remark 5.17. In the limiting case with r = 2 and p ≥ q (or r = 2 + 1
p
− 1

q
in case

p < q) we are not able to prove sharp bounds for

sup
‖f |SrpW ([0,1]d)‖

‖f − IMf |Lq([0, 1]d)‖.

We obtain logarithmic gaps between the upper bounds and the lower bounds for sparse
grid sampling widths obtained in Theorems 5.14 and 5.15 (which are valid also for
r ≥ 2).

5.3 Sampling recovery in the energy-norm

For the rest of this chapter we are interested in measuring sampling errors in the
energy norm H1([0, 1]d) := W 1

2 ([0, 1]d). The interest in this setting is motivated by the
convergence analysis of Galerkin methods. Energy sparse grids depend on the ratio of
the smoothness in the model and the target space. This point sets can be defined as

Genergy∆α,β(M) := {(2−j1k1, . . . , 2
−jdkd) : k ∈ Dj , j ∈ Nd−1, α|j|1 − β|j|∞ ≤M}.

where α and β are the mentioned degrees of freedom. The first reference where we
could find this approach is the PhD thesis of Knapek [67]. Sampling in combination
with measuring the error in the energy norm was also considered in [8], [9], [10], [30]
and [48]. We continue considering the sampling operator

I∆α,β(M)f(x) :=
∑

j∈∆α,β(M)

∑
k∈Dj

dj,k(f)vj,k (5.3.1)
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with
∆α,β(M) :=

{
j ∈ Nd0 : α|j|1 − β|j|∞ ≤M

}
. (5.3.2)

Let Genergy∆α,β(M) denote the grid of sampling nodes used by I∆α,β(M)f . Inserting the defi-

nition one can easily verify that

|Genergy∆α,β(M)| �
∑

j∈∆α,β(M)

2|j|1

which gives under the conditions of Lemma C.22

|Genergy∆α,β(M)| � 2
M
α−β .

For this operator we can prove the following convergence theorem.

Theorem 5.18. Let 1 < p <∞ and

1 +
(1

p
− 1

2

)
+
< r < 2 +

(1

p
− 1

2

)
+
.

Then there exists a constant Cε > 0 (independent of f and M) such that

‖f − I∆α,β(M)f |H1([0, 1]d)‖ ≤ Cε2
−M‖f |SrpW ([0, 1]d)‖ (5.3.3)

with

α = r −
(1

p
− 1

2

)
+
− ε and β = 1− ε

where
0 < ε < 1.

Proof. We expand f into the series (4.4.3)

‖f − I∆α,β(M)f |H1([0, 1]d)‖ .
∥∥∥ ∑
j /∈∆α,β(M)

∑
k∈Dj

dj,k(f)vj,k

∣∣∣H1([0, 1]d)
∥∥∥.

Triangle inequality yields

‖f − I∆α,β(M)f |H1([0, 1]d)‖ ≤
∑

j /∈∆α,β(M)

∥∥∥ ∑
k∈Dj

dj,k(f)vj,k

∣∣∣H1([0, 1]d)
∥∥∥.

Indeed, for fixed j ∈ Nd−1 we easily check that∥∥∥ ∑
k∈Dj

dj,k(f)vj,k

∣∣∣H1([0, 1]d)
∥∥∥2

.
∑
k∈Dj

|dj,k(f)|2‖vj,k|H1([0, 1]d)‖2.

holds (the finite overlap of directions i0 with ji0 = −1 causes no problems). According
to Lemma 3.14, we have

‖vj,k|H1([0, 1]d)‖ � ‖vj,k|L2([0, 1]d)‖+
d∑
i=1

∥∥∥ ∂

∂xi
vj,k

∣∣∣L2([0, 1]d)
∥∥∥.
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Obviously,

‖vj,k|L2([0, 1]d)‖ � 2−
|j|1

2 .

Similar elementary calculations as above yield∥∥∥ ∂

∂xi
vj,k

∣∣∣L2([0, 1]d)
∥∥∥ . 2ji−

|j|1
2 .

Combining both estimates gives

‖vj,k|H1([0, 1]d)‖ . 2|j|∞−
|j|1

2 .

Inserting this and applying Hölder’s inequality yields

‖f − I∆α,β(M)f |H1([0, 1]d)‖

.
∑

j /∈∆α,β(M)

2|j|∞−
|j|1

2

( ∑
k∈Dj

|dj,k(f)|2
) 1

2
. (5.3.4)

.
( ∑
j /∈∆α,β(M)

2−2[(r−( 1
p
− 1

2
)+)|j|1−|j|∞]

) 1
2
( ∑
j /∈∆α,β(M)

22(r− 1
2
−( 1

p
− 1

2
)+)|j|1

∑
k∈Dj

|dj,k(f)|2
) 1

2
.

(5.3.5)

Inserting the estimate from Lemma C.23 gives

‖f − I∆α,β(M)f |H1([0, 1]d)‖ ≤ 2−M
( ∑
j /∈∆α,β(M)

22(r− 1
2
−( 1

p
− 1

2
)+)|j|1

∑
k∈Dj

|dj,k(f)|2
) 1

2
.

We apply Theorem 4.19 and obtain

‖f − I∆α,β(M)f |H1([0, 1]d)‖ . 2−M‖f |S
r−( 1

p
− 1

2
)+

2 W ([0, 1]d)‖.

In case p = 2 we are done. In case p > 2 we finish with the trivial embedding

SrpW ([0, 1]d) ↪→ Sr2W ([0, 1]d).

In case p < 2 we apply Lemma 3.4, (vi) (diagonal embedding) that yields

‖f − I∆α,β(M)f |H1([0, 1]d)‖ . 2−M‖f |SrpW ([0, 1]d)‖.

Remark 5.19. The parameter ε in Theorem 5.18 can be interpreted as a degree of
freedom. Its explicit choice influences the constant Cε and in the other way around the
constant for the number of sampling nodes used by I∆α,β

(m) according to Lemma C.22.

Finally we state a result dealing with r = 2 + (1
p
− 1

2
)+. This result was originally

obtained in [8, Theorem 3.8] for p = 2. Nevertheless the arguments there seem to
contain a problematic step. We provide an alternative proof using Faber-Schauder
sampling representations.
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Theorem 5.20. There exists a constant Cε > 0 (independent of f and M) such that

‖f − I∆α,β(M)f |H1([0, 1]d)‖ ≤ Cε2
−M‖f |S

2+( 1
p
− 1

2
)+

2 W ([0, 1]d)‖ (5.3.6)

holds with

α = 2−
(1

p
− 1

2

)
+
− ε and β = 1− ε

where
0 < ε < 1.

Proof. We proceed similar as in the proof of Theorem 5.18 and obtain the equivalent
formulation of (5.3.4)

‖f − I∆α,β(M)f |H1([0, 1]d)‖ .
∑

j /∈∆α,β(M)

2|j|∞
∥∥∥ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣L2([0, 1]d)
∥∥∥.

This can be estimated by

‖f − I∆α,β(M)f |H1([0, 1]d)‖

. sup
j /∈∆α,β(M)

22|j|1
∥∥∥ ∑
k∈Dj

dj,k(f)χj,k

∣∣∣L2([0, 1]d)
∥∥∥ ∑
j /∈∆α,β(M)

2−(2|j|1−|j|∞).

We apply Theorem 4.30 and obtain

‖f − I∆α,β(M)f |H1([0, 1]d)‖ . ‖f |S2
2W ([0, 1]d)‖

∑
j /∈∆α,β(M)

2−(2|j|1−|j|∞).

The estimate for the sum in Lemma (C.23) gives

‖f − I∆α,β(M)f |H1([0, 1]d)‖ . 2−M‖f |S2
2W ([0, 1]d)‖.

In case p = 2 we are done. In case p > 2 we finish with the trivial embedding

S2
pW ([0, 1]d) ↪→ S2

2W ([0, 1]d).

In case p < 2 we apply Lemma 3.4, (vi) (diagonal embedding) that yields

‖f − I∆α,β(M)f |H1([0, 1]d)‖ . 2−M‖f |S
2+ 1

p
− 1

2
p W ([0, 1]d)‖.

That finishes the proof.

5.4 Optimality for standard information

The dependence on the smoothness of an energy sparse grid makes it to a very specific
and non-general point set. Therefore, it does not seems to be useful to consider a
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benchmark quantity similar to (5.2.1). We consider a more general quantity allowing
arbitrary point sets. This quantity is defined as

%n(SrpW ([0, 1]d), H1([0, 1]d)) := inf
Xn⊂[0,1]d,|Xn|=n
ϕ:Cm→H1([0,1]d)

sup
‖f |SrpW ([0,1]d)‖≤1

‖f − ϕ(f(Xn))|H1([0, 1]d)‖,

which we call worst case error for standard information (sampling width). It describes
the H1([0, 1]d)-best worst-case error for the approximation of functions in the unit ball
of SrpW ([0, 1]d) by algorithms that can be expressed as a composition of a non-linear
reconstruction map ϕ with vector of samples, where the sampling nodes are fixed. A
simpler quantity to measure the performance of linear sampling algorithms is the linear
sampling width,

%lin
n (SrpW ([0, 1]d), H1([0, 1]d)) := inf

Xn
inf
Ψn

sup
‖f |SrpW ([0,1]d)‖≤1

∥∥∥f − n∑
k=1

f(xk)ψk(·)
∣∣∣H1([0, 1]d)

∥∥∥,
(5.4.1)

n ∈ N, where the sampling nodes Xn := {xk}nk=1 ⊂ [0, 1]d and associated (continuous)
functions Ψn := {ψk}nk=1 determine a linear sampling recovery algorithm which is fixed
in advance for the class SrpW ([0, 1]d). Let us emphasize that in (5.4.1) we restrict to
linear recovery algorithms, whereas we admit general recovery algorithms ϕ : Cn → Lq
in (1.4.1).

Remark 5.21. (i) Obviously,

%n(SrpW ([0, 1]d), H1([0, 1]d)) ≤ %linn (SrpW ([0, 1]d), H1([0, 1]d)).

(ii) Similar arguments as in Lemma 5.11 yield that a lower bound for %n is provided
by

inf
(xk)nk=1⊂[0,1]d

sup
‖f |SrpW ([0,1]d)‖≤1,

f(xk)=0, k∈[n])

‖f |H1([0, 1]d)‖ . %n(SrpW ([0, 1]d), H1([0, 1]d)).

Theorem 5.22. Let 1 + (1
p
− 1

2
)+ < r ≤ 2 + (1

p
− 1

2
)+ and 1 < p <∞. Then it holds

%n(SrpW ([0, 1]d), H1([0, 1]d)) � %linn (SrpW ([0, 1]d), H1([0, 1]d))

� sup
‖f |SrpW ([0,1]d)‖≤1

‖f − I∆α,β(M)f |H1([0, 1]d)‖

� n−(r−1−( 1
p
− 1

2
)+)

with

α = r −
(1

p
− 1

2

)
+
− ε, β = 1− ε and 0 < ε < 1.

and
n � rank I∆α,β(M) � |Genergy∆α,β(M)|.
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Proof. The upper bound follows from Theorem 5.18 and the trivial inequality %n ≤ %lin
n

(limiting case: Theorem 5.20). According to Remark 5.21 a lower bound can be proven
by constructing for every arbitrary point set of size n a fooling function that vanishes
in all this sampling nodes. For n given sampling nodes X = (xk)

n
k=1 ⊂ [0, 1]d we find

j∗ ∈ Nd−1 with

2|j
∗|1 = 2|j

∗|∞ � 2n. (5.4.2)

Since we have C2n translations in Dj∗ and only Cn sampling nodes we find a set of
translation indices Tj∗(X) such that

{x ∈ [0, 1]d : bj∗,k(x) 6= 0} ∩ {xi} = ∅

for all i = 1, . . . , n and k ∈ Tj∗(X). We have to distinguish two different cases. We
start considering the case p < q. Here we consider the fooling function

f1 = bj∗,k∗

where k∗ ∈ Tj∗(X). Theorem 4.34 yields

‖f1|SrpW ([0, 1]d)‖ . 2(r− 1
p

)|j∗|1 .

We stress on the equivalent norm

‖f |H1([0, 1]d)‖ �
( ∑
|α|1≤1

‖Dαf |L2([0, 1]d)‖2
) 1

2
,

and observe ∥∥∥ d
dx
bj,k

∣∣∣L2([0, 1])
∥∥∥ = 2j

∥∥∥b′(2jx− k)
∣∣∣L2([0, 1])

∥∥∥ = C2
j
2 . (5.4.3)

Then finally Fubini’s Theorem yields

‖Dαbj,k|L2([0, 1]d)‖ =
d∏
i=1

∥∥∥ ∂αi
∂xαii

bji,ki

∣∣∣L2([0, 1])
∥∥∥. (5.4.4)

Using the identity in (5.4.2) we obtain for the single tensor bump function

‖bj∗,k∗|H1([0, 1]d)‖ & 2
|j∗|1

2 .

That yields

‖f1|H1([0, 1]d)‖
‖f1|SrpW ([0, 1]d)‖

& 2−(r−1−( 1
p
− 1

2
))|j∗|1 � n−(r−1−( 1

p
− 1

2
)).

In case p > q we consider the fooling function

f2 =
∑

k∈Tj∗ (X)

bj∗,k.
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Here, due to disjoint supports for different k Theorem 4.34 yields

‖f2|SrpW ([0, 1]d)‖ . 2r|j
∗|1
∥∥∥ ∑
k∈Tj∗ (X)

|bj∗,k|
∣∣∣Lp([0, 1]d)

∥∥∥
= 2r|j

∗|1
( ∑
k∈Tj∗ (X)

‖bj∗,k|Lp([0, 1]d)‖p
) 1
p

� 2r|j∗|1 .

Additionally, we estimate

‖f2|H1([0, 1]d)‖ �
( ∑
|α|1≤1

‖Dαf2|L2([0, 1]d)‖2
) 1

2

�
( ∑
|α|1≤1

∑
k∈Tj∗ (X)

‖Dαbj∗,k|L2([0, 1]d)‖2
) 1

2

&
( ∑
|α|1=1

∑
k∈Tj∗ (X)

‖Dαbj∗,k|L2([0, 1]d)‖2
) 1

2
. (5.4.5)

Inserting (5.4.3) together with (5.4.4) into (5.4.5) provides

‖f2|H1([0, 1]d)‖ & 2|j
∗|1 . (5.4.6)

Altogether, we obtain

‖f2|H1([0, 1]d)‖
‖f2|SrpW ([0, 1]d)‖

& 2−(r−1)|j∗|1 � n−(r−1).

This concludes the proof.

Remark 5.23. Theorem 5.22 shows that energy sparse grid sampling provides the
optimal asymptotic rate in the sense of the worst case error for standard information
(sampling width).
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Chapter 6

Best m-term approximation with
respect to the Faber-Schauder
dictionary

In this chapter we study a concept of nonlinear approximation, so called best m-term
approximation with respect to the Faber-Schauder dictionary. Let X, Y be quasi-
Banach spaces and D ⊂ Y be a countable set called dictionary. For x ∈ X we define
its best m-term approximation by

σm(x,D)Y := inf
(ci)mi=1⊂C,(bi)mi=1⊂D

∥∥∥x− m∑
i=1

cibi

∥∥∥
Y
.

For the space X we define the best m-term approximation with respect to the dictionary
D by

σm(X,D)Y := sup
‖x‖X≤1

σm(x,D)Y .

Let T : X → Y be a linear operator. Then we define the the best m-term approximation
of T by

σm(T : X → Y,D) := sup
‖x‖X≤1

σm(Tx,D)Y .

6.1 Properties of best m-term widths σm(T,D)
We use the notation

Σm(D) :=
{ m∑

i=1

λiai : λi ∈ C, ai ∈ D, i = 1, . . . ,m
}

for the set of all m-terms in D and start with the following lemma proving some
elementary properties of σm(T,D) that we call pseudo s-number properties, cf. [90, p.
74].
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CHAPTER 6. BEST M -TERM APPROXIMATION

Lemma 6.1. Let W,X, Y, Z be ν-Banach spaces (0 < ν ≤ 1) and D ⊂ Y be a dictio-
nary.

(i) For T ∈ L(X, Y ) we have

‖T |X → Y ‖ = σ0(T : X → Y,D) ≥ σ1(T : X → Y,D) ≥ σ2(T : X → Y,D) ≥ . . . .

(ii) For T1, T2, . . . , Tn ∈ L(X, Y ) and m1,m2, . . . ,mn ∈ N such that m =
∑n

i=1mi we
have

σm

( n∑
i=1

Ti,D
)ν
≤

n∑
i=1

σmi(Ti,D)ν .

(iii) For T ∈ L(Z, Y ), A ∈ L(X,Z), B ∈ L(Y,W ) we have

σm(BTA,B(D)) ≤ ‖B‖σm(T,D)‖A‖

Proof. (i) is obvious by definition. (ii) We prove the case n = 2 in detail. n > 2 follows
by iterating the arguments. Let x ∈ X with ‖x|X‖ ≤ 1. Then for arbitrary (ci)

m
i=1 ⊂ C

and (bi)
m
i=1 ⊂ D we obtain

σm((T1 + T2)x,D)νY ≤
∥∥∥(T1 + T2)x−

m∑
i=1

cibi

∣∣∣Y ∥∥∥ν
≤

∥∥∥T1x−
m1∑
i=1

cibi

∣∣∣Y ∥∥∥ν +
∥∥∥T2x−

m2∑
i=m1+1

cibi

∣∣∣Y ∥∥∥ν .
Taking infimum over (ci)

m
i=1 ⊂ C, (bi)mi=1 ⊂ D and supremum over all x ∈ X with

‖x|X‖ ≤ 1 finishes the proof of (ii). We consider (iii). By definition we find g ∈ Σm(D)
with g′ = B(g) for every g′ ∈ Σm(B(D)) such that

σm(BTA,B(D)) = sup
‖x‖X≤1

inf
g′∈Σm(B(D))

‖BTAx−B(g)‖W

≤ ‖B : Y → W‖ sup
‖x‖X≤1

inf
g′∈Σm(D)

‖TAx− g′‖Y

= ‖B‖σm(TA,D).

We continue estimating

σm(TA,D) = sup
‖x‖X≤1

inf
g′∈Σm(D)

‖TAx− g′‖Y

≤ sup
‖z‖Z≤‖A‖

inf
g′∈Σm(D)

‖Tz − g′‖Y

= sup
‖z‖≤1

inf
g′∈Σm(D)

‖‖A‖T (z)− g′‖Y

= sup
‖z‖≤1

inf
g′′∈Σm(D)

‖‖A‖T (z)− ‖A‖g′′‖Y

= ‖A : X → Z‖σm(T,D).
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6.2 Sparse approximation in (vector-valued) sequence

spaces

Let us now discuss specific situations. The following lemma is well-known and usually
referred as Stechkin’s lemma. For our knowledge the first reference for the stated
generality is [112, Lemma 2.1, p. 97], see also [33, Section 7.4] and the references given
there.

Lemma 6.2. Let 0 < p < q ≤ ∞ and (an)n∈N ⊂ C be a sequence of complex numbers
with the property

|a1| ≥ |a2| ≥ |a3| ≥ . . .

Then ( ∞∑
n=m+1

|an|q
) 1
q ≤ (m+ 1)−( 1

p
− 1
q

)
( ∞∑
n=1

|an|p
) 1
p

(6.2.1)

holds for all m ∈ N0. As usual, for q =∞ the sum on the left hand side is replaced by
a supremum.

Let us now turn to the vector-valued situation. Here we have Xµ, Yµ quasi-Banach
(p-Banach) spaces, Tµ ∈ L(Xµ, Yµ) linear operators and I be an index set. Let Dµ
denote a dictionary in Yµ and

D :=
⋃
µ∈I

⋃
eµ∈Dµ

{(0, . . . , 0, eµ, 0, . . . , 0)}.

Definition 6.3. Let I be an index set and (Xµ)µ∈I be a sequence of quasi-Banach
(q-Banach) spaces. We define the following sequence space

`p(Xµ, I) =
{
x = (xµ)µ∈I : xµ ∈ Xµ, ‖x‖`p(Xµ,I) =

(∑
µ∈I

‖xµ|Xµ‖p
) 1
p
<∞

}
with the usual modifications in case p =∞.

Theorem 6.4. Let 0 < p < q ≤ ∞ and T = (Tµ)µ∈I : `p(Xµ, I)→ `q(Yµ, I). Then

σm(T,D) ≤ sup
µ∈I

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(Tµ,Dµ).

Proof. We have T = (Tµ)µ∈I with Tµ : Xµ → Yµ. Let m be given. Define mµ =
b(m+1)‖xµ|Xµ‖pc for some x = (xµ)µ∈I with ‖x|`p(Xµ)‖ < 1. Using mµ-approximation
in the component Tµxµ we obtain the relation

σm(Tx,D)`q(Yµ) ≤
(∑
µ∈I

σmµ(Tµxµ,Dµ)qYµ

) 1
q
,

since ∑
µ∈I

mµ ≤ (m+ 1)
∑
µ∈I

‖xµ|Xµ‖p < m+ 1.
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We proceed estimating as follows

σm(Tx,D)`q(Yµ) ≤
(∑
µ∈I

((m+ 1)‖xµ‖p

m+ 1

)q( 1
p
− 1
q

)( m+ 1

(m+ 1)‖xµ|Xµ‖p
)q( 1

p
− 1
q

)

σmµ(Tµ,Dµ)q‖xµ|Xµ‖q
) 1
q

≤
(∑
µ∈I

(mµ + 1

m+ 1

)q( 1
p
− 1
q

)( m+ 1

(m+ 1)‖xµ|Xµ‖p
)q( 1

p
− 1
q

)

σmµ(Tµ,Dµ)q‖xµ|Xµ‖q
) 1
q
.

Note, that in casemµ = 0 the respective summand will be replaced by ‖Tµ‖q‖xµ|Xµ‖q =
σ0(Tµ,Dµ)q‖xµ|Xµ‖q. We obtain

σm(Tx,D)`q(Yµ) ≤ sup
µ∈I

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(Tµ,Dµ)

(∑
µ∈I

‖xµ|Xµ‖p
) 1
q

(6.2.2)

≤ sup
µ∈I

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(Tµ,Dµ).

In case mµ = 0 we simply write

‖xµ|Xµ‖q = ‖xµ|Xµ‖q−p‖xµ|Xµ‖p

= (‖xµ|Xµ‖p)
q−p
p ‖xµ|Xµ‖p

≤
( 1

m+ 1

) q−p
p ‖xµ|Xµ‖p,

since because of mµ < 1 we have ‖xµ|Xµ‖p < 1
m+1

. The result above holds for ‖x|X‖ <
1. It remains to consider the case ‖x|X‖ = 1. Let x ∈ X with ‖x|X‖ = 1 and
additionally λ > 1. We use a limiting argument together with (6.2.2). Obviously∥∥x
λ
|X
∥∥ < 1. For that reason we obtain

σm(Tx,D)`q(Yµ) = λσm

(
Tx/λ,D

)
`q(Yµ)

(6.2.3)

≤ λ sup
µ∈I

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(Tµ,Dµ)

(∑
µ∈I

∥∥∥xµ
λ

∣∣∣Xµ

∥∥∥p) 1
q

≤ λ1− p
q sup
µ∈I

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(Tµ,Dµ) (6.2.4)

This holds for all λ > 1 arbitrary close to 1. We obtain

σm(Tx,D)`q(Yµ) ≤ sup
µ∈I

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(Tµ,Dµ).

Finally, taking the supremum over ‖x|`p(Xµ)‖ ≤ 1 on both sides proves the theorem.
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This theorem has some consequences. We consider some special cases and start
with Lemma 6.2. Choosing Xµ = Yµ = C we can prove a similar result having the
same convergence rate as in (6.2.1) immediately by applying Theorem 6.4. This gives
us a slightly different selection procedure for the m terms in the m-term approximation.

Corollary 6.5. Let 0 < p < q ≤ ∞ and

A(m, a) := {i ∈ N : mi := |ai|p(m+ 1) ≥ 1}.

Then we have

sup
‖a|`p‖<1

∥∥∥a− ∑
i∈A(m,a)

aiei

∣∣∣`q∥∥∥ ≤ ( 1

m+ 1

) 1
p
− 1
q

which implies

σm(`p,E)`q ≤
( 1

m+ 1

) 1
p
− 1
q
. (6.2.5)

Proof. Choosing Xµ = Yµ = C we can prove the upper bound in (6.2.1) immediately
by applying Theorem 6.4. Let a ∈ `p with ‖a|`p‖ < 1. Then

∑
i∈A(m,a) aiei is a m-term

approximation of a, since

|A(m, a)| ≤
∞∑
i=1

bmic ≤ (m+ 1)
∞∑
i=1

|ai|p = (m+ 1)‖a|`p‖p < m+ 1.

