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Zusammenfassung 

Die Chemokine CCL17 und CCL22 sind Liganden von CCR4 und werden hauptsächlich von 

dendritischen Zellen (DCs) und Makrophagen produziert. Für CCL17 wurde gezeigt, dass es 

verschiedene entzündliche und allergische Erkrankungen fördert. Im Gegensatz dazu, wird CCL22 eher 

mit einer immunsuppressiven Wirkung assoziiert. Diese gegenläufigen Funktionen spiegeln sich ganz 

besonders in der Fähigkeit wider, nur bestimmte Immunzellen zu Entzündungsherden zu rekrutieren. 

Während CCL17 die Chemotaxis von Effektor-T-Zellen induziert und eine Interaktion von T-Zellen und 

DCs erleichtert, wird CCL22 hauptsächlich mit der Rekrutierung regulatorischer T-Zellen, z.B. in das 

Tumormikromilieu, in Verbindung gebracht. Im Vergleich zu CCL17 führt CCL22 außerdem zu einer 

schnelleren Desensibilisierung und Internalisierung von CCR4, was eine gewisse funktionelle 

Selektivität (engl. biased agonism) von CCL17 und CCL22 für CCR4 impliziert.  

In der vorliegenden Arbeit wurden neu generierte CCL17/22-doppelt defiziente Mäuse (CCL17
E/E

/22
-/-

) 

dazu verwendet, die differentielle Funktion von CCL17 und CCL22 weitergehend zu untersuchen. 

Interessanterweise entwickelten CCL17
E/E

/22
-/-

 Mäuse genau wie CCL17-defiziente (CCL17
E/E

) Mäuse 

eine deutlich reduzierte Kontakthypersensitivitäts-(CHS)-Reaktion im Vergleich zu wildtypischen (WT) 

Kontrollmäusen, während CCR4
-/-

 Mäuse eine verstärkte allergische Reaktion ausbildeten. Somit 

konnte gezeigt werden, dass der schon bekannte Unterschied zwischen CCR4
-/-

 und CCL17
E/E

-Mäusen 

im CHS Modell nicht durch die in CCL17
E/E

 Mäusen verbleibende Wirkung von CCL22 erklärt werden 

kann. Darüber hinaus wurden intravitale Mikroskopie (IVM) und Durchflusszytometrie angewandt, um 

CCL17-positive Zellen in der Haut von CCL17-EGFP Reporter (CCL17
E/+

) Mäusen  in der An- bzw. 

Abwesenheit von GM-CSF zu charakterisieren. Hier konnte eine GM-CSF-abhängige Expression von 

CCL17 in DCs der Haut gezeigt werden, wohingegen die Regulation von CCL17 in Makrophagen 

unabhängig von GM-CSF war. Ferner konnten mittels IVM zwei verschiedene CCL17-positive Zelltypen 

in der Haut nachgewiesen werden. Neben einer sessilen CCL17-positiven Zellpopulation, welche in der 

Nähe von dermalen Blutgefäßen lokalisiert war und möglicherweise zu den perivaskulären 

Makrophagen gehört, wurde eine zweite, durch das Interstitium wandernde CCL17-positive 

Zellpopulation beobachtet , bei der es sich wahrscheinlich um DCs handelt.  

Um neue Möglichkeiten zur Behandlung von Allergien zu entwickeln, wurden zwei neuartige RNA-

Aptamere auf ihre Fähigkeit hin getestet, CCL17 in vitro und in vivo zu neutralisieren. Mithilfe eines 

Zell-Migrationstests konnte gezeigt werden, dass beide Aptamere die gerichtete Migration der CCR4
+
-

Lymphom-Zelllinie BW5147.3 entlang eines CCL17-Gradienten dosisabhängig hemmen. Außerdem 

konnte in Aptamer-behandelten WT Mäusen eine deutlich reduzierte T-Zell-Infiltration und eine 

verringerte Ohrschwellung gemessen werden. Des Weiteren konnte in Inhibitionsexperimenten gezeigt 

werden, dass CCL17 eine vielversprechende Zielstruktur zur Behandlung von allergischen und 

möglicherweise auch anderen entzündlichen Krankheiten darstellt.  
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Im zweiten Teil der Arbeit wurde die Expression und Funktion von CCL17 im murinen Gehirn 

untersucht. CCL17-exprimierende Neuronen konnten vor allem in der hippocampalen CA1 Region 

identifiziert werden, während im Kortex nur wenige CCL17-produzierende Neuronen nachgewiesen 

wurden. Systemische Gabe von Lipopolysaccharid (LPS) führte zu einer stark erhöhten Expression von 

Ccl17 und Ccl22 im Hippocampus. Interessanterweise war die LPS-induzierte Expression von Ccl17 

abhängig von lokal produziertem Tumornekrosefaktor (TNF), während GM-CSF die Expression von 

Ccl22 regulierte. Eine genaue Untersuchung der Gehirne von LPS-behandelten CCL17
E/E

- und WT-

Mäusen und entsprechenden Kontrolltieren ergab eine stark reduzierte Anzahl von Mikroglia in 

Hippocampi von CCL17
E/E

 Mäusen. Des Weiteren konnte mittels konfokaler Mikroskopie und einer 

computergestützten morphologischen Analyse gezeigt werden, dass Mikroglia in naiven CCL17
E/E 

Mäusen, im Vergleich zu WT Mäusen, ein deutlich reduziertes Zellvolumen und einen stärker 

polarisierten Prozessbaum aufweisen. Außerdem ähnelten die Gesamtverzweigung (engl. ramification), 

die Zelloberfläche und die Gesamtbaumlänge der Mikroglia von naiven CCL17
E/E

-Mäusen denen der 

Mikroglia von LPS-behandelten WT-Mäusen. Des Weiteren wiesen elektrophysiologische Messungen 

an akuten Gehirnschnitten aus naiven WT- und CCL17
E/E

-Mäusen darauf hin, dass CCL17 die basale 

synaptische Übertragung zwischen den Schaffer-Kollateralen der CA3-CA1 Region reprimiert. Damit 

konnte CCL17 erstmalig als ein neues, homöostatisches und induzierbares neuromodulatorisches 

Chemokin identifiziert werden, welches sowohl die Häufigkeit und Morphologie von Mikroglia als auch 

die synaptische Übertragung im Hippocampus beeinflusst. 
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Abstract 

The chemokines CCL17 and CCL22 represent ligands of CCR4 and are mainly produced by dendritic 

cells (DCs) and macrophages (Mφs) in the immune system. CCL17 was found to promote various 

inflammatory and allergic diseases, whereas CCL22 has more often been associated with an 

immunosuppressive environment. These differential functions are reflected by preferential recruitment 

of distinct subsets of immune cells to sites of inflammation. Whereas CCL17 induces chemotaxis of 

effector T cells and facilitates T cell-DC interactions, CCL22 appears to be involved in the recruitment 

of regulatory T cells. In addition, CCL22 induces a more rapid desensitization and internalization of 

CCR4 than CCL17, implying biased agonism of CCL17 and CCL22.  

In this thesis, newly generated CCL17/22-double-deficient (CCL17
E/E

/22
-/-

) mice were used to further 

explore the differential function of CCL17 and CCL22. In agreement with previous reports in the 

literature, CCR4-deficient mice displayed an exaggerated contact hypersensitivity (CHS) response. In 

contrast, CCL17
E/E

/22
-/-

 and CCL17-single deficient (CCL17
E/E

) mice were protected from CHS. Thus, the 

opposing phenotypes of CCR4KO-
 
versus CCL17

E/E 
mice cannot be explained by residual CCL22 

signaling in CCL17
E/E

 mice. Furthermore, intravital microscopy (IVM) and flow cytometry were 

performed to characterize CCL17
+
 cells in the skin of CCL17-EGFP reporter (CCL17

E/+
) mice in a wild-

type (WT) and GM-CSF-deficient background. Whereas expression of CCL17 in skin DCs was GM-CSF-

dependent, transcription of CCL17 in skin Mφs occurred independently of GM-CSF. In line, two distinct 

CCL17
+
 cell types could be identified in the skin by IVM as judged by their motility: a population of 

sessile CCL17
+
 cells in close proximity to dermal blood vessels, presumably representing perivascular 

Mφs, and a migratory cell population resembling DCs in the interstitium.  

To develop novel strategies for treatment of contact allergy, two RNA aptamers were validated in vitro 

and in vivo for their capability to neutralize CCL17. The two aptamers effectively inhibited the directed 

migration of the CCR4
+
 lymphoma line BW5147.3 towards CCL17 in a dose-dependent manner. In the 

CHS model, systemic application of either one of the aptamers significantly prevented the ear swelling 

response and reduced T cell infiltration into the ears. These experiments provide proof-of-principle 

that CCL17-specific aptamers may potentially be used therapeutically in humans to treat allergies and 

perhaps other inflammatory diseases.  

In the second part of the thesis, the expression and function of CCL17 in the murine brain was 

investigated. CCL17/EGFP
+
 neurons were primarily detected in in a subset of hippocampal CA1 

neurons, whereas only few cortical neurons stained positive for CCL17/EGFP. The basal Ccl17 

expression in hippocampal neurons strongly increased by peripheral challenge with lipopolysaccharide 

(LPS) in a tumor necrosis factor (TNF) dependent manner. In addition, Ccl22 was also detected in the 

hippocampus, but its LPS-dependent upregulation required GM-CSF. Analysis of brains from CCL17
E/E

 

mice revealed a diminished microglia density in the hippocampus under homeostatic and 
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inflammatory conditions. A combination of confocal microscopy and computer-assisted morphological 

analyses demonstrated that microglia from naïve CCL17
E/E

 mice displayed a reduced cellular volume 

and a more polarized process tree compared to WT controls. Furthermore, overall branching, cell 

surface area and total tree length of microglia from naïve CCL17
E/E

 mice were similar to that of 

microglia from LPS-treated WT mice. In addition, electrophysiological recordings of acute slices from 

naïve WT and CCL17
E/E

 mice indicated a downmodulation of basal synaptic transmission at CA3-CA1 

Schaffer collaterals through CCL17. In conclusion, the work presented in this thesis identifies CCL17 as 

a homeostatic and inducible neuromodulatory chemokine which affects the abundance and 

morphologic appearance of microglia as well as synaptic transmission in the hippocampus. 
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 Introduction 1.

 The immune system 1.1

Immunity is defined as the ability of an organism to cope with potentially harmful substances or 

disease-causing organisms collectively called pathogens
1
.  

Besides foreign pathogens, the immune system also constantly eliminates various endogenous threats, 

such as tumor cells
2
 or autoreactive immune cells

1
. The different types of threats commonly possess 

specific molecular patterns, distinguished by the immune system as pathogen-, danger- or 

neurodegeneration-associated molecular patterns (PAMPs, DAMPs or NAMPs, respectively)
3–5

. A very 

delicate and complex interplay of immune cells and effector molecules is required to distinguish and 

eliminate the presented threat
6
. Thus, the immune system has evolved several cooperative strategies 

that are constantly refined to prepare for a very dynamic and hostile environment
7
. First, a simple 

avoidance behavior of potentially dangerous substances (e.g., to not eat rotten fruit) is common to 

many invertebrates and vertebrates and provides a basic opportunity for defense
8,9

. It is sometimes 

also referred to as the ‘behavioral immune system’
10

. Such a behavioral adaptation generally benefits 

from past experiences of the host and will advance over an organism’s life.  

Next, anatomical barriers - such as the epithelium lining the skin, the lung or the gut - will provide a 

first line of defense and protect the host from immediate threats
1
. Once these physical barriers are 

passed, a third, more elaborate system is activated, the innate immune system. Innate immunity 

represents the evolutionarily conserved arm of the immune system and is found across all species
11

. It 

generates rapid, non-specific inflammatory responses and is primarily initiated once anatomical 

barriers are disrupted. A central element of innate immunity is the immediate production and secretion 

of immune effector molecules, such as antimicrobial peptides (AMPs), cytokines, chemokines, and 

reactive oxygen species (ROS). Chemokines are chemotactic cytokines which recruit immune cells to 

sites of inflammation. Another key element of the innate immune system is the complement system 

which uses small serum proteins to activate phagocytes, attract other immune cells, or activate the 

cell-killing membrane attack complex
1
. These and other effector molecules are mainly produced by 

innate immune cells, such as mononuclear phagocytes, neutrophils, innate lymphoid cells (ILCs), 

natural killer cells (NK cells), or mast cells
1
 (see Fig. 1.1). Professional phagocytes such as macrophages 

(Mφs) can directly engulf and degrade microbes. In contrast, NK cells are able to recognize and 

eliminate virus-infected host cells via a highly specialized set of receptors. Professional antigen-

presenting cells (APCs), such as Langerhans cells (LCs) or dendritic cells (DCs) are also phagocytic, but 

are able to present small pathogen-derived peptide fragments (antigens) via the major 

histocompatibility complex II (MHCII) on their surface. Once APCs have encountered antigens they will 

leave their site of residence and migrate to secondary lymphoid organs, such as the spleen or draining 

lymph nodes (LNs). Here, APCs will present antigens to the cells of the adaptive immune system and 
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activate the adaptive immune system
1
. Innate immune cells are equipped with a set of different 

pattern recognition receptors (PRRs). These PRRs can recognize specific PAMPs or DAMPs and activate 

important downstream signaling cascades
12

. One of the best-characterized groups of PRRs is the Toll-

like receptor (TLRs) family. In humans, eleven different TLR family members have been identified, 

whereas in mice thirteen TLRs are found
12

. Upon binding of their respective ligand, the TLR engages in 

a distinct intracellular signaling cascade, which originates from a cytoplasmic Toll/IL-1 receptor domain 

(TIR)
13

. The sub-sequent 

recruitment of the adaptor 

protein MyD88 pro-

pagates the downstream 

signaling cascade and 

activates the transcription 

factor nuclear factor κB 

(NF-κB) and mitogen-

activated protein kinases 

(MAPKs)
13

. NF-κB and 

MAPKs in turn induce the 

expression of various pro- 

and anti-inflammatory 

cytokines
13

. The MyD88-

dependent activation of 

NFκB is shared among the 

majority of human and 

murine TLRs, whereas 

TLR3 uses only the MyD88-independent TRIF (TIR-domain-containing adapter-inducing interferon-β) 

pathway
13

. Interestingly, TLR4 is able to use both pathways. Attributed to the diversity of 

microorganisms, TLRs are either expressed on the cell surface (e.g. TLR1, TLR2, and TLR4) or are 

located intracellularly in organelles called endosomes (TLR3, TLR7, and TLR9)
12,13

. The NLR gene family 

(nucleotide-binding domain, leucine-rich repeat-containing) also belongs to the PRRs. With the 

exception of NOD-1 and NOD-2, activation of NLRs results in the assembly of a large multiprotein 

complex called the inflammasome
14

. Inflammasome assembly causes in the activation of caspase-1, 

which subsequently triggers the release of the pro-inflammatory cytokines interleukin 1 β (IL-1β) and 

IL-18
15

. For a long time, it was assumed that the innate immune system exists as a purely mechanistic 

system which triggers similar responses irrespective of previous encounters and that immunological 

memory represents an exclusive feature of the adaptive immune system. Strikingly, however, in the 

absence of an adaptive immune system mice are still able to develop increased resistance to 

Figure 1.1 | Components of the innate and adaptive immune response. 

Innate immunity (left) represents the organism’s first line of defense against 

many environmental threats (e.g. pathogens or toxins). Innate immune cells such 

as granulocytes (basophils, eosinophils and neutrophils), macrophages, dendritic 

cells, mast cells and natural killer cells act rapidly either by directly engulfing the 

pathogen or through the production of soluble immune mediators (cytokines, 

chemokines etc.). In contrast, adaptive immune responses (right) propagate more 

slowly, but show a high degree of specificity and eventually result in 

immunological memory. The two central cell types in adaptive immunity are 

CD4
+
 and CD8

+
 T lymphocytes and B cells. Natural killer T cells and T cells 

possess both innate and adaptive traits. Image taken from [2]. 
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reinfections. Thus, the idea of a trainable innate immune system emerged and opened up possibilities 

for the development of new therapeutic strategies
16

.   

As activated APCs present antigens to adaptive immune cells, they link innate and adaptive immune 

responses. Thus, the efficiency of the adaptive immune system strongly relies on information gained 

during the innate response. T and B lymphocytes represent the most prevalent immune cell types of 

the adaptive immune system
1
. As the generation of highly specific T and B lymphocytes is central to 

adaptive immunity, the immune system has developed several mechanisms to select and expand only 

those lymphocytes which are able to distinguish between host and foreign molecules. During this 

process, autoreactive cells are either removed or tolerized towards self-antigens
17

. The thymus and the 

bone marrow are the principal organs involved in the generation, selection and maturation of T and B 

cells, respectively. Following maturation in the thymus, functionally different T cell subsets emerge and 

divide into either CD4
+
 helper T cells or CD8

+
 cytotoxic T cells

1
 (see Fig. 1.1). Whereas CD4

+
 helper T 

cells provide signals to assist in the activation of other immune cells (e.g., B cells or DCs), CD8
+
 

cytotoxic T cells eliminate cancer cells and (virus-) infected cells. T cells are characterized by the surface 

expression of a unique T cell receptor (TCR) which enables them to recognize a specific antigen 

presented by APCs via MHC molecules. The TCR is generated by random gene rearrangement, a 

process known as V(D)J-recombination which enables the highest possible diversification of generated 

TCRs
1
. In contrast, B cells are generated in the bone marrow and eventually differentiate into antibody-

producing plasma cells
1
 (see Fig. 1.1). Similar to T cells, B cells rearrange their variable region genes to 

form a B cell receptor (BCR) which is expressed on the surface but can also be secreted in the form of 

antibodies. Antibodies are key effector molecules generated during an adaptive immune response and 

are part of the humoral immune response
1
. Antibodies mark pathogens for elimination by phagocytes 

(opsonization) but can also directly neutralize pathogens
1
. Some T and B cells will develop into 

memory cells which will persist and are quickly re-activated in the case of a second infection with the 

same pathogen.  

 Immunity in the skin 1.2

 The skin as a barrier organ 1.2.1

The skin represents the organism’s primary barrier organ providing a first line of defense against a 

variety of different challenges
18

. Potentially dangerous substances include microbial pathogens, 

chemical, and physical insults as well as environmental toxins. As depicted in Fig. 1.2 the skin is 

organized in several layers which all comprise a highly specialized set of immune and non-immune 

cells
19,20

. While substantial differences exist between mouse and human skin, two major compartments 

of the skin can be distinguished: the epidermis and the dermis (see Fig. 1.2). The epidermis is the 

outermost layer of the skin which is constantly exposed to the environment. Keratinocytes are the 

most prevalent cell type in the epidermis and exist at different stages of differentiation in each 
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epidermal layer
18

. Keratinocytes produce fibrous structural proteins called keratins
19

. Keratins are found 

in each epidermal layer where they provide the starting material to produce key components of the 

skin (e.g. hairs or horn).  

 

The basement membrane and the stratum basale separate the epidermis from the dermis. The stratum 

basale consists of only one row of undifferentiated, columnar keratinocytes
19

. These basal 

keratinocytes divide frequently and constantly migrate to the upper layers of the epidermis to mature 

and differentiate. In humans, the stratum spinosum and granulosum follow the stratum basale and 

contain more differentiated populations of polygonally shaped keratinocytes
19

. In the stratum 

granulosum, keratinocytes are characterized by the accumulation of lamellar bodies, small secretory 

organelles that contain various immune effector molecules such as the AMP β-defensin
20

. In humans 

and mice, the stratum corneum can be seen as the first-line of defense against many external threats. 

It is composed of mostly dead keratinocyte-derived cells known as corneocytes
19

. Its composition and 

architecture also prevent significant water-loss
19

. Besides keratinocytes, the epidermis also harbors 

other immune and non-immune cell types. LCs and CD8
+
 T cells represent the most abundant immune 

Figure 1.2 | Anatomy and cellular components  of murine and human skin. 

The side-by-side comparison of murine (a) and human (b) skin reveals some critical differences. Whereas human 

skin has large areas of interfollicular skin and only few hair follicles, mouse skin contains many densely packed hair 

follicles. The layered structure of the skin, reflecting its function as a central barrier organ, is comparable in mice 

and men. However, the human epidermis is much thicker compared to murine skin and is characterized by few 

downward projections known as epidermal rete ridges. In humans and mice, keratinocytes at different 

developmental stages make up the majority of epidermal cells. In humans, Langerhans cells and CD8
+
 T cells are 

the most prevalent immune cell type in the epidermis, whereas murine skin additionally harbors a prominent 

population of Vγ5
+
 dendritic epidermal T cells (DETC). The dermis is located beneath the stratum basale and is 

populated by various dermal DCs, macrophages, mast cells, conventional T cells and few innate lymphoid cells 

(ILCs). In addition, the dermis is densely traversed by blood and lymphatic vessels, which represent important 

entry and exit points for immune cells. Image taken from [20]. 
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cell types in the epidermis
19,20

. The murine epidermis further harbors a unique population of Vγ5
+
 

dendritic epidermal T cells (DETCs)
19

. Melanocytes are found in human and mouse epidermal layers 

and are known for their ability to produce the pigment melanin, which is involved in protection against 

UV-irradiation
20

.  

The dermis represents a distinct compartment of the skin that remains tightly connected to the 

epidermis by a basement membrane
20

. The dermis contains several structural components, such as 

collagen and elastin fibers which form a dense network of rigid and elastic fibers
20

. Within this 

network, other dermal components such as hair follicles, sebaceous glands or sweat glands are 

integrated. In contrast to the epidermis, a far greater diversity of cells is present in the dermis. 

Fibroblasts for example are known for their capability to produce collagen and elastin
19

. The dermis 

also harbors more specialized immune cell populations, such as distinct populations of dermal DCs 

(dDCs), dMφs, CD4
+ 

T helper cells, γδ T cells, natural killer T cells, or mast cells
19,20

. Furthermore, blood 

and lymphatic vessels ensure a constant supply with O2 and nutrients and further provide essential 

entry and exit portals for skin immune cells
21

. In addition, sensory nerve fibers innervate many parts of 

the skin including the dermis and provide the organism with a sense of touch and temperature
22

.  

The described components render the skin one of the most important organs for the initiation of 

immune responses. A similar complex network of immune and non-immune cells also protects other 

barrier organs. From an evolutionary perspective, epithelial surfaces of vertebrates have acquired a 

central role in host defense as they represent one of the most amenable sites for pathogen entry
20

. 

  Immune cells of the skin 1.2.1.1

The skin represents the body’s largest interface to the environment and harbors many different types 

of immune cells all of which participate in maintaining skin integrity (see Fig. 1.2). The skin is also 

heavily colonized by commensal bacteria which are in constant contact with skin cells and thereby also 

contribute to normal skin function
1
.  

Langerhans cells. In the epidermis, LCs are among the first cells which come into contact with 

environmental threats. In homeostasis, LCs are the main resident APCs in the epidermis and make up 

3-5% of all epidermal cells
23

. Resting LCs possess a branched morphology with extended dendrites 

that can protrude deep into the stratum corneum to acquire antigens
24

. LCs are characterized by the 

expression of high levels of MHCII as well as classical DC and Mφ markers, such as CD11c and F4/80, 

respectively
23

. In addition, LCs express high levels of CD24 and the epithelial cell adhesion molecule 

(EpCAM)
23,25

. Originally, Langerin (CD207) expression was used to unambiguously identify LCs in the 

skin, however, CD207 expression was also identified on a population of dermal, cross-presenting 

CD11b
+
XCR1

+
CD103

+
 DCs

26,27
. LCs are likely to arise from two precursor populations

28
. During 

embryogenesis
23

, a small population of LCs originates from erythro-myeloid progenitors (EMPs) 

derived from the yolk sac, whereas the majority of LC precursors comes from the fetal liver
23

. It was 
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demonstrated that LC development, homeostasis, and regeneration rely on signaling through  the 

colony-stimulating factor 1 receptor (CSF-1R)
23

. Interestingly, microglia the principal immune cells of 

the brain also originate from EMPs in the yolk sac in a CSF-1R-dependent manner
29

. Furthermore, 

differential functions of the two CSF1-R ligands, CSF-1 and IL-34, were described
30

. Whereas IL-34 is 

indispensable for the development and maintenance of LCs and microglia, CSF-1 is required for the 

repopulation of LCs and microglia following inflammation
30,31

. In the adult organism, LCs and microglia 

mostly maintain themselves, but can also be substituted by circulating monocytes and hematopoietic 

stem cell-derived precursors following inflammation
28

 (see Fig. 1.3). In addition, LCs and microglia are 

both resistant towards ionizing 

radiation, a feature attributed to the 

expression of cyclin-dependent 

kinase inhibitor (CDKN1A) that 

facilitates the efficient repair of 

damaged DNA
24

. LCs were long 

thought to be instrumental in the 

progression of allergic skin diseases, 

such as allergic contact dermatitis 

(ACD) or psoriasis
20

. However, the 

recent analysis of LC-depleted mice 

revealed conflicting data depending 

on the model system used or the 

dose and type of hapten. For 

example, human Langerin-DTA mice which constitutively lack LCs develop enhanced contact 

hypersensitivity (CHS) reactions
32

. In contrast, murine Langerin-diphtheria toxin receptor (DTR) mice 

which allow ablation of LCs and Langerin
+
 dermal DCs display a diminished CHS response

33
. It was 

further proposed that LCs can induce immune tolerance by inhibiting autoreactive T cells
34

. In addition, 

it is of great interest whether tolerogenic and inflammatory LCs are already present in healthy skin or 

are only generated under inflammatory conditions, as suggested by Seré and colleagues
35

.  

Dermal dendritic cells. DCs were originally identified in the murine spleen by Ralph Steinmann in 

1973
36

 and are primarily derived from hematopoietic stem cells in the bone marrow. In murine skin, 

the dermis is populated by heterogeneous groups of dermal (dDCs), most of which have equivalent 

counterparts in other lymphoid and non-lymphoid tissues
21,24

. In recent years, several DC subsets were 

identified in the skin and include, among others, type 1 and type 2 conventional DCs (cDC1s & cDC2s), 

monocyte-DCs (moDCs), plasmacytoid DCs (pDCs) and inflammatory DCs
24

 (see Fig. 1.4). In the 

murine skin, cDC1s and cDCs2 subsets can be generally distinguished by the expression of CD11b. 

Whereas cDC1s are negative for CD11b, they express the XC-chemokine receptor 1 (XCR1) and 

Figure 1.3 | Origin and source of skin LCs and Mφs. 

The majority of epidermal LCs and dermal Mφs is established 

prenatally. (blue panel). However with increasing age of the organism 

and repeated periods of inflammation, dermal Mφs and to a lesser 

extent LCs, are replaced by blood Ly6C
hi 

monocytes in a CCR2-

dependent manner (green panel). Image taken from [28]. 
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CD207
28

. Furthermore, they can be separated in a CD103
+
 and CD103

-
 population. CD103

+
 cDC1 

represent only a small fraction of dDC, but they are specialized in the cross-presentation of 

keratinocyte-derived self-antigens to cytotoxic T cells
27

. In contrast, cDC2 express high levels of CD11b, 

CD172a, and CX3CR1
24

. Besides surface markers, DC subsets can also be identified by expression of 

distinct transcription factors (TFs) such as Interferon regulated factor 8 (IRF-8) in cDC1 or IRF-4 in 

cDC2
24,37

. 

 

Analysis of DC ontogeny using lineage tracing in mice revealed that commitment to a specific cDC 

lineage already occurs in the bone marrow
38

. Here, cDC precursors (pre-cDCs) are genetically 

imprinted to generate a specific cDC subset in the skin. In contrast to LCs, the development of cDCs 

depends on Fms-related tyrosine kinase ligand (FLT3L) signaling
24,39

. In the skin, cDCs have a high 

turnover rate and approximately 50% of them are replaced by circulating pre-cDCs every seven days
28

. 

In contrast, moDCs develop in a CCL2/CCR2-dependent manner and are derived from circulating 

blood-derived monocytes which enter the skin as Ly6C
high

, MHCII
neg 

cells, and then gradually loose 

Figure 1.4 | Major APC populations present in the healthy skin. 

The dermis is traversed by a dense network of blood and lymphatic vessels which facilitate recruitment of blood-

derived cells and allow emigration of dermis-resident cells to skin-draining lymph nodes. CD11b
-
XCR1

+
 cDC1s, 

CD11b
+
 cDC2s, and double-negative (DN) DCs develop in an Fms-related tyrosine kinase ligand 3 (FLT3L)-

dependent manner from blood-derived pre-cDC precursor cells. In contrast, extravasated Ly6C
hi
 CCR2

+
 monocytes 

develop into dermal monocyte-derived DCs (moDCs) in a CCR2-dependent manner. Dermal macrophages are 

likely to have a dual origin arising from embryonic progenitors as well as Ly6C
hi
 monocytes

28
. Image modified 

after [28]. 
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Ly6C expression and acquire MHCII
24

. Whereas the exact identity of moDCs remains controversial, one 

study demonstrated that mature moDCs possessed a monocytic as well as cDC2-related transcriptomic 

signature
40

. In line with their genetic relationship to DCs, moDCs are also able to process and present 

antigens to naïve T cells but are inferior to cDC2s in migrating to skin-draining lymph nodes
40

. In 

humans, CD14
+
 monocytes resemble murine moDCs to some extent. Whereas substantial numbers of 

cDCs and moDCs are present in the healthy skin, pDC are only present in the inflamed skin
24

. 

Plasmacytoid DCs are known to produce large quantities of IFN-α in response to viral infections. In the 

skin, however, activated pDCs were implicated in the pathogenesis of systemic lupus erythematosus 

and psoriasis
20

.  

Dermal macrophages. In the skin, Mφs act as important sentinels of the immune system but are 

also critically involved in maintaining skin homeostasis. In contrast to dDCs, dMφs are long-lived, 

sessile cells which are superior at phagocytosis but inferior at T cell activation
28

. Dermal Mφs express 

classical Mφ markers, such as F4/80, CD11b, and intermediate levels of MHCII but need to be classified 

with more specific markers, such as CD64, CSF-1R or the proto-oncogene tyrosine-protein kinase 

MERTK. In general, dMφs do not express CCR2 which sets them apart from monocytes and moDCs
28,40

. 

As for all Mφ populations, development of dMφs requires CSF-1R/CSF-1 signaling
28

. In mice, dMφs are 

likely to originate from two distinct precursor populations. Comparable to moDCs, circulating Ly6C
hi
 

blood monocytes are a major source of dMφs
40

. However, comparable to other tissue-resident Mφs, 

such as Kupffer cells or microglia, one population of dMφs originates from yolk sac precursors and 

establishes prenatally
28

. It has to be noted that over time most dMφs will be of monocytic origin, 

especially following periods of chronic or frequent inflammation or infection (see Fig. 1.3)
30

. 

Interestingly, it has been shown that the tissue-resident nature of Mφs allows the local 

microenvironment to shape their epigenetic landscape and consequently refine Mφ functions
24,41

. 

Besides their role in pathogen clearance and tissue repair, dMφs were also shown to be required for 

the recruitment of neutrophils during skin infection
42

. For example, a population of CD4
+
 dMφs was 

found to produce chemokines, such as CXCL2 and CXCL10, in close apposition to postcapillary venules 

to recruit skin-resident and circulating leukocytes
42,43

.  

T cells. The healthy skin contains more than twice as many T cells as the blood, which highlights an 

important role of T cells in maintaining normal skin function. The skin harbors all major types of 

conventional (conv) T cells and subsets of unconventional or innate-like T cells. Conventional T cells 

include all subsets of CD4+ helper (TH) and CD8+ cytotoxic T cells. They are characterized by the 

expression of the αβ T cell receptor (αβ TCR) which recognizes antigens presented on MHCI or MHCII 

molecules
1
. The majority of conv T cells in the dermis has a memory phenotype and is characterized by 

high CD44 and CD69 expression and low levels of CD62L
44

. The skin-homing receptor cutaneous 

lymphocyte-associated antigen (CLA) is expressed on most skin-resident T cells
44

. CLA is an adhesion 
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molecule that is also found on circulating neutrophils and monocytes. It binds E-selectin on the 

vascular endothelium and mediates the first step in leukocyte extravasation
1
. To facilitate this 

migration out of the circulatory system, skin-homing CLA
+ 

T cells were found to express a set of 

distinct chemokine receptors, such as CCR4, CCR10, CXCR3 or CCR6
45

. In the inflamed skin, the 

expression of specific chemokines dictates the recruitment of specific T cell subsets. For example, the 

chemokines CCL17 and CCL22, both ligands of CCR4, were shown to be induced in the inflamed 

skin
46,47

 and to mediate the recruitment of CLA
+
CCR4

+
CD4

+
 TH1, TH17 and TH22 cells, as well as CCR4

+
 

regulatory T cells
48

. In line, CCL17-deficient mice develop a reduced response in the murine CHS 

model
49,50

. In addition, the epidermis harbors a heterogeneous population of tissue-resident CD8
+
 

memory T cells that are often found in close proximity to LCs
19

. Unconventional or innate-like T cells, 

such as γδ T cells or invariant natural killer T cells (iNKT cells) are less frequent in the murine and 

human skin. In contrast to conv T cells, γδ T cells are characterized by a distinctive TCR composed of a 

gamma (γ) and a delta (δ) chain. The antigens that activate γδ T cells are less well defined, although 

host-derived lipid antigens were suggested to play an important role in their activation
44

. In humans, 

γδ T cells make up only a small proportion of total skin T cells, 2-9% in the dermis and 1-10% in the 

epidermis
19

. In contrast, in the murine epidermis, unconventional Vγ5
+ 

DETCs constitute up to 90% of 

all epidermal T cells
19

. DETCs originate from fetal thymic precursors that seed the epidermis during 

embryonic development
51

. Interestingly, DETCs were shown to contribute to local immune surveillance 

by dampening conv T cell-mediated skin inflammation
52

. 

Other skin immune cells. In addition to the cell populations described above, the skin harbors 

many other types of immune cells, including mast cells, eosinophils, ILCs, or B cells
19,20

. Mast cells, for 

example, are activated in responses to allergens and secrete high amounts of pro-inflammatory 

mediators such as histamines. These mediators are stored in cytoplasmic granules and are released 

upon binding of allergens, drugs, or IgE antibodies
1
. In the skin, B cell-derived antibodies can also 

directly neutralize pathogens, prevent pathogen binding to epithelial surfaces, opsonize pathogens 

and antigens, or activate the complement system to initiate direct elimination of the pathogen
1,20

. 

Eosinophils represent a minor immune cell population in the healthy skin but are found in high 

numbers under pathological conditions, especially in parasitic infections
20

. Innate lymphoid cells (ILCs) 

represent a heterogeneous group of mucosal lymphocytes that are investigated for their exact roles in 

skin homeostasis and pathology. In analogy to the different T cell subsets, ILCs are subdivided into 

three main groups (ILC 1-3) based on their dependence on specific transcription factors and the 

expression of distinct effector cytokines, such as interferon γ (IFN γ), thymic stromal lymphopoietin 

(TSLP)/ IL-5 or IL-17/-22, respectively
18

. In the skin, ILC2s are the most abundant type of ILC. 

Furthermore, ILC2 were demonstrated to expand under inflammatory conditions of the skin and to 

induce a TH2-dependent immune response
53

. In contrast, ILC3s were found to be essential for tissue 

repair in the inflamed skin
54

. 
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 Inducible skin-associated lymphoid tissue 1.2.2

Over the years a growing body of research helped to shed light on the versatile immune responses in 

the skin under steady state as well as inflammatory conditions. In 1983, Streilein and colleagues 

proposed the existence of the skin-associated lymphoid tissue (SALT)
55

. The authors recognized for the 

first time that T cells and DCs both reside in the skin. They further demonstrated that naïve T cells need 

to be activated in skin-draining LNs before they return to the skin as effector memory T cells. Similar 

lymphoid structures were also found in specialized submucosal areas, where T and B cells are activated 

independently of secondary lymphoid organs
56

. The SALT concept reinforced the originally passive 

barrier function of the skin by a network of different immune cells which help to maintain skin 

homeostasis and regulate local inflammation. However, the original SALT concept did not consider the 

complex interactions of immune cells that take place in the skin under pathological conditions like in 

allergic contact dermatitis (ACD)
57

. Thus, in 2015 Sachiko Ono and Kenji Kabashima proposed that 

SALT is induced in response to local inflammation of the skin and coined the term inducible SALT or 

iSALT
58,59

. Using a murine model of ACD, they found that a sequential activation of different skin-

resident immune cells leads to the formation of dense leukocyte clusters around post capillary venules 

(see Fig. 1.5)
59,60

.  

 

Upon exposure to allergens, murine keratinocytes produce the cytokine IL-1α which in turn activates 

perivascular Mφs to produce the chemokine CXCL2 (C-X-C motif ligand 2). The release of CXCL2 

subsequently recruits CXCR2
+ 

dDCs to form premature clusters with perivascular Mφs (see Fig. 1.5). 

The production of additional cytokines and chemokines, such as CCL17, CCL22 or CCL27 then recruits 

antigen-specific memory and effector T cells into these clusters
60,61

. The authors conclude, that iSALT is 

Figure 1.5 | Formation of inducible skin-associated lymphoid tissue (iSALT). 

Left: Upon exposure to allergens, and possibly also in response to injury or infection, epidermal keratinocytes 

produce IL-1α which activates perivascular Mφs to produce increasing amounts of CXCL2. In turn, CXCR2-

expressing dermal DCs are recruited towards perivascular Mφ and form primitive immune cell clusters. Right: 

Within the cluster, enhanced cell-cell interaction induces the production of further cytokines and chemokines (e.g. 

IFNγ, CCL17 and CCL22) which will recruit memory and effector T cells to form the terminal (inducible) skin-

associated tissue (iSALT). Image taken from [59]. 
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necessary to induce local proliferation of T cells and is thus essential for the induction of immune 

responses
62

. Also, targeting iSALT formation represents a promising strategy to develop new therapies 

for the treatment of inflammatory skin diseases. 

 Allergic contact dermatitis 1.3

Allergic reactions of the skin are primarily caused by allergens present in the environment. Repeated 

exposure to the same environmental allergens can eventually result in mild or severe forms of chronic 

contact allergies. Contact allergies are a prominent member of ACD. The first indication of ACD is the 

rapid development of a skin rash at the site of allergen contact. The rash is accompanied by typical 

symptoms, such as itching, increased sensation of heat, localized swelling, or edema formation
1,20

. 

Symptoms related to some form of ACD account for about 20% of all work-related complaints in the 

U.S. and produce an estimated cost of 400 million US$ per year
63

. In addition to the environment, 

contact allergens are also frequently found in cosmetics, personal care products, biocides, plants, 

preservatives or jewelry. Due to their small size (<500 Daltons) they can directly penetrate the stratum 

corneum and react with host proteins in a process called haptenization. Thus, most contact allergens 

belong to the class of haptens which are small, inorganic or organic molecules
57

. To form highly 

reactive compounds, pre- and pro haptens are oxidized before or after entering the skin, respectively. 

In contrast, complete haptens can directly react with self-proteins and induce skin inflammation
57

.  

 Immunological mechanisms of ACD 1.3.1

According to the Gell and Coombs classification, ACD is considered a type IV hypersensitivity reaction 

being a T cell-mediated inflammatory reaction of the skin
64

. Haptens are not antigenic by themselves 

but by binding to host proteins; they form highly immunogenic neo-antigens which are recognized by 

innate immune cells as “altered self”
57

. The development of ACD is broadly separated into two distinct 

phases. In the sensitization (afferent) phase, epicutaneous exposure to a hapten activates skin innate 

immunity and results in the primimg of hapten-specific effector T cells in skin draining lymph nodes. In 

the elicitation (efferent) phase, challenging the already sensitized skin with the same hapten induces a 

rapid recruitment of hapten-specific effector T cells into the skin which than results in clinical 

manifestations of ACD. In the earliest events of the sensitization phase, hapten-protein complexes 

induce the local production of reactive oxygen species (ROS) in the skin. This will lead to the release of 

ATP and the generation of low-molecular-weight hyaluronic acid (lmHA). These molecules activate 

keratinocytes and induce inflammasome assembly which will subsequently result in the secretion of IL-

1β and IL-18 (see Fig. 1.6).  
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In addition, the release of other immune effector molecules such as histamines and the production of 

pro-inflammatory cytokines, such as tumor necrosis factor, IFNα & β, or TSLP, can activate LCs and 

dDCs to take up hapten-self complexes and transport them to skin-draining LNs
57

. Here, they will 

induce proliferation and differentiation of antigen-specific T cells which in turn home back to the skin 

and initiate the efferent phase. Now, repeated contact with the same allergen will activate local 

antigen-specific memory effector T cells and elicit a severe inflammatory dermatitis, known as ACD. 

Figure 1.6 | Cellular responses in ACD. 