The arguments provided in (6.2.4) yield the case

‖a|`p‖ = 1.

This gives (6.2.5).

Remark 6.6. The case ‖a|`p‖ = 1 is based on a limiting argument. The above algo-
rithm may not work in case ‖a|`p‖ = 1. Replacing the definition of mi by mi = |ai|pm
in 6.5 and accepting a constant C ≥ 1 in the approximation rates then we obtain an
explicit algorithm that generates a m-term approximation for the case ‖a|`p‖ = 1. Sim-
ilarly mµ in Theorem 6.4 can be replaced by mµ = ‖xµ|Xµ‖pm. This gives us a more
transparent approximation strategy. The price to pay is constant C ≥ 1.

Next we consider T = (T, . . . , T ) with T = id, Xµ = `du, Yµ = `dr , so Xµ = X,
Yµ = Y independent of µ, u < r. The next corollary generalizes [54, Theorem 4].

Corollary 6.7. Let u < r, p < q and 0 < 1
u
− 1

r
≤ 1

p
− 1

q
. Let further T = (T0, . . . , T0) =

id and b, d ∈ N. Then we have for the dictionary D = (ei,j)i∈[b],j∈[d] of unit vectors

σm(id : `bp(`
d
u)→ `bq(`

d
r),D) ≤


(

1
m+1

) 1
u
− 1
r

: 1 ≤ m < d,(
d

m+1

) 1
p
− 1
q
(

1
d

) 1
u
− 1
r

: d ≤ m < bd,

0 : m ≥ bd.

81



CHAPTER 6. BEST M -TERM APPROXIMATION

Proof. The case m ≥ bd is trivial, since dim `bp(`
d
u) = bd. We consider the remaining

cases. We apply Theorem 6.4. This gives

σm(T,D) ≤ sup
i=1,...,b

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(id : `du → `dr ,D).

By Lemma 6.4 we have

σs(id : `du → `dr ,D) ≤ (s+ 1)−( 1
u
− 1
r

)

if 1 ≤ s ≤ d and
σs(id : `du → `dr ,D) = 0,

otherwise. Hence we have for m ≤ d

σm(T,D) ≤ sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
(s+ 1)

−
(

1
u
− 1
r

)
= (m+ 1)−( 1

p
− 1
q

)(m+ 1)( 1
p
− 1
q

)−( 1
u
− 1
r

)

= (m+ 1)−( 1
u
− 1
r

).

In case d ≤ m ≤ db we have

σm(T,D) ≤ sup
0≤s≤d−1

( s+ 1

m+ 1

) 1
p
− 1
q
(d+ 1)−( 1

u
− 1
r

)

=
( d+ 1

m+ 1

) 1
p
− 1
q
(d+ 1)−( 1

u
− 1
r

).

This gives the corollary.

Now we consider a more complicated situation. In a sense this represents a vector
valued framework suitable for function space embeddings. Let

Xµ = `bµp (dαµ`
dµ
u ),

Yµ = `bµq (dβµ`
dµ
r ), (6.2.6)

where dµ, bµ are natural numbers which are growing with µ and α, β ≥ 0. Let us now
study

σm(id : `p(Xµ)→ `q(Yµ),D),

where

‖x‖`p(Xµ) =
(∑
µ∈I

‖xµ|Xµ‖p
) 1
p
,

‖y‖`p(Yµ) =
(∑
µ∈I

‖yµ|Yµ‖q
) 1
q
.
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We define D as the set of unit vectors in `p(Xµ). We are interested in the following
special case

1

u
− 1

r
≤ 1

p
− 1

q
(6.2.7)

with

−
(1

u
− 1

r

)
< α− β ≤ 1

p
− 1

q
−
(1

u
− 1

r

)
. (6.2.8)

Corollary 6.8. Let α− β ≤ 1
p
− 1

q
−
(

1
u
− 1

r

)
with 1

u
− 1

r
≤ 1

p
− 1

q
. Then we have

σm(id : `p(Xµ, I)→ `q(Yµ, I),D) ≤
( 1

m+ 1

)(α−β)+( 1
u
− 1
r

)

if m+ 1 ≥ supµ∈I dµ. I ⊆ Nd0 denotes the index set of the outer sequence spaces.

Proof. Due to m ≥ supµ∈I dµ we have

σm(id : `p(Xµ, I)→ `q(Yµ, I)) ≤ sup
µ∈I

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(id : Xµ → Yµ,Dµ)

≤ sup
µ∈I

sup
0≤s<dµ

( s+ 1

m+ 1

) 1
p
− 1
q
σs(id : Xµ → Yµ,Dµ)

+ sup
µ∈I

sup
dµ≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(id : Xµ → Yµ,Dµ).

(6.2.9)

Inserting the result from Corollary 6.7 the first term can be estimated by

sup
µ∈I

sup
0≤s<dµ

( s+ 1

m+ 1

) 1
p
− 1
q
( 1

s+ 1

) 1
u
− 1
r
d−(α−β)
µ

=
( 1

m+ 1

) 1
p
− 1
q
d

1
p
− 1
q
−( 1

u
− 1
r

)−(α−β)
µ .

Taking the supremum with respect to µ we obtain

sup
µ∈I

sup
0≤s≤dµ

( s+ 1

m+ 1

) 1
p
− 1
q
σs(id : Xµ → Yµ,Dµ) ≤ (m+ 1)−[(α−β)+( 1

u
− 1
r

)].

Finally estimating the second term in (6.2.9) gives

sup
µ∈I

sup
dµ≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
σs(id : Xµ → Yµ,Dµ)

≤ sup
µ∈I

sup
dµ≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
( dµ
s+ 1

) 1
p
− 1
q
( 1

dµ

) 1
u
− 1
r
d−(α−β)
µ

≤ sup
µ∈I

( 1

m+ 1

) 1
p
− 1
q
d

1
p
− 1
q
−( 1

u
− 1
r

)−(α−β)
µ

≤ (m+ 1)−(α−β)−( 1
u
− 1
r

).
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Corollary 6.9. Let 0 ≤ α− β with 1
u
− 1

r
≤ 1

p
− 1

q
. Then we have

σm(id : `p(Xµ, I)→ `q(Yµ, I),D) ≤
( 1

m+ 1

)(α−β)+( 1
u
− 1
r

)

if m+ 1 ≤ infµ∈I dµ. I ⊂ Nd0 denotes the index set of the outer sequence spaces.

Proof. We fix µ ∈ I. Due to m+ 1 < dµ Corollary 6.7 gives

sup
0≤s≤m

( s+ 1

m+ 1

) 1
p
− 1
q
( 1

s+ 1

) 1
u
− 1
r
d−(α−β)
µ ≤ (m+ 1)−( 1

u
− 1
r

)d−(α−β)
µ ≤

( 1

m+ 1

)(α−β)+( 1
u
− 1
r

)

.

Corollary 6.10. Let p, q, u, r as in (6.2.7), (6.2.8) and Xµ, Yµ as in (6.2.6). If α−β ≥
0 we have

σm(id : `p(Xµ)→ `q(Yµ),D) .
( 1

m

)(α−β)+( 1
u
− 1
r

)

for all m ∈ N.

Proof. The proof follows immediately by Corollary 6.8 and 6.9 using for u = min{q, 1}
the decomposition

σ2m(id : `p(Xµ)→ `q(Yµ),D)q ≤ σm(id : `p(Xµ, I1)→ `q(Yµ, I1),D)q

+σm(id : `p(Xµ, I2)→ `q(Yµ, I2),D)q

where

I1 := {µ ∈ Nd0 : dµ ≤ m+ 1} and I2 := {µ ∈ Nd0 : dµ > m+ 1}.

Next we consider best m-term approximation for discrete function spaces sr,Ωp,θ f and

sr,Ωp,θ b with Ω = [0, 1]d. We need some further notation. We introduce for µ ∈ N0 the
following sets and quantities

M(µ, d) :=
{
j ∈ Nd−1 :

d∑
i=1

max{ji, 0} = µ
}
, (6.2.10)

S(µ, d) = |M(µ, d)|,
∇µ := {(j,k) : j ∈M(µ, d),k ∈ Dj},

N(µ, d) := |∇µ|.

Definition 6.11. We define the projection of the sequence a := (aj,k)(j,k)∈∇ to indices
of the hyperbolic cross layer M(µ, d) by

Rµa :=
∑

j∈M(µ,d)

∑
k∈Dj

aj,kej,k,
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where ej,k are the unit vectors with index (j,k). Such a projection fulfills the
following properties.

Lemma 6.12. Let x ∈ {b, f}, 0 < p < q <∞ (q =∞ : x = b, ), 0 < θ < ν ≤ ∞ and
t ≤ r. Then the following inequalities hold

(i)

‖Rµa|sr,Ωp,θx‖ ≤ S(µ, d)
1
θ
− 1
ν ‖Rµa|sr,Ωp,νx‖,

(ii)
‖Rµa|sr,Ωp,θx‖ ≤ ‖Rµa|sr,Ωq,θ x‖,

(iii)
‖Rµa|sr,Ωp,θx‖ ≤ ‖a|s

r,Ω
p,θx‖.

(iv) Additionally the identity

id : sr,Ωp,θx→ st,Ωp,θx =
∞∑
µ=0

Rµ

holds.

Proof. (i) and (ii) can be proven using Hölder’s inequality. The estimates in (iii) and
(iv) are obvious.

The case of large smoothness

The following result is due to Hansen and Sickel [56, Proposition 5.4]. We provide an
alternative proof using pseudo s-number properties. D denotes the set of unit vectors
in sequence spaces sr,Ωp,θ f .

Theorem 6.13. Let x, y ∈ {b, f}, 0 < p, q ≤ ∞ (p = ∞ : x = b, q = ∞ : y = b) and
0 < θ, ν ≤ ∞. We denote by γ0 = min{p, θ} and δ1 = max{ν, q}. Further let r, t ≥ 0

with r − t > max
{

0, 1
γ0
− 1

δ1

}
then

σm(sr,Ωp,θx,D)st,Ωq,νy � C(m−1 logd−1m)r−t(logd−1m)
1
ν
− 1
θ . (6.2.11)

Proof. For the lower bound we refer to [56]. We give a new proof for the upper bound.
We start with the case γ0 < δ1. We denote by Dµ the set of unit vectors in sr,Ωp,θ f
restricted to the hyperbolic layer with |j|1 = µ. Let a ∈ srp,θx with ‖a|srp,θx‖ ≤ 1 then
Lemma 6.1, (ii) with u := min{q, ν, 1} provides the decomposition

σm(a,D)u
st,Ωq,νy

≤
M∑
µ=0

σmµ(Rµa,Dµ)u
st,Ωq,νy

+
L∑

µ=M+1

σmµ(Rµa,Dµ)u
st,Ωq,νy

(6.2.12)

+
∞∑

µ=L+1

σmµ(Rµa,Dµ)u
st,Ωq,νy

,

(6.2.13)

85



CHAPTER 6. BEST M -TERM APPROXIMATION

where

mµ �


2µµd−1 : 0 ≤ µ ≤M,

b2µ2(M−µ)κµd−1c : M + 1 ≤ µ ≤ L,

0 : otherwise,

with κ > 1,

m � 2MMd−1

and

L =
⌈Mκ+ (d− 1) logM − 1

κ− 1

⌉
.

First show that m &
∑L

µ=0mµ. Obviously

∞∑
µ=0

mµ .
M∑
µ=0

µd−12µ + 2Mκ

L∑
µ=M+1

2(1−κ)µµd−1 .Md−12M � m.

The first sum in (6.2.13) vanishes, since |∇µ| � µd−12µ. So this part can be approxi-
mated exactly. We continue dealing with the second sum. Applying Lemma 6.12, (i)
gives

σmµ(Rµa,Dµ)st,Ωq,νy ≤ S(µ, d)
1
ν
− 1
δ1 σmµ(Rµa,Dµ)stδ1,δ1b

. S(µ, d)
1
ν
− 1
δ1 σmµ(Rµ : sr,Ωγ0,γ0

b→ st,Ωδ1,δ1b,Dµ)‖Rµa|sr,Ωγ0,γ0
x‖

� S(µ, d)
1
ν
− 1
δ1 2
−µ(r−t−( 1

γ0
− 1
δ1

))
σmµ(Rµ : `µ

d−12µ

γ0
→ `µ

d−12µ

δ1
,Dµ)

‖Rµa|sr,Ωγ0,γ0
x‖.

Corollary 6.5 yields

σmµ(Rµa,Dµ)st,Ωq,νy . S(µ, d)
1
ν
− 1
δ1 2
−µ(r−t−( 1

γ0
− 1
δ1

))
m
−( 1

γ0
− 1
δ1

)

µ ‖Rµa|sr,Ωγ0,γ0
x‖.

Lemma 6.12 allows to estimate this by

σmµ(Rµa,Dµ)st,Ωq,νy . S(µ, d)
1
ν
− 1
δ1

+ 1
γ0
− 1
θ 2
−µ(r−t−( 1

γ0
− 1
δ1

))
m
−( 1

γ0
− 1
δ1

)

µ ‖Rµa|sr,Ωp,θx‖.

Choosing κ > 1 close to 1 such that κ( 1
γ0
− 1

δ 1
) < r − t then summing up yields

L∑
µ=M+1

σmµ(Rµa,Dµ)st,Ωq,νy . 2
−Mκ( 1

γ0
− 1
δ1

)u
L∑

µ=M+1

µ(d−1)( 1
ν
− 1
θ

)u2
µ(κ( 1

γ0
− 1
δ1

)−(r−t))u

. 2−M(r−t)uM (d−1)( 1
ν
− 1
θ

)u.
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We estimate the last sum in (6.2.13). The choice of L yields mµ = 0 for µ > L. Lemma
6.1 together with 6.12 gives

σmµ(Rµa,Dµ)st,Ωq,νy . ‖Rµa|st,Ωq,νy‖ ≤ µ(d−1)( 1
ν
− 1
q

)+‖Rµa|st,Ωq,q b‖

. µ(d−1)( 1
ν
− 1
q

)+2−(r−t− 1
p

+ 1
q

))µ‖Rµa|sr,Ωp,p b‖

. µ(d−1)[( 1
ν
− 1
q

)++( 1
p
− 1
θ

)+]2−(r−t− 1
p

+ 1
q

))µ‖Rµa|sr,Ωp,θx‖.

Summing up with L > M yields

∞∑
µ=L+1

σmµ(Rµa,Dµ)u
st,Ωq,νy

.
∞∑

µ=L+1

µ(d−1)[( 1
ν
− 1
q

)++( 1
p
− 1
θ

)+]u2−(r− 1
p

+ 1
q

))µu

. 2−(r−( 1
p
− 1
q

))LuL(d−1)[( 1
ν
− 1
q

)++( 1
p
− 1
θ

)+]u.

Finally, if κ is choosen close enough to 1 then L is sufficent large such that

∞∑
µ=L+1

σmµ(Rµa,Dµ)u
st,Ωq,νy

. 2−(r−( 1
p
− 1
q

))LuL(d−1)[( 1
ν
− 1
q

)++( 1
p
− 1
θ

)+]u . 2−MruM (d−1)( 1
ν
− 1
θ

)u

holds. Altogether, we obtain

σm(a,D)st,Ωq,νy . 2−M(r−t)M (d−1)( 1
ν
− 1
θ

) � (m−1 logd−1m)r−t(logd−1m)
1
ν
− 1
θ .

Finally we consider the case δ1 < γ0. Here we use (linear) hyperbolic cross approxima-
tion. Again we choose M such that

m � 2MMd−1

and

mµ �

{
µd−12µ : µ ≤M,

0 : otherwise.

Obviously
∞∑
µ=0

mµ . 2MMd−1.

Lemma 6.12 yields

‖Rµa|st,Ωq,νy‖ . µ
(d−1)( 1

ν
− 1
δ1

)‖Rµa|st,Ωδ1,δ1b‖

= µ
(d−1)( 1

ν
− 1
δ1

)
2
µ(t− 1

δ1
)‖Rµa|`µ

d−12µ

δ1
‖

. µ
(d−1)( 1

ν
− 1
δ1

)
2
µ(t− 1

δ1
)
(2µµd−1)

1
δ1
− 1
γ0 ‖Rµa|`µ

d−12µ

γ0
‖

= µ
(d−1)( 1

ν
− 1
γ0

)
2−µ(r−t)‖Rµa|sr,Ωγ0,γ0

b‖

. µ(d−1)( 1
ν
− 1
θ

)2−µ(r−t)‖Rµa|sr,Ωp,θx‖
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Inserting this into the following estimate gives

σm(a,D)u
st,Ωq,νy

≤
M∑
µ=0

σmµ(Rµa,Dµ)u
st,Ωq,νy︸ ︷︷ ︸

=0

+
∞∑

µ=M+1

σ0(Rµa,Dµ)u
st,Ωq,νy︸ ︷︷ ︸

=‖Rµa|st,Ωq,νy‖u

.
∞∑

µ=M+1

µ(d−1)( 1
ν
− 1
θ

)2−µ(r−t)‖Rµa|sr,Ωp,θx‖

. M (d−1)( 1
ν
− 1
θ

)2−M(r−t)

� (m−1 logd−1m)r−t(logd−1m)
1
ν
− 1
θ .

This concludes the proof.

Remark 6.14. Compared to [56] the analysis here uses ideas known from the Maiorov
discretization technique, cf. [75], which is very well known for estimates on several
s-numbers of classical function space embeddings (F and B spaces).The choice of para-
meters is borrowed from [127, Theorem 3.19] where entropy numbers have been studied.

The case of small smoothness

In this section we consider the so called case of small smoothness. The small smoothness
range is given by 1

p
− 1

q
≤ r ≤ 1

θ
− 1

ν
. Here we recover some interesting effects concerning

the logarithm. The next result originally goes back to [56]. In fact, it was obtained
in a non-constructive way using interpolation theory. We contribute a constructive
approximation method.

Theorem 6.15. Let 0 < p < q ≤ ∞, 0 < θ < ν ≤ ∞ and 1
p
− 1

q
≤ r− t ≤ 1

θ
− 1

ν
. Then

σm(id : sr,Ωp,θ b→ st,Ωq,νb,D) � m−(r−t). (6.2.14)

Proof. For the lower bound we refer to [56, Corollary 5.11]. We prove the upper
bound with a constructive method in case of the compact embedding with 0 < ε <
r− t− (1

p
− 1

q
). For the non-compact embedding r− t = 1

p
− 1

q
we refer to the comments

in Remark 6.19. We set

L =
⌈ (r − t) logm

r − t− 1
p

+ 1
q
− ε

⌉
. (6.2.15)

Defining u := min{q, ν, 1} then Lemma 6.1, (i) together with Lemma 6.12, (iv) yields

σm(id : sr,Ωp,θ b→ st,Ωq,νb,D)u ≤ σm

( L∑
µ=0

Rµ : sr,Ωp,θ b→ st,Ωq,νb,D
)u

+
∞∑

µ=L+1

σ0(Rµ : sr,Ωp,θ b→ st,Ωq,νb,Dµ)u.

(6.2.16)
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We consider the first term in (6.2.16). By Corollary 6.10 we have

σmµ

( L∑
µ=0

Rµ,D
)
st,Ωq,ν b

� σm(id : `θ(Xµ)→ `ν(Xµ)) . m−(r−t) (6.2.17)

where
Xµ = `µ

d−1

θ (2µ(r− 1
p

)`2µ

p ) and Yµ = `µ
d−1

ν (2µ(t− 1
q

)`2µ

q ).

Finally we deal with the last sum in (6.2.16). Let a ∈ sr,Ωp,θ b with ‖a|sr,Ωp,θ b‖ ≤ 1, then
applying Lemma 6.1, (i) together with Lemma 6.12 gives

σ0(Rµa,Dµ)st,Ωq,ν b = ‖Rµa|st,Ωq,νb‖ ≤ µ(d−1)( 1
θ
− 1
ν

)‖Rµa|st,Ωq,θ b‖

. µ(d−1)( 1
θ
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µ‖Rµa|sr,Ωp,θ b‖

. µ(d−1)( 1
θ
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µ.

Taking supremum over ‖a|sr,Ωp,θ b‖ ≤ 1 and summing up yields

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ b→ st,Ωq,νb,D)u ≤
∞∑

µ=L+1

µu(d−1)( 1
θ
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µu (6.2.18)

. Lu(d−1)( 1
θ
− 1
ν

)2−(r−t−( 1
p
− 1
q

))Lu.

(6.2.19)

The choice of L in (6.2.15) gives

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ b→ st,Ωq,νb,D)u . m−(r−t). (6.2.20)

Inserting the estimates from (6.2.20), (6.2.17) into (6.2.16) yields

σm(id : sr,Ωp,θ b→ st,Ωq,νb,D) . m−(r−t).

That proves the claim.

Theorem 6.16. Let 0 < p < q ≤ ∞ and 0 < θ < ν ≤ ∞ with 1
p
− 1

q
≤ r − t ≤ 1

θ
− 1

ν

and q ≥ ν or θ ≤ p < q < ν. Then

σm(id : sr,Ωp,θ b→ st,Ωq,νf,D) � m−(r−t). (6.2.21)

Proof. For the lower bound we refer to [54], Proposition 5.1. Similarly to Theorem
6.15 we prove the upper bound with a constructive method in case of the compact
embedding with r > 1

p
− 1

q
. For the non-compact embedding r = 1

p
− 1

q
we refer to

the comments in Remark 6.19. The case q ≥ ν follows from Theorem 6.15 using the
decomposition provided in Figure 6.1 with Lemma 6.1, (iii). We prove the case q < ν
with p ≥ θ. Let

N = blogmc and L as in (6.2.15).
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sr,Ωp,θ b st,Ωq,νf

st,Ωq,νb

id

id

id

Figure 6.1: Trivial embedding in case q ≥ ν.

Defining u := min{q, ν, 1} then Lemma 6.1, (ii) yields

σ2m(id : sr,Ωp,θ b→ st,Ωq,νf,D)u ≤ σm

( N∑
µ=0

Rµ : sr,Ωp,θ b→ st,Ωq,νf,D
)u

(6.2.22)

+σm

( L∑
µ=N+1

Rµ : sr,Ωp,θ b→ st,Ωq,νf,D
)u

+
∞∑

µ=L+1

σ0(Rµ : sr,Ωp,θ b→ st,Ωq,νf,D)u.

(6.2.23)

sr,Ωp,θ b st,Ωq,νf

st,Ων,νb

∑N
µ=0 Rµ

∑N
µ=0 Rµ

id

sr,Ωp,θ b st,Ωq,νf

st,Ωq,q b

∑L
µ=N+1 Rµ

∑L
µ=N+1Rµ

id

Figure 6.2: Decomposition of
∑
Rµ in the b− f case.

In the first sum we apply the decomposition provided in the left commutative
diagram of Figure 6.2. Lemma 6.1, (iii) yields

σm

( N∑
µ=0

Rµ : sr,Ωp,θ b→ st,Ωq,νf,D
)

. σm

( N∑
µ=0

Rµ : sr,Ωp,θ b→ st,Ων,νb,D
)
‖id : st,Ων,νb→ st,Ωq,νf‖︸ ︷︷ ︸

≤1

.

The choice of N gives

sup
µ=0,...,N

dµ = sup
µ=0,...,N

2µ ≤ m and inf
µ=N+1,...,L

dµ = inf
µ=N+1,...,L

2µ ≥ m.
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Additionally, we have r− t < 1
θ
− 1

ν
. This allows us to apply Corollary 6.8 which yields

σm

( N∑
µ=0

Rµ : sr,Ωp,θ b→ st,Ων,νb,D
)
� σm(id : `p(Xµ)→ `ν(Yµ),D) . m−(r−t), (6.2.24)

where

Xµ = `µ
d−1

θ (2µ(r− 1
p

)`2µ

p ) and Yµ = `µ
d−1

ν (2µ(t− 1
ν

)`2µ

ν ).

We estimate the second sum in (6.2.23) by using the right commutative diagram in
Figure 6.2. Notice, that 1

p
− 1

q
< r− t < 1

θ
− 1

q
. This allows us to apply Corollary 6.10

which yields

σm

( N∑
µ=0

Rµ : sr,Ωp,θ b→ st,Ωq,q b,D
)
� σm(id : `p(Xµ)→ `q(Yµ),D) . m−(r−t), (6.2.25)

where

Xµ = `µ
d−1

θ (2µ(r− 1
p

)`2µ

p ) and Yµ = `µ
d−1

q (2µ(t− 1
q

)`2µ

q ).

Finally we deal with the last sum in (6.2.23). Let a ∈ sr,Ωp,θ b with ‖a|sr,Ωp,θ b‖ ≤ 1.
Proceeding by applying Lemma 6.1, (i) and Lemma 6.12 gives

σ0(Rµa,Dµ)u
st,Ωq,νf

. ‖Rµa|st,Ωq,q f‖ ≤ µ(d−1)( 1
θ
− 1
q

)‖Rµa|st,Ωq,θ b‖

. µ(d−1)( 1
θ
− 1
q

)2−(r−t− 1
p

+ 1
q

)µ‖Rµa|sr,Ωp,θ b‖

. µ(d−1)( 1
θ
− 1
q

)2−(r−t− 1
p

+ 1
q

)µ.

Taking supremum over a and summing up shows

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ b→ st,Ωq,νf,Dµ)u ≤
∞∑

µ=L+1

µu(d−1)( 1
θ
− 1
q

)2−(r−t− 1
p

+ 1
q

)µu

. Lu(d−1)( 1
θ
− 1
q

)2−(r−t−( 1
p
− 1
q

))Lu.

Finally, the choice of L yields

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ b→ st,Ωq,νf,Dµ)u . Lu(d−1)( 1
θ
− 1
q

)2−(r−t−( 1
p
− 1
q

)Lu . m−(r−t). (6.2.26)

Inserting the estimates from (6.2.25), (6.2.24), (6.2.26) into (6.2.23) yields

σm(id : sr,Ωp,θ b→ st,Ωq,νf,D) . m−(r−t).

This proves the claim.
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sr,Ωp,θ f st,Ωq,νb

sr,Ωp,θ b

id

id

id

Figure 6.3: Trivial embedding in case θ ≥ p.

Theorem 6.17. Let 0 < p < q ≤ ∞ and 0 < θ < ν ≤ ∞ with 1
p
− 1

q
< r − t ≤ 1

θ
− 1

ν

and θ ≥ p or θ < p < q ≤ ν. Then

σm(id : sr,Ωp,θ f → st,Ωq,νb,D) � m−(r−t). (6.2.27)

Proof. For the lower bound we refer to [54], Proposition 5.1. Again, we prove the upper
bound with a constructive method in case of the compact embedding with r > 1

p
− 1

q
.

For the non-compact embedding r = 1
p
− 1

q
we refer to the comments in Remark 6.19..

The case θ ≥ p follows from Theorem 6.15 using the decomposition provided in Figure
6.3 with Lemma 6.1, (iii). We prove the case q ≤ ν with p ≥ θ. Let

N = blogmc and L as in (6.2.15).

Defining u := min{q, ν, 1} Lemma 6.1, (ii) yields

σ2m(id : sr,Ωp,θ f → st,Ωq,νb,D)u ≤ σm

( N∑
µ=0

Rµ : sr,Ωp,θ f → st,Ωq,νb,D
)u

+σm

( L∑
µ=N+1

Rµ : sr,Ωp,θ f → st,Ωq,νb,D
)u

+
∞∑

µ=L+1

σ0(Rµ : sr,Ωp,θ f → st,Ωq,νb,Dµ)u.

(6.2.28)

We consider the first sum where we use the decomposition presented in the left com-
mutative diagram of Figure 6.4.
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sr,Ωp,θ f st,Ωq,νb

sr,Ωθ,θ b

id

∑N
µ=0 Rµ

∑N
µ=0Rµ

sr,Ωp,θ f st,Ωq,νb

sr,Ωp,p b

id

∑L
µ=N+1Rµ

∑L
µ=N+1 Rµ

Figure 6.4: Decomposition of
∑
Rµ in the f − b case.

Then Lemma 6.1, (iii) provides

σm

( N∑
µ=0

Rµ : sr,Ωp,θ f → st,Ωq,νb,D
)

. σm

( N∑
µ=0

Rµ : sr,Ωθ,θ b→ st,Ωq,νb,D
)
‖id : sr,Ωθ,θ f → sr,Ωθ,θ b‖︸ ︷︷ ︸

≤1

.

The choice of N gives

sup
µ=0,...,N

dµ = sup
µ=0,...,N

2µ ≤ m and inf
µ=N+1,...,L

dµ = inf
µ=N+1,...,L

2µ ≥ m.

Additionally we have r− t < 1
θ
− 1

ν
. This allows us to apply Corollary 6.8 which yields

σm

( N∑
µ=0

Rµ : sr,Ωp,θ f → st,Ωq,νb,D
)
. σm(id : `θ(Xµ)→ `ν(Yµ),D) . m−(r−t), (6.2.29)

where
Xµ = `µ

d−1

θ (2µ(r− 1
θ

)`2µ

θ ) and Yµ = `µ
d−1

ν (2µ(t− 1
q

)`2µ

q ).

We estimate the second sum in (6.2.28) by using the decomposition provided in the
right commutative diagram in Figure 6.4. Note that 1

p
− 1

q
< r − t. This allows us to

apply Corollary 6.9 that yields

σm

( N∑
µ=0

Rµ : sr,Ωp,p b→ st,Ωq,νb,D
)
. σm(id : `p(Xµ)→ `q(Yµ),D) . m−(r−t), (6.2.30)

where
Xµ = `µ

d−1

p (2µ(r− 1
p

)`2µ

p ) and Yµ = `µ
d−1

ν (2µ(t− 1
q

)`2µ

q ).

Finally we deal with the third sum in (6.2.23). Let a ∈ sr,Ωp,θ f with ‖a|sr,Ωp,θ f‖ ≤ 1.
Applying Lemma 6.1, (i) and Lemma 6.12 gives

σ0(Rµa,D)u
st,Ωq,ν b

. ‖Rµa|st,Ωq,νf‖ ≤ µ(d−1)( 1
p
− 1
ν

)‖Rµa|st,Ωq,pb‖

. µ(d−1)( 1
p
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µ‖Rµa|sr,Ωp,p b‖

. µ(d−1)( 1
p
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µ ‖Rµa|sr,Ωp,θ f‖︸ ︷︷ ︸
≤1

.
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Taking supremum over a and summing up shows

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ f → st,Ωq,νb,D)u ≤
∞∑

µ=L+1

µu(d−1)( 1
p
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µu

. Lu(d−1)( 1
p
− 1
ν

)2−(r−t−( 1
p
− 1
q

))Lu.

Finally, the choice of L yields

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ f → st,Ωq,νb,D)u . Lu(d−1)( 1
p
− 1
ν

)2−(r−t−( 1
p
− 1
q

)Lu . m−(r−t). (6.2.31)

Inserting the estimates from (6.2.30), (6.2.29), (6.2.31) into (6.2.28) yields

σm(id : sr,Ωp,θ b→ st,Ωq,νf,D) . m−(r−t),

which concludes the proof.

Theorem 6.18. Let 0 < p < q ≤ ∞ and 0 < θ < ν ≤ ∞ with 1
p
− 1

q
< r − t ≤ 1

θ
− 1

ν

and p ≤ θ, ν ≤ q or θ ≤ p < q ≤ ν. Then

σm(id : sr,Ωp,θ f → st,Ωq,νf,D) � m−(r−t). (6.2.32)

Proof. For the lower bound we refer to [54], Proposition 5.1. We prove the upper bound
in case r > 1

p
− 1

q
with a constructive way. For the case r = 1

p
− 1

q
we refer to Remark

6.19. The case θ ≥ p, q ≥ ν follows from Theorem 6.15 using the the commutative
diagram provided in Figure 6.5 together with Lemma 6.1, (iii). We prove the case

sr,Ωp,θ f st,Ωq,νf

sr,Ωp,θ b st,Ωq,νb

id

id

id

id

Figure 6.5: Trivial embeddings in case p ≤ θ, ν ≤ q.

q ≤ ν with p ≥ θ. Let

N = blogmc and L as in (6.2.15).
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Defining u := min{q, ν, 1} Lemma 6.1, (ii) yields

σ2m(id : sr,Ωp,θ f → st,Ωq,νf,D)u ≤ σm

( N∑
µ=0

Rµ : sr,Ωp,θ f → st,Ωq,νf,D
)u

(6.2.33)

+σm

( L∑
µ=N+1

Rµ : sr,Ωp,θ f → st,Ωq,νf,D
)u

+
∞∑

µ=L+1

σ0(Rµ : sr,Ωp,θ f → st,Ωq,νf,D)u.

(6.2.34)

Concerning the first sum we consider the left commutative diagram in Figure 6.6.

sr,Ωp,θ f st,Ωq,νf

sr,Ωθ,θ b st,Ων,νb

id ∑N
µ=0Rµ

∑N
µ=0Rµ

id

sr,Ωp,θ f st,Ωq,νf

sr,Ωp,p b st,Ωq,q b

id∑L
µ=N+1Rµ

∑L
µ=N+1Rµ

id

Figure 6.6: Decomposition of
∑
Rµ in the f − f case.

Lemma 6.1, (iii) provides

σm

( N∑
µ=0

Rµ : sr,Ωp,θ b→ st,Ωq,νf,D
)

. ‖id : st,Ων,νf → sr,Ωθ,θ b‖︸ ︷︷ ︸
≤1

σm

( N∑
µ=0

Rµ : sr,Ωθ,θ b→ st,Ων,νb,D
)

×‖id : sr,Ωp,θ f → sr,Ωθ,θ b‖︸ ︷︷ ︸
≤1

.

The choice of N gives

sup
µ=0,...,N

dµ = sup
µ=0,...,N

2µ ≤ m and inf
µ=N+1,...,L

dµ = inf
µ=N+1,...,L

2µ ≥ m.

Additionally we have r − t ≤ 1
θ
− 1

ν
. This allows us to apply Corollary 6.8 that yields

σm

( N∑
µ=0

Rµ : sr,Ωp,θ f → st,Ωq,νf,D
)
. σm(id : `θ(Xµ)→ `ν(Yµ),D) . m−(r−t), (6.2.35)

where
Xµ = `µ

d−1

θ (2µ(r− 1
θ

)`2µ

θ ) and Yµ = `µ
d−1

ν (2µ(t− 1
ν

)`2µ

ν ).
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We estimate the second sum in (6.2.34) by using the right commutative diagram in
Figure 6.6. We recognize 1

p
− 1

q
< r − t. This allows us to apply Corollary 6.9 which

yields

σm

( L∑
µ=N+1

Rµ : sr,Ωp,p b→ st,Ωq,q b,D
)
. σm(id : `p(Xµ)→ `q(Yµ),D) . m−(r−t), (6.2.36)

where
Xµ = `µ

d−1

p (2µ(r− 1
p

)`2µ

p ) and Yµ = `µ
d−1

q (2µ(t− 1
q

)`2µ

q ).

Finally we deal with the last sum in (6.2.23). Let a ∈ sr,Ωp,θ f with ‖a|sr,Ωp,θ f‖ ≤ 1.
Applying Lemma 6.1, (i) and Lemma 6.12 gives

σ0(Rµa,D)u
st,Ωq,νf

. ‖Rµa|st,Ωq,νf‖ ≤ µ(d−1)( 1
θ
− 1
ν

)‖Rµa|st,Ωq,pf‖

. µ(d−1)( 1
θ
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µ‖Rµa|sr,Ωp,θ f‖.

Taking supremum over a and summing up shows

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ f → st,Ωq,νf,D)u .
∞∑

µ=L+1

µu(d−1)( 1
θ
− 1
ν

)2−(r−t− 1
p

+ 1
q

)µu

. Lu(d−1)( 1
θ
− 1
ν

)2−(r−t−( 1
p
− 1
q

))Lu.

Finally, the choice of L yields

∞∑
µ=L+1

σ0(Rµ : sr,Ωp,θ f → st,Ωq,νb,D)u . Lu(d−1)( 1
p
− 1
ν

)2−(r−t−( 1
p
− 1
q

)Lu . m−(r−t). (6.2.37)

Inserting the estimates from (6.2.36), (6.2.35), (6.2.37) into (6.2.34) yields

σm(id : sr,Ωp,θ f → st,Ωq,νf,D) . m−(r−t),

which concludes the proof.

Remark 6.19. Setting L = ∞ the proofs of Theorems 6.15, 6.16, 6.17 and 6.18
work also in case r − t = 1

p
− 1

q
(non-compact embedding). The price to pay is the

constructivity of the underlying algorithm. The algorithm needs full knowledge of the
coefficients on infinitely many hyperbolic layers M(µ, d).

6.3 Explicit algorithms

The results in Theorems 6.13, 6.15, 6.16, 6.17 and 6.18 are constructive. A constructive
algorithm that approximates a ∈ sr,Ωp,θx is an algorithm, that needs for its evaluation
only partial (finite) knowledge of the coefficients of a. Algorithm 1 and Algorithm
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2 describe the method that constructs the approximants for the approximation rates
provided in the mentioned theorems for series a ∈ sr,Ωx,θb, x ∈ {f, b} with ‖a|sr,Ωp,θx‖ ≤ 1.
These algorithms are obtained by inserting the approximation methods from Section 6.2
into the corresponding estimates in this section. Note, that the algorithms presented
here are modified due to Remark 6.6, so that they can handle ‖a|sr,Ωp,θ b‖ = 1 directly.
Algorithm 2 considers the small smoothness b − b situation, which means where the
source and the target space is a Besov type sequence space. The underlying methods
of Theorems 6.17, 6.16 and 6.18 are based on Algorithm 2. Here one has to divde a
into two parts

a =
N∑
|j|1=0

∑
k∈Dj

aj,kej,k +
∞∑

|j|1=N+1

∑
k∈Dj

aj,kej,k

where Algorithm 2 is applied to each of these parts with different embedding parameters
p, q, θ, ν.

6.4 Best m-term approximation with respect to the

Faber-Schauder system

We denote by

Fd := {vj,k : (j,k) ∈ ∇}

the Faber-Schauder dictionary on [0, 1]d. In this section we consider best m-term
approximation in function spaces with respect to Fd

σm(Srp,θX,Fd)Stq,νY = σm(id : Srp,θX → Stq,νY,Fd).

Lower bounds

The next theorem is our main result concering lower bounds for best m-term approxi-
mation with respect to the Faber-Schauder dictionary.

Theorem 6.20. Let 0 < p < q ≤ ∞, 0 < θ ≤ ∞ (B-case: p ≤ q = ∞) and r > 1
p

(F -case: r > max{1
p
, 1
θ
− 1}. Then

σm(Srp,θB([0, 1]d),Fd)Lq & m−r

and

σm(Srp,θF ([0, 1]d),Fd)Lq & m−r

for all m ∈ N.

Proof. We consider the bump function

b(x) = e−
1

x(1−x) e
1
4
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CHAPTER 6. BEST M -TERM APPROXIMATION

Algorithm 1 Large smoothnes algorithm

Input: m, r, t degrees of freedom, smoothness
γ0 := min{p, θ}, parameters
δ1 := max{q, ν}
(aj,k), |j|1 ≤ L,k ∈ Dj finite part of a.

choose κ with

1 < κ <
r − t
1
γ0
− 1

δ1

.

choose M such that
m �Md−12M .

set

L :=
⌈Mκ+ (d− 1) logM − 1

κ− 1

⌉
,

am := 0.

for each µ ∈ 0, . . . , L do
set

mµ �

{
2µµd−1 : 0 ≤ µ ≤M,

b2µ2(M−µ)κµd−1c : M + 1 ≤ µ ≤ L.

for each j with |j|1 = µ do
for each k ∈ Dj do
if |aj,k|γ0mµ ≥ 1 then
set

am := am + aj,kej,k

end if
end for

end for
end for

Output: am m-term approximation to a
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Algorithm 2 Small smoothness algorithm b-b-case

Input: m, r, t degrees of freedom, smoothness
p, q, θ, ν, parameters
(aj,k), |j|1 ≤ L,k ∈ Dj finite part of a.

choose
L as in (6.2.15)

Set
am := 0

for each µ ∈ 0, . . . , L do

mµ := ‖Rµa|sr,Ωp,θ b‖
θm

for each j with |j|1 = µ do

mµ,j := 2θµ(r− 1
p

)‖a|`Djp ‖θmµ

for each k ∈ Dj do
if |aj,k|pmµ,j ≥ 1 then
set

am := am + aj,kej,k

end if
end for

end for
end for

Output: am best m-term approximation to
a
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which is a L∞-normalized C∞0 function. We denote by

bj,k = b(2jx− k)

its j-th dilation and k-th translation. Taking a linear function it is obvious that

‖b(x)− ax+m|Lq([0, 1])‖ ≥ C1 (6.4.1)

holds. The bumps (bj,k)j∈Nd0,k∈Zd are (K,−1)-atoms. According to Theorem 4.34 the
relation ∥∥∥ ∑

j∈Nd−1

∑
k∈Dj

λj,kbj,k

∣∣∣Srp,θX([0, 1]d)
∥∥∥ . ‖λ|sr,Ωp,θx‖ (6.4.2)

holds for every sequence (λj,k) of complex numbers with finite (RHS) in (6.4.2). Let
us define

fM(x) =
∑
k∈Dj

2−(M+1)rbM+1,k(x1).

The relation in (6.4.2) easily allows to prove

‖fM |Srp,θX([0, 1]d)‖ ≤ ‖fM |Srp,θX(Rd)‖ ≤ ‖(2−(M+1)r)j=j(M),k∈Dj(M)
|srp,θx‖ ≤ 1.

We consider a 2M -term from the dictionary Fd given by

gM =
∑

(j,k)∈ΛM

λj,kvj,k

where ΛM ⊂ ∇ (cf. (4.4.1)) with |ΛM | = 2M . We decompose the approximation of fM
by gM as follows

‖fM − gM |Lq([0, 1]d)‖ = ‖uM − aM |Lq([0, 1]d)‖ (6.4.3)

where
uM = fM −

∑
(j,k)∈ΛM
|j|1≥M+1

λj,kvj,k and aM =
∑

(j,k)∈ΛM
|j|1<M+1

λj,kvj,k.

Furthermore, let
Ij,k = supp vj,k.

Additionally, we decompose the domain

Ω = [0, 1]d =
⋃

k∈D(M+1,...,M+1)

Ek

into elementary cells Ek := I(M+1,...,M+1),k. Simple volume arguments for the support of
um yield that uM can differ from fM only in 2(M+1)d−1 elementary cells. As a consquence
we find a set A ⊂ D(M+1,...,M+1), |A| ≥ 2d(M+1)−1 such that

fM(x) = uM(x) for all x ∈
⋃
k∈A

Ek.
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We continue estimating (6.4.3) by

‖fM − gM |Lq([0, 1]d)‖q =
∑
k∈A

‖fM − aM |Lq(Ek)‖q. (6.4.4)

Considering a single summand we obtain

‖fM − aM |Lq(Ek)‖q =

∫
Ek

|fM(x)− aM(x)|qdx

=

∫
xd

. . .

∫
x1

|2−(M+1)rbM+1,k∗(x1)− (a(x2, . . . , xd)x1 −m(x2, . . . , xd))|qdx1 . . . dxd,

where a and m are functions mapping Rd−1 → C. This representation is possible since
aM consists of frequencies smaller M+1 in every direction, which means it is piecewise
linear in every single direction of an elementary cell Ek. Change of variable gives

‖fM − aM |Lq(Ek)‖q

=

∫
xd

. . .

∫
x2

‖b(·)− (a∗(x2, . . . , xd) · −m∗(x2, . . . , xd))|Lq(IM+1,k1)‖qdx2 . . . dxd

×2−(M+1)r−M

Applying the observation in (6.4.1) yields

‖fM − aM |Lq(Ek)‖q & C12−(M+1)r−M
∫
xd

. . .

∫
x2

1dx2 . . . dxd

� 2−(M+1)d2−(M+1)r.

Inserting this into (6.4.4) gives

1
2

1

Im+1,k1

‖fM − gM |Lq([0, 1]d)‖q &
∑
k∈A

2(M+1)(d−1)2−(M+1)r

= |A|2(M+1)(d−1)2−(M+1)r

� 2−(M+1)r
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This yields

σ2M (Srp,θX,F)Lq & inf
ΛM ,λj,k

∥∥∥fM − ∑
(j,k)∈ΛM

λj,kvj,k

∣∣∣Lq([0, 1]d)
∥∥∥ & 2−Mr.

Simple monotonicity arguments finally show,

σm(Srp,θX,F)Lq & m−r.

Upper bounds

In this subsection we apply the sequence space results from the last section to obtain
estimates for best m-term approximations in function spaces.

Theorem 6.21. Let 1
2
< p < q ≤ ∞, 0 < θ, ν ≤ ∞ and 1

p
< r < min{1

θ
− 1

min{q,1} , 2}
or 1

p
< r = 1

θ
− 1

min{q,1} < 2. Then

σm(Srp,θB([0, 1]d),Fd)Lq � m−r.

Proof. The lower bound is due to Theorem 6.20. We prove the upper bound. Theorem
4.25 allows us to write f ∈ Srp,θB([0, 1]d) as a Faber-Schauder series. Let u = min{q, 1}.
This gives

σm(Srp,θB([0, 1]d),Fd)uLq([0,1]d)

= sup
‖f |Srp,θB([0,1]d)‖≤1

inf
Λ⊂∇
|Λ|≤m

inf
(λj,k)⊂C

λj,k 6=0=⇒(j,k)∈Λ

∥∥∥ ∑
j∈Nd−1

∑
k∈Dj

(dj,k(f)− λj,k)vj,k

∣∣∣Lq([0, 1]d)‖u.

u-triangle inequality yields

σm(Srp,θB([0, 1]d),Fd)uLq([0,1]d)

. sup
‖f |Srp,θB([0,1]d)‖≤1

inf
Λ⊂∇
|Λ|≤m

inf
(λj,k)⊂C

λj,k 6=0=⇒(j,k)∈Λ

∑
j∈Nd−1

∥∥∥ ∑
k∈Dj

(dj,k(f)− λj,k)χj,k

∣∣∣Lq([0, 1]d)
∥∥∥u

� sup
‖f |Srp,θB([0,1]d)‖≤1

inf
Λ⊂∇
|Λ|≤m

inf
(λj,k)⊂C

λj,k 6=0=⇒(j,k)∈Λ

∑
j∈Nd−1

2−
u|j|1
q

( ∑
k∈Dj

(dj,k(f)− λj,k)q
)u
q
.

Applying Theorem 4.26 yields

σm(Srp,θB([0, 1]d),Fd)Lq([0,1]d)

. sup
‖a|sr,Ωp,θ f‖.1

inf
Λ⊂∇
|Λ|≤m

inf
(λj,k)⊂C

λj,k 6=0=⇒(j,k)∈Λ

∑
j∈Nd−1

2−
u|j|1
q

( ∑
k∈Dj

(aj,k − λj,k))qq

)u
q

� σm(sr,Ωp,θ b,D)u
s0,Ωq,u b

.

Inserting the estimate from Theorem 6.15 proves the claim.
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Remark 6.22. This is one of the very rarely known situations where one knows the
exact rate for non-linear approximation with target space L∞([0, 1]d).

Theorem 6.23. Let 1
2
< p < q ≤ ∞, 0 < θ ≤ ∞ and

(i) max{1
p
, 1
θ
− 1

max{q,1}} < r < 2 then

m−r . σm(Srp,θB([0, 1]d),Fd)Lq . m−r(logm)(d−1)(r+1− 1
θ

).

(ii) In case max{1
p
, 1
θ
} < r < 2 we have

m−r . σm(Srp,θF ([0, 1]d),Fd)Lq . m−r(logm)(d−1)(r+1− 1
θ

).

Proof. The lower bound is due to Theorem 6.20. We prove the upper bound. Theorem
4.25 allows us to write f ∈ Srp,θX([0, 1]d) as a Faber-Schauder series. This gives

σm(Srp,θX([0, 1]d),Fd)Lq
= sup
‖f |Srp,θX([0,1]d)‖≤1

inf
Λ⊂∇
|Λ|≤m

inf
(λj,k)⊂C

λj,k 6=0=⇒(j,k)∈Λ

∥∥∥ ∑
j∈Nd−1

∑
k∈Dj

(dj,k(f)− λj,k)vj,k

∣∣∣Lq([0, 1]d)
∥∥∥.

Lemma 4.27 provides

σm(Srp,θX([0, 1]d),Fd)Lq
. sup
‖f |Srp,θX([0,1]d)‖≤1

inf
Λ⊂∇
|Λ|≤m

inf
(λj,k)⊂C

λj,k 6=0=⇒(j,k)∈Λ

∥∥∥ ∑
j∈Nd−1

∣∣∣ ∑
k∈Dj

(dj,k(f)− λj,k)χj,k

∣∣∣∣∣∣Lq([0, 1]d)
∥∥∥.

Applying Theorem 4.26 yields

σm(Srp,θX([0, 1]d),Fd)Lq
≤ sup

‖a|sr,Ωp,θ f‖.1

inf
Λ⊂∇
|Λ|≤m

inf
(λj,k)⊂C

λj,k 6=0=⇒(j,k)∈Λ

∥∥∥ ∑
j∈Nd−1

∣∣∣ ∑
k∈Dj

(aj,k − λj,k)χj,k

∣∣∣∣∣∣Lq([0, 1]d)
∥∥∥

� σm(sr,Ωp,θx,D)s0,Ωq,1 f
.