Due to their small size (<500 D) and chemical properties, haptens can directly penetrate the skin. Keratinocytes 

and mast cells are among the first responding cells which will release a set of pro-inflammatory mediators, such 

as IL-1β, TNF or histamine. Professional antigen-presenting cells in the epidermis (LCs) and dermis (dDCs) take up 

cutaneous antigens and will transport them to skin-draining LNs to present them to and activate antigen-specific 

effector T cells. Image taken from [57]. 
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 Mouse model of ACD 1.3.2

Our current knowledge of ACD pathology is mainly derived from animal models in which inflammation 

is induced by allergen painting on the skin and is referred to as contact hypersensitivity (CHS). In a 

common model for CHS, the allergen DNFB (1-fluoro-2,4-dinitrobenzene) also called Sanger’s reagent 

is used to induce local inflammation of the murine skin. DNFB is a small lipophilic compound that can 

directly penetrate the skin
57

. To induce sensitization, DNFB is dissolved in acetone:olive oil (5:1) and 

applied to the shaved abdominal skin. Following sensitization, which lasts 5-7 days, the animals are 

challenged with a similar dose of DNFB on the ear (elicitation). The induced ear swelling response can 

be monitored over three days. As the degree of ear swelling directly correlates with the generated 

immune effector response, it can be used as a measure to compare transgenic mouse strains or test 

newly developed drugs. Although substantial differences exist between human ACD and the murine 

model of CHS, particularly regarding the duration of sensitization, taking much longer in humans, the 

CHS model is still considered a valuable model for human ACD.  

 The role of the chemokine CCL17 in skin allergy 1.3.3

Chemokines are small, 8-10 kDa, chemotactic cytokines that regulate leukocyte activation and 

coordinate their migration under physiological as well as inflammatory conditions. In general, 

chemokines can be separated in two groups: homeostatic chemokines, which are constitutively 

expressed, and inducible or inflammatory chemokines
65

. The chemokine superfamily comprises 48 or 

40 members in humans and mice, respectively. Based on the specific position of cysteine residues, 

chemokines are classified into four subtypes: C-C chemokines, C-X-C chemokines, C chemokines and 

C-X3-C chemokines. In addition, many chemokines can form homo/heterodimers or oligomers, which 

adds up to the complexity of chemokine signaling
66

. Recently a chemokine interactome was 

established describing all homo- and heterophilic chemokine-chemokine interactions
66

. All 

chemokines interact with one or several of 20 different chemokine receptors, all of which belong to the 

family of G Protein-coupled seven transmembrane receptors (GPCRs). Chemokines are promiscuous in 

their interaction with chemokine receptors; as such, one receptor often recognizes several ligands, and 

one chemokine can often bind to multiple receptors. This promiscuity is most apparent for 

inflammatory chemokines as homeostatic chemokines appear to be more evolutionary conserved.  



1 | Introduction 

14 

Figure 1.7 | Innate and adaptive immune responses in 

the skin. 

Skin injury activates resident immune and non-immune 

cells to secret a multitude of pro- and anti-inflammatory 

cytokines. Activated LCs and dDCs take up antigens, leave 

the skin and enter skin-draining lymph nodes to present 

antigens to naïve and memory T cells. Cytokine production 

in the skin induces the expression of adhesion molecules, 

such as E-selectin and ICAM-1, in blood vessel endothelial 

cells which will result in leukocyte adhesion along the 

endothelium of dermal post-capillary venules. 

Chemokines, such as CCL17 or CCL27, direct the 

extravasation of peripheral immune cells, including 

neutrophils, eosinophils and T cells. Upon entering the 

skin, antigen-specific T cells will encounter APCs and start 

to proliferate further fueling the immune response.  

ICAM-1, intercellular adhesion molecule 1.  

Image modified after [87]. 

The skin harbors a complex network of chemokines which mainly mediate recruitment of leukocytes 

from the blood (e.g., CXCL10 CCL17 and CCL27)
67

, while also coordinating egress of activated 

leukocytes via the lymphatics (e.g., CXCL12, 

CCL21, and CX3CL1)
68

. A prominent member 

that was shown to be involved in both 

processes is the C-C chemokine CCL17, also 

known as thymus and activation-regulated 

chemokine or TARC
49,50,69

. Although CCL17 was 

initially identified in the thymus
70

; numerous 

studies have described CCL17 expression in all 

major barrier organs
49,71,72

 as well as in 

secondary lymphoid tissues, such as skin-

draining LNs or gut-associated lymphoid 

tissue
72,73

. In these tissues, cDC2s are the main 

source of CCL17
73

. However, alternatively 

activated Mφs, fibroblasts, and blood 

endothelial cells were also found to produce 

CCL17
74

. In the skin, several DC subsets 

produce high levels of CCL17 after activation 

(data presented in this thesis). In humans and 

mice, the designated receptor of CCL17 is 

CCR4
75

, whereas CCR8 was also found to 

interact with CCL17 in humans
76

. CCL17 is 

primarily considered to promote inflammation 

via the recruitment of immune cells to sites of 

inflammation. In contrast, CCL22, the second 

ligand of CCR4, was shown to dampen 

inflammation by the recruitment of CCR4
+ 

regulatory T cells
77–79

. This might be explained 

by the fact that CCL17 and CCL22 engage with 

different binding sites on CCR4 and thus 

induce differential signaling pathways
80–82

, a 

phenomenon referred to as biased agonism
83

. 

In addition to regulatory T cells, CCR4 is mainly 

expressed on TH1 and TH2 cells, basophils, and 

NK cells, whereas some studies also reported 
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CCR4 expression on DCs, Mφs, and microglia
84,85

. In the skin, CCL17 was detected on the luminal side 

of post-capillary venules (see Fig. 1.7)
1,86,87

. Here, CCL17 induces the arrest of skin-homing CLA
+
 T cells 

that express CCR4 and thereby possibly promotes their extravasation into the dermis
86,88

. CCL17 was 

also shown to facilitate DC-T cell interaction
89

 and to promote LC emigration from the skin by 

enhancing responsiveness to the CCR7 and CXCR4 ligands, CCL21 and CXCL12, respectively
49

. 

Strikingly, overexpression of CCL17 in the epidermis of transgenic mice induced a more severe TH2-

type associated CHS reaction
90

. In line, the loss of CCL17 was associated with amelioration of skin 

inflammation in models of CHS
50,73

 and atopic dermatitis (AD)
49

. Intriguingly however, the analysis of 

CCR4-deficient mice revealed an enhanced inflammatory reaction in a model of oxazolone-induced 

CHS and no amelioration in DNFB-induced CHS
48,91

. This might be partially explained by the expression 

of CCR10  which was also shown to mediate recruitment of skin-homing, CLA
+ 

T cells via epidermal 

expression of CCL27
61

. Elevated expression of CCL17 has been generally associated with allergic and 

inflammatory diseases, including ACD and AD
69

. Interestingly, CCL17 was recently shown to be 

involved in development of inflammatory pain in a mouse model of collagen- or GM-CSF-induced 

arthritis
74

, which indicates also non-chemotactic functions of CCL17. Taken together, CCL17 plays 

pivotal roles in the immune system, in particular in the regulation of barrier organ immunity. Thus, 

targeting CCL17 represents a promising strategy for the treatment of many inflammatory diseases. 
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 Immunity in the brain 1.4

 Barrier sites in the CNS 1.4.1

The original idea of CNS immune privilege is mostly attributed to the blood-brain barrier (BBB) which 

separates the CNS from the systemic circulatory system. The central function of the BBB is to control 

the transport of nutrients, signaling molecules, and immune cells into the brain and to further protect 

the CNS against invading pathogens and toxic substances
92

. The BBB is formed by endothelial cells 

which are fused together by tight junctions. The endothelium is further shielded by astrocytic endfeet 

and contractile pericytes which control blood flow within the brain
92

. The BBB has developed 

sophisticated mechanisms to ensure that brain cells are constantly supplied with nutrients while still 

preventing the access of pathogens to the brain
93

. For example, small lipophilic agents can cross 

endothelial cells using transcellular routes, whereas larger molecules, such as glucose or amino acids, 

require active transport mechanisms
92,94

. The protective layers of the BBB are found on most blood 

vessels in the brain, although some brain regions such as the circumventricular organs (CVOs) lack a 

functional BBB
95

. CVOs are characterized by an extensive vasculature with highly permeable capillaries 

that are shielded by an additional layer of glial cells
95

. They are located around the brain ventricles and 

continuously sample proteins from the plasma and secrete hormones into the bloodstream. In addition 

to the BBB, two more barrier sites isolate the CNS from the periphery. The blood-cerebrospinal fluid 

barrier (BCSFB), located at the choroid plexus, and the arachnoid epithelium which forms a barrier 

between the blood and the cerebrospinal fluid (CSF) of the meninges
96

. In contrast to the BBB, the 

BCSFB consists of a fenestrated endothelium which allows the direct transport of substances into the 

CSF. In conclusion, CNS barrier sites not only protect against invading pathogens but also help to 

maintain homeostasis.  

 Microglia - Principal immune cells of the brain 1.4.2

Originally discovered at the beginning of the 20
th

 century by Santiago Ramon y Cajal and Pio Del Rio-

Hortega, microglia represent the principal immune cells of the brain
97,98

. Nevertheless, several studies 

have described the presence of other immune cells in the brain, including DCs
84

, mast cells
99

, and T 

cells
100

. In the healthy CNS, microglia comprise 5-10% of all CNS cells. Microglia are considered the 

only population of Mφs in the brain parenchyma. However, three other types of Mφs have been 

identified at the interfaces between the parenchyma and the circulation; perivascular, meningeal and 

choroid plexus Mφs (see Fig. 1.8)
98,101

. Among these, microglia are the only population that is solely 

derived from yolk sac erythro-myeloid progenitors (EMPs)
41,102

. 
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 Development of microglia 1.4.2.1

Much of the knowledge concerning the 

development of microglia is derived from fate-

mapping studies which use fluorescent reporter 

mouse strains expressing a tissue-specific Cre 

recombinase fused to the estrogen receptor
103

. 

By injecting pregnant mice with tamoxifen at 

distinct time points after ovulation, reporter 

expression can be switched on at distinct 

developmental time points. In mice, microglial 

development starts at approximately embryonic 

day 7 to E7.5 (E7.0-7.5) (see Fig. 1.9)
103,104

. Here, 

early yolk sac EMPs start to express the 

transcription factor RUNX1 (runt-related 

transcription factor 1) and the receptor tyrosine 

kinase c-Kit (CD117). These progenitor cells start to differentiate into yolk sac Mφs by upregulating 

PU.1 and CSF1R, which are both essential for microglia development and survival
102

. Between E8.0 and 

E9.0, yolk sac Mφs start to express key immune cell and microglia markers, such as CD45 and CX3CR1, 

respectively. At E9.0 - 9.5 these early microglia progenitors start to colonize the embryonic brain and 

continue to do so until the blood-brain barrier (BBB) closes at approximately E13.5
97

. Once inside the 

brain parenchyma, microglia progenitors will pass through three developmental stages – early 

microglia (~E10.5), pre-microglia (~E14.5) and adult microglia (P14), each of which is characterized by 

the expression of distinct surface molecules and a unique transcriptomic signature
97

. A striking feature 

of adult microglia is their ability to alter their morphology in response to subtle changes in the 

microenvironment
97

. Strikingly, this dynamic morphological adaptation is already apparent in the 

embryonic brain. Early microglia are characterized by a round, amoeboid morphology, whereas pre- 

and adult microglia acquire the typical highly ramified morphology at approximately E14.5 (see Fig. 

1.9). Microglia continue to proliferate until the end of postnatal week 1 (P7). Subsequently, they slow 

down their division and acquire a full maturation status at approximately postnatal day 14 

(P14)
97,103,104

.  

In the adult brain, neurons and astrocytes produce various growth factors such as transforming growth 

factor-β (TGF-β) which maintain a homeostatic microenvironment and keep microglia in resting state
97

. 

Thus, microglia that lack TGF-β receptor signaling adopt a highly activated phenotype and less 

ramified morphology
97,105

. In the healthy CNS, microglia are long-lived cells that are capable of self-

renewal either by in situ  proliferation or are derived from local microglia precursor pools
106

. It is 

thought that microglia have a turnover rate of 0.05 cells per hour
105

.  

Figure 1.8 | CNS myeloid cells. 

a: Under homeostatic conditions microglia are the only 

immune cells present in the brain parenchyma. B, c, d: 

Macrophages are located at the outer boundaries of the 

brain, namely the perivascular space, the meninges and 

the choroid plexus. In the same locations few blood-

derived  DCs can be present. Image taken from Prinz M. 
& Priller J., Immunity Rev. (2014). 



1 | Introduction 

18 

 

 Microglia functions 1.4.2.2

In both, the embryonic and adult CNS, microglia form intimate contacts with synapses and 

astrocytes
31

. In doing so, microglia have been implicated in homeostatic processes, such as the 

construction of neural circuits or neurogenesis
31

, while also being involved in the degeneration of 

synapses in neurodevelopmental and neurodegenerative diseases
105

. Under homeostatic conditions, 

microglia function as surveillant immune cells in the brain. They use their fine processes to continously 

scan the entire parenchyma every few hours diligently
105

. This way they quickly detect small 

perturbations in the microenvironment. Microglia express several key elements of the complement 

system, including the complement components C1q and C3 and complement receptors CR3 and 

CR5
31,107

. In contrast to the peripheral immune system, microglia have adopted the complement 

system for a process called ‘synaptic pruning
107,108

. Here, fragile synapses are tagged with complement 

components which are then engulfed by microglia. This ‘stripping’ process shapes synapses and 

thereby contributes to the formation of functional neural circuits
108

. Interestingly, CX3CR1 was also 

shown to mediate pruning of CX3CL1-expressing neurons
31

. Although pruning is most prevalent during 

embryonic brain development, microglia continue to shape neural cricuits in adulthood, particularly in 

neurogenic regions, such as the subventricular zone (SVZ) and the subgranular zone (SGZ)
31

. At later 

developmental stages (P1-P14), microglia support neuronal survival through the secretion of several 

growth factors, such as insulin-like growth factor (IGF) or brain-derived neurotrophic factor (BDNF). 

Thereby microglia also contribute to learning and memory formation
107,109

. In the adult animal (>P14), 

microglia also regulate the proliferation and survival of oligodendrocytes, the myelinating cells of the 

CNS
31

. Mature microglia preferentially interact with and monitor neurons that show high levels of 

activity
108

. In these neurons, glutamatergic receptor (NMDA)-mediated signaling induces the release of 

postsynaptic ATP to attract microglial process via the purinergic receptor P2RY12
31

. Whereas this 

interaction is important to attenuate neuronal activity, its dysregulation was shown to be involved in 

Figure 1.9 | Embryonic development of microglia. 

Microglia progenitors develop early during murine embryogenesis. At E7, erythro-myeloid progenitors in the yolk 

sac start to differentiate into early yolk sac Mφs through the upregulation of specific transcription factors, such as 

PU.1 and IRF8, and surface markers, such as CD45 and CX3CR1. From E9.5 onwards yolk sac progenitors start to 

populate the embryonic brain where they further differentiate into adult microglia and adopt their characteristic 

ramified morphology. Image modified after [98]. 
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the development of neurodevelopmental diseases such as autism spectrum disorder (ASD)
105

. 

Furthermore, microglia-derived mediators, such as cytokines, ROS or nitric oxide (NO), also regulate 

synaptic plasticity, including long-term potentiation (LTP)
31

.  

 

 Microglia in inflammation and neurodegenerative diseases 1.4.2.3

As stated earlier, mature microglia acquire a highly ramified morphology representing a ‘resting’ 

phenotype associated with brain surveillance
31

. Conversely, activated microglia are characterized by an 

amoeboid morphology, with larger, rounder cell bodies and shorter, thicker processes. This 

morphological adaptation is accompanied by an increase in phagocytosis, secretion of pro-

inflammatory cytokines, and the expression of a distinct inflammatory transcriptomic signature
110

. 

Microglia are for example activated by invading pathogens or by brain tissue damage caused by an 

ischemic stroke
31

. In addition, microglia are also highly activated in many neurodegenerative diseases 

(NDD)
107

. A hallmark feature of almost all NDD is the progressive accumulation of misfolded 

endogenous proteins, such as the prion protein PrP
Sc

 in spongiform encephalopathies, amyloid β (Aβ) 

in Alzheimer’s disease (ALD) or α-synuclein in Parkinson disease
107

. In these diseases, aging brain cells 

accumulate increasing amounts of misfolded proteins, which then start to aggregate and form 

oligomers and fibrils. These aggregates then deposit as extracellular masses or form intracellular 

inclusion bodies, both of which will mediate neurotoxicity
107

. In the healthy CNS, protein aggregates 

are readily cleared by microglial phagocytosis, whereas under inflammatory conditions, microglia 

produce increasing amounts of pro-inflammatory cytokines which promote protein aggregation and 

amplify neuronal damage
107

. Furthermore, it has been reported that peripheral inflammation also 

influences microglia activation and the progression of NDD
111–113

. Interestingly, the treatment of 

Figure 1.10 | Overview of microglia functions in the CNS. 

In the healthy CNS (left), microglia contribute to neuronal health through the secretion of neurotrophic factors 

(e.g. BDNF). Microglia are also able to prune fragile synapses which is important for embryonic brain 

development as well as the formation of distinct neural circuits. Furthermore, microglia are highly phagocytic cells 

which continuously take up senescent cells and slow down the accumulation of protein aggregates such as 

amyloid-β. Under inflammatory conditions (right), excessive microglia activation results in the degeneration of 

synapses and a reduced uptake of protein aggregates. Consequently, this promotes the progression of 

neurodevelopmental diseases and cognitive decline. Image taken from [101]. 
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systemic inflammation with non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a 

reduced risk for developing NDD
114

. Taken together, homeostatic activation of microglia is clearly 

associated with beneficial responses in the CNS whereas aberrant or excessive microglia activation was 

shown to contribute to initiation as well as progression of NDDs
107

. 

 Neuronal monitoring of peripheral immune responses 1.4.3

In the brain, a complex interplay of neurons and immune cells is required for the maintenance of 

homeostasis as well as for the generation of efficient but non-detrimental immune responses. 

Furthermore, the brain continuously monitors the function of all peripheral organs as well as the 

immune system. Therefore, the brain has evolved the following mechanisms which enable it to create 

an exact reflection of the peripheral immune response
115–119

 (see Fig. 1.11).  

1. The humoral pathway. TLR-expressing Mφs and endothelial cells that reside in CVOs and the 

choroid plexus respond to circulating pathogens with an increased production of pro-

inflammatory cytokines
101

. As the CVOs bypass the BBB, cytokines can diffuse into the brain 

parenchyma and activate microglia and neurons to further propagate the signal (see Fig. 1.11a). 

2. The afferent pathway. Sensory neurons can be activated by local cytokines, such as IL-1β or TNF, 

produced in response to peripheral infections. Depending on the site of infection, the information 

is relayed through different primary afferent nerves (see Fig. 1.11b). For example, vagal nerves are 

activated during abdominal or visceral infections, whereas trigeminal nerves respond to oro-

lingual infections
120

. 

3. Active transport of cytokines across the BBB. During systemic infections accumulating cytokines 

are transported across the BBB via saturable transport systems (see Fig. 1.11c) and activate local 

microglia
119

.  

4. TLRs and cytokine receptors on brain Mφs and endothelial cells. Perivascular Mφs and brain 

endothelial cells express various TLRs and cytokine receptors that respond to circulating, pyrogenic 

cytokines (see Fig. 1.11d)
119,121

. The activation of this cytokine signaling pathways can for example 

result in the local production of prostaglandin E2 which is an important regulator of the febrile 

response
120

. 

 

The overall consequence of this immune-to-brain cross-talk is the increased expression of various pro-

inflammatory cytokines and prostaglandins by microglia. The efficient induction of a brain-

inflammatory response typically requires two convergent actions; first, rapid activation of sensory 

neurons at the site of infection which sensitizes target brain regions for the action of cytokines 

(afferent or neural pathway) and second, the slower propagation of neural cytokine signaling within 

the brain (humoral pathway). This way, the neural-humoral pathway is able to create a picture of the 

peripheral immune response that enables the brain to take precise measures of action
120

. For example, 
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the brain mediates many symptoms of sickness behavior, including fever, fatigue, or loss of appetite. 

Luckily, however, during most systemic infections the brain is spared from a detrimental immune 

response which could result in irreversible tissue damage. 

 

Figure 1.11 | Cytokine-communication pathways of the CNS and the peripheral immune system. 

Circulating cytokines represent important signaling molecules facilitating communication of the nervous and 

immune systems. a: At distinct sites in the brain (e.g. CVOs) cytokines can diffuse freely into the brain parenchyma. 

b: Systemic cytokines can directly activate sensory nerve fibers which further propagate the signal across the BBB 

to activate neurons and brain-resident immune cells. c: Some cytokines can be actively transported across the BBB 

with the help of cytokine transporters. d: The expression of distinct cytokine receptors and TLRs allows endothelial 

cells of the BBB to directly respond to systemically-produced cytokines and pathogens, which will result in an 

increased production of immune effector molecules. Image taken from [115]. 
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 The hippocampus 1.5

The hippocampus represents an essential component of the brain of humans and many vertebrates. In 

most mammals, two hippocampi are found, one in each brain hemisphere
96,122

. The hippocampus is a 

medial temporal lobe structure, located under the cerebral cortex. It is a central integral of the limbic 

system which regulates a variety of functions, including behavior, learning, memory, orientation, 

emotional state, motivation, and olfaction
96

. The prominent role of the hippocampus in memory 

formation was initially discovered in patient H.M. who suffered severe memory impairments after a 

bilateral hippocampal resection
96

. These findings resulted in intense studies analyzing the specific role 

of the hippocampus in the formation of declarative memory which comprises both, episodic and 

semantic memory
96

. Around the same time, the discovery of hippocampal place cells identified a role 

for the hippocampus in spatial memory
123

. As a part of the limbic system, the hippocampus was also 

demonstrated to mediate emotional memory. The critical involvement of the hippocampus in 

declarative, spatial and emotional memory resulted in the proposal that different types of memory are 

wired in distinct intra-hippocampal neural circuits
122

.  

Structurally, the hippocampus has a long curved form which runs along a dorsal-to-ventral axis in 

rodents, corresponding to the posterior-to-anterior axis in humans (see Fig. 1.12A and B)
122

. It can 

roughly be subdivided into three main parts, the dentate gyrus (DG), the hippocampus proper, and the 

subiculum
96

. Originally, the structure of the hippocampus proper and the DG has been compared to a 

seahorse and a ram’s horn (Cornu Ammonis). Its abbreviation CA, is used to distinguish hippocampal 

subfields in the Ammon’s horn (CA1-3). In sagittal brain sections, the hippocampus can be readily 

identified as an area where the neocortex narrows into a single layer of densely packed pyramidal 

neurons. 
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 The trisynaptic circuit 1.5.1

The well-defined structure of the hippocampus strongly correlates with the mostly unidirectional flow 

of information (see Fig. 1.12B)
122,124

. The hippocampus receives significant input from the entorhinal 

cortex (EC) via the perforant path. The EC is a central part of the parahippocampal gyrus which is 

reciprocally connected with many cortical and subcortical structures as well as the brainstem. Most 

axons from the EC project to the granule cell layer in the DG (first synaptic connection). From the DG, 

information is passed via the mossy fibers to the dendrites of the CA3 pyramidal neurons (second 

synaptic connection). From there, CA3 axons, called Schaffer collaterals, project to the apical dendrites 

of cells in the CA1 region whose axons in turn project back to the EC via the subiculum (third synaptic 

connection). This tripartite unilateral projection system is known as the trisynaptic circuit or 

loop
96,122,124

.  

 

Figure 1.12 | Comparison of hippocampal anatomy in humans and mice. 

A, B: Schematic representation of the orientation of the hippocampal longitudinal axis in mice (A) and humans (B). 

The characteristic long curved form runs along a dorsal-to-ventral axis in mice and a posterior-to-anterior axis in 

humans. In addition, the exact position of the hippocampus (red) and the entorhinal cortex (EC, blue) in the 

murine and human brain is depicted. A Nissl cross-section of the murine and human hippocampus proper (CA-

CA3) and dentate gyrus (DG) is shown on the lower pictures. C: Cellular anatomy of the murine hippocampus. The 

subgranular zone (SGZ) represents one of only two neurogenic regions in the adult brain. In addition, the well-

defined structure is representative of a unidirectional flow of information. The hippocampus initially receives input 

from the EC via the performant path connecting to granule cells of the DG. Mossy fibers connect to dendrites of 

CA3 pyramidal neurons, which in turn project via the Schaffer collaterals to cells of the CA1 region. From here, 

synaptic information flows back to the EC via the subiculum. Image modified after [122] (A, B) and [124] (C). 
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 Chemokines in the hippocampus 1.5.2

There is now a well-established link between environmental stress and hippocampal dysfunction
120,125–

127
. In recent years, several immune effector molecules were found to be essential for healthy brain 

development and maintenance of homeostasis in the CNS
119,120

. In particular, cytokines and 

chemokines were demonstrated to be required for the guidance of synaptogenesis, synaptic pruning, 

and migration of neurons
126,128

. In the brain, chemokines and cytokines are mainly produced by 

microglia and astrocytes and to a lesser extent by neurons, oligodendrocytes and brain endothelial 

cells
128,129

. In addition, perivascular Mφs were demonstrated to be a pivotal source of cytokines and 

chemokines during systemic inflammation
97

. In contrast to other brain regions, the hippocampus 

possesses a remarkable plasticity 

and recapitulates neuronal 

development well into adulthood
126

. 

This plasticity combined with the 

high vascularization render the 

hippocampus particularly sensitive 

to perturbations from the environ-

ment
126

. For example, the increased 

production of peripheral cytokines 

in response to infectious stimuli will 

rapidly induce changes in 

hippocampal signaling and the 

production of cytokines, such as IL-

1β, IL-6 or TNF. In contrast to 

cytokines, chemokine function in the brain is less well defined. Similar to chemokine function in the 

periphery, chemokines in the nervous system were also demonstrated to regulate homeostatic as well 

as neuroinflammatory processes, such as directing chemotaxis of neurons in the embryonic brain, 

recruitment of peripheral immune cells or facilitating microglia-neuron and neuron-neuron 

communication (see Fig. 1.13)
126

. 

Neurogenesis. During embryonic development, neural progenitor cells were shown to express 

several chemokine receptors, including CCR1, CCR2, CCR5, CCR6, CXCR2, CXCR3, CXCR4, and 

CX3CR1
129,130

. In particular, CXCR4 and its ligand CXCL12 were found to play pivotal roles in the 

migration of CXCR4
+
 granule-neuron progenitor cells in the DG

131
. In line, the loss of CXCR4 or CXCL12 

in mice led to profound alterations in cerebellar and hippocampal development. In vitro, CXCL12 can 

directly act as a neurotransmitter and regulate axon guidance, outgrowth, and branching
132

.  

Figure 1.13 | Overview of chemokine functions in the murine 

hippocampus. 

Image taken from [126]. 
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Neuronal survival. Chemokines in the brain were also shown to mediate protection against various 

neurotoxic agents, such as gp120- or amyloid-β-peptide aggregates
128,133

. So far, CCL5, CCL22, CX3CL1, 

and CXCL12 were demonstrated to protect hippocampal neurons from neurotoxicity and apoptosis
129

. 

Interestingly, a chemokine-dependent induction of matrix metalloproteinases (MMPs) in the CNS is 

suspected to mediate these neuroprotective effects. MMPs mediate processing of chemokines at the 

N-terminus and generate various truncated versions of the chemokine. These truncated chemokines 

could potentially exert opposite effects compared to the full-length protein. For example, a truncated 

version of CXCL12 (aa5-67) was found to be neurotoxic
134

. Furthermore, N-terminal processing can 

also inactivate chemokines, as demonstrated for CCL22
135

. 

Neuromodulation. Whether chemokines belong to the group of neurotransmitters or 

neuromodulators is a question related to the physiological effects of both groups. Neurotransmitters 

propagate neuronal signaling under basal as well as activity-dependent conditions, whereas, 

neuromodulators have no effect on basal signaling but affect neuronal activity only under certain 

circumstances
129

. A direct neuromodulatory function of chemokines would require the expression of 

chemokine receptors at pre- or post-synaptic sites. However, chemokine receptors were only identified 

at non-synaptic sites
128,129

. Nonetheless, CXCR4/CXCL12 signaling was shown to suppress 

depolarization-induced release of dopamine from cultured rat neurons
129

, suggesting a direct 

neuromodulatory effect of CXCL12. In line, CXCL12 had no effect on the basal neural activity. In 

addition, several chemokines, including CCL5, CCL22, CXCL12, and CX3CL1, were also shown to 

modulate the frequency of spontaneous glutamatergic excitatory postsynaptic currents in cultured 

hippocampal neurons from rats
134

. The same neurons were also demonstrated to express the receptors 

necessary to mediate such chemokine-induced neuromodulation (CCR5, CCR4, CXCR4, and CX3CR1, 

respectively)
133

. These examples indicate that chemokines in the brain likely represent a new class of 

modulatory neuropeptides. 

 Epilepsy 1.6

Epilepsy is a chronic neurological condition of the brain which affects approximately 0.5% of people 

worldwide
136,137

. Epileptic patients experience a temporary disruption of normal brain activity, caused 

by an excessive neural activity in various brain regions. Depending on the brain region, epilepsy can 

cause multiple symptoms, including loss of consciousness, loss of speech or uncontrollable motor 

behavior. In the healthy brain, neurons continuously generate action potentials only at distinct time-

points. In epilepsy, groups of neurons all fire at the same time leading to the generation of 

spontaneous recurrent seizures (SRS)
136

. The brain region where the SRS originates is called the 

epileptogenic focus. The underlying causes for the generation of SRS are mild or severe structural 

abnormalities in the epileptogenic focus which might be due to genetic factors, infection, head injury, 

stroke or brain cancer. Based on the underlying cause, different forms of epilepsy are 
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distinguished
136,137

. Whereas idiopathic epilepsy is caused by genetic factors, symptomatic epilepsy is 

caused by a known factor such as stroke. Similarly, different types of SRS are distinctive for a certain 

form of epilepsy
137

. Whereas partial seizures begin in a localized brain region, generalized seizures 

affect a widespread area of the cortex. Among generalized seizures, six different types can be 

distinguished, absence, myoclonic, tonic, clonic, tonic-clonic, and atonic seizures. The most common 

forms of SRS are tonic-clonic seizures, also known as grand mal96
. Tonic-clonic seizures start with 

sudden stiffening body movements (tonic phase) characterized by the loss of orofacial motor control 

(tongue biting) and are followed by the typical rhythmic body movements (clonic phase). Over time, 

epileptic patients may experience prolonged or successive appearance of SRS with no or longer 

recovery times. This is commonly described as status epilepticus (SE) and represents the terminal state 

of the disease. Although, patients are commonly treated with antiepileptic drugs, only about two-

thirds respond to the treatment
136

. Therefore, surgical options, such as the removal or resection of the 

epileptogenic tissue are often considered the last option in amelioration of the disease. 

 Temporal lobe epilepsy 1.6.1

One of the most frequent forms of epilepsy is temporal lobe epilepsy (TLE)
137

. TLE is characterized by 

spontaneous, recurrent, focal seizures that originate in the temporal lobe and further spread to 

neighboring cortices. It is accompanied by a significant loss of hippocampal neurons and the stepwise 

development of a chronic gliosis. Comprehension of the underlying pathways and mechanisms that 

lead to the generation of epileptic seizures are difficult to study in human patients
138

. Thus, our current 

knowledge is mostly derived from rodent animal models. In rodents, TLE can be induced with the help 

of neurochemical agents, such as kainic acid (KA) or pilocarpine, optogenetic or electrical stimulation, 

traumatic injuries, and thermal or hypoxic insults
138

. In addition, the introduction of specific mutations 

in laboratory mice leads to the spontaneous development of idiopathic or audiogenic-induced 

seizures
138

. One of the most frequently used models is the kainic acid-induced status epilepticus (KA-

SE)
138

. Here, mice receive systemic or intrahippocampal injections of KA to progressively induce limbic 

SE and the development of chronic seizures
139

. The KA-SE model is often used in the analysis of TLE 

with hippocampal sclerosis. However, the model presents some critical limitations. For example, a high 

mortality rate, the incomparability of SRS generation in different animals, and the generally strong 

neurotoxicity of KA could lead to wrong conclusions concerning the underlying mechanisms of 

epileptogenesis. Thus, epileptic research strongly depends on the continuous development of new 

animal models which are less invasive and provide a better approach to study the underlying 

mechanisms of seizure generation
138

. 
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 Aim of the thesis 2.
The chemokines CCL17 and CCL22 represent well-known biomarkers for the diagnosis of atopic 

diseases. CCL17 has been extensively studied for its role in various allergic and inflammatory diseases, 

such as atherosclerosis, inflammatory bowel disease, and arthritis. In contrast, CCL22 has more often 

been associated with an immunosuppressive environment. In mice, both chemokines were shown to 

interact with the chemokine receptor CCR4 which is expressed on various immune cells, including 

effector memory T cells and regulatory T cells. In the immune system, CCL17 is probably best-known 

to attract effector T cells to sites of inflammation
75

, but was also found to facilitate T cell-DC 

interactions
89

, or to sensitize DCs for CCR7- and CXCR4-dependent migration
49

. Considering the 

prominent role of CCL17 for leukocyte recruitment its blockade represents a valuable approach for the 

treatment of various inflammatory diseases.  

In previous studies, we demonstrated that CCL17 is expressed in distinct DC subsets of all major barrier 

organs. Furthermore, CCL17-deficient mice are protected in mouse models of inflammatory skin 

diseases, such as AD or CHS. In light of these results, we recently developed two highly efficient RNA 

aptamers with specificity for murine CCL17. Hence, the first aim of this thesis was to further 

characterize the distinct subsets of CCL17-expressing cells in the murine skin and to validate the two 

novel RNA aptamers for their capability to neutralize CCL17 in vitro and in vivo. In addition, others 

previously demonstrated that CCL22 induces a more rapid desensitization and internalization of CCR4 

compared to CCL17
80–82

 which implies biased agonism of CCL17 and CCL22 for CCR4. In addition, it 

was shown that CCR4-deficient mice display an exaggerated inflammation of the skin
91,140

 after 

challenge with a contact sensitizer, whereas CCL17-deficient mice showed amelioration of CHS 

responses compared to control mice. These results suggested a possible inhibitory role for CCL22 in 

CCL17-deficient mice. Thus, in the present thesis our recently generated CCL17/22-double-deficient 

mice should be analyzed in the CHS model and compared to CCR4-deficient and CCL17-deficient 

mice.  

Aside from its expression in immune cells, we also previously detected CCL17 expression in a subset of 

hippocampal neurons in the murine brain. This expression could be further enhanced upon systemic 

application of LPS (Bachelor theses, L. Radau, 2014 and N. Offermann, 2015). Furthermore, CCL17 and 

CCR4 had been previously implicated in the development of experimental autoimmune 

encephalomyelitis
84,85

. Thus, in the second part of the thesis the regulatory pathways underlying CCL17 

expression and its functional relevance in the murine brain should be investigated. 

Taken together, this thesis aimed at providing a more comprehensive insight into the functional roles 

of CCL17 during regulation of cutaneous immune responses and its impact on neuroimmune cross-

talk in the brain. 
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 Materials 3.

 Equipment 3.1

Equipment Article/ Company 

Automatic tissue processor 
Leica TP1020 (Leica Microsystems, Wetzlar, 

Germany) 

Balances 

440-35A (Kern & Sohn, Balingen, Germany) 

ABJ-NM (Kern & Sohn, Balingen, Germany) 

EW-N (Kern & Sohn, Balingen, Germany) 

Cell counting chamber 
Neubauer improved (La Fontaine via Labotec, 

Göttingen, Germany) 

Centrifuges 

MicroStar17 (VWR, Wayne, USA),  

5415R (Eppendorf, Hamburg, Germany) 

5424R (Eppendorf, Hamburg, Germany)  

5810R (Eppendorf, Hamburg, Germany)  

Allegra X-15R (Beckman Coulter, Pasadena, USA)  

ELISA washer CAPP wash 12 (CAPP, Odense, Germany) 

Flow Cytometer 

BD LSR II Flow (BD Biosciences, Heidelberg, 

Germany) 

BD FACSCanto II (BD Biosciences, Heidelberg, 

Germany) 

Freezer (-20°C) 

Comfort  (Liebherr, Biberach, Germany) 

Bosch GSD12A20 (Bosch, Gerlingen, Germany) 

Profi Line GG4310 (Liebherr, Biberach, Germany) 

Freezer (-80°C) 
New Brunswick Ultra-Low Temperature Freezer 

(Eppendorf, Hamburg, Germany) 

Fridge (+4°C) 

KTR16A21/02 (Bosch, Gerlingen, Germany) 

MediLine LKUexv1610 (Liebherr, Biberach, 

Germany) 

Gel electrophoresis 
PerfectBlue Gel System (Peqlab, Erlangen, 

Deutschland) 

Heating devices 

TS1 ThermoShaker (Biometra, Göttingen, 

Germany) 

Heatingblock Thermostat TH21 (HLC BioTech, 

Bovenden, Germany) 

Waterbath WNB 22 (Memmert, Schwabach, 

Germany) 

Homogenizer Precellys®24 (Peqlab, Erlangen, Germany) 

Ice machine 
Scotsman Flockeneisbereiter AF200 (Hubbard 

Systems, Birmingham, USA) 

Incubator CB 150 (Binder, Tuttlingen, Germany) 

Table 3-1 | Equipment 
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Incubator shaker Innova 44 (Eppendorf, Hamburg, Germany) 

Intravital microscopy stage Customized 

Laminar flowWorkbench 
BDK Laminar Flow (BDK, Sonnenbühl, 

Genkingen, Germany) 

Magnetic stirrer 
IKA RCT basic (IKA-Werke GmbH & Co. KG, 

Staufen, Germany) 

Measuring cylinder 
250ml, 500ml, 1000ml, 2000ml (VWR, Wayne, 

USA) 

Microscope 
LSM 780 ZEISS (Carl Zeiss Microscopy GmbH, 

Jena, Germany) 

Microtome 

Leica RM2255 (Leica Microsystems, Wetzlar, 

Germany) 

Leica HI1210 (Leica Microsystems, Wetzlar, 

Germany) 

Microwave NN-E235M (Panasonic, Osaka, Japan) 

Pipette Controller, cordless 
MATRIX CellMate II (Thermo Scientific, Waltham, 

USA) 

Pipettes 

10μl, 20μl, 200μl, 1000μl (Eppendorf, Hamburg, 

Germany) 

2,5μl ErgoOne (StarLab, Hamburg, Germany) 

Multichannel DV8-10, DV12-50, DV8-300 (HTL 

Lab Solutions, Warszawa, Poland) 

Power supply PowerPac
TM

 (BioRad, Hercules, USA) 

Real-Time PCR Detection System 
CFX96 TouchReal-Time PCR Detection (Bio-Rad, 

Munich, Germany) 

Spectrophotometer 1 (RNA) 

 

Spectrophotometer 2 (ELISA) 

NanoDrop
TM

 ND-1000 (NanoDrop Products, 

Wilmington, USA)  

EL 800 (BioTek, Winooski, USA) 

infinite M200 (Group Ltd., Männedorf, 

Switzerland) 

Thermal cycler 

T100
TM 

(BioRad, Hercules, USA),  

TProfessional Thermocycler (Biometra, 

Göttingen, Germany) 

T1 Thermocycler (Biometra, Göttingen, Germany) 

Threaded bottles 
100ml, 250ml, 500ml, 1000ml (Schott, Mainz, 

Germany) 

Transilluminator 

Transilluminator UST-30M-8R (BioView, Rehovot, 

Israel) 

Biostep Dark Hood DH-40/50 (biostep, 

Burkhaltsdorf, Germany) 
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Vibratome VT1000, Leica, Nussloch, Germany 

Vortex shaker 
Vortex Genie 2 (Scientific Industries, New York, 

USA) 

 Consumables 3.1

Item Company 

BD Plastipak 1ml Sub-Q BD Medical, Le Pont de Claix Cedex, France 

Cell strainer nylon (40μm, 70µm, 100µm) VWR, Radnor, USA 

CellTrics® Partec, Meckenheim, Germany 

Cover slips Roth, Karlsruhe, Germany 

Corning® Costar® Transwell® cell culture 

inserts 
Corning, New York, Vereinigte Staaten 

Culture plates (6-well/ 24-well/ 48-well/ 96-

well, flat bottom) 
Greiner, Frickenhausen, Germany 

Disposal bags Roth, Kalsruhe, Germany 

ELISA plate (half-area, 96 K) Greiner, Kremsmünster, Austria 

Eppendorf Tubes® 5ml Eppendorf, Hamburg, Germany 

Filter tips Sarstedt, Nümbrecht, Germany 

Flow cytometry tubes Sarstedt, Nümbrecht, Germany 

Glass beads Roth, Kalsruhe, Germany 

Glass Pasteur pipette Roth, Kalsruhe, Germany 

Gloves 
Semperit Technische Produkte GmbH, Wien, 

Austria 

Hard-shell PCR plates Bio-Rad, München, Germany 

Measuring pipettes (5ml, 10ml, 25ml) Greiner, Kremsmünster, Austria 

Micro tube 1.1ml Z-Gel Sarstedt, Nümbrecht, Germany 

Micro tube 2ml + screw cap Sarstedt, Nümbrecht, Germany 

Microplate, 96well (F/U) Greiner, Frickenhausen, Germany 

Microscope slides (Superfrost plus) Thermo Scientific, Waltham, USA 

Multiply
®

µStrip Pro mix.colour Sarstedt, Nümbrecht, Germany 

Parafilm® American National Cam, Greenwich, USA 

PCR tubes Sarstedt, Nümbrecht, Germany 

Petri dishes Greiner, Kremsmünster, Austria 

Precision wipes Kimberly-Clark, Reigate, United Kingdom 

Reaction tubes (15ml, 50ml) Greiner, Frickenhausen, Germany 

Reagent reservoirs Thermo Scientific, Waltham, USA 

Safe seal reaction tubes (0,5, 1.5ml, 2.0ml) Sarstedt, Nümbrecht, Germany 

Sterican needles (0.90x40mm, 19G x 1½) Braun, Melsungen, Germany 

Sterile filters (Filtopur S 0.45) Braun, Melsungen, Germany 

Table 3-2 | Consumables 
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Surgical disposable scalpel Braun, Tuttlingen, Germany 