Inserting the estimate from Theorem 6.13 proves the claim.

Theorem 4.30 allows us to state the following result for the limiting case r = 2.

Theorem 6.24. Let 1 < p <∞. Then

m−2 ≤ σm(S2
pW ([0, 1]d),Fd)L∞ . m−2(logd−1m)3

Proof. The lower bound is due to Theorem 6.20. We prove the upper bound. Analo-
gously to the proof of Theorem 6.21 applying Theorem 4.30 and Lemma 4.27 gives

σm(S2
pW ([0, 1]d,Fd))L∞ . σm(s2,Ω

p,∞b,D)s0,Ω∞,1
.

Theorem 6.13 allows to bound this from above by

σm(S2
pW ([0, 1]d,Fd))L∞ . m−2(logd−1m)3

which concludes the proof.
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Finally we consider situations with smoothness in the target spaces.

Theorem 6.25. Let 0 < p, q ≤ ∞, 0 < θ, ν ≤ ∞ with max
{

0, 1
min{p,θ} −

1
max{q,ν}

}
<

r − t and

(i) max{1
p
, 1
θ
} < r < 1 + min{1

p
, 1
θ
}, max{1

q
, 1
ν
} < t < 1 + min{1

q
, 1
ν
}. Then

σm(Srp,θF ([0, 1]d),Fd)Stq,νF ([0,1]d) � m−(r−t)(logm)(d−1)((r−t)−( 1
θ
− 1
ν

)).

(ii) 1
p
< r < 1 + 1

p
, 1
q
< t < 1 + 1

q
. Then

σm(Srp,θF ([0, 1]d),Fd)Stq,νB([0,1]d) � m−(r−t)(logm)(d−1)((r−t)−( 1
θ
− 1
ν

)).

(iii) max{1
p
, 1
θ
} < r < 1 + min{1

p
, 1
θ
}, 1

q
< t < 1 + 1

q
. Then

σm(Srp,θF ([0, 1]d),Fd)Stq,νB([0,1]d) � m−(r−t)(logm)(d−1)((r−t)−( 1
θ
− 1
ν

)).

(iv) 1
p
< r < 1 + 1

p
, max{1

q
, 1
ν
} < t < 1 + min{1

q
, 1
ν
}. Then

σm(Srp,θB([0, 1]d),Fd)Stq,νF ([0,1]d) � m−(r−t)(logm)(d−1)((r−t)−( 1
θ
− 1
ν

)).

Proof. Let X, Y ∈ {F,B} and x, y ∈ {f, b}. Theorem 4.25 allows us to write f ∈
Srp,θX([0, 1]d) as a Faber-Schauder series. The equivalent norms in Theorem 4.25 pro-
vide

σm(Srp,θX([0, 1]d),Fd)Stq,νY ([0,1]d))

= sup
‖f |Srp,θX([0,1]d)‖≤1

inf
Λ⊂∇,|Λ|≤m

(λj,k)⊂C
λj,k 6=0=⇒(j,k)∈Λ

∥∥∥ ∑
j∈Nd−1

∑
k∈Dj

(dj,k(f)− λj,k)vj,k

∥∥∥
Stq,νY ([0,1]d)

� sup
‖a|sr,Ωp,θ x‖.1

inf
Λ⊂∇,|Λ|≤m

(λj,k)⊂C
λj,k 6=0=⇒(j,k)∈Λ

‖a− λ|st,Ωq,νy‖

� σm(sr,Ωp,θx,D)st,Ωq,1 y
.

Inserting the estimate from Theorem 6.13 proves the claim.

Remark 6.26. Applying Theorems 6.15, 6.16, 6.17 and 6.18 similar results can be
formulated for the case of small smoothness, i.e. 1

p
− 1

q
< r − t < 1

θ
− 1

ν
. Since this

translation is straight forward we leave this to the reader.

Remark 6.27. Applying Algorithm 1 and 2 to approximate a function f ∈ Srp,θX([0, 1]d)
means approximating a finite part of the sequence of Faber-Schauder coefficients of f
by m Faber-Schauder coefficients. Faber-Schauder coefficients are build on point evalu-
ations, cf. (4.1.2). For that reason our results can be interpreted as non-linear adaptive
sampling approximations of f . The input of our method is a finite number of samples
of f from which we choose the Faber-Schauder coefficients.
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6.5 Important special cases

Let us explicitely discuss some special cases hidden in the scales of Besov-Triebel-
Lizorkin spaces in the last section. First of all we discuss the probably most natural
case Sr2W ([0, 1]d)→ L2([0, 1]d) where both, the model and the target spaces are Hilbert
spaces. The space Sr2W ([0, 1]d) equals the space Hr

mix([0, 1]d) which is well known in
numerical analysis, cf. for instance [8], [9]. Theorem 6.23 yields the following:

Corollary 6.28. Let 1
2
< r < 2. Then

m−r . σm(Sr2W ([0, 1]d),Fd)L2 . (m−1 logd−1m)r(logd−1m)
1
2 (6.5.1)

holds for all m ∈ N.

This means we can prove the same upper bound as for sparse grid approximation
in Theorem 5.14. For dictionaries consisting out of Daubechies wavelets Dd it is known
that

σm(Sr2W ([0, 1]d),Dd)L2 � (m−1 logd−1m)r

holds, cf. [56]. Due to missing moment conditions of the Faber-Schauder system which
go together with missing L2-orthogonality we expect slower or at least equal approxi-
mation rates as in the case of Daubechies wavelets. So the open problem for the gap in
the corollary above reduces in some sense to the question whether (logd−1m)

1
2 is necce-

sary for the upper bound in (6.5.1) or not. This is closely related to an open problem
for linear sampling recovery discussed in Section 9.1. For Dd being the dictionary
of Daubechies wavelets it is well known that one does not benefit from the available
non-linearity in the algorithms. The rate can be obtained by simple hyperbolic cross
approximation [19]. Next we discuss the embedding Sr2W ([0, 1])→ L∞([0, 1]d). Again,
Theorem 6.23 yields

Corollary 6.29. Let max{1
p
, 1

2
} < r < 2. Then

m−r . σm(Sr2W ([0, 1]d),Fd)L∞ . (m−1 logd−1m)r(logd−1m)
1
2 (6.5.2)

holds for all m ∈ N.

Obviously we have the same bounds as above, where we measure the error in
L2([0, 1]d) with the difference that L∞([0, 1]d) is a much stronger error criterion. The
comparison of both corollaries shows us a general effect for non-linear approximation
in the sense of best m-term widths. The asymptotic main rates do not depend on the
integrability in the source and target spaces as it is the case for linear approximation
(cf. Section 5.2, where we have

gSGm (Sr2W ([0, 1]d), L∞([0, 1]d)) � (m−1 logd−1m)r−
1
2 (logd−1m)

1
2

for sparse grid widths. In case of best m-term approximation with respect to the Faber-
Schauder dictionary the main rate depends only on the difference of the smoothness
between both spaces. Studying Sobolev spaces SrpW ([0, 1]d), p 6= 2 the last corollary
extends to:
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Corollary 6.30. Let 1 < p <∞ (q =∞) with max{1
p
, 1

2
} < r < 2. Then

m−r . σm(SrpW ([0, 1]d),Fd)L∞ . (m−1 logd−1m)r(logd−1m)
1
2

It turns out that it is important to study best m-term approximation with se-
quence spaces of Triebel-Lizorkin type directly. In case p > 2 the simple embedding
SrpW ([0, 1]d) ↪→ Srp,pB([0, 1]d) would yield

σm(SrpW ([0, 1]d),Fd)L∞ ≤ σm(Srp,pB([0, 1]d),Fd)L∞ . (m−1 logd−1m)r(logd−1m)1− 1
p

which can be improved as stated in the corollary above. Finally we leave behind even
the Banach space setting in the model space and consider smaller spaces Srp,θB([0, 1]d)

with θ < 1. Remember, for fine index θ = 2 we have the identity Sr2W ([0, 1]d) =
Sr2,2B([0, 1]d) = Hr

mix([0, 1]d) in the sense of equivalent norms. Due to Lemma 3.4
modifications in the fine index cause the smallest changes within the scale of Besov-
Triebel-Lizorkin spaces. Theorem 6.21 provides for this spaces:

Corollary 6.31. Let 0 < θ < 1 with 1
2
< r < min{1

θ
− 1, 2} or 1

2
< r = 1

θ
− 1 < 2.

Then
σm(Sr2,θB([0, 1]d),Fd)L∞ � m−r.

We observe two important effects. First there is no d-dependent logarithm in the
rate which means this result behaves asymptotically like a univariate one. Second, our
lower bound in Theorem 6.20 becomes sharp. For sampling recovery or even linear ap-
proximation sharp rates are unknown in literature for this parameter constellation. For
that reason we compare to the sampling width for sparse grid approximation obtained
in [35, Theorem 5.1]:

gSGm (Sr2,θB([0, 1]d), L∞([0, 1]d)) � (m−1 logd−1m)r−
1
2 , 0 < θ ≤ 1.

Here we have a main rate that depends on the integrability in the target space and
additionally a d-dependent logarithm in m. In fact, the non-periodic approximation in
the sense of best m-term approximation guarantees much faster approximation rates
than sparse grid approximation. Last but not least we obtain from Theorem 6.24 the
following corollary for the well known space Sr2W ([0, 1]d) = Hr

mix([0, 1]d) with smooth-
ness r = 2.

Corollary 6.32. We have

m−2 . σm(S2
2W ([0, 1]d),Fd)L∞ . m−2(logd−1m)3

for all m ∈ N.

In fact, we proved an upper bound with a worse behaving d-dependent loga-
rithm compared to the situation where r < 2. In Section 6.3 we presented approx-
imation strategies in sequence spaces. Finally, let us present for the special case
S2
pW ([0, 1]d → L∞([0, 1]d) the corresponding sampling strategy which generates the
m-term approximations for functions f ∈ S2

pW ([0, 1]d with ‖f |S2
pW ([0, 1]d)‖ ≤ 1.
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Algorithm 3 S2
2W → L∞ m-term approximation

Input: m degrees of freedom,

choose M such that
m �Md−12M .

set

L :=
⌈
2M + (d− 1) logM − 1

⌉
,

fm := 0.

sample
{f(xj,k) : |j|1 ≤ L,k ∈ Dj}.

compute
{dj,k(f) : |j|1 ≤ L,k ∈ Dj}.

according to (4.1.2).
for each µ ∈ 0, . . . , L do
set

mµ �

{
2µµd−1 : 0 ≤ µ ≤M,

b2µ22(M−µ)µd−1c : M + 1 ≤ µ ≤ L.

for each j with |j|1 = µ do
for each k ∈ Dj do
if |dj,k(f)|2mµ ≥ 1 then
set

fm := fm + dj,k(f)vj,k.

end if
end for

end for
end for

Output: fm best m-term approximation to
f .
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Chapter 7

Discrete Littlewood-Paley type
characterizations of multivariate
periodic functions

In the last part we had to deal with several restrictions concerning regularity and
integrability of the considered model and target spaces. In the upcoming chapter
we restrict to the periodic setting and prove a new kind of trigonometric sampling
representation that is able to overcome most of this restrictions. This part is already
published in [11].

7.1 Univariate fundamental interpolants

In this section we construct univariate sampling operators of type (1.5.2) based on
bandlimited kernels K : R → C with suitable decay. Here KL

π,j denotes the 2π-
periodization of KL(2j(·)) which we will call fundamental interpolant. The following
construction allows to arrange any prescribed polynomial decay (of order L) of the
kernel K, which is crucial for our analysis. In addition the operator ILj is supposed to
reproduce trigonometric polynomials of a degree related to � 2j. The sampling kernels
we study are constructed from a finite product of dilated sinc functions. As a starting
point we define for L ∈ N,

KL(x) :=
L∏
`=1

sinc (2−`x), x ∈ R,

with

sinc (x) :=

{
sin(x)
x

: x 6= 0,

1 : otherwise.

The next step is a 2π-periodization of dyadic dilations of KL(x) given by

KL
π,j(x) :=

∞∑
k=−∞

KL(2j(x+ 2πk)). (7.1.1)
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In case L = 1 the summation in (7.1.1) is replaced by

K1
π,j(x) := 2−jD1

j (x) := 2−j
2j−1−1∑
k=−2j−1

eikx.

This kernel represents an exception and requires some extra attention in the next
chapters. It is a convenient modification of the classical Dirichlet kernel that provides
a nested set of zeros as j increases, cf. [33, (2.6)]. For j ∈ N0 we define the interpolation
operator

ILj [f ](x) :=
2j−1−1∑
u=−2j−1

f
(2πu

2j

)
KL
π,j

(
x− 2πu

2j

)
,

where in case j = 0 we put IL0 [f ](x) := f(0)KL
π,0(x). The kernel defined in (7.1.1) con-

sists of a sum with infinitely many summands. For practical reasons such a definition
is not useful. For every fixed L ∈ N we can compute an explicit representation of the
kernel. Beginning from the definition we obtain the following identity

KL
π,j(x) =

∞∑
k=−∞

L∏
`=1

sin(2j−`(x+ 2πk))

2j−`(x+ 2πk)
.

Obviously, in case x mod π = 0 we obtain

KL
π,j(0) = KL(0) = 1.

In case 0 < |x| < π an elementary calculation shows

KL
π,j(x) =

∞∑
k=−∞

L∏
`=1

sin(2j−`x) cos(2`+j+1πk) + sin(2`+j+1πk) cos(2j−`x)

2j−`(x+ 2πk)

=
∞∑

k=−∞

L∏
`=1

sin(2j−`x)

2j−`(x+ 2πk)
=

sin(2j−1x) . . . sin(2j−Lx)

2jL2−
(L+1)L

2

∞∑
k=−∞

1

(x+ 2πk)L
.

Using the so-called Herglotz-trick (Eisenstein series) (cf. [1]) we find the identity

1

2
cot
(x

2

)
=

∞∑
k=−∞

1

x+ 2πk
. (7.1.2)

Taking L− 1 derivatives yields[1

2
cot
( ·

2

)](L−1)

(x) = (−1)L−1(L− 1)!
∞∑

k=−∞

1

(x+ 2πk)L
.

Computing
[

1
2

cot
(
·
2

)](L−1)

and inserting this identity in (7.1.2) gives us a closed

representation of the kernel KL
π,j(x). For L = 2 and L = 3 we obtain the explicit

representations

K2
π,j(x) =

{
2 sin(2j−1x) sin(2j−2x)

22j sin2(x
2

)
: x mod 2π 6= 0,

1 : otherwise,
(7.1.3)

110



and

K3
π,j(x) =

{
8

sin(2j−1x) sin(2j−2x) sin(2j−3x) cos(x
2

)

23j sin3(x
2

)
: x mod 2π 6= 0,

1 : otherwise.

Remark 7.1. KL, L > 1, consists of products of dilated sinc functions. The convolu-
tion property of the Fourier transform yields

KL(x) =
L∏
`=1

sinc (2−`x) =
√

2πF
[
χ∗[−2−1,2−1] ∗ . . . ∗ 2L−1χ∗[−2−L,2−L](·)

]
(x) (7.1.4)

Altogether FKL is a locally supported L− 2 times continuously differentiable function
fulfilling

FKL(ξ) =

{√
2π : |ξ| ≤ 1

2L
,

0 : |ξ| ≥ 1− 1
2L
.

ξ

FKL

√
2π

− 1
2L

1
2L−1 + 1

2L 1− 1
2L

Lemma 7.2. Let L ≥ 1, j ∈ N0 and f ∈ C(T).

(i) Then for ` ∈ Z

ÎLj [f ](`) =
1√
2π
FKL

( `
2j

) 2j−1−1∑
u=−2j−1

f
(2πu

2j

)
e−i

2πu

2j
` (7.1.5)

holds true.

(ii) If additionally
∑

`∈Z |f̂(`)| <∞ is fulfilled. Then

ÎLj [f ](`) =
1√
2π
FKL

( `
2j

)∑
k∈Z

f̂(`+ 2jk)

holds.

Proof. We compute the `-th Fourier coefficient of f and obtain by the translation
property the following identity

ÎLj f(`) =
2j−1−1∑
u=−2j−1

f
(2πu

2j

) ̂
KL
π,j

(
· −2πu

2j

)
(`) = K̂L

π,j(`)
2j−1−1∑
u=−2j−1

f
(2πu

2j

)
e−i

2πu

2j
`.
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Lemma B.19 together with the dilation property of the Fourier transform yields

ÎLj f(`) =
1√

2π2j
FKL

( `
2j

) 2j−1−1∑
u=−2j−1

f
(2πu

2j

)
e−i

2πu

2j
`.

If the Fourier coefficients are absolutely summable we get

ÎLj f(`) =
1√

2π2j
FKL

( `
2j

) 2j−1−1∑
u=−2j−1

(∑
k∈Z

f̂(k)eik
2πu

2j

)
e−i

2πu

2j
`.

Interchanging the order of summation yields

ÎLj f(`) =
1√

2π2j
FKL

( `
2j

)∑
k∈Z

f̂(k)
2j−1−1∑
u=−2j−1

ei
2πu

2j
(k−`).

The formula for geometric partial sums tells us

2j−1−1∑
u=−2j−1

ei
2πu

2j
(k−`) =

{
2j : k − ` mod 2j = 0

0 : otherwise.

Finally, we obtain

ÎLj f(`) =
1√
2π
FKL

( `
2j

)∑
k∈Z

f̂(`+ 2jk).

Definition 7.3. We define for j, L ∈ N0 the dyadic blocks

PLj :=
{
k ∈ Z : |k| ≤ 1

2L
2j
}
. (7.1.6)

Additionally, we denote the set of trigonometric polynomials with frequencies in PLj by

T Lj := span{eikx : k ∈ PLj }.

Corollary 7.4. Let L ∈ N and f ∈ C(T).

(i) Then it holds ILj [f ] ∈ T 0
j .

(ii) If additionally f ∈ T Lj then ILj [f ] = f .

Proof. Assertion (i) is an easy consequence of (7.1.5) together with the support prop-
erties of KL. For assertion (ii) we may use

ÎLj [f ](`) =
1√
2π
FKL

( `
2j

)∑
k∈Z

f̂(`+ 2jk)

which equals f̂(`) for all ` if f ∈ T Lj .
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The next lemma provides the reason for calling KL
π,j a fundamental interpolant for

the equidistant grid G1
j := {−2π2j−1

2j
, . . . , 2π(2j−1−1)

2j
}.

Lemma 7.5. Let f ∈ C(T) and L ≥ 1. Then

f
(2πu

2j

)
= ILj f

(2πu

2j

)
, u ∈ {−2j−1, . . . , 2j−1 − 1} .

Proof. Obviously, it is sufficient to proof

KL
π,j

(2πu

2j

)
= δ0,u.

In case L = 1 this is a trivial consequence of (1.5.3). In case L > 1 we have according
to our definition for u ∈ {−2j−1, . . . , 2j−1 − 1}

KL
π,j

(2πu

2j

)
=

∞∑
k=−∞

KL(2π(u+ 2jk)) = δ0,u .

Lemma 7.6. Let j ∈ N0 and L > 1. Then there are constants C,C∗ > 0 (independent
of x and j) such that

|KL
π,j(x)| ≤ C min

{ 1

|2jx|L
, 1
}
≤ C∗

1

(1 + 2j|x|)L

holds for all x ∈ [−π, π].

Proof. The second inequality of the chain is trivial. We prove the first one. Starting
for x ∈ [−π, π] the estimate with

|KL
π,j(x)| =

∣∣∣ ∞∑
k=−∞

KL(2j(x+ 2πk))
∣∣∣ ≤ |KL(2jx)|+

∑
|k|>0

|KL(2j(x+ 2πk))|

.
L∏
`=1

|sinc (2j−`x)|+
∑
|k|>0

1

2jL|x+ 2πk|L
. (7.1.7)

Clearly, the first summand is uniformly bounded. Estimating the second summand in
(7.1.7) we use the fact that |x| ≤ π implies |2πk + x| ≥ |πk| for every integer k ∈ Z
and obtain ∑

|k|>0

1

2jL|x+ 2πk|L
≤ 1

2jLπL

∑
|k|>0

1

|k|L
,

which is known to be finite for L ≥ 2. Using |x| ≤ π yields∑
|k|>0

1

2jL|x+ 2πk|L
.

1

2jL|x|L
.
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Considering again the first summand in (7.1.7) gives

L∏
`=1

|sinc (2j−`x)| ≤ 1

2(L+1)L
2

1

2jL|x|L
,

which concludes the proof.

7.2 Multivariate interpolation

Based on the univariate interpolation scheme from the previous subsection we are now
able to define the building blocks used for the Smolyak algorithm, cf. (1.2.4),

qLj [f ](x) :=
( d⊗

i=1

ηLji

)
[f ](x) with ηLji :=

{
ILji − I

L
ji−1 : ji > 0,

IL0 : ji = 0.
(7.2.1)

We may write qLj [f ] as follows

qLj [f ] =
∑

b∈{−1,0}d
εbI

L
j+b[f ] (7.2.2)

with suitable signs εb. The definition of the operators ILj+b[f ](x) requires some more
notation.

xju =
(
xj1u1

, . . . , xjdud

)
, u ∈ Zd ,

where xju = 2πu/2j for u ∈ Z . For x ∈ Rd let further

Aj(x) := Aj1(x1)× ...× Ajd(xd) (7.2.3)

with Aj(x) = {u ∈ Z : xju ∈ [x− π, x+ π)} and put Aj := Aj(0). We further let

KL
πd,j :=

d∏
i=1

KL
π,ji

(xi)

and define the tensorized interpolation operator by

ILj [f ] =
∑
u∈Aj

f(xju)KL
πd,j(x− x

j
u) .

Lemma 7.7. Let ∆ ⊂ Nd0 be a solid finite set meaning that j ∈ ∆ and k ≤ j implies
k ∈ ∆. Then

∑
j∈∆ q

L
j [f ] reproduces trigonometric polynomials with frequencies in

HL
∆ :=

⋃
j∈∆

PLj ,
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Proof. We refer to [9, Lem. 6.1].

Lemma 7.8. Let ∆ ⊂ Nd0 be a solid finite set (i.e. k ≤ j and j ∈ ∆ implies k ∈ ∆).
Then TL∆f :=

∑
j∈∆ q

L
j [f ] interpolates f on the grid

Gd
∆ :=

⋃
j∈∆

{xju : u ∈ Aj } , (7.2.4)

that means
f(x) = TL∆f(x)

for all x ∈ Gd
∆.

Proof. The interpolation property of the univariate operator ILj in Lemma 7.5 imme-
diately gives an interpolation property of the multivariate sampling operator IL(m1,...,md)

on a “full grid” Gd{j≤m}. Choosing m such that ∆ ⊂ {j ≤m} and arguing similar as

in Lemma [107, Lem. 4.3] gives the result.

Definition 7.9. For j ∈ Nd0 and L ∈ N we tensorize the dyadic blocks defined in
(7.1.6) by

PLj := PLj1 · . . . · P
L
jd
,

and define the set of trigonometric polynomials with frequencies in PLj by

T Lj := span {eik·x : k ∈ PLj }.

Proposition 7.10. Let L ∈ N and f ∈ T L` then qLj [f ] 6= 0 implies ` ≥ j.

Proof. The proof follows immediately from the definition of qLj [f ] in (7.2.1) and the
univariate reproduction property in Corollary 7.4.

7.3 Superposition of trigonometric polynomials

In this section we provide periodic counterparts for Theorems 4.16 and 4.18. We want
to estimate the norm of a superposition of trigonometric polynomials

f =
∑
j∈Nd0

fj

where fj are trigonometric polynomials of degree � 2j . In contrast to the usual
Littlewood-Paley building blocks δπj [f ] which are ‘almost‘ orthogonal, we only need to
restrict the degree of the polynomial in the sequel.

As a main tool we introduce the following componentwise variant of the Hardy-
Littlewood maximal operator, see [127, (1.14),(1.15)], [122, (10)] and the references
therein.
Let us now state the main result of this subsection.
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Theorem 7.11. Let 0 < p < ∞, 0 < θ ≤ ∞, r ∈ Rd with r > σp,θ and (fj)j∈Nd0 such

that fj ∈ T 0
j and

∥∥2r·jfj
∣∣Lp(`θ)∥∥ <∞. Then

(i)
∑
j∈Nd0

fj converges unconditionally in Srp,θF (Td) if θ <∞ and in every S r̃p,νF (Td)
with 0 < ν ≤ ∞ and r̃ < r.

(ii) There is a constant C > 0 (independent of f) such that∥∥∥∑
j∈Nd0

fj

∣∣∣Srp,θF (Td)
∥∥∥ ≤ C

∥∥2r·jfj
∣∣Lp(`θ)∥∥

holds.

Proof. Step 1. We assume the unconditional convergence of
∑
`∈Nd0

f` in Srp,θF (Td) (or

in case θ =∞ at least in S r̃p,νF (Td)) and prove the inequality∥∥∥∑
`∈Nd0

f`

∣∣∣Srp,θF (Td)
∥∥∥ .

∥∥2r·jfj
∣∣Lp(`θ(Nd0))

∥∥.
We mimic Step 1 of the proof of [122, Theorem 3.4.1]. This is rather technical in the
multivariate situation. For that reason we give a proof for the univariate situation first.
Later we explain the necessary modifications for the multivariate situation. We prove

‖f |F r
p,θ(T)‖ .

∥∥2rjfj
∣∣Lp(`θ(N0))

∥∥
by using methods from difference characterization of Triebel-Lizorkin spaces. We start
by switching to the difference norm in F r

p,θ(T) with m > r∥∥∥∑
`∈N0

f`

∣∣∣F r
p,θ(T)

∥∥∥ � ∥∥∥∑
`∈N0

f`

∣∣∣Lp(T)
∥∥∥+
∥∥∥[ ∞∑

j=0

2θjr
(

2j
∫ 2−j

−2−j

∣∣∣∆m
h

[∑
`∈N0

f`

]∣∣∣dh)θ] 1
θ
∣∣∣Lp(T)

∥∥∥.
(7.3.1)

First we estimate the Lp-norm of f and obtain trivially using either Hölder’s inequality
(in case θ ≥ 1) or the embedding `θ ↪→ `1 (in case 0 < θ < 1) the estimate∥∥∥∑

`∈N0

f`

∣∣∣Lp(T)
∥∥∥ .

∥∥∥(∑
j∈N0

2θrj|fj|θ
) 1
θ
∣∣∣Lp(T)

∥∥∥.
Let a > 0 be a positive real number such that a > max{1

p
, 1
θ
} is fulfilled. Additionally

choose in case min{p, θ} ≤ 1
0 < λ < min{p, θ} (7.3.2)

such that
r > (1− λ)a > σp,θ. (7.3.3)

This is possible since

(1− λ)a > (1− λ) max
{1

p
,
1

θ

}
≥ (1−min{p, θ, 1}) max

{1

p
,
1

θ

}
= σp,θ.
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In case min{p, θ} > 1 we simply choose λ = 1. Fix j ∈ N0 and use the identity∑
`∈N0

f` =
∑
`∈Z

fj+`

with fj+` = 0 for j + ` < 0. The unconditional convergence of
∑

`∈Z fj+` in F r
p,θ(T)

implies (by Lemma 3.4) an unconditional convergence also in L1(T). Therefore we can
estimate the integral means as follows

2j
∫ 2−j

−2−j

∣∣∣∆m
h

[∑
`∈N0

fj+`

]∣∣∣dh ≤∑
`∈Z

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh. (7.3.4)

We split the sum over `

∑
`∈Z

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh

=
∑
`≥0

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh+
∑
`<0

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh

(7.3.5)

and prove

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh .

{
2`mP2j+`,afj+` : ` ≥ 0,

2(1−λ)`a[P2j+`,afj+`]
1−λM |fj+`|λ : ` < 0.

(7.3.6)

First we prove the case ` > 0. Applying Lemma B.10 immediately gives

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh . 2`mP2j+`,a(x).

In case ` < 0 with λ < 1 we estimate as follows

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh . 2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|λ|∆m
h fj+`(x)|1−λdh.

Applying Lemma B.10 to the second factor yields

2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|dh . 2`(1−λ)a[P2j+`,afj+`(x)]1−λ2j
∫ 2−j

−2−j
|∆m

h fj+`(x)|λdh

. 2`(1−λ)a[P2j+`,afj+`(x)]1−λM |fj+`|λ(x).

Attention in case min{p, θ} > 1 with λ = 1 the estimate in case ` < 0 simplifies to the
Hardy-Littlewood maximal function of |fj+`|. Inserting the decomposition in (7.3.5)
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together with the estimates obtained in (7.3.6) into the last term on the right hand side
of (7.3.1) then we obtain by µ-triangle inequality in Lp(`θ(N)) with µ := min{p, θ, 1}∥∥∥[ ∞∑

j=0

2θjr
(

2j
∫ 2−j

−2−j

∣∣∣∆m
h

[∑
`∈N0

fj+`

]∣∣∣dh)θ] 1
θ
∣∣∣Lp(T)

∥∥∥
.
[∑
`≥0

2µ`(m−r)‖2(j+`)rP2j+`,afj+`(x)|Lp(`θ(N0))‖µ

+
∑
`<0

2µ`[a(1−λ)−r]‖2(j+`)r[P2j+`,af2j+`(x)]1−λ(x)

×M |fj+`|λ(x)|Lp(`θ(N0))‖µ
] 1
µ
.

(7.3.7)

To estimate the first summand we apply Theorem B.17, which gives

‖2(j+`)rP2j+`,afj+`(x)|Lp(`θ(N0))‖ . ‖2(j+`)rfj+`(x)|Lp(`θ(N0))‖.

An index shift yields

‖2(j+`)rP2j+`,afj+`(x)|Lp(`θ(N0))‖ . ‖2jrfj(x)|Lp(`θ(N0))‖. (7.3.8)

In case min{p, θ} ≤ 1 with λ < 1 we apply to the norm expression in (7.3.7) Hölder’s
inequality with 1

1−λ , 1
λ

twice and obtain

‖2(j+`)r[P2j+`,afj+`(x)]1−λM |fj+`|λ(x)|Lp(`θ(N0))‖
≤ ‖2(j+`)rP2j+`,afj+`(x)|Lp(`θ(N0))‖1−λ

×‖2(j+`)r(M |fj+`|λ(x))
1
λ |Lp(`θ(N0))‖λ.

(7.3.9)

We skip this in case λ = 1. Considering the factors in (7.3.9) separately we obtain by
applying Theorem B.17

‖2(j+`)rP2j+`,afj+`(x)|Lp(`θ(N0))‖ . ‖2(j+`)rfj+`(x)|Lp(`θ(N0))‖. (7.3.10)

For the second factor we rewrite the Lp(`θ(N0))-norm as a L p
λ
(` θ

λ
(N0))-norm. This

allows for applying Theorem B.14.

‖2(j+`)r(M |fj+`|λ(x))
1
λ |Lp(`θ(N0))‖ = ‖2(j+`)rλM |fj+`|λ(x)|L p

λ
(` θ

λ
(N0))‖

1
λ

. ‖2(j+`)rλ|fj+`(x)|λ|L p
λ
(` θ

λ
(N0))‖

1
λ

= ‖2(j+`)rfj+`(x)|Lp(`θ(N0))‖. (7.3.11)

Inserting the estimates from (7.3.10) and (7.3.11) into (7.3.9) implies

‖2(j+`)r[P2j+`,afj+`(x)]1−λM |fj+`|λ(x)|Lp(`θ(N0))‖ ≤ ‖2(j+`)rfj+`(x)|Lp(`θ(N0))‖.
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A similar index shift as above yields

‖2(j+`)r[P2j+`,afj+`(x)]1−λM |fj+`|λ(x)|Lp(`θ(N0))‖ ≤ ‖2jrfj(x)|Lp(`θ(N0))‖. (7.3.12)

We continue estimating (7.3.7) and insert (7.3.8) and (7.3.12) to obtain∥∥∥[ ∞∑
j=0

2θjr
(

2j
∫ 2−j

−2−j

∣∣∣∆m
h

[∑
`∈N0

fj+`

]∣∣∣dh)θ] 1
θ
∣∣∣Lp(T)

∥∥∥
. ‖2jrfj|Lp(`θ(N0))‖

[∑
`≥0

2µ`(m−r) +
∑
`<0

2µ`[a(1−λ)−r]
] 1
µ
.

Finally, the choice of the parameters m, a, λ in (7.3.3) yields that the series in (7.3.13)
converge to a constant. Altogether we obtain the desired bound∥∥∥∑

`∈N0

f`

∣∣∣F r
p,θ(T)

∥∥∥ . ‖2jrfj|Lp(`θ(N0))‖. (7.3.13)

Step 2. We explain the modifications in the multivariate situation. This time we start
computing the norm of

∑
`∈Nd0

f` ∈ Srp,θF (Td) in terms of differences, cf. the periodic
counterpart of Theorem 3.8,∥∥∥∑

`∈Nd0

f`

∣∣∣Srp,θF (Td)
∥∥∥ �∑

e⊂[d]

‖f |Srp,θF (Td)‖e,m.

For each e ⊂ [d] we have to show that∥∥∥∑
`∈Nd0

f`

∣∣∣Srp,θF (Td)
∥∥∥
e,m

. ‖2rjfj |Lp(`θ(Nd0))‖

holds. A full proof consists in applying the arguments from above to every single
direction contained in e. Here the directionwise Hardy-Littlewood maximal function
and corresponding maximal inequality come into play, see Definition B.7 and Thms.
B.15, B.17. Since this requires an extensive case study in e and ` we refer to the proof
given in detail in [122, Thm. 3.4.1, Step 1] where we have to replace the decomposition
of f used there by the representation

∑
`∈Zd fj+`.

Step 3. We prove (i) in case θ <∞. To begin with, we define the set of sequences with
finite index sets given by

E :=
{
E = (En)n∈N : En ⊂ Nd0, |En| = n, En ⊂ En+1 for all n ∈ N, and

∞⋃
n=1

En = Nd0
}
.

Every sequence in E defines an order of summation. Furthermore for E ∈ E we define
FEn :=

∑
j∈En fj . We take a second sequence A ∈ E and consider FEn − FAm . This

difference can be written as a sum with finitely many fj . This fulfills the assumptions
necessary in Step 1 and yields

‖FEn − FAm|Srp,θF (Td)‖ .
∥∥∥( ∑

j∈(En∪Am)\(En∩Am)

2r·jθ|fj|θ
) 1
θ
∣∣∣Lp(T)

∥∥∥.
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Obviously, ( ∑
j∈(En∪Am)\(En∩Am)

2r·jθ|fj |θ
) 1
θ ≤

(∑
j∈Nd0

2r·jθ|fj |θ
) 1
θ ∈ Lp(T)

holds almost everywhere. Therefore Lebesgue’s dominated convergence theorem yields
that we find for every ε > 0 a n0 ∈ N such that

‖FEn − FAm|Srp,θF (Td)‖ ≤ ε

holds for all m,n > n0. Finally this implies unconditional convergence in Srp,θF (Td).
In case θ =∞ we stress on the embeddings

Ssp,1F (Td) ↪→ S r̃p,νF (Td)

and

‖2s·jfj|Lp(`1)‖ . ‖2r·jfj|Lp(`∞)‖,

where r > s > σp,ν , s > r̃ and 0 < ν ≤ ∞. Applying the arguments from above to
Ssp,1F (Td) yields the result for S r̃p,νF (Td).

We will also need the following diagonal embedding relation which is the periodic
counterpart of [99, Prop. 2.4.1], see also the diagonal embedding in Lemma 3.4, (vi)
and Lemma 4.10 above.

Lemma 7.12. Let 0 < p < q <∞ and 0 < θ, ν ≤ ∞. Then∥∥∥(∑
j∈Nd0

|fj |ν
) 1
ν
∣∣∣Lq(Td)∥∥∥ .

∥∥∥(∑
j∈Nd0

2θ|j|1(1/p−1/q)|fj|θ
) 1
θ
∣∣∣Lp(Td)∥∥∥

holds for all (fj)j∈Nd0 such that fj ∈ T 0
j .

Let us finally state the counterpart of Theorem 7.11 for the B-case.

Theorem 7.13. Let 0 < p ≤ ∞, 0 < θ ≤ ∞, r ∈ Rd with r > σp and (fj)j∈Nd0 such

that fj ∈ T 0
j and

∥∥2r·jfj
∣∣`θ(Lp)∥∥ <∞. Then

(i)
∑

j∈Nd0
fj converges unconditionally in Srp,θB(Td) if max{p, θ} <∞ and in every

S r̃p,νB(Td) with 0 < ν ≤ ∞ and r̃ < r.

(ii) it holds ∥∥∥∑
j∈Nd0

fj

∣∣∣Srp,θB(Td)
∥∥∥ .

∥∥2r·jfj
∣∣`θ(Lp(Td)∥∥.
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Proof. We follow the proof of Theorem 7.11 line by line and point out the necessary
modifications for the B-case. To convince the reader we explain this modifications for
(ii) in the univariate case. Again, we prove∥∥∥∑

`∈N0

f`

∣∣∣Br
p,θ(T)

∥∥∥ .
∥∥2rjfj

∣∣Lp(`θ(N0))
∥∥

by using methods from difference characterization. We start by switching to the dif-
ference norm in Br

p,θ(T) with m > r

∥∥∥∑
`∈N0

f`

∣∣∣Br
p,θ(T)

∥∥∥ � ∥∥∥∑
`∈N0

f`

∣∣∣Lp(Td)∥∥∥+
( ∞∑
j=0

2θjr
∥∥∥2j
∫ 2−j

−2−j

∣∣∣∆m
h

[∑
`∈N0

f`

]∣∣∣dh∥∥∥θ
p

) 1
θ
.

(7.3.14)
First we estimate the Lp-norm of f and obtain trivially using either Hölder’s inequality
(in case min{p, θ} > 1 or p < min{1, θ}) or the embedding `θ ↪→ `1 (otherwise) the
estimate ∥∥∥∑

`∈N0

f`

∣∣∣Lp(Td)∥∥∥ .
(∑
j∈N0

2θrj‖fj|Lp(Td)‖θ
) 1
θ
.

Let a > 0 be a positive real number such that a > 1
p

is fulfilled. Additionally, in case
p > 1 we choose λ = 1. Whereas in case p ≤ 1 we choose

0 < λ < p

such that

r > (1− λ)a > (1− λ)
1

p
≥ (1− p)1

p
= σp.

For the second term in (7.3.14) the estimates in (7.3.4), (7.3.5) and (7.3.6) yield( ∞∑
j=0

2θjr
∥∥∥2j
∫ 2−j

−2−j

∣∣∣∆m
h

[∑
`∈Zd

fj+`

]∣∣∣dh∥∥∥θ
p

) 1
θ

.
[∑
`≥0

2µ`(m−r)‖2(j+`)rP2j+`,afj+`(x)|`θ(Lp(T))‖µ (7.3.15)

+
∑
`<0

2µ`[a(1−λ)−r]‖2(j+`)r[P2j+`,af2j+`(x)]1−λ ×M |fj+`|λ(x)|`θ(Lp(T))‖µ
] 1
µ

with µ = min{p, θ, 1}. The Lp(T)-norm is now the inner norm in the sequence spaces.
For that reason it suffices to use simpler (non-vector valued) maximal inequalities. We
apply Theorem B.16 to the first summand, which gives

‖2(j+`)rP2j+`,afj+`(x)|`θ(Lp(T))‖ . ‖2(j+`)rfj+`(x)|`θ(Lp(T))‖.

An index shift yields

‖2(j+`)rP2j+`,afj+`(x)|`θ(Lp(T))‖ . ‖2jrfj(x)|`θ(Lp(T))‖. (7.3.16)
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In case p ≤ 1 we apply Hölder’s inequality to the second summand in (7.3.15) with
1

1−λ , 1
λ

and obtain

‖2(j+`)r[P2j+`,afj+`(x)]1−λM |fj+`|λ(x)|`θ(Lp(T))‖θ

≤
(∑
j∈N0

2θ(j+`)r‖P2j+`,afj+`(x)|Lp(T)‖(1−λ)θ × ‖(M |fj+`|λ(x))
1
λ |Lp(T)‖λθ

) 1
θ
.

This can be skipped in case p > 1. Applying the maximal inequalities stated in
Theorem B.16 and Theorem B.6 (together with a trick similar to (7.3.11)) yields

‖2(j+`)r[P2j+`,afj+`(x)]1−λM |fj+`|λ(x)|`θ(Lp(T))‖ .
(∑
j∈N0

2θ(j+`)r‖fj+`(x)|Lp(T)‖θ
) 1
θ

. ‖2jrfj(x)|`θ(Lp(T))‖.

Hence, the estimates from (7.3.16) and (7.3.17) imply( ∞∑
j=0

2θjr
∥∥∥2j
∫ 2−j

−2−j

∣∣∣∆m
h

[∑
`∈Zd

fj+`

]∣∣∣dh∥∥∥θ
p

) 1
θ

(7.3.17)

.
[∑
`≥0

2µ`(m−r) +
∑
`<0

2µ`[a(1−λ)−r]
] 1
µ‖2jrfj(x)|`θ(Lp(T))‖.

The choice of λ, a and m relatively to r ensures the convergence of the series to an
absolute constant. This concludes the proof in the univariate case. For the multivariate
situation see the comments in Step 2 of Theorem 7.11.

7.4 Trigonometric sampling representations

Analogously to Theorem 4.25 we provide theorems that allow for replacing the Fourier
analytic building blocks δj [f ] used to define the spaces Srp,θF (Td) and Srp,θB(Td) (cf.
Definition 3.18) by building blocks qLj [f ] based on function evaluation. Using the short

notation Lp(`θ) = Lp(`θ(Nd0),Td) we will prove the following main results.

Theorem 7.14. Let 0 < p <∞, 0 < θ ≤ ∞, L > max{1
p
, 1
θ
} (L = 1 requires θ <∞)

and r > max{1
p
, 1
θ
} then the (quasi-)norms

‖f |Srp,θF (Td)‖ � ‖2r·jqLj (f)|Lp(`θ)‖

are equivalent for all f ∈ Srp,θF (Td).

Proof. The result is a consequence of Theorem 7.19 together with Theorem 7.11. For
the case L = 1 we refer to Theorem 7.26.

For the B-case weaker conditions on r and L are sufficient.
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Theorem 7.15. Let 0 < p, θ ≤ ∞, L > 1
p

(L = 1 requires p <∞) and r > 1
p

then the

(quasi-)norms
‖f |Srp,θB(Td)‖ � ‖2r·jqLj (f)|`θ(Lp)‖

are equivalent for all f ∈ Srp,θB(Td).

Proof. The proof is a consequence of Theorem 7.13 together with Theorem 7.21. For
the case L = 1 we refer to Theorem 7.27.

Remark 7.16. In case of Srp,θB(Td) with p ≥ 1 and r > 1/p similar characterizations
were proved by Dinh Dũng [25, 26, 27] using the following variant of the de la Vallée-
Poussin kernel

Vj(x) =
sin(2j−1x) sin(32j−1x)

22j3 sin2(x
2
)

, (7.4.1)

which yields to an interpolation operator on 3 · 2j equidistant nodes. We can reproduce
and extend this result to the Triebel-Lizorkin scale as well as to p > 1/2 with straight-
forward modifications of the arguments used in Theorems 7.21 below. Note, that our
proof only uses a reproduction and a decay property of the kernel. Also the de la Vallée
Poussin sampling operator Rm used by Temlyakov in [117, I.6] is admissible here.

7.5 The case of quadratically decaying kernels

Let us first deal with kernels providing at least a quadratic decay according to Lemma
7.6. We introduce the characteristic function χ∗j,u of the dyadic interval [2πu/2j, 2π(u+
1)/2j] indexed by j ∈ N0 and u ∈ Z. For j ∈ Nd0 and u ∈ Zd we denote with

χ∗j,u(x) :=
d∏
i=1

χ∗ji,ui(xi)

the characteristic function of the respective parallelepiped. We remember the definition
of Aj(x) in (7.2.3) and state the following lemma.

Lemma 7.17. Let 0 < λ ≤ 1 and L > 1
λ

. For any sequence (λu)u∈Aj(x) of complex
numbers and every j ∈ Nd0 we have

∑
u∈Zd
|λj,u|

d∏
i=1

(1 + 2j|xi − xjiui |)
−L ≤ C

[
M
∣∣∣ ∑
u∈Zd

λj,uχ
∗
j,u

∣∣∣λ(x)
] 1
λ

(7.5.1)

with a constant C independent of j, (λj,u)u and x.

Proof. This Lemma is a special case of Lemma B.13. We refer to the prove there.

Proposition 7.18. Let `, j ∈ Nd0, 0 < λ ≤ 1, L ∈ N with L > 1
λ

and a > 0. Let
further f ∈ C(Td).

(i) Then

|ILj [f ](x)| . 2a|`|1 [M |P2j+`,af |λ(x)]
1
λ
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(ii) and furthermore

|qLj [f ](x)| . 2a|`|1 [M |P2j+`,af |λ(x)]
1
λ

holds with a constant independent of `, j,x and f .

Proof. We start proving (i). Recall the notation from (7.2.3). Periodicity of f and
KL
π,j yields

ILj f(x)| =
∑
u∈Aj

f(xju)KL
πd,j(x− x

j
u)

=
∑

u∈Aj(x)

f(xju)KL
πd,j(x− x

j
u).

Lemma 7.6 with |xi − xjiui | ≤ π gives

|ILj f(x)| ≤
∑

u∈Aj(x)

∣∣∣∣∣f(xju)
d∏
i=1

KL
π,ji

(xi − xjiui)

∣∣∣∣∣
.

∑
u∈Zd
|λj,u|

d∏
i=1

(1 + 2ji |xi − xjiui |)
−L ,

where we used the notation

λj,u := sup
y:|yi−x

ji
ui
|< 2π

2ji

i∈[d]

|f(y)| .

Applying Lemma 7.17 gives

|ILj f(x)| .
[
M
∣∣∣ ∑
u∈Zd

λj,uχ
∗
j,k

∣∣∣λ(x)
] 1
λ
. (7.5.2)

Taking z ∈ suppχ∗j,u∗ gives for any a > 0∣∣∣ ∑
u∈Zd

λj,uχ
∗
j,u(z)

∣∣∣ = |λj,u∗| = sup
y:|yi−x

ji
u∗
i
|< 2π

2ji

i∈[d]

|f(y)|

. sup
y:|yi−zi|< 4π

2ji

i∈[d]

|f(y)|∏d
i=1(1 + 2ji |yi − zi|)a

.

Finally, Lemma B.12 yields∣∣∣ ∑
u∈Zd

λj,uχ
∗
j,u(z)

∣∣∣ . 2|`|1aP2j+`,af(z). (7.5.3)
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Inserting (7.5.3) into (7.5.2) finishes the proof of (i). The bound in (ii) is a trivial
consequence of applying triangle inequality to (7.2.2) and (i)

|qLj [f ](x)| ≤
∑

b∈{−1,0}d
|ILj+b[f ](x)|. (7.5.4)

The following two theorems are the trigonometric counterparts of Theorem 4.16 and
Theorem 4.18. There is no smoothness limitation from above as it is in the case of the
Faber-Schauder expansion. Nevertheless we should mention that the sampling kernels
need a certain decreasing property that depends on the integration and fine index
parameters of the underlying function spaces.

Theorem 7.19. Let 0 < p, θ ≤ ∞ (p <∞), L > max{1
p
, 1
θ
, 1} and r > max{1

p
, 1
θ
}.

(i) Then every f ∈ Srp,θF (Td) admits the representation

f =
∑
j∈Nd0

qLj [f ], (7.5.5)

with unconditional convergence in Srp,θF (Td) in case 0 < θ < ∞ and with un-

conditional convergence in S r̃p,νF (Td) for every r > r̃ and 0 < ν ≤ ∞ in case
θ =∞.

(ii) There is a constant C > 0 independent of f such that

‖2r·jqLj (f)|Lp(`θ)‖ ≤ C‖f |Srp,θF (Td)‖ (7.5.6)

holds for all f ∈ Srp,θF (Td).

Proof. Step 1. We prove (7.5.6). To begin with we choose a > 0 such that r >
a > max{1

p
, 1
q
} is fulfilled. Let f ∈ Srp,θF (Td). We start for j ∈ Nd0 with the Fourier

decomposition

f(x) =
∑
`∈Zd

δπj+`[f ](x), (7.5.7)

cf. (3.1.1), where δj [f ] := 0 for j ∈ Zd\Nd0 . This series converges unconditionally in
C(Td), due to the embedding Srp,θF (Td) ↪→ C(Td). That yields the point-wise estimate

|qLj [f ](x)| ≤
∑
`∈Zd
|qLj [δπj+`[f ]](x)|.

For the sake of simplicity we assume that the constants A,B,C in Definition 3.1 are
chosen in such a way that δj [f ] ∈ T Lj is fulfilled for all j ∈ Nd0. Then Proposition 7.10
implies

|qLj [f ](x)| ≤
∑
`≥0

|qLj [δπj+`[f ]](x)|.
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Applying Proposition 7.18, (ii) we obtain

|qLj [f ](x)| .
∑
`≥0

2a|`|1
[
M |P2j+`,aδ

π
j+`[f ]|λ(x)

] 1
λ
.