Syringe filtration unit (Filtropur S0.2/0.45) Sarstedt, Nümbrecht, Germany 

Syringes Inject-F Tuberkulin (1ml) Braun, Melsungen, Germany 

Syringes Inject® (2ml, 5ml, 10ml, 20ml) Braun, Melsungen, Germany 

Tissue freezing medium Leica, Nussloch, Germany 

Tissue-Tek® Cryomold (15x15mm, 

25x20mm) 
Sakura Finetek, Torrance, USA 

Venofix® A 21G Braun, Melsungen, Germany 

Weighing pans Roth, Karlsruhe, Germany 

 Chemicals, reagents and recombinant proteins 3.2

Chemical/ reagent Company 

100bp DNA Ladder New England BioLabs, Ipswich, USA 

1-Fluoro-2,4-dinitrobenzene (DNFB) Sigma-Aldrich, Steinheim, Germany 

10x TAE buffer Invitrogen, Carlsbad, USA 

2-Propanol >99.5% Roth, Karlsruhe, Germany 

Acetic acid 100% Roth, Karlsruhe, Germany 

Acetone VWR, Darmstadt, Germany 

Albumin Bovine Fraction V, pH=7.0 
SERVA Electrophoresis GmBH, Heidelberg, 

Germany 

Ampuwa Fresenius Kabi, Bad Homburg, Germany 

B-27™ supplement (50X) Gibco by Life technologies, Carlsbad, USA 

CountBright™ absolute counting beads Life technologies, Carlsbad, USA 

CpG ODN 1668 TIB Molbiol, Berlin, Germany 

DABCO Sigma-Aldrich, Steinheim, Germany 

Diphteria Toxin (Unnicked) Calbiochem by Merck, Darmstadt, Germany 

Dithiothreitol (DTT) Molecular Grade Promega, Fitchburg, USA 

DNase/RNase-Free Water Zymo Research, Irvine, USA 

Deoxynucleotide (dNTP) Solution Mix Peqlab, Erlangen, Germany 

Dulbecco's Modified Eagle Medium (DMEM) ThermoFisher, Waltham, USA 

Dulbecco’s PBS Sigma-Aldrich, Steinheim, Germany 

Ethanol 70% (methylated) Roth, Karlsruhe, Germany 

Ethanol absolute for molecular biology ApliChem, Darmstadt, Germany 

Ethanol Rotipuran >99.8% Roth, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich, St. Louis, USA 

FACS Clean Solution BD Bioscience, Franklin Lakes, USA 

FACS Rinse Solution BD Bioscience, Franklin Lakes, USA 

Fetal Bovine Serum ThermoFischer, Waltham, USA 

Table 3-3 | Chemicals, reagents and recombinant proteins 
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Fixable Viability Dye eFluor 450/ 780 eBioscience, San Diego, USA 

Hair removal Veet® Reckitt Benckiser Group plc, Slough, England, UK 

Hank’s Balanced Salt Solution (HBSS) (10x) Gibco by Life Technologies, Carlsbad, USA 

Hemalaun solution Sigma-Aldrich, St. Louis, USA 

HEPES Sigma-Aldrich, St. Louis, USA 

Hydrochloric acid 37% Roth, Karlsruhe, Germany 

Laminin Sigma-Aldrich, St. Louis, USA 

LPS, E. coli 0111:B4 Sigma-Aldrich, St. Louis, USA 

Mowiol Sigma-Aldrich, St. Louis, USA 

Murine CCL17 Peprotech, New York, USA 

Murine TNF Peprotech, New York, USA 

Neurobasal medium Gibco by Life Technologies, Carlsbad, USA 

Oligo (dT)12-18 primer ThermoFisher, Waltham, USA 

Olive oil Sigma-Aldrich, St. Louis, USA 

OneComp/ UltraComp ebeads eBioscience, San Diego, USA 

Paraformaldehyde (PFA) Merck, Darmstadt, Germany 

Penicillin-Streptomycin Gibco by Life Technologies, Carlsbad, USA 

Percoll 
GE healthcare life science, Chalfont St Giles, 

Buckinghamshire, GB 

peqGOLD Universal Agarose Peqlab, Erlangen, Germany 

Phosphate Buffered Saline Dulbecco Merck, Darmstadt, Germany 

Poly-D-lysine Invitrogen, Carlsbad, USA 

Polyinosinic:polycytidylic acid (poly (I:C)) Invivogen, San Diego, USA 

Protease Inhibitor complete Tablets, Mini Roche, Indianapolis, USA 

QIAzol Lysis Reagent Qiagen, Hilden, Germany 

RPMI 1640 ThermoFisher, Waltham, USA 

Reverse transcription buffer (5X) Peqlab, Erlangen, Germany 

Sodium hydroxide solution Roth, Karlsruhe, Germany 

Sulfuric acid (H2SO4) Roth, Karlsruhe, Germany 

SYBR® DNA Gel Stain Invitrogen, Carlsbad, USA 

Tissue Freezing Medium Leica Biosystems, Nussloch, Germany 

Tetramethylrhodamine isothiocyanate–

Dextran, mol wt 155,000 (TRITC-dextran) 
Sigma-Aldrich, St. Louis, USA 

TritonX-100 ThermoFisher, Waltham, USA 

TruStain fcX
TM

 (anti-mouse CD16/32) (Clone: 

93) 
BioLegend, San Diego, USA  

Trypan Blue Sigma-Aldrich, St. Louis, USA 

Trypsin Gibco by Life technologies, Carlsbad, USA 

Tween-20 Roth, Karlsruhe, Germany 

Vectashield with DAPI Vector Labs, Burlingame, California, USA 

Xylol Roth, Karlsruhe, Germany 
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 Solutions and buffers 3.3

Solution/buffer Content 

Brain digestion buffer 

DMEM 

DNase I (1 mg/ml) 

Collagenase (2.5 mg/ml) 

Complete RPMI 1640 

RPMI Medium 

10% FCS 

1% Penicillin-Streptomycin 

DNFB solution challenge 0.3% DNFB (w/v) in acetone:olive oil (5:1) 

DNFB solution sensitization 0.25% DNFB (w/v) in acetone:olive oil (5:1) 

EDTA (0.5M) 

186.g EDTA 

approx. 20g NaOH 

1000ml H2O 

pH 7.8-8.0 

ELISA stopping solution 25% H2SO4 in H2O 

ELISA wash buffer 0.05% Tween-20 in PBS 

Histology blocking buffer (brain) 

PBS 

5% BSA 

5% normal goat serum 

0.5% TritonX-100 

Histology primary antibody buffer (brain) 

PBS 

1% BSA 

1% normal goat serum 

0.1% TritonX-100 

Histology blocking buffer (skin) 

PBS 

10% normal goat serum 

1% CD16/CD32 antibody 

0.5% TritonX-100 

Lysis buffer (tail lysis) 

A. dest 

5 mM EDTA, pH 8,0 

0,2 % SDS 

200 mM NaCl 

0,1 mg/ml Proteinase K 

MACS buffer 

PBS 

0.5% BSA 

2mM EDTA 

PFA (4%) 

4g PFA 

100ml PBS 

pH 7.4 

Starvation RPMI 1640  

RPMI Medium 

0.5% FCS 

1% Penicillin-Streptomycin 

Table 3-4 | Solutions and buffers 
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Skin digestion buffer 

PBS 

DNase I (200 U/ml) 

Liberase™ (0.8 U/ml) 

 ELISA Kits 3.4

Target molecule/protein Company 

CCL17 R&D Systems, Mineapolis, USA 

CX3CL1 R&D Systems, Mineapolis, USA 

IL-1β R&D Systems, Mineapolis, USA 

TNFα R&D Systems, Mineapolis, USA 

 Antibodies 3.5

 Antibodies for flow cytometry 3.5.1

Antigen Isotype Clone Conjugate Company 

B220 rat  RA3-6B2 APC-Cy7 BioLegend 

CCR2 rat  475301 APC R&D Systems 

CD3 hamster  145-2C11 APC-Cy7, PE, PerCP BioLegend 

CD4 rat  RM4-5 BV605 BioLegend 

CD8a rat  53-6.7 PE-Cy7 BioLegend 

CD11b rat  
M1/70 APC, BV605, PE-Cy7, 

PerCP 

BioLegend 

CD11c hamster  N418 PerCP, APC-Cy7 BioLegend 

CD19 rat  eBio1D3 PE eBiosciences 

CD24 rat  M1/69 APC, BV421 BioLegend 

CD45 rat  30-F11 PE, BV510 BioLegend 

CD64 mouse  X54-5/7.1 PerCP BioLegend 

CD86 rat  GL-1 PE-Cy7 BioLegend 

CD103 rat  M290 PE BD Biosciences 

CD206 rat  C068C2 APC BioLegend 

F4/80 rat  BM8 APC, PerCP BioLegend 

Ly-6G rat PE, PE-Cy7 1A8 BioLegend 

Ly-6C rat APC-Cy7, PerCP HK1.4 BioLegend 

MHCII rat PE-Cy7, PerCP M5/114.15.2 BioLegend 

NK1.1 mouse PE PK136 BioLegend 

TCRb hamster PE H57-597 BioLegend 

TCRgd hamster APC GL3 BioLegend 

XCR1 mouse BV421 ZET BioLegend 

Table 3-5 | Elisa Kits 

Table 3-6 | Flow cytometry antibodies 
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 Antibodies for Immunohistology 3.5.2

Antigen Isotype Clone Conjugate Company 

GFP Rabbit IgG Polyclonal purified Life Technologies 

IBA-1 Rabbit IgG Polyclonal purified Wako 

Laminin Rabbit IgG L9393 purified Sigma Aldrich 

LYVE-1 Rabbit IgG 14917 purified Abcam 

Mouse IgG Goat IgG Polyclonal biotinylated Dianova 

NeuN Mouse IgG A60 purified Merck 

Biotin Streptavidin - Cy3 BioLegend 

Rabbit IgG Rabbit IgG Polyclonal Alexa Fluor 488 Life Technologies 

Rabbit IgG Rabbit IgG Polyclonal Alexa Fluor 594 Life Technologies 

 Kits 3.6

Name Company 

Absolute qPCR SYBR Green ROX Mix Thermo Scientific, Waltham, USA 

Direct-zol™ RNA MiniPrep Kit Zymo research, Irvine, USA 

LIVE/DEAD® Fixable Violet Dead Cell Stain Kit, 

for 405 nm excitation 
Life Technologies, Carlsbad, USA 

MyTaq HS Red DNA Polymerase  Bioline, London, UK 

Quick-RNA™ MiniPrep Zymo research, Irvine, USA 

Table 3-7 | Immunohistology antibodies 

Table 3-8 | Kits 
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 PCR primer sequences 3.7

Target  Sequence (5’ to 3’) 

18s rRNA 
Fwd GCA ATT ATT CCC CAT GAA CG 

Rev GGG ACT TAA TCA ACG CAA GC 

CCL2 
Fwd ACG TCC CTG TCA TGC TTC T 

Rev GGA TCA TCT TGC TGG TGA AT 

CCL17 
Fwd TGC TTC TGG GGA CTT TTC TG 

Rev GAA TGG CCC CTT TGA AGT A  

CCL22 
Fwd TCT TGC TGT GGC AAT TCA GA 

Rev GAG GGT GAC GGA TGT AGT CC 

TNF 
Fwd TCT TCT CAT TCC TGC TTG TGG 

Rev GGT CTG GGC CAT AGA ACT GA 

IL-1β 
Fwd TTG ACG GAC CCC AAA AGA T 

Rev GAA GCT GGA TGC TCT CAT CA 

IL-6 
Fwd GCT ACC AAA CTG GAT ATA ATC AGG A 

Rev CCA GGT AGC TAT GGT ACT CCA GAA 

 Software 3.8

Software Company 

Argus X1 Biostep, Burkhardtsdorf, Germany 

BZ-II Analyzer Keyence, Montabaur, Germany 

CFX Manager
TM

 Software Bio-Rad, Munich, Germany 

CorelDRAW Graphics Suite Corel Corporation, Ottawa, Ontario, Canada 

FACS Diva BD, Franklin Lakes, USA 

Fiji (Image J) Open source scientific analysis program 

FlowJo 9.9.7/10.4.1 TreeStar, Inc., Ashland, USA 

GraphPad Prism 6 GraphPad, La Jolla, USA 

Mendeley Software Elsevier, Amsterdam, Netherlands 

Microsoft Office 2011 Microsoft, Redmond, USA 

NanoDrop
TM

 ND-1000 NanoDrop Products, Wilmington, USA 

Zen black Carl Zeiss Microscopy GmbH, Jena, Germany 

Table 3-9 | PCR primer sequences 

Table 3-10 | Software 
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 Enzymes 3.9

Enzyme Company 

DNase I  Roche, Basel, Switzerland 

Horseradish Peroxidase Sigma-Aldrich, St. Louis, USA 

Liberase
TM 

 Roche, Basel, Switzerland 

Proteinase K Sigma-Aldrich, St. Louis, USA 

RevertAid Reverse Transcriptase Thermo Scientific, Waltham, USA 

RiboLock RNase Inhibitor Thermo Scientific, Waltham, USA 

 Mice strains used for experiments 3.10

Mice were housed under specific pathogen-free (SPF) conditions in the Genetic Resources Center 

(GRC) of the Life & Medical Sciences (LIMES) Institute, University of Bonn, Germany, if not indicated 

otherwise. Mice were maintained in standard animal cages under conventional laboratory conditions 

(12h/12h light/dark cycle, 22 °C), with ad libitum access to food and water. All experiments were 

performed using male or female 8–12 weeks-old WT (C57BL/6J) or transgenic mice. Littermate controls 

derived from the same breeding stock as CCL17
E/E

 and CCL17
E/+

 mice are designated as CCL17
+/+

 mice. 

TNFR1-deficient (Tnfrsf1a
−/−

) and TNFR1- and TNFR2-deficient (Tnfrsf1a
−/−

Tnfrsf1b
−/−

) were bred at the 

Institute of Molecular Medicine and Experimental Immunology (IMEI), University of Bonn, Germany.  

Mouse line Genetic background Reference Supplier 

WT 

WT 

C57BL/6J-RCCHsd 

C57BL/6NCrl 

- 

- 

Envigo/ GRC 

Charles river/ GRC 

CCL17
E/+ 

C57BL/6J-RCCHsd Alferink et al., 2003
73

 I. Förster 

CCL17
E/+ 

(IVM) 

25% C57BL/6J-

RCCHsd/ 75% B6N-

Tyrc-Brd 

I. Förster (unpublished) 

 

I. Förster 

 

CCL17
E/E

 C57BL/6J-RCCHsd Alferink et al., 2003
73

 I. Förster 

Tnfrsf1a
−/−

 C57BL/6NCrl Peschon et al., 1998
141

 Z. Abdullah 

Tnfrsf1a
−/−

Tnfrsf1b
−/

−
 

C57BL/6NCrl Peschon et al., 1998
141

 
Z. Abdullah 

GM-CSF
-/-

 C57BL/6J-RCCHsd Stanley et al., 1994
142

 B. Becher 

MyD88
-/-

 C57BL/6J-RCCHsd Adachi et al., 1998
143

 S. Akira 

CCL17
DTR/+

 C57BL/6J-RCCHsd I. Förster (unpublished) I. Förster 

CCL17
DTR/E

 C57BL/6J-RCCHsd I. Förster (unpublished) I. Förster 

Table 3-11 | Enzymes 

Table 3-12 | Overview of the used mice strains 
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CCL17
E/+

 and CCL17
E/E

, CCL17
DTR/+

, GM-CSF
-/-

, and MyD88
-/- 

mice were backcrossed into the C57BL/6J-

RCCHsd background for at least 4 generations. All experiments were approved by the government of 

North Rhine-Westphalia (Az. 87-51.04.2010.A260, Az. 84-02.04.2011.A074, and 84-02.04.2016.A226). 

 Generation of CCL17/CCL22-double-deficient mice 3.11

Using the TALEN (Transcription activator-like effector nuclease) technology, new CCL17/CCL22-

double-deficient mice were generated by Philip Hatzfeld by targeting the second exon of CCL22 in 

CCL17
E/E 

mice. This strategy presented several advantages. First, only one TALEN construct targeting 

the CCL22 locus had to be designed and injected. Second, the resulting offspring would still contain 

the EGFP construct in the Ccl17 locus, allowing a rapid identification of CCL17-expressing cells using 

EGFP fluorescence. Genomic sequencing of all successfully targeted animals revealed that the 

(TAL)endonuclease had introduced eight different mutations (‘A’-‘H’) in the second exon of the CCL22 

locus. It was decided to use mice harboring the mutation ‘F’ or ‘G’ for all further experiments. Whereas 

mutation ‘F’ resulted in the deletion of 13 nucleotides (position 119’-131’), thereby inducing a 

frameshift mutation and early termination of translation, mutation ‘G’ was identified as an in-frame 

deletion of 18 nucleotides (position 115’-132’). Both mutations resulted in the deletion of the first two 

cysteines which are essential for the formation of the tertiary structure of all CC chemokines. It has to 

be taken into account, that mutation ‘F’ led to the production of a truncated version of CCL22, whereas 

mutation ‘G’ produced a nearly full length version of CCL22. However, during the initial 

characterization process neither of them could be detected in BM-DC supernatants by ELISA (data not 

shown). Furthermore, they did not induce migration of BW cells (data not shown). Thus, it was decided 

to compare both strains in the in vivo CHS assay. 
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 Methods 4.

 Histology 4.1

 Immunohistology of murine ears 4.1.1

Whole-mount samples of the ear dermis and epidermis were prepared for confocal microscopy. Mice 

were killed by cervical dislocation and ears were carefully excised. Hairs were removed using a hair-

removal cream. Ears were separated into dorsal and ventral halves and placed dermis-side down in 1 

ml 1% PFA and fixed for 12 h at 4°C. Following fixation, ear halves were washed 3 times with PBS for 

5 min. Blocking and permeabilization was performed with 10% NGS (normal goat serum), 1% anti-

CD16/CD32 antibody, and 0.5% Triton X-100 diluted in 1x PBS. Sheets were placed on rocker at RT for 

2 h. For antibody-mediated staining sheets were incubated with primary rabbit-anti-mouse antibodies 

against Laminin (1:300, clone L9393) or LYVE-1 (1:500, clone 14917) for 2 h at RT. Following staining, 

ear halves were washed 3 times with PBS for 15 min before application of a secondary polyclonal goat 

anti-rabbit Alexa594 (1:500). Secondary antibody was incubated for another 2 h at RT. Following 

incubation, ear halves were washed as before (3 x 15 min). For mounting, sheets were shortly placed 

into distilled H2O to remove any remaining PBS. Ears were briefly air-dried before mounting in 

between two coverslips to enable imaging from the epidermal as well as dermal site. For mounting 

Mowiol was freshly mixed with DABCO on the day of the experiment. Samples were dried overnight at 

RT and stored at 4°C until imaging. Z-stacks were acquired using a ZEISS LSM 780 Laser scanning 

microscope equipped with objective LCI Plan Neofluar 25x/0.8 DIC M27 or objective Plan-Apochromat 

63x/1.4 Oil DIC M27. 

 Perfusion and immunohistology of the murine brain 4.1.2

For perfusion, mice were anesthetized with ketamine/xylazine. Mice were transcardially perfused 

sequentially with 25 ml of ice-cold PBS and 4% paraformaldehyde (PFA) in PBS. Next, brains were 

carefully removed from the skull and fixed in 4% PFA for 48 h at 4°C. 40 µm saggital brain slices were 

prepared using a vibratome and stored in PBS until further use (0.1% sodium azide was added for 

long-term storage). Five slices were kept in one well of a 12-well plate. For antibody staining, 2 slices 

were transferred to one well of 24-well plate and initially washed 3 times with PBS for 5 min using a 

rocker. Next, slices were permeabilized and blocked in 500 µl 0.3% Triton-X100/5% BSA/5% NGS in 

PBS for 2 h at RT. Following blocking, the primary antibodies polyclonal rabbit anti-GFP (1:300), 

monoclonal mouse anti-NeuN (1:100) and polyclonal rabbit anti-IBA-1 (1:500) were diluted in 0.1% 

TritonX-100/1% BSA/1% serum in 480 µl PBS per well (240 µl per slice) and incubated at 4°C for 16 h. 

Following incubation, slices were washed 3 times for 15 min with PBS using a rocker. Next, polyclonal 

goat anti-rabbit Alexa594 or Alexa488 (both 1:500) or biotinylated anti-mouse IgG secondary 

antibodies were applied and incubated for 2 h at RT (480µl per well/ 240µl per slice). Sections stained 
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with anti-NeuN and biotinylated anti-mouse IgG were additionally treated with streptavidin-Cy3 (1:300 

in PBS) for 1h at RT. Finally, sections were mounted using Vectashield containing DAPI. Sections were 

dried overnight at RT and stored at 4°C until imaging. All z-stacks of murine brains were acquired 

using a ZEISS LSM 780 Laser scanning microscope equipped with objective LCI Plan Neofluar 25x/0.8 

DIC M27 or objective Plan-Apochromat 63x/1.4 Oil DIC M27. 

 Hematoxylin and Eosin staining of brain paraffin sections  4.1.3

Perfused and PFA-fixed brains were placed into plastic cassettes and dehydrated in a series of 

ascending alcohol concentrations using a benchtop tissue processor. Following dehydration, brains 

were embedded into paraffin, placed on a cooling plate and stored at RT until processing. 5 µm 

saggital brain slices were prepared using a rotary microtome. Sections were carefully transferred to 

pre-warmed (40°C) water bath to enable mounting on microscope slides. Slides were dried on a 

heating plate set to 37°C for 2 h. Slides were kept in microscopy boxes at RT until proceeding with 

Hematoxylin and eosin (H&E) staining. The H&E staining protocol is depicted in Tab. 4.1. 

Step Treatment Time Step Treatment Time 

1 Xylol 10 min 10 Tap water 3 min 

2 Xylol 10 min 11 Alcoholic Eosion Y solution 30 sec 

3 100% Ethanol 5 min 12 Tap water 10 sec 

4 100% Ethanol 5 min 13 95% Ethanol 10 sec 

5 95% Ethanol 2 min 14 95% Ethanol 10 sec 

6 70% Ethanol 2 min 15 100%Ethanol 10 sec 

7 Aqua dest. 1 min 16 100% Ethanol 10sec 

8 Mayer’s hemalaun solution 3 min 17 Xylol 5 min 

9 0.1% HCL 2 sec 18 Xylol 5 min 

 

 Morphological analysis of microglia 4.1.4

Semi-automatic morphological analysis of microglia was performed using custom-written ImageJ 

plug-ins. Tools were provided by J. Hansen and Dr. A. Halle from the German Center for 

Neurodegenerative Diseases (DZNE). Details on the plugins can be found in Fülle et al.
144

. In brief, 

single IBA-1
+
 microglia were selected out of a z-stack to generate single cell images. Size-filtered 

(particles smaller than 100 voxel were removed prior to analysis) binary images were used for the 

reconstruction of the surface area, volume, and convex hull. Cell skeleton parameters were obtained by 

Gauss-filtering of the same image with subsequent skeleton reconstruction and analysis using the 

Table 4-1 | Hematoxylin and Eosin staining protocol  
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plugins by Arganda-Carreras and colleagues
145

. The ramification index was calculated as the ratio of 

the surface area of an individual cell (soma and processes) to the surface area of a sphere containing 

the same volume as the cell
144

. This ratio equals the minimum possible surface area the specific cell 

could achieve:    ramification index =  
cell surface area

4π ∙ (
3 ∙ cell volume

4π
)

2
3

 

The polarity index reflects the unbalance of the distribution of microglial processes from the soma and 

was obtained by normalizing the displacement of convex hull center and cell center to the size of the 

individual convex hull
144

:  polarity index =  
|convex hull center⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  −cell center⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |

2∙ √3∙convex hull
volume

4π

3
 

 Intravital microscopy of murine ears 4.2

To analyze the migratory behavior of CCL17/EGFP
+
 cells in the murine skin 2-photon (2P) intravital 

microscopy (IVM) was performed using albino CCL17
E/+

 mice, which were generated by backcrossing 

CCL17
E/+

 C57BL/6J mice into the B6N-Tyrc-Brd/BrdCrCrl background for 2 generations. An overview of 

the IVM setup is depicted in Fig. 4.1. For IVM, mice were placed in an anesthetic induction chamber 

previously filled with 3% isoflurane mixed with oxygen (~4.1 L/min) and carbogen (~1.9 L/min). 

Anesthesia depth was assessed via a toe pinch. Before putting on the nose cone delivering the 

anesthetic gas (1.7-2.1% isoflurane depending on the respiratory rate of the mouse) the eyes were 

treated with a lubricant to prevent eye damage. The nose cone was carefully fixed on the head of the 

mouse using adhesive tape. For IVM, ear hairs were removed using hair-removal cream (Veet®). Hair-

removal cream was applied using a cotton swab and incubated for 2’ before carefully removing the 

hairs using tissue paper.  

 

Next, the mouse and was carefully placed on a custom-made IVM stage. The design of the IVM stage 

was adapted from a construction provided by Prof. Dr. W. Kastenmüller. To visualize dermal blood 

Figure 4.1 | Overview of the established 2P-IVM setup. 
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vessels, 100 µl of a 7 µM TRITC-dextran (155 kDa) solution were injected i.v. 30 min before imaging. 

The mouse was prepared for IVM as described by Li et al.
146

. In brief, the mouse was fixed with 

adhesive tape on the IVM stage and the ear was gently fed through the slit of the IVM stage (see Fig. 

4.2). Next, tissue-grease was spread around the ear, covering the slit of the IVM stage. One drop of 

PBS was added on the dorsal side of the ear and on the underside of a coverslip before a coverslip was 

placed on the ear. A second square of tissue-grease was applied on to the coverslip. The IVM stage 

was carefully transferred to the pre-heated (~37°C) 2P imaging chamber. The tissue-grease square on 

top of the coverslip was filed with distilled H2O and the LCI Plan Neofluar 25x/0.8 DIC M27 objective 

was carefully lowered until it touched the liquid phase. After setting an appropriate wavelength for 2P 

imaging of both, EGFP and TRITC (880-920 nm), several baseline videos were recorded until no or only 

little drifts in the scan field were observed. Tissue-depth was assessed with the help of autofluorescent 

hairs located in the dermis. For intravital recording, time-lapse images were taken every 60 sec for 1 - 2 

h. Image resolution and scan speed were adjusted to allow one z-stack (focal distance of 3 µm) per 

60 sec. Videos were post-processed and analyzed using the Zeiss ZEN software and ImageJ. 

 

 Isolation and flow cytometry of skin immune cells 4.3

Ears of naïve or DNFB-treated mice (4 days post challenge) were harvested and stored in PBS on ice. 

Dorsal and ventral ear sides were separated and placed into a 12-well plate. Next, the samples were 

minced and digested in 500 µl PBS supplemented with 0.154 mg/ml Liberase™ and 0.1 mg/ml DNase I. 

For digestion, minced tissue was incubated at 37°C for 90 minutes in a shaking incubator at 100 rpm. 

Following this, the lysate was further resuspended using a blunted 1000 µl pipette tip and filtered 

through 100 µm and 70 µm filters (washed with 5 mL ice-cold PBS in between). Subsequently, the cell 

suspension was centrifuged at 4000 rpm for 10 min at 4°C. The cells were resuspended in 1 ml PBS and 

subjected to flow cytometric surface staining. The different antibody staining panels are depicted in 

Tab. 4.2. 250 µl of the cell suspension were used for each staining (see Tab. 4.2), the remaining cells 

were used for single stainings or as an unstained control. Antibody staining was performed in FACS 

tubes. The cells were transferred to the FACS tubes through a 50 µm filter. After another washing step, 

cells were first blocked using anti-CD16/32 antibodies for 5 min at 4°C. Next, the respective antibody 

mix was directly added to each tube and incubated at 4°C for 30 min. Following incubation the cells 

Figure 4.2 | Schematic overview of the custom-made 

stage used for IVM. 

The anesthetized mouse is carefully place on the custom-

made IVM stage. First, a piece of tape, adhesive side up, is 

positioned midway through the slit and the ear is 

subsequently fixed onto it. Next, the ear is gently fed 

through the slit by pulling the tape with a pair of forceps, 

with the mouse body simultaneously brought closer to the 

stage. The tape is removed from the ear and the ventral side 

of the ear is moistened (PBS) and positioned flat on the 

stage. Image modified after [146]. 
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were washed and resuspended in 280 µl PBS. To determine the absolute cell number, 20 µl counting 

beads were added. 

Monocyte staining Dendritic cell staining T cell staining 

Lineage - PE 

(L/D 1:1000, CD3 1:200, CD19 

1:200, NK1.1 1:200, Ly-6G 1:200) 

Lineage - APC-Cy7 

(L/D 1:1000, CD3 1:200, B220 

1:200) 

Lineage - APC-Cy7 

(L/D 1:1000) 

anti-CD45   BV510    (1:400) anti-CD45   BV510  (1:400) anti-CD45 BV510 (1:400) 

anti-CD24   BV421    (1:200) anti-CD11c PerCP   (1:100) anti-CD3   PerCP (1:200) 

anti-CD11b BV605    (1:200) anti-MHCII  APC     (1:500) anti-CD4   BV605 (1:400) 

anti-Ly6C    APC/Cy7 (1:200) anti-CD11b BV605  (1:200) anti-CD8   BV605 (1:200) 

anti-CD64   PerCP     (1:200) anti-CD11b BV605  (1:200) anti-TCRγδ APC   (1:200) 

anti-CCR2   APC        (1:100) anti-CD103 PE        (1:200) anti-TCRβ  PE      (1:200) 

anti-MHCII PE/Cy7    (1:500) anti-XCR1   BV421  (1:200) - 

CCL17/EGFP in CCL17EGFPmice  CCL17/EGFP in CCL17EGFPmice CCL17/EGFP in CCL17EGFPmice 

All samples were analyzed on a BD LSR II Cytometer. The following formula was used to calculate the 

absolute number of cells per ear: 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑒𝑎𝑟 =  [(
𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 × 𝑏𝑒𝑎𝑑𝑠 𝑣𝑜𝑙𝑢𝑚𝑒

𝑏𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 × 𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
)  ×  𝑏𝑒𝑎𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛]  × 4 

 Isolation and flow cytometry of CNS mononuclear 4.4

cells 

PBS or LPS-treated mice were sacrificed and immediately perfused through the left cardiac ventricle 

with 25 ml ice-cold PBS. The brains were carefully dissected and transferred to 4 ml DMEM 

supplemented with Collagenase D (2.5 mg/ml) and DNase I (1 mg/ml). Brains were minced and 

digested at 37°C for 45 min. Following incubation, brain cells were triturated through a 19G cannula 

and passed through a 70µm cell strainer. For the isolation of leukocytes and microglia a Percoll density 

centrifugation was performed. Therefore, the cells were centrifuged and resuspended in 8 ml of a 40% 

Percoll/HBSS solution. Cells were transferred to FCS pre-coated 15 ml polypropylene round-bottom 

tubes and underlaid with 5 ml of 80% Percoll/HBSS solution using a glass pasteur pipette. The samples 

were centrifuged at 2800 rpm for 20’ at 18°C (without brake and deceleration). Before collecting all 

mononuclear cells (MNC) at the 40/80% interphase, the top myelin layer was removed by aspiration. 

MNCs were transferred to FACS tubes and washed twice with HBSS. Cells were blocked using anti-

CD16/32 antibodies for 5 min at 4°C before proceeding with antibody staining. Antibodies used for the 

analysis of brain leukocytes are depicted in Tab. 4.3. For staining, 100 µl antibody mix were directly 

Table 4-2 | Antibody staining panels used to characterize immune cells in the murine skin 
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added to the cells and incubated at 4°C for 30 min. Following antibody staining, cells were washed 

once with HBSS and resuspended in 280 µl HBSS. 20 µl counting beads were added to determine 

absolute cell numbers.  

Brain leukocyte staining Dilution  

anti-CD45   PE 1:100 

anti-CD11b APC  1:200 

anti-CD3    APC/Cy7 1:200 

anti-Ly6G   PE/Cy7 1:200 

anti-Ly6C   PerCP 1:200 

CCL17/EGFP in CCL17EGFPmice - 

Cells were analyzed on a BD FACSCanto II. The following formula was used to calculate the absolute 

number of cells per brain: 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑏𝑟𝑎𝑖𝑛 =  [(
𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 × 𝑏𝑒𝑎𝑑𝑠 𝑣𝑜𝑙𝑢𝑚𝑒

𝑏𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 × 𝑐𝑒𝑙𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
) ×  𝑏𝑒𝑎𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛] 

 Transwell migration assay 4.5

The capability of the aptamers to inhibit migration towards chemotactic CCL17 gradients was analyzed 

in a transwell migration assay. All experiments were performed using the BW5147.3 thymic lymphoma 

cell line (ATCC® TIB-47™), which has been previously demonstrated to specifically migrate towards 

recombinant murine CCL17 (mCCL17)
147

. The day before the experiment, a vial of 1x10
7
 BW5147.3 cells 

was thawed and seeded at a density of 5x10
5 

cells/ml in complete RPMI media (10% FCS, 1% 

PenStrep). BW5147.3 cells were fed with 10 ml complete medium in the evening. The next morning, 

BW5147.3 cells were harvested by centrifugation (400g, 5 min) and resuspended in RPMI starvation 

media (0.5%FCS, 1% PenStrep). Cells were transferred back to the same flask and starved for 2 h at 

37°C in the incubator. During starvation, aptamer dilutions were prepared as required and mixed with 

starvation media containing 100 ng/ml mCCL17. Following starvation, cells were harvested by 

centrifugation (400g, 5 min) and adjusted to 1x10
6 

cells/ml. Cell migration was analyzed in 12-well 

Costar® transwell plates (5µm pores). Therefore, lower chambers of transwell plates were filled with 

600 µl starvation media with or without the addition of 100 ng/ml (≙7.5 pmol) mCCL17. As a positive 

control, the CCL17 specific neutralizing antibody MAB529 was used at 1.88 µg/ml (≙7.5 pmol). A 

scrambled version of MF35.47.m was used to analyze possible unspecific effects of the RNA aptamers. 

100µl cell suspension (1x10
5 
cells) was transferred to the upper transwell chambers. Next, the plate was 

transferred to the incubator and cells were allowed to migrate for 2 h. Following migration the insert 

was carefully removed and the entire volume of the lower chamber was transferred to FACS tubes. 

Lower wells were washed with 500µl PBS which were also transferred to the corresponding FACS tube. 

Table 4-3 | Antibodies used to characterizes brain leukocytes 
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Subsequently, the cells were centrifuged (400g, 5 min) and 1 mL supernatant was removed carefully. 

Absolute numbers of transmigrated cells were determined in the remaining 100 µl using flow 

cytometry (BD FACSCanto II). Results are depicted as percent of migration normalized to migration 

towards mCCL17 alone. All conditions were tested in duplicates or triplicates. 

 DNFB-induced contact hypersensitivity assay 4.5.1

The DNFB-induced mouse model of contact hypersensitivity (CHS) is separated into a sensitization and 

elicitation phase. For sensitization, mice were briefly anesthetized with a mixture of isoflurane and 

medical O2, shaved on the belly before treating the abdominal skin with 70 µl 0.25% w/v DNFB 

prepared in acetone:olive oil (5:1) on day d-8 or d-5 as indicated in the figure legends. The DNFB 

solution was evenly distributed on the abdominal the skin using yellow (20-200 µl) pipette tips as 

indicated in Fig. 4. 3. To prevent cross-contamination of DNFB-treated 

animals, mice were single housed for the course of the experiment. The 

following day the abdomen was treated with another 70 µl 0.25% w/v 

DNFB solution. A baseline ear thickness was determined using a 

thickness-gauge caliper at d0. For DNFB challenge, mice were again 

anesthetized and dorsal and ventral sides of the right ear were treated 

epicutaneously with 10 µl 0.3% w/v DNFB in acetone:olive oil, whereas 

dorsal and ventral sides of the left ear were treated with 10 µl 

acetone:olive oil as a negative control. For aptamer experiments, mice 

were injected i.p. 1 h before and 12 h after DNFB challenge with 

aptamers diluted in 1xPBS. Control animals received i.p. injections of a 

scrambled version of MF35.47.m. The course of ear swelling was assessed 24 h (day 1), 48 h (day 2) and 

72 h (day 3) later. The absolute ear swelling response was calculated by subtracting the baseline 

thickness measured at day 0. 

 TLR-ligand stimulation 4.6

Mice were systemically treated with one of the following TLR-ligands, E. coli 0111:B4 LPS (6-

150µg/animal), CpG ODN 1668 (32µg/animal) or Poly(I:C) (200µg/animal). All TLR ligands were diluted 

in PBS and injected i.p. (5 -6pm) in a volume of 200 µl. For the analysis of gene expression in the 

hippocampus, mice were sacrificed 16 h later. Control animals received i.p. injections of 200 µl PBS. To 

determine cytokine levels in the serum, blood was drawn from the cheek 3 hours after injection. Blood 

was collected in 1.5 ml Eppendorf® tubes and allowed to coagulate at RT for 30 - 60 min. 

Subsequently, samples were centrifuged at 16,000g for 10 min at RT. The clear serum was carefully 

collected, transferred into fresh 1.5 ml Eppendorf® tubes, and stored at -20°C until further use. 

Cytokine concentrations were measured by enzyme-linked immunosorbent assay (ELISA) according to 

the manufacturer’s instructions (R&D systems). 

Figure 4.3 | DNFB application 

onto the shaved abdomen of 

the mouse. 

Image modified after [158]. 
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 Real Time semi-quantitative PCR (semi-qPCR) 4.7

 RNA isolation 4.7.1

Hippocampi of naïve and TLR-ligand injected mice were carefully isolated as described by Beaudoin 

and colleagues
148

. In brief, mice were sacrificed by cervical dislocation and brains were quickly 

harvested and washed in ice-cold PBS. Isolated brains were bisected along the longitudinal fissure 

(groove that separates the two cerebral hemispheres). The neocortex was resected to expose the 

hippocampus of each hemisphere, which was then isolated using two spatulas. Both hippocampi were 

directly homogenized in Qiazol® and RNA was isolated according to the manufacturer’s instructions 

(Qiagen). The isolated RNA was further purified using the Zymo Research Direct-zol™ RNA MiniPrep 

Kit, which also included a DNase digestion step.  

 Determination of RNA concentration 4.7.2

The concentration of RNA was determined using the NanoDrop, ND-1000 spectrophotometer. 

Following equilibration, 2 µl sample were directly pipetted onto the detection area. The system 

measures absorbance at distinct wavelengths. Absorbance at 260 nm is used to determine the RNA 

concentration of the sample. Other wavelengths are used to check for DNA and/or protein 

contamination. If the RNA concentration exceeded 500 ng/µl, the sample was diluted DNase/RNase-

free H2O. Following dilution, samples were measured again and total amount of RNA was calculated. 

For subsequent experiments, the sample volume, containing 1000 ng RNA was calculated for each 

sample. 

 cDNA synthesis and RPS6 PCR 4.7.3

1 µg of the isolated total RNA was directly transcribed into complementary DNA (cDNA) using the 

RevertAid reverse transcriptase. Oligo(dT)12-18 primers, which mainly bind to the 3’ poly(A) tail of 

messenger RNAs (mRNA), were used for reverse transcription. To hybridize mRNAs and Oligo(dT)12-18 

primers, RNA was diluted with DNase/RNase-free H2O, filled up to 10 µl with DNase/RNase-free H2O,  

mixed with 3µl Oligo(dT)12-18 primers, and incubated at 70°C for 10 min. The samples were 

subsequently placed on ice to stop the hybridization reaction. Next, 27 µl cDNA master mix containing 

(per reaction), 9.4 µl DEPC H2O, 8.0 µl 5xreverse transcription (RT) buffer, 4.0 µl dNTP (stock: 10 mM), 

4.0 µl DTT (Dithiothreitol), 0.8 µl RiboLock (stock: 40U/ µl), and 0.8 µl reverse transcriptase (stock: 

200U/ µl) were added to each sample and incubated for 1 hour at 40°C. To inactivate the reverse 

transcriptase, the reaction was incubated at 95°C for 5 min. Success and efficiency of cDNA synthesis 

was checked by performing a polymerase chain reaction (PCR) against the house-keeping gene RPS6 

(ribosomal protein S6). The used RPS6 PCR mix and protocol are depicted in Tab. 4.4. The PCR 

product was visualized on a 2% agarose gel using SYBR® SAFE (Thermo Fisher Scientific). The intensity 

of the gel band was compared between all samples and samples which gave no or weak bands were 

either synthesized again or excluded from further analysis.  