Multiplying with the weight 2r·j we find the point-wise estimate

2r·j |qLj [f ](x)| .
∑
`≥0

2(a1−r)·`2r·(j+`)
[
M |P2j+`,aδ

π
j+`[f ]|λ(x)

] 1
λ
. (7.5.8)

where λ is chosen as L > 1
λ
> 1

min{p,θ} (λ = 1 in case min{p, θ} > 1). The parameter

a will be fixed later. Now we take the Lp(`θ) (quasi)-norm on both sides. Due to
u-triangle inequality in Lp(`θ) with u = min{p, θ, 1} we obtain

‖2r·jqLj [f ]|Lp(`θ)‖ .
(∑
`≥0

2(a1−r)·`u
∥∥∥2r·(j+`)

[
M |P2j+`,aδ

π
j+`[f ]|λ

] 1
λ
∣∣∣Lp(`θ)∥∥∥u) 1

u
.

(7.5.9)
Since λ < min{p, θ} in case min{p, θ} ≤ 1 a trick similar to 7.3.11 yields∥∥∥2r·(j+`)

[
M |P2j+`,aδ

π
j+`[f ]|λ

] 1
λ
∣∣∣Lp(`θ)∥∥∥ =

∥∥∥2λr·(j+`)M |P2j+`,aδ
π
j+`[f ]|λ

∣∣∣L p
λ
(` θ

λ
)
∥∥∥ 1
λ
.

This allows us to apply Fefferman-Stein maximal inequality (Theorem B.14)∥∥∥2r·(j+`)
[
M |P2j+`,aδ

π
j+`[f ]|λ

] 1
λ
∣∣∣Lp(`θ)∥∥∥ . ‖2r·(j+`)P2j+`,aδ

π
j+`[f ]|Lp(`θ)‖.

Next we choose a such that r > a > max{1
p
, 1
θ
} holds. Then applying Peetre maximal

inequality (Theorem B.17) gives

‖2r·(j+`)P2`+j ,aδ`+j [f ]|Lp(`θ)‖ . ‖2r·(j+`)δ`+j [f ]|Lp(`θ)‖.

Obviously, we have

‖2r·(j+`)δ`+j [f ]|Lp(`θ)‖ ≤ ‖2r·jδj [f ]|Lp(`θ)‖.

Inserting this into (7.5.9) yields

‖2r·jqLj [f ]|Lp(`θ)‖ . ‖2r·jδj [f ]|Lp(`θ)‖
(∑
`≥0

2(a1−r)·`u
) 1
u

. ‖2r·jδj [f ]|Lp(`θ)‖,

where the choice of a ensures the convergence of the series to an absolute constant.
Step 2. We prove (i). The equation (7.5.6) implies

‖2r·jqLj [f ]|Lp(`θ)‖ <∞.
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Then Theorem 7.11 yields unconditional convergence of the series
∑
j∈Nd0

qLj [f ]. We
show in case 0 < θ <∞∥∥∥f − ∑

|j|1<M

qLj [f ]
∣∣∣Srp,θF (Td)

∥∥∥ −→ 0 (M →∞).

As a consequence of Definition 3.2 trigonometric polynomials are dense in Srp,θF (Td) if
θ <∞. For that reason we find for every ε > 0 a trigonometric polynomial t such that

‖f − t|Srp,θF (Td)‖ < ε.

The u-triangle inequality gives∥∥∥f − ∑
|j|1<M

qLj [f ]
∣∣∣Srp,θF (Td)

∥∥∥u ≤ ‖f − t|Srp,θF (Td)‖u +
∥∥∥t− ∑

|j|1<M

qLj [f ]
∣∣∣Srp,θF (Td)

∥∥∥u.
For n sufficiently large we obtain by Lemma 7.7

t−
∑
|j|1<M

qLj [f ] =
∑
|j|1<M

qLj (t− f).

Applying Theorem 7.11 we have∥∥∥ ∑
|j|1<M

qLj (t− f)
∣∣∣Srp,θF (Td)

∥∥∥ .
∥∥∥( ∑
|j|1<M

2θr·j|qLj (t− f)|θ
) 1
θ
∣∣∣Lp(Td)∥∥∥.

Finally, Step 1 yields∥∥∥( ∑
|j|1<M

2θr·j|qLj (t− f)|θ
) 1
θ
∥∥∥
p
. ‖t− f |Srp,θF (Td)‖

and hence, there is a constant C > 0 independent of M, f and t such that∥∥∥f − ∑
|j|1<M

qLj [f ]
∣∣∣Srp,θF (Td)

∥∥∥ ≤ C2ε.

The case θ =∞ is based on the embedding

Srp,∞F (Td) ↪→ Ssp,pF (Td) ↪→ S r̃p,νF (Td)

with r > s > 1
p
, s > r̃ and 0 < ν < ∞ where the density argument from above is

applied to Ssp,pF (Td).

Remark 7.20. According to Remark 4.21 the recent result in [100, Rem. 7.3], see also
[101], indicates that a corresponding characterization in case of small smoothness, i.e.
1
p
< r ≤ 1

θ
may fail.

Theorem 7.21. Let 0 < p, θ ≤ ∞, L > max{1
p
, 1}, r > 1

p
.
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(i) Then every f ∈ Srp,θB(Td) can be represented by

f =
∑
j∈Nd0

qLj (f),

with unconditional convergence in Srp,θB(Td) in case max{p, θ} < ∞, and with

unconditional convergence in S r̃p,νB(Td) for every r > r̃ and 0 < ν ≤ ∞ in case
max{p, θ} =∞.

(ii) There is a constant C > 0 independent of f such that

‖2r·jqLj [f ]|`θ(Lp(Td))‖ ≤ C‖f |Srp,θB(Td)‖

holds for all f ∈ Srp,θB(Td).

Proof. Concerning representation and unconditional convergence we follow the proof of
Theorem 7.19 line by line with the obvious modifications for the B-case. The inequality
in (ii) can be proven by the following arguments. We take the `θ(Lp(Td)) (quasi)-norm
on both sides of the estimate in (7.5.8). Due to u-triangle inequality in `θ(Lp(Td)) with
u = min{p, θ, 1} we obtain

‖2r·jqLj [f ]|`θ(Lp(Td))‖ .
(∑
`≥0

2(a1−r)·`u
∥∥∥2r·(j+`)

[
M |P2j+`,aδ

π
j+`[f ]|λ

] 1
λ
∣∣∣`θ(Lp(Td))∥∥∥u) 1

u

(7.5.10)
with r > a > 1

p
and 0 < λ < p (λ = 1 if p > 1). In case p ≤ 1 a trick similar to (7.3.11)

yields ∥∥∥2r·(j+`)
[
M |P2j+`,aδ

π
j+`[f ]|λ

] 1
λ
∣∣∣`θ(Lp(Td)∥∥∥

=
(∑
j∈Nd0

2r·(j+`)θ
∥∥∥M |P2j+`,aδ

π
j+`[f ]|λ

∣∣∣L p
λ
(Td)

∥∥∥ θλ) 1
θ
.

This allows us to apply Hardy-Littlewood maximal inequality (Theorem B.6). We
obtain ∥∥∥2r·(j+`)

[
M |P2j+`,aδ

π
j+`[f ]|λ

] 1
λ
∣∣∣`θ(Lp(Td)∥∥∥

.
(∑
j∈Nd0

2r·(j+`)θ
∥∥∥P2j+`,aδ

π
j+`[f ]|

∣∣∣Lp(Td)∥∥∥θ) 1
θ
.

Inserting this into (7.5.10) and applying (non-vector valued) Peetre maximal inequality
(Theorem B.16) gives

‖2r·jqLj [f ]|`θ(Lp(Td))‖ .
(∑
`≥0

2(a1−r)·`u‖2r·(j+`)δ`+j [f ]|`θ(Lp(Td))‖u
) 1
u

≤
(∑
`≥0

2(a1−r)·`u
) 1
u‖2r·jδj [f ]|`θ(Lp(Td))‖,
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where the term inside the `θ(Lp(Td)) norm does not depend any longer on `. Therefore
the sum over ` converges to a constant depending only on a, r and the dimension d.
Finally, we obtain

‖2r·jqLj [f ]|`θ(Lp(Td))‖ . ‖f |Srp,θB(Td)‖.

Remark 7.22. We strongly conjecture the optimality of the condition on L in the
above theorems, see also Remark 3.3,(ii) above.

7.6 The case of the Dirichlet kernel

In this subsection we study sampling representations based on the Dirichlet kernel K1
π,j.

Its slow decay causes some difficulties. We define an auxiliary kernel

K̃2(x) :=
√

2πF−1
(
4χ∗

[− 5
8
, 5
8

]
∗ χ∗

[− 1
8
, 1
8

]

)
(x) = 16

sin
(

5
8
x
)

sin
(

1
8
x
)

x2
∈ L1(Rd)

and its periodization

K̃2
π,j(x) :=

∞∑
k=−∞

K̃2(2j(x+ 2πk)).

Similar to Lemma 7.6 we can show for |x| < π the following decay property

|K̃2
π,j(x)| . 1

(1 + 2j|x|)2
. (7.6.1)

Note, that the corresponding operator Ĩ2
j defined via (1.5.2) is a sampling but not an

interpolation operator. However, Lemma 7.2 still holds true. According to Subsection
7.2 we define the multivariate sampling operator Ĩ2

j f based on the tensorized kernel

K̃2
πd,j

.
The following formula is a counterpart of a similar formula used by Temlyakov in

[117, Lem. I.6.2] . Taking (1.5.3) into account we denote

D1
j = D1

j1
⊗ · · · ⊗ D1

jd
, j ∈ Nd0 .

Lemma 7.23. Let f ∈ C(Td). Then

I1
j f = (2π)−dD1

j ∗ Ĩ2
j f (7.6.2)

for all j ∈ Nd0.

Proof. We prove the identity by comparing the Fourier series for arbitrary continuous
functions f . (7.1.5) implies

Î1
j f(`) =

(∏
i∈[d]

χ∗[−2ji−1,2ji−1−1](`i)
) ∑
u∈Aj

f(xju)e−ix
j
u·`. (7.6.3)
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Additionally, the same computation as used in Lemma 7.2 shows

̂̃I2
j [f ](`) =

1

(2π)d/2

( d∏
i=1

FK̃2
( `i

2ji

)) ∑
u∈Aj

f(xju)e−ix
j
u·`.

Clearly,

(2π)−dD̂1
j ∗ Ĩ2

j f(`) = D̂1
j(`)

̂̃I2
j f(`) = D̂1

j(`)
∑
u∈Aj

f(xju)e−ix
j
u·` (7.6.4)

since

FK̃2
( `i

2ji

)
=
√

2π

for `i ∈ [−2ji , 2ji), i ∈ [d]. Comparing (7.6.3) and (7.6.4) yields the claim.

Lemma 7.24. Let `, j ∈ Nd0, a > 0 and 1/2 < λ ≤ 1. Furthermore, let f ∈ C(Td).
Then

|Ĩ2
j [f ](x)| . 2a|`|1 [M |P2j+`,af |λ(x)]

1
λ

holds with a constant independent of `, j,x and f .

Proof. We refer to the proof of Proposition 7.18. Recognizing, that the only property
of Ĩ2

j we need is the decay of the underlying kernel K̃2
πd,j

provided in (7.6.1).

Remark 7.25. (i) The estimates in Lemmas 7.18, 7.24 are pointwise and very useful
for Lp(Td, `θ) estimates. In case one is interested in (scalar) Lp estimates, similar as
in [117, Lem. I.6.2], then Lemmas 7.18 and 7.24 together with the maximal inequalities
Theorems B.6, B.16 imply for 0 < p ≤ ∞, L > max{1/p, 1} and any a > 1/p

‖ILj f |Lp(Td)‖ .L,a 2|`|1a‖f |Lp(Td)‖ , f ∈ T 0
j+` (7.6.5)

(similar for Ĩ2
j ).

(ii) There is a different technique based on periodic versions of Plancherel-Polya
inequalities (Marcinkiewicz-Zygmund inequalities) for 0 < p ≤ ∞, see [98, Thms.
6,10]. A straight-forward modification of the argument in [98, Lem. 13,(ii)] gives for
0 < p ≤ ∞ and L > max{1/p, 1}

‖ILj f |Lp(Td)‖ .p 2|`|1/p‖f |Lp(Td)‖ , f ∈ T 0
j+` (7.6.6)

(similar for Ĩ2
j ). In case L = 2 (de la Vallée Poussin) this yields an extension of [117,

Lem. I.6.2] to the range 1/2 < p ≤ ∞.

(iii) By Lemma 7.23 and the uniform boundedness of the multivariate Fourier partial
sum operator in Lp(Td), 1 < p <∞, we obtain from (7.6.5) and (7.6.6) corresponding
estimates also for ‖I1

j f‖p .

Theorem 7.26. Let 1 < p, θ <∞ and r > max{1
p
, 1
θ
}.
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(i) Then every f ∈ Srp,θF (Td) admits the representation

f =
∑
j∈Nd0

q1
j [f ],

with unconditional convergence in Srp,θF (Td).

(ii) There is a constant C > 0 independent of f such that

‖2r·jq1
j(f)|Lp(`θ)‖ ≤ C‖f |Srp,θF (Td)‖

holds for all f ∈ Srp,θF (Td).

Proof. The proof of (i) is similar to Theorem 7.19, (i). We prove (ii) here. Inserting
the decomposition (3.6.2), applying triangle inequality and afterwards Proposition 7.10
gives

‖2r·jq1
j [f ]|Lp(`θ(Nd0))‖ .

∑
`≥0

2−`·r‖2r·(j+`)q1
j [δ

π
j+`[f ]]|Lp(`θ(Nd0))‖.

The relation in (7.5.4) shows

‖2r·jq1
j [f ]|Lp(`θ(Nd0))‖ .

∑
b∈{−1,0}d

∑
`≥0

2−`·r‖2r·(j+`)I1
j+b[δ

π
j+`[f ]]|Lp(`θ(Nd0))‖.

Hence, Lemma 7.23 yields

‖2r·jq1
j [f ]|Lp(`θ(Nd0))‖ .

∑
b∈{−1,0}d

∑
`≥0

2−`·r‖2r·(j+`)D1
j+b ∗ Ĩ2

j+b[δ
π
j+`[f ]]|Lp(`θ(Nd0))‖.

(7.6.7)
Lizorkin presented in [74, p. 241, Thm. 5] a theorem on Fourier multipliers for the
Lp(`θ) situation. The result in [99, Thm. 3.4.2] transfers this to the periodic setting.
Referring to a comment in [119, 2.5.4] the Fourier partial sum with respect to a par-
allelepiped fulfills the requirements of this theorem and we get rid of D1

j+b in (7.6.7).
This gives

‖2r·jq1
j [f ]|Lp(`θ(Nd0))‖ .

∑
b∈{−1,0}d

∑
`≥0

2−`·r‖2r·(j+`)Ĩ2
j+bδ

π
j+`[f ]|Lp(`θ(Nd0))‖.

Lemma 7.24 with λ = 1 yields

‖2r·jq1
j [f ]|Lp(`θ(Nd0))‖ .

∑
`≥0

2`·(a1−r)‖2r·(j+`)M |P2j+`,afj+`|(x)|Lp(`θ(Nd0))‖.

We finish the proof by following the estimates in the proof of Theorem 7.19 beginning
from (7.5.9).

Theorem 7.27. Let 1 < p <∞, 0 < θ ≤ ∞ and r > 1
p
.
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(i) Then every f ∈ Srp,θB(Td) can be represented by

f =
∑
j∈Nd0

q1
j(f),

with unconditional convergence in Srp,θB(Td) in case θ < ∞, and with uncondi-

tional convergence in S r̃p,νB(Td) for every r > r̃ and 0 < ν ≤ ∞ in case θ =∞.

(ii) There is a constant C > 0 independent of f such that

‖2r·jq1
j [f ]|`θ(Lp(Td))‖ ≤ C‖f |Srp,θB(Td)‖

holds for all f ∈ Srp,θB(Td).

Proof. To prove (i) we follow the proof of Theorem 7.21, (i). The assertion (ii) can
be obtained following the proof of Theorem 7.26 where we replace ‖ · |Lp(`θ(N0))‖ by
‖ · |`θ(Lp(Td))‖. Now we use the estimates in Remark (7.6.5), (7.6.6) from Remark
7.25 .

Remark 7.28. Similar (but not nested) Dirichlet kernels were studied in [9] connected
with sampling representations in case p = θ = 2.
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Chapter 8

Optimal sampling recovery

In this section we generalize the sparse grids results known from Section 5. We deal with
the case of vector smoothness in the scale of Triebel-Lizorkin. We compare optimality
in the sense of linear sampling recovery with optimality in the sense of the worst case
error with respect to standard information known from Information Based Complexity,
see [84, 85, 86] and the references therein.

8.1 Multivariate interpolation on periodic Smolyak

grids

This time we study function spaces with vector smoothness r ∈ Rd fulfilling

r = r1 = . . . = rµ < rµ+1 ≤ . . . ≤ rd <∞ , µ ≤ d. (8.1.1)

For that reason we analyze a direction-wise modified version of Smolyak’s algorithm,
cf. (1.2.4), given by

TL,ηM f :=
∑

1
η1
η·j≤m

qLj [f ]. (8.1.2)

The parameter η > 0 allows to control the level of refinement in single directions. A
comparatively large value of η in the s-th component ends up in a small refinement in
the s-th direction. The interpolation operator TL,ηM f maps a continuous function to a
trigonometric polynomial with frequencies in an anisotropic hyperbolic cross

AHd,η
M :=

⋃
{j: 1

η1
η·j≤M}

P0
j .

According to Lemma 7.8 the operator TL,ηM interpolates functions on an anisotropic
sparse grid

AGd,η
M :=

⋃
1
η1
η·j≤M

{
xju : u ∈ Zd, −2ji−1 ≤ ui ≤ 2ji−1 − 1, i ∈ [d]

}
. (8.1.3)
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Figure 8.1: Anisotropic hyperbolic cross AH
2,(1,1.5)
M

Lemma 8.1. Let η ∈ Rd with

0 < η1 = . . . = ηµ < ηµ+1 ≤ . . . ≤ ηd <∞.

Then
|AGd,η

M | �Mµ−12M (8.1.4)

holds for all M ≥ 1.

Proof. Due to (8.1.3) an upper bound for the cardinality of AGd,η
M is provided by

|AGd,η
M | ≤

∑
1
η1
η·j≤M

2|j|1 .

Hence, Lemma C.21 in the appendix provides the upper bound in (8.1.4). A trivial
lower bound of 2M is provided by simply counting the sampling nodes of qj [f ] of
the level j = (M, 0, . . . , 0). A sharp bound can be obtained by using reproduction
properties of TL,ηM for trigonometric polynomials (cf. Lemma 7.7) with frequencies in
AHd,η

M . The dimension of AHd,η
M is given by

∑
1
η1
η·j≤M 2|j|1 .

Remark 8.2. Comparing this estimate to uniformly refined sparse grids (η = 1, cf.
Theorems 5.6, 5.4, 5.5) we recognize that the underlying dimension of the space plays
no role for the asymptotic bound. The dimension dependence is replaced by the µ largest
refinement directions. Such effects are known at least since the 1970s in the former
Soviet Union. In modern context they were rediscovered and applied in [27, 50, 49] and
[32]).

Theorem 8.3. Let 0 < p < q < ∞ and 0 < θ ≤ ∞. Additionally let L > 1
q

and the

smoothness vector r > 1
p

with (8.1.1). Then

‖f − TL,ηM f |Lq(Td)‖ . 2−M(r1− 1
p

+ 1
q

)‖f |Srp,θF (Td)‖

holds for all M > 0. The operator generating vector η ∈ Rd is chosen as η = r− 1
p

+ 1
q
.
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Proof. We start expanding f into the series (7.5.5). This allows us to estimate

‖f − TL,ηM f |Lq(Td)‖ ≤
∥∥∥ ∑

1
η1
η·j>M

|qj [f ]|
∣∣∣Lq(Td)∥∥∥

≤ 2−(r1− 1
p

+ 1
q

)M
∥∥∥∑
j∈Nd0

2(r− 1
p

+ 1
q

)·j|qj [f ]|
∣∣∣Lq(Td)∥∥∥.

We choose some parameters. Since L > 1
q

we find q̃ ∈ R with p < q̃ < q such that

L > 1
q̃

is fulfilled. Let r̃ := r − 1
p

+ 1
q̃
. Applying Lemma 7.12 yields

‖f − TL,ηM f |Lq(Td)‖ . 2−(r1− 1
p

+ 1
q

)M
∥∥∥ sup
j∈Nd0

2r̃·j |qj [f ]|
∥∥∥
q̃

Theorem 7.19 yields

‖f − TL,ηM f |Lq(Td)‖ . 2−(r1− 1
p

+ 1
q

)M‖f |S r̃q̃,∞F (Td)‖.

Finally, using the diagonal embedding stated in Lemma 3.4, (vi) gives

‖f − TL,ηM f |Lq(Td)‖ . 2−(r1− 1
p

+ 1
q

)M‖f |Srp,θF (Td)‖,

which finishes the proof.

For θ = 2 we can reproduce a generalized form of a result due to Temlyakov [113].

Theorem 8.4. Let 0 < p <∞, 0 < θ ≤ ∞. Additionally, let L ≥ 1 and the smoothness
vector r > 1

p
with (8.1.1). Then

‖f − TL,ηM f |L∞(Td)‖ . M (µ−1)(1− 1
p

)+2−M(r1− 1
p

)‖f |Srp,θF (Td)‖

holds for all M > 0. The operator generating vector η ∈ Rd is chosen as η = ν − 1
p
,

where ν ∈ Rd with

rs = νs, s = 1, . . . , µ and r1 < νs < rs, s = µ+ 1, . . . , d.

Proof. Step 1. We prove

‖f − TL,ηM f |L∞(Td)‖ . ‖f |S
r− 1

p
+ 1
p̃

p̃,p B(Td)‖

{
2−M(r1− 1

p
) : 0 < p ≤ 1,

M (µ−1)(1− 1
p

)2−M(r1− 1
p

) : p > 1,

(8.1.5)
where p̃ is chosen such that max{p, 1} < p̃ <∞ is fulfilled. Expanding into (7.5.5) and
using triangle inequality yields

‖f − TL,ηM f |L∞(Td)‖ =
∥∥∥ ∑

1
η1
η·j>M

qLj [f ]
∣∣∣L∞(Td)

∥∥∥
≤

∑
1
η1
η·j>M

‖qLj [f ]|L∞(Td)‖.
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We have to distinguish the cases 0 < p ≤ 1 and the case p > 1. We start with
0 < p ≤ 1. The elementary embedding `p(Nd0) ↪→ `1(Nd0) yields

‖f − TL,ηM f |L∞(Td)‖ ≤ 2−M(r1− 1
p

)
∑

1
η1
η·j>M

2(r− 1
p

)·j‖qLj [f ]|L∞(Td)‖

≤ 2−M(r1− 1
p

)
( ∑

1
η1
η·j>M

2p(r−
1
p

)·j‖qLj [f ]|L∞(Td)‖p
) 1
p
.

In case p > 1 we apply Hölder’s inequality with 1 = 1
p

+ 1
p′

and obtain

‖f − TL,ηM f |L∞(Td)‖ ≤
( ∑

1
η1
η·j>M

2−p
′(r− 1

p
)·j
) 1
p′
( ∑

1
η1
η·j>M

2p(r−
1
p

)·j‖qLj [f ]|L∞(Td)‖p
) 1
p
.

Lemma C.20 yields

‖f − TL,ηM f |L∞(Td)‖ .M (µ−1)(1−p)2−M(r1− 1
p

)
( ∑

1
η1
η·j>M

2p(r−
1
p

)·j‖qLj [f ]|L∞(Td)‖p
) 1
p
.

Nikolskij’s inequality (special case of Lemma 7.12) gives

‖f − TL,ηM f |L∞(Td)‖ .M (µ−1)(1−p)2−M(r1− 1
p

)
( ∑

1
η1
η·j>M

2p(r−
1
p

+ 1
p̃

)·j‖qLj [f ]|Lp̃(Td)‖p
) 1
p
.

In both cases Theorem 7.21 yields (8.1.5).
Step 2. The Jawerth-Franke type embedding implies

Srp,θF (Td) ↪→ S
r− 1

p
+ 1
p̃

p̃,p B(Td)

(cf. Lemma 3.5). Applying this we obtain

‖f − TL,ηM f |L∞(Td)‖ .M (µ−1)(1− 1
p

)+2−M(r1− 1
p

)‖f |Srp,θF (Td)‖,

which proves the claim.

Remark 8.5. It is remarkable that Theorem 8.3 allows to use the Smolyak algorithm
based on the classical (nested) trigonometric interpolation (Dirichlet kernel) in case
1 < q ≤ ∞ although p < q may be less than one. A similar observation has been made
recently in [9, Rem. 6.12].

In the remainder of this section we deal with Besov spaces Srp,θB(Td). A similar
result as stated here was obtained by Dinh Dũng in [29], see also [27]. We contribute
the case min{p, θ} < 1 for the Fourier analytical approach and allow the Dirichlet
kernel (L = 1) for q > 1.
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Theorem 8.6. Let 0 < p < q < ∞ and 0 < θ ≤ ∞. Additionally let L > 1
q

and the

smoothness vector r > 1
p

with (8.1.1). Then

‖f − TL,ηM f |Lq(Td)‖ . 2−M(r1− 1
p

+ 1
q

)M (µ−1)( 1
q
− 1
θ

)+‖f |Srp,θB(Td)‖

holds for all M > 0. The operator generating vector η ∈ Rd is chosen as η = ν− 1
p

+ 1
q
,

where ν ∈ Rd with

rs = νs, s = 1, . . . , µ and r1 < νs < rs, s = µ+ 1, . . . , d.

Proof. First we prove the case q > 1 with θ <∞. We find q̃ < q such that L > 1
q̃
> 1

q

holds. The Jawerth-Franke embedding S
1
q̃
− 1
q

q̃,q B(Td) ⊂ Lq(Td) (cf. Lemma 3.5) yields

‖f − TL,ηM f |Lq(Td)‖ . ‖f − TL,ηM f |S
1
q̃
− 1
q

q̃,q B(Td)‖

Expanding f into the series (7.5.5) and applying Theorem 7.13 gives

‖f − TL,ηM f |Lq(Td)‖ .
( ∑

1
η1
η·j>M

2qj·1( 1
q̃
− 1
q

)‖qj [f ]|Lq̃(Td)‖q
) 1
q
. (8.1.6)

In case ∞ > θ > q this can be estimated by using Hölder’s inequality

‖f − TL,ηM f |Lq(Td)‖ .
( ∑

1
η1
η·j>M

2−
qθ
θ−q j·(r−

1
p

+ 1
q

)
) 1
q
− 1
θ

×
( ∑

1
η1
η·j>M

2θj·(r−( 1
p
− 1
q̃

))‖qj [f ]|Lq̃(Td)‖θ
) 1
θ
.

The estimate for the sum in Lemma C.20 gives

‖f−TL,ηM f |Lq(Td)‖ . 2−M(r1− 1
p

+ 1
q

)M (µ−1)( 1
q
− 1
θ

)
( ∑

1
η1
η·j>M

2θj·(r−( 1
p
− 1
q̃

))‖qj [f ]|Lq̃(Td)‖θ
) 1
θ
.

In case θ ≤ q we use the embedding `θ ↪→ `q and obtain

‖f − TL,ηM f |Lq(Td)‖ . 2−M(r1− 1
p

+ 1
q

)
( ∑

1
η1
η·j>M

2θj·(r−( 1
p
− 1
q̃

))‖qj [f ]|Lq̃(Td)‖θ
) 1
θ
.

Theorem 7.21 allows to estimate

‖f − TL,ηM f |Lq(Td)‖ . 2−M(r1− 1
p

+ 1
q

)M (µ−1)( 1
q
− 1
θ

)+‖f |S
r−( 1

p
− 1
q̃

)

q̃,θ B(Td)‖.
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Finally, the diagonal embedding stated in Lemma 3.4, (vi) yields

‖f − TL,ηM f |Lq(Td)‖ . 2−M(r1− 1
p

+ 1
q

)M (d−1)( 1
q
− 1
θ

)+‖f |Srp,θB(Td)‖.

The case q ≤ 1 is simpler. We expand f into the series (7.5.5). Then q-triangle
inequality yields

‖f − TL,ηM f‖q .
( ∑

1
η1
η·j>M

‖qj [f ]|Lq(Td)‖q
) 1
q
.

The same case study as in the lines after (8.1.6) with q̃ = q finishes the proof. As usual
in case θ =∞ we have to replace the corresponding sum by sup.
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8.2 Linear sampling recovery

In this section we consider the optimality of convergence rates for linear sampling algo-
rithms in case of Triebel-Lizorkin and Hölder-Nikolskij spaces with mixed smoothness,
we abbreviate by F . As a benchmark quantity we study linear sampling widths, cf.
(1.4.1) in the introduction,

%lin
n (F , Lq(Td)) := inf

(ξi)
n
i=1⊂Td

(ψi)
n
i=1⊂Lq(Td)

sup
‖f |F ‖≤1

∥∥∥f − n∑
i=1

f(ξi)ψi

∣∣∣Lq(Td)∥∥∥.
This quantity can be interpreted as the minimal worst case error for the approximation
of functions from the unit ball of F by linear algorithms using n function evaluations
and where the error is measured in Lq(Td). In case of F = Srp,θF (Td) with θ = 2 and

1 < p < ∞ we have the coincidence SrpW (Td) = Srp,θF (Td). This case is of special
interest in this section because it denotes the probably most famous representative
of the F -scale. Choosing m in (8.1.2) such that n & mµ−12m an upper bound for
%lin
n (F , Lq(Td)) is provided by

%lin
n (F , Lq(Td)) . sup

‖f |F ‖≤1

‖f − TL,ηm f |Lq(Td)‖.

Approximation with general linear information in case of mixed order Sobolev spaces
SrpW (Td) and Hölder-Nikolskij spaces Srp,∞B(Td) has been intensively studied in the
past. We recall the concept of linear n-widths:

λn(F , Lq(Td)) := inf
A:F→Lq(Td)

rankA≤n

sup
‖f |F ‖≤1

‖f − A(f)|Lq(Td)‖. (8.2.1)

In comparison to %lin
n (F , Lq(Td)) this quantity allows to benchmark linear operators

using n pieces of linear information. Function evaluations are also linear information.
Therefore, we have the relation

λn(F , Lq(Td)) ≤ %lin
n (F , Lq(Td)).

That means linear n-widths can serve as lower bounds for linear sampling n-widths.

Corollary 8.7. Let 0 < p < q < ∞ and 0 < θ ≤ ∞. Additionally, the smoothness
vector r > 1

p
is supposed to satisfy (8.1.1). Then

%linn (Srp,θF (Td), Lq(Td)) . (n−1 log(µ−1) n)r1−
1
p

+ 1
q

holds for all n > 0.

Proof. The proof follows by Theorem 8.3 with the estimate from Lemma 8.1 for the
number of function evaluations used by TL,ηM .
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Corollary 8.8. Let r > 1
p

fulfilling (8.1.1). Furthermore, let 1 < p < q ≤ 2, 1 ≤ θ ≤
∞ or 2 ≤ p < q <∞, 2 ≤ θ ≤ ∞. Then

λn(Srp,θF (Td), Lq(Td)) � %linn (Srp,θF (Td), Lq(Td)) � (n−1 log(µ−1) n)(r1− 1
p

+ 1
q

)

for all n ∈ N.

Proof. The upper bound for %lin
n follows by Corollary 8.7. The lower bound on λn is

referred in Theorem D.25 in the Appendix.

Remark 8.9. The result stated above is not completely new. In case 2 ≤ p, θ < q,
(θ = q) and 1 < p, q < 2 with θ < q the upper bounds can be obtained with the help
of Besov space results proven by Dinh Dũng in [29, 30] using the embedding relation
Srp,θF (Td) ↪→ Srp,max{p,θ}B(Td). Nevertheless, the cases 1 < p < q < 2 with θ > q and
2 ≤ p < q < θ are new. Compared to Besov spaces in that range of parameters we do
not observe an additional logarithmic factor in the convergence rate. This parameter
range includes the situation of Sobolev spaces in case 1 < p < q < 2.

The following result is based on an observation by Novak/Triebel [83] for the uni-
variate situation.

Theorem 8.10. Let 1 < p < 2 < q <∞ and

r >

{
1
p

: 1
p

+ 1
q
≥ 1, 1 ≤ θ ≤ ∞,

max{1
p
, 1− 1

q
} : 1

p
+ 1

q
≤ 1, 1 ≤ θ ≤ ∞,

with (8.1.1). Then

λn(Srp,θF (Td), Lq(Td)) = o(%linn (Srp,θF (Td), Lq(Td))),

or more precisely

λn(Srp,θF (Td), Lq(Td)) � n−(r1− 1
p

+ 1
q

) . %linn (Srp,θF (Td), Lq(Td))

holds for all n > 0.

Proof. The bounds for λn(Srp,θF (Td), Lq(Td)) come from the embedding Srp,θF (Td) ↪→
Srp,∞B(Td) that yields

λn(Srp,θF (Td), Lq(Td)) ≤ λn(Srp,∞B(Td), Lq(Td)).

and the results from [42], see also [33, Thm. 4.46]. The proof for the (non-sharp) lower
bound of %lin

n (Srp,θF (Td), Lq(Td)) follows from the univariate situation considered in [83,
Theorem 23].

Remark 8.11. The fact that the exponents of the main rate and the exponent of the
logarithm in the upper bound obtained in Corollary 8.7 coincide and additionally the
main rate is sharp seems to be a strong indication for the conjecture

%linn (Srp,θF (Td), Lq(Td)) � (n−1 logµ−1 n)r1−
1
p

+ 1
q

in case 1 < p < q <∞, 1 ≤ θ ≤ ∞ and r > 1
p

with (8.1.1).
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Sharp lower bounds for λn(Srp,∞B(Td), Lq(Td)) obtained in [76] yield the following
observation for Hölder-Nikolskij spaces.

Corollary 8.12. Let 1 < p < q ≤ 2 or 2 ≤ p < q < ∞ and r > 1
p

is supposed to

satisfy (8.1.1). Then

%linn (Srp,∞B(Td), Lq(Td)) � λn(Srp,∞B(Td), Lq(Td)) � (n−1 log(µ−1) n)r1−
1
p

+ 1
q (log n)

µ−1
q

holds for all n > 0.

Proof. The upper bound was originally obtained by Dinh Dũng in [25]. The lower
bound for linear widths is due to Galeev [42]. In our context the upper bound for %lin

n

follows by Theorem 8.6 with the estimate from Lemma 8.1 for the number of function
evaluations used by TL,ηM . The lower bound for λn in the second case was proven
recently by Malykhin and Ryutin [76], see also [42] and [33, Thm. 4.46].

Corollary 8.13. Let 1 < p < 2 < q <∞ and r >

{
1
p

: 1
p

+ 1
q
≥ 1,

max{1
p
, 1− 1

q
} : 1

p
+ 1

q
< 1,

fulfilling (8.1.1). Then

λn(Srp,∞B(Td), Lq(Td)) = o(%linn (Srp,∞B(Td), Lq(Td))),

or more precisely

λn(Srp,∞B(Td), Lq(Td)) � n−(r1− 1
p

+ 1
q

) . %linn (Srp,∞B(Td), Lq(Td))

holds for all n > 0.

Proof. The bounds for λn(Srp,∞B(Td), Lq(Td)) come from [42]. The proof for the (non-
sharp) lower bounds for %lin

n (Srp,∞B(Td), Lq(Td)) follow from the univariate situation
considered in [83, Theorem 23].

Corollary 8.14. Let 0 < p, θ < ∞ (θ = ∞) and the smoothness vector r > 1
p

which

is supposed to satisfy (8.1.1) be given. Then

%linn (Srp,θF (Td), L∞(Td)) . (n−1 logµ−1 n)r1−
1
p log(µ−1)(1− 1

p
)+ n

holds for all n > 0.

Proof. The upper bound follows by Theorem 8.4 with the estimate from Lemma 8.1
for the number of function evaluations.

Based on a recent observation of Nguyen in [78, Theorem 2.15] we can state the
following theorem:

Corollary 8.15. Let 1 < p < 2 and r > 1 fulfilling (8.1.1). Then

λn(SrpW (Td), L∞(Td)) = o(%linn (SrpW (Td), L∞(Td))),

or more precisely

λn(SrpW (Td), L∞(Td)) � n−(r1− 1
2

)(logµ−1 n)r1 � n−(r1− 1
p

) . %linn (SrpW (Td), L∞(Td))

holds for all n > 0.
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Proof. The bound for λn(SrpW (Td), L∞(Td)) comes from Theorem D.27. The proof
for the (non-sharp) lower bound for %lin

n (SrpW (Td), L∞(Td)) follows from the univariate
situation considered in [83, Theorem 23].

The next result was originally observed by Temlyakov, [113]. Sampling representa-
tions allow to reproduce it.

Corollary 8.16. Let r > 1 fulfilling (8.1.1). Then

%n(Sr2W (Td), L∞(Td)) � λn(Sr2W (Td), L∞(Td)) � n−(r1− 1
2

) logd−1 n,

holds for all n > 0.

Proof. The bound for λn(SrpW (Td), L∞(Td)) comes from Theorem D.27 and the upper
bound for %n(Sr2W (Td), L∞(Td)) from Theorem 8.4

8.3 Sampling recovery and Gelfand n-widths

The considerations above cover linear algorithms in the classical sense. Last but not
least we consider an extension of this concept, so-called approximation using standard
information, cf. [84, 85]. This means we consider algorithms that are defined as
a composition of a linear information map and a possibly non-linear reconstruction
operator. To avoid further technicalities we restrict to Banach spaces F that are either
Sobolev spaces SrpW (Td) or Hölder-Nikolskij spaces Srp,∞B(Td) in this subsection. The
non-linear sampling widths were defined in (1.4.2). The following relation clearly holds
true

%n(F , Lq(Td) ≤ %lin
n (F , Lq(Td)) .

Therefore (possibly non-sharp) upper bounds for sampling widths are always provided
by linear sampling widths. To consider questions on optimality of these bounds we
consider Gelfand n-widths

cn(F , Lq(Td)) := inf
B: F→Cn
linear

sup
‖f |F ‖≤1
f∈kerB

‖f |Lq(Td)‖. (8.3.1)

Here B denotes a general linear mapping B : F → Cn. This means cn measures the
minimal (over all information mappings) worst case distance of elements in the unit ball
of F which can not be distinguished by the information mapping B. This immediately
gives

cn(F , Lq(Td)) . %n(F , Lq(Td)).

Note that (1.4.3) is actually the definition of the nth “Gelfand numbers”, which we call
“Gelfand n-width” here. For a thorough discussion on the relation between Gelfand
numbers and suitable worst-case errors we refer to the recent paper [21, Rem. 2.3].
Since Gelfand widths for embeddings id : SrpW (Td)→ Lq(Td) are not studied directly
we use a duality relation to Kolmogorov n-widths, cf. (D.1).
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Lemma 8.17. The following duality relation holds true

dn(T : X → Y ) = cn(T ′ : Y ′ → X ′),

where T ′ denotes the adjoint operator of T and X ′, Y ′ the topological dual spaces of X
and Y .

Proof. We refer to [91, Theorem 6.2].

Corollary 8.18. Let 1 < p, q <∞ and r >


1
2

: 1 < p < q ≤ 2,

1− 1
q

: p < 2 < q,

(1
p
− 1

q
)+ : otherwise,

with
r1 = . . . = rµ < rµ+1 ≤ . . . ≤ rd <∞. (8.3.2)

Then
cn(SrpW (Td), Lq(Td)) � (n−1 logµ−1 n)r1−(min{ 1

p
, 1
2
}− 1

q
)+

for all n ∈ N.

Proof. The proof follows by the duality relation stated in Lemma 8.17 and a lifting ar-
gument. The topological dual spaces of SrpW (Td) and Lq(Td) are the spaces S−rp′ W (Td)
and Lq′(Td) with 1 = 1

p
+ 1

p′
= 1

q
+ 1

q′
. Lemma 8.17 yields

cn(SrpW (Td), Lq(Td)) = dn(Lq′(Td), S−rp′ W (Td)).

Finally we show the identity

dn(Lq′(Td), S−rp′ W (Td)) � dn(Srq′W (Td), Lp′(Td)).

For that reason we consider the lifting operator Ir in D′(Td) given by

Ir : f =
∑
k∈Zd

f̂(k)eikx 7→
∑
k∈Zd

f̂(k)
( d∏
i=1

(1 + |ki|2)−
ri
2

)
eikx.

It is easy to check that this is an isometry that maps f ∈ SαpW to Irf ∈ Sα+r
p W ,

α ∈ R with (Ir)
−1 = I−r. Therefore we may use the commutative diagram,

Lq′(Td) S−rp′ W (Td)

Srq′W (Td) Lp′(Td)
?

Ir

-id1

-id2

6
I−r

which allows to describe the operators id1, id2 by

id1 = I−r ◦ id2 ◦ Ir and id2 = Ir ◦ id1 ◦ I−r.
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Kolmogorov widths are s-numbers and fulfill a multiplicativity property that yields

dn(id1) = dn(I−r ◦ id2 ◦ Ir) ≤ ‖I−r‖dn(id2)‖Ir‖ � dn(id2)

and
dn(id2) = dn(Lr ◦ id1 ◦ L−r) ≤ ‖Lr‖dn(id1)‖I−r‖ � dn(id1).

Inserting the result from Theorem D.26 finishes the proof.

Surprisingly, a new result in [76] allows us to prove the following results for Gelfand
n-widths of Hölder spaces Srp,∞B(Td).

Theorem 8.19. Let 1 < p < q <∞ and r with

(1/p− 1/q)+ < r1 = . . . = rµ < rµ+1 ≤ . . . ≤ rd <∞

then

cn(Srp,∞B(Td), Lq(Td)) �


(

logµ−1 n
n

)r− 1
2

+ 1
q

(log n)
µ−1
q : 1

p
+ 1

q
< 1, p ≤ 2, r1 > 1− 1

q
,(

logµ−1 n
n

)r− 1
p

+ 1
q

(log n)
µ−1
q : 2 ≤ p < q.

Proof. The upper bounds follow from the results for linear widths in [42]. The lower
bounds are new. Malykhin and Ryutin proved in [76] the following bound on Kol-
mogorov n-widths for finite dimensional normed spaces `Mp (`Nq )

dbNM
2
c(`

M
∞(`N1 ), `M1 (`N2 )) �M. (8.3.3)

In the first case the technique for the lower bounds on linear widths presented in [42]
works well also for Gelfand n-widths. The discretization stated there yields

cn(Srp,∞B(Td), Lq(Td)) & 2u(−r+ 1
2
− 1
q

)cn(`u
µ−1

∞ (`2u

2 ), `u
µ−12u

q ).

The duality relation in Lemma 8.17 gives

cn(Srp,∞B(Td), Lq(Td)) & 2u(−r+ 1
2
− 1
q

)dn(`u
µ−12u

q′ , `u
µ−1

1 (`2u

2 )).

Applying Hölder’s inequality in finite dimensional spaces `Mp (`Nq ) yields the following
estimate

cn(Srp,∞B(Td), Lq(Td)) & 2u(−r+ 1
2
− 1
q

)u
−µ−1

q′ dn(`u
µ−1

∞ (`2u

1 ), `u
µ−1

1 (`2u

2 )).

Choosing n � uµ−12u then the relation in (8.3.3) implies

cn(Srp,∞B(Td), Lq(Td)) & 2u(−r+ 1
2
− 1
q

)u
µ−1
q �

(
logµ−1 n

n

)r− 1
2

+ 1
q

(log n)
µ−1
q .

The second case is obtained by the embedding

S
r−( 1

2
− 1
p

)

2,∞ B(Td) ↪→ Srp,∞B(Td)

together with the result from the first case.
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Corollary 8.20. Let 2 ≤ p < q <∞ and r > 1
p

fulfilling (8.1.1). Then

(i)

%n(SrpW (Td), Lq(Td)) � cn(SrpW (Td), Lq(Td)) � %linn (SrpW (Td), Lq(Td))

� λn(SrpW (Td), Lq(Td)) � (n−1 logµ−1 n)r1−
1
p

+ 1
q ,

(ii)

%n(Srp,∞B(Td), Lq(Td)) � cn(Srp,∞B(Td), Lq(Td)) � %linn (Srp,∞B(Td), Lq(Td))
� λn(Srp,∞B(Td), Lq(Td))

� (n−1 logµ−1 n)r1−
1
p

+ 1
q (log

µ−1
q n),

holds for all n ∈ N.

Proof. The proof follows by Theorems 8.3, 8.6, 8.19 and Corollary 8.18.

Remark 8.21. In the parameter range 2 < p < q < ∞ permitting non-linear re-
construction operators does not yield better results. Optimal rates can be achieved by
completely linear sampling algorithms.

We obtain the following counterpart of Theorem 8.10 for non-linear sampling.

Corollary 8.22. Let 1 < p < 2 < q < ∞ and r > max{1
p
, 1 − 1

q
} fulfilling (8.1.1).

Additionally let F denote either SrpW (Td) or Srp,∞B(Td). Then

cn(F , Lq(Td)) = o(%n(F , Lq(Td))),

or more precisely

cn(F , Lq(Td)) � n−(r1− 1
p

+ 1
q

) . %n(F , Lq(Td))

holds for all n ∈ N.

Proof. The proof can be obtained by following the construction of the lower bound for
the univariate situation in [83], where we recognize that the stronger inequality

%n(F , Lq(Td)) ≥ inf
(ξk)nk=1⊂Td

sup
‖f |F ‖≤1

f(ξk)=0, k=1,...,n

‖f |Lq(Td)‖

holds. The estimates for cn(SrpW (Td), Lq(Td)) were obtained in Corollary 8.18. For
Srp,∞B(Td) we refer to Theorem 8.19. Gelfand numbers for more general Besov spaces
were studied in [80].

Remark 8.23. As a consequence of the lower bound in Corollary 8.22 for %n(F , Lq(Td)),
we obtain that in the parameter range 1 < p < 2 < q < ∞ even linear approximation
behaves significantly better than sampling recovery with a possibly non-linear recon-
structing operator.
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Chapter 9

Outlook and open problems

We discuss some research aspects and questions that were left open at the end of our
studies and require further research.

9.1 Sampling: same integrability in target and source

space

Using a trigonometric sparse grid sampling operator Temlyakov [117] proved for r > 1
p
,

1 < p <∞ that

%lin
n (Srp,∞B(Td), Lp(Td)) . (n−1 logd−1 n)r(logd−1 n) (9.1.1)

holds. Later, Sickel [102, 103] contributed to the 2-dimensional case and Sickel, Ullrich
[104] for general d > 1 with 1 ≤ θ ≤ ∞ the (best) today known upper bounds

%lin
n (Srp,θB(Td), Lp(Td)) . (n−1 logd−1 n)r(logd−1 n)1− 1

θ , r >
1

p
,

%lin
n (SrpW (Td), Lp(Td)) . (n−1 logd−1 n)r(logd−1 n)

1
2 , r > max

{1

p
,
1

2

}
. (9.1.2)

The upper bounds in (9.1.1) and (9.1.2) have in common that the sharp estimates for
linear widths λn (defined in (8.2.1))

λn(Srp,∞B(Td), Lp(Td)) � (n−1 logd−1 n)r(logd−1 n)
1
2 , p ≥ 2, cf. [116]

λn(SrpW (Td), Lp(Td)) � (n−1 logd−1 n)r, 1 < p <∞, cf. Theorem D.24

do not coincide with the estimates for %lin
n , which are typically used to obtain lower

bounds for %lin
n . A logarithmic gap appears. In fact, it is unknown whether linear

approximation based on information generated by general linear functionals behaves
better as linear approximation by sampling values. As a consequence of Chapter 5
(Theorem 5.14) we know that linear operators which sample functions on sparse grids
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behave worse compared to approximation with general linear information. For general
point sets we have no indication concerning this phenomenon. Considering the limiting
case r = 2 Bungartz, Griebel [8] proved for the Faber-Schauder sparse grid operator
IM defined in (5.1.1) the convergence rate

‖f − IMf |L2([0, 1]d‖ . Md−12−2M‖f |S2
pW ([0, 1]d)‖

� (n−1 logd−1 n)2 logd−1 n‖f |S2
pW ([0, 1]d)‖,

see also Theorem 5.7. The method for the lower bound in Theorem 5.14 allows to prove
for the sparse grid width

gSGn (S2
2W ([0, 1]d), L2[(0, 1)]d) & (n−1 logd−1 n)2 log

d−1
2 n.

In fact there is a gap of log
d−1

2 n for the knowledge of the exact asymptotic approxi-
mation rate of IM . It would be interesting to know whether the limited regularity of
the hat functions causes a little worse approximation rate in the limiting case.