 4 | Methods 

47 

Master mix (component) Volume Incubation time Temperature Cycles 

ddH2O 13.05 µl 5   min 95°C 1x 

5xMyTag buffer 4.0   µl 1   min 95°C  

cDNA 1.5   µl 1   min 55°C 35x 

RPS6 fwd primer 0.7   µl 1   min 72°C  

RPS6 rev primer 0.7   µl 10 min 72°C 1x 

MyTaq DNA polymerase 0.05 µl    

 semi-qPCR 4.7.4

Semi-qPCR was performed on the CFX93 Real-Time system. The previously synthesized cDNA was 

used as a template for amplification. The 2XSYBR-green ROX master mix contains, dNTPs, Thermo-

Start DNA Polymerase and the SYBR Green I dye which intercalates with newly synthesized dsDNA and 

subsequently emits light at a wavelength of 520 nm. In addition, the SYBR ROX dye is included as a 

negative control. Primers were designed using the Universal Probe Library from Roche. The used semi-

qPCR mix and protocol are depicted in Tab. 4.5. A melting curve analysis was performed to validate 

specificity of PCR primer. The melting curve is generated by progressively rising the temperature from 

65°C to 95°C in 0.5°C steps, thereby the SYBR Green I dye dissociates from the DNA and the 

fluorescence signal is rapidly reduced as the temperature increases. Detection of more than one 

melting curve indicated the presence of several PCR products. In these cases, new primer pairs were 

designed and samples were analyzed again. 

Master mix (component) Volume Incubation time Temperature Cycles 

2XSYBR-green ROX mix 7.5 µl 15 min 95°C 1x 

cDNA 5.0 µl 20 sec 95°C  

ddH2O 1.9 µl 40 sec 60°C 44x 

Fwd primer 0.3 µl 60 sec 40°C  

Rev primer 0.3 µl 10 min 72°C 1x 

Expression levels of target genes were normalized to 18S ribosomal RNA (18S rRNA) before comparing 

expression of target genes between experimental groups. Fold changes were calculated using the 

standard ∆∆Ct method. Here, two normalization steps were performed. First, the Ct values of 18S rRNA 

were subtracted from the Ct values of target genes (∆Ct). Second, the normalized Ct
Control

 values were 

subtracted from Ct
Experiment

 values (∆∆Ct). Finally, the primer efficiency of each target gene was used to 

calculate the fold change of gene expression between control and experimental conditions.  

Table 4-4 | RPS6 PCR master mix and cycler program 

Table 4-5 | semi-qPCR master mix and cycler program 
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The following formula was used:  fold change = 2(−∆∆Ct)   

Using this formula, it is assumed that after each cycle the amount of cDNA is doubled and that the 

primers have an efficiency of 100% (2^), which is rarely the case. However, as most immune-relevant 

genes are strongly induced upon activation, slight differences in the primer efficiency (90 - 110%) will 

not significantly affect the expression levels. Nevertheless, exact primer efficiencies should be 

determined in future experiments. 

 Generation of primary hippocampal neurons 4.8

For the analysis of CCL17 secretion by hippocampal neurons it was necessary to establish a primary 

neuronal culture. Therefore, timed pregnancies were set up and successful mating was verified by the 

detection of a vaginal plug the day after starting the breeding. At embryonic day 14 (E14) pregnant 

mice were sacrificed by cervical dislocation as the use of anesthetic gases involves the danger of 

causing damage to brain cells
149

. Subsequently, the embryos were harvested and placed in a petri dish 

filled with ice-cold PBS. The embryos were carefully decapitated using a fine pair of scissors and the 

embryonic brains were separated from the skull (under a dissecting microscope) and transferred into 

one drop of sterile, ice-cold HBSS. The meninges were removed as good as possible and the cerebral 

hemispheres were carefully separated using sharp forceps. The hippocampal tissue was isolated from 

each hemisphere and transferred to a drop of sterile, ice-cold DMEM medium. After processing all 

brains, hippocampi were further processed under the sterile bench. To dissociate hippocampal tissue, 

6-10 hippocampi (isolated from 3-5 embryos) were pooled in a 15 ml conical tube with 1 ml of 0.25% 

Trypsin/EDTA solution (prewarmed to 37°C) and incubated for ~10 minutes at 37 °C. During 

dissociation, the tubes were inverted several times. Furthermore, the tissue was gently triturated 7-10 

times. Digestion was stopped by adding 5 ml DMEM supplemented with 10% FCS. The cell suspension 

was centrifuged (300xg, 18°C, 6 min), supernatant was removed and the cells were resuspended in 

5 mL Neurobasal medium with 1X B27 supplement (Life technologies). The cells were either plated in a 

12-well plate at 4 x 10
5
cells/ well or in a 24-well plate at 2 x 10

5
 cells/ well. The day before the 

experiment (E13.5) cell culture plates were coated with a mixture of 0.5-1 ml (12- & 24-well plate, 

respectively) laminin (2 µg/ml) and poly-D-lysine (200 µg/ml) in PBS for 1 hour at 37 °C and washed 3 

times with 1 ml cold PBS. Coated plates were covered with PBS and placed in the fridge. After seeding, 

the cells were allowed to adhere for 15-20 min before carefully aspirating the medium completely and 

replacing it with fresh medium. This step was especially important as it removes slowly adhering cells, 

such as astrocytes and microglia. After one week of culture, half of the medium was replaced with 

fresh medium. At this point of time, the cells had already formed visible neural networks characterized 

by a triangular cell soma with extended axons (Fig. 4.4). Two weeks after establishing the cultures, 

mature neurons were stimulated with recombinant murine TNF (50 ng/ml), E. coli 0111:B4 LPS (100 

ng/ml), or the combination of both for 96 h. Following this stimulation, supernatants were harvested 
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and the concentration of CCL17 and CX3CL1 were determined by ELISA according to the 

manufacturer's instructions (R&D Systems). 

 

 Electrophysiological recordings of acute brain slices 4.9

Electrophysiological recordings were performed by B. Breithausen from the laboratory of Prof. Dr. C. 

Henneberger at the Institute of Cellular Neurosciences, University of Bonn Medical Center, Germany 

(IZN). Electrophysiological recordings were performed in acute brain slices as described 

previously
144,150

. In brief, 300 µm thick acute hippocampal slices were generated from age-matched 8 

to 12-week-old male WT and CCL17
E/E

 mice. Mice were injected i.p. with either 200 µl PBS or 150µg 

E.coli 0111:B4 LPS diluted in 200µl PBS 16h before the experiment. To perform electrophysiological 

recordings, PBS- and LPS-treated mice were transported to the IZN at the day of the experiment.  At 

the IZN, horizontal slices were cut in an ice-cold slicing solution containing 60 mM NaCl, 105 mM 

sucrose, 2.5 mM KCl, 2.7 mM MgCl, 1.25 mM NaH2PO4, 1.3mM ascorbic acid, 3mM sodium pyruvate, 

26 mM NaHCO3, 0.5 mM CaCl2, and glucose 10 (osmolarity 300-310 mOsm). To allow equilibration, 

slices were kept in this solution at 34 °C for 15 min. Next, slices were transferred to an extracellular 

bath solution containing 131 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO4, 1.25 mM NaH2PO4, 21 mM 

NaHCO3, 2 mM CaCl2, and 10 mM glucose (osmolarity adjusted to 297-303 mOsm) and stored at RT 

(21-23 °C) until the start of the experiment. To ensure sufficient oxygenation of the slices, all solutions 

were constantly supplied with 95% O2/5% CO2. After 1 h of incubation in the extracellular bathing 

solution, slices were transferred to an interface chamber for electrophysiological recordings. To record 

field excitatory postsynaptic potentials (fEPSP), a standard patch pipette (3-4 MOhm), filled with the 

extracellular bath solution, and was placed in the CA1 stratum radiatum (see Fig. 4.5). Using a bipolar 

concentric stimulation electrode (FHC), placed in the stratum radiatum at the border between the 

CA3/CA1 regions, fEPSPs were evoked by electrical stimulation of the CA3 to CA1 Schaffer collaterals 

Figure 4.4 | Primary murine hippocampal neurons. 

Images were taken immediately after seeding (Day 0) and after seven days in culture (Day 7). 
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Figure 4.5 | Schematic overview of the setup used for 

electrophysiological recordings of murine acute brain 

slices.  

(CA: Cornu Ammonis, DG: Dentate gyrus, fEPSP: field 

excitatory postsynaptic potential) 

(SC) (see Fig. 4.5). Stimulation intensity was adjusted to generate fEPSPs with a ~50% maximum 

amplitude. The basal synaptic transmission (slope of the first fEPSP) and the paired pulse ratio (ratio of 

the slope of the second and first evoked fEPSP) were monitored using a paired stimuli (each 100 µs, 

interstimulus, 50 ms interval between stimuli) 

every 15 s for at least 10 min before the 

induction of long-term potentiation (LTP) using a 

theta-burst stimulation (TBS). For TBS, 8 bursts 

consisting of 4 stimuli (100 Hz) were applied at 5 

Hz. The TBS was delivered 3 times with an 

interval between stimuli of 1 min. To analyze the 

effect of the LTP induction, the fEPSP 

potentiation was subsequently probed by paired 

stimuli application for 30 min. All recorded 

signals were amplified and filtered (1000x, EXT-

02B, NPI9, high-pass 0.1 Hz, low-pass 10 kHz), 

digitalized at a sampling rate of 10 kHz and stored using WinWCP (Strathclyde Electrophysiology 

Software, University of Strathclyde Glasgow, Scotland). Final analysis of fEPSP slopes was performed by 

B. Breithausen using Clampfit (Molecular Devices, Sunnyvale, USA) and provided as a data table. 

  DT-mediated ablation of CCL17-expressing neurons 4.10

Mice received i.p. injections of 0.4 µg Diphtheria toxin (DT) on three consecutive days (d-3 to d0) in 

200 µl 0.9% sodium chloride solution (saline). A 20 µg/ml DT stock solution was prepared using 

Ampuwa® H2O. For i.p. injections, DT stock solution was diluted to 2 µg/ml using saline. 

  EEG recordings  4.11

EEG recordings CCL17
DTR/+

 mice were performed by Dr. P. Bedner and J. Müller from the laboratory of 

Prof. Dr. C. Steinhäuser at the Institute of Cellular Neurosciences, University of Bonn Medical Center, 

Germany. In brief, female CCL17
DTR/+

 mice also received 0.4 µg DT (i.p.) on 3 consecutive days. 

Immediately after the last DT injection, the mice were anesthetized and a telemetric transmitter was 

transplanted into a subcutaneous pocket at the right abdominal wall. For the detection of 

electrographic seizures, surface electrodes were carefully implanted in the skull. Following surgery, 

mice received an analgesic and were returned to their cages. Telemetric signals, sent from the 

implanted transmitter, were captured by a radio signal receiver plate which was directly placed under 

individual cages. The recorded EEG data was manually screened for the occurrence of potential 

electrographic seizures by P. Bedner and was provided as a table depicting the number of seizures per 

day and mouse. 
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  Statistical Analysis 4.12

All data was analyzed with GraphPad Prism 6 using, unpaired t-tests, one way or two way ANOVA with 

Bonferroni´s post-hoc test for multiple comparisons. The level of significance for p < 0.05 was denoted 

as (*) or, for < 0.01 as (**), for p < 0.001 as (***), and for p < 0.0001 as (****), as indicated in the figure 

legends. 
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 Results 5.

 Analysis of CCL17+ cells in murine skin 5.1

The chemokine CCL17 is known to be expressed in DCs of the skin, the intestine and the lung
73

. It was 

demonstrated that expression of CCL17 is inducible in skin-resident myeloid cells in the context of 

allergic inflammation
49

. Although it was previously demonstrated that CCL17
+
 DCs are present in the 

inflamed human and murine skin
49,151,152

, it was less clear whether a population of CCL17
+ 

cells
 
is 

already present in the healthy skin. Therefore, ears of DNFB and solvent-treated CCL17
E/+

 mice were 

analyzed for the presence of CCL17/EGFP
+
 cells. Immunofluorescent staining, intravital microscopy, 

and multi-color flow cytometry were performed to get a comprehensive overview of the exact 

localization, morphology, and identity of CCL17
+
 cells in the skin. 

 CCL17+ cells are present in solvent and DNFB-treated murine 5.1.1

skin 

Confocal microscopy was performed with ears of solvent and DNFB-treated CCL17
E/+ 

mice. Ears were 

excised, separated into dorsal and ventral halves and, following fixation, subjected to 

immunofluorescent staining. Whole-mount immunofluorescence of the entire dorsal halves was 

performed to ensure detection of all dermal and epidermal CCL17/EGFP
+
 cells. As depicted in the 

upper row of Fig. 5.1A and B, CCL17/EGFP
+ 

cells were visible in the solvent as well as DNFB-treated 

skin. It has to be noted that the solvent-treated ears should not be considered naïve as it is possible 

that the solvent also induces CCL17. To identify the exact localization and identity of CCL17-expressing
 

cells, ear halves were stained for Langerin (Fig. 5.1A) and CD3 (Fig. 5.1B). Whereas Langerin is 

expressed in LCs and dDCs, CD3 identifies several populations of skin T cells, in particular, epidermal 

DETCs and dermal γδ T cell. As it is known that LCs leave the skin following activation, it was not 

surprising that less Langerin
+
 cells were detected after DNFB-treatment (see Fig. 5.1A, second 

column). Interestingly, no CCL17/EGFP/Langerin-positive cells could be observed (see Fig. 5.1A, 

Merge). Epidermal CD3
+ 

DETCs were characterized by long cellular protrusions (see Fig. 5.1B) and, in 

contrast to LCs; application of DNFB had no apparent effect on their maintenance (see Fig. 5.1B, 

second column). It was previously demonstrated that murine DC are the predominant source of 

CCL17 in inflamed skin
49,73

 and as activated LCs and DCs leave the skin via lymphatic vessels (LVs), it 

was of interest whether CCL17
+ 

cells
 
would localize with LVs. Thus, ear halves were also stained with an 

anti-LYVE1 antibody to visualize LVs. As depicted in Fig. 5.1A, CCL17
+
 cells clustered around LVs, in 

particular under non-inflammatory conditions. Unexpectedly, these clusters appeared to disintegrate 

following DNFB-treatment whereas CCL17
+ 

cells were still detected in close proximity to LVs. 

Furthermore, CCL17 and its receptor CCR4 were demonstrated to be essential for the recruitment and 

extravasation of peripheral T cells in the context of allergic inflammation
86,153

. Staining with an anti-



 5 | Results 

53 

Laminin antibody visualized the dense network of dermal blood vessels (BVs) (Fig. 5.1B). Strikingly, 

CCL17/EGFP
+
 cells also localized in close proximity to BVs (Fig. 5.1B, Merge).  Naïve  

 

In conclusion, these experiments confirmed the presence of CCL17
+
 cells in the inflamed skin but 

additionally identified CCL17
+
 skin cells in the absence of DNFB (solvent treated). Furthermore, CCL17

+
 

cells localized in close proximity to dermal blood and lymphatic vessels. 

Figure 5.1 | CCL17
+ 

cells localize to lymphatic and blood vessels in the murine skin. 

CCL17
E/+

 mice were treated with 20 µl 0.3 % DNFB on the right ear (10 µl per ear half) or solvent (acetone:olive oil, 

5:1) on the left ear. Ears were excised 24 h after treatment and subjected to immunofluorescent staining. A, B: 

Solvent (upper row) and DNFB-treated (lower row) ears of CCL17
E/+

 mice were stained with antibodies against 

Langerin and LYVE1 to visualize Langerhans cells or lymphatic vessels, respectively (A) or with a combination of 

anti-CD3 and anti-Laminin antibodies to visualize skin T cells or blood vessels, respectively (B). Endogenous 

reporter expression of EGFP in CCL17
E/+

 mice was used to detect CCL17-expressing cells. Pseudocolor merged 

image is depicted in the fourth column of A and B. Scale bars are indicated in pseudocolor image. Representative 

images are shown (n = 2). 
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 Two behaviorally distinct CCL17+ cell populations are present 5.1.2

in the murine dermis 

Immunofluorescent (IF) staining of tissues often faces certain limitations, such as the need for fixation 

to prevent degradation of antigenic epitopes. In addition, immunofluorescent analyses only capture a 

snapshot of the tissue and do not provide information on cellular behavior or cell-cell interactions. 

Thus, it was decided to establish an intravital microscopy (IVM) setup to enable live-cell imaging of 

CCL17/EGFP
+
 cells in mouse ears

154
. In CCL17

E/+ 
and CCL17

E/E
 mice the bright expression of EGFP under 

the control of the CCL17 promoter allowed direct detection of CCL17/EGFP
+
 cells in their native 

environment. In addition, mice were injected i.v. with TRITC-dextran (155 kDa) to visualize dermal 

BVs
155

. As depicted in Fig. 5.2A, CCL17/EGFP
+ 

cells were widely distributed in the ear skin. Whereas 

some CCL17/EGFP
+
 cells were in close contact with BVs (red), others localized in the interstitium. The 

bright extended structures are autofluorescent hairs, which allow a rough determination of imaging 

depth. Detection of the hair follicles allowed to estimate the imaging depth to approximately 150 – 

200 µm
155

. 

  

Interestingly, two behaviorally different populations of CCL17
+
 skin cells could be distinguished. The 

first, a more sessile CCL17
+
 cell population, was found in direct contact or close proximity to dermal 

BVs (see Fig. 5.2A and B). These non-migrating cells appeared to utilize cellular protrusions to directly 

interact with the dermal BVs (see Fig. 5.2B). A second CCL17
+
 cell population was found to actively 

Figure 5.2 | Identification of different CCL17
+ 

cells in the murine skin. 

A: Video, still images of the ear of a CCL17
E/+

 mouse at different time-points after starting IVM recording. BV are 

visualized by injecting TRITC-Dextran (i.v.) prior to IVM. Scale bar is 100µm. B & C: Magnification of the two 

behaviorally different CCL17
+
 cells identified in the murine skin. B: Sequential still images of a sessile CCL17

+
 cell in 

close proximity to a blood vessel. C: Sequential still images of a CCL17
+
 cell actively migrating in the interstitium. 

For B & C the same time points as in A are shown. Scale bar for B & C is 20µm. Representative video (out of 5) was 

chosen to extract still images. 
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migrate through the interstitium (see Fig. 5.2A and C). In contrast to sessile CCL17
+
 cells, these 

migratory cells appeared smaller and exhibited a typical amoeboid monocyte morphology
1
. In his 

master thesis, K. Knöpper extended these experiments and analyzed the migratory behavior of CCL17
+
 

cells in heterozygous CCL17
E/+

 and CCL17-deficient CCL17
E/E

 mice. Although these are prelimary data, 

the migratory behavior of CCL17/EGFP
+
 skin cells, with regard to speed and directionality, was only 

marginally affected in the absence of CCL17
154

.  

In conclusion, these experiments confirmed the presence of CCL17
+
 cells in the naïve murine skin. 

Interestingly, IVM identified two behaviorally different CCL17
+
 cell populations, which underpinned the 

previous observation of CCL17
+
 cells located in close proximity to LVs and BVs (see Fig. 5.1A and B). 

Here, a more sessile CCL17
+
 cell population localized primarily to dermal BVs was identified and 

possibly represents a distinct population of dermal perivascular Mφs
43

  

 CCL17 is expressed in defined subpopulations of skin-resident 5.1.3

myeloid cells 

The finding that two different CCL17
+
 populations with distinct migratory properties are present in the 

skin demanded a more comprehensive characterization of their identity. As stated previously, several 

studies already identified DCs as a major source of CCL17
49,70,73,151,156

. However, the exact identity of 

CCL17-producing cells in the skin remained elusive. Here, a flow cytometric strategy based on 

Bouladoux et al. 
157

 was applied to clearly identify CCL17/EGFP
+
 DC populations in the skin of CCL17

E/+
 

and CCL17
E/E

 mice (see Fig. 5.3). Wild-type (WT) mice were used as a control. The strategy comprised a 

live cell gate to exclude cellular debris and two gatings to remove doublets (see Fig. 5.3B and C). 

Next, a live/dead exclusion dye was combined with a lineage staining to exclude B and T cells (Lin
-
) 

(see Fig. 5.3D). CD45
+
 leukocytes were identified in all living and Lin

-
 cells (see Fig. 5.3E) and 

subsequently analyzed for CD11c and MHCII expression to identify myeloid cells. Total MHCII
+ 

cells 

were then analyzed for the expression of CD11b and CD24 (see Fig. 5.3F and G). Whereas CD11b is 

expressed on several subsets of myeloid cells and is regulated upon activation, a high CD24 expression 

was found to be specific for epidermal LCs
25,158

. Thus, staining for CD11b and CD24 enabled separation 

of four myeloid cell populations in the skin (see Fig. 5.3G), all of which were analyzed for CCL17/EGFP-

expression (see Fig. 5.3I-L). Cells negative for CD11b and CD24 were identified as double-negative DC 

(DN DC)
24,28

. CD24
+
CD11b

-
 cells represent cDC1,m wheras CD11b

+
CD24

lo/int
 cells comprise cDC2s as 

well as monocyte populations and were collectively referred to as CD11b
+
 cells. LCs were identified as 

CD11b
+
CD24

hi
 cells. In addition, cDC1 were further separated using CD103 as a marker of migratory 

DCs and XCR1 as a marker for cross-presenting DC (see Fig. 5.3H)
159

. 
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As depicted in Fig. 5.3I-L and Fig. 5.4A, CCL17/EGFP
+
 cells were present in variable frequencies in DN 

DC, cDC1, LCs and CD11b
+
 cells. In addition, it was of interest whether CCL17 itself would have an 

effect on the frequency of CCL17/EGFP
+
 cells, which could indicate autocrine regulation. To clarify this, 

the percentage of CCL17/EGFP
+
 cells in heterozygous CCL17

E/+
 mice was compared to CCL17-deficient 

CCL17
E/E

 mice. As depicted in Fig. 5.4A, the percentage of CCL17/EGFP
+ 

cells was similar between the 

different experimental groups, which rules out autocrine regulation by CCL17. Interestingly, further 

analysis of cDC1 subpopulations revealed that only XCR1
+
CD103

+
 cells contained a considerable 

number of CCL17-expressing cells (see Fig. 5B). In contrast to immunofluorescent analysis and IVM, 

CCL17/EGFP
+ 

cells were also detected in CD11b
+
CD24

hi
 LCs, which can probably be attributed to the 

higher sensitivity of the flow cytometer. Taken together, the analysis of skin myeloid cells revealed that 

CCL17 is expressed in XCR1
+
CD103

+
 cDC1, LCs and CD24

lo-int
CD11b

+
 cells. 

Figure 5.3 | Gating strategy to identify CCL17
+
 myeloid cell populations in the murine skin. 

Skin cells were gated based on their characteristic FSC-A and SSC-A profiles (A). Two strategies to exclude 

doublets were applied (B-C). A viability dye was utilized to exclude dead cells from further analysis (D). Within all 

living cells CD45
+
MHCII+ cells were identified (E & F) and then further analyzed for CD24 and CD11b expression 

(F). Using these markers identified four skin myeloid cell populations were identified(G & I-L). cDC1 cells were 

further analyzed for the expression of CD103 and XCR1 (G & H). In all subpopulations the percentage of 

CCL17/EGFP
+
 cells was analyzed in comparison to wild-type control animals. Representative gating of a CCL17

E/+ 

mouse is shown. 
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 Skin-resident monocytes and macrophages harbor substantial 5.1.4

numbers of CCL17+ cells 

The identification of CCL17
+
 cells within the very heterogeneous CD11b

+ 
cell

 
population (see Fig. 5.3G 

& L) demanded a more precise analysis of those cells. Thus, a second gating strategy, adopted from 

Bouladoux et al.
157

 and Tamoutounour et al.
40

, was used to discriminate CD11b
+
 DC from skin-

monocytes and Mφs (see Fig. 5.5). As before, skin cells were isolated from CCL17
E/+

, CCL17
E/E

 and WT 

mice. This gating strategy also excluded debris, doublets, dead and Lin
-
 cells (see Fig. 5.5A-D). In 

contrast to the previous staining, CD45
+
 leukocytes were directly analyzed for CD11b and CD24 

expression, without a preceding exclusion of MHCII-negative cells (see Fig. 5.5F). The CD11b
+
CD24

lo-int
 

cell population was further analyzed for the monocyte marker Ly6C and the Mφ marker CD64 (see Fig. 

5.5G)
28

. Here, the double-negative cells were identified as CD11b
+
 DC whereas the remaining 

monocytic cells were further analyzed for the expression of CCR2. As CCR2 is exclusively expressed on 

monocytes, it allowed separation of skin monocytes and Mφs (see Fig. 5.5H). CCR2
+ 

monocytes and 

CCR2
-
 Mφs were subsequently analyzed for Ly6C and MHCII expression.  Based on their expression 

levels, one monocyte (P1), two monocyte-derived DC (moDC) populations (P2 and P3) and two Mφ 

populations (P4 and P5) were identified (see Fig. 5.5I and K). In the last step, the frequency of 

CCL17/EGFP
+
 cells was analyzed in the different cell populations (see Fig. 5.5J and L). 

Figure 5.4 | CCL17
+
 cells are present in skin myeloid cell populations. 

Ears of WT, CCL17
E/+

 and CCL17
E/E

 mice were separated into dorsal and ventral halves and mechanically disrupted. 

Single cell suspensions were obtained by enzymatic digestion. Skin cells were then subjected to antibody-

mediated staining and subsequently analyzed by flow cytometry. The flow cytometric gating strategy is depicted 

in Fig. 5.3. A: Percentages of CCL17/EGFP
+
 cells within skin-resident myeloid cell populations (DN DC: Double-

negative DC, cDC1: type 1 conventional DC, LC: Langerhans cells) B: Percentage of CCL17/EGFP
+
 cells in cDC1 

subpopulations. (n=3 per group, mean ± SD). Circles represent data from individual mice. 
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Percentages of CCL17/EGFP
+
 cells in all skin populations identified are depicted in Fig. 5.6. In line with 

the previous staining, approximately 14% of CD11b
+
 DC and monocytes were positive for CCL17. 

Strikingly, the majority of CCL17
+
 cells were found in P3 moDCs (CCR2

+
Ly6C

-
MHCII

+
), whereas only a 

few P5 Mφs (CCR2
-
Ly6C

-
MHCII

+
) were positive for CCL17. As expected from the previous staining, the 

number of CCL17/EGFP
+
 cells was comparable between CCL17

E/+
 and CCL17

E/E
 mice, which rules out a 

possible autocrine regulation of CCL17.  

 

Figure 5.5 | Gating strategy to identify CCL17+ skin monocyte populations. 

Skin lymphocytes were gated based on their characteristic FSC-A and SSC-A profiles (A). Two strategies to exclude 

doublets were applied (B-C). A viability and lineage stain was used to exclude dead and lineage
+
 cells from further 

analysis (D). All living, lineage
-
 and CD45

+
 cells were analyzed for CD24 and CD11b expression (E & F). The 

CD11b
+
CD24

lo-int
 fraction was further analyzed for Ly6C and CD64 expression. Ly6C

-
CD64

-
 cells were identified as 

CD11b
+ 

DC (G). The remaining cells were further subdivided using CCR2 expression (H). The CCR2
+ 

fraction is 

known to contain skin monocytes
40

, whereas CCR2
- 
cells

 
represent skin-resident macrophages

40
. Using expression 

levels of Ly6C and MHCII, both fractions could be further subdivided into P1-P3 monocytes (I) and P4-P5 

macrophages (K). Finally, the number of CCL17/EGFP
+
 cells was analyzed in all skin cell populations identified 

(exemplary gating depicted in J & L). Representative gating of a CCL17
E/+ 

mouse is shown. 
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 GM-CSF signaling differentially regulates CCL17 expression in 5.1.5

skin dendritic cells and macrophages 

It was previously demonstrated that the cytokine GM-CSF (granulocyte macrophage colony-

stimulating factor) is a potent inducer of CCL17 expression in human monocytes as well as in murine 

Mφs
74

. Thus, CCL17 expression in skin cells was monitored by flow cytometry in GM-CSF-deficient 

CCL17 reporter and knockout mice (GM-CSF
-/-

CCL17
E/+ 

and GM-CSF
-/-

CCL17
E/E

 mice, respectively). The 

FACS gating strategies previously established for myeloid cells and monocytes were again used for the 

analysis of the percentages of CCL17/EGFP
+
 cells. To exclude that the loss of GM-CSF, CCL17, or both 

had an effect on the presence of skin cells, absolute skin cell were compared between the 

experimental groups (Fig. 5.7A and B & Fig. 5.8A). To account for variations between cell 

preparations, counting beads were used to determine absolute cell numbers. As depicted in Fig. 5.7A 

and 5.8A, total numbers of CD45
+
 leukocytes were comparable between all experimental groups. Also, 

the cell numbers in CD11c
+
MHCII

+
 skin DCs (see Fig. 5.7A) and CD11b

+ 
monocyte populations (see 

Fig. 5.8A) in CCL17 and/ or GM-CSF-deficient mice were comparable to WT control mice. In contrast, 

there was a significantly reduced number of CCL17/EGFP
+ 

cells in cDC1, LCs, and CD11b
+
 cell 

populations isolated from GM-CSF
-/-

CCL17
E/+

 and GM-CSF
-/-

CCL17
E/E

 mice (see Fig. 5.7C).  

Figure 5.6 | Identification of CCL17
 +

 cells in skin monocytes and macrophages. 

Ears of WT, CCL17
E/+

 and CCL17
E/E

 mice were separated into dorsal and ventral halves and mechanically disrupted. 

Single cell suspensions were obtained by enzymatic digestion and subjected to antibody-mediated staining. Cells 

were subsequently analyzed by flow cytometry. The flow cytometric gating strategy is depicted in Fig. 5.5. 

Depicted are percentages of CCL17/EGFP
+
 cells in different populations of skin monocytes and macrophages 

(monocyte populations: P1: CCR2
+
Ly6C

+
MHCII

-
 P2: CCR2

+
Ly6C

+
MHCII

+
 P3: CCR2

+
Ly6C

-
MHCII

+
 and macrophages: 

P4: CCR2
-
Ly6C

-
MHCII

-
 and P5: CCR2

-
Ly6C

-
MHCII

+
). (n=3 per group, mean ± SD) Circles represent data from 

individual mice. 
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In line, GM-CSF-deficiency also resulted in a significant loss of CCL17-expressing cells in CD11b
+
 DCs 

and CCR2
+
 monocytes (see Fig. 5.8C). When comparing the monocyte subpopulations P1, P2, and P3, 

it was recognized that the highest number of cells represent P3 moDCs (see Fig. 5.5I and Fig. 5.8B). In 

addition, the percentage of CCL17/EGFP
+
 cells in P3 moDCs was significantly reduced in GM-CSF

-/-

CCL17
E/E

 mice compared to CCL17
E/E

 mice (see Fig. 5.8C). Strikingly, the number of CCL17-expressing 

cells in CCR2
- 
Mφs, in particular P5 Mφs,

 
was not affected by the loss of GM-CSF (see Fig. 5.8C). Aside 

from its potent role in regulating CCL17 expression, GM-CSF-signaling was also demonstrated to be 

critically involved in the development and maintenance of lung- and skin-resident CD103
+ 

DC
160,161

. In 

concordance, percentages of XCR1
+
CD103

+
 cDC1 were also found to be significantly reduced in GM-

CSF
-/-

CCL17
E/+

 and GM-CSF
-/-

CCL17
E/E

 mice (see Fig. 5.7D). In contrast, no effect of CCL17-deficiency 

on cDC1 subpopulations was observed. 

Figure 5.7 | GM-CSF regulates expression of CCL17 in skin myeloid cells. 

Ears of WT, CCL17
E/+

, CCL17
E/E

, GM-CSF
-/-

CCL17
E/+

 and GM-CSF
-/-

CCL17
E/E

 mice were separated into dorsal and 

ventral halves and mechanically disrupted. Single cell suspensions were obtained by enzymatic digestion. Skin 

cells were then subjected to antibody-mediated staining and subsequently analyzed by flow cytometry. The flow 

cytometric gating strategy is depicted in Fig. 5.3. A: Absolute numbers of CD45
+
 and CD11c

+
MHCII

+
 cells present 

in a single mouse ear. B: Absolute numbers of different skin myeloid cell populations identified in CD11c
+
MHCII

+
 

cells. C: Percentages of CCL17/EGFP
+
 cells in skin myeloid cell populations. D: Percentage of CCL17/EGFP

+
 cells in 

cDC1 subpopulations. (n=3-9, two experiments, mean ± SEM) Circles represent data from individual mice. 

Statistical significance was tested by 2-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons 

(****p<0.0001; ***p<0.001; **p<0.01; *p<0.05). 
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Figure 5.8 | GM-CSF-dependent regulation of CCL17 expression in skin monocyte populations. 

Ears of WT, CCL17
E/+

, CCL17
E/E

 and GM-CSF
-/-

CCL17
E/E

 mice were separated into dorsal and ventral halves and 

mechanically disrupted. Single cell suspensions were obtained by enzymatic digestion. Skin cells were then 

subjected to antibody-mediated staining and subsequently analyzed by flow cytometry. The flow cytometric 

gating strategy is depicted in Fig. 5.5. A: Total CD45
+
 leukocytes and CD11b

+ 
cells present in a single mouse ear. 

B: Numbers of skin monocyte populations identified in CD11b
+
 cells. C: Percentages of CCL17/EGFP

+
 cells in 

different populations of skin monocytes and macrophages (monocyte populations: P1: CCR2
+
Ly6C

+
MHCII

-
 P2: 

CCR2
+
Ly6C

+
MHCII

+
 P3: CCR2

+
Ly6C

-
MHCII

+
 and macrophages: P4: CCR2

-
Ly6C

-
MHCII

-
 and P5: CCR2

-
Ly6C

-
; MHCII

+
). 

(n=6-7, two experiments, mean ± SEM) Circles represent data from individual mice. Statistical significance was 

tested by 2-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons (****p<0.0001; **p<0.01; 

*p<0.05). 
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 CCL17-deficiency has only moderate effects on skin T cell 5.1.6

numbers 

Several studies highlighted an essential role of CCL17 for the recruitment of peripheral leukocytes into 

the skin
50,86,162

. In this sense, it was of interest whether the total number of skin-resident T cells would 

be affected by the loss of CCL17. Thus, ears of naïve CCL17
E/+

, CCL17
E/E,

 and WT mice were analyzed for 

the presence of different T cell populations using flow cytometry. The gating strategy has also been 

adopted from Bouladoux et al.
157

 and is depicted in Fig. 5.9.  

 

As before, two strategies were used to identify single cells. Skin T cells were identified within all CD45
+ 

leukocytes (no lineage stain) by the expression of CD3 and TCRγδ (see Fig. 5.9F). CD3-negative cells 

were removed from further analysis. CD3
+
 cells were analyzed for the expression of TCRβ and TCRγδ 

(see Fig. 5.9G). Previously described DETCs (CD3
+
 cells in Fig. 5.1B) are characterized by high levels of 

TCRγδ, whereas dermal γδ T cells express intermediate levels of TCRγδ (see Fig. 5.9G)
51,52

. In contrast, 

conv T cells exclusively express TCRβ (see Fig. 5.9G).  

Figure 5.9 | Gating strategy to identify skin-resident T cell populations.  

Skin cells were gated based on their characteristic FSC-A and SSC-A profiles (A). Two strategies to exclude 

doublets were applied (B-C). A viability stain was used to exclude dead cells (D). All living CD45
+
 cells were 

analyzed for CD3 and TCRγδ expression (E & F). The CD3
+
TCRγδ

-/+
 fraction was further separated in TCRγδ

hi
 cells, 

representing dendritic epidermal T cells (DETC), dermal γδ T cells and TCRγδ
-
TCRβ

+
 conventional T cells (G). No 

CCL17/EGFP
+
 cells were identified in T cell subsets. Representative gating of a WT

 
mouse is shown. 
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Quantification of CD45
+ 

leukocytes, total CD45
+
CD3

+
 T cells as well as T cell subsets are depicted in 

Fig. 5.10. In agreement with previous experiments, the total number of CD45
+
 leukocytes was similar 

between the experimental groups (see Fig. 5.10A). Also, the number of total CD3
+ 

T cells was not 

significantly affected by the loss of CCL17. However, analysis of T cell subsets revealed reduced 

numbers of dermal γδ T cells and DETCs in CCL17
E/E

 mice compared to WT mice, albeit not reaching 

statistical significance (see Fig. 5.10B). Surprisingly, the absolute number of conv T cells was similar 

between experimental groups. Unexpectedly, the loss of CCL17 had no apparent effect on conv T cells, 

but on dermal γδ T cells and DETCs, indicating a role for CCL17 in the maintenance of γδ T cells under 

homeostasis.  

 Inhibition of CCL17 ameliorates symptoms of contact 5.2

hypersensitivity in vivo 

Our lab previously demonstrated a pro-inflammatory role of CCL17 for the development of contact 

hypersensitivity (CHS) induced by DNFB
73

. These results suggested that CCL17 may represent a 

drugable target for the treatment of allergic skin diseases. For the development and testing of new 

inhibitors, the CHS model is favored over other models of skin inflammation as it is very robust and 

can be analyzed in a relatively short time. The short-time frame reduces the amount of inhibitor 

required and is therefore more cost-effective. As stated in the introduction, CHS separates into a 

sensitization and a challenge phase
163

. For sensitization, mice are treated with DNFB at the abdominal 

skin to prime a T cell-specific response. Several days later, the sensitized mice are challenged with 

DNFB on the ear. This induces a severe inflammatory reaction characterized by edema formation and 

Figure 5.10 | Loss of CCL17 affects skin-resident γδ T cells. 

Ears of WT, CCL17
E/+

 and CCL17
E/E

 mice were separated in dorsal and ventral halves and mechanically disrupted. 

Single cell suspensions were obtained by enzymatic digestion and subjected to antibody-mediated staining. Cells 

were subsequently analyzed by flow cytometry. The flow cytometric gating strategy is depicted in Fig. 5.9. A: 

Absolute number of leukocytes (CD45
+
) and total T cells (CD45

+
CD3

+
) present in a single mouse ear. B: Absolute 

numbers of T cell subpopulations identified in total T cells (γδ T cells: CD3
+
TCRβ

-
TCRγδ

int
,
 
DETC: CD3

+
TCRβ

-

TCRγδ
hi
, conv T cells: CD3

+
TCRβ

+
TCRγδ

-
). (n=3 per group, mean ± SD) Circles represent data from individual mice. 
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immune cell infiltration
164

. Here, CHS was used to test the efficacy of two novel CCL17-neutralizing 

RNA aptamers to reduce the inflammatory responses associated with CHS. The two aptamers, MF11 & 

MF35, were isolated by Markus Funke (MF) from the group of Prof. Dr. Günter Mayer by employing the 

SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) using a 2´-deoxy-2´-

fluoro pyrimidine bearing RNA library
50

. For in vivo application, the aptamers were chemically modified 

and underwent thorough in vitro testing regarding their immunogenicity and specificity. These 

experiments revealed a low immunogenic potential along with high specificity towards murine 

CCL17
50

. As these experiments were performed in close collaboration with the group of Prof. Günter 

Mayer and were also published
50

, only the experiments conducted by myself will be presented in the 

following sections. 

 MF11 and MF35 inhibit CCL17-dependent chemotaxis of BW 5.2.1

cells 

After aptamers were demonstrated to specifically bind murine CCL17
50 in vitro, it remained to be 

shown whether they would also inhibit CCL17-dependent cell migration. Thus, an in vitro transwell 

migration assay using the thymoma cell line BW5147.3 was established. BW5147.3 cells were 

previously shown to specifically migrate towards increasing gradients of CCL17
70

. During 

establishment, a minimal concentration of 100 ng/ml murine CCL17 (mCCL17) (≙ 7.5 pmol per well) 

was found to be required for robust chemotaxis and was used in all further experiments
50

. The 

transwell assay comprised three different control groups: a medium control without mCCL17, a control 

containing only mCCL17 and a second positive control which contained mCCL17 and the commercially 

available CCL17-specific neutralizing antibody MAB529 at a molar ratio of 1:1 (antibody:mCCL17). In all 

experiments, MAB529 and aptamers were added to the lower compartment of the transwell system 

which already contained 7.5 pmol mCCL17.  Following 2 hours of migration, cells which had entered 

the lower compartment were harvested and counted using flow cytometry.  

For analysis, the aptamer-mediated inhibition of migration was calculated as percentage of migrated 

cells in comparison to cells that migrated towards mCCL17 alone (set to 100%). Both aptamers were 

tested at a molar ratio of 1:1 (7.5 pmol/well) and 1:10 (0.75 pmol/well) (aptamer:mCCL17) and 

compared to bulk RNA sequences of the non-enriched library from selection cycle 1 of the SELEX
50

. As 

expected, the addition of MAB529 almost completely inhibited the CCL17-dependent migration of 

BW5147.3 cells compared to the medium control (see Fig. 5.11). Strikingly, MF11 and MF35 also 

significantly inhibited transmigration of BW5147.3 cells at a molar ratio of 1:1. Of note, MF11 appeared 

to be more potent than MF35 as it was still able to inhibit migration at a molar ratio of 1:10. These 

results demonstrated that both aptamers are not only able to specifically bind mCCL17
50

 but can also 

inhibit CCL17-dependent migration. 
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 CCL17-deficient mice are protected from CHS pathology 5.2.2

To demonstrate the efficacy of the two aptamers to neutralize CCL17 in vivo, CHS was performed in 

aptamer-treated WT mice and CCL17-deficient (CCL17
E/E

) mice. The ear swelling response was 

measured on the right ear on days 1, 2, and 3 after DNFB challenge. Left ears were treated with vehicle 

(acetone:olive oil, 5:1) only and served as a control. As expected, CCL17
E/E 

mice showed a significantly 

reduced ear swelling response compared to control animals on day 1 and 2 after DNFB challenge (see 

Fig. 5.12A). Because of the postulated role of CCL17 in the recruitment of peripheral leukocytes into 

the skin, flow cytometry was used to analyze cell recruitment into challenged ears on day 4 after DNFB 

treatment (see Fig. 5.12B and C). In addition to the gating strategy used for skin-resident T cells (see 

Fig. 5.9), total CD3
+
 T cells were analyzed for the expression of CD8 (see Fig. 5.12C) as CD8

+
 cytotoxic 

T cells were demonstrated to be major effector cells of CHS
165,166

. Compared to vehicle treated ears, a 

significant increase of CD45
+ 

leukocytes and CD8
+
 T cells was observed in DNFB-treated ears isolated 

from both, WT and CCL17
E/E

 mice (see Fig. 5.12B and C). Strikingly, the ears of DNFB-treated CCL17
E/E

 

mice harbored significantly fewer CD45
+
 leukocytes and CD8

+
 T cells compared to DNFB-treated WT 

mice. These results further strengthened the critical role of CCL17 for the recruitment of peripheral 

leukocytes and also allowed to test the inhibitory capacity of CCL17-specific aptamers in vivo using 

CCL17
E/E

 mice as a control group. 

Figure 5.11 | Aptamers inhibit CCL17-dependent cell migration in vitro. 

A transwell system was used to measure migration of BW5147.3 cells towards 100 ng/ml (7.5 pmol/well) mCCL17. 

The unmodified and full-length aptamers MF11 and MF35 as well as bulk RNA sequences from selection cycle 1 

were tested at equimolar concentrations (7.5 pmol) and at a molar ratio of 1:10 (aptamer:mCCL17). As a control, 

7.5 pmol of the anti-CCL17 monoclonal antibody MAB529 (1.88 µg/ml) was added to the lower compartment. 

After 2h, transmigrated cells in the lower compartment were counted using flow cytometry and calculated as 

percent of migration towards mCCL17 alone (n=3-5, mean ± SEM). Statistical significance was tested by One-way 

ANOVA with Bonferroni´s post-hoc test for multiple comparisons (***p<0.001). 
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 Aptamer-mediated inhibition of CCL17 reduces symptoms of 5.2.3

CHS in vivo 

As the originally selected aptamers, MF11 and MF35 were not optimized for in vivo use, it was decided 

to truncate and modify the aptamers
50

. Without altering their secondary structure, both aptamers were 

shortened in a way that maintained the extended hairpin structure necessary to bind mCCL17
50

. 

Additional details on the truncation process can be found in Fülle et al., 2017
50

.  

The shortened aptamers, MF11.46 and MF35.47, are less than 50 nucleotides (46 and 47 for MF11 and 

MF35, respectively) and were thus suitable for chemical synthesis
50

. MF11.46 and MF35.47 were also 

tested for their capacity to specifically bind mCCL17. As for the original aptamers, a high specificity of 

MF11.46 and MF35.47 for mCCL17 was found
50

. Whereas the truncation process yielded aptamers 

suitable for chemical synthesis, they presumably possess a rather short half-life in vivo50
. The 

introduction of a polyethyleneglycol (PEG)-tail and cap structures at the 5’- and 3’-terminal ends were 

previously demonstrated to significantly prolong the half-life of aptamers in vivo50,167
. The extended 

half-life is believed to result from an enhanced resistance towards exonuclease activity and reduced 

renal clearance
167

. Thus, a 3’-dT-cap structure and a 20kDa 5’-PEG-tail were added to MF11.46 and 

MF36.47, generating modified versions of the shortened aptamers (MF11.46.m and MF35.47.m). As 

before, the functionality of the shortened and modified aptamers was also tested in the previously 

established transwell assay. Here, MF11.46.m and MF35.47.m were tested at molar ratios of 10:1 (only 

MF35.47.m) and 1:1, 1:10 and 1:100 (MF35.47.m & MF11.46.m), containing 75 pmol,  7.5 pmol, 0.75 

Figure 5.12 | CCL17-deficient mice are protected from contact hypersensitivity. 

CHS  was performed with C57BL/6 WT and CCL17
E/E

 mice. All mice were sensitized with DNFB on day -5 and -4. At 

d0, mice were challenged with DNFB at the right ear (solid lines in A), whereas the vehicle was applied to the left 

ear as a control (dashed lines in A) A: Time course of the ear swelling response at d1-d3 (24h-72h) post DNFB 

challenge of WT and CCL17
E/E

 mice. (n=8-9 animals per group, mean ± SEM). One representative of three 

experiments is shown. Data was tested for statistical significance by 2-way ANOVA with Bonferroni´s post-hoc test 

for multiple comparisons (**p<0.01). B & C: Flow cytometric analysis of the ears. At day 4 the ears were digested 

and the isolated cells analyzed via flow cytometry. Absolute numbers of CD45
+
 leukocytes (B) and CD3

+
CD8

+
 T 

cells (C) per ear are depicted. (n=4 per group, mean ± SD). Data was tested for statistical significance by One-way 

ANOVA with Bonferroni´s post-hoc test for multiple comparisons (**p<0.01; *p<0.05). 
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pmol or 0.075 pmol aptamer per well, respectively. As depicted in Fig. 5.13A, both aptamers efficiently 

inhibited CCL17-dependent migration of BW5147.3 cells. Importantly, an equally modified, but non-

functional scrambled aptamer (ctrl. apt.) did not inhibit migration of BW5147.3 cells, indicating that the 

shortening and the modifications had no impact on aptamer efficacy.  

 

To this end, the IC50 values (half maximal inhibitory concentration) of MF11.46.m and MF35.47.m were 

determined and directly compared to MAB529 (see Fig. 5.13B). The IC50 value of MAB529 and 

MF35.47m was found to be very similar with 3.3 and 2.9 pmol, respectively. In contrast, MF11.46.m had 

a much higher binding efficiency with an approximately 8-fold lower IC50 value of 0.42 pmol. This was 

in line with MF11.46.m also showing a much higher efficiency to inhibit CCL17-dependent migration in 

vitro (see Fig. 5.13A).  

Figure 5.13 | MF11.46.m and MF35.47.m efficiently inhibit CCL17-dependent cell migration in vitro. 
A: MF11.46.m and MF35.47.m were tested for their capacity to inhibit CCL17-dependent migration of BW5147.3 

cells in a transwell system. Aptamers were tested at molar ratios of 1:1 (7.5pmol), 1:10 (0.75pmol) and 1:100 

(0.075pmol) (aptamer:mCCL17). A non-functional control aptamer served as a negative control. The transmigrated 

cells were counted and calculated as percent of migration towards CCL17 alone (n=3, mean ± SEM). Statistical 

significance was tested by One-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons (**p<0.01; 

*p<0.05). B: The half maximal inhibitory concentration (IC50) of MAB529, MF11.46.m and MF35.47.m was 

determined using the transwell migration assay. Increasing concentrations of MAB529, MF11.46.m and MF35.47.m 

were tested to inhibit migration towards 100ng/ml mCCL17 (=7.5pmol). After 2h, the transmigrated cells were 

counted and total cell counts were normalized to the medium control and calculated as percent of migration 

towards mCCL17 alone. IC50 values were calculated using GraphPad Prism 6. One representative experiment out of 

three is shown.  
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Before in vivo application, both aptamers were tested for their capability to induce an inflammatory 

response in immortalized murine embryonic Mφs. As aptamers could bind and activate cell surface or 

intracellular PRR, such as TLR3, 7 and 9 or RIG-I-like receptors, TNF levels were measured in the 

supernatant to determine the immunogenicity of the aptamers. The aptamers did not elicit TNF 

secretion and were therefore considered to be non-immunogenic
50

.  

After having demonstrated aptamer functionality in vitro, their potential to inhibit CCL17-dependent 

migration in vivo was tested. For this, the previously established CHS assay was used. Before testing 

the aptamers in vivo, the optimal time point to inhibit CCL17-mediated functions was determined 

using MAB529. Therefore, WT mice were injected i.p. with 200 µg of MAB529 either immediately 

before sensitization or before challenging the mice with DNFB. It turned out that neutralization of 

CCL17 shortly before DNFB challenge resulted in a reduction of the ear swelling response
50

. Therefore, 

the efficacy of the aptamers to inhibit CCL17-induced responses was tested before DNFB challenge. To 

account for the shorter half-life of aptamers compared to monoclonal antibodies such as MAB529, WT 

mice received two i.p. injections of 5 nmol aptamer/mouse 1 h prior and 12 h post DNFB treatment of 

the ear. As a control, WT and CCL17
E/E

 mice were injected with PBS.  

Treatment with MF35.47.m and MF11.46.m significantly inhibited the ear swelling response compared 

to mice which received the scrambled control aptamer (see Fig. 5.14A). Interestingly, treatment with 

MF35.47.m inhibited the ear swelling response more efficiently than MF11.46.m. This result was 

somehow unexpected as MF35.47.m was about 10-fold less efficient in vitro compared to MF11.46.m 

(see Fig. 5.11 and 5.13A). Consistent with previous experiments, CCL17
E/E

 mice displayed an 

attenuated ear swelling response. In line, flow cytometric analysis of the ears on day 4 post DNFB 

challenge revealed a clear reduction of CD45
+ 

leukocytes in ear tissue of CCL17
E/E

 and MF35.47.m-

treated mice and, to a lesser extent in MF11.46.m-treated mice (see Fig. 5.14B). Although only few 

CD8
+
 T cells are left in the swollen ear at day 4 after DNFB challenge, CCL17

E/E
 and MF35.47.m-treated 

mice harbored reduced amounts of CD8
+
 T cells compared to mice treated with the scrambled 

aptamer. In additional experiments, the dose of aptamer required to reduce CHS-associated symptoms 

was further titrated
50

. Whereas a dose of 1 nmol aptamer per mouse resulted in a slight reduction of 

ear swelling, a minimal dose of 5 nmol per mouse proved to be necessary to observe significant 

differences compared to the scrambled aptamer
50

. In conclusion, these experiments demonstrated that 

both aptamers are able to inhibit CCL17 functions in vivo albeit MF35.47.m proved to be more efficient 

than MF11.46.m.  
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Figure 5.14 | Aptamer mediated inhibition of CCL17 reduces ear swelling and leucocyte infiltration. 

CHS was performed with C57BL/6 WT and CCL17
E/E

 mice. All mice were sensitized with DNFB on day -8 and -7. 

WT mice received (i.p.) 5 nmol of MF11.46.m, MF35.47.m, or the control aptamer (in 200µl PBS) 1h before and 12h 

after DNFB challenge. CCL17
E/E

 mice were injected with 200µl PBS. A: Time course (24h-72h) of the ear swelling 

response of WT and CCL17
E/E

 mice after DNFB (solid lines) or vehicle (dashed lines) application. (n=6 per group, 

mean ± SEM). One representative of three experiments is shown. Data was tested for statistical significance by 2-

way ANOVA with Bonferroni´s post-hoc test for multiple comparisons (***p<0.001; **p<0.01; *p<0.05). B & C: 

Flow cytometric analysis of ears biopsies. On day 4 after challenge the ears were digested and the isolated cells 

analyzed via flow cytometry. Absolute numbers of CD45
+
 (B) and CD3

+
CD8

+
 (C) cells per ear are depicted. (n=3 

per group, mean ± SD). Data was tested for statistical significance by One-way ANOVA with Bonferroni´s post-hoc 

test for multiple comparisons (*p<0.05). 



5 | Results 

70 

 Opposing roles of CCR4 and its two known ligands in 5.3

the context of contact hypersensitivity 

The chemokines CCL17 and CCL22 are both ligands of the chemokine receptor CCR4. Interestingly, 

different immune regulatory functions have been attributed to the two chemokines. CCL17 has long 

been shown to promote various inflammatory and allergic diseases by being critically involved in the 

induction of T helper and cytotoxic T cell responses
89,168

. In contrast, several studies found CCL22 to be 

present in immunosuppressive environments, for example, in various tumor tissues
79

. Here, CCL22 was 

demonstrated to be produced by intratumoral DC and to dampen immune responses through the 

recruitment of regulatory T cells. With regard to CCR4 activation, it was shown that CCL22 induces a 

more rapid desensitization and internalization of CCR4 compared to CCL17
81,169

. These differences of 

CCL17 and CCL22-induced signaling as well as the fact that CCR4-deficiency was not associated with 

amelioration of skin inflammation
45

, underlined the need to perform a more comprehensive 

investigation of the CCL17/22-CCR4 axis in vivo. Thus, the TALEN (Transcription activator-like effector 

nuclease) technology was employed to generate CCL17/22-double-deficient mice lines. To facilitate 

the process, it was decided to target the Ccl22 locus in CCL17
E/E

 mice which would directly generate 

CCL17
E/E

/22-double-deficient mice (referred to as CCL17
E/E

/22
-/- 

mice). TALEN-mediated gene-

targeting yielded several different CCL17
E/E

/22
-/- 

mice lines, all harboring distinct mutations in the Ccl22 

locus. However, it was decided to perform the present experiments only with two lines, harboring 

either the “F” (CCL17
E/E

/22
F/F

) or “G” (CCL17
E/E

/22
G/G

) mutation (see 3.11.1 for details on the mutations). 

Loss of CCL17 and CCL22 was confirmed in several in vitro experiments, including ELISA measurements 

and transwell assays (data not shown). A comparison of the effect of two independent mutations of 

the same gene was performed to reduce the likelihood of possible off-target effects of the TALEN 

constructs, although this cannot be fully excluded. 

As the experiments aimed to shed light on the opposing roles of CCR4 and its ligands, it was decided 

to directly compare CCL17
E/E

/22
-/-

 mice with CCR4
-/-

 mice in the DNFB-induced CHS model. In all 

experiments, WT and CCL17
E/E

 mice were included as a control.  
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As depicted in Fig. 5.15A and B, DNFB treatment induced an ear swelling response in all experimental 

groups over the course of three days (d1-d3). In line with previous results, CCL17
E/E 

mice showed a 

milder progression of skin inflammation whereas CCR4-deficiency resulted in a significantly enhanced 

ear swelling response compared to WT mice. Unexpectedly, CCL17
E/E

/22
F/F

 and CCL17
E/E

/22
G/G 

mice also 

showed an amelioration of the ear swelling response, which was comparable to CCL17
E/E

 mice. 

Furthermore, it was noted, that the ear swelling response of WT mice returned to the thickness of 

CCL17
E/E

 and CCL17
E/E

/22
-/-

 animals at day 3,  whereas an increased swelling response persisted in 

three out of five CCR4
-/-

 mice.  

Figure 5.15 | Opposing CHS reactions in CCR4-deficient and CCL17/22-double-deficient mice. 

CHS was performed with C57BL/6 WT, CCR4-/-, CCL17
E/E

, CCL17
E/E

CCL22
F/F

 and CCL17
E/E

CCL22
G/G

 mice. All mice 

were sensitized with DNFB on day -5 and -4. On day 0 after sensitization ears were either treated with DNFB or 

solvent (acetone:olive oil, 5:1). A: Three day time course (24h-72h, respectively) of the ear swelling response of all 

experimental mice after DNFB (solid lines) or vehicle (dashed lines) treatment. B: Quantification of the ear swelling 

responses depicted in A. Circles represent data from individual mice. (n=5-9 per group, mean ± SEM). One 

representative of three experiments is shown. Data was tested for statistical significance by 2-way ANOVA with 

Bonferroni´s post-hoc test for multiple comparisons (****p<0.0001; ***p<0.001; **p<0.01). 
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 Analysis of immune cell infiltrates after DNFB 5.4

application 

Similar to the characterization of CCL17
+
 cells in naïve murine skin (see 5.1) the composition and 

absolute numbers of immune cells were analyzed in the ears of CCL17
E/E

/22
F/F

, CCL17
E/E

/22
G/G

, CCR4
-/-

, 

CCL17
E/E

 and WT mice after DNFB treatment. As before, ears were excised at day 4 after DNFB 

challenge and cells were subjected to staining for flow cytometry. To get a comprehensive overview of 

the cell composition present in the inflamed ear, the previously established gating strategies were 

utilized. 

 Analysis of T cells in ears of CCR4-/-, CCL17E/E and  5.4.1

CCL17E/E/22-/- mice after DNFB treatment  

To identify T cell subsets present in the inflamed skin, the same gating strategy as shown in Fig. 5.9 

was employed. As expected, all DNFB-treated ears harbored increased numbers of CD45
+
 leukocytes, 

total CD3
+
 T cells as well as CD3

+
TCRβ

+
 conv T cells compared to solvent-treated ears (see Fig. 5.16A). 

Strikingly, however, absolute numbers of CD45
+
 leukocytes were significantly higher in DNFB-treated 

CCR4
-/-

 mice compared to WT mice. Also, CCL17
E/E

, CCL17
E/E

/22
F/F

, and CCL17
E/E

/22
G/G

 mice contained 

significantly reduced numbers of CD45
+
 leukocytes compared to CCR4

-/-
 mice. Analysis of total T cells 

and conv T cell revealed a similar picture albeit not statistically significant. Interestingly, the ratio of 

infiltrating leukocytes and total CD3
+
 T cells somewhat reflected the ear swelling response as depicted 

in Fig. 15B, suggesting an important role of these cells for the opposing phenotypes observed in 

CCR4
-/-

 and CCL17
E/E

/22
-/-

 mice. In contrast to conv T cells, overall numbers of dermal γδ T cells were 

not affected by DNFB application (see Fig. 5.16B). In line with the analysis of T cells in the naïve skin 

(see 5.1.6), absolute numbers of dermal γδ T cells were reduced in CCR4
-/-

, CCL17
E/E

 and CCL17
E/E

/22
G/G

 

mice independently of DNFB treatment (see Fig. 5.16B). Interestingly, control ears of CCL17
E/E

, 

CCL17
E/E

/22
F/F

, and CCL17
E/E

/22
G/G

 mice contained less DETCs (TCRγδ
hi
) compared to WT mice, whereas 

DNFB treatment resulted in reduced numbers of DETC in all experimental groups (see Fig. 5.16B). In 

conclusion, the experiments confirmed the critical role of CCL17 for the recruitment of T cells in the 

context of skin inflammation. However, loss of CCL17 and CCL22 in CCL17
E/E

/22
-/-

 mice had no 

additional impact on T cells numbers in skin compared to CCL17
E/E

 mice. 
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Figure 5.16 | Quantification of skin T cell subsets after DNFB treatment. 

CHS assay was performed with C57BL/6 WT, CCR4
-/-

, CCL17
E/E

, CCL17
E/E

CCL22
F/F

 and CCL17
E/E

CCL22
G/G

 mice. Mice 

were sensitized with DNFB on day -5 and -4. On day 4 after DNFB challenge, ears were digested and isolated cells 

subjected to staining for flow cytometric analysis of. A: Absolute numbers of total CD45
+
 leukocytes, total CD3

+
 T 

cells and CD3
+
TCRβ

+
 conventional T cells. B: Absolute numbers of γδ T cells (TCRγδ

int
)
 
and TCRγδ

hi
 dendritic 

epidermal T cells (DETC). (n=2-4 for solvent treated groups (acetone:olive oil, 5:1), mean ± SD and n=5 for DNFB-

treated groups, mean ± SEM). Only data from DNFB-treated groups were tested for statistical significance by 2-

way ANOVA with Bonferroni´s post-hoc test for multiple comparisons (****p<0.0001; ***p<0.001; **p<0.01). 
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 Analysis of myeloid cells in ears of CCR4-/-, CCL17E/E and 5.4.2

CCL17E/E/22-/- mice after DNFB treatment 

For the analysis of myeloid cells in the skin of CCR4
-/-

 and CCL17
E/E

/22
-/-

 mice, the previously 

established gating strategy for the analysis of naïve ears (see 5.1.3) was utilized. Confirming the 

analysis of T cells, CD45
+
 leukocytes were also strongly enriched in DNFB treated ears of all 

experimental groups albeit the variation within the groups was slightly higher compared to the T cell 

staining. DNFB treatment resulted in increased numbers of total CD11c
+
MHCII

+ 
cells (see Fig. 5.17A) 

as well as DN DC, cDC1 and, in particular, CD11b
+
 cells (see Fig. 5.17B). Except for CD11b

+
 cells, no 

significant differences within the groups analyzed were found. In the case of CD11b
+
 cells, the absence 

of both chemokines, but not CCR4 led to significantly reduced numbers of CD11b
+
 cells after DNFB 

application compared to WT animals. In contrast, the absolute number of LCs was comparable 

between solvent and DNFB treated ears in all experimental groups. This was somehow unexpected as 

CCL17 was previously demonstrated to be required for the emigration of skin-resident LCs
49

. 

In addition to the absolute numbers of skin myeloid cells, the effect of DNFB treatment on CCL17 

expression was analyzed. Thus, the percentage of CCL17/EGFP
+ 

cells
 
within the different myeloid cell 

subsets
 
was determined (see Fig. 5.18). In concordance with previous analyses of naïve skin, 

CCL17/EGFP
+
 cells were identified in all myeloid cell subsets. Interestingly, the additional absence of 

CCL22 in CCL17
E/E

/22
F/F

 and CCL17
E/E

/22
G/G

 mice had no apparent effect on the number of 

CCL17/EGFP
+
 cells compared to CCL17

E/E
 mice. Whereas DNFB treatment led to increased numbers of 

DN DC, cDC1 and CD11b
+
 cells, the percentage of CCL17/EGFP

+ 
cells

 
was not or only slightly affected 

by DNFB application (see Fig. 5.18). Remarkably, however, LCs contained increased numbers of 

CCL17/EGFP
+ 

cells
 
after DNFB treatment.  
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Figure 5.17 | Quantification of skin myeloid cell subsets after DNFB treatment. 

CHS was performed with C57BL/6 WT, CCR4
-/-

, CCL17
E/E

, CCL17
E/E

CCL22
F/F

 and CCL17
E/E

CCL22
G/G

 mice. Mice were 

sensitized with DNFB on day -5 and -4. On day 0 after sensitization ears were either treated with DNFB or solvent 

(acetone:olive oil, 5:1). On day 4 after DNFB challenge ears were digested and isolated cells subjected to staining 

for flow cytometry. A: Absolute numbers of total CD45
+
 leukocytes and total CD11c

+
MHCII

+
 cells. B: Absolute 

numbers of CD24
-
CD11b

-
 double negative DC (DN DC), CD24

+
CD11b

-
 type 1 conventional DC (cDC1), 

CD24
+
CD11b

hi
 Langerhans cells (LC) and CD11b

+
 cells. (n=2-4 for solvent treated groups, mean ± SD and n=5 for 

DNFB-treated groups, mean ± SEM). Only data from DNFB-treated groups were tested for statistical significance 

by 2-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons (***p<0.001; **p<0.01). 



5 | Results 

76 

 

 Analysis of monocyte populations in ears of CCR4-/-, CCL17E/E 5.4.3

and CCL17E/E/22-/- mice after DNFB treatment 

As before, the heterogeneity of CD11b
+ 

skin
 
cells demanded a more precise analysis (see 5.1.4). Thus, 

the isolated cells of the inflamed ears were also subjected to the previously established monocyte 

staining. Consistent with previous analyses, the number of CD45
+
 leukocytes was strongly increased in 

DNFB treated ears of all experimental groups (see Fig. 5.19A) and CCR4
-/-

 mice showed highest 

numbers of CD45
+
 cells. Also, the absolute number of CD24

lo
CD11b

+ 
cells was enriched after DNFB 

treatment albeit no difference was detected between the analyzed groups (see Fig. 5.19A). Separation 

of CD11b
+
 cells into CD11b

+
 DC and total monocytes revealed that DNFB treatment also resulted in an 

increase of both cell types compared to solvent control (see Fig. 5.19B). Interestingly, CD11b
+
 DCs 

were increased in ear samples of DNFB-treated CCR4
-/-

 mice compared to WT controls.  

Figure 5.18 | Percentages of CCL17/EGFP
+
 cells within skin myeloid populations after DNFB treatment. 

CHS was performed with C57BL/6 WT, CCR4
-/-

, CCL17
E/E

, CCL17
E/E

CCL22
F/F

 and CCL17
E/E

CCL22
G/G

 mice. Mice were 

sensitized with DNFB on day -5 and -4. On day 0 after sensitization ears were either treated with DNFB or solvent 

(acetone:olive oil, 5:1). On day 4 after DNFB challenge ears were digested and isolated cells subjected to staining 

for flow cytometry. Depicted are the percentages of CCL17/EGFP
+
 cells within the identified skin myeloid cell 

subsets. WT and CCR4
-/-

 mice served as negative controls and are depicted to indicate background fluorescence. 

(n=2-4 for solvent treated groups, mean ± SD and n=5 for DNFB-treated groups, mean ± SEM). Only data from 

DNFB-treated groups were tested for statistical significance by 2-way ANOVA with Bonferroni´s post-hoc test for 

multiple comparisons (***p<0.001). 
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Figure 5.19 | Quantification of skin monocyte and macrophage subsets after DNFB treatment. 

 

Legend on next page. 
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Further analysis of total monocytes revealed a strong DNFB-induced increase of CCR2
+ 

and CCR2
-
 

monocytes (see Fig. 5.19B and C). As stated earlier, CCR2
+ 

cells comprise at least three distinct skin 

monocyte/ moDC populations (P1, P2, and P3) whereas CCR2
- 
cells constitute two distinct skin Mφ 

populations (P4 and P5)
28

. Here, total CCR2
+
 cells, as well as P1, P2, and P3 cells increased following 

DNFB challenge (see Fig. 5.19B). Interestingly, the increase in CCR2
+
 cells mainly resulted from an 

increase in P2 moDCs. Furthermore, the DNFB-induced accumulation of total monocytes, in particular 

P2 moDCs, was less pronounced in CCL17
E/E

/22
-/-

 mice (see Fig. 5.19A right and Fig. 5.19B). The 

DNFB-induced accumulation of total CCR2
-
 skin Mφs could be pinpointed to Ly6C

-
MHCII

+
 P5 Mφs (see 

Fig. 5.19C).
1
 

The percentage of CCL17/EGFP
+
 cells among CD11b

+
 DC and total monocytes was not affected by 

DNFB treatment (see Fig. 5.20A). It has to be noted, however, that the absolute number of CCL17-

expressing cells increases following DNFB treatment as also the overall number of monocytes 

increases after DNFB application (see Fig. 5.19A, right). A comparison of CCL17-expressing CCR2
+
 

monocytes and CCR2
- 

Mφs
 

revealed an opposing picture. Whereas CCL17-expressing CCR2
+ 

monocytes
 
were not affected by DNFB, the

 
percentage

 
of CCL17-expressing CCR2

-
 Mφs increased (see 

Fig. 5.20B). Further analysis of the CCR2
+
 monocyte subsets demonstrated that especially cells in P1 

and P3 contained less CCL17/EGFP
+
 cells after DNFB treatment (see Fig. 5.20A). In contrast, the 

number of CCL17/EGFP
+ 

P5 Mφs increased after DNFB challenge and therefore explains the rise of 

CCL17-expressing cells in the CCR2
-
 fraction (see Fig. 5.20B). 

In conclusion, flow cytometric analysis of skin immune cell infiltrates demonstrated that DNFB 

challenge results in an increase of distinct immune cell subsets in the murine skin, in line with the 

expectation the numbers of CD45
+
 leukocytes and conv T cells was markedly increased in CCR4

-/- 
mice 

compared to WT control mice. Furthermore, DNFB challenge strongly increased numbers of CCL17-

expressing cells in various myeloid cell subsets, particularly CCR2
+
 Ly6C

-
 MHCII

+ 
P3 moDCs and CCR2

-

Ly6C
-
MHCII

+ 
P5 Mφs.  

                                                      
1Figure 5.19 Quantification of skin monocyte and macrophage subsets after DNFB treatment. 

CHS was performed with C57BL/6 WT, CCR4
-/-

, CCL17
E/E

, CCL17
E/E

CCL22
F/F

 and CCL17
E/E

CCL22
G/G

 mice. Mice were 

sensitized with DNFB on day -5 and -4. On day 0 after sensitization ears were either treated with DNFB or solvent 

(acetone:olive oil, 5:1). On day 4 after DNFB challenge ears were digested and isolated cells subjected to staining 

for flow cytometry. A, left: Absolute numbers of total CD45
+
 leukocytes and total CD11b

+
 cells. A, right: Absolute 

numbers of CD11b
+ 

DC and total skin monocytic cells. B: Absolute numbers of CCR2
+
 skin monocytes and 

corresponding P1, P2 and P3 subpopulations (for more details compare to Fig. 5H & I). C: Absolute numbers of 

CCR2
-
 skin macrophages and corresponding P4 and P5 subpopulations (for more details compare to Fig. 5H & K). 

(n=2-4 for solvent treated groups, mean ± SD and n=5 for DNFB-treated groups, mean ± SEM). Only data from 

DNFB-treated groups were tested for statistical significance by 2-way ANOVA with Bonferroni´s post-hoc test for 

multiple comparisons (**p<0.01). 
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Figure 5.20 | Percentages of CCL17/EGFP
+
 cells within skin monocyte populations after DNFB treatment. 

CHS assay was performed with C57BL/6 WT, CCR4
-/-

, CCL17
E/E

, CCL17
E/E

CCL22
F/F

 and CCL17
E/E

CCL22
G/G

 mice. Mice 

were sensitized with DNFB on day -5 and -4. On day 0 after sensitization ears were either treated with DNFB or 

solvent (acetone:olive oil, 5:1). On day 4 after DNFB challenge ears were digested and isolated cells subjected to 

staining for flow cytometry. A: Percentages of CCL17/EGFP
+
 cells within CD11b

+
 DC, total monocytic cells, CCR2

+
 

monocytes and related monocyte subpopulations P1-P3. B: Percentages of CCL17/EGFP
+
 cells in CCR2

-
 skin 

macrophages and corresponding subpopulations P4 and P5. WT and CCR4
-/-

 mice served as negative controls and 

are depicted to indicate background fluorescence. (n=2-4 for solvent treated groups, mean ± SD and n=5 for 

DNFB-treated groups, mean ± SEM). Only data from DNFB-treated groups were tested for statistical significance 

by 2-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons. 



5 | Results 

80 

 CCL17 is a neuromodulatory chemokine in the CNS 5.5

In the previous section, the experiments were aimed to extend the knowledge on the 

immunoregulatory functions of CCL17 in skin immunity. Besides its expression in distinct skin-resident 

and infiltrating myeloid cells, CCL17 expression was found in other peripheral organs, particularly in 

the intestine and the lung
72,170

. Both organs are in constant contact with the environment. As stated in 

the introduction, the mammalian CNS has long been viewed as an organ protected from the systemic 

circulation but this view is already obsolete for quite some time. The brain should be considered as an 

organ which is constantly in contact with at least two different environments. First, it integrates input 

from sensory neurons to generate a picture of the external environment, and second, it possesses 

highly specialized immune cells which closely monitor the body and brain. As chemokines, such as 

CCL17 and CCL22, are highly versatile messengers of the peripheral immune system it is probably not 

surprising that they were also identified in several brain regions, including the hypothalamus and the 

hippocampus
126

. Interestingly, several studies already identified Ccl17 expression in hypothalamic 

neurons and microglia
171–175

. However, most of these studies used microarray or RNA sequencing 

approaches. In the present thesis, brains of CCL17-EGFP reporter mice (CCL17
E/+

) were screened to 

identify cell-types expressing Ccl17. 

 CCL17 is expressed in a subset of hippocampal CA1 neurons 5.5.1

Initially, confocal microscopy was used to locate CCL17/EGFP+ cells in murine brain sections. 

Therefore, heterozygous CCL17
E/+ 

mice and homozygous CCL17
E/E

 mice were compared to WT animals. 

As the endogenous EGFP
 
expression in brain sections of CCL17

E/+
 and CCL17

E/E
 mice was very weak, 

antibody-mediated staining of EGFP was performed to detect CCL17/EGFP
+
 cells. In addition, brain 

sections were stained with the neuronal marker NeuN. As depicted in Fig. 5.21B and C, CCL17/EGFP
+
 

cells were clearly identified in the hippocampal CA1 region in both heterozygous and homozygous 

mice. 
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As can be seen in Fig. 5.21A, D & G no unspecific staining was observed in CCL17
+/+

 mice. However, a 

higher proportion of CCL17/EGFP
+
 cells was detected in brain sections of CCL17

E/E 
mice (see Fig. 

5.21C, F and I) compared to CCL17
E/+

 mice (see Fig. 5.21B, E and H). This can be probably explained 

by the stronger expression of EGFP encoded by both targeted alleles in CCL17
E/E

 mice. The 

CCL17/EGFP
+
 cells clearly possessed a NeuN

+ 
nucleus and were thereby identified as neurons located 

in the hippocampal CA1 region. Interestingly, most CCL17/EGFP
+
 neurons were located in the distal 

stratum pyramidale of the CA1 region (see Fig. 5.21B and C). Here, the CCL17/EGFP
+
 neurons strongly 

oriented towards the stratum oriens (see Fig. 5.21F and I). In conclusion, the histological analysis of 

brain sections of CCL17
E/+

 and CCL17
E/E

 mice revealed distinct expression of Ccl17 in hippocampal 

neurons. 

 

Figure 5.21 | Identification of CCL17
+
 cells in the distal hippocampal CA1 region. 

A-C: Saggital brain sections of naïve, adult CCL17
+/+ 

(A, D and G), CCL17
E/+ 

(B, E and H) and CCL17
E/E 

(C, F and I) 

mice. Sections were stained for NeuN (red) and EGFP (green). Scale Bar 200µm. Images were captured at 100x 

magnification. D, E, F: 250x magnification of the boxed areas depicted in A, B and C, respectively. Scale Bar 50µm. 

G, H, I: Digital magnification of boxed areas in D, E and F as indicated. Scale Bar 25µm. Representative images are 

shown. 
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 Systemic inflammation induced by LPS upregulates 5.5.2

expression of Ccl17 and Ccl22 in the brain 

Although CCL17-expressing neurons in the hippocampus were consistently identified in several 

experiments, the intensity of EGFP (CCL17) staining varied between experiments. Previous studies by 

our lab found that TLR stimulation strongly upregulates CCL17 expression in peripheral organs, for 

example in skin-draining lymph nodes
73

. Thus, neuronal Ccl17 expression was analyzed after systemic 

TLR activation. Therefore, WT and CCL17
E/+

 mice were injected (i.p.) with various TLR-ligands or PBS as 

a control. The TLR-ligands are depicted in Tab. 5-1. 16 h after injection, CCL17
E/+

 mice were 

sequentially perfused with PBS and PFA before harvesting whole brains for microscopic analysis. Brain 

sections of PBS and TLR-ligand injected CCL17
E/+

 mice were stained for EGFP and DAPI as a 

counterstain (see Fig. 5.22). In PBS- and LPS-treated CCL17
E/+

 animals, CCL17/EGFP
+ 

cells
 
could be 

readily detected in the distal hippocampal CA1 region (see Fig. 5.22A and B). Strikingly, a strong 

increase in the number, as well as the staining intensity of CCL17/EGFP
+
 neurons was observed in LPS-

treated CCL17
E/+

 mice compared to PBS-treated animals. In contrast, staining intensity of EGFP 

appeared to be slightly reduced in mice which received CpG or Poly(I:C) (see Fig. 5.22C and D).  

Ligand Receptor Nature Origin Dose 

Poly(I:C) TLR3 dsRNA Virus 200µg/ mouse 

LPS TLR4 Lipid/Polysaccharide Gram-negative bacteria 150µg/ mouse 

CpG-ODN TLR9 dsDNA Bacterial DNA & Virus 32µg/ mouse 

Table 5-1 | Overview of the tested TLR ligands 
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Figure 5.22 | Systemic LPS treatment enhances Ccl17 and Ccl22 expression in the hippocampus. 

CCL17
E/+ 

mice received i.p. injections of 200µl PBS (A), 150µg LPS (B), 32 µg CpG (C) or 150 µg Poly/(I:C) (D) in 

200µl PBS. Brains were isolated 16 h post injection, stained for EGFP and DAPI and scanned using confocal 

imaging analysis. (Left: EGFP staining; Middle: DAPI staining; Right: Pseudocolor merge: DAPI (blue), EGFP (green)). 

Scale bar, 200µm. 
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In addition to the microscopic analysis, hippocampi of TLR ligand-treated WT mice and controls were 

freshly dissected and used for RNA extraction and RT-PCR analysis. RT-PCR analysis of WT mice 

revealed a similar TLR-dependent regulation of Ccl17 expression in the brain as seen in the analysis of 

CCL17
E/+ 

reporter mice (see Fig. 5.23B). Confirming the microscopic observations, only systemic LPS 

challenge resulted in significantly upregulated expression of Ccl17 in the hippocampus (see Fig. 

5.23B). Similar to the expression of Ccl17, LPS treatment also induced a significant upregulation of 

Ccl22 mRNA (see Fig. 5.23B).  

In conclusion, it could be demonstrated that the activation of TLR4 but not TLR3 or TLR9-related 

signaling pathways enhanced the expression of Ccl17 and Ccl22 above homeostatic expression. 

 Weak expression of CCL17 in cortical cells 5.5.3

In addition to the hippocampus, other brain regions, such as the cortex or the cerebellum were also 

analyzed for the presence of CCL17/EGFP
+
 cells. To increase the sensitivity of EGFP detection, only 

homozygous CCL17
E/E

 mice with or without prior stimulation with LPS were subjected to antibody 

staining and image analysis. As before, CCL17
+/+

 mice served as negative control.  

Figure 5.23 | Systemic LPS challenge enhances Ccl17 and Ccl22 expression in the hippocampus. 

C57BL/6J WT mice were injected i.p. with 200µl PBS or the indicated TLR-ligand. A, B: RT-PCR analysis of Ccl17 (A) 

and Ccl22 (B) expression in hippocampi dissected from WT animals 16h post injection (n=3-10, mean ± SEM).  

Circles represent individual mice. Statistical significance was tested using One-way ANOVA with Bonferroni´s post-

hoc test for multiple comparisons (***p<0.001 **p<0.01; *p<0.05). 
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Figure 5.24 | Localization of CCL17/EGFP
+
 cells in different regions of the murine brain. 

 

        Legend on next page. 
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Fig. 5.24A shows that no CCL17/EGFP
+
 cells were detected in the cerebellum of CCL17

E/E
 mice. In 

contrast, few CCL17/EGFP
+
 cells could be observed in the cortex under homeostatic conditions as well 

as after LPS injection (Fig. 5.24B). Although LPS treatment led to visually increased numbers of 

CCL17/EGFP
+ 

cells in the cortex, the intensity of EGFP staining appeared to be much weaker compared 

to hippocampal neurons (Fig. 5.24C). Some cells were clearly stained positive for NeuN and were thus 

identified as neurons. In conclusion, these experiments demonstrated that CCL17-expressing cells in 

the CNS are not exclusively found in the hippocampus but are also present at low numbers in the 

cortex, especially after LPS-induced systemic inflammation.
2
 

 CCL17 is secreted from in vitro cultured hippocampal neurons 5.5.4

To investigate whether CCL17 is translated and secreted by hippocampal neurons, primary neurons 

were generated from hippocampi of E14 WT embryos. For this purpose, timed pregnancies were set up 

and the mice were sacrificed at day E14. Together with the master student N. Offermann, embryonic 

hippocampi were carefully dissected, and single cell suspensions were immediately plated on poly-D-

lysine and laminin-coated culture dishes. To remove contaminating glia cells, a complete change of the 

medium was performed after 20 min. Following one week of culture, the cells acquired a typical 

neuronal morphology, characterized by a triangular cell body and elongated axons. After two weeks, 

the cells were treated with TNF, LPS or the combination of both and chemokine production was 

assessed by ELISA of culture supernatants. The chemokine fractalkine/ CX3CL1, known to be produced 

by neurons, was measured as a positive control. As depicted in Fig. 5.24A, neurons produced high 

amounts of CX3CL1 independent of LPS or TNF stimulation. In contrast, CCL17 was only detected in 

cells stimulated with TNF, LPS or both (see Fig. 5.24B). Although the concentration of CCL17 was very 

low compared to CX3CL1, these experiments demonstrated that neurons are able to release CCL17 

upon stimulation. 

                                                      
Figure 5.24  | Localization of CCL17

+
 cells in different regions of the murine brain. 