9.2 Higher smoothness in the non-periodic case

In the first (non-periodic) part of this thesis we are restricted to a maximal smoothness
at around 2. This is caused by the limited smoothness of the Faber-Schauder system.
To be more precise the Faber-Schauder hat functions belong to the spaces SrpW with
r < 1+ 1

p
. In fact, it is interesting that we can overcome this smoothness limitation up to

a certain degree in our approximation results and benefit in the convergence rate from
r > 1+ 1

p
up to a certain level. Nevertheless, these possibilities are limited. Dealing with

significantly more smoothness would require us to switch to smoother basis functions.
Triebel suggested in [120] so called Faber splines. They generalize the integration step
going from Haar to Faber-Schauder bases. The idea is to start with a (` − 1)-times
continuous differentiable spline function h`(x). Representing the (` + 1)-th derivative
of f in terms of this system. Then integrating (`+ 1)-times gives an expansion of f by
2` times continuous differentiable Faber splines v`(x) which allow a representation with
coefficients generated by function evaluations of f . In [120] this theory was considered
as an outlook. We do not know about further research in this direction. Another
related approach are B-Splines introduced by I.J. Schoenberg (see also [16]). They are
generated as an iterated convolution of characteristic functions. Dinh Dũng took up
this concept and studied them successfully as a basis in Srp,θB([0, 1]d), cf. [29, 30]. (B-
)splines of higher order have the property that the supports of different translation are
generally not disjoint as it is the case for the Faber-Schauder system. There is some
overlap. Dealing with Sobolev spaces SrpW (Rd) the Lp(Rd) integration in the norm
runs over all dilation levels. This makes a careful analysis much harder than in case of
Besov spaces Srp,θB(Rd) and requires non-trivial tools from harmonic analysis. Based
on approaches from an early preprint of the current thesis [31] was created. Here the
author proves sampling representations using B-splines for periodic spaces SrpW (Td).
Nevertheless, the conditions stated there seem to be not sharp and can be improved
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with methods presented in this thesis. A carefully proven B-spline representation for
SrpW ([0, 1]d) would allow to lift the results in Chapter 5 and 6 to any smoothness r > 2.
A further approach for higher smoothness is the interpolation scheme by Deslauriers
and Dubuc [24, 17, 23]. In [22] a result discretizing univariate Triebel-Lizorkin and
Besov spaces using this interpolation scheme was stated. An extension to the case of
dominating mixed smoothness would be interesting. As a last approach we mention
higher order hierarchical basis introduced by Bungartz [7] which also use piecewise
polynomials as basis functions.

9.3 Tractability and preasymptotics for standard

information

In the present thesis convergence rates of type Cdm
−r(logd−1m)r appeared at several

points. The constants Cd or at least their behavior for growing problem dimension
d was mostly not calculated explicitly To approximate a function and estimate the
number of information we have to spend to achieve a given accuracy the size of Cd will
be very important to obtain useful estimates. The notion tractability from the math-
ematical area of information based complexity studies a quantity called information
based complexity, which is defined as the minimal number of information required to
approximate the compact embedding id : X → Y up to a certain given accuracy ε.
One distinguishes in standard (samples) and general information (linear information)

nall(ε) := inf{n ∈ N : cn(BX)Y < ε},
nstd(ε) := inf{n ∈ N : %n(BX)Y < ε},

(for the definition of Gelfand widths cn see (1.4.3), sampling widths %n see (1.4.2)).
Based on the behavior of n∗(ε), ∗ ∈ {all,std} in d we assign the approximation prob-
lem to a tractability class. If n∗(ε) increases exponentially in d then we speak about
the curse of dimensionality see [84, 85, 86] and the references therein. For sampling ap-
proximation in spaces of dominating mixed smoothness nearly nothing is known in this
direction. Explicit knowledge of the constants would allow us to translate our conver-
gence rates into bounds for the information based complexity quantity. In [70, 71, 15]
approximation with linear information in the sense of linear widths was considered. It
turned out that tractability issues heavily depend on the explicit choice of the norm
in the space of functions we consider, since different equivalent norms can essentially
modify the unit ball of the respective norm with respect to d. Let us have a look on
a closely related problem. Considering the function fd(t) = t−r log(d−1)r t (related to
our convergence rates) we recognize that this function is monotonically increasing for
t ∈ [1, ed−1] and decreasing on [ed−1,∞). Much later this function becomes smaller
than 1. In fact, for n < ed−1 samples the estimates make little sense, since they are
increasing. In [70, 71, 69] the authors study so called preasymptotic rates. Conver-
gence rates that are valid only for small degrees of freedom but that provide in this
range decreasing with explicitly known constants. Concerning Monte-Carlo sampling
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approximation such an approach was considered in [68]. It would be of great interest
to have similar results in the deterministic worst case setting which is considered in
this thesis.

9.4 Sharp bounds for best m-term approximation

In Section 6.4 we studied best m-term approximation with respect to the Faber-
Schauder system. The lower bounds

σm(Srp,θX,Fd)Lq & m−r, X ∈ {B,F},

provided in Theorem 6.20 is our exclusive source to bound the corresponding best m-
term quantity from below. The fooling argument in the proof is basically an univariate
one, that is not able to generate d-dependent logarithms. Actually we saw in Theorem
6.21 that this provides sharp results for the small smoothness case, so we do not have
to expect logarithms in general. For the large smoothness case (cf. Theorem 6.23) our
upper bounds contain d-dependent logarithms

m−r . σm(Srp,θX([0, 1]d),Fd)Lq . m−r(logm)(d−1)(r+1− 1
θ

), X ∈ {B,F}.

Comparing this to sharp results for Daubechies wavelets obtained by Hansen, Sickel
[56], a logarithm seems to be required. In fact, we need an improved lower bound
for the case of large smoothness. In case of Daubechies Wavelets vanishing moments
allow to discretize Lq spaces into corresponding sequence spaces. Hence, lower bounds
obtained in sequence spaces imply lower bounds for best m-term approximation. Our
upper bounds for best m-term approximation with respect to the Faber-Schauder sys-
tem use as a vehicle the discretization of the space S0

q,1B([0, 1]d) which is embedded
into Lq([0, 1]d). Hence, our upper bounds coincide with wavelet upper bounds that
are calculated for fine index ν = 1 in the target space. Littlewood-Paley (wavelet)
theory shows that fine index ν = 2 is the optimal one to discretize Lq([0, 1]). For that
reason the upper bonds in the large smoothness case we obtained behave by a factor
(logd−1m)

1
2 worse compared to the large smoothness results for Daubechies Wavelets.

It is not clear whether this is a technical difficulty or a serious deficiency comparing best
m-term approximation for Daubechies Wavelets to best m-term for the Faber-Schauder
dictionary.

9.5 Optimal sampling recovery in case 1 < p < 2 <

q <∞
Groundbreaking innovations [46, 64] for the approximation of sequence spaces in the
1980s allowed Galeev [41, 42] to prove an interesting behavior of linear widths for the
embedding SrpW (Td)→ Lq(Td) in the parameter region 1 < p < 2 < q <∞.
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Figure 9.1: The parameter α refers to the sharp rate ( (logn)d−1

n
)α.

In case 1 < p < q ≤ 2 or 2 ≤ p < q < ∞ the approximation rates are of
type (n−1 logd−1 n)α with α = r − 1

p
+ 1

q
. Hence, they are the smoothness minus the

difference of the integrabilities. In case 1 < p < 2 < q <∞ one integrability gets stuck
at 2, cf. Theorem D.24

λn(SrpW (Td), Lq(Td)) �


(

(logn)d−1

n

)r−1/p+1/2

: 1/p+ 1/q ≥ 1, q > 2, r > 1/p,(
(logn)d−1

n

)r−1/2+1/q

: 1/p+ 1/q ≤ 1, p < 2, r > 1− 1/q.

This provides an improved rate. In case of linear sampling recovery (cf. Section 8.2)
such an effect does not happen or at least not in the main rate. In Theorem 8.10 we
show for 1 < p < 2 < q <∞ the relation

λn(SrpW (Td), Lq(Td)) � n−(r− 1
p

+ 1
q

) . %lin
n (SrpW (Td), Lq(Td)) . (n−1 logd−1 n)r−

1
p

+ 1
q .

The lower bound in the middle is based on a univariate fooling function argument by
Novak, Triebel [83]. We conclude that approximation by linear information behaves
significant better than sampling approximation. What remains unknown is the exact
order of the logarithm for %lin

n (SrpW (Td), Lq(Td)).
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Chapter 10

Appendix

A Quasi-Banach spaces

Definition A.1 (Quasi norm). Let X be a vector space. We call the mapping ‖ · ‖ :
X → R quasi norm if and only if

(i) ‖x‖ = 0 =⇒ x = 0

(ii) ‖λx‖ = |λ|‖x‖

(iii) ∃C > 0∀x, y ∈ X :

‖x+ y‖ ≤ C(‖x‖+ ‖y‖).

Definition A.2 (p-norm). Let X be a vector space. We call the mapping ‖·‖ : X → R
a p-norm if and only if

(i) ‖x‖ = 0 =⇒ x = 0

(ii) ‖λx‖ = |λ|‖x‖

(iii) ∃0 < p ≤ 1∀x, y ∈ X :

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Definition A.3. The tuple (X, ‖ · ‖) where X is a vector space with either ‖ · ‖ is a
quasi or p-norm is called quasi-Banach (p-Banach) space if and only if every Cauchy
sequence (xj) ⊂ X converges (in the sense of ‖ · ‖) to an element x ∈ X .

Theorem A.4 (Aoki-Rolewicz). For every quasi norm ‖·‖ exists an equivalent p-norm
and the other way around.

Proof. This result is due to Aoki [2] and Rolewicz [93].
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B Basics from Fourier analysis

Fourier analysis on Rd

Definition B.5. Let f ∈ Lloc1 (Rd). Then we define the Hardy-Littlewood maximal
operator as

Mf(x) := sup
Q3x

1

|Q|

∫
Q

|f(x)|dx

where the Q are axis parallel squares that are centered in x.

Theorem B.6 (Fefferman-Stein maximal inequality). Let 1 < p <∞, 1 < θ ≤ ∞ and
(fk)k ⊂ Lp(`θ,Rd). Then we have

‖Mfk|Lp(`θ,Rd)‖ . ‖fk|Lp(`θ,Rd)‖.

Proof. We refer to [39, Theorem 1].

As a main tool we introduce the following componentwise variant of the Hardy-
Littlewood maximal operator, see [127, (1.14),(1.15)], [122, (10)]

Definition B.7. Let i ∈ [d] and f ∈ Lloc1 (Rd) then we define the Hardy-Littlewood
maximal operator in the i-th direction as

Mif(x) := sup
t>0

1

2t

∫ t

−t
|f(x1, . . . , xi−1, xi + y, xi+1, . . . , xd)|dy. (B.1)

Theorem B.8. Let 1 < p, q <∞ and (fk)k ⊂ Lp(Td, `θ) and i ∈ [d]. Then we have

‖Mifk|Lp(`θ,Rd)‖ . ‖fk|Lp(`θ,Rd)‖.

Definition B.9 (Peetre maximal operator). Let a > 0 and b > 0 then we define for
f ∈ C(Td)

Pb,af(x) := sup
y∈Rd

|f(x+ y)|
(1 + b1|y1|)a . . . (1 + bd|yd|)a

.

Additionally we define for e ⊂ [d] a component wise Peetre maximal operator by

Pb,a|ef(x) := sup
y∈Rd(e)

|f(x+ y)|∏
i∈e(1 + bi|yi|)a

.

Lemma B.10. Let a, b > 0 and f ∈ L1(R) with suppFf ⊂ [−b, b]. Then there exists
a constant C > 0 such that

|∆m
h f(x)| ≤ C min{1, |bh|m}max{1, |bh|a}Pb,af(x) (B.2)

holds.

Proof. We refer to [122, Lemma 3.3.4].
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Theorem B.11. Let 0 < p <∞, 0 < θ ≤ ∞ and (fj)j∈Nd0 be a sequence of bandlimited
functions with

supp fj ⊂ [−b, b]

and a > max{1
p
, 1
θ
}. Then there is a constant C > 0 (independent of f and bj) such

that
‖Pbj ,afj|Lp(`θ,Rd)‖ ≤ C‖fj|Lp(`θ,Rd)‖

holds.

Proof. We refer to [99, 1.6.4] and Theorem B.14.

Lemma B.12. Let a > 0, b > 0 and f ∈ C(R).

(i) If |x− x0| < 1
b

then
|f(x0)| ≤ 2aPb,af(x)

holds.

(ii) Furthermore let b′ > b > 0. Then

Pb,af(x) ≤
(b′
b

)a
Pb′,af(x).

Proof. The following estimation yields (i)

|f(x0)| ≤ |f(x0)|
(1 + |x− x0|b)a

(1 + |x− x0|b)a ≤ 2a sup
x0∈R

|f(x0)|
(1 + |x− x0|b)a

= 2aPb,af(x).

We prove (ii). The trivial estimation p+1
q+1
≤ p

q
for p > q > 0 yields

Pb,af(x) = sup
y∈R

|f(y)|
(1 + b|x+ y|)a

≤ sup
y∈R

|f(y)|
(1 + b′|x+ y|)a

(1 + b′|x+ y|)a

(1 + b|x+ y|)a
≤
(b′
b

)a
Pb′,af(x).

Lemma B.13. Let 0 < a ≤ 1 and R > 1
a
. For any sequence (λj,k)j∈Nd0,k∈Zd of complex

numbers and any ` ∈ Zd, j ∈ Nd0 with j + ` ≥ −1 we have

∑
k∈Zd
|λj+`,k|

d∏
i=1

(1 + 2min{ji,ji+`i}|xi − xji+`i,ki |)−R . 2|`+|1/a
[
M
∣∣∣ ∑
k∈Zd

λj+`,kχj+`,k

∣∣∣a] 1
a
(x).

(B.3)
Here M denotes the Hardy-Littlewood maximal operator, cf. Definition B.5.

Proof. The proof is taken from [126, Lemma 4.3]. Which is a “hyperbolic” version of
[65, Lem. 3, 7]. The lemma is originally due to Kyriazis [72, Lem. 7.1]. Let

δ = R− 1

a
.
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We introduce for µ ∈ N the sets

Ωµ(x) := {k ∈ Z : 2µ−1 < 2min{j+`,j}|x− xj+`,k| < 2µ}

and

Ω0(x) := {k ∈ Z : 2min{j+`,j}|x− xj+`,k| < 1}.

For µ ∈ Nd0 and x ∈ Rd we define

Ωµ(x) = Ωµ1(x1) · . . . · = Ωµd(xd).

We start estimating

∑
k∈Zd
|λj+`,k|

d∏
i=1

(1 + 2min{ji,ji+`i}|xi − xji+`i,ki|)−R .
∑
µ∈Nd0

∑
k∈Ωµ(x)

|λj+`,k|2−|µ|1(δ+ 1
a

)

. . sup
µ∈Nd0

∑
k∈Ωµ(x)

|λj+`,k|2−
|µ|1
a

.
(

sup
µ∈Nd0

∑
k∈Ωµ(x)

|λj+`,k|a2−|µ|1
) 1
a

(B.4)

It is easy to verify that∫
⋃
m∈Ωµ(x) Ij+`,m

∑
k∈Ωµ(x)

|λj+`,k|aχj+`,k(y)dy � 2−|j+`|1
∑

k∈Ωµ(x)

|λj+`,k|a

holds. Inserting this into (B.4) gives

∑
k∈Zd
|λj+`,k|

d∏
i=1

(1 + 2min{ji,ji+`i}|xi − xji+`i,ki |)−R (B.5)

.
(

2|j+`|1 sup
µ∈Nd0

2−|µ|1
∫
⋃
m∈Ωµ(x) Ij+`,m

∑
k∈Ωµ(x)

|λj+`,k|aχj+`,k(y)dy
) 1
a

. (B.6)

Defining

Q(x) =
⋃

m∈Ωµ(x)

Ij+`,m

we observe

|Q(x)| � 2|µ|12−|j+`−|1 .
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Hence, inserting this into (B.6) allows to estimate

∑
k∈Zd
|λj+`,k|

d∏
i=1

(1 + 2min{ji,ji+`i}|xi − xji+`i,ki |)−R

.
(

2|`+|1 sup
µ∈Nd0

1

|Q(x)|

∫
Q(x)

∑
k∈Ωµ(x)

|λj+`,k|aχj+`,k(y)dy
) 1
a

≤ 2
|`+|1
a

(
M
∣∣∣ ∑
k∈Ωµ(x)

λj+`,kχj+`,k

∣∣∣a) 1
a

Fourier analysis on Td

The Hardy-Littlewood maximal function and Peetre maximal function are defined as
in the last subsection, by interpreting f ∈ L1(Td) as a 2π-periodic function on Rd.
There is a corresponding variant of the Fefferman-Stein theorem, see [122, Thm. 4.1.2]
and the references therein.

Theorem B.14 (Fefferman-Stein maximal inequality). Let 1 < p < ∞, 1 < θ ≤ ∞
and (fk)k ⊂ Lp(`θ,Td). Then we have

‖Mfk|Lp(`θTd)‖ . ‖fk|Lp(`θ,Td)‖.

Proof. We refer to [99, Proposition 3.2.4].

Similarly to the non-periodic case we have:

Theorem B.15. Let 1 < p, q <∞ and (fk)k ⊂ Lp(Td, `θ) and i ∈ [d]. Then we have

‖Mifk|Lp(`θ,Td)‖ . ‖fk|Lp(`θ,Td)‖.

Theorem B.16. Let 0 < p ≤ ∞ and f be a trigonometric polynomial with

f =
∑
|ki|≤bi
i=1,...,d

f̂(k)eik·x

and a > 1
p
. Then there is a constant C > 0 (independent of f and b) such that

‖Pb,af |Lp(Td)‖ ≤ C‖f |Lp(Td)‖

holds.

Proof. We refer to [99, 3.3.5] and Theorem B.15.
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Theorem B.17. Let 0 < p < ∞, 0 < θ ≤ ∞ and (fj)j∈Nd0 be a sequence of trigono-
metric polynomials with

fj =
∑
|ki|≤bji
i=1,...,d

f̂(k)eik·x

and a > max{1
p
, 1
θ
}. Then there is a constant C > 0 (independent of f and bj) such

that
‖Pbj ,afj |Lp(`θ,Td)‖ ≤ C‖fj|Lp(`θ,Td)‖

holds.

Proof. We refer to [122, Thm. 4.1.3].

The next result is well known in harmonic analysis. We state it for completeness.

Lemma B.18. Let f ∈ L1(T) with
∑

`∈Z |f̂(`)| <∞. Then

f(·) =
∑
`∈Z

f̂(`)ei`·

in C(T).

Lemma B.19 (Poisson summation). Let f ∈ L1(R). Then its periodization
∑

k∈Z f(·+
2πk) converges absolutely in the norm of L1([−π, π]). Furthermore its formal Fourier
series is given by ∑

k∈Z

f(·+ 2πk) =
1√
2π

∑
`∈Z

Ff(`)ei`·

Proof. We refer to [111, p. 252].

C Some multi-indexed geometric sums

Lemma C.20. Let r,η ∈ Rd with 0 < r1 = η1 = . . . = rµ = ηµ < rµ+1 ≤ . . . ≤ rd and
r1 < ηs < rs for s = µ+ 1, . . . , d. Then∑

1
η1
η·j>m

2−r·j . mµ−12−r1m

holds for all m ≥ 1.

Proof. We refer to [112, p. 9, Lemma B].

Lemma C.21. Let r ∈ Rd with

0 < r1 = . . . = rµ < rµ+1 ≤ . . . ≤ rd <∞

and µ ≤ d. Then ∑
1
r1
r·j≤m

2|j|1 � mµ−12m

holds for all m ≥ 1.
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Proof. We refer to [112, p. 10, Lemma D].

Lemma C.22. Let α > 0, β ≥ 0, such that α > β. Then∑
j∈∆α,β(M)

2|j|1 � 2
ξ

α−β

holds for all M ≥ α− β.

Proof. We refer to [9, Lemma 6.3].

Lemma C.23. Let 0 < ε < γ < α then∑
j /∈∆α−ε,β−ε(M)

2−2(α|j|1+γ|j|∞) . 2−M

holds for all M ∈ N.

Proof. We refer to [9, Theorem 4.1, 2nd step].

D Known results on linear and Kolmogorov-widths

Theorem D.24. Let 1 < p < ∞, 1 ≤ q < ∞ and r > (1/p − 1/q)+ with (8.1.1) .
Then we have

λn(SrpW (Td), Lq(Td)) �



(
(logn)µ−1

n

)r1−(1/p−1/q)+

: q ≤ 2, or; p ≥ 2,(
(logn)µ−1

n

)r1−1/p+1/2

: 1/p+ 1/q ≥ 1, q > 2, r > 1/p,(
(logn)µ−1

n

)r1−1/2+1/q

: 1/p+ 1/q ≤ 1, p < 2, r > 1− 1/q.

Proof. The case 1 < q < ∞ was proven by Galeev[41, 42], see also [36, 37]. The
case q = 1 by Romanyuk [96]. Additionally we refer to [33, Theorem 4.39] and the
comments therein.

Theorem D.25. Let r as in (8.3.2). Let additionally 1 < p < q ≤ 2 and 1 ≤ θ ≤ ∞
or 2 ≤ p < q <∞ and θ ≥ 2. Then we have

λn(Srp,θF (Td), Lq(Td)) �
(

(log n)µ−1

n

)r1−1/p−1/q

,

for all n ∈ N.

Proof. The upper bound can be obtained for instance by sampling recovery, cf. The-
orem 8.7. We focus on lower bounds. In case θ ≥ 2 the embedding SrpW (Rd) ↪→
Srp,θF (Rd) yields

λn(Srp,θF (Td), Lq(Td)) ≥ λn(SrpW (Td), Lq(Td))
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The results stated in Theorem D.24 provide the correct order. In case θ < p the
embedding Srp,θB(Rd) ↪→ Srp,θF (Rd) yields

λn(Srp,θF (Td), Lq(Td)) ≥ λn(Srp,θB(Td), Lq(Td)).

This gives the right order in cases 1 < p < q ≤ 2 and 2 ≤ q < p, cf. [94]. Finally for
θ ≥ p we stress on the embedding

Srp,pB(Td) ↪→ Srp,θF (Td)

with

λn(Srp,θF (Td), Lq(Td)) ≥ λn(Srp,pB(Td), Lq(Td)).

This provides the lower bound in case 1 < p < q ≤ 2. We refer again to [94].

The following is known for Kolmogorov widths in case of Sobolev spaces SrpW (Rd)
defined by

dn(SrpW (Td), Lq(Td)) = inf
A⊂Lq(Td)
dimA≤n

sup
‖f |SrpW (Td)‖≤1

inf
g∈A
‖f − g|Lq(Td)‖. (D.1)

Theorem D.26. Let 1 < p, q <∞ and

r >

{
(1
p
− 1

q
)+ : 1 ≤ p ≤ q ≤ 2 or 1 ≤ q ≤ p <∞,

max{1
2
, 1
p
} : otherwise,

as in (8.3.2). Then

dn(SrpW (Td), Lq(Td)) � (m−1 logµ−1m)r1−( 1
p
−max{ 1

2
, 1
q
})+ .

Proof. The proof with every single case has a history of more than 20 years. For an
overview we refer to [33, Section 4.3].

Theorem D.27. Let 1 < p ≤ 2 and r > 1 satisfying (8.3.2). Then

λn(SrpW (Td), L∞(Td)) � n−(r1− 1
2

) log(µ−1)r1 n.

Proof. We refer to [78, Theorem 2.14] and the references therein.
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[15] F. Cobos, T. Kühn, and W. Sickel. Optimal approximation of multivariate pe-
riodic Sobolev functions in the sup-norm. J. Funct. Anal., 270(11):4196–4212,
2016.

[16] C. de Boor. A practical guide to splines, volume 27 of Applied Mathematical
Sciences. Springer-Verlag, New York-Berlin, 1978.

[17] G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes. Con-
str. Approx., 5(1):49–68, 1989. Fractal approximation.

[18] R. A. DeVore. Nonlinear approximation. In Acta numerica, 1998, volume 7 of
Acta Numer., pages 51–150. Cambridge Univ. Press, Cambridge, 1998.

[19] R. A. DeVore, S. V. Konyagin, and V. N. Temlyakov. Hyperbolic wavelet ap-
proximation. Constr. Approx., 14(1):1–26, 1998.

[20] R. A. DeVore and V. A. Popov. Interpolation of approximation spaces. In Con-
structive theory of functions (Varna, 1987), pages 110–119. Publ. House Bulgar.
Acad. Sci., Sofia, 1988.

[21] S. Dirksen and T. Ullrich. Gelfand numbers related to structured sparsity and
besov space embeddings with small mixed smoothness. Journal of Complexity,
48:69 – 102, 2018.

[22] D. L. Donoho. Interpolating wavelet transform. Technical report, Department
of Statistics, Stanford University, 1992.

[23] D. L. Donoho and T. P. Y. Yu. Deslauriers-Dubuc: ten years after. In Spline
functions and the theory of wavelets (Montreal, PQ, 1996), volume 18 of CRM
Proc. Lecture Notes, pages 355–370. Amer. Math. Soc., Providence, RI, 1999.

[24] S. Dubuc. Interpolation through an iterative scheme. J. Math. Anal. Appl.,
114(1):185–204, 1986.
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