Sagittal brain sections of CCL17
+/+

 or CCL17
 E/E

 mice were stained for EGFP (first column) or NeuN (second 

column). Pseudocolor merge with NeuN in red and EGFP in green is shown in the third column. Cerebellum (A), 

cortex (B), or hippocampus (C) of PBS-treated CCL17
+/+ 

(first row) and PBS- or LPS-treated CCL17
E/E 

mice (second 

& third row) as indicated. Scale Bar 200µm. Representative images are shown. 
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 Local TNF signaling regulates LPS-induced Ccl17 expression in 5.5.5

the hippocampus 

The discovery that Ccl17 and Ccl22 are highly upregulated in the hippocampus after LPS treatment 

required clarification of the underlying regulatory pathways. It is well known that peripheral 

inflammation induced by LPS leads to elevated levels of pro-inflammatory cytokines in various organs, 

including the CNS 
119

. Here, GM-CSF and TNF were of particular interest as both were demonstrated to 

regulate Ccl17 expression in peripheral organs, such as the skin or the intestine
72–74,168

. Thus, 

expression of Csf2 and Tnf was analyzed in hippocampi of PBS or TLR-ligand treated WT mice. 

Whereas a high experimental variation of Csf2 expression prevented reliable analysis (data not shown), 

LPS treatment resulted in robust expression of Tnf in the hippocampus (see Fig. 5.26A). In contrast, 

neither CpG nor Poly(I:C) had an effect on Tnf expression. As stated earlier, systemic LPS also induces 

the production of pro-inflammatory cytokines in the periphery. To ensure that the injected dosages of 

all TLR-ligands used induced immune activation, serum levels of TNF and IL-1β were measured in WT 

mice 3 h after injection of TLR-ligands. As depicted in Fig. 5.26B and C, all three TLR-ligands provoked 

increased levels of TNF and IL-1β in the serum albeit LPS treatment induced the strongest response.  

Figure 5.25 | TNF and LPS treatment of hippocampal neurons induces secretion of CCL17 and CX3CL1 in 

vitro.  

Neuronal cultures were established from E14.5 WT embryos. Mature neurons were stimulated with rmTNF 

[50ng/mL], LPS [100ng/mL], or the combination of both for 96h. Concentration of CCL17 (A) and CX3CL1 (B) was 

determined in the supernatant by ELISA (n=2-5 independent experiments, n=2 per group in each experiment, 

mean ± SEM). The dashed line in A indicates the detection limit of the CCL17 ELISA. 
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To further investigate a potential regulatory role of TNF for the expression of Ccl17 in the 

hippocampus, TNF responses in the serum and CNS were analyzed in mice which received increasing 

doses of LPS. These experiments aimed to clarify whether severity of peripheral inflammation 

correlates with the level of serum TNF and/or the expression of Tnf, ll-1β, and Ccl17 in the 

hippocampus. As depicted in Fig. 5.27A, TNF levels in the serum increased independently of the 

injected LPS dose down to 6 µg/mouse. Strikingly, however, the expression of Tnf in the hippocampus 

clearly correlated with the amount of injected LPS (see Fig. 5.27B). That was only partly true for 

expression of Il-1β, as a pronounced expression could only be detected at doses of up to 18 µg 

LPS/mouse whereas higher doses of LPS reversed the expression (see Fig. 5.27C). Interestingly, the 

increased expression of Ccl17 and Ccl22 required a minimal dose of 50 µg LPS/mouse (see Fig. 5.27D 

and E). These experiments demonstrated that a certain threshold of peripheral inflammation had to be 

exceeded to strongly induce the expression of Ccl17 and Ccl22 in the hippocampus. In addition, a 

decisive role of peripheral TNF can be excluded, since all LPS doses caused a similar effect on TNF 

levels in the serum. This could be further confirmed by the i.p injection of recombinant murine TNF 

(rmTNF) in WT mice (see Fig. 5.28A). As depicted in Fig. 5.28B and C, even 5 µg rmTNF/mouse failed 

to induce expression of Ccl17 and Ccl22 in the hippocampus.  

Figure 5.26 | Increased production of pro-inflammatory cytokines in the serum and CNS after systemic LPS 

treatment. 

C57BL/6J WT mice were injected i.p. with 200µl PBS or the indicated TLR-ligand. A: RT-PCR analysis of TNF 

expression in hippocampi dissected from WT animals 16h post injection (n=3-10, mean ± SEM).  B, C: Serum TNF 

(B) and Il-1β (C) levels were measured 3h post injection (n=3, mean ± SD). Circles represent individual mice. 

Statistical significance was tested using One-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons 

(***p<0.001 **p<0.01; *p<0.05). The dashed line in B and C indicates the detection limit of the ELISA. 
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To confirm that TNF signaling is critically involved in the regulation of Ccl17 expression in the brain, 

TNF receptor 1 (TNFR1
-/-

) and TNF receptor 1 & 2 double-deficient animals (TNFR1/2
-/-

) were injected 

i.p with LPS (see Fig. 5.29A). Remarkably, LPS did not induce Ccl17 expression in the hippocampi of 

TNFR1
-/-

 and TNFR1/2
-/-

 mice (see Fig. 5.29B). In addition, Ccl22 mRNA was also reduced in the 

hippocampi of TNFR1
-/-

 and TNFR1/2
-/-

 mice albeit to a much lower extent than Ccl17 (see Fig. 5.29C). 

In contrast, baseline expression of both chemokines did not appear to be impaired by the absence of 

TNFR. Taken together, these experiments identified local TNF signaling in the CNS to be the primary 

trigger for LPS-induced Ccl17 expression in the hippocampus. 

 

 

Figure 5.27 | Dose-response relationship between systemic LPS treatment and hippocampal    expression of 

Tnf, Il-1β, Ccl17 and Ccl22. 

C57BL/6J mice were injected i.p. with 200µl PBS or different doses of µg LPS/ mouse as indicated. A: Serum TNF 

levels were measured 3h post i.p. injection of WT mice with PBS or LPS. B, C, D, and E: RT-PCR analysis of Tnf (B), 

Il-1β (C), Ccl17 (D) and Ccl22 (E) expression in hippocampi dissected from WT animals 16h post 200µl i.p. injection 

of PBS or LPS. (n=3, mean ± SD). Circles represent data from individual mice. 
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Figure 5.29 | TNFR-deficiency abrogates LPS-induced expression of CCL17 in the hippocampus. 

A: C57BL/6J, TNFRI+II
-/- 

and TNFRI
-/-

 mice were injected i.p. with 200µl PBS or 150µg LPS 16h before isolating the 

hippocampus. B, C: RT-PCR analysis of Ccl17 (B) and Ccl22 (F) expression in hippocampi of WT, TNFRI
-/-

 and 

TNFRI+II
-/-

 mice as indicated in A (n=3-7, mean ± SEM). Circles represent data from individual mice. Statistical 

significance was tested using One-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons 

(***p<0.001 **p<0.01; *p<0.05). 

Figure 5.28 | Peripheral injection of rmTNF does induce Ccl17 expression in the hippocampus. 

A: C57BL/6J mice were injected i.p. with 200µl PBS or different doses of recombinant murine TNF as indicated 

16h before isolating the hippocampus. B, C: RT-PCR analysis of Ccl17 (B) and Ccl22 (C) expression in the 

hippocampus (n=4, mean ± SEM). Circles represent data from individual mice. Statistical significance was tested 

using One-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons (**p<0.01; *p<0.05). 
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 Cytokines rather than MyD88 signaling regulate the LPS-5.5.6

induced expression of Ccl22 in the hippocampus 

My previous experiments already provided evidence for a GM-CSF-dependent expression of Ccl17 in 

skin cells (see 5.1.5). In addition, GM-CSF was identified to regulate CCL17-mediated arthritic pain
74

. As 

the previous RT-PCR analysis of Csf2 expression in the hippocampus did not yield informative data, 

expression of Ccl17 and Ccl22 was now analyzed in hippocampi of LPS-challenged GM-CSF
-/-

 mice (see 

Fig. 5.30A).  

Comparable to the analysis of TNFR-deficient animals, the experiments also revealed a differential 

regulation of Ccl17 and Ccl22 by GM-CSF (see Fig. 5.30B and C). Whereas the LPS-induced Ccl17 

expression was only slightly affected by the loss of GM-CSF, Ccl22 expression was more strongly 

reduced in GM-CSF
-/-

 mice (see Fig. 5.30B and C). In accordance with previous experiments, LPS-

treated GM-CSF
-/-

 mice still expressed high levels of Tnf in the hippocampus (see Fig. 5.30D), which 

affirmed its essential role for the induction of Ccl17 in the hippocampus.  

 

Next, it was tested whether the LPS/TNF-induced expression of Ccl17 required activation of TLR-

signaling pathways via Myd88. For this purpose, systemic LPS challenge was performed in mice lacking 

MyD88, a central adaptor protein of TLR signaling pathways (see Fig. 5.31A). As expected, LPS 

treatment of MyD88
-/-

 mice did not induce the expression of Ccl17 in the hippocampus (see Fig. 

5.31B). Strikingly, Ccl22 was still induced after LPS treatment at levels comparable to WT mice (see Fig. 

5.31C). It was somewhat puzzling that the expression of TNF in MyD88
-/-

 mice was still elevated after 

LPS challenge (see Fig. 5.31D) indicating that signal transduction via the adaptor TRIF downstream of 

TLR4 might be relevant for Ccl22 expression. Interestingly, the baseline expression of Ccl17, Ccl22 nor 

Tnf appeared not to be affected neither by the loss of GM-CSF nor MyD88 (see Fig. 5.30 and 5.31).  

Figure 5.30 | The cytokine GM-CSF differentially regulates Ccl17 and Ccl22 expression in the hippocampus. 

A: C57BL/6J WT and GM-CSF
-/-

 mice were injected i.p. with 200µl PBS or 150µg LPS/ mouse 16h before isolating 

the hippocampus. B, C, D: RT-PCR analysis of Ccl17 (B), Ccl22 (C) and Tnf (D) expression in hippocampi of WT and 

GM-CSF mice as indicated in A (n=3-6, mean ± SEM). Circles represent data from individual mice. Data was tested 

for statistical significance by One-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons 

(****p<0.0001; **p<0.01). 
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In conclusion, these experiments revealed the existence of distinct regulatory pathways differentially 

controlling the hippocampal expression of Ccl17 and Ccl22 in the context of LPS-induced systemic 

inflammation. 

 

 LPS-induced septic shock is not affected by the loss of CCL17 5.5.7

A previous report demonstrated that CCR4-deficient mice are less susceptible to LPS-induced 

endotoxin shock
176

. For this reason, it was tested , whether the CCL17
E/E 

mice showed a normal 

systemic response to LPS by comparing the survival rate following high dose LPS injection (i.p.) 

[20mg/kg and 15mg/kg] in CCL17
E/E

 and WT mice (see Fig. 5.32A). In addition, serum of WT and 

CCL17
E/E

 mice which received 150 µg LPS/mouse was collected 3 h after i.p. injection and serum levels 

of TNF and IL-1β were determined. Interestingly, serum concentrations of TNF and IL-1β were 

comparable in mice from both experimental groups (see Fig. 5.32B and C). In line, evaluation of 

survival rates revealed no influence of CCL17 as both experimental groups were equally susceptible to 

LPS-induced septic shock (see Fig. 5.32D and E). These experiments demonstrated that CCL17 

appears to play no role in the generation of peripheral immune responses in the LPS-shock model. 

Figure 5.31 | MyD88-dependent signaling pathways differentially regulate Ccl17 and Ccl22 expression in 

the hippocampus. 

A: C57BL/6J WT and MyD88
-/-

 mice were injected i.p. with 200µl PBS or 150µg LPS/ mouse 16h before isolating 

the hippocampus. B, C, D: RT-PCR analysis of Ccl17 (B), Ccl22 (C) and Tnf (D) expression in hippocampi of WT and 

MyD88
-/-

 mice as indicated in A (n=3, mean ± SEM). Circles represent individual mice. Data was tested for 

statistical significance by One-way ANOVA with Bonferroni´s post-hoc test for multiple comparisons (***p<0.001; 

*p<0.05). 
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 Absence of CCL17 reduces the number of microglia in the 5.5.8

brain and affects monocyte activation 

Based on the findings that CCL17E/E mice responded normally to LPS in the peripheral immune 

system, I next analyzed the role of CCL17 in brain immune responses. First, flow cytometry was utilized 

to analyze the number and composition of brain-resident microglia and other hematopoietic cells in 

WT and CCL17
E/E

 mice under homeostatic as well as inflammatory conditions (see Fig. 5.34A). As in 

previous experiments, brains of WT and CCL17
E/E

 mice were isolated 16 h after i.p. injection of either 

200 µl PBS or 150 µg LPS. After perfusion with ice-cold PBS, brains were dissociated by enzymatic 

digestion at 37°C and mechanically disrupted. Single cell suspensions were subjected to antibody 

staining and immediately analyzed by flow cytometry. A simplified gating strategy for the identification 

of microglia (CD45
int

 CD11b
+
CD3

-
), neutrophils (CD45

hi
CD3

-
Ly6G

+
), inflammatory monocytes 

(CD45
hi
Ly6G

-
CD11b

+
Ly6C

+
), and Mϕs plus DC (CD45

hi
CD3

-
Ly6G

-
CD11b

+
Ly6C

-
) was adapted from Pösel 

et al.
177

 and is depicted in Fig. 5.33. The endogenous expression of the EGFP reporter in CCL17
E/E

 mice 

allowed the identification of CCL17-expressing cells. 

Figure 5.32 | LPS-induced septic shock is comparable in WT and CCL17-deficient animals. 

A: C57BL/6J WT and CCL17
E/E

 mice were injected i.p. with 200µl PBS or different doses of LPS. B, C: Three hours 

post injection of 150 µg LPS in 200 µl PBS or 200 µl PBS alone, serum levels of TNF (B) and IL-1β (C) were 

determined in WT and CCL17
E/E

 mice (n=3 per group, mean ± SD). D, E: Kaplan-Meier curve shows survival of WT 

and CCL17
E/E

 mice injected i.p. with 20mg/kg (D) or 15mg/kg (E) LPS i.p. (n=9-10 per group). 
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In both experimental groups, LPS treatment resulted in significantly increased numbers of total CD45
hi
 

leukocytes compared to PBS-injected control animals (see Fig. 5.34B). Further analysis of CD45
hi
 

leukocytes also revealed a significant increase in neutrophils and inflammatory monocytes after 

systemic LPS challenge (see Fig. 5.34D and F, respectively). Despite not reaching statistical 

significance, numbers of Mϕ and DC were also clearly increased following LPS injection (see Fig. 

5.34E). Remarkably, LPS treatment also resulted in a significant increase of CCL17/EGFP
+
 cells (see Fig. 

5.34G), which exclusively belonged to the Mϕ and DC population (~20% of total Mϕ and DC). 

Figure 5.33 | Gating strategy for identification of microglia and immune cell infiltrates in the brain. 

A live cell gate was set on the basis of FSC and SSC properties. Counting beads were identified based on their 

characteristic SSC profile and used to determine absolute cell numbers depicted in Fig. 5.34. From the live cell 

gate single cells were identified and subsequently separated in CD45
int

 and CD45
hi
 cells. Most CD45

int
 cells were 

also positive for CD11b and thus identified as microglia. CD45
hi
 leukocytes were further analyzed for Ly6G and 

CD3 expression. Neutrophils were identified as CD45
hi

CD3
-
Ly6G

+
CD11b

+
 cells. The remaining CD3

-
Ly6G

-
 cells were 

further analyzed for CD11b and Ly6C expression. CD11b
+
Ly6C

-
 cells mainly comprised different subsets of DCs 

and Mϕs and contained a substantial number of CCL17/EGFP-expressing cells. In contrast, no CCL17/EGFP
+
 cells 

were identified in CD11b
+
Ly6C

+ 
inflammatory

 
monocytes. A representative gating of a CCL17

E/E
 mouse is depicted. 
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Regarding the CD45
int

CD11b
+
 microglia, LPS treatment also led to increased numbers in both 

experimental groups, although CCL17
E/E 

mice
 
had significantly fewer cells compared to WT mice (see 

Fig. 5.34C). Interestingly, reduced numbers of microglia were already observed under homeostatic 

conditions albeit the difference did not reach statistical significance. To determine the cellular 

activation status, the MFI of CD11b was analyzed. Under homeostatic conditions, CD11b expression 

Figure 5.34 | CCL17-dependent modulation of resident and inflammatory immune cells in the brain. 

A: C57BL/6J WT and CCL17
E/E

 mice were injected i.p. with 200µl PBS or 150µg LPS 16h before isolating the brain. 

Following in situ perfusion with PBS, brains were enzymatically digested and single cell suspensions subjected to 

staining for flow cytometry. With the help of counting beads, the absolute numbers of CD45
hi 

leukocytes (B), 

CD45
int

CD11b
+
 microglia (C), CD45

hi
CD3

-
Ly6G

+
, CD11b

+
 neutrophils (D), CD45

hi
CD3

-
Ly6G

-
Ly6C

-
CD11b

+
 Mϕs & 

DCs (E), and CD45
hi
CD3

-
Ly6G

-
Ly6C

+
CD11b

+
 monocytes (F) was determined. The endogenous expression of EGFP 

in CCL17
E/E

 was used to identify CCL17-epxressing cells. CCL17/EGFP
+
 cells were only present in inflammatory 

monocytes. Absolute numbers are depicted in G. In addition, mean fluorescence intensity (MFI) of CD11b staining 

was analyzed on microglia (C, right), neutrophils (D, right) and monocytes (E, right). MFI of EGFP was analyzed 

on CCL17/EGFP
+ 

cells (G, right). (mean ± SEM, 3 independent experiments with n=5-6 per group) Circles represent 

individual mice. Data was tested for statistical significance by One-way ANOVA with Bonferroni´s post-hoc test for 

multiple comparisons (****p<0.0001; ***p<0.001; **p<0.01; *p<0.05).  
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was comparable on microglia, monocytes, and neutrophils isolated from both experimental groups 

(see Fig. 5.34C, D, and F, right). As expected, LPS treatment induced a strong upregulation of CD11b 

on neutrophils and to a lesser extent on microglia of both genotypes. Strikingly, the absence of CCL17 

abrogated the LPS-induced up-regulation of CD11b on inflammatory monocytes compared to WT 

mice.  

 

Flow cytometric analysis was performed on whole brains of WT and CCL17
E/E

 mice disregarding the 

fact that the strongest expression of CCL17 was observed in hippocampal CA1 neurons, especially in 

the contest of systemic inflammation (see Fig. 5.21 and 5.22B). It was previously hypothesized that 

CCL17 exerts its effects predominantly within the hippocampal microenvironment in  line with my own 

observations
175

. Therefore, it was decided to analyze whether hippocampal microglia are specifically 

affected by the loss of CCL17. For this purpose, CCL17
E/E

 and littermate control animals (CCL17
+/+

) were 

injected with 200 µl PBS or 150 µg LPS. 16 h later whole brains were isolated and vibratome sections 

were stained for the microglial marker IBA-1 (ionized calcium binding adaptor molecule 1) and 

analyzed by confocal microscopy. 

Figure 5.35 | Quantification of hippocampal microglia and IBA-1 expression in CCL17
+/+

 and CCL17
E/E

 mice. 

A: Confocal images of IBA-1
+
 microglia in hippocampi of PBS- (first column) or LPS-treated (second column) 

CCL17
+/+

 (first row) and CCL17
E/E

 (second row) mice. Scale Bar is 50µm. Representative images are shown. B: 

Absolute number of hippocampal IBA-1
+
 cells in CCL17

+/+
 and CCL17

E/E
 mice. C: Quantification of the mean 

fluorescent intensity of IBA-1 staining in the hippocampus. Fluorescent intensity was determined using ImageJ 

plug-ins and normalized to the background. B, C: Analysis was performed using 9 images derived from 3 mice per 

genotype and treatment. Individual data points represent the mean values of 3 images/mouse. (mean ± SD) 

Statistical significance was determined using 2-way ANOVA with Bonferroni´s post-hoc test for multiple 

comparisons (*p<0.05). 
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IBA-1
+
 microglia were counted in confocal images of the hippocampus (see Fig. 5.35A). In addition, 

the MFI of IBA-1 was analyzed as an upregulation of IBA-1 was previously associated with microglia 

activation after systemic LPS challenge (see Fig. 5.35C)
178

. In line with the flow cytometry data, the 

histological analysis also revealed significantly lower numbers of IBA-1
+ 

microglia in PBS- and LPS-

treated CCL17
E/E

 mice (see Fig. 5.35B). Comparable to the flow cytometric analysis of CD11b 

expression, LPS treatment also resulted in a significantly enhanced surface expression of IBA-1 (see 

Fig. 5.35C). However, upregulation of IBA-1 was comparable in WT and CCL17
E/E

 mice. In conclusion, 

these experiments demonstrated a potential role of CCL17 for the regulation of monocyte activation. 

In addition, loss of CCL17 appeared to affect microglia maintenance under homeostatic as well as 

inflammatory conditions. 

 Hippocampal microglia acquire an altered morphology in the 5.5.9

absence of CCL17 

The previous experiments indicated a role for CCL17 in regulating microglia maintenance. It was 

further recognized that IBA-1
+ 

microglia appeared to acquire a slightly altered morphology in CCL17
E/E

 

mice compared to littermate controls (see Fig. 5.35). To further investigate this observation, a more 

elaborate analysis of the morphology of IBA-1
+
 microglia was performed. To perform imaging analysis, 

a set of custom-written ImageJ plugins from J. N. Hansen from the group of Dr. Annett Halle was 

utilized (see section 4.1.4). Using these plugins, an in-depth morphological analysis of fluorescently 

labeled microglia within the hippocampal stratum radiale was carried out. As stated earlier, it was 

expected that the impact of CCL17 should be most prominent in the hippocampus, particularly after 

systemic LPS challenge. As in previous experiments, the morphological analysis was performed on IBA-

1 stained brain sections generated from PBS- or LPS-treated (150 µg/mouse) male CCL17
E/E 

mice
 
and 

corresponding littermate
 
control animals (CCL17

+/+
). The analysis focused on the hippocampus and 

representative cells are depicted in Fig. 5.36. The ImageJ plugins allowed the quantification of various 

morphological parameters, such as cell volume, cell surface or various skeleton parameters. For a 

detailed description of the parameters analyzed see Fülle et al., 2018
144

. 

For the analysis, single IBA-1
+ 

cells were selected from the Z-stacks to generate a single cell image (see 

Fig. 5.36, first column). Next, a size-filtered binary image was created from this cell which removed 

background particles, smaller than 100 voxel (see Fig. 5.36, second column). This processed cell was 

then used to automatically extract the skeleton parameter (see Fig. 5.36, third column) and to 

reconstruct morphological parameters (see Fig. 5.36, fourth and fifth column). 
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Figure 5.36 | Morphological analysis of hippocampal microglia in CCL17
+/+

 and CCL17
E/E

 mice. 

CCL17
+/+

 and CCL17
E/E

 mice were injected (i.p.) with 200µl PBS or 150µg LPS. 16 h later mice were sequentially 

perfused with PBS and 4% PFA. Vibratome sections (40 µm) were stained for IBA-1 and z-stacks of hippocampal 

microglia were acquired using confocal microscopy. Resulting raw images were subjected to image analysis. 

Depicted are representative images of hippocampal microglia from PBS- or LPS-treated CCL17
+/+

 and CCL17
E/E

 

mice. First column: Individual cells subjected to image analysis. Scale bar, 20µm. Second column: Reconstructed 

cell after image analysis. Third column: Skeletonized representation of the same cell. Fourth column: 3D 

representation of the determined cell surface area. Fifth column: 3D representation of the determined cell 

volume. 
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As can be already seen in the representative images, the surface area of microglia from PBS-treated 

CCL17
E/E 

mice appeared much smaller compared to PBS control microglia from CCL17
+/+

 mice (see Fig. 

5.36). Whereas no apparent differences were observed between the experimental groups, systemic LPS 

challenge resulted in a striking increase of the cell volume (see Fig. 5.36, fourth column).  

For a more comprehensive view of microglia morphology, 54 individual cells were analyzed for each 

genotype and condition (see Fig. 5.37). In addition to the quantification of cell volume and surface 

area, the total volume and area encompassed by the cell were calculated and are depicted as convex 

hull volume and convex hull area. In line with the microscopic evaluation, the cell volume and the 

convex hull volume of microglia from both experimental groups increased after LPS treatment (see Fig. 

5.37A and E), whereas under control conditions (PBS injection) microglia of CCL17
E/E 

mice had a 

significantly smaller cell volume compared to microglia of CCL17
+/+

 mice. Also confirming the 

microscopic observations, systemic LPS challenge resulted in a significantly smaller surface area in 

control mice (see Fig. 5.37B). Strikingly, the surface area of microglia from PBS-treated CCL17
E/E

 mice 

was already much smaller than that of WT microglia. As anticipated, LPS treatment could not reduce 

this any further. Skeleton parameters were analyzed by implementing plugins from Arganda-Carreras 

and others
179

 and included quantification of branches and junctions (see Fig. 5.37C and D) as well as 

analysis of the average branch length and the total tree length (see Fig. 5.37G and H). Comparable to 

the surface area, the number of branches and junctions, and the total tree length were also 

significantly lower in microglia from PBS-injected CCL17
E/E

 mice (see Fig. 5.37C, D, and H, 

respectively). 

Ramification and polarity indices were calculated to get a better measure of the cellular activation 

status (see Fig. 5.37I and J). The ramification index describes the ratio of the cell surface area to the 

surface area of a theoretical sphere containing the same volume as the cell. As the sphere takes the 

cellular volume into account, it represents the minimum possible surface area an individual cell can 

achieve. As depicted in Fig. 5.37I, the overall ramification was reduced in both experimental groups 

after systemic LPS challenge. This is in line with several studies which also assessed the morphology of 

LPS-activated microglia in vivo111
. In contrast, the polarity index represents a measure for the 

homogeneity of microglia process distribution (see Methods for more details). A high polarity index is 

found in far-stretched microglia whereas a low polarity index is indicative of a more circular process 

distribution. 
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Figure 5.37 | Altered morphology of microglia in CCL17
E/E

 mice. 

Legend on next page. 
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Interestingly, microglia of naïve CCL17
E/E 

mice displayed a remarkable increase in polarity compared to 

WT control mice.  In contrast, systemic LPS challenge did not change the polarity of microglia from WT 

mice whereas microglia of CCL17
E/E

 mice lost their polarity after LPS treatment (see Fig. 5.37J). 

The in-depth image analysis described above revealed a substantial role for CCL17 in regulating the 

morphology of hippocampal microglia. Regarding the cell surface area, the number of branches and 

junctions, and total tree length, the morphology of naïve microglia from CCL17
E/E

 mice resembled that 

of control microglia after systemic LPS challenge. In accordance with previous experiments, it can be 

concluded that hippocampal microglia, which developed in a microenvironment devoid of CCL17, were 

reduced in absolute numbers and had a significantly altered morphology already apparent under 

homeostatic conditions. It has to be noted, that systemic LPS treatment occluded the observed effects 

as microglia from both experimental groups acquired an activated morphology.
 3
 

 CCL17E/E mice display an increased synaptic transmission at 5.5.10

CA3-CA1 Schaffer collaterals 

It is known that systemic inflammation leads to the activation of brain-resident microglia
112,180

. In the 

healthy brain, quiescent or resting microglia continuously scan their environment, while also forming 

multiple immunological and neuronal synapses with neighboring glial cells and neurons. Other studies 

already found that under inflammatory conditions activated microglia engulf apoptotic cells and 

remove dysfunctional synapses
111

. In light of the results described above which demonstrated robust 

expression of CCL17 in hippocampal neurons and further implicated CCL17 in the regulation of 

microglia morphology, it was decided to analyze synaptic transmission and plasticity in hippocampi of 

WT and CCL17
E/E 

mice. For this purpose, acute brain slices of male PBS- or LPS-treated CCL17
E/E

 mice 

or age-matched WT controls were prepared (see Fig. 5.38A and 5.39A, respectively) and synaptic 

transmission was analyzed by B. Breithausen from the group of Dr. C. Henneberger from the Institute 

of Cellular Neurosciences, University of Bonn, Germany (IZN). CA3-CA1 Schaffer collaterals were 

stimulated electrically and field excitatory postsynaptic potentials (fEPSP) were recorded in the CA1 

stratum radiatum. Strikingly, the basal synaptic transmission (slope of the first evoked fEPSP) was 

significantly higher in CCL17
E/E

 mice under homeostatic conditions (see Fig. 5.38B). This is also seen in 

the sample trace depicted in Fig. 5.38A. Analysis of the paired-pulse ratio (slope of the second fEPSP 

                                                      
Figure 5.37 | Altered morphology of microglia in CCL17

E/E
 mice. 

Quantification of the morphological parameters of microglia depicted in Fig. 5.36. Confocal images of 

hippocampal IBA-1
+
 microglia from PBS- or LPS-treated CCL17

+/+
 and CCL17

E/E
 mice were subjected to image 

analysis. Z-stacks were acquired and analyzed using custom-written ImageJ plug-ins (see Methods for details). For 

both conditions and genotypes a total of 54 individual cells were analyzed (3 mice per group, 3 hippocampal 

images per mice with 6 cells per image). A: Cellular volume of single cells. B: 3D surface area of single cells. C: 

Absolute number of branches per single cell. D: Absolute number of junctions per single cell. E: Convex hull 

volume of individual cells. F: Convex hull surface of individual cells. G: Average branch length of individual cells. H: 

Total tree length of individual cell skeletons. I: Ramification index of individual cells. J: Polarity index of individual 

cells. The red line indicates mean value. Data was tested for statistical significance by 2-way ANOVA with 

Bonferroni´s post-hoc test for multiple comparisons (***p<0.001; **p<0.01; *p<0.05). 
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divided by slope of the first fEPSP) did not reveal any differences between WT and CCL17
E/E

 animals. 

Corresponding to the morphological analysis of microglia, basal synaptic transmission was comparable 

in LPS-treated WT and CCL17
E/E

 mice (see Fig. 5.39B and sample trace in Fig. 5.39A). 

 

As introduced earlier, the hippocampus has a crucial role in learning and memory formation. Although 

the exact molecular mechanisms remain elusive, it has long been known that repeated excitation 

improves communication between existing neurons by strengthening their synapses. This process is 

called long-term potentiation (LTP) and will produce lasting cellular changes that underlie synaptic 

plasticity and memory formation
96

. 

Here, LTP was induced using theta-burst stimulation (TBS) at hippocampal CA3-CA1 Schaffer 

collaterals (CA1-LTP). Under homeostatic and inflammatory conditions, TBS elicited a robust CA1-LTP 

that was comparable in CCL17
E/E

 and WT mice over the last 5 min of the recording (see  Fig. 5.38C 

PBS: WT: 162 ± 16 % vs. CCL17
E/E

: 150 ± 10 %, n=10-11 slices from 3 animals /group; p=0.69, Mann-

Whitney U-Test and Fig. 5.39C LPS: WT: 149 ± 12 % vs. CCL17
E/E

: 128 ± 8 %, n =10-12 from 3 

animals/group; p=0.15, Mann-Whitney U-Test). It has to be noted, that the time-course of the 

baseline-normalized fEPSP slopes appeared to be reduced in slices of LPS-treated CCL17
E/E

 mice (see 

Fig. 5.39C).  

Figure 5.38 | Basal synaptic transmission is increase in CCL17
E/E 

mice under homeostatic conditions. 

A: Male, age-matched WT and CCL17
E/E

 mice were injected (i.p.) with 200 µl PBS. 16 h later acute brain slices were 

prepared and electrophysiological recordings were performed. Sample trace depicts characteristic baseline fEPSPs 

B: Basal synaptic transmission as assessed by the slope of the first fEPSP evoked. The basal synaptic transmission 

significantly increased in slices of CCL17
E/E

 mice compared to WT mice (WT: 0.54 ± 0.05 mV/ms vs. CCL17
E/E

: 0.87 

± 0.12 mV/ms; n = 10-11 slices from 3 animals; *p<0.05 Mann-Whitney U-Test). C: Ratio of the second and first 

fEPSP evoked (Paired-pulse ratio) was not different between slices from WT and CCL17
E/E

 mice (WT: 1.34 ± 0.06 vs. 

CCL17
E/E

: 1.31 ± 0.02, n =10-11 slices from 3 animals; p = 0.72, Mann-Whitney U-Test) D: Time-course of the 

fEPSP slopes during LTP measurements. The magnitude of LTP was quantified using the average fEPSP slope 

normalized to baseline over the last 5 min of the recording. TBS-induced fEPSP potentiation was not different 

between slices from WT and CCL17
E/E

 mice (WT: 162 ± 16% vs. CCL17
E/E

: 150 ± 10 %, n = 10-11 slices from 3 

animals; p = 0.69, Mann-Whitney U-Test) Sample traces show characteristic responses from WT or CCL17E/E mice 

before (grey) and after (black) LTP induction. Data depicted as mean ± SEM.  

This experiment was performed by B. Breithausen (IZN). 



 5 | Results 

103 

 

In conclusion, these experiments revealed an enhanced basal synaptic transmission in the absence of 

CCL17. As the paired-pulse ratio was not affected by the loss of CCL17, which would indicate an 

increase probability of the presynaptic neuron to release neurotransmitters, the increase in basal 

synaptic transmission indicates a CCL17-dependent postsynaptic regulation of neuronal signaling. As 

for the analysis of microglia, this effect was occluded by systemic LPS challenge. In contrast, the 

absence of CCL17 had no significant effects on the induction of CA1-LTP, neither under homeostatic 

nor inflammatory conditions. 

Figure 5.39 | After systemic LPS challenge neuronal signaling is comparable in WT and CCL17
E/E

 mice. 

A: Male, age-matched WT and CCL17
E/E

 mice were injected (i.p.) with 150 µg LPS. 16 h later acute brain slices were 

prepared and electrophysiological recordings were performed. Sample trace depicts characteristic baseline fEPSPs 

B: Basal synaptic transmission as assessed by the slope of the first fEPSP evoked. No significant difference was 

detected in slices of CCL17
E/E

 mice compared to WT mice (WT: 0.7 ± 0.06 mV/ms vs. CCL17
E/E

: 0.6 ± 0.07 mV/ms; n 

= 10-12 slices from 3 animals; p=0.31, Mann-Whitney U-Test). C: Ratio of the second and first fEPSP evoked 

(Paired-pulse ratio) was not different between slices from WT and CCL17
E/E

 mice (WT: 1.36 ± 0.06 vs. CCL17
E/E

: 1.35 

± 0.04, n =10-12 slices from 3 animals; p=0.92, Mann-Whitney U-Test) D: Time-course of the fEPSP slopes during 

LTP measurements. The magnitude of LTP was quantified by taking the average fEPSP slope normalized to 

baseline over the last 5 min of the recording. TBS-induced fEPSP potentiation was not different between slices 

from WT and CCL17
E/E

 mice (WT: 149 ± 12% vs. CCL17
E/E

: 128 ± 8 %, n = 10-12 slices from 3 animals; p=0.15, 

Mann-Whitney U-Test) Sample traces show characteristic responses from WT or CCL17E/E mice before (grey) and 

after (black) LTP induction. Data depicted as mean ± SEM.  

This experiment was performed by B. Breithausen (IZN). 
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 CCL17-DTR mice as a model system for the analysis of 5.6

inducible neuroinflammation 

The discovery that CCL17 is expressed in hippocampal CA1 neurons and has functional implications on 

microglia activation stimulated further research regarding the functional role of the CCL17-expressing 

neurons using CCL17-DTR mice (CCL17
DTR/+

 and CCL17
DTR/DTR 

mice). In these mice, the simian 

Diphtheria toxin receptor (DTR) was inserted into the second exon of the murine Ccl17 locus by 

homologous recombination. Expression of the DTR under the control of the Ccl17 promoter allows the 

inducible ablation of all CCL17-expressing cells following i.p. injection of diphtheria toxin (DT). 

Heterozygous CCL17
DTR/+

 mice carry only one functional Ccl17 allele whereas homozygous 

CCL17
DTR/DTR

 mice are deficient for CCL17 but express the DTR from both targeted alleles. Importantly, 

DT is capable of crossing the blood-brain barrier and thus allows targeting of cells in the CNS
181

. 

Therefore, the ability of DT to ablate CCL17
+
 hippocampal neurons in CCL17

DTR/+ 
mice was examined. 

 Strong fluctuations of body weight in DT-treated CCL17DTR/+ 5.6.1

mice 

Initially, both male and female mice were injected on three consecutive days with 0.4 µg 

DT/mouse/day or PBS as a control. To exclude unspecific effects of the DT treatment, WT control mice 

were also injected with DT or PBS. As depicted in Fig. 5.40, body weight monitoring revealed that both 

genders of DT-treated CCL17
DTR/+

 mice suffered from an early loss of body weight, starting the second 

day (day 0) after the first DT injection (day -2). Compared to PBS-injected CCL17
DTR/+

 mice, DTR mice 

continued to loose weight until a maximum was reached at day 5. At this time point, the mice had lost 

approximately 7-9% of their starting weight. Following this, the mice gained weight until they reached 

the weight of PBS-injected WT mice on day 7 (females, Fig. 5.40A) or day 11 (males, Fig. 5.40B). Once 

this point was overcome, all mice, independent of gender, genotype or treatment continued to gain 

weight. However, female DT-treated CCL17
DTR/+

 mice showed mild fluctuations in body weight over the 

entire course of the experiment. These fluctuations were accompanied by an increased sensitivity to 

stress, which manifested in increased locomotion and uncontrolled jumping behavior once the cage 

was opened. Approximately nine weeks after DT injection some of the female DT-treated CCL17
DTR/+

 

mice also succumbed to the treatment. Interestingly, behavioral changes and lethality were rarely 

observed in male DT-treated CCL17
DTR/+

 mice.  
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Three months after DT injection, all mice were sacrificed, and the brains were isolated as described 

previously. Following PFA-fixation, brains were embedded in paraffin, and 7 µm brain sections were 

prepared using a microtome. The brain sections were stained using hematoxylin and eosin (H&E) to 

analyze whether DT treatment of CCL17
DTR/+

 mice resulted in a loss of hippocampal neurons. Using 

light-microscopy, hippocampal sections of all experimental groups were visually inspected. As 

depicted in Fig. 5.41A and B, DT treatment of female and male CCL17
DTR/+

 mice resulted in an 

apparent reduction of pyramidal cells in the hippocampal CA1 region compared to all control groups. 

Importantly, hippocampi of DT-treated WT mice appeared normal.  

The experiments indicated that in particular female, and to a lesser extent male CCL17
DTR/+ 

mice, are 

affected by systemic DT treatment. At this point, however, it was difficult to attribute the early drop of 

body weight to the loss of CCL17
+ 

neurons, especially keeping in mind that DT treatment will also 

ablate peripheral CCL17
+
 cells. In contrast, it was clearly demonstrated that DT treatment indeed 

resulted in diminished cell numbers in the hippocampal pyramidal cell layer three months after 

injection. The observed behavioral alterations could result from excessive neuronal activity in the 

hippocampus, which is often found in patients suffering from temporal lobe epilepsy. 

Figure 5.40 | Female and male CCL17
DTR/+

 mice show body weight fluctuations after DT treatment. 

Female (A) and male (B) CCL17
DTR/+ 

mice received three injections (i.p.) of 0.4 µg DT at d-2, d-1, and d0. Body 

weight was recorded every other day and calculated as percent of d-2. (Number of animals (n) is indicated in the 

figure, mean ± SEM). Statistical significance was tested using 2-way ANOVA with Bonferroni´s post-hoc test for 

multiple comparisons (*p<0.05). 
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 DT-induced ablation of CCL17+ neurons takes approximately 5.6.2

14 days 

Next, the dynamics of the DT-inducible ablation of CCL17
+
 neurons were investigated. For this 

purpose, homozygous CCL17-DTR mice (CCL17
DTR/DTR

) were intercrossed with homozygous CCL17-

EGFP mice (CCL17
E/E

). In the resulting F1 generation, CCL17
DTR/E

 mice carried two targeted Ccl17 alleles 

and simultaneously expressed DTR and EGFP, both under the control of the Ccl17-promoter. In 

CCL17
DTR/E

 mice, the loss of CCL17
+
 neurons post DT treatment can be followed by the loss of EGFP 

fluorescence. As before, CCL17
DTR/E

 mice received three consecutive injections of 0.4 µg DT/day (day -2, 

day -1, and day 0). To enhance the expression of DTR and EGFP mice received a single i.p injection of 

LPS (150 µg) one day before isolating the brain (at day 3, day 6, or day 13). On day 4, day 7, or day 14 

after the last DT injection, CCL17
DTR/E

 mice were perfused in situ, and brains were isolated and 

prepared for confocal imaging. As before, saggital brain sections were stained for EGFP. Further, a 

TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) stain was performed to detect 

DNA breaks present in apoptotic cells. 

Figure 5.41 | Numbers of hippocampal pyramidal cells are reduced in CCL17
DTR/+

 mice following long-term 

treatment with DT. 

CCL17
DTR/+ 

mice received 0.4µg DT i.p. at d-2, d-1, and d0. Three months after injection, mice were perfused in situ 

and brains were isolated. After PFA fixation, brains were embedded in paraffin, and 10 µm brain sections were 

prepared using a microtome. The brain sections were stained using hematoxylin and eosin (H&E). A: Hippocampi 

from female PBS or DT-treated CCL17
+/+

 and CCL17
DTR/+

 mice. B: Hippocampi from male PBS or DT-treated 

CCL17
+/+

 and CCL17
DTR/+

 mice. A & B: 100x and 250x magnification are depicted. Boxed areas indicate region 

analyzed at 250x magnification. Representative images are shown. 
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At day four after DT treatment, no TUNEL-positive cells could be detected in the hippocampi of DT-

treated CCL17
DTR/E

 mice (see Fig. 5.42, first row). As expected, CCL17/EGFP
+
 hippocampal neurons 

were identified albeit the intensity of EGFP staining was relatively weak compared to previous 

experiments (see Fig. 5.22). In contrast, seven days after the last DT injection, a high number of 

apoptotic cells was present in the pyramidal cell layer of the hippocampal CA1 region (see Fig.5.42, 

second row). Also, a substantial number of CCL17/EGFP
+
 cells was still present in the hippocampus. 

Strikingly, two weeks after DT treatment (day 14) no  CCL17/EGFP
+
 cells were detected in the 

hippocampus (see Fig.5.42, third row). In line, the number of TUNEL
+
 cells strongly increased 

Figure 5.42 | DT treatment induces apoptosis of hippocampal CCL17
+
 neurons in CCL17

DTR/E
 mice. 

CCL17
DTR/E 

mice received 0.4µg DT i.p. at day -2, day -1, and day 0. To enhance CCL17/EGFP expression, mice were 

injected i.p with 150 µg LPS in 200 µl PBS on day 3, day 6, or day 13. Brains were isolated 16 post LPS injection and 

stained for EGFP and DAPI. Apoptotic cells were detected by TUNEL labeling (terminal deoxynucleotidyl 

transferase dUTP nick end labeling). Images were scanned using confocal microscopy (Left: CCL17/EGFP staining; 

Middle: TUNEL labeling; Right: Pseudocolor merge image: DAPI (blue), CCL17/EGFP (green) and TUNEL (red)). 

Scale bar, 200µm. Representative images are shown (n=2).  
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compared to the previous time point. In conclusion, these experiments confirmed that i.p. injection of 

DT in CCL17-DTR mice targets CCL17-expressing neurons in the hippocampus. Interestingly, 

CCL17/EGFP
+
 neurons were still detected one week after DT treatment whereas almost no EGFP-

positive cells were left one week later.  

 Ablation of CCL17+ neurons causes severe micro- and 5.6.3

astrogliosis in the hippocampus  

To shed further light on the effects of the DT-induced ablation of CCL17
+ 

neurons,
 
brain sections of 

DT-treated CCL17
DTR/+

 mice were analyzed histologically at different time points after DT injection. As 

for the previous experiments, CCL17
DTR/+ 

mice received three consecutive injections (i.p.) of 0.4 µg 

DT/mouse/day. Here, an emphasis was put on the histology of the hippocampus. As before, microglia 

were identified by IBA-1 staining. As astrocytes are also involved in the regulation of brain immunity, 

brain sections were also stained for the astrocyte marker GFAP (glial fibrillary acidic protein). Using 

confocal microscopy, Z-stacks of brain sections at day 4, day 7, day 14, day 21, and day 28 after DT 

treatment were recorded. 

Visual inspection of IBA-1-stained brain sections indicated the development of severe microgliosis at 

day 7 after DT injection (see Fig. 5.43, second row). A high number of microglia was present in the 

pyramidal cell layer of the CA1 region, probably engulfing apoptotic neurons. Microglia numbers were 

still increased at day 14 after DT treatment albeit to a lesser extent compared with d7 (see Fig. 5.43, 

third row). These findings matched the results from the dynamics of the DT-induced ablation of 

CCL17-expressing neurons (see Fig. 5.42). Interestingly, the number of hippocampal microglia 

appeared to decrease at day 21 and day 28 after DT treatment (see Fig. 5.43, fourth and fifth row). 

This could indicate the efficient removal of apoptotic neurons and, therefore, a reduced recruitment/ 

proliferation of microglia.  

In contrast to the early microgliosis, numbers of astrocytes started to increase at day 7 after DT 

treatment but only developed into a severe astrogliosis 21 days after DT injection (see Fig. 5.43 

second and third row). At day 21 and day 28 increased numbers of astrocytes localized to the 

pyramidal cell layer of the CA1 region. As astrocytes are commonly known for their essential role in 

tissue-repair, this indicates the formation of a glial scar probably in areas most severely affected by the 

DT-induced loss of CCL17/DTR-expressing CA1 neurons. 
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Figure 5.43 | DT treatment induces microgliosis in CCL17
DTR/+

 mice. 

CCL17
DTR/+ 

mice received 0.4 µg DT i.p. at day -2, day -1, and day 0. Brains were isolated at day 4 (first row), day 7 

(second row), day 14 (third row), day 21 (fourth row), or day 28 (fifth row) after the last DT injection and stained 

for the microglia marker IBA-1. DAPI was used as a counterstain. Images were scanned using confocal microscopy. 

(First column: IBA-1 staining. Second column: DAPI counterstain, Third column: Pseudocolor merge images: 

DAPI (blue) and IBA-1 (green). Boxed areas were analyzed at 250x magnification (fifth column). Scale bar, 200µm. 

Representative images are shown (n=2).  
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Figure 5.44 | DT treatment induces astrogliosis in CCL17
DTR/+

 mice.  

CCL17
DTR/+ 

mice received 0.4µg DT i.p. at day -2, day -1, and day 0. Brains were isolated at day 4 (first row), day 7 

(second row), day 14 (third row), day 21 (fourth row), or day 28 (fifth row) after the last DT injection and stained 

for the astrocyte marker GFAP. DAPI was used as a counterstain. Images were scanned using confocal microscopy. 

(First column: GFAP staining. Second column: DAPI counterstain. Third column: Pseudocolor merge images: 

DAPI (blue) and GFAP (red). Boxed areas were analyzed at 250x magnification (fifth column). Scale bar, 200µm. 

Representative images are shown (n=2).  
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 DT-treated CCL17DTR/+ mice develop epileptic seizures after an 5.6.4

initial silent phase 

During the preceding experiments it was demonstrated that DT treatment of CCL17
DTR/+

 mice induces 

apoptosis of CCL17
+
 hippocampal CA1 neurons. As a consequence, the mice developed a severe 

micro- and astrogliosis that was restricted to the hippocampus. In addition, CCL17-DTR mice 

experienced body weight fluctuations and showed behavioral abnormalities after DT-treatment. In 

particular, female CCL17
DTR/+

 mice displayed uncontrolled jerking movements and momentary losses of 

awareness. Neuronal death in the hippocampal CA1 region has long been associated with the 

development of mesial temporal lobe epilepsy (MTLE). In rodents, MTLE is characterized by epileptic 

seizures that result from spontaneous recurrent seizures (SRS) in the brain.  Thus, it was hypothesized 

that the DT-induced ablation of CCL17
+
 neurons may lead to a functional destabilization of the 

hippocampus and consequently induces SRS and MTLE. To test this hypothesis, 12-week old female 

CCL17
DTR/+

 mice were injected (i.p) with DT and subsequently subjected to continuous telemetric EEG 

monitoring. Since the applied DT treatment regimen did not affect WT mice in previous experiments, it 

was decided to test only CCL17
DTR/+

 mice. The experiment was performed in collaboration with J. 

Müller and Dr. P. Bedner from the group of Prof. Steinhäuser at the IZN.  

In accordance with previous experiments, CCL17
DTR/+

 mice received three daily i.p. injections of 0.4 µg 

DT. Immediately after the last DT injection, telemetric transmitters were transplanted and EEG 

recordings were started. The recorded EEG data was manually screened for the occurrence of potential 

electrographic seizures by Dr. P. Bedner and was provided as a table depicting the number of seizures 

per day and mouse. Unfortunately, two mice did not recover from anesthesia and one mouse died 

shortly after the start of the experiment. Thus, only two mice could be monitored for three months 

post DT injection.  

In Fig. 5.45 the numbers of daily seizures per individual mouse are depicted. Strikingly, the analysis 

revealed a series of 15-17 high-frequency and high-amplitude seizures at day 5 or day 6 after DT 

treatment in mouse#1 and mouse#2, respectively (see Fig. 5.45A and B). In both animals, the number 

of seizures decreased on the next day, while seizures came to a complete halt at day 7 or day 8 in 

mouse#1 and #2, respectively. After this one day latent period, both mice developed generalized SRS 

over the course of the experiment. The number of SRS varied between the animals, ranging from 0-6 

seizures/day in mouse#1 and 0-8 seizures/day in mouse#2 (mean of: 2.771 ± 1.399/ seizures/ day/ 

mouse). 
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In conclusion, it could be demonstrated that five to six days after DT treatment, CCL17
DTR/+

 mice 

indeed developed epileptic seizures. The initial silent period could be explained by the previous 

experiments in which apoptotic cells appear only as late as day 7 after DT treatment. Although more 

experiments have to be performed, CCL17-DTR mice may serve as a new model for the analysis of 

epilepsy and inducible neuroinflammation in the future.  

Figure 5.45 | DT-treated CCL17
DTR/+

 mice develop epileptic seizures after DT treatment. 

Female CCL17
DTR/+ 

mice received 0.4µg DT i.p. at day -2, day -1, and day 0. At day 0, mice were anesthetized and a 

telemetric transmitter was placed into a subcutaneous pocket in the right abdominal wall. Skull surface electrodes 

were implanted to record electrographic seizures. Individual mice were placed on radio receiving plates, which 

captured signals from the electrodes and sent them to an input exchange matrix. The digital output of the receiver 

was converted in real-time into a calibrated analog output. A, B: Number of epileptic seizures/day, recorded in 

mouse#1 (A) and mouse#2 (B). The sudden appearance of seizures at days 5-7 was followed by a strong decrease 

in the frequency of SRS on the following days (mean of 2.771 ± 1.399/ seizures/ day/ mouse).  
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 Discussion 6.
The chemokine CCL17 has been implicated in the development of inflammatory diseases of all major 

barrier organs, including the skin, the gut, and the lung. In the skin, CCL17 was shown to be crucial for 

the development of atopic dermatitis
69,73,152,164,182

, lupus erythematosus
183

 and contact hypersensitivity 

(CHS)
49,50,90

. In the gut, it promotes intestinal inflammation of the colon
72

, and in the lung, CCL17 

exacerbated allergic asthma
71,80,184,185

. Using CCL17/EGFP reporter (CCL17
E/+

) mice, we previously 

demonstrated that DCs are the primary source of CCL17 under both, homeostatic and inflammatory 

conditions
73,168

. Key functions of CCL17 include the recruitment of T cells to sites of inflammation
50,186

 

and the initiation of T cell-DC interactions required to trigger adaptive immune responses
89

. In 

particular, CCL17 production by natural killer T (NKT) cell-licensed DCs was shown to recruit cytotoxic T 

cells via cross-presentation of external antigens
89

. In mice, the designated receptor of CCL17 is CCR4, 

whereas in humans CCR4 as well as CCR8 were described to interact with CCL17
76

. In mice, CCR4 was 

demonstrated to be expressed on thymic CD4/CD8 double-positive thymocytes & CD4 single positive 

T cells
187

. In addition, CCR4 is also found on skin-homing CLA
+
 T cells, Th2 cells and regulatory T 

cells
45,48

. Interestingly, CCR4-induced signaling pathways have also been associated with regulation the 

of DC functions
85

.  

CCL22, the second ligand of CCR4, was mainly shown to be involved in autoimmune disorders
188,189

, 

allergic reactions of the skin
77,190

, and recruitment of regulatory T cells into the tumor 

microenvironment
78,191

. Similar to CCL17, CCL22 expression was detected in the thymus
187

 and distinct 

subsets of myeloid cells, with alternatively activated Mφs showing the highest expression
192

. Strikingly, 

CCL22 expression by intratumoral Mφs is associated with a tumor immune-escape response 

mechanism through the recruitment of CCR4
+
 regulatory T cells and the subsequent suppression of 

tumor-specific T cell immunity
193

.  

In the first part of the present thesis, the functional relevance of the CCL17/CCL22-CCR4 axis was 

investigated in the context of skin inflammation. Therefore our newly generated CCL17/22-double-

deficient mice were analyzed in CHS, the murine model of allergic contact dermatitis (ACD), and 

compared to CCR4-deficient animals. In addition, a potential therapeutic application of inhibiting 

CCL17 using an aptamer-based approach was investigated.  

Besides the immunostimulatory and immunoregulatory roles of CCL17 and CCL22, several reports 

already indicated a function of the two chemokines in the CNS
84,85,194,195

. As these studies focused on 

the functional relevance of CCL17 production outside the CNS, in the second part of the thesis, I 

analyzed CCL17 expression in the brain and examined its function in the context of systemic 

inflammation.  
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 CCL17 in the context of skin immunity 6.1

In previous studies of our group, a critical role of CCL17 in the development of DNFB-induced CHS was 

identified
49,73

. The analysis of CCL17-deficient (CCL17
E/E

) mice revealed a function for CCL17 during 

both phases of the CHS response. During the afferent phase, emigration of LCs from the skin to 

draining LNs was shown to require autocrine signaling of CCL17 via a CCR4-independent signaling 

pathway
49

. The impaired migration of LCs resulted in reduced transport of cutaneous antigens to LNs 

and consequently less efficient priming of naïve T cells. As a result, reduced numbers of memory 

effector T cells home back to the skin
50

 and the second exposure to DNFB causes an attenuated 

inflammatory response in CCL17
E/E

 mice compared to control mice
50

. During the elicitation phase of 

CHS, the expression of CCL17 in the skin strongly increases possibly to recruit CLA
+
 CCR4

+
 effector T 

cells
46,47,87

. In the absence of CCL17, mice show less severe allergic reactions of the skin due to an 

impaired sensitization and reduced recruitment of CCR4
+
 leukocytes. Surprisingly, an opposite 

phenotype was observed in CCR4-deficient (CCR4
-/-

) mice
91,196

, with CCR4
-/-

 mice showing an 

exaggerated skin inflammation. This observation points to more complex regulatory mechanisms, 

potentially involving a second receptor for CCL17 and/ or another ligand of CCR4, such as CCL22, 

CCL2, CCL3, or CCL5
176,197

. 

 Analysis of CCL17-expressing cells in the murine skin 6.1.1

In mice, CCL17 is strongly expressed in CD8α
- 
CD11b

+
 cDC2 under homeostatic as well as inflammatory 

conditions
73,168

. These CCL17-producing cDC2s are mainly found in peripheral LNs, mucosal tissues, 

and other non-lymphoid organs
73

. Interestingly, CCL17
 
expression

 
was nearly absent in the healthy 

spleen and skin
73,168

. However, we found that α-galactosylceramide-activated NKT cells induce CCL17 

expression also in splenic CD8α
- 
cDC2 as well as CD8α

+ 
cDC1

168
 in a GM-CSF-and IL-4-dependent 

manner
168

. In contrast, IFNγ caused a significant suppression of CCL17 expression in splenic DCs
168

. 

These findings demonstrated that CCL17 is strongly regulated in an inflammation- and organ-specific 

manner. 

The earlier studies mainly focused on the analysis of CCL17-expressing cells in the epidermis
49,73

. In the 

present work, however, entire dorsal ear halves from CCL17
E/+

 mice were analyzed for the presence of 

CCL17/EGFP
+
 cells in both compartments of the skin. Using a combination of highly sensitive confocal 

and intravital microscopy (IVM) it was possible to detect a small number of CCL17/EGFP
+
 cells even in 

murine skin which was not treated with DNFB (see section 5.1). These cells might have been 

overlooked previously due to technical limitations
49,73

. As another consideration, the skin samples 

analyzed in this thesis have been treated with the solvent acetone:olive oil for confocal microscopy or 

with a hair-removal cream for IVM which may have induced CCL17 expression to some extent. 

Interestingly, CCL17/EGFP
+
 cells appeared to mostly assemble in small cellular clusters in close 

proximity to lymphatic and/or blood vessels (BVs). This finding was somewhat surprising, as CCL17
 
was 
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expected
 
to be mostly expressed in dermal DCs (dDCs) which are known to distribute diffusely in the 

healthy skin
60

. Nevertheless, it is conceivable that the distinct location of CCL17/EGFP
+
 cells, which 

likely represent also perivascular Mφs (pvMφs), in close proximity to post-capillary venules is required 

to recruit peripheral leukocytes, such as neutrophils or memory effector T cells
87,185,198

. In line, the 

analysis of non-inflamed human skin revealed co-expression of CCL17 and the adhesion molecules, E-

selectin and ICAM-1, in defined areas of dermal vessels
86

. These areas are likely to represent ‘dermal 

hotspots’ for extravasating leukocytes. Here, a single application of DNFB on the ears of non-sensitized 

CCL17
E/+

 mice induced a more dispersed distribution of CCL17-expressing cells, which either suggests 

an activation induced increase in CCL17 expression, enhanced migratory capacity of existent CCL17
+
 

cells, or the infiltration of peripheral CCL17-producing cells. Interestingly, treatment of alternatively-

activated BM-Mφs with IL-1α was shown to induce the expression of several chemokines including 

CCL17
60

. In line, treatment of human keratinocytes (KCs) with various contact sensitizers was previously 

shown to induce inflammasome activation which results in the massive release of IL-1α
199

. 

Furthermore, murine KCs are capable of secreting large amounts of IL-1α in response to mechanical 

and inflammatory stimuli
57,200,201

. Thus, it is possible that DNFB treatment results in the release of IL-1α 

from KCs, which in turn upregulates CCL17 expression in dDCs and pvMφs.  

As introduced earlier, skin immune cells display a sequential activation pattern during inflammation, 

which leads to the formation of distinct immune cell clusters known as iSALT for inducible skin-

associated lymphoid tissue
58,202

. These clusters are not present under homeostatic conditions but are 

essential for the local activation of memory effector T cells under inflammatory conditions
60

. In the 

present work, the presence of CCL17/EGFP
+
 cells directly adjacent to dermal BVs under homeostatic as 

well as inflammatory conditions potentially indicates an important role for CCL17 in the formation of 

iSALT through the recruitment of skin-homing CCR4
+ 

leukocytes. Thus, further experiments should 

address whether CCR4
+
 leukocytes actually extravasate in dermal areas juxtaposed to CCL17-

expressing cells. 

Behaviorally distinct CCL17+ cells are present in the murine skin. 

To examine the migratory kinetics of CCL17/EGFP
+
 skin cells in vivo, I performed IVM using ears of 

CCL17
E/+ 

mice. Interestingly, IVM revealed the presence of at least two CCL17/EGFP
+
 cell populations in 

the dermis (see section 5.1.2), which differed in motility.  

A more sessile cell population with an elongated, dendritic shape localized directly adjacent to post-

capillary venules. These cells showed no active migratory behavior but displayed a continuous 

movement of their dendrites along the vessel wall. In light of previous studies, these cells possibly 

represent a subset of CCL17
+
 pvMφs

42,60
. In the skin, pvMφs express typical Mφ surface markers, 

including CD45, CD11b, F4/80, and CD64
40

. Strikingly, pvMφs were found to cover approximately 40% 

of the length of dermal venules and to be essential for the induction of iSALT through the recruitment 
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of CXCR2
+ 

DCs via secretion of CXCL2
42,60

. Interestingly, sessile CCL17/EGFP
+
 cells appeared to localize 

at random positions along the BVs. Thus, although speculative at this point, sessile CCL17/EGFP
+
 cells 

probably influence the adhesive and transmigratory activity of crawling blood leukocytes and thereby 

contribute to their extravasation in areas juxtaposed to sessile CCL17/EGFP
+
 cells. Fittingly, their 

elongated dendrites appeared to reach directly into the vessel lumen. Alternatively, this interaction 

could also indicate some kind of sampling mechanism of the capillary content. However, Geissmann 

and colleagues demonstrated, that in contrast to other tissue Mφs, dermal Mφs, LCs, microglia and 

alveolar Mφs do not take up circulating proteins from adjacent capillary beds
203

. Thus, it seems unlikely 

that the sessile CCL17/EGFP
+
 cells in the skin actually sample the capillary content, but rather interact 

with endothelial to mediate extravasation of blood leukocytes. Assuming that CCL17 is required for the 

recruitment of infiltrating leukocytes, it remains elusive how CCL17 is transported to the intraluminal 

side of the BV. In recent years, atypical chemokine receptors (ACKRs) have gained much attention as 

silent partners in the regulation of chemokine function
204

. ACKRs are structurally similar to 

conventional chemokine receptors as they also possess seven transmembrane- spanning helices and 

an extracellular domain that binds multiple chemokines with high or low affinity
205

. In contrast to 

chemokine receptors, ACKRs lack an intracellular G protein signaling domain and are not able to 

activate signal transduction pathways normally activated by G-protein coupled receptors
205

. In the 

organism, ACKRs are implicated in chemokine scavenging, local buffering of chemokine release, 

shaping of chemokine gradients, chemokine sequestration, and transcellular transport of 

chemokines
204–207

. Prominent examples of ACKRs that were shown to bind CCL17 include the Duffy 

Antigen Receptor for Chemokines (DARC) also known as ACKR1
205,207–209

, and D6, also known as 

chemokine-binding protein 2 (ccbp2) or ACKR2
135,205

. Strikingly, expression of both, DARC and D6 has 

been reported on resting and inflamed blood endothelial cells (BECs) of post-capillary venules and 

lymphatic endothelial cells (LECs)
204,207,210,211

. However, a major difference of DARC and D6 function 

was demonstrated with regard to skin inflammation. Whereas overexpression of DARC on BECs 

resulted in elevated chemokine-mediated leukocyte extravasation into the skin and enhanced CHS 

reactions
206,210

, deficiency of D6 also led to exaggerated skin inflammation
212

. The current view of D6 

function mostly implicates scavenging of chemokines during inflammation. Therefore, enhanced 

inflammatory reactions in D6-deficient mice were mostly attributed to a slower resolution of 

chemokine availability and the prolonged recruitment of inflammatory cells
212

. In contrast, DARC 

expression on BECs is strongly associated with transcytosis of chemokines across endothelial 

cells
205,206,210

, including those of the blood-brain barrier
207

. Considering the close association of sessile 

CCL17-producing skin cells with dermal BVs, it is possible that DARC mediates transcellular transport 

of CCL17 from the skin interstitium to the intraluminal side of dermal BVs. Thus, future experiments 

should specifically address whether infiltrating leukocytes actually extravasate in areas juxtaposed to 

sessile CCL17
+
 skin cells and whether CCL17 presentation on BECs requires shuttling via DARC.  
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The second population of CCL17/EGFP
+
 cells identified by IVM displayed an amoeboid morphology 

and showed active migratory behavior, which is typical for skin monocytes or DCs
60

 (see Fig. 5.2). The 

ability to migrate implies a functional difference compared to the sessile CCL17/EGFP
+
 cells. Whereas 

the sessile CCL17-expressing cells in the skin probably assist in the extravasation of blood leukocytes, 

skin-infiltrating leukocytes may be further guided by chemokine cues produced by the migratory 

population of CCL17-producing cells. In support of this theory, distinct skin-resident DC subsets were 

shown to promote unique T cell responses against the same antigen
213

. For example, Langerin
+
CD103

+ 

dDCs were demonstrated to specifically enhance Th1 cell responses while simultaneously inhibiting 

Th17 cell responses in a mouse model of C. albicans infection
213

. In contrast, functions of Langerin
-
 

CD103
-
dDCs, which include both, CD11b

+ 
and CD11b

-
 dDCs

27
, are generally less well understood. 

However, in skin-draining LNs, CD103
-
 dDCs were found to constitutively produce retinoic acid and 

may be important for the generation of regulatory T cells
214

. Of note, Tamoutounour and colleagues 

previously demonstrated that pvMφs isolated from the skin were not able to induce T cell proliferation 

but are essential for their recruitment to the skin
40,60

. A possible role of migrating CCL17
+
 cells for the 

activation of distinct T cell subsets is corroborated by the finding that only NKT-cell-licensed DCs 

recruit a population of CCR4
+
 cytotoxic T leukocytes (CTLs) via the production of CCL17

89
.  

CCL17 is expressed in distinct subsets of skin myeloid cells 

Flow cytometric analysis of naïve ears from CCL17
E/+

 and CCL17
E/E

 mice (see 5.1.3) revealed that CCL17 

is expressed in all major DC populations (cDC1 and cDC2), CCR2
+
Ly6C

int/lo
MHCII

int/hi
 monocytes (P2 & 3 

monocyte DC), and CCR2
-
Ly6C

-
CD64

+
MHCII

+
 dermal Mφs (P5 dMφs). 

 

Strikingly, further characterization of cDC1 subpopulations revealed that CCL17 was only expressed in 

XCR1
+
CD103

+ 
cells. It has become increasingly clear that distinct DC subsets are responsible for the 

activation of specific T cell subsets
213

. cDC1 are superior in priming CD8
+
 T cells

215
, whereas cDC2 

specialize in CD4
+
 T cell priming

24
. In particular, CD103

+ 
cDC1 were demonstrated to be highly 

migratory and efficient in presenting keratinocyte-derived antigens to CD8
+
 T cells

159,215,216
. 

Furthermore, the additional expression of XCR1
+
 allows CD103

+
 cDC1 to efficiently cross-present 

exogenous antigens to CD8
+
 T cells

215
. Thus, the expression of CCL17 in CD103

+
XCR1

+ 
cDC1s

 
suggests 

that in the skin CCL17 potentially recruits a distinct subset of CD8
+
 T cells. Further analysis of this 

particular cDC1 subset under inflammatory conditions could reveal exciting insights for the 

development of therapies targeting CD8
+
 T cell-dependent diseases such as ACD

165,166
.  

It is conceivable that the population of CCL17
+
 P5 dMφs identified by flow cytometry represents the 

population of sessile CCL17/EGFP
+
 cells identified by IVM, whereas the CCL17

+
 P2 & 3 moDC 

population possibly reflect the migratory population of CCL17
+
 cells identified by IVM. In future 

experiments the exact cellular identity of CCL17
+
 cells identified by IVM should be clarified.  
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In contrast to microscopy, flow cytometry also identified CCL17/EGFP
+
 Langerhans cells (LCs). In the 

present study, skin myeloid cells that displayed a high CD11b and CD24a expression were identified as 

LCs (see Fig. 5.3). Historically, LCs were distinguished from dDCs by the expression of Langerin 

(CD207), which was later found to correlate strictly with a high CD24a expression
25

. In later studies, 

CD207 was identified to be also expressed on a subset of dDCs
26,217,218

 and could therefore no longer 

be used as a reliable marker for the identification of LCs. Here, flow cytometric gating of LCs proved to 

be difficult as cDC1 (CD11b
-
CD24

+
) and monocytes/cDC2 (CD11b

+
CD24

lo-int
) populations were directly 

adjacent to CD11b
+
CD24a

hi
 LCs. Thus, it is possible that some neighboring cDC1s, monocytes, or 

cDC2s are present in the LC gate. Given the high frequency of CCL17/EGFP
+
 cells in cDC1, cDC2, and 

monocytes (see Fig. 5.4A), and the absence of CCL17/EGFP
+ 

cells in the epidermis (microscopy), it is 

possible that the identified CCL17/EGFP
+
 LCs are actucally cDC1s, cDC2s, or monocytes. Alternatively, 

the CCL17/EGFP
+
CD11b

+
CD24a

hi
 cells could be activated LCs which are on transition through the 

dermis, migrating towards lymphatic vessels. It is also possible that LCs express only low levels of 

CCL17 which are not readily detected by microscopy, but only by more sensitive methods such as flow 

cytometry, or that the procedure to isolate skin cells for FACS analysis induced CCL17 expression in 

otherwise CCL17-negative LCs. Thus, in future experiments, the epidermal and dermal compartment 

should be analyzed separately to be able to clearly separate LC from DC populations. Furthermore, the 

analysis of additional surface markers of CCL17-expressing cells, such as F4/80, CD205, CD207, or 

CD209 will also prove useful to further characterize CCL17-expressing cells in the skin. 

Interestingly, flow cytometric analysis of naïve ears of CCL17-deficient mice (CCL17
E/E

) did not show 

major differences compared to heterozygous CCL17
E/+

 mice, which excludes an autocrine regulatory 

loop of CCL17 expression by itself. In line, the absolute number of various skin myeloid cells was not 

affected by the loss of CCL17 (see Fig. 5.7 & Fig. 5.8). Thus, under steady state conditions CCL17 does 

not seem to regulate trafficking of skin-resident myeloid cells but may do so under inflammatory 

conditions as demonstrated by Stutte et al.
49

.  

 GM-CSF regulates CCL17 expression in dDCs and monocytes 6.1.2

Granulocyte-macrophage colony-stimulating factor (GM-CSF) was previously demonstrated to induce 

CCL17 expression in DCs, Mφs, and monocytes in an IFN regulatory factor 4 (IRF4)-dependent 

manner
74,168

. The hematopoietic-specific transcription factor IRF4 was shown to be critical for the 

development of distinct myeloid and lymphoid lineages, in particular, development of cDC2s
37

. In the 

present work, the role of GM-CSF in the regulation of CCL17 expression in skin myeloid cells was 

investigated by flow cytometry using untreated GM-CSF-deficient CCL17
E/+

 (GM-CSF
-/-

CCL17
E/+

) mice 

(see section 5.1.5). Whereas the absolute numbers of various skin myeloid cells was not affected by 

the loss of GM-CSF, the number of CCL17-expressing cDC1s, cDC2s, LCs, and P3 moDCs was 

significantly reduced in the absence of GM-CSF. In contrast, CCL17/EGFP
+
 dermal P5 Mφs were not 
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affected by the absence of GM-CSF. This result was somehow expected as a publicly available 

microarray dataset of all major murine skin myeloid cells (GEO accession: GSE49358) revealed that only 

dDCs and P1-P3 monocytes express the GM-CSF receptor, Csf2rb (colony stimulating factor 2 receptor, 

beta, low affinity)
40

. Taken together, the selective induction of CCL17 by GM-CSF in dDCs and 

monocytes clearly points to a highly regulated mechanism controlling the expression of CCL17 in 

distinct subsets of skin-resident immune cells. As discussed earlier, KCs probably have a major role in 

the regulation of CCL17 expression in the skin through the production of various cytokines. Under 

inflammatory conditions, murine KCs were not only shown to release IL-1α
200

, but also produce 

increasing amounts of GM-CSF
219

. Thus, it is likely that KC-derived cytokines regulate CCL17 expression 

in various immune cells, but a more specific regulation of CCL17 expression is achieved through a cell-

type specific expression of cytokine receptors. In another study conducted in our lab, we previously 

demonstrated that MyD88-deficient KCs produce significantly less IL-1α in a mouse model of atopic 

dermatitis (AD)
220

, which further suggests a role for TLR-mediated regulation of CCL17 expression in 

dMφs cells via IL-1α. It has to be noted, however, that the analysis of CCL17-expressing cells in MyD88-

deficient mice is biased by the fact that MyD88 is also required for signaling downstream of the IL-1 

and IL-18 receptors
12

. 

 CCL17 regulates the abundance of dermal γδ T cells 6.1.3

One of the major functions of CCL17 is the recruitment of CCR4-expressing leukocytes to sites of 

inflammation
75

. For this reason, I performed a rough analysis of the major T cells present in untreated 

ears of WT, CCL17
E/+

, and CCL17
E/E

 mice. Whereas the absolute number of CD3
+
TCRβ

+ 
conventional

 
T 

cells (conv T cells) was not affected by the loss of CCL17, CD3
+
TCRγδ

hi 
dendritic epidermal T cells 

(DETCs) and CD3
+
TCRγδ

int
 T cells (γδ T cells) were both present at reduced numbers in CCL17

E/E
 mice, 

although the difference did not reach statistical significance (see Fig. 5.10). One important difference 

of conv T cells in comparison to DETCs is the time point when these cells appear in the skin for the first 

time. Whereas DETCs seed the skin during embryonic development
221,222

, conv T cells mostly home to 

the skin after being activated by cognate antigen in draining LNs
223

. Only after this priming conv T cell 

subsets were shown to induce the expression of CCR4 and are able to respond to CCL17 produced in 

the skin
45,224

. As here only naïve mice were analyzed, no significant role for CCL17 in the regulation of 

conv T cells was expected.  

In contrast to conv T cells, DETCs are generated in the fetal thymus during embryonic development 

and are exported sequentially in distinct waves to the skin at E14
51,225,226

. In the fetal thymus, Vγ5
+
 

DETC precursor cells that survived positive selection were shown to induce the expression of the 

chemokine CCR10. In turn, CCR10 expression proved to be essential for the migration of DETC 

precursors towards the chemokine CCL27 produced by keratinocytes in the epidermis
221,227

. 

Consequently, CCR10-deficient mice display reduced numbers of DETCs in the epidermis but show a 
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reciprocal accumulation of DETC precursor cells in the dermis
228

. Thus, the CCR10/CCL27 signaling axis 

seems to be critical to mediate the migration of DETC precursors from the dermis into the epidermis. 

In contrast, CCR4 was shown to be necessary for the in situ maintenance of DETCs in adult mice
221,229

. 

Thus, in CCR4-deficient mice, the absolute number of DETCs in the epidermis slowly diminished with 

increasing age
229

. For the present thesis, the CCR4-dependency of adult DETCs to maintain themselves 

is of particular interest as it could explain the necessity to produce CCL17 in the naïve skin. As DETCs 

require CCR4 signaling for in situ maintenance and CCL17 is a potent ligand of CCR4, it is possible that 

CCL17 produced by dermal immune cells also reaches the epidermis to regulate maintenance of 

DETCs. In the present work, the mice analyzed had an average age of 8-12 weeks which might be too 

young to observe a stronger effect of CCL17-deficiency on DETCs. Thus, in future experiments DETCs 

should be analyzed in aged (>24 weeks) CCL17
E/E

 mice.  

The second population of γδ T cells present in the skin is characterized by an intermediate expression 

of TCRγδ (see Fig. 5.9) and likely represents dermal γδ T cells
230

. Interestingly, expression of CCR10 

and CCR4 was also reported on dermal γδ T cells
231

, although no definitive function has been assigned, 

yet. As discussed previously, CCR10 and CCR4 ligands (CCL27 and CCL17, respectively) have been 

implicated in skin homing of γδ T cells
221,228

. Whereas CCL27 is continuously expressed in the 

epidermis
61

 and therefore probably regulates homeostatic trafficking of γδ T cells, CCL17 is known to 

be strongly upregulated during skin inflammation
49,69,73

. However, in light of the presented results, 

constitutive expression of CCL17 might also regulate homeostatic trafficking of dermal γδ T cells to the 

skin. 

 Aptamer-mediated inhibition of CCL17 represents a promising 6.1.4

treatment strategy for ACD 

As introduced earlier, serum levels of CCL17 serve as a biomarker for the severity of AD
69,182,232,233

. 

Furthermore, we and others already demonstrated that the absence of CCL17 is associated with 

beneficial responses in mouse models of allergic skin inflammation
58,78

 as well as several other 

inflammatory disease models
72,183,186

. In addition, inhibition of CCL17 function with CCL17-specific 

neutralizing antibodies reduced atheroprogression in atherosclerosis-prone mice
186

. Due to the large 

promiscuity of the chemokine system, targeting a single chemokine may cause less unwanted side-

reactions compared to inhibition of chemokine receptor function
234

. The difference becomes obvious 

when comparing CHS reactions in CCL17
E/E

 and CCR4-deficient (CCR4
-/-

) mice. Whereas CCL17
E/E

 mice 

developed a reduced ear swelling response
49,50

, CCR4-deficiency resulted in an enhanced CHS 

response
91

 (see also Fig. 5.15). 

In the present work, two previously isolated high-affinity RNA aptamers specific for murine CCL17 were 

tested for their potential to inhibit CCL17 function in vitro and in vivo50
. The two aptamers, namely 

MF11.46 and MF35.47, showed a very high binding affinity for murine CCL17 of 0.9 nM and 7.5 nM, 
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respectively
50

. First, both aptamers were tested for their ability to inhibit CCL17-dependent migration 

of the murine T lymphoma cell line BW5147.3 in an in vitro transwell assay. In line with its higher 

affinity, MF11.46 showed a maximal inhibition of BW cell migration at a molarity 10-fold lower than 

that of MF35.47 (see Fig. 5.13). Also, the IC50 of MF11.46 (0.42 pmol) was found to be approximately 

8-fold lower than that to MF35.47 (2.9 pmol) and the CCL17-specific neutralizing antibody MAB529 

(3.3 pmol). Surprisingly, and in contrast to the in vitro results, MF35.47 proved to be more efficient 

than MF11.46 in vivo (see Fig. 5.14). These results could be explained by a shorter in vivo half-life of 

MF11.46, a potential absorbance of MF11.46 by certain tissues, or could indicate different modes of 

inhibition of the two aptamers. For example, it was proposed that efficient signaling through CCR4 

requires the engagement of two distinct binding domains on CCL17
80

. In this study, the authors 

generated two chimeric anti-mouse CCL17 surrogate antibodies, B202 and B225, which both inhibited 

CCL17 function in vitro and in vivo. Nevertheless, there was a large difference regarding the affinities 

of the two antibodies for CCL17 of 685 pM and 4.9 nM for B202 and B225, respectively. Furthermore, 

only B202 also displayed weak binding to CCL22. Thus, the authors concluded that the two antibodies 

bind CCL17 at different binding sites and that inhibition of only one site is sufficient to prevent 

effective engagement with CCR4
80

. Regarding MF35.47 and MF11.46, a role for the additional 

inhibition of CCL22 can be excluded as both aptamers were found to specifically bind murine CCL17 

only
50

. However, it is still possible that the two aptamers engage with different binding sites on CCL17, 

one of which might be more accessible in vivo. As introduced earlier, the formation of inducible skin-

associated lymphoid tissue (iSALT) was demonstrated to be crucial for the initiation of the CHS 

immune response
60

. The initial formation of iSALT depends on the early activation of pvMφs by KCs. In 

turn, pvMφs produce increasing amounts of chemokines, such as CXCL2 and CCL17 to recruit specific 

subsets of dermal CXCR2
+ 

DCs and memory effector T cells
60

. In the present work, infiltration of CD8
+ 

T 

cells following DNFB treatment was significantly reduced in CCL17
E/E

 mice and WT mice that received 

i.p. injections of MF35.47 or MF11.46. This parenteral administration into the circulatory system 

ensures that the aptamers can act systemically and likely reach the bloodstream. Regarding the 

formation of iSALT, it is therefore possible that the aptamers inhibited the extravasation of T cells 

and/or the interaction of dDCs and T cells. 

In conclusion, the aptamer-based approach to inhibit CCL17 function was very successful and appears 

advantageous over the use of neutralizing antibodies for the following reasons: 1. large acale GMP 

production of aptamers is more cost-effective than antibody production as they can be readily 

synthesized chemically
167

, 2. nucleic acid aptamers have a minimal immunogenicity, and 3. the small 

size and secondary structure of aptamers may facilitate direct entry into the epidermal and dermal 

compartments and could potentially also directly applied onto the skin
235

. The relatively short half-life 

of aptamers in vivo (hours to days) makes aptamers particular suited for the treatment of acute 

inflammatory response as no or few side-reactions are expected caused by a prolonged presence of 
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the drug in the systemic circulation
50

. Thus, in future experiments the aptamers will be tested for their 

potential to inhibit CCL17 in the skin by epicutaneous application. In addition, the aptamers should be 

tested to for their ability to ameliorate other inflammatory reactions in murine disease models in which 

CCL17 was shown to be involved, such as asthma
71

, atherosclerosis
186

 or intestinal inflammation
72

. 

 Opposing roles of CCR4 and its two known ligands CCL17 & 6.1.5

CCL22 

In humans and mice, CCL17 and CCL22 are both potent ligands of CCR4
75

. In contrast to the immune-

stimulatory roles that have been assigned to CCL17, CCL22 has more often been associated with an 

immunosuppressive function
188

. Several studies already demonstrated a critical role for CCL22 in the 

recruitment of regulatory T cells. Fittingly, CCR4 was detected on both, murine and human regulatory T 

cells
75,191

. In mice, treatment with anti-CCL22 antibodies specifically reduced recruitment of regulatory 

T cells into ovarian cancers
79

, whereas in humans, the CCR4-specific monoclonal antibodies 

mogamulizumab and mAb1567 displayed potent anti-tumor effects
236,237

. Interestingly, however, in 

late 2014 mogamulizumab was found to cause the development of a serious skin rash in some treated 

patients
75,238

. Regarding the activation of CCR4-induced signaling, CCL22 was found to interact at a 

different binding domain than CCL17
82

. In addition, CCL22 induces a more rapid desensitization and 

internalization of CCR4 compared to CCL17
80–82,239

.  

As mentioned earlier, in a murine model of oxazolone-induced CHS, CCR4
-/-

 mice displayed an 

enhanced ear swelling response compared to control mice
91,196

, which is in strong contrast to the 

reduced CHS response observed in CCL17
E/E

 mice
50,73

. Based on these findings, it was hypothesized 

that in the absence of CCL17 a dominant, immunosuppressive CCL22-CCR4 interactions suppress the 

CHS response, whereas in CCR4
-/-

 mice the absence of CCL22/CCR4 signaling exacerbates the CHS 

response. Therefore, we analyzed the CHS response in two of our newly generated CCL17/CCL22-

double-deficient mice strains (CCL17
E/E

/22
F/F 

and CCL17
E/E

/22
G/G

) in comparison it to CCR4
-/- 

and 

CCL17
E/E

 mice. It should be noted, that the ameliorated CHS response observed in CCL17
E/E

 mice (see 

Fig. 5.15) may be caused by the decreased emigration of antigen-bearing LCs to skin-draining LNs 

resulting in an impaired sensitization to DNFB
49,73

 and the reduced recruitment of effector memory T 

cells into the skin during the elicitation phase on the other hand
50

. 

Confirming the findings by Lehtimäki et al., CCR4
-/-

 mice displayed an increased ear swelling over the 

course of three days after DNFB challenge compared to WT control mice. Interestingly, the ear swelling 

of CCR4
-/-

 mice even increased 48h after DNFB application, whereas it progressively decreased in WT 

mice. Surprisingly, both strains of CCL17
E/E

/22
-/-

 mice also developed a markedly reduced ear swelling 

response, comparable to the one observed for CCL17
E/E

 mice. Thus, it is conceivable that the sole 

absence of CCL17 in CCL17
E/E

 and CCL17
E/E

/22
-/-

 mice is sufficient to confer protection against DNFB-

induced CHS. As our group previously demonstrated a critical role of CCL17 in the emigration of LCs 
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after DNFB sensitization
49

, it is possible that also CCL17
E/E

/22
-/- 

mice are affected by an impaired 

sensitization. Although the CCL22-CCR4 axis was previously demonstrated to be critically involved in 

the recruitment of regulatory T cells to the skin
240

, an impaired sensitization phase in CCL17
E/E

/22
-/- 

mice probably precludes the necessity to recruit regulatory T cells during the elicitation phase. At this 

point, however, it cannot be ruled out that the absence of CCL22 alone would have detrimental effects 

on the development of CHS. Thus, further experiments are required to unambiguously demonstrate an 

impaired sensitization phase in CCL17
E/E

 as well as CCL17
E/E

/22
-/-

 mice. Therefore, it would be of great 

interest to isolate the primed T cells from sensitized WT, CCL17
E/E

 or CCL17
E/E

/22
-/- 

mice and adoptively 

transfer them into non-sensitized WT recipients to compare the ear swelling responses following 

DNFB-challenge. If the recipient WT mice injected with T cells isolated from CCL17
E/E

 or CCL17
E/E

/22
-/-

 

mice will develop no or reduced ear swelling compared to control mice, CCL17 would be identified as 

a critical factor already required during the sensitization phase of CHS.  

In contrast, the exaggerated ear swelling response in CCR4
-/-

 mice is probably due to the increased 

infiltration of leukocytes into the skin as demonstrated by quantification of CD45
+ 

leukocytes and CD3
+
 

T cells (see Fig. 5.16A). These results are in line with findings from Lehtimäki et al. who also observed 

increased numbers of CD4
+
 T cells in ears of Oxazolone-treated CCR4

-/-
 mice

91
. In disagreement with 

the assumption that the CCR4-CCL22 interaction is responsible for the recruitment of regulatory T cells 

to the skin
240

, Lehtimäki and colleagues found increased numbers of CD3
+
FoxP3

+
 regulatory T cells in 

the ears of Oxazolone-treated CCR4
-/- 

mice compared to control mice. Furthermore, the enhanced 

infiltration of leukocytes in CCR4
-/-

 mice strongly suggests the presence of a second receptor which 

compensates for the loss of CCR4. As discussed earlier, CCR10 and its ligand CCL27 were often 

implicated in the migration of skin-homing leukocytes to the skin
61,140,228,241

. In line, combined 

treatment of WT mice with anti-CCL17, anti-CCL22, and anti-CCL27 antibodies, or treatment of CCR4
-/-

 

mice with anti-CCL27 antibodies during CHS, resulted in diminished ear swelling responses
48,140

, 

suggesting additive roles of CCR4 and CCR10 in murine CHS. It remains, enigmatic, however, why such 

compensation through CCR10-CCL27 should not occur in CCL17/22
-
double-deficient

 
mice. 

Alternatively, the enhanced inflammatory response observed in CCR4
-/-

 mice could be caused by an 

unrelated defect during T cell development as suggested by a study from Hu and colleagues
187

. In this 

study, the authors identified a critical role of CCR4 for the efficient negative selection of autoreactive T 

cells in the murine thymus
187

. The authors demonstrated that CCR4 is specifically expressed on 

immature CD69
+
CD4

+
 single positive (SP) and CD69

+
CD4

+
CD8

+ 
double positive (DP) thymocytes that 

just underwent positive selection in the thymic cortex and were about to enter the medulla. Upon 

further maturation of SP thymocytes CCR4 expression is lost. The subsequent analysis of CCR4
-/-

 mice 

revealed that CCR4-deficient SP and DP thymocytes do not accumulate in the thymic medulla as CCR4 

is required for the interaction with medullary DCs which present low-affinity autoantigens to induce 

tolerance and clonal deletion
1,187

. Most strikingly, the impaired ability of CCR4-deficient thymocytes to 
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undergo negative selection resulted in the accumulation of autoreactive T cells and concomitantly 

reduced numbers of regulatory T cells in secondary lymphoid organs. We and others have previously 

demonstrated that the CCR4 ligands, CCL17 and CCL22 are expressed in the thymus
70,242,243

. In the 

study conducted by Hu et al., SIRPα-expressing thymic medullary DCs were specifically identified to 

express high levels of CCL17 and CCL22
187

. Although, the authors used an in vitro transwell system to 

demonstrate that both, SP and DP thymocytes migrate towards CCL17 and CCL22 in a CCR4-

dependent manner, they do not provide data regarding the specific roles of the two chemokines in 

vivo. In light of the exacerbated CHS reaction observed in CCR4
-/-

 mice, the paper by Hu et al. suggests 

that a paucity of regulator T cells and the accumulation of autoreactive T cells in CCR4
-/-

 mice could 

explain the increased infiltration of T cells in DNFB-treated ears. Interestingly, CCL17
E/E 

mice were 

shown to possess higher numbers of regulatory T cells than WT mice
72,186

, in line with the diminished 

CHS responses in this background. 

There is one conceptual problem with this explanation. In the present work, CCL17
E/E

/22
-/- 

and CCR4
-/-

 

mice also displayed an opposing phenotype in the CHS model. Assuming that CCR4-expressing SP and 

DP thymocytes are recruited to medullary SIRPα
+ 

DCs via CCL17 or CCL22, a similar phenotype of 

CCR4
-/-

 and CCL17
E/E

/22
-/-

 mice would be expected. Thus, a possible explanation would be that CCR4-

expressing thymocytes respond to a so far unknown ligand of CCR4. Possible ligands described in 

humans include CCL2
197

, CCL3
176,197

, and CCL5
197

. However, no direct evidence for a specific 

contribution of these chemokines to thymocyte development has been demonstrated so far. 

Therefore, further experiments that elucidate the complex interplay of CCR4 and its ligands are 

required. 

 Increased abundance of CCL17-exprssing macrophages during 6.1.6

CHS 

In addition to T cells, it is well-known that the epicutaneous application of haptens such as DNFB also 

results in the recruitment of blood-derived Ly6C
hi
 monocytes to the inflamed skin

163
. Furthermore, a 

study published by the lab of Bernard Malissen found that a single DNFB treatment triggers a rapid 

and massive increase in dermal CD11b
+
 cells, even in the absence of sensitization

40
. Nevertheless, the 

influence of DNFB on CCL17 expression in dermal myeloid cells remained elusive. Thus, in the present 

work the composition of skin myeloid cells was analyzed in sensitized WT, CCL17
E/E

, CCL17
E/E

/22
-/-

, and 

CCR4
-/-

 mice 4 days after DNFB challenge. In line with the study conducted by the Malissen lab
40

, 

dermal CD11b
+
 cells were strongly enriched in DNFB-treated ears compared to ears which had only 

been treated with solvent (see Fig. 5.17). Strikingly, WT, CCL17
E/E

, and CCR4
-/-

 mice showed 

comparable numbers of CD11b
+
 cells, whereas significantly fewer CD11b

+
 cells infiltrated the ears of 

DNFB-treated CCL17
E/E

22
-/-

 mice. The heterogeneous dermal CD11b
+
 cells were resolved into cDC2s, 

three monocyte-derived DC populations P1-P3, and two populations of dMφs P4 and P5. The overall 
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increase, irrespective of the genotype, in P2 moDCs following DNFB application was somewhat 

expected, as these cells were shown to develop from infiltrating Ly6C
hi 

blood monocytes (P1 

monocytes)
28,40

. In accordance, the rather late analysis of cellular composition at day 4 after DNFB 

challenge suggested that most P1 monocytes had undergone maturation into P2 moDCs. As discussed 

previously, it is possible that the absence of CCL22 or the combined loss of CCL17 and CCL22 regulates 

the migration of mainly CCR2
+ 

monocytes. Whereas skin DC and monocyte populations are 

continuously replenished from bone marrow-derived preDCs and Ly6C
hi
 cells, respectively, dMφs 

originate from at least two distinct precursor pools
102,244

. In contrast to DCs in the skin, which develop 

in an FLt3L-dependent and CCR2-independent manner
38

, P1-P3 monocytes, and to a lesser extent 

dermal P4 and P5 Mφs, develop in a CCR2-dependent manner
40

. It has to be noted, however, that a 

substantial proportion of dMφs already establishes during embryonic development in a CCR2-

independent manner
40

. As only CCR2
+
 monocytes were affected by the loss of CCL17 and CCL22 but 

not by the absence of CCR4, this suggests the presence of a CCL22-dependent/ CCR4-independent 

signaling mechanism regulating monocyte functions in the skin. Although a second receptor for CCL22 

was not described yet, some evidence for CCR4-independent signaling mechanisms of CCL22 has been 

reported
135

. In addition to the regulatory roles of ACKRs discussed above, post-translational 

modifications of chemokines represent another mechanism to enhance or dampen chemokine-driven 

inflammatory responses
245

. In the case of CCL22, the ubiquitously expressed dipeptidyl peptidase IV 

(DPP4 or CD26) was found to excise the NH2-terminal Gly1-Pro2 and Tyr3-Gly4 dipeptides from CCL22 

generating a truncated version of CCL22(5-69)
246

. Compared to full-length CCL22, the DPP4-processed 

CCL22(5-69) was shown to display reduced chemotactic activity for human lymphocytes and moDCs, 

but not for monocytes
246

. In addition, CCR4-transfected HOS cells (human osteosarcoma) showed 

reduced mobilization of intracellular Ca
2+ 

and desensitization after application of CCL22(5-69), whereas 

monocytes appeared to bind CCL22(5-69) and full-length CCL22 similarly
135,246

. Although no such 

function was reported for murine CCL22, it is conceivable that DPP4 has a similar role in the regulation 

of murine CCL22 function. Thus, future experiments should analyze the specific expression and 

function of DPP4 on murine WT and CCR4
-/-

 monocytes. Furthermore, it would be of great interest to 

identify a possible second receptor that preferentially binds truncated CCL22(5-69). 

As for the analysis of naïve ears (see 5.1.3 & 5.1.4), the proportion of CCL17/EGFP
+
 cells was analyzed 

for all myeloid cell subsets after DNFB challenge. CCL17/EGFP
+
 cells were found within all DC as well as 

monocyte subsets. Interestingly, in sensitized mice, DNFB challenge resulted in a marked increase in 

CCL17/EGFP
+
 LCs. This is in line with previous studies conducted in our lab where increased numbers 

of CCL17-expressing LCs where also detected in skin-draining LNs following skin irritation
49,73

. In 

contrast, P1 monocytes were devoid of CCL17/EGFP
+
 cells after DNFB treatment. This suggests that 

early extravasated Ly6C
hi
 monocytes do not express CCL17 when they enter the skin but only 

upregulate CCL17 expression once they mature to P2 and P3 moDCs and acquire a transcriptome that 
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is more reminiscent of CD11b
+
 cDC2s as shown by Tamoutounour and colleagues

40
. Most strikingly, 

the overall number of P5 dMφs as well as their proportion of CCL17/EGFP
+
 cells (see Fig. 5.19C & 

5.20B) was strongly increased 4 days after DNFB challenge. In light of previous suggestions 

concerning their potential role in the recruitment of skin-homing CCR4
+ 

T cells, the increased number 

of CCL17-expressing P5 dMφs after DNFB treatment supports this scenario. It has to be noted, 

however, that the present analysis was conducted at day 4 after DNFB challenge and that future 

experiments should carefully dissect the kinetics of CCL17 expression in P5 dMφs at earlier time points 

after DNFB challenge. In addition, the specific cytokines regulating CCL17 expression in P5 dMφs 

should be investigated. As demonstrated by Natsuaki et al.
60

 and Didovic et al.
220

 KC-derived IL-1α 

appears to be a good candidate as it was able to induce CCL17 expression in bone-marrow derived 

Mφs. 

Taken together, the present work significantly extended the previous knowledge on CCL17 in the 

context of regulation of skin immunity. In addition, distinct subsets of CCL17-expressing cells were 

identified in the naïve as well inflamed murine skin and an aptamer-based approach to inhibit CCL17 

function in a murine model of ACD was established. Finally, the opposing phenotypes of CCR4
-/-

 and 

CCL17
E/E

/22
-/-

 mice in the CHS model suggest the existence of yet another CCR4 ligand as well as a 

possible second receptor for CCL22.  

 CCL17 in the context of brain immunity 6.2

Early evidence for CCL17 expression in the brain was already demonstrated nearly 20 years ago when 

Ivo Lieberam analyzed CCL17 expression in various cell types and tissues
70

. He found that BM-DCs 

expressed the highest levels of CCL17, whereas an about 100-fold lower expression was detected in 

the thymus, the lung, and the brain. In particular, regarding the expression of CCL17 in the lung, CCL17 

has nowadays been proven to be a critical factor in the development of many inflammatory lung 

diseases such as allergic asthma
71

. Additional experiments conducted in our lab using CCL17
E/+

 mice 

confirmed CCL17 expression in the brain. However, the exact cellular localization as well as the 

function of CCL17 in the brain remained elusive. 

 CCL17 is expressed in hippocampal CA1 neurons and affects 6.2.1

microglia morphology and synaptic transmission 

Imaging of brain sections of CCL17
E/+

 mice revealed a cell-type specific expression of Ccl17 in a subset 

of hippocampal CA1 neurons. As chemokines in the brain are known to affect microglia activation
107

, 

the abundance and morphology of microglia was also analyzed in CCL17
E/E

 mice. Strikingly, compared 

to WT mice, microglia in naïve CCL17
E/E

 mice were reduced in number and acquired a more reactive 

morphology (see Fig. 5.36) based on the analysis of morphological parameters generally associated 

with activated microglia
247

. In the absence of CCL17 microglia displayed a reduced cell volume, 

reduced branching, overall reduced tree length and a higher polarity compared to WT control mice 
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(see Fig. 5.37). In previous studies, we demonstrated that CCL17 expression in secondary lymphoid 

organs is upregulated in response to systemic inflammation
89,168

. Here, the systemic treatment with LPS 

strongly induced the expression of Ccl17 in hippocampal neurons, whereas neither the TLR3 ligand 

PolyI:C nor the TLR9 ligand CpG enhanced Ccl17 expression. Peripheral inflammation is commonly 

known to influence normal brain function
120

. In particular, microglia respond to increased production 

of peripheral cytokines following systemic inflammation and assume a highly reactive 

morphology
111,248,249

. Interestingly, systemic LPS stimulation in CCL17
E/E

 mice did not impose further 

changes on microglia morphology, whereas microglia in WT mice acquired a highly reactive 

morphology. Aside from modulating microglia activation, chemokines in the brain were also 

demonstrated to influence neuronal signaling comparable to neuropeptides such as BDNF
129

. Indeed, 

naïve CCL17
E/E

 mice displayed an elevated basal synaptic transmission between Schaffer collaterals and 

pyramidal CA1 neurons (see Fig. 5.38). Thus, it is tempting to speculate that CCL17 is able to 

downmodulate synaptic transmission either via direct neuromodulatory effects or indirectly via the 

modulation of microglia functions, such as pruning or the secretion of other neuromodulatory factors. 

One possibility is that the highly localized expression of CCL17 in hippocampal neurons helps to 

prevent premature activation of hippocampal microglia. The hippocampus represents one of the 

brains’ most vulnerable regions to injury, inflammatory insult, or CNS disorders
126

. Therefore, it is 

reasonable to assume that the hippocampus possesses unique capabilities to keep microglia in their 

non-pathogenic, tissue-surveying state. CCL17 may exert its function on microglia using one of two 

possible routes. First, CCL17 may directly act on microglia via its receptor CCR4. In line, we and others 

have previously demonstrated that microglia indeed express CCR4
133,144,250

. Furthermore, during the 

revision process of our paper on the function of CCL17 in the murine brain
144

 I was able to 

demonstrate that microglia are able to directly bind CCL17 on their surface (data not shown), which 

supports the idea of a direct neuron-microglia communication via CCL17 and CCR4. In addition to a 

direct effect, it is also conceivable that CCL17-expressing immune cells outside the CNS acquire various 

defects in the absence of CCL17 as shown for a population of CCL17-expressing DCs that fail to 

immigrate into the CNS in a mouse model of experimental autoimmune encephalomyelitis (EAE) a 

model of human multiple scelerosis
84,194

. Interestingly, the chemokine CX3CL1 was previously identified 

to exhibit a similar inhibitory influence on microglia activation as CCL17 via CX3CR1
251,252

. However, in 

sharp contrast to CCL17, CX3CL1 is widely expressed in neurons of the hippocampus, the striatum, and 

the cortex and is, therefore, able to regulate microglia activation in the entire brain
251

. It is of interest 

here, that upon LPS stimulation a weak CCL17/EGFP signal was also detected in cortical neurons (see 

Fig. 5.24) and potentially a low level expression of CCL17 can also occur in other regions of the brain 

under steady state conditions.  

The LPS-induced upregulation of Ccl17 in hippocampal neurons was abrogated in MyD88-deficient 

mice. Interestingly, the baseline expression of Ccl17 was found to be MyD88-independent suggesting 
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that neither LPS nor other PAMPs derived from commensal bacteria signal via the TLR4/MyD88-

dependent pathway to maintain the constitutive expression of Ccl17 in the hippocampus. However, it 

is still possible that TLR4 regulates baseline expression of Ccl17 via the MyD88-independent TRIF 

pathway
12

. The constitutive expression of Ccl17 in the hippocampus indicates a role for CCL17 in 

maintaining normal brain function. In support of this theory, histological analysis of hippocampal brain 

sections from naïve and LPS-treated CCL17
E/E

 mice revealed a significant reduction in microglia 

numbers compared to WT mice (see Fig. 5.35). Given the localized expression of CCL17 in the 

hippocampus, it was expected that CCL17 exerts its strongest effects in the hippocampus. Intriguingly, 

flow cytometric quantification of microglia isolated from the entire brain also revealed reduced 

microglia numbers in mice lacking CCL17 compared to WT mice. Thus, it is possible that the low 

expression of CCL17 in brain regions other than the hippocampus affects microglia globally. 

Furthermore, the lack of CCL17 expression in peripheral immune cells could also indirectly influence 

microglia function. For example, alterations in the intestinal microbiota have been recently described 

to affect microglia morphology
253,254

. Thus, a direct or indirect effect of systemically produced CCL17 

on microglia cannot be excluded at this point.  

In line with previous work conducted by Ruland and colleagues
84

, flow cytometric analysis of 

hematopoietic cells in the CNS also identified CCL17/EGFP
+
 cells only within the DC/Mφ population, 

whereas microglia did not express CCL17 (see Fig. 5.34). This finding is in contrast to other studies 

which already indicated expression of Ccl17 in microglia
171

. In the present study, CCL17-driven EGFP 

expression was indicative of active Ccl17 transcription, whereas other studies used RNA-sequencing 

(RNA-seq) to detect Ccl17 in microglia
171

. As microglia continuously shape neurons by synaptic 

pruning and also phagocytose dying neurons, it is conceivable that they might have taken up Ccl17 

RNA passively from surrounding neurons. Along the same line, another study conducted by the Jung 

lab also demonstrated that conventional RNA-seq analysis of microglia often produce results 

compromised by artifacts introduced by different methods of tissue-dissociation
255

. In addition, 

absolute numbers of brain infiltrating CD45
hi
 leukocytes as well as the level of CD11b surface 

expression on infiltrating monocytes were markedly reduced in LPS-injected CCL17
E/E

 mice compared 

to control mice. These findings suggest that CCL17 is potentially involved in priming/ sensitizing 

monocytes upon TLR-stimulation. The reduced recruitment of CD45
+
 leukocytes into the brain in 

CCL17
E/E

 mice can be partially explained by previous studies which found that DCs require CCL17 to 

cross the BBB after induction of EAE
84

. Furthermore, brain-derived CCL17 may exert direct chemotactic 

effects on peripheral immune cells such as regulatory T cells
100,256

. Surprisingly, no T cells (CD3
+
 cells) 

were detected in the brain. As numerous studies already demonstrated the presence of T cells in the 

brain
100

, the failure to detect T cells in the present work can probably be attributed to a weak CD3 

antibody staining. Thus, future studies should analyze additional T cell surface markers to 

unambiguously characterize brain T cells in CCL17
E/E

 and WT mice.  
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 Locally produced TNF regulates Ccl17 expression in the brain 6.2.2

As, the LPS-induced upregulation of Ccl17 in the brain was completely abolished in TNFR-deficient 

mice (see Fig. 5.29), a prominent role for TNF in the regulation of Ccl17 was apparent. In line, LPS-

injected WT mice also displayed a strong increase in Tnf expression in the hippocampus. Unexpectedly, 

LPS treatment also induced upregulation of Tnf in the hippocampus of MyD88-deficient mice, 

although less pronounced compared to WT mice. As MyD88-deficient mice failed to upregulate Ccl17 

following LPS injection this suggests that a certain amount of locally produced TNF in the brain is 

required to induce Ccl17 expression above baseline. To address this, Ccl17 expression was analyzed in 

WT mice that were injected i.p. with increasing doses of LPS. This titration experiment revealed that the 

level of Tnf expression in the hippocampus directly correlated with the injected dose of LPS. 

Interestingly, a minimum dose of 50µg LPS was required to upregulate Ccl17 expression above 

baseline. In contrast, serum levels of TNF strongly increased independently of the LPS dose over a 

range of 6 to 150 µg/ mouse, suggesting that the LPS-induced expression of Ccl17 in the brain 

strongly depends on local TNF-signaling. In line, WT mice that received i.p. injections of recombinant 

TNF did not upregulate Ccl17 in the brain (see Fig. 5.28).  

In the brain, LPS is primarily sensed by microglia and astrocytes that express TLR4
112,257,258

. 

Interestingly, it was previously demonstrated that small amounts of LPS are not able to cross an intact 

BBB but instead bind to TLR4 expressed on brain endothelial cells which then propagate a 

proinflammatory signal into the brain
93,115,121

. On the contrary, high doses of LPS as well as repeated 

small doses of LPS were shown to induce disruption of the BBB in particular in the frontal cortex, 

thalamus, pons, medulla, and cerebellum
93

. In response to LPS, microglia and astrocytes produce 

increasing amounts of TNF which is associated with an enhanced excitatory activity of neurons
259,260

. In 

the present work, LPS-induced expression of Ccl17 in hippocampal neurons potentially causes some 

kind of TNF-dependent microglia-neuron cross-talk which prevents excessive activation of neuronal-

signaling under inflammatory conditions.  

 Ccl22 is expressed in microglia and regulated by GM-CSF 6.2.3

signaling 

CCL22, the second ligand of CCR4, was also found to be expressed in the hippocampus of WT mice. 

Similar to Ccl17, systemic LPS treatment strongly enhanced the expression of Ccl22, whereas neither 

CpG nor PolyI:C had an effect on Ccl22 expression. Analysis of hippocampal gene expression in LPS-

injected GM-CSF- and TNF-deficient mice revealed a dominant role for GM-CSF in regulating Ccl22 

expression (see Fig. 5.29 & 5.30). In contrast, GM-CSF-deficiency had only minor effects on the LPS-

induced expression of Ccl17, suggesting a differential regulation of Ccl17 and Ccl22 in the murine 

hippocampus. Conversely, previous studies demonstrated an essential role for GM-CSF in the 

regulation of Ccl17 expression in myeloid cells
74

. Thus, it seems likely that a distinct cytokine receptor 
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expression profile on neurons and myeloid cells regulates Ccl17 and Ccl22 expression. Whereas 

CCL17/EGFP
+
 neurons could be readily identified by means of CCL17/EGFP reporter mice, the cell type 

producing Ccl22 has yet to be identified. If Ccl22 was also produced in hippocampal neurons the 

observed finding could reflect a distinct cytokine responsiveness of the Ccl17 and Ccl22 promoters in 

neurons. Analysis of Ccl22 expression in a publicly available brain transcriptome database 

(http://www.brainrnaseq.org/), however, revealed highest expression of Ccl22 in the microglia/ Mφ 

group (see Fig. 6.1).  

 

Whereas this finding should be confirmed by analyzing CCL22 protein production in the brain, it 

indicates that the differential cytokine dependence of Ccl17 and Ccl22 expression is likely due to their 

expression in distinct cell types. In previous work conducted by our group, IFNγ was identified to 

specifically repress Ccl17 expression in splenic DCs
168

. Interestingly, analysis of Ifngr1 (Interferon 

gamma receptor 1) expression in the brain RNA-seq database revealed nearly exclusive expression in 

the microglia/ Mφ group, potentially explaining the absence of CCL17/EGFP
+
 microglia in CCL17

E/+
 

mice. Taken together, the additional expression of Ccl22 in the hippocampus represents a very 

interesting finding and its potential neuromodulatory functions should be investigated in future 

studies.  

 Synaptic transmission is altered in the absence of CCL17 6.2.4

Apart from regulating neuron-microglia interaction, the homeostatic and localized expression of Ccl17 

in pyramidal neurons of the hippocampal CA1 region also indicated a role for the CCL17-CCR4 axis in 

modulating neuronal activity. Electrophysiological field recordings in the CA1 region revealed an 

enhanced basal synaptic transmission at CA3-CA1 Schaffer collaterals in brain sections isolated from 

CCL17
E/E

 mice (see Fig. 5.38). This finding appeared to depend on a post-synaptic mechanism as the 

paired-pulse ratio (ratio of the second and first evoked fEPSP) was not different between slices from 

WT and CCL17
E/E

 mice
144

. As the field electrode was directly placed in the hippocampal CA1 region 

(where CCL17-expressing neurons are located), this further suggests an autocrine signaling mechanism 

of CCL17. Interestingly, a recent study by McGill et al. found Ccl17 to be specifically expressed in 

glutamatergic neurons of the hippocampus
175

. As glutamatergic neurons represent the brains’ main 

class of excitatory neurons, the increased basal synaptic transmission observed in CCL17
E/E

 mice 

Figure 6.1 | Ccl22 expression in different murine 

brain cell types. 

Brain cells were isolated via FACS and subjected to 

whole-cell RNA sequencing. According to the original 

publication, a FPKM (Fragments Per Kilobase Million) 

value of 0.1 represents the noise threshold of the data.  

Data was downloaded from the brain RNA-seq database 
(brainrnaseq.org). 

http://www.brainrnaseq.org/
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implied an autocrine inhibitory function of CCL17. In line, a study performed by Meucci et al. 

previously demonstrated that various chemokines, including CCL17 and CCL22, were able to evoke or 

reduce intracellular Ca
2+

 oscillations ([Ca
2+

]i) in distinct subsets of primary cultured hippocampal 

neurons from rat embryos
133

. These studies demonstrate that chemokines, such as CCL17 and CCL22, 

are able to directly modulate neuronal activity which likely becomes even more important in the 

context of systemic inflammation. Interestingly, a previous study by Li et al. in zebra fish found that 

active neurons can release factors enhancing microglia-neuron interactions which in turn reduce the 

activity of contacted neurons
261,262

. Surprisingly, following in vivo LPS treatment the basal synaptic 

transmission was comparable in WT and CCL17
E/E

 mice, presumably because systemic inflammation is 

generally known to stimulate synaptic transmission
248,260

 possibly through mechanisms that may 

overcome an inhibitory function of CCL17 in the healthy brain. 

In preceding studies by J. Alferink and colleagues
84,194

, the functional relevance of the neuronal 

CCL17/22-CCR4 axis could already be demonstrated
84,85,194

. Strikingly, CCR4-deficient mice displayed 

an impaired locomotor activity and less efficient nest building behavior compared to CCL17-deficient 

and WT mice
263

. In contrast, CCL17-deficient mice showed an increased exploratory behavior in the 

dark-light and object recognition tests, whereas CCR4-deficient mice exhibited an overall diminished 

exploratory behavior
263

. Furthermore, in the elevated plus-maze test CCR4 but not CCL17-deficient 

mice exhibited a reduced anxiety-related behavior. These opposing phenotypes suggest that the 

remaining expression of CCL22 and CCR4 in CCL17
E/E

 mice potentially modulates synaptic signaling 

which manifests in an altered behavioral response. Interestingly, in a study previously performed by 

Osborn et al. CCL22 was found to directly act as a prostaglandin-dependent pyrogen when injected 

into the anterior hypothalamus
264

. As a consequence of this CCL22 injection into the hypothalamus, a 

systemic hyperthermic response was induced via activation of brown adipose tissue. This study 

indicates that CCL22 is able to directly affect normal brain function independently of CCL17. Although 

the existing studies already indicate an important role for the CCL17/22-CCR4 axis in regulating 

distinct behavioral responses, the relative contributions of the two CCR4 ligands in the CNS should be 

further analyzed in future studies utilizing CCL22-deficient and CCL17/22-double-deficient mice.  

Intriguingly, elevated levels of CCL17 and CCL22 were also found in the serum of patients suffering 

from autism spectrum disorders (ASD)
195,265

. Here, serum levels of CCL17 and CCL22 directly correlated 

with severity of ASD. It is also tempting to speculate that the CCL17/22-CCR4 interaction is involved in 

the regulation of some of the TNF-dependent symptoms of sickness syndrome, such as depression or 

decreased locomotor activity, that are induced by peripheral inflammation
120,266

. Thus, the 

identification of CCL17 and CCL22 expression in the hippocampus represents an important and so far 

unrecognized finding that adds the CCL17/22-CCR4 axis to the list of chemokine/receptor pairs 

controlling CNS function under homeostatic as well as inflammatory conditions.  
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 CCL17-DTR mice can be used as a new model for the 6.3

analysis of temporal lobe epilepsy 

Expression of the simian diphtheria toxin receptor (DTR) under control of the Ccl17 promoter in 

CCL17-DTR (CCL17
DTR/+

) mice offers the interesting possibility to study the consequences of a specific 

ablation of CCL17-expressing neurons in vivo. Similar to CCL17
E/+

 mice, CCL17-DTR mice have been 

generated by targeting the second exon of the CCL17 locus. Thus, in heterozygous CCL17
DTR/+

 mice 

functional CCL17 is still produced from one allele, whereas the DTR is expressed from the second allele 

allowing inducible ablation of all CCL17-expressing cells through systemic treatment with diphtheria 

toxin (DT). In nature, DT is produced by Corynebacterium diphtheria267
. DT is a polypeptide consisting 

of two subunits, DT-A and DT-B. Whereas DT-B mediates binding to DTR on the cell surface and 

receptor-mediated endocytosis, DT-A catalyzes the transfer of an ADP–ribose moiety of nicotinamide 

adenine dinucleotide (NAD+) to a modified histidine residue on the protein elongation factor 2 (EF-2) 

in the cytoplasm
267

. This results in the inactivation of EF-2 and subsequently in the inhibition of protein 

synthesis and apoptotic cell death. It is of interest here that the DTR has been identified as a 

membrane-bound form of the heparin-binding EGF-like growth factor (HB-EGF)
268

, which is 

endogenously expressed in many different species, including humans, monkeys, and mice
269

. In 

contrast to the human and monkey HB-EGF, however, the murine variant does not bind DT-B, 

rendering murine cells at least 105 times more resistant to DT treatment than human cells
270

. Thus, the 

generation of transgenic mice expressing the gene for the simian DTR under the control of a 

tissue/cell-specific promoter (here Ccl17) allows the specific ablation of the DTR-expressing cells
271

.  

Earlier experiments performed by other lab members already showed that systemic DT treatment of 

CCL17
DTR/E

 mice efficiently depletes CCL17-expressing cells in secondary lymphoid organs such as skin-

draining lymph nodes. This depletion occurred, however, only transiently as CCL17 is mainly expressed 

in hematopoietic cells
73

, which are continually replenished by blood-borne precursors. In contrast, loss 

of neurons is usually permanent, as the majority of neurons cannot regenerate and only two brain 

regions show signs of weak neurogenesis
96,124,272

. Thus, it was reasoned that systemic DT treatment of 

CCL17
DTR/+

 mice could be used to specifically and permanently ablate CCL17-expressing neurons in the 

hippocampal CA1 region. To monitor the loss of CCL17-expressing hippocampal neurons, 

homozygous CCL17
E/E

 were intercrossed with CCL17
DTR/DTR

 mice. In the resulting offspring (CCL17
DTR/E 

mice), the DT-mediated loss of CCL17-expressing neurons could be easily monitored by the loss of 

EGFP fluorescence. Interestingly, no apparent effect on CCL17-expressing neurons was observed as 

early as 3 days following DT treatment (see Fig. 5.42). This is likely due to slow diffusion of DT over the 

BBB
181,273

 as well as weak expression of the CCL17-DTR construct in naïve CCL17
DTR/+

 mice. 

Nevertheless, this is in line with other studies reporting an estimated time of 3-5 days for DT-induced 

neuronal cell death
273

. Interestingly, DT treatment of female, and to a lesser extent male CCL17
DTR/+
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mice resulted in an early loss of bodyweight (~8-10%) compared to control mice (see Fig. 5.40). DT-

treated CCL17
DTR/+

 mice of both genders continued to lose weight until day 5 after the last DT injection 

before gaining weight again. Approximately 10 days after DT treatment female and male CCL17
DTR/+

 

mice displayed a body weight comparable to control animals, whereas female mice showed an 

accelerated weight gain over the entire course of the experiment (>80days) compared to control mice. 

Although only speculative at this point, it is possible that the early drop in body weight observed in 

DT-treated CCL17
DTR/+

 mice is related to a rapid depletion of peripheral CCL17-expressing cells 

because no apoptotic cells were detected in the hippocampus at day 3 post-DT treatment. It is 

conceivable that CCL17-expressing cells present in adipose tissues directly affect lipid metabolism as 

shown for resident adipose tissue Mφs which take up triglycerides from over-burdened adipocytes in 

an attempt to buffer fatty acid release into the circulation
274

. In contrast, the subsequent increase in 

body weight observed in DT-treated CCL17
DTR/+

 mice is possibly due to the progressive loss of CCL17-

expressing neurons. Thus, histological analysis of the brains at the end of the experiment revealed a 

strongly diminished number of hippocampal CA1 neurons in male and female DT-treated CCL17
DTR/+

 

mice (see Fig. 5.41). It is of interest here that Ccl17 was previously identified by Henry F.E. and others 

to be strongly upregulated in the hypothalamic arcuate nucleus (ARC) of mice that had been food-

deprived for 24h
174

. In the ARC, Ccl17 was found to be specifically expressed in neurons that express 

Agouti-related protein (AGRP neurons). Together with Proopiomelanocortin-producing neurons 

(POMC neurons), AGRP neurons are known to mediate whole-body energy homeostasis by sensing 

circulating levels of the metabolic hormones insulin, leptin, and grehlin
174

. In the same study, the 

authors also demonstrated that the chronic overexpression of Ccl17 in AGRP neurons resulted in a 

progressive increase in body weight compared to control mice, suggesting a potential role for 

neuronal CCL17 in the regulation of energy homeostasis. Thus, it is possible that DT-treated CCL17
DTR/+

 

mice also upregulate Ccl17 expression in AGRP neurons as a response to the early loss in body weight. 

The concomitant expression of the DT receptor in AGRP neurons would then also result in their 

depletion and likely manifest in a disturbed energy homeostasis. Although apoptotic cells in DT-

treated CCL17
DTR/E

 mice were only detected in the hippocampus, it is possible that an effect of DT 

treatment on CCL17/EGFP
+
 AGRP neurons was overlooked due to their overall low abundance

174
. 

Therefore, it will be interesting to investigate the expression of Ccl17 in the ARC of food-deprived 

CCL17
E/+ 

mice in the future, while also analyzing the specific role of neuronal CCL17 in the regulation 

of energy homeostasis.  

It was further predicted that the DT-mediated ablation of CCL17-expressing neurons in CCL17
DTR/+

 

mice would result in the activation of microglia and astrocytes. Indeed, immunofluorescent staining of 

the microglial marker IBA-1 at distinct time points after DT treatment revealed a strong increase in 

IBA-1 immunoreactivity 7 and 14 days after the last DT injection (see Fig. 5.43). Microglia numbers 

particularly increased in the hippocampal pyramidal layer of the CA1 region, suggesting that they 
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actively engulfed apoptotic CCL17-expressing neurons, which appeared at around the same time after 

DT treatment (compare Fig. 5.42 & Fig. 5.43). In the unperturbed hippocampus, neurons in the 

hippocampal pyramidal layer form a very dense and tight band of somata, which is normally devoid of 

microglia
122

. Here, the DT-mediated neuronal death
 
of CCL17/DTR-expressing neurons appeared to 

cause a marked increase of microglial infiltration or proliferation in the CA1 region. It is generally 

accepted that in the injured brain microglia migrate to the site of inflammation to phagocytose and 

eliminate dead cells and debris
31

. In the injured area microglia also become hyper-proliferative and 

undergo drastic morphological changes characterized by a less ramified, highly phagocytic amoeboid 

morphology
275

. In turn, microglia form fewer contacts with neurons and their synaptic surveillance 

functions are diminished
276,277

. Thus, in addition to an increased migration to the pyramidal layer, 

microglia in DT-treated CCL17
DTR/+

 mice likely acquire an increased proliferative potential. The exact 

contribution of microglial infiltration or proliferation should be addressed in future experiments. 

Analysis of the astrocytic marker GFAP also revealed an increased immunoreactivity 7 days after DT 

treatment, which slowly increased over the course of the experiment, peaking at around 21 days after 

DT treatment (see Fig. 5.44). In the healthy brain, astrocytes are known to fulfill multiple functions, 

such as the uptake of neurotransmitters, metabolic support of neurons, maintenance of the BBB, and 

the modulation of synaptic transmission
96,278

. Interestingly, astrocytes also play an essential role in CNS 

regeneration
279

. Upon nerve injury, astrocytes proliferate in the injured area and form a glial scar. 

Therefore, it is reasonable to assume that in DT-treated CCL17
DTR/+

 mice astrocytes fill up the space in 

the pyramidal layer and form a glial scar once microglia removed the CCL17-expressing neurons.  

During initial monitoring of DT-injected mice, it became apparent that female DT-treated CCL17
DTR/+

 

mice in particular displayed an abnormal behavior characterized by increased sensitivity to stress and 

elevated locomotion. Depending on the brain region, injuries can lead to the development of 

spontaneous recurrent seizures (SRS), a process known as epileptogenesis
273

. The hippocampus is well-

known for its association with epilepsy
280

. Given that DT-treatment of CCL17
DTR/+

 mice most strongly 

affected neurons in the pyramidal CA1 layer it was decided to perform EEG measurements in female 

DT-treated CCL17
DTR/*

 mice. Unfortunately only two mice could be analyzed at the time; however, both 

mice displayed a sporadic occurrence of more than 15 seizures 5 to 6 days after DT treatment. 

Development of first SRS nearly coincided with the first appearance of apoptotic neurons (compare 

Fig. 5.42 & Fig. 5.45), suggesting that the death of CCL17-expressing neurons is directly responsible 

for the development of SRS in DT-treated CCL17
DTR/+

 mice. The delay of 5-6 days between the last DT 

administration and the occurrence of the first SRS was likely due to the time required for DT to 

traverse the BBB and kill CCL17/DTR-expressing neurons
181,273

. It is of interest here, that in a recent 

study Ccl17 expression was specifically identified in hippocampal glutamatergic neurons
175

. 

Glutamatergic neurons are the brains main excitatory neurons, which use glutamate as a 

neurotransmitter. Prolonged excitation of neurons through glutamate was found to induce cell death 
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in a process known as “excitotoxicity” and is often associated with the pathology of epilepsy
281–283

. 

Therefore, it is possible that the DT-mediated ablation of CCL17-expressing glutamatergic neurons 

results in a sudden release of glutamate which in turn induces excitotoxicity of neighboring neural and 

non-neural cells. In the unperturbed brain, astrocytes are critical to buffer synaptic glutamate levels 

and possess specific glutamate transporters, such as GLAST and GLT-1 to remove excessive glutamate 

from the synapse
284

. During epileptogenesis and increased seizure activity, however, extracellular 

glutamate levels rise and contribute to the reactive astrocytosis observed in epileptic patients. Here, 

further investigation of the exact contributions of neuronal cell death and gliosis to the development 

of SRS in the CCL17-DTR model may provide novel insights into the process of epileptogenesis. In 

addition, CCL17-DTR mice may represent a new valuable model system for the analysis of inducible 

neuroinflammation in the hippocampal CA1 region. 
